Entwurf und Implementierung einer
vollstandigen Infrastruktur fiir
modulare E-Learning-Inhalte

Zur Erlangung des akademischen Grades
DOKTORINGENIEUR (Dr.-Ing.)
der Fakultat fiir Elektrotechnik, Informatik und Mathematik
der Universitdt Paderborn
vorgelegte Dissertation

von
Dipl.-Inform. Michael Bungenstock
aus Hamburg

Referent: Prof. Dr.-Ing. Barbel Mertsching
Korreferent: Prof. Dr.-Ing. Reinhard Keil-Slawik
Tag der miindlichen Priifung: 6.4.2006

Paderborn, den 18.4.2006

Diss. 14/219

Kurzfassung

Mit dem Einzug des E-Learnings in Lehre und Ausbildung haben sich neue Anforderungen an
die IT-Infrastrukturen ergeben, die mit den verfiigbaren Techniken nicht addquat gelost wer-
den konnen. Viele der neuen Teilaspekte, wie z.B. Lernobjekte, Metadaten und Kodierungen,
werden zwar in wissenschaftlichen Arbeiten und Spezifikationen behandelt, aber leider fehlen
die Zusammenhénge fiir die Implementierung eines vollstdndigen Systems. Hierdurch werden
Seiteneffekte und Abhéngigkeiten ignoriert, die in der Praxis zu essentiellen Problemen fiithren
und proprietire Losungen hervorbringen. Der Akzeptanz von E-Learning ist diese Entwicklung
abtraglich, denn inkompatible E-Learning-Inhalte verursachen Kosten durch Konvertierung
oder Neuentwicklung und mindern die Bereitschaft zur Verwendung. Die Verfiigbarkeit von
Inhalten beim E-Learning als wesentlicher Vorteil gegeniiber konventionellen Formen wird auf
diese Weise leider aufgehoben.

In dieser Arbeit wird ein ganzheitliches Konzept fiir modulare E-Learning-Inhalte herge-
leitet und als praktische Anwendung realisiert. Als Grundlage dienen andere wissenschaftliche
Arbeiten, die bereits wichtige und allgemein akzeptierte Ergebnisse hervorgebracht haben. Sie
werden miteinander verbunden oder durch neue Konzepte ergéinzt. Ein wesentliches Merkmal
dieser Arbeit ist die Verwendung der Metaphern ,,multimedialer Baukasten* und ,,Baustein®,
die als Leitbild fiir alle Entscheidungen dienen. Sie vereinfachen den Entwurf der einzelnen
Komponenten und prégen die spéatere Benutzung des Systems. Hierdurch tragen die Metaphern
zur Konsistenz und Vollstandigkeit der Infrastruktur bei.

Entwurf und Umsetzung erfolgen in dieser Arbeit objektorientiert und bedienen sich der
géangigen Mittel der Softwaretechnik. Aus Sicht der Benutzer/-innen wird ein fachliches Modell
beschrieben, das durch Komponentenbildung in ein technisches iiberfiithrt wird. Eine geringe
Abhéngigkeit gekoppelt mit einer hohen Kohésion der Funktionen soll eine gute Skalierbarkeit
fiir die unterschiedlichsten Einsatzgebiete garantieren. Durch die Flexibilitat dieses Rahmen-
werks lassen sich Einzelplatzlosungen genauso wie verteilte Anwendungen realisieren. Zur De-
monstration werden in dieser Arbeit das Autorenwerkzeug Lyssa und ein Repository fiir die
zentrale Datenhaltung entwickelt und in der Programmiersprache Java implementiert.

Das Rahmenwerk ist so konzipiert, dass es heutigen Standards entspricht und auch zukiinf-
tigen Entwicklungen gerecht wird. Ein Anliegen dieser Arbeit ist die Kompatibilitit zu anderen
Systemen, um eine breite Akzeptanz zu erreichen. Hierfiir werden neben den Kodierungen in
Standardformaten auch Konstruktionen zur Konvertierung auf Ebene der Standards, z.B. bei
den Metadaten zwischen IEEE LOM und Dublin Core, sowie auf konzeptioneller Ebene, z.B.
von verschachtelten zu einfachen Lernobjekten, vorgestellt. Denn die Wiederverwendbarkeit
und die Vielseitigkeit von Inhalten geh6ren neben den multimedialen Moglichkeiten zu den
herausragenden Stérken des E-Learnings. Mit dem Rahmenwerk dieser Arbeit sind nun die
technischen Voraussetzungen geschaffen.

Inhaltsverzeichnis

1 Einleitung

1.1 Problemstellung
1.2 Zielsetzung
1.3 Methodik e
1.4 Systematiko

I Stand der Wissenschaft

2 Lerntheorie

2.1 Kompetenzstufen
2.2 Lernparadigmen e
2.2.1 Behaviorismus
2.2.2 Kognitivismus L e
2.2.3 Konstruktivismuso
2.3 Lehrer/-in, Tutor/-in und Coach
2.4 Ein heuristisches Lernmodell o o0 oo
2.5 E-Learning-Historie

3 Lernobjekte

3.1 Warum werden Lernobjekte benttigt? L.
3.2 Wasist ein Lernobjekt? L
3.2.1 Lernobjekte nach Cisco Systems
3.2.2 Lernobjekte nach Hodgins
3.2.3 Lernobjekte nach Wiley oo
3.2.4 Lernobjekte nach Downes
3.2.5 Lernobjekte nach Baumgartner
3.3 Granularitdt oL oL
3.4 Sequenzierung e e
3.5 IMS Content Packaging Specification
3.6 Sharable Content Object Reference Model
3.7 Formate e

4 Metadaten

4.1 Resource Description Framework 0.
4.2 Dublin Core Metadata L
4.3 Learning Object Metadata
5 Autorenwerkzeuge
5.1 Klassifizierung e e
5.1.1 Professionelle Autorenwerkzeuge
5.1.2 WYSIWYG-HTML-Editoren
5.1.3 Content Converter

10
10
11
12
13
14
14

17
17
18
18
19
20
21
23
23
25
26
30
31

33
35
40
41

INHALTSVERZEICHNIS

5.1.4 Live Recording Systeme 49

5.1.5 Screen Movie Recorder 50

5.1.6 Rapid E-Learning Content Development 51

5.2 Bewertung e 51

6 Lernplattformen 57
6.1 Definitionen 58
6.2 Evaluation. e 60
6.2.1 Blackboard e 61

6.2.2 WebCT e 61

6.2.3 SmartBLU 64

6.3 Bewertung 64

7 Web-Technologie 67
7.1 Infrastruktur e 68
7.2 Web Applications 72
7.3 Web Services e 73
7.4 WebDAV . . . e e e 75
8 Metapher 77
8.1 Metaphorischer Prozess 77
8.2 Metaphern und Software-Technik 80

9 Bewertung 81
9.1 Restimee e e e e e e e e 82
II Entwurf 83
10 System-Vision 85
10.1 Rollen und Anwendungsfélle 86
10.1.1 Author 87

10.1.2 Developer e e e 88

10.1.3 Composer 89

10.1.4 Publisher 90

10.1.5 User 91

10.1.6 Student 91

10.1.7 Professor e 92

10.1.8 Administrator. 92

10.2 Komponenten e e e e e 93
10.2.1 Basis. e 94

10.2.2 Learning Object Development 94

10.2.3 Structure Development oL 96

10.2.4 Publishing Environment 0oL 97

10.2.5 User Environment 98

10.2.6 Administration L 99

10.3 Architektur 100
10.4 Baukasten-Metapher L 106
10.4.1 Metaphorischer Prozess 106

10.5 Aufteilung L 107

INHALTSVERZEICHNIS

iii

11 Basiskomponenten
11.1 Dateizugriff e
11.1.1 Dateisystem Grundlagen L.
11.1.2 Virtuelles Dateisystem o oL
11.2 Metadaten
11.2.1 Datenstruktur L o
11.2.2 Operationen e
11.2.3 Kodierungen e
11.3 Unterstiitzung von Multimedia L.

12 Baustein und Kurs
12.1 Bindung an Standards
12.2 Physikalische Dateien
12.3 Manifest e e
12.4 Content Package L

13 Rahmenwerk
13.1 Zusammengesetzte Komponenten L oL

IIT Implementierung

14 Baukasten
14.1 Script-Steuerung e e
14.2 Grafische Basiskomponenten Lo L Lo
14.3 Rahmenwerk fiir Werkzeuge oo
14.4 Visualisierung der Bausteine und Kurse
14.5 Steuerung des Exports L
14.6 Liyssa o o e

15 Repository
15.1 Construction Kit Server
15.2 Web-Oberflache s

IV Analyse

16 Ausgewiihlte Beispiele
16.1 Erstellung neuer Bausteine L.
16.2 Erstellung neuer Kurse L L L
16.3 Inhalte publizieren
16.4 Explorationsumgebung L Lo

17 Zusammenfassung und Bewertung

18 Ausblick

109
110
111
114
119
121
124
126
127

133
133
136
138
143

147
148

151

153
154
154
157
159
162
163

167
168
169

171

173
173
175
177
179

183

185

Abbildungsverzeichnis

1.1

2.1
2.2
2.3
2.4
2.5
2.6
2.7

3.1
3.2
3.3
3.4
3.5

3.6
3.7
3.8
3.9
3.10

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1
5.2
5.3
5.4
9.5

6.1
6.2
6.3
6.4

7.1
7.2
7.3

Das Biicherrad 2
Schematisches Modell des Behaviorismus [Baumgartner99, S.102] 11
Schematisches Modell des Kognitivismus [Baumgartner99, S.105] 12
Schematisches Modell des Konstruktivismus [Baumgartner99, S.108] 12
Drei Lehrmodelle [Baumgartner97] 13
Ein heuristisches Lernmodell [Baumgartner99, S.96] 14
Entwicklung der computerunterstiitzten Ausbildung nach [Bodendorf90, S.15] 15
Begriffsbildung von WBT und CBT nach [Kerres98, S.14] 15
RLO-RIO-Struktur 19
Lernobjekt-Hierarchie nach [Hodgins00, S. 28] 20
Reusable Learning Objects nach [Baumgartner02b, S. 24] 23
Lernobjekt-Hierarchie aus [Hodgins02, S. 78] 24
Linear-sukzessive Sequenzierung und Spiral-Sequenzierung nach [Reigeluth99,

S.A32] L 26
Die verschiedenen Bereiche innerhalb eines Packages [IMS04a] 27
Datenstruktur eines Manifests [IMSO04a] 28
Einfache Auflésung von Referenzen 29
Auflésung von Referenzen mit Subknoten 29
Runtime Environment aus [Dodd04b, S. 1-8] 30
Schichten fiir Metadaten-Umsetzung nach [Baker03, S. 6] 35
RDF-Graph fiir den Mitarbeiter Michael Bungenstock 37
RDF-Graph mit Ressourcen und Literalen 37
RDF-Graph mit typisierten Literalen 38
Strukturierte Adresseo 39
Beispiele fiir Strukturen in LOM (von [IEE02a] abgeleitet) 42
Aufbau von LOM als Baum nach IMS03b] 43
Systematik der Autorenwerkzeuge [HifeleO3] 46
Macromedia Authorware 7 L o 47
Macromedia CourseBuilder-Erweiterung fiir Dreamweaver 48
Einsatz von Lecturnity (Aus einer Werbebroschiire) 50
Screenshot von Lectora 52
Idealtypische Architektur einer Lernplattform nach [Schulmeister03, S. 11] . . 59
Screenshot von Blackboard oL 62
Screenshot von WebCT 63
Screenshot von SmartBLU 0 oo 65
Schichten von J2EE-Anwendungen [Bodoff04, S. 3] 68
Client und Server [Bodoff04, S. 6] L. 69

Sechs Schritte einer Anfrage [Bodoff04, S. 84] 70

vi

ABBILDUNGSVERZEICHNIS

7.4
7.5
7.6
7.7

8.1

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9
10.10
10.11
10.12
10.13
10.14
10.15
10.16
10.17
10.18
10.19
10.20
10.21
10.22
10.23

11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9
11.10
11.11
11.12
11.13
11.14
11.15
11.16
11.17
11.18
11.19
11.20
11.21
11.22

Schichten der Reprisentation [Bodoff04, S. 85] 70
Interne Modulstruktur [Bodoff04, S. 90] 71
Model, View und Controller fir Web Applications 72
JAX-RPC-Aufruf [Bodoff04, S. 321] 75
Metaphorischer Prozess nach [Busch98,S.25] 78
Ubersicht der Rollen 87
Anwendungsfille der Rolle Author 88
Anwendungsfille der Rolle Developer 89
Anwendungsfille der Rolle Composer 90
Anwendungsfille der Rolle Publisher 91
Anwendungsfille der Rolle User 91
Anwendungsfille der Rolle Student 92
Anwendungsfille der Rolle Professor 93
Anwendungsfille der Rolle Administrator 93
Komponenten fiir die Rolle Author 94
Komponente fiir die Rolle Developer 95
Komponente fiir die Rolle Composer 96
Komponente fiir die Rolle Publisher 97
Komponente fiir die Rolle User 98
Komponente fiir die Rolle Administrator 99
Funktionale Komponente des Autorensystems 101
Zwei Komponenten zur Steuerung des Autorensystems 101
Komponente fiir die zentrale Datenhaltung (Repository) 102
Komponente fiir den Web-basierten Zugriff auf das Repository 103
Zugriff der Autoren/-innen auf das Repository 103
Komponente fiir den Web-basierten Zugriff auf die Lernplattform 104
Zugriff der Benutzer/-innen auf die Lernplattform und das Repository 104
Vollstdndige Architektur des Systems 105
Eztended Filesystem Architecture [Sun99] 111
Aufbau von Verzeichniseintragen aus [Tanenbaum97, S. 411] 112
Ein UNIX Verzeichnisbaum aus [Tanenbaum97, S. 414] 113
Interne Abbildungen im VFS. 114
Aufbau der Dateistruktur in zwei Schritten 115
Beispiel fiir den Aufbaudes VESo oo 116
Klasse VFSNode o 0 i e 117
Verschiedene Unterklassen der Klasse VFSNode 117
Klasse VFS e e 118
Verschiedene Unterklassen der Klasse VFS 118
Dateistruktur im Arbeitsspeicher 118
Aggregation von Stringund VFS Lo 119
Bildung der Komponente File Management 119
Architektur fiir heterogene Metadatenformate 120
Klassenhierarchien der Reader und Writer 121
Metadatenkategorien e 122
Produktion der internen Metadatenstruktur 124
Manipulation der internen Metadatenstruktur 125
Datenbankschema fiir die Kategorie ,,General* aus [Turan04] 128
Bildung der Komponente Metadata 128
Interfaces fiir den Zugriff und die Erstellung von Dateien 130

Drei Handler e e 130

ABBILDUNGSVERZEICHNIS

vii

11.23
11.24
11.25
11.26

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9
12.10
12.11
12.12
12.13
12.14
12.15
12.16
12.17
12.18
12.19
12.20
12.21

13.1
13.2
13.3

13.4
13.5

14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9
14.10
14.11
14.12
14.13
14.14
14.15
14.16
14.17

15.1
15.2

Klasse MimeTypeHandler i i it 131
Klasse MimeTypeMap o v v v i v it e e 131
Objektdiagramm mit zwei unterstiitzen MIME-Types 132
Bildung der Komponente Multimedia Environment 132
Ein einfacher Baustein aus [BungenstockO4a] 134
Baustein mit Submanifesten aus [BungenstockO4a] 134
Verschachtelte Bausteine aus [BungenstockO4a] 135
Klasse TempFSNode it 137
Klasse TempFS o e 137
Klasse SavableFS e 138
Die Unterklasse ZipFS und DirectoryFS 138
Strukturierte Adresse 139
Klasse HierarchicalElement oo v 140
Sequenzdiagramm fiir den Benachrichtigungsmechanismus 140
Klasse MDElement 140
Klasse IDElement v v vt it e e 141
Die Klassen Item, Manifest, Resource und Organization 142
Klasse File o . o 0 o e 142
Klasse Dependency e 143
Klassenhierarchie der Manifest-Elemente 143
Klasse ContentPackageo 144
Klasse Brick o o o0 i e 144
Klasse Course e 145
Klassenhierarchie der Content Packages 145
Komponentenbildung o 146
Das Muster Fassade [Gamma95, S. 185] 148
Bildung der Komponente LOBDevelopment 148
Aufbau der Komponente CBK-Management-Application nach [Vollmann04, S.

128] . o 149
Bildung der Komponente StructureDevelopment 149
Bildung der Komponente AuthoringSystem 150
Screenshot der BeanShello 155
Visualisierung physikalischer Dateien in Content Packages 156
Komponente fiir Metadaten 156
Klasse JSavablePanel 157
Verschachtelte Inhalte o oo 158
Klasse JNestedPanel i 158
Klassenhierarchie der grafischen Basisklassen 159
Klasse JCPPanel o i it 159
Manifest mit farblicher Syntax-Hervorhebung 160
Komponente fiir Bausteine 0oL 160
Komponente fiir Kurse 161
Ansicht der Item-Properties 162
Dialog fiir Export-Einstellungen 163
Screenshot von Lyssa L 164
Screenshot der Toolbar 165
Screenshot der erweiterten Toolbar 165
Screenshot der Workbench L 165
Aufbau des Construction Kit Servers 168

Screenshot der CKS-Anmeldemaske 169

viii

ABBILDUNGSVERZEICHNIS

15.3

16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8
16.9

Screenshot der CKS-Dateiansicht 169
Screenshot des Applets fiir komplexe Zahlen 174
Erstellung eines Bausteins in vier Momentaufnahmen 176
Erstellen eines Kurses in zwei Varianten 178
Ubersetzungsergebnis im Layout des GET Labs (HTML) 179
Ubersetzungsergebnis im Layout von math-kit (HTML) 180
Ubersetzungsergebnis im Layout von math-kit (PDF) 180
Theorieteil e 181
Explorationsteil 182

Ubungsteil 182

Tabellenverzeichnis

4.1 RDF-Terminologie 36
5.1 Ubersicht der Autorensysteme (Teil 1) 54
5.2 Ubersicht der Autorensysteme (Teil 2) 55
6.1 Ubersicht der Lernplattformen 66
10.1 Arbeitsteilung fiir systemunabhéngige Komponenten 108
10.2 Arbeitsteilung fiir proprietdre Komponenten 108

12.1 Gemeinsame Eigenschaften der Manifest-Elemente aus [Bungenstock04b] 139

Abkiirzungsverzeichnis

AICC Aviation Industry CBT Committee

APT Application Program Interface

ARIADNE Alliance Of Remote Instructional Authoring And Distribution Networks
for Europe

AWT Abstract Window Toolkit

BMBF Bundesministerium fiir Bildung und Forschung

BSCW Basic Support for Cooperative Work

CAI Computer-Assisted Instruction

CBR Case-Based Reasoning

CBT Computer Based Training

CKS Construction Kit Server

CMS Content Management System

CP IMS Content Packaging Information Model

CSS ...l Cascading Style Sheets

DC Dublin Core

DCAP DC Application Profile

DIT Dynamic Invocation Interface

DRM Digital Rights Management

DSSSL Document Style Semantics and Specification Language

DTD Document Type Defintions

GET Grundlagen der Elektrotechnik

GUI Graphical User Interface

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protoco

TI8N ...t Internationalization

IEEE Institute of Electrical and Electronics Engineers

IGD Fraunhofer Institut fiir Graphische Datenverarbeitung

ILS ... Integrated Learning Management System

IMC ... International Mail Consortium

J2EE ... Java 2 Platform, Enterprise Edition

J2SE ...l Java 2 Platform, Standard Edition

JAX-RPC Java API for XML-Based RPC

JAXM Java API for XML Messaging

JPEG Joint Photographic Experts Group

JSP ...l Java Server Pages

KI Kiinstliche Intelligenz

LCMS Learning Content Management System

LMS Learning Management Systemen

LO Learning Object

LODAS Learning Object Design and Sequencing Theory

LOM Learning Objects Metadata

LORI Learning Object Review Instrument

MathML Mathematical Markup Language

xii ABKURZUNGSVERZEICHNIS

MDI Multiple Document Interface

MIME Multipurpose Internet Mail Extensions
MVC Model, View, Controller

NFS Network File System

PC Personal Computer

PDA Personal Digital Assistants

PDF Portable Document Format

PIF Package Interchange File

PNG Portable Network Graphics

QName Qualified Name

RDF Resource Description Framework

RIO Reusable Information Objects

RLO Reusable Learning Objects

RPC Remote Procedure Call

SCO ...l Sharable Content Objects

SCORM Sharable Content Object Reference Model
SCORM RTI SCORM Runtime Interface

SDK Software Development Kit

SGML Standard Generalized Markup Language
SMB Server Message Block

SOAP Simple Object Access Protocol

SWT Standard Widget Toolkit

TCP/IP Transmission Control Protocol / Internet Protocol
TGN Thesaurus of Geographic Names

TP ... Transformation Package

UCS ...l Universal Multiple-Octet Coded Character Set
Ul .o User Interface

UML Unified Modeling Language

URI Uniform Resource Identifier

URIref URI Reference

URL Uniform Resource Locator

VFS ... Virtual File System

VLE Virtual Learning Environment

VM ..o Virtual Machine

W3C ... WWW Consortium

WAM Werkzeug, Automat, Material

WBT Web Based Training

WebDAV Web-based Distributed Authoring and Versioning
WSDL Web Services Description Language
WWW ... World Wide Web

WYSIWYG What You See Is What You Get

XML ... Extensible Markup Language

XPath XML Path Language

XSD ..o XML Schemas Definition Language

XSL ... Extensible Stylesheet Language

XSL-FO XSL Formatting Objects

XSLT XSL Transformations

Kapitel 1

Einleitung

,Non scholae, sed vitae discimus.“ ,Nicht fiir die Schule, sondern fiir das Leben lernen wir®,
steht es schon ungefihr seit Beginn unserer Zeitrechnung geschrieben.! Moderner wird heute
im Kontext des stetigen gesellschaftlichen und wirtschaftlichen Strukturwandels vom Lebens-
langen Lernen sowie der Wissensgesellschaft gesprochen. Jedem Individuum, unabhéngig vom
sozialen Stand, soll durch Wissen die Moglichkeit auf persénliche Verwirklichung und Aner-
kennung gegeben sein. Nur so lisst sich der Wohlstand einer Gesellschaft wahren und fiir eine
ressourcenarme Nation wie Deutschland gilt dies um so mehr. Durch die Globalisierung steigt
der weltweite Konkurrenzdruck, sodass Kompetenz und Qualifikation einen Standortvorteil
bedeuten. Wissen muss folglich effektiv und effizient vermittelt werden.

Das Bundesministerium fir Bildung und Forschung (BMBF) hat diesen Umstand erkannt
und fordert unter anderem das Programm ,Neue Medien in der Bildung®. Hierbei geht es um
die breite Nutzung didaktisch hochwertiger Lehr- und Lern-Software in allen Bildungsberei-
chen, also einen Bereich des E-Learnings. Mit Hilfe von Maschinen soll die Wissensvermitt-
lung verbessert werden.

Ein Projekt dieses Forderprogramms ist math-kit [Unger04; Unger02; Schiller02], das
den Kontext dieser Arbeit darstellt. Ziel des Projekts ist die Erstellung eines multimedia-
len Baukastens [Thiere03b] zur Unterstiitzung der Mathematikausbildung im Grundstudi-
um Mathematik, Technische Informatik, Maschinenbau und anderer Ingenieurwissenschaften
[Thiere03a; Padberg02b; Padberg02a; Rehberg03]. Die Elemente des Baukastens eignen sich
fiir Lehrende in Présenz- und Fernlehre sowie fiir Studierende beim Selbststudium [Bauch03].
Als technische Realisierung ist eine flexible E-Learning-Plattform mit integriertem Autoren-
system gedacht, die eine reibungslose Zusammenarbeit mit existierenden Systemen erlaubt.
Da vier Universitéten? an diesem Projekt beteiligt sind, gilt ein besonderes Augenmerk der
Erstellung bzw. Verwaltung von Inhalten in Gruppen. Insgesamt umfasst das Projekt math-
kit somit die Erstellung sowie Veroffentlichung mathematischer Inhalte mit Hilfe eines eigens
entwickelten Systems.

Der Fokus dieser Arbeit liegt auf der technischen Handhabung von Lehr- und Lerninhalten.
Hierzu gehoren neben Kodierungen, Protokollen und Datenhaltungsformen auch die geeignete
Begriffs- bzw. Modellbildung. Beispiele fiir den konkreten Einsatz von E-Learning finden sich
z.B. in [Dittler03].

Laut Biichmann [Biichmann94] handelt es sich um die Umkehrung des Ausspruchs ,Non vitae, sed scholae
discimus“ aus den Epistulae morales von Seneca.
2Universititen Paderborn, Hamburg, Bayreuth und Fernuniversitit Hagen

Einleitung

1.1 Problemstellung

Bestrebungen nach technischen Vereinfachungen bei der Wissensvermittlung reichen bis ins 16.
Jahrhundert zuriick, wie ein Kupferstich aus dem Jahre 1588 von Agostino Ramelli belegt.?
Abbildung 1.1 zeigt ein Biicherrad, das wahrscheinlich nie gebaut wurde.

AT

LT T

i

Abbildung 1.1: Das Biicherrad

Heute werden Computer als Hilfsmittel beim Lernen eingesetzt, weil sie den Zugriff auf
Lerninhalte vereinfachen und die Darstellung komplexer Sachverhalte ermoglichen. Mit Hil-
fe des Internets kann von einfachen Abbildungen iiber Animationen bis hin zu interaktiven
Simulationen alles auf heimischen PCs dargestellt werden. Tragbare Laptops und Personal
Digital Assistants (PDA) erlauben in Kombination mit drahtlosen Ubertragungswegen eine
arbitriare Verfiigbarkeit von Daten an fast jedem Ort der Erde. Die Moglichkeiten scheinen
schier endlos zu sein. Doch reichen Internet und eine breite Palette von Anzeigeprogrammen
fiir das E-Learning aus?

In Hinblick auf die Erwartungen und Hoffnungen, die sich an das E-Learning richten,
kann die Antwort freilich nur ,,Nein“ lauten. Zu hoch sind die Anspriiche der Lehrenden und
Lernenden, als dass sie in einfache HTML-Seiten gefasst werden konnten. Begriffe wie Wie-
derverwendbarkeit, Sequenzing oder Personalized Learning lassen erahnen, dass monolithisch
erstellte Inhalte unzureichend sind. Es bedarf daher eines modularen Aufbaus, der auf die
Anforderungen des E-Learnings eingeht.

3 Agostino Ramelli (1531-1600) war ein italienischer Ingenieur des Konigs von Frankreich. Der Originaltitel
des Buches lautete ,,Le diverse et artificiose machine®.

1.2 Zielsetzung

Die Realisierung eines solchen Konzepts wirft jedoch in Theorie wie Praxis eine Fiille neu-
er Fragen auf, deren Beantwortung Bestandteil dieser Arbeit ist. Zwar gibt es eine Reihe von
Modellen, Spezifikationen und Implementationen, die sich ausgiebig mit Teilfragen beschfti-
gen, aber der globale Zusammenhang fehlt. Besonders die Liicke zwischen den theoretischen
Modellen und den existierenden Anwendungen scheint besonders grof3 zu sein. Konkret lassen
sich folgende Fragen ableiten:

o Was ist ein Modul im E-Learning-Kontext? Die existierenden Auffassungen variieren in
Umfang, Form und Funktion. Fiir die Beantwortung aller weiteren Fragen ist es wich-
tig, dass die gewéhlte Definition in Hinblick auf Didaktik und technischer Realisierung
geniigend Spielraum gewahrt.

o Wie konnen mehrere Module organisiert werden? Von Interesse sind die verschiedenen
Strukturen und Anordnungen, da sie die moglichen Aggregationen bestimmen.

o Wie sollen Inhalte klassifiziert werden? Die Module miissen mit Metadaten versehen
werden, um auffindbar zu sein.

o Wie sieht die technische Umsetzung eines Moduls aus? Die Kodierung der Module spielt
eine wesentliche Rolle fiir die Akzeptanz eines Systems.

o Wie werden Module erzeugt und bearbeitet? Entwicklungs- und Wartungsprozess miissen
vom System unterstiitzt werden.

o Wo werden Module gespeichert? Es stehen z.B. Dateisysteme, Datenbanken und spezielle
Repositories zur Verfiigung.

e Wie werden Module und deren Aggregate einheitlich dargestellt? Inhalte aus verschiede-
nen Quellen sehen zwangsldufig unterschiedlich aus.

o Wie lassen sich Objekte, Funktionen und Merkmale umgangssprachlich beschreiben? Me-
taphern sind z.B. ein probates Mittel in der Informatik, um komplexe Sachverhalte zu
veranschaulichen.

Die Vorteile des Computers beim Lernen kénnen nur genutzt werden, wenn Produktion,
Prasentation und Archivierung von E-Learning-Inhalten auf einem durchdachten Fundament
beruhen. Um Allgemeingiiltigkeit zu erlangen, ist darauf zu achten, dass Einfliisse sozialer
Art, wie z.B. Didaktik und Kultur, auf die technischen Konzepte vermieden werden. Bei der
Umsetzung gilt es letztendlich, auf proprietéire Losungen zu verzichten.

1.2 Zielsetzung

Das Ziel dieser Arbeit ist, Entwurf, Implementation und Einsatz eines ganzheitlichen Kon-
zepts fiir modulare E-Learning-Inhalte zu realisieren. Ihre Produktion, Prisentation und Ar-
chivierung soll gesamt abgedeckt werden, um einen konsistenten Umgang zu gestatten. Das
reduziert die Kosten fiir Entwicklung, Wartung und Nutzung bei gleichzeitiger Qualititsstei-
gerung. Wenn vorhanden, sollen bewéhrte Modelle, Spezifikationen und Implementationen als
Grundlage fiir die Realisierung eines technischen Systems dienen, das die genannten Merkmale
aufweist. Fiir eine angemessene Verifikation und Validierung soll es als Prototyp implementiert
werden.

Als Ausgangspunkt dient die Baukasten-Metapher des Projekts math-kit, die als Leitbild
fiir das System dient. Alle Objekte, die wihrend des Entwurfs benannt werden, sollen sich an
den Begriff Baukasten anlehnen. Ein zentraler Gegenstand dieser Arbeit sind die modularen
Inhalte und ihr Funktionsumfang. Sie sollen zu gréfleren Einheiten kombiniert und umgekehrt
auch jederzeit in ihre Bestandteile zerlegt werden kénnen. Durch eine Trennung von Inhalt

Einleitung

und Darstellung innerhalb der Module lassen sich so beliebige Lehr- und Lernmaterialien
erstellen, die wie aus einem Guss wirken. Dies fordert die Wiederverwendung, unterstiitzt
die Wartung und erméglicht die Teamarbeit bei der Produktion. Auch Redundanzen bei der
Archivierung lassen sich durch diesen Ansatz verhindern. Bei zentraler Datenhaltung muss
jedes Modul nur einmal vorliegen, weil es lediglich referenziert wird. Die Metadaten gestatten
bei der Prisentation eine gezielte Auswahl, da sie auch bei Aggregationen von Modulen den
Zugriff auf einzelne Inhalte ermoglichen.

Fiir den Umgang mit modularen Inhalten werden passende Werkzeuge benétigt. Um den
Aufwand der Implementation so gering wie moglich zu halten, sollen viele bewéhrte Applika-
tionen eingesetzt werden. Hierzu gehoren z.B. Web-Server, Datenbanken und Web-Browser.
Nur Funktionen, die von anderen Programmen oder Libraries noch nicht angeboten werden,
sollen in eigenen Werkzeugen umgesetzt werden.

1.3 Methodik

Diese Arbeit ist im angewandten Bereich angesiedelt, sodass die Ergebnisse durch Praxistaug-
lichkeit iiberzeugen miissen. Ausgehend von der allgemeinen Problemstellung modularer E-
Learning-Inhalte soll ein theoretisches Konzept entwickelt werden, das in einer speziellen Im-
plementierung miindet. Die abstrakte Problemstellung konkretisiert sich somit durchgehend
in immer genauere Teilprobleme. Am Ende steht ein Prototyp, mit dessen Hilfe die Funkti-
onstiichtigkeit des Konzepts induktiv bewiesen werden soll.

Es gibt verschiedene Wege, einen Prototypen zu erstellen. In dieser Arbeit soll das inkre-
mentelle Modell [Balzert00] eingesetzt werden, bei dem bereits am Anfang alle Anforderungen
des Systems vollstéindig erfasst werden. Die Umsetzung gliedert sich in Ausbaustufen, die peu
a peu die aufgestellten Anforderungen abdecken. Ein Vorteil dieses Verfahrens ist die schnelle
Verfiigbarkeit eines lauffahigen Systems, mit dem erste Tests gefahren werden kénnen. Des
Weiteren besteht keine Gefahr, dass die néchsten inkrementellen Erweiterungen nicht zu dem
bestehenden System passen, da bereits im Vorfeld alle Anforderungen bekannt sind. Weil sich
gewisse Ablaufe bei den einzelnen Ausbaustufen wiederholen, wird bei dieser Art Prototyp
von einem iterativen Modell gesprochen.

Bei der Entwicklung soll auf die Konzepte der objektorientierten Software-Entwicklung
zuriickgegriffen werden. Zur Notation wird die Unified Modeling Language (UML) [Obj03] ver-
wendet, die sich als Standard durchgesetzt hat. Sie ist eine Sammlung verschiedener Diagram-
marten, mit der sich dynamische wie statische Zusammenhinge darstellen lassen. Die eigent-
liche Implementierung wird mit der objektorientierten Programmiersprache Java [Gosling96]
durchgefiihrt, da sie einfach im Funktionsumfang und plattformunabhéngig ist.

1.4 Systematik

Der Aufbau dieser Arbeit leitet sich aus der Methodik ab und besteht aus vier Teilen. Der erste
Stand der Wissenschaft gibt einen Uberblick der aktuellen Arbeiten, die sich mit Aspekten
der Problemstellung beschéftigen. Es wird jeweils erldutert, wie sich das vorliegende Thema
in den Kontext der Arbeit fiigt und welche relevanten Beitrége es gibt. Am Schluss dieses
Teils wird eine Bewertung durchgefiihrt, indem die Zielsetzung den beschriebenen Arbeiten
gegeniiber gestellt wird, um bestehende Forschungsliicken aufzudecken.

Der Teil Entwurf beschreibt detaillierter den bendtigten Leistungsumfang und vermittelt
ein theoretisches Modell vom System. Fiir die Beschreibung einzelner Komponenten, Bezie-
hungen und Merkmale werden die Methoden der Software Technik herangezogen. Alle wichti-
gen Definitionen werden in UML-Notation angegeben und sind Basis fiir die Realisierung des
Systems.

Die wird im Teil Prototyp ausfiihrlich erldutert. Zuerst werden die kohérenten Funktionen
in einzelne Libraries eingeteilt, um einen flexible Verwendung zu erméglichen. Es wird né-

1.4 Systematik

her auf interessante Implementationsdetails eingegangen und beschrieben, wie ein praktischer
Einsatz aussehen kénnte. Danach werden die Applikationen von der Architektur bis zur Ober-
flichengestaltung vorgestellt und zu einem System zusammengefiihrt.

Abschlielend wird im Teil Analyse die geleistete Arbeit untersucht und bewertet. Anhand
ausgewéhlter Beispiele werden typische Situationen beim Umgang mit dem System durch-
gespielt. Hierbei stehen Praxistauglichkeit und Ergonomie im Vordergrund. Es folgt eine Be-
schreibung der erreichten Ergebnisse und eine Abschlussbewertung. Abgerundet wird die Ana-
lyse mit einem Ausblick auf weiterfithrende Themen, die sich wihrend der Arbeit abzeichneten,
aber nicht in dem vorgegebenen Zeitrahmen behandelt werden konnten.

Natiirliche Sprachen unterliegen dem Zeitgeist. Aus diesem Grund sollen kurz ein paar
formale Gesichtspunkte genannt werden, die fiir diese Arbeit gelten. Der Text hélt sich an
die 1996 reformierte deutsche Rechtschreibung. Soweit moglich, werden geschlechtsneutrale
Substantive genutzt, wie z.B. Lernende statt Lerner und Lernerin. Lésst sich kein geeigneter
Begriff bilden, werden beide Formen durch Schrig- und Bindestrich abgekiirzt angegeben, wie
z.B. Autor/-in. Anglizismen werden sparsam genutzt, jedoch sind sie in einer Doméne wie
der Informatik unvermeidbar. Viele Begriffe haben sich bereits etabliert und sind in den all-
téglichen Sprachgebrauch iibergegangen. So wird niemand ernsthaft E-Learning mit E-Lernen
oder Server mit Diener {ibersetzen. Zitate werden in ihrer Originalform belassen und weder
iibersetzt noch in der Rechtschreibung angepasst.

Fiir eine bessere Lesbarkeit des Textes werden bestimmte Worter mit Formatierungen
versehen, die sich vom restlichen Text abheben. Es soll folgende Konvention gelten:

Ttalic: Namen und nicht integrierte englische Worter, z.B. Java, Repository
Bold: Einfithrung wichtiger Begriffe, z.B. E-Learning
Typewriter: Quellcode, z.B. System.out.println("Hello");

Der Name des Projekts math-kit wird stets klein und mit dem griechischen Buchstaben
Alpha geschrieben. Das wurde am Anfang von allen Beteiligten beschlossen und soll auch hier
gelten.

Teil 1

Stand der Wissenschaft

Kapitel 2

Lerntheorie

Die Hauptmotivation bei der Einfiihrung neuer Medien beim Lernen ist die Optimierung des
Lernprozesses. Alle Theorien, Entwiirfe und Umsetzungen, die bei der Realisierung eines tech-
nischen Systems fiir E-Learning entstehen, miissen daher auf dieses Ziel ausgerichtet sein.
Die Verbesserung eines Prozesses lésst sich jedoch nur erreichen, wenn die theoretischen Hin-
tergriinde bekannt sind. Aus diesem Grund wird ein kurzer Uberblick iiber die Theorie des
Lernens gegeben und ein Modell ausgew#hlt, mit dessen Hilfe weitere Klassifikationen von
Lerninhalten durchgefiihrt werden.

2.1 Kompetenzstufen

Die Briider Dreyfus haben ein fiinfstufiges hierarchisches Lernmodell entwickelt, mit dem sich
der Entwicklungsprozess von Lernenden beschreiben ldsst [Dreyfus86; Humbert05; Klein99;
Metzinger99]. Die zentrale Idee des Modells ist, dass Lernende von einem statischen Fak-
tenwissen iiber ein dynamisch theoretisches Wissen zu intuitiven Fertigkeiten gelangen. Ein
Mensch, der einer bestimmten Stufe zugeordnet werden kann, ist hierbei immer besser, als
die hochstbegabten Menschen der darunter liegenden Stufen. Die fiinf Stufen werden Nowice
(Neuling), Advanced Beginner (Fortgeschrittene/-r Anfénger/-in), Competent (Kompetenz),
Proficient (Gewandtheit) und Ezpertise (Expertentum) genannt.

Neuling:
Der ersten Stufe sind alle Lernende zugeordnet, die sich einem ihnen unbekannten The-
ma zum ersten Mal annédhern. Sie erlernen das Erkennen von Fakten und Mustern, um
mit vorgegebenen Regeln ihre Handlungen zu bestimmen. Bei den Regeln handelt es
sich um ,kontextfreie Regeln“, da sie situationsunabhéngig anhand eindeutig erkennba-
rer Elemente vom Neuling eingesetzt werden. Die Bewertung des Lernerfolgs umfasst
lediglich, wie die erlernten Regeln befolgt wurden.

Fortgeschrittene/-r Anfinger/-in:

Beim ausgiebigen Lernen sammeln Menschen vielfiltige Erfahrungen, wie mit realen Si-
tuationen umzugehen ist. Dies befihigt sie, mehr und kompliziertere kontextfreie Regeln
in ihre Uberlegungen einzubeziehen. Lernende fangen an, relevante Elemente selbsténdig
und schneller zu erkennen, da sie aus vorherigen Beispielen schon bekannt sind. Auch
fiir diese ,situationalen” Elemente gibt es Verhaltensregeln. Der Lernerfolg der Fort-
geschrittenen zeigt sich in der gewonnenen Erfahrung, die nicht objektiv beschreibbar
ist.

Kompetenz:
Die Handlung von Menschen auf dieser Stufe ist durch die Wahl eines Organisationsplans
gepragt. Sie kennen bereits viele relevante Fakten und Regeln, die sie auf ein breites
Spektrum von Fillen anwenden kénnen. Durch die Organisation einer Situation muss

10

Lerntheorie

nur noch eine kleine Menge an Faktoren eines Plans beriicksichtigt werden, wodurch
die Komplexitéit einer Aufgabe reduziert wird. Fiir die Auswahl des Planes benotigt die
kompetente Person jedoch einige Uberlegungen, da die Tragweite der Wahl das gesamte
Vorgehen entscheidet. Der Lernerfolg zeigt sich im Wandel der eigenen Beziehung zu
der Umwelt. Die Kompetenten fiihlen sich verantwortlich fiir ihr eigenes Handeln und
den sich ergebenden Konsequenzen. Obwohl sie wihrend des Entscheidungsprozesses
Abstand zu den Dingen bewahren, sind sie mit den Auswirkungen ihres Handelns zutiefst
verbunden.

Gewandtheit:

Die Fertigkeit der Lernenden nicht nur schlichte Regeln anzuwenden, sondern bewusst
Entscheidungen zu treffen, wird mit wachsender Erfahrung intuitiver ausgeprigt sein. Ei-
ne gewandte Person fiihlt sich wie der Kompetente mit ihrem Problem verbunden, jedoch
wihlt sie ihren Organisationsplan nicht aufgrund distanzierter und reflektierter Bewer-
tungen. Vielmehr geschieht die Handlung automatisch, ohne bestimmte Uberlegungen,
da auf Erfahrungen vergangener Situationen zuriickgegriffen wird. Diese Intuition ist
eine Fahigkeit bei alltdglichen Problemen, und kein Raten oder eine iibernatiirliche In-
spiration. Der Lernerfolg zeigt sich durch die intuitive Benutzung von Mustern, die nicht
in einzelne Komponenten zerlegt werden miissen.

Expertentum:

Das Handeln von Personen auf dieser Stufe ist nicht distanziert von den Problemen, nicht
von Gedanken der Auswirkungen geprigt und verlduft nicht nach Organisationspldnen
— es ist bereits Bestandteil der Person geworden. Dies bedeutet allerdings nicht, dass
Experten/-innen uniiberlegt wichtige Entscheidungen treffen oder sich ihrer Handlungen
nicht bewusst sind. Auch ihnen unterlaufen Fehler und unvorhersehbare Ereignisse kon-
nen Probleme bereiten. Der Lernerfolg zeigt sich deshalb durch das Eingebunden-Sein
in Problemsituationen.

2.2 Lernparadigmen

Neben den verschiedenen Stufen, die Menschen wéihrend des Lernens erreichen kénnen, sind
auch die verschiedenen Paradigmen des Lernens — historisch gewachsene Theorien, die in sich
abgeschlossen sind — von Bedeutung. Im letzten Jahrhundert sind, hier in chronologischer
Reihenfolge angegeben, Behaviorismus, Kognitivismus und Konstruktivismus als maf-
gebliche Theorien zu nennen [Baumgartner97]. Sie basieren alle auf bestimmten Annahmen
zur Arbeits- und Funktionsweise des Gehirns, wodurch sich unterschiedliche Lehrstrategien
und Lernziele ergeben.

2.2.1 Behaviorismus

Im Behaviorismus wird Lernen als konditionierter Reflex betrachtet, der durch Adaption erwor-
ben wird. Als Begriinder des Behaviorismus gilt der amerikanische Psychologe John Broadus
Watson von der Johns Hopkins Universitit [Wozniak94]. Seit seiner Arbeit ,Psychology as
the behaviorist views it“ (1913) werden alle Forschungen unter diesem Begriff zusammenge-
fasst, deren Basiseinheiten aus Reiz-Reaktions- bzw. Stimulus-Response-Verbindungen (S-R-
Verbindungen) bestehen. In den fiinfziger Jahren wurde der Behaviorismus zum beherrschen-
den Paradigma der amerikanischen Psychologie und nur wenige Jahre im spéteren Nachkriegs-
europa iibernommen.

Im Prinzip betrachtet der Behaviorismus das menschliche sowie das tierische Gehirn als
eine Black-Box, bei der ein Input (Reiz) einen deterministischen Output (Reaktion) erzeugt
(Abbildung 2.1).

Ob der gewiinschte Output zum Input passt, also das gezeigte Verhalten richtig war, wird
iiber ein extern gesteuertes Feedback vermittelt, den so genannten Konsequenzen. Sie sollten

2.2 Lernparadigmen

11

Gehirn ist eine Black—Box

-
Output Input

extern gesteuertes Feedback

Abbildung 2.1: Schematisches Modell des Behaviorismus [Baumgartner99, S.102]

in einem kurzen Zeitraum, am besten unmittelbar, auf das Verhalten folgen, um eine Ver-
starkung bei positiven Leistungen bzw. eine Abschwichung oder Loschung bei negativen zu
erreichen [Kerres98|.

Die behavioristische Lehrstrategie setzt daher voraus, dass die Lehrenden genau wissen,
was richtig und was falsch ist, da sie fiir die Konsequenzen verantwortlich sind. Dagegen stellt
sich der Lernprozess fiir die Lernenden als eine Art Verhaltenssteuerung dar und steht damit
im Gegensatz zum kognitiven Lernen. Obwohl diese Art des Lehrens heute als nicht mehr
zeitgeméf erachtet wird, hat sie in gewissen Bereichen noch ihre Existenzberechtigung. Als
Beispiel sei das Drill & Practice Muster in Sprachlabors genannt oder das erlernen korperlicher
Fertigkeiten wie Maschinenschreiben, Jonglieren und Autofahren.

2.2.2 Kognitivismus

Die hauptsichliche Kritik am Behaviorismus, dass die inneren Prozesse des Gehirns ausge-
blendet werden und folglich die komplexen Vorgéinge des menschlichen Lernens keine Bertick-
sichtigung finden, hat zum Kognitivismus gefiihrt.

,Die kognitionstheoretische Grundposition unterscheidet sich von der behavioris-
tischen zunéchst dadurch, dafl der Lernende als ein Individuum begriffen wird,
das duflere Reize aktiv und selbstédndig verarbeitet und nicht einfach durch &duflere
Reize steuerbar ist.“ [Tulodziecki96, S. 43]

Der Kognitivismus ist heute das noch dominierende Paradigma und es gibt eine Reihe
von verschiedenen Auspriagungen. Allen gemein ist der Begriff der Informationsverarbeitung,
was zu einer gewissen Aquivalenz von Computer und Gehirn fiihrt. Abhingig von der Ein-
schitzung dieser Annahme, kann von ,starker® oder ,schwacher* Kiinstlicher Intelligenz (KI)
gesprochen werden [Searle86]. Die ,starke* KI geht von dem Standpunkt aus, dass die Be-
ziehung zwischen menschlichem Gehirn und Computern eine Analogie ist und nicht blof ein
methodisches Verfahren. Minsky, als Vertreter dieser Ansicht, schreibt in dem Prolog seines
Buchs Mentopolis:

»,Die meisten Leute glauben immer noch, dafl keine Maschine je ein Gewissen,
Ehrgeiz, Neid, Humor entwickeln oder andere geistige Lebenserfahrungen machen
kann. Natiirlich sind wir weit davon entfernt, Maschinen mit menschlichen Fahig-
keiten bauen zu konnen. Aber das bedeutet, dafl wir bessere Theorien iiber die
Denkféhigkeit brauchen.“ [Minsky94, S. 19]

Anhénger der ,,schwachen“ KI gehen nicht so weit und sehen die Analogie als eine heuris-
tische Annahme. Unabhéngig von der Sichtweise sind sich die Kognitivisten darin einig, dass
die Prozesse innerhalb des menschlichen Gehirns modelliert werden miissen. Hierfiir miissen
geeignete Wissensrepriisentationen und Algorithmen gefunden werden, mit denen die Fahig-
keiten Lernen, Erinnern, Vergessen etc. modelliert werden kdnnen. Denkprozesse sind dann

Lerntheorie

interne
Verarbeitungsprozesse interessieren

-
Qutput Input

extern modelliertes Feedback

Abbildung 2.2: Schematisches Modell des Kognitivismus [Baumgartner99, S.105]

Wechselwirkungen von externen Angeboten und internen Strukturen. Abbildung 2.2 verdeut-
licht diesen Zusammenhang.

Beim Lernen muss der Kognitivismus daher von einem objektiven externen Wissen aus-
gehen, welches in der Realitdt unabhéingig vom Bewusstsein existiert. In dem schematischen
Modell wird die Steuerung des externen Einflusses auf den Lernenden durch das Feedback an-
gedeutet. Eine bedeutende Schwéche dieses Paradigmas ist die unmdogliche bzw. umsténdliche
Modellierung korperlicher Fertigkeiten.

2.2.3 Konstruktivismus

Im Konstruktivismus wird Lernen als aktiver Prozess betrachtet, bei dem der Mensch durch
seine Sinne die Umwelt wahrnimmt und in Beziehung mit fritheren Erfahrungen zu einem indi-
viduellen Wissen konstruiert. ,,Die Umwelt, so wie wir sie wahrnehmen, ist unsere Erfindung.“
[Foerster95, S.40]. Das Gehirn wird als selbstreferentielles System betrachtet, das Energien
— nicht Informationen — iiber die Sinnesorgane verarbeitet und daraus neue individuelle
Informationen erzeugt (Abbildung 2.3).

Gehirn ist ein selbstreferentielles System

Realitat
Wahrnehmung

Q Kopplung

energetisch offen —
informationell geschlossen

Abbildung 2.3: Schematisches Modell des Konstruktivismus [Baumgartner99, S.108]

Damit bildet dieses Paradigma den Gegensatz zum Kognitivismus, bei dem objektive In-
formationen aufgenommen und verarbeitet werden. Freilich verleugnet der Konstruktivismus
nicht eine existierende Realitdt, jedoch geht er davon aus, dass sie nicht objektiv empfunden
werden kann.

Fiir das Lehren und Lernen zieht diese Ansicht Konsequenzen nach sich. Streng genommen
kann es z.B. keine optimale Wissensvermittlung geben, da sie individuell und unvorhersagbar
ist. Die Lehrenden kénnen unterstiitzend wirken, indem sie die Aktivierung von Vorkenntnis-
sen, ihre Ordnung, Korrektur, Erweiterung, Ausdifferenzierung und Integration férdern.

,Lernen bedeutet nach dem konstruktivistischen Paradigma: Wahrnehmen, Erfah-
ren, Handeln, Erleben und Kommunizieren, die jeweils als aktive, zielgerichtete
Vorginge begriffen werden.“ [Klimsa93, S. 22]

Sie begleiten den Lernprozess und verhelfen den Lernenden zu eigenen Problemstellungen,
die selbsténdig entwickelt und gelost werden miissen. Die Problemfindung kann ein chaotischer,
verwirrender Prozess sein, der aber dem Lernen zutréglich ist. Als einziges Paradigma der drei

2.3 Lehrer/-in, Tutor/-in und Coach

13

genannten orientiert sich der Konstruktivismus mehr am Lernenden und macht die Qualitét
der Wissensvermittlung nicht nur an der Eingabe der Lehrenden fest.

FEnde der achtziger, Anfang der neunziger Jahre haben sich drei Ansétze des ., gemé-
Bigten“ Konstruktivismus hervorgetan, denen gemein ist, dass sie Situiertheit und Anwen-
dungsbezogenheit in den Vordergrund stellen. Die Anchored-Instruction-Theorie [CTGV90;
CTGV93] verpackt authentische Probleme in Geschichten, die Cognitive-Flexibility- Theorie
[Spiro88; Spiro91] setzt auf den Facettenreichtum realer Problemstellungen und die Cognitive-
Apprenticeship- Theorie [Spiro88] nutzt authentische Aktivitdten und soziale Interaktionen in
Expertenkulturen.

2.3 Lehrer/-in, Tutor/-in und Coach

Die beschriebenen Lernparadigmen wirken sich erwartungsgeméfl auf die Lehre bzw. die Art
der Wissensvermittlung aus. In [Baumgartner97] wird fiir jede der drei Theorien ein Begriff
und eine Eigenschaftsbeschreibung fiir Lehrende definiert. Demnach werden Lehrende im Be-
haviorismus als Lehrer/-innen bezeichnet, die als Autoritétspersonen auftreten und genau
wissen, was sie vermitteln mochten. Sie miissen nur die geeigneten Mittel und Wege fiir den
~Wissenstransfer finden.

Im Kognitivismus werden gestellte Aufgaben von den Lernenden relativ selbstédndig bear-
beitet, weshalb die Lehrenden den Losungsprozess als Tutoren begleiten. Sie beobachten und
geben bei Bedarf Hilfestellungen.

Im Konstruktivismus nehmen Lehrende die Rolle eines Coaches ein. Lernende generieren
sich die Problemstellungen selbst, um komplexe Situation zu bewéltigen. Hierdurch verlieren
die Lehrenden ihre Unfehlbarkeit, da sie sich der Kritik der praktischen Situation aussetzen.
Ihre lehrende Funktion nehmen sie durch ihre Erfahrung und die Féahigkeit der Betreuung war.

Abbildung 2.4 stellt die verschiedenen Lehrmodelle gegeniiber und zahlt die relevanten
Eigenschaften auf.

Lehrer/-in Tutor/-in Coach

* Faktenwissen, * Prozeduren, Verfahren, * soziale Praktiken,
"know-that" "know-how" "knowing-in-action”

« Vermittlung « Dialog « Interaktion

* wissen, * (aus)uben, * reflektierend handeln,
erinnern Problemldsen erfinden

« Wiedergabe korrekter ¢ Auswahl und Anwendung < Bewaltigung komplexer
Antworten der korrekten Methoden Situationen

* Merken, e Fahigkeit, * Verantwortung,
Wiedererkennen Fertigkeit Lebenspraxis

¢ lehren, « beobachten, helfen, « kooperieren,
erklaren vorzeigen gemeinsam umsetzen

Abbildung 2.4: Drei Lehrmodelle [Baumgartner97]

14

Lerntheorie

2.4 Ein heuristisches Lernmodell

Die beschriebenen Kompetenzstufen mit ihren Lernelementen und das Lehrmodell kénnen zu
einem heuristischen Lernmodell zusammengefiigt werden [Baumgartner99]. Hierdurch ergibt
sich ein Modell, das die drei wichtigen Variablen Lernziele, Lerninhalte und Lehrstrategi-
en beinhaltet. Die Beziehungen und Zusammenhénge zwischen den gleichrangigen Variablen
konnen so dreidimensional dargestellt werden. Abbildung 2.5 zeigt das Modell als Wiirfel.

Lernziele
entwickeln
Expertentum handeln
Gewandtheit ~ ntdecken
verstehen Lehrstrategie
entscheiden
Kompetenz auswahlen betreuen, kooperieren
Coach)

. anwenden (
Antangertum nachahmen lehren, erkléaren
Neulin rezipieren (Tutor)

9 erinnern beobachten, helfen
(Lehrer)
Fakten, kontext- Problem- komplexe Gestalt,
kontext— abhangige l6sung Situation Muster—
freie Regeln erkennung
Regeln
Lerninhalte

Abbildung 2.5: Ein heuristisches Lernmodell [Baumgartner99, S.96]

Ein wichtiger Punkt bei diesemm Modell ist, dass es nur fiir Untersuchungszwecke einge-
setzt werden kann und kein Entscheidungs- oder Vorgehensmodell ist. Schulmeister gibt in
[Schulmeister03] die implizite Abgeschlossenheit zu bedenken. Ein Wiirfel kann nicht um eine
vierte Dimension erweitert werden und die Skalierung der drei Dimensionen muss feststehen.
Ob dieses Modell allen auftretenden Szenarien gerecht wird, kann in dieser Arbeit nicht be-
trachtet werden.

Dennoch soll Baumgartners Modell in dieser Arbeit als eine Losung fiir die Taxonomie
subjektiver Metadaten gesehen werden, wie sie in Kapitel 4 vorgestellt werden. Bei einer
Beschreibung von Lernmaterialien kann mit Hilfe des Modells eine Beziehung zwischen dem
Wissen in einer Disziplin, dem angestrebten Niveau des Lernens und den lerntheoretischen An-
sdtzen angegeben werden. Dies ist bereits viel mehr, als die verbreiteten Metadaten-Standards
zu bieten haben.

2.5 E-Learning-Historie

Der Begriff E-Learning ist die Kurzfassung fiir Electronic Learning und umfasst die Gruppe
der Lehr- und Lernverfahren, die Informations- und Kommunikationstechnologien einsetzen.
Abhéngig vom jeweiligen Stand der Technik, haben sich in der Entwicklung des E-Learnings
unterschiedliche Systeme und Verfahren entwickelt. Bodendorf teilt diesen Prozess in drei
Phasen ein, die in Abbildung 2.6 dargestellt sind.

2.5 E-Learning-Historie

15

[Workstations]
[Personal Computer |
[GroRrechner J

"Intelligente”
Lehrsysteme

Tutorial-, Trainings—-,
Simulations—, Spiel-,
Testsysteme

Programmierte
Unterweisung

— 50er > 60er = 70er = 80er ™= 90er Jahre

Abbildung 2.6: Entwicklung der computerunterstiitzten Ausbildung nach [Bodendorf90, S.15]

Burrhus Skinner entwickelte in den fiinfziger Jahren eine erste ,,Lernmaschine® [Skinner54].
Um das Lernen effizienter zu gestalten, zerlegte er den Lernprozess in so viele Teile, dass dieser
nicht mehr von einer Lehrerin oder einem Lehrer vermittelt werden konnte und eine maschi-
nelle Unterstiitzung bedurfte. Mit dem Einzug der Grofirechner wurde zunéchst versucht, den
gangigen Unterricht nachzuimplementieren, allerdings mit méafigem Erfolg. Die Programme
waren in der Bedienung schlichtweg zu kompliziert und verlangten spezielle EDV-Kenntnisse.

In den siebziger Jahren kam mit dem Personal Computer (PC) eine preiswerte Alter-
native zu den Grofirechnern auf den Markt. Sie wurden zunichst wie die Telemedien —
hierzu zéhlen z.B. Diaprojektoren, Videorecorder und Bildplattenspeicher — als unterstiitzen-
de Hilfsmittel eingesetzt. Mit der Zeit entwickelte sich dann das Computer Based Training
(CBT), bei dem den Lernenden komplexe Sachverhalte multimedial vermittelt werden. Der
Begriff Multimedia ist hierbei als technisches Attribut zu sehen:

,» The mixing of audio, video, and data is called multimedia; it sounds complicated,
but is nothing more than commingled bits.“ [Negroponte96, S. 18]

Mit der Verbreitung des Internets entwickelte sich aus dem CBT das Web Based Trai-
ning (WBT) und befreite die Lernenden aus ihrer Isolation. Neben der besseren Verfiigbarkeit
der Lernmaterialien iiber das Netzwerk werden verschiedene Kommunikationsmethoden wie
z.B. E-Mail, Forum und Chat angeboten. Abbildung 2.7 verdeutlicht noch einmal die Gemein-
samkeiten und Unterschiede von CBT und WBT als Diagramm.

Multimedien Telemedien

Abbildung 2.7: Begriffsbildung von WBT und CBT nach [Kerres98, S.14]

Kapitel 3

Lernobjekte

Inhalte fiir E-Learning benotigen eine gewisse Form, um sie elektronisch verarbeiten zu kénnen.
In der Literatur wird diese iiberwiegend als Lernobjekt (Learning Object) bezeichnet, ohne
dass es einen gemeinsamen Konsens dariiber gibt, was sich eigentlich hinter diesem Begriff
verbirgt. Viele, die sich mit diesem Thema intensiv beschéftigen, stellen dieses Faktum fest
und tragen ihre personliche Definition bei, sodass ein Wust an Beschreibungen entstanden ist,
der mithsam zu durchschauen ist.

Fiir diese Arbeit ist eine prézise Definition des Begriffs Lernobjekt von tragender Be-
deutung, da er das Fundament fiir die Umsetzung des Baukastens ist. Aus diesem Grund
werden verschiedene Aspekte der Lernobjekte betrachtet, um den gesamten Kontext dieses
Begriffs auszuleuchten. Zuerst soll geklart werden, was ein Lernobjekt ausmacht und welche
Eigenschaften es im idealen Fall besitzt. Anschliefend wird die Problematik der geeigneten
Granularitdt angegangen (Abschnitt 3.3), die sich in der Praxis oft als schwierigste Aufgabe
erweist.

3.1 Warum werden Lernobjekte benstigt?

Bevor die Lernobjekte ndher untersucht werden kénnen, muss als erstes ihr Bedarf festgestellt
werden. Ein Beispiel von Stephen Downes [Downes00a] in leicht abgewandelter Form soll als
erster Anhaltspunkt dienen.

Alle Universitdten in Europa zusammengenommen bieten sicherlich hunderte von Veran-
staltungen an, in denen trigonometrische Funktionen behandelt werden. Die Mehrheit der Do-
zenten werden ihre selbst entwickelten Lehrmaterialien einsetzen, sodass die trigonometrischen
Funktionen viele Male mit geringfiigigen Unterschieden behandelt werden. Unter 6konomischen
Gesichtspunkten ist diese Redundanz nicht akzeptabel, da die Erstellung guter Lehrmateriali-
en mit erheblichen Kosten verbunden ist. Es ist somit besser, ein Thema einmalig erschopfend
aufzubereiten und als Lernobjekt in allen Veranstaltungen — individuellen Animositéiten bei-
seite gelassen — einzusetzen. Eine Kostenreduzierung durch Wiederverwendung ist somit ein
Argument fiir Lernobjekte.

Aber nicht nur aus finanziellen Griinden, sondern auch fiir die Verwirklichung der Mehr-
werte des E-Learnings, die bereits 1969, noch unter dem Namen Computer-Assisted Instructi-
on (CAI), ausfiihrlich in [Atkinson69] beschrieben wurden, sind Lernobjekte von Bedeutung.
Demnach soll Lehrstoff beim E-Learning adaptiv, generisch und skalierbar sein [Gibbons02].
Die ersten zwei Adjektive sind Grundlage fiir ein individuelles, verbessertes Lernen und fin-
den sich heute im personalisierten Lernen wieder [Martinez00]. Adaptiver Lehrstoff passt sich
dem Wissens- und Leistungsstand der Lernenden an, indem z.B. geeignete Lernpfade oder
ausgewihlte Ubungen angeboten werden. Daher kann die Zusammenstellung nicht im Voraus
sondern nur generisch erfolgen. Es ist somit moglich, dass zwei Studierende mit ungleichen
Voraussetzungen unterschiedlichen Lehrstoff bearbeiten, obwohl beide das gleiche Thema in
einem Kurs behandeln. Personalisiertes Lernen benttigt zur Aufteilung der Inhalte folglich ei-

18

Lernobjekte

ne technische Einheit wie das Lernobjekt, die von einem System selbstéindig verarbeitet wird.
Eine Verbesserung der Lehre ist somit ein weiteres Argument fiir Lernobjekte. Die Forderung
des CAI nach skalierbaren Inhalten hingegen, bedeutet die Vervielfaltigung von Lehrmateriali-
en nach industriellen Maflstiben und deckt sich mit den Anforderungen der Kostenreduktion,
die bereits im Beispiel von Downes beschrieben sind.

3.2 Was ist ein Lernobjekt?

Das Lernobjekt ist fiir die technische Realisierung von E-Learning unerlésslich, doch wie ist
es nun genau definiert? Um dieser Frage nachzugehen, werden verschiedene Ansétze erlautert
und bewertet. Abschliefend wird eine genaue Definition gegeben, die als Grundlage fiir weitere
Betrachtungen gilt.

Bevor es weiter in die Details geht, soll hier ein etymologischer Fehler des Begriffs Lernob-
jekt ausgerdumt werden, der sehr hiufig in der Literatur zu finden ist: Das Lernobjekt riithre
vom objektorientierten Paradigma der Software-Technik her. Diese Herleitung ist definitiv
falsch, da es weder Klassen noch erzeugte Objekte gibt. Wenn die Ndhe zur Software-Technik
gewiinscht ist, wire der Begriff Modul mit seinen Eigenschaften angebrachter. Tatséchlich
gibt es in Wissenschaft und Wirtschaft eine Reihe anderer Begriffe, aber im Prinzip beschrei-
ben sie und ihre Permutationen immer das gleiche Konzept, sodass sie als Synonyme fiir das
Lernobjekt angesehen werden. Dies sind z.B.:

e Learning Module

Instruction Object

Educational Object

Content Object

(Reusable) Information Object

Training Component
e Nugget
e Chunk

Weitere Bestrebungen fiir Lernobjekt-Ontologien finden sich z.B. in [Mosley05; Qin04].

3.2.1 Lernobjekte nach Cisco Systems

Das Unternehmen Cisco Systems beschreibt in seinem Strategie-Papier [Cis99] einen Ansatz
fiir Lernobjekte auf Basis von Reusable Information Objects (RIO). Ein RIO ist eine gra-
nulare und wiederverwendbare Informationseinheit, die einmal entwickelt, auf verschiedenen
Medien eingesetzt werden kann. Sie ist unabhéngig von anderen RIOs, kann aber bei Be-
darf mit ihnen zu hoheren Strukturen, den Reusable Learning Objects (RLO), kombiniert
werden. Ein RLO sollte, wie in Abbildung 3.1 dargestellt, aus Uberblick, Zusammenfassung,
Bewertung und 5-9 RIOs bestehen.

Mit diesem Ansatz soll ein Paradigmen-Wechsel herbeigefiihrt werden, weg von den tra-
ditionellen Kursen, die als unflexible, monolithische Blocke daherkommen, hin zu den wieder-
verwendbaren Lernobjekten. Die Hauptkritik am Kurs liegt am vorgegebenen Lernpfad, der
von den Lehrenden einmalig entwickelt wird und somit nur kognitivistisches Lernen (siehe z.B.
[Searle86; Tulodziecki96]) erlaubt. Auf die individuellen Voraussetzungen der Lernenden, wie
z.B. Vorwissen und Begabung, kann bei dieser uniformen Lehre nicht eingegangen werden.

Clisco unterscheidet zwischen den Vorteilen eines RIOs fiir Autoren und Lernende. Die
Autoren profitieren von den RIO-spezifischen Templates als Grundlage fiir ein konsistentes

3.2 Was ist ein Lernobjekt?

19

O s
v u
e m
r m |
v a
: r
V‘i y
pre - Assessment - post

Abbildung 3.1: RLO-RIO-Struktur

Design, der Wiederverwendbarkeit von RIOs in zukiinftigen Projekten und der Erstellung von
hoheren Strukturen, den so genannten RLOs. Fiir die Lernenden sind die RIOs konsistent in
Design und Struktur, stehen jederzeit zur Verfiigung und erlauben individuelle Lernpfade, die
sich ihrem Wissen und ihren Fiahigkeiten anpassen.

3.2.2 Lernobjekte nach Hodgins

Wayne Hodgins motiviert in seinem Whitepaper [Hodgins00] den Einsatz von Lernobjekten
als Container fiir Information. In unserer Wissensgesellschaft ist das Wissen in den K&pfen von
Experten die wertvollste Ressource, die, natiirlichen Ressourcen gleich, ihren wahren Wert erst
durch Extraktion, Aufbereitung und Verdffentlichung erhélt. Ziel muss also sein, das vorhan-
dene Wissen zu konvertieren, um es mit anderen in Konversation, Abbildung, geschriebenem
Wort, Modell, Simulation und anderen Formen auszutauschen. Es ist jedoch wichtig, dass die
Lernenden nur mit den Informationen konfrontiert werden, die sie wirklich benttigen.
Die Grofle der Informationseinheiten spielt fiir Hodgins eine wesentliche Rolle:

»Oize matters: Smaller is better.“ [Hodgins00, S. 27]

Er kritisiert die bisherigen Kursgrofien, weil aus Griinden der Effizienz Kurse allumfassend und
uniform gestaltet werden, um sie vielen Lernenden zur Verfiigung zu stellen. Zudem werden
meist proprietire Datenformate genutzt, sodass es neben den bekannten Einschrankungen mit
dem vorgegebenen Lernpfad auch noch zu Kompatibilitéitsproblemen kommt. Informationen
miissen also im Sinne der Wiederverwendbarkeit in kleinen, kompatiblen Einheiten bereit
gestellt werden, die sich beliebig rekombinieren lassen. Hodgins schlagt fiir die technische
Realisierung die Reusable Information Objects (RIO) von Cisco vor (siche Abschnitt 3.2.1),
die sich nach der Hierarchie in Abbildung 3.2 richten.

Fiir die Generierung dieser Strukturen werden zuséitzlich Metadaten bendtigt, die den
Inhalt des jeweiligen Lernobjekts charakterisieren. Sie kénnen entweder objektiv sein, d.h., eine
automatische Vergabe durch das System ist moglich (z.B. das Erstellungsdatum), oder sind
subjektiv und unterliegen der personlichen Einschétzung einzelner Personen oder Gruppen.

Um die Eigenschaften der Lernobjekte versténdlicher zu beschreiben, bedient sich Hodgins
des LEGO-Bausteins als Metapher!. Mit den gleichen Bausteinen lassen sich Briicken, Hauser
oder Raumschiffe bauen. Es ist zudem jederzeit moglich, die Gebilde wieder in ihre Bestandteile

'Eine Reihe weiterer Autoren (z.B. [Mason00]) gebraucht ebenfalls LEGO-Bausteine als Metapher. Es lisst
sich jedoch nicht mehr genau feststellen, wer der Urheber ist.

Lernobjekte

. Simulation

Topical Unit

Reusable

|
Learning Object ‘@

Information _ U
Objects @

Abbildung 3.2: Lernobjekt-Hierarchie nach [Hodgins00, S. 28]

zu zerlegen und neu zu kombinieren. Genauso flexibel verhalten sich Lernobjekte, die beliebig
kombinierbar bzw. zerlegbar sind und die Grundlage fiir ein personalisiertes Lernen bilden.

3.2.3 Lernobjekte nach Wiley

Fiir David A. Wiley hat das Internet die Kommunikation zwischen den Menschen veridndert
und wird auch die zukiinftige Art des Lernens beeinflussen [Wiley02]. Daher ist es unver-
meidlich, dass sich auch die Form des Lernmaterials anpassen wird. Er nennt als fithrende
Technologie die Lernobjekte, da sie wiederverwendbar, generisch, anpassbar und skalierbar
sind. Eine allgemeine Akzeptanz in Universitéiten und Wirtschaft kann jedoch nur durch die
Einigung auf verbindliche Standards erreicht werden.

~Without such standards, universities, corporations, and other organizations around
the world would have no way of assuring the interoperability of their instructional
technologies, specifically their learning objects.“ [Wiley02, S. 4]

Wichtige Organisationen auf dem Gebiet der Lernobjekt-Standards sind z.B. LTSC?, IMS?3,
ADL* und ARIADNE®. Als Ausgangspunkt seiner eigenen Definition fiir Lernobjekte dient
Wiley daher die des IEEE-LOM-Standards (siche Abschnitt 4.3):

,For this Standard, a learning object is defined as any entity — digital or non-
digital — that may be used for learning, education or training.“ [IEE02a, S. 5]

Er stort sich an dem ,,non-digital“, da es nicht zu seiner Internet-Philosophie passt, und dem
,may be used“, wodurch nicht wiederverwendbare Ressourcen einbezogen werden. Seine Um-
formulierung lautet nun:

,-.- will define a learning object as ‘any digital resource that can be used to support
learning.“ [Wiley02, S. 7]

Beim Umgang mit Lernobjekten miissen didaktische Theorien eine Rolle spielen, wenn sie
die Lehre verbessern sollen. Fiir eine dynamisch automatische Komposition von Lernobjek-
ten, die Voraussetzung fiir personalisiertes Lernen, miissen Metadaten iiber die angewandte

*nttp://ieeeltsc.org (29.10.05)
*http://www.imsglobal.org (29.10.05)
“http://www.adlnet.org (29.10.05)
"http://www.ariadne-eu.org (29.10.05)

http://ieeeltsc.org
http://www.imsglobal.org
http://www.adlnet.org
http://www.ariadne-eu.org

3.2 Was ist ein Lernobjekt?

21

Didaktik zur Verfiigung gestellt werden. Nur auf diesem Weg kann eine sinnvolle Struktur mit
Lernobjekten aufgebaut werden. Es reicht jedoch nicht aus, einfach Titel, Autoren und Ver-
sionen zu speichern, weil so lediglich eine einfache Suche nach Daten moglich ist. Leider finden
die didaktischen Belange zu wenig Beriicksichtigung bei den Standardisierungsprozessen.

Die von Hodgins angefiihrte LEGO-Metapher fiir Lernobjekte lehnt Wiley kategorisch
ab, da sie falsche Assoziationen wecke und schlidgt stattdessen das Atom als Alternative
vor [Wiley99]. Wesentliche Eigenschaften des LEGO-Bausteins sind beliebige Kombinationsfé-
higkeit — jeder Baustein kann mit jedem zusammengesteckt werden—, keine Einschrinkungen
in der Struktur des Gebildes und eine ,kinderleichte“ Bedienung. Ubertragen auf das Lern-
objekt, bedeutet dies eine inadéiquate Vereinfachung, die schwerwiegende Konsequenzen hat.
Lernobjekte miissen demnach lerntheoretisch neutral sein, weil sonst keine beliebige Kombinie-
rung bzw. Strukturierung moglich ist. Hierdurch werden sie aber zu bloflen Informationsbehil-
tern degradiert, worin Wiley ein ernstes Problem fiir die weiter Entwicklung der Lernobjekte
sieht:

,, The learning object field must quickly make up its mind: are we in the information
or the instruction business?“ [Wiley99, S. 3]

Die gleichen Probleme verursacht die Eigenschaft der ,kinderleichten“ Bedienung, durch
die jegliche Didaktik auflen vor gelassen wird. Nur Experten mit einem lerntheoretischen Hin-
tergrundwissen konnen sinnvolle Lernobjekte erstellen und deren geeignete Kombination si-
cherstellen.Die LEGO-Metapher hat sich somit selbstdndig gemacht und trigt mafigeblich zur
Ungenauigkeit im Umgang mit Lernobjekten bei.

Mit Hilfe der Atom-Metapher versucht Wiley diesen Trend aufzuhalten. Ein Atom ist eine
kleine Einheit, die mit anderen Atomen zu gréfieren Einheiten kombiniert werden kann. Soweit
besteht eine Ahnlichkeit zu den LEGO-Steinen. Der wesentlich Unterschied liegt jedoch in den
Bedingungen, unter denen der Aufbau geschehen kann, denn es gibt Einschrinkungen. Atome
konnen nicht willkiirlich kombiniert werden, es gibt Vorgaben fiir die Struktur und der Umgang
mit ihnen erfordert einiges an Wissen und Ubung. Bei genauer Betrachtung offenbart die
Metapher, dass Personen ohne didaktisches Wissen so wenig Lernobjekte sinnvoll kombinieren
konnen, wie Personen ohne chemisches Wissen Kristalle aus Atomen wachsen lassen. Anstatt
LEGO-Steine als Leitbild zu nehmen, sollten Lernobjekte lieber zu , Lernkristallen“ kombiniert
werden.

3.2.4 Lernobjekte nach Downes

Stephen Downes mochte Lernobjekte nicht iiber ihre Eigenschaften, sondern iiber ihre Funk-
tionen definieren, wie sie bestehende Probleme digitaler Lerneinheiten 16sen kénnen. Einer
seiner Griinde fiir diese Betrachtungsweise ist die Uneinigkeit iiber eine genaue Definition im
Lager der Lernobjekt-Forschung. Prinzipiell hat Downes nichts gegen die vorgestellten Model-
le von Hodgins oder Wiley einzuwenden, da sie fiir sich betrachtet in ihrem Kontext sicher
sinnvoll sind [Downes00b]. Doch die Unterschiede zwischen den Modellen sind zu grofi und
keines kann Allgemeingiiltigkeit fiir sich beanspruchen. Konsens herrscht nur dariiber, dass
die vom LOM-Standard vorgesehene Definition zu ungenau ist.

Als Rahmen fiir die Funktionen von Lernobjekten sieht Downes die Lernob jekt-Wirt-
schaft (Learning Object Economy). Hierbei handelt es sich um eine Verbindung von Netz-
werken und Systemen, mit der Lehr- und Lernprozesse unterstiitzt werden. Innerhalb dieses
Komplexes werden Lernobjekte erstellt und verteilt, wobei beliebige Materialien gemeint sind.
Die genaue Interpretation, was ein Lernobjekt eigentlich ist, wird den Menschen iiberlassen.
Egal ob nun Baustein oder Atom als Metapher herangezogen wird: Hauptsache eine gewisse
Funktionalitdt ist vorhanden.

Ausgangspunkt fiir Downes Uberlegungen ist das Online-Lernen. Durch das Internet
eroffnen sich Moglichkeiten, die es vorher nicht gab. Als wesentliche Neuerungen nennt er den
verbesserten Zugriff auf Materialien, bei dem unabhéngig von Raum und Zeit mit eigener

22

Lernobjekte

Geschwindigkeit gelernt werden kann. Ein bedeutender Nachteil sind hingegen die mit der
Produktion von E-Learning-Angeboten verbundenen Kosten. Auf herkémmliche Weise erstellt,
sind sie sogar teurer als traditionelle Materialien wie z.B. Skripte oder Folien. Ursache dieser
Diskrepanz ist die hohere Komplexitéit interaktiver Medien. Eine Losung des Problems ist, wie
in Abschnitt 3.1 bereits vorgeschlagen, die Wiederverwendung.

Es stellt sich die Frage, welche Form und Gréfle sich am besten fiir dieses Unterfangen
eignet (mehr dazu auch in Abschnitt 3.3). Nach Downes sind es Kurse, die das aktuelle Angebot
pragen. Kurse lassen sich aber nur schwer in verschiedene Veranstaltungen integrieren, weshalb
Wiederverwendung bis jetzt wenig praktiziert wird. Durch eine Aufteilung von Kursen in
Komponenten ldsst sich jedoch auch diese Problematik entschérfen. Die einzelnen Teile kénnen
dann als Lernobjekte betrachtet werden. In diesem Zusammenhang tauchen auch Tausch und
Zusammenstellung von Lernobjekten als weitere Fragestellungen auf.

Dritte konnen auf Komponenten nur zugreifen, wenn ihnen adédquate Suchmoglichkeiten
angeboten werden. Zentrale Systeme wie z.B. Portale kénnen diese Aufgabe gut iibernechmen.
Zum Nachteil gereicht diesem Ansatz die erschwerte Distribution {iber mehrere Portale. Was
auf dem einen System angeboten wird, kann auf dem néchsten fehlen. Auch die Konsistenz der
verschiedenen Materialien muss kritisch betrachtet werden. Unterschiedliche Formate, Présen-
tationen und Methoden verhindern die Kombination inhaltlich kohédrenter Komponenten.

Aus den gestellten Anforderungen lassen sich leicht die Funktionen bestimmen, die aus
einer Online-Ressource ein Lernobjekt machen. Eine Definition l&sst sich aus den folgenden
Eigenschaften ableiten:

e Teilbar®: Lernobjekte sind iiber das Internet erreichbar. Sie werden an einer zentralen
Stelle erstellt und lassen sich beliebig in andere Kurse integrieren. Teilweise wird die-
se Eigenschaft unter ,,wiederverwendbar“ gefasst, was aber nicht das Gleiche bedeutet.
,, Leilbar® schliefit zusétzlich zur Wiederverwendung den Zugriff {iber Institutsgrenzen
hinaus mit ein.

e Digital: Diese Eigenschaft ist Voraussetzung fiir das Online-Lernen. Physikalische Ein-
heiten, wie z.B. Biicher, Mappen, Skripte, werden so von vornherein als Lernobjekte
ausgeschlossen.

e Modular: Die Groie bestimmt die Wiederverwendbarkeit. Ein Lernobjekt ist nicht ein
kompletter Kurs, aber ein Bestandteil von ihm. Daher miissen mehrere Lernobjekte
wie Module zu gréfleren Einheiten zusammenfiihrbar sein. Zudem soll ein Lernobjekt
unabhéngig von anderen sein.

e Interoperabel: Es muss moglich sein, Lernobjekte auch aus verschiedenen Quellen zu
kombinieren. Fiir Personen, die einen Kurs zusammenstellen, darf es keine Rolle spielen,
woher die einzelnen Komponenten stammen. Auch die Werkzeuge und die Infrastruktur
sollten keinen Einschrdnkungen unterliegen.

e Entdeckbar: Fiir durchschnittliche Anwender/-innen muss es in vertretbarer Zeit mog-
lich sein, die gewiinschten Lernobjekte zu finden. Auf keinen Fall darf Spezialwissen
vorausgesetzt werden.

Downes resiimiert seine eigene Definition folgendermaflen:

»In conclusion, learning objects are digital materials used to create online cour-
ses where these materials are sharable, modular, interoperable and discoverable.”
[Downes02]

5Downes benutzt das Wort ,,sharable“, das mehr auf die gemeinsame Nutzung abzielt als ,teilbar.

3.3 Granularitit

23

3.2.5 Lernobjekte nach Baumgartner

Peter Baumgartner fiihrt ein recht einfaches Modell ein, bei dem der Begriff Lernobjekt, &hn-
lich wie bei Cisco (vgl. Abschnitt 3.2.1), als Reusable Learning Object (RLO) definiert
ist. Zu Konfusion hinsichtlich der Verwendung des Begriffs Lernobjekt in dieser Arbeit kann
es kommen, wenn Baumgartners Definition herangezogen wird:

»Ein LO (Learning Object) ist die kleinste sinnvolle Lerneinheit, in die ein Online-
Kurs zerlegt werden kann. Demnach kann ein LO entweder aus einem einzelnen
Bild, einer Grafik, einem Text, einer Flash-Animation oder auch aus einer kurzen
Anweisung mit einem definierten Lernziel und einem Test zur Lernerfolgskontrolle
bestehen.“ [Baumgartner02b, S. 24]

Erst wenn ein Lernobjekt mit Metadaten angereichert wird, kann es wieder verwendet und
zu hoheren Kurseinheiten kombiniert werden. Diese eigenwillige Definition ist in Abbildung
3.3 zusammengefasst.

Informationseinheiten

RLO's (Wiederverwendbare Lerneinheiten)

2
@)/ \&e®

Abbildung 3.3: Reusable Learning Objects nach [Baumgartner02b, S. 24]

Lehrgang

3.3 Granularitit

Durch die Groie der Lernobjekte sind freilich Aspekte wie Entwicklung und Wiederverwen-
dung tangiert. Sehr kleine Einheiten, oft auch Atome genannt, sind schnell realisiert und
duBerst flexibel, jedoch ist ihre Verwendung mit Mehrarbeit verbunden. Eine simple Abbil-
dung reicht beispielsweise meist nicht aus. Sie muss schon mit einem Text versehen werden, der
sich in einen Gesamtkontext einbettet. Hingegen ist der Entwicklungsaufwand umfangreicher
Einheiten enorm. Inhaltlich sind sie festgelegt und schwer an eigene Bediirfnisse anzupassen,
sodass zwangsldufig Kompromisse beziiglich der Themen, Darstellung, Umfang, etc. einge-
gangen werden. Ein kompletter Kurs fiir ein Semester z.B. ldsst kaum Spielrdume fiir eigene
Wiinsche.

Doch wie lassen sich subjektive Groflenangaben iiberhaupt definieren? Welche Grofie ist
gemeint, wenn der Umfang eines Lernobjekts angegeben ist? Bezieht sie sich auf den Inhalt
oder das Medium? Mit Hilfe verschiedener Definitionen des Begriffs Granularitét sollen diese

24

Lernobjekte

Fragen aufgeklart werden. Der bereits fiir seine einfache Definition eines Lernobjekts geschol-
tene Standard LOM sieht vier Granularitéitsstufen vor (der Attributname lautet aggregation
level), die jeweils eine Aggregation der darunter liegenden darstellen. Angegeben durch ara-
bische Zahlen (1-4), ldsst diese Notation wahrlich Raum fiir Auslegungen. Als Beispiel fiir
eine Interpretation soll die Festlegung der Firma Autodesk” dienen, die in Abbildung 3.4 illus-
triert ist. Es handelt sich um eine Definition mit fiinf Ebenen, die nach [Duval03] auf die vier
Granularitdten von LOM abgebildet werden:

1. Data oder Raw Media Elements sind die kleinsten Lernobjekte in diesem Modell. Es
handelt sich um reine Daten, die nicht weiter zerlegt werden kénnen, wie z.B. Absétze,
Abbildungen und Animationen. Daten auf dieser Ebene kénnen proprietér sein.

2. Die Ebene Information Objects ist unabhéngig von bestimmten Medien. Lernobjek-
te dieser Grofle enthalten soviel Informationen, dass sie oft wieder verwendet werden
konnen.

3. Kohérente Information Objects zu einem Thema werden auf der Ebene Application
Objects zusammengefasst. In der Regel ist dies die bevorzugte Grofle zur Wiederver-
wendung von Lernobjekten.

4. Verschiedene Themenbereiche werden in den Ebenen Aggregate Assemblies oder Col-
lections zusammengefasst. Um auf LOM abbildbar zu bleiben, haben sie beide die Gro-
Be 4.

Modular Content Hierarc
Corporate Wide II I . Application Specific Profiles

“Raw” Information Application Aggregate Collections
Data Objects Objects Assemblies (Stories, Courses
Media (Learning Objects (Lessons Books, Movies)
Elements Support Objects, Chapters, Units,
Marketing, Brochure, etc.)
p "ﬁ!(‘iio Reference, etc.)
i A
'Ig(t'['ﬂ Pr.u:-
’F _ P ple

o oig Pr
5 T
iaian® 8 g ©

Enabling Terminal
Sﬁﬂiaﬂion Objective Objective

©2001 Learnativity
Abbildung 3.4: Lernobjekt-Hierarchie aus [Hodgins02, S. 78]

Eine alternative Definition der Granularitéit stellt Wiley in [WileyOOb] vor. Anstatt die
Aggregationstiefe als Mafl zu nehmen, kann auch die Komplexitidt von Inhalten herangezogen

" Autodesk ist der Arbeitgeber von Wayne Hodgins

3.4 Sequenzierung

werden. Auch wenn es eine Korrelation zwischen der Grofle eines Lernobjekts und dessen
Komplexitét gibt, steht bei dieser Herangehensweise der Inhalt im Vordergrund. Folgende
Erfahrung unterstiitzt diese Form von Granularitéit:

, The optimal level of granularity must be determined for each project based on its
individual goals. From the perspective of instructional developers, our experience
is that it is most useful to move from the course level of granularity down to the
concept level when designing, but not so far down as the individual media asset
level. For our instructional needs, objects have the greatest potential for reuse when
they center on a single, core concept.” [South02, S. 6]

Eine praktische Anwendung, die sich intensiver mit der Aufteilung existierender Doku-
mente beschéftigt, ist Slicing Books [Dahn01; Dahn02]. Existierende Dokumente werden in
semantische Einheiten aufgeteilt, die spéter individuell zusammengesetzt werden kénnen.

3.4 Sequenzierung

Eng verbunden mit der Granularitéit von Lernobjekten ist die Problemstellung der Reihenfol-
ge, in der sie durchgegangen werden sollen. Diese Abfolge wird Sequenz genannt und ist ein
didaktisches Grundproblem bei der Strukturierung von Lehr- und Lernmaterialien. Es lassen
sich verschiedene Relationen zwischen den Lernobjekten bestimmen, aus denen sich die Se-
quenz ableiten lisst. Reigeluths ,,Evaluationstheorie” [Reigeluth80; Reigeluth83; Reigeluth99]
beinhaltet Vorschlige zur Sequenzierung von Lernmaterialien verschiedener Granularitéiten.
Ausschlaggebend fiir die Art der Sequenzierung sind Umfang und Zusammenhang der ein-
zelnen Themen. Je enger die thematischen Verkniipfungen sind, desto stérker wirkt sich die
Menge des Lernstoffes aus. Lernenden fillt es bei grofleren Umféangen zunehmend schwerer,
Schwichen und Ungereimtheiten in der Anordnung von Lernobjekten selbstéindig zu kompen-
sieren. Hingegen erlaubt eine geringere Menge an Lernstoff, solche Méangel durch Erinnerung
und Schlussfolgerungen auszugleichen.

Durch die Sequenzierung wird eine Relation zwischen den Lernobjekten festgelegt. Ubli-
cherweise wird zwischen der chronologischen Abfolge (historische Sequenz), der Praxis iibli-
chen Abfolge von Tétigkeiten (Prozeduren) und den Voraussetzungen bzw. dem Ausmaf der
Komplexitét unterschieden [Niegemann04]. Bei mehreren Themen wird zwischen der linear-
sukzessiven und der Spiral-Sequenzierung Unterschieden. Abbildung 3.5 zeigt beide Se-
quenzmuster.

Bei der linear-sukzessiven Sequenzierung wird ein Thema intensiv durchgenommen, bevor
es zum néchsten geht. Vorteil dieser Herangehensweise ist die Kontinuitét, mit der ein Thema
behandelt wird. Die Anordnung etwaiger Materialien fallt leichter und Lernende kénnen sich
auf ein Thema konzentrieren. Jedoch kann es bei einem Themenwechsel leicht passieren, dass
zu spezielles Wissen verloren geht. Auch sind die Zusammenhinge zwischen den Themen
nicht immer offensichtlich, da es durch die Separation nur wenig Ankniipfungspunkte gibt.
Mit Uberblicken, Riickblicken und Querverweisen kann diesem Problem allerdings in einem
gewissen Maf} entgegen gewirkt werden.

Bei der Spiral-Sequenzierung wird jedes Thema mehrmals durchlaufen. Erst werden die
Grundlagen der einzelnen Themen behandelt, um sie jeweils soweit zu vertiefen, bis die
erwiinschte Kompetenzstufe erreicht ist. Im Gegensatz zur Sequenzierung gibt es viele Be-
rithrungspunkte zwischen den Themen, sodass sich die Zusammenhénge leichter erschlieflen.
Nachteil dieser Herangehensweise sind die héufigen Unterbrechungen, die eine kontinuierliche
Vertiefung erschweren.

Es gibt noch eine Reihe von Faktoren fiir die Sequenzierung, die stirker didaktisch aus-
gelegt sind. So werden z.B. die zu vermittelnden Kompetenzen unterschieden, ob sie mehr
aufgaben- oder doménenorientiert sind [Reigeluth99]. Eine enge Verkniipfung von Reigeluths

26

Lernobjekte

Topic Topic Topic Topic Topic Topic
A B C A B C

Start Start

End End

(a) Linear-sukzessive Sequenzierung (b) Spiral-Sequenzierung

Abbildung 3.5: Linear-sukzessive Sequenzierung und Spiral-Sequenzierung nach [Reigeluth99,
S. 432]

Arbeiten mit Lernobjekten findet sich in Wileys Learning Object Design and Sequencing Theo-
ry (LODAS) [Wiley00a] wieder.

Andere Kriterien fiir die Segmentierung sind unter anderen die Kapazitét des menschlichen
Arbeitsgedichtnisses [Case78; Case85]. Hierbei wird darauf geachtet, dass die ,,Informations-
einheiten* nur so grof} sind, wie die Lernenden sie verarbeiten kénnen.

3.5 IMS Content Packaging Specification

Die Spezifikation IMS Content Packaging Information Model (CP) [IMS04a] beschreibt Da-
tenstrukturen, um die Zusammenarbeit von Internet-basierten Inhalten mit Autorensystemen,
Learning Management Systemen (LMS) und Laufzeitumgebungen zu gewihrleisten. Der Da-
tenaustausch von E-Learning-Inhalten erfolgt iiber Packages, die im Wesentlichen aus einem
Manifest und kohérenten Ressourcen, den Physical Files, bestehen. Weil das Manifest in XML
(Ezxtensible Markup Language) kodiert ist — es hat immer den Dateinamen imsmanifest.xml
—, sind zusétzliche Kontrolldateien (DTD und XSD) fiir die Validierung enthalten. Im Inneren
teilt sich das Manifest in die Bereiche Metadata (Metadaten), Organizations (Organisationen),
Resources (Ressourcen) und (sub)Manifest auf. Abbildung 3.6 veranschaulicht den gesamten
Aufbau eines Packages.

Physikalisch wird ein Package durch ein logisches Verzeichnis in einem Dateisystem repré-
sentiert, was fiir einen Datenaustausch, z.B. iiber das Internet, recht unhandlich ist. Anstatt
das Package irgendwo in der Verzeichnisstruktur zu speichern, kann es inklusive aller Unter-
verzeichnisse auch in einer einzelnen Datei zusammengefasst werden, der Package Interchange
File (PIF). Giiltige Dateiendungen sind .zip, .jar, .cab und dergleichen. Wichtig ist ledig-
lich, dass die interne Kodierung der Datei kompatibel zu RFC 1951 [Deutsch96] ist.

Als Austauschformat kommen jedoch nicht nur die Package Interchange Files in Frage,
sondern auch Wechselmedien, wie z.B. die CD-ROM. In diesem Fall kann auf eine Kompri-
mierung verzichtet werden. Nur Manifest sowie Kontrolldateien miissen im Wurzelverzeichnis
liegen, um aus einem Datentrager ein giiltiges Package zu machen.

Inhaltlich ist ein Package eine Einheit fiir wieder verwendbare E-Learning-Inhalte, z.B. als
Teil eines Kurses, als eigenstédndiger Kurs oder als eine Sammlung verschiedener Kurse. Es
muss moglich sein, ein Package mit anderen Packages zu kombinieren oder solche Verbiinde
in ihre Einzelteile zu zerlegen. Dies setzt voraus, dass ein Package fiir sich stehen kann und

3.5 IMS Content Packaging Specification

27

PACKAGE

Meta—-Data

Organizations

Resources

(sub)Manifest(s)

PHYSICAL FILES
(The actual Content, Media
Assessment, Collaboration,

and other files)

Abbildung 3.6: Die verschiedenen Bereiche innerhalb eines Packages [IMS04al

keine Abhéngigkeiten zu anderen Dateien besitzt. Wird es entpackt, miissen alle relevanten
Daten fiir einen reibungslosen Ablauf vorhanden sein.

Der Aufbau des Packages und die Beschreibung der enthaltenen Ressourcen wird iiber das
Manifest angegeben. Die interne Struktur ist stets statisch und kann in einer beliebigen Anzahl
von Varianten angegeben sein. Durch die verschiedenen Funktionen und Gréflen eines Packages
ist der semantische Giiltigkeitsbereich der Strukturen nicht festgelegt, da es von einer kleinen
Lerneinheit bis zur Kurssammlung alles beschreiben kann. Auf jeden Fall muss ein Package
auf oberster Ebene, also direkt im logischen Verzeichnis, genau ein in XML kodiertes Manifest
beinhalten, das als Beschreibung dient und Top-level Manifest genannt wird. Es kann auch
(sub)Manifeste enthalten, die eine eigene semantische Ebene ausmachen. Enthilt ein Package
z.B. einen Kurs, dann kénnen einzelne Kapitel oder Lerneinheiten durch (sub)Manifeste be-
schrieben werden. Dies ist sinnvoll, wenn der Inhalt so stark gekoppelt ist, dass er nicht fiir
sich alleine stehen kann.

Eine sinnvolle aber freigestellte Herangehensweise ist, die Inhalte als Lernobjekte zu be-
trachten, sodass sie beliebig kombiniert, auseinander genommen und wieder verwendet werden
konnen. Jedes Lernobjekt ist dann ein Package und besitzt sein eigenes Manifest. Bei einer
Aggregation mehrerer Lernobjekte zu einem Kurs werden alle Lernobjekt-Manifeste in einem
neuen Kurs-Manifest auf hoherer Ebene zusammengefiihrt. Der Kurs kann wiederum mit an-
deren Kursen kombiniert werden, wobei das gleiche Procedere fiir die Manifeste zum Tragen
kommt. Durch die Allgemeingiiltigkeit der Packages und die rekursive Definition des Mani-
fests ist somit eine arbitréire Aufteilung von Inhalten moglich. Wie sie genau aussieht, liegt
letztendlich bei den Autoren/-innen.

Die Ressourcen eines Packages sind beliebige Daten in Dateiform, wie z.B. HTML-Seiten,
Texte, Sounds, Grafiken und Animationen. Sie sind entweder Bestandteil des Packages —
sie liegen im Wurzel- bzw. einem Unterverzeichnis — oder werden iiber eine giiltige URL
referenziert, die eine Einbindung zur Laufzeit ermdglicht. Uber eine definierte Auszeichnung
konnen Ressourcen im Manifest deklariert werden, beispielsweise mit dem <resource>-Tag
in XML-Notation. Da Ressourcen auch aus mehreren Dateien bestehen kénnen, sollten inte-
grierte Dateien explizit {iber das <file>-Tag bekannt gegeben werden. Im Falle einer URL-
Adressierung ist diese Deklaration freilich nicht moglich, weil benotigte Dateien wiederum nur
itber URLs und nicht innerhalb des Packages erreichbar sind. Abhéngigkeiten jeglicher Art
zwischen Ressourcen konnen als Dependency (<dependency>-Tag) angegeben werden.

Handelt es sich bei den Ressourcen z.B. um Abschnitte und Unterabschnitte eines inhaltlich
zusammenhéngendes Textes, befinden sie sich strukturell auf verschiedenen Ebenen, die nicht

28

Lernobjekte

durch die einfache Deklaration im Manifest beschrieben sind. Mit Hilfe einer eigenen Daten-
struktur, der Organisation (<organization>-Tag), werden solche hierarchischen Relationen
angezeigt. Sie ist als Baum realisiert, dessen Knoten als Items (<item>-Tag) bezeichnet wer-
den und Referenzen auf Ressourcen oder Submanifeste beinhalten. Die Submanifestverweise
sind unerlésslich fiir die beschriebene Zusammenfiihrung verschiedener Packages. Weil es mog-
lich ist, Manifeste mit mehreren Organisationen zu erstellen, konnen die gleichen Ressourcen
und Submanifeste innerhalb eines Packages verschieden angeordnet werden.

Nicht nur das Manifest kann mit Metadaten versehen werden, sondern auch Ressourcen,
Dateien, Organisationen und Knoten. Die Beschreibung ist im IMS-eigenen Metadatenformat
[IMSO01] anzugeben und steht im <meta-data>-Tag. Abbildung 3.7 verdeutlicht nochmal die
gesamte Datenstruktur eines Manifests.

@ A reusable unit of instruction
Meta—-data Meta—data describing the package
o oo

Organizational structure for this package

A particular hierarchical organization tree
Meta—data describing the organization
A node within a hierarchical organization

Meta—data describing the item

A collection of references to resources
A specific resource

Meta—-data describing the resource

Locally referenced files that this
resource is dependent on

Meta—data
D d References to another resource whose
O ependaency files this resource depends upon
o e

Meta—data describing the file

One—to—one One-to—-many One-to—-many
One-to—one (or zero) (zero or more) (one or more)
> > >

Abbildung 3.7: Datenstruktur eines Manifests [IMS04a]

Die Sperzifikation des IMS CP ist fiir eigene Erweiterungen ausgelegt. Es ist erwiinscht,
dass Implementationen die Basisstrukturen der Organisationen erweitern und neue Typen fiir
Ressourcen einfithren. Bewihrte Ergidnzungen konnten letztendlich in zukiinftige Versionen
der Spezifikation aufgenommen werden.

Es werden aber nicht nur Datenstrukturen von der Spezifikation vorgegeben, sondern auch
Algorithmen. Fiir diese Arbeit ist die Zusammenfithrung von Organisationen aus Manifesten
und Submanifesten von Bedeutung, weshalb diesbeziiglichen Verfahren besonderes Augenmerk

3.5 IMS Content Packaging Specification

29

gilt. Immer wenn ein Knoten ein Submanifest anstatt einer Ressource referenziert, miissen die
Strukturen beider Organisationen kombiniert werden. Je nach Anordnung und Aufbau der
beiden Manifeste treten verschiedene Fille auf, die differenziert behandelt werden. Fiir eine
erfolgreiche Zusammenfiihrung ist mindestens eine Organisation im Submanifest Vorausset-
zung. Ansonsten gilt die Referenz auf das Submanifest als nicht gesetzt. Stehen stattdessen
mehrere Organisationen zur Auswahl, dann wird entweder die explizit deklarierte oder, wenn
diese Auszeichnung fehlt, die erste verwendet. Mit der Zusammenfiihrung selbst verhélt es sich
folgendermafien. Die Organisation wird direkt mit dem referenzierenden Knoten vereint, wobei
Konflikte durch gleiche Attribute — es sei z.B. ein Titel angefiihrt, welcher von Knoten und
Organisation bestimmt werden kann — stets zugunsten des Knoten gelost werden. Abbildung
3.8 veranschaulicht diesen Vorgang fiir einen Knoten ohne Subknoten.

About X

About Y §
—O - . -

About Z

O -+ »| Resource Y

Abbildung 3.8: Einfache Auflésung von Referenzen

Submanifest
About A
O
About B
O~
(o |

-

About X
0

About Y
—0

About A
—O

About B
—0

About Z
0

Das gleiche Beispiel fiir einen Knoten mit Subknoten ist in Abbildung 3.9 zu sehen.

About YY

About Z

O (e [
- O

(o [

O

Submanifest

About A

About B

romens |

Abbildung 3.9: Auflésung von Referenzen mit Subknoten

Beispiele fiir den Einsatz von IMS CP finden sich in [Low02].

30

Lernobjekte

3.6 Sharable Content Object Reference Model

Beim Sharable Content Object Reference Model (SCORM) von Advanced Distributed Learning
(ADL) [Dodd04c] handelt es sich um eine Spezifikation, die auf den Standards von AICC, IMS
und IEEE aufbaut. SCORM definiert ein Content Aggregation Model und eine Runtime En-
vironment fiir Lerneinheiten, die iiber das Internet veroffentlicht werden sollen. Das Content
Aggregation Model beschreibt, wie kleinere Dateneinheiten zu Lerneinheiten, Kapiteln oder
ganzen Kursen zusammengestellt werden. Im wesentlichen basiert es auf dem Content Packa-
ging von IMS. Die Runtime Environment gibt einen Rahmen vor, wie die erzeugten Lerninhalte
durch eine Lernplattform (siehe Kapitel 6) verwaltet und gesteuert werden. Abbildung 3.10
zeigt eine schematische Darstellung aus der Spezifikation.

Learning Management System
LMS Server
/ .
. N Server Side
/ . .
Data Model: / \Y‘U”Ch Client Side
Actual data sent /
back and forth / Web Browser
between a SCO /
and LMS /
Communication // Asset
with backend p; SCO Asset | | Asset
server is not
specified in API >
SCORM. Instance ECMASCcript Asset

v
APIl: Communications Link between a SCO

and LMS

Data Model: Data is requested to be
retrieved from and stored in the LMS from the
SCO.

Abbildung 3.10: Runtime Environment aus [Dodd04b, S. 1-8]

Uber einen Startmechanismus (Launch) werden die Web-basierten Inhalte aufgerufen und
die Initialisierung durchgefiihrt. Die eigentliche Kommunikation erfolgt iiber eine API, die in
der Abbildung beispielhaft iiber JavaScript angesprochen wird. Uber definierte Datenstruktu-
ren (DataModel) informiert der Client den Server (LMS) iiber den aktuellen Status.

Die gesamte Steuerung der Kommunikation auf Seiten des Clients 1lduft im Inhalt selbst ab
und nicht im Content Package. Aus diesem Grund soll an dieser Stelle nicht weiter auf dieses
Thema eingegangen werden. Mit dem Einsatz von SCORM setzen sich [Letts02; Shackelford02]
auseinander und Beispiele fiir den Einsatz finden sich in [Newman03].

3.7 Formate

31

3.7 Formate

Die Inhalte von Lernobjekten miissen in einer Form vorliegen, dass die gesamte Infrastruktur,
von den Autorensystemen bis hin zu den Lernplattformen, sie verarbeiten kann. Zu den gén-
gigen Formaten fiir E-Learning Inhalte diirfen freilich HTML, PDF, Microsoft Word/Power-
Point oder Macromedia Flash zdhlen. Systeme mit einem solchen Repertoire sind hinsichtlich
der Kompatibilitdat auf der sicheren Seite. Dennoch reichen diese {iberwiegend proprietdren
Formate fiir die Anspriiche des E-Learnings nicht aus. Die Griinde hierfiir sind vielféltig. Zur
Erstellung sowie Anzeige werden oft spezielle Programme benétigt, die teilweise horrende Kos-
ten verursachen und oft nicht fiir alle Betriebssysteme zur Verfiigung stehen. Folglich kommt
es zu Einschrénkungen, die zu Lasten der Lernenden gehen. Nicht selten miissen private Res-
sourcen eingesetzt werden, sodass hier ein geringer finanzieller Spielraum gewéhrt ist.

Ein anderes Problem ist die mangelnde Flexibilitdt der angesprochenen Formate. Unzu-
langliche Strukturinformationen erschweren die technische Umsetzung von Lernobjekten. Ei-
genschaften aus Abschnitt 3.2, wie z.B. Modularitét, verschiedene Granularitidten, individuelle
Lernpfade etc., sind nicht immer umsetzbar. Hinzu kommt die Vermengung von Darstellung
und Inhalt. Beispielsweise kennt das Dateiformat von MS Word keine strukturelle Aufteilung
eines Dokuments durch Kapitel, Abschnitt oder Absatz. Stattdessen hat eine Kapiteliiber-
schrift eine bestimmte Formatierung, die sich in Schriftart und Gréle ausdriickt. Ein anderes
Textfragment mit zufillig gleichen Eigenschaften ist demnach nicht unterscheidbar. Fiir eine
automatische Verarbeitung kann diese Verquickung uniiberwindbare Probleme bereiten.

Abhilfe schafft wieder die Extensible Markup Language (XML), die bereits Gegen-
stand vieler Untersuchungen und Projekte war [Roisin98; Freitag02b; Teege02; Belqamsi02;
Wollowski02; Balbieris02]. XML ist inzwischen so weit akzeptiert und bekannt, dass in dieser
Arbeit nicht weiter auf technische Details eingegangen werden soll. Interessante Einfithrungen
zu diesem Thema finden sich in [Ammelburger03; Mintert02; Ray01].

Ein Grund fiir die breite Akzeptanz von XML ist die einfache Definition eigener bzw.
Anpassung existierender XML-Applikationen. Durch automatische Validierungsverfahren, die
entweder durch Document Type Definitions (DTD) oder XML Schemas (XSD) [Binstock02;
Vlist02] gesteuert werden, kann die Giiltigkeit von XML-Dokumenten iiberpriift werden. Die
DTDs stammen noch von der Standard Generalized Markup Language (SGML) [Goldfarb91]
ab, aus der XML einst hervorging. Aufgrund verschiedener Méangel wurde vom W3C XML-
Schema als Nachfolger der DTD eingefiihrt, dessen genaue Vorteile in [Hansch02] nachgelesen
werden kénnen.

Die Darstellung von XML-Dokumenten wird von aulen gesteuert, wodurch verschiedene
Layouts und Dateiformate unterstiitzt werden. Abhéngig von der jeweiligen Anwendung, kon-
nen XML-Dokumente z.B. in einem Webbrowser direkt dargestellt oder in einem zusétzlichen
Verarbeitungsschritt umgewandelt werden. Die Steuerung erfolgt durch verschiedene Mecha-
nismen. Mit Hilfe der Extensible Stylesheet Language (XSL) kénnen Struktur und Darstellung
gleichermaflen beeinflusst werden. Sie besteht aus drei Teilen: XSL Transformations (XSLT)
zur Umwandlung der Struktur [Tidwell01], XML Path Language (XPath) zur Adressierung von
XML-Fragmenten [Simpson02] und den XSL Formatting Objects (XSL-FO) zur Festlegung von
Darstellungsregeln [Pawson02]. Auch die von HTML bekannten Cascading Style Sheets (CSS)
[Meyer02] oder die Document Style Semantics and Specification Language (DSSSL) fiir SGML
[Farreres03] lassen sich zur Formatierung von XML-Dokumenten nutzen.

Fiir die Kodierung von E-Learning-Inhalten gibt es bereits eine Reihe von XML-Appli-
kationen, wie z.B. DocBook [Walsh02a; Walsh02b], OmDoc [Kohlhase00; Kohlhase02] und
LMML [Freitag02a)].

Kapitel 4

Metadaten

Die Lernobjekte aus Kapitel 3 konnen, wenn sie flexibel genug realisiert wurden, in vielen ver-
schiedenen Kontexten eingesetzt werden. Fiir einen sinnvollen Einsatz durch Dritte ist jedoch
eine prézise Identifizierung der Lern- und Lehrmaterialien unerlésslich. Véllig inakzeptabel
ist, bei jeder Recherche nach geeigneten Materialien iiber die Inhalte selbst zu suchen. Bei
Angeboten mit mehreren hundert oder sogar tausenden Lernobjekten steht der Nutzen in kei-
ner Relation zum Aufwand. Auch mit etwaigen maschinellen Hilfen, wie z.B. Volltextsuche,
ist diesem Problem nicht beizukommen. Aus diesem Grund sollten Lernobjekte mit zusétz-
lichen Beschreibungen versehen werden. Da sie nicht direkt zum Inhalte gehdren, werden sie
Metadaten genannt. Im Umgang mit Metadaten ist der Mensch vertraut und sie sind aus
dem alltéglichen Leben nicht wegzudenken. Beispielsweise steht auf einer Milchverpackung,
dass es sich um Milch handelt, wie hoch der Fettgehalt ist und das Mindesthaltbarkeitsdatum.
Niemand wiirde auf die Idee kommen, die Verpackung zu 6ffnen, um den Inhalt festzustellen.
Die Metadaten reichen als Information fiir eine Auswahl aus.

Ahnlich verhélt es sich bei E-Learning-Angeboten, wenn auch ganz andere Metadaten be-
notigt werden. Doch welche sind es? Zusitzliche Daten iiber den/die Autoren/-in und das In-
stitut konnen helfen, die Qualitdt der Inhalte abzuschétzen. Ein Lebenslauf oder unterrichtete
Lehrveranstaltungen helfen, die Reputation zu beurteilen [Kortzfleisch99, 54]. Aber auch tech-
nische Voraussetzungen, rechtliche Rahmenbedingungen, benotigte Vorkenntnisse, didaktische
Methoden, etc. spielen eine Rolle. Nach [Gill98] gibt es drei wesentliche Eigenschaften, die bei
allen Informationsobjekten — einschliellich Lernobjekten — durch Metadaten beschrieben
werden konnen: Inhalt, Kontext und Struktur. Bedauerlicherweise herrscht Uneinigkeit dar-
iiber, welche einzelnen Attribute der Metadaten relevant sind, besonders zwischen den Lagern
Technik und Didaktik. Dennoch hat es wenig Sinn, auf individuelle Lésungen zu setzen, weil
dies die Vorteile der Metadaten kompensiert.

Metadaten brauchen einen gemeinsamen logischen Raum, der Strukturen und Datenty-
pen vorgibt [Simon01]. Dieser ldsst sich nur iiber Standards bilden, die formal und infor-
mell Vorgaben machen. Welchen Umfang solch eine Spezifikation haben sollte, wird z.B in
[Griffin97; Ahronheim98| beschrieben, wobei es hauptséchlich um Strukturelemente, Datenele-
mente, Methoden zur Manipulation, Verfiigharkeit von Werkzeugen und Verantwortlichkeiten
geht.

,2Mit Hilfe von E-Learning-Standards lésst sich also die Recherchierbarkeit, Aus-
tauschbarkeit und Wieder- bzw. Weiterverwendung von Lernressourcen gewéhrleis-
ten, indem sie mit Metadaten nach einem einheitlichen Muster in maschinenlesba-
rer Form beschrieben werden. Diese Standards sind eine zwingende Voraussetzung
fiir die Interoperabilitdt von Lernressourcen und Lernsystemen, da sie die Schnitt-
stellen und Referenzmodelle fiir den E-Learning-Bereich definieren.* [Niegemann04,
S. 270]

Im Zusammenhang mit Metadaten tauchen immer wieder Begriffe auf, die teilweise ver-
schieden interpretiert werden. Um Konfusionen zu vermeiden, werden kurz die wichtigsten

34

Metadaten

benannt und fiir diese Arbeit definiert. Ein Metadaten-Element ist als abstrakte Einheit zu
verstehen, die zur Strukturierung — umfasst die erlaubten Unterelemente und ihre Kardinali-
tét — und Notation von Daten — gibt die Syntax giiltiger Literale (Zeichenketten) vor, auch
Wertebereich genannt — dient. Das Metadaten-Element ,,Ersteller konnte z.B. ein Unter-
element ,Namen“ haben, dessen Wertebereich die Namen aller Mitarbeiter/-innen eines Unter-
nehmens ist. Mehrere kohédrente Metadaten-Elemente werden zu einem Metadaten-Schema
zusammengefasst und mit einem Namen versehen. Wenn nun fiir Metadaten bekannt ist, nach
welchem Schema sie sich richten, kénnen z.B. Validierungen und Interpretationen durchgefiihrt
werden.

Bei der anschliefenden Beschreibung der heute relevanten Metadaten-Standards wird sich
zeigen, dass die Spezifikationen entweder einen technischen oder didaktischen Schwerpunkt
haben. In der praktischen Anwendung fiihren solche Spezialisierungen jedoch zu Problemen.
Kein Satz an doméinenspezifischen Metadaten-Elementen wird ausreichen, um alle Aspekte
des Lernobjekts zu beschreiben. Abhilfe versprechen Application Profiles fiir Metadaten,
bei denen verschiedene Metadaten-Schemata zusammengefithrt und angepasst werden.

,An application profile is an assemblage of metadata elements selected from one
or more metadata schemas and combined in a compound schema. Application
profiles provide the means to express principles of modularity and extensibility.
The purpose of an application profile is to adapt or combine existing schemas into
a package that is tailored to the functional requirements of a particular application,
while retaining interoperability with the original base schemas.“ [Duval02]

Ein Application Profile bedient sich mehrerer Mechanismen, bei denen die semantische
Interoperabilitéit bestehen bleibt. Durch Namespaces lassen sich Datenelemente der einzel-
nen Schemata direkt adressieren, sodass auch gleichnamige Attribute unterscheidbar sind. Sie
erlauben ebenfalls die Erweiterung mit eigenen Elementen. Eine Applikation, die nur standar-
disierte Schemata verarbeitet, wird zwar die selbst definierten Elemente nicht addquat inter-
pretieren konnen, aber ohne weiteres die bekannten. Hierdurch bleiben die Metadaten fiir die
einzelnen Doménen immer giiltig. Handelt es sich bei Namespaces noch um eine echte Erweite-
rung, sind die restlichen Mechanismen Einschriankungen der giiltigen Mdoglichkeiten. In einem
Application Profile konnen die Kardinalititen strenger ausgelegt werden, als sie urspriing-
lich waren. Dann ist z.B. ein optionales Element als ein obligatorisches umdefiniert. Ahnlich
restriktiv konnen die giiltigen Wertebereiche verkleinert werden. Mit der Festlegung von Be-
ziehungen zwischen Datenelementen und ihren Wertebereichen kénnen bestimmte Strukturen
zugelassen werden. So kann z.B. die Existenz eines Datenelements ein anderes ausschliefen,
oder ein bestimmter Wert den Wertebereich eines anderen Datenelements einschranken. Mehr
zu dem Thema Application Profile mit Beispielen findet sich in [Heery00; Dekkers01; Baker01].

Ein weiterer Ansatz zur Handhabung verschiedener Metadaten-Standards sind die Me-
tadata Registries. Hierbei handelt es sich um Systeme, die eine Reihe bestimmter Dienst-
leistungen anbieten. Der Funktionsumfang kann dabei stark variieren. Nach [Baker03, S. 12]
konnen folgende Fokusse fiir Metadata Registries ausgemacht werden:

e Individueller Standard: Beinhaltet allgemeine Informationen iiber einen bestimmten
Metadaten-Standard und Richtlinien zur Verwendung.

e Erweiterungen: Gibt an, wie ein Standard von Gruppen erweitert bzw. in eine andere
Sprache iibersetzt wurde.

e Data Warehouse: Speichert Definitionen von Datenelementen und Typen mit dem Ziel,
verschiedene Datenbanken an einer zentralen Stelle zu halten.

e Domaéne: Benennt interessante Metadaten-Schemata fiir Doménen, wie z.B. E-Learning,
Kultur und Wirtschaft.

4.1 Resource Description Framework

35

e Funktionen: Ordnen Metadaten-Schemata bestimmten Funktionen zu, wie z.B. Suchen,
Rechteverwaltung oder Leistungsbewertung.

e Unternehmen: Zugriff auf Taxonomien von Unternehmen oder anderen Gruppen.

e Anwendung: Bietet Schemata in verschiedenen Formaten und Syntaxen fiir spezielle
Anwendungen an.

e Konvertierung: Ubersetzt Metadaten in das Format eines anderen Metadaten-Standards.

Ein interessantes Konzept zur Konvertierung auch inkompatibler Standards findet sich in
[BlanchiO1]. Entwiirfe von Systemen werden in [Heery03; Heery02; NagamoriO1] beschrieben.

Die technische Umsetzung von Metadaten lédsst sich in drei Schichten einteilen (vgl. Ab-
bildung 4.1).

a) Attribute Space b) Value Space
Layer 3 (e.g. LOM, Dublin Core, indecs) (e.g. ontologies, classifications,
controlled vocabularies, taxonomies)

Representation

Layer 2
o (e.g. XML, RDF)

Transport and Exchange
(e.g. HTTP Get)

Layer 1

Abbildung 4.1: Schichten fiir Metadaten-Umsetzung nach [Baker03, S. 6]

Schicht 3 beinhaltet Strukturen und Wertebereiche, die von verschiedenen Organisationen
empfohlen bzw. standardisiert wurden. In dieser Arbeit wird besonders auf die Standards von
Dublin Core (DC, siche Abschnitt 4.2) und Learning Objects Metadata (LOM, siehe
Abschnitt 4.3) eingegangen. Wegen ihrer Verbreitung und der Relevanz fiir die Praxis sind
sie in die engere Wahl gekommen. Schicht 2 umfasst die moglichen Kodierungen, die auch
maschinell verarbeitbar sind, wie z.B. das allgemeine Rahmenwerk fiir Metadaten Namens
Resource Description Framework (RDF). Fiir DC und LOM gibt es jeweils entsprechende
Abbildungen. XML wurde bereits in Abschnitt 3.7 als Format fiir Inhalte vorgestellt, eignet
sich aber auch hervorragend fiir die Kodierung komplexer Datenstrukturen wie Metadaten.
Andere Kodierungen werden aufgrund ihrer geringen Bedeutung nicht betrachtet. Auch der
Transport von Metadaten, in der Schicht 1 beschrieben, wird nicht weiter behandelt, weil
etablierte Infrastrukturen, wie z.B. das Protokoll HT'TP, genutzt werden.

4.1 Resource Description Framework

Das Resource Description Framework (RDF) dient zur Auszeichnung von Web-Ressourcen
mit zusétzlichen Metadaten. Dies sind z.B. Angaben iiber den/die Autor/-in, das Datum der
Anderung oder Lizenzbedingungen. Als Web-Ressource kann jedes Objekt bezeichnet werden,
welches sich iiber das Web identifizieren liasst. Auf eine direkte Verfiigbarkeit iiber das Internet
kommt es dabei nicht an. Gegensténde eines Web-Shops kénnen z.B. mit Preisen, Verfiigbarkeit
etc. ausgezeichnet sein, obwohl sie freilich nur {iber den Postweg zu den Kunden gelangen.

RDF dient in erster Linie der maschinellen Verarbeitung und ist weniger fiir eine direkte
Verwendung durch Menschen gedacht. Mit seiner Hilfe sollen Metadaten direkt von einer An-
wendung zur néchsten iibertragen werden, ohne dass es zu einem Informationsverlust kommt.
Weil RDF eine offene, allgemein gehaltene Spezifikation ist, kénnen die Autoren/-innen von
Web-Ressourcen auf eine Reihe von RDF-Libraries und Werkzeugen zuriickgreifen. Die fol-
gende Beschreibung beruht auf dem RDF' Primer von [Manola03].

36

Metadaten

Die Identifikation von Ressourcen erfolgt iiber die Uniform Resource Identifier (URI)
[Berners-Lee98]. Im Gegensatz zu den Uniform Resource Locators (URL) [Berners-Lee94],
die im World Wide Web (WWW) den Zugriff auf physikalisch existierende Ressourcen regeln,
sind die URIs allgemeiner definiert!. Mit ihrer Hilfe kénnen alle Dinge bezeichnet werden, die
Bestandteil einer Modellierung sind und bilden somit die Grundlage fiir die Auszeichnung von
Web-Ressource mit Metadaten. Um den Inhalt einer Ressource genauer differenzieren zu kon-
nen, nutzt RDF die Fragment Identifier, die stets durch ein # an eine URI angehéngt werden.
Dieses Konstrukt nennt sich dann URI Reference (URIref), dargestellt im folgenden Beispiel:

http://www.upb.de/index.html — eine HTML-Seite
http://www.upb.de/index.html#section?2 = ein Abschnitt

Alle zusétzlichen Metadaten einer Ressource werden durch Properties (Eigenschaften) an-
gegeben, die jeweils aus einem Namen und zugehorigen Werten bestehen. Beispielsweise kann
die HTML-Seite mit dem Ersteller ,,Michael Bungenstock” versehen werden, was in natiirlicher
Sprache wie folgt beschrieben werden kann:

http://www.upb.de/index.html hat ein Ersteller mit dem Wert Michael Bungenstock

Die wichtigen Bestandteile dieser Aussage sind durch Formatierung hervorgehoben. Fiir
eine genauere Strukturbeschreibung besitzt RDF eine eigene Terminologie, die in Tabelle 4.1
erldutert ist.

] Wort ‘ Begriff ‘ Beschreibung
http://www.upb.de/index.html Subjekt | Ressource
Ersteller Priadikat | Eigenschaft
Michael Bungenstock Objekt Wert

Tabelle 4.1: RDF-Terminologie

Nun dient RDF in erster Linie der maschinellen Verarbeitung, sodass eine Sprache benétigt
wird, mit deren Hilfe Subjekt, Pridikat und Objekt eindeutig angegeben werden kénnen. Da
fiir den Zugriff auf Ressourcen bzw. das Subjekt bereits die URIs eingefiihrt wurden, liegt es
nahe, dies auch fiir die beiden anderen Begriffe zu tun.

http://www.upb.de/index.html = Subjekt
http://purl.org/dc/elements/1.1/creator —> Pridikat
http://wuw.getlab.de/staffid/83427 = Objekt

Die URI fiir das Subjekt ist klar, da sie gleichzeitig als URL fiir das Dokument inter-
pretiert werden kann. Bei der Wahl des Préadikats ist nicht auf den ersten Blick ersichtlich,
warum diese kryptische URI eines anderen Anbieters eingesetzt wird. Wiirde ein einfaches
Literal wie z.B. creator nicht ausreichen? Das Problem ist die Eindeutigkeit, die bei einem
einfachen Wort wie creator sicherlich nicht gew&hrleistet wére. Abhéngig vom Kontext kann
es zu verschiedenen Interpretationen kommen, da kein eindeutiges Konzept identifiziert wird.
Bei der Beispiel-URI ist das anders. Eine mit Dublin Core (siche Abschnitt 4.2) vertraute
Person kann sofort die Bedeutung des Pridikats erkennen. Aus dem Beispiel lésst sich eben-
falls die Schlussfolgerung ziehen, dass bekannte URIs eigenen vorzuziehen sind. Was niitzen
die schonsten URIs, wenn weder Mensch noch Maschine sie sinnvoll interpretieren kénnen?
Beim Objekt ist dies freilich anders, weil die Werte zu speziell sind, als dass sie allgemein
definiert werden koénnten. Je nach Komplexitit des Wertes, konnen entweder Ressourcen oder
Literale als Objekt dienen. Im Beispiel werden Daten iiber Mitarbeiter/-innen als Ressourcen
modelliert, um mehr Informationen iiber die betreffende Person bereitstellen zu kénnen, wie
z.B. Abteilung, Telefonnummer und E-Mail-Adresse.

! Alle URLSs sind eine echte Teilmenge der URIs

4.1 Resource Description Framework

37

Diese Relationen lassen sich auch in Form von Graphen illustrieren: Subjekt und Objekt
sind Knoten, die durch das Pradikat, dargestellt als Pfeil, verbunden sind. Abbildung 4.2 zeigt
das gleiche Beispiel in grafischer Form.

http://purl.org/dc/elements/1.1/creator

Abbildung 4.2: RDF-Graph fiir den Mitarbeiter Michael Bungenstock

Nun soll das Beispiel durch zwei weitere Aussagen iiber Erstellungsdatum und Sprache
erweitert werden:

http://www.upb.de/index.html hat ein Erstellungsdatum mit dem Wert 4.11.2002
http://www.upb.de/index.html hat eine Sprache mit dem Wert deutsch

Diese Werte werden als Zeichenketten angegeben, weil sie keine weitere relevante Struktur
aufweisen und die Interpretation des Wertes von der Applikation abhéngt. Es sei ausdriicklich
darauf hingewiesen, dass Literale lediglich fiir Objekte genutzt werden und nie fiir Subjekte
bzw. Priadikate. Durch den Zeichensatz Unicode [Aliprand03] kénnen Werte in vielen Spra-
chen direkt dargestellt werden. Bei der grafischen Darstellung werden die Literale in Késten
gezeichnet, wie in Abbildung 4.3 zu sehen ist.

http://purl.org/dc/elements/1.1/creatol

http://www.upb.de/terms/creation_date

4.11.2002

http://purl.org/dc/elements/1.1/language

de

Abbildung 4.3: RDF-Graph mit Ressourcen und Literalen

Um die maschinelle Verarbeitung dennoch stabiler zu halten, konnen in RDF Typed Lite-
rals definiert werden. Das sind Zeichenketten mit einem bestimmten Typ — wie von Program-
miersprachen oder Datenbanken her bekannt —, der Wertebereich, Ordnung, und Operationen
festlegt. Anstatt das Erstellungsdatum “4.11.2002” als blofle Aneinanderreihung von Zeichen
zu deuten, lassen sich Tag, Monat und Jahr ablesen. Ohne eine Interpretation des Literals wiir-
den syntaktische und semantische Fehler (z.B. ein falsches Datum 74.13.2002” oder ”.11.2002”)
nicht frithzeitig erkannt werden. Im Gegensatz zu den genannten Programmiersprachen und
Datenbanken bietet RDF keine eingebauten Datentypen an, weshalb sie extern definiert und
iiber Datentypen-URISs referenziert werden. Ein Vorteil dieses Ansatzes ist die Flexibilitdt beim
Umgang mit Datentypen aus verschiedenen Quellen, da fiir eine direkte Darstellung der Werte
keine Umwandlung auf vordefinierte Datentypen notig ist. Bei der Definition orientiert sich
RDF konzeptionell an einer Typdefinition der XML-Schemata-Spezifikation [Biron01], wonach
ein Datentyp wie folgt beschrieben ist:

e cine definierte Menge von Werten (Wertebereich genannt),

38

Metadaten

e cine definierte Menge von Zeichenketten (lexikalischer Bereich genannt)
e und eine Abbildung vom lexikalischen Bereich in den Wertebereich.

Die Zeichenkette “4.11.2002” des Beispiels kann folglich bei einem Datumstypen auf das
Datum 4. April 2002 abgebildet werden. Vorstellbar sind auch die Schreibweisen “2002-11-
47 “11/4/2002”, etc. als giiltige Literale fiir dasselbe Datum, wenn es eine entsprechende
Abbildung gibt.

Die Notation von typisierten Literalen in RDF setzt sich aus einer Zeichenkette und einer
URIref fiir den Datentyp zusammen. Als Separator dient die Zeichenfolge ~~, sodass auch
in der grafischen Reprisentation lediglich ein Knoten benttigt wird. Abbildung 4.4 zeigt das
Beispiel aus Abbildung 4.3 erweitert um Typinformationen.

http://www.upb.de/index.html

W/purl.org/dc/elements/ 1.1/creator

http://www.getlab.de/staffid/83427

http://www.upb.de/terms/creation_date

"2002-11-4"*http://www.w3c.org/2001/XMLSchema#date

http://purl.org/dc/elements/1.1/language

"de"Mhttp://www.w3c.org/2001/XMLSchema#language

Abbildung 4.4: RDF-Graph mit typisierten Literalen

Gelegentlich ist die grafische Darstellung von RDF-Daten ungeeignet und eine schriftliche
vorzuziehen. Anstatt der natiirlichsprachlichen Schreibweise sieht RDF Tripel vor, die aus
Subjekt, Pridikat und Objekt bestehen. URIrefs werden in spitzen Klammern geschrieben,
Literale in Anfiihrungszeichen und jedes Tripel entspricht einem Pfeil im Graphen mit Start-
sowie Endpunkt.

<http://www.upb.de/index.html> <http://purl.org/dc/elements/1.1/creator> «
<http://www.getlab.de/staffid/83427>

<http://www.upb.de/index.html> <http://www.upb.de/terms/creation_date> «
"2002-11-4"""<http://www.w3c.org/2001/XMLSchema#date>

<http://www.upb.de/index.html> <http://purl.org/dc/elements/1.1/language>
"de""~"<http://www.w3c.org/2001/XMLSchema#language>

Augenfillig ist der Platzbedarf dieser Darstellung, bei der die Tripel nicht in eine Zeile
passen (« zeigt den Fortgang des Tripels ohne Zeilenumbruch). Dies liegt einerseits an der
Redundanz, da ein Subjekt bzw. Objekt in jedem Tripel explizit angegeben werden muss, an-
dererseits an den langen URIrefs. Letztere lassen sich durch qualifizierte Namen (QNames)
in eine kiirzere Form iiberfiithren. Ein QName besteht aus einem Prdifiz, das fiir eine Namespace
URI steht, einem Doppelpunkt als Separator und einem lokalen Bezeichner. Fiir das Beispiel
werden nun folgende QName-Préfixe definiert:

Prafix dc, Namespace http://purl.org/dc/elements/1.1/
Préfix xsd, Namespace http://www.w3.org/2001/XMLSchema#
Prafix upb, Namespace http://www.upb.de/

Préfix upbt, Namespace http://www.upb.de/terms/

Prafix get, Namespace http://www.getlab.de/staffid/

4.1 Resource Description Framework 39

Daraus folgt fiir die Tripel des Beispiels:

upb:index.html dc:creator get:83427
upb:index.html upbt:creation_date "2002-11-4"""xsd:date
upb:index.html dc:language "de"~"xsd:language

Bei RDF werden Mengen zusammenhéingender URlIrefs als Vokabular bezeichnet. Wenn
sich alle URIrefs ein gemeinsames Préfix teilen, dann lassen sich mit QNames effizient die Ele-
mente der Menge bestimmen. Teilweise werden die Prifixe der QNames selbst als Bezeichner
fiir Vokabulare genutzt, z.B. dc-Vokabular fiir die Menge der URIrefs von Dublin Core.

Abschlieend soll noch auf komplexere Datenstrukturen eingegangen werden, wie sie in
praktischen Anwendungen vorkommen. Als Ausgangspunkt dient die Ressource get:83427
des vorangegangen Beispiels, die den Mitarbeiter Michael Bungenstock identifiziert. Eine Rei-
he von Metadaten bieten sich an, die mit dieser Person in Verbindung stehen, wie z.B. die
Adresse. In Tripel-Form, das Pradikat wird als ungetyptes Literal geschrieben, sieht diese Ei-
genschaft wie folgt aus:

get:83427 upbt:address "Pohlweg 47-49, 33098 Paderborn"

Eine Analyse des Literals fillt der vielen Daten wegen — Strafle, Hausnummer, Postleit-
zahl und Ort miissen unterschieden werden — recht aufwendig aus. Daher ist es sinnvoll, die
Adresse in ihre Bestandteile zu zerlegen. Die Konsequenz dieser Umstrukturierung ist eine
neue Ressource address fiir jeweils jede/-n Mitarbeiter/-in mit vier neuen Pradikaten. Zur
Identifikation dieses Objekts wird der Namespace http://www.getlab.de/addrid/ mit dem
Prafix getaddr definiert. Die Tripel lauten:

get:83427 upbt:address getaddr:83427
getaddr:83427 wupbt:street "Pohlweg"
getaddr:83427 wupbt:street_no "47-49"
getaddr:83427 wupbt:city "Paderborn"
getaddr:83427 upbt:zip "33098"

Abbildung 4.5(a) zeigt den passenden Graphen.

http://www.upb.de/terms/address http://www.upb.de/terms/address

http://www.upb.de/terms/street http://www.upb.de/terms/zip http://www.upb.de/terms/street http://www.upb.de/terms/zip

Pohlweg 33098 Pohlweg 33098
http://www.upb.de/terms/street_no http://www.upb.de/terms/city http://www.upb.de/terms/street_no http://www.upb.de/terms/city
47-49 Paderborn 47-49 Paderborn
(a) Eigene Ressource fiir Adressen (b) Anonyme Ressource

Abbildung 4.5: Strukturierte Adresse

Auf diese Weise miissen bei komplexen Datenstrukturen eine Reihe von zusétzlichen UR-
Irefs erzeugt werden, die aber niemals benétigt werden. Es gibt keinen verniinftigen Grund,
die Ressource getaddr:83427 jemals direkt aufzurufen. Sie ist nur ein Konstrukt, um eine
Adresse adiquat zu modellieren. Abbildung 4.5(b) zeigt eine alternative Darstellung, bei der
die zusétzliche URIref ausgelassen wird.

40

Metadaten

Knoten ohne URIref werden als leere Knoten bezeichnet und referenzieren anonyme
Ressourcen. Sie kénnen beliebig oft in Graphen eingesetzt werden, sind aber nicht unter-
scheidbar. Diese Eigenschaft fiihrt bei der Tripel-Darstellung unweigerlich zu Problemen. Da
Tripel nur indirekt iiber Bezeichner verbunden sind, muss ein Symbol fiir anonyme Ressourcen
definiert sein. Wenn keine zusétzlichen Regeln bei der Verarbeitung gelten, wie z.B. die Rei-
henfolge oder eine Trennung durch Leerzeilen, dann ist die korrekte Interpretation unmaglich.
Aus diesem Grund definiert RDF fiir die Tripel-Schreibweise leere Knoten mit Bezeichner.
Die Notation ist ein Unterstrich, gefolgt von einem Doppelpunkt und einem Namen, wie z.B.
_:bungeaddr. Daraus ergibt sich fiir die Tripel des Beispiels:

get:83427 upbt:address _:bungeaddr
_:bungeaddr upbt:street "Pohlweg"
_:bungeaddr upbt:street_no "47-49"
_:bungeaddr upbt:city "Paderborn"
_:bungeaddr upbt:zip "'33098"

Neben den Graphen und Tripel hat RDF noch eine Syntax fiir XML, die RDF /XML
[Beckett03] genannt wird. Sie ist die normative Syntax fiir RDF, auf die sich alle Implemen-
tationen stiitzen. Fiir die direkte Betrachtung durch den Menschen sind die XML-Konstrukte
jedoch wenig geeignet und bringen konzeptionell nichts Neues, weshalb eine ausfiihrliche Be-
handlung an dieser Stelle nicht erforderlich ist. Weitere Informationen finden sich in z.B.
[Powers03; HjelmO1]. Die Realisierung von Application Profiles mit Hilfe von RDF wird in
[Hunter01] beschrieben und Anfragen auf Metadaten im RDF-Format in [Nejdl02].

4.2 Dublin Core Metadata

Bei den Dublin Core Metadaten (DC) [Dub99] handelt es sich um einen Konsens iiber Kern-
elemente, dessen Ursprung und Namensgebung in einem Workshop im Mérz 1995 in Dublin
(Ohio) liegt. Zur Beschreibung von Ressourcen sind fiinfzehn verschiedene Elemente definiert,
deren Semantik durch internationale, interdisziplindre Gruppen von Bibliothekaren, Informati-
kern und Angehorigen verwandter Wissenschaften definiert wurde. Die Werte fiir jedes Element
konnen frei gewéhlt werden, jedoch gibt es teilweise Empfehlungen fiir den Einsatz definierter
Vokabulare.

1. Title: Ist der Name, unter dem eine Ressource bekannt ist.

2. Creator: Sind beispielsweise Personen, Organisationen oder Dienste, die sich verant-
wortlich fiir die Erstellung zeigen.

3. Subject: Umfasst das Thema der Ressource. Meist werden Schliisselworter oder Codes
fiir Kategorien eingesetzt.

4. Description: Beschreibt den Inhalt. Hierzu gehoren z.B. Zusammenfassungen oder In-
haltsverzeichnisse.

5. Publisher: Sind beispielsweise Personen, Organisationen oder Dienste, die sich verant-
wortlich fiir die Veroffentlichung zeigen.

6. Contributor: Sind beispielsweise Personen, Organisationen oder Dienste, die in irgend-
einer Form beteiligt sind.

7. Date: Ist ein Datum eines Ereignisses im Lebenszyklus einer Ressource. Empfehlenswert
ist das Erstellungsdatum.

8. Type: Beschreibt den Typ oder die Art einer Ressource.

4.3 Learning Object Metadata

41

9. Format: Gibt die physikalische Form einer Ressource an.
10. Identifier: Ist eine eindeutige Referenz in einem gegebenen Kontext.
11. Source: Referenziert eine andere Ressource, von der die beschriebene abgeleitet wurde.
12. Language: Identifiziert die Sprache des Inhalts.
13. Relation: Beschreibt Beziehungen jeglicher Art zu anderen Ressourcen.
14. Coverage: Gibt den rdumlichen und zeitlichen Rahmen vor.

15. Rights: Informiert iiber Eigentums- und Nutzungsrechte.

Wie das Wort Core im Namen bereits andeutet, handelt es sich um einen Satz funda-
mentaler Metadaten, die sich ebenfalls in koexistierenden Spezifikationen wiederfinden. DC ist
somit priadestiniert fiir Application Profiles (siehe Empfehlungen fiir den Einsatz in [CENO03]).
Fiir eine Identifizierung der Elemente sieht z.B. [Bearman99] Qualifizierer vor. Eine andere
Moglichkeit ist, Dublin Core als eine Art Sprache auszulegen, in der bestimmte Klassen von
Begriffen fiir Ressource definiert sind [Baker00]. In diesem Fall sind es Nomen fiir die Elemen-
te und Adjektive als Kennzeichen, die zusammen mit den Nomen in einer einfachen Syntax,
wie z.B. RDF (siehe Abschnitt 4.1), notiert werden. Aus dieser einfachen Definition ldsst sich
schlieBen, dass Dublin Core einfach einzusetzen, jedoch weniger fiir komplexe Beziehungen oder
Konzepte geeignet ist. In [CENO03] stehen Empfehlungen fiir den Einsatz von DC Application
Profiles (DCAP) und ein Erfahrungsbericht findet sich z.B. in [Friesen02].

Die Bedeutung dieses Standards fiir diese Arbeit zeigt sich in den Elementabbildungen
anderer relevanter Metadaten-Standards wie z.B. LOM (néchster Abschnitt). In der Spezifika-
tion von LOM steht genau beschrieben, wie einzelne Eintrége auf die fiinfzehn Elemente von
DC abgebildet werden.

4.3 Learning Object Metadata

Der Standard Learning Object Metadata (LOM) [IEE02a] spezifiziert die Semantik und Syntax
von Metadaten fiir Lernobjekte (siehe Kapitel 3). Hauptsichlich geht es um Datenstrukturen,
mit denen die Eigenschaften von Lernobjekten vollstindig beschrieben werden. Neben dem
Konzept, das hier vorgestellt wird, gibt es noch Spezifikationen fiir XML- [IEE02b] sowie RDF-
Bindings [IEE; Nilsson03] (siehe Abschnitt 4.1), die jedoch nur fiir technische Umsetzungen
interessant sind und an dieser Stelle nicht weiter behandelt werden.

Fiir LOM sind Lernobjekte alle digitalen oder nicht digitalen Einheiten, die zum Lernen
bzw. Lehren genutzt werden. Mit Hilfe der Metadaten konnen sie charakterisiert werden, was
ihre Suche, Evaluation, Beschaffung und Nutzung vereinfacht. Ein Problem ist die grofle Menge
an potentiellen Attributen, die sich als Metadaten eignen. Um Struktur in die Datenmenge
zu bringen, erfolgt eine Aufteilung in Kategorien, von denen es bei LOM insgesamt neun
gibt: General, Life Cycle, Meta-Metadata, Technical, Educational, Rights, Relation,
Annotation und Classification. Der Aufbau der Attribute kann recht unterschiedlich sein.
Es gibt einfache Werte, zusammengesetzte Felder, Listen und hierarchische Datenstrukturen,
die alle als obligatorisch oder optional markiert werden kénnen. Da auch die besten Strukturen
nur dann helfen, wenn die Anzahl der jeweiligen Attribute handhabbar ist, wurde bei der
Festlegung von LOM darauf geachtet, ihre Menge so gering wie mdoglich zu halten.

In der Datenstruktur von LOM bilden die neun Kategorien die oberste Ebene mit folgender
Bedeutung:

a) General: Umfasst generelle Daten, die sich auf das gesamte Lernobjekt beziehen.

b) Life Cycle: Gruppiert alle Eigenschaften, die mit dem Verlauf bzw. dem aktuellen Stand
des Lernobjekts in Verbindung stehen.

42

Metadaten

¢) Meta-Metadata: Beschreibt zusétzliche Daten iiber die Metadaten selbst.

d) Technical: Gibt die technischen Voraussetzungen an, die fiir einen reibungslosen Einsatz
notwendig sind.

D

Educational: Charakterisiert die didaktischen Eigenschaften der Inhalte.

—

Rights: Ermoglicht Nutzungsklauseln und Copyright-Vermerke.

Relation: Beschreibt Beziehungen und Abhéngigkeiten zu anderen Lernobjekten.

=B]
~— ~— ~—

Annotation: Speichert alle Kommentare inklusive Verfasser/-in iiber den eigentlichen
Einsatz.

i) Classification Erlaubt die Nutzung eigener Klassifikationssysteme.

Der Aufbau der Struktur ldsst sich auch grafisch darstellen. Abbildung 4.6(a) zeigt die neun
Kategorien mit den moglichen Kardinalitéten (im folgenden durch n abgekiirzt). Das Symbol
@ steht fiir ein optionales Element (n € {0,1}). Mit © wird eine beliebige Kardinalitét
angegeben (n € {0,1,2,3,...}).

o[genera | o[dentr
@ @ -catalog
{@’ metametadata ‘ {9 ®

o el o ingure|

’ lom #{@’ educational ‘ {D

o ights [keyword |

- taton | [coverage

[annotatin | of tructure |

[cassication o[aggregation |

(a) Die oberste Ebene (b) Die Kategorie General

Abbildung 4.6: Beispiele fiir Strukturen in LOM (von [IEE02a] abgeleitet)

Die komplette Struktur von LOM ist zu umfangreich, als dass sie hier vollstéindig erortert
werden konnte. Abbildung 4.6(b) zeigt exemplarisch die Kategorie General. Unterhalb des
Elements general kommen die eigentlichen Datenelemente, die verschieden komplex sind. Es
gibt einfache Datenelemente fiir Werte und zusammengesetzte fiir komplexere Strukturen. In
Anlehnung an einen Baum in der Graphentheorie spricht die LOM-Spezifikation bei einfachen
Datenelementen von Bléttern, bei zusammengesetzten von Knoten. Abbildung 4.7 zeigt die
verschiedenen Ebenen innerhalb des Baums.

Jeder Knoten, wie z.B. das Datenelement catalogentry, dient nur zur Strukturierung
und kann niemals einen eigenen Wert besitzen. Neben dem Namen sieht die Spezifikation
fiir jedes Datenelement noch eine Kardinalitit und — wenn es sich um Blétter mit einer
Kardinalitét n > 0 handelt — eine Ordnung vor. Trifft die letztgenannte Bedingung zu, wird
auch von einer Liste gesprochen. Bei einer geordneten Liste muss die Reihenfolge der Blatter
beriticksichtigt werden, wohingegen sie bei einer ungeordneten Liste keine Bedeutung hat.
Einfache Datenelemente sind zudem noch mit einem Typ versehen, der den Wertebereich
der erlaubten Werte angibt. Vorgesehen sind die Typen LangString, DateTime, Duration,
Vocabulary, CharacterString und Undefined.

4.3 Learning Object Metadata

43

"Root" "Branches" "Leaves"

om
langstringtype

language: "en—US"

string: "Becoming a Meta—Data Expert

catalog: "ISBN"

entry: "0-226-10389-7"

lifecycle
(version, status, etc.)

Abbildung 4.7: Aufbau von LOM als Baum nach [IMS03b]

Ein LangString wird fiir unterschiedliche lokale Werte eingesetzt, dient also der Inter-
nationalisierung (I18N?) von Metadaten. Er besteht aus einem Sprach-Code nach 1SO-639
[Int88; Int98] in Kombination mit einem optionalen Lénder-Code [Int97] und dem eigentli-
chen Literal in der Codierung Universal Multiple-Octet Coded Character Set (UCS) [Int02].
Fiir jede unterstiitze Sprache wird ein LangString angelegt, was z.B. in XML folgendermafien
aussieht:

<desciption>
<langstring xml:lang="en”>Leaving Certificate</langstring>
<langstring xml:lang="en—GBR”>A —Level< /langstring>
<langstring xml:lang="fr—FRA”>Baccalauréat< /langstring>
<langstring xml:lang="de—DEU”> Abitur< /langstring>
<langstring xml:lang="de— AUT”>Matura< /langstring>

< /description>

Mit DateTime werden Datums- und Zeitangaben ab dem Jahr 1 gemacht. Daten ab dem
15. Oktober 1582 gelten nach dem gregorianischen Kalender, davor liegende nach dem juliani-
schen. Die Werte werden als Zeichenketten angegeben, deren Wertebereich in ISO-8601 [Int00]
definiert ist. Giiltige Literale fiir Datums- und Zeitangaben sind z.B. 1984, 1857-06-06 und
1969-07-21T03:53. Zeitspannen basieren auf der Norm ISO-8601 und werden ebenfalls als
Zeichenketten mit dem Typ Duration notiert.

FEine FEigenheit dieser Notation sind die vielen Kombinationsmdéglichkeiten der Werte,
durch die leider keine Eindeutigkeit mehr gegeben ist. So entsprechen z.B. PT2H30M, PT150M,
PT120M18008, etc. ein und der selben Zeitspanne. Noch problematischer ist die Interpretation
von Monaten und Jahren. Ein Monat kann 28, 29, 30 oder 31 Tage haben und bei einem Jahr
kann es sich eventuell um ein Schaltjahr handeln. Das Literal P1M steht folglich fiir verschiedene
Zeitspannen, die unterschiedlich sind.

P1M=P30T A P1M=P31T aber P30T#P31T

Es liegt somit in den Hianden der Entwickler/-innen, eine einheitliche Darstellung in ihren
Anwendungen zu finden.

2T18N ist das Akronym fiir den englischen Begriff Internationalization.

44

Metadaten

Metadaten sind oft subjektiver Natur, was zu einer individuellen Begriffsbildung fithren
kann. Die natiirliche Sprache lédsst genug Raum fiir Interpretationsschwierigkeiten, sodass der
Nutzen von Metadaten fiir Mensch und Maschine beeintriachtigt werden kann. Um diesem
Problem entgegen zu treten, definiert LOM den Datentyp Vocabulary, mit dem eine Menge
von Zeichenketten als giiltiger Wertebereich definiert wird. Durch ihn wird die semantische
Interoperabilitit erhoht, da nur eine begrenzte Anzahl von Begriffen zur Auswahl steht. Bei
der Festlegung dieser Wortmengen ist es sogar moglich, die Semantik der einzelnen Begriffe
explizit zu erldutern. Auch die maschinelle Verarbeitung wird sicherer, da eine Uberpriifung
durch das System moglich ist.

Fiir beliebige Werte sieht LOM den Typ CharacterString vor, bei dem nicht einmal die
Codierung vorgegeben wird. Lediglich die zu unterstiitzende Mindestlénge der Zeichenketten
muss von den Systemen unterstiitzt werden. Bei manchen Datenelementen wird der Wer-
tebereich auf einen anderen Standard eingeschrinkt, wie z.B. fiir Personendaten (VCard
[Howes98; Dawson98]) und Formatkennungen (MIME Types [Freed96]). Datenelemente vom
Typ Undefined sollten nicht gesetzt werden, da sich ihre Bedeutung im weiteren Verlauf des
Standardisierungsprozesses dndern kann.

Anhand der verfiighbaren Anwendungen und Systeme kann mit Recht behauptet werden,
dass sich LOM als der Standard im E-Learning-Bereich durchgesetzt hat. Hiervon zeugen
auch die vielen Publikationen zu diesem Thema. In [Neven02] werden verschiedene Reposito-
ries evaluiert, die LOM zur Auszeichnung der Metadaten nutzen. Eine Erweiterung von LOM
fiir multimediale Komponenten wird in [Saddik00; Saddik01] vorgestellt. Das européische Pro-
jekt ARIADNE (Alliance Of Remote Instructional Authoring And Distribution Networks for
Europe), hat ein eigenes Application Profile auf Basis von LOM entwickelt [Najjar03; Duval00]
und ist der Versuch, mehr auf die européischen Anforderungen fiir Metadaten einzugehen.

Die Beschreibung von LOM verdeutlicht, dass der Schwerpunkt der beschriebenen Meta-
daten eindeutig technisch ist. Die bestehende Kritik, besonders aus dem didaktischen Lager,
soll nicht verschwiegen werden.

»Zurzeit ist es weder moglich, die Eignung von Ressourcen fiir konkrete didaktische
Methoden zu bestimmen, noch kénnen pédagogische Planungsdetails (wie zum Bei-
spiel die Kommunikationsstruktur, Evaluation) erschlossen werden. Die Akzeptanz
der weniger technisch orientierten Lehrenden und Trainer hidngt mafigeblich von
derartigen Erweiterungen ab.“ [PawlowskiO1, S. 107]

»,Die von der IEEE LTSC empfohlenen LOM-Spezifikationen werden zunehmend in
aktuelle Lernplattformen implementiert und erlangen damit immer mehr prakti-
sche Relevanz. Zugleich stellen sie aber auch die pddagogische Eignung dieser Ler-
numgebungen in Frage. Der Verzicht auf die Beschreibung didaktisch-methodischer
Aspekte, z.B der Verweis auf wichtige Kontextinformationen oder der Bezug zu
konkreten Anwendungsszenarien, provoziert geradezu bereits jetzt zu beobachten-
de Extremformen des elektronisch vermittelten Lernens, die als »just enough lear-
ning«, »granulares Lernen« und bisweilen auch als » Fast-Food-Learning« bezeich-
net werden.“ [Niegemann(4, S. 272]

Kapitel 5

Autorenwerkzeuge

Fiir die Erstellung von Lernobjekten werden spezielle Werkzeuge gebraucht, so genannte Au-
torenwerkzeuge. Abhéngig von der gewiinschten Granularitét (sieche Abschnitt 3.3) und dem
Format (siehe Abschnitt 3.7) konnen durchaus verschiedene Programme zum Einsatz kommen.
In der Regel werden z.B. Abbildungen mit Grafikprogrammen, Java Applets mit Programmier-
umgebungen und XML-Seiten mit XML-Editoren erstellt. Eine Anwendung fiir alle Aufgaben
scheint daher wegen der vielfdltigen Inhalte unrealistisch zu sein. Aufgrund der Komplexitét
des Erstellungsprozesses ist auch eine gemeinsame Betrachtung mit Lernplattformen (siehe
Kapitel 6) nicht ratsam, da die jeweiligen Anforderungen zu weit auseinander liegen. Den-
noch muss ein Kriterium bei der Bewertung von Autorensystemen und Lernplattformen die
Moglichkeit zum Datenaustausch sein.

Andere Kriterien wie z.B. Funktionsumfang, Einarbeitungsaufwand, Preis, Systemvoraus-
setzungen und Kompatibilitit werden allerdings ausschlaggebender sein. Ausgehend von der
Fragestellung, was eigentlich produziert werden soll, muss das richtige Produkt gew&hlt wer-
den. Manche der Kriterien wirken gegeneinander. So sind Autorenwerkzeuge mit einem grofe-
ren Funktionsumfang teurer und anspruchsvoller in der Bedienung. Was aber niitzt das beste
Autorenwerkzeug, wenn es nicht fiir das eingesetzte Betriebssystem erhéltlich ist?

Neben den Werkzeugen sind auch Vorgehensmodelle fiir den Erstellungsprozess von Be-
deutung. Hiufig sollen multimediale Inhalte erschaffen werden, was den Entwicklungsaufwand
massiv erhoht. Um eine gewisse Qualitit zu erreichen, wird Wissen aus verschiedenen Diszi-
plinen benétigt, wobei die Vorgehensmodelle hierbei meist auf Modellen der Softwaretechnik
basieren, wie z.B. in [Depke99] beschrieben.

Zu der Gruppe der Autorenwerkzeuge zéhlen viele Programme, die sich in Aufgabe, Dar-
stellung und Funktionsumfang teilweise sehr unterscheiden. Es ist daher sinnvoll, vorweg eine
Klassifizierung einzufiihren, um eine bessere Vergleichbarkeit zwischen den Systemen anzubie-
ten, die &hnliche Aufgaben erfiillen. Im néichsten Abschnitt werden nur externe Programme
vorgestellt, die nicht Bestandteil einer Lernplattform sind.

5.1 Klassifizierung

Alle vorgestellten Programme dienen zur Erstellung Web-basierter E-Learning-Inhalte, wobei
die hierfiir nétigen Sprachen bzw. Formate fiir die Anwender/-innen keine Rolle spielen sollen.
Grafische Oberflichen, moglichst mit ,What You See Is What You Get“ (WYSIWYG), erlau-
ben eine schnelle Einarbeitung und vereinfachen die Arbeit. Anstatt z.B. HTML-Seiten direkt
zu erstellen, konnen Texte, Grafiken und dergleichen intuitiv mit der Maus zusammengestellt
werden. Es ist dann Aufgabe des Autorensystems, die Inhalte in eine entsprechende Kodierung
zu iiberfithren. Trotz dieser verallgemeinerten Anforderung nach grafischer Bedienbarkeit gibt
es wesentliche Unterschiede, die eine Klassifizierung rechtfertigen.
Nach [Héfele03] lassen sich Autorensysteme grundsétzlich in 6 Gruppen einteilen:

1. Professionelle Werkzeuge mit integrierter Programmiersprache und hohem Einarbei-
tungsaufwand

46

Autorenwerkzeuge

Standard WYSIWY G-HTML-Editoren mit speziellen Plugins fiir E-Learning-Inhalte
Rapid Content Development Tools mit geringem Einarbeitungsaufwand
Content Converter fiir eine Umwandlung bestehender Dokumente in geeignete Formate

Live Recording zum Mitschneiden von Vorlesungen, Vortrigen und Présentationen

S Ctk W

Screen Movie Recorder zur Aufzeichnung von Programmsteuerungen

Eine Ausnahme sind noch die Editoren fiir mathematische Formeln, da sie meist nicht
Bestandteil der anderen Autorensysteme sind. Obwohl es sich um eigenstidndige Programme
handelt, werden sie in der Klassifizierung nicht explizit hervorgehoben. Die ersten beiden
Klassen 1 und 2 gehoren zu den klassische Autorensysteme, wie sie heute géngig sind. Der
Trend geht jedoch hin zur schnellen Entwicklung von E-Learning-Inhalten, ermoglicht durch
Programme der Klassen 3 bis 6. Abbildung 5.1 illustriert die Klassifizierung und nennt bereits
passende Produkte.

Learning Content Autorenwerkzeuge

Professionelle
Autorenwerkzeuge

WYSI\I/EVYG-HTML— Rapid Content . Live. S'\;I:regn
. ditoren Development Tools ecording ovie Content Converter
mit Plug-Ins Systeme Recorder

Macromedia Macromedia Lectora Publisher Lecturnity =~ Camtasia Clix Content Converter
Authorware Dreamweaver Dynamic Suite Studio etc.
Click2learn Toolbook Microsoft Frontpage Powertrainer WebLearner Viewlet

etc.

etc. etc. etc. Builder etc.

Einarbeitungsaufwand

Abbildung 5.1: Systematik der Autorenwerkzeuge [HéfeleO3]

5.1.1 Professionelle Autorenwerkzeuge

Zu den hier vorgestellten professionellen Werkzeugen gehéren Macromedia Authorware!,

Click2Learn ToolBook? und Matchware Mediator®. Sie zeichnen sich alle durch eine
detaillierte Programmierbarkeit und Gestaltung der Inhalte aus, setzen jedoch ein gewisses
Expertenwissen voraus.

Die aktuelle Version 7 von Authorware ist fiir die Erstellung von multimedialen E-Learning-
Anwendungen auf CD-ROM/DVD und im Internet ausgerichtet. Zu den neuen Leistungen
dieses Produkts zéahlen die Unterstiitzung von Standards fiir Lernplattformen und der Import
von Microsoft PowerPoint-Folien. Durch eine automatische Uberwachung kénnen die Lerner-
folge der Lernenden verfolgt werden. Personen, die bereits mit anderen Macromedia Produkten
vertraut sind, werden sich schnell an das Graphical User Interface (GUI) gewohnen und einen
schnellen Einstieg finden. Viele Arbeitsschritte kénnen mit Drag’n’Drop erledigt werden und
durch das One-button publishing, bei dem lediglich ein Knopfdruck fiir die Erstellung des
Endprodukts getétigt wird. Automatisch wird ein Content Package (siehe Kapitel 3) erzeugt
und auf die Lernplattform hochgeladen. Auf diese Weise lassen sich sehr schnell Ergebnisse
erzielen. Die eigentliche Stérke liegt aber in der Programmierbarkeit, die jedoch einiges an
Erfahrung mit Skriptsprachen, z.B. JavaScript, abverlangt. Fiir Standardanwendungen, wie
z.B. Logins, Kurs-Rahmenwerke, Ubungen und Quiz, gibt es Templates und Wizards, die ohne
Programmierung auskommen. Abbildung 5.2 zeigt einen exemplarischen Screenshot.

"http://www.macromedia.com/software/authorware (29.10.05)
*http://wuw.toolbook.com (29.10.05)
%http://www.matchware.net/ge/products/mediator/default.htm (29.10.05)

http://www.macromedia.com/software/authorware
http://www.toolbook.com
http://www.matchware.net/ge/products/mediator/default.htm

5.1 Klassifizierung

47

Authorware: Accessibility Kit Tutorial.a7p * -0l x|

File Edit “iew Insert Modify Text Control Xtras Commands Window Help

D8 < vk 4| I B I U o X

FE Accessibility Kit Tutorial.a7p ;Iglil
Lewel 1

*: lcons

Read Mell

Splash screen
o— tirne lirmit

o+
%:' Iii:l click or key

; b gir menu
Accessible Framework |ttroduction to the Accessibility Kit

n | Autharing for assistive technology
= Mawigation

Screen conbent

Al ¥

Eranmen
T Lewvel 2
[=] Mo navigation

2] Acocessibiity Kit version

Read meru

. a. Introduction to the Accessibility Kit
@5 elect topic _l b. Authoring for azsistive technology

@@%@gjammm
L Ll

e. Interactivity and menus

Abbildung 5.2: Macromedia Authorware 7

Bei ToolBook handelt es sich um eine Produktlinie, die aus ToolBook Instructor und
ToolBook Assistant besteht. Beide Programme sind fiir die Erstellung von Web-basierten
E-Learning-Inhalten in Unternehmen ausgelegt, unterscheiden sich aber in der Zielgruppe.
Richtet sich der Assistant mehr an fachliche Experten, die wenig technisches Wissen haben,
konnen mit dem Instructor Simulationen und interaktive Inhalte programmiert werden. Eine
WYSIWY G-Oberflache mit Drag’n’Drop erlaubt eine einfache Nutzung beider Produkte und
Wizards, Templates sowie eine grofle Auswahl an fertigen Objekten erleichtern eine schnelle
Produktion. Die erzeugten Inhalte kénnen von beiden Programmen verarbeitet werden. So
ist es z.B. moglich, komplexere Templates mit dem Instructor zu erstellen, die dann im As-
sistant zum Einsatz kommen. Ein weiteres Plus von ToolBook ist die nahtlose Anbindung zu
verschiedenen Lernplattformen.

Den Mediator in der Version 7 gibt es als Standard, Pro und EXP. Die Ausgabe Standard
bietet einen Einstieg in die Erstellung multimedialer CDs und Flash-Seiten. Ohne Program-
mierkenntnisse und mit Drag’n’Drop kénnen auf diese Weise einfache Ergebnisse produziert
werden. Fiir die Erstellung von E-Learning-Inhalten empfiehlt der Hersteller selbst die Ver-
sion Pro, da weitergehende Funktionen angeboten werden. In einem FEreignisdialog koénnen
Ereignisse wie ,,Maus loslassen* oder ,, Taste gedriickt* mit Aktionen wie ,,Seitenwechsel* oder
,Cursor verschieben“ grafisch verkniipft werden. Hierdurch kénnen echte Interaktionen reali-
siert werden, aber eine direkte Programmierung mit JavaScript ist nur in der Ausgabe EXP
moglich.

5.1.2 WYSIWYG-HTML-Editoren

Mit WYSIWYG-HTML-Editoren kénnen auf einfache Weise HTML-Seiten erstellt werden.
Per Maus lassen sich Texte, Bilder, Animation etc. kombinieren und ausrichten, dhnlich einer
Textverarbeitung. Mittlerweile sind die Programme so weit im Funktionsumfang fortgeschrit-

48

Autorenwerkzeuge

ten, dass so gut wie keine Programmierung von Hand mehr durchzufiihren ist. Besonders bei
der Erstellung von Losungen wiederkehrender Aufgaben in JavaScript, wie z.B. Navigation
oder der Wertiiberpriifung in Formularen, stellen die WYSIWYG-HTML-Editoren eine grofie
Hilfe dar. Zu den oft genutzten Programmen dieser Gattung zéhlen sicherlich Macromedia
Dreamweaver?, Adobe GoLive®, NetObjects Fusion® und Microsoft Frontpage’. Fiir
die direkte Erstellung von E-Learning-Inhalten sind sie jedoch nur bedingt geeignet, weil sie
meist keine Standards wie SCORM oder AICC unterstiitzen.

Fiir Dreamweaver gibt es eine Reihe an Erweiterungen speziell fiir E-Learning-Inhalte, die
als Plugins direkt in das Programm integriert werden und kostenfrei bei Macromedia im E-
Learning-Bereich® heruntergeladen werden konnen. Die wichtigste Erweiterung ist der Cour-
seBuilder, mit dem iiber 40 vorgefertigte Lerninteraktionen, Quiz- und Bewertungsvorlagen
zur Verfiigung stehen. Abbildung 5.3 zeigt das Dialogfenster dieser Erweiterung.

CourseBuilder Interaction]

Target:

.
& 40+ Browsers -
30 Browsers ” . - Cancel |
yz 7T yz7? yz 7T
@ True g = Help |
Category: O False o - -
Drag and Drop
Explore = - =
Buttan Xyz? Ayz? AyzT
Text Entry A E o
Tirner = E— 0—o
Slider — [p—
Action Manager

y G allery I

Abbildung 5.3: Macromedia CourseBuilder-Erweiterung fiir Dreamweaver

Mit Hilfe der Learning Site-Befehlserweiterung kénnen Kursaktivitdten, wie z.B. ein
Quiz, aus verschiedenen Quellen zusammengestellt werden. Uber integrierte Navigationsfunk-
tionen und Tracking-Features lassen sich die Aktivitdten der Lernenden in einer Datenbank
protokollieren. Durch die SCORM RTI-Erweiterung (Sharable Content Object Reference
Model Runtime Interface) kénnen die Inhalte so gespeichert werden, dass sie den SCORM-
Standards fiir die Runtime-Umgebung entsprechen. Die Manifest Maker-Erweiterung gene-
riert aus der Struktur eine Manifest-Datei in XML, die allen Spezifikationen des IMS Content
Packaging entspricht (siehe Abschnitt 3.5).

“http://www.macromedia.com/software/dreamweaver (29.10.05)
"http://wuw.adobe.com/products/golive (29.10.05)

http://wuw.netobjects.com (29.10.05)

"http://wuww.microsoft.com/frontpage (29.10.05)
Shttp://www.macromedia.com/de/resources/elearning/extensions/dw_ud (29.10.05)

http://www.macromedia.com/software/dreamweaver
http://www.adobe.com/products/golive
http://www.netobjects.com
http://www.microsoft.com/frontpage
http://www.macromedia.com/de/resources/elearning/extensions/dw_ud

5.1 Klassifizierung

49

5.1.3 Content Converter

Aus gehaltenen Vorlesungen, Vortragen und Prisentationen existieren oftmals Materialien in
digitaler Form, die sich jedoch nicht direkt fiir das E-Learning eignen. Durch Anpassung bzw.
Umwandlung kénnen jedoch adéiquate Ergebnisse erreicht werden, die eine einfache Integration
in ein LMS ermoglichen. Die Klasse der Content Converter richtet sich an Personen mit
erstellten Inhalten in géingigen Formaten, wie z.B. OpenOffice’ oder PowerPoint!?, die mit
wenigen Schritten solche Dateien in E-Learning-Inhalte umwandeln wollen. Das Zielformat ist
meistens HTML und ein typisches Programm dieser Gattung ist der Content Converter!!
des LMS Clix Campus.

Der Content Converter liest Word-Dokumente ein, analysiert die Struktur, erzeugt ein
XML-Dokument und extrahiert Abbildungen in separaten Dateien. Hierbei wandelt das Sys-
tem den Dokumentaufbau in eine Navigationslogik um, die fiir die spéatere Steuerung beno-
tigt wird. Hierbei ist darauf zu achten, dass die Uberschriften richtig gesetzt sind, da sie
die Anhaltspunkte der Analyse darstellen. Abschliefend erfolgt die Umwandlung des XML-
Dokuments in einzelne HTML-Seiten und eine Navigation. Uber Format- und Design-Vorlagen
kann das Layout den eigenen Bediirfnissen angepasst werden.

Mittlerweile kénnen auch Textverarbeitungsprogramme ihre Dokumente in HTML oder
XML speichern, weshalb die Relevanz der einfachen Content Converter abnimmt. Die Re-
sultate dhneln jedoch mehr Texten als multimedialen E-Learning-Inhalten. Umfangreichere
Content Converter, die z.B. Metadaten extrahieren, feinere Granularitdten erlauben und Stan-
dards wie SCORM oder AICC unterstiitzen, haben jedoch das Potential, eine echte Alternative
gegeniiber spezialisierten Programmen zu sein.

5.1.4 Live Recording Systeme

Systeme zur Aufzeichnung von Audio- und Videodaten erméglichen eine schnelle Erstellung
multimedialer E-Learning-Inhalte. Auf diese Weise lassen sich Vorlesungen, Vortriage und Pré-
sentationen festhalten und bei Bedarf abrufen. Nach der Aufzeichnung lassen sich die Daten
bearbeiten, z.B. durch Anmerkungen oder die Erstellung eines Indexes. Im Gegensatz zu ei-
ner herkémmlichen Aufzeichnung mit einer einfachen Videokamera erlauben die Live Recor-
ding Systeme eine Verkniipfung mit dem préisentierten Material, wie z.B. einer PowerPoint-
Prisentation. Exemplarisch fiir diese Klasse werden IMC Lecturnity Suite'? und Tegrity
WebLearner!? vorgestellt.

Ausgangspunkt der Lecturnity Suite ist eine PowerPoint-Prisentation, die im Vorwege
erstellt wird. Ausgestattet mit einem Headset oder Mikrofon trigt der/die Dozent/-in wie
gewohnt die Vorlesung vor und wird von einer Kamera aufgezeichnet. Eventuelle Annotationen
lassen sich auf einem Smart- oder Whiteboard anbringen. Abbildung 5.4 zeigt ein Szenario fiir
den Einsatz von Lecturnity. Alle Quellen werden synchron aufgezeichnet und in ein Lernmodul
gepackt, das anschliefend mit dem Lecturnity Player abgespielt werden kann oder mit dem
Lecturnity Converter in ein Format fiir den Real Media Player'* oder Windows Media
Player'® umgewandelt wird.

Das Prinzip der Aufzeichnung ist beim Tegrity WebLearner gleich. Ein besonderer Punkt
ist das WebLearner Studio, ein Komplettpaket versehen mit der notigen Hardware (PC,
Bildschirm, Projektor, Kamera und Mikrofon), das fiir die Aufgabe optimal abgestimmt ist.
Probleme mit inkompatibler Hardware treten somit nicht auf. Eine Nachbearbeitung der Auf-
zeichnung ist mit dem WebLearner Editor moglich und eine Wiedergabe erfolgt iiber den

“nttp://wuw.openoffice.org (29.10.05)
Ynttp://office.microsoft.com (29.10.05)

Hhttp://www. im-c.de (29.10.05)

2http://www.im-c.de (29.10.05)

Bhttp://www.tegrity.com (29.10.05)

“http: //www.real.com (29.10.05)
http://www.microsoft.com/windows/windowsmedia (29.10.05)

http://www.openoffice.org
http://office.microsoft.com
http://www.im-c.de
http://www.im-c.de
http://www.tegrity.com
http://www.real.com
http://www.microsoft.com/windows/windowsmedia

50

Autorenwerkzeuge

! ! Smartboard ! !

Headset
und Mikrofon

Trainer

PC mit

Lecturnity Videokamera

= = e 5 =

= = = =

Abbildung 5.4: Einsatz von Lecturnity (Aus einer Werbebroschiire)

WebLearner Server. Zusétzliche Module bieten Funktionen an, die in der Lecturnity Sui-
te nicht angeboten werden. Beispielsweise ermdoglicht das Modul Webcast synchrone Live-
Sessions mit anderen Teilnehmern/-innen, inklusive Interaktionen via Chat und Mikrofon.

5.1.5 Screen Movie Recorder

Screen Movie Recorder dienen zur direkten Aufzeichnung von Aktivitdten am Rechner und
einer gleichzeitigen oder spéteren Vertonung. Der Bildschirm oder ein ausgewihltes Fenster
wird direkt ,,abgefilmt“ und an zusétzlicher Hardware werden lediglich ein Headset oder Mikro-
fon benotigt. Auf diese Weise lassen sich Tutorien fiir die Bedienung von Programmen einfach
und schnell erstellen. Stellvertretend fiir diese Klasse werden Camtasia Studio', Turbo
Demo'” und Qarbon ViewletBuilder!'® vorgestellt.

Das Camtasia Studio ist ein sehr professionelles Programm, mit dem z.B. Microsoft seine
How-To-Videos erstellt hat. Es besteht aus den drei Komponenten Recorder, Producer und
Effects. Der Recorder erstellt einen Film, der mit dem Producer nachbearbeitet werden kann,
wie z.B. Schneiden, Vertonen und Konvertieren in andere Videoformate. Spezielle Ergénzungen
wie Annotationen, Bilder und dergleichen werden mit Effects eingefiigt.

Bei Turbo Demo und ViewletBuilder werden im Gegensatz zum Camtasia Studio keine
kompletten Filme aufgenommen. Eine Animation besteht bei diesen Programmen aus einzel-
nen Bildern, auch Schliisselszenen genannt, zu denen lediglich die Mausbewegung und Ereignis-
se aufgezeichnet werden. Dieser Ansatz erzeugt wesentlich kleinere Dateien als eine vollsténdige
Aufzeichnung. Auch die nachtrigliche Bearbeitung erweist sich als einfacher, da Screenshots
hinzugefiigt oder misslungene ausgetauscht werden kénnen. Neben der Ergénzung mit Text-
feldern, Sprechblasen, Bildern und Vektorgrafiken sind sogar einfache Interaktionen mit der
Maus moglich.

http://www.techsmith.com (29.10.05)
"http: //wuw. turbodemo.de (29.10.05)
Bhttp://www.qarbon. com (29.10.05)

http://www.techsmith.com
http://www.turbodemo.de
http://www.qarbon.com

5.2 Bewertung

51

5.1.6 Rapid E-Learning Content Development

Die Rapid E-Learning Content Development Werkzeuge kommen ohne jegliche Programmie-
rung aus und erlauben dennoch die Entwicklung interaktiver Elemente wie Quiz und Tests in
standardkompatiblen Formaten. Hierfiir stehen Schablonen einzelner Seiten zur Verfiigung, die
mit eigenen Texten, Abbildungen und Animationen ausgefiillt werden. Mehrere Seiten lassen
sich in Kapiteln organisieren und zu vollsténdigen Kursen zusammensetzen. Alle Programme
bieten WYSIWYG und Drag’n’Drop fiir eine einfache Benutzung an. Je nach Leistungsum-
fang konnen Fremdformate fiir Audio, Video und Multimedia eingebunden werden, sodass
auch komplexere Elemente moglich sind. Bekannte Vertreter dieser Klasse sind NIAM-TMS
EasyGenerator'” | ITACA EasyProf?’ und Trivantis Lectora Publisher?'.

Der FEasyGenerator ist eine FE-Learning-Suite und teilt die Arbeit in vier Bereiche auf,
die jeweils von einer Komponente unterstiitzt werden. Schulungen und Tests werden mit dem
FEasyGenerator erzeugt und gewartet. Die Resultate lassen sich in einem Format speichern,
das mit Hilfe des FasyPlayers von einer CD-ROM oder des EasyWebPlayers iiber das Internet
abgespielt wird. Zudem werden SCORM und AICC fiir den Einsatz in einem LMS unterstiitzt.
Welche Fortschritte die Lernenden machen, wird durch FasyProgress iiberwacht. Samtliche
Verwaltungstéitigkeiten, die bei der Erstellung, Bereitstellung und Einsatz anfallen, werden
mit FasyCourseManager erledigt.

Mit EasyProf lassen sich einfach multimediale E-Learning-Inhalte und Présentationen in
den Ausgabeformaten HTML, HTML mit SCORM sowie CD-ROM erzeugen. Ein Schwerpunkt
dieses Programms liegt bei Testfragen, die sich mit der Maus zusammenstellen lassen. Die
Tracking-Daten werden in XML kodiert und kénnen entweder per E-Mail oder FTP iibertragen
werden.

Neben den Schablonen bietet Lectora zusétzlich Assistenten an, mit denen Kursstruktu-
ren automatisch erzeugt werden. Ahnlich den programmierbaren Konkurrenzprodukten, lassen
sich Ereignisse — ausgelost von Maus und Tastatur — mit Grafik- und Textobjekten verkniip-
fen. Zu den Stérken des Programms gehort die Vielfalt an unterstiitzen Fremdformaten, wie
z.B. das IPIX-Format?2, das 360 x 360 Grad Panorama Bilder erméglicht. Als Ausgabeformat
stehen AICC sowie SCORM zur Wahl, HTML, CD-ROM/DVD und die Erstellung eines aus-
fithrbaren Programms (.exe) fiir Windows. Abbildung 5.5 zeigt einen typischen Screenshot
von Lectora.

5.2 Bewertung

In den Tabellen 5.1 und 5.2 sind die vorgestellten Programme fiir einen direkten Vergleich auf-
gelistet. Auch wenn die Ansétze teilweise sehr verschieden sind, wie z.B. programmierbare und
aufzeichnende Systeme, lassen sich Parallelen beim Erstellungsprozess erkennen, die problema-
tisch sind. Hierzu gehort die Wiederverwendung, da die meisten Autorensysteme nur optimale
Ergebnisse erzielen, wenn die Ergebnisse in proprietéiren Formaten gespeichert werden. Dateien
verschiedener Anwendungen lassen sich dann nur mit Aufwand kombinieren und die Resultate
sind oft suboptimal. Ein einheitliches Layout ist nur mit viel Disziplin bei der Erstellung zu
erreichen und Inhalte fremder Anbieter stechen schon aufgrund des Erscheinungsbildes her-
vor. Da die vorgestellten Programme meist auf Systemen mit dem Betriebssystem Windows
laufen, werden einige Zielformate auf Rechnern mit Linux oder Mac OS X nicht unterstiitzt.
Folglich wird beim Einsatz eines proprietiren Formats bereits durch das Autorensystem die
Infrastruktur eingeschrankt. Mit den Definitionen fiir Lernobjekte aus Kapitel 3, besonders
Downes essentielle Anforderung an die Interoperabilitit (siehe S. 22) sei hier hervorgehoben,
ist dies freilich schwer vereinbar.

Yhttp://www.easygenerator.de (29.10.05)
Ohttp://www. easyprof . com (29.10.05)
*'http://www.lectora.com (29.10.05)
http://www.ipix.com (29.10.05)

http://www.easygenerator.de
http://www.easyprof.com
http://www.lectora.com
http://www.ipix.com

52

Autorenwerkzeuge

£ Lectora Professional Publishing Suite - Business Ethics.awt
Bile Edit Add Llayout Tools Mods Publish “iew Help Register

O[] &% %]~ s)e] &) 2| BIE| «|@|m|H e
F 518 omR| owp| T/65EEe R E R wlElEEe] BE wE|
|2 x| o =] | cetar v nl[g‘g§|f w
= ffifll Business Ethics
- [B] welome - o

i rece Acuirue [ore | BUusiness Ethics

H] video ¢ ‘ONLINE COURSE

‘T Text

[B) obiectives

- & Fundamentals
Ethics| Reasoning
[2) Guiding Decisions

[Z) Things ko Avaid Ethics decision-rnaking is first based
= Ethical Raasanin on the distinction between statements =
% Int 2 that are factual and those that are Ethics
ntro value-based, Factual statements may
+ @ Honesty be divided into true ones and untrue
+ [@ Trusk ones. [t is wise ta base decisions an
+- BBy Accountabiity truth, rather than build thern on lies.
VYalue statements may be divided into)

: % isgzlzijfgslnc:jadga those involving right and wrong, and
thase that invalve twa rights, both of k fi B

which can claim same in?luelin:e an the ~RY &@@@@

decision, When you come to the later, e e

you must decide on what basis that e .

claim of the two rights is based, and Resource Links

which has precedence.

T)

E Download Achieve Ethics Policy

A Massage from Our Foundar . Business Week Article
Our business is built on honesty, trust, integrity & Ehics Onthe Web
and guality ... and that scarts with you."
T
PLAY AUDIO w{))) ??j Test Your Knowledge
Ready M5 109,175 | 20060

Abbildung 5.5: Screenshot von Lectora

Ein dhnliches Problem ergibt sich aus der unterstiitzten Granularitit. Viele der Programme
erlauben lediglich in sich abgeschlossene Einheiten, wie z.B. Kurse oder Vortriige. Dies fiihrt
zu Behinderungen bei einer nachtriglichen Anderung der Sequenzierung (siche Abschnitt 3.4),
was wiederum zu Lasten der Wiederverwendung geht. Programmen mit kleineren Einheiten,
wie z.B. Dreamweaver oder die Screen Movie Recorder, fehlen hingegen die addquaten Mittel
fiir komplexere Strukturen. Auch wenn Dreamweaver einer guten Autorenumgebung schon
nahe kommt, ist der Ansatz falsch gewihlt. Anstatt einen HTML-Editor mit E-Learning-
Plugins zu erweitern, sollte besser eine E-Learning-Umgebung mit HTML-Plugins gewéhlt
werden.

Ganz anders stellt sich das Problem Standardkompatibilitit dar. Wahrscheinlich liegen
die Griinde im Marketing begriindet, dass auf vielen Produkten dieses Siegel zu finden ist
und in der Tat ermdglichen es diese Programme auch, Dateien in Formaten wie beispielsweise
SCORM, IMS Content Packaging und LOM zu speichern. Doch genauer betrachtet, zeigt
sich schnell der Etikettenschwindel. Die Ursachen liegen wieder in den proprietédren Formaten
und den eingeschriankten Granularititen. Eine mit Authorware gespeicherte SCORM-Datei er-
niichtert schnell. Die Strukturierungsmoglichkeiten des Manifests (siche Abschnitt 3.5) werden
nicht genutzt, denn es handelt sich vielmehr um eine Flash-Datei, eingepackt als Ressource,
was sicherlich nicht der Sinn eines Sharable Content Objects (SCO) ist. Als Fazit auf ein an-
deres Produkt umzuschwenken 16st das Problem nicht. Die anderen Produkte schneiden nicht
besser ab.

Bei der Zusammenarbeit mit Learning Management Systemen wird nur von wenigen Auto-
rensystemen, wie z.B. Authorware und ToolBook, eine direkte Verbindung angeboten. Gerade
bei der Erstellung neuer Inhalte ist aber wichtig, das Layout auf der Zielplattform zu iiber-
priifen. Funktionen wie WYSIWYG unterstiitzen die Autoren/-innen bei der Arbeit, jedoch

5.2 Bewertung

53

pragt letztendlich das LMS das Erscheinungsbild. In Hinblick auf eine Separation von Inhalt
und Darstellung, wie in Abschnitt 3.7 beschrieben, gilt dies besonders zu beriicksichtigen. Aus
diesem Grund muss sich die Dateniibertragung nahtlos in den gesamten Prozess der Erstellung
und Kontrolle einfiigen.

Die vorgestellten Autorensysteme gehoren zu den Programmen, die heutzutage im Einsatz
sind. Ihre Analyse hat die in Abschnitt 1.1 angesprochene Diskrepanz zwischen Theorie und
Praxis bestétigt, sodass folglich neue Ansitze fiir Autorensysteme gefunden werden miissen.

Autorenwerkzeuge

54

Tabelle 5.1: Ubersicht der Autorensysteme (Teil 1)

UQJRPOSPIA
PuI LMY
DOIV ELUA R BILE) “RIPOIN 0
Wil ‘SINI | “eIPOIN SMOPUIA\ SMOPUIAA Injelseq, JOUIROTOAN 1m
‘SeINIOA | ‘INYODS ‘INOY-D | ‘wuroJromog eI “9%9], ‘sney AaseT, | B
BIPOIN SMOPULA\ M
“RIPIIN[BOY g
‘SuresI)g | U8YepPOIPIA 3
wir -1OULIOYU] ogoreur Injejseq, o1ng
‘GRILIOA ‘AAa/ap | ‘yurogiemogq gern) ‘9xaT, ‘sney Ayuamyoory
WYOATOY |
osIny[JUD)UO)) g
PPIUYPSqY TINLH “TINX PIOM SIN snepy | sndure) xip) | &
WO1 sunu
‘ODIV dHd | uejepusieq | 1duogesrp “YoAIOY | -orurersold M
osany ‘SINT | dSr “TINLHX - “"TINX ‘Userd ‘0PIA | DAMISAM | (susnig yw) m
‘uegeg | ‘INHODS ‘TINILH ‘TINLH | ‘orpny ‘qyelr) ‘9xoT, | ‘doi(J,u,el(] | JIoAROMIIRSI(]
QUILT Yom{)
JOYRIPITN ‘OXO" “YOAIOY ‘OIseg suni
‘IOARGUIOING [enstA ‘pduogese | -orwmeISOI]
sope[dud, "AAQ/INOY-ad userd ‘oIpny | DAMISAM (dxa)
‘osanyg ‘userg “TINIHA Userq Sgerr) ‘axoT, | ‘dox(q,u,Sei(g) I09RIPOIN | |
RIPIIN[€IY “XOAINY gun m
‘gduogeae ‘yse | -orurtuersorg 'z
sojerdwa, ODIV ‘PIOM “puIogemod | ‘DHAMISAM (103ona3suy) | 5
‘s | ‘INYODS oxo" “TINLH ‘orpny Ygerd) “xa, | ‘dorq,u.deiq yooqroog, | &
WO1 yoeqie|d X XoAroy ‘duogeae sunu
DOIV | SO 2'IN ‘dAd s ‘1099911 | -OTIUUIRISOI]
sojerdua, ‘ST ‘ARl RIPOIN | ATM “TNX | PWILLPMY) ‘oipny | SHAMISAM
‘osIny | ‘INHODS | SMOPUIA ‘Use[] | ‘qutodiomod ‘Ngern) ‘9xoT, | ‘doi(quSer(] |) oIemIoyiny
9goIr) | pIepurlg aqessny jroduy oqesury 7 sunuarpag wo)sAg 7

55

5.2 Bewertung

Tabelle 5.2: Ubersicht der Autorensysteme (Teil 2)

Userq mye)seT,
“RIPOIN SMOPULM | “DAMISAM
ouo[q ODIV “eIpAN[eRY ‘orpuy | ‘dorqudeiq -
-eyog ‘smy | ‘INIODS oxo" ‘TIN.LH Ngerr) ‘9xa], ‘sneyy RIOIDI g
Use[‘ewr[yome) Injelser, m
el ‘RIPOIN SMOPUTA | “DAMISAM E
auolq ODIV | ‘oxo" ‘INOY-dD PIOA | ‘BIPINTRRY ‘orpny | ‘doxq.u,Feiq o
“ePg ‘smy | INYODS “TINLH | ‘fuiog1omoq Nger) “9xa, ‘SR Joigdsed | 9
mjejse], DW
DAMISAM
auo[q OOIV ‘dox(q,u,SeI(y I0YReISUDK)
-eUdG ‘sIny | ‘INYODS | YeuIoq souasyg orpny ‘yyeir) “9xaJ, ‘sneyy -Aser]
OpIg ‘Add ‘mijeise], TopIIme
Wity | INHODS ‘oxo" ‘yser Usel | OIPnY yed) “4xa], ‘snepy TIO[MITA
Add ‘a1 b
poyewuy ‘oxo’ .
TAV ‘Userq Injyejsey, 8
wiL g “TINLH/eaer OIPNY ‘YYeId) ‘XA, ‘smepy | oweq oqmy, | &
AID poyewuy g
‘OX0" “RIPOIN[eOY Qau
‘ouIL [¥om) PIOAA ‘IUIOJIOMOJ
“RIPIIN SMOPUIAN “TINLH ‘orpny mje)se], o1pMiS
wiL g qserd ‘TAV Nye1n %9, ‘smey RISRIUIR])
goIr) | pIrepurlg oqessny 7 jr0dwy oqesury sunuaipag WOISAG 7

Kapitel 6

Lernplattformen

Der Einsatz von E-Learning lasst sich nur mit einer geeigneten Infrastruktur sinnvoll realisie-
ren, weil viele Inhalte inklusive Metadaten einer groflen Zahl von Personen mit unterschiedli-
chen Aufgaben zugénglich gemacht werden miissen. Einen wesentlichen Anteil {ibernimmt die
Lernplattform, die eine zentrale Anlaufstelle fiir ein breites Angebot an Diensten ist. Um
den Leistungsumfang eines solchen Systems genauer bestimmen zu kénnen, werden folgend
die Rollen und Tétigkeiten beschrieben, die hauptséichlich mit einer Lernplattform zu tun
haben. Ein/eine Dozenten/-in plant und organisiert Lehrveranstaltungen fiir Studierende
und wird bei der Durchfithrung zumeist von Tutoren/-innen unterstiitzt. Jede dieser Rollen
muss iiber eine Benutzerverwaltung dem System bekannt gegeben werden. In der Regel legt
die Rolle Administrator/-in den/die Dozenten/-in an, eventuell auch die Tutoren/-innen.
Diese konnen wiederum Studierende eintragen, die sich fiir einen Kurs angemeldet haben.

An dieser Stelle wird bereits erkennbar, dass eine Rollen- und Rechtevergabe bendtigt
wird. Lediglich den Administratoren/-innen soll gestattet sein, neue Zuginge fiir Dozenten /-
innen anzulegen. Dozenten/-innen und Tutoren/-innen werden mit weniger Rechten bedacht
und bei Studierenden sollte im Hinblick auf moéglichen Missbrauch ganz von jeglichen admi-
nistrativen Méglichkeiten abgesehen werden.

Fine Lernplattform muss also ,wissen“, wer gerade mit ihr arbeitet, um die Rechte der
Rolle iiberpriifen zu konnen. Hierbei sei erwihnt, dass es durchaus iiblich ist, wenn ein und
die selbe Person in mehreren Rollen auftritt. So kann z.B. der/die Dozent/-in in die Rolle
Designer/-in wechseln, in der andere Rechte zugebilligt werden. Dieses Vorgehen erlaubt
eine bessere Kontrolle der einzelnen Aktivitdten und erhéht die Sicherheit des Systems. Eine
Person identifiziert sich iiber die Authentifizierung der Lernplattform und bekommt eine
Rolle zugewiesen. Vorwiegend erfolgt der Zugang iiber einen Namen und ein Passwort, aber
auch Schliissel in Dateien oder Cookies der Web-Browser sind denkbar. Nach einer erfolg-
reichen Authentifizierung iiberpriift die Lernplattform jede Aktion iiber die Autorisierung.
Anhand der eingenommenen Rolle und den vergebenen Rechten wird kontrolliert, ob die ge-
wiinschte Operation ausgefiihrt werden darf oder die nétige Berechtigung fehlt. Komfortable
Systeme zeigen allein die Operationen an, die auch ausgefiihrt werden diirfen. So wiirde z.B.
die Rolle Designer/-in eine Operation ,Bearbeiten® in ihrer Kursansicht vorfinden und die
Rolle Studierende nicht.

Neben der Benutzerverwaltung muss eine Lernplattform auch eine Kursverwaltung an-
bieten. Hierbei sind die unterstiitzten Granularitéten (siehe Abschnitt 3.3) und Formate (siche
Abschnitt 3.7) wesentliche Merkmale. Je nach Abstraktionsniveau kénnen u.a. HTML-Seiten,
Bilder, Lernobjekte oder vollstdndige Kurse in einem Repository gespeichert werden. Die Lern-
plattform sollte den/die Dozenten/-in bei der Suche nach geeigneten Materialien unterstiitzen
und beliebige Kombination fremder und eigener Inhalte ermdglichen. Durch Wiederverwen-
dung kénnen somit Kosten reduziert werden. Verschiedene Ausgabeformate, wie z.B. HTML
oder PDF runden den Funktionsumfang ab, wobei die direkte Erstellung von Inhalten nicht zu
den Aufgaben einer Lernplattform gehort. Im folgenden Abschnitt 6.1 wird allerdings auf Sys-

58

Lernplattformen

teme eingegangen, die diesen Prozess unterstiitzen, z.B. durch einen einfachen Datenaustausch
mit Autorensystemen.

Begleitend zu einem Kurs sollte eine Lernplattform Daten tiber die Leistungen der Studie-
renden sammeln: ,Wie lange ist die letzte Anmeldung her?*, ;Wie viel Zeit wurde in welchem
Bereich verbracht?* und ,,Welche Aufgaben wurden absolviert? sind nur einige Informationen,
die in Statistiken die Lernaktivititen veranschaulichen. Auf diese Weise kénnen individuelle
Probleme erkannt und gezielt behoben werden.

Auch die Kommunikation zwischen den Personen soll eine Lernplattform unterstiitzen. Be-
kannte Kommunikationsmethoden sind u.a. Foren, in denen Beitrige nach Themen geord-
net sind und Threads (Diskussionsfiden) entstehen. Dozent/-in und Tutoren/-innen kénnen
bei Bedarf Hilfestellungen geben, indem sie eigene Beitrége hinzufiigen. Schneller geht es beim
Chat zu. Texteingaben werden direkt auf den Bildschirmen aller oder ausgewéhlter Personen
angezeigt und Reaktionen konnen prompt folgen, sodass im Vergleich zu den Foren agilere
Diskussionen moglich sind. Beide Kommunikationsmethoden, Foren und Chat, sollten bei Be-
darf moderierbar sein, d.h. eine Person oder Gruppe ist mit Sonderrechten ausgestattet. Sie
iitberwacht das ,Niveau* der Beitrige und kann gegebenenfalls intervenieren. Wichtige Nach-
richten fiir alle Studierenden, wie z.B. Terminankiindigungen oder Termindnderungen, sollten
per E-Mail bekannt gegeben werden.

Der Lernprozess der Studierenden soll von der Lernplattform unterstiitzt werden. Beson-
ders die Organisation und Vorgehensweise sollen durch Werkzeuge fiir Studierende ver-
einfacht werden, wie z.B. mit einem Notizbuch fiir personliche Annotationen zu den Inhalten
oder einem Kalender. In eigenen Bereichen soll die Moglichkeit zum Nachlernen und zur Selbs-
tevaluation gegeben sein.

6.1 Definitionen

Es soll nun der Versuch unternommen werden, eine Definition bzw. einen Anforderungskatalog
fiir Lernplattformen zu erstellen. Da es sich um komplexe Systeme handelt, bei denen es auf
Praxistauglichkeit ankommt, gibt es so gut wie keine theoretischen Arbeiten. Vielmehr handelt
es sich um Praxiserfahrungen, die in eigenen Implementierungen oder Evaluationen (siehe
Abschnitt 6.2) gesammelt wurden.

Von der damaligen EDUCOM-Kommission (heute: EDUCAUSE) stammt folgender Ver-
such, die wesentlichen Eigenschaften einer Lernplattform festzulegen. Die Definition stammt
aus [Schulmeister01, S. 132ff]:

Kurse: Die Einrichtung und Durchfithrung von Kursen ist moglich.

Akteure: Lernsysteme sollten mindestens die Rollen fiir folgende Akteure vorsehen: Studie-
rende, Dozenten, Tutoren, Administratoren.

Dienste: Dienste miissen iiber eine eigene Funktionalitit verfiigen:
Administrative Dienste: Kurskalender, Schwarzes Brett, etc.
Kommunikationsdienste: Chat, E-Mail, Foren
Lehrfunktionen: Folien, Referenzen zu Netzadressen, etc.
Evaluationsdienste: Tests, Selbstevaluation, etc.

Dokumente: Dokumente miissen Teil der Lernobjekte und der Dienste sein.

Gruppen: Kollaboratives Arbeiten muss moglich sein, wobei mehrere Benutzer gleichzeitig
kommunizieren.

Institutionen: Die Lernumgebung ist an jede Institution anpassbar.
Sprache: Kurse in mehreren Sprachen miissen unterstiitzt sein.
Interface: Anpassungen der grafischen Schnittstelle an die Lernumgebung sind méglich.

Navigationsstruktur: Anpassung der Navigation an das Lernumfeld ist moglich.

6.1 Definitionen

59

Eigentlich erfiillt keine der heute verfiigbaren Lernplattformen diesen Leistungskatalog
und dennoch ist er nicht vollstdndig. Die Beschreibung am Anfang dieses Kapitels ldsst
erahnen, dass noch weitere Funktionen zum Umfang gehoren. Es fehlt z.B. eine Kursver-
waltung, die Wartung und Suche beinhaltet. Auch das Rollenmodell wird erst durch einen
Authentifizierungs- und Autorisierungsmechanismus vollsténdig. Die Forderung nach anpass-
baren grafischen Schnittstelle sollte in eine strikte Trennung von Inhalt und Darstellung iiber-
fithrt werden, um neben dem wandelbaren Aussehen verschiedene Ausgabeformate wie HTML
und PDF zu ermoglichen. Zudem sind eine nidhere Anbindung von Autorensystemen an Lern-
plattformen sowie die statistische Erfassung der Lernaktivitdten sinnvolle Ergénzungen fiir
eine umfassende Definition.

Ausgehend von der gegebenen Definition, kennzeichnet Schulmeister in [Schulmeister03,
S. 10] folgende Punkte als relevant, um eine Lernplattform von einer blofilen Kollektion von
Skripten oder Hypertextsammlungen zu unterscheiden:

e Eine Benutzerverwaltung (Anmeldung mit Verschliisselung)
e Eine Kursverwaltung (Kurse, Verwaltung der Inhalte, Dateiverwaltung)

e Eine Rollen- und Rechtevergabe mit differenzierten Rechten

Kommunikationsmethoden (Chat, Foren) und Werkzeuge fiir das Lernen (Whiteboard,
Notizbuch, Annotationen, Kalender etc.)

Die Darstellung der Kursinhalte, Lernobjekte und Medien in einem netzwerkfihigen
Browser

Durch diese Ergédnzung fallen eine Reihe von Systemen heraus, die allgemein fiir die Grup-
penarbeit bzw. den Datenaustausch konzipiert wurden, wie z.B. der BSCW-Server des Pro-
jekts Basic Support for Cooperative Work (BSCW) [Bentley95]. Lernplattformen zeichnen sich
gegeniiber solchen Systemen durch eine leistungsfihigere Administration, verschiedene Kom-
munikationsmethoden und einem gréfleren Repertoire an Werkzeugen fiir das Lernen aus.

Der funktionale Aufbau einer Lernplattform lasst sich auch grafisch darstellen, wie Abbil-
dung 6.1 zeigt.

Administration || Lernumgebung Authoring

Institutionen Aufgaben

Evaluation Personalisierung Tests

extern Schnittstellen—API intern

Repository—Datenbasis

Kursdaten Content Management

Benutzerdaten Lernobjekte

Administration Metadaten

Abbildung 6.1: Idealtypische Architektur einer Lernplattform nach [Schulmeister03, S. 11]

Demnach besteht eine Lernplattform im Wesentlichen aus drei Schichten. Die erste Schicht
hélt alle Daten fiir den Betrieb vor, wie z.B. die Lernobjekte und Benutzerdaten. Dariiber

60

Lernplattformen

liegt Schicht Zwei mit den Programmierschnittstellen (API) fiir den Zugriff auf die wesent-
lichen Funktionen. Auf oberster Ebene liegt Schicht Drei, die zur Visualisierung der Daten
und zur Steuerung der Lernplattform dient. Bei normalem Betrieb arbeiten alle Rollen mit
den Werkzeugen aus der Schicht Drei und nur bei Anpassungen oder Erweiterungen kann es
vorkommen, dass auch auf die darunter liegenden Schichten zugegriffen werden muss.

Neben dem Begriff Lernplattform gibt es noch weitere, die sich meist nur in Nuancen unter-
scheiden. Der géingige Begriff im anglophonen Gebiet ist Learning Management System (LMS).
Speziell in England wird aber auch oft von Virtual Learning Environments (VLE) gesprochen,
wenn die didaktische Ausrichtung hervorgehoben werden soll [Britain00]. Ein Beispiel fiir eine
Klassifizierung von VLEs findet sich in [Milligan00]. Hier werden klassische, lernzentrierte und
kollaborative VLEs unterschieden sowie deren Erweiterungen. Die klassischen VLEs gliedern
die Lerninhalte hierarchisch: Ein Kurs wird in Lektionen aufgeteilt, die wiederum aus Seiten
bestehen und Ubungen enthalten. AbschlieBend werden Tests angeboten, bevor es zum néchs-
ten Thema geht, sodass die Sequenzierung iiberwiegend linear-sukzessiv ist (siche Abschnitt
3.4). Lernzentrierte VLEs zeichnen sich durch die Unterstiitzung von Methoden der Projektar-
beit aus [Schulmeister01]. Kollaborative VLEs erlauben mehreren Personen an gemeinsamen
Projekten oder Objekten zu arbeiten. Es handelt sich um ein Netzwerk verschiedener Pro-
gramme, die z.B. iiber das Internet miteinander verbunden sind [Schwabe01; Wessner00]. Als
Erweiterungen werden alle Programme betrachtet, die VLEs um zusétzliche Spezialfunktionen
erginzen, z.B Editoren, Animationswerkzeuge und Programme fiir Videokonferenzen.

Eine andere Kategorisierung bringt die Definition von Brandon Hall [Hall00]. Demnach
ist ein LMS hauptséchlich fiir die Administration der Lerninhalte und der Anwenderdaten
zustdndig. Konnen die Inhalte zusétzlich verdndert und zusammengestellt werden, handelt
es sich um ein Integrated Learning Management System (ILS). Ein dhnlicher Begriff ist das
Learning Content Management System (LCMS), der eine Vermischung von Content Manage-
ment System (CMS) und LMS ist. Schulmeister hélt all diese Verfeinerungen jedoch nicht fiir
sinnvoll:

»,Diese Begriffsunterscheidung zwischen LMS und ILS ist nicht wirklich trennscharf,
selbst die Unterscheidung von Content Management System (CMS) oder Learning
Content Management System (LCMS) und LMS ist nicht sehr hilfreich. Die Inte-
gration eines Editors fiir Autoren ist nicht konstitutiv fiir ein LMS, das Authoring
kann auch mit einem externen Editor erfolgen.“ [Schulmeister03, S. 14,15]

6.2 Evaluation

Die Auswahl der geeigneten Lernplattform ist ein komplexes und zeitaufwendiges Unterfangen.
Zuerst sollte der eigene Bedarf bestimmt werden, um die Kriterien fiir das benotigte System
festzulegen. Hiernach erfolgt die Recherche nach den Lernplattformen und ihren Funktionen.
Es sollten moglichst viele der aufgestellten Kriterien erfiillt sein, um etwaige Erweiterungen zu
sparen. Aufgrund des riesigen Angebots an Lernplattformen, sollte auf bereits vorhandene Un-
tersuchungen zuriickgegriffen werden. Die stindige Weiterentwicklung, gelegentliche Ubernah-
me durch andere Firmen oder die komplette Einstellung von Produkten bereitet auch Experten
arge Probleme. Offensichtlich muss die Evaluation von Lernplattformen bis zur Kaufentschei-
dung im Auge behalten werden, denn eine falsche Wahl kann erhebliche finanzielle Nachteile
in sich bergen.

Eine <ere Recherche von Schulmeister [Schulmeister00] hat 108 Software-Produkte unter-
sucht, die in der Stichprobe ,Evaluation von Lernplattformen* (EVA:LERN) [Schulmeister03]
auf 171 aufgestockt wurde. Brandon Hall fithrt in seiner Studie [Hall03] 72 Systeme an, von
denen 44 auch in EVA:LERN vorkommen. Aus dem gleichen Hause gibt es zusétzlich eine
Studie tiber LCMS [Chapman03]. In der Untersuchung von Baumgartner [Baumgartner02al
werden 133 Lernplattformen angegangen. Anhand dieser ausgewéhlten Arbeiten wird bereits

6.2 Evaluation

61

offensichtlich, wie kompliziert und subjektiv die Auswahl eines geeigneten Systems ist. Im fol-
genden werden die Lernplattformen Blackboard 6!, WebCT? und smartBLU? vorgestellt,
weil sie bei dieser Arbeit zur Verfiigung standen. Der Installationsaufwand einer Lernplatt-
form ist enorm und kann nur von Experten mit Erfahrungen auf diesem Gebiet durchgefiihrt
werden.

6.2.1 Blackboard

Blackboard Inc. bietet die Lernplattform Blackboard an, die aus Courselnfo hervorgegangen
ist. Bei der aktuellen Version Blackboard 6 handelt es sich um verschiedene Komponenten, die
nach den eigenen Bediirfnissen kombiniert werden kénnen. An dieser Stelle wird die Black-
board Academic Suite ndher betrachtet, die sich aus den Systemen Blackboard Learning
System?, Blackboard Content System und Blackboard Portal System zusammensetzt.

Das Blackboard Learning System ist ein Web-basiertes Werkzeug zur Verwaltung von Kur-
sen, mit dem Lehrende eigene Lehrpléne erstellen und ihre zugehérigen Inhalte abspeichern.
Fiir die Uberpriifung des Lernerfolgs unterstiitzt das System die Erstellung und den Einsatz
von Tests. Lernende profitieren von virtuellen Klassenrdumen, in denen die Kommunikati-
on und Zusammenarbeit geférdert werden. Sollte Blackboard eine gewiinschte Funktion nicht
anbieten, so kann es iiber die Building Blocks erweitert werden. Hierbei handelt es sich
um eigene Anwendungen oder Ergidnzungen, die mit einem speziellen Software Development
Kit (SDK) entwickelt wurden. Uber spezielle APIs erlangen die selbst entwickelten Module
den vollen Zugriff auf Blackboard. Ein gutes Beispiel ist der Building Block zum Einlesen von
SCORM-Dateien, durch den Blackboard erst standardkompatibel wird. Abbildung 6.2 zeigt
einen typischen Screenshot des LMS.

Bei dem Blackboard Content System handelt es sich um eine Erweiterung, die Autoren/-
innen bei ihrer Arbeit unterstiitzt. So lassen sich Inhalte versionieren, Anderungen iiberwa-
chen und Arbeitsabldufe bestimmen. Einmal erstellt, kénnen Dateien zentral gehalten und in
verschiedenen Kursen eingesetzt werden. Einen &hnliche Funktionalitdt wird auch den Studie-
renden angeboten. In ,virtuellen Speicherbereichen* kénnen sie eigene Daten halten, auf die
sie iiber Blackboard zugreifen kénnen.

Mit dem Blackboard Portal System ldsst sich ein anpassbares Portal fiir Firmen und Univer-
sitdten aufbauen, das die Lernplattform mit anderen Diensten in einer einheitlichen Oberfléiche
vereint.

6.2.2 WebCT

WebC'T Inc. bietet die beiden Ausfithrungen WebCT Campus Edition und WebCT Vista
ihres E-Learning-Systems fiir die Hochschulausbildung an. Die WebCT Campus Edition
ist ein System zur Erstellung, Verwaltung und Nutzung von Kursen. Abbildung 6.3 zeigt eine
typische Présentation von Inhalten.

Den Lehrenden wie Lernenden werden diverse Werkzeuge an die Hand gegeben, mit de-
nen der Zugriff auf das System vereinfacht wird. So lassen sich alle gingigen Kursinhalte, wie
z.B. Texte, Bilder, Videos und Quiz, per Drag’n’Drop einstellen. Lehrende kéonnen Lernpfade
vorgeben, indem sie Leistungskriterien aufstellen, die mit Tests auf Basis von Multiple Choi-
ce und offenen Aufgaben tiberpriift werden. Der gesamt Lernfortschritt ldsst sich festhalten,
sodass sich auch Riickschliisse auf die Qualitét der Kurse ziehen lassen. So kénnen die Inhal-

"http://www.blackboard.com (29.10.05) Mein besonderer Dank gilt Prof. Dr. Hans-Jiirgen Appelrath und
dem ,,Oldenburger Forschungs- und Entwicklungsinstitut fiir Informatik-Werkzeuge und -Systeme* (OFFIS) fiir
die Nutzung der Installation.

*nttp://wuw.webct.com (29.10.05) Mein besonderer Dank gilt dem ,Multimedia Kontor Hamburg®
(MMKH) fiir die Nutzung der Installation.

Shttp://wuw.smartblu.de (29.10.05)

“http://www.blackboard.com (29.10.05)

http://www.blackboard.com
http://www.webct.com
http://www.smartblu.de
http://www.blackboard.com

62

Lernplattformen

- Blackboard: Kurse - Mozilla] L= L&)] |

[

Abmelden

Home Hitle

rsitéit[oLnENBURS

Mein Campus Community Dienste

EURSE > HH-WS02-HT » STEUERUNGSFENSTER > KURSMATERIAL

[Ed Kursmaterial

[Kursmaterial

preview/index.html ; Paketdatei)

Grafische Minimierung

1 Grafische Minimierung Beispiel:
11 Graphische Realisierung Schaltfunktion mit vier Eingangsvariablen

1.2 Minimierung bei
Don't-care-Termen

w
el e e R e R Y=
(=]
=
w
el e e R e R Y=
(=]
[=]

2 Minimierungsverfahren nach

Quine und MeCluskey

3 Visualisierung des
Quine-McCluskey-\erfahrens
im kK\v-Diagram

oooooo oo =
P e -
fo 2O D = O
e
J e
P e -
e -
—o OO = = o= =

-

o

3.1 Eintragen der Minterme] 0 0 o
in die Funktionstabelle L) (2)

3.2 Sortieren der Minterme
nach Hamming-Gewichten (1)

3.3 Verschmelzung von
Termen
3.4 Streichung van
p—— I S ~ ~
Mehrdeutigkeiten Y= (b Ao Aby Aba) V (b1 Aba Aby ADa) V (b1 Aba Ay Aba) N
3.5 Primimplikantentabelle (by Aby Aby Abg) V (br Aba Abs Aba) V(b A b Aby Aby) N
(by Aby Abg Abg)V (by AbaAby Abg)V (by Aba Aby Aby

Kanonische disjunktive Normalform:

3.6 Wirfeldiagramm
4 Ubungen Durch Minimierung im K\W-Diagramm gemé&B Abb 322/2 ergibt
sich: k2
= & £ |http:f.f’blackboard.uni-oldenburg.de:80‘33,"...12309_1;’_3066_1;’data!manifest3!mkml.html | |=E=i == |£|A|

Abbildung 6.2: Screenshot von Blackboard

6.2 Evaluation

63

=) [# FB18: Grundlagen Technische Informatik - WebCT 3.8.2 - Mozilla _ = 12 1%
» [» [» [
a“@hCT MYWEBCT | KURS WIEDERAUFNEHMEN | KURS-PLAN | QUELLEN | AUSLOGGEN | HILFE
Navigation e Titel - minimi
verhergen

Homepage » Inhaltsmodul + (Olne Titel - minimierung preview/index itml)

Bedienungsfeld AKTIONSMENU: | Zuriick Vaor [Inhalt ' Zuriickverfolgen ‘Neuladen Glossar | Notizen machen| Suche | Foren

Sichtbar fur Designer
Designer-Plan i e
Neue Seite/Toal Grafische Minimierung
Dateien verwalten
Kurs verwalten
Einstellungen

rY
Inhaltsassistent 1 Grafische Minimierung | Beispiel: |
Kurs-Men i isj i . - . .
Homepage A e E ey Schaltfunktion mit vier Eingangswvariablen ||
;—Le_aLnil?g-Plaﬂform 1.2 Minimierung bei
il Don't-care-Termen b
Lemziel i hyhpbybg ¥y hghybyhyy — 3) [
Kalender 2 Minimierungsverfahren nach = 000 o1 1000 — =
Inhaltsmodul Quine und McCluskey oo0o01/0 10010 o] a
Glossar o011 0N 101 01 —
Suche 3 Visualisierung des o011t T 11 1 1 1 0
Kampilieren Quine-McCluskey-Verfahrens 01000 11000 by
Kommunikation im Kv-Diagram o1 o011 11 010 q q q i
Mail || E T T N O O R R !
Faren 3.1 Eintragen der Minterme (1S T T T IS T S I R 3 ; 0 o | o e
Chat in die Funktionstabelle
Whitehoard > ey
Lern-Tools 3.2 Saortieren der Minterme b
Homepages nach Hamming-Gewichten (1) 2
Prasentationen
Mein Fortschritt 3.3 Verschmelzung van
Evaluation-Tools Termen
Aufgaben : Kanonische disjunktive Normalform:
Selbst-Test 3.4 Streichung van
! P P - B B
-lh—qees:{le sitzg hedeliy S iy oo = (F}l M F)z M F);J, M FM} W (F}l M F}‘j M F);J, M FM} W (F}l M F}‘z M F);J, M FM} Yy
35 Primimglikantentabelle (F}l M F)z M F);J, M FM} W (F}l M F}‘j M F);J, M FM} W (F}l M F}‘z M F);J, M FM} Yy
by Aby Abs Aba)V (by AbaAbs Abg)V (b Aba Aby Abs
3.6 Worfeldiagramm (b1 ABz Aby Aba) V (b1 Ab2 Aby Aba) V (br A B2 Abg Aba
4 Ubungen Durch Minimierung im K\V-Diagramm gemaB Abb 322/2 ergibt
Kl il [T] 4 1 Kv/-Nianramme Bejsniele hd sich: Ed
D=e 8| | EEESIEEP

Abbildung 6.3: Screenshot von WebCT

64

Lernplattformen

te stidndig verfeinert und verbessert werden, um optimale Lernerfolge zu erreichen. Fiir die
Kommunikation der Lernenden werden Chat, Whiteboard, E-Mail, und Foren angeboten.

Mit dem WebDAV-Zugang haben Autoren/-innen einen flexiblen Zugang zu WebC'T, iiber
den Inhalte schnell eingespielt und verdandert werden kénnen. Moderne Betriebssysteme kon-
nen WebDAV bereits nahtlos integrieren, sodass auch nicht unterstiitzte Autorenwerkzeuge
direkten Zugriff haben. Mit einem sehr einfachen HTML-Editor kénnen Seiten auch direkt in
WebCT bearbeitet werden, wovon jedoch abzuraten ist, weil die Funktionen zu rudimentér
sind.

WebC'T Vista ist fiir grofere Installationen ausgelegt, bei denen z.B. verschiedene Internet-
auftritte einer Universitét auf einem System betrieben werden. Diese Ausfithrung von WebCT
steht dieser Arbeit leider nicht zur Verfiigung und kann nicht weiter betrachtet werden.

6.2.3 SmartBLU

Das LMS SmartBLU ist aus dem System CMS-W3 hervorgegangen und wird seit 1996 vom
Fraunhofer Institut fir Graphische Datenverarbeitung (IGD) entwickelt. Im Gegensatz zu den
anderen vorgestellten Systemen beschriankt sich SmartBLU auf die Prisentation von Lernma-
terialien und nutzt Chat sowie Foren als Kommunikationsmittel. Obwohl Portale, Organizer
sowie andere Funktionen nicht zum Leistungsumfang gehoren, ist es dennoch eine interessante
Alternative, da es von den hier vorgestellten LMS die beste Standardunterstiitzung anbie-
tet. So kann SmartBLU selbstéindig eine Navigation aus einem Manifest generieren, was bei
den Konkurrenzprodukten nicht ohne weiteres geht. Abbildung 6.4 zeigt einen exemplarischen
Screenshot des Systems.

SmartBLU hat ein eigenes Rollenkonzept und unterscheidet zwischen Lerner, Betreu-
er, Fachautor sowie Administrator. Die Rolle Lerner nutzt das System zum lernen und
kann verschiedene Kurse belegen. Eine Kontrolle des Lernerfolgs wird iiber Tests angeboten,
von denen es Liickentexte, Zuordnungsaufgaben, Multiple- und Single-Choice-Aufgaben gibt.
Der Betreuer begleitet die Lernenden und kann die Ergebnisse der Tests iiberpriifen. Fiir die
Erstellung der Inhalte sind die Fachautoren zusténdig, die sich um Konzeption, Gestaltung
und Implementierung kiimmern. Alle Verwaltungsaufgaben, wie z.B. die Benutzerverwaltung,
werden von der Rolle Administrator durchgefiihrt.

Die Strukturierung der Kurse orientiert sich an der ,Buchmetapher®, sodass sich Lern-
inhalte wie in einem Buch in Kapitel und Abschnitte aufteilen. Die kleinste Einheit sind
Module, z.B. Texte, Grafiken sowie Animationen, und entsprechen im Sinne der Metapher
einem Abschnitt. Ein Modul kann in mehreren Kursen eingesetzt werden, wodurch die Wie-
derverwendbarkeit gefordert wird.

6.3 Bewertung

Im Abschnitt 6.1 wurde bereits darauf hingewiesen, dass die heutigen Lernplattformen den
Anspriichen bzw. den Definitionen nicht vollends geniigen. Sicherlich darf die Komplexitét
eines solchen Systems nicht unterschétzt werden, aber bereits bei der Basisfunktionalitit, dem
Prasentieren der Lernmaterialien, gibt es Griinde zur Kritik. Fiir einen besseren Vergleich
listet Tabelle 6.1 einige Merkmale der drei vorgestellten Lernplattformen auf.

Es beginnt mit dem Datenaustausch zwischen Autorensystem und Lernplattform, wie in
[Bungenstock03a; Bungenstock03b] genauer untersucht wurde. Nur WebCT ermdoglicht mit
WebDAYV unter den vorgestellten Lernplattformen eine einfache Anbindung. Die anderen Pro-
dukte bieten lediglich umstéindliche Web-Oberflichen an, was bei vielen Anderungen und An-
passungen, wie sie besonders wihrend des Erstellungsprozesses neuer Lernmaterialien auf-
treten, schnell lastig werden kann. Wird noch in Betracht gezogen, wie viele Dateien einem
vollstandigen Kurs in HTML angehoren, zeigt sich schnell das Ausmaf der Arbeit. Auch Lo-
sungen mit gepackten Dateien, wodurch lediglich eine Datei hochgeladen werden muss, kénnen

6.3 Bewertung

65

[smartBLU] [Kurs]
[Start Einstellungen] [Info Ansicht Bearbeiten Administration Kommunikation Material]

Graphische Realisierung

a)lm Kv-Diagramm sind fur die disjunktive Normalform (DNF) die Felder
markiert, fur die der Funktionswert 1 ist.

Zur \ereinfachung werden maglichst viele Felder mit dem Wert 1
zusammengefalt, wobei immer Blécke wvon @ 2,4,8,... Feldemn
zusammengefaBt werden durfen.

Die minimierte Funktion wird aus den Termen der zusammengefaBten Blécke
und der uUbrig gebliebenen Einzelfelder gebildet.

Beispiel:

Schaltfunktion mit vier Eingangsvariablen

hybyhybgy ‘bgbahybgy
000 000 — ” (3)

0 1
0 0
0 1
1 0
1 1
1 0
1 1

Abbildung 6.4: Screenshot von SmartBLU

hochstens als ,,fauler Kompromiss“ gewertet werden. Die Verbindung zwischen Autorensystem
und Lernplattform muss transparent erfolgen, daran fiithrt kein Weg vorbei.

Grundsétzlich zeigt sich, dass Lernplattformen nur bedingt fiir den Erstellungsprozess von
Lernmaterialien geeignet sind. Hier hebt sich Blackboard mit seinem Content System von den
anderen Produkten ab, da es Versionierung und Verkniipfungen von Dateien anbietet. So muss
ein Baustein mit einem Rechtschreibfehler, der bereits in vielen Kursen eingesetzt wurde, nur
cin Mal angepasst werden. Durch die Verkniipfung , propagiert“ sich die Anderung durch.

Auch die Unterstiitzung der Standards konnte besser sein. Viele Lernplattformen beschran-
ken sich auf das Entpacken und direkte Anzeigen von Dateien in den Formaten SCORM oder
IMS Content Packaging. Nur SmartBLU ist in der Lage, aus den Strukturinformationen des
enthaltenen Manifests eine Navigation zu generieren. Bei den anderen Lernplattformen muss
dies von den Autoren/-innen erledigt werden, was nicht nur Mehrarbeit verursacht, sondern
auch schlechtere Ergebnisse. Neben der eigenen Navigation des LMS muss parallel die des
Kurses untergebracht werden, wie es deutlich in den Screenshots der Abbildungen 6.2 und 6.3
zu erkennen ist. Letztendlich bleibt fiir die eigentlichen Inhalte weniger Platz auf dem Bild-
schirm. Ein anderes Problem dieser Darstellung ergibt sich aus der Verwendung von Frames
bei HTML, wodurch die Bookmark-Funktionalitit des Browsers nicht genutzt werden kann.

Leider wird von keiner Lernplattform die Ubersetzung von XML-Dateien in Formate wie
beispielsweise HI'ML oder PDF angeboten. Es werden auch keine Alternativen zur Trennung
von Inhalt und Layout angeboten, einer wichtigen Voraussetzung fiir die Wiederverwendung
von Inhalten aus unterschiedlichen Quellen. Hier muss bei allen Systemen nachgebessert wer-
den.

66 Lernplattformen

’ System ‘ Anbindung ‘ Standards ‘ Kommunikation ‘ Organization ‘ Gestaltung
Blackboard | Web- SCORM, Chat, Foren, Kalender, Unterstiitzung von
Formular IMS Whiteboard, Terminplan, Fremdsprachen,
E-Mail Adressbuch Layout beschréinkt
anpassbar
WebCT WebDAV, SCORM, Chat, Foren, Kalender, Unterstiitzung von
Web- IMS, Whiteboard, Aufgabenliste | Fremdsprachen,
Formular AICC E-Mail Layout beschrankt
anpassbar
SmartBLU | Web- SCORM, Chat, Foren, Unterstiitzung von
Formular AICC Info-Bord Fremdsprachen,
festgelegtes Lay-
out, Anpassung
der Oberflachen-
grofie

Tabelle 6.1: Ubersicht der Lernplattformen

Die Kommunikations- und Organisationsmoglichkeiten sind bei allen Systemen sehr gut,
da gibt es nicht viel zu beanstanden. Zudem hat sich gezeigt, dass sie alle ihre Starken fiir
bestimmte Aufgaben haben. Lieflen sie sich zu einem System vereinen, was technisch leider
nicht machbar ist, dann wire das Ziel einer ausgereiften Lernplattform schon ndher. Es bleibt
bei den kommerziellen Systemen nichts anderes iibrig, als auf entsprechende Erweiterungen
der Hersteller zu warten.

Kapitel 7

Web-Technologie

Im vorherigen Kapitel 6 iiber Lernplattformen hat sich gezeigt, dass ihre Funktionalitdt auf
die tégliche Lehre ausgerichtet ist. Fiir eine Archivierung von Lernmaterialien, gleich welcher
Form, eignen sie sich hingegen nur bedingt, denn oft sind die Verwaltungs- und Suchmoglich-
keiten auf einfache Operationen beschrankt. Daher wird ein spezielles Datenhaltungssystem
fiir Lernobjekte bendtigt, das in dieser Arbeit als Repository bezeichnet wird. Zu seinen
wesentlichen Eigenschaften gehort eine direkte Anbindung an Lernplattformen sowie Auto-
rensysteme. Das Repository koordiniert die Arbeit und den Datenaustausch in Teams, sodass
es als zentrale Komponente zur Verfiigung stehen muss.

Zur Zeit ist leider kein entsprechendes System fiir modulare E-Learning-Inhalte erhéltlich,
weshalb seine Entwicklung als Teil dieser Arbeit abzusehen ist. Weil Java als Programmierspra-
che bereits feststeht und das Repository iiber ein Rechnernetzwerk angesteuert werden soll,
wird in diesem Kapitel die Verfiigbarkeit existierender Server, Rahmenwerke sowie Libraries
erortert.

Grundlage fiir alle heutigen Netzwerk-Anwendungen ist das Protokoll TCP/IP [Stevens94;
Wright95], welches jedes moderne Betriebssystem von Haus aus beherrscht. Fiir die Ubertra-
gung von HTML-Seiten setzt das Protokoll HT'TP [Stevens96; Gourley02] auf TCP/IP auf
und muss somit vom Repository unterstiitzt werden. Obwohl HTTP vom Aufbau her recht
einfach ist und mit den Klassen der Java-Standard-Library leicht umzusetzen ist, soll auf fer-
tige Losungen zuriickgegriffen werden. Im n#chsten Abschnitt werden verschieden Produkte
vorgestellt und ihre Vorteile sowie Schwichen herausgearbeitet. Wesentlicher Gegenstand der
Betrachtung sind die verschiedenen etablierten Schichtenmodelle, die in Abschnitt 7.1 vorge-
stellt werden.

Die Steuerung des Repositories iiber einfache HTML-Seiten wird nicht moglich sein. Viel-
mehr wird eine Web Application benétigt, also ein richtiges Programm, das HTML-Seiten
zur Reprisentation der Daten einsetzt und die so genannte Geschéftslogik in Komponenten
auslagert. Fiir die Erstellung von Web Applications mit Java gibt es bereits eine Reihe von
fertigen Rahmenwerken, die in Abschnitt 7.2 vorgestellt werden.

Fiir die Steuerung der Web Application iiber RPC bietet sich geradezu ein Web-Server an.
Das auf HTTP aufsetzende Protokoll Simple Object Access Protocol (SOAP) ist ideal fiir diese
Aufgabe und soll daher die Fernsteuerung ermdoglichen. Neben der Spezifikation Java API
for XML Messaging (JAXM) von Sun, die eine rudimentére Ansteuerung dieses Protokolls
ermoglicht, gibt es auch Programmpakete, die eine Nutzung dieser Technologie auf einem
hoheren Abstraktionsniveau erlauben. In Abschnitt 7.3 werden einige erhéltliche Produkte
vorgestellt.

Als letzte Funktion des Repositories soll kurz der Datenaustausch iiber WebDAV erliu-
tert werden. Weil WebDAV ebenfalls auf HTTP aufbaut, soll wieder eine integrierte Losung
gefunden werden. Abhéngig vom ausgewahlten Web-Server stehen hier verschiedene Module
zur Auswahl.

68

‘Web-Technologie

7.1 Infrastruktur

Eine Errungenschaft der Software-Technik ist die Wiederverwendung von Modulen bzw. Kom-
ponenten, wodurch die Entwicklungszeit reduziert und die Stabilitdt des Produkts erhcht wird.
Bei einer komplexen Anwendung wie einer Web Application gibt es eine Vielzahl potentieller
Kandidaten, die praktisch in jeder Web Application auftauchen. Die Firma Sun hat diesen Um-
stand zum Anlass genommen, neben der bekannten Java 2 Platform, Standard Edition (J2SE)
fiir géingige Applikationen, die Java 2 Platform, Enterprise Edition (J2EE) zu veroffentlichen
[Shannon04]. Sie definiert einen Standard fiir komponentenbasierte mehrschichtige Unterneh-
mensanwendungen, die Web-Technologien einsetzen. Abbildung 7.1 zeigt die grundsétzlichen
Schichten einer Anwendung, auf die folgend eingegangen wird.

J2EE J2EE
Application 1 Application 2
Application Dynamic Client Client
Client HTML Pages Tier Machine
'@Iges Web
Server
; Machine
Enterprise ' Enterprise Business
Beans Beans Tier
EIS Database
Database Database Tier Server
Machine

Abbildung 7.1: Schichten von J2EE-Anwendungen [Bodoff04, S. 3]

Ganz unten steht die Datenhaltung, die hier als Datenbank dargestellt ist. In den meisten
Fallen wird es sich in der Tat um eine relationale Datenbank handeln, aber die Daten kon-
nen auch im Dateisystem oder einer anderen Datenhaltungsform gespeichert sein. Wichtig ist
lediglich die zur néchsten Schicht présentierte Schnittstelle, die den Komponenten mit der Ge-
schéftslogik, hier als FEnterprise Beans bezeichnet, einen standardisierten Zugriff ermoglicht.
Abhéngig von der Art des Clients, entweder handelt es sich um eine Anwendung (in der Ab-
bildung als Application Client bezeichnet) oder dynamische HTML-Seiten in einem Browser,
sitzt iiber den Enterprise Beans eine Schicht mit Java Server Pages (JSP). Kurz umrissen ist
eine JSP eine Schablone, die aus HTML-Fragmenten und Java-Befehlszeilen besteht. Auf diese
Weise werden Inhalt und Logik der Enterprise Beans in die Darstellung integriert. Soll z.B.
ein bestimmter Wert angezeigt werden, der in einer Enterprise Bean gespeichert ist, geniigt
ein kurzer Befehl in Java fiir das Auslesen und Umwandeln in HTML. Dieser Schritt entfallt
bei eigenstdndigen Anwendungen, da sie sich um die Darstellung selbst kiimmern miissen. Auf
diese Weise soll z.B. das Autorensystem auf Lernobjekte zugreifen, indem es sie vom Server
herunterladt und in einer grafischen Oberflache anzeigt. Zu Kontrollzwecken soll das Reposi-
tory aber auch ohne Autorensystem genutzt werden, sodass beide J2EE-Architektur-Modelle
fiir modulare E-Learning-Inhalte bené6tigt werden.

Die J2EE umfasst eine Vielzahl von Technologien, Modellen und APIs, auf die bisher
noch nicht eingegangen wurde. Aufgrund der Komplexitit kann dies im Rahmen dieser Arbeit
auch nicht vollstindig geschehen. Weil J2EE fiir eine grofie Zahl von Anwendungen konzi-
piert wurde, ist es sehr vielschichtig. In der Praxis wird jedoch h&ufig nur ein Bruchteil der

7.1 Infrastruktur

69

Funktionalitéit bendtigt, was besonders bei unerfahrenen Entwicklern/-innen zu Konfusionen
fithrt. Welche Schichten sind wichtig und mit welcher Technologie erfolgt die Umsetzung? Wer
nicht den gesamten Umfang von J2EE kennt, lduft leicht Gefahr, vorhandene Lésungen selbst
zu implementieren oder kompliziertere Wege als notig einzuschlagen. Auch fiir das angestreb-
te Repository wird nicht der volle Funktionsumfang benétigt, sodass sich der Entwurf durch
Weglassung einzelner Schichten vereinfachen ldsst.

Bei den Enterprise Beans handelt es sich um ein Komponentenmodell, das fiir die Imple-
mentierung der gesamten Funktionalitdt genutzt wird. Alle technischen Details werden hierbei
vom Komponenten-Container gekapselt, wodurch die Geschéftslogik in den Vordergrund riickt.
Es gibt einige Merkmale bei Anwendungen, die den Einsatz von Enterprise Beans anzeigen.
Muss das System mit der Anzahl von Benutzer/-innen skalieren, also iiber mehrere Server
verteilt werden oder sollen Transaktionen unterstiitzt werden, dann sind Enterprise Beans die
geeignete Wahl.

In Hinblick auf das Repository werden die Eigenschaften der Enterprise Beans wohl nicht
bendtigt. Abbildung 7.2 zeigt daher die beiden schematischen Schichten des J2EE-Servers an,
die fiir die Umsetzung des Repositories relevant sind.

Client Tier

Web Browser
Web Pages,
Applets, and

Optional JavaBeans

Components

C—

Web Tier .
Business
Tier
Application Client
and Optional
JavaBeans
Components

J2EE Server

Abbildung 7.2: Client und Server [Bodoff04, S. 6]

Es gibt zwei Arten von Clients, die das Repository unterstiitzen soll: Web-Browser, die iiber
die Web Tier auf die Business Tier zugreifen und selbst geschriebene Programme mit direktem
Zugriff. Wie viel der Server leisten muss, hdngt von den verwendeten Schichten ab. Ein Server
fiir Enterprise Beans in der Business Tier ist wesentlich anspruchsvoller und umfangreicher
als einer, der lediglich die Web Tier unterstiitzt. Da fiir die Business Tier die entwickelten
Komponenten aus den vorherigen Kapiteln zum Einsatz kommen, geniigt fiir das Repository
ein Web- Server als J2EE-Umgebung. Fiir ein besseres Versténdnis sind in Abbildung 7.3 sechs
Schritte aufgefiihrt, die von der Infrastruktur zu leisten sind. Eine Anwendung als Client sieht
im Prinzip gleich aus, nur kann hier der Schritt 3 entfallen.

Zunichst stellt der Client eine Anfrage an den Server iiber das Protokoll HTTP, den so
genannten HTTP Request, der als Schritt 1 deklariert ist. Obwohl HTTP fiinf unterschied-
liche Methoden! kennt, treten in der Praxis iiberwiegend GET- und POST-Anfragen auf, z.B.
wenn Daten iiber eine Formular-Seite gesammelt und tibertragen werden. Auf der Server-Seite
werden die Daten von einem Web-Server entgegen genommen, in ein HTTPServletRequest
umgewandelt und in Schritt 2 an eine JSP oder ein Servlet weitergereicht. Ein Servlet ist
eine Java-Klasse mit genau definierter Schnittstelle, die in einem Container eingebettet ist
und die Anfragen des Clients verarbeitet. Neben den iibertragenen Parametern werden dem
Servlet zusétzlich eine Reihe von kontextabhéingigen Daten, wie z.B. Cookies, IP-Adresse und
User-Daten iibergeben. JSPs und Servlets kénnen in Schritt 3. die Daten auf zwei mégliche
Weisen verarbeiten. Neue sowie verdnderte Daten werden an die Java Beans iibergeben und

'HEAD, GET, POST, PUT und DELETE

70

‘Web-Technologie

Web Server
HTTP f —/—
Heguest HTTPServiet 5.
Request

Client " Web
E Components

HTTP HTTPServiet

Response Response

JavaBeans
Components

Abbildung 7.3: Sechs Schritte einer Anfrage [Bodoff04, S. 84]

anzuzeigende Daten ausgelesen. Bei Java Beans handelt es sich um Klassen, deren Schnitt-
stelle einer genauen Definition unterliegt [Englander97]. Wie die Daten persistent gehalten
werden, ist Bestandteil des Schritts 4, und kann z.B. iiber Datenbanken, XML-Dateien oder
Serialisierung erfolgen. Der direkte Zugriff von den Web Components auf die Datenhaltungs-
schicht, ebenfalls als Schritt 4 bezeichnet, ist zwar theoretisch mdoglich, fiihrt aber zu einer
sehr engen Verzahnung die sich nachteilig auswirkt. Wenn z.B. SQL-Anweisungen direkt in
eine JSP integriert sind, wird praktisch die Trennung zwischen Darstellung und Datenhaltung
aufgehoben, sodass spéitere Erweiterungen, Anpassungen, Fehlerbehebungen, etc. beeintréich-
tigt werden. Aus diesem Grund soll in dieser Arbeit die Kommunikation stets zwischen Web
Components und Java Beans erfolgen. Nachdem alle Berechnungen und Operationen durchge-
fithrt wurden, wird in Schritt 5 das Ergebnis in Form eines HTTPServietResponse aufbereitet
und an den Web-Server iibergeben. Der schickt dem Client in Schritt 6 per HTTP Response
eine anzeigbare HTML-Seite.

Aus diesem Ablauf lasst sich gut ableiten, was fiir die Umsetzung des Repositories benttigt
wird, ndmlich ein Web-Server mit einem Container fiir Web Components. Um die Moglichkei-
ten der Web Components differenzierter darzustellen, ist diese Schicht in Abbildung 7.4 weiter
aufgegliedert.

——————————————

JavaServer Pages
g JavasServer. Faces

Standard Tag Library

R

JavaServer Pages

Java Servlet

Abbildung 7.4: Schichten der Reprisentation [Bodoff04, S. 85]

7.1 Infrastruktur

71

Die Basis aller zur Verfiigung stehenden Technologien sind die Servlets. Sie ermoglichen
eine sehr genaue Steuerung der Vorgénge, setzen aber umfangreiche Kenntnisse voraus. Um
die Arbeit zu vereinfachen, gibt es abstraktere Mechanismen wie die Java Server Pages, die
eine Verquickung von HTML und Java-Code ermdoglichen. Technisch gesehen, werden JSPs
wiederum zu Servlets iibersetzt. Weil auch JSPs meist nicht um eine Programmierung in Ja-
va umhin kommen, wenn z.B. die Kommunikation mit den Java Beans erfolgt, wurden die
Standard Tag Library eingefithrt. JSPs lassen sich ndmlich um eigene Tags erweitern, sodass
sich auch anspruchsvollere Operationen kapseln lassen. Im optimalen Fall kann eine Person
ohne Java-Kenntnisse JSPs erzeugen und auf Java Beans zugreifen, ohne programmieren zu
miissen. Die Java Server Faces sind eine recht neue Technologie und orientieren sich an der
klassischen Programmierung grafischer Oberflichen. Es gibt einzelne Komponenten fiir Be-
nutzerinteraktionen, die sich beliebig kombinieren lassen und auf Events reagieren. Praktisch
gesehen, abstrahiert dieser Mechanismus die drei anderen Schichten, indem die eingesetzten
Techniken weitestgehend verdeckt werden.

Stellt sich noch die Frage, wie eng die einzelnen Komponenten mit dem Web-Server ver-
bunden sind. Fiir das Repository ldsst sich bereits absehen, dass es aus vielen Klassen, JSP
und anderen Dateien bestehen wird, die sich auf diverse Verzeichnisse verteilen. Uber eine
Konfiguration wird festgelegt, wie diese Dateien in Beziehung stehen und welche Aufgabe sie
haben. Wie viel Einfluss nimmt aber die eingesetzte Software? Muss bei einem Wechsel des
Web-Servers die gesamte Anordnung und Konfiguration angepasst werden? Die Antwort lautet
»,Nein“, denn die Spezifikation von J2EE sieht auch diesen Fall vor. Alle benttigten Dateien
lassen sich in einem Paket zusammenfassen und in einen Web-Server ,,deployen®. Dieser Begriff
hat sich durchgesetzt und wird auch in anderen Kontexten verwendet, in dem Komponenten
oder Pakete integriert werden. Abbildung 7.5 zeigt die vorgeschriebene interne Struktur eines
solchen Pakets.

e

Assembly
Root

=

JSP pages,
static HTML pages,
applet classes, etc.

888
i e

sun-web.xml
*tid

Library All server-side All .tag files
archive files .class files for this for this
Web module Web module

Abbildung 7.5: Interne Modulstruktur [Bodoff04, S. 90]

An oberster Stelle liegt das Hauptverzeichnis, das hier als Assembly Root bezeichnet ist.
Der Verzeichnisname kann beliebig gew#hlt werden und wird bei manchen Web-Servern zum
Bestandteil der spateren Aufruf-URL. Um als Paket zu gelten, muss es mindestens das Ver-
zeichnis WEB-INF, das genau so geschrieben sein muss, und die Datei web.xml enthalten. Sie

72

‘Web-Technologie

wird oft auch Deployment Descriptor genannt, weil sie beschreibt, wie welche Komponenten
verbunden und adressiert werden. Figene Libraries werden im Verzeichnis lib abgelegt und
lose Klassen in classes. Die enthaltenen Dateien werden automatisch in den Klassenpfad ein-
getragen, weshalb keine weitere Konfiguration notwendig ist. Im letzten Verzeichnis tags sind
alle notigen Dateien fiir die Tag Libraries enthalten, die ebenfalls automatisch eingelesen wer-
den. Bleiben noch die JSP-Dateien, die sich innerhalb des Pakets beliebig positionieren lassen.
Allerdings sollte das Verzeichnis WEB-INF ausgenommen werden, da nicht alle Web-Server
diesen Ort fiir JSP unterstiitzen. Gepackt zu einer Datei, kann diese Struktur dann einfach in
ein System integriert werden.

Bleibt zu kldren, welche Produkte es iiberhaupt gibt. Neben vielen kommerziellen Anbie-
tern, wie z.B. WebSphere? von IBM, WebLogic® von BEA und WebObjects* von Apple, gibt
es auch einige frei erhéltliche Produkte. Die Stérken der kommerziellen Systeme sind auf jeden
Fall ihr hoher Leistungsumfang und die bessere Bedienbarkeit, die durch eine Reihe mitgelie-
ferter Werkzeuge erreicht wird. Da nur die Web Tier von J2EE bendétigt wird, geniigt fiir das
Projekt math-kit aber eine freie Losung. Zur ndheren Auswahl stehen hier Tomcat®, Jetty®
und Resin”. In Funktionsumfang und der Leistung stehen sich die Produkte im Grofien und
Ganzen in nichts nach.

7.2 Web Applications

Mit J2EE wird grofleren Projekten eine Vielzahl von Techniken und Mechanismen angeboten,
die eine strukturierte Gestaltung sowie Planung ermdglicht. Der generische Ansatz bereitet kei-
ne groflen Einschrankungen, sodass nach eigenem Belieben vorgegangen werden kann. Durch
Auslassen oder Hinzufiigen bestimmter Teile sind der individuellen Umsetzung keine Grenzen
gesetzt. Der Preis fiir diese Flexibilitét ist die Suche nach dem eigenen geeigneten Vorgehen.
Eine Moglichkeit ist die Verwendung des Entwurfsmusters MVC, das die Aufteilung des Sys-
tems in Model, View und Controller (MVC) vorgibt. Urspriinglich fiir grafische Anwendungen
gedacht, hat es sich mit ein paar Anpassungen als Systemarchitektur fiir Web Applications
durchgesetzt. Abbildung 7.6 verdeutlicht die Zusammenhénge zwischen den einzelnen Kom-
ponenten.

Components

View Selection

Change

______ »_ Controller

JSPs Servlet

Abbildung 7.6: Model, View und Controller fiir Web Applications

In dieser Aufteilung sind View und Controller als Elemente der Web Tier realisiert, wobei
von auflen betrachtet lediglich der Controller angesprochen wird (als Input eingezeichnet).
Jeder Aufruf einer URL geht somit direkt auf das Servlet, welches die Eingabe aufbereitet,
die entsprechende Komponente des Models auswéhlt und den gewiinschten Befehl aufruft. Die
Komponente verarbeitet anschlieBend die iibergebenen Daten und gibt einen Riickgabewert
zuriick, von dem der Controller seinen néchsten Arbeitsschritt abhéngig macht. War z.B. eine

*http://www-306.ibm.com/software/websphere (29.10.05)
3http://www.bea.com (29.10.05)
‘http://www.apple.com/webobjects (29.10.05)
*http://jakarta.apache.org/tomcat (29.10.05)
Shttp://jetty.mortbay.org (29.10.05)
"http://caucho.com (29.10.05)

http://www-306.ibm.com/software/websphere
http://www.bea.com
http://www.apple.com/webobjects
http://jakarta.apache.org/tomcat
http://jetty.mortbay.org
http://caucho.com

7.3 Web Services

73

Eingabe fehlerhaft oder konnte der Befehl aufgrund anderer Umstédnde nicht ordnungsgeméf3
durchgefiihrt werden, ruft das Servlet eine JSP fiir die erneute Eingabe oder eine Fehlerseite
auf. Bei erfolgreicher Ausfithrung wird eine andere JSP ausgewihlt, die iiber den weiteren
Fortgang informiert. Unabhéngig vom zuriick gegebenen Status, benttigen annéhernd alle JSP
einen Zugriff auf die Daten des Modells, um den aktuellen Zustand anzuzeigen. Der Zugriff
selbst ist nur lesend, weil andernfalls der Controller umgangen wiirde, was nicht gewiinscht
ist. Nachdem die JSP ausgefiihrt und als Ergebnis eine HTML-Seite produziert wurde, wird
diese als View an den Client gesendet.

Das Entwurfsmuster MVC gibt einen Leitfaden, wie eine Web Application zu strukturieren
ist, lasst die Implementierung aber offen. Auch das J2EE bietet keine Bordmittel an, die eine
Entwicklung solcher Anwendungen vereinfacht. Als Losungen dieses Problems bleiben somit
entweder eine Eigenentwicklung oder der Einsatz eines existierenden Rahmenwerks iibrig. Die
Eigenentwicklung spielt ihren Vorteil bei kleinen Systemen aus, die sich nicht oft &ndern.
Hier kann eine kleine schnelle Losung wesentlich effizienter sein als eine umfangreiche. Ist die
Anwendung aber etwas grofler und benotigt eine gewisse Flexibilitéit, dann sollte von diesem
Ansatz Abstand genommen und stattdessen auf ein Rahmenwerk zuriickgegriffen werden. Der
Nachteil hierbei liegt in der Komplexitit, die nicht zu unterschitzen ist. In dieser Arbeit
werden kurz zwei Produkte vorgestellt: Struts und Spring.

Mit Struts® bietet die Apache Group ein Rahmenwerk an, dass sich perfekt in den ausge-
wihlten Web-Server Tomcat integrieren ldsst. Ein zentrales Konzept zur Konfiguration und
Adaption sind die bereits erwéhnten Java Beans. Thre Schnittstelle ist so ausgelegt, dass sie zur
Laufzeit ohne vorherige Bindung beim Kompilieren initialisiert und genutzt werden kénnen.
Struts nutzt diese Eigenschaften zur Konfiguration des Controllers, der durch eigene Klassen
erweitert werden kann. Mit Hilfe einer XML-Datei werden die einzelnen Komponenten zur
Laufzeit erzeugt und miteinander verkniipft. Aber auch zum Datenaustausch zwischen den
Komponenten von Struts und den eigenen Klassen kommen Java Beans zum Einsatz. So wer-
den Eingaben iiber Formulare in HTML Seiten automatisch in Java Beans umgewandelt und
weitergereicht. Wenn gewiinscht, iiberpriifen so genannte Validatoren die Werte auf Giiltig-
keit, indem sie vorher festgelegte Regeln anwenden. Weitere Informationen zu Struts finden
sich z.B in [Turner03; Carnell03; Cavaness04].

Das Rahmenwerk Spring? geht indes einen wesentlichen Schritt weiter. Es ist selbst in
Schichten eingeteilt, und schickt sich an, eine Alternative bzw. Ergéinzung zu den Architekturen
mit Enterprise Beans zu sein. Neben der Unterstiitzung des Entwurfsmusters MVC gibt es viele
weitere Bausteine in Spring, mit denen sich Web Applications aufziehen lassen. Anstatt auf
die umfangreichen aber technisch anspruchsvollen Enterprise Beans zuzugreifen, werden die
Daten und die Geschéftslogik in einfachen Beans sowie POJOs'® gehalten. Spezielle Klassen
nach dem Entwurfsmuster Factory [Gamma95] ermoglichen die Trennung der Konfiguration
von Beans und der Programmlogik. Auf diesem Prinzip beruht das gesamte Rahmenwerk.
Dank der Flexibilitdt und Unabhingigkeit der einzelnen Komponenten kénnen mit Spring
von kleinen Web-Prisentationen bis zu Unternehmensanwendungen fast alle Projektformen
realisiert werden. Mehr Informationen zu Spring finden sich z.B. in [Johnson04; Tate04].

7.3 Web Services

Web Services ermdglichen den Zugriff auf Daten und das Ausfithren von Befehlen iiber eta-
blierte Techniken. Mittlerweile sind die Spezifikationen, Standards und Implementierungen
verschiedener Hersteller jedoch so vielfiltig geworden, dass eine pauschale Aussage iiber die
Fahigkeiten von Web Services schwer fillt. Grundsétzlich werden Daten iiber das Simple Object
Access Protocol (SOAP) mit Hilfe des Internets iibertragen. Obwohl es bei der physikalischen

®http://struts.apache.org (29.10.05)
“http://wuw.springframework.org (29.10.05)
POJO steht fiir Plain Old Java Object und bezeichnet schlicht alle Klassen, die keine Beans sind.

http://struts.apache.org
http://www.springframework.org

74

‘Web-Technologie

Ubermittlung der Daten keine Vorgaben gibt — der Einsatz per Mail wird z.B. von vielen
Implementierungen unterstiitzt —, ist in der Praxis das Protokoll HT'TP die erste Wahl. Zur
Laufzeit werden bei SOAP interne Datenstrukturen zu XML iibersetzt, iibertragen und vom
Kommunikationspartner zuriick transformiert. Hierdurch ist SOAP unabhéngig von jeglichen
Programmiersprachen, benétigt aber spezielle Mechanismen, die eine Verbindung zwischen
diesen beiden Welten herstellen. Denn Methodenaufrufe sollen auf Seiten der Clients mog-
lichst transparent durchgefiihrt werden, sodass die Entwickler/-innen mit so wenig Details wie
notig belastet werden.

Zunichst muss die Geschéftslogik implementiert werden und die nach auflen angebotene
Schnittstelle auf moglichst wenig Klassen verteilt werden. Als so genanntes Package werden die
zusammengefassten Dateien in einen speziellen Server integriert, der die nétige Infrastruktur
zur Ausfithrung bereit hélt. Hiernach kénnen die Clients bestimmte Parameter zur Nutzung des
Web Service abfragen, wie z.B. Kodierungen, Datenstrukturen und Protokolle. Die Antworten
werden in der Web Services Description Language (WSDL) [Walsh02a] tibermittelt, einer vom
WWW Consortium (W3C) spezifizierten Sprache in XML. Mit diesen Informationen kénnen
in Java drei verschiedene Formen von Clients gebaut werden: Static Stub, Dynamic Prozy und
Dynamic Invocation Interface (DII).

Die ersten beiden Varianten benétigen ein spezielles Werkzeug, mit dem die WSDL-Daten
einmalig im Voraus in Klassen umgewandelt werden. Bei einem Client mit Static Stub werden
alle Klassen erzeugt, die fiir die Serialisierung und Deserialisierung der Daten benétigt wer-
den!!. Ein Nachteil dieser Vorgehensweise ist der Aufwand bei Anderungen der WSDL-Daten,
die immer eine vollstdndige Neuiibersetzung nach sich ziehen. Dieses Problem wird bei Cli-
ents mit Dynamic Proxy teilweise umgangen, denn es werden lediglich Schnittstellen von den
Werkzeugen erzeugt und keine Klassen mit einer Implementierung. Die wird erst zur Laufzeit
automatisch erzeugt und eingebunden, wodurch kleine Anderungen Beriicksichtigung finden.
Der Preis fiir diesen ,,Komfort“ liegt in der verzogerten Ausfithrung des ersten Aufrufs, denn im
Hintergrund laufen komplexe Prozesse ab, die den Dynamic Proxy erzeugen. Volle Kontrolle,
weniger Ressourcen-Bedarf und volle Flexibilitdt lassen sich nur mit dem Dynamic Invocation
Interface erreichen. Diese Schnittstelle ist Bestandteil der JAX-RPC-API, auf die gleich ndher
eingegangen wird. Die Auswertung der WSDL-Daten bleibt bei DII den Entwicklern/-innen
iiberlassen, um z.B. einen sehr schlanken und optimierten Client zu schreiben, der aber nicht
automatisch auf Anderungen des Web Services reagieren kann.

Um eine richtige Abwégung treffen zu kénnen, miissen die Vor- sowie Nachteile von Static
Stub, Dynamic Proxy und DII verglichen werden. Fiir die Belange des Projekts math-kit ist
der Static Stub vollkommen ausreichend, denn es werden keine gravierenden Anderungen an
den Schnittstellen der Komponenten erwartet. Diese Losung ist somit schlanker und schneller
in der Ausfithrung als der Dynamic Prozy und einfacher in der Umsetzung als die Ansteuerung
iiber DII.

Die Steuerung der vorgestellten drei Methoden erfolgt iiber die Java API for XML-Based
RPC (JAX-RPC). Abhiingig vom gewihlten Typ sind nur wenige Befehle nétig, bis ein Web
Service initialisiert und angesteuert ist. Abbildung 7.7 zeigt ein typisches Szenario.

Der Client greift direkt auf den Stub zu, der intern wiederum JAX-RPC-Aufrufe nutzt.
Uber das Netz werden dann in beide Richtungen SOAP-Nachrichten verschickt. Auf der Seite
des Servers ruft die JAX-RPC-Laufzeitumgebung mit Hilfe von so genannten Ties die Service-
Methoden auf. Bei den Ties handelt es sich um den ,,Klebstoff* zwischen den Service-Klassen,
der von dem Server automatisch generiert wird.

Neben den kommerziellen Anbietern, wie z.B. Systinet Server for Java'? von Systinet,

"Unter Serialisierung bzw. Deserialisierung wird die Umwandlung bzw. Riickumwandlung von Daten in einen
Daten-Stream verstanden, der z.B. iiber ein Netzwerk transportiert wird.
2http://www.systinet.com (29.10.05)

http://www.systinet.com

7.4 WebDAV

75

S

HelloClient

Program HelloService

Stubs Ties

JAX-RPC OO JAX-RPC

Runtime Runtime

Message

Abbildung 7.7: JAX-RPC-Aufruf [Bodoff04, S. 321]

Cape Clear 63 von Cape Clear und Artiz'* von Iona, gibt es leider nur das Projekt Awis!®
von der Apache Group, das eine ernst zu nehmende freie Alternative anbietet.

7.4 WebDAV

WebDAV steht fiir Web-based Distributed Authoring and Versioning und bezeichnet eine Er-
weiterung des HTTP-Protokolls. In erster Linie soll es die gemeinsame Arbeit in Gruppen
ermoglichen und sich in die existierende Infrastruktur einbetten. Die genaue Funktion, die
weder die Entwickler/-innen noch die Benutzer/-innen interessieren diirfte, ist in zwei Doku-
menten [Slein98; Goland99] festgelegt. Im Grunde genommen wird HTTP um ein paar Header
und Methoden erweitert, die das Auslesen von Dateistrukturen gestattet. Leider fehlt bei
WebDAV die Versionierung, obwohl der Begriff Bestandteil des Namens ist, weshalb eine Er-
génzung mit dem Namen DeltaV notig war. Auch die Details dieser Spezifikation [Clemm99]
sind unerheblich, weil auf fertige Losungen zuriickgegriffen werden soll.

Der Web-Server Tomcat wird beispielsweise mit einem eigenen WebDAV-Modul ausge-
liefert, sodass auf der Server-Seite lediglich ein wenig Konfigurationsarbeit ansteht. Auf der
Client-Seite ist die Auswahl freier Libraries leider wieder beschrinkt. Mit Jakarta Slide'®
stellt die Apache Group eine vollstindige Umsetzung von WebDAV und eine rudimentére von
DeltaV bereit.

3http://www.capeclear.com (23.10.05)
Y“http://www. iona.com (29.10.05)
http://ws.apache.org/axis (29.10.05)
http://jakarta.apache.org/slide/ (29.10.05)

http://www.capeclear.com
http://www.iona.com
http://ws.apache.org/axis
http://jakarta.apache.org/slide/

Kapitel 8

Metapher

Ein wichtiger Aspekt des Projekts math-kit ist der Einsatz der Baukasten-Metapher, um den
Benutzern/-innen ein besseres Verstindnis der Funktionalitét zu vermitteln. In der Informatik
spielen Metaphern seither eine bedeutende Rolle bei der Begriffsbildung, was bei einer so
jungen Wissenschaft nicht weiter verwunderlich ist, da nicht fiir jeden neuen Gegenstand des
Interesses ein neues Wort erfunden werden kann. Begriffe wie Méuse, Schlangen, Baume, Keller
und viele mehr stammen aus dem alltdglichen Sprachgebrauch, werden aber in einer anderen
Bedeutung eingesetzt, die ihrem urspriinglichen Kontext enthoben ist. Nur bestimmte Aspekte
des Begriffs werden iibernommen, andere hingegen ignoriert. Was zeichnet aber eine Metapher
genau aus, wie ist sie definiert? In der Brockhaus-Enzyklopédie findet sich hierzu folgendes:

»2Ausdrucksmittel der uneigentlichen Rede; das eigentlich gemeinte Wort wird er-
setzt durch ein anderes, das eine sachl. oder gedankl. Ahnlichkeit oder dieselbe
Bildstruktur aufweist, z.B. »Quelle« fiir » Ursache«. Die Sprache springt dabei,
im Unterschied zur Metonymie, gleichsam von einem Vorstellungsbereich in einen
anderen.“ [Bro91, S. 521]

Wie die gegebene Definition vermuten lisst, gibt es eine Reihe anderer sprachliche Begriffe,
die gewisse Eigenschaften mit der Metapher gemein haben, aber nicht mit ihr verwechselt wer-
den sollten. Die Allegorie ist eine bildhafte Darstellung eines Begriffs (Frau mit verbundenen
Augen fiir ,,Gerechtigkeit*), das Homonym ein gleich lautendes Wort mit anderer Bedeutung
(der Gehalt/das Gehalt), die Katachrese ein bildlicher Ausdruck fiir eine fehlende Bezeichnung
(Schliissel,,bart*) und die Metonymie eine Bedeutungsvertauschung (,,Stahl® fiir ,Schwert*), um
nur einige Beispiele zu nennen.

Metaphern kénnen aus mehreren Wortern, so genannte Wortfelder, bestehen, die in einem
grofleren Bedeutungszusammenhang stehen. Die Fliissigkeitsmetapher in der Elektrotechnik
sei stellvertretend als Beispiel genannt, bei der die Begriffe Strom, Kanal, Quelle, Kondensator
usw. ein Wortfeld bilden. Es ist daher zweckméflig, die metaphorische Definition nicht auf
einzelne Begriffe zu reduzieren.

Als rein sprachliches Mittel ist die Metapher fiir den Einsatz in der Software-Technik
freilich nicht hinreichend, sondern bedarf einer weitergehenden, umfassenderen Definition, die
den Menschen und die Gegenstinde des Interesses in einen Zusammenhang bringt. Werner
Ingendahl fiithrt den Begriff metaphorischer Prozess in [Ingendahl71] ein, der umfassend die
verschiedenen Kontexte der Metaphorik beschreibt.

8.1 Metaphorischer Prozess
Der Metaphorische Prozess wird nun auf Basis von [Busch98| aus verschiedenen Theorien und

Ansichten hergeleitet. Abbildung 8.1 gibt einen Uberblick iiber die verschiedenen Begriffe, die
mit ihm verbunden sind, und deren Relationen.

78

Metapher

Sonntag

August
27

Metaphorischer Prozess

Produzent

Ublicher

Metapher
Ubertragung

-

uniblicher

A

Rezipient

Gegenstand

Sache,
Neues,
Wortgruppe Wortgruppe Bezeichnetes

> Wirklichkeit,

Interaktion

Kontext Kontext

Situation

Abbildung 8.1: Metaphorischer Prozess nach [Busch98, S. 25]

Jedes Wort hat in Aristoteles’ Poetik [Aristoteles82] genau eine ,eigentliche“ Bedeutung
und ist auBerhalb des Zusammenhangs ,uneigentlich“ verwendet. Die Ubertragung (griech.
peTapopa) eines Wortes aus einem iiblichen Kontext in einen uniiblichen ist daher ein
zentraler Aspekt des aristotelischen Metapher-Begriffs. Jedoch ist die Beschrankung auf einzel-
ne Worte zu restriktiv, weshalb lieber die bereits definierte Wortgruppe genutzt werden soll.
Max Black kritisierte die einseitig gerichtete Beziehung der Ubertragung als unzureichend und
hat daher die Interaction View entwickelt [Black62]. Diese beschreibt, wie sich die Wortgrup-
pen aus dem tiiblichen und dem uniiblichen Kontext gegenseitig beeinflussen. Es werden die
implizierten Bedeutungselemente der Wortgruppe aus dem {iblichen Kontext {ibernommen,
die mit denen des Gegenstandes iibereinstimmen. Hierdurch werden dessen iibertragbare
Charaktermerkmale verdeutlicht, wohingegen die nicht erfassten an Bedeutung verlieren. In
den Worten von Max Black heift es:

,Die Metapher kommt dadurch zustande, da8 auf den Hauptgegenstand! ein Sys-
tem von »assoziierten Implikationen« angewandt wird, das fiir den untergeordneten
Gegenstand? charakteristisch ist.“ Black zitiert nach [Haverkamp83, S. 75]

»,Die Metapher selegiert, betont, unterdriickt und organisiert charakteristische Ziige
des Hauptgegenstands, indem sie Aussagen iiber ihn einbezieht, die normalerweise
zum untergeordneten Gegenstand gehoren® Black zitiert nach [Haverkamp83, S. 76]

Der Gegenstand im Schaubild 8.1 steht mit der Metapher ebenfalls in einer Wechselbe-
ziehung, da der Zustand des Gegenstandes Einfluss auf die Metapher selbst ausiibt. Carsten
Busch nennt als Beispiel den Mond, bei dem die Bezeichnungen ,,Zitronenmond® und ,,Silber-
sichel“ von dessen momentanen Eigenschaften gepréigt sind [Busch98, S. 15-16]. Angemerkt
sei noch, dass der Begriff ,Gegenstand® im Zusammenhang mit Metaphern offensichtlich un-
gliicklich gewahlt ist, da unter dieser Kategorie auch Menschen und Tiere verstanden sind,
und wird hier ausschliefflich zur Konsistenzwahrung mit den referierten Arbeiten verwendet.

'Das ist der iiber die Wortgruppe im uniiblichen Kontext beschriebene Gegenstand.
2Das ist der iiber die Wortgruppe im iiblichen Kontext beschriebene Gegenstand.

8.1 Metaphorischer Prozess

79

Die Beziehungen zwischen den Wortgruppen, der Metapher und dem Gegenstand existie-
ren selbstverstdndlich nicht um ihrer selbst willen, sondern nur indirekt {iber den Menschen, in
seinem Denken, Sprechen und Fiihlen. Der Mensch ist es, der durch kreative Leistungen eine
sprachliche Handlung durchfiihrt. Im Schaubild tritt er als Produzent /-in und Rezipient /-
in auf, der/die jeweils mit der Metapher und dem Gegenstand in Wechselbeziehung steht. Im
Grunde sind sich Produzent/-in und Rezipient/-in sehr &hnlich, da sie die gleiche geistige Leis-
tung erbringen miissen. Der wesentliche Unterschied besteht darin, wie sie zu einer Metapher
gekommen sind. Bei dem/der Produzent/-in kommt die Metapher, bewusst oder unbewusst,
aus dem Inneren, hingegen empfingt der/die Rezipient/-in sie von aulen. Auch wenn diese
Unterscheidung oftmals verschwimmt bzw. umgekehrt wird, ist diese Betrachtung sinnvoll, um
die pragmatische Dimension — wie also (Sprach)-Zeichen auf einen Menschen wirken — aus-
machen zu kénnen. Metaphern kénnen demnach vom/von der Rezipient/-in ,nicht erkannt,
»erkannt aber micht verstanden®, ,verstanden aber abgelehnt” und ,véllig anders verstanden
werden. Die Kommunikation beschrankt sich hierbei nicht nur auf das gesprochene Wort,
sondern umfasst den gesamten Habitus.

Der Gebrauch einer Metapher hat eine Funktion, eine Absicht, die mit ihm verbunden
ist. Walter Seifert beschreibt in seinem Aufsatz [Seifert80] siecben Funktionen, von denen in
dieser Arbeit eine als besonders wichtig fiir die Entwicklung und Nutzung eines Software-
Systems erachtet wird: die Prddikationsfunktion. Sie dient dem Erfassen der Realitdt durch
Modellbildung sowie Analogiebeziehungen und soll in diesem Kontext den Entwicklern/-innen
beim Entwurf und der Kommunikation eine héhere Produktivitéit verleihen. Diese Funkti-
on kann ebenfalls die Benutzer/-innen bei der spéteren Gewthnung an die Arbeit mit dem
System unterstiitzen. Fiir diesen Personenkreis kann auch eine weitere Funktion, die affektiv-
emotionale, beabsichtigt sein. Dabei geht es um die Vermittlung von Gefiihlsnuancen, mit
Ausrichtung auf intuitive Erfahrungen. So kénnen z.B. Angste minimiert werden, welche kom-
plexe Software-Systeme in Laien auslosen kénnen.

Die Funktion an sich ist abhéngig von der Situation, in der eine Metapher produziert oder
rezipiert wird. Es besteht schon ein Unterschied, ob eine Metapher in einem Software-Entwurf,
im Schulunterricht oder einem Gedicht Verwendung findet. Somit umfasst die Situation alles,
was bei der Metaphorik von Bedeutung ist. Als drei wesentliche Elemente zur Bestimmung
oder Unterscheidung von Situationen lassen sich die Ortlichkeit, der Zeitpunkt bzw. die Dauer
und die beteiligten Personen benennen.

Die Zeit spielt im metaphorischen Prozess eine besondere Rolle, und ist daher im Schaubild
explizit aufgefiihrt. Sie bestimmt wie und ob eine Metapher verstanden wird. Der ,Gully“
z.B. ist eine Metapher, die in den allgemeinen Sprachgebrauch iibergegangen ist und wohl
im 19. Jahrhundert aus dem englischen , gullet® (Schlund) hervorgegangen ist. Solche nicht
ohne weiteres identifizierbare Metaphern werden tote bzw. lexikalisierte Metaphern genannt.
In [Wolff82] werden neben diesem drei weitere Typen von Metaphern unterschieden: kreative
Metaphern (spontan, innovativ), konventionelle Metaphern (Klischees) und Remetaphosierung
(Reaktivierung eines Bildes durch eine Abwandlung). Um welchen Typen einer Metapher es
sich im Einzelnen handelt, ist abhéngig von der jeweiligen Gruppe von Rezipienten/-innen
und dem relativen Verwendungszeitraum innerhalb dieser ,,Sprachgemeinschaft*.

Zusammengefasst ist ein metaphorischer Prozess eine Ubertragung einer Wortgruppe von
einem iiblichen in einen uniiblichen Kontext, bei der es zu einer Interaktion kommt, die im
glinstigen Fall zu einem besseren Verstdndnis eines Gegenstandes fithrt. Die Metapher wird
meist bewusst von Produzenten/-innen erzeugt und von Rezipienten/-innen nachvollzogen,
wobei eine bestimmte Funktion beabsichtigt ist, deren Wirkung von der Situation und dem
Zeitpunkt bzw. der Dauer abhingt.

80

Metapher

8.2 Metaphern und Software-Technik

Metaphern sollen in dieser Arbeit zwei wesentliche Aufgaben erfiillen: Beim Entwurf erlau-
ben sie einen selbstverstdndlichen Umgang mit abstrakten Begriffen und fiir die spéteren
Anwender/-innen beschleunigen sie den Zugang zum erstellten Programm. Besonders bei der
Arbeit im Team und einem Austausch von Ideen kénnen Metaphern die Kommunikation ver-
einfachen. Letztendlich werden Softwaresysteme aber nicht um ihrer selbst willen erstellt,
sondern sollen Menschen bei der Erledigung ihrer Tétigkeit unterstiitzen.

In der Software-Technik spielen Metaphern bereits auf der Ebene der Programmiersprache
eine wichtige Rolle. Genau genommen handelt es sich bereits bei dem Wort ,,Programmier-
sprache* um eine Metapher. In Anlehnung an natiirliche Sprachen wie Englisch, kénnen Pro-
grammtexte auch von Menschen gelesen werden, die nicht mit den technischen Details vertraut
sind [Louden94]. Abstrakt und formal beschriebene Kontroll- und Datenstrukturen erhalten
durch Metaphern ,wie beispielsweise Schleifen, Baume und Schlangen, sprechende Bezeich-
ner, durch die wesentliche Merkmale erfasst werden. Auch die Vererbung in objektorientierten
Sprachen ist eine Metapher, mit der die kontrollierte Weitergabe bestimmter Eigenschaften
umschrieben wird. Um dem metaphorischen Prozess aus dem vorherigen Abschnitt gerecht
zu werden, folgen Buschs Spezifika fiir Metaphern aus der Sichtweise der Programmierung
[Busch98, S. 151]:

e Als Metaphern-Produzenten/-innen kommen in erster Linie Programmierer/-innen
und Entwickler/-innen in Betracht.

e Die Rezipienten/-innen lassen sich weniger genau eingrenzen, aber in Frage kommen
vor allem wiederum Programmierer/-innen und eventuell Benutzer/-innen.

e Metaphern auf dieser Ebenen nehmen vor allem eine Priadikations- und eine heuristische
Funktion wahr.

e Gegenstand der Metapher sind das Programmieren, Programmiersprachen und alle
enger damit zusammenhéngende Aspekte.

e Als iibliche Kontexte dienen eine Vielzahl verschiedenster Bereiche. Die vorherrschen-
den sind sicherlich nach wie vor die Bedeutungsfelder ,, Sprache* und ,Vorschrift“.

e Den uniiblichen Kontext bildet wie so oft die Informatik.

Metaphern auf einem hoheren Abstraktionsniveau dienen grundlegenden Sichtweisen des
Entwurfs und der Programmierung von Software. Ein gutes Beispiel sind John Shores Software-
Gebéude in [Shore85]. Er vergleicht den Entwurf und Bau eines Hauses mit dem von Program-
men. Zuerst steht ein Idee von einem Haus, die in einer Reihe bekannter Schritte verfeinert
wird, bis am Ende eine physikalische Struktur entsteht. Einen anderen Ansatz verfolgt die Me-
tapher Werkzeug, Automat, Material (WAM) in [Ziillighoven98|. Fachliche Gegensténde und
Konzepte werden als Material betrachtet, das Anwendern/-innen mit Werkzeugen bearbeiten.
Wiederkehrende Aufgaben, die ohne menschliches Zutun abgearbeitet werden kénnen, lassen
sich durch Automaten abarbeiten.

Auch Bertrand Meyer hilt Metaphern fiir ein wichtiges Instrument bei der Entwicklung und
Nutzung von Software. Besonders neue Ideen lassen sich mit ihnen iiberzeugend vermitteln:

»2Metaphors can be excellent teaching tools. The great scientist-expositors — the
FEinsteins, Feynmans, Sagans — are peerless in conveying difficult ideas by ap-
pealing to analogies with concepts from everyday’s experience. This is the best.”
[Meyer97, S. 672]

Er warnt aber auch vor den Gefahren, die mit dem Gebrauch von Metaphern verbunden
sind. Leicht kénnen Dinge verwechselt oder falsche Schliisse gezogen werden. Aus diesem Grund
miissen Metaphern immer mit Bedacht gew&hlt werden.

Kapitel 9

Bewertung

In diesem Teil der Arbeit wurden die wichtigsten Themen und Aspekte fiir den Umgang mit
modularen E-Learning-Inhalten vorgestellt. Ausgehend von der Zielsetzung dieser Arbeit in
Abschnitt 1.2 soll nun eine Bewertung des aktuellen Stands der Wissenschaft erfolgen. Die
genaue Benennung der bestehenden Liicken ergibt die Grundlage fiir das Vorgehen in den
néichsten Teilen dieser Arbeit.

Die Lernobjekte in Kapitel 3 sind Container fiir Lerninhalte und haben durch ihre Grofle
(siehe Abschnitt 3.3) und Anordnung (siehe Abschnitt 3.4) Einfluss auf die Didaktik. Die
zahlreichen Theorien und Definitionen der Lernobjekte verdeutlichen, dass mittlerweile der
Begriff Lernobjekt im E-Learning verankert ist. Auch wenn es Differenzen bei dem einen
oder anderen Detail gibt, scheint {iber die wesentlichen Funktionen Einigkeit zu herrschen. In
Hinblick auf die Zielsetzung dieser Arbeit sind Lernobjekte somit die ideale Einheit fiir die
Module. Sie sind ein zentrales Thema dieser Arbeit und Ausgangspunkt fiir die Bewertung
der Autorensysteme sowie Lernplattformen. Mit den Standards IMS Content Packaging (siehe
Abschnitt 3.5) und SCORM (siehe Abschnitt 3.6) stehen Kodierungen fiir Lernobjekte zur
Verfiigung, die weithin akzeptiert sind.

Eng verkniipft mit den Lernobjekten sind die Metadaten aus Kapitel 4. Sie sind unerlésslich
fiir die Identifizierung von Lernmaterialien, besonders in grofien Systemen. Es wurden einige
Definitionen und Standards vorgestellt, bei denen teilweise die Meinungen stark auseinander
liefen. Besonders schwierig scheint die Vereinigung von Technik und Didaktik zu sein. An der
Standardisierung fiithrt dennoch kein Weg vorbei und mit LOM (siche Abschnitt 4.3) ist ein
erster Schritt getan. Wenn diese Spezifikation nicht ausreichen sollte, gibt es noch diverse
Spezialisierungen in Form von Application Profiles.

Auf der Seite der Lernobjekte und Metadaten stehen also die nétigen Mittel fiir modulare
E-Learning-Inhalte bereit. Aus den Bewertungen fiir Autorenwerkzeuge (siehe Abschnitt 5.2)
und Lernplattformen (siehe Abschnitt 6.3) ldsst sich aber ersehen, dass diese Moglichkeiten
nicht genutzt werden. Keines der vorgestellten Produkte benutzt den Begriff Lernobjekt, ge-
schweige denn bietet die damit verbundene Funktionalitéit an. Meist lassen sich keine Module
definieren, sondern nur Kurse. Wenn dann auch noch fremde Inhalte integriert werden sollen,
ist schon aufgrund der verschiedenen Layouts und Notationen eine Inkonsistenz vorhanden.
Mit der Metadatenunterstiitzung sieht es zwar ein wenig besser aus — immerhin bieten einige
LOM an —, aber das vorhandene Potential der Standards wird nicht genutzt. Es reicht nicht
aus, die Metadaten anzuzeigen und gegebenenfalls bearbeiten zu lassen. Hierdurch werden sie
zum Selbstzweck degradiert. Lehrende und Lernende miissen durch Metadaten einen schnellen
Zugang zu den Materialien erlangen, die sie fiir ihren Einsatz benotigen. Nur so ldsst sich auf
Seiten der Lehrenden die Mehrfachentwicklung bereits existierender Inhalte vermeiden. Wenn
passende Lernobjekte, fremde wie eigene, iiber ein paar Stichworte in einer Datenbank gefun-
den werden, dann hat sich die Miihe der Metadateneingabe gelohnt. Fiir Lernende erschliefit
sich so das gesamte Angebot und im Selbststudium lassen sich einfacher individuelle Liicken
schlieflen.

82

Bewertung

Von der Unterstiitzung der Lerntheorien aus Kapitel 2 kann bei den Autorenwerkzeugen
und Lernplattformen keine Rede sein. Lediglich der Behaviorismus wird in Form von Quiz
und Tests angeboten. Wenigstens gibt es keine technischen Hindernisse, eigene Lernmodelle
zu integrieren, aber hier muss auf geeignete Programmen noch gewartet werden.

9.1 Resiimee

Die Beschreibung des Standes der Wissenschaft hat deutlich gezeigt, dass die angestrebte
Zielsetzung mit den heutigen Mitteln nicht in dem gewiinschten Umfang realisierbar ist. Es
muss insbesondere eine bessere Verbindung zwischen den Theorien und der Technik hergestellt
werden. Mit den vorhandenen Theorien lédsst sich ohne Probleme ein System fiir modulare E-
Learning-Inhalte modellieren, aber die Umsetzung ist kompliziert. Das liegt unter anderem an
den abstrakten Funktionsbeschreibungen. Gewiss ist es einfach, die Wiederverwendbarkeit von
Lernobjekten einzufordern, doch impliziert dies eine Reihe von Hiirden, die bereits in Kapitel 3
iiber Lernobjekt angerissen wurden. So ist es nicht weiter verwunderlich, dass jedes Produkt
fiir sich genommen, sei es ein Autorenwerkzeug oder eine Lernplattform, fiir seine Aufgabe
einen guten Dienst erweist. Hierbei wird jedoch nur ein spezielles Problem aufgegriffen und
der Blick fiir das Gesamte fehlt. Als einziger Ausweg bietet sich ein ganzheitliches Konzept an,
das von der Herstellung bis zur Présentation von E-Learning-Inhalten alle Aspekte abdeckt.
Dieses Konzept ist der rote Faden, der sich durch diese Arbeit ziehen soll. Im folgenden wird
eine Vision des Systems skizziert, die etwas detaillierter als die Zielsetzung ist und die bereits
vorgestellte Funktionen als Anregung nimmt.

Konkret soll ein System angeboten werden, dessen Kern modulare E-Learning-Inhalte sind
und von dem Autoren/-innen, Lehrende sowie Lernende profitieren. Bei der Erstellung neu-
er Inhalte sollen Autoren/-innen alle technischen Moglichkeiten an die Hand bekommen, mit
denen sie moderne Lernobjekte produzieren kénnen. Hierzu gehéren unter anderem eine Ein-
bettung multimedialer Komponenten oder die Darstellung eines Dokuments in verschiedenen
Layouts. Aber auch die Integration existierender Inhalte in proprietdren Formate — quasi
eine Umwandlung in ein allgemeines Format — und die Kombination mit fremden Lernobjek-
ten miissen moglich sein. Im Interesse einer vielseitigen Nutzung auch mit anderen Systemen
sollen international anerkannte Standards verwendet werden. Fiir die Autoren/-innen diirfen
sich hieraus aber keine Einschriankungen in der Gestaltung ergeben und die Kodierung sollte
transparent ablaufen. Bei der Entwicklung von Inhalten in Teams, womoglich an verschiedenen
Orten, muss es eine zentrale Datenhaltung geben, die eine synchronisierte Entwicklung erlaubt.
Unnétige Mehrarbeit oder der totale Verlust von Anderungen, z.B. durch das gleichzeitige Ar-
beiten an einer Datei, wobei der/die letzte Schreibende ,, gewinnt“, diirfen nicht auftreten.

Fiir Lehrende soll das System einen Pool verschiedener E-Learning-Inhalte bereithalten, die
sie fiir Préasenzveranstaltungen, Fernveranstaltungen und zum Selbststudium anbieten. Sollte
ein Thema nur unvollstéindig oder nicht vorhanden sein, kénnen Lehrende selbst als Autoren/-
innen auftreten bzw. diese Aufgabe delegieren. Die neuen Lernobjekte werden ebenfalls in
den Pool gestellt und stehen damit allen zur Verfiigung. Hier konnen sich auch die Lernenden
bedienen, und iiber Suchmasken ihre Materialien finden. Die Vision sind thematisch verkniipfte
Lernobjekte, die manuell oder automatisch Exkurse zu einem Thema ermdglichen. Diesen
Mechanismus soll das folgende Beispiel verdeutlichen: Ein Lernobjekt beschreibt das Ohmsche
Gesetz, in dem die Beziehung zwischen Strom, Spannung und Widerstand erkldart wird, die
Begriffe selbst aber nicht. Ohne vorherige direkte Verkniipfung kann das System iiber die
Metadaten verwandte Lernobjekte anbieten, in denen diese Begriffe erklart werden. Da der
Mechanismus auch fiir die herangezogenen Lernobjekt zihlt, kann er beliebig oft wiederholt
werden. Auf diese Weise entsteht regelrecht ein Netzwerk unter den Lernobjekten, das nicht
statisch sein muss, sondern je nach Bedarf neu berechnet werden kann.

Diese Abstrakte Sicht auf die Zielsetzung muss freilich verfeinert werden. Ein Mittel zur
besseren ErschlieBung der wesentlichen Merkmale ist die Metapher des Baukastens, die Entwi-
cklern/-innen wie Benutzer/-innen ein intuitives Verstdndnis gibt.

Teil 11

Entwurf

Kapitel 10
System-Vision

Die Bewertung im vorherigen Kapitel hat eindeutig gezeigt, dass die Zielsetzung dieser Arbeit
nicht mit den heute verfiigharen Mitteln zu realisieren ist. Deshalb soll nun eine verfeinerte,
eine technischere Sicht auf das angestrebte System erstellt werden. Diese System-Vision gibt
den Bauplan fiir die Implementierung vor und ist eine verbindliche Vorgabe. Sie wird fiir die
Entscheidung herangezogen, welche existierenden Programme, Libraries’ und Standards zum
Einsatz kommen. Fehlende Komponenten werden benannt und so modelliert, dass sie einfach
implementiert werden konnen. Einige Rahmenbedingungen, die alle Projektbeteiligten von
math-kit als sinnvoll erachten, wurden bereits im Abschnitt 1.3 {iber die Methodik erwéhnt.
Wesentliche Entscheidungen fiir die System-Vision sind die objektorientierte Modellierung und
der Einsatz der Programmiersprache Jawva.

Zuerst muss ein fachliches Modell erstellt werden, aus dem das technische abgeleitet wer-
den kann. Hierbei gilt zu beachten, dass es vollstindig ist und alle gewiinschten Funktionen
beinhaltet. Eine Uberpriifung zwischen fachlichem Modell und der realen Welt, auch Veri-
fizierung genannt, gibt Aufschluss hieriiber. Danach kann das technische Modell hergestellt
werden, wobei es sich um eine Abbildung des fachlichen handelt. Die abschlieBende Uber-
priifung zwischen technischem und fachlichem Modell heiffit Validierung. Hieraus wird auch
ersichtlich, warum so sorgfiltig bei der fachlichen Modellierung gearbeitet werden muss. Fehler
und Liicken, die sich an dieser Stelle eingeschlichen haben, wirken sich moglicherweise erst bei
der Implementierung oder bei der Arbeit aus. Uber die Validierung sind sie nicht zu erfas-
sen und eine Verifizierung ist zu diesem Zeitpunkt zu spit. Jede nachtrigliche Anderung im
fachlichen Modell kann schwerwiegende Konsequenzen nach sich ziehen.

Steht dieses Vorgehen aber nicht im Widerspruch zu dem iterativen Prototyping, wie es
eingangs bei der Methodik festgelegt wurde? Diese Frage ist wichtig, da ihre Antwort eini-
ge Missverstdndnisse ausrdumt. Bei der iterativen Vorgehensweise werden bewusst bestimmte
Bereiche nicht sofort modelliert, um schnellst moglich vorzeigbare Ergebnisse zu haben. Da-
mit ist aber nicht gemeint, dass in irgendeiner Form schlampig gearbeitet werden darf und
Liicken im Modell erlaubt sind. Das Gegenteil ist der Fall. Es muss eine genaue Vorstellung
vom Aufgabenbereich geben, um abschétzen zu kénnen, welche Funktionen sich nachtrég-
lich hinzufiigen lassen. Bei dem iterativen Vorgehen werden somit bewusst Abwéigungen und
Prioritdten gesetzt, die ein genaues Wissen iiber das Zielsystem voraussetzen. Dennoch bleibt
bei der Implementierung geniigend Spielraum, um unvorhergesehene Schwierigkeiten oder An-
derungswiinsche zu beriicksichtigen. Auf keinen Fall sollen hier Vorgehensmodelle wie das
Wasserfallmodell proklamiert werden.

Bei der fachlichen Modellierung stellt sich immer wieder die Frage, wie die Fakten aus
der Realitét gezogen und formal festgehalten werden. Eine beliebte Vorgehensweise sind Inter-
views. Mit ihnen wird versucht, sich von den Benutzern/-innen die Prozesse erkldren zu lassen,
die vom System unterstiitzt werden sollen. Hieraus werden Prosatexte entwickelt, die eine um-

n dieser Arbeit wird der Begriff Library fiir Programmbibliotheken, wie z.B. von Java oder C++, verwen-
det.

86

System-Vision

gangssprachliche Beschreibung der Funktionalitét bilden. Im Fall des Projekts math-kit wurde
bereits im Vorwege festgehalten, welche Vorstellung von dem System existiert. Als Teil des
Antrags und der Projektbeschreibung wurde quasi eine fachliche Beschreibung vorgelegt, die es
genauer zu untersuchen gilt. In mehreren Projekttreffen wurde dann weiter herausgearbeitet,
was einen multimedialen Baukasten ausmacht und welche Funktionen wiinschenswert sind.
Aus diesem Grund waren bei dem Projekt math-kit keine Interviews fiir eine Beschreibung in
Prosa nétig.

Das Restimee (siche Abschnitt 9.1) des Standes der Wissenschaft ist bereits eine Verfeine-
rung der Zielsetzung, angeregt durch die neuen Erkenntnisse der Untersuchung. Dennoch l&sst
sie einige Interpretationsfreirdume zu, die durch eine formalere Beschreibung eingeschriankt
werden sollen. Hierzu werden die Fakten bestimmt, die bereits bekannt sind. Ein wichtiger
Anhaltspunkt sind die verschiedenen Personen, die mit dem System interagieren. Danach
werden Feststellungen abgeleitet, aus denen optimale Losungen hervorgehen. So soll z.B. die
bestmogliche Aufteilung der gesamten Architektur gefunden werden. Ein gesundes Gleich-
gewicht zwischen existierenden Losungen und Eigenentwicklungen ist freilich erstrebenswert.
Folglich muss ein Kompromiss zwischen den beiden Extremen ,alles neu entwickeln®, mit einer
optimalen Erfiillung der Anspriiche, und ,alles zusammensetzen®, dafiir aber Abstriche in der
Funktionalitdt, gefunden werden.

Nach der Fertigstellung des fachlichen Modells erfolgt die Uberfithrung in das technische.
Zuerst wird eine grobe Architektur aufgestellt, die einzelne Programme und die Beziehung-
en untereinander verdeutlicht. Dann folgen die Komponenten, aus denen sich die Programme
zusammensetzen, die wiederum in Klassen zerlegt werden. Neben diesen starren Relationen
gibt es auch Algorithmen und Interaktionen, die ndher modelliert werden sollen. Dies erfolgt
iiber Sequenz- und Ablaufdiagramme, mit denen sich dynamische Zusammenhinge beschrei-
ben lassen. Letztendlich wird die Modellierung so weit getrieben werden, dass eine prézise
Ubersetzung in eine objektorientierte Programmiersprache maglich ist.

Um den Begriff Komponente im Kontext der Software-Technik richtig zu verwenden, sollte
eine ergédnzende bzw. erkldrende Erlduterung angefiihrt sein. Denn im Gegensatz zur Objekt-
orientierung divergieren die Meinungen der Gelehrten sowie die technischen Umsetzungen bei
diesem Begriff [Szyperskio8; Griffel98]. Die folgende Definition soll weitestgehend fiir diese
Arbeit gelten:

A software component is a unit of composition with contractually specified interfa-
ces and explicit context dependencies only. A software component can be deployed
independently and is subject to composition by third parties.“ [Szyperskio8, S. 164]

10.1 Rollen und Anwendungsfille

Wie erwéhnt, soll das fachliche Modell {iber die Tétigkeiten der handelnden Personen, manch-
mal auch Akteure genannt, entwickelt werden. Da manche Aktivitédten nicht von Einzelnen
sondern von Mehreren ausgefiihrt werden koénnen, ist das Konzept Rollen eine wichtige Ab-
straktion. Es handelt sich um eine Gruppierung, bei der alle fiir eine Aktion in Frage kommen-
den Personen durch die stellvertretende Rolle beschrieben werden. Dieser Ansatz bietet eine
Reihe von Vorteilen. Mit einer Rolle ist immer ein genau definierter Aufgabenbereich verbun-
den, der eine bestimmte Anzahl von Tétigkeiten umfasst. Somit ist eine Person nicht an eine
Rolle gebunden, sondern kann je nach durchzufithrender T#tigkeit eine andere annehmen.
Die einzelnen Aktivitéiten werden in dieser Arbeit als Anwendungsfille beschrieben. Von
Ivar Jacobsen in den spéten 60er Jahren entwickelt, fanden sie Ende der 80er Jahre ihren Ein-
zug in die objektorientierte Analyse. Um eine falsche Annahme gleich vorweg auszurdumen:
In erster Linie handelt es sich um Beschreibungen in Form von Texten und nicht um Strich-
ménnchen und Ellipsen, wie sie von vielen CASE-Tools angeboten werden. Die Diagramme
der UML sind kein echter Ersatz fiir die schriftliche Form, weil sie keine Abléufe beschreiben
konnen. Sie haben aber trotzdem ihre Daseinsberechtigung, denn es ist fiir diese Arbeit nicht

10.1 Rollen und Anwendungsfille

87

sinnvoll, in den folgenden Abschnitten alle Anwendungsfille in ihrer vollen Lange aufzulisten.
Fiir das Verstédndnis dieser Arbeit ist dieses Detailwissen nicht von Belang und wiirde den
Rahmen sprengen. Deshalb werden die UML-Diagramme als Inhaltsverzeichnisse genutzt, die
eine Ubersicht der Beziehungen zwischen den Anwendungsfillen untereinander und zu den
Rollen geben. Grundsétzlich wird fiir Anwendungsfiille keine Form vorgeschrieben. Der Ein-
satz formloser Anwendungsfille ist genauso legitim wie eine Vorgabe durch Schablonen, in
denen definierte Felder ausgefiillt werden miissen.

Im Stand der Wissenschaft werden bereits alle Personen genannt, die bei der Arbeit mit
dem System auftreten. Zur eindeutigen Identifizierung erhélt jede Rolle einen Bezeichner,
der aus Prignanz und Kiirze in Englisch angegeben wird. Im folgenden stehen sie jeweils in
Klammern hinter der genannten Personengruppe.

Die zentralen Gruppen sind die Lehrenden (Professor) und Lernenden (Students), da
letztendlich alle Bemiihungen dieser Arbeit ihr Streben unterstiitzen soll. Allgemeiner defi-
niert handelt es sich um Benutzer/-innen (User) der Lernplattform, {iber die sie alle Aktivi-
tédten durchfithren. Im Zusammenhang mit den Autorensystemen treten die Autoren/-innen
(Author) in Erscheinung, deren Aufgaben so vielfiltig sind, dass eine Spezialisierung dieser
Rolle, wie in [Bungenstock02; Baudry02b] vorgeschlagen, sinnvoll ist. Zwischen der Erstellung
von Lernobjekten (Developer), deren Kombinierung zu hoheren Strukturen (Composer)
und der Veroffentlichung auf einem Server (Publisher) soll durch drei Rollen unterschieden
werden. Die Tétigkeiten der Administratoren/-innen (Administrator) sind so vielfiltig, dass
sie sich nur schwer vollstindig beschreiben lassen. Da sie neben den Verwaltungsaufgaben
die anderen Rollen bei der Arbeit unterstiitzen, werden sie hdufiger mit unvorhersagbaren
Schwierigkeiten konfrontiert. Denn, wann immer ein technisches Problem auftritt, ist dessen
Beseitigung Aufgabe der Rolle Administrator.

Bevor nun die Anwendungsfille der einzelnen Rollen beschrieben werden, gibt Abbildung
10.1 eine Ubersicht aller definierten Rollen. Die Pfeile zwischen ihnen driicken die Spezialisie-

X X X

Author Administrator User

T

AN
X X X

Developer Composer Publisher Professor Student

rung aus.

Abbildung 10.1: Ubersicht der Rollen

10.1.1 Author

Die Rolle Author dient zur Abstraktion allgemeiner Aufgaben der Autoren/-innen und kann
in ihrer Funktion etwa mit einer abstrakten Klasse verglichen werden. Aus diesem Grund wird
in dieser Rolle kein Anwendungsfall fiir die Erstellung von E-Learning-Materialien eingefiihrt.
Dies geschieht erst in den drei Spezialisierungen Developer, Composer und Publisher, die alle
Anwendungsfille ,erben“ und manche auch erweitern.

Die Rolle Author beschreibt alle Téatigkeiten, die auf dem Weg zur Produktion anfallen.
Hierzu gehort der Umgang mit Dateien, der das Erstellen, Bearbeiten und Loschen einschlief3t.
WEeil jede spezialisierte Rolle mit den Dateiformaten vertraut ist, mit denen sie téglich zu tun
hat, ist dies ein gutes Beispiel fiir die Erweiterung von Anwendungsfillen. Ein potentieller
Anwendungsfall ist ,Datei bearbeiten®, der in der Rolle Author allgemein giiltig beschrieben

88

System-Vision

ist. Erst in der Spezialisierung lassen sich dann die Abldufe fiir ein spezielles Format, z.B.
ein Lernobjekt, genau angeben. Zu den weiteren Operationen auf Dateiebene gehoren die
Versionierung und das Sperren bzw. Freigeben von Dateien. Bei der Versionierung werden die
Anderungen zwischen zwei Zeitpunkten protokolliert, sodass sich alle Arbeitsschritte jederzeit
nachvollziehen oder riickgéingig machen lassen.

WVersioning is the management of multiple copies of the same evolving resource,
captured at different stages of its evolution.“ [Vitali99)]

Mit dem Sperren von Dateien ldsst sich die parallele Bearbeitung verhindern. Weil diese
Anwendungsfille fiir alle Formate gleich sind, werden keine Erweiterungen in den abgeleiteten
Rollen erwartet.

Bis jetzt sind die Aufgaben der Rolle Author so allgemein gefasst, dass sie bei jeder Té#tig-
keit mit dem Rechner auftreten kénnen. Zu der Rolle gehdren aber auch spezifischere Anwen-
dungsfille, wie z.B. der Umgang mit Metadaten, deren Erstellung bzw. Bearbeitung Aufgabe
aller Autoren/-innen ist. Zwar werden bei der Erstellung von Lernobjekten inhaltlich andere
Metadaten vergeben als bei der Festlegung des Layouts und Formats, aber durch den Einsatz
von Standards werden sich die Eingabemasken wenig unterscheiden. Ahnlich sieht es mit einer
Voransicht auf die geleistete Arbeit aus. So unterschiedlich die erstellten Materialien auch sein
mogen, die auszufithrenden Schritte zur Kontrolle des Resultats sind die gleichen. Abbildung
10.2 zeigt eine Ubersicht aller Anwendungsfiille in UML-Notation.

Author

Abbildung 10.2: Anwendungsfille der Rolle Author

10.1.2 Developer

Die Erstellung und Wartung von Lernobjekten ist die wesentliche Aufgabe der Rolle Developer.
Weil sie mit vielen verschiedenen Theorien und Techniken umgehen muss, sind die Anspriiche
an ihre Fertigkeiten sehr hoch. Normalerweise lduft die Arbeit dieser Rolle wie folgt ab: Die
Rolle Professor hat ein didaktisches Konzept entwickelt und eine grobe Vorstellung von den
benotigten Inhalten. Da ihr kein hohes technisches Wissen abverlangt werden darf, hilft die
Rolle Developer bei der Umsetzung der Gedanken, wobei an dieser Stelle ausdriicklich auf die
Trennung der Aufgaben dieser beiden Rollen eingegangen werden soll. So kénnte die Erstellung
von Texten und Abbildungen gewiss der Rolle Professor zugeschrieben werden, da sie eher
fachlichen als technischen Sachverstand voraussetzt. Dennoch soll aus Griinden der Konsistenz
dieser Prozess des ,,Kodierens* der Rolle Developer zugeschrieben werden, denn auf diese Weise
wird eine Vermengung #hnlicher Tatigkeiten vermieden. Dies ist ohne Weiteres moglich, da
Personen nicht an Rollen gebunden sind und es sich jeweils nur um eine Sicht auf das System
handelt. Eine Dozentin kann also ihre Texte und Abbildungen selbst erstellen, ohne sich an
eine reale Technikerin wenden zu miissen.

10.1 Rollen und Anwendungsfille

89

Neben diesen einfachen Umsetzungen gibt es aber auch komplexere Aufgaben, wie z.B. die
Erstellung von Animationen und Videos oder die Programmierung von interaktiven Kompo-
nenten und Simulationen. Obwohl die professionellen Autorenwerkzeuge aus Abschnitt 5.1.1
komplexe Details verdecken, braucht es Erfahrung, um die technischen Moglichkeiten zu nut-
zen. Noch anspruchsvoller ist die Entwicklung von Java Applets, bei der wirklich nur noch
Experten Ergebnisse in akzeptabler Zeit erreichen. Hier zeigt sich, wie unterschiedlich die
Anspriiche an die Rolle Developer sind, denn das Spektrum reicht von Drag’n’Drop mit WY-
SIWYG bis zur Programmierung in Entwicklungsumgebungen.

Ein weiterer Anwendungsfall ist die Umwandlung existierender Inhalte in das Hauptformat
des Systems. Oft hat die Rolle Professor Skripte, Ubungsaufgaben und Vortrige aus bereits
gehaltenen Veranstaltungen, die wiederverwendet werden sollen. Da es sich um umfangreichere
Dokumente handelt, konnen sie nicht 1:1 in Lernobjekte umgewandelt werden und miissen per
Hand verkleinert werden. Neben den technischen Problemen, wie einzelne Daten extrahiert
und konvertiert werden, sollten auch die Belange der Granularitit und Sequenzierung aus den
Abschnitten 3.3 und 3.4 bedacht werden. Abbildung 10.3 zeigt die Rolle Developer, welche aus
der Rolle Author inklusive der genannten Anwendungsfille abgeleitet ist.

Datei erstellen
/ PEA)
— 1 Datei bearbeiten
ZA

<<extends>> .-~

<<extends>>

Author B] - | <<extends>> -~
ZT Multimedia erstellen ! -
I

I

I

- I

. !

. . . I
Multimedia bearbeiten | —<extends>>

I

I

I

I

I

I

|

Lernobjekt erstellen

Fremde Inhalte importieren
Fremde Inhalte zerlegen

Abbildung 10.3: Anwendungsfille der Rolle Developer

Lernobjekt bearbeiten

Developer

10.1.3 Composer

Die fertigen Lernobjekte werden von der Rolle Composer zu hoheren Strukturen zusammen-
gesetzt, wobei keine Aufteilungen vorgegeben sind. Es kann sich z.B. um Abschnitte, Kapitel
und Kurse handeln, aber auch andere Strukturen wie Ubungen, Tests und Explorationsberei-
che sind denkbar. Im Gegensatz zu der Rolle Developer stehen die technischen Fragen eher
im Hintergrund, denn die Rolle Composer muss einen fachlichen Gesamtiiberblick haben —
moglicherweise von der Rolle Professor angeleitet —, um bei der Sequenzierung vorteilhafte
Lernpfade auszuarbeiten.

Richtig effizient kann die Rolle Composer nur arbeiten, wenn sie gezielt aus moglichst vielen
Inhalten die passenden herausnehmen kann. Hierfiir muss das System raffinierte Suchmecha-
nismen iiber die Metadaten anbieten, die allgemeine und detaillierte Anfragen anbieten. Nach
einer Suche muss die Rolle Composer das Suchergebnis analysieren und entscheiden, ob pas-
sende Inhalte enthalten sind. Stellt sich heraus, dass ein Lernobjekt nur bedingt geeignet ist,
kann die Rolle Developer entsprechende Anpassungen vornehmen. Lésst sich zu einem Thema
gar kein Material finden, miissen die Rollen Professor und Developer es erst entwickeln.

Bei der Zusammenstellung der Lernobjekte kénnen zwei Anwendungsfille unterschieden
werden, die sich auf die Wartung und Aktualitdt der erzeugten Struktur auswirken. Entweder
wird eine Kopie eines Lernobjekts oder ein Verweis erzeugt. Bei der Kopie wird das Lernobjekt

90

System-Vision

vervielfialtigt und direkt im Kurs abgespeichert, wobei etwaige Korrekturen im Original keine
Auswirkung auf die Kopien haben. Da dies auch umgekehrt gilt, Anpassungen der Kopie nur
lokal wirken, kann dies aber ein gewiinschter Effekt sein, denn auf diese Weise lassen sich In-
halte nach eigenen Wiinschen &ndern, ohne andere Kurse zu beeinflussen. Kann ein Lernobjekt
wie gefunden iibernommen werden, sollten lieber Verweise eingesetzt werden. Sie verbrauchen
weniger Platz, da jedes Lernobjekt nur ein Mal vorliegt, und die Inhalte sind immer auf dem
neuesten Stand. Ist der letzte Effekt nicht gewiinscht, kann dieser bei eingeschalteter Versio-
nierung durch einen Verweis auf eine bestimmte Version vermieden werden.

Fertige Strukturen koénnen selbstversténdlich wieder in ihre Bestandteile zerlegt werden,
um z.B. den Pool an Lernobjekten aufzufiillen. Dies ist besonders wichtig fiir die Wiederver-
wendbarkeit fremder Materialien (siche Abschnitt 3.1).

Auch die Rolle Composer kann wie die Rolle Developer fremde Inhalte importieren. Da
es sich aber um einen automatisierten Prozess handelt, ist das Ergebnis von der Qualitéat des
Ursprungsdokuments abhéngig. Enthélt es nur unzureichende Strukturinformationen, miissen
die Lernobjekte moglicherweise von der Rolle Developer zerkleinert werden. Abbildung 10.4
fasst die beschriebenen Anwendungsfiille zusammen.

/ Datei erstellen

h

; Datei bearbeiten
|

<<extends>> A

Author 3
Struktur erstellen ! <<extends>>
Struktur bearbeiten

T

<<uses>> -~ T~ _ <<uses>>

~

Kopie einfiigen

Fremde Inhalte importieren
Fremde Inhalte zerlegen
Lernobjekt suchen

Abbildung 10.4: Anwendungsfille der Rolle Composer

Composer

10.1.4 Publisher

Fiir die &dsthetischen und praktischen Belange der Présentation modularer E-Learning-Inhalte
ist die Rolle Publisher zusténdig. Sie kiimmert sich um die Integration der Materialien in die
Lernplattform, sodass die Rollen Professor und Student sie mit ihren Anzeigeprogrammen
nutzen koénnen. Hierbei muss die Rolle Publisher einige Punkte beachten, denn von der Rolle
Composer erhilt sie in der Regel einen Kurs, dessen Inhalte lediglich semantisch beschrieben
sind. Fiir die Darstellung muss zuerst ein Layout erstellt bzw. ausgewéhlt werden, in dem der
Kurs erscheinen soll. Dann muss das Ausgabeformat, z.B. HTML oder PDF, auf die Anzeige-
programme und die Lernplattform abgestimmt werden, damit es zu keinen Inkompatibilitdten
kommt. Im Idealfall unterstiitzt die Lernplattform einen der genannten Content Packaging
Standards (siehe Abschnitt 3.5 und 3.6), sodass die Rolle Publisher die Ausgabe parametri-
sieren kann, ob z.B. Submanifeste generiert werden oder welche Metadaten enthalten sind.

Nach der Ubersetzung des Kurses muss das Resultat auf die Lernplattform hochgeladen
werden. Die einzelnen Schritte dieses Anwendungsfalls hingen ausschliefilich von der Lern-
plattform ab und variieren von System zu System. Bei einem gemeinsam nutzbaren Speicher-
bereich, z.B. in Form eines Netzlaufwerks, ist dieser Schritt obsolet. Abbildung 10.5 zeigt
zusammenfassend die genannten Anwendungsfille.

10.1 Rollen und Anwendungsfille

91

Datei erstellen
3 Datei bearbeiten
I

<<extends>> A

Author 3
Layout erstellen | <<extends>>
Layout bearbeiten

Ausgabeformat einstellen
Publisher
In Lernplattform integrieren

Abbildung 10.5: Anwendungsfille der Rolle Publisher

10.1.5 User

Die Rolle User beschreibt die Anwendungsfille aller Personen, die Dienstleistungen und Inhal-
te einer Lernplattform nutzen. Hierbei geht es in erster Linie um die Mechanismen des Zugriffs
und weniger um die Verwendung des Angebots. Diese Details werden als Anwendungsfille in
den beiden Spezialisierungen Student und Professor beschrieben. Uber bestimmte Anzeigepro-
gramme, wie z.B. Webbrowser oder Media-Player, werden die Inhalte von der Lernplattform
heruntergeladen und angezeigt. Mit den angebotenen Kommunikations- und Organisations-
diensten konnen die Ablaufe mit anderen Personen besser abgestimmt werden.

Die Rolle User dient der Kapselung administrativer Anwendungsfille und tritt nie real
in Erscheinung. Durch diesen Ansatz lassen sich die beiden Spezialisierungen Student und
Professor iibersichtlicher gestalten, da sich ihre Beschreibung auf die wesentlichen Aufgaben
beschrankt. Zu den Anwendungsfillen der Rolle User gehtren beispielsweise das An- bzw. Ab-
melden am System, Lesen von E-Mails und der Einsatz eines Terminkalenders. Es handelt sich
um wiederkehrende Tétigkeiten, die wenig mit den eigentlichen Zielen Lehren und Lernen zu
tun haben, aber dennoch modelliert werden miissen. Abbildung 10.6 listet die administrativen
Anwendungsfille der Ubersicht halber auf.

An—/abmelden

Kommunmeren

Organ|3|eren

User Inhalte nutzen
Inhalte suchen

Abbildung 10.6: Anwendungsfille der Rolle User

10.1.6 Student

Alle Aktivitdten der Lernenden werden durch die Rolle Student beschrieben, die das Angebot
entweder im Selbststudium oder in Priasenz- bzw. Fernveranstaltungen nutzt. Ziel dieser Rolle
ist gewiss, so schnell und viel wie moéglich zu lernen. Neben dem Zugriff auf Materialien und
deren Betrachtung — bereits durch die Rolle User angegeben — gehort das Absolvieren von
Ubungen und Tests zu den Anwendungsfillen.

Obwohl von der geplanten Infrastruktur kein direktes Lernparadigma vorgegeben wird, soll
an dieser Stelle auf die Vorgehensweise im Projekt math-kit eingegangen werden. Ein zentra-

92

System-Vision

ler Aspekt von math-kit sind die Explorationsumgebungen, die konstruktivistisch organisiert
sind. Anstatt starre Lernpfade vorzugeben, kann die Rolle Student eine individuelle Lerner-
fahrung machen. Neben der Vermittlung theoretischer Grundlagen, die jederzeit auch nach-
geschlagen werden konnen, gibt es einen multimedialen Explorationsbereich, der interaktiv
bedient wird. Zur Kontrolle des erreichten Lernerfolgs beinhaltet die Explorationsumgebung
einen Ubungsbereich, in dem Quiz, Puzzles und Multiple-Choice-Aufgaben Aufschluss iiber
den Wissensstand geben.

In Chats und Foren kénnen mit anderen Lernenden Arbeitsgruppen gegriindet werden, die
gemeinsam Aufgaben und Probleme 16sen. Wenn angeboten, kénnen Verstédndnisfragen auch
direkt an die Rolle Professor gerichtet werden, die den Lernvorgang betreut. Abbildung 10.7
stellt den Lernprozess als Verfeinerung des Anwendungsfalls ., Inhalte nutzen* dar.

——=_Inhalte nutzen

User <
I
<<extends>> - [
. \
. BN
| \
| \
0
| \
/ <<extends>> |

X o> |

Student \

Abbildung 10.7: Anwendungsfille der Rolle Student

10.1.7 Professor

Fiir die fachlichen bzw. inhaltlichen Anwendungsfille ist die Rolle Professor zustéandig, die
Personen in der Rolle Student begleitet und den Rollen Developer, Composer sowie Publisher
bei didaktischen Fragen hilft. In anderen Worten koordiniert die Rolle Professor die gesamte
Lehre. Einen wesentlichen Teil der Arbeit machen Vorbereitungen aus, wobei neben den Inhal-
ten passende Ubungen und Tests entwickelt werden miissen. Hierbei kann die Rolle Professor
im Vorwege Ideen entwickeln, wie bestimmte Themen multimedial aufbereitet werden, um sie
gemeinsam mit der Rolle Developer zu realisieren.

Neben der Vermittlung von Wissen muss die Rolle Professor den Lernfortschritt der Ler-
nenden iiberpriifen und bewerten. Auf diese Weise kann gegebenenfalls auftretenden Defiziten
entgegen gewirkt werden. Ein Instrument sind die Quiz und Tests, deren Positionierung Be-
standteil der Lernpfadgestaltung ist. Bei einer automatischen Auswertung kénnen zusétzlich
Statistiken angeboten werden, mit denen sich die Begutachtung, z.B. auf ganze Gruppen,
ausdehnen l&sst.

WEeil die Rolle Professor auch die Funktionen der Lernplattform nutzt, erweitert sie die
Rolle User, sodass sie beispielsweise in der Présenzlehre eine Vorlesung mit multimedialen
Inhalten bereichert oder Fragen in Foren beantwortet. Abbildung 10.8 zeigt eine Auflistung
der vorgestellten Anwendungsfille.

10.1.8 Administrator

Die Rolle Administrator unterstiitzt alle anderen Rollen bei der Arbeit, indem sie fiir fiir einen
einwandfreien Zustand des Systems sorgt und Ansprechpartner/-in bei technischen Schwierig-
keiten ist. Besonders bei unvorhersagbaren Problemen, wie z.B. falsch konfigurierten Program-
men oder wiederkehrenden Abstiirzen, ist die Rolle Administrator eine Anlaufstelle. Meist hin-

10.2 Komponenten

93

= Cinhalte nutzen >

A
User |
<<extends>> |
I
I
\

Tests auswerten

Didaktische Konzepte anwenden
Professor
Lehre vorbereiten
7AY\

<<uses>>__ - - <<uses>> ; R S<uses>>

Inhalte planen Ubungen planen Tests planen

Abbildung 10.8: Anwendungsfille der Rolle Professor

ter den Kulissen werden alle Verwaltungstéitigkeiten von dieser Rolle durchgefiihrt. Fiir einen
geordneten Ablauf legt sie Zugénge fiir Benutzer/-innen an und vergibt Zugriffsrechte, die fir
Dateien, Kurse, Foren, Chats, etc. gelten. Bei Bedarf installiert sie neue Programme und fiihrt
Updates installierter Software durch. Abbildung 10.9 fasst die Anwendungsfille zusammen.

Administrator

Abbildung 10.9: Anwendungsfille der Rolle Administrator

10.2 Komponenten

Mit den Rollen und Anwendungsfillen wurde ein externer Blick auf das Verhalten des Sys-
tems gegeben. Fiir die detaillierte Beschreibung der internen Vorgéinge werden in der Regel
aus den Anwendungsfiillen Aktivitdtsdiagramme hergeleitet. Dieser Diagrammtyp ist Bestand-
teil der UML mit vorgegebener Notation und ist z.B mit Flussdiagrammen vergleichbar, in
denen mit Bedingungen, Verzweigungen, Schleifen, Zusténden, Synchronisationen, etc. Ablau-
fe modelliert werden. Abhéingig vom gewihlten Abstraktionsniveau kénnen sogar Algorith-
men genauestens beschrieben werden. Fiir den Entwurf der geplanten Systemarchitektur ist
dieses Vorgehensmodell aber ungeeignet, denn wenn méglich, sollen vorhandene Programme
und Komponenten eingesetzt werden, weshalb die Anwendungsfille mit ihrer externen Sicht
als Entscheidungskriterien hinreichend sind. Lediglich fiir die Eigenentwicklungen ist dieser
Schritt sinnvoll, weil die Ergebnisse weiterverwendet werden kénnen. Da aber noch nicht be-
schlossen wurde, welche Teile neu entwickelt werden, wird in dieser Arbeit ein abgeédnderter
Weg eingeschlagen. Die Komponenten werden nicht aus den Aktivitdtsdiagrammen gebildet,
sondern direkt aus den Anwendungsfillen.

Mit dieser Herangehensweise lassen sich offensichtlich nicht sehr kleine Komponenten bil-
den, aber sie hilft bei der Aufteilung auf Programmebene. Manche Anwendungsfille lassen

94

System-Vision

sich iiber eine Komponente bearbeiten, sodass sich die Hauptkomponente fiir eine Rolle in
Teilkomponenten aufteilen ldsst. Auch die Hauptkomponenten setzen sich aus kleineren Be-
standteilen zusammen, wodurch eine Sicht mit verschiedenen Abstraktionsniveaus entsteht.
Auf diese Weise lassen sich exakt die existierenden und fehlenden Komponenten bestimmen.

10.2.1 Basis

Es wird mit den Anwendungsfillen der Rolle Author begonnen, die eine Art Basis fiir die
Spezialisierungen darstellt. Dementsprechend werden die Teilkomponenten so gestaltet, dass
sie sehr allgemeine Dienste anbieten und leicht ansteuerbar sind. Bei der Rolle Author lassen
sich zwei wesentliche Bereiche ausmachen: der Umgang mit Dateien und die Verwendung von
Metadaten. Die sich ergebenden Komponenten sind in Abbildung 10.10 dargestellt.

= =

File Management Metadata

Abbildung 10.10: Komponenten fiir die Rolle Author

Mit der Komponente File Management wird der Zugriff auf das Dateisystem des Be-
triebssystems abstrahiert. Anstatt einer Reihe primitiver Systemaufrufe, mit denen sich kom-
plexere Operationen zusammensetzen lassen, werden einfache Befehle fiir oft genutzte Funk-
tionen angeboten. Hierzu gehdren unter anderem das Suchen von Dateien mit reguldren Aus-
driicken, das Entpacken komprimierter Dateien und das Kopieren bzw. Verschieben von Ver-
zeichnissen sowie Dateien. In Hinblick auf die Content Packages (siehe Abschnitt 3.5) und
Lernplattformen mit WebDAV (siche WebCT in Abschnitt 6.2.2) wird zusétzlich die Ab-
straktion des Zugriffs zum Wunsch. So unterschiedlich die zugrunde liegenden Techniken auch
sein mogen, die Operationen sind fast immer gleich. Zusammengefasst ist die Dienstleistung
der Komponente File Management eine transparente Behandlung unterschiedlichster Medien,
Formate und Protokolle verbunden mit umfassenden Operationen.

Prinzipiell kann jedes Datum mit Metadaten versehen werden. Die hierfiir n6tige Funk-
tionalitét stellt die Komponente Metadata bereit, durch die sich einzelne Werte bis hin zu
komplex verschachtelte Strukturen mit den ben6tigten Metadaten versehen lassen. Dabei miis-
sen die gingigen Standards und Kodierungen unterstiitzt werden bzw. Anderungen und neue
Versionen leicht integrierbar sein. Hierfiir ist intern eine modulare Struktur nétig, bei der
Module ergéinzt und neue hinzugefiigt werden koénnen. Zusétzlich miissen generische Funk-
tionen angeboten werden, wie z.B. die Generierung objektiver Metadaten, eine Umrechnung
von Zeiteinheiten oder komplexe Operationen wie das Zusammenfiigen von Metadaten aus
verschiedenen Quellen. Insgesamt erledigt diese Komponente alle Aufgaben rund um die Me-
tadaten, von der Eingabe tiber die Speicherung bis hin zur kompletten Umwandlung in diverse
Formate der Metadatenstandards.

10.2.2 Learning Object Development

Die Anwendungsfille der Rolle Developer beschreiben drei wesentliche Aufgaben, die sich
in Teilkomponenten aufteilen lassen: die Erstellung von Multimedia und Lernobjekten sowie
die Integration fremder Inhalte. Abbildung 10.11 zeigt die zusammengesetzte Komponente
Learning Object Development.

Mit der Komponente Multimedia Environment soll eine Entwicklungsumgebung fiir
multimediale Inhalte angeboten werden. Weil es fiir alle Formen von Multimedia bereits Pro-
gramme gibt, soll an dieser Stelle nicht das Rad neu erfunden werden. Genauer betrachtet ist
es auch nicht leistbar, fiir die vielen Moglichkeiten und Anwendungen eigene Werkzeuge zu
entwickeln. Daher wird in dieser Arbeit der Einsatz bewdhrter Programme fiir diese Aufgabe
bevorzugt, weil sich hieraus wesentliche Vorteile ergeben: Im idealen Fall werden optimale

10.2 Komponenten

95

% Learning Object Development
% Multimedia RN %
Environment Tl

- ()| File Management

% S
- ,
- ,
L - ,
Import Engine RN 0
L
AR
AR

Learning Object
Engine

Metadata

Abbildung 10.11: Komponente fiir die Rolle Developer

Ergebnisse mit geringer Einarbeitungszeit erzielt. Fiir die Realisierung wird ein Mechanis-
mus bendétigt, mit dem sich individuelle Verbindungen zwischen den Multimedia-Dateien und
-Programmen herstellen lassen. Ahnlich wie im Explorer von Windows werden Dateiformaten
unterschiedliche Medientypen zugewiesen, die wiederum {iber ein Verb eine Verkniipfung zu
einem Programm besitzen. Bei dem Verb handelt es sich um Anweisungen wie z.B. ,drucke®,
,bearbeite” und ,,sende an“. Der Aufruf ist dann ein Tupel, das aus einem Dateinamen und
dem Verb besteht. Beispielsweise iiberpriift die Komponente fiir ein iibergebenes Wertepaar
(test.avi, edit) die Verbindung zu dem eingetragenen Werkzeug und ruft in diesem Fall
das zugewiesene Videobearbeitungsprogramm auf.

Die Komponente Import Engine liest fremde Inhalte ein und konvertiert sie zu dem in-
tern genutzten Format. Um moglichst viele Formate unterstiitzen zu kénnen, muss die interne
Architektur sehr flexibel sein, doch leider gibt es keinen generischen Mechanismus wie XSLT,
mit dem sich Ubersetzungsregeln beschreiben lassen. Weil die Kodierungen der einzulesenden
Formate sehr verschieden sind, von ITEX-Dateien in ASCII bis hin zu proprietaren MS Word-
Dateien, ist eine automatisierte Interpretation unmdoglich. Hieraus folgt, dass fiir jedes Format
ein eigens entwickelter Reader benétigt wird. Um die Programmierung einfacher zu gestalten,
bietet die Komponente fiir das Zielformat eine iibersichtliche Schnittstelle, die Inhalte in meh-
rere Elemente aufteilt, wie z.B. Uberschrift, Abbildung und Tabelle. Hierdurch beschriinkt sich
die Entwicklung des Readers auf das Auslesen der Elemente mit anschlieBender Abbildung in
das Zielformat. Gebiindelt in einem Paket, werden Reader nur ein Mal implementiert und
anderen Orts installiert. Teilweise enthalten die fremden Inhalte zusétzliche Metadaten, deren
Konvertierung und Aufbereitung iiber die Komponenten Metadata erfolgt.

Die eigentlichen Lernobjekte werden mit der Komponente Learning Object Engine
verwaltet, die alle géingigen Standards unterstiitzt und intern eine festgelegte Struktur von
physikalischen Dateien, Einstiegspunkten sowie Metadaten einsetzt. Dank einer Konsistenz-
priffung mit Fehlerbehebung ist garantiert, dass nicht ungewollt defekte Lernobjekte erzeugt
werden. Der Speicher- und Lademechanismus ist modular aufgebaut und unterstiitzt Dateisys-
teme, Datenbanken sowie Datei-Server. Weil alle Speicher- und Ladevorgénge iiber die interne
Struktur ablaufen, ergibt sich ein optimales Werkzeug fiir die Konvertierung verschiedener
Standards. Fiir den Einsatz dieser Komponente ist freilich ein grafisches Frontend (View)
sinnvoll, mit dem sich die Manipulationen per Maus steuern lassen. Eine Aufteilung nach
dem MVC-Muster [Gamma95] soll daher als {ibliche Vorgehensweise angenommen werden, die
durch einen speziellen Nachrichtendienst fiir Views unterstiitzt wird.

96

System-Vision

10.2.3 Structure Development

Fiir die Erstellung héherer Strukturen oder Kurse aus Lernobjekten und deren Kompositionen
steht der Rolle Composer die Komponente Structure Development zur Verfiigung. Thre
Teilkomponenten entstehen wieder aus der Zusammenfassung der Anwendungsfille, die sich
aus dem Importieren fremder Kurse, dem Suchen von Inhalten und dem eigentlichen Aufbau
der Struktur ergeben. Abbildung 10.12 illustriert die resultierende Aufteilung.

% Structure Development

Import Engine SRR

N \ﬁ File Management

% |
N ;
N ,
N\ //
S 7’
. \\\\ \\/\
Search Engine ~<L N
o .
V2N N
7/ N N
4 ~
y <N
Eg : 7“7§Oi
-

Structure Engine

Metadata

Abbildung 10.12: Komponente fiir die Rolle Composer

Die gleiche Namensgebung der Komponente Import Engine wie in der Learning Object
Development ist nicht zufillig gewéhlt. Da die Aufgaben sehr #hnlich sind, aber die Anwen-
dungsfille im Detail anders gehalten sind, ist aus konzeptioneller Sicht diese Trennung ein-
zuhalten. Bei der spéteren Implementierung kann auf sie wahrscheinlich verzichtet bzw. iiber
den Zugriff durch zwei Schnittstellen nachgebildet werden. An dieser Stelle wird die Aufteilung
eines fremden Kurses in mehrere Lernobjekte plus einer Strukturierung unter dem Importieren
fremder Inhalte verstanden. Im Gegensatz hierzu konnen auf Ebene der Lernobjektentwick-
lung nur einzelne Lernobjekte eingelesen werden, weil sich die Rolle Developer sonst in den
Aufgabenbereich der Rolle Composer begibt. Anders herum kann die Rolle Developer aber
ein Lernobjekt in beliebig viele andere aufbrechen, was wiederum der Rolle Composer nicht
gestattet ist.

Mit Hilfe der Komponente Search Engines kénnen Suchanfragen gestellt werden, die
entweder auf lokale Datenbestéinde angewendet oder an spezielle Server delegiert werden. Als
Resultat werden Listen von Referenzen auf Lernobjekte und Kurse geliefert, die sich in die
eigene Struktur integrieren lassen. Diese Komponente implementiert selbst keine Suchalgo-
rithmen, sondern benutzt Module fiir die verschiedenen Anfragen. So kann ein Suchmodul
durch ein effizienteres ausgetauscht werden, ohne dass es Auswirkungen auf die Darstellung
der Suchmaske hat. Bei den Umsetzungen der Module gibt es keine Einschriankungen: Von
der einfachen Suche iiber Dateien, bei der jedes Content Package fiir die Metadaten gedffnet
wird, bis hin zu verteilten Datenbanken, in denen iiber Indizes optimale Zugriffszeiten erreicht
werden, sind alle Ansétze denkbar. Zu beriicksichtigen sind nur die Vorgaben der Komponente
Metadata, damit alle Felder der Metadatenstandards abgefragt werden kénnen. Da die Syntax
der Abfragesprache fiir die Architektur von geringer Prioritét ist, soll diese Entscheidung auf
den Klassenentwurf bzw. die Implementierung verschoben werden.

Der Aufbau der Struktur lduft iiber die Komponente Structure Engine, mit der standard-
kompatible Content Packages erzeugt werden. Angelehnt an die Struktur eines Manifests (siehe
Abschnitt 3.5) konnen verschiedene Organisationen fiir die Lerninhalte erzeugt und bearbei-

10.2 Komponenten

97

tet werden, wodurch sich unterschiedliche Lernpfade definieren lassen, die sogar Bedingungen
und Verzweigungen ermdglichen. Uber Referenzen sind die einzelnen Elemente der Struktur
mit physikalischen Ressourcen verbunden, die entweder Bestandteil des Content Package sind
oder iiber eine URL auf einen externen Bereich verweisen. Bei Bedarf wandelt die Kompo-
nente solche externen Referenzen in physikalische Dateien um. Da neben Lernobjekten auch
zusammengesetzten Strukturen als Ressourcen erlaubt sind, unterstiitzt die Komponente die
Aggregation sowie Disaggregation der Organisationen. Weiter gedacht sind auch Operationen
zur Umstrukturierung von Submanifesten oder zur Reduzierung mehrerer Content Packages
zu einem niitzliche Funktionen. Wie bei der Komponente Learning Object Environment sind
Lade- und Speichermechanismus modular gehalten und interne Verdnderungen werden iiber
einen eigenen Nachrichtendienst propagiert.

10.2.4 Publishing Environment

Mit der Verdffentlichung der erzeugten E-Learning-Inhalte wird der letzte Schritt im Erstel-
lungsprozess vollzogen. Die Rolle Publisher nutzt bei ihrer Arbeit die Komponente Publis-
hing Environment, deren Teilkomponenten wieder aus den Anwendungsfillen hergeleitet
sind. Abbildung 10.13 zeigt, wie die Gruppierung der Einzeltdtigkeiten zur Erstellung von
Layout- sowie Formateinstellung und Ubersetzung die interne Struktur prigt.

% Publishing Environment

Layout Engine R

Format Engine %

Compiler

File Management

Metadata

Abbildung 10.13: Komponente fiir die Rolle Publisher

Bei einem Layout handelt es sich um eine Beschreibung von Farbgestaltungen, Schriften,
Seitenaufteilungen, Abstdnden und Navigationen, dessen Gestaltung iiber die Komponente
Layout Engine erfolgt. Es werden quasi Schablonen erstellt, die bei der Ubersetzung nur noch
mit den Inhalten der Lernobjekte ausgefiillt werden. Bis auf den Punkt Navigation sollten die
beschriebenen Parameter selbsterkliarend sein. Weil nicht alle Lernplattformen in der Lage sind,
aus den Manifesten eine geeignete Navigation abzuleiten, kann diese Funktion iiber das Layout
gesteuert werden. Die Komponente zur Ubersetzung wird durch die erzeugte Beschreibung
angewiesen, zusédtzlich eine entsprechende Navigation zu erstellen. Ein anderer Punkt sind
Elemente wie Fuf}- und Kopfzeilen, Logos, Verweise auf das Impressum, etc., die automatisch
in alle Seiten generiert werden. Streng genommen wird hierdurch die Trennung von Darstellung
und Inhalt verletzt, weil ,,Inhalte” zum Bestandteil der Layout-Beschreibung werden. Technisch
gesehen tritt diese Vermischung aber nicht ein, sodass sie auf fachlicher Ebene toleriert werden
darf.

Mit den Kodierungsanweisungen trigt die Komponente Format Engine die zweite Be-
schreibungsform bei, die zusammen mit dem Layout die Ubersetzung steuert. Sie wandelt ein

98

System-Vision

bekanntes Quellformat in ein beliebiges Zielformat um, auch in ein binéires oder proprieté-
res. Aus dieser Funktionsbeschreibung leitet sich ab, dass eine Ubersetzung nur mit XSLT
nicht hinreichend ist. Zwar gibt es Mechanismen wie die XSL Formatting Objects (XSL-FO)
[Pawson02], deren Prozessoren aus XML PDF- und PS-Dateien generieren, aber andere wich-
tige Formate fehlen. Deshalb kann die Komponente um selbst entwickelte Module erweitert
werden, mit denen sich einzelne Aufgaben oder komplette Umsetzungen realisieren lassen.
Beispielsweise kann ein Modul MathML-Formeln? in PNG-Abbildungen umwandeln, um élte-
re Browser bei der HTML-Darstellung nicht auszuschliefen. Wie bei anderen Komponenten
zuvor, erfolgt die Speicherung der XML-Formatierungen und Module in eigenen Paketen, die
mit anderen Systemen austauschbar sind.

Die eigentliche Ubersetzung fithrt die Komponente Compiler durch. Ziel ist die Erzeugung
einer oder mehrerer Dateien in einem Format, das mit einem Anzeigeprogramm dargestellt
werden kann. Hierfiir wird der Inhalt aus den Lernobjekten entnommen, nach der Layout-
Vorlage arrangiert und anschliefend iiber die Formatbeschreibung ausgegeben. Mit einem
XSLT-Parser, einem XSL-FO-Renderer und einer Laufzeitumgebung fiir Module stellt diese
Komponente die notige Infrastruktur bereit.

10.2.5 User Environment

Aus der Definition der Rolle User als Stellvertreter fiir den generellen Umgang mit einer
Lernplattform folgt unausweichlich, dass ihre Hauptkomponente eine Lernplattform ist. Weil
die Anwendungsfille dieser Rolle aus der Funktionsbeschreibung von Lernplattformen in Ab-
schnitt 6.1 abgeleitet sind, konnten sie als bereits gegeben angesehen werden. Um die Konsis-
tenz zu wahren, wird wie bei den anderen Komponenten verfahren, indem die Teilkomponenten
durch Gruppierung der Anwendungsfille entstehen. Im Wesentlichen geht es bei den Aufga-
ben um die Organisation und Kommunikation mit anderen Personen und die Nutzung der
Inhalte. In Abbildung 10.14 wird neben diesen Teilkomponenten vollstindigkeitshalber auch
eine Verwaltungskomponente Administration definiert, die grundlegender Bestandteil einer

Lernplattform ist.
% User Environment

== =

Communicator

== =

Content Viewer

Organizer

Administration

Abbildung 10.14: Komponente fiir die Rolle User

Bei der Komponente Communicator handelt es sich um eine Zusammenfassung aller
gangigen Kommunikationsmethoden, wie z.B. E-Mail, Chat, Foren, Whiteboard und Video-
Conferencing. Obwohl diese Mittel sich grundsétzlich in Bedienung und Technik unterscheiden,
ist die Verallgemeinerung in einer Komponente fiir die angestrebte Architektur sinnvoll. In
der Bewertung des Standes der Wissenschaft wurde bereits angedeutet, dass die heutigen
Lernplattformen im Bereich Kommunikation gut ausgestattet sind, sodass es auf den Einsatz
einer existierenden Losung hinauslaufen wird.

2MathML ist eine Auszeichnungssprache fiir mathematische Formeln

10.2 Komponenten

99

Ahnlich verhilt es sich mit der Komponente Organizer, die alle Mittel zur Planung der
Arbeitsablaufe einschliefit. Die Kalender, To-Do-Listen und Notizblédtter der heutigen Lern-
plattformen sind bereits auf einem Stand, der eine Eigenentwicklung praktisch ausschlief3t.

Wenn die Lernplattformen bereits die gesamte Funktionalitét liefern, die von der Rolle
User benttigt wird, stellt sich die Frage, wozu eine Aufteilung in Komponenten erfolgt? Eine
Antwort ist die Komponente Content Viewer, mit der die Inhalte recherchiert und angezeigt
werden. Das Ziel dieser Arbeit im Hinterkopf wird schnell die Schwiche aktueller Lernplatt-
formen deutlich, denn sie sind fiir die Priasentation ,,monolithischer® Inhalte ausgelegt, die
starre Strukturen vorgeben. Adaptives bzw. personalisiertes Lernen wird nicht unterstiitzt
und tiberspitzt ausgedriickt, leisten Lernplattformen beim Suchen oder Anzeigen nicht mehr
als gewohnliche Web-Server. Die Komponente Content Viewer hingegen kennt modulare Inhal-
te, kann fiir mehrere Lernpfade Navigationen erzeugen und unterstiitzt eine kontextabhéngige
Suche in nicht explizit zugewiesenen Lernobjekten. Hierdurch sind beispielsweise Exkurse zu
bestimmten Themen moglich, da die Komponente aus den Metadaten ,,weifl, welche Lernob-
jekte inhaltlich zusammen passen.

Die Komponente Administration unterstiitzt die Rolle User bei Einstellungen und wie-
derkehrenden Tétigkeiten. Funktionsumfang und Benutzung héngen wieder stark vom einge-
setzten System ab, sodass keine pauschale Beschreibung mdoglich ist. Nur wenige grundlegende
Funktionen, wie die Bearbeitung der personlichen Daten, z.B. das Zugangspasswort, sind ob-
ligatorisch.

Bei den Anwendungsféllen dient die Rolle User zur Zusammenfassung dhnlicher Tétigkei-
ten der Spezialisierungen Professor und Student. Aus der Komponentenbildung fiir die Rolle
Author liefle sich nun schlielen, dass auch die Komponente User Environment allgemeine
Dienste anbietet, die von den Komponenten der spezialisierten Rollen aufgerufen werden. Dies
ist aber nicht der Fall, weil fiir die Rollen Professor und Student keine eigenen Komponen-
ten definiert werden. Der Grund liegt in den erweiterten Anwendungsfillen, die zwar eine
semantische Differenzierung bringen, technisch aber keine Auswirkung haben. Ob aus dem
Fall ,Inhalte Nutzen“ nun ,Lernen* oder ,Lehren“ wird, ist fiir das System irrelevant. Durch
diese Trennung zwischen fachlicher und technischer Bedeutung vereinfacht sich die Architek-
tur, ohne dass es zu fachlichen Liicken im System kommt. Alle definierten Anwendungsfille,
auch die der Rollen Professor und Student, lassen sich ohne Einschrdnkungen abarbeiten.

10.2.6 Administration

Die Komponentenbildung fiir die Rolle Administrator gestaltet sich schwierig, weil sie neben
den Verwaltungstétigkeiten den anderen Rollen bei technischen Problemen zur Seite steht.
Dementsprechend vage sind auch die Teilkomponenten in Abbildung 10.15.

% Administration

User Accounts

== =

Operating System

Access Rights

Software Manager

Abbildung 10.15: Komponente fiir die Rolle Administrator

100

System-Vision

Als Teil der Lernplattform verwaltet die Komponente User Accounts die Personen- und
Zugangsdaten sowie etwaige Gruppenzugehorigkeiten. Die Einstellung der Zugriffsrechte fiir
Ressourcen und Bereiche der Lernplattform erfolgt iiber die separate Komponente Access
Rights.

In den Aufgabenbereich des Betriebssystems geht die Komponente Software Manager, iiber
die alle Installationen und Updates verwaltet werden. Da sich die gesamte Architektur aus ver-
schiedenen Programmen zusammenstellt, hilft eine zentrale Verwaltung, wie z.B. die Packa-
ge-Mechanismen der Linux Distributionen Debian und Red Hat, den Uberblick zu wahren.
In einer Datenbank werden alle Dateipfade, Versionen, Abhéngigkeiten, etc. gespeichert, um
bei Anderungen der Programmkonstellation mégliche Konflikte aufzudecken. Diese Werkzeuge
sind so weit fortgeschritten, dass von einer Eigenentwicklung abzusehen ist.

Gleiches gilt fiir die Komponente Operating System, die stellvertretend fiir alle Uberwach-
ungs-, Analyse- und Konfigurationswerkzeuge der Betriebssysteme steht. Wenn technische
Probleme auftreten, kann die Rolle Administrator mit diesen Programmen interne Vorginge
nachvollziehen und Konfigurationen verdndern. Die Moglichkeiten sind dermaflen vielfaltig,
dass sie sich nicht vollstindig spezifizieren lassen. Auch wenn der Begriff Komponente in diesem
Fall tiberstrapaziert wird, kann durch diese vereinfachte Sicht ein Bereich der Architektur
berticksichtigt werden, der absolut unvorhersehbar ist.

10.3 Architektur

Nach der Komponentenbildung kann nun die Architektur des gesamten Systems fiir die Bear-
beitung modularer E-Learning-Inhalte erstellt werden. Zuerst erfolgt eine Zusammenfassung
der verschiedenen Komponenten zu Programmen, die fachliche und technische Beziige haben,
denn nicht jede Rolle bekommt ein eigenes Programm. Durch geschickte Kombination lassen
sich manche Komponenten zu einer zusammensetzen, wodurch bei der spéiteren Implementie-
rung weniger Arbeit anfallt.

Die Ubersicht der Rollen in Abbildung 10.1 enthilt bereits eine Aufteilung in drei Gruppen,
die folgend néher analysiert wird: Bearbeitung von E-Learning-Inhalten, verkérpert durch
die Rolle Author, Nutzung von E-Learning-Inhalten, vertreten durch die Rolle User, und die
Administration des Systems. Pauschal jedem Aufgabenbereich ein Programm zur Seite zu
stellen, wird einer verniinftigen Architektur leider nicht gerecht. Auf jeden Fall stehen die
Komponenten der Rolle Administrator auflen vor, denn die sind entweder Bestandteil der
anderen Programme oder Werkzeuge des Betriebssystems. Die grobe Trennung in Erstellung
und Nutzung von Inhalten bleibt somit als erster Anhaltspunkt {ibrig.

Fiir die Erstellung modularer E-Learning-Inhalte werden die Komponenten der Rollen De-
veloper, Composer und Publisher in einer Komponente vereint. Dieses Vorgehen hat mehrere
Vorteile, weil es bei der Arbeit in einer Rolle hdufiger vorkommt, dass fiir bestimmte Tétigkei-
ten ein Wechsel in eine andere Rolle né6tig ist. Andeutungen fiir enge Kooperationen haben sich
schon bei den Rollenbeschreibungen abgezeichnet. Ein gutes Beispiel ist die Rolle Composer,
die bei einer vollstdndigen Produktion im Mittelpunkt steht. In ihrer Haupttétigkeit kombi-
niert sie fremde und eigene Lernobjekte bzw. Strukturen zu Kursen. Was soll aber geschehen,
wenn ein fremdes Lernobjekt nicht zu 100% passt und eine leichte Modifikation benotigt? Es
entnehmen und unter anderer Rolle in einem neuen Programm 6ffnen? Das ist gewiss sehr
umstéindlich und sicher nicht erwiinscht. Eine bessere Losung ist die direkte Bearbeitung des
Lernobjekts in der Struktur, wodurch zwar beide Rollen (Developer und Publisher) Einblick
in die Arbeit der jeweils anderen Rolle bekommen, aber konzeptionell ergibt sich hieraus kein
Problem. An dieser Stelle sei noch einmal explizit betont, dass ein und die selbe Person in
verschiedenen Rollen auftreten darf. Durch die Zusammenlegung der Komponenten werden die
Ubergiinge unschirfer, was bei der téglichen Arbeit aber durchaus wiinschenswert ist, denn
ein schnelles Umschalten zwischen den Rollen erlaubt einen ungestorten Arbeitsfluss. Gleiches
gilt auch fiir die Rolle Publisher, die beispielsweise zu Kontrollzwecken bei der Bearbeitung

10.3 Architektur

101

von Lernobjekten oder Kursen eingenommen wird. Abbildung 10.16 zeigt die resultierende
Komponente Authoring Environment.

% Authoring Environment
Learning Object
Development %
Publishing
Environment

Structure
Development

Abbildung 10.16: Funktionale Komponente des Autorensystems

Aufgrund der engen Zusammenhinge und Arbeitsabldufe stellt diese Komponente das
ideale Werkzeug fiir die Bearbeitung modularer E-Learning-Inhalte dar. Doch bis jetzt han-
delt es sich um eine funktionale Komponente, die keine grafische Darstellung oder direkte
Ansteuerung hat. Um ein vollwertiges Autorenwerkzeug zu erhalten, wird die Komponente
Authoring Environment mit den Komponenten Graphical User Interface und Scripting
Environment verbunden. Abbildung 10.17 verdeutlicht diese Erweiterung.

=

Graphical Authoring
User Interface f------------------------ = Environment

: Scripting
O Environment

Abbildung 10.17: Zwei Komponenten zur Steuerung des Autorensystems

Hauptaufgabe beider Komponenten ist die Ansteuerung der Funktionen, entweder iiber
eine grafische Oberfliche oder durch Scripts. Die Komponente Graphical User Interface ist
beliebig und gibt keine konkrete Darstellung vor. Von der statischen Reprisentation eines
Lernobjekts bis hin zu Modifikationen mit Drag’n’Drop in verschachtelten Strukturen ist alles
moglich. Weil aber die Akzeptanz eines Programms mit der Leistung der Oberfliche steht und
fallt, sei eine benutzerfreundliche Bedienung angemahnt, die alle M6glichkeiten der Kompo-
nente Authoring Environment offenbart. Es wire duflerst ungliicklich, wegen der eingerdumten
Gestaltungsmoglichkeiten das Potential des Systems einzuschranken. Dennoch soll auf spezi-
fischere Angaben verzichtet werden, um nicht von vornherein bestimmte Ansétze auszuneh-
men. Ahnlich verhilt es sich mit den zu unterstiitzenden Scripts. Lediglich die Méglichkeit zur
Stapelverarbeitung wird eingefordert, um einen Mechanismus fiir wiederkehrende Tétigkeiten
anbieten zu koénnen. Welche Sprache letztendlich eingesetzt wird, bleibt der Implementierung
iiberlassen. Interessant ist auch die Verbindung der beiden Steuerungskomponenten, durch die
sich das grafische Autorenwerkzeug mit Hilfe von Scripts beliebig erweitern lésst.

Das zusammengesetzte Autorenwerkzeug ist fiir sich genommen vollstdndig, geniigt aber
nicht der festgelegten Zielsetzung in Abschnitt 1.2 bzw. des verfeinerten Resiimees in Abschnitt
9.1. Da ist von zentraler Datenhaltung und der Unterstiitzung von Teamarbeit die Rede. Wie
lassen sich diese Anforderungen mit den bisherigen Komponenten vereinen? Warum tauchen
sie bei keiner Rolle als Anwendungsfall auf? Die Antwort ist einfach: Diese Aspekte sind fiir

102

System-Vision

die Rollen unwichtig. Es ist bei der Arbeit egal, ob eine Ressource im eigenen Dateisystem
liegt, oder Bestandteil einer komplexen Datenbank ist. Synchronisation und nahtloser Zugriff
sind Aufgabe des Systems und diirfen die Rollen bei ihrer Arbeit nicht belasten. Fiir die
Implementierung sind die Themen Teamarbeit und zentrale Datenhaltung umso wichtiger,
weil technische Details hinter einem allgemeinen Mechanismus versteckt werden miissen. Dieser
kann nur iiber die Teilkomponente File Management aus Unterabschnitt 10.2.1 laufen, die auch
Funktionen wie Sperren und Versionierung anbietet. Sie ist die ohnehin geplante Schnittstelle
zur Ressourcenverwaltung und muss intern die nétigen Dienste bereitstellen.

Wenn die zentrale Datenhaltung fiir die Realisierung eine so hohe Bedeutung besitzt, muss
sie auch in der Architektur beriicksichtigt werden. Hierfiir wird eine neue Komponente einge-
fiithrt, die keinen direkten Kontakt zu den Rollen hat, aber mit dem Autorenwerkzeug kommu-
niziert. Abbildung 10.18 zeigt sie mit ihren bekannten Teilkomponenten, die alle Bestandteil
bereits vorgestellter Komponenten sind.

% Learning Content Repository

Learning Object Structure Engine
Engine

=2 =

Search Engine

Compiler

Abbildung 10.18: Komponente fiir die zentrale Datenhaltung (Repository)

Wie der Name Learning Content Repository andeutet, ist diese Komponente fiir die
Haltung modularer E-Learning-Inhalte zusténdig. Da sie nur aus bekannten Teilkomponen-
ten besteht, hilt sich der zusétzliche Entwicklungsaufwand in Grenzen. Aus Griinden der
Ubersicht ist die Komponente Authoring Environment bzw. deren Teilkomponente File Ma-
nagement in der Abbildung nicht eingezeichnet. Implizit wird diese Funktionalitdt iiber die
Komponenten Learning Object Engine und Structure Engine angeboten, die einen transparen-
ten Zugriff ermoglichen, ihn selbst aber nicht implementieren. Neben der Datenhaltung von
E-Learning-Inhalten ist auch ihr Auffinden ein zentrales Anliegen. Hierfiir ist die Komponente
Search Engine zustdndig, die Suchanfragen entgegennimmt und entsprechend delegiert. Fiir
die serverseitige Kontrolle der Arbeit ist auch die Komponente Compiler integriert, um direkt
Kurse iibersetzen zu kénnen, ohne den Umweg {iber ein Autorensystem als Client gehen zu
miussen.

Genau wie beim Autorensystem bietet die Komponente Learning Content Repository ihre
Funktionalitéit an und besitzt keine direkte Ansteuerung durch die Anwender/-innen. Eine
grafische Oberfliche oder Steuerung tiber Skripten ist nur bedingt sinnvoll, darf aber nicht
ausgeschlossen werden. Besonders wichtig ist die Verfiigbarkeit {iber ein Netzwerk und der
simultane Zugriff mehrerer Autorenwerkzeuge. Aus diesem Grund wird die Komponente Web
Server als Schnittstelle eingefiihrt, die iiber die vorhandene Internet-Infrastruktur angespro-
chen wird. Ob nun Dienste als Remote Procedure Calls (RPC) oder iiber eine Web-Oberfléche
aufgerufen werden, ist zundchst von untergeordneter Wichtigkeit, denn die verschiedenen Zu-
gidnge schlieffen sich nicht aus und konnen jederzeit um neue erweitert werden. Abbildung
10.19 verdeutlicht diese Konstellation der Komponenten.

Nun ist die Entwicklungsumgebung modularer E-Learning-Inhalte vollstéindig, jedoch auf
einem hohen Abstraktionsniveau. Die Verbindungen zwischen den einzelnen Programmen und

10.3 Architektur

103

— -

Learning Content
Web Server e

Repository

Abbildung 10.19: Komponente fiir den Web-basierten Zugriff auf das Repository

Rollen ist noch nicht in allen Details beschrieben und ldsst Raum fiir Interpretationen. Um
diese einzuschrinken, wird in Abbildung 10.20 eine vereinfachte Ansicht auf die Architektur
gegeben, bei der die Beziehungen zwischen den Rollen, Programmen und Daten offensichtlich
ist.

Author 1 Authoring Tool

Learning Content

Author 2 Authoring Tool -
Repository

=g
Author n Authoring Tool

Abbildung 10.20: Zugriff der Autoren/-innen auf das Repository

Stellvertretend fiir alle Spezialisierungen nutzt die Rolle Author das Autorenwerkzeug. Zur
Verdeutlichung der zentrale Datenhaltung und parallelen Bearbeitung sind n Personen einge-
zeichnet, die sich an getrennten Orten befinden. Die Pfeile in beide Richtungen stehen fiir den
Datenfluss der Lernobjekte und Kurse. Existierende und neue Inhalte lassen sich transparent
auf dem Learning Content Repository bearbeiten bzw. einspielen. Solche Anderungen miissen
keine direkten Auswirkungen auf die Arbeit der anderen Personen haben. Sogar wenn das sel-
be Lernobjekt in Arbeit ist, muss es nicht zwangslaufig zu Konflikten kommen. Wann immer
moglich und notig, verdeckt die Infrastruktur die ,technische* Présenz anderer Entwickler/-
innen. Nur beim ausdriickliche Wunsch auf Synchronisation bzw. Absprache bei der gemein-
samen Arbeit, erlaubt das Learning Content Repository eine Aufhebung dieser Transparenz.
Um Missverstdndnissen entgegen zu wirken, sei darauf hingewiesen, dass es nicht um die Ver-
heimlichung der fachlichen Zusammenarbeit geht. Die Koordination 1duft nur nicht iiber das
Autorensystem, z.B. mit Kommunikationsmitteln wie Chat oder E-Mail, sondern muss ex-
tern geleistet werden. Auf der Seite der Entwicklungsumgebung fallen nur keine zusétzlichen
Absprachen an, die in der technischen Umsetzung begriindet liegen.

Mit der vollstdndigen Entwicklungsumgebung fiir modulare E-Learning-Inhalte steht die
erste Sdule der Architektur. Nun werden mit Hilfe der Rolle User und ihren beiden Spezia-
lisierungen die Programme fiir die Nutzung der Inhalte auf gleiche Weise hergeleitet. Wie
bereits angedeutet, soll diese Aufgabe von einer Lernplattform {ibernommen werden, die iiber
einen géngigen Webbrowser angesprochen wird. Ahnlich der Komponente Learning Content
Repository bietet User Environment lediglich ihre Funktionalitdt an und benétigt fiir die An-
steuerung eine separate Komponente. Weil iiber die internen Abldufe der eingesetzten Lern-
plattform zu diesem Zeitpunkt nichts bekannt sein kann, ist die Komponente Web Server in
Abbildung 10.21 schematischer Natur.

Im Unterabschnitt 10.2.5 iiber die Komponente User Environment wurde die Schwéche
der Lernplattformen im Umgang mit modularen Inhalten diskutiert. Die Leistungen auf den

104

System-Vision

— —

Web Server L= User Environment

Abbildung 10.21: Komponente fiir den Web-basierten Zugriff auf die Lernplattform

Gebieten Suche und Darstellung sind so unzureichend, dass eine zusétzliche Losung unum-
ganglich ist. In allen Lernplattformen ist es moglich, auch externe Inhalte zu referenzieren
bzw. iiber bestimmte Mechanismen direkt durch das System darstellen zu lassen. Auf diese
Weise soll das Learning Content Repository eingebunden werden, das die geforderten Funk-
tionen anbietet. Diese Komponente erlaubt die Kombination von Lernobjekten und héheren
Strukturen zur Laufzeit, sodass sich beim Lernen individuelle Pfade einschlagen lassen. Dank
der Ubersetzungsfihigkeit erscheinen alle Inhalte im gleichen Design und die redundante Da-
tenhaltung mehrerer Kopien des selben Lernobjekts in verschiedenen Kursen entfillt. Auf
diese Weise kann selbst eine leistungsschwache Lernplattform mit geringem Aufwand in ein
modernes E-Learning-Portal verwandelt werden. Anwender/-innen in der Rolle Professor oder
Student benottigen fiir ihre Tétigkeiten nicht den vollen Leistungsumfang des Learning Con-
tent Repositories, der bei der Entwicklung von Inhalten bendtigt wird. IThnen geniigt eine
eingeschriankte Nutzung, bei der sie lesend auf alle Inhalte zugreifen kénnen.

Jetzt sind alle Programme und Komponenten benannt, die fiir die Nutzung der Inhalte
notwendig sind. Uber eine vereinfachte Darstellung sollen sie in Relation gebracht werden, um
eine genauere Vorstellung {iber ihren Einsatz zu geben. In Abbildung 10.22 greift die Rolle
User stellvertretend fiir die Spezialisierungen mit einem Browser auf das System zu.

p =]

User 1 Browser

[

&"’E‘l

Learning Management
System

Learning Content
Repository

User n Browser

Abbildung 10.22: Zugriff der Benutzer/-innen auf die Lernplattform und das Repository

Im Gegensatz zu Abbildung 10.20 geht der Datenfluss der Inhalte, erkennbar an den Pfei-
len, nur von der Lernplattform und dem Learning Content Repository zu den Browsern. In
umgekehrter Richtung werden keine Inhalte transportiert. Gleichwohl es einen bidirektionalen
Datenfluss gibt, wenn beispielsweise iiber ein Chat kommuniziert wird, ist er fiir das Ver-
stéandnis unbedeutend und wird vernachléssigt. Die n Personen nutzen gleichzeitig die iibli-
chen Dienste der Lernplattform und beziehen die modularen Inhalte vom Learning Content
Repository. Im idealen Fall bekommen die Anwender/-innen von der Teilung auf zwei Server
nichts mit.

Da in diesem Entwurf fiir die Rolle Administrator keine eigenen Programme modelliert
werden, sind nun alle Rollen mit Werkzeugen versorgt. Fiir eine Ubersicht der gesamten Ar-
chitektur werden die Abbildungen 10.20 und 10.22 zusammengefasst. Es werden allerdings die
spezialisierten Rollen anstatt der allgemeinen angegeben, um alle Facetten der Infrastruktur

10.3 Architektur

105

zu beriicksichtigen. Zusétzlich sind die Pfeile fiir den Datenfluss mit den Formaten und Typen
beschrieben. Als Ergebnis ergibt sich eine Architektur, die in Abbildung 10.23 dargestellt ist.

7

Professor Student

(I
Dt

Learning Management Administrator

j ! J [D Document
B Higher Structure

Composer Publisher Developer

O Learning Object

Abbildung 10.23: Vollstandige Architektur des Systems

Unten befinden sich alle Rollen, die mit der Entwicklung von modularen E-Learning-
Inhalten beschéftigt sind. Die Rolle Developer arbeitet mit Lernobjekten, die sie auf dem
Server speichern bzw. von ihm herunterladen kann. Diese Lernobjekte kombiniert die Rolle
Composer mit anderen Inhalten zu neuen Aggregationen. Durch die Wiederverwendung von
Strukturen kann eine beliebige Aufteilung der Inhalte erfolgen, sodass es von der technischen
Seite aus keine Einschrankungen fiir das didaktische Konzept gibt. Lernobjekte sowie Kurse
werden anschliefend von der Rolle Publisher mit einem individuellen Layout versehen und
in ein unterstiitztes Zielformat iibersetzt. Das Aufspielen des Resultats auf die Lernplattform
kann auf zwei Wegen erfolgen. Entweder importiert das Autorenwerkzeug die Daten direkt
oder steuert die Ubersetzung auf dem Learning Content Repository. Zwischen den beiden Ser-
ver wurde néamlich eine neue Verbindung eingetragen, die in Abbildung 10.22 noch nicht vor-
handen ist. Weil die Komponente zur Ubersetzung im Autorensystem und Learning Content
Repository identisch ist, ergibt sich hieraus technisch keine Neuerung. Diese Verbindung ist
auch sehr praktisch fiir die transparente Integration der Inhalte auf der Lernplattform. Ent-
weder erhalten die Rollen Professor und Student den direkten Zugang zu den Lernmaterialien
iiber die Lernplattform oder, wenn ein Datenaustausch zwischen den Servern nicht unterstiitzt
ist, werden iiber Links auf das Learning Content Repository weitergeleitet. Welche technische

106

System-Vision

Losung letztendlich zum Einsatz kommt, ist beiden Rollen gleich. Die Rolle Administrator ist
vollstandigkeitshalber am Rand aufgefiihrt.

Der gestrichelte Rahmen schliefit die Systeme und Programme ein, die bei der Entwicklung
des Systems beriicksichtigt werden. Nur die Lernplattform wird als gegeben angesehen und
soll nicht veréindert bzw. neu entwickelt werden. Um moglichst flexibel bei der Auswahl der
Lernplattform zu bleiben, miissen alle anderen Programme so ausgelegt sein, dass sie mit dem
eingesetzten System kooperieren konnen. Das Autorenwerkzeug muss auf jeden Fall vollstan-
dig neu entwickelt werden. Modulare E-Learning-Inhalte, die den Theorien iiber Lernobjekte
entsprechen, koénnen mit heutigen Autorenwerkzeugen nicht erstellt werden. Hieraus folgt auch
die vollstéindige Neuentwicklung des Learning Content Repository, das modulare Inhalte ana-
lysieren und aufbereiten soll. Da auch neue Dienste iiber die Browser aufgerufen werden, sind
sie Bestandteil des ausgezeichneten Bereichs.

10.4 Baukasten-Metapher

Der Entwurf des Systems soll mit Hilfe von Metaphern effizienter entwickelt werden und spéte-
ren Benutzern/-innen die Gewohnung erleichtern. Dies gelingt aber nur mit geeigneten Meta-
phern, deren Bedeutung allgemein bekannt ist und die einen wirklichen Bezug zu Teilaspekten
des Systems haben. Aus diesem Grund ist es wichtig, deren Sinnhaftigkeit im Vorfeld zu iiber-
priifen, denn eine falsche Auswahl kann sich nachteilig auswirken.

Als Grundlage der folgenden Erorterungen dient der metaphorische Prozess aus Kapitel 8,
der die Rahmenbedingungen der Begriffsbildung vorgibt. Die Idee dieser Arbeit, Lerneinhei-
ten als einzelne Module zu betrachten, die flexibel erstellt, kombiniert, gewartet, gespeichert
und wiederverwendet werden, assoziiert ein System mit gewissen Eigenschaften, die tiber die
Metapher des Baukastens verstéirkt werden sollen. Fiir eine differenziertere Betrachtung der
Details wird sie als Wortgruppe aufgefasst, die des Weiteren die Metaphern Baustein, und
Bauplan beinhaltet. Die Bildung dieser Wortgruppe bedeutet eine Verteilung von Eigenschaf-
ten des Baukastens auf mehrere Begriffe, sodass gewisse Aspekte des Systems in kleineren, in
sich abgeschlossenen Metaphern, betrachtet werden kénnen. Jede von ihnen vereinfacht die
Analyse und Bewertung von Anwendungsfillen, indem die wichtigen Eigenschaften der betei-
ligten Objekte und Handlungen hervorgehoben werden.

Es gibt eine Reihe weiterer Metaphern, wie z.B. Werkzeug®, ,Werkbank®“ und ,,Stecksys-
tem“, die sich auf den ersten Blick in die vorgeschlagene Wortgruppe einreihen kénnten, jedoch
hat sich in der praktischen Arbeit gezeigt, dass die vier Substantive fiir die Beschreibung des
Systems vollig ausreichend sind [Bungenstock02; Baudry02b]. Detaillierte Metaphern kénnen
den Entwurf sogar erschweren, wenn sie nicht benétigte Eigenschaften implizieren.

10.4.1 Metaphorischer Prozess

Der Gegenstand dieses metaphorischen Prozesses ist das Software-System, mit dessen Hilfe
modulare E-Learning-Inhalte genutzt werden sollen. Die Ubertragung der Wortgruppe Bau-
kasten, Baustein und Bauplan vollzieht sich aus dem iiblichen Kontext des Kinderspielzeugs
in den uniiblichen der Software. Es werden nun die einzelnen Aspekte des metaphorischen
Prozesses beschrieben:

e Die Metaphern-Produzenten/-innen fiir diese Wortgruppe lassen sich in der Litera-
tur nicht genau ausmachen. Lernmaterialien als Bausteine zu betrachten ist seit Hodgins
(siehe Abschnitt 3.2.2) sehr beliebt, aber er ist gewiss nicht der Urheber dieser Metapher.
Auch wenn ihm die Idee beim Betrachten seiner spielenden Kinder kam, wird die Meta-
pher seit lingerem im Kontext modularer Aufteilungen genutzt. Die anderen Metaphern
Baukasten und Bauplan leiten sich konsequenterweise vom Baustein ab, lassen sich in
der Literatur im Kontext modularer E-Learning-Inhalte aber nicht belegen. Dennoch soll
Hodgins in dieser Arbeit als Produzent betrachtet werden, weil so eine sehr interessante

10.5 Aufteilung

107

und hilfreiche Perspektive auf diese Wortgruppe entsteht. Da er nicht aus der Informatik
kommt, sind die Rezipienten/-innen auf der Anwendungsebene zu sehen.

e Die Rezipienten/-innen sind alle Personen, die mit modularen E-Learning-Inhalten
arbeiten. Aus Sicht der Rollen gehoren hierzu Developer, Composer, Publisher, Professor
und Student. Sie alle profitieren mehr oder weniger von den Metaphern. Wiirde die Rolle
Developer auch gut ohne die Metapher Baustein auskommen, passt sie im Gegenzug ideal
zu den Aufgaben der Rolle Composer. Zudem ist es ein leichtes, diese Metaphern auf
die Entwickler/-innen auszuweiten, um ihnen beim Entwurf ein Leitbild an die Hand
zu geben. Neben den bisherigen Komponenten helfen die Metaphern zusétzlich bei der
Strukturierung und Umsetzung.

e Die Funktionen der Metaphern héngen von der Intention der Produzenten/-innen ab.
Sehr wichtig ist die affektiv-emotionale Funktion des Begriffs ,Baukasten“: Es wirkt
vertraut und suggeriert einen kindlich einfachen Umgang. Auf diese Weise sollen Beriih-
rungsingste genommen und Interesse geweckt werden. Diese Metapher lddt einfach zum
»opielen” mit dem System ein. In die gleiche Richtung wirkt die Pridikationsfunktion.
Die gewollte Analogie zielt besonders auf die Bedienung des Systems ab, indem modulare
E-Learning-Inhalte wie Bausteine einfach zusammengesetzt werden.

e Das System selbst bzw. Teile von ihm und die E-Learning-Inhalte sind Gegenstand der
Metaphern.

e Der iibliche Kontext erstreckt sich iiber verschiedene Bereiche, wobei der beherrschen-
de sicherlich Spielen bzw. Spielzeug ist.

e Den uniiblichen Kontext bildet in diesem Fall die Informatik.

10.5 Aufteilung

In diesem Kapitel sind so viele Komponenten entstanden, dass in dieser Arbeit nicht der Platz
ist, ihre Entwicklung in allen Details zu beschreiben. Zudem ist die Entwicklung komplexer
Anwendungen eine Aufgabe fiir Teams, so auch hier. Fast alle Ergebnisse des Projekts math-
kit wurden von mehreren Personen entwickelt, diskutiert und vertffentlicht. Fiir eine besse-
re Koordination wurden die Verantwortungen fiir die jeweiligen Komponenten auf Einzelne
iibertragen. In diesem Abschnitt werden nun die Arbeiten der Beteiligten vorgestellt, die maf3-
geblich mitgewirkt haben. Die resultierenden Komponenten werden dann mit den Ergebnissen
dieser Arbeit im Teil ,, Implementierung® zu einem System zusammengesetzt.

Im Rahmen seiner Dissertation {ibernimmt Andreas Baudry neben der Komponenten Im-
port Engine — es handelt sich um die Teilkomponente fiir die Rollen Developer sowie Composer
aus den Abbildungen 10.11 und 10.12 — alle Komponenten fiir die Rolle Publisher. Die bishe-
rigen Ergebnisse dieser Arbeit finden sich in [Baudry04b; Baudry04a; Baudry03; Baudry02a]
und entsprechen den Anforderungsbeschreibungen aus Unterabschnitt 10.2.4.

In der Diplomarbeit von Marc Vollmann [Vollmann04] werden verschiedene Suchalgorith-
men auf Basis des fallbasierten Schlielens untersucht, die in die Komponente Search Engine
aus Abbildung 10.12 einflossen. Die Ansteuerung erfolgt iiber das Simple Object Access Pro-
tocol (SOAP), sodass sich eine Integration in das eigene Programm problemlos vollzieht.

Mit der Diplomarbeit [Turan04] wurde die Implementierung der bereits genannten Kom-
ponenten Import Engine und der zur Authoring Foundation gehorenden Teilkomponente Me-
tadata aus Abbildung 10.10 unterstiitzt.

Alle bis jetzt nicht aufgefiihrten Komponenten, die fiir die Umsetzung des Autorenwerk-
zeugs und des Learning Content Repository’s von Bedeutung sind, werden nun in den nach-
folgenden Kapiteln hergeleitet und zu einem System fiir modulare E-Learning-Inhalte zusam-
mengesetzt.

108 System-Vision
Komponente Typ Kapitel | Verantwortung | Kontext
File Management Basis 11 MB Dissertation
Metadata Basis 11 MB Dissertation
Multimedia Environment | Basis 11 MB Dissertation
Import Engine Basis - AB Dissertation
LOB Engine Basis 12 MB Dissertation
LOB Development Aggregation | 13 MB Dissertation
Search Engine Basis - MV Diplomarbeit
Import Engine Basis - AB Dissertation
Structure Engine Basis 12 MB Dissertation
Structure Development | Aggregation | 13 MB Dissertation
Layout Engine Basis - AB Dissertation
Format Engine Basis - AB Dissertation
Compiler Basis - AB Dissertation
Publishing Environment | Aggregation | - AB Dissertation
Authoring Environment | Aggregation | 13 MB Dissertation
MB: Michael Bungenstock AB: Andreas Baudry MV: Marc Vollmann
Tabelle 10.1: Arbeitsteilung fiir systemunabhéngige Komponenten

Komponente Typ Kapitel | Verantwortung | Kontext

User Environment Extern -

Administration Extern -

Graphical User Interface Basis 14 MB Dissertation

Scripting Environment Basis 14 MB Dissertation

Learning Content Repository | Aggregation | 15 MB Dissertation

Web-Server Basis 15 MB Dissertation

MB: Michael Bungenstock

Tabelle 10.2: Arbeitsteilung fiir proprietire Komponenten

Kapitel 11

Basiskomponenten

Aus den Komponenten und der Architektur des vorherigen Kapitels soll nun ein objektorien-
tiertes Modell erstellt werden. Um moglichst effizient das angestrebte Ziel zu erreichen, werden
die einzelnen Aufgaben der Komponenten genauer betrachtet und als Klassen dargestellt. Hier-
bei kann es durchaus vorkommen, dass sich ganz unterschiedliche Komponenten die gleichen
Klassen teilen. Aus diesem Grund ist es nicht sinnvoll, stur die einzelnen Komponenten in
Klassen herunterzubrechen, weil es so moglicherweise zu Mehrfachentwicklungen kommt. Zu-
sammenhéngende Klassen werden daher in Libraries oder nach der UML Notation in Paketen
zusammengefasst, wobei der Unterschied zu einer Komponente in der Benutzung liegt. Ist die
Komponente durch ihr Funktionsangebot eher auf der fachlichen Ebene definiert, geht es bei
der Bildung von Paketen um die physikalische Zusammenfassung korrelierender Dateien. Die-
ser modulare Ansatz vereinfacht auch die spitere Implementierung, weil jeweils eine in sich
geschlossen Klasse Gegenstand der Programmierung ist. Eine lose Kopplung zwischen Klassen
unterschiedlicher Pakete ist daher Voraussetzung fiir diese Vorgehensweise.

Es sollen aber nicht die vermeintlichen Nachteile verschwiegen werden. Freilich ist es leich-
ter, die Funktionen der Klassen auf eine Komponente zu beschrinken. Alle bendtigten Funk-
tionen lassen sich bei sorgfiltiger Planung sicher benennen und es diirfte selten zu bdsen
Uberraschungen kommen. Dem steht der generischere Ansatz der allgemein giiltigen Pakete
gegeniiber, die sich vielfaltiger einsetzen lassen. Hier muss von wesentlich mehr Eventualité-
ten und Moglichkeiten ausgegangen werden, weil die Funktionalitdt in mehreren Kontexten
benétigt wird. Dies fithrt nicht nur zu unspezifischeren Operationen, sondern verlangt auch
eine stabilere Umsetzung. Innerhalb einer Komponente kénne Annahmen getroffen werden,
wodurch kritische Situationen nicht entstehen oder besonders behandelt werden kénnen. Als
Beispiel sei eine Verbindung zu einer Datenbank angegeben, die innerhalb einer Komponente
bendtigt wird. Alle Klassen kénnen ,,wissen“, wann die Verbindung aufgebaut wird und fallen
entsprechend schlanker im Uberpriifungsteil aus. Bei einem generischen Paket darf von solchen
Voraussetzungen nicht ausgegangen werden und jede Operation muss so stabil implementiert
sein, dass sie ordentlich abgeschlossen wird. Hierdurch ist die Entwicklung von Paketen auf-
windiger. Die Entwicklung einer allgemeinen Schnittstelle verbunden mit den nétigen Uber-
priiffungen kostet Zeit und macht den Code nicht kiirzer. Letztendlich fiithrt dieses Vorgehen
aber zu stabileren Programmen, die dank der Wiederverwendung kleiner sind. Zudem werden
Fehler durch die intensivere Nutzung schneller entdeckt und behoben.

Mit der Komponente Authoring Foundation in Abbildung 10.10 ist bereits eine wichti-
ge Vorbereitung fiir die Aufteilung in Pakete geleistet. Die Teilkomponenten sind bereits fiir
bestimmte Aufgaben ausgelegt und entsprechen schon ungefihr der geplanten Aufteilung in
Klassen. Alle Zugriffe auf Dateien, von bindren Multimediadateien iiber Lernobjekte bis hin
zu den iibersetzten Kursen, erfolgt iiber die Komponente File Management. Durch die Ar-
chitektur bedingt, beschrankt sich der Zugriff nicht nur auf lokale Dateien, sondern schliefit
auch verteilte Ressourcen ein, die auf unterschiedlichen Rechnern liegen. Auch die Betrach-
tung verschachtelter Bausteine und Modelle lédsst erahnen, dass eine intelligente Realisierung

110

Basiskomponenten

wichtig ist. Zusammengefasst ist die Aufgabe dieser Komponente die Abstraktion jeglicher
Ressourcenzugriffe iiber einen einheitlichen Mechanismus bzw. eine Schnittstelle. Alle hierfiir
notigen Klassen ergeben ein Paket.

Die Komponente Metadata ist wegen der verschiedenen Standards mit ihren vielen Elemen-
ten und Attributen in ihrer Struktur sehr umfangreich. Zusétzlich miissen verschiedene Spezi-
fikationen, Kodierungen und Speichertechniken unterstiitzt werden, die moglichst ineinander
iiberfithrbar sein sollen. Die Herausforderung bei der Umsetzung dieser Komponente liegt in
der Findung eines Kompromisses zwischen generischer und einfacher Nutzung. Weil die Meta-
daten einem stindigen Wandel unterlegen sind, soll durch geschickte Wahl der Schnittstellen
ein Paket geschaffen werden, das auch zukiinftigen Entwicklungen gerecht wird.

11.1 Dateizugriff

Die bereitgestellten Funktionen der Komponente File Management werden eigentlich in fast
allen Programmen benétigt, die auf Dateien zugreifen. In der Regel iibernimmt diese Aufgabe
das Betriebssystem, das iiber spezielle Libraries angesprochen wird. Nun stellt sich die Fra-
ge, warum fiir ein E-Learning-System eine spezielle Komponente benotigt wird? Schliellich
bieten moderne Betriebssysteme viele Dienste an, die auch die Einbindung verteilter Daten
einschliefit. In die Dateisysteme lassen sich ohne weiteres WebDAV, SMB und NF'S einbinden.
Warum soll dieser zusétzliche Aufwand geleistet werden?

Die Antwort liegt in der Heterogenitit der Betriebssysteme und der angestrebten Reali-
sierung in der Programmiersprache Java. Fiir lediglich eine bestimmte Zielplattform wire der
Einsatz nativer Mechanismen die erste Wahl. Die Implementierung konnte alle Stéirken des
Betriebssystems nutzen und die Schwichen umgehen bzw. ausgleichen. Dies beschrinkt sich
nicht auf den Dateizugriff an sich. Bei manchen Systemen erstrecken sich die Funktionen bis
hin zu Verkniipfungen mit Programmen durch Mime Types oder sogar in die grafische Oberfli-
che beim Drag’n’Drop. Muss auf all diese Vorziige zu Gunsten einer Plattformunabhéngigkeit
verzichtet werden? Dank des Aufbaus der Virtuellen Maschine (VM) von Java wird letzt-
endlich doch das Betriebssystem fiir den Zugriff auf Dateien genutzt, nur iiber eine einheitliche
Schnittstelle. Die Methoden der Java-Klassen rufen intern Betriebssystemfunktionen auf, wes-
halb die mitgelieferten Libraries der Virtuellen Maschinen selbst nicht plattformunabhéngig
sind. Sie miissen fiir jedes Betriebssystem neu erstellt werden.

Java bringt also eine Schnittstelle fiir den Zugriff auf Dateien von sich aus mit, sodass keine
neuen Klassen fiir die Komponente File Manager entwickelt werden miissen. Dieser voreilige
Schluss wird jedoch durch eine genauere Betrachtung der aktuellen Java™2 Platform, Stan-
dard Edition (J2SE™) widerlegt. Alle Zugriffe auf das Dateisystem finden iiber die Klasse
java.io.File statt. Laut der zugehorigen Dokumentation [Sun01] repréisentiert diese Klas-
se einen plattformunabhéngigen, abstrakten Pfadnamen, der aus zwei Komponenten besteht:
einer systemabhingigen Priifixzeichenkette (z.B. ,,/* bei UNIX) und einer Sequenz von Null
oder mehr Namen. Jeder Name, bis auf den letzten, représentiert hierbei ein Verzeichnis.

Die Umwandlung des abstrakten Pfadnamens in einen konkreten Systempfad des Datei-
systems ist abhingig vom Betriebssystem, oder genauer betrachtet, vom Separationszeichen
innerhalb der Pfade. Diese Umwandlung und das systemabhéngige Préfix erschweren die Ent-
wicklung portabler Anwendungen, die z.B. auf Microsoft Windows und parallel auf UNIX-
Derivaten ohne Neuiibersetzung laufen.

Neben dem Problem der Portierbarkeit, ist der Funktionsumfang der Klasse java.io.File
sehr spartanisch. Es kénnen gewisse Attribute von Dateien und Verzeichnissen abgefragt wer-
den, wie z.B. Datum der letzten Bearbeitung, Lénge der Datei in Bytes und die Rechtevergabe
zum Schreiben oder Lesen. Die Manipulationsmoglichkeiten beschrianken sich lediglich auf das
Erstellen, Loschen und Umbenennen. Eine Operation wie Kopieren oder die Unterstiitzung
Reguldrer Ausdriicke, wie sie in diversen Kommandozeilen Verwendung findet, muss bereits
selbst implementiert werden.

11.1 Dateizugriff

111

Die Definition der Komponente File Management sieht solche komfortablen Operationen
und noch speziellere vor. Besonders die gepackten sowie verschachtelten Dateien und der naht-
lose Netzwerkzugriff miissen unterstiitzt werden. Bei der Realisierung der Komponente miissen
somit zumindest ergdnzende Klassen, wenn nicht sogar ein komplett neuer Zugriff auf Dateien
eingeplant werden. Auch Sun als Urheber von Java hat bemerkt, dass die Funktionalitit der
Klasse java.io.File nicht ausreicht und hat daher das WebNFS™ Client SDK entwickelt.
Mit diesem SDK wird der Zugriff auf Dateien und Verzeichnisse verschiedener Dateisyste-
me iiber eine Schnittstelle realisiert. Die Referenzierung erfolgt iiber URLs [Berners-Lee94]
und ermoglicht so die Portierbarkeit von Programmen ohne Neuiibersetzung. Kernstiick die-
ses Ansatzes ist die XFile-Schicht, die durch beliebige Dateisysteme erweitert werden kann.
Abbildung 11.1 zeigt das Schichtenmodell von WebNFS.

Java Application
com.sun.xfile.*
nfs: | cifs: | file: |native:

Abbildung 11.1: Extended Filesystem Architecture [Sun99]

Der Dateizugriff iiber das Netzwerk (TCP/IP) ist das Hauptmerkmal von WebNFS. Es
wundert daher nicht, dass die Schicht com.sun.xfile.* beziiglich der Attribute und Datei-
operationen nicht mehr Funktionalitét als die Klasse java.io.File anbietet und damit den
Anspriichen nicht vollends geniigt.

Von anderen Herstellern bzw. Entwicklergruppen werden eine Reihe an weiteren kleinen
APIs und Erweiterungen der Standardklassen angeboten, die meist einen erweiterten Zugriff
auf betriebssystemspezifische Daten geben. Jedoch gibt es zu diesem Zeitpunkt kein Produkt,
das einen sauberen Entwurf, bei dem allzu technische Details verborgen sind, in der geforderten
Form ermoglicht. Um diesem Wunsch dennoch Rechnung zu tragen, wird daher eine eigene
Dateisystem-API fiir Java entwickelt.

11.1.1 Dateisystem Grundlagen

Zuerst muss eine Idee formuliert werden, wie das zu entwickelnde Dateisystem aufgebaut sein
soll. Hieraus ergibt sich automatisch die Schnittstelle nach auflen, die zur Ansteuerung von an-
deren Komponenten genutzt wird. Nun soll das Rad nicht neu erfunden werden, weshalb kurz
festgehalten wird, was an Libraries und Funktionen bereits zur Verfiigung steht. Als erstes ist
die mitgelieferte Klasse java.io.File zu nennen, die den Zugriff auf das lokale Dateisystem
ermoglicht. Freilich soll ihre Funktion nicht nachimplementiert werden, denn die Umsetzung
dieser Klasse ist proprietir und eine Eigenentwicklung wére nicht mehr plattformunabhéngig.
Die von Java angebotene Klasse soll das Fundament fiir den Dateizugriff auf das lokale Datei-
system sein. Im Falle der verteilten Daten miissen Protokolle wie z.B. WebDAV, NFS oder
SMB implementiert werden. Dies kann und soll auch nicht geleistet werden, weil Aufwand
und Nutzen in keiner Relation stehen. Besser ist der Einsatz existierender Libraries, die we-
sentlich zuverldssiger sind. Damit wird zwar die Einbindung vieler verschiedener Schnittstellen
als Nachteil in Kauf genommen, aber dieses Vorgehen sichert die hochstmogliche Flexibilitét.
Um dieser Vielfiltigkeit zu begegnen, muss das Dateisystem eine abstrahierende Schnittstelle
anbieten, die mit Hilfe von Adaptern auf die eigentliche Funktionalitit der Libraries zugreift.
So bleibt das Dateisystem auch fiir zukiinftige Techniken erweiterbar.

Der Begriff Dateisystem an sich ist gepréigt vom Einsatz in Betriebssystemen. Insofern
sollen die Erfahrungen und Theorien aus diesem Bereich bei der Entwicklung des eigenen
Dateisystems beriicksichtigt werden. Im Grunde genommen handelt es sich bei dem Datei-
system um eine Verwaltung anderer Dateisysteme, sodass es beispielsweise dem Virtual File
System (VFS) von Linux dhnlich ist. Beim VFS geht es zwar in erster Linie um die Abstraktion
von physikalischen Medien und Gerétetreibern, aber das Prinzip ist sehr &hnlich.

112

Basiskomponenten

Wegen der existierenden Libraries kann das Abstraktionsniveau sehr hoch gewéhlt wer-
den, schliellich muss sich das Java-Dateisystem nicht um die physikalische Représentation
kiimmern. Die Aufteilung der Festplatten und die Adressierung iibernehmen die jeweiligen
Betriebssysteme. Aufgabe des Dateisystems ist daher die einheitliche Adressierung von Res-
sourcen und die Delegation von Operationen iiber Library-Grenzen hinweg.

Moderne Dateisystem ordnen ihre Dateien in Verzeichnissen an, die technisch gesehen meist
selbst Dateien sind. Sie enthalten eine bestimmte Anzahl an Eintrégen, wobei jeder fiir eine
Datei steht. Abbildung 11.2(a) zeigt eine Form der Speicherung, bei der Dateiname, Attribute
und die Adresse in einem Eintrag gespeichert sind.

attributes ‘ —

games games 1
malil ! attributes mail | ,,/—’|:|
1
news | attributes news ! ~\|:|
work | attributes work } \\
|:|\ Data structure
containing the
attributes
(a) Attribute im Verzeichni- (b) Externe Attribute
seintrag

Abbildung 11.2: Aufbau von Verzeichniseintrégen aus [Tanenbaum97, S. 411]

Zu den Attributen zdhlen diverse Daten (Erstellungsdatum, Bearbeitungsdatum, etc.),
Zugriffsrechte, Eigentiimer, Dateildnge und viele weitere systemspezifische Felder. Die Adres-
se hiangt im Falle des Java-Dateisystems vom eingebundenen Dateisystem ab, also wie das
Quellsystem das Zielsystem ansteuern muss. Handelt es sich beispielsweise um ein WebDAV-
Dateisystem, ist die Adresse, die das Java-Dateisystem speichert, eine URL.

Eine andere Form des Verzeichniseintrags ist die Referenzierung einer externen Struktur,
wie in Abbildung 11.2(b) zu sehen ist. Sie ist nur der Vollsténdigkeit halber aufgefithrt und
hat keinen weiteren Einfluss auf den Entwurf. Historisch gesehen lassen sich ,,echte* Dateisys-
teme auf diese Weise besser erweitern. Aufgrund des objektorientierten Ansatzes des Java-
Dateisystems ist dieses Argument aber hinfillig.

Weil auch Verzeichnisse normale Dateien sind, konnen sie problemlos verschachtelt werden.
Zyklen sind aber nicht erlaubt, weshalb die resultierende Struktur ein Baum ist. Aus heutiger
Sicht mag dieser Aufbau einer Dateistruktur selbstverstéindlich erscheinen, aber in den An-
fangen der Betriebssysteme gab es entweder ein Hauptverzeichnis oder Unterverzeichnisse in
sehr geringer Zahl.

Fiir den Zugriff auf die Dateien wird eine Adressierung bendétigt, die jeden Knoten im Baum
eindeutig identifiziert. Jeder Baum hat genau ein Wurzelverzeichnis das alle Unterverzeichnis-
se direkt oder indirekt beinhaltet. Wenn jeder Dateiname innerhalb eines Verzeichnisses nur
ein Mal verwendet werden kann, dann ldsst sich diese Datei {iber die Namen der hoher lie-
genden Verzeichnisse eindeutig ansprechen. Diese Adressierung wird Pfad genannt und kann
in zwei Varianten notiert werden. Bei einem absoluten Pfad werden alle Namen vom Wur-
zelverzeichnis bis zum Dateinamen angegeben, getrennt durch einen Separator. Bei Windows
iibernimmt das Zeichen ,\“ diese Aufgabe und bei Unix ,/“. Ein Beispiel fiir einen absolu-
ten Pfad ist /usr/jim/mails. Das Wurzelverzeichnis ,,/“ enthélt das Unterverzeichnis usr,
das wiederum das Unterverzeichnis jim und schliellich folgt die Datei mails. Abbildung 11.3
zeigt eine passende Dateistruktur.

Die andere Schreibweise fiir einen Pfad nennt sich relativer Pfad und steht in Verbin-
dung mit dem Konzept des Arbeitsverzeichnisses. Dahinter verbirgt sich die Moglichkeit,
anstatt des Wurzelverzeichnisses ein beliebiges Verzeichnis anzugeben, von dem aus alle Pfade

11.1 Dateizugriff

113

/
bin |-=— Root directory
etc
lib
usr
tmp
bin etc lib usr tmp
ast
jim
Y Y
ast jim

—<— /ustr/jim

Abbildung 11.3: Ein UNIX Verzeichnisbaum aus [Tanenbaum97, S. 414]

beginnen. Wenn z.B. das Verzeichnis /usr/jim als aktuelles Arbeitsverzeichnis ausgewihlt
ist, kann die Datei /usr/jim/mails einfach iiber den Pfad mails aufgerufen werden. Relati-
ve Pfade vereinfachen somit den Zugriff auf Dateien, besonders wenn auf viele Dateien eines
Unterverzeichnisses zugegriffen wird. Es wird noch angemerkt, dass absolute Pfade in keiner
Weise vom Arbeitsverzeichnis beeinflusst werden. Bei Betriebssystemen hat jeder Prozess ein
eigenes Arbeitsverzeichnis, was fiir das Java-Dateisystem nur bedingt gelten soll. Um flexibler
zu sein, soll jedes Objekt der Dateisystemklasse ein eigenes erhalten kénnen. Wie viele Objekte
es geben kann, héngt von der jeweiligen Implementation ab.

Es gibt noch zwei spezielle Verzeichniseintrége, die eigentlich von allen hierarchischen
Dateisystemen unterstiitzt werden. Mit ,.“ wird auf das Verzeichnis selbst zugegriffen und
mit ,,..“ auf das hoher liegende, dem Elternverzeichnis. Der absolute Pfad /usr/jim/. adres-
siert also /usr/jim und /usr/jim/.. das hoher liegende Verzeichnis /usr.

Nachdem sich die Dateien adressieren lassen, sollen nun einige wichtige Operationen be-
schrieben werden. Obwohl Verzeichnisse reguldre Dateien sind, gibt es bei den Operationen
dennoch Unterschiede. Hierzu gehort der Zugriff auf den Inhalt einer Datei, der bei einem
Verzeichnis nicht moéglich ist. Von den géngigen Betriebssystemen werden zwei verschiedene
Methoden fiir normale Dateien unterstiitzt, die sich in den unterschiedlichen Medien, wie z.B.
Béandern und Festplatten, begriinden. Beim sequentiellen Zugriff konnen die Daten der Rei-
he nach vom Anfang bis zum Ende ausgelesen oder geschrieben werden, wobei ein Zugriff in
beliebiger Reihenfolge nicht moglich ist. Die Klasse java.io.File bietet wie die erhiltlichen
Libraries den sequentiellen Zugriff iiber Ein- und Ausgabestrome zu einer Datei an.

Lésst sich auf Bereiche der Datei direkt zugreifen, heifit diese Form beliebiger Zugriff.
Fiir viele Anwendungen, wie z.B. Datenbanken, ist dieser Zugriff sehr wichtig, denn besonders
bei vielen Daten kann nicht jedes Mal die Datei von Anfang an durchgegangen werden, wenn
am Ende ein kleines Datum bendétigt wird. Leider sieht es bei der Unterstiitzung in Java
eher schlecht aus. Zwar gibt es die Klasse java.io.RandomAccessFile, aber besonders die

114

Basiskomponenten

zusétzlichen Libraries fiir den Netzwerkzugriff haben ihre Probleme. Manche Protokolle, wie
z.B. WebDAV | sehen den beliebigen Zugriff nicht einmal vor. Um unnétige Komplikationen im
Vorwege zu vermeiden, soll das Java-Filesystem diese Form des Zugriffs nicht unterstiitzen.
Dies ist nicht weiter schlimm, da E-Learning-Inhalte in der Regel recht klein sind und sich
komplett im Speicher halten lassen.

Zu den Operationen, die fiir Dateien wie Verzeichnisse giiltig sind, gehdren unter anderem
Erstellen, Loschen und Umbenennen. Es gibt noch eine Reihe weiterer Funktionen, wie z.B.
das Auflisten aller Verzeichniseintrige oder das Anhingen von Daten, die entweder fiir Ver-
zeichnisse oder Dateien gelten, aber auf sie soll nicht weiter eingegangen werden. Wenn solche
Funktionen von Bedeutung sind, werden sie als Methoden in die Klassen aufgenommen.

11.1.2 Virtuelles Dateisystem

In Anlehnung an das abstrahierende Dateisystem von Linux sollen die zentralen Klassen als
virtuelles Dateisystem betrachtet werden. Hierunter wird im Kontext dieser Arbeit ein Me-
chanismus verstanden, der verschiedene existierende Dateisysteme in einer neuen Dateistruk-
tur zusammenfasst. Das virtuelle Dateisystem bietet somit eine einheitliche Adressierung fiir
Dateien an und die Delegation von Operationen. Aus diesem Grund werden die angesteuerten
Dateisysteme auch Zieldateisysteme genannt.

Im Gegensatz zu den Dateisystemen der Betriebssysteme, wird die Dateistruktur beim vir-
tuellen Dateisystem komplett im Speicher gehalten und nicht direkt auf dem Medium gespei-
chert. Jeder Zugriff auf Verzeichnisse und Dateien hat somit zur Folge, dass eine entsprechende
Struktur im Speicher erzeugt wird, die von der physikalischen Reprisentation abstrahiert. Um
die Struktur eines virtuellen Dateisystems persistent zu machen, miissen sie an anderer, frei
wihlbarer Stelle gespeichert werden. Die Dateien selbst werden freilich in ihrem jeweiligen
Zieldateisystem gehalten.

Im Java-Dateisystem wird es daher eine Klasse geben, mit der entsprechende Strukturen
im Speicher aufgebaut werden kénnen. Anhand des Beispiels in Abbildung 11.4, sollen die
Zusammenhénge fiir ein stellvertretendes WebDAV-Dateisystem erldutert werden.

l
. webdav://getl.upb.de/
repository | & J £ -

webdav://getl.upb.de/start.xml
start.xml (&>

title.xml @ webdav://getl.upb.de/title.xml .
WebDAV

Abbildung 11.4: Interne Abbildungen im VFS

Ein Server mit der Internetadresse getl.upb.de stellt das auf der rechten Seite liegende
Zieldateisystem zur Verfiigung. Wie und wo die Dateistruktur gespeichert ist, soll an dieser
Stelle nicht interessieren. Wichtiger ist die interne Struktur des virtuellen Dateisystems auf
der linken Seite, die sich auf einem anderen Client-Rechner befindet. Verzeichnisknoten sind
als Quadrate dargestellt und Dateien als Kreise. Ein Pfeil in den Knoten weist auf die Adres-
sierung einer anderen Ressource hin. In dem Beispiel werden URLs genutzt, die als zusétzliche
Kantenbeschriftung angegeben sind. Das oberste Verzeichnis hat keinen Namen und deutet die
Beliebigkeit der Position im Dateisystem an. Wichtiger ist das Unterverzeichnis repository,
das eine Referenz auf das WebDAV-Verzeichnis ,,/“ besitzt. Die unterschiedlichen Namen sind
kein Problem, da die absoluten Pfade sowieso nicht identisch sein kdnnen.

11.1 Dateizugriff

115

Weil der Knoten repository auf ein Wurzelverzeichnis eines anderen Dateisystems ver-
weist, wird er als Mount-Punkt bezeichnet. Es ist quasi der Einstiegspunkt, der ,,manuell”
gesetzt werden muss. Alle anderen Knoten, im Beispiel sind es start.xml und title.xml,
werden automatisch abgefragt und im virtuellen Dateisystem neu erzeugt. Nun konnen sol-
che eingehéingten Dateisysteme mit tausenden von Unterverzeichnissen recht umfangreich sein
und es wiére ein erheblicher Aufwand, die gesamte Struktur auf ein Mal zu iibertragen. Viele
Verzeichnisse werden moglicherweise nie aufgerufen, sodass sich diese Herangehensweise nicht
lohnt. Daher soll die interne Struktur nur fiir Dateien aufgebaut werden, die tatséchlich bens-
tigt werden. Der Struktur in Abbildung 11.4 sind ein paar Operationen voraus gegangen, wie
sie in Abbildung 11.5 dargestellt sind.

mount() list()
—_— —_—
repository repository

WebDAV

Abbildung 11.5: Aufbau der Dateistruktur in zwei Schritten

Der Ausgangszustand des virtuellen Dateisystems ist in Abbildung 11.5(a) dargestellt,
der aus zwei Knoten besteht, die keine externen Ressourcen referenzieren. Mit dem Befehl
mount () an den Knoten repository wird ihm die Adresse einer WebDAV-Datei zugewiesen.
Das Resultat ist in Abbildung 11.5(b) zu sehen. Zu diesem Zeitpunkt hat sich an der Struktur
des virtuellen Dateisystems nichts gedndert. Dies geschieht erst durch den Aufruf des Befehls
list (), der die Namen aller Dateien des Verzeichnisses ausliest. Hierfiir delegiert der Knoten
repository den Befehl an die Zieldatei und generiert aus dem Resultat alle Knoten mit ihren
Attributen, einschlielich der Adressen. Erst jetzt entspricht der Zustand in Abbildung 11.5(c)
dem vorherigen Beispiel.

Selbstverstandlich lassen sich beliebig viele Zieldateisysteme verschiedenen Typs in das
virtuelle Dateisystem einhéingen, wie in Abbildung 11.6 dargestellt. Der Ubersicht halber sind
nicht alle Verbindungen zwischen den Knoten und Dateien eingezeichnet.

Auch verschiedene Laufwerke eines Windows Systems lassen sich problemlos hinzufiigen
und durch die direkte Einbindung in die Dateistruktur werden keine Laufwerksbuchstaben
mehr benottigt. Beim Zieldateisystem WebDAV wird zudem gezeigt, dass sich jedes beliebige
Verzeichnis mit einem Mount-Punkt verbinden lasst. Lediglich die dariiber liegenden Ver-
zeichnisse bzw. die Geschwister auf gleicher Hohe lassen sich dann nicht iiber einen Pfad im
virtuellen Dateisystem ansprechen.

Aus den geschilderten Funktionen des virtuellen Dateisystems lisst sich nun die gewiinschte
Klasse zur Strukturierung ableiten. Da es sich bei der Dateistruktur um einen Baum handelt,
der aus vielen Knoten besteht, ergibt sich die Klasse VFSNode, in der alle Attribute gespeichert
sind. Abbildung 11.7 zeigt sie mit ihren wichtigen Methoden, die aufgrund der vorherigen
Beschreibungen in Abschnitt 11.1.1 keiner weiteren Erklirungen bediirfen.

Offensichtlich bietet diese Klasse aber nur rudimentéire Operationen an, obwohl in den
vorherigen Ausfithrungen Funktionen wie das Kopieren oder Entpacken von Dateien eingefor-
dert wurden. Auch das beschriebene Einhéngen anderer Dateisystem ist anscheinend nicht auf
dieser Ebene realisiert.

Der Grund hierfiir ist einfach. Solche Operationen schlieBen immer mehrere Knoten ein
und benétigen eine zusétzliche Verwaltung. Als Beispiel sei nochmals das Einhéngen eines

116

Basiskomponenten

/ —<— Root directory
std getl [y repository [y
Al clo = = =

Il -l

Standard file system (Windows)

Network file system (NFS)

WebDAV

Abbildung 11.6: Beispiel fiir den Aufbau des VFS

Zieldateisystems genannt. Die Operation mount () bedeutete fiir einen Knoten, alle Attribute
und Eigenschaften des neuen Zieldateisystems zu kennen. Hierdurch wiirden aber die Vorteile
des objektorientierten Entwurfs leichtfertig aufgegeben, da die Klasse VFSNode als universeller
Knoten auftritt. Um moglichst flexibel zu bleiben, sollte sie lieber als Schnittstelle fiir spezielle
Implementationen dienen, was in Abbildung 11.7 durch den Stereotyp abstract angezeigt ist.
Ein paar erbende Klassen fiir jeweils ein Zieldateisystem sind in Abbildung 11.8 zu sehen.

Die Verwaltung des Einhéngens und anderer komplexer Operationen wird in einer eigenen
Klasse Namens VFS implementiert. Neben einigen Vereinfachungen bietet diese Klasse auch
Dienstleistungen an, die alle Knoten eines Dateisystems betreffen. Es ist beispielsweise fiir
eine grafische Darstellung eines Dateisystems notwendig, nach Anderungen den aktuellen Zu-
stand neu zu zeichnen. Um nicht sténdig alle Knoten {iberpriifen zu miissen, bietet die Klasse
VFS einen Benachrichtigungsmechanismus an, der angemeldete Zuhorer iiber alle Anderun-
gen informiert. Jede Klasse kann zum Zuhorer werden, indem sie eine einfache Schnittstelle
implementiert, iiber die sie die Benachrichtigungen empfangen kann. Bei manchen Benach-
richtigungen kénnen die Zuhorer sogar Einfluss auf das Geschehen nehmen. Wenn z.B. eine
Datei geloscht werden soll, werden die Zuhorer iiber dieses Vorhaben benachrichtigt. Nach dem
Empfang koénnen sie den/die Anwender/-in mit Hilfe eines Dialogs hieriiber informieren und
das Einverstdndnis abfragen. Sollte das Loschen doch nicht gewiinscht sein, wird der Abbruch
dieser Operation an das Dateisystem zuriickgeschickt. Die wichtigen Methoden der Klasse VFS
sind in Abbildung 11.9 dargestellt.

Auch bei dieser Klasse sind die Methoden weitestgehend selbsterklarend. Mit der Methode
zip lassen sich mehrere Dateien zu einem Archiv zusammenfassen und komprimieren. Um
wieder an die einzelnen Dateien zu kommen, lassen sich die Archive mit unzip entpacken.
Interessant ist die Klasse des Parameters, den beide als Argument akzeptieren. Bei Virtu-
alFile handelt es sich um eine Pfadbeschreibung im virtuellen Dateisystem. Da sie intern
den Zugriff auf das Dateisystem bendétigt, wird sie erst anschlieBend nédher erldautert. Neben

11.1 Dateizugriff

117

VFSNode
{abstract}

canRead():Boolean
canWrite():Boolean
exists():Boolean
getlnputStream():In
getOutputStream():Out
getName():String
getParent():VFSNode

isDir():Boolean
isHidden():Boolean
length():int
list():VFSNode[]
mkDir():Boolean

Abbildung 11.7: Klasse VFSNode

VFSNode
StandardFSNode WebDAVFSNode NetworkFSNode

Abbildung 11.8: Verschiedene Unterklassen der Klasse VFSNode

einzelnen Knoten lassen sich auch Zieldateisysteme direkt in das Dateisystem einhéngen. Dies
ist besonders praktisch bei Dateistrukturen, wie sie von Windows angeboten werden. Auf diese
Weise miissen nicht alle Laufwerke einzeln eingehédngt werden.

Wie bei den Knoten die Klasse VFSNode, ist auch die Klasse VFS abstrakt definiert und eine
Schnittstelle fiir die unterschiedlichen Implementationen. Abbildung 11.10 zeigt eine mogliche
Vererbungshierarchie.

Fine Konsequenz aus diesem Ansatz ist, dass jedes Zieldateisystem gleichzeitig als virtu-
elles Dateisystem auftritt. Dies fiihrt zwangsldufig zu einem Problem mit Windows, da im
vorherigen Abschnittl11.1.1 immer von einem Wurzelverzeichnis ausgegangen worden ist, iiber
das alle absoluten Pfade definiert sind. Unter Windows gibt es nun historisch bedingt bis zu
26 Wurzelverzeichnisse (Laufwerk A:-Z:), sodass die Pfadbeschreibung ein wenig anders ist.
Das virtuelle Dateisystem soll aber mit nur einem Wurzelverzeichnis auskommen, weshalb das
bestehende Konzept um eine Ebene erweitert werden muss. Neben dem Wurzelverzeichnis,
das tiber die Methode getRootNode erreichbar ist, werden deshalb die Volumes eingefiihrt.
Dieser Name ist absichtlich aus der Windows Welt entnommen, weil es das einzige verbreitete
Betriebssystem mit dieser Aufteilung ist.

Volumes liegen direkt unter dem Wurzelverzeichnis und sind eine Art privilegiertes Ver-
zeichnis. Bei der Pfadangabe muss nicht der echte absolute Pfad angegeben werden, sondern
kann mit dem Namen eines Volumes beginnen. Mit diesem Verfahren lassen sich die Laufwer-
ke simulieren. Uber die Methode getVolumes gibt ein Dateisystem eine Liste aller Volumes
zuriick. Bei einem UNIX-Dateisystem wird eine leere Zeichenkette zuriickgegeben, sodass der
absolute Pfad immer mit ,,/“ anfingt.

Die Methode getRootNode deutet bereits an, dass der Zugriff auf die Knoten iiber das
Dateisystem lduft. Nun hat der interne Baum, wie er bis jetzt dargestellt wurde, einen gra-
vierenden Nachteil. Anderungen auf Seiten des Zieldateisystems werden nicht weitergereicht,
was zu Inkonsistenzen fithren kann. Wird z.B. der Inhalt eines Verzeichnisses mit 1ist aus-
gelesen und nachfolgend direkt im Zieldateisystem eine der aufgelisteten Dateien geloscht, so
bleibt der Knoten im virtuellen Dateisystem bestehen. Erst beim Zugriff auf die Datei of-
fenbart sich dieser Zustandsunterschied. Abhéngig von der Implementation der Knoten kann
dieses Problem frither oder spéter auftreten. Bei einer einfachen Umsetzung mit einer direk-

118

Basiskomponenten

VFS
{abstract}

addListener(Listener)
removeListener()
copy(VirtualFile, VirtualFile)
move(VirtualFile, VirtualFile)
remove(VirtualFile)
zip(VirtualFile)
unzip(VirtualFile)
mount(VFS, VirtualFile)
mount(VirtualFile, VirtualFile)
umount(VirtualFile)
getVolumes():VirtualFile[]
#getNode(String):VFSNode
#getRootNode():VFSNode

Abbildung 11.9: Klasse VFS

VFS

]

StandardFS WebDAVFS NetworkFS

Abbildung 11.10: Verschiedene Unterklassen der Klasse VFS

ten Referenzierung der Knoten kann es sogar vorkommen, dass auch wiederholte Aufrufe von
list den alten Zustand anzeigen. Daher sollte bei jeder Operation iiberpriift werden, ob die
Dateistruktur des virtuellen Dateisystems mit dem des Zielsystems iibereinstimmt. Fiir eine
grafische Darstellung wire es sogar sinnvoll, in regelméfligen Zeitabstinden diese Uberpriifung
durchzufiihren. Leider kann diese Abfrage bei komplexen Dateisystemen sehr teuer sein, zumal
ein Zugriff iiber das Netzwerk zusétzlich Zeit benttigt. Auf der anderen Seite ist die Pflege
eines Baums mit den verschiedenen Dateisystemoperationen sehr umsténdlich und kann bei
sehr groflen Dateisystemen immer noch viel Platz in Anspruch nehmen.

Die Losung liegt in einer ,flachen® Organisation der Knoten. Anstatt die Dateistruktur
als Ganzes zu betrachten, kann jeder Knoten eindeutig iiber einen Pfad identifiziert werden.
Um einen angemessenen Kompromiss zwischen Speicherbedarf und Laufzeit zu finden, werden
lediglich n Knoten gleichzeitig im Speicher gehalten. Abbildung 11.11 zeigt die angestrebte
Variante.

1) | /repository/title.xml @ title.xml

2) | /repository/start.xml @ start.xml

3) | /repository @ repository

4) | /did... @
| ot @

Abbildung 11.11: Dateistruktur im Arbeitsspeicher

Es handelt sich quasi um eine Hash-Map mit einer internen Ordnung. Jeder der n Eintrége
représentiert einen Knoten mit zugehorigem Pfad. Der zuletzt genutzte Knoten ist auf Position
1, der vorherige auf 2 und der letzte auf n. Wird nun auf einen Knoten zugegriffen, der zuvor
nicht in der Liste aufgefiihrt war, wird Knoten n herausgenommen und alle n — 1 Knoten

11.2 Metadaten

119

um eine Position nach hinten verschoben. An Position 1 wird abschlieend der neue Knoten
eingetragen. Die ganze Anordnung kann als Cache betrachtet werden, auch wenn er nicht so
leistungsfahig ist, wie ihn manche Dateisysteme anbieten. So kénnte beispielsweise eine zweite
Liste angeschlossen werden, in der die Haufigkeit der Zugriffe beriicksichtigt werden. Sollte die
Leistungsfahigkeit des gewihlten Ansatzes wider Erwarten nicht ausreichen, kénnten solche
Funktionen immer noch nachtriglich fiir eine Optimierung sorgen.

Wie angekiindigt, soll nun die letzte wichtige Klasse des virtuellen Dateisystems néher
vorgestellt werden. Bei dem VirtualFile handelt es sich sich um eine Aggregation von Pfad
und Referenz auf ein Dateisystem, um den Zugriff zu vereinfachen. Abbildung 11.12 zeigt das
zugehorige Klassendiagramm.

String

VirtualFile
]

VFS

Abbildung 11.12: Aggregation von String und VFS

Diese Klasse bietet alle Methoden der Klasse VFSNode an, weshalb kein detaillierteres
Diagramm angegeben werden muss. Intern werden die Methodenaufrufe an die Knoten mit
dem passenden Pfad weitergegeben. Die Programmierer/-innen nutzen folglich die Knoten-
Klassen nie direkt, sondern bedienen sich des vereinfachten Zugriffs. Bei einfachen Operationen
ist kein Unterschied in der Bedienung zu der Klasse java.io.File auszumachen, sodass einer
gewohnten Verwendung bzw. der Umstellung existierenden Programm-Codes nichts im Wege
steht.

Wie es nach der UML vorgesehen ist, kann nun, da die Klassen vollsténdig fiir den Umgang
mit Dateien erschlossen sind, die erste Komponente File Management gebildet werden, wie
sie in Abbildung 10.10 zu sehen ist. Hierfiir werden einfach alle vorgestellten Klassen zusam-
mengefasst und als eine Einheit ausgegeben. Der Prozess dieser Kombination ist in Abbildung
11.13 schematisch dargestellt und enthélt freilich nur ein paar ausgewéhlte Klassen.

VES

=

File Management

VFSNode

VirtualFile

Abbildung 11.13: Bildung der Komponente File Management

Im néchsten Abschnitt wird die nidchste Komponente fiir die Rolle Author hergeleitet, um
Abbildung 10.10 zu vervollstandigen.

11.2 Metadaten

Das Kapitel 4 mit seinen theoretischen Ausfithrungen und detaillierten Vorstellungen der gén-
gigen Standards bildet die Basis fiir die folgenden Uberlegungen. Die zugehérige Komponente
fiir die Metadaten lésst sich, dhnlich der Komponente File Management, vollstéandig in Form
einer allgemeinen Library aufziehen. Hierdurch wird die benétigte Flexibilitéit erreicht, die fiir
eine solch zentrale Funktion unabdinglich ist.

120

Basiskomponenten

Grundlegend wird eine allgemeine Architektur fiir die Erstellung, Bearbeitung und den
Austausch von Metadaten entwickelt. Eine besondere Schwierigkeit dieses Unternehmens ist
die Vielfiltigkeit der unterschiedlichen Standards und deren Kodierungen. Das angestrebte Ziel
kann folglich nur eine interne Repréisentation sein, die allen Belangen gerecht wird. Hierfiir
miissen die zu unterstiitzenden Standards festgelegt und ihre Gemeinsamkeiten erkannt wer-
den. Auf jeden Fall sollen die im Teil ,,Stand der Wissenschaft* vorgestellten Spezifikationen
von Dublin Core und IEEE LOM in verschieden Kodierungen unterstiitzt werden. Neben dem
definierten Format in XML soll auch die direkte Unterstiitzung von Datenbanken angeboten
werden. Hieraus ergibt sich eine Architektur, die schematisch in Abbildung 11.14 dargestellt
ist.

XML-Reader —* Data Flow
Dublin Core T Uses
LOM
Ariadne
N
XML XML-Writer MD Structure
Dublin Core O

LOM

Ariadne

N\

j DB-Reader
DB [

B - A

vy Yy v
Meta Data API

Abbildung 11.14: Architektur fiir heterogene Metadatenformate

Aus den verschiedenen Datenquellen, XML-Datei und Datenbank, werden die Metadaten
iiber die Reader eingelesen und unter Zuhilfenahme der unten stehenden API zu einer hier-
archischen Struktur zusammengesetzt. Eine der Gemeinsamkeiten ist ndmlich der Aufbau als
Baum, auf den sich alle wichtigen Metadatenspezifikationen abbilden lassen. Uber die Writer
kann die Metadatenstruktur wieder in die Formate der Datenquellen umgewandelt werden.
Neben dem Aufbau der Metadatenreprisentation im Speicher, ermoglicht die Metadaten-API
auch die Manipulation der Struktur.

Die gesamte Flexibilitéit dieses Entwurfs begriindet sich in den unterschiedlichen Reader-
und Writer-Modulen, deren Aufbau ndher betrachtet werden soll. Da es fiir Datenbanken
keine verbindlichen Anordnungen bzw. Datenbankschemata gibt, kann der Zugriff sehr indivi-
duell gestaltet werden. Eine denkbare Losung ist eine Klasse, die aus einer festgelegten Quelle
die notigen SQL-Skripte auslesen kann. Hierdurch wird zwar Programmlogik auflerhalb der
Applikation angesiedelt, was im Normalfall zu vermeiden ist, aber die gewonnene Flexibilitét
rechtfertigt moglicherweise diese Vorgehensweise. Alternativ kann auch eine Klasse mit der
vollsténdigen Datenbankansteuerung erstellt werden und in frei definierbaren Unterklassen er-
folgt die Zuordnung zu den Tabellen. Welcher Ansatz letztendlich gew&hlt wird, soll erst in
der Implementierungsphase entschieden werden.

Anders sieht es bei der Kodierung in XML aus. Weil alle relevanten Spezifikationen ein
XML-Binding beinhalten, muss dieser Umstand bereits beim Entwurf berticksichtigt werden.
In Abbildung 11.14 sind die Standards eingetragen, die von der angestrebten Implementierung

11.2 Metadaten

121

unterstiitzt werden sollen. Zu den gestellten Anforderungen lisst sich elegant eine passende
Klassenstruktur bilden, deren Diagramme fiir Reader und Writer in Abbildung 11.15 darge-
stellt sind.

MDReader MDWriter
XMLReader DBReader XMLWriter DBWriter
LOMReader DCReader LOMWriter DCWriter
i i
AriadneReader AriadneWriter
(a) Metadaten-Reader (b) Metadaten- Writer

Abbildung 11.15: Klassenhierarchien der Reader und Writer

Der Zugriff auf alle Metadaten- Reader sowie - Writer erfolgt iiber die Klassen MDReader
und MDWriter, die eine einheitliche Schnittstelle nach auflen darstellen. Implementierungen
spezieller Methoden sind auf dieser Ebene nicht zu erwarten, sodass es sich im Sinne von Java
um echte Interfaces handelt und nicht um abstrakte Klassen. Auf der nichsten Ebene, den
Klassen XMLReader und DBReader bzw. XMLWriter und DBWriter verhélt es sich anders. Hier
werden grundlegende Funktionen angeboten — meist technische Details verdeckend —, die
in den Unterklassen genutzt werden. In den jeweiligen Klassen fiir LOM und Dublin Core
auf der darunter liegenden Vererbungsebene steckt die Logik, die fiir den Zusammenbau der
allgemein giiltigen Metadatenstruktur bzw. die Abbildung in das entsprechende Zielformat
benotigt wird. Am Beispiel von Ariadne wird gezeigt, wie der Entwurf durch Application
Profiles erweiterbar ist. Durch Vererbung koénnen existierende Reader und Writer um neue
Metadateneintrage erweitert werden.

11.2.1 Datenstruktur

Im vorigen Abschnitt wurde bereits erwéhnt, dass die interne Struktur hierarchisch als Baum
aufgebaut ist. Diese Anordnung ist pradestiniert, weil sich alle géingigen Standards ohne Auf-
wand in diese Form bringen lassen. Sei es nun Dublin Core mit seinen 15 Elementen, die
gleichberechtigt auf der obersten Ebene liegen, oder LOM mit der semantischen Aufteilung
in 9 Kategorien und weiteren Unterkategorien. Letztendlich bietet ein allgemeiner Baum mit
beliebiger Tiefe die Freirdume, um heutigen und kiinftigen Entwicklungen gerecht zu werden.

Mit der Bildung von Kategorien fiir alle Knoten im Baum bietet LOM einen &uflerst
flexiblen Mechanismus zur Strukturierung. Er wird daher in die allgemeine Datenstruktur
mit aufgenommen, denn so lassen sich eigene Application Profiles durch Hinzufiigen neuer
Kategorien oder Metadatenfelder einfach entwickeln.

In der Entwurfsphase kénnen bereits grob ein paar Kategorien benannt werden, die eine
hohe Relevanz fiir den téglichen Einsatz haben. So sollte eine Kategorie fiir die didaktischen
Eigenschaften enthalten sein, die Kontext, Zielgruppe, Benutzung, Schwierigkeitsgrad und
andere subjektive Angaben umfasst. In LOM gibt es entsprechend die Kategorie Fducational
(sieche Abbildung 4.6(a)) und bei Ariadne Pddagogik. Bei Dublin Core miissen diese Angaben
gezielt auf einzelne Elemente abgebildet werden, z.B. bietet sich Subject fiir die Klassifizierung
und Type fiir die Form an. Letzteres gibt an, ob das Lernobjekt z.B. ein Text, ein Bild oder
interaktiv ist.

122

Basiskomponenten

Zu den relevanten objektiven Metadaten gehoren Attribute wie beispielsweise ,, Titel“, ,, Au-
tor“, ,Typ* und ,Format“. LOM und Ariadne bieten hier eine grole Auswahl vordefinierter
Felder, die als obligatorisch oder optional festgelegt werden kénnen. Im Interesse der einfachen
Nutzbarkeit sollten Metadaten, wann immer moglich, als optional definiert sein. Lediglich ein
Mindestsatz fiir Daten, die oft bendtigt werden, wie z.B. bei Suchanfragen, muss obligatorisch
sein. In der Regel sind Autoren/-innen gering motiviert, viele Metadaten einzugeben, sodass
die Akzeptanz stark vom Komfort abhéngt. Miissen bei der Erstellung von Lernobjekten erst
zig Metadaten eingegeben werden, bevor die Speicherung durchgefiihrt wird, ist schnell die
Toleranzschwelle iiberschritten. Da es sich aber um objektive Metadaten handelt, sollte das
System in der Lage sein, wenigstens Vorschldge, wenn nicht sogar die richtigen Daten, einzu-
tragen.

Eine besondere Bedeutung besitzen die technischen Rahmenbedingungen, die eigentlich
auch zu den objektiven Metadaten gehoren, aber wegen ihres Umfangs eine eigene Kategorie
zugeteilt bekommen. Diese Kategorie gibt in erster Linie die Bedingungen vor, die fiir eine
optimale Présentation erfiillt sein miissen. Von der Bildschirmauflésung {iber den einzusetzen-
den Browser bis hin zu Speicher- und Prozessoranforderungen reicht das Spektrum moglicher
Angaben. Abbildung 11.16 zeigt schematisch den Baum fiir die drei beschriebenen Kategorien.

Metadaten

Objektiv W W

Titel ... Sprache Kontext ... Zielgruppe Auflésung ... Prozessor

Abbildung 11.16: Metadatenkategorien

Neben der Anordnung der Metadaten sind auch die eingesetzten Datentypen der Attribu-
te von Bedeutung. Hierunter werden verschiedene Wertebereiche verstanden, wie z.B. Text,
Datum und Zahl. Sie miissen so allgemein gehalten sein, dass sie von allen Metadaten verarbei-
tenden Applikationen interpretiert werden kdonnen. Dem gegeniiber steht der uneingeschrink-
te Einsatz eigener Metadaten, die durchaus exotischer sein diirfen. Hier muss ein geeigneter
Kompromiss zwischen Verarbeitbarkeit und Flexibilitéit gefunden werden. Hinzu kommen noch
komplexere Strukturen, die nicht vollstdndig durch die Basistypen abgedeckt werden. Im Fol-
genden werden wesentliche Merkmale der Datentypen diskutiert.

Manch ein Metadatum enthélt ein oder mehrere Worter, um eine bestimmte Eigenschaft
eines Lernobjekts zu beschreiben. Soll beispielsweise der Schwierigkeitsgrad einer Aufgabe an-
gegeben werden, bieten sich Worter wie ,schwierig”, , mittel“ und ,einfach“ an. Eine dhnliche
Bedeutung kann aber auch mit ,,anspruchsvoll®, ,,durchschnittlich* und ,leicht*“ erreicht wer-
den. Reicht die Auflésung dieser Bewertung nicht aus, kénnen auch Gradpartikeln wie ,,sehr®,
»ziemlich und ,,wenig“ hinzugefiigt werden. Der Fantasie sind in natiirlichen Sprachen kaum
Grenzen gesetzt. Fiir die maschinelle Verarbeitung ergibt sich aus dieser Vielseitigkeit jedoch
ein Problem, da eine Interpretation kaum moglich ist. Auf eine maschinennahe Kodierung, z.B.
in Form eines Wertebereichs 1-6, sollte im Interesse der Anwender/-innen dennoch verzichtet
werden. Die adédquate Losung sind Worterbiicher, die einerseits das Verstdndnis natiirlich-
sprachlicher Worter beinhalten, andererseits wenig Komplexitdt in die Programmierung der
Applikationen bringen.

Ein Worterbuch ist eine vorgegebene Menge an Wortern, die fiir ein Metadatum einge-
setzt werden diirfen. Festgehalten in einem Standard, gewéhrleistet ein Worterbuch fiir ein
Metadatenfeld die semantische Interoperabilitit beim Austausch zwischen unterschiedlichen
Systemen. Obwohl die Standards explizit die Angabe nicht enthaltener Worter erlauben, ist
eine Einhaltung stark empfohlen, damit der Sinn eines Worterbuchs nicht untergraben wird.

11.2 Metadaten

123

Die Standards LOM und Dublin Core definieren eine Reihe von Worterbiichern, die in den
jeweiligen Klassen der Metadaten-API unterstiitzt werden sollten. Fiir die Datenhaltung wird
die Klasse Dictionary definiert, die eine schnelle Uberpriifung erméglicht, dhnlich einer Hash-
Menge. Um nicht an Unterschieden in der Grofl- und Kleinschreibung zu scheitern, wird fiir
eine iiberschaubare Anzahl von Eintrégen eine sortierte Liste fiir die Implementierung emp-
fohlen.

Nicht alle Inhalte der Worterbiicher sind direkt in den Standards definiert, sondern verwei-
sen auf externe Quellen, was bei der Realisierung der Klasse Dictionary zu ernsten Hindernis-
sen fithren kann. Lésst sich ein umfangreiches Worterbuch mit den existierenden MIME-Types
in Form einer Liste mit Aufwand umsetzen, sieht es beim ,, Thesaurus of Geographic Names*
(TGN) problematisch aus. Hierbei handelt es sich um eine strukturierte Sammlung von Voka-
beln, die Millionen von Ortsnamen und andere Informationen wie Koordinaten enthélt. Von
Kontinent bis Provinz ist alles vertreten. Abgesehen von der Implementierung ist die eigen-
stindige Pflege solcher Daten nur mit erheblichem Aufwand moglich. Daher miissen solche
Daten extern eingekauft oder von entsprechenden Dienstleistern online tiberpriift werden. Wie
die Realisierung der Klasse Dictionary letztendlich aussieht, hiéngt von den verwendeten
Metadaten ab, sodass in der Entwurfsphase keine weiteren Details festgelegt werden kénnen.

Fin anderes Problem beim Umgang mit Metadaten adressiert die Internationalisierung
(I18N)!. Dieser Begriff wird iiberwiegend bei Programmen verwendet, die eine Anpassung an
sprachliche und kulturelle Gegebenheiten erlauben. Hierzu gehtren beispielsweise Texte in der
Landessprache, Wahrungen sowie physikalische Einheiten wie Zeit, Lidngen und Gewichte. Im
Bereich der Metadaten ist neben der Kodierung der unterschiedlichen Daten auch die Deklara-
tion von Land und Sprache Gegenstand der Internationalisierung. Die passenden Regeln samt
Standards wurden bereits bei der Vorstellung von LOM in Abschnitt 4.3 detailliert erlautert.
Bei den Werten handelt es sich um Tupel, bestehend aus einem einfachen oder zusammenge-
setzten Code und einer Ressource. Hierbei ist es prinzipiell gleich, ob es Texte, Bilder oder
andere Daten sind. Im Falle der Metadaten ldsst sich diese Vielfalt auf Informationen in Form
von Texten beschréanken.

Der Entwurf einer Klasse fiir die Vorhaltung internationalisierter Daten gestaltet sich ein-
fach. Neben der Speicherung von Schliissel-Wert-Paare — wobei der Schliissel beispielsweise
eine Verbindung aus Linder- und Sprach-Code ist — muss die Giiltigkeit der verwendeten Co-
des iiberpriift werden. Bei einer Programmiersprache wie Jawva liefert der Standardsatz an Li-
braries bereits solche Mechanismen, sodass die Implementierung schnell verrichtet ist. Weniger
gute Unterstiitzung bieten die Programmiersprachen bei personenbezogenen Daten, die sich
aus mehreren einfachen Daten, wie z.B. Name, Adresse und Organisation, zusammensetzen.
Da der Austausch dieser Daten zwischen unterschiedlichen Systemen das Hauptanliegen ist,
soll wie bisher verfahren werden und auf etablierte Vereinbarungen zuriickgegriffen werden.
Hierzu gehoren die VCards, eine Art elektronische Visitenkarten, deren Inhalt und Form vom
International Mail Consortium (IMC) vorgegeben wird. Dieser Standard wird tiberwiegend in
Mails, HTML-Seiten, elektronischen Adressverwaltungen und im mobilen Sektor, wie z.B. dem
Handy, eingesetzt. Eine iibliche Kodierung, die alle Programme lesen koénnen, ist ein Text mit
folgender Struktur. Das Beispiel ist aus der Spezifikation der IMC entnommen.

BEGIN:VCARD

N:Wason;Thomas;D.;Dr.;Sr.

FN:Thomas D. Wason, Ph.D.

ORG:IMS Project;Meta Data Team

ADR:;IMS Project;1421 Park Drive;;North Carolina;27605—1727;USA

TEL:+1 919.839.8187

EMAIL;INTERNET:twason@imsproject.org

LABEL;QUOTED—-PRINTABLE:IMS Project=0A= 1421 Park Drive
=0A= Raleigh, NC 27605—-1727=0A= USA

END:VCARD

'Die Abkiirzung I18N stammt aus dem Englischen und steht fiir das Wort Internationalization. Mit der Zahl
18 werden die achtzehn Buchstaben zwischen ,,I“ und ,N“ angegeben.’

124

Basiskomponenten

Ohne auf die Details eingehen zu miissen, lasst sich fiir die Datenhaltung ein bekanntes
Schema entdecken. Schliissel werden mit Werten zu Paaren kombiniert. Auf diese Weise lassen
sich auch einfache Parser realisieren, die dieses Muster erkennen. Ist eine genauere syntaktische
Analyse gewiinscht, sollte auf Produkte Dritter zuriickgegriffen werden.

Abschlieflend soll die Kodierung von Zeit und Zeitspannen thematisiert werden. In Verbin-
dung mit dem Standard LOM wurden die verwendeten Zeitformate kritisiert, weil sie Mehrdeu-
tigkeiten zulassen. Doch wie sehen die Alternativen zu diesen Standards aus, besonders wenn
sie explizit vorgeschlagen sind? Die Metadaten-API kommt also nicht umhin, diese Formate
zu unterstiitzen. Ansonsten wire die Kompatibilitdt zu anderen Anwendungen gefihrdet, was
wesentlich schlimmer ist, als die genannten Probleme.

11.2.2 Operationen

Mit einer Metadatenstruktur ist wenig anzufangen, wenn sie nicht verédndert bzw. auf Rich-
tigkeit iiberpriift werden kann. Aus diesem Grund bieten die Klassen der Metadaten-API
verschiedene Operationen an. In dieser Arbeit sollen drei Formen unterschieden werden: Pro-
duktion, Manipulation und Validierung. Unter Produktion wird die eigentliche Erstellung
neuer Metadaten verstanden. Verdnderungen an existierenden Daten gehoéren zur Manipula-
tion und die Uberpriifung der syntaktischen Korrektheit ist Aufgabe der Validierung. Weil
diese Aufteilung essentiell fiir die Gestaltung der Klassen ist, erfolgt nun eine detailliertere
Ausfiihrung.

Alle Methoden in den Klassen der Metadaten-API, mit denen die interne Metadatenstruk-
tur aufgebaut wird, gehoren zur Produktion. Es gibt verschiedene Kontexte fiir die Aufrufe,
von denen die wichtigen in Abbildung 11.17 dargestellt sind.

Author Metadata Tool

MD Structure

EEENNNNENE \|L-Reader O

G0

 ——

,,,,,,,,,,,,,,,,,,

IEIIER

DOC

Abbildung 11.17: Produktion der internen Metadatenstruktur

In der Mitte befinden sich die Reader-Klassen, die in Abschnitt 11.2 vorgestellt wurden.
Auch wenn es sich um die Konvertierung einer Reprisentation, in diesem Falle XML-Datei
und Datenbank, in einen Objektbaum handelt, ist es aus Sicht der API ein neuer Aufbau von
Metadaten. Ahnlich verhilt es sich mit dem Import fremder Daten, ganz unten in der Abbil-
dung. Angedeutet durch die Dateiendung DOC des Formats von MS Word, steht diese Art der
Produktion fiir die Integration beliebiger Metadaten aus anderen Quellen. Hierbei ist festzu-
halten, dass es niemals eine vollstdndige Abbildung geben kann. Im Falle des Word-Formats
sind nur wenige Metadaten enthalten und die beschrinken sich auf die Autoren/-innen, den
Entwicklungsprozess und den Inhalt. Vielfiltiger ist beispielsweise das Format DocBook aus-
gestattet, bei dem gezielt bestimmte Teile des Dokuments mit Metadaten versehen werden
konnen. In der Praxis zeigt sich jedoch, dass eine 1:1 Abbildung auf die Standards wie Dublin
Core oder LOM nicht moglich ist. Teilweise miissen Daten sogar verworfen werden, was die
vollstéandige Automatisierung von Importprozessen schwieriger macht.

11.2 Metadaten

125

Freilich gibt es noch die Moglichkeit, Metadaten von Hand aufzubauen, was durch die
Rolle Author mit ihrem Werkzeug, dem Metadata Tool, angedeutet ist. Besonders die subjek-
tiven Daten zu einem Lernobjekt miissen vom Menschen festgelegt werden. In Anbetracht der
Komplexitit der Metadatenstandards stellt die addquate Prisentation eine Herausforderung
dar. Einerseits soll kein Metadatum vorenthalten werden, andererseits darf eine komplizierte
Darstellung nicht verschrecken. Wie der Kompromiss aussieht, ist fiir die Metadaten-API von
geringer Bedeutung. Sie kommt nicht umbhin, alle Moglichkeiten anzubieten.

Doch wie gestaltet sich jetzt die Produktion von Metadaten? Zuerst muss ein Hauptkno-
ten fiir die hierarchische Struktur erstellt werden, der nicht zwangslaufig Attribute beinhaltet.
An ihn lassen sich die ersten Knoten fiir bestimmte Kategorien einhidngen. Die Erzeugung
dieser Objekte geschieht am besten iiber die Konstruktoren selbst, die bereits erste Attribu-
te als Parameter annehmen. Bei weniger genutzten Attributen ist es sinnvoll, sie erst iiber
spezielle Methoden zu setzen, um die Konstruktoren nicht unnoétig umfangreich zu gestalten.
Hiernach kénnen weitere Unterkategorien eingehéngt werden, die wiederum Unterkategorien
mit jeweiligen Attributen akzeptieren. Auf diese Weise erfolgt die komplette Produktion der
Metadatenstruktur.

Liegen die Metadaten nach der Produktion im Speicher vor, kénnen sie iiber geeignete
Methoden der API manipuliert werden. Grundsétzlich wird die Bearbeitung in Verédnderun-
gen der Struktur und der Inhalte unterschieden. Die Objekte der Klassen zur Kategorisierung
lassen sich 16schen, verschieben oder neu erzeugen, sodass eine neue Anordnung erstellt wird.
Bei diesen Operationen muss besonders darauf geachtet werden, dass anschliefend eine Ab-
bildung auf standardkompatible Strukturen moglich ist. Weniger kritisch sieht es hingegen
bei den Attributen aus. Als Bestandteil der Klassen zur Kategorisierung kénnen sie entweder
gesetzt oder geloscht werden. Da bei allen gidngigen Abbildungen die Attribute optional sind
— eine sehr wichtige Eigenschaft fiir Application Profiles —, gibt es bis auf die Einhaltung
des Wertebereichs wenig zu beachten.

Die Manipulation der Metadaten kann nur auf zwei Wegen geschehen, wie in Abbildung
11.18 dargestellt. Entweder nehmen die Anwender/-innen die Bearbeitung selbst vor oder ein
Mechanismus eines Programms dndert die Metadaten, die bekannt sind oder sich ableiten
lassen.

—

= @ l MD Structure
g] g \ O

Author Metadata Tool

N\
oL

Objective Metadata

Abbildung 11.18: Manipulation der internen Metadatenstruktur

Alle Methoden zur semantischen und syntaktischen Uberpriifung fallen unter die Katego-
rie der Validierung. Fiir diese Operationen ist besonders der Zeitpunkte der Konvertierung
zwischen den Formaten kritisch, denn hierbei kann es im schlimmsten Fall zu unerwiinschten
Datenverlusten kommen, weil sich Metadaten nicht abbilden lassen. Da alle Standards Vorga-
ben zur Kodierung machen, kénnen entsprechende Mechanismen meist problemlos realisiert
werden.

Als Beispiel soll die Klasse LOMReader eine LOM-Datei im XML-Format einlesen und auf
syntaktische Korrektheit iiberpriifen. Es wird eine vorhandene XML-Library genutzt, sodass
im Entwurf die Entwicklung eines Parsers nicht beriicksichtigt werden muss. Bei komplexeren
Typen, wie einem Datum oder einer VCard, muss die Validierung nachtréglich durchgefiihrt
werden. Wird ein Fehler entdeckt, miissen die Anwender/-innen davon in Kenntnis gesetzt
werden und gegebenenfalls bei der Behebung zu Rate gezogen werden. Sind die Fehler zu
gravierend, sollte von einem Einlesen ganz abgesehen werden.

126

Basiskomponenten

Bei dieser Richtung der Konvertierung kann die Metadaten-API wenig Einfluss nehmen.
Anders sieht es bei Manipulationen des Objektbaums aus. Hier miissen die jeweiligen Klas-
sen Methoden anbieten, mit denen sich Struktur und Werte der Attribute iiberpriifen lassen.
Dies setzt freilich die Festlegung eines Formats voraus, auf das hin die Validierung erfolgt.
Zwar sind besonders viele Standards erstrebenswert, aber die Relation zwischen Aufwand und
Nutzen muss gewahrt sein. Aus diesem Grund wird wenigstens die Unterstiitzung von LOM
empfohlen, weil es zu den wichtigsten Formaten ziihlt. Eine Uberpriifung nach Dublin Core
diirfte wegen der geringen Komplexitit ebenfalls schnell implementiert sein, hat aber nicht die
Bedeutung wie LOM. Letztendlich sind Umfang und Genauigkeit Sache der Implementation.
Beim Entwurf muss nur beriicksichtigt werden, dass eine Integration der Validierungsmecha-
nismen moglich ist.

11.2.3 Kodierungen

Die interne Metadatenstruktur als Objektbaum ist der ideale Ausgangspunkt fiir die Erstellung
und Bearbeitung von Metadaten, jedoch ist sie wenig fiir den direkten Austausch zwischen
Applikationen geeignet. Es kann zwar auf Mechanismen der Programmiersprachen zuriickge-
griffen werden, wie z.B. die Serialisierung bei Java, aber dies fithrt zu einer zu engen Bindung
an eine bestimmte Implementation. Auch Middleware-Losungen, wie z.B. Corba, schrinken
die Nutzung zu sehr ein und haben hohe Anforderungen an die Technik. Der Weg iiber den
Objektbaum im Speicher kann daher nie direkt begangen werden, sondern erfolgt immer iiber
die Reader- und Writer-Klassen aus Abbildung 11.14. Uber das Format XML soll in diesem
Abschnitt nicht viele Worte verloren werden. Es ist obligatorisch und die Spezifikation der
vorgestellten Metadatenstandards LOM und Dublin Core geben ausfiihrlich Auskunft. Hin-
gegen ist die Speicherung in Datenbanken ein wenig beachtetes Thema, obwohl sie gerade fiir
Suchanfragen optimal geeignet ist.

Die direkte Reprasentation im Speicher ist fiir diese Aufgabe ndmlich nur bedingt geeignet.
Es ist wenig sinnvoll, die Metadaten aller Lernobjekte im Speicher vorzuhalten, um eine schnel-
le Suche durchfithren zu kénnen. Der Bedarf der hierfiir notigen Ressourcen steht in keiner
Relation zum Nutzen. Auch die Kodierung in XML bringt keine nennenswerte Verbesserung,
weil die resultierende Rechenzeit zu hoch ist. Zuerst miissten die Metadaten aller Lernobjekte
geladen werden, um sie danach mit der Suchanfrage zu vergleichen. Abgesehen vom Zeitbedarf
der Dateizugriffe sollte auch der Aufwand fiir die Berechnung bereits wenig komplizierterer
Verkniipfungen nicht unterschétzt werden. Nicht ohne Grund gibt es hierfiir Datenbanken, die
genau fiir diese Art von Aufgaben optimiert sind. Es stellt sich nur die Frage, welche Daten-
banktechnik gewéhlt wird, da diese Entscheidung Einfluss auf die entsprechenden Reader und
Writer hat.

Neben den klassischen relationalen Datenbanksystemen gibt es auch XML-Datenbanken.
Sie speichern ihre Daten nativ in XML und scheinen die ideale Losung fiir Suchanfragen iiber
Metadaten zu sein, weil sie eine direkte Abspeicherung der in XML vorliegenden Datensétze
erlauben. Hierdurch entfallen ldstige Konvertierungen in beide Richtungen, beim Import von
Lernobjekten und beim Export. Leider ist die Technologie noch relativ jung und im Gegen-
satz zu etablierten Techniken nicht leistungsfihig genug. Besonders bei groflen Datenmengen
sind die Unterschiede gravierend, sodass den XML-Datenbanken erst ein prototypischer Stand
attestiert werden kann und auf relationale Systeme zuriickgegriffen werden muss. Sie profitie-
ren von einem fundierten mathematischen Ansatz, der sich in der Praxis bewédhrt hat. Fiir
die Modellierung bedeutet diese Entscheidung hingegen, dass Umsténde in Kauf genommen
werden. Zwar bieten einige Hersteller relationaler Datenbanken Erweiterungen an, die eine
automatische Abbildung von XML-Daten auf ihr Produkt erméglichen, aber trotzdem kann es
bei unvorsichtiger Konfiguration zu Datenverlusten kommen. Details zu diesem Thema finden
sich z.B. in [Schéning03].

Leider sind die Verfahren dermaflen unterschiedlich, dass es keinen einheitlichen Mecha-
nismus fiir diese Aufgabe gibt. Als Konsequenz wird bei Verwendung dieser vorgefertigten

11.3 Unterstiitzung von Multimedia

127

Losungen Logik aus dem Programm in die Datenbank verlagert, was eine echte Schwiche
des Entwurfs wire und unter allen Umsténden verhindert werden muss. Eine echte Unabhén-
gigkeit kann daher nur mit einer eigenen Abbildung erreicht werden, die bereits im Entwurf
Beriicksichtigung findet.

Die Struktur und Daten eines XML-Dokuments miissen folglich ,per Hand“ auf die Tabel-
len abgebildet werden. Hierfiir soll das object-relational Mapping von [Bourret99] eingesetzt
werden, bei dem eine hierarchische Struktur aus Objekten gebaut wird, die sich besonders
einfach auf ein relationales Modell abbilden lassen. Es werden zwei XML-Elemente unterschie-
den: komplexe Elemente mit Unterelementen und einfache Elemente, die nur Text enthalten?.
Die komplexen Elemente werden jeweils als Typ Klasse bezeichnet und die einfachen als Typ
Eigenschaft. Eine Klasse hat immer andere Klassen und Eigenschaften als Attribute, wobei
Eigenschaften lediglich aus einem einfachen oder zusammengesetzten Wert bestehen.

Vater-Kind-Beziehungen zwischen zwei Elementen eines XML-Dokuments werden als inter-
class-Beziehung bezeichnet, wenn beide Elemente vom Typ Klasse sind. Ist das Kind-Element
vom Typ Eigenschaft, so liegt eine class-property-Beziehung vor. Mit Hilfe dieser Unterschei-
dung kann das object-relational Mapping durchgefithrt werden.

e Klassen auf Tabellen
e FEigenschaften auf Tabellenspalten
o inter-class-Beziehungen werden zu Primé&r-Fremdschliissel-Paaren

e Eigenschaften mit einem einfachen Wert konnen auf eine Spalte einer Klassen-Tabelle
oder als separate Tabelle abgebildet werden

e Eigenschaften mit zusammengesetztem Wert miissen auf separate Tabellen abgebildet
werden

e Das Wurzelelement wird ignoriert, weil es nur eine syntaktische Funktion erfiillt

e Klassen, die nur Eigenschaften als Attribute besitzen, konnen aufgelost werden, indem
die Eigenschaften als Attribute der Basisklasse definiert werden

Anhand der Kategorie General des Standards LOM soll das Ergebnis dieses Verfahrens ex-
emplarisch verdeutlicht werden. Die in Abbildung 4.6(b) angegebenen Unterkategorien ergeben
das vereinfachte Resultat in Abbildung 11.19.

Die Unterkategorie Identifier ist reserviert und kann nicht beriicksichtigt werden. Aus
Griinden des Platzes und der Ubersicht sind Structure und Aggregation ebenfalls nicht dar-
gestellt, weil sie Vokabulare nutzen, die weitere Tabellen nach sich ziehen. Eine vollsténdige
Umsetzung ist dann Aufgabe der Implementation.

Mit der Vollstindigkeit der Klassen fiir den Umgang mit Metadaten kann nun wieder
abschlieflend eine Komponente gebildet werden, wie sie in Abbildung 10.10 zu sehen ist. Auf-
grund der Vielzahl von Klassen umfasst die Darstellung dieses Prozesses nur die besonders
herausragenden. Andere Klassen, die zwar auch essentiell sind, werden in Abbildung 11.20 zu
Gunsten der Ubersicht nicht angezeigt.

11.3 Unterstiitzung von Multimedia

Bei der Erstellung modularer E-Learning-Inhalte kommt eine Autorenumgebung nicht um-
hin, multimediale Inhalte zu unterstiitzen. Die Anforderungsbeschreibung der Komponente
Multimedia Environment in Unterabschnitt 10.2.2 beschrieb bereits grob den nétigen Funk-
tionsumfang und soll nun verfeinert werden. Grundlegend wurde beschlossen, dass externe

2In XML-Notation tritt dieses Element als Parsed Character Data (PCDATA) oder Character Date (CDA-
TA) auf.

128

Basiskomponenten

:
General_ID General_ID
Language Language
Text Text
n 1 1 n

General_ID General_ID General_ID
Keyword Structure_Source Katalog
Lanuage Structure_Value Eintrag
Text AggreLevel_Source

AggrelLevel_Value
i :
General_ID General_ID
Coverage Language
Language
Text

Abbildung 11.19: Datenbankschema fiir die Kategorie ,,General“ aus [Turan04]

MDReader

=

Metadata

MDWriter

Abbildung 11.20: Bildung der Komponente Metadata

Programme fiir die Bearbeitung multimedialer Inhalte aufgerufen werden und eine Eigenent-
wicklung nicht in Frage kommt. In Anbetracht des Aufwands, den die addquate Umsetzung
eines Format wie z.B. Flash verursacht, ist diese Entscheidung verniinftig. Als Losung wird
nun eine Art Verkniipfung zwischen Anwendungen und Dateien vorgestellt.

Zunéchst erhalten die Dateien eine Typisierung, um ihre Inhalte und deren Kodierungen
unterscheiden zu kénnen. Eine Moglichkeit sind die so genannten Multipurpose Internet Mail
Extensions (MIME), deren Spezifikation sich iiber 5 RFCs erstreckt. Fiir diese Arbeit ist ledig-
lich der zweite Teil, RFC 2046 [Freed96], interessant, weil er definiert, wie Haupt- und Nebenty-
pen verschiedener Formate kodiert werden. Zur Zeit sind die sieben Haupttypen text, appli-
cation, image, audio, video, message und multipart festgelegt. Ohne weitere Ausfithrungen
ldsst sich bereits erkennen, dass alle relevanten Typen multimedialer E-Learning-Inhalte un-
terstiitzt werden. Die Nebentypen geben genauere Auskunft dariiber, was und vor allem wie
es in einer Datei kodiert ist. Als Beispiel sei der Haupttyp image angefiihrt, der fiir Grafiken
und Abbildungen jeglichen Formats steht. Einem Programm zur Anzeige oder Bearbeitung
solcher Dateien reicht diese Information noch nicht aus, denn es gibt viele verschiedene Kodie-
rungen, die ihre Vor- und Nachteile besitzen. Mit verlustbehafteten Komprimierungsverfahren
wie z.B. JPEG lassen sich gut natiirliche Bilder wie Fotografien komprimieren. Hingegen gehen
bei synthetischen Grafiken mit vielen Linien, gleichfarbigen Fldchen und Schriften wesentliche

11.3 Unterstiitzung von Multimedia

129

Merkmale verloren. Gravierend wirkt sich die Unterabtastung auf die Qualitit aus, wodurch
das Bild unscharf erscheint. Durch verlustfreie Verfahren wie z.B. PNG werden bessere Ergeb-
nisse erzielt. Fiir eine genaue Unterscheidung der Dateien gibt es folglich die Typen jpeg und
png, die voll ausgeschrieben mit den Haupttypen angegeben werden, also image/jpeg bzw.
image/png.

In der Praxis stellt sich jedoch die Erkennung eines Datentyps als Problem heraus, denn
einer Datei ist von auflen nicht ohne weiteres anzusehen, was sie enthélt. Viele Dateiforma-
te sind binér kodiert und zudem proprietéir, sodass es schwer ist, ein allgemeines Verfahren
zu benennen. Eine Moglichkeit ist die Erstellung so genannter Fingerprints. Mit Hilfe von
Byte Frequency Analysis, Byte Frequency Cross-Correlation Analysis und File Header/Trailer
Analysis werden Muster erkannt, die typisch sind fiir ein Dateiformat [McDaniel03]. Andere
Verfahren erkennen ,Magic Numbers®, also ganz bestimmte Byte-Folgen. Der grofie Nachteil
gegeniiber den Fingerprints ist die mangelnde Allgemeingiiltigkeit, denn fiir jedes Format muss
mindestens eine eigene Regel hinterlegt sein.

Egal, welcher Erkennungsmenchanismus letztendlich eingesetzt wird, haben sie alle ein
Problem gemein: Die zu untersuchende Datei muss mindestens ein Mal ge6ffnet und analysiert
werden, was entsprechende Rechenzeit benttigt. In Hinblick auf das geplante Einsatzgebiet,
bei dem in verschachtelten Lernobjekten mit moglicherweise hunderten von Dateien gearbeitet
wird, kann es schnell zu Engpéssen kommen. Bereits fiir die Anzeige der enthaltenen Dateien
miissen die Dateitypen bekannt sein, um sie z.B. in einer grafischen Darstellung durch eigene
Icons hervorzuheben. Die genannten Verfahren sind folglich ungeeignet und es muss nach einer
anderen Losung gesucht werden.

Das Betriebssystem Windows von Microsoft benutzt dreistellige Dateiendungen, um den
Dateityp zu bestimmen. Aber nicht nur die auf den ersten Blick zu erkennende Fehldeutung,
ausgelost durch eine falsch eingegebene Dateiendung, offenbart Schwichen dieses Systems.
Noch schlimmer sind Angriffe auf den Rechner mit Hilfe kompromittierter Dateien. Ein Mail-
Filter, der sich auf diese Weise austricksen liefle, wére nicht viel wert. Doch so schwerwiegend
solche Argumente auch sein mdogen, fiir das angestrebte Ziel sind sie wenig von Bedeutung.
SchlieBlich sollen aus dem Autorensystem Programme aufgerufen werden, die bereits instal-
liert sind. Der gewonnene Geschwindigkeitsvorteil gegeniiber den analysierenden Verfahren
rechtfertigt letztendlich die Verwendung von Dateiendungen.

Steht der Typ einer Datei erst fest, muss noch die gewiinschte Operation bestimmt wer-
den. Abhéngig vom Typ lassen sich Dateien 6ffnen, bearbeiten, drucken, iibersetzen und in
vielen anderen unterschiedlichen Formen nutzen. Die Auswahl kann z.B. iiber ein Kontextme-
nii aufgerufen werden, das iiber eine bestimmte Taste oder Mausaktion gedffnet wird und alle
moglichen Operationen anzeigt. Auf diese Weise ist es moglich, eine Datei mit verschiedenen
Programmen zu 6ffnen, was die Flexibilitdt erhoht. Die Auswahl der gewiinschten Operation
erfolgt iiber ein Verb, das als Argument an das System iibergeben wird. Weil das allgemei-
ne Offnen in der Praxis die am meisten genutzte Funktion ist, sollte sie in den Programmen
mit dem Doppelklick der Maus verbunden sein. Dieses Verhalten hat sich auf vielen Syste-
men als Standard etabliert und sollte den Anwendern/-innen zuliebe beibehalten werden. Eine
Sonderrolle spielt noch das Erstellen neuer Dateien eines Typs, denn dieser Prozess ist nicht
abhéngig vom Kontext irgendeiner Datei. Wo auch immer das aktuelle Arbeitsverzeichnis ist,
sollte diese Aktion mit wenigen Handgriffen moglich sein.

Anhand der beschriebenen Funktionen lassen sich nun die Schnittstellen und Klassen be-
stimmen, die fiir die Unterstiitzung multimedialer Dateien benttigt werden. Ein wesentliches
Merkmal ist die Vielzahl der moglichen Operation fiir einen Dateityp, die irgendwie angesteu-
ert werden wollen. Aus diesem Grund werden sie in einer eigenstéindigen Klasse zusammenge-
fasst, die sich iiber eine einheitliche Schnittstelle ansteuern lidsst. Abbildung 11.3 zeigt, dass
fiir den Aufruf lediglich zwei Methoden ausreichen. Der Signatur nach kann eine Datei plus
ein optionales Verb fiir die Auswahl der Operation als Argumente iibergeben werden. Ist kein
Verb angegeben, soll eine Standardoperation, wie das bereits erwihnte Offnen, ausgefiihrt wer-

130

Basiskomponenten

den. Die Erstellung einer neuen Datei kommt sogar mit einer Methode aus, wie in Abbildung
11.21(b) zu sehen ist.

<<interface>>

ProcessFile <<interface>>
NewFile
processFile(VirtualFile)
processFile(String,VirtualFile) newFile(VirtualFile)
(a) Interface ProcessFile (b) Interface NewFile

Abbildung 11.21: Interfaces fiir den Zugriff und die Erstellung von Dateien

Es steht den Entwicklern/-innen frei, ob sie fiir die Bearbeitung und Erstellung jeweils
unterschiedliche Klassen entwerfen oder sie in einer vereinen. Der Entwurf dieser Arbeit soll
die wichtigsten Formate unterstiitzen, damit beim Finsatz nicht fiir jede ,Standarddatei“ erst
eigene Klassen erstellt werden miissen. Zu den unterstiitzten Formaten gehtren Bausteine,
Kurse und eine Beschreibungssprache fiir Inhalte in XML. Anstatt von Klassen zu reden, die
zwei Schnittstellen implementieren, soll der Begriff Handler eingefithrt werden. Zusammen
mit einer Abkiirzung des Dateiformats ergeben sich dann Klassen mit Namen, wie sie in
Abbildung 11.22 verwendet werden?.

<<interface>> <<interface>>
ProcessFile NewFile

A R V%V g D

|
|
|
! -
|
1

LobHandler CobHandler MKMLHandler

Abbildung 11.22: Drei Handler

Im folgenden Kapitel 12 wird auf die internen Details der Formate fiir Bausteine und Mo-
delle eingegangen. An dieser Stelle sei festgehalten, dass die Klasse LobHandler fiir Bausteine
zustéindig ist und CobHandler fiir Kurse. Beide Handler erlauben es, standardkompatible E-
Learning-Inhalte unter Beriicksichtigung der Metaphern zu laden, bearbeiten und speichern.
Die Abkiirzung ,MKML* steht fiir die math-kit-Markup-Language, die in [Baudry03] genauer
beschrieben steht. Diese Sprache erméglicht die Trennung von Inhalt und Darstellung, wie sie
in Abschnitt 3.7 fiir moderne Lernobjekte gefordert wird.

Mit den Handlern an sich lassen sich einzelne Dateitypen mit Verben erstellen, aber sie
reichen nicht aus, um eine vollstdndige Dateiverarbeitung anzubieten. Wie soll beispielsweise
mit verschiedenen Klassen fiir einen Dateityp umgegangen werden, denn bei aufwendigen
Operationen kann es durchaus sinnvoll sein, diese auf mehrere Klassen aufzuteilen, was die
Schnittstellen auch erlauben. Oder was soll passieren, wenn ein Verb aufgerufen wird, das
von mehreren Handlern unterstiitzt wird? Diesen Fragen wird die Klasse MimeTypeHandler
entgegengesetzt, deren Diagramm in Abbildung 11.23 dargestellt ist.

Diese Klasse verwaltet alle Handler eines MIME-Typs und delegiert von auflen kommende
Aufrufe an sie weiter. Uber die Methode setExtensions() werden die Dateiendungen an-
gegeben, auf die der MimeTypeHandler reagieren soll. Ein Aufruf der Methode processFile
fithrt die gewahlte Operation aus und sollte kein Verb iibergeben worden sein, wird automa-

3Die Abkiirzungen ,Lob“ und ,,Cob“ sind historisch bedingt und haben sich wihrend der Zeit ergeben, als
die Metaphern sich noch nicht endgiiltig bis zur Ebene der Implementierung durchgesetzt hatten. Sie stehen
fiir Learning Object bzw. Course Object und sind auch heute noch die verwendeten Dateiendungen. Weil sich
alle Beteiligten des Projekts daran gewohnt haben und diese Abkiirzungen zu festen Begriffen verankert haben,
soll von einer Anderung abgesehen werden.

11.3 Unterstiitzung von Multimedia

131

MimeTypeHandler

addVerbHandler(String, ProcessFile)
removeVerbHandler(String)
setNewHandler(NewFile)
clearNewHandler()
setExtensions(String[])
setDefaultVerb(String)
newFile(VirtualFile)
processFile(VirtualFile)
processFile(String, VirtualFile)
getDefaultVerb():String
getExtensions():String[]
getSupportedVerbs():List

Abbildung 11.23: Klasse MimeTypeHandler

tisch das zuvor mit setDefaultVerb() gesetzte genommen. Neue Dateien des unterstiitzten
MIME-Typs werden durch den Aufruf newFile erzeugt.

Mit dieser Klasse ist die Umsetzung des Aufrufmechanismus fiir einen MIME-Typ vollstén-
dig umgesetzt. Nun fehlt noch eine Verwaltung aller MimeTypeHandler-Objekte, die anhand
der Dateiendung schnell einen passenden Handler auswahlt und diesen zuriick gibt. Fiir diese
Aufgabe geniigt eine Klasse, wie sie in Abbildung 11.24 zu sehen ist.

MimeTypeMap

addHandler(MimeTypeHandler)
removeHandler(MimeTypeHandler)
setDefaultHandler(MimeTypeHandler)
clearDefaultHandler()
getHandler(VirtualFile):MimeTypeHandler
getHandlerForExtension(String):MimeTypeHandler
getHandlerForType(String):MimeTypeHandler
getNewHandlers():List

Abbildung 11.24: Klasse MimeTypeMap

Wie zu erwarten, bietet sie Methoden zum Hinzufiigen, Loschen und Auffinden von Hand-
lern an. Neben den geforderten Dateiendungen (getHandlerForExtension()) kann auch der
MIME-Typ direkt fiir die Auswahl herangezogen werden (getHandlerForType()). Eine sehr
interessante Methode ist getDefaultHandler (), mit dem Dateien eines Typs getffnet werden,
fiir die kein expliziter Handler definiert ist. Auf diese Weise kommt die Komponente fiir die
Bearbeitung multimedialer Inhalte nie in die Verlegenheit, mit einer Datei nichts anfangen
zu konnen. Fiir die Implementierung sind betriebssystemabhéngige Standard-Handler vorge-
sehen, die bei Bedarf von dieser Methode zuriickgegeben werden. Sie delegieren den Aufruf
an das Betriebssystem weiter und konnen sogar weitere Informationen liefern, wie z.B. die
unterstiitzten Verben. Der vorgestellte MIME-Typ-Mechanismus bietet somit mindestens die
gleichen Moglichkeiten im Umgang mit Dateien an wie das Betriebssystem. Zuletzt sei noch
die Methode getNewHandlers () erwihnt, die einen kontextfreien Zugriff auf alle Handler zur
Erstellung einer Datei eines bestimmten Typs gestattet.

Fin kleines Beispiel soll anhand eines Objektdiagramms das Zusammenspiel der vorge-
stellten Klassen verdeutlichen. Der Einfachheit halber kommt der MIME-Typ-Mechanismus
in Abbildung 11.25 mit zwei MIME-Typen aus, die von insgesamt sechs Handlern verarbeitet
werden konnen.

AbschlieBend soll aus den erstellten Klassen eine Komponente fiir die Rolle Developer
erstellt werden, wie sie in Abbildung 10.11 zu sehen ist. Der Herleitungsprozess in Abbildung
11.26 enthilt wie immer der Ubersicht halber nicht alle Klassen.

132 Basiskomponenten

:NewFile

:ProcessFile

:MimeTypeHandler verb=Open

type=TEXT/HTML

:ProcessFile

verb=Edit

:MimeTypeMap

:NewFile

:ProcessFile

:MimeTypeHandler verb=Open

type=TEXT/XML

:ProcessFile

verb=Print

Abbildung 11.25: Objektdiagramm mit zwei unterstiitzen MIME-Types

<<interface>>
ProcessFile

<<interface>>
NewFile

=

Multimedia
Environment

MimeTypeHandler

MimeTypeMap

Abbildung 11.26: Bildung der Komponente Multimedia Environment

Kapitel 12

Baustein und Kurs

In diesem Kapitel werden alle Komponenten zur Erstellung, Bearbeitung und Verwaltung
von modularen E-Learning-Inhalten entworfen. Hierbei unterscheidet sich die Vorgehenswei-
se gegeniiber dem in Kapitel 11 beschriebenen durch eine andere Klassenbildung. Gleichwohl
auch bei diesen Komponenten das Ziel die Erstellung generischer Libraries ist, wird aufgrund
der inhirenten Ahnlichkeit von Baustein sowie Kurs zum Content Packages eine abstraktere
Abbildung entstehen. Nach auflen présentieren die Komponenten Learning Object Deve-
lopment und Structure Development unterschiedliche Schnittstellen, aber intern wird zu
einem groflen Teil auf die gleiche Klassen zuriickgegriffen. Die grafische Ansteuerung ist sehr
individuell und sollte nicht als Teil des Entwurfs betrachtet werden. Ein konkretes Beispiel
fiir eine grafische Oberflidche, wie sie im Projekt math-kit eingesetzt ist, wird im Teil iiber die
Implementierung gegeben.

12.1 Bindung an Standards

Ein erster Versuch der Modellierung wéire, das Problem bzw. den Prozess zu analysieren und
daraus die passenden Klassen herzuleiten. Aus dieser ,,iiblichen“ Perspektive geht allerdings
schnell ein wichtiges Detail verloren: der Austausch von Inhalten mit anderen Systemen. Im
Kapitel 3 iiber Lernobjekte wurde der Einsatz von Standards vorgeschlagen, um Inkompati-
bilitdten vorzubeugen. Die Gestaltung des Klassenmodells kommt somit nicht umhin, diesen
bedeutenden Aspekt zu beriicksichtigen. Hierbei treten die selben Widerspriiche zwischen ge-
ringer Komplexitdt und Vielseitigkeit auf, wie bereits im vorherigen Kapitel 11 bei den Meta-
daten. Dem Wunsch, moglichst viele Standards unterstiitzen zu wollen, steht eine einheitliche
und {ibersichtliche Schnittstelle der APT entgegen. Wenn moglich, sollten keine Spezialfille
berticksichtigt werden, um nicht die Kohésion der Klassen abzuschwéchen.

Zu den verbreitetsten Standards fiir Lernobjekte sind das IMS Content Packaging und das
Sharable Content Object Reference Model (siehe Abschnitt 3.5 und 3.6) zu zéhlen, die sich zum
Gliick sehr dhneln. Sie bieten sich an, den technischen Rahmen fiir den Entwurf von Baustein
und Kurs zu stellen. Fiir die fachliche Beschreibung dienen die Definitionen der Metaphern
aus Abschnitt 10.4, deren Eigenschaften das wesentliche Erscheinungsbild pragen.

Diese Herangehensweise, die Standards dermaflen einzubeziehen, ist nicht offensichtlich
und bedarf einer Erklarung. Denn selbst den Spezifikationen ist eine derartige Néhe zu den
Implementierungen nicht entnehmbar. Eigentlich sind die Standards fiir den Austausch zwi-
schen den Systemen gedacht und nicht fiir die direkte Verwendung in Applikationen. Doch
warum soll dieser ungewohnliche Weg beschritten werden? Weil sich hieraus verschiedene Vor-
teile ergeben. Zwar ist es beim Entwurf freilich angenehmer, ein Klassenmodell zu erstellen,
das keinen externen technischen Einschrinkungen unterliegt, aber spitestens beim Austausch
mit anderen Systemen muss die Standardkompatibilitdt bedacht werden. Mit mehr oder we-
niger Mithen muss dann das eigene Modell auf die vorgegebenen Datenstrukturen abgebildet
werden, oft mit méfigem Erfolg. Die beiden vorgeschlagenen Standards sind leider so flexibel,

134

Baustein und Kurs

dass Content Packages im schlimmsten Fall proprietire Daten enthalten, die doch wieder nur
mit speziellen Programmen genutzt werden kénnen. FEchte Austauschbarkeit bleibt so auf der
Strecke und die resultierenden Konsequenzen zeigen sich in den vorgestellten Produkten aus
Kapitel 5. Sie produzieren letztendlich inkompatible Dateien, die im Gewand der Standard-
konformitit daher kommen und Versprochenes nicht einlésen.

Durch die direkte Verwendung der Standards tritt dieses Problem erst gar nicht auf. Doch
wie steht es mit den Anforderungen der Metaphern? Lassen sich die Standardformate so nut-
zen, dass sie sich wie Bausteine zu hoheren Strukturen zusammensetzen lassen? Auch wenn
diese Funktion abermals nicht explizit den Spezifikationen zu entnehmen ist, l4sst sich solch ein
rekursiver Ansatz verwirklichen. Uber komplexer werdende Bausteine und Kurse wird sich der
eigentlichen Losung gendhert. Abbildung 12.1 zeigt die einfachste Variante eines Lernobjekts
als Content Package, angelehnt an die Bausteinmetapher.

WAV

PNG

PNG

Abbildung 12.1: Ein einfacher Baustein aus [Bungenstock04a]

Auf der linken Seite ist das Manifest zu erkennen, das eine hierarchische Struktur enthélt.
Die Knoten haben als Attribute Referenzen auf die rechts stehenden physikalischen Dateien,
die den Inhalt des Lernobjekts ausmachen. Es handelt sich um einen Baustein, wie er von der
Rolle Developer erstellt wird. Bei dieser iiblichen Form des Content Packages gibt es wenig
technische Herausforderungen. Lediglich die Speicherung der Dateien und der Aufbau das
Manifests miissen modelliert werden. Auch wenn diese Funktionen bereits einige Uberlegungen
bendtigen, um zu einer geschickten Losung zu gelangen, stellt der néchste Schritt, ndmlich die
Komposition verschiedener Bausteine zu einem Kurs, die eigentliche Herausforderung dar.

Es stehen zwei Moglichkeiten fiir die Umsetzung zur Auswahl. Die erste, bei der Bausteine
auf Submanifeste abgebildet werden, ist von den Spezifikationen explizit vorgesehen. Bei der
Komposition von Bausteinen werden die Dateien in ein Content Package kopiert und die
Manifeste zu einem groflien Manifest zusammengefithrt. Jedes Manifest eines Bausteins wird
auf diese Weise zu einem Submanifest, das iiber ein Item referenziert wird. Das Resultat ist
in Abbildung 12.2 wieder als vereinfachte Bausteingrafik dargestellt.

WAV

PNG

PNG

Abbildung 12.2: Baustein mit Submanifesten aus [Bungenstock04al

12.1 Bindung an Standards

135

Im Gegensatz zur vorherigen Abbildung setzt sich die hierarchische Struktur aus Subma-
nifesten zusammen. Bei den Dateien hat sich gegeniiber der ersten Variante nichts geédndert,
denn sie liegen zusammen auf einer physikalischen Ebene. Es gibt aber dennoch einen Un-
terschied, der den Prozess der Komposition betrifft. Wenn zwei Bausteine zusammengesetzt
werden, kommt es zu einer Vermischung der Dateien auf Verzeichnisebene. So lange die Datei-
en unterschiedliche Namen haben, ist dieser Vorgang unkritisch. Doch sobald sie sich gleichen,
miissen die Dateien mit unterschiedlichen Namen oder an verschiedenen Orten gespeichert
werden. Letzteres kann iiber Verzeichnisse geregelt werden, die in Content Packages erlaubt
sind. Diese Strategie fithrt zwar zu richtigen, aber moglicherweise nicht zu optimalen Ergebnis-
sen. Es sei z.B. ein Java Applet angenommen, das iiber einen Konfigurationsmechanismus eine
Vielzahl von Aufgaben und Tests ermoglicht. Aufgrund dieser Flexibilitéit ist es 2 MB grof3
und wird in fiinf Bausteinen verwendet, die zu einer hoheren Struktur kombiniert werden. Das
Ergebnis ist ein Content Package mit einer Grofle von mindestens 10 MB, obwohl eine Grofie
von ca. 2 MB mdglich ist. Es kann sich folglich lohnen, die Dateien inhaltlich zu vergleichen,
um solche Redundanzen zu vermeiden.

Diese Form der Komposition von Bausteinen ist einfach umzusetzen, weil sie dem Aufbau
eines einzelnen Bausteins dhnelt. Lediglich Submanifeste und eine etwas umfangreichere Da-
teiverwaltung miissen integriert werden. Kritisch betrachtet, dhnelt dieser Ansatz aber nicht
zusammengesetzten Bausteinen, denn fiir die Dekomposition von Kursen muss zuvor die inter-
ne Struktur analysiert werden. Aus einem Submanifest wird dann ein oberstes Manifest und
ergibt zusammen mit allen Dateien einen neuen Baustein. Die urspriingliche Form steht nicht
mehr zur Verfiigung, weil sie bei der Komposition verworfen wurde.

Um eine ndhere Verbindung zu den Bausteinen und ihren Eigenschaften zu ermdoglichen,
wird nun die zweite Moglichkeit der Komposition vorgestellt. Anstatt die beteiligten Content
Packages bei diesem Prozess aufzultsen, sollen sie lieber direkt als physikalische Ressourcen
genutzt werden. Abbildung 12.3 zeigt die verschachtelten Content Packages in Form von Bau-
steinen und verdeutlicht den Unterschied zu der Losung mit Submanifesten.

Abbildung 12.3: Verschachtelte Bausteine aus [Bungenstock04a]

Diese Kombination von Lernobjekten erscheint wesentlich intuitiver, zieht aber technische
Konsequenzen nach sich, die nicht unterschétzt werden diirfen. Da es sich bei jedem Content
Package um eine geschlossene physikalische Einheit handelt, ist der Aufwand fiir die Dar-
stellung der Gesamtstruktur erhoht. Es ist nicht auf den ersten Blick ersichtlich, wie viele
und welche Dateien in allen Bausteinen enthalten sind. Auch die Strukturbeschreibung liegt
iiber mehrere Manifeste verteilt, die erst zusammengetragen werden miissen, bevor sie genutzt
werden konnen. Im Sinne der Verstindlichkeit und der Metaphern lohnt sich dieser Aufwand
dennoch.

Doch wie steht es mit der Kompatibilitit zu anderen Anwendungen? Sie ist ein wirkliches
Problem, dass bereits im Entwurf angegangen werden muss. Andere Autorensysteme und
Lernplattformen sind freilich nicht in der Lage, eine richtige Interpretation zu leisten. Nun
ist aber genau der Austausch zwischen unterschiedlichen Systemen das Hauptargument fiir

136

Baustein und Kurs

den Einsatz der Standards gewesen und sollte nicht durch das Konzept verhindert werden.
Diesem Manko kann durch Umwandlung begegnet werden, indem verschachtelte Bausteine zu
einem einfachen Content Package konvertiert werden. Hierfiir wird einfach der Prozess der
Komposition nachgebildet, wie er bereits fiir Kurse mit Submanifesten beschrieben wurde.
Werden die in den Abbildungen 3.8 und 3.9 dargestellten Regeln aus dem Abschnitt 3.5 auf
die Submanifeste angewandt, konnen verschachtelte Bausteine sogar mit einem Hauptmanifest
erzeugt werden. Dieses sehr einfache Format aus Abbildung 12.1 miissen alle Anwendungen
interpretieren konnen, die sich als standardkompatibel ausgeben.

Eine Umsetzung der Bausteine und Kurse unter Einhaltung der Kompatibilitédt ist also
konzeptionell moglich. Fiir die physikalische Speicherung der Daten innerhalb der Content
Packages kann die Dateisystem-API aus dem Kapitel 11 herangezogen werden. Mit Hilfe
der Vererbung entstehen neue Dateisysteme, die genau den Anspriichen, insbesondere den
Schwierigkeiten durch die mogliche Verschachtelung, gerecht werden. Letztendlich wird nur
noch eine API fiir den Aufbau von Manifesten gebraucht, um die Umsetzung der Standards
zu vervollstdndigen. Die néchsten beiden Abschnitte beschreiben die Herleitungen im Detail.

12.2 Physikalische Dateien

Wie in Abschnitt 3.5 beschrieben, unterscheidet die Spezifikation des IMS Content Packa-
ging zwei Formen der physikalischen Datenhaltung: logische Verzeichnisse, Package genannt,
und die Zusammenfassung in einer Datei, als Package Interchange File (PIF) bezeichnet. Wie
gehabt wird der Begriff Package als Synonym fiir PIF genutzt, es sei denn, ein wesentlicher
Unterschied soll herausgestellt werden. Da es sich bei dieser Unterscheidung eigentlich um ein
technisches Detail handelt, soll der Zugriff iiber eine Schnittstelle, genauer gesagt eine Klasse,
erfolgen. Fiir den Entwurf der Klassen ist es dennoch ungemein wichtig, diesen Unterschied
zu beriicksichtigen, um verschiedenen Implementationen und zukiinftigen Entwicklungen ge-
wachsen zu sein. Die Basisklassen fiir die folgenden Uberlegungen sind die Klassen VFSNode
(sieche Abbildung 11.7) und VFS (siehe Abbildung 11.9) aus Unterabschnitt 11.1.2.

Aus den Gemeinsamkeiten von Package und PIF kann eine Klasse entstehen. Doch wel-
che Eigenschaften sind gleich, welche unterschiedlich? Besonders die PIFs koénnen in ihrer
Umsetzung stark variieren. Da die Spezifikation die unbedingte Unterstiitzung von RFC 1951
(ZIP) verlangt, soll sie als Referenzimplementation dienen. Eigentlich fiir die Archivierung und
den Datenaustausch gedacht, weist dieses Format Schwichen auf, die sich auf die Umsetzung
auswirken. So ist es beispielsweise nicht méglich, in eine bestehende Datei neue Dateien hinzu-
zufiigen, sie zu entfernen oder in irgendeiner Form zu bearbeiten!. Als Konsequenz muss jedes
PIF vor der Bearbeitung entpackt werden, z.B. in ein Verzeichnis eines anderen Dateisystems.
Dieser Schritt entspricht einer Umwandlung von einem PIF zu einem Package, sodass, wenn er
transparent erfolgt, lediglich ein Mechanismus fiir den Umgang mit Packages entwickelt wer-
den muss. Eine abschlieBende Riickumwandlung bei PIFs, es wird der Vollstéindigkeit halber
erwahnt, vollzieht sich genauso automatisch.

Die Idee fiir die Umsetzung dieser Funktionalitéit ist ein Dateisystem, das ein tempori-
res Verzeichnis erstellt, in dem das Dateisystem eines Packages voriibergehend gespeichert
wird. Hierfiir werden beim Offnen alle Dateien umkopiert und nach Abschluss der Bearbei-
tung wieder zu einem Package zusammengesetzt. Eine interne Ubersetzung der Pfade auf die
temporéren erfolgt iiber die Klasse TempFSNode, die in Abbildung 12.4 dargestellt ist.

Es wurden keine neuen Methoden hinzugefiigt, sondern die abstrakten implementiert. Ein
kurzes Beispiel soll ein besseres Verstindnis der Funktionalitidt geben. Innerhalb eines Packages
befinden sich zwei Dateien, ein Manifest in XML (imsmanifest.xml)und eine HTML-Seite
(index.html). Das Dateisystem fiir temporire Dateien, auf das gleich genauer eingegangen

!Ohne weiter auf Details eingehen zu wollen, erschliet sich diese Aussage aus der Natur der Kodierung mit
einem Huffman-Code. Jegliche Anderung des Inhalts zieht eine Anderung am Alphabet nach sich und erfordert
eine Umkodierung der anderen Inhalte.

12.2 Physikalische Dateien

137

VFSNode

]

TempFSNode

Abbildung 12.4: Klasse TempFSNode

wird, kopiert diese beiden Dateien in ein temporéres Verzeichnis mit dem Pfad /var/tmp/pifs,
was den Anwendern/-innen nicht mitgeteilt wird. Sie benutzen in ihrer Anwendung die Pfade
des Packages, also /index.html anstatt /var/tmp/pifs/index.html. Umgewandelt werden
die Pfade in der Klasse TempFSNode.

Um nicht den Eindruck aufkommen zu lassen, dass dieser Mechanismus nur fiir PIFs be-
notigt wird, sei auf die Moglichkeit des Abbruchs hingewiesen. Alle ausgefiithrten Operationen
miissen umkehrbar sein, wenn die Anderungen doch nicht gespeichert werden. Wurde die Be-
arbeitung auf dem Original ausgefiihrt, dann ist eine Herstellung des urspriinglichen Zustands
schwierig. Deshalb ist es besser, auf einer Kopie zu arbeiten, die bei Bedarf zuriickgespeichert
wird. Doch bevor auf diese Operation nidher eingegangen wird, soll noch das Dateisystem fiir
temporare Dateien behandelt werden. Abbildung 12.5 zeigt die Klasse TempFS, die zwei neue
Methoden einfiihrt.

VFS

]

TmpVES

dispose()
getTmpFile(VirtualFile):VirtualFile

Abbildung 12.5: Klasse TempFS

Die Methode dispose () entfernt alle temporiren Dateien und mit Hilfe von getTmpfile ()
lassen sich die lokalen Dateien auf die temporéiren physikalischen abbilden.

Weil die API allgemein gehalten wird und diese Klasse optimal fiir die Haltung tempora-
rer Dateien ist, wird der Riickweg, die temporéren Dateien in Packages zu speichern, in eine
andere Klasse ausgelagert. Dies mag auf den ersten Blick nicht ersichtlich sein, aber durch die
néchste Ebene, die lediglich eine allgemeine Schnittstelle fiir den Zugriff auf die Implementatio-
nen gestattet, wird der Entwurf klarer strukturiert. Bei der Speicherung miissen verschiedene
Zustiande beriicksichtigt werden, die sich in den Methoden der Klasse SavableFS widerspie-
geln. Weil sich keine strukturellen Verédnderungen auf der Ebene der Dateien ergeben, muss
fiir dieses Dateisystem keine eigenen Knoten-Klasse erstellt werden. Abbildung 12.6 zeigt das
entsprechende Diagramm fiir das Dateisystem.

Entweder wird ein existierendes Package gedffnet, oder es wird neu erzeugt. Die Feststel-
lung des initialen Ausgangspunkt erfolgt iiber die Methode getFile (). Wenn der Inhalt des
Dateisystems die Kopie aus einer Datei ist, wird genau diese zuriickgegeben. Andernfalls ist
der Wert null. Als Vereinfachung fiir den Test in booleschen Ausdriicken wird das Prédikat
hasFile() angeboten. Uber die Methode save() wird, wenn das Pridikat den Wert ,,wahr
liefert, der aktuelle Zustand des temporiren Verzeichnisses in die Datei geschrieben. Hiernach
kann mit dem Dateisystem normal weiter gearbeitet werden, bis die Methode close () aufge-
rufen wird, die endgiiltig alle belegten Ressourcen freigibt. Die eigentliche Speicherung erfolgt
iiber die Methode save(VirtualFile), der eine Datei als Ziel mitgegeben wird. Sie ist als
abstrakt definiert und muss in den Unterklassen implementiert werden. Da bereits am Anfang

138

Baustein und Kurs

TmpVES

]

SavableVFS
{abstract}

save()

save(VirtualFile) {abstract}
getFile():VirtualFile
hasFile():Boolean

Abbildung 12.6: Klasse SavableFS

dieses Abschnittes festgestellt wurde, dass es nur zwei Formen der Speicherung gibt, sind in
Abbildung 12.7 die Pendants abgebildet. Beide Klassen, ZipFS und DirectoryFS, bieten keine
neue Methoden an, sondern implementieren die Speicherung.

SavableFS

N

ZipFS DirectoryFS

Abbildung 12.7: Die Unterklasse ZipFS und DirectoryFS

Es bleibt festzuhalten, dass iiber die Schnittstelle der Klasse SavableFS ein einheitlicher
Zugriff auf verschiedene Typen von Content Packages moglich ist, der die Konstruktion von
Baustein- und Kurs-Klassen sehr einfach héilt. Auch die Handhabung verschachtelter Inhalte
ist durch den orthogonalen Ansatz kein Problem mehr. Was noch fehlt, ist die Modellierung
der Manifeste, die im folgenden Abschnitt behandelt wird.

12.3 Manifest

Das Manifest beschreibt die Struktur sowie Ressourcen der Bausteine und Kurse. Eine Mo-
dellierung dieses ,,Bauplans® ldsst sich leicht aus den Spezifikationen der Standards IMS CP
und SCORM ableiten. Da die Manifeste fiir Bausteine eine echte Untermenge der Manifeste
fir Kurse sind, kénnen beide iiber einen Entwurf dargestellt werden. Auch die marginalen
Unterschiede zwischen den beiden Standards, die nur in zusétzlichen Attributen liegen, behin-
dern dieses Vorhaben nicht. So wie es bereits XML-Bindings fiir Manifeste gibt, soll nun ein
objektorientiertes Modell hinzukommen, das sich in dieser Arbeit OO-Binding nennt. Die
Datenstruktur eines Manifests in Abbildung 3.7 ist ein guter Ausgangspunkt, um die folgenden
Uberlegungen besser nachvollziehen zu kénnen.

In den XML-Bindings werden 10 Elemente mit ihren Attributen definiert. Fiir eine objek-
torientierte Darstellung ist es wichtig, Gemeinsamkeiten sowie Unterschiede deutlich heraus-
zustellen und die Assoziationen untereinander zu benennen. Tabelle 12.1 listet alle Elemente
sowie deren relevanten Eigenschaften auf.

Eltern-Elemente konnen andere Elemente als Kind-Elemente enthalten und obligato-
rische Elemente sind Elemente, die immer mit ihrem Eltern-Element bzw. als Wurzelelement
im Manifest enthalten sein miissen. Nach UML wird diese Assoziation als Komposition be-
zeichnet, da die Existenzberechtigung obligatorischer Elemente vom Aggregat (dem Ganzen)
abhingt. Ausnahmen sind die Elemente manifest und item, weil sie kontextabhingig sind.
Als oberstes Element verkorpert manifest schlichtweg ein Manifest und ist obligatorisch ein-

12.3 Manifest

139

?) E | =
g 9 % = g
S| Elg2 | 8| S| 8| 8| @
m 2 o =t N < = =
R = I - R < N I =
5 = | 2|3 g | 2] 213
= | 8|2 3| % | = 5} <
H |8 |O | @ || x| =<
dependency ONN RECRNONN NNOENONN)
file OEN NECHEONNONNONN BN)
item BN NEI)NN NN NNONN BN)
manifest ® &6 O &6 O o o o
metadata ® @6 O|O0O|0O|0|0| @
organization | @ | @ | O | @ | O | O | @ | @
organizations | @ | @ | @ | O | O | O | O | @
resource BN NEOHN NEONN NN NN)
resources ® 6 &6 O O|e| O| e
title OEN NECHNONNONNONNORN)
®: ja O: nein ©: beides

Tabelle 12.1: Gemeinsame Eigenschaften der Manifest-Elemente aus [Bungenstock04b]

zusetzen. Tritt es jedoch als Submanifest auf, ist es optional. Ahnlich verhélt es sich mit dem
item, denn in einem Element organization ist es obligatorisch und als Subitem optional.
Manche Elemente sind mit Bezeichnern (ID) versehen, um sie von anderer Stelle aus refe-
renzieren zu kénnen. Diese IDs miissen innerhalb des gesamten Manifests eindeutig sein. Die
Eigenschaft XML:Base ist fiir Kind-Elemente mit URLs als Attributwerten von Bedeutung,
weil relative URLs immer gegen die nidchste XML:Base aufgelost werden. Metadaten sind
zusitzliche Daten, wie sie in Kapitel 4 beschrieben sind. Mit der Eigenschaft Anderungen
ist die Modifizierbarkeit der Elemente gemeint, die fiir alle zutrifft.

Bevor aus den Werten der Tabelle 12.1 die nétigen Klassen hergeleitet werden, kénnen ein
paar Elemente als relevante Klasse ausgeschlossen werden. Bei title handelt es sich mehr
um ein Attribut als ein eigenstidndiges Element, sodass es durch eine einfache Zeichenkette
dargestellt werden kann. Die Klasse Title in Abbildung 12.8(a) ist somit Bestandteil der
Klassen Organization sowie Item und kann entfallen.

Organization

‘1] Resources
Title Manifest
o L]

Iltem Organizations

a ompositionen mit Title omposition mit Resources und Orga-
K iti it Titl b) K iti it R d Org
nizations

Abbildung 12.8: Strukturierte Adresse

Auch resources und organizations tragen keine komplexen Strukturen bei und kénnen
durch einfache Basistypen wie Array oder Liste realisiert werden. Abbildung 12.8(b) zeigt die
mogliche Komposition, welche die Klassen Resources und Organizations {iberfliissig macht.

Aus Tabelle 12.1 ist ersichtlich, dass alle Elemente zwei Eigenschaften besitzen, die sich in
einer gemeinsamen Basisklasse zusammenfassen lassen: Jedes Element kann als Kind-Element
auftreten und ist modifizierbar. Um der hierarchischen Struktur gerecht zu werden, lautet ihr
Name HierarchicalElement. Abbildung 12.9 zeigt die Basisklasse aller Elemente.

Die ersten drei Methoden sind fiir die Benachrichtigungen bei Verédnderungen zusténdig.
Jede Klasse, die iiber Anderungen in einem Element in Kenntnis gesetzt werden mochte,
muss das Interface ModificationListener implementieren und sich zur Laufzeit tiber die
Methode addListener () als Objekt anmelden. Sobald ein Element eine Anderung erfihrt, ruft

140 Baustein und Kurs

HierarchicalElement
{abstract}

addListener(listener:ModificationListener)
removelListener(listener:ModificationListener)
#propagateModification(mod:Modification)
setParentElement(parent:HierarchicalElement)
clearParentElement()
getParentElement():HierarchicalElement
hasParentElement():Boolean

Abbildung 12.9: Klasse HierarchicalElement

es die Methode propagateModification() auf, die alle angemeldeten Objekte benachrichtigt.
Abbildung 12.10 zeigt das zugehérige Sequenzdiagramm.

’Iiste?er 1 ‘ ’Iiste?er 2‘ ’Iiste?er n‘

|

setVaIue(} :
propagateModification() :

L |

|

|

e

processModification() D

processModification() ! ;D

|
processModification() : : _
B — B]
T ! !
| | |

Abbildung 12.10: Sequenzdiagramm fiir den Benachrichtigungsmechanismus

Soll ein Objekt nicht weiter iiber Verédnderungen benachrichtigt werden, kann es dies iiber
die Methode removeListener bekannt geben. Die restlichen Methoden sind fiir das Elternele-
ment zustindig, mit denen es gesetzt, geloscht und abgefragt werden kann.

Die Metadaten werden selbstverstéindlich {iber die Klassen aus Abschnitt 11.2 verwaltet.
Fiir den Zugriff iiber das Manifest wird die Klasse MDElement eingefiihrt, die eine Spezialisie-
rung von HierarchicalElement ist. Uber ihre Methoden kénnen Metadatenstrukturen mit
der Schnittstelle MetaData gesetzt und abgefragt werden, sodass keine direkte Verbindung zu
einem bestimmten Standard besteht. Abbildung 12.11 zeigt das entsprechende Diagramm.

HierarchicalElement

i

MDElement
{abstract}

setMetaData(md:MetaData)
clearMetaData()
getMetaData():MetaData
hasMetaData():Boolean

Abbildung 12.11: Klasse MDElement

Vier Elemente haben Bezeichner, iiber die sie eindeutig identifiziert werden kénnen. Hierfiir
muss gewéhrleistet sein, dass jeder Bezeichner eindeutig ist und im Falle einer Referenzierung
auch tatsichlich existiert. Da alle Elemente mit einem Bezeichner auch Metadaten haben

12.3 Manifest

141

konnen, kann die Klasse IDElement direkt von MDElement erben. Abbildung 12.12 zeigt das
zugehorige Klassendiagramm.

MDElement

1

IDElement
{abstract}

setID(String)
adaptID()
getlD():String
getDefaultlD():String
containsID():Boolean
isUnique():Boolean
#reservelD()
#freelD()

Abbildung 12.12: Klasse IDElement

Wenn ein Objekt mit den Eigenschaften der Klasse IDElement erzeugt wird, gibt es ver-
schiedene Moglichkeiten, den Bezeichner zu bestimmen. Initial wird die Methode getDefaul-
tId() im Konstruktor aufgerufen und mit setID() gesetzt. Letztere Methode kann auch nach-
traglich aufgerufen werden, um einen eigenen Bezeichner zu vergeben. Hierbei wird allerdings
keine Konsistenzpriifung durchgefiihrt, sodass entweder durch das Priadikat isUnique() die
Eindeutigkeit bestétigt wird oder gleich mit adaptID() eine automatische Anpassung erfolgt.

Die Uberpriifung selbst ist keine triviale Angelegenheit, weil sie in einer hierarchischen
Struktur erfolgt. Aus diesem Grund gibt es zwei Methoden, die bei der Reservierung und
Freigabe von Bezeichnern unterstiitzend wirken. Mit reserveID() wird im gesamten Baum
bekannt gegeben, dass ein Element einen bestimmten Bezeichner fiir sich beansprucht. Ob dies
iiberhaupt moglich ist, kann mit containsID() vorab iiberpriift werden. Bei der Entfernung
eines Elements wird iiber freeID() der Bezeichner freigegeben, damit er bei Bedarf neuen
Elementen zur Verfiigung steht.

Eine weitere Aufteilung der gemeinsamen Eigenschaften auf allgemeine Klassen lésst sich
nicht sinnvoll weiterfithren. Daher sollen nun die Klassen fiir die konkreten Manifest-Elemente
hergeleitet werden. In umgekehrter Reihenfolge der entwickelten Basisklassen, also von ID-
Element zu HierarchicalElement, werden sie vorgestellt. Aus Tabelle 12.1 wird entnommen,
dass es genau vier Elemente mit Bezeichnern gibt, ndmlich item, manifest, organization
und resource. Abbildung 12.13 zeigt das entsprechende Klassendiagramm.

Die einzelnen Klassen zeigen bei Weitem nicht alle Methoden, denn zu spezielle Funkti-
onen und Attribute wurden iibersichtshalber ausgelassen. Aus dieser Vereinfachung darf freilich
nicht eine Irrelevanz fiir die Implementierung gefolgert werden. Im Wesentlichen verwalten die
vier Klassen ihre Unterelemente, deren genauen Beziehungen sich gut in Abbildung 3.7 nach-
vollziehen lassen. Finige der Methoden bieten Zusatzfunktionen zur Umsetzung der Metaphern
an. Beispielsweise integriert flatten() alle Submanifeste in das oberste Manifest, sodass die
Umwandlung von verschachtelten Bausteinen zu flachen Content Packages vereinfacht wird.

Die Klasse File erbt direkt von MDElement, weil sie zwar Metadaten zu der jeweiligen
Datei anbietet, aber keinen Bezeichner erhélt. Abbildung 12.14 zeigt das Klassendiagramm.

Intern nutzt diese Klasse eine URL zum Adressieren einer physikalische Datei. Neben
den Methoden zur Manipulation dieser Referenz bietet File das Priadikat isLocal() an, mit
dem tiiberpriift wird, ob die Datei Bestandteil des Content Packages ist. Diese Funktion ist
besonders fiir die Datenhaltung von E-Learning-Inhalten wichtig, weil sie das Auffinden von
Abhéngigkeiten vereinfacht.

Das letzte Element ist dependency und dessen Klasse erbt direkt von der Hierarchical-

142

Baustein und Kurs

IDElement

Iltem

Manifest

Resource

addltem(ltem)
removeltem(ltem)
incPosition()
decPosition()
setTitle(String)
clearTitle()
getltem(String):ltem
getltem(int):ltem
getltems():List
getltemCount():int
getTitle():String

Organization

addltem(ltem)
removeltem(ltem)
incPosition()
decPosition()
setTitle(String)
clearTitle()
getltem(String):ltem
getltem(int):ltem
getltems():List
getltemCount():int
getTitle():String

addManifest(Manifest)
removeManifest(Manifest)
addOrganization(Organization)
removeQrganization(Organization)
addResource(Resource)
removeResource(Resource)
incPosition()

decPosition()

flatten()
getManifest(String):Manifest
getManifest(int):Manifest
getManifests():List
getManifestCount():int
getOrganization(String):Organization
getOrganization(int):Organization
getOrganizations():List
getOrganizationCount():int
getResource(String):Resource
getResource(int):Resource
getResources():List
getResourceCount():int

addFile(File)

removeFile(File)
addDependency(Dependency)
removeDependency(Dependency)
incPosition()

decPosition()

getFile(int):File

getFiles():List

getFileCount():int
getDependency(int):Dependency
getDependencies():List
getDependencyCount():int

Abbildung 12.13: Die Klassen Item, Manifest, Resource und Organization

MDElement

T

File

setHref(String)
setHref(URL)
clearHref()
getHref():String
getFile():VirtualFile
hasHref():Boolean
isLocal()

Abbildung 12.14: Klasse File

12.4 Content Package

143

Element. Sie enthélt lediglich eine Referenz auf ein anderes Resource-Objekt, das fiir eine
ordentliche Ausfithrung bendtigt wird. Abbildung 12.15 zeigt das Klassendiagramm.

HierarchicalElement

i

Dependency

setResource(String)
setResource(Resource)
clearResource()
getResource():Resource
hasResource():Boolean

Abbildung 12.15: Klasse Dependency

Nun ist das OO-Binding vollsténdig und kann zur Erstellung und Bearbeitung von Ma-
nifesten genutzt werden. Die Klassenhierarchie in Abbildung 12.16 fasst die Ergebnisse dieses
Abschnitts zusammen.

Hierarchical Element

AN

Dependency MDElement

AN

File IDElement

/N

Item Manifest Organization Resource

Abbildung 12.16: Klassenhierarchie der Manifest-Elemente

12.4 Content Package

Mit den Klassen fiir die Speicherung der physikalischen Dateien und des Manifests sind die
Grundlagen fiir die Modellierung des Content Packages gelegt. Weil bereits auf dieser Ebene
die Standardkompatibilitdt gewéhrleistet ist, fillt die folgende Klassenstruktur {ibersichtlich
und kompakt aus. Im Grunde genommen sind die Klassen SavableFS und Manifest Aggregate
in einer kapselnden Klasse, die hier den Namen ContentPackage trigt. Abbildung 12.17 zeigt
die Komposition und die relevanten Methoden.

Die Schnittstelle setzt sich im Wesentlichen aus Methoden zusammen, die Aufrufe an Datei-
system und Manifest weiterleiten. Lediglich die Unterscheidung, ob es sich bei einem Content
Package um ein logisches Verzeichnis oder eine gepackte Datei handelt, wird in dieser Klas-
se verwaltet. Hierzu wird im Konstruktor der iibergebene Pfad iiberpriift und das jeweilige
Objekt erzeugt. Ist dies bei einem Verzeichnis noch recht einfach, die Klasse VirtualFile bie-
tet entsprechende Methoden an, kann die Unterscheidung zwischen ZIP-, CAB- und anderen
Dateien aufwendiger sein. Das folgende Verfahren ist recht simpel und kann in der Imple-
mentierung durch ein effizienteres ersetzt werden. In der Regel erkennen die Klassen fiir das

144

Baustein und Kurs

SavableFS

ContentPackage

Manifest

addFile(VirtualFile)
removeFile(VirtualFile)
readManifest()
writeManifest()
getManifest():Manifest
getFileSystem():SavableFS
getFile()

save()
save(VirtualFile)
merge()
hasFile():Boolean
isPIF():Boolean
isPackage():Boolean
isModified()

Abbildung 12.17: Klasse ContentPackage

Einlesen eines bestimmten Dateityps, ob sie die Datei ordnungsgeméf3 verarbeiten kénnen. Ist
dies nicht der Fall, werfen sie eine Ausnahme (FEzception), die abgefangen werden muss. Der
Reihe nach werden alle verfiigharen Klassen zum Lesen eines Content Packages aufgerufen,
bis die Operation erfolgreich durchgefithrt wurde. Schlugen alle Aufrufe fehl, dann wird das
Format nicht unterstiitzt oder die Datei ist fehlerhaft. Dieser Mechanismus kann noch ein
wenig verfeinert werden, indem z.B. die Dateiendungen iiberpriift werden.

Eine sehr wichtige Funktion fiir die Umsetzung der Metaphern stellt die Methode merge ()
bereit, die eine Konvertierung von verschachtelten Content Packages zu einem mit mehre-
ren Submanifesten durchfiihrt. Dies entspricht der Umwandlung eines Kurses aus Abbildung
12.3 zu einem Kurs aus Abbildung 12.2. Mit der Methode flatten() aus dem vorherigen
Abschnitt (siehe Abbildung 12.13) kénnen die Submanifeste noch zu einem Manifest zusam-
mengefasst werden, sodass Kurse wie aus Abbildung 12.1 entstehen, die auch einfache Systeme
unterstiitzen.

Mit der Klasse ContentPackage konnen modulare E-Learning-Inhalte in standardkompa-
tiblen Formaten erstellt und bearbeitet werden. Jetzt gilt es, die Metapher Baustein explizit
anzuwenden, um die gewiinschte Modellierung zu erhalten. Abbildung 12.18 illustriert, wie die
Umsetzung eines Bausteins iiber Vererbung realisiert ist.

ContentPackage

i

Brick

setEntryPoint(String)
setEntryPoint(VirtualFile)
clearEntryPoint()
addAuxililaryFile(VirtualFile)
removeAuxiliaryFile(VirtualFile)
getEntryPoint():VirtualFile
getAuxiliaryFiles():List
getAuxiliaryFileCount():int

Abbildung 12.18: Klasse Brick

Ein Baustein ist im Kontext dieser Arbeit die kleinste technische Einheit, die von der
Infrastruktur fiir modulare E-Learning-Inhalte verarbeitet wird. Er enthélt eine Datei als Ein-
stiegspunkt und mehrere zugehorige Dateien, die zur Darstellung notwendig sind. Die Schnitt-
stelle der Klasse Brick bietet fiir die Erstellung und Bearbeitung verschiedene Methoden an,

12.4 Content Package

145

die intern auf die Methoden der Klasse ContentPackage abgebildet werden. Es wird somit
keine echte Funktionalitéit hinzugefiigt, sondern der Blick aufs Wesentliche konzentriert. An-
statt beliebige Dateien in das Content Package zu kopieren, wird zwischen Einstiegspunkt
und Hilfsdateien unterschieden. Bei der Implementierung kann auch darauf geachtet werden,
dass alle anderen Elemente, wie z.B. Organisationen, ausgeschaltet sind. Letztendlich besitzt
die Klasse Brick eine iiberschaubare Schnittstelle und die technischen Details sind in den
Basisklassen gekapselt.

Ein Kurs ist rekursiv definiert und beinhaltet andere Kurse und Bausteine. Diese flexible
Definition erlaubt den Aufbau beliebiger Strukturen, fithrt aber bei der Schnittstelle zu ei-
nem komplexeren Aufbau. Nicht alle Funktionen lassen sich direkt iiber eine Klasse steuern,
weil auch hierarchische Datenstrukturen verwaltet werden. Dies dndert freilich nichts an der
Vererbungshierarchie, wie Abbildung 12.19 verdeutlicht.

ContentPackage

i

Course

addCourse(Course, Item)
removeCourse(Course)
addBrick(Brick, Item)
removeBrick(Brick)
addOrganization(Organization)
removeQrganization()
getCourses():List

getBricks():List
getCourseCount()
getBrickCount()
getMainOrganization():Organization
getOrganization(int):Organization
getOrganizations():List
getOrganizationCount():int

Abbildung 12.19: Klasse Course

Die Methoden der Klasse Course unterstiitzen das Hinzufiigen und Entfernen von Baustei-
nen und Kursen. Wie schon bei der Klasse Brick ist die Schnittstelle eine spezialisierte Sicht
auf ein Content Package mit der Einschrinkung, dass es nur Bausteine und Kurse anstatt phy-
sikalischer Dateien gibt. AbschlieBend zeigt Abbildung 12.20 die gesamte Klassenhierarchie fiir
Content Packages.

SavableFS

ContentPackage
1

/7 Manifest

Brick Course

Abbildung 12.20: Klassenhierarchie der Content Packages

Mit den Klassen Brick und Course sind die letzten Klassen beschrieben, die fiir eine
Komponentenbildung notwendig sind. Sie sind es, deren Funktionen iiber die Schnittstellen
der Komponenten Learning Object Engine (siche Abbildung 10.11) und Structure Engine
(sieche Abbildung 10.12) angesprochen werden. In den Abbildungen 12.21(a) und 12.21(b) sind
die jeweiligen Prozess zu sehen, die wie gehabt nur ausgewihlte Klassen anzeigen.

Der wesentliche Unterschied zu den vorhergegangen Komponentenbildungen ist die Wie-
derverwendung einer ganzen Reihe von Klassen in zwei Komponenten. Dieser Sachverhalt

146 Baustein und Kurs

‘ ContentPackage ‘ ‘ ContentPackage ‘

‘ Brick ‘

‘ Model ‘

Learning Object

Manifest Engine Manifest Structure Engine
SavableFS SavableFS
(a) Bildung der Komponente Learning Object Engi- (b) Bildung der Komponente Structure Engine
ne

Abbildung 12.21: Komponentenbildung

verdeutlicht auf praktische Weise, warum es wenig ratsam ist, Komponenten zur physikali-

schen Gruppierung einzusetzen. In diesem Fall trite eine unerwiinschte Redundanz auf, die
fachlich motiviert wére, aber technisch nicht nétig ist.

Kapitel 13

Rahmenwerk

Im zweiten Teil der Arbeit wurde am Anfang ein fachliches Modell fiir den Umgang mit modu-
laren E-Learning-Inhalten aufgestellt, das am Ende in ein weit technischeres tiberfithrt wurde.
Dieser Prozess ist noch nicht vollends abgeschlossen, denn es fehlen noch die Kompositionen
der entwickelten Basiskomponenten zu vollstindigen Werkzeugen der einzelnen Rollen. Zudem
soll noch eine Zusammenfassung zu Libraries bzw. Paketen erfolgen, wie es in Kapitel 11 ein-
leitend angefithrt wurde. Erst in dieser Konstellation mit einer geeigneten Beschreibung der
API lisst sich das entwickelte Gesamtmodell als Rahmenwerk nutzen.

Ohne eine genaue Definition eines Rahmenwerks zu geben und alle Aspekte dieses Themas
auszuloten, soll kurz eine Unterscheidung zwischen Rahmenwerk und Library gegeben werden.
Die wesentlichen Unterschiede lassen sich in der Nutzung ausmachen. Geht es bei Libraries
in erster Linie um die Zusammenfassung kohérenter Klassen, die nach auflen hin eine ein-
heitliche Schnittstelle bilden, steht beim Rahmenwerk die Erweiterung um eigene Funktionen
im Vordergrund. Nach dem Hollywood-Prinzip ,,Don’t call us, we call you* [Sweet85] werden
die hinzugefiigten Unterklassen iiber Nachrichten des Rahmenwerks aufgerufen. Dieses Prin-
zip wird in allen Klassen der erstellten Komponenten eingehalten. So lassen sich z.B. eigene
Dateisysteme, Metadaten und multimediale Ergénzungen auf einfache Art hinzufiigen.

Obwohl die Begriffe Komponente, Library und Rahmenwerk im ersten Anschein wider-
spriichlich erscheinen, sind alle drei Betrachtungsweisen mit dem vorgestellten Entwurf rea-
lisierbar. Dies ist nur moglich, weil nicht dogmatisch Definitionen befolgt werden, die in der
Praxis wenig Bedeutung haben und kontraproduktiv sind. Im néchsten Teil dieser Arbeit wird
eine Implementation vorgestellt, die auf die verschiedenen Weisen eingesetzt werden kann.
Die fertigen Komponenten lassen sich mit wenig Aufwand zu vollstdndigen Anwendungen zu-
sammensetzen oder ergénzen Eigenentwicklungen um spezielle Funktionalitdten. Wird mehr
Kontrolle gewiinscht, lassen sich Teile der API wie eine Library ansprechen, mit denen sich
umfangreiche Eigenentwicklungen hochziehen lassen. Erst wenn spezielle Erweiterungen be-
notigt werden, die entweder zu exotisch waren, um sie in die Implementierung aufzunehmen,
oder sich zu einem spéteren Zeitpunkt etablierten, kommt der Charakter eines Rahmenwerks
zum Vorschein. Es sei an dieser Stelle abermals darauf hingewiesen, dass der bisherige Entwurf
unabhéngig von jeglicher Programmiersprache ist.

Im néchsten Abschnitt werden nun die letzten drei Komponenten der Entwurfsphase er-
stellt. Dieser Prozess entspricht dem Muster der Erstellung einer Fassade, wie in Abbildung
13.1 illustriert ist.

Diese Architektur verdeckt die Kommunikation und Abhéngigkeiten unter den einzelnen
Teilkomponenten und bietet eine vereinfachte, einheitliche Schnittstelle nach auflen. Die nun
entstehenden Komponenten bieten somit keine neue Funktionalitét, wodurch der Erstellungs-
prozess sehr einfach gehalten ist.

148

Rahmenwerk

client classes

Abbildung 13.1: Das Muster Fassade [Gamma95, S. 185]

13.1 Zusammengesetzte Komponenten

Nach Tabelle 10.1 fehlen im Bereich des Entwurfs noch die zwei zusammengesetzten Kom-
ponenten Learning Object Development (siehe Abbildung 10.11) und Structure Develop-
ment (sieche Abbildung 10.12). Die Komponente Publishing Environment (siehe Abbildung
10.13) wird, wie in der Tabelle angegeben, in anderen Arbeiten ausfiihrlich beschrieben und
soll an dieser Stelle als gegeben betrachtet sein.

Die Rolle Developer benutzt die Komponenten Multimedia Environment, Import Engi-
ne und Learning Object Engine zur Erstellung sowie Bearbeitung modularer E-Learning-
Inhalte. Bis auf die Import Engine wurde in den letzten Kapiteln die Herleitung und Funk-
tionalitdt dieser Komponenten beschrieben, sodass sie keiner weiteren Erklarung bediirfen.
Auch ihr Zusammenspiel ist nicht sonderlich kompliziert. Grundlage fiir den Umgang mit
standardkompatiblen Lernobjekten ist die Learning Object Engine, sei es nun beim Import
fremder Inhalte oder der Bearbeitung enthaltender Multimedia-Dateien. Letztendlich miissen
fiir das Zusammenspiel ein paar Initialisierungen und Abh#ngigkeiten bei den gegenseitigen
Aufrufen beachtet werden, die von einer neuen Klasse iibernommen werden. Ihre Schnittstelle
bietet weitestgehend die gleiche Funktionalitit wie die Einzelkomponenten an, weshalb auf

eine ausfiihrliche Beschreibung verzichtet wird. Die wesentliche Struktur ist Abbildung 13.2
zu entnehmen.

LOBDevelopment

X\ Multimedia N) Y Learning Object
O Environment (O Import Engine O Engine

Abbildung 13.2: Bildung der Komponente LOBDevelopment

Mit der Klasse LOBDevelopment bekommen die Entwickler /-innen eine einheitliche Schnitt-
stelle an die Hand, mit der sich auf einfache Weise eigene Erweiterungen, wie z.B. eine grafische
Reprisentation oder ein Kommandozeilenprogramm, erstellen lassen. Die bisher eingesetzte
Komponentenbildung, wie z.B. in Abbildung 12.21 dargestellt, wird aufgrund der Trivialitéit
des Prozesses — schliefilich wird nur die Klasse LOBDevelopment hinzugefiigt — an dieser
Stelle nicht angefiihrt. Das Endresultat ist aus Abbildung 10.11 bekannt.

Auch bei den Tétigkeiten der Rolle Composer werden hauptséchlich drei Komponenten ein-
gesetzt, namentlich als Import Engine, Search Engine und Structure Engine vorgestellt.

13.1 Zusammengesetzte Komponenten

149

Letztere ist die zentrale Komponente, beschrieben im vorherigen Kapitel. Egal ob nun frem-
de Inhalte importiert werden, oder eine Aufarbeitung bestehender Lerninhalte fiir die Suche
erfolgt. Es wird stets der Zugriff auf die internen Strukturen und die inhaltlichen Zusam-
menhénge bendtigt. Die Komponente CBK-Management-Application aus der Diplomarbeit
[Vollmann04] wird als Search Engine verwendet, die nach dem Verfahren Case-Based Rea-
soning (CBR) arbeitet [Kolodner93; Lenz98|. Abbildung 13.3 zeigt den inneren Aufbau. Wer

Interesse an der umfangreichen Schnittstelle hat, findet in der Diplomarbeit eine ausfiihrliche
Beschreibung.

E% CBK-Management-Application

Module Eéj
1
View
Keyword
Language
Association

Abbildung 13.3: Aufbau der Komponente CBK-Management-Application nach [Vollmann04,
S. 128]

Die Initialisierungen und Abhéngigkeiten unter den Komponenten werden wieder iiber das
Entwurfsmuster Fassade gekapselt, um einen einfachen Zugriff zu erméglichen. Abbildung 13.4
zeigt die hierfiir eingefiithrte Klasse. StructureDevelopment.

StructureDevelopment

\
() Import Engine () Search Engine (O)— Structure Engine

Abbildung 13.4: Bildung der Komponente StructureDevelopment

Auf die Darstellung einer expliziten Komponentenbildung soll wiederum verzichtet werden,
denn auch hier ist das Endresultat aus Abbildung 10.12 bekannt.

Nun sind alle Komponenten erstellt, mit denen grofiere oder kleinere Aufgaben im Bereich
modularer E-Learning-Inhalte iibernommen werden koénnen. Es lassen sich Lernobjekte als
Bausteine erstellen sowie bearbeiten, mit anderen Lernobjekten zu Kursen zusammensetzen
und in jedes beliebige Ausgabeformat iiberfithren. Alle beteiligten Funktionen stehen in den
drei Komponenten Learning Object Development, Structure Development und Publis-
hing Environment zur Verfiigung, doch der Zusammenhang zwischen ihnen fehlt. Mit Hilfe
einer Komponente soll quasi die Funktionalitéit einer vollstéandigen Applikation angeboten wer-

150

Rahmenwerk

den. Es wird wieder nach dem Muster Fassade verfahren, dessen Resultat in Abbildung 13.5
zu sehen ist.

AuthoringSystem

N Learning Object N Structure N Publishing
O Development O Development O Environment

Abbildung 13.5: Bildung der Komponente AuthoringSystem

Die Klasse AuthoringSystem kapselt die Initialisierungen und kiimmert sich um Abhén-
gigkeiten. Zusitzlich erlaubt sie die Steuerung der Konfiguration iiber Umgebungsvariablen
und spezielle Dateien. Auf diese Weise lésst sich das Verhalten der Anwendung ohne Program-
mierung steuern, sodass im optimalen Fall fiir den Einsatz dieser Komponente keine Entwick-
lungsarbeit notwendig ist. Freilich kann es sich hierbei nur um rudimentére Téatigkeiten ohne
Interaktion mit den Anwendern/-innen handeln.

Der Entwurf ist jetzt so weit, dass die néchsten Entwicklungsschritte nur noch in Abhéngig-
keit von Programmiersprachen, Libraries und Betriebssystemen sinnvoll vorangetrieben wer-
den konnen. Hier endet nun die kreative Arbeit und geht iiber in Tétigkeiten, die zunehmend
von konkreten Erfahrungen gepréigt sind. So wird beispielsweise Wissen bendétigt, wie sich
grafische Oberflichen am elegantesten zusammenstellen lassen, wie Ressourcen des Rechners
moglichst effizient genutzt werden und wie sich Programmieraufwand reduzieren lédsst. Diese

Uberlegungen passen nicht in einen unabhéngigen Entwurf, weshalb nun zur Implementierung
iibergegangen wird.

Teil 111

Implementierung

Kapitel 14

Baukasten

Im vorherigen Teil dieser Arbeit wurden die fachlichen Klassen und Komponenten entwickelt,
die fiir die technische Kodierung und Bearbeitung modularer E-Learning-Inhalte benétigt
werden. Sie sind weitestgehend unabhéngig von jeglichen Programmiersprachen und sonstigen
Implementierungsdetails. Aus Sicht der Entwickler/-innen ist eine API entstanden, die eine
gute Basis fiir die Erstellung eigener Anwendungen darstellt. In Anbetracht der Zielsetzung
dieser Arbeit muss aber noch ein Schritt weitergegangen werden, denn es soll eine komplette
Infrastruktur geschaffen werden, nicht nur ein konzeptioneller Entwurf. Was also fehlt, ist die
grafische Darstellung (View), um das MVC-Muster zu vervollsténdigen. Sie ist stark von der
Implementierung abhingig und deshalb in diesem Teil der Arbeit untergebracht, obwohl auch
hier {iberwiegend konzeptionelle Uberlegungen angefiithrt werden.

Da bis jetzt lediglich die Daten modelliert sind, ndmlich Bausteine, Kurse und ihre Meta-
daten, sollen nun die passenden Werkzeuge entwickelt werden. Hierbei handelt es sich um die
Komponenten aus Abschnitt 10.2, die nun zu einer prototypischen Anwendung zusammenge-
setzt werden.

Fiir die Programmiersprache Java gibt es verschiedene Libraries, die bei der Erstellung
grafischer Oberflichen helfen. Implementierungen der Virtual Machine von Java unterstiitzen
in der Regel die Standard-Libraries Abstract Window Toolkit (AWT) und Swing. Sie miissen
im Gegensatz zu den Alternativen, wie z.B. das Standard Widget Toolkit (SWT) des Projekts
Eclipse!, nicht zusitzlich installiert werden. Das AWT ist die #lteste Library und bietet wenig
Komfort, da lediglich wenige Standardkomponenten direkt angeboten werden. Bidume, Tabel-
len und weitere komplexere Widgets stehen erst in Swing zur Verfiigung, das intern auf dem
AWT aufbaut. Im Gegensatz zu AWT und SWT sind die Widgets unabhéngig vom Betriebs-
system, da sie als Lightweight Components realisiert sind, sich also selbst in eine vorgegebene
Fliche zeichnen. Heavyweight Components basieren hingegen auf den Widgets nativer Libraries
oder dem Betriebssystem und bendtigen unter Umsténden mehr Ressourcen zur Ausfithrung.

Die Entscheidung in dieser Arbeit fillt zu Gunsten von Swing aus, weil es einen Kom-
promiss zwischen der Verfiigbarkeit bei Standardinstallationen und der Anzahl von Widgets
darstellt. Das AWT steht wegen seines Alters und des wenig durchdachten Entwurfs — die
Entwickler beteuern selbst, dass es am Zeitdruck bis zur ersten Veroffentlichung von Java lag
— auflen vor. Bei dem SWT sieht es mit der Verfiigbarkeit und der Stabilitdt heute wesent-
lich besser aus, als zu Beginn des Projekts math-kit, sodass Der Vorzug von Swing historisch
bedingt ist.

In den folgenden Abschnitten werden die grafischen Komponenten hergeleitet, mit denen
Bausteine sowie Kurse erstellt, bearbeitet und konvertiert werden. Wie in dem Teil Entwurf,
werden erst die Basisfunktionen Dateizugriff und Metadaten angegangen, um anschlieffend die
Komponenten fiir die Rollen Developer, Composer und Publisher fertig zu stellen.

! Eclipse ist eine offene flexible Plattform fiir die Integration von Entwicklungswerkzeugen. Die grafische
Oberfliche basiert auf dem SWT. Mehr Details finden sich unter http://www.eclipse.org (29.10.05)

http://www.eclipse.org

154

Baukasten

14.1 Script-Steuerung

Fiir eine direkte Ansteuerung ohne aufwindige Programmierung soll eine Komponente zur
Script-Ansteuerung angeboten werden. Mit ihr lassen sich kleinere Routinetétigkeiten elegant
erledigen, ohne jedes Mal aufwindig programmieren zu miissen. Fiir die Anwender/-innen
bieten Script-Sprachen den idealen Kompromiss zwischen direkter Kontrolle und komplizier-
ten Aufrufen von Komponenten. Die Position der Komponente Scripting Environment im
Autorensystem kann in Abbildung 10.17 nachvollzogen werden.

Java ist eine stark typisierte Programmiersprache, was nichts anderes bedeutet, als dass
der Quellcode iibersetzt wird und wihrend dieses Prozesses einer Priifung der Typkonsistenz
erfolgt. Passen irgendwelche Datentypen nicht zusammen, wird die Ubersetzung mit einer
entsprechenden Fehlermeldung abgebrochen. Dieses Konzept ist freilich schwer mit Script-
Sprachen zu kombinieren, da sie in der Regel erst zur Laufzeit interpretiert werden. Es ist z.B.
durchaus iiblich, dass eine Variable im gleichen Geltungsbereich verschiedene Typen annimmt.
In Jawva ist dies nicht mo6glich, doch wie lassen sich diese beiden Welten vereinen?

Klassische Script-Sprachen wie TCL?, Perl® oder gar PHP* sind imperativ und kommen
fiir diese Aufgaben freilich nicht in Frage, denn sie lassen sich nur sehr schwer oder gar nicht
mit Java verbinden. Eine objektorientierte Script-Sprache wie Python® ist da wesentlich besser
geeignet und es gibt interessante Implementierungen auf dem Markt. Herausragend ist z.B. der
Interpreter Jython®, der vollstéindig in Java umgesetzt wurde und eine nahtlose Verbindung
zwischen Python und Java schafft. Aus technischer Sicht scheint dieser Ansatz eine gangbare
Losung zu sein.

Bei genauer Betrachtung von Python zeigt sich, dass es sich um eine vollstdndige Program-
miersprache handelt, deren Merkmale z.B. Module, Klassen, FEzceptions und hohere Daten-
typen sind. Nun unterscheidet sich die Syntax zu Java teilweise wesentlich und wer Python
nicht kennt, hat einen gewissen Lernaufwand zu leisten. Bei den vielen Projekttreffen von
math-kit hat sich deutlich herausgestellt, dass der grofite Teil der Partner/-innen im Umgang
mit Java vertraut ist bzw. sich in diese Richtung weiterbildet. Die Bereitschaft, eine weitere
Programmiersprache zu erlernen, war verstdndlicher Weise gering. Aus diesem Grund ist die
Entscheidung auf die BeanShell” gefallen, einen Interpreter speziell fiir Java. Die Syntax dieser
Script-Sprache ist stark an Java angelehnt, wie das Beispiel in Abbildung 14.1 zeigt.

Es wird ein neuer Baustein erzeugt und der Bezeichner der Ressource ausgegeben. Weil
die BeanShell kompakt ist und bereits mit einer eigenen grafischen Oberfliche ausgestattet
ist, miissen keine weiteren Entwicklungsschritte vorgenommen werden, um die Komponente
Scripting Environment aus Abbildung 10.17 zu erstellen. Lediglich bei der Initialisierung der
BeanShell werden ein paar niitzliche Objekte in den Scope® geladen, wie z.B. das speziel-
le Dateisystem. Dies reduziert den Aufwand fiir neu entwickelte Scripte, weil alle wichtigen
Komponenten im direkten Zugriff vorliegen.

14.2 Grafische Basiskomponenten

In Kapitel 11 wurden die funktionalen Klassen fiir den Zugriff auf Dateien und Metadaten
definiert. Nun werden sie um eine grafische Représentation ergéinzt, um sie als Komponenten
leichter wieder verwenden zu konnen. Bei der Darstellung eines Dateisystems gibt es zwei we-
sentliche Ansédtze mit kleinen Varianten. Entweder erfolgt die Anzeige als Baum oder Liste,
was verschiedene Vor- und Nachteile mit sich bringt. Beim Baum profitieren die Anwender/-

Zhttp://wuw.tcl.tk (29.10.05)

Shttp://www.perl.org (29.10.05)

“http://www.php.net (29.10.05)

"http://wuw.python.org (29.10.05)

Shttp://www. jython.org (29.10.05)

"http://www.beanshell.org (29.10.05)

8Mit Scope wird der Bereich bezeichnet, in dem eine Variable definiert ist.

http://www.tcl.tk
http://www.perl.org
http://www.php.net
http://www.python.org
http://www.jython.org
http://www.beanshell.org

14.2 Grafische Basiskomponenten

155

n i Bsh Workspace: 0
File Font

® BeanShell

2.0b2 - by Pat Niemeyer (pat@patneth
bsh % dmport de.ima.cp.Brick;
bsh % dmport de.mb.cp.Resource;
bish

bsh resource = hrick.getResource(];

bsh % id = resource.getId(};

bsh % System.out.printTn{"ID: <" + id + "="J;
ID: <Bricks

bsh %

%
%
%
bsh % brick = new Brick();
%
%
%

Abbildung 14.1: Screenshot der BeanShell

innen von einer guten Gesamtiibersicht und sie erreichen schnell die gewiinschten Dateien,
auch wenn mehrere Verzeichnisse gleichzeitig geoffnet sind. Diese Datenfiille gereicht der Ge-
schwindigkeit dieser Darstellung aber zum Nachteil, denn es miissen einige Informationen aus
dem Dateisystem gesammelt werden. Angefangen bei der Unterscheidung von Dateien und
Verzeichnissen, iiber Dateiattribute bis hin zu den grafischen Icons erh6hen viele Operationen
die Belastung. Hinzu kommt ein Uberwachungsmechanismus zur Aktualisierung der Darstel-
lung, wenn von Dritten Anderungen im Dateisystem erfolgen. Auf dem lokalen Dateisystem
des Betriebssystems mag eine addquate Geschwindigkeit noch gegeben sein, aber spétestens
bei einem Dateisystem im Netzwerk oder tief verschachtelten Content Packages sind massive
Verzogerungen moglich.

Die Darstellung als Liste ist von diesen Probleme weniger betroffen, weil lediglich der
Inhalt eines Verzeichnisses angezeigt wird. Die Anzahl der Dateien und Verzeichnisse hilt sich
somit in Grenzen. Bei der gleichzeitigen Arbeit mit vielen Verzeichnissen wirkt sich die Liste
nachteilig aus, denn entweder wird oft die Ansicht gewechselt oder es werden mehrere Listen
nebeneinander geoffnet. Es sei an dieser Stelle nicht verschwiegen, dass bei sehr vielen Dateien
in einem Verzeichnis auch die Liste vor Verzogerungen nicht gefeit ist.

Die Darstellung von Bidumen und Listen lésst sich beschleunigen, indem sie in mehrere
Schritte aufgeteilt wird. Zunéchst werden alle Namen der Dateien und Verzeichnisse abgefragt,
um sie danach sofort anzuzeigen. Danach werden die Eintrédge von einem Prozess oder Thread
im Hintergrund um weitere Attribute ergénzt. Der Vorteil dieser ,dynamischen* Darstellung
liegt auf der Hand: Die Anwender/-innen bekommen den Inhalt des Dateisystems schneller
angezeigt und haben sofort Zugriff auf die Dateien. Wer sich an kleinen Icons und anderen
Eigenschaften orientieren méchte, muss die ben6tigte Wartezeit in Kauf nehmen.

In Anbetracht der Aufgabenstellung ist die Liste die geeignetere Darstellungsform fiir
Dateisysteme, denn es sollen in erster Linie die Inhalte von Bausteinen und Kursen angezeigt
werden, die meist eine flache Struktur haben. Deswegen wird in dieser Arbeit die grafische
Komponente verwendet, wie sie in Abbildung 14.2 zu sehen ist.

In diesem Screenshot wird der Inhalt des Verzeichnisses Eigene Dateien angezeigt, der aus
drei Verzeichnissen besteht. Die Anzeige des aktuellen Verzeichnisses ist eine Comboboz, die
alle hoher liegenden Verzeichnisse anzeigt und einen Aufstieg im Verzeichnisbaum ermdoglicht.
Uber einen Doppelklick auf einen Verzeichnisnamen wird dessen Inhalt angezeigt, was einem
Abstieg im Verzeichnisbaum entspricht. Mit den ersten beiden Knopfen in der rechten oberen
Ecke kann direkt zu oft genutzten Verzeichnissen gesprungen werden und mit dem letzten wird
ein neues Verzeichnis angelegt.

156 Baukasten

| |7) Eigene Dateien = | |ﬂ|ﬂ‘ @

Mame |

[jﬂ Eigene Bilder
Eigene Musik
I Visual Studio Projects

Abbildung 14.2: Visualisierung physikalischer Dateien in Content Packages

Die Entwicklung einer grafischen Komponente fiir Metadaten ist aufgrund ihrer Kom-
plexitét umfangreich und wurde im Projekt math-kit als Diplomarbeit [Turan04] vergeben.
Ausgangspunkt waren die Klassen fiir Metadaten aus Abschnitt 11.2, deren Elemente und
Attribute auf geeignete Weise visualisiert werden mussten. Das Ergebnis ist in Abbildung 14.3

zu sehen.
Structure | Linear b
Aggregationlewvel | 1-smallest level of aggregation ™
~TitlelLanguage
Language | Text
en Example
de Beizpiel
ft Example
it Esempio
~Other Specifications
Language | Text
BN This is an example -
e Das ist ein Beispiel il

Abbildung 14.3: Komponente fiir Metadaten

Fiir die Unterteilung der einzelnen Kategorien wurden Reiter gewihlt, deren Seiten den ge-
samten Inhalt anzeigen. Ohne zu sehr in die Details gehen zu wollen, ldsst sich aus Abbildung
14.3 gut die Vorgehensweise bei der Umsetzung nachvollziehen. Zuerst wurden fiir alle Daten-
typen der Metadatenbeschreibung die passenden Widgets festgelegt und bei Bedarf angepasst.
Worterbiicher lassen sich beispielsweise gut als Comboboxen umsetzen, wie bei den Elementen
Structure und Aggregationlevel zu sehen ist. Mehrsprachige Daten, die sich aus einem
Sprachkiirzel und dem Text zusammensetzen, sind in Tabellen gut aufgehoben. Um doppelte
Eintrége von vornherein zu vermeiden, lassen sich die Sprachkiirzel in der Spalte Language nur
iiber eine Comboboxr auswihlen, die alle unterstiitzten Sprachen enthilt. Diese Tabelle lisst
sich fiir viele Elemente anwenden, wie die sichtbaren Elemente Title und Description be-
weisen. Es gibt auch Datentypen, die sich nicht in vorhandenen Widgets darstellen lassen, wie
z.B. die Datumsauswahl oder die VCards, und eigene Implementierungen bendtigen. Genaue
Ausfiithrungen hieriiber finden sich in der genannten Diplomarbeit.

14.3 Rahmenwerk fiir Werkzeuge

157

14.3 Rahmenwerk fiir Werkzeuge

Bevor mit den eigentlichen Komponenten fiir Bausteine und Kurse begonnen wird, soll ein
kleines Rahmenwerk geschaffen werden, dass ihren Aufbau und Einsatz vereinfacht. In einer
Anwendung fiir modulare E-Learning-Inhalte ist es praktisch, mehrere Bausteine und Kurse
zur gleichen Zeit gedffnet zu haben. Dies bedeutet jedoch fiir alle Implementierungen einen
zusétzlichen Aufwand, der ein tieferes Versténdnis der gesamten Klassenstruktur voraussetzt.
Um potentiellen Entwicklern/-innen den Einstieg zu vereinfachen, sollen daher fiir typische
Konstruktionen vorgefertigte Klassen angeboten werden, die eine Integration in die eigene
Anwendung vereinfachen.

Besonders die Verschachtelung von Kursen stellt eine Herausforderung bei der Visualisie-
rung dar. Ein einfacher Baum, der sonst bei hierarchischen Strukturen zum Einsatz kommt,
ist nicht geeignet, da sich die Inhalte der Bausteine und Kurse nur schwer als Blidtter umset-
zen lassen. Hinzu kommen die vielen Moglichkeiten zur Platzierung von Metadaten und wie
Abbildung 14.3 deutlich zeigt, ist die Komponente in ihren Ausmaflen nicht klein.

In einem ersten Prototyp fiir das Projekt math-kit wurde jeder Baustein und Kurs in einem
eigenen Fenster angezeigt, auch wenn es sich um verschachtelte Inhalte handelte. Die Bezugs-
losigkeit der Fenster untereinander ist an dieser Form besonders gravierend, denn auf den
ersten Blick ist nicht mehr ersichtlich, welche von ihnen zusammen gehoren. Daher muss eine
bessere Darstellung gefunden werden, die einen néheren Bezug zur Verschachtelung besitzt.

Zunichst lisst sich feststellen, dass Bausteine, Kurse und Metadaten nach der Erstellung
bzw. Bearbeitung entweder verworfen oder gespeichert werden kénnen. Hierfiir erbt die Klasse
JSavablePanel von der Swing-Klasse JPanel und stellt verschiedene Actions zur Verfiigung,
wie in Abbildung 14.4 zu sehen ist.

JPanel

i

JSavablePanel

save()

save(VirtualFile)
setModified(Boolean)
showCancelDialog()
getFile():VirtualFile
getSaveAction():Action
getCancelAction():Action
isModified():Boolean

Abbildung 14.4: Klasse JSavablePanel

Bei einer Action handelt es sich um einen Steuerungsbefehl, der von Knopfen oder Meniiein-
tragen abgeschickt wird, sodass eine Ansteuerung des JSavablePanel von auflen moglich ist.
Zusétzlich konnen Objekte dieser Klasse mit isModified () iiberpriifen, ob sich ihr Inhalt ver-
dndert hat. Soll das Objekt geschlossen werden und es wurde modifiziert, dann geht automa-
tisch ein Dialog auf, der auf den moglichen Datenverlust hinweist und explizit eine Bestétigung
verlangt. Auf diese Weise gehen nicht ungewollt Daten verloren.

Fiir die Verwaltung der Verschachtelungen soll eine eigene Klasse zusténdig sein, die meh-
rere Objekte von JSavablePanel aufnehmen kann. Abbildung 14.5 gibt eine schematische
Ansicht.

Es sind vier verschiedene Ebenen mit verschachtelten Inhalten, die iibersichtshalber ver-
setzt dargestellt sind. Beispielsweise ist Panel 4 in Panel 3 enthalten und Panel 3 in Panel
2. Im Moment kann nur auf Panel 4 gearbeitet werden, bis eine andere Ebene ausgewéhlt
wird. Fiir die Navigation ist auf dem Panel 1 eine Comboboxr angebracht, mit der auf héher
liegende Ebenen zugegriffen wird. Bei der Auswahl, z.B. von Panel 2, werden Panel 4 und

158

Baukasten

Panel 1
Panel 2
Panel 3
Panel 4

Panel 4

Abbildung 14.5: Verschachtelte Inhalte

Panel 3 geschlossen. Bevor dies geschieht, werden diese selbstverstindlich auf Anderungen
gepriift, um eine Speicherung zu ermoglichen.

Um das Beispiel weniger abstrakt zu halten, kann auch der Inhalt von Panel 4 als Baustein
angenommen werden, der in einem anderen Kurs, dargestellt auf Panel 3, enthalten ist. Die
Ebenen Panel 2 und Panel 1 miissen selbstversténdlich ebenfalls fiir Kurse stehen.

Bei der Klasse JNestedPanel handelt es sich um eine Spezialisierung der Klasse JSavable,
wie in Abbildung 14.6 dargestellt.

JSavablePanel

1

JNestedPanel

addPanel(JSavablePanel)
removePanel(JSavablePanel)
jumpToPanel(int)
getPanel(int):JSavablePanel
getPanels():List
getPanelCount():int

Abbildung 14.6: Klasse JNestedPanel

Hauptaufgabe der Klasse ist die Verwaltung der Ebenen. Mit den Methoden addPanel ()
und removePanel () werden Objekte der Klasse JSavablePanel hinzugefiigt bzw. entfernt. Bei
der Auswahl einer anderen Ebene in der Combobox wird jump ToPanel() aufgerufen, worauthin
alle Ebenen zwischen der aktuellen und der ausgewéhlten geschlossen werden. Ansonsten wire
die Navigation in der Combobox inkonsistent.

Metadaten koénnen ebenfalls auf verschiedenen Ebenen auftreten, sodass es sinnvoll ist, die-
se Komponente aus Abbildung 14.3 in den Mechanismus zu integrieren. Als Spezialisierung der
Klasse JSavablePanel bettet sich die Darstellung und Speicherung der Metadaten nahtlos ein.
Da keine neuen Funktionen hinzugefiigt werden, soll an dieser Stelle auf ein Klassendiagramm
verzichtet werden.

Bei vielen gleichzeitig getffneten Bausteinen und Kursen bietet sich die Darstellung meh-
rerer Fenster in einem Hauptfenster an, die auch als Multiple Document Interface (MDI) be-
zeichnet wird. Swing sieht hierfiir die zwei Klassen JDesktopPane und JInternalFrame vor,
mit denen solche Anwendungen schnell erstellt sind. Um das Rahmenwerk auch fiir diese Form
auszurichten, wird es um die Klassen JSavableInternalFrame und JNestedInternalFrame
erginzt. Sie nehmen die Panels des Rahmenwerks auf und steuern die Kommunikation. Abbil-
dung 14.7 zeigt die vollsténdige Vererbungshierarchie, um die beschriebenen Zusammenhinge
zu verdeutlichen.

14.4 Visualisierung der Bausteine und Kurse

159

JinternalFrame JPanel
JSavablelnternalFrame ---------- >| JSavablePanel
JNestedInternalFrame | --=| JNestedPanel JMDPanel

Abbildung 14.7: Klassenhierarchie der grafischen Basisklassen

14.4 Visualisierung der Bausteine und Kurse

In diesem Abschnitt werden grafische Komponenten fiir die Erstellung und Bearbeitung von
Bausteinen und Kursen hergeleitet. Sie visualisieren die Funktionen der Komponenten Lear-
ning Object Engine aus Unterabschnitt 10.2.2 und Structure Engine aus Unterabschnitt 10.2.3.
Zuerst wird eine allgemeine Klasse JCPPanel fiir Content Packages definiert, die interne Ver-
waltungsaufgaben iibernimmt und noch keine Visualisierung der Inhalte durchfiihrt, denn diese
ist in spezialisierte Klassen ausgelagert. Abbildung 14.8 zeigt das Klassendiagramm.

JNestedPanel

i

JCPPanel

showSaveDialog()
showExportDialog()
showManifest()
getExportAction():Action
getPreviewAction():Action

Abbildung 14.8: Klasse JCPPanel

JCPPanel erlaubt iiber die Methode showSaveDialog() die Auswahl einer bestimmten
Datei, in die der Baustein oder Kurs als Content Package gespeichert wird. Nach erfolgreicher
Bestimmung einer Datei wird die Methode save () der Klasse JSavablePanel aufgerufen. Hin-
ter den Methoden showExportDialog, getExportAction() und getPreviewAction verbergen
sich Aufrufe fiir Werkzeuge der Rolle Publisher, deren Funktionalitdt im néchsten Abschnitt
erliutert wird. An dieser Stelle soll geniigen, dass mit dem Export-Dialog Bausteine und Kurse
in andere Formate iibersetzt werden. In der Regel handelt es sich beim Quellformat um XML
und bei dem Zielformat um HTML oder PDF. Die Methode showManifest () 6ffnet ein neues
Fenster, in dem das in XML kodierte und formatierte Manifest zu sehen ist. Abbildung 14.9
zeigt eine typische Darstellung, in der die Organisation mit ihren Eintragen und Verweisen auf
die Referenzen gut zu sehen ist.

Jetzt sind die Voraussetzungen fiir die Visualisierung von Bausteinen und Kursen gelegt.
Die resultierenden Klassen bieten keine neue Funktionalitdt an, da sie praktisch eine einge-
schrankte, auf das Wesentliche reduzierte Darstellung allgemeiner Content Packages sind. Aus
diesem Grund wird auf entsprechende Klassendiagramme verzichtet und die interessantere Ge-
staltung der Komponenten diskutiert. Abbildung 14.10 zeigt zunéchst die Bausteinkomponente
mit einem gedffneten Beispiel.

Im unteren Teil der Komponente ist die Dateisystemkomponente eingebettet, in der die
physikalischen Dateien des Content Packages zu sehen sind. Neben den vier Dateien ist auch
ein Verzeichnis mit dem Namen data enthalten. Welche Dateien darin liegen, soll an dieser

160

Baukasten

=0rganizations =
=nrganization identifier="Organization”=
=title=Example Manifest=Aitle=
=item identifier="Item"=
=title=Example=fitle=
=item identifier="Item2"=
<title=Sub-raode<fitle =
=fitem=
=ftem=
=forganization=
=forganizations =
=IeSOUICes =

=file href="fexample loh" /=
=lresource=
=resource type="loh" identifier="Resaurce?" href="rsub_node loh"
adlcpscarmtype="sco"=
=file href="fsub_naode lab" i=
=lresource=
=resources-
=manifest>

=resource type="loh" identifier="Resource" href="lfexample loh" adlcp scarmtype="sca'=

Abbildung 14.9: Manifest mit farblicher Syntax-Hervorhebung

||@ example.lob

StartFile: | smkmlxml

Meta Data: Edit
~Files

EL

v IR

Marme

=) data

] logo jpg
rmkml.xml
i movie.moy
@ sound.mp3

Abbildung 14.10: Komponente fiir Bausteine

14.4 Visualisierung der Bausteine und Kurse

161

Stelle nicht interessieren, vielmehr soll die mogliche Strukturierung der Dateien innerhalb eines
Bausteins verdeutlicht werden. Obwohl mit Verzeichnissen in Bausteinen sparsam umgegangen
werden soll, ist ihre Verwendung bei sehr vielen Dateien sinnvoll. In der oberen Combobox mit
der Beschriftung ,,Start File* ist die Datei mkml.xml als Einstiegspunkt fiir diesen Baustein
festgelegt. Alle anderen Dateien des Bausteins werden von ihr referenziert und nie direkt aufge-
rufen. Die Metadaten fiir diesen Baustein werden iiber die Metadatenkomponente eingegeben,
die iiber einen Klick auf den Knopf ,Meta Data“ als neue Ebene eingeblendet wird.

Durch die Dateisystemkomponente ist die Arbeit mit den enthaltenen Dateien sehr ein-
fach. Neue Dateien werden iiber ein Kontextmenii neu erzeugt oder per Drag’n’Drop von auflen
hinzugefiigt. Fiir die Bearbeitung stehen je nach Datentyp unterschiedliche Operationen be-
reit, die externe Programme aufrufen. Zur besseren Strukturierung der physikalischen Dateien
konnen zusétzlich Unterverzeichnisse angelegt werden.

Die Visualisierung der Kurse ist im Gegensatz zu den einfachen Bausteinen etwas um-
fangreicher, denn neben den physikalischen Dateien miissen auch Ressourcen und die internen
Strukturen abgebildet werden. Abbildung 14.11 zeigt einen Screenshot mit einem gedffneten
Kurs.

| ¢ java.cob = |

Tithe: The Java Language Specification |

Meta Data: Edit
Course Structure

Title | Raferance
] Introduction
= @& Evample Programms £S5 Resource
& & Refarences £52 Resource2
[Grammars
& & Context-Free Grammars £5 Resource3
& & The Lexical Grammar £52 Resourced
& & The Syntactic Grammar £52 Resources
& & Grammar Motation £52 Resourcel
@& Lexical Structure & Resource?

Used Bricks and Courses

rFlesuur[:es rFiIes |

Resaurce | Href
@ Resaurce filediBExample%20Programs lab
[Resource? filexfiReferences. loh
[Resourcel fileJffiContest-Free%20Grammars.lob
[Resourced file:fiThe%200Lexical%20Grammar.lob
[Resources file:fihe% 20 Syntactic%20Grammar.lob
[Resourcef filedfiGrammar%20Motation.lob

Abbildung 14.11: Komponente fiir Kurse

Der Titel des Kurses, The Java Language Specification, ist der obersten Zeile zu entneh-
men und kann bearbeitet werden. Allgemeine Metadaten, die den gesamten Kurs betreffen,
koénnen wieder tiber den entsprechenden Knopf aufgerufen werden. Die Herausforderung bei
der Visualisierung ist es, die Ubersicht beizubehalten. Uber eine Zweiteilung des Panels, ge-
kennzeichnet mit den Beschriftungen Course Structure und Used Bricks and Courses, soll eine
klare Trennung zwischen Struktur und Ressourcen angezeigt werden. Der obere Baum ent-
spricht der Item-Struktur einer Organization, wobei als Attribute lediglich Titel und Referenz
angezeigt werden. Fiir eine genauere Steuerung der Lernpfade werden allerdings wesentlich
mehr Attribute ben6tigt, um z.B. Vorbedingungen, Zeiten, Punkte, etc. anzugeben. Jedoch
ist die Baumdarstellung nicht fiir diese Anzahl von darzustellenden Werten ausgelegt, weshalb

162

Baukasten

iiber ein Kontextmenii ein separates Fenster getffnet werden kann. Abbildung 14.12 zeigt alle
unterstiitzten Attribute, wobei die Felder fiir SCORM-Werte extra gekennzeichnet sind. Soll-
te ein Baustein oder Kurs im IMS-Format gespeichert werden, kénnen diese Attribute nicht
iibernommen werden.

InS
1D: Iterm
Title: Example Programms

Reference: | Fesource -

Params:
Is Visible: [v¥]
SCORM
Prereq.:
Max Time:
TL Action: -

LMS Data:
Score:

Apply || Cancel

Abbildung 14.12: Ansicht der Item-Properties

Die Darstellung der Ressourcen in Abbildung 14.11 ist dank der eingeschrénkten Definition
aus Abschnitt 12.4 sehr einfach gehalten: Kurse diirfen néamlich nur Bausteine und andere
Kurse als Ressourcen enthalten. In der zweiten Spalte mit dem Titel ,,Href* steht die jeweilige
URL?, mit der die Ressource verbunden ist. Alternativ kénnen die Bausteine und Kurse auch
als physikalische Dateien angezeigt werden, indem diese Darstellung iiber den Reiter ,Files®
ausgewahlt wird.

14.5 Steuerung des Exports

Obwohl in dieser Arbeit die Komponenten fiir die Rolle Publisher lediglich hergeleitet wurden
(sieche Abschnitt 10.2.4), aber eine detaillierte Beschreibung des inneren Aufbaus ausblieb, soll
wenigstens kurz auf die grafische Représentation eingegangen werden. Sie reicht vollkommen
aus, um eine Idee der Tétigkeit zu vermitteln. Im Wesentlichen geht es um die Umwandlung von
Bausteinen und Kursen, die intern XML zur Kodierung verwenden (siche Abschnitt 3.7). Die
giangigsten Zielformate sind HTML und PDF und kénnen mit XSLT sowie XSL-FO generiert
werden. Zusammen mit einigen Hilfsklassen, auf die an dieser Stelle nicht weiter eingegangen
wird, bilden diese Umwandlungssprachen die Transformation Packages (TP), die wesentlich
Ausgabeformat und Erscheinungsbild prigen. Zusétzlich kénnen Module aktiviert werden,
mit denen z.B. Konvertierungen von Formeln oder Bildern durchgefiihrt werden. Sie sind
unabhéngig von den TPs und kénnen als Priaprozessoren verstanden werden. Abbildung 14.13
zeigt die genannten Funktionen in einem Dialog-Fenster an.

In der Comboboz ist das GET Lab HTML Package ausgewéhlt, das HTML-Dateien in der
Corporate Identity des GET Labs'® erzeugt. Von den optionalen Modulen ist ein Formelkon-
verter fiir IATEX eingeschaltet, was am Hékchen in der Spalte Active zu erkennen ist. Da in
HTML keine KTEX-Formeln dargestellt werden kénnen und die Unterstiitzung von MathML in
den géngigen Browsern nicht vorausgesetzt werden darf, miissen die Formeln mit Hilfe dieses

9Das Zeichen %20 steht fiir das Leerzeichen.
POhttp://getwww.upb.de (29.10.05)

http://getwww.upb.de

14.6 Lyssa 163

Settings

Media Type:| G GET-Lab HTML Package ¢.zip) v|

[¥] Uncompress content package

Active | Marne | Description |
translates latex equations with
caonwert, dwips and latex

translates latex equations with
Hotegn

translates png images with conwert
inta png images

[w] eguation converter {latex)
[eguation conwverter {Java,...

[poif to phg comverter (Jat. .

Processing
Brick: (2 Example
File: (&3 mkml

[[] show log

Save || Preview || Exit

Abbildung 14.13: Dialog fiir Export-Einstellungen

Moduls als Grafiken eingebunden werden. Die Checkboz Uncompress content package legt fest,
ob ein Content Package erzeugt wird oder lose Dateien. Im Feld Processing werden der ak-
tuelle Baustein und die in Ubersetzung befindliche Datei angezeigt. Sind mehr Informationen
iitber den aktuellen Durchlauf erwiinscht, kann tiber die Checkbox show log eine detailliertere
Ausgabe hinzugeschaltet werden. Soll das Ergebnis einer vorherigen Priifung unterzogen wer-
den, kann iiber den Knopf Preview eine Voransicht erzeugt werden. Ein Klick auf den Knopf
Save schreibt das Resultat direkt in eine auszuwéihlende Datei.

14.6 Lyssa

Mit den erstellten Komponenten aus den letzten Kapiteln kann nun das Autorenwerkzeug
entsprechend den Abbildungen 10.20 und 10.23 zusammengesetzt werden. In Abschnitt 10.3
wurde festgelegt, dass eine einzelne Anwendung den Belangen der Rollen Developer, Composer
und Publisher gerecht werden muss. Durch diese enge Verzahnung der Komponenten ist ein
rasches Wechseln zwischen den Rollen moglich, was den Arbeitsablauf verbessert. Weil bisher
alle grafischen Komponenten Java Swing verwenden, soll auch das Autorenwerkzeug diese
Library nutzen.

Im Projekt math-kit hat sich Lyssa!l als Name fiir das Autorenwerkzeug durchgesetzt
und wird stellvertretend als Begriff fiir das Programm verwendet. Ein wesentliches Merkmal
von Lyssa ist die iibersichtliche und einfache Bedienung. Hierzu gehort auch der Aufbau der
grafischen Oberflache, die aus drei Teilen besteht und nur so viele Daten anzeigt wie nétig.
Abbildung 14.14 zeigt einen typischen Screenshot wéihrend der Arbeit.

Ganz oben befindet sich die Toolbar, die eine Ansteuerung der Basisfunktionen erlaubt
und sich dem jeweils ausgewéhlten Baustein oder Kurs im Arbeitsbereich anpasst. Abbildung
14.15 zeigt die Toolbar im initialen Zustand, wenn kein Baustein oder Kurs getffnet ist. Eigent-
lich wiren die Knopfe Speichern und Speichern als ausgegraut, denn ihre Funktion steht
nur mit getffneten Dateien zur Verfiigung. Zur besseren Identifikation sind sie aber aktiviert
dargestellt.

"Djeser merkwiirdig anmutende Name hat sich aus der Entwicklungsgeschichte ergeben. Jedes Teilprojekt
wurde intern nach einem Gott oder einer Gottin aus der griechischen Mythologie benannt. Nach der Fertig-
stellung der ersten Version des Autorensystems wurde der Name beibehalten, obwohl freilich inhaltlich keine
Verbindung zu ihm besteht. Lyssa ist ndmlich die Go6ttin der Rage und hat Herakles mit einer voriibergehenden
Verstandstriibung dazu gebracht, seine Frau und Kinder umzubringen.

164

Baukasten

Toolbar

ﬁLyssa 0.7
File Options Windows Help

ML YL« P o

() Eigene Dat... 'l |[ﬂ e & anleftung.cob

Marme | & anleitung.cob

(i) Eigene Bilder :
@ Eigene Musik :
(T Wisual Studio Projects Meta Data: Edit
M | course Structure

Title _

Wias ist Lyssa? @ T

1 Hirfe (2 baustein.lob
[instaliation
[Oberblick Start File: |Idncument.xml

Die Toolbar :
() Die workhench Meta Data: Edit

Title: Lyssa-Anleitung

~Files

~Used Bricks and Courses

(Resourcesl Fies | |@f v| |@|@|@
=] |
fﬂ hrick. png

documentxml

(22 haustein.lab document xml bak

2 hausteinbearb. loh docurment mil~
(2 hausteinspeich lob

() haustteinerstlob
&2 brickml.cob
& designer.cob

— 4

Workbench Arbeitsbereich

Abbildung 14.14: Screenshot von Lyssa

Uber den Knopf Laden wird ein Dateidialog gedffnet, der die Auswahl eines Bausteins oder
Kurses anbietet. Mit den Knopfen Neuer Baustein und Neuer Kurs werden entsprechende
Objekte neu angelegt und auf der Arbeitsfliche prisentiert. Sobald ein oder mehrere Inhalte
angezeigt werden, erweitert sich die Toolbar um abhingige Funktionen. Ist z.B. ein Kurs
ausgewihlt, dann sieht die Toolbar wie in Abbildung 14.16 aus.

Bei den Erweiterungen der Toolbar handelt es sich um ausgelagerte Ansteuerungen der
Komponenten aus den Abbildungen 14.10 und 14.11. Die Motivation fiir dieses Vorgehen liegt
in der besseren Ubersicht begriindet. Anstatt die gleichen Funktionen in die Komponenten zu
stecken und somit iiber die Arbeitsfliche zu verteilen, befinden sich die Knopfe immer an der
selben Stelle. Ein Klick auf den Knopf Preview iibersetzt den ausgewéhlten Inhalt mit einem
voreingestellten Transformation Package und 6ffnet das Resultat in einem Anzeigeprogramm.
Ist mehr Kontrolle gewiinscht, kann iiber Export der bekannte Dialog aus Abbildung 14.13
gedffnet werde, mit dem sich die Ubersetzungsparameter einstellen lassen. Der letzte Knopf
Manifest 6ffnet die Manifestansicht aus Abbildung 14.9.

Die bereits erwihnte Arbeitsfliche arrangiert alle geéffneten Bausteine und Kurse in eige-
nen Fenstern. Wie ,normale* Fenster auch, lassen sie sich verkleinern, vergréfiern und verschie-
denartig ausrichten. Uber Befehle in der Meniileiste kénnen einzelne Fenster gezielt ausgewiihlt
werden.

Als letzter Bestandteil von Lyssa bleibt die in Abbildung 14.14 auf der linken Seite liegende
Workbench iibrig, die fiir den Datenaustausch mit dem Betriebssystem und anderen Rechnern
zustéandig ist. Im Prinzip ist es die um ein spezielles Dateisystem erweiterte Komponente zur

14.6 Lyssa 165

Speichern Neuer Baustein

+ ;
Qg e e
T T T
Laden Speichern als Neuer Kurs

Abbildung 14.15: Screenshot der Toolbar

L8 g @ e 7&%%

Abbildung 14.16: Screenshot der erweiterten Toolbar

Dateiansicht aus Abbildung 14.2. Im Gegensatz zu anderen Programmen bietet Lyssa eine
abstraktere Sichtweise auf Dateien und ihre Verteilung. Die Struktur des Hauptverzeichnisses
ist in Abbildung 14.17 dargestellt.

| Workhench: ""| |@|@‘@

Marne |

() Bricks
) Courses

I Wy Horme
(0 Systermn

Abbildung 14.17: Screenshot der Workbench

Fiir eigene erstellte Bausteine und Kurse sind die Verzeichnisse Brick und Courses vor-
gesehen. Wo die Dateien physikalisch gespeichert werden, ist nicht festgelegt und kann von
der voreingestellten Festplatte z.B. auf ein Netzlaufwerk umgestellt werden. Das Verzeichnis
My Home ist mit dem Home-Verzeichnis des eingeloggten User Accounts verbunden und Sys-
tem mit dem Wurzelverzeichnis des Betriebssystems. Uber das Kontextmenii der Workbench
konnen noch beliebig weitere Verzeichnisse mit unterschiedlichen Dateisystemen hinzugefiigt
werden. Im néchsten Kapitel wird z.B. ein Server zur zentralen Datenhaltung vorgestellt, der
seine Inhalte iiber WebDAV anbietet. So ein WebDAV-Laufwerk lédsst sich ohne weiteres in
die Workbench integrieren.

Kapitel 15
Repository

Fiir die Vervollstdndigung der angestrebten Architektur aus Abbildung 10.23 muss noch das
Repository fiir die zentrale Datenhaltung implementiert werden. Die hierfiir notwendigen Klas-
sen und Komponenten stehen grofitenteils aus den vorherigen Kapiteln zur Verfiigung, wie
Abbildung 10.18 mit der Komponente Learning Content Repository zu entnehmen ist. Al-
le eingezeichneten Subkomponenten sind bereits beschrieben worden. Was noch fehlt, ist die
Umsetzung der Infrastruktur fiir den parallelen Zugriff mehrerer Autorensysteme iiber das
Netzwerk. Sie wird durch die Komponente Web Server aus Abbildung 10.19 repréasentiert, die
eine Web-gestiitzte Oberfliche und Remote Procedure Calls (RPC) anbietet.

In Kapitel 7 wurden bereits die Web-Technologien vorgestellt, die fiir eine Umsetzung
des Repositories geeignet scheinen. Als Resiimee dieser Betrachtung ergibt sich, dass mit Hilfe
vorhandener Server, Module und Rahmenwerke anspruchsvolle Web Applications bei angemes-
senem Aufwand realisiert werden kénnen. Teilweise wurden mehrere Produkte fiir eine Losung
vorgestellt, weshalb nun eine konkrete Entscheidung fiir die Implementierung getroffen wird.
Als zentraler Web-Server wird Tomcat der Apache Group eingesetzt, weil die meisten Beteilig-
ten des Projekts math-kit mit diesem Programm vertraut sind. Fiir die strukturierte Imple-
mentierung der Web Application wurden kurz die Rahmenwerke Struts und Spring vorgestellt,
die ganz unterschiedliche Qualitdten besitzen. Struts stellt eine einfache, robuste Umsetzung
des Entwurfsmusters MVC dar, die sich in vielen Projekten bewéhrt hat. Sie deckt genau die
Anspriiche ab, die sich aus der Umsetzung eines Repositories fiir modulare E-Learning-Inhalte
ergeben. Spring hingegen macht einen moderneren, ganzheitlichen Eindruck fiir die gesamte
Umsetzung von Web Applications. In Anbetracht der bisher entwickelten Komponenten ist der
Aufwand jedoch recht hoch, diese mit Spring zu verbinden. Dies liegt unter anderem am Kon-
zept der Beans fiir die Datenhaltung, die iiber eine eindeutige Identitét verfiigen und somit
fiir Datenbanken préddestiniert sind. Bausteine und Kurse bestehen aber aus vielen Dateien,
teilweise in bindren Formaten und lassen sich nur schwer mit Beans modellieren. Aus dieser
Erwagung heraus fillt die Entscheidung fiir die Verwendung von Struts.

Mit Auxis steht eine freie Implementierung des SOAP-Protokolls fiir Web Services zur
Verfiigung, die sehr gut mit dem Web-Server Tomcat zusammen arbeitet. Uber die Web-
Service-Schnittstelle soll die Suchfunktionalitéit der Komponente Search Engine durch andere
Applikationen aufgerufen werden. Somit kénnen Autorensysteme wie Lyssa Suchanfragen fiir
Bausteine und Kurse direkt an das Repository schicken, ohne zwingend eine Web-Oberfléche
nutzen zu miissen. Der Datenaustausch selbst soll iiber die Ubertragungstechnik WebDAV
erfolgen. Weil der Web-Server Tomcat mit WebDAV -Unterstiitzung ausgeliefert wird, ist le-
diglich ein wenig Konfigurationsarbeit zu leisten.

Ein Vorteil der freien Software soll noch hervorgehoben werden, der sich in der Praxis als
auflerst niitzlich erwiesen hat. Alle Programme und Pakete liegen im Quellcode vor, sodass die
internen Vorgénge wesentlich einfacher nachzuvollziehen sind. Im Fall der WebDAV -Library
konnte sogar ein Fehler selbst behoben werden, der wihrend der Tests aufgetreten war.

168

Repository

15.1 Construction Kit Server

Auch fiir das Repository wurde im Projekt math-kit ein eigener Produktname vergeben. Um
den modularen Ansatz hervorzuheben, der auf der Baustein-Metapher beruht, lautet er Con-
struction Kit Server (CKS). Durch den Einsatz des Rahmenwerks Struts ist die Architektur
des CKS bereits grob vorgegeben. Der grofite Teil der Programmlogik zum Aufrufen der Kom-
ponente Learning Content Repository liegt iiber mehrere Controller verteilt, die iiber eine
definierte Schnittstelle von Struts aufgerufen werden. Uberwiegend handelt es sich um die
Steuerung von Standardabldufen, wie z.B. die Eingabe einer Suchanfrage, die auf Richtigkeit
iiberpriift werden muss und gegebenenfalls mehrere Berichtigungszyklen durchliuft. Bei einer
erfolgreichen Anfrage kann das Suchergebnis so viele Eintrége enthalten, dass diese nicht iiber-
sichtlich auf einer Seite dargestellt werden kénnen. Dank mitgelieferter Komponenten, die sich
iiber Vererbung erweitern lassen, werden die ldstigen Routineaufgaben tibernommen.

Es ist daher im Gegensatz zur Herleitung des Autorensystems Lyssa nicht sinnvoll, an dieser
Stelle die involvierten Klassen aufzuzéhlen, denn die Schnittstellen sind {iberwiegend gleich.
Auch der Einsatz von Sequenzdiagrammen ist nicht angebracht, weil {iberwiegend Methoden
des Rahmenwerks Struts involviert sind. Von daher reicht es aus, den Aufbau des Repositories
schematisch darzustellen. Abbildung 15.1 zeigt, wie Web-Server, Module, Rahmenwerke und
die selbst entwickelte Komponente zusammenwirken.

=" >
s)

=4

Author Authoring Tool Browser Author

| |

WebDAV Web Application Web Service
(Struts) (Axis)

Web Server
(Tomcat)

(Tomcat)

Connector Connector

File System

- =

Reposito
O_ p ry

Abbildung 15.1: Aufbau des Construction Kit Servers

Als Web-Server nimmt der Tomcat alle Anfragen der Clients entgegen, entweder vom
Autorenwerkzeug oder einem Web-Browser. Hiernach wird die Eingabe verarbeitet und an
das entsprechende Modul, entweder WebDAV, Web Application oder Web Service, delegiert.
Die Boxen mit der Beschriftung ,,Connector* kennzeichnen die zusétzlich entwickelten Klassen,
die das Rahmenwerk Struts und die Komponente Learning Content Repository verbinden. Die
eingezeichnete Datenbank sowie das Dateisystem dienen zur Speicherung der Kurse, Bausteine
und Metadaten.

15.2 Web-Oberfliche

169

15.2 Web-Oberflache

Der CKS verfiigt auch iiber eine eigene Web-Oberfliche, die den Zugriff auf die wichtigs-
ten Funktionen zur Baustein- und Kursrecherche erméglicht. Eine eigene Authentifizierung
und Autorisierung auf Dateiebene schiitzt die Daten gegeniiber unbefugten Zugriffen. Daher
miissen sich die Benutzer/-innen zunéchst iiber die CKS-Anmeldemaske aus Abbildung 15.2
anmelden.

Construction Kit Server (CKS) math-Kkit

Login name:
bungenstock

Password;

Abbildung 15.2: Screenshot der CKS-Anmeldemaske

Nach erfolgter Anmeldung kann iiber die gespeicherten Bausteine und Kurse navigiert
werden. Abbildung 15.3 zeigt einen kleinen Datenbestand, mit allgemeinen Zusatzdaten.

CKS Browser: [ffiles math-Kit

,\fD Parent Folder 0 Logout

Name Size Date User Revision Locked
@ export.lob 25775 2003-05-22T14:00:092 root 1.0 =

2 configuration.lob 1118 2003-05-22T14:00;282 root 1.0

¢ example.cob 255083 2003-05-22T14:00: 347 root 1.0

& introduction.cob 743246 2003-05-22T14:00: 382 root 1.0

¢ mathkitml.cob 106481 2003-05-22T14:00; 422 root 1.0

(2 start.lob 17840 2003-05-22T14:00: 462 root 1.0 g

& brick.cob 106036 2003-05-22T14:00:502 root 1.0

2 cob 2003-05-22T14:01:03Z root 1.0

Abbildung 15.3: Screenshot der CKS-Dateiansicht

Neben Grofle, Datum, Besitzer/-in sind besonders die Versionsnummern (Revision) und
der Freigabestatus (Locked) interessant. Wird ein Baustein oder Kurs veréndert, dann erhoht
sich die Versionsnummer, sodass jede Speicherung nachvollzogen und bei Bedarf wieder riick-
gingig gemacht werden kann. Ist ein exklusiver Zugriff auf eine Datei erwiinscht, lasst sie sich
fiir andere Autoren/-innen sperren (angezeigt durch das Vorhéngeschloss). Erst nach einer
expliziten Freigabe steht die Datei wieder fiir alle Berechtigten zur Verfiigung.

Teil IV

Analyse

Kapitel 16

Ausgewihlte Beispiele

In den vorangegangenen Teilen ,Entwurf‘ und ,,Implementierung” wurde ein ganzheitliches
Konzept fiir modulare E-Learning-Inhalte erstellt und umgesetzt. Aufgrund der Detailvielfalt
kann der Blick fiir das Wesentliche verloren gehen, sodass in diesem Kapitel eine Reihe aus-
gewahlter Beispiele die Funktionalitéit verdeutlichen soll. Von der Erstellung von Bausteinen,
iiber die Aggregation zu Kursen bis hin zum Datenaustausch mit anderen Systemen wird
Schritt fiir Schritt die Arbeit in der Praxis gezeigt. Freilich konnen nicht alle Aspekte und
Moglichkeiten abgedeckt werden, aber der gréfite Teil des Systems wird durch die Beispiele
veranschaulicht.

16.1 Erstellung neuer Bausteine

Zur Erstellung von Bausteinen nehmen die Benutzer/-innen die Rolle Developer ein, in der
ihnen alle Funktionen des Autorensystems zur Verfiigung stehen, die sie fiir die Erfiillung ihrer
Aufgabe bendtigen. Es gibt verschiedene Szenarien bei der Tétigkeit, die zu leicht abgewan-
delten Arbeitsschritten fiithren, aber letztendlich sind die Unterschiede nicht so gravierend,
weshalb die Darstellung eines Beispiels in mehreren Schritten ausreichend ist. An dieser Stelle
wird davon ausgegangen, dass die Texte, Bilder und ein Java Applet bereits vorliegen. Die
Erstellung solcher Materialien ist stark von den eingebundenen Programmen abhéngig, die
iitber die Komponente Multimedia Environment aus Abbildung 10.11 angesteuert werden.
Aus diesem Grund sollen die atomaren Dateien als gegeben angesehen werden, damit nicht zu
viel Zeit auf andere Programme verwendet wird.

Als Beispiel soll nun ein Baustein erstellt werden, wie er sich tatséchlich in der Praxis des
Projekts math-kit ergeben hat. Ein Thema unter vielen sind die komplexen Zahlen, die sich
sehr gut als représentatives Beispiel anbieten. Fiir die komplexen Zahlen werden zum einen
sehr allgemeine Bausteine benotigt, die sich sehr flexibel in verschiedene Kontexte einbetten
miissen, und zum anderen aber auch sehr spezielle Bausteine, die nur fiir ein spezielles Thema
geeignet sind. Da die Gruppen des Projekts math-kit in sehr unterschiedlichen Bereichen tétig
sind — hier sind Technische Informatik, Mathematik und Ingenieurwissenschaften zu nennen
— und mit komplexen Zahlen in Beriihrung kommen, lisst sich an ihnen der interdisziplinire
Einsatz und die Wiederverwendung gut demonstrieren.

Zuniichst muss die Idee fiir einen Baustein reifen und es schadet nicht, Uberlegungen zu den
spiteren Einsatzgebieten einflieen zu lassen. An dieser Stelle soll ein einfithrender Baustein
entwickelt werden, der unterschiedliche Darstellungen der komplexen Zahlen verdeutlicht. Weil
das Leitbild von math-kit der multimediale Baukasten ist, soll das Beispiel auch um eine multi-
mediale Komponente bereichert werden. Nach reiflicher Uberlegung ist der Entschluss gefallen,
dieses Vorhaben mit einem Java Applet zu realisieren, denn die geplanten Interaktionen setzen
ein hohes Mafl an Steuerbarkeit voraus. Mit der Unterstiitzung mehrerer Entwickler/-innen
wurde eine Losung erstellt, die der Screenshot in Abbildung 16.1 nur ansatzweise iibermitteln
kann.

174

Ausgewihlte Beispiele

10

[F1/2] Arithmetic Farm
i a= [3.0+ L0 |

b= |-2.0 4105 |

C= |a+h |v|

= 10+ i"L5

‘\\ Ceormetric Form (rounded)
C=a 0

a = 3.16 [cost.1Pl + i*sin(D.1PN]
b = 2.06 [cos(0.92P + i*sin(0.92FN0]
€ = 18 [cos (0.31P1) + isin{0.31P1)]

[FI], [0]

Visualization
polar coardinates

4 Zoom

[(3/2)P1]

[1k

| heip |

Abbildung 16.1: Screenshot des Applets fiir komplexe Zahlen

Nicht nur die reine Umsetzung der Funktionalitét verdient eine explizite Erwéhnung, die
mit Umschaltung von Koordinatensystemen, Zoom-Funktion und unterschiedlichen Rechen-
operationen die verschiedenen Facetten des Themas abdeckt, sondern auch die Anpassungsfi-
higkeit an den einbettenden Kontext. Rahmen, Hilfe, Farben, Zeichensétze, Schriftgréffen und
viele weitere Parameter lassen sich ndmlich von auflen konfigurieren, sodass dasselbe Applet
in unterschiedlichen Ausgaben nicht durch ein einmal festgelegtes AuBeres als Fremdkorper
hervorsticht. Die stérenden Auswirkungen bei fehlender Adaptierbarkeit diirfen nicht unter-
schéitzt werden.

Nach der Entwicklung des Applets wird der Text geschrieben. Das Autorensystem selbst
enthélt keinen eigenen Editor zum Schreiben von Texten oder XML-Dokumenten. Hier gibt es
aber viele freie sowie kommerzielle Programme auf dem Markt, die aus der alltéiglichen Arbeit
bereits bekannt sind und sich fiir diese Aufgabe anbieten. Der Vorteil dieser Vorgehensweise
ist die Freiheit fiir die Anwender/-innen, denn sie nutzen das Werkzeug ihrer Wahl und haben
im idealen Fall keine Einarbeitungszeit. Folgender Ausschnitt des XML-Codes soll eine Idee
des Textes vermitteln:

<?xml version="1.0" encoding="ISO—8859—1" 7>

<tco title="Polar Coordinates, Geometrical Interpretation of Complex Multiplication”
xml:lang = "en”>
<p>

Let

<formula text="true”>

z = a + ib \not= 0

< /formula>

be an arbitrary point in the complex plane. We draw a line from 0 to

<formula text="true”>

12

14

16

18

20

22

24

26

28

30

32

34

36

16.2 Erstellung neuer Kurse

175

z\,

< /formula>
</p>

<p>
Hence, the multiplication of two complex numbers means the
multiplication of the two absolute values and the addition of
the arguments. (The following applet visualises this calculation.)

</p>

<p>
<mmo type="applet”
code="ComplexApplet.class”
archive="complex.jar”
width="800"
height="600">
<param name="showPolar” value="true”>< /param>
<param name="language” value="en”>< /param>
<param name="copyright” value="Copyright 2002”>< /param>
<param name="help” value="help.html”>< /param>

</mmo>
</p>
</tco>

Nach der Erstellung einer Abbildung — wieder mit einem Programm der Wahl — ergeben
das Applet, der XML-Text und die Bilddatei zusammen einen Baustein. Sie werden in ein Con-
tent Package kopiert und anschlieffend bestimmt die Auswahl einer Datei den Einstiegspunkt
des Bausteins. Eine Angabe von Metadaten vervollstindigt den Baustein, sodass er auch in
grofferen Datenbesténden, wie z.B. dem Repository, leicht aufzufinden ist. Die Bildfolge in
Abbildung 16.2 illustriert die einzelnen Arbeitsschritte.

Nach dem Start des Autorensystems 6ffnet sich ein Fenster, das die Workbench auf obers-
ter Ebene und eine leere Arbeitsfliche zeigt (Abbildung 16.2(a)). Durch Driicken des Knopfs
»,Neuer Baustein® in der Werkzeugleiste geht ein Baustein ohne Namen auf. Weil die bené6tigten
Dateien bereits vorliegen, muss lediglich das entsprechende Verzeichnis in der Workbench geoft-
net werden (Abbildung 16.2(b)). Nachdem alle Dateien mit der Maus markiert wurden, lassen
sie sich per Drag’n’Drop in den Dateibereich des Bausteins ziehen. Obwohl die XML-Datei
automatisch als Einstiegspunkt angegeben wird, kann es zu Dateikonstellationen kommen,
bei denen diese Entscheidung nicht einwandfrei getroffen werden kann. Ist die zugewiesene
Datei nicht korrekt, liasst sie sich durch eine Combobor manuell auswéhlen, die alle Dateien
des Bausteins anzeigt (Abbildung 16.2(c)). Nun ist der Baustein grundlegend fertig gestellt,
sollte aber durch die Vergabe von Metadaten erklirt werden (Abbildung 16.2(d)). Wenigstens
die Daten der Kategorie General sind einzugeben, sodass die Suchmaschine des Repositories
den Baustein iiber die Schliisselworter identifizieren kann. Abschlielend wird der Baustein an
einem beliebigen Ort gespeichert, entweder lokal, wenn er z.B. noch nachbereitet werden soll,
oder im Repository, um ihn zentral zur Verfiigung zu stellen.

16.2 Erstellung neuer Kurse

In der Rolle Composer erstellen Benutzer/-innen Kurse aus Bausteinen und anderen Kursen.
Hierbei ist weniger technisches Wissen gefragt, sondern der Blick fiir das Gesamte. Lediglich
das Verstidndnis fiir die Rahmenbedingungen, die einen reibungslosen Einsatz gestatten, darf
vorausgesetzt werden. Um das Beispiel nicht zu iiberfrachten, wird in diesem Abschnitt nicht
weiter auf die Suche in Repositories eingegangen. Im vorherigen Beispiel 16.1 wurde bereits

176 Ausgewihlte Beispiele

EYESa100Y, ISYEEAI0LY,

(a) Initialer Zustand (b) Leerer Baustein

LySSai0ny, EYS5al0.y,

(c) Auswahl der Einstiegsdatei (d) Eingabe der Metadaten

Abbildung 16.2: Erstellung eines Bausteins in vier Momentaufnahmen

16.3 Inhalte publizieren

177

ein Baustein fiir komplexe Zahlen erstellt, der nun mit weiteren Bausteinen zu einem Kurs
zusammengesetzt wird.

Es gibt zwei wesentliche Varianten, einen Kurs zusammenzusetzen, die sich auch kom-
binieren lassen. Bei der ersten werden alle Bausteine auf ein Mal in den Kurs gezogen und
anschliefend zu einer Struktur verkniipft. Dieser Aufbau wird bei der zweiten Variante direkt
gesteuert, indem jeder Baustein einzeln in die Struktur und nicht in den Ressourcenbereich ge-
zogen wird. Besonders bei vielen Bausteinen ist letzteres Vorgehen iibersichtlicher. Abbildung
16.3 verdeutlicht die einzelnen Schritte, wobei die erste Reihe die Variante mit der nachtrag-
lichen Verkniipfung zeigt und die zweite Reihe die direkte.

In dieser Darstellung wurden die ersten Schritte ausgelassen, weil sie denen aus Abbildung
16.2(a) gleichen. Nach dem Start befindet sich das Autorensystem im gewohnten Anfangs-
zustand und eine Betétigung des Knopfs ,Neuer Kurs® 6ffnet einen leeren Kurs. Neben der
Auswahl des Verzeichnisses, das die gewiinschten Bausteine enthilt, wird noch der Titel des
Kurses eingegeben, der in diesem Fall ,Mathematics for Engineers” lautet. Anschlielend wer-
den alle Dateien ausgewé&hlt und per Drag’n’Drop in den Ressourcenbereich gezogen. Nun
kann die Struktur aufgebaut werden, indem iiber das Kontextmenii des Strukturbereichs der
Befehl New Item aufgerufen wird. Befindet sich der Mauszeiger beim Offnen des Meniis auf
einem bereits existierenden Knoten, dann wird ein neuer Unterknoten eingehéngt. Andernfalls
erscheint der Knoten auf oberster Ebene. Abbildung 16.3(a) zeigt den Zustand des Kurses,
nachdem bereits zwei Knoten auf oberster Ebene und ein Unterknoten erstellt wurden. Da das
Kontextmenii auf Hoéhe des Knotens ,,Polar Coordinates“ getffnet ist, wird der neue Knoten
unter diesem erscheinen, wie in Abbildung 16.3(b) zu sehen ist. Die Auswahl der Ressource
erfolgt iiber eine spezielle Combo Box, die eine vollstéindige Liste aller Ressourcen anbietet.
Sobald eine ausgewihlt ist, wird auch der Knoten automatisch benannt. Eine Eingabe von
Metadaten ist selbstverstindlich auch fiir Kurse angeraten, wird aber aus Platzgriinden nicht
in einer Abbildung dargestellt. Wenn auch dieser Schritt abgeschlossen ist, kann der Kurs an
beliebiger Position gespeichert werden.

Abbildung 16.3(c) zeigt die Variante mit dem separaten Einfiigen jedes Bausteins in die
Struktur. Es ist gerade der Baustein Application.lob ausgew&hlt, der mit der Maus auf
den Knoten ,Polar Coordinates* gezogen wird. In Abbildung 16.3(d) ist das Resultat zu se-
hen. Neben dem neuen Unterknoten wurden gleichzeitig Titel und Referenz auf die Ressource
angelegt, sodass mit einer Mausbewegung ein vollstéindiger Knoten entsteht. Da ein Knoten
mehr Eigenschaften besitzt als gleichzeitig in der Baumdarstellung prisentiert werden kénnen,
wird ein zusétzliches Eigenschaftsfenster eingeblendet, in dem sich alle Werte einstellen lassen.
Wenn der Kurs fertig gestellt ist, folgt nach der Metadateneingabe das Speichern.

16.3 Inhalte publizieren

Die Rolle Publisher ist fiir die Ubersetzung von Bausteinen und Kursen in andere Formate,
wie z.B. HTML oder PDF, zusténdig. Fiir diese Tatigkeit stehen verschiedene Werkzeuge zur
Verfiigung, von denen in diesem Beispiel lediglich die Ubersetzungsprozesssteuerung vorge-
stellt wird. Alle wesentlichen Funktionen wurden bereits in Abschnitt 14.5 erldutert, weshalb
sich folgender Text mehr auf die Resultate konzentriert. Zu den anderen Werkzeugen sei noch
gesagt, dass ihre Bedienung relativ komplex ist und sie in der Regel nicht oft eingesetzt wer-
den. Ihr wesentlicher Zweck ist die Erstellung der Transformation Packages (TP), in denen
Java-Klassen, Ubersetzungsregeln und sonstige Ressourcen enthalten sind. Einmal erstellt, was
durchaus viel Arbeit bereiten kann, sollte das TP nach einer kurzen Anpassungszeit nur noch
wenige Anderungen bendtigen.

Welche Auswirkungen ein TP auf das Resultat hat, wird nun anhand drei verschiedener
Beispiele fiir den gleichen Inhalt demonstriert. Bei dem Inhalt handelt es sich um ein Skript
zur Technischen Informatik von Prof. Dr.-Ing. Bérbel Mertsching, das urspriinglich in IATEX
gesetzt und mit Hilfe des Importmechanismus konvertiert wurde. Das erste TP ist im Stil des

178

Ausgewihlte Beispiele

File Options Windows Help

File Options Windows Help

Qg2 s> el @& 28>

] Bricks v | (W@ [@ course_b.cob (moaifiea) FrE E T Bricks ~| [R5] @ course_b.cob mo Fot &
Name 62 course_b.cob (modified) V‘ Nama & course_b.cob [mo v|

T3 complex Title: | for Engineers] (1 complex Titte: [for Engineers |

2 Application. lob
(22 Complex Numbers.lob
"CDI.II’S! Structure

Meta Datay Edi

(2 Exponential Function.lob

2 Application.lob
£ Complex Nurmbers. 1ok
Function.lob

(32 Field of Complex Numbers. | Title

Reference

2 Fundamental Thearem of AL & Complex rumbers

I
(22 Complex Murnbers

Polar C
@ & Ceometrical Inerpretation

(22 Geometrical Interpretation.lob

(2 Imroduction. lob
(22 Palar Coordinates.lol
up

Open Resource

Delete

Down

rical Imerpretation

Used Bricks and Courses

Meta Data
Properties

Resources ﬁ

Resource

Href

(2 Application

(2 Complex Mumiders

G2 Exponential Function

IC22 Field of Complex Numbers

(23 Fundamental Thearem af Algebra,
(22 Geometrical Interpretation

IC22 Introduction

(22 Palar Coordinates

I
Tile:///Application.lob
file: £ FComplexgi2 ONumiers. lab

file: 4§ JExponentialiEz OFunction. lob

file: £ Fiel o2 D0f3%2 OComplexs2 ONumb
file: £ [Fundiamental2 0Theorems200f%,
file: f[Geometrical%2 Glnterpretation. lob
file: £ Intraciuction. lob

file: //Palar¥%2 0Caordinates. lob

(2 Field of Complex Numbers.|
@ Funciamental Theoram of Al
€2 Geometrical Interpretation.lob
(2 Inroduction lob

(3 Palar Coordinates.lob

Meta Data: Edit

| Course Structure

Title

I Reference

@ Complex Nurbers

Polar Coordinates
@ @ Geometrical Interpretation
]

22 Complex Nurnbers

22 Polar Coordinates
Geometrical Interpretation

INOTHING

NOTHING

&2 Complex Numbers

Used Bricks and Courses

Resources i

Function
|22 Field of Complex Numbers
IC22 Fundamental Theorem of Algebra

Resource

(52 Geometrical Interpretation

2 Application

2 Complex Numbers

G2 Exponential Function

22 Field of Complex Mumbers

(2 Geometrical Interpretation
(2 Introduction
() Polar Coordinates

(2 Fundamental Theorem of Algebra

22 Introduction

file: /4 /Complex%2 ONumbers.lob

file: JJ JExponential%2 OFunction. ok

file: 7/ {Field3%2 0032 0 Complex2 ONumb
file: /4 /Fundamentali2 0T hearems:2 Gofk.
file: /4 Geometricatkz0Interpretation.loh
file: /4 {Introduction. lob

file: f{ /Polar¥2 0Coordinates. lob

(a) Hinzufiigen eines neuen Knotens

(b) Auswiihlen der Referenz

File Options Windows Help

File Options Windows Halp

Qlu/g @

@ 2>

e ¥

E

@ 2

8>

(2 Application. lob
22 Complex Numbers.lob

Meta Datay| Edi

(32 Exponential Function. lob [Course Struct

2 Application. ok
<2 Complex Numbers.lob
Function.lob

Title

I Referance

(3 Field of Complex Numbers.|.
IC22 Fundarnental Theorerm of Al
(22 Geometrical Interpretation.lob
(2 Introduction. lob

(22 Palar Coordinates.lob

Complex Numbers
@ & Introduction
@ <2 Field of Complex Numbers
e & Expanential Function

Polar Coorelinates
& & Ceometrical Intarpratation

(3 Complex MNumbers.lob

22 Imroduction.lob

(3 Field of Complex Numbers. lob
3 Expenential Function.lob

(2 Palar Coordinates.loh

(2 Geometrical Interpretation.lob

Used Bricks and C

Resources ﬁ

Resource

I Href

I Complex Mumbers.lob

G2 Polar Coordinates.lob

G2 Introduction. lab

(¢33 Field! of Complex Numbers.lob
22 Expanential Function lob

(22 Geometrical Interpretation. lob

file:/ f/Complex32 ONumkers lob

file: §fPalarsz OCaordinates. lob

file: £ fintraciuction. lob

file: £ Fiel o2 00132 OComplexsz ONumb
file: /f[Exponentiali2 OFunction.lob
file:/f/Geometrical%2 Qlnterpretation lob

|

(c¢) Separates Einfiigen von Bausteinen

(32 Field of Complex humbers.|...
IC2 Funcamental Theorem of Al
IC2 Geometrical Interpretation.lab
(2 Introdluction lob

(3 Polar Coordinates.lob

[Bricks & @@@ Ié course_a.cob 1 Bricks " @@@ Ié course_a.cob [modified]
Name &2 course_a.cob N ‘N & course_a.cob [modified]
T complex Title: | for Engineers | (O] complex Title: [

for Engineers

Course Structure

Complex Mumbers
© @ Imroduction

© @ Field of Complex Numbers
© @ Exponential Function

Polar Coordinates

@ @ Geometrical Interpretation
@ @ Application

Meta Data; Edit |

5 FOPETUESTOTALETT

1D: ltern3

Tite fmogmen
Reference: | Introduction.lob -
— |

Is Visible: [

(& Exponential Function lob
(2 Geometrical Interpretation. lob
2 Application.loh

Used Bricks and Courses [SEERD
Resources |(TFiles’| ph
esources
Max Time: [180

Resource =
' Compler Humbers.lob TL Action: | continue, message -
G2 Polar Coorclinates. ok LMS Data
&2 Introduction.lob Score: 10]

(2 Fleld of Complex Numbers.lob

(d) Bearbeitung der Eigenschaften eines Knotens

Abbildung 16.3: Erstellen eines Kurses in zwei Varianten

16.4 Explorationsumgebung 179

GET Lab-Web-Auftritts gehalten, wodurch sich erstellte Kurse nahtlos in die Site integrieren.
Abbildung 16.4 zeigt einen Screenshot des Ergebnisses mit einer Seite iiber ,,Codes®. Es handelt
sich um HTML-Seiten fiir einen géngigen Web-Server, weshalb auch eine Navigation erzeugt
wurde. Wire der Inhalt fiir ein LMS bestimmt, liee sich dieser zusitzliche Ubersetzungsschritt
selbstversténdlich auslassen.

v, _fafix
File Edit Wiew Go PBookmarks Tools Help
L1 file:///home.../index.html ‘ || file:///home/bu. . iew/index.hitml a8
CENE Technische Informatik
1.1 Codes
.L‘ »Griinde fiir den Einsatz von Codes:
Universitst Faderborn 1. Verkle_\nerung von zu uhertragenderj Datenmenger} (Datenkompression, -reduktion)
Institut EME 2. Adaption an technische Gegebenheiten der Nachrichtenibertragung
. 3. Behandlung von Fehlern, z.B. durch zufallige Veranderungen (fehlererkennende und fehlerkorrigierende Codes)
1 Grundlagen digitaler Systeme 4, Geheimhaltung von Information (Chiffrierung/Dechiffrierung in der Kryptologie)
1.1 Codes 5. Identifikation, Authentifilation
2 Schaltalgebra
3 Schaltnetze : Q\D-‘ 1:“ ,
3.1 Grafische Minimisrung :ﬂ
C
3.1.1 Graphische
Realisierung ~
3.1.2 Minimierung bei
Don't-care-Termen
3.2 Minimierungsverfahren
nach Quine und McCluskey
3.3 Visualisierung des
Quine-McCluskey-Verfahrens
im Kv-Diagram
3.3.1 Eintragen der
Minterme in die
Funktionstabelle
3.3.2 Sortieren der
Minterme nach
Hamming-Gewichten
3.3.3 Verschmelzung von
Termen
3.3.4 Streichung von
Mehrdeutigkeiten
3.3.5
Primimplikantentabelle
rfeld . B
3.3.6 Wirfeldiagramm p
il
4 Synchrone Schaltwerke a2 1]
=] U i d

Abbildung 16.4: Ubersetzungsergebnis im Layout des GET Labs (HTML)

Das zweite Beispiel in Abbildung 16.5 zeigt den gleichen Inhalt, iibersetzt mit dem TP
des Projekts math-kit. Abgesehen von den Farben und den Logos dhnelt die Darstellung dem
ersten Beispiel, wo hingegen die Darstellung in einem anderen Format auch zu einem unter-
schiedlichen Ergebnis fithrt, wie Abbildung 16.5 verdeutlicht. In diesem Screenshot ist der
Inhalt als PDF zu sehen, das mit einem weiteren TP des Projekts math-kit {ibersetzt wurde.
Die sichtbare Navigation wurde im Gegensatz zur HTML-Variante nicht generiert, weil PDF
diese Funktionalitdt automatisch anbietet. Ein wesentlicher Unterschied macht die Platzierung
der Bausteine auf dem Bildschirm aus. Aufgrund der kleineren Darstellung werden bei PDF
mehrere Bausteine auf eine Seite gesetzt. Weil HTML hauptséichlich fiir die Bildschirmdarstel-
lung genutzt wird, darf mit dem Platz grofiziigiger umgegangen werden. Jeder Baustein wird
zu einer HTML-Seite umgewandelt, die sich bei Bedarf vertikal scrollen l4sst.

16.4 Explorationsumgebung

Die in dieser Arbeit vorgestellte Infrastruktur fiir modulare E-Learning-Inhalte unterstiitzt
eine Vielzahl verschiedener Lernparadigmen. In diesem Beispiel soll nun aus Sicht der Rolle
Student die Arbeit mit einer Explorationsumgebung verdeutlicht werden, einem wesentlichen
Konzept im Projekt math-kit. Eine Explorationsumgebung dient in erster Linie zur prakti-
schen Vertiefung von bereits angeeignetem Wissen, also z.B. als Ergdnzung zu einer Vorlesung.

180

Ausgewihlte Beispiele

- MBZi e Eirefox S
File Edit Wiew Go PBookmarks Tools Help
|| file: ///home/bu. . .iew/index.html LI file:///home.../index.html B

Technische Informatik

1 Grundlagen digitaler Systeme
1.1 Codes

2 Schaltalgebra

3 Schaltnetze
3.1 Grafische Minimierung

3.1.1 Graphische
Realisierun

3.1.2 Minimierung bei
Don't-care-Termen

3.2 Minimierungsverfahren
nach Quine und McCluskey

3.3 Visualisierung des
Quine-McCluskey-\erfahrens
im KV-Diagram

3.3.1 Eintragen der
Minterme in die
Funktionstabelle

3.3.2 Sortieren der
Minterme nach
Hamming-Gewichten

3.3.3 Verschmelzung von
Termen

3.3.4 Streichung von
Mehrdeutigkeiten

ZELE
Primimplikantentabelle

3.3.6 Wirfeldiagramm
4 Synchrane Schaltwerke

Griinde fiir den Einsatz von Codes:

1.1 Codes

1. Verkleinerung von zu Ubertragenden Datenmengen (Datenkompression, -reduktion)

\8)

. Adaption an technische Gegebenheiten der Machrichtentibertragung

3. Behandlung von Fehlern, z.B. durch zufillige Veranderungen (fehlererkennende und

fehlerkorrigierende Codes)
4. Geheimhaltung von Information (Chiffrierung/Dechiffrierung in der Kryptologie)
5. Identifikation, Authentifikation

l'w

B

. <
°\'i]
N

nﬁf

iz

ﬁ?

fﬁﬂf\o irjrwﬂw%u
ﬁm §°Nﬁ

Abbildung 1.1:In der Seefahrt noch gebrduchlicher Code der Winkersignale [aus Bauer, Goos 1991]

E@ T

5 Entwurf ! !
infarmationsverarbeitender "l|||mf|
Systeme i

= — =l
= _J=fx
File Edit Document Yiew Hindow Help

Bonkmarks

| Thumbnaits

[EESaE|wer v o0 E-E|ehm -e(0DHH-|M

Thumbnaile

1 Grundlagen digitaler Systeme

1.1 Codes
Grinde fiir den Einsatz von Codes:

1 Verkleinerung von 7zu iberiragenden Datenmengen
(Datenkompression, -reduktion)

Adaption an ftechnische
Nachrichteniibertragung

Gegebenheilen der

3 Behandung von Fehlem, zB. duwch zufillige
Verinderungen (fehlererkennende und
fehlerkorrigierende Codes)

4 Geheimhaltung Information
(Chiffiierung/ Deﬂnffnanmﬂ in del Kryptologie)

5 Identifikation, Authentifikation

wﬁ*ayfr$@a
?%fﬁ%ﬁJ

%«JM‘LT& {m. %r“

Ahh 1.1: In der Seefahrt nnrll gebriiuchlicher Code
der Winkersignale [aus Bauer, Goos 1991]

Saile |

Technische Informatik

LK

el gin mmmem [Jued
Abb. 1.2: Der internationale Flaggencode in der Fassung
von 1934, Bei der Schwarz-Weib-Darstellung des Flaggencodes
wurde der internationale Schraffur-Code der
Heraldiker fir Farben verwendet [aus Bauer, Goos 1991]

Ak Hocsl Oucar Vit
Buo india Fana Whitkey |
s Juleric Yoo X Riy H
Fira il Bomes Virien i
Ectr Fama Siera Zuky
Foinl Mike “Tanga :

| et Noveniter Lsisorn

Abb. 1.3: Internationales Buchstabieralphabet fiir
Sprechfunk [aus Bauer, Goos 1991]

e & we es e s we s. e e
. ST T e el se as a. es
4 & & B B P G M 1 1
Abb. 1.4: Elnige Zellen der Braille-Schrift
[aus Bauer, Goos 1991]

Braille-Demaonstrator

[—57 L]

) e <[10f13 r M

Abbildung 16.6: Ubersetzungsergebnis im Layout von math-kit (PDF)

826x1163in (B e ol] =

16.4 Explorationsumgebung

181

Benutzer/-innen in der Rolle Student kénnen auf diese Weise im Selbststudium ihren aktuellen
Wissensstand tiberpriifen und erweitern. Die zugrundeliegende Lerntheorie fiir Explorations-
umgebungen ist der Konstruktivismus (siche Abschnitt 2.2.3).

In diesem Beispiel sollen die bereits verwendeten komplexen Zahlen als Anschauungsobjekt
dienen. Eine Explorationsumgebung beginnt zunichst mit einem theoretischen Teil, der das
notige Grundwissen vermittelt. Abbildung 16.7 zeigt den Unterabschnitt ,,Geometrische Inter-
pretation der komplexen Zahlen“ des Abschnitts ,,Gaufische Zahlenebene®. Sollten die theoreti-
schen Grundlagen bereits vorhanden sein, kann auch direkt zum Explorationsteil {ibergegangen
werden. Abbildung 16.8 zeigt ein Applet zum Rechnen mit komplexen Zahlen im kartesischen
Koordinatensystem. Nach der konstruktivistischen Sichtweise gibt der Explorationsteil keine
starre Aufgabe oder Ausfiihrungsfolge vor, sondern erlaubt der Rolle Student eine individuelle
Erfahrung. In diesem Beispiel erlaubt das Applet, verschiedene Operationen mit komplexen
Zahlen interaktiv durchzufithren. Um den Transfer des neu erlangten Wissens in die Praxis
ein wenig zu vereinfachen, folgt ein Anwendungsteil mit spezifischen Beispielen.

Viel wichtiger als dieser Praxisbezug ist jedoch der Ubungsteil, der den aktuellen Lernfort-
schritt wiedergibt. Ohne diese Uberpriifung kann die eigene Leistung der Rolle Student nur
schwer eingeschétzt werden. Noch gravierender wirken sich falsche Riickschliisse oder Miss-
verstandnisse aus, die sich vielleicht aus dem Explorationsteil ergeben. Um ihnen entgegen zu
wirken, sollten die Ubungen das gesamte Spektrum einer Explorationsumgebung abdecken.
In welcher Form dies genau geschieht, ist dabei von geringer Wichtigkeit. Mit dem Autoren-
system Lyssa lassen sich z.B. Quiz, Puzzles und Multiple-Choice-Aufgaben ohne Aufwand
integrieren. In Abbildung 16.9 ist z.B. eine Ubung zur Umwandlung der Darstellungsarten
zu sehen, die mit der eigenen Auszeichnungssprache des Projekts math-kit erstellt wurde
[Baudry03; Baudry04b)].

) @ Mozilla Firefox

[
fiv
OIZ

File Edit Wiew Go Bookmarks Tools Help
L] file;// /cdro...w/index.html |._,(Unt\tled) | (%]

1 Mativation

2 Theore Geometrische Interpretation der
2.1 Definitionen komplexen Zahlen

2.2 Eigenschaften

sche Zahlenebens Fasst man den Real- und Imaginérteil einer komplexen Zahl z =z +1y als kartesische

Koordinaten eines Punktes P der (x.y)-Ebene auf, so Iésst sich jeder komplexen Zahl
genau ein Bildpunkt P(z) = (x,y) zuordnen und umgekehrt. Die Menge der komplexen
Zahlen wird somit geometrisch als 2-dimensionale Ebene (komplexe Ebene oder
Gaufische Zahlenebene) interpretiert.

2.4 Eulersche Formel und
Polarkoodinaten

2.5 Rechenregeln

251 kart. Koardinaten —

Iy
2.5.2 Polarkoordinaten

2.6 Potenzen und Wurzeln z=x+ly

2.6.1 Beispiel 7%6=1 24

2.6.2 Beispiel. z3=-27i Imiz) = |z| sin{g)

3 Exploration

3.1 Applet (karteslsches ol Ret@) = |2l cosle) X
Koordinatensystem 1 3 7 H B 4 5 [7 g

3.1.1 Ubungsaufgaben

3.2 Applet (mit
Polarkoordinaten

3.2.1 Ubungsaufgaben

4 Anwendungsbeispiele By Z=x-i W

4.1 Harmanische
Schwingungen

4.1.1 Graphische

Betrachtung Abbildung 2.4: GauBsche Zahlenebene
4.1.2 Experimentelle ‘) . «] ’
Ratrarhtonn = Durch eine solche geometrische Perspektive k&nnen weitere Eigenschaften wvon =

Abbildung 16.7: Theorieteil

182

Ausgewihlte Beispiele

) @ Mozilla Firefox

File Edit View Go Bookmarks Tools Help

»
OIZ

| file:// /cdro...w/index.html ‘,_, (Untitled)

1 Motivation
2 Thearie
2.1 Definitionen
2.2 Eigenschaften
2.3 GauRsche Zahlenebene

2.4 Eulersche Formel und
Polarkoodinaten

2.5 Rechenregeln
2.5.1 kart. Koordinaten
2.5.2 Polarkoordinaten
2.6 Potenzen und Wurzein
2.6.1 Beispiel: z*6=1
2.6.2 Beispiel. 2°3=-27i
3 Exploration

ppiet (iartesischesy
Koardinatensystem?

3.1.1 Ubungsaufgaben

3.2 Applet (mit
Polarkoordinaten

3.2.1 Ubungsaufgaben
4 Anwendungsbeispiele

4.1 Harmanische
Schwingungen

4.1.1 Graphische
Betrachtun

4.1.2 Experimentelle

Ratrachtiinn

Rechnen mit komplexen Zahlen (Kartesische

Koordinaten)

c=a+b

Arithmetische Form

a= 3.0+i"lo
= [-2.0+ *05
c= |a+h i

= 10+ i*1L5

~Visualis ierung

[E—

= @ Mozilla Firefox

Abbildung 16.8: Explorationsteil

File Edit Wiew Go Bookmarks Tools Help

o
o

[x

| file:// /cdro...w/index.html ‘,_, (Untitled)

5112 Teil 12

5.2 Betragshbildung
521 Teil 1
.22 Teil 2

5.3 Einheitswurzeln
5.3.1 Teil 1
5.3.2 Teil 2

5.4 Darstellungsarten
54.1 Teil 1
542 Teil 2
543 Teil 3
544 Teil4
545 Teil 5
5456 Tel 6
547 Tel 7’
5A8 Teil 8
549 Teil 9

5.5 Ubungstool

6 Erganzungen
6.1 Histarisches
6.2 Links
7 MUPAD Ecke

7.1 Nutzung von MUPAD

Ubungen zur Umwandlung der

Darstellungsarten

Berechnen Sie die kartesisi

L)t
C (L4 +} -V
(L 4a)+e(d - V)
C (R +4)+o-V3)
z=(1+1)e(1-1)

®
LA

che Darstellung.

Auswerten I

Loesen

Abbildung 16.9: Ubungsteil

Kapitel 17

Zusammenfassung und Bewertung

Das Ziel dieser Arbeit ist, Entwurf, Implementation und Einsatz eines ganzheitlichen Kon-
zepts fiir modulare E-Learning-Inhalte zu realisieren. Der vorgegebenen Systematik folgend
wurden im ersten Teil der Stand der Wissenschaft wiedergegeben und die aktuellen Grenzen
aufgezeigt. Als besondere Herausforderung stellte sich die vorherrschende Betrachtung von
Einzelproblemen in der wissenschaftlichen Gemeinschaft heraus. Keine der Arbeiten deckt
das gesamte Spektrum dieses Gebietes ab, sondern betrachtet Details, die fiir sich genommen
wichtig sind, sich als Teil eines Ganzen jedoch in der Praxis anders verhalten. So galt es, die
einzelnen Theorien, Definitionen sowie Umsetzungen zu kombinieren und um neue Ideen bzw.
eine erweiterte Sicht anzureichern. Dass dieses Unterfangen nicht einfach wird, zeichnete sich
bereits in Kapitel 3 iiber die Lernobjekte ab. Viele Definitionen, die teilweise &hnlich und doch
wieder sehr verschieden sind, zeigten, wie unterschiedlich die Ansichten und Bediirfnisse sind.
Auch in dieser Arbeit wird die Problemstellung aus einem eigenen Blickwinkel betrachtet.
Herausgekommen ist deshalb eine Losung, die stark technisch angelegt ist, aber durch ihre
generische Struktur keine Barrieren fiir unterschiedliche didaktische Konzepte aufstellt.

Mit den erworbenen Erkenntnissen wurde in Kapitel 10 eine Vision fiir das angestrebte
System entwickelt. Ein besonderes Augenmerk lag auf der genauen Feststellung des Bedarfs
der spéteren Benutzer/-innen, indem iiber Rollen die einzelnen Tétigkeiten gruppiert wurden.
Einerseits lassen sich durch diese Abgrenzungen die einzelnen Anwendungsfille leichter finden
und vervollstéindigen, andererseits wird ein modularer Aufbau des spéteren Systems gefordert.
Jede Tiétigkeit ldsst sich ndmlich wieder einer bestimmten Anzahl von Komponenten zuordnen,
die fiir sich einen abgeschlossenen Funktionsumfang besitzen. Hierdurch lassen sich einzelne
Teile des Systems auch in anderen Kontexten einsetzen, was die Wiederverwendbarkeit des
Systems erhoht. Aus diesem Grund muss nicht die gesamte Anwendung installiert und kon-
figuriert werden, nur weil eine bestimmte Funktionalitdt benotigt wird. Die Abhéngigkeiten
der Komponenten untereinander sind durch den umfangreichen Entwurf auf ein Minimum
reduziert.

Fiir ein besseres Verstdndnis wurde zusétzlich die Metapher ,,Baukasten“ eingefiihrt, die
weitere Begriffe wie z.B. den Baustein implizierte. Diese zusétzlich im Entwurf eingezoge-
ne Ebene gibt Entwicklern/-innen wie Benutzern/-innen eine vereinfachte Ansicht auf das
komplexe System, indem sie Assoziationen und eine gewisse Vertrautheit hervorruft. Anstatt
technische Details zu betonen, werden die wesentlichen Eigenschaften des Systems in den
Vordergrund gestellt: Bausteine lassen sich vielféltig und ,kinderleicht“ kombinieren. Die Me-
tapher wirkte sich nicht nur auf das User Interface (UI) aus. Jede einzelne Komponente, sei
sie noch so klein oder allgemein, wurde speziell auf dieses Prinzip ausgelegt, sodass sich ein
konsistenter Entwurf ergab, der ohne Hilfskonstruktion auskommt.

Der Entwurf der einzelnen Komponenten gestaltet sich orthogonal, indem neue Kompo-
nenten die bestehenden fiir ihre Aufgaben nutzen. Auf unterster Ebene befinden sich die Basis-
komponenten aus Kapitel 11, die auf den ersten Blick wenig mit E-Learning zu tun haben. Sie

184

Zusammenfassung und Bewertung

bereiteten jedoch den Weg fiir die eigentlich genutzten Komponenten, indem sie den techni-
schen Zugriff auf Dateien und externe Anwendungen abstrahieren. Erst durch die vereinfachte
Sicht auf die Inhalte der Bausteine und Kurse war es moglich, die komplexen Konvertierungs-
und Integrationsfunktionen in der Form anzubieten. In Kapitel 12 wurde gezeigt, wie sich
die Basiskomponenten mit vorherrschenden Standards sowie Metaphern zu einer vielseitigen
Komponente fiir modulare E-Learning-Inhalte vereinen lassen. Diese Komponente fiir Baustei-
ne und Kurse bietet sich an, auch auflerhalb dieser Arbeit in anderen Projekten verwendet zu
werden. Unabhéngig von den eingesetzten Metaphern — es handelt sich um eine austauschbare
Schicht —, erlaubt sie die Erstellung, Wartung und Nutzung standardkompatibler Lernobjek-
te. Sollte in einem Projekt die Auffassung vorherrschen, z.B. lieber Wileys Atom-Metapher
aus Abschnitt 3.2.3 einzusetzen, ist der Aufwand fiir die Anpassung der Schnittstelle gering.

Zusammen mit den anderen Komponenten fiir den Import von Inhalten, der Suche und
der Ubersetzung in andere Formate ergab sich ein vollstindiges Rahmenwerk in Kapitel 13.
Es wurden die Bereiche Erstellung von Inhalten, ihre Komposition und die Konvertierung ab-
gedeckt, auf denen Komponenten zur Darstellung sowie Steuerung aufsetzen. Hierdurch war
der funktionale Grundstein gelegt, um die angestrebte Umgebung fiir modulare E-Learning-
Inhalte im vollen Umfang zu realisieren. Die mit den Benutzern/-innen kommunizierenden
Komponenten kénnen beliebig nach eigenen didaktischen Gesichtspunkten gestaltet werden,
weil das Rahmenwerk hieriiber keine Vorgaben macht. Auch technische Entscheidungen, ob
das System z.B. verteilt mit vielen Autoren/-innen arbeiten soll oder doch als Einzelplatzan-
wendung realisiert wird, sind noch offen. Dank der Skalierbarkeit des Rahmenwerks, kénnen
auch wesentlich kleinere oder spezialisierte Losungen umgesetzt werden, als sie hier angedacht
sind. Es stehen alle Moglichkeiten offen.

Fiir das gesetzte Ziel musste auch eine konkrete Implementierung umgesetzt werden, die
sich in der Praxis bew#hrt. Die Systemvision in Abbildung 10.23 gibt genau vor, dass die
Entwicklungsumgebung fiir modulare E-Learning-Inhalte aus einem zentralen Repository be-
steht, auf das die Autoren/-innen mit einem Werkzeug zugreifen. Angelehnt an die gewéihlte
Metapher Baukasten, wird in Kapitel 14 das Autorenwerkzeug umgesetzt. Der Fokus lag hier-
bei auf einer einfachen wie flexiblen Anwendung, bei der mit wenigen Arbeitsschritten die
gewiinschten Ergebnisse erzielt werden. Wenn immer méglich, wurden grafische Komponen-
ten herausgearbeitet, wie z.B. die Dateiansicht, die in vielen Kontexten ihren Einsatz finden.
Hierdurch wird die ohnehin kurze Einarbeitungszeit reduziert. Auch beim Autorenwerkzeug
soll die Skalierbarkeit betont werden, denn durch den Zugriff iiber die Workbench kann das
Programm als Einzelplatzlosung oder als Teil einer verteilten Anwendung betrieben werden.

Das Repository in Kapitel 15 setzt sich grofitenteils aus fertigen Servern und Libraries
zusammen, die aber entsprechend konfiguriert und angepasst wurden. Auch bei dieser Auf-
gabe kam der Komponentenentwurf entgegen, weil sich die benttigte Funktionalitdt einfach
integrieren lie3. Der Entwicklungsaufwand war relativ gering und das Ergebnis iiberzeugend.
Eine Reihe verschiedener Protokolle sowie Mechanismen ermoglichen nun den Zugriff auch von
anderen Programmen, die nicht in dieser Arbeit entwickelt wurden. Wenn nun z.B. ein anderes
Autorenwerkzeug genutzt wird, das standardkompatibel ist und WebDAV unterstiitzt, kann
es auf das Repository zugreifen.

In Anbetracht der Zielsetzung aus Abschnitt 1.2 und ihrer Verfeinerung aus Abschnitt
9.1 wurde in dieser Arbeit eine adidquate Losung herausgearbeitet, die teilweise sogar iiber
die Anspriiche hinausgeht. Dank der Skalierbarkeit des gesamten Systems kénnen nicht nur
grofle Infrastrukturen fiir modulare E-Learning-Inhalte aufgebaut werden. Je nach Belieben
konnen einzelne Komponenten entnommen werden, die sich aufgrund ihrer Standardkompa-
tibilitdt mit Systemen gleicher Ausrichtung wirkungsvoll integrieren lassen. Mit dieser Arbeit
ist es gelungen, das differente Feld der Lernobjekte von der Theorie bis zur Implementierung
zusammenzufassen und ein ganzheitliches Konzept zu liefern.

Kapitel 18

Ausblick

In dieser Arbeit haben sich neben den behandelten Fragestellungen viele weitere interessante
Themen aufgetan, die nicht weiter behandelt werden konnten. Griinde hierfiir sind zum einen
der zu grofle Umfang, den eine gerecht werdende Diskussion einnehmen wiirde, oder der spéte
Zeitpunkt des Auftretens, der eine direkte Beriicksichtigung unmdoglich machte. In diesem
Kapitel nun sollen diese Themen wenigstens angesprochen werden, um ihre wissenschaftliche
Behandlung in anderen Arbeiten anzuregen.

Viele in der Arbeit vorgestellten Standards unterliegen einer stetigen Weiterentwicklung.
Ein besonders wichtiger im Zusammenhang mit modularen E-Learning-Inhalten ist SCORM
(siche Abschnitt 3.6), der mittlerweile SCORM 2004 [Dodd04a; Dodd04b; Dodd04c] heifit und
neben einigen Verbesserungen auch neue Aspekte behandelt. So wird die Sequenzierung von In-
halten (siehe Abschnitt 3.4) nun ausfiihrlich in einem eigenen Dokument behandelt [Dodd04c].
All diese Neuerungen sollten in einer néchsten Version des entwickelten Rahmenwerks einflie-
Ben, um die Standardkompatibilitét auch fiir neue SCORM-Lernobjekte zu garantieren.

Einige Standards haben keinen Einfluss auf diese Arbeit gefunden, weil sie zum Zeitpunkt
der Entwicklung noch nicht die nétige Reife erlangt hatten. Hierzu gehort das IMS Digital
Repositories Interoperability [IMS03a], das andere Standards wie z.B. IMS Meta-Data und
IMS Content Packaging nutzt, um ein digitales Repository fiir Lernobjekte aufzubauen. Im
Grunde genommen werden in diesem Standard die formalen Rahmenbedingungen festgelegt,
wie sie im Entwurf des Repositories dieser Arbeit (siehe Kapitel 15) befolgt werden. Da auch
hier die Einhaltung der Standards einen wesentlichen Punkt ausmachte, sollte es ein leichtes
sein, durch leichte Modifikationen ein fiir diesen Standard kompatibles Repository zu erzeugen.

Ein anderes Themengebiet, das in dieser Arbeit nicht wesentlich behandelt wurde, sind
die Moglichkeiten bei der inhaltlichen Gestaltung von Lernobjekten. Neben den Formaten zur
Kodierung der Inhalte (sieche Abschnitt 3.7) und den Metadaten (siche Kapitel 4), gibt es
Standards fiir das Verhalten von Lernobjekten zur Laufzeit. Da wiren zum einen Quiz, mit
denen die Studierenden z.B. ihren Wissensstand selbst iiberpriifen oder Leistungsnachweise er-
bringen koénnten. Grundlage fiir den Einsatz in modularen E-Learning-Inhalten wéren freilich
Standards, wie z.B. IMS Question and Test Interoperability [IMS04b], die vom Autorensys-
tem und von der Lernplattform korrekt verarbeitet werden. Zu den ergénzenden Verfahren
gehort auch das Sammeln von Daten iiber die Studierenden, die z.B. nach einem Standard wie
dem IMS Learner Information Package [IMS05] in der Lernplattform oder dem Repository
gespeichert werden.

Den Urhebern/-innen digitaler Inhalte gereichen die eigentlich positiven Eigenschaften des
Internets oft zum Nachteil. Uber das Internet konnen Lernobjekte ubiquitér verbreitet wer-
den und eine Kopie ist so gut wie das Original. Diese Verteilung ldsst sich ohne geeignete
Mittel nicht kontrollieren, sodass gewollt oder ungewollt die Urheberrechte schnell verletzt
sind. Denn sobald Lizenzgebiihren mit dem geistigen Eigentum verbunden sind, reichen ein-
fache Copyright-Vermerke in den Metadaten nicht aus. Das zeigt sich eindeutig an der Be-

186

Ausblick

liebtheit freier P2P-Netzwerke (Peer-to-Peer), in denen vorwiegend Raubkopien gehandelt
werden. Es miissen technische Vorkehrungen getroffen werden, mit denen die Verbreitung
und Nutzung kontrolliert wird. Der dahinter stehende Mechanismus nennt sich Digital Rights
Management (DRM) [Downes03; Iannella01] und wird in anderen Medienbereichen, wie z.B.
Handy-Klingeltone, Musikstiicke oder Videos bereits kommerziell genutzt. Inhalte werden ver-
schliisselt iibertragen und kénnen nur mit spezieller Software oder Hardware in das urspriing-
liche Format {ibertragen werden. Voraussetzung hierfiir ist eine giiltige Lizenz.

Auf dem Gebiet der Lernobjekte hat diese Technik in der Praxis noch keinen Einzug
gefunden und auch die Standardisierung ist nicht weit fortgeschritten. Hier gibt es noch For-
schungsgebiete, die wissenschaftlich erschlossen werden miissen, um sie in das Rahmenwerk
dieser Arbeit zu integrieren. Auf jeden Fall ist DRM fiir die kommerzielle Nutzung von modu-
laren E-Learning-Inhalten ein wichtiges Thema, das zukiinftige Systeme anbieten sollten. Ein
Beispiel fiir ein einfaches DRM-Rahmenwerk fiir Lernobjekte ist z.B. in [Santos04] zu finden.

Ein anderes interessantes Thema im Zusammenhang mit Lernobjekten ist die Einfithrung
semantischer Ontologien, um Dokumente untereinander zu verkniipfen [Krieg-Briickner04].
Dies koénnte ein Schliissel in Richtung personalisiertes Lernen sein, bei dem Lernende ihr ei-
genes Wissen mit genau auf ihre Bediirfnisse angepassten Lernmaterialien aufbauen. Jeder
Mensch bringt beim Lernen andere Voraussetzungen mit, denen mit individuellen, angepass-
ten Lernpfaden [Farrell04; Atif03] begegnet werden soll. Hierfiir muss das System Annahmen
treffen, die auf Daten iiber die Lernenden, z.B. durch automatische Tests oder Bewertungen
durch Lehrende, und den Metadaten der Lernobjekte beruhen. Auch auf diesem Gebiet gibt es
zur Zeit mehr Fragen als Antworten, die von der Wissenschaft erst noch beantwortet werden
miissen. Erste Ansitze gibt es z.B. in [Dolog04; Brusilovsky04]. Andere Systeme versuchen
einen einfacheren Weg einzuschlagen, indem sie Empfehlungen fiir einzelne Lernobjekte geben
[Rashid02]. Das Rahmenwerk dieser Arbeit sollte um entsprechende Algorithmen fiir perso-
nalisiertes Lernen erweitert werden, sobald die Forschung einen akzeptablen Stand erreicht
hat.

Fiir das Problem des Auffindens geeigneter Lernobjekte gibt es auch andere Vorschlige,
die nicht auf direkte Automatisierung setzen. Menschen kénnen besser abschéitzen, was sich
hinter einem bestimmten Lernobjekt verbirgt, welche Voraussetzungen fiir einen erfolgreichen
Einsatz notwendig sind und wie sie sich mit anderen Lernobjekten kombinieren lassen. Die
Daten hieriiber werden an einer zentralen Stelle gespeichert und anderen Interessierten zur
Verfiigung gestellt. Solch ein Bewertungssystem fiir Lernobjekte bietet z.B. das Learning Ob-
ject Review Instrument' (LORI) an [Leacock04; Nesbit04]. Eine Uberlegung fiir die zukiinftige
Entwicklung des Rahmenwerks ist die Integration eines Bewertungssystems in das Rahmen-
werk, um es an verschiedenen Stellen, z.B. direkt im Autorensystem oder im Repository, zur
Verfiigung zu stellen.

"http://www.eLera.net (29.10.05)

http://www.eLera.net

Literaturverzeichnis

[Ahronheim98]

[Aliprand03]

[Ammelburger03]

[Aristoteles82]

[Atif03]

[Atkinson69]

[Baker00]

[Baker01]

[Baker03]

[Balbieris02]

[Balzert00]

[Bauch03]

[Baudry02al

Judith R. Ahronheim: Descriptive metadata: Emerging standards. In:
Journal of Academic Librarianship, 24(5), 1998, pp. 395-403.

Joan Aliprand, Julie Allen and Ken Whistler (eds.): The Unicode Standard
Version 4.0. Addison Wesley, 2003.

Dirk Ammelburger: XML. Hanser Fachbuchverlag, 2003.

Aristoteles: Poetik, griechisch-deutsch. Ubersetzt von Manfred Fuhrmann,
Reclam, 1982.

Yacine Atif, Rachid Benlamri and Jawad Berri: Learning objects based
framework for self-adaptive learning. In: Fducation and Information Tech-
nologies, 8(4), 2003.

Richard C. Atkinson and H. A. Wilson (eds.): Computer-assisted instruc-
tion: a book of readings. Academic Press, 19609.

Thomas Baker: A grammar of dublin core. In: D-Lib Magazine, 6(10),
2000.

Thomas Baker, Makx Dekkers, Rachel Heery, Manjula Patel and Gau-
ri Salokhe: What terms does your metadata use? application profiles as

machine-understandable narratives. In: Journal of Digital Information,
2(2), 2001.

Thomas Baker, Thomas Baker, Dan Brickley, Erik Duval, Erik Duval, Pete
Johnston, Pete Johnston, Heike Neuroth and Heike Neuroth: Principles of
metadata registries. Technical report, DELOS Working Group on Regis-
tries, 2003.

Giedrius Balbieris and Vytautas Reklaitis: Reshaping e-learning content to
meet the standards. In: Informatics in Education, 1(1), 2002, pp. 5-16.

Helmut Balzert: Lehrbuch der Software-Technik. Spektrum Akademischer
Verlag, 2000.

Manfred Bauch and Luise Unger: Interactive mathematics with math-kit —
distance learning versus face-to-face learning. In: Proc. 21st ICDE World
Conference on Open Learning € Distance Education, 2003.

A. Baudry, M. Bungenstock and B. Mertsching: Architecture of an e-
learning system with embedded authoring support. In: Margaret Driscoli
and Thomas C. Reeves (eds.): E-LEARN 2002-World Conference on E-
Learning in Corp., Govt., Health., & Higher Ed., 2002, pp. 110-116.

188

LITERATURVERZEICHNIS

[Baudry02b)]

[Baudry03]

[Baudry04al

[Baudry04b)]

[Baumgartner97]

[Baumgartner99]

[Baumgartner(02a]

[Baumgartner02b]

[Bearman99]

[Beckett03]

[Belqamsi02]

[Bentley95]

[Berners-Lee94]

[Berners-Lee98|

[Binstock02]

A. Baudry, M. Bungenstock and B. Mertsching: Ein multimediales Rah-
menwerk fiir die Mathematiklehre nach der Baukastenmetapher. In:
Klaus P. Jantke, Wolfgang S. Wittig and Jérg Herrmann (eds.): Von e-
Learning bis e-Payment. Das Internet als sicherer Marktplatz (LIT ’02).
Infix, 2002, pp. 300-307.

A. Baudry, M. Bungenstock and B. Mertsching: Nyx - a tool for generating
standard compatible e-learning courses with consistent and adaptable pre-
sentation. In: The TASTED International Conference on Computers and
Advanced Technology in Education (CATE 2003), 2003, pp. 265-269.

A. Baudry, M. Bungenstock and B. Mertsching: Administration and deve-
lopment of modular learning units with the construction kit server. In:
Proc. ED-MEDIA 200/-World Conference on FEducational Multimedia,
Hypermedia & Telecommunications, 2004.

A. Baudry, M. Bungenstock and B. Mertsching: Reusing document formats
for modular course development. In: TASTED International Conference on
WEB-BASED EDUCATION (WBE 2004), 2004, pp. 535-537.

Peter Baumgartner and Sabine Payr: Konstruktivismus und Kognitions-
wissenschaft. Kulturelle Wurzeln und Ergebnisse, chapter Erfinden lernen,
pp- S. 89-106. Springer, 1997.

Peter Baumgartner and Sabine Payr: Lernen mit Software. Studienverlag
Ges. mbH, 1999. ISBN:3706514443.

Peter Baumgartner, Hartmut Héfele and Kornelia Maier-Héfele: F-
Learning Praxishandbuch, Auswahl von Lernplattformen. Studien Verlag,
2002.

Peter Baumgartner, Kornelia Héfele and Hartmut Hiéfele: E-Learning: Di-
daktische und technische Grundlagen. In: CD Austria, 5, pp. 4-32.

David Bearman, Godfrey Rust, Stuart Weibel, Eric Miller and Jennifer
Trant: A common model to support interoperable metadata. In: D-Lib
Magazine, 5(1), 1999.

Dave Beckett. Rdf/xml syntax specification (revised), December 2003.

Youssef Belqamsi: Using XML in elearning courses. In: E-LEARN 2002-
World Conference on E-Learning in Corp., Govt., Health., & Higher Ed.,
2002, pp. 1183-1186.

Richard Bentley, Thilo Horstmann, Klaas Sikkel and Jonathan Trevor: Sup-
porting collaborative information sharing with the world wide web: The
bscw shared workspace system. In: The World Wide Web Journal: Procee-
dings of the 4th International WWW Conference, pp. 63-74.

T. Berners-Lee, L. Masinter and M. McCahill: Uniform Resource Locators
(URL). RFC 1738, Internet Engineering Task Force, December 1994.

T. Berners-Lee, R. Fielding, U.C. Irvine and L. Masinter: Uniform Resource
Identifiers (URI). RFC 2396, Internet Engineering Task Force, August
1998.

Cliff Binstock, David Peterson and Mitchell Smith: The XML Schema
Complete Reference. Addison-Wesley, 2002.

LITERATURVERZEICHNIS

189

[Biron01]

[Black62]

[Blanchi01]

[Bodendorf90]

[Bodoff04]

[Bourret99]

[Britain00]

[Bro91]

[Brusilovsky04]

[Bungenstock02]

[Bungenstock03a]

[Bungenstock03b]

[Bungenstock04a]

[Bungenstock04b]

[Busch9g]

[Biichmann94|

Paul V. Biron and Ashok Malhotra. Xml schema part 2: Datatypes, May
2001.

Max Black: Models and Metaphorsr. Studies in language and Philosophy.
Cornell University Press, 1962.

Christophe Blanchi and Jason Petrone: Distributed interoperable metadata
registry. In: D-Lib Magazine, 7(12), 2001.

Freimut Bodendorf: Computer in der fachlichen und universitiren Ausbil-
dung. Oldenbourg, 1990.

Stephanie Bodoff, Eric Armstrong, Jennifer Ball and Debbie Bode Carson:
The J2EE Tutorial, Second Edition. Addison Wesley, 2004.

Ronald Bourret, Christof Bornhévd and Alejandro P. Buchmann: A generic
load /extract utility for data transfer between xml documents and relational
databases. Technical Report DVS99-1, Department of Computer Science -
Darmstadt University of Technology, December 1999.

Sandy Britain and Oleg Liber: A framework for the pedagogical evaluation
of virtual learning environments. In: Proc. of: ALT-C 2000, 2000.

Brockhaus-Enzyklopédie, Bd. 14: mag.—mod., 1991.

Peter Brusilovsky: Knowledgetree: A distributed architecture for adapti-
ve e-learning. In: Proceedings of the 13th international World Wide Web
conference on Alternate Track Papers & Posters, 2004, pp. 104-113.

M. Bungenstock, A. Baudry and B. Mertsching: The construction kit me-
taphor for a software engineering design of an e-learning system. In: Philip
Barker and Samuel Rebelsky (eds.): Proc. ED-MEDIA 2002-World Con-
ference on Educational Multimedia, Hypermedia € Telecommunications,
2002, pp. 216-217.

M. Bungenstock, A. Baudry and B. Mertsching: Data exchange between
lyssa and learning management systems. In: E-Learn 2003-World Con-
ference on E-Learning in Corporate, Gov ernment, Healthcare, €& Higher
Education, 2003, pp. 31-34.

M. Bungenstock, A. Baudry and B. Mertsching: Datenaustausch zwischen
Lyssa und Learning Management Systemen. In: Von e-Learning bis e-
Payment. Das Internet als sicherer Marktplatz (LIT ’03), 2003, pp. 126—
132.

M. Bungenstock, A. Baudry and B. Mertsching: Design of a common api for
learning objects. In: The IASTED International Conference on Computers
and Advanced Technology in Education (CATE 2003), 2004, pp. 345-350.

M. Bungenstock, A. Baudry and B. Mertsching: Entwicklung eines techni-
schen Rahmenwerks fiir standardkompatible Lernobjekte. In: DELFI 200/
— Tagungsband der 2. e-Learning Fachtagung Informatik, 2004, pp. 151—
162.

Carsten Busch: Metaphern in der Informatik: Modellbildung, Formalisie-
rung, Anwendung. Deutscher Universitits-Verlag GmbH, 1998.

Georg Biichmann and Eberhard Urban: Der neue Biichmann. Gefligelte
Worte. Bassermann, 1994.

190

LITERATURVERZEICHNIS

[Carnell03]

[CaseT8]

[Case85]

[Cavaness04]

[CENO3]

[Chapman03]

[Cis99]

[Clemm99]

[CTGV90]

[CTGV93]

[Dahn01]

[Dahn02]

[Dawson98]

[Dekkers01]

[Depke99]

[Deutsch96]

[Dittler03]

[Dodd04a]

John Carnell, J. Linwood and M. Zawadzki: Professional Struts Applicati-
ons. Apress, 2003.

R. Case: A developmentally based theory and technology of instruction.
In: Review of Educational Research, 48, pp. 439-463.

R. Case: Thinking and Learning Skills — Research and Open Questions,
vol. 2, chapter A Developmentally based Approach to the Problem of In-
structional Design, pp. 537-545. Lawrence Erlbaum Assoc, 1985.

Chuck Cavaness: Programming Jakarta Struts. O’Reilly, 2004.

European Committee For Standardization: CEN Workshop Agreement
CWA 14855: Dublin Core Application Profile Guidelines, November 2003.

Bryan Chapman: LCMS Report: Comparative Analysis of Enterprise Lear-
ning Content Management Systems. brandon-hall.com, 2003.

Cisco Systems: Reusable Information Object Strategy, June 1999. Version
3.0.

G. Clemm, J. Amsden, T. Ellison, C. Kaler and J. Whitehead: Versioning
extensions to webdav. RFC 3253, Network Working Group, Februar 1999.

CTGV: Anchored instruction and its relationship to situated cognition. In:
Educational Researcher, 19(6), 1990, pp. 2-10.

CTGV: Anchored instruction and situated cognition revisted. In: Educa-
tional Technology, 33(3), 1993, pp. 52-70.

Ingo Dahn: Slicing book technology — providing online support for text-
books. In: ICDE 2001, International Conference on Distant Education,
2001.

Ingo Dahn, Michael Armbruster, Ulrich Furbach and Gerhard Schwa-
be: Writing hypertext and learning: Conceptual and empirical approaches,
chapter Slicing Books The Authors’ Perspective. Pergamon, 2002.

F. Dawson and T. Howes: vcard mime directory profile. RFC 2426, Network
Working Group, September 1998.

Makx Dekkers: Application profiles, or how to mix and match metadata
schemas. In: Cultivate Interactive, 3.

Ralph Depke, G. Engels, K. Mehner, S. Sauer and A. Wagner: Ein Vor-
gehensmodell fiir die Multimedia-Entwicklung mit Autorensystemen. In:
Informatik Forschung und Entwicklung, 14, pp. 83-94.

Peter Deutsch: DEFLATE compressed data format specification version
1.3. RFC 1951, Aladdin Enterprises, May 1996.

Ullrich Dittler (ed.): E-Learning : Einsatzkonzepte und Erfolgsfaktoren des
Lernens mit interaktiven Medien. Oldenbourg, 2003.

Philip Dodd and Schawn E. Thropp: Sharable content object reference
model (scorm) — content aggregation model (cam) version 1.3.1. Technical
report, Advanced Distributed Learning, 2004.

LITERATURVERZEICHNIS

191

[Dodd04b]

[Dodd04c]

[Dolog04]

[Downes00a)]

[Downes00b]

[Downes02]

[Downes03]

[Dreyfus86]

[Dub99)]

[Duval00]

[Duval02]

[Duval03]

[Englander97]

[Farrell04]

[Farreres03]

[Foerster95]

Philip Dodd and Schawn E. Thropp: Sharable content object reference mo-
del (scorm) — run-time environment (rte) version 1.3.1. Technical report,
Advanced Distributed Learning, 2004.

Philip Dodd and Schawn E. Thropp: Sharable content object reference
model (scorm) 2004 — overview. Technical report, Advanced Distributed
Learning, 2004.

Peter Dolog, Nicola Henze, Wolfgang Nejdl and Michael Sintek: Personali-
zation in distributed e-learning environments. In: Proceedings of the 13th

international World Wide Web conference on Alternate Track Papers &
Posters, 2004, pp. 170-179.

Stephen Downes. Learning objects. Presented at Leaders in Learning 2000,
May 2000.

Stephen Downes: Nine rules for good technology. In: The Technology Sour-
ce.

Stephen Downes. The learning object economy. Published by Contact
North, October 2002.

Stephen Downes, Magda Mourad, Harry Piccariello and Robby Robson:
Digital rights management in e-learning — problem statement and terms of
reference. In: E-Learn 2003-World Conference on E-Learning in Corporate,
Gov ernment, Healthcare, €& Higher Education, 2003.

Hubert L. Dreyfus, Stuart E. Dreyfus and T. Anthanasiou: Mind Owver
Machine: The Power of Human Intuition and Fxpertise in the Era of the
Computer. The Free Press, 1986. ISBN: 0743205510.

Dublin Core Metadata Initiative: Dublin Core Metadata Element Set, Ver-
sion 1.1: Reference Description, July 1999.

Eric Duval, E. Vervaet, B. Verhoeven, K. Hendrikx, K. Cardinaels, H. Oli-
vié, E. Forte, F. Haenni, K. Warkentyne, M. Wentland-Forte and F. Si-
million: Managing digital educational resources with the ariadne metadata
system. In: Journal of Internet Cataloging, 3(2/3), 2000, pp. 145-171.

Erik Duval, Wayne Hodgins, Stuart Sutton and Stuart L. Weibel: Metadata
principles and practicalities. In: D-Lib Magazine, 8(4), 2002.

Erik Duval and Wayne Hodgins: A lom research agenda. In: WIWW2003 -
Twelfth International WorldWide Web Conference, May 2003.

Robert Englander: Developing Java Beans. O’Reilly, 1997.

Robert G. Farrell, Soyini D. Liburd and John C. Thomas: Dynamic assemb-
ly of learning objects. In: Proceedings of the 13th international World Wide
Web conference on Alternate Track Papers & Posters, 2004, pp. 162-169.

Javier Farreres: The Dsssl Book: An XML/SGML Programming Language.
Kluwer Academic Publishers, 2003.

Heinz von Foerster: Die erfundene Wirklichkeit. Wie wissen wir, was wir zu
wissen glauben., chapter Das Konstruieren einer Wirklichkeit. Paul Watz-
lawick and Peter Krieg, 1995.

192

LITERATURVERZEICHNIS

[Freed96]

[Freitag02al

[Freitag02b]

[Friesen02]

[Gamma95]

[Gibbons02]

[Gill98]

[Goland99]

[Goldfarb91]

[Gosling96]

[Gourley02]

[Griffel9s]

[Griffin97]

[Hall00]

[Hall03)]

[Hansch02]

[Haverkamp83]

N. Freed and N. Borenstein: Multipurpose internet mail extensions — (mi-
me) part two: Media types. RFC 2046, Network Working Group, November
1996.

Burkhard Freitag: LMML — Eine XML-Sprachfamilie fiir eLearning Con-
tent. In: Informatik bewegt: Informatik 2002 — 32. Jahrestagung der Ge-
sellschaft fiir Informatik e.v. (GI), 2002, pp. 349-353.

Burkhard Freitag, Christian Siiff and Claus Dziarstek: Adaptation und
Wiederverwendung von XML-basiertem eLearning-Content. In: Informatik
bewegt: Informatik 2002 — 32. Jahrestagung der Gesellschaft fir Informa-
tik e.v. (GI), 2002, pp. 354-358.

Norm Friesen, Jon Mason and Nigel Ward: Building educational metadata
application profiles. In: Proceedings of the International Conference on
Dublin Core and Metadata for e-Communities 2002, 2002, pp. 63—69.

Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides: Desing
Patterns: elements or reusable object-oriented software. Addison Wesley,
1995.

Andrew S. Gibbons, Jon Nelson and Robert Richards: The Instructional
Use of Learning Objects, chapter The Nature and Origin of Instructional
Objects. AIT/AECT, 2002.

Tony Gill, Anne Gilliland-Swetland and Murtha Baca: Introduction to Me-
tadata: Pathways to Digital Information. Getty Research Institute, 1998.

Y. Goland, E. Whitehead, A. Faizi, S. Carter and D. Jensen: Http exten-
sions for distributed authoring — webdav. RFC 2518, Network Working
Group, Februar 1999.

Charles F. Goldfarb and Yuri Rubinsky: SGML Handbook. Oxford Univer-
sity Press, 1991.

James Gosling, Bill Joy and Guy L. Steele: The Java Language Specifica-
tion. Addison Wesley, 1996.

David Gourley and Brian Totty: HTTP, The Definitive Guide. O’Reilly,
2002.

Frank Griffel: Componentware. dpunkt-Verlag, 1998.

Steve Griffin and Tom Wason: The year of metadata. In: Educom Review,
32(6), 1997, pp. 56-58.

Brandon Hall: Learning Management Systems 2001: How to Choose the
Right System for Your Organization. brandon-hall.com, 2000.

Brandon Hall: LMS 2003: Comparison of Enterprise Learning Management
Systems. brandon-hall.com, 2003.

Matthias Hansch, Stefan Kuhlins and Martin Schader: XML Schema. In:
Informatik Spektrum, 25(3), 2002, pp. 363-366.

Anselm Haverkamp: Theorie der Metapher, chapter Die Metapher, von
Max Black. Wissenschaftliche Buchgesellschaft, 1983.

LITERATURVERZEICHNIS

193

[Heery00]

[Heery02]

[Heery03]

[HjelmO1]

[Hodgins00]

[Hodgins02]

[Howes98]

[Humbert05]

[Hunter01]

[HéfeleO3]

[Iannella01]

[IEE]

[IEE02a]

[IEE02b)]

[IMS01]

[IMS03a]

[IMS03b)]

Rachel Heery and Manjula Patel: Application profiles: mixing and mat-
ching metadata schemas. In: Ariadne, 25.

Rachel Heery, Pete Johnston, Dave Beckett and Damian Steer: The meg
registry and scart: complementary tools for creation, discovery and re-use
of metadata schemas. In: Proceedings of the International Conference on
Dublin Core and Metadata for e-Communities 2002, 2002, pp. pp 63—69.

Rachel Heery, Pete Johnston, Csaba Fiilop and Andrds Micsik: Metadata
schema registries in the partially semantic web: the cores experience. In:
Proceedings of the 2003 Dublin Core Conference: Supporting Communities
of Discourse and Practice - Metadata Research and Applications, Septem-

ber/October 2003.

Johan Hjelm: Creating the Semantic Web with RDF. John Wiley & Sons,
2001.

Wayne Hodgins. Into the future - a vision paper. erhéltlich bei Commissi-
on on Technology & Adult Learning of the American Society for Training
& Development (ASTD) und National Governors’ Association (NGA), Fe-
bruary 2000.

Wayne Hodgins: The future of learning objects. In: Proc. of the 2002 eTEFE
Conference, August 2002, pp. 76-82.

T. Howes, M. Smith and F. Dawson: A MIME content-type for directory
information. RFC 2425, Network Working Group, September 1998.

Ludger Humbert: Didaktik der Informatik. Teubner, 2005. ISBN:
3835100386.

Jane Hunter and Carl Lagoze: Combining rdf and xml schemas to enhance
interoperability between metadata application profiles. In: Proc. of the
Tenth International Conference on World Wide Web. ACM, 2001, pp. 457—
466.

Hartmut Hiéfele and Kornelia Maier-Héfele. Autorenwerkzeuge fiir Lear-
ning Content. Portal des bm:bwk bildung.at, 2003.

Renato Iannella: Digital rights management (drm) architectures. In: D-Lib
Magazine, 7(6), 2001.

IEEE P1484.12: Standard for Resource Description Framework (RDF) bin-
ding for Learning Object Metadata data model.

IEEE P1484.12: Draft Standard for Learning Object Metadata, 2002.

IEEE P1484.12: Standard for XML binding for Learning Object Metadata
data model, 2002.

IMS. IMS learning resource meta-data information model — version 1.2.1
final specification, 2001.

IMS. IMS digital repositories interoperability, 2003.

IMS. Ims learning resource meta-data best practice and implementation
guide - version 1.2.1 final specification, 2003.

194

LITERATURVERZEICHNIS

[IMS04a]

[IMS04b]
[IMS05]

[Ingendahl71]

[Int8s]

[Int97]

[Int9s]

[Int00]

[Int02]

[Johnson04]

[Kerres98]

[Klein99]

[Klimsa93]

[Kohlhase00]

[Kohlhase02]

[Kolodner93]

[Kortzfleisch99]

IMS. IMS content packaging information model — version 1.1.4 final spe-
cification, 2004.

IMS. IMS question and test interoperability, 2004.
IMS. Ims learner information package, 2005.

Werner Ingendahl: Der methaphorische Prozess. Methodologie zu seiner
Erforschung und Systematisierung. Péddagogischer Verlag Schwann, 1971.

International Organization for Standardization (ISO): ISO 659-1:2002. Co-
des for the representation of names of languages — Part 1: Alpha-2 code,
first edition, April 1988.

International Organization for Standardization (ISO): ISO 3166-1:1997.
Codes for the representation of names of countries and their subdivisions
— Part 1: Country codes, first edition, September 1997.

International Organization for Standardization (ISO): ISO 639-2:1998. Co-
des for the representation of names of languages — Part 2: Alpha-3 code,
first edition, November 1998.

International Organization for Standardization (ISO): ISO 8601:2000. Da-
ta elements and interchange formats — Information interchange — Repre-
sentation of dates and times, second edition, December 2000.

International Organization for Standardization (ISO): ISO/IEC 10646-
1:2000. Information technology — Universal Multiple-Octet Coded Cha-
racter Set (UCS) — Part 1: Architecture and Basic Multilingual Plane,
second edition, December 2002.

Rod Johnson and Juergen Hoeller: Expert One-on-One J2EE Development
without EJB. Wrox, 2004.

M. Kerres: Multimediale und telemediale Lernumgebungen - Konzeption
und Entwicklung. Oldenbourg Verlag, 1998.

Gary Klein: Sources of Power: How People Make Decisions. The MIT
Press, 1999. ISBN: 0262611465.

Paul Klimsa: Neue Medien und Weiterbildung. Anwendung und Nutzung
in Lernprozessen der Weiterbildung. Deutscher Studienverlag, 1993.

Michael Kohlhase: Omdoc: An infrastructure for openmath content dic-
tionary information. In: Bulletin of the ACM Special Interest Group for
Algorithmic Mathematics SIGSAM, 2000.

Michael Kohlhase: Omdoc: An open markup format for mathematical do-
cuments (version 1.1). Technical report, Carnegie Mellon University, 2002.

Janet Kolodner: Case-Based Reasoning. Morgan Kaufmann Publishers,
1993.

Harald von Kortzfleisch, Ulrike Heller and Udo Winand: Perspektiven der
Medienwirtschaft. Kompetenz, Akzeptanz, Geschiftsfelder. Telekommuni-

kation & Mediendienste 5, chapter Das "Forum Virtuelle Lernwelten”; pp.
51-73. Josef Eul Verlag, 1999.

LITERATURVERZEICHNIS

195

[Krieg-Briickner04] Bernd Krieg-Briickner, Arne Lindow, Christoph Liith, Achim Mahnke and

[Leacock04]

[Lenz98]

[Letts02]

[Louden94]

[Low02]

[Manola03]

[Martinez00]

[Mason00]

[McDaniel03]

[Metzinger99]

[Meyer97]

[Meyer02]

[Milligan00]

[Minsky94]

[Mintert02]

[Mosley05]

George Russell: Semantic interrelation of documents via an ontology. In:
DELFI 2004 — Tagungsband der 2. e-Learning Fachtagung Informatik,
2004, pp. 271-282.

Tracey L. Leacock, Griff Richards and John C. Nesbit: Teachers need sim-
ple, effective tools to evaluate learning objects: Enter elera.net. In: Seventh
IASTED International Conference — Computers and Advanced Technolo-
gies in Education, 2004, pp. 333-338.

Mario Lenz, Brigitte Bartsch-Sporl, Hans-Dieter Burkhard and Stefan Wess
(eds.): Case-Based Reasoning Technology: From Foundations to Applicati-
ons. Springer Verlag, 1998.

Mike Letts: ADL and SCORM: Creating a standard model for publishing
courseware. In: Seybold Report - Analyzing Publishing Technologies, 2(1),
2002, pp. 3-8.

Kenneth C. Louden: Programmiersprachen. Grundlagen, Konzepte, Ent-
wurf. VMI Buch AG, 1994.

Boon Low: Packaging educational content using IMS specifications. In:
VINE, 127, pp. 40-46.

Frank Manola and Eric Miller. Rdf primer, December 2003.

Margaret Martinez: The Instructional Use of Learning Objects, chapter
Designing Learning Objects to Personalize Learning. AIT/AECT, 2000.

Jon Mason, Graham Adcock and Albert IP: Modeling information to sup-
port value-adding: Edna online. In: WebNet Journal: Internet Technologies,
Applications & Issues, 2(3), 2000, pp. 38-45.

Mason McDaniel and M. Hossain Heydari: Content based file type detection
algorithms. In: Proceedings of the 36th Hawaii International Conference
on System Sciences - 2003, 2003.

Thomas Metzinger: Subjekt und Selbstmodell. Mentis-Verlag, 1999. ISBN:
3897850818.

Bertrand Meyer: Object-Oriented Software Construction. Prentice Hall,
1997.

Eric A. Meyer: On CSS. New Riders Publishing, 2002.

Colin Milligan: The role of virtual learning environments in the online deli-
very of staff development. Technical Report 44, Joint Information Systems
Committee, 2000.

Marvin L. Minsky: Mentopolis. Klett-Cotta, 1994.

Stefan Mintert: XML & Co. Die W3C-Spezifikationen fiir Dokumenten-
und Datenarchitektur. Addison-Wesley, 2002.

Pauline Mosley: A taxonomy for learning object technology. In: J. Comput.
Small Coll., 20(3), 2005, pp. 204-216.

196

LITERATURVERZEICHNIS

[Nagamori01]

[Najjar03]

[Negroponte96]

[Nejdl02]

[Nesbit04]

[Neven02]

[Newman03]

[Niegemann04]

[Nilsson03]

[Obj03]

[Padberg02al

[Padberg02b)]

[PawlowskiO1]

[Pawson02]
[Powers03]

[Qin04]

Mitsuharu Nagamori, Thomas Bakery, Tetsuo Sakaguchi and Tetsuo Sa-
kaguchi Mitsuharu Nagamori, Thomas Bakery: A multilingual metadata
schema registry based on rdf schema. In: Proc. Int I. Conf. on Dublin Core
and Metadata Applications 2001, 2001, pp. pp 209-212.

Jehad Najjar, Stefaan Ternier and Erik Duval: The actual use of metadata
in ariadne: an empirical analysis. In: 3rd Annual Ariadne Conference, 2003.

Nicholas Negroponte: Being Digital. Vintage, 1996.

Wolfgang Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek, A. Naeve, M. Nilsson,
M. Palmér and T. Risch: Edutella: A p2p networking infrastructure based
on rdf. In: Proc. of the Eleventh International Conference on World Wide
Web. ACM, 2002, pp. 604-615.

John C. Nesbit, Tracey L. Leacock and Cindy Xin: Learning object eva-
luation and convergent participation: Tools for professional development in
e-learning. In: Seventh IASTED International Conference — Computers
and Advanced Technologies in Education, 2004, pp. 339-344.

Filip Neven and Erik Duval: Reusable learning objects: a survey of lom-
based repositories. In: Proc. of ACM Multimedia. ACM, 2002, pp. 291-294.

Tabetha Newman: Scorm force. In: Conspectus, pp. 18-20.

Helmut M. Niegemann, Silvia Hessel, Dirk Hochscheid-Mauel, Kristina
Aslanski, Markus Deimann and Gunther Kreuzberger: Kompendium E-
Learning. Springer-Verlag, 2004.

Mikael Nilsson, Matthias Palmér and Jan Brase. The lom rdf binding -
principles and implementation. Paper to 3rd Annual Ariadne Conference,
Katholieke Universiteit Leuven, Belgium, November 2003.

Object Management Group: Unified Modeling Language (UML), version
1.5, formal/03-03-01 edition, 2003.

Kathrin Padberg and Sabine Schiller: Web-based drills in maths using a
computer algebra system. In: Proc. ED-MEDIA 2002-World Conference
on FEducational Multimedia, Hypermedia & Telecommunications, 2002.

Kathrin Padberg and Andreas Sorgatz: Webbasierte Ubungselemente mit
MuPAD. In: Computeralgebra in Lehre, Ausbildung und Weiterbildung 111,
2002.

Jan M. Pawlowski: Das Essener-Lern-Modell (ELM): Ein Vorgehensmo-
dell zur Entwicklung computerunterstitzter Lernumgebungen. PhD thesis,
Universitdt Essen, 2001.

Dave Pawson: XSL-FO. O’Reilly, 2002.
Shelley Powers: Practical RDF. O’Reilly, 2003.

Jian Qin and Naybell Hernández: Ontological representation of lear-
ning objects: building interoperable vocabulary and structures. In: Procee-
dings of the 13th international World Wide Web conference on Alternate
Track Papers € Posters, 2004, pp. 348-349.

LITERATURVERZEICHNIS

197

[Rashid02]

[Ray01]

[Rehberg03]

[Reigeluth80)]

[Reigeluth83]

[Reigeluth99]

[Roisin98]

[Saddik00]

[Saddik01]

[Santos04]

[Schiller02]

[Schulmeister00]

[Schulmeister01]

[Schulmeister03]

Al Mamunur Rashid, Istvan Albert, Dan Cosley, Shyong K. Lam, Sean M.
McNee, Joseph A. Konstan and John Riedl: Getting to know you: Learning
new user preferences in recommender systems. In: Proceedings of the 7th
international conference on Intelligent user interfaces, 2002, pp. 127-134.

Erik T. Ray: Learning XML — Guide to Creating Self-Describing Data.
O’Reilly, 2001.

Bettina Rehberg and Ulrich Rehberg: Efficient development of multimedia
applets for elearning. In: Proc. 21st ICDE World Conference on Open
Learning & Distance Education, 2003.

Charles M. Reigeluth, M.D. Merrill, B.G. Wilson and R.T. Spiller: The
elaboration theory of instruction: A model for structuring instruction. In:
Instructional Science, 9, pp. 125-219.

Charles M. Reigeluth and F.S. Stein: Instructional Design Theories and
Models: An Overview of Their Current Status, chapter The Elaboration
Theory of Instruction. Lawrence Erlbaum, 1983.

Charles M. Reigeluth: Instructional Design — Theories and Models. A New
Paradigm of Instructional Theory, chapter The Elaboration Theory: Gui-

dance for Scope and Sequence Decisions, pp. 425-453. Lawrence Erlbaum,
1999.

Cécile Roisin: Authoring structured multimedia documents. In: SOF-
SEM ’98: Theory and Practice of Informatics: 25th Conference on Current
Trends in Theory and Practice of Informatics, 1998, pp. 222—-239.

Abdulmotaleb El Saddik, Amir Ghavam, Stephan Fischer and Ralf Stein-
metz: Metadata for smart multimedia learning objects. In: Proc. of the
Australasian conference on Computing education, December 2000, pp. 87—
94.

Abdulmotaleb El Saddik, Stephan Fischer and Ralf Steinmetz: Reusability
and adaptability of interactive resources in web-based educational systems.
In: Journal on Educational Resources in Computing (JERIC), 1(4), 2001.

Osvaldo A. Santos and Fernando M. S. Ramos: Proposal of a framework
for internet based licensing of learning objects. In: Comput. Educ., 42(3),
2004, pp. 227-242.

Sabine Schiller and Luise Unger: Math-kit: a multimedia project for lear-
ning and teaching mathematics. In: Proceedings 10th Meeting of European
Women in Mathematics, 2002, pp. 383-386.

Rolf Schulmeister: Selektions- und Entscheidungskriterien fiir die Aus-
wahl von Lernplattformen und Autorenwerkzeugen. Technical report, Os-
terreichisches Bundesministeriums fiir Bildung, Wissenschaft und Kultur
(bm:bwk), 2000.

Rolf Schulmeister: Virtuelle Universitdt — Virtuelles Lernen. Oldenbourg,
2001.

Rolf Schulmeister: Lernplattformen fir das virtuelle Lernen. Oldenbourg,
2003.

198

LITERATURVERZEICHNIS

[Schwabe01]

[Schoning03]

[Searle86)]

[Seifert80]

[Shackelford02]

[Shannon04]

[Shore85]

[Simon01]

[Simpson02]

[Skinner54]

[Slein98]

[South02]

[Spiro88|

[Spiro91]

[Stevens94|

[Stevens96]

[Sun99]

[Sun01]

Gerhard Schwabe, Norbert Streitz and Raine Unland (eds.): CSCW-
Kompendium Lehr- und Handbuch zum computerunterstiitzten kooperati-
ven Arbeiten . Springer, 2001.

Harald Schoning: XML und Datenbanken. Carl Hanser Verlag, 2003.

John R. Searle: Geist, Hirn und Wissenschaft : die Reith lectures 1984.
Suhrkamp, 1986.

Walter Seifert: Sprachbetrachtung und Kommunikationsanalys, chapter Di-
daktik rhetorischer Figuren: Metapher als Unterrichtsgegenstand, pp. 129—
138. Konigstein/Taunus, 1980.

Bill Shackelford: A scorm odyssey. In: T+D, 56(8), 2002, pp. 31-35.

Bill Shannon, Mark Hapner, Vlada Matena, James Davidson, James Da-
vidson and Larry Cable: Java 2 Platform, Enterprise Edition: Platform
and Component Specifications. Addison Wesley, 2004.

John Shore: Sachertorte Algorithm and Other Antidotes to Computer An-
xiety. Viking Press, 1985.

Bernd Simon: E-Learning an Hochschulen: Gestaltungsrdaume und Erfolgs-
faktoren von Wissensmedien. Josef Eul Verlag, 2001.

John E. Simpson: XPath and XPointer. O’Reilly, 2002.

Burrhus F. Skinner: The science of learning, and the art of teaching. In:
Harvard Educational Review, 24(2), 1954, pp. 86-97.

J. Slein, F. Vitali, E. Whitehead, U.C. Irvine and D. Durand: Requirements
for a distributed authoring and versioning protocol for the world wide web.
RFC 2291, Network Working Group, Februar 1998.

Joseph B. South and David W. Monson: The Instructional Use of Learning
Objects, chapter A University-wide System for Creating, Capturing, and
Delivering Learning Objects. AIT/AECT, 2002.

Rand J. Spiro, Richard L. Coulson, Paul J. Feltovich and Michael J. Ja-
cobson: Cognitive flexibility theory: Advanced knowledge acquisition in
ill-structured domains. In: Proceedings of the 10th Annual Conference of
the Cognitive Science Society. Lawrence Erlbaum Associates, 1988.

Rand J. Spiro, Paul J. Feltovich, Michael J. Jacobson and Richard L. Coul-
son: Cognitive flexibility, constructivism, and hypertext: Random access
instruction for advanced knowledge acquisition in ill-structured domains.
In: Educational Technology, 31(5), 1991, pp. 24-33.

W. Richard Stevens: TCP/IP Illustrated, Vol.1 : The Protocols. Addison-
Wesley, 1994.

W. Richard Stevens: TCP/IP Illustrated, Vol.3 : TCP for Transactions,
HTTP, NNTP, and the UNIX Domain Protocols. Addison-Wesley, 1996.

Sun Microsystems, Inc.: WebNFS Client SDK, 1999.

Sun Microsystems, Inc.: Java 2 Platform, Standard Edition, v 1.8.1, API
Specification, 2001.

LITERATURVERZEICHNIS

199

[Sweet85]

[Szyperski9g]

[Tanenbaum97]

[Tate04]

[Teege02]

[Thiere03al

[Thiere03b)]

[Tidwell01]

[Tulodziecki96]

[Turan04]

[Turner03]

[Unger02]

[Unger04]

[Vitali99]

[V1ist02]

[Vollmann04]

[Walsh02a]

Richard E. Sweet: The mesa programming environment. In: SIGPLAN
Notices, 20(7), 1985, pp. 216-229.

Clemens Szyperski: Component Software: beyond object-oriented software.

Addison Wesley, 1998.

Andrew S. Tanenbaum and Albert S. Woodhull: Operating Systems: Design
and Implementation — 2nd ed. Prentice Hall, 1997.

Bruce A. Tate and Justin Gehtland: Better, Faster, Lighter Java. O’Reilly,
2004.

Gunnar Teege and Peter Breitling: Targeteam: Adaptierbare Lehrinhalt auf
Basis on XML und XSLT. In: Informatik bewegt: Informatik 2002 — 32.
Jahrestagung der Gesellschaft fiir Informatik e.v. (GI), 2002, pp. 364-368.

Bianca Thiere, Gudrun Oevel and Kathrin Padberg: Mathematics in engi-
neering education with math-kit. In: Proc. of 7th Baltic Region Seminar
on Engineering Education, Septembe 2003.

Bianca Thiere, Kathrin Padberg and Gudrun Oevel: Learning mathematics
through a multimedia construction kit. In: Proc. SITE2003, March 2003,
pp- 24-29.

Doug Tidwell: XSLT. O’Reilly, 2001.

G. Tulodziecki, W. Hagemann, B. Herzig, S. Leufen and C. Miitze: Neue
Medien in den Schulen: Projekte-Konzepte-Kompetenzen. Verlag Bertels-
mann Stiftung, 1996.

Nurdan Turan and Yildiz Siinneli: Entwicklung einer Software-
Komponente zur Integration bestehender Lehr- und Lernmaterialien und
deren Metadaten in das math-kit-System. Master’s thesis, Universitét
Hamburg, 2004.

James Turner and Kevin Bedell: Struts. Addison-Wesley, 2003.

Luise Unger, Gudrun Oevel and Bérbel Mertsching: Web-based teaching
and learning with math-kit. In: Proc. 2th International Conference on the
Teaching of Mathematics, 2002.

Luise Unger, M. Bauch, A. Baudry, M. Bungenstock, B. Mertsching, G. Oe-
vel, K. Padberg and B. Thiere: math-kit — Ein multimedialer Baukas-
ten fiir die Mathematikausbildung im Grundstudium. In: Softwaretechnik-
Trends, 24(1), 2004, pp. 62-71.

Fabio Vitali: Versioning hypermedia. In: ACM Comput. Surv., 31(4es),
1999, pp. 24.

Eric van der Vlist: XML Schema. O’Reilly, 2002.

Marc Vollmann: Modellierung und Implementation eines Werkzeugs mit
Methoden fallbasierten Schlielens zur generischen Anbindung an schlag-
wortbasierte Wissenssysteme. Master’s thesis, Universitdt Hamburg, 2004.

Norman Walsh: The docbook document type - committee specification 4.2.
Technical report, OASIS, 2002.

200

LITERATURVERZEICHNIS

[Walsh02b]

[Wessner00]

[Wiley99)
[Wiley00a)

[Wiley0Ob]

[Wiley02]

[Wolff82]
[Wollowski02]

[Wozniak94]

[Wright95]

[Ziillighoven98]

Norman Walsh and Leonard Muellner: DocBook: The Definitive Guide.
O’Reilly & Associates, Inc., 2002. Version 2.0.8.

Martin Wessner and Hans-Riidiger Pfister: Points of cooperation: Inte-
grating cooperative learning into web-based courses. In: Proceedings of
NTCL2000 International Workshop on New Technologies for Collaborative
Learning, 2000, pp. 33—41.

David A. Wiley. The post-lego learning object. Homepage, 1999.

David A. Wiley: Learning object design and sequencing theory. PhD thesis,
Department of Instructional Psychology and Technology Brigham Young
University, 2000.

David A. Wiley, Mimi Recker and Andy Gibbons. A reformulation of the
issue of learning object granularity and its implications for the design of
learning objects. Homepage, 2000.

David A. Wiley: The Instructional Use of Learning Objects, chapter
Connecting learning objects to instructional design theory: A definition,
a metaphor, and a taxonomy. AIT/AECT, 2002.

Gerhart Wolff: Metaphorischer Sprachgebrauch. Reclam, 1982.

Michael Wollowski: Xml based course websites. In: E-LEARN 2002-World
Conference on E-Learning in Corp., Gout., Health., & Higher Ed., 2002,
pp- 1043-1048.

Robert H. Wozniak: Refiex, habit and implicit response: The early elabora-
tion of theoretical and methodological behaviourism, chapter Behaviourism:
the early years. Routledge/Thoemmes Press, 1994.

Gary R. Wright and W. Richard Stevens: TCP/IP Illustrated, Vol.2 : The
Implementation. Addison-Wesley, 1995.

Heinz Ziillighoven, Dirk Baumer and Wolf-Gideon Bleek: Das objektorien-
tierte Konstruktionshandbuch. Dpunkt Verlag, 1998.

	Einleitung
	Problemstellung
	Zielsetzung
	Methodik
	Systematik

	I Stand der Wissenschaft
	Lerntheorie
	Kompetenzstufen
	Lernparadigmen
	Behaviorismus
	Kognitivismus
	Konstruktivismus

	Lehrer/-in, Tutor/-in und Coach
	Ein heuristisches Lernmodell
	E-Learning-Historie

	Lernobjekte
	Warum werden Lernobjekte benötigt?
	Was ist ein Lernobjekt?
	Lernobjekte nach Cisco Systems
	Lernobjekte nach Hodgins
	Lernobjekte nach Wiley
	Lernobjekte nach Downes
	Lernobjekte nach Baumgartner

	Granularität
	Sequenzierung
	IMS Content Packaging Specification
	Sharable Content Object Reference Model
	Formate

	Metadaten
	Resource Description Framework
	Dublin Core Metadata
	Learning Object Metadata

	Autorenwerkzeuge
	Klassifizierung
	Professionelle Autorenwerkzeuge
	WYSIWYG-HTML-Editoren
	Content Converter
	Live Recording Systeme
	Screen Movie Recorder
	Rapid E-Learning Content Development

	Bewertung

	Lernplattformen
	Definitionen
	Evaluation
	Blackboard
	WebCT
	SmartBLU

	Bewertung

	Web-Technologie
	Infrastruktur
	Web Applications
	Web Services
	WebDAV

	Metapher
	Metaphorischer Prozess
	Metaphern und Software-Technik

	Bewertung
	Resümee

	II Entwurf
	System-Vision
	Rollen und Anwendungsfälle
	Author
	Developer
	Composer
	Publisher
	User
	Student
	Professor
	Administrator

	Komponenten
	Basis
	Learning Object Development
	Structure Development
	Publishing Environment
	User Environment
	Administration

	Architektur
	Baukasten-Metapher
	Metaphorischer Prozess

	Aufteilung

	Basiskomponenten
	Dateizugriff
	Dateisystem Grundlagen
	Virtuelles Dateisystem

	Metadaten
	Datenstruktur
	Operationen
	Kodierungen

	Unterstützung von Multimedia

	Baustein und Kurs
	Bindung an Standards
	Physikalische Dateien
	Manifest
	Content Package

	Rahmenwerk
	Zusammengesetzte Komponenten

	III Implementierung
	Baukasten
	Script-Steuerung
	Grafische Basiskomponenten
	Rahmenwerk für Werkzeuge
	Visualisierung der Bausteine und Kurse
	Steuerung des Exports
	Lyssa

	Repository
	Construction Kit Server
	Web-Oberfläche

	IV Analyse
	Ausgewählte Beispiele
	Erstellung neuer Bausteine
	Erstellung neuer Kurse
	Inhalte publizieren
	Explorationsumgebung

	Zusammenfassung und Bewertung
	Ausblick

