
Entwurf und Implementierung einer
vollständigen Infrastruktur für
modulare E-Learning-Inhalte

Zur Erlangung des akademischen Grades
DOKTORINGENIEUR (Dr.-Ing.)

der Fakultät für Elektrotechnik, Informatik und Mathematik
der Universität Paderborn
vorgelegte Dissertation

von
Dipl.-Inform. Michael Bungenstock

aus Hamburg

Referent: Prof. Dr.-Ing. Bärbel Mertsching
Korreferent: Prof. Dr.-Ing. Reinhard Keil-Slawik
Tag der mündlichen Prüfung:6.4.2006

Paderborn, den 18.4.2006

Diss. 14/219

Kurzfassung

Mit dem Einzug des E-Learnings in Lehre und Ausbildung haben sich neue Anforderungen an
die IT-Infrastrukturen ergeben, die mit den verfügbaren Techniken nicht adäquat gelöst wer-
den können. Viele der neuen Teilaspekte, wie z.B. Lernobjekte, Metadaten und Kodierungen,
werden zwar in wissenschaftlichen Arbeiten und Spezifikationen behandelt, aber leider fehlen
die Zusammenhänge für die Implementierung eines vollständigen Systems. Hierdurch werden
Seiteneffekte und Abhängigkeiten ignoriert, die in der Praxis zu essentiellen Problemen führen
und proprietäre Lösungen hervorbringen. Der Akzeptanz von E-Learning ist diese Entwicklung
abträglich, denn inkompatible E-Learning-Inhalte verursachen Kosten durch Konvertierung
oder Neuentwicklung und mindern die Bereitschaft zur Verwendung. Die Verfügbarkeit von
Inhalten beim E-Learning als wesentlicher Vorteil gegenüber konventionellen Formen wird auf
diese Weise leider aufgehoben.

In dieser Arbeit wird ein ganzheitliches Konzept für modulare E-Learning-Inhalte herge-
leitet und als praktische Anwendung realisiert. Als Grundlage dienen andere wissenschaftliche
Arbeiten, die bereits wichtige und allgemein akzeptierte Ergebnisse hervorgebracht haben. Sie
werden miteinander verbunden oder durch neue Konzepte ergänzt. Ein wesentliches Merkmal
dieser Arbeit ist die Verwendung der Metaphern ”multimedialer Baukasten“ und ”Baustein“,
die als Leitbild für alle Entscheidungen dienen. Sie vereinfachen den Entwurf der einzelnen
Komponenten und prägen die spätere Benutzung des Systems. Hierdurch tragen die Metaphern
zur Konsistenz und Vollständigkeit der Infrastruktur bei.

Entwurf und Umsetzung erfolgen in dieser Arbeit objektorientiert und bedienen sich der
gängigen Mittel der Softwaretechnik. Aus Sicht der Benutzer/-innen wird ein fachliches Modell
beschrieben, das durch Komponentenbildung in ein technisches überführt wird. Eine geringe
Abhängigkeit gekoppelt mit einer hohen Kohäsion der Funktionen soll eine gute Skalierbarkeit
für die unterschiedlichsten Einsatzgebiete garantieren. Durch die Flexibilität dieses Rahmen-
werks lassen sich Einzelplatzlösungen genauso wie verteilte Anwendungen realisieren. Zur De-
monstration werden in dieser Arbeit das Autorenwerkzeug Lyssa und ein Repository für die
zentrale Datenhaltung entwickelt und in der Programmiersprache Java implementiert.

Das Rahmenwerk ist so konzipiert, dass es heutigen Standards entspricht und auch zukünf-
tigen Entwicklungen gerecht wird. Ein Anliegen dieser Arbeit ist die Kompatibilität zu anderen
Systemen, um eine breite Akzeptanz zu erreichen. Hierfür werden neben den Kodierungen in
Standardformaten auch Konstruktionen zur Konvertierung auf Ebene der Standards, z.B. bei
den Metadaten zwischen IEEE LOM und Dublin Core, sowie auf konzeptioneller Ebene, z.B.
von verschachtelten zu einfachen Lernobjekten, vorgestellt. Denn die Wiederverwendbarkeit
und die Vielseitigkeit von Inhalten gehören neben den multimedialen Möglichkeiten zu den
herausragenden Stärken des E-Learnings. Mit dem Rahmenwerk dieser Arbeit sind nun die
technischen Voraussetzungen geschaffen.

Inhaltsverzeichnis

1 Einleitung 1
1.1 Problemstellung . 2
1.2 Zielsetzung . 3
1.3 Methodik . 4
1.4 Systematik . 4

I Stand der Wissenschaft 7

2 Lerntheorie 9
2.1 Kompetenzstufen . 9
2.2 Lernparadigmen . 10

2.2.1 Behaviorismus . 10
2.2.2 Kognitivismus . 11
2.2.3 Konstruktivismus . 12

2.3 Lehrer/-in, Tutor/-in und Coach . 13
2.4 Ein heuristisches Lernmodell . 14
2.5 E-Learning-Historie . 14

3 Lernobjekte 17
3.1 Warum werden Lernobjekte benötigt? . 17
3.2 Was ist ein Lernobjekt? . 18

3.2.1 Lernobjekte nach Cisco Systems . 18
3.2.2 Lernobjekte nach Hodgins . 19
3.2.3 Lernobjekte nach Wiley . 20
3.2.4 Lernobjekte nach Downes . 21
3.2.5 Lernobjekte nach Baumgartner . 23

3.3 Granularität . 23
3.4 Sequenzierung . 25
3.5 IMS Content Packaging Specification . 26
3.6 Sharable Content Object Reference Model . 30
3.7 Formate . 31

4 Metadaten 33
4.1 Resource Description Framework . 35
4.2 Dublin Core Metadata . 40
4.3 Learning Object Metadata . 41

5 Autorenwerkzeuge 45
5.1 Klassifizierung . 45

5.1.1 Professionelle Autorenwerkzeuge . 46
5.1.2 WYSIWYG-HTML-Editoren . 47
5.1.3 Content Converter . 49

ii INHALTSVERZEICHNIS

5.1.4 Live Recording Systeme . 49
5.1.5 Screen Movie Recorder . 50
5.1.6 Rapid E-Learning Content Development 51

5.2 Bewertung . 51

6 Lernplattformen 57
6.1 Definitionen . 58
6.2 Evaluation . 60

6.2.1 Blackboard . 61
6.2.2 WebCT . 61
6.2.3 SmartBLU . 64

6.3 Bewertung . 64

7 Web-Technologie 67
7.1 Infrastruktur . 68
7.2 Web Applications . 72
7.3 Web Services . 73
7.4 WebDAV . 75

8 Metapher 77
8.1 Metaphorischer Prozess . 77
8.2 Metaphern und Software-Technik . 80

9 Bewertung 81
9.1 Resümee . 82

II Entwurf 83

10 System-Vision 85
10.1 Rollen und Anwendungsfälle . 86

10.1.1 Author . 87
10.1.2 Developer . 88
10.1.3 Composer . 89
10.1.4 Publisher . 90
10.1.5 User . 91
10.1.6 Student . 91
10.1.7 Professor . 92
10.1.8 Administrator . 92

10.2 Komponenten . 93
10.2.1 Basis . 94
10.2.2 Learning Object Development . 94
10.2.3 Structure Development . 96
10.2.4 Publishing Environment . 97
10.2.5 User Environment . 98
10.2.6 Administration . 99

10.3 Architektur . 100
10.4 Baukasten-Metapher . 106

10.4.1 Metaphorischer Prozess . 106
10.5 Aufteilung . 107

INHALTSVERZEICHNIS iii

11 Basiskomponenten 109
11.1 Dateizugriff . 110

11.1.1 Dateisystem Grundlagen . 111
11.1.2 Virtuelles Dateisystem . 114

11.2 Metadaten . 119
11.2.1 Datenstruktur . 121
11.2.2 Operationen . 124
11.2.3 Kodierungen . 126

11.3 Unterstützung von Multimedia . 127

12 Baustein und Kurs 133
12.1 Bindung an Standards . 133
12.2 Physikalische Dateien . 136
12.3 Manifest . 138
12.4 Content Package . 143

13 Rahmenwerk 147
13.1 Zusammengesetzte Komponenten . 148

III Implementierung 151

14 Baukasten 153
14.1 Script-Steuerung . 154
14.2 Grafische Basiskomponenten . 154
14.3 Rahmenwerk für Werkzeuge . 157
14.4 Visualisierung der Bausteine und Kurse . 159
14.5 Steuerung des Exports . 162
14.6 Lyssa . 163

15 Repository 167
15.1 Construction Kit Server . 168
15.2 Web-Oberfläche . 169

IV Analyse 171

16 Ausgewählte Beispiele 173
16.1 Erstellung neuer Bausteine . 173
16.2 Erstellung neuer Kurse . 175
16.3 Inhalte publizieren . 177
16.4 Explorationsumgebung . 179

17 Zusammenfassung und Bewertung 183

18 Ausblick 185

Abbildungsverzeichnis

1.1 Das Bücherrad . 2

2.1 Schematisches Modell des Behaviorismus [Baumgartner99, S.102] 11
2.2 Schematisches Modell des Kognitivismus [Baumgartner99, S.105] 12
2.3 Schematisches Modell des Konstruktivismus [Baumgartner99, S.108] 12
2.4 Drei Lehrmodelle [Baumgartner97] . 13
2.5 Ein heuristisches Lernmodell [Baumgartner99, S.96] 14
2.6 Entwicklung der computerunterstützten Ausbildung nach [Bodendorf90, S.15] 15
2.7 Begriffsbildung von WBT und CBT nach [Kerres98, S.14] 15

3.1 RLO-RIO-Struktur . 19
3.2 Lernobjekt-Hierarchie nach [Hodgins00, S. 28] 20
3.3 Reusable Learning Objects nach [Baumgartner02b, S. 24] 23
3.4 Lernobjekt-Hierarchie aus [Hodgins02, S. 78] 24
3.5 Linear-sukzessive Sequenzierung und Spiral-Sequenzierung nach [Reigeluth99,

S. 432] . 26
3.6 Die verschiedenen Bereiche innerhalb eines Packages [IMS04a] 27
3.7 Datenstruktur eines Manifests [IMS04a] . 28
3.8 Einfache Auflösung von Referenzen . 29
3.9 Auflösung von Referenzen mit Subknoten . 29
3.10 Runtime Environment aus [Dodd04b, S. 1-8] 30

4.1 Schichten für Metadaten-Umsetzung nach [Baker03, S. 6] 35
4.2 RDF-Graph für den Mitarbeiter Michael Bungenstock 37
4.3 RDF-Graph mit Ressourcen und Literalen . 37
4.4 RDF-Graph mit typisierten Literalen . 38
4.5 Strukturierte Adresse . 39
4.6 Beispiele für Strukturen in LOM (von [IEE02a] abgeleitet) 42
4.7 Aufbau von LOM als Baum nach [IMS03b] . 43

5.1 Systematik der Autorenwerkzeuge [Häfele03] 46
5.2 Macromedia Authorware 7 . 47
5.3 Macromedia CourseBuilder -Erweiterung für Dreamweaver 48
5.4 Einsatz von Lecturnity (Aus einer Werbebroschüre) 50
5.5 Screenshot von Lectora . 52

6.1 Idealtypische Architektur einer Lernplattform nach [Schulmeister03, S. 11] . . 59
6.2 Screenshot von Blackboard . 62
6.3 Screenshot von WebCT . 63
6.4 Screenshot von SmartBLU . 65

7.1 Schichten von J2EE-Anwendungen [Bodoff04, S. 3] 68
7.2 Client und Server [Bodoff04, S. 6] . 69
7.3 Sechs Schritte einer Anfrage [Bodoff04, S. 84] 70

vi ABBILDUNGSVERZEICHNIS

7.4 Schichten der Repräsentation [Bodoff04, S. 85] 70
7.5 Interne Modulstruktur [Bodoff04, S. 90] . 71
7.6 Model, View und Controller für Web Applications 72
7.7 JAX-RPC-Aufruf [Bodoff04, S. 321] . 75

8.1 Metaphorischer Prozess nach [Busch98, S. 25] 78

10.1 Übersicht der Rollen . 87
10.2 Anwendungsfälle der Rolle Author . 88
10.3 Anwendungsfälle der Rolle Developer . 89
10.4 Anwendungsfälle der Rolle Composer . 90
10.5 Anwendungsfälle der Rolle Publisher . 91
10.6 Anwendungsfälle der Rolle User . 91
10.7 Anwendungsfälle der Rolle Student . 92
10.8 Anwendungsfälle der Rolle Professor . 93
10.9 Anwendungsfälle der Rolle Administrator . 93
10.10 Komponenten für die Rolle Author . 94
10.11 Komponente für die Rolle Developer . 95
10.12 Komponente für die Rolle Composer . 96
10.13 Komponente für die Rolle Publisher . 97
10.14 Komponente für die Rolle User . 98
10.15 Komponente für die Rolle Administrator . 99
10.16 Funktionale Komponente des Autorensystems 101
10.17 Zwei Komponenten zur Steuerung des Autorensystems 101
10.18 Komponente für die zentrale Datenhaltung (Repository) 102
10.19 Komponente für den Web-basierten Zugriff auf das Repository 103
10.20 Zugriff der Autoren/-innen auf das Repository 103
10.21 Komponente für den Web-basierten Zugriff auf die Lernplattform 104
10.22 Zugriff der Benutzer/-innen auf die Lernplattform und das Repository 104
10.23 Vollständige Architektur des Systems . 105

11.1 Extended Filesystem Architecture [Sun99] . 111
11.2 Aufbau von Verzeichniseinträgen aus [Tanenbaum97, S. 411] 112
11.3 Ein UNIX Verzeichnisbaum aus [Tanenbaum97, S. 414] 113
11.4 Interne Abbildungen im VFS . 114
11.5 Aufbau der Dateistruktur in zwei Schritten . 115
11.6 Beispiel für den Aufbau des VFS . 116
11.7 Klasse VFSNode . 117
11.8 Verschiedene Unterklassen der Klasse VFSNode 117
11.9 Klasse VFS . 118
11.10 Verschiedene Unterklassen der Klasse VFS . 118
11.11 Dateistruktur im Arbeitsspeicher . 118
11.12 Aggregation von String und VFS . 119
11.13 Bildung der Komponente File Management 119
11.14 Architektur für heterogene Metadatenformate 120
11.15 Klassenhierarchien der Reader und Writer . 121
11.16 Metadatenkategorien . 122
11.17 Produktion der internen Metadatenstruktur 124
11.18 Manipulation der internen Metadatenstruktur 125
11.19 Datenbankschema für die Kategorie ”General“ aus [Turan04] 128
11.20 Bildung der Komponente Metadata . 128
11.21 Interfaces für den Zugriff und die Erstellung von Dateien 130
11.22 Drei Handler . 130

ABBILDUNGSVERZEICHNIS vii

11.23 Klasse MimeTypeHandler . 131
11.24 Klasse MimeTypeMap . 131
11.25 Objektdiagramm mit zwei unterstützen MIME-Types 132
11.26 Bildung der Komponente Multimedia Environment 132

12.1 Ein einfacher Baustein aus [Bungenstock04a] 134
12.2 Baustein mit Submanifesten aus [Bungenstock04a] 134
12.3 Verschachtelte Bausteine aus [Bungenstock04a] 135
12.4 Klasse TempFSNode . 137
12.5 Klasse TempFS . 137
12.6 Klasse SavableFS . 138
12.7 Die Unterklasse ZipFS und DirectoryFS . 138
12.8 Strukturierte Adresse . 139
12.9 Klasse HierarchicalElement . 140
12.10 Sequenzdiagramm für den Benachrichtigungsmechanismus 140
12.11 Klasse MDElement . 140
12.12 Klasse IDElement . 141
12.13 Die Klassen Item, Manifest, Resource und Organization 142
12.14 Klasse File . 142
12.15 Klasse Dependency . 143
12.16 Klassenhierarchie der Manifest-Elemente . 143
12.17 Klasse ContentPackage . 144
12.18 Klasse Brick . 144
12.19 Klasse Course . 145
12.20 Klassenhierarchie der Content Packages . 145
12.21 Komponentenbildung . 146

13.1 Das Muster Fassade [Gamma95, S. 185] . 148
13.2 Bildung der Komponente LOBDevelopment . 148
13.3 Aufbau der Komponente CBK-Management-Application nach [Vollmann04, S.

128] . 149
13.4 Bildung der Komponente StructureDevelopment 149
13.5 Bildung der Komponente AuthoringSystem 150

14.1 Screenshot der BeanShell . 155
14.2 Visualisierung physikalischer Dateien in Content Packages 156
14.3 Komponente für Metadaten . 156
14.4 Klasse JSavablePanel . 157
14.5 Verschachtelte Inhalte . 158
14.6 Klasse JNestedPanel . 158
14.7 Klassenhierarchie der grafischen Basisklassen 159
14.8 Klasse JCPPanel . 159
14.9 Manifest mit farblicher Syntax-Hervorhebung 160
14.10 Komponente für Bausteine . 160
14.11 Komponente für Kurse . 161
14.12 Ansicht der Item-Properties . 162
14.13 Dialog für Export-Einstellungen . 163
14.14 Screenshot von Lyssa . 164
14.15 Screenshot der Toolbar . 165
14.16 Screenshot der erweiterten Toolbar . 165
14.17 Screenshot der Workbench . 165

15.1 Aufbau des Construction Kit Servers . 168
15.2 Screenshot der CKS-Anmeldemaske . 169

viii ABBILDUNGSVERZEICHNIS

15.3 Screenshot der CKS-Dateiansicht . 169

16.1 Screenshot des Applets für komplexe Zahlen 174
16.2 Erstellung eines Bausteins in vier Momentaufnahmen 176
16.3 Erstellen eines Kurses in zwei Varianten . 178
16.4 Übersetzungsergebnis im Layout des GET Labs (HTML) 179
16.5 Übersetzungsergebnis im Layout von mαth-kit (HTML) 180
16.6 Übersetzungsergebnis im Layout von mαth-kit (PDF) 180
16.7 Theorieteil . 181
16.8 Explorationsteil . 182
16.9 Übungsteil . 182

Tabellenverzeichnis

4.1 RDF-Terminologie . 36

5.1 Übersicht der Autorensysteme (Teil 1) . 54
5.2 Übersicht der Autorensysteme (Teil 2) . 55

6.1 Übersicht der Lernplattformen . 66

10.1 Arbeitsteilung für systemunabhängige Komponenten 108
10.2 Arbeitsteilung für proprietäre Komponenten . 108

12.1 Gemeinsame Eigenschaften der Manifest-Elemente aus [Bungenstock04b] 139

Abkürzungsverzeichnis

AICC Aviation Industry CBT Committee
API Application Program Interface
ARIADNE Alliance Of Remote Instructional Authoring And Distribution Networks

for Europe
AWT Abstract Window Toolkit
BMBF Bundesministerium für Bildung und Forschung
BSCW Basic Support for Cooperative Work
CAI Computer-Assisted Instruction
CBR Case-Based Reasoning
CBT Computer Based Training
CKS Construction Kit Server
CMS Content Management System
CP IMS Content Packaging Information Model
CSS Cascading Style Sheets
DC Dublin Core
DCAP DC Application Profile
DII Dynamic Invocation Interface
DRM Digital Rights Management
DSSSL Document Style Semantics and Specification Language
DTD Document Type Defintions
GET Grundlagen der Elektrotechnik
GUI Graphical User Interface
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protoco
I18N Internationalization
IEEE Institute of Electrical and Electronics Engineers
IGD Fraunhofer Institut für Graphische Datenverarbeitung
ILS Integrated Learning Management System
IMC International Mail Consortium
J2EE Java 2 Platform, Enterprise Edition
J2SE Java 2 Platform, Standard Edition
JAX-RPC Java API for XML-Based RPC
JAXM Java API for XML Messaging
JPEG Joint Photographic Experts Group
JSP Java Server Pages
KI Künstliche Intelligenz
LCMS Learning Content Management System
LMS Learning Management Systemen
LO Learning Object
LODAS Learning Object Design and Sequencing Theory
LOM Learning Objects Metadata
LORI Learning Object Review Instrument
MathML Mathematical Markup Language

xii ABKÜRZUNGSVERZEICHNIS

MDI Multiple Document Interface
MIME Multipurpose Internet Mail Extensions
MVC Model, View, Controller
NFS Network File System
PC Personal Computer
PDA Personal Digital Assistants
PDF Portable Document Format
PIF Package Interchange File
PNG Portable Network Graphics
QName Qualified Name
RDF Resource Description Framework
RIO Reusable Information Objects
RLO Reusable Learning Objects
RPC Remote Procedure Call
SCO Sharable Content Objects
SCORM Sharable Content Object Reference Model
SCORM RTI SCORM Runtime Interface
SDK Software Development Kit
SGML Standard Generalized Markup Language
SMB Server Message Block
SOAP Simple Object Access Protocol
SWT Standard Widget Toolkit
TCP/IP Transmission Control Protocol / Internet Protocol
TGN Thesaurus of Geographic Names
TP Transformation Package
UCS Universal Multiple-Octet Coded Character Set
UI User Interface
UML Unified Modeling Language
URI Uniform Resource Identifier
URIref URI Reference
URL Uniform Resource Locator
VFS Virtual File System
VLE Virtual Learning Environment
VM Virtual Machine
W3C WWW Consortium
WAM Werkzeug, Automat, Material
WBT Web Based Training
WebDAV Web-based Distributed Authoring and Versioning
WSDL Web Services Description Language
WWW World Wide Web
WYSIWYG What You See Is What You Get
XML Extensible Markup Language
XPath XML Path Language
XSD XML Schemas Definition Language
XSL Extensible Stylesheet Language
XSL-FO XSL Formatting Objects
XSLT XSL Transformations

Kapitel 1

Einleitung

”Non scholae, sed vitae discimus.“ ”Nicht für die Schule, sondern für das Leben lernen wir“,
steht es schon ungefähr seit Beginn unserer Zeitrechnung geschrieben.1 Moderner wird heute
im Kontext des stetigen gesellschaftlichen und wirtschaftlichen Strukturwandels vom Lebens-
langen Lernen sowie der Wissensgesellschaft gesprochen. Jedem Individuum, unabhängig vom
sozialen Stand, soll durch Wissen die Möglichkeit auf persönliche Verwirklichung und Aner-
kennung gegeben sein. Nur so lässt sich der Wohlstand einer Gesellschaft wahren und für eine
ressourcenarme Nation wie Deutschland gilt dies um so mehr. Durch die Globalisierung steigt
der weltweite Konkurrenzdruck, sodass Kompetenz und Qualifikation einen Standortvorteil
bedeuten. Wissen muss folglich effektiv und effizient vermittelt werden.

Das Bundesministerium für Bildung und Forschung (BMBF) hat diesen Umstand erkannt
und fördert unter anderem das Programm ”Neue Medien in der Bildung“. Hierbei geht es um
die breite Nutzung didaktisch hochwertiger Lehr- und Lern-Software in allen Bildungsberei-
chen, also einen Bereich des E-Learnings. Mit Hilfe von Maschinen soll die Wissensvermitt-
lung verbessert werden.

Ein Projekt dieses Förderprogramms ist mαth-kit [Unger04; Unger02; Schiller02], das
den Kontext dieser Arbeit darstellt. Ziel des Projekts ist die Erstellung eines multimedia-
len Baukastens [Thiere03b] zur Unterstützung der Mathematikausbildung im Grundstudi-
um Mathematik, Technische Informatik, Maschinenbau und anderer Ingenieurwissenschaften
[Thiere03a; Padberg02b; Padberg02a; Rehberg03]. Die Elemente des Baukastens eignen sich
für Lehrende in Präsenz- und Fernlehre sowie für Studierende beim Selbststudium [Bauch03].
Als technische Realisierung ist eine flexible E-Learning-Plattform mit integriertem Autoren-
system gedacht, die eine reibungslose Zusammenarbeit mit existierenden Systemen erlaubt.
Da vier Universitäten2 an diesem Projekt beteiligt sind, gilt ein besonderes Augenmerk der
Erstellung bzw. Verwaltung von Inhalten in Gruppen. Insgesamt umfasst das Projekt mαth-
kit somit die Erstellung sowie Veröffentlichung mathematischer Inhalte mit Hilfe eines eigens
entwickelten Systems.

Der Fokus dieser Arbeit liegt auf der technischen Handhabung von Lehr- und Lerninhalten.
Hierzu gehören neben Kodierungen, Protokollen und Datenhaltungsformen auch die geeignete
Begriffs- bzw. Modellbildung. Beispiele für den konkreten Einsatz von E-Learning finden sich
z.B. in [Dittler03].

1Laut Büchmann [Büchmann94] handelt es sich um die Umkehrung des Ausspruchs
”
Non vitae, sed scholae

discimus“ aus den Epistulae morales von Seneca.
2Universitäten Paderborn, Hamburg, Bayreuth und Fernuniversität Hagen

2 Einleitung

1.1 Problemstellung

Bestrebungen nach technischen Vereinfachungen bei der Wissensvermittlung reichen bis ins 16.
Jahrhundert zurück, wie ein Kupferstich aus dem Jahre 1588 von Agostino Ramelli belegt.3

Abbildung 1.1 zeigt ein Bücherrad, das wahrscheinlich nie gebaut wurde.

Abbildung 1.1: Das Bücherrad

Heute werden Computer als Hilfsmittel beim Lernen eingesetzt, weil sie den Zugriff auf
Lerninhalte vereinfachen und die Darstellung komplexer Sachverhalte ermöglichen. Mit Hil-
fe des Internets kann von einfachen Abbildungen über Animationen bis hin zu interaktiven
Simulationen alles auf heimischen PCs dargestellt werden. Tragbare Laptops und Personal
Digital Assistants (PDA) erlauben in Kombination mit drahtlosen Übertragungswegen eine
arbiträre Verfügbarkeit von Daten an fast jedem Ort der Erde. Die Möglichkeiten scheinen
schier endlos zu sein. Doch reichen Internet und eine breite Palette von Anzeigeprogrammen
für das E-Learning aus?

In Hinblick auf die Erwartungen und Hoffnungen, die sich an das E-Learning richten,
kann die Antwort freilich nur ”Nein“ lauten. Zu hoch sind die Ansprüche der Lehrenden und
Lernenden, als dass sie in einfache HTML-Seiten gefasst werden könnten. Begriffe wie Wie-
derverwendbarkeit, Sequenzing oder Personalized Learning lassen erahnen, dass monolithisch
erstellte Inhalte unzureichend sind. Es bedarf daher eines modularen Aufbaus, der auf die
Anforderungen des E-Learnings eingeht.

3Agostino Ramelli (1531–1600) war ein italienischer Ingenieur des Königs von Frankreich. Der Originaltitel
des Buches lautete

”
Le diverse et artificiose machine“.

1.2 Zielsetzung 3

Die Realisierung eines solchen Konzepts wirft jedoch in Theorie wie Praxis eine Fülle neu-
er Fragen auf, deren Beantwortung Bestandteil dieser Arbeit ist. Zwar gibt es eine Reihe von
Modellen, Spezifikationen und Implementationen, die sich ausgiebig mit Teilfragen beschäfti-
gen, aber der globale Zusammenhang fehlt. Besonders die Lücke zwischen den theoretischen
Modellen und den existierenden Anwendungen scheint besonders groß zu sein. Konkret lassen
sich folgende Fragen ableiten:

• Was ist ein Modul im E-Learning-Kontext? Die existierenden Auffassungen variieren in
Umfang, Form und Funktion. Für die Beantwortung aller weiteren Fragen ist es wich-
tig, dass die gewählte Definition in Hinblick auf Didaktik und technischer Realisierung
genügend Spielraum gewährt.

• Wie können mehrere Module organisiert werden? Von Interesse sind die verschiedenen
Strukturen und Anordnungen, da sie die möglichen Aggregationen bestimmen.

• Wie sollen Inhalte klassifiziert werden? Die Module müssen mit Metadaten versehen
werden, um auffindbar zu sein.

• Wie sieht die technische Umsetzung eines Moduls aus? Die Kodierung der Module spielt
eine wesentliche Rolle für die Akzeptanz eines Systems.

• Wie werden Module erzeugt und bearbeitet? Entwicklungs- und Wartungsprozess müssen
vom System unterstützt werden.

• Wo werden Module gespeichert? Es stehen z.B. Dateisysteme, Datenbanken und spezielle
Repositories zur Verfügung.

• Wie werden Module und deren Aggregate einheitlich dargestellt? Inhalte aus verschiede-
nen Quellen sehen zwangsläufig unterschiedlich aus.

• Wie lassen sich Objekte, Funktionen und Merkmale umgangssprachlich beschreiben? Me-
taphern sind z.B. ein probates Mittel in der Informatik, um komplexe Sachverhalte zu
veranschaulichen.

Die Vorteile des Computers beim Lernen können nur genutzt werden, wenn Produktion,
Präsentation und Archivierung von E-Learning-Inhalten auf einem durchdachten Fundament
beruhen. Um Allgemeingültigkeit zu erlangen, ist darauf zu achten, dass Einflüsse sozialer
Art, wie z.B. Didaktik und Kultur, auf die technischen Konzepte vermieden werden. Bei der
Umsetzung gilt es letztendlich, auf proprietäre Lösungen zu verzichten.

1.2 Zielsetzung

Das Ziel dieser Arbeit ist, Entwurf, Implementation und Einsatz eines ganzheitlichen Kon-
zepts für modulare E-Learning-Inhalte zu realisieren. Ihre Produktion, Präsentation und Ar-
chivierung soll gesamt abgedeckt werden, um einen konsistenten Umgang zu gestatten. Das
reduziert die Kosten für Entwicklung, Wartung und Nutzung bei gleichzeitiger Qualitätsstei-
gerung. Wenn vorhanden, sollen bewährte Modelle, Spezifikationen und Implementationen als
Grundlage für die Realisierung eines technischen Systems dienen, das die genannten Merkmale
aufweist. Für eine angemessene Verifikation und Validierung soll es als Prototyp implementiert
werden.

Als Ausgangspunkt dient die Baukasten-Metapher des Projekts mαth-kit, die als Leitbild
für das System dient. Alle Objekte, die während des Entwurfs benannt werden, sollen sich an
den Begriff Baukasten anlehnen. Ein zentraler Gegenstand dieser Arbeit sind die modularen
Inhalte und ihr Funktionsumfang. Sie sollen zu größeren Einheiten kombiniert und umgekehrt
auch jederzeit in ihre Bestandteile zerlegt werden können. Durch eine Trennung von Inhalt

4 Einleitung

und Darstellung innerhalb der Module lassen sich so beliebige Lehr- und Lernmaterialien
erstellen, die wie aus einem Guss wirken. Dies fördert die Wiederverwendung, unterstützt
die Wartung und ermöglicht die Teamarbeit bei der Produktion. Auch Redundanzen bei der
Archivierung lassen sich durch diesen Ansatz verhindern. Bei zentraler Datenhaltung muss
jedes Modul nur einmal vorliegen, weil es lediglich referenziert wird. Die Metadaten gestatten
bei der Präsentation eine gezielte Auswahl, da sie auch bei Aggregationen von Modulen den
Zugriff auf einzelne Inhalte ermöglichen.

Für den Umgang mit modularen Inhalten werden passende Werkzeuge benötigt. Um den
Aufwand der Implementation so gering wie möglich zu halten, sollen viele bewährte Applika-
tionen eingesetzt werden. Hierzu gehören z.B. Web-Server, Datenbanken und Web-Browser.
Nur Funktionen, die von anderen Programmen oder Libraries noch nicht angeboten werden,
sollen in eigenen Werkzeugen umgesetzt werden.

1.3 Methodik

Diese Arbeit ist im angewandten Bereich angesiedelt, sodass die Ergebnisse durch Praxistaug-
lichkeit überzeugen müssen. Ausgehend von der allgemeinen Problemstellung modularer E-
Learning-Inhalte soll ein theoretisches Konzept entwickelt werden, das in einer speziellen Im-
plementierung mündet. Die abstrakte Problemstellung konkretisiert sich somit durchgehend
in immer genauere Teilprobleme. Am Ende steht ein Prototyp, mit dessen Hilfe die Funkti-
onstüchtigkeit des Konzepts induktiv bewiesen werden soll.

Es gibt verschiedene Wege, einen Prototypen zu erstellen. In dieser Arbeit soll das inkre-
mentelle Modell [Balzert00] eingesetzt werden, bei dem bereits am Anfang alle Anforderungen
des Systems vollständig erfasst werden. Die Umsetzung gliedert sich in Ausbaustufen, die peu
à peu die aufgestellten Anforderungen abdecken. Ein Vorteil dieses Verfahrens ist die schnelle
Verfügbarkeit eines lauffähigen Systems, mit dem erste Tests gefahren werden können. Des
Weiteren besteht keine Gefahr, dass die nächsten inkrementellen Erweiterungen nicht zu dem
bestehenden System passen, da bereits im Vorfeld alle Anforderungen bekannt sind. Weil sich
gewisse Abläufe bei den einzelnen Ausbaustufen wiederholen, wird bei dieser Art Prototyp
von einem iterativen Modell gesprochen.

Bei der Entwicklung soll auf die Konzepte der objektorientierten Software-Entwicklung
zurückgegriffen werden. Zur Notation wird die Unified Modeling Language (UML) [Obj03] ver-
wendet, die sich als Standard durchgesetzt hat. Sie ist eine Sammlung verschiedener Diagram-
marten, mit der sich dynamische wie statische Zusammenhänge darstellen lassen. Die eigent-
liche Implementierung wird mit der objektorientierten Programmiersprache Java [Gosling96]
durchgeführt, da sie einfach im Funktionsumfang und plattformunabhängig ist.

1.4 Systematik

Der Aufbau dieser Arbeit leitet sich aus der Methodik ab und besteht aus vier Teilen. Der erste
Stand der Wissenschaft gibt einen Überblick der aktuellen Arbeiten, die sich mit Aspekten
der Problemstellung beschäftigen. Es wird jeweils erläutert, wie sich das vorliegende Thema
in den Kontext der Arbeit fügt und welche relevanten Beiträge es gibt. Am Schluss dieses
Teils wird eine Bewertung durchgeführt, indem die Zielsetzung den beschriebenen Arbeiten
gegenüber gestellt wird, um bestehende Forschungslücken aufzudecken.

Der Teil Entwurf beschreibt detaillierter den benötigten Leistungsumfang und vermittelt
ein theoretisches Modell vom System. Für die Beschreibung einzelner Komponenten, Bezie-
hungen und Merkmale werden die Methoden der Software Technik herangezogen. Alle wichti-
gen Definitionen werden in UML-Notation angegeben und sind Basis für die Realisierung des
Systems.

Die wird im Teil Prototyp ausführlich erläutert. Zuerst werden die kohärenten Funktionen
in einzelne Libraries eingeteilt, um einen flexible Verwendung zu ermöglichen. Es wird nä-

1.4 Systematik 5

her auf interessante Implementationsdetails eingegangen und beschrieben, wie ein praktischer
Einsatz aussehen könnte. Danach werden die Applikationen von der Architektur bis zur Ober-
flächengestaltung vorgestellt und zu einem System zusammengeführt.

Abschließend wird im Teil Analyse die geleistete Arbeit untersucht und bewertet. Anhand
ausgewählter Beispiele werden typische Situationen beim Umgang mit dem System durch-
gespielt. Hierbei stehen Praxistauglichkeit und Ergonomie im Vordergrund. Es folgt eine Be-
schreibung der erreichten Ergebnisse und eine Abschlussbewertung. Abgerundet wird die Ana-
lyse mit einem Ausblick auf weiterführende Themen, die sich während der Arbeit abzeichneten,
aber nicht in dem vorgegebenen Zeitrahmen behandelt werden konnten.

Natürliche Sprachen unterliegen dem Zeitgeist. Aus diesem Grund sollen kurz ein paar
formale Gesichtspunkte genannt werden, die für diese Arbeit gelten. Der Text hält sich an
die 1996 reformierte deutsche Rechtschreibung. Soweit möglich, werden geschlechtsneutrale
Substantive genutzt, wie z.B. Lernende statt Lerner und Lernerin. Lässt sich kein geeigneter
Begriff bilden, werden beide Formen durch Schräg- und Bindestrich abgekürzt angegeben, wie
z.B. Autor/-in. Anglizismen werden sparsam genutzt, jedoch sind sie in einer Domäne wie
der Informatik unvermeidbar. Viele Begriffe haben sich bereits etabliert und sind in den all-
täglichen Sprachgebrauch übergegangen. So wird niemand ernsthaft E-Learning mit E-Lernen
oder Server mit Diener übersetzen. Zitate werden in ihrer Originalform belassen und weder
übersetzt noch in der Rechtschreibung angepasst.

Für eine bessere Lesbarkeit des Textes werden bestimmte Wörter mit Formatierungen
versehen, die sich vom restlichen Text abheben. Es soll folgende Konvention gelten:

Italic: Namen und nicht integrierte englische Wörter, z.B. Java, Repository
Bold: Einführung wichtiger Begriffe, z.B. E-Learning
Typewriter: Quellcode, z.B. System.out.println("Hello");

Der Name des Projekts mαth-kit wird stets klein und mit dem griechischen Buchstaben
Alpha geschrieben. Das wurde am Anfang von allen Beteiligten beschlossen und soll auch hier
gelten.

Teil I

Stand der Wissenschaft

Kapitel 2

Lerntheorie

Die Hauptmotivation bei der Einführung neuer Medien beim Lernen ist die Optimierung des
Lernprozesses. Alle Theorien, Entwürfe und Umsetzungen, die bei der Realisierung eines tech-
nischen Systems für E-Learning entstehen, müssen daher auf dieses Ziel ausgerichtet sein.
Die Verbesserung eines Prozesses lässt sich jedoch nur erreichen, wenn die theoretischen Hin-
tergründe bekannt sind. Aus diesem Grund wird ein kurzer Überblick über die Theorie des
Lernens gegeben und ein Modell ausgewählt, mit dessen Hilfe weitere Klassifikationen von
Lerninhalten durchgeführt werden.

2.1 Kompetenzstufen

Die Brüder Dreyfus haben ein fünfstufiges hierarchisches Lernmodell entwickelt, mit dem sich
der Entwicklungsprozess von Lernenden beschreiben lässt [Dreyfus86; Humbert05; Klein99;
Metzinger99]. Die zentrale Idee des Modells ist, dass Lernende von einem statischen Fak-
tenwissen über ein dynamisch theoretisches Wissen zu intuitiven Fertigkeiten gelangen. Ein
Mensch, der einer bestimmten Stufe zugeordnet werden kann, ist hierbei immer besser, als
die höchstbegabten Menschen der darunter liegenden Stufen. Die fünf Stufen werden Novice
(Neuling), Advanced Beginner (Fortgeschrittene/-r Anfänger/-in), Competent (Kompetenz),
Proficient (Gewandtheit) und Expertise (Expertentum) genannt.

Neuling:
Der ersten Stufe sind alle Lernende zugeordnet, die sich einem ihnen unbekannten The-
ma zum ersten Mal annähern. Sie erlernen das Erkennen von Fakten und Mustern, um
mit vorgegebenen Regeln ihre Handlungen zu bestimmen. Bei den Regeln handelt es
sich um ”kontextfreie Regeln“, da sie situationsunabhängig anhand eindeutig erkennba-
rer Elemente vom Neuling eingesetzt werden. Die Bewertung des Lernerfolgs umfasst
lediglich, wie die erlernten Regeln befolgt wurden.

Fortgeschrittene/-r Anfänger/-in:
Beim ausgiebigen Lernen sammeln Menschen vielfältige Erfahrungen, wie mit realen Si-
tuationen umzugehen ist. Dies befähigt sie, mehr und kompliziertere kontextfreie Regeln
in ihre Überlegungen einzubeziehen. Lernende fangen an, relevante Elemente selbständig
und schneller zu erkennen, da sie aus vorherigen Beispielen schon bekannt sind. Auch
für diese ”situationalen“ Elemente gibt es Verhaltensregeln. Der Lernerfolg der Fort-
geschrittenen zeigt sich in der gewonnenen Erfahrung, die nicht objektiv beschreibbar
ist.

Kompetenz:
Die Handlung von Menschen auf dieser Stufe ist durch die Wahl eines Organisationsplans
geprägt. Sie kennen bereits viele relevante Fakten und Regeln, die sie auf ein breites
Spektrum von Fällen anwenden können. Durch die Organisation einer Situation muss

10 Lerntheorie

nur noch eine kleine Menge an Faktoren eines Plans berücksichtigt werden, wodurch
die Komplexität einer Aufgabe reduziert wird. Für die Auswahl des Planes benötigt die
kompetente Person jedoch einige Überlegungen, da die Tragweite der Wahl das gesamte
Vorgehen entscheidet. Der Lernerfolg zeigt sich im Wandel der eigenen Beziehung zu
der Umwelt. Die Kompetenten fühlen sich verantwortlich für ihr eigenes Handeln und
den sich ergebenden Konsequenzen. Obwohl sie während des Entscheidungsprozesses
Abstand zu den Dingen bewahren, sind sie mit den Auswirkungen ihres Handelns zutiefst
verbunden.

Gewandtheit:
Die Fertigkeit der Lernenden nicht nur schlichte Regeln anzuwenden, sondern bewusst
Entscheidungen zu treffen, wird mit wachsender Erfahrung intuitiver ausgeprägt sein. Ei-
ne gewandte Person fühlt sich wie der Kompetente mit ihrem Problem verbunden, jedoch
wählt sie ihren Organisationsplan nicht aufgrund distanzierter und reflektierter Bewer-
tungen. Vielmehr geschieht die Handlung automatisch, ohne bestimmte Überlegungen,
da auf Erfahrungen vergangener Situationen zurückgegriffen wird. Diese Intuition ist
eine Fähigkeit bei alltäglichen Problemen, und kein Raten oder eine übernatürliche In-
spiration. Der Lernerfolg zeigt sich durch die intuitive Benutzung von Mustern, die nicht
in einzelne Komponenten zerlegt werden müssen.

Expertentum:
Das Handeln von Personen auf dieser Stufe ist nicht distanziert von den Problemen, nicht
von Gedanken der Auswirkungen geprägt und verläuft nicht nach Organisationsplänen
— es ist bereits Bestandteil der Person geworden. Dies bedeutet allerdings nicht, dass
Experten/-innen unüberlegt wichtige Entscheidungen treffen oder sich ihrer Handlungen
nicht bewusst sind. Auch ihnen unterlaufen Fehler und unvorhersehbare Ereignisse kön-
nen Probleme bereiten. Der Lernerfolg zeigt sich deshalb durch das Eingebunden-Sein
in Problemsituationen.

2.2 Lernparadigmen

Neben den verschiedenen Stufen, die Menschen während des Lernens erreichen können, sind
auch die verschiedenen Paradigmen des Lernens — historisch gewachsene Theorien, die in sich
abgeschlossen sind — von Bedeutung. Im letzten Jahrhundert sind, hier in chronologischer
Reihenfolge angegeben, Behaviorismus, Kognitivismus und Konstruktivismus als maß-
gebliche Theorien zu nennen [Baumgartner97]. Sie basieren alle auf bestimmten Annahmen
zur Arbeits- und Funktionsweise des Gehirns, wodurch sich unterschiedliche Lehrstrategien
und Lernziele ergeben.

2.2.1 Behaviorismus

Im Behaviorismus wird Lernen als konditionierter Reflex betrachtet, der durch Adaption erwor-
ben wird. Als Begründer des Behaviorismus gilt der amerikanische Psychologe John Broadus
Watson von der Johns Hopkins Universität [Wozniak94]. Seit seiner Arbeit ”Psychology as
the behaviorist views it“ (1913) werden alle Forschungen unter diesem Begriff zusammenge-
fasst, deren Basiseinheiten aus Reiz-Reaktions- bzw. Stimulus-Response-Verbindungen (S-R-
Verbindungen) bestehen. In den fünfziger Jahren wurde der Behaviorismus zum beherrschen-
den Paradigma der amerikanischen Psychologie und nur wenige Jahre im späteren Nachkriegs-
europa übernommen.

Im Prinzip betrachtet der Behaviorismus das menschliche sowie das tierische Gehirn als
eine Black-Box, bei der ein Input (Reiz) einen deterministischen Output (Reaktion) erzeugt
(Abbildung 2.1).

Ob der gewünschte Output zum Input passt, also das gezeigte Verhalten richtig war, wird
über ein extern gesteuertes Feedback vermittelt, den so genannten Konsequenzen. Sie sollten

2.2 Lernparadigmen 11

�
�
�
�

�
�
�
�

Output Input

extern gesteuertes Feedback

Gehirn ist eine Black−Box

Abbildung 2.1: Schematisches Modell des Behaviorismus [Baumgartner99, S.102]

in einem kurzen Zeitraum, am besten unmittelbar, auf das Verhalten folgen, um eine Ver-
stärkung bei positiven Leistungen bzw. eine Abschwächung oder Löschung bei negativen zu
erreichen [Kerres98].

Die behavioristische Lehrstrategie setzt daher voraus, dass die Lehrenden genau wissen,
was richtig und was falsch ist, da sie für die Konsequenzen verantwortlich sind. Dagegen stellt
sich der Lernprozess für die Lernenden als eine Art Verhaltenssteuerung dar und steht damit
im Gegensatz zum kognitiven Lernen. Obwohl diese Art des Lehrens heute als nicht mehr
zeitgemäß erachtet wird, hat sie in gewissen Bereichen noch ihre Existenzberechtigung. Als
Beispiel sei das Drill & Practice Muster in Sprachlabors genannt oder das erlernen körperlicher
Fertigkeiten wie Maschinenschreiben, Jonglieren und Autofahren.

2.2.2 Kognitivismus

Die hauptsächliche Kritik am Behaviorismus, dass die inneren Prozesse des Gehirns ausge-
blendet werden und folglich die komplexen Vorgänge des menschlichen Lernens keine Berück-
sichtigung finden, hat zum Kognitivismus geführt.

”Die kognitionstheoretische Grundposition unterscheidet sich von der behavioris-
tischen zunächst dadurch, daß der Lernende als ein Individuum begriffen wird,
das äußere Reize aktiv und selbständig verarbeitet und nicht einfach durch äußere
Reize steuerbar ist.“ [Tulodziecki96, S. 43]

Der Kognitivismus ist heute das noch dominierende Paradigma und es gibt eine Reihe
von verschiedenen Ausprägungen. Allen gemein ist der Begriff der Informationsverarbeitung,
was zu einer gewissen Äquivalenz von Computer und Gehirn führt. Abhängig von der Ein-
schätzung dieser Annahme, kann von ”starker“ oder ”schwacher“ Künstlicher Intelligenz (KI)
gesprochen werden [Searle86]. Die ”starke“ KI geht von dem Standpunkt aus, dass die Be-
ziehung zwischen menschlichem Gehirn und Computern eine Analogie ist und nicht bloß ein
methodisches Verfahren. Minsky, als Vertreter dieser Ansicht, schreibt in dem Prolog seines
Buchs Mentopolis:

”Die meisten Leute glauben immer noch, daß keine Maschine je ein Gewissen,
Ehrgeiz, Neid, Humor entwickeln oder andere geistige Lebenserfahrungen machen
kann. Natürlich sind wir weit davon entfernt, Maschinen mit menschlichen Fähig-
keiten bauen zu können. Aber das bedeutet, daß wir bessere Theorien über die
Denkfähigkeit brauchen.“ [Minsky94, S. 19]

Anhänger der ”schwachen“ KI gehen nicht so weit und sehen die Analogie als eine heuris-
tische Annahme. Unabhängig von der Sichtweise sind sich die Kognitivisten darin einig, dass
die Prozesse innerhalb des menschlichen Gehirns modelliert werden müssen. Hierfür müssen
geeignete Wissensrepräsentationen und Algorithmen gefunden werden, mit denen die Fähig-
keiten Lernen, Erinnern, Vergessen etc. modelliert werden können. Denkprozesse sind dann

12 Lerntheorie

�
�
�
�

�
�
�
�

Output Input

extern modelliertes Feedback

Verarbeitungsprozesse interessieren
interne

Abbildung 2.2: Schematisches Modell des Kognitivismus [Baumgartner99, S.105]

Wechselwirkungen von externen Angeboten und internen Strukturen. Abbildung 2.2 verdeut-
licht diesen Zusammenhang.

Beim Lernen muss der Kognitivismus daher von einem objektiven externen Wissen aus-
gehen, welches in der Realität unabhängig vom Bewusstsein existiert. In dem schematischen
Modell wird die Steuerung des externen Einflusses auf den Lernenden durch das Feedback an-
gedeutet. Eine bedeutende Schwäche dieses Paradigmas ist die unmögliche bzw. umständliche
Modellierung körperlicher Fertigkeiten.

2.2.3 Konstruktivismus

Im Konstruktivismus wird Lernen als aktiver Prozess betrachtet, bei dem der Mensch durch
seine Sinne die Umwelt wahrnimmt und in Beziehung mit früheren Erfahrungen zu einem indi-
viduellen Wissen konstruiert. ”Die Umwelt, so wie wir sie wahrnehmen, ist unsere Erfindung.“
[Foerster95, S.40]. Das Gehirn wird als selbstreferentielles System betrachtet, das Energien
— nicht Informationen — über die Sinnesorgane verarbeitet und daraus neue individuelle
Informationen erzeugt (Abbildung 2.3).

� �
� �
� �
� �
� �
� �
� �

�
�
�
�
�
�
�

energetisch offen −
informationell geschlossen

Gehirn ist ein selbstreferentielles System

Wahrnehmung

Kopplung

Realität

Abbildung 2.3: Schematisches Modell des Konstruktivismus [Baumgartner99, S.108]

Damit bildet dieses Paradigma den Gegensatz zum Kognitivismus, bei dem objektive In-
formationen aufgenommen und verarbeitet werden. Freilich verleugnet der Konstruktivismus
nicht eine existierende Realität, jedoch geht er davon aus, dass sie nicht objektiv empfunden
werden kann.

Für das Lehren und Lernen zieht diese Ansicht Konsequenzen nach sich. Streng genommen
kann es z.B. keine optimale Wissensvermittlung geben, da sie individuell und unvorhersagbar
ist. Die Lehrenden können unterstützend wirken, indem sie die Aktivierung von Vorkenntnis-
sen, ihre Ordnung, Korrektur, Erweiterung, Ausdifferenzierung und Integration fördern.

”Lernen bedeutet nach dem konstruktivistischen Paradigma: Wahrnehmen, Erfah-
ren, Handeln, Erleben und Kommunizieren, die jeweils als aktive, zielgerichtete
Vorgänge begriffen werden.“ [Klimsa93, S. 22]

Sie begleiten den Lernprozess und verhelfen den Lernenden zu eigenen Problemstellungen,
die selbständig entwickelt und gelöst werden müssen. Die Problemfindung kann ein chaotischer,
verwirrender Prozess sein, der aber dem Lernen zuträglich ist. Als einziges Paradigma der drei

2.3 Lehrer/-in, Tutor/-in und Coach 13

genannten orientiert sich der Konstruktivismus mehr am Lernenden und macht die Qualität
der Wissensvermittlung nicht nur an der Eingabe der Lehrenden fest.

Ende der achtziger, Anfang der neunziger Jahre haben sich drei Ansätze des ”gemä-
ßigten“ Konstruktivismus hervorgetan, denen gemein ist, dass sie Situiertheit und Anwen-
dungsbezogenheit in den Vordergrund stellen. Die Anchored-Instruction-Theorie [CTGV90;
CTGV93] verpackt authentische Probleme in Geschichten, die Cognitive-Flexibility-Theorie
[Spiro88; Spiro91] setzt auf den Facettenreichtum realer Problemstellungen und die Cognitive-
Apprenticeship-Theorie [Spiro88] nutzt authentische Aktivitäten und soziale Interaktionen in
Expertenkulturen.

2.3 Lehrer/-in, Tutor/-in und Coach

Die beschriebenen Lernparadigmen wirken sich erwartungsgemäß auf die Lehre bzw. die Art
der Wissensvermittlung aus. In [Baumgartner97] wird für jede der drei Theorien ein Begriff
und eine Eigenschaftsbeschreibung für Lehrende definiert. Demnach werden Lehrende im Be-
haviorismus als Lehrer/-innen bezeichnet, die als Autoritätspersonen auftreten und genau
wissen, was sie vermitteln möchten. Sie müssen nur die geeigneten Mittel und Wege für den

”Wissenstransfer“ finden.
Im Kognitivismus werden gestellte Aufgaben von den Lernenden relativ selbständig bear-

beitet, weshalb die Lehrenden den Lösungsprozess als Tutoren begleiten. Sie beobachten und
geben bei Bedarf Hilfestellungen.

Im Konstruktivismus nehmen Lehrende die Rolle eines Coaches ein. Lernende generieren
sich die Problemstellungen selbst, um komplexe Situation zu bewältigen. Hierdurch verlieren
die Lehrenden ihre Unfehlbarkeit, da sie sich der Kritik der praktischen Situation aussetzen.
Ihre lehrende Funktion nehmen sie durch ihre Erfahrung und die Fähigkeit der Betreuung war.

Abbildung 2.4 stellt die verschiedenen Lehrmodelle gegenüber und zählt die relevanten
Eigenschaften auf.

Lehrer/-in Tutor/-in Coach

• Faktenwissen,
"know-that"

• Vermittlung

• wissen,
erinnern

• Wiedergabe korrekter
Antworten

• Merken,
Wiedererkennen

• lehren,
erklären

• Prozeduren, Verfahren,
"know-how"

• Dialog

• (aus)üben,
Problemlösen

• Auswahl und Anwendung
der korrekten Methoden

• Fähigkeit,
Fertigkeit

• beobachten, helfen,
vorzeigen

• soziale Praktiken,
"knowing-in-action"

• Interaktion

• reflektierend handeln,
erfinden

• Bewältigung komplexer
Situationen

• Verantwortung,
Lebenspraxis

• kooperieren,
gemeinsam umsetzen

Abbildung 2.4: Drei Lehrmodelle [Baumgartner97]

14 Lerntheorie

2.4 Ein heuristisches Lernmodell

Die beschriebenen Kompetenzstufen mit ihren Lernelementen und das Lehrmodell können zu
einem heuristischen Lernmodell zusammengefügt werden [Baumgartner99]. Hierdurch ergibt
sich ein Modell, das die drei wichtigen Variablen Lernziele, Lerninhalte und Lehrstrategi-
en beinhaltet. Die Beziehungen und Zusammenhänge zwischen den gleichrangigen Variablen
können so dreidimensional dargestellt werden. Abbildung 2.5 zeigt das Modell als Würfel.

anwenden

erinnern
rezipieren

nachahmen

auswählen
entscheiden

verstehen
entdecken

handeln
entwickeln

Fakten,
kontext−
freie
Regeln

kontext−
abhängige
Regeln

Problem−
lösung

komplexe
Situation

Gestalt,
Muster−
erkennung

(Coach)
betreuen, kooperieren

lehren, erklären
(Tutor)

beobachten, helfen
(Lehrer)

Lernziele

Lehrstrategie

Lerninhalte

Expertentum

Gewandtheit

Kompetenz

Anfängertum

Neuling

Abbildung 2.5: Ein heuristisches Lernmodell [Baumgartner99, S.96]

Ein wichtiger Punkt bei diesem Modell ist, dass es nur für Untersuchungszwecke einge-
setzt werden kann und kein Entscheidungs- oder Vorgehensmodell ist. Schulmeister gibt in
[Schulmeister03] die implizite Abgeschlossenheit zu bedenken. Ein Würfel kann nicht um eine
vierte Dimension erweitert werden und die Skalierung der drei Dimensionen muss feststehen.
Ob dieses Modell allen auftretenden Szenarien gerecht wird, kann in dieser Arbeit nicht be-
trachtet werden.

Dennoch soll Baumgartners Modell in dieser Arbeit als eine Lösung für die Taxonomie
subjektiver Metadaten gesehen werden, wie sie in Kapitel 4 vorgestellt werden. Bei einer
Beschreibung von Lernmaterialien kann mit Hilfe des Modells eine Beziehung zwischen dem
Wissen in einer Disziplin, dem angestrebten Niveau des Lernens und den lerntheoretischen An-
sätzen angegeben werden. Dies ist bereits viel mehr, als die verbreiteten Metadaten-Standards
zu bieten haben.

2.5 E-Learning-Historie

Der Begriff E-Learning ist die Kurzfassung für Electronic Learning und umfasst die Gruppe
der Lehr- und Lernverfahren, die Informations- und Kommunikationstechnologien einsetzen.
Abhängig vom jeweiligen Stand der Technik, haben sich in der Entwicklung des E-Learnings
unterschiedliche Systeme und Verfahren entwickelt. Bodendorf teilt diesen Prozess in drei
Phasen ein, die in Abbildung 2.6 dargestellt sind.

2.5 E-Learning-Historie 15

Großrechner
Personal Computer

Workstations

"Intelligente"
Lehrsysteme

Testsysteme

Tutorial−, Trainings−,
Simulations−, Spiel−,

Programmierte
Unterweisung

50 er 70 er60 er 80 er 90 er Jahre

Abbildung 2.6: Entwicklung der computerunterstützten Ausbildung nach [Bodendorf90, S.15]

Burrhus Skinner entwickelte in den fünfziger Jahren eine erste ”Lernmaschine“ [Skinner54].
Um das Lernen effizienter zu gestalten, zerlegte er den Lernprozess in so viele Teile, dass dieser
nicht mehr von einer Lehrerin oder einem Lehrer vermittelt werden konnte und eine maschi-
nelle Unterstützung bedurfte. Mit dem Einzug der Großrechner wurde zunächst versucht, den
gängigen Unterricht nachzuimplementieren, allerdings mit mäßigem Erfolg. Die Programme
waren in der Bedienung schlichtweg zu kompliziert und verlangten spezielle EDV-Kenntnisse.

In den siebziger Jahren kam mit dem Personal Computer (PC) eine preiswerte Alter-
native zu den Großrechnern auf den Markt. Sie wurden zunächst wie die Telemedien —
hierzu zählen z.B. Diaprojektoren, Videorecorder und Bildplattenspeicher — als unterstützen-
de Hilfsmittel eingesetzt. Mit der Zeit entwickelte sich dann das Computer Based Training
(CBT), bei dem den Lernenden komplexe Sachverhalte multimedial vermittelt werden. Der
Begriff Multimedia ist hierbei als technisches Attribut zu sehen:

”The mixing of audio, video, and data is called multimedia; it sounds complicated,
but is nothing more than commingled bits.“ [Negroponte96, S. 18]

Mit der Verbreitung des Internets entwickelte sich aus dem CBT das Web Based Trai-
ning (WBT) und befreite die Lernenden aus ihrer Isolation. Neben der besseren Verfügbarkeit
der Lernmaterialien über das Netzwerk werden verschiedene Kommunikationsmethoden wie
z.B. E-Mail, Forum und Chat angeboten. Abbildung 2.7 verdeutlicht noch einmal die Gemein-
samkeiten und Unterschiede von CBT und WBT als Diagramm.

Multimedien Telemedien

CBT

WBT

Abbildung 2.7: Begriffsbildung von WBT und CBT nach [Kerres98, S.14]

Kapitel 3

Lernobjekte

Inhalte für E-Learning benötigen eine gewisse Form, um sie elektronisch verarbeiten zu können.
In der Literatur wird diese überwiegend als Lernobjekt (Learning Object) bezeichnet, ohne
dass es einen gemeinsamen Konsens darüber gibt, was sich eigentlich hinter diesem Begriff
verbirgt. Viele, die sich mit diesem Thema intensiv beschäftigen, stellen dieses Faktum fest
und tragen ihre persönliche Definition bei, sodass ein Wust an Beschreibungen entstanden ist,
der mühsam zu durchschauen ist.

Für diese Arbeit ist eine präzise Definition des Begriffs Lernobjekt von tragender Be-
deutung, da er das Fundament für die Umsetzung des Baukastens ist. Aus diesem Grund
werden verschiedene Aspekte der Lernobjekte betrachtet, um den gesamten Kontext dieses
Begriffs auszuleuchten. Zuerst soll geklärt werden, was ein Lernobjekt ausmacht und welche
Eigenschaften es im idealen Fall besitzt. Anschließend wird die Problematik der geeigneten
Granularität angegangen (Abschnitt 3.3), die sich in der Praxis oft als schwierigste Aufgabe
erweist.

3.1 Warum werden Lernobjekte benötigt?

Bevor die Lernobjekte näher untersucht werden können, muss als erstes ihr Bedarf festgestellt
werden. Ein Beispiel von Stephen Downes [Downes00a] in leicht abgewandelter Form soll als
erster Anhaltspunkt dienen.

Alle Universitäten in Europa zusammengenommen bieten sicherlich hunderte von Veran-
staltungen an, in denen trigonometrische Funktionen behandelt werden. Die Mehrheit der Do-
zenten werden ihre selbst entwickelten Lehrmaterialien einsetzen, sodass die trigonometrischen
Funktionen viele Male mit geringfügigen Unterschieden behandelt werden. Unter ökonomischen
Gesichtspunkten ist diese Redundanz nicht akzeptabel, da die Erstellung guter Lehrmateriali-
en mit erheblichen Kosten verbunden ist. Es ist somit besser, ein Thema einmalig erschöpfend
aufzubereiten und als Lernobjekt in allen Veranstaltungen — individuellen Animositäten bei-
seite gelassen — einzusetzen. Eine Kostenreduzierung durch Wiederverwendung ist somit ein
Argument für Lernobjekte.

Aber nicht nur aus finanziellen Gründen, sondern auch für die Verwirklichung der Mehr-
werte des E-Learnings, die bereits 1969, noch unter dem Namen Computer-Assisted Instructi-
on (CAI), ausführlich in [Atkinson69] beschrieben wurden, sind Lernobjekte von Bedeutung.
Demnach soll Lehrstoff beim E-Learning adaptiv, generisch und skalierbar sein [Gibbons02].
Die ersten zwei Adjektive sind Grundlage für ein individuelles, verbessertes Lernen und fin-
den sich heute im personalisierten Lernen wieder [Martinez00]. Adaptiver Lehrstoff passt sich
dem Wissens- und Leistungsstand der Lernenden an, indem z.B. geeignete Lernpfade oder
ausgewählte Übungen angeboten werden. Daher kann die Zusammenstellung nicht im Voraus
sondern nur generisch erfolgen. Es ist somit möglich, dass zwei Studierende mit ungleichen
Voraussetzungen unterschiedlichen Lehrstoff bearbeiten, obwohl beide das gleiche Thema in
einem Kurs behandeln. Personalisiertes Lernen benötigt zur Aufteilung der Inhalte folglich ei-

18 Lernobjekte

ne technische Einheit wie das Lernobjekt, die von einem System selbständig verarbeitet wird.
Eine Verbesserung der Lehre ist somit ein weiteres Argument für Lernobjekte. Die Forderung
des CAI nach skalierbaren Inhalten hingegen, bedeutet die Vervielfältigung von Lehrmateriali-
en nach industriellen Maßstäben und deckt sich mit den Anforderungen der Kostenreduktion,
die bereits im Beispiel von Downes beschrieben sind.

3.2 Was ist ein Lernobjekt?

Das Lernobjekt ist für die technische Realisierung von E-Learning unerlässlich, doch wie ist
es nun genau definiert? Um dieser Frage nachzugehen, werden verschiedene Ansätze erläutert
und bewertet. Abschließend wird eine genaue Definition gegeben, die als Grundlage für weitere
Betrachtungen gilt.

Bevor es weiter in die Details geht, soll hier ein etymologischer Fehler des Begriffs Lernob-
jekt ausgeräumt werden, der sehr häufig in der Literatur zu finden ist: Das Lernobjekt rühre
vom objektorientierten Paradigma der Software-Technik her. Diese Herleitung ist definitiv
falsch, da es weder Klassen noch erzeugte Objekte gibt. Wenn die Nähe zur Software-Technik
gewünscht ist, wäre der Begriff Modul mit seinen Eigenschaften angebrachter. Tatsächlich
gibt es in Wissenschaft und Wirtschaft eine Reihe anderer Begriffe, aber im Prinzip beschrei-
ben sie und ihre Permutationen immer das gleiche Konzept, sodass sie als Synonyme für das
Lernobjekt angesehen werden. Dies sind z.B.:

• Learning Module

• Instruction Object

• Educational Object

• Content Object

• (Reusable) Information Object

• Training Component

• Nugget

• Chunk

Weitere Bestrebungen für Lernobjekt-Ontologien finden sich z.B. in [Mosley05; Qin04].

3.2.1 Lernobjekte nach Cisco Systems

Das Unternehmen Cisco Systems beschreibt in seinem Strategie-Papier [Cis99] einen Ansatz
für Lernobjekte auf Basis von Reusable Information Objects (RIO). Ein RIO ist eine gra-
nulare und wiederverwendbare Informationseinheit, die einmal entwickelt, auf verschiedenen
Medien eingesetzt werden kann. Sie ist unabhängig von anderen RIOs, kann aber bei Be-
darf mit ihnen zu höheren Strukturen, den Reusable Learning Objects (RLO), kombiniert
werden. Ein RLO sollte, wie in Abbildung 3.1 dargestellt, aus Überblick, Zusammenfassung,
Bewertung und 5–9 RIOs bestehen.

Mit diesem Ansatz soll ein Paradigmen-Wechsel herbeigeführt werden, weg von den tra-
ditionellen Kursen, die als unflexible, monolithische Blöcke daherkommen, hin zu den wieder-
verwendbaren Lernobjekten. Die Hauptkritik am Kurs liegt am vorgegebenen Lernpfad, der
von den Lehrenden einmalig entwickelt wird und somit nur kognitivistisches Lernen (siehe z.B.
[Searle86; Tulodziecki96]) erlaubt. Auf die individuellen Voraussetzungen der Lernenden, wie
z.B. Vorwissen und Begabung, kann bei dieser uniformen Lehre nicht eingegangen werden.

Cisco unterscheidet zwischen den Vorteilen eines RIOs für Autoren und Lernende. Die
Autoren profitieren von den RIO-spezifischen Templates als Grundlage für ein konsistentes

3.2 Was ist ein Lernobjekt? 19

O
v
e
r
v
i
e
w

S
u
m
m
a
r
y

RIOs
(7 2)+−

Assessment
postpre

Abbildung 3.1: RLO-RIO-Struktur

Design, der Wiederverwendbarkeit von RIOs in zukünftigen Projekten und der Erstellung von
höheren Strukturen, den so genannten RLOs. Für die Lernenden sind die RIOs konsistent in
Design und Struktur, stehen jederzeit zur Verfügung und erlauben individuelle Lernpfade, die
sich ihrem Wissen und ihren Fähigkeiten anpassen.

3.2.2 Lernobjekte nach Hodgins

Wayne Hodgins motiviert in seinem Whitepaper [Hodgins00] den Einsatz von Lernobjekten
als Container für Information. In unserer Wissensgesellschaft ist das Wissen in den Köpfen von
Experten die wertvollste Ressource, die, natürlichen Ressourcen gleich, ihren wahren Wert erst
durch Extraktion, Aufbereitung und Veröffentlichung erhält. Ziel muss also sein, das vorhan-
dene Wissen zu konvertieren, um es mit anderen in Konversation, Abbildung, geschriebenem
Wort, Modell, Simulation und anderen Formen auszutauschen. Es ist jedoch wichtig, dass die
Lernenden nur mit den Informationen konfrontiert werden, die sie wirklich benötigen.

Die Größe der Informationseinheiten spielt für Hodgins eine wesentliche Rolle:

”Size matters: Smaller is better.“ [Hodgins00, S. 27]

Er kritisiert die bisherigen Kursgrößen, weil aus Gründen der Effizienz Kurse allumfassend und
uniform gestaltet werden, um sie vielen Lernenden zur Verfügung zu stellen. Zudem werden
meist proprietäre Datenformate genutzt, sodass es neben den bekannten Einschränkungen mit
dem vorgegebenen Lernpfad auch noch zu Kompatibilitätsproblemen kommt. Informationen
müssen also im Sinne der Wiederverwendbarkeit in kleinen, kompatiblen Einheiten bereit
gestellt werden, die sich beliebig rekombinieren lassen. Hodgins schlägt für die technische
Realisierung die Reusable Information Objects (RIO) von Cisco vor (siehe Abschnitt 3.2.1),
die sich nach der Hierarchie in Abbildung 3.2 richten.

Für die Generierung dieser Strukturen werden zusätzlich Metadaten benötigt, die den
Inhalt des jeweiligen Lernobjekts charakterisieren. Sie können entweder objektiv sein, d.h., eine
automatische Vergabe durch das System ist möglich (z.B. das Erstellungsdatum), oder sind
subjektiv und unterliegen der persönlichen Einschätzung einzelner Personen oder Gruppen.

Um die Eigenschaften der Lernobjekte verständlicher zu beschreiben, bedient sich Hodgins
des LEGO-Bausteins als Metapher1. Mit den gleichen Bausteinen lassen sich Brücken, Häuser
oder Raumschiffe bauen. Es ist zudem jederzeit möglich, die Gebilde wieder in ihre Bestandteile

1Eine Reihe weiterer Autoren (z.B. [Mason00]) gebraucht ebenfalls LEGO-Bausteine als Metapher. Es lässt
sich jedoch nicht mehr genau feststellen, wer der Urheber ist.

20 Lernobjekte

Eg. Simulation

Topical Unit

Reusable
Learning Object

Information
Objects

Abbildung 3.2: Lernobjekt-Hierarchie nach [Hodgins00, S. 28]

zu zerlegen und neu zu kombinieren. Genauso flexibel verhalten sich Lernobjekte, die beliebig
kombinierbar bzw. zerlegbar sind und die Grundlage für ein personalisiertes Lernen bilden.

3.2.3 Lernobjekte nach Wiley

Für David A. Wiley hat das Internet die Kommunikation zwischen den Menschen verändert
und wird auch die zukünftige Art des Lernens beeinflussen [Wiley02]. Daher ist es unver-
meidlich, dass sich auch die Form des Lernmaterials anpassen wird. Er nennt als führende
Technologie die Lernobjekte, da sie wiederverwendbar, generisch, anpassbar und skalierbar
sind. Eine allgemeine Akzeptanz in Universitäten und Wirtschaft kann jedoch nur durch die
Einigung auf verbindliche Standards erreicht werden.

”Without such standards, universities, corporations, and other organizations around
the world would have no way of assuring the interoperability of their instructional
technologies, specifically their learning objects.“ [Wiley02, S. 4]

Wichtige Organisationen auf dem Gebiet der Lernobjekt-Standards sind z.B. LTSC2, IMS3,
ADL4 und ARIADNE5. Als Ausgangspunkt seiner eigenen Definition für Lernobjekte dient
Wiley daher die des IEEE-LOM-Standards (siehe Abschnitt 4.3):

”For this Standard, a learning object is defined as any entity — digital or non-
digital — that may be used for learning, education or training.“ [IEE02a, S. 5]

Er stört sich an dem ”non-digital“, da es nicht zu seiner Internet-Philosophie passt, und dem

”may be used“, wodurch nicht wiederverwendbare Ressourcen einbezogen werden. Seine Um-
formulierung lautet nun:

”... will define a learning object as ‘any digital resource that can be used to support
learning.“ [Wiley02, S. 7]

Beim Umgang mit Lernobjekten müssen didaktische Theorien eine Rolle spielen, wenn sie
die Lehre verbessern sollen. Für eine dynamisch automatische Komposition von Lernobjek-
ten, die Voraussetzung für personalisiertes Lernen, müssen Metadaten über die angewandte

2http://ieeeltsc.org (29.10.05)
3http://www.imsglobal.org (29.10.05)
4http://www.adlnet.org (29.10.05)
5http://www.ariadne-eu.org (29.10.05)

http://ieeeltsc.org
http://www.imsglobal.org
http://www.adlnet.org
http://www.ariadne-eu.org

3.2 Was ist ein Lernobjekt? 21

Didaktik zur Verfügung gestellt werden. Nur auf diesem Weg kann eine sinnvolle Struktur mit
Lernobjekten aufgebaut werden. Es reicht jedoch nicht aus, einfach Titel, Autoren und Ver-
sionen zu speichern, weil so lediglich eine einfache Suche nach Daten möglich ist. Leider finden
die didaktischen Belange zu wenig Berücksichtigung bei den Standardisierungsprozessen.

Die von Hodgins angeführte LEGO-Metapher für Lernobjekte lehnt Wiley kategorisch
ab, da sie falsche Assoziationen wecke und schlägt stattdessen das Atom als Alternative
vor [Wiley99]. Wesentliche Eigenschaften des LEGO-Bausteins sind beliebige Kombinationsfä-
higkeit — jeder Baustein kann mit jedem zusammengesteckt werden—, keine Einschränkungen
in der Struktur des Gebildes und eine ”kinderleichte“ Bedienung. Übertragen auf das Lern-
objekt, bedeutet dies eine inadäquate Vereinfachung, die schwerwiegende Konsequenzen hat.
Lernobjekte müssen demnach lerntheoretisch neutral sein, weil sonst keine beliebige Kombinie-
rung bzw. Strukturierung möglich ist. Hierdurch werden sie aber zu bloßen Informationsbehäl-
tern degradiert, worin Wiley ein ernstes Problem für die weiter Entwicklung der Lernobjekte
sieht:

”The learning object field must quickly make up its mind: are we in the information
or the instruction business?“ [Wiley99, S. 3]

Die gleichen Probleme verursacht die Eigenschaft der ”kinderleichten“ Bedienung, durch
die jegliche Didaktik außen vor gelassen wird. Nur Experten mit einem lerntheoretischen Hin-
tergrundwissen können sinnvolle Lernobjekte erstellen und deren geeignete Kombination si-
cherstellen.Die LEGO-Metapher hat sich somit selbständig gemacht und trägt maßgeblich zur
Ungenauigkeit im Umgang mit Lernobjekten bei.

Mit Hilfe der Atom-Metapher versucht Wiley diesen Trend aufzuhalten. Ein Atom ist eine
kleine Einheit, die mit anderen Atomen zu größeren Einheiten kombiniert werden kann. Soweit
besteht eine Ähnlichkeit zu den LEGO-Steinen. Der wesentlich Unterschied liegt jedoch in den
Bedingungen, unter denen der Aufbau geschehen kann, denn es gibt Einschränkungen. Atome
können nicht willkürlich kombiniert werden, es gibt Vorgaben für die Struktur und der Umgang
mit ihnen erfordert einiges an Wissen und Übung. Bei genauer Betrachtung offenbart die
Metapher, dass Personen ohne didaktisches Wissen so wenig Lernobjekte sinnvoll kombinieren
können, wie Personen ohne chemisches Wissen Kristalle aus Atomen wachsen lassen. Anstatt
LEGO-Steine als Leitbild zu nehmen, sollten Lernobjekte lieber zu ”Lernkristallen“ kombiniert
werden.

3.2.4 Lernobjekte nach Downes

Stephen Downes möchte Lernobjekte nicht über ihre Eigenschaften, sondern über ihre Funk-
tionen definieren, wie sie bestehende Probleme digitaler Lerneinheiten lösen können. Einer
seiner Gründe für diese Betrachtungsweise ist die Uneinigkeit über eine genaue Definition im
Lager der Lernobjekt-Forschung. Prinzipiell hat Downes nichts gegen die vorgestellten Model-
le von Hodgins oder Wiley einzuwenden, da sie für sich betrachtet in ihrem Kontext sicher
sinnvoll sind [Downes00b]. Doch die Unterschiede zwischen den Modellen sind zu groß und
keines kann Allgemeingültigkeit für sich beanspruchen. Konsens herrscht nur darüber, dass
die vom LOM-Standard vorgesehene Definition zu ungenau ist.

Als Rahmen für die Funktionen von Lernobjekten sieht Downes die Lernobjekt-Wirt-
schaft (Learning Object Economy). Hierbei handelt es sich um eine Verbindung von Netz-
werken und Systemen, mit der Lehr- und Lernprozesse unterstützt werden. Innerhalb dieses
Komplexes werden Lernobjekte erstellt und verteilt, wobei beliebige Materialien gemeint sind.
Die genaue Interpretation, was ein Lernobjekt eigentlich ist, wird den Menschen überlassen.
Egal ob nun Baustein oder Atom als Metapher herangezogen wird: Hauptsache eine gewisse
Funktionalität ist vorhanden.

Ausgangspunkt für Downes Überlegungen ist das Online-Lernen. Durch das Internet
eröffnen sich Möglichkeiten, die es vorher nicht gab. Als wesentliche Neuerungen nennt er den
verbesserten Zugriff auf Materialien, bei dem unabhängig von Raum und Zeit mit eigener

22 Lernobjekte

Geschwindigkeit gelernt werden kann. Ein bedeutender Nachteil sind hingegen die mit der
Produktion von E-Learning-Angeboten verbundenen Kosten. Auf herkömmliche Weise erstellt,
sind sie sogar teurer als traditionelle Materialien wie z.B. Skripte oder Folien. Ursache dieser
Diskrepanz ist die höhere Komplexität interaktiver Medien. Eine Lösung des Problems ist, wie
in Abschnitt 3.1 bereits vorgeschlagen, die Wiederverwendung.

Es stellt sich die Frage, welche Form und Größe sich am besten für dieses Unterfangen
eignet (mehr dazu auch in Abschnitt 3.3). Nach Downes sind es Kurse, die das aktuelle Angebot
prägen. Kurse lassen sich aber nur schwer in verschiedene Veranstaltungen integrieren, weshalb
Wiederverwendung bis jetzt wenig praktiziert wird. Durch eine Aufteilung von Kursen in
Komponenten lässt sich jedoch auch diese Problematik entschärfen. Die einzelnen Teile können
dann als Lernobjekte betrachtet werden. In diesem Zusammenhang tauchen auch Tausch und
Zusammenstellung von Lernobjekten als weitere Fragestellungen auf.

Dritte können auf Komponenten nur zugreifen, wenn ihnen adäquate Suchmöglichkeiten
angeboten werden. Zentrale Systeme wie z.B. Portale können diese Aufgabe gut übernehmen.
Zum Nachteil gereicht diesem Ansatz die erschwerte Distribution über mehrere Portale. Was
auf dem einen System angeboten wird, kann auf dem nächsten fehlen. Auch die Konsistenz der
verschiedenen Materialien muss kritisch betrachtet werden. Unterschiedliche Formate, Präsen-
tationen und Methoden verhindern die Kombination inhaltlich kohärenter Komponenten.

Aus den gestellten Anforderungen lassen sich leicht die Funktionen bestimmen, die aus
einer Online-Ressource ein Lernobjekt machen. Eine Definition lässt sich aus den folgenden
Eigenschaften ableiten:

• Teilbar6: Lernobjekte sind über das Internet erreichbar. Sie werden an einer zentralen
Stelle erstellt und lassen sich beliebig in andere Kurse integrieren. Teilweise wird die-
se Eigenschaft unter ”wiederverwendbar“ gefasst, was aber nicht das Gleiche bedeutet.

”Teilbar“ schließt zusätzlich zur Wiederverwendung den Zugriff über Institutsgrenzen
hinaus mit ein.

• Digital: Diese Eigenschaft ist Voraussetzung für das Online-Lernen. Physikalische Ein-
heiten, wie z.B. Bücher, Mappen, Skripte, werden so von vornherein als Lernobjekte
ausgeschlossen.

• Modular: Die Größe bestimmt die Wiederverwendbarkeit. Ein Lernobjekt ist nicht ein
kompletter Kurs, aber ein Bestandteil von ihm. Daher müssen mehrere Lernobjekte
wie Module zu größeren Einheiten zusammenführbar sein. Zudem soll ein Lernobjekt
unabhängig von anderen sein.

• Interoperabel: Es muss möglich sein, Lernobjekte auch aus verschiedenen Quellen zu
kombinieren. Für Personen, die einen Kurs zusammenstellen, darf es keine Rolle spielen,
woher die einzelnen Komponenten stammen. Auch die Werkzeuge und die Infrastruktur
sollten keinen Einschränkungen unterliegen.

• Entdeckbar: Für durchschnittliche Anwender/-innen muss es in vertretbarer Zeit mög-
lich sein, die gewünschten Lernobjekte zu finden. Auf keinen Fall darf Spezialwissen
vorausgesetzt werden.

Downes resümiert seine eigene Definition folgendermaßen:

”In conclusion, learning objects are digital materials used to create online cour-
ses where these materials are sharable, modular, interoperable and discoverable.“
[Downes02]

6Downes benutzt das Wort
”
sharable“, das mehr auf die gemeinsame Nutzung abzielt als

”
teilbar“.

3.3 Granularität 23

3.2.5 Lernobjekte nach Baumgartner

Peter Baumgartner führt ein recht einfaches Modell ein, bei dem der Begriff Lernobjekt, ähn-
lich wie bei Cisco (vgl. Abschnitt 3.2.1), als Reusable Learning Object (RLO) definiert
ist. Zu Konfusion hinsichtlich der Verwendung des Begriffs Lernobjekt in dieser Arbeit kann
es kommen, wenn Baumgartners Definition herangezogen wird:

”Ein LO (Learning Object) ist die kleinste sinnvolle Lerneinheit, in die ein Online-
Kurs zerlegt werden kann. Demnach kann ein LO entweder aus einem einzelnen
Bild, einer Grafik, einem Text, einer Flash-Animation oder auch aus einer kurzen
Anweisung mit einem definierten Lernziel und einem Test zur Lernerfolgskontrolle
bestehen.“ [Baumgartner02b, S. 24]

Erst wenn ein Lernobjekt mit Metadaten angereichert wird, kann es wieder verwendet und
zu höheren Kurseinheiten kombiniert werden. Diese eigenwillige Definition ist in Abbildung
3.3 zusammengefasst.

Informationseinheiten

RLO´s (Wiederverwendbare Lerneinheiten)

Kurs

Lehrgang

Abbildung 3.3: Reusable Learning Objects nach [Baumgartner02b, S. 24]

3.3 Granularität

Durch die Größe der Lernobjekte sind freilich Aspekte wie Entwicklung und Wiederverwen-
dung tangiert. Sehr kleine Einheiten, oft auch Atome genannt, sind schnell realisiert und
äußerst flexibel, jedoch ist ihre Verwendung mit Mehrarbeit verbunden. Eine simple Abbil-
dung reicht beispielsweise meist nicht aus. Sie muss schon mit einem Text versehen werden, der
sich in einen Gesamtkontext einbettet. Hingegen ist der Entwicklungsaufwand umfangreicher
Einheiten enorm. Inhaltlich sind sie festgelegt und schwer an eigene Bedürfnisse anzupassen,
sodass zwangsläufig Kompromisse bezüglich der Themen, Darstellung, Umfang, etc. einge-
gangen werden. Ein kompletter Kurs für ein Semester z.B. lässt kaum Spielräume für eigene
Wünsche.

Doch wie lassen sich subjektive Größenangaben überhaupt definieren? Welche Größe ist
gemeint, wenn der Umfang eines Lernobjekts angegeben ist? Bezieht sie sich auf den Inhalt
oder das Medium? Mit Hilfe verschiedener Definitionen des Begriffs Granularität sollen diese

24 Lernobjekte

Fragen aufgeklärt werden. Der bereits für seine einfache Definition eines Lernobjekts geschol-
tene Standard LOM sieht vier Granularitätsstufen vor (der Attributname lautet aggregation
level), die jeweils eine Aggregation der darunter liegenden darstellen. Angegeben durch ara-
bische Zahlen (1–4), lässt diese Notation wahrlich Raum für Auslegungen. Als Beispiel für
eine Interpretation soll die Festlegung der Firma Autodesk7 dienen, die in Abbildung 3.4 illus-
triert ist. Es handelt sich um eine Definition mit fünf Ebenen, die nach [Duval03] auf die vier
Granularitäten von LOM abgebildet werden:

1. Data oder Raw Media Elements sind die kleinsten Lernobjekte in diesem Modell. Es
handelt sich um reine Daten, die nicht weiter zerlegt werden können, wie z.B. Absätze,
Abbildungen und Animationen. Daten auf dieser Ebene können proprietär sein.

2. Die Ebene Information Objects ist unabhängig von bestimmten Medien. Lernobjek-
te dieser Größe enthalten soviel Informationen, dass sie oft wieder verwendet werden
können.

3. Kohärente Information Objects zu einem Thema werden auf der Ebene Application
Objects zusammengefasst. In der Regel ist dies die bevorzugte Größe zur Wiederver-
wendung von Lernobjekten.

4. Verschiedene Themenbereiche werden in den Ebenen Aggregate Assemblies oder Col-
lections zusammengefasst. Um auf LOM abbildbar zu bleiben, haben sie beide die Grö-
ße 4.

Principle
e

Fact

Process
s

Overview
w

ProcedureText

Audio

Summary
y

Concept
t

Principle
e

Process
s

Concept
t

Procedure
e

Fact
Overview
w

Summary
y

Objective

“Raw”
Data

Media
Elements

Information
Objects

Application
Objects

(Learning Objects,
Support Objects,

Marketing,
Reference, etc.)

Aggregate
Assemblies

(Lessons,
Chapters, Units,
Brochure, etc.)

Collections
(Stories, Courses,

Books, Movies)

Modular Content Hierarchy

Animation
n

Simulation
n

Illustration
n

Objective Theme

Enabling
Objective

Terminal
alObjective

e

Corporate Wide Application Specific Profiles

REUSABILITY+ MOST + - LEAST -

CONTEXT + MOST +- LEAST -

©2001Learnativity
Alliance

Abbildung 3.4: Lernobjekt-Hierarchie aus [Hodgins02, S. 78]

Eine alternative Definition der Granularität stellt Wiley in [Wiley00b] vor. Anstatt die
Aggregationstiefe als Maß zu nehmen, kann auch die Komplexität von Inhalten herangezogen

7Autodesk ist der Arbeitgeber von Wayne Hodgins

3.4 Sequenzierung 25

werden. Auch wenn es eine Korrelation zwischen der Größe eines Lernobjekts und dessen
Komplexität gibt, steht bei dieser Herangehensweise der Inhalt im Vordergrund. Folgende
Erfahrung unterstützt diese Form von Granularität:

”The optimal level of granularity must be determined for each project based on its
individual goals. From the perspective of instructional developers, our experience
is that it is most useful to move from the course level of granularity down to the
concept level when designing, but not so far down as the individual media asset
level. For our instructional needs, objects have the greatest potential for reuse when
they center on a single, core concept.“ [South02, S. 6]

Eine praktische Anwendung, die sich intensiver mit der Aufteilung existierender Doku-
mente beschäftigt, ist Slicing Books [Dahn01; Dahn02]. Existierende Dokumente werden in
semantische Einheiten aufgeteilt, die später individuell zusammengesetzt werden können.

3.4 Sequenzierung

Eng verbunden mit der Granularität von Lernobjekten ist die Problemstellung der Reihenfol-
ge, in der sie durchgegangen werden sollen. Diese Abfolge wird Sequenz genannt und ist ein
didaktisches Grundproblem bei der Strukturierung von Lehr- und Lernmaterialien. Es lassen
sich verschiedene Relationen zwischen den Lernobjekten bestimmen, aus denen sich die Se-
quenz ableiten lässt. Reigeluths ”Evaluationstheorie“ [Reigeluth80; Reigeluth83; Reigeluth99]
beinhaltet Vorschläge zur Sequenzierung von Lernmaterialien verschiedener Granularitäten.
Ausschlaggebend für die Art der Sequenzierung sind Umfang und Zusammenhang der ein-
zelnen Themen. Je enger die thematischen Verknüpfungen sind, desto stärker wirkt sich die
Menge des Lernstoffes aus. Lernenden fällt es bei größeren Umfängen zunehmend schwerer,
Schwächen und Ungereimtheiten in der Anordnung von Lernobjekten selbständig zu kompen-
sieren. Hingegen erlaubt eine geringere Menge an Lernstoff, solche Mängel durch Erinnerung
und Schlussfolgerungen auszugleichen.

Durch die Sequenzierung wird eine Relation zwischen den Lernobjekten festgelegt. Übli-
cherweise wird zwischen der chronologischen Abfolge (historische Sequenz), der Praxis übli-
chen Abfolge von Tätigkeiten (Prozeduren) und den Voraussetzungen bzw. dem Ausmaß der
Komplexität unterschieden [Niegemann04]. Bei mehreren Themen wird zwischen der linear-
sukzessiven und der Spiral-Sequenzierung Unterschieden. Abbildung 3.5 zeigt beide Se-
quenzmuster.

Bei der linear-sukzessiven Sequenzierung wird ein Thema intensiv durchgenommen, bevor
es zum nächsten geht. Vorteil dieser Herangehensweise ist die Kontinuität, mit der ein Thema
behandelt wird. Die Anordnung etwaiger Materialien fällt leichter und Lernende können sich
auf ein Thema konzentrieren. Jedoch kann es bei einem Themenwechsel leicht passieren, dass
zu spezielles Wissen verloren geht. Auch sind die Zusammenhänge zwischen den Themen
nicht immer offensichtlich, da es durch die Separation nur wenig Anknüpfungspunkte gibt.
Mit Überblicken, Rückblicken und Querverweisen kann diesem Problem allerdings in einem
gewissen Maß entgegen gewirkt werden.

Bei der Spiral-Sequenzierung wird jedes Thema mehrmals durchlaufen. Erst werden die
Grundlagen der einzelnen Themen behandelt, um sie jeweils soweit zu vertiefen, bis die
erwünschte Kompetenzstufe erreicht ist. Im Gegensatz zur Sequenzierung gibt es viele Be-
rührungspunkte zwischen den Themen, sodass sich die Zusammenhänge leichter erschließen.
Nachteil dieser Herangehensweise sind die häufigen Unterbrechungen, die eine kontinuierliche
Vertiefung erschweren.

Es gibt noch eine Reihe von Faktoren für die Sequenzierung, die stärker didaktisch aus-
gelegt sind. So werden z.B. die zu vermittelnden Kompetenzen unterschieden, ob sie mehr
aufgaben- oder domänenorientiert sind [Reigeluth99]. Eine enge Verknüpfung von Reigeluths

26 Lernobjekte

Start

End

Topic
A

Topic
B

Topic
C

(a) Linear-sukzessive Sequenzierung

Start

End

Topic
A

Topic
B

Topic
C

(b) Spiral-Sequenzierung

Abbildung 3.5: Linear-sukzessive Sequenzierung und Spiral-Sequenzierung nach [Reigeluth99,
S. 432]

Arbeiten mit Lernobjekten findet sich in Wileys Learning Object Design and Sequencing Theo-
ry (LODAS) [Wiley00a] wieder.

Andere Kriterien für die Segmentierung sind unter anderen die Kapazität des menschlichen
Arbeitsgedächtnisses [Case78; Case85]. Hierbei wird darauf geachtet, dass die ”Informations-
einheiten“ nur so groß sind, wie die Lernenden sie verarbeiten können.

3.5 IMS Content Packaging Specification

Die Spezifikation IMS Content Packaging Information Model (CP) [IMS04a] beschreibt Da-
tenstrukturen, um die Zusammenarbeit von Internet-basierten Inhalten mit Autorensystemen,
Learning Management Systemen (LMS) und Laufzeitumgebungen zu gewährleisten. Der Da-
tenaustausch von E-Learning-Inhalten erfolgt über Packages, die im Wesentlichen aus einem
Manifest und kohärenten Ressourcen, den Physical Files, bestehen. Weil das Manifest in XML
(Extensible Markup Language) kodiert ist — es hat immer den Dateinamen imsmanifest.xml
—, sind zusätzliche Kontrolldateien (DTD und XSD) für die Validierung enthalten. Im Inneren
teilt sich das Manifest in die Bereiche Metadata (Metadaten), Organizations (Organisationen),
Resources (Ressourcen) und (sub)Manifest auf. Abbildung 3.6 veranschaulicht den gesamten
Aufbau eines Packages.

Physikalisch wird ein Package durch ein logisches Verzeichnis in einem Dateisystem reprä-
sentiert, was für einen Datenaustausch, z.B. über das Internet, recht unhandlich ist. Anstatt
das Package irgendwo in der Verzeichnisstruktur zu speichern, kann es inklusive aller Unter-
verzeichnisse auch in einer einzelnen Datei zusammengefasst werden, der Package Interchange
File (PIF). Gültige Dateiendungen sind .zip, .jar, .cab und dergleichen. Wichtig ist ledig-
lich, dass die interne Kodierung der Datei kompatibel zu RFC 1951 [Deutsch96] ist.

Als Austauschformat kommen jedoch nicht nur die Package Interchange Files in Frage,
sondern auch Wechselmedien, wie z.B. die CD-ROM. In diesem Fall kann auf eine Kompri-
mierung verzichtet werden. Nur Manifest sowie Kontrolldateien müssen im Wurzelverzeichnis
liegen, um aus einem Datenträger ein gültiges Package zu machen.

Inhaltlich ist ein Package eine Einheit für wieder verwendbare E-Learning-Inhalte, z.B. als
Teil eines Kurses, als eigenständiger Kurs oder als eine Sammlung verschiedener Kurse. Es
muss möglich sein, ein Package mit anderen Packages zu kombinieren oder solche Verbünde
in ihre Einzelteile zu zerlegen. Dies setzt voraus, dass ein Package für sich stehen kann und

3.5 IMS Content Packaging Specification 27

Assessment, Collaboration,

and other files)

(The actual Content, Media
PHYSICAL FILES

Resources

(sub)Manifest(s)

Organizations

Meta−Data

Manifest

PACKAGE

Abbildung 3.6: Die verschiedenen Bereiche innerhalb eines Packages [IMS04a]

keine Abhängigkeiten zu anderen Dateien besitzt. Wird es entpackt, müssen alle relevanten
Daten für einen reibungslosen Ablauf vorhanden sein.

Der Aufbau des Packages und die Beschreibung der enthaltenen Ressourcen wird über das
Manifest angegeben. Die interne Struktur ist stets statisch und kann in einer beliebigen Anzahl
von Varianten angegeben sein. Durch die verschiedenen Funktionen und Größen eines Packages
ist der semantische Gültigkeitsbereich der Strukturen nicht festgelegt, da es von einer kleinen
Lerneinheit bis zur Kurssammlung alles beschreiben kann. Auf jeden Fall muss ein Package
auf oberster Ebene, also direkt im logischen Verzeichnis, genau ein in XML kodiertes Manifest
beinhalten, das als Beschreibung dient und Top-level Manifest genannt wird. Es kann auch
(sub)Manifeste enthalten, die eine eigene semantische Ebene ausmachen. Enthält ein Package
z.B. einen Kurs, dann können einzelne Kapitel oder Lerneinheiten durch (sub)Manifeste be-
schrieben werden. Dies ist sinnvoll, wenn der Inhalt so stark gekoppelt ist, dass er nicht für
sich alleine stehen kann.

Eine sinnvolle aber freigestellte Herangehensweise ist, die Inhalte als Lernobjekte zu be-
trachten, sodass sie beliebig kombiniert, auseinander genommen und wieder verwendet werden
können. Jedes Lernobjekt ist dann ein Package und besitzt sein eigenes Manifest. Bei einer
Aggregation mehrerer Lernobjekte zu einem Kurs werden alle Lernobjekt-Manifeste in einem
neuen Kurs-Manifest auf höherer Ebene zusammengeführt. Der Kurs kann wiederum mit an-
deren Kursen kombiniert werden, wobei das gleiche Procedere für die Manifeste zum Tragen
kommt. Durch die Allgemeingültigkeit der Packages und die rekursive Definition des Mani-
fests ist somit eine arbiträre Aufteilung von Inhalten möglich. Wie sie genau aussieht, liegt
letztendlich bei den Autoren/-innen.

Die Ressourcen eines Packages sind beliebige Daten in Dateiform, wie z.B. HTML-Seiten,
Texte, Sounds, Grafiken und Animationen. Sie sind entweder Bestandteil des Packages —
sie liegen im Wurzel- bzw. einem Unterverzeichnis — oder werden über eine gültige URL
referenziert, die eine Einbindung zur Laufzeit ermöglicht. Über eine definierte Auszeichnung
können Ressourcen im Manifest deklariert werden, beispielsweise mit dem <resource>-Tag
in XML-Notation. Da Ressourcen auch aus mehreren Dateien bestehen können, sollten inte-
grierte Dateien explizit über das <file>-Tag bekannt gegeben werden. Im Falle einer URL-
Adressierung ist diese Deklaration freilich nicht möglich, weil benötigte Dateien wiederum nur
über URLs und nicht innerhalb des Packages erreichbar sind. Abhängigkeiten jeglicher Art
zwischen Ressourcen können als Dependency (<dependency>-Tag) angegeben werden.

Handelt es sich bei den Ressourcen z.B. um Abschnitte und Unterabschnitte eines inhaltlich
zusammenhängendes Textes, befinden sie sich strukturell auf verschiedenen Ebenen, die nicht

28 Lernobjekte

durch die einfache Deklaration im Manifest beschrieben sind. Mit Hilfe einer eigenen Daten-
struktur, der Organisation (<organization>-Tag), werden solche hierarchischen Relationen
angezeigt. Sie ist als Baum realisiert, dessen Knoten als Items (<item>-Tag) bezeichnet wer-
den und Referenzen auf Ressourcen oder Submanifeste beinhalten. Die Submanifestverweise
sind unerlässlich für die beschriebene Zusammenführung verschiedener Packages. Weil es mög-
lich ist, Manifeste mit mehreren Organisationen zu erstellen, können die gleichen Ressourcen
und Submanifeste innerhalb eines Packages verschieden angeordnet werden.

Nicht nur das Manifest kann mit Metadaten versehen werden, sondern auch Ressourcen,
Dateien, Organisationen und Knoten. Die Beschreibung ist im IMS-eigenen Metadatenformat
[IMS01] anzugeben und steht im <meta-data>-Tag. Abbildung 3.7 verdeutlicht nochmal die
gesamte Datenstruktur eines Manifests.

Manifest

Meta−data

Organizations

Organization

Meta−data

Item

Meta−data

Item

Manifest

Resources

Resource

Meta−data

File

Dependency
References to another resource whose
files this resource depends upon

Locally referenced files that this
resource is dependent on

(or zero)
One−to−one

(zero or more)
One−to−many

(one or more)
One−to−many

One−to−one

Meta−data Meta−data describing the file

Meta−data describing the resource

A specific resource

A collection of references to resources

Meta−data describing the item

A node within a hierarchical organization

Meta−data describing the organization

A particular hierarchical organization tree

Organizational structure for this package

Meta−data describing the package

A reusable unit of instruction

Abbildung 3.7: Datenstruktur eines Manifests [IMS04a]

Die Spezifikation des IMS CP ist für eigene Erweiterungen ausgelegt. Es ist erwünscht,
dass Implementationen die Basisstrukturen der Organisationen erweitern und neue Typen für
Ressourcen einführen. Bewährte Ergänzungen könnten letztendlich in zukünftige Versionen
der Spezifikation aufgenommen werden.

Es werden aber nicht nur Datenstrukturen von der Spezifikation vorgegeben, sondern auch
Algorithmen. Für diese Arbeit ist die Zusammenführung von Organisationen aus Manifesten
und Submanifesten von Bedeutung, weshalb diesbezüglichen Verfahren besonderes Augenmerk

3.5 IMS Content Packaging Specification 29

gilt. Immer wenn ein Knoten ein Submanifest anstatt einer Ressource referenziert, müssen die
Strukturen beider Organisationen kombiniert werden. Je nach Anordnung und Aufbau der
beiden Manifeste treten verschiedene Fälle auf, die differenziert behandelt werden. Für eine
erfolgreiche Zusammenführung ist mindestens eine Organisation im Submanifest Vorausset-
zung. Ansonsten gilt die Referenz auf das Submanifest als nicht gesetzt. Stehen stattdessen
mehrere Organisationen zur Auswahl, dann wird entweder die explizit deklarierte oder, wenn
diese Auszeichnung fehlt, die erste verwendet. Mit der Zusammenführung selbst verhält es sich
folgendermaßen. Die Organisation wird direkt mit dem referenzierenden Knoten vereint, wobei
Konflikte durch gleiche Attribute — es sei z.B. ein Titel angeführt, welcher von Knoten und
Organisation bestimmt werden kann — stets zugunsten des Knoten gelöst werden. Abbildung
3.8 veranschaulicht diesen Vorgang für einen Knoten ohne Subknoten.

Resource X

Resource Y Resource B

Resource A

About X

About Y

About A

About B

About Z

About B

Submanifest
About X

About Y

About Z

About A

Abbildung 3.8: Einfache Auflösung von Referenzen

Das gleiche Beispiel für einen Knoten mit Subknoten ist in Abbildung 3.9 zu sehen.

Resource B

Resource A

About B

Submanifest

About A

Resource YX

Resource YY

Resource Y

Resource X

About Y

About X

About Z

About YX

About YY
About A

About B

About YX

About YY

About Y

About X

About Z

Abbildung 3.9: Auflösung von Referenzen mit Subknoten

Beispiele für den Einsatz von IMS CP finden sich in [Low02].

30 Lernobjekte

3.6 Sharable Content Object Reference Model

Beim Sharable Content Object Reference Model (SCORM) von Advanced Distributed Learning
(ADL) [Dodd04c] handelt es sich um eine Spezifikation, die auf den Standards von AICC, IMS
und IEEE aufbaut. SCORM definiert ein Content Aggregation Model und eine Runtime En-
vironment für Lerneinheiten, die über das Internet veröffentlicht werden sollen. Das Content
Aggregation Model beschreibt, wie kleinere Dateneinheiten zu Lerneinheiten, Kapiteln oder
ganzen Kursen zusammengestellt werden. Im wesentlichen basiert es auf dem Content Packa-
ging von IMS. Die Runtime Environment gibt einen Rahmen vor, wie die erzeugten Lerninhalte
durch eine Lernplattform (siehe Kapitel 6) verwaltet und gesteuert werden. Abbildung 3.10
zeigt eine schematische Darstellung aus der Spezifikation.

Learning Management System
(LMS)

LMS Server

Web Browser

SCO
Asset

ECMAScript
API

Instance

Server Side

Client SideLaunch

API: Communications Link between a SCO
and LMS

Data Model: Data is requested to be
retrieved from and stored in the LMS from the
SCO.

Data Model:
Actual data sent
back and forth
between a SCO
and LMS

Communication
with backend
server is not
specified in
SCORM. Asset

AssetAsset

Abbildung 3.10: Runtime Environment aus [Dodd04b, S. 1-8]

Über einen Startmechanismus (Launch) werden die Web-basierten Inhalte aufgerufen und
die Initialisierung durchgeführt. Die eigentliche Kommunikation erfolgt über eine API, die in
der Abbildung beispielhaft über JavaScript angesprochen wird. Über definierte Datenstruktu-
ren (DataModel) informiert der Client den Server (LMS) über den aktuellen Status.

Die gesamte Steuerung der Kommunikation auf Seiten des Clients läuft im Inhalt selbst ab
und nicht im Content Package. Aus diesem Grund soll an dieser Stelle nicht weiter auf dieses
Thema eingegangen werden. Mit dem Einsatz von SCORM setzen sich [Letts02; Shackelford02]
auseinander und Beispiele für den Einsatz finden sich in [Newman03].

3.7 Formate 31

3.7 Formate

Die Inhalte von Lernobjekten müssen in einer Form vorliegen, dass die gesamte Infrastruktur,
von den Autorensystemen bis hin zu den Lernplattformen, sie verarbeiten kann. Zu den gän-
gigen Formaten für E-Learning Inhalte dürfen freilich HTML, PDF, Microsoft Word/Power-
Point oder Macromedia Flash zählen. Systeme mit einem solchen Repertoire sind hinsichtlich
der Kompatibilität auf der sicheren Seite. Dennoch reichen diese überwiegend proprietären
Formate für die Ansprüche des E-Learnings nicht aus. Die Gründe hierfür sind vielfältig. Zur
Erstellung sowie Anzeige werden oft spezielle Programme benötigt, die teilweise horrende Kos-
ten verursachen und oft nicht für alle Betriebssysteme zur Verfügung stehen. Folglich kommt
es zu Einschränkungen, die zu Lasten der Lernenden gehen. Nicht selten müssen private Res-
sourcen eingesetzt werden, sodass hier ein geringer finanzieller Spielraum gewährt ist.

Ein anderes Problem ist die mangelnde Flexibilität der angesprochenen Formate. Unzu-
längliche Strukturinformationen erschweren die technische Umsetzung von Lernobjekten. Ei-
genschaften aus Abschnitt 3.2, wie z.B. Modularität, verschiedene Granularitäten, individuelle
Lernpfade etc., sind nicht immer umsetzbar. Hinzu kommt die Vermengung von Darstellung
und Inhalt. Beispielsweise kennt das Dateiformat von MS Word keine strukturelle Aufteilung
eines Dokuments durch Kapitel, Abschnitt oder Absatz. Stattdessen hat eine Kapitelüber-
schrift eine bestimmte Formatierung, die sich in Schriftart und Größe ausdrückt. Ein anderes
Textfragment mit zufällig gleichen Eigenschaften ist demnach nicht unterscheidbar. Für eine
automatische Verarbeitung kann diese Verquickung unüberwindbare Probleme bereiten.

Abhilfe schafft wieder die Extensible Markup Language (XML), die bereits Gegen-
stand vieler Untersuchungen und Projekte war [Roisin98; Freitag02b; Teege02; Belqamsi02;
Wollowski02; Balbieris02]. XML ist inzwischen so weit akzeptiert und bekannt, dass in dieser
Arbeit nicht weiter auf technische Details eingegangen werden soll. Interessante Einführungen
zu diesem Thema finden sich in [Ammelburger03; Mintert02; Ray01].

Ein Grund für die breite Akzeptanz von XML ist die einfache Definition eigener bzw.
Anpassung existierender XML-Applikationen. Durch automatische Validierungsverfahren, die
entweder durch Document Type Definitions (DTD) oder XML Schemas (XSD) [Binstock02;
Vlist02] gesteuert werden, kann die Gültigkeit von XML-Dokumenten überprüft werden. Die
DTDs stammen noch von der Standard Generalized Markup Language (SGML) [Goldfarb91]
ab, aus der XML einst hervorging. Aufgrund verschiedener Mängel wurde vom W3C XML-
Schema als Nachfolger der DTD eingeführt, dessen genaue Vorteile in [Hansch02] nachgelesen
werden können.

Die Darstellung von XML-Dokumenten wird von außen gesteuert, wodurch verschiedene
Layouts und Dateiformate unterstützt werden. Abhängig von der jeweiligen Anwendung, kön-
nen XML-Dokumente z.B. in einem Webbrowser direkt dargestellt oder in einem zusätzlichen
Verarbeitungsschritt umgewandelt werden. Die Steuerung erfolgt durch verschiedene Mecha-
nismen. Mit Hilfe der Extensible Stylesheet Language (XSL) können Struktur und Darstellung
gleichermaßen beeinflusst werden. Sie besteht aus drei Teilen: XSL Transformations (XSLT)
zur Umwandlung der Struktur [Tidwell01], XML Path Language (XPath) zur Adressierung von
XML-Fragmenten [Simpson02] und den XSL Formatting Objects (XSL-FO) zur Festlegung von
Darstellungsregeln [Pawson02]. Auch die von HTML bekannten Cascading Style Sheets (CSS)
[Meyer02] oder die Document Style Semantics and Specification Language (DSSSL) für SGML
[Farreres03] lassen sich zur Formatierung von XML-Dokumenten nutzen.

Für die Kodierung von E-Learning-Inhalten gibt es bereits eine Reihe von XML-Appli-
kationen, wie z.B. DocBook [Walsh02a; Walsh02b], OmDoc [Kohlhase00; Kohlhase02] und
LMML [Freitag02a].

Kapitel 4

Metadaten

Die Lernobjekte aus Kapitel 3 können, wenn sie flexibel genug realisiert wurden, in vielen ver-
schiedenen Kontexten eingesetzt werden. Für einen sinnvollen Einsatz durch Dritte ist jedoch
eine präzise Identifizierung der Lern- und Lehrmaterialien unerlässlich. Völlig inakzeptabel
ist, bei jeder Recherche nach geeigneten Materialien über die Inhalte selbst zu suchen. Bei
Angeboten mit mehreren hundert oder sogar tausenden Lernobjekten steht der Nutzen in kei-
ner Relation zum Aufwand. Auch mit etwaigen maschinellen Hilfen, wie z.B. Volltextsuche,
ist diesem Problem nicht beizukommen. Aus diesem Grund sollten Lernobjekte mit zusätz-
lichen Beschreibungen versehen werden. Da sie nicht direkt zum Inhalte gehören, werden sie
Metadaten genannt. Im Umgang mit Metadaten ist der Mensch vertraut und sie sind aus
dem alltäglichen Leben nicht wegzudenken. Beispielsweise steht auf einer Milchverpackung,
dass es sich um Milch handelt, wie hoch der Fettgehalt ist und das Mindesthaltbarkeitsdatum.
Niemand würde auf die Idee kommen, die Verpackung zu öffnen, um den Inhalt festzustellen.
Die Metadaten reichen als Information für eine Auswahl aus.

Ähnlich verhält es sich bei E-Learning-Angeboten, wenn auch ganz andere Metadaten be-
nötigt werden. Doch welche sind es? Zusätzliche Daten über den/die Autoren/-in und das In-
stitut können helfen, die Qualität der Inhalte abzuschätzen. Ein Lebenslauf oder unterrichtete
Lehrveranstaltungen helfen, die Reputation zu beurteilen [Kortzfleisch99, 54]. Aber auch tech-
nische Voraussetzungen, rechtliche Rahmenbedingungen, benötigte Vorkenntnisse, didaktische
Methoden, etc. spielen eine Rolle. Nach [Gill98] gibt es drei wesentliche Eigenschaften, die bei
allen Informationsobjekten — einschließlich Lernobjekten — durch Metadaten beschrieben
werden können: Inhalt, Kontext und Struktur. Bedauerlicherweise herrscht Uneinigkeit dar-
über, welche einzelnen Attribute der Metadaten relevant sind, besonders zwischen den Lagern
Technik und Didaktik. Dennoch hat es wenig Sinn, auf individuelle Lösungen zu setzen, weil
dies die Vorteile der Metadaten kompensiert.

Metadaten brauchen einen gemeinsamen logischen Raum, der Strukturen und Datenty-
pen vorgibt [Simon01]. Dieser lässt sich nur über Standards bilden, die formal und infor-
mell Vorgaben machen. Welchen Umfang solch eine Spezifikation haben sollte, wird z.B in
[Griffin97; Ahronheim98] beschrieben, wobei es hauptsächlich um Strukturelemente, Datenele-
mente, Methoden zur Manipulation, Verfügbarkeit von Werkzeugen und Verantwortlichkeiten
geht.

”Mit Hilfe von E-Learning-Standards lässt sich also die Recherchierbarkeit, Aus-
tauschbarkeit und Wieder- bzw. Weiterverwendung von Lernressourcen gewährleis-
ten, indem sie mit Metadaten nach einem einheitlichen Muster in maschinenlesba-
rer Form beschrieben werden. Diese Standards sind eine zwingende Voraussetzung
für die Interoperabilität von Lernressourcen und Lernsystemen, da sie die Schnitt-
stellen und Referenzmodelle für den E-Learning-Bereich definieren.“ [Niegemann04,
S. 270]

Im Zusammenhang mit Metadaten tauchen immer wieder Begriffe auf, die teilweise ver-
schieden interpretiert werden. Um Konfusionen zu vermeiden, werden kurz die wichtigsten

34 Metadaten

benannt und für diese Arbeit definiert. Ein Metadaten-Element ist als abstrakte Einheit zu
verstehen, die zur Strukturierung — umfasst die erlaubten Unterelemente und ihre Kardinali-
tät — und Notation von Daten — gibt die Syntax gültiger Literale (Zeichenketten) vor, auch
Wertebereich genannt — dient. Das Metadaten-Element ”Ersteller“ könnte z.B. ein Unter-
element ”Namen“ haben, dessen Wertebereich die Namen aller Mitarbeiter/-innen eines Unter-
nehmens ist. Mehrere kohärente Metadaten-Elemente werden zu einem Metadaten-Schema
zusammengefasst und mit einem Namen versehen. Wenn nun für Metadaten bekannt ist, nach
welchem Schema sie sich richten, können z.B. Validierungen und Interpretationen durchgeführt
werden.

Bei der anschließenden Beschreibung der heute relevanten Metadaten-Standards wird sich
zeigen, dass die Spezifikationen entweder einen technischen oder didaktischen Schwerpunkt
haben. In der praktischen Anwendung führen solche Spezialisierungen jedoch zu Problemen.
Kein Satz an domänenspezifischen Metadaten-Elementen wird ausreichen, um alle Aspekte
des Lernobjekts zu beschreiben. Abhilfe versprechen Application Profiles für Metadaten,
bei denen verschiedene Metadaten-Schemata zusammengeführt und angepasst werden.

”An application profile is an assemblage of metadata elements selected from one
or more metadata schemas and combined in a compound schema. Application
profiles provide the means to express principles of modularity and extensibility.
The purpose of an application profile is to adapt or combine existing schemas into
a package that is tailored to the functional requirements of a particular application,
while retaining interoperability with the original base schemas.“ [Duval02]

Ein Application Profile bedient sich mehrerer Mechanismen, bei denen die semantische
Interoperabilität bestehen bleibt. Durch Namespaces lassen sich Datenelemente der einzel-
nen Schemata direkt adressieren, sodass auch gleichnamige Attribute unterscheidbar sind. Sie
erlauben ebenfalls die Erweiterung mit eigenen Elementen. Eine Applikation, die nur standar-
disierte Schemata verarbeitet, wird zwar die selbst definierten Elemente nicht adäquat inter-
pretieren können, aber ohne weiteres die bekannten. Hierdurch bleiben die Metadaten für die
einzelnen Domänen immer gültig. Handelt es sich bei Namespaces noch um eine echte Erweite-
rung, sind die restlichen Mechanismen Einschränkungen der gültigen Möglichkeiten. In einem
Application Profile können die Kardinalitäten strenger ausgelegt werden, als sie ursprüng-
lich waren. Dann ist z.B. ein optionales Element als ein obligatorisches umdefiniert. Ähnlich
restriktiv können die gültigen Wertebereiche verkleinert werden. Mit der Festlegung von Be-
ziehungen zwischen Datenelementen und ihren Wertebereichen können bestimmte Strukturen
zugelassen werden. So kann z.B. die Existenz eines Datenelements ein anderes ausschließen,
oder ein bestimmter Wert den Wertebereich eines anderen Datenelements einschränken. Mehr
zu dem Thema Application Profile mit Beispielen findet sich in [Heery00; Dekkers01; Baker01].

Ein weiterer Ansatz zur Handhabung verschiedener Metadaten-Standards sind die Me-
tadata Registries. Hierbei handelt es sich um Systeme, die eine Reihe bestimmter Dienst-
leistungen anbieten. Der Funktionsumfang kann dabei stark variieren. Nach [Baker03, S. 12]
können folgende Fokusse für Metadata Registries ausgemacht werden:

• Individueller Standard: Beinhaltet allgemeine Informationen über einen bestimmten
Metadaten-Standard und Richtlinien zur Verwendung.

• Erweiterungen: Gibt an, wie ein Standard von Gruppen erweitert bzw. in eine andere
Sprache übersetzt wurde.

• Data Warehouse: Speichert Definitionen von Datenelementen und Typen mit dem Ziel,
verschiedene Datenbanken an einer zentralen Stelle zu halten.

• Domäne: Benennt interessante Metadaten-Schemata für Domänen, wie z.B. E-Learning,
Kultur und Wirtschaft.

4.1 Resource Description Framework 35

• Funktionen: Ordnen Metadaten-Schemata bestimmten Funktionen zu, wie z.B. Suchen,
Rechteverwaltung oder Leistungsbewertung.

• Unternehmen: Zugriff auf Taxonomien von Unternehmen oder anderen Gruppen.

• Anwendung: Bietet Schemata in verschiedenen Formaten und Syntaxen für spezielle
Anwendungen an.

• Konvertierung: Übersetzt Metadaten in das Format eines anderen Metadaten-Standards.

Ein interessantes Konzept zur Konvertierung auch inkompatibler Standards findet sich in
[Blanchi01]. Entwürfe von Systemen werden in [Heery03; Heery02; Nagamori01] beschrieben.

Die technische Umsetzung von Metadaten lässt sich in drei Schichten einteilen (vgl. Ab-
bildung 4.1).

a) Attribute Space
(e.g. LOM, Dublin Core, indecs)Layer 3

b) Value Space
(e.g. ontologies, classifications,

controlled vocabularies, taxonomies)

(e.g. XML, RDF)
Layer 2

Layer 1
Transport and Exchange

(e.g. HTTP Get)

Representation

Abbildung 4.1: Schichten für Metadaten-Umsetzung nach [Baker03, S. 6]

Schicht 3 beinhaltet Strukturen und Wertebereiche, die von verschiedenen Organisationen
empfohlen bzw. standardisiert wurden. In dieser Arbeit wird besonders auf die Standards von
Dublin Core (DC, siehe Abschnitt 4.2) und Learning Objects Metadata (LOM, siehe
Abschnitt 4.3) eingegangen. Wegen ihrer Verbreitung und der Relevanz für die Praxis sind
sie in die engere Wahl gekommen. Schicht 2 umfasst die möglichen Kodierungen, die auch
maschinell verarbeitbar sind, wie z.B. das allgemeine Rahmenwerk für Metadaten Namens
Resource Description Framework (RDF). Für DC und LOM gibt es jeweils entsprechende
Abbildungen. XML wurde bereits in Abschnitt 3.7 als Format für Inhalte vorgestellt, eignet
sich aber auch hervorragend für die Kodierung komplexer Datenstrukturen wie Metadaten.
Andere Kodierungen werden aufgrund ihrer geringen Bedeutung nicht betrachtet. Auch der
Transport von Metadaten, in der Schicht 1 beschrieben, wird nicht weiter behandelt, weil
etablierte Infrastrukturen, wie z.B. das Protokoll HTTP, genutzt werden.

4.1 Resource Description Framework

Das Resource Description Framework (RDF) dient zur Auszeichnung von Web-Ressourcen
mit zusätzlichen Metadaten. Dies sind z.B. Angaben über den/die Autor/-in, das Datum der
Änderung oder Lizenzbedingungen. Als Web-Ressource kann jedes Objekt bezeichnet werden,
welches sich über das Web identifizieren lässt. Auf eine direkte Verfügbarkeit über das Internet
kommt es dabei nicht an. Gegenstände eines Web-Shops können z.B. mit Preisen, Verfügbarkeit
etc. ausgezeichnet sein, obwohl sie freilich nur über den Postweg zu den Kunden gelangen.

RDF dient in erster Linie der maschinellen Verarbeitung und ist weniger für eine direkte
Verwendung durch Menschen gedacht. Mit seiner Hilfe sollen Metadaten direkt von einer An-
wendung zur nächsten übertragen werden, ohne dass es zu einem Informationsverlust kommt.
Weil RDF eine offene, allgemein gehaltene Spezifikation ist, können die Autoren/-innen von
Web-Ressourcen auf eine Reihe von RDF-Libraries und Werkzeugen zurückgreifen. Die fol-
gende Beschreibung beruht auf dem RDF Primer von [Manola03].

36 Metadaten

Die Identifikation von Ressourcen erfolgt über die Uniform Resource Identifier (URI)
[Berners-Lee98]. Im Gegensatz zu den Uniform Resource Locators (URL) [Berners-Lee94],
die im World Wide Web (WWW) den Zugriff auf physikalisch existierende Ressourcen regeln,
sind die URIs allgemeiner definiert1. Mit ihrer Hilfe können alle Dinge bezeichnet werden, die
Bestandteil einer Modellierung sind und bilden somit die Grundlage für die Auszeichnung von
Web-Ressource mit Metadaten. Um den Inhalt einer Ressource genauer differenzieren zu kön-
nen, nutzt RDF die Fragment Identifier, die stets durch ein # an eine URI angehängt werden.
Dieses Konstrukt nennt sich dann URI Reference (URIref), dargestellt im folgenden Beispiel:

http://www.upb.de/index.html =⇒ eine HTML-Seite
http://www.upb.de/index.html#section2 =⇒ ein Abschnitt

Alle zusätzlichen Metadaten einer Ressource werden durch Properties (Eigenschaften) an-
gegeben, die jeweils aus einem Namen und zugehörigen Werten bestehen. Beispielsweise kann
die HTML-Seite mit dem Ersteller ”Michael Bungenstock“ versehen werden, was in natürlicher
Sprache wie folgt beschrieben werden kann:

http://www.upb.de/index.html hat ein Ersteller mit dem Wert Michael Bungenstock

Die wichtigen Bestandteile dieser Aussage sind durch Formatierung hervorgehoben. Für
eine genauere Strukturbeschreibung besitzt RDF eine eigene Terminologie, die in Tabelle 4.1
erläutert ist.

Wort Begriff Beschreibung

http://www.upb.de/index.html Subjekt Ressource
Ersteller Prädikat Eigenschaft
Michael Bungenstock Objekt Wert

Tabelle 4.1: RDF-Terminologie

Nun dient RDF in erster Linie der maschinellen Verarbeitung, sodass eine Sprache benötigt
wird, mit deren Hilfe Subjekt, Prädikat und Objekt eindeutig angegeben werden können. Da
für den Zugriff auf Ressourcen bzw. das Subjekt bereits die URIs eingeführt wurden, liegt es
nahe, dies auch für die beiden anderen Begriffe zu tun.

http://www.upb.de/index.html =⇒ Subjekt
http://purl.org/dc/elements/1.1/creator =⇒ Prädikat
http://www.getlab.de/staffid/83427 =⇒ Objekt

Die URI für das Subjekt ist klar, da sie gleichzeitig als URL für das Dokument inter-
pretiert werden kann. Bei der Wahl des Prädikats ist nicht auf den ersten Blick ersichtlich,
warum diese kryptische URI eines anderen Anbieters eingesetzt wird. Würde ein einfaches
Literal wie z.B. creator nicht ausreichen? Das Problem ist die Eindeutigkeit, die bei einem
einfachen Wort wie creator sicherlich nicht gewährleistet wäre. Abhängig vom Kontext kann
es zu verschiedenen Interpretationen kommen, da kein eindeutiges Konzept identifiziert wird.
Bei der Beispiel-URI ist das anders. Eine mit Dublin Core (siehe Abschnitt 4.2) vertraute
Person kann sofort die Bedeutung des Prädikats erkennen. Aus dem Beispiel lässt sich eben-
falls die Schlussfolgerung ziehen, dass bekannte URIs eigenen vorzuziehen sind. Was nützen
die schönsten URIs, wenn weder Mensch noch Maschine sie sinnvoll interpretieren können?
Beim Objekt ist dies freilich anders, weil die Werte zu speziell sind, als dass sie allgemein
definiert werden könnten. Je nach Komplexität des Wertes, können entweder Ressourcen oder
Literale als Objekt dienen. Im Beispiel werden Daten über Mitarbeiter/-innen als Ressourcen
modelliert, um mehr Informationen über die betreffende Person bereitstellen zu können, wie
z.B. Abteilung, Telefonnummer und E-Mail-Adresse.

1Alle URLs sind eine echte Teilmenge der URIs

4.1 Resource Description Framework 37

Diese Relationen lassen sich auch in Form von Graphen illustrieren: Subjekt und Objekt
sind Knoten, die durch das Prädikat, dargestellt als Pfeil, verbunden sind. Abbildung 4.2 zeigt
das gleiche Beispiel in grafischer Form.

http://www.upb.de/index.html

http://www.getlab.de/staffid/83427

http://purl.org/dc/elements/1.1/creator

Abbildung 4.2: RDF-Graph für den Mitarbeiter Michael Bungenstock

Nun soll das Beispiel durch zwei weitere Aussagen über Erstellungsdatum und Sprache
erweitert werden:

http://www.upb.de/index.html hat ein Erstellungsdatum mit dem Wert 4.11.2002
http://www.upb.de/index.html hat eine Sprache mit dem Wert deutsch

Diese Werte werden als Zeichenketten angegeben, weil sie keine weitere relevante Struktur
aufweisen und die Interpretation des Wertes von der Applikation abhängt. Es sei ausdrücklich
darauf hingewiesen, dass Literale lediglich für Objekte genutzt werden und nie für Subjekte
bzw. Prädikate. Durch den Zeichensatz Unicode [Aliprand03] können Werte in vielen Spra-
chen direkt dargestellt werden. Bei der grafischen Darstellung werden die Literale in Kästen
gezeichnet, wie in Abbildung 4.3 zu sehen ist.

http://www.upb.de/index.html

4.11.2002

http://www.getlab.de/staffid/83427

de

http://purl.org/dc/elements/1.1/creator

http://www.upb.de/terms/creation_date

http://purl.org/dc/elements/1.1/language

Abbildung 4.3: RDF-Graph mit Ressourcen und Literalen

Um die maschinelle Verarbeitung dennoch stabiler zu halten, können in RDF Typed Lite-
rals definiert werden. Das sind Zeichenketten mit einem bestimmten Typ — wie von Program-
miersprachen oder Datenbanken her bekannt —, der Wertebereich, Ordnung, und Operationen
festlegt. Anstatt das Erstellungsdatum “4.11.2002” als bloße Aneinanderreihung von Zeichen
zu deuten, lassen sich Tag, Monat und Jahr ablesen. Ohne eine Interpretation des Literals wür-
den syntaktische und semantische Fehler (z.B. ein falsches Datum ”4.13.2002” oder ”.11.2002”)
nicht frühzeitig erkannt werden. Im Gegensatz zu den genannten Programmiersprachen und
Datenbanken bietet RDF keine eingebauten Datentypen an, weshalb sie extern definiert und
über Datentypen-URIs referenziert werden. Ein Vorteil dieses Ansatzes ist die Flexibilität beim
Umgang mit Datentypen aus verschiedenen Quellen, da für eine direkte Darstellung der Werte
keine Umwandlung auf vordefinierte Datentypen nötig ist. Bei der Definition orientiert sich
RDF konzeptionell an einer Typdefinition der XML-Schemata-Spezifikation [Biron01], wonach
ein Datentyp wie folgt beschrieben ist:

• eine definierte Menge von Werten (Wertebereich genannt),

38 Metadaten

• eine definierte Menge von Zeichenketten (lexikalischer Bereich genannt)

• und eine Abbildung vom lexikalischen Bereich in den Wertebereich.

Die Zeichenkette “4.11.2002” des Beispiels kann folglich bei einem Datumstypen auf das
Datum 4. April 2002 abgebildet werden. Vorstellbar sind auch die Schreibweisen “2002-11-
4”, “11/4/2002”, etc. als gültige Literale für dasselbe Datum, wenn es eine entsprechende
Abbildung gibt.

Die Notation von typisierten Literalen in RDF setzt sich aus einer Zeichenkette und einer
URIref für den Datentyp zusammen. Als Separator dient die Zeichenfolge ^^, sodass auch
in der grafischen Repräsentation lediglich ein Knoten benötigt wird. Abbildung 4.4 zeigt das
Beispiel aus Abbildung 4.3 erweitert um Typinformationen.

http://www.upb.de/index.html

http://www.getlab.de/staffid/83427

"de"^^http://www.w3c.org/2001/XMLSchema#language

"2002−11−4"^^http://www.w3c.org/2001/XMLSchema#date

http://purl.org/dc/elements/1.1/creator

http://purl.org/dc/elements/1.1/language

http://www.upb.de/terms/creation_date

Abbildung 4.4: RDF-Graph mit typisierten Literalen

Gelegentlich ist die grafische Darstellung von RDF-Daten ungeeignet und eine schriftliche
vorzuziehen. Anstatt der natürlichsprachlichen Schreibweise sieht RDF Tripel vor, die aus
Subjekt, Prädikat und Objekt bestehen. URIrefs werden in spitzen Klammern geschrieben,
Literale in Anführungszeichen und jedes Tripel entspricht einem Pfeil im Graphen mit Start-
sowie Endpunkt.

<http://www.upb.de/index.html> <http://purl.org/dc/elements/1.1/creator> ←↩
<http://www.getlab.de/staffid/83427>

<http://www.upb.de/index.html> <http://www.upb.de/terms/creation_date> ←↩
"2002-11-4"^^<http://www.w3c.org/2001/XMLSchema#date>

<http://www.upb.de/index.html> <http://purl.org/dc/elements/1.1/language> ←↩
"de"^^<http://www.w3c.org/2001/XMLSchema#language>

Augenfällig ist der Platzbedarf dieser Darstellung, bei der die Tripel nicht in eine Zeile
passen (←↩ zeigt den Fortgang des Tripels ohne Zeilenumbruch). Dies liegt einerseits an der
Redundanz, da ein Subjekt bzw. Objekt in jedem Tripel explizit angegeben werden muss, an-
dererseits an den langen URIrefs. Letztere lassen sich durch qualifizierte Namen (QNames)
in eine kürzere Form überführen. Ein QName besteht aus einem Präfix, das für eine Namespace
URI steht, einem Doppelpunkt als Separator und einem lokalen Bezeichner. Für das Beispiel
werden nun folgende QName-Präfixe definiert:

Präfix dc, Namespace http://purl.org/dc/elements/1.1/
Präfix xsd, Namespace http://www.w3.org/2001/XMLSchema#
Präfix upb, Namespace http://www.upb.de/
Präfix upbt, Namespace http://www.upb.de/terms/
Präfix get, Namespace http://www.getlab.de/staffid/

4.1 Resource Description Framework 39

Daraus folgt für die Tripel des Beispiels:

upb:index.html dc:creator get:83427
upb:index.html upbt:creation_date "2002-11-4"^^xsd:date
upb:index.html dc:language "de"^^xsd:language

Bei RDF werden Mengen zusammenhängender URIrefs als Vokabular bezeichnet. Wenn
sich alle URIrefs ein gemeinsames Präfix teilen, dann lassen sich mit QNames effizient die Ele-
mente der Menge bestimmen. Teilweise werden die Präfixe der QNames selbst als Bezeichner
für Vokabulare genutzt, z.B. dc-Vokabular für die Menge der URIrefs von Dublin Core.

Abschließend soll noch auf komplexere Datenstrukturen eingegangen werden, wie sie in
praktischen Anwendungen vorkommen. Als Ausgangspunkt dient die Ressource get:83427
des vorangegangen Beispiels, die den Mitarbeiter Michael Bungenstock identifiziert. Eine Rei-
he von Metadaten bieten sich an, die mit dieser Person in Verbindung stehen, wie z.B. die
Adresse. In Tripel-Form, das Prädikat wird als ungetyptes Literal geschrieben, sieht diese Ei-
genschaft wie folgt aus:

get:83427 upbt:address "Pohlweg 47-49, 33098 Paderborn"

Eine Analyse des Literals fällt der vielen Daten wegen — Straße, Hausnummer, Postleit-
zahl und Ort müssen unterschieden werden — recht aufwendig aus. Daher ist es sinnvoll, die
Adresse in ihre Bestandteile zu zerlegen. Die Konsequenz dieser Umstrukturierung ist eine
neue Ressource address für jeweils jede/-n Mitarbeiter/-in mit vier neuen Prädikaten. Zur
Identifikation dieses Objekts wird der Namespace http://www.getlab.de/addrid/ mit dem
Präfix getaddr definiert. Die Tripel lauten:

get:83427 upbt:address getaddr:83427
getaddr:83427 upbt:street "Pohlweg"
getaddr:83427 upbt:street_no "47-49"
getaddr:83427 upbt:city "Paderborn"
getaddr:83427 upbt:zip "33098"

Abbildung 4.5(a) zeigt den passenden Graphen.

http://www.getlab.de/staffid/83427

http://www.getlab.de/addrid/83427

47−49 Paderborn

Pohlweg 33098

http://www.upb.de/terms/address

http://www.upb.de/terms/cityhttp://www.upb.de/terms/street_no

http://www.upb.de/terms/street http://www.upb.de/terms/zip

(a) Eigene Ressource für Adressen

http://www.getlab.de/staffid/83427

47−49 Paderborn

Pohlweg 33098

http://www.upb.de/terms/address

http://www.upb.de/terms/cityhttp://www.upb.de/terms/street_no

http://www.upb.de/terms/street http://www.upb.de/terms/zip

(b) Anonyme Ressource

Abbildung 4.5: Strukturierte Adresse

Auf diese Weise müssen bei komplexen Datenstrukturen eine Reihe von zusätzlichen UR-
Irefs erzeugt werden, die aber niemals benötigt werden. Es gibt keinen vernünftigen Grund,
die Ressource getaddr:83427 jemals direkt aufzurufen. Sie ist nur ein Konstrukt, um eine
Adresse adäquat zu modellieren. Abbildung 4.5(b) zeigt eine alternative Darstellung, bei der
die zusätzliche URIref ausgelassen wird.

40 Metadaten

Knoten ohne URIref werden als leere Knoten bezeichnet und referenzieren anonyme
Ressourcen. Sie können beliebig oft in Graphen eingesetzt werden, sind aber nicht unter-
scheidbar. Diese Eigenschaft führt bei der Tripel-Darstellung unweigerlich zu Problemen. Da
Tripel nur indirekt über Bezeichner verbunden sind, muss ein Symbol für anonyme Ressourcen
definiert sein. Wenn keine zusätzlichen Regeln bei der Verarbeitung gelten, wie z.B. die Rei-
henfolge oder eine Trennung durch Leerzeilen, dann ist die korrekte Interpretation unmöglich.
Aus diesem Grund definiert RDF für die Tripel-Schreibweise leere Knoten mit Bezeichner.
Die Notation ist ein Unterstrich, gefolgt von einem Doppelpunkt und einem Namen, wie z.B.
_:bungeaddr. Daraus ergibt sich für die Tripel des Beispiels:

get:83427 upbt:address _:bungeaddr
_:bungeaddr upbt:street "Pohlweg"
_:bungeaddr upbt:street_no "47-49"
_:bungeaddr upbt:city "Paderborn"
_:bungeaddr upbt:zip "33098"

Neben den Graphen und Tripel hat RDF noch eine Syntax für XML, die RDF/XML
[Beckett03] genannt wird. Sie ist die normative Syntax für RDF, auf die sich alle Implemen-
tationen stützen. Für die direkte Betrachtung durch den Menschen sind die XML-Konstrukte
jedoch wenig geeignet und bringen konzeptionell nichts Neues, weshalb eine ausführliche Be-
handlung an dieser Stelle nicht erforderlich ist. Weitere Informationen finden sich in z.B.
[Powers03; Hjelm01]. Die Realisierung von Application Profiles mit Hilfe von RDF wird in
[Hunter01] beschrieben und Anfragen auf Metadaten im RDF-Format in [Nejdl02].

4.2 Dublin Core Metadata

Bei den Dublin Core Metadaten (DC) [Dub99] handelt es sich um einen Konsens über Kern-
elemente, dessen Ursprung und Namensgebung in einem Workshop im März 1995 in Dublin
(Ohio) liegt. Zur Beschreibung von Ressourcen sind fünfzehn verschiedene Elemente definiert,
deren Semantik durch internationale, interdisziplinäre Gruppen von Bibliothekaren, Informati-
kern und Angehörigen verwandter Wissenschaften definiert wurde. Die Werte für jedes Element
können frei gewählt werden, jedoch gibt es teilweise Empfehlungen für den Einsatz definierter
Vokabulare.

1. Title: Ist der Name, unter dem eine Ressource bekannt ist.

2. Creator: Sind beispielsweise Personen, Organisationen oder Dienste, die sich verant-
wortlich für die Erstellung zeigen.

3. Subject: Umfasst das Thema der Ressource. Meist werden Schlüsselwörter oder Codes
für Kategorien eingesetzt.

4. Description: Beschreibt den Inhalt. Hierzu gehören z.B. Zusammenfassungen oder In-
haltsverzeichnisse.

5. Publisher: Sind beispielsweise Personen, Organisationen oder Dienste, die sich verant-
wortlich für die Veröffentlichung zeigen.

6. Contributor: Sind beispielsweise Personen, Organisationen oder Dienste, die in irgend-
einer Form beteiligt sind.

7. Date: Ist ein Datum eines Ereignisses im Lebenszyklus einer Ressource. Empfehlenswert
ist das Erstellungsdatum.

8. Type: Beschreibt den Typ oder die Art einer Ressource.

4.3 Learning Object Metadata 41

9. Format: Gibt die physikalische Form einer Ressource an.

10. Identifier: Ist eine eindeutige Referenz in einem gegebenen Kontext.

11. Source: Referenziert eine andere Ressource, von der die beschriebene abgeleitet wurde.

12. Language: Identifiziert die Sprache des Inhalts.

13. Relation: Beschreibt Beziehungen jeglicher Art zu anderen Ressourcen.

14. Coverage: Gibt den räumlichen und zeitlichen Rahmen vor.

15. Rights: Informiert über Eigentums- und Nutzungsrechte.

Wie das Wort Core im Namen bereits andeutet, handelt es sich um einen Satz funda-
mentaler Metadaten, die sich ebenfalls in koexistierenden Spezifikationen wiederfinden. DC ist
somit prädestiniert für Application Profiles (siehe Empfehlungen für den Einsatz in [CEN03]).
Für eine Identifizierung der Elemente sieht z.B. [Bearman99] Qualifizierer vor. Eine andere
Möglichkeit ist, Dublin Core als eine Art Sprache auszulegen, in der bestimmte Klassen von
Begriffen für Ressource definiert sind [Baker00]. In diesem Fall sind es Nomen für die Elemen-
te und Adjektive als Kennzeichen, die zusammen mit den Nomen in einer einfachen Syntax,
wie z.B. RDF (siehe Abschnitt 4.1), notiert werden. Aus dieser einfachen Definition lässt sich
schließen, dass Dublin Core einfach einzusetzen, jedoch weniger für komplexe Beziehungen oder
Konzepte geeignet ist. In [CEN03] stehen Empfehlungen für den Einsatz von DC Application
Profiles (DCAP) und ein Erfahrungsbericht findet sich z.B. in [Friesen02].

Die Bedeutung dieses Standards für diese Arbeit zeigt sich in den Elementabbildungen
anderer relevanter Metadaten-Standards wie z.B. LOM (nächster Abschnitt). In der Spezifika-
tion von LOM steht genau beschrieben, wie einzelne Einträge auf die fünfzehn Elemente von
DC abgebildet werden.

4.3 Learning Object Metadata

Der Standard Learning Object Metadata (LOM) [IEE02a] spezifiziert die Semantik und Syntax
von Metadaten für Lernobjekte (siehe Kapitel 3). Hauptsächlich geht es um Datenstrukturen,
mit denen die Eigenschaften von Lernobjekten vollständig beschrieben werden. Neben dem
Konzept, das hier vorgestellt wird, gibt es noch Spezifikationen für XML- [IEE02b] sowie RDF-
Bindings [IEE; Nilsson03] (siehe Abschnitt 4.1), die jedoch nur für technische Umsetzungen
interessant sind und an dieser Stelle nicht weiter behandelt werden.

Für LOM sind Lernobjekte alle digitalen oder nicht digitalen Einheiten, die zum Lernen
bzw. Lehren genutzt werden. Mit Hilfe der Metadaten können sie charakterisiert werden, was
ihre Suche, Evaluation, Beschaffung und Nutzung vereinfacht. Ein Problem ist die große Menge
an potentiellen Attributen, die sich als Metadaten eignen. Um Struktur in die Datenmenge
zu bringen, erfolgt eine Aufteilung in Kategorien, von denen es bei LOM insgesamt neun
gibt: General, Life Cycle, Meta-Metadata, Technical,Educational, Rights, Relation,
Annotation und Classification. Der Aufbau der Attribute kann recht unterschiedlich sein.
Es gibt einfache Werte, zusammengesetzte Felder, Listen und hierarchische Datenstrukturen,
die alle als obligatorisch oder optional markiert werden können. Da auch die besten Strukturen
nur dann helfen, wenn die Anzahl der jeweiligen Attribute handhabbar ist, wurde bei der
Festlegung von LOM darauf geachtet, ihre Menge so gering wie möglich zu halten.

In der Datenstruktur von LOM bilden die neun Kategorien die oberste Ebene mit folgender
Bedeutung:

a) General : Umfasst generelle Daten, die sich auf das gesamte Lernobjekt beziehen.

b) Life Cycle: Gruppiert alle Eigenschaften, die mit dem Verlauf bzw. dem aktuellen Stand
des Lernobjekts in Verbindung stehen.

42 Metadaten

c) Meta-Metadata: Beschreibt zusätzliche Daten über die Metadaten selbst.

d) Technical : Gibt die technischen Voraussetzungen an, die für einen reibungslosen Einsatz
notwendig sind.

e) Educational : Charakterisiert die didaktischen Eigenschaften der Inhalte.

f) Rights: Ermöglicht Nutzungsklauseln und Copyright-Vermerke.

g) Relation: Beschreibt Beziehungen und Abhängigkeiten zu anderen Lernobjekten.

h) Annotation: Speichert alle Kommentare inklusive Verfasser/-in über den eigentlichen
Einsatz.

i) Classification Erlaubt die Nutzung eigener Klassifikationssysteme.

Der Aufbau der Struktur lässt sich auch grafisch darstellen. Abbildung 4.6(a) zeigt die neun
Kategorien mit den möglichen Kardinalitäten (im folgenden durch n abgekürzt). Das Symbol
? steht für ein optionales Element (n ∈ {0, 1}). Mit * wird eine beliebige Kardinalität
angegeben (n ∈ {0, 1, 2, 3, ...}).

general

lifecycle

technical

rights

relation

*

*

*

?

?

?

?

?

?

lom

classification

annotation

metametadata

educational

(a) Die oberste Ebene

*

?

?

?

?

*

*

*

*

**general

entry

catalog
*

identifier

title

catalogentry

language

description

keyword

coverage

structure

aggregation

(b) Die Kategorie General

Abbildung 4.6: Beispiele für Strukturen in LOM (von [IEE02a] abgeleitet)

Die komplette Struktur von LOM ist zu umfangreich, als dass sie hier vollständig erörtert
werden könnte. Abbildung 4.6(b) zeigt exemplarisch die Kategorie General. Unterhalb des
Elements general kommen die eigentlichen Datenelemente, die verschieden komplex sind. Es
gibt einfache Datenelemente für Werte und zusammengesetzte für komplexere Strukturen. In
Anlehnung an einen Baum in der Graphentheorie spricht die LOM-Spezifikation bei einfachen
Datenelementen von Blättern, bei zusammengesetzten von Knoten. Abbildung 4.7 zeigt die
verschiedenen Ebenen innerhalb des Baums.

Jeder Knoten, wie z.B. das Datenelement catalogentry, dient nur zur Strukturierung
und kann niemals einen eigenen Wert besitzen. Neben dem Namen sieht die Spezifikation
für jedes Datenelement noch eine Kardinalität und — wenn es sich um Blätter mit einer
Kardinalität n > 0 handelt — eine Ordnung vor. Trifft die letztgenannte Bedingung zu, wird
auch von einer Liste gesprochen. Bei einer geordneten Liste muss die Reihenfolge der Blätter
berücksichtigt werden, wohingegen sie bei einer ungeordneten Liste keine Bedeutung hat.
Einfache Datenelemente sind zudem noch mit einem Typ versehen, der den Wertebereich
der erlaubten Werte angibt. Vorgesehen sind die Typen LangString, DateTime, Duration,
Vocabulary, CharacterString und Undefined.

4.3 Learning Object Metadata 43

general

title

langstringtype

catalogenty

language: "en−US"

string: "Becoming a Meta−Data Expert

catalog: "ISBN"

entry: "0−226−10389−7"

lifecycle

(version, status, etc.)

lom

"Leaves""Branches""Root"

Abbildung 4.7: Aufbau von LOM als Baum nach [IMS03b]

Ein LangString wird für unterschiedliche lokale Werte eingesetzt, dient also der Inter-
nationalisierung (I18N2) von Metadaten. Er besteht aus einem Sprach-Code nach ISO-639
[Int88; Int98] in Kombination mit einem optionalen Länder-Code [Int97] und dem eigentli-
chen Literal in der Codierung Universal Multiple-Octet Coded Character Set (UCS) [Int02].
Für jede unterstütze Sprache wird ein LangString angelegt, was z.B. in XML folgendermaßen
aussieht:

1 <desciption>
<langstring xml:lang=”en”>Leaving Certificate</langstring>

3 <langstring xml:lang=”en−GBR”>A−Level</langstring>
<langstring xml:lang=”fr−FRA”>Baccalauréat</langstring>

5 <langstring xml:lang=”de−DEU”>Abitur</langstring>
<langstring xml:lang=”de−AUT”>Matura</langstring>

7 </description>

Mit DateTime werden Datums- und Zeitangaben ab dem Jahr 1 gemacht. Daten ab dem
15. Oktober 1582 gelten nach dem gregorianischen Kalender, davor liegende nach dem juliani-
schen. Die Werte werden als Zeichenketten angegeben, deren Wertebereich in ISO-8601 [Int00]
definiert ist. Gültige Literale für Datums- und Zeitangaben sind z.B. 1984, 1857-06-06 und
1969-07-21T03:53. Zeitspannen basieren auf der Norm ISO-8601 und werden ebenfalls als
Zeichenketten mit dem Typ Duration notiert.

Eine Eigenheit dieser Notation sind die vielen Kombinationsmöglichkeiten der Werte,
durch die leider keine Eindeutigkeit mehr gegeben ist. So entsprechen z.B. PT2H30M, PT150M,
PT120M1800S, etc. ein und der selben Zeitspanne. Noch problematischer ist die Interpretation
von Monaten und Jahren. Ein Monat kann 28, 29, 30 oder 31 Tage haben und bei einem Jahr
kann es sich eventuell um ein Schaltjahr handeln. Das Literal P1M steht folglich für verschiedene
Zeitspannen, die unterschiedlich sind.

P1M=P30T ∧ P1M=P31T aber P30T6=P31T

Es liegt somit in den Händen der Entwickler/-innen, eine einheitliche Darstellung in ihren
Anwendungen zu finden.

2I18N ist das Akronym für den englischen Begriff Internationalization.

44 Metadaten

Metadaten sind oft subjektiver Natur, was zu einer individuellen Begriffsbildung führen
kann. Die natürliche Sprache lässt genug Raum für Interpretationsschwierigkeiten, sodass der
Nutzen von Metadaten für Mensch und Maschine beeinträchtigt werden kann. Um diesem
Problem entgegen zu treten, definiert LOM den Datentyp Vocabulary, mit dem eine Menge
von Zeichenketten als gültiger Wertebereich definiert wird. Durch ihn wird die semantische
Interoperabilität erhöht, da nur eine begrenzte Anzahl von Begriffen zur Auswahl steht. Bei
der Festlegung dieser Wortmengen ist es sogar möglich, die Semantik der einzelnen Begriffe
explizit zu erläutern. Auch die maschinelle Verarbeitung wird sicherer, da eine Überprüfung
durch das System möglich ist.

Für beliebige Werte sieht LOM den Typ CharacterString vor, bei dem nicht einmal die
Codierung vorgegeben wird. Lediglich die zu unterstützende Mindestlänge der Zeichenketten
muss von den Systemen unterstützt werden. Bei manchen Datenelementen wird der Wer-
tebereich auf einen anderen Standard eingeschränkt, wie z.B. für Personendaten (VCard
[Howes98; Dawson98]) und Formatkennungen (MIME Types [Freed96]). Datenelemente vom
Typ Undefined sollten nicht gesetzt werden, da sich ihre Bedeutung im weiteren Verlauf des
Standardisierungsprozesses ändern kann.

Anhand der verfügbaren Anwendungen und Systeme kann mit Recht behauptet werden,
dass sich LOM als der Standard im E-Learning-Bereich durchgesetzt hat. Hiervon zeugen
auch die vielen Publikationen zu diesem Thema. In [Neven02] werden verschiedene Reposito-
ries evaluiert, die LOM zur Auszeichnung der Metadaten nutzen. Eine Erweiterung von LOM
für multimediale Komponenten wird in [Saddik00; Saddik01] vorgestellt. Das europäische Pro-
jekt ARIADNE (Alliance Of Remote Instructional Authoring And Distribution Networks for
Europe), hat ein eigenes Application Profile auf Basis von LOM entwickelt [Najjar03; Duval00]
und ist der Versuch, mehr auf die europäischen Anforderungen für Metadaten einzugehen.

Die Beschreibung von LOM verdeutlicht, dass der Schwerpunkt der beschriebenen Meta-
daten eindeutig technisch ist. Die bestehende Kritik, besonders aus dem didaktischen Lager,
soll nicht verschwiegen werden.

”Zurzeit ist es weder möglich, die Eignung von Ressourcen für konkrete didaktische
Methoden zu bestimmen, noch können pädagogische Planungsdetails (wie zum Bei-
spiel die Kommunikationsstruktur, Evaluation) erschlossen werden. Die Akzeptanz
der weniger technisch orientierten Lehrenden und Trainer hängt maßgeblich von
derartigen Erweiterungen ab.“ [Pawlowski01, S. 107]

”Die von der IEEE LTSC empfohlenen LOM-Spezifikationen werden zunehmend in
aktuelle Lernplattformen implementiert und erlangen damit immer mehr prakti-
sche Relevanz. Zugleich stellen sie aber auch die pädagogische Eignung dieser Ler-
numgebungen in Frage. Der Verzicht auf die Beschreibung didaktisch-methodischer
Aspekte, z.B der Verweis auf wichtige Kontextinformationen oder der Bezug zu
konkreten Anwendungsszenarien, provoziert geradezu bereits jetzt zu beobachten-
de Extremformen des elektronisch vermittelten Lernens, die als �just enough lear-
ning�, �granulares Lernen� und bisweilen auch als �Fast-Food-Learning� bezeich-
net werden.“ [Niegemann04, S. 272]

Kapitel 5

Autorenwerkzeuge

Für die Erstellung von Lernobjekten werden spezielle Werkzeuge gebraucht, so genannte Au-
torenwerkzeuge. Abhängig von der gewünschten Granularität (siehe Abschnitt 3.3) und dem
Format (siehe Abschnitt 3.7) können durchaus verschiedene Programme zum Einsatz kommen.
In der Regel werden z.B. Abbildungen mit Grafikprogrammen, Java Applets mit Programmier-
umgebungen und XML-Seiten mit XML-Editoren erstellt. Eine Anwendung für alle Aufgaben
scheint daher wegen der vielfältigen Inhalte unrealistisch zu sein. Aufgrund der Komplexität
des Erstellungsprozesses ist auch eine gemeinsame Betrachtung mit Lernplattformen (siehe
Kapitel 6) nicht ratsam, da die jeweiligen Anforderungen zu weit auseinander liegen. Den-
noch muss ein Kriterium bei der Bewertung von Autorensystemen und Lernplattformen die
Möglichkeit zum Datenaustausch sein.

Andere Kriterien wie z.B. Funktionsumfang, Einarbeitungsaufwand, Preis, Systemvoraus-
setzungen und Kompatibilität werden allerdings ausschlaggebender sein. Ausgehend von der
Fragestellung, was eigentlich produziert werden soll, muss das richtige Produkt gewählt wer-
den. Manche der Kriterien wirken gegeneinander. So sind Autorenwerkzeuge mit einem größe-
ren Funktionsumfang teurer und anspruchsvoller in der Bedienung. Was aber nützt das beste
Autorenwerkzeug, wenn es nicht für das eingesetzte Betriebssystem erhältlich ist?

Neben den Werkzeugen sind auch Vorgehensmodelle für den Erstellungsprozess von Be-
deutung. Häufig sollen multimediale Inhalte erschaffen werden, was den Entwicklungsaufwand
massiv erhöht. Um eine gewisse Qualität zu erreichen, wird Wissen aus verschiedenen Diszi-
plinen benötigt, wobei die Vorgehensmodelle hierbei meist auf Modellen der Softwaretechnik
basieren, wie z.B. in [Depke99] beschrieben.

Zu der Gruppe der Autorenwerkzeuge zählen viele Programme, die sich in Aufgabe, Dar-
stellung und Funktionsumfang teilweise sehr unterscheiden. Es ist daher sinnvoll, vorweg eine
Klassifizierung einzuführen, um eine bessere Vergleichbarkeit zwischen den Systemen anzubie-
ten, die ähnliche Aufgaben erfüllen. Im nächsten Abschnitt werden nur externe Programme
vorgestellt, die nicht Bestandteil einer Lernplattform sind.

5.1 Klassifizierung

Alle vorgestellten Programme dienen zur Erstellung Web-basierter E-Learning-Inhalte, wobei
die hierfür nötigen Sprachen bzw. Formate für die Anwender/-innen keine Rolle spielen sollen.
Grafische Oberflächen, möglichst mit ”What You See Is What You Get“ (WYSIWYG), erlau-
ben eine schnelle Einarbeitung und vereinfachen die Arbeit. Anstatt z.B. HTML-Seiten direkt
zu erstellen, können Texte, Grafiken und dergleichen intuitiv mit der Maus zusammengestellt
werden. Es ist dann Aufgabe des Autorensystems, die Inhalte in eine entsprechende Kodierung
zu überführen. Trotz dieser verallgemeinerten Anforderung nach grafischer Bedienbarkeit gibt
es wesentliche Unterschiede, die eine Klassifizierung rechtfertigen.

Nach [Häfele03] lassen sich Autorensysteme grundsätzlich in 6 Gruppen einteilen:

1. Professionelle Werkzeuge mit integrierter Programmiersprache und hohem Einarbei-
tungsaufwand

46 Autorenwerkzeuge

2. Standard WYSIWYG-HTML-Editoren mit speziellen Plugins für E-Learning-Inhalte

3. Rapid Content Development Tools mit geringem Einarbeitungsaufwand

4. Content Converter für eine Umwandlung bestehender Dokumente in geeignete Formate

5. Live Recording zum Mitschneiden von Vorlesungen, Vorträgen und Präsentationen

6. Screen Movie Recorder zur Aufzeichnung von Programmsteuerungen

Eine Ausnahme sind noch die Editoren für mathematische Formeln, da sie meist nicht
Bestandteil der anderen Autorensysteme sind. Obwohl es sich um eigenständige Programme
handelt, werden sie in der Klassifizierung nicht explizit hervorgehoben. Die ersten beiden
Klassen 1 und 2 gehören zu den klassische Autorensysteme, wie sie heute gängig sind. Der
Trend geht jedoch hin zur schnellen Entwicklung von E-Learning-Inhalten, ermöglicht durch
Programme der Klassen 3 bis 6. Abbildung 5.1 illustriert die Klassifizierung und nennt bereits
passende Produkte.

Autorenwerkzeuge
Professionelle WYSIWYG−HTML−

mit Plug−Ins
Editoren

Rapid Content
Development Tools

Systeme
Recording

Live Screen
Movie

Recorder
Content Converter

Lecturnity
Suite
WebLearner
etc. Builder etc.

Viewlet
Studio
Camtasia

etc.
Clix Content Converter

etc.
Powertrainer
Dynamic
Lectora Publisher

etc.
Microsoft Frontpage
Dreamweaver
MacromediaMacromedia

Authorware
Click2learn Toolbook
etc.

Learning Content Autorenwerkzeuge

Einarbeitungsaufwand

Abbildung 5.1: Systematik der Autorenwerkzeuge [Häfele03]

5.1.1 Professionelle Autorenwerkzeuge

Zu den hier vorgestellten professionellen Werkzeugen gehören Macromedia Authorware1,
Click2Learn ToolBook2 und Matchware Mediator3. Sie zeichnen sich alle durch eine
detaillierte Programmierbarkeit und Gestaltung der Inhalte aus, setzen jedoch ein gewisses
Expertenwissen voraus.

Die aktuelle Version 7 von Authorware ist für die Erstellung von multimedialen E-Learning-
Anwendungen auf CD-ROM/DVD und im Internet ausgerichtet. Zu den neuen Leistungen
dieses Produkts zählen die Unterstützung von Standards für Lernplattformen und der Import
von Microsoft PowerPoint-Folien. Durch eine automatische Überwachung können die Lerner-
folge der Lernenden verfolgt werden. Personen, die bereits mit anderen Macromedia Produkten
vertraut sind, werden sich schnell an das Graphical User Interface (GUI) gewöhnen und einen
schnellen Einstieg finden. Viele Arbeitsschritte können mit Drag’n’Drop erledigt werden und
durch das One-button publishing, bei dem lediglich ein Knopfdruck für die Erstellung des
Endprodukts getätigt wird. Automatisch wird ein Content Package (siehe Kapitel 3) erzeugt
und auf die Lernplattform hochgeladen. Auf diese Weise lassen sich sehr schnell Ergebnisse
erzielen. Die eigentliche Stärke liegt aber in der Programmierbarkeit, die jedoch einiges an
Erfahrung mit Skriptsprachen, z.B. JavaScript, abverlangt. Für Standardanwendungen, wie
z.B. Logins, Kurs-Rahmenwerke, Übungen und Quiz, gibt es Templates und Wizards, die ohne
Programmierung auskommen. Abbildung 5.2 zeigt einen exemplarischen Screenshot.

1http://www.macromedia.com/software/authorware (29.10.05)
2http://www.toolbook.com (29.10.05)
3http://www.matchware.net/ge/products/mediator/default.htm (29.10.05)

http://www.macromedia.com/software/authorware
http://www.toolbook.com
http://www.matchware.net/ge/products/mediator/default.htm

5.1 Klassifizierung 47

Abbildung 5.2: Macromedia Authorware 7

Bei ToolBook handelt es sich um eine Produktlinie, die aus ToolBook Instructor und
ToolBook Assistant besteht. Beide Programme sind für die Erstellung von Web-basierten
E-Learning-Inhalten in Unternehmen ausgelegt, unterscheiden sich aber in der Zielgruppe.
Richtet sich der Assistant mehr an fachliche Experten, die wenig technisches Wissen haben,
können mit dem Instructor Simulationen und interaktive Inhalte programmiert werden. Eine
WYSIWYG-Oberfläche mit Drag’n’Drop erlaubt eine einfache Nutzung beider Produkte und
Wizards, Templates sowie eine große Auswahl an fertigen Objekten erleichtern eine schnelle
Produktion. Die erzeugten Inhalte können von beiden Programmen verarbeitet werden. So
ist es z.B. möglich, komplexere Templates mit dem Instructor zu erstellen, die dann im As-
sistant zum Einsatz kommen. Ein weiteres Plus von ToolBook ist die nahtlose Anbindung zu
verschiedenen Lernplattformen.

Den Mediator in der Version 7 gibt es als Standard, Pro und EXP. Die Ausgabe Standard
bietet einen Einstieg in die Erstellung multimedialer CDs und Flash-Seiten. Ohne Program-
mierkenntnisse und mit Drag’n’Drop können auf diese Weise einfache Ergebnisse produziert
werden. Für die Erstellung von E-Learning-Inhalten empfiehlt der Hersteller selbst die Ver-
sion Pro, da weitergehende Funktionen angeboten werden. In einem Ereignisdialog können
Ereignisse wie ”Maus loslassen“ oder ”Taste gedrückt“ mit Aktionen wie ”Seitenwechsel“ oder

”Cursor verschieben“ grafisch verknüpft werden. Hierdurch können echte Interaktionen reali-
siert werden, aber eine direkte Programmierung mit JavaScript ist nur in der Ausgabe EXP
möglich.

5.1.2 WYSIWYG-HTML-Editoren

Mit WYSIWYG-HTML-Editoren können auf einfache Weise HTML-Seiten erstellt werden.
Per Maus lassen sich Texte, Bilder, Animation etc. kombinieren und ausrichten, ähnlich einer
Textverarbeitung. Mittlerweile sind die Programme so weit im Funktionsumfang fortgeschrit-

48 Autorenwerkzeuge

ten, dass so gut wie keine Programmierung von Hand mehr durchzuführen ist. Besonders bei
der Erstellung von Lösungen wiederkehrender Aufgaben in JavaScript, wie z.B. Navigation
oder der Wertüberprüfung in Formularen, stellen die WYSIWYG-HTML-Editoren eine große
Hilfe dar. Zu den oft genutzten Programmen dieser Gattung zählen sicherlich Macromedia
Dreamweaver4, Adobe GoLive5, NetObjects Fusion6 und Microsoft Frontpage7. Für
die direkte Erstellung von E-Learning-Inhalten sind sie jedoch nur bedingt geeignet, weil sie
meist keine Standards wie SCORM oder AICC unterstützen.

Für Dreamweaver gibt es eine Reihe an Erweiterungen speziell für E-Learning-Inhalte, die
als Plugins direkt in das Programm integriert werden und kostenfrei bei Macromedia im E-
Learning-Bereich8 heruntergeladen werden können. Die wichtigste Erweiterung ist der Cour-
seBuilder, mit dem über 40 vorgefertigte Lerninteraktionen, Quiz- und Bewertungsvorlagen
zur Verfügung stehen. Abbildung 5.3 zeigt das Dialogfenster dieser Erweiterung.

Abbildung 5.3: Macromedia CourseBuilder -Erweiterung für Dreamweaver

Mit Hilfe der Learning Site-Befehlserweiterung können Kursaktivitäten, wie z.B. ein
Quiz, aus verschiedenen Quellen zusammengestellt werden. Über integrierte Navigationsfunk-
tionen und Tracking-Features lassen sich die Aktivitäten der Lernenden in einer Datenbank
protokollieren. Durch die SCORM RTI-Erweiterung (Sharable Content Object Reference
Model Runtime Interface) können die Inhalte so gespeichert werden, dass sie den SCORM-
Standards für die Runtime-Umgebung entsprechen. Die Manifest Maker-Erweiterung gene-
riert aus der Struktur eine Manifest-Datei in XML, die allen Spezifikationen des IMS Content
Packaging entspricht (siehe Abschnitt 3.5).

4http://www.macromedia.com/software/dreamweaver (29.10.05)
5http://www.adobe.com/products/golive (29.10.05)
6http://www.netobjects.com (29.10.05)
7http://www.microsoft.com/frontpage (29.10.05)
8http://www.macromedia.com/de/resources/elearning/extensions/dw_ud (29.10.05)

http://www.macromedia.com/software/dreamweaver
http://www.adobe.com/products/golive
http://www.netobjects.com
http://www.microsoft.com/frontpage
http://www.macromedia.com/de/resources/elearning/extensions/dw_ud

5.1 Klassifizierung 49

5.1.3 Content Converter

Aus gehaltenen Vorlesungen, Vorträgen und Präsentationen existieren oftmals Materialien in
digitaler Form, die sich jedoch nicht direkt für das E-Learning eignen. Durch Anpassung bzw.
Umwandlung können jedoch adäquate Ergebnisse erreicht werden, die eine einfache Integration
in ein LMS ermöglichen. Die Klasse der Content Converter richtet sich an Personen mit
erstellten Inhalten in gängigen Formaten, wie z.B. OpenOffice9 oder PowerPoint10, die mit
wenigen Schritten solche Dateien in E-Learning-Inhalte umwandeln wollen. Das Zielformat ist
meistens HTML und ein typisches Programm dieser Gattung ist der Content Converter11

des LMS Clix Campus.
Der Content Converter liest Word -Dokumente ein, analysiert die Struktur, erzeugt ein

XML-Dokument und extrahiert Abbildungen in separaten Dateien. Hierbei wandelt das Sys-
tem den Dokumentaufbau in eine Navigationslogik um, die für die spätere Steuerung benö-
tigt wird. Hierbei ist darauf zu achten, dass die Überschriften richtig gesetzt sind, da sie
die Anhaltspunkte der Analyse darstellen. Abschließend erfolgt die Umwandlung des XML-
Dokuments in einzelne HTML-Seiten und eine Navigation. Über Format- und Design-Vorlagen
kann das Layout den eigenen Bedürfnissen angepasst werden.

Mittlerweile können auch Textverarbeitungsprogramme ihre Dokumente in HTML oder
XML speichern, weshalb die Relevanz der einfachen Content Converter abnimmt. Die Re-
sultate ähneln jedoch mehr Texten als multimedialen E-Learning-Inhalten. Umfangreichere
Content Converter, die z.B. Metadaten extrahieren, feinere Granularitäten erlauben und Stan-
dards wie SCORM oder AICC unterstützen, haben jedoch das Potential, eine echte Alternative
gegenüber spezialisierten Programmen zu sein.

5.1.4 Live Recording Systeme

Systeme zur Aufzeichnung von Audio- und Videodaten ermöglichen eine schnelle Erstellung
multimedialer E-Learning-Inhalte. Auf diese Weise lassen sich Vorlesungen, Vorträge und Prä-
sentationen festhalten und bei Bedarf abrufen. Nach der Aufzeichnung lassen sich die Daten
bearbeiten, z.B. durch Anmerkungen oder die Erstellung eines Indexes. Im Gegensatz zu ei-
ner herkömmlichen Aufzeichnung mit einer einfachen Videokamera erlauben die Live Recor-
ding Systeme eine Verknüpfung mit dem präsentierten Material, wie z.B. einer PowerPoint-
Präsentation. Exemplarisch für diese Klasse werden IMC Lecturnity Suite12 und Tegrity
WebLearner13 vorgestellt.

Ausgangspunkt der Lecturnity Suite ist eine PowerPoint-Präsentation, die im Vorwege
erstellt wird. Ausgestattet mit einem Headset oder Mikrofon trägt der/die Dozent/-in wie
gewohnt die Vorlesung vor und wird von einer Kamera aufgezeichnet. Eventuelle Annotationen
lassen sich auf einem Smart- oder Whiteboard anbringen. Abbildung 5.4 zeigt ein Szenario für
den Einsatz von Lecturnity. Alle Quellen werden synchron aufgezeichnet und in ein Lernmodul
gepackt, das anschließend mit dem Lecturnity Player abgespielt werden kann oder mit dem
Lecturnity Converter in ein Format für den Real Media Player14 oder Windows Media
Player15 umgewandelt wird.

Das Prinzip der Aufzeichnung ist beim Tegrity WebLearner gleich. Ein besonderer Punkt
ist das WebLearner Studio, ein Komplettpaket versehen mit der nötigen Hardware (PC,
Bildschirm, Projektor, Kamera und Mikrofon), das für die Aufgabe optimal abgestimmt ist.
Probleme mit inkompatibler Hardware treten somit nicht auf. Eine Nachbearbeitung der Auf-
zeichnung ist mit dem WebLearner Editor möglich und eine Wiedergabe erfolgt über den

9http://www.openoffice.org (29.10.05)
10http://office.microsoft.com (29.10.05)
11http://www.im-c.de (29.10.05)
12http://www.im-c.de (29.10.05)
13http://www.tegrity.com (29.10.05)
14http://www.real.com (29.10.05)
15http://www.microsoft.com/windows/windowsmedia (29.10.05)

http://www.openoffice.org
http://office.microsoft.com
http://www.im-c.de
http://www.im-c.de
http://www.tegrity.com
http://www.real.com
http://www.microsoft.com/windows/windowsmedia

50 Autorenwerkzeuge

Abbildung 5.4: Einsatz von Lecturnity (Aus einer Werbebroschüre)

WebLearner Server. Zusätzliche Module bieten Funktionen an, die in der Lecturnity Sui-
te nicht angeboten werden. Beispielsweise ermöglicht das Modul Webcast synchrone Live-
Sessions mit anderen Teilnehmern/-innen, inklusive Interaktionen via Chat und Mikrofon.

5.1.5 Screen Movie Recorder

Screen Movie Recorder dienen zur direkten Aufzeichnung von Aktivitäten am Rechner und
einer gleichzeitigen oder späteren Vertonung. Der Bildschirm oder ein ausgewähltes Fenster
wird direkt ”abgefilmt“ und an zusätzlicher Hardware werden lediglich ein Headset oder Mikro-
fon benötigt. Auf diese Weise lassen sich Tutorien für die Bedienung von Programmen einfach
und schnell erstellen. Stellvertretend für diese Klasse werden Camtasia Studio16, Turbo
Demo17 und Qarbon ViewletBuilder18 vorgestellt.

Das Camtasia Studio ist ein sehr professionelles Programm, mit dem z.B. Microsoft seine
How-To-Videos erstellt hat. Es besteht aus den drei Komponenten Recorder, Producer und
Effects. Der Recorder erstellt einen Film, der mit dem Producer nachbearbeitet werden kann,
wie z.B. Schneiden, Vertonen und Konvertieren in andere Videoformate. Spezielle Ergänzungen
wie Annotationen, Bilder und dergleichen werden mit Effects eingefügt.

Bei Turbo Demo und ViewletBuilder werden im Gegensatz zum Camtasia Studio keine
kompletten Filme aufgenommen. Eine Animation besteht bei diesen Programmen aus einzel-
nen Bildern, auch Schlüsselszenen genannt, zu denen lediglich die Mausbewegung und Ereignis-
se aufgezeichnet werden. Dieser Ansatz erzeugt wesentlich kleinere Dateien als eine vollständige
Aufzeichnung. Auch die nachträgliche Bearbeitung erweist sich als einfacher, da Screenshots
hinzugefügt oder misslungene ausgetauscht werden können. Neben der Ergänzung mit Text-
feldern, Sprechblasen, Bildern und Vektorgrafiken sind sogar einfache Interaktionen mit der
Maus möglich.

16http://www.techsmith.com (29.10.05)
17http://www.turbodemo.de (29.10.05)
18http://www.qarbon.com (29.10.05)

http://www.techsmith.com
http://www.turbodemo.de
http://www.qarbon.com

5.2 Bewertung 51

5.1.6 Rapid E-Learning Content Development

Die Rapid E-Learning Content Development Werkzeuge kommen ohne jegliche Programmie-
rung aus und erlauben dennoch die Entwicklung interaktiver Elemente wie Quiz und Tests in
standardkompatiblen Formaten. Hierfür stehen Schablonen einzelner Seiten zur Verfügung, die
mit eigenen Texten, Abbildungen und Animationen ausgefüllt werden. Mehrere Seiten lassen
sich in Kapiteln organisieren und zu vollständigen Kursen zusammensetzen. Alle Programme
bieten WYSIWYG und Drag’n’Drop für eine einfache Benutzung an. Je nach Leistungsum-
fang können Fremdformate für Audio, Video und Multimedia eingebunden werden, sodass
auch komplexere Elemente möglich sind. Bekannte Vertreter dieser Klasse sind NIAM-TMS
EasyGenerator19 , ITACA EasyProf20 und Trivantis Lectora Publisher21.

Der EasyGenerator ist eine E-Learning-Suite und teilt die Arbeit in vier Bereiche auf,
die jeweils von einer Komponente unterstützt werden. Schulungen und Tests werden mit dem
EasyGenerator erzeugt und gewartet. Die Resultate lassen sich in einem Format speichern,
das mit Hilfe des EasyPlayers von einer CD-ROM oder des EasyWebPlayers über das Internet
abgespielt wird. Zudem werden SCORM und AICC für den Einsatz in einem LMS unterstützt.
Welche Fortschritte die Lernenden machen, wird durch EasyProgress überwacht. Sämtliche
Verwaltungstätigkeiten, die bei der Erstellung, Bereitstellung und Einsatz anfallen, werden
mit EasyCourseManager erledigt.

Mit EasyProf lassen sich einfach multimediale E-Learning-Inhalte und Präsentationen in
den Ausgabeformaten HTML, HTML mit SCORM sowie CD-ROM erzeugen. Ein Schwerpunkt
dieses Programms liegt bei Testfragen, die sich mit der Maus zusammenstellen lassen. Die
Tracking-Daten werden in XML kodiert und können entweder per E-Mail oder FTP übertragen
werden.

Neben den Schablonen bietet Lectora zusätzlich Assistenten an, mit denen Kursstruktu-
ren automatisch erzeugt werden. Ähnlich den programmierbaren Konkurrenzprodukten, lassen
sich Ereignisse — ausgelöst von Maus und Tastatur — mit Grafik- und Textobjekten verknüp-
fen. Zu den Stärken des Programms gehört die Vielfalt an unterstützen Fremdformaten, wie
z.B. das IPIX-Format22, das 360× 360 Grad Panorama Bilder ermöglicht. Als Ausgabeformat
stehen AICC sowie SCORM zur Wahl, HTML, CD-ROM/DVD und die Erstellung eines aus-
führbaren Programms (.exe) für Windows. Abbildung 5.5 zeigt einen typischen Screenshot
von Lectora.

5.2 Bewertung

In den Tabellen 5.1 und 5.2 sind die vorgestellten Programme für einen direkten Vergleich auf-
gelistet. Auch wenn die Ansätze teilweise sehr verschieden sind, wie z.B. programmierbare und
aufzeichnende Systeme, lassen sich Parallelen beim Erstellungsprozess erkennen, die problema-
tisch sind. Hierzu gehört die Wiederverwendung, da die meisten Autorensysteme nur optimale
Ergebnisse erzielen, wenn die Ergebnisse in proprietären Formaten gespeichert werden. Dateien
verschiedener Anwendungen lassen sich dann nur mit Aufwand kombinieren und die Resultate
sind oft suboptimal. Ein einheitliches Layout ist nur mit viel Disziplin bei der Erstellung zu
erreichen und Inhalte fremder Anbieter stechen schon aufgrund des Erscheinungsbildes her-
vor. Da die vorgestellten Programme meist auf Systemen mit dem Betriebssystem Windows
laufen, werden einige Zielformate auf Rechnern mit Linux oder Mac OS X nicht unterstützt.
Folglich wird beim Einsatz eines proprietären Formats bereits durch das Autorensystem die
Infrastruktur eingeschränkt. Mit den Definitionen für Lernobjekte aus Kapitel 3, besonders
Downes essentielle Anforderung an die Interoperabilität (siehe S. 22) sei hier hervorgehoben,
ist dies freilich schwer vereinbar.

19http://www.easygenerator.de (29.10.05)
20http://www.easyprof.com (29.10.05)
21http://www.lectora.com (29.10.05)
22http://www.ipix.com (29.10.05)

http://www.easygenerator.de
http://www.easyprof.com
http://www.lectora.com
http://www.ipix.com

52 Autorenwerkzeuge

Abbildung 5.5: Screenshot von Lectora

Ein ähnliches Problem ergibt sich aus der unterstützten Granularität. Viele der Programme
erlauben lediglich in sich abgeschlossene Einheiten, wie z.B. Kurse oder Vorträge. Dies führt
zu Behinderungen bei einer nachträglichen Änderung der Sequenzierung (siehe Abschnitt 3.4),
was wiederum zu Lasten der Wiederverwendung geht. Programmen mit kleineren Einheiten,
wie z.B. Dreamweaver oder die Screen Movie Recorder, fehlen hingegen die adäquaten Mittel
für komplexere Strukturen. Auch wenn Dreamweaver einer guten Autorenumgebung schon
nahe kommt, ist der Ansatz falsch gewählt. Anstatt einen HTML-Editor mit E-Learning-
Plugins zu erweitern, sollte besser eine E-Learning-Umgebung mit HTML-Plugins gewählt
werden.

Ganz anders stellt sich das Problem Standardkompatibilität dar. Wahrscheinlich liegen
die Gründe im Marketing begründet, dass auf vielen Produkten dieses Siegel zu finden ist
und in der Tat ermöglichen es diese Programme auch, Dateien in Formaten wie beispielsweise
SCORM, IMS Content Packaging und LOM zu speichern. Doch genauer betrachtet, zeigt
sich schnell der Etikettenschwindel. Die Ursachen liegen wieder in den proprietären Formaten
und den eingeschränkten Granularitäten. Eine mit Authorware gespeicherte SCORM-Datei er-
nüchtert schnell. Die Strukturierungsmöglichkeiten des Manifests (siehe Abschnitt 3.5) werden
nicht genutzt, denn es handelt sich vielmehr um eine Flash-Datei, eingepackt als Ressource,
was sicherlich nicht der Sinn eines Sharable Content Objects (SCO) ist. Als Fazit auf ein an-
deres Produkt umzuschwenken löst das Problem nicht. Die anderen Produkte schneiden nicht
besser ab.

Bei der Zusammenarbeit mit Learning Management Systemen wird nur von wenigen Auto-
rensystemen, wie z.B. Authorware und ToolBook, eine direkte Verbindung angeboten. Gerade
bei der Erstellung neuer Inhalte ist aber wichtig, das Layout auf der Zielplattform zu über-
prüfen. Funktionen wie WYSIWYG unterstützen die Autoren/-innen bei der Arbeit, jedoch

5.2 Bewertung 53

prägt letztendlich das LMS das Erscheinungsbild. In Hinblick auf eine Separation von Inhalt
und Darstellung, wie in Abschnitt 3.7 beschrieben, gilt dies besonders zu berücksichtigen. Aus
diesem Grund muss sich die Datenübertragung nahtlos in den gesamten Prozess der Erstellung
und Kontrolle einfügen.

Die vorgestellten Autorensysteme gehören zu den Programmen, die heutzutage im Einsatz
sind. Ihre Analyse hat die in Abschnitt 1.1 angesprochene Diskrepanz zwischen Theorie und
Praxis bestätigt, sodass folglich neue Ansätze für Autorensysteme gefunden werden müssen.

54 Autorenwerkzeuge
Sy

st
em

B
ed

ie
nu

ng
E

in
ga

be
Im

po
rt

A
us

ga
be

St
an

da
rd

G
rö

ße

Professionell

A
ut

ho
rw

ar
e

7
D

ra
g’

n’
D

ro
p,

W
Y

SI
W

Y
G

,
P

ro
gr

am
m

ie
-

ru
ng

T
ex

t,
G

ra
fik

,
A

ud
io

,
Q

ui
ck

T
im

e,
D

ir
ec

to
r,

F
la

sh
,

Ja
va

Sc
ri

pt
,
A

ct
iv

eX

P
ow

er
P
oi

nt
,

X
M

L
,
R
T

F
F
la

sh
,
W

in
do

w
s

M
ed

ia
P

la
ye

r,
D

V
D

,
M

ac
O

S
X

P
la

yb
ac

k

SC
O

R
M

,
IM

S,
A

IC
C

,
L
O

M

K
ur

se
,

T
em

pl
at

es

T
oo

lB
oo

k
(I

ns
tr

uc
to

r)
D

ra
g’

n’
D

ro
p,

W
Y

SI
W

Y
G

,
P

ro
gr

am
m

ie
-

ru
ng

T
ex

t,
G

ra
fik

,A
ud

io
,

P
ow

er
P
oi

nt
,
W

or
d,

F
la

sh
,
Ja

va
Sc

ri
pt

,
A

ct
iv

eX
,
R

ea
lM

ed
ia

H
T

M
L
,
.e

xe
SC

O
R

M
,

A
IC

C
K

ur
se

,
T
em

pl
at

es

M
ed

ia
to

r
7

(E
X

P
)

D
ra

g’
n’

D
ro

p,
W

Y
SI

W
Y

G
,

P
ro

gr
am

m
ie

-
ru

ng

T
ex

t,
G

ra
fik

,
A

ud
io

,
F
la

sh
,

Ja
va

Sc
ri

pt
,
V

is
ua

l
B

as
ic

,
A

ct
iv

eX
,

Q
ui

ck
T

im
e

F
la

sh
D

H
T

M
L
,
F
la

sh
,

C
D

-R
O

M
/D

V
D

,
Sc

re
en

Sa
ve

r,
.e

xe
,
M

ed
ia

to
r

K
ur

se
,

T
em

pl
at

es

HTML

D
re

am
w

ea
ve

r
(m

it
P

lu
gi

ns
)

D
ra

g’
n’

D
ro

p,
W

Y
SI

W
Y

G
,

P
ro

gr
am

m
ie

-
ru

ng

T
ex

t,
G

ra
fik

,A
ud

io
,

V
id

eo
,
F
la

sh
,

A
ct

iv
eX

,
Ja

va
Sc

ri
pt

H
T

M
L
,

X
M

L
,
T
a-

be
lle

nd
at

en

H
T

M
L
,

X
H

T
M

L
,
JS

P,
P

H
P

SC
O

R
M

,
IM

S,
A

IC
C

,
L
O

M

Se
it
en

,
K

ur
se

Conv.

C
lix

C
am

pu
s

C
on

te
nt

C
on

ve
rt

er

M
au

s
M

S
W

or
d

X
M

L
,
H

T
M

L
A

bs
ch

ni
tt

e,
K

ur
se

Live Recording

L
ec

tu
rn

it
y

Su
it
e

M
au

s,
T
as

ta
tu

r
T
ex

t,
G

ra
fik

P
ow

er
P
oi

nt
,

an
al

og
e

V
id

eo
da

te
n

C
D

/D
V

D
,

In
te

rn
et

-
St

re
am

in
g,

R
ea

lM
ed

ia
,

W
in

do
w

s
M

ed
ia

V
or

tr
ag

,
F
ilm

T
eg

ri
ty

W
eb

L
ea

rn
er

M
au

s,
T
as

ta
tu

r
T
ex

t,
G

ra
fik

P
ow

er
P
oi

nt
,

W
in

do
w

s
M

ed
ia

,
Q

ui
ck

T
im

e,
V

id
eo

da
te

n

C
D

-R
O

M
,

W
in

do
w

s
M

ed
ia

,
Q

ui
ck

T
im

e

SC
O

R
M

,
IM

S,
A

IC
C

V
or

tr
ag

,
F
ilm

Tabelle 5.1: Übersicht der Autorensysteme (Teil 1)

5.2 Bewertung 55

Sy
st

em
B

ed
ie

nu
ng

E
in

ga
be

Im
po

rt
A

us
ga

be
St

an
da

rd
G

rö
ße

Screen Recorder

C
am

ta
si

a
St

ud
io

M
au

s,
T
as

ta
tu

r
T
ex

t,
G

ra
fik

,
A

ud
io

,
H

T
M

L
,

P
ow

er
P
oi

nt
,
W

or
d

A
V

I,
F
la

sh
,

W
in

do
w

s
M

ed
ia

,
Q

ui
ck

T
im

e,
R

ea
lM

ed
ia

,
.e

xe
,

A
ni

m
at

ed
G

IF

F
ilm

T
ur

bo
D

em
o

M
au

s,
T
as

ta
tu

r
T
ex

t,
G

ra
fik

,
A

ud
io

Ja
va

/H
T

M
L
,

F
la

sh
,
A
V

I,
.e

xe
,
A

ni
m

at
ed

G
IF

,
P

D
F

F
ilm

V
ie

w
le

t-
B

ui
ld

er
M

au
s,

T
as

ta
tu

r,
T
ex

t,
G

ra
fik

,
A

ud
io

F
la

sh
F
la

sh
,
.e

xe
,

P
D

F
,
B

ild
er

SC
O

R
M

F
ilm

Rapid Development

E
as

y-
G

en
er

at
or

M
au

s,
D

ra
g’

n’
D

ro
p,

W
Y

SI
W

Y
G

,
T
as

ta
tu

r

T
ex

t,
G

ra
fik

,
A

ud
io

E
ig

en
es

Fo
rm

at
SC

O
R

M
,

A
IC

C
K

ur
s,

Sc
ha

-
bl

on
e

E
as

yP
ro

f
M

au
s,

D
ra

g’
n’

D
ro

p,
W

Y
SI

W
Y

G
,

T
as

ta
tu

r

T
ex

t,
G

ra
fik

,
A

ud
io

,
R

ea
lM

ed
ia

,
W

in
do

w
s

M
ed

ia
,

Q
ui

ck
T

im
e,

F
la

sh

P
ow

er
P
oi

nt
,

W
or

d
H

T
M

L
,

C
D

-R
O

M
,
.e

xe
,

.ja
r

SC
O

R
M

,
A

IC
C

K
ur

s,
Sc

ha
-

bl
on

e

L
ec

to
ra

M
au

s,
D

ra
g’

n’
D

ro
p,

W
Y

SI
W

Y
G

,
T
as

ta
tu

r

T
ex

t,
G

ra
fik

,
A

ud
io

,
R

ea
lM

ed
ia

,
W

in
do

w
s

M
ed

ia
,

F
la

sh

H
T

M
L
,
.e

xe
SC

O
R

M
,

A
IC

C
K

ur
s,

Sc
ha

-
bl

on
e

Tabelle 5.2: Übersicht der Autorensysteme (Teil 2)

Kapitel 6

Lernplattformen

Der Einsatz von E-Learning lässt sich nur mit einer geeigneten Infrastruktur sinnvoll realisie-
ren, weil viele Inhalte inklusive Metadaten einer großen Zahl von Personen mit unterschiedli-
chen Aufgaben zugänglich gemacht werden müssen. Einen wesentlichen Anteil übernimmt die
Lernplattform, die eine zentrale Anlaufstelle für ein breites Angebot an Diensten ist. Um
den Leistungsumfang eines solchen Systems genauer bestimmen zu können, werden folgend
die Rollen und Tätigkeiten beschrieben, die hauptsächlich mit einer Lernplattform zu tun
haben. Ein/eine Dozenten/-in plant und organisiert Lehrveranstaltungen für Studierende
und wird bei der Durchführung zumeist von Tutoren/-innen unterstützt. Jede dieser Rollen
muss über eine Benutzerverwaltung dem System bekannt gegeben werden. In der Regel legt
die Rolle Administrator/-in den/die Dozenten/-in an, eventuell auch die Tutoren/-innen.
Diese können wiederum Studierende eintragen, die sich für einen Kurs angemeldet haben.

An dieser Stelle wird bereits erkennbar, dass eine Rollen- und Rechtevergabe benötigt
wird. Lediglich den Administratoren/-innen soll gestattet sein, neue Zugänge für Dozenten/-
innen anzulegen. Dozenten/-innen und Tutoren/-innen werden mit weniger Rechten bedacht
und bei Studierenden sollte im Hinblick auf möglichen Missbrauch ganz von jeglichen admi-
nistrativen Möglichkeiten abgesehen werden.

Eine Lernplattform muss also ”wissen“, wer gerade mit ihr arbeitet, um die Rechte der
Rolle überprüfen zu können. Hierbei sei erwähnt, dass es durchaus üblich ist, wenn ein und
die selbe Person in mehreren Rollen auftritt. So kann z.B. der/die Dozent/-in in die Rolle
Designer/-in wechseln, in der andere Rechte zugebilligt werden. Dieses Vorgehen erlaubt
eine bessere Kontrolle der einzelnen Aktivitäten und erhöht die Sicherheit des Systems. Eine
Person identifiziert sich über die Authentifizierung der Lernplattform und bekommt eine
Rolle zugewiesen. Vorwiegend erfolgt der Zugang über einen Namen und ein Passwort, aber
auch Schlüssel in Dateien oder Cookies der Web-Browser sind denkbar. Nach einer erfolg-
reichen Authentifizierung überprüft die Lernplattform jede Aktion über die Autorisierung.
Anhand der eingenommenen Rolle und den vergebenen Rechten wird kontrolliert, ob die ge-
wünschte Operation ausgeführt werden darf oder die nötige Berechtigung fehlt. Komfortable
Systeme zeigen allein die Operationen an, die auch ausgeführt werden dürfen. So würde z.B.
die Rolle Designer/-in eine Operation ”Bearbeiten“ in ihrer Kursansicht vorfinden und die
Rolle Studierende nicht.

Neben der Benutzerverwaltung muss eine Lernplattform auch eine Kursverwaltung an-
bieten. Hierbei sind die unterstützten Granularitäten (siehe Abschnitt 3.3) und Formate (siehe
Abschnitt 3.7) wesentliche Merkmale. Je nach Abstraktionsniveau können u.a. HTML-Seiten,
Bilder, Lernobjekte oder vollständige Kurse in einem Repository gespeichert werden. Die Lern-
plattform sollte den/die Dozenten/-in bei der Suche nach geeigneten Materialien unterstützen
und beliebige Kombination fremder und eigener Inhalte ermöglichen. Durch Wiederverwen-
dung können somit Kosten reduziert werden. Verschiedene Ausgabeformate, wie z.B. HTML
oder PDF runden den Funktionsumfang ab, wobei die direkte Erstellung von Inhalten nicht zu
den Aufgaben einer Lernplattform gehört. Im folgenden Abschnitt 6.1 wird allerdings auf Sys-

58 Lernplattformen

teme eingegangen, die diesen Prozess unterstützen, z.B. durch einen einfachen Datenaustausch
mit Autorensystemen.

Begleitend zu einem Kurs sollte eine Lernplattform Daten über die Leistungen der Studie-
renden sammeln: ”Wie lange ist die letzte Anmeldung her?“, ”Wie viel Zeit wurde in welchem
Bereich verbracht?“ und ”Welche Aufgaben wurden absolviert?“ sind nur einige Informationen,
die in Statistiken die Lernaktivitäten veranschaulichen. Auf diese Weise können individuelle
Probleme erkannt und gezielt behoben werden.

Auch die Kommunikation zwischen den Personen soll eine Lernplattform unterstützen. Be-
kannte Kommunikationsmethoden sind u.a. Foren, in denen Beiträge nach Themen geord-
net sind und Threads (Diskussionsfäden) entstehen. Dozent/-in und Tutoren/-innen können
bei Bedarf Hilfestellungen geben, indem sie eigene Beiträge hinzufügen. Schneller geht es beim
Chat zu. Texteingaben werden direkt auf den Bildschirmen aller oder ausgewählter Personen
angezeigt und Reaktionen können prompt folgen, sodass im Vergleich zu den Foren agilere
Diskussionen möglich sind. Beide Kommunikationsmethoden, Foren und Chat, sollten bei Be-
darf moderierbar sein, d.h. eine Person oder Gruppe ist mit Sonderrechten ausgestattet. Sie
überwacht das ”Niveau“ der Beiträge und kann gegebenenfalls intervenieren. Wichtige Nach-
richten für alle Studierenden, wie z.B. Terminankündigungen oder Terminänderungen, sollten
per E-Mail bekannt gegeben werden.

Der Lernprozess der Studierenden soll von der Lernplattform unterstützt werden. Beson-
ders die Organisation und Vorgehensweise sollen durch Werkzeuge für Studierende ver-
einfacht werden, wie z.B. mit einem Notizbuch für persönliche Annotationen zu den Inhalten
oder einem Kalender. In eigenen Bereichen soll die Möglichkeit zum Nachlernen und zur Selbs-
tevaluation gegeben sein.

6.1 Definitionen

Es soll nun der Versuch unternommen werden, eine Definition bzw. einen Anforderungskatalog
für Lernplattformen zu erstellen. Da es sich um komplexe Systeme handelt, bei denen es auf
Praxistauglichkeit ankommt, gibt es so gut wie keine theoretischen Arbeiten. Vielmehr handelt
es sich um Praxiserfahrungen, die in eigenen Implementierungen oder Evaluationen (siehe
Abschnitt 6.2) gesammelt wurden.

Von der damaligen EDUCOM-Kommission (heute: EDUCAUSE) stammt folgender Ver-
such, die wesentlichen Eigenschaften einer Lernplattform festzulegen. Die Definition stammt
aus [Schulmeister01, S. 132ff]:

Kurse: Die Einrichtung und Durchführung von Kursen ist möglich.

Akteure: Lernsysteme sollten mindestens die Rollen für folgende Akteure vorsehen: Studie-
rende, Dozenten, Tutoren, Administratoren.

Dienste: Dienste müssen über eine eigene Funktionalität verfügen:
Administrative Dienste: Kurskalender, Schwarzes Brett, etc.
Kommunikationsdienste: Chat, E-Mail, Foren
Lehrfunktionen: Folien, Referenzen zu Netzadressen, etc.
Evaluationsdienste: Tests, Selbstevaluation, etc.

Dokumente: Dokumente müssen Teil der Lernobjekte und der Dienste sein.

Gruppen: Kollaboratives Arbeiten muss möglich sein, wobei mehrere Benutzer gleichzeitig
kommunizieren.

Institutionen: Die Lernumgebung ist an jede Institution anpassbar.

Sprache: Kurse in mehreren Sprachen müssen unterstützt sein.

Interface: Anpassungen der grafischen Schnittstelle an die Lernumgebung sind möglich.

Navigationsstruktur: Anpassung der Navigation an das Lernumfeld ist möglich.

6.1 Definitionen 59

Eigentlich erfüllt keine der heute verfügbaren Lernplattformen diesen Leistungskatalog
und dennoch ist er nicht vollständig. Die Beschreibung am Anfang dieses Kapitels lässt
erahnen, dass noch weitere Funktionen zum Umfang gehören. Es fehlt z.B. eine Kursver-
waltung, die Wartung und Suche beinhaltet. Auch das Rollenmodell wird erst durch einen
Authentifizierungs- und Autorisierungsmechanismus vollständig. Die Forderung nach anpass-
baren grafischen Schnittstelle sollte in eine strikte Trennung von Inhalt und Darstellung über-
führt werden, um neben dem wandelbaren Aussehen verschiedene Ausgabeformate wie HTML
und PDF zu ermöglichen. Zudem sind eine nähere Anbindung von Autorensystemen an Lern-
plattformen sowie die statistische Erfassung der Lernaktivitäten sinnvolle Ergänzungen für
eine umfassende Definition.

Ausgehend von der gegebenen Definition, kennzeichnet Schulmeister in [Schulmeister03,
S. 10] folgende Punkte als relevant, um eine Lernplattform von einer bloßen Kollektion von
Skripten oder Hypertextsammlungen zu unterscheiden:

• Eine Benutzerverwaltung (Anmeldung mit Verschlüsselung)

• Eine Kursverwaltung (Kurse, Verwaltung der Inhalte, Dateiverwaltung)

• Eine Rollen- und Rechtevergabe mit differenzierten Rechten

• Kommunikationsmethoden (Chat, Foren) und Werkzeuge für das Lernen (Whiteboard,
Notizbuch, Annotationen, Kalender etc.)

• Die Darstellung der Kursinhalte, Lernobjekte und Medien in einem netzwerkfähigen
Browser

Durch diese Ergänzung fallen eine Reihe von Systemen heraus, die allgemein für die Grup-
penarbeit bzw. den Datenaustausch konzipiert wurden, wie z.B. der BSCW-Server des Pro-
jekts Basic Support for Cooperative Work (BSCW) [Bentley95]. Lernplattformen zeichnen sich
gegenüber solchen Systemen durch eine leistungsfähigere Administration, verschiedene Kom-
munikationsmethoden und einem größeren Repertoire an Werkzeugen für das Lernen aus.

Der funktionale Aufbau einer Lernplattform lässt sich auch grafisch darstellen, wie Abbil-
dung 6.1 zeigt.

Kursdaten

Administration

Benutzerdaten

Content Management

Lernobjekte

Metadaten

Administration

Evaluation

Institutionen

Kurse

Benutzer

Authoring

Interfacedesign

Lernobjekte

Aufgaben

Tests

Lernumgebung

Personalisierung

Werkzeuge

Kurse

Schnittstellen−APIextern intern

Repository−Datenbasis

Kommunikation

Abbildung 6.1: Idealtypische Architektur einer Lernplattform nach [Schulmeister03, S. 11]

Demnach besteht eine Lernplattform im Wesentlichen aus drei Schichten. Die erste Schicht
hält alle Daten für den Betrieb vor, wie z.B. die Lernobjekte und Benutzerdaten. Darüber

60 Lernplattformen

liegt Schicht Zwei mit den Programmierschnittstellen (API) für den Zugriff auf die wesent-
lichen Funktionen. Auf oberster Ebene liegt Schicht Drei, die zur Visualisierung der Daten
und zur Steuerung der Lernplattform dient. Bei normalem Betrieb arbeiten alle Rollen mit
den Werkzeugen aus der Schicht Drei und nur bei Anpassungen oder Erweiterungen kann es
vorkommen, dass auch auf die darunter liegenden Schichten zugegriffen werden muss.

Neben dem Begriff Lernplattform gibt es noch weitere, die sich meist nur in Nuancen unter-
scheiden. Der gängige Begriff im anglophonen Gebiet ist Learning Management System (LMS).
Speziell in England wird aber auch oft von Virtual Learning Environments (VLE) gesprochen,
wenn die didaktische Ausrichtung hervorgehoben werden soll [Britain00]. Ein Beispiel für eine
Klassifizierung von VLEs findet sich in [Milligan00]. Hier werden klassische, lernzentrierte und
kollaborative VLEs unterschieden sowie deren Erweiterungen. Die klassischen VLEs gliedern
die Lerninhalte hierarchisch: Ein Kurs wird in Lektionen aufgeteilt, die wiederum aus Seiten
bestehen und Übungen enthalten. Abschließend werden Tests angeboten, bevor es zum nächs-
ten Thema geht, sodass die Sequenzierung überwiegend linear-sukzessiv ist (siehe Abschnitt
3.4). Lernzentrierte VLEs zeichnen sich durch die Unterstützung von Methoden der Projektar-
beit aus [Schulmeister01]. Kollaborative VLEs erlauben mehreren Personen an gemeinsamen
Projekten oder Objekten zu arbeiten. Es handelt sich um ein Netzwerk verschiedener Pro-
gramme, die z.B. über das Internet miteinander verbunden sind [Schwabe01; Wessner00]. Als
Erweiterungen werden alle Programme betrachtet, die VLEs um zusätzliche Spezialfunktionen
ergänzen, z.B Editoren, Animationswerkzeuge und Programme für Videokonferenzen.

Eine andere Kategorisierung bringt die Definition von Brandon Hall [Hall00]. Demnach
ist ein LMS hauptsächlich für die Administration der Lerninhalte und der Anwenderdaten
zuständig. Können die Inhalte zusätzlich verändert und zusammengestellt werden, handelt
es sich um ein Integrated Learning Management System (ILS). Ein ähnlicher Begriff ist das
Learning Content Management System (LCMS), der eine Vermischung von Content Manage-
ment System (CMS) und LMS ist. Schulmeister hält all diese Verfeinerungen jedoch nicht für
sinnvoll:

”Diese Begriffsunterscheidung zwischen LMS und ILS ist nicht wirklich trennscharf,
selbst die Unterscheidung von Content Management System (CMS) oder Learning
Content Management System (LCMS) und LMS ist nicht sehr hilfreich. Die Inte-
gration eines Editors für Autoren ist nicht konstitutiv für ein LMS, das Authoring
kann auch mit einem externen Editor erfolgen.“ [Schulmeister03, S. 14,15]

6.2 Evaluation

Die Auswahl der geeigneten Lernplattform ist ein komplexes und zeitaufwendiges Unterfangen.
Zuerst sollte der eigene Bedarf bestimmt werden, um die Kriterien für das benötigte System
festzulegen. Hiernach erfolgt die Recherche nach den Lernplattformen und ihren Funktionen.
Es sollten möglichst viele der aufgestellten Kriterien erfüllt sein, um etwaige Erweiterungen zu
sparen. Aufgrund des riesigen Angebots an Lernplattformen, sollte auf bereits vorhandene Un-
tersuchungen zurückgegriffen werden. Die ständige Weiterentwicklung, gelegentliche Übernah-
me durch andere Firmen oder die komplette Einstellung von Produkten bereitet auch Experten
arge Probleme. Offensichtlich muss die Evaluation von Lernplattformen bis zur Kaufentschei-
dung im Auge behalten werden, denn eine falsche Wahl kann erhebliche finanzielle Nachteile
in sich bergen.

Eine ältere Recherche von Schulmeister [Schulmeister00] hat 108 Software-Produkte unter-
sucht, die in der Stichprobe ”Evaluation von Lernplattformen“ (EVA:LERN) [Schulmeister03]
auf 171 aufgestockt wurde. Brandon Hall führt in seiner Studie [Hall03] 72 Systeme an, von
denen 44 auch in EVA:LERN vorkommen. Aus dem gleichen Hause gibt es zusätzlich eine
Studie über LCMS [Chapman03]. In der Untersuchung von Baumgartner [Baumgartner02a]
werden 133 Lernplattformen angegangen. Anhand dieser ausgewählten Arbeiten wird bereits

6.2 Evaluation 61

offensichtlich, wie kompliziert und subjektiv die Auswahl eines geeigneten Systems ist. Im fol-
genden werden die Lernplattformen Blackboard 61, WebCT2 und smartBLU3 vorgestellt,
weil sie bei dieser Arbeit zur Verfügung standen. Der Installationsaufwand einer Lernplatt-
form ist enorm und kann nur von Experten mit Erfahrungen auf diesem Gebiet durchgeführt
werden.

6.2.1 Blackboard

Blackboard Inc. bietet die Lernplattform Blackboard an, die aus CourseInfo hervorgegangen
ist. Bei der aktuellen Version Blackboard 6 handelt es sich um verschiedene Komponenten, die
nach den eigenen Bedürfnissen kombiniert werden können. An dieser Stelle wird die Black-
board Academic Suite näher betrachtet, die sich aus den Systemen Blackboard Learning
System4, Blackboard Content System und Blackboard Portal System zusammensetzt.

Das Blackboard Learning System ist ein Web-basiertes Werkzeug zur Verwaltung von Kur-
sen, mit dem Lehrende eigene Lehrpläne erstellen und ihre zugehörigen Inhalte abspeichern.
Für die Überprüfung des Lernerfolgs unterstützt das System die Erstellung und den Einsatz
von Tests. Lernende profitieren von virtuellen Klassenräumen, in denen die Kommunikati-
on und Zusammenarbeit gefördert werden. Sollte Blackboard eine gewünschte Funktion nicht
anbieten, so kann es über die Building Blocks erweitert werden. Hierbei handelt es sich
um eigene Anwendungen oder Ergänzungen, die mit einem speziellen Software Development
Kit (SDK) entwickelt wurden. Über spezielle APIs erlangen die selbst entwickelten Module
den vollen Zugriff auf Blackboard. Ein gutes Beispiel ist der Building Block zum Einlesen von
SCORM-Dateien, durch den Blackboard erst standardkompatibel wird. Abbildung 6.2 zeigt
einen typischen Screenshot des LMS.

Bei dem Blackboard Content System handelt es sich um eine Erweiterung, die Autoren/-
innen bei ihrer Arbeit unterstützt. So lassen sich Inhalte versionieren, Änderungen überwa-
chen und Arbeitsabläufe bestimmen. Einmal erstellt, können Dateien zentral gehalten und in
verschiedenen Kursen eingesetzt werden. Einen ähnliche Funktionalität wird auch den Studie-
renden angeboten. In ”virtuellen Speicherbereichen“ können sie eigene Daten halten, auf die
sie über Blackboard zugreifen können.

Mit dem Blackboard Portal System lässt sich ein anpassbares Portal für Firmen und Univer-
sitäten aufbauen, das die Lernplattform mit anderen Diensten in einer einheitlichen Oberfläche
vereint.

6.2.2 WebCT

WebCT Inc. bietet die beiden Ausführungen WebCT Campus Edition und WebCT Vista
ihres E-Learning-Systems für die Hochschulausbildung an. Die WebCT Campus Edition
ist ein System zur Erstellung, Verwaltung und Nutzung von Kursen. Abbildung 6.3 zeigt eine
typische Präsentation von Inhalten.

Den Lehrenden wie Lernenden werden diverse Werkzeuge an die Hand gegeben, mit de-
nen der Zugriff auf das System vereinfacht wird. So lassen sich alle gängigen Kursinhalte, wie
z.B. Texte, Bilder, Videos und Quiz, per Drag’n’Drop einstellen. Lehrende können Lernpfade
vorgeben, indem sie Leistungskriterien aufstellen, die mit Tests auf Basis von Multiple Choi-
ce und offenen Aufgaben überprüft werden. Der gesamt Lernfortschritt lässt sich festhalten,
sodass sich auch Rückschlüsse auf die Qualität der Kurse ziehen lassen. So können die Inhal-

1http://www.blackboard.com (29.10.05) Mein besonderer Dank gilt Prof. Dr. Hans-Jürgen Appelrath und
dem

”
Oldenburger Forschungs- und Entwicklungsinstitut für Informatik-Werkzeuge und -Systeme“ (OFFIS) für

die Nutzung der Installation.
2http://www.webct.com (29.10.05) Mein besonderer Dank gilt dem

”
Multimedia Kontor Hamburg“

(MMKH) für die Nutzung der Installation.
3http://www.smartblu.de (29.10.05)
4http://www.blackboard.com (29.10.05)

http://www.blackboard.com
http://www.webct.com
http://www.smartblu.de
http://www.blackboard.com

62 Lernplattformen

Abbildung 6.2: Screenshot von Blackboard

6.2 Evaluation 63

Abbildung 6.3: Screenshot von WebCT

64 Lernplattformen

te ständig verfeinert und verbessert werden, um optimale Lernerfolge zu erreichen. Für die
Kommunikation der Lernenden werden Chat, Whiteboard, E-Mail, und Foren angeboten.

Mit dem WebDAV-Zugang haben Autoren/-innen einen flexiblen Zugang zu WebCT, über
den Inhalte schnell eingespielt und verändert werden können. Moderne Betriebssysteme kön-
nen WebDAV bereits nahtlos integrieren, sodass auch nicht unterstützte Autorenwerkzeuge
direkten Zugriff haben. Mit einem sehr einfachen HTML-Editor können Seiten auch direkt in
WebCT bearbeitet werden, wovon jedoch abzuraten ist, weil die Funktionen zu rudimentär
sind.

WebCT Vista ist für größere Installationen ausgelegt, bei denen z.B. verschiedene Internet-
auftritte einer Universität auf einem System betrieben werden. Diese Ausführung von WebCT
steht dieser Arbeit leider nicht zur Verfügung und kann nicht weiter betrachtet werden.

6.2.3 SmartBLU

Das LMS SmartBLU ist aus dem System CMS-W3 hervorgegangen und wird seit 1996 vom
Fraunhofer Institut für Graphische Datenverarbeitung (IGD) entwickelt. Im Gegensatz zu den
anderen vorgestellten Systemen beschränkt sich SmartBLU auf die Präsentation von Lernma-
terialien und nutzt Chat sowie Foren als Kommunikationsmittel. Obwohl Portale, Organizer
sowie andere Funktionen nicht zum Leistungsumfang gehören, ist es dennoch eine interessante
Alternative, da es von den hier vorgestellten LMS die beste Standardunterstützung anbie-
tet. So kann SmartBLU selbständig eine Navigation aus einem Manifest generieren, was bei
den Konkurrenzprodukten nicht ohne weiteres geht. Abbildung 6.4 zeigt einen exemplarischen
Screenshot des Systems.

SmartBLU hat ein eigenes Rollenkonzept und unterscheidet zwischen Lerner, Betreu-
er, Fachautor sowie Administrator. Die Rolle Lerner nutzt das System zum lernen und
kann verschiedene Kurse belegen. Eine Kontrolle des Lernerfolgs wird über Tests angeboten,
von denen es Lückentexte, Zuordnungsaufgaben, Multiple- und Single-Choice-Aufgaben gibt.
Der Betreuer begleitet die Lernenden und kann die Ergebnisse der Tests überprüfen. Für die
Erstellung der Inhalte sind die Fachautoren zuständig, die sich um Konzeption, Gestaltung
und Implementierung kümmern. Alle Verwaltungsaufgaben, wie z.B. die Benutzerverwaltung,
werden von der Rolle Administrator durchgeführt.

Die Strukturierung der Kurse orientiert sich an der ”Buchmetapher“, sodass sich Lern-
inhalte wie in einem Buch in Kapitel und Abschnitte aufteilen. Die kleinste Einheit sind
Module, z.B. Texte, Grafiken sowie Animationen, und entsprechen im Sinne der Metapher
einem Abschnitt. Ein Modul kann in mehreren Kursen eingesetzt werden, wodurch die Wie-
derverwendbarkeit gefördert wird.

6.3 Bewertung

Im Abschnitt 6.1 wurde bereits darauf hingewiesen, dass die heutigen Lernplattformen den
Ansprüchen bzw. den Definitionen nicht vollends genügen. Sicherlich darf die Komplexität
eines solchen Systems nicht unterschätzt werden, aber bereits bei der Basisfunktionalität, dem
Präsentieren der Lernmaterialien, gibt es Gründe zur Kritik. Für einen besseren Vergleich
listet Tabelle 6.1 einige Merkmale der drei vorgestellten Lernplattformen auf.

Es beginnt mit dem Datenaustausch zwischen Autorensystem und Lernplattform, wie in
[Bungenstock03a; Bungenstock03b] genauer untersucht wurde. Nur WebCT ermöglicht mit
WebDAV unter den vorgestellten Lernplattformen eine einfache Anbindung. Die anderen Pro-
dukte bieten lediglich umständliche Web-Oberflächen an, was bei vielen Änderungen und An-
passungen, wie sie besonders während des Erstellungsprozesses neuer Lernmaterialien auf-
treten, schnell lästig werden kann. Wird noch in Betracht gezogen, wie viele Dateien einem
vollständigen Kurs in HTML angehören, zeigt sich schnell das Ausmaß der Arbeit. Auch Lö-
sungen mit gepackten Dateien, wodurch lediglich eine Datei hochgeladen werden muss, können

6.3 Bewertung 65

Abbildung 6.4: Screenshot von SmartBLU

höchstens als ”fauler Kompromiss“ gewertet werden. Die Verbindung zwischen Autorensystem
und Lernplattform muss transparent erfolgen, daran führt kein Weg vorbei.

Grundsätzlich zeigt sich, dass Lernplattformen nur bedingt für den Erstellungsprozess von
Lernmaterialien geeignet sind. Hier hebt sich Blackboard mit seinem Content System von den
anderen Produkten ab, da es Versionierung und Verknüpfungen von Dateien anbietet. So muss
ein Baustein mit einem Rechtschreibfehler, der bereits in vielen Kursen eingesetzt wurde, nur
ein Mal angepasst werden. Durch die Verknüpfung ”propagiert“ sich die Änderung durch.

Auch die Unterstützung der Standards könnte besser sein. Viele Lernplattformen beschrän-
ken sich auf das Entpacken und direkte Anzeigen von Dateien in den Formaten SCORM oder
IMS Content Packaging. Nur SmartBLU ist in der Lage, aus den Strukturinformationen des
enthaltenen Manifests eine Navigation zu generieren. Bei den anderen Lernplattformen muss
dies von den Autoren/-innen erledigt werden, was nicht nur Mehrarbeit verursacht, sondern
auch schlechtere Ergebnisse. Neben der eigenen Navigation des LMS muss parallel die des
Kurses untergebracht werden, wie es deutlich in den Screenshots der Abbildungen 6.2 und 6.3
zu erkennen ist. Letztendlich bleibt für die eigentlichen Inhalte weniger Platz auf dem Bild-
schirm. Ein anderes Problem dieser Darstellung ergibt sich aus der Verwendung von Frames
bei HTML, wodurch die Bookmark -Funktionalität des Browsers nicht genutzt werden kann.

Leider wird von keiner Lernplattform die Übersetzung von XML-Dateien in Formate wie
beispielsweise HTML oder PDF angeboten. Es werden auch keine Alternativen zur Trennung
von Inhalt und Layout angeboten, einer wichtigen Voraussetzung für die Wiederverwendung
von Inhalten aus unterschiedlichen Quellen. Hier muss bei allen Systemen nachgebessert wer-
den.

66 Lernplattformen

System Anbindung Standards Kommunikation Organization Gestaltung
Blackboard Web-

Formular
SCORM,
IMS

Chat, Foren,
Whiteboard,
E-Mail

Kalender,
Terminplan,
Adressbuch

Unterstützung von
Fremdsprachen,
Layout beschränkt
anpassbar

WebCT WebDAV,
Web-
Formular

SCORM,
IMS,
AICC

Chat, Foren,
Whiteboard,
E-Mail

Kalender,
Aufgabenliste

Unterstützung von
Fremdsprachen,
Layout beschränkt
anpassbar

SmartBLU Web-
Formular

SCORM,
AICC

Chat, Foren,
Info-Bord

Unterstützung von
Fremdsprachen,
festgelegtes Lay-
out, Anpassung
der Oberflächen-
größe

Tabelle 6.1: Übersicht der Lernplattformen

Die Kommunikations- und Organisationsmöglichkeiten sind bei allen Systemen sehr gut,
da gibt es nicht viel zu beanstanden. Zudem hat sich gezeigt, dass sie alle ihre Stärken für
bestimmte Aufgaben haben. Ließen sie sich zu einem System vereinen, was technisch leider
nicht machbar ist, dann wäre das Ziel einer ausgereiften Lernplattform schon näher. Es bleibt
bei den kommerziellen Systemen nichts anderes übrig, als auf entsprechende Erweiterungen
der Hersteller zu warten.

Kapitel 7

Web-Technologie

Im vorherigen Kapitel 6 über Lernplattformen hat sich gezeigt, dass ihre Funktionalität auf
die tägliche Lehre ausgerichtet ist. Für eine Archivierung von Lernmaterialien, gleich welcher
Form, eignen sie sich hingegen nur bedingt, denn oft sind die Verwaltungs- und Suchmöglich-
keiten auf einfache Operationen beschränkt. Daher wird ein spezielles Datenhaltungssystem
für Lernobjekte benötigt, das in dieser Arbeit als Repository bezeichnet wird. Zu seinen
wesentlichen Eigenschaften gehört eine direkte Anbindung an Lernplattformen sowie Auto-
rensysteme. Das Repository koordiniert die Arbeit und den Datenaustausch in Teams, sodass
es als zentrale Komponente zur Verfügung stehen muss.

Zur Zeit ist leider kein entsprechendes System für modulare E-Learning-Inhalte erhältlich,
weshalb seine Entwicklung als Teil dieser Arbeit abzusehen ist. Weil Java als Programmierspra-
che bereits feststeht und das Repository über ein Rechnernetzwerk angesteuert werden soll,
wird in diesem Kapitel die Verfügbarkeit existierender Server, Rahmenwerke sowie Libraries
erörtert.

Grundlage für alle heutigen Netzwerk-Anwendungen ist das Protokoll TCP/IP [Stevens94;
Wright95], welches jedes moderne Betriebssystem von Haus aus beherrscht. Für die Übertra-
gung von HTML-Seiten setzt das Protokoll HTTP [Stevens96; Gourley02] auf TCP/IP auf
und muss somit vom Repository unterstützt werden. Obwohl HTTP vom Aufbau her recht
einfach ist und mit den Klassen der Java-Standard-Library leicht umzusetzen ist, soll auf fer-
tige Lösungen zurückgegriffen werden. Im nächsten Abschnitt werden verschieden Produkte
vorgestellt und ihre Vorteile sowie Schwächen herausgearbeitet. Wesentlicher Gegenstand der
Betrachtung sind die verschiedenen etablierten Schichtenmodelle, die in Abschnitt 7.1 vorge-
stellt werden.

Die Steuerung des Repositories über einfache HTML-Seiten wird nicht möglich sein. Viel-
mehr wird eine Web Application benötigt, also ein richtiges Programm, das HTML-Seiten
zur Repräsentation der Daten einsetzt und die so genannte Geschäftslogik in Komponenten
auslagert. Für die Erstellung von Web Applications mit Java gibt es bereits eine Reihe von
fertigen Rahmenwerken, die in Abschnitt 7.2 vorgestellt werden.

Für die Steuerung der Web Application über RPC bietet sich geradezu ein Web-Server an.
Das auf HTTP aufsetzende Protokoll Simple Object Access Protocol (SOAP) ist ideal für diese
Aufgabe und soll daher die Fernsteuerung ermöglichen. Neben der Spezifikation Java API
for XML Messaging (JAXM) von Sun, die eine rudimentäre Ansteuerung dieses Protokolls
ermöglicht, gibt es auch Programmpakete, die eine Nutzung dieser Technologie auf einem
höheren Abstraktionsniveau erlauben. In Abschnitt 7.3 werden einige erhältliche Produkte
vorgestellt.

Als letzte Funktion des Repositories soll kurz der Datenaustausch über WebDAV erläu-
tert werden. Weil WebDAV ebenfalls auf HTTP aufbaut, soll wieder eine integrierte Lösung
gefunden werden. Abhängig vom ausgewählten Web-Server stehen hier verschiedene Module
zur Auswahl.

68 Web-Technologie

7.1 Infrastruktur

Eine Errungenschaft der Software-Technik ist die Wiederverwendung von Modulen bzw. Kom-
ponenten, wodurch die Entwicklungszeit reduziert und die Stabilität des Produkts erhöht wird.
Bei einer komplexen Anwendung wie einer Web Application gibt es eine Vielzahl potentieller
Kandidaten, die praktisch in jeder Web Application auftauchen. Die Firma Sun hat diesen Um-
stand zum Anlass genommen, neben der bekannten Java 2 Platform, Standard Edition (J2SE)
für gängige Applikationen, die Java 2 Platform, Enterprise Edition (J2EE) zu veröffentlichen
[Shannon04]. Sie definiert einen Standard für komponentenbasierte mehrschichtige Unterneh-
mensanwendungen, die Web-Technologien einsetzen. Abbildung 7.1 zeigt die grundsätzlichen
Schichten einer Anwendung, auf die folgend eingegangen wird.

Abbildung 7.1: Schichten von J2EE-Anwendungen [Bodoff04, S. 3]

Ganz unten steht die Datenhaltung, die hier als Datenbank dargestellt ist. In den meisten
Fällen wird es sich in der Tat um eine relationale Datenbank handeln, aber die Daten kön-
nen auch im Dateisystem oder einer anderen Datenhaltungsform gespeichert sein. Wichtig ist
lediglich die zur nächsten Schicht präsentierte Schnittstelle, die den Komponenten mit der Ge-
schäftslogik, hier als Enterprise Beans bezeichnet, einen standardisierten Zugriff ermöglicht.
Abhängig von der Art des Clients, entweder handelt es sich um eine Anwendung (in der Ab-
bildung als Application Client bezeichnet) oder dynamische HTML-Seiten in einem Browser,
sitzt über den Enterprise Beans eine Schicht mit Java Server Pages (JSP). Kurz umrissen ist
eine JSP eine Schablone, die aus HTML-Fragmenten und Java-Befehlszeilen besteht. Auf diese
Weise werden Inhalt und Logik der Enterprise Beans in die Darstellung integriert. Soll z.B.
ein bestimmter Wert angezeigt werden, der in einer Enterprise Bean gespeichert ist, genügt
ein kurzer Befehl in Java für das Auslesen und Umwandeln in HTML. Dieser Schritt entfällt
bei eigenständigen Anwendungen, da sie sich um die Darstellung selbst kümmern müssen. Auf
diese Weise soll z.B. das Autorensystem auf Lernobjekte zugreifen, indem es sie vom Server
herunterlädt und in einer grafischen Oberfläche anzeigt. Zu Kontrollzwecken soll das Reposi-
tory aber auch ohne Autorensystem genutzt werden, sodass beide J2EE-Architektur-Modelle
für modulare E-Learning-Inhalte benötigt werden.

Die J2EE umfasst eine Vielzahl von Technologien, Modellen und APIs, auf die bisher
noch nicht eingegangen wurde. Aufgrund der Komplexität kann dies im Rahmen dieser Arbeit
auch nicht vollständig geschehen. Weil J2EE für eine große Zahl von Anwendungen konzi-
piert wurde, ist es sehr vielschichtig. In der Praxis wird jedoch häufig nur ein Bruchteil der

7.1 Infrastruktur 69

Funktionalität benötigt, was besonders bei unerfahrenen Entwicklern/-innen zu Konfusionen
führt. Welche Schichten sind wichtig und mit welcher Technologie erfolgt die Umsetzung? Wer
nicht den gesamten Umfang von J2EE kennt, läuft leicht Gefahr, vorhandene Lösungen selbst
zu implementieren oder kompliziertere Wege als nötig einzuschlagen. Auch für das angestreb-
te Repository wird nicht der volle Funktionsumfang benötigt, sodass sich der Entwurf durch
Weglassung einzelner Schichten vereinfachen lässt.

Bei den Enterprise Beans handelt es sich um ein Komponentenmodell, das für die Imple-
mentierung der gesamten Funktionalität genutzt wird. Alle technischen Details werden hierbei
vom Komponenten-Container gekapselt, wodurch die Geschäftslogik in den Vordergrund rückt.
Es gibt einige Merkmale bei Anwendungen, die den Einsatz von Enterprise Beans anzeigen.
Muss das System mit der Anzahl von Benutzer/-innen skalieren, also über mehrere Server
verteilt werden oder sollen Transaktionen unterstützt werden, dann sind Enterprise Beans die
geeignete Wahl.

In Hinblick auf das Repository werden die Eigenschaften der Enterprise Beans wohl nicht
benötigt. Abbildung 7.2 zeigt daher die beiden schematischen Schichten des J2EE-Servers an,
die für die Umsetzung des Repositories relevant sind.

Abbildung 7.2: Client und Server [Bodoff04, S. 6]

Es gibt zwei Arten von Clients, die das Repository unterstützen soll: Web-Browser, die über
die Web Tier auf die Business Tier zugreifen und selbst geschriebene Programme mit direktem
Zugriff. Wie viel der Server leisten muss, hängt von den verwendeten Schichten ab. Ein Server
für Enterprise Beans in der Business Tier ist wesentlich anspruchsvoller und umfangreicher
als einer, der lediglich die Web Tier unterstützt. Da für die Business Tier die entwickelten
Komponenten aus den vorherigen Kapiteln zum Einsatz kommen, genügt für das Repository
ein Web- Server als J2EE-Umgebung. Für ein besseres Verständnis sind in Abbildung 7.3 sechs
Schritte aufgeführt, die von der Infrastruktur zu leisten sind. Eine Anwendung als Client sieht
im Prinzip gleich aus, nur kann hier der Schritt 3 entfallen.

Zunächst stellt der Client eine Anfrage an den Server über das Protokoll HTTP, den so
genannten HTTP Request, der als Schritt 1 deklariert ist. Obwohl HTTP fünf unterschied-
liche Methoden1 kennt, treten in der Praxis überwiegend GET- und POST-Anfragen auf, z.B.
wenn Daten über eine Formular-Seite gesammelt und übertragen werden. Auf der Server-Seite
werden die Daten von einem Web-Server entgegen genommen, in ein HTTPServletRequest
umgewandelt und in Schritt 2 an eine JSP oder ein Servlet weitergereicht. Ein Servlet ist
eine Java-Klasse mit genau definierter Schnittstelle, die in einem Container eingebettet ist
und die Anfragen des Clients verarbeitet. Neben den übertragenen Parametern werden dem
Servlet zusätzlich eine Reihe von kontextabhängigen Daten, wie z.B. Cookies, IP-Adresse und
User-Daten übergeben. JSPs und Servlets können in Schritt 3. die Daten auf zwei mögliche
Weisen verarbeiten. Neue sowie veränderte Daten werden an die Java Beans übergeben und

1HEAD, GET, POST, PUT und DELETE

70 Web-Technologie

Abbildung 7.3: Sechs Schritte einer Anfrage [Bodoff04, S. 84]

anzuzeigende Daten ausgelesen. Bei Java Beans handelt es sich um Klassen, deren Schnitt-
stelle einer genauen Definition unterliegt [Englander97]. Wie die Daten persistent gehalten
werden, ist Bestandteil des Schritts 4, und kann z.B. über Datenbanken, XML-Dateien oder
Serialisierung erfolgen. Der direkte Zugriff von den Web Components auf die Datenhaltungs-
schicht, ebenfalls als Schritt 4 bezeichnet, ist zwar theoretisch möglich, führt aber zu einer
sehr engen Verzahnung die sich nachteilig auswirkt. Wenn z.B. SQL-Anweisungen direkt in
eine JSP integriert sind, wird praktisch die Trennung zwischen Darstellung und Datenhaltung
aufgehoben, sodass spätere Erweiterungen, Anpassungen, Fehlerbehebungen, etc. beeinträch-
tigt werden. Aus diesem Grund soll in dieser Arbeit die Kommunikation stets zwischen Web
Components und Java Beans erfolgen. Nachdem alle Berechnungen und Operationen durchge-
führt wurden, wird in Schritt 5 das Ergebnis in Form eines HTTPServletResponse aufbereitet
und an den Web-Server übergeben. Der schickt dem Client in Schritt 6 per HTTP Response
eine anzeigbare HTML-Seite.

Aus diesem Ablauf lässt sich gut ableiten, was für die Umsetzung des Repositories benötigt
wird, nämlich ein Web-Server mit einem Container für Web Components. Um die Möglichkei-
ten der Web Components differenzierter darzustellen, ist diese Schicht in Abbildung 7.4 weiter
aufgegliedert.

Abbildung 7.4: Schichten der Repräsentation [Bodoff04, S. 85]

7.1 Infrastruktur 71

Die Basis aller zur Verfügung stehenden Technologien sind die Servlets. Sie ermöglichen
eine sehr genaue Steuerung der Vorgänge, setzen aber umfangreiche Kenntnisse voraus. Um
die Arbeit zu vereinfachen, gibt es abstraktere Mechanismen wie die Java Server Pages, die
eine Verquickung von HTML und Java-Code ermöglichen. Technisch gesehen, werden JSPs
wiederum zu Servlets übersetzt. Weil auch JSPs meist nicht um eine Programmierung in Ja-
va umhin kommen, wenn z.B. die Kommunikation mit den Java Beans erfolgt, wurden die
Standard Tag Library eingeführt. JSPs lassen sich nämlich um eigene Tags erweitern, sodass
sich auch anspruchsvollere Operationen kapseln lassen. Im optimalen Fall kann eine Person
ohne Java-Kenntnisse JSPs erzeugen und auf Java Beans zugreifen, ohne programmieren zu
müssen. Die Java Server Faces sind eine recht neue Technologie und orientieren sich an der
klassischen Programmierung grafischer Oberflächen. Es gibt einzelne Komponenten für Be-
nutzerinteraktionen, die sich beliebig kombinieren lassen und auf Events reagieren. Praktisch
gesehen, abstrahiert dieser Mechanismus die drei anderen Schichten, indem die eingesetzten
Techniken weitestgehend verdeckt werden.

Stellt sich noch die Frage, wie eng die einzelnen Komponenten mit dem Web-Server ver-
bunden sind. Für das Repository lässt sich bereits absehen, dass es aus vielen Klassen, JSP
und anderen Dateien bestehen wird, die sich auf diverse Verzeichnisse verteilen. Über eine
Konfiguration wird festgelegt, wie diese Dateien in Beziehung stehen und welche Aufgabe sie
haben. Wie viel Einfluss nimmt aber die eingesetzte Software? Muss bei einem Wechsel des
Web-Servers die gesamte Anordnung und Konfiguration angepasst werden? Die Antwort lautet

”Nein“, denn die Spezifikation von J2EE sieht auch diesen Fall vor. Alle benötigten Dateien
lassen sich in einem Paket zusammenfassen und in einen Web-Server ”deployen“. Dieser Begriff
hat sich durchgesetzt und wird auch in anderen Kontexten verwendet, in dem Komponenten
oder Pakete integriert werden. Abbildung 7.5 zeigt die vorgeschriebene interne Struktur eines
solchen Pakets.

Abbildung 7.5: Interne Modulstruktur [Bodoff04, S. 90]

An oberster Stelle liegt das Hauptverzeichnis, das hier als Assembly Root bezeichnet ist.
Der Verzeichnisname kann beliebig gewählt werden und wird bei manchen Web-Servern zum
Bestandteil der späteren Aufruf-URL. Um als Paket zu gelten, muss es mindestens das Ver-
zeichnis WEB-INF, das genau so geschrieben sein muss, und die Datei web.xml enthalten. Sie

72 Web-Technologie

wird oft auch Deployment Descriptor genannt, weil sie beschreibt, wie welche Komponenten
verbunden und adressiert werden. Eigene Libraries werden im Verzeichnis lib abgelegt und
lose Klassen in classes. Die enthaltenen Dateien werden automatisch in den Klassenpfad ein-
getragen, weshalb keine weitere Konfiguration notwendig ist. Im letzten Verzeichnis tags sind
alle nötigen Dateien für die Tag Libraries enthalten, die ebenfalls automatisch eingelesen wer-
den. Bleiben noch die JSP-Dateien, die sich innerhalb des Pakets beliebig positionieren lassen.
Allerdings sollte das Verzeichnis WEB-INF ausgenommen werden, da nicht alle Web-Server
diesen Ort für JSP unterstützen. Gepackt zu einer Datei, kann diese Struktur dann einfach in
ein System integriert werden.

Bleibt zu klären, welche Produkte es überhaupt gibt. Neben vielen kommerziellen Anbie-
tern, wie z.B. WebSphere2 von IBM, WebLogic3 von BEA und WebObjects4 von Apple, gibt
es auch einige frei erhältliche Produkte. Die Stärken der kommerziellen Systeme sind auf jeden
Fall ihr hoher Leistungsumfang und die bessere Bedienbarkeit, die durch eine Reihe mitgelie-
ferter Werkzeuge erreicht wird. Da nur die Web Tier von J2EE benötigt wird, genügt für das
Projekt mαth-kit aber eine freie Lösung. Zur näheren Auswahl stehen hier Tomcat5, Jetty6

und Resin7. In Funktionsumfang und der Leistung stehen sich die Produkte im Großen und
Ganzen in nichts nach.

7.2 Web Applications

Mit J2EE wird größeren Projekten eine Vielzahl von Techniken und Mechanismen angeboten,
die eine strukturierte Gestaltung sowie Planung ermöglicht. Der generische Ansatz bereitet kei-
ne großen Einschränkungen, sodass nach eigenem Belieben vorgegangen werden kann. Durch
Auslassen oder Hinzufügen bestimmter Teile sind der individuellen Umsetzung keine Grenzen
gesetzt. Der Preis für diese Flexibilität ist die Suche nach dem eigenen geeigneten Vorgehen.
Eine Möglichkeit ist die Verwendung des Entwurfsmusters MVC, das die Aufteilung des Sys-
tems in Model, View und Controller (MVC) vorgibt. Ursprünglich für grafische Anwendungen
gedacht, hat es sich mit ein paar Anpassungen als Systemarchitektur für Web Applications
durchgesetzt. Abbildung 7.6 verdeutlicht die Zusammenhänge zwischen den einzelnen Kom-
ponenten.

ControllerView

Model

JSPs Servlet

Query
State State

Change

Components

View Selection

Input

Abbildung 7.6: Model, View und Controller für Web Applications

In dieser Aufteilung sind View und Controller als Elemente der Web Tier realisiert, wobei
von außen betrachtet lediglich der Controller angesprochen wird (als Input eingezeichnet).
Jeder Aufruf einer URL geht somit direkt auf das Servlet, welches die Eingabe aufbereitet,
die entsprechende Komponente des Models auswählt und den gewünschten Befehl aufruft. Die
Komponente verarbeitet anschließend die übergebenen Daten und gibt einen Rückgabewert
zurück, von dem der Controller seinen nächsten Arbeitsschritt abhängig macht. War z.B. eine

2http://www-306.ibm.com/software/websphere (29.10.05)
3http://www.bea.com (29.10.05)
4http://www.apple.com/webobjects (29.10.05)
5http://jakarta.apache.org/tomcat (29.10.05)
6http://jetty.mortbay.org (29.10.05)
7http://caucho.com (29.10.05)

http://www-306.ibm.com/software/websphere
http://www.bea.com
http://www.apple.com/webobjects
http://jakarta.apache.org/tomcat
http://jetty.mortbay.org
http://caucho.com

7.3 Web Services 73

Eingabe fehlerhaft oder konnte der Befehl aufgrund anderer Umstände nicht ordnungsgemäß
durchgeführt werden, ruft das Servlet eine JSP für die erneute Eingabe oder eine Fehlerseite
auf. Bei erfolgreicher Ausführung wird eine andere JSP ausgewählt, die über den weiteren
Fortgang informiert. Unabhängig vom zurück gegebenen Status, benötigen annähernd alle JSP
einen Zugriff auf die Daten des Modells, um den aktuellen Zustand anzuzeigen. Der Zugriff
selbst ist nur lesend, weil andernfalls der Controller umgangen würde, was nicht gewünscht
ist. Nachdem die JSP ausgeführt und als Ergebnis eine HTML-Seite produziert wurde, wird
diese als View an den Client gesendet.

Das Entwurfsmuster MVC gibt einen Leitfaden, wie eine Web Application zu strukturieren
ist, lässt die Implementierung aber offen. Auch das J2EE bietet keine Bordmittel an, die eine
Entwicklung solcher Anwendungen vereinfacht. Als Lösungen dieses Problems bleiben somit
entweder eine Eigenentwicklung oder der Einsatz eines existierenden Rahmenwerks übrig. Die
Eigenentwicklung spielt ihren Vorteil bei kleinen Systemen aus, die sich nicht oft ändern.
Hier kann eine kleine schnelle Lösung wesentlich effizienter sein als eine umfangreiche. Ist die
Anwendung aber etwas größer und benötigt eine gewisse Flexibilität, dann sollte von diesem
Ansatz Abstand genommen und stattdessen auf ein Rahmenwerk zurückgegriffen werden. Der
Nachteil hierbei liegt in der Komplexität, die nicht zu unterschätzen ist. In dieser Arbeit
werden kurz zwei Produkte vorgestellt: Struts und Spring.

Mit Struts8 bietet die Apache Group ein Rahmenwerk an, dass sich perfekt in den ausge-
wählten Web-Server Tomcat integrieren lässt. Ein zentrales Konzept zur Konfiguration und
Adaption sind die bereits erwähnten Java Beans. Ihre Schnittstelle ist so ausgelegt, dass sie zur
Laufzeit ohne vorherige Bindung beim Kompilieren initialisiert und genutzt werden können.
Struts nutzt diese Eigenschaften zur Konfiguration des Controllers, der durch eigene Klassen
erweitert werden kann. Mit Hilfe einer XML-Datei werden die einzelnen Komponenten zur
Laufzeit erzeugt und miteinander verknüpft. Aber auch zum Datenaustausch zwischen den
Komponenten von Struts und den eigenen Klassen kommen Java Beans zum Einsatz. So wer-
den Eingaben über Formulare in HTML Seiten automatisch in Java Beans umgewandelt und
weitergereicht. Wenn gewünscht, überprüfen so genannte Validatoren die Werte auf Gültig-
keit, indem sie vorher festgelegte Regeln anwenden. Weitere Informationen zu Struts finden
sich z.B in [Turner03; Carnell03; Cavaness04].

Das Rahmenwerk Spring9 geht indes einen wesentlichen Schritt weiter. Es ist selbst in
Schichten eingeteilt, und schickt sich an, eine Alternative bzw. Ergänzung zu den Architekturen
mit Enterprise Beans zu sein. Neben der Unterstützung des Entwurfsmusters MVC gibt es viele
weitere Bausteine in Spring, mit denen sich Web Applications aufziehen lassen. Anstatt auf
die umfangreichen aber technisch anspruchsvollen Enterprise Beans zuzugreifen, werden die
Daten und die Geschäftslogik in einfachen Beans sowie POJOs10 gehalten. Spezielle Klassen
nach dem Entwurfsmuster Factory [Gamma95] ermöglichen die Trennung der Konfiguration
von Beans und der Programmlogik. Auf diesem Prinzip beruht das gesamte Rahmenwerk.
Dank der Flexibilität und Unabhängigkeit der einzelnen Komponenten können mit Spring
von kleinen Web-Präsentationen bis zu Unternehmensanwendungen fast alle Projektformen
realisiert werden. Mehr Informationen zu Spring finden sich z.B. in [Johnson04; Tate04].

7.3 Web Services

Web Services ermöglichen den Zugriff auf Daten und das Ausführen von Befehlen über eta-
blierte Techniken. Mittlerweile sind die Spezifikationen, Standards und Implementierungen
verschiedener Hersteller jedoch so vielfältig geworden, dass eine pauschale Aussage über die
Fähigkeiten von Web Services schwer fällt. Grundsätzlich werden Daten über das Simple Object
Access Protocol (SOAP) mit Hilfe des Internets übertragen. Obwohl es bei der physikalischen

8http://struts.apache.org (29.10.05)
9http://www.springframework.org (29.10.05)

10POJO steht für Plain Old Java Object und bezeichnet schlicht alle Klassen, die keine Beans sind.

http://struts.apache.org
http://www.springframework.org

74 Web-Technologie

Übermittlung der Daten keine Vorgaben gibt — der Einsatz per Mail wird z.B. von vielen
Implementierungen unterstützt —, ist in der Praxis das Protokoll HTTP die erste Wahl. Zur
Laufzeit werden bei SOAP interne Datenstrukturen zu XML übersetzt, übertragen und vom
Kommunikationspartner zurück transformiert. Hierdurch ist SOAP unabhängig von jeglichen
Programmiersprachen, benötigt aber spezielle Mechanismen, die eine Verbindung zwischen
diesen beiden Welten herstellen. Denn Methodenaufrufe sollen auf Seiten der Clients mög-
lichst transparent durchgeführt werden, sodass die Entwickler/-innen mit so wenig Details wie
nötig belastet werden.

Zunächst muss die Geschäftslogik implementiert werden und die nach außen angebotene
Schnittstelle auf möglichst wenig Klassen verteilt werden. Als so genanntes Package werden die
zusammengefassten Dateien in einen speziellen Server integriert, der die nötige Infrastruktur
zur Ausführung bereit hält. Hiernach können die Clients bestimmte Parameter zur Nutzung des
Web Service abfragen, wie z.B. Kodierungen, Datenstrukturen und Protokolle. Die Antworten
werden in der Web Services Description Language (WSDL) [Walsh02a] übermittelt, einer vom
WWW Consortium (W3C) spezifizierten Sprache in XML. Mit diesen Informationen können
in Java drei verschiedene Formen von Clients gebaut werden: Static Stub, Dynamic Proxy und
Dynamic Invocation Interface (DII).

Die ersten beiden Varianten benötigen ein spezielles Werkzeug, mit dem die WSDL-Daten
einmalig im Voraus in Klassen umgewandelt werden. Bei einem Client mit Static Stub werden
alle Klassen erzeugt, die für die Serialisierung und Deserialisierung der Daten benötigt wer-
den11. Ein Nachteil dieser Vorgehensweise ist der Aufwand bei Änderungen der WSDL-Daten,
die immer eine vollständige Neuübersetzung nach sich ziehen. Dieses Problem wird bei Cli-
ents mit Dynamic Proxy teilweise umgangen, denn es werden lediglich Schnittstellen von den
Werkzeugen erzeugt und keine Klassen mit einer Implementierung. Die wird erst zur Laufzeit
automatisch erzeugt und eingebunden, wodurch kleine Änderungen Berücksichtigung finden.
Der Preis für diesen ”Komfort“ liegt in der verzögerten Ausführung des ersten Aufrufs, denn im
Hintergrund laufen komplexe Prozesse ab, die den Dynamic Proxy erzeugen. Volle Kontrolle,
weniger Ressourcen-Bedarf und volle Flexibilität lassen sich nur mit dem Dynamic Invocation
Interface erreichen. Diese Schnittstelle ist Bestandteil der JAX-RPC-API, auf die gleich näher
eingegangen wird. Die Auswertung der WSDL-Daten bleibt bei DII den Entwicklern/-innen
überlassen, um z.B. einen sehr schlanken und optimierten Client zu schreiben, der aber nicht
automatisch auf Änderungen des Web Services reagieren kann.

Um eine richtige Abwägung treffen zu können, müssen die Vor- sowie Nachteile von Static
Stub, Dynamic Proxy und DII verglichen werden. Für die Belange des Projekts mαth-kit ist
der Static Stub vollkommen ausreichend, denn es werden keine gravierenden Änderungen an
den Schnittstellen der Komponenten erwartet. Diese Lösung ist somit schlanker und schneller
in der Ausführung als der Dynamic Proxy und einfacher in der Umsetzung als die Ansteuerung
über DII.

Die Steuerung der vorgestellten drei Methoden erfolgt über die Java API for XML-Based
RPC (JAX-RPC). Abhängig vom gewählten Typ sind nur wenige Befehle nötig, bis ein Web
Service initialisiert und angesteuert ist. Abbildung 7.7 zeigt ein typisches Szenario.

Der Client greift direkt auf den Stub zu, der intern wiederum JAX-RPC-Aufrufe nutzt.
Über das Netz werden dann in beide Richtungen SOAP-Nachrichten verschickt. Auf der Seite
des Servers ruft die JAX-RPC-Laufzeitumgebung mit Hilfe von so genannten Ties die Service-
Methoden auf. Bei den Ties handelt es sich um den ”Klebstoff“ zwischen den Service-Klassen,
der von dem Server automatisch generiert wird.

Neben den kommerziellen Anbietern, wie z.B. Systinet Server for Java12 von Systinet,

11Unter Serialisierung bzw. Deserialisierung wird die Umwandlung bzw. Rückumwandlung von Daten in einen
Daten-Stream verstanden, der z.B. über ein Netzwerk transportiert wird.

12http://www.systinet.com (29.10.05)

http://www.systinet.com

7.4 WebDAV 75

Abbildung 7.7: JAX-RPC-Aufruf [Bodoff04, S. 321]

Cape Clear 6 13 von Cape Clear und Artix 14 von Iona, gibt es leider nur das Projekt Axis15

von der Apache Group, das eine ernst zu nehmende freie Alternative anbietet.

7.4 WebDAV

WebDAV steht für Web-based Distributed Authoring and Versioning und bezeichnet eine Er-
weiterung des HTTP-Protokolls. In erster Linie soll es die gemeinsame Arbeit in Gruppen
ermöglichen und sich in die existierende Infrastruktur einbetten. Die genaue Funktion, die
weder die Entwickler/-innen noch die Benutzer/-innen interessieren dürfte, ist in zwei Doku-
menten [Slein98; Goland99] festgelegt. Im Grunde genommen wird HTTP um ein paar Header
und Methoden erweitert, die das Auslesen von Dateistrukturen gestattet. Leider fehlt bei
WebDAV die Versionierung, obwohl der Begriff Bestandteil des Namens ist, weshalb eine Er-
gänzung mit dem Namen DeltaV nötig war. Auch die Details dieser Spezifikation [Clemm99]
sind unerheblich, weil auf fertige Lösungen zurückgegriffen werden soll.

Der Web-Server Tomcat wird beispielsweise mit einem eigenen WebDAV -Modul ausge-
liefert, sodass auf der Server-Seite lediglich ein wenig Konfigurationsarbeit ansteht. Auf der
Client-Seite ist die Auswahl freier Libraries leider wieder beschränkt. Mit Jakarta Slide16

stellt die Apache Group eine vollständige Umsetzung von WebDAV und eine rudimentäre von
DeltaV bereit.

13http://www.capeclear.com (23.10.05)
14http://www.iona.com (29.10.05)
15http://ws.apache.org/axis (29.10.05)
16http://jakarta.apache.org/slide/ (29.10.05)

http://www.capeclear.com
http://www.iona.com
http://ws.apache.org/axis
http://jakarta.apache.org/slide/

Kapitel 8

Metapher

Ein wichtiger Aspekt des Projekts mαth-kit ist der Einsatz der Baukasten-Metapher, um den
Benutzern/-innen ein besseres Verständnis der Funktionalität zu vermitteln. In der Informatik
spielen Metaphern seither eine bedeutende Rolle bei der Begriffsbildung, was bei einer so
jungen Wissenschaft nicht weiter verwunderlich ist, da nicht für jeden neuen Gegenstand des
Interesses ein neues Wort erfunden werden kann. Begriffe wie Mäuse, Schlangen, Bäume, Keller
und viele mehr stammen aus dem alltäglichen Sprachgebrauch, werden aber in einer anderen
Bedeutung eingesetzt, die ihrem ursprünglichen Kontext enthoben ist. Nur bestimmte Aspekte
des Begriffs werden übernommen, andere hingegen ignoriert. Was zeichnet aber eine Metapher
genau aus, wie ist sie definiert? In der Brockhaus-Enzyklopädie findet sich hierzu folgendes:

”Ausdrucksmittel der uneigentlichen Rede; das eigentlich gemeinte Wort wird er-
setzt durch ein anderes, das eine sachl. oder gedankl. Ähnlichkeit oder dieselbe
Bildstruktur aufweist, z.B. �Quelle� für �Ursache�. Die Sprache springt dabei,
im Unterschied zur Metonymie, gleichsam von einem Vorstellungsbereich in einen
anderen.“ [Bro91, S. 521]

Wie die gegebene Definition vermuten lässt, gibt es eine Reihe anderer sprachliche Begriffe,
die gewisse Eigenschaften mit der Metapher gemein haben, aber nicht mit ihr verwechselt wer-
den sollten. Die Allegorie ist eine bildhafte Darstellung eines Begriffs (Frau mit verbundenen
Augen für ”Gerechtigkeit“), das Homonym ein gleich lautendes Wort mit anderer Bedeutung
(der Gehalt/das Gehalt), die Katachrese ein bildlicher Ausdruck für eine fehlende Bezeichnung
(Schlüssel”bart“) und die Metonymie eine Bedeutungsvertauschung (”Stahl“ für ”Schwert“), um
nur einige Beispiele zu nennen.

Metaphern können aus mehreren Wörtern, so genannte Wortfelder, bestehen, die in einem
größeren Bedeutungszusammenhang stehen. Die Flüssigkeitsmetapher in der Elektrotechnik
sei stellvertretend als Beispiel genannt, bei der die Begriffe Strom, Kanal, Quelle, Kondensator
usw. ein Wortfeld bilden. Es ist daher zweckmäßig, die metaphorische Definition nicht auf
einzelne Begriffe zu reduzieren.

Als rein sprachliches Mittel ist die Metapher für den Einsatz in der Software-Technik
freilich nicht hinreichend, sondern bedarf einer weitergehenden, umfassenderen Definition, die
den Menschen und die Gegenstände des Interesses in einen Zusammenhang bringt. Werner
Ingendahl führt den Begriff metaphorischer Prozess in [Ingendahl71] ein, der umfassend die
verschiedenen Kontexte der Metaphorik beschreibt.

8.1 Metaphorischer Prozess

Der Metaphorische Prozess wird nun auf Basis von [Busch98] aus verschiedenen Theorien und
Ansichten hergeleitet. Abbildung 8.1 gibt einen Überblick über die verschiedenen Begriffe, die
mit ihm verbunden sind, und deren Relationen.

78 Metapher

Wortgruppe

Kontext
üblicher

Wortgruppe

Kontext
unüblicher

Metapher
Übertragung

Interaktion

Produzent Rezipient

Funktion

Sache,
Neues,
Bezeichnetes
Wirklichkeit,
...

Gegenstand

Sonntag

August
27

Metaphorischer Prozess

Situation

Abbildung 8.1: Metaphorischer Prozess nach [Busch98, S. 25]

Jedes Wort hat in Aristoteles’ Poetik [Aristoteles82] genau eine ”eigentliche“ Bedeutung
und ist außerhalb des Zusammenhangs ”uneigentlich“ verwendet. Die Übertragung (griech.
µεταϕoρα) eines Wortes aus einem üblichen Kontext in einen unüblichen ist daher ein
zentraler Aspekt des aristotelischen Metapher-Begriffs. Jedoch ist die Beschränkung auf einzel-
ne Worte zu restriktiv, weshalb lieber die bereits definierte Wortgruppe genutzt werden soll.
Max Black kritisierte die einseitig gerichtete Beziehung der Übertragung als unzureichend und
hat daher die Interaction View entwickelt [Black62]. Diese beschreibt, wie sich die Wortgrup-
pen aus dem üblichen und dem unüblichen Kontext gegenseitig beeinflussen. Es werden die
implizierten Bedeutungselemente der Wortgruppe aus dem üblichen Kontext übernommen,
die mit denen des Gegenstandes übereinstimmen. Hierdurch werden dessen übertragbare
Charaktermerkmale verdeutlicht, wohingegen die nicht erfassten an Bedeutung verlieren. In
den Worten von Max Black heißt es:

”Die Metapher kommt dadurch zustande, daß auf den Hauptgegenstand1 ein Sys-
tem von �assoziierten Implikationen� angewandt wird, das für den untergeordneten
Gegenstand2 charakteristisch ist.“ Black zitiert nach [Haverkamp83, S. 75]

”Die Metapher selegiert, betont, unterdrückt und organisiert charakteristische Züge
des Hauptgegenstands, indem sie Aussagen über ihn einbezieht, die normalerweise
zum untergeordneten Gegenstand gehören“ Black zitiert nach [Haverkamp83, S. 76]

Der Gegenstand im Schaubild 8.1 steht mit der Metapher ebenfalls in einer Wechselbe-
ziehung, da der Zustand des Gegenstandes Einfluss auf die Metapher selbst ausübt. Carsten
Busch nennt als Beispiel den Mond, bei dem die Bezeichnungen ”Zitronenmond“ und ”Silber-
sichel“ von dessen momentanen Eigenschaften geprägt sind [Busch98, S. 15–16]. Angemerkt
sei noch, dass der Begriff ”Gegenstand“ im Zusammenhang mit Metaphern offensichtlich un-
glücklich gewählt ist, da unter dieser Kategorie auch Menschen und Tiere verstanden sind,
und wird hier ausschließlich zur Konsistenzwahrung mit den referierten Arbeiten verwendet.

1Das ist der über die Wortgruppe im unüblichen Kontext beschriebene Gegenstand.
2Das ist der über die Wortgruppe im üblichen Kontext beschriebene Gegenstand.

8.1 Metaphorischer Prozess 79

Die Beziehungen zwischen den Wortgruppen, der Metapher und dem Gegenstand existie-
ren selbstverständlich nicht um ihrer selbst willen, sondern nur indirekt über den Menschen, in
seinem Denken, Sprechen und Fühlen. Der Mensch ist es, der durch kreative Leistungen eine
sprachliche Handlung durchführt. Im Schaubild tritt er als Produzent/-in und Rezipient/-
in auf, der/die jeweils mit der Metapher und dem Gegenstand in Wechselbeziehung steht. Im
Grunde sind sich Produzent/-in und Rezipient/-in sehr ähnlich, da sie die gleiche geistige Leis-
tung erbringen müssen. Der wesentliche Unterschied besteht darin, wie sie zu einer Metapher
gekommen sind. Bei dem/der Produzent/-in kommt die Metapher, bewusst oder unbewusst,
aus dem Inneren, hingegen empfängt der/die Rezipient/-in sie von außen. Auch wenn diese
Unterscheidung oftmals verschwimmt bzw. umgekehrt wird, ist diese Betrachtung sinnvoll, um
die pragmatische Dimension — wie also (Sprach)-Zeichen auf einen Menschen wirken — aus-
machen zu können. Metaphern können demnach vom/von der Rezipient/-in ”nicht erkannt“,

”erkannt aber nicht verstanden“, ”verstanden aber abgelehnt“ und ”völlig anders verstanden“
werden. Die Kommunikation beschränkt sich hierbei nicht nur auf das gesprochene Wort,
sondern umfasst den gesamten Habitus.

Der Gebrauch einer Metapher hat eine Funktion, eine Absicht, die mit ihm verbunden
ist. Walter Seifert beschreibt in seinem Aufsatz [Seifert80] sieben Funktionen, von denen in
dieser Arbeit eine als besonders wichtig für die Entwicklung und Nutzung eines Software-
Systems erachtet wird: die Prädikationsfunktion. Sie dient dem Erfassen der Realität durch
Modellbildung sowie Analogiebeziehungen und soll in diesem Kontext den Entwicklern/-innen
beim Entwurf und der Kommunikation eine höhere Produktivität verleihen. Diese Funkti-
on kann ebenfalls die Benutzer/-innen bei der späteren Gewöhnung an die Arbeit mit dem
System unterstützen. Für diesen Personenkreis kann auch eine weitere Funktion, die affektiv-
emotionale, beabsichtigt sein. Dabei geht es um die Vermittlung von Gefühlsnuancen, mit
Ausrichtung auf intuitive Erfahrungen. So können z.B. Ängste minimiert werden, welche kom-
plexe Software-Systeme in Laien auslösen können.

Die Funktion an sich ist abhängig von der Situation, in der eine Metapher produziert oder
rezipiert wird. Es besteht schon ein Unterschied, ob eine Metapher in einem Software-Entwurf,
im Schulunterricht oder einem Gedicht Verwendung findet. Somit umfasst die Situation alles,
was bei der Metaphorik von Bedeutung ist. Als drei wesentliche Elemente zur Bestimmung
oder Unterscheidung von Situationen lassen sich die Örtlichkeit, der Zeitpunkt bzw. die Dauer
und die beteiligten Personen benennen.

Die Zeit spielt im metaphorischen Prozess eine besondere Rolle, und ist daher im Schaubild
explizit aufgeführt. Sie bestimmt wie und ob eine Metapher verstanden wird. Der ”Gully“
z.B. ist eine Metapher, die in den allgemeinen Sprachgebrauch übergegangen ist und wohl
im 19. Jahrhundert aus dem englischen ”gullet“ (Schlund) hervorgegangen ist. Solche nicht
ohne weiteres identifizierbare Metaphern werden tote bzw. lexikalisierte Metaphern genannt.
In [Wolff82] werden neben diesem drei weitere Typen von Metaphern unterschieden: kreative
Metaphern (spontan, innovativ), konventionelle Metaphern (Klischees) und Remetaphosierung
(Reaktivierung eines Bildes durch eine Abwandlung). Um welchen Typen einer Metapher es
sich im Einzelnen handelt, ist abhängig von der jeweiligen Gruppe von Rezipienten/-innen
und dem relativen Verwendungszeitraum innerhalb dieser ”Sprachgemeinschaft“.

Zusammengefasst ist ein metaphorischer Prozess eine Übertragung einer Wortgruppe von
einem üblichen in einen unüblichen Kontext, bei der es zu einer Interaktion kommt, die im
günstigen Fall zu einem besseren Verständnis eines Gegenstandes führt. Die Metapher wird
meist bewusst von Produzenten/-innen erzeugt und von Rezipienten/-innen nachvollzogen,
wobei eine bestimmte Funktion beabsichtigt ist, deren Wirkung von der Situation und dem
Zeitpunkt bzw. der Dauer abhängt.

80 Metapher

8.2 Metaphern und Software-Technik

Metaphern sollen in dieser Arbeit zwei wesentliche Aufgaben erfüllen: Beim Entwurf erlau-
ben sie einen selbstverständlichen Umgang mit abstrakten Begriffen und für die späteren
Anwender/-innen beschleunigen sie den Zugang zum erstellten Programm. Besonders bei der
Arbeit im Team und einem Austausch von Ideen können Metaphern die Kommunikation ver-
einfachen. Letztendlich werden Softwaresysteme aber nicht um ihrer selbst willen erstellt,
sondern sollen Menschen bei der Erledigung ihrer Tätigkeit unterstützen.

In der Software-Technik spielen Metaphern bereits auf der Ebene der Programmiersprache
eine wichtige Rolle. Genau genommen handelt es sich bereits bei dem Wort ”Programmier-
sprache“ um eine Metapher. In Anlehnung an natürliche Sprachen wie Englisch, können Pro-
grammtexte auch von Menschen gelesen werden, die nicht mit den technischen Details vertraut
sind [Louden94]. Abstrakt und formal beschriebene Kontroll- und Datenstrukturen erhalten
durch Metaphern ,wie beispielsweise Schleifen, Bäume und Schlangen, sprechende Bezeich-
ner, durch die wesentliche Merkmale erfasst werden. Auch die Vererbung in objektorientierten
Sprachen ist eine Metapher, mit der die kontrollierte Weitergabe bestimmter Eigenschaften
umschrieben wird. Um dem metaphorischen Prozess aus dem vorherigen Abschnitt gerecht
zu werden, folgen Buschs Spezifika für Metaphern aus der Sichtweise der Programmierung
[Busch98, S. 151]:

• Als Metaphern-Produzenten/-innen kommen in erster Linie Programmierer/-innen
und Entwickler/-innen in Betracht.

• Die Rezipienten/-innen lassen sich weniger genau eingrenzen, aber in Frage kommen
vor allem wiederum Programmierer/-innen und eventuell Benutzer/-innen.

• Metaphern auf dieser Ebenen nehmen vor allem eine Prädikations- und eine heuristische
Funktion wahr.

• Gegenstand der Metapher sind das Programmieren, Programmiersprachen und alle
enger damit zusammenhängende Aspekte.

• Als übliche Kontexte dienen eine Vielzahl verschiedenster Bereiche. Die vorherrschen-
den sind sicherlich nach wie vor die Bedeutungsfelder ”Sprache“ und ”Vorschrift“.

• Den unüblichen Kontext bildet wie so oft die Informatik.

Metaphern auf einem höheren Abstraktionsniveau dienen grundlegenden Sichtweisen des
Entwurfs und der Programmierung von Software. Ein gutes Beispiel sind John Shores Software-
Gebäude in [Shore85]. Er vergleicht den Entwurf und Bau eines Hauses mit dem von Program-
men. Zuerst steht ein Idee von einem Haus, die in einer Reihe bekannter Schritte verfeinert
wird, bis am Ende eine physikalische Struktur entsteht. Einen anderen Ansatz verfolgt die Me-
tapher Werkzeug, Automat, Material (WAM) in [Züllighoven98]. Fachliche Gegenstände und
Konzepte werden als Material betrachtet, das Anwendern/-innen mit Werkzeugen bearbeiten.
Wiederkehrende Aufgaben, die ohne menschliches Zutun abgearbeitet werden können, lassen
sich durch Automaten abarbeiten.

Auch Bertrand Meyer hält Metaphern für ein wichtiges Instrument bei der Entwicklung und
Nutzung von Software. Besonders neue Ideen lassen sich mit ihnen überzeugend vermitteln:

”Metaphors can be excellent teaching tools. The great scientist-expositors — the
Einsteins, Feynmans, Sagans — are peerless in conveying difficult ideas by ap-
pealing to analogies with concepts from everyday’s experience. This is the best.“
[Meyer97, S. 672]

Er warnt aber auch vor den Gefahren, die mit dem Gebrauch von Metaphern verbunden
sind. Leicht können Dinge verwechselt oder falsche Schlüsse gezogen werden. Aus diesem Grund
müssen Metaphern immer mit Bedacht gewählt werden.

Kapitel 9

Bewertung

In diesem Teil der Arbeit wurden die wichtigsten Themen und Aspekte für den Umgang mit
modularen E-Learning-Inhalten vorgestellt. Ausgehend von der Zielsetzung dieser Arbeit in
Abschnitt 1.2 soll nun eine Bewertung des aktuellen Stands der Wissenschaft erfolgen. Die
genaue Benennung der bestehenden Lücken ergibt die Grundlage für das Vorgehen in den
nächsten Teilen dieser Arbeit.

Die Lernobjekte in Kapitel 3 sind Container für Lerninhalte und haben durch ihre Größe
(siehe Abschnitt 3.3) und Anordnung (siehe Abschnitt 3.4) Einfluss auf die Didaktik. Die
zahlreichen Theorien und Definitionen der Lernobjekte verdeutlichen, dass mittlerweile der
Begriff Lernobjekt im E-Learning verankert ist. Auch wenn es Differenzen bei dem einen
oder anderen Detail gibt, scheint über die wesentlichen Funktionen Einigkeit zu herrschen. In
Hinblick auf die Zielsetzung dieser Arbeit sind Lernobjekte somit die ideale Einheit für die
Module. Sie sind ein zentrales Thema dieser Arbeit und Ausgangspunkt für die Bewertung
der Autorensysteme sowie Lernplattformen. Mit den Standards IMS Content Packaging (siehe
Abschnitt 3.5) und SCORM (siehe Abschnitt 3.6) stehen Kodierungen für Lernobjekte zur
Verfügung, die weithin akzeptiert sind.

Eng verknüpft mit den Lernobjekten sind die Metadaten aus Kapitel 4. Sie sind unerlässlich
für die Identifizierung von Lernmaterialien, besonders in großen Systemen. Es wurden einige
Definitionen und Standards vorgestellt, bei denen teilweise die Meinungen stark auseinander
liefen. Besonders schwierig scheint die Vereinigung von Technik und Didaktik zu sein. An der
Standardisierung führt dennoch kein Weg vorbei und mit LOM (siehe Abschnitt 4.3) ist ein
erster Schritt getan. Wenn diese Spezifikation nicht ausreichen sollte, gibt es noch diverse
Spezialisierungen in Form von Application Profiles.

Auf der Seite der Lernobjekte und Metadaten stehen also die nötigen Mittel für modulare
E-Learning-Inhalte bereit. Aus den Bewertungen für Autorenwerkzeuge (siehe Abschnitt 5.2)
und Lernplattformen (siehe Abschnitt 6.3) lässt sich aber ersehen, dass diese Möglichkeiten
nicht genutzt werden. Keines der vorgestellten Produkte benutzt den Begriff Lernobjekt, ge-
schweige denn bietet die damit verbundene Funktionalität an. Meist lassen sich keine Module
definieren, sondern nur Kurse. Wenn dann auch noch fremde Inhalte integriert werden sollen,
ist schon aufgrund der verschiedenen Layouts und Notationen eine Inkonsistenz vorhanden.
Mit der Metadatenunterstützung sieht es zwar ein wenig besser aus — immerhin bieten einige
LOM an —, aber das vorhandene Potential der Standards wird nicht genutzt. Es reicht nicht
aus, die Metadaten anzuzeigen und gegebenenfalls bearbeiten zu lassen. Hierdurch werden sie
zum Selbstzweck degradiert. Lehrende und Lernende müssen durch Metadaten einen schnellen
Zugang zu den Materialien erlangen, die sie für ihren Einsatz benötigen. Nur so lässt sich auf
Seiten der Lehrenden die Mehrfachentwicklung bereits existierender Inhalte vermeiden. Wenn
passende Lernobjekte, fremde wie eigene, über ein paar Stichworte in einer Datenbank gefun-
den werden, dann hat sich die Mühe der Metadateneingabe gelohnt. Für Lernende erschließt
sich so das gesamte Angebot und im Selbststudium lassen sich einfacher individuelle Lücken
schließen.

82 Bewertung

Von der Unterstützung der Lerntheorien aus Kapitel 2 kann bei den Autorenwerkzeugen
und Lernplattformen keine Rede sein. Lediglich der Behaviorismus wird in Form von Quiz
und Tests angeboten. Wenigstens gibt es keine technischen Hindernisse, eigene Lernmodelle
zu integrieren, aber hier muss auf geeignete Programmen noch gewartet werden.

9.1 Resümee

Die Beschreibung des Standes der Wissenschaft hat deutlich gezeigt, dass die angestrebte
Zielsetzung mit den heutigen Mitteln nicht in dem gewünschten Umfang realisierbar ist. Es
muss insbesondere eine bessere Verbindung zwischen den Theorien und der Technik hergestellt
werden. Mit den vorhandenen Theorien lässt sich ohne Probleme ein System für modulare E-
Learning-Inhalte modellieren, aber die Umsetzung ist kompliziert. Das liegt unter anderem an
den abstrakten Funktionsbeschreibungen. Gewiss ist es einfach, die Wiederverwendbarkeit von
Lernobjekten einzufordern, doch impliziert dies eine Reihe von Hürden, die bereits in Kapitel 3
über Lernobjekt angerissen wurden. So ist es nicht weiter verwunderlich, dass jedes Produkt
für sich genommen, sei es ein Autorenwerkzeug oder eine Lernplattform, für seine Aufgabe
einen guten Dienst erweist. Hierbei wird jedoch nur ein spezielles Problem aufgegriffen und
der Blick für das Gesamte fehlt. Als einziger Ausweg bietet sich ein ganzheitliches Konzept an,
das von der Herstellung bis zur Präsentation von E-Learning-Inhalten alle Aspekte abdeckt.
Dieses Konzept ist der rote Faden, der sich durch diese Arbeit ziehen soll. Im folgenden wird
eine Vision des Systems skizziert, die etwas detaillierter als die Zielsetzung ist und die bereits
vorgestellte Funktionen als Anregung nimmt.

Konkret soll ein System angeboten werden, dessen Kern modulare E-Learning-Inhalte sind
und von dem Autoren/-innen, Lehrende sowie Lernende profitieren. Bei der Erstellung neu-
er Inhalte sollen Autoren/-innen alle technischen Möglichkeiten an die Hand bekommen, mit
denen sie moderne Lernobjekte produzieren können. Hierzu gehören unter anderem eine Ein-
bettung multimedialer Komponenten oder die Darstellung eines Dokuments in verschiedenen
Layouts. Aber auch die Integration existierender Inhalte in proprietären Formate — quasi
eine Umwandlung in ein allgemeines Format — und die Kombination mit fremden Lernobjek-
ten müssen möglich sein. Im Interesse einer vielseitigen Nutzung auch mit anderen Systemen
sollen international anerkannte Standards verwendet werden. Für die Autoren/-innen dürfen
sich hieraus aber keine Einschränkungen in der Gestaltung ergeben und die Kodierung sollte
transparent ablaufen. Bei der Entwicklung von Inhalten in Teams, womöglich an verschiedenen
Orten, muss es eine zentrale Datenhaltung geben, die eine synchronisierte Entwicklung erlaubt.
Unnötige Mehrarbeit oder der totale Verlust von Änderungen, z.B. durch das gleichzeitige Ar-
beiten an einer Datei, wobei der/die letzte Schreibende ”gewinnt“, dürfen nicht auftreten.

Für Lehrende soll das System einen Pool verschiedener E-Learning-Inhalte bereithalten, die
sie für Präsenzveranstaltungen, Fernveranstaltungen und zum Selbststudium anbieten. Sollte
ein Thema nur unvollständig oder nicht vorhanden sein, können Lehrende selbst als Autoren/-
innen auftreten bzw. diese Aufgabe delegieren. Die neuen Lernobjekte werden ebenfalls in
den Pool gestellt und stehen damit allen zur Verfügung. Hier können sich auch die Lernenden
bedienen, und über Suchmasken ihre Materialien finden. Die Vision sind thematisch verknüpfte
Lernobjekte, die manuell oder automatisch Exkurse zu einem Thema ermöglichen. Diesen
Mechanismus soll das folgende Beispiel verdeutlichen: Ein Lernobjekt beschreibt das Ohmsche
Gesetz, in dem die Beziehung zwischen Strom, Spannung und Widerstand erklärt wird, die
Begriffe selbst aber nicht. Ohne vorherige direkte Verknüpfung kann das System über die
Metadaten verwandte Lernobjekte anbieten, in denen diese Begriffe erklärt werden. Da der
Mechanismus auch für die herangezogenen Lernobjekt zählt, kann er beliebig oft wiederholt
werden. Auf diese Weise entsteht regelrecht ein Netzwerk unter den Lernobjekten, das nicht
statisch sein muss, sondern je nach Bedarf neu berechnet werden kann.

Diese Abstrakte Sicht auf die Zielsetzung muss freilich verfeinert werden. Ein Mittel zur
besseren Erschließung der wesentlichen Merkmale ist die Metapher des Baukastens, die Entwi-
cklern/-innen wie Benutzer/-innen ein intuitives Verständnis gibt.

Teil II

Entwurf

Kapitel 10

System-Vision

Die Bewertung im vorherigen Kapitel hat eindeutig gezeigt, dass die Zielsetzung dieser Arbeit
nicht mit den heute verfügbaren Mitteln zu realisieren ist. Deshalb soll nun eine verfeinerte,
eine technischere Sicht auf das angestrebte System erstellt werden. Diese System-Vision gibt
den Bauplan für die Implementierung vor und ist eine verbindliche Vorgabe. Sie wird für die
Entscheidung herangezogen, welche existierenden Programme, Libraries1 und Standards zum
Einsatz kommen. Fehlende Komponenten werden benannt und so modelliert, dass sie einfach
implementiert werden können. Einige Rahmenbedingungen, die alle Projektbeteiligten von
mαth-kit als sinnvoll erachten, wurden bereits im Abschnitt 1.3 über die Methodik erwähnt.
Wesentliche Entscheidungen für die System-Vision sind die objektorientierte Modellierung und
der Einsatz der Programmiersprache Java.

Zuerst muss ein fachliches Modell erstellt werden, aus dem das technische abgeleitet wer-
den kann. Hierbei gilt zu beachten, dass es vollständig ist und alle gewünschten Funktionen
beinhaltet. Eine Überprüfung zwischen fachlichem Modell und der realen Welt, auch Veri-
fizierung genannt, gibt Aufschluss hierüber. Danach kann das technische Modell hergestellt
werden, wobei es sich um eine Abbildung des fachlichen handelt. Die abschließende Über-
prüfung zwischen technischem und fachlichem Modell heißt Validierung. Hieraus wird auch
ersichtlich, warum so sorgfältig bei der fachlichen Modellierung gearbeitet werden muss. Fehler
und Lücken, die sich an dieser Stelle eingeschlichen haben, wirken sich möglicherweise erst bei
der Implementierung oder bei der Arbeit aus. Über die Validierung sind sie nicht zu erfas-
sen und eine Verifizierung ist zu diesem Zeitpunkt zu spät. Jede nachträgliche Änderung im
fachlichen Modell kann schwerwiegende Konsequenzen nach sich ziehen.

Steht dieses Vorgehen aber nicht im Widerspruch zu dem iterativen Prototyping, wie es
eingangs bei der Methodik festgelegt wurde? Diese Frage ist wichtig, da ihre Antwort eini-
ge Missverständnisse ausräumt. Bei der iterativen Vorgehensweise werden bewusst bestimmte
Bereiche nicht sofort modelliert, um schnellst möglich vorzeigbare Ergebnisse zu haben. Da-
mit ist aber nicht gemeint, dass in irgendeiner Form schlampig gearbeitet werden darf und
Lücken im Modell erlaubt sind. Das Gegenteil ist der Fall. Es muss eine genaue Vorstellung
vom Aufgabenbereich geben, um abschätzen zu können, welche Funktionen sich nachträg-
lich hinzufügen lassen. Bei dem iterativen Vorgehen werden somit bewusst Abwägungen und
Prioritäten gesetzt, die ein genaues Wissen über das Zielsystem voraussetzen. Dennoch bleibt
bei der Implementierung genügend Spielraum, um unvorhergesehene Schwierigkeiten oder Än-
derungswünsche zu berücksichtigen. Auf keinen Fall sollen hier Vorgehensmodelle wie das
Wasserfallmodell proklamiert werden.

Bei der fachlichen Modellierung stellt sich immer wieder die Frage, wie die Fakten aus
der Realität gezogen und formal festgehalten werden. Eine beliebte Vorgehensweise sind Inter-
views. Mit ihnen wird versucht, sich von den Benutzern/-innen die Prozesse erklären zu lassen,
die vom System unterstützt werden sollen. Hieraus werden Prosatexte entwickelt, die eine um-

1In dieser Arbeit wird der Begriff Library für Programmbibliotheken, wie z.B. von Java oder C++, verwen-
det.

86 System-Vision

gangssprachliche Beschreibung der Funktionalität bilden. Im Fall des Projekts mαth-kit wurde
bereits im Vorwege festgehalten, welche Vorstellung von dem System existiert. Als Teil des
Antrags und der Projektbeschreibung wurde quasi eine fachliche Beschreibung vorgelegt, die es
genauer zu untersuchen gilt. In mehreren Projekttreffen wurde dann weiter herausgearbeitet,
was einen multimedialen Baukasten ausmacht und welche Funktionen wünschenswert sind.
Aus diesem Grund waren bei dem Projekt mαth-kit keine Interviews für eine Beschreibung in
Prosa nötig.

Das Resümee (siehe Abschnitt 9.1) des Standes der Wissenschaft ist bereits eine Verfeine-
rung der Zielsetzung, angeregt durch die neuen Erkenntnisse der Untersuchung. Dennoch lässt
sie einige Interpretationsfreiräume zu, die durch eine formalere Beschreibung eingeschränkt
werden sollen. Hierzu werden die Fakten bestimmt, die bereits bekannt sind. Ein wichtiger
Anhaltspunkt sind die verschiedenen Personen, die mit dem System interagieren. Danach
werden Feststellungen abgeleitet, aus denen optimale Lösungen hervorgehen. So soll z.B. die
bestmögliche Aufteilung der gesamten Architektur gefunden werden. Ein gesundes Gleich-
gewicht zwischen existierenden Lösungen und Eigenentwicklungen ist freilich erstrebenswert.
Folglich muss ein Kompromiss zwischen den beiden Extremen ”alles neu entwickeln“, mit einer
optimalen Erfüllung der Ansprüche, und ”alles zusammensetzen“, dafür aber Abstriche in der
Funktionalität, gefunden werden.

Nach der Fertigstellung des fachlichen Modells erfolgt die Überführung in das technische.
Zuerst wird eine grobe Architektur aufgestellt, die einzelne Programme und die Beziehung-
en untereinander verdeutlicht. Dann folgen die Komponenten, aus denen sich die Programme
zusammensetzen, die wiederum in Klassen zerlegt werden. Neben diesen starren Relationen
gibt es auch Algorithmen und Interaktionen, die näher modelliert werden sollen. Dies erfolgt
über Sequenz- und Ablaufdiagramme, mit denen sich dynamische Zusammenhänge beschrei-
ben lassen. Letztendlich wird die Modellierung so weit getrieben werden, dass eine präzise
Übersetzung in eine objektorientierte Programmiersprache möglich ist.

Um den Begriff Komponente im Kontext der Software-Technik richtig zu verwenden, sollte
eine ergänzende bzw. erklärende Erläuterung angeführt sein. Denn im Gegensatz zur Objekt-
orientierung divergieren die Meinungen der Gelehrten sowie die technischen Umsetzungen bei
diesem Begriff [Szyperski98; Griffel98]. Die folgende Definition soll weitestgehend für diese
Arbeit gelten:

”A software component is a unit of composition with contractually specified interfa-
ces and explicit context dependencies only. A software component can be deployed
independently and is subject to composition by third parties.“ [Szyperski98, S. 164]

10.1 Rollen und Anwendungsfälle

Wie erwähnt, soll das fachliche Modell über die Tätigkeiten der handelnden Personen, manch-
mal auch Akteure genannt, entwickelt werden. Da manche Aktivitäten nicht von Einzelnen
sondern von Mehreren ausgeführt werden können, ist das Konzept Rollen eine wichtige Ab-
straktion. Es handelt sich um eine Gruppierung, bei der alle für eine Aktion in Frage kommen-
den Personen durch die stellvertretende Rolle beschrieben werden. Dieser Ansatz bietet eine
Reihe von Vorteilen. Mit einer Rolle ist immer ein genau definierter Aufgabenbereich verbun-
den, der eine bestimmte Anzahl von Tätigkeiten umfasst. Somit ist eine Person nicht an eine
Rolle gebunden, sondern kann je nach durchzuführender Tätigkeit eine andere annehmen.

Die einzelnen Aktivitäten werden in dieser Arbeit als Anwendungsfälle beschrieben. Von
Ivar Jacobsen in den späten 60er Jahren entwickelt, fanden sie Ende der 80er Jahre ihren Ein-
zug in die objektorientierte Analyse. Um eine falsche Annahme gleich vorweg auszuräumen:
In erster Linie handelt es sich um Beschreibungen in Form von Texten und nicht um Strich-
männchen und Ellipsen, wie sie von vielen CASE-Tools angeboten werden. Die Diagramme
der UML sind kein echter Ersatz für die schriftliche Form, weil sie keine Abläufe beschreiben
können. Sie haben aber trotzdem ihre Daseinsberechtigung, denn es ist für diese Arbeit nicht

10.1 Rollen und Anwendungsfälle 87

sinnvoll, in den folgenden Abschnitten alle Anwendungsfälle in ihrer vollen Länge aufzulisten.
Für das Verständnis dieser Arbeit ist dieses Detailwissen nicht von Belang und würde den
Rahmen sprengen. Deshalb werden die UML-Diagramme als Inhaltsverzeichnisse genutzt, die
eine Übersicht der Beziehungen zwischen den Anwendungsfällen untereinander und zu den
Rollen geben. Grundsätzlich wird für Anwendungsfälle keine Form vorgeschrieben. Der Ein-
satz formloser Anwendungsfälle ist genauso legitim wie eine Vorgabe durch Schablonen, in
denen definierte Felder ausgefüllt werden müssen.

Im Stand der Wissenschaft werden bereits alle Personen genannt, die bei der Arbeit mit
dem System auftreten. Zur eindeutigen Identifizierung erhält jede Rolle einen Bezeichner,
der aus Prägnanz und Kürze in Englisch angegeben wird. Im folgenden stehen sie jeweils in
Klammern hinter der genannten Personengruppe.

Die zentralen Gruppen sind die Lehrenden (Professor) und Lernenden (Students), da
letztendlich alle Bemühungen dieser Arbeit ihr Streben unterstützen soll. Allgemeiner defi-
niert handelt es sich um Benutzer/-innen (User) der Lernplattform, über die sie alle Aktivi-
täten durchführen. Im Zusammenhang mit den Autorensystemen treten die Autoren/-innen
(Author) in Erscheinung, deren Aufgaben so vielfältig sind, dass eine Spezialisierung dieser
Rolle, wie in [Bungenstock02; Baudry02b] vorgeschlagen, sinnvoll ist. Zwischen der Erstellung
von Lernobjekten (Developer), deren Kombinierung zu höheren Strukturen (Composer)
und der Veröffentlichung auf einem Server (Publisher) soll durch drei Rollen unterschieden
werden. Die Tätigkeiten der Administratoren/-innen (Administrator) sind so vielfältig, dass
sie sich nur schwer vollständig beschreiben lassen. Da sie neben den Verwaltungsaufgaben
die anderen Rollen bei der Arbeit unterstützen, werden sie häufiger mit unvorhersagbaren
Schwierigkeiten konfrontiert. Denn, wann immer ein technisches Problem auftritt, ist dessen
Beseitigung Aufgabe der Rolle Administrator.

Bevor nun die Anwendungsfälle der einzelnen Rollen beschrieben werden, gibt Abbildung
10.1 eine Übersicht aller definierten Rollen. Die Pfeile zwischen ihnen drücken die Spezialisie-
rung aus.

Author

Developer PublisherComposer

Administrator

Professor

User

Student

Abbildung 10.1: Übersicht der Rollen

10.1.1 Author

Die Rolle Author dient zur Abstraktion allgemeiner Aufgaben der Autoren/-innen und kann
in ihrer Funktion etwa mit einer abstrakten Klasse verglichen werden. Aus diesem Grund wird
in dieser Rolle kein Anwendungsfall für die Erstellung von E-Learning-Materialien eingeführt.
Dies geschieht erst in den drei Spezialisierungen Developer, Composer und Publisher, die alle
Anwendungsfälle ”erben“ und manche auch erweitern.

Die Rolle Author beschreibt alle Tätigkeiten, die auf dem Weg zur Produktion anfallen.
Hierzu gehört der Umgang mit Dateien, der das Erstellen, Bearbeiten und Löschen einschließt.
Weil jede spezialisierte Rolle mit den Dateiformaten vertraut ist, mit denen sie täglich zu tun
hat, ist dies ein gutes Beispiel für die Erweiterung von Anwendungsfällen. Ein potentieller
Anwendungsfall ist ”Datei bearbeiten“, der in der Rolle Author allgemein gültig beschrieben

88 System-Vision

ist. Erst in der Spezialisierung lassen sich dann die Abläufe für ein spezielles Format, z.B.
ein Lernobjekt, genau angeben. Zu den weiteren Operationen auf Dateiebene gehören die
Versionierung und das Sperren bzw. Freigeben von Dateien. Bei der Versionierung werden die
Änderungen zwischen zwei Zeitpunkten protokolliert, sodass sich alle Arbeitsschritte jederzeit
nachvollziehen oder rückgängig machen lassen.

”Versioning is the management of multiple copies of the same evolving resource,
captured at different stages of its evolution.“ [Vitali99]

Mit dem Sperren von Dateien lässt sich die parallele Bearbeitung verhindern. Weil diese
Anwendungsfälle für alle Formate gleich sind, werden keine Erweiterungen in den abgeleiteten
Rollen erwartet.

Bis jetzt sind die Aufgaben der Rolle Author so allgemein gefasst, dass sie bei jeder Tätig-
keit mit dem Rechner auftreten können. Zu der Rolle gehören aber auch spezifischere Anwen-
dungsfälle, wie z.B. der Umgang mit Metadaten, deren Erstellung bzw. Bearbeitung Aufgabe
aller Autoren/-innen ist. Zwar werden bei der Erstellung von Lernobjekten inhaltlich andere
Metadaten vergeben als bei der Festlegung des Layouts und Formats, aber durch den Einsatz
von Standards werden sich die Eingabemasken wenig unterscheiden. Ähnlich sieht es mit einer
Voransicht auf die geleistete Arbeit aus. So unterschiedlich die erstellten Materialien auch sein
mögen, die auszuführenden Schritte zur Kontrolle des Resultats sind die gleichen. Abbildung
10.2 zeigt eine Übersicht aller Anwendungsfälle in UML-Notation.

Author

Datei erstellen

Datei bearbeiten

Datei löschen

Datei versionieren

Metadaten erstellen

Metdaten bearbeiten

Metadaten löschen

Datei sperren/freigeben

Abbildung 10.2: Anwendungsfälle der Rolle Author

10.1.2 Developer

Die Erstellung und Wartung von Lernobjekten ist die wesentliche Aufgabe der Rolle Developer.
Weil sie mit vielen verschiedenen Theorien und Techniken umgehen muss, sind die Ansprüche
an ihre Fertigkeiten sehr hoch. Normalerweise läuft die Arbeit dieser Rolle wie folgt ab: Die
Rolle Professor hat ein didaktisches Konzept entwickelt und eine grobe Vorstellung von den
benötigten Inhalten. Da ihr kein hohes technisches Wissen abverlangt werden darf, hilft die
Rolle Developer bei der Umsetzung der Gedanken, wobei an dieser Stelle ausdrücklich auf die
Trennung der Aufgaben dieser beiden Rollen eingegangen werden soll. So könnte die Erstellung
von Texten und Abbildungen gewiss der Rolle Professor zugeschrieben werden, da sie eher
fachlichen als technischen Sachverstand voraussetzt. Dennoch soll aus Gründen der Konsistenz
dieser Prozess des ”Kodierens“ der Rolle Developer zugeschrieben werden, denn auf diese Weise
wird eine Vermengung ähnlicher Tätigkeiten vermieden. Dies ist ohne Weiteres möglich, da
Personen nicht an Rollen gebunden sind und es sich jeweils nur um eine Sicht auf das System
handelt. Eine Dozentin kann also ihre Texte und Abbildungen selbst erstellen, ohne sich an
eine reale Technikerin wenden zu müssen.

10.1 Rollen und Anwendungsfälle 89

Neben diesen einfachen Umsetzungen gibt es aber auch komplexere Aufgaben, wie z.B. die
Erstellung von Animationen und Videos oder die Programmierung von interaktiven Kompo-
nenten und Simulationen. Obwohl die professionellen Autorenwerkzeuge aus Abschnitt 5.1.1
komplexe Details verdecken, braucht es Erfahrung, um die technischen Möglichkeiten zu nut-
zen. Noch anspruchsvoller ist die Entwicklung von Java Applets, bei der wirklich nur noch
Experten Ergebnisse in akzeptabler Zeit erreichen. Hier zeigt sich, wie unterschiedlich die
Ansprüche an die Rolle Developer sind, denn das Spektrum reicht von Drag’n’Drop mit WY-
SIWYG bis zur Programmierung in Entwicklungsumgebungen.

Ein weiterer Anwendungsfall ist die Umwandlung existierender Inhalte in das Hauptformat
des Systems. Oft hat die Rolle Professor Skripte, Übungsaufgaben und Vorträge aus bereits
gehaltenen Veranstaltungen, die wiederverwendet werden sollen. Da es sich um umfangreichere
Dokumente handelt, können sie nicht 1:1 in Lernobjekte umgewandelt werden und müssen per
Hand verkleinert werden. Neben den technischen Problemen, wie einzelne Daten extrahiert
und konvertiert werden, sollten auch die Belange der Granularität und Sequenzierung aus den
Abschnitten 3.3 und 3.4 bedacht werden. Abbildung 10.3 zeigt die Rolle Developer, welche aus
der Rolle Author inklusive der genannten Anwendungsfälle abgeleitet ist.

Author

Developer

Fremde Inhalte importieren

Fremde Inhalte zerlegen

Multimedia bearbeiten

Datei bearbeiten

Multimedia erstellen

Datei erstellen

Lernobjekt erstellen

Lernobjekt bearbeiten

<<extends>>

<<extends>>

<<extends>>

<<extends>>

Abbildung 10.3: Anwendungsfälle der Rolle Developer

10.1.3 Composer

Die fertigen Lernobjekte werden von der Rolle Composer zu höheren Strukturen zusammen-
gesetzt, wobei keine Aufteilungen vorgegeben sind. Es kann sich z.B. um Abschnitte, Kapitel
und Kurse handeln, aber auch andere Strukturen wie Übungen, Tests und Explorationsberei-
che sind denkbar. Im Gegensatz zu der Rolle Developer stehen die technischen Fragen eher
im Hintergrund, denn die Rolle Composer muss einen fachlichen Gesamtüberblick haben —
möglicherweise von der Rolle Professor angeleitet —, um bei der Sequenzierung vorteilhafte
Lernpfade auszuarbeiten.

Richtig effizient kann die Rolle Composer nur arbeiten, wenn sie gezielt aus möglichst vielen
Inhalten die passenden herausnehmen kann. Hierfür muss das System raffinierte Suchmecha-
nismen über die Metadaten anbieten, die allgemeine und detaillierte Anfragen anbieten. Nach
einer Suche muss die Rolle Composer das Suchergebnis analysieren und entscheiden, ob pas-
sende Inhalte enthalten sind. Stellt sich heraus, dass ein Lernobjekt nur bedingt geeignet ist,
kann die Rolle Developer entsprechende Anpassungen vornehmen. Lässt sich zu einem Thema
gar kein Material finden, müssen die Rollen Professor und Developer es erst entwickeln.

Bei der Zusammenstellung der Lernobjekte können zwei Anwendungsfälle unterschieden
werden, die sich auf die Wartung und Aktualität der erzeugten Struktur auswirken. Entweder
wird eine Kopie eines Lernobjekts oder ein Verweis erzeugt. Bei der Kopie wird das Lernobjekt

90 System-Vision

vervielfältigt und direkt im Kurs abgespeichert, wobei etwaige Korrekturen im Original keine
Auswirkung auf die Kopien haben. Da dies auch umgekehrt gilt, Anpassungen der Kopie nur
lokal wirken, kann dies aber ein gewünschter Effekt sein, denn auf diese Weise lassen sich In-
halte nach eigenen Wünschen ändern, ohne andere Kurse zu beeinflussen. Kann ein Lernobjekt
wie gefunden übernommen werden, sollten lieber Verweise eingesetzt werden. Sie verbrauchen
weniger Platz, da jedes Lernobjekt nur ein Mal vorliegt, und die Inhalte sind immer auf dem
neuesten Stand. Ist der letzte Effekt nicht gewünscht, kann dieser bei eingeschalteter Versio-
nierung durch einen Verweis auf eine bestimmte Version vermieden werden.

Fertige Strukturen können selbstverständlich wieder in ihre Bestandteile zerlegt werden,
um z.B. den Pool an Lernobjekten aufzufüllen. Dies ist besonders wichtig für die Wiederver-
wendbarkeit fremder Materialien (siehe Abschnitt 3.1).

Auch die Rolle Composer kann wie die Rolle Developer fremde Inhalte importieren. Da
es sich aber um einen automatisierten Prozess handelt, ist das Ergebnis von der Qualität des
Ursprungsdokuments abhängig. Enthält es nur unzureichende Strukturinformationen, müssen
die Lernobjekte möglicherweise von der Rolle Developer zerkleinert werden. Abbildung 10.4
fasst die beschriebenen Anwendungsfälle zusammen.

Author

Composer

Datei bearbeiten

Struktur bearbeiten

Kopie einfügen Verweis einfügen

Struktur erstellen

Datei erstellen

Fremde Inhalte importieren

Fremde Inhalte zerlegen

Lernobjekt suchen

<<uses>><<uses>>

<<extends>>

<<extends>>

Abbildung 10.4: Anwendungsfälle der Rolle Composer

10.1.4 Publisher

Für die ästhetischen und praktischen Belange der Präsentation modularer E-Learning-Inhalte
ist die Rolle Publisher zuständig. Sie kümmert sich um die Integration der Materialien in die
Lernplattform, sodass die Rollen Professor und Student sie mit ihren Anzeigeprogrammen
nutzen können. Hierbei muss die Rolle Publisher einige Punkte beachten, denn von der Rolle
Composer erhält sie in der Regel einen Kurs, dessen Inhalte lediglich semantisch beschrieben
sind. Für die Darstellung muss zuerst ein Layout erstellt bzw. ausgewählt werden, in dem der
Kurs erscheinen soll. Dann muss das Ausgabeformat, z.B. HTML oder PDF, auf die Anzeige-
programme und die Lernplattform abgestimmt werden, damit es zu keinen Inkompatibilitäten
kommt. Im Idealfall unterstützt die Lernplattform einen der genannten Content Packaging
Standards (siehe Abschnitt 3.5 und 3.6), sodass die Rolle Publisher die Ausgabe parametri-
sieren kann, ob z.B. Submanifeste generiert werden oder welche Metadaten enthalten sind.

Nach der Übersetzung des Kurses muss das Resultat auf die Lernplattform hochgeladen
werden. Die einzelnen Schritte dieses Anwendungsfalls hängen ausschließlich von der Lern-
plattform ab und variieren von System zu System. Bei einem gemeinsam nutzbaren Speicher-
bereich, z.B. in Form eines Netzlaufwerks, ist dieser Schritt obsolet. Abbildung 10.5 zeigt
zusammenfassend die genannten Anwendungsfälle.

10.1 Rollen und Anwendungsfälle 91

Author

Datei bearbeiten

Datei erstellen

Publisher

Layout erstellen

Layout bearbeiten

Übersetzen

<<extends>>

<<extends>>

Ausgabeformat einstellen

In Lernplattform integrieren

Abbildung 10.5: Anwendungsfälle der Rolle Publisher

10.1.5 User

Die Rolle User beschreibt die Anwendungsfälle aller Personen, die Dienstleistungen und Inhal-
te einer Lernplattform nutzen. Hierbei geht es in erster Linie um die Mechanismen des Zugriffs
und weniger um die Verwendung des Angebots. Diese Details werden als Anwendungsfälle in
den beiden Spezialisierungen Student und Professor beschrieben. Über bestimmte Anzeigepro-
gramme, wie z.B. Webbrowser oder Media-Player, werden die Inhalte von der Lernplattform
heruntergeladen und angezeigt. Mit den angebotenen Kommunikations- und Organisations-
diensten können die Abläufe mit anderen Personen besser abgestimmt werden.

Die Rolle User dient der Kapselung administrativer Anwendungsfälle und tritt nie real
in Erscheinung. Durch diesen Ansatz lassen sich die beiden Spezialisierungen Student und
Professor übersichtlicher gestalten, da sich ihre Beschreibung auf die wesentlichen Aufgaben
beschränkt. Zu den Anwendungsfällen der Rolle User gehören beispielsweise das An- bzw. Ab-
melden am System, Lesen von E-Mails und der Einsatz eines Terminkalenders. Es handelt sich
um wiederkehrende Tätigkeiten, die wenig mit den eigentlichen Zielen Lehren und Lernen zu
tun haben, aber dennoch modelliert werden müssen. Abbildung 10.6 listet die administrativen
Anwendungsfälle der Übersicht halber auf.

User

An−/abmelden

Inhalte nutzen

Inhalte suchen

Organisieren

Kommunizieren

Abbildung 10.6: Anwendungsfälle der Rolle User

10.1.6 Student

Alle Aktivitäten der Lernenden werden durch die Rolle Student beschrieben, die das Angebot
entweder im Selbststudium oder in Präsenz- bzw. Fernveranstaltungen nutzt. Ziel dieser Rolle
ist gewiss, so schnell und viel wie möglich zu lernen. Neben dem Zugriff auf Materialien und
deren Betrachtung — bereits durch die Rolle User angegeben — gehört das Absolvieren von
Übungen und Tests zu den Anwendungsfällen.

Obwohl von der geplanten Infrastruktur kein direktes Lernparadigma vorgegeben wird, soll
an dieser Stelle auf die Vorgehensweise im Projekt mαth-kit eingegangen werden. Ein zentra-

92 System-Vision

ler Aspekt von mαth-kit sind die Explorationsumgebungen, die konstruktivistisch organisiert
sind. Anstatt starre Lernpfade vorzugeben, kann die Rolle Student eine individuelle Lerner-
fahrung machen. Neben der Vermittlung theoretischer Grundlagen, die jederzeit auch nach-
geschlagen werden können, gibt es einen multimedialen Explorationsbereich, der interaktiv
bedient wird. Zur Kontrolle des erreichten Lernerfolgs beinhaltet die Explorationsumgebung
einen Übungsbereich, in dem Quiz, Puzzles und Multiple-Choice-Aufgaben Aufschluss über
den Wissensstand geben.

In Chats und Foren können mit anderen Lernenden Arbeitsgruppen gegründet werden, die
gemeinsam Aufgaben und Probleme lösen. Wenn angeboten, können Verständnisfragen auch
direkt an die Rolle Professor gerichtet werden, die den Lernvorgang betreut. Abbildung 10.7
stellt den Lernprozess als Verfeinerung des Anwendungsfalls ”Inhalte nutzen“ dar.

User

Student

Üben

Inhalte nutzen

Lernen

Testen

<<extends>> <<extends>>

<<extends>>

Abbildung 10.7: Anwendungsfälle der Rolle Student

10.1.7 Professor

Für die fachlichen bzw. inhaltlichen Anwendungsfälle ist die Rolle Professor zuständig, die
Personen in der Rolle Student begleitet und den Rollen Developer, Composer sowie Publisher
bei didaktischen Fragen hilft. In anderen Worten koordiniert die Rolle Professor die gesamte
Lehre. Einen wesentlichen Teil der Arbeit machen Vorbereitungen aus, wobei neben den Inhal-
ten passende Übungen und Tests entwickelt werden müssen. Hierbei kann die Rolle Professor
im Vorwege Ideen entwickeln, wie bestimmte Themen multimedial aufbereitet werden, um sie
gemeinsam mit der Rolle Developer zu realisieren.

Neben der Vermittlung von Wissen muss die Rolle Professor den Lernfortschritt der Ler-
nenden überprüfen und bewerten. Auf diese Weise kann gegebenenfalls auftretenden Defiziten
entgegen gewirkt werden. Ein Instrument sind die Quiz und Tests, deren Positionierung Be-
standteil der Lernpfadgestaltung ist. Bei einer automatischen Auswertung können zusätzlich
Statistiken angeboten werden, mit denen sich die Begutachtung, z.B. auf ganze Gruppen,
ausdehnen lässt.

Weil die Rolle Professor auch die Funktionen der Lernplattform nutzt, erweitert sie die
Rolle User, sodass sie beispielsweise in der Präsenzlehre eine Vorlesung mit multimedialen
Inhalten bereichert oder Fragen in Foren beantwortet. Abbildung 10.8 zeigt eine Auflistung
der vorgestellten Anwendungsfälle.

10.1.8 Administrator

Die Rolle Administrator unterstützt alle anderen Rollen bei der Arbeit, indem sie für für einen
einwandfreien Zustand des Systems sorgt und Ansprechpartner/-in bei technischen Schwierig-
keiten ist. Besonders bei unvorhersagbaren Problemen, wie z.B. falsch konfigurierten Program-
men oder wiederkehrenden Abstürzen, ist die Rolle Administrator eine Anlaufstelle. Meist hin-

10.2 Komponenten 93

User

Professor

Lehren

Inhalte nutzen

Tests auswerten

Inhalte planen

Lehre vorbereiten

Übungen planen Tests planen

Didaktische Konzepte anwenden

<<extends>>

<<uses>><<uses>> <<uses>>

Abbildung 10.8: Anwendungsfälle der Rolle Professor

ter den Kulissen werden alle Verwaltungstätigkeiten von dieser Rolle durchgeführt. Für einen
geordneten Ablauf legt sie Zugänge für Benutzer/-innen an und vergibt Zugriffsrechte, die für
Dateien, Kurse, Foren, Chats, etc. gelten. Bei Bedarf installiert sie neue Programme und führt
Updates installierter Software durch. Abbildung 10.9 fasst die Anwendungsfälle zusammen.

Programme installieren

Zugriffsrechte setzen

Accounts verwalten

Technische Probleme lösen

Updates durchführen

Administrator

Abbildung 10.9: Anwendungsfälle der Rolle Administrator

10.2 Komponenten

Mit den Rollen und Anwendungsfällen wurde ein externer Blick auf das Verhalten des Sys-
tems gegeben. Für die detaillierte Beschreibung der internen Vorgänge werden in der Regel
aus den Anwendungsfällen Aktivitätsdiagramme hergeleitet. Dieser Diagrammtyp ist Bestand-
teil der UML mit vorgegebener Notation und ist z.B mit Flussdiagrammen vergleichbar, in
denen mit Bedingungen, Verzweigungen, Schleifen, Zuständen, Synchronisationen, etc. Abläu-
fe modelliert werden. Abhängig vom gewählten Abstraktionsniveau können sogar Algorith-
men genauestens beschrieben werden. Für den Entwurf der geplanten Systemarchitektur ist
dieses Vorgehensmodell aber ungeeignet, denn wenn möglich, sollen vorhandene Programme
und Komponenten eingesetzt werden, weshalb die Anwendungsfälle mit ihrer externen Sicht
als Entscheidungskriterien hinreichend sind. Lediglich für die Eigenentwicklungen ist dieser
Schritt sinnvoll, weil die Ergebnisse weiterverwendet werden können. Da aber noch nicht be-
schlossen wurde, welche Teile neu entwickelt werden, wird in dieser Arbeit ein abgeänderter
Weg eingeschlagen. Die Komponenten werden nicht aus den Aktivitätsdiagrammen gebildet,
sondern direkt aus den Anwendungsfällen.

Mit dieser Herangehensweise lassen sich offensichtlich nicht sehr kleine Komponenten bil-
den, aber sie hilft bei der Aufteilung auf Programmebene. Manche Anwendungsfälle lassen

94 System-Vision

sich über eine Komponente bearbeiten, sodass sich die Hauptkomponente für eine Rolle in
Teilkomponenten aufteilen lässt. Auch die Hauptkomponenten setzen sich aus kleineren Be-
standteilen zusammen, wodurch eine Sicht mit verschiedenen Abstraktionsniveaus entsteht.
Auf diese Weise lassen sich exakt die existierenden und fehlenden Komponenten bestimmen.

10.2.1 Basis

Es wird mit den Anwendungsfällen der Rolle Author begonnen, die eine Art Basis für die
Spezialisierungen darstellt. Dementsprechend werden die Teilkomponenten so gestaltet, dass
sie sehr allgemeine Dienste anbieten und leicht ansteuerbar sind. Bei der Rolle Author lassen
sich zwei wesentliche Bereiche ausmachen: der Umgang mit Dateien und die Verwendung von
Metadaten. Die sich ergebenden Komponenten sind in Abbildung 10.10 dargestellt.

File Management Metadata

Abbildung 10.10: Komponenten für die Rolle Author

Mit der Komponente File Management wird der Zugriff auf das Dateisystem des Be-
triebssystems abstrahiert. Anstatt einer Reihe primitiver Systemaufrufe, mit denen sich kom-
plexere Operationen zusammensetzen lassen, werden einfache Befehle für oft genutzte Funk-
tionen angeboten. Hierzu gehören unter anderem das Suchen von Dateien mit regulären Aus-
drücken, das Entpacken komprimierter Dateien und das Kopieren bzw. Verschieben von Ver-
zeichnissen sowie Dateien. In Hinblick auf die Content Packages (siehe Abschnitt 3.5) und
Lernplattformen mit WebDAV (siehe WebCT in Abschnitt 6.2.2) wird zusätzlich die Ab-
straktion des Zugriffs zum Wunsch. So unterschiedlich die zugrunde liegenden Techniken auch
sein mögen, die Operationen sind fast immer gleich. Zusammengefasst ist die Dienstleistung
der Komponente File Management eine transparente Behandlung unterschiedlichster Medien,
Formate und Protokolle verbunden mit umfassenden Operationen.

Prinzipiell kann jedes Datum mit Metadaten versehen werden. Die hierfür nötige Funk-
tionalität stellt die Komponente Metadata bereit, durch die sich einzelne Werte bis hin zu
komplex verschachtelte Strukturen mit den benötigten Metadaten versehen lassen. Dabei müs-
sen die gängigen Standards und Kodierungen unterstützt werden bzw. Änderungen und neue
Versionen leicht integrierbar sein. Hierfür ist intern eine modulare Struktur nötig, bei der
Module ergänzt und neue hinzugefügt werden können. Zusätzlich müssen generische Funk-
tionen angeboten werden, wie z.B. die Generierung objektiver Metadaten, eine Umrechnung
von Zeiteinheiten oder komplexe Operationen wie das Zusammenfügen von Metadaten aus
verschiedenen Quellen. Insgesamt erledigt diese Komponente alle Aufgaben rund um die Me-
tadaten, von der Eingabe über die Speicherung bis hin zur kompletten Umwandlung in diverse
Formate der Metadatenstandards.

10.2.2 Learning Object Development

Die Anwendungsfälle der Rolle Developer beschreiben drei wesentliche Aufgaben, die sich
in Teilkomponenten aufteilen lassen: die Erstellung von Multimedia und Lernobjekten sowie
die Integration fremder Inhalte. Abbildung 10.11 zeigt die zusammengesetzte Komponente
Learning Object Development.

Mit der Komponente Multimedia Environment soll eine Entwicklungsumgebung für
multimediale Inhalte angeboten werden. Weil es für alle Formen von Multimedia bereits Pro-
gramme gibt, soll an dieser Stelle nicht das Rad neu erfunden werden. Genauer betrachtet ist
es auch nicht leistbar, für die vielen Möglichkeiten und Anwendungen eigene Werkzeuge zu
entwickeln. Daher wird in dieser Arbeit der Einsatz bewährter Programme für diese Aufgabe
bevorzugt, weil sich hieraus wesentliche Vorteile ergeben: Im idealen Fall werden optimale

10.2 Komponenten 95

Import Engine

Multimedia
Environment

Learning Object
Engine

File Management

Metadata

Learning Object Development

Abbildung 10.11: Komponente für die Rolle Developer

Ergebnisse mit geringer Einarbeitungszeit erzielt. Für die Realisierung wird ein Mechanis-
mus benötigt, mit dem sich individuelle Verbindungen zwischen den Multimedia-Dateien und
-Programmen herstellen lassen. Ähnlich wie im Explorer von Windows werden Dateiformaten
unterschiedliche Medientypen zugewiesen, die wiederum über ein Verb eine Verknüpfung zu
einem Programm besitzen. Bei dem Verb handelt es sich um Anweisungen wie z.B. ”drucke“,

”bearbeite“ und ”sende an“. Der Aufruf ist dann ein Tupel, das aus einem Dateinamen und
dem Verb besteht. Beispielsweise überprüft die Komponente für ein übergebenes Wertepaar
(test.avi, edit) die Verbindung zu dem eingetragenen Werkzeug und ruft in diesem Fall
das zugewiesene Videobearbeitungsprogramm auf.

Die Komponente Import Engine liest fremde Inhalte ein und konvertiert sie zu dem in-
tern genutzten Format. Um möglichst viele Formate unterstützen zu können, muss die interne
Architektur sehr flexibel sein, doch leider gibt es keinen generischen Mechanismus wie XSLT,
mit dem sich Übersetzungsregeln beschreiben lassen. Weil die Kodierungen der einzulesenden
Formate sehr verschieden sind, von LATEX-Dateien in ASCII bis hin zu proprietären MS Word -
Dateien, ist eine automatisierte Interpretation unmöglich. Hieraus folgt, dass für jedes Format
ein eigens entwickelter Reader benötigt wird. Um die Programmierung einfacher zu gestalten,
bietet die Komponente für das Zielformat eine übersichtliche Schnittstelle, die Inhalte in meh-
rere Elemente aufteilt, wie z.B. Überschrift, Abbildung und Tabelle. Hierdurch beschränkt sich
die Entwicklung des Readers auf das Auslesen der Elemente mit anschließender Abbildung in
das Zielformat. Gebündelt in einem Paket, werden Reader nur ein Mal implementiert und
anderen Orts installiert. Teilweise enthalten die fremden Inhalte zusätzliche Metadaten, deren
Konvertierung und Aufbereitung über die Komponenten Metadata erfolgt.

Die eigentlichen Lernobjekte werden mit der Komponente Learning Object Engine
verwaltet, die alle gängigen Standards unterstützt und intern eine festgelegte Struktur von
physikalischen Dateien, Einstiegspunkten sowie Metadaten einsetzt. Dank einer Konsistenz-
prüfung mit Fehlerbehebung ist garantiert, dass nicht ungewollt defekte Lernobjekte erzeugt
werden. Der Speicher- und Lademechanismus ist modular aufgebaut und unterstützt Dateisys-
teme, Datenbanken sowie Datei-Server. Weil alle Speicher- und Ladevorgänge über die interne
Struktur ablaufen, ergibt sich ein optimales Werkzeug für die Konvertierung verschiedener
Standards. Für den Einsatz dieser Komponente ist freilich ein grafisches Frontend (View)
sinnvoll, mit dem sich die Manipulationen per Maus steuern lassen. Eine Aufteilung nach
dem MVC-Muster [Gamma95] soll daher als übliche Vorgehensweise angenommen werden, die
durch einen speziellen Nachrichtendienst für Views unterstützt wird.

96 System-Vision

10.2.3 Structure Development

Für die Erstellung höherer Strukturen oder Kurse aus Lernobjekten und deren Kompositionen
steht der Rolle Composer die Komponente Structure Development zur Verfügung. Ihre
Teilkomponenten entstehen wieder aus der Zusammenfassung der Anwendungsfälle, die sich
aus dem Importieren fremder Kurse, dem Suchen von Inhalten und dem eigentlichen Aufbau
der Struktur ergeben. Abbildung 10.12 illustriert die resultierende Aufteilung.

Import Engine

Search Engine

Structure Engine

File Management

Metadata

Structure Development

Abbildung 10.12: Komponente für die Rolle Composer

Die gleiche Namensgebung der Komponente Import Engine wie in der Learning Object
Development ist nicht zufällig gewählt. Da die Aufgaben sehr ähnlich sind, aber die Anwen-
dungsfälle im Detail anders gehalten sind, ist aus konzeptioneller Sicht diese Trennung ein-
zuhalten. Bei der späteren Implementierung kann auf sie wahrscheinlich verzichtet bzw. über
den Zugriff durch zwei Schnittstellen nachgebildet werden. An dieser Stelle wird die Aufteilung
eines fremden Kurses in mehrere Lernobjekte plus einer Strukturierung unter dem Importieren
fremder Inhalte verstanden. Im Gegensatz hierzu können auf Ebene der Lernobjektentwick-
lung nur einzelne Lernobjekte eingelesen werden, weil sich die Rolle Developer sonst in den
Aufgabenbereich der Rolle Composer begibt. Anders herum kann die Rolle Developer aber
ein Lernobjekt in beliebig viele andere aufbrechen, was wiederum der Rolle Composer nicht
gestattet ist.

Mit Hilfe der Komponente Search Engines können Suchanfragen gestellt werden, die
entweder auf lokale Datenbestände angewendet oder an spezielle Server delegiert werden. Als
Resultat werden Listen von Referenzen auf Lernobjekte und Kurse geliefert, die sich in die
eigene Struktur integrieren lassen. Diese Komponente implementiert selbst keine Suchalgo-
rithmen, sondern benutzt Module für die verschiedenen Anfragen. So kann ein Suchmodul
durch ein effizienteres ausgetauscht werden, ohne dass es Auswirkungen auf die Darstellung
der Suchmaske hat. Bei den Umsetzungen der Module gibt es keine Einschränkungen: Von
der einfachen Suche über Dateien, bei der jedes Content Package für die Metadaten geöffnet
wird, bis hin zu verteilten Datenbanken, in denen über Indizes optimale Zugriffszeiten erreicht
werden, sind alle Ansätze denkbar. Zu berücksichtigen sind nur die Vorgaben der Komponente
Metadata, damit alle Felder der Metadatenstandards abgefragt werden können. Da die Syntax
der Abfragesprache für die Architektur von geringer Priorität ist, soll diese Entscheidung auf
den Klassenentwurf bzw. die Implementierung verschoben werden.

Der Aufbau der Struktur läuft über die Komponente Structure Engine, mit der standard-
kompatible Content Packages erzeugt werden. Angelehnt an die Struktur eines Manifests (siehe
Abschnitt 3.5) können verschiedene Organisationen für die Lerninhalte erzeugt und bearbei-

10.2 Komponenten 97

tet werden, wodurch sich unterschiedliche Lernpfade definieren lassen, die sogar Bedingungen
und Verzweigungen ermöglichen. Über Referenzen sind die einzelnen Elemente der Struktur
mit physikalischen Ressourcen verbunden, die entweder Bestandteil des Content Package sind
oder über eine URL auf einen externen Bereich verweisen. Bei Bedarf wandelt die Kompo-
nente solche externen Referenzen in physikalische Dateien um. Da neben Lernobjekten auch
zusammengesetzten Strukturen als Ressourcen erlaubt sind, unterstützt die Komponente die
Aggregation sowie Disaggregation der Organisationen. Weiter gedacht sind auch Operationen
zur Umstrukturierung von Submanifesten oder zur Reduzierung mehrerer Content Packages
zu einem nützliche Funktionen. Wie bei der Komponente Learning Object Environment sind
Lade- und Speichermechanismus modular gehalten und interne Veränderungen werden über
einen eigenen Nachrichtendienst propagiert.

10.2.4 Publishing Environment

Mit der Veröffentlichung der erzeugten E-Learning-Inhalte wird der letzte Schritt im Erstel-
lungsprozess vollzogen. Die Rolle Publisher nutzt bei ihrer Arbeit die Komponente Publis-
hing Environment, deren Teilkomponenten wieder aus den Anwendungsfällen hergeleitet
sind. Abbildung 10.13 zeigt, wie die Gruppierung der Einzeltätigkeiten zur Erstellung von
Layout- sowie Formateinstellung und Übersetzung die interne Struktur prägt.

Compiler

File Management

Metadata

Layout Engine

Format Engine

Publishing Environment

Abbildung 10.13: Komponente für die Rolle Publisher

Bei einem Layout handelt es sich um eine Beschreibung von Farbgestaltungen, Schriften,
Seitenaufteilungen, Abständen und Navigationen, dessen Gestaltung über die Komponente
Layout Engine erfolgt. Es werden quasi Schablonen erstellt, die bei der Übersetzung nur noch
mit den Inhalten der Lernobjekte ausgefüllt werden. Bis auf den Punkt Navigation sollten die
beschriebenen Parameter selbsterklärend sein. Weil nicht alle Lernplattformen in der Lage sind,
aus den Manifesten eine geeignete Navigation abzuleiten, kann diese Funktion über das Layout
gesteuert werden. Die Komponente zur Übersetzung wird durch die erzeugte Beschreibung
angewiesen, zusätzlich eine entsprechende Navigation zu erstellen. Ein anderer Punkt sind
Elemente wie Fuß- und Kopfzeilen, Logos, Verweise auf das Impressum, etc., die automatisch
in alle Seiten generiert werden. Streng genommen wird hierdurch die Trennung von Darstellung
und Inhalt verletzt, weil ”Inhalte“ zum Bestandteil der Layout-Beschreibung werden. Technisch
gesehen tritt diese Vermischung aber nicht ein, sodass sie auf fachlicher Ebene toleriert werden
darf.

Mit den Kodierungsanweisungen trägt die Komponente Format Engine die zweite Be-
schreibungsform bei, die zusammen mit dem Layout die Übersetzung steuert. Sie wandelt ein

98 System-Vision

bekanntes Quellformat in ein beliebiges Zielformat um, auch in ein binäres oder proprietä-
res. Aus dieser Funktionsbeschreibung leitet sich ab, dass eine Übersetzung nur mit XSLT
nicht hinreichend ist. Zwar gibt es Mechanismen wie die XSL Formatting Objects (XSL-FO)
[Pawson02], deren Prozessoren aus XML PDF- und PS-Dateien generieren, aber andere wich-
tige Formate fehlen. Deshalb kann die Komponente um selbst entwickelte Module erweitert
werden, mit denen sich einzelne Aufgaben oder komplette Umsetzungen realisieren lassen.
Beispielsweise kann ein Modul MathML-Formeln2 in PNG-Abbildungen umwandeln, um älte-
re Browser bei der HTML-Darstellung nicht auszuschließen. Wie bei anderen Komponenten
zuvor, erfolgt die Speicherung der XML-Formatierungen und Module in eigenen Paketen, die
mit anderen Systemen austauschbar sind.

Die eigentliche Übersetzung führt die Komponente Compiler durch. Ziel ist die Erzeugung
einer oder mehrerer Dateien in einem Format, das mit einem Anzeigeprogramm dargestellt
werden kann. Hierfür wird der Inhalt aus den Lernobjekten entnommen, nach der Layout-
Vorlage arrangiert und anschließend über die Formatbeschreibung ausgegeben. Mit einem
XSLT-Parser, einem XSL-FO-Renderer und einer Laufzeitumgebung für Module stellt diese
Komponente die nötige Infrastruktur bereit.

10.2.5 User Environment

Aus der Definition der Rolle User als Stellvertreter für den generellen Umgang mit einer
Lernplattform folgt unausweichlich, dass ihre Hauptkomponente eine Lernplattform ist. Weil
die Anwendungsfälle dieser Rolle aus der Funktionsbeschreibung von Lernplattformen in Ab-
schnitt 6.1 abgeleitet sind, könnten sie als bereits gegeben angesehen werden. Um die Konsis-
tenz zu wahren, wird wie bei den anderen Komponenten verfahren, indem die Teilkomponenten
durch Gruppierung der Anwendungsfälle entstehen. Im Wesentlichen geht es bei den Aufga-
ben um die Organisation und Kommunikation mit anderen Personen und die Nutzung der
Inhalte. In Abbildung 10.14 wird neben diesen Teilkomponenten vollständigkeitshalber auch
eine Verwaltungskomponente Administration definiert, die grundlegender Bestandteil einer
Lernplattform ist.

Content Viewer

Organizer

Administration

Communicator

User Environment

Abbildung 10.14: Komponente für die Rolle User

Bei der Komponente Communicator handelt es sich um eine Zusammenfassung aller
gängigen Kommunikationsmethoden, wie z.B. E-Mail, Chat, Foren, Whiteboard und Video-
Conferencing. Obwohl diese Mittel sich grundsätzlich in Bedienung und Technik unterscheiden,
ist die Verallgemeinerung in einer Komponente für die angestrebte Architektur sinnvoll. In
der Bewertung des Standes der Wissenschaft wurde bereits angedeutet, dass die heutigen
Lernplattformen im Bereich Kommunikation gut ausgestattet sind, sodass es auf den Einsatz
einer existierenden Lösung hinauslaufen wird.

2MathML ist eine Auszeichnungssprache für mathematische Formeln

10.2 Komponenten 99

Ähnlich verhält es sich mit der Komponente Organizer, die alle Mittel zur Planung der
Arbeitsabläufe einschließt. Die Kalender, To-Do-Listen und Notizblätter der heutigen Lern-
plattformen sind bereits auf einem Stand, der eine Eigenentwicklung praktisch ausschließt.

Wenn die Lernplattformen bereits die gesamte Funktionalität liefern, die von der Rolle
User benötigt wird, stellt sich die Frage, wozu eine Aufteilung in Komponenten erfolgt? Eine
Antwort ist die Komponente Content Viewer, mit der die Inhalte recherchiert und angezeigt
werden. Das Ziel dieser Arbeit im Hinterkopf wird schnell die Schwäche aktueller Lernplatt-
formen deutlich, denn sie sind für die Präsentation ”monolithischer“ Inhalte ausgelegt, die
starre Strukturen vorgeben. Adaptives bzw. personalisiertes Lernen wird nicht unterstützt
und überspitzt ausgedrückt, leisten Lernplattformen beim Suchen oder Anzeigen nicht mehr
als gewöhnliche Web-Server. Die Komponente Content Viewer hingegen kennt modulare Inhal-
te, kann für mehrere Lernpfade Navigationen erzeugen und unterstützt eine kontextabhängige
Suche in nicht explizit zugewiesenen Lernobjekten. Hierdurch sind beispielsweise Exkurse zu
bestimmten Themen möglich, da die Komponente aus den Metadaten ”weiß“, welche Lernob-
jekte inhaltlich zusammen passen.

Die Komponente Administration unterstützt die Rolle User bei Einstellungen und wie-
derkehrenden Tätigkeiten. Funktionsumfang und Benutzung hängen wieder stark vom einge-
setzten System ab, sodass keine pauschale Beschreibung möglich ist. Nur wenige grundlegende
Funktionen, wie die Bearbeitung der persönlichen Daten, z.B. das Zugangspasswort, sind ob-
ligatorisch.

Bei den Anwendungsfällen dient die Rolle User zur Zusammenfassung ähnlicher Tätigkei-
ten der Spezialisierungen Professor und Student. Aus der Komponentenbildung für die Rolle
Author ließe sich nun schließen, dass auch die Komponente User Environment allgemeine
Dienste anbietet, die von den Komponenten der spezialisierten Rollen aufgerufen werden. Dies
ist aber nicht der Fall, weil für die Rollen Professor und Student keine eigenen Komponen-
ten definiert werden. Der Grund liegt in den erweiterten Anwendungsfällen, die zwar eine
semantische Differenzierung bringen, technisch aber keine Auswirkung haben. Ob aus dem
Fall ”Inhalte Nutzen“ nun ”Lernen“ oder ”Lehren“ wird, ist für das System irrelevant. Durch
diese Trennung zwischen fachlicher und technischer Bedeutung vereinfacht sich die Architek-
tur, ohne dass es zu fachlichen Lücken im System kommt. Alle definierten Anwendungsfälle,
auch die der Rollen Professor und Student, lassen sich ohne Einschränkungen abarbeiten.

10.2.6 Administration

Die Komponentenbildung für die Rolle Administrator gestaltet sich schwierig, weil sie neben
den Verwaltungstätigkeiten den anderen Rollen bei technischen Problemen zur Seite steht.
Dementsprechend vage sind auch die Teilkomponenten in Abbildung 10.15.

User Accounts
Access Rights

Software Manager
Operating System

Administration

Abbildung 10.15: Komponente für die Rolle Administrator

100 System-Vision

Als Teil der Lernplattform verwaltet die Komponente User Accounts die Personen- und
Zugangsdaten sowie etwaige Gruppenzugehörigkeiten. Die Einstellung der Zugriffsrechte für
Ressourcen und Bereiche der Lernplattform erfolgt über die separate Komponente Access
Rights.

In den Aufgabenbereich des Betriebssystems geht die Komponente Software Manager, über
die alle Installationen und Updates verwaltet werden. Da sich die gesamte Architektur aus ver-
schiedenen Programmen zusammenstellt, hilft eine zentrale Verwaltung, wie z.B. die Packa-
ge-Mechanismen der Linux Distributionen Debian und Red Hat, den Überblick zu wahren.
In einer Datenbank werden alle Dateipfade, Versionen, Abhängigkeiten, etc. gespeichert, um
bei Änderungen der Programmkonstellation mögliche Konflikte aufzudecken. Diese Werkzeuge
sind so weit fortgeschritten, dass von einer Eigenentwicklung abzusehen ist.

Gleiches gilt für die Komponente Operating System, die stellvertretend für alle Überwach-
ungs-, Analyse- und Konfigurationswerkzeuge der Betriebssysteme steht. Wenn technische
Probleme auftreten, kann die Rolle Administrator mit diesen Programmen interne Vorgänge
nachvollziehen und Konfigurationen verändern. Die Möglichkeiten sind dermaßen vielfältig,
dass sie sich nicht vollständig spezifizieren lassen. Auch wenn der Begriff Komponente in diesem
Fall überstrapaziert wird, kann durch diese vereinfachte Sicht ein Bereich der Architektur
berücksichtigt werden, der absolut unvorhersehbar ist.

10.3 Architektur

Nach der Komponentenbildung kann nun die Architektur des gesamten Systems für die Bear-
beitung modularer E-Learning-Inhalte erstellt werden. Zuerst erfolgt eine Zusammenfassung
der verschiedenen Komponenten zu Programmen, die fachliche und technische Bezüge haben,
denn nicht jede Rolle bekommt ein eigenes Programm. Durch geschickte Kombination lassen
sich manche Komponenten zu einer zusammensetzen, wodurch bei der späteren Implementie-
rung weniger Arbeit anfällt.

Die Übersicht der Rollen in Abbildung 10.1 enthält bereits eine Aufteilung in drei Gruppen,
die folgend näher analysiert wird: Bearbeitung von E-Learning-Inhalten, verkörpert durch
die Rolle Author, Nutzung von E-Learning-Inhalten, vertreten durch die Rolle User, und die
Administration des Systems. Pauschal jedem Aufgabenbereich ein Programm zur Seite zu
stellen, wird einer vernünftigen Architektur leider nicht gerecht. Auf jeden Fall stehen die
Komponenten der Rolle Administrator außen vor, denn die sind entweder Bestandteil der
anderen Programme oder Werkzeuge des Betriebssystems. Die grobe Trennung in Erstellung
und Nutzung von Inhalten bleibt somit als erster Anhaltspunkt übrig.

Für die Erstellung modularer E-Learning-Inhalte werden die Komponenten der Rollen De-
veloper, Composer und Publisher in einer Komponente vereint. Dieses Vorgehen hat mehrere
Vorteile, weil es bei der Arbeit in einer Rolle häufiger vorkommt, dass für bestimmte Tätigkei-
ten ein Wechsel in eine andere Rolle nötig ist. Andeutungen für enge Kooperationen haben sich
schon bei den Rollenbeschreibungen abgezeichnet. Ein gutes Beispiel ist die Rolle Composer,
die bei einer vollständigen Produktion im Mittelpunkt steht. In ihrer Haupttätigkeit kombi-
niert sie fremde und eigene Lernobjekte bzw. Strukturen zu Kursen. Was soll aber geschehen,
wenn ein fremdes Lernobjekt nicht zu 100% passt und eine leichte Modifikation benötigt? Es
entnehmen und unter anderer Rolle in einem neuen Programm öffnen? Das ist gewiss sehr
umständlich und sicher nicht erwünscht. Eine bessere Lösung ist die direkte Bearbeitung des
Lernobjekts in der Struktur, wodurch zwar beide Rollen (Developer und Publisher) Einblick
in die Arbeit der jeweils anderen Rolle bekommen, aber konzeptionell ergibt sich hieraus kein
Problem. An dieser Stelle sei noch einmal explizit betont, dass ein und die selbe Person in
verschiedenen Rollen auftreten darf. Durch die Zusammenlegung der Komponenten werden die
Übergänge unschärfer, was bei der täglichen Arbeit aber durchaus wünschenswert ist, denn
ein schnelles Umschalten zwischen den Rollen erlaubt einen ungestörten Arbeitsfluss. Gleiches
gilt auch für die Rolle Publisher, die beispielsweise zu Kontrollzwecken bei der Bearbeitung

10.3 Architektur 101

von Lernobjekten oder Kursen eingenommen wird. Abbildung 10.16 zeigt die resultierende
Komponente Authoring Environment.

Structure
Development

Learning Object
Development

Publishing
Environment

Authoring Environment

Abbildung 10.16: Funktionale Komponente des Autorensystems

Aufgrund der engen Zusammenhänge und Arbeitsabläufe stellt diese Komponente das
ideale Werkzeug für die Bearbeitung modularer E-Learning-Inhalte dar. Doch bis jetzt han-
delt es sich um eine funktionale Komponente, die keine grafische Darstellung oder direkte
Ansteuerung hat. Um ein vollwertiges Autorenwerkzeug zu erhalten, wird die Komponente
Authoring Environment mit den Komponenten Graphical User Interface und Scripting
Environment verbunden. Abbildung 10.17 verdeutlicht diese Erweiterung.

Graphical
User Interface

Scripting
Environment

Authoring
Environment

Abbildung 10.17: Zwei Komponenten zur Steuerung des Autorensystems

Hauptaufgabe beider Komponenten ist die Ansteuerung der Funktionen, entweder über
eine grafische Oberfläche oder durch Scripts. Die Komponente Graphical User Interface ist
beliebig und gibt keine konkrete Darstellung vor. Von der statischen Repräsentation eines
Lernobjekts bis hin zu Modifikationen mit Drag’n’Drop in verschachtelten Strukturen ist alles
möglich. Weil aber die Akzeptanz eines Programms mit der Leistung der Oberfläche steht und
fällt, sei eine benutzerfreundliche Bedienung angemahnt, die alle Möglichkeiten der Kompo-
nente Authoring Environment offenbart. Es wäre äußerst unglücklich, wegen der eingeräumten
Gestaltungsmöglichkeiten das Potential des Systems einzuschränken. Dennoch soll auf spezi-
fischere Angaben verzichtet werden, um nicht von vornherein bestimmte Ansätze auszuneh-
men. Ähnlich verhält es sich mit den zu unterstützenden Scripts. Lediglich die Möglichkeit zur
Stapelverarbeitung wird eingefordert, um einen Mechanismus für wiederkehrende Tätigkeiten
anbieten zu können. Welche Sprache letztendlich eingesetzt wird, bleibt der Implementierung
überlassen. Interessant ist auch die Verbindung der beiden Steuerungskomponenten, durch die
sich das grafische Autorenwerkzeug mit Hilfe von Scripts beliebig erweitern lässt.

Das zusammengesetzte Autorenwerkzeug ist für sich genommen vollständig, genügt aber
nicht der festgelegten Zielsetzung in Abschnitt 1.2 bzw. des verfeinerten Resümees in Abschnitt
9.1. Da ist von zentraler Datenhaltung und der Unterstützung von Teamarbeit die Rede. Wie
lassen sich diese Anforderungen mit den bisherigen Komponenten vereinen? Warum tauchen
sie bei keiner Rolle als Anwendungsfall auf? Die Antwort ist einfach: Diese Aspekte sind für

102 System-Vision

die Rollen unwichtig. Es ist bei der Arbeit egal, ob eine Ressource im eigenen Dateisystem
liegt, oder Bestandteil einer komplexen Datenbank ist. Synchronisation und nahtloser Zugriff
sind Aufgabe des Systems und dürfen die Rollen bei ihrer Arbeit nicht belasten. Für die
Implementierung sind die Themen Teamarbeit und zentrale Datenhaltung umso wichtiger,
weil technische Details hinter einem allgemeinen Mechanismus versteckt werden müssen. Dieser
kann nur über die Teilkomponente File Management aus Unterabschnitt 10.2.1 laufen, die auch
Funktionen wie Sperren und Versionierung anbietet. Sie ist die ohnehin geplante Schnittstelle
zur Ressourcenverwaltung und muss intern die nötigen Dienste bereitstellen.

Wenn die zentrale Datenhaltung für die Realisierung eine so hohe Bedeutung besitzt, muss
sie auch in der Architektur berücksichtigt werden. Hierfür wird eine neue Komponente einge-
führt, die keinen direkten Kontakt zu den Rollen hat, aber mit dem Autorenwerkzeug kommu-
niziert. Abbildung 10.18 zeigt sie mit ihren bekannten Teilkomponenten, die alle Bestandteil
bereits vorgestellter Komponenten sind.

Learning Object
Engine

Search Engine

Structure Engine

Compiler

Learning Content Repository

Abbildung 10.18: Komponente für die zentrale Datenhaltung (Repository)

Wie der Name Learning Content Repository andeutet, ist diese Komponente für die
Haltung modularer E-Learning-Inhalte zuständig. Da sie nur aus bekannten Teilkomponen-
ten besteht, hält sich der zusätzliche Entwicklungsaufwand in Grenzen. Aus Gründen der
Übersicht ist die Komponente Authoring Environment bzw. deren Teilkomponente File Ma-
nagement in der Abbildung nicht eingezeichnet. Implizit wird diese Funktionalität über die
Komponenten Learning Object Engine und Structure Engine angeboten, die einen transparen-
ten Zugriff ermöglichen, ihn selbst aber nicht implementieren. Neben der Datenhaltung von
E-Learning-Inhalten ist auch ihr Auffinden ein zentrales Anliegen. Hierfür ist die Komponente
Search Engine zuständig, die Suchanfragen entgegennimmt und entsprechend delegiert. Für
die serverseitige Kontrolle der Arbeit ist auch die Komponente Compiler integriert, um direkt
Kurse übersetzen zu können, ohne den Umweg über ein Autorensystem als Client gehen zu
müssen.

Genau wie beim Autorensystem bietet die Komponente Learning Content Repository ihre
Funktionalität an und besitzt keine direkte Ansteuerung durch die Anwender/-innen. Eine
grafische Oberfläche oder Steuerung über Skripten ist nur bedingt sinnvoll, darf aber nicht
ausgeschlossen werden. Besonders wichtig ist die Verfügbarkeit über ein Netzwerk und der
simultane Zugriff mehrerer Autorenwerkzeuge. Aus diesem Grund wird die Komponente Web
Server als Schnittstelle eingeführt, die über die vorhandene Internet-Infrastruktur angespro-
chen wird. Ob nun Dienste als Remote Procedure Calls (RPC) oder über eine Web-Oberfläche
aufgerufen werden, ist zunächst von untergeordneter Wichtigkeit, denn die verschiedenen Zu-
gänge schließen sich nicht aus und können jederzeit um neue erweitert werden. Abbildung
10.19 verdeutlicht diese Konstellation der Komponenten.

Nun ist die Entwicklungsumgebung modularer E-Learning-Inhalte vollständig, jedoch auf
einem hohen Abstraktionsniveau. Die Verbindungen zwischen den einzelnen Programmen und

10.3 Architektur 103

Learning Content
RepositoryWeb Server

Abbildung 10.19: Komponente für den Web-basierten Zugriff auf das Repository

Rollen ist noch nicht in allen Details beschrieben und lässt Raum für Interpretationen. Um
diese einzuschränken, wird in Abbildung 10.20 eine vereinfachte Ansicht auf die Architektur
gegeben, bei der die Beziehungen zwischen den Rollen, Programmen und Daten offensichtlich
ist.

Authoring Tool

Authoring Tool

Author 1

Author 2

Author n

Learning Content
Repository

Authoring Tool

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

Abbildung 10.20: Zugriff der Autoren/-innen auf das Repository

Stellvertretend für alle Spezialisierungen nutzt die Rolle Author das Autorenwerkzeug. Zur
Verdeutlichung der zentrale Datenhaltung und parallelen Bearbeitung sind n Personen einge-
zeichnet, die sich an getrennten Orten befinden. Die Pfeile in beide Richtungen stehen für den
Datenfluss der Lernobjekte und Kurse. Existierende und neue Inhalte lassen sich transparent
auf dem Learning Content Repository bearbeiten bzw. einspielen. Solche Änderungen müssen
keine direkten Auswirkungen auf die Arbeit der anderen Personen haben. Sogar wenn das sel-
be Lernobjekt in Arbeit ist, muss es nicht zwangsläufig zu Konflikten kommen. Wann immer
möglich und nötig, verdeckt die Infrastruktur die ”technische“ Präsenz anderer Entwickler/-
innen. Nur beim ausdrückliche Wunsch auf Synchronisation bzw. Absprache bei der gemein-
samen Arbeit, erlaubt das Learning Content Repository eine Aufhebung dieser Transparenz.
Um Missverständnissen entgegen zu wirken, sei darauf hingewiesen, dass es nicht um die Ver-
heimlichung der fachlichen Zusammenarbeit geht. Die Koordination läuft nur nicht über das
Autorensystem, z.B. mit Kommunikationsmitteln wie Chat oder E-Mail, sondern muss ex-
tern geleistet werden. Auf der Seite der Entwicklungsumgebung fallen nur keine zusätzlichen
Absprachen an, die in der technischen Umsetzung begründet liegen.

Mit der vollständigen Entwicklungsumgebung für modulare E-Learning-Inhalte steht die
erste Säule der Architektur. Nun werden mit Hilfe der Rolle User und ihren beiden Spezia-
lisierungen die Programme für die Nutzung der Inhalte auf gleiche Weise hergeleitet. Wie
bereits angedeutet, soll diese Aufgabe von einer Lernplattform übernommen werden, die über
einen gängigen Webbrowser angesprochen wird. Ähnlich der Komponente Learning Content
Repository bietet User Environment lediglich ihre Funktionalität an und benötigt für die An-
steuerung eine separate Komponente. Weil über die internen Abläufe der eingesetzten Lern-
plattform zu diesem Zeitpunkt nichts bekannt sein kann, ist die Komponente Web Server in
Abbildung 10.21 schematischer Natur.

Im Unterabschnitt 10.2.5 über die Komponente User Environment wurde die Schwäche
der Lernplattformen im Umgang mit modularen Inhalten diskutiert. Die Leistungen auf den

104 System-Vision

User EnvironmentWeb Server

Abbildung 10.21: Komponente für den Web-basierten Zugriff auf die Lernplattform

Gebieten Suche und Darstellung sind so unzureichend, dass eine zusätzliche Lösung unum-
gänglich ist. In allen Lernplattformen ist es möglich, auch externe Inhalte zu referenzieren
bzw. über bestimmte Mechanismen direkt durch das System darstellen zu lassen. Auf diese
Weise soll das Learning Content Repository eingebunden werden, das die geforderten Funk-
tionen anbietet. Diese Komponente erlaubt die Kombination von Lernobjekten und höheren
Strukturen zur Laufzeit, sodass sich beim Lernen individuelle Pfade einschlagen lassen. Dank
der Übersetzungsfähigkeit erscheinen alle Inhalte im gleichen Design und die redundante Da-
tenhaltung mehrerer Kopien des selben Lernobjekts in verschiedenen Kursen entfällt. Auf
diese Weise kann selbst eine leistungsschwache Lernplattform mit geringem Aufwand in ein
modernes E-Learning-Portal verwandelt werden. Anwender/-innen in der Rolle Professor oder
Student benötigen für ihre Tätigkeiten nicht den vollen Leistungsumfang des Learning Con-
tent Repositories, der bei der Entwicklung von Inhalten benötigt wird. Ihnen genügt eine
eingeschränkte Nutzung, bei der sie lesend auf alle Inhalte zugreifen können.

Jetzt sind alle Programme und Komponenten benannt, die für die Nutzung der Inhalte
notwendig sind. Über eine vereinfachte Darstellung sollen sie in Relation gebracht werden, um
eine genauere Vorstellung über ihren Einsatz zu geben. In Abbildung 10.22 greift die Rolle
User stellvertretend für die Spezialisierungen mit einem Browser auf das System zu.

User 1

User 2

User n

Browser

Browser

Browser

Learning Content
Repository

Learning Management
System

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

Abbildung 10.22: Zugriff der Benutzer/-innen auf die Lernplattform und das Repository

Im Gegensatz zu Abbildung 10.20 geht der Datenfluss der Inhalte, erkennbar an den Pfei-
len, nur von der Lernplattform und dem Learning Content Repository zu den Browsern. In
umgekehrter Richtung werden keine Inhalte transportiert. Gleichwohl es einen bidirektionalen
Datenfluss gibt, wenn beispielsweise über ein Chat kommuniziert wird, ist er für das Ver-
ständnis unbedeutend und wird vernachlässigt. Die n Personen nutzen gleichzeitig die übli-
chen Dienste der Lernplattform und beziehen die modularen Inhalte vom Learning Content
Repository. Im idealen Fall bekommen die Anwender/-innen von der Teilung auf zwei Server
nichts mit.

Da in diesem Entwurf für die Rolle Administrator keine eigenen Programme modelliert
werden, sind nun alle Rollen mit Werkzeugen versorgt. Für eine Übersicht der gesamten Ar-
chitektur werden die Abbildungen 10.20 und 10.22 zusammengefasst. Es werden allerdings die
spezialisierten Rollen anstatt der allgemeinen angegeben, um alle Facetten der Infrastruktur

10.3 Architektur 105

zu berücksichtigen. Zusätzlich sind die Pfeile für den Datenfluss mit den Formaten und Typen
beschrieben. Als Ergebnis ergibt sich eine Architektur, die in Abbildung 10.23 dargestellt ist.

Authoring Tool

Developer

+

Authoring Tool

Composer

Learning Management
System

Browser

Professor Student

Browser

Authoring Tool

Publisher

+

Administrator

Document

Learning Object

Learning Content
Repository

Higher Structure

� �� �
�
�� �� �

�
�

�
�
�� ����

��	
	

Abbildung 10.23: Vollständige Architektur des Systems

Unten befinden sich alle Rollen, die mit der Entwicklung von modularen E-Learning-
Inhalten beschäftigt sind. Die Rolle Developer arbeitet mit Lernobjekten, die sie auf dem
Server speichern bzw. von ihm herunterladen kann. Diese Lernobjekte kombiniert die Rolle
Composer mit anderen Inhalten zu neuen Aggregationen. Durch die Wiederverwendung von
Strukturen kann eine beliebige Aufteilung der Inhalte erfolgen, sodass es von der technischen
Seite aus keine Einschränkungen für das didaktische Konzept gibt. Lernobjekte sowie Kurse
werden anschließend von der Rolle Publisher mit einem individuellen Layout versehen und
in ein unterstütztes Zielformat übersetzt. Das Aufspielen des Resultats auf die Lernplattform
kann auf zwei Wegen erfolgen. Entweder importiert das Autorenwerkzeug die Daten direkt
oder steuert die Übersetzung auf demLearning Content Repository. Zwischen den beiden Ser-
ver wurde nämlich eine neue Verbindung eingetragen, die in Abbildung 10.22 noch nicht vor-
handen ist. Weil die Komponente zur Übersetzung im Autorensystem und Learning Content
Repository identisch ist, ergibt sich hieraus technisch keine Neuerung. Diese Verbindung ist
auch sehr praktisch für die transparente Integration der Inhalte auf der Lernplattform. Ent-
weder erhalten die Rollen Professor und Student den direkten Zugang zu den Lernmaterialien
über die Lernplattform oder, wenn ein Datenaustausch zwischen den Servern nicht unterstützt
ist, werden über Links auf das Learning Content Repository weitergeleitet. Welche technische

106 System-Vision

Lösung letztendlich zum Einsatz kommt, ist beiden Rollen gleich. Die Rolle Administrator ist
vollständigkeitshalber am Rand aufgeführt.

Der gestrichelte Rahmen schließt die Systeme und Programme ein, die bei der Entwicklung
des Systems berücksichtigt werden. Nur die Lernplattform wird als gegeben angesehen und
soll nicht verändert bzw. neu entwickelt werden. Um möglichst flexibel bei der Auswahl der
Lernplattform zu bleiben, müssen alle anderen Programme so ausgelegt sein, dass sie mit dem
eingesetzten System kooperieren können. Das Autorenwerkzeug muss auf jeden Fall vollstän-
dig neu entwickelt werden. Modulare E-Learning-Inhalte, die den Theorien über Lernobjekte
entsprechen, können mit heutigen Autorenwerkzeugen nicht erstellt werden. Hieraus folgt auch
die vollständige Neuentwicklung des Learning Content Repository, das modulare Inhalte ana-
lysieren und aufbereiten soll. Da auch neue Dienste über die Browser aufgerufen werden, sind
sie Bestandteil des ausgezeichneten Bereichs.

10.4 Baukasten-Metapher

Der Entwurf des Systems soll mit Hilfe von Metaphern effizienter entwickelt werden und späte-
ren Benutzern/-innen die Gewöhnung erleichtern. Dies gelingt aber nur mit geeigneten Meta-
phern, deren Bedeutung allgemein bekannt ist und die einen wirklichen Bezug zu Teilaspekten
des Systems haben. Aus diesem Grund ist es wichtig, deren Sinnhaftigkeit im Vorfeld zu über-
prüfen, denn eine falsche Auswahl kann sich nachteilig auswirken.

Als Grundlage der folgenden Erörterungen dient der metaphorische Prozess aus Kapitel 8,
der die Rahmenbedingungen der Begriffsbildung vorgibt. Die Idee dieser Arbeit, Lerneinhei-
ten als einzelne Module zu betrachten, die flexibel erstellt, kombiniert, gewartet, gespeichert
und wiederverwendet werden, assoziiert ein System mit gewissen Eigenschaften, die über die
Metapher des Baukastens verstärkt werden sollen. Für eine differenziertere Betrachtung der
Details wird sie als Wortgruppe aufgefasst, die des Weiteren die Metaphern Baustein, und
Bauplan beinhaltet. Die Bildung dieser Wortgruppe bedeutet eine Verteilung von Eigenschaf-
ten des Baukastens auf mehrere Begriffe, sodass gewisse Aspekte des Systems in kleineren, in
sich abgeschlossenen Metaphern, betrachtet werden können. Jede von ihnen vereinfacht die
Analyse und Bewertung von Anwendungsfällen, indem die wichtigen Eigenschaften der betei-
ligten Objekte und Handlungen hervorgehoben werden.

Es gibt eine Reihe weiterer Metaphern, wie z.B. ”Werkzeug“, ”Werkbank“ und ”Stecksys-
tem“, die sich auf den ersten Blick in die vorgeschlagene Wortgruppe einreihen könnten, jedoch
hat sich in der praktischen Arbeit gezeigt, dass die vier Substantive für die Beschreibung des
Systems völlig ausreichend sind [Bungenstock02; Baudry02b]. Detaillierte Metaphern können
den Entwurf sogar erschweren, wenn sie nicht benötigte Eigenschaften implizieren.

10.4.1 Metaphorischer Prozess

Der Gegenstand dieses metaphorischen Prozesses ist das Software-System, mit dessen Hilfe
modulare E-Learning-Inhalte genutzt werden sollen. Die Übertragung der Wortgruppe Bau-
kasten, Baustein und Bauplan vollzieht sich aus dem üblichen Kontext des Kinderspielzeugs
in den unüblichen der Software. Es werden nun die einzelnen Aspekte des metaphorischen
Prozesses beschrieben:

• Die Metaphern-Produzenten/-innen für diese Wortgruppe lassen sich in der Litera-
tur nicht genau ausmachen. Lernmaterialien als Bausteine zu betrachten ist seit Hodgins
(siehe Abschnitt 3.2.2) sehr beliebt, aber er ist gewiss nicht der Urheber dieser Metapher.
Auch wenn ihm die Idee beim Betrachten seiner spielenden Kinder kam, wird die Meta-
pher seit längerem im Kontext modularer Aufteilungen genutzt. Die anderen Metaphern
Baukasten und Bauplan leiten sich konsequenterweise vom Baustein ab, lassen sich in
der Literatur im Kontext modularer E-Learning-Inhalte aber nicht belegen. Dennoch soll
Hodgins in dieser Arbeit als Produzent betrachtet werden, weil so eine sehr interessante

10.5 Aufteilung 107

und hilfreiche Perspektive auf diese Wortgruppe entsteht. Da er nicht aus der Informatik
kommt, sind die Rezipienten/-innen auf der Anwendungsebene zu sehen.

• Die Rezipienten/-innen sind alle Personen, die mit modularen E-Learning-Inhalten
arbeiten. Aus Sicht der Rollen gehören hierzu Developer, Composer, Publisher, Professor
und Student. Sie alle profitieren mehr oder weniger von den Metaphern. Würde die Rolle
Developer auch gut ohne die Metapher Baustein auskommen, passt sie im Gegenzug ideal
zu den Aufgaben der Rolle Composer. Zudem ist es ein leichtes, diese Metaphern auf
die Entwickler/-innen auszuweiten, um ihnen beim Entwurf ein Leitbild an die Hand
zu geben. Neben den bisherigen Komponenten helfen die Metaphern zusätzlich bei der
Strukturierung und Umsetzung.

• Die Funktionen der Metaphern hängen von der Intention der Produzenten/-innen ab.
Sehr wichtig ist die affektiv-emotionale Funktion des Begriffs ”Baukasten“: Es wirkt
vertraut und suggeriert einen kindlich einfachen Umgang. Auf diese Weise sollen Berüh-
rungsängste genommen und Interesse geweckt werden. Diese Metapher lädt einfach zum

”Spielen“ mit dem System ein. In die gleiche Richtung wirkt die Prädikationsfunktion.
Die gewollte Analogie zielt besonders auf die Bedienung des Systems ab, indem modulare
E-Learning-Inhalte wie Bausteine einfach zusammengesetzt werden.

• Das System selbst bzw. Teile von ihm und die E-Learning-Inhalte sind Gegenstand der
Metaphern.

• Der übliche Kontext erstreckt sich über verschiedene Bereiche, wobei der beherrschen-
de sicherlich Spielen bzw. Spielzeug ist.

• Den unüblichen Kontext bildet in diesem Fall die Informatik.

10.5 Aufteilung

In diesem Kapitel sind so viele Komponenten entstanden, dass in dieser Arbeit nicht der Platz
ist, ihre Entwicklung in allen Details zu beschreiben. Zudem ist die Entwicklung komplexer
Anwendungen eine Aufgabe für Teams, so auch hier. Fast alle Ergebnisse des Projekts mαth-
kit wurden von mehreren Personen entwickelt, diskutiert und veröffentlicht. Für eine besse-
re Koordination wurden die Verantwortungen für die jeweiligen Komponenten auf Einzelne
übertragen. In diesem Abschnitt werden nun die Arbeiten der Beteiligten vorgestellt, die maß-
geblich mitgewirkt haben. Die resultierenden Komponenten werden dann mit den Ergebnissen
dieser Arbeit im Teil ”Implementierung“ zu einem System zusammengesetzt.

Im Rahmen seiner Dissertation übernimmt Andreas Baudry neben der Komponenten Im-
port Engine — es handelt sich um die Teilkomponente für die Rollen Developer sowie Composer
aus den Abbildungen 10.11 und 10.12 — alle Komponenten für die Rolle Publisher. Die bishe-
rigen Ergebnisse dieser Arbeit finden sich in [Baudry04b; Baudry04a; Baudry03; Baudry02a]
und entsprechen den Anforderungsbeschreibungen aus Unterabschnitt 10.2.4.

In der Diplomarbeit von Marc Vollmann [Vollmann04] werden verschiedene Suchalgorith-
men auf Basis des fallbasierten Schließens untersucht, die in die Komponente Search Engine
aus Abbildung 10.12 einflossen. Die Ansteuerung erfolgt über das Simple Object Access Pro-
tocol (SOAP), sodass sich eine Integration in das eigene Programm problemlos vollzieht.

Mit der Diplomarbeit [Turan04] wurde die Implementierung der bereits genannten Kom-
ponenten Import Engine und der zur Authoring Foundation gehörenden Teilkomponente Me-
tadata aus Abbildung 10.10 unterstützt.

Alle bis jetzt nicht aufgeführten Komponenten, die für die Umsetzung des Autorenwerk-
zeugs und des Learning Content Repository’s von Bedeutung sind, werden nun in den nach-
folgenden Kapiteln hergeleitet und zu einem System für modulare E-Learning-Inhalte zusam-
mengesetzt.

108 System-Vision

Komponente Typ Kapitel Verantwortung Kontext
File Management Basis 11 MB Dissertation
Metadata Basis 11 MB Dissertation
Multimedia Environment Basis 11 MB Dissertation
Import Engine Basis - AB Dissertation
LOB Engine Basis 12 MB Dissertation
LOB Development Aggregation 13 MB Dissertation
Search Engine Basis - MV Diplomarbeit
Import Engine Basis - AB Dissertation
Structure Engine Basis 12 MB Dissertation
Structure Development Aggregation 13 MB Dissertation
Layout Engine Basis - AB Dissertation
Format Engine Basis - AB Dissertation
Compiler Basis - AB Dissertation
Publishing Environment Aggregation - AB Dissertation
Authoring Environment Aggregation 13 MB Dissertation

MB: Michael Bungenstock AB: Andreas Baudry MV: Marc Vollmann

Tabelle 10.1: Arbeitsteilung für systemunabhängige Komponenten

Komponente Typ Kapitel Verantwortung Kontext
User Environment Extern -
Administration Extern -
Graphical User Interface Basis 14 MB Dissertation
Scripting Environment Basis 14 MB Dissertation
Learning Content Repository Aggregation 15 MB Dissertation
Web-Server Basis 15 MB Dissertation

MB: Michael Bungenstock

Tabelle 10.2: Arbeitsteilung für proprietäre Komponenten

Kapitel 11

Basiskomponenten

Aus den Komponenten und der Architektur des vorherigen Kapitels soll nun ein objektorien-
tiertes Modell erstellt werden. Um möglichst effizient das angestrebte Ziel zu erreichen, werden
die einzelnen Aufgaben der Komponenten genauer betrachtet und als Klassen dargestellt. Hier-
bei kann es durchaus vorkommen, dass sich ganz unterschiedliche Komponenten die gleichen
Klassen teilen. Aus diesem Grund ist es nicht sinnvoll, stur die einzelnen Komponenten in
Klassen herunterzubrechen, weil es so möglicherweise zu Mehrfachentwicklungen kommt. Zu-
sammenhängende Klassen werden daher in Libraries oder nach der UML Notation in Paketen
zusammengefasst, wobei der Unterschied zu einer Komponente in der Benutzung liegt. Ist die
Komponente durch ihr Funktionsangebot eher auf der fachlichen Ebene definiert, geht es bei
der Bildung von Paketen um die physikalische Zusammenfassung korrelierender Dateien. Die-
ser modulare Ansatz vereinfacht auch die spätere Implementierung, weil jeweils eine in sich
geschlossen Klasse Gegenstand der Programmierung ist. Eine lose Kopplung zwischen Klassen
unterschiedlicher Pakete ist daher Voraussetzung für diese Vorgehensweise.

Es sollen aber nicht die vermeintlichen Nachteile verschwiegen werden. Freilich ist es leich-
ter, die Funktionen der Klassen auf eine Komponente zu beschränken. Alle benötigten Funk-
tionen lassen sich bei sorgfältiger Planung sicher benennen und es dürfte selten zu bösen
Überraschungen kommen. Dem steht der generischere Ansatz der allgemein gültigen Pakete
gegenüber, die sich vielfältiger einsetzen lassen. Hier muss von wesentlich mehr Eventualitä-
ten und Möglichkeiten ausgegangen werden, weil die Funktionalität in mehreren Kontexten
benötigt wird. Dies führt nicht nur zu unspezifischeren Operationen, sondern verlangt auch
eine stabilere Umsetzung. Innerhalb einer Komponente könne Annahmen getroffen werden,
wodurch kritische Situationen nicht entstehen oder besonders behandelt werden können. Als
Beispiel sei eine Verbindung zu einer Datenbank angegeben, die innerhalb einer Komponente
benötigt wird. Alle Klassen können ”wissen“, wann die Verbindung aufgebaut wird und fallen
entsprechend schlanker im Überprüfungsteil aus. Bei einem generischen Paket darf von solchen
Voraussetzungen nicht ausgegangen werden und jede Operation muss so stabil implementiert
sein, dass sie ordentlich abgeschlossen wird. Hierdurch ist die Entwicklung von Paketen auf-
wändiger. Die Entwicklung einer allgemeinen Schnittstelle verbunden mit den nötigen Über-
prüfungen kostet Zeit und macht den Code nicht kürzer. Letztendlich führt dieses Vorgehen
aber zu stabileren Programmen, die dank der Wiederverwendung kleiner sind. Zudem werden
Fehler durch die intensivere Nutzung schneller entdeckt und behoben.

Mit der Komponente Authoring Foundation in Abbildung 10.10 ist bereits eine wichti-
ge Vorbereitung für die Aufteilung in Pakete geleistet. Die Teilkomponenten sind bereits für
bestimmte Aufgaben ausgelegt und entsprechen schon ungefähr der geplanten Aufteilung in
Klassen. Alle Zugriffe auf Dateien, von binären Multimediadateien über Lernobjekte bis hin
zu den übersetzten Kursen, erfolgt über die Komponente File Management. Durch die Ar-
chitektur bedingt, beschränkt sich der Zugriff nicht nur auf lokale Dateien, sondern schließt
auch verteilte Ressourcen ein, die auf unterschiedlichen Rechnern liegen. Auch die Betrach-
tung verschachtelter Bausteine und Modelle lässt erahnen, dass eine intelligente Realisierung

110 Basiskomponenten

wichtig ist. Zusammengefasst ist die Aufgabe dieser Komponente die Abstraktion jeglicher
Ressourcenzugriffe über einen einheitlichen Mechanismus bzw. eine Schnittstelle. Alle hierfür
nötigen Klassen ergeben ein Paket.

Die Komponente Metadata ist wegen der verschiedenen Standards mit ihren vielen Elemen-
ten und Attributen in ihrer Struktur sehr umfangreich. Zusätzlich müssen verschiedene Spezi-
fikationen, Kodierungen und Speichertechniken unterstützt werden, die möglichst ineinander
überführbar sein sollen. Die Herausforderung bei der Umsetzung dieser Komponente liegt in
der Findung eines Kompromisses zwischen generischer und einfacher Nutzung. Weil die Meta-
daten einem ständigen Wandel unterlegen sind, soll durch geschickte Wahl der Schnittstellen
ein Paket geschaffen werden, das auch zukünftigen Entwicklungen gerecht wird.

11.1 Dateizugriff

Die bereitgestellten Funktionen der Komponente File Management werden eigentlich in fast
allen Programmen benötigt, die auf Dateien zugreifen. In der Regel übernimmt diese Aufgabe
das Betriebssystem, das über spezielle Libraries angesprochen wird. Nun stellt sich die Fra-
ge, warum für ein E-Learning-System eine spezielle Komponente benötigt wird? Schließlich
bieten moderne Betriebssysteme viele Dienste an, die auch die Einbindung verteilter Daten
einschließt. In die Dateisysteme lassen sich ohne weiteres WebDAV, SMB und NFS einbinden.
Warum soll dieser zusätzliche Aufwand geleistet werden?

Die Antwort liegt in der Heterogenität der Betriebssysteme und der angestrebten Reali-
sierung in der Programmiersprache Java. Für lediglich eine bestimmte Zielplattform wäre der
Einsatz nativer Mechanismen die erste Wahl. Die Implementierung könnte alle Stärken des
Betriebssystems nutzen und die Schwächen umgehen bzw. ausgleichen. Dies beschränkt sich
nicht auf den Dateizugriff an sich. Bei manchen Systemen erstrecken sich die Funktionen bis
hin zu Verknüpfungen mit Programmen durch Mime Types oder sogar in die grafische Oberflä-
che beim Drag’n’Drop. Muss auf all diese Vorzüge zu Gunsten einer Plattformunabhängigkeit
verzichtet werden? Dank des Aufbaus der Virtuellen Maschine (VM) von Java wird letzt-
endlich doch das Betriebssystem für den Zugriff auf Dateien genutzt, nur über eine einheitliche
Schnittstelle. Die Methoden der Java-Klassen rufen intern Betriebssystemfunktionen auf, wes-
halb die mitgelieferten Libraries der Virtuellen Maschinen selbst nicht plattformunabhängig
sind. Sie müssen für jedes Betriebssystem neu erstellt werden.

Java bringt also eine Schnittstelle für den Zugriff auf Dateien von sich aus mit, sodass keine
neuen Klassen für die Komponente File Manager entwickelt werden müssen. Dieser voreilige
Schluss wird jedoch durch eine genauere Betrachtung der aktuellen JavaTM2 Platform, Stan-
dard Edition (J2SETM) widerlegt. Alle Zugriffe auf das Dateisystem finden über die Klasse
java.io.File statt. Laut der zugehörigen Dokumentation [Sun01] repräsentiert diese Klas-
se einen plattformunabhängigen, abstrakten Pfadnamen, der aus zwei Komponenten besteht:
einer systemabhängigen Präfixzeichenkette (z.B. ”/“ bei UNIX) und einer Sequenz von Null
oder mehr Namen. Jeder Name, bis auf den letzten, repräsentiert hierbei ein Verzeichnis.

Die Umwandlung des abstrakten Pfadnamens in einen konkreten Systempfad des Datei-
systems ist abhängig vom Betriebssystem, oder genauer betrachtet, vom Separationszeichen
innerhalb der Pfade. Diese Umwandlung und das systemabhängige Präfix erschweren die Ent-
wicklung portabler Anwendungen, die z.B. auf Microsoft Windows und parallel auf UNIX-
Derivaten ohne Neuübersetzung laufen.

Neben dem Problem der Portierbarkeit, ist der Funktionsumfang der Klasse java.io.File
sehr spartanisch. Es können gewisse Attribute von Dateien und Verzeichnissen abgefragt wer-
den, wie z.B. Datum der letzten Bearbeitung, Länge der Datei in Bytes und die Rechtevergabe
zum Schreiben oder Lesen. Die Manipulationsmöglichkeiten beschränken sich lediglich auf das
Erstellen, Löschen und Umbenennen. Eine Operation wie Kopieren oder die Unterstützung
Regulärer Ausdrücke, wie sie in diversen Kommandozeilen Verwendung findet, muss bereits
selbst implementiert werden.

11.1 Dateizugriff 111

Die Definition der Komponente File Management sieht solche komfortablen Operationen
und noch speziellere vor. Besonders die gepackten sowie verschachtelten Dateien und der naht-
lose Netzwerkzugriff müssen unterstützt werden. Bei der Realisierung der Komponente müssen
somit zumindest ergänzende Klassen, wenn nicht sogar ein komplett neuer Zugriff auf Dateien
eingeplant werden. Auch Sun als Urheber von Java hat bemerkt, dass die Funktionalität der
Klasse java.io.File nicht ausreicht und hat daher das WebNFSTM Client SDK entwickelt.
Mit diesem SDK wird der Zugriff auf Dateien und Verzeichnisse verschiedener Dateisyste-
me über eine Schnittstelle realisiert. Die Referenzierung erfolgt über URLs [Berners-Lee94]
und ermöglicht so die Portierbarkeit von Programmen ohne Neuübersetzung. Kernstück die-
ses Ansatzes ist die XFile-Schicht, die durch beliebige Dateisysteme erweitert werden kann.
Abbildung 11.1 zeigt das Schichtenmodell von WebNFS.

nfs: cifs: file: native:
com.sun.xfile.*

Java Application

Abbildung 11.1: Extended Filesystem Architecture [Sun99]

Der Dateizugriff über das Netzwerk (TCP/IP) ist das Hauptmerkmal von WebNFS. Es
wundert daher nicht, dass die Schicht com.sun.xfile.* bezüglich der Attribute und Datei-
operationen nicht mehr Funktionalität als die Klasse java.io.File anbietet und damit den
Ansprüchen nicht vollends genügt.

Von anderen Herstellern bzw. Entwicklergruppen werden eine Reihe an weiteren kleinen
APIs und Erweiterungen der Standardklassen angeboten, die meist einen erweiterten Zugriff
auf betriebssystemspezifische Daten geben. Jedoch gibt es zu diesem Zeitpunkt kein Produkt,
das einen sauberen Entwurf, bei dem allzu technische Details verborgen sind, in der geforderten
Form ermöglicht. Um diesem Wunsch dennoch Rechnung zu tragen, wird daher eine eigene
Dateisystem-API für Java entwickelt.

11.1.1 Dateisystem Grundlagen

Zuerst muss eine Idee formuliert werden, wie das zu entwickelnde Dateisystem aufgebaut sein
soll. Hieraus ergibt sich automatisch die Schnittstelle nach außen, die zur Ansteuerung von an-
deren Komponenten genutzt wird. Nun soll das Rad nicht neu erfunden werden, weshalb kurz
festgehalten wird, was an Libraries und Funktionen bereits zur Verfügung steht. Als erstes ist
die mitgelieferte Klasse java.io.File zu nennen, die den Zugriff auf das lokale Dateisystem
ermöglicht. Freilich soll ihre Funktion nicht nachimplementiert werden, denn die Umsetzung
dieser Klasse ist proprietär und eine Eigenentwicklung wäre nicht mehr plattformunabhängig.
Die von Java angebotene Klasse soll das Fundament für den Dateizugriff auf das lokale Datei-
system sein. Im Falle der verteilten Daten müssen Protokolle wie z.B. WebDAV, NFS oder
SMB implementiert werden. Dies kann und soll auch nicht geleistet werden, weil Aufwand
und Nutzen in keiner Relation stehen. Besser ist der Einsatz existierender Libraries, die we-
sentlich zuverlässiger sind. Damit wird zwar die Einbindung vieler verschiedener Schnittstellen
als Nachteil in Kauf genommen, aber dieses Vorgehen sichert die höchstmögliche Flexibilität.
Um dieser Vielfältigkeit zu begegnen, muss das Dateisystem eine abstrahierende Schnittstelle
anbieten, die mit Hilfe von Adaptern auf die eigentliche Funktionalität der Libraries zugreift.
So bleibt das Dateisystem auch für zukünftige Techniken erweiterbar.

Der Begriff Dateisystem an sich ist geprägt vom Einsatz in Betriebssystemen. Insofern
sollen die Erfahrungen und Theorien aus diesem Bereich bei der Entwicklung des eigenen
Dateisystems berücksichtigt werden. Im Grunde genommen handelt es sich bei dem Datei-
system um eine Verwaltung anderer Dateisysteme, sodass es beispielsweise dem Virtual File
System (VFS) von Linux ähnlich ist. Beim VFS geht es zwar in erster Linie um die Abstraktion
von physikalischen Medien und Gerätetreibern, aber das Prinzip ist sehr ähnlich.

112 Basiskomponenten

Wegen der existierenden Libraries kann das Abstraktionsniveau sehr hoch gewählt wer-
den, schließlich muss sich das Java-Dateisystem nicht um die physikalische Repräsentation
kümmern. Die Aufteilung der Festplatten und die Adressierung übernehmen die jeweiligen
Betriebssysteme. Aufgabe des Dateisystems ist daher die einheitliche Adressierung von Res-
sourcen und die Delegation von Operationen über Library-Grenzen hinweg.

Moderne Dateisystem ordnen ihre Dateien in Verzeichnissen an, die technisch gesehen meist
selbst Dateien sind. Sie enthalten eine bestimmte Anzahl an Einträgen, wobei jeder für eine
Datei steht. Abbildung 11.2(a) zeigt eine Form der Speicherung, bei der Dateiname, Attribute
und die Adresse in einem Eintrag gespeichert sind.

mail

games

news

work

attributes

attributes

attributes

attributes

(a) Attribute im Verzeichni-
seintrag

Data structure
containing the
attributes

mail

games

news

work

(b) Externe Attribute

Abbildung 11.2: Aufbau von Verzeichniseinträgen aus [Tanenbaum97, S. 411]

Zu den Attributen zählen diverse Daten (Erstellungsdatum, Bearbeitungsdatum, etc.),
Zugriffsrechte, Eigentümer, Dateilänge und viele weitere systemspezifische Felder. Die Adres-
se hängt im Falle des Java-Dateisystems vom eingebundenen Dateisystem ab, also wie das
Quellsystem das Zielsystem ansteuern muss. Handelt es sich beispielsweise um ein WebDAV-
Dateisystem, ist die Adresse, die das Java-Dateisystem speichert, eine URL.

Eine andere Form des Verzeichniseintrags ist die Referenzierung einer externen Struktur,
wie in Abbildung 11.2(b) zu sehen ist. Sie ist nur der Vollständigkeit halber aufgeführt und
hat keinen weiteren Einfluss auf den Entwurf. Historisch gesehen lassen sich ”echte“ Dateisys-
teme auf diese Weise besser erweitern. Aufgrund des objektorientierten Ansatzes des Java-
Dateisystems ist dieses Argument aber hinfällig.

Weil auch Verzeichnisse normale Dateien sind, können sie problemlos verschachtelt werden.
Zyklen sind aber nicht erlaubt, weshalb die resultierende Struktur ein Baum ist. Aus heutiger
Sicht mag dieser Aufbau einer Dateistruktur selbstverständlich erscheinen, aber in den An-
fängen der Betriebssysteme gab es entweder ein Hauptverzeichnis oder Unterverzeichnisse in
sehr geringer Zahl.

Für den Zugriff auf die Dateien wird eine Adressierung benötigt, die jeden Knoten im Baum
eindeutig identifiziert. Jeder Baum hat genau ein Wurzelverzeichnis das alle Unterverzeichnis-
se direkt oder indirekt beinhaltet. Wenn jeder Dateiname innerhalb eines Verzeichnisses nur
ein Mal verwendet werden kann, dann lässt sich diese Datei über die Namen der höher lie-
genden Verzeichnisse eindeutig ansprechen. Diese Adressierung wird Pfad genannt und kann
in zwei Varianten notiert werden. Bei einem absoluten Pfad werden alle Namen vom Wur-
zelverzeichnis bis zum Dateinamen angegeben, getrennt durch einen Separator. Bei Windows
übernimmt das Zeichen ”\“ diese Aufgabe und bei Unix ”/“. Ein Beispiel für einen absolu-
ten Pfad ist /usr/jim/mails. Das Wurzelverzeichnis ”/“ enthält das Unterverzeichnis usr,
das wiederum das Unterverzeichnis jim und schließlich folgt die Datei mails. Abbildung 11.3
zeigt eine passende Dateistruktur.

Die andere Schreibweise für einen Pfad nennt sich relativer Pfad und steht in Verbin-
dung mit dem Konzept des Arbeitsverzeichnisses. Dahinter verbirgt sich die Möglichkeit,
anstatt des Wurzelverzeichnisses ein beliebiges Verzeichnis anzugeben, von dem aus alle Pfade

11.1 Dateizugriff 113

bin

tmp

usr

lib

etc

libetcbin

jim

usr

ast

tmp

ast jim

/

/usr/jim

Root directory

Abbildung 11.3: Ein UNIX Verzeichnisbaum aus [Tanenbaum97, S. 414]

beginnen. Wenn z.B. das Verzeichnis /usr/jim als aktuelles Arbeitsverzeichnis ausgewählt
ist, kann die Datei /usr/jim/mails einfach über den Pfad mails aufgerufen werden. Relati-
ve Pfade vereinfachen somit den Zugriff auf Dateien, besonders wenn auf viele Dateien eines
Unterverzeichnisses zugegriffen wird. Es wird noch angemerkt, dass absolute Pfade in keiner
Weise vom Arbeitsverzeichnis beeinflusst werden. Bei Betriebssystemen hat jeder Prozess ein
eigenes Arbeitsverzeichnis, was für das Java-Dateisystem nur bedingt gelten soll. Um flexibler
zu sein, soll jedes Objekt der Dateisystemklasse ein eigenes erhalten können. Wie viele Objekte
es geben kann, hängt von der jeweiligen Implementation ab.

Es gibt noch zwei spezielle Verzeichniseinträge, die eigentlich von allen hierarchischen
Dateisystemen unterstützt werden. Mit ”.“ wird auf das Verzeichnis selbst zugegriffen und
mit ”..“ auf das höher liegende, dem Elternverzeichnis. Der absolute Pfad /usr/jim/. adres-
siert also /usr/jim und /usr/jim/.. das höher liegende Verzeichnis /usr.

Nachdem sich die Dateien adressieren lassen, sollen nun einige wichtige Operationen be-
schrieben werden. Obwohl Verzeichnisse reguläre Dateien sind, gibt es bei den Operationen
dennoch Unterschiede. Hierzu gehört der Zugriff auf den Inhalt einer Datei, der bei einem
Verzeichnis nicht möglich ist. Von den gängigen Betriebssystemen werden zwei verschiedene
Methoden für normale Dateien unterstützt, die sich in den unterschiedlichen Medien, wie z.B.
Bändern und Festplatten, begründen. Beim sequentiellen Zugriff können die Daten der Rei-
he nach vom Anfang bis zum Ende ausgelesen oder geschrieben werden, wobei ein Zugriff in
beliebiger Reihenfolge nicht möglich ist. Die Klasse java.io.File bietet wie die erhältlichen
Libraries den sequentiellen Zugriff über Ein- und Ausgabeströme zu einer Datei an.

Lässt sich auf Bereiche der Datei direkt zugreifen, heißt diese Form beliebiger Zugriff.
Für viele Anwendungen, wie z.B. Datenbanken, ist dieser Zugriff sehr wichtig, denn besonders
bei vielen Daten kann nicht jedes Mal die Datei von Anfang an durchgegangen werden, wenn
am Ende ein kleines Datum benötigt wird. Leider sieht es bei der Unterstützung in Java
eher schlecht aus. Zwar gibt es die Klasse java.io.RandomAccessFile, aber besonders die

114 Basiskomponenten

zusätzlichen Libraries für den Netzwerkzugriff haben ihre Probleme. Manche Protokolle, wie
z.B. WebDAV, sehen den beliebigen Zugriff nicht einmal vor. Um unnötige Komplikationen im
Vorwege zu vermeiden, soll das Java-Filesystem diese Form des Zugriffs nicht unterstützen.
Dies ist nicht weiter schlimm, da E-Learning-Inhalte in der Regel recht klein sind und sich
komplett im Speicher halten lassen.

Zu den Operationen, die für Dateien wie Verzeichnisse gültig sind, gehören unter anderem
Erstellen, Löschen und Umbenennen. Es gibt noch eine Reihe weiterer Funktionen, wie z.B.
das Auflisten aller Verzeichniseinträge oder das Anhängen von Daten, die entweder für Ver-
zeichnisse oder Dateien gelten, aber auf sie soll nicht weiter eingegangen werden. Wenn solche
Funktionen von Bedeutung sind, werden sie als Methoden in die Klassen aufgenommen.

11.1.2 Virtuelles Dateisystem

In Anlehnung an das abstrahierende Dateisystem von Linux sollen die zentralen Klassen als
virtuelles Dateisystem betrachtet werden. Hierunter wird im Kontext dieser Arbeit ein Me-
chanismus verstanden, der verschiedene existierende Dateisysteme in einer neuen Dateistruk-
tur zusammenfasst. Das virtuelle Dateisystem bietet somit eine einheitliche Adressierung für
Dateien an und die Delegation von Operationen. Aus diesem Grund werden die angesteuerten
Dateisysteme auch Zieldateisysteme genannt.

Im Gegensatz zu den Dateisystemen der Betriebssysteme, wird die Dateistruktur beim vir-
tuellen Dateisystem komplett im Speicher gehalten und nicht direkt auf dem Medium gespei-
chert. Jeder Zugriff auf Verzeichnisse und Dateien hat somit zur Folge, dass eine entsprechende
Struktur im Speicher erzeugt wird, die von der physikalischen Repräsentation abstrahiert. Um
die Struktur eines virtuellen Dateisystems persistent zu machen, müssen sie an anderer, frei
wählbarer Stelle gespeichert werden. Die Dateien selbst werden freilich in ihrem jeweiligen
Zieldateisystem gehalten.

Im Java-Dateisystem wird es daher eine Klasse geben, mit der entsprechende Strukturen
im Speicher aufgebaut werden können. Anhand des Beispiels in Abbildung 11.4, sollen die
Zusammenhänge für ein stellvertretendes WebDAV-Dateisystem erläutert werden.

start.xml

title.xml title.xml

start.xml

WebDAV

/repository
webdav://get1.upb.de/

webdav://get1.upb.de/start.xml

webdav://get1.upb.de/title.xml

Abbildung 11.4: Interne Abbildungen im VFS

Ein Server mit der Internetadresse get1.upb.de stellt das auf der rechten Seite liegende
Zieldateisystem zur Verfügung. Wie und wo die Dateistruktur gespeichert ist, soll an dieser
Stelle nicht interessieren. Wichtiger ist die interne Struktur des virtuellen Dateisystems auf
der linken Seite, die sich auf einem anderen Client-Rechner befindet. Verzeichnisknoten sind
als Quadrate dargestellt und Dateien als Kreise. Ein Pfeil in den Knoten weist auf die Adres-
sierung einer anderen Ressource hin. In dem Beispiel werden URLs genutzt, die als zusätzliche
Kantenbeschriftung angegeben sind. Das oberste Verzeichnis hat keinen Namen und deutet die
Beliebigkeit der Position im Dateisystem an. Wichtiger ist das Unterverzeichnis repository,
das eine Referenz auf das WebDAV-Verzeichnis ”/“ besitzt. Die unterschiedlichen Namen sind
kein Problem, da die absoluten Pfade sowieso nicht identisch sein können.

11.1 Dateizugriff 115

Weil der Knoten repository auf ein Wurzelverzeichnis eines anderen Dateisystems ver-
weist, wird er als Mount-Punkt bezeichnet. Es ist quasi der Einstiegspunkt, der ”manuell“
gesetzt werden muss. Alle anderen Knoten, im Beispiel sind es start.xml und title.xml,
werden automatisch abgefragt und im virtuellen Dateisystem neu erzeugt. Nun können sol-
che eingehängten Dateisysteme mit tausenden von Unterverzeichnissen recht umfangreich sein
und es wäre ein erheblicher Aufwand, die gesamte Struktur auf ein Mal zu übertragen. Viele
Verzeichnisse werden möglicherweise nie aufgerufen, sodass sich diese Herangehensweise nicht
lohnt. Daher soll die interne Struktur nur für Dateien aufgebaut werden, die tatsächlich benö-
tigt werden. Der Struktur in Abbildung 11.4 sind ein paar Operationen voraus gegangen, wie
sie in Abbildung 11.5 dargestellt sind.

repository
mount()

(a)

WebDAV

repository
list()

(b)

start.xml

title.xml

WebDAV

repository

(c)

Abbildung 11.5: Aufbau der Dateistruktur in zwei Schritten

Der Ausgangszustand des virtuellen Dateisystems ist in Abbildung 11.5(a) dargestellt,
der aus zwei Knoten besteht, die keine externen Ressourcen referenzieren. Mit dem Befehl
mount() an den Knoten repository wird ihm die Adresse einer WebDAV-Datei zugewiesen.
Das Resultat ist in Abbildung 11.5(b) zu sehen. Zu diesem Zeitpunkt hat sich an der Struktur
des virtuellen Dateisystems nichts geändert. Dies geschieht erst durch den Aufruf des Befehls
list(), der die Namen aller Dateien des Verzeichnisses ausliest. Hierfür delegiert der Knoten
repository den Befehl an die Zieldatei und generiert aus dem Resultat alle Knoten mit ihren
Attributen, einschließlich der Adressen. Erst jetzt entspricht der Zustand in Abbildung 11.5(c)
dem vorherigen Beispiel.

Selbstverständlich lassen sich beliebig viele Zieldateisysteme verschiedenen Typs in das
virtuelle Dateisystem einhängen, wie in Abbildung 11.6 dargestellt. Der Übersicht halber sind
nicht alle Verbindungen zwischen den Knoten und Dateien eingezeichnet.

Auch verschiedene Laufwerke eines Windows Systems lassen sich problemlos hinzufügen
und durch die direkte Einbindung in die Dateistruktur werden keine Laufwerksbuchstaben
mehr benötigt. Beim Zieldateisystem WebDAV wird zudem gezeigt, dass sich jedes beliebige
Verzeichnis mit einem Mount-Punkt verbinden lässt. Lediglich die darüber liegenden Ver-
zeichnisse bzw. die Geschwister auf gleicher Höhe lassen sich dann nicht über einen Pfad im
virtuellen Dateisystem ansprechen.

Aus den geschilderten Funktionen des virtuellen Dateisystems lässt sich nun die gewünschte
Klasse zur Strukturierung ableiten. Da es sich bei der Dateistruktur um einen Baum handelt,
der aus vielen Knoten besteht, ergibt sich die Klasse VFSNode, in der alle Attribute gespeichert
sind. Abbildung 11.7 zeigt sie mit ihren wichtigen Methoden, die aufgrund der vorherigen
Beschreibungen in Abschnitt 11.1.1 keiner weiteren Erklärungen bedürfen.

Offensichtlich bietet diese Klasse aber nur rudimentäre Operationen an, obwohl in den
vorherigen Ausführungen Funktionen wie das Kopieren oder Entpacken von Dateien eingefor-
dert wurden. Auch das beschriebene Einhängen anderer Dateisystem ist anscheinend nicht auf
dieser Ebene realisiert.

Der Grund hierfür ist einfach. Solche Operationen schließen immer mehrere Knoten ein
und benötigen eine zusätzliche Verwaltung. Als Beispiel sei nochmals das Einhängen eines

116 Basiskomponenten

A C

A: C:

std get1 repository

/ Root directory

WebDAV

Network file system (NFS)

Standard file system (Windows)

Abbildung 11.6: Beispiel für den Aufbau des VFS

Zieldateisystems genannt. Die Operation mount() bedeutete für einen Knoten, alle Attribute
und Eigenschaften des neuen Zieldateisystems zu kennen. Hierdurch würden aber die Vorteile
des objektorientierten Entwurfs leichtfertig aufgegeben, da die Klasse VFSNode als universeller
Knoten auftritt. Um möglichst flexibel zu bleiben, sollte sie lieber als Schnittstelle für spezielle
Implementationen dienen, was in Abbildung 11.7 durch den Stereotyp abstract angezeigt ist.
Ein paar erbende Klassen für jeweils ein Zieldateisystem sind in Abbildung 11.8 zu sehen.

Die Verwaltung des Einhängens und anderer komplexer Operationen wird in einer eigenen
Klasse Namens VFS implementiert. Neben einigen Vereinfachungen bietet diese Klasse auch
Dienstleistungen an, die alle Knoten eines Dateisystems betreffen. Es ist beispielsweise für
eine grafische Darstellung eines Dateisystems notwendig, nach Änderungen den aktuellen Zu-
stand neu zu zeichnen. Um nicht ständig alle Knoten überprüfen zu müssen, bietet die Klasse
VFS einen Benachrichtigungsmechanismus an, der angemeldete Zuhörer über alle Änderun-
gen informiert. Jede Klasse kann zum Zuhörer werden, indem sie eine einfache Schnittstelle
implementiert, über die sie die Benachrichtigungen empfangen kann. Bei manchen Benach-
richtigungen können die Zuhörer sogar Einfluss auf das Geschehen nehmen. Wenn z.B. eine
Datei gelöscht werden soll, werden die Zuhörer über dieses Vorhaben benachrichtigt. Nach dem
Empfang können sie den/die Anwender/-in mit Hilfe eines Dialogs hierüber informieren und
das Einverständnis abfragen. Sollte das Löschen doch nicht gewünscht sein, wird der Abbruch
dieser Operation an das Dateisystem zurückgeschickt. Die wichtigen Methoden der Klasse VFS
sind in Abbildung 11.9 dargestellt.

Auch bei dieser Klasse sind die Methoden weitestgehend selbsterklärend. Mit der Methode
zip lassen sich mehrere Dateien zu einem Archiv zusammenfassen und komprimieren. Um
wieder an die einzelnen Dateien zu kommen, lassen sich die Archive mit unzip entpacken.
Interessant ist die Klasse des Parameters, den beide als Argument akzeptieren. Bei Virtu-
alFile handelt es sich um eine Pfadbeschreibung im virtuellen Dateisystem. Da sie intern
den Zugriff auf das Dateisystem benötigt, wird sie erst anschließend näher erläutert. Neben

11.1 Dateizugriff 117

canRead():Boolean
canWrite():Boolean
exists():Boolean
getInputStream():In
getOutputStream():Out
getName():String
getParent():VFSNode

isHidden():Boolean
length():int
list():VFSNode[]
mkDir():Boolean

isDir():Boolean

VFSNode
{abstract}

Abbildung 11.7: Klasse VFSNode

WebDAVFSNode NetworkFSNodeStandardFSNode

VFSNode

Abbildung 11.8: Verschiedene Unterklassen der Klasse VFSNode

einzelnen Knoten lassen sich auch Zieldateisysteme direkt in das Dateisystem einhängen. Dies
ist besonders praktisch bei Dateistrukturen, wie sie von Windows angeboten werden. Auf diese
Weise müssen nicht alle Laufwerke einzeln eingehängt werden.

Wie bei den Knoten die Klasse VFSNode, ist auch die Klasse VFS abstrakt definiert und eine
Schnittstelle für die unterschiedlichen Implementationen. Abbildung 11.10 zeigt eine mögliche
Vererbungshierarchie.

Eine Konsequenz aus diesem Ansatz ist, dass jedes Zieldateisystem gleichzeitig als virtu-
elles Dateisystem auftritt. Dies führt zwangsläufig zu einem Problem mit Windows, da im
vorherigen Abschnitt11.1.1 immer von einem Wurzelverzeichnis ausgegangen worden ist, über
das alle absoluten Pfade definiert sind. Unter Windows gibt es nun historisch bedingt bis zu
26 Wurzelverzeichnisse (Laufwerk A:–Z:), sodass die Pfadbeschreibung ein wenig anders ist.
Das virtuelle Dateisystem soll aber mit nur einem Wurzelverzeichnis auskommen, weshalb das
bestehende Konzept um eine Ebene erweitert werden muss. Neben dem Wurzelverzeichnis,
das über die Methode getRootNode erreichbar ist, werden deshalb die Volumes eingeführt.
Dieser Name ist absichtlich aus der Windows Welt entnommen, weil es das einzige verbreitete
Betriebssystem mit dieser Aufteilung ist.

Volumes liegen direkt unter dem Wurzelverzeichnis und sind eine Art privilegiertes Ver-
zeichnis. Bei der Pfadangabe muss nicht der echte absolute Pfad angegeben werden, sondern
kann mit dem Namen eines Volumes beginnen. Mit diesem Verfahren lassen sich die Laufwer-
ke simulieren. Über die Methode getVolumes gibt ein Dateisystem eine Liste aller Volumes
zurück. Bei einem UNIX-Dateisystem wird eine leere Zeichenkette zurückgegeben, sodass der
absolute Pfad immer mit ”/“ anfängt.

Die Methode getRootNode deutet bereits an, dass der Zugriff auf die Knoten über das
Dateisystem läuft. Nun hat der interne Baum, wie er bis jetzt dargestellt wurde, einen gra-
vierenden Nachteil. Änderungen auf Seiten des Zieldateisystems werden nicht weitergereicht,
was zu Inkonsistenzen führen kann. Wird z.B. der Inhalt eines Verzeichnisses mit list aus-
gelesen und nachfolgend direkt im Zieldateisystem eine der aufgelisteten Dateien gelöscht, so
bleibt der Knoten im virtuellen Dateisystem bestehen. Erst beim Zugriff auf die Datei of-
fenbart sich dieser Zustandsunterschied. Abhängig von der Implementation der Knoten kann
dieses Problem früher oder später auftreten. Bei einer einfachen Umsetzung mit einer direk-

118 Basiskomponenten

addListener(Listener)
removeListener()
copy(VirtualFile, VirtualFile)
move(VirtualFile, VirtualFile)
remove(VirtualFile)
zip(VirtualFile)
unzip(VirtualFile)

mount(VirtualFile, VirtualFile)
mount(VFS, VirtualFile)

umount(VirtualFile)
getVolumes():VirtualFile[]

#getRootNode():VFSNode
#getNode(String):VFSNode

{abstract}
VFS

Abbildung 11.9: Klasse VFS

StandardFS NetworkFS

VFS

WebDAVFS

Abbildung 11.10: Verschiedene Unterklassen der Klasse VFS

ten Referenzierung der Knoten kann es sogar vorkommen, dass auch wiederholte Aufrufe von
list den alten Zustand anzeigen. Daher sollte bei jeder Operation überprüft werden, ob die
Dateistruktur des virtuellen Dateisystems mit dem des Zielsystems übereinstimmt. Für eine
grafische Darstellung wäre es sogar sinnvoll, in regelmäßigen Zeitabständen diese Überprüfung
durchzuführen. Leider kann diese Abfrage bei komplexen Dateisystemen sehr teuer sein, zumal
ein Zugriff über das Netzwerk zusätzlich Zeit benötigt. Auf der anderen Seite ist die Pflege
eines Baums mit den verschiedenen Dateisystemoperationen sehr umständlich und kann bei
sehr großen Dateisystemen immer noch viel Platz in Anspruch nehmen.

Die Lösung liegt in einer ”flachen“ Organisation der Knoten. Anstatt die Dateistruktur
als Ganzes zu betrachten, kann jeder Knoten eindeutig über einen Pfad identifiziert werden.
Um einen angemessenen Kompromiss zwischen Speicherbedarf und Laufzeit zu finden, werden
lediglich n Knoten gleichzeitig im Speicher gehalten. Abbildung 11.11 zeigt die angestrebte
Variante.

/repository/title.xml

/repository

/repository/start.xml

title.xml

start.xml

repository

n)

2)

1)

3)

4) /.../.../...

/.../.../...

...

...

... ...

Abbildung 11.11: Dateistruktur im Arbeitsspeicher

Es handelt sich quasi um eine Hash-Map mit einer internen Ordnung. Jeder der n Einträge
repräsentiert einen Knoten mit zugehörigem Pfad. Der zuletzt genutzte Knoten ist auf Position
1, der vorherige auf 2 und der letzte auf n. Wird nun auf einen Knoten zugegriffen, der zuvor
nicht in der Liste aufgeführt war, wird Knoten n herausgenommen und alle n − 1 Knoten

11.2 Metadaten 119

um eine Position nach hinten verschoben. An Position 1 wird abschließend der neue Knoten
eingetragen. Die ganze Anordnung kann als Cache betrachtet werden, auch wenn er nicht so
leistungsfähig ist, wie ihn manche Dateisysteme anbieten. So könnte beispielsweise eine zweite
Liste angeschlossen werden, in der die Häufigkeit der Zugriffe berücksichtigt werden. Sollte die
Leistungsfähigkeit des gewählten Ansatzes wider Erwarten nicht ausreichen, könnten solche
Funktionen immer noch nachträglich für eine Optimierung sorgen.

Wie angekündigt, soll nun die letzte wichtige Klasse des virtuellen Dateisystems näher
vorgestellt werden. Bei dem VirtualFile handelt es sich sich um eine Aggregation von Pfad
und Referenz auf ein Dateisystem, um den Zugriff zu vereinfachen. Abbildung 11.12 zeigt das
zugehörige Klassendiagramm.

VFS

VirtualFile

String

Abbildung 11.12: Aggregation von String und VFS

Diese Klasse bietet alle Methoden der Klasse VFSNode an, weshalb kein detaillierteres
Diagramm angegeben werden muss. Intern werden die Methodenaufrufe an die Knoten mit
dem passenden Pfad weitergegeben. Die Programmierer/-innen nutzen folglich die Knoten-
Klassen nie direkt, sondern bedienen sich des vereinfachten Zugriffs. Bei einfachen Operationen
ist kein Unterschied in der Bedienung zu der Klasse java.io.File auszumachen, sodass einer
gewohnten Verwendung bzw. der Umstellung existierenden Programm-Codes nichts im Wege
steht.

Wie es nach der UML vorgesehen ist, kann nun, da die Klassen vollständig für den Umgang
mit Dateien erschlossen sind, die erste Komponente File Management gebildet werden, wie
sie in Abbildung 10.10 zu sehen ist. Hierfür werden einfach alle vorgestellten Klassen zusam-
mengefasst und als eine Einheit ausgegeben. Der Prozess dieser Kombination ist in Abbildung
11.13 schematisch dargestellt und enthält freilich nur ein paar ausgewählte Klassen.

File Management

VFS

VFSNode

VirtualFile

Abbildung 11.13: Bildung der Komponente File Management

Im nächsten Abschnitt wird die nächste Komponente für die Rolle Author hergeleitet, um
Abbildung 10.10 zu vervollständigen.

11.2 Metadaten

Das Kapitel 4 mit seinen theoretischen Ausführungen und detaillierten Vorstellungen der gän-
gigen Standards bildet die Basis für die folgenden Überlegungen. Die zugehörige Komponente
für die Metadaten lässt sich, ähnlich der Komponente File Management, vollständig in Form
einer allgemeinen Library aufziehen. Hierdurch wird die benötigte Flexibilität erreicht, die für
eine solch zentrale Funktion unabdinglich ist.

120 Basiskomponenten

Grundlegend wird eine allgemeine Architektur für die Erstellung, Bearbeitung und den
Austausch von Metadaten entwickelt. Eine besondere Schwierigkeit dieses Unternehmens ist
die Vielfältigkeit der unterschiedlichen Standards und deren Kodierungen. Das angestrebte Ziel
kann folglich nur eine interne Repräsentation sein, die allen Belangen gerecht wird. Hierfür
müssen die zu unterstützenden Standards festgelegt und ihre Gemeinsamkeiten erkannt wer-
den. Auf jeden Fall sollen die im Teil ”Stand der Wissenschaft“ vorgestellten Spezifikationen
von Dublin Core und IEEE LOM in verschieden Kodierungen unterstützt werden. Neben dem
definierten Format in XML soll auch die direkte Unterstützung von Datenbanken angeboten
werden. Hieraus ergibt sich eine Architektur, die schematisch in Abbildung 11.14 dargestellt
ist.

Dublin Core

LOM

Ariadne

XML−Reader

Dublin Core

LOM

Ariadne

XML−Writer
XML

DB

...

MD Structure

.....
.

Data Flow

Uses

DB−Reader

DB−Writer

Meta Data API

Abbildung 11.14: Architektur für heterogene Metadatenformate

Aus den verschiedenen Datenquellen, XML-Datei und Datenbank, werden die Metadaten
über die Reader eingelesen und unter Zuhilfenahme der unten stehenden API zu einer hier-
archischen Struktur zusammengesetzt. Eine der Gemeinsamkeiten ist nämlich der Aufbau als
Baum, auf den sich alle wichtigen Metadatenspezifikationen abbilden lassen. Über die Writer
kann die Metadatenstruktur wieder in die Formate der Datenquellen umgewandelt werden.
Neben dem Aufbau der Metadatenrepräsentation im Speicher, ermöglicht die Metadaten-API
auch die Manipulation der Struktur.

Die gesamte Flexibilität dieses Entwurfs begründet sich in den unterschiedlichen Reader -
und Writer -Modulen, deren Aufbau näher betrachtet werden soll. Da es für Datenbanken
keine verbindlichen Anordnungen bzw. Datenbankschemata gibt, kann der Zugriff sehr indivi-
duell gestaltet werden. Eine denkbare Lösung ist eine Klasse, die aus einer festgelegten Quelle
die nötigen SQL-Skripte auslesen kann. Hierdurch wird zwar Programmlogik außerhalb der
Applikation angesiedelt, was im Normalfall zu vermeiden ist, aber die gewonnene Flexibilität
rechtfertigt möglicherweise diese Vorgehensweise. Alternativ kann auch eine Klasse mit der
vollständigen Datenbankansteuerung erstellt werden und in frei definierbaren Unterklassen er-
folgt die Zuordnung zu den Tabellen. Welcher Ansatz letztendlich gewählt wird, soll erst in
der Implementierungsphase entschieden werden.

Anders sieht es bei der Kodierung in XML aus. Weil alle relevanten Spezifikationen ein
XML-Binding beinhalten, muss dieser Umstand bereits beim Entwurf berücksichtigt werden.
In Abbildung 11.14 sind die Standards eingetragen, die von der angestrebten Implementierung

11.2 Metadaten 121

unterstützt werden sollen. Zu den gestellten Anforderungen lässt sich elegant eine passende
Klassenstruktur bilden, deren Diagramme für Reader und Writer in Abbildung 11.15 darge-
stellt sind.

LOMReader

AriadneReader

DCReader

XMLReader DBReader

MDReader

(a) Metadaten-Reader

LOMWriter DCWriter

XMLWriter DBWriter

MDWriter

AriadneWriter

(b) Metadaten-Writer

Abbildung 11.15: Klassenhierarchien der Reader und Writer

Der Zugriff auf alle Metadaten-Reader sowie -Writer erfolgt über die Klassen MDReader
und MDWriter, die eine einheitliche Schnittstelle nach außen darstellen. Implementierungen
spezieller Methoden sind auf dieser Ebene nicht zu erwarten, sodass es sich im Sinne von Java
um echte Interfaces handelt und nicht um abstrakte Klassen. Auf der nächsten Ebene, den
Klassen XMLReader und DBReader bzw. XMLWriter und DBWriter verhält es sich anders. Hier
werden grundlegende Funktionen angeboten — meist technische Details verdeckend —, die
in den Unterklassen genutzt werden. In den jeweiligen Klassen für LOM und Dublin Core
auf der darunter liegenden Vererbungsebene steckt die Logik, die für den Zusammenbau der
allgemein gültigen Metadatenstruktur bzw. die Abbildung in das entsprechende Zielformat
benötigt wird. Am Beispiel von Ariadne wird gezeigt, wie der Entwurf durch Application
Profiles erweiterbar ist. Durch Vererbung können existierende Reader und Writer um neue
Metadateneinträge erweitert werden.

11.2.1 Datenstruktur

Im vorigen Abschnitt wurde bereits erwähnt, dass die interne Struktur hierarchisch als Baum
aufgebaut ist. Diese Anordnung ist prädestiniert, weil sich alle gängigen Standards ohne Auf-
wand in diese Form bringen lassen. Sei es nun Dublin Core mit seinen 15 Elementen, die
gleichberechtigt auf der obersten Ebene liegen, oder LOM mit der semantischen Aufteilung
in 9 Kategorien und weiteren Unterkategorien. Letztendlich bietet ein allgemeiner Baum mit
beliebiger Tiefe die Freiräume, um heutigen und künftigen Entwicklungen gerecht zu werden.

Mit der Bildung von Kategorien für alle Knoten im Baum bietet LOM einen äußerst
flexiblen Mechanismus zur Strukturierung. Er wird daher in die allgemeine Datenstruktur
mit aufgenommen, denn so lassen sich eigene Application Profiles durch Hinzufügen neuer
Kategorien oder Metadatenfelder einfach entwickeln.

In der Entwurfsphase können bereits grob ein paar Kategorien benannt werden, die eine
hohe Relevanz für den täglichen Einsatz haben. So sollte eine Kategorie für die didaktischen
Eigenschaften enthalten sein, die Kontext, Zielgruppe, Benutzung, Schwierigkeitsgrad und
andere subjektive Angaben umfasst. In LOM gibt es entsprechend die Kategorie Educational
(siehe Abbildung 4.6(a)) und bei Ariadne Pädagogik. Bei Dublin Core müssen diese Angaben
gezielt auf einzelne Elemente abgebildet werden, z.B. bietet sich Subject für die Klassifizierung
und Type für die Form an. Letzteres gibt an, ob das Lernobjekt z.B. ein Text, ein Bild oder
interaktiv ist.

122 Basiskomponenten

Zu den relevanten objektiven Metadaten gehören Attribute wie beispielsweise ”Titel“, ”Au-
tor“, ”Typ“ und ”Format“. LOM und Ariadne bieten hier eine große Auswahl vordefinierter
Felder, die als obligatorisch oder optional festgelegt werden können. Im Interesse der einfachen
Nutzbarkeit sollten Metadaten, wann immer möglich, als optional definiert sein. Lediglich ein
Mindestsatz für Daten, die oft benötigt werden, wie z.B. bei Suchanfragen, muss obligatorisch
sein. In der Regel sind Autoren/-innen gering motiviert, viele Metadaten einzugeben, sodass
die Akzeptanz stark vom Komfort abhängt. Müssen bei der Erstellung von Lernobjekten erst
zig Metadaten eingegeben werden, bevor die Speicherung durchgeführt wird, ist schnell die
Toleranzschwelle überschritten. Da es sich aber um objektive Metadaten handelt, sollte das
System in der Lage sein, wenigstens Vorschläge, wenn nicht sogar die richtigen Daten, einzu-
tragen.

Eine besondere Bedeutung besitzen die technischen Rahmenbedingungen, die eigentlich
auch zu den objektiven Metadaten gehören, aber wegen ihres Umfangs eine eigene Kategorie
zugeteilt bekommen. Diese Kategorie gibt in erster Linie die Bedingungen vor, die für eine
optimale Präsentation erfüllt sein müssen. Von der Bildschirmauflösung über den einzusetzen-
den Browser bis hin zu Speicher- und Prozessoranforderungen reicht das Spektrum möglicher
Angaben. Abbildung 11.16 zeigt schematisch den Baum für die drei beschriebenen Kategorien.

Sprache Kontext

Objektiv

... ... ZielgruppeTitel Auflösung ... Prozessor

Technisch

..
.

..
.

..
.

..
.

..
.

..
.

Metadaten

Didaktisch

Abbildung 11.16: Metadatenkategorien

Neben der Anordnung der Metadaten sind auch die eingesetzten Datentypen der Attribu-
te von Bedeutung. Hierunter werden verschiedene Wertebereiche verstanden, wie z.B. Text,
Datum und Zahl. Sie müssen so allgemein gehalten sein, dass sie von allen Metadaten verarbei-
tenden Applikationen interpretiert werden können. Dem gegenüber steht der uneingeschränk-
te Einsatz eigener Metadaten, die durchaus exotischer sein dürfen. Hier muss ein geeigneter
Kompromiss zwischen Verarbeitbarkeit und Flexibilität gefunden werden. Hinzu kommen noch
komplexere Strukturen, die nicht vollständig durch die Basistypen abgedeckt werden. Im Fol-
genden werden wesentliche Merkmale der Datentypen diskutiert.

Manch ein Metadatum enthält ein oder mehrere Wörter, um eine bestimmte Eigenschaft
eines Lernobjekts zu beschreiben. Soll beispielsweise der Schwierigkeitsgrad einer Aufgabe an-
gegeben werden, bieten sich Wörter wie ”schwierig“, ”mittel“ und ”einfach“ an. Eine ähnliche
Bedeutung kann aber auch mit ”anspruchsvoll“, ”durchschnittlich“ und ”leicht“ erreicht wer-
den. Reicht die Auflösung dieser Bewertung nicht aus, können auch Gradpartikeln wie ”sehr“,

”ziemlich“ und ”wenig“ hinzugefügt werden. Der Fantasie sind in natürlichen Sprachen kaum
Grenzen gesetzt. Für die maschinelle Verarbeitung ergibt sich aus dieser Vielseitigkeit jedoch
ein Problem, da eine Interpretation kaum möglich ist. Auf eine maschinennahe Kodierung, z.B.
in Form eines Wertebereichs 1–6, sollte im Interesse der Anwender/-innen dennoch verzichtet
werden. Die adäquate Lösung sind Wörterbücher, die einerseits das Verständnis natürlich-
sprachlicher Wörter beinhalten, andererseits wenig Komplexität in die Programmierung der
Applikationen bringen.

Ein Wörterbuch ist eine vorgegebene Menge an Wörtern, die für ein Metadatum einge-
setzt werden dürfen. Festgehalten in einem Standard, gewährleistet ein Wörterbuch für ein
Metadatenfeld die semantische Interoperabilität beim Austausch zwischen unterschiedlichen
Systemen. Obwohl die Standards explizit die Angabe nicht enthaltener Wörter erlauben, ist
eine Einhaltung stark empfohlen, damit der Sinn eines Wörterbuchs nicht untergraben wird.

11.2 Metadaten 123

Die Standards LOM und Dublin Core definieren eine Reihe von Wörterbüchern, die in den
jeweiligen Klassen der Metadaten-API unterstützt werden sollten. Für die Datenhaltung wird
die Klasse Dictionary definiert, die eine schnelle Überprüfung ermöglicht, ähnlich einer Hash-
Menge. Um nicht an Unterschieden in der Groß- und Kleinschreibung zu scheitern, wird für
eine überschaubare Anzahl von Einträgen eine sortierte Liste für die Implementierung emp-
fohlen.

Nicht alle Inhalte der Wörterbücher sind direkt in den Standards definiert, sondern verwei-
sen auf externe Quellen, was bei der Realisierung der Klasse Dictionary zu ernsten Hindernis-
sen führen kann. Lässt sich ein umfangreiches Wörterbuch mit den existierenden MIME-Types
in Form einer Liste mit Aufwand umsetzen, sieht es beim ”Thesaurus of Geographic Names“
(TGN) problematisch aus. Hierbei handelt es sich um eine strukturierte Sammlung von Voka-
beln, die Millionen von Ortsnamen und andere Informationen wie Koordinaten enthält. Von
Kontinent bis Provinz ist alles vertreten. Abgesehen von der Implementierung ist die eigen-
ständige Pflege solcher Daten nur mit erheblichem Aufwand möglich. Daher müssen solche
Daten extern eingekauft oder von entsprechenden Dienstleistern online überprüft werden. Wie
die Realisierung der Klasse Dictionary letztendlich aussieht, hängt von den verwendeten
Metadaten ab, sodass in der Entwurfsphase keine weiteren Details festgelegt werden können.

Ein anderes Problem beim Umgang mit Metadaten adressiert die Internationalisierung
(I18N)1. Dieser Begriff wird überwiegend bei Programmen verwendet, die eine Anpassung an
sprachliche und kulturelle Gegebenheiten erlauben. Hierzu gehören beispielsweise Texte in der
Landessprache, Währungen sowie physikalische Einheiten wie Zeit, Längen und Gewichte. Im
Bereich der Metadaten ist neben der Kodierung der unterschiedlichen Daten auch die Deklara-
tion von Land und Sprache Gegenstand der Internationalisierung. Die passenden Regeln samt
Standards wurden bereits bei der Vorstellung von LOM in Abschnitt 4.3 detailliert erläutert.
Bei den Werten handelt es sich um Tupel, bestehend aus einem einfachen oder zusammenge-
setzten Code und einer Ressource. Hierbei ist es prinzipiell gleich, ob es Texte, Bilder oder
andere Daten sind. Im Falle der Metadaten lässt sich diese Vielfalt auf Informationen in Form
von Texten beschränken.

Der Entwurf einer Klasse für die Vorhaltung internationalisierter Daten gestaltet sich ein-
fach. Neben der Speicherung von Schlüssel-Wert-Paare — wobei der Schlüssel beispielsweise
eine Verbindung aus Länder- und Sprach-Code ist — muss die Gültigkeit der verwendeten Co-
des überprüft werden. Bei einer Programmiersprache wie Java liefert der Standardsatz an Li-
braries bereits solche Mechanismen, sodass die Implementierung schnell verrichtet ist. Weniger
gute Unterstützung bieten die Programmiersprachen bei personenbezogenen Daten, die sich
aus mehreren einfachen Daten, wie z.B. Name, Adresse und Organisation, zusammensetzen.
Da der Austausch dieser Daten zwischen unterschiedlichen Systemen das Hauptanliegen ist,
soll wie bisher verfahren werden und auf etablierte Vereinbarungen zurückgegriffen werden.
Hierzu gehören die VCards, eine Art elektronische Visitenkarten, deren Inhalt und Form vom
International Mail Consortium (IMC) vorgegeben wird. Dieser Standard wird überwiegend in
Mails, HTML-Seiten, elektronischen Adressverwaltungen und im mobilen Sektor, wie z.B. dem
Handy, eingesetzt. Eine übliche Kodierung, die alle Programme lesen können, ist ein Text mit
folgender Struktur. Das Beispiel ist aus der Spezifikation der IMC entnommen.

1 BEGIN:VCARD
N:Wason;Thomas;D.;Dr.;Sr.

3 FN:Thomas D. Wason, Ph.D.
ORG:IMS Project;Meta Data Team

5 ADR:;IMS Project;1421 Park Drive;;North Carolina;27605−1727;USA
TEL:+1 919.839.8187

7 EMAIL;INTERNET:twason@imsproject.org
LABEL;QUOTED−PRINTABLE:IMS Project=0A= 1421 Park Drive

9 =0A= Raleigh, NC 27605−1727=0A= USA
END:VCARD

1Die Abkürzung I18N stammt aus dem Englischen und steht für das Wort Internationalization. Mit der Zahl
18 werden die achtzehn Buchstaben zwischen

”
I“ und

”
N“ angegeben.’

124 Basiskomponenten

Ohne auf die Details eingehen zu müssen, lässt sich für die Datenhaltung ein bekanntes
Schema entdecken. Schlüssel werden mit Werten zu Paaren kombiniert. Auf diese Weise lassen
sich auch einfache Parser realisieren, die dieses Muster erkennen. Ist eine genauere syntaktische
Analyse gewünscht, sollte auf Produkte Dritter zurückgegriffen werden.

Abschließend soll die Kodierung von Zeit und Zeitspannen thematisiert werden. In Verbin-
dung mit dem Standard LOM wurden die verwendeten Zeitformate kritisiert, weil sie Mehrdeu-
tigkeiten zulassen. Doch wie sehen die Alternativen zu diesen Standards aus, besonders wenn
sie explizit vorgeschlagen sind? Die Metadaten-API kommt also nicht umhin, diese Formate
zu unterstützen. Ansonsten wäre die Kompatibilität zu anderen Anwendungen gefährdet, was
wesentlich schlimmer ist, als die genannten Probleme.

11.2.2 Operationen

Mit einer Metadatenstruktur ist wenig anzufangen, wenn sie nicht verändert bzw. auf Rich-
tigkeit überprüft werden kann. Aus diesem Grund bieten die Klassen der Metadaten-API
verschiedene Operationen an. In dieser Arbeit sollen drei Formen unterschieden werden: Pro-
duktion, Manipulation und Validierung. Unter Produktion wird die eigentliche Erstellung
neuer Metadaten verstanden. Veränderungen an existierenden Daten gehören zur Manipula-
tion und die Überprüfung der syntaktischen Korrektheit ist Aufgabe der Validierung. Weil
diese Aufteilung essentiell für die Gestaltung der Klassen ist, erfolgt nun eine detailliertere
Ausführung.

Alle Methoden in den Klassen der Metadaten-API, mit denen die interne Metadatenstruk-
tur aufgebaut wird, gehören zur Produktion. Es gibt verschiedene Kontexte für die Aufrufe,
von denen die wichtigen in Abbildung 11.17 dargestellt sind.

XML−ReaderXML

DB DB−Reader

ImportDOC

Author Metadata Tool

...

MD Structure

.....
.

Standard Reader

�
�
�

�
�
�

Abbildung 11.17: Produktion der internen Metadatenstruktur

In der Mitte befinden sich die Reader -Klassen, die in Abschnitt 11.2 vorgestellt wurden.
Auch wenn es sich um die Konvertierung einer Repräsentation, in diesem Falle XML-Datei
und Datenbank, in einen Objektbaum handelt, ist es aus Sicht der API ein neuer Aufbau von
Metadaten. Ähnlich verhält es sich mit dem Import fremder Daten, ganz unten in der Abbil-
dung. Angedeutet durch die Dateiendung DOC des Formats von MS Word, steht diese Art der
Produktion für die Integration beliebiger Metadaten aus anderen Quellen. Hierbei ist festzu-
halten, dass es niemals eine vollständige Abbildung geben kann. Im Falle des Word -Formats
sind nur wenige Metadaten enthalten und die beschränken sich auf die Autoren/-innen, den
Entwicklungsprozess und den Inhalt. Vielfältiger ist beispielsweise das Format DocBook aus-
gestattet, bei dem gezielt bestimmte Teile des Dokuments mit Metadaten versehen werden
können. In der Praxis zeigt sich jedoch, dass eine 1:1 Abbildung auf die Standards wie Dublin
Core oder LOM nicht möglich ist. Teilweise müssen Daten sogar verworfen werden, was die
vollständige Automatisierung von Importprozessen schwieriger macht.

11.2 Metadaten 125

Freilich gibt es noch die Möglichkeit, Metadaten von Hand aufzubauen, was durch die
Rolle Author mit ihrem Werkzeug, dem Metadata Tool, angedeutet ist. Besonders die subjek-
tiven Daten zu einem Lernobjekt müssen vom Menschen festgelegt werden. In Anbetracht der
Komplexität der Metadatenstandards stellt die adäquate Präsentation eine Herausforderung
dar. Einerseits soll kein Metadatum vorenthalten werden, andererseits darf eine komplizierte
Darstellung nicht verschrecken. Wie der Kompromiss aussieht, ist für die Metadaten-API von
geringer Bedeutung. Sie kommt nicht umhin, alle Möglichkeiten anzubieten.

Doch wie gestaltet sich jetzt die Produktion von Metadaten? Zuerst muss ein Hauptkno-
ten für die hierarchische Struktur erstellt werden, der nicht zwangsläufig Attribute beinhaltet.
An ihn lassen sich die ersten Knoten für bestimmte Kategorien einhängen. Die Erzeugung
dieser Objekte geschieht am besten über die Konstruktoren selbst, die bereits erste Attribu-
te als Parameter annehmen. Bei weniger genutzten Attributen ist es sinnvoll, sie erst über
spezielle Methoden zu setzen, um die Konstruktoren nicht unnötig umfangreich zu gestalten.
Hiernach können weitere Unterkategorien eingehängt werden, die wiederum Unterkategorien
mit jeweiligen Attributen akzeptieren. Auf diese Weise erfolgt die komplette Produktion der
Metadatenstruktur.

Liegen die Metadaten nach der Produktion im Speicher vor, können sie über geeignete
Methoden der API manipuliert werden. Grundsätzlich wird die Bearbeitung in Veränderun-
gen der Struktur und der Inhalte unterschieden. Die Objekte der Klassen zur Kategorisierung
lassen sich löschen, verschieben oder neu erzeugen, sodass eine neue Anordnung erstellt wird.
Bei diesen Operationen muss besonders darauf geachtet werden, dass anschließend eine Ab-
bildung auf standardkompatible Strukturen möglich ist. Weniger kritisch sieht es hingegen
bei den Attributen aus. Als Bestandteil der Klassen zur Kategorisierung können sie entweder
gesetzt oder gelöscht werden. Da bei allen gängigen Abbildungen die Attribute optional sind
— eine sehr wichtige Eigenschaft für Application Profiles —, gibt es bis auf die Einhaltung
des Wertebereichs wenig zu beachten.

Die Manipulation der Metadaten kann nur auf zwei Wegen geschehen, wie in Abbildung
11.18 dargestellt. Entweder nehmen die Anwender/-innen die Bearbeitung selbst vor oder ein
Mechanismus eines Programms ändert die Metadaten, die bekannt sind oder sich ableiten
lassen.

...

MD Structure

......Objective Metadata

Author Metadata Tool

�
�
�
�

Abbildung 11.18: Manipulation der internen Metadatenstruktur

Alle Methoden zur semantischen und syntaktischen Überprüfung fallen unter die Katego-
rie der Validierung. Für diese Operationen ist besonders der Zeitpunkte der Konvertierung
zwischen den Formaten kritisch, denn hierbei kann es im schlimmsten Fall zu unerwünschten
Datenverlusten kommen, weil sich Metadaten nicht abbilden lassen. Da alle Standards Vorga-
ben zur Kodierung machen, können entsprechende Mechanismen meist problemlos realisiert
werden.

Als Beispiel soll die Klasse LOMReader eine LOM-Datei im XML-Format einlesen und auf
syntaktische Korrektheit überprüfen. Es wird eine vorhandene XML-Library genutzt, sodass
im Entwurf die Entwicklung eines Parsers nicht berücksichtigt werden muss. Bei komplexeren
Typen, wie einem Datum oder einer VCard, muss die Validierung nachträglich durchgeführt
werden. Wird ein Fehler entdeckt, müssen die Anwender/-innen davon in Kenntnis gesetzt
werden und gegebenenfalls bei der Behebung zu Rate gezogen werden. Sind die Fehler zu
gravierend, sollte von einem Einlesen ganz abgesehen werden.

126 Basiskomponenten

Bei dieser Richtung der Konvertierung kann die Metadaten-API wenig Einfluss nehmen.
Anders sieht es bei Manipulationen des Objektbaums aus. Hier müssen die jeweiligen Klas-
sen Methoden anbieten, mit denen sich Struktur und Werte der Attribute überprüfen lassen.
Dies setzt freilich die Festlegung eines Formats voraus, auf das hin die Validierung erfolgt.
Zwar sind besonders viele Standards erstrebenswert, aber die Relation zwischen Aufwand und
Nutzen muss gewahrt sein. Aus diesem Grund wird wenigstens die Unterstützung von LOM
empfohlen, weil es zu den wichtigsten Formaten zählt. Eine Überprüfung nach Dublin Core
dürfte wegen der geringen Komplexität ebenfalls schnell implementiert sein, hat aber nicht die
Bedeutung wie LOM. Letztendlich sind Umfang und Genauigkeit Sache der Implementation.
Beim Entwurf muss nur berücksichtigt werden, dass eine Integration der Validierungsmecha-
nismen möglich ist.

11.2.3 Kodierungen

Die interne Metadatenstruktur als Objektbaum ist der ideale Ausgangspunkt für die Erstellung
und Bearbeitung von Metadaten, jedoch ist sie wenig für den direkten Austausch zwischen
Applikationen geeignet. Es kann zwar auf Mechanismen der Programmiersprachen zurückge-
griffen werden, wie z.B. die Serialisierung bei Java, aber dies führt zu einer zu engen Bindung
an eine bestimmte Implementation. Auch Middleware-Lösungen, wie z.B. Corba, schränken
die Nutzung zu sehr ein und haben hohe Anforderungen an die Technik. Der Weg über den
Objektbaum im Speicher kann daher nie direkt begangen werden, sondern erfolgt immer über
die Reader - und Writer -Klassen aus Abbildung 11.14. Über das Format XML soll in diesem
Abschnitt nicht viele Worte verloren werden. Es ist obligatorisch und die Spezifikation der
vorgestellten Metadatenstandards LOM und Dublin Core geben ausführlich Auskunft. Hin-
gegen ist die Speicherung in Datenbanken ein wenig beachtetes Thema, obwohl sie gerade für
Suchanfragen optimal geeignet ist.

Die direkte Repräsentation im Speicher ist für diese Aufgabe nämlich nur bedingt geeignet.
Es ist wenig sinnvoll, die Metadaten aller Lernobjekte im Speicher vorzuhalten, um eine schnel-
le Suche durchführen zu können. Der Bedarf der hierfür nötigen Ressourcen steht in keiner
Relation zum Nutzen. Auch die Kodierung in XML bringt keine nennenswerte Verbesserung,
weil die resultierende Rechenzeit zu hoch ist. Zuerst müssten die Metadaten aller Lernobjekte
geladen werden, um sie danach mit der Suchanfrage zu vergleichen. Abgesehen vom Zeitbedarf
der Dateizugriffe sollte auch der Aufwand für die Berechnung bereits wenig komplizierterer
Verknüpfungen nicht unterschätzt werden. Nicht ohne Grund gibt es hierfür Datenbanken, die
genau für diese Art von Aufgaben optimiert sind. Es stellt sich nur die Frage, welche Daten-
banktechnik gewählt wird, da diese Entscheidung Einfluss auf die entsprechenden Reader und
Writer hat.

Neben den klassischen relationalen Datenbanksystemen gibt es auch XML-Datenbanken.
Sie speichern ihre Daten nativ in XML und scheinen die ideale Lösung für Suchanfragen über
Metadaten zu sein, weil sie eine direkte Abspeicherung der in XML vorliegenden Datensätze
erlauben. Hierdurch entfallen lästige Konvertierungen in beide Richtungen, beim Import von
Lernobjekten und beim Export. Leider ist die Technologie noch relativ jung und im Gegen-
satz zu etablierten Techniken nicht leistungsfähig genug. Besonders bei großen Datenmengen
sind die Unterschiede gravierend, sodass den XML-Datenbanken erst ein prototypischer Stand
attestiert werden kann und auf relationale Systeme zurückgegriffen werden muss. Sie profitie-
ren von einem fundierten mathematischen Ansatz, der sich in der Praxis bewährt hat. Für
die Modellierung bedeutet diese Entscheidung hingegen, dass Umstände in Kauf genommen
werden. Zwar bieten einige Hersteller relationaler Datenbanken Erweiterungen an, die eine
automatische Abbildung von XML-Daten auf ihr Produkt ermöglichen, aber trotzdem kann es
bei unvorsichtiger Konfiguration zu Datenverlusten kommen. Details zu diesem Thema finden
sich z.B. in [Schöning03].

Leider sind die Verfahren dermaßen unterschiedlich, dass es keinen einheitlichen Mecha-
nismus für diese Aufgabe gibt. Als Konsequenz wird bei Verwendung dieser vorgefertigten

11.3 Unterstützung von Multimedia 127

Lösungen Logik aus dem Programm in die Datenbank verlagert, was eine echte Schwäche
des Entwurfs wäre und unter allen Umständen verhindert werden muss. Eine echte Unabhän-
gigkeit kann daher nur mit einer eigenen Abbildung erreicht werden, die bereits im Entwurf
Berücksichtigung findet.

Die Struktur und Daten eines XML-Dokuments müssen folglich ”per Hand“ auf die Tabel-
len abgebildet werden. Hierfür soll das object-relational Mapping von [Bourret99] eingesetzt
werden, bei dem eine hierarchische Struktur aus Objekten gebaut wird, die sich besonders
einfach auf ein relationales Modell abbilden lassen. Es werden zwei XML-Elemente unterschie-
den: komplexe Elemente mit Unterelementen und einfache Elemente, die nur Text enthalten2.
Die komplexen Elemente werden jeweils als Typ Klasse bezeichnet und die einfachen als Typ
Eigenschaft. Eine Klasse hat immer andere Klassen und Eigenschaften als Attribute, wobei
Eigenschaften lediglich aus einem einfachen oder zusammengesetzten Wert bestehen.

Vater-Kind-Beziehungen zwischen zwei Elementen eines XML-Dokuments werden als inter-
class-Beziehung bezeichnet, wenn beide Elemente vom Typ Klasse sind. Ist das Kind-Element
vom Typ Eigenschaft, so liegt eine class-property-Beziehung vor. Mit Hilfe dieser Unterschei-
dung kann das object-relational Mapping durchgeführt werden.

• Klassen auf Tabellen

• Eigenschaften auf Tabellenspalten

• inter-class-Beziehungen werden zu Primär-Fremdschlüssel-Paaren

• Eigenschaften mit einem einfachen Wert können auf eine Spalte einer Klassen-Tabelle
oder als separate Tabelle abgebildet werden

• Eigenschaften mit zusammengesetztem Wert müssen auf separate Tabellen abgebildet
werden

• Das Wurzelelement wird ignoriert, weil es nur eine syntaktische Funktion erfüllt

• Klassen, die nur Eigenschaften als Attribute besitzen, können aufgelöst werden, indem
die Eigenschaften als Attribute der Basisklasse definiert werden

Anhand der Kategorie General des Standards LOM soll das Ergebnis dieses Verfahrens ex-
emplarisch verdeutlicht werden. Die in Abbildung 4.6(b) angegebenen Unterkategorien ergeben
das vereinfachte Resultat in Abbildung 11.19.

Die Unterkategorie Identifier ist reserviert und kann nicht berücksichtigt werden. Aus
Gründen des Platzes und der Übersicht sind Structure und Aggregation ebenfalls nicht dar-
gestellt, weil sie Vokabulare nutzen, die weitere Tabellen nach sich ziehen. Eine vollständige
Umsetzung ist dann Aufgabe der Implementation.

Mit der Vollständigkeit der Klassen für den Umgang mit Metadaten kann nun wieder
abschließend eine Komponente gebildet werden, wie sie in Abbildung 10.10 zu sehen ist. Auf-
grund der Vielzahl von Klassen umfasst die Darstellung dieses Prozesses nur die besonders
herausragenden. Andere Klassen, die zwar auch essentiell sind, werden in Abbildung 11.20 zu
Gunsten der Übersicht nicht angezeigt.

11.3 Unterstützung von Multimedia

Bei der Erstellung modularer E-Learning-Inhalte kommt eine Autorenumgebung nicht um-
hin, multimediale Inhalte zu unterstützen. Die Anforderungsbeschreibung der Komponente
Multimedia Environment in Unterabschnitt 10.2.2 beschrieb bereits grob den nötigen Funk-
tionsumfang und soll nun verfeinert werden. Grundlegend wurde beschlossen, dass externe

2In XML-Notation tritt dieses Element als Parsed Character Data (PCDATA) oder Character Date (CDA-
TA) auf.

128 Basiskomponenten

1 n

n

1

n

n

Structure_Source

Structure_Value

AggreLevel_Source

AggreLevel_Value

n n

Language

Coverage

Text

Language

LANGUAGE

Katalog

Eintrag

CATALOG_ENTRYGENERAL

Language

Text

Keyword

Lanuage

Text

DESCRIPTION

KEYWORD

COVERAGE

General_ID

General_ID

General_ID

General_ID General_ID

General_ID

TITLE

Language

Text

General_ID

Abbildung 11.19: Datenbankschema für die Kategorie ”General“ aus [Turan04]

MDWriter

MDReader

Metadata

Abbildung 11.20: Bildung der Komponente Metadata

Programme für die Bearbeitung multimedialer Inhalte aufgerufen werden und eine Eigenent-
wicklung nicht in Frage kommt. In Anbetracht des Aufwands, den die adäquate Umsetzung
eines Format wie z.B. Flash verursacht, ist diese Entscheidung vernünftig. Als Lösung wird
nun eine Art Verknüpfung zwischen Anwendungen und Dateien vorgestellt.

Zunächst erhalten die Dateien eine Typisierung, um ihre Inhalte und deren Kodierungen
unterscheiden zu können. Eine Möglichkeit sind die so genannten Multipurpose Internet Mail
Extensions (MIME), deren Spezifikation sich über 5 RFCs erstreckt. Für diese Arbeit ist ledig-
lich der zweite Teil, RFC 2046 [Freed96], interessant, weil er definiert, wie Haupt- und Nebenty-
pen verschiedener Formate kodiert werden. Zur Zeit sind die sieben Haupttypen text, appli-
cation, image, audio, video, message und multipart festgelegt. Ohne weitere Ausführungen
lässt sich bereits erkennen, dass alle relevanten Typen multimedialer E-Learning-Inhalte un-
terstützt werden. Die Nebentypen geben genauere Auskunft darüber, was und vor allem wie
es in einer Datei kodiert ist. Als Beispiel sei der Haupttyp image angeführt, der für Grafiken
und Abbildungen jeglichen Formats steht. Einem Programm zur Anzeige oder Bearbeitung
solcher Dateien reicht diese Information noch nicht aus, denn es gibt viele verschiedene Kodie-
rungen, die ihre Vor- und Nachteile besitzen. Mit verlustbehafteten Komprimierungsverfahren
wie z.B. JPEG lassen sich gut natürliche Bilder wie Fotografien komprimieren. Hingegen gehen
bei synthetischen Grafiken mit vielen Linien, gleichfarbigen Flächen und Schriften wesentliche

11.3 Unterstützung von Multimedia 129

Merkmale verloren. Gravierend wirkt sich die Unterabtastung auf die Qualität aus, wodurch
das Bild unscharf erscheint. Durch verlustfreie Verfahren wie z.B. PNG werden bessere Ergeb-
nisse erzielt. Für eine genaue Unterscheidung der Dateien gibt es folglich die Typen jpeg und
png, die voll ausgeschrieben mit den Haupttypen angegeben werden, also image/jpeg bzw.
image/png.

In der Praxis stellt sich jedoch die Erkennung eines Datentyps als Problem heraus, denn
einer Datei ist von außen nicht ohne weiteres anzusehen, was sie enthält. Viele Dateiforma-
te sind binär kodiert und zudem proprietär, sodass es schwer ist, ein allgemeines Verfahren
zu benennen. Eine Möglichkeit ist die Erstellung so genannter Fingerprints. Mit Hilfe von
Byte Frequency Analysis, Byte Frequency Cross-Correlation Analysis und File Header/Trailer
Analysis werden Muster erkannt, die typisch sind für ein Dateiformat [McDaniel03]. Andere
Verfahren erkennen ”Magic Numbers“, also ganz bestimmte Byte-Folgen. Der große Nachteil
gegenüber den Fingerprints ist die mangelnde Allgemeingültigkeit, denn für jedes Format muss
mindestens eine eigene Regel hinterlegt sein.

Egal, welcher Erkennungsmenchanismus letztendlich eingesetzt wird, haben sie alle ein
Problem gemein: Die zu untersuchende Datei muss mindestens ein Mal geöffnet und analysiert
werden, was entsprechende Rechenzeit benötigt. In Hinblick auf das geplante Einsatzgebiet,
bei dem in verschachtelten Lernobjekten mit möglicherweise hunderten von Dateien gearbeitet
wird, kann es schnell zu Engpässen kommen. Bereits für die Anzeige der enthaltenen Dateien
müssen die Dateitypen bekannt sein, um sie z.B. in einer grafischen Darstellung durch eigene
Icons hervorzuheben. Die genannten Verfahren sind folglich ungeeignet und es muss nach einer
anderen Lösung gesucht werden.

Das Betriebssystem Windows von Microsoft benutzt dreistellige Dateiendungen, um den
Dateityp zu bestimmen. Aber nicht nur die auf den ersten Blick zu erkennende Fehldeutung,
ausgelöst durch eine falsch eingegebene Dateiendung, offenbart Schwächen dieses Systems.
Noch schlimmer sind Angriffe auf den Rechner mit Hilfe kompromittierter Dateien. Ein Mail-
Filter, der sich auf diese Weise austricksen ließe, wäre nicht viel wert. Doch so schwerwiegend
solche Argumente auch sein mögen, für das angestrebte Ziel sind sie wenig von Bedeutung.
Schließlich sollen aus dem Autorensystem Programme aufgerufen werden, die bereits instal-
liert sind. Der gewonnene Geschwindigkeitsvorteil gegenüber den analysierenden Verfahren
rechtfertigt letztendlich die Verwendung von Dateiendungen.

Steht der Typ einer Datei erst fest, muss noch die gewünschte Operation bestimmt wer-
den. Abhängig vom Typ lassen sich Dateien öffnen, bearbeiten, drucken, übersetzen und in
vielen anderen unterschiedlichen Formen nutzen. Die Auswahl kann z.B. über ein Kontextme-
nü aufgerufen werden, das über eine bestimmte Taste oder Mausaktion geöffnet wird und alle
möglichen Operationen anzeigt. Auf diese Weise ist es möglich, eine Datei mit verschiedenen
Programmen zu öffnen, was die Flexibilität erhöht. Die Auswahl der gewünschten Operation
erfolgt über ein Verb, das als Argument an das System übergeben wird. Weil das allgemei-
ne Öffnen in der Praxis die am meisten genutzte Funktion ist, sollte sie in den Programmen
mit dem Doppelklick der Maus verbunden sein. Dieses Verhalten hat sich auf vielen Syste-
men als Standard etabliert und sollte den Anwendern/-innen zuliebe beibehalten werden. Eine
Sonderrolle spielt noch das Erstellen neuer Dateien eines Typs, denn dieser Prozess ist nicht
abhängig vom Kontext irgendeiner Datei. Wo auch immer das aktuelle Arbeitsverzeichnis ist,
sollte diese Aktion mit wenigen Handgriffen möglich sein.

Anhand der beschriebenen Funktionen lassen sich nun die Schnittstellen und Klassen be-
stimmen, die für die Unterstützung multimedialer Dateien benötigt werden. Ein wesentliches
Merkmal ist die Vielzahl der möglichen Operation für einen Dateityp, die irgendwie angesteu-
ert werden wollen. Aus diesem Grund werden sie in einer eigenständigen Klasse zusammenge-
fasst, die sich über eine einheitliche Schnittstelle ansteuern lässt. Abbildung 11.3 zeigt, dass
für den Aufruf lediglich zwei Methoden ausreichen. Der Signatur nach kann eine Datei plus
ein optionales Verb für die Auswahl der Operation als Argumente übergeben werden. Ist kein
Verb angegeben, soll eine Standardoperation, wie das bereits erwähnte Öffnen, ausgeführt wer-

130 Basiskomponenten

den. Die Erstellung einer neuen Datei kommt sogar mit einer Methode aus, wie in Abbildung
11.21(b) zu sehen ist.

processFile(VirtualFile)
processFile(String,VirtualFile)

<<interface>>
ProcessFile

(a) Interface ProcessFile

newFile(VirtualFile)

<<interface>>
NewFile

(b) Interface NewFile

Abbildung 11.21: Interfaces für den Zugriff und die Erstellung von Dateien

Es steht den Entwicklern/-innen frei, ob sie für die Bearbeitung und Erstellung jeweils
unterschiedliche Klassen entwerfen oder sie in einer vereinen. Der Entwurf dieser Arbeit soll
die wichtigsten Formate unterstützen, damit beim Einsatz nicht für jede ”Standarddatei“ erst
eigene Klassen erstellt werden müssen. Zu den unterstützten Formaten gehören Bausteine,
Kurse und eine Beschreibungssprache für Inhalte in XML. Anstatt von Klassen zu reden, die
zwei Schnittstellen implementieren, soll der Begriff Handler eingeführt werden. Zusammen
mit einer Abkürzung des Dateiformats ergeben sich dann Klassen mit Namen, wie sie in
Abbildung 11.22 verwendet werden3.

<<interface>>
NewFile

LobHandler CobHandler MKMLHandler

<<interface>>
ProcessFile

Abbildung 11.22: Drei Handler

Im folgenden Kapitel 12 wird auf die internen Details der Formate für Bausteine und Mo-
delle eingegangen. An dieser Stelle sei festgehalten, dass die Klasse LobHandler für Bausteine
zuständig ist und CobHandler für Kurse. Beide Handler erlauben es, standardkompatible E-
Learning-Inhalte unter Berücksichtigung der Metaphern zu laden, bearbeiten und speichern.
Die Abkürzung ”MKML“ steht für die mαth-kit-Markup-Language, die in [Baudry03] genauer
beschrieben steht. Diese Sprache ermöglicht die Trennung von Inhalt und Darstellung, wie sie
in Abschnitt 3.7 für moderne Lernobjekte gefordert wird.

Mit den Handlern an sich lassen sich einzelne Dateitypen mit Verben erstellen, aber sie
reichen nicht aus, um eine vollständige Dateiverarbeitung anzubieten. Wie soll beispielsweise
mit verschiedenen Klassen für einen Dateityp umgegangen werden, denn bei aufwendigen
Operationen kann es durchaus sinnvoll sein, diese auf mehrere Klassen aufzuteilen, was die
Schnittstellen auch erlauben. Oder was soll passieren, wenn ein Verb aufgerufen wird, das
von mehreren Handlern unterstützt wird? Diesen Fragen wird die Klasse MimeTypeHandler
entgegengesetzt, deren Diagramm in Abbildung 11.23 dargestellt ist.

Diese Klasse verwaltet alle Handler eines MIME-Typs und delegiert von außen kommende
Aufrufe an sie weiter. Über die Methode setExtensions() werden die Dateiendungen an-
gegeben, auf die der MimeTypeHandler reagieren soll. Ein Aufruf der Methode processFile
führt die gewählte Operation aus und sollte kein Verb übergeben worden sein, wird automa-

3Die Abkürzungen
”
Lob“ und

”
Cob“ sind historisch bedingt und haben sich während der Zeit ergeben, als

die Metaphern sich noch nicht endgültig bis zur Ebene der Implementierung durchgesetzt hatten. Sie stehen
für Learning Object bzw. Course Object und sind auch heute noch die verwendeten Dateiendungen. Weil sich
alle Beteiligten des Projekts daran gewöhnt haben und diese Abkürzungen zu festen Begriffen verankert haben,
soll von einer Änderung abgesehen werden.

11.3 Unterstützung von Multimedia 131

addVerbHandler(String, ProcessFile)
removeVerbHandler(String)
setNewHandler(NewFile)
clearNewHandler()
setExtensions(String[])
setDefaultVerb(String)
newFile(VirtualFile)
processFile(VirtualFile)
processFile(String, VirtualFile)
getDefaultVerb():String
getExtensions():String[]
getSupportedVerbs():List

MimeTypeHandler

Abbildung 11.23: Klasse MimeTypeHandler

tisch das zuvor mit setDefaultVerb() gesetzte genommen. Neue Dateien des unterstützten
MIME-Typs werden durch den Aufruf newFile erzeugt.

Mit dieser Klasse ist die Umsetzung des Aufrufmechanismus für einen MIME-Typ vollstän-
dig umgesetzt. Nun fehlt noch eine Verwaltung aller MimeTypeHandler-Objekte, die anhand
der Dateiendung schnell einen passenden Handler auswählt und diesen zurück gibt. Für diese
Aufgabe genügt eine Klasse, wie sie in Abbildung 11.24 zu sehen ist.

setDefaultHandler(MimeTypeHandler)

getHandler(VirtualFile):MimeTypeHandler

addHandler(MimeTypeHandler)
removeHandler(MimeTypeHandler)

clearDefaultHandler()

getNewHandlers():List

getHandlerForExtension(String):MimeTypeHandler
getHandlerForType(String):MimeTypeHandler

MimeTypeMap

Abbildung 11.24: Klasse MimeTypeMap

Wie zu erwarten, bietet sie Methoden zum Hinzufügen, Löschen und Auffinden von Hand-
lern an. Neben den geforderten Dateiendungen (getHandlerForExtension()) kann auch der
MIME-Typ direkt für die Auswahl herangezogen werden (getHandlerForType()). Eine sehr
interessante Methode ist getDefaultHandler(), mit dem Dateien eines Typs geöffnet werden,
für die kein expliziter Handler definiert ist. Auf diese Weise kommt die Komponente für die
Bearbeitung multimedialer Inhalte nie in die Verlegenheit, mit einer Datei nichts anfangen
zu können. Für die Implementierung sind betriebssystemabhängige Standard-Handler vorge-
sehen, die bei Bedarf von dieser Methode zurückgegeben werden. Sie delegieren den Aufruf
an das Betriebssystem weiter und können sogar weitere Informationen liefern, wie z.B. die
unterstützten Verben. Der vorgestellte MIME-Typ-Mechanismus bietet somit mindestens die
gleichen Möglichkeiten im Umgang mit Dateien an wie das Betriebssystem. Zuletzt sei noch
die Methode getNewHandlers() erwähnt, die einen kontextfreien Zugriff auf alle Handler zur
Erstellung einer Datei eines bestimmten Typs gestattet.

Ein kleines Beispiel soll anhand eines Objektdiagramms das Zusammenspiel der vorge-
stellten Klassen verdeutlichen. Der Einfachheit halber kommt der MIME-Typ-Mechanismus
in Abbildung 11.25 mit zwei MIME-Typen aus, die von insgesamt sechs Handlern verarbeitet
werden können.

Abschließend soll aus den erstellten Klassen eine Komponente für die Rolle Developer
erstellt werden, wie sie in Abbildung 10.11 zu sehen ist. Der Herleitungsprozess in Abbildung
11.26 enthält wie immer der Übersicht halber nicht alle Klassen.

132 Basiskomponenten

verb=Edit

:ProcessFile

verb=Print

:ProcessFile

verb=Open

:ProcessFile

:NewFile

:MimeTypeMap

type=TEXT/HTML

:MimeTypeHandler verb=Open

:ProcessFile

:NewFile

type=TEXT/XML

:MimeTypeHandler

Abbildung 11.25: Objektdiagramm mit zwei unterstützen MIME-Types

MimeTypeMap

MimeTypeHandler

<<interface>>
NewFile

<<interface>>
ProcessFile

Multimedia
Environment

Abbildung 11.26: Bildung der Komponente Multimedia Environment

Kapitel 12

Baustein und Kurs

In diesem Kapitel werden alle Komponenten zur Erstellung, Bearbeitung und Verwaltung
von modularen E-Learning-Inhalten entworfen. Hierbei unterscheidet sich die Vorgehenswei-
se gegenüber dem in Kapitel 11 beschriebenen durch eine andere Klassenbildung. Gleichwohl
auch bei diesen Komponenten das Ziel die Erstellung generischer Libraries ist, wird aufgrund
der inhärenten Ähnlichkeit von Baustein sowie Kurs zum Content Packages eine abstraktere
Abbildung entstehen. Nach außen präsentieren die Komponenten Learning Object Deve-
lopment und Structure Development unterschiedliche Schnittstellen, aber intern wird zu
einem großen Teil auf die gleiche Klassen zurückgegriffen. Die grafische Ansteuerung ist sehr
individuell und sollte nicht als Teil des Entwurfs betrachtet werden. Ein konkretes Beispiel
für eine grafische Oberfläche, wie sie im Projekt mαth-kit eingesetzt ist, wird im Teil über die
Implementierung gegeben.

12.1 Bindung an Standards

Ein erster Versuch der Modellierung wäre, das Problem bzw. den Prozess zu analysieren und
daraus die passenden Klassen herzuleiten. Aus dieser ”üblichen“ Perspektive geht allerdings
schnell ein wichtiges Detail verloren: der Austausch von Inhalten mit anderen Systemen. Im
Kapitel 3 über Lernobjekte wurde der Einsatz von Standards vorgeschlagen, um Inkompati-
bilitäten vorzubeugen. Die Gestaltung des Klassenmodells kommt somit nicht umhin, diesen
bedeutenden Aspekt zu berücksichtigen. Hierbei treten die selben Widersprüche zwischen ge-
ringer Komplexität und Vielseitigkeit auf, wie bereits im vorherigen Kapitel 11 bei den Meta-
daten. Dem Wunsch, möglichst viele Standards unterstützen zu wollen, steht eine einheitliche
und übersichtliche Schnittstelle der API entgegen. Wenn möglich, sollten keine Spezialfälle
berücksichtigt werden, um nicht die Kohäsion der Klassen abzuschwächen.

Zu den verbreitetsten Standards für Lernobjekte sind das IMS Content Packaging und das
Sharable Content Object Reference Model (siehe Abschnitt 3.5 und 3.6) zu zählen, die sich zum
Glück sehr ähneln. Sie bieten sich an, den technischen Rahmen für den Entwurf von Baustein
und Kurs zu stellen. Für die fachliche Beschreibung dienen die Definitionen der Metaphern
aus Abschnitt 10.4, deren Eigenschaften das wesentliche Erscheinungsbild prägen.

Diese Herangehensweise, die Standards dermaßen einzubeziehen, ist nicht offensichtlich
und bedarf einer Erklärung. Denn selbst den Spezifikationen ist eine derartige Nähe zu den
Implementierungen nicht entnehmbar. Eigentlich sind die Standards für den Austausch zwi-
schen den Systemen gedacht und nicht für die direkte Verwendung in Applikationen. Doch
warum soll dieser ungewöhnliche Weg beschritten werden? Weil sich hieraus verschiedene Vor-
teile ergeben. Zwar ist es beim Entwurf freilich angenehmer, ein Klassenmodell zu erstellen,
das keinen externen technischen Einschränkungen unterliegt, aber spätestens beim Austausch
mit anderen Systemen muss die Standardkompatibilität bedacht werden. Mit mehr oder we-
niger Mühen muss dann das eigene Modell auf die vorgegebenen Datenstrukturen abgebildet
werden, oft mit mäßigem Erfolg. Die beiden vorgeschlagenen Standards sind leider so flexibel,

134 Baustein und Kurs

dass Content Packages im schlimmsten Fall proprietäre Daten enthalten, die doch wieder nur
mit speziellen Programmen genutzt werden können. Echte Austauschbarkeit bleibt so auf der
Strecke und die resultierenden Konsequenzen zeigen sich in den vorgestellten Produkten aus
Kapitel 5. Sie produzieren letztendlich inkompatible Dateien, die im Gewand der Standard-
konformität daher kommen und Versprochenes nicht einlösen.

Durch die direkte Verwendung der Standards tritt dieses Problem erst gar nicht auf. Doch
wie steht es mit den Anforderungen der Metaphern? Lassen sich die Standardformate so nut-
zen, dass sie sich wie Bausteine zu höheren Strukturen zusammensetzen lassen? Auch wenn
diese Funktion abermals nicht explizit den Spezifikationen zu entnehmen ist, lässt sich solch ein
rekursiver Ansatz verwirklichen. Über komplexer werdende Bausteine und Kurse wird sich der
eigentlichen Lösung genähert. Abbildung 12.1 zeigt die einfachste Variante eines Lernobjekts
als Content Package, angelehnt an die Bausteinmetapher.

HTML

HTML

HTML

HTML

WAV

PNG

PNG

Applet

PNG

HTML

Abbildung 12.1: Ein einfacher Baustein aus [Bungenstock04a]

Auf der linken Seite ist das Manifest zu erkennen, das eine hierarchische Struktur enthält.
Die Knoten haben als Attribute Referenzen auf die rechts stehenden physikalischen Dateien,
die den Inhalt des Lernobjekts ausmachen. Es handelt sich um einen Baustein, wie er von der
Rolle Developer erstellt wird. Bei dieser üblichen Form des Content Packages gibt es wenig
technische Herausforderungen. Lediglich die Speicherung der Dateien und der Aufbau das
Manifests müssen modelliert werden. Auch wenn diese Funktionen bereits einige Überlegungen
benötigen, um zu einer geschickten Lösung zu gelangen, stellt der nächste Schritt, nämlich die
Komposition verschiedener Bausteine zu einem Kurs, die eigentliche Herausforderung dar.

Es stehen zwei Möglichkeiten für die Umsetzung zur Auswahl. Die erste, bei der Bausteine
auf Submanifeste abgebildet werden, ist von den Spezifikationen explizit vorgesehen. Bei der
Komposition von Bausteinen werden die Dateien in ein Content Package kopiert und die
Manifeste zu einem großen Manifest zusammengeführt. Jedes Manifest eines Bausteins wird
auf diese Weise zu einem Submanifest, das über ein Item referenziert wird. Das Resultat ist
in Abbildung 12.2 wieder als vereinfachte Bausteingrafik dargestellt.

HTML

HTML

HTML

HTML

WAV

PNG

PNG

Applet

PNG

HTML

Abbildung 12.2: Baustein mit Submanifesten aus [Bungenstock04a]

12.1 Bindung an Standards 135

Im Gegensatz zur vorherigen Abbildung setzt sich die hierarchische Struktur aus Subma-
nifesten zusammen. Bei den Dateien hat sich gegenüber der ersten Variante nichts geändert,
denn sie liegen zusammen auf einer physikalischen Ebene. Es gibt aber dennoch einen Un-
terschied, der den Prozess der Komposition betrifft. Wenn zwei Bausteine zusammengesetzt
werden, kommt es zu einer Vermischung der Dateien auf Verzeichnisebene. So lange die Datei-
en unterschiedliche Namen haben, ist dieser Vorgang unkritisch. Doch sobald sie sich gleichen,
müssen die Dateien mit unterschiedlichen Namen oder an verschiedenen Orten gespeichert
werden. Letzteres kann über Verzeichnisse geregelt werden, die in Content Packages erlaubt
sind. Diese Strategie führt zwar zu richtigen, aber möglicherweise nicht zu optimalen Ergebnis-
sen. Es sei z.B. ein Java Applet angenommen, das über einen Konfigurationsmechanismus eine
Vielzahl von Aufgaben und Tests ermöglicht. Aufgrund dieser Flexibilität ist es 2 MB groß
und wird in fünf Bausteinen verwendet, die zu einer höheren Struktur kombiniert werden. Das
Ergebnis ist ein Content Package mit einer Größe von mindestens 10 MB, obwohl eine Größe
von ca. 2 MB möglich ist. Es kann sich folglich lohnen, die Dateien inhaltlich zu vergleichen,
um solche Redundanzen zu vermeiden.

Diese Form der Komposition von Bausteinen ist einfach umzusetzen, weil sie dem Aufbau
eines einzelnen Bausteins ähnelt. Lediglich Submanifeste und eine etwas umfangreichere Da-
teiverwaltung müssen integriert werden. Kritisch betrachtet, ähnelt dieser Ansatz aber nicht
zusammengesetzten Bausteinen, denn für die Dekomposition von Kursen muss zuvor die inter-
ne Struktur analysiert werden. Aus einem Submanifest wird dann ein oberstes Manifest und
ergibt zusammen mit allen Dateien einen neuen Baustein. Die ursprüngliche Form steht nicht
mehr zur Verfügung, weil sie bei der Komposition verworfen wurde.

Um eine nähere Verbindung zu den Bausteinen und ihren Eigenschaften zu ermöglichen,
wird nun die zweite Möglichkeit der Komposition vorgestellt. Anstatt die beteiligten Content
Packages bei diesem Prozess aufzulösen, sollen sie lieber direkt als physikalische Ressourcen
genutzt werden. Abbildung 12.3 zeigt die verschachtelten Content Packages in Form von Bau-
steinen und verdeutlicht den Unterschied zu der Lösung mit Submanifesten.

Abbildung 12.3: Verschachtelte Bausteine aus [Bungenstock04a]

Diese Kombination von Lernobjekten erscheint wesentlich intuitiver, zieht aber technische
Konsequenzen nach sich, die nicht unterschätzt werden dürfen. Da es sich bei jedem Content
Package um eine geschlossene physikalische Einheit handelt, ist der Aufwand für die Dar-
stellung der Gesamtstruktur erhöht. Es ist nicht auf den ersten Blick ersichtlich, wie viele
und welche Dateien in allen Bausteinen enthalten sind. Auch die Strukturbeschreibung liegt
über mehrere Manifeste verteilt, die erst zusammengetragen werden müssen, bevor sie genutzt
werden können. Im Sinne der Verständlichkeit und der Metaphern lohnt sich dieser Aufwand
dennoch.

Doch wie steht es mit der Kompatibilität zu anderen Anwendungen? Sie ist ein wirkliches
Problem, dass bereits im Entwurf angegangen werden muss. Andere Autorensysteme und
Lernplattformen sind freilich nicht in der Lage, eine richtige Interpretation zu leisten. Nun
ist aber genau der Austausch zwischen unterschiedlichen Systemen das Hauptargument für

136 Baustein und Kurs

den Einsatz der Standards gewesen und sollte nicht durch das Konzept verhindert werden.
Diesem Manko kann durch Umwandlung begegnet werden, indem verschachtelte Bausteine zu
einem einfachen Content Package konvertiert werden. Hierfür wird einfach der Prozess der
Komposition nachgebildet, wie er bereits für Kurse mit Submanifesten beschrieben wurde.
Werden die in den Abbildungen 3.8 und 3.9 dargestellten Regeln aus dem Abschnitt 3.5 auf
die Submanifeste angewandt, können verschachtelte Bausteine sogar mit einem Hauptmanifest
erzeugt werden. Dieses sehr einfache Format aus Abbildung 12.1 müssen alle Anwendungen
interpretieren können, die sich als standardkompatibel ausgeben.

Eine Umsetzung der Bausteine und Kurse unter Einhaltung der Kompatibilität ist also
konzeptionell möglich. Für die physikalische Speicherung der Daten innerhalb der Content
Packages kann die Dateisystem-API aus dem Kapitel 11 herangezogen werden. Mit Hilfe
der Vererbung entstehen neue Dateisysteme, die genau den Ansprüchen, insbesondere den
Schwierigkeiten durch die mögliche Verschachtelung, gerecht werden. Letztendlich wird nur
noch eine API für den Aufbau von Manifesten gebraucht, um die Umsetzung der Standards
zu vervollständigen. Die nächsten beiden Abschnitte beschreiben die Herleitungen im Detail.

12.2 Physikalische Dateien

Wie in Abschnitt 3.5 beschrieben, unterscheidet die Spezifikation des IMS Content Packa-
ging zwei Formen der physikalischen Datenhaltung: logische Verzeichnisse, Package genannt,
und die Zusammenfassung in einer Datei, als Package Interchange File (PIF) bezeichnet. Wie
gehabt wird der Begriff Package als Synonym für PIF genutzt, es sei denn, ein wesentlicher
Unterschied soll herausgestellt werden. Da es sich bei dieser Unterscheidung eigentlich um ein
technisches Detail handelt, soll der Zugriff über eine Schnittstelle, genauer gesagt eine Klasse,
erfolgen. Für den Entwurf der Klassen ist es dennoch ungemein wichtig, diesen Unterschied
zu berücksichtigen, um verschiedenen Implementationen und zukünftigen Entwicklungen ge-
wachsen zu sein. Die Basisklassen für die folgenden Überlegungen sind die Klassen VFSNode
(siehe Abbildung 11.7) und VFS (siehe Abbildung 11.9) aus Unterabschnitt 11.1.2.

Aus den Gemeinsamkeiten von Package und PIF kann eine Klasse entstehen. Doch wel-
che Eigenschaften sind gleich, welche unterschiedlich? Besonders die PIFs können in ihrer
Umsetzung stark variieren. Da die Spezifikation die unbedingte Unterstützung von RFC 1951
(ZIP) verlangt, soll sie als Referenzimplementation dienen. Eigentlich für die Archivierung und
den Datenaustausch gedacht, weist dieses Format Schwächen auf, die sich auf die Umsetzung
auswirken. So ist es beispielsweise nicht möglich, in eine bestehende Datei neue Dateien hinzu-
zufügen, sie zu entfernen oder in irgendeiner Form zu bearbeiten1. Als Konsequenz muss jedes
PIF vor der Bearbeitung entpackt werden, z.B. in ein Verzeichnis eines anderen Dateisystems.
Dieser Schritt entspricht einer Umwandlung von einem PIF zu einem Package, sodass, wenn er
transparent erfolgt, lediglich ein Mechanismus für den Umgang mit Packages entwickelt wer-
den muss. Eine abschließende Rückumwandlung bei PIFs, es wird der Vollständigkeit halber
erwähnt, vollzieht sich genauso automatisch.

Die Idee für die Umsetzung dieser Funktionalität ist ein Dateisystem, das ein temporä-
res Verzeichnis erstellt, in dem das Dateisystem eines Packages vorübergehend gespeichert
wird. Hierfür werden beim Öffnen alle Dateien umkopiert und nach Abschluss der Bearbei-
tung wieder zu einem Package zusammengesetzt. Eine interne Übersetzung der Pfade auf die
temporären erfolgt über die Klasse TempFSNode, die in Abbildung 12.4 dargestellt ist.

Es wurden keine neuen Methoden hinzugefügt, sondern die abstrakten implementiert. Ein
kurzes Beispiel soll ein besseres Verständnis der Funktionalität geben. Innerhalb eines Packages
befinden sich zwei Dateien, ein Manifest in XML (imsmanifest.xml)und eine HTML-Seite
(index.html). Das Dateisystem für temporäre Dateien, auf das gleich genauer eingegangen

1Ohne weiter auf Details eingehen zu wollen, erschließt sich diese Aussage aus der Natur der Kodierung mit
einem Huffman-Code. Jegliche Änderung des Inhalts zieht eine Änderung am Alphabet nach sich und erfordert
eine Umkodierung der anderen Inhalte.

12.2 Physikalische Dateien 137

VFSNode

TempFSNode

Abbildung 12.4: Klasse TempFSNode

wird, kopiert diese beiden Dateien in ein temporäres Verzeichnis mit dem Pfad /var/tmp/pifs,
was den Anwendern/-innen nicht mitgeteilt wird. Sie benutzen in ihrer Anwendung die Pfade
des Packages, also /index.html anstatt /var/tmp/pifs/index.html. Umgewandelt werden
die Pfade in der Klasse TempFSNode.

Um nicht den Eindruck aufkommen zu lassen, dass dieser Mechanismus nur für PIFs be-
nötigt wird, sei auf die Möglichkeit des Abbruchs hingewiesen. Alle ausgeführten Operationen
müssen umkehrbar sein, wenn die Änderungen doch nicht gespeichert werden. Wurde die Be-
arbeitung auf dem Original ausgeführt, dann ist eine Herstellung des ursprünglichen Zustands
schwierig. Deshalb ist es besser, auf einer Kopie zu arbeiten, die bei Bedarf zurückgespeichert
wird. Doch bevor auf diese Operation näher eingegangen wird, soll noch das Dateisystem für
temporäre Dateien behandelt werden. Abbildung 12.5 zeigt die Klasse TempFS, die zwei neue
Methoden einführt.

dispose()
getTmpFile(VirtualFile):VirtualFile

VFS

TmpVFS

Abbildung 12.5: Klasse TempFS

Die Methode dispose() entfernt alle temporären Dateien und mit Hilfe von getTmpfile()
lassen sich die lokalen Dateien auf die temporären physikalischen abbilden.

Weil die API allgemein gehalten wird und diese Klasse optimal für die Haltung temporä-
rer Dateien ist, wird der Rückweg, die temporären Dateien in Packages zu speichern, in eine
andere Klasse ausgelagert. Dies mag auf den ersten Blick nicht ersichtlich sein, aber durch die
nächste Ebene, die lediglich eine allgemeine Schnittstelle für den Zugriff auf die Implementatio-
nen gestattet, wird der Entwurf klarer strukturiert. Bei der Speicherung müssen verschiedene
Zustände berücksichtigt werden, die sich in den Methoden der Klasse SavableFS widerspie-
geln. Weil sich keine strukturellen Veränderungen auf der Ebene der Dateien ergeben, muss
für dieses Dateisystem keine eigenen Knoten-Klasse erstellt werden. Abbildung 12.6 zeigt das
entsprechende Diagramm für das Dateisystem.

Entweder wird ein existierendes Package geöffnet, oder es wird neu erzeugt. Die Feststel-
lung des initialen Ausgangspunkt erfolgt über die Methode getFile(). Wenn der Inhalt des
Dateisystems die Kopie aus einer Datei ist, wird genau diese zurückgegeben. Andernfalls ist
der Wert null. Als Vereinfachung für den Test in booleschen Ausdrücken wird das Prädikat
hasFile() angeboten. Über die Methode save() wird, wenn das Prädikat den Wert ”wahr“
liefert, der aktuelle Zustand des temporären Verzeichnisses in die Datei geschrieben. Hiernach
kann mit dem Dateisystem normal weiter gearbeitet werden, bis die Methode close() aufge-
rufen wird, die endgültig alle belegten Ressourcen freigibt. Die eigentliche Speicherung erfolgt
über die Methode save(VirtualFile), der eine Datei als Ziel mitgegeben wird. Sie ist als
abstrakt definiert und muss in den Unterklassen implementiert werden. Da bereits am Anfang

138 Baustein und Kurs

save()

getFile():VirtualFile
hasFile():Boolean

save(VirtualFile) {abstract}

TmpVFS

{abstract}
SavableVFS

Abbildung 12.6: Klasse SavableFS

dieses Abschnittes festgestellt wurde, dass es nur zwei Formen der Speicherung gibt, sind in
Abbildung 12.7 die Pendants abgebildet. Beide Klassen, ZipFS und DirectoryFS, bieten keine
neue Methoden an, sondern implementieren die Speicherung.

SavableFS

ZipFS DirectoryFS

Abbildung 12.7: Die Unterklasse ZipFS und DirectoryFS

Es bleibt festzuhalten, dass über die Schnittstelle der Klasse SavableFS ein einheitlicher
Zugriff auf verschiedene Typen von Content Packages möglich ist, der die Konstruktion von
Baustein- und Kurs-Klassen sehr einfach hält. Auch die Handhabung verschachtelter Inhalte
ist durch den orthogonalen Ansatz kein Problem mehr. Was noch fehlt, ist die Modellierung
der Manifeste, die im folgenden Abschnitt behandelt wird.

12.3 Manifest

Das Manifest beschreibt die Struktur sowie Ressourcen der Bausteine und Kurse. Eine Mo-
dellierung dieses ”Bauplans“ lässt sich leicht aus den Spezifikationen der Standards IMS CP
und SCORM ableiten. Da die Manifeste für Bausteine eine echte Untermenge der Manifeste
für Kurse sind, können beide über einen Entwurf dargestellt werden. Auch die marginalen
Unterschiede zwischen den beiden Standards, die nur in zusätzlichen Attributen liegen, behin-
dern dieses Vorhaben nicht. So wie es bereits XML-Bindings für Manifeste gibt, soll nun ein
objektorientiertes Modell hinzukommen, das sich in dieser Arbeit OO-Binding nennt. Die
Datenstruktur eines Manifests in Abbildung 3.7 ist ein guter Ausgangspunkt, um die folgenden
Überlegungen besser nachvollziehen zu können.

In den XML-Bindings werden 10 Elemente mit ihren Attributen definiert. Für eine objek-
torientierte Darstellung ist es wichtig, Gemeinsamkeiten sowie Unterschiede deutlich heraus-
zustellen und die Assoziationen untereinander zu benennen. Tabelle 12.1 listet alle Elemente
sowie deren relevanten Eigenschaften auf.

Eltern-Elemente können andere Elemente als Kind-Elemente enthalten und obligato-
rische Elemente sind Elemente, die immer mit ihrem Eltern-Element bzw. als Wurzelelement
im Manifest enthalten sein müssen. Nach UML wird diese Assoziation als Komposition be-
zeichnet, da die Existenzberechtigung obligatorischer Elemente vom Aggregat (dem Ganzen)
abhängt. Ausnahmen sind die Elemente manifest und item, weil sie kontextabhängig sind.
Als oberstes Element verkörpert manifest schlichtweg ein Manifest und ist obligatorisch ein-

12.3 Manifest 139

E
lt
er

n
-E

le
m

en
t

K
in

d
-E

le
m

en
t

O
b
li
g
a
to

ri
sc

h

B
ez

ei
ch

n
er

R
ef

er
en

zi
er

t

X
M

L
:B

a
se

M
et

a
d
a
te

n

Ä
n
d
er

u
n
g
en

dependency # # # # #
file # # # # #
item G# #
manifest G# #
metadata # # # # #
organization # # #
organizations # # # #
resource # #
resources # # #
title # # # # # #

 : ja #: nein G#: beides

Tabelle 12.1: Gemeinsame Eigenschaften der Manifest-Elemente aus [Bungenstock04b]

zusetzen. Tritt es jedoch als Submanifest auf, ist es optional. Ähnlich verhält es sich mit dem
item, denn in einem Element organization ist es obligatorisch und als Subitem optional.
Manche Elemente sind mit Bezeichnern (ID) versehen, um sie von anderer Stelle aus refe-
renzieren zu können. Diese IDs müssen innerhalb des gesamten Manifests eindeutig sein. Die
Eigenschaft XML:Base ist für Kind-Elemente mit URLs als Attributwerten von Bedeutung,
weil relative URLs immer gegen die nächste XML:Base aufgelöst werden. Metadaten sind
zusätzliche Daten, wie sie in Kapitel 4 beschrieben sind. Mit der Eigenschaft Änderungen
ist die Modifizierbarkeit der Elemente gemeint, die für alle zutrifft.

Bevor aus den Werten der Tabelle 12.1 die nötigen Klassen hergeleitet werden, können ein
paar Elemente als relevante Klasse ausgeschlossen werden. Bei title handelt es sich mehr
um ein Attribut als ein eigenständiges Element, sodass es durch eine einfache Zeichenkette
dargestellt werden kann. Die Klasse Title in Abbildung 12.8(a) ist somit Bestandteil der
Klassen Organization sowie Item und kann entfallen.

Item

Title

Organization

(a) Kompositionen mit Title

Organizations

Manifest

Resources

(b) Komposition mit Resources und Orga-

nizations

Abbildung 12.8: Strukturierte Adresse

Auch resources und organizations tragen keine komplexen Strukturen bei und können
durch einfache Basistypen wie Array oder Liste realisiert werden. Abbildung 12.8(b) zeigt die
mögliche Komposition, welche die Klassen Resources und Organizations überflüssig macht.

Aus Tabelle 12.1 ist ersichtlich, dass alle Elemente zwei Eigenschaften besitzen, die sich in
einer gemeinsamen Basisklasse zusammenfassen lassen: Jedes Element kann als Kind-Element
auftreten und ist modifizierbar. Um der hierarchischen Struktur gerecht zu werden, lautet ihr
Name HierarchicalElement. Abbildung 12.9 zeigt die Basisklasse aller Elemente.

Die ersten drei Methoden sind für die Benachrichtigungen bei Veränderungen zuständig.
Jede Klasse, die über Änderungen in einem Element in Kenntnis gesetzt werden möchte,
muss das Interface ModificationListener implementieren und sich zur Laufzeit über die
Methode addListener() als Objekt anmelden. Sobald ein Element eine Änderung erfährt, ruft

140 Baustein und Kurs

addListener(listener:ModificationListener)
removeListener(listener:ModificationListener)
#propagateModification(mod:Modification)
setParentElement(parent:HierarchicalElement)
clearParentElement()

HierarchicalElement
{abstract}

hasParentElement():Boolean
getParentElement():HierarchicalElement

Abbildung 12.9: Klasse HierarchicalElement

es die Methode propagateModification() auf, die alle angemeldeten Objekte benachrichtigt.
Abbildung 12.10 zeigt das zugehörige Sequenzdiagramm.

setValue()

propagateModification()

processModification()

processModification()

processModification()

listener 1 listener 2 listener nelement

Abbildung 12.10: Sequenzdiagramm für den Benachrichtigungsmechanismus

Soll ein Objekt nicht weiter über Veränderungen benachrichtigt werden, kann es dies über
die Methode removeListener bekannt geben. Die restlichen Methoden sind für das Elternele-
ment zuständig, mit denen es gesetzt, gelöscht und abgefragt werden kann.

Die Metadaten werden selbstverständlich über die Klassen aus Abschnitt 11.2 verwaltet.
Für den Zugriff über das Manifest wird die Klasse MDElement eingeführt, die eine Spezialisie-
rung von HierarchicalElement ist. Über ihre Methoden können Metadatenstrukturen mit
der Schnittstelle MetaData gesetzt und abgefragt werden, sodass keine direkte Verbindung zu
einem bestimmten Standard besteht. Abbildung 12.11 zeigt das entsprechende Diagramm.

setMetaData(md:MetaData)
clearMetaData()
getMetaData():MetaData
hasMetaData():Boolean

MDElement
{abstract}

HierarchicalElement

Abbildung 12.11: Klasse MDElement

Vier Elemente haben Bezeichner, über die sie eindeutig identifiziert werden können. Hierfür
muss gewährleistet sein, dass jeder Bezeichner eindeutig ist und im Falle einer Referenzierung
auch tatsächlich existiert. Da alle Elemente mit einem Bezeichner auch Metadaten haben

12.3 Manifest 141

können, kann die Klasse IDElement direkt von MDElement erben. Abbildung 12.12 zeigt das
zugehörige Klassendiagramm.

{abstract}

MDElement

setID(String)
adaptID()

IDElement

getID():String
getDefaultID():String
containsID():Boolean

#freeID()
#reserveID()
isUnique():Boolean

Abbildung 12.12: Klasse IDElement

Wenn ein Objekt mit den Eigenschaften der Klasse IDElement erzeugt wird, gibt es ver-
schiedene Möglichkeiten, den Bezeichner zu bestimmen. Initial wird die Methode getDefaul-
tId() im Konstruktor aufgerufen und mit setID() gesetzt. Letztere Methode kann auch nach-
träglich aufgerufen werden, um einen eigenen Bezeichner zu vergeben. Hierbei wird allerdings
keine Konsistenzprüfung durchgeführt, sodass entweder durch das Prädikat isUnique() die
Eindeutigkeit bestätigt wird oder gleich mit adaptID() eine automatische Anpassung erfolgt.

Die Überprüfung selbst ist keine triviale Angelegenheit, weil sie in einer hierarchischen
Struktur erfolgt. Aus diesem Grund gibt es zwei Methoden, die bei der Reservierung und
Freigabe von Bezeichnern unterstützend wirken. Mit reserveID() wird im gesamten Baum
bekannt gegeben, dass ein Element einen bestimmten Bezeichner für sich beansprucht. Ob dies
überhaupt möglich ist, kann mit containsID() vorab überprüft werden. Bei der Entfernung
eines Elements wird über freeID() der Bezeichner freigegeben, damit er bei Bedarf neuen
Elementen zur Verfügung steht.

Eine weitere Aufteilung der gemeinsamen Eigenschaften auf allgemeine Klassen lässt sich
nicht sinnvoll weiterführen. Daher sollen nun die Klassen für die konkreten Manifest-Elemente
hergeleitet werden. In umgekehrter Reihenfolge der entwickelten Basisklassen, also von ID-
Element zu HierarchicalElement, werden sie vorgestellt. Aus Tabelle 12.1 wird entnommen,
dass es genau vier Elemente mit Bezeichnern gibt, nämlich item, manifest, organization
und resource. Abbildung 12.13 zeigt das entsprechende Klassendiagramm.

Die einzelnen Klassen zeigen bei Weitem nicht alle Methoden, denn zu spezielle Funkti-
onen und Attribute wurden übersichtshalber ausgelassen. Aus dieser Vereinfachung darf freilich
nicht eine Irrelevanz für die Implementierung gefolgert werden. Im Wesentlichen verwalten die
vier Klassen ihre Unterelemente, deren genauen Beziehungen sich gut in Abbildung 3.7 nach-
vollziehen lassen. Einige der Methoden bieten Zusatzfunktionen zur Umsetzung der Metaphern
an. Beispielsweise integriert flatten() alle Submanifeste in das oberste Manifest, sodass die
Umwandlung von verschachtelten Bausteinen zu flachen Content Packages vereinfacht wird.

Die Klasse File erbt direkt von MDElement, weil sie zwar Metadaten zu der jeweiligen
Datei anbietet, aber keinen Bezeichner erhält. Abbildung 12.14 zeigt das Klassendiagramm.

Intern nutzt diese Klasse eine URL zum Adressieren einer physikalische Datei. Neben
den Methoden zur Manipulation dieser Referenz bietet File das Prädikat isLocal() an, mit
dem überprüft wird, ob die Datei Bestandteil des Content Packages ist. Diese Funktion ist
besonders für die Datenhaltung von E-Learning-Inhalten wichtig, weil sie das Auffinden von
Abhängigkeiten vereinfacht.

Das letzte Element ist dependency und dessen Klasse erbt direkt von der Hierarchical-

142 Baustein und Kurs

addItem(Item)
removeItem(Item)

decPosition()
incPosition()

setTitle(String)
clearTitle()
getItem(String):Item
getItem(int):Item
getItems():List
getItemCount():int
getTitle():String

Item

addFile(File)
removeFile(File)
addDependency(Dependency)
removeDependency(Dependency)
incPosition()
decPosition()
getFile(int):File
getFiles():List
getFileCount():int
getDependency(int):Dependency
getDependencies():List
getDependencyCount():int

Resource

getItem(String):Item

addItem(Item)
removeItem(Item)

decPosition()
incPosition()

setTitle(String)
clearTitle()

getItem(int):Item
getItems():List
getItemCount():int
getTitle():String

Organization

addManifest(Manifest)
removeManifest(Manifest)
addOrganization(Organization)
removeOrganization(Organization)
addResource(Resource)
removeResource(Resource)
incPosition()
decPosition()
flatten()
getManifest(String):Manifest
getManifest(int):Manifest
getManifests():List
getManifestCount():int
getOrganization(String):Organization
getOrganization(int):Organization
getOrganizations():List
getOrganizationCount():int
getResource(String):Resource
getResource(int):Resource
getResources():List
getResourceCount():int

Manifest

IDElement

Abbildung 12.13: Die Klassen Item, Manifest, Resource und Organization

setHref(String)
setHref(URL)
clearHref()
getHref():String
getFile():VirtualFile
hasHref():Boolean
isLocal()

MDElement

File

Abbildung 12.14: Klasse File

12.4 Content Package 143

Element. Sie enthält lediglich eine Referenz auf ein anderes Resource-Objekt, das für eine
ordentliche Ausführung benötigt wird. Abbildung 12.15 zeigt das Klassendiagramm.

HierarchicalElement

Dependency

setResource(String)
setResource(Resource)
clearResource()
getResource():Resource
hasResource():Boolean

Abbildung 12.15: Klasse Dependency

Nun ist das OO-Binding vollständig und kann zur Erstellung und Bearbeitung von Ma-
nifesten genutzt werden. Die Klassenhierarchie in Abbildung 12.16 fasst die Ergebnisse dieses
Abschnitts zusammen.

Dependency

File

Item Manifest Organization Resource

MDElement

IDElement

Hierarchical Element

Abbildung 12.16: Klassenhierarchie der Manifest-Elemente

12.4 Content Package

Mit den Klassen für die Speicherung der physikalischen Dateien und des Manifests sind die
Grundlagen für die Modellierung des Content Packages gelegt. Weil bereits auf dieser Ebene
die Standardkompatibilität gewährleistet ist, fällt die folgende Klassenstruktur übersichtlich
und kompakt aus. Im Grunde genommen sind die Klassen SavableFS und Manifest Aggregate
in einer kapselnden Klasse, die hier den Namen ContentPackage trägt. Abbildung 12.17 zeigt
die Komposition und die relevanten Methoden.

Die Schnittstelle setzt sich im Wesentlichen aus Methoden zusammen, die Aufrufe an Datei-
system und Manifest weiterleiten. Lediglich die Unterscheidung, ob es sich bei einem Content
Package um ein logisches Verzeichnis oder eine gepackte Datei handelt, wird in dieser Klas-
se verwaltet. Hierzu wird im Konstruktor der übergebene Pfad überprüft und das jeweilige
Objekt erzeugt. Ist dies bei einem Verzeichnis noch recht einfach, die Klasse VirtualFile bie-
tet entsprechende Methoden an, kann die Unterscheidung zwischen ZIP-, CAB- und anderen
Dateien aufwendiger sein. Das folgende Verfahren ist recht simpel und kann in der Imple-
mentierung durch ein effizienteres ersetzt werden. In der Regel erkennen die Klassen für das

144 Baustein und Kurs

addFile(VirtualFile)
removeFile(VirtualFile)
readManifest()
writeManifest()
getManifest():Manifest
getFileSystem():SavableFS
getFile()
save()
save(VirtualFile)
merge()
hasFile():Boolean
isPIF():Boolean
isPackage():Boolean
isModified()

ContentPackage
SavableFS

Manifest

Abbildung 12.17: Klasse ContentPackage

Einlesen eines bestimmten Dateityps, ob sie die Datei ordnungsgemäß verarbeiten können. Ist
dies nicht der Fall, werfen sie eine Ausnahme (Exception), die abgefangen werden muss. Der
Reihe nach werden alle verfügbaren Klassen zum Lesen eines Content Packages aufgerufen,
bis die Operation erfolgreich durchgeführt wurde. Schlugen alle Aufrufe fehl, dann wird das
Format nicht unterstützt oder die Datei ist fehlerhaft. Dieser Mechanismus kann noch ein
wenig verfeinert werden, indem z.B. die Dateiendungen überprüft werden.

Eine sehr wichtige Funktion für die Umsetzung der Metaphern stellt die Methode merge()
bereit, die eine Konvertierung von verschachtelten Content Packages zu einem mit mehre-
ren Submanifesten durchführt. Dies entspricht der Umwandlung eines Kurses aus Abbildung
12.3 zu einem Kurs aus Abbildung 12.2. Mit der Methode flatten() aus dem vorherigen
Abschnitt (siehe Abbildung 12.13) können die Submanifeste noch zu einem Manifest zusam-
mengefasst werden, sodass Kurse wie aus Abbildung 12.1 entstehen, die auch einfache Systeme
unterstützen.

Mit der Klasse ContentPackage können modulare E-Learning-Inhalte in standardkompa-
tiblen Formaten erstellt und bearbeitet werden. Jetzt gilt es, die Metapher Baustein explizit
anzuwenden, um die gewünschte Modellierung zu erhalten. Abbildung 12.18 illustriert, wie die
Umsetzung eines Bausteins über Vererbung realisiert ist.

setEntryPoint(VirtualFile)
clearEntryPoint()
addAuxililaryFile(VirtualFile)
removeAuxiliaryFile(VirtualFile)
getEntryPoint():VirtualFile

setEntryPoint(String)

getAuxiliaryFiles():List
getAuxiliaryFileCount():int

Brick

ContentPackage

Abbildung 12.18: Klasse Brick

Ein Baustein ist im Kontext dieser Arbeit die kleinste technische Einheit, die von der
Infrastruktur für modulare E-Learning-Inhalte verarbeitet wird. Er enthält eine Datei als Ein-
stiegspunkt und mehrere zugehörige Dateien, die zur Darstellung notwendig sind. Die Schnitt-
stelle der Klasse Brick bietet für die Erstellung und Bearbeitung verschiedene Methoden an,

12.4 Content Package 145

die intern auf die Methoden der Klasse ContentPackage abgebildet werden. Es wird somit
keine echte Funktionalität hinzugefügt, sondern der Blick aufs Wesentliche konzentriert. An-
statt beliebige Dateien in das Content Package zu kopieren, wird zwischen Einstiegspunkt
und Hilfsdateien unterschieden. Bei der Implementierung kann auch darauf geachtet werden,
dass alle anderen Elemente, wie z.B. Organisationen, ausgeschaltet sind. Letztendlich besitzt
die Klasse Brick eine überschaubare Schnittstelle und die technischen Details sind in den
Basisklassen gekapselt.

Ein Kurs ist rekursiv definiert und beinhaltet andere Kurse und Bausteine. Diese flexible
Definition erlaubt den Aufbau beliebiger Strukturen, führt aber bei der Schnittstelle zu ei-
nem komplexeren Aufbau. Nicht alle Funktionen lassen sich direkt über eine Klasse steuern,
weil auch hierarchische Datenstrukturen verwaltet werden. Dies ändert freilich nichts an der
Vererbungshierarchie, wie Abbildung 12.19 verdeutlicht.

addCourse(Course, Item)
removeCourse(Course)
addBrick(Brick, Item)
removeBrick(Brick)
addOrganization(Organization)
removeOrganization()

getOrganizations():List

getCourses():List
getBricks():List
getCourseCount()
getBrickCount()

getOrganization(int):Organization
getMainOrganization():Organization

getOrganizationCount():int

ContentPackage

Course

Abbildung 12.19: Klasse Course

Die Methoden der Klasse Course unterstützen das Hinzufügen und Entfernen von Baustei-
nen und Kursen. Wie schon bei der Klasse Brick ist die Schnittstelle eine spezialisierte Sicht
auf ein Content Package mit der Einschränkung, dass es nur Bausteine und Kurse anstatt phy-
sikalischer Dateien gibt. Abschließend zeigt Abbildung 12.20 die gesamte Klassenhierarchie für
Content Packages.

Brick Course

SavableFS

Manifest

ContentPackage

Abbildung 12.20: Klassenhierarchie der Content Packages

Mit den Klassen Brick und Course sind die letzten Klassen beschrieben, die für eine
Komponentenbildung notwendig sind. Sie sind es, deren Funktionen über die Schnittstellen
der Komponenten Learning Object Engine (siehe Abbildung 10.11) und Structure Engine
(siehe Abbildung 10.12) angesprochen werden. In den Abbildungen 12.21(a) und 12.21(b) sind
die jeweiligen Prozess zu sehen, die wie gehabt nur ausgewählte Klassen anzeigen.

Der wesentliche Unterschied zu den vorhergegangen Komponentenbildungen ist die Wie-
derverwendung einer ganzen Reihe von Klassen in zwei Komponenten. Dieser Sachverhalt

146 Baustein und Kurs

Brick

ContentPackage

Manifest

SavableFS

Learning Object
Engine

(a) Bildung der Komponente Learning Object Engi-

ne

ContentPackage

Manifest

SavableFS

Model

Structure Engine

(b) Bildung der Komponente Structure Engine

Abbildung 12.21: Komponentenbildung

verdeutlicht auf praktische Weise, warum es wenig ratsam ist, Komponenten zur physikali-
schen Gruppierung einzusetzen. In diesem Fall träte eine unerwünschte Redundanz auf, die
fachlich motiviert wäre, aber technisch nicht nötig ist.

Kapitel 13

Rahmenwerk

Im zweiten Teil der Arbeit wurde am Anfang ein fachliches Modell für den Umgang mit modu-
laren E-Learning-Inhalten aufgestellt, das am Ende in ein weit technischeres überführt wurde.
Dieser Prozess ist noch nicht vollends abgeschlossen, denn es fehlen noch die Kompositionen
der entwickelten Basiskomponenten zu vollständigen Werkzeugen der einzelnen Rollen. Zudem
soll noch eine Zusammenfassung zu Libraries bzw. Paketen erfolgen, wie es in Kapitel 11 ein-
leitend angeführt wurde. Erst in dieser Konstellation mit einer geeigneten Beschreibung der
API lässt sich das entwickelte Gesamtmodell als Rahmenwerk nutzen.

Ohne eine genaue Definition eines Rahmenwerks zu geben und alle Aspekte dieses Themas
auszuloten, soll kurz eine Unterscheidung zwischen Rahmenwerk und Library gegeben werden.
Die wesentlichen Unterschiede lassen sich in der Nutzung ausmachen. Geht es bei Libraries
in erster Linie um die Zusammenfassung kohärenter Klassen, die nach außen hin eine ein-
heitliche Schnittstelle bilden, steht beim Rahmenwerk die Erweiterung um eigene Funktionen
im Vordergrund. Nach dem Hollywood-Prinzip ”Don’t call us, we call you“ [Sweet85] werden
die hinzugefügten Unterklassen über Nachrichten des Rahmenwerks aufgerufen. Dieses Prin-
zip wird in allen Klassen der erstellten Komponenten eingehalten. So lassen sich z.B. eigene
Dateisysteme, Metadaten und multimediale Ergänzungen auf einfache Art hinzufügen.

Obwohl die Begriffe Komponente, Library und Rahmenwerk im ersten Anschein wider-
sprüchlich erscheinen, sind alle drei Betrachtungsweisen mit dem vorgestellten Entwurf rea-
lisierbar. Dies ist nur möglich, weil nicht dogmatisch Definitionen befolgt werden, die in der
Praxis wenig Bedeutung haben und kontraproduktiv sind. Im nächsten Teil dieser Arbeit wird
eine Implementation vorgestellt, die auf die verschiedenen Weisen eingesetzt werden kann.
Die fertigen Komponenten lassen sich mit wenig Aufwand zu vollständigen Anwendungen zu-
sammensetzen oder ergänzen Eigenentwicklungen um spezielle Funktionalitäten. Wird mehr
Kontrolle gewünscht, lassen sich Teile der API wie eine Library ansprechen, mit denen sich
umfangreiche Eigenentwicklungen hochziehen lassen. Erst wenn spezielle Erweiterungen be-
nötigt werden, die entweder zu exotisch waren, um sie in die Implementierung aufzunehmen,
oder sich zu einem späteren Zeitpunkt etablierten, kommt der Charakter eines Rahmenwerks
zum Vorschein. Es sei an dieser Stelle abermals darauf hingewiesen, dass der bisherige Entwurf
unabhängig von jeglicher Programmiersprache ist.

Im nächsten Abschnitt werden nun die letzten drei Komponenten der Entwurfsphase er-
stellt. Dieser Prozess entspricht dem Muster der Erstellung einer Fassade, wie in Abbildung
13.1 illustriert ist.

Diese Architektur verdeckt die Kommunikation und Abhängigkeiten unter den einzelnen
Teilkomponenten und bietet eine vereinfachte, einheitliche Schnittstelle nach außen. Die nun
entstehenden Komponenten bieten somit keine neue Funktionalität, wodurch der Erstellungs-
prozess sehr einfach gehalten ist.

148 Rahmenwerk

Facade

client classes

subsystem classes

Abbildung 13.1: Das Muster Fassade [Gamma95, S. 185]

13.1 Zusammengesetzte Komponenten

Nach Tabelle 10.1 fehlen im Bereich des Entwurfs noch die zwei zusammengesetzten Kom-
ponenten Learning Object Development (siehe Abbildung 10.11) und Structure Develop-
ment (siehe Abbildung 10.12). Die Komponente Publishing Environment (siehe Abbildung
10.13) wird, wie in der Tabelle angegeben, in anderen Arbeiten ausführlich beschrieben und
soll an dieser Stelle als gegeben betrachtet sein.

Die Rolle Developer benutzt die Komponenten Multimedia Environment, Import Engi-
ne und Learning Object Engine zur Erstellung sowie Bearbeitung modularer E-Learning-
Inhalte. Bis auf die Import Engine wurde in den letzten Kapiteln die Herleitung und Funk-
tionalität dieser Komponenten beschrieben, sodass sie keiner weiteren Erklärung bedürfen.
Auch ihr Zusammenspiel ist nicht sonderlich kompliziert. Grundlage für den Umgang mit
standardkompatiblen Lernobjekten ist die Learning Object Engine, sei es nun beim Import
fremder Inhalte oder der Bearbeitung enthaltender Multimedia-Dateien. Letztendlich müssen
für das Zusammenspiel ein paar Initialisierungen und Abhängigkeiten bei den gegenseitigen
Aufrufen beachtet werden, die von einer neuen Klasse übernommen werden. Ihre Schnittstelle
bietet weitestgehend die gleiche Funktionalität wie die Einzelkomponenten an, weshalb auf
eine ausführliche Beschreibung verzichtet wird. Die wesentliche Struktur ist Abbildung 13.2
zu entnehmen.

Import Engine
Learning Object

Engine

Multimedia
Environment

LOBDevelopment

Abbildung 13.2: Bildung der Komponente LOBDevelopment

Mit der Klasse LOBDevelopment bekommen die Entwickler/-innen eine einheitliche Schnitt-
stelle an die Hand, mit der sich auf einfache Weise eigene Erweiterungen, wie z.B. eine grafische
Repräsentation oder ein Kommandozeilenprogramm, erstellen lassen. Die bisher eingesetzte
Komponentenbildung, wie z.B. in Abbildung 12.21 dargestellt, wird aufgrund der Trivialität
des Prozesses — schließlich wird nur die Klasse LOBDevelopment hinzugefügt — an dieser
Stelle nicht angeführt. Das Endresultat ist aus Abbildung 10.11 bekannt.

Auch bei den Tätigkeiten der Rolle Composer werden hauptsächlich drei Komponenten ein-
gesetzt, namentlich als Import Engine, Search Engine und Structure Engine vorgestellt.

13.1 Zusammengesetzte Komponenten 149

Letztere ist die zentrale Komponente, beschrieben im vorherigen Kapitel. Egal ob nun frem-
de Inhalte importiert werden, oder eine Aufarbeitung bestehender Lerninhalte für die Suche
erfolgt. Es wird stets der Zugriff auf die internen Strukturen und die inhaltlichen Zusam-
menhänge benötigt. Die Komponente CBK-Management-Application aus der Diplomarbeit
[Vollmann04] wird als Search Engine verwendet, die nach dem Verfahren Case-Based Rea-
soning (CBR) arbeitet [Kolodner93; Lenz98]. Abbildung 13.3 zeigt den inneren Aufbau. Wer
Interesse an der umfangreichen Schnittstelle hat, findet in der Diplomarbeit eine ausführliche
Beschreibung.

Module

Keyword

Association

View

Language

CBK−Management−Application

Abbildung 13.3: Aufbau der Komponente CBK-Management-Application nach [Vollmann04,
S. 128]

Die Initialisierungen und Abhängigkeiten unter den Komponenten werden wieder über das
Entwurfsmuster Fassade gekapselt, um einen einfachen Zugriff zu ermöglichen. Abbildung 13.4
zeigt die hierfür eingeführte Klasse. StructureDevelopment.

Structure EngineSearch EngineImport Engine

StructureDevelopment

Abbildung 13.4: Bildung der Komponente StructureDevelopment

Auf die Darstellung einer expliziten Komponentenbildung soll wiederum verzichtet werden,
denn auch hier ist das Endresultat aus Abbildung 10.12 bekannt.

Nun sind alle Komponenten erstellt, mit denen größere oder kleinere Aufgaben im Bereich
modularer E-Learning-Inhalte übernommen werden können. Es lassen sich Lernobjekte als
Bausteine erstellen sowie bearbeiten, mit anderen Lernobjekten zu Kursen zusammensetzen
und in jedes beliebige Ausgabeformat überführen. Alle beteiligten Funktionen stehen in den
drei Komponenten Learning Object Development, Structure Development und Publis-
hing Environment zur Verfügung, doch der Zusammenhang zwischen ihnen fehlt. Mit Hilfe
einer Komponente soll quasi die Funktionalität einer vollständigen Applikation angeboten wer-

150 Rahmenwerk

den. Es wird wieder nach dem Muster Fassade verfahren, dessen Resultat in Abbildung 13.5
zu sehen ist.

Structure
Development

Learning Object
Development

Publishing
Environment

AuthoringSystem

Abbildung 13.5: Bildung der Komponente AuthoringSystem

Die Klasse AuthoringSystem kapselt die Initialisierungen und kümmert sich um Abhän-
gigkeiten. Zusätzlich erlaubt sie die Steuerung der Konfiguration über Umgebungsvariablen
und spezielle Dateien. Auf diese Weise lässt sich das Verhalten der Anwendung ohne Program-
mierung steuern, sodass im optimalen Fall für den Einsatz dieser Komponente keine Entwick-
lungsarbeit notwendig ist. Freilich kann es sich hierbei nur um rudimentäre Tätigkeiten ohne
Interaktion mit den Anwendern/-innen handeln.

Der Entwurf ist jetzt so weit, dass die nächsten Entwicklungsschritte nur noch in Abhängig-
keit von Programmiersprachen, Libraries und Betriebssystemen sinnvoll vorangetrieben wer-
den können. Hier endet nun die kreative Arbeit und geht über in Tätigkeiten, die zunehmend
von konkreten Erfahrungen geprägt sind. So wird beispielsweise Wissen benötigt, wie sich
grafische Oberflächen am elegantesten zusammenstellen lassen, wie Ressourcen des Rechners
möglichst effizient genutzt werden und wie sich Programmieraufwand reduzieren lässt. Diese
Überlegungen passen nicht in einen unabhängigen Entwurf, weshalb nun zur Implementierung
übergegangen wird.

Teil III

Implementierung

Kapitel 14

Baukasten

Im vorherigen Teil dieser Arbeit wurden die fachlichen Klassen und Komponenten entwickelt,
die für die technische Kodierung und Bearbeitung modularer E-Learning-Inhalte benötigt
werden. Sie sind weitestgehend unabhängig von jeglichen Programmiersprachen und sonstigen
Implementierungsdetails. Aus Sicht der Entwickler/-innen ist eine API entstanden, die eine
gute Basis für die Erstellung eigener Anwendungen darstellt. In Anbetracht der Zielsetzung
dieser Arbeit muss aber noch ein Schritt weitergegangen werden, denn es soll eine komplette
Infrastruktur geschaffen werden, nicht nur ein konzeptioneller Entwurf. Was also fehlt, ist die
grafische Darstellung (View), um das MVC-Muster zu vervollständigen. Sie ist stark von der
Implementierung abhängig und deshalb in diesem Teil der Arbeit untergebracht, obwohl auch
hier überwiegend konzeptionelle Überlegungen angeführt werden.

Da bis jetzt lediglich die Daten modelliert sind, nämlich Bausteine, Kurse und ihre Meta-
daten, sollen nun die passenden Werkzeuge entwickelt werden. Hierbei handelt es sich um die
Komponenten aus Abschnitt 10.2, die nun zu einer prototypischen Anwendung zusammenge-
setzt werden.

Für die Programmiersprache Java gibt es verschiedene Libraries, die bei der Erstellung
grafischer Oberflächen helfen. Implementierungen der Virtual Machine von Java unterstützen
in der Regel die Standard-Libraries Abstract Window Toolkit (AWT) und Swing. Sie müssen
im Gegensatz zu den Alternativen, wie z.B. das Standard Widget Toolkit (SWT) des Projekts
Eclipse1, nicht zusätzlich installiert werden. Das AWT ist die älteste Library und bietet wenig
Komfort, da lediglich wenige Standardkomponenten direkt angeboten werden. Bäume, Tabel-
len und weitere komplexere Widgets stehen erst in Swing zur Verfügung, das intern auf dem
AWT aufbaut. Im Gegensatz zu AWT und SWT sind die Widgets unabhängig vom Betriebs-
system, da sie als Lightweight Components realisiert sind, sich also selbst in eine vorgegebene
Fläche zeichnen. Heavyweight Components basieren hingegen auf den Widgets nativer Libraries
oder dem Betriebssystem und benötigen unter Umständen mehr Ressourcen zur Ausführung.

Die Entscheidung in dieser Arbeit fällt zu Gunsten von Swing aus, weil es einen Kom-
promiss zwischen der Verfügbarkeit bei Standardinstallationen und der Anzahl von Widgets
darstellt. Das AWT steht wegen seines Alters und des wenig durchdachten Entwurfs — die
Entwickler beteuern selbst, dass es am Zeitdruck bis zur ersten Veröffentlichung von Java lag
— außen vor. Bei dem SWT sieht es mit der Verfügbarkeit und der Stabilität heute wesent-
lich besser aus, als zu Beginn des Projekts mαth-kit, sodass Der Vorzug von Swing historisch
bedingt ist.

In den folgenden Abschnitten werden die grafischen Komponenten hergeleitet, mit denen
Bausteine sowie Kurse erstellt, bearbeitet und konvertiert werden. Wie in dem Teil Entwurf,
werden erst die Basisfunktionen Dateizugriff und Metadaten angegangen, um anschließend die
Komponenten für die Rollen Developer, Composer und Publisher fertig zu stellen.

1Eclipse ist eine offene flexible Plattform für die Integration von Entwicklungswerkzeugen. Die grafische
Oberfläche basiert auf dem SWT. Mehr Details finden sich unter http://www.eclipse.org (29.10.05)

http://www.eclipse.org

154 Baukasten

14.1 Script-Steuerung

Für eine direkte Ansteuerung ohne aufwändige Programmierung soll eine Komponente zur
Script-Ansteuerung angeboten werden. Mit ihr lassen sich kleinere Routinetätigkeiten elegant
erledigen, ohne jedes Mal aufwändig programmieren zu müssen. Für die Anwender/-innen
bieten Script-Sprachen den idealen Kompromiss zwischen direkter Kontrolle und komplizier-
ten Aufrufen von Komponenten. Die Position der Komponente Scripting Environment im
Autorensystem kann in Abbildung 10.17 nachvollzogen werden.

Java ist eine stark typisierte Programmiersprache, was nichts anderes bedeutet, als dass
der Quellcode übersetzt wird und während dieses Prozesses einer Prüfung der Typkonsistenz
erfolgt. Passen irgendwelche Datentypen nicht zusammen, wird die Übersetzung mit einer
entsprechenden Fehlermeldung abgebrochen. Dieses Konzept ist freilich schwer mit Script-
Sprachen zu kombinieren, da sie in der Regel erst zur Laufzeit interpretiert werden. Es ist z.B.
durchaus üblich, dass eine Variable im gleichen Geltungsbereich verschiedene Typen annimmt.
In Java ist dies nicht möglich, doch wie lassen sich diese beiden Welten vereinen?

Klassische Script-Sprachen wie TCL2, Perl3 oder gar PHP4 sind imperativ und kommen
für diese Aufgaben freilich nicht in Frage, denn sie lassen sich nur sehr schwer oder gar nicht
mit Java verbinden. Eine objektorientierte Script-Sprache wie Python5 ist da wesentlich besser
geeignet und es gibt interessante Implementierungen auf dem Markt. Herausragend ist z.B. der
Interpreter Jython6, der vollständig in Java umgesetzt wurde und eine nahtlose Verbindung
zwischen Python und Java schafft. Aus technischer Sicht scheint dieser Ansatz eine gangbare
Lösung zu sein.

Bei genauer Betrachtung von Python zeigt sich, dass es sich um eine vollständige Program-
miersprache handelt, deren Merkmale z.B. Module, Klassen, Exceptions und höhere Daten-
typen sind. Nun unterscheidet sich die Syntax zu Java teilweise wesentlich und wer Python
nicht kennt, hat einen gewissen Lernaufwand zu leisten. Bei den vielen Projekttreffen von
mαth-kit hat sich deutlich herausgestellt, dass der größte Teil der Partner/-innen im Umgang
mit Java vertraut ist bzw. sich in diese Richtung weiterbildet. Die Bereitschaft, eine weitere
Programmiersprache zu erlernen, war verständlicher Weise gering. Aus diesem Grund ist die
Entscheidung auf die BeanShell7 gefallen, einen Interpreter speziell für Java. Die Syntax dieser
Script-Sprache ist stark an Java angelehnt, wie das Beispiel in Abbildung 14.1 zeigt.

Es wird ein neuer Baustein erzeugt und der Bezeichner der Ressource ausgegeben. Weil
die BeanShell kompakt ist und bereits mit einer eigenen grafischen Oberfläche ausgestattet
ist, müssen keine weiteren Entwicklungsschritte vorgenommen werden, um die Komponente
Scripting Environment aus Abbildung 10.17 zu erstellen. Lediglich bei der Initialisierung der
BeanShell werden ein paar nützliche Objekte in den Scope8 geladen, wie z.B. das speziel-
le Dateisystem. Dies reduziert den Aufwand für neu entwickelte Scripte, weil alle wichtigen
Komponenten im direkten Zugriff vorliegen.

14.2 Grafische Basiskomponenten

In Kapitel 11 wurden die funktionalen Klassen für den Zugriff auf Dateien und Metadaten
definiert. Nun werden sie um eine grafische Repräsentation ergänzt, um sie als Komponenten
leichter wieder verwenden zu können. Bei der Darstellung eines Dateisystems gibt es zwei we-
sentliche Ansätze mit kleinen Varianten. Entweder erfolgt die Anzeige als Baum oder Liste,
was verschiedene Vor- und Nachteile mit sich bringt. Beim Baum profitieren die Anwender/-

2http://www.tcl.tk (29.10.05)
3http://www.perl.org (29.10.05)
4http://www.php.net (29.10.05)
5http://www.python.org (29.10.05)
6http://www.jython.org (29.10.05)
7http://www.beanshell.org (29.10.05)
8Mit Scope wird der Bereich bezeichnet, in dem eine Variable definiert ist.

http://www.tcl.tk
http://www.perl.org
http://www.php.net
http://www.python.org
http://www.jython.org
http://www.beanshell.org

14.2 Grafische Basiskomponenten 155

Abbildung 14.1: Screenshot der BeanShell

innen von einer guten Gesamtübersicht und sie erreichen schnell die gewünschten Dateien,
auch wenn mehrere Verzeichnisse gleichzeitig geöffnet sind. Diese Datenfülle gereicht der Ge-
schwindigkeit dieser Darstellung aber zum Nachteil, denn es müssen einige Informationen aus
dem Dateisystem gesammelt werden. Angefangen bei der Unterscheidung von Dateien und
Verzeichnissen, über Dateiattribute bis hin zu den grafischen Icons erhöhen viele Operationen
die Belastung. Hinzu kommt ein Überwachungsmechanismus zur Aktualisierung der Darstel-
lung, wenn von Dritten Änderungen im Dateisystem erfolgen. Auf dem lokalen Dateisystem
des Betriebssystems mag eine adäquate Geschwindigkeit noch gegeben sein, aber spätestens
bei einem Dateisystem im Netzwerk oder tief verschachtelten Content Packages sind massive
Verzögerungen möglich.

Die Darstellung als Liste ist von diesen Probleme weniger betroffen, weil lediglich der
Inhalt eines Verzeichnisses angezeigt wird. Die Anzahl der Dateien und Verzeichnisse hält sich
somit in Grenzen. Bei der gleichzeitigen Arbeit mit vielen Verzeichnissen wirkt sich die Liste
nachteilig aus, denn entweder wird oft die Ansicht gewechselt oder es werden mehrere Listen
nebeneinander geöffnet. Es sei an dieser Stelle nicht verschwiegen, dass bei sehr vielen Dateien
in einem Verzeichnis auch die Liste vor Verzögerungen nicht gefeit ist.

Die Darstellung von Bäumen und Listen lässt sich beschleunigen, indem sie in mehrere
Schritte aufgeteilt wird. Zunächst werden alle Namen der Dateien und Verzeichnisse abgefragt,
um sie danach sofort anzuzeigen. Danach werden die Einträge von einem Prozess oder Thread
im Hintergrund um weitere Attribute ergänzt. Der Vorteil dieser ”dynamischen“ Darstellung
liegt auf der Hand: Die Anwender/-innen bekommen den Inhalt des Dateisystems schneller
angezeigt und haben sofort Zugriff auf die Dateien. Wer sich an kleinen Icons und anderen
Eigenschaften orientieren möchte, muss die benötigte Wartezeit in Kauf nehmen.

In Anbetracht der Aufgabenstellung ist die Liste die geeignetere Darstellungsform für
Dateisysteme, denn es sollen in erster Linie die Inhalte von Bausteinen und Kursen angezeigt
werden, die meist eine flache Struktur haben. Deswegen wird in dieser Arbeit die grafische
Komponente verwendet, wie sie in Abbildung 14.2 zu sehen ist.

In diesem Screenshot wird der Inhalt des Verzeichnisses Eigene Dateien angezeigt, der aus
drei Verzeichnissen besteht. Die Anzeige des aktuellen Verzeichnisses ist eine Combobox, die
alle höher liegenden Verzeichnisse anzeigt und einen Aufstieg im Verzeichnisbaum ermöglicht.
Über einen Doppelklick auf einen Verzeichnisnamen wird dessen Inhalt angezeigt, was einem
Abstieg im Verzeichnisbaum entspricht. Mit den ersten beiden Knöpfen in der rechten oberen
Ecke kann direkt zu oft genutzten Verzeichnissen gesprungen werden und mit dem letzten wird
ein neues Verzeichnis angelegt.

156 Baukasten

Abbildung 14.2: Visualisierung physikalischer Dateien in Content Packages

Die Entwicklung einer grafischen Komponente für Metadaten ist aufgrund ihrer Kom-
plexität umfangreich und wurde im Projekt mαth-kit als Diplomarbeit [Turan04] vergeben.
Ausgangspunkt waren die Klassen für Metadaten aus Abschnitt 11.2, deren Elemente und
Attribute auf geeignete Weise visualisiert werden mussten. Das Ergebnis ist in Abbildung 14.3
zu sehen.

Abbildung 14.3: Komponente für Metadaten

Für die Unterteilung der einzelnen Kategorien wurden Reiter gewählt, deren Seiten den ge-
samten Inhalt anzeigen. Ohne zu sehr in die Details gehen zu wollen, lässt sich aus Abbildung
14.3 gut die Vorgehensweise bei der Umsetzung nachvollziehen. Zuerst wurden für alle Daten-
typen der Metadatenbeschreibung die passenden Widgets festgelegt und bei Bedarf angepasst.
Wörterbücher lassen sich beispielsweise gut als Comboboxen umsetzen, wie bei den Elementen
Structure und Aggregationlevel zu sehen ist. Mehrsprachige Daten, die sich aus einem
Sprachkürzel und dem Text zusammensetzen, sind in Tabellen gut aufgehoben. Um doppelte
Einträge von vornherein zu vermeiden, lassen sich die Sprachkürzel in der Spalte Language nur
über eine Combobox auswählen, die alle unterstützten Sprachen enthält. Diese Tabelle lässt
sich für viele Elemente anwenden, wie die sichtbaren Elemente Title und Description be-
weisen. Es gibt auch Datentypen, die sich nicht in vorhandenen Widgets darstellen lassen, wie
z.B. die Datumsauswahl oder die VCards, und eigene Implementierungen benötigen. Genaue
Ausführungen hierüber finden sich in der genannten Diplomarbeit.

14.3 Rahmenwerk für Werkzeuge 157

14.3 Rahmenwerk für Werkzeuge

Bevor mit den eigentlichen Komponenten für Bausteine und Kurse begonnen wird, soll ein
kleines Rahmenwerk geschaffen werden, dass ihren Aufbau und Einsatz vereinfacht. In einer
Anwendung für modulare E-Learning-Inhalte ist es praktisch, mehrere Bausteine und Kurse
zur gleichen Zeit geöffnet zu haben. Dies bedeutet jedoch für alle Implementierungen einen
zusätzlichen Aufwand, der ein tieferes Verständnis der gesamten Klassenstruktur voraussetzt.
Um potentiellen Entwicklern/-innen den Einstieg zu vereinfachen, sollen daher für typische
Konstruktionen vorgefertigte Klassen angeboten werden, die eine Integration in die eigene
Anwendung vereinfachen.

Besonders die Verschachtelung von Kursen stellt eine Herausforderung bei der Visualisie-
rung dar. Ein einfacher Baum, der sonst bei hierarchischen Strukturen zum Einsatz kommt,
ist nicht geeignet, da sich die Inhalte der Bausteine und Kurse nur schwer als Blätter umset-
zen lassen. Hinzu kommen die vielen Möglichkeiten zur Platzierung von Metadaten und wie
Abbildung 14.3 deutlich zeigt, ist die Komponente in ihren Ausmaßen nicht klein.

In einem ersten Prototyp für das Projekt mαth-kit wurde jeder Baustein und Kurs in einem
eigenen Fenster angezeigt, auch wenn es sich um verschachtelte Inhalte handelte. Die Bezugs-
losigkeit der Fenster untereinander ist an dieser Form besonders gravierend, denn auf den
ersten Blick ist nicht mehr ersichtlich, welche von ihnen zusammen gehören. Daher muss eine
bessere Darstellung gefunden werden, die einen näheren Bezug zur Verschachtelung besitzt.

Zunächst lässt sich feststellen, dass Bausteine, Kurse und Metadaten nach der Erstellung
bzw. Bearbeitung entweder verworfen oder gespeichert werden können. Hierfür erbt die Klasse
JSavablePanel von der Swing-Klasse JPanel und stellt verschiedene Actions zur Verfügung,
wie in Abbildung 14.4 zu sehen ist.

JSavablePanel

setModified(Boolean)
save(VirtualFile)
save()

JPanel

showCancelDialog()
getFile():VirtualFile
getSaveAction():Action
getCancelAction():Action
isModified():Boolean

Abbildung 14.4: Klasse JSavablePanel

Bei einer Action handelt es sich um einen Steuerungsbefehl, der von Knöpfen oder Menüein-
trägen abgeschickt wird, sodass eine Ansteuerung des JSavablePanel von außen möglich ist.
Zusätzlich können Objekte dieser Klasse mit isModified() überprüfen, ob sich ihr Inhalt ver-
ändert hat. Soll das Objekt geschlossen werden und es wurde modifiziert, dann geht automa-
tisch ein Dialog auf, der auf den möglichen Datenverlust hinweist und explizit eine Bestätigung
verlangt. Auf diese Weise gehen nicht ungewollt Daten verloren.

Für die Verwaltung der Verschachtelungen soll eine eigene Klasse zuständig sein, die meh-
rere Objekte von JSavablePanel aufnehmen kann. Abbildung 14.5 gibt eine schematische
Ansicht.

Es sind vier verschiedene Ebenen mit verschachtelten Inhalten, die übersichtshalber ver-
setzt dargestellt sind. Beispielsweise ist Panel 4 in Panel 3 enthalten und Panel 3 in Panel
2. Im Moment kann nur auf Panel 4 gearbeitet werden, bis eine andere Ebene ausgewählt
wird. Für die Navigation ist auf dem Panel 1 eine Combobox angebracht, mit der auf höher
liegende Ebenen zugegriffen wird. Bei der Auswahl, z.B. von Panel 2, werden Panel 4 und

158 Baukasten

Panel 1

Panel 2

Panel 1
Panel 2
Panel 3
Panel 4

Panel 3

Panel 4

Abbildung 14.5: Verschachtelte Inhalte

Panel 3 geschlossen. Bevor dies geschieht, werden diese selbstverständlich auf Änderungen
geprüft, um eine Speicherung zu ermöglichen.

Um das Beispiel weniger abstrakt zu halten, kann auch der Inhalt von Panel 4 als Baustein
angenommen werden, der in einem anderen Kurs, dargestellt auf Panel 3, enthalten ist. Die
Ebenen Panel 2 und Panel 1 müssen selbstverständlich ebenfalls für Kurse stehen.

Bei der Klasse JNestedPanel handelt es sich um eine Spezialisierung der Klasse JSavable,
wie in Abbildung 14.6 dargestellt.

getPanels():List
getPanelCount():int

getPanel(int):JSavablePanel

addPanel(JSavablePanel)
removePanel(JSavablePanel)
jumpToPanel(int)

JSavablePanel

JNestedPanel

Abbildung 14.6: Klasse JNestedPanel

Hauptaufgabe der Klasse ist die Verwaltung der Ebenen. Mit den Methoden addPanel()
und removePanel() werden Objekte der Klasse JSavablePanel hinzugefügt bzw. entfernt. Bei
der Auswahl einer anderen Ebene in der Combobox wird jumpToPanel() aufgerufen, woraufhin
alle Ebenen zwischen der aktuellen und der ausgewählten geschlossen werden. Ansonsten wäre
die Navigation in der Combobox inkonsistent.

Metadaten können ebenfalls auf verschiedenen Ebenen auftreten, sodass es sinnvoll ist, die-
se Komponente aus Abbildung 14.3 in den Mechanismus zu integrieren. Als Spezialisierung der
Klasse JSavablePanel bettet sich die Darstellung und Speicherung der Metadaten nahtlos ein.
Da keine neuen Funktionen hinzugefügt werden, soll an dieser Stelle auf ein Klassendiagramm
verzichtet werden.

Bei vielen gleichzeitig geöffneten Bausteinen und Kursen bietet sich die Darstellung meh-
rerer Fenster in einem Hauptfenster an, die auch als Multiple Document Interface (MDI) be-
zeichnet wird. Swing sieht hierfür die zwei Klassen JDesktopPane und JInternalFrame vor,
mit denen solche Anwendungen schnell erstellt sind. Um das Rahmenwerk auch für diese Form
auszurichten, wird es um die Klassen JSavableInternalFrame und JNestedInternalFrame
ergänzt. Sie nehmen die Panels des Rahmenwerks auf und steuern die Kommunikation. Abbil-
dung 14.7 zeigt die vollständige Vererbungshierarchie, um die beschriebenen Zusammenhänge
zu verdeutlichen.

14.4 Visualisierung der Bausteine und Kurse 159

JNestedPanel JMDPanel

JSavablePanel

JPanel

JSavableInternalFrame

JNestedInternalFrame

JInternalFrame

Abbildung 14.7: Klassenhierarchie der grafischen Basisklassen

14.4 Visualisierung der Bausteine und Kurse

In diesem Abschnitt werden grafische Komponenten für die Erstellung und Bearbeitung von
Bausteinen und Kursen hergeleitet. Sie visualisieren die Funktionen der Komponenten Lear-
ning Object Engine aus Unterabschnitt 10.2.2 und Structure Engine aus Unterabschnitt 10.2.3.
Zuerst wird eine allgemeine Klasse JCPPanel für Content Packages definiert, die interne Ver-
waltungsaufgaben übernimmt und noch keine Visualisierung der Inhalte durchführt, denn diese
ist in spezialisierte Klassen ausgelagert. Abbildung 14.8 zeigt das Klassendiagramm.

JNestedPanel

JCPPanel

showSaveDialog()
showExportDialog()
showManifest()
getExportAction():Action
getPreviewAction():Action

Abbildung 14.8: Klasse JCPPanel

JCPPanel erlaubt über die Methode showSaveDialog() die Auswahl einer bestimmten
Datei, in die der Baustein oder Kurs als Content Package gespeichert wird. Nach erfolgreicher
Bestimmung einer Datei wird die Methode save() der Klasse JSavablePanel aufgerufen. Hin-
ter den Methoden showExportDialog, getExportAction() und getPreviewAction verbergen
sich Aufrufe für Werkzeuge der Rolle Publisher, deren Funktionalität im nächsten Abschnitt
erläutert wird. An dieser Stelle soll genügen, dass mit dem Export-Dialog Bausteine und Kurse
in andere Formate übersetzt werden. In der Regel handelt es sich beim Quellformat um XML
und bei dem Zielformat um HTML oder PDF. Die Methode showManifest() öffnet ein neues
Fenster, in dem das in XML kodierte und formatierte Manifest zu sehen ist. Abbildung 14.9
zeigt eine typische Darstellung, in der die Organisation mit ihren Einträgen und Verweisen auf
die Referenzen gut zu sehen ist.

Jetzt sind die Voraussetzungen für die Visualisierung von Bausteinen und Kursen gelegt.
Die resultierenden Klassen bieten keine neue Funktionalität an, da sie praktisch eine einge-
schränkte, auf das Wesentliche reduzierte Darstellung allgemeiner Content Packages sind. Aus
diesem Grund wird auf entsprechende Klassendiagramme verzichtet und die interessantere Ge-
staltung der Komponenten diskutiert. Abbildung 14.10 zeigt zunächst die Bausteinkomponente
mit einem geöffneten Beispiel.

Im unteren Teil der Komponente ist die Dateisystemkomponente eingebettet, in der die
physikalischen Dateien des Content Packages zu sehen sind. Neben den vier Dateien ist auch
ein Verzeichnis mit dem Namen data enthalten. Welche Dateien darin liegen, soll an dieser

160 Baukasten

Abbildung 14.9: Manifest mit farblicher Syntax-Hervorhebung

Abbildung 14.10: Komponente für Bausteine

14.4 Visualisierung der Bausteine und Kurse 161

Stelle nicht interessieren, vielmehr soll die mögliche Strukturierung der Dateien innerhalb eines
Bausteins verdeutlicht werden. Obwohl mit Verzeichnissen in Bausteinen sparsam umgegangen
werden soll, ist ihre Verwendung bei sehr vielen Dateien sinnvoll. In der oberen Combobox mit
der Beschriftung ”Start File“ ist die Datei mkml.xml als Einstiegspunkt für diesen Baustein
festgelegt. Alle anderen Dateien des Bausteins werden von ihr referenziert und nie direkt aufge-
rufen. Die Metadaten für diesen Baustein werden über die Metadatenkomponente eingegeben,
die über einen Klick auf den Knopf ”Meta Data“ als neue Ebene eingeblendet wird.

Durch die Dateisystemkomponente ist die Arbeit mit den enthaltenen Dateien sehr ein-
fach. Neue Dateien werden über ein Kontextmenü neu erzeugt oder per Drag’n’Drop von außen
hinzugefügt. Für die Bearbeitung stehen je nach Datentyp unterschiedliche Operationen be-
reit, die externe Programme aufrufen. Zur besseren Strukturierung der physikalischen Dateien
können zusätzlich Unterverzeichnisse angelegt werden.

Die Visualisierung der Kurse ist im Gegensatz zu den einfachen Bausteinen etwas um-
fangreicher, denn neben den physikalischen Dateien müssen auch Ressourcen und die internen
Strukturen abgebildet werden. Abbildung 14.11 zeigt einen Screenshot mit einem geöffneten
Kurs.

Abbildung 14.11: Komponente für Kurse

Der Titel des Kurses, The Java Language Specification, ist der obersten Zeile zu entneh-
men und kann bearbeitet werden. Allgemeine Metadaten, die den gesamten Kurs betreffen,
können wieder über den entsprechenden Knopf aufgerufen werden. Die Herausforderung bei
der Visualisierung ist es, die Übersicht beizubehalten. Über eine Zweiteilung des Panels, ge-
kennzeichnet mit den Beschriftungen Course Structure und Used Bricks and Courses, soll eine
klare Trennung zwischen Struktur und Ressourcen angezeigt werden. Der obere Baum ent-
spricht der Item-Struktur einer Organization, wobei als Attribute lediglich Titel und Referenz
angezeigt werden. Für eine genauere Steuerung der Lernpfade werden allerdings wesentlich
mehr Attribute benötigt, um z.B. Vorbedingungen, Zeiten, Punkte, etc. anzugeben. Jedoch
ist die Baumdarstellung nicht für diese Anzahl von darzustellenden Werten ausgelegt, weshalb

162 Baukasten

über ein Kontextmenü ein separates Fenster geöffnet werden kann. Abbildung 14.12 zeigt alle
unterstützten Attribute, wobei die Felder für SCORM-Werte extra gekennzeichnet sind. Soll-
te ein Baustein oder Kurs im IMS-Format gespeichert werden, können diese Attribute nicht
übernommen werden.

Abbildung 14.12: Ansicht der Item-Properties

Die Darstellung der Ressourcen in Abbildung 14.11 ist dank der eingeschränkten Definition
aus Abschnitt 12.4 sehr einfach gehalten: Kurse dürfen nämlich nur Bausteine und andere
Kurse als Ressourcen enthalten. In der zweiten Spalte mit dem Titel ”Href“ steht die jeweilige
URL9, mit der die Ressource verbunden ist. Alternativ können die Bausteine und Kurse auch
als physikalische Dateien angezeigt werden, indem diese Darstellung über den Reiter ”Files“
ausgewählt wird.

14.5 Steuerung des Exports

Obwohl in dieser Arbeit die Komponenten für die Rolle Publisher lediglich hergeleitet wurden
(siehe Abschnitt 10.2.4), aber eine detaillierte Beschreibung des inneren Aufbaus ausblieb, soll
wenigstens kurz auf die grafische Repräsentation eingegangen werden. Sie reicht vollkommen
aus, um eine Idee der Tätigkeit zu vermitteln. Im Wesentlichen geht es um die Umwandlung von
Bausteinen und Kursen, die intern XML zur Kodierung verwenden (siehe Abschnitt 3.7). Die
gängigsten Zielformate sind HTML und PDF und können mit XSLT sowie XSL-FO generiert
werden. Zusammen mit einigen Hilfsklassen, auf die an dieser Stelle nicht weiter eingegangen
wird, bilden diese Umwandlungssprachen die Transformation Packages (TP), die wesentlich
Ausgabeformat und Erscheinungsbild prägen. Zusätzlich können Module aktiviert werden,
mit denen z.B. Konvertierungen von Formeln oder Bildern durchgeführt werden. Sie sind
unabhängig von den TPs und können als Präprozessoren verstanden werden. Abbildung 14.13
zeigt die genannten Funktionen in einem Dialog-Fenster an.

In der Combobox ist das GET Lab HTML Package ausgewählt, das HTML-Dateien in der
Corporate Identity des GET Labs10 erzeugt. Von den optionalen Modulen ist ein Formelkon-
verter für LATEX eingeschaltet, was am Häkchen in der Spalte Active zu erkennen ist. Da in
HTML keine LATEX-Formeln dargestellt werden können und die Unterstützung von MathML in
den gängigen Browsern nicht vorausgesetzt werden darf, müssen die Formeln mit Hilfe dieses

9Das Zeichen %20 steht für das Leerzeichen.
10http://getwww.upb.de (29.10.05)

http://getwww.upb.de

14.6 Lyssa 163

Abbildung 14.13: Dialog für Export-Einstellungen

Moduls als Grafiken eingebunden werden. Die Checkbox Uncompress content package legt fest,
ob ein Content Package erzeugt wird oder lose Dateien. Im Feld Processing werden der ak-
tuelle Baustein und die in Übersetzung befindliche Datei angezeigt. Sind mehr Informationen
über den aktuellen Durchlauf erwünscht, kann über die Checkbox show log eine detailliertere
Ausgabe hinzugeschaltet werden. Soll das Ergebnis einer vorherigen Prüfung unterzogen wer-
den, kann über den Knopf Preview eine Voransicht erzeugt werden. Ein Klick auf den Knopf
Save schreibt das Resultat direkt in eine auszuwählende Datei.

14.6 Lyssa

Mit den erstellten Komponenten aus den letzten Kapiteln kann nun das Autorenwerkzeug
entsprechend den Abbildungen 10.20 und 10.23 zusammengesetzt werden. In Abschnitt 10.3
wurde festgelegt, dass eine einzelne Anwendung den Belangen der Rollen Developer, Composer
und Publisher gerecht werden muss. Durch diese enge Verzahnung der Komponenten ist ein
rasches Wechseln zwischen den Rollen möglich, was den Arbeitsablauf verbessert. Weil bisher
alle grafischen Komponenten Java Swing verwenden, soll auch das Autorenwerkzeug diese
Library nutzen.

Im Projekt mαth-kit hat sich Lyssa11 als Name für das Autorenwerkzeug durchgesetzt
und wird stellvertretend als Begriff für das Programm verwendet. Ein wesentliches Merkmal
von Lyssa ist die übersichtliche und einfache Bedienung. Hierzu gehört auch der Aufbau der
grafischen Oberfläche, die aus drei Teilen besteht und nur so viele Daten anzeigt wie nötig.
Abbildung 14.14 zeigt einen typischen Screenshot während der Arbeit.

Ganz oben befindet sich die Toolbar, die eine Ansteuerung der Basisfunktionen erlaubt
und sich dem jeweils ausgewählten Baustein oder Kurs im Arbeitsbereich anpasst. Abbildung
14.15 zeigt die Toolbar im initialen Zustand, wenn kein Baustein oder Kurs geöffnet ist. Eigent-
lich wären die Knöpfe Speichern und Speichern als ausgegraut, denn ihre Funktion steht
nur mit geöffneten Dateien zur Verfügung. Zur besseren Identifikation sind sie aber aktiviert
dargestellt.

11Dieser merkwürdig anmutende Name hat sich aus der Entwicklungsgeschichte ergeben. Jedes Teilprojekt
wurde intern nach einem Gott oder einer Göttin aus der griechischen Mythologie benannt. Nach der Fertig-
stellung der ersten Version des Autorensystems wurde der Name beibehalten, obwohl freilich inhaltlich keine
Verbindung zu ihm besteht. Lyssa ist nämlich die Göttin der Rage und hat Herakles mit einer vorübergehenden
Verstandstrübung dazu gebracht, seine Frau und Kinder umzubringen.

164 Baukasten

Toolbar

Workbench Arbeitsbereich

Abbildung 14.14: Screenshot von Lyssa

Über den Knopf Laden wird ein Dateidialog geöffnet, der die Auswahl eines Bausteins oder
Kurses anbietet. Mit den Knöpfen Neuer Baustein und Neuer Kurs werden entsprechende
Objekte neu angelegt und auf der Arbeitsfläche präsentiert. Sobald ein oder mehrere Inhalte
angezeigt werden, erweitert sich die Toolbar um abhängige Funktionen. Ist z.B. ein Kurs
ausgewählt, dann sieht die Toolbar wie in Abbildung 14.16 aus.

Bei den Erweiterungen der Toolbar handelt es sich um ausgelagerte Ansteuerungen der
Komponenten aus den Abbildungen 14.10 und 14.11. Die Motivation für dieses Vorgehen liegt
in der besseren Übersicht begründet. Anstatt die gleichen Funktionen in die Komponenten zu
stecken und somit über die Arbeitsfläche zu verteilen, befinden sich die Knöpfe immer an der
selben Stelle. Ein Klick auf den Knopf Preview übersetzt den ausgewählten Inhalt mit einem
voreingestellten Transformation Package und öffnet das Resultat in einem Anzeigeprogramm.
Ist mehr Kontrolle gewünscht, kann über Export der bekannte Dialog aus Abbildung 14.13
geöffnet werde, mit dem sich die Übersetzungsparameter einstellen lassen. Der letzte Knopf
Manifest öffnet die Manifestansicht aus Abbildung 14.9.

Die bereits erwähnte Arbeitsfläche arrangiert alle geöffneten Bausteine und Kurse in eige-
nen Fenstern. Wie ”normale“ Fenster auch, lassen sie sich verkleinern, vergrößern und verschie-
denartig ausrichten. Über Befehle in der Menüleiste können einzelne Fenster gezielt ausgewählt
werden.

Als letzter Bestandteil von Lyssa bleibt die in Abbildung 14.14 auf der linken Seite liegende
Workbench übrig, die für den Datenaustausch mit dem Betriebssystem und anderen Rechnern
zuständig ist. Im Prinzip ist es die um ein spezielles Dateisystem erweiterte Komponente zur

14.6 Lyssa 165

Laden Speichern als

Neuer BausteinSpeichern

Neuer Kurs

Abbildung 14.15: Screenshot der Toolbar

Export

Preview Manifest

Abbildung 14.16: Screenshot der erweiterten Toolbar

Dateiansicht aus Abbildung 14.2. Im Gegensatz zu anderen Programmen bietet Lyssa eine
abstraktere Sichtweise auf Dateien und ihre Verteilung. Die Struktur des Hauptverzeichnisses
ist in Abbildung 14.17 dargestellt.

Abbildung 14.17: Screenshot der Workbench

Für eigene erstellte Bausteine und Kurse sind die Verzeichnisse Brick und Courses vor-
gesehen. Wo die Dateien physikalisch gespeichert werden, ist nicht festgelegt und kann von
der voreingestellten Festplatte z.B. auf ein Netzlaufwerk umgestellt werden. Das Verzeichnis
My Home ist mit dem Home-Verzeichnis des eingeloggten User Accounts verbunden und Sys-
tem mit dem Wurzelverzeichnis des Betriebssystems. Über das Kontextmenü der Workbench
können noch beliebig weitere Verzeichnisse mit unterschiedlichen Dateisystemen hinzugefügt
werden. Im nächsten Kapitel wird z.B. ein Server zur zentralen Datenhaltung vorgestellt, der
seine Inhalte über WebDAV anbietet. So ein WebDAV-Laufwerk lässt sich ohne weiteres in
die Workbench integrieren.

Kapitel 15

Repository

Für die Vervollständigung der angestrebten Architektur aus Abbildung 10.23 muss noch das
Repository für die zentrale Datenhaltung implementiert werden. Die hierfür notwendigen Klas-
sen und Komponenten stehen größtenteils aus den vorherigen Kapiteln zur Verfügung, wie
Abbildung 10.18 mit der Komponente Learning Content Repository zu entnehmen ist. Al-
le eingezeichneten Subkomponenten sind bereits beschrieben worden. Was noch fehlt, ist die
Umsetzung der Infrastruktur für den parallelen Zugriff mehrerer Autorensysteme über das
Netzwerk. Sie wird durch die Komponente Web Server aus Abbildung 10.19 repräsentiert, die
eine Web-gestützte Oberfläche und Remote Procedure Calls (RPC) anbietet.

In Kapitel 7 wurden bereits die Web-Technologien vorgestellt, die für eine Umsetzung
des Repositories geeignet scheinen. Als Resümee dieser Betrachtung ergibt sich, dass mit Hilfe
vorhandener Server, Module und Rahmenwerke anspruchsvolle Web Applications bei angemes-
senem Aufwand realisiert werden können. Teilweise wurden mehrere Produkte für eine Lösung
vorgestellt, weshalb nun eine konkrete Entscheidung für die Implementierung getroffen wird.
Als zentraler Web-Server wird Tomcat der Apache Group eingesetzt, weil die meisten Beteilig-
ten des Projekts mαth-kit mit diesem Programm vertraut sind. Für die strukturierte Imple-
mentierung der Web Application wurden kurz die Rahmenwerke Struts und Spring vorgestellt,
die ganz unterschiedliche Qualitäten besitzen. Struts stellt eine einfache, robuste Umsetzung
des Entwurfsmusters MVC dar, die sich in vielen Projekten bewährt hat. Sie deckt genau die
Ansprüche ab, die sich aus der Umsetzung eines Repositories für modulare E-Learning-Inhalte
ergeben. Spring hingegen macht einen moderneren, ganzheitlichen Eindruck für die gesamte
Umsetzung von Web Applications. In Anbetracht der bisher entwickelten Komponenten ist der
Aufwand jedoch recht hoch, diese mit Spring zu verbinden. Dies liegt unter anderem am Kon-
zept der Beans für die Datenhaltung, die über eine eindeutige Identität verfügen und somit
für Datenbanken prädestiniert sind. Bausteine und Kurse bestehen aber aus vielen Dateien,
teilweise in binären Formaten und lassen sich nur schwer mit Beans modellieren. Aus dieser
Erwägung heraus fällt die Entscheidung für die Verwendung von Struts.

Mit Axis steht eine freie Implementierung des SOAP-Protokolls für Web Services zur
Verfügung, die sehr gut mit dem Web-Server Tomcat zusammen arbeitet. Über die Web-
Service-Schnittstelle soll die Suchfunktionalität der Komponente Search Engine durch andere
Applikationen aufgerufen werden. Somit können Autorensysteme wie Lyssa Suchanfragen für
Bausteine und Kurse direkt an das Repository schicken, ohne zwingend eine Web-Oberfläche
nutzen zu müssen. Der Datenaustausch selbst soll über die Übertragungstechnik WebDAV
erfolgen. Weil der Web-Server Tomcat mit WebDAV -Unterstützung ausgeliefert wird, ist le-
diglich ein wenig Konfigurationsarbeit zu leisten.

Ein Vorteil der freien Software soll noch hervorgehoben werden, der sich in der Praxis als
äußerst nützlich erwiesen hat. Alle Programme und Pakete liegen im Quellcode vor, sodass die
internen Vorgänge wesentlich einfacher nachzuvollziehen sind. Im Fall der WebDAV -Library
konnte sogar ein Fehler selbst behoben werden, der während der Tests aufgetreten war.

168 Repository

15.1 Construction Kit Server

Auch für das Repository wurde im Projekt mαth-kit ein eigener Produktname vergeben. Um
den modularen Ansatz hervorzuheben, der auf der Baustein-Metapher beruht, lautet er Con-
struction Kit Server (CKS). Durch den Einsatz des Rahmenwerks Struts ist die Architektur
des CKS bereits grob vorgegeben. Der größte Teil der Programmlogik zum Aufrufen der Kom-
ponente Learning Content Repository liegt über mehrere Controller verteilt, die über eine
definierte Schnittstelle von Struts aufgerufen werden. Überwiegend handelt es sich um die
Steuerung von Standardabläufen, wie z.B. die Eingabe einer Suchanfrage, die auf Richtigkeit
überprüft werden muss und gegebenenfalls mehrere Berichtigungszyklen durchläuft. Bei einer
erfolgreichen Anfrage kann das Suchergebnis so viele Einträge enthalten, dass diese nicht über-
sichtlich auf einer Seite dargestellt werden können. Dank mitgelieferter Komponenten, die sich
über Vererbung erweitern lassen, werden die lästigen Routineaufgaben übernommen.

Es ist daher im Gegensatz zur Herleitung des Autorensystems Lyssa nicht sinnvoll, an dieser
Stelle die involvierten Klassen aufzuzählen, denn die Schnittstellen sind überwiegend gleich.
Auch der Einsatz von Sequenzdiagrammen ist nicht angebracht, weil überwiegend Methoden
des Rahmenwerks Struts involviert sind. Von daher reicht es aus, den Aufbau des Repositories
schematisch darzustellen. Abbildung 15.1 zeigt, wie Web-Server, Module, Rahmenwerke und
die selbst entwickelte Komponente zusammenwirken.

File System

DB

Author Authoring Tool Browser Author

Repository

Web Server
(Tomcat)

(Tomcat)
WebDAV Web Application

(Struts)
Web Service

(Axis)

Connector Connector

���
� ��

�
�

Abbildung 15.1: Aufbau des Construction Kit Servers

Als Web-Server nimmt der Tomcat alle Anfragen der Clients entgegen, entweder vom
Autorenwerkzeug oder einem Web-Browser. Hiernach wird die Eingabe verarbeitet und an
das entsprechende Modul, entweder WebDAV, Web Application oder Web Service, delegiert.
Die Boxen mit der Beschriftung ”Connector“ kennzeichnen die zusätzlich entwickelten Klassen,
die das Rahmenwerk Struts und die Komponente Learning Content Repository verbinden. Die
eingezeichnete Datenbank sowie das Dateisystem dienen zur Speicherung der Kurse, Bausteine
und Metadaten.

15.2 Web-Oberfläche 169

15.2 Web-Oberfläche

Der CKS verfügt auch über eine eigene Web-Oberfläche, die den Zugriff auf die wichtigs-
ten Funktionen zur Baustein- und Kursrecherche ermöglicht. Eine eigene Authentifizierung
und Autorisierung auf Dateiebene schützt die Daten gegenüber unbefugten Zugriffen. Daher
müssen sich die Benutzer/-innen zunächst über die CKS-Anmeldemaske aus Abbildung 15.2
anmelden.

Abbildung 15.2: Screenshot der CKS-Anmeldemaske

Nach erfolgter Anmeldung kann über die gespeicherten Bausteine und Kurse navigiert
werden. Abbildung 15.3 zeigt einen kleinen Datenbestand, mit allgemeinen Zusatzdaten.

Abbildung 15.3: Screenshot der CKS-Dateiansicht

Neben Größe, Datum, Besitzer/-in sind besonders die Versionsnummern (Revision) und
der Freigabestatus (Locked) interessant. Wird ein Baustein oder Kurs verändert, dann erhöht
sich die Versionsnummer, sodass jede Speicherung nachvollzogen und bei Bedarf wieder rück-
gängig gemacht werden kann. Ist ein exklusiver Zugriff auf eine Datei erwünscht, lässt sie sich
für andere Autoren/-innen sperren (angezeigt durch das Vorhängeschloss). Erst nach einer
expliziten Freigabe steht die Datei wieder für alle Berechtigten zur Verfügung.

Teil IV

Analyse

Kapitel 16

Ausgewählte Beispiele

In den vorangegangenen Teilen ”Entwurf“ und ”Implementierung“ wurde ein ganzheitliches
Konzept für modulare E-Learning-Inhalte erstellt und umgesetzt. Aufgrund der Detailvielfalt
kann der Blick für das Wesentliche verloren gehen, sodass in diesem Kapitel eine Reihe aus-
gewählter Beispiele die Funktionalität verdeutlichen soll. Von der Erstellung von Bausteinen,
über die Aggregation zu Kursen bis hin zum Datenaustausch mit anderen Systemen wird
Schritt für Schritt die Arbeit in der Praxis gezeigt. Freilich können nicht alle Aspekte und
Möglichkeiten abgedeckt werden, aber der größte Teil des Systems wird durch die Beispiele
veranschaulicht.

16.1 Erstellung neuer Bausteine

Zur Erstellung von Bausteinen nehmen die Benutzer/-innen die Rolle Developer ein, in der
ihnen alle Funktionen des Autorensystems zur Verfügung stehen, die sie für die Erfüllung ihrer
Aufgabe benötigen. Es gibt verschiedene Szenarien bei der Tätigkeit, die zu leicht abgewan-
delten Arbeitsschritten führen, aber letztendlich sind die Unterschiede nicht so gravierend,
weshalb die Darstellung eines Beispiels in mehreren Schritten ausreichend ist. An dieser Stelle
wird davon ausgegangen, dass die Texte, Bilder und ein Java Applet bereits vorliegen. Die
Erstellung solcher Materialien ist stark von den eingebundenen Programmen abhängig, die
über die Komponente Multimedia Environment aus Abbildung 10.11 angesteuert werden.
Aus diesem Grund sollen die atomaren Dateien als gegeben angesehen werden, damit nicht zu
viel Zeit auf andere Programme verwendet wird.

Als Beispiel soll nun ein Baustein erstellt werden, wie er sich tatsächlich in der Praxis des
Projekts mαth-kit ergeben hat. Ein Thema unter vielen sind die komplexen Zahlen, die sich
sehr gut als repräsentatives Beispiel anbieten. Für die komplexen Zahlen werden zum einen
sehr allgemeine Bausteine benötigt, die sich sehr flexibel in verschiedene Kontexte einbetten
müssen, und zum anderen aber auch sehr spezielle Bausteine, die nur für ein spezielles Thema
geeignet sind. Da die Gruppen des Projekts mαth-kit in sehr unterschiedlichen Bereichen tätig
sind — hier sind Technische Informatik, Mathematik und Ingenieurwissenschaften zu nennen
— und mit komplexen Zahlen in Berührung kommen, lässt sich an ihnen der interdisziplinäre
Einsatz und die Wiederverwendung gut demonstrieren.

Zunächst muss die Idee für einen Baustein reifen und es schadet nicht, Überlegungen zu den
späteren Einsatzgebieten einfließen zu lassen. An dieser Stelle soll ein einführender Baustein
entwickelt werden, der unterschiedliche Darstellungen der komplexen Zahlen verdeutlicht. Weil
das Leitbild von mαth-kit der multimediale Baukasten ist, soll das Beispiel auch um eine multi-
mediale Komponente bereichert werden. Nach reiflicher Überlegung ist der Entschluss gefallen,
dieses Vorhaben mit einem Java Applet zu realisieren, denn die geplanten Interaktionen setzen
ein hohes Maß an Steuerbarkeit voraus. Mit der Unterstützung mehrerer Entwickler/-innen
wurde eine Lösung erstellt, die der Screenshot in Abbildung 16.1 nur ansatzweise übermitteln
kann.

174 Ausgewählte Beispiele

Abbildung 16.1: Screenshot des Applets für komplexe Zahlen

Nicht nur die reine Umsetzung der Funktionalität verdient eine explizite Erwähnung, die
mit Umschaltung von Koordinatensystemen, Zoom-Funktion und unterschiedlichen Rechen-
operationen die verschiedenen Facetten des Themas abdeckt, sondern auch die Anpassungsfä-
higkeit an den einbettenden Kontext. Rahmen, Hilfe, Farben, Zeichensätze, Schriftgrößen und
viele weitere Parameter lassen sich nämlich von außen konfigurieren, sodass dasselbe Applet
in unterschiedlichen Ausgaben nicht durch ein einmal festgelegtes Äußeres als Fremdkörper
hervorsticht. Die störenden Auswirkungen bei fehlender Adaptierbarkeit dürfen nicht unter-
schätzt werden.

Nach der Entwicklung des Applets wird der Text geschrieben. Das Autorensystem selbst
enthält keinen eigenen Editor zum Schreiben von Texten oder XML-Dokumenten. Hier gibt es
aber viele freie sowie kommerzielle Programme auf dem Markt, die aus der alltäglichen Arbeit
bereits bekannt sind und sich für diese Aufgabe anbieten. Der Vorteil dieser Vorgehensweise
ist die Freiheit für die Anwender/-innen, denn sie nutzen das Werkzeug ihrer Wahl und haben
im idealen Fall keine Einarbeitungszeit. Folgender Ausschnitt des XML-Codes soll eine Idee
des Textes vermitteln:

<?xml version=”1.0” encoding=”ISO−8859−1” ?>
2

<tco title=”Polar Coordinates, Geometrical Interpretation of Complex Multiplication”
4 xml:lang = ”en”>

<p>
6 Let

<formula text=”true”>
8 z = a + ib \not= 0

</formula>
10 be an arbitrary point in the complex plane. We draw a line from 0 to

<formula text=”true”>

16.2 Erstellung neuer Kurse 175

12 z \,
</formula>

14 </p>

16 ...

18 <p>
Hence, the multiplication of two complex numbers means the

20 multiplication of the two absolute values and the addition of
the arguments. (The following applet visualises this calculation.)

22 </p>

24 <p>
<mmo type=”applet”

26 code=”ComplexApplet.class”
archive=”complex.jar”

28 width=”800”
height=”600”>

30 <param name=”showPolar” value=”true”></param>
<param name=”language” value=”en”></param>

32 <param name=”copyright” value=”Copyright 2002”></param>
<param name=”help” value=”help.html”></param>

34 </mmo>
</p>

36 </tco>

Nach der Erstellung einer Abbildung — wieder mit einem Programm der Wahl — ergeben
das Applet, der XML-Text und die Bilddatei zusammen einen Baustein. Sie werden in ein Con-
tent Package kopiert und anschließend bestimmt die Auswahl einer Datei den Einstiegspunkt
des Bausteins. Eine Angabe von Metadaten vervollständigt den Baustein, sodass er auch in
größeren Datenbeständen, wie z.B. dem Repository, leicht aufzufinden ist. Die Bildfolge in
Abbildung 16.2 illustriert die einzelnen Arbeitsschritte.

Nach dem Start des Autorensystems öffnet sich ein Fenster, das die Workbench auf obers-
ter Ebene und eine leere Arbeitsfläche zeigt (Abbildung 16.2(a)). Durch Drücken des Knopfs

”Neuer Baustein“ in der Werkzeugleiste geht ein Baustein ohne Namen auf. Weil die benötigten
Dateien bereits vorliegen, muss lediglich das entsprechende Verzeichnis in der Workbench geöff-
net werden (Abbildung 16.2(b)). Nachdem alle Dateien mit der Maus markiert wurden, lassen
sie sich per Drag’n’Drop in den Dateibereich des Bausteins ziehen. Obwohl die XML-Datei
automatisch als Einstiegspunkt angegeben wird, kann es zu Dateikonstellationen kommen,
bei denen diese Entscheidung nicht einwandfrei getroffen werden kann. Ist die zugewiesene
Datei nicht korrekt, lässt sie sich durch eine Combobox manuell auswählen, die alle Dateien
des Bausteins anzeigt (Abbildung 16.2(c)). Nun ist der Baustein grundlegend fertig gestellt,
sollte aber durch die Vergabe von Metadaten erklärt werden (Abbildung 16.2(d)). Wenigstens
die Daten der Kategorie General sind einzugeben, sodass die Suchmaschine des Repositories
den Baustein über die Schlüsselwörter identifizieren kann. Abschließend wird der Baustein an
einem beliebigen Ort gespeichert, entweder lokal, wenn er z.B. noch nachbereitet werden soll,
oder im Repository, um ihn zentral zur Verfügung zu stellen.

16.2 Erstellung neuer Kurse

In der Rolle Composer erstellen Benutzer/-innen Kurse aus Bausteinen und anderen Kursen.
Hierbei ist weniger technisches Wissen gefragt, sondern der Blick für das Gesamte. Lediglich
das Verständnis für die Rahmenbedingungen, die einen reibungslosen Einsatz gestatten, darf
vorausgesetzt werden. Um das Beispiel nicht zu überfrachten, wird in diesem Abschnitt nicht
weiter auf die Suche in Repositories eingegangen. Im vorherigen Beispiel 16.1 wurde bereits

176 Ausgewählte Beispiele

(a) Initialer Zustand (b) Leerer Baustein

(c) Auswahl der Einstiegsdatei (d) Eingabe der Metadaten

Abbildung 16.2: Erstellung eines Bausteins in vier Momentaufnahmen

16.3 Inhalte publizieren 177

ein Baustein für komplexe Zahlen erstellt, der nun mit weiteren Bausteinen zu einem Kurs
zusammengesetzt wird.

Es gibt zwei wesentliche Varianten, einen Kurs zusammenzusetzen, die sich auch kom-
binieren lassen. Bei der ersten werden alle Bausteine auf ein Mal in den Kurs gezogen und
anschließend zu einer Struktur verknüpft. Dieser Aufbau wird bei der zweiten Variante direkt
gesteuert, indem jeder Baustein einzeln in die Struktur und nicht in den Ressourcenbereich ge-
zogen wird. Besonders bei vielen Bausteinen ist letzteres Vorgehen übersichtlicher. Abbildung
16.3 verdeutlicht die einzelnen Schritte, wobei die erste Reihe die Variante mit der nachträg-
lichen Verknüpfung zeigt und die zweite Reihe die direkte.

In dieser Darstellung wurden die ersten Schritte ausgelassen, weil sie denen aus Abbildung
16.2(a) gleichen. Nach dem Start befindet sich das Autorensystem im gewohnten Anfangs-
zustand und eine Betätigung des Knopfs ”Neuer Kurs“ öffnet einen leeren Kurs. Neben der
Auswahl des Verzeichnisses, das die gewünschten Bausteine enthält, wird noch der Titel des
Kurses eingegeben, der in diesem Fall ”Mathematics for Engineers“ lautet. Anschließend wer-
den alle Dateien ausgewählt und per Drag’n’Drop in den Ressourcenbereich gezogen. Nun
kann die Struktur aufgebaut werden, indem über das Kontextmenü des Strukturbereichs der
Befehl New Item aufgerufen wird. Befindet sich der Mauszeiger beim Öffnen des Menüs auf
einem bereits existierenden Knoten, dann wird ein neuer Unterknoten eingehängt. Andernfalls
erscheint der Knoten auf oberster Ebene. Abbildung 16.3(a) zeigt den Zustand des Kurses,
nachdem bereits zwei Knoten auf oberster Ebene und ein Unterknoten erstellt wurden. Da das
Kontextmenü auf Höhe des Knotens ”Polar Coordinates“ geöffnet ist, wird der neue Knoten
unter diesem erscheinen, wie in Abbildung 16.3(b) zu sehen ist. Die Auswahl der Ressource
erfolgt über eine spezielle Combo Box, die eine vollständige Liste aller Ressourcen anbietet.
Sobald eine ausgewählt ist, wird auch der Knoten automatisch benannt. Eine Eingabe von
Metadaten ist selbstverständlich auch für Kurse angeraten, wird aber aus Platzgründen nicht
in einer Abbildung dargestellt. Wenn auch dieser Schritt abgeschlossen ist, kann der Kurs an
beliebiger Position gespeichert werden.

Abbildung 16.3(c) zeigt die Variante mit dem separaten Einfügen jedes Bausteins in die
Struktur. Es ist gerade der Baustein Application.lob ausgewählt, der mit der Maus auf
den Knoten ”Polar Coordinates“ gezogen wird. In Abbildung 16.3(d) ist das Resultat zu se-
hen. Neben dem neuen Unterknoten wurden gleichzeitig Titel und Referenz auf die Ressource
angelegt, sodass mit einer Mausbewegung ein vollständiger Knoten entsteht. Da ein Knoten
mehr Eigenschaften besitzt als gleichzeitig in der Baumdarstellung präsentiert werden können,
wird ein zusätzliches Eigenschaftsfenster eingeblendet, in dem sich alle Werte einstellen lassen.
Wenn der Kurs fertig gestellt ist, folgt nach der Metadateneingabe das Speichern.

16.3 Inhalte publizieren

Die Rolle Publisher ist für die Übersetzung von Bausteinen und Kursen in andere Formate,
wie z.B. HTML oder PDF, zuständig. Für diese Tätigkeit stehen verschiedene Werkzeuge zur
Verfügung, von denen in diesem Beispiel lediglich die Übersetzungsprozesssteuerung vorge-
stellt wird. Alle wesentlichen Funktionen wurden bereits in Abschnitt 14.5 erläutert, weshalb
sich folgender Text mehr auf die Resultate konzentriert. Zu den anderen Werkzeugen sei noch
gesagt, dass ihre Bedienung relativ komplex ist und sie in der Regel nicht oft eingesetzt wer-
den. Ihr wesentlicher Zweck ist die Erstellung der Transformation Packages (TP), in denen
Java-Klassen, Übersetzungsregeln und sonstige Ressourcen enthalten sind. Einmal erstellt, was
durchaus viel Arbeit bereiten kann, sollte das TP nach einer kurzen Anpassungszeit nur noch
wenige Änderungen benötigen.

Welche Auswirkungen ein TP auf das Resultat hat, wird nun anhand drei verschiedener
Beispiele für den gleichen Inhalt demonstriert. Bei dem Inhalt handelt es sich um ein Skript
zur Technischen Informatik von Prof. Dr.-Ing. Bärbel Mertsching, das ursprünglich in LATEX
gesetzt und mit Hilfe des Importmechanismus konvertiert wurde. Das erste TP ist im Stil des

178 Ausgewählte Beispiele

(a) Hinzufügen eines neuen Knotens (b) Auswählen der Referenz

(c) Separates Einfügen von Bausteinen (d) Bearbeitung der Eigenschaften eines Knotens

Abbildung 16.3: Erstellen eines Kurses in zwei Varianten

16.4 Explorationsumgebung 179

GET Lab-Web-Auftritts gehalten, wodurch sich erstellte Kurse nahtlos in die Site integrieren.
Abbildung 16.4 zeigt einen Screenshot des Ergebnisses mit einer Seite über ”Codes“. Es handelt
sich um HTML-Seiten für einen gängigen Web-Server, weshalb auch eine Navigation erzeugt
wurde. Wäre der Inhalt für ein LMS bestimmt, ließe sich dieser zusätzliche Übersetzungsschritt
selbstverständlich auslassen.

Abbildung 16.4: Übersetzungsergebnis im Layout des GET Labs (HTML)

Das zweite Beispiel in Abbildung 16.5 zeigt den gleichen Inhalt, übersetzt mit dem TP
des Projekts mαth-kit. Abgesehen von den Farben und den Logos ähnelt die Darstellung dem
ersten Beispiel, wo hingegen die Darstellung in einem anderen Format auch zu einem unter-
schiedlichen Ergebnis führt, wie Abbildung 16.5 verdeutlicht. In diesem Screenshot ist der
Inhalt als PDF zu sehen, das mit einem weiteren TP des Projekts mαth-kit übersetzt wurde.
Die sichtbare Navigation wurde im Gegensatz zur HTML-Variante nicht generiert, weil PDF
diese Funktionalität automatisch anbietet. Ein wesentlicher Unterschied macht die Platzierung
der Bausteine auf dem Bildschirm aus. Aufgrund der kleineren Darstellung werden bei PDF
mehrere Bausteine auf eine Seite gesetzt. Weil HTML hauptsächlich für die Bildschirmdarstel-
lung genutzt wird, darf mit dem Platz großzügiger umgegangen werden. Jeder Baustein wird
zu einer HTML-Seite umgewandelt, die sich bei Bedarf vertikal scrollen lässt.

16.4 Explorationsumgebung

Die in dieser Arbeit vorgestellte Infrastruktur für modulare E-Learning-Inhalte unterstützt
eine Vielzahl verschiedener Lernparadigmen. In diesem Beispiel soll nun aus Sicht der Rolle
Student die Arbeit mit einer Explorationsumgebung verdeutlicht werden, einem wesentlichen
Konzept im Projekt mαth-kit. Eine Explorationsumgebung dient in erster Linie zur prakti-
schen Vertiefung von bereits angeeignetem Wissen, also z.B. als Ergänzung zu einer Vorlesung.

180 Ausgewählte Beispiele

Abbildung 16.5: Übersetzungsergebnis im Layout von mαth-kit (HTML)

Abbildung 16.6: Übersetzungsergebnis im Layout von mαth-kit (PDF)

16.4 Explorationsumgebung 181

Benutzer/-innen in der Rolle Student können auf diese Weise im Selbststudium ihren aktuellen
Wissensstand überprüfen und erweitern. Die zugrundeliegende Lerntheorie für Explorations-
umgebungen ist der Konstruktivismus (siehe Abschnitt 2.2.3).

In diesem Beispiel sollen die bereits verwendeten komplexen Zahlen als Anschauungsobjekt
dienen. Eine Explorationsumgebung beginnt zunächst mit einem theoretischen Teil, der das
nötige Grundwissen vermittelt. Abbildung 16.7 zeigt den Unterabschnitt ”Geometrische Inter-
pretation der komplexen Zahlen“ des Abschnitts ”Gaußsche Zahlenebene“. Sollten die theoreti-
schen Grundlagen bereits vorhanden sein, kann auch direkt zum Explorationsteil übergegangen
werden. Abbildung 16.8 zeigt ein Applet zum Rechnen mit komplexen Zahlen im kartesischen
Koordinatensystem. Nach der konstruktivistischen Sichtweise gibt der Explorationsteil keine
starre Aufgabe oder Ausführungsfolge vor, sondern erlaubt der Rolle Student eine individuelle
Erfahrung. In diesem Beispiel erlaubt das Applet, verschiedene Operationen mit komplexen
Zahlen interaktiv durchzuführen. Um den Transfer des neu erlangten Wissens in die Praxis
ein wenig zu vereinfachen, folgt ein Anwendungsteil mit spezifischen Beispielen.

Viel wichtiger als dieser Praxisbezug ist jedoch der Übungsteil, der den aktuellen Lernfort-
schritt wiedergibt. Ohne diese Überprüfung kann die eigene Leistung der Rolle Student nur
schwer eingeschätzt werden. Noch gravierender wirken sich falsche Rückschlüsse oder Miss-
verständnisse aus, die sich vielleicht aus dem Explorationsteil ergeben. Um ihnen entgegen zu
wirken, sollten die Übungen das gesamte Spektrum einer Explorationsumgebung abdecken.
In welcher Form dies genau geschieht, ist dabei von geringer Wichtigkeit. Mit dem Autoren-
system Lyssa lassen sich z.B. Quiz, Puzzles und Multiple-Choice-Aufgaben ohne Aufwand
integrieren. In Abbildung 16.9 ist z.B. eine Übung zur Umwandlung der Darstellungsarten
zu sehen, die mit der eigenen Auszeichnungssprache des Projekts mαth-kit erstellt wurde
[Baudry03; Baudry04b].

Abbildung 16.7: Theorieteil

182 Ausgewählte Beispiele

Abbildung 16.8: Explorationsteil

Abbildung 16.9: Übungsteil

Kapitel 17

Zusammenfassung und Bewertung

Das Ziel dieser Arbeit ist, Entwurf, Implementation und Einsatz eines ganzheitlichen Kon-
zepts für modulare E-Learning-Inhalte zu realisieren. Der vorgegebenen Systematik folgend
wurden im ersten Teil der Stand der Wissenschaft wiedergegeben und die aktuellen Grenzen
aufgezeigt. Als besondere Herausforderung stellte sich die vorherrschende Betrachtung von
Einzelproblemen in der wissenschaftlichen Gemeinschaft heraus. Keine der Arbeiten deckt
das gesamte Spektrum dieses Gebietes ab, sondern betrachtet Details, die für sich genommen
wichtig sind, sich als Teil eines Ganzen jedoch in der Praxis anders verhalten. So galt es, die
einzelnen Theorien, Definitionen sowie Umsetzungen zu kombinieren und um neue Ideen bzw.
eine erweiterte Sicht anzureichern. Dass dieses Unterfangen nicht einfach wird, zeichnete sich
bereits in Kapitel 3 über die Lernobjekte ab. Viele Definitionen, die teilweise ähnlich und doch
wieder sehr verschieden sind, zeigten, wie unterschiedlich die Ansichten und Bedürfnisse sind.
Auch in dieser Arbeit wird die Problemstellung aus einem eigenen Blickwinkel betrachtet.
Herausgekommen ist deshalb eine Lösung, die stark technisch angelegt ist, aber durch ihre
generische Struktur keine Barrieren für unterschiedliche didaktische Konzepte aufstellt.

Mit den erworbenen Erkenntnissen wurde in Kapitel 10 eine Vision für das angestrebte
System entwickelt. Ein besonderes Augenmerk lag auf der genauen Feststellung des Bedarfs
der späteren Benutzer/-innen, indem über Rollen die einzelnen Tätigkeiten gruppiert wurden.
Einerseits lassen sich durch diese Abgrenzungen die einzelnen Anwendungsfälle leichter finden
und vervollständigen, andererseits wird ein modularer Aufbau des späteren Systems gefördert.
Jede Tätigkeit lässt sich nämlich wieder einer bestimmten Anzahl von Komponenten zuordnen,
die für sich einen abgeschlossenen Funktionsumfang besitzen. Hierdurch lassen sich einzelne
Teile des Systems auch in anderen Kontexten einsetzen, was die Wiederverwendbarkeit des
Systems erhöht. Aus diesem Grund muss nicht die gesamte Anwendung installiert und kon-
figuriert werden, nur weil eine bestimmte Funktionalität benötigt wird. Die Abhängigkeiten
der Komponenten untereinander sind durch den umfangreichen Entwurf auf ein Minimum
reduziert.

Für ein besseres Verständnis wurde zusätzlich die Metapher ”Baukasten“ eingeführt, die
weitere Begriffe wie z.B. den Baustein implizierte. Diese zusätzlich im Entwurf eingezoge-
ne Ebene gibt Entwicklern/-innen wie Benutzern/-innen eine vereinfachte Ansicht auf das
komplexe System, indem sie Assoziationen und eine gewisse Vertrautheit hervorruft. Anstatt
technische Details zu betonen, werden die wesentlichen Eigenschaften des Systems in den
Vordergrund gestellt: Bausteine lassen sich vielfältig und ”kinderleicht“ kombinieren. Die Me-
tapher wirkte sich nicht nur auf das User Interface (UI) aus. Jede einzelne Komponente, sei
sie noch so klein oder allgemein, wurde speziell auf dieses Prinzip ausgelegt, sodass sich ein
konsistenter Entwurf ergab, der ohne Hilfskonstruktion auskommt.

Der Entwurf der einzelnen Komponenten gestaltet sich orthogonal, indem neue Kompo-
nenten die bestehenden für ihre Aufgaben nutzen. Auf unterster Ebene befinden sich die Basis-
komponenten aus Kapitel 11, die auf den ersten Blick wenig mit E-Learning zu tun haben. Sie

184 Zusammenfassung und Bewertung

bereiteten jedoch den Weg für die eigentlich genutzten Komponenten, indem sie den techni-
schen Zugriff auf Dateien und externe Anwendungen abstrahieren. Erst durch die vereinfachte
Sicht auf die Inhalte der Bausteine und Kurse war es möglich, die komplexen Konvertierungs-
und Integrationsfunktionen in der Form anzubieten. In Kapitel 12 wurde gezeigt, wie sich
die Basiskomponenten mit vorherrschenden Standards sowie Metaphern zu einer vielseitigen
Komponente für modulare E-Learning-Inhalte vereinen lassen. Diese Komponente für Baustei-
ne und Kurse bietet sich an, auch außerhalb dieser Arbeit in anderen Projekten verwendet zu
werden. Unabhängig von den eingesetzten Metaphern — es handelt sich um eine austauschbare
Schicht —, erlaubt sie die Erstellung, Wartung und Nutzung standardkompatibler Lernobjek-
te. Sollte in einem Projekt die Auffassung vorherrschen, z.B. lieber Wileys Atom-Metapher
aus Abschnitt 3.2.3 einzusetzen, ist der Aufwand für die Anpassung der Schnittstelle gering.

Zusammen mit den anderen Komponenten für den Import von Inhalten, der Suche und
der Übersetzung in andere Formate ergab sich ein vollständiges Rahmenwerk in Kapitel 13.
Es wurden die Bereiche Erstellung von Inhalten, ihre Komposition und die Konvertierung ab-
gedeckt, auf denen Komponenten zur Darstellung sowie Steuerung aufsetzen. Hierdurch war
der funktionale Grundstein gelegt, um die angestrebte Umgebung für modulare E-Learning-
Inhalte im vollen Umfang zu realisieren. Die mit den Benutzern/-innen kommunizierenden
Komponenten können beliebig nach eigenen didaktischen Gesichtspunkten gestaltet werden,
weil das Rahmenwerk hierüber keine Vorgaben macht. Auch technische Entscheidungen, ob
das System z.B. verteilt mit vielen Autoren/-innen arbeiten soll oder doch als Einzelplatzan-
wendung realisiert wird, sind noch offen. Dank der Skalierbarkeit des Rahmenwerks, können
auch wesentlich kleinere oder spezialisierte Lösungen umgesetzt werden, als sie hier angedacht
sind. Es stehen alle Möglichkeiten offen.

Für das gesetzte Ziel musste auch eine konkrete Implementierung umgesetzt werden, die
sich in der Praxis bewährt. Die Systemvision in Abbildung 10.23 gibt genau vor, dass die
Entwicklungsumgebung für modulare E-Learning-Inhalte aus einem zentralen Repository be-
steht, auf das die Autoren/-innen mit einem Werkzeug zugreifen. Angelehnt an die gewählte
Metapher Baukasten, wird in Kapitel 14 das Autorenwerkzeug umgesetzt. Der Fokus lag hier-
bei auf einer einfachen wie flexiblen Anwendung, bei der mit wenigen Arbeitsschritten die
gewünschten Ergebnisse erzielt werden. Wenn immer möglich, wurden grafische Komponen-
ten herausgearbeitet, wie z.B. die Dateiansicht, die in vielen Kontexten ihren Einsatz finden.
Hierdurch wird die ohnehin kurze Einarbeitungszeit reduziert. Auch beim Autorenwerkzeug
soll die Skalierbarkeit betont werden, denn durch den Zugriff über die Workbench kann das
Programm als Einzelplatzlösung oder als Teil einer verteilten Anwendung betrieben werden.

Das Repository in Kapitel 15 setzt sich größtenteils aus fertigen Servern und Libraries
zusammen, die aber entsprechend konfiguriert und angepasst wurden. Auch bei dieser Auf-
gabe kam der Komponentenentwurf entgegen, weil sich die benötigte Funktionalität einfach
integrieren ließ. Der Entwicklungsaufwand war relativ gering und das Ergebnis überzeugend.
Eine Reihe verschiedener Protokolle sowie Mechanismen ermöglichen nun den Zugriff auch von
anderen Programmen, die nicht in dieser Arbeit entwickelt wurden. Wenn nun z.B. ein anderes
Autorenwerkzeug genutzt wird, das standardkompatibel ist und WebDAV unterstützt, kann
es auf das Repository zugreifen.

In Anbetracht der Zielsetzung aus Abschnitt 1.2 und ihrer Verfeinerung aus Abschnitt
9.1 wurde in dieser Arbeit eine adäquate Lösung herausgearbeitet, die teilweise sogar über
die Ansprüche hinausgeht. Dank der Skalierbarkeit des gesamten Systems können nicht nur
große Infrastrukturen für modulare E-Learning-Inhalte aufgebaut werden. Je nach Belieben
können einzelne Komponenten entnommen werden, die sich aufgrund ihrer Standardkompa-
tibilität mit Systemen gleicher Ausrichtung wirkungsvoll integrieren lassen. Mit dieser Arbeit
ist es gelungen, das differente Feld der Lernobjekte von der Theorie bis zur Implementierung
zusammenzufassen und ein ganzheitliches Konzept zu liefern.

Kapitel 18

Ausblick

In dieser Arbeit haben sich neben den behandelten Fragestellungen viele weitere interessante
Themen aufgetan, die nicht weiter behandelt werden konnten. Gründe hierfür sind zum einen
der zu große Umfang, den eine gerecht werdende Diskussion einnehmen würde, oder der späte
Zeitpunkt des Auftretens, der eine direkte Berücksichtigung unmöglich machte. In diesem
Kapitel nun sollen diese Themen wenigstens angesprochen werden, um ihre wissenschaftliche
Behandlung in anderen Arbeiten anzuregen.

Viele in der Arbeit vorgestellten Standards unterliegen einer stetigen Weiterentwicklung.
Ein besonders wichtiger im Zusammenhang mit modularen E-Learning-Inhalten ist SCORM
(siehe Abschnitt 3.6), der mittlerweile SCORM 2004 [Dodd04a; Dodd04b; Dodd04c] heißt und
neben einigen Verbesserungen auch neue Aspekte behandelt. So wird die Sequenzierung von In-
halten (siehe Abschnitt 3.4) nun ausführlich in einem eigenen Dokument behandelt [Dodd04c].
All diese Neuerungen sollten in einer nächsten Version des entwickelten Rahmenwerks einflie-
ßen, um die Standardkompatibilität auch für neue SCORM-Lernobjekte zu garantieren.

Einige Standards haben keinen Einfluss auf diese Arbeit gefunden, weil sie zum Zeitpunkt
der Entwicklung noch nicht die nötige Reife erlangt hatten. Hierzu gehört das IMS Digital
Repositories Interoperability [IMS03a], das andere Standards wie z.B. IMS Meta-Data und
IMS Content Packaging nutzt, um ein digitales Repository für Lernobjekte aufzubauen. Im
Grunde genommen werden in diesem Standard die formalen Rahmenbedingungen festgelegt,
wie sie im Entwurf des Repositories dieser Arbeit (siehe Kapitel 15) befolgt werden. Da auch
hier die Einhaltung der Standards einen wesentlichen Punkt ausmachte, sollte es ein leichtes
sein, durch leichte Modifikationen ein für diesen Standard kompatibles Repository zu erzeugen.

Ein anderes Themengebiet, das in dieser Arbeit nicht wesentlich behandelt wurde, sind
die Möglichkeiten bei der inhaltlichen Gestaltung von Lernobjekten. Neben den Formaten zur
Kodierung der Inhalte (siehe Abschnitt 3.7) und den Metadaten (siehe Kapitel 4), gibt es
Standards für das Verhalten von Lernobjekten zur Laufzeit. Da wären zum einen Quiz, mit
denen die Studierenden z.B. ihren Wissensstand selbst überprüfen oder Leistungsnachweise er-
bringen könnten. Grundlage für den Einsatz in modularen E-Learning-Inhalten wären freilich
Standards, wie z.B. IMS Question and Test Interoperability [IMS04b], die vom Autorensys-
tem und von der Lernplattform korrekt verarbeitet werden. Zu den ergänzenden Verfahren
gehört auch das Sammeln von Daten über die Studierenden, die z.B. nach einem Standard wie
dem IMS Learner Information Package [IMS05] in der Lernplattform oder dem Repository
gespeichert werden.

Den Urhebern/-innen digitaler Inhalte gereichen die eigentlich positiven Eigenschaften des
Internets oft zum Nachteil. Über das Internet können Lernobjekte ubiquitär verbreitet wer-
den und eine Kopie ist so gut wie das Original. Diese Verteilung lässt sich ohne geeignete
Mittel nicht kontrollieren, sodass gewollt oder ungewollt die Urheberrechte schnell verletzt
sind. Denn sobald Lizenzgebühren mit dem geistigen Eigentum verbunden sind, reichen ein-
fache Copyright-Vermerke in den Metadaten nicht aus. Das zeigt sich eindeutig an der Be-

186 Ausblick

liebtheit freier P2P-Netzwerke (Peer-to-Peer), in denen vorwiegend Raubkopien gehandelt
werden. Es müssen technische Vorkehrungen getroffen werden, mit denen die Verbreitung
und Nutzung kontrolliert wird. Der dahinter stehende Mechanismus nennt sich Digital Rights
Management (DRM) [Downes03; Iannella01] und wird in anderen Medienbereichen, wie z.B.
Handy-Klingeltöne, Musikstücke oder Videos bereits kommerziell genutzt. Inhalte werden ver-
schlüsselt übertragen und können nur mit spezieller Software oder Hardware in das ursprüng-
liche Format übertragen werden. Voraussetzung hierfür ist eine gültige Lizenz.

Auf dem Gebiet der Lernobjekte hat diese Technik in der Praxis noch keinen Einzug
gefunden und auch die Standardisierung ist nicht weit fortgeschritten. Hier gibt es noch For-
schungsgebiete, die wissenschaftlich erschlossen werden müssen, um sie in das Rahmenwerk
dieser Arbeit zu integrieren. Auf jeden Fall ist DRM für die kommerzielle Nutzung von modu-
laren E-Learning-Inhalten ein wichtiges Thema, das zukünftige Systeme anbieten sollten. Ein
Beispiel für ein einfaches DRM-Rahmenwerk für Lernobjekte ist z.B. in [Santos04] zu finden.

Ein anderes interessantes Thema im Zusammenhang mit Lernobjekten ist die Einführung
semantischer Ontologien, um Dokumente untereinander zu verknüpfen [Krieg-Brückner04].
Dies könnte ein Schlüssel in Richtung personalisiertes Lernen sein, bei dem Lernende ihr ei-
genes Wissen mit genau auf ihre Bedürfnisse angepassten Lernmaterialien aufbauen. Jeder
Mensch bringt beim Lernen andere Voraussetzungen mit, denen mit individuellen, angepass-
ten Lernpfaden [Farrell04; Atif03] begegnet werden soll. Hierfür muss das System Annahmen
treffen, die auf Daten über die Lernenden, z.B. durch automatische Tests oder Bewertungen
durch Lehrende, und den Metadaten der Lernobjekte beruhen. Auch auf diesem Gebiet gibt es
zur Zeit mehr Fragen als Antworten, die von der Wissenschaft erst noch beantwortet werden
müssen. Erste Ansätze gibt es z.B. in [Dolog04; Brusilovsky04]. Andere Systeme versuchen
einen einfacheren Weg einzuschlagen, indem sie Empfehlungen für einzelne Lernobjekte geben
[Rashid02]. Das Rahmenwerk dieser Arbeit sollte um entsprechende Algorithmen für perso-
nalisiertes Lernen erweitert werden, sobald die Forschung einen akzeptablen Stand erreicht
hat.

Für das Problem des Auffindens geeigneter Lernobjekte gibt es auch andere Vorschläge,
die nicht auf direkte Automatisierung setzen. Menschen können besser abschätzen, was sich
hinter einem bestimmten Lernobjekt verbirgt, welche Voraussetzungen für einen erfolgreichen
Einsatz notwendig sind und wie sie sich mit anderen Lernobjekten kombinieren lassen. Die
Daten hierüber werden an einer zentralen Stelle gespeichert und anderen Interessierten zur
Verfügung gestellt. Solch ein Bewertungssystem für Lernobjekte bietet z.B. das Learning Ob-
ject Review Instrument1 (LORI) an [Leacock04; Nesbit04]. Eine Überlegung für die zukünftige
Entwicklung des Rahmenwerks ist die Integration eines Bewertungssystems in das Rahmen-
werk, um es an verschiedenen Stellen, z.B. direkt im Autorensystem oder im Repository, zur
Verfügung zu stellen.

1http://www.eLera.net (29.10.05)

http://www.eLera.net

Literaturverzeichnis

[Ahronheim98] Judith R. Ahronheim: Descriptive metadata: Emerging standards. In:
Journal of Academic Librarianship, 24(5), 1998, pp. 395–403.

[Aliprand03] Joan Aliprand, Julie Allen and Ken Whistler (eds.): The Unicode Standard
Version 4.0. Addison Wesley, 2003.

[Ammelburger03] Dirk Ammelburger: XML. Hanser Fachbuchverlag, 2003.

[Aristoteles82] Aristoteles: Poetik, griechisch-deutsch. Übersetzt von Manfred Fuhrmann,
Reclam, 1982.

[Atif03] Yacine Atif, Rachid Benlamri and Jawad Berri: Learning objects based
framework for self-adaptive learning. In: Education and Information Tech-
nologies, 8(4), 2003.

[Atkinson69] Richard C. Atkinson and H. A. Wilson (eds.): Computer-assisted instruc-
tion: a book of readings. Academic Press, 1969.

[Baker00] Thomas Baker: A grammar of dublin core. In: D-Lib Magazine, 6(10),
2000.

[Baker01] Thomas Baker, Makx Dekkers, Rachel Heery, Manjula Patel and Gau-
ri Salokhe: What terms does your metadata use? application profiles as
machine-understandable narratives. In: Journal of Digital Information,
2(2), 2001.

[Baker03] Thomas Baker, Thomas Baker, Dan Brickley, Erik Duval, Erik Duval, Pete
Johnston, Pete Johnston, Heike Neuroth and Heike Neuroth: Principles of
metadata registries. Technical report, DELOS Working Group on Regis-
tries, 2003.

[Balbieris02] Giedrius Balbieris and Vytautas Reklaitis: Reshaping e-learning content to
meet the standards. In: Informatics in Education, 1(1), 2002, pp. 5–16.

[Balzert00] Helmut Balzert: Lehrbuch der Software-Technik. Spektrum Akademischer
Verlag, 2000.

[Bauch03] Manfred Bauch and Luise Unger: Interactive mathematics with math-kit —
distance learning versus face-to-face learning. In: Proc. 21st ICDE World
Conference on Open Learning & Distance Education, 2003.

[Baudry02a] A. Baudry, M. Bungenstock and B. Mertsching: Architecture of an e-
learning system with embedded authoring support. In: Margaret Driscoli
and Thomas C. Reeves (eds.): E-LEARN 2002–World Conference on E-
Learning in Corp., Govt., Health., & Higher Ed., 2002, pp. 110–116.

188 LITERATURVERZEICHNIS

[Baudry02b] A. Baudry, M. Bungenstock and B. Mertsching: Ein multimediales Rah-
menwerk für die Mathematiklehre nach der Baukastenmetapher. In:
Klaus P. Jantke, Wolfgang S. Wittig and Jörg Herrmann (eds.): Von e-
Learning bis e-Payment. Das Internet als sicherer Marktplatz (LIT ’02).
Infix, 2002, pp. 300–307.

[Baudry03] A. Baudry, M. Bungenstock and B. Mertsching: Nyx - a tool for generating
standard compatible e-learning courses with consistent and adaptable pre-
sentation. In: The IASTED International Conference on Computers and
Advanced Technology in Education (CATE 2003), 2003, pp. 265–269.

[Baudry04a] A. Baudry, M. Bungenstock and B. Mertsching: Administration and deve-
lopment of modular learning units with the construction kit server. In:
Proc. ED-MEDIA 2004–World Conference on Educational Multimedia,
Hypermedia & Telecommunications, 2004.

[Baudry04b] A. Baudry, M. Bungenstock and B. Mertsching: Reusing document formats
for modular course development. In: IASTED International Conference on
WEB-BASED EDUCATION (WBE 2004), 2004, pp. 535–537.

[Baumgartner97] Peter Baumgartner and Sabine Payr: Konstruktivismus und Kognitions-
wissenschaft. Kulturelle Wurzeln und Ergebnisse, chapter Erfinden lernen,
pp. S. 89–106. Springer, 1997.

[Baumgartner99] Peter Baumgartner and Sabine Payr: Lernen mit Software. Studienverlag
Ges. mbH, 1999. ISBN:3706514443.

[Baumgartner02a] Peter Baumgartner, Hartmut Häfele and Kornelia Maier-Häfele: E-
Learning Praxishandbuch, Auswahl von Lernplattformen. Studien Verlag,
2002.

[Baumgartner02b] Peter Baumgartner, Kornelia Häfele and Hartmut Häfele: E-Learning: Di-
daktische und technische Grundlagen. In: CD Austria, 5, pp. 4–32.

[Bearman99] David Bearman, Godfrey Rust, Stuart Weibel, Eric Miller and Jennifer
Trant: A common model to support interoperable metadata. In: D-Lib
Magazine, 5(1), 1999.

[Beckett03] Dave Beckett. Rdf/xml syntax specification (revised), December 2003.

[Belqamsi02] Youssef Belqamsi: Using XML in elearning courses. In: E-LEARN 2002–
World Conference on E-Learning in Corp., Govt., Health., & Higher Ed.,
2002, pp. 1183–1186.

[Bentley95] Richard Bentley, Thilo Horstmann, Klaas Sikkel and Jonathan Trevor: Sup-
porting collaborative information sharing with the world wide web: The
bscw shared workspace system. In: The World Wide Web Journal: Procee-
dings of the 4th International WWW Conference, pp. 63–74.

[Berners-Lee94] T. Berners-Lee, L. Masinter and M. McCahill: Uniform Resource Locators
(URL). RFC 1738, Internet Engineering Task Force, December 1994.

[Berners-Lee98] T. Berners-Lee, R. Fielding, U.C. Irvine and L. Masinter: Uniform Resource
Identifiers (URI). RFC 2396, Internet Engineering Task Force, August
1998.

[Binstock02] Cliff Binstock, David Peterson and Mitchell Smith: The XML Schema
Complete Reference. Addison-Wesley, 2002.

LITERATURVERZEICHNIS 189

[Biron01] Paul V. Biron and Ashok Malhotra. Xml schema part 2: Datatypes, May
2001.

[Black62] Max Black: Models and Metaphorsr. Studies in language and Philosophy.
Cornell University Press, 1962.

[Blanchi01] Christophe Blanchi and Jason Petrone: Distributed interoperable metadata
registry. In: D-Lib Magazine, 7(12), 2001.

[Bodendorf90] Freimut Bodendorf: Computer in der fachlichen und universitären Ausbil-
dung. Oldenbourg, 1990.

[Bodoff04] Stephanie Bodoff, Eric Armstrong, Jennifer Ball and Debbie Bode Carson:
The J2EE Tutorial, Second Edition. Addison Wesley, 2004.

[Bourret99] Ronald Bourret, Christof Bornhövd and Alejandro P. Buchmann: A generic
load/extract utility for data transfer between xml documents and relational
databases. Technical Report DVS99-1, Department of Computer Science -
Darmstadt University of Technology, December 1999.

[Britain00] Sandy Britain and Oleg Liber: A framework for the pedagogical evaluation
of virtual learning environments. In: Proc. of: ALT-C 2000, 2000.

[Bro91] Brockhaus-Enzyklopädie, Bd. 14: mag.–mod., 1991.

[Brusilovsky04] Peter Brusilovsky: Knowledgetree: A distributed architecture for adapti-
ve e-learning. In: Proceedings of the 13th international World Wide Web
conference on Alternate Track Papers & Posters, 2004, pp. 104–113.

[Bungenstock02] M. Bungenstock, A. Baudry and B. Mertsching: The construction kit me-
taphor for a software engineering design of an e-learning system. In: Philip
Barker and Samuel Rebelsky (eds.): Proc. ED-MEDIA 2002–World Con-
ference on Educational Multimedia, Hypermedia & Telecommunications,
2002, pp. 216–217.

[Bungenstock03a] M. Bungenstock, A. Baudry and B. Mertsching: Data exchange between
lyssa and learning management systems. In: E-Learn 2003–World Con-
ference on E-Learning in Corporate, Gov ernment, Healthcare, & Higher
Education, 2003, pp. 31–34.

[Bungenstock03b] M. Bungenstock, A. Baudry and B. Mertsching: Datenaustausch zwischen
Lyssa und Learning Management Systemen. In: Von e-Learning bis e-
Payment. Das Internet als sicherer Marktplatz (LIT ’03), 2003, pp. 126–
132.

[Bungenstock04a] M. Bungenstock, A. Baudry and B. Mertsching: Design of a common api for
learning objects. In: The IASTED International Conference on Computers
and Advanced Technology in Education (CATE 2003), 2004, pp. 345–350.

[Bungenstock04b] M. Bungenstock, A. Baudry and B. Mertsching: Entwicklung eines techni-
schen Rahmenwerks für standardkompatible Lernobjekte. In: DELFI 2004
— Tagungsband der 2. e-Learning Fachtagung Informatik, 2004, pp. 151–
162.

[Busch98] Carsten Busch: Metaphern in der Informatik: Modellbildung, Formalisie-
rung, Anwendung. Deutscher Universitäts-Verlag GmbH, 1998.

[Büchmann94] Georg Büchmann and Eberhard Urban: Der neue Büchmann. Geflügelte
Worte. Bassermann, 1994.

190 LITERATURVERZEICHNIS

[Carnell03] John Carnell, J. Linwood and M. Zawadzki: Professional Struts Applicati-
ons. Apress, 2003.

[Case78] R. Case: A developmentally based theory and technology of instruction.
In: Review of Educational Research, 48, pp. 439–463.

[Case85] R. Case: Thinking and Learning Skills — Research and Open Questions,
vol. 2, chapter A Developmentally based Approach to the Problem of In-
structional Design, pp. 537–545. Lawrence Erlbaum Assoc, 1985.

[Cavaness04] Chuck Cavaness: Programming Jakarta Struts. O’Reilly, 2004.

[CEN03] European Committee For Standardization: CEN Workshop Agreement
CWA 14855: Dublin Core Application Profile Guidelines, November 2003.

[Chapman03] Bryan Chapman: LCMS Report: Comparative Analysis of Enterprise Lear-
ning Content Management Systems. brandon-hall.com, 2003.

[Cis99] Cisco Systems: Reusable Information Object Strategy, June 1999. Version
3.0.

[Clemm99] G. Clemm, J. Amsden, T. Ellison, C. Kaler and J. Whitehead: Versioning
extensions to webdav. RFC 3253, Network Working Group, Februar 1999.

[CTGV90] CTGV: Anchored instruction and its relationship to situated cognition. In:
Educational Researcher, 19(6), 1990, pp. 2–10.

[CTGV93] CTGV: Anchored instruction and situated cognition revisted. In: Educa-
tional Technology, 33(3), 1993, pp. 52–70.

[Dahn01] Ingo Dahn: Slicing book technology — providing online support for text-
books. In: ICDE 2001, International Conference on Distant Education,
2001.

[Dahn02] Ingo Dahn, Michael Armbruster, Ulrich Furbach and Gerhard Schwa-
be: Writing hypertext and learning: Conceptual and empirical approaches,
chapter Slicing Books The Authors’ Perspective. Pergamon, 2002.

[Dawson98] F. Dawson and T. Howes: vcard mime directory profile. RFC 2426, Network
Working Group, September 1998.

[Dekkers01] Makx Dekkers: Application profiles, or how to mix and match metadata
schemas. In: Cultivate Interactive, 3.

[Depke99] Ralph Depke, G. Engels, K. Mehner, S. Sauer and A. Wagner: Ein Vor-
gehensmodell für die Multimedia-Entwicklung mit Autorensystemen. In:
Informatik Forschung und Entwicklung, 14, pp. 83–94.

[Deutsch96] Peter Deutsch: DEFLATE compressed data format specification version
1.3. RFC 1951, Aladdin Enterprises, May 1996.

[Dittler03] Ullrich Dittler (ed.): E-Learning : Einsatzkonzepte und Erfolgsfaktoren des
Lernens mit interaktiven Medien. Oldenbourg, 2003.

[Dodd04a] Philip Dodd and Schawn E. Thropp: Sharable content object reference
model (scorm) — content aggregation model (cam) version 1.3.1. Technical
report, Advanced Distributed Learning, 2004.

LITERATURVERZEICHNIS 191

[Dodd04b] Philip Dodd and Schawn E. Thropp: Sharable content object reference mo-
del (scorm) — run-time environment (rte) version 1.3.1. Technical report,
Advanced Distributed Learning, 2004.

[Dodd04c] Philip Dodd and Schawn E. Thropp: Sharable content object reference
model (scorm) 2004 — overview. Technical report, Advanced Distributed
Learning, 2004.

[Dolog04] Peter Dolog, Nicola Henze, Wolfgang Nejdl and Michael Sintek: Personali-
zation in distributed e-learning environments. In: Proceedings of the 13th
international World Wide Web conference on Alternate Track Papers &
Posters, 2004, pp. 170–179.

[Downes00a] Stephen Downes. Learning objects. Presented at Leaders in Learning 2000,
May 2000.

[Downes00b] Stephen Downes: Nine rules for good technology. In: The Technology Sour-
ce.

[Downes02] Stephen Downes. The learning object economy. Published by Contact
North, October 2002.

[Downes03] Stephen Downes, Magda Mourad, Harry Piccariello and Robby Robson:
Digital rights management in e-learning — problem statement and terms of
reference. In: E-Learn 2003–World Conference on E-Learning in Corporate,
Gov ernment, Healthcare, & Higher Education, 2003.

[Dreyfus86] Hubert L. Dreyfus, Stuart E. Dreyfus and T. Anthanasiou: Mind Over
Machine: The Power of Human Intuition and Expertise in the Era of the
Computer. The Free Press, 1986. ISBN: 0743205510.

[Dub99] Dublin Core Metadata Initiative: Dublin Core Metadata Element Set, Ver-
sion 1.1: Reference Description, July 1999.

[Duval00] Eric Duval, E. Vervaet, B. Verhoeven, K. Hendrikx, K. Cardinaels, H. Oli-
vié, E. Forte, F. Haenni, K. Warkentyne, M. Wentland-Forte and F. Si-
million: Managing digital educational resources with the ariadne metadata
system. In: Journal of Internet Cataloging, 3(2/3), 2000, pp. 145–171.

[Duval02] Erik Duval, Wayne Hodgins, Stuart Sutton and Stuart L. Weibel: Metadata
principles and practicalities. In: D-Lib Magazine, 8(4), 2002.

[Duval03] Erik Duval and Wayne Hodgins: A lom research agenda. In: WWW2003 -
Twelfth InternationalWorldWideWeb Conference, May 2003.

[Englander97] Robert Englander: Developing Java Beans. O’Reilly, 1997.

[Farrell04] Robert G. Farrell, Soyini D. Liburd and John C. Thomas: Dynamic assemb-
ly of learning objects. In: Proceedings of the 13th international World Wide
Web conference on Alternate Track Papers & Posters, 2004, pp. 162–169.

[Farreres03] Javier Farreres: The Dsssl Book: An XML/SGML Programming Language.
Kluwer Academic Publishers, 2003.

[Foerster95] Heinz von Foerster: Die erfundene Wirklichkeit. Wie wissen wir, was wir zu
wissen glauben., chapter Das Konstruieren einer Wirklichkeit. Paul Watz-
lawick and Peter Krieg, 1995.

192 LITERATURVERZEICHNIS

[Freed96] N. Freed and N. Borenstein: Multipurpose internet mail extensions — (mi-
me) part two: Media types. RFC 2046, Network Working Group, November
1996.

[Freitag02a] Burkhard Freitag: LMML — Eine XML-Sprachfamilie für eLearning Con-
tent. In: Informatik bewegt: Informatik 2002 — 32. Jahrestagung der Ge-
sellschaft für Informatik e.v. (GI), 2002, pp. 349–353.

[Freitag02b] Burkhard Freitag, Christian Süß and Claus Dziarstek: Adaptation und
Wiederverwendung von XML-basiertem eLearning-Content. In: Informatik
bewegt: Informatik 2002 — 32. Jahrestagung der Gesellschaft für Informa-
tik e.v. (GI), 2002, pp. 354–358.

[Friesen02] Norm Friesen, Jon Mason and Nigel Ward: Building educational metadata
application profiles. In: Proceedings of the International Conference on
Dublin Core and Metadata for e-Communities 2002, 2002, pp. 63–69.

[Gamma95] Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides: Desing
Patterns: elements or reusable object-oriented software. Addison Wesley,
1995.

[Gibbons02] Andrew S. Gibbons, Jon Nelson and Robert Richards: The Instructional
Use of Learning Objects, chapter The Nature and Origin of Instructional
Objects. AIT/AECT, 2002.

[Gill98] Tony Gill, Anne Gilliland-Swetland and Murtha Baca: Introduction to Me-
tadata: Pathways to Digital Information. Getty Research Institute, 1998.

[Goland99] Y. Goland, E. Whitehead, A. Faizi, S. Carter and D. Jensen: Http exten-
sions for distributed authoring — webdav. RFC 2518, Network Working
Group, Februar 1999.

[Goldfarb91] Charles F. Goldfarb and Yuri Rubinsky: SGML Handbook. Oxford Univer-
sity Press, 1991.

[Gosling96] James Gosling, Bill Joy and Guy L. Steele: The Java Language Specifica-
tion. Addison Wesley, 1996.

[Gourley02] David Gourley and Brian Totty: HTTP, The Definitive Guide. O’Reilly,
2002.

[Griffel98] Frank Griffel: Componentware. dpunkt-Verlag, 1998.

[Griffin97] Steve Griffin and Tom Wason: The year of metadata. In: Educom Review,
32(6), 1997, pp. 56–58.

[Hall00] Brandon Hall: Learning Management Systems 2001: How to Choose the
Right System for Your Organization. brandon-hall.com, 2000.

[Hall03] Brandon Hall: LMS 2003: Comparison of Enterprise Learning Management
Systems. brandon-hall.com, 2003.

[Hansch02] Matthias Hansch, Stefan Kuhlins and Martin Schader: XML Schema. In:
Informatik Spektrum, 25(3), 2002, pp. 363–366.

[Haverkamp83] Anselm Haverkamp: Theorie der Metapher, chapter Die Metapher, von
Max Black. Wissenschaftliche Buchgesellschaft, 1983.

LITERATURVERZEICHNIS 193

[Heery00] Rachel Heery and Manjula Patel: Application profiles: mixing and mat-
ching metadata schemas. In: Ariadne, 25.

[Heery02] Rachel Heery, Pete Johnston, Dave Beckett and Damian Steer: The meg
registry and scart: complementary tools for creation, discovery and re-use
of metadata schemas. In: Proceedings of the International Conference on
Dublin Core and Metadata for e-Communities 2002, 2002, pp. pp 63–69.

[Heery03] Rachel Heery, Pete Johnston, Csaba Fülöp and András Micsik: Metadata
schema registries in the partially semantic web: the cores experience. In:
Proceedings of the 2003 Dublin Core Conference: Supporting Communities
of Discourse and Practice - Metadata Research and Applications, Septem-
ber/October 2003.

[Hjelm01] Johan Hjelm: Creating the Semantic Web with RDF. John Wiley & Sons,
2001.

[Hodgins00] Wayne Hodgins. Into the future - a vision paper. erhältlich bei Commissi-
on on Technology & Adult Learning of the American Society for Training
& Development (ASTD) und National Governors’ Association (NGA), Fe-
bruary 2000.

[Hodgins02] Wayne Hodgins: The future of learning objects. In: Proc. of the 2002 eTEE
Conference, August 2002, pp. 76–82.

[Howes98] T. Howes, M. Smith and F. Dawson: A MIME content-type for directory
information. RFC 2425, Network Working Group, September 1998.

[Humbert05] Ludger Humbert: Didaktik der Informatik. Teubner, 2005. ISBN:
3835100386.

[Hunter01] Jane Hunter and Carl Lagoze: Combining rdf and xml schemas to enhance
interoperability between metadata application profiles. In: Proc. of the
Tenth International Conference on World Wide Web. ACM, 2001, pp. 457–
466.

[Häfele03] Hartmut Häfele and Kornelia Maier-Häfele. Autorenwerkzeuge für Lear-
ning Content. Portal des bm:bwk bildung.at, 2003.

[Iannella01] Renato Iannella: Digital rights management (drm) architectures. In: D-Lib
Magazine, 7(6), 2001.

[IEE] IEEE P1484.12: Standard for Resource Description Framework (RDF) bin-
ding for Learning Object Metadata data model.

[IEE02a] IEEE P1484.12: Draft Standard for Learning Object Metadata, 2002.

[IEE02b] IEEE P1484.12: Standard for XML binding for Learning Object Metadata
data model, 2002.

[IMS01] IMS. IMS learning resource meta-data information model — version 1.2.1
final specification, 2001.

[IMS03a] IMS. IMS digital repositories interoperability, 2003.

[IMS03b] IMS. Ims learning resource meta-data best practice and implementation
guide - version 1.2.1 final specification, 2003.

194 LITERATURVERZEICHNIS

[IMS04a] IMS. IMS content packaging information model — version 1.1.4 final spe-
cification, 2004.

[IMS04b] IMS. IMS question and test interoperability, 2004.

[IMS05] IMS. Ims learner information package, 2005.

[Ingendahl71] Werner Ingendahl: Der methaphorische Prozess. Methodologie zu seiner
Erforschung und Systematisierung. Pädagogischer Verlag Schwann, 1971.

[Int88] International Organization for Standardization (ISO): ISO 639-1:2002. Co-
des for the representation of names of languages — Part 1: Alpha-2 code,
first edition, April 1988.

[Int97] International Organization for Standardization (ISO): ISO 3166-1:1997.
Codes for the representation of names of countries and their subdivisions
— Part 1: Country codes, first edition, September 1997.

[Int98] International Organization for Standardization (ISO): ISO 639-2:1998. Co-
des for the representation of names of languages — Part 2: Alpha-3 code,
first edition, November 1998.

[Int00] International Organization for Standardization (ISO): ISO 8601:2000. Da-
ta elements and interchange formats — Information interchange — Repre-
sentation of dates and times, second edition, December 2000.

[Int02] International Organization for Standardization (ISO): ISO/IEC 10646-
1:2000. Information technology — Universal Multiple-Octet Coded Cha-
racter Set (UCS) — Part 1: Architecture and Basic Multilingual Plane,
second edition, December 2002.

[Johnson04] Rod Johnson and Juergen Hoeller: Expert One-on-One J2EE Development
without EJB. Wrox, 2004.

[Kerres98] M. Kerres: Multimediale und telemediale Lernumgebungen - Konzeption
und Entwicklung. Oldenbourg Verlag, 1998.

[Klein99] Gary Klein: Sources of Power: How People Make Decisions. The MIT
Press, 1999. ISBN: 0262611465.

[Klimsa93] Paul Klimsa: Neue Medien und Weiterbildung. Anwendung und Nutzung
in Lernprozessen der Weiterbildung. Deutscher Studienverlag, 1993.

[Kohlhase00] Michael Kohlhase: Omdoc: An infrastructure for openmath content dic-
tionary information. In: Bulletin of the ACM Special Interest Group for
Algorithmic Mathematics SIGSAM, 2000.

[Kohlhase02] Michael Kohlhase: Omdoc: An open markup format for mathematical do-
cuments (version 1.1). Technical report, Carnegie Mellon University, 2002.

[Kolodner93] Janet Kolodner: Case-Based Reasoning. Morgan Kaufmann Publishers,
1993.

[Kortzfleisch99] Harald von Kortzfleisch, Ulrike Heller and Udo Winand: Perspektiven der
Medienwirtschaft. Kompetenz, Akzeptanz, Geschäftsfelder. Telekommuni-
kation & Mediendienste 5, chapter Das ”Forum Virtuelle Lernwelten”, pp.
51–73. Josef Eul Verlag, 1999.

LITERATURVERZEICHNIS 195

[Krieg-Brückner04] Bernd Krieg-Brückner, Arne Lindow, Christoph Lüth, Achim Mahnke and
George Russell: Semantic interrelation of documents via an ontology. In:
DELFI 2004 — Tagungsband der 2. e-Learning Fachtagung Informatik,
2004, pp. 271–282.

[Leacock04] Tracey L. Leacock, Griff Richards and John C. Nesbit: Teachers need sim-
ple, effective tools to evaluate learning objects: Enter elera.net. In: Seventh
IASTED International Conference — Computers and Advanced Technolo-
gies in Education, 2004, pp. 333–338.

[Lenz98] Mario Lenz, Brigitte Bartsch-Spörl, Hans-Dieter Burkhard and Stefan Wess
(eds.): Case-Based Reasoning Technology: From Foundations to Applicati-
ons. Springer Verlag, 1998.

[Letts02] Mike Letts: ADL and SCORM: Creating a standard model for publishing
courseware. In: Seybold Report - Analyzing Publishing Technologies, 2(1),
2002, pp. 3–8.

[Louden94] Kenneth C. Louden: Programmiersprachen. Grundlagen, Konzepte, Ent-
wurf. VMI Buch AG, 1994.

[Low02] Boon Low: Packaging educational content using IMS specifications. In:
VINE, 127, pp. 40–46.

[Manola03] Frank Manola and Eric Miller. Rdf primer, December 2003.

[Martinez00] Margaret Martinez: The Instructional Use of Learning Objects, chapter
Designing Learning Objects to Personalize Learning. AIT/AECT, 2000.

[Mason00] Jon Mason, Graham Adcock and Albert IP: Modeling information to sup-
port value-adding: Edna online. In: WebNet Journal: Internet Technologies,
Applications & Issues, 2(3), 2000, pp. 38–45.

[McDaniel03] Mason McDaniel and M. Hossain Heydari: Content based file type detection
algorithms. In: Proceedings of the 36th Hawaii International Conference
on System Sciences - 2003, 2003.

[Metzinger99] Thomas Metzinger: Subjekt und Selbstmodell. Mentis-Verlag, 1999. ISBN:
3897850818.

[Meyer97] Bertrand Meyer: Object-Oriented Software Construction. Prentice Hall,
1997.

[Meyer02] Eric A. Meyer: On CSS. New Riders Publishing, 2002.

[Milligan00] Colin Milligan: The role of virtual learning environments in the online deli-
very of staff development. Technical Report 44, Joint Information Systems
Committee, 2000.

[Minsky94] Marvin L. Minsky: Mentopolis. Klett-Cotta, 1994.

[Mintert02] Stefan Mintert: XML & Co. Die W3C-Spezifikationen für Dokumenten-
und Datenarchitektur. Addison-Wesley, 2002.

[Mosley05] Pauline Mosley: A taxonomy for learning object technology. In: J. Comput.
Small Coll., 20(3), 2005, pp. 204–216.

196 LITERATURVERZEICHNIS

[Nagamori01] Mitsuharu Nagamori, Thomas Bakery, Tetsuo Sakaguchi and Tetsuo Sa-
kaguchi Mitsuharu Nagamori, Thomas Bakery: A multilingual metadata
schema registry based on rdf schema. In: Proc. Int l. Conf. on Dublin Core
and Metadata Applications 2001, 2001, pp. pp 209–212.

[Najjar03] Jehad Najjar, Stefaan Ternier and Erik Duval: The actual use of metadata
in ariadne: an empirical analysis. In: 3rd Annual Ariadne Conference, 2003.

[Negroponte96] Nicholas Negroponte: Being Digital. Vintage, 1996.

[Nejdl02] Wolfgang Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek, A. Naeve, M. Nilsson,
M. Palmér and T. Risch: Edutella: A p2p networking infrastructure based
on rdf. In: Proc. of the Eleventh International Conference on World Wide
Web. ACM, 2002, pp. 604–615.

[Nesbit04] John C. Nesbit, Tracey L. Leacock and Cindy Xin: Learning object eva-
luation and convergent participation: Tools for professional development in
e-learning. In: Seventh IASTED International Conference — Computers
and Advanced Technologies in Education, 2004, pp. 339–344.

[Neven02] Filip Neven and Erik Duval: Reusable learning objects: a survey of lom-
based repositories. In: Proc. of ACM Multimedia. ACM, 2002, pp. 291–294.

[Newman03] Tabetha Newman: Scorm force. In: Conspectus, pp. 18–20.

[Niegemann04] Helmut M. Niegemann, Silvia Hessel, Dirk Hochscheid-Mauel, Kristina
Aslanski, Markus Deimann and Gunther Kreuzberger: Kompendium E-
Learning. Springer-Verlag, 2004.

[Nilsson03] Mikael Nilsson, Matthias Palmér and Jan Brase. The lom rdf binding -
principles and implementation. Paper to 3rd Annual Ariadne Conference,
Katholieke Universiteit Leuven, Belgium, November 2003.

[Obj03] Object Management Group: Unified Modeling Language (UML), version
1.5, formal/03-03-01 edition, 2003.

[Padberg02a] Kathrin Padberg and Sabine Schiller: Web-based drills in maths using a
computer algebra system. In: Proc. ED-MEDIA 2002–World Conference
on Educational Multimedia, Hypermedia & Telecommunications, 2002.

[Padberg02b] Kathrin Padberg and Andreas Sorgatz: Webbasierte Übungselemente mit
MuPAD. In: Computeralgebra in Lehre, Ausbildung und Weiterbildung III,
2002.

[Pawlowski01] Jan M. Pawlowski: Das Essener-Lern-Modell (ELM): Ein Vorgehensmo-
dell zur Entwicklung computerunterstützter Lernumgebungen. PhD thesis,
Universität Essen, 2001.

[Pawson02] Dave Pawson: XSL-FO. O’Reilly, 2002.

[Powers03] Shelley Powers: Practical RDF. O’Reilly, 2003.

[Qin04] Jian Qin and Naybell Hernández: Ontological representation of lear-
ning objects: building interoperable vocabulary and structures. In: Procee-
dings of the 13th international World Wide Web conference on Alternate
Track Papers & Posters, 2004, pp. 348–349.

LITERATURVERZEICHNIS 197

[Rashid02] Al Mamunur Rashid, Istvan Albert, Dan Cosley, Shyong K. Lam, Sean M.
McNee, Joseph A. Konstan and John Riedl: Getting to know you: Learning
new user preferences in recommender systems. In: Proceedings of the 7th
international conference on Intelligent user interfaces, 2002, pp. 127–134.

[Ray01] Erik T. Ray: Learning XML — Guide to Creating Self-Describing Data.
O’Reilly, 2001.

[Rehberg03] Bettina Rehberg and Ulrich Rehberg: Efficient development of multimedia
applets for elearning. In: Proc. 21st ICDE World Conference on Open
Learning & Distance Education, 2003.

[Reigeluth80] Charles M. Reigeluth, M.D. Merrill, B.G. Wilson and R.T. Spiller: The
elaboration theory of instruction: A model for structuring instruction. In:
Instructional Science, 9, pp. 125–219.

[Reigeluth83] Charles M. Reigeluth and F.S. Stein: Instructional Design Theories and
Models: An Overview of Their Current Status, chapter The Elaboration
Theory of Instruction. Lawrence Erlbaum, 1983.

[Reigeluth99] Charles M. Reigeluth: Instructional Design — Theories and Models. A New
Paradigm of Instructional Theory, chapter The Elaboration Theory: Gui-
dance for Scope and Sequence Decisions, pp. 425–453. Lawrence Erlbaum,
1999.

[Roisin98] Cécile Roisin: Authoring structured multimedia documents. In: SOF-
SEM ’98: Theory and Practice of Informatics: 25th Conference on Current
Trends in Theory and Practice of Informatics, 1998, pp. 222–239.

[Saddik00] Abdulmotaleb El Saddik, Amir Ghavam, Stephan Fischer and Ralf Stein-
metz: Metadata for smart multimedia learning objects. In: Proc. of the
Australasian conference on Computing education, December 2000, pp. 87–
94.

[Saddik01] Abdulmotaleb El Saddik, Stephan Fischer and Ralf Steinmetz: Reusability
and adaptability of interactive resources in web-based educational systems.
In: Journal on Educational Resources in Computing (JERIC), 1(4), 2001.

[Santos04] Osvaldo A. Santos and Fernando M. S. Ramos: Proposal of a framework
for internet based licensing of learning objects. In: Comput. Educ., 42(3),
2004, pp. 227–242.

[Schiller02] Sabine Schiller and Luise Unger: Math-kit: a multimedia project for lear-
ning and teaching mathematics. In: Proceedings 10th Meeting of European
Women in Mathematics, 2002, pp. 383–386.

[Schulmeister00] Rolf Schulmeister: Selektions- und Entscheidungskriterien für die Aus-
wahl von Lernplattformen und Autorenwerkzeugen. Technical report, Ös-
terreichisches Bundesministeriums für Bildung, Wissenschaft und Kultur
(bm:bwk), 2000.

[Schulmeister01] Rolf Schulmeister: Virtuelle Universität — Virtuelles Lernen. Oldenbourg,
2001.

[Schulmeister03] Rolf Schulmeister: Lernplattformen für das virtuelle Lernen. Oldenbourg,
2003.

198 LITERATURVERZEICHNIS

[Schwabe01] Gerhard Schwabe, Norbert Streitz and Raine Unland (eds.): CSCW-
Kompendium Lehr- und Handbuch zum computerunterstützten kooperati-
ven Arbeiten . Springer, 2001.

[Schöning03] Harald Schöning: XML und Datenbanken. Carl Hanser Verlag, 2003.

[Searle86] John R. Searle: Geist, Hirn und Wissenschaft : die Reith lectures 1984.
Suhrkamp, 1986.

[Seifert80] Walter Seifert: Sprachbetrachtung und Kommunikationsanalys, chapter Di-
daktik rhetorischer Figuren: Metapher als Unterrichtsgegenstand, pp. 129–
138. Königstein/Taunus, 1980.

[Shackelford02] Bill Shackelford: A scorm odyssey. In: T+D, 56(8), 2002, pp. 31–35.

[Shannon04] Bill Shannon, Mark Hapner, Vlada Matena, James Davidson, James Da-
vidson and Larry Cable: Java 2 Platform, Enterprise Edition: Platform
and Component Specifications. Addison Wesley, 2004.

[Shore85] John Shore: Sachertorte Algorithm and Other Antidotes to Computer An-
xiety. Viking Press, 1985.

[Simon01] Bernd Simon: E-Learning an Hochschulen: Gestaltungsräume und Erfolgs-
faktoren von Wissensmedien. Josef Eul Verlag, 2001.

[Simpson02] John E. Simpson: XPath and XPointer. O’Reilly, 2002.

[Skinner54] Burrhus F. Skinner: The science of learning, and the art of teaching. In:
Harvard Educational Review, 24(2), 1954, pp. 86–97.

[Slein98] J. Slein, F. Vitali, E. Whitehead, U.C. Irvine and D. Durand: Requirements
for a distributed authoring and versioning protocol for the world wide web.
RFC 2291, Network Working Group, Februar 1998.

[South02] Joseph B. South and David W. Monson: The Instructional Use of Learning
Objects, chapter A University-wide System for Creating, Capturing, and
Delivering Learning Objects. AIT/AECT, 2002.

[Spiro88] Rand J. Spiro, Richard L. Coulson, Paul J. Feltovich and Michael J. Ja-
cobson: Cognitive flexibility theory: Advanced knowledge acquisition in
ill-structured domains. In: Proceedings of the 10th Annual Conference of
the Cognitive Science Society. Lawrence Erlbaum Associates, 1988.

[Spiro91] Rand J. Spiro, Paul J. Feltovich, Michael J. Jacobson and Richard L. Coul-
son: Cognitive flexibility, constructivism, and hypertext: Random access
instruction for advanced knowledge acquisition in ill-structured domains.
In: Educational Technology, 31(5), 1991, pp. 24–33.

[Stevens94] W. Richard Stevens: TCP/IP Illustrated, Vol.1 : The Protocols. Addison-
Wesley, 1994.

[Stevens96] W. Richard Stevens: TCP/IP Illustrated, Vol.3 : TCP for Transactions,
HTTP, NNTP, and the UNIX Domain Protocols. Addison-Wesley, 1996.

[Sun99] Sun Microsystems, Inc.: WebNFS Client SDK, 1999.

[Sun01] Sun Microsystems, Inc.: Java 2 Platform, Standard Edition, v 1.3.1, API
Specification, 2001.

LITERATURVERZEICHNIS 199

[Sweet85] Richard E. Sweet: The mesa programming environment. In: SIGPLAN
Notices, 20(7), 1985, pp. 216–229.

[Szyperski98] Clemens Szyperski: Component Software: beyond object-oriented software.
Addison Wesley, 1998.

[Tanenbaum97] Andrew S. Tanenbaum and Albert S. Woodhull: Operating Systems: Design
and Implementation — 2nd ed. Prentice Hall, 1997.

[Tate04] Bruce A. Tate and Justin Gehtland: Better, Faster, Lighter Java. O’Reilly,
2004.

[Teege02] Gunnar Teege and Peter Breitling: Targeteam: Adaptierbare Lehrinhalt auf
Basis on XML und XSLT. In: Informatik bewegt: Informatik 2002 — 32.
Jahrestagung der Gesellschaft für Informatik e.v. (GI), 2002, pp. 364–368.

[Thiere03a] Bianca Thiere, Gudrun Oevel and Kathrin Padberg: Mathematics in engi-
neering education with math-kit. In: Proc. of 7th Baltic Region Seminar
on Engineering Education, Septembe 2003.

[Thiere03b] Bianca Thiere, Kathrin Padberg and Gudrun Oevel: Learning mathematics
through a multimedia construction kit. In: Proc. SITE2003, March 2003,
pp. 24–29.

[Tidwell01] Doug Tidwell: XSLT. O’Reilly, 2001.

[Tulodziecki96] G. Tulodziecki, W. Hagemann, B. Herzig, S. Leufen and C. Mütze: Neue
Medien in den Schulen: Projekte-Konzepte-Kompetenzen. Verlag Bertels-
mann Stiftung, 1996.

[Turan04] Nurdan Turan and Yıldız Sünneli: Entwicklung einer Software-
Komponente zur Integration bestehender Lehr- und Lernmaterialien und
deren Metadaten in das mαth-kit-System. Master’s thesis, Universität
Hamburg, 2004.

[Turner03] James Turner and Kevin Bedell: Struts. Addison-Wesley, 2003.

[Unger02] Luise Unger, Gudrun Oevel and Bärbel Mertsching: Web-based teaching
and learning with math-kit. In: Proc. 2th International Conference on the
Teaching of Mathematics, 2002.

[Unger04] Luise Unger, M. Bauch, A. Baudry, M. Bungenstock, B. Mertsching, G. Oe-
vel, K. Padberg and B. Thiere: math-kit — Ein multimedialer Baukas-
ten für die Mathematikausbildung im Grundstudium. In: Softwaretechnik-
Trends, 24(1), 2004, pp. 62–71.

[Vitali99] Fabio Vitali: Versioning hypermedia. In: ACM Comput. Surv., 31(4es),
1999, pp. 24.

[Vlist02] Eric van der Vlist: XML Schema. O’Reilly, 2002.

[Vollmann04] Marc Vollmann: Modellierung und Implementation eines Werkzeugs mit
Methoden fallbasierten Schließens zur generischen Anbindung an schlag-
wortbasierte Wissenssysteme. Master’s thesis, Universität Hamburg, 2004.

[Walsh02a] Norman Walsh: The docbook document type - committee specification 4.2.
Technical report, OASIS, 2002.

200 LITERATURVERZEICHNIS

[Walsh02b] Norman Walsh and Leonard Muellner: DocBook: The Definitive Guide.
O’Reilly & Associates, Inc., 2002. Version 2.0.8.

[Wessner00] Martin Wessner and Hans-Rüdiger Pfister: Points of cooperation: Inte-
grating cooperative learning into web-based courses. In: Proceedings of
NTCL2000 International Workshop on New Technologies for Collaborative
Learning, 2000, pp. 33–41.

[Wiley99] David A. Wiley. The post-lego learning object. Homepage, 1999.

[Wiley00a] David A. Wiley: Learning object design and sequencing theory. PhD thesis,
Department of Instructional Psychology and Technology Brigham Young
University, 2000.

[Wiley00b] David A. Wiley, Mimi Recker and Andy Gibbons. A reformulation of the
issue of learning object granularity and its implications for the design of
learning objects. Homepage, 2000.

[Wiley02] David A. Wiley: The Instructional Use of Learning Objects, chapter
Connecting learning objects to instructional design theory: A definition,
a metaphor, and a taxonomy. AIT/AECT, 2002.

[Wolff82] Gerhart Wolff: Metaphorischer Sprachgebrauch. Reclam, 1982.

[Wollowski02] Michael Wollowski: Xml based course websites. In: E-LEARN 2002–World
Conference on E-Learning in Corp., Govt., Health., & Higher Ed., 2002,
pp. 1043–1048.

[Wozniak94] Robert H. Wozniak: Reflex, habit and implicit response: The early elabora-
tion of theoretical and methodological behaviourism, chapter Behaviourism:
the early years. Routledge/Thoemmes Press, 1994.

[Wright95] Gary R. Wright and W. Richard Stevens: TCP/IP Illustrated, Vol.2 : The
Implementation. Addison-Wesley, 1995.

[Züllighoven98] Heinz Züllighoven, Dirk Bäumer and Wolf-Gideon Bleek: Das objektorien-
tierte Konstruktionshandbuch. Dpunkt Verlag, 1998.

	Einleitung
	Problemstellung
	Zielsetzung
	Methodik
	Systematik

	I Stand der Wissenschaft
	Lerntheorie
	Kompetenzstufen
	Lernparadigmen
	Behaviorismus
	Kognitivismus
	Konstruktivismus

	Lehrer/-in, Tutor/-in und Coach
	Ein heuristisches Lernmodell
	E-Learning-Historie

	Lernobjekte
	Warum werden Lernobjekte benötigt?
	Was ist ein Lernobjekt?
	Lernobjekte nach Cisco Systems
	Lernobjekte nach Hodgins
	Lernobjekte nach Wiley
	Lernobjekte nach Downes
	Lernobjekte nach Baumgartner

	Granularität
	Sequenzierung
	IMS Content Packaging Specification
	Sharable Content Object Reference Model
	Formate

	Metadaten
	Resource Description Framework
	Dublin Core Metadata
	Learning Object Metadata

	Autorenwerkzeuge
	Klassifizierung
	Professionelle Autorenwerkzeuge
	WYSIWYG-HTML-Editoren
	Content Converter
	Live Recording Systeme
	Screen Movie Recorder
	Rapid E-Learning Content Development

	Bewertung

	Lernplattformen
	Definitionen
	Evaluation
	Blackboard
	WebCT
	SmartBLU

	Bewertung

	Web-Technologie
	Infrastruktur
	Web Applications
	Web Services
	WebDAV

	Metapher
	Metaphorischer Prozess
	Metaphern und Software-Technik

	Bewertung
	Resümee

	II Entwurf
	System-Vision
	Rollen und Anwendungsfälle
	Author
	Developer
	Composer
	Publisher
	User
	Student
	Professor
	Administrator

	Komponenten
	Basis
	Learning Object Development
	Structure Development
	Publishing Environment
	User Environment
	Administration

	Architektur
	Baukasten-Metapher
	Metaphorischer Prozess

	Aufteilung

	Basiskomponenten
	Dateizugriff
	Dateisystem Grundlagen
	Virtuelles Dateisystem

	Metadaten
	Datenstruktur
	Operationen
	Kodierungen

	Unterstützung von Multimedia

	Baustein und Kurs
	Bindung an Standards
	Physikalische Dateien
	Manifest
	Content Package

	Rahmenwerk
	Zusammengesetzte Komponenten

	III Implementierung
	Baukasten
	Script-Steuerung
	Grafische Basiskomponenten
	Rahmenwerk für Werkzeuge
	Visualisierung der Bausteine und Kurse
	Steuerung des Exports
	Lyssa

	Repository
	Construction Kit Server
	Web-Oberfläche

	IV Analyse
	Ausgewählte Beispiele
	Erstellung neuer Bausteine
	Erstellung neuer Kurse
	Inhalte publizieren
	Explorationsumgebung

	Zusammenfassung und Bewertung
	Ausblick

