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Abstract

One of the main tasks of modern application integration projects is to allow one

business unit (requestor) to use services offered by another business unit (provider).

When software systems of business partners are composed, an import interface of

the requestor system is connected to an export interface of the provider system.

Here, the import interface specification containing the requestor’s requirements for a

needed service has to be matched against the export interface specification describ-

ing the provided service. Usually, software engineers carry out matching of interface

specifications manually; it makes the design and implementation of composite soft-

ware expensive and error-prone. Therefore, the demand for instruments that would

automate the matching procedure is high.

In this thesis, we develop a new technique facilitating integration of software

systems. To this end, we solve a problem of how to construct visual and formal

interface specifications comprising semantic descriptions. Our method also includes

a matching procedure that checks compatibility of such specifications.

Interface specifications consist of structural and behavioral compartments. The

structural compartment, given by a signature analogous to those appearing in al-

gebraic specifications, defines operation declarations. The behavioral compartment,

modeled by a conditional graph transformation system (GTS), contains operation

contracts in the form of graph transformation rules. The rules of conditional GTS

are equipped with loose semantics to describe operations in the import interface, and

with strict semantics to describe those in the export interface. Composition of two

compartments leads to an integral interface specification which is represented by the

novel concept of parameterized conditional GTS.

We develop three kinds of compatibility relations underlying the matching proce-

dure. The intended correspondence between declarations and contracts of the required

and provided operations is reflected by structural and behavioral compatibility rela-

tions which are established over the corresponding compartments of interface specifi-
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cations. These two compatibility relations are combined into an integral compatibility

relation which links the integral specification of the import interface to the one of the

export interface. Furthermore, the constructed relations are equipped with rigorously

formulated semantic requirements to compatibility and are justified against them.

The introduced mathematical theory is supplemented with a conceptual frame-

work. It is aimed at generating interface specifications that are suitable for automation

of the matching process. The framework is based on an industry standard that out-

lines a uniform way of generating specifications. We use the standard issued by the

Open Travel Alliance (OTA) in our example scenario where we develop and match

standard-based interface specifications of Web services taken from the travelling busi-

ness domain.

Compatibility of interface specifications is necessary but not sufficient for accu-

rate interactions between systems. The integration process is based on the assumption

that these systems are correct. First and foremost, this correctness means that inter-

face specifications representing externally visible parts of systems are consistent with

implementations which appear internally in the systems. To check this assumption,

we propose a model describing external as well as internal parts of a system. The

model, formally represented by a graph transformation module, defines consistency re-

lations between external and internal specifications and allows to validate correctness

of systems prior to the integration. The proposed model and the matching procedure

developed in the thesis are the key elements of a technology designed to improve the

application integration process, making it theoretically well-defined and practically

machine-processable.
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Chapter 1

Introduction

In the last decade, the Internet and Web have totally transformed the way business

is conducted. New technologies eliminated communication barriers and allowed com-

panies to exploit new business opportunities at the global electronic market place.

Competitive pressures increased the need to improve operation of the enterprise soft-

ware by consolidating different business units to form larger information fields. A

deeper and more effective integration of software systems is currently is high de-

mand.

Systems to be integrated are often described by means of interfaces. In this case,

linking systems together means connecting an import interface of one system to an

export interface of another system. To build up the required connection, the systems

have to be proven compatible. To check compatibility, one has to match interface

specifications of the systems.

The question whether application integration can be carried out successfully and

effectively strongly depends on three main factors. The first factor is completeness

of information published in the interfaces, i.e. syntactic and semantic characteris-

tics of interacting systems. Secondly, the published information has to be machine-

processable—it allows to check compatibility of systems (semi-)automatically. Finally,

the interface specifications providing external system’s descriptions have to be ad-

equately related to internal system’s implementations. To this end, it is necessary

to construct a model which tracks consistency of the external and internal parts of

a system thus ensuring correctness of coupled systems. From now on, by coupled

systems we shall mean software components that require integration.

Our ultimate challenge is to establish a technique that addresses the factors men-

tioned above with an aim to expand and enrich the application integration process.
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2 CHAPTER 1. SERVICE SPECIFICATION AND MATCHING

1.1 Integration of Software Applications

Once a company acquires a new business application, it is always desired or some-

times even required to integrate the new system into the existing IT infrastructure.

There exists a wide range of integration techniques driven by different kinds of busi-

ness requirements and technological innovations. Before identifying problems that

accompany the application integration, we briefly review the current techniques.

1.1.1 Mainframe-based and Client/server Systems

In the early days of business computing, the most important question was how to

automate a huge amount of previously manual operations such as payroll, order pro-

cessing, or accounting. All these tasks were still to be managed, and the questions of

interoperability or portability simply did not arise at this stage. In software systems,

usually based on mainframes [122], the presentation, application logic, and resource

management layers were merged into a single tier. An interaction with these mono-

lithic systems took place through dumb terminals being the only entry points from

the outside. In fact, the systems represented black boxes, and their integration was

too expensive to develop and maintain.

The client/server paradigm [105, 118] gains momentum by the evolution of com-

putation hardware and the emergence of PCs and workstations. Since it was no longer

necessary to keep the presentation layer together with the resource management and

application logic layers, the former was separated, and it could utilize the computa-

tional power of a PC. The result was a client/server system where the client had an

ability to further process the information provided by the server (cf. Fig. 1.1 on the

left).

Development of such systems forced software engineers to think in terms of pub-

lished interfaces. In order to develop client applications and link them to a server,

the server needed to have a known, stable interface specifying invocation require-

ments. Individual programs, running on a server, responsible for the implementation

of application logic were called services.

An expansion of servers with stable interfaces posed new requirements that

client/server systems could not address. While companies became more decentral-

ized and geographically dispersed, servers created islands of information where a set

of clients could communicate with only a limited number of servers. The increase

in network bandwidth provided by local area networks (LANs) technically enabled
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Company A

Client 1 Client k+1Client k Client n... ...

Server Server

Company A

Client 1 Client n...

Server 1 Server m...

Middleware Platform

Figure 1.1: Client/server (on the left) and middleware-based (on the right) integration

of applications.

combination of different servers. It allowed to expand their availability for clients,

but a lack of proper infrastructure was still an obstacle.

1.1.2 Middleware and EAI Platforms

A platform for integrating a collection of servers under a common interface is known

as middleware [13] (cf. Fig. 1.1 on the right). The use of middleware led to further

expansion of services provided by servers. In fact, the functionality resulting from

the middleware-based integration can be regarded as yet another service. Not only

integration of servers took place but also integration of services implementing quite

complicated business logic. In contrast to servers, almost no significant effort has

been made to standardize interfaces of services. Integration of services, especially

those provided by different middleware platforms, remained a challenging task. At

the same time, as the number of LANs started to grow, and different branches within

a company implemented their own middleware-based systems, the need for commu-

nication between different middleware platforms has become apparent. Enterprise

application integration (EAI) has emerged in response to this need (cf. Fig. 1.2).

EAI [128] can be seen as a step forward in the evolution of middleware, extending

its capabilities to cope with the integration of services provided by heterogeneous,

coarse-grained applications possibly resided at different middleware platforms. Nowa-

days, EAI is based on two types of platforms—message brokers [9, 90] and workflow

management systems [10, 89].

While the type of integration supported by EAI platforms has been implicitly lim-

ited to LANs, emergence of Web technologies enables information exchange on a large

scale—in the Internet. A strong temptation to implement Internet-wide collaboration



4 CHAPTER 1. SERVICE SPECIFICATION AND MATCHING
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Client A1 Client An...
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Middleware Platform B
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Figure 1.2: Application integration over EAI platform.

initiates efforts to integrate applications across the Internet. The EAI technologies

were originally developed for intra-enterprise application integration, but the need to

interact was not limited to the systems within a single company. Advantages that can

be derived from automating company’s business processes can also be obtained from

automating business processes encompassing several organizations. It all lead to the

current efforts around Web services—application development has shifted towards a

service-oriented paradigm.

1.1.3 Web Services

Instead of dealing with the complexity of incompatible applications within EAI

projects, a Web services platform [66] introduces a number of conventions the cou-

pled systems must fulfill. Integration projects focus on composing externally uniform

Web-based applications. Applications may be held by the same department or en-

terprise as well as by different companies—this approach supports both intra- and

inter-enterprise application integration (cf. Fig. 1.3).

The Web service technologies represent state-of-the-art implementation of a

service-oriented architecture (SOA) [112] being a style of software systems’ design

where services available in a network such as the Web play a role of the key or-

ganizational units. From a technical perspective, services are software modules or

components with well-defined interfaces that clearly separate externally accessible

interfaces from their internal implementations.

Three basic roles are usually distinguished in SOA-based interactions: service
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Figure 1.3: Application integration over Web services platform.

provider, service requestor, and service registry. A service provider is a software

component that implements a service described in the provided (or export) inter-

face specification. A service requestor is a component that intends to import some

functionality satisfying the required (or import) interface specification. In order to

obtain this functionality, the requestor invokes the provider’s component through its

interface, i.e. the two components are integrated.

A service registry defines a way to publish and lookup information about services.

A provider disposes its service description in the registry which is queried by the

requestors looking for services. The service registry returns to the requestor a list of

service descriptions satisfying the submitted query, and the requestor reveals which

of the obtained candidates is the most appropriate one. Registry and its contents can

be organized in such a way that requestors are able to locate services not only at

design-time but also at run-time that provides a sound background for the dynamic

integration of applications.

According to the definition proposed by the UDDI Consortium in [141], Web

services are self-contained, modular business applications that have open, Internet-

oriented, standard-based interfaces. Such applications are designed to support in-

teroperable machine-to-machine interaction over a network. This interoperability is

gained through a set of XML-based open standards for communication, interface

description, and discovery of services.
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Spec Spec

Comp1 Comp2

Figure 1.4: Matching of interface specifications.

1.2 Problem Description

The common objective of all application integration technologies is to supply the

client or requestor with services implemented by individual servers or by a collec-

tion of servers aggregated under a common interface. Matching between the im-

port/required interface (available only internally or specified externally) and the ex-

port/provided interface (typically specified externally) of coupled systems appears at

the heart of all integration approaches (cf. Fig. 1.4).

Typically, interface specifications contain syntactic information on operations.

Semantics of operations is described by means of plain textual annotations, therefore

the interface specification matching can be carried out only by a software engineer.

Thus, vagueness of semantic descriptions leads to the lack of tool support, and this

makes the design and implementation of integrated software expensive and error-

prone.

In order to improve the integration process, interface specifications have to be

enriched with machine-processable semantic markups. This would enable automati-

zation of matching procedure and leave out human intervention. In an attempt to

develop an appropriate technique, one has to tackle two main issues: how to define

semantic descriptions and how to match the interface specifications containing such

descriptions. We consider these issues in the context of the Web services platform.

This is due to the dynamic discovery of services (see Subsection 2.1.2 for a general

discussion)—a technique that we believe can now be realized by the mechanism we

propose. However, the obtained results can be used for application integration over

other platforms as well.

The integration process is based on the implicit assumption that published in-

terfaces are consistent with their internal implementations. But the mentioned as-

sumption needs to be somehow justified. Here one should develop a model which

integrally specifies coupled systems and, in particular, determines consistency rela-
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Spec SpecSpec SpecSpec Spec

Comp1 Comp2

Figure 1.5: Integral specifications of coupled systems.

tions between internal and external specifications (cf. Fig. 1.5). Furthermore, this

model lets us check correctness of systems participating in the integration.

The problems indicated above will be closely examined in the next two subsec-

tions.

1.2.1 Semantic Markup for Web Services

The World Wide Web Consortium (W3C) in [152] defines two aspects of the com-

plete specification of a Web service: syntactic or structural description and service

semantics. A number of ongoing projects in industry and in academic community are

aiming to find out an appropriate form of semantics representation. At this point,

however, technologies manipulate mainly structural characteristics.

Available Technologies

The Web Service Description Language (WSDL) [28] is proposed by W3C to specify

services and their interfaces. An interface description includes a collection of service

operations together with their input and output parameters, and technical charac-

teristics of the service. This kind of information, referred to in [12, 152] as the “doc-

umentation of mechanics of the message exchanged”, specifies the format of data

transmitted between requestor and provider. However, by examining the WSDL de-

scription, we cannot unambiguously determine what the service does. We can see

syntax of its inputs and outputs, but we do not know what these mean or what

changes to the environment the service makes. Thus, semantics of a service is not

covered by the WSDL standard.

The Universal Description, Discovery and Integration (UDDI) [141] specification

defines a way to publish and locate information about Web services and extends

the WSDL specification with semantic information—textual annotations and cate-

gorization data in a form of various keywords. While plain textual information is
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not machine-interpretable, the keyword search assumes the categorization data or

taxonomies to be fixed and universally recognized by integrating partners. However,

this can only be the case if required and provided systems are developed in close

coordination that is uncommon in the cross-organizational interactions.

The Semantic Web

The Semantic Web technology [151] is a promising solution of the semantics problem.

It proposes to standardize the representation of semantic data on Web services via

employing ontologies. An ontology is a formal definition of a common set of terms

used to portray and represent a domain of knowledge [40]. Work on Semantic Web

tends to revolve around industry standards enabling the ontology creation (e.g., Web

Ontology Language (OWL) [39] or WSMO [57]). There exist techniques that use

ontologies to semantically specify service capabilities (see, e.g., [107, 41, 43]).

In the above approaches, service semantics, in particular, semantics of service

operations and their parameters, is determined either via referencing single elements

of the corresponding ontologies or by means of logic expressions. In the former case,

static constituents of the ontology can hardly reflect the dynamic nature of services—

their behavior generates modifications in the internal environments of the integrating

partners. In the latter case, logic expressions provide, in fact, structural restrictions

for values of service characteristics rather then specify semantic annotations. This

means they reside at the same level as WSDL specifications.

Thus, a technique extending structural specification of Web services with truly

behavioral machine-processable semantic markup is still an open issue.

1.2.2 Correctness of Coupled Systems

Interface specifications reflect quite intricate structure comprising internal IT systems

of companies. External specifications of coupled systems or components must be

consistent with internal implementations, otherwise it does not make much sense to

compare interface specifications.

Consistency of Interface Specifications

To achieve correspondence between internal and external parts, the creation of in-

terface specifications should be adequately blended with the techniques employed for

the development of company’s applications. One should be able to derive interface
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specifications from internal models or to carry out a consistency check between in-

ternal and external specifications. This consistency check is performed analogously

to the comparison of interface specifications of coupled components. In either case,

an interface description language has to conform with the one employed internally.

Model-based software development approaches, e.g., the Model Driven Architec-

ture (MDA) [114] and a diagrammatic notation of the Unified Modeling Language

(UML) [116], may serve as a sound base for description of internal specifications.

Such approaches allow to construct platform independent models. It makes internal

specifications comparable with external specifications that are free from the service’s

technical implementation. However, the model-based visual notations, such as the

UML, have a common drawback—the lack of precise semantics. It significantly com-

plicates automatic matching of such descriptions.

The use of models to align interface description with internal artefacts is advo-

cated in [75]. While this approach discusses how to derive interface descriptions from

internal models, it does not introduce relations ensuring consistency between inter-

nal and external descriptions. This can be done if the ideas of [75] are placed into a

formal setting which clearly specifies the sought-for relations and their computing.

Models of Coupled Systems

It is obvious that a system resulting from the integration process would show an

expected behavior only if its constituents function in the proper way. Therefore,

integration always goes along with the need to analyze coupled systems or components

and their specifications, both external and internal. In order to perform this analysis,

one should have a model that describes a given component. To build up such a model,

a structuring unit is required. We use a notion of a module [50] for this purpose.

In general, modules in specification or programming languages consist of basic

specifications, like a component’s body, export and import interfaces, and intra-

connectors representing dependencies between these specifications. Following [82], in

order to create a module description, one must find an appropriate language employed

for the basic specifications and define relations being used for the intra-connectors.

Once the module description of a component is given, it can be employed as an in-

put for model-based testing techniques [21] to check correctness of the component

expected to be a part of the compound system.
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1.2.3 Problems Summary

Below, we concisely formulate the major concerns we intend to address in our pre-

sentation.

• How to enrich interface specifications of coupled systems with semantic

markups.

• How to match interface specifications containing semantic markups.

• How to check consistency of interface specifications with the internal part of a

system participating in the integration.

• How to construct a model which aggregates in its structure internal and external

specifications, and tracks their consistency.

1.3 Roadmap

The presented work is structured as follows.

In Chapter 2, we introduce an approach to development and matching of interface

specifications using an example scenario from the Web services domain. The example

scenario contains interface specifications of the requestor and provider components

for Web services that book flight tickets. The specifications are derived from a travel

industry standard issued by the OpenTravel Alliance (OTA) [2]. We introduce an in-

tegral notion of structural and behavioral compatibility between the import interface

of the requestor’s component and the export interface of the provider’s component.

While structural information is represented by operation declarations, behavioral de-

scriptions are given by contracts expressed as conditional graph transformation rules.

The integration of structural and behavioral descriptions is facilitated by typed and

parametrized graph transformation systems augmenting the rule-based descriptions

of behavior by a type graph and operation declarations. The matching relation taking

into account this combination is called an integral compatibility relation.

The construction of integral compatibility relation is based merely on the intuition

reported by the example scenario. Chapter 3 formalizes the concepts from Chapter 2,

allowing to determine semantic requirements to compatibility of systems interfaces

(cf. Fig. 1.6). After reviewing some basic notions of the graph transformation the-

ory, parameterized substitution morphisms are introduced as a formal counterpart of
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Figure 1.6: Overview of the thesis structure.

the compatibility relation. We demonstrate that substitution morphisms satisfy the

rigorously formulated semantic requirements to compatibility.

Chapter 4 is concerned with constructing a model which fully specifies the systems

to be connected (cf. Fig. 1.6). Here the behavior-driven descriptions employed so far

for the import and export interfaces are reused to portray the interface implemen-

tations appearing in the components’ bodies. First of all, we establish a framework

that determines relations connecting external and internal component specifications.

These relations guarantee consistency between specifications that underlies the cor-

rect interaction between the parties. Then, the import, export and body specifications

as well as their connecting relations are aggregated in a model portraying entire inte-

grating component. The model is given in the form of a graph transformation module.

To justify originality of the approach introduced in the thesis and identify its

possible extensions, Chapter 5 provides an overview of related work and compares

the concepts developed in this work with the existing proposals. In particular, we

consider several approaches presenting semantic markups for interface specifications

which originate in the Semantic Web, graph transformation, and Component-Based

Software Engineering domains, along with software environments used to match these

specifications. We also discuss component models that are formally portrayed by

graph transformation and algebraic specification modules.

The concluding Chapter 6 summarizes and evaluates the main results of our work,

concisely formulates practical and theoretical contributions, and indicates some open

problems and directions for future research.

Bibliographical note: Preliminary results of this work have been published

in [27, 53, 77, 78, 79].
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Chapter 2

An Approach to Service

Specification and Matching

This chapter examines the problem of dynamic integration of service-oriented appli-

cations deployed on the Web services platform. In particular, we focus on a dynamic

service selection which amounts to matching the interface specifications of the re-

quired and provided services. Parameterized conditional graph transformation sys-

tems are introduced to support the automatic matching of interface specifications

comprising structural as well as behavioral characteristics of services.

A standard-driven conceptual framework enabling service specification and

matching is discussed in the next section along with an industry standard under-

lying this framework. This standard guides interactions among partners in the trav-

elling business domain. It is used in Section 2.2 to construct an example scenario

with the required and provided interface specifications of a Web service for booking

flight tickets. Section 2.3 describes a matching procedure and illustrates it by means

of specifications developed in the previous section. The final section of this chapter

contains a summary of the presented ideas.

2.1 Conceptual Framework

Due to the unbounded diversity between the requestor and provider systems their in-

terface specifications can not always be reconciled without manual assistance. There-

fore, our presentation starts with a conceptual framework comprising a number of

constraints which enable automatization. Foremost, these constraints can be derived

from the intra- and inter-company application integration scenarios discussed below.

13
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Figure 2.1: Integration of intra-company applications.

2.1.1 Intra- and Inter-company Application Integration

According to the definition given in Subsection 1.1.3, a Web service is a modular ap-

plication, i.e. it consists of three basic parts: an import interface, an export interface,

and a body. Body implements service(s) offered at the export interface, eventually

using the features required at the import interface. An interface description language

(alternatively interface definition language) (IDL) [5], is a common means to specify

interfaces of modular systems. Different kinds of IDLs are usually considered in the

context of application integration based on middleware and EAI platforms.

As already mentioned, a typical scenario supported by these platforms assumes

the intra-company integration, where the required and provided systems are devel-

oped by the same or neighbouring teams. The following steps are distinguished in the

integration process (cf. Fig. 2.1). Firstly, the service provider specifies the exported

functionality in the IDL. It merely describes structural information, such as data

types or a data model together with declarations of service operations in terms of

their inputs and outputs. The second step is to compile the IDL description in order

to construct stubs facilitating the interaction between the requestor and provider

systems. Finally, the requestor may statically or dynamically connect to the provider

application.

In the described scenario, the requestor does not explicitly specify its requirements

to the desired service. The parties share the same interface specification (produced

by the provider) that can be unambiguously interpreted by the requestor. Semantics

of different operations, the order in which they should be invoked, and other possibly

non-functional properties of services are assumed to be known in advance by the de-

veloper of the requestor system (or a person responsible for the system integration).
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Moreover, an integration platform defines and constrains many aspects of the service

description and interaction process. These aspects not specified as the part of service

description become implicit. Thus, an IDL specification of the provided service con-

taining only structural information is considered sufficient for integration purposes

in intra-company setting.

The ultimate goal of Web services is to enable dynamic interaction in a completely

open community of businesses, i.e. inter-company application integration, where the

requestor application can automatically find adequate services and service providers,

discover how to interact with the service, and finally invoke the service, all automat-

ically, without manual intervention.

The first problem brought up by the dynamic interaction is a dynamic selection

of a service by the requestor system.

2.1.2 Dynamic Selection of Useful Services

A dynamic service selection in cross-organizational interactions is thickened by the

lack of implicit settings existing in the intra-company application integration scenario.

So, the service interface descriptions have to cover aspects beyond the structural

specification. However, the IDL for Web services, i.e. the Web Service Description

Language (WSDL) [28], contains more or less the same amount of information as

IDLs of the middleware or EAI platforms. Hereinafter, we will see that the structural

service description is necessary but not sufficient to determine an integrability of the

loosely-coupled systems.

The only information externally available on the systems intended to be integrated

is their interface specifications. In order to ensure compatibility of requestor require-

ments with an offered service, the required and provided interface specifications have

to be matched with each other.

The first aspect that must be tackled by the matching procedure is to reconcile

data models issued in the interface specifications. Such data models, called external,

abstractly portray the internal system data that is hidden in the opaque bodies of

the requestor and provider components (cf. Fig. 2.2).

Due to the high heterogeneity of systems, their interface specifications and, in

particular, external data models may arbitrarily diverge. Development of a procedure

that would adequately relate any given data models is quite complicated problem—it

can hardly be solved in general. Nevertheless, let us suppose for the moment that

this problem is settled.



16 CHAPTER 2. SERVICE SPECIFICATION AND MATCHING

c o m p a t i b i l i t y ?

Requestor

Internal

Data Model

Internal

State Space
Internal

Data Model

Internal

State Space

External

State Space

External

State Space

Provider

Spec of Interface

- External

Data Model

- Operation Declarations

Spec of Interface

- External

Data Model

- Operation Declarations

Figure 2.2: Integration of inter-company applications.

The next step deals with comparison of required and provided operations de-

clared in interface specifications. For each required operation it is necessary to find

a corresponding provided operation satisfying the requestor requirements.

On one hand, even operations with similar structure, i.e. identical input and out-

put parameters, may be developed for completely different purposes. On the other

hand, the WSDL specification of a service lacks for semantics of declared operations.

Thus, in order to guarantee that a provided operation actually carries out what is ex-

pected by the requestor, structural descriptions of operations have to be accompanied

with behavioral markups indicating missions of service operations.

2.1.3 Behavioral Specification of Service Operations

A state space abstraction is one of possible settings for behavioral specification of

operations exposed by a software system. A data model of a system plays a role of a

descriptor or generator for the state space, where different legal instances of the data

model, i.e. specific system states, represent elements of the state space.

For example, an internal data model gives rise to an internal state space (cf.

Fig. 2.2). An invocation and execution of an operation in some of the internal system

states leads to a transition of the system into the next state. In this connection, the

source and target of the transition are called pre-state and post-state, accordingly.

The external data model, in turn, generates an external state space which con-

stituents are also related by the transitions. The transitions in the external state

space are specialized by the corresponding internal transitions via extension of the

former with implementation-related issues and concerns. A characterization of the
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transition process can be employed for a technique portraying behavior of system

operations.

Design by Contract Technique

In our approach behavior of operations is specified by contracts constituting a behav-

ioral compartment of the service interface specification. Originally, the concept of a

contract was introduced by Bertrand Meyer in an object oriented design technique

called Design by Contract [108].

An operation contract consisting of pre- and post-conditions is used to ensure

correctness of interaction between a supplier of operation and clients calling the

operation. The pre-condition describes the conditions that must be fulfilled prior to

operation invocation. The post-condition portrays the effect of the operation, i.e.

state changes that occur when the operation completes successfully. Typically, pre-

and post-conditions are assertions, e.g., Boolean expressions, stating some properties

of the entities in the system states.

Web Services Contracts

The contracts introduced in the Design by Contract technique, however, diverge from

the ones intended to be constructed for the service operations. Firstly, in the original

approach only the supplier operation is equipped with the contract. It is evaluated at

runtime by means of the input information accompanying the client call and outputs

yielded by the invoked operation. Here a precondition violation is interpreted as a

bug in the client, and a postcondition violation indicates a bug in the supplier.

In the Web services setting, both interacting parties have operation contracts,

and their compatibility is not fixed beforehand. In the Design by Contract, on the

contrary, the client development is guided by the supplier specification. Moreover,

compatibility between required and provided systems is revealed at (dynamic) design

time ante the actual interaction is launched.

Secondly, the contracts in [108] are assumed to be established over elements of

the internal state space that are common for the supplier of the operation and for its

callers. Due to modularity of requestor and provider systems, assertions defined over

the internal state spaces must not be publicly displayed, since they contain private

information. One can try to establish the contracts over the external state spaces.

But that, however, makes another problem.

Sovereignty of integrated systems implies that their external state spaces and
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contracts are also sovereign. It is meaningless to match such contracts, because they

characterize behavior of operations in terms of distinct state spaces. Moreover, while

the provider has exhaustive information on the context of transformations imposed

by its operations, the requestor lacks for this information which is necessary for the

contract construction. Since implementations of operations are beyond the scope of

the requestor system, its internal and external data models may simply not contain

the types constituting the context.

Thereby, to specify the contracts and to make them comparable with the offered

service descriptions, the requestor needs some prior information on the external state

space of the provider system. This information, however, can be obtained only if the

parties know each other before the triggering of the service discovery process and

that, in turn, contradicts the truly dynamic nature of integration of loosely-coupled

systems.

An alternative way is to oblige the requestor and provider to determine their inter-

face specifications in terms of some common framework. The role of such framework

can be played by an industry standard prescribing formats of data recommended for

the interactions in a specific business domain.

Standard-based Interface Specifications

The central position in such industry standard is occupied by a data model, called

standard data model, facilitating a uniform way of data exchange between trading

partners (cf. Fig. 2.3). A construction of a standard-based service interface specifica-

tion starts with an abstract description of the internally used data via constituents

of the standard data model.

While all elements of the standard-based data model of the provider descend from

its internal data model, the standard-based data model of the requestor may extend

its internal data model with the context elements representing the requestor assump-

tions on the state space of the provider. These elements come from the standard data

model and are employed just to develop contracts of required operations.

The industry standard may also prescribe a number of business activities1 that

are typical for the domain. Each activity is accomplished with a textual explanation

of its mission and a declaration of an operation automating this activity or a declara-

tion of messages transmitted between interacting partners at the activity execution.

The activity-related information is employed by the parties to establish standardized

1A definition of the term ”business activity“ can be found in [148].
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Figure 2.3: Standard-based integration of inter-company applications.

declarations of their own operations.

Then the declared operations are equipped with the contracts clearly determin-

ing their missions. The contracts are specified over state spaces generated by the

standard-based data models. Due to the conformance of these data models to the

standard one, the standard-based state spaces can be embedded into a virtual state

space produced by the standard model (cf. Fig. 2.3). Now, the contracts of the re-

quired and provided operations express comparable constraints which can be matched

in the scope of virtual state space playing the same role as the internal state space

in the Design by Contract technique.

To give a more concrete example, an industry standard for the travelling business

domain and its application for the development of standard-based service interface

specifications are discussed in the next subsection.

2.1.4 Standard-based Integration of Travelling Business Applica-

tions

Nowadays, travel information services are offered mainly by Global Distribution Sys-

tems (GDS), such as Sabre [129], Galileo [63], Amadeus [6], or Worldspan [153]. As

legacy systems, GDSs rely on their own private formats of data representation and
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swapping which are significantly distinct in different GDSs. Heterogeneity of existing

systems makes it difficult to carry out even static integration between partners.

Standardization efforts in travel industry are realized under the aegis of a con-

sortium called the OpenTravel Alliance (OTA) [2]. The key players in the industry

including airline, hotel, car rental, rail, and tour companies are involved in the OTA

activity. OTA develops standards providing an agreed to format for exchanging data

between and among travelers and travel-related businesses which, in turn, actively use

the OTA specifications in practice. To date, there are at least three OTA compliant

Web services being launched by Sabre [134], Datalex [120], and Galileo [133].

The standard data model and message declarations in the form of XML schemas

are the main constituents of the OTA document. The messages portray availability

checking, booking, renting, reservation, reservation canceling and modifying for the

hotel, airline, and vehicle sectors. A part of the OTA standard addressing the air-

line flight related information will be used throughout this chapter to illustrate our

approach.

In the rest of this subsection we demonstrate possible discrepancies between

standard-based specifications of required and provided services that have to be rec-

onciled by the matching procedure.

Compatibility of Service Data Models

To allow service requestors and service providers to interact in a consistent manner,

first of all, it is necessary to relate their data models. If standard-based data models

of the parties comply with the same version of the data model prescribed by the

OTA specification, they actually represent different fragments of it and can easily be

related. Unfortunately, it is not always the case.

Since 1998, when OTA was formed, it has issued ten versions of the standard,

and it was continually refined and improved. Consequently, the standard data model

is also evolving from version to version. That means even if requestor and provider

specifications are OTA compliant, it does not guarantee that their standard-based

data models are fully agreed.

It is evident that a common origin of data models intended to be related simpli-

fies the matching procedure. However, the matching complexity can be additionally

reduced, if vendors of the industry standards either provide a backward compatibil-

ity or establish a number of transformations between data models appearing in the

different releases of the standard.
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Compatibility of Service Operations

In addition to the standard data model, the OTA specification prescribes a number

of business activities which typically appear at interactions among different travel

services and their clients. The formats of request-response messages transmitted by

the systems at executions of the activities are described by pairs of XML-schemas

conforming with the standard data model.

Such a message-oriented specification of the interactions is usually applied to

the systems adhering to a document-style of interaction, where data in exchanged

documents is predefined by messages. An alternative way, that is common for a RPC-

style of interaction, is to describe business activities via operation declarations [5].

In contrast to the message-oriented notation, where each unit of communication is

represented by a single message, an operation declaration can be considered as a

pair of request-response message schemas, such that the types of input and output

parameters in the declaration correspond to the types of the elements constituting

the request and response message schemas, accordingly.

While both notations are interchangeable, in our presentation we stick to the

second one due to the following reasons. Firstly, the operation-oriented notation is

quite popular in the conventional software modeling techniques, like the UML [116].

Secondly, it is supported by a wide range of formal methods and tools that can be

reused in our work. Thirdly, the proposed approach to the behavioral specification of

the service constituents is tailored to the operation-oriented specification of business

activities and their after-effects.

Next, we consider two OTA-based examples to manifest the necessity of behavioral

markups in service interface specifications.

Example 2.1.1. The XML schemas OTA AirBookRQ and OTA AirBookRS, fragments

of which are visually represented in Fig. 2.4, specify the format of request and re-

sponse messages for the OTA business activity AirBook allowing to book a flight. Here

the items framed by solid lines stand for the types of compulsory message elements,

by dashed lines for the optional ones.

Templates defined by the XML schemas can be used by developers of interface

specifications to establish standardized declarations of service operations. By the

standardized operation declaration we mean that a pair of request-response message

schemas from the OTA specification constrains the types which may be used in

the declaration. In particular, elements in the request message schema predefine the
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Figure 2.4: Request and response message schemas for the OTA business activity

AirBook.

types of input parameters, and elements in the response message schema—the types

of output ones.

Since a message schema is composed by compulsory as well as optional elements,

we assume that a legitimate operation declaration must contain at least parame-

ter types corresponding to compulsory elements of message schemas, and all other

parameter types (if any) must refer to optional elements of message schemas. This

means that each pair of request-response message schemas gives rise to a number of

legitimate operation declarations that are different from each other.

In general, interface specifications comprise the standardized declarations as well

as user-defined ignoring the standard message schemas. Moreover, even business ac-

tivities precisely portrayed in the industry standard may be specified by user-defined

declarations due to the disparity of conventional templates with requirements of a

service developer.

Sample declarations over the message schemas OTA AirBookRQ/RS shown below

specify the required operation airReserv and the provided operation airBook destined

for a flight booking:

airReserv:POS,AirItinerary,TravelerInfo,Ticketing → AirResrvation /*requestor

airBook:POS,AirItinerary,TravelerInfo → AirResrvation /*provider

Both declarations are legitimate, because they contain the input types POS, Air-

Itinerary, TravelerInfo and the output type AirResrvation that are compulsory elements

of the message schemas in Fig. 2.4. In addition, the input of the required operation

is extended by the parameter type Ticketing appearing as the optional element in the

message schema OTA AirBookRQ.
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In spite of structural differences, such as extra input in the required operation

and different operation names, the aim of both operations is analogous to the one

stated in the OTA standard. If structural differences do not entail any problems for

interactions between the parties, it is reasonable to expect that a matching procedure

includes the provided operation in the list of candidates that may be successfully

used by the service requestor. However, the fact that operations carry out the same

functions can not be automatically detected without behavioral markups attached to

the operations. 4

The presented example demonstrates that compatibility between operations of

required and provided services does not always require structural identity of the com-

pared operations. The next example shows that even the operations with coincident

declarations may expose different behaviors causing their incompatibility.

Example 2.1.2. Two declarations placed below specify the required and provided

operations for a business activity meant to display fares between a given city pair:

airFare:POS,OriginDestinationInformation→ OriginDestinationOptions /*requestor

airFare:POS,OriginDestinationInformation → OriginDestinationOptions /*provider

The declaration of the provided operation is aligned with the current version of

the OTA standard [4] containing the message schemas OTA AirFareDisplayRQ and

OTA AirFareDisplayRS for this business activity (cf. Fig. 2.5). The requestor, in turn,

employs one of the earlier versions of the standard (e.g., [3]), where this business

activity is absent.

Due to the OTA documentation, an execution of the business activity is not

accompanied with an inventory check for available seats on flights fares of which
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are displayed. While the provided operation has been implemented according to the

industry standard, the requestor, for example, may expect that the inventory check

is carried out.

It is worth to mention that this muddle may cause serious problems when the

parties start to interact. To avoid such problems, one should compare the contracts

of the operations even if the expected behavior could seem to be identical. 4

To summarize, a standard-based service interface specification consists of a struc-

tural compartment with (standard-based) data model and operation declarations, and

a behavioral compartment containing operation contracts (cf. Fig. 2.6). Compatibility

of required and provided specifications assumes a check of structural and behavioral

resemblance of the corresponding specifications’ compartments. Thereafter, a pair of

service interface specifications with structural (behavioral) descriptions that are apt

to each other is called structurally (behaviorally) compatible. Service interface spec-

ifications are called integrally compatible if they are structurally and behaviorally

compatible.

2.1.5 Requirements

Before we turn to the detailed discussion of our approach, we collect a number of

requirements guiding our work.

1. Formal visual notation(s) for service interface specifications. Visual diagram-

matic notations play an important role in the design and understanding of

complex software systems. Structured Analysis [38], UML [116], SDL [56], IEC

Function Block Diagram [88] are prominent examples of such visual modeling

techniques which are daily exploited in industry.

While the graphical syntax of such notations makes them suitable for human

comprehension, their semantics is not clearly (formally) stated. This impedes

automatic reasoning over properties of graphical specifications. Our purpose is

to find a technique which absorbs intelligibility of graphical notations together

with the precision of formal methods enabling automation.

2. Compliance with standard model-driven techniques of software development.

Model-driven software development (MDSD) [114] becomes prevalent in soft-

ware engineering, where one of the key places is occupied by graphical lan-

guages, such as the UML. The prosperity of newly introduced techniques de-
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Figure 2.6: Compatibility of service interface specifications.

pends on their integrability and interoperability with existing methods used by

software companies at the conceptual as well as the notation layers.

3. Compliance with the technological stack of the Web services platform. Since we

are developing our approach in the platform-independent manner (at the level

of models), its concepts have to be translated into the technological stack of

the Web services platform consisting of XML-based standards, such as WSDL.

While this problem is beyond the scope of the presented work, the possibility

of such translation has to be taken into account.

4. Modularity and extensibility of service interface specifications. In our work we

concentrate on the two aspects of services (structural and behavioral) that

are placed in the corresponding compartments of interface specifications. This

structure of the specification allows to clearly distinguish between different per-

spectives of service specification and extend it with additional compartments

containing information, e.g., about required or provided business processes,

exception conditions and error handling information, security profile, transac-

tional profile and recovery semantics, service-level management agreement, etc.

We shall keep in mind the above ideas while we scrutinize service interface spec-

ifications and their constituents.

2.2 Service Interface Specifications

In this section, we present a lightweight formalization of interface specifications and

establish an example scenario comprising the required and provided interface spec-
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ifications of a Web service for booking flight tickets. The sample specifications are

developed according to the OTA standard that was discussed in the previous section.

A structural compartment of the interface specification is shown in the next sub-

section. Subsection 2.2.2 demonstrates a behavioral compartment containing service

operation contracts in the form of conditional graph transformation rules. Integration

of structural and behavioral compartments is introduced in Subsection 2.2.3, where

the service interface specification is modeled by a parameterized conditional graph

transformation system.

2.2.1 Structural Compartment of Interface Specification

As already mentioned, the first constituent of the structural compartment in required

and provided interface specifications is the standard-based data model (cf. Fig. 2.3),

also called ontology in the context of semantic Web [59].

Data Model

In general, the data model describes data types and their relationships shared and

reused across a detached application, a system of applications or an entire business

domain.

Example 2.2.1. A structural compartment of the provided interface specification for

the flight reservation service is shown in Fig. 2.7. The interface specification is aligned

with the OTA standard version 2005A [4] describing the business domain data in

the form of XML schemas. To meet Requirement 1 of Subsection 2.1.5, the XML

schemas are translated into a visual notation resembling the simplest form of UML

class diagrams. The translation is carried out with the help of the Eclipse plug-in

hyperModel [23] enabling bi-directional transformations between XML schemas and

graphical UML models.

The upper part of Fig. 2.7 represents a fragment of the data model obtained as

the output of the tool hyperModel. While the type names in the data model originate

in the OTA standard, the automatically assigned names of relationships between the

types have been changed to more indicative ones to increase readability of the model.

The constituents of the data model are interpreted as follows. A point of sale

(type POS) or travel agency is authorized by a passenger (type TravelerInfo) to book

a ticket for an air itinerary (type AirItinerary) between a pair of locations (type Origin-

DestinationInformation). Each itinerary consists of a number of segments (type Flight-
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:POS,AirItinerary -> PriceInfo

:POS,AirItinerary,TravelerInfo -> AirReservation,Fulfillment
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AirItinerary
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Service Data Model:

Standard-based Service IS: provider

Figure 2.7: Structural compartment of the provided interface specification: data

model (top) and operation declarations (bottom).
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Segment) which are annotated with a status showing availability of vacant places

(type FlightSegmentStatusUnable).

In the OTA standard, the flight segment status is defined as the FlightSegment

attribute which ranges over the values such as available or OK (number of vacant

places is equal to or exceeds some predefined constant), wait list open (number of

vacant places is less then some predefined constant), unable (no free places), etc. Due

to the fact that our approach does not explicitly support the attributes, the status

information in our data model is reflected by the flag FlightSegmentStatusUnable

indicating that the flight segment is unable for booking.

An air itinerary may be equipped with a ticketing information (type Ticketing),

such as flight segment or passenger reference numbers, used to carry out the ticket

arrangement. A successful completion of booking is indicated by a reservation tag

(type AirReservation) and payment information being relevant to the booking (type

Fulfillment). 4

Our main intention is to construct a procedure which allows to automatically

match service interface specifications. It is assumed that required and provided in-

terface specifications are compared without any assistance of software engineers. For

this, we need to find an appropriate formalism for each constituent of the interface

specification.

Due to the notation which is commonly used for specifying data models, it is

reasonable to employ the notion of a graph for the formal representation of such

models. A graph G is usually described by a set of vertices GV and a set of edges

GE . These sets are constructed in such a way that each edge e in GE has a source

vertex src(e) and a target vertex tar(e) in GV . We say that a graph G is a subgraph

of a graph H, denoted by G ⊆ H, if GV ⊆ HV , GE ⊆ HE , srcG(e) = srcH(e),

tarG(e) = tarH(e), for all e ∈ GE .

Vertices and edges of the data model graph, called a type graph, contain type dec-

larations and relationships between these types. A type graph TG serves as a schema

which generates a number of instance graphs connected with TG via a structure pre-

serving mapping. This mapping ensures compliance of instances with the structural

properties encoded in TG and associates with each vertex and edge x of the instance

graph G its type t from TG. We write x : t to denote that the element x of the graph

G has the type t.

Example 2.2.2. A type graph TG representing a fragment of the provider’s data

model and an instance graph G are shown in Fig. 2.8. A structure preserving mapping
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type

TravelerInfo

AirItinerary

AirReservation

POSsubmittedBy

reservedIn

includedInto

*

*
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Fulfillment
accomponiedWith 0..11
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1

TGti:TravelerInfo

ai:AirItinerary

pos:POS

fl:Fulfillment

ar:AirReservation

G

Figure 2.8: Instance graph (left) typed over type graph (right).

between G and TG can be specified by defining type(v) = t for each vertex v : t of G.

Extending this to the edges of G, preservation of structure means that, for example,

an edge between vertices v1 and v2 must be mapped into an edge in the type graph

TG between type(v1) and type(v2). Usually, the types of edges in the instance graph

are not explicitly indicated, since they can be easily derived from the types of vertices.

Providing analogy with object-oriented modeling, the type graph can be viewed

as a class diagram, and the instance graph as an object diagram. 4

Operation Declarations

In addition to the data model, the structural compartment of interface specification

contains declarations of operations composing a service interface.

Example 2.2.3. Declarations of provided operations for the flight reservation service

are shown in the lower part of Fig. 2.7. The first operation airFareDisplay obtains an

identifier of the travel agency (POS) together with codes of departure and arrival

airports (OriginDestintaionInformation) as input, and returns fares of the flights serv-

ing the chosen route (FareDisplayInfos). Having the same input, the second operation

airAvail displays all available flights (OriginDestinationOptions) between given loca-

tions. Both operations are defined by the standardized declarations over the message

schemas OTA AirFareDisplayRQ/RS and OTA AirAvailRQ/RS, accordingly.

The operation airBook requires a caller to submit its identifier (POS), a passenger

information (TravelerInfo) and a code of the itinerary intended to be booked (Air-

Itinerary). It yields an acknowledgment on the reservation (AirReservation) together

with payment details (Fulfillment). The declaration of this operation is user-defined,

because its output contains a parameter with the type Fulfillment, which does not

appear as an element in the message schema OTA AirBookRS depicted in Fig. 2.4. 4
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Service operations (declarations):

airPrice

airAvail

airReserv
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Figure 2.9: Structural compartment of the required interface specification: data model

(top) and operation declarations (bottom).

Analogously to the data model, the second constituent of the structural com-

partment has to be equipped with a formal counterpart enabling automatic match-

ing. Having this objective, an operation declaration is modeled by the expression

p : v → w which consists of an operation name p and sequences of input v = v1, . . . , vn

and output w = w1, . . . , wm parameter types from the type graph TG. A pair

S = 〈TG,P 〉, where TG is a type graph and P = (Pv,w) is a family of sets with

operation declarations, is called a service signature.

Example 2.2.4. The OTA standard version 2001C [3] guides the construction of the

required interface specification depicted in Fig. 2.9.

A fragment of the data model yielded by the tool hyperModel processing the

XML data schemas of this standard are given in the upper part of Fig. 2.9. In gen-

eral, the required data model is quite similar to the provided one. However, due to

the lack of compatibility between the issues of the OTA standard, the semantically

identical types in the models have different identifiers. For example, the types Air-

Book, AirItineraryPricingInfo, and TravelerInformation from the OTA standard version

2001C appear in the version 2005A under the names AirReservation, PriceInfo, and

TravelerInfo, accordingly.

The required operation declarations are depicted in the lower part of Fig. 2.9. The
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first operation airPrice calculates a total price (AirItineraryPricingInfo) of an itinerary

(AirItinerary) booked for the specific number of passengers (TravelerInfo). The mission

of this operation is different from the one of the provided operation airFareDisplay

which simply returns flight fares. The next two operations airAvail and airReserv

serve for the same purposes as the operations airAvail and airBook in Fig. 2.7, though

their declarations are slightly different.

The standardized declaration based on the message schemas OTA AirAvailRQ/RS

describes the required operation airAvail. The declarations of the two remaining op-

erations from the required interface are user-defined. 4

Note that in contrast to the object-oriented technology, where each operation is

defined in the context of a specific class implementing this operation, the declared

service operations are not equipped with their implementers. This kind of information

refers to the internal characteristics of a system and therefore should not appear in

the interface specification.

While the service signature specifies the structural aspect of the required or pro-

vided functionality, the behavior of a service shall be described by contracts estab-

lished for the service operations.

2.2.2 Behavioral Compartment of Interface Specification

There are different approaches to contract specification employing logic-based de-

scriptions [96], algebraic specification languages [26, 156], etc. (see Chapter 5 for

a general discussion). The problem is that these formalisms are rarely applied by

software engineers due to the lack of skills in formal methods.

All the existing techniques do not meet our requirements (cf. Subsection 2.1.5

requirements 1 and 2). We aim at a notation that is close to standard software

modeling languages and at the same time has a formal semantics. This visual formal

notation for contracts is provided by typed graph transformation [35, 36]. In the

following we extensively use graph transformation theory and introduce a number of

new concepts needed for our approach.

Typed Graph Transformation

The idea of typed graph transformation is to see run-time states as directed graphs,

typed over a type graph TG representing the data model. State changing operations

are described by graph transformation rules (or productions) p : s consisting of a rule
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airBook(in pos:POS, in ai:AirItinerary, in ti:TravelerInfo, out ar:AirReservation, out fl:Fulfillment)

ti:TravelerInfo

ai:AirItinerary

pos:POS

ti:TravelerInfo

ai:AirItinerary

pos:POS

L'

fl:Fulfillment

ar:AirReservation

R'

airReserv(in pos:POS, in ai:AirItinerary, in ti:TravelerInformation, in tkt:Ticketing, out ab:AirBook)

tkt:Ticketing ai:AirItinerary

Lti:TravelerInformation

pos:POS

tkt:Ticketing ai:AirItinerary

Rti:TravelerInformation

ab:AirBook pos:POS

Figure 2.10: Graph transformation rules airReserv (top) and airBook (bottom).

name p, and a span s = (L ⊇ K ⊆ R), where L, K and R are TG-typed instance

graphs. The left-hand side L and the right-hand side R describe a part of the system

state before and after execution of the operation, that is, the pre- and postconditions,

and the context graph K contains those elements that are read but not deleted by

the operation. For a rule p : s we usually assume that the graph K is the intersection

K = L ∩R. In this case, we denote the rule by p : L→ R.

Example 2.2.5. Graph transformation rules specifying the required operation airRe-

serv and the provided operation airBook are shown in Fig. 2.10. They represent the

first attempt to describe behavior of the corresponding operations and will be refined

later. The left-hand sides of the rules contain elements standing for the input pa-

rameters of the operations and their relationships. For example, the edges between

the objects ti:TravelerInformation and pos:POS in the requestor rule, and the objects

ti:TravelerInfo and pos:POS in the provider rule denote the fact that the passenger

profile is submitted by a specific travel agency identified by the point of sale code.

The output parameters of the operations appear in the right-hand sides of the rules.

Note that the rule names are followed by sequences of elements defining the

parameters of the specified operations. These sequences actually represent parameter

expressions which will be discussed in the next subsection. 4
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A system migration from the state G to the state H under the execution of

an operation specified by the rule p is modeled by a graph transformation step. A

transformation step G
p

=⇒ H from G to H using a rule p : L → R requires that a

renaming of L occurs as a subgraph in G. Then, L\R (which consists of all nodes and

edges of L not belonging to R) is removed from G, and R \ L is added to the result.

This leads to the derived graph H which contains a renaming of R as a subgraph. The

rule application is only permitted if after the deletion step, the resulting structure is

a graph again.

The effect encoded in the rule is defined by the elements which have to be deleted

(exist only in L), created (exist only in R), and preserved (exist in K) under the

rule application. The deleted and created elements are denoted by del(p) and add(p),

accordingly.

The application deletes and creates exactly what is specified by the rule. There

exists an implicit frame condition stating that everything that is not rewritten ex-

plicitly by the rule is left unchanged. Due to this fact, the rule semantics described

above is called strict.

Example 2.2.6. Fig. 2.11 demonstrates a transformation step via the rule airBook.

First of all, we look for an occurrence of the left-hand side L′ of the rule in the typed

graph representing (a fragment of) the system state. This occurrence is marked by the

dashed rectangles in the source graph G. Then the elements matching del(airBook),

i.e. the edge between the objects 07G4325:POS and id7H:TravelerInfo, are deleted,

and the elements corresponding to add(airBook) marked by the dashed rectan-

gle in the target graph H are added to the result. The newly created objects

7H39B4:AirReservation and 7H39FL:Fulfillment are obtained as the output of the

provided operation specified by the rule airBook. The elements of the graphs G and

H which match the elements of the graphs L′ and R′ corresponding to the parameters

of the operation airBook follow the name of the rule in the figure. 4

Loose Semantics of Graph Transformation Rules

The strict rule semantics is pertinent for the contracts of provider, who obviously has

complete information on supplied functionality. The required contracts are incomplete

specifications of service behavior, because a developer of the required system has

only a loose idea of provided services. In particular, context elements which form

the requestor assumptions on the provided behavior may be underspecified. Loose or
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airBook(07G4325, ai01, id7H, 7H39B4,7H39FL)

ti:TravelerInfo

ai:AirItinerary

pos:POS

L'

G H

ai01:AirItinerary ai01:AirItinerary

t01:Ticketing t01:Ticketing

Gid7H:TravelerInfo id7H:TravelerInfo

07G4325:POS 07G4325:POS

150AA:FlightSegment 150AA:FlightSegment

id8P:TravelerInfo id8P:TravelerInfo

7H39FL:Fulfillment

7H39B4:AirReservation

ti:TravelerInfo

ai:AirItinerary

pos:POS

fl:Fulfillment

ar:AirReservation

R'

Figure 2.11: A sample transformation step via the rule airBook.

underspecified contracts describe minimally admissible effects that can be exceed in

more powerful provided operations.

Therefore, contract rules of required operations have to be interpreted in a more

liberal way: at least the elements of the graph G matched by del(p) are removed, and

at least the elements matched by add(p) are added. This rule semantics, called loose,

introduces the notion of a graph transition which leaves out the frame condition.

Like a transformation step, a graph transition G
p
; H from G to H via p requires

that L occurs in G and carries out the modifications of G being explicitly encoded

in the rule, but there may be unspecified deletions and additions as well.

Example 2.2.7. A sample graph transition is shown in Fig. 2.12. It applies the rule air-

Reserv while in parallel the edge between the objects t07:Ticketing and ai07:AirItinerary

is deleted, and a new edge between the objects t07:Ticketing and 8P39B4:AirBook is

created. The “spontaneous” deletion and creation illustrate an effect which is unspec-

ified by the rule airReserv. Analogously to the previous example, the name of this rule

is followed by the elements of the graphs G and H corresponding to the elements

representing the parameters of the operation airReserv. 4
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airReserv(07G4325, ai07, id8P, t07, 8P39B4)

tkt:Ticketing ai:AirItinerary

Lti:TravelerInformation

pos:POS

G

ai07:AirItinerary

t07:Ticketingid8P:TravelerInformation

07G4325:POS

172AC:FlightSegment

173AC:FlightSegment

id7H:TravelerInformation

H

ai07:AirItinerary

t07:Ticketing

Gid8P:TravelerInformation

07G4325:POS

172AC:FlightSegment

173AC:FlightSegment

id7H:TravelerInformation

8P39B4:AirBook

tkt:Ticketing ai:AirItinerary

Rti:TravelerInformation

ab:AirBook pos:POS

Figure 2.12: A sample graph transition via the rule airReserv.

Graph Transformation System

While the behavior of a single operation is described by a graph transformation rule,

several behavioral descriptions can be aggregated in a (typed) graph transformation

system (GTS). A graph transformation system G = 〈TG,P, π〉 augments TG-typed

spans s = L → R with a type graph TG and unique identifiers p from a set of rule

names P , where correspondence between the spans and rule names is defined by a

mapping π.

Remark 2.2.8. Our notions of graph, transformation rule, transformation step, etc.

are standard in the double-pushout (DPO) approach to graph transformation [36]

(see also Subsection 3.1.2) which provides strict rule semantics.

Graph transitions are introduced in [81] (see also Subsection 3.1.2). Technically

speaking, they are based on a double-pullback (DPB) construction, unlike graph

transformations that are classically defined using a double-pushout construction. The

DPB approach introduces a more general loose rule semantics which allows unspeci-

fied changes under application of rules. 4
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Conditional Productions

As we will see in the next section, behavioral compatibility of required and provided

operations is ensured via matching of precondition and effect parts of contract rules.

Thus, preconditions and effects of rules have to be clearly distinguished. However, the

specification of the precondition is mixed up with the part of effect (deleted items)

in the left-hand side of the rule.

A refinement of the rule’s structure avoiding this problem is obtained by using

positive application constraints in the form L ⊆ L̂P , where L is the left-hand side of

a rule span and L̂P is a positive precondition pattern. The elements constituting L̂P

compose a context required for the rule application.

Note that in case of strict semantics, use of positive constraints does not increase

expressiveness of rules. Positive constraints can be integrated by extending both the

left- and the right-hand side with the elements required, but not deleted by the rule.

This is correct because we are sure that everything that is not explicitly deleted is

not deleted at all.

This is no longer true under loose semantics, where positive precondition may

extend the left-hand side of the rule with elements that are required to be there, but

may be deleted spontaneously, without explicit specification.

Positive constraints allow us to assert an existence of patterns in graphs. Quite

frequently though, it is necessary to express that something must not be the case

for a rule to be applied. However, the language introduced so far does not allow to

specify non-existence of patterns. To fill this gap, the expressive power of the contract

language is increased by negative application constraints L ⊆ L̂N , where L̂N , called a

negative precondition pattern, extends L with the elements that must not be present

in a graph when the rule is applied.

An application condition over the rule span s = L → R is given by a set

A(s) = {L̂P , L̂N |L ⊆ L̂P/N} being a part of conditional graph transformation rule. A

conditional graph transformation rule is an expression of the form p : s if A(s), where

p is a rule name, s is a rule span, and A(s) is an application condition over this span.

A transformation step or transition via a conditional rule also needs to find a

match of L in G. Then it is necessary to check whether occurrences of positive

(negative) precondition patterns corresponding to the chosen match are contained

(are not contained) in the source graph G. If it is the case, we say that the match of L

in G satisfies the application condition and proceed analogously to the unconditional

case. Otherwise application of the rule at the chosen match is forbidden.
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airBook(in pos:POS, in ai:AirItinerary, in ti:TravelerInfo out ar:AirReservation, out fl:Fulfillment)

ti:TravelerInfo

ai:AirItinerary

pos:POS

L'

ti:TravelerInfo

ai:AirItinerary

pos:POS

L'P
^

L'N
^

ti:TravelerInfo

ai:AirItinerary

pos:POS

fl:Fulfillment

ar:AirReservation

R'

ti:TravelerInformation

pos:POS

ai:AirItinerary

L

airReserv(in pos:POS, in ai:AirItinerary, in ti:TravelerInformation, in tkt:Ticketing, out ab:AirBook)

ai:AirItinerary

Rti:TravelerInformation

ab:AirBook pos:POS
LP
^

tkt:Ticketing ai:AirItinerary

ti:TravelerInformation

pos:POS

LN
^

st:FlightSegmentStatusUnable

fs:FlightSegment ai:AirItinerary

ti:TravelerInformation

pos:POS

st:FlightSegmentStatusUnable

fs:FlightSegment ai:AirItinerary

ti:TravelerInfo

pos:POS

Figure 2.13: Contract rules for the operations airReserv (top) and airBook (bottom).
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A conditional graph transformation system C = 〈TG, P, π〉 is similar to the un-

conditional one, but the mapping π assigns identifiers to conditional TG-typed rule

spans s if A(s).

Example 2.2.9. Fig. 2.13 shows conditional rules defining contracts of the required

operation airReserv and the provided operation airBook. The parts of Fig. 2.13 marked

by the dashed rectangles portray the effects expected by the requestor and guaranteed

by the provider, accordingly. Output parameters of the operations appear in the right-

hand sides of the rules. L̂P and L̂′
P specify positive precondition patterns containing

the input parameters of the operations.

Apart from travel agency, air itinerary and passenger data that is present in the

positive precondition patterns of both rules, L̂P additionally contains a ticketing

information. The requestor considers the parameter tkt:Ticketing as the context

element which may be expected by the service provider as the input data. At the same

time, this parameter is not needed for the following computations in the requestor

system, therefore it appears only in the positive precondition pattern and its further

behavior is left unspecified. It can be unrestrictedly manipulated by the provider.

The negative precondition patterns L̂N and L̂′
N of the rules prevent us from booking

a flight which has no free places.

Fig. 2.14 shows a transition via the conditional rule airReserv, where the point of

sale 07G4325 requests to book the air itinerary ai02 for the passenger(s) id8P. It is not

difficult to see that the chosen match of L in the graph G satisfies the positive and

negative application constraints. The graph G also contains the alternative itinerary

ai01 booking of which is not allowed by the negative application condition, because

all places in the flight segment 185AD of this itinerary have been already taken.

Notice that in contrast to the transition in Fig. 2.12, the unspecified effect of

the considered transition includes deletion of the vertex t02:Ticketing and the edge

connecting it with the vertex ai02:AirItinerary. This is possible, because the deleted

elements of the rule in Fig. 2.14 are underspecified. 4

2.2.3 Integration of Structural and Behavioral Compartments

Structural and behavioral compartments of a service interface specification, i.e. ser-

vice signature S = 〈TG,P 〉 and conditional graph transformation system C =

〈TG,P, π〉, are developed independently from each other so far. In the following,

we relate them in order to get an integral description of a service interface.
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airReserv(07G4325, ai02, id8P, t02, 8P39B4)

ti:TravelerInformation

pos:POS

ai:AirItinerary
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G H

ai02:AirItinerary 8P39B4:AirBook

ai01:AirItinerary ai01:AirItinerary

t02:Ticketing ai02:AirItinerary
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172AC:FlightSegment 172AC:FlightSegment

185AD:FlightSegment 185AD:FlightSegment

st-185AD:FlightSegmentStatusUnable st-185AD:FlightSegmentStatusUnable

ai:AirItinerary

Rti:TravelerInformation

ab:AirBook pos:POS
LP
^

tkt:Ticketing ai:AirItinerary

ti:TravelerInformation

pos:POS
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^
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fs:FlightSegment ai:AirItinerary

ti:TravelerInformation

pos:POS

Figure 2.14: A sample graph transition via the conditional rule airReserv.
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First of all, we discuss how to combine operation declarations and conditional

graph transformation rules describing behavior of these operations. An operation

declaration specifies types of input and output parameters appearing as elements

in the corresponding contract rule. The positive precondition pattern L̂P and the

right-hand side R of the rule span contain these elements. The desired integration is

captured by the notion of parameterized conditional rules names of which are given by

parameter expressions of the form p(x, y), where p ∈ Pv,w is an operation declaration,

and x = x1, . . . , xn and y = y1, . . . , ym are sequences of input and output parameters

conforming to the declared types.

A parameterized conditional rule over a signature 〈TG,P 〉 is a construction

p(x, y) : s if A(s) composed by a parameter expression p(x, y) and a conditional TG-

typed rule span s if A(s), such that for p ∈ Pv,w, s = L → R, and A(s) = {L̂P , L̂N}
the parameter sequences x and y contains the elements appearing in L̂P and R. In

general, a transformation step or transition via a parameterized conditional rule is

analogous to the one via the ordinary rule, however it can be additionally anno-

tated with the elements from the source and target graphs matching the declared

parameters (cf., e.g., Fig. 2.11).

A parameterized conditional graph transformation system CP = 〈TG,P,CP 〉 is

composed of a signature formed by TG and P , and a set CP which contains param-

eterized conditional rules established over this signature. Analogously to the uncon-

ditional and conditional graph transformation systems, we assume that each rule in

CP has a unique name p.

To summarize, a service interface specification is modeled by a parameterized

conditional graph transformation system CP = 〈TG, P,CP 〉, where a data model,

operation declarations and contracts are given by a type graph TG, a set P , and a

set CP with contract rules, respectively.

2.3 Matching of Service Interface Specifications

Next, we discuss compatibility of required and provided interface specifications con-

taining client’s requirements for a useful service and service descriptions. The notion

of compatibility is motivated by a substitution principle: replacement of abstract op-

eration descriptions in the required system by concrete operations implemented in

the provided system should guarantee that the behavior of the compound system is

acceptable for the parties.
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The structural and behavioral aspects of compatibility are considered in Sub-

sections 2.3.1 and 2.3.2. They are aggregated in Subsection 2.3.3 that describes a

matching procedure between required and provided interface specifications. Here the

requisite conformity between the parties is determined by an integral compatibility

relation over parameterized conditional graph transformation systems portraying the

services.

2.3.1 Structural Compatibility

Structural compatibility of required and provided interface specifications is revealed

via matching of service signatures. Correspondence of service signatures is modeled

by a structural compatibility relation consisting of a renaming and an extension.

In general, signatures of required and provided services can be developed in dif-

ferent name spaces. The parties may use different types and operation names for the

same concepts. Thus, one of the signatures, e.g., the required one, has to be renamed

in order to be comparable with another one. For this purpose we introduce a renam-

ing relation S ren←→ S ′, which determines a one-to-one correspondence2 between types

and operation names of the original and renamed signatures.

Renaming of types

To find out an appropriate renaming for the types in the required signature, it is

necessary to match its type graph with the one of the provided signature so that

the associated types correspond semantically to each other. As already mentioned

in Subsection 2.1.4, industry standards, such as the OTA specification, facilitate the

(automatic) development of the desired renaming.

A fragment of the renaming relation for the example scenario is presented in

Table 2.1.

Renaming of operation names

Operation names in the required signature have to be renamed in such a way that

the corresponding operation names in the provided signature should have compat-

ible declaration parts. Structural compatibility between two operation declarations

developed in the common type context is motivated by the following semantic re-

quirements. On one hand, the provider needs all declared inputs in order to execute

2See Remark 2.3.4 at the end of Subsection 2.3.3.
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Original types Renamed types

AirBook AirReservation

AirItineraryPricingInfo PriceInfo

OriginDestintaionInfo OriginDestinationInformation

TravelerInformation TravelerInfo

. . . . . .

Table 2.1: Renaming of the required types.

its operation. On the other hand, the requestor is interested in the provided operation

only if it returns all expected outputs.

Syntactic criteria ensuring these semantic requirements are based on matching of

the input and output type sequences composing operation declarations. We say that

a sequence α = α1, . . . , αn is a subsequence of a sequence β = β1, . . . , βm, denoted

as α ≺ β, if there exist integers i1 < i2 < . . . < in such that αj = βij for all αj .

Squences are equal, denoted as α = β, if they contain the same elements at the same

positions.

Different notions of structural compatibility of the required p : v → w and pro-

vided p′ : v′ → w′ operation declarations are demonstrated in the table below.

Compatibility Inputs Outputs

Exact v = v′ w = w′

Input-preserving v = v′ w ≺ w′

Output-preserving v � v′ w = w′

Generalized v � v′ w ≺ w′

Table 2.2: Structural compatibility of operation declarations.

Exact compatibility requires that operations have the same inputs and outputs.

Next two variants of compatibility relax dependencies between sequences of input and

output parameter types, respectively. In the input-preserving case, a pair of opera-

tion declarations is required to have identical inputs, while the provided operation is

allowed to return outputs beyond those declared for the required operation. The dual

requirements underly the output-preserving compatibility. The generalized compati-

bility combining relaxations appearing in the input- and output-preserving variants

provides the most general requirements. The required operation declaration has to
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contain at least the input parameters indicated in the provided declaration, and the

provided operation has to return at least the output parameters appearing in the re-

quired operation declaration. An appropriate notion of structural compatibility has

to be chosen based on demands of the business domain and the platform on which

requestor and provider systems are implemented.

Example 2.3.1. Let us check structural compatibility of the operations specified in

Fig. 2.7 and Fig. 2.9. The renaming of the type OriginDestintaionInfo in the required

operation airAvail to the provided type OriginDestintaionInformation makes the inputs

and outputs of this operation identical to those of the provided operation airAvail.

This implies exact compatibility of the operation declarations. Since the name of the

required operation coincides with the provided one, it should not be changed in the

renamed signature.

The declarations of the operations airReserv and airBook differ in several ways.

While the former operation has the extra input Ticketing, the latter operation con-

tains the extra output Fulfillment. However, the inputs offered by the requestor are

sufficient for the provider, and the outputs proposed by the provider satisfy the

requestor’s expectations. The described deviations between the declarations are per-

mitted under the generalized notion of structural compatibility. If this kind of com-

patibility is admissible for the parties, then the required operation is renamed to

airBook.

An example of structural incompatibility is given by the declarations of the op-

erations airFareDisplay and airPrice. The differences between appropriately renamed

inputs and outputs of the operations violate the syntactic criteria shown in Table 2.2.

The provided operation airFareDisplay assumes to obtain OriginDestinationInformation

as input, but this parameter type does not appear in the required operation declara-

tion. Moreover, the only output of the required operation airPrice is AirItineraryPricing-

Info. However, this output does not belong to the outputs of the provided operation

airFareDisplay. 4

Extension of service signatures

A provided service usually has more capabilities than a requestor is asking for. There-

fore, a provided signature may contain more types and operations than a required

one. This fact is captured by the notion of a signature extension.

A signature S2 = 〈TG2, P2〉 extends a signature S1 = 〈TG1, P1〉, written S1 ⊆ S2,

if the type graph and the set of operation declarations of S1 are extended in S2, i.e.
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TG1 ⊆ TG2 and P1 ⊆ P2. If the chosen notion of structural compatibility varies

from the exact one, then the identical operation names in P1 and P2 may have

different declaration parts. Therefore, the relation between P1 and P2 associates, in

fact, operation names rather then entire declarations.

Having defined the renaming and the extension, we are able to formulate a rela-

tion between the required S1 and provided S2 signatures. This relation models their

structural compatibility. A structural compatibility relation µ = (S1
ren←→ S2

1 ⊆ S2)

from S1 to S2 is a renaming of S1 such that S2 represents an extension of the renamed

signature S2
1 .

2.3.2 Behavioral Compatibility

Behavioral compatibility of interface specifications is examined via matching of condi-

tional graph transformation systems that describe behavior of required and provided

services. A behavioral compatibility relation consisting again of a renaming and an

extension models the requisite conformity between the GTSs. A construction of this

relation will be discussed in this subsection.

To compare behavioral specifications designed in different name spaces, the re-

quired GTS is translated into the name space of the provider using a renaming

relation. A renaming relation C ren←→ C′ defines a one-to-one correspondence between

the types, the rule names, and the (vertices and edges of the) rules of the GTSs C
and C′.

Type renaming is based on mapping between the required and provided type

graphs. This mapping induces a retyping procedure which allows to compare the rules

sharing the same type context. We continue our discussion under the assumption that

the systems use the same types consistently.

Renaming of conditional (contract) rules

Matching of the required and provided contract rules underlies an appropriate re-

naming in the requestor GTS. To find out syntactic criteria for the pair of rules guar-

anteeing behavioral compatibility of the contracted operations, we have to determine

semantic requirements for compatibility between required and provided contracts in

general. These semantic requirements depend on how the parties interact with each

other.



2.3. MATCHING OF SERVICE INTERFACE SPECIFICATIONS 45

Requestor

Provider

contract

… ACs
pre

L => R
effect

contract

…
ACs
pre'

L'=> R'
effect'

call return

Figure 2.15: Compatibility between required and provided operation contracts.

Fig. 2.15 shows an invocation of the provided operation by the requestor and

provider’s reply, together with the relevant preconditions and effects constituting the

contracts. The interaction consists of the following steps:

1. requestor is willing to submit input data specified in pre to issue a call for the

provided operation;

2. provider assumes that the submitted input satisfies the requirements on the

invocation described in pre′ and calls its operation;

3. provider executes its operation and guarantees the effect described in effect′;

4. requestor assumes that the provided effect fulfills assumptions specified in

effect and obtains the result of the operation call.

To make sure that the service implemented by the requestor system with the help

of the provider works as expected, we have to verify that the assumptions given in

2 and 4 indeed hold. This would be the case if (1) pre implies pre′, and (2) effect′

implies effect. Intuitively, the two semantic requirements can be translated in terms

of graph transformation rules as follows.

The precondition part of a rule restricts its applicability. So, the first implication

is guaranteed if the applicability of the required rule is preserved or extended in the

provided rule. The effect part of the rule describes system state modifications induced

by a transformation step or transition via this rule. Then the second implication is

ensured if the effect of the required rule is preserved or extended in the provided rule.

Thus, the required contract rule is behaviorally compatible to the provided contract

rule, if the latter appropriately extends the former.
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Extension of conditional (contract) rules

The extension of a rule p by another rule p′ is modeled by a subrule relation. A rule

p : s if A(s) with s = L → R and A(s) = {L̂P , L̂N} is a subrule of p′ : s′ if A(s′)

with s′ = L′ → R′ and A(s′) = {L̂′
P , L̂′

N}, written p ⊆ p′, if L̂′
P ⊆ L̂P and L̂N ⊆

L̂′
N (applicability is extended), and L ⊆ L′, R ⊆ R′ (left- and right-hand sides are

extended), del(p) ⊆ del(p′) (more is deleted by p′), and add(p) ⊆ add(p′) (more is

added by p′).

The subrule relation assumes that the associated rules employ the same names

for the shared elements in the spans and application conditions, but it is not the case

with the contract rules produced in different name spaces. That means, if we are able

to find a renaming of the elements appearing in the required rule p which turns p

into the subrule of the provided rule p′, then the renamed version of the required rule

will be annotated with the name of the matched provided rule.

Example 2.3.2. Let us check behavioral compatibility of the operations airReserv and

airBook which are specified by the rules depicted in Fig. 2.13. Here we assume that

the objects ti:TravelerInformation and ab:AirBook in the rule airReserv are renamed to

the objects ti:TravelerInfo and ar:AirReservation, respectively.

In order to check whether the required operation meets invocation requirements

of the provider, we compare the precondition parts of the rules. The invocation re-

quirements to the callers of the provided operation are stated in the positive and

negative precondition patterns L̂′
P and L̂′

N . While the former is enriched in the re-

questor rule by the object tkt:Ticketing and the edge between this object and the

object ai:AirItinerary, the latter is identical (modulo retyping) to the negative precon-

dition pattern L̂N . This means applicability of the required rule is extended in the

provided rule.

Then, we match the effect parts of the rules, because the benefit obtained by ap-

plying the provided operation should satisfy the expectations of the client. The object

fl:Fulfillment and the edge from this object to the object ar:AirReservation are created

in the system state after the execution of the operation airBook. These elements are

not present in the right-hand side of the requestor rule airReserv, because it is suf-

ficient to obtain only a confirmation in the form of a reservation tag. Nevertheless,

the provided effect extending the required one fits the client requirements.

Since the renamed version of the required rule turns to be a subrule of the provider

rule, its name has to be changed to airBook. Furthermore, the subrule relation between
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the contract rules guarantees behavioral compatibility of the contracted operations.

4

Extension of conditional GTSs

It remains to determine an extension for a pair of behavioral specifications developed

in a common name space. A conditional graph transformation system C′ extends

another one C, written C ⊆ C′, if the type graph and rule names of C are extended,

i.e. TG ⊆ TG′ and P ⊆ P ′, and for each rule name p ∈ P the associated rule in C is

a subrule of the corresponding rule in C′.

Now, we aggregate the developed concepts in a relation, which ensures behavioral

compatibility of conditional graph transformation systems specifying required and

provided services. A behavioral compatibility relation ν = (C1
ren←→ C2

1 ⊆ C2) from C1
to C2 is a renaming of C1 such that C2 represents an extension of the renamed system

C2
1 .

2.3.3 Integral Compatibility

In the previous subsections, we have established the relations which model structural

and behavioral kinds of compatibility for interface specifications of required and

provided services. Structural compatibility guarantees the appropriate relationship

between inputs and outputs of the associated operations, which may have, however,

completely different missions. Behavioral compatibility ensures semantic resemblance

of the operations, which may be structurally inconsistent.

At this point, we discuss integral compatibility combining structural as well as

behavioral aspects. It is modeled by an integral compatibility relation. This relation

consisting of a renaming and an extension associates required and provided service in-

terfaces specifications in the form of parameterized conditional graph transformation

systems.

A renaming relation CP ren←→ CP ′ between two parameterized conditional GTSs

is defined analogously to the one in behavioral compatibility relation. It links the

types, the rule names, and the elements of the system rules.

Since a type renaming is still the same as in the previous subsection, for the rest

of the presentation we assume that the systems are defined in the same type context.
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Renaming of rule (operation) names

Rule names in parameterized conditional GTSs are equipped with parameter type

declarations. A rule name in the provided system becomes a renaming candidate for

the required rule name, if the parameter type declarations of the two are structurally

compatible. Then, we proceed with the behavioral check, where the contract rules

associated with the rule names containing structurally compatible declarations are

examined for behavioral compatibility.

Behavioral compatibility is captured by the notion of a rule extension that is

already discussed in the previous subsection and modeled via a subrule relation. Now

the subrule relation has to be redefined for conditional rules with parameters.

Extension of parameterized conditional (contract) rules

A parameterized conditional rule p(x, y) : s if A(s) with p : v → w is a subrule of

p′(x′, w′) : s′ if A(s′) with p′ : v′ → w′, written p(x, y) ⊆ p′(x′, y′), if a conditional

rule p : s if A(s) is a subrule of p′ : s′ if A(s′), and x = x′ and y = y′.

The formulated notion of a subrule relation assumes the exact version of structural

compatibility. If, for example, the generalized version of structural compatibility is

chosen, then the equality between the parameter sequences has to be replaced for the

subsequence relation x � x′ and y ≺ y′.

Thus, the replacement of the required rule name for the provided one is allowed

to be performed, if the parameter type declarations of the two are structurally com-

patible, and there exists renaming for the rule associated with the required name

which transforms this rule into the subrule of the one associated with the provided

name.

Example 2.3.3. Let us examine integral compatibility of the operations airReserv and

airBook which are specified by parameterized conditional rules in Fig. 2.13. First of all,

one should check structural compatibility between the parameter type declarations

augmenting the rule names. We have shown in Example 2.3.1 that the declaration

of the operation airReserv renamed according to Table 2.2 and the declaration of

the operation airBook satisfy the requirements imposed by the generalized notion of

structural compatibility.

Then, we check behavioral compatibility which amounts to matching of the con-

ditional rules associated with the rule names airReserv and airBook. According to

Example 2.3.2, renaming of the objects ti:TravelerInformation and ab:AirBook in the
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rule airReserv into the objects ti:TravelerInfo and ar:AirReservation makes this rule a

subrule of the rule airBook. This guarantees behavioral compatibility between the

considered operations.

Combining the outputs of structural and behavioral compatibility tests, we can

conclude that the provided rule indeed extends the required rule. Therefore, the re-

named version of the latter has to be equipped with the identifier airBook. Moreover,

the established subrule relation guarantees integral compatibility between the oper-

ations airReserv and airBook. 4

Extension of parameterized conditional GTSs

Before we turn to definition of an integral compatibility relation, we have to do one

more thing—to define the notion of an extension for parameterized conditional GTSs.

A parameterized conditional GTS CP ′ extends another one CP, written CP ⊆ CP ′,

if a signature S ′ = 〈TG′, P ′〉 of CP ′ extends a signature S = 〈TG,P 〉 of CP, and for

each rule name p ∈ P the associated rule in CP is a subrule of the corresponding rule

in CP ′.

Finally, we define the sought-for integral compatibility relation, which ensures

structural and behavioral compatibility between parameterized conditional GTSs

that entirely describe required and provided services. An integral compatibility re-

lation ς = (CP1
ren←→ CP2

1 ⊆ CP2) from CP1 to CP2 is a renaming of CP1 such that

CP2 represents an extension of the renamed system CP2
1.

Note that the integral compatibility relation is constructed on top of informally

given semantic requirements underlying compatibility of interface specifications of

coupled systems. In particular, the behavioral compatibility relation is based merely

on intuition obtained from the example scenario. This does not allow to check whether

the introduced syntactic procedure adequately reflects the semantic requirements.

Therefore, in the next chapter, we provide a formalization of the introduced concepts

based on the existing theory of the algebraic approach to graph transformation [51,

45, 36]. This allows to rigorously formulate semantic requirements and to carry out

the required justifications.

Remark 2.3.4. In the next chapter, integral compatibility relations are formally de-

scribed as morphisms between parameterized conditional graph transformation sys-

tems. Employing the style of presentation proposed in [76], we presented such a
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morphism as decomposed into an isomorphism and an inclusion (called a renaming

and an extension, respectively). All morphisms expressible in this way are injective.

Based on the definition of morphisms of parameterized conditional GTSs given in

Subsection 3.2.4, however, we could also represent compatibility relations where dif-

ferent elements in the required interface specification are identified in the provided

one. 4

2.4 Summary

In this chapter, we have introduced the notion of service interface specification em-

bracing structural and behavioral compartments. While the structural compartment

is described by the service signature, the conditional GTS is employed for the defini-

tion of the behavioral compartment containing operation contracts. The graph trans-

formation rules contracting service operations are equipped with loose semantics in

the required interface specification and with strict semantics in the provided interface

specification. An aggregation of structural and behavioral compartments leads to an

integral service specification in the form of parametrized conditional GTS.

We have also explored compatibility of required and provided interface specifica-

tions. The structural and behavioral aspects of compatibility are checked by matching

of service signatures and conditional GTSs, accordingly. The intended conformity be-

tween the corresponding compartments is specified by the structural and behavioral

compatibility relations. These aspect-specific relations are absorbed in the integral

compatibility relation which models the required correspondence between integral

service interface specifications.

In our approach, matching of service specifications is assisted by an industry stan-

dard such as the one issued by the OTA consortium for the travelling business domain.

We illustrated the development of standard-based service interface specifications and

their comparison by an example that shows the OTA-compliant specifications of the

required and provided Web services for booking flight tickets.

It is necessary to mention that structural and behavioral characteristics of ser-

vices are not the only features able to facilitate the discovery process. The interface

specification can be extended, e.g., with description of a required or provided business

process [148].

Generally speaking, a business process specifies the execution order of operations

that lead to a specific business outcome. A business process in the requestor specifica-
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tion represents a fragment of the global business process underlying the functioning

of the requestor system. The operations sought by requestor have to be mapped into

this fragment and adequately blended with the existing context. A business process in

the provider specification defines how to use the service and prevents sequences of op-

eration calls leading to the improper interaction between the parties. Augmentation

of a service description with business process data (along with other business-specific,

industry-specific, or organization-specific requirements) yet remains an open issue. A

detailed discussion of primary and auxiliary characteristics used to specify services

can be found in [112].
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Chapter 3

Parameterized Conditional

Graph Transformation

In this chapter we reuse and extend the existing results of the algebraic double-

pushout (DPO) and double-pullback (DPB) approaches to graph transformation to

formalize concepts and ideas presented in Chapter 2. Section 3.1 is devoted to the

rigorous description of service interface specifications by means of parameterized con-

ditional graph transformation systems (GTSs). Section 3.2 formalizes the structural

and behavioral compatibility relations and verifies correctness of the latter against

formally given semantic requirements. An aggregation of the two relations allows to

construct a parameterized substitution morphism that determines the intended cor-

respondence between parameterized conditional GTSs. Finally, Section 3.3 contains

a summary of formal stratum for our approach.

3.1 A Formal Account of Service Interface Specifications

As already mentioned, automation of matching procedure requires a formal coun-

terpart for each constituent of a service interface specification. The following sec-

tion addresses this problem. A formalization of the structural compartment via ser-

vice signature is considered in the next subsection. Subsection 3.1.2 starts with an

overview of basic notions of the DPO and DPB approaches to graph transformation.

It also demonstrates conditional GTSs that describe services behaviorally. In Subsec-

tion 3.1.3, service signatures and conditional GTSs are combined in order to obtain

an integral service specification given by parameterized conditional GTSs.

53
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Figure 3.1: Typed graph and graph morphism.

3.1.1 Service Signature

To develop structural and behavioral parts of a service interface specification, we

start from a data model. As proposed in Subsection 2.2.1, this data model can be

represented by a type graph. First of all, let us introduce a class of graphs that we

consider in further discussion.

Definition 3.1.1 (graphs, graph morphisms). A directed unlabeled graph is a

tuple G = 〈GV , GE , srcG, tarG〉, where GV is a set of vertices (or nodes), GE is

a set of edges (or arcs), srcG, tarG : GE → GV are two functions associating with

each edge its source and target vertex.

A graph morphism f : G→ H is a pair of functions 〈fV : GV → HV , fE : GE →
HE〉 preserving source and target, that is, srcH ◦ fE = fV ◦ srcG and tarH ◦ fE =

fV ◦ tarG. With componentwise identities and composition this defines the category

Graph. 4

In Chapter 2, typed graphs have been used to conceptualize the relation between

a schema and its instances. Formally, given a graph TG ∈ |Graph|, the category

GraphTG of TG-typed graphs and TG-typed graph morphisms [35] is the comma

category (Graph ↓ TG). That is, its objects graph morphisms g : G→ TG into TG

and arrows from g : G→ TG to h : H → TG graph are morphisms f : G→ H such

that h ◦ f = g (cf. Fig. 3.1). In Chapter 2, TG is called a type graph, and the graphs

G and H are called instance graphs.

A type graph together with operation declarations represent a structural descrip-

tion of a service defined below.

Definition 3.1.2 (service signature). A service signature S is a pair 〈TG,P 〉 con-

sisting of a type graph TG and a family of sets P = (Pv,w)v,w∈|TG|∗ with operation

declarations of the form p : v → w for p ∈ Pv,w. 4

We proceed with a formal counterpart of the behavioral compartment of a service

interface specification.
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Figure 3.2: Typed span morphism (left) and double-pushout (or -pullback) diagram

(right).

3.1.2 Conditional Graph Transformation Systems

Hereinafter, we recall main concepts of the double-pushout (DPO) [36] and double-

pullback (DPB) [81] approaches to graph transformation providing a formal setting

for specification of the behavioral compartment. Both approaches are presented using

typed graphs [35].

Graph productions (or rules) are specified by spans of injective graph morphisms

L
l←− K

r−→ R. The left-hand side L contains the items that must be present before

an application of production, the right-hand side R those that are present afterwards,

and the context graph K specifies the “gluing items”, i.e. the elements which are read

during the application, but are not consumed.

Definition 3.1.3 (typed span, graph transformation system). A TG-typed

span s is an expression of the form (L l←− K
r−→ R), where l and r are injective

TG-typed graph morphisms.

Given TG-typed spans s = (L l←− K
r−→ R) and s′ = (L′ l′←− K ′ r′−→ R′), a TG-

typed span morphism e : s→ s′ is a tuple 〈eL, eK , eR〉 of TG-typed graph morphisms

commuting with l, l′, r and r′ (cf. Fig. 3.2 on the left). With componentwise identities

and composition this defines the category SpTG. If the two commutative squares

are pushouts or pullbacks, the corresponding categories are denoted by SpDPO
TG and

SpDPB
TG , respectively.

A (typed) graph transformation system G = 〈TG, P, π〉 consists of a type graph

TG, a set of production names P , and a mapping π associating with each production

name p a TG-typed span π(p). If p ∈ P is a production name and π(p) = s, we say

that p : s is a production of G. 4

DPO Graph Transformations

In the DPO approach, transformation of graphs is defined by a pair of pushout dia-

grams, a so-called double-pushout construction. A double-pushout (DPO) diagram d
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is a diagram as in Fig. 3.2 on the right, where (1) and (2) are pushouts. Operationally

speaking the application of the production to the graph G consists of two steps: the

elements of G matched by L \ l(K) are removed, and a copy of R \ r(K) is added to

D.

Gluing the graphs L and D over their common part K yields again the graph

G, i.e. the left-hand square (1) forms a pushout complement. Only in this case the

application is permitted. Similarly, the derived graph H is the gluing of D and R

over K, which creates the right-hand side pushout square (2). The resulting double-

pushout (DPO) diagram represents the transformation of G into H.

Definition 3.1.4 (DPO graph transformation). Given a graph transformation

system G = 〈TG,P, π〉 and a production p : (L l←− K
r−→ R), a (DPO) transforma-

tion step in G from G to H via p, denoted by G
p/d
=⇒ H, is a diagram like in the right

of Fig. 3.2, where both (1) and (2) are pushout squares. We also write p/d if G and

H are understood, and denote by top(d) and bot(d) the top and bottom span of d.

A transformation sequence ρ = ρ1 . . . ρn : G⇒∗ H in G via p1, . . . , pn is a sequence

of transformation steps ρi = (Gi
pi/di=⇒ Hi) such that G1 = G, Hn = H and consecutive

steps are composable, that is Gi+1 = Hi for all 1 ≤ i < n.

The category of transformation sequences over G denoted by Trf(G) has all graphs

G ∈ GraphTG as objects and all transformation sequences in G as arrows. 4

The existence of the pushout complement (1), and hence of a direct derivation1

G
p/d
=⇒ H, is characterized by the gluing conditions [45]. The dangling condition

ensures that the structure D obtained by removing from G all objects to be deleted

is indeed a graph, that is, no edges are left “dangling” without source or target node.

The identification condition states that objects from the left-hand side may only be

identified by the match if they also belong to the context graph K (and are thus

preserved).

As already mentioned in the previous chapter, the DPO approach to graph trans-

formation obeys the implicit frame condition ensuring that the changes to the given

graph G are exactly those specified by the production. However operation contracts

may represent incomplete specifications of operations, as it happens, e.g., with con-

tracts of required operations.

1The pushout (2) always exists since the category GraphTG is cocomplete.
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DPB Graph Transitions

A more liberal notion of production application is provided by the double-pullback

(DPB) approach to graph transformation [81]. The DPB approach introduces graph

transitions and generalizes DPO by allowing additional, unspecified changes. For-

mally, graph transitions are defined by replacing the double-pushout diagram of a

transformation step with a double-pullback .

Definition 3.1.5 (DPB graph transitions). Given a graph transformation sys-

tem G = 〈TG,P, π〉 and a production p : (L l←− K
r−→ R), a transition in G from G

to H via p, denoted by G
p/d
; H, is a diagram like in the right of Fig. 3.2, where both

(1) and (2) are pullback squares.

A transition is called injective if both g and h are injective graph morphisms. It

is called faithful if it is injective, and the morphisms dL and dR satisfy the following

condition: for all x, y ∈ L, y 6∈ l(K) implies dL(x) 6= dL(y), and analogously for dR.

A transition sequence ρ = ρ1 . . . ρn : G ;∗ H in G via p1, . . . , pn is a sequence of

faithful transitions ρi = Gi
pi/di
; Hi such that G1 = G, Hn = H and consecutive steps

are composable, that is, Gi+1 = Hi for all 1 ≤ i < n.

The category of transitions over G, denoted by Trs(G), has all graphs G ∈
GraphTG as objects and all transition sequences in G as arrows. 4

The condition ensuring the faithfulness of transitions means that dL and dR satisfy

the identification condition of the DPO approach with respect to l and r. Notice that

any pushout square of two given morphisms such that one of them is injective is also

a pullback square. Thus, every DPO transformation is also a DPB transition. Each

faithful transition, in turn, can be regarded as a transformation step plus a change-of-

context [81]. This is modeled by additional deletion and creation of elements before

and after the actual step. In the following we stick in our presentation to the faithful

transitions.

Having defined the appropriate semantic interpretations of the productions we

proceed with the structural refinement allowing clear separation of their precondition

and effect parts.

Conditional Graph Transformation

As already discussed, the desired refinement is achieved by extending productions

with positive and negative application conditions [72] shown in the following defini-

tion.
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Figure 3.3: Conditional span.

Definition 3.1.6 (conditional span). An application condition A(s) =

〈AP (s), AN(s)〉 over a TG-typed span s = (L l←− K
r−→ R) consists of two

sets of typed graph morphisms AP (s) and AN(s) outgoing from L which contain

positive and negative constraints, respectively. A(s) is called positive (negative) if

AN(s) (AP (s)) is empty.

Let L
l̂−→ L̂ be a positive or negative constraint and L

dL−→ G be a typed graph

morphism (cf. Fig. 3.3). Then dL P-satisfies l̂, if there exists a typed graph morphism

L̂
dL̂−→ G such that dL̂ ◦ l̂ = dL. dL N-satisfies l̂, if it does not P-satisfy l̂.

Let A(s) = 〈AP (s), AN(s)〉 be an application condition and L
dL−→ G be a typed

graph morphism. Then dL satisfies A(s), if it P-satisfies at least one positive con-

straint and N-satisfies all negative constraints from A(s).

A conditional span is an expression of the form s if A(s), where

s = (L l←− K
r−→ R) is a TG-typed span, and A(s) is an application condi-

tion over s. It is applicable to a graph G via L
dL−→ G if dL satisfies A(s).

4

Notice that positive application conditions consist of a disjunction of positive

constraints, in contrast with the conjunction in [72]. That means positive and negative

conditions are, in fact, dual to each other.

A formal specification of the behavioral compartment in the service interface

specification is provided by conditional graph transformation systems.

Definition 3.1.7 (conditional GTS). A conditional graph transformation system

C = 〈TG, P, π〉 consists of a type graph TG, a set of rule names P , and a mapping

π providing for each rule name p a TG-typed conditional span π(p). If p ∈ P is

a production name and π(p) = s if A(s), we say that p : s if A(s) is a conditional

production of C.
Given a conditional production p : s if A(s) of C, then a transformation step

(transition) in C from G to H via p is a transformation step (transition) via an

unconditional production p : s such that dL ∈ d satisfies A(s) (cf. Fig. 3.3) 4
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For a conditional production p : s if A(s) with A(s) = 〈AP (s), AN(s)〉 we assume

that the injective morphisms L
l̂−→ L̂ representing positive or negative constraints

are indeed inclusions, and that the pairwise intersection of all the L̂ is well-defined

and equal to L. That means, the left-hand side of a rule and all its constraints are

defined over a common name space, a fact that will be relevant when introducing

parameterized productions.

We proceed with an integral specification of service interface.

3.1.3 Parameterized Conditional Graph Transformation Systems

The notion of parameterized production plays a central role in the integration of

the two specification compartments. First of all we introduce a parametrization of

unconditional productions. Here the input and output parameters, which types are

determined by the operation declarations, represent elements of the left- and right-

hand sides of the production span, respectively.

We denote by v = v1 . . . vn sequences of types vi ∈ |TG|. Corresponding sequences

of elements of a TG-typed graph X are written as x ∈ Xv which is short-hand for

x1 : v1 . . . xn : vn with xi : vi ∈ X.

Definition 3.1.8 (parameterized production and GTS). Given a signature

S = 〈TG,P 〉, and a pair of TG-typed graphs 〈X, Y 〉, a set of parameter expressions

over S and 〈X, Y 〉 is defined by EP (X, Y ) = {p(x, y)|p ∈ Pv,w, x ∈ Xv, y ∈ Yw}.
A parameterized production pp over S = 〈TG,P 〉 is an expression of the form

p(x, y) : s, where s = (L l←− K
r−→ R) is a TG-typed span, and p(x, y) ∈ EP (L,R)

is a parameter expression over 〈L,R〉, i.e. x ∈ Lv and y ∈ Rw for p ∈ Pv,w.

A parameterized graph transformation system GP = 〈TG,P, PP 〉 is a triple, where

TG and P compose a signature, and PP is a set of parameterized productions over

this signature, such that p(x, y) : si for i = 1, 2 implies s1 = s2. 4

The definition states that each production in GP has unique name, so the pa-

rameterized GTS can be represented by the GTS G = 〈TG,P, π〉, where P contains

parameter expressions for each production from PP , and π associates p(x, y) with s

if and only if the corresponding production appears in PP . Hence transformations

or transitions in GP are similar to those in the graph transformation system G.
Next, we turn to parametrization of conditional productions. In contrast with the

unconditional case, input parameters in conditional productions are represented by

the elements of positive precondition patterns L̂i
P .
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Definition 3.1.9 (parameterized conditional production and GTS). A pa-

rameterized conditional production cp over S = 〈TG,P 〉 is an expression of the form

p(x, y) : s if A(s), where s if A(s) is a TG-typed conditional span, and p(x, y) ∈
EP (L, R) is a parameter expression over 〈L, R〉, i.e. x ∈ Lv and y ∈ Rw for p ∈ Pv,w

and L =
⋃

L̂i
P , assuming that the union L of all positive precondition patterns is

well-defined.

A parameterized conditional graph transformation system CP = 〈TG,P,CP 〉 is

a triple, where TG and P compose a signature, and CP is a set of parameterized

conditional productions over this signature, such that p(x, y) : si if A(si) for i = 1, 2

implies s1 if A(s1) = s2 if A(s2). 4

The parameterized conditional GTS combines in its structure the formalisms

established in the two previous subsections, i.e. service signature S = 〈TG, P 〉 and

conditional GTS C = 〈TG,P, π〉. It is not difficult to see, that transformations or

transitions in CP are also similar to those in the graph transformation system C.

3.2 A Formal Account of Matching Service Interface

Specifications

In this section, we introduce a novel concept of parameterized substitution morphism

providing a formal representation of the matching procedure between the required and

provided service interface specifications. To do this, one should formalize the struc-

tural and behavioral compatibility relations discussed in Subsections 2.3.1 and 2.3.2

and adequately aggregate them.

3.2.1 Signature Morphism

The structural compatibility relation is specified by a signature morphism which

directly reflects the semantic requirements on the correspondence between operation

declarations (cf. Subsection 2.3.1).

Definition 3.2.1 (signature morphism). A signature morphism f = 〈fTG, fP 〉 :

〈TG,P 〉 → 〈TG′, P ′〉 consists of a type graph morphism fTG : TG → TG′ and a

mapping of production names fP : P → P ′ such that for each operation declaration

p : v → w ∈ P there exists an operation declaration fP (p) : v′ → w′ ∈ P ′ with

f∗TG(v) = v′ and f∗TG(w) = w′. 4
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The definition captures exact compatibility of operation declarations in the signa-

tures. We therefor speak of exact signature morphisms. The three remaining variants

of structural compatibility can be obtained if the equality between the sequences of

input and output parameter types in Def. 3.2.1 are replaced with the subsequent

relations according to Table 2.2, leading to the notions of input-preserving, output-

preserving, and generalized signature morphisms.

3.2.2 Substitution Morphism

In order to establish a relation ensuring the desired correspondence between behav-

ioral specifications of services, i.e. conditional GTSs, foremost, one should formulate

semantic requirements underlying such relation.

Due to the substitution principle declared in the beginning of Section 2.3, abstract

productions of the requestor system C are expected to be replaced for the concrete

productions of the provider system C′. First of all, such replacement has to preserve

applicability of all substituted productions. Otherwise, the requestor may strike on

unexpected limitations at the invocation of provided operations.

Secondly, the behavior portrayed by the provider system should not be weaker

then the one expected by the requestor. Each GTS describes a behavior in terms of

transformation or transition sequences obtained via application of its productions.

So, the second requirement is fulfilled if each transformation step in C′ implies a

transition in C. These two requirements are captured by the following definition.

Definition 3.2.2 (substitutability). Given conditional graph transformation sys-

tems C = 〈TG,P, π〉 and C′ = 〈TG′, P ′, π′〉, we say that C′ is substitutable for C if

there exists a functor F : Trf(C′)→ Trs(C) such that for all graphs G′ ∈ |Trf(C′)|
and for all transition sequences ρ : F (G′)→ ∈ Trs(C) there exists a transformation

sequence ρ′ : G′ → ∈ Trf(C′) with F (ρ′) = ρ. 4

Functor F translating states of C′ into states of C can be realized by the retyping

induced by a morphism between two type graphs of the systems [68].

Definition 3.2.3 (retyping). A graph morphism fTG : TG → TG′ induces a

forward retyping functor f>
TG : GraphTG → GraphTG′ , f>(g) = f ◦ g and

f>(k : g → h) = k by composition as shown in Fig. 3.4 on the left, as well

as a backward retyping functor f<
TG : GraphTG′ → GraphTG, f<(g′) = g∗ and

f<(k′ : g′ → h′) = k∗ : g∗ → h∗ by pullbacks and mediating morphisms as shown in

Fig. 3.4 on the right. 4
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Figure 3.4: Forward (left) and backward (right) retyping functors.
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Figure 3.5: Substitution in detail.

Let us check in detail what actually happens when the abstract productions pi of

the requestor system C are substituted for the concrete productions p′j of the provider

system C′. This assumes that requestor and provider are actual components which

communicate at runtime.

The starting point is a graph G′
0 ∈ GraphTG′ , representing the state of the

provider component (cf. Fig. 3.5).

The substitution consists of the following steps:

• G′
0 is projected to G0 ∈ GraphTG.

• If a production p1 is applicable to G0 on the requestor side, the same should

hold for the corresponding provider production p′1.

• A transformation step G′ p′1/d′1=⇒ H ′ is performed by the provider which projects

to a transition G0
p1/d1
; H via the corresponding production in the requestor

view.

Thus, the requestor receives an update to its local view from the state of the

provider, and the cycle can start anew.

Example 3.2.4. We illustrate the update process by means of the conditional pro-

ductions airReserv and airBook introduced in Example 2.2.9. The graph G0 and G′
0

describing initial states of the provider and requestor components are depicted in

Fig 3.6.
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Figure 3.6: Updating the requestor system state.
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Projecting the graph G′
0 to the graph G0, the backward retyping functor f<

TG

renames the type of the object id7H in G′
0 to the type TravelerInformation in G0. It is

not difficult to see that the production airReserv is applicable to the graph G0. Since

the same holds for the production airBook and the graph G′
0, a transformation step

is constructed that leads to the graph H ′
0. Then this transformation is projected to

the transition via the production airReserv. Here the backward retyping functor f<
TG

renames the type of the object 7H39B4 in H ′
0 to the type AirBook in the graph H0.

The target graph H0 of the transition contains the object 7H39FL:Fulfillment and

the edge between this object and the object 7H39FL:Fulfillment being an effect which

is not encoded in the production airReserv. The creation of the mentioned object

and the edge in the updated state H0 of the requestor component is modeled by the

unspecified effect of the transition. 4

Now we are ready to construct a formal counterpart of the behavioral compati-

bility relation.

Definition 3.2.5 (substitution morphism). Given conditional graph transfor-

mation systems C = 〈TG,P, π〉 and C ′ = 〈TG′, P ′, π′〉, a substitution morphism

fsub = 〈fTG, fP 〉 is given by a type graph morphism fTG : TG → TG′ and a map-

ping of production names fP : P → P ′ such that for all p ∈ P and p′ = fP (p) ∈ P ′

where π(p) = s if A(s) and π′(p′) = s′ if A(s′)

1. there exists a TG-typed span morphism e : s → f<
TG(s′) ∈ SpDPB

TG forming a

faithful transition (cf. Fig. 3.7 on the right), and

2. applicability of p implies that of p′ in GraphTG′ , i.e.

(a) for each f>
TG(L l̂−→ L̂) ∈ f>

TG(AP (s)) there exist L′ l̂′−→ L̂′ ∈ AP (s′) and

a graph homomorphism ĥP : L̂′ → f>
TG(L̂) such that the corresponding

square in Fig. 3.7 on the left commutes;

(b) for each L′ k̂′
−→ L̂′ ∈ AN(s′) there exist f>

TG(L k̂−→ L̂) ∈ f>
TG(AN(s)) and

a graph homomorphism ĥN : f>
TG(L̂) → L̂′ such that the corresponding

square in Fig. 3.7 on the left commutes.

4

Notice that the effect parts of the conditional productions are matched in the

type context of C in contrast to the precondition parts compared in the type context
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Figure 3.7: Substitution morphism and conditional productions (the functors f>
TG

and f<
TG are applied to the entire application constraint of p in the left part of the

figure and to the entire bottom span in the right part of the figure, respectively).

of C′. The precondition part of the requestor production is forwardly retyped for the

matching, because the input data specified by this precondition will be interpreted

in the type system of the provider executing the operation.

Analogously, the effect part of the provider production is backwardly retyped,

since the result of the operation will be interpreted and used in the requestor type

system. Moreover, the typed span morphism f>
TG(s)→ s′ ∈ SpDPB

TG′ does not always

imply the existence of the typed span morphism s → f<
TG(s′) ∈ SpDPB

TG which has

to be actually ensured. For example, if the type graph morphism fTG is not injective

then the implication does not hold (see Section 4.2 for a general discussion).

3.2.3 Justification of Substitution Morphism

While the semantic requirements on structural compatibility are directly reflected

by the signature morphism, a correspondence between the semantic requirements on

behavioral compatibility and substitution morphism is not so obvious. The justifica-

tions for the definition of the substitution morphism are presented in the following

theorem.

Theorem 3.2.6. The semantic requirements of Def. 3.2.2 hold if and only if the

syntactic requirements of Def. 3.2.5 hold.

Proof. “If”: We have to show that Def. 3.2.5 implies Def. 3.2.2. The existence of a

functor between two categories of sequences requires that each individual step in C′

is mapped to a sequence in C. By induction, this mapping is extended to sequences

in C. However, we will deal with the simpler case where a transformation step in C′

is actually mapped to a single transition in C.
One should demonstrate, first of all, that transformation steps via C′ production

can be considered as transitions via the corresponding C production. Secondly, ap-
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plicability of this C production has to imply applicability of the C′ production under

the construction of the transformations and transitions associated by the functor F .

Assume two conditional productions p : s if A(s) and p′ : s′ if A(s′) where p ∈ P

and p′ = fP (p) ∈ P ′.

1. Let us apply backwardly retyped p′ to the graph f<
TG(G) at f<

TG(dL′) and con-

struct a transformation step with the underlying span f<
TG(G

g←− D
h−→ H)

as depicted in Fig. 3.8 on the right. Since l′ and r′ are injective, this trans-

formation step is also a (faithful) transition. By assumption, for each pair of

productions p : s if A(s) and fP (p) : s′ if A(s′) there exists a TG-typed span

morphism e : s → f<
TG(s′) ∈ SpDPB

TG forming a faithful transition. Now, both

transitions can be vertically composed using the composition of the underlying

pullback squares. The faithfulness of the composed transition via the produc-

tion of C follows from the preservation of the identification condition under the

composition of pullback squares.

2. It is left to show that if f>
TG(dL) satisfies the application condition of forwardly

retyped p, then dL′ satisfies the application condition of p′. This induces two

problems:

(a) dL′ (cf. Fig. 3.8 on the left) must P-satisfy at least one positive constraint

of p′. Since ĥP exists by assumption (Def. 3.2.5.(2a)), dL̂′ can be con-

structed by f>
TG(dL̂) ◦ ĥP . It is not difficult to see that dL̂′ ◦ l̂′ = dL′ .

(b) dL′ (cf. Fig. 3.8 on the left) must N-satisfy all negative constraints of

p′, i.e. there does not exist dL̂′ : L̂′ → G such that dL̂′ ◦ k̂′ = dL′ .

Assume to the contrary the existence of dL̂′ . Since ĥN exists by as-

sumption (Def. 3.2.5.(2b)), we can construct f>
TG(dL̂) = dL̂′ ◦ ĥN with

f>
TG(dL̂) ◦ k̂ = f>

TG(dL) which is a contradiction.

Thus, dL′ satisfies the application condition of p′.

Combining the two parts of the proof, we obtain that the functor specified in

Def. 3.2.2 can indeed be constructed.

“Only if”: Assume two conditional productions p : s if A(s) with s = (L l←− K
r−→

R) and p′ : s′ if A(s′) with s′ = (L′ l′←− K ′ r′−→ R′) such that p′ = fP (p). To prove

that Def. 3.2.2 implies Def. 3.2.5.1/2, respectively.
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Figure 3.8: Substitution morphism implies semantic requirements (the functors f>
TG

and f<
TG are applied to the entire application constraint of p in the left part of the

figure and to the entire bottom span in the right part of the figure, respectively).

1. To show that there exists e : s → f<
TG(s′) ∈ SpDPB

TG , we can apply

backwardly retyped p′ to the graph f<
TG(L′) at the identity mapping. If p′

is applicable, we can create a transformation step with the bottom span

f<
TG(s′) = f<

TG(L′ l′←− K ′ r′−→ R′). Consequently (see Def. 3.2.2), there exists

a faithful transition f<
TG(L′)

p/e
; f<

TG(R′) via the production p using the same

bottom span f<
TG(s′). If we can not apply backwardly retyped p′ to the graph

f<
TG(L′), then the premise is false, and the conclusion is trivially true.

2. Two questions have to be considered for the second part of Def. 3.2.5:

(a) The existence of a graph homomorphism ĥP : L̂′ → f>
TG(L̂) between the

positive precondition patterns of the productions. We can apply forwardly

retyped p to the graph f>
TG(L̂) at m := f>

TG(l̂) where l̂ ∈ AP (s) as de-

picted in Fig. 3.9 on the left. Since m satisfies f>
TG(l̂), and Def. 3.2.2

entails preservation of applicability from C to C′, there exists m′ satis-

fying the constraint l̂′ ∈ AP (s′) of p′. This implies the existence of a

graph homomorphism ĥP : L̂′ → f>
TG(L̂). The commutativity of the cor-

responding square in Fig. 3.9 on the left follows from the commutativ-

ity of the diagrams (1),(2),(3), and (4). The commutativity of the dia-

grams (1),(2), and (3) can easily be shown. To prove that the diagram (4)

commutes, one has to assume the existence of a typed graph morphism

f>
TG(L)→ f>

TG(L̂) := m′ ◦ e∗L 6= m and obtain a contradiction.

(b) The existence of a graph homomorphism ĥN : f>
TG(L̂) → L̂′ between the

negative precondition patterns of the productions. We can apply forwardly

retyped p to the graph L̂′ at some n as depicted in Fig. 3.9 on the right.

Def. 3.2.2 implies that if n satisfies f>
TG(k̂) for k̂ ∈ AN(s), then n′ satisfies
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Figure 3.9: Semantic requirements implies substitution morphism (the functor f>
TG

is applied to the entire application constraint of p).

k̂′ ∈ AN(s′). We can reformulate this as: if n′ does not satisfy k̂′, then n

does not satisfy f>
TG(k̂).

Now we try to apply p′ to the graph L̂′ at n′ := k̂′. It is possible to see

that the premise of the statement above is true (n′ does not satisfy k̂′), so

is the conclusion, i.e. n does not satisfy f>
TG(k̂). This may happen only if

there exists a graph homomorphism ĥN : f>
TG(L̂)→ L̂′ that was required

to be proved. The commutativity of the corresponding square in Fig. 3.9

on the right follows from the commutativity of the diagrams (1),(2),(3),

and (4). The only problem here is the commutativity of the diagram (4)

which can be solved analogously to (a).

2

Once we have justified the established substitution morphism, we turn to integral

compatibility between service interface specifications.

3.2.4 Parameterized Substitution Morphism

The integral compatibility relation combining the features of the structural and be-

havioral ones is formalized by a parameterized substitution morphism. This morphism

associates the required an provided service interfaces specifications in the form of pa-

rameterized conditional graph transformation systems.

Definition 3.2.7 (parameterized substitution morphism). Given parameter-

ized conditional graph transformation systems CP = 〈TG, P,CP 〉 and CP ′ =

〈TG′, P ′, CP ′〉, a parameterized substitution morphism fsub+ = 〈fTG, fP 〉 is a sig-

nature morphism given by a type graph morphism fTG : TG→ TG′ and a mapping

of production names fP : P → P ′, where for all p ∈ P and p′ = fP (p) ∈ P ′ the
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Figure 3.10: Formalization of service interface specifications and their matching.

conditional spans of productions cp = p(x, y) : s if A(s) ∈ CP and cp′ = p′(x′, y′) :

s′ if A(s′) ∈ CP ′ satisfy Requirements 1 and 2 of Def. 3.2.5. 4

Depending on the kind of signature morphism employed in the definition (see

Table 2.2), we distinguish between the exact, input-preserving, output-preserving,

and generalized parameterized substitution morphisms. In the rest of the thesis we

stick to the exact version of the morphism.

A number of examples illustrating an application of parameterized substitution

morphism can be found in Subsections 4.3.2 and 4.3.3 of the next chapter.

The final section summarizes the main results of this chapter and relates them to

the concepts developed in the previous chapter.

3.3 Summary

In this chapter, we have introduced a formal background for the approach to service

specification and matching discussed in Chapter 2. An overview of our formalization

is presented in Fig. 3.10.

The structural description of a service is given by a signature similar to those

known from algebraic specifications [50]. A correspondence between such signatures,

referred to in Subsection 2.3.1 as the structural compatibility relation, is defined by

the signature morphism.

The conditional graph transformation systems proposed in Subsection 2.2.2 to

specify service behavior are considered in categorical setting of the DPO and DPB

approaches to graph transformation. This style of presentation allows to describe
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formally the semantic requirements underlying our approach and to represent the

behavioral compatibility relation constructed in Subsection 2.3.2 by means of a sub-

stitution morphism over conditional GTSs. We have proved the equivalence between

the syntactic requirements imposed by the substitution morphism and the established

semantic requirements for behavioral compatibility of service interface specifications.

Developing a formal counterpart of the integral service description and the in-

tegral compatibility relation presented in Subsections 2.2.3 and 2.3.3 respectively,

we have augmented the theory of graph transformation with the notions of param-

eterized conditional GTSs and parameterized substitution morphisms relating these

GTSs. The latter has been obtained by extending the substitution morphism with a

structural check implemented by the signature morphism.



Chapter 4

Modular Specifications of

Coupled Systems

In Chapters 2 and 3, we have discussed interface specifications augmented with be-

havioral information and their inter-connecting in the context of cross-organizational

interactions. Now the focus of our presentation is extended beyond external speci-

fications. We construct a model aggregating external and internal specifications of

coupled systems or components. Their correct functioning predetermines proper work

of the compound system—our model allows to validate required properties of coupled

components.

This chapter is organized as follows. In the next section we position our pro-

posal with respect to the existing component models, discuss the use of model-based

testing in the application integration, and recall the basic concepts of graph trans-

formation modules used for construction of the component model. In Section 4.2, we

introduce a framework for classifying and systematically defining morphisms of graph

transformation systems, we also construct two sample morphisms in the context of

this framework. The introduced morphisms as well as a parameterized substitution

morphism appearing in Subsection 3.2.2 are employed in Section 4.3 for intra- and

inter-connectors of modules. Finally, this section introduces a formal definition of the

component model specified by graph transformation modules. Section 4.4 concludes

the chapter with a summary of the obtained results.

The concepts and ideas of this chapter are partially based on the joint work with

G. Engels and R. Heckel (see [53]).

71



72 CHAPTER 4. MODULAR SPECIFICATIONS OF COUPLED SYSTEMS

4.1 Software Component Models

A survey of the literature reveals a wide range of fundamentally diverse proposals for

component models which can be divided into three main groups as proposed in [103].

The first group consists of models in which components are defined by object-oriented

programming languages. JavaBeans [109] and Enterprise Java Beans (EJB) [110],

where components are obviously implemented in Java, represent examples belonging

to this group. The second group is characterized by the employment of an IDL (in-

terface definition language) together with a mapping from the IDL to programming

languages for component implementations. Component models of this group are, e.g.,

COM using the Microsoft IDL [18], CORBA using the OMG IDL [115], or Fractal [22]

which can employ any IDL.

Those models in which components are defined by means of architecture de-

scription or (formal) specification languages make up the third group. For example,

UML [116], KobrA [8], Koala [142], SOFA [121], PECOS [113] and Pin [92] illus-

trate approaches based on architecture description languages. An overview of these

approaches is presented in [30].

The importance of formal specification languages for component models has been

well-recognized in software engineering [58, 65]. A component model constructed in

this chapter is based on proposals which originate in the algebraic specification and

graph transformation domains, where different kinds of built-in modularity concepts

are extensively employed to adequately reflect the structural and behavioral features

of software components. A detailed discussion on these proposals and their compari-

son with our model appear in Section 5.3.

It is worth noting that any model should be equipped with an appropriate mech-

anism for checking its correctness. Therefore, in the next subsection, we overview

techniques designed for analysis of models to be constructed.

4.1.1 Model-based Testing Techniques

Analytical means to allow the reasoning about properties of software systems are usu-

ally divided into verification and validation techniques. The first group of techniques,

such as model checking or theorem proving, have a long tradition in formal spec-

ification languages such as algebraic specifications [49], Z [136], CSP [86], or Petri

nets [125]. Despite of the relative maturity of formal verification within academic

community, its practical use in software engineering is complicated by the following
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reasons. Firstly, it is the complexity of formal specification techniques and the lack of

training of software engineers in applying them. Secondly, there are also well-known

limitations of formal verification such as the state-explosion problem within model

checking. Common to all verification techniques is that they based on a formal seman-

tics of applied specification or programming languages, where an examined property

may be assured with mathematical rigor.

While validation techniques may detect errors in the system being investigated,

they cannot prove any property in a definite way as it happens in formal verification.

One of the classic techniques widely used for software system validation is testing.

Testing is based on the construction of test strategies for a property including subse-

quent execution of parts or all of the system according to these strategies [14]. Since

testing takes place at a lower level of abstraction, the range of properties that can be

validated is much greater than using formal verification [54].

With the advance of model-based software development approaches many at-

tempts have been made to develop testing methods rely on software system mod-

els [21]. The major assumption underlying the model-based tasting is the existence

of a system model which is used for studying the system. In particular, the system

model can be employed to generate complete test suites to show conformance of the

model and the actual implementation, or just to derive “interesting” test cases to

examine specific system’s characteristics.

As already mentioned, the successful use of application integration techniques is

stipulated by the possibility to validate specifications of the coupled components. On

one hand, the existing model-based tasting approaches may be extensively employed

for this task. On the other hand, each validation approach needs an input data which

in our case is provided by the component model. It is our objective to establish a

procedure for the construction of such model.

4.1.2 Modeling Components by Module Specifications

The major problem has to be considered in the scope of the model construction is

how to integrally portray a component, i.e. its internal and external parts along with

relationships between them. In our approach the notion of module facilitates this

process.

Modularization is a well-known concept to structure software systems and their

specifications. Modules have been initially introduced in the programming language

frameworks, e.g., Ada packages [97] or Modula-2 modules [98]. The first steps in the
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Figure 4.1: Module specifications and their inter-connecting.

application of modules in modeling of software systems have been made in the context

of algebraic and logic specifications.

For example, an algebraic specification module MOD [50] consists of a body

BOD providing the implementation and of interfaces IMP for import and EXP

for export describing, respectively, required and provided functionality. (In addition,

a parameter PAR is provided to allow for generic modules, but this feature will

not be relevant for our purposes.) All specifications are connected through algebraic

specification morphisms (cf. Fig 4.1).

Since the mid nineties [47], there is an increasing interest in the transfer of mod-

ularity concepts from algebraic specifications and programming languages to graph

transformation systems [101, 131, 69] (see also the survey in [82]). For instance,

modules of typed graph transformation systems (TGTS modules) in [69] follow the

structure of algebraic specification modules, replacing the specifications BOD, IMP ,

and EXP by graph transformation systems intra-connected by different kinds of mor-

phisms.

4.1.3 Consistency of Interface Specifications

At least five fundamentally different notions for morphisms of graph transformation

systems [34, 126, 68, 80, 83] can be found in the literature. They reflect a wide range

of objectives, such as inclusions, refinements, or views and enjoy diverse semantic

properties.

So far there has been no general approach for comparing and relating the GTS

morphisms. Hence, to choose appropriate candidates for the module intra-connectors
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one has to establish a framework to systematically handle the existing proposals,

and if necessary to construct new ones. We introduce such framework that makes it

possible to review the existing definitions and to provide a recipe for deriving the

appropriate definitions from given semantic requirements.

Moreover, the intra-connectors constructed in the framework rigorously deter-

mine the consistency relations between the interface specifications and component

bodies. While the export-body intra-connector guarantees that the service offered at

the export interface is indeed implemented by the component, the import-body one

ensures that the component can benefit from the functionality asked for at the import

interface.

Having defined consistent specifications of the source and target components by

the modules MOD and MOD′, the integration of the parties now means to relate

the import (required) interface IMP of MOD with the export (provided) interface

EXP ′ of MOD′ by the inter-connector, such as parameterized substitution morphism

introduced in the previous chapter (cf. Fig. 4.1).

4.1.4 Requirements

The following list of requirements for a technique which allows to obtain a component

model conducts our presentation.

1. Rigorous formulation of the consistency relations between interface specifica-

tions and internal part of an integrating component. The complexity of the

coupled components makes an analysis of their internal and external speci-

fications quite complicated task. If such analysis is carried out by software

engineers manually, then it becomes inefficient. Therefore, one has to provide

an adequate tool support that in turn requires the consistency relations to be

rigorously formulated.

2. Formal visual notation of component model and its compliance with standard

model-driven techniques of software development. This requirement is imposed

by the same motivations accompanying Requirements 1 and 2 stated in Sub-

section 2.1.5 for the approach to service specification and matching.

3. Aptitude of the component model for model-based testing. Since our major goal

is to enable the model-based testing of the coupled components, their integral

specifications have to be compatible with the verification techniques intended

to be applied.
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Now, let us turn to the detailed presentation of our approach.

4.2 GTS Morphisms, Systematically

In this section, we establish a framework for classifying and systematically defining

GTS morphisms based on a number of standard “ingredients”, such as homomor-

phisms between type graphs and mappings between sets of productions. After in-

troducing in the next subsection an example scenario containing a specification of

mutual exclusion algorithm, in Subsection 4.2.2 two sample morphisms will be dis-

cussed informally in the context of the introduced example. Then, in Subsection 4.2.3,

the constituents of the framework are presented and combined, yielding definitions of

the sample morphisms. In Subsection 4.2.4, we discuss a locus of the parameterized

substitution morphism in the framework and its relation with the existing proposals.

4.2.1 Example Scenario

As running example, a specification of a mutual exclusion algorithm with deadlock

detection is developed throughout this chapter. The body of the module MUTEX

which describes a component implementing a part of the algorithm, is shown in the

example below. The import and export interfaces of MUTEX will appear in the

next subsection.

Example 4.2.1 (MUTEX). The graph transformation system in Fig. 4.2 models a

distributed algorithm for mutual exclusion (MUTEX). This example is derived from

a small case study in [76] and tailored to our presentation.

Two basic types, processes P (drawn as black nodes) and resources R (drawn

as light boxes), constitute the type graph presented in the upper-left corner of the

figure. While a resource request is modeled by an edge going from a process to a

resource, the fact that the resource is currently held by the process is shown by an

edge in the opposite direction.

The mutual exclusion is implemented by a token ring algorithm. The processes

in the token ring are arranged in a cycle. Two neighbor processes are connected by

an edge running from the current to the next process. This edge is given by a loop

in the type graph. A default position for introducing new processes and resources is

marked by the head pointer h.

An edge with a white flag denotes a token which is passed from process to process

along the ring. In order to get an access to a resource, a process waits for the cor-
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Figure 4.2: Graph transformation system modeling body of the module MUTEX.

responding token. Mutual exclusion is achieved by uniqueness of the token for each

resource in the system.

Productions of the graph transformation system are interpreted as follows. The

first four productions are used for creating and killing processes (new and kill), and

for mounting and unmounting resources (mount and unmount). The productions req,

take, and rel allow processes to issue requests, take resources, and release them upon

regular completion of their task, respectively. The negative application conditions of

the production req ensure that a process cannot issue more then one request at a

time. The negative application condition of the production rel prevents the release of

a resource r while the process requests another resource, since r may still be required

to complete the given task.

The last two productions dead? and rel dl are intended to be applied in deadlock

situations which may result from competition of processes for non-sharable resources.

Since the MUTEX algorithm does not have the capability to detect deadlocks, the

production dead? assumed to be obtained as the import from another module. The

dotted part of this production represents a positive application condition. This con-

dition restricts applicability of the production to situations where the process has a

pending request for a resource.

The production rel dl implements the resolution of detected deadlocks by forcing
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Figure 4.3: GTSs modeling import IMP (left) and export EXP (right) interfaces of

the module MUTEX.

the release of the resource held by the involved process. 4

4.2.2 Candidates for Module Intra-connectors

In general, a GTS morphism f : G → G′ defines a relation between the behaviors

issued by the systems G and G′. So, a systematic approach to the analysis of such

relations should always start by identifying the kind of semantic properties assumed

to be ensured.

Preservation of Behavior

We start with an example of behavior-preserving morphisms providing a first attempt

at describing the relation between the export interface EXP of a module with its

body BOD (cf. Fig 4.1). Since the export interface specifies the features offered

for import by other modules, the specification of these features in EXP has to be

consistent with their implementation in the body. That means, the behavior induced

by EXP should be preserved by BOD. In particular, it is necessary to guarantee that

applicability of EXP productions implies applicability of the corresponding BOD

productions. The mission of behavior-preserving morphism is to ensure this property.

Example 4.2.2 (behavior-preserving morphism). A service provided by the module

MUTEX is deadlock resolution specified by the production rel dl in the export in-

terface EXP (cf. Fig. 4.3 on the right). It shall be imported by an external deadlock

detection module to break up detected deadlocks. In order to guarantee that BOD

preserves the behavior of EXP , each transformation sequence in EXP should imply

a corresponding sequence in BOD.

Comparing the GTS EXP and BOD, first of all we examine a relation between

their type graphs. In the given example, the type graph TGEXP containing all the

types relevant for deadlock resolution is a subgraph of TGBOD. More generally, a

morphism between type graphs ensures that all types of the source system (in our
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case TGEXP ) have a correspondence in the target (TGBOD). If the morphism is not

an inclusion, a type in the target may have a different name than its source, or two

different types in the source may be mapped to the same target type.

As discussed in Section 2.3 (see Def. 3.2.3), the type graph morphism enables to

convert graphs, productions, and also transformations typed over the source into such

typed over the target by a renaming of their types. This gives us the opportunity to

compare two systems by translating the productions of the source system into ones

typed over the target.

Due to the subgraph relation between TGEXP and TGBOD the translation of

the EXP production to the type system of BOD does not change anything in this

production. The comparison reveals that the production identical to rel dl is already

present in TGBOD, even with the same name. Generally, we might consider a mapping

of production names if different names have been used for corresponding productions

in the two systems. So, it seems to be the case that the required implication between

the transformation sequences of EXP and BOD holds. 4

The behavior-preserving morphisms as discussed above are originally introduced

in [67, 68]. While in our example the export interface EXP is just a subsystem of

BOD, in [68] the relation between export interface and body may be represented by

spatial or temporal refinements.

Reflection of Behavior

We proceed with an example of behavior-reflecting morphisms determining a relation

between the import interface IMP and the body BOD of a module (cf. Fig 4.1).

The idea is that the productions required at IMP have at least the effect of the

productions specified at BOD. Otherwise, the body could not use the imported

productions in the internal implementations. This can be expressed as a reflection of

the BOD transformations by IMP transitions.

Example 4.2.3 (behavior-reflecting morphism). As mentioned already, deadlock de-

tection represents an external feature abstractly described by the production dead?

in the import interface IMP (cf. Fig. 4.3 on the left).

Reflection of BOD behavior by IMP means that for each transformation in

BOD we require a corresponding transition in IMP . As with behavior-preserving

morphisms, we have to specify relations between type graphs and productions of the

two systems.
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For type graphs, a morphism from TGIMP to TGBOD ensures that BOD has

at least the same types as IMP . In order to check that transformations in BOD

are reflected by transitions in IMP , we have to compare productions of the two

systems. Since we are interested in reflection rather than preservation of steps, we

translate the productions of BOD to IMP against the direction of the type graph

morphism. That means, besides the renaming of types, elements of the productions

are removed if their type in BOD does not have a pre-image in IMP under the type

graph morphism.

Then, the BOD behavior is reflected by IMP if each IMP production can be

embedded into the translated version of the corresponding BOD production. In our

case, the production dead? of BOD coincides with the one in IMP after the trans-

lation. 4

Morphisms which reflect transformations in the target system by transitions in

the source one have been introduced in [76] to specify the relation between different

views of a system model.

4.2.3 Framework for GTS Morphisms

So far we have informally discussed how semantic requirements determine the def-

initions of GTS morphisms. Now, we are going to make this explicit in terms of a

four-step recipe. First, however, we introduce a notation for specification of produc-

tion span relations (cf. Def. 3.1.3). This notation will be used in the construction of

recipes for GTS morphisms.

Production Span Relations

A list of possible relations between production spans typed over the same type graph

is presented in the following definition. For the moment we ignore the parametrization

and application conditions.

Definition 4.2.4 (production span relations). Given productions p : s and p′ :

s′ with s, s′ ∈ SpTG, and a typed span morphism e : s→ s′, we say that

• the span s is identical to the span s′, written s
id−→ s′, if the typed span

morphism e is the identity in SpTG,

• the span s is a DPO-subspan of the span s′, written s
→−→ s′, if the typed span

morphism e ∈ SpDPO
TG ,
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• the span s is a DPB-subspan of the span s′, written s
;−→ s′, if the typed span

morphism e ∈ SpDPB
TG and forms a faithful transition.

4

This list could be further extended by relations between a single production and

a collection of productions such as the spatial and temporal refinements, but this is

beyond the scope of our presentation

Recipe for Construction of GTS Morphisms

Now we are in the position to construct a four-step recipe for GTS morphisms. In

each step we introduce a number of options and motivate possible choices for the

recipe ingredients based on the semantic requirements. First of all, we formulate an

initial assumption underlying the construction.

Assumption: Without loss of generality we assume that the GTS morphism f :

G → G′ for the graph transformation systems G = 〈TG, P, π〉 and G′ = 〈TG′, P ′, π′〉,
and the type graph morphism fTG : TG→ TG′ have the same direction. That means,

the target system has at least the types as the ones of the source system, but possibly

more.

Step 1. The first variation point is the relation between the sets of production names

of G and G′. Here it is most convenient to use total functions, rather than general

relations. For example, a mapping from P to P ′ designates for each p ∈ P one

corresponding p′ ∈ P ′—the relation is left total and right unique. This option should

be used for behavior-preserving morphisms, where each transformation of the source

system has to be associated with a transformation of the target system. Dually, a

mapping in the opposite direction provides for each p′ ∈ P ′ one p ∈ P—left unique

and right total relation which is suitable for the behavior-reflecting morphisms.

Step 2. The next alternative is introduced by the context of comparison, i.e. where

the corresponding productions of the two systems are compared. This can be done

either in the context of G′ using the forward retyping f>
TG : GraphTG → GraphTG′

of G productions, or in the context of G using the backward retyping f<
TG :

GraphTG′ → GraphTG of G′ productions (cf. Def. 3.2.3). The forward retyping

is appropriate for behavior-preserving morphism, since the objective in this case is
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the construction of transformations in the target from the ones existing in the source

system. By analogy, the backward retyping is used for behavior-reflecting morphisms.

We continue with the specification of production span relations between produc-

tions of the two systems. For pairs of corresponding productions as defined in Step

1 and modulo the retyping functor selected in Step 2 this means to decide for the

direction of the relation in Step 3 and its kind in Step 4.

Step 3. The direction of the production span relation, i.e. if the span of the produc-

tion p is required to be a subspan of p′, or vice versa, depends on the desired relation

between the sets of transformations or transitions of the two systems. If the span of

p is a subspan of p′ then each transformation step via p′ implies a transformation

step or transition via p. Thus, behavior-preserving morphisms generally require that

G′ production spans turn to be subspans of G productions, while behavior-reflecting

morphisms specify the dual requirement.

Remark 4.2.5. Note that it may be the case that a production span relation between

π(p) and π′(p′) holds when considered over the larger type graph of G′ using forward

retyping, but not if compared via backward retyping (projection) over the smaller

type graph of G. The converse is also true, i.e. a production span relation may hold

over G, but not over G′.
This motivates why the comparison of productions is always done in a type context

of the system where the existence of transformations or transitions should be ensured,

i.e. the target system if behavior shall be preserved, and the source system if behavior

shall be reflected.

Step 4. Finally, we have to select the kind of production span relation that the

comparison shall be based upon. The identity between the spans of p and p′ ensures

that all transformations via p are also transformations via p′. If the span of p is a

DPO- or DPB-subspan of p′, respectively, then each transformation step via p′ implies

a transformation ( →−→) or transition ( ;−→) via p. The dual holds if we replace p and

p′.

Relations between different choices are summarized in Table 4.1. Combinatorially,

we obtain eight different notions. Numbers 4 and 5 represent, respectively, behavior-

reflecting and behavior-preserving morphisms discussed above.

Next we formally introduce the semantic requirements for behavior-preservation

and behavior-reflection and definitions of the morphisms.
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forward retyping f>
TG backward retyping f<

TG

left-total left-unique left-total left-unique

right-unique right-total right-unique right-total

relation relation relation relation
∗−→ – – DPO/DPBε DPO,DPB,[=]

1 2 3 4
∗←− =,[DPO/DPB] – – –

5 6 7 8

Table 4.1: Ingredients of GTS morphism recipe.

Behavior-preserving Morphism

The semantic requirements for preservation of behavior between the graph transfor-

mation systems G and G′ are presented in the following definition.

Definition 4.2.6 (preservation of behavior). Given graph transformation sys-

tems G = 〈TG,P, π〉 called the source system and G′ = 〈TG′, P ′, π′〉 called the target

system, we say that the target system preserves the behavior of the source system if

there exists a functor F : Trf(G)→ Trf(G′). 4

As discussed above, this requires that each production p ∈ P has a corresponding

production p′ ∈ P ′. Hence, a mapping fP : P → P ′ is chosen in Step 1. To ensure

the preservation of sequences in G′, the comparison of production spans is done in

the context of G′ and, therefore, forward retyping is applied in Step 2.

The mapping in Step 1 must guarantee the desired relation between the transfor-

mations in the two systems. This is achieved if in Step 3 the production spans in G
are not extended by those in G′. The choices in Step 4 ensuring behavior preservation

range from identity to DPB-subspan relations. The identity is the most common one,

because it results in the embedding of G into G′, while the other two variants would

mean that the productions of G are reduced in G′.
The behavior-preserving morphism specified in cell 5 of Table 4.1 is formally

defined below.

Definition 4.2.7 (behavior-preserving morphism). Given graph transforma-

tion systems G = 〈TG,P, π〉 and G′ = 〈TG′, P ′, π′〉, a behavior-preserving morphism

fpres = 〈fTG, fP 〉 is given by a type graph morphism fTG : TG → TG′ and a
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mapping of production names fP : P → P ′ such that for each p ∈ P there exists

e : π′(fP (p))→ f>
TG(π(p)) being the identity in SpTG′ . 4

The justifications for the following claim can be found in [67, 68].

Fact 4.2.8. Behavior-preserving morphisms fpres : G → G′ satisfy the requirements

of Def. 4.2.6. 2

Just to consider another example, the candidate in cell 6 differs from the one

above in the direction of the mapping between production names. That means, to

each p′ ∈ P ′ a p ∈ P is associated. If we require the existence of the production

span relation for all pairs of productions thus associated, this guarantees a partial

preservation of behavior only, i.e. for those transformations in G via productions with

corresponding productions in G′.

Behavior-reflecting Morphism

To continue on the right-hand side of the table, the semantic requirements for

behavior-reflecting morphisms are specified below.

Definition 4.2.9 (reflection of behavior). Given graph transformation systems

G = 〈TG, P, π〉 called the source system and G′ = 〈TG′, P ′, π′〉 called the target

system, we say that the source system reflects the behavior of the target system if

there exists a functor F : Trf(G′)→ Trs(G). 4

That means, each transformation step in G′ implies a transition in G, a liberal

requirement compared to reflecting transformations in transformations.

By the same arguments as above, in Step 1 we assume a mapping of production

names from P ′ to P . The context of comparison is the source system that leads to the

use of backward retyping in Step 2. To fulfill the semantic requirements, productions

in P are required to be extended by the corresponding P ′ productions in Step 3. Both

DPO- and DPB-subspan relations are reasonable in Step 4. The first would, in fact,

guarantee the stronger reflection property based on transformations only.

The behavior-reflecting morphism appearing in cell 4 of Table 4.1 is introduced

in the following definition.

Definition 4.2.10 (behavior-reflecting morphism). Given graph transforma-

tion systems G = 〈TG, P, π〉 and G′ = 〈TG′, P ′, π′〉, a behavior-reflecting morphism
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f>
TG(s)→ s′ ;

∦
��

s→ f<
TG(s′)⇐
∦
��

f>
TG(s)← s′ ⇒

∦
KS

s← f<
TG(s′):

∦
KS

Figure 4.4: Preservation of production span relations.

f refl = 〈fTG, fP 〉 is given by a type graph morphism fTG : TG → TG′ and a map-

ping of production names fP : P ′ → P such that for each p′ ∈ P ′ there exists

e : π(fP (p′))→ f<
TG(π′(p′)) ∈ SpDPB

TG forming a faithful transition. 4

The proof of the following is obvious.

Fact 4.2.11. Behavior-reflecting morphisms f refl : G → G′ satisfy the requirements

of Def. 4.2.9. 2

A variant of the behavior-reflecting morphism specified by cell 3 has been used

in [76]. The difference from the one of cell 4 is the mapping of production names

which goes in the same direction as the mapping of types, i.e. from P to P ′. Using

DPB-subspan relation and assuming in each GTS an empty ε-production, each step in

G′ using a production without a corresponding production in G is associated with an

ε-transition. In this way, the behavior is indeed reflected by G. If we consider, instead,

DPO-subspan relation, we obtain a partial reflection of the target transformations

by the source ones.

The GTS morphism specified in cell 3 will be formally defined in the next sub-

section, where we examine a relation of the substitution morphism to the proposals

considered above.

It turns that none of the other alternatives in Table 4.1 preserves or reflects be-

havior. Variants 1 and 2 are not behavior-preserving, because the production span

relation allows production spans in the target system to be larger than in the source.

Hence, additional preconditions may be introduced that makes productions in G′

applicable in less situations.

Similarly, variants 7 and 8 are inadequate for the behavior reflection, since produc-

tion span relations are not in general preserved by the retyping (see Remark 4.2.5).

The preservation properties for the production span relations are summarized in

Fig. 4.4.
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4.2.4 Locus of the Substitution Morphism

The definition of the substitution morphism (cf. Def. 3.2.5) consists of two parts. The

first part ensures reflection of behavior enacted by the target system in the source

one. Therefore, behavior-reflecting morphisms are appropriate here, but only for those

productions of the target system which are associated to productions of the source (cf.

cell 3 of Table 4.1). The second part guarantees preservation of applicability for the

productions of the source system in the target. This is similar to behavior-preserving

morphisms (cf. cell 5 in Table 4.1) except that the application condition is considered

instead of actual productions.

At this point, it is necessary to stress a very important role of application con-

ditions providing a refinement of the production structure. The combination of re-

quirements on behavior-reflection and behavior-preservation in the substitution mor-

phism makes unconditional productions of the related systems essentially identical.

This happens, because behavior-reflection is ensured by the production span relation

being, in fact, inverse the one in behavior-preservation. Thus, the application condi-

tions allows to establish a more flexible relation between the independently developed

specifications.

In order to demonstrate that the substitution morphism represents indeed an

extended variant of the behavior-reflecting morphism, the latter specified by cell 3 of

Table 4.1 is formally presented in the definition below. Since our general intention is to

manipulate with GTS morphisms that check not only behavioral but also structural

compatibility of compared systems, the definition contains a parameterized version

of this morphism.

Definition 4.2.12 (parameterized behavior-reflecting morphism).

Given parameterized graph transformation systems GP = 〈TG, P, PP 〉
and GP ′ = 〈TG′, P ′, PP ′〉, a parameterized behavior-reflecting morphism

f refl+ = 〈fTG, fP 〉 is a signature morphism given by a type graph morphism

fTG : TG → TG′ and a mapping of production names fP : P → P ′, where for all

p ∈ P and p′ = fP (p) ∈ P ′ the spans of productions pp = p(x, y) : s ∈ PP and

pp′ = p′(x′, y′) : s′ ∈ PP ′ satisfy Requirement 1 of Def. 3.2.5, i.e. for the spans s

and s′ there exists a TG-typed span morphism e : s → f<
TG(s′) ∈ SpDPB

TG forming a

faithful transition. 4

Comparing this definition with Def. 3.2.7, it is not difficult to see that the (pa-

rameterized) substitution morphism is a kind of (parameterized) behavior-reflecting
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morphism accompanied with the requirements on preservation of applicability.

Further we discuss the application of GTS morphisms as intra- and inter-

connectors of modules.

4.3 Application of GTS Morphisms

In this section we revise the initial proposals for module intra-connectors appear-

ing in Subsection 4.2.2 and demonstrate application of the discussed morphisms for

intra- and inter-connectors of modular specifications. To illustrate the external use

of parameterized substitution morphisms, the example scenario is extended with a

module implementing the algorithm for distributed deadlock detection (DDD). The

DDD module is considered in the following subsection.

4.3.1 Extended Example Scenario

The algorithm for distributed deadlock detection specified by the module MOD′ is

depicted in the lower part of Fig. 4.5. The upper part of this figure shows the module

MOD modeling the algorithm for mutual exclusion discussed in Example 4.2.1.

A deadlock detection service offered by MOD′ at the export interface EXP ′ is

asked for by the module MOD at the import interface IMP (cf. IMP and EXP ′ in

Fig. 4.5). At the same time, MOD′ lacks for deadlock resolution capabilities which

are provided, in turn, by the module MOD at the export interface EXP (cf. IMP ′

and EXP in Fig. 4.5). While such a relation between module interfaces, called cyclic

import, might be problematic for practical realization, it allows to properly illustrate

different kinds of module connectors.

Example 4.3.1 (DDD). The main purpose of MOD′ is to observe processes and re-

sources and detect a deadlock if asked to do so. In a graph representing a system

state, a deadlock appears as a cycle of request and held by edges, where one process

requests a resource held by another process and simultaneously holds a resource re-

quested by it. The distributed deadlock detection uses blocked messages, represented

by edges with a black flag, in order to detect such cyclic dependencies.

A deadlock detection is initiated by a process p waiting for a resource r. The

process uses the production dead? to send a blocked -message to r. This feature is

offered by MOD′ at EXP ′ for external use, e.g., by MOD. If the resource is held by

another process which itself is waiting for a resource, the message is passed on using

waiting. If this is not the case, which is checked by a negative application condition,
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Figure 4.5: Modules specifying algorithms for mutual exclusion (upper) and dis-

tributed deadlock detection (lower).
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the message is deleted by the production ignore. Due to the mutual exclusion, each

resource is held by only one process. Hence, if the message arrives at a resource which

is held by the original sender, a cycle has been detected.

Since MOD′ is only destined for deadlock detection, deadlock resolution is de-

scribed only abstractly by the production rel dl, which deletes the blocked -message,

but does not decide how the deadlock is actually resolved. This production in the

import interface IMP ′ needs to be replaced by the production of MOD with the

same name. The positive application condition of rel dl restricts applicability of the

production to the system states where a resource is held by the process, i.e. to the

situations being meaningful for the deadlock resolution. 4

4.3.2 Intra-connectors of Modules

We proceed with the discussion on intra-connectors relating the import interface and

body of a module. In Subsection 4.2.2 (parameterized) behavior-reflecting morphisms

were proposed for this purpose. In order to ensure a consistency between the import

interfaces and the internal implementations specified in the bodies of the modules in

Fig. 4.5, the constituents of MOD and MOD′ shell be verified against the require-

ments of Def. 4.2.12.

First of all, we establish a signature morphism consisting of a type graph mor-

phism fTG and a mapping fP which relates production names enriched with pa-

rameter type declarations. In the module MOD and MOD′ the type graphs of the

import interfaces are subgraphs of the ones containing in the bodies. So, the type

graph morphisms in both cases are given by inclusions. The productions in the source

and target systems are identified by their names, i.e. dead? for IMP and BOD, and

rel dl for IMP ′ and BOD′. Since the compared production names have the same

parameter types, the systems IMP and BOD, and IMP ′ and BOD′ are structurally

compatible.

The required relation (cf. Def. 4.2.12) between the spans of the productions dead?

in IMP and BOD follows from the identity of the compared spans. The relation be-

tween the spans of the productions rel dl in IMP ′ and BOD′ holds, because the span

of the BOD′ production becomes identical to the one of the IMP ′ production after

the backward retyping. Hence, the specifications at IMP and IMP ′ are integrally

compatible with BOD and BOD′, respectively, that guarantees consistency of the

internal and external descriptions.

In contrast with the import-body connector, the requirements towards the export-
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body connector shall be strengthened. Behavior-preservation guarantees that appli-

cability of productions in the export interface implies applicability of the body pro-

ductions. However, this property would be satisfied even for empty body productions.

In fact, we also require that effect encoded in the body productions is at least the

one promised by the productions in the export interface. Hence, we “upgrade” the

proposed candidate to the export-body connector and define it by the parameter-

ized substitution morphism. Next we shall demonstrate that the relations between

exports and bodies of the modules in Fig 4.5 are indeed parameterized substitution

morphism.

Structural compatibility of the specifications IMP and BOD is guaranteed by a

signature morphism composed of the type graph morphisms in the form of inclusion

and exact compatibility of parameter type declarations of the productions rel dl. The

same kind of signature morphism underlies structural compatibility of the IMP ′ and

BOD′. Then, following Def 3.2.7, one should check preservation of applicability from

the export interface to the body and reflection of effects of the body productions by

the ones of the export interface. Due to the fact that the productions rel dl of EXP

and dead? of EXP ′ are identical to the body productions with the same names in

the modules MOD and MOD′, the required properties obviously hold.

4.3.3 Inter-connectors of Modules

In Chapter 3 we have introduced the parameterized substitution morphism and jus-

tified its use for inter-connecting of software components. In this subsection we illus-

trate application of this morphism in the context of example scenario.

Let us first discuss the relation between the interfaces IMP and EXP ′ shown

in Fig 4.5. The signature morphism between the parties is given by the type graph

morphism fTG from TGIMP to TGEXP ′ , which is actually an inclusion, and by the

mapping fP between the sets of production names. This mapping is unique, because

both interfaces contain only one production dead? which name is equipped with the

parameter type declarations being the same for IMP and EXP ′.

After ensuring structural compatibility, we proceed with behavioral compatibility.

First of all, one should check the preservation of applicability from IMP to EXP ′ (cf.

Def 3.2.7). Each of the productions has one positive application constraint being the

union of the left-hand side and the dotted part in the IMP production, and coinciding

with the left-hand side in the EXP ′ production. The application conditions in the

two productions are the same, because the forward retyping of the EXP ′ production
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does not introduce any changes. Thus, applicability is preserved.

The second step is reflection of effects. While the backward retyping of the EXP ′

production gets rid of the blocked -message, it is still bigger in context and effect than

the IMP production. This is allowed by the DPB-subspan relation which can be

established between the spans of the productions.

Combining the two results, we can conclude that the import interface IMP is

associated with the export interface EXP ′ by the parameterized substitution mor-

phism. This, in turn, implies integral compatibility of the considered specifications

and guarantees that the service provided by the module MOD′ satisfies the require-

ments of the module MOD.

Now we discuss a relation between the interfaces IMP ′ and EXP . It is not

difficult to see that these specifications are structurally compatible.

Since the type graphs TGIMP ′ and TGEXP of the two systems are the same,

the retyping does not change the productions. The positive application constraints of

the productions rel dl coincide that means preservation of applicability from IMP ′

to EXP . Reflection of effects is ensured by the DPO-subspan relation (being also a

DPB-subspan relation) between the two productions in spite of the bigger context of

the EXP ′ production which additionally contains the held by edge.

Hence, the import interface IMP ′ and the export interface EXP are also con-

nected by the parameterized substitution morphism ensuring integral compatibility

of the parties.

4.3.4 A Formal Account of Component Model

Having considered a number of examples, we are ready to define formally a graph

transformation module specifying the component model.

Definition 4.3.2 (graph transformation module). Given parameterized condi-

tional graph transformation systems IMP , BOD, EXP , a parameterized behavior-

reflecting morphism imp : IMP → BOD, and a parameterized substitution mor-

phism exp : EXP → BOD, a graph transformation module is a system MOD =

(IMP
imp−→ BOD

exp←− EXP ), where imp and exp are called intra-connectors.

Given graph transformation modules MOD = (IMP
imp−→ BOD

exp←− EXP ) and

MOD′ = (IMP ′ imp′−→ BOD′ exp′←− EXP ′), if there exists a parameterized substitution

morphism sub+ : IMP → EXP ′ then we say that MOD is inter-connected to MOD′

by sub+ (cf. Fig. 4.1). 4



92 CHAPTER 4. MODULAR SPECIFICATIONS OF COUPLED SYSTEMS

While the definition introduced above is similar to the one presented in [69],

there are two significant differences. First of all, the specified modules define not

only behavioral but also structural characteristics of the portrayed components, i.e.

their operation declarations. Secondly, behavioral annotations of operations may be

equipped with strict (DPO) as well with loose (DPB) semantics—this is important

for operations in the import interface.

4.4 Summary

This chapter provides two main contributions: a systematic presentation of mor-

phisms of graph transformation systems along with a recipe of how to define new

variants, if needed, in a generic framework; and a model specifying coupled compo-

nents in the form of graph transformation modules.

On one hand, the first result provides a solution for the consistency problem,

where relations between import and export interfaces, and internal specifications

of systems are precisely defined by the parameterized behavior-reflecting and sub-

stitution morphisms, respectively. On the other hand, the constructed framework

represents a reaction to the multitude of proposals and variants for GTS morphisms

that exist in the literature.

A model has been motivated by the need to check correctness of integrating

components. Graph transformation modules employed for the model consist of tree

parameterized conditional GTS specifying the import, export and body along with

intra-connector morphisms introduced in the context of the generic framework. Inte-

gration is modeled by the inter-connector that relates the import (required) interface

and the export (provided) interface of modules.



Chapter 5

Related Work

A revision of related work given in this chapter serves two purposes. First of all, it

allows to justify the approach established in the thesis and demonstrate its original-

ity with respect to current proposals in the academic community and in industry.

Secondly, it helps to reveal possible extensions and improvements of our work which

are collected in Section 6.3 of the next chapter.

Available techniques for constructing interface specifications and software envi-

ronments for matching these specifications are considered in Sections 5.1 and 5.2,

respectively. Section 5.3 reviews component models in the form of modular specifica-

tions that have been proposed in the algebraic specification and graph transformation

domains. In Section 5.4, we conclude with a summary highlighting uniqueness of ideas

developed in the thesis.

5.1 Semantic-driven Specifications and Matching

In this section, we start with works originating in the Semantic Web domain, where we

cover general approaches (Subsection 5.1.1) and the ones focusing on travel business

services (Subsection 5.1.2). Then we proceed with an approach modeling semantics

of Web services by means of graph transformation rules (Subsection 5.1.3). Finally,

we overview specification techniques developed in the area of Component-Based Soft-

ware Engineering (CBSE) allowing to retrieve reusable software components (Sub-

section 5.1.4).

93
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5.1.1 Semantic Web Services

In general, specification of properties and capabilities of Web services amounts to def-

inition of basic concepts of a service application domain and their relationship. The

starting point here would be to provide a markup language (or knowledge represen-

tation language) for this purpose. Over the last several years, a number of Semantic

Web markup languages have been proposed. These include the Resource Descrip-

tion Framework (RDF) [99], RDF Schema [20], DAML+OIL [33], and, most recently,

OWL [39] and WSMO [150].

OWL-based Web Service Ontology

The Web Ontology Language OWL designed by the W3C Web Ontology Working

Group is a semantic markup language for publishing and sharing ontologies on the

World Wide Web. Derived from DAML+OIL, OWL is a description logic-based lan-

guage for taxonomic information. It is built on top of XML and RDF(S) and charac-

terized by a well-defined semantics and a wide range of constructs, including classes,

subclasses, and properties with domains and ranges, for describing Web entities.

Also, further restrictions on membership in classes as well as restrictions on domains

and ranges, such as cardinality restrictions, can be expressed in the language.

OWL-S [31] (originally called DAML-S) is an OWL ontology for Web services

developed by a coalition of researchers and industry partners, such as BBN Tech-

nologies, Carnegie-Mellon University, De Montfort University, Nokia, Stanford Uni-

versity, SRI International, etc. The OWL-S ontology determines a set of Web service

specific primitives.

The upper ontology of OWL-S consists of a ServiceProfile for describing service

advertisements, a ServiceModel for describing the actual program that realizes the

service, and ServiceGrounding for describing the transport-level messaging informa-

tion associated with execution of the program. ServiceGrounding is quite similar to

the Web Service Description Language (WSDL) [28].

We concentrate on the OWL-S profile which defines a service as a function of three

basic types of information: on organization that offers the service, on the function the

service computes, and on a host of features that specify characteristics of the service.

An essential component of the profile is the functional description representing two

aspects of the service functionality. The first aspect is an information transformation

in the form of input and output parameters of service operations. The second one

is given by state changes produced by the execution of the service in the form of
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precondition and effect constraints.

The current version of OWL-S specification does not mandate any language for

expressing constraints, leaving the choice of the language to a modeler. However,

the OWL-S specification refers to two main candidates for this role. They are the

Semantic Web Rules Language (SWRL) [87], under development at W3C, and DRS

described in [106]. Both languages specify constraints by logic formulas that bound

input and output parameters of service operations, i.e. they incorporate purely syn-

tactic restrictions on parameters. Thus, the problem of semantic annotaions remains

open in OWL-S as well as earlier in WSDL.

Approaches Related to DAML-S/OWL-S

In the following, we examine a number of approaches that underly and extend DAML-

S/OWL-S.

McIlraith et al. in [107] propose a markup of Web services in the DAML family

of Semantic Web languages and employ agent technologies for automated Web ser-

vice discovery, execution, composition, and interoperation. The Web service markup,

representing, in fact, a core set of DAML-S, consists of two basic kinds of ontologies:

domain-independent and domain specific. A domain-independent ontology defines the

general class Service having two subclasses. The first subclass, called PrimitiveSer-

vice, represents stand-alone Web-executable computer programs that do not assume

ongoing interactions between a user and a service. The second subclass, called Com-

plexService, contains complex services consisting of multiple services and supports

aggregate interaction scenarios.

The domain-independent Web service ontologies are augmented by domain-

specific ontologies which extend them with concepts that are specific for individual

services. Service semantics is defined via an association with each service a set of

Parameters reflected in the domain-specific ontology. For example, one may define a

travel business ontology containing the class BookTicket with the subclasses Book-

TrainTicket and BookAirlineTicket. The latter may be equipped with the subclasses

BookUALTicket and BookLufthansaTicket which provide semantic annotations for two

booking services.

The authors of [107] show how the domain-specific ontologies facilitate the discov-

ery process which is carried out by automatic agents established in the programming

language (Con)Golog. However, service description via a single ontological element

ignores operational nature of Web services. Operation of a Web service imposes cer-
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tain alterations in the real world, such as transitions in state spaces of requestor and

provider. A service description should reflect these transitions in semantic annota-

tions.

Furthermore, ontologies of the kind described above usually contain very spe-

cific, concrete product information, such as BookUALTicket or BookLufthansaTicket.

Extending generic ontologies with elements characterizing specific service instances

gives rise to another question—how to construct and maintain such ontologies. With

the emergence of a new service on the market (or modification of an old one), the

ontology has to be augmented by elements that are relevant to the newcomer. At the

same time, the construction of ontology is a quite complicated and long-continuing

process. It requires an across-the-board agreement between many companies which

may use by now previously standardized ontologies. Rule-based specifications, on the

contrary, represent structures built over the terms of ontology (or data model), and

that makes such specifications much more flexible.

A framework for Web service semantics is constructed in the work of Dogac et al.

in [41]. They extend the DAML-S upper ontology to describe services with comple-

mentary functionality, discover them according to the properties of products, and

relate service descriptions to electronic catalogs (e.g., the Common Business Library

(CBL) catalog definition or RosettaNet Technical Dictionary).

The proposed extension represents an ontology consisting of services and prod-

ucts. The top level element in the ontology is the class Product that has Physi-

calProduct and VirtualProduct as subclasses. The class Service being a subclass of

VirtualProduct defines a generic service type. Names of different generic services,

such as Car Rental Service or Travel Reservation Service, are used to locate specific

services representing particular implementations of the generic ones. The discussed

approach allows to integrate the introduced extension with UDDI registries—it is

very important for practical application. However, the service semantics in [41] is

defined analogously to [107] and this causes the same problems.

Paolucci et al. in [119] design a matching algorithm between service advertise-

ments and service requests, where DAML-S is adopted for service descriptions. The

algorithm supports multiple degrees of similarities between specifications. It com-

pares inputs and outputs of required and provided services and performs inferences

on the subsumption hierarchy established in DAML-S. The degree of match, e.g.,

exact, plug-in, or subsumes, is determined by the distance between concepts in the
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taxonomy tree.

On one hand, this work extends keyword-based searching capabilities of the UDDI

registry. On the other hand, service specifications are compared merely by operation

signatures. So, the authors establish, in fact, an advanced structural compatibility

test. It is advanced in the sense that it allows to relate types that are at different

levels in the type hierarchy (instead of lexical identity between types).

METEOR-S Approach

The work discussed below represents a part of the METEOR-S project [117] of the

LSDIS laboratory at the University of Georgia. It addresses the entire life cycle of

Semantic Web process, involving semantic annotations, discovery, composition and

orchestration of Web services. The initial version of the approach presented in [135]

has been currently extended and revised in the Web Service Semantics technical notes

on the language WSDL-S. The technical notes are published by the LSDIS laboratory

and IBM in [1].

The main idea of the approach is to map declarations of WSDL documents, such

as operations and their parameters, to elements of appropriate ontologies. This al-

lows users to search for operations based on ontological concepts with well-defined

meaning. For example, the operations buyTicket and cancelTicket of a service in

the travelling business domain are related to the ontological concepts TicketBook-

ing and TicketCancellation, and the input TravelDetails and the output Confirmation

of a WSDL specification are mapped to the ontological concepts TicketInformation

and ConfirmationMessage.

Each operation may have a number of preconditions and effects. As usual, pre-

conditions must be true prior to the operation execution, while the effects determine

changes in the world after the operation execution. The operation buyTicket, for

example, may have the precondition and effect represented by the ontological con-

cepts ValidCreditCard and CardCharged-TicketBooked-ReadyForPickUp. Preconditions

and effects can be added as children of the WSDL element operation.

The authors also show how to embed the semantic information into UDDI reg-

istry. In the process of Web service publication, different kinds of ontologies are stored

using the UDDI structure tModels (and CategoryBags). tModels are metadata con-

structs which are used to characterize and categorize businesses and their services.

The registry is equipped with four kinds of tModels. The first tModel represents an

ontology determining semantic annotations for general functionality of operations.
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Ontologies defining semantics of inputs and outputs are contained in the second and

third tModels, respectively. The general semantic annotations and those for inputs

and outputs of operations are combined in the context of the fourth tModel.

The first advantage of the proposed technique is the possibility to choose a no-

tation for semantic annotations, such as UML or OWL(-S). This is not the case in

DAML-S or OWL-S as they are targeted at the corresponding ontology languages.

The second advantage is in the idea to express operation semantics by means of

preconditions and effects. However, static ontological concepts employed for annota-

tions of operation signatures are not flexible enough to be reused for such behavioral

constraints as preconditions and effects.

Web Services Modeling Ontology (WSMO)

The Web Services Modeling Ontology (WSMO) [57, 150] is a Semantic Web services

initiative led by the Digital Enterprise Research Institute (DERI) at the University

of Innsbruck and by several EU projects. Its aim is to provide a conceptual model and

a formal semantic markup language describing all relevant aspects of Web services.

The conceptual model of WSMO is based on the Web Service Modeling Frame-

work (WSMF) presented by Fensel and Bussler in [60]. Four main elements that

WSMO inherits from WSMF are: ontologies (domain specific terminologies for de-

scribing other elements), Web services (specifications of provided functionality), goals

(specifications of functionality that a Web service should provide from the user per-

spective), and mediators (mechanisms to link possibly heterogeneous components

built on WSMF/WSMO descriptions).

The semantic markup is given by the Web Service Modeling Language

(WSML) [37, 149] that allows to write semantic annotations of Web services accord-

ing to the conceptual model. Provided and required services are described in WSML

by means of service capabilities. The capabilities are defined by non-functional prop-

erties, imported ontologies, preconditions, postconditions, assumptions, and effects.

A postcondition specifies what a Web service offers to a client, when the precondition

is met in the information space. An effect describes how the execution of the Web

service changes the world, given that the assumption over the world state is met be-

fore execution. Preconditions, assumptions, postconditions and effects are expressed

through a set of axioms in F-logic [104].

Applying logic to express behavioral specifications has two negative consequences.

First of all, logic-based constraints bounding operation parameters do not explain
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what the operation actually does, i.e. they represent syntactic annotations instead of

semantic ones. Secondly, logic-based approaches have long proved to be hardly usable

in real software development process.

5.1.2 Approaches in the Travelling Business Domain

We have illustrated our ideas by a Web service scenario for booking flight tickets.

Therefore, we discuss a couple of projects concentrating on travel information ser-

vices.

HARMONISE Project

The mission of the Harmonise project [61, 91] is to solve the interoperability prob-

lem of data formats used by different players in the travel and tourism industry.

The authors propose an ontology-mediated process based on a framework for data

integration called Harmonise Platform (HP).

HP consists of three basic elements. An Interoperability Minimum Harmonisation

Ontology (IMHO) is a tourism ontology which is used to model and store the basic

concepts representing the content of information exchanges in tourism transactions.

A Harmonise Interchange Representation (HIR) is an interchange format to specify

the instance data applied for interoperable tourism transactions. A set of mapping

rules is aimed at the translation of the transaction data from internal or proprietary

formats to HIR, and vice versa.

Different tourism companies employ HP to keep their own data format. They

exchange information based on IMHO through Harmonisation Gateways that play

a role of mediators. Each company willing to join the marketplace supported by HP

has acquire such gateways.

A realization of gateway-based interactions consists of customization and coop-

eration phases. In the former phase, a user constructs a set of mappings between its

internal data and the HIR format. It then allows to interact with other users in the

communication phase. Currently, the authors of the project are working on IMHO

and on formal specification of mapping rules.

The Harmonise project manifests that a common external data format is an ul-

timate necessity for the dynamic integration between heterogeneous travel services.

This claim goes along our guidelines as well as the results of Harmonise—they can be

used to determine a relation between external and standard-based service interface

specifications, and to facilitate automatic construction of these specifications.
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SATINE Project

The SATINE project [123, 42] realizes a semantic-based interoperability framework

for the tourism industry. The framework provides mechanisms for publishing, discov-

ering, composing and invoking Web services through their semantics in peer-to-peer

networks.

The basic idea behind SATINE is to enable service providers to wrap their existing

applications as Web services, annotate them semantically, and advertise these services

in SATINE network. SATINE network relies on a peer-to-peer infrastructure and

deploys semantic querying and routing mechanisms to discover appropriate services.

Service descriptions are based on OWL-S and may be stored either directly in peer

nodes or in semantically enriched UDDI and ebXML [44] service registries attached

to peers.

In order to create appropriate semantic annotations, the authors exploit domain

knowledge exposed by the Open Travel Alliance [2]. The semantic annotations are

given by Service Functionality and Service Message ontologies that are constructed

from the OTA request/response message schemas arranged into a class hierarchy.

The Service Functionality ontology describes the general meaning of a Web service

employing a set of messages semantics of which is specified in the Service Message

ontology. For example, a Web service instance THY Ucak Rezervasyonu can be classi-

fied with the AirBookingService node of the Service Functionality ontology to indicate

that it is an air reservation service. A fragment of the Service Message ontology for

the message AirBookRQ looks like the right-hand segment of Fig. 2.4.

We believe the SATINE project implements a number of interesting ideas, such

as the Service Functionality ontology which can be used to define general character-

istics of travel services. However, a limited number of message declarations in the

OTA standard causes serious problems for Service Message ontologies application. It

is not clear how to construct these ontologies for user-defined messages that are ob-

viously out of the standard. We avoid this problem—our approach allows to describe

operations beyond those predefined in the OTA standard.

5.1.3 Graph Transformation for Service Specifications

The ideas introduced by Hausmann et al. in [75] follow mainly the guidelines quite

similar to those of our approach. Graph transformation rules in [75] are defined over

a domain ontology and are used to represent contract-based behavioral descriptions

of service operations. However, there is a number of important technical differences
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that distinguish it from our work.

The strengths of [75] lie in a methodology that develops operation contracts in

the context of a standard model-based development process. We would also like to

note that a matching procedure in [75] is implemented in a prototypical tool chain

(see Subsection 5.2.2). This implementation represents a very effective and useful

instrument. In the following, we highlight the aspects that distinguish the approach

of Hausmann et al. from ours.

Firstly, the introduced in [75] matching procedure, defined in a set-theoretic style,

does not enjoy a formal operational semantics. There are no precise semantic require-

ments on compatibility of service interface specifications, and as a consequence, cor-

rectness of the proposed technique has been justified only by examples. Moreover, the

lack of application conditions limits expressiveness of the contract language in [75].

Secondly, the approach of Hausmann et al. does not take structural information

on service operations into consideration. Behavioral compatibility provides only nec-

essary but not sufficient conditions for successful interaction of required and provided

systems.

Thirdly, the discussed approach does not support any retyping procedure. It hap-

pens due to the assumption that parties establish service specifications over the same

ontology. However, as illustrated by the sample interface specifications in Fig. 2.7

and Fig. 2.9, even compliance with the same industry standard does not guarantee

the identity between ontologies (domain data models) employed by parties.

5.1.4 Component Specification Matching for Software Reuse

A problem of discovering a component or a service satisfying specific requirements

is not new. A huge amount of work has been done in the area of Component-Based

Software Engineering (CBSE). Its aim is to increase reliability and maintainability of

software through reuse. Central role here plays development of techniques for creating

component descriptions and their matching. These techniques differ in constituents

involved in a matching procedure (structural specifications or signatures, and be-

havioral specifications), the way these constituents are specified (logic formulas or

algebraic specification languages), and granularity of compared components (single

operations or functions, and collection of operations or modules).

Below we treat only a few works that somehow relate to the ideas presented in the

thesis. A detailed analysis of the whole spectrum of approaches in the CBSE domain

can be found in [154].
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One of the most elaborate approaches is created by Zaremski and Wing in [155]

and [156]. They consider two kinds of descriptions, signatures and behavioral specifi-

cations, for two kinds of components, functions and modules. Signature specification

and matching is presented in [155]. A signature of a function is simply its type, and

a signature of a module is a multi-set of user-defined types and a multi-set of func-

tion signatures. A wide range of matchings, such as exact, generalized, or specialized

ones, are introduced for functions and modules. The structural compatibility relation

constructed in our work was inspired by [155].

Behavioral specification matching is discussed in [156], where a function behavior

is defined by pre- and post-conditions written as predicates in first-order logic. Behav-

ioral compatibility of two functions is modeled by equivalence or implication between

the pre- and post-conditions depending on the chosen kind of match. The developed

matching procedure is extended to collections of functions in order to check behav-

ioral compatibility between modules. The approach uses the programming language

ML, and Larch/ML (a Larch interface language for ML) is employed to specify ML

functions and modules.

Jeng and Cheng in [96] define two different matches for component descriptions in

order-sorted predicate logic (OSPL). Components are modules that consist of inherit

clauses and a set of function specifications. A function specification is defined by a

pre-/post-condition pair terms of which are expressed in OSPL. While the first kind

of match, called relaxed exact match, is primarily syntactic, the second match, called

logical, is based on the subsumption relation between clauses.

Chen et al. in [26] introduce a framework for both signature and behavioral spec-

ification matching, where components are specified in the algebraic specification lan-

guage ASL. Components are portrayed by modules consisting of a set of sorts, a set

of operations on the sorts, and a set of axioms for the operations. Their compatibility

is specified as an implements relation: a source component is an implementation of

the target one if the signatures match, and a class of models in which the axioms of

the source are satisfied is a subclass of the one for the target.

There are two main differences that distinguish our work from those mentioned

above. The first difference lies in the operational interpretation of graph transfor-

mation rules. It allows to reflect behavioral aspect of service operations adequately.

Second, we propose a visual model-based approach—it can be easily integrated into

standard model-driven techniques of software development in contrast to logic-based

or algebraic specification approaches.
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5.2 Automation of a Matching Procedure

In the following, we discuss implementations of the approaches reviewed in the previ-

ous section. We start with software systems providing tool support for the Semantic

Web techniques, then consider a prototypical tool chain that checks behavioral com-

patibility of service specifications based on graph transformation, and, finally, analyze

systems developed in the context of software reuse approaches.

5.2.1 Software Environments for Semantic Web Services

Tool Support for DAML-S/OWL-S

There is a multitude of tools based on DAML-S/OWL-S concepts. All of them can

be divided into two main groups. The first group consists of environments providing

capabilities for creating and maintaining OWL-S service descriptions (e.g., Protégé-

OWL Ontology Editor [100], OWL-S Editor [132], or ASSAM Web Service Annota-

tor [85]). The second group of tools aims at matching service specifications represent-

ing these ontological descriptions.

Let us take a look at a typical tool from the second group. OWL-S Matcher

(OWLSM) [93] implements an algorithm enabling different degrees of matching, e.g.,

subsumes or exact, between inputs and outputs of services which are annotated by

elements of OWL-S ontologies. Similarly to our approach, the matching procedure is

based on the contravariant relation between input and output types of the required

and provided services. In addition, the reasoning process covers elements of a general

service description, namely, a service category. The algorithm consists of two phases.

First of all, it separately tests compatibility between inputs, outputs, and categories

of compared services. Then, the results obtained in the first phase are put together

in the second phase.

Contrary to mechanisms that return only success or fail, outputs of OWLSM are

ranked according to the matching degrees. It makes a selection of a service more

flexible. However, the proposed procedure operates only structural descriptions and

ignores behavioral characteristics of services. OWLSM could possible be a good can-

didate for a structural compatibility checker in our approach. For this purpose, it

should only be augmented by a module that performs behavioral compatibility test.
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Web Service Discovery Infrastructure (MWSDI) for METEOR-S

The Web Service Discovery Infrastructure (MWSDI) [144] (see also [62]) was devel-

oped as a part of the METEOR-S project. It represents a scalable infrastructure for

semantic publication and discovery of Web services. One of the central components

in MWSDI is a discovery engine based on a three-step algorithm.

In the first step, the algorithm matches ontological concepts that describe entire

operations appearing in WSDL specifications of required and provided services. In the

second step, the resulting set from the first phase is ranked on the basis of similarity

between input and output concepts of compared operations. This step is analogous to

the structural compatibility check from our approach. The optional third phase, quite

similar to our behavioral compatibility check, involves ranking based on similarity

between precondition and effect concepts of required and provided operations.

Until now, only the first and the second steps of the algorithm have been im-

plemented in MWSDI. This tool can be noted for the automatic generation of Web

service semantic annotations, but these annotations are limited to elements of ontolo-

gies specifying inputs and outputs of compared services. Therefore, the “resolution”

of the discovery process in MWSDI does not exceeds the one of OWLSM.

Web Services Execution Environment (WSMX) for WSMO

The Web Services Execution Environment (WSMX) [55, 73] is a reference implemen-

tation of WSMO and its underlying formal language WSML. It relies on a set of

loosely-coupled components for discovery, selection, and invocation of Web services.

An interaction of a user with the environment starts with a translation of concrete

goal (required) specification. It can be expressed in natural language or in some

specific formalism and has to be translated into the internal format of WSMX. Then,

the translated goal is matched against formal descriptions of registered Web services.

In case of success, it returns one or more service descriptions. The most appropriate

service selected by the user is invoked further, and the invocation result is returned

to the user.

The ultimate vision of WSMX developers is to automate keyword-based discovery,

lightweight semantic discovery, and heavyweight semantic discovery. In the first case,

keywords from a goal are matched against keywords from services descriptions. In the

second case, controlled vocabularies with universally recognized semantics are used in

matching process. The heavyweight semantic discovery introduces a relation between

inputs and outputs of required and provided service operations that are equipped
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with axiomatic annotations in F-Logic.

According to [73], the current implementation of WSMX offers only the keyword-

based discovery that is purely syntactic procedure. While the match can be done

in different dimensions, e.g., based on non-functional property values of goal and

services descriptions, it does not take into account neither structural no behavioral

service characteristics. This means discovery processes in OWLSM and MWSDI are

more powerful than the one offered by WSMX.

5.2.2 Tool Support of the Matching Procedure based on Graph

Transformation

In the following, we take a look at a prototypical tool chain introduced by Hausmann

et al. in [74]. As we have already mentioned, it appears to be an effective and use-

ful instrument. Augmented by a structural compatibility checker, e.g., OWLSM or

MWSDI, it could be successfully applied to automate our approach as well.

The Attributed Graph Grammar System (AGG) [15] is used in the tool chain as

a visual editor. It allows to generate service descriptions and requests in the form of

contract rules typed over a type graph. Here the type graph serves as an abstract

representation of an ontology. In order to employ DAML+OIL as RDF-file format to

specify an ontology of a specific domain and to use this ontology in AGG, the Java-

based tool Daml2Agg is implemented. This tool translates a DAML+OIL ontology

into a type graph in the file format of AGG. A translation of contract rules created

in AGG back to DAML+OIL is realized by the second tool Agg2Daml.

Ontologies and contract rules in DAML+OIL are given in a form of RDF graphs.

Therefore, a matching algorithm operates RDF graphs as well. It is based on the open

source semantic Web toolkit Jena [24], more precisely, the RDQL (a query language

for RDF) implementation of Jena. The toolkit allows to specify a graph pattern that is

located in a graph to yield a set of matches. The algorithm constructs RDQL queries

to check subgraph relations between corresponding parts (pre-/post-conditions and

effects) of contract rules.

5.2.3 Implementation of Matchers for Software Reuse Approaches

Finally, we consider tools that implement approaches shown in Subsection 5.1.4. A

general mission of such tools is to detect required components in software libraries

by structural and behavioral compatibility tests.
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Zaremski and Wing implement a matcher [155] that checks structural compatibil-

ity between functions of Standard ML (SML) via comparison of their signatures. The

matcher is incorporated into the signature-based retrieval tool Beagle. Given a query

and a set of relaxations, Beagle uses an appropriate match to compare each function

in a library with a query and returns a set of functions structurally compatible to the

query. Beagle’s user interface is quite simple, it is just gnu-emacs and a mouse. A user

defines a query and selects the desired relaxations before performing a search. An

output is a list of functions types of which match the query along with a pathname

to a file that contains the function.

The authors also provide a semi-automatic approach to checking behavioral com-

patibility. They use the Larch Prover (LP) [64] to prove a match of two behavioral

descriptions in the form of Larch/ML specifications. LP is a theorem prover for a sub-

set of multisorted first-order logic. Since LP is designed as a proof assistant, rather

than an automatic theorem prover, some of the sample proofs in [154] require user

assistance.

In the approach of Chen et al. component descriptions in ASL are translated into

specifications written in the knowledge representation language Telos [111] for stor-

age and other manipulations. Retrieval of software components is based on structural

matching between signatures of goal (required) specifications and those of reusable

(provided) components. A retrieval mechanism implemented in this approach is sup-

ported by the Database Management System ConceptBase [95] that is an object-

oriented database environment. Abstract formal specifications of components are

mapped into database objects, and the goal specifications—into a database query

that can be processed by ConceptBase.

A prototype system for applying behavioral compatibility test in [96] is imple-

mented by Jeng and Cheng in the Quintus ProWindows language1, a dialect of Prolog

that supports object-oriented organization of graphical elements. The system allows

to construct a hierarchical library and retrieve reusable components from this library.

Components are classified to form a two-tiered hierarchy. The lower-level hierarchy

generated by a subsumption test algorithm represents generality relationships among

components, where the parent component is more general then the child one. The

higher-level hierarchy is generated by a clustering algorithm that is applied to the

most general components of the lower-level hierarchy. The retrieval process is based

on the subsumption test algorithm proposed in [25], traditional resolution meth-

1A product of Quintus Computer Systems, Inc.
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ods invented by Robinson [127], and several-order-sorted unification methods, such

as [11, 145].

Structural compatibility matchers, such as the one constructed by Zaremski and

Wing, may provide a substantial assistance to automate our matching procedure

along with the Semantic Web proposals. Behavioral compatibility matchers, instead,

can not be directly used because of conceptual distance between graph transformation

and formalisms underlying these matchers.

5.3 Algebraic and Graph Transformation Modules

The component model proposed in the previous chapter is inspired by modulariza-

tion approaches developed in the algebraic specification and graph transformation

domains. These approaches are discussed in the next two subsections and compared

to modules introduced in our work.

5.3.1 Modularity Concepts in Algebraic Specification Languages

A common feature of modern algebraic specification languages (see, e.g., [7, 49, 70])

is specification-building operations for constructing large specifications in a struc-

tured fashion from smaller and simpler ones. Less usual in specification languages

are features for describing modular structure of software components, where external

descriptions, such as export and import interfaces, have to be clearly separated from

specifications of internal implementations.

Some languages, including Common Algebraic Specification Language

(Casl) [32], Common Object-oriented Language for Design (COLD) [58], Ex-

tended ML (EML) [130], Spectral [102], ACT TWO [50], provide the required

mechanisms. A special kind of specifications, called architectural specifications [16],

are introduced in Casl. An architectural specification consists of a list of unit

declarations, indicating the required component modules with specifications for each

of them, together with a unit term that describes the way in which these modules

are to be combined. Such architectural specifications can be considered as a kind of

import interface that extends standard Casl specifications.

COLD, a wide-spectrum language in the tradition of VDM and Z, introduces the

notion of a design component that relates internal and external descriptions of a soft-

ware system. In COLD, one writes COMP x : K := L to describe a component with

the name x, interface specification K, and specification L acting as implementation
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of K. Here L is considered as a refinement of K. This is similar to EML and Spectral,

except that parameterized components are supported, and L is only required to refine

K up to “behavioral equivalence”.

Let us provide slightly more extended analysis of a module concept in the lan-

guage ACT TWO. This proposal strongly influences on modularization approaches

in graph transformation domain. ACT [29] is an approach to formal software devel-

opment that includes a language ACT ONE [49] for writing parameterized specifica-

tions, referred as types, with conditional equational axioms, and an extension called

ACT TWO [50]. ACT ONE provides only simple specification-building operators,

like union, renaming, and instantiation, but no means for separation of external and

internal descriptions. ACT TWO rectifies this disadvantage by means of modules

that consist of four specifications (cf. Subsection 4.1.2):

• Import interface: This describes sorts and operations that the module requires

to be supplied by other modules.

• Export interface: This describes sorts and operations that the module supplies

for use by other modules.

• Body : This defines a construction of exported functionality in terms of the

imported features. This construction may involve auxiliary operations that are

not exported.

• Parameter : This describes parameters that are common to the entire module

or modular system in which the module appears, e.g., the underlying character

set.

These four specifications are written in ACT ONE extended by first-order axioms.

In addition, there exist module-building operations (composition, union, instantiation

and renaming) that are module-level analogues to specification-building operations.

One can note that the modules of ACT TWO have a structure (except for a pa-

rameter part) similar to the one of our module specifications. However, we can not

perform more detailed analysis here. The employed formalisms, i.e. graph transfor-

mation and algebraic specifications, lie conceptually far from each other.

5.3.2 Graph Transformation Modules

Several modularization approaches, such as GSSPEC [46, 47], GRACE [84],

DIEGO [139], PROGRES [147], TGTS [69], have been established in the graph trans-
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formation community. Classification and comparison of modularity concepts of these

approaches can be found in [82]. The differences of our modules from the existing

proposals are summarized in the next section. Below we take detailed look at the

TGTS proposal as we consider it quite closely related to our work.

Modules in TGTS employ an architecture similar to the one of algebraic speci-

fication modules from the language ACT TWO. The only difference is that import,

export, and body of a module are represented by typed graph transformation sys-

tems. While the import-body intra-connector is defined by an inclusion morphism,

the export-body intra-connector is specified by a refinement relation.

In general, a refinement maps an elementary operation of the more abstract spec-

ification (export interface) to a composite operation with the same effect in the more

concrete specification (body). Temporal and spatial refinement relations for typed

graph transformation systems have been defined in [67, 68]. In a spatial refinement,

each rule is refined by an amalgamation (i.e., a parallel composition with sharing)

of rules, while in a temporal refinement it is refined by a sequential composition.

This approach introduces operations of module composition and union. This allows

to built complex module systems keeping intra-connector relationships hidden. Re-

finement relations along with the operations of composition and union are highly

desirable for our approach as well.

However, there are two main advantages of our modules over the TGTS ones.

Firstly, structural information in the module specifications does not appear in TGTS

modules. Its importance cannot be overestimated, while it provides a basis for a

component model. Secondly, in contrast to the TGTS modules, the rules in our mod-

ules are equipped with application conditions. On one hand, application conditions

significantly increase expressiveness of the contract language. On the other hand, con-

ditional rules with clearly separated precondition and effect parts have a structure

suitable for a contravariant matching procedure. This procedure, in turn, underlies

the flexibility of the inter-connector defined by inclusion in the TGTS approach.

5.4 Summary

To sum up the discussion given above, we highlight the points that make our results

on interface specification and matching unique. First and foremost, the proposed for-

malism for semantic annotations of service operations incorporates two main points

that are crucial for specification of distributed applications [76]: an explicit descrip-
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tion of system states and a formal support of state transformations that may occur

in the system. In contrast to logic-based techniques (see, e.g., [37, 96, 156]) having

a weak support of both aspects, and algebraic specification (AS) approaches (see,

e.g., [26]) mainly supporting only the first aspect, the semantic annotations in the

form of graph transformation rules provide truly behavioral (operational) specifica-

tions (cf. Table 5.1).

Our revision of Semantic Web proposals shows that a number of approaches, such

as [107, 41, 117], simply ignore the operational character of services. Semantics of a

service is described by references to solitary elements of ontologies. It is doubtful that

one static element of an ontology can provide unambiguous and precise description

of such a dynamic entity as a service. Moreover, ontological descriptions that contain

characteristics of specific service instances become difficult to construct and maintain.

Logic-

based

approaches

AS-based

approaches

Semantic

Web

approaches

Our approach

Syntactic matching x x x x

Semantic matching x x x x

Operational charac-

ter of behavioral (se-

mantic) specs

x

Flexibility with re-

spect to data model

(ontology)

x x x

Integral matching x x x x

Model-driven specs x

Table 5.1: Comparison of techniques for interface specification and matching.

Finally, most existing specification techniques employ formalisms that lie far away

from conventional software engineering methods. In our case, the domain data model

and graph transformation rules are based on notations being familiar to software engi-

neers. In particular, there exist various approaches (see Chapters 2 and 3 of [48]) that

apply graph transformation in the context of model-driven software development.

In the following, we concisely formulate the main advantages of our work over

the conventional approaches for specification of software components. Table 5.2 con-
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solidates the discussion. While we concentrate on the models developed in the graph

transformation community, the table is extended with a column for algebraic speci-

fication (AS) modules. The contents of this column is based on Subsection 5.3.1.

First of all, our method seems to be the only one that provides a systematic

approach to construction of intra- and inter-connectors of modules (cf. Table 5.2).

Our framework relates heterogeneous concepts appearing in the literature and al-

lows to derive new connectors based on semantic requirements imposed by different

application scenarios.

AS modules GraTra

modules

Our approach

Separation of external and

internal specs

x x x

Consistency between ex-

ternal and internal specs

(intra-connectors)

x x x

Framework for systematic

design of intra-connectors

x

Loosely defined semantic

specs of operations

n/a (x) x

Flexibility of inter-

connector (contravariance)

x

Aptitude for model-based

testing

x x

Table 5.2: Comparison of component models represented by modular specifications.

Secondly, all available module concepts come with strict semantics for rules spec-

ifying import and export interfaces, and body2. While strict semantics is natural for

rules in the export interface specification, the rules in the import interface spec-

ification represent, in fact, incomplete or underspecified descriptions (cf. Subsec-

tion 2.2.2). We treat this incompleteness adequately by loose semantics used for

these rules.

Thirdly, it is a flexibility of the proposed inter-connector between the import

2In general, loose semantics could be assumed in GCSPEC and GRACE approaches. However,

the module concepts appearing in [47, 84] come with a classical strict semantics.
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interface of the requestor and the export interface of the provider module that dis-

tinguishes our approach from the existing ones. The proposed inter-connector gener-

alizes usually employed inclusion relation (ensuring that the associated rules of the

systems are isomorphic to each other). We allow the entailment of applicability from

import to export as well as the entailment of effects in the opposite direction. This

substantially extends the class of compatible modules beyond the ones containing

only isomorphic rules in the corresponding interfaces.



Chapter 6

Conclusion and Future Work

In this chapter, we provide a summary of our solutions to the problems outlined

in Introduction. We also evaluate these solutions with respect to the requirements

stated in Subsections 2.1.5 and 4.1.4. To conclude with, we mention several open

issues that were left out of the scope of this work. In regards to this, we propose

possible directions for future research.

6.1 Summary and Evaluation

The thesis consists of two tightly interlaced parts. External specifications of software

systems, i.e. their interfaces, are discussed in the first part. We demonstrate how

to construct interface specifications, extend them with semantic markup, and check

compatibility of semantic-based interface specifications. In this part of the thesis, we

focus on integration scenarios in the Web services domain, in particular, on aspects

related to the automatic service selection. But we also claim that approach intro-

duced here can be employed in a more general setting for intra- and inter-enterprise

integration of software applications.

In the second part, the discussion goes beyond the systems’ interfaces, and the

method used for external specifications is reused internally to model the entire sys-

tems involved in integration. Here external and internal specifications are assembled

using the notion of a module. The proposed model servers as a staring point in vali-

dation of coupled systems—their correctness is crucial for the accurate functioning of

the entire integrated system. In particular, it allows to check consistency of interface

specifications with (specifications of) their implementations.

113
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6.1.1 Semantic-driven Integration of Software Systems

In an interface specification, a description of the required or provided service is ar-

ranged in structural and behavioral compartments. The structural compartment, for-

mally given by a signature analogous to those appearing in algebraic specifications,

introduces service operation declarations. Semantics of these operations is defined

in the behavioral compartment. It contains contract-based annotations of operations

in the form of conditional graph transformation rules. The behavioral compartment

is modeled by conditional graph transformation systems. Rules in these systems are

equipped with loose (DPB) semantics to contract operations in the import interface

and with strict (DPO) semantics to contract those in the export interface. An ag-

gregation of structural and behavioral compartments allows to introduce an integral

service specification. It is represented formally by parameterized conditional graph

transformation systems.

We construct three kinds of compatibility relations, all of them might be used in

the service selection process. The intended correspondence between declarations and

contracts of service operations is reflected by structural and behavioral compatibility

relations which are established over the corresponding compartments of required

and provided interface specifications. Integral compatibility combines structural and

behavioral compatibility relations of both systems participating in the integration.

In other words, it allows to check overall compatibility of coupled systems.

Since the integral compatibility relation is defined on top of the informally given

semantic requirements on behavioral compatibility, the syntactic constraints imposed

by the relation lack for justifications. To solve this problem, the developed concepts

are placed into the categorical setting, where we rigorously portray the semantic re-

quirements and redefine the compatibility relations by means of morphisms between

formal objects modeling service characteristics. Here the structural, behavioral and

integral compatibility relations are specified by signature, substitution, and param-

eterized substitution morphisms, respectively. This allows to carry out the required

justifications, in particular, to show the equivalence between the syntactic require-

ments provided by the substitution morphism and the semantic requirements of be-

havioral compatibility.

To ease application of our results in practice, we introduce a conceptual frame-

work. The central place in the framework is occupied by an industry standard provid-

ing a uniform way of constructing interface specifications. The aim of this construc-

tion is to produce exactly those interface specifications that would serve as suitable
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inputs for the automatic selection process. As an example scenario, we use the stan-

dard issued by the Open Travel Alliance (OTA) to develop and match standard-based

interface specifications of Web services in the travelling business domain.

6.1.2 Semantic-driven Integration vs. Stated Requirements

Following the summary of the first part of the thesis, we check whether the obtained

results meet the requirements collected in Subsection 2.1.5.

1. Formal visual notation(s) for service interface specifications. Our approach em-

ploys parameterized conditional graph transformation systems to specify service

interfaces. This graph-based notation has a well-established semantics. It is de-

fined, e.g., in the algebraic approaches to graph transformation [36]. Thus, the

requirement is obviously fulfilled.

2. Compliance with standard model-driven techniques of software development.

The interface specifications based on graph transformation are highly com-

patible with the UML being the de facto standard language for model-driven

software development (MDSD). While a type graph (or ontology) is portrayed

in the form analogous to UML class diagrams, graph transformation rules can

be represented, e.g., as UML collaboration diagrams [124].

The task of embedding contract-based annotations defined by graph transfor-

mation rules into a software development process can be fulfilled using method-

ology proposed in [75]. This methodology allows a software engineer to system-

atically create operation contracts in the development process which is guided

by the model-driven and design-by-contract principles. In addition, application

of graph transformation for specification and (prototypical) implementation of

software systems is supported by a number of tools, such as AGG [15], PRO-

GRES [147], or Fujaba [94, 140].

3. Compliance with the technological stack of the Web services platform. Since the

technological stack of the Web services platform consists of XML-based stan-

dards, the use of proposed service interface specifications in the discovery pro-

cess requires, first of all, their representation in the from of XML descriptions.

For this purpose, one can employ the Graph eXchange Language (GXL) [146]

and the Graph Transformation Exchange Language (GTXL) [137] that were

recently introduced in the graph transformation community.
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GXL is designed as a general graph exchange format, while GTXL allows to

portray data contained in graph transformation systems. GTXL uses GXL to

describe the graph part of a graph transformation system and additionally

extends it with specifications of (conditional) graph transformation rules. XML

is chosen as an underlying technology in both languages which are supported

by several tools. For example, AGG was proposed in [74] as a visual editor

for constructing service descriptions. It allows to translate visual graph-based

specifications into GXL and GTXL.

Having presented semantic annotations of service operations in an appropriate

format, the next question is how to embed these annotations into the existing

Web services standards, such as WSDL. One of possible ways to do this is to

extend the operation construct in WSDL as demonstrated in [1].

4. Modularity and extensibility of service interface specifications. Interface specifi-

cations in our approach are composed of compartments characterizing different

aspects of services. This “architectural” solution answers the modularity re-

quirement. To illustrate the extensibility of our proposal, we sketch out how

to augment interface specifications with control structures reflecting interactive

behavior of a service.

Transactions of the PROGRES approach or transformation units available in

GRACE [84] are the possible candidates for this task. Alternatively, control

structures may be expressed in process algebra. For example, in the work of

Bracciali et al. in [19] interface specifications contain interaction patterns de-

fined in a subset of π-calculus. In either case, such specifications of interactive

service behavior can be attached to the existing structure in a form of an ad-

ditional compartment.

6.1.3 Summary of the Proposal for Component Model

To build up the component model defined in the second part of this work, one needs to

fulfill the following steps. First, to select an appropriate notation for internal specifi-

cations defining a component’s body. Second, to determine relations between external

and internal specifications. And finally, to aggregate the two kinds of specifications

and their intra-connecting relations.

The component body is specified by parameterized conditional graph transfor-

mation systems. Translation of such model-based descriptions into programming lan-
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guages used at the implementation level is supported by a number of approaches

proposed in the graph transformation community (see, e.g., [15, 147, 140]).

Having uniformly portrayed external and internal specifications, we introduce a

generic framework for a systematic presentation and construction of morphisms of

graph transformation systems. The morphisms describing the intra-connectors are

derived from formally given semantic requirements on the intended correspondence

between external and internal specifications. In particular, the framework facilitates

building parameterized behavior-reflecting and substitution morphisms which stand

for the import-body and export-body intra-connectors, respectively. Furthermore,

one can use the framework to classify and compare graph transformation morphisms

existing in the literature.

In order to aggregate specifications and intra-connectors, we need a structuring

unit. It is provided by a graph transformation (GTS) module. GTS modules consist of

three graph transformation systems (import, body, export) and the intra-connectors

defined in the generic framework. The proposed component model tracks consistency

between the external and internal specifications. It is also equipped with the inter-

connector designed in the first part of the thesis, where the import (required) interface

and the export (provided) interface of the modules are related by the parameterized

substitution morphism modeling this inter-connector.

6.1.4 Component Model vs. Stated Requirements

We are ready to show that the results summarized above meet the requirements un-

derlying this part of our work. The requirements were first stated in Subsection 4.1.4.

1. Rigorous formulation of the consistency relations between interface specifica-

tions and internal part of an integrating component. The import-body and ex-

port body intra-connectors are used to model the intended correspondence of

the interface specifications with the specification of component’s body. Since

the intra-connectors are defined by parameterized behavior-reflecting and sub-

stitution morphisms, the requirement is fulfilled.

2. Formal visual notation of component model and its compliance with standard

model-driven techniques of software development. In our approach, the notations

for description of external and internal specifications of components coincide.

The component specifications are uniformly portrayed by parameterized con-

ditional graph transformation systems. Thus, we meet the requirement under
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the same justifications as in Subsection 6.1.2 (cf. items 1 and 2).

3. Aptitude of the component model for model-based testing. First of all, we would

like to mention interactive simulation techniques as a means to verify correct-

ness of component models represented by GTS modules. Many existing graph

transformation tools, such as Fujaba [94, 140] or PROGRES [147], offer an inter-

active visual environment for simulating rule-based models in order to analyze

behavior of an application in various situations. Simulation allows designers to

play with “what if” scenarios to detect defects in the constructed models.

In addition to automated reasoning by simulation, the theory of graph trans-

formation provides the basis for static analysis. For instance, critical pair anal-

ysis [17] is a powerful technique to statically detect potentially conflicting rule

pairs by automatic generation of sample models for which the application of

the two rules would be in conflict.

Available analytical instruments are not limited to approaches based on val-

idation. Reachability analysis by graph parsing [71] or model checking graph

transformation systems [143] are the examples of verification techniques.

6.2 Thesis Contributions

Summing up the above discussion, the main practical contributions of this thesis are:

• The technique for generation of formal and visual interface specifications con-

taining structural and behavioral (semantic) characteristics of declared opera-

tions.

• The matching procedure allowing to reveal structural and/or behavioral com-

patibility between interface specifications of the coupled systems. Application

of the matching procedure is illustrated by an example taken from the Web

services domain.

• The model in the form of a graph transformation module which describes inter-

face specifications and their implementations appearing internally in coupled

systems. It also defines consistency relations between interface specifications

and internal implementations, and allows to validate correctness of coupled

systems prior to the integration.



6.3. OPEN PROBLEMS AND FUTURE WORK 119

To formalize the mentioned concepts, we extensively use results obtained in the

graph transformation community. A number of new concepts is introduced as well.

This lets us claim the thesis possesses the following novelties on the formal account:

• The notion of a parameterized conditional graph transformation system as a

formal counterpart of service interface specification, where the system’s rules

may be equipped with strict (DPO) and loose (DPB) semantics.

• The parametrized substitution morphism representing the compatibility relation

between service interface specifications in the form of parameterized conditional

graph transformation systems, and justification of the established morphism

against rigorously formulated semantic requirements for compatibility.

• The framework for classifying and systematically defining morphisms of graph

transformation systems.

• The notion of a graph transformation module consisting of parameterized con-

ditional graph transformation systems which solves the problem of underspec-

ification by means of loose (DPB) semantics in the import interface.

6.3 Open Problems and Future Work

Even though our work addresses various aspects that we consider crucial for the

problem we intended to tackle, a few questions were left out of its scope. Let us

discuss some of them in this section.

First, the presentation needs to be extended to typed graphs with attributes [52]

and sub-typing [138]. The demand for such extension is demonstrated by the example

scenario appeared in Chapter 2, where the lack of attribution did not allow to specify

the flight segment status as it appears in the OTA standard, i.e. as the attribute of

the type FlightSegment.

One of the most important features needed for our work is tool support. In the pre-

vious chapter, we have shown a few isolated approaches to automation of structural

and behavioral compatibility tests in the literature. The question of integration of

these isolated approaches along with their adjustment to the formal setting proposed

in this thesis still remains open.

One of the implicit assumptions made in our work is that the required and pro-

vided interfaces have the same granularity, i.e. the required and provided operations

introduce comparable modifications of system states. In a more general case, the
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EXP ′′ = EXP

exp

��

exp′′=q◦exp

��

IMP

exp′◦sub+

  

sub+
��

imp
// BOD

q

��

EXP ′

exp′

��

IMP ′′ = IMP ′

imp′′=q′◦imp′

22

imp′
// BOD′ q′

// BOD′′

Figure 6.1: Composite of modular specifications.

required functionality can be refined in the provided interface, where one required

operation is implemented by several provided operations. For instance, a booking

process defined in the required interface by the solitary operation airReserv may be

represented in the provided interface by a set of operations which amalgamated ef-

fect is compatible to the one of airReserv. An adaptation of the matching procedure

to this situation can be done with the help of results obtained in [67, 68]. Spatial

and temporal refinements of typed graph transformation systems established in these

works have to be built into the compatibility relations proposed in the thesis.

One of the possible tasks in the context of modular specifications is a generaliza-

tion of module intra-connectors by refinements. Refinements may be used to specify

implementation relations, like the one between export and body, in particular, if the

exported operations are implemented in the body via a set of elementary operations.

The next possible task is to develop a procedure that would specify the compound

system by composition of modules specifying the coupled systems. Then, a compound

system specification can be checked by model-based testing technuqes analogously to

the specifications of the coupled systems.

The main idea of a composition procedure for the modules MOD and MOD′ con-

nected by the parameterized substitution morphism sub+ is to create a new module

MOD′′ having the import interface of MOD′, the export interface of MOD and a

body implementing the features of both MOD and MOD′ (cf. Fig. 6.1).

The fact that import-export and export-body connectors are both described by

parameterized substitution morphisms allows us to relate import interface IMP of

MOD with body BOD′ of MOD′, and to construct the body of module MOD′′ via

the composition of the two graph transformation systems describing BOD and BOD′

over the third one IMP specifying the import interface of MOD. Development of
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such a composition procedure can use instruments introduced in [68, 76].

6.4 Epilogue

We envision a world where information technologies provide a full spectrum of tech-

nological and methodological means for rapid application integration. This would

improve corporate agility, speed up time-to-market for new products and services,

reduce IT costs, and increase operational efficiency of business units. We believe our

work represents a small step towards a new technology that will significantly facilitate

integration of software systems.
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