
Alexey Cherchago 
Dissertation 

“Service Specification and Matching based on Graph Transformation” 
 

Abstract 
 
One of the main tasks of modern application integration projects is to allow one business unit 
(requestor) to use services offered by another business unit (provider). When software systems of 
business partners are composed, an import interface of the requestor system is connected to an export 
interface of the provider system. Here, the import interface specification containing the requestor's 
requirements for a needed service has to be matched against the export interface specification 
describing the provided service. Usually, software engineers carry out matching of interface 
specifications manually; it makes the design and implementation of composite software expensive and 
error-prone. Therefore, the demand for instruments that would automate the matching procedure is 
high. 

In this thesis, we develop a new technique facilitating integration of software systems. To this end, we 
solve a problem of how to construct visual and formal interface specifications comprising semantic 
descriptions. Our method also includes a matching procedure that checks compatibility of such 
specifications. 

Interface specifications consist of structural and behavioural compartments. The structural 
compartment, given by a signature analogous to those appearing in algebraic specifications, defines 
operation declarations. The behavioural compartment, modelled by a conditional graph transformation 
system (GTS), contains operation contracts in the form of graph transformation rules. The rules of 
conditional GTS are equipped with loose semantics to describe operations in the import interface, and 
with strict semantics to describe those in the export interface. Composition of two compartments leads 
to an integral interface specification which is represented by the novel concept of parameterized 
conditional GTS. 

We develop three kinds of compatibility relations underlying the matching procedure. The intended 
correspondence between declarations and contracts of the required and provided operations is reflected 
by structural and behavioural compatibility relations that are established over the corresponding 
compartments of interface specifications. These two compatibility relations are combined into an 
integral compatibility relation that links the integral specification of the import interface to the one of 
the export interface. Furthermore, the constructed relations are equipped with rigorously formulated 
semantic requirements to compatibility and are justified against them. 

The introduced mathematical theory is supplemented with a conceptual framework. It is aimed at 
generating interface specifications that are suitable for automation of the matching process. The 
framework is based on an industry standard that outlines a uniform way of generating specifications. 
We use the standard issued by the Open Travel Alliance (OTA) in our example scenario where we 
develop and match standard-based interface specifications of Web services taken from the travelling 
business domain. 

Compatibility of interface specifications is necessary but not sufficient for accurate interactions 
between systems. The integration process is based on the assumption that these systems are correct. 
First and foremost, this correctness means that interface specifications representing externally visible 
parts of systems are consistent with implementations which appear internally in the systems. To check 
this assumption, we propose a model describing external as well as internal parts of a system. The 
model, formally represented by a graph transformation module, defines consistency relations between 
external and internal specifications and allows to validate correctness of systems prior to the integration. 
The proposed model and the matching procedure developed in the thesis are the key elements of a 
technology designed to improve the application integration process, making it theoretically well-defined 
and practically machine-processable. 


