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xhd, xhq, xσDq, xσDd, xσfd, xσfDd, x’’d, x’’q  Synchronous reactance and subtransient synchronous 

reactances in d- and q-axes system. 

xi   This represents resistances, main-field and linkage inductance of all circuits. 

x   State variable vector. 

xq��xd��x’d� x’q  Synchronous reactance and transient synchronous reactance of the machine. 

xR   Rotor electrical state vector containing the state variables: Ed’��Eq‘. 

xM   Generator mechanical state vector containing the state variables: δ��Sm. 

xE   Excitation state vector. 

xT   Turbine-governor state vector. 

x(t)  Vector of system states variables, it may contain variables associated with 

synchronous generators and their controllers and possible network dynamics. 

Y   Network admittances in matrix form. 

y(t)   Machine’s behavior. 

y, ϕ    Output and input vector of the neural network, respectively. 

y(t)   Output vector of the system. 

Z   Matrix, which contains the system output and the regressor. 

z   Algebraic variable vector. 

 

 
Greek symbols 
 

αa   Relationship factor between EE and Ea. 

αb   Relationship factor between EE and Eb. 
)(tα    It determines the length of the step in the search direction. 

α   Complex constant. 

δ   Angle at generator internal buses (rotor shaft angle of the generator). 

ε   User specified tolerance degree. 

ϕ(t)   Time dependent regressor vector. 

κ    Neural network activation function. 

iλ    Eigenvalues, which are equal to the variance of each generator behavior. 

µij    Fuzzy membership degree of generator xj to cluster ci. 

∆   Deviation from a specified steady state operating point. 

∆j(t)   Change of the injected current following disturbance j. 
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∆i’j(t)   Change of the injected current following disturbance j predicted by the ANN. 

I∆    Current injection variable as phasor form. 

∆Ιa, ∆Ιb  Incrementals for the currents: Ιa and Ιb. 

∆Pmi   Change in mechanical input power in p.u. 

∆Pgi   Change in electrical output power in p.u. 

∆P(i)Original  Time domain behavior of the ith internal generator calculated with the original 

external area. 

∆P(i)Dyn. Equi. Time domain behavior of the ith internal generator calculated with the the 

equivalent external area. 

∆δa, ∆δb  Incremental variables for δa and δb. 

∆θi   Incremental rotor phase angle of the ith generator. 

∆θR   Incremental rotor phase angle of the reference generator. 

∆pi(t)   Active power variation. 

∆δi(t)   Generator angle deviation. 

∆ωi(t)   Generator angular velocity deviation. 

∆ωI   Speed deviation in p.u. 

∆δi   Rotor angle deviation in radians. 

θ   Angle at load buses. 

θ   denotes the collection of involved neural network parameters: W1, W2, B1, B2. 

θa, θb   Bus voltage angle a and b. 

θ   Bus angle at the generator terminals obtained from the network solution. 

ωo   Network frequency referenced to p.u. 

ωL, δL   Rotor angular velocity and rotor angle, respectively. 

ω��ωo   Rotor angular velocity of the generator (synchronous speed of the system). 

ψL, ψS   Rotor and stator flux linkage, respectively. 

))(( tE θ∇   Gradient of the error matrix with respect to the ANN parameters. 

2Σ   Diagonal variance matrix. 
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Acronyms 
 
AGC  Automatic Generation Control  

AMS  Associative Memory Systems 

ANN  Artificial Neural Network 

BAG  Bayernwerk AG 

BEWAG Berliner Staedtische Elektrizitaetswerke AG 

CENTREL Central European Power System  

COI  Center Of Inertia 

DANN  Dynamic Artificial Neural Network 

EnBW   Energie Baden Wuerttemberg 

FACTS  Flexible AC Transmission Systems 

FC   Fuzzy Clustering 

HC   Hierarchical Clustering 

LFC   Load Frequency Control  

MIMO   Multi Input Multi Output  

NARX   Non-linear AutoRegressive models with eXogenous inputs  

NARMAX  Non-linear AutoRegressive Moving Average terms with eXogenous inputs 

NH   Non-Hierarchical Clustering 

NOE    Non-linear Output Error  

OP  Operation Point 

PCA   Principal Component Analysis 

PE  Preussen Elektra 

PSD   Power System Dynamic 

PSS   Power System Stabilizer 

RWE  Rheinisch-Westfaelisches Elektriizitaetswerk 

SOFM   Self-Organizing Feature Maps 

UCTE   Union for the Coordination of Transmission of Electricity 

VEAG   Vereinigte Energiewerke AG 

VEW   Vereinigte Elektrizitaetswerke Westfalen 
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“The idea is to try to give all the information to help others to judge the 

value of your contribution; not just the information that leads to judgment 

in one particular direction or another.” -Richard P. Feyman- 

 

 

Chapter 1  
Introduction 

 

 

1.1 Motivation  
 

The old electricity supply services were characterized by monopolistic and local market 

structures of the electricity industry. In the last two decades, this principle has been 

undergoing a radical reform by taking into consideration technical, economical, and political 

reasons and replacing those vertical structures with a deregulated electricity market open to 

the competition. 

 

Due to the separation of energy producer and network operator and principally through the 

competition between the energy producers, a significant increase of energy transport costs in 

a complex interconnected power system operation has to be taken into account. This effect 

plays an important role considering the fact that plant locations are selected in the future no 

longer primarily in the neighborhood of consumer centers, but rather in priority after cost 

factors of the production.  

 

With the increased market liberalization, the network operators must perform the 

minimization of the generation costs and transmission costs. Thus, significant changes of the 

network structures to the increased transmission lines are not plausible. But, it is more 

appropriate, that the network operators will operate their transmission lines more closely to 

the allowable transmission capability, especially to the stability limit. 

 

In order to guarantee the reliability, the accuracy of stability analysis must be satisfied. 

Therefore, the energy providers should be able to estimate the dynamic behavior of their own 

power system exactly. In large power systems, it is difficult to perform the dynamic stability 
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analysis accurately because of the large number of transmission lines, system components, 

and the network boundaries. Also, the significant influences of the neighborhood networks to 

their own area have to be taken into consideration. 

 

Nowadays, a detailed calculation of neighborhood networks is always not possible due to 

the complexity of interconnected power systems. Moreover, the hard competition between 

network operators due to the deregulated and liberalized electricity market leads to limited 

cooperation and restricted internal data availability between operators. 

 

These aspects are clearly presented in the west European power system, which is 

coordinated by the UCTE (Union for the Coordination of transmission of Electricity). The 

energy market liberalization and the east expansion of the UCTE can be considered as the 

most essential change in the European energy economic of the last years. Additional to 

UCTE, the central European power system (CENTREL) includes the eastern European 

countries. 

 

At present, the expansion of the UCTE network to east is in full swing. In planning 

consolidation and extension of the European interconnected power system, new problems 

concerning to the power flow and the stability aspects have to be solved. 

 

The calculation of the complete European network would lead to an enormous technical 

expense due to its complexity. At the same time, it is not necessary for a national internal 

network operator to analyze other networks.  

 

In spite of all, it is impossible to obtain all required data of the complete European network 

in detail. Moreover, the global data availability is limited by other local operators, since they 

do not want to reveal their own network specific data sets, i.e. the capability of their own 

power plants or the load performance, etc. Considering these reasons, it is suitable to 

represent the neighbor networks as equivalent networks, which are connected to the local 

internal area. 

 

In order to determine such equivalent networks, various conventional procedures in frame 

of dynamic equivalencing were developed, which reduce a complex power system to a small 

and simplified one. Thus, these simplified power supply models that can be utilized in 

network reliability, management and planning to overcome blackouts situations and to affront 

new technical circumstances of the deregulated electricity market. 
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The classical dynamic equivalencing consists principally of the following main steps: 

 

- Coherency Identification for grouping of coherent machines 

- Aggregation of these machines 

- Static network reduction 

- Aggregation of control devices 

 

Such equivalent systems are useful both for the planning and operation of interconnected 

large power systems. This simplifies the load flow calculations, transient stability calculations, 

and general investigations concerning protection and safety aspects. However, the classical 

well known procedures to form equivalent systems are mainly based upon linearized system 

models around a specific operating point with theoretical constrains validating. Consequently, 

they are restricted in its validity on practical non-linear, offline- and online-applications. 

 

1.2 Objectives  
 

Non-linear-based and innovative approaches for the equivalencing of complex large power 

systems have been developed in this dissertation. These new techniques satisfy the needs 

and requirements of all involved electricity market participants, especially for the network 

operators. In this context, the availability of a robust and consistent dynamic equivalencing 

using artificial intelligent systems plays an important role. 

 

The objectives are to introduce new dynamic equivalencing concepts, where the linear and 

non-linear characteristics and behavior of the power system are essentially considered. 

Principally, the following approaches are proposed within the scope of this dissertation: 

 

i.   Identity recognition instead of the classical coherency identification 

 

This innovative approach replaces the classical coherency identification in dynamic 

equivalencing. It is based on the recognition of real identical machines using their linear and 

non-linear properties. The identical machines that swing together in the sense of new defined 

criteria are classified into cluster groups. Applying standard pattern recognition methods to 

dynamic equivalencing can satisfy the criteria.  
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ii.   Electromechanical-based identity recognition 

 

The electromechanical influence of the generator is taken into consideration in the identity 

recognition procedure by means of the new proposed electromechanical distance to obtain 

‘electrically real identical generators in cluster groups’. 

 

The new defined electromechanical distance is based upon suitable machine model 

parameters. In this way, the electromechanical relationship between generators in the 

identity process will be considered. This method improves essentially the assignment of 

identical generators and the accuracy of dynamic equivalents. 

 

The applicability and consistency of this new approach and its ability to grouping of real 

identical machines will be tested both in the 16-generators system and in the large-scale 

model of the interconnected European power system with 464 generators. 

 

iii.   Splitting-based aggregation instead of the classical aggregation 

 

This research focuses on the splitting of generators, which belong to different groups at the 

same time but with different membership degrees. Thus, the generators will be divided into 

representative parts, which will be aggregated to virtual equivalent generators. 

 

This innovative approach forms "virtual" generator models. It is based on the application of 

principal component analysis (PCA) and the Fuzzy theory for generating a dynamic splitting 

of generators. These new aggregated equivalent generators are modeled upon the basis of 

the splitted parameters of all original external generators.  

 

iv.   DANN-based dynamic equivalencing 

 

By means of the identification of the non-linear behaviors of a power system, a knowledge- 

and signal-based robust dynamic artificial neural network (DANN) is developed. The artificial 

neural network can be considered as global external non-parametric dynamic equivalent to 

represent a non-linear Multi Input Multi Output (MIMO) system model, which replaces and 

identifies the static and dynamic behaviors of all elements of an interconnected power 

system, i.e. generators, transmission lines, converters, voltage and turbine controllers, 

amongst others, as global system.  
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This approach replaces successfully the stages of the classical dynamic equivalencing, 

such as coherency identification, aggregation, and network static reduction. It is proved to be 

an effective method for the online dynamic equivalencing of interconnected large power 

systems. 

 

This approach is applied in a 12- and 16-machine system with many boundary nodes. The 

robustness considering different power flow conditions with the ANN-based stability analysis 

are examined.  

 

1.3 Outlines of the dissertation 
 

This dissertation is organized consisting of the following chapters: 

 

In CHAPTER 1, an introduction about generic topics of this dissertation is presented. 

Following in CHAPTER 2, a general overview of the background and actual state of 

development of dynamic equivalencing is given. 

 

The main focus of CHAPTER 3 describes the identity recognition concept as alternative to 

the classical coherency identification. The electromechanical distance as an improvement 

factor in the procedure will be proposed generating electromechanical-based equivalents. 

 

As an important contribution to aggregation of generators, CHAPTER 4 describes the 

splitting-based aggregation instead of the classical aggregation forming virtual equivalent 

generators. Their theoretical background and the corresponding algorithm are explained.  

 

An investigation about the system modeling of non-linear MIMO systems that comprise 

complex interconnected power systems is introduced in CHAPTER 5 describing the 

replacement of external power systems with a dynamic artificial neural network (DANN).  

 

Finally, CHAPTER 6 includes a comparison, conclusion, and summary about the proposed 

innovative approaches, their applicability in practical situations of dynamic equivalencing. 

Suggestions on future research directions on this topic area are summarized. 
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“Analysis of stability, equivalencing of network,…,.are greatly facilitated 

by classification of them into appropriate categories. Classification 

therefore is essential for meaningful practical analysis and resolution of 

a complex system problem”-A quotation from [3]- 

 

 

Chapter 2  
Background 

 

 

Objective— This chapter briefly presents the key definitions and traditional concepts in 

power system dynamic equivalencing, which will be used as basis to develop innovative 

approaches throughout this thesis. 

 

Index Terms— Clustering, Coherency Identification, Dynamic Equivalencing, 

Electromechanical Distance, Network Reduction, Modal Analysis, System Identification, 

Linear Model Reduction, Slow and Inertial Aggregation, Stability Analysis, Ward Reduction. 

 

Organization— Section 2.1 describes the classical dynamic equivalencing. In section 2.2, 

the existing approaches are treated in detail and finally, in section 2.3, a brief summary is 

presented. 

 

2.1 Dynamic equivalencing 
 

The dynamic equivalencing consists of forming equivalent machines, which represent the 

electrical and mechanical characteristics of the original machines. To this end, a complex 

large power system network may be divided into the following areas: 

 

- The internal area has to be retained intact and unreduced in detail containing the 

internal machines for stability studies. The dynamic behavior of this area is simulated 

using dynamic equivalents of the neighborhood area.  

- The external area, containing the external generators, transformers, transmission lines, 

additional devices, amongst others, will be simplified to a reduced system. The 

generators will be classified, grouped, and aggregated to a dynamic equivalent.  
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In order to realize the transient stability analysis, it is important to consider the impact of the 

external area to the internal area during the disturbance period. Following aspects between 

internal and external area should be considered: 
 

•  The detailed description of the external area is not important for stability studies. 

Therefore, the detailed equivalencing of the external area is not necessary [1-5]. 

•  The external area is not of direct interest in stability studies and is of consequence only 

in so far as it influences the response of the internal area to disturbances within it.  

•  In general, the grouping of generators in the external area is mainly affected by 

disturbances coming from the internal area through the boundary nodes and lines. 

•  The impact of the external generators on the internal area depends generally on the 

electrical and geographical distance between the two areas and their boundary nodes. 

•  In dynamic equivalencing, the influence of particular disturbances in particular locations 

of the internal area should be considered. 

•  This equivalent external area coupled to the detailed model of the internal area must 

consistently form the same amplitude and frequency behavior of oscillations in the 

boundary buses. Consequently, the reduced system has the same dynamic behavior as 

the original interconnected power system. 

 

The following diagram shows schematically the dynamic equivalencing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2.1.-  Classical dynamic equivalencing in power systems 

External Area  Internal Area 

DDyynnaammiicc EEqquuiivvaalleenntt 

� Aggregation of regulators and governors

� Aggregation of generators 

� Coherency identification 

� Static network reduction 
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The classic dynamic equivalencing consists of the basic steps [6, 7, and 8] mentioned in Fig. 

2.1, which will be described in the following sections: 

 

2.1.1 Coherency identification and grouping of generators 
 

In this step, coherent generators are identified and grouped together. These aspects are 

evaluated in appendix A.3. This identification procedure can be significantly simplified by 

using the following assumptions: 

 

- Non-generator dynamics may be ignored or simplified. 

- Classical generator models can be used. 

- The linearized system model preserves well the properties of coherency. 

 

The following methods are available for determination of the coherent groups of generators: 

 

•  Weak links coupling [9].- In this method, the coherency is determined by analyzing the 

coupling of generators in the state matrix. A group of generators are identified as 

coherent if the coupling coefficients among them are high. 

•  Two-time scale [10].- This method is based on the concept that a slow oscillation is 

caused by two groups of strongly coherent generators interconnected through weak ties. 

In this case, the two oscillating generator groups can be easily identified by means of the 

eigenvector associated with the mode of oscillation. With this method, the system can be 

partitioned into an arbitrary number of coherent external generator groups by analyzing 

the same number of the slowest modes of oscillations. This method is extended not only 

for generators [11, 12] but also for generators and weak tie lines [13]. 

•  Slow coherency [14] and tolerance-based slow coherency [15].- These contributions 

describe an algorithm for fault independent area grouping. However, they don’t indicate 

how more complicated generating unit models can be handled. The slow coherent-

decomposition is defined with respect to a select subset of modes of a linearized model, 

in which only the lowest electromechanical modes of the system are selected. The 

tolerance-based coherency procedure relaxes slow-coherency in the direction of slow-

synchrony, although the dynamical implications are not exactly explored. 

•  Linear time simulation [17, 18].- This is the classical method to identify coherent 

generators. The time domain response of the system is solved for a specified fault in the 

power system, and the rotor angles of generators are compared. Those generators with 
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rotor angles swinging together with respect to the phase angle are identified as coherent 

(Podmore condition) 1. This will be in detail explained in chapter 3. 

 

Remarks: 
 

•  The ‘tolerance-based slow coherency’ is similar to the previous ‘two-time scale for 

generators only’ method, but includes additional constraints to ensure that widely-

separated generators are not aggregated.  

•  The ‘two-time scale’ and ‘slow coherency’ methods require the calculation of selected 

eigenvalues and eigenvectors of the full system and complicate its practical application. 

The modified Arnoldi eigenvalue solver used in [16] can be utilized to simulate large 

interconnected power systems. 

•  There are different possibilities to group coherent generators, which can be realized 

through the analytical method, such as ‘the two-time scale method’ and ‘the weak-link 

method’. But the analytical method often produces incorrect results. To overcome the 

problem, heuristic methods are carried out in parallel with the analytical method [25].  

•  The method of Lee and Schweppe in [20] offers several methods [19, 21-24, 27-29] with 

reference to heuristic approaches based on the Podmore condition [17-18]. 

•  An important technique in this step is the building of standard equivalents according to ‘a 

pre-reduction of dynamic states identifying similar dynamic models’ or control devices to 

the corresponding generators at the same bus.  

•  To this aim, weighted average and least squares frequency domain algorithms to 

calculate the parameters of the aggregated generators and their control models are 

used. After this pre-procedure, the classical coherency methods are applied. However, 

the results are not promising [26]. 

 

2.1.2 Network aggregation 
 

In this step, an aggregated network is constructed on the basis of the equivalent generator 

parameters for each coherent group of generators.  

 

This obtained dynamic equivalent is a single unit that exhibits the same voltage, speed, 

and total mechanical and electrical power as grouping generators during any disturbances, 

where those generators show coherent properties. 

                                                
1 This method is developed on the basis of a simplified and linearized power system model representing the mechanical 
equations for the motion of synchronous generators. The swing curve simulation has been realized faster by using a 
linear model and solving it in many cases by means of trapezoidal integration algorithm. 
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Retaining the original steady state, power flows, and voltages in the network, only the 

network equations are modified, which is replace by several coherent generators. 

 

In the literature, the following classical aggregations which are given in detail in chapter 4, 

are presented: 

 

•  Inertial and slow aggregation [15, 30-33].- The generators in a coherent group are 

represented by an equivalent classical generator model. In its simplest form, the 

equivalent inertia is the sum of the inertia of all coherent generators in the group, and the 

equivalent transient reactance is obtained by paralleling the transient reactance of all 

generators in the group. 

•  Detailed aggregation [34].- In this method, if some or all generators in a coherent group 

have similar control systems, they can be aggregated to a detailed generator model with 

an equivalent exciter, stabilizer, and governor. The parameters of the equivalent models 

are obtained using a combination of two approaches: a least square fit of the frequencies 

responses to determine the linear characteristics, and an evaluation of the time domain 

constraints to set the non-linear characteristics.  

•  Power invariance principle [35].- This method summarizes the equivalent generator 

representation and the network reduction retaining the terminal buses of each of the 

coherent generators. Hence, it preserves the basic physical structure of the original 

system. For each coherent group, a fictitious point is constructed such it connects all the 

internal voltage sources of the generators with one end of the transient reactance. 

•  Berg and Ghafurian method [36, 37].- In this method, the coherent group of generators 

can be replaced by an equivalent generator modifying the network by mathematical 

formulations according to complex ratios as weighting factors. 

 

2.1.3 Static network reduction 
 

Once equivalent generators are determined for the generators groups, a network reduction 

is performed 2. This reduction is generally achieved in two steps: 

 

•  The equivalent generators are inserted into the system and the generators in the 

associated coherent groups are removed. The network is modified to maintain the 

balanced steady state power flow conditions. 

                                                
2 After the static network reduction procedure, the reduced network must have the exact electrical behavior as the 
original one. 
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•  The network is reduced to restricted number of nodes. In this way, nodes are eliminated, 

and new transmission lines can be created or by using an adaptive reduction technique, 

similar to the one introduced in [40, 41]. The criterion for the nodes elimination is the 

network sparsity.  

 

The network nodes can be eliminated mathematically. This is a simple network 

transfiguration. Equivalent lines and shunts as result can be obtained. Only if non-linear load 

are connected to the nodes, it is necessary to involve linearized load models into the 

transfiguration. The intention of transfiguration is the encoding of the real load flow properties 

rather than the reduction of computational efforts 3. 

 

2.1.4 Aggregation of control devices  
 

Once equivalent generators are determined, and network reduction is performed, voltage 

regulators and governors will be aggregated in the dynamic behavior of power plants 4. 

 

In order to obtain accurate results, it is necessary to model these devices on the basis of 

their real structure and operating mode. This aspect leads to different types of control 

models. To meet the requirements in the practice, different modeling techniques are 

implemented into the stability analysis. However, this generates a large number of different 

controller models enclosed in data sets of real electric power systems. However, techniques 

for controller aggregation are not explored satisfactory yet.  

 

In the corresponding literature, the following methods are presented: 

 

•  Splitting of coherent generator group in subgroups with similar controllers [26, 37]. 

•  A controller with the best similarities to all controllers in the coherent group is chosen. 

The parameters fitting is realized by simulating disturbances in the frequency range. 

Usually, it is carried out in a network, where group members and the equivalent one are 

connected to the same bus [34, 38, and 39].  

•  A suitable fact is to choose the optimal equivalent controller using the controller of the 

largest subgroup. This optimal equivalent controller is used for the equivalent of the whole 

group [39]. 

                                                
3 Actually, if too much nodes are eliminated, due to the large number of created equivalent lines, the effort can be 
increased significantly. It should emphasize, that for the simulation it is not necessary to reduce the network. 
4 If within a coherent group the controllers don’t have the same structure and parameter settings, it is suitable to create 
an equivalent controller, which will be assigned to the equivalent generator. 
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•  Another alternative is to select the controller of the greatest generator of the coherent 

group to build a standard controller. 

 

The influence of controllers on the dynamic behavior of power systems is commonly 

significant. Consequently, it neither in the coherency identification nor in the aggregation of 

power plants can be neglected. 

 

2.2 Existing approaches 
 

In the past, the equivalencing procedure was realized on the basis of performing a static 

reduction of the equivalent area by essentially ‘Gaussian elimination techniques’ [42]. 

According to this method small generators less than 50 MW were simply netted as negative 

load. Larger generators were retained and equivalenced by classical approaches [25].  

 

Various approaches are proposed for dynamic equivalencing, in particular by exploiting 

modal and coherency properties of the machines. A detailed explanation of these 

approaches will be explained in appendix A. Subsequent developments led to the following 

classical types of dynamic equivalents: 

 
•  Ward Types.- In a preliminary way, the dynamic equivalencing was developed on the 

basis of Ward type equivalents, which are based on distribution factors used in power 

flow studies [48]. An interesting approach was proposed in [56] as dynamic Ward 

equivalent. Here, a transient energy function for a reduced system is built after the 

elimination of load buses provided with constant current and constant power loads 5. 

•  Modal equivalents.-  It involves two steps: 

- Construction of matrices, which represent equivalents of the external system. 

- Interfacing these matrices with the transient stability simulation of the internal area to 

simulate the complete system. 

State changes in the external area are captured by a linearized model. The dynamic 

characteristics of this area are then expressed by using voltages and injected currents at 

the interconnected nodes as inputs and outputs, and they are linearized at the operating 

point as base case specified by a power flow 6. 

                                                
5 This reduction employs a Ward equivalencing method in which the equivalent current injections are updated at each 
integration step of the path-dependent term of the energy function. Each step involves a single iteration of the Newton-
Raphson procedure on the unreduced system. 
6 In the modal equation of the state space equation of the selected group of the generators, the exact coherency is 
equivalent to the situation where only one mode is excited by any disturbance and all other modes are equal to zero. 
The excited mode represents oscillations between the given group of generators and the rest of the system. 
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•  Coherency-based equivalents.- An alternative approach to modal analysis is the 

coherency identification. Some previous attempts at the problem of identifying coherency 

have been heuristically-based and have utilized the concept of electrical distance [20-24]. 

A common limitation of the heuristic methods is the lack of accuracy and consistency 

demanded for using in routine planning applications. 

•  Model reduction and identification methods.- The need to use low-order dynamic 

models of a complex power system, especially for its stability analysis considering 

damping inter-area and local oscillations, is an important reason for a model reduction. 

Identification methods can be used in dynamic equivalencing. System identification deals 

with building dynamic models in form of a state-space system structure [84-86]. Identified 

models describe linear difference relationships between input and output signals. 

 

2.3 Power system simulation program 
 

In this research, the power system simulation program PSD (Power System Dynamic) is 

employed for dynamic studies. The appendix part A.7 shows the implementation of the PSD 

flow chart. The PSD is a program for modeling and simulating power systems including 

steady state analysis and online transient simulation. The applications and results of the 

program are reported in [87, 88]. PSD is based upon the principles of electromechanical-

transient computations in electrical networks. The program has a strong library providing 

accurate dynamic models for most known elements in power systems, such as synchronous 

machine, two and three winding transformers, and transmission lines, among others. Thus, 

the user can chose a suitable model for the synchronous machine among the second-, fifth- 

and sixth-order models and define the parameters. It is also possible to build special units 

like FACTS, fuel cell devices, among others in a so-called “regulator files” depending on their 

block diagram models. These models are integrated into the network through connecting 

nodes, which helps the operator to build his own models for the regularly variant components 

like the voltage and speed governor regulators. The interaction between the built units and 

the network is accomplished through selected variables, which are exchangeable during the 

simulation process. The model structures of the regulator devices are implemented using a 

special standard code in the PSD simulation package. The interface of these units with the 

network is accomplished through the output active and reactive power at each time interval. 

The program was carried out using FORTRAN and contains the coherency, aggregation 

and static network module as well the proposed approaches presented in chapter 3, 4 and 5, 

which have been implemented in frame of this research on the PSD platform [141]. 

Each power system studied is first being simulated by PSD in its original state using the 

standard models found in the library of the PSD validated in [87]. Following that, the new-
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implemented modules in PSD will perform the dynamic simulation of the power system using 

the identity recognition, the splitting aggregation and the ANN-based equivalencing in 

interaction with additional special programs developed in some cases in MATLAB and 

FORTRAN [141]. 

Hence, after simulating the whole power system in the PSD simulation package, the 

dynamic performance of the one is studied taking into consideration the dynamic 

equivalencing. Firstly, a power flow calculation is carried out to define the initial operating 

condition of the power system. Different disturbances are then simulated in different areas of 

the system. The results of the simulations will show how close enough the proposed model’s 

responses are to the original system’s responses in the event when disturbance is applied. 

 

2.4 Summary 
 

•  In above, the basic steps of the classical dynamic equivalencing, such as: (i) coherency 

identification, (ii) generator aggregation, (iii) network reduction and (iv) control 

aggregation, and their corresponding methods are summarized. 

•  The definition of coherency identification can be defined as: closely those of the similarity 

rotor angle behavior of machines. All coherency-based approaches are based on this 

condition applied to linearized models of the power system. 

•  The modal-based approaches are based on the inspection of the eigenvalues of the 

linearized state matrix. However, it provides limited information about the mode behavior 

of generators for a given operating point. 

•  The determination of parametric properties of the multi-machine power system requires 

the use of linear model reduction approaches and linear parametric identification 

methods.  

 

The next chapters will present innovative non-linear dynamic equivalencing approaches 

using modern and non-conventional techniques. 
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“The problem becomes highly complex when dealing with real 

disturbances, since linearization is totally ruled out. For these cases 

solution techniques using non-conventional methods should be 

discussed beginning with the statement of the problem under physical 

insight aspects” - M. A. Pai [135] - 

 

 

Chapter 3  
Electromechanical-based 

Identity Recognition in 
Dynamic Equivalencing 

 

 

Objective— Aim of this chapter is to present a new electromechanical-based approach in 

transient stability of power systems for recognition of identical behaviors of machines. The 

approach reformulates the classical coherency condition on the basis of the identity 

recognition. Those conditions are used as a basis for generating dynamic equivalents 

incorporating physical and model system parameters of the external generators with high 

accuracy in the results. Hereby, it consists of the introduction of an electromechanical 

distance additional to the geometrical distance that it significantly improves the accuracy and 

efficiency of identity-based dynamic equivalents. 

 

Test of this approach have been performed and evaluated on a 16 multi-machine system and 

on large-scale model of the interconnected European power system (UCTE/CENTREL). 

 

Index Terms— Clustering, Coherency Identification, Dynamic Equivalent, Electromechanical 

Distance, Electromechanical Parameters, Identity Recognition, Network Reduction, Stability 

Analysis in Power System. 

 

Organization— Section 3.1 and 3.2 of this chapter describe the introduction and the 

classical coherency identification, respectively. In section 3.3 the proposed identity 

recognition is presented, and mainly, the electromechanical-based identity recognition 
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approach is treated in section 3.4, followed in section 3.5 by the application in interconnected 

power systems. In section 3.6 the simulation results are evaluated and the summary in 

section 3.7. 

 

3.1 Introduction 
 

This chapter addresses a new alternative to coherency identification. It is the identity 

recognition as an efficient approach for recognizing the identical behavior of external 

generators forming cluster groups of identical generators and to show that once the identical 

behavior was known, significantly reduced dynamic equivalents could be obtained.  

 

The approach presented is based upon necessary conditions to process the swing 

oscillating curves in time domain of the external machines. Those reformulated conditions 

may be realized using standard pattern recognition algorithms (clustering algorithms). In 

order to generate more accurate dynamic equivalents, the definition of an electromechanical 

distance considering the physical characteristics and model properties of the external 

generators in the identity recognition procedure will be proposed. 

 

3.2 Coherency-based dynamic equivalencing 
 

A coherent group of generators is defined as a group of generators oscillating with the 

same rotor angular speed. For this purpose, two generators buses are defined as coherent if 

their angular difference is constant within a certain tolerance over a certain time interval [17].  

 

The classical coherency identification of Podmore [17] is based upon the determining the 

difference of the voltage angles of the terminal generator nodes, which is extended to the 

rotor phase angle behavior. The coherency of both generator internal and terminal buses is 

of interest. 

 

Therefore, the generator time responses are evaluated only regarding the rotor angular 

phase. This condition is necessary to form dynamic equivalents [17, 18]. This aspect 

represents a significant limitation of the equivalencing, because only linear processes and 

behaviors of the power system are considered without taking into consideration important 

factors of the real generator system, such as no-linear characteristics of governor-, turbine 

devices, real modeling parameters, among others. 
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Disadvantages: 
 

The formation of a simplified linear model of the power system is realized and solved using 

a fast trapezoidal integration algorithm. Considering this linearized simplified system model, 

the following disadvantages should be taken into account: 

 

•  Coherent groups forming the corresponding equivalents are not exact enough, since the 

performance of an equivalent system tends to depend on the applied disturbance.  

•  The coherent groups are independent of the amount of detail in the machine model, i.e. 

in the coherency procedure the real parameters and properties of the machines and 

governors in form of non-linear behavior are not considered in spite of all enhancements 

in the coherency strategy [19-25].  

•  A classical synchronous generator model is considered and the excitation and turbine-

governor systems are ignored. This aspect is based upon the observation that the 

amount of detail in the generator unit models has a significant effect upon the swing 

oscillation curves, particularly the damping [17]. 

 

Linearized system 
 

The dynamic equation of the ith generator in a power system with the damping coefficient 

included can be formulated as linearized in the following form7: 

 

iiGmii DPPM
ii

ωδ ∆−∆−∆=∆
••

  i=1,..,n   (3.1) 

where 

 

•  i  is a subscript for ith generator. 

•  ∆ indicates that this variable represents a deviation from a specified steady state 

operating point. 

•  Mi is the inertia constant in p.u. 

•  ∆ωI is the speed deviation in p.u. 

•  ∆δi is the rotor angle deviation in radians. 

•  Di is the damping constant in p.u. 

•  ∆Pmi is the change in mechanical input power in p.u. 

•  ∆PGi is the change in electrical output power in p.u.8 
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The changes in the complex voltages and power injections at the generator and load buses 

may be expressed using the Jacobian matrix in (3.2) and in simplified form in (3.3): 
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The variables used in the Jacobian matrix are defined as [17]: 

 

•  PG, QG are real and reactive power injections at internal generator buses in p.u.  

•  PL, QL are real and reactive power residual at load buses in p.u. 

•  E, δ are voltages and angles at generator internal buses. 

•  U, θ are voltages and angles at load buses. 

 

The voltage dependence of the load powers is included in the  
U
PL

∂
∂  and  

U
QL

∂
∂  terms and the 

changes in the power residuals LP∆  and  QL∆  are normally zero but may be assigned certain 

values in order to model a disturbance such as bus load shedding. Equation (3.2) can be 

simplified by accounting for the decoupling, which exists between the real and reactive power 

flows for a transmission system with high impedance ratios. The real power flows are largely 

dependent upon the voltage angles and as a first order approximation; the effect of variations 

in load bus voltage magnitude may be neglected by setting the terms  
U
PG

∂
∂  and  

U
PL

∂
∂  to zero. 

The voltage behind the generator transient reactance is constant thus, 0 E =∆ . According to 

these assumptions the incremental decoupled active power flow equation may be derived to: 
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7 Equation (3.1) merely states that the accelerating power for each machine is balanced by the increase in kinetic energy 
of the rotor and the power absorbed by the damping forces with respect to a synchronous rotating reference frame. 

8 ∆PG in (3.1), in general is a very complicated expression calculated from the non-linear differential equations of the 
electrical part of the machine and the algebraic equations of the transmission network and the synchronous machine. 
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This equation may be arranged for notation convenience to the following form: 
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Hereby, the partial derivatives in (3.3) are most precisely calculated using the voltages and 

angles at the pre-fault steady state operating point.  

The electrical power output of the generating units during a fault is calculated by solving the 

faulted network equations with the generator transient voltages fixed at the pre-fault values.  

In (3.4) the bus load-dropping disturbance can be modeled by introducing step changes in 

the LP∆  and LQ∆  variables for the selected bus at the appropriate time.  

 

Coherency identification condition 
 

The coherency algorithm minimizes the number of data curve comparisons by recognizing. 

Thus, the coherency of generators is a transitive process. A reference generator is defined in 

each group and other generators are always compared against this reference in order to 

determine whether they should fall in the same group.  

 

The remainder of the generating units are evaluated in turn with two alternative 

consequences, either the unit is combined with an existing group or the unit does not 

combine with any existing group and a new group is generated. 

 

The Podmore’s coherency criterion, which is based on the examination of the phase 

behavior of the rotor angle oscillation and indirect of the generator voltage angle, is used for 

determining whether a generator should be added according to its behavior to an existing 

group as follows: 

 

εθθ     tt Ri <∆−∆ )()(      (3.5) 

 

For all the samples of time, where: 

 

•  ε is a specified tolerance degree. 

•  i is the index for generator being grouped. 

•  R is the index for the reference generator for the group under consideration. 
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3.3 Identity recognition approach 
 

The identity recognition leads to determining of grouping of identical generators, which are 

replaced by accurate equivalents one without changing the power flow relationships9. These 

generators, which are grouped together, have practically a strong coupling with reference to 

their 

- physical, mechanical and electrical properties and  

- linear and non-linear characteristics. 

 

In order to consider these aspects, the classical coherency-based condition has to be 

reformulated. This fact implies the consideration of an additional and important condition for 

the grouping criterion, whose performance can identify identical linear and non-linear 

properties of external machines satisfactorily.  

The main advantage of this approach is the possibility to consider the model parameters of 

machines within the identity recognition process. 

 

Remarks: 
 

•  Usually, the analysis of identity recognition may be realized based on the time responses 

of generators to selected faults.  

•  The faults influence properly on the dynamic equivalencing. Location, kind, and duration 

of the faults influences on the form and quality of the dynamic equivalents.  

•  Time responses of machines to each fault can correspond to the active power variation 

( )t∆pi . Further quantities and behaviors, e.g. the angular velocity ( )t∆ω i  or the angle 

deviation ( )t∆δ i  to the center of inertia (COI), can be used properly in the identity 

recognition procedure too.  

•  One of the advantages of using active power as time responses to be identical 

recognized, is its independence from reference frames. 

 

3.3.1 Conditions 
 

The following figure illustrates the difference between the classical coherency identification 

and the proposed identity recognition: 

                                                
9 The resulted dynamic equivalents are single generators that exhibit the same voltage, speed, total mechanical and 
electrical power as grouping generators during the studied disturbance, where those generators show identical 
properties. 
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Fig. 3.1.-  Swing oscillating curve of the rotor angular speed representing the conditions for the identity 

recognition instead of the classical coherency. 

 

The first illustration shows the necessary condition for forming the coherency identification. 

This consists principally in the evaluation of the phase identity of the rotor angle to identify 

similar machines in terms of coherency. As it can be seen in the second illustration, an 

additional and imperative condition is the evaluation of the amplitude and phase identity of 

the rotor angle of together oscillating machines.  

 

Therefore, the proposed identity recognition is based upon: 

 

•  both the identity of amplitude size and 

•  the identity of phase angle or frequency of the rotor angle behavior.  

 

For the recognition and grouping of identical oscillating generators, an analysis of the 

behavior of the generators has to be realized regarding these two important identities. Both 

indispensable conditions are criteria for the grouping of identical oscillating generators.  
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Verification of the identity recognition condition for two machines 
 

These identity recognition conditions can be derived on the basis of the inertial aggregation 

[30, 34] considering that equivalent generator should represent the individual behavior of the 

single generators both in the initial state and in the whole time period. To this aim, it is more 

appropriate to perform aggregation at the machines internal nodes and not at the machine 

terminal buses, because the machine rotor angle is the phase angle of the internal node 

voltage phasor. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3.2.-  Classical Aggregation 

 

The machine internal node voltages are tied to a common bus with appropriate transformers 

and phase shifters to preserve the power flow.  

 

Defining the voltage transformation ratios from the internal voltages Ea and Eb to the 

common bus voltage EE  and the corresponding reference frame ‘dq’ to ‘N’ from the steady 

state by : 
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and considering for the whole time period that the changes in the voltages are derived from 

the rotor flux linkages and caused by the rotor torsion ∆δ(t): 
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the following relationship may be supposed: 
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Considering this relationship, the expression (3.7) can be satisfied by: 

 

0)()( =∆−∆ tt iE δδ   i=a,b   (3.9) 

)()( tt      ba δδ ∆=∆⇒      (3.10) 

 

This condition implies, that two generators are defined as identical, if both amplitude and 

phase difference of their rotor angles are constants and minimal within a specified tolerance 

over a certain time interval.  

 

Verification of the identity recognition condition for n-machines 

 

The verification of the identity condition extending to a n-machine power system is based 

upon the coupled active power flow equation of the external power system. It is expressed on 

the equation (3.4) in the decomposed form as: 

 

LGLGGGG            θHδHP ∆+∆=∆     (3.11) 

LLLGLGL                 θHδHP ∆+∆=∆     (3.12) 

 

where index ‘G’ denotes the set of selected internal generator nodes assumed to be identical 

for any changes in form of disturbances on the internal area and index ‘L’ is the set of the 

remaining nodes in form of load buses of the external area.  

Taking into account the square matrix HLL is regular and hence, it is invertible the following 

expression may be obtained from (3.12): 

 

              GLG
-

LLL
-

LLL δHHPHθ ∆−∆=∆ 11     (3.13) 

 

Replacing the voltage angles at the load buses in (3.11) the following transformed equation 

may be derived: 

 

LGGGLLGLGLGLLGLGGG                       -        PRδHPHHδHHHHP L ∆+∆=∆+∆=∆ −− 11 ][  (3.14) 
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where 

LGLLGLGGG   -      HHHHH 1−=      (3.15) 

1−= LLGLG         HHR             (3.16) 

 

The above derivation for GP∆  can be considered in the generator rotor movement. It is 

expressed as follows: 

 

iii Gmiii PPDM ∆−∆=∆+∆
•••
δδ   i=1,..,n                  (3.17) 

 

In this case, the mechanical power is assumed as constant for a short duration of the fault 

period: 

0   Pm =∆      (3.18) 

 

According to GP∆  (3.14) in (3.17) the following matrix notation can be obtained10: 

 

LMGMGMG               PRδHδDδ ∆+∆=∆+∆
•••

         (3.19) 

 

with 
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)( iG M  diag  =M     i=1,..,n  (3.23) 

 

where iM  is the inertia coefficient of the ith generator. In this case, equation (3.19) is the 

second order state-space equation describing a selected identical group of generators, which 

can be solved in a similar form for the non-uniform damping case, for the uniform damping 

case and the zero damping case.  

 

                                                
10 Increments LP∆  of the active power of the remaining nodes modeled as bus load-dropping changes can be treated as 
the effect disturbance at a certain internal node on the external area. 
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The generators of group {G} are said to be exactly identical if increments )(tiδ∆  of all grouping 

generators resulting from equation (3.19) are identical for all ε  i  {G}.  

 

This may be expressed in matrix notation in the following way: 

 

GG   t t Iδ )()( δ∆=∆      (3.24) 

 

where )(tδ∆  is the scalar value and IG the unit vector with cardinality of {G}, i.e. of all identical 

components of the group. In this expression should be denoted that the magnitudes and 

phase angles of the rotor movement of the identical generators should be identical in sense 

of the identity recognition.  

 

Relevant in this case is that the solution of the second order state-space equation system 

(3.19) must satisfy and fulfill above equation (3.24) for any disturbances expressed as step 

changes in LP∆  if all rows of certain sub matrix, describing the external area, are identical 

considering phase and amplitude. 

 

Therefore, this identity criterion is specified by the property that following any disturbance 

the difference of the rotor angle behaviors of identical generators with reference to their 

phase and amplitude remains time-dependent and significant small. Thus, the following 

relationship 11 in terms of )(tGδ∆  can be derived for two identical generators i and j as: 

 

    t      tt ji εδδδ ε ≤∆=∆−∆ )()()(  

      )()( tt ji δδ ∆≈∆                (3.25) 

 

where )(tεδ∆  is the behavior difference during and after the fault and ε the specific tolerance. 

Taking into consideration this identity, the following additional identities may be obtained by 

differentiating: 

 

             )()( tt ji
••

∆≈∆ δδ       (3.26) 

           )()( tt ji
••••

∆≈∆ δδ      (3.27) 

 

                                                
11 If (3.25) in (3.19) is fulfilled approximately for the linearized state space model then the external grouped generators 
are approximately in the same manner identical in the non-linearized model. 
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It means, if two generators are identical, they will have similar velocity and acceleration 

behaviors considering amplitude and phase.  

 

3.3.2 Procedure 
 

In a time period, the behavior of the machines as a time series matrix X is established. This 

time data set can include voltage, current, power or rotor angle behavior of the generators 

considering the non-linear characteristics of governor and excite control devices.  

 

The procedure to detect the identity consists of the following aspects: 

 

(i)  Generate a time domain matrix that reveals the behavior of the machines following 

simulated disturbances on a particular node of the system, like a three-phase fault at a 

particular node of the internal area.  

The generator matrix may be characterized by following attribute vectors: 
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Where the time data set matrix X (N,M) includes the time responses in form of oscillating 

swing curves, exhibiting N the number of generators or features and M the number of 

variables or patterns or sampling points of the time data set.  

 

(ii)  Initial cluster centers, this procedure starts with a predefined number of cluster groups 

and corresponding cluster centers that can be considered as initial reference generators. 

 

(iii)  Identity recognition according to clustering algorithm. All generators are compared 

against the reference generators as cluster centers to determine whether they should fall in 

the cluster groups. All clustering algorithms are based on the minimizing of the within cluster 

squared distances by means of an iterative way or an optimization procedure.  

 

This aspect can be illustrated iteratively in the following figure: 

  

Generator 1 
Generator 2 

Generator N 
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Fig. 3.3.- Schematic representation of iterative assignment and construction of centroids or 

reference generators within a clustering procedure 

 

The assignment of generators to the cluster groups regarding their time behavior 

characteristics can be realized by means of the evaluation of a distance criterion between the 

grouping generator and the reference generator. In this case the following illustration can be 

sketched: 
 

 
 

Fig. 3.4.- Schematic representation of  similar generators belonging to a cluster group taking into 

account its identical properties in phase and amplitude. 
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3.3.3 Identity recognition algorithms 
 

The identity recognition algorithms as clustering process consist of procedures, which 

divide the multidimensional data space of the features into a number of separated groups 

called clusters, whose features have identical patterns in a multidimensional space [91-98] 

and the profiles of objects in the same groups are relatively homogenous whereas the 

profiles of objects in different groups are relatively heterogeneous. 

 

This assignment in groups is based on the minimizing of the within cluster squared 

distances directly in an iterative way (partitioning), in a transitive process (hierarchical) or 

indirectly in an optimization procedure (Fuzzy and SOFM) and thus, the machines can be 

assigned to the corresponding most nearby clusters. 

 

In detail, the distance criterion can be described as follows: 

 

•  The identity between objects can be recognized by means of distance measurement 

criteria between the data vectors in the multidimensional space in different ways.  

•  For an extensive review of measures can be implemented the LP-Metric or Minkowski 

distance. The Minkowski distance dij between two M-dimensional objects (data points) i 

and j is defined by the following expression: 
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where xil  and yjl are objects with M sampling points, whose distance has to be 

calculated. M corresponds to the number of variables.  

•  By these distance definition may be diverted other distance functions by means of new 

definition of p. An important distance measure is the Euclidean distance metric, which is 

defined by p=2.  

 

The wide variety of existing clustering can be divided into four main groups, such as: 

 

- Hierarchical [92-95],  

- Partition [94-101] in form of K-means,  

- Fuzzy C-means [102-105] and  
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- Unsupervised neural networks [106-109] in form of self-organizing feature maps 

(SOFM) or competitive networks, although other techniques are possible.  

 

Facts of these standard algorithms are explained in detail in appendix B. 

 

3.3.4 Comparative application  
 

To compare the standard identity recognition algorithms, their properties and advantages 

should be discussed. In fact, each method works in a different way and very often yields 

results different from the others.  

 

The identity recognition algorithms may be showed schematically in the following flowchart. 

Bold lines indicate the more successful methods with significant accuracy. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3.5.- Flow chart of applied identity recognition algorithms. 

 

Hierarchical clustering (HC) 
 

•  It is the most widely used algorithm due to the computational simplicity, sometimes it is 

stated that this technique is no longer valid if applied to large data sets [92].  

•  Its main purpose is to provide the user with suitable initial cluster centers, and thus it is 

able to identify the initial seed points. 

•  The main disadvantage lies in the fact that, according to the logic of hierarchical 

clustering, a kind of hierarchical structure is imposed into the data, even if the data do not 

possess such structure. This can lead to a misclassification of the data structure [93].  

 

K-means SOFM-ANN 

Features of Generators

Hierarchical Fuzzy C-means

Groups consisting of identical oscillating machines 
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Partitioning or non-hierarchical clustering (NH) as K-means  
 

•  It is free from the hierarchical disadvantage.  

•  Its main properties are its computational simplicity, the re-determination, and adjustment 

of the composition and population of clusters with non-hierarchical clustering.  

•  This clustering technique is referred to as ‘hard clustering’ schemes, where each object is 

assigned to one and only one cluster.  

•  In the case of touching or overlapped clusters this assumption is apparently invalid, 

leading consequently to misclassification.  

 

Fuzzy clustering (FC) 
 

•  The procedure of dividing the N objects into k clusters is replaced by a procedure of 

determining the membership degree of each object belonging to each cluster group. 

From this point of view, ‘hard clustering’ can be considered as a particular case of Fuzzy 

clustering, i.e. when all membership coefficients, except one, of a single machine are 

equal to zero.  

•  Although this is yet another mathematical model that does not necessarily describe the 

real data structure, it seems that such an approach should lead to appropriate results.  

•  Fuzzy provides a clustering classification by using of membership degree coefficients 

between 0 and 1, which can contribute to divide an object in shares. The shares number 

corresponds to the number of defined cluster groups.  

•  The internal structure of clusters and their interrelationships can be determined with 

Fuzzy-c means. Moreover, the ‘dispersion level’ or ‘splitting’ of the grouped objects can 

be defined with help of the membership degrees. 

 

Kohonen self organizing features maps (SOFM) 
 

•  Their application is restricted due to the large computation time with large number of 

objects, by which the network can be trained.  

•  A limitation of this method is that the number of groups not always corresponds to the 

defined number of output neurons, and thus the Kohonen network can fail. 

•  The procedure of Fuzzy c-means and K-means clustering has not this difficulty, because 

the cluster center forming is forced by the input of the number of objects. Nevertheless 

Kohonen maps can be considered as a complementary method to verify the results of 

previous clustering methods.  
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3.4 Electromechanical-based identity recognition  
 

In spite of all identity recognition technique’s properties, an important improvement in 

identity recognition can be reached by using electromechanical weighted distances to obtain 

‘electrically real identical generators grouped in clusters’. In this context, following aspects 

should be considered: 
 

•  Factors, such as the model parameter properties, physical characteristics and the 

particular influences of single generators on the power system, must be considered to 

develop a real electrical assignment preserving the singularity of each machine.  

•  Thus, it is indispensable to introduce characteristic sizes of generators, which 

characterize the particular behavior and the proper impact of the machines on the 

external power system.  

•  The electromechanical distance is introduced in the identity recognition process 

additionally to the geometrical distance.  

•  Thus, it is not appropriate to apply the same distance criteria to generators located far 

from the area of interest as the nearest one.  

•  Electromechanical small machines with small characteristics have less influence on the 

whole system dynamic than larger machines.  

 

3.4.1 Inertia coefficient and electrical power 
 

According to the following sensitivity analysis, model parameters, as pre- and during-fault 

relevant electromechanical factors may be selected, to improve the assignment to groups of 

machines according to their physical and model properties. 

 

Sensitivity analysis 

 

The sensitivity of a determined machine’s behavior y(t) with reference to the parameters P 

may be defined mathematically as: 

 

PioPi
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The sensitivity is a time function, which expresses the influence of parameter Pi on the 

investigated behavior y(t), such as rotor speed, electrical power, rotor current, rotor voltage, 

etc. and a certain time during this behavior. 

 

The rotor speed behavior is an important electromechanical behavior to be evaluated 

according to the sensitivity. For the sensitivity analysis the following one-machine system 

was evaluated: 

 

 

 

 

 

 
Fig. 3.6.- One-machine power system for sensitivity analysis 

 

On the basis of this evaluation, the influence of the parameters on the electromechanical 

behavior of the machines may be quantitatively detected. In order to derive a quantity 

evaluation for sensitivity the square mean value is formed and afterwards normalization to 

unit is defined.  

 

The following illustration shows a summarized comparison of the normalized square mean 

values of the sensitivities of rotor angle δL with reference to important synchronous machine 

parameters. 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3.7.- Graphical comparison of the normalized square mean values of the sensitivities of rotor 

angle δL with reference to the synchronous machine parameters 

 

Normalized Squared 
Mean Value of 
Sensitivity  δδδδL(%)(%)(%)(%)

 x‘d     x‘‘d    xd         T‘‘      xσs      rs        T‘d       T‘‘q       x‘‘q       xq        Tm 

Machine Parameters

0

10
20

30

40
50

60

Before max. amplitude 

After max. amplitude

60 
 

50 
 

40 
 

30 
 

20 
 

10 
 

0 

Before the max. amplitude of the δL behavior  

After the max. amplitude of the δL behavior 

~

x=0.25 p.u.

P=1.0 p.u.



 ELECTROMECHANICAL-BASED IDENTITY RECOGNITION 33

This illustration shows the sensitivity of the rotor angle with reference to different machine 

parameters considering the time setting behavior before and after the maximum amplitude, 

which is generated following a three-phase short circuit on the one-machine system. On the 

basis of this illustration following aspects can be detected: 

 

•  The large influence of the inertial coefficient parameter Tm as well the small effect of 

other parameters on the behavior of δL can be depicted.  

•  However, Tm decreases its influence after the maximum amplitude. On the other hand, 

the sensitivity influence of the other parameters, such as the transient reactance x’d is 

increased in this case, but the sensitivity of Tm cannot be reached.  

•  The sensitivity has been evaluated taking into account the parameters defined in Fig. 

3.6. With this wide range of model parameters the synchronous machine may be 

described completely.  

 

Instead of the δL other machine behaviors are considered, which can be showed in the 

following figure. It shows the squared mean values of the sensitivities. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3.8.- Graphical comparison of the normalized square mean values of the sensitivities of rotor 

angle, rotor current and angle with reference to the parameters of the synchronous machines 

 

In this illustration, the sensitivity of different behaviors, i.e. electrical power, rotor current 

and voltage is described. In this case, a similar tendency as in the previous figure can be 

detected.  

In summary, Tm and x’d are relevant machine model parameters with significant influence on 

the behavior of the machine.  

 

0

10

20

30

40

50

Electrical Power
Rotor Current
Rotor Voltage

Normalized Squared 
Mean Value of 
Sensitivity  δδδδ L    (%)(%)(%)(%)

x‘d  x‘‘d xd     T‘‘    xσσσσs    rs      T‘d    T‘‘q   x‘‘q  xq    Tm

Machine Parameters

x‘d     x‘‘d     xd         T‘‘     xσs        rs          T‘d        T‘‘q      x‘‘q        xq         Tm 

50 
 

40 
 

30 
 

20 
 

10 
 

0 

Electrical Power 

Rotor Current 

Rotor Voltage 



ELECTROMECHANICAL-BASED IDENTITY RECOGNITION 34 

 

According to the sensitivity analysis, following main conclusions can be summarized: 
 

•  The inertial constant Tm determines significantly the behavior of the generator during 

short circuit period. Under all machine model parameters, this constant has the largest 

influence on the system dynamics during the total stability analysis. 

•  Additional to this factor, the transient reactance x’d plays an important role, but in a 

substantially lower grade than the inertial constant Tm. 

•  The sensitivity of the rotor angle speed, rotor current, and voltage with reference to the 

rotor reactance xσs is insignificantly low. 

 

Analytical verification to determine the relevance of the inertial coefficient Tm 

 

In the following, an analytical verification will be realized to determine the influence of the 

inertial coefficient on the identity recognition. By differentiating the equation of identity (3.26), 

two machines will have equal velocity and acceleration according to (3.27) and (3.28). Since 

the proposed identity of generators does not depend on the disturbance, the linearized 

equation (3.17) can be simplified according to the following assumptions: 

 

Assumptions: 
 

•  The electric power using the classical generator model may be found taking into account 

the admittance matrix denoted by Yij 12. 
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•  The mechanical power is considered as constant value for the fault period.  
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0   Pm =∆                (3.34) 

•  Internal voltages of the generators ji E E ,  are nearly equal to 1.0 p.u. 

•  The network is considered as highly reactive. 

•  The angular differences (δi-δj) are within 30°. 

 

In consequence, the change in electrical power in (3.33) can be expressed as: 

 

( )∑
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Substituting expressions (3.34) and (3.35) in (3.17), it becomes: 
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The linearized power variation-based swing equation of the generators for the ith and jth 

generator can be expressed according to (3.36) as follows: 
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The sign of the first term of the above two expressions are opposite to each other. 

Therefore, for any disturbance in power system an increase in acceleration of the ith 

generator causes an increase in ∆δi and ∆ωi. The increase in ∆δi and ∆ωi will tend to cause a 

decrease in the acceleration of the ith generator based on (3.37) and at the same time to 

increase the acceleration of the jth generator in (3.38). As the acceleration of the jth 

generator starts increasing, it causes to increase ∆δj and ∆ωj.  

 

                                                                                                                                                   
12 On the basis of the linearized model of the dynamic equation of the ith generator expressed in (3.1), Pe is the 
generator electric power obtained from a load flow solution. 

Terms relating other generators as the jth with ith generator

Terms relating other generators as the ith with jth generator
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Thus, the generators will try to swing together in terms of the synchronism through the 

mutual change effect defined by the first term. Therefore, the coefficient terms of expressions 

(3.37) and (3.38): 
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together give an estimate of the relative variation between the acceleration i
••

∆δ  and j
••

∆δ  13.  

 

Due to that M is considered as the per-unit value and proportional to Tm, those value can be 

found in the machine data set the following expression conveniently may be obtained: 

 

o

m

o

m T 
    

f 
T

    M
ωπ

2
==      (3.39) 

  T    M     m~⇒      (3.40) 

 

From this viewpoint and the previous sensitivity analysis, the relevant role of the inertia 

constant Tm is determined with respect to identical recognition of together oscillating 

machines, which give an estimate of the electromechanical effect of the generators. 

 

Following aspects are relevant to select the weighting factors: 

 

•  The inertial constant Tm determines significantly under all machine model parameters 

the behavior of the generator during short circuit period, which has been demonstrated 

by the sensitivity analysis and in expressions (3.37-3.39).  

•  This widely used parameter informs about the machine’s ability to ‘absorb’ and is used to 

quantify abrupt changes of their mechanical torque. In consequence, this constant 

characterizes the disturbed rotor angle trajectory.  

•  A significantly larger impact of this constant can be observed in nominal power, current, 

voltage or rotor angle behaviors of the machines according to Fig. 3.7 and Fig. 3.8.  

•  Because of this influencing factor, it is possible, to treat differently in electromechanical 

terms all the generators in the identity recognition procedure.  

                                                
13 Since Yij=Yji, the difference in the values of the coefficients of δ∆  in terms to find an equilibrium point, synchronism 
effect between together oscillating machines and minimal difference of the rotor angle behavior, is only due to the 
difference in Mi and Mj. 
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•  Another characteristic size of machines is the nominal power Sj, which characterizes 

the power balance experienced by each generator and its participation in the total power 

balance of the power system. Thus, it is a proper machine characteristic behavior.  

•  The nominal power Sj are particular size and characteristic of each machine that inform 

about the ‘degree of participation and effect’ of each machine in the during- and post-

fault periods.  

•  Therefore, large generators with large nominal power and large inertial constants have 

more electromechanical influence on the system dynamic than smaller generators. 

 

In consequence, according to the sensitivity analysis and the above verification, the following 

weighting factor may be defined: 

 

   Nj1       ST       W jmjj <<= ,*      (3.41) 
 

where Tmj is the inertial constant an Sj the nominal power of the corresponding generator. 

 

3.4.2 Electromechanical distance 
 

The specific physical effect and electromechanical influence of the generators with regard 

to their properties and structure derived previously have to be considered into the clustering 

of the machines. To this end, it is indispensable to include the weighting factors in the 

calculations of minimizing the cluster square distances to a centroid within each cluster 

resulting the so-called “electromechanical distance”. 

 

This situation contributes to a more accurate equivalencing that forms clusters to represent 

groups of entities with real electrical and physical identical properties.  

 

Hence, the grouping procedure can be adjusted by a weighted distance. These weights 

can be implemented in hierarchical, K-means and Fuzzy algorithms as distance criterion 

resulting the electromechanical distance. As can be obtained in the following way:  

 

  mincxSTcxWd
M

l

M

l
líljjmj

K

i

N

j
líljj

K

i

N

j
hanicalelectromec ∑ ∑∑∑∑∑

= =====

→−=−=
1 1

,,
11

,,
11

 (3.42) 

 

where Wj, is the weighting expression consisting of the inertia constant and the nominal 

power according to the expression (3.41). 
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The expression in (3.42) has to be introduced into the algorithms, such as K-means and 

hierarchical to be minimized.  

 

In Fuzzy clustering the electromechanical distance has to be integrated both in the distance 

calculation and in the objective function Jm (B.6), which is optimized iteratively according to 

the expression: 
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where  

 

•  dij is the distance between the generator and cluster centers,  

•  jw  is the weighting electromechanical factor to form the electromechanical distance, 

•  the membership degree of generator xj to cluster ci is denoted by µij and 

•  the parameter m>1 is called fuzziness index and influences the “fuzziness” of the 

obtained grouping. 

 

Accurate model parameter-based dynamic equivalents may be obtained by the 

electromechanical neighborhood relationships using the electromechanical distance between 

generators into the identity recognition. 

 

3.5 Case studies 
 

In order to verify the effectiveness, accuracy, and applicability of the electromechanical-

based identity recognition using K-means, hierarchical, Fuzzy and Kohonen-SOFM, a small-

scaled and large sized interconnected power system are examined. 

 

The investigated systems are: 

 

1. 16 Multi-machine system consisting of 16 generators. 

2. Interconnected European power system, known as UCTE/CENTREL consisting of the 

western European Union for the Coordination of transmission of Electricity (UCTE) 

and the central European power system (CENTREL) [142].  
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3.5.1 16 Multi-machine system 
 

This system consists of three strongly meshed areas with different voltage levels (380kV, 

220kV and 110kV) characterized by the area A, B and C. Each area has 5 or 6 generators. 

This system comprises hydro, nuclear, and thermal generators with ratings of 220MW, 

247MW, and 259MW respectively. It can be seen in Fig. 3.9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3.9.- 16 Multi-machine system 

 

Following system characteristics are important: 

 

•  In general, the system comprises 16 generators with their corresponding excitation and 

governor systems, 66 nodes, 16 two-winding transformation units, 12 three-winding 

transformation units and 54 transmission lines.  

•  The machines are described by 5th, exciters by 2nd and in some cases by 3rd order 

models. IEEE standard controller parameters are used for the governors and the 

excitation systems. Thus, a state vector of large dimension characterizes the models.  

•  Area A contains mostly hydro power plants and it is structured to be a power exporting 

area and B and C as demanding distribution systems.  

•  Areas A, B and C are considered as internal areas separately and retained individually in 

detail. The rest machines located outside of this corresponding area, assumed as 
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external area, have to be replaced by dynamic equivalents involving the 

electromechanical-based identity recognition and the classical inertial aggregation 

procedure.  

•  Using the equivalent models of the external area, the dynamic behavior of the time 

response of an internal machine following a certain disturbance is simulated.  

•  The behavior of the internal area machines calculated with help of the dynamic 

equivalents is compared with them calculated on the basis of the original external area.  

•  In order to realize an adequate testing of the proposed electromechanical identity 

recognition, various stability scenarios was investigated taking into consideration as 

study areas, A, B, and C respectively. Different disturbances as three-phase short circuit 

with duration between 80 to 200 ms were selected on the specifications, as described in 

the following table. 

 
Table 3.1.- Disturbance specifications for the 16 multi-machine system 

 
Internal Area Fault duration (ms) Fault location (node) 

100 C5 on 380kV 
100 C1 on 380kV Area C 
100 C8 on 220kV and C1 on 

380kV 
150 B1 on 380kV 
150 B10 on 220kV 

 

Area B 150 B2 on 220kV 
200 A5a on 380kV 
200 A5b on 380kV Area A 
200 A2 on 380kV 

 

These disturbances were applied to the boundary nodes between the areas. The boundary 

node location is a suitable choice for the application of a disturbance because electrically and 

geographically the disturbance is strongly coupled to all areas.  

 

3.5.2 Simulation results and discussion 
 

All results, considering the disturbances of table 3.1, are accurate enough. However, a 

representative scenario may be described. In this case, the internal area consisting of 5 

internal machines of area C, which dynamics are of interest, is retained in detail, and the 

external area, consisting of 11 machines of areas A and B, is performed on basis of 3 

equivalent machines applying the proposed identity recognition algorithms.  

The disturbance is a three-phase short circuit during 100ms at the nodes C01 on 380kV 

and C08 on 220kV applied at the same time. This fault creates a major system-wide 

disturbance and is applied after 1 sec., the transient stability simulation duration is 10 sec. 
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Considering this disturbance, following aspects has been examined: 

 

i. Clustering or grouping of external machines according to the identity recognition. 

ii. Internal machine behavior using the identity recognition-based dynamic equivalents. 

iii. Internal machine behavior depending on different number of dynamic equivalents. 

iv. Identity recognition accuracy depending geographically on the disturbance location. 

 

i.   Clustering 
 

According to the above scenario, the following external machine grouping assignment can 

be obtained independent on the used identity recognition algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3.10.- Schematic representation of the grouped 16-machine System following disturbances at 

the boundary nodes C1 on 380kV and C8 on 220kV at the same time. 

 

This grouping, showed in Fig. 3.10, corresponds to the grouping of time responses 

represented in Fig. 3.11. These generator responses are simulated with PSD. Same 

machine assignment to the cluster groups and consequently similar dynamic equivalents are 

obtained using K-means, Hierarchical, Fuzzy, and SOFM. 
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Fig. 3.11.- Assignment and grouping of identical external machines according to the identity 

recognition algorithms in conjunction to Fig. 3.10. 

 

However, another cluster assignment can be obtained using the electromechanical-based 

recognition algorithms. 

To compare the algorithms, the internal machines will be simulated using the equivalents and 

their behaviors evaluated tacking into account their phase and amplitude. 
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ii.   Internal machine behavior with identity-based dynamic equivalents 
 

The internal machine C12 will be simulated in the stability analysis one hand with help of 

the dynamic equivalent of the external area on the basis of the identity recognition methods, 

and another hand with help of the original external area using PSD. For more details on the 

validity of PSD, the reader can refer to section 2.3. 

All internal machine behaviors show the same accuracy independent of the used identity 

recognition algorithm, as can be seen in the following Fig. 3.12; the behavior of the internal 

generator C12 is represented using the electromechanical-based Fuzzy and K-means. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3.12.a, b.- Comparison of time responses of C12 internal machine calculated with 3 cluster 

groups according to the electromechanical Fuzzy and K-means 

 

As it can be seen in Fig. 3.12.b, an improvement in accuracy and agreement can be 
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means, and SOFM generate similar grouping assignments, the electromechanical-based 

algorithms of Fuzzy, K-means and hierarchical generate other groups. 

 

iii.   Internal machine behaviors with different number of dynamic equivalents 
 

The following figure examines the internal machine C14 using different numbers of identity 

recognition-based equivalents reduced from 11 machines.  

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3.13.- Comparison of time responses of the internal machine C14 depending on the reduction 

degree with 1, 3, 6 electromechanical Fuzzy algorithm-based equivalents. 

 

It can be detected that the oscillating swing curve for C14 calculated with different number 

of equivalents is very close to that of the original behavior. However, a degradation in 

accuracy with one equivalent can be determined. 

 

iv.   Internal machine behaviors depending on the disturbance location 
 

A detectable degradation of agreement and accuracy can be discerned in the internal 

machines depending on the disturbance location.  

 

- The internal machines, i.e. the C10, C12 and C14, located far away from the 

disturbance, with which the identity recognition was realized, are less accurate (see Fig. 

3.12 and Fig. 3.13).  

- In contrast with this, the C2 and C7 machine behaviors are high accurate, as can be 

seen in the Fig. 3.14. These machines are closest to the disturbances of the equivalents 

derived (disturbances on node C1 and C8 of area C, see Fig. 3.10). 
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Fig. 3.14.- Time responses of the C2 internal machine calculated with 3 equivalent machines by 

different identity recognition-based algorithms. 

 

The same identity recognition-based equivalents can be used to simulate other 

disturbances, which have to be coupled electrically and geographically to the one. The 

following cases can be simulated: 

 

- In Fig. 3.15, the behavior of the C2 generator following the disturbance on the node C3 in 

380kV area is represented. This disturbance is electrically and geographically in close to 

the disturbance of the equivalents derived. 

- In Fig. 3.16, the behavior of the C2 generator following the disturbance on the node C9 in 

220kV area is represented. This disturbance is electrically and geographically far away 

from the disturbance of the equivalents derived. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3.15.- Time responses of the C2 internal machine following the disturbance (electrically and 

geographically closest) applied on C3 node of internal area. 
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Fig. 3.16.- Time responses of the C2 internal machine following the disturbance (electrically and 

geographically far away) applied on C9 node of internal area. 

 

The oscillation behavior of Fig. 3.15 shows a higher degree of agreement than the one of 

Fig. 3.16. Thus, the electromechanically derived equivalents are also valid for other 

disturbances limitedly, that are electrically and geographically in close distance to the fault of 

the equivalents derived, i.e. the closer these disturbances, higher the accuracy of the 

equivalents. 

 

Following aspects can be briefly summarized: 

 

•  All identity recognition algorithms provide the same machine assignment and grouping of 

external machines for this 16 multi-machine system. Consequently, they generate 

identical dynamic equivalents.  

•  Improved dynamic equivalents are obtained using electromechanical-based identity 

recognition algorithms. 

•  The accuracy of the identity recognition depends upon important aspects, such as:  

 

- the identity recognition capability of the algorithms. 

- number of dynamic equivalents. 

- the geographical and electrical distance between internal machines and 

disturbances. 

 

A discernible accuracy improvement by means of the electromechanical distances can be 

detected at the stability analysis in a large interconnected power system, as it can be 

presented in the following case study. 
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3.5.3 Interconnected European Network UCTE/CENTREL 
 

The electromechanical identity recognition was applied to the Interconnected European 

power system UCTE/CENTREL, consisting of 464 machines, 2016 nodes and 2098 

transmission lines with their excitation and governor control models [142].  

 

Additional to the western European Union for the Coordination of Transmission of 

Electricity (UCTE), the central European power system (CENTREL) includes the eastern 

European countries. The following table shows different European network subsystems. 

 
Table 3.2.- Subsystems in the European Interconnected Power System UCTE/CENTREL 

 
Power Subsystem Country Power Subsystem Country 

ALB Albania MAZ Macedonia 
B Belgium NL The Netherlands 

BAG Germany OEVG Austria 
BEWAG Germany PE Germany 

BG Bulgaria PL Poland 
BiH Bosnia/Herzegovina Po Portugal 
CEZ Czech Republic ROM Romania 
CH Switzerland RWE Germany 

ELSAM Denmark SEP Slovakia 
EnBW Germany SL_HR Slovenia/Croatia 

FR France Sp Spain 
GR Greece VEAG Germany 
HU Hungary VEW Germany 
IT Italy YU Yugoslavia 

LVOV Ukraine   
 

The integration of the systems UCTE and CENTREL leads to a complex stability behavior 

and reciprocal dynamic impact between strongly mashed subsystems. Taking into 

consideration the liberalization of electric market in Europe, the operators are forced to 

operate the subsystems near to the stability limits and outside their local area. Consequently, 

the operators due to safety reasons have to realize different stability assessment and 

analysis actions within their internal subsystems. To this end, information, and knowledge 

over the network structure and the actual operation situation of the external subsystems, i.e. 

outside of the internal subsystem, should be available limitedly involving dynamic 

equivalents.  
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In this study, the available data for the UCTE/CENTREL system include transformers, 

machines, loads, transmission lines, amongst others. The machine model is either described 

by 5th or 6th order models including governors and exciters by 2nd and 3rd order models.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3.17.-Interconnected European power system UCTE/CENTREL [142]. 

 

For the simulation following aspects are relevant: 

 

•  The power system is divided into the German system consisting of the old operators: 

BAG, BEWAG, EnBW, HEW, PE, RWE, VEAG and VEW forming the internal area. It has 

to be preserved in the original form, consisting of 67 machines, which are available 

physically in the actuality in spite of all liberalized market operations (For details see 

appendix Fig. F.1). All these machines are retained individually.  

•  The rest 397 machines located outside the German area, considered as external area, 

have to be replaced by dynamic equivalents involving the electromechanical identity 

recognition and the classical inertial aggregation procedure.  

•  The electromechanical identity recognition performance will be evaluated by comparing 

the oscillating swing curves of the internal area machines. They will be simulated using 

PSD in one hand with help of the full external area and another hand by the dynamic 

equivalent of the external area. (For more details on PSD see section 2.3) 

•  To this end, several disturbances as three-phase short circuit with a duration between 80 

to 200 ms were selected, which are applied at the boundary between the German and 

external area. These disturbances are described in table 3.3. 

 

External Area

Internal
Area 

Applied disturbances 
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Table 3.3.- Disturbance specifications for the European power system UCTE/CENTREL (the boundary 
nodes correspond to NL=Netherlands, CH=Swissland, OEVG=Austria) 

 

Cases 
Fault location 

(German network 
operator) 

Neighborhood nodes 

1 VEGROUSB (VEW) NLHENGL4 (NL) 

2 BWKUESSA (EnBW) 

CHLAC SA (CH) 
CHLAUBSB (CH) 
CHLAVOG4 (CH) 
CHGOEESA (CH) 
CHBASUSA (CH) 

3 RWHERBG2 (RWE ) OBUERS2 (OEVG) 
CHWINKL2 (CH) 

4 EVPULDSB (EnBW) CHLAUBSB (CH) 
5 RWLEULSA (RWE) OWESTT1 (OEVG) 

 

Considering these faults, all simulations are similar and show a high accuracy and 

agreement. A representative scenario is the disturbance, which is based on the case 1 

during 100 ms at the boundary node VEGROUSB (VEW). This node is located in the near to 

the Dutch node NLHENGL4 (NL). The three-phase short circuit is applied to a 500kV bus, 

which connects the Dutch and the German system.  

This fault creates a major system-wide disturbance and is applied after 2 sec., the transient 

stability simulation duration is 10 sec. 

 

3.5.4 Simulation results and discussion 
 

This disturbance is simulated using the original external area and the reduced external 

models, which are based on different number of dynamic equivalents from 180 until 20. The 

proposed identical recognition algorithms will be applied. Hence, the following representative 

cases are presented: 

- Case 1 — 90 European dynamic equivalents reduced from 397 machines 

- Case 2 — 65 European dynamic equivalents reduced from 397 machines 

- Case 3 — Electrical and geographical coupled 65 European dynamic equivalents 
 

Case 1 — 90 European dynamic equivalents reduced from 397 machines 

 

In this case, the time behavior of the German machine KIEL1 following the disturbance at 

the boundary node VEGROUSB (VEW) is calculated, in one hand, with the unreduced 397-

machine external area and in the other hand with 90 equivalents. K-means, Fuzzy and 
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SOFM and their corresponding electromechanical algorithms have been applied, as can be 

shown in the following figures: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3.18.a, b, c.- Comparison of time responses of the KIEL1 German machine calculated with 90 

equivalent machines by different identity recognition algorithms and considering their 

electromechanical weighting (weighted K-means, weighted Fuzzy and Kohonen-SOFM). 
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•  The time responses of the internal machines with the dynamic equivalents considering 

the electromechanical distances in all identity recognition algorithms (as K-means in Fig. 

3.18.a, and Fuzzy in Fig. 3.18.b) is very close to that of the unreduced system for the 

whole time simulation.  

•  Considering only the algorithms without electromechanical distance, a notable accuracy 

of K-means in Fig. 3.18.a can be detected in comparison to Fuzzy in Fig. 3.18.b and 

SOFM in Fig. 3.18.c, which show a great deviation over 3 sec. to 6 sec. concerning 

phase and amplitude.  

•  However, it should be mentioned that same accuracy by Fuzzy and SOFM is achieved 

directly after the disturbance, i.e. during the first 3 seconds and over 6 seconds of the 

simulation.  

•  Therefore, depending on the applied algorithm a detectable degradation in accuracy may 

be discerned in large-scaled power systems.  

•  K-means and relatively Fuzzy recognizes better identical groups of generators than 

SOFM, but through the electromechanical distance all algorithms recognizes 

electromechanically close identical groups taking into consideration the physical 

parameters of the grouped generators and consequently they form more accurate 

dynamic equivalents. 

 

Case 2 — 65 European dynamic equivalents reduced from 397 machines 

 

In this case, the Figs. 3.19.a and 3.19.b show the oscillation time responses of the STDE1 

German machine. They are simulated using the dynamic equivalent consisting of 65 

equivalent machines and following the disturbance at node VEGROUSB (VEW). 
 

Remarks to Fig. 3.19.a and Fig. 3.19.b: 

 

•  The same degradation of accuracy in K-means and Fuzzy of oscillation of the STDE1 

German machine following the same disturbance in case 1 of table 3.3 can be observed 

in Fig. 3.19.a and Fig. 3.19.b, respectively. In this context, a considerable deviation of the 

time oscillation both in K-means and Fuzzy in amplitude and phase over 4 seconds until 

to 6 seconds during the simulation can be detected. 

•  However, a significant enhancement of the agreement can be discerned considering the 

electromechanical parameters as weighting distances in K-means (Fig. 3.19.a) and 

Fuzzy (Fig. 3.19.b), as well in the previous case. 

•  Both above aspects, such as the degradation of accuracy and enhancement through the 

electromechanical distance are observed in dynamic equivalencing procedures on the 
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European power system independent of the reduction degree of the external area, i.e. 

equivalents of 90, 65, and lower number of equivalent machines reduced from 397 

external machines outsides of the German area. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3.19.a, b.- Comparison of time responses of the STDE1 German machine calculated with 65 

equivalent machines by different identity algorithms with electromechanical distances 

(weighted K-means, weighted Fuzzy). 

 

The high accuracy through the electromechanical distance was determined for all 

machines in the German system. 

 

Case 3 — Electrical and geographical coupled 65 European dynamic equivalents  
 

The derived equivalents calculated by the electromechanically identical groups following 

the disturbance at VEGROUSB (VEW) (equivalent disturbance) were valid in the same 

manner for disturbances too, whose locations are electrically and geographically in the near 

or close to this equivalent disturbance. The following cases can be simulated: 
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- In Fig. 3.20, the behavior of the BWKUESS German machine following the disturbance 

on the node VEHANNSA (VEW) is represented. This disturbance is electrically and 

geographically in close to the disturbance of the equivalents derived. 

- In Fig. 3.21, the behavior of the same German machine following the disturbance on the 

node EVDELSSAD (EnBW) is represented. This disturbance is electrically and 

geographically far away from the disturbance of the equivalents derived. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3.20.- Behavior of the BWKUESS German machine using 65 equivalents considering their 

electromechanical-based algorithms and following a disturbance at VEHANNSA (VEW). 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3.21.- Behavior of the BWKUESS German machine using 65 equivalents considering their 

electromechanical-based algorithms and following a disturbance at EVDELSSAD (EnBW). 

 

In Fig. 3.20, it can be seen a quite agreement of the time responses in the first 5 sec. 

following a degradation in accuracy over 7 sec. Thus, the electromechanical weighted 
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Fig. 3.20 and Fig. 3.21 show that electromechanical identity recognition-based dynamic 

equivalents are valid for other disturbances, whose location have to be geographically and 

electrically coupled to the disturbance, for which the equivalent was developed. 

 

In both cases, the oscillation behavior shows a high degree of agreement. Although, the 

disturbance on EnBW subsystem (in Fig. 3.21) is far away geographically from the 

disturbance on VEW subsystem, a significant accuracy of the derived equivalents can be 

obtained. However, considering all German machines, the electromechanically derived 

equivalents are also valid for other disturbances that are independent electrically and 

geographically of close distance to the disturbance of the equivalents derived. Therefore, 

electromechanical-based identity recognition makes it possible that disturbance-independent 

dynamic equivalents can be generated. 

 

Quality measurement of the identity recognition approach 

 

In this section, the behavior of all German machines is investigated using the following 

proposed algorithms regarding their suitability and accuracy: 

 

- Identity recognition algorithms, such as Fuzzy, K-means, Hierarchical, and SOFM.  

- Electromechanical-based algorithms, such as electromechanical Fuzzy, K-means and 

Hierarchical. 

 

The measure for evaluating the three methods is defined as follows: 
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where  

•  ∆P(i)Original and ∆P(i)Dyn. Equi. are the time domain behavior of the ith generator in the 

German system, which are calculated with the original European external area and 

the equivalented one. (∆P(i)Original-∆P(i)Dyn. Equi.)2 is defined as squared distance error. 

•  Np is the number of sampling points and  

•  Ns is the total number of generators in the internal area.  

 

The “best” identity recognition algorithm is the one that gives the minimum squared 

distance error or maximizes J(i). Taking into consideration all German machines, the 

following mean value J  may be defined as: 
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This J  may be called the identity coefficient corresponding to a used algorithm. 

 

Of course, by means of this value the quality, accuracy and grouping capability of a identity 

recognition algorithm can be characterized and compared depending on the reduction 

degree of 397 external machines from 20 to 180 dynamic equivalents, as it can be seen in 

the following figure: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3.22.- Comparison of identity recognition algorithms considering electromechanical weighted 

distances by the mean value of J of the 67 German intern machines for a fault located at the 

boundary node VEGROUSB(VEW) with different number of external equivalents. 
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As it can be seen in Fig. 3.22, the proposed electromechanical-based identity recognition 

with Fuzzy and K-means, i.e. weighted Fuzzy and weighted K-means, gives the best result 

and accuracy, as accentuated and highlighted beams illustrated, independent of the number 

of equivalents. The detailed values are given in the appendix table F.3. 

 

Remarks to Fig. 3.22: 

 

•  Both SOFM and Fuzzy algorithms show a considerable degradation in agreement and 

accuracy in contrast to K-means.  

•  The identity recognition capability of the SOFM is limited due to the slow learning 

process and the unsupervised nature of the ANN learning.  

•  In Fig. 3.22, it is depicted that lower the number of equivalents, the less accurate are the 

algorithms, i.e. J  for 20 dynamic equivalents are lower J  for 180 dynamic equivalents. It 

is due to the nature of the clustering procedure. 

•  The best identity algorithms and consequently the small distance errors are the 

electromechanical-based algorithms independent of the number of equivalents.  

•  This aspect leads to electrically efficient and more accurate dynamic equivalents. 

Consequently, in the grouping process is taken into account the electromechanical 

properties of the interconnection among the external machines.  

 

It should be noted that the electromechanical-based identity recognition is applicable 

without restriction to a power system independent of its structure, size and complexity. This 

is fairly demonstrated both on the 16 multi-machine system and the interconnected European 

system UCTE/CENTREL obtaining strongly accurate equivalents. 

 

3.6 Summary 
 

•  A new approach in dynamic equivalencing of power systems, called electromechanical-

based identity recognition, as alternative to the classical coherency identification is 

proposed to obtain identity-based equivalent generators of external large power systems.  

•  Through this approach, the grouping of generators is considered as an identity analysis 

task. Together oscillating machines have to be determined by evaluating the amplitude 

and phase identity of the rotor angle behavior of the generators, and not only the phase 

of the rotor angle (coherency identification). 

•  The phase and amplitude of the behavior have to be examined applying standard pattern 

recognition algorithms, such as hierarchical, K-means, Fuzzy and SOFM.  
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•  The proposed identity recognition can incorporate machine system model parameters in 

dynamic equivalencing process.  

•  Thus, specific physical effects and electromechanical influences of the generators with 

regard to their properties, modeling and structure can be considered to cluster the 

machines according to the proposed electromechanical distance. These parameters are 

defined using the sensitivity analysis. Thus, large generators with large nominal power 

and large inertial constants have more electromechanical influence on the system 

dynamic than smaller generators. 

•  Therefore, the obtained electromechanical-based identity recognition forms improved 

and high accurate dynamic equivalents. 

•  This approach is verified both on the 16 multi-machine system and the interconnected 

European power system UCTE/CENTRAL without restriction. It is applicable to all forms 

of power systems independent of their structure, size, and complexity. 

•  In small power systems, all electromechanical identity recognition algorithms generate 

similar accurate dynamic equivalents with high agreement. But, in the Interconnected 

European power system UCTE/CENTREL, in which the German network as internal area 

is simulated, the results are significantly accurate.  

•  Best results with a high degree of accuracy are achieved with help of the 

electromechanical distances forming weighted K-means and weighted Fuzzy algorithms. 

SOFM are not appropriate due to the ineffectiveness of its learning process and neural 

network topology for complex systems. 

•  Further, it has been determined, that grouping process is partially independent of the 

fault location. However, more accurate dynamic equivalents can be achieved by 

disturbances, which are electrically and geographically strong connected to the one.  

•  But, the derived equivalents calculated by the electromechanical identity recognition 

following a certain disturbance are valid in the same manner for other disturbances too, 

whose locations are electrically and geographically in close to the equivalent disturbance 

or far away from the one. 

 

 



 SPLITTING AGGREGATION-BASED DYNAMIC EQUIVALENCING 58 

 

“He was under the impression that a system description (by the system 

decomposition) is exactly the same as a system in a concrete physical 

sense.”-R. Kalman [138]- 

 

 

Chapter 4  
Splitting Aggregation-based 

Dynamic Equivalencing  
 

 

Objective— The objective of this chapter is to develop an innovative aggregation approach 

to construct representative machines with improved accuracy and to consider essentially 

characteristics of the generators regarding their electromechanical parameters. 

This chapter mainly describes the concept and strategy of an aggregation approach on the 

basis of the fictive splitting of external machines. This splitting strategy is used as a basis for 

implementing mathematical reduction techniques in dynamic equivalencing and thus 

obtaining a reduced electromechanical system of the area being equivalenced, which can be 

applied in transient stability studies.  

 

The splitting factors may be derived by mathematical reduction techniques, such as the 

Fuzzy theory or principal component analysis. The relevant property of this approach 

consists of incorporating of new defined electromechanical splitting-based machine 

parameters that it significantly improves the accuracy and efficiency of dynamic equivalents 

and thereby enhances their effectiveness and application.  

 

Simulations of this approach have been performed and evaluated in an interconnected 16 

multi-machine power system. 

 
Index Terms— Aggregation, Coherency Identification, Dynamic Equivalent, 

Electromechanical Parameters, Identity Recognition, Splitting-based Parameters. 

 

Organization— Section 4.1 describes the introduction and section 4.2 of this chapter the 

classical methodologies concerning generator aggregation. The proposed splitting-based 
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aggregation approach is discussed in section 4.3, followed in section 4.4 by the application. 

In section 4.5 the simulation results are evaluated and in section 4.6 the summary is given. 

 

4.1 Introduction 
 

Generally, a complex power system can be divided into two areas, the internal area that 

has to be retained for analysis, and the external area that is to be reduced to a simplified 

aggregated model of the external machines. The conventional aggregation in dynamic 

equivalencing generates aggregated equivalents on the external area on the basis of inertial 

and slow aggregation [30-32], which can be replaced by an innovative approach, i.e. the 

splitting-based aggregation. Using this concept, the classification and grouping of together 

oscillating machines are replaced by a virtual splitting of machines. 

The developed approach is based upon the splitting strategy to process the swing 

oscillating curves in time domain of the external machines. This strategy generates splitting-

based electromechanical parameters considering the physical characteristics of the whole 

number of external machines.  

 

4.2 Conventional aggregation in dynamic equivalencing 
 

The classical dynamic equivalencing involves mainly a three-stage procedure of: 

 

- Identification of coherent generators in the external area forming groups [17, 18].  

- Conventional Aggregation of the grouped external generators without changing the 

power flow relationships where these generators show coherent [17] properties. 

- Static network reduction 

 

A coherent group of generating units is defined as a group of generators oscillating with the 

same rotor angular speed. The representative machine parameters of this group can be 

calculated according to the classical aggregation approaches, such as the inertial and slow 

aggregation, which are zero and first order approximations of singularly perturbed two-time-

scale power system models, respectively [30, 31, and 35].  

The inertial aggregation does not involve linearization aspects, because its procedure 

operates only on the generator terminal buses of the grouped generators. However, these 

approaches require the determination and classification of coherent machines, which is not 

necessary according to the proposed splitting based aggregation. It represents a significant 

change of the classical dynamic equivalencing procedure because non-linear processes and 

behaviors of the power system can be taken into account. 
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Disadvantages: 
 

Considering the grouping-based simplified models, which are required by the classical 

aggregation, the following disadvantages may be determined: 

 

•  The inertial and slow aggregation are performed only and limitedly on a per coherent 

area of external subsystem. 

•  The aggregation of the network in one coherent or identical area can affect electrically 

the network aggregation in other coherent areas. Consequently, the error in the 

aggregation approximation may result in a decrease of accuracy. 

•  On the coherent-based models of power systems, the aggregated area that includes 

generator and non-generator buses (PV and PQ nodes) is aggregated to the machine 

terminal node and non-generator buses are not considered in the aggregation procedure. 

As a result, the accuracy of aggregated network is reduced. 

•  The aggregated groups are independent upon the detailed machine model, i.e. the 

physical parameters of the machines. Moreover, although many improvements in the 

classical aggregation strategies [30] and coherency [19] were made, the related non-

linear behavior cannot be considered accurate enough for forming equivalent 

parameters. 

•  Due to the grouping procedure, the corresponding equivalents are not exact enough, 

since the whole aggregation structure of the external area can be lost. 

 

4.2.1 Inertial Aggregation 
 

Modeling of synchronous machines 
 

There are various types of models of synchronous machines for power system transient 

stability studies. In aggregation simulation using PSD [87, 141] (for details see section 2.3), 

the machine model can be coupled into the analysis program PSD according to the flow 

chart in appendix A.8. These machines are expressed by the direct- and quadrature axis 

having one damper circuit both in d- and q-axis, which can be transformed from the L1, L2 

and L3 stator to dq0 system, as it can be graphically represented as follows: 



 SPLITTING AGGREGATION-BASED DYNAMIC EQUIVALENCING 61

 

 

 

 

 

 

 

 

 
Fig. 4.1.-  Synchronous machine models: L1-L2-L3 transformed in dq-system 

 

In this model following aspects are important: 

•  The quasi-state synchronous machine model is based upon the voltage: 
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flux linkage: 
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and mechanical equations: 
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•  All state variables will be transformed into the rotor coordinate system with the aim that 

the stator flux linkage is not a state variable and thus, it follows changes of the stator 

voltage and rotor flux linkage. Hence, the stator flux linkage in the rest state space 

equations for rotor flux linkage and mechanical behavior may be eliminated [87]. For 

transient stability analysis a quasi-state model is sufficient.  
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•  Thus, 0=dψD  and 0=qψD  lead to the following simplified state space form of 

synchronous machines: 
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where the time constants are: 
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where 

 

•  xhd, xhq, xσDq, xσDd, xσfd, xσfDd, x’’d, x’’q are the synchronous reactance and 

subtransient synchronous reactance, respectively. 

•  ud, uq, ufd are the stator voltage in q and d-axes and the exciter voltage 

respectively. 

•  uS, iS are the stator (terminal) voltage and current, respectively. 

•  mm is the turbine mechanical torque. 

•  id, iq, are the stator currents in q and d-axes, respectively. 

•  Tm is the shaft inertia constant. 

•  ωo is the network frequency referenced to p.u. 

•  ψL, ψS are the rotor and stator flux linkage, respectively. 

•  ωL, δL are the rotor angular velocity and rotor angle, respectively. 
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•  The state space equation of the machine may be coupled to the power system through 

the following complex algebraic equation and according to the appendix A.8: 
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where the driving voltage ''u  is a function of the state variables flux linkages, rotor 

position angle and partly of the stator current, as follows: 

 

LL jδ
d

''
d

''
q

jδ
q0

''
d0

''''
o

'''' e)ixj(xeuj uuu     u −++=∆+= )(    (4.6) 

( ){ } Ljδ
d

''
d

''
qDdDdfdfdDqDq0

'' e  )ixj(x)ψkψj(kψk-ω     u −+++=    (4.7) 

 

•  By means of Lie δ , a transformation from the rotor to the network coordinate system is 

realized. The quasi-state space equation (4.2) is solved by numerical integration in PSD, 

when id, iq are known [87]. This model is used within classical aggregation [15, 30-33]. 

 

Following aspects are relevant to the machine equivalent: 
 

•  This model of the classical aggregation creates a new terminal bus and connects it to the 

internal busses of each individual generator via pseudo transformer. The transformation 

ratios are chosen so that the driving voltages of generators will be transformed to the 

aggregated driving voltage of the equivalent generator to a uniform one, according to the 

relationships (3.6) and (3.7).  

•  The circuit must be completed by a branch with the negative transient reactance of the 

equivalent generator to get the new terminal bus according to Fig. 3.2. The transient 

reactances combined with the transformers, allow the elimination of the internal nodes of 

original generators.  

 

Aspects of the machine parameters are summarized as follows: 

 

•  The machine parameters are calculated from the weighted mean values of generators 

inductances and resistances as reciprocal values in p.u., as follows: 
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where  

•  xi represents resistances, main-field and linkage inductance of all circuits. 
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•  NG is the number of coherent or identical machines in the corresponding group. 

 

•  Equation (4.8) means that the parameters will be connected parallel and it is one of the 

possible solutions. Another way would be the calculation of aggregated parameters for 

the transient, subtransient reactance, time constants system parameters directly. 

•  The sum of active and reactive power at the internal nodes behind transient reactances 

must be supplied by equivalent generator, too. The resulting nominal power of the 

equivalent machine is the sum of all generator powers given by: 

 

∑=
NG

i
rirE SS       (4.9) 

 

•  The nominal voltage of the machine is not a relevant variable, but it has to be considered 

in the tape ratio of pseudo transformers. 

•  The resulting inertial constant of the equivalent machine is given by: 
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NG

i
miEm TT      (4.10) 

 

•  When all parameters are given, the driving voltage of the equivalent behind of the 

resulting transient reactance can be calculated.  

•  After then the equalizer transformers are included into the network. These transformers 

don’t have inner impedance. Therefore the individual generator reactance can be 

interpreted as transformer impedance, so that the transformers are placed between the 

individual terminal buses and the joined aggregated point. 

 

The advantage is its simplicity. In dynamic behavior, it shows a sufficient accuracy.  

 

4.2.2 Slow coherency aggregation 
 

The classical slow coherency aggregation [15, 30-33] is based upon an impedance 

modification to the inertial aggregation.  

 

This slow aggregation starts with a linearization at the generator terminal buses. Then, the 

fast inter-machine variables, defined by the singular perturbations theory, are eliminated, and 

a power network is reconstructed from the reduced linearized model.  
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A schematic illustration of the slow coherency aggregation is shown in the following figure. 

 

 

 

 

 

 

 

 

 

   (i)      (ii)          (iii) 

 
Fig.4.2.-  Slow coherency aggregation 

 

Linearized model of the slow and fast subsystem 
 

The slow coherency aggregation is characterized by the linearizing about the generator 

buses and internal nodes. These linearized swing equations for the generators at the 

operating power flow equilibrium: 
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where  

•  ∆δa and ∆δb are the incremental variables for δa and δb. 

•  ∆Ιa and ∆Ιb the incremental for Ιa and Ιb. 

•  Ua, Ub are the bus voltage magnitude to bus a and b. 

•  θa and θb are the bus voltage angle a and b. 

•  Ea, Eb are the individual generator internal voltage of generator a and b. 

•  Mi is the inertia constant of the ith generator. 
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Defining the state variable vector x, the algebraic variable vector z and the current injection 

variable I∆  as phasor form with: 
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the matrix form of the state system can be obtained as: 

 

zxx 21 KK +=
•

      (4.15a) 

zxI∆ 43 KK +=       (4.15b) 

 

Another important step in slow aggregation is the transforming to slow and fast variables. In 

this case, when the machines form a slow coherent group, their center of angle is considered 

as the slow variable and the inter-machine oscillations as the fast variables. 

In order to perform the slow aggregation, the original machine angles have to be 

transformed to these new slow and fast variables. These transformation and aggregation can 

be realized on a per coherent area, sequentially in any order of the coherent areas.  

 

The slow aggregate variable δs and the fast local variable δf are defined as: 
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Applying the transformation (4.16) and (4.17) to the linearized model (4.15), in matrix form 

the linearized system in two time-scales can be obtained: 
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Assuming that the fast dynamics in ∆δf have decayed, i.e. 0=∆
••
fδ , the quasi-steady of ∆δf is: 
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Eliminating ∆δf  from other variables, the following expressions can be obtained: 
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Hereby  
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System (4.21) represents the linearized model of the slow subsystem. A power network must 

be reconstructed whose linearization would yield (4.21).  

 

The machine equivalent parameters are defined as follows: 

 

•  The terms K1s, K2s and K3s are needed to construct lines connecting bus ‘p’ to the original 

generator terminal buses ‘a’ and ‘b’, and the term K4s is needed for the lines 

interconnecting buses ‘a’ and ‘b’ according to Fig. 4.2 ii.  

•  In addition, the reconstruction from K4s will not satisfy the network flow condition. 

Therefore, after the line reconstruction for buses ‘a’ and ‘b’ is completed, the balance of 

the power flow by adding loads to these buses has to be realized.  

•  The creation of bus ‘q’ and adjusting generation on buses ‘a’, ‘b’ and ‘q’ are similar to the 

procedure on inertial aggregation, as can be seen in Fig. 4.2 iii.  

 

This analytical aggregation approach is suitable to be used, when linearized modes only are 

considered. 

 

4.2.3 Power invariance aggregation 
 

This method is based on the concept of the power invariance [35] at the generator internal 

buses and at the terminal buses, in which the generators of a coherent group are connected.  

Since a generator is represented by a voltage source behind transient reactance in series 

with its transient reactance and connected to the terminal bus, a fictitious point can be 

assumed in between the internal voltage source and the transient reactance (see Fig. 4.3).  
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Following aspects to the machine equivalent are important: 
 

•  For a group containing NG generators (see Fig. 4.3 i), fictitious points are connected 

together such that it connects all the internal voltage sources of that group and one end 

of the transient reactances in a common point, as it can be shown in Fig. 4.3 ii.  

•  The paralleled internal voltage sources of the group are now replaced by an equivalent 

voltage source considering in terms of the generator current injection into corresponding 

buses, which may be observed in Fig. 4.3 iii: 
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•  It will be capable of supplying the active and reactive power equal to the sum of the 

active and reactive powers delivered by all the generators of the group.  

•  This changing structure can be showed schematically as follows: 

 

 

 

 

 

 

 

 

 

      (i)         (ii)       (iii) 

 
Fig. 4.3.-  Power invariance aggregation 

 

Aspects to the machine parameters are summarized as follows: 
 

•  The transient reactance of the individual machine of coherent group is modified to retain 

the original power division from the equivalent voltage source to the points of the 

connection in the network as: 
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where, X’dEi is the transient reactance connecting the equivalent generator to the ith bus. 

•  After modifying the reactances of all the coherent generators, all the load buses and the 

generator terminal buses are eliminated retaining only the generator internal buses.  

•  The loads are converted to constant admittance to ground.  

•  Thus, the reduced order system admittance matrix obtained from the bus admittance is 

used in the dynamic equation for transient stability analysis. 

•  The inertia constant, damping coefficient, electrical and mechanical power of the 

equivalent machine are obtained respectively as: 
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•  This method is suitable in case of equivalent generator representation and in network 

reduction retaining the terminal bus of each of the coherent generators. Hence, it 

preserves the basic structure of the original system.  

 

4.2.4 Berg and Ghafurian’s aggregation 
 

In this method an equivalent generator can replace the coherent group of generators and the 

following mathematical steps modify the network [36, 37]: 
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where NGth and (NG-1)th generators are coherent, 
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 α is a complex constant. (4.30) 
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A coherent group of NG generators can be reduced to an equivalent generator by a 

sequential procedure of elimination of one generator at a time. The inertia, damping and 

mechanical power of the equivalent are obtained in terms of the power invariance equations. 

 

4.3 Splitting-based aggregation approach 
 

According to the classical aggregation, external generators [17, 18] can be replaced by 

means of an equivalent generator using the concept of ‘direct assignment’ (see Fig. 4.4.a).  

 

The proposed approach presents an innovative concept based on the splitting of the 

complete number of external generators into fictive shares in terms of virtual generators.  

 

The impact of power generation of the generators on the dynamic behavior of power 

systems is splitted into significant parts, which represent the influences of the original 

generators on the dynamic equivalents according to a ‘share assignment’ or effect degree, 

as shown in Fig. 4.4.b. In this context, following aspects are important: 

 

•  Completely, all external generators will be considered in the calculation of the 

aggregated electrical splitting based-parameters shown in Fig. 4.4.b. 

•  Instead of the classical coherency identification and grouping, by means of this share 

assignment, new methods of consistent dynamic equivalencing can be explored 

satisfactory according to mathematical approaches and reduction techniques. 

•  Of course, this splitting based-aggregation provides a new viewpoint and theoretical 

founding in dynamic equivalencing. 

 

This procedure implies the reformulation of the classical aggregation criterion. 

 

4.3.1 Conditions 
 

Fig. 4.4 illustrates schematically important aspects and the differences between the 

classical aggregation and the proposed splitting technique: 
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Fig. 4.4.a.- Classical aggregation  

 

 

 

 

 

 
 

 

 

 

 
Fig. 4.4.b.- Proposed splitting based-aggregation 

 

Remarks to Fig. 4.4: 
 

•  Fig. 4.4.a shows schematically the necessary condition for forming classical aggregated 

dynamic equivalents. This consists of forming of similar generator grouping of the 

external area to generate equivalents in terms of a direct assignment. 

•  As can be seen in Fig. 4.4.b, all external generators have a participation assignment to 

form equivalent aggregated generators. The participation assignment is evaluated by 

means of a splitting power factor. 

 

This novel splitting method is simulated in the following two-machine power system, as given 

in Fig. 4.5. Here an external machine in Fig 4.5 i, can be divided fictively considering the 

participation assignment to form virtual generators, as shown in Fig.4.5 ii. On the basis of 

these virtual generators, the equivalents can be calculated, as can be seen in Fig.4.5 iii: 
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  (i)    (ii)    (iii) 

 
Fig. 4.5.-  Machine-splitting with reference to their nominal power according to the derived splitting 

factors a1 and a2. 

 

Following aspects can be detected on basis of Fig. 4.5: 

 

•  The generator ‘a’ is splitted into 70% and 30% of its rated power and generator ‘b’ into 

80% and 20%. Under following conditions, the splitting can be defined.  

•  A necessary condition is the invariance of the dynamic behavior: i.e. after a disturbance, 

the dynamic generator output in node N1 must be similar to the behavior in node N2 

considering the splitting factors.   

•  After the splitting of the external generators, the corresponding shares, for example parts 
1 of generators ‘a’ and ‘b’, have to be aggregated to generate the equivalent generator 

‘E1’ and the 2 shares of ‘a’ and ‘b’ to ‘E2’ as well.  

•  Another essential condition is that the dynamic behavior at the original node N3 must be 

relatively equal to the behavior at aggregated node N4. 

•  Considering the above aspects, the splitting-based electromechanical parameters of the 

equivalent generator can be determined. 

 

4.3.2 Aggregated electrical parameters 
 

These generator parameters can be derived on the basis of the proposed splitting 

approach that the aggregated equivalent should have the same behavior of all the external 

generators in the whole time period. This aggregation is more appropriate to be performed at 

the internal nodes and not at the generator terminal buses. The proposed splitting approach 

is shown schematically in Fig.4.6 as follows: 
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Fig. 4.6.- Splitting-based aggregation 

 

The machine equivalent can be generated as follows: 

 

•  From the splitted bus injection jiji, jQP ,+  (i=number of external machines, j=number of 

splitting factors or equivalents) and the generator current injection, the corresponding 

internal voltage ji,E  of the splitted generators can be computed, as shown in Fig. 4.6 i. 

•  The internal nodes of the individual non-coherent external virtual generators in Fig. 4.5 ii, 

i.e. generators ‘a1’ and ‘b1’ are connected to a common bus with appropriate pseudo 

transformers and phase shifters to preserve the power flow relationships (see Fig. 4.6 ii).  

•  Defining the ratio of the pseudo transformers from the internal voltages a1E , b1E  ( ji,E ) 

of the virtual splitted generators and the common bus voltage E1E  (see Fig. 4.6 iii). E1E  

is defined as the aggregated driving voltage of the equivalent generator ‘E1’. The circuit 

must be implemented with the negative subtransient reactance of the equivalent 

generator to create a single generator internal node and new terminal bus qE .  

•  The pseudo transformers are needed for transforming the different driving voltages of the 

virtual generators to an uniform one.  

•  The subtransient reactances combined with the transformers, allow the elimination of the 

internal nodes of the original fictive generator in terms of the static network reduction.  

•  The nominal voltage of the internal node and of the connected equivalent generator must 

be defined properly. However, it can affect the transformer ratio.  

•  Equivalent generators must supply the sum of the splitted active and reactive power. 

Non-coherent generators a 
and b splitted into the first 

share 
 

Aggregated equivalent model of 
generators a and b 

q

p( ) ( ) ))((
11

11tt tj
bb

bobeEE δδ ∆+=

1aα 1bα

( ) ( ) ))((
11

11tt tj
aa

aoaeEE δδ ∆+=

( ) ( ) ))((
11

11tt tj
EE

EoEeEE δδ ∆+=

1aα 1bαb1 a1 

E1 

p

1"dajx 1"dbjx

1"Ejx

1"Ejx−

1"dajx 1"dbjx1"dajx 1"dbjx



 SPLITTING AGGREGATION-BASED DYNAMIC EQUIVALENCING 74 

•  The subtransient reactance djx ''  is used instead of the transient reactance djx'  because 

it is the small possible reactance that the machine can take within a disturbance. 

 

Taking into consideration the splitting factors in this procedure, the following matrix can be 

represented. It can be used to calculate the machine parameters. 
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Machine parameters can be determined as follows: 
 

•  The voltage of the common bus ‘p’ is calculated using a splitting-based nominal power as 

weighted average of the individual virtual generator internal voltage.  

•  The common driving voltage can be calculated using the splitting internal voltages: 
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and the nominal power, active and reactive power by 

   

 ∑=
N
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jijE aQQ

i ,
 i=1…M  (4.33) 

 

where 

 

•  (0)E j  is initial driving voltage of external fictive generator j in p.u.,  

•  jS  is the rated unit power and  

•  ai,j the participation share or splitting factor of external generator j according to the 

number of generated equivalents i.  

 

•  Pseudo transformation ratios from the internal voltages of the virtual generators to the 

common bus voltage 
iEE  are defined by: 

 

Number of dynamic 
equivalents   i=1…M 

Number of external generators   j=1...N 
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•  Though there are pseudo transformers, pseudo transmission lines and transient 

reactances, the power flow relationships result of Fig.4.6 iii remains the same as which in 

Fig.4.6 i. 

•  Considering the splitting factors of (4.31), the parameters of the equivalent generator can 

be calculated from the mean values of the splitted generator inductances and 

resistances as reciprocal values: 
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Where the relationship in (4.35) means that the splitting-based parameters are 

connected in parallel. The time constants can be calculated based on these parameters. 

•  Thus, the resulting inertial constant of the equivalent generator is given by: 
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•  In order to create an internal node ‘E’ for the equivalent generator, bus ‘p’ should be 

extended to an additional bus ‘q’ with the impedance idEjx ''− , and then to the bus ‘E’ 

with impedance idEjx '' . Therefore, the bus ‘E’ has the same voltage as bus ‘p’ according 

to Fig. 4.6 iii. 

•  Bus ‘q’ can be considered as the terminal bus and bus ‘E’ as the internal bus of the 

equivalent.  

•  Consequently, the voltage at bus ‘q’ is set by (t)E
ip  and it is connected to the individual 

buses a and b. Therefore, the voltage of the equivalent can be calculated starting from 

the internal voltage, which is given in (4.32) as: 
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•  Because the individual buses a and b are no longer generator terminal buses and the 

system size is already reduced, it is possible to eliminate these buses, nodes, and 

transmission lines by the classical static network reduction. It is suitable to couple this 

step with the factorization of the admittance matrix. 

 

4.3.3 Splitting factors of generators 
 

The aggregated parameters in equations (4.32-4.36) imply that non-linear reduction 

techniques may be applied to generate accurate and representative equivalent generators.  

 

This aspect can be realized by mathematical approaches, such as Fuzzy theory or the 

principal component analysis. 

 

i.   Fuzzy clustering 
 

The splitting or virtual division of machines using the splitting factors can be described by 

means of their Fuzzy membership degrees. Hereby, the similarity of one generator to the 

other generators can be expressed quantitatively by partitioning the generator using the 

membership degree. 

 

Remarks: 
 

•  This algorithm extends the identity analysis to an optimization problem [102-105]. With 

Fuzzy clustering, each generator belongs to all classification cluster groups 

simultaneously. However, it has different degrees according to its identity with other 

generators. 

•  Fuzzy logic is a generalization of yes and-no Boolean logic. Assigning 0 to false values 

and 1 to true ones. Fuzzy logic also allows in-between values. Assuming that µ is asset 

of values of member degrees, Fuzzy logic defines a mapping from µ to the unit interval 

trough a membership function.  

•  This Fuzzy similarity should be understood as mathematical similarity, measured in some 

well-defined sense, for example by using a distance norm. 

•  The Fuzzy clustering is based on the within groups sum of squared errors objective 

function Jm,. The set of solutions that satisfy the minimum Jm is simplified by the 

weighting factor µij, as can be seen in the following equation: 
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where  

•  N corresponds to the number of external generators,  

•  M the number of cluster groups representing the dynamic equivalents and  

•  di,j is the distance between the machine and the reference generators.  

•  µi,j denotes the membership degree of generator xj to cluster group ci.  

•  m>1 is the fuzziness index and influences the “fuzziness” of the obtained partition.  

 

•  This Fuzzy clustering is subjected by the following constraints [105]: 
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•  Because of the optimal nature of the problem (4.38), methods of calculus of variations 

are used to derive the necessary conditions, such as the membership degree condition: 
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•  For the initial values of the membership degree can be derived the following formulation: 
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•  According with the solution for local extreme, the cluster centers as reference generators 

can be reached as other important condition: 
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•  Conditions (4.41) and (4.43) are first-order necessary conditions for local extreme of Jm. 

All procedures used to solve (4.38) should satisfy both (4.41) and (4.43). These 

conditions are derived in appendix B.3. 

 

The relevant result of Fuzzy clustering are the membership coefficients expressing the 

identity degree that a machine is similar to other generators with identical properties 

belonging to a cluster, i.e. the membership factor expresses the weakness or strength of the 

assignment of the generators to all groups with identical properties in time domain. This 

aspect will be applied to the virtual splitting of generators, which belong to all clusters 

simultaneously but with different ‘weakness or strength degree’.  

 

ii.   Principal component analysis 
 

The principal component analysis, known as eigenvalue analysis, is a mathematical way of 

determining that linear transformation of a sample of time behaviors in N dimensional space 

along the coordinate axes, whose sample variances are extremes and uncorrelated.  

 

According to the proposed generator aggregation, no significant and redundant generator 

behaviors can be neglected. The property of transforming the coordinates along the principal 

axes into physical meaningful parameters can be reached by this approach. 

 

The PCA is applied to the time behavior matrix of external generators by projection onto a 

smaller number of orthonormal axes. This leads to a coordinate system with the axes of 

largest spread. The property of the PCA is that the original features of the generators 

described by the time behavior will be transformed into new meaningful ones. These 

significant generator features represent the whole original system, which is reduced 

neglecting its redundancy.  

 

Remarks: 
 

•  According to the machine matrix (3.28), the covariance matrix of the same data set is 14: 

 

   }))({( T
x XXE −−= XXC      (4.44) 

 

                                                
14 The mean of that population is denoted by }{XEX =  
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•  The covariance matrix of Cx, denoted by cij, represents the covariances between 

components xi and xj. These generator behaviors should span the same subspace as the 

original vectors of original generators; however they are now characterized by a set of 

eigenvalues and eigenvectors.  

•  Consequently, from the symmetric matrix such as the covariance matrix, an orthogonal 

basis by findings its eigenvalues iλ  and eigenvector ie  can be calculated by: 

 

   ii eeC   ix λ=   i=1…N   (4.45) 

 

•  These values can be found by finding the solutions of the characteristic equation 

 

   0=− IC λx      (4.46) 

 

•  If T is a NxN matrix including the eigenvectors of the covariance matrix C , the diagonal 

variance matrix 2Σ  is given by: 

 

   TCTΣ T ⋅⋅=2      (4.47) 

 

•  The eigenvalues iλ  of the covariance matrix C  are equal to the elements of the variance 

matrix 2Σ , which includes the variances i
2σ . 

•  By ordering the eigenvectors in the order of descending eigenvalues Nλλλ ≥≥≥ ...21 , 

one can create an orthogonal basis with the first eigenvector having the direction of 

largest variance of the data set of generators. In this way, directions can be found, in 

which the data set has the most significant amounts of energy.  

•  The time behavior of generators represented as multi space matrix could be well reduced 

by approximation with a reduced dimensional representation concentrated along 

particular and significant eigenvectors.  

•  In comparison to T as N dimensional matrix, Tq is a Nxq matrix including q significant 

eigenvectors of C corresponding to the q largest eigenvalues of C. The value of q 

determines the size of the new dimension and is smaller than N.  

•  Let Tq be a matrix consisting of eigenvectors of the covariance matrix as the row vectors. 

By transforming a data vector X, the orthogonal space representation as reduced 

generator time behavior can be obtained as: 

 

)( XXTY −=    qq       (4.48) 
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which is a reduced generator data matrix in the orthogonal coordinate system defined 

by the eigenvectors 15.  

 

Splitting of the oscillating curves of the external generators in orthogonal part oscillating 

can be obtained according to the eigenvectors as splitting factors, which provide the share of 

the principal components in the complete oscillating.  

 

4.4 Case study 
 

The accuracy of the proposed splitting-based dynamic equivalencing are evaluated in a 16 

multi-machine system. This power system is described in chapter section 3.5.1. Thus, the 

order of the dynamic model of the test system is relatively high. The following illustration 

shows the topology of the 16 multi-machine system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4.7.-  Interconnected 16 Multi-machine System. 

 

                                                
15 Components of Yq can be seen as coordinates in the orthogonal base and vectors of the reduced behavior matrix of 
the external generators. 
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This power system was divided into two areas, where the area C as internal area, will be 

preserved in the original form. This area consists of 5 machines. The rest 11 machines 

located outside this area, as external area, will be replaced by dynamic equivalents. For the 

simulation following aspects are relevant: 

 

•  Following disturbances, the dynamic performance of the internal area will be simulated in 

two steps: First, the original whole external area is simulated. Then, based on the 

aggregated equivalent external area, new simulation will also be preceded. 

•  This external area will be aggregated based on both the splitting based aggregation and 

classic aggregation approach. Thus, the comparison between these two approaches can 

be realized. 

 

4.5 Simulation results and discussion 
 

After simulating the whole power system and aggregating the external area with the 

abovementioned configuration, the dynamic performance of the internal area is studied. 

Firstly, a power flow calculation is carried out to define the initial operating condition of the 

power system.  

 

The accuracy of the splitting-aggregated equivalents can be evaluated by comparing the 

oscillating swing curves of the internal area machines with the original power system. The 

simulation is realized using PSD. For more details on the validity of PSD see section 2.3. 

 

A representative scenario was simulated, where the fault is located at the node 5 of internal 

area C with duration of 100 ms as shown in Fig. 4.7. This disturbance begins at 1.0 second 

and it has great impact on the whole system. It is simulated for 10 seconds. 

 

In Fig. 4.8 and Fig. 4.9, the time domain behavior of an internal machine in area C is 

illustrated on the abovementioned conditions. In Fig. 4.8, 3 dynamic equivalent generators of 

the external area are employed using the classical inertial aggregation and the enhanced 

electromechanical identity recognition with K-means as grouping technique. The oscillating 

swing curves of the internal machines are then compared with the original power system 

behavior.  

It can be seen in the following figure, that the phase and amplitude for all generators in the 

internal area using the classical inertial aggregation are relatively accurate. 
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Fig. 4.8.-  Comparison of time responses of an internal machine calculated with the original external 

system and with 3 equivalent machines using the classical aggregation. 

 

In comparison to the behavior in Fig. 4.8, the time domain behavior of the same internal 

machine using the proposed splitting aggregation approach in the external area is presented 

in the following figure: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4.9.- Comparison of time responses of an internal machine calculated with the original external 

system and with 3 equivalent machines using the splitting based-aggregation. 
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The oscillating swing curves of an internal machine are calculated with 3 dynamic equivalent 

machines, whose aggregation is based upon the splitting approach with Fuzzy membership 

degrees according to expression (4.41) as splitting factors. Following aspects in Fig. 4.9 can 

be detected: 

 

•  Hereby, the performance of the internal machines is accurate during the whole 

simulation, i.e. before and after the disturbance. These simulation results are much 

better than the results calculated by the classical inertial aggregation (see Fig. 4.8). 

Although only the simulation result of one internal machine is presented, the results of 

other internal machines in same manner are also accurate. 

•  Moreover, the behavior of all internal machines shows a notable accuracy and 

agreement with different number of dynamic equivalents aggregated using the 

splitting-based aggregation. 

 

The time domain simulation results during the first 3 seconds of Fig. 4.8 and Fig. 4.9 are 

given in detail in Fig. 4.10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4.10.- Comparison of time domain behavior of an internal machine calculated with the original 

external system and with 3 equivalent machines using the splitting based-aggregation. 

 

In Fig. 4.10, it can be detected an enhanced agreement of the power oscillating curve 

applying the splitting aggregation both within the damping zone and during the disturbance.  
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The splitting equivalents are valid for disturbances too, which are electrically and 

geographically independent of the equivalent disturbance and too of the extent of severity 

(fault duration) and of the load generation balance prior the occurrence of the faults.  

 

This equivalencing robustness can be demonstrated in the following figure, where the 

behavior of any internal machine using the splitting aggregation following a sequence of 

faults (The first fault after 1 sec. and the second fault after 2 sec. with a duration of 150 ms. 

and 200 ms., respectively) is simulated.  

These faults are applied to node 3 (380kv area) and node 9 (220kv area) in area C, 

respectively, i.e., these disturbances are electrically and geographically closest and far away 

from the equivalent disturbance, with which the equivalents are derived.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4.11.- Behavior of any internal machine following a sequence of disturbances applied on 

different nodes electrically and geographically distinct from the equivalent disturbance. It is 

simulated with the original external area and with 3 splitting equivalents with Fuzzy factors. 

 

Hereby a quite agreement of the internal machine responses over the whole time period 

can be detected. This notable accuracy in robustness can be determined for all generators in 

the internal area C using the splitting-based aggregation. 

In contrast to this aggregation the classical inertial aggregation with coherency grouping is 

not enable to obtain this robustness and approximation capability. 
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- Splitting based-aggregation method with the Fuzzy membership degrees as splitting 

factors  

- The classical aggregation method with Fuzzy clustering 

- The classical aggregation method with K-Means 

 

The measure for evaluating the three methods is defined as follows: 
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where  

 

•  ∆P(i)Original and ∆P(i)Dyn. Equi. are the time domain behavior of the ith generator in the 

internal system, which are calculated with the full external system and the aggregated 

external system respectively. In this research, (∆P(i)Original-∆P(i)Dyn. Equi.)2 is defined as 

squared distance error. 

•  Np is the number of sampling points and  

•  Ns is the total number of generators in the internal area.  

 

The “best” aggregation method is the one that gives the minimum squared distance error or 

maximizes J(i). Taking into consideration all internal machines, the following mean value J  

may be defined: 
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Of course, by means of this value the quality, accuracy and reduction capability of the 

splitting aggregation approach in comparison to the classical inertial aggregation can be 

characterized and evaluated depending on the reduction degree of 11 external machines to 3 

and 6 dynamic equivalents, as it can be seen in the following figure. 
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Fig. 4.12.-  Comparison of aggregation algorithms considering the classical inertial aggregation and 

the proposed splitting-based aggregation by the mean value of J of the intern machines for a 

fault located at the internal node with different number of external equivalents. 

 

Fig. 4.12 can be interpreted as follows: 

 

•  The best results and accuracy, as shaded beams illustrated, are to be found in the cases 

for which the proposed splitting-based aggregation is used in dynamic equivalencing with 

Fuzzy membership degrees independent on the number of equivalents. The detailed 

values in Fig. 4.12 are given in the appendix table D.4. 

•  Comparable agreement and similar accuracy between the splitting-based equivalents 

and equivalents, which are calculated by the classical aggregation and 

electromechanical identity recognition (K-means algorithm), are provided. 

•  The splitting technique shows a significant enhancement in accuracy in comparison with 

the equivalents calculated by the classical aggregation wizh Fuzzy clustering as identity 

recognition.  

•  In Fig. 4.12, the accuracy is independent of the number of equivalent machines. 

•  The best aggregation and consequently the small distance errors defined in (4.49) are 

given by the splitting technique. 
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This approach has been applied to the interconnected European power system too, but the 

result is not satisfactory. Some restrictions arise when applying this approach to large-scaled 

power systems and also the number of external machines can cause some limitations in the 

splitting procedure. Thus, the splitting factors, which determine the splitting electrical 

parameters of the equivalent generator, can be dispersed. For instance, each of the 397 

external machines of the European power system outside of the German system can be 

splitted into 40 share factors. Some of them can tend to an insignificant factor, and so its 

influence to build the equivalent, can disappear. This leads to an accumulation of error 

yielding inaccuracy in the results. Hence, all splitting parameters of the external machines 

are required to calculate the electrical parameters of equivalent according to equations (4.32) 

to (4.37). This new proposed aggregation approach leads, however, to electrically efficient, in 

terms of splitting-based machine parameters and more accurate dynamic equivalents. 

 

4.6 Summary 
 

•  A new aggregation concept and strategy for the dynamic equivalencing, which is called 

splitting-based aggregation, as alternative to the classic inertial and slow aggregation, is 

proposed to obtain accurate, non-linear, splitting-based aggregated equivalent machines 

of external large power systems.  

•  The fictional splitting of generators in virtual generators is based on the share factors, 

such as the Fuzzy membership degrees and eigenvectors. They are considered in 

forming accurate dynamic equivalents on the basis of the time behaviors of the external 

machines. The share factors can be derived from mathematical reduction techniques 

according to the Fuzzy theory or principal components. 

•  The significant benefit of splitting-based aggregation is principally that the resulting 

aggregated dynamic equivalent is composed of splitting electrical system parameters. 

•  The main advantages of this approach is that the splitting factors or participation shares 

of the machines are considered to define splitting-based electromechanical equivalent 

parameters incorporating significantly mathematical reduction techniques, which 

generate highly accurate aggregated equivalents in terms of: 

- Linear independent dynamic equivalents with orthogonal oscillating swing curves by 

principal components or  

- Representative non-linear equivalents with oscillating swing curves by Fuzzy 

membership degrees. 

•  The splitting equivalents are valid for disturbances too, which are electrically and 

geographically independent of the equivalent disturbance and too of the extent of 

severity (fault duration). 
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•  Notable accuracy using splitting-aggregated dynamic equivalents can be reached in 

comparison to the equivalent machines calculated with the classical inertial aggregation 

in the 16 multi-machine power system. 

•  This splitting-based aggregation approach is applied to a 16 machine interconnected 

power system, where the internal area is simulated regarding the transient stability. The 

results are accurate independent of the number of dynamic equivalents. Best results with 

a high degree of accuracy are achieved using splitting by Fuzzy membership factors. 

•  In comparison with the classical aggregations which are performed only and limitedly on 

a per coherent area basis, the proposed splitting-based aggregation is extended to the 

complete external area. 

•  In consequence, the aggregation approximation of the network in the complete external 

area may result in an increase in accuracy. 

•  In comparison with the electromechanical-based identity recognition, this approach omits 

the first step of the classical dynamic equivalencing, i.e. the grouping or 

electromechanical clustering of similar generators on a coherent or identical area basis. 

•  This approach can be applied in small-scale power systems effectively obtaining 

significant accurate dynamic equivalents. A similar accuracy is obtained by using the 

electromechanical-based identity recognition applied to small-scale power systems 

independent of the number of equivalents, too. 

•  However, its application in large-scale power systems, such as the European power 

system, is limited because of the influence of other electromechanical factors of the 

power system on the splitting process of the external machines. Therefore, in 

comparison with the electromechanical-based identity recognition, the results are not 

enough accurate. Thus, a drawback of this method is the accumulation of error when it is 

applied to large number of external machines. 
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“All these constructions and the laws connecting them can be arrived at 

by the principle of looking for the mathematically simplest concepts and 

the link between them”-A. Einstein- “A basic rule in estimation is not 

estimate what you already know”-A quotation from [129]- 

 

 

Chapter 5  
Dynamic Artificial Neural 
Network-based Dynamic 

Equivalencing 
 

 

Objective— The aim of this chapter is to present a novel approach to construct an intelligent 

system as interconnected external area. It considers and captures essentially non-linear 

characteristics and behavior of the power system components. 

This intelligent system is developed using dynamic artificial neural networks (DANN) as 

dynamic models, which is proposed as alternative to the conventional dynamic 

equivalencing. The conventional steps to generate dynamic equivalents are replaced by the 

properly chosen recurrent artificial neural network taking into consideration a suitable off-line 

training process, in which the effect of the disturbance influence of the internal area on the 

external area has to be considered globally.  

Thus, the proposed approach is based upon the modeling of non-linear systems using 

dynamic ANNs in form of dynamic equivalents, which can be applied to dynamic stability 

studies.  

Simulation results demonstrate the effectiveness, high accuracy, and robustness of this 

approach in different large multi-machine power systems with 2 to 8 boundary nodes. 

 

Index Terms— Dynamic Equivalents, Model Reduction, Recurrent Artificial Neural Network, 

Stability in Power Systems, System Modeling. 

 

Organization— Section 5.1 describes the introduction and section 5.2 of this chapter the 

classical methods. The proposed recurrent ANN-based approach with mathematical 
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preliminaries is treated in section 5.3, followed in section 5.4 by the application. In section 

5.5, the simulation results are discussed and the conclusion in section 5.6. 

 

5.1 Introduction 
 

Interconnected power system can be simulated difficultly for stability analysis due to their 

large size, non-linear behavior of generators and components, such as voltage and turbine 

governors, exciters, loads, electronic converters, among others. In order to utilize limited 

technical resources and limited data exchange between energy utilities the dynamic 

equivalencing of power system is indispensable.  

The conventional dynamic equivalencing [6, 7, 15, 17, and 30] consists mainly of the 

following steps: 

 

- Coherency identification  

- Aggregation of generators 

- Static network reduction 

- Aggregation of control devices 

 

The nature of power system is essentially non-linear and consequently, the nature of 

equivalents should be non-linear, too. Mathematically speaking, non-linear systems are 

known to be very hard to manage. To overcome this problem, when studying the behavior of 

a power system in a neighborhood of an equilibrium point, it is a common assumption that 

the power system is a linear, time-invariant system [3, 133]. Thus, the initial non-linear 

system is approximated by linear one. In many cases of practical importance, this 

assumption works quite well yielding numerous advantages. However, when transient 

stability of the system is investigated, the use of a linear model cannot be justified. There are 

several reasons for questioning the validity of the linear model. The main reason is the 

dependence of the qualitative behavior of the power system model on the non-linear nature 

of its components. Therefore, it is important to find a dynamic non-linear model of an 

interconnected power system. 

 

In this chapter, an innovative approach for forming dynamic equivalents of the external 

area on the basis of the dynamic ANN is proposed. The basic concept underlies the 

replacement of the non-linear external area by a robustly trained recurrent ANN, which is 

connected to the internal area through tie lines and busses. Using this ANN-based approach 

the abovementioned classical steps of dynamic equivalencing will be omitted.  
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5.2 Conventional dynamic equivalencing 
 

Various dynamic equivalencing methods are proposed, in particular by exploiting modal, 

coherency, linear model reduction and model identification properties.  

 

Linearization 

 

The most important dynamic equivalencing methods, which are described in appendix A, 

are based upon linearization of the mathematical description of the system. They have had a 

limited success, and their use is justified by the following facts: 

 

- Linearization around the equilibrium yield mathematically tractable linear models. 

- The output of system can be computed for any arbitrary input. 

- Most non-linear systems could be approximated satisfactorily in their normal ranges 

of operation. 

 

Remarks to linearization: 
 

•  However, in many cases, systems are required to operate in regions in the state space 

where linear models do not give satisfactory results. In order to cope with this, research 

on developing input-output models (empirical approach), i.e., models that rely completely 

on the inputs and the outputs of the system, has increased [116-120]. 

•  Several model structures are available for developing input-output models of complex 

systems. These include models based on spline functions, polynomial models, and 

threshold models. Their limitation is that they can only be used for interpolation.  

•  If the system behavior is understood, but not so well that the adequate mathematical 

model based on the fundamental laws could be developed, it can be reasonable to 

construct a model based on unconventional methods. 

•  An unified framework for developing a non-linear model is not available. The true 

modeling capability of any given system model depends on its structure and dynamic. 

Thus, search of an appropriate structure and global description using non-conventional 

or empirical methods can be incorporated in the modeling phenomenon. 
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5.3 Dynamic ANN-based dynamic equivalencing  
 

The proposed approach is based on a robustly trained recurrent (dynamic) ANN that 

models the external area including the non-linear properties of all power system components. 

The behavior of the external area will be described through the dynamic of a ANN in contrast 

to the methods described in [116, 143], which are disturbance-dependent and non-robust. 

The power system can be divided in the following form: 

 

 

 

 

 

 

 

 

 
Fig. 5.1.-  Division of complex power networks in areas 

 

Essential aspects of this approach can be briefly summarized as: 

 

•  An external area is replaced by a dynamic ANN considering important aspects, such as: 

- The dynamic structure of the static ANN system is preliminary determined on the 

estimated order of the external area after a linear modeling (knowledge-based). 

Through a tuning process, it can be adjusted gradually to the electromechanical 

order of the external area.  

- The DANN-based model requires simulation results or measurements only at the 

boundary buses obtaining Multi Input Multi Output (MIMO) magnitudes that are 

defined using the Norton model of machines (signal-based).  

•  In consequence, this approach may be defined as a knowledge- and signal-based 

system modeling. The key issues of the ANN based system modeling are both the 

parameter determination, ANN-structure selection and the quality of selected input, 

output signals. 

•  In the training procedure of the ANN, in which the parameters are determined, the 

external area has to be excited through efficiently generated disturbance sets located in 

the internal area.  
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•  The well-trained dynamic ANN must be able to approximate and describe globally the 

non-linear behavior of the external area following disturbance sets in the internal area. 

To obtain a robust, operating point-independent ANN, a normalized MIMO with reference 

to a certain operating point will be used. 

 

In the following, key approach steps will be explained in detail. 

 

5.3.1 Artificial neural networks (ANN) for modeling 
 

To predict the behavior of an unknown system, ANN can learn and identify the system from 

experience. Its highly parallel distributed architecture and the ability to learn based on limited 

data makes ANN a powerful computing resource. Following ANN-aspects are important: 

 

•  A multi-layer neural network, consisting of one input layer, one output layer and an 

appropriate number of hidden layers, can be used either as a static or dynamic 

approximator, where information flows in one direction, as shown in Fig. 5.2.  

•  A desired accuracy in non-linear problems is achieved by suitable number of hidden 

layers and neurons. The multi-layer neural network of hyperbolic tangent units and the 

output layer of linear units are capable of approximating the non-linear dynamic of a 

complex system. A one multi-layer feedforward ANN can be represented, as follows: 

 

 

 

 
 

 

 

 

 

 

 

Fig. 5.2.-  Neural network structure 

 

•  Its mathematical description is given by: 
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where ϕϕϕϕ is the input vector, κ the activation function, θθθθ    parameter set, W the weight 

matrix and B denotes the bias that is considered, for simplicity, a weight associated with 

an unitary input. 

•  Neuron models have in common the structure according to three criteria: Input operator, 

activity function, and learning rule (These aspects are explained in appendix C.1 and 

C.2.) shown in the following diagram: 

 

 

 

 

 

 

 

 

 
Fig. 5.3.-  Basic structure of generalized neuron model  

 

ANN advantages: 
 

In neural networks, the relations are not explicitly given, but are coded in a network and its 

weights. Its main advantages are [120-132]: 

 

•  Non-linearity: The mathematical interconnection of the ANN structure provides non-

linear characteristics to the complex system. 

•  Input/Output Mapping: The identification paradigm used is based on nonparametric 

statistical inference, where no assumptions have to be made about the model under 

study. Thus, the network learns from experience. 

•  Adaptability: An ANN adapts its synaptic weights to changes in the environment. An 

initial training is usually made to model the stationary state of the system providing the 

initial estimates for the ANN parameters. Real time adaptivity is required to model non-

stationary environments where some characteristics are dynamic and time variant. 

 

ANN systems: 
 

ANNs can be employed in a wide spectrum of problems in technical aspects. Thus, four 

categories of ANN may be distinguished according to its applicability. From the viewpoint of 

non-linear modeling three dynamic structures of ANNs subdivided into structures, such as 
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the internal recurrent networks, external recurrent with lamped dynamics and distributed 

dynamics [119], can be determined, as it can be shown in the following diagram. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5.4.- ANNs applied to the modeling of non-linear systems. Internal and external recurrent ANN 

can be used to develop the DANN-based dynamic equivalencing 

 

Remarks to Fig. 5.4: 
 

•  Mapping ANN represents non-linear parametric models without requiring a specified a 

priori accurate assumption about the system structure. Thus, the learning procedure 

estimates the unknown network’s weights, which represent the model’s parameters.  

•  ANN, which belongs to the class of mapping neural networks, performs mathematically a 

mapping action from a domain of its input space to the output space [117-122].  

•  The mapping task is labeled in spatial if there is no time-dependency. In general, these 

ANNs can be applied to identify static non-liner systems.  

•  Another mapping task is the spatiotemporal mapping. In this case, the modeling and 

identification of dynamic non-linearities involved in subjects, such as behavior, response, 

and non-parametric modeling of complex systems, can be considered as an 

approximation of spatiotemporal rules.  

 

In power systems, the dynamic external area can be approximated by means of dynamic 

ANNs. The dynamics are realized either using static ANN combined with an external 
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feedback connection (recurrent ANN) or using internal recurrent dynamic ANN, where 

feedback is introduced internally to the inputs of antecedent neurons.  

In this study, both options are examined and assessed, and the external recurrent ANN 

was found as the suitable resource to describe accurately the whole behavior of a complex 

power system. These options are emphasized in the Fig. 5.4. 

 

5.3.2 Modeling of dynamic system 
 

Its main purpose is to identify a model of an unknown complex system in order to predict 

and gain insight into the behavior of the system [116]. The key problem in system modeling 

is to find a suitable model structure. To this end, prior knowledge and physical insight about 

the system should be utilized.  

 

Types of models: 
 

The system modeling based on physical and experimental aspects of non-linear systems can 

be summarized in the following diagram: 

 

 

 

 

 

 

 

 

 

 
Fig. 5.5.-  Modeling structures. The system modeling used in this approach is emphasized as a 

hybrid procedure in black-box form with assumptions about the system 

 

Following aspects of Fig. 5.5 can be emphasized: 

 

•  In white-box models, some prior physical information is available (e.g. physical 

knowledge, linguistic rules, vague state-space model).  

•  But, in comparison in grey-box models this information is not complete. In order to get 

better model some parameters must be determined from the data.  
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•  A grey-box approach is an approach to hybrid modeling. Another important alternative is 

an approach where an a priori mathematical model is used as a starting point and a 

radial basis function expansion compensates the mismatch between the mathematical 

model and the process data. 

•  The system modeling on experimental variables involves parametric and non-parametric 

models.  

•  Modeling of parametric models entails the estimation of unknown parameters of an 

appropriate model structure, which is chosen a priori (black-box) or partially motivated 

by physical analysis (grey-box).  

•  In black-box structure for a dynamical system, no prior information about the system is 

available. The modeling must be done relying on the observed data and describing the 

system in an input/output sense. The non-linear black-box is difficult, because nothing 

system behavior should be excluded and consequently a very rich spectrum of possible 

models descriptions must be taken into consideration.  

•  The main futures of parametric models are the explicit small set of used parameters and 

the model structure. In contrast, non-parametric models don’t posses a given structure 

and, furthermore, use a large set of parameters.  

•  The system modeling used in this approach is realized as a hybrid procedure in black-

box form with assumptions about the estimated linear system.  

•  There are different non-linear models, such as the non-linear Output Error (NOE), 
non-linear AutoRegressive models with eXogenous inputs (NARX), non-linear 
AutoRegressive Moving Average terms with eXogenous inputs (NARMAX), etc. 
These models area treated in detail in appendix C.4. 

 

5.3.3 Mathematical description 
 

The modeling can be divided into two basic functions (explained in Appendix C.3 and C.4): 

 

•  Mapping from past observed data to a regression vector (by preprocessing of data). 

•  Non-linear mapping from regressor space to the output space, which is typically 

formed as a basis function expansion. 

 

Dynamic systems can be described using the regressor vector. It starts from the state form: 
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Discretizing (5.2a) yields to: 
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where x(t) is the vector of system states at time t,  u(t) is an input, i.e. control signal, and  y(t) 

is the output of the system. Linear models can be formed by linearizing (5.2): 
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This non-linear time-discrete system (5.2b) can be described by the following equation: 

 

   ))(),1(),1(( )( tttt uuxgy −−=      (5.5) 

 

Usually, (5.2b) can be reformulated too as a general discrete time dynamic system looking 

for a relationship between past observations and future outputs in terms of the regression 

vector as: 

 

   ))(),1(()( tt t uyhy −=      (5.6) 

 

Hereby, the goal is to model a dynamic system in discrete time with input and output using 

observations. The fact that the next output y(t) will not be an exact function of past data is 

described by the additive term v(t) which usually is described as a random noise signal. The 

goal is to find a model of ‘h’ which can be used to predict future y(t) with a system mapping 

and a regressor vector as: 
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where integers nu , ny  are the maximum lags in the input and output and they determine the 

system order. If their values are too large, the model is overparametrized and thus the 

generalization property of the model is affected. As a result of choosing too small values the 

model cannot model all the important dynamics of the system. 
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Thus, the general description in (5.6) is normally divided into two mappings. The first 

mapping gives a regressor from the data as: 

 

  ( ))..(),...,2(),1(),(),..,1(),()( yu ntytytyntututu t −−−−−= ϕϕϕϕϕϕϕϕ   (5.8) 

 

where ϕ(t) is the parameter vector of fixed dimension. The second transformation maps ϕ(t) 

to the space of the outputs in the following form: 
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where 
^
y (t) is the model estimate of y(t) and θθθθ contains the parameter matrix of the model. 

The regressor vector (5.8) can be parametrized as: 

 

 ( )ηηηηϕϕϕϕϕϕϕϕ ),..,(),...,2(),1(),(),..,1(),()( yu ntytytyntututu t −−−−−=   (5.10) 

 

which may be denoted as ϕ(t,η). Sometimes η= θ, i.e. the regression vector depends on all 

the model parameters.  

 

Following aspects of modeling are relevant: 

 

•  The data observation set y(n) and u(n) is a projection of the multivariate state space of 

the system onto the reduced dimensional space.  

•  In order to realize the prediction, it is needed to reconstruct as well as possible the state 

space of the system using the input output data information of the observation set. 

•  Recurrent ANN can also be described with the recurrence in the regressor combined 

with a static mapping ‘h’. 

•  There are several advantages with describing the model as a concatenation of two 

mappings instead of using one single function to capture the entire model as is common 

in the neural network.  

•  First the mapping ‘h’ is static and all the dynamics are described by ϕ(t).  

•  Second, as mentioned above, it is possible to introduce non-linear black-box models as 

generalizations of linear black-box models by keeping the same ϕ(t) but changing ‘h’ 

from linear to non-linear. 
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5.3.4 Power system model 
 

The major component of the dynamics within a power system, which can be described by 

the recurrent ANN is generated by the generator and its controllers. Therefore, appreciating 

the importance of the generators, its description will be treated in the following section.  

 

Modeling of synchronous machines 
 

Depending on the nature of a study, several models of a synchronous generator, having 

different levels of complexity, can be utilized [3, 134, 135, and 136].  In the simplest case, a 

synchronous generator is represented by a second-order differential equation, while studying 

fast transients in the generator’s windings would require the use of a more detailed model, 

e.g., 8th order or Krause model [135]. 

 

The dynamical characteristics of a generator, whose structure modeling are based upon a 

field coil on the d-axis and a damper coil on the q-axis, can be accurately represented by the 

following differential equations: 
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In the equations above, the following symbols are used to denote: 

 

•  Eq’, Ed’ denominate the transient EMF’s of the machine in the q- and d-axes. 

•  δ is the rotor shaft angle of the generator.  

•  ω is the rotor angular velocity of the generator. The ωo is the synchronous speed of 

the system. 

•  M is the shaft inertia constant of the generator. 
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•  Pm is the mechanical torque applied to the shaft of the generator. 

•  PG is the output electrical power of the generator. 

•  iq��id are the equivalent currents of the synchronous machine in the q- and d-axes. 

•  D is the damping coefficient of the generator. 

•  T’do�T’qo are transient time constants of the open circuit and a damper winding in the 

q-axis.  

•  xq�� xd�� x’d� x’q stand for the synchronous reactance and transient synchronous 

reactance of the machine. 

 

According to the equivalent circuit form of the two axes model [3] the voltage equations in d- 

and q-coordinate system may be simplified neglecting stator transients and as well the flux 

linkage equations may be simplified ignoring the damper winding. Defining the stator flux 

transient flux linkages and the corresponding speed voltages, the stator equations are: 
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From the above equations, id and iq are solved as: 
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These can be substituted in equations (5.11) and (5.12) and the machine rotor electrical 

equations can be expressed as state space representation: 
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The mechanical equations (5.13) to (5.15) may be expressed as: 
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When equation (5.18) is substituted in (5.15) PG becomes a non-linear function f2 of Eq’, Ed’ 

and vd, vq, which is depicted in appendix Fig. C.1. In the same manner, the modeling of the 

excitation system, the turbine and governor system are explained in appendix C.5. 

 

Equivalent generator  
 

In order to realize a steady state analysis, the generator stator can be incorporated in the 

network. Thus, the network may be represented on a single-phase basis using phasor 

quantities for slowly varying sinusoidal voltages and currents in the network. Therefore, the 

generator stator can also be represented on a single-phase basis.  

Equation (5.18) can be expressed as a single equation in phasor quantities if transients 

saliency is neglected, that is, ''' xx x qd == obtaining: 
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Hereby, 
−
'E  is the phasor voltage behind the transient impedance of the machine known as 

the transient internal voltage and has two components 
−

'qE  and 
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'dE . According to this basis, 

the current phasor 
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aI  can also be represented on a synchronously rotating reference frame 

as: 
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On the basis of equation (5.23), an equivalent circuit of the generator using the Norton model 

can be represented as follows: 
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Therefore,   I G

−
 is a function of all state variables ( dq ' E  ,' E  and δ ). Hence, it does not 

change suddenly whenever there is a network switching. The equivalent circuit can be 

merged with the power network external to the generator. 

 

This equivalent circuit can be represented schematically according to expressions (5.25-

5.26) as follows: 

 

 

 

 

 

 

 

 

 
Fig. 5.6.-  Generator equivalent circuit as voltage and current source  

 

Considering this representation of generators using the Norton model in the network 

equation for a interconnected power system, the boundary voltages between the internal and 

external area may be used as the inputs to the model (independent variables), while the 

injected current as the outputs (dependent variables), described as follows: 

 

   
GZ

UI −=      (5.27) 

 

Thus, this injected current is a function of all state variables of the generator, including its 

control devices, such as voltage regulator and governor.  

 

Thus, extending this model to complex systems the injected generator currents of the 

external network presented in Fig. 5.7 as currents iG1, iG2, iG3 and iG4 are functions of the state 

variables of the generators 1, 2, 3 and 4, respectively. As it may be seen in the following 

figure 16: 

 

                                                
16 Extending the Norton model to a complex power system divided in external and internal area, which are connected 
over the boundary busses, the injected currents within the boundary busses (see Fig. 5.7) are in same manner functions 
of all generator state variables of the whole external area including all their components. 
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Fig. 5.7.-  Internal and external area of a interconnected power system 

 

As a result injected currents within the boundary busses appear according to Fig. 5.8. 

These currents (iE1 and iE2) are functions of all generator state variables of the external 

network on the basis of injected currents iG1, iG2, iG3 and iG4. At the same time, the equivalent 

admittances at the boundary busses are a result of the passive network reduction as follows: 

 

 

 

 

 

 

 

 

 

 
Fig. 5.8.-  Equivalent external area of a power system 

 

5.3.5 Dynamic ANN model as external area 
 

The Norton model replaces a system with dependent and independent sources. It requires 

the voltage as independent input variable and the injected current as output of the system. 

Thus, the power system which may be replaced, can be described as follows: 
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where 

 

•  ie, ib, ii are injected currents of the external, the boundary and the internal buses, 

respectively. 

•  ue, ub, ui are voltages of the external, the boundary and the internal buses, 

respectively. 

•  Y is the network admittance including external, internal and boundary areas. 

 

In mathematical terms, this equation can be solved using step by step triangular 

factorization of the admittance matrix and transfiguration of the node currents. Given the 

partition of the network equations according to equation (5.28), the external nodes will be 

transformed first.  

 

More specifically, the dynamic ANN model can replace an external area taking into 

consideration following fields: 

 

i.   The discrete-time input-output representation 
 

The dynamic behavior of the external area in terms of a general continuous state space 

model is described as: 

 

   
DuCxy
BuAxx

+=
+=

•

      (5.29) 

 

It may be modeled identifying the corresponding matrices A, B, C, and D in parametric 

form. But, a non-linear model of a power system in system modeling is suitable to describe 

the real properties of a power system. It can be obtained using input and output information, 

which are defined on the injected current and voltage measurements on the boundary nodes, 

i.e. considering the Norton model. This system modeling allows the determination of the 

model structure as well as the description of the behavior of system in non-parametric form. 

 

Thus, now the methods of transient stability analysis can be applied in conjunction with the 

system equivalent as non-linear model (see the Fig. 5.9). It can be illustratively shown as 

follows: 



 DYNAMIC ANN-BASED DYNAMIC EQUIVALENCING 106 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5.9.-  External area as dynamic equivalent 

 

Thus, considering the input-output representation of a time-discrete approximation of a 

continuous time dynamic system with a recurrent ANN during a simulation transient period, 

the external area (according to Fig. 5.9) can be described by a set of differential and 

algebraic equations in discretized non-linear form as: 

 

   ))(),(,()1( tttt uxfx =+     (5.30) 

    ))(,()( ttt xgi =      (5.31) 

 

In that case, the actual output vector i(t) depends on the actual time dependency and also 

the actual value of the state variables x(t). Whereas the next value of the state vector x(t+1) 

depends on the actual input u(t) and the actual state value x(t). 

 

In equations (5.30-5.31) above, the following symbols are used to denote: 

 

•  u(t) is an input vector, i.e. voltage signal, that generally consists of state and field 

voltages, and mechanical power input of each generator in the system at time t,  

•  x(t) is the vector of system states variables, it may contain variables associated with 

synchronous generators and their excitation systems including turbines and 

governing systems, other controllers, and possible network dynamics. 

•  The injected current i(t) is the output vector, and it is a function of all state variables. 

•  f, g are non-linear vector functions. 
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This way of representing a dynamic system will be called the discrete-time state-space 
representation 17. Substituting (5.30) in (5.31) the output can be expressed as: 

 

   ( ))1()),(),(,(,1)1( ++=+ tttttt uuxfgi    (5.32) 

 

This equation can be expressed according to a new vector function ‘h’ as: 

 

   ( ))1(),(),(,,1)1( ++=+ tttttt uuxhi    (5.33) 

 

Usually, this expression can be reformulated as a general discrete time dynamic system as: 

 

   ( ))(),1()( ttt uihi −=     (5.34) 

 

This type of representation will be called the discrete-time input-output representation. 
This functional relationship ‘h’ of discrete-time dynamic systems can be identified with a 

system based upon the optimal mapping and a suitable regressor vector as: 

 

   [ ])(),...,2(),1()( intititi T t −−−=i    (5.35) 

   [ ])(),...,2(),1()( untututu T t −−−=u    (5.36) 

 

In the input output representation following aspects can be emphasized: 

 

•  The state space system (5.30-5.31) in input-output form consists of a collection of finite 

sequences of input samples i(t) and corresponding sequences of output samples u(t) as 

follows: 

 

  ),()( )(),...,1(),()(),...,1(  ntututuntiti ui  t −−−−= hi   (5.37) 

 

•  i(t) and u(t) are past output and input values, respectively. Integers ni, nu (maximum lags) 

reflex relatively the order of the system 18. These values can be estimated initially based 

on the linear system modeling of the non-linear complex system.  

•  The suitable number of past inputs and outputs are collected into the regressor vector: 

                                                
17 Thus, in mathematical terms, the objective is to study the stability of the dynamic system by solving the system (5.30-
5.31) with steady-state operating conditions or by describing the dynamic system using dynamic ANNs. 
18 ni, nu must be chosen properly. If their values are too large, the model is overparametrized and thus the generalization 
property of the model is affected. As a result of choosing too small values, the model cannot describe the whole system. 
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 [ ])(),...,1(),(),(),...,1( untututuintiti T (t) −−−−=ϕϕϕϕ   (5.38) 

 

•  Then the problem is to map ϕϕϕϕ(t) to the next output i(t) with a non-linear function ‘h’:  

 

  ))(()( tt ϕϕϕϕhi →      (5.39) 

 

•  This mapping can be realized by the NARX model (Nonlinear Auto Regressive model 

with Exogenous inputs), which provides an unified representation for a wide class of 

discrete-time non-linear systems. In a NARX description, the system is modeled in terms 

of a non-linear functional expansion of past inputs and outputs: 

 

  ))(()|(' ,θθ Nhi tt ϕϕϕϕ=     (5.40) 

 

•  The functional relationship ‘hN‘ approximating the real-properties of the external area can 

be identified with a DANN as external recurrent artificial neural network (time delay 

ANN) with proper weighting parameters θθθθ        and a suitable regressor vector ϕϕϕϕ(t).  

 

ii.   ANN Model structure 
 

This dynamic ANN structure has to capture fitting function ‘hN’ representing a global 

approximation of the dynamic non-linear function of the external area. A model based on 

estimated function ‘hN‘ in (5.40) can be constructed according to the following time-delay 
neural network structure: 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5.10.-  Network structure for approximation of non-linear systems 
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The ANN dynamics are realized either using static ANN combined with an external 

feedback connection (recurrent ANN) or using internal recurrent dynamic ANN, where 

feedback is introduced internally to the inputs of antecedent neurons. In this study both 

options are examined and evaluated. Thus, the external recurrent ANN is more enable to 

provide better and accurate results (For details see Fig. 5.4).  

 

This static ANN depicted in Fig. 5.10 is provided with current and delayed values of the 

external area inputs and outputs magnitudes. According to equation (5.34) in Fig. 5.10, the 

implicit time dependence of the system mapping function is thus transformed to an explicit 

spatial representation by additional inputs to the network, i.e. the neural network learns to 

associate an output value i(t) depending on the trajectory determined by the input vector 

elements i(t-1),..,i(t-ni), u(t),…,u(t-nu) at the neural network’s input.  

 

According to the discrete-time input-output dynamic system representation in (5.37), there 

are principally two possibilities to implement the ANN structure of Fig. 5.10 in the procedure 

of the modeling of the complex external area. It can be realized either by means of a 

configuration presented in the following figure and termed as series-parallel model or by 

the parallel configuration represented in Fig. 5.12. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5.11.-  Series-parallel configuration coupling back the observed system output 
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Fig. 5.12.- Parallel configuration with an internal recurrent link to the networks 

 

Remarks to Fig. 5.11 and Fig. 5.12: 
 

•  The series-parallel model in Fig. 5.11 is connected to the external area in a parallel 

manner with respect to its input and in a serial manner to its output (observer).  

•  This configuration is advantageous for training purposes, where the desired external 

area output can be provided to the neural network. Once the ANN has been trained, the 

identified model can be used independent of the complexity of external area by feeding 

back the ANN output instead of the real external area output.  

•  In contrast to this configuration, the parallel model in Fig. 5.12 requires an input that is 

provided and estimated from the ANN self and not from the external area.  

•  Through this input sequence the error training and cost function evaluated over time 

intervals will increment significantly.  

•  However, the primary benefit of this parallel model refers to the very simple synthesis 

procedure of the ANN whose intern dynamic is implemented requiring the development 

of time-dependent estimation schemes. 

•  According to these evaluated factors, the series parallel model has the capability to 

identify the complex non-linear external area based on the linear system order, which 

can be implemented according to the number of delays of the external recurrent links of 

the ANN. The delays approximate the dynamic of the external area. 
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iii.   Recurrent ANN model as external area 
 

The recurrent ANN is able to capture the dynamic of the external area in the following 

configuration and on this way it will be interfaced to the internal area for stability studies 19. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5.13.-  System modeling for dynamic equivalencing 

 

In this figure the dynamic behavior of the external area can be modeled using voltage at 

the boundary buses as input magnitudes and the injected currents into the boundary lines as 

output (Norton model). All variables are complex quantities and thus they are treated 

separately. Therefore, the selected parameter and structure of the recurrent ANN must be 

able to describe a MIMO-system.  

 

The multi-layer network, consisting of an input layer, one output layer, and an appropriate 

number of hidden layers (containing two to four hidden layers with 10 to 24 neurons) 

depending of the complexity of the system, may be used as a dynamic approximator. The 

multi-layer neural network of hyperbolic tangent units and the output layer of linear units are 

capable of approximating any non-linear dynamic of the external area and to obtain optimal 

non-linear mappings.  

The number of time delays in terms of ni, nu in (5.35-5.36) must be chosen properly to 

generate an optimal regressor vector and estimated initially based on the linear system 
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modeling of the non-linear complex system, i.e. according to the linear order model of the 

system and then, it may be adjusted gradually to reach the non-linear description. 

 

It should be noted that the data set as inputs and outputs of the recurrent ANN is chosen 

taking into account the variance of the sampling points of the observed data set. In this case, 

the littler the distance between sampling points, more accurate will be the modeling of the 

state space of the complex system, but the mapping function may be too complicated to 

approximate the external area from the learning and estimation viewpoint and in 

consequence, the integration time interval between sampling points of the model must be 

suitably chosen. 

 

iv.   Estimation of the ANN-model parameters 
 

The structure model of Fig. 5.13 represents the predictor. Its error is evaluated to select the 

best model using the equation (5.42). Thus, the predicted output i(t)’ of the model is:  

 

  [ ] tt Et )(|)()( ϕii' =      (5.41) 

 

The prediction errors e(t) are a white noise sequence whose variance is minimized. The 

variance of the prediction error is minimized with respect to the some performance function 

(5.43) using the minimization of a fit criterion, which is the sum of square errors: 
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where 

•  N is the number of samples or the length of data set and  

•  Z is a matrix, which contains the system output, and the regressor matrix [128].  

 

Minimization of (5.43) is realized by a parameter estimation algorithm, which iteratively 

adjusts model parameters θ  until they achieve optimal values *θ  defined as: 

 

  ),(minarg* Zθθ E =     (5.44) 

                                                                                                                                                   
19 Thus, this recurrent neural network structure represented as a partial Finite-Impulse-Response system (causal filter), 
can replace the external area in terms of a series-parallel configuration as it may be seen in Fig. 5.13. 
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As can be seen in Fig. 5.13, when the recurrent ANN is used as a parametrized function ‘hN’, 

its weights are the model parameters that have to be adjusted as: 

 

  [ ]Tnθθ ,...,1=θ      (5.45) 

 

Parameter estimation algorithms are those based on gradient numerical optimization, which 

adjust model parameters according to the following iterative expression: 

 

  ))(()()()()()()1( tE t ttttt θθθθαααα ∇+=∆+=+ Sθθθθ   (5.46) 

where: 

 

•  )(tS  is the search direction matrix, which contains the gradient search for the 

minimum of the performance function. Alternative search directions are the gradient 

direction, Gauss Newton direction and the Lavenberg Marquardt direction. 

•  )( tα  determines the length of the step in the search direction. 

•  ))(( tE θ∇  is the gradient of (5.43) with respect to the ANN parameters. 

 

5.3.6 Robustness 
 

The approach robustness is characterized by the training, learning procedure and the local 

distributed dynamics of the recurrent ANN, which will be described as follows: 

 

(i)   Training procedure 
 

The objective in the training phase is to take into account extreme and representative 

disturbance situations obtaining global MIMO data sets at the boundary nodes. To generate 

a suitable set of disturbance, its form and magnitude in the internal area, extended to all 

disturbance variations, have to be considered. Following training aspects are important: 

 

•  In order to generate global training data sets, relevant disturbance scenarios in form of 

three phase short circuits must be carried out involving the whole external area 

according to: 

- Faults with defined minimal and maximal duration till to reach the critical time. A wide 

range of the fault is suitable. 
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- Faults applied on different nodes of the internal area, which are located principally in 

different areas of the internal area. 

•  These aspects will avoid a redundancy and concentration of training data sets in any 

small sub area in the internal area.  

•  The factors that influence the transient stability, such as: 

 

- nature, extent of severity, and location of faults, 

- load generation balance prior the occurrence of faults and 

- network configuration  

 

must be taken into account in the training range reflecting the global performance of the 

replaced external area under various operating conditions.  

•  The dynamic ANN-model can predict injected currents following a certain disturbance in 

the internal area, where these faults are located in the trained area, i.e. for faults located 

in the training time range and inside the training location area of internal area. 

•  The simulation of each fault is carried out for 10 s, which is enough to restore the 

dynamic behavior conditions after the disturbance.  

•  A 10 ms integration time step is used in the simulation generating the pattern variables.  

•  Complex injected currents and voltages at the boundary buses are stored during the 

stability simulation and subsequently used to prepare suitable patterns for training the 

ANN in off-line form.  

 

(i)   Learning procedure 
 

To generate a robust ANN, which is valid for different power flow conditions in the internal 

area, normalized deviations of the corresponding boundary currents and voltages are used to 

ANN-learning, as it can be seen in Fig. 5.14.  

 

 

 

 

 

 

 

 
Fig. 5.14.-  DANN representing the dynamic equivalent for disturbances applied in the internal area 
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These referenced boundary complex values can be expressed as follows: 
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)()(     (5.47) 
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tIi −=∆=∆ )()(     (5.48) 

where  

 

•  U(t), I(t) correspond to the real-time complex voltage and current value, respectively  

•  Uo, Io corresponds to the initial complex voltage and injected current value at a static 

operating point of the external area of power system. 

 

Following aspects are important in the learning strategy: 

 

•  The use of normalized deviations according to (5.47) and (5.48) allows that the ANN 

learns during the training process only the changes of the boundary input and output 

magnitudes at a certain operating point with reference to the static operating point or 

base case specified by loads flow of the power system, characterizing the robustness of 

the dynamic ANN. 

•  In this case, this ANN represents a normalized “per unit” model scaled on initial 

conditions at the boundary buses. Thus, the robust ANN can be used with trained and 

changed power flow conditions outside the ANN. 

•  The data pre- and post-processing, i.e. normalization and back normalization, 

respectively have to be realized outside the ANN.  

•  The ANN itself acts as a Norton model, where the normalized deviations of voltages are 

used as main inputs and the normalized deviations of currents represent the outputs.  

•  Other magnitudes, such as the active and reactive power, or the absolute value and 

phase of the voltage and current as input and output for the ANN, respectively can be 

used. However, these measured data signals don’t provide the physical and non-linear 

combination between input and output sets. 

•  Thus, the use of voltage and current gives better convergence in the training process in 

comparison with the use of power magnitudes due to the complete decoupling and 

independency between inputs and outputs of the ANN.  

•  It should be mentioned, that the results with ANN trained by power variables as input and 

output variables in one-boundary power systems are high accurate as well as with the 

ANN trained with injected currents and voltages. But, this aspect can be detected only in 

power systems with one boundary node between internal and external area.  
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(iii)   Dynamic ANN with locally distributed dynamic areas 
 

In order to achieve a more accurate ANN-based system model, whose training procedure 

is less time consuming and offers limited computational requirements, the learning operating 

point and dynamic of this ANN-based system model can be distributed according to the 

power levels of the retained or internal area.  

In comparison to the ANN with distributed dynamics, in the following figure, the global ANN 

captures the dynamic of the external area excited by internal area with heterogeneous power 

levels. 

 

 

 

 

 

 

 

 

 
Fig. 5.15.-  Global dynamic ANN forming the dynamic of the external area 

 

In order to predict accurate injected currents with less computational requirements, ANNs 

with locally distributed dynamics are proposed. This ANN structure with distributed dynamics 

can interact with an internal area, which consists of heterogeneous power levels, according 

to its training operating point, i.e. for each power level of the internal area a corresponding 

ANN will be trained. Thus, following aspects are relevant to the ANN-dynamic distribution: 

 

•  The necessary input variables for the training procedure can be obtained by disturbance 

scenarios in the area of the corresponding power level to form an adequate ANN locally 

trained. 

•  The offline locally trained ANN structure will replace the external area dependent on the 

power level-located disturbance.  

 

The ANN structure with distributed dynamics can be illustrated schematically in the following 

diagram: 
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Fig. 5.16 .- Dynamic ANN forming the external dynamic with distributed operating points according 

to heterogeneous power levels of the internal area 

 

Remarks: 
 

Briefly, recurrent ANN-based dynamic equivalencing involves following aspects, which are 

discussed in a previous way extensively: 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.5.17.-  Procedure to developing ANN models as dynamic equivalents 

 

However, in order to develop accurate results considering computational aspects, ANN with 

locally distributed dynamics can be realized according to the previous procedure. 
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5.4 Case studies 
 

The accuracy, effectiveness, and robustness of the recurrent-ANN as dynamic equivalent 

are evaluated on basis of two multi-machine systems. The following power systems are 

studied:  

 

- 16 Multi-machine system with 2 boundary nodes and  

- 12 Multi-machine system topologically adapted from 3 to 8 boundary nodes.  

 

In both power systems, the synchronous machines are described by 5th order models, 

exciters by 2nd and in some cases by 3rd order models. A state vector of large dimension 

characterizes the models of the external areas in both cases.  

 

5.4.1 16 Multi-machine system with 2 boundary nodes 
 

The 16 multi-machine system shown in Fig. 5.18 comprises 16 hydro, nuclear and thermal 

generators with their corresponding excitation systems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5.18.- 16 Multi-machine system with 2 interfaces and three areas 
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This system consists of three strongly meshed areas A, B and C with different voltage 

levels, which are connected by boundary buses. Each area has 5 or 6 generators and it has 

been considered as internal area. Area A is structured to be a power exporting area.  

 

5.4.2 12 Multi-machine system with 3 to 8 boundary nodes 
 

This power system contains 12 generators as hydro power plants with their corresponding 

voltage regulators and governors. On the basis of this network topology, different power 

systems with different boundary nodes between 3 to 8 nodes may be derived, which may be 

seen in appendix in Fig. B.1 to Fig. B.5. All systems consist of a 380 kV network with the 

corresponding internal and external area. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5.19.-  12 Multi-machine system with multiple number of boundary nodes 

 

The internal area contains 5 generators and it is a load demanding area. This system is 

designed in such a way that successively any desired number of boundary interconnections 

between 3 to 8 can be implemented (MIMO system). The accuracy and principally the 

robustness of this ANN-based equivalencing approach will be verified in this power system. 
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5.5 Simulation results and discussion 
 

To verify the performance of the recurrent ANN as dynamic equivalent, the ANNs are 

trained with data sets generated by appropriate disturbance scenarios on various nodes in 

the internal areas. The location of the disturbances is shown in Fig. 5.18 and Fig. 5.19 and 

with duration from 100 ms to 150 ms. In case of using the ANN-based equivalent as external 

area, these disturbances (as three-phase short circuits) and nodes will not be considered 

within the transient stability simulation. This disturbance begins at 1.0 seconds. The whole 

system is simulated for 10 second. 

The accuracy of the ANN-based dynamic equivalents can be evaluated by comparing the 

oscillating swing curves of the boundary injected currents and the boundary power flow 

interconnection with the original power system. The injected currents are calculated with 

respect to a synchronously rotating reference frame. The original boundary behavior is 

simulated with the unreduced external area using PSD. For details on PSD see section 2.3. 

 

These simulations are realized in both power systems: i) 16 multi-machine system and ii) 12 

multi-machine system. 

 

5.5.1 16 Multi-machine system with 2 boundary nodes 
 

This power system is investigated considering following internal and external areas: 

 
Table 5.1.- Studied cases in the 16 multi-machine system 

Cases Internal area External area 

1 380 kV area A B and C 

2 380 kV and 220 kV area B A and C 

3 110 kV, 220 kV and  
380 kV area C A and B 

 

Considering that areas A and B have an uniform voltage level and C incorporates varying 

voltage levels (see Fig. 5.19), the ANNs are capable to replace heterogeneous external 

areas from Table 5.1. Areas A, B and C are connected by two boundary lines. 

 

Interfacing the robust trained ANN with the transient stability simulation of the internal area, 

following cases from Table 5.1 can be evaluated. 
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Case 1 — Area A is the internal area, external areas B and C are replaced by the ANN.  
The following figures demonstrate the boundary-injected currents following a non-trained 

disturbance with duration of 100 ms on the node 4 in area A.  

 

 
 
 

Fig. 5.20.i .-  Real part of the injected current at the second boundary node following a non-trained 

disturbance in area A 

 

 
 
 

Fig. 5.20.ii .-  Imaginary part of the injected current at the second boundary node following a non-

trained disturbance in area A 

 

Fig. 5.20.i and Fig. 5.20.ii show a high degree of accuracy of the predicted current from the 

ANN with respect to them simulated with the original external area. Relatively, the same 

prediction quality is obtained at boundary nodes following other non-trained faults on the 

nodes 2, 6, 7 and 8 (see Fig. 5.18) in the internal area A.  
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Successfully, the robustly trained ANN captures the external area dynamics considering 

other load flow condition, i.e. the ANN can be interconnected to a changed internal area with 

other operating point, where the load in the internal area A was reduced to half of its previous 

value of the training. The simulation results are shown in Fig. 5.21: 

 

 
 
 

Fig. 5.21.i .-  Real part of the injected current at the first boundary node following a disturbance (100 

ms) at node 7 in area A under changed operating point 

 
 

 
Fig. 5.21.ii .-  Imaginary part of the injected current at the first boundary node following a 

disturbance (100 ms) at node 7 in area A under changed operating point 

 

It can be seen in Fig. 5.20 and Fig. 5.21 that the phase and amplitude of all predicted 

boundary injected currents shows a notable accuracy and agreement with respect to them 

simulated with the original area. The dynamic behavior of these currents under different 

operating points (trained and non-trained) is quite identical over the whole time period.  
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The sum squared distance error and average error of the predicted boundary behaviors 

following disturbances at all non-trained nodes of internal area A and considering different 

operating points (trained and non-trained) are summarized in appendix in table D.5 and D.6. 

 

Case 2 — Area B constitutes the internal area, areas A and C are replaced by ANN 

In same manner, Fig. 5.22 shows a high degree of accuracy of the ANN-predicted injected 

current in comparison to the real time currents using the original external area. This stability 

simulation is realized following a non-trained disturbance of 100 ms at the node 6 in area B. 

 

 
 
 

Fig. 5.22.i .-  Real part of the injected current at the first boundary node following a disturbance 

(100 ms) on node 6 in area B 

 

 
 

 
Fig. 5.22.ii .-  Imaginary part of the injected current at the first boundary node following a 

disturbance (100 ms) on node 6 in area B 
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In Fig. 23.i and Fig. 23.ii, active and reactive power flows in interconnection between nodes 

5 in B and 8 in C (boundary line of area B and C) are shown, together with waveforms 

obtained in the original system.  

 

 
 

 
Fig. 5.23.i .-  Active power flow interconnection between nodes 5 in B and 8 in C boundary line of 

area B and C according to the currents of Fig. 5.21 

 

 
 

 
Fig. 5.23.ii .-  Reactive power flow interconnection between nodes 5 in B and 8 in C boundary line of 

area B and C according to the currents of Fig. 5.21 

 

This power transmission between area B and C suggest that the ANN-based equivalent 

successfully capture the external area dynamic with a high degree of accuracy after and 

before the disturbance and the overall response quality is satisfactory. 
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The sum squared distance error and average error of the ANN-predicted boundary 

behaviors following disturbances at all non-trained nodes of internal area B and considering 

different operating points are summarized in appendix part in table D.5 and D.7. 

 

Case 3 — C is the internal area, areas A and B are replaced by the ANN 

The ANN-predicted current is quite accurate, compared with the current simulated with help 

of the original external area. This simulation is realized following a non-trained disturbance of 

120 ms at node 15 in 220 kV of C, as shown in Fig. 5.24. 

 

 
 

Fig. 5.24.i .-  Real part of the injected current at the second boundary node following a disturbance 

on node 15 in 220 kV of area C 

 

 
 

Fig. 5.24.ii .-  Imaginary part of the injected current at the second boundary node following a 

disturbance on node 15 in 220 kV of area C 
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The robustness of the ANN equivalent can be evaluated under changed operating points, 

caused by load changes, generator disconnection and disconnection of the transmission line 

between node 3 and 4 in area C. From the ANN-predicted currents the following power flow 

interconnection between area C and B can be derived following a fault of 120 ms at node 5 in 

110kV of area C. 

 

 
 

 
Fig. 5.25.i .-  Active power flow interconnection between area C and B following a fault on node 5 in 

110 kV of C by changed operation point 

 

 
 
 

 
Fig. 5.25.ii .-  Reactive power flow interconnection between area C and B following a fault on node 5 

in 110 kV of C by changed operation point 

 

In Fig. 5.25, the active and reactive power flow behaviors show a low loss of accuracy. This 

is not surprising, since the disturbance and operating point are not in the training database. 
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Moreover, this ANN captures the dynamic of the external area independent of the 

disturbance and under changed operating point, caused by generator disconnections, line 

disconnections and strong load reduction in the internal area, i.e. the ANN can be 

interconnected to the changed internal area with regard to the network topology, and power 

generating.  

Thus, on the basis of the ANN-predicted injected current the power flow transmission 

between area A and C can be on-line simulated in conjunction with PSD. This simulation 

following a sequence of non-trained faults (after 1 sec. and 3 sec. with 150 ms and 200 ms 

duration, respectively) applied on non-trained nodes is shown in the following figures:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5.26.i, ii.- Power flow interconnection between area A and C following a sequence of nontrained 

faults on C by changed operation point and network topology 

 

This predicted power flow transmission in Fig 5.26 suggests that the ANN-based equivalent 

successfully capture the system dynamic of the interconnected external area with a high 

degree of accuracy considering the changed operating point condition. Through this aspect 

the robustness of this ANN-based approach is being extensively demonstrated. 
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The sum squared distance error and average error of the predicted boundary behaviors 

following disturbances at all non-trained nodes of internal area C and considering different 

non-trained operating points are summarized in appendix part in table D.5 and D.8. 

 

Quality measurement of the ANN-based dynamic equivalent  
 

For a more precise evaluation of the approximation between the injected currents 

calculated with the original external area and the injected currents predicted by the ANN, the 

following sum of square error can be defined:  
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where  

•  ∆j(t) the change of the injected current following disturbance j considering the original 

model of the external area,  

•  ∆i’j(t) the change of the injected current following disturbance j predicted by the ANN 

as dynamic equivalent,  

•  )( jE
pN is the error function. This measure is realized over the sampling points Np of 

the whole behavior and for the disturbance j. 

 

The standardized form of this error function can be reformulated as: 
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The standardized error function of the injected current of all non-trained disturbances is 

summarized and averaged to form their mean value as expression (5.51). Where ND is the 

number of non-trained disturbances with the same duration applied to the nodes, which are 

not considered in the training database.  

 

By means of the standardized error function SE , the ANN-based dynamic equivalencing will 

be evaluated regarding the quality, accuracy, and modeling capability. The disturbances and 

the nodes (on which the disturbances are applied) are not trained. 
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The result simulations of the 16 multi-machine system which was investigated according to 

cases 1, 2, and 3 of table 5.1, are compared with reference to their accuracy considering 

separately area A, B and C as internal areas.  

 

Considering the non-trained disturbances in the internal area A, B and C, and the non-

trained operating points, such as load reduction on the corresponding internal area, the 

prediction capability and robustness of the ANN are evaluated using the beam representation 

of the SE  value in the following illustration 20: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5.27.-  Evaluation of the prediction capability of ANN considering different non-trained 

disturbances and non-trained operating conditions 

 

Following aspects in Fig. 5.27 can be detected: 

 

•  The ANN replacing the areas A and B as external area, i.e. C as internal area, shows 

results, which are less satisfactory considering both operating points. This behavior is 

because of the heterogeneous voltage levels of the internal area C and in consequence 

due to the different operating points of the dynamic ANN to capture the dynamic of the 

external area. This degradation in accuracy may be observed representatively in Fig. 

5.24 and Fig. 5.25.  

•  In this case, an improvement in accuracy can be obtained using the ANN structure with 

locally distributed dynamics. 

                                                
20 The values are summarized in appendix part in table D.5, D.6, D.7 and D.8, in which the sum squared distance error 
and average error of the predicted boundary behavior are presented. 
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•  Moreover, in case of considering area A and B as internal areas, a low mean error 

function or significant accuracy can be obtained. However, in the three cases, area A, B 

and C as internal area, best results are achieved under the training operating points.  

•  The mean error function under changed operating points (illustrated by dark bar) is low 

enough considering A, B and C as internal areas, which may be observed in Fig. 5.21 

and Fig. 5.25 as extreme cases. With this evaluation the robustness of this approach is 

successfully verified. 

•  Its reduced accuracy with reference to the training operating point in the three cases can 

be accepted. As can be seen in Fig. 5.21 and Fig. 5.25, the injected currents and power 

flow interconnections are satisfactorily accurate. 

 

5.5.2 12 Multi-machine system with 3 to 8 boundary nodes 
 

In order to evaluate the robustness of the ANN-based equivalencing, the 12 multi-machine 

system, which is topologically adapted from 3 to 8 boundary nodes, i.e. to 6 different power 

systems with 12 machines, is evaluated according to different operating conditions 21. These 

conditions are summarized in the following Table: 

 
Table 5.2.- Scenarios to power-flow changes considering Fig.5.19 

 

Cases Load Conditions Location in network 

1 Initial Loading Condition 
(Training operating point)  

2 Generator Disconnection G1 

3 Transmission Line 
Disconnection L1, L2 

4 
Generator, Line 

Disconnection and Load 
Reduction 

G1, L1, L2 and load 
reduction on all nodes of 

internal area 

5 Load Reduction to half On almost all load nodes in 
internal area 

 

In case 1, the ANN replaces the original external area under the same operating point, under 

which the training of the ANN was realized. Consequently, this case may be considered as 

an initial or reference operating point. In the subsequent cases, the global trained ANN will 

replace the external area under new non-trained operating conditions.  

                                                
21 The corresponding power flow changes and losses of the 12-machine system with different boundary nodes are 
summarized in appendix part in tables E.5 to E.9. 
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All results of the power systems with 3 to 8 boundary nodes are similar accurate. However, 

a representative scenario as worst case will be presented in Fig. 5.28. It is based on the 12 

multi-machine system with 8 boundary nodes, where the non-trained fault of 120 ms is 

applied on the node 20 in the internal area under the trained operating point according to 

case 1 in table 5.2. 

In Fig. 5.28, the power flow interconnection between node 39 and 40 on the 8th boundary 

line is demonstrated (see Fig. 5.19). Hereby, it may be detected that the performance of the 

ANN-predicted active and reactive power shows a quite agreement and accuracy during the 

whole simulation, i.e. before and after the disturbance.  

 

 
 

Fig. 5.28.i .-  Active power flow interconnection at the 8th boundary node or between node 39 and 40  

following a fault on the node 20 within the internal area 

 

 
 

 
Fig. 5.28.ii .-  Reactive power flow interconnection at the 8th boundary node or between node 39 and 

40  following a fault on the node 20 within the internal area 
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This high accuracy has been determined too in the 12 machine systems whose internal 

and external area are connected by 3 until 8 boundaries and considering extremely changed 

operating points based upon cases 2 to 4 from table 5.2.  

In Fig. 5.29, a representative scenario as the worse case is presented, where a non-trained 

disturbance of 100 ms is located on node 26 in internal area in the 12-machine power system 

with 8 boundary nodes under extremely changed operating conditions (case 4 from Table 

5.2), i.e. considering at the same time generator disconnection G1, lines disconnections L1 

and L2 and a considerable load reduction in the internal area. 

 

 
 

 
Fig. 5.29.i .-  Real part of the injected current at the 8th boundary node following a disturbance on 

the node 20 in internal area under non-trained operating point of case 4 in table 5.2 

 

 
 

Fig. 5.29.ii .- Imaginary part of the injected current at the 8th boundary node following a disturbance 

on the node 20 in internal area under non-trained operating point of case 4 in table 5.2 
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The Fig. 5.29.i and Fig. 5.29.ii show an acceptable accuracy. However, this is not surprising, 

since both the disturbance and the operating point are not in the training database. 

Both Fig. 5.28 and Fig. 5.29 as worse cases show a good agreement of the ANN-predicted 

active, reactive power and complex injected currents in its dynamic performance.  

However, degradation in accuracy may be detected after the number of boundaries. The 

behavior waveforms are more accurate and agreement, the smaller the number of 

boundaries in the power system, as it can be showed illustratively in Fig. 5.31. 

 

Evaluation of the ANN-based equivalencing in the 12 multi-machine system 

 

The mean square error function SE  of the ANN-predicted injected currents according to 

(5.51) in power systems with 3 to 8 boundary nodes may be calculated considering:  

 

a) Different durations of non-trained disturbances and  

b) Different non-trained operating conditions according to table 5.2 

 

a) Different duration of non-trained disturbances 
 

In the Fig. 5.30, the abovementioned evaluation can be realized using the beam repre-

sentation of the SE  value for the 12-machine system with 3 to 8 boundary nodes. 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.30.-  Evaluation of the standardized prediction error SE of recurrent ANN considering 

different disturbance duration (tmin=100 ms, tmax=150 ms) and two sequential disturbances 

(t1=100ms after 1s, t2=120 ms after  2s) 
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The disturbance durations 22 correspond to: 

 

- tmin=100ms  

- tmax=150ms and  

- the sequence of 2 different disturbances with a duration of t1=100ms applied after 1sec., 

t2=120ms after 2 sec. on different nodes.  

 

Fig. 5.30 may be interpreted as follows: 

 

•  It shows a low mean prediction error in the 12 machine system with 3 and 5 boundary 

nodes for all disturbance durations and the sequence of disturbances.  

•  However, with the increase of the number of boundary nodes, this mean error function is 

also increased, but a satisfactory accuracy in the 12 machine system with 3 to 8 

boundary nodes can be obtained, as can be observed in the presented worst cases in 

Fig. 5.28 and Fig. 5.29.  

•  From the Fig. 5.30 is depicted that following a sequence of disturbances, not enough 

accurate results are determined in the 12 machine system with 7 and 8 boundary nodes.  

•  However, these results for stability studies can be accepted, because a good agreement 

between original and ANN-predicted injected currents is obtained. 

 

b) Different operating points 
 

In order to evaluate the robustness of the ANN-based dynamic equivalent under different 

operating power flow conditions 23 expressed in cases 2 to 5 (i.e. non-trained operating 

points) in table 5.2, the mean standardized square error function SE  of all injected currents 

following the non-trained faults applied on non-trained nodes in the 12 machine system with 

3 to 8 boundary nodes are calculated. The power flow relationships of these power systems 

are summarized in the appendix table E.5 to table E.9. 

 

Illustratively, these evaluation results are presented using the beam representation of the 

SE  value in the following figure. Numerically, the results are summarized in the appendix in 

table E.4. 

 

                                                
22 These disturbance durations must be within the range, in which the training procedure was realized. 
23 The offline trained ANN can be used in a transient stability analysis under different operating points. Transmission line 
disconnection, loss of a large generator and load modulation are impacts, which create an imbalance between 
generation and load with respect to the initial training operating point. 
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Fig. 5.31.-  SE evaluation of the robustness of the recurrent ANN depending on the cases of table 

5.2 and in the 12 multi-machine system with different boundary nodes 24 

 

Fig. 5.31 shows following characteristics: 

 

•  Case 1 shows the lowest mean standardized square errors SE  considering the 

operating point, in which the ANN was off-line trained for all adapted networks of the 12 

machine system with 3, 4, 6 and 8 boundary nodes. Therefore, in this case, the best 

agreement and accuracy of the ANN-predicted currents are obtained. 

•  In case 2 (in spite of a large generator disconnection, i.e. changed operating point), the 

mean error function is similar to them of case 1 (trained operating point) in all 12 

machine systems with different number of boundary nodes. 

•  In cases 3 to 5 (extremely changed power flow conditions), the light bars (corresponding 

to systems with 6 and 8 boundary nodes) show a detectable increasing of the mean error 

function depending on the strong of the operating point change.  

•  In all cases, the mean errors corresponding to the 12 machine systems with 3 and 4 

boundary nodes (1.and 2. hatched bars) are lower than one of systems with 6 and 8 

boundary nodes and relatively constant.  

•  Briefly, considering all cases, i.e. all examined changed operating points, with the 

increase of the number of boundary nodes, the mean error of the predicted currents will 

be increased or SE  is decreased. This aspect is due to the limited MIMO modeling 
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capability of the recurrent ANN. Moreover, because of the limited computational 

resources.  

•  However, an accurate modeling capability of the ANN for power systems with small 

number of boundary nodes can be detected independent of the change of the operating 

point. 

•  In spite of the lowest mean standardized error of worst cases 4 and 5 (extremely 

changed power flow conditions) in the 12 multi-machine system with 8 boundary nodes, 

the ANN-based equivalent predicts accurate injected currents (whose response quality 

are satisfactory), which can be observed in Figure 5.29. 

 

This approach is very useful and applicable as dynamic equivalent of a power system 

independent of its size, complexity and number of boundary nodes. Because it does not 

require the full system parameters and the state variables of the external area. This aspect 

was fairly demonstrated in the 16 multi-machine system and 12 multi-machine system, with 2 

and 8 boundary nodes, respectively.  

 

In practical application following aspects can be determined: 

 

•  Some restrictions arise when applying this approach to large number of external 

machines, such as in the interconnected European power system and also the non-linear 

system dimension can cause some limitations in the computational procedures.  

•  However, this approach can be suitably applied to an analogous strongly meshed power 

system, such as the Western North American System (WSCC) [144]. This system 

comprises 46 nodes, 19 generators; the full model is characterized with a 123-

dimensional state vector, which is analogue to the 16 multi-machine system.  

•  The problem of the interconnected European power system is the complex order of the 

state system of the external area, because higher is the dimension of the state vector, 

higher is the number of hidden units, too.  

•  Thus, the increase of hidden units influences the computational complexity of the DANN-

based dynamic equivalencing. However, a suitable alternative can be to generate 

homogeneous local sub areas from the whole external area.  

•  For instance, in the European external area involving the 397 machines can be 

composed on the basis of the power subsystems given in table 3.2 and using the 

proposed DANN with locally distributed dynamics.  

                                                                                                                                                   
24 In case 1, 2 3, 4 and 5, the 4 bars represent the mean error in the adapted 12 machine systems with 3, 4, 6, and 8 
boundary nodes. 
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5.6 Summary 
 

•  With the limited data exchange and sporadic cooperation between energy utilities due to 

the economic interests in the increasingly liberalized and deregulated energy markets, 

this proposed novel approach is suitable to be used in transient analysis, because it 

needs only reduced boundary data sets between internal and external area operators. 

•  The proposed approach replaces the classical steps of the dynamic equivalencing, such 

as grouping, generator aggregation, control aggregation, and static network reduction by 

means of a robust recurrent ANN as dynamic equivalent.  

•  Its main advantage is that it describes the non-linear dynamic behavior of the external 

area considering all power system components, i.e. transmission lines, converters, 

generators with their additional devices such as governor, excitation systems, etc. 

•  This global trained recurrent ANN-based dynamic equivalent is subject to a wide range of 

disturbances applied geographically and electrically in an extensive way in the internal 

area. The so generated MIMO disturbance data sets are provided to the ANN. 

•  Through the wide range and the normalization of the boundary MIMO magnitudes with 

respect to an initial static operating point, a robust ANN equivalent is obtained. 

•  The ANN structure can be realized either as global recurrent ANN or as ANN with locally 

distributed dynamics according to its operating points in conjunction to a heterogeneous 

voltage level of the internal area. 

•  This novel approach is tested in various power systems with 2 to 8 boundary nodes 

under different power flow conditions.  

 

- Tests in the 16 multi-machine system have demonstrated that this ANN-based 

equivalent is applicable and enough accurate in power systems with heterogeneous 

voltage levels subject to non-trained disturbances of different durations.  

- Tests in the 12 multi-machine system have verified that the ANN-based equivalent is 

extremely robust for stability analysis of internal areas with changed power flow 

conditions caused by disconnections of transmission lines, loss of generators and 

changes in the load-generation balance. 

 

•  The stability analysis using the ANN-based dynamic equivalent is highly efficient, 

because different non-trained disturbances on the internal area can be applied under 

non-trained operating conditions and the ANN captures adequately the external area 

dynamic. Although, the disturbance and the operating point differs extremely from the 

ANN training case. 
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•  In comparison with the conventional proposed approaches, such as the 

electromechanical-based identity recognition and splitting-based dynamic equivalencing, 

the ANN-based dynamic equivalents can be applied to complex interconnected power 

systems independent of the operating point and independent of the disturbance in terms 

of time duration and location applied on the corresponding internal area. 

•  This approach is based on an intelligent robust model of the external area allowing its 

complete replacement in comparison to the classical development of dynamic 

equivalents by identity recognition and splitting-based aggregation. 

•  The robust ANN-based dynamic equivalent can be integrated in transient stability 

analysis for all forms, extent, and locations of disturbances on the internal area. The 

dynamic equivalents by identity recognition and splitting-based aggregation are validated 

only for a specific disturbance and for other disturbances geographically and electrically 

in the near. Moreover, these dynamic equivalents may be applied only for a specific 

operating point of the internal area. 

•  This approach can be applied to the interconnected European system difficultly due to 

the increase of hidden units, which influences the computational complexity of the 

DANN-based dynamic equivalencing. However, a suitable alternative can be to generate 

homogeneous local sub areas derived from the whole external area. 

•  With reference to the accuracy and agreement, this ANN-based approach is more 

accurate than the dynamic equivalencing using the electromechanical-based identity 

recognition and splitting-based aggregation in a small-scale power system, such as the 

16-machine-system. However, it can work in conjunction with these classical equivalents 

to reduce the effects of uncertainties. 
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“In all human affairs there are efforts, and there are results, and the 

strength of the effort is the measure of the result.”-J. Allen [140]- 

 

 

Chapter 6  
Closure 

 

 

6.1 Conclusions 
 

The major focus of this work has been the development of models in dynamic equivalen-

cing using intelligent systems generating innovative approaches as alternatives to the 

classical dynamic equivalencing in power systems. The growing importance of considering 

the properties of the components of power systems encourages the investigation of this 

research area. 

The proposed approaches can be roughly categorized into three main groups: 

- Grouping of generators,  

- Aggregation procedure of generators, and  

- Construction of robust and intelligent dynamic equivalents. 

 

The main conclusions obtained in this research can be summarized as follows: 

 

1  Electromechanical-based identity recognition in dynamic 
equivalencing 

 

•  In a preliminary way, an innovative approach in dynamic equivalencing, called identity 

recognition, as alternative to the classical coherency identification is proposed to obtain 

identity-based equivalents. 

•  Through this approach, the grouping of generators is considered as an identity analysis 

task according to the introduced conditions for together oscillating machines, i.e. 

evaluating the identical rotor angle behavior of the machines. The condition of the identity 

recognition is reformulated in a way, in which the identity of the phase and amplitude of 

the behavior of the machines has to be considered. By this rigorous identity evaluation, 
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together oscillating machines can be grouped. These conditions are satisfactorily verified 

on a theoretical way. 

•  The evaluation can be practically realized using standard pattern recognition algorithms, 

such as hierarchical, K-means, Fuzzy and static ANN-based SOFM. 

•  Due to its nature, the proposed identity recognition can incorporate machine model 

parameters in dynamic equivalencing establishing the proposed electromechanical-based 

identity recognition.  

•  Thus, specific physical effects and electromechanical influences of the generators can be 

considered to group identical generators.  

•  These effects are selected by realizing a sensitivity analysis on a one-machine system, 

suitable machine parameters, such as the inertial constant and nominal power, are 

determined. In conjunction with these parameters, the geometrical distance of the pattern 

recognition algorithms is reformulated in an electromechanical distance. 

•  By means of the obtained electromechanical-based identity recognition, improved and 

accurate dynamic equivalents are generated. 

•  In order to verify the effectiveness of the proposed approach, it was tested both in the16 

multi-machine system and the interconnected European power system UCTE/ CENTRAL. 

In the small-scaled power system, all algorithms generate similar grouping compositions 

and in consequence, same accurate dynamic equivalents with high agreement. But, in 

the interconnected European power system, in which the German network was simulated 

as internal area, dynamic equivalents with different degrees of accuracy can be obtained 

depending from the applied algorithm.  

•  Thus, the results with a high degree of accuracy are obtained using the electromecha-

nical weighted K-means and electromechanical weighted Fuzzy algorithms. SOFM are 

not appropriate to this identity task in complex power systems due to the ineffectiveness 

of its learning process. 

•  Further, the electromechanically derived equivalents following a disturbance are valid in 

the same manner for other disturbances too, whose locations are electrically and 

geographically in close to the one. Thus, this approach makes it possible that 

disturbance-independent dynamic equivalents can be generated in limited terms. 

•  The accuracy of this approach depends upon important aspects, namely upon: 

- The identity recognition capability of the algorithms. 

- Number of dynamic equivalents. 

- The geographical and electrical distance between internal machines and 

disturbances. 
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2 Splitting aggregation-based dynamic equivalencing  
 

•  An innovative aggregation approach in dynamic equivalencing, called splitting-based 

aggregation, as an alternative to the classical aggregation, is proposed to obtain accurate 

splitting-based aggregated equivalent machines.  

•  The fictional splitting of generators in virtual generators is based upon the share factors. 

They can be derived from mathematical reduction techniques. 

•  The main advantage of this approach is that it can incorporate mathematical reduction 

techniques in dynamic equivalencing, which can generate highly accurate aggregated 

equivalents in terms of: 

- Linear independent dynamic equivalents with orthogonal oscillating swing curves by 

principal components. The dynamic behavior of the external machines is splitted into 

orthogonal part oscillating swings involving principal components (eigenvectors).  

- Representative non-linear equivalents by Fuzzy membership degrees. The identity 

assignment of the external machines is realized by fuzziness membership degrees. 

•  The proposed splitting-based aggregation is extended to the complete external area. 

This is in contrast to the classical aggregations, which are performed only and 

restrictively on a per coherent area basis. 

•  In comparison to the electromechanical-based identity recognition, this approach omits 

the first step of the dynamic equivalencing, i.e. the electromechanical grouping of 

identical generators on the external area. 

•  This splitting-based approach was tested in the 16 multi-machine system. Notable 

accuracy of splitting-aggregated dynamic equivalents can be obtained independent of 

disturbance in terms of duration, location, and sequence faults, in comparison to the 

equivalent machines calculated with the classical inertial aggregation. Further, the 

accuracy is independent of the number of dynamic equivalents. Best results with a high 

degree of accuracy are achieved using splitting by Fuzzy membership factors.  

•  Independent of the number of equivalents, a similar high accuracy is obtained using the 

electromechanical-based identity recognition applied to small-scale power systems, e.g. 

the 16 multi-machine system, too. 

•  However, its application in large-scale power systems, such as the interconnected 

European power system UCTE/CENTRAL, is restricted. This is due to the influence of 

other electromechanical factors of the power system on the splitting process of the 

external machines. Thus, the splitting factors, which determine the splitting electrical 

parameters of the equivalent generator, can be dispersed. Therefore, in contrast to the 

electromechanical-based identity recognition, the results are not sufficiently accurate. 
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3 DANN-based dynamic equivalencing 
 

•  This proposed approach omits the classical steps of the dynamic equivalencing, such as 

grouping, generator aggregation, control aggregation, and static network reduction by 

means of a robust recurrent ANN as dynamic equivalent. This intelligent robust model 

replaces completely the external area. 

•  The main advantage is that it describes and captures properly the non-linear behavior of 

an external area considering all power system components, i.e. transmission lines, 

converters, generators with their governor, excitation systems, and amongst others. 

•  This recurrent ANN-based dynamic equivalent is globally trained with a wide range of 

disturbances. There are applied geographically and electrically in an extensive way in the 

internal area. The generated MIMO disturbance data sets are provided to the ANN. 

•  A robust ANN equivalent is obtained through this wide range and the normalization of the 

boundary MIMO magnitudes with respect to an initial static operating point. 

•  The ANN structure can be realized either as global recurrent ANN or as ANN with locally 

distributed dynamics according to the ANN operating points in conjunction with the 

heterogeneous voltage levels of the internal area. 

•  This innovative ANN-based approach was tested in various power systems with 2 to 8 

boundary nodes under different power flow conditions.  

- Tests in the 16 multi-machine system have demonstrated that this ANN-based 

equivalent is applicable and enough accurate in power systems with heterogeneous 

voltage levels subject to non-trained disturbances of different durations.  

- Tests in the 12 multi-machine system have verified that the ANN-based equivalent is 

extremely robust for stability analysis of internal areas with changed power flow 

conditions caused by disconnections of transmission lines, loss of generators and 

changes in the load-generation balance. 

•  The ANN-based dynamic equivalents can be applied to strongly meshed interconnected 

power systems with high accuracy independent of the operating point and the 

disturbance in terms of time duration, location, and fault sequence. However, this 

approach can be difficultly applied to the interconnected European system due to the 

increase of hidden units, which influences the computational complexity of the ANN-

based dynamic equiva-lencing. A suitable alternative can be to generate ANN models for 

small homogeneous local sub areas, which are splitted from the whole external area. 

•  The robust ANN-based dynamic equivalent is valid for all forms, extent, and locations of 

disturbances and operating points on the internal area. This is in contrast to the dynamic 
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equivalent using identity recognition and splitting-based aggregation, which are 

generated mainly for a specific operating point of the power system.  

 

6.2 Selection criteria 
 

In the following table, a summarized selection criteria schema is presented. 

 
Table 6.1.- Comparison of the proposed approaches to applicability considering power system 

relevant aspects 
 

Selection aspects 
Electromechanical 

identity 
recognition-based 

equivalencing 

Splitting-
based 

equivalencing 

Recurrent ANN-
based 

equivalents 

Small-scale power system +++ +++ +++ 
Large-scale power system +++ - - 

Disturbance  
independent ++ +++ +++ 

Operating point  
independent --- --- +++ 

Number of equivalents + ++  
Data availability of external 

area - - +++ 

Physical structure ++ +++ -- 
Boundary magnitudes - - ++ 

Resources Electromechanical 
distance 

Mathematical 
reduction 

techniques 

Intelligent model 
system 

 

In the previous table according to the comparison technical aspects, the applicability of the 

approaches has been summarily evaluated involving different usages and practical factors.  

According to the relevant aspects of the dynamic equivalencing, the most appropriate 

approaches are assigned by the symbols ‘+++’, and the less appropriate by ‘---‘. These 

symbols can be chosen as an indicator to assess and use suitably the approaches for 

forming dynamic equivalents in transient and dynamic stability studies according to the 

corresponding practical aspect.  

As small-scale power system, the 16 multi-machine and 12 multi-machine systems are 

considered, and as large-scale power system the interconnected European power system, 

as well. However, these proposed approaches can work in conjunction to reduce the effects 

of uncertainties in dynamic equivalencing. 

 

Under the following criteria aspects an appropriate approach could be selected in detail: 
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Electromechanical-based identity recognition in dynamic equiva-
lencing 
 

•  This electromechanical-based approach is suitable to develop dynamic equivalents both 

in small-scaled power systems and in the interconnected European power system 

UCTE/CENTRAL without restriction independent of its size and complexity.  

•  The accuracy of the dynamic equivalents depends upon the used algorithm, the number 

of equivalents and the electrical distance of internal machines to the disturbance. 

•  Further, the electromechanical derived equivalents are also valid with a degradation of 

accuracy for other disturbances that are electrically and geographically in close distance 

to the fault of the equivalents derived. 

•  These dynamic equivalents are operating point dependent. Moreover, this approach 

needs considerable data sets of the external area to generate the dynamic equivalents. 

 

Splitting-aggregation based dynamic equivalencing 
 

•  This approach is suitable for small-scale power systems obtaining strongly accurate 

equivalents. Further, its high accuracy is mainly independent of the number of 

equivalents and disturbance severity, form, location and duration.  

•  A drawback of this method is the accumulation of error when it is applied to large number 

of external machines, such as in the interconnected European power system. 

•  From practical viewpoint, this approach is appropriate, when  

- Electromechanical external machine parameters are available. 

- The fictional splitting of external machines enables the implementation of 

mathematical reduction techniques in dynamic equivalencing. 

•  However, the splitting-based dynamic equivalents are operating point dependent. 

 

Dynamic ANN-based dynamic equivalencing 
 

•  The ANN-based dynamic equivalents can be applied without restriction to strongly 

meshed, small-scaled power systems independent of the operating point and the 

disturbance in terms of time duration, location, and fault sequence.  

•  Some restrictions arise when applying this approach to large number of external 

machines, such as in the interconnected European power system and also the non-linear 

system dimension can cause some limitations in the computational resources.  
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•  In comparison to others approaches, the ANN-based equivalent is valid for diverse 

operating points far away (caused by disconnections of transmission lines, loss of 

generators and changes in the load-generation balance) from the derived one. 

•  This intelligent robust model of the external area captures the complete dynamic of an 

external area of a power system on the basis of an extremely reduced MIMO data set. 

•  From practical viewpoint, the network operator needs only limited boundary magnitudes 

of the neighborhood areas to generate the ANN-based dynamic equivalent. 

•  This approach is more accurate as the results obtained by electromechanical-based 

identity recognition and splitting-based aggregation in a small-scaled power system, such 

as the 16 multi-machine system. 

 

6.3 Suggestions for future work 
 

This research represents a new way for implementing intelligent systems, such as pattern 

recognition algorithms, Fuzzy theory, and ANN in dynamic equivalencing for power systems.  

 

In the future, this study can be extended to the following aspects: 

 

Electromechanical-based identity recognition 
 

•  Using the reformulated conditions of the proposed electromechanical-based identity 

recognition, it would be interesting to generate dynamic equivalents for small stability 

studies in terms of damping and modal analysis. 

•  Future prospects should focus on the implementation of this approach in damping 

analysis of the interconnected European power system UCTE/CENTREL. 

 

Splitting-based aggregation 
 

•  Different mathematical reduction techniques (based upon system decomposition) can be 

implemented in this approach to form the splitting of the external area machines. 

•  The impact that splitting of generators in virtual machines would have on the dynamic 

performance of the reduced power system, should be studied to determine the inaccuracy 

in large-scale power systems. From such a study, more insights about the role of virtual 

generators in providing additional electromechanical properties could be gained.  
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Dynamic ANN-based dynamic equivalencing 
 

With the increasing concurrence between energy utilities, dynamic ANN as non-linear 

dynamic equivalents could be employed widely in online transient stability studies of real 

complex power systems. Thus, this approach as proposed ANN-based equivalent with locally 

distributed dynamics, could be applied on the homogenous sub areas derived from the 

interconnected European power system UCTE/CENTREL, taking into account sufficient 

computational resources. 

 

6.4 List of publications 
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[2] O. Yucra Lino, Michael Fette, “Electromechanical Identity Recognition in Dynamic 
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[3] O. Yucra Lino, Michael Fette, Zhao Dong, “Splitting-based Aggregation in Dynamic 
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Identity Recognition in Dynamic Equivalencing”, PES Power Tech 2005, St. Petersburg-
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APPENDIX A  Classical dynamic 
equivalencing approaches 
 

A.1. Ward equivalent 
 

The Ward method consists in eliminating selected nodes of the network [50], which are 

denoted by index ‘l’ and generator nodes by ‘g’, as can be seen in Fig. A.1.  

 

 

 

 

 

 

 

 

 
Fig. A.1.-  Ward static equivalent by eliminating {L} load and {G} generators nodes. 

 

According to Fig.A.1, the bus current is related to the bus voltage through: 
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The current-voltage relationships are reduced to: 
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It denotes the equivalent current injection vector and 

 

    lg
1YYYYY −−= llglgg

eq
gg      (A.4) 

 

denotes the equivalent bus admittance matrix [50].  

 

•  The alternative way to improve accuracy of the Ward-type is to retain selected generator 

nodes yielding ‘the Ward-PV equivalent’ [52-50]. 

•  Replacing, by ‘grouping and aggregation of generator nodes’ [51], each selected group 

by one equivalent generator node, ‘the reduced Ward-PV equivalent’ can be obtained. 

 

Fig. A.2 shows schematically the reduced Ward PV-equivalencing. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. A.2.-  Reduction of the Ward-PV equivalent with n number of equivalent generator nodes. 

 

Disadvantages: 
 

•  This approach is based upon the linearized differential equations of the generator rotor 

movement. Hence, such equivalents do not retain the dynamic properties of the system. 

•  A major drawback of all these approaches is the unreliability of the analysis due to the 

oversimplification of the load nodes [53, 57].  

 

In order to overcome this weakness,  

 

.

. 

.

 
 

Reduced 
WARD-PV 

Equiv. 

~

~

~Ib .
. 
.

1 

2 

n 

. 

. 

. 

 
 
 
 

WARD-PV 
Equiv. 

~
~
~

~
~

~
~
~

IB 

{g1} 

{g2} 

{gn} 

. 

. 

. 

. 

. 

. 

. 

. 

.

. 

.



APPENDIX 158 

•  Bergen [54], Podmore and Germond considered non-linear loads.  

•  Pai [55] initiated a method based on the assumption that the complex ratios of the 

voltage phasors at the generator buses to those at the load buses are constant.  

 

Dynamic Ward equivalent 
 

The main property of this method is a correction formula that allows to update the equivalent 

current injections at the retained buses as follows: 

 

   eq
g

eq
g

eq
g ΙΙΙ ∆+= 0       (A.5) 

 

Here the subscript ‘0’ refers to the current in the base case operating point. The equivalent 

current increments can be considered into the generator electric power formulation by: 

 

   
ii emgiigii PPDM −=+

•••
δδ     (A.6) 

 

where Pei is the generator electric power obtained from a load flow solution.  

When the system is reduced to the internal generator nodes, the equivalent electric powers 

and their increments are found through: 
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where 

 

•  eq
ij

eq
ijY ϑ∠ are the entries of the equivalent bus admittance matrix from (A.4).  

•  eq
gi

eq
giI ψ∆∠∆  are updated by the sensitivity matrix. 

 

Disadvantages: 
 

•  The sensitivity matrix is based upon the linearized differential equations of the generator 

rotor movement. 

•  The correction formula is performed on linear load models and power flow solutions. 
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A.2. Modal-based equivalencing 
 

The external area dynamic, linearized at the operating point, is expressed by [67]: 

 

   
TT

T

  
  

UDXCI
UBXAX

∆+∆=∆
∆+∆=∆

•

     (A.10) 

where  

 

•  X is the original state variables 

•  UT is the node terminal bus voltage at interconnected points 

•  IT is the node injection current at interconnected points 

•  A, B, C, D are the coefficient matrices composed of generator equations, coordinate 

transformation equations, algebraic equations of transmission network, etc. 

•  ∆∆∆∆ is the small deviation from initial value. 

 

The Laplace transformed frequency response formula can be written as: 

 

   ( ) T     j UBAIX ∆−=∆ −1ω     (A.11) 

 

The frequency response can be simplified by diagonalizing the system using eigenvalues 

and eigenvectors as follows:  

 

ΛTAT =−   1  

   YTX   =      (A.12) 

with:  

   =Λ diag { }Nee ,....,1      (A.13) 

   { }N1  vvT ,...,=       (A.14) 

 

Using this transformation, the Laplace transformed linearized system can be diagonalized: 

 

   ( ) T
-1        j UBTΛIY ∆−=∆ −1ω     (A.15) 

where  
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•  ΛΛΛΛ, T is the diagonal matrix of eigenvalues and the matrix containing eigenvectors, 

respectively. 

•  Y represents the transformed state variables or state vector in frequency domain on 

eigenvector basis. 

 

After the transformation, it is easy to calculate the frequency responses for all input 

frequencies. In general, these equations cannot be interpreted as models of physical 

devices. Furthermore, model reduction based on modal analysis requires computation of 

eigenanalysis. Basic concepts of reduction by modal are the reduction by aggregation of 

similar nodes and elimination of modes, which have large eigenvalues and not included in a 

similar mode group. This reduction is executed until the number of modes is reduced to a 

specific number [58-63].  

 

Disadvantages: 
 

•  The modal dynamic equivalent, however, has a limited application. it doesn’t have a 

structural and physical identity. It is a purely mathematical representation the external 

area and cannot retain its non-linear characteristics.  

•  The modal technique deals with the modes of the linearized system, in order to eliminate 

the less significant ones for the disturbance of concern [64]. 

 

A.3. Coherency-based equivalencing 
 

•  The coherency was proposed by Podmore [17]. In this context, simplified and linearized 

equations were defined to express the accelerating power deviations of each generator.  

•  The swing curves obtained are processed to determine the coherent groups of 

generators. Thus, two generators buses are defined as coherent if their phase angular 

difference is constant within a certain tolerance over a certain time interval.  

 

Disadvantages: 
 

•  The determined coherent groups are independent of the amount of detail in the machine 

model, i.e. the real modeling parameters and physical properties of the generators. 

•  Coherent groups are dependent of the size and art of the disturbances. Therefore, the 

determined equivalents are not exact enough. 
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Remarks: 
 

•   Methods proposed by Di Caprio [18], Avramovic [21], Kokotovic [22] and 

Balasubramanian [23] are based on the coherency concept.  

•  The coherency is determined using different magnitudes of the generator, such as 

moment inertia [23], rotor angle [17], relative rotor angle [67], modes of the eigenvalues 

[66], and similarity of eigenvectors, amongst others.  

•  With the coherency-based procedure, which is presented in [23, 24], direct methods, 

such as the transient energy function methods [44, 45] and extended equal area criterion 

[46, 47] can be made even faster and optimatized. 

•  The property of coherency of Chang and Abibi [72], Ohsawa and Hayashi [74], Pai and 

Narayama [75], De Mello [73], Podmore [17], Germond and Podmore [34] are taken from 

stability simulation cases of the original system, or from inspection of the contribution for 

the system potential energy associated with the relative motion between each pair of 

external area generators.  

 

Coherency in frequency domain 
 

•  Coherency of linear system swings depends on the frequency and damping of a 

particular swing may be detected. For one selected mode the frequency and damping 

are evaluated. Thus, coherency is described by the corresponding right eigenvector.  

•  Considering only that the generator are characterized by the reduced right eigenvector, 

which describes the so-called rotor mode shape, coherent generator groups can be 

identified based on the small angles between the elements of this reduced eigenvector.  

•  It is shown in Figure A.4. The magnitudes of the vectors are not significant.  

 

 

 

 

 

 

 

 

 

 
Fig.A.4.-  Recognition of coherent generators based on generators electromechanical eigenvector 
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A.4. Hybrid modal procedures 
 

Based on ‘modal analysis’ and ‘coherency identification’, following hybrid procedures show 

important alternatives to develop dynamic equivalents:  

(i) Modal coherency using frequency response and  

(ii) Synchronic modal equivalencing. 

 

(i) Modal coherency using frequency response [65-68] 

 

•  After the linearization, diagonalization and transformation of (A.10), the frequency 

response for all input frequencies is calculated, since the matrix to be inverted for each 

frequency now is a complex diagonal matrix, as can be seen in Fig. A.3: 

 

 

 

 

 

 

 

 
Fig. A.3.-  Frequency response for input m. 

In Fig. A.3 all inputs ui are zero, except input m. The excitation frequency is ωs. The output 

vector element δ k (ωs, m) represents the relative rotor angle in frequency domain of 

generator k for a perturbation with frequency ωs, applied at input m. 

According to the frequency analysis, an index Ci,j is calculated and compared between the 

external generators i and j for a sine shaped perturbation of frequency ωs, applied at a single 

input m as follows.  
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Two generators i and j are coherent with respect to the perturbation in the internal area if 

their index is less than a certain tolerance. Thus, a grouping process according to this index 

is realized. 
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(ii) Synchronic modal equivalencing [69] 
 

It generates equivalents using both a linear multiport admittance, replaced by voltage 

controlled injected currents at the replaced generator buses and external reference 

generators, one for each external synchronic group.  

 

•  The decomposition into synchronic areas is defined with respect to a selected subset of 

modes ν of a linearized model.  

•  Two generators are synchronic, if their angular variations are exactly or approximately in 

constant proportion for any transient, in which only the modes in ν are excited.  

•  The injected current as multiport admittance is a linear function of the voltages of the 

buses of the equivalenced generators. This approach grows out of multi-area ‘Selective 

Modal Analysis’ [70, 71] and ‘slow-coherency‘[12]. 

 

A.5. Linear model reduction 
 

This analytical method reduces the order of a full linear system (A.10) [76-78]. The transfer 

function matrix between outputs Y and inputs U in (A.10) is given by: 

 
( ) ( ) DBAICG +−= −1ωω jj     (A.17) 

 

One of the main reasons for model reduction bases on the fact, that many poles of the 

transfer function are compensated by zeros. The positions of the zeros depend on the 

chosen inputs and outputs, whereas the poles are the same for the whole model. 

The task of model reduction, in terms of system theory, can be formulated for a 

asymptotically stable system, i.e. Re {λ i (A)}<0 as follows: 

 

   uBxAx   RRRR
ˆˆˆˆ +=�      (A.18) 

   uDxCy   RR += ˆˆ      (A.19) 

 

with Rx̂ as state-vector of the reduced system with nR < n and Re {λ i ( RÂ )} <0. 

For the approximation error can be used:  

(i) the H∞− Norm or 

(ii) an optimization procedure. 
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(i)  The H∞− Norm of the difference between the frequency response matrices of the non-

reduced and reduced system is: 

 

  )}(ˆ)({)(ˆ)( ωωσωω
ω

jjpusjj RR GGGG −=−
∞

  (A.20) 

where  

 

•  σ = )(ωσ  is greatest singular value. 

•  )( ωjG  is the transfer function matrix of the system. 

•  )(ˆ ωjRG is the transfer function matrix of the reduced one in frequency domain. 

 

The greater the dimension nR the smaller is the approximation error.  

 

(ii)  The dynamic equivalent can be calculated solving the following minimization problem as 

optimization procedure using e.g. genetic algorithms, 

 

  { }∑ −
Kk

kRk
ε

λλ )ˆ()(min _AA     (A.21) 

where  

•  K is the set of operating conditions under study;  

•  λ(Ak) is the set of electromechanical modes with relevant contributions of generators 

of the studied system;  

•  λ(AR_k) is the associated set of electromechanical modes of the reduced system. 

 

A multi-machine power system model linearized around a equilibrium point is represented 

by Ak and defining AR_k as the state matrix of the corresponding linearized reduced model in 

(A.17) around the kth equilibrium point, when just generators of the internal area and some 

fictitious generators representing the external area are retained [79-83]. 

On this base, least-squares methods [79-81], genetic algorithms in [82] according to balance 

realizations and statistical approaches [83] can be used too.  

 

Disadvantages: 
 

•  The significant drawback of this method is principally that the resulting equivalent system 

is not composed of physical components. 

•  The estimation of a set of state variable parameters is based upon the linear sate space 

system that is assumed to describe only linear parts of the reduced power system. 
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A.6. Model identification methods 
 

The relationship between inputs, outputs, and unmeasured inputs can be described by the 

state-space representation described in (A.10) and illustrated as follows: 

 
 
 
 

Fig. A.5.-  Input Signals u, Output Signals y, and Disturbances e 

 

The identification of the model parameters from (A.10), i.e. A, B, C and D should be 

realized by several modeling methods in parametric form. 

Assuming the discretized signals are related by a linear system, the relationship of general 

linear models can be written as. 

 

   ( ) ( ) ( ) ( ) ( )t qHt qGt euy +=     (A.23) 

where 

•  q is the shift operator. 

•  G(q) is the transfer function of the system. 

•  H(q) represents the disturbance filter. 

 

The estimation of the transfer functions G(q) and H(q) of a model can be realized with 

different parametric or nonparametric models  [89, 90]. 

 

The identification of dynamic equivalents can be solved using the parametric ARX model with 

 

( ) ( )
( ) ( ) ( )qA

1qH
qA
qBq=qG nk- =     (A.24) 

 
where nk corresponds to the number of delays from input to output and A and B are 

polynomials in the delay operator q-1 described as follows: 

 

   
( )
( ) 1nb+

nb
1

2

na
na

1
1

qbqbbqB

qaqa1qA
−−

−−

+++=

+++=

l

l

1

   (A.25) 

The model is usually written as: 

 

   ( ) ( ) ( ) ( ) ( )tenktuqBtyqA +−=     (A.26) 

y 
e 

Linear System
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The identification of the ARX-model parameters ai and bi is based on the least squares 

estimation method. 

 

Disadvantages: 
 

•  Linearization around the equilibrium yields mathematically tractable linear models but 

according to the power system components not completely non-linear compatible. 

•  Non-linear systems could be approximated partly in their normal ranges of operation. 

•  The disadvantage of this method is principally that the resulting dynamic equivalent 

model is not composed of physical components. 

 

A.7. Flow chart of the power system simulation tool PSD 
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A.8. Flow chart of the coupling of the machine model to the analysis algorithm PSD 
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APPENDIX B  Identity recognition 
algorithms 
 

B.1. Hierarchical clustering 
 

Hierarchical clustering starts with the calculation of all distances dij between all the objects 

in the multidimensional space. Thus, the number of cluster c initially corresponds to the 

number of objects of generatorts N. In total, N(N+1)/2 distances are computed hierarchically.  

If at a certain step during the clustering process two clusters P and Q are agglomerated into 

a new cluster K, then the distance between cluster K and any other cluster R can be 

computed according to the following general hierarchical distance form: 

 

  ),(),(4),(3),(2),(1),( RQRPQPRQRPRK dddddd −+++= δδδδ   (B.1) 

 

Where the coefficients are different for different strategies, such as the single-, complete-, 

simple average-, average linkage, centroid, median and Ward’s method after table B.1.  

 
Table B.1.- Computation of distances [101] 

 
Name 1δ  2δ  3δ  4δ  

Single linkage 1/2 1/2 0 -1/2 
Complete 
linkage 1/2 1/2 0 1/2 
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B.2. Partitioning clustering: K-means 
 

This clustering permits objects to change group membership through a cluster formation 

process [99]. The reallocation occurs according to the following optimality criterion [101]: 
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1
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1
)(    (B.2) 

 

where xj is a data vector, ci is a centroid vector of a group, M denotes the number of 

variables, N the number of objects and K the number of cluster groups.  

The total squared error of the procedure is constant; the minimum of squared error in the 

clusters corresponds to a maximization of the squared error between the clusters, as follows: 

 

   inerrorsquaredTotalbetweenerrorsquared KESSEKES )()( −=    (B.3) 

 

The flow chat of K-means algorithm is described schematically as: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. B.1.- Flow chart of the concept of K-means for a set of clusters  
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The algorithm for this method can be modified to realize this procedure automatically not 

only for one specified number of cluster, but rather for a set of clusters between cmin and cmax. 

The iterative partitioning of reassignment in the cluster centers is calculated by: 
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     (B.4) 

 

B.3. Fuzzy clustering 
 

The key idea of this clustering is to extend the classical within groups sum of squared error 

objective function to a Fuzzy version by minimizing an objective function [102-105]. The 

Fuzzy clustering conditions can be derived as the following way. 

 

In classical variational theory, a fundamental continuous-time continuous-state functional 

optimisation problem (minimizing) in its simplest form is defined as: 
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If bundle y is a weak relative minimum to (B.5), and if t is any point in [to, t1] where 

derivative )(ty
⋅

 exists, then the Euler-Lagrange equation in its differentiated form holds: 
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A functional optimisation problem in discrete time can be defined as: 

 

   ( ) mintytytFJ
N

t
y →+=∑

=0

)1(),(,     (B.7) 

 

Such a functional is solved by discrete-time Euler-Lagrange equations. Although these 

results do not consider constraints, side constraints, including Lagrange constraints and 

isoperimetric constraints, can be included. Constraints are typically handled by using 

Lagrange multipliers to transform a constrained problem into an unconstrained one, and by 

applying the Euler-Lagrange condition on the Lagrangian function to get the Euler Lagrange 

equations, as follows: 
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Thus, a generalized Lagrangian function (constrained functional): 
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with 
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may be solved by the Euler-Lagrange equation, too: 
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This concept can be extended to consider a discrete constrained optimisation problem of 

Fuzzy clustering. The objective function is:  
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where  

 

•  N corresponds to the number of objects and K to the number of clusters. 

•  dij is the distance between the datum vector and cluster centers. 

•  µij is the membership degree of datum xj to cluster ci. 

•  m>1 is the fuzziness index and influences the “fuzziness” of the obtained partition.  

 

The objective function is subjected to the following discrete variable constraints of µij: 
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(B.12) can be minimized, while too for all µ the sum ∑
∈ Cc

m
c cxd ),(2µ  will be minimized. A 

generalized discrete Lagrangian function of (B.12) is: 
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This applicability doesn’t pose problems here because it doesn’t require the differentiability. 

Applying the Euler-Lagrange equation following equations are obtained: 

 

   01)(),( =−=
∂
∂

∑
Cc

cL
ε

µλµ
λ

    (B.15) 

   0),(**),( 21 =+=
∂
∂ − λµλµ
µ

cxdmL m
c

c

   (B.16) 

 

Dissolving the membership degree in (B.16) and replacing in (B.15) results: 
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together with (B.17) forms the membership degree condition as: 
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For the initial values of the membership degree, the following formulation can be used: 
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Another condition for local extreme is based upon the differentiation of Jm to ci using the 

residue principle as: 
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According with the condition for local extreme: 
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following condition can be reached: 
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Conditions (B.19), (B.20) and (B.23) are first-order necessary conditions for local extreme of 

Jm. Thus, all Fuzzy algorithms used to solve (B.12) should satisfy (B.19), (B.20) and (B.23).  

 

The algorithm realized for Fuzzy clustering is described schematically as follows: 
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Maximal number of iterations or change the 
optimization tolerance? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. B.2.- Flow chart of the concept of fuzzy c-means clustering. 

 

B.4. Relationship between K-means (hard clustering) and Fuzzy clustering 
 

The difference between K-means and Fuzzy clustering can be described mathematically 

according to the conditions (B.19) and (B.23) as follows: 

 

•  Considering the convergence m→1, following equations can be obtained: 
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Y 

N 

Centroids C and fuzzy labels are available using the 
constraints (B.13) 

Initial cluster centres by means of random way. 

Iter ++ 

Compute the matrix of distances between object j and the centre of 
cluster i and the membership coefficient matrix {µµµµij} based on (B.20)

Compute the cluster centres using the derived necessary conditions 
defined in (B.23) 

Recompute the distance of data to centroid 

The membership coefficients are updated according to the necessary 
condition defined in (B.19) 
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This convergence corresponds to the K-means partition and represents the classical 

within-groups sum of squared errors. The cluster centers are defined as the average sum 

of objects assigned to the corresponding clusters.  

•  Considering the convergence m ∞→ , i.e. in this case, the clusters are nearly 

undistinguishable. The following equations can be obtained: 
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Where uk and ci represent a single large cluster group, in which is included all data 

vectors. All those objects show same membership degree [105].  

 

B.5. Self organizing features maps (SOFM) 
 

The unsupervised ANN learn to recognize groups of similar input vectors in such a way that 

neurons physically close together in the neuron layer respond to identical objects [110].  

The following graphic shows the schematic representation of a SOFM. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. B.3.- Schematic representation of SOFM 
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Thus, the weights of the winning neuron has to be adjusted so as to move it closer to the 

input vector by the following learning rule (Kohonen learning rule): 

 

  )]1()()[,()()1()( −−+−= tWtxdtNttWtW gjggg α    (B.28) 

 

Hereby, the corresponding vector of the input weight matrix Wg of the neurons has to be 

adjusted and updated according to a learning function α(t) and neighborhood function N(t).  

 

The ‘winner’ neuron can be determined by the following Euclidean distance criterion that for 

the gth neuron obtains minimum value. 
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In this expression xjl is the pattern of the time response of matrix X(M,N) and wgl is the weight 

vectors of W matrix of order (k,M) with k corresponding to number of clusters. 

 

B.6. Clustering quality 
 

A problem in clustering is the choice of the correct number of clusters and its quality. 

Clustering criteria can help to suggest these aspects. The Fig. B.4 shows these aspects: 

 

 
 

Fig. B.4.- Schematic representation of the clustering quality 

 

Worse assignment
within the clustering
due to the high
degree of dispersion
in clusters. 

Best assignment
within the clustering
based on compact
clusters. 
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The problem has been discussed extensively in the literature in [93-98]. The question, 

"which clustering criterion gives the best results?" remains. It is suitable that a fruitful 

approach implies the application of several criteria because each has strong and weak 

points. The criteria implemented are the total error sum of squares, Davies-Bouldin index and 

the Silhoutten coefficient discussed extensively in [93-99], whose criteria principally are 

based on the within-cluster variation. 

 

B.7. Practical comparison of identity recognition algorithms 
 

The strengths and weaknesses of each algorithm implemented in [141] are: 

 

- Accuracy.- The electromechanical K-means and Fuzzy show a similar high accuracy in 

the forming of identical groups of generators with a non-significant computational 

requirement. In contrast to this, Kohonen SOFM shows the worst accuracy. 

 

- Complexity and processing time.- The resource consumption varies considerably 

between the K-means and SOFM. SOFM are impractical for large power system. SOFM 

inefficiency, resulting from search of the winner neuron, increases the time cost and it 

shows a slower convergence rate. The simplicity of the K-means and its speed of 

convergence are obvious advantages for the applicability in large power systems. Fuzzy 

has own computational advantages due to its optimization nature, but its processing time 

due to the iterative operation of the objective function, is computing resource-based. 

 

- Efficiency.- K-means, hierarchical and Fuzzy efficiency depends largely on the inputs 

patterns. The efficiency of SOFM depends on how accurately the learning and 

neighborhood function represent the input patterns in the weight vectors. 

Electromechanical Fuzzy and K-means are numerically stable as well consistent, and it is 

applicable to power systems with larger amounts of generators. 
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APPENDIX C  DANN-based dynamic 
equivalencing 
 

C.1. ANN preliminaries 
 
Architecture and topology 
 

A non-linear system can be captured by the following ANN structure:  

 

- The feedforward ANN mathematical description is given by: 

 

   2112),h( BBWW ++== )T(y ϕϕϕϕκκκκθθθθϕϕϕϕ    (C.1) 

 

where ϕϕϕϕ are neuron inputs, Wi is the weight matrix and Bi denotes the bias that is 

considered, for simplicity, a weight associated with an unitary input. 

- The activation function κ(.) representing the non-linearity property of the ANN, may be:  

The tangent hyperbolic:  xexe

xexexx
−+

−−== )tanh()(κ   (C.2) 

Sigmoidal type:   xe
xx

+
==

1

1)()( σκ    (C.3) 

Gaussian:    2

2

2
1)(

x

ex
−

=
π

κ    (C.4) 

- The ANN weights are updated by the back-propagation according to: 

 

   )1(
)(

)()( −∆+
∂
∂

−=∆ tijtij

tEtij θα
θ

ηθ    (C.5) 
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where η is the learning rate, which controls the rate at which the ANN learns, 
)(
)(

t
tE

θ∂
∂

 is 

the derivative of the error with respect to the weight and α is the momentum.  

- The output layer is a linear type function. 

 

C.2. Learning strategies 
 
The learning strategy used is to minimize the difference between the desired and the actual 

output of the network, using following optimization strategies [124-128]: 

 

•  The Back-propagation is based on the propagation of the output errors until it reaches 

the first layer of the neural network. The ANN weights in (C.5) can be updated by the 

back-propagation according to the sensitivity of the error with respect to the weighting. 

•  The Levenberg-Marquardt optimization uses this approximation to the Hessian matrix 

in the following Newton-like update:  

 

   [ ] )()()1(
1

ttt TT EJIJJ −
+−=+ µµµµθθθθθθθθ     (C.6) 

   JJH T=        (C.7) 

   )(tT EJg =        (C.8) 

 

where xk is a vector of current weights and biases. When the scalar µ is zero, this is just 

Newton's method, using the approximate Hessian matrix. When µ is large, this becomes 

gradient descent with a small step size. The Hessian matrix and the gradient can be 

approximated in (C.7) and (C.8). J is the Jacobian matrix that contains first derivatives of 

the network errors with respect to the weights and biases, and E is a vector of errors. 

 

C.3. Modeling 
 

The modeling may be divided into the following basic functions: 

 

•  Regression vector.- It may be implemented in form of a delay space embedding of 

input and output variables and represents the long-term prediction capability of a 

model providing sufficient information to reconstruct the states of the system.  

A collection of time lags in a regressor vector space of d dimensions can be: 

 

( ))..)1((),..,2(),(),)1((),..,(),()( TdtyTtyTtyTdtuTtutu t −−−−−−−= ϕϕϕϕϕϕϕϕ  (C.9) 
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•  Non-linear mapping.- The non-linear mapping is described by the modeling 

capability of the ANN. The most difficult part of the system modeling is not the 

parameter estimation but the selection of the suitable model structure and the feature 

extraction for the nonlinear mapping  

 

C.4. Non-linear models 
 
The following non-linear models may be considered [117, 118]: 

 
- Non-linear Output Error (NOE structure): 

 

  






 +−+−=+ )1(),...,(),1(),...,(h)1(
^^^^

uy ntutuntyty ty    (C.10) 

 

- Non-linear AutoRegressive models with eXogenous inputs (NARX structure): 
 

  ( ))1(),...,(),1(),...,(h)1(
^^

+−+−=+ uy ntutuntyty ty   (C.11) 

 

- Non-linear AutoRegressive Moving Average with eXogenous inputs (NARMAX): 
 

  )()1(),...,(),1(),...,(h)1(
^^^^

tentutuntyty ty uy +






 +−+−=+   (C.12) 

where 
^
y  is the output of the identification model 

^
h , y of the non-linear system.  

 

C.5. Power system model 
 
Modeling of the excitation system 
 

The excitation system including PSS, whose basic function is to add damping to the 

generator rotor oscillations by controlling its excitation, may be represented by the equations: 

 

  t    PSS      E     E EEE uuxx BBA 21 ++=
•

   (C.13) 

  )( Exfdfd EE =     (C.14) 
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where upss is the input signal to the PSS or the exciter input voltage.  

 

If it is derived from the rotor velocity then upss = ω. Ut corresponds to the terminal voltage 

magnitude. In general, Efd is a linear function of xE except when limits of Efd are to be 

considered. 

Control of the excitation system of a synchronous machine has a very strong influence on its 

performance, voltage regulation, and stability [135, 137, and 138].  

 

Modeling of the turbine and governor 

 

The turbine-governor system can be expressed generally by the equations [136]: 

 

  ref
mP           T     T TTT 21 BBA xx ++=

•
ω    (C.15) 

  )( Txmm TT =      (C.16) 

 

where ref
mP   is the reference power set by Load Frequency Control (LFC) or Automatic 

Generation Control (AGC).  

The variables and parameters of equations (C.13–C.16) are given in [136]. They are 

important pieces of power system equipment. 

The dynamics of the turbine and governor are normally much slower than that of the exciter. 

Hence, the dynamics of these devices can be neglected. 

 

Remarks: 
 

Thus, the generator equations comprise following important parts [136]: 

 

- Rotor electrical,  

- Mechanical,  

- Excitation and  

- Turbine-governor equations according to the basic components of power systems. 

 

The interconnections among the various subsystems of the generator are shown 

schematically as follows: 
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Fig. C.1.-  Interconnections among subsystems 

 

Hereby f1, f2 and f3 are non-linear functions of the input variables obtained from equations 

given above, uq and ud are derived from the knowledge of the phasor tU
−

 expressed with 

reference to a common reference frame and the generator rotor angle δ, as given below 

according to f3 depicted in Fig. C.1. 

 

   )()( δθδ −−
−

==+ j
t

j
tdq eUeUjuu    (C.17) 

 
−

tU  and 
−

tI  are the terminal voltage and terminal current phasors of the generator.  

From this expression, the following relationship can be obtained: 

 

  Uu tq )cos( δθ −=  

    Uu td )sin( δθ −=      (C.18) 

 

and tU  based on function f1 in Fig. C.1 can be expressed as: 

 

   22
qdt uuU +=      (C.19) 

where θ is the bus angle at the generator terminals obtained from the network solution.  
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APPENDIX D  Data sets of 16 Multi-
machine system 
 

Table D.1.- Data sets of investigated multi-machine systems 
 

 16-machine 
system 

12-machine 
system 

European Interconnected 
Power System UCTE/CENTRAL

Number of generating 
units 16 12 496 

Number of transmission 
lines 54 60 2098 

Number of Nodes 66 58 2016 

Number of two winding 
transformator units 16 12 1032 

Number of three winding 
transformator units 12 0 0 

 
Table D.2.- Generator data set of 16 multi-machine system 

Name Mod. 
Order 

SN 
[MVA] Tm UN[kV] ra 

 [p.u.]
xs 

 [p.u.] 
xd‘ 

 [p.u.] 
xd’’ 

 [p.u.]

A01aG 5 220 1518 15,75 0,001 0,195 0,43 0,225

A01bG 5 220 1518 15,75 0,001 0,195 0,43 0,225

A02aG 5 220 1518 15,75 0,001 0,195 0,43 0,225

A02bG 5 220 1518 15,75 0,001 0,195 0,43 0,225

A03_G 5 220 1518 15,75 0,001 0,195 0,43 0,225

A06_G 5 247 1729 15,75 0,002 0,19 0,36 0,24 

B02aG 5 259 2719,5 15,75 0,001 0,156 0,29 0,2 

B02bG 5 259 2719,5 15,75 0,001 0,156 0,29 0,2 

B03_G 5 259 2719,5 15,75 0,001 0,156 0,29 0,2 

B08_G 5 247 1729 15,75 0,002 0,19 0,36 0,24 

B10_G 5 259 2719,5 15,75 0,001 0,156 0,29 0,2 

C02_G 5 247 1729 15,75 0,002 0,19 0,36 0,24 

C07_G 5 247 1729 15,75 0,002 0,19 0,36 0,24 

C10_G 5 247 1729 15,75 0,002 0,19 0,36 0,24 

C12_G 5 247 1729 15,75 0,002 0,19 0,36 0,24 

C14_G 5 247 1729 15,75 0,002 0,19 0,36 0,24 
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Table D.3.- Transmission line data set of 16- machine system 
 

From bus To bus Long r [p.u.] x [p.u.] b [p.u.] 
A01_L380 A04_L380 50 0,0155 0,1358 0,0267 

A01_L380 A02_L380 100 0,0155 0,1358 0,0267 

A04_L380 A05aL380 100 0,0155 0,1358 0,0267 

A02_L380 A05aL380 100 0,0309 0,266 0,0136 

A02_L380 A05bL380 100 0,0309 0,266 0,0136 

A02_L380 A03_L380 100 0,0309 0,266 0,0136 

A05aL380 A07_L380 50 0,0309 0,266 0,0136 

A05aL380 C01_L380 200 0,0309 0,266 0,0136 

A05aL380 C01_L380 200 0,0309 0,266 0,0136 

A05aL380 A05bL380 0,1 0,01 0,01 0,01 

A05bL380 A07_L380 50 0,0309 0,266 0,0136 

A05bL380 B01_L380 220 0,0309 0,266 0,0136 

A05bL380 B01_L380 220 0,0309 0,266 0,0136 

A06_L220 A07_L220 50 0,0792 0,2901 0,0126 

B01_L380 B02_L380 100 0,0309 0,266 0,0136 

B02_L380 B03_L380 100 0,0309 0,266 0,0136 

B01_L220 B04_L220 40 0,0792 0,2901 0,0126 

B01_L220 B07_L220 40 0,0792 0,2901 0,0126 

B02_L220 B04_L220 40 0,0792 0,2901 0,0126 

B02_L220 B05_L220 50 0,0395 0,1474 0,0248 

B02_L220 B06_L220 50 0,0792 0,2901 0,0126 

B02_L220 C08_L220 180 0,0395 0,1474 0,0248 

B03_L220 B06_L220 40 0,0792 0,2901 0,0126 

B03_L220 B11_L220 70 0,0395 0,1474 0,0248 

B05_L220 B09_L220 40 0,0395 0,1474 0,0248 

B07_L220 B08_L220 50 0,0792 0,2901 0,0126 

B08_L220 B09_L220 60 0,0792 0,2901 0,0126 

B09_L220 B10_L220 50 0,0792 0,2901 0,0126 

B10_L220 B11_L220 40 0,0792 0,2901 0,0126 

C01_L380 C02_L380 50 0,0309 0,266 0,0136 

C01_L380 C07_L380 80 0,0309 0,266 0,0136 

C02_L380 C03_L380 50 0,0155 0,1358 0,0267 

C03_L380 C04_L380 90 0,0309 0,266 0,0136 

C03_L380 C05_L380 70 0,0309 0,266 0,0136 

C04_L380 C06_L380 70 0,0155 0,1358 0,0267 

C04_L380 C07_L380 70 0,0155 0,1358 0,0267 

C05_L380 C06_L380 80 0,0309 0,266 0,0136 

C05_L110 C16_L110 30 0,192 0,4 0,0085 
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C05_L110 C19_L110 20 0,096 0,2 0,017 

C06_L220 C08_L220 40 0,0792 0,2901 0,0126 

C06_L220 C15_L220 40 0,0792 0,2901 0,0126 

C07_L380 C08_L380 80 0,0155 0,1358 0,0267 

C08_L220 C09_L220 40 0,0792 0,2901 0,0126 

C09_L220 C10_L220 50 0,0792 0,2901 0,0126 

C10_L220 C11_L220 30 0,0792 0,2901 0,0126 

C11_L220 C12_L220 30 0,0792 0,2901 0,0126 

C12_L220 C13_L220 40 0,0395 0,1474 0,0248 

C13_L220 C14_L220 40 0,0792 0,2901 0,0126 

C14_L220 C15_L220 40 0,0395 0,1474 0,0248 

C14_L110 C16_L110 20 0,192 0,4 0,0085 

C14_L110 C17_L110 20 0,192 0,4 0,0085 

C17_L110 C18_L110 20 0,192 0,4 0,0085 

C18_L110 C19_L110 20 0,192 0,4 0,0085 
 

Table D.4.- Comparison of aggregation algorithms considering the classical inertial aggregation and 
the proposed splitting-based aggregation by the mean value of J of the intern machines for a fault 

located at the internal node with different number of external equivalents. 
 

Number of 
Dynamic 

equivalents
3 6 

Splitting 
with Fuzzy 0,9925 0,9935 

Classical 
Aggregation 
with Fuzzy

0,989 0,9926 

Classical 
Aggregation 

with K-
means 

0,992 0,9938 

 
Table D.5.- Evaluation of the prediction capability of ANN considering different operating conditions 

and points calculating )( jE S  
 

Internal 
Area 

Changed 
operating 

point 

Training 
operating 

point 

A 0,972 0,991 

B 0,9845 0,994 

C 0,959 0,968 
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Table D.6.- Sum squared distance error and average error of the predicted boundary behavior 

following disturbances at all non-trained nodes of internal area A considering different operating points 
 

Internal Area A part 380 kV 

Nodes A1 A2 A3 A4 A5a A5b A7 

Training 
operating point 0,034 1,4*10-3 4,2*10-3 3,9*10-3 0,054 1,4*10-3 0,003 

Changed 
operating point 0,031 5,2*10-3 4,1*10-3 3,9*10-3 0,147 4,4*10-3 3,2*10-3 

 

Internal Area A 
part 220 kV 

Internal Area A 
part 110 kV  

A6 A7 A4 A6 
Sum squared 
error )( jEN

Average 
standardized 
error function 

)( jE S   

2,2*10-4 7,1*10-4 1,1*10-4 1,6*10-4 0,099 0,991 

2,3*10-4 6,3*10-3 1,2*10-3 0,0101 0,308 0,972 

 
 

Table D.7.- Sum squared distance error and average error of the predicted boundary behaviour 
following disturbances at all non-trained nodes of internal area B considering different operating points 
 

 Internal Area B part 220 kV 

Nodes B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 

Training 
operating 

point 
3,02 
*10-4 0,0454 8,52 

*10-4 
4,65 
*10-4 

2,29 
*10-4 

1,57 
*10-4 

2,67 
*10-4 

2,69 
*10-4 

2,37 
*10-4 

3,68 
*10-4 

3,65 
*10-4 

Changed 
operating 

point 
3,87 
*10-4 0,0247 0,0016 5,13 

*10-4 
7,18 
*10-4 

1,65 
*10-4 

3,52 
*10-4 

7,39 
*10-4 

9,37 
*10-4 

8,46 
*10-4 

6,0 
*10-4 

 

Internal Area B part 380 
kV  

B1 B2 B3 
Sum squared 
error )( jEN   

Average 
standardized error 

function )( jE S   

0,026 1,3*10-3 2,1*10-3 0,0784 0,9944 

0,072 0,052 0,0276 0,217 0,9845 
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Table D.8.- Sum squared distance error and average error of the predicted boundary behaviour 

following disturbances at all non-trained nodes of internal area C considering different operating points 
 

Internal Area C part 380 kV 

Disturbanc
e applied at 

nodes 
C1 C2 C3 C4 C5 C6 C7 C8 

Training 
operating 

point 
0,04 0,0156 2,6  

*10-3 
4,6 

*10-3 
6,0*10-

3 
2,7*10-

3 0,16 5,4*10-3 

Changed 
operating 

point 
0,2 0,12 0,05 0,09 0,043 0,09 0,3 0,1 

 

Internal Area C part 220 kV 

C6 C8 C9 C10 C11 C12 C13 C14 C15 

3,1*10-3 0,0185 1,7*10-3 0,40 4,1*10-3 0,027 1,9*10-3 0,06 5,4*10-4 

0,067 0,091 0,025 0,237 0,268 0,018 0,07 0,016 0,05 

 

Internal Area C part 110 kV 
 

C5 C14 C16 C17 C18 C19
Sum squared error 

)( jEN   

Average standardized 
error function 

)( jE S   

3,4 
*10-5 

1,76 
*10-4

4,8 
*10-5 

1,04 
*10-4 

8,7 
*10-5

6,4 
*10-5 0,672 0,968 

3,6 
*10-3 

7,8 
*10-3

2,2 
*10-3 

2,1 
*10-3 

1,4 
*10-5

1,8 
*10-3 0,943 0,959 
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APPENDIX E  Data sets of 12 Multi-
machine system 
 

Table E.1.- Generator data set of 12-machine system  
 

Name Mod. 
Order 

SN 
[MVA] Tm UN[kV] ra 

[p.u.] xs [p.u.] xd’ 
[p.u.] 

xd’’ 
[p.u.] 

A2_G 5 225 690 15,75 0,001 0,195 0,43 0,25 

A3_G 5 275 1518 15,75 0,001 0,195 0,43 0,225 

A8_G 5 575 1518 15,75 0,002 0,195 0,43 0,25 

A5_G 5 225 1729 15,75 0,002 0,195 0,43 0,225 

A12_G 5 225 2719,5 15,75 0 0,195 0,29 0,225 

A13_G 5 225 690 15,75 0,002 0,195 0,36 0,225 

A14_G 5 225 690 15,75 0,001 0,195 0,29 0,225 

A15_G 5 225 690 15,75 0,001 0,19 0,43 0,225 

A20_G 5 225 1200 15,75 0 0,156 0,43 0,225 

A25_G 5 275 1200 15,75 0 0,156 0,43 0,24 

A29_G 5 175 1200 15,75 0 0,195 0,29 0,24 

A45_G 5 225 690 15,75 0 0,195 0,43 0,225 
 

Table E.2.- Transmission line data set of the 12-machine system 
 

From bus To bus Long r [p.u.] x [p.u.] b [p.u.] 

A16 A4 50 0,0309 0,266 0,0136 

A4 A3 50 0,0309 0,266 0,0136 

A3 A7 50 0,0309 0,266 0,0136 

A31 A6 50 0,0309 0,266 0,0136 

A5 A6 50 0,0309 0,266 0,0136 

A9 A21 50 0,0792 0,2901 0,0126 

A8 A9 50 0,0309 0,266 0,0136 

A8 A39 50 0,0309 0,266 0,0136 

A39 A12 50 0,0309 0,266 0,0136 

A8 A18 50 0,0309 0,266 0,0136 

A12 A18 50 0,0792 0,2901 0,0126 

A18 A19 50 0,0309 0,266 0,0136 

A19 A22 50 0,0309 0,266 0,0136 
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A12 A13 50 0,0155 0,1358 0,0267 

A12 A17 50 0,0309 0,266 0,0136 

A13 A38 20 0,0309 0,266 0,0136 

A38 A1 20 0,0309 0,266 0,0136 

A1 A14 50 0,0309 0,266 0,0136 

A17 A37 20 0,0309 0,266 0,0136 

A37 A1 20 0,0309 0,266 0,0136 

A14 A15 50 0,0309 0,266 0,0136 

A15 A36 50 0,0309 0,266 0,0136 

A36 A35 50 0,0309 0,266 0,0136 

A35 A34 50 0,0155 0,1358 0,0267 

A34 A5 20 0,0395 0,1474 0,0248 

A13 A10 50 0,0792 0,2901 0,0126 

A10 A16 50 0,0395 0,1474 0,0248 

A30 A11 50 0,0792 0,2901 0,0126 

A14 A11 50 0,0395 0,1474 0,0248 

A20 A21 50 0,0309 0,266 0,0136 

A21 A23 50 0,0309 0,266 0,0136 

A21 A22 50 0,0309 0,266 0,0136 

A22 A3 50 0,0792 0,2901 0,0126 

A23 A24 50 0,0792 0,2901 0,0126 

A24 A25 50 0,0792 0,2901 0,0126 

A25 A26 50 0,0309 0,266 0,0136 

A26 A3 50 0,0309 0,266 0,0136 

A26 A27 50 0,0395 0,1474 0,0248 

A27 A28 50 0,0395 0,1474 0,0248 

A28 A29 80 0,0309 0,266 0,0136 

A29 A47 80 0,0309 0,266 0,0136 

A31 A47 80 0,0309 0,266 0,0136 

A31 A30 50 0,0155 0,1358 0,0267 

A30 A3 50 0,0155 0,1358 0,0267 

A28 A32 50 0,0155 0,1358 0,0267 

A29 A32 50 0,0155 0,1358 0,0267 

A32 A33 50 0,0309 0,266 0,0136 

A34 A33 50 0,0309 0,266 0,0136 

A25 A40 80 0,0309 0,266 0,0136 

A24 A40 80 0,0309 0,266 0,0136 

A39 A41 50 0,0309 0,266 0,0136 

A41 A40 80 0,0395 0,1474 0,0248 

A14 A42 50 0,0395 0,1474 0,0248 
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Table E.3.- Evaluation of the standarized prediction error of recurrent ANN considering different 
disturbance duration (tmin=100 ms, tmax=150 ms) and two sequential disturbances (t1=100ms after 

1s, t2=120 ms after 2s) 
 

Number of 
Boundary 

Nodes 

Minimal 
disturbance 

duration 
Tmin 

Maximal 
disturbance 

duration 
Tmax 

Sequential 
disturbances 

T1 - T2 

3 0,9994 0,9991 0,9981 

5 0,9956 0,9952 0,9948 

6 0,9874 0,9844 0,9838 

7 0,9832 0,981 0,9781 

8 0,9816 0,9798 0,978 

 
Table E.4.- Evaluation of the robustness of the recurrent ANN depending on the cases explained in 

table 5.2 and networks based on the 12-multi-machine system with different boundary nodes 
 

Number of boundary nodes Cases of changed operating 
points after table 5.2 3 4 6 8 

1 (Initial o.p. or trained o.p.) 0,9994 0,9974 0,9874 0,9853 

2 (Gen. disconnection) 0,9993 0,9973 0,9865 0,9820 

3 (Lines disconnection) 0,9992 0,9975 0,9848 0,9758 

4 (Gen.,Line disconnection and 
Load reduction) 0,9985 0,9943 0,9830 0,9745 

5 (Load reduction to half) 0,9974 0,9931 0,9811 0,9752 

 
Table E.5.- Scenarios to power-flow changes and losses considering 12-machine system with 3 

boundary nodes after Fig.B.1 
 

Cases Load Conditions Location in 
network 

Network power 
flow loss (MVA) 

1 Initial Loading Condition 
(Training operating point)  291,61+j1720,88 

2 Generator Disconnection G1 312,93+j1942,50 

3 Transmission Line 
Disconnection L1, L2 295,42+j1791,61 

4 
Generator, Line 

Disconnection and Load 
Reduction 

G1, L1, L2 and 
load reduction on 

all nodes of 
internal area 

174,05+j666,69 

5 Load Reduction to half 
On almost all load 
nodes in internal 

area 
159,72+j488,42 
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Table E.6.- Scenarios to power-flow changes and losses considering 12-machine system with 4 

boundary nodes after Fig.B.2 
 

Cases Load Conditions Location in 
network 

Network power 
flow loss (MVA) 

1 Initial Loading Condition 
(Training operating point)  218,08+j980,68 

2 Generator Disconnection G1 232,93+j1135,52 

3 Transmission Line 
Disconnection L1, L2 218,93+j1020,40 

4 
Generator, Line 

Disconnection and Load 
Reduction 

G1, L1, L2 and 
load reduction on 

all nodes of 
internal area 

128,67+j183,49 

5 Load Reduction to half 
On almost all load 
nodes in internal 

area 
119,32+j56,2 

 

 
Table E.7.- Scenarios to power-flow changes and losses considering 12-machine system with 6 

boundary nodes after Fig.E.4 
 

Cases Load Conditions Location in 
network 

Network power 
flow loss (MVA) 

1 Initial Loading Condition 
(Training operating point)  244,48+j927,08 

2 Generator Disconnection G1 256,43+j1058,50 

3 Transmission Line 
Disconnection L1, L2 245,6+j975,31 

4 
Generator, Line 

Disconnection and Load 
Reduction 

G1, L1, L2 and 
load reduction on 

all nodes of 
internal area 

236,82+j895,43 

5 Load Reduction to half 
On almost all load 
nodes in internal 

area 
225,08+j733,52 
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Table E.8.- Scenarios to power-flow changes and losses considering 12-machine system with 7 

boundary nodes after Fig. E.5 
 

Cases Load Conditions Location in 
network 

Network power 
flow loss (MVA) 

1 Initial Loading Condition 
(Training operating point)  262,62+j815,51 

2 Generator Disconnection G1 275,46+j962,46 

3 Transmission Line 
Disconnection L1, L2 263,03+j859,40 

4 
Generator, Line 

Disconnection and Load 
Reduction 

G1, L1, L2 and 
load reduction on 

all nodes of 
internal area 

216,36+j426,08 

5 Load Reduction to half 
On almost all load 
nodes in internal 

area 
178,39+j14,99 

 

 
Table E.9.- Scenarios to power-flow changes and losses considering 12-machine system with 8 

boundary nodes after Fig. 5.18 
 

Cases Load Conditions Location in 
network 

Network power 
flow loss (MVA) 

1 Initial Loading Condition 
(Training operating point)  312,65+j1015,60 

2 Generator Disconnection G1 325,89+j1164,65 

3 Transmission Line 
Disconnection L1, L2 316,74+j1094,22 

4 
Generator, Line 

Disconnection and Load 
Reduction 

G1, L1, L2 and 
load reduction on 

all nodes of 
internal area 

272,31+j680,40 

5 Load Reduction to half 
On almost all load 
nodes in internal 

area 
239,04+j291,85 
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12 Multi-machine systems topologically adapted from 3 to 8 
boundary nodes and illustrated in Fig. E.1 to Fig. E.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. E.1.-  12-machine system with three boundary nodes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. E.2.-  12-machine system with four boundary nodes 
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Fig. E.3.-  12 multi-machine system with five boundary nodes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. E.4.-  12 multi-machine system with six boundary nodes 
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Fig. E.5.-  12 multi-machine system with eight boundary nodes 
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APPENDIX F  Data sets of the 
interconnected European power system 
UCTE / CENTREL 
 
Table F.1.- Part of the generator data set of the European Interconnected Power System [142] 
 

Name Mod. 
Order 

SN 
[MVA] Tm UN[kV] ra 

 [p.u.] 
xs 

 [p.u.] 
xd‘ 

 [p.u.] 
xd’’ 

[p.u.] 
ALMARAUS G5 3600 5,6 21  0,16 0,326 0,255 

ASCO  US G5 2100 7 21  0,27 0,45 0,33 

FRLEC S- G5 18000 11,2 21 0,005 0,255 0,51 0,34 

FRBLA S- G5 7000 12,6 24 0,004 0,22 0,4 0,3 

FRTAV S- G5 13300 8 21  0,25 0,45 0,33 

FRVIG S- G5 5650 11,2 20 0,005 0,255 0,509 0,344 

RWBUETA- G5 1500 9,4 27  0,29 0,5 0,36 

RWBUETB- G5 1530 9,2 27  0,295 0,51 0,37 

RWGUNLA- G5 1530 6,8 27  0,295 0,51 0,37 

RWGUNLB- G5 1530 6,8 27  0,295 0,51 0,37 

RWWTHMS- G5 1635 8,55 27 1,759 1,709 0,153 0,00025 

BWDAXNS- G5 622 11,6 21  0,2 0,33 0,231 

BWKUESS- G5 870 7,1 21  0,2 0,34 0,23 

NLDIEMN- G5 2400 8 21  0,25 0,41 0,33 

NLDODEA- G5 4050 7 21  0,24 0,42 0,33 

ITBENE4- G5 370 8,2 20  0,24 0,4 0,32 

ITBRIS4- G5 2300 5,7 20  0,12 0,3 0,15 

62-ELSAM G5 4800 15 21 2,41 2,11 0,10129 0,03039 

63-SHEG8 G5 825 7,2 21 0,00143 0,233 0,347 0,274 

KIEL 1 1 G5 400 6,6 21 2,14 1,84 0,13644 0,04093 

BDOR 1 1 G5 1640 8,6 27 1,91 1,81 0,1947 0,05842 

BRUH 1 1 G5 1006 9,7 27 1,6 1,5 0,18655 0,05597 

KRUH 1 1 G5 1530 9,2 27 1,83 1,73 0,18565 0,05569 

68-SIEMS G5 537,5 8,8 21  0,221 0,321 0,284 

STDE 1 1 G5 780 12 21 1,89 1,72 0,24577 0,07373 

UWES 1 1 G5 1530 9,2 27 1,8462 1,744 0,17427 0,05228 

FARG 1 1 G5 400 6,3 21 2,16 1,89 0,09624 0,02887 

G4LIP1 G5 1167 8 27 0,001 0,101 0,291 0,196 
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G4LIP2 G5 1167 8 27 0,001 0,101 0,291 0,196 

G4SWPA G5 1000 9,03 27 0,0012 0,235 0,34 0,275 

G4SWPB G5 1000 9,03 27 0,0012 0,235 0,34 0,275 

P4WIE-G1 G5 470 7 15,75  0,11 0,275 0,191 

P4ROG-G3 G5 1278 6,45 22  0,199 0,319 0,235 

P4PEL-G1 G5 705 7 15,75  0,11 0,275 0,191 

EBOV23 G5 518 9,89 15,75 0,0017 0,166 0,267 0,199 

EBOV24 G5 518 9,89 15,75 0,0017 0,166 0,267 0,199 

EMO1 G5 518 9,89 15,75 0,0017 0,166 0,267 0,199 

EMO2 G5 518 9,89 15,75 0,0017 0,166 0,267 0,199 

COFRENUS G5 1200 7 21  0,27 0,38 0,33 

GUENESUS G5 1800 8 21  0,27 0,45 0,33 

MEQUINUS G5 1800 7,8 21  0,27 0,45 0,33 

MONTEAUS G5 1800 8,5 21  0,27 0,4 0,33 

PLANA US G5 1800 7 21  0,27 0,45 0,33 

ROBLA US G5 750 7,5 21  0,27 0,4 0,33 

SANTURUS G5 700 7 21  0,27 0,4 0,33 

TERUELUS G5 1250 7 21  0,27 0,45 0,33 

TRILLOUS G5 1300 7,41 21  0,127 0,3415 0,2426 

VALDECUS G5 3500 8 21  0,27 0,4 0,33 

VANDELUS G5 1300 7,8 21  0,27 0,45 0,33 

KREMS G5 330 8 21  0,2 0,3 0,27 

LAVRI.1 G5 350 8 21  0,2 0,3 0,27 

LAVRI.2 G5 200 8 21  0,2 0,3 0,27 

PTOLE.1 G5 82 10 15,8 0,00186 0,08 0,21 0,135 

PTOLE.4 G5 375 8,9 21 0,00144 0,13 0,3 0,18 

MEGAL.1 G5 370 8 21  0,2 0,3 0,27 

MEGAL.2 G5 280 8 21  0,2 0,3 0,27 

WGACKO G5 353 3,53 22 0,0035 0,16 0,39 0,23 

WJABLA G5 113 7 13,8 0,0045 0,22 0,48 0,29 

WKAKAN G5 287 5,72 15,75 0,0016 0,15 0,24 0,18 

WMOSTA G5 240 10 22 0,0035 0,16 0,39 0,23 

WSALAK G5 62 6,33 15 0,0049 0,16 0,23 0,19 

WTREBI G5 140 6,11 15 0,0049 0,16 0,23 0,19 
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Table F.2.- Part of the transmission line data set of the European Interconnected Power System 

 

From bus To bus r [p.u.] x [p.u.] b [p.u.] 

ITGORL41 CHROBB41 2,32 31,63 1,542 

ITBULC41 CHSOZZ41 2,71 32,21 1,004 

ITMUSI41 CHLAVOG4 1,18 19,77 0,749 

BGAUB SA FRMOU SA 0,21 2,41 0 

BGAVELE4 FRAVE SA 1,32 14,26 0 

BGGRAESA FRLON SA 2,8685 34,016 0 

BGDOELA4 NLGEERR4 1,5773 18,965 0 

BGHERRAB NLMAARSA 1,5467 17,32 0 

BGCOO_A4 BGGRAESA 1,4146 14,998 0 

BGDOELA4 BGDOELB4 1,3359 13,768 0 

BGDOELA4 BGGRAESA 7,0571 75,847 0 

BGDOELB4 BGGRAESA 3,986 38,13 0 

BGGRAESA BGHERRAB 1,2424 13,901 0 

BWLAUFB2 CHLAUBOR 0,01 0,111 0 

BWKUESSB CHLAUBSB 0,293 2,307 0 

BWKUESSA CHLAUBSA 0,2708 2,2122 0 

BWKUESSB CHLAC SA 2,1111 21,212 0 

CHLAUBSB EVPULDSA 8,5708 105,76 0 

CHLAUBSB EVPULDSB 8,5455 105,97 0 

CHAIROSA CHGOEESA 4,26 48 0 

EVPULDSB RWVOEGSA 3,4894 34,889 0 

EVOMOOE2 RWDELL 2 2,2939 19,394 0 

FRCOR S1 FRZME S1 0,01 367,93 0 

FRALB SA FRAVE SA 0,01 150,83 0 

FRALB SA FRB.T SA 0,0016 40,42 0 

FRALB SA FRLON SA 0,01 389,01 0 

FRALB SA FRMAM SA 0,01 228,36 0 

NLMAARSA RWOBZRSB 1,6871 16,1 0 

NLMAARSA RWROK SA 2,358 22,291 0 

RWKW_IB2 VEHANEN2 3,899 24,596 0 

RWNSTEM2 RWURB GN 53,83 188 0 

RWBUETSA RWBUETSB 14,288 140,61 0 

RWBUETSA RWUCHFSA 20,438 229,17 0 

RWBUETSA RWURB SA 1,7543 16,228 0 

BRUH4201 HAMH4201 1,07 13,95 0,86 

DOLL4201 HAMS4201 0,91 7,07 0,4145 
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DOLL4201 HAMS4201 0,91 7,07 0,4145 

HAMH4201 HAMO4201 1,04 7,82 0,4265 

HAMH4201 HAMO4201 1,04 7,82 0,4265 

HAMO4201 HAMS4201 0,99 7,44 0,447 

HAMO4201 HAMS4201 0,99 7,44 0,447 

HAMO4201 KRUH4201 0,47 6,26 0,429 

HAMO4201 KRUH4201 0,47 6,26 0,429 

KRUE4201 KRUH4201 0,006 0,05 0 

KRUE4201 KRUH4201 0,006 0,05 0 

JKRALJ2 JUPOZE2 5,23 27,64 0,5398 

JPLJEV2 JUPOZE2 7,37 40,14 0,7633 

JPANCE2 JZRENJ2 5,87 32,23 0,6006 

ABURRE21 AELBAS21 6,59 25,7 0,6525 

ABURRE21 AFIERZ21 7,54 38,87 0,9899 

AELBAS21 AELBAS22 0,26 1,62 0,0413 

ASHKOP52 AULZA 51 2,15 2,7 0,0477 

ASLT4 51 ATIRAN51 3,64 5,69 0,0986 

ATIRAN51 AUTR4 51 1,89 3,03 0,0509 

WGACKO11 WTREBI11 1,92 21,12 0,7171 

WGACKO11 WMOSTA11 1,8 20,92 0,6815 

WMOSTA11 WSARAJ11 2,76 32 1,042 

WSARAJ11 WTUZLA11 2,5 28,98 0,9441 

WTUZLA11 WUGLJE11 1,26 13,86 0,5357 

WMOSTA2B WTREBI21 6,74 35,72 0,7174 

WMOSTA2B WTREBI21 6,74 35,72 0,7174 

WGRADA21 WTUZLA21 4,22 21,8 0,4548 

WJABLA21 WJAJCE21 7,46 39,55 0,7945 

WJABLA21 WKAKAN21 4,83 25,62 0,5147 

WJABLA21 WMOSTA2B 3,64 19,3 0,3877 

WKAKAN21 WPRIJE21 10,61 55,06 2,02 

WKAKAN21 WSALAK21 6,94 37,31 0,7496 

WKAKAN21 WTUZLA21 5,68 30,11 0,6047 

WKAKAN21 WZENIC21 1,81 9,59 0,1925 
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Table F.3.- Comparison of identity recognition algorithms considering electromechanical weighted 

distances by the mean value of J of the 67 German intern machines for a fault located at the boundary 
node VEGROUSB(VEW) with different number of external equivalents. 

Number of reduced equivalent machines and their reduction degree 
(Reduction degree in percentage) 

5,04% 8,82% 16,37% 22,67% 36,52% 45,34% 

Identity  
techniques   

(K=K-means, 
H=Hierarchical, 
P=Preclustering, 

E=Electromechanical 
distance, F=Fuzzy) 

20 35 65 90 145 180 

K-means 0,99247 0,99506 0,99594 0,9956 0,99603 0,99752 

Electrom. K-means 0,99425 0,99538 0,9976 0,99789 0,9984 0,99826 

K-means with 
Preclustering 0,9893 0,9951 0,9969 0,99695 0,9967 0,9979 

Electrom. K-means 
with Preclust. 0,9923 0,99524 0,9969 0,9971 0,99792 0,9978 

Hierarchical 0,9935 0,9954 0,9976 0,99783 0,998 0,9978 

Electrom. 
Hierarchical 0,99296 0,99227 0,9938 0,99694 0,99775 0,9981 

Fuzzy 0,9889 0,9927 0,9943 0,99087 0,9932 0,99579 

Fuzzy with Preclus. 0,99225 0,99485 0,99745 0,99482 0,9952 0,99647 

Electrom. Fuzzy 0,99287 0,9956 0,9976 0,9963 0,9976 0,99798 

SOFM 0,99106 0,9943 0,99571 0,993 0,9937 0,992 

 

German power system operators in the present liberalized power markets 

 
Fig. F.1.- As consequence of the fusion of traditional network operators : BAG, BEWAG, EnBW, PE, 

RWE, VEAG and VEW the number of the current operators has been considerably reduced. 
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