
Scheduling Unrelated Parallel Machines
Algorithms, Complexity, and Performance

Dissertation
von

Andreas Wotzlaw

Schriftliche Arbeit zur Erlangung des Grades
eines Doktor der Naturwissenschaften

Fakultät für Elektrotechnik, Informatik und Mathematik
der Universität Paderborn

Paderborn, Juni 2006





Acknowledgments

My acknowledgments go here to all persons who supported my research during the past
three years. First and foremost, I would like to thank my advisor, Prof. Dr. Burkhard
Monien, whose constant guidance, patience, and good example gave me a great support in
the process of scientific work. It was him who introduced me to the field of scheduling
problems and showed me in many helpful discussions how to improve my work and sug-
gested in which direction my research should go. His research group with its friendly and
relaxed atmosphere always provided a convenient and creative research environment to me.
I also thank him for giving me the opportunity of a graduate fellowship.
I would also like to thank Prof. Dr. Friedhelm Meyer auf der Heide who has been my
secondary advisor in the PaSCo graduate school. Additionally, I would like to thank Martin
Gairing, Dr. Thomas Lücking, and Dr. Manuel Rode with whom I cooperated closely dur-
ing the course of working on my PhD thesis. They provided me with a critical insight into
various scientific problems and were a great help in understanding many theoretical issues
concerning my and their work.
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1
Introduction

1.1 Scheduling Problems

Scheduling is a form of decision-making which plays a crucial role in manufacturing as
well as in service systems and industries. In the current competitive environment with
rapidly changing conditions, effective scheduling has become a necessity for survival in the
marketplace. Companies have to meet production deadlines and shipping dates committed
to the customers and a failure to do so may result in a significant loss of money and customer
confidence.

Generally speaking, scheduling concerns the allocation of limited resources to tasks over
time. It is a decision-making process whose goal is the optimization of one or more objec-
tives subject to some constraints.

The resources and tasks may take many forms. For instance, the resources may be ma-
chines in a workshop, runways at an airport, crews of a construction site, processing units
in a computing environment, etc. The corresponding tasks may take the following forms:
operations in a production process, take-offs and landings at an airport, stages of a construc-
tion project, executions of computer programs. Furthermore, each task may have a different
processing time, priority level (weight), earliest possible starting time, and due date. The
objective may also take many forms. One possible objective is the minimization of the
completion time of the last task (we call it the minimization of makespan) and another is
the minimization of the number of tasks completed after the committed due dates.

It may not be clear yet what impact schedules have on given objectives. The following
question arises: Does it pay to invest time and money in constructing a good schedule
rather than taking an arbitrary one? The answer is that usually the choice of a schedule has
a significant impact on the system performance and the invested costs.

Scheduling began to be taken seriously in manufacturing at the beginning of the last
century with the work of Henry Gantt [54, 55] and other pioneers who followed his ideas.
However, it took many years for the first scheduling publications to appear in the operations
research literature. Some of the first publications appeared in the early 1950s and contained
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results by W. E. Smith [159], S. M. Johnson [93], and J. R. Jackson [88]. During the 1960s
a significant amount of work was done on dynamic programming and integer programming
formulations of scheduling problems. After Richard Karp published his famous paper on
complexity theory [97], the research in the 1970s focused mainly on the complexity hier-
archy of scheduling problems. In the 1980s several different directions were pursued in
theory and practice with an increasing amount of attention paid to stochastic scheduling
problems [139]. Also, as personal computers started to be widely used by manufacturing
facilities, scheduling systems were being developed for generating usable schedules in prac-
tice. This kind of system design and development was and still is being done by computer
scientists, operations research analysts, and industrial engineers.

Scheduling can be difficult from both a theoretical and an implementation point of view.
The types of theoretical difficulties are similar to those encountered in other branches of
combinatorial optimization. Thus, theoretical results (e.g., solution methods, performance
analysis, etc.) obtained for other optimization problems can be applied at least partially to
the scheduling problems. Unfortunately, the difficulties encountered during the implemen-
tation process are of a completely different kind. They are related to the modeling of the
real-world scheduling problems and the retrieval of information. Roughly speaking, one can
say that every real-life scheduling problem is different, and thus requires strong problem-
oriented modeling which in most cases has to be done from scratch. For a good introduction
into the scheduling theory and its applications we refer the reader to, e.g., [18, 19, 22, 139].

1.2 Applications

Scheduling is an important decision-making tool for most manufacturing and service indus-
tries, as well as for most information-processing environments where it can have a major
impact on the productivity of a process.

In manufacturing the purpose of scheduling is to minimize the production time and costs
by telling a production facility what to make, when, with which staff, and on which equip-
ment. Similarly, scheduling in service industries, such as airlines and public transport, aims
at maximizing the efficiency of the operations and reducing their costs.

Modern computerized scheduling tools greatly outperform older manual scheduling meth-
ods. They provide the production scheduler with powerful graphical interfaces which
can be used to visually optimize real-time work loads in various stages of the production
(see, e.g, [140]). Pattern recognition used here allows the software to automatically create
scheduling opportunities which might not be apparent without this view into the data. For
example, an airline might wish to minimize the number of airport gates required for its air-
craft, in order to reduce costs, and scheduling software can allow the planners to see how
this can be done by analyzing time tables, aircraft usage, or the flow of passengers.

Companies use backward and forward scheduling to plan their human and material re-
sources. Backward scheduling is planning the tasks from the due date to determine the
start date and/or any changes in capacity required, whereas forward scheduling is planning
the tasks from the start date to determine the shipping date or the due date. For practical
examples we refer the reader to, e.g., [134, 137, 145, 165, 173].
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In the following we give two examples which illustrate the role of the scheduling process
in different real-life situations.

1.2.1 Scheduling of Tasks in a CPU

Scheduling is a key concept in computer multitasking and multiprocessing operating system
design as well as in real-time operating system design. It refers to the way processes are
assigned priorities and the time that Central Processing Unit (CPU) devotes to them. The
processes may be represented by, e.g., different programs or parts of them. This assignment
is carried out by a piece of software known as a scheduler. In general-purpose operating
systems the goal of the scheduler is to balance processor loads on all processors and prevent
any process from either monopolizing the processor or being starved for resources. In real-
time environments, such as devices for automatic control in industry, e.g, robotics, the
scheduler must also ensure that processes can meet deadlines. This is crucial for keeping
the system stable.

In general, the exact processing times of tasks are not known in advance. However, the
distribution of random processing times may be known in advance, including their expected
values and their variances. They can easily be computed, for example, from the statistics
collected during previous executions, or obtained earlier with similar applications. Addi-
tionally, every task usually has a certain priority factor (weight). The operating system
typically allows users to specify the priority of each task. In this case, the objective is to
minimize, for instance, the expected sum of weighted completion times for all tasks.

To avoid the situation where relatively short tasks remain in the system for a long time
while waiting for much longer tasks with a higher priority to be completed, the operating
system cuts the tasks into smaller pieces. It rotates then these slices on the CPU so that
during a given interval, the CPU spends some amount of time processing portions of all the
tasks. Thus, if the processing time of one of the tasks is very short, it will be able to leave
the system relatively quickly.

An interruption of the processing of a task is referred to as a preemption. It is clear that
the optimal policy in such an environment makes heavy use of preemptions.

1.2.2 Gate Assignments at an Airport

A huge number of difficult scheduling problems can be found in airline industry. Here
however, we do not go deeply into details since it is beyond the scope of this work. In the
following we give only a simple example based on the discussion from [139].

We consider an airline terminal at a major airport. There are dozens of gates and hun-
dreds of airplanes arrive and depart daily. The gates are not identical and neither are the
planes. Additionally, some gates are at locations with more space where large planes can
be accommodated more easily, whereas the other gates may be located in such a way that
bringing in the planes may be quite difficult.

Planes arrive and depart according to a certain schedule. However, this schedule is a sub-
ject to a significant amount of randomness which may be caused by the weather condition
or events at other airports. While a plane remains at a gate, arriving passengers have to
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leave the plane, the plane has to be serviced, and departing passengers have to be boarded.
Here, the scheduled departure time can be viewed as a due date. However, if a plane cannot
land at the next airport because of anticipated congestion at the scheduled time, the plane is
not allowed to take off and the boarding time is postponed. In such a case the plane could
remain at a gate for an extended period, and thus prevent other planes from using the gate.

The scheduler has to assign planes to gates in such a way that the assignment is physically
feasible and that it optimizes a number of objectives. In particular, he has to assign planes to
suitable gates that have to be free at the respective arrival time. The objectives may include
the minimization of work for airline personnel and the minimization of airplane delays.

Note that in this scenario the planes are equivalent to tasks with release dates and due
dates, whereas the gates are equivalent to resources.

1.3 Deterministic Parallel Machine Scheduling Models

1.3.1 Preliminaries and Assumptions

A bank of machines in parallel is a setting that is important from both theoretical and
practical points of view. From the theoretical viewpoint it is a generalization of the single
machine (see, e.g., [139]). From the practical point of view it is important because the
occurrence of resources in parallel is common in the real-world. Moreover, techniques for
parallel machines are often used in decomposition procedures for multistage systems.

In the thesis, we consider only deterministic scheduling problems with machines in par-
allel that is problems for which the number of tasks (jobs), the number of parallel machines,
and all job characteristics (like, e.g., processing times, sets of allowed machines for each
job) are known in advance. Throughout the whole thesis we assume that each processing
time is either a positive integer or infinity. We restrict our attention only to non-preemptive
scheduling where a job, once assigned to a particular machine, may not be removed until
it has finished its execution. It is assumed that the jobs are independent, i.e., they do not
require scheduling in accordance with any precedence constraints.

Furthermore, we restrict the objective of the optimization problems considered here only
to the minimization of the makespan (an exact definition is given later). When dealing with
parallel machines, the makespan becomes an objective of significant interest. In practice
one often has to deal with the problem of balancing the load on machines in parallel and by
minimizing the makespan the scheduler ensures a good balance of the load.

One can consider scheduling parallel machines as a two-step process. Firstly, one has
to determine which jobs are to be allocated to which machines, and secondly, one has to
specify the sequence of the jobs allocated to each machine. With the makespan objective
and no precedence constraints only the allocation process is important.

1.3.2 Tractability of Deterministic Scheduling Problems

In the early days of scheduling the research on various scheduling problems mainly con-
sisted of classifying scheduling problems into easy (i.e., polynomially solvable) and hard
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(i.e., NP-hard) ones. Nowadays researchers have become interested in better understand-
ing of hard scheduling problems. Consequently, a much finer classification of these hard
problems has been established [153]. One very active branch of research classifies hard
scheduling problems according to their tractability or approximability.

Non-preemptive parallel scheduling problems tend to be difficult to solve. The vast ma-
jority of them is NP-hard already for the case with a fixed number of machines, as we
show later in this section. Thus, it is unlikely (in fact unless P = NP) that there exists a
polynomial-time algorithm for computing a minimal makespan.

A standard way of dealing with NP-hard problems is not to search for an optimal so-
lution, but to search for near-optimal solutions. An algorithm that returns near-optimal
solutions is called an approximation algorithm. If it runs in polynomial time, then it is
called a polynomial-time approximation algorithm. An approximation algorithm that re-
turns a near-optimal solution which is at most a factor ρ above the optimum (where ρ > 1
is some fixed real number) is called a ρ-approximation algorithm, and the value ρ is called
the worst-case performance guarantee or the approximation factor. A family of (1 + ε)-
approximation algorithms over all ε > 0 with polynomial running times is called a polyno-
mial time approximation scheme or PTAS, for short. If the time complexity of a PTAS is
also polynomially bounded in 1/ε, then it is called a fully polynomial time approximation
scheme or FPTAS, for short. With respect to relative performance guarantees, an FPTAS is
essentially the strongest possible polynomial-time approximation result that we can derive
for an NP-hard problem. For surveys on polynomial-time approximation algorithms for
scheduling we refer the reader to [20, 80].

Another possibility of solving difficult scheduling problems is to consider heuristic algo-
rithms in hope of providing near-optimal results. However, by using heuristics, we usually
have no guarantee for the quality of solution, or for the computation time, or for both.

1.3.3 Selected Deterministic Scheduling Problems

In this section we present in detail three most important deterministic non-preemptive
scheduling problems on parallel machines. To this end, we give their exact descriptions
and discuss the best approximation results obtained for these problems so far. Here and
later throughout the thesis, we use the standard, three-field notation introduced by Graham
et al. [73] to denote in a short way each considered scheduling problem.

The goal of every scheduling problem described below is to schedule without preemption
a set J of n independent jobs on a set M of m parallel machines such that the makespan is
minimized. For each job i ∈ J we are given its processing time on every machine it can
be assigned to. Again, we assume that each processing time is a positive integer or ∞.
We define a matrix of processing times P in the natural way. To be more specific, in these
problems we want to find an assignment α according to Definition 1.3.1.

Definition 1.3.1 An assignment of jobs to machines is defined by a function α : J 7→ M.
We denote α(i) = j if job i is assigned to machine j.

For any assignment α, the load δ j(P, α) on machine j for a matrix of processing times P
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is the sum of processing times for the jobs that are assigned to machine j, i.e., for which
α(i) = j. We omit P in the notation of δ j if P is clear from the context.

We define the makespan of an assignment α for a matrix of processing times P, denoted
by Cmax(P, α), as the maximum load on a machine that is

Cmax(P, α) = max
j∈M
δ j(α).

Additionally, by Cmax(A) we denote the makespan of any assignment computed by algo-
rithm A for matrix P. Associated with matrix P is the optimum makespan, denoted by
C∗max(P), which is the least possible makespan of a valid assignment α that is

C∗max(P) = min
α

Cmax(P, α).

Scheduling on identical parallel machines. First, we consider the scheduling prob-
lem with identical machines denoted by Graham et al. [73] as P| |Cmax. Here, the processing
time of job i ∈ J on any machine from M is equal to pi. This problem is of interest because
minimizing the makespan has the effect of balancing the load over the various machines,
what is important in practice. It is easy to see that already P| |Cmax with two machines is
NP-hard in the ordinary sense since P [56] polynomially reduces to it. Here, each
of both machines represents a partition and the jobs are the items which we want to divide
evenly into these two partitions.

During the last couple of decades many approximation algorithms and heuristics have
been developed for the P| |Cmax problem. Perhaps the earliest and simplest result on the
worst-case performance of list scheduling LS (see Section 4.1) is given by Graham [71]:

Cmax(LS)/C∗max(P) ≤ 2 −
1
m
.

The algorithm which he considered processes the jobs sequentially in an arbitrary order. It
assigns each job to a machine whose load at the moment of assignment is smallest.

The longest processing time first (LPT) rule assigns at time t = 0 the m largest jobs to m
machines. After that, whenever a machine is freed, the largest unscheduled job is put onto
the machine. This heuristic tries to place the shorter jobs toward the end of the schedule
where they can be used for balancing the loads. Thus, if the jobs are selected in LPT order
the worst-case bound can be considerably improved, as it was shown by Graham in [72]:

Cmax(LPT)/C∗max(P) ≤
4
3
−

1
3m
.

Furthermore, he showed that the approximation factor of LPT for two identical machines is
7
6 . Seiden, Sgall and Woeginger [154] proved that this is tight, i.e., LPT has the best possible
approximation factor for the problem. For three machines, they gave a general worst-case
bound of 1

6 (1+
√

37) ≈ 1.18. The running time of the LPT algorithm is O(n log n+n log m).
More complicated algorithms were designed by Sahni [149] which can be used to obtain

results as close to optimum as desired, but their running time grows rapidly as the desired
accuracy is increased. They are exponential in m whereas Graham’s algorithm is not. More
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specifically, Sahni presented a family of algorithms Aε with O(n(n2/ε)m−1) running time
which satisfy

Cmax(Aε)/C∗max(P) ≤ 1 + ε.

Note that for any fixed m, the family of algorithms Aε becomes a PTAS. Later, Hochbaum
and Shmoys [81] gave a better PTAS for P| |Cmax which runs in O((n/ε)1/ε2) time.

A somewhat better algorithm, called multifit (MF) and based on a completely different
principle, was given by Coffman at al. [21]. The analysis of this algorithm was later im-
proved by Friesen [49]. The idea behind MF is to find (by binary search) the smallest bin
capacity such that a set of m bins can still accommodate all jobs when the jobs are taken
in order of non-increasing pi and each job is placed into the first bin which it fits. The set
of jobs in the j-th bin will be processed by machine j. If k packing attempts are made, the
algorithm (denoted by MFk) runs in time O(n log n + kn log m) and satisfies

Cmax(MFk)/C∗max(P) ≤ 1.2 +
1
2k . (1.1)

Interestingly, Friesen gave an example in [49] showing that there exists an instance of the
scheduling problem for which Cmax(MFk)/C∗max(P) = 13

11 = 1.18. Note that for large n, the
running times required for the LPT algorithm and for the MFk algorithm are dominated by
the O(n log n) term of the initial sort operation. Furthermore, observe that by using binary
search, no more than seven iterations of MFk are necessary to produce a schedule whose
finish time is less than or equal to (1.2 + 0.01) times optimal.

The bound given in (1.1) was further improved by Langston [107] who analyzed a modi-
fication of the MF algorithm using the same weighting function techniques as Friesen. The
worst-case bound of his modified MF algorithm (MMF) satisfies

Cmax(MMF)/C∗max(P) ≤
72
61
≈ 1.18 <

13
11
.

Scheduling on uniformly related parallel machines. Now, we consider the schedul-
ing problem on uniformly related (or just related, for short) machines denoted by Graham
et al. [73] as Q| |Cmax. Here, we are given a set of n independent jobs with sizes pi that are to
be executed on m non-identical machines. These machines run at different speeds s j. More
precisely, if job i is processed on machine j, it takes time pi/s j to be completed. Note that
this model is a generalization of the previous one with identical machines.

Liu and Liu [114] studied numerous questions dealing with related machines. Gra-
ham [71, 72] generalized the LPT algorithm to make it applicable for the Q| |Cmax problem.
This natural extension works as follows. It assigns each job, in order of non-increasing size
pi, to a machine on which it will be completed soonest, i.e., it assigns job i to machine j for
which δ j + pi/s j is minimized. Here, δ j is the load on machine j just before the assignment
of job i. For the general case Graham showed

Cmax(LPT)/C∗max(P) ≤ 2 −
2

m + 1
.

Additionally, Gonzales et al. [70] gave examples for which Cmax(LPT)/C∗max(P) approaches
3
2 as m tends to infinity. For two related machines, they showed that for any speed ratio



8 Chapter 1. Introduction

q ≥ 1, the approximation factor of the LPT algorithm is at most 1
4 (1 +

√
17) ≈ 1.28. Here,

q is the ratio between the speed of the faster machine and the speed of the slower machine.
Recently, this case was investigated by Epstein and Favrholdt [41]. They gave the exact
approximation factor of LPT in function of speed ratio q.

For a general setting of m related machines, Friesen [50] proved that the approximation
factor of the LPT algorithm satisfies

1.52 ≤ Cmax(LPT)/C∗max(P) ≤
5
3
.

The LPT algorithm was also investigated by Dobson [35]. He claimed to improve the upper
bound to 19

12 = 1.583. Unfortunately, his proof does not seem to be complete [41].
At the same time, Friesen and Langston [51] modified further the multifit algorithm by

Coffman et al. [21] for the case with related parallel machines and proved by a minimal
counterexample that its worst-case performance is substantially better than that of the LPT
algorithm, with a worst-case bound of

Cmax(MF)/C∗max(P) < 1.4.

In the same work they gave a worst case example for which the solution is a little more than
1.341 times worse than optimal. Thus, we conclude that 1.341 < Cmax(MF)/C∗max(P) < 1.4
for the Q| |Cmax problem.

The first PTAS for Q| |Cmax was given by Hochbaum and Shmoys [82]. Since the problem
is stronglyNP-complete, their results are the best possible in the sense that if there were an
FPTAS for this problem, then P = NP. Their approximation algorithm is based on a deci-
sion procedure which tests if there exists a schedule for a given problem instance where all
jobs are completed by time T . Thus, the decision problem can be viewed as a bin-packing
problem with variable bin sizes. The minimum T is computed by a simple binary search
procedure. The overall running time of the algorithm is O((log m+log(3/ε))(m/ε)(n/ε)1/ε2).

Scheduling on unrelated parallel machines. As the last deterministic scheduling
problem here we consider the problem of scheduling a set J of n independent jobs on a
set M of m unrelated machines without preemption. The processing time of job i on ma-
chine j is denoted by pi j. Following Graham’s notation, the problem is denoted by R| |Cmax.
For analysis purposes, we define U = maxi∈J, j∈M{pi j , ∞}, and denote by A the number of
pairs (i, j) with pi j , ∞. The problem can be formulated as the following mixed integer
program (MIP):

MIP: min T
s.t.

∑
i∈[n] pi jxi j ≤ T, ∀ j ∈ [m]∑
j∈[m] xi j = 1, ∀ i ∈ [n]

xi j ∈ {0, 1}, ∀ i ∈ [n], j ∈ [m]

(1.2)

Here, xi j is a 0/1 assignment variable which is equal to 1 (respectively to 0) if job i is
assigned (respectively not assigned) to machine j, i.e., for which α(i) = j. The objective
is to minimize a non-negative variable T which corresponds to the makespan. The first
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set of m constraints associated with machine j ensures that the load δ j on every machine j
is at most T . The next n constraints associated with jobs mean that every job i has to be
completed. The last integrality constraints ensure that each job is assigned to one and only
one machine.

Using the complexity hierarchy of deterministic scheduling problems, scheduling unre-
lated parallel machines belongs to the most difficult scheduling problems. It is easy to see
that it is a generalization of both previously presented problems, and hence it belongs also
to the class of NP-hard problems.

Within many manufacturing environments (but not only, see for more examples Sec-
tion 1.2), there are often groups of similar workstations that have a wide variety of similar
equipment with differing performance characteristics. This can be explained by the fact
that they either have been purchased for slightly differing products or are at different tech-
nological levels. Consequently, there are often banks of parallel machines that may not
be identical to each other. When the machines are not identical and cannot be completely
correlated by simple rate adjustments, they are said to be unrelated. In such a case, this envi-
ronment is classified as unrelated parallel machines environment, and thus can be modeled
as a R| |Cmax problem. Here again, the minimization of makespan has the effect of balancing
the load over all machines.

Because of the importance of this problem for both the theoretical and the practical re-
search on scheduling and planning, we have decided to dedicate this thesis only to this prob-
lem. Throughout the rest of this work, we concentrate especially carefully on this problem
while discussing the various algorithms designed to solve it, their worst-case complexities,
and practical efficiencies in solving large-scale scheduling problems.

Motivated by this and in contrast to the two previous cases, we present detailed related
work on the R| |Cmax problem and several of its direct extensions including recent advances
in the next separate section.

1.4 Related Work on Unrelated Parallel Machines

There exists a large amount of literature on scheduling independent jobs on unrelated par-
allel machines with the makespan minimization as the objective. In this section, we first
concentrate very carefully on the existing results for the generic R| |Cmax problem, and then
give several results developed for more specific cases of the scheduling problem with pro-
cessing time characteristics like, e.g., precedence constraints, release dates, or processing
costs.

1.4.1 Results for Generic R| |Cmax

Horowitz and Sahni [84] presented a non-polynomial-time dynamic programming algo-
rithm to compute a schedule with minimum makespan. They gave also the first FPTAS to
approximate an optimum schedule with minimum makespan for the case when the number
of unrelated machines m is fixed. They proved that, for any ε > 0, an (1 + ε)-approximate
solution can be computed in O(nm(nm/ε)m−1) time, which is polynomial in both n and 1/ε if
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m is fixed. However, for the case where the number of machines is specified as a part of the
problem instance, an FPTAS is unlikely to exist. Lenstra et al. [112] also gave an approxi-
mation scheme for the problem with running time bounded by the product of (n+1)m/ε and a
polynomial of the input size. Although for a fixed m their algorithm is not fully polynomial,
it has a much smaller space complexity than the one in [84].

Lenstra et al. [112] proved that unless P = NP, there is no polynomial-time approxima-
tion algorithm for the optimum schedule to the R| |Cmax problem with approximation factor
less than 3

2 . They also presented a polynomial-time 2-approximation algorithm for R| |Cmax.
This algorithm computes first an optimal fractional (or preemptive) solution and then uses
rounding to obtain a schedule for the discrete problem with approximation factor 2 (see
Section 2.1.2). Shmoys and Tardos [157] generalized this technique to obtain the same ap-
proximation factor for the generalized assignment problem. Furthermore, they generalized
the rounding technique to hold for any fractional solution (see Section 2.1.4 for more de-
tails). Recently, Shchepin and Vakhania [156] introduced a new rounding technique which
yields an improved approximation factor of 2 − 1

m . This is so far the best approximation
result for this problem.

The fractional unrelated scheduling problem can also be formulated as a generalized
maximum flow problem, where the network is defined by the scheduling problem and the
capacity of some edges, that corresponds to the makespan, is minimized (see Section 3.1.2
for more details). This generalized maximum flow problem is a special case of linear
programming (LP). Using techniques of Kapoor and Vaidya [95] and by exploiting the
special structure of the problem, an optimum fractional solution can be found with the
interior point algorithm of Vaidya [166] in time O(|E|1.5|V |2 log(U)).

In contrast to the linear programming methods, the aforementioned generalized maxi-
mum flow problem can also be solved with a purely combinatorial approach. Here, the
makespan minimization is done by binary search which contributes a factor log(nU) to the
running time. Computing generalized flows has a rich history going back to Dantzig [25].
The first combinatorial algorithms for the generalized maximum flow problem were expo-
nential time augmenting path algorithms by Jewell [91] and Onaga [132]. Truemper [164]
showed that the generalized maximum flow problem and the minimum cost flow problem
are closely related. More specifically, he transformed a generalized maximum flow prob-
lem into a minimum cost flow problem by setting the cost of an edge to be the logarithm
of the gain from the generalized maximum flow problem (see Section 3.1.2 for more de-
tails). Goldberg et al. [64] designed the first polynomial-time combinatorial algorithms
for the generalized maximum flow problem. Their algorithms were further refined and
improved by Goldfarb, Jin, and Orlin [65] and later by Radzik [144]. Radzik’s algo-
rithm is so far the fastest combinatorial algorithm for this problem with a running time
of O(|E| |V |(|E| + |V | log |V |) log U). In order to minimize makespan, this algorithm has to
be called at most O(log(nU)) times.

There exist a number of fast FPTASs for computing a fractional solution to the scheduling
problem [44, 45, 90, 141, 143, 162]. Using the rounding technique from [157], this leads to
a (2+ε)-approximation for the discrete problem. The approximation schemes can be divided
into those that approximate generalized maximum flows and those that directly address the
scheduling problem. The generalized maximum flow packing algorithm by Fleischer and
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Wayne [45], the recursive fat-path algorithm by Radzik [143], and the recursive rounded
fat-path algorithm by Tardos and Wayne [162] compute a (1 + ε)-approximation for the
generalized maximum flow. They all have running time Õ(log ε−1|E|(|E| + |V | log log U)),
where the Õ(·) notation hides a factor polylogarithmic in |V |. Here again, an extra fac-
tor of O(log(nU)) is needed for the makespan minimization by binary search. Plotkin et
al. [141], and Jansen and Porkolab [90] gave approximation schemes that directly address
the scheduling problem. The latter one has the faster running time of O(ε−2(log ε−1)mn
min{m, n log m} log m). This algorithm combines two previous approaches: dynamic [84]
and linear [112] programming. Note that for any fixed m approximate solutions of any fixed
accuracy can be computed in linear time.

Fishkin et al. [44], using grouping techniques for input data combined with dynamic
programming, developed an FPTAS for the non-preemptive R| |Cmax problem. In particular,
the algorithm classifies all machines for a given job as fast, slow, expensive, or cheap in
order to aid in the decision of whether to schedule a job on a particular machine or not.
Their algorithm runs in O(n) + (log m/ε)O(m) time. Note again that for any fixed m and
accuracy ε the running time is linear in n.

Unrelated machine scheduling is a very important problem from a practical point of view,
and therefore many heuristics and exact methods have been proposed to solve it. Existing
techniques used here range from combinatorial approaches with list scheduling [27, 85,
127] (see Section 4.1), partial enumeration [126] (see Section 4.2), branch-and-greed [160]
(see Section 4.3) to integer programming with cutting planes [125] (see Section 5.1) and
branch-and-price (see Section 5.2).

Local search methods have also been employed to solve the R| |Cmax problem. Glass et
al. [58] evaluated the performance of gradient search, simulated annealing, tabu search,
and genetic algorithms. In addition, Srivastava [161] employed a tabu search heuristic
with hashing to reduce the computational requirements of the tabu search. These authors
populated the initial neighborhood with solutions obtained by the algorithms of Ibarra and
Kim (see Section 4.1.1).

Finding a discrete solution for the unrelated scheduling problem can be formulated as a
generalized unsplittable maximum flow problem (see Section 3.3). Several authors [34,
101, 105] have studied the unsplittable flow problem for usual flow networks. Klein-
berg [101] formulated the problem of finding a solution with minimum makespan for the
restricted scheduling problem on identical machines as an unsplittable flow problem. In the
restricted case of the scheduling problem, for each job i a subset Mi ⊆ M of machines is
given on which it is allowed to be executed. Gairing et al. [52], by exploiting the special
structure of the network, gave a 2-approximation algorithm for the restricted scheduling
problem on related machines based on preflow-push techniques. They also designed an
algorithm for computing a Nash equilibrium [129] for the restricted P| |Cmax problem.

1.4.2 Results for Extended R| |Cmax

At the time of this work, there exist very few results from the research conducted on the
R| |Cmax problem with processing time characteristics like, e.g., precedence constraints, re-
lease dates, or processing costs. This situation can be explained particularly by a much
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bigger complexity of these models. Nevertheless, Jansen and Porkolab [89] considered the
makespan minimization problem with operating costs and presented an FPTAS (for fixed m)
with running time n(m/ε)O(m). Later, Fishkin et al. [44] considered the problem of minimiz-
ing the objective function that is a weighted sum of makespan and the total costs. They gave
an FPTAS (again for fixed m) with a better running time O(n) + (log m/ε)O(m2). Note that
for the case with ci j = 0 their approximation scheme can be used for the generic R| |Cmax

problem. Armacost and Salem [8] developed a decomposition methodology to solve the
scheduling problem with sequence dependent setups and machine eligibility restrictions.
Herrmann et al. [79] considered scheduling unrelated parallel machines with precedence
constraints. Lancia [106] investigated the unrelated machine scheduling problem on two
machines and jobs with release dates and tails.

1.5 Our Contribution

In this section we discuss briefly the main contributions presented in this thesis. As it was
already partially indicated in Section 1.3.1, the goal of our research is both the development
of new efficient algorithms as well as the practical investigation on various algorithmic tools
for solving deterministic scheduling problems with unrelated parallel machines. In our
work we restrict our attention only to the R| |Cmax problem. This was motivated partially by
its intractability and partially by its great importance to both the theoretical and the practical
research (see Section 1.3.1).

New combinatorial algorithm for R| |Cmax. The main theoretical result of this work
is a new combinatorial algorithm, A-U-T, for computing
an assignment to the unrelated scheduling problem with makespan at most twice the op-
timum (see Chapter 3). We prove that a 2-approximate schedule can be computed in
O(m2A log(m) log(nU)) time, where A is the number of pairs (i, j) with pi j , ∞. This is bet-
ter than the previously known best time bounds of Vaidya’s interior point algorithm [166]
and Radzik’s combinatorial algorithm [144]. In particular, this is the first time that a com-
binatorial algorithm always beats the interior point approach for this problem.

An essential element of our approximation algorithm is the procedure U-
B-F from [52]. This procedure was designed to solve the unsplittable max-
imum flow problem in a bipartite network, which is defined by the restricted scheduling
problem on identical machines. In this thesis, the connection to flow is more tenuous. We
solve an unsplittable flow problem in a generalized bipartite network (see Section 3.3),
which is defined by the unrelated scheduling problem. The generalized flow problem can
be transformed to a minimum cost flow problem. Our algorithm uses a P-D ap-
proach [3] combined with a gain scaling technique to obtain a polynomial running time. To
compute a flow among the edges with zero reduced cost (i.e., a blocking flow), it uses the
procedure U-B-F as a subroutine.

Given some candidate value for the makespan, our algorithm finds an approximate so-
lution for the generalized unsplittable flow problem in the two-layered bipartite network.
Throughout the whole execution, the algorithm always maintains an integral assignment of



1.5. Our Contribution 13

jobs to machines. Each assignment defines a partition of the machines into underloaded,
balanced, and overloaded machines. The overloaded machines are heavily overloaded that
is their load is at least twice as large as the candidate makespan.

The main idea of our algorithm is to utilize the existence of overloaded machines in
conjunction with the fact that we are looking for an approximate integral solution. We use
this idea twice. On the one hand this allows us to show an improved lower bound on the
makespan of an optimum schedule and thus to overcome the (1 + ε) error usually induced
by the gain scaling technique. On the other hand this is also used to reduce the number
of outer iterations to O(m log m) which is the main reason for the substantial running time
improvement.

Our algorithm is a generic minimum cost flow algorithm without any complex enhance-
ments for generalized flow computation. Overloaded and underloaded machines are treated
as sources and sinks, respectively. The height of a node is equal to its minimum distance
to a sink. In our algorithm the admissible network, used for the unsplittable blocking flow
computation, consists only of edges and nodes which are on shortest paths from overloaded
machines with minimum height to underloaded machines. This modification in the P-
D approach is important for showing the improved lower bound on the makespan of an
optimum schedule.

The A-U-T algorithm is simpler and faster than the pre-
viously known algorithms. For the unrelated scheduling problem we have replaced the
classical two-step technique, i.e., computing first a fractional solution and rounding after-
ward (see Chapter 2), by a completely integral approach. Our algorithm takes advantage
from addressing the approximation problem directly. In particular, this allows us to benefit
from an unfavorable preliminary assignment. We feel that this may also be helpful in other
applications (see Chapter 7).

Identifying the connection to network flows may be the key idea for obtaining new com-
binatorial (approximation) algorithms for problems for which solving the LP relaxation and
rounding is currently the (only) alternative. Our techniques do not improve upon the ap-
proximation factor for the unrelated scheduling problem. However, we still expect more
exciting improvements for other hard problems to which our technique is applicable.

Column generation scheme for R| |Cmax. A big drawback of the two-step approach
(see Section 2.1.1) is the enormous number of assignment variables in the linear program-
ming (LP) relaxation of the scheduling problem. This situation becomes especially critical
for large-scale problems. In the worst case, it cannot even be possible to state all variables
of the problem explicitly as needed. Furthermore, in each iteration of the simplex algo-
rithm, which is more often used to solve the LP relaxation than other techniques, we look
explicitly for a non-basic variable to price out and enter the basis. This operation becomes
too costly when the number of variables is large. Consequently, the overall performance of
the application decreases dramatically. To overcome this unfavorable behavior, a column
generation approach can be applied to solve the LP relaxation.

Column generation is nowadays a prominent method to cope with a huge number of
variables. We apply it to solve the LP relaxation of the unrelated scheduling problem (see
Section 2.2). The appealing idea of our algorithm is to work only with a reasonably small
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subset of variables, forming the, so called, restricted master problem. More variables are
added only when needed. Here, each variable corresponds to a separate column in the
constraint matrix of the problem.

Since the initialization of the restricted master problem is a very important issue for
column generation solution method, we pay special attention to this crucial problem and
develop a new hybrid initialization procedure for our algorithm (see Section 2.2.4 and Sec-
tion 6.2.2). We observe that poorly chosen initial columns lead the algorithm astray, when-
ever they do not resemble the structure of a possible optimal solution at all. Furthermore,
even an excellent initial integer solution could be detrimental to solving a linear program
by column generation as our experiments show.

Randomized two-step approach for R| |Cmax. Since the randomized rounding tech-
nique has proved to be a powerful tool often used to attack hard optimization problems, we
have decided to develop a randomized version of the two-step approach, R-T-
S-S, for the R||Cmax problem (see Section 2.3), too.

While studying randomization techniques, we are interested in efficient, polynomial-time
approximation algorithms that deliver solutions within a provably good tolerance compared
to the optimal solution. The randomized rounding technique can be applied to a class of
{0, 1} integer linear programs. It is a probabilistic method, i.e., for the existence of results,
we prove that the solution to an (mixed) integer program satisfies a certain property (e.g.,
an upper bound for the solution) by showing that a randomly generated solution satisfies
that property with a non-zero probability.

In our approach, we solve first an LP relaxation of the unrelated scheduling problem
given in (1.2), and then use randomization to return from the relaxation to the original
optimization problem. Here, the second phase of the algorithm can be repeated several
times in order to improve the quality of solution.

LPT-based heuristics for R| |Cmax. The LPT algorithm by Graham [72] was originally
designed to schedule jobs on identical machines and later adapted to solve a more general
scheduling problem on related machines (see Section 1.3.3 for details).

We have developed three simple adaptations of the LPT algorithm to the R| |Cmax problem
(see Section 4.1.3). Each of the heuristics is accustomed to one of three different processing
time characteristics. Here, we consider three various types of correlation which may exist
between machines and jobs. In particular, we take into consideration the following models:
(1) with no correlations between machines and jobs, (2) with correlated machines, and (3)
with correlated jobs. All three models are motivated by their appearance in real-world
applications.

Branch-and-price algorithm for R| |Cmax. The branch-and-price technique is a pow-
erful tool for solving hard optimization problems. It offers an interesting alternative for
the general purpose mixed integer programming based on decomposition or cutting planes.
Branch-and-price combines column generation with a branch-and-bound scheme. The first
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one usually produces at the root node of the search tree tight lower bounds which are further
improved during the branching process. Branching also helps to generate integer solutions.

In Section 5.2.2 we present a new branch-and-price algorithm which we have developed
for scheduling unrelated parallel machines. The algorithm is an extension of the generic
branch-and-price method. It begins with a computation of the initial integer solution to the
scheduling problem. To this end, we use a simple heuristic method (see Section 6.2.2). We
proceed with the exploration of the branch-and-bound tree unless there is no subproblem
to consider. In each phase of the tree exploration we compute an optimal solution to the
current subproblem using a column generation algorithm (see Section 2.2). In the generic
implementation of the algorithm, we choose for a subproblem the one with a currently
smallest lower bound. In case the solution is not integral, two new subproblems are gener-
ated for some fractional variable of the current solution. On this variable we perform also
the branch.

Our algorithm uses several heuristic extensions which help branch-and-price to find good
integer solutions earlier (see Section 5.2.5). The acceleration scheme which we use is based
on the cooperation between column generation and local search presented in [30]. The
strength of this hybrid scheme is diversification by means of using different algorithms
for solving the same problem. Branch-and-price benefits from local search which is more
effective in finding feasible solutions. But in turn, local search benefits from branch-and-
price which provides it with diverse initial solutions.

Experimental study. In Chapter 6 we present an experimental study on various algo-
rithms for solving the R| |Cmax problem. We restrict our research only to the algorithms
discussed in this work. Nevertheless, it results in eighteen different solution techniques.
These algorithms represent, to our best knowledge, the present state-of-the-art of solution
methods for this scheduling problem. They use almost all types of computational frame-
works developed for this problem so far.

The experiments are motivated, firstly, by the importance of the unrelated scheduling
problem in general, both for the theoretical and the practical research, and secondly, by the
wish to evaluate in practice the A-U-T algorithm and other
algorithms which we have developed.

Using the preliminary test results, we are able to improve further our combinatorial algo-
rithm what leads to a significant increase of its overall performance (see Section 6.2.2).

Our experiments show that the combinatorial algorithm, A-U-
T, has a clear advantage over all tested two-step approaches (see Section 6.3.1).
In particular, for large test instances it delivers solutions of the same or better makespans
than other approaches, and in most cases is much faster than the LP-based techniques.
For large instances with correlated machines, however, the column generation approach
is the fastest solution method. Moreover, our experiments show that the implementations
of A-U-T require much less operational memory than the
two-step techniques and branch-and-bound methods, which makes them more efficient and
easier to handle, especially when the size of the problem grows.

The comparisons with exact methods indicate that our combinatorial algorithm is out-
performed by them when only the quality of solution is considered (see Section 6.3.2).
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However, the time performance of exact methods based on the branch-and-bound approach
is satisfactory only for very small problem instances. The good quality of solutions is in the
vast majority of the test instances obtained due to very long computation times. For large
instances we need to wait much longer for solutions whose quality would be compara-
ble to the quality obtained in much shorter time by A-U-T.
Moreover, we want to point out a very good performance of our branch-and-price algo-
rithm. Its performance is similar to that of the cutting plane algorithm [125] which is so
far the best exact method proposed for the R| |Cmax problem. In our opinion it should not
be difficult, but time-consuming to improve further our exact algorithm in order to beat the
cutting plane approach (see Chapter 7).

Finally, the comparison tests with heuristics show in contrary to our expectations that
the A-U-T algorithm can be as efficient as the heuristic
algorithms, and thus can successfully compete with them in solving difficult scheduling
problems (see Section 6.3.3 for numerical results).
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Some of the results described in this thesis have already been presented on international
computer science conferences and are published in a preliminary form in the conference
proceedings. In particular, the new combinatorial approximation algorithm, A-
U-T, for the R| |Cmax problem presented in details in Chapter 3, appeared
in [53]. The column generation two-step approach presented in Section 2.2 and the com-
putational results on 2-approximation algorithms for the unrelated scheduling problem,
together with the improvements of the A-U-T algorithm,
have been published in a preliminary form in [127]. In [127] also one of the three adapted
versions of the LPT algorithm from Section 4.1.3 has been briefly described.

There are also results in this work which have not yet been published. The randomized
version of the two-step approach given in Section 2.3 and the extended branch-and-price
method presented in Section 5.2 are two new algorithms for the R| |Cmax problem. Also
the comprehensive experimental studies on different exact and heuristic methods for the
unrelated scheduling problem presented in Section 6.3.2 and Section 6.3.3, respectively,
are to our best knowledge the first of their kind and appear for the first time in this work.



2
Two-Step Algorithms

We begin our discussion on the solution methods for the unrelated scheduling problem with
the classical two-step approach. This technique was originally introduced by Potts [142] in
1985 to solve the R| |Cmax problem. His exponential-time heuristic was the first method
which approximated the optimal solution with a factor of 2. Five years later Lenstra,
Shmoys, and Tardos presented in their seminal work [112] the first polynomial-time version
of the two-step approach for approximating the optimal solution to the R||Cmax problem.
Their, similar to Potts’ heuristic, algorithm computes first an optimal fractional solution
to the scheduling problem, and then it rounds the fractional solution in order to obtain an
integer schedule. Because of their importance for the later analysis, we present in the first
section a detailed description for both methods. Next, we give an overview on various al-
gorithms which are used to solve the fractional scheduling problem; we concentrate there
especially on their usability for solving large-scale integer problems and point out their
main drawbacks. Afterward, we present three different rounding procedures. The first one,
introduced by Lenstra et al. [112], computes a 2-approximative integral solution from a
basic optimal solution to the fractional scheduling problem. The second one, developed by
Shmoys and Tardos [157], can be applied to any fractional solution to the relaxed schedul-
ing problem. Finally, we present briefly an improved optimal rounding algorithm which
was recently presented by Shchepin and Vakhania [156]. Since the randomized rounding
technique is a powerful tool often used to attack hard optimization problems, we present
in the last section of this chapter our randomized version of the two-step approach for the
R||Cmax problem.

2.1 Generic Two-Step Approach

2.1.1 Algorithm by Potts

We begin with a description of a simple algorithm designed by Potts [142]. His heuris-
tic method, called LPE (for Linear Programming and Enumeration), solves the unrelated
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scheduling problem in exponential time in the number of machines m. The objective is to
minimize the makespan T of the schedule. Consider the mixed integer program (MIP) that
represents the problem of assigning jobs to machines as given in (1.2). Since T is mini-
mized in the objective function, at optimality T represents the maximum processing time
on any machine.

Suppose now that we relax the binary constraints on assignment variables xi j and require
that xi j ≥ 0 for all i ∈ [n] and j ∈ [m], as given in (2.1). We call this linear program an LP
relaxation of the integer program given in (1.2). A basic optimal solution x∗ to (1.2) has the
property that the number of positive variables is at most the number of rows in the constraint
matrix, i.e., it is at most m + n. The other, non-basic variables, take value zero [25].

LP: min T
s.t.

∑
i∈[n]

pi jxi j ≤ T, ∀ j ∈ [m]∑
j∈[m]

xi j = 1, ∀ i ∈ [n]

xi j ≥ 0, ∀ i ∈ [n], j ∈ [m].

(2.1)

Since T is always positive, at most m + n − 1 of xi j variables from x∗ are positive. More
specifically, it can be shown that each constraint of the first m inequalities in (2.1) is satisfied
as an equality. This implies that exactly m+n−1 of the assignment variables are basic. For
more detailed explanation we refer to Schrijver [151]. Moreover, observe that every job i
has at least one positive variable xi j associated with it. Denote by x̄ the number of jobs that
are assigned in x∗ to exactly one machine, i.e., x̄ = |{xi j | x∗i j = 1,∀i ∈ [n]}|. Then, since one
job can be split on at least two machines, it follows

n + m − 1 = x̄ + 2(n − x̄)⇒ x̄ = n − m + 1.

Is is easy to see that x̄ increases when the number of machines on which a single job is split
also increases. This implies that x̄ ≥ n − m + 1. Thus, since we know that the total number
of jobs is n, we conclude that at most m− 1 jobs have been split onto two or more machines
in the optimal (fractional) assignment x∗. Note that the optimal LP solution value T is a
lower bound on the the value of integral optimal solution C∗max.

Now we show how Potts’ heuristic constructs a feasible schedule. To this end we need
two phases. In the first phase, for all those jobs with integral assignments in the optimal LP
solution x∗ we assign them according to x∗, i.e., α(i) := j, if x∗i j = 1. This first piece of the
schedule is guaranteed to have a length that is at most the value of the LP solution, which
is clearly at most T . For the remaining set of at most m − 1 jobs, by complete enumeration,
we find an optimal assignment in time O(mm−1). This optimal schedule on a partial of jobs
is also guaranteed to have makespan at most C∗max. Thus, by concatenating these two partial
schedules, we obtain the following result:

Theorem 2.1.1 (Potts [142]) LPE algorithm computes a schedule with makespan at most
2C∗max to the R| |Cmax problem, where C∗max is the makespan of the optimal integer solution
to the scheduling problem.

Note that for a fixed number of m the number of computational steps required by the
heuristic is polynomial. However, for arbitrary m an exponential number of steps is needed.
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For practical purposes, however, the complete enumeration procedure can be replaced
by a branch-and-bound algorithm. Such use of a bounding procedure to limit the search
of the enumeration tree reduces the computational requirements for many problems. A
branch-and-bound algorithm has the further advantage that, if desired, computation can be
terminated before optimality is reached. Since the optimal solution is generated at an early
stage of a branch-and-bound algorithm while the remaining computation verifies optimality,
an early termination of the algorithm does not necessarily detract from its performance
although the guarantee of Theorem 2.1.1 becomes invalid. For more discussion on branch-
and-bound techniques we refer the reader to Chapter 5.

Potts also proved that for m = 2 the LPE heuristic has the best possible worst-case
approximation factor of (1 +

√
5)/2. For the case when m ≥ 3, the bound of 2 is the best

possible. To show this, he gave the following example:

Example 2.1.1 (Potts [142]) Consider a scheduling problem with m uniformly related ma-
chines. There are m jobs and pi j =

pi
q j

for i ∈ [m], j ∈ [m], where q1 = m − 1 and q j = 1 for
j = 2, · · · ,m; p1 = (m − 1)p and pi = p for i = 2, · · · ,m for any positive p. An optimal
schedule is obtained by assigning job j to machine j for j ∈ [m], giving T ∗ = p. A solution
(not unique) of the LP relaxation is x11 = 0, xi1 = 1 (for i = 2, · · · ,m), x1 j =

1
m−1 (for

j = 2, · · · ,m) and xi j = 0 (i, j = 2, · · · ,m). The partial schedule assigns jobs 2, · · · ,m
to machine 1 and job 1 is a fractional job. Enumeration shows that job 1 is scheduled on
machine 1 to give TLPE = 2p. Therefore, TLPE/T ∗ = 2 as required.

2.1.2 Algorithm by Lenstra, Shmoys, and Tardos

The drawback of the LPE method by Potts is that the construction of the second phase
potentially requires exponential-time in the number of machines. In consequence, this al-
gorithm is polynomial-time only if the number of machines is fixed. Nevertheless, it seems
very suggestive that only m − 1 of the jobs get split. It implies that the average number of
jobs assigned to a machine in the second phase is less than one. If there were a direct way
to assign at most one job to each machine in a manner such that each machine got a job
which processing time is not too large for it, perhaps we could avoid the total enumeration
process for the fractional jobs.

The algorithm by Lenstra, Shmoys, and Tardos [112] which we present now is moti-
vated by this intuition. The algorithm is based on the following 2-relaxed decision proce-
dure: Given a length of T , the procedure either correctly deduces that no schedule with
a length of T exists, or it constructs a schedule with makespan at most 2T . It is then
possible, using binary search on T ∈

[⌈
Tg/m

⌉
,Tg

]
, to convert such a procedure into a 2-

approximation algorithm. Here, Tg is the makespan of a schedule constructed by a greedy
algorithm which assigns each job to a machine on which it has a smallest processing time,
i.e., Tg ≤

∑
i∈[n] min j∈[m]{pi j}.

We present now the decision procedure in more detail. But first let us construct for a
given schedule length T the following sets of machine and job indices: for each job i ∈ [n]:

Mi(T ) = { j ∈ [m] | pi j ≤ T },
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and for each machine j ∈ [m]:

J j(T ) = {i ∈ [n] | pi j ≤ T }.

In other words, Mi(T ) denotes all the machines that can possibly process job i in any sched-
ule of length T , and J j(T ) includes those jobs that can be processed on machine j in any
schedule of length T .

Consider a linear feasibility system, LFS, as given in (2.2). Notice that if a (possibly
integral) schedule of length T exists, then LFS is guaranteed to be feasible. Moreover, the
basic feasible solution x̃ to this system has the property that at most m + n variables are
positive. Therefore, by the same argumentation as for Potts’ heuristic (see Section 2.1.1),
we conclude that at most m jobs get split (fractional) assignments. As before, we construct
an approximate schedule in two phases. First, we assign each unsplit job to its proper
machine, i.e., α(i) := j if x̃i j = 1, and then we round the jobs with fractional assignments.

LFS:
∑

i∈J j(T )
pi jxi j ≤ T, ∀ j ∈ [m]∑

j∈Mi(T )
xi j = 1, ∀ i ∈ [n]

xi j ≥ 0, ∀ i ∈ J j(T ), j ∈ [m]
xi j = 0, ∀ i < J j(T ), j ∈ [m]

(2.2)

By the construction of the sets Mi(T ) and J j(T ), if x̃i j > 0, then pi j ≤ T . So, if we can
construct a matching of the fractional jobs to the machines in such a way that each job gets
matched to a machine it is already partially assigned to, then we will have constructed an
assignment of the fractional jobs that is guaranteed, as the partial schedule, to have length
at most T . How can we be sure that such a matching exists? Fortunately, the structure of
basic feasible solutions to LFS (they are represented by the vertices of the polytope defined
by (2.2)) can be exploited to prove existence constructively, and thus to provide a simple
way of producing the desired matching from the solution x̃ to LFS. The following theorem
together with the proof guarantees that such a matching always exists for any basic solution
x̃ to LFS and explains how it can be computed.

Theorem 2.1.2 (Rounding Theorem by Lenstra et al. [112]) Let P = (pi j) ∈ ZZm×n
+ be a

matrix of processing times, and T a positive integer. If the linear program LFS(P,T ) given
in (2.2) has a feasible solution, then any vertex x̃ of the polytope induced by LFS(P,T ) can
be rounded to a feasible solution x̄ of the integer program IP(P,T ), given by:

IP:
∑

i∈J j(T )
pi jxi j ≤ 2T, ∀ j ∈ [m]∑

j∈Mi(T )
xi j = 1, ∀ i ∈ [n]

xi j ∈ {0, 1}, ∀ i ∈ J j(T ), j ∈ [m]
xi j = 0, ∀ i < J j(T ), j ∈ [m]

(2.3)

and this rounding can be done in polynomial time.
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Sketch of the Proof: Let us construct a graph G(x̃) which nodes are the jobs and machines
of the problem instance and which edges (i, j) correspond to all variables x̃i j > 0. It is a well
known fact that if the optimal solution x̃ is basic, then the constructed graph will consist
of a forest of trees and 1-trees (a tree plus one edge), in which job nodes and machines
nodes alternate. We call such a graph pseudoforest. For the proof of this property of graph
G(x̃) we refer to the complete proof of this theorem or to [25]. Now, if we delete the job
nodes with integral assignments (they have only one incident edge, i.e., x̃i j = 1) from the
graph, we will still have a forest which all leaves correspond to machine nodes. For each
deleted job i and corresponding incident edge (i, j) we set x̄i j = 1. Note that the remaining
fractional job nodes have at least two incident edges. Our task is to construct a matching
in graph G(x̃) in which every job gets matched. The matching will then correspond to the
desired assignment.

We show now how such a matching can be constructed. For each of the 1-trees we first
focus on the unique cycle in the tree. This cycle contains an equal number of alternating
job and machine nodes. We arbitrarily orient the cycle in one direction and assign each job
node to the machine node succeeding it on the cycle. By doing this each machine in the
cycle receives exactly one job. We delete now all the nodes along the cycle. What now
remains of graph G(x̃) is a collection of trees, each containing at most one job leaf node.
Note that upon the deletion of the cycles, job leaf nodes might be created. But there can be
at most one such a leaf node per resulting tree.

We root each tree either at its unique job leaf node, or at an arbitrary node if no job leaf
node exists. Afterward, for each tree we can assign each job node to one of its machine
children. Since each machine node has a unique parent, it is guaranteed to receive at most
one job in this assignment. Thus, we have completed with the construction of the desired
matching.

Since to each machine is assigned at most one job, and since the processing time of the
job is at most T , the schedule corresponding to this part of the assignment is guaranteed to
have makespan at most T . Finally, we put the two pieces of the schedule (corresponding
to the schedule of integral jobs from x̃, and the schedule of rounded fractional jobs), and
obtain a schedule with a length of at most 2T .

The rounding procedure presented in the proof of Theorem 2.1.2, which can be applied to
any assignment represented by a pseudoforest, takes O(n+m) time. The following theorem
summarizes our discussion on the polynomial-time two-step 2-approximation algorithm of
Lenstra at al. In Algorithm 1 we present once more the main parts of this approach.

Theorem 2.1.3 (Lenstra et al. [112]) There is a 2-approximation algorithm for the mini-
mum makespan problem on unrelated machines that runs in time bounded by a polynomial
in the input size.

The analysis of the algorithm cannot be improved to yield a better worst-case approxi-
mation factor. We show this with the following example.

Example 2.1.2 (Lenstra et al. [112]) Consider the following instance of the scheduling
problem. There are m2 − m + 1 jobs and m identical machines. The first job takes m
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Algorithm 1 T-S-A(P)
Input: matrix of processing times P
Output: assignment α

1: solve LP relaxation;
2: round the fractional solution x̃;
3: return integral solution x̄;

time units on all machines, and all other jobs take one unit on all machines. In the optimal
solution the first job is assigned to one machine and m of the remaining jobs are assigned
to each of the other machines. It results with a schedule of makespan m. Surprisingly,
there exists no feasible fractional solution for T < m. Suppose that the vertex of LFS(P,T )
for T = m corresponds to the schedule where one unit of the job of length m and m − 1
unit-length jobs are assigned to each machine. Rounding this fractional solution produces
a schedule of length 2m − 1. Here, the choice of vertex has forced the inferior solution. No
extension of the integral part of this solution will yield a better schedule.

2.1.3 Solution Methods for LP Relaxation

We say now a few words about the methods which are used to solve the LP relaxation in
the algorithms discussed in the previous subsections. As it was already mentioned, the
second phase in these algorithms (the rounding phase) requires in general as an input a
basic optimal solution to the relaxed MIP.

The simplex algorithm always generates a basic solution of this form [25]. However, this
technique is not proved to be running in a polynomial time. Instead of simplex method,
the interior point algorithms can be used, e.g., the ellipsoidal algorithm by Khachiyan [99]
– the first polynomial-time algorithm for LP, the projective method by Karmarkar [96] –
the first interior point algorithm efficient for practical usage, or so far the best interior point
algorithm by Vaidya [166]. The last one needs time O(m1.5n3.5 log U), where U = max{pi j <
∞}. There exists also a number of other specializations of the interior point technique (see,
e.g., [15]) which can be applied to more specific applications. For a good survey on interior
point algorithms we refer the reader to [28, 75].

For practical purposes, however, the LP problem would be solved by the simplex method
rather than by some interior point algorithm. Because of the sparse structure of the con-
straint matrix in the LP relaxation, the number of simplex iterations (pivots) required to
solve the problem is unlikely to be large.

Indirect rounding. Should an alternative interior point polynomial-time algorithm be
applied to yield an optimal non-basic solution in which more than n+m variables may take
positive values, then an additional polynomial-time procedure (e.g., from [77, 141]) has to
be applied to transform this solution into an optimal basic solution.

We describe now briefly the converting procedure by Plotkin, Shmoys, and Tardos [141]
for the P||Cmax problem. Any (fractional) assignment α defined by an optimal non-basic
fractional solution x∗ can be represented as a weighted bipartite graph G(x∗) = (J ∪ M, E).
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An edge (i, j) ∈ E if and only if x∗i j > 0 for i ∈ J and j ∈ M. If x∗ is a vertex of the polytope
of the LP relaxation, then graph G is called a pseudoforest, i.e., any connected component
of the corresponding graph is either a tree or a tree plus one additional edge, so called 1-
tree. The procedure converts graph G(x∗) into a pseudoforest. The following theorem gives
the running time of the converting procedure. For a detailed proof we refer to [141]. Note
that, since |E| ≤ nm, the time to preprocess α for rounding is dominated by the time taken
to find α, i.e., to compute an optimal fractional solution x∗ to the LP relaxation.

Theorem 2.1.4 (Plotkin et al. [141]) Let α be an assignment represented by the graph G =
(J ∪ M, E). Then α can be converted in O(m|E|) into another assignment β of no greater
length, where β is represented by a pseudoforest.

2.1.4 Direct Rounding

An interesting result in this regard was presented by Shmoys and Tardos in [157]. Originally
they introduced a new rounding technique to solve the generalized assignment problem,
but, as we will see, it can easily be adapted for the unrelated scheduling problem, too.
The advantage of this new approach is that it does not rely on finding basic solutions to
the LP relaxation and exploiting their special structure (i.e., they need to be pseudoforests).
Instead, it uses a more sophisticated grouping and an assignment of fractional jobs to obtain
a schedule for the fractionally assigned jobs. This more powerful algorithm builds on earlier
work of Lin and Vitter [113], and Trick [163].

We describe now how the approach from [157] can be applied for our scheduling prob-
lem. Given any, not necessarily basic, optimal solution to the LP relaxation of (1.2), we will
construct an integral assignment with a total makespan at most 2T where T is the length of
the fractional assignment.

Consider an optimal solution x∗ to the LP relaxation. We construct a bipartite graph
G = (W ∪ V, E) as follows. Set W contains a node wi corresponding to each job i ∈ J.
Extended set of machines, V , contains a set of nodes corresponding to each machine j ∈ M.
The edges (i, j) in the graph correspond to job-machine pairs which associated value x∗i j is
positive. Each edge (i, j) has associated weight x̂(i, j).

Let us first focus on a particular machine j ∈ M. Without lost of generality, we temporar-
ily renumber the jobs so that p1 j ≥ p2 j ≥ · · · ≥ pn j. Let k j =

⌈∑
i∈J x∗i j

⌉
. Then the nodes

of V corresponding to machine j are v j1, · · · , v j k j . If
∑

i∈J x∗i j ≤ 1, then there is only one
node v j1 ∈ V corresponding to machine j. In this case, for each x∗i j > 0 we include an edge
(v j1,wi) into E and set x̂(v j1,wi) := x∗i j.

Otherwise, we find an index q for which
q−1∑
i=1

x∗i j < 1 ≤
q∑

i=1

x∗i j.

We add to E edges from node v j1 to job nodes w1, · · · ,wq−1 with weights x̂(v j1,wi) := x∗i j,
for i = 1, · · · , q − 1. Additionally, we create an edge (v j1,wq) with weight

x̂(v j1,wq) := 1 −
q−1∑
i=1

x∗i j.
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These are the only edges to node v j1. Observe that the sum of the weights of the edges
incident to v j1 is exactly equal to 1.

Now we consider node v j2. If x∗q j > x̂(v j1,wq), we construct an edge (v j2,wq) with weight
x̂(v j2,wq) := x∗q j − x̂(v j1,wq). We then proceed with jobs i > q, i.e., those with smaller
processing time on machine j, and construct edges incident to node v j2 until a total of
exactly one job is assigned to v j2, and so forth. More precisely, for each s = 2, · · · , k j − 1,
we find the minimum index qs such that

qs∑
i=1

x∗i j ≥ s.

We add to E those edges (v js,wi) for i = qs + 1, · · · , qs − 1, and for each of these set
x̂(v js,wi) := x∗i j. Furthermore, we add an edge (v js,wqs) to E with weight

x̂(v js,wqs) := x∗qs j −

qs−1∑
i=1+qs−1

x̂(v js,wi).

If
∑qs

i=1 x∗i j > s, then we include also an edge (v j,s+1,wqs) into E, and set x̂(v j,s+1,wqs) :=
x∗jqs
− x̂(v js,wqs).

Example 2.1.3 To better understand this construction, we give a simple example for unre-
lated scheduling problem with n = 4 jobs and m = 3 machines. Assume that the jobs have
temporarily been renumbered according to non-increasing processing times for each ma-
chine. It does not have any influence on the generality of the construction. In Figure 2.1.4(a)
we give a feasible optimal solution x∗ = (x∗i j) to the LP relaxation of the unrelated schedul-
ing problem. Figure 2.1.4(b) shows the constructed bipartite graph G(V ∪W, E). There are
three job nodes w1, · · · ,w3, one for each job, and two extended machine nodes for each ma-
chine, i.e., there are nodes {v11, v12} for the first machine and nodes {v21, v22} for the second
machine. The edges in the graph G are constructed according to the rules given above. The
weight of each edge is equal to 1

2 . Observe that the total weight of edges incident to each
machine node in V is at most one, and is exactly one for all nodes in V expect the last one
for a given machine j.

Next step in the direct rounding procedure is to construct an assignment of jobs to ma-
chines using the bipartite graph G(V ∪ W, E). First, we observe that the variables x̂(v,w)
form a feasible, fractional solution to the following linear program:

∑
j∈[m]

∑
s∈[k j]

x̂(v js,wi) = 1, ∀ i ∈ [n]∑
i∈[n]

x̂(v js,wi) ≤ 1, ∀ s ∈ [k j], j ∈ [m]

x̂(v,w) ≥ 0, ∀ v ∈ V,w ∈ W

(2.4)

It is a well known fact that a feasible LP of this form has integral extreme-point (or basic)
solutions. More specifically, any solution x̄ to (2.4) is a convex combination of such integral
basic solutions (see, e.g., [3]). It can by computed efficiently in O(|V ∪ W |1/2|E|) with an
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Job 1 Job 2 Job 3
Machine 1 1

2 1 0
Machine 2 1

2 0 1

11v
12v 21v v22

w2w1 w3

(a) optimal solution x∗ (b) graph G(V ∪W, E)

Figure 2.1: Example of a construction of a bipartite graph G(V ∪W, E).

algorithm by Even and Tarjan [42] for the maximum flow problem in unit capacity simple
networks, i.e., in which every arc has capacity one, and every node, except the source
and sink nodes, has at most one in-coming or at most on out-going arc. Furthermore, it is
typical that for a network whose all capacities, supply, and demand are integers, the optimal
solution is also integer [3]. Hence, any such integral solution represents a matching in graph
G(V ∪W, E) in which every node from W is matched.

We claim now that this matching, when interpreted as an assignment of jobs to machines,
has makespan of at most 2T . Let us focus on particular machine j. Since there are k j

machine nodes associated with machine j, then at most k j jobs are assigned to machine
j. We show now, in a similar way as in [80, 157], that the total processing time of jobs
assigned to machine j in the matching is no more than T plus the total processing time of
the fractional solution on machine j.

Let pmin
js and pmax

js denote respectively the minimum and the maximum processing times
of jobs which nodes in G(V∪W, E) are adjacent to machine node v js for s = 1, · · · , k j. Note
that pmin

js ≥ pmax
j,s+1. The amount of processing time assigned to machine j by the matching is

bounded by
k j∑

s=1

pmax
js = pmax

j1 +

k j∑
s=2

pmax
js ≤ T +

k j−1∑
s=1

pmin
js ≤ T +

k j−1∑
s=1

∑
i:(v js,wi)∈E

pi j x̂(v js,wi) ≤

≤ T +
k j∑

s=1

∑
i:(v js,wi)∈E

pi j x̂(v js,wi) ≤ T +
n∑

i=1

pi jx∗i j ≤ 2T ,

where the last equality follows from the fact that the fractional load on machine j is at most
T . The following lemma summarizes the result for the R| |Cmax problem.

Lemma 2.1.5 The direct rounding by Shmoys and Tardos [157] can be applied to round
any fractional solution to the R| |Cmax problem. Furthermore, if the length of the fractional
schedule equals T , then the makespan of the rounded schedule is at most 2T.

2.1.5 Optimal Rounding

In Example 2.1.2 we have seen that there exists an instance of the unrelated scheduling
problem for which the two-step algorithm by Lenstra, Shmoys, and Tardos [112] delivers a
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solution which is a factor of 2 − 1
m within the optimum. This almost matches the approxi-

mation factor of 2 shown for their method.
Recently, Shchepin and Vakhania [156] presented a new approximation algorithm for

scheduling unrelated machines which yields solutions with approximation factor of 2 −
1
m . Their approach is similar to the two-step heuristic used by Potts [142]. First, an LP
relaxation of the unrelated scheduling problem is computed. As it was already mentioned
in Section 2.1.1, an optimal fractional solution to that relaxation consists of at most m − 1
preemptions, i.e., jobs assigned to at least two machines. In the second step this fractional
solution is rounded to an integral solution. Here, Shchepin and Vakhania use a completely
new rounding procedure for which they show that it gives the best possible approximation
factor which can be obtained using the rounding approach.

We describe now very briefly the rounding procedure which they use. Generally speak-
ing, a fractional job cannot be rounded on a machine unless a fraction of at least 1

m of that
job has been originally assigned to it by the fractional solution. Their algorithm constructs
in time O(m2) a rounding in which no machine receives more than m−1

m new job parts. This
ensures that the makespan of the resulting integral assignment exceeds the makespan of
the optimal fractional solution, T , by at most m−1

m · pmax. Here, pmax denotes the maximal
processing time in the optimal fractional solution. Since pmax ≤ T , a (2− 1

m )-approximation
of the optimal integral solution is guaranteed.

As it is the case for other two-step methods, the total computation time of the approxi-
mation algorithm using the optimal rounding procedure is here also dominated by solving
the LP relaxation (see Section 2.1.3 for more details). We refer to [156] for a complete de-
scription of this interesting algorithm. The following theorem summarizes the main result
from [156].

Theorem 2.1.6 (Shchepin and Vakhania [156]) There exists a polynomial-time (2 − 1
m )-

approximation algorithm for R| |Cmax.

We give now a simple example which shows that the optimal rounding procedure gives a
best possible approximation factor which can be obtained with the rounding approach.

Example 2.1.4 Consider m identical machines and a single job with processing time p. We
want to schedule this job without preemption on these machines. It is easy to see that the
makespan of an optimal non-preemptive solution equals p. The makespan of the optimal
fractional solution is 1

m p. The difference between them is m−1
m p. Thus, the algorithm by

Shchepin and Vakhania can assign the fractional job on any of m machines. This shows
that the makespan of an optimal non-preemptive schedule may exceed the makespan of an
optimal fractional solution by (1 − 1

m )p.

2.2 Scheduling by Column Generation

2.2.1 Motivation.

A big drawback of the two-step approaches presented in the previous section is the enor-
mous number of assignment variables in the LP relaxation of the scheduling problem. This
situation becomes especially critical in large-scale problems.
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Large applications require much more operational memory to represent the R| |Cmax prob-
lem, and thus they are harder to handle by the operating system throughout all computations.
In the worst case it cannot even be possible to state all variables of the problem explicitly as
needed. Furthermore, in each iteration of the simplex algorithm, which is more often used
to solve the LP relaxation than other techniques, we look explicitly for a non-basic vari-
able to price out and enter the basis. This operation becomes too costly when the number
of variables is large. Consequently, the overall performance of the application decreases
dramatically.

To overcome this unfavorable behavior, a column generation approach can be applied to
solve the LP relaxation.

2.2.2 Preliminaries on Column Generation.

Dantzig-Wolfe decomposition and column generation approach, both devised originally for
linear programs, are two closely related successful methodologies for the large-scale integer
programming. The origins of column generation goes almost five decades back to Ford and
Fulkerson [46]. They were the first who suggested dealing only implicitly with the variables
of a multicommodity flow problem. Dantzig and Wolfe [26] pioneered this fundamental
idea by developing a strategy to extend a linear program columnwise as needed in the solu-
tion process. This technique was first put into actual use by Gilmore and Gomory [59, 60]
as a part of an efficient heuristic algorithm for solving the cutting stock problem. Column
generation is nowadays a prominent method to cope with a huge number of variables. The
embedding of column generation techniques within a linear programming based branch-
and-bound framework, introduced by Desrosiers, Desrochers, and Soumis [32] for solving
a vehicle routing problem under time window constraints, is the key step in the design of
exact algorithms for a large class of integer programs.

The method. There are three necessary building blocks for every column generation
based solution approach to the (mixed) integer programs:

(1) a master problem, MP, which is an original formulation to solve and acts as the
control center to facilitate the design of natural branching rules and cutting planes1,

(2) a restricted master problem, RMP, used to determine the currently optimal dual mul-
tipliers and to provide a lower bound at each node of the branch-and-bound tree, and

(3) a pricing subproblem, PSP, which explicitly reflects an embedded structure of the
problem which we want to exploit.

Let us call the following linear program the master problem MP. Here, I denotes a set of
indices of all columns ak from constraint matrix A.

MP: z∗ = min
∑
k∈I

ckλk

s.t.
∑
k∈I

aT
k λ ≥ b

λk ≥ 0, ∀k ∈ I

(2.5)

1In Chapter 5 we show how we exploit the original formulation to design a branch-and-price algorithm.
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In each iteration of the simplex method we look for a non-basic variable to price out and
enter the basis, i.e., in the pricing step, given the non-negative vector π of dual variables,
we want to find:

kmin = arg min
k∈I
{c̄k := ck − π

T ak}

This explicit search becomes too costly operation when |I| is huge. Instead, we work with a
reasonably smaller subset I′ ⊆ I of column indices. It defines us a restricted master problem
RMP. We evaluate then the reduced costs c̄k by implicit enumeration. Assuming we have a
feasible solution, let λ and π be a primal and a dual solution of the RMP, respectively. When
columns ak for k ∈ I are implicitly given as elements of matrix A and the cost coefficient ck

can be computed from ak via a function c, then the subproblem

c̄∗ = min
a∈A
{c(a) − πT a} (2.6)

performs the pricing. If c̄∗ ≥ 0, then there is no negative c̄k for k ∈ I, and the solution λ to
the restricted master problem optimally solves the master problem as well [26]. Otherwise,
we add to the RMP the column(s) with negative reduced costs derived from the optimal
pricing subproblem solution, and repeat with re-optimization of the just extended RMP.

In what regards convergence, note that each column ak ∈ A is generated at most once
since no variable in an optimal RMP has negative reduced cost. When dealing with a finite
set A of columns, the column generation algorithm converges to the optimal solution. With
the usual precautions against cycling of the simplex method, column generation is finite
and exact.

Lower and upper bounds. It is worth to point out that we can make use of bounds
produced by the column generation algorithm. Let z̄ denotes the optimal objective value of
the RMP. Note that by duality we have z̄ = πT b. When the upper bound κ ≥

∑
k∈I λk holds

for an optimal solution of the master problem, we have not only an upper bound z̄ on z∗ in
each iteration, but also a lower bound: we cannot reduce z̄ by more than κ times the smallest
reduced cost c̄∗, thus

z̄ + c̄∗κ ≤ z∗ ≤ z̄. (2.7)

In the optimum of (2.5), c̄∗ = 0 for the basic variables, and the bounds close, i.e., z̄ = z∗. The
lower bound in (2.7) is computationally cheap and readily available when (2.6) is solved to
optimality.

Even though column generation originates from linear programming, its strengths un-
fold in solving integer programming problems. The simultaneous use of two concurrent
formulations, the restricted master problem and the subproblem, their compactness and ex-
tensiveness allow very often for a better understanding of the problem at hand and simulates
our inventiveness in what concerns, e.g., branching rules, as we will see in Chapter 5.

For a good survey on column generation we refer the reader to [115, 172]. Application
of column generation to integer programs is discussed exhaustively in [170]. An insightful
overview of the state-of-the-art in integer programming column generation, its methodolo-
gies and many applications can be found in [30].
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2.2.3 C-G-S Algorithm

We present now how a column generation approach can be applied to speed up the computa-
tions of the LP relaxation of the unrelated scheduling problem. Algorithm 2, which we use
in our experiments presented in Chapter 6, is based on the ideas from [168] where a branch-
and-bound approach combined with column generation is used to solve the P| |

∑
i∈[n] Ci

problem where Ci is the completion time of job i.
In our case, the master problem MP of the column generation scheme is defined as an LP

relaxation of the R| |Cmax problem and is given in (2.8) in standard form [136]. It is easy to
prove that both formulations, (2.1) and (2.8), are equivalent.

LP: min cT x
s.t. Ax = b

x ≥ 0
(2.8)

where

A =



p11 0 p21 0 pn1 0 −1 1 0
. . .

. . .
. . .

...
. . .

0 p1m 0 p2m 0 pnm −1 0 1
1 · · · 1 0 · · · 0 0 · · · 0 0 0 · · · 0
0 · · · 0 1 · · · 1 0 · · · 0 0 0 · · · 0

. . .

0 · · · 0 0 · · · 0 1 · · · 1 0 0 · · · 0


∈ ZZ(m+n)×(nm+1+m)

≥−1

x =
[

x11 · · · x1m x21 · · · x2m · · · xn1 · · · xnm T s1 · · · sm

]T
∈ IRnm+1+m

≥0

c =
[

0 · · · 0 1 0 · · · 0
]
∈ {0, 1}nm+1+m

b =
[

0 · · · 0 1 · · · 1
]T
∈ {0, 1}m+n

The appealing idea of column generation, as it was indicated already in the previous
section, is to work only with a reasonably small subset of variables, forming the restricted
master problem RMP. More variables are added only when needed. We define RMP by a
subset a of columns from A, i.e., a = {ak ∈ A | k ∈ I′ ⊆ I} where ak is the k-th column
from A corresponding to variable xk ∈ x, and I is a set of indices of all columns from A,
|I| = nm + 1 + m. Note that the number of columns in RMP, |I′|, induces the same number
of variables in RMP.

PSP: find k
s.t. c̄k = ck − aT

k µ(a) < 0
ak ∈ A, ∀ k ∈ I \ I′

(2.9)

Let x(a) and µ(a) be the primal and the dual optimal solution to the current RMP defined
by a, respectively. To determine if x(a) is also the optimal solution for the MP, we solve the
pricing subproblem PSP given in (2.9) where c̄k denotes the reduced cost of variable xk. If
PSP returns no feasible k, i.e., the reduced costs of all variables from I \ I′ are non-negative,
then the solution x(a) to RMP optimally solves MP as well, and we are done. Otherwise,
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Algorithm 2 C-G-S(A,b, c)
Input: constraints matrix A

positive vectors b and c
Output: assignment α

1: find initial set of columns a;
2: initialize I′ according to a;
3: (x(a), µ(a)) := solve RMP(a,b, c);
4: compute reduced costs c̄k from dual multipliers µ(a) and columns ak ∈ A, for k ∈ I \ I′;
5: if mink∈I−I′ c̄k < 0 then
6: generate new column(s) from A and add them to a;
7: update I′ and go to 2;
8: end if
9: round the fractional solution x(a) into an integral solution x̄;

10: return integral solution x̄;

variable xk identified by PSP is added to RMP, and optimization of a just extended RMP is
repeated.

2.2.4 Solution Methods for the Restricted Master Problem

Column generation is a primal method, i.e., it maintains primal feasibility and works toward
dual feasibility. Therefore, it is natural only to monitor the dual solution in the course of the
algorithm. In other words, the purpose of RMP is to provide dual variables. They are used
later by the pricing subproblem PSP to compute reduced costs c̄ and to control the stopping
criterion. When the algorithm terminates, we need to recover from the dual RMP solution a
primal feasible solution (e.g., by employing the complementary slackness conditions [151]
for linear programs).

Solution methods. Solving RMP by the simplex method leads to an optimal basis es-
sentially chosen at random, whereas the application of an interior point method produces
a solution in the relative interior of the optimal face [15]. Therefore, various interior point
algorithms have been proposed, e.g., analytic and volumetric centers algorithms [40, 63],
central paths [121], and central prices [63] methods. The computational use of various
methods for obtaining integer solutions has been evaluated by Briant et al. in [17].

Extreme point dual solutions are immediately available when using the simplex method,
and because of their random nature they may result in different, even complementary kinds
of columns [170].

As it is the case for general linear programs depending on the application and the avail-
able solvers we do not know beforehand which of the several traditional ways of solving
RMP will perform better. Useful comments on the suitability of primal, dual, and primal-
dual simplex methods can be found in [108]. In presence of primal degeneracy the dual
simplex may be preferred to the primal one. The sifting method2 can be a reasonable tech-

2In Chapter 6 we show how this method perform for large-scale scheduling problems.
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nique for large-scale problems [5, 15]. For some linear programs barrier methods [14] can
prove most effective, although there is no possibility to use warm start as initialization.

Initialization. The initialization of RMP is a very important issue for column generation
solution method. Poorly chosen initial columns lead the algorithm astray whenever they do
not resemble the structure of a possible optimal solution at all. Even an excellent initial inte-
ger solution could be detrimental for solving a linear program by column generation [170].

The well known simplex first phase can be applied here. Artificial variables, one for each
constraint, penalized by a ”big M” cost are kept in RMP to ensure feasibility in a branch-
and-bound algorithm. A smaller M gives a tighter upper bound on the dual variables and
may reduce the effect of producing irrelevant columns [30].

Another option is a warm start from primal solutions obtained in earlier similar runs [5].
However, the best results are obtained when both estimations of the primal and the dual
solutions are used [37].

2.3 Randomized Two-Step Approach

Randomization has proved to be a powerful technique in finding approximate solutions to
difficult problems in the combinatorial optimization. The main focus of this section is put
on the usage of randomized rounding to solve hard scheduling problems. In this approach,
one solves an LP relaxation of a problem, and then uses randomization to return from the
relaxation to the original optimization problem.

The section is organized as follows. First, we give basic information and most important
theoretical results concerning randomized rounding. Afterward, we discuss our application
of these techniques to solve the unrelated scheduling problem.

2.3.1 Preliminaries

In the last decades the randomization in approximation algorithms for difficult combina-
torial problems has witnessed a great amount of attention. Probabilistic search methods
like, e.g., simulated annealing (see [169] for a detailed survey on simulated annealing and
its applications), have enjoyed a considerable success in solving large instances of various
optimization problems. While studying randomization techniques, we are interested in ef-
ficient polynomial-time approximation algorithms that deliver solutions within a provable
good tolerance to the optimal solution. The only randomness in the performance guarantee
must stem from the randomization in the algorithm itself, and not due to any probabilistic
assumptions in the input instance [128].

We make use of a technique called randomized rounding [145]. This technique is ap-
plicable to a class of {0, 1} integer linear programs. It is a probabilistic method, i.e., for
the existence of results we prove that the solution to an (mixed) integer program satisfies
a certain property by showing that a randomly generated solution satisfies that property
with non-zero probability. All the algorithms using randomized rounding follow a common
paradigm. They first formulate the problem as an integer program. Next, some constraints
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in this integer program are relaxed in order to solve the relaxation efficiently. Finally, ran-
domization is used to restore the relaxed constraints.

There are several advantages offered by randomness to computation. See further the
books by Alon, Spencer, and Erdös [4], Kleinberg and Tardos [102], and by mentioned
already Motwani and Raghavan [128] for various aspects and applications of randomized
computations. Randomized computation was several times applied to improve approxi-
mation algorithms for scheduling unrelated machines. New randomized fully linear time
approximation schemes for the R| |Cmax and generalized assignment problem, both with
fixed number of machines, are given in [38]. A new class of randomized approximation
algorithms for scheduling unrelated parallel machines with the average weighted comple-
tion time objective and individual job release dates is presented in [152]. The algorithms
there, like our, use the two-step approach, but in contrast to our technique, the randomized
rounding was applied there indirectly, and so was the analysis.

2.3.2 Application of Randomized Rounding to R| |Cmax

We show now how randomized rounding can be used to construct in a simple way a ran-
domized two-step approach for scheduling unrelated parallel machines.

Our problem can be readily formulated as a mixed integer program as it was already given
in (1.2). There, each variable xi j ∈ {0, 1} denotes whether or not job i is assigned to machine
j. The objective is to minimize a positive integer T corresponding to the makespan. Thus, T
is the upper bound for load δ j on each machine j. We solve the scheduling problem using a
randomized two-step approach. As it is shown in Algorithm 3, we first compute an optimal
fractional solution x∗ to an LP relaxation of (1.2). The solution to this relaxation can be
found efficiently in polynomial time. See Section 2.1.3 for a detailed discussion on various
solution methods for solving (2.1).

Algorithm 3 R-T-S-S(P)
Input: matrix of processing times P
Output: integral solution x

1: solve LP-relaxation to the R| |Cmax problem defined by P;
2: let x∗ ∈ [0, 1]nm be the fractional solution to the LP-relaxation;
3: for i ∈ [n] do
4: let a be a random number generated uniformly from (0, 1];
5: define x∗i0 := 0;
6: j := {k ∈ [m] |

∑k−1
l=0 x∗il < a ≤

∑k
l=0 x∗il};

7: xi j := 1;
8: xik := 0, for k ∈ [m] \ j;
9: end for

10: return integral solution x;

Let the optimum (fractional) value of xi j be denoted by x∗i j. Furthermore, let T ∗ be the
optimum makespan obtained from the LP solution. Note that T ∗ is a lower bound on the
best possible integer optimum makespan. In the second phase of Algorithm 3 we seek to
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use this fractional solution to obtain an integer solution to (1.2). As already indicated, we
do this by means of randomization, i.e., for each job i, set xi j to one with probability x∗i j.
More specifically, we generate first a uniformly distributed random number a from (0, 1].
Afterward we assign job i to machine j such that j = {k ∈ [m] |

∑k−1
l=0 x∗il < a ≤

∑k
l=0 x∗il}.

Note that by this we have

Pr[xi j = 1] = x∗i j =

j∑
l=0

x∗il −
j−1∑
l=0

x∗il,

where x∗i0 = 0. This is equivalent to the probability that the value of random variable a lies
in (

∑ j−1
l=0 x∗il,

∑ j
l=0 x∗il]. The choice is done in an exclusive manner, i.e., for each job i, exactly

one of the xi j is set to one; the rest is set to zero. This random choice is made independently
for each job i ∈ [n].

Observe that the second (i.e., randmization) phase of Algorithm 3 can be repeated several
times in order to improve the solution.





3
U-T Algorithm

In this chapter we present a new combinatorial algorithm, A-U-
T [53], for scheduling unrelated parallel machines. The algorithm is based on
generalized and unsplittable network flows and computes schedules with approximation
factor of 2 within the best worst-case running time know so far. It is worth to note that
this is the first time that a fully combinatorial approach for solving unrelated scheduling
problem always beats the interior point algorithm of Vaidya [166] applied to this problem.
Our algorithm solves a minimum cost unsplittable flow problem in a generalized bipartite
network defined by the unrelated scheduling problem. In the following we give a complete
characterization of our technique. We begin first with a short introduction into the theory
of network flows. To this end, special attention is given to the generalized and unsplittable
network flows. Among other things we show their direct connection to other scheduling
problems. In the next section we give a detailed description of the transformation upon
the A-U-T algorithm builds. In addition to this, we present
an adaptation of the U-B-F algorithm [52] to our scheduling prob-
lem. We use it later as a subroutine in our scheduling algorithm. Finally, we present the
approximation algorithm itself together with the theoretical results proving its correctness
and running time. In the last section we compare the running time of our combinatorial
algorithm with the so far fastest algorithms for scheduling unrelated parallel machines.

3.1 Scheduling with Generalized Maximum Flows

3.1.1 Definitions and Notation

The generalized maximum flow problem is a generalization of the ordinary maximum flow
problem, where each edge (i, j) in the network has some positive gain factor µi j. If fi j units
of flow are sent from node i to node j along edge (i, j), then µi j fi j units arrive at node j.

More specifically, let G = (V, E) be a directed graph of the generalized flow problem and
s and t, source and sink node, respectively. Each edge from E has a gain factor associated
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with it. The gains are defined by a gain function µ : E 7→ IR>0. We assume that the gain
function is antisymmetric, i.e.,

µi j =
1
µ ji
, ∀(i, j) ∈ E.

Furthermore, there is a nonnegative capacity function u : E 7→ IR≥0 defined on the edges.
A generalized flow f : E 7→ IR is a function on the edges that satisfies following types of
constraints

• capacity constraints:
fi j ≤ ui j, ∀(i, j) ∈ E,

• flow conservation constraints:∑
( j,i)∈E

µ ji f ji −
∑

(i, j)∈E

fi j = 0, ∀i ∈ V \ {s, t},

• generalized antisymmetry constraints:

fi j = −µ ji f ji, ∀(i, j) ∈ E.

When all constraints except the constraints of the second type are satisfied by flow f , then
we call f a generalized pseudoflow. If µi j > 1, then (i, j) is a gain arc; if µi j < 1, then (i, j)
is a loss arc. The gain of a path (cycle) is a product of the gains of arcs on the path (cycle).
The value of the generalized flow f is defined as the amount of flow into the sink. Among
all generalized flows of maximum value, the goal here is to find one that minimizes the flow
out of the source.

In a generalized minimum cost flow problem we are additionally given a real-valued cost
function on edges c : E 7→ IR. Without loss of generality, we assume that the costs are
antisymmetric, i.e.,

ci j = −c ji, ∀(i, j) ∈ E.

The goal in the generalized minimum cost flow problem is to find a minimum-cost (optimal)
generalized flow f in the input network.

Given a generalized pseudoflow f , the definitions of residual capacities ri j, residual
graph G f , and excess and deficit nodes are the same as for the ordinary pseudoflows. Here
however, for the sake of completeness we give briefly their definitions. For details we refer
the reader to Ahuja et al. [3].

Definition 3.1.1 We define the residual network G f with respect to a given flow f as fol-
lows. We replace each arc (i, j) in the original network G by two arcs (i, j) and ( j, i), such
that:

• the arc (i, j) has cost ci j and residual capacity ri j = ui j − fi j, and

• the arc ( j, i) has cost −ci j and residual capacity r ji = fi j.
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The residual network G f consists only of arc with a positive residual capacity.

Definition 3.1.2 We define the imbalance of node i as the node inflow minus node outflow,
i.e.,

e(i) =
∑

j:( j,i)∈E

x ji −
∑

j:(i, j)∈E

xi j, ∀i ∈ V.

If the inflow is less then the outflow, i.e., e(i) < 0, then we say that node i is a deficit node.
Otherwise, if e(i) > 0, then we say that node i is an excess node. If the inflow equals outflow,
then we say that node i is a balanced node.

3.1.2 Application of Generalized Flows to Scheduling Problems

The generalized flow problem and closely related generalized circulation problem (see [141]
for the definition) have been studied extensively by many researchers, especially in the
1960s and the early 1970s. For a good overview we refer to the following papers: [39, 45,
65, 62, 64, 109, 131, 132, 133, 144, 162, 164]. Generalized flows can be used to model
many situations which are impossible to be expressed using standard network flows, see,
e.g., [61, 109, 141]. The gain factors can be used to represent the fact that we loose some
fraction of the commodity while transporting it (e.g., due to damage, evaporation, theft,
etc.) or that the commodity that enters an arc is transformed into a different commodity
before leaving it. The later application is often used to model manufacturing processes or
financial operations like, e.g., currency exchange.

The fractional version of the scheduling problem can easily be converted into a gener-
alized maximum flow problem [141]. In order to check whether a fractional schedule of
length T exists, one can construct a bipartite graph with nodes representing jobs and ma-
chines and introduce an edge from machine node j to job node i with gain 1/pi j, if pi j ≤ T .
There is a source node which is connected to all machine nodes with edges of unit gain and
capacity T , and the job nodes are connected to a sink node with edges of unit gain and unit
capacity. A generalized flow in this network that results in an excess of n units at the sink
node corresponds to a solution of the fractional scheduling problem. On the other hand, if
the maximum excess that can be generated at the sink node is below n, then the fractional
scheduling problem is infeasible, i.e., the current value of T is too small. To find the best
length T , we use binary search on T ∈ [1, nU] where U = max{pi j < ∞}.

The generalized maximum flow problem is in many aspects similar to the ordinary mini-
mum cost flow problem where each arc has a cost per unit of flow in addition to the capacity.
This relationship was first observed by Onaga [133], and then studied in detail by Truem-
per [164]. Both problems can be viewed as problems of transporting a commodity from a
producer to a consumer. Intuitively, the only difference between them lies in the method of
payment for shipping costs. In the case of minimum cost flows, these costs are paid with
money; in the case of the generalized flows – with the commodity itself. This similarity
is not only intuitive. The LP duals of these problems, as well as the optimality conditions
(what we show later), can be expressed in very similar forms [64].

In Truemper’s construction the cost ci j for each arc in the minimum cost flow problem is
defined as the logarithm of the gain, log µi j, from the generalized maximum flow problem.
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Unfortunately, such a way of defining the arc costs results only in pseudo-polynomial algo-
rithms. To obtain polynomial running time, the costs must be integer. In order to transform
the generalized maximum flow problem into a minimum cost flow problem with integral
arc costs, a gain rounding technique has to be applied (see, e.g., [162]). To this end, the
gains are rounded down to integer powers of some base b > 1. More specifically, a rounded
gain γi j of each arc (i, j) ∈ G is defined as

γi j = bci j , where ci j =
⌊
logb µi j

⌋
.

Antisymmetry of gains is maintained by setting γi j = 1/γ ji and ci j = −c ji. The cost of
arc (i, j) in the resulting minimum cost flow problem equals now ci j. The P-D
approach of Ford and Fulkerson [48] for minimum cost flows can be used here to compute
a generalized maximum flow as it is shown in [162]. Although the generic P-D
approach is pseudo-polynomial, when combined with the gain scaling technique it runs in
a polynomial time. The algorithm works with node potential function π : V 7→ IR+ and the
reduced costs cπi j which are defined for each residual arc (i, j) ∈ G f as follows

cπi j = ci j − π(i) + π( j).

The P-D approach preserves the reduced cost optimality condition, i.e., cπi j ≥ 0,
for each edge (i, j) in the residual network. Because of the rounding, an optimum solution
of the minimum cost flow problem gives only a (1 + ε)-approximation of the generalized
(fractional) maximum flow problem. Though, using techniques of Shmoys and Tardos
from [157], the fractional solution can be transformed to an integral solution (see Sec-
tion 2.1.4). This approach leads to a (2 + ε)-approximation algorithm for the scheduling
problem.

3.1.3 Optimality Theorem and Flow Decomposition Lemma

We give now some well known theoretical results which are helpful to understand the anal-
ysis of the A-U-T algorithm given in the next sections. We
begin with the theorem stating the optimality of the solution to the minimum cost flow
problem in terms of the reduced costs of the arcs.

Theorem 3.1.1 (Ford and Fulkerson [47]) A feasible solution f ∗ is an optimal solution
of the minimum cost flow problem if and only if some set of node potentials π satisfies the
following reduced cost optimality conditions:

cπi j ≥ 0, ∀(i, j) ∈ G f ∗ .

Another useful result regarding ordinary network flows is the decomposition theorem. It
states that any feasible flow can be viewed as a collection of flows along paths and cycles.

Theorem 3.1.2 (Ford and Fulkerson [47]) Every path and cycle flow has a unique repre-
sentation as non-negative network flows. Conversely, every non-negative arc flow f can be
represented as a path and a cycle flow (though not necessarily unique) with the following
two properties:
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(a) every directed path with positive flow connects a deficit node to an excess node, and

(b) at most |V | + |E| paths and cycles have nonzero flow; out of these, at most |E| cycles
have nonzero flow.

For the case of generalized flows, Gondran and Monoux [69] presented a version of
the decomposition theorem for generalized network flows. They showed how any feasible
generalized flow can be decomposed into at most |E| components, each being a positive
elementary generalized flow. They defined six types of elementary generalized flow. For
more details we refer to [64, 69]. For our case, however, we do not refer to that theorem
directly but present our own version which we use later in the analysis. Recall that M and
J denotes the set of machines and the set of jobs for the R| |Cmax problem, respectively.

Lemma 3.1.3 (Decomposition lemma) Let f and g be two generalized feasible flows in
G = (J ∪ M, E). Then g equals f plus fractional flow:

(a) on some directed cycles in G f , and

(b) on some directed paths in G f with end points in M and with the additional property
that no end point of some path is also the starting point of some other path.

Proof: Let h = g − f . Set Ẽ = {(i, j) | hi j > 0, (i, j) ∈ E f } ∪ {( j, i) | hi j < 0, (i, j) ∈ E f }. We
show first that Ẽ ⊂ E f . Let gi j and fi j be the flows on arc (i, j) in Gg and G f , respectively,
and ui j its capacity. Then if

gi j > fi j ⇒ fi j < ui j ⇒ (i, j) ∈ E f , and if
gi j < fi j ⇒ fi j > 0⇒ ( j, i) ∈ E f .

Let ũi j = hi j if (i, j) ∈ Ẽ, and ũ ji = −hi j if ( j, i) ∈ Ẽ. Since, by the assumption, f and g are
feasible flows, they both send all supply from job nodes in J to machine nodes in M. By
this fact it is easy to see that for each job node i ∈ J,∑

(i, j)∈Ẽ

hi j −
∑

( j,i)∈Ẽ

µ ji h ji = 0,

holds, and thus flow h fulfills the flow conservation constraints on all job nodes from J.
We will now decompose the flow in Ẽ. If there exists a cycle in the graph induced by Ẽ,

let us choose some node u ∈ M on the cycle and determine the maximal flow x which can be
pushed from u along this cycle without conflicts with the capacity constraints. Subtract this
flow from the flow in Ẽ. Since x was chosen to be maximal, at least one edge is saturated,
and thus deleted from Ẽ. Note that by performing this flow subtraction, we maintain the
flow conservation constraints on all job nodes J. Let us proceed this way as long as there
are cycles in the graph induced by Ẽ. Afterward, Ẽ defines a directed acyclic graph.

Now choose a path connecting a node v of zero in-degree to a node of zero out-degree,
determine the maximum allowed flow on this path and delete this flow from Ẽ. Note that
at least one edge is deleted from Ẽ. Furthermore, by the flow conservation constraint, any
job node i ∈ J with zero out-degree has also zero in-degree. This implies that v ∈ M. Let
us proceed this way until there are no edges in Ẽ. The way the paths are chosen guarantees
that no end point of some path is also a starting point of some other path.
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3.2 Unsplittable Network Flows

In the unsplittable flow problem we are given a directed or undirected network G = (V, E)
with edge capacities defined by a function u : E 7→ IR+, and a set K = {(si, ti) | i ∈ [k]}
of k terminal pairs (or commodity requests) with demand di each. A feasible solution for
this problem is a subset S ⊆ K of the requests such that the demand of each request in S is
satisfied by a flow on a single path in G and the capacity flow constraints are fulfilled. The
objective is to maximize the cardinality of S .

It is an easy observation that already a single source unsplittable flow problem without
costs contains several well-known NP-complete problems as special cases, e.g., P-
, B P, and even scheduling parallel machines with makespan objective [112].
Moreover, an interesting special case of the generalized assignment problem considered
by Shmoys and Tardos [157] can also be modeled as a single source unsplittable minimum
cost flow problem [34, 103]. If we consider the problem with costs, we obtain the K
problem as a special case. The well known maximum edge-disjoint paths problem is also a
special case of the unsplittable flow problem where all demands and capacities are equal to
one [76].

This combination of routing and bin packing problems makes the various versions of
the unsplittable flow problem particularly difficult. Therefore, the best one can hope for,
unless N = NP, is to find good approximate solutions. Approximation algorithms for the
unsplittable flow problem and its special cases have been considered in many other works,
e.g, [9, 34, 100, 104, 105, 111, 158, 162]. Kleinberg [100] provided a comprehensive
background on these problems. Most of the approximation algorithms begin with an LP
relaxation of the problem (i.e., instead of using a single path, a commodity is shipped along
multiple paths) and then round the solution in a suitable way to obtain an approximate
solution for the unsplittable flow problem.

One of the motivations for the unsplittable flow problem is the problem of allocation of
bandwidth for traffic with different bandwidth requirements in heterogeneous networks.

In our setting we use unsplittable flows to obtain integral solution to the unrelated schedul-
ing problem. Our model can be explained by the following example in which the restricted
scheduling problem on identical machines is a special case of the unsplittable flow problem.

Example 3.2.1 We have to schedule n = 3 jobs on m = 3 parallel machines without pre-
emption. Job i can only be processed on a subset M(i) ⊆ M of machines. The processing
time of job i is pi on any of the admissible machines from M(i), and the goal is to minimize
the makespan of the schedule. To formulate this problem as an unsplittable flow problem,
we create a node for each machine and for each job, respectively, and a source node s.
Afterward, we connect the source node to all machine nodes with edges of capacity T , and
then connect each machine node to the job nodes it can process with edges of infinite ca-
pacity (see Figure 3.1). Let each node representing job i be a terminal for commodity i
with demand di equal to the processing time pi. It is easy to see that this unsplittable flow
problem is feasible if and only if there exists a feasible schedule of makespan at most T .

Among other results Lenstra et al. [112] and Shmoys and Tardos [157] showed that if
there exists a fractional solution to the unsplittable flow problem from Example 3.2.1, then
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M = {1, 2, 3}
J = {1, 2, 3}

M(1) = {1, 2, 3}
M(2) = {1, 3}
M(3) = {2, 3}

d3 = p3

d2 = p2

d1 = p1

u=T
s

3 3

2

11

2

u=T

u=T

Jobs JMachines M

Figure 3.1: Transformation of the restricted scheduling problem into a single-source un-
splittable flow problem.

there exists a feasible schedule of makespan T + max{pi}. The two constructions are dif-
ferent. The first one assumes that the fractional solution is an extreme point of the corre-
sponding polyhedron. The latter one does not possess this restriction.

3.3 Transformation of the R| |Cmax Problem into General-
ized Flow Problem

In our approach we formulate the unrelated scheduling problem as a generalized maximum
flow problem. However, we use a different construction from the construction presented
by Plotkin et al. [141] (cf. Section 3.1.2). In particular, we construct a bipartite graph
G = (V, E) with nodes representing jobs and machines. The number of nodes in G is n +m.
There is a directed edge from a job node i to a machine node j if job i can be processed on
machine j, i.e., pi j < ∞. It has unit capacity and gain µi j = pi j if pi j ≤ T . Here, T is a
positive control parameter which value is determined by binary search. Each job node i has
supply equal to 1. A generalized flow f in G is a solution to the fractional version of the
scheduling problem if and only if in f all supplies are sent to the machines. In this case we
call f a feasible flow. A generalized flow in such a network creates excesses on the machine
nodes. An excess on machine j corresponds to the load on machine j. We define δ j(P, f )
to be the load on machine j under the generalized flow f with gains defined by P.

If we require that the supply of each job is sent to exactly one machine, then we get
an integral solution to the scheduling problem. In this case, we call flow f a generalized
unsplittable flow, and f is equivalent to an assignment α, i.e., assigning job i to machine
j corresponds to sending one unit of flow (the whole supply) along edge (i, j). By the
construction of the bipartite graph, the assignment α has the property that each job i is
assigned to a machine j for which pi j ≤ T . In the following, we call such an assignment
T-feasible. We omit the term T -feasible if it is clear from the context. We are interested in
finding a generalized unsplittable flow f such that the maximum excess over all machines
is at most 2T . This is not always possible, however, if we cannot find such a flow for a
given value of T , we can still derive the lower bound for the optimum, C∗max(P) ≥ T + 1.
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In order to solve this generalized unsplittable flow problem, we follow the construction
from Section 3.1 and formulate the problem as a minimum cost unsplittable flow problem.
We set the value of the logarithm base for the gain rounding b to (1 + 1

m ). If (i, j) is an edge
from job node i to machine node j, then the cost ci j and the rounded gain γi j are defined as
follows

ci j = blogb(pi j)c, and γi j = bci j .

For any path W in graph G, we define the gain of W as γ(W) =
∏

(i, j)∈W γi j. In the same way
we define the gain γ(K) for some cycle K in graph G. In the following, we denote C = (ci j)
and Γ = (γi j). In order to solve the minimum cost flow problem, we use the well known
P-D approach [3].

For a positive integer T , a T -feasible assignment α, and a matrix of processing times
P, we define the residual network Gα(T ). By Definition 3.3.1, an edge which starts on
machine node j and ends on job node i means that job i is assigned to machine j. The
definition ensures the correctness of the assignment, i.e., in a feasible assignment there can
be only one edge between a given machine node and job node, regardless of its direction.

Definition 3.3.1 Let α be an assignment and T ∈ IN. We define a directed bipartite graph
Gα(T ) = (V, Eα(T )) where V = M ∪ J and each machine is represented by a node in M,
whereas each job defines a node in J. Furthermore, Eα = E1

α ∪ E2
α where

E1
α =

{
( j, i) | j ∈ M, i ∈ J, α(i) = j, pi j ≤ T

}
, and

E2
α =

{
(i, j) | j ∈ M, i ∈ J, α(i) , j, pi j ≤ T

}
.

We write Gα for the case that T ≥ maxi∈J, j∈M{pi j < ∞}.

By the construction of the bipartite graph G and by Definition 3.3.1 the gain factors of
the edges in the residual network Gα(T ) are defined as follows:

µi j = pi j, for all (i, j) ∈ E2
α, and

µ ji =
1
pi j

, for all ( j, i) ∈ E1
α.

Let G f be the residual network corresponding to generalized flow f . A generalized unsplit-
table flow f is called feasible, if f defines an assignment α.

To be complete with the definition of the generalized minimum cost flow problem we
still need to define the source and the sink node in the graph. To this end, we partition the
set of machines M with respect to their loads δ j(α) and parameter T into three subsets as
follows:

Definition 3.3.2 Let T ∈ IN and α be a T-feasible assignment. We partition the set of
machines M into three subsets:

M−(α) = { j | δ j(P, α) ≤ T }
M0(α) = { j |T + 1 ≤ δ j(P, α) ≤ 2T }
M+(α) = { j | δ j(P, α) ≥ 2T + 1}

In our setting, the nodes from M− can be interpreted as sink nodes whereas the nodes
from M+ as source nodes. Furthermore, we call the machines from M+ overloaded and the
machines from M− underloaded.
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3.4 Unsplittable Blocking Flows

Our approximation algorithm makes use of the U-B-F algorithm in-
troduced in [52]. U-B-F was designed for a restricted scheduling
problem on identical machines. Here, each job i has some weight pi and is only allowed
to use a subset M(i) ∈ M of the machines. This is a special case of the unrelated schedul-
ing problem where pi j = pi if j ∈ M(i) and pi j = ∞ otherwise. Given an integer T and
a T -feasible assignment α, U-B-F(α,T ) computes a T -feasible as-
signment β in which there is no path from M+(β) to M−(β) in Gβ(T ).

In the following we present a version of the U-B-F algorithm
adapted to the setting of our problem, i.e., it runs on processing times pi j and pushes jobs
only along edges from some subgraph G0

α(T ) of graph Gα(T ). The subgraph G0
α(T ) has the

property that each job node has exactly one incoming edge (from the machine node to which
it is assigned by α) and at least one outgoing edge. We give a formal definition of subgraph
G0
α(T ) in Section 3.5.2. In the following we also call this modified algorithm U-

B-F. These adaptations do not influence the correctness and the running time of
the U-B-F algorithm. Algorithm 4 shows the structure of the adapted
algorithm.

The U-B-F algorithm reassigns jobs so that the loads of under-
loaded machines from M− never decrease, the loads of overloaded machines from M+

never increase, and machines from M0 stay in M0. It receives as input an assignment α,
a graph G0

α(T ) = (E0
α,V

0
α), a matrix of processing times P and a positive integer T (see

Algorithm 4). When U-B-F terminates, we have computed a new
assignment β having the property that in G0

β(T ) there is no path from M+(β) to M−(β).
We give now a more detailed description of the algorithm. U-B-F is

controlled by a height function h : V 7→ IN0 with

h( j) = distG0
α
( j,M−),∀ j ∈ V0

α.

Here, the distance is defined as the number of edges. Observe that h induces a levelgraph
on G0

α(T ). We call an edge (u, v) ∈ G0
α(T ) admissible with respect to the height function h

(or just admissible if it is clear from the context) if h(u) = h(v) + 1. In an admissible path
all edges are admissible. For each node j ∈ V with 0 < h( j) < ∞, let S ( j) be the set of
successors of node j that is the set of nodes to which j has an admissible edge, i.e.,

S ( j) =
{
i ∈ V | ( j, i) ∈ E0

α and h( j) = h(i) + 1
}
.

Let s( j) be the first node on list S ( j).
Now we give a definition of a helpful machine which is crucial for the understanding

of Lemma 3.4.1. This lemma is a result from [52] adapted for the unrelated scheduling
problem. It gives properties of the machine nodes lying on a directed path which begins
with a helpful machine. These properties are important for the further analysis.

Definition 3.4.1 A machine j ∈ V is called helpful with respect to some integer T and some
T-feasible assignment α, if h( j) < ∞ and δ j(α) ≥ T + 1 + ps( j), j.
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Algorithm 4 U-B-F(α,G0
α(T ),P,T )

Input: assignment α, graph G0
α(T )

matrix of processing times P
positive integer T

Output: assignment β
1: compute height h for each node in G0

α(T );
2: while M− , ∅ and ∃ j ∈ M+ with h( j) < ∞ do
3: d := min j∈M+(h( j));
4: while ∃ admissible path from j ∈ M+ with h( j) = d to M− in graph G0

α(T ) do
5: choose some helpful machine v ∈ M of minimum height h;
6: push jobs along a helpful path defined by v;
7: update α, G0

α(T ), M+, M−;
8: end while
9: recompute h;

10: end while
11: return assignment α;

Observe that a machine j ∈ M+ is always helpful since only jobs i with pi j ≤ T are assigned
to it.

Lemma 3.4.1 Let v0 be a helpful machine of minimum height. Then there exists a sequence
v0, . . . , vr where s(vi) = vi+1, for all 0 ≤ i ≤ r − 1, v2i ∈ M, for all 0 ≤ i ≤ r/2 and v2i+1 ∈ J,
for all 0 ≤ i < r/2 with the following properties:

(a) (vi, vi+1) ∈ E0
α and h(vi) = h(vi+1) + 1

(b) δv0 ≥ T + 1 + ps(v0),v0

(c) T + 1 ≤ δv2i + ps(v2i−2),v2i − ps(v2i),v2i ≤ 2T, ∀0 < i < r/2

(d) δvr + ps(vr−2),vr ≤ 2T

Proof: By Definition 3.4.1, 0 < h(v0) < ∞ and thus there exists a path from v0 to a
machine in M− that defines the height of v0. On this path (a) must hold. Furthermore,
condition (b) follows directly from the definition of a helpful machine.

Note that a machine j ∈ M+ is helpful if h( j) < ∞. So if we start a path with a helpful
machine of minimum height, then all machine nodes v2, v4, . . . , vr−2 belong to M0 and vr

may belong to M0 or M−. Therefore

δv2i ≤ 2T,∀0 < i ≤ r/2.

Furthermore, none of these nodes is helpful what implies that

δv2i < T + 1 + ps(v2i),v2i ,∀0 < i ≤ r/2.
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There are two cases to consider now. If δv2i + ps(v2i−2),v2i ≤ 2T , then r = 2i and condition (d)
holds. On the other hand, since T ≥ ps(v2i),v2i

δv2i + ps(v2i−2),v2i ≥ 2T + 1
⇒ δv2i + ps(v2i−2),v2i − ps(v2i),v2i ≥ 2T + 1 − ps(v2i),v2i

⇒ δv2i + ps(v2i−2),v2i − ps(v2i),v2i ≥ T + 1,

what proves the lower bound given in (c). To proof the upper bound, note that v2i is not
helpful for all 0 < i ≤ r/2. It follows that

δv2i < T + 1 + ps(v2i),v2i

⇒ δv2i − ps(v2i),v2i + ps(v2i−2),v2i ≤ T + ps(v2i−2),v2i

⇒ δv2i + ps(v2i−2),v2i − ps(v2i),v2i ≤ 2T,

proving the upper bound given by (c). This completes the proof of the lemma.

We call the sequence of nodes v0, . . . , vr defined by Lemma 3.4.1 a helpful path. Observe
that if we reassign jobs according to a helpful path then:

(1) we reassign jobs only according to admissible edges,

(2) the load on machine v0 decreases but not below T + 1,

(3) all machines v2i with 0 < i < r/2 stay in M0, and

(4) the load on machine vr increases but not above 2T .

The U-B-F algorithm terminates when M− = ∅ or when h( j) = ∞
for all machines j ∈ M+. It works in phases. Before the first phase starts, the height
function h is computed as the distance of each node in graph G0

α to a node in M−. When
computing h we also collect the set of admissible edges with respect to h. In each phase,
first the minimum height d = h( j) of a machine j ∈ M+ is computed. Inside a phase, we do
not update the height function but we successively choose a helpful machine v of minimum
height, and then we push jobs along the helpful path induced by v and adjust the assignment
accordingly. Each job push is equivalent to the reassignment of that job. In order to update
G0
α, we have to change the direction of two arcs for each job push. The newly created edges

are not admissible with respect to h. To update M+ and M−, it suffices to check the load on
the first and the last node of the helpful path. The phase ends when no further admissible
path from a machine j ∈ M+ with h( j) = d to some machine in M− exists in the levelgraph
defined by the admissible edges with respect to the height function h. Before the new phase
starts we recompute h and we check whether we have to start a new phase or not. In [52] it
was shown that there are at most m phases and the running time of each phase is dominated
by the computation of the height function h what can be done by breadth-first-search in
time O(A) where A is the number of edges in the admissible graph G0

α.
Lemma 3.4.2 and Theorem 3.4.3 are derived from [52] and describe the properties of

the U-B-F algorithm that are used in the next section in the discus-
sion of the U-T algorithm. Their proofs are direct generalizations of the
corresponding proofs in [52]. For details on the complete analysis we refer to [52].
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Lemma 3.4.2 (Gairing et al. [52]) Let β be the assignment computed by U-
B-F(α,G0

α(T ),P,T). Then

(a) j ∈ M−(α)⇒ δ j(P, β) ≥ δ j(P, α)

(b) j ∈ M0(α)⇒ T + 1 ≤ δ j(P, β) ≤ 2T

(c) j ∈ M+(α)⇒ δ j(P, β) ≤ δ j(P, α).

Proof: The U-B-F algorithm pushes only jobs along a helpful path
that is defined by a helpful machine v of minimum height h(v). Lemma 3.4.1 shows that by
doing this we never add a machine to M−. Furthermore, a machine in M− can only be the
last machine in such a helpful path. But this machine only receives load which implies case
(a). On the other hand, a machine v ∈ M+ can only be the first machine in such a helpful
path, case (c) follows. Condition (b) also follows directly from Lemma 3.4.1.

Lemma 3.4.2 ensures that the loads of the machines from M− never decrease, the loads of
machines from M+ never increase, and machines from M0 stay in M0.

Let G0
α(T ) be the subgraph of Gα(T ). Let β be the assignment computed by U-

B-F(α,G0
α(T ),P,T ). During this call jobs were reassigned by pushing them

along the edges of G0
α(T ). We define G0

β(T ) as the graph that results from G0
α(T ) after these

reassignments.

Theorem 3.4.3 (Gairing et al. [52]) The U-B-F(α,G0
α(T ),P,T ) al-

gorithm takes running time O(mA) and computes an assignment β, having the property that
there is no path from M+(β) to M−(β) in G0

β(T ).

3.5 Approximation Algorithm

In the following we present the A-U-T algorithm. This
fully combinatorial approach is based on generalized and unsplittable network flows. The
main part of our approximation algorithm constitutes the U-T algo-
rithm [53]. In contrast to other algorithms, U-T always maintains an
integral solution, i.e., an unsplittable flow in the bipartite network defined by the schedul-
ing problem. By allowing some gap for the machine loads we loose a factor of 2 in the
quality of solution. Also the scaling technique discussed in Section 3.3, which we use to
obtain the polynomial running time, introduces some error. However, the special structure
of U-T allows us to compensate this error by doing a more careful lower
bound analysis on C∗max(P). We terminate the computations as soon as we get this better
lower bound on C∗max(P). This approach improves also the running time. This and other the-
oretical results concerning the correctness and running time of U-T are
given in the second part of this section. In the last subsection, we show how U-
T can be used to compute an assignment α where Cmax(P, α) ≤ 2 ·C∗max(P).
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3.5.1 Algorithm U-T

We formulate the unrelated scheduling problem as a generalized minimum cost unsplit-
table flow problem with rounded gain factors as described in Section 3.3. Truemper [164]
showed that the generalized network flows and the minimum cost network flows are closely
related. More specifically, he proved that the well-known P-D approach [3] for
minimum cost flows can be used to compute a generalized maximum flow. In honor of
Trumeper, Tardos and Wayne [162] named their algorithm after Truemper. In order to solve
our generalized unsplittable flow problem we use a similar approach. Since we also use
ideas by Truemper, we have decided to call our algorithm U-T.

The U-T algorithm maintains the reduced cost optimality condition
(see Theorem 3.1.1) what is implied by the usage of the P-D approach [3]. In
our setting this means that the algorithm does not create negative cost cycles in the resid-
ual network of the generalized unsplittable flow problem. U-T works
in phases what is represented by the while-loop of Algorithm 5. In order to maintain the
reduced cost optimality condition, U-T iteratively computes an admissi-
ble graph G0

α(T ), which we define below, and then uses an adapted version of U-
B-F to compute a blocking flow in this admissible graph. While the costs ci j

in U-T refer to the rounded processing times pi j, the algorithm itself op-
erates on the original processing times pi j given by P. More specifically, it uses the original
processing times P to compute machine loads δ j(α) for a given assignment α. It is impor-
tant to note that both the costs ci j as well as the original processing times pi j are integer.
By Theorem 3.4.3 we know that there exists no path from a machine in M+ to a machine
in M− in an admissible graph G0

α(T ) after termination of U-B-F.
The U-T algorithm leaves the while-loop when it can either derive a
good lower bound on C∗max(P) (see Theorem 3.5.3) or it has found an assignment α with
empty set of overloaded machines M+ (see the termination conditions of the while-loop of
Algorithm 5). More details are given later in the subsection concerning the analysis of the
algorithm.

We now describe our algorithm in more detail. U-T starts with an
initial assignment α. In α each job i ∈ J is assigned to some machine j ∈ B(i) where its
processing time is minimum, i.e.,

B(i) = { j ∈ M | pi j ≤ pik,∀k ∈ M}.

Arc capacities are given by P whereas arc costs are given by C. Furthermore, U-
T gets as input an integer T which is large enough so that assignment α is T -
feasible. In our setting, it means that T ≥ maxi∈[n] min j∈[m]{pi j}. Assignment α and integer
T define us a graph Gα(T ) as given in Definition 3.3.1, and the partitions of machines are
constructed as described in Definition 3.3.2. At any time of the computations U-
T maintains a feasible assignment that is all jobs are always assigned to some ma-
chine. If a job gets unassigned from a machine (during push operation of U-
B-F, see Algorithm 4), it is immediately assigned to some other machine.

The U-T algorithm computes iteratively shortest path distances d(u)
from each node u ∈ M ∪ J to the set of sinks M− with respect to the reduced costs cπi j.
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Algorithm 5 U-T(α,P,C,T )
Input: assignment α

matrix of processing times P and matrix of edge costs C
positive integer T

Output: assignment β
1: let Gα(T ) be a bipartite graph induced by matrix P, assignment α and parameter T ;
2: π := 0;
3: while ∃ j ∈ M+ with a path to k ∈ M− in Gα(T ) and ∀u ∈ M+ : π(u) < logb(m) do
4: compute shortest path distances d(·) from all nodes to the set of sinks M− in Gα(T )

with respect to the reduced costs cπi j;
5: π := π + d;
6: compute set M+min ⊆ M+ of machines with minimum distance to a node in M− with

respect to the costs ci j;
7: compute admissible graph G0

α(T ) ⊆ Gα(T ) consisting only of edges on shortest
paths from M+min to M− in Gα(T );

8: α := U-B-F(α,G0
α(T ),P,T );

9: update Gα(T );
10: end while
11: return assignment α;

Afterward, the vector of potentials π is updated such that all arcs on shortest paths to the
sinks M− have zero reduced costs. For each node u ∈ M, π(u) never decreases. Furthermore,
note that after the update of potentials π, π(u) holds the minimum distance from u to M−

for each node u with respect to the costs ci j.

Definition 3.5.1 We define M+min as the set of machines from M+ with minimum distance to
a node in M− with respect to the costs ci j.

Definition 3.5.2 We define the admissible graph G0
α(T ) as a subgraph of graph Gα(T ),

consisting only of edges on shortest paths from M+min to M− in Gα(T ).

Note that M+min consists of all machines u ∈ M+ where π(u) is minimum. Furthermore,
note that G0

α(T ) includes only arcs with zero reduced costs. We will see later that these two
definitions are essential for our algorithm.

After the admissible graph G0
α(T ) is computed, U-B-F is applied

to it. It reassigns jobs from the admissible graph such that after U-B-
F terminates there is no longer a path from a machine in M+min to a machine in M− in the
admissible graph G0

α(T ). Hence, min{π(u) | u ∈ M+} must increase in the next iteration of
the while-loop of Algorithm 5. The residual network Gα(T ) is then updated accordingly.
The while-loop terminates when there exists no machine from M+ with a path to a machine
from M− in Gα(T ) or there exists a machine u ∈ M+ with π(u) ≥ logb(m).
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3.5.2 Correctness and Running Time

We now analyze the correctness and the running time of U-T. The main
result of this part is Theorem 3.5.3. It gives the worst case running time and shows that a
call to U-T(α,P,C,T ) terminates if either M+(α) = ∅ or there exists a
machine u ∈ M+ with π(u) ≥ logb(m). From the first case we know that Cmax(P, α) ≤ 2T
for a given T . We will see that in the latter case we can take some advantage from an
assignment α which is still unfavorable, i.e., for which M+(α) , ∅ holds.

The reduced cost optimality condition, cπi j ≥ 0, holds for all (i, j) ∈ Eα(T ) during the
whole computation. This fact is ensured by the usage of the P-D approach. It also
implies that γ(K) ≥ 1 for each cycle K in Gα(T ) since

γ(K) =
∏

(i, j)∈K

γi j =
∏

(i, j)∈K

bci j = b
∑

(i, j)∈K ci j = b
∑

(i, j)∈K cπi j ≥ b0 = 1.

This property does not necessarily hold for every path W in Gα(T ). Lemma 3.5.1 is of cru-
cial importance for the analysis. It shows that γ(W) ≥ 1 holds for every path W connecting
some node from M+(α) to any other node from M in Gα(T ). For proving this result we
need the special structure of the admissible graph G0

α(T ) given by Definition 3.5.2, i.e., that
G0
α(T ) is defined only by shortest paths from nodes in M+min to nodes in M−.

Lemma 3.5.1 U-T maintains the property that for each path W in
Gα(T ) from any machine in M+ to any other machine in M we have γ(W) ≥ 1.

Proof: We show that the claim is an invariant of the algorithm. The property holds at the
beginning since each job i is assigned to a machine j ∈ B(i). Assume the claim holds at
some time of the execution of U-T. We will show that after the next job
reassignment the claim still holds. Our algorithm reassigns only jobs on shortest paths from
M+min to M−. For any two nodes u, v ∈ V denote Wuv as a path from u to v in Gα(T ) where
γ(Wuv) is minimum. If no such path exists, define γ(Wuv) = ∞. Let j be any machine from
M+min and let i be any job on a shortest path from j to M− as given in Figure 3.2(a).

We may assume that i gets reassigned from some machine u to some machine v (see
Figure 3.2(b)). Define y = γ(Wuv) and x = γ(W ju). Note that this implies that γ(W jv) = xy.
Let k be any machine from M+ and consider any path from k to some other machine h ∈ M.
Since j has minimum distance to M−, we know that γ(Wku) ≥ x and γ(Wkv) ≥ xy, otherwise
j < M+min. By reassigning i, γ(Wuv) can not decrease. Only γ(Wvu) on the path from v to u
might decrease. If γ(Wvu) does not decrease, the claim follows immediately.

So assume γ(Wvu) decreased (see Figure 3.2 (b)). However, then γ(Wvu) is defined by the
new path (v → i → u) and thus γ(Wvu) = 1

y . Now consider path Wkh. If Wkh does not go
through (v, i, u), then γ(Wkh) did not change. However, if Wkh uses (v→ i→ u), then

γ(Wkh) = γ(Wkv) · γ(Wvu) · γ(Wuh) ≥ x · γ(Wuh).

Since j has a path to u with W ju = x and γ(W jh) ≥ 1, it follows that γ(Wuh) ≥ 1
x . Thus,

Wkh ≥ 1. This completes the proof of the lemma.

The following lemma will be used to derive a lower bound on C∗max(P).
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Figure 3.2: Before and after the push from machine j to some machine in M− the gain of
each path from any machine in M+ to any machine in M is at least 1.

Lemma 3.5.2 Let (G,Γ) denote a generalized maximum unsplittable flow problem defined
by network G and matrix of processing times Γ. Let f be a generalized feasible unsplittable
flow in (G,Γ), and let s, t ∈ IR+. Suppose ∀u ∈ M : δu(Γ, f ) ≥ s, and ∃û ∈ M : δû(Γ, f ) ≥
s + t, and for each cycle K in G f , γ(K) ≥ 1. If on every path W in G f from û to any other
machine u ∈ M, γ(W) ≥ 1, then C∗max(Γ) ≥ s + t

m .

Proof: Let f ∗ be an optimum generalized fractional flow in (G,Γ) and define f̃ = f ∗ − f .
Consider the cycle/path decomposition of f̃ according to Lemma 3.1.3. Recall that in this
cycle/path decomposition no end node of some path is also a starting node of some other
path. Note that γ(K) ≥ 1 for any cycle K. This implies that pushing flow along any cycle
K does not decrease the load on any of its machines. By pushing flow along a path W, only
the load of the starting node of W can decrease. The load on the inner nodes of W does
not change and the last node receives load. Since γ(W) ≥ 1, the increase in the load of the
end node is not smaller than the decrease of the load of the starting node. Together with the
facts that δu(Γ, f ) ≥ s for all u ∈ M and that there exists û ∈ M with δû(Γ, f ) ≥ s + t, we
can imply that C∗max(Γ) ≥ s + t

m .

Theorem 3.5.3 The U-T algorithm takes time O(m2A log(m)). Further-
more, if U-T(α,P,C,T ) terminates with M+ , ∅ then C∗max(P) ≥ T + 1.

Proof: We first show that U-T terminates after at most O(m log(m))
iterations of the while-loop. In the first place consider one iteration. Recall that π(u) for
each node u ∈ M never decreases. Furthermore, U-B-F terminates if
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and only if there is no path from M+min to M− in the residual network. According to Lemma
3.4.2, it does not add nodes to M+. Afterward, either M+min = ∅ or the distance d(u) with
respect to the reduced costs cπi j from any node u ∈ M+min to a sink is at least 1. If M+min = ∅,
then in the next iteration M+min is defined by a new set of nodes from M+ with larger potential
π. Hence, in each case π(u) for u ∈ M+min increases at least by one with each iteration. The
algorithm terminates if there exists a node u ∈ M+ with π(u) ≥ logb(m). Note that

logb(m) =
log2(m)
log2(b)

=
log2(m)

log2(1 + 1/m)
= O(m · log(m)).

Thus, at most O(m log(m)) iterations of the while-loop are possible. The running time
of one iteration of the while-loop is dominated by the running time of U-
B-F. By Theorem 3.4.3, this takes O(mA) running time. Finally, the total
running time of U-T is O(m2A log(m)). This completes the proof of
the running time.

We now show the lower bound on C∗max(P). Let β be the assignment computed by a call
to U-T(α,P,C,T ). In the construction of graph Gα(T ), we only have
edges for processing times not greater than T (see Definition 3.3.1). Thus, we do not assign
job i to machine j with pi j ≥ T + 1. If in an optimum assignment a job i is assigned to a
machine j with pi j ≥ T + 1, then C∗max(P) ≥ T + 1 follows immediately. Therefore, in the
following we can assume that in an optimum assignment each job i ∈ J is assigned only to
machine j ∈ M with pi j ≤ T .

Note that U-T maintains the reduced cost optimality condition for
rounded gains Γ. Since for each edge (i, j), we have γi j ≤ pi j ≤ b γi j. It follows that:

δu(P, β) ≤ b · δu(Γ, β), for all u ∈ M.

Since U-T has terminated, there is either no longer a path from M+ to
M− in the residual graph Gβ(T ) or there exists a machine u ∈ M+ with π(u) ≥ logb(m). In
the following we consider these two cases.

Case I: ¬∃ path from M+ to M− in Gβ(T ).
Define M̃ as the set of machines still reachable from M+ in Gβ(T ). The load of jobs assigned
to a machine from M̃ can not be distributed to the other machines. For each machine j ∈ M̃,
we have δ j(P, β) ≥ T + 1 and therefore δ j(Γ, β) ≥ 1

b (T + 1). Furthermore, since M+ , ∅,
there exists machine v with δv(P, β) ≥ 2T + 1. This implies that δv(Γ, β) ≥ 1

b (2T + 1).
Since the U-T algorithm maintains the reduced cost optimality con-

dition for the rounded gains, we have γ(K) ≥ 1 for any cycle K in Gβ(T ). By Lemma 3.5.1,
we know that γ(W) ≥ 1 for each path from any machine in M+ to any other machine in M.
Applying Lemma 3.5.2 to the machines in M̃ with the matrix of processing times Γ proves
the lower bound on C∗max(Γ):

C∗max(Γ) ≥
1
b

(
T + 1 +

T
m

)
.

Since b = (1 + 1
m ), the expression 1

b (T + 1 + T
m ) > T holds. Putting all these information

together, we obtain that

C∗max(P) ≥ C∗max(Γ) ≥
1
b

(
T + 1 +

T
m

)
> T.
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Since C∗max(P) is integer, we get C∗max(P) ≥ T + 1.

Case II: ∃u ∈ M+ with π(u) ≥ logb(m).
U-T maintains the reduced cost optimality condition cπi j ≥ 0 for all
(i, j) ∈ E f . For any path W from node u to some node v in E f , cπ(W) = c(W)−π(u)+π(v) ≥ 0
holds. Now, π(v) = 0 holds for v ∈ M−, and this implies

c(W) ≥ π(u) ≥ logb(m),

and therefore
γ(W) = bc(W) ≥ m.

Now assume that C∗max(P) ≤ T and recall that δu(P, β) ≥ 2T + 1. Let (G,P) and (G,Γ)
denote the generalized maximum unsplittable flow problem defined by network G and ma-
trix of processing times P and Γ, respectively. Let f be the generalized flow in (G,P) that
corresponds to assignment β and let f ∗ be an optimum generalized fractional flow in (G,P).
Define f̃ = f ∗ − f . Note that f̃ is a generalized flow in (G,P). However, f̃ is also a gener-
alized flow in (G,Γ). Define ∆u(P) = δu(P, β) − δu(P, f ∗). Since u ∈ M+, ∆u(P) is positive.
∆u(P) is the amount of flow that is sent from machine u to the other machines by f̃ in (G,P).
Define ∆u(Γ) as the amount of flow that f̃ sends out of u in (G,Γ). It holds that

∆u(Γ) ≥
1
b
∆u(P).

Consider the cycle/path decomposition of f̃ according to Lemma 3.1.3. Pushing flow along
any cycle K does not decrease the load on any of its machines since γ(K) ≥ 1. Because
C∗max(P) ≤ T and δv(P, β) ≥ T + 1 for all machines v ∈ M+ ∪M0, f̃ must send flow from all
machines v ∈ M+ ∪ M0 to machines in M−. Recall that in the cycle/path decomposition no
end node of some path is also a starting node of some other path. Since each machine from
M0∪M+ is the starting node of some path of the cycle/path decomposition, it cannot be the
end point of some other path. Thus, in the cycle/path decomposition of f̃ in (G,Γ), a total
flow of at least

∆u(Γ) ≥
1
b
∆u(P) =

1
b

(δu(P, β) − δu(P, f ∗)) ≥
1
b

(
δu(P, β) −C∗max(P)

)
≥

1
b

(T + 1)

is sent on paths from machine u to the machines in M−.
However, since γ(W) ≥ m for every path W from u to some machine in M−, the machines

in M− will receive at least 1
b (T +1) ·m flow by f̃ in (G,Γ). There are at most m−1 machines

in M−. Hence, there exists a machine s ∈ M− that receives at least 1
b (T + 1) · m

m−1 flow by f̃
in (G,Γ). Thus:

δs(Γ, f ∗) ≥
1
b

(T + 1) ·
m

m − 1
.

Note that 1
b ·

m
m−1 > 1 for b = (1 + 1

m ). Thus, we have

C∗max(P) ≥ δs(P, f ∗) ≥ δs(Γ, f ∗) ≥
1
b

(T + 1) ·
m

m − 1
> T + 1.

This is a contradiction to our assumption that C∗max(P) ≤ T . Hence, C∗max(P) ≥ T + 1. This
completes the proof of the theorem.
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Algorithm 6 A-U-T(P)
Input: matrix of processing times P
Output: assignment β

1: compute matrix C of rounded down costs ci j;
2: l := maxi∈[n] min j∈[m]{pi j};
3: u :=

∑
i∈[n] min j∈[m]{pi j};

4: while l + 1 , u do
5: T :=

⌈
l+u
2

⌉
;

6: compute initial assignment α;
7: let M+ be the set of overloaded machines induced by assignment α;
8: α := U-T(α,P,C,T );
9: if M+ = ∅ then

10: u := T ;
11: else
12: l := T ;
13: end if;
14: end while
15: return assignment α;

3.5.3 A-U-T Algorithm

We show now how we use the U-T algorithm to approximate a sched-
ule with minimum makespan. We perform series of calls to the algorithm U-
T(α,P,C,T ) where by a binary search on T ∈ [l, u] we identify the smallest T such
that a call to the U-T(α,P,C,T ) returns an assignment with M+ = ∅.
Here, l and u represent the lower and the upper bound for C∗max(P), respectively. Note that
the upper bound for u is nU. Exact values for l and u are given in Algorithm 6 which shows
the overall structure of the A-U-T algorithm which we use
for the approximation of the optimum schedule.

Afterward we have identified the value of parameter T such that a call to U-
T(α,P,C,T ) returns an assignment where M+ , ∅, and a call to U-
T(α,P,C,T + 1) returns with M+ = ∅.

Theorem 3.5.4 U-T can be used to compute a schedule α with

Cmax(P, α) ≤ 2 ·C∗max(P)

in time O(m2A log(m) log(nU)).

Proof: We use U-T as described above. Let β1 be the assignment re-
turned by U-T(α,P,C,T ) where M+ , ∅, and let β2 be the assignment
returned by U-T(α,P,C,T + 1) where M+ = ∅. From β1 it follows, by
Theorem 3.5.3, that C∗max(P) ≥ T + 1 and in β2 we have that Cmax(P, β2) ≤ 2(T + 1). Thus,
Cmax(P, β2) ≤ 2 · C∗max(P). It remains to show the running time of O(m2A log(m) log(nU)).
By Theorem 3.5.3, one call to U-T takes time O(m2A log(m)). The bi-
nary search contributes a factor log(nU). This completes the proof of the theorem.
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3.6 Comparison of Running Times

We compare now the running time of the A-U-T algorithm
with the so far fastest algorithms of Vaidya [166] and Radzik [144]. Both of the former
approaches have been designed to solve the fractional generalized maximum flow problem
(see Section 3.1.2) on a graph with node set V and edge set E. Rounding the fractional
solution yields a 2-approximation.

In our comparison we consider the following three techniques for computing a 2-approxi-
mation schedule to the R| |Cmax problem. For each method we give its worst case running
time. There exist:

• interior point approach for generalized (fractional) flow problem and rounding [166]

O(|E|1.5|V |2 log(U)),

• combinatorial algorithm for generalized (fractional) flow problem and rounding [144]

O(|E| |V |(|E| + |V | log |V |) log U log(nU)), and

• the integer combinatorial approach presented in this thesis

O(m2A log(m) log(nU)).

To compare these bounds, note first that in the bipartite network defined by the scheduling
problem A = |E| = O(nm) and |V | = n + m. The A-U-T al-
gorithm is linear in A. It clearly outperforms the previous algorithms if n+m = o(A). In the
case A = Θ(n+m), the integer combinatorial algorithm is better by a factor of Ω(

√
n+m

log(n) log(m) )
than Vaidya’s algorithm and by a factor of Ω(log U) faster than Radzik’s algorithm. This
is the first time that a combinatorial algorithm always beats the interior point approach for
this problem. The heuristics [125, 160, 167] consider instances where A = Θ(nm). In this
case our algorithm outperforms both former approaches by a factor almost linear in n.

The (1+ε)-approximation algorithms for the generalized maximum flow problem in [45,
143, 162] have all running time Õ(log ε−1|E|(|E| + |V | log log U)) where the Õ(·) notation
hides a factor polylogarithmic in |V | (cf. Section 1.4). Again, an extra factor of O(log(nU))
is needed for the makespan minimization by binary search. This running time is not always
better than ours. The fastest FPTAS that directly addresses the unrelated scheduling prob-
lem is due to Jansen and Porkolab [90] and has O(ε−2(log ε−1)mn min{m, n log m} log m)
running time (cf. Section 1.4). Clearly, for constant ε this algorithm is faster than our al-
gorithm. However, for ε in the order of 1

m and log(U) = O(n), their running times become
comparable. We want to recall here that the (1+ε)-approximation algorithms for the gener-
alized maximum flow problem followed by rounding yield a (2 + ε)-approximation for the
unrelated scheduling problem.
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Heuristic Approaches for R| |Cmax

In this chapter we present various heuristic algorithms for the problem of scheduling un-
related parallel machines. In contrast to already discussed methods, here, only several
techniques possess well-known approximation factors and run in polynomial time. Gen-
erally speaking, they have been developed for real-life problems where the guarantees for
the quality of solution and for the running time are often a matter of trade-off between the
simplicity and high efficiency on the one hand, and the reliability and predictability on the
other hand. Nevertheless, many computational results show that they are more efficient
than most of the ρ-approximation algorithms mentioned in the previous chapters. In Chap-
ter 6 we present a comprehensive experimental study comparing the efficiency of various
heuristics for scheduling unrelated machines with different 2-approximation algorithms.

We begin our presentation of the heuristics for R| |Cmax with the list scheduling algo-
rithms. They were the very first methods, considered already in the 1950s, for solving
deterministic scheduling problems. All algorithms from this group work with a list of ap-
propriate sorted jobs. They process the jobs sequentially, in order given by the list, and as-
sign each of them to a machine according to some specific rule. Among other methods, we
present here also our three adaptations of the well-known LPT algorithm by Graham [72].
In the second section of the chapter we concentrate on partial enumeration techniques. As
we can see there, they mainly consist in solving an MIP subproblem with fewer binary as-
signment variables as in the original problem. Finally, in the last section we present a large
neighborhood improvement procedure developed for R| |Cmax by Sourd [160]. We begin
there with a presentation of a branch-and-greed scheme which was developed in the late
1990s to explore partially enumeration trees of large-scale optimization problems. Since a
simple search in an enumeration tree is often not sufficient for many problems to provide
solutions of satisfying quality, various post-optimization procedures using a branch-and-
greed scheme have been proposed to improve the quality of solutions. In contrast to local
improvement procedures like, e.g., taboo search or simulated annealing, they are able to
search larger neighborhoods of a current solution, and thus are usually more efficient to
find a better solution. In the last section of this chapter we present such post-optimization
procedure given by Sourd [160] for solving the R| |Cmax problem.
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4.1 List Scheduling Methods for R| |Cmax

We begin our discussion on heuristic algorithms for the minimization of makespan in
scheduling unrelated parallel machines problem with the presentation of list scheduling
algorithms. These very simple methods were the first proposed for this problem. Ibarra
and Kim [85] and Davis and Jaffe [27] analyzed several list scheduling heuristics for the
R| |Cmax problem and for some of its special cases.

The main idea behind the list scheduling algorithms is similar to that of the LPT algo-
rithm by Graham [72] which we have already presented in Section 1.3. What have these
algorithms in common is the usage of a list for n independent jobs which have to be as-
signed without preemption to the set of m parallel machines. Depending on the structure
of the algorithm itself, the list of jobs is first sorted either non-increasingly or increasingly
with respect to the processing times pi j, or in accordance to some heuristic. Afterward, in a
single traverse of the list the algorithm assigns each job to some machine according to some
specific rule. In most cases the total running time of these algorithms is dominated by the
time needed for sorting the list of jobs.

Hence, the only things which differ these methods from each other are the way the jobs
are sorted and the rule according to which the jobs are assigned. In the rest of this section
we concentrate mainly on these differences.

4.1.1 m-approximation Algorithms

We present first several simple heuristics given by Ibarra and Kim [85] in 1977. Originally,
they designed five algorithms, each of which was guaranteed to be at most m times worse
than the optimal solution in the worst case. In addition, three of them were proved to be
exactly m times worse than optimal in the worst case. The forth algorithm was left as
an open problem – its effectiveness was shown to be between 2 and m times worse than
optimal. We give now a brief description for the first four of them. We assume that at the
beginning all jobs are saved in a list L in an arbitrary order.

Algorithm A: Schedule job i from job list L on a machine that minimizes its comple-
tion time.

Algorithm B: For each job i ∈ L, let pmin
i = min j∈[m]{pi j}. Sort list L non-increasingly

according to pmin
i , and then call Algorithm A to schedule list L.

Algorithm C: For each job i ∈ L, let pmax
i = max j∈[m]{pi j}. Sort list L non-increasingly

according to pmax
i , and then call Algorithm A to schedule list L.

Algorithm D: After having scheduled k jobs, the algorithm schedules a job (from
among the remaining n− k jobs) which gives the least completion time.

Note that algorithms B and C reduce to the LPT scheduling algorithm which is at most 4
3−

1
3m

worse than the optimum for the case with identical machines P| |Cmax (cf. Section 1.3.3). It
is obvious that Algorithm A runs in time O(nm). Evaluating pmin

i or pmax
i for all jobs in L

takes O(nm) time, and sorting of list L takes O(n log n) time. It follows that algorithms B and



4.1. List Scheduling Methods for R| |Cmax 57

C have the worst case time complexity of O(n max{m, log n}). For Algorithm D, scheduling
a job i after k jobs have been scheduled takes O(m(n − k)) time. Thus, the running time of
the algorithm is O(mn2). In [27] is presented an example which indicates that Algorithm D
is at least (1 + log m) time worse than optimal in the worst case. For detailed proofs of the
worst case bounds for the approximation factors we refer to [27, 85].

4.1.2 2
√

m-approximation Algorithm

The idea of list scheduling was continued later by several researchers. Davis and Jaffe [27]
devised a simple and useful algorithm which we would like to present in the following. In
Section 5.2 we describe how we use it for computation of an initial solution in our branch-
and-price method.

We describe now the approximation algorithm. Consider an assignment function α as
given by Definition 1.3.1. We associate a starting time function s with a given assignment
α. Intuitively, for each job i ∈ [n], the value s(i) represents the time at which machine α(i)
begins to process job i. Formally, a starting function s is a map s : [n] 7→ IR≥0 satisfying for
each machine j ∈ [m] the following two conditions:

(a) at most one job is being executed at any time on machine j, and

(b) if 0 ≤ t <
∑

i:α(i)= j pi j, then at least one job is being executed at time t on machine j.

The value s(i) is called the starting time of job i. Job i is being processed on machine j at
time t provided j = α(i) and s(i) ≤ t < s(i) + pi j. Note that the first condition forces all
jobs to be processed sequentially and the second condition prevents any idle period on any
machine.

We define for each job i ∈ [n] its minimal processing time as pmax
i = min j∈[m]{pi j < ∞}.

Furthermore, let us define the efficiency of machine j for job i as e fi j =
pmax

i
pi j

. Note that the
maximum efficiency is one.

The structure of the approximation algorithm is given by Algorithm 7. It generates an
assignment function α and a starting time function s for a given matrix of processing times
P. The algorithm is an adaptation of the list scheduling algorithm. It maintains m lists,
each one of n jobs sorted in non-increasing order of e fi j. The algorithm proceeds by finding
the machine which first completes the jobs it has already been assigned and assigning to
that machine the next job on the list. The algorithm varies from the simple list scheduling
algorithms (see the previous subsection) in two respects. First, a separate list of jobs is
constructed for each machine j in order to reflect their different efficiencies on different
jobs. Second, if a machine is very inefficient for the next job on the list, the job is not
assigned to this machine and, as a consequence, this machine is deactivated.

The algorithm terminates when there is no unassigned job remaining. Note that at the
termination some machine is still active because the machine that has the best time on the
last job assigned could never have been deactivated. Since each iteration of the while-
loop either assigns a job to or deactivates a machine, the algorithm terminates after n + m
iterations.
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Algorithm 7 D-A-J-L-S(P)
Input: processing times matrix P
Output: assignment α

1: pmax
i := min j∈[m]{pi j}, for all i ∈ [n];

2: e fi j := pmax
i
pi j

, for all i ∈ [n] and j ∈ [m];
3: create for each j ∈ [m], a list L j of n jobs sorted in non-increasing order of e fi j;
4: δ j := 0, for all j ∈ [m];
5: mark all machines as active;
6: while ∃ unassigned job do
7: j := arg min{δk | k ∈ [m], k is active};
8: let i be the next unassigned job on list L j;
9: if ¬∃ i or e fi j <

1
√

m then
10: mark machine j as inactive;
11: else
12: α(i) := j;
13: s(i) := δ j;
14: δ j := δ j + pi j;
15: end if
16: end while
17: return assignment α;

The assignment α and starting time function s determined by Algorithm 7 satisfy the
following three conditions:

(1) e fi j ≥
1
√

m , for j = α(i),

(2) if s(i) > s(k), then e fi j ≤ e fk j, for j = α(k) and i, k ∈ [n],

(3) if
∑

i:α(i)= j pi j < s(k), then e fk j <
1
√

m .

Intuitively, the first condition indicates that a job is processed on a machine only if the
machine is efficient for this job, i.e., its efficiency is at least 1

√
m . The second condition

ensures that if a job k is assigned at an earlier time than job i, then it must be that machine
α(k) is more efficient for k than for i. Finally, the third condition prevents a machine from
stopping as long as it is enough efficient for some unassigned job.

The fact that the algorithm satisfies the first condition follows immediate from the way
the jobs are assigned. Condition (2) follows from the fact that if s(i) > s(k), then the fact
that job k is assigned to α(k) implies that k must have at least as high an efficiency on α(k)
as job i. Condition (3) also follows immediately from the way the jobs are assigned.

To analyze the running time, note that the sorting of a single list requires time O(n log n)
for each machine. This results in total of O(mn log n) time for sorting. Consider the total
time spent on iterations in which machine j is chosen in step (7) of Algorithm 7. Deter-
mining if a given job i is unassigned requires time O(1) if that information is stored as a bit
array. Thus, steps (8)-(15) of all iterations in which a particular machine j is chosen require
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Algorithm 8 LPT-S-V1(P)
Input: processing times matrix P
Output: assignment α

1: δ j := 0, for all j ∈ [m];
2: while ∃ unassigned job do
3: let i be an unassigned job with a maximal processing time;
4: find machine j such that j = arg mink∈[m]{pik + δk};
5: δ j := δ j + pi j;
6: α(i) := j;
7: end while
8: return assignment α;

time at most O(n). If a data structure is maintained which keeps loads δ j sorted, than m + n
iterations of step (7) require at most time O((m + n) log m). Thus the total running time is
dominated by the initial sorting and is at most (mn log n).

The following theorem summarizes the main results. For a detailed analysis of the upper
bound for the worst case performance we refer the reader to [27].

Theorem 4.1.1 (Davis and Jaffe [27]) Let β be an optimal assignment for an instance of
the R| |Cmax problem. Then Algorithm 7 computes in time O(nm log n) an assignment α for
which

makespan(α)
makespan(β)

≤ 2.5
√

m + 1 +
1

2
√

m
.

Together with the proof of the approximation factor, the authors gave an example for
which the algorithm is as best as 2

√
m times worse than optimal. This indicates that their

analysis was tight up to a factor of 1.25. This algorithm is best possible (up to a constant
factor) among algorithms using a certain restricted class of heuristics.

By doing a more careful analysis, they achieved a worst-case performance bound to a
constant factor. They showed that the approximation factor equals (2m − 2 − ε)/(ε +

√
m)

for ε > 0. Note that this bound approaches 2
√

m − 2/
√

m as ε gets smaller.

4.1.3 LPT-based Algorithms

As it was already indicated in the introduction to this chapter, we present now three adap-
tations of the LPT algorithm by Graham [72] to the unrelated scheduling problem. This
algorithm was originally designed to schedule jobs on identical machines and later made
applicable for solving a more general scheduling problem on uniform machines. We recall
that in its generic version the LPT algorithm first sorts the jobs in non-increasing order of
processing times, and then sequentially assigns each job to a machine on which it will be
completed soonest.

Our three simple adaptations of the LPT algorithm are accustomed to three different
real-world situations. In the first situation we consider the case in which the processing
times are uncorrelated, i.e., there is no direct relations between machines and jobs. Here,
Algorithm 8 can be applied. Observe that the actual load on any machine j is saved by δ j.
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Algorithm 9 LPT-S-V2(P)
Input: processing times matrix P
Output: assignment α

1: δ j := 0, for all j ∈ [m];
2: bi := min{pi j | j ∈ [m]} − 1, for all i ∈ [n];
3: while ∃ unassigned job do
4: let i be an unassigned job with a maximal bi;
5: find machine j such that j = arg mink∈[m]{pik + δk};
6: δ j := δ j + pi j;
7: α(i) := j;
8: end while
9: return assignment α;

Algorithm 10 LPT-S-V3(P)
Input: processing times matrix P
Output: assignment α

1: δ j := 0, for all j ∈ [m];
2: a j := min{pi j | i ∈ [n]} − 1, for all j ∈ [m];
3: while ∃ unassigned job do
4: find job i such that i = arg maxk∈[n]{pk j − a j | k is unassigned, j ∈ [m]};
5: find machine j, such that j = arg mink∈[m]{pik + δk};
6: δ j := δ j + pi j;
7: α(i) := j;
8: end while
9: return assignment α;

In the second case the jobs are correlated, i.e., processing time of job i on machine j can
be expressed as pi j = bi + di j, where bi is a mean value of processing time of job i and
di j is its deviation. To solve such problem we have developed Algorithm 9. Here, before
the jobs are being assigned, a mean value bi is computed for each job i ∈ [n]. Afterward,
the jobs are processed in non-increasing order of the mean value bi. In the last case we
consider a problem with correlated machines. The processing times of each job can now
be formulated as pi j = a j + di j, where, similar to the previous case, a j is a mean value
of machine performance for machine j, and di j is its deviation. For this case we have
developed Algorithm 10. Note that now the jobs are processed in non-increasing order of
deviation di j.

4.2 Partial Enumeration Technique

We present now three heuristic algorithms based on partial enumeration for the R| |Cmax

scheduling problem. All of them were designed by Mokotoff and Jimeno [126]. Starting
with the LP relaxation of the MIP formulation of the unrelated scheduling problem given in
(1.2), they try to find a near optimal solution. Basically, the heuristics consist in analyzing
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the instance characteristics and considering the integrality of some subset of assignment
variables. All three algorithms are based on the methodology described first by Dillenberger
et al. in [33] and used later by Mansini and Speranza [116].

We first describe the technique that these three algorithms have in common and then we
give a comprehensive description of each of them. The proposed algorithms mainly consist
in solving a MIP subproblem with fewer binary assignment variables than the original one.
The main procedure checks whether or not the optimum solution of the LP relaxation is an
integral vector. If it is the case, then the main algorithm stops. Otherwise, a subset of the
assignment variables has to be eliminated.

Extended LP relaxation. Using the MIP formulation of the R| |Cmax problem given in
(1.2), we formulate the following extended LP relaxation as follows:

LP: min T
s.t.

∑
i∈[n]

pi jxi j ≤ T, ∀ j ∈ [m]∑
j∈[m]

pi jxi j ≤ T, ∀ i ∈ [n] : pmax
i > 1

m

∑
k∈[n]

pmin
k∑

j∈[m]
xi j = 1, ∀ i ∈ [n]

xi j ≥ 0, ∀ i ∈ [n], j ∈ [m]
T ≥ LB

(4.1)

To get an LP relaxation solution near the integral optimum, a lower bound LB for T is
computed. The most simple lower bound is the solution of the relaxation which we obtain
by assuming that the machines are identical and each job i may be processed in its minimum
processing time. The corresponding LB is thus

LB = max


 1
m

∑
i∈[n]

pmin
i

; max
i∈[n]
{pmin

i }

 , (4.2)

where pmin
i = min j∈[m]{pi j}. This lower bound can be further improved by adding to the

LP relaxation of the original problem the non-overlapping constraints introduced by Lawler
and Labetoulle [110] for the scheduling problem R| pmtn |Cmax. These constraints are repre-
sented in (4.1) by the second set of inequalities (at most n). Here, pmax

i = max j∈[m]{pi j < ∞}.
Additionally, the new constraints ensure that no fractional job is processed in parallel. The
proof of the property that only jobs i for which pmax

i > 1
m

∑
k∈[n] pmin

k have to be considered in
the extended LP relaxation we give later in Section 5.1.5. The fact that the additional con-
straints ensure that no preempted job is processed simultaneously is proved indirectly [110].
In the following, x ∈ IRnm

≥0 denotes a vector of assignment variables for (4.1) whereas x̄ de-
notes the solution to (4.1).

MIP subproblem. We describe now the main idea behind this heuristic approach. From
the optimum solution x̄ of the LP relaxation given in (4.1), a list L of assignment variables
xi j is built. All variables xi j with positive values in the solution x̄ are placed at the beginning
of the list. Afterward, the rest of the assignment variables is ordered according to a certain
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Algorithm 11 P-E-V1-S(P)
Input: processing times matrix P
Output: integer solution x̄

1: LB := C-L-B(P);
2: compute optimal solution x̄ to extended relaxation LP(P, LB);
3: if x̄ < {0, 1}mn then
4: S := {xi j | x̄i j > 0, i ∈ [n], j ∈ [m]};
5: x̄ := B-A-B(P, LB, S );
6: end if
7: return integer solution x̄;

criterion and saved to the list after the positive variables. If there are k assignment variables
with positive values in the solution x̄, a new MIP problem is constructed with s ≥ k assign-
ment variables from the list L. Thus, the MIP subproblem to be solved has mn − s binary
variables less than the original MIP.

The methodology used by Mokotoff and Jimeno is similar to the two-step approaches of
Hariri and Potts [83], and Potts [142]. However, there is one essential difference. While
in [83, 142] a partial schedule is built by the solution to the not extended LP relaxation,
here only the LP solution data is used to decide which variables should be eliminated from
the MIP formulation (cf. Section 2.1.1).

Two relevant issues have to be decided on when designing the algorithm. We need to
specify, firstly, the ordering criterion to the list of the subset of non-basic variables, and
secondly, the number of binary variables s which shall be kept in the new MIP subproblem.
The criterion chosen to list and sort out the non-basic assignment variables leads to different
heuristics. Following [126] we consider here two criteria:

(1) sorting out the variables in non-decreasing order according to the simplex reduced
costs, and

(2) sorting out the variables in non-increasing order according to the Davis and Jaffe’s
efficiency index.

The efficiency index defined by Davis and Jaffe [27] was already presented in the previous
section. Here, for the convenience, we repeat its definition. The efficiency index e fi j of job
i on machine j is equal to the ratio min k ∈ [m]{pi j}

pi j
.

The number of variables to be kept could be fixed in different ways. It results in more
than one heuristic. One simple way is to fix the value of s as the maximum number of
assignment variables for which the MIP formulation is able to be solved within a reasonable
amount of computer operational memory and time. By setting the value of parameter s to a
value greater than or equal to the number of basic variables, we can guarantee that the MIP
subproblem always has a feasible solution, however, not necessarily optimal.

The algorithms. We start with the most simple of the heuristics which structure shows
Algorithm 11. It consists in solving the extended LP relaxation of the original problem as
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Algorithm 12 P-E-V2-S(P)
Input: processing times matrix P
Output: integer solution x̄

1: LB := C-L-B(P);
2: compute optimal solution x̄ to extended relaxation LP(P, LB);
3: if x̄ < {0, 1}mn then
4: L := L(x̄);
5: compute parameter s;
6: S := S(L, s);
7: x̄ := B-A-B(P, LB, S );
8: end if
9: return integer solution x̄;

defined in (4.1) and only retains the assignment variables with positive value in the LP solu-
tion x̄. The assignment variables with zero value in solution x̄ (i.e., non-basic variables) are
eliminated from the formulation. The new MIP subproblem is then solved with branch-and-
bound algorithm, and the schedule is built according to the vector of the obtained solution.
In Algorithm 11 the lower bound LB is computed according to (4.2).

Algorithm 12, which improves the previous heuristic, uses also the solution x̄ to the ex-
tended LP relaxation. However, it keeps more assignment variables than only those with a
positive value in the LP solution. List L of all assignment variables is created by function
L following one of the rules described in the previous paragraph. To select the assign-
ment variables to the list S , we make use of the parameter s which is defined to be larger
than k, where k is the number of assignment variables with positive value in the LP solution
x̄. A new MIP subproblem is constructed, where nm − s assignment variables are elimi-
nated. Here, to choose the variables for the subproblem, we use function S. The MIP
subproblem is then solved and the obtained solution is built into the schedule.

The parameter s can be set in one of the following ways [126]:

• a percentage r of the size of the problem instance, i.e., s = dr n me,

• a surplus percentage of k, i.e., s = d(1 + r) ke, or

• as the addition of k plus a percentage of the number of assignment variables with zero
value in the LP solution, i.e., s = k + dr (nm − k)e.

Here, r ∈ [0, 1]. To guarantee a minimum number of assignment variables in the MIP
subproblem, the parameter s could be restricted to s ≥ k + m + dr ne.

The structure of the last heuristic which uses the ideas from this section is given by Al-
gorithm 13. This approach is an iterative algorithm which uses in each iteration a different
subset of assignment variables and during this iterative process saves the best solution found
so far. The first k assignment variables from the ordered list L are always included in the
MIP subproblem. The remainder of the s − k variables to be retained are not the same in
each iteration. When a variable included in the MIP subproblem, with a value of zero in the
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LP solution, has a value of zero in that MIP subproblem solution, it is removed from the list
of variables.

When there is no assignment variable with a value of zero in the MIP subproblem and
with zero value in the LP solution, then the algorithm stops. We can also add other stopping
criteria, e.g., a pre-fixed maximum number of iterations, or a pre-fixed maximum number
of variables removed from the list.

Algorithm 13 P-E-V3-S(P)
Input: processing times matrix P
Output: integer solution x̄

1: LB := C-L-B(P);
2: UB := m LB;
3: compute optimal solution x̄ to extended relaxation LP(P, LB);
4: if x̄ < {0, 1}mn then
5: L := L(x);
6: compute parameter s;
7: while stopping criterion not met do
8: S := S(L, s);
9: (x̂,T ) := B-A-B(P, LB, S );

10: if T < UB then
11: UB := T ;
12: end if
13: L := L \ {xi j | x̄i j = 0 ∧ x̂i j = 0};
14: end while
15: else
16: return integer solution x̄;
17: end if
18: return integer solution x̂;

4.3 Large Neighborhood Improvement Procedures

The aim of this section is to present an approximation algorithm for the R| |Cmax problem
based on a large neighborhood improvement procedure designed by Sourd [160]. In con-
trast to already discussed methods, it is based upon a partial and heuristic exploration of the
search tree, which is used not only to build a solution but also to improve it by using a post-
optimization procedure. The main part of this technique constitutes a partial exploration of
an enumeration tree of the problem which we describe in details in the following subsec-
tion. Next, we show how this branch-and-greed based exploration procedure can further be
speed up in order to provide quickly good solutions. Finally, we present the approximation
heuristic for the unrelated scheduling problem proposed by Sourd which builds upon ideas
from this section.
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4.3.1 Branch-and-Greed Scheme

To begin with we present a general scheme called branch-and-greed which is used to ex-
plore partially an enumeration tree of the problem. It is based both on a branching scheme
and on a greedy heuristic. Developing efficient heuristics to explore an enumeration tree
is also of high interest in constraint programming [117]. We refer to Harvey and Gins-
berg [78], Meseguer [122], Sourd [160], and Walsh [171] for more details on branch-and-
greed tree exploration methods. For a good survey on very large-scale neighborhood search
techniques we suggest the paper by Ahuja et al. [2].

Enumeration tree. We consider a combinatorial optimization problem Π. Let S be the
set of all feasible solutions of Π. We assume that S is finite. Let f be a real function on S .
A minimization problem is to find a feasible solution x ∈ S , such that:

f (x) = min
x∈S

f (x).

Set S of feasible solutions can be partitioned into subsets. These subsets can also be par-
titioned into subsets and so on, until all subsets have only one element. These partitions
can be represented by a diagram called an enumeration tree. An enumeration tree T of S
possesses the following properties:

• each node v corresponds to a subset S (v) of S ,

• the root node corresponds to S ,

• the leaves correspond to the singletons of S (single feasible solutions), and

• each node v which is not a leaf has k(v) ∈ (1, a] direct descendants whose correspond-
ing subsets of S make a partition of S (v) into a ≥ 2 subsets.

The subtree of T with root node v is denoted by T (v), and D(v) is the set of the direct
descendants of v.

Exploration of enumeration tree. We describe now a heuristic exploration of the enu-
meration tree presented by Sourd. Recall first that a leaf vertex of the enumeration tree
corresponds to a feasible solution of problem Π. We assume that we have a heuristic H0 to
find a good solution in S . This heuristic is based on a functionH that a priori evaluates the
direct descendants of a node of the enumeration tree. If v and w are two direct descendants
of the same node andH(v) < H(w), then we say that a subtree T (v) is a priori more likely
to contain an optimum than T (w). At each stage, starting at the root of the tree, H0 moves
onto the direct descendant that minimizesH .

Let us note that the functionH0 : v 7→ f (H0(T ((v))) can now be considered as an a priori
evaluation of the descendants of a node. Indeed, if v and w are two direct descendants of the
same node and if f (H0(T (v))) < f (H0(T (w))), we can imagine that the solutions in T (v)
should be better than those in T (w). Thus, we obtain a new heuristic, H1. At each stage,
H1 looks at all direct descendants of a given node, applies H0 to each of the corresponding
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unexplored

H1H0 H2

H2

H1

H0

explored by

explored by explored by

Figure 4.1: Branches of a search tree by H0, H1, and H3 (based on [160]).

subtrees, evaluates the objective function f at each leaf obtained in this H0 search, and picks
the one descendant with the lowest evaluation value.

The previous scheme can be generalized to create a heuristic Hk by simply swapping
H1 for Hk, and H0 for Hk−1 in the description of H1. Hence, Algorithm 14 representing
heuristic Hk can be defined recursively with the a priori evaluation function Hk−1 : v 7→
f (Hk−1(T (v))).

Algorithm 14 Hk(T )
Input: enumeration tree T
Output: single solution in S (v)

1: let v be the root of T ;
2: if v is a leaf then
3: return the single solution contained in S (v);
4: else
5: let w ∈ D(v) that minimizesHk−1;
6: return Hk(T (w));
7: end if

The definition of this algorithm shows that Hk(T ) finds a k-path from the root to one leaf.
Each node v on this k-path is the starting point of (k − 1)-paths, and it corresponds to the
partial exploration of the subtrees non-selected by Hk. Figure 4.1 shows the branches of a
tree T explored by H0(T ), H1(T ) and H2(T ). The 0, 1 and 2-paths in T are visible.

Note that all vertices explored by Hk(T ) are obviously explored by Hk+1(T ), thus Hk+1

gives a result at least as good as Hk. At each step of Hk, the subtree selected is first explored
by Hk−1 when computing the minimum of Hk−1, and then by Hk when the algorithm de-
scends to the selected node to build the end of the k-path. Hence, we note that some nodes
are visited many times.

In order to get an upper bound on the number of nodes of the enumeration tree explored
by Hk, we consider (a, b)-complete trees, i.e., type of trees where each node that is not a
leaf has exactly a descendants and the depth of each leaf is b.

Let hk(a, b) be the number of nodes in an (a, b)-complete tree visited by Hk. Each subtree
of the root of an (a, b)-complete tree is (a, b − 1)-complete, the selected subtree is explored
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by Hk, and a − 1 other subtrees are just explored by Hk−1. Thus, following the analysis
in [160] we have:

hk(a, b) = 1 + hk(a, b − 1) + (a − 1)hk−1(a, b − 1).

Obviously, h0(a, b) = 1 + b, and hk(a, 0) = 1. By induction we get that

hk(a, b) − hk−1(a, b) = (a − 1)k

(
b + 1
k + 1

)
.

And finally

hk(a, b) =
k∑

i=0

(a − 1)i

(
b + 1
i + 1

)
= O(akbk+1).

Note that for a fixed k the number of vertices explored by Hk is polynomially bounded.
When k = b, we get hb(a, b) = ab+1−1

a−1 , which is exactly the number of vertices of an (a, b)-
complete tree. More generally, for any arbitrary tree, Hk(T ) explores the whole tree and
therefore gives the optimal solution of S if and only if k is equal to or greater than the
depth of T . Observe that the exploration of the enumeration tree T makes sense only with
heuristics Hk(T ) for k ≤ b.

Furthermore, observe that at each step of the algorithm, the selected subtree is explored
twice, firstly by Hk−1 to minimizeHk, and secondly by Hk once it is selected. Therefore, in
order to evaluate the time complexity of Hk, we have to replace a − 1 by a in the recurrent
relation. Though, the worst-case time complexity is also O(akbk+1).

Improving the exploration. We have just seen that for k ≥ 1 the time complexity of Hk

depends greatly on |D(v)|. Sourd gives two ideas to remove some nodes fromD(v) that will
be left unexplored. In both cases we assume that a solution s has already been found since
the beginning of the search. And at each step we remove from D(v) the nodes that either
can be proved not to lead or cannot a priori lead to a better solution than s.

The previous paragraph shows that Hk makes a partial exploration of the enumeration
tree. Branch-and-bound concepts (see Section 5.1.3) can easily be used in this exploration.
At each node w inT , a lower bound LB = minx∈S (w) f (x) is computed. If we know a solution
s of S such that

f (s) ≤ LB ≤ min
x∈S (w)

f (x),

then the optimal solution of S cannot be in S (w). Therefore, it is not necessary to explore
S (w), and thus S (w) can be fathomed.

Following the discussion from [160] assume that Hk is at node v that is not a root of the
initial search tree. Since k ≥ 1, some leaves have already been explored. Let s be the best
solution found so far. Because Hk chooses at each step the subtree where it has found the
best solution when exploring each subtree with Hk−1, s is necessary in T (v) and there is a
node ws ∈ D(v) such that Hk−1(T (ws)) = s. If w ∈ D(v) and S (w) can be fathomed, then

Hk−1(w) ≥ min
x∈S (w)

f (x) ≥ f (s) = Hk−1(ws)
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and so
min

w∈D(v)
Hk−1(w) = min

w∈D(v)\F (v)
Hk−1(w)

where F (v) = {w ∈ D(v) such that S (w) can be fathomed}.
Hence, subtrees that are proved by the a priori function not to contain a better solution

that the best found so far have not to be explored when computing minw∈D(v)Hk−1(w). If our
a priori function is good, then we can claim that some subtrees do not a priori contain good
solutions. Thus, we can replaceD(v) by

D(v) = {w ∈ D(v) such thatH(w) ≤ B(v)}

where B(v) is a problem-dependent value. Setting such a limit to the number of explored
subtrees improves the efficiency of Hk by decreasing remarkably the computation time with
little effects on the quality of the obtained solution [160].

4.3.2 Post-optimization Procedure

The previous subsection shows that when a and b are large, Hk cannot run within a reason-
able time for k being greater than 3 or 4. For computational results showing this unfavorable
behavior see, e.g., [160, 171]. Thus, a simple partial search in an enumeration tree Hk is
often not sufficient for many problems to provide quickly good solutions. We present now
several ideas given by Sourd to build improvement procedures based on a branch-and-greed
approach. He called them post-optimization procedures.

Let x be an element from S . Consider a setV(x) that contains x. We assume that we can
find an enumeration tree T ′ and an a priori evaluation function H associated with V(x).
Provided with this, we are able to build the algorithms Hk based on H . Therefore, for any
integer k, Hk(T ′) is a good solution ofV(x).

We consider V(x) as a neighborhood of x. The definition of such a neighborhood is
problem-dependent (see, e.g., [2]). However, in most cases, x can be viewed as a set of
variables with assigned values. By relaxing some of the assignment constraints we usually
get an efficient neighborhood for which an associated enumeration tree and an a priori
evaluation function can easily be found.

In contrast to usual local improvement procedures (like, e.g., taboo search), |V(x)|may be
exponentially large. Therefore, it is not possible to compute f (v) for all v ∈ V(x). In order
to solve this unfavorable situation, a heuristic Hk is called to search for a better solution in
this neighborhood. Algorithm 15 states the post-optimization procedure. Here, x0 stands
for the initial solution (it must be an element of S , e.g., x0 = Hk0(T )), x∗ is the best solution
found so far, l is the iteration counter, and k represents the level of post-optimization.

The efficiency of post-optimization greatly depends on the choice of V(x). It can be
chosen in a deterministic or randomized way. In both cases the neighborhood must be
redefined with the beginning of each iteration – step (6). Symbol ∝ describes the relation
between a new solution xl+1 and the currently best solution x∗. If f (xl+1) < f (x∗), then
xl+1 ∝ x∗; and when f (xl+1) = f (x∗), other criteria may be used to decide whether xl+1 ∝ x∗.

In [160] the following stopping criteria for the inner repeat-loop have been proposed:
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Algorithm 15 P-O(x0, k0)
Input: initial solution x0

initial level of post-optimization k0

Output: better solution x∗

1: x∗ := x0;
2: k := k0;
3: l := 0;
4: repeat
5: repeat
6: choose a neighborhoodV(x∗) of x∗;
7: find T ′ associated withV(x∗);
8: xl+1 := Hk(T ′);
9: if xl+1 ∝ x∗ then

10: x∗ := xl+1;
11: end if
12: l := l + 1;
13: until stopping criterion is met
14: k := k + 1;
15: until stopping criterion is met

• f (x∗) is equal to a lower bound of the problem,

• l is equal to the maximum number of allowed iterations,

• x∗ has not been improved for a given number of iterations, or

• all the (deterministic) neighborhoods of x∗ have been tried without improvement.

The outer repeat-loop is generally stopped when f (x∗) is equal to a lower bound of the
problem, or k is equal to the maximum number of allowed iterations. The reason why k is
increased within the post-optimization is motivated by the lower bound, i.e., the better x∗,
the faster Hk. For example, at the beginning H1 is usually sufficient to find better solutions
than x0. At the end, Hk f with k f ≥ 2 (typically k f = 5 by [160]) is required to improve a good
x∗. If we run Hk f already at the beginning of the post-optimization process, the solutions
which are found with each iteration are better but computation time is much longer.

4.3.3 Approximation Algorithm for R| |Cmax

We are now ready to present an approximation algorithm for the R| |Cmax problem. It has
been designed by Sourd [160] and uses the post-optimization procedure discussed above.
Computational experiments presented by the author of this method show that its efficiency
is equivalent to that of the best local search heuristic for the unrelated scheduling problem
published so far, i.e., to the taboo search method of Piersma and van Dijk [138]. In Chap-
ter 6 we show how this heuristic performs in comparison with other techniques, especially
with the combinatorial approximation algorithm, A-U-T.
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In the following S denotes the set of solutions to R| |Cmax, any x ∈ S is a feasible schedule,
and f (x) represents the makespan of schedule x.

The branch-and-greed approach. In our problem each job has to be assigned with-
out preemption to one of m machines. In this setting a problem (or a subproblem) is
divided into m subproblems: we branch by selecting a non-assigned job and assigning
it to one of m machines. This results in a (m, n)-complete enumeration tree. The jobs
are sorted non-increasingly according to the minimal processing time that is according to
pmin

i = min j∈[m]{pi j} for each i ∈ [n]. Each node of the tree corresponds to a partial schedule,
i.e., some jobs are already assigned what defines the partial completion time δ j (load) for
each machine j. If we want to assign job i, we define an a priori evaluation function H as
H( j) = δ j + pi j. Hence, H0 is a list scheduling algorithm (see Section 4.1) based on the
earliest completion time (ECT) rule. Therefore, we denote by ECTk the Hk heuristic for the
level of post-optimization k. We refer to [160] for a discussion on other types of evaluation
functionH .

Example 4.3.1 We give now a simple example which shows how the enumeration tree for
some small instance of the R| |Cmax problem is explored. We consider here a problem in-
stance with n = 4 jobs and m = 2 machines. The processing times are as follows:

Job J1 Job J2 Job J3 Job J4

Machine M1 45 93 67 100
Machine M2 99 96 29 65

The jobs are processed sequentially according to the non-increasing order of minimal pro-
cessing times. This results here with the following sequence of jobs: J2, J4, J1 and J3. To
search the tree, we use heuristic H1 with the evaluation function H defined as above. Fig-
ure 4.2 shows the branches of the search tree successively explored by H1. The nodes of the
tree represent the machines on each decision level. Each edge describes the assignment of
a given job. Observe that each level of the tree corresponds to one job. The thickness of the
edges indicates the heuristic, H1 or H0, which has traversed it already. The numbers below
the leaves of the tree represent the lengths (makespans) of corresponding assignments. Note
that every path from the root of the tree to any of its leaves defines a feasible assignment.
The best solution found here by the heuristic H1 has the length of 138.

In the following we describe how the subsets of S are explored. First, let pmin
i =

min j∈[m]{pi j} for every job i ∈ [n]. We denote by S λ the set of solutions to R| |Cmax for
which

∑
j∈[m] δ j ≤ λ+

∑
i∈[n] pmin

i . Sourd [160] observed that a minimal solution to S is often
in a set S λ with a small λ. Therefore, we explore first these subsets of S . The search tree
for S λ is build as it was described at the beginning of the paragraph. Branches that lead to
solutions with

∑
j∈[m] δ j > λ +

∑
i∈[n] pmin

i are simply cut off, i.e., they are not explored.
Before we give the structure of the algorithm, we present the idea of post-optimization

which is used here. An element x ∈ S is defined by a set ∆(x) of pairs (i, j), where one
pair (i, j) means that job i is assigned to machine j. A subset ∆′(x) emerges from ∆(x) by
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Figure 4.2: Successive exploration of the (2, 4)-complete enumeration tree from Exam-
ple 4.3.1 by heuristic H1 (ECT1).

removing some pairs, i.e., by canceling assignments of some jobs. Then, the neighborhood
of x is defined as

V(x) = ∆′(x) ∪ {J × { j ∈ [m]}}

where J is the set of not assigned jobs.

Algorithm 16 B-A-G-P-O
1: compute some initial solution in S 0 with ECT1;
2: for λ := 0 to 10 do
3: 500 iterations of post-optimization with ECT1 in S λ;
4: end for
5: for k := 1 to 5 do
6: 500 iterations of post-optimization with ECTk in S ;
7: end for

The structure of the post-optimization heuristic is given in Algorithm 16. At each step
of post-optimization, the assignments of 10 jobs are canceled (we consider test instances
with at least 10 jobs and 2 machines). The jobs are randomly selected on two machines.
These two machines are also randomly selected, but the completion time, δ j, of one of the
two machines must be maximal. If there are less than 10 jobs assigned to the two selected
machines, the assignments of all jobs assigned to these machines are canceled. These jobs
are then re-assigned using the heuristic Hk described above. The relation ∝ that compares
two schedules is defined in the following way. A schedule is better than other one if its
completion time (makespan) is less. If two schedules have the same completion time T , the
better is the one for which less machines complete at T . In case of equality, better is the
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one for which less machines complete at T − 1, and eventually the one that minimizes the
total completion time,

∑
j∈[m] δ j, computed over all machines.



5
Exact Solution Methods for R| |Cmax

In this chapter we present several techniques for computing exact solutions to the unrelated
scheduling problem with the minimization of makespan as the objective function. In par-
ticular, we describe here two branch-and-bound based methods developed for solving the
R| |Cmax problem. Both of them are known to be powerful frameworks to solve hard com-
binatorial optimization problems. In the first section we discuss in detail a cutting plane
algorithm designed by Mokotoff and Chrétienne [125] for the R| |Cmax problem. In addi-
tion to this we present the basic ideas behind a branch-and-cut scheme. This algorithmic
technique uses cutting planes embedded in the branch-and-bound scheme to tighten the so-
lution space of the LP relaxation of the scheduling problem. It is based on row generation
which significantly improves the convergence of the optimization process. In the second
section we present a new branch-and-price algorithm with heuristic extensions which we
have developed for the R| |Cmax problem. Our approach combines column generation with
the branch-and-bound scheme. The main idea of this technique is similar to that of branch-
and-cut except that the branch-and-price algorithm focuses on column generation as a way
to speed up the computations rather than on row generation. Common to both methods
is the idea how the integer solution to the original problem is generated. Both algorithms
apply branching to traverse the solution space of the problem given by the enumeration tree
in order to find an optimal integer solution.

5.1 Cutting Planes and Branch-and-Cut Method

Cutting plane algorithms have turned out to be practically successful tools in combinato-
rial optimization, in particular when they are embedded in a branch-and-bound framework.
Even though the implementation process of most branch-and-cut algorithms is rather more
complicated in comparison to the implementation of many purely combinatorial algorithms,
the high quality of solutions which they deliver (see Section 6.3.2) is a strong argument to
overcome these technical difficulties. The aim of this section is to present a cutting plane
scheme which combined with some heuristics leads to an exact algorithm for the R| |Cmax
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problem. We begin our discussion with an introduction into cutting plane algorithms. Here,
we address carefully the main ideas behind every algorithm using cutting planes. Addi-
tionally, we give a short introduction into a branch-and-bound approach, and present sev-
eral preliminary information about the branch-and-cut scheme which, when applied to the
optimization process of (mixed) integer programs, significantly improves its convergence.
Finally, we describe the cutting plane algorithm by Mokotoff and Chrétienne [125] for the
R| |Cmax scheduling problem

5.1.1 Cutting Planes

Suppose we have to solve a linear optimization problem which set of constraints is too
large to be represented explicitly in a computer memory, or too large to be handled by an
LP-solver. In such a case we can still attempt to solve the problem using the following
approach. We start with a small subset of constraints and compute an optimum solution
subject to these constraints. Afterward, we check if any of the constraints which are not
in the current LP is not satisfied. If such constraints are present, we add one or more of
them to the current LP and resolve it. Otherwise, the current optimum solution also solves
the original problem. This is the basic principle of the cutting plane approach. The name
originates from the fact that the constraints added to the current LP cut off the current
solution because it is infeasible for the original problem.

The essential ingredients of the solution method for integer combinatorial optimization
problems which uses cutting planes are valid inequalities.

Definition 5.1.1 (Jünger at al. [94]) Given an integer programming formulation min{cT x |
Ax ≤ b, x ∈ ZZn

} of a combinatorial optimization problem, an inequality fT x ≤ f0 is called
valid, if fT x̄ ≤ f0 for all feasible solutions x̄ ∈ {x | Ax ≤ b, x ∈ ZZn

}.

If we know a class of valid inequalities, we have to be able to check if a constraint of this
class is violated by a current solution, i.e., we must solve the following problem

Definition 5.1.2 (General Separation Problem) Given a class of valid inequalities for a
combinatorial optimization problem, and a vector y ∈ IRn, either prove that y satisfies all
inequalities of this class, or find an inequality of this class which is violated by y.

An algorithm solving the general separation problem is called an exact separation algo-
rithm. Unfortunately, exact algorithms are rarely known for classes of valid inequalities,
or it can even be shown that the separation problem for a certain class of inequalities is
NP-hard. In this case we have to apply a heuristic separation algorithm which may find
violated inequalities. However, if it fails, it is not guaranteed that no constraint of the class
is violated.

5.1.2 Generic Cutting Plane Algorithm

We state now a generic cutting plane algorithm for solving an integer combinatorial opti-
mization problem defined as min{cT x | Ax ≤ b, x ∈ ZZn

}.
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Algorithm 17 G-C-P-A(A,b)
Input: constraint matrix A

vector b
Output: integer solution x̄

1: let A
′

:=
(

I
−I

)
and b′ :=

(
1
0

)
;

2: compute an initial optimal solution x̄ to min{cT x | A′x ≤ b′, x ∈ IRn};
3: while x̄ is not a feasible solution to the original problem do
4: generate cutting plane (f, f0), where f ∈ IRn, f0 ∈ IR such that fT x̄ > f0 and fT y ≤ f0

for all y ∈ {x | Ax ≤ b, x ∈ ZZn
};

5: add inequality fT x ≤ f0 to the constraint system (A′,b′);
6: compute an optimal solution x̄ to min{cT x | A′x ≤ b′, x ∈ IRn};
7: end while
8: return integral solution x̄;

Algorithm 17 takes into account that the number of inequalities in the integer program
can be too large for explicit representation. In such a case, one can start with a trivial
constraint system 0 ≤ x ≤ 1. The inequalities Ax ≤ b are valid inequalities that can serve
as cutting planes. However, an integral solution coming up in the course of the algorithm is
only the incidence vector of a feasible solution of the optimization problem if no inequality
of the system Ax ≤ b is violated. Furthermore, the algorithm is only correct if all LPs in
step (2) and (6) can be solved, and that in step (4) a cutting plane can be generated, and
finally, that the algorithm terminates after finite number of iterations.

General-purpose cutting planes. We now address the question of how further cutting
planes can be found if the optimum solution to the LP min{cT x | A′x ≤ b′} is not integral
but no inequality of the system Ax ≤ b is violated.

First of all, we can use classes of cutting planes that can be applied to any integer or mixed
integer program. We call such cutting planes general purpose cutting planes [94]. They are
not problem-specific and can be employed for the solution of every integer optimization
problem.

The first cutting plane algorithms for integer and mixed integer programs were intro-
duced by Gomory [66, 67, 68]. He also proved that these algorithms terminate with an
optimal solution after a finite number of iterations. Unfortunately, it turned out that in
practical experiments the Gomory cutting planes provide very weak cuts leading to nu-
merical problems [94], and only rather small integer problems can be solved to optimality
with these methods. Crowder, Johnson, and Padberg [23] use minimal cover inequalities
and (1, k)-configurations for solving 0 − 1 linear problems. These cutting planes are de-
rived from facets of the polytope of the knapsack problem defined by each constraint of
the 0 − 1 optimization problem. Later, this approach was refined and generalized by Van
Roy and Wolsey [147], and Hoffman and Padberg [83]. For mixed 0 − 1 linear problems
Balas et al. [10] generate cutting planes by a lift-and-project method. The computational
results show that these cutting planes outperform Gomory cuts [94]. There are additionally
Fenchel cuts for integer programs introduced by Boyd [16].
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For solving combinatorial optimization problems, general cuts seem to be of limited use.
Successful computational work, what we show later, relies on cutting planes designed for
the particular problem. However, a cutting planes algorithm using problem-specific cutting
planes often has to stop without finding an optimal solution. This can have two different
reasons. Firstly, according to the well-know result by Karp and Papadimitriou [98], unless
NP = co-NP, for no NP-hard optimization problem a complete linear description cannot
be found. Secondly, even if a big class of facets is known, no efficient algorithm may be
available for the solution of the exact separation problem of this class.

One can also design hybrid cutting plane algorithms which combine general purpose
cutting planes and problem-specific cutting planes in the following way. When generating
cutting planes, we first try to separate with a problem-specific, preferably facet defining,
inequality. If this fails, we generate a general purpose cutting plane, e.g., a Gomory cut or
a lift-and-project cut. Such hybrid algorithms were designed, e.g., by Miliotis et al. [124].

5.1.3 Solving to Optimality with Branch-and-Bound Algorithm

The cutting plane approach presented above does not necessarily solve a problem to opti-
mality. We may get stuck at a solution which is not the incidence vector of a feasible so-
lution to the optimization problem. In such a case, we can apply another basic algorithmic
technique for solving hard optimization problems called branch-and-bound. This method
was designed to solve mixed integer programs by Doig and Land [36], and Dakin [24] in
the early 1960s.

Branch-and-bound is a divide-and-conquer approach trying to solve the original problem
by splitting it into smaller problems for which upper and lower bounds are computed. The
crucial part of an efficient branch-and-bound algorithm is the computation of lower bound
for these subproblems. Here, the fundamental concept of LP relaxation is used.

Before we discuss the generic branch-and-bound algorithm (see Algorithm 18), we define
some terminology. We call a bound global, if it is a bound for the original problem, and
local if it is only valid for a subproblem. By solving the LP relaxation of the current
subproblem, we obtain a local lower bound, LB, for the objective function value of the
original problem. If the solution of the relaxation is feasible for the original problem and
has smaller objective value than any feasible solution found so far, it is saved and the global
upper bound, UB, is updated accordingly.

A branch-and-bound algorithm maintains a list of subproblems, S P, of the original prob-
lem, which is initialized with the original problem itself. For 0 − 1 integer problems, S P
is often organized into binary tree. In each major iteration step the algorithm selects a sub-
problem sp from S P, computes a lower bound LB for this subproblem and tries to improve
the upper bound UB. If LB does exceed UB, then the current subproblem sp is fathomed,
because its (fractional) solution cannot be better than the best known feasible (integer) so-
lution. Otherwise, we check if the optimal solution to the relaxation of the subproblem is
a feasible solution for the original (integer) problem. If it is the case, we have solved the
subproblem, and thus it is fathomed.

If the local LB does not exceed the global UB and no feasible (i.e., integer) solution has
been found for the current subproblem, we perform a branching step by splitting the current
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Algorithm 18 G-B-A-B-A(A,b)
Input: constraint matrix A

vector b
Output: integer solution x̄

1: initialize S P;
2: compute global UB;
3: while S P , ∅ do
4: take subproblem sp from S P;
5: solve subproblem sp;
6: compute local LB;
7: if LB ≤ UB then
8: if sp is feasible for the original problem then
9: fathom sp;

10: UB := LB;
11: else
12: perform branching on sp;
13: add new subproblems to S P;
14: end if
15: else
16: fathom sp;
17: end if
18: end while
19: return integral solution x̄;

subproblem into a collection of at least two new, mutually exclusive subproblems which
union of feasible solutions contains all feasible solutions of the current subproblem. There
exists a number of various branching rules, see, e.g., [94]. Some of them are presented later
in this chapter.

If the list of subproblems S P becomes empty, then the saved feasible solution with the
objective value equal to UB can be returned as the optimum solution. Important for the
efficiency of a branch-and-bound algorithm is not only the quality of the relaxation tech-
nique, but also the quality of the generated feasible solutions, since otherwise the number
of generated subproblems becomes rapidly very large.

5.1.4 Preliminaries on Branch-and-Cut Approach

We give now some important facts about the branch-and-cut algorithm for solving hard
mixed integer optimization problems. The main difference in comparison to the classical
branch-and-bound method is the usage of LP relaxations and the employment of problem-
specific cutting planes at every node of the enumeration tree. This feature incurs several
technicalities that make the design and implementation of branch-and-cut algorithms a non-
trivial task.

The first combination of problem-specific valid inequalities and branch-and-bound meth-
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ods can be found in Miliotis [123] for the traveling salesman problem. How to use the facet
defining cutting planes and enhanced automatic cutting plane generation in combination
with branch-and-bound was first considered by Grötschel, Jünger, and Reinelt [74] for the
linear ordering problem. The term ”branch-and-cut” has been introduced by Padberg and
Rinaldi [135] for an algorithm solving the traveling salesman problem.

Since a detailed presentation of the branch-and-cut algorithm is beyond the scope of this
work, we refer the reader to [94, 136, 151, 172] for good overviews on this method. Nev-
ertheless, in the next subsection, we present some most important features of this method
while discussing a cutting plane algorithm for the R| |Cmax problem given by [125]. Another
interesting example of a branch-and-cut algorithm computing exact solutions to the R| |Cmax

scheduling problem was presented by Martello, Soumis, and Toth [120]. They proposed
lower bounds for the optimum based on Lagrangian relaxations [151] and some additive
techniques using decomposition of the LP relaxation into m independent knapsack prob-
lems. They also introduced new cuts which eliminate infeasible disjunctions of the cost
function value, and proved that the bounds obtained through such cuts dominate the previ-
ous cuts. Finally, they presented a branch-and-bound algorithm which uses these new cuts
to tighten the solution space.

5.1.5 Cutting Plane Algorithm for R| |Cmax

We present now an exact cutting plane algorithm for the scheduling unrelated parallel ma-
chines problem given by Mokotoff and Chrétienne [125]. Their algorithm deals directly
with the polyhedral structure of the R| |Cmax problem. As every cutting plane algorithm,
it mainly consists of a constraint generation scheme by means of a separation procedure
(cf. Section 5.1.1). This separation procedure checks whether or not the optimum solu-
tion of the current LP relaxation is an integral vector. If it is the case, the main algorithm
stops. Otherwise some new valid inequalities are added to the current LP polyhedron and
the optimization process is restarted.

For the MIP formulation of the R| |Cmax problem given by (1.2), the solution space S is
defined by (x,T ) such that∑

i∈[n]
pi jxi j ≤ T, ∀ j ∈ [m]∑

j∈[m]
xi j = 1, ∀ i ∈ [n]

xi j ∈ {0, 1}, ∀ i ∈ [n], j ∈ [m]
T > 0.

In turn, when x ∈ {0, 1}mn is substituted with x ∈ IRmn
≥0 , we get a polyhedron P that defines

the LP relaxation of S. Following the classical polyhedral combinatorics [130, 151], there
exists a finite set of valid linear inequalities Ax + DT ≤ b that defines the convex hull
conv(S) such that

min{T | (x,T ) ∈ S} = min{T | (x,T ) ∈ P, Ax + DT ≤ b}

The initial inequalities of P together with the valid inequalities Ax + DT ≤ b define the
linear description of S (according to classical results of Farkas, Weyl, and Minkowski;
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see [151]). However, this set is too large and only a very small part of it is known [98].
Nevertheless, a partial linear description may often provide a powerful tool for the solution
of the problem [94]. As indicated in the previous subsections, the key idea of the cutting
plane technique is to develop an algorithm that would be capable of identifying a valid
inequality (should one exist) which is not satisfied by the solution of the current LP relax-
ation. When no more cuts can be added, or when the number of iterations reached a given
limit but the solution of the last LP is not integral yet, we have to apply a branch-and-bound
algorithm to solve the problem. Observe that in this case, the solution value of the last LP
relaxation provides an initial lower bound LB that may be good enough to efficiently reduce
the number of nodes to be explored by the branch-and-bound algorithm applied afterward.

Valid inequalities for conv(S). Let T 0 > 0 and let S(T 0) denote the subset of points
(x,T 0) which are in S. Furthermore, let I be a family of valid inequalities for conv(S(T 0))
and P(I) the current relaxation of conv(S(T 0)) defined by the inequalities of P and the
inequalities of I. Let (x0,T 0) be a point from P(I) that does not belong to S(T 0). We
describe now how the upper bound flow model from [146] may lead to finding a valid
inequality I such that conv(S(T 0)) ⊂ P(I ∪ {I}) and (x0,T 0) < P(I ∪ {I}).

For each machine j ∈ [m], let J j = {i ∈ [n] | x0
i j > 0} be the set of jobs assigned (at least

fractionally) to machine j. If the machine constraint for machine j is satisfied as equality
by (x0,T 0), then we call it active. Let ∆ j =

∑
i∈J j

pi j − T 0 be the excess load on machine
j and let J′j = {k | pk j > ∆ j} be the subset of jobs in J j whose processing time on machine
j is larger than ∆ j. Note that the excess load on machine j is positive if

∑
i∈J j

pi j > T 0.
Furthermore, for any x ∈ IR, we denote by x+ the value max{0, x}. The following theorem
describes how we find valid inequalities. We give it without the proof. For details we refer
the reader to [125].

Theorem 5.1.1 (Mokotoff and Chrétienne [125]) Let (x0,T 0) be a point of P(I) and as-
sume that the machine constraint for machine j is active for (x0,T 0). Then the linear in-
equality ∑

i∈J j

pi jxi j ≤ T 0 −
∑
i∈J j

(pi j − ∆ j)+(1 − xi j) (5.1)

is a valid inequality for conv(S(T 0)). Moreover, if there is a job k ∈ J′j such that x0
k j < 1,

then the inequality is not satisfied by (x0,T 0).

Exact algorithm for R| |Cmax. The result given by Theorem 5.1.1 can be used to design
an exact cutting plane algorithm for the R| |Cmax scheduling problem. In the following we
describe its structure which is given by Algorithm 19. But first we discuss the lower and
upper bounds for the optimum, which we use in the algorithm.

A feasible initial (integer) solution is computed with the 2
√

m-approximation algorithm
of Davis and Jaffe [27]. The value of the makespan, TDJ, obtained by the approximation
algorithm is taken as the initial upper bound, i.e., UB := TDJ. The total running time of the
algorithm by Davis and Jaffe is O(mn log n). For details we refer to Section 4.1.

Now we consider the initial value of the lower bound LB for the optimum integer solu-
tion of the unrelated scheduling problem. The simplest lower bound is the solution of the
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relaxation which we obtain by assuming that the machines are identical and each job i may
be processed in its minimum processing time. Thus, the corresponding LB1 is

LB1 = max


 1
m

∑
i∈[n]

pmin
i

; max
i∈[n]
{pmin

i }

 ,
where pmin

i = min j∈[m]{pi j}. This lower bound can be further improved by adding to the LP
relaxation of the original problem the non-overlapping constraints introduced by Lawler
and Labetoulle [110] for the scheduling problem R| pmtn |Cmax. Here, machine j performs
xi j percent of job i, where xi j ∈ [0, 1] is the ratio of the time machine j performs job i to pi j.
The additional constraints are as follows:∑

j∈[m]

pi jxi j ≤ T, ∀i ∈ [n]. (5.2)

The additional constraint of type (5.2) is not necessary for a job i if

pmax
i ≤

1
m

∑
k∈[n]

pmin
k ,

where pmax
i = max j∈[m]{pi j < ∞}. In this case we have∑

j∈[m]
pi jxi j ≤

∑
j∈[m]

pmax
i xi j = pmax

i ≤ 1
m

∑
k∈[n]

pmin
k =

= 1
m

∑
k∈[n]

∑
j∈[m]

pmin
k xk j ≤

1
m

∑
k∈[n]

∑
j∈[m]

pk jxk j = T ∗,

where T ∗ is the optimal solution value of the LP relaxation without additional constraints of
type (5.2). We call the LP relaxation with additional constrains preventing job overlapping
an extended LP, and its optimal (fractional) solution we denote by T2. Hence, the improved
lower bound LP is now

LB = max{LB1; dT2e}. (5.3)

In Algorithm 19 the function C-L-B computes the maximum value of
the lower bound according to (5.3). The next function C-U-B returns the
upper bound on the minimum makespan which is equal to the makespan of the schedule
obtained by the approximation algorithm by Davis and Jaffe. Each iteration of the loop in
Algorithm 19 is associated with a fixed value LB of a lower bound for the makespan of the
instance defined by (A,b). Here, the scheduling problem is given in canonical form [136]
wherein A is the constraint matrix and b is the right-hand side vector. With each iteration
the algorithm truncates the polyhedron P(LB) defined by∑

i∈[n]
pi jxi j ≤ LB, ∀ j ∈ [m]∑

j∈[m]
pi jxi j ≤ LB, ∀ i ∈ [n] : pmax

i > 1
m

∑
k∈[n]

pmin
k∑

j∈[m]
xi j = 1, ∀ i ∈ [n]

xi j ∈ [0, 1], ∀ i ∈ [n], j ∈ [m]
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Algorithm 19 C-P-S(A,b)
Input: constraint matrix A

vector b
Output: integer solution x̄

1: LB := C-L-B(A,b) − 1;
2: UB := C-U-B(A,b);
3: let x be the integer solution corresponding to UB;
4: LB := LB + 1;
5: I := ∅,
6: if LB = UB then
7: return (x, LB);
8: end if
9: loop

10: solve LP(LB,I) defined by LB and I;
11: if LP(LB,I) has no solution x then
12: go to step (4);
13: end if
14: if x ∈ {0, 1}mn then
15: return (x, LB);
16: end if
17: I := F-N-C(LB,I, x);
18: if I = −1 then
19: x̄ := B-A-B(A,b, LB));
20: return x̄;
21: end if
22: I := I ∪ {I};
23: end loop

using cuts defined by Theorem 5.1.1. These cuts that belong to the set I are assumed to
be computed by a function F-N-C(LB,I, x). It returns −1 if no cut has been found.
Otherwise, it generates a new valid cut I which is stored in I. In the former case, a B-
A-B algorithm is used with the current value of LB as its initial lower bound. The
following linear program LP(LB,I) is used to decide whether a truncated by I polyhedron
P(LB) is empty, or to provide a feasible solution x:∑

i∈[n]
pi jxi j ≤ LB, ∀ j ∈ [m]∑

j∈[m]
pi jxi j ≤ LB, ∀ i ∈ [n] : pmax

i > 1
m

∑
k∈[n]

pmin
k∑

i∈J j

pi jxi j ≤ LB −
∑
i∈J j

(pi j − ∆ j)+(1 − xi j), ∀ j ∈ [m] : j active and J′j , ∅∑
j∈[m]

xi j = 1, ∀ i ∈ [n]

xi j ∈ [0, 1], ∀ i ∈ [n], j ∈ [m].

The external loop, which starts in step (4) and ends in step (12) of Algorithm 19, increases
by one the current value of LB. If LB = UB, then the solution given by the approximation
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algorithm of Davis and Jaffe is optimal and the main algorithm stops. Otherwise, a new
polyhedron P(LB) is ready to be investigated by the internal loop (cf. lines (9)-(23)).

5.2 Branch-and-Price Method

A branch-and-price technique, which is similar to the branch-and-cut method, is a power-
ful framework for solving hard optimization problems. It offers an interesting alternative
for the general purpose mixed integer programming based on decomposition or cutting
planes. Branch-and-price combines column generation with a branch-and-bound scheme.
The first one usually produces at the root node of the exploration tree tight lower bounds
that are further improved while branching. Branching also helps to generate integer solu-
tions. However, as we show it in the next chapter, branch-and-bound can be quite weak at
computing good integer solutions rapidly since the solution for the relaxed master problem
(see Section 2.2) rarely takes on integer values.

In this section we present the general ideas of the branch-and-price algorithm. We begin
with a theoretical introduction and simple applications. Then we show how it can be used to
compute exact solutions to the R| |Cmax problem. Afterward, we discuss various branching
strategies that allow for column generation at any node in the branch-and-bound tree. Fi-
nally, we propose a general cooperation scheme between branch-and-price and local search
techniques to help branch-and-price in finding good integer solutions earlier.

5.2.1 Preliminaries

Column generation is an efficient exact method for solving large-scale (fractional) opti-
mization problems (see Section 2.2). It works with a restricted master problem, RMP, that
consists of a linear problem defined on the current, usually much smaller than in the orig-
inal problem, set of columns, and a pricing subproblem, PSP, that iteratively generates
improving columns. When the master problem contains integral constraints on some of
its variables, then usually column generation and branch-and-bound are combined. The
resulting method is called branch-and-price.

The philosophy of branch-and-price is similar to that of branch-and-cut except that the
procedure focuses on column generation rather than on row generation. In fact, pricing and
cutting are complementary procedures for tightening an LP relaxation.

In branch-and-price sets of columns are left out of the LP relaxation because there are
too many of them to be handled efficiently and most of them would have their associated
variables equal to zero in an optimal solution anyway. Then to check the optimality of
the current RMP, a pricing subproblem PSP is solved to try to identify columns to enter
the basis of the RMP. If such columns have been found, then the RMP is re-optimized.
Branching occurs when no columns price out to enter the RMP but the optimal LP solution
does not satisfy the integrality conditions. Branch-and-price, which is also a generalization
of branch-and-bound technique with LP relaxations, allows column generation to be applied
throughout the exploration of the branch-and-bound tree what we see later.
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At the first glance it may seem that branch-and-price involves nothing more than com-
bining well-known ideas for solving linear programs by column generation with branch-
and-bound. However, as Appelgren [7] observed almost 30 years ago, it is not that simple.
There are several fundamental difficulties in applying column generation techniques, which
were originally designed for linear programming, to integer programming methods [92].
These include, among others, the following drawbacks:

• conventional integer programming branching on variables may not be effective be-
cause fixing variables can destroy the structure of the pricing subproblem, and

• solving these linear programs to optimality may not be efficient, in which case differ-
ent rules need to be applied to manage the branch-and-price tree.

Related work. Recently several specialized branch-and-price algorithms have been pro-
posed in the literature for different integer problems. Routing and scheduling has been a
particularly fruitful application area of branch-and-price, see, e.g., Desrochers, Desrosiers,
and Solomon [29] for vehicle routing problems; Desrochers and Soumis [31] and Anbil,
Johnson ,and Tanga [6] for crew scheduling problems; Barnhart, Johnson, Nemhauser, and
Vance [13] for cutting stock problems; or Savelsbergh [150] for generalized assignment
problem. For a good survey on the branch-and-price technique and its applications we refer
the reader to [12, 30].

5.2.2 G-B--P Scheduling Algorithm

We are ready now to present the generic structure of the branch-and-price algorithm (see
Algorithm 20) which we have designed for scheduling unrelated parallel machines. The
overall structure of the algorithm is determined by the search procedure in the branch-and-
bound tree and corresponds to the while-loop in Algorithm 20.

We begin with the computation of the initial integer solution to the scheduling problem
defined by constraint matrix A, and vectors b and c as defined in (2.8). To this end we
use a simple heuristic which we present later in Section 6.2.2 while discussing the imple-
mentation details of the algorithm. The makespan of the initial solution x̄ defines us the
initial upper bound UB for the optimal solution. The (fractional) lower bound, LB, we set
to zero. Next, we create the first subproblem sp (it is just the relaxed original problem given
in (2.8)) corresponding to the root-node of the branch-and-bound tree, and add it together
with the actual lower bound LB into the list of subproblems S P.

We proceed with the exploration of the branch-and-bound tree unless there is no sub-
problem in S P (i.e., the search tree is empty). In every step of the while-loop, we first
remove one subproblem sp from S P and compute an optimal solution x to sp using column
generation. In the generic implementation of the algorithm we choose for subproblem sp
the one from S P with the currently smallest lower bound LB. We call it a best-first rule.
There exists other rules which we discuss later in Section 5.2.5. The optimal solution x
defines a new LB. If x represents an integer solution and LB < UB, then a new best inte-
ger solution has been found and the upper bound UB is updated accordingly. Otherwise,
we check if branching is needed, i.e., if LP ≤ UB. Note that now x is considered to be
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Algorithm 20 G-B--P-S(A,b, c)
Input: constraint matrix A

vectors b and c
Output: integer solution x̄

1: compute integer solution x̄ to the scheduling problem defined by (A,b, c);
2: UB := makespan(x̄);
3: LB := 0;
4: S P := ∅;
5: create root-node problem sp(LB) and add it to S P;
6: while S P , ∅ do
7: take subproblem sp from S P with the currently smallest LB;
8: compute optimal solution x to sp by column generation;
9: LB := makespan(x);

10: if x is an integer solution then
11: if LB < UB then
12: UB := LB;
13: x̄ := x;
14: end if
15: else
16: if LB ≤ UB then
17: choose fractional variable xi j from x;
18: create two subproblems sp(xi j = 0, LB) and sp(xi j = 1, LB);
19: add new subproblems to S P;
20: end if
21: end if
22: end while
23: return integral solution x̄;

a fractional solution to sp. To generate two new subproblems, we first choose some frac-
tional variable xi j on which we perform the branch. We describe in the next section which
branching strategy we choose. Afterward the variable has been chosen, two new subprob-
lems corresponding to xi j = 0 and xi j = 1 are added into S P. Together with each new
subproblem we save the actual value of LB. The algorithm ends when all nodes from the
branch-and-bound tree have been traversed. It may take much time until some good integer
solution is found. In Section 5.2.5 we present a hybrid computation scheme which we use
to help branch-and-price to find good integer solutions earlier.

5.2.3 Branching Strategies

An LP relaxation solved by column generation in Algorithm 20 is not necessarily integral,
and thus applying a standard branch-and-bound procedure to the restricted master problem
with its current columns does not guarantee an optimal solution. After branching it may
be the case that there exists a column that would price out favorably but it is not present
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in the master problem. Therefore, to find an optimal solution, we must generate columns
after branching. However, suppose that we use the conventional branching rule based on
the variable dichotomy (see the next paragraph), we branch on a fractional variable xi j, and
we are in the branch in which xi j is fixed to zero. Then in the column generation phase
it is possible (and quite likely what the tests show) that the optimal solution to the pricing
subproblem is the same assignment represented by xi j. In that case, it becomes necessary to
generate the column with the second smallest reduced cost. At depth d in the branch-and-
bound tree we may need to find the column with dth smallest reduced cost.

In order to prevent columns that have been branched on from being regenerated, we must
choose a branching rule that is compatible with the pricing subproblem. By compatibility
we mean that we must be able to modify the column generation subproblem so that columns
that are infeasible due to the branching constraints will not be generated and the column
generation subproblem will remain tractable.

The challenge in formulating a branching strategy is to find one that excludes the cur-
rent solution, validly partitions the solution space of the problem, and provides a pricing
subproblem that is still tractable.

Types of branching strategies for MIP. In general, branching strategies for 0−1 linear
programs are based on fixing variables. When we fix a single variable, then we have a vari-
able dichotomy strategy, and when a set of variables is fixed, then we obtain a generalized
upper bound dichotomy or GUB dichotomy, for short. The simplest, variable dichotomy
branching method is to divide the subproblem sp into two subproblems sp0 and sp1 defined
by fixing a fractional variable xi j of the optimal solution to sp, to 0 and 1, respectively. Its
main disadvantage is the uneven division of the solution space of sp. In most cases, one of
the resulting subproblems (usually sp0) has an almost identical set of solutions to that of
sp (weak-side branch), whereas the other is much more constrained (strong-side branch).
The depth of such unbalanced search trees is rather large what is caused by the long paths
of weak-side branches needed to resolve some subproblems. When applied to the R| |Cmax

problem, the depth of weak-side branches corresponding to one variable is at most m − 1.
Thus, the maximum depth of the complete branch-and-bound tree is n(m − 1).

The above disadvantage has led to the development of other branching strategies exploit-
ing the set-partitioning structure of the problem (see, e.g., the branching rule of Ryan and
Foster [148]). One such a strategy is the already mentioned GUB dichotomy branching
method [130]. We explain its main features when applied to the R| |Cmax problem. Here,
each constraint of the form

∑
j∈[m] xi j = 1, for i ∈ [n], is called a GUB constraint. Note that

the MIP formulation of the scheduling problem given in (1.2) contains n GUB constraints.
Let S represent the set of variables appearing on the left-hand side of a particular equality.
Exactly one variable in S will be set to 1 in any feasible 0 − 1 solution vector x to (1.2). It
follows that, for S 1 ⊂ S , the single variable of S set to 1 will be either in S 1 or in S \ S 1.
Equivalently, the problem can be partitioned into two subproblems, each defined by setting
the variables of either S 1 or S \ S 1 to 0. For the resulting subproblems in order to have
almost equally large sets of feasible solutions, S 1 and S \ S 1 should be of approximately
the same cardinality.

By recursively partitioning sets S 1 and S \S 1, eventually a subproblem will be left with a
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single variable of S not set to 0, which is bound to be 1. In our case, if |S 1| = |S \S 1| = m/2,
a variable is set to 1 after at most

⌈
log m

⌉
partitions (levels of the branch-and-bound tree)

since each equality GUB constraint involves m variables. Whenever a variable is set to 1,
branching proceeds by selecting another GUB constraint, i.e., another equality whose left-
hand side has at least one variable still not set to 0. It is not difficult to prove that GUB
dichotomy compared to variable dichotomy drastically reduces the depth of the search tree.
More specifically, since complete branching on a single GUB constraint requires up to⌈
log m

⌉
levels, the maximum tree depth is n

⌈
log m

⌉
.

Our branching strategy. The idea of branching in our B--P algorithm is
to employ the standard formulation of the scheduling problem directly, i.e., to use the for-
mulation given in (2.8) but with xi j ∈ {0, 1} (integrality constraints). We do not use the
disaggregated formulation based on the Dantzig-Wolfe decomposition as it was indicated
already in the previous subsection. In our case, fixing variables xi j to zero forbids job i
to be assigned to machine j, and fixing variable xi j to one requires job i to be assigned to
machine j. More specifically, to forbid a job i to be assigned to machine j, we set xi j := 0.
To require a job i to be assigned to machine j, we set xi j := 1, and all variables for columns
associated with job i except xi j, we set to zero, i.e., xik := 0 for all k ∈ [m] \ { j}.

Note that we use the variable dichotomy branching strategy described above. Its main
drawback is the uneven division of the solution space (i.e., the search tree is heavily unbal-
anced). However, when compared to the GUB dichotomy strategy, our branching method
is able to produce feasible integer solutions much earlier than the balanced approach. This
is of special interest for an effective approximation algorithm based on Algorithm 20. More
details are given in the next subsection.

5.2.4 Computational Issues

In the previous subsections we have presented the foundations of branch-and-price algo-
rithms in general. Now, we want to discuss some important computational issues that need
to be considered when implementing a branch-and-price algorithm.

Initial restricted master problem. To start the column generation scheme, an initial
restricted master problem has to be provided. This initial RMP must have a feasible LP
relaxation to ensure that proper dual information (dual variables, cf. Section 2.2) is passed
to the pricing subproblem. Depending on the application, it is not always obvious how
to construct such an initial RMP. However, if it does exist, it can always be found with a
two-phase method similar to the method used by simplex algorithms to find an initial basic
feasible solution. It is the so called phase-I of simplex using ”big-M” penalty. Here, a set
of artificial variables with large negative costs and associated columns that form an identity
matrix is used. The artificial variables ensure that a feasible solution to the LP relaxation
exists. Note that an initial RMP with a feasible LP relaxation has to be provided at each
node of the branch-and-bound tree. Therefore, the artificial variables are usually kept at all
nodes of the branch-and-bound tree what saves significantly the computation time.
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To find an initial RMP with a feasible LP relaxation, heuristics can also be applied suc-
cessfully. We present some of them while discussing the implementation details of the
column generation in Section 6.2.2.

Column management. In the minimization process of a linear program, any column
with negative reduced cost is a candidate to enter the basis (see Section 2.2). The pricing
subproblem in column generation is to find a column with the smallest reduced cost. There-
fore, if a column with negative reduced cost exists, the pricing subproblem will identify it.
This guarantee that the optimal solution to the LP can be found.

However, it is not necessary to select the column with the smallest reduced cost [12].
Any column with a negative reduced cost will do the job. This observation can further
improve the overall efficiency when the pricing subproblem is computationally intensive.
Depending on the pricing subproblem, it may even be possible to generate more than one
column with negative reduced cost into RMP per iteration without a large increase in com-
putation time (cf. Section 6.2.2). It is evident that such a scheme increases the computation
time per iteration of column generation since a larger RMP has to be solved, but it may de-
crease the number of iterations. Especially, in large linear programs containing thousands
of columns, one need to consider this possibility and choose carefully the number of new
columns entering the basis of RMP per iteration. The reader can see in the next chapter
how it does influence the convergence, and thus the overall performance of the B-
-P scheduling algorithm.

Another observation coming from the practice shows that during the column generation
process, RMP keeps growing. It may be advantageous to delete non-basic columns with
large positive reduced costs from RMP in order to reduce the time per iteration.

Vanderbeck [170] discusses many issues related to the selection of a subset of good
columns. On the one hand, we are trying to produce an integer solution to the master
problem, on the other hand we are trying to solve LP relaxation of RMP. Limited com-
putational experience seems to suggest that when the pricing subproblem can be solved to
optimality efficiently, then adding only the most profitable column works best, and when the
pricing subproblem is computationally intensive using approximations and adding multiple
columns works best.

LP termination. The branch-and-bound framework has some inherit flexibility that can
be exploited in branch-and-price algorithms like our. Note that branch-and-bound is essen-
tially an enumeration scheme that is enhanced by fathoming based on bound comparisons.
To control the size of the branch-and-bound tree, it is best to work with strong bounds.
Clearly, there is a trade-off between the computational efforts associated with computation
of good bounds but evaluation of small trees, and the computation of weaker bounds but
evaluation of bigger trees. In the case of LP-based branch-and-bound algorithms in which
the LPs are solved by column generation, there is a very natural way to explore this trade-
off. Instead of solving RMP to optimality, i.e., generating new columns as long as profitable
columns exist, we can choose to prematurely end the column generation process and work
with the bounds of the final RMP value. Lasdon [108] and Farley [43] describe simple
and easy to compute bounds on the final RMP value based on the LP value of the current
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(prematurely terminated) RMP and the corresponding reduced costs. This is especially im-
portant in view of the tailing-off effect that many column generation schemes exhibit, i.e.,
requiring a large number of iterations to prove the LP optimality.

Dual solutions. Recall that the objective function of the pricing subproblem depends
on the dual variables of the LP relaxation of RMP. Consequently, if there are alternative
dual solutions, we may pick any point on the face defined by these solutions. Simplex
algorithms will give a vertex on this face, whereas interior point algorithms will give a point
in the center of this face. A central point appears to have the advantage of giving a better
representation of the face. Although, no extensive computational tests have been done
to investigate the difference, it seems that using interior point methods works somewhat
better [118] (see our computational results in Section 6.3.1).

Approximate feasible solutions. A branch-and-price algorithm can easily be turned
into an effective approximation algorithm when a good feasible integer solution is the major
concern and proving the optimality of lesser or no importance. This is accomplished by
branching and searching the tree in a greedy fashion. If the goal is to prove the optimality,
it always makes sense to choose a branching decision that divides the solution space evenly,
i.e., we expect to be equally likely to find a good solution at either of the two nodes created.
To this end we can use the GUB dichotomy strategy (cf. Section 5.2.3). If the goal is to
find a good feasible solution, it makes sense to choose a branching decision that divides the
solution space in such a way that we are more likely to find a good solution in one of the
two nodes created and then choose this nodes for evaluation first. We then greedily search
the tree always following the branch that is more likely to yield a good feasible solution.
In [11] for crew paring problem, e.g., the LP relaxation is not completely re-optimized at
each node of the branch-and-bound tree, instead a maximum number of column generation
iterations per node is set and columns are generated only when the LP bound increased
significantly above the value of the root LP.

A somewhat similar greedy search strategy for finding good feasible solutions has been
developed based on the standard, variable dichotomy branching rule. The approach is effec-
tive when maintaining the ability to backtrack in the tree search is not important [12]. Each
time a variable with a high fractional value is chosen and its value is permanently fixed to
one. In [118] this strategy has successfully been applied to the crew pairing problem.

5.2.5 Heuristic Extensions of B--P Algorithm

Now we present a hybrid computation scheme which we use to help branch-and-price to
find good integer solutions earlier. Our method is based on the techniques presented in [30]
which were originally developed for the vehicle routing problem with time windows. Sim-
ilar to that method, our acceleration scheme is based on the cooperation between column
generation and local search. Before we describe the cooperation scheme, we give some
important facts about local search techniques.

Local search is a completely different optimization technique with opposite properties to
just presented branch-and-bound methods. Local search algorithms use operators to define
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a neighborhood around a given solution or a set of solutions. The subregion of the search
space is then explored iteratively to generate better solutions, whereas various strategies
(metaheuristics), e.g., taboo search, simulated annealing, evolutionary algorithms, ant sys-
tems, and others are used to move from one neighborhood to the next one in order to escape
local minima. Local search algorithms are effective at generating quickly excellent solu-
tions. However, they do not provide the user with a lower bound on the objective. Hence,
the difference between the solution obtained with a local search method and the optimal
solution cannot be estimated, and thus the user does not know if more time should be in-
vested to reach a better solution. For a good survey on the local search techniques used in
combinatorial optimization we refer the reader to [1, 102, 119].

Subproblem

Pricing

Branching

Master Problem
(local search)

columns

columns

integer solution

fractional dual 
solution

new
columns

dual values

best integer solution
known so far

new columns
integer solution
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Branch−and−Price Generation of integer solutions

Master Problem
(LP Relaxation)

Master Problem
(MIP)

Figure 5.1: Cooperation scheme based on ideas from [30].

The cooperation scheme which we use is depicted in Figure 5.1. The left hand side of the
figure shows the usual relaxed master problem and the pricing subproblem of the branch-
and-price method. Note that the pricing subproblem can be solved by any optimization
method (see Section 6.2.2). On the right hand side of the figure two components for ob-
taining integer solutions are specified. Firstly, a mixed integer programming (MIP) solver
is called regularly (after termination of column generation, see Section 6.2.2) on the master
problem with the set of columns of the current restricted master problem without relaxing
the integrality constraints. If the MIP solver is called at the root node of the branch-and-
price tree, then the best integer solution found so far is used as the first solution of the MIP
problem. However, if the MIP solver is called at a node further down the branch-and-price
tree, then the best integer solution found so far might not be valid for the branching deci-
sions taken at that node. Hence, it cannot always be used as a first solution for the MIP
problem. The effort spent on solving the MIP problem is controlled with a time or node
limit. When the allowed time limit is reached, the exploration of the branch-and-price tree
is resumed. Secondly, local search is also called regularly (see Section 6.2.2) to solve the
master problem with initial solution being the best integer solution found so far. Unlike
the MIP solver, local search is not restricted to combining existing columns of the current
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restricted master problem, i.e., local search may not only provide a better combination of
existing columns, but it may also introduce new columns. Consequently, the columns gen-
erated by it are more diverse what is likely to accelerate pricing, e.g., because it has greater
chances to overcome the degeneracy.

The strength of this hybrid scheme is diversification by means of using different algo-
rithms for solving the same problem [30]. Branch-and-price obviously benefits from local
search that is more effective at finding feasible solutions. But in turn, local search bene-
fits from branch-and-price that provides it with diverse initial solutions. Indeed, the main
drawback of local search algorithms is to escape local minima. To overcome this, the strat-
egy of various metaheuristics is the attempt to control a series of moves that increase the
value of the objective function in order to reach a different and more promising region of
the solution space. In our cooperation scheme, the upper bound for the master problem and
the MIP cutoff are always updated with the value of the best integer solution found so far.
Thus, when the MIP solver finds a new integer solution or when the solution of the relaxed
master problem is integer, it is by construction an improvement on the last local optimum
found by local search. So, diversification is achieved and the lower bound for the objective
function is improved at the same time.

Branch-and-price is an exact method. It will in the end find the optimal integer solution,
and thus our cooperation scheme is not very useful when exploring the branch-and-price
tree to optimality. However, the complete exploration may find good integer solutions only
late in the computation. The cooperation scheme helps to find good integer solutions at an
earlier stage of the computation what has numerous advantages. First, the user can stop the
optimization as soon as satisfied with the quality of the integer solution found so far, and use
truncated exploration of the branch-and-price tree as a powerful heuristic that also provides
tight lower bounds. Next, good upper bounds are helpful to solve the pricing subproblem
more effectively. A good upper bound may also reduce the number of iterations between
master problem and subproblem at each node. Finally, knowing a good upper bound early
might help to explore only a relatively small number of nodes in the branch-and-price tree.
Given a fixed branching strategy, a best-first exploration strategy guarantees that only the
children nodes of a node with a lower bound smaller than the optimal objective value have
to be explored. In this sense, best-first search guarantees that a minimum number of nodes
is explored. However, best-first search can fail to produce good integer solutions until at the
very end of the tree exploration. This is why other exploration strategies such as depth-first
search are often preferred, although they lead to higher number of explored nodes. The
cooperation scheme which we use allows us to choose a tree exploration strategy such as
best-first search, because this scheme does not rely only on branching to generate integer
solutions.
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Experimental Study

In this chapter we present an experimental study on various algorithms for solving the
R| |Cmax problem. We restrict our research only to the algorithms discussed in detail in
the previous chapters. These algorithms, however, represent to our best knowledge the
present state-of-the-art of solution methods for this scheduling problem. They use al-
most all types of computational frameworks developed for this problem so far. The al-
gorithms range from purely combinatorial algorithms using generalized network flows or
simple list scheduling, to more sophisticated methods based on linear programming and
rounding. In the tests we consider both deterministic as well as randomized approaches.
Furthermore, in our selection of algorithms there are techniques which compute exact solu-
tions, like, e.g, those based on the branch-and-bound scheme, or approximate solutions with
(e.g., A-U-T and the two-step approaches) or without (e.g.,
the large neighborhood search heuristic) guarantee for the optimum. Some of them, e.g.,
list scheduling algorithms, go back to the late 1960s when they were for the first time for-
mulated for solving simple optimization problems. We consider also very new techniques
like, e.g., our new purely combinatorial A-U-T algorithm.

In the following sections we discuss first the motivation of the experimental study. Then,
we give the complete list of tested algorithms together with some, relevant to the experi-
ments, implementation details. Here, we put much more attention to the improvement pro-
posals and various implementation issues of the A-U-T al-
gorithm. Next, we present three different test models according to which test instances
are generated. Here, we describe also shortly the experimental setup which we use in our
simulations. Finally, we present the computational results followed by a careful analysis.

6.1 Motivation

The computational experiments which results we present in the last section of this chap-
ter are motivated, firstly, by the importance of the unrelated scheduling problem in general
both for the theoretical and the practical research, and secondly, by the wish to evaluate
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in practice new algorithms presented in this thesis which we have designed for solving the
R| |Cmax. Here, we pay special attention to the A-U-T al-
gorithm presented in Chapter 3. As already indicated there, this new, purely combinatorial
approach computes 2-approximate solutions within the best worst-case running time known
so far. Therefore, the primary goal of our research here is to evaluate its efficiency in prac-
tice. In the following we present two implementations of the algorithm (with and without
heuristic improvements), and compare them with algorithms delivering both approximate
and exact solutions which have been developed for this problem over the past decades. We
are especially interested in those based on the two-step approach what is motivated by their
simplicity and common usage in practice. As measures of interest, the total computation
time, the value of makespan, and the usage of operational memory have been chosen.

6.2 Algorithms and Experimental Setup

6.2.1 List of Tested Algorithms

In order to evaluate our new algorithms and especially the A-U-
T algorithm, eighteen deterministic and randomized algorithms and heuristics [27,
71, 85, 112, 125, 126, 160, 168] for the R| |Cmax problem have been implemented and tested.
In the following, for the sake of completeness of the presentation, we give a short list of all
of them. Additionally, in several cases, implementation details are presented which, from
our point of view, are important to the experiments. In order to simplify the presentation
and later the analysis we introduce here for each algorithm a short version of its name which
can be found, together with a short description and references, in the following tables.

2–approximation algorithms:

Name Short description Sections

TS-S
implementation of the algorithm by Lenstra et al. (see
Algorithm 1); it solves LP relaxation with simplex algo-
rithm and uses generic rounding;

2.1.2,
2.1.3,
6.2.2

TS-B
implementation of the algorithm by Lenstra et al. (see Al-
gorithm 1); it solves LP relaxation with barrier algorithm
and uses direct rounding;

2.1.2,
2.1.4,
6.2.2

TS-C
implementation of the improved two-step approach (see
Algorithm 2); it solves LP relaxation with column gener-
ation algorithm and uses generic rounding;

2.2, 6.2.2

TS-R
implementation of randomized two-step approach (see
Algorithm 3); it solves LP relaxation with column gen-
eration algorithm and uses randomized rounding;

2.3

UTA- generic implementation of the A-
U-T algorithm (see Algorithm 6);

3, 6.2.2

UTA- improved implementation of the A-
U-T algorithm (see Algorithm 6);

3, 6.2.2
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Heuristic approaches:

Name Short description Sections

I-K-{A,B,C,D} implementations of the four simple list scheduling
heuristics given by Ibarra and Kim;

4.1.1

D-J implementation of the list scheduling algorithm by
Davis and Jaffe (see Algorithm 7);

4.1.2

LPT-{1,2,3} implementations of the three adaptations of the LPT
algorithm by Graham (see Algorithm 8, 9 and 10);

4.1.3

P-E

implementation of the second heuristic using par-
tial enumeration designed by Mokotoff and Jimeno
(see Algorithm 12); it solves the MIP subproblem
with the branch-and-cut algorithm from the ILOG
CPLEX 9.0 package;

4.2

B--G
implementation of the large neighborhood search
heuristic by Sourd based on a branch-and-greed
scheme (see Algorithm 15 and 16);

4.3

Exact solution methods:

Name Short description Sections

C-P implementation of the exact cutting plane algorithm
given by Mokotoff and Chrétienne (see Algorithm 19);

5.1

B--P implementation of the exact branch-and-price algorithm
(see Algorithm 20);

5.2, 6.2.2

6.2.2 Selected Implementation Details

Now, as it was indicated in the previous section, we give some selected implementation de-
tails for several algorithms listed above. Here, we pay special attention to the implementa-
tion details of the A-U-T algorithm. More specifically, we
describe very carefully the three most crucial improvements of the generic U-
T algorithm which lead to a significant increase of the overall performance of the
algorithm.

TS-S: The LP relaxation is solved with the sifting algorithm from the ILOG CPLEX
9.0 package [87]. In the second step, we round the fractional solution by applying the
generic matching algorithm by Lenstra et al. from [112].

TS-B: The LP relaxation is solved with the barrier method from the ILOG CPLEX
9.0 package. In the second step, we round the non-basic (fractional) solution computed
with the interior point algorithm into an integer solution by applying the direct rounding
algorithm by Shmoys and Tardos [157] as described in Section 2.1.4. In the case we are
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solving the P||Cmax problem, this relative complicated method can be repleaced with a much
simpler rounding procedure proposed by Plotkin et al. [141] (cf. Section 2.1.3).

TS-C: In the first step, in order to find a feasible initial set of columns for the re-
stricted master problem RMP, a hybrid method is used. It needs O(nm log n) running time
and is composed of three subroutines. Most of the initial columns are generated with the
algorithm by Jaffe and Davis [27]. Additional columns are computed with two simple
heuristics. They compute columns which correspond to two different feasible solutions for
the original scheduling problem. Both heuristics assign the jobs sequentially and differ
from each other in the order the jobs are processed. Interestingly, only when all three algo-
rithms are used, the initialization produces very effective (i.e., significantly speeding up the
convergence of the column generation process) set of columns. Resulting RMPs are solved
with the primal simplex algorithm from the ILOG CPLEX 9.0 package. (During the imple-
mentation process, we have tested a number of different algorithms for solving RMPs. But
only the primal simplex algorithm delivered a satisfactory performance. That can be ex-
plained by the primal structure of RMPs.) Because of the sparse structure of the constraint
matrix A, the reduced costs c̄k, and thus all pricing subproblems PSP can be computed very
fast in time O(nm) by enumeration. With each iteration of the column generation process,
we add up to 20 new columns to the constraint matrix a of RMPs provided at least one
column with a negative reduced cost exists. In the second, rounding phase of the algorithm,
we try first to find an integral optimal solution to the MIP defined by the constraint matrix
a of the last optimal RMP. To solve this MIP, we use the branch-and-cut algorithm from
the ILOG CPLEX 9.0 package. Note that the integer solution to this MIP is not necessar-
ily optimal for the original scheduling problem. If the optimal integral solution cannot be
found within an allowed time limit, the rounding procedure by Lenstra et al. from [112] is
called for the fractional optimal solution found with the column generation algorithm and a
2-approximate solution to the original scheduling problem is computed.

UTA-: We have developed two versions of A-U-T
algorithm. The first one, UTA-, is a generic implementation of the approximation
algorithm. We give now two main improvements which we have carried out in the structure
of the U-T algorithm in order to make it more effective.

The first improvement regards the definition of the machine partitions given in Section 3.3
by Definition 3.3.2. In order to improve the quality of solution produced by the algorithm
for practical instances, we redefine this definition in the following way:

Definition 6.2.1 Let T ∈ IN and α be a T-feasible assignment. We partition the set of
machines M into three subsets:

M−(α) = { j | δ j(P, α) ≤ T }
M0(α) = { j |T + 1 ≤ δ j(P, α) ≤ T + a j}

M+(α) = { j | δ j(P, α) ≥ T + a j + 1}

where a j = min{T ; maxi∈J{pi j < ∞}}.
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Note that by this new definition the upper bounds for loads on machines in M+ and M0

become smaller. Since now the maximal load on machines in M0 may be less than 2T (as
forced by Definition 3.3.2), the makespan of the resulting schedule may also be smaller
then 2T . This new definition has no influence on the correctness of the theoretical results
presented in Section 3.4 and Section 3.5.2. Nevertheless, for the sake of completeness, we
give in the following the complete proof of a new version of Lemma 3.4.1. It is sufficient
to prove Lemma 6.2.1 to show that the new definition of the machine partitions implies no
changes in the structure of the U-B-F algorithm to ensure its conver-
gence. Lemma 6.2.2 which is an adaptation of Lemma 3.4.2 to Definition 6.2.1 summarizes
this observation.

Lemma 6.2.1 Let v0 be a helpful machine of minimum height. Let M+, M0, and M− be
the machine partitions as given in Definition 6.2.1. Then there exists a sequence v0, . . . , vr

where s(vi) = vi+1, for all 0 ≤ i ≤ r − 1, v2i ∈ M, for all 0 ≤ i ≤ r/2 and v2i+1 ∈ J, for all
0 ≤ i < r/2 with the following properties:

(a) (vi, vi+1) ∈ E0
α and h(vi) = h(vi+1) + 1

(b) δv0 ≥ T + 1 + ps(v0),v0

(c) T + 1 ≤ δv2i + ps(v2i−2),v2i − ps(v2i),v2i ≤ T + av2i , ∀0 < i < r/2

(d) δvr + ps(vr−2),vr ≤ T + avr

where av2i = min{T ; maxk∈J{pk,v2i < ∞}}, for all 0 ≤ i ≤ r/2.

Proof: By Definition 3.4.1, 0 < h(v0) < ∞ and thus there exists a path from v0 to a
machine in M− that defines the height of v0. On this path (a) must hold. Furthermore,
condition (b) follows directly from the definition of a helpful machine.

Note that a machine j ∈ M+ is helpful if h( j) < ∞. So if we start a path with a helpful
machine of minimum height, then all machine nodes v2, v4, . . . , vr−2 belong to M0 and vr

may belong to M0 or M−. Therefore

δv2i ≤ T + av2i ,∀0 < i ≤ r/2.

Furthermore, none of these nodes is helpful which implies that

δv2i < T + 1 + ps(v2i),v2i ,∀0 < i ≤ r/2.

There are two cases to consider now. If δv2i + ps(v2i−2),v2i ≤ T + av2i , then r = 2i and condition
(d) holds. On the other hand, since av2i ≥ ps(v2i),v2i

δv2i + ps(v2i−2),v2i ≥ T + av2i + 1
⇒ δv2i + ps(v2i−2),v2i − ps(v2i),v2i ≥ T + av2i + 1 − ps(v2i),v2i

⇒ δv2i + ps(v2i−2),v2i − ps(v2i),v2i ≥ T + 1,



96 Chapter 6. Experimental Study

what proves the lower bound given in (c). To proof the upper bound, note that v2i is not
helpful ∀0 < i ≤ r/2, and av2i ≥ ps(v2i−2),v2i . It follows that

δv2i < T + 1 + ps(v2i),v2i

⇒ δv2i − ps(v2i),v2i + ps(v2i−2),v2i ≤ T + ps(v2i−2),v2i

⇒ δv2i + ps(v2i−2),v2i − ps(v2i),v2i ≤ T + av2i ,

proving the upper bound given by (c). This completes the proof of the lemma.

Lemma 6.2.2 Let β be the assignment computed by the call to U-B--
F(α,G0

α(T ),P,T). Then

(a) j ∈ M−(α)⇒ δ j(P, β) ≥ δ j(P, α)

(b) j ∈ M0(α)⇒ T + 1 ≤ δ j(P, β) ≤ T + a j

(c) j ∈ M+(α)⇒ δ j(P, β) ≤ δ j(P, α).

where a j = min{T ; maxi∈J{pi j < ∞}}.

The second improvement concerns the introduction of two different data structures which
are used to represent the bipartite graph given by Definition 3.3.1. We have a job-machine
oriented structure which is used globally in binary search by the approximation algorithm
and locally by the U-B-F algorithm to represent admissible graphs
(see Section 3.4). This data structure consists of machine and job nodes. The information
about edges adjacent to a given node is saved in this node in two double-linked lists (one
for in-coming edges, one for out-going edges). The second, machine oriented structure is

J1 J2 J3 J4

M3M2M1

M2cπ=8

cπ=1 cπ=2

cπ=7
cπ=3

cπ=4 cπ=3cπ=5

cπ=4
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J1 J2

M3

M1

O A(  )

Figure 6.1: Contraction of the bipartite graph into the machine oriented representation.

used to speed up the computations of admissible graphs. It consists only of machine nodes.
Information about adjacent job nodes and edges is saved in machine nodes. To this end, for
each machine node j, we use a double-linked list L to save each machine node k which is
connected with machine node j by a two-edge in-coming path, i.e., for which there exist
two edges (k, i) ∈ E1

α and (i, j) ∈ E2
α in graph Gα(T ) (see Definition 3.3.1) defining a two-

edge path from machine node k to machine node j via job node i. Note that there can exist
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more than one two-edge path connecting machine k with machine j. To this end, each job
node i through which these paths are passing is saved together with node k in the list L.
Furthermore, we compute for each such two-edge path its reduced cost, cπki + cπi j, and mark
a job node which lies on a path with a smallest reduced cost as active. More specifically,
job node i is active if i = arg minl∈J{cπkl + cπl j | (k, l) ∈ E1

α ∧ (l, j) ∈ E2
α}. For the case there

are more than one two-edge path with a smallest reduced cost, all jobs lying on them are
marked as active.

The second structure is thus a contracted version of the first structure and can be com-
puted in time O(A) where A is the number of edges in Gα(T ). The usage of two different
data structures is motivated by huge differences in size between the graphs used globally
in the binary search and the admissible graphs used by U-B-F. The
introduction of the contracted structure improves significantly the computation times of ad-
missible graphs. Figure 6.1 shows these two equivalent structures with a simple example.
With bold characters are marked the active job nodes. Note that the second graph includes
already information about the shortest direct connection between two given machine nodes.

UTA-: In the second version of the algorithm we use, additionally to the changes
discussed in the previous paragraph for the implementation of UTA-, a better inter-
phase initialization of the approximation algorithm. It takes place between two consecutive
binary search steps of the algorithm. By using it, not all results computed in the previous
phase get lost with the beginning of the next phase, i.e., computed assignment and node
potentials can be reused. Since our algorithm uses the P-D approach (see Sec-
tion 3.3), an initial assignment must maintain the reduced cost optimality condition that is,
for each edge (i, j) in the bipartite graph, the reduced cost cπi j ≥ 0 [3]. To initialize a new
binary search step with the previous solution β (with whole or just a part of it), we need to
check if this condition is fulfilled.

There are two cases to consider when a binary search step terminates (cf. Algorithm 5).
In the first case, the U-T terminates with M+ , ∅, and the next binary
search step is initialized with increased value of T . When T increases, new edges can be
added to the bipartite graph. For each such edge, we check if its reduced cost is nonnegative.
Here, we use node potentials π from the previous solution β. If only one edge does not fulfill
the reduced cost optimality condition, we initialize the next step like in UTA-, i.e.,
each job is assigned to a machine where its processing time is minimum.

In the second case, U-T terminates with M+ = ∅, and the next binary
search step is initialized with T of smaller value. When T decreases, some edges must
be deleted from the bipartite graph because their processing times are greater than T . In
particular, some jobs may become unassigned. For each such job node i which becomes
unassigned, we choose machine node j on which it has the minimal processing time. Af-
terward, using node potential π from the previous solution β, we check for each edge ( j, i)
if the reduced cost optimality condition is fulfilled. If this is the case, we use the previous
solution β as initialization. Otherwise, we initialize the next step as in UTA-. We
show in Section 6.3 that the refined initialization process significantly improves the conver-
gence of the computations and thus the overall efficiency of the algorithm, especially for
difficult instances.
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B--P: To compute the initial assignment α, we use the same hybrid method
like in the TS-C algorithm. Each subproblem sp is solved with the column generation
method. Here, we use the same parameters like described for the TS-C algorithm.
After a subproblem sp is solved, we check its integrality by enumeration in time O(nm).
Simultaneously, we search for a fractional variable to branch on. Having found a fractional
variable, we generate two new subproblems as described in Section 5.2.3, and insert them
into a heap-organized list of subproblems S P. The subproblem with the currently smallest
lower bound LB in S P is on the top of the heap.

Now we describe several implementation details concerning the cooperation scheme
which we use to accelerate the convergence of the algorithm. For solving the MIP prob-
lems we employ the branch-and-cut algorithm with time limit from the ILOG CPLEX 9.0
package. To perform the local search we use a large neighborhood search scheme [155]. It
is based upon a process of continual partial assignment and re-optimization. In particular,
it proceeds by iteratively fixing some assignment variables of the problem to their values in
the currently best integer solution x̄ (obtained with column generation or the MIP solver)
and solving (re-optimizing) a smaller MIP subproblem on the rest of the variables (they de-
fine a neighborhoodV(x̄) of x̄) with the branch-and-cut algorithm from the ILOG CPLEX
9.0 package. If a better integer solution cannot be found during a given number of itera-
tions, then the subproblem is either enlarged, i.e., more jobs are fixed to their values in the
currently best integer solution, or interrupted when the allowed time limit elapsed. Other-
wise, x̄ is replaced by a new, better solution and the next MIP subproblem defined by a new
neighborhoodV(x̄) is re-optimized. One iteration of partial relaxation and re-optimization
is considered as the examination of a powerful neighborhood move. The procedure ter-
minates when a satisfactory improvement in the best integer solution has been reached or
when a specified time limit has elapsed.

As it can be expected, a fair amount of tuning time may be required in order to know when
and for how long the MIP solver and local search should be called. Solving completely the
MIP formulation of the master problem is time consuming, therefore we use a time limit for
the MIP solver. Moreover, the MIP solver is called only when we know that it has a good
chance to find an improved integer solution. To decide on this, we observe the integrality
gap between the best known integer solution and the value of the current fractional solution
to the master problem obtained with column generation. When it is relatively high, then
we call the MIP solver. Another reason to start the MIP solver may be a small number of
integer-infeasible variables in the fractional solution to the master problem.

Local search is called for post-optimization each time a new integer solution is found
by the MIP solver or when the solution to the relaxed master problem is integer. Finally,
a simple adaptive scheme can be used which decreases or increases the frequency and the
computation time allocated to the MIP solver and local search according to their respective
success rates [30]. Here, appropriate statistics have to be collected and analyzed.

6.2.3 Test Models

To evaluate the algorithms we use artificially generated test instances. Each instance be-
longs to one of the three different test models. The models are defined as follows:
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Model A: There is no correlation between the machines and the jobs. Processing
times pi j are generated from uniform distribution [1..100].

Model B: The jobs are correlated. Each processing time pi j = bi + di j where bi

and di j are two randomly generated integers from uniform distributions on
[1..100] and [1..20], respectively. Intuitively, bi can be regarded as a mean
value of processing time of job i, and di j as its deviation.

Model C: The machines are correlated. Each processing time pi j = a j + di j where
a j and di j are two randomly generated integers from uniform distributions
on [1..100] and [1..20], respectively. Here, similar to Model B, a j can be
seen as a mean value of machine performance for machine j, and di j as its
deviation.

Note that the two last models put some restrictions on the processing times. They are also
more difficult to solve, in particular, for the combinatorial algorithms. Details will be given
in Section 6.3. Similar models were used previously in the literature, e.g, in [58, 126, 160].
To our best knowledge, there exists no generally accepted set of difficult test instances
(benchmarks) for the R| |Cmax problem.

6.2.4 Experimental Setup

All tested algorithms, including both versions of A-U-T,
are implemented in C/C++ using standard libraries and compiled with a GNU compiler
gcc 3.2.3. The simplex, sifting, barrier, and branch-and-cut procedures, all from the ILOG
CPLEX 9.0 Callable Library [87], are used together with the ILOG Concert Technology
2.0 [86] in the implementation of TS-S, TS-B, TS-C, TS-R,
B--P, and P-E algorithms. All techniques are computation-
ally tested on two machines. The first one, a Sun Fire 3800 machine equipped with eight
900MHz ultraSPARC III processors and 8GB RAM working under Solaris 9 operating sys-
tem, is used in particular to test the ability of the algorithms to solve large-scale problem
instances. Here, we are able to observe how much operational memory the algorithms need
to solve a very large problem. The second machine, a desktop computer with a single
2.4GHz Pentium IV processor and 1GB RAM working under Linux 2.4.21 operating sys-
tem. We use it to carry out efficiency tests, i.e., tests where the quality of solution together
with the computation time are measured. In the analysis of the results, we do not point out
unless it is of crucial importance, on which machine given results have been obtained.

6.3 Computational Results

In the following we present various computational results obtained from the experiments
on the algorithms listed in Section 6.2.1. The goal of our practical simulations is to evaluate
the A-U-T algorithm and other new algorithms, which we
propose in this work, and compare them with various techniques broadly used in practice to
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solve the R| |Cmax scheduling problem. The results are divided into three separate sections.
In the first part, we discuss the results delivered by the algorithms computing solutions with
approximation factor of 2, i.e., by all two-step algorithms plus the two implementations of
the A-U-T algorithm. In the second part, we concentrate
more carefully on the quality of solutions delivered by the A-U-
T algorithm. To this end, we compare it with the two branch-and-bound meth-
ods, B--P and C-P both used for computing exact solutions to the
scheduling problem. Since the importance of the heuristic methods solving very efficiently
large-scale practical problems cannot here be neglected, we dedicate the last section to them
and compare the efficiency and quality of solutions produced by methods from Chapter 4
with those computed by our combinatorial algorithms.

6.3.1 Evaluation of 2-approximation Algorithms

As it was already indicated, we evaluate first the computational efficiency and the makespan
quality of the 2-approximation algorithms presented in this thesis. We test them on a
large number of problem instances generated according to the three models defined in Sec-
tion 6.2.3. To analyze the results, which include computation times and makespans, we use
two types of diagrams. In the first paragraph, we make use of the performance diagrams
to present the collective behavior (i.e., across all tested instances) of the algorithms. We
use them both for the computation time and the makespan. They show, similar to the his-
tograms, for each tested method the percentage of tested instances for which this method
produced the best result. In the second paragraph of this section we use traditional time
graphs showing the total average computation time in dependence of the problem size. The
size of instance is given as a tuple (n,m). The growth of the size is then defined as an in-
crease in n, or m, or in both. Finally, in the last paragraph we show the computation time in
function of the number of machines, while the number of jobs stays fixed.

Performance diagrams. For each model we choose the following sizes of instances:
m ∈ {10, 25, 50, 100, 200, 350, 500, 750, 1000} and n = 10m. The factor of 10 is mo-
tivated by the outcome from the first tests with Model C. Those tests have shown that
the A-U-T algorithm needs the most time when the num-
ber of jobs n is about tenfold greater than the number of machines m. For the other models
we have not observed similar relation between n and m. In the main tests, for each problem
size (n,m), 10 different instances are generated and solved. To our best knowledge, it is the
first time when instances of such large sizes are considered in an experimental research on
the R| |Cmax problem. The largest instances considered so far contained up to 1000 jobs and
50 machines [57, 125, 126, 167]. Obtained results are used then to construct performance
diagrams, both for the total computation time and the makespan. The value of performance
ratio is given always on the x-axis. It shows, for each result of a given instance, the ra-
tio between this result and the best result among all methods for this instance. The y-axis
shows, for each method, the percentage of all tested instances for which the performance
ratio is not greater than a given value of performance ratio. Note that the more upper left
is a given graph located, the better is the result which it describes. Moreover note that for
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Figure 6.2: Performance diagrams for Model A.
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Figure 6.3: Performance diagrams for Model B.

performance ratio equal to 1, the sum of distribution values (indicated on the y-axis) com-
puted over all methods is often greater than 100%. This can be explained by the fact that
for some test instances several methods return exactly the same results (i.e., the same value
of makespan or computation time). In particular, in the measurements of computation time
we observe this only for a few test instances, and thus their influence on the main results is
negligible. A reason for this is the precision of measurement which is limited to 0.01 sec.

The graphs in Figure 6.2, 6.3, and 6.4 show the performance diagrams for Model A, B,
and C, respectively. Note that in the performance diagrams for computation time we do not
consider the TS-R method. It uses to solve the LP relaxations the column gen-
eration scheme, and thus its computation times are like those of the TS-C method.
In Model A, UTA- and UTA- perform much better (each method in about
60% of all instances) than the other methods. Clear to see is not only their advantage
over the TS-S method, but also over the TS-C algorithm. Here, the barrier
method delivers similar results like the simplex-based two-step approach. The sched-
ules with the best makespans in Model A, however, are computed with the two-step ap-
proaches. Here, TS-B produces the best makespans among all instances followed
by TS-C and TS-S. In Model B with correlated jobs, unfortunately, our com-
binatorial algorithms are not so efficient as in the previous case. The UTA- performs
better than the improved implementation and delivers best solutions only for 20% of all in-
stances. The fastest method here is TS-C which is the best for almost 75% of all
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Figure 6.4: Performance diagrams for Model C.

instances. This method results also with the best computation times in Model C. Only for
small instances (n ≤ 500,m ≤ 50), TS-C is outperformed by other methods. TS-
S and TS-B achieve in Model B the worst processing times. In Model B and
C, UTA- performs better than TS-S. In Model C, UTA- is much bet-
ter than UTA-. This fact can be explained by the usage of the improved interphase
initialization (see Section 6.2.2). A detailed explanation of this phenomenon is given in the
last paragraph of this section. In Model B and C, both U-T algorithms
produce schedules with the best makespans. Their advantage over other methods is clearly
to observe in Model B where only in about 8% of all instances they return worse makespans.

Computation time in dependence of the problem size. Figure 6.5 shows for each
test model the average computation time (of five different instances of the same size) in
function of the problem size (n,m). The number of jobs is set to n = 10m. The motiva-
tion for this is the same like that given in the previous paragraph. The diagrams show on
x-axis the number of edges, A, in the bipartite graph of the scheduling problem (see Sec-
tion 3.3). Note that the number of edges of not restricted scheduling problem is equal to
nm. Therefore, an increase of A can be interpreted as a growth of the scheduling problem.
All presented in Figure 6.5 and 6.6 graphs are enriched with appropriate trend lines (of
polynomial or exponential character) to make the analysis easier.

In the case when the instances grow, both versions of the A-U-
T algorithm perform in Model A and B much better than the TS-S and TS-
B techniques (they have exponential character). Here, they also are the best solution
methods (in Model A even much better than TS-C). Moreover, in Model A, the sizes
of instances for TS-S and TS-B are radically limited. Because of the heavy
usage of operational memory, both simplex and barrier procedures are not able to solve in-
stances larger than (5000, 500) on the second system with 1GB of RAM (cf. Section 6.2.4).
Also in cases where it is still possible to deliver solutions, the computation times which
they need are very long (more than 1000 sec.) in comparison with those of other meth-
ods. This is the reason why we do not depicted them on the graphs. The bad behavior
of these methods again can be explained by the increased usage of many time-consuming
memory operations. In Model C, unfortunately, the UTA- algorithm is the worst
technique among all tested methods, whereas TS-C is the best method. In Model
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Figure 6.5: Computation time with vari-
able number of edges.
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Figure 6.6: Computation time with con-
stant number of jobs.

C, the performance of UTA- is due to improved interphase initialization compa-
rable with that of TS-S or TS-B. Nevertheless, for more difficult instances,
like those from Model B and C, both U-T implementations need far less
memory, and thus perform more stable and are easier to handle. For example in Model C
the TS-S method needs approximately 10 times more operational memory than each
implementation of the A-U-T algorithm.

Computation time of instances with fixed number of jobs. Figure 6.6 shows for
each test model the average computation time (of five different instances of the same size)
in function of the number of machines while the number of jobs stays constant. This cor-
responds to a situation when the scheduling system evolves and the jobs become more
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possibilities to be processed.
In Model A, both versions of the A-U-T algorithm per-

form very similar and are much better than TS-C and TS-Smethods. In Model
B, our combinatorial algorithms are outperformed by TS-C. The results for Model
C indicate an huge influence of the interphase initialization on the computation time of
the A-U-T. Here, UTA- is much worse than UTA-
. The bad performance of UTA- can be explained by the enormous number
of inner while-loops caused by the unbalanced initial assignments. This again can be ex-
plained by the special property which the initial assignment has to fulfill (i.e., the reduced
cost optimality condition must be maintained, see Section 3.5.1) and the character of Model
C (i.e., machines with small a j allow for very low processing times pi j, see Section 6.2.3),
the jobs can be assigned initially only to a few machines, leaving other machines empty.
This in turn results in a highly unbalanced initial assignment with a large makespan. Fur-
thermore, the same initialization is used throughout all computations at the beginning of
every binary search step. Consequently, much larger workload, in comparison with other
models, is given to UTA-.

In Figure 6.6 we do not consider TS-B, since the computation times for this
method, but also for TS-S, have been much longer than the processing times of the
other methods. This can again be explained by a much larger number of time-consuming
memory operations. More specifically, the experiments show that both methods need in
average 10 times more operational memory in comparison with other methods what signif-
icantly reduces their usability.

Another interesting observation is the concave shape of the graphs for both versions
of A-U-T in Model C. It indicates a highly desired natural
behavior of this method, i.e, the decrease of computation time when, roughly speaking,
the scheduling problem becomes more resources to allocate. Note that such a situation
does take place in Model C where by an increase in the number of machines increases
simultaneously the number of assignment possibilities for the jobs.

6.3.2 Quality of A-U-T’s Solutions

We test now other LP-based algorithms, like the B--P (B&P) and C-
P (CP) techniques, which we use for computation of exact optimal solutions for the
R| |Cmax problem. Here, we present the experimental results for these methods, and, us-
ing them, compare the quality of solutions produced by them with those produced by our
combinatorial algorithms, UTA- and UTA-, and by the best two-step ap-
proach, TS-C. In this part of simulations we are also interested in the evaluation of
performance of the cooperation scheme which we use in the implementation of the B-
-P method. To this end, we compare it especially carefully with the C-
P method.

The algorithms are tested on a broad range of instances from models A, B and C, with
m and n varying gradually from 3 to 20, and from 30 to 200, respectively. For each com-
bination of (n,m), we generate 10 different instances. In Table 6.1, 6.2 and 6.3, one for
each test model, we compare five of the above mentioned algorithms with each other. For
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Figure 6.7: Performance diagram for
makespan in Model A.
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Figure 6.8: Performance diagram for
makespan in Model B.
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Figure 6.9: Performance diagram for makespan in Model C.

methods B--P and C-P, we set the time limits at 120 sec. When the
optimal solution cannot be computed within that time limit, we take the best integer solution
computed so far. For different sizes (n,m) of test instances, the entries in each table give the
average values over 10 test instances of the deviation with respect to the optimal makespan
(obtained with C-P algorithm with no time limit), and the computation time re-
quired for each of the five evaluated algorithms. The average percentage deviation for an
algorithm A has been computed as follows:

Error A =
1
10

∑
t∈[10]

T A
t − T ∗t

T ∗t
· 100 [%],

where T ∗t and T A
t are the optimal and approximate makespan values of each test instance

t, respectively. Because all computation times of UTA-, UTA-, and TS-
C have been at most 0.01 sec., we do not include them into the tables. Furthermore,
in order to analyze the collective behavior of the algorithms across all tested problem sizes
(see Section 6.3.1), we constructed for each test model the performance diagrams for the
makespan. The corresponding graphs are given in Figure 6.7, 6.8 and 6.9.

The results given in Figure 6.7, 6.8 and 6.9 show that the quality of solutions obtained
with both versions of our combinatorial approach are the same like those of TS-C in
Model A, or better then those of TS-C in Model B and Model C. The three methods
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Table 6.1: Average percentage makespan deviation and computation time for Model A.

UTA- UTA- TS-C CP B&P
m n Error Error Error Error T ime Error T ime
3 30 7.74 7.74 7.73 0.07 0.09 0.35 0.06

50 5.33 5.33 10.07 0.04 0.15 0.14 0.10
80 3.46 3.46 4.58 0.06 24.84 (2) 0.25 0.21

100 4.98 5.00 3.60 0.00 0.32 0.18 0.38
200 1.77 1.47 2.52 0.00 1.10 0.00 0.68

5 30 17.93 17.78 31.72 0.38 21.38 3.28 0.08
50 16.91 19.27 18.47 0.13 24.70 (2) 0.71 0.17
80 9.37 9.37 17.85 0.00 1.72 0.46 0.25

100 8.80 8.80 11.47 0.05 25.88 (2) 0.76 0.33
200 6.29 6.29 5.32 0.00 10.20 0.09 2.19

10 30 40.75 42.85 71.05 0.85 35.58 (2) 4.26 0.21
50 29.00 28.70 42.07 0.59 42.31 (3) 3.47 0.27
80 20.14 20.14 38.39 0.25 37.39 (3) 1.72 0.37

100 27.66 31.92 28.61 0.00 25.10 1.38 0.48
200 28.02 26.76 13.02 0.95 100.71 (6) 0.63 30.1

15 30 27.00 27.00 75.09 0.77 38.90 (2) 8.23 0.21
50 34.69 40.69 95.40 0.67 49.49 (3) 4.85 0.40
80 29.62 30.21 51.10 0.53 55.82 (3) 4.85 0.39

100 29.09 36.74 39.37 1.60 113.51 (6) 2.78 0.78
200 40.75 45.63 22.09 1.97 120.54 (10) 2.00 57.28 (3)

20 30 48.71 48.71 165.97 4.05 64.85 (5) 5.26 0.22
50 48.38 48.38 85.03 8.98 96.78 (8) 3.64 0.40
80 60.58 60.58 105.43 7.25 103.61 (9) 10.16 0.74

100 34.86 36.78 73.11 2.46 101.79 (9) 2.67 0.94
200 40.88 41.62 32.20 5.70 120.81 (10) 4.60 3.80

Note. When the time limit was reached, the number of such cases is shown in brackets.

are, unfortunately, outperformed by the exact algorithms. Here, the C-P method
produces more (for about 75% of all instances) better solutions than the B--
P approach (for about 45% of all instances).

When we look more carefully at the results summarized in Table 6.1, 6.2 and 6.3, and
additionally on the results from Section 6.3.1, then we can conclude that the exact methods
based on branch-and-bound approach are efficient only for very small problem instances
from Model A. The good quality of the solution is in vast majority of test instances obtained
due to very long computation times, often exceeding the allowed time limits. Because of
these long computation times, we do not even test the exact algorithms for larger prob-
lem sizes like those from the previous section. For large instances, we have to wait much
longer for good solutions, which quality would be comparable with the quality obtained in
much shorter time by A-U-T. Furthermore, observe that
the average makespan deviation of solutions obtained with the UTA- and UTA-
 algorithms becomes smaller when the number of machines m increases while the
number of jobs n stays fixed. In other words, the algorithms compute better solutions, when
the number of assignment possibilities for the jobs increases. This again indicate here their
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Table 6.2: Average percentage makespan deviation and computation time for Model B.

UTA- UTA- TS-C CP B&P
m n Error Error Error Error T ime Error T ime
3 30 6.73 6.73 8.68 0.18 48.71 (4) 0.26 0.07

50 3.20 3.20 5.50 0.21 24.59 (2) 0.08 0.20
80 2.28 2.84 4.40 0.00 1.06 0.04 1.37

100 1.95 1.95 2.35 0.00 1.19 0.01 3.36
200 1.10 1.23 1.20 0.00 7.70 0.00 5.94

5 30 11.76 11.75 16.50 0.17 65.09 (4) 0.79 0.56
50 7.09 8.45 10.74 0.00 58.25 (1) 0.50 11.89
80 5.51 5.22 7.21 0.49 79.26 (6) 0.04 32.67

100 4.39 3.84 5.43 0.22 120.98 (10) 0.05 90.56 (7)
200 2.73 3.52 2.82 1.11 120.52 (10) 0.31 118.35 (8)

10 30 26.69 30.92 29.80 1.09 120.96 (10) 4.96 2.52
50 17.02 18.85 23.47 0.95 120.95 (10) 1.31 40.09 (2)
80 10.83 9.44 16.08 1.02 120.96 (10) 0.60 121.48 (10)

100 7.74 10.51 12.29 0.26 120.75 (10) 0.70 121.40 (10)
200 4.95 6.65 6.40 3.55 120.50 (10) 0.51 121.45 (10)

15 30 59.34 59.34 52.73 1.19 97.33 (3) 3.19 1.35
50 28.95 27.69 37.15 1.39 121.28 (10) 3.07 57.71 (4)
80 17.72 22.42 26.57 0.79 121.15 (10) 1.62 121.21 (10)

100 13.84 15.41 17.52 1.53 120.75 (10) 1.35 121.18 (10)
200 7.31 6.59 9.15 0.80 120.97 (10) 1.19 121.24 (10)

20 30 85.31 85.31 47.75 5.43 63.50 (4) 1.35 6.87
50 32.29 33.98 42.54 1.11 121.28 (10) 3.67 44.08 (2)
80 23.36 28.67 32.89 0.82 121.10 (10) 1.79 120.90 (10)

100 20.01 21.69 24.19 2.84 120.73 (10) 2.19 121.01 (10)
200 10.60 12.02 14.24 1.64 120.82 (10) 1.00 121.11 (10)

Note. When the time limit was reached, the number of such cases is shown in brackets.

natural behavior (cf. the discussion in the last paragraph of Section 6.3.1).
Finally, we want to point out a very good performance of the B--P method.

Its performance in all models is comparable to that of the C-P algorithm which
is so far the best exact method proposed for the R| |Cmax problem. This surprisingly good
behavior can be explained by the usage of the acceleration scheme using both mixed integer
programming and local search.

6.3.3 Comparison with Heuristics

In the last section of this chapter we want to present the comparison of results computed
by the A-U-T algorithms with those obtained with various
heuristics developed for the R| |Cmax problem in the course of the last decades. As it was
already indicated in Section 6.2.1, here we take into consideration ten different heuristics,
i.e., the four heuristics by Ibarra and Kim, one heuristic by Davis and Jaffe, the partial
enumeration method by Mokotoff and Jimeno, and the branch-and-greed heuristic by Sourd.
Additionally to them, we have implemented three adapted for R| |Cmax versions of the LPT
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Table 6.3: Average percentage makespan deviation and computation time for Model C.

UTA- UTA- TS-C CP B&P
m n Error Error Error Error T ime Error T ime
3 30 14.22 17.20 6.79 0.06 26.37 (2) 0.41 1.27

50 19.20 19.20 3.34 0.12 73.87 (6) 0.36 73.05 (6)
80 2.02 3.53 3.56 0.02 32.06 (2) 0.10 29.60 (2)

100 11.32 15.35 3.56 0.03 35.21 (2) 0.15 38.01 (2)
200 24.86 32.02 2.07 0.00 47.88 0.02 26.09 (2)

5 30 13.78 13.70 12.31 0.48 75.13 (6) 0.17 51.16 (4)
50 9.41 9.13 16.14 0.13 51.53 (4) 0.17 51.16 (4)
80 6.75 6.22 4.40 0.46 120.93 (10) 0.66 99.43 (8)

100 7.54 6.40 8.50 0.54 120.66 (10) 0.51 100.46 (8)
200 9.48 21.75 4.83 0.46 110.56 (4) 0.43 121.42 (10)

10 30 31.07 33.04 29.82 1.80 73.01 (6) 1.82 49.08 (4)
50 27.21 27.06 34.62 2.25 120.56 (10) 2.33 108.27 (6)
80 14.92 14.73 16.95 1.90 120.67 (10) 2.82 121.64 (10)

100 16.13 13.51 23.50 1.59 120.71 (10) 2.41 121.40 (8)
200 13.26 14.50 10.02 0.97 120.70 (10) 0.90 121.46 (10)

15 30 31.46 37.04 59.74 3.01 74.88 (6) 4.39 49.19 (4)
50 44.99 45.05 39.75 5.83 121.29 (10) 4.88 121.63 (10)
80 26.66 38.63 39.84 10.31 121.12 (10) 4.21 121.20 (10)

100 22.98 30.20 36.20 1.81 121.12 (10) 2.14 121.44 (10)
200 11.04 12.23 11.11 1.24 120.88 (10) 1.08 121.23 (10)

20 30 37.44 44.44 80.59 1.81 84.40 (6) 4.34 22.46
50 57.76 133.42 59.73 6.08 121.30 (10) 6.56 121.26 (10)
80 55.90 59.92 53.01 4.30 121.35 (10) 6.92 121.21 (10)

100 29.83 34.60 30.56 2.90 121.08 (10) 4.96 121.23 (10)
200 26.78 23.81 26.15 4.27 121.00 (10) 3.66 121.22 (10)

Note. When the time limit was reached, the number of such cases is shown in brackets.

algorithm by Graham. This algorithm is known to perform well for the scheduling problem
on related parallel machines (cf. Section 1.3.3). Because of the similarity of Model C to
that scheduling problem, we add these adaptations into the experimental setup.

The algorithms are tested on a broad range of small test instances from Model A, B, and
C with m and n varying from 3 to 20, and from 30 to 200, respectively. For each combi-
nation of (n,m), we generate 10 instances. In Figure 6.10 we present for each model the
makespan performance diagrams. In order to make the analyze more visible, the perfor-
mance diagrams include, in each model, only one graph for the best Ibarra-Kim algorithm
and one for the best LPT adaptation.

In Figure 6.10 we can see that the best results in all models are computed with the
heuristic using partial enumeration by Mokotoff and Jimeno. In the implementation of
this method, we sort the list of non-basic assignment variables for the MIP subproblem in
non-increasing order of the simplex reduced costs (see Section 4.2). The time limit for the
branch-and-cut algorithm solving the MIP subproblem in the P-E method
is set at 120 sec., and the value of parameter r is set to 0.5 (this value has been found
during a preliminary series of tests with different values of r). Although the P-



6.3. Computational Results 109
Model A 
 

Makespan

0%

20%

40%

60%

80%

100%

1 1,02 1,04 1,06 1,08 1,1 1,4 1,8 2,2 2,6 > 2,6

performance ratio

di
st

rib
ut

io
n

UTA-gen UTA-imp LPT-ver3 Ibarra-Kim-B
Partial-Enum Davis-Jaffe B&G  

 
Model B 
 

Makespan

0%

20%

40%

60%

80%

100%

1 1,02 1,04 1,06 1,08 1,1 1,14 1,18 1,22 1,3 > 1,3

performance ratio

di
st

rib
ut

io
n

UTA-gen UTA-imp LPT-Ver3 Ibarra-Kim-B
Partial-Enum Davis-Jaffe B&G

 
 
Model C 
 

Makespan

0%

20%

40%

60%

80%

100%

1 1,02 1,04 1,06 1,08 1,1 1,2 1,4 1,8 1,8 > 1,8

performance ratio

di
st

rib
ut

io
n

UTA-gen UTA-imp LPT-Ver2 Ibarra-Kim-D
Partial-Enum Davis-Jaffe B&G

 

Model A

Model A 
 

Makespan

0%

20%

40%

60%

80%

100%

1 1,02 1,04 1,06 1,08 1,1 1,4 1,8 2,2 2,6 > 2,6

performance ratio

di
st

rib
ut

io
n

UTA-gen UTA-imp LPT-ver3 Ibarra-Kim-B
Partial-Enum Davis-Jaffe B&G  

 
Model B 
 

Makespan

0%

20%

40%

60%

80%

100%

1 1,02 1,04 1,06 1,08 1,1 1,14 1,18 1,22 1,3 > 1,3

performance ratio

di
st

rib
ut

io
n

UTA-gen UTA-imp LPT-Ver3 Ibarra-Kim-B
Partial-Enum Davis-Jaffe B&G

 
 
Model C 
 

Makespan

0%

20%

40%

60%

80%

100%

1 1,02 1,04 1,06 1,08 1,1 1,2 1,4 1,8 1,8 > 1,8

performance ratio

di
st

rib
ut

io
n

UTA-gen UTA-imp LPT-Ver2 Ibarra-Kim-D
Partial-Enum Davis-Jaffe B&G

 

Model B

Model A 
 

Makespan

0%

20%

40%

60%

80%

100%

1 1,02 1,04 1,06 1,08 1,1 1,4 1,8 2,2 2,6 > 2,6

performance ratio

di
st

rib
ut

io
n

UTA-gen UTA-imp LPT-ver3 Ibarra-Kim-B
Partial-Enum Davis-Jaffe B&G  

 
Model B 
 

Makespan

0%

20%

40%

60%

80%

100%

1 1,02 1,04 1,06 1,08 1,1 1,14 1,18 1,22 1,3 > 1,3

performance ratio

di
st

rib
ut

io
n

UTA-gen UTA-imp LPT-Ver3 Ibarra-Kim-B
Partial-Enum Davis-Jaffe B&G

 
 
Model C 
 

Makespan

0%

20%

40%

60%

80%

100%

1 1,02 1,04 1,06 1,08 1,1 1,2 1,4 1,8 1,8 > 1,8

performance ratio

di
st

rib
ut

io
n

UTA-gen UTA-imp LPT-Ver2 Ibarra-Kim-D
Partial-Enum Davis-Jaffe B&G

 
Model C

Figure 6.10: Performance diagrams for heuristics.

E heuristic computes here the best solutions among other techniques, its com-
putation times are much longer. Almost for all test instances, the specified time limit is
reached (about 120 sec.), whereas the computation times used both by the other heuristics
and by the combinatorial algorithms UTA- and UTA- are much less than
0.1 sec. In other words, the P-E method takes advantage of the longer
computation time in order to deliver better solutions.

In Model A and Model B the makespans obtained with our new combinatorial algo-
rithms are similar to those computed by the D-J and B--G heuristics.
In Model B, the I-K-B and LPT-3 heuristics compute almost the same results,
and both are the second best heuristics for this model. In Model C, however, the I-
K-D technique is the second best heuristic after the P-E method. It
delivers half as many good solutions as the P-E heuristic. In the same
model both A-U-T implementations compute better sched-
ules than B--G, LPT-2, and D-J heuristics.

When we take into account that the computation times of the best heuristic here, P-
E, are much longer than the computation times needed by the other algorithms,
then the results obtained by the combinatorial algorithms, UTA- and UTA-,
show that they can be as efficient as the heuristic algorithms, and thus can successfully
compete with them in order to solve difficult scheduling problems.





7
Conclusions and Open Questions

The problem of scheduling unrelated parallel machines forms an important and ongoing
field of research. This is shown by a multitude of theoretical results and practical applica-
tions going back to the beginning of the last century. In the current competitive environment
with rapidly changing conditions, effective scheduling has become a necessity for survival
in the marketplace. In most cases, the choice of a good schedule has an immense impact on
the system performance and the invested costs.

This work aims to bring more light into the field of scheduling unrelated parallel ma-
chines. To this end, we investigate the most basic but on the other hand the most gen-
eral deterministic scheduling problem with machines in parallel, i.e., the problem of non-
preemptive scheduling independent jobs on unrelated parallel machines with the goal to
minimize the makespan (R| |Cmax). Our choice is motivated by the importance of this prob-
lem for the research both from the theoretical and the practical point of view. While the
problem might seem rather simple, it covers quite a lot of common cases.

Our goal is to present and improve the current state-of-the-art of the research on this
problem. In particular, we try both to expand the collection of old results with new ones, and
to evaluate and compare already existing solution techniques in concrete and well defined
real-life settings in order to get a better understanding of the scheduling problem. Since an
exact list of our results can be found in Section 1.5, we refrain here from repeating them in
detail. Instead, we try to provide the reader with new highlights brought by this work and
to give an outlook for future research.

One of the most interesting contributions of this work is a new, purely combinatorial 2-
approximation algorithm for the R| |Cmax problem. We formulate the unrelated scheduling
as a generalized flow problem in a bipartite network. Our approximation algorithm is a
generic minimum cost flow algorithm without any complex enhancements. The minimum
cost flow algorithm has been tailored to handle unsplittable flow by exploiting the special
bipartite structure of the underlying flow network.

Many real world applications can be modeled as flow problems in a bipartite network
(see, e.g., [3, 18, 139]). For this reason, we conjecture that our approach might also be
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helpful for other applications. Identifying the connection to network flows might be the key
idea for obtaining combinatorial (approximation) algorithms for problems for which solv-
ing the LP relaxation and rounding is currently the (only) alternative. Our techniques and
results do not improve upon the approximation factor for the unrelated scheduling problem.
However, we still expect improvements for other hard problems to which our technique is
applicable.

An interesting open problem would be to apply our techniques to more general schedul-
ing problems. As the first step toward this end, we have already tried to use our approach
to solve the general assignment problem (GAP). Here, for each parallel machine j an upper
bound T j for its load is specified, and each job is characterized, additionally to the pro-
cessing time pi j, by a cost ci j. The goal is to assign each job to some machine without
preemption so that the load constraints for each machine are maintained and the overall
costs induced by the assigned jobs are minimized. It is easy to see that this problem is a
generalization of the R| |Cmax problem. Unfortunately, we have only succeed to develop an
algorithm for checking the existence of a 2-approximation solution for a given instance of
GAP. Thus, the general optimization problem still stays open.

Another interesting open question is how to extend our combinatorial algorithm so it can
be applied to solve the unrelated scheduling problem with additional parameters, such as
precedence constraints, setup times, or due dates. At this moment, however, it is hard to see
any possibility for any such improvements.

Since there still exists a possibility for improving the approximation factor for the R| |Cmax

problem (recall from Section 1.4.1 that there exists a gap between the lower bound of 3
2 and

the best, so far, approximation factor of 2 − 1
m ), it would be challenging either to design a

new polynomial-time approximation algorithm for R| |Cmax with worst-case performance of
2 − 1

m − ∆, or to provide a 3
2 + ∆ inapproximability result for the R| |Cmax problem. Here, ∆

denotes some small positive real number that does not depend on the input.
In addition to the combinatorial deterministic algorithm, we introduce two other algo-

rithms. The first one is a randomized version of the classical two-step approach for the
R| |Cmax problem. In our opinion it would be interesting to prove its probabilistic guar-
antee. The result by Raghavan and Thompson [145] can be a good basis for such prob-
abilistic analysis. An interesting result in this regard has also been presented by Schultz
and Skutella [152]. Their more specific variant of randomized rounding leads to a (2 +
ε)-approximation algorithm for the R|ri|

∑
wiCi problem (case with release times ri and

the minimization of the total weighted completion time as the objective), and a (3
2 + ε)-

approximation algorithm for the R| |
∑

wiCi problem. We think that their analysis could be
adapted for the R| |Cmax problem.

The second algorithm is a branch-and-price approach for R| |Cmax. Although we use
several heuristic improvements which help it to find good integer solutions earlier, there
still exists enough room to improve it further, e.g., by applying another local search meta-
heuristic like, e.g., guided taboo search or simulated annealing, or by a better parameter
setting. Moreover, our implementation of the branch-and-price algorithm uses the variable
dichotomy branching strategy which results in highly unbalanced search trees (cf. Sec-
tion 5.2.3). It would be of special interest to apply and evaluate another branching strategy
like, e.g., the GUB dichotomy method (cf. Section 5.2.3). Finally, the algorithm in the
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present state with the variable dichotomy branching strategy and the best-first exploration
strategy can relatively easy be turned into an effective approximation algorithm for R| |Cmax.
Some hints for this are already given in Section 5.2.4.

In the thesis we present also a comprehensive evaluation of eighteen different algorithms
for the R| |Cmax problem. Our goals here are threefold. First of all, our efforts are concen-
trated on the performance and the quality of solutions obtained with the A-
U-T algorithm in comparison with the two-step approaches based on
linear programming and used often in practice as the first-choice solution methods. During
the tests, a large number of experiments is performed with very large instances. To our
best knowledge, it is the first time when instances of such sizes are considered in exper-
imental studies on algorithms for R| |Cmax. Our results indicate a clear advantage of the
improved version of our combinatorial algorithm over LP-based techniques. In particular,
for large test instances, it delivers solutions of better quality, works in most cased much
faster, and requires much less operational memory. The last property makes it more effi-
cient and easier to handle, especially when the size of the problem grows. Only for model
with correlated machines our technique shows some weakness. Even though the improved
interphase initialization eliminates this unfavorable behavior apparently, we still expect fur-
ther improvements in the initialization based on earlier interruption of computations which
may lead to the performance comparable with or better than the performance of methods
using column generation.

The second goal of the experimental study is to compare our algorithm with exact meth-
ods for the R| |Cmax problem. The experiments indicate that the combinatorial algorithm is
outperformed by them only when the quality of solution is considered. However, a bet-
ter look at the results let us conclude that the time performance of exact methods based
on branch-and-bound approach is satisfactory only for very small problem instances. The
good quality of solutions is obtained due to very long computation times. Hence, for large
instances we need to wait much longer for solutions whose quality would be comparable
with the quality obtained in much shorter time by A-U-T.
Furthermore, it is worth to point out a very good performance of our branch-and-price algo-
rithm. Its performance in all models is similar to that of the cutting plane algorithm, which
is so far the best exact method proposed for R| |Cmax. In our opinion it should not be difficult
but rather time-consuming to improve our exact algorithm in order to beat the cutting plane
method.

Finally, the last goal of the simulations constitute the comparison tests with various
heuristics developed for R| |Cmax in the past decades. They show, in contrary to our expecta-
tions, that the A-U-T algorithm can perform as efficiently
as the heuristic algorithms, and thus can successfully compete with them in solving difficult
scheduling problems.
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