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Notation

Frequently Used Variables

B
d

g
v, v(t)

Barrier, a set of faulty nodes

distance of the shortest (barrier-free) path between source and target
side length of a quadratic sub-network (square, frame)
factor, which bounds the detour in a frame (time-dependent)
side length of a cell

perimeter size (see Section

a path in the network

radius (transmission radius or search depth)

Competitive time ratio (see Section

Comparative traffic ratio (see Section D

Combined comparative ratio

source node

constant factor, by which the search is slowed down

target node; time

number of time steps

traffic, i.e. total number of messages

Asymptotic Growth of Functions [Ste01]

f(n) =0(g(n)) @hmsup'& g} < o0

f(n) = O(g(n)) - liminfFE > 0

f(n) = 0(8(m)) =& f(n) = O(g(m) A f(n) = O(g(n))
f(n) = o(g(n)) =& lim £ =0

f(n) = w(g(n)) :& lim L = co

Further Notations

logn
logk n
Lx]
[x]

the binary logarithm log, (1)
abbreviated notation for (log,(n))
floor function (the largest integer less than or equal to x)
ceiling function (the smallest integer greater than or equal to x)

k
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Introduction

Position-based routing is the task of delivering a message to a specified position in a
network. Instead of using routing tables and network addresses, the routing decisions
are made on the basis of the current position and the position of the destination. First
approaches for position-based routing were developed in the 1980s for fixed intercon-
nection networks [Fin87] and packet radio networks [TK84, HL86]]. The first algorithms
were greedy strategies that always forward a packet to a neighbor that is closer to the
target than oneself. These greedy strategies have the disadvantage that they fail in case
of a local minimum, i.e. at some point where no further progress is possible. In wire-
less networks, local minima result from void regions that cannot be bridged because of
restricted transmission ranges.

In the late 1990s the first position-based routing strategies were developed that guar-
antee message delivery by constructing alternate paths around local minima. Today
we are facing a plethora of different algorithms that can be divided into two categories:
single-path strategies and multi-path strategies. Single-path strategies try to reach the
target using only one path. This is traffic-efficient, i.e. the total number of messages
is normally small, but this path can contain a large detour if local minima have to be
circumvented. Multi-path strategies construct many redundant paths to increase the
chances of not getting into a local minimum. The extreme case of multi-path routing is
flooding. Multi-path strategies need more traffic a priori, but can decrease the time for
message delivery.

Most position-based routing algorithms belong to the class of single-path strategies.
Over the last years the robustness of such strategies under non-idealized communica-
tion models has drawn the attention of the research community, whereas multi-path
strategies were mainly developed for geocasting (i.e. multi-casting to all nodes in a
geographic region). However, most multi-path strategies still rely on flooding, even
though it can be restricted to a geographic region. This raises the following question:
Are there efficient multi-path strategies beyond flooding that require less traffic?

This question is answered by this thesis: the Just-In-Time-Exploration (JITE) algo-
rithm, which is presented in Chapter [} delivers a message asymptotically as fast as a
flooding algorithm, but with much less traffic. More precisely, it matches the asymp-



1 Introduction

totic lower bound for time and approaches the lower bound for traffic up to a poly-
logarithmic factor. Known strategies fail to approach both lower bounds at the same
time: single-path algorithms need much time in complicated scenarios, whereas flood-
ing algorithms always produce a large traffic overhead.

In order to study such algorithms, we consider the model of a mesh network con-
taining faulty nodes, which are not known in advance. This model can be seen as an
abstraction from the graph theoretical model of a wireless network. The faulty nodes
in the mesh network may form faulty blocks of arbitrary shape, which may be as com-
plicated as a maze. We call these faulty blocks “barriers” as they obstruct the network
communication. Neither the number nor the location of the faulty nodes are known in
advance. Therefore, every decision has to be made online, i.e. without global knowl-
edge. The task of delivering a message in such a network is a typical online problem.

Online problems are usually analyzed under comparative measures. For the position-
based routing problem we compare the performance of an algorithm with the lower
bounds for time and traffic: No algorithm can be faster than following the shortest
path. Therefore, we consider the maximum ratio of the time an algorithm needs (which
is equivalent to the generated path length) and the length of the shortest path. This
ratio is called the competitive ratio in the context of online algorithms. The online lower
bound for traffic depends on the barriers in the scenario: In the worst case, every online
algorithm has to traverse all the barriers, regardless whether this is done sequentially
or in parallel. Thus, the lower bound for traffic is the length of the shortest path and the
perimeters of the barriers. The comparative ratio for traffic is the maximum ratio of the
traffic produced by an algorithm and the lower bound. Under these measures the dis-
advantages of flooding algorithms and single-path strategies can be expressed. They
optimize time at the expense of traffic and vice versa. The JITE algorithm uses a combi-
nation of several techniques in order to avoid the disadvantages of known approaches.
It uses a quadtree-style subdivision of the network that becomes denser in the prox-
imity of the faulty parts. The search for the target is performed by a slow proceeding
breadth-first search (BFS) on the borders of the subdivision squares. The subdivision is
created just-in-time by an exploration process before the BES arrives. Since there is no
global knowledge of the parallel branches in the BFS tree, a local coordination mecha-
nism is needed to prevent repeated exploration of the same area. The asymptotically
optimal time can be achieved because the BFS is slowed down by a constant factor
and the subdivision contains a constant-factor approximation of the shortest path. This
algorithm is described and analyzed in Chapter [4}

Chapter 3| shows an application of the mesh network model. If we map the nodes
and communication links of a wireless network to cells of a grid subdivision, we see
the similarity to the faulty mesh network: cells which are covered by links can be used
for routing, whereas the void regions are barrier cells and the equivalent of the faulty
nodes in the mesh network model. In a wireless network where the nodes have posi-
tion information, such a cell structure can be constructed distributedly by a geographic
clustering using only local information. This is part of the Cell-based Geographic For-
warding Protocol, which also contains a forwarding strategy that works on the cell
structure.



This thesis is organized as follows:

Chapter 2 - Related Work This chapter contains a review of related work, including
navigation algorithms that solve similar problems as position-based routing algorithms
and were studied in the context of online algorithms and theoretical robotics.

Chapter [3| - Position-based Routing using a Cell-Structure In this chapter the
Cell-based Geographic Forwarding Protocol is presented, which is based on a geo-
graphic clustering using a cell structure. This cell structure is constructed distribut-
edly by using position information and provides the basis for a single-path forwarding
algorithm. It is shown that routing on the cell structure and routing on the original
topology of the network are equivalent. The cell structure corresponds to the model of
a faulty mesh network, which forms the basis for the analysis of the routing algorithms
presented in Chapter

Chapter 4 — Online Routing in Faulty Mesh Networks In this chapter the routing
problem in faulty mesh networks is studied. For the analysis of time and traffic, com-
parative performance measures are defined. Then, lower bounds for time and traffic are
shown. After that, two known routing strategies are analyzed: expanding ring search,
which is a time-optimal flooding algorithm, and a traffic-optimal single-path strategy.
We will see that both time and traffic can be reduced by a combination of both, but this
technique is not sufficient to reach the lower time bound. Finally, the JITE algorithm is
described and analyzed. This algorithm outperforms the preceding ones.

Parts of this work have been published on conferences. The cell structure used by
the Cell-based Geographic Forwarding Protocol and its properties were described in
[RSO5a]. The performance measures defined in Chapter E] and an algorithm for the
online routing problem in faulty mesh networks were presented in [RS05b]. This algo-
rithm is a predecessor of the JITE algorithm and bases on similar ideas. However, the
JITE algorithm [RS06] uses new techniques to achieve an asymptotically optimal time.






Related Work

The fundamental goal of the routing problems studied in this work is to reach a target
at a specified position. From a source node a message is forwarded through a network
which is not known to the source except for the position of the target. In the field of
robotics the similar navigation problem is studied: a robot has to find a path to a target,
which is also specified by its position. The environment is unknown to the robot and
may contain obstacles. For both position-based routing and navigation in unknown en-
vironments similar strategies were developed and also similar performance measures
are used. This chapter gives an overview of related research results, including algo-
rithms for position-based routing and related navigation problems.

2.1 Position-based Routing

Position-based routing (also called geographic routing) is a reactive routing scheme
where forwarding decisions are based on geographical positions of the nodes in the
network (see [MWHO01], IGS03, IGS04, KW05] for a survey). It is based on the following
assumptions:

1. All nodes can determine their own position.
2. All nodes know the positions of their direct neighbors.

3. The source node knows the position of the destination.

One of the first approaches to use position information for routing in networks was
proposed in 1987 by Finn [Fin87]. It is called Cartesian routing and uses location infor-
mation of nodes in a fixed interconnection network for routing packets in the direction
of the destination node. A packet is forwarded to a neighboring node, if there is a
progress towards the destination. If the routing algorithm solely uses this greedy strat-
egy, the message delivery is only guaranteed if each node in the network has a neighbor
that is closer to the target. Finn makes a weaker assumption: If a neighbor closer to the
target can always be found within a constant number of hops, then this neighbor can
be found by a limited flooding.
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In the same decade, Takagi and Kleinrock [TK84] as well as Hou and Li [HL86] de-
scribed greedy forwarding rules for the wireless communication in packet radio net-
works, where the participants know their position. These greedy strategies were later
adopted for position-based routing in wireless ad hoc networks. The problem of greedy
forwarding is that it fails in case of a local minimum. In wireless networks, local min-
ima exist a the border of void regions, which cannot be bridged because of the limited
range of the radio transceivers.

Routing strategies that guarantee message delivery, even in the presence of local min-
ima, were developed in the late 1990s [KSU99, BMSUO1]. These strategies determine
the routing path by traversing the faces of the network graph. This requires a planar
graph, therefore the network topology has to be planarized. These approaches rely on
the assumption that transmission ranges are uniform so that the network can be mod-
eled by a so-called unit disk graph: A unit disk graph contains a link between two nodes
u and v if and only if ||u — v|| < 1. This definition corresponds to the assumption that
there is a connection between two nodes if their distance is smaller than the normalized
transmission radius (r = 1).

Using face traversals is less efficient than greedy forwarding. Therefore, Karp and
Kung [KKO00] and Bose et al. [BMSUOQ1] have proposed the idea to combine both strate-
gies. Every time the greedy strategy fails, the traversal of the incident face is started in
order to recover from the local minimum. This way, the efficient greedy forwarding can
be used where it is possible and also the message delivery can be guaranteed.

2.1.1 Greedy forwarding

Greedy forwarding is based on a local decision of a node to forward a packet to a neigh-
boring node that is nearer to the destination. Local decision strategies are:

e MFR (most forward within the transmission radius) [TK84] tries to minimize the
number of hops,

e NFP (nearest with forwarding progress) [HL86] tries to minimize energy con-
sumption, and

e Compass routing [KSU99] tries to minimize the Euclidean path length by choos-
ing the node with the minimal angular distance to the direction of the destination.

Figure 2.1|illustrates these strategies.

Since a packet could get stuck in a local minimum, greedy forwarding must be accom-
panied by a recovery strategy in order to guarantee message delivery. Recovery strate-
gies are usually based on face traversal and planarization, which is explained in the
following subsections.

2.1.2 Face Traversal

Face traversal is a routing strategy, where a message is forwarded along the faces of a
planar sub-graph of the network topology. This idea is based on the right-hand rule, a
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Figure 2.1: Greedy forwarding: node s Figure 2.2: Recovery from a local mini-
can choose u (NFP), v (compass routing) mum at w using the right-hand rule

or w (MFR) for the next hop

well-known strategy for traversing a maze (see Section [2.4.3). Instead of following the
walls of a maze, the edges of a face (which is a void region in the network and there-
fore an obstacle for routing) are traversed in clockwise order. The progress towards
the target is made by traversing adjacent faces that are intersected by a line segment
between source and target (see Figure [2.3). With the aid of position information, the
nodes determine the intersection points and know when to switch to the next face. Face
traversal algorithms require a planar network topology. Strategies for planarization are
described in the next subsection.

Face traversal can be applied as stand-alone routing strategy, but also as recovery
strategy in combination with greedy forwarding. Karp and Kung propose a face traver-
sal algorithm, called perimeter routing (cf. “face-2” in [BMSUOQI]) as part of their GPSR
protocol [KKOO, Kar00]. It traverses the edges of the face incident to the local mini-
mum until a forwarding progress according to the greedy strategy can be made (see
Figure[2.2). Another strategy, where the incident face is traversed completely in case of
a local minimum (“face routing”), has been proposed by Kranakis et al. (see [KSU99],
“compass routing II"”; cf. “face-1” in [BMSUO1]).

Kuhn et al. have extended the face routing technique in order to guarantee a bounded
path length in the worst case. They propose a face routing variant (called OFR) where
the complete interior of a face is explored in order to determine the node that minimizes
the distance to the destination. Then, at this node the next (adjacent) face toward the
destination is chosen. The authors also give an overview of methods to combine greedy
and face routing. In [KWZ02] Kuhn et al. propose an adaptive face routing (AFR). The
idea is to bound the faces by an elliptic region to prevent detours. If no route to the
destination within this region can be found, the region is successively enlarged. The
algorithm yields paths with cost O(d?) where d denotes the cost of the optimal route
measured by the number of hops, the distance or the energy consumption. These ap-
proaches were used for the GOAFR+ [KWZZ03] algorithm which uses a combination of
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Figure 2.3: Face routing on a planar network topology

greedy forwarding and face routing and is asymptotically optimal. The authors show
a lower bound of )(d?) with the following construction: the nodes are placed in a way
that leaves void regions in between and only some defined paths are left. Then the al-
gorithm has to investigate ()(d) paths each of length )(d), but only one of them leads
to the target, the others are dead ends. A similar idea for the worst case construction
is used to show a lower bound for robot navigation algorithms (see [BRS97] and Sec-
tion[4.3). In our analysis we take the perimeters of void regions into account, so we can
express performance beyond the worst case point of view.

2.1.3 Graph Planarization

The face traversal algorithms require a planar grap because crossing edges may
cause a loop when traversing a face as shown in Figure Therefore, a planar sub-
graph of the original network topology has to be created by a planarization algorithm.
There are various planar graphs that can be used for a subgraph construction, e.g. the
Gabriel Graph (GG) [GS69] or the Relative Neighborhood Graph (RNG) [Tou80, JT92].
When applying the GG Planarization, an edge (u,v) is eliminated if Thales’ circle on
(u,v) contains another node w (see Figure 2.4(b)). The RNG Planarization eliminates
an edge (u,v) if the intersection of two circles with radius ||v — u|| centered at u and v
contains another node w (see Figure

Other constructions are based on the Delaunay Triangulation [GGH™01, ALW*03].
All these sub-graphs can be constructed locally by position information and communi-
cation in the local neighborhood. These subgraphs have been analyzed with respect to
their spanning properties which express how well the subgraph approximates the orig-
inal topology. A subgraph of a graph is a spanner if the length (Euclidean length, hop
distance or power distance) of a path between two nodes is only a constant factor (called
the stretch factor) larger than the distance of the nodes in the original graph. Bose et al.
[BDEKO6] have proved length stretch factors of ©(+/n) for the Gabriel Graph and ©(n)
for the Relative Neighborhood Graph (RNG), i.e. the detours induced by these sub-
graph constructions are not bounded by a constant. Often the desired properties (e.g.
a constant stretch factor) are only valid if a constant minimum distance between the

1 Here, planarity means that the connectivity graph of the network is a planar embedding.



2.1 Position-based Routing

S e ey

u \

(a) Traversal loop (b) GG Planarization (c) RNG Planarization

Figure 2.4: Crossing edges can cause a face traversal loop. The dotted edges are eliminated by
planarization.

nodes is assumed (“civilized graphs” [WL02], (3(1)-model [KWZ02]). To take advan-
tage of such properties in scenarios with unbounded node density where the minimum
distance assumption may be violated, a clustering approach can be applied. Clustering
is proposed by Gao et al. [GGH"01] and Alzoubi et al. [ALW™03] to form a backbone
network, which connects the clusterheads and has the desired graph properties.

The disadvantage of planarization is that many strategies eliminate advantageous
long edges and preserve short ones. This leads to an increased hop distance of the
shortest path in the planarized graph compared to the original communication graph.
The Cell-based Geographic Forwarding Protocol presented in Chapter (3| uses a cell-
based subdivision of the plane to provide each node with a map of its environment and
to characterize borders of void regions. The protocol works without canceling links,
because the cell-structure provides an implicit planarization.

Fang et al. [FGG04] proposed an algorithm for identifying local minima and void
regions (which they call “routing holes”) based on the geometric properties of the net-
work topology. The algorithm uses local rules to determine possible local minima. Then
the void regions are identified by communication of the nodes at the border of this re-
gion. So the traffic used for face traversals in recovery mode is shifted from the routing
algorithm to the proactive part of the communication.

Robustness of Planarization

Many local planarization strategies rely on the unit-disk-graph assumption where the
transmission ranges are identical and uniform. Barriére et al. [BENOO3] have shown
that under certain conditions (all links are bidirectional and the ratio of the minimum
and the maximum transmission range is smaller than v/2) a planarized graph can be
constructed with local information by exchanging neighborhood information and ap-
plying the Gabriel Graph planarization on a virtual graph. The impact of non-uniform
transmission ranges has been studied by Kim et al. [RGKS05b]. Planarization can cause
disconnected links or errors in face changes. They developed the Cross-Link Detection
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Protocol (CLDP) [KGKSO05a], which starts right-hand traversals repeatedly to detect
and remove crossing links. This results in a planarized subgraph, on which face rout-
ing guarantees message delivery. Another approach for position-based routing that
avoids the use of graph planarization is the Greedy Distributed Spanning Tree Routing
(GDSTR) [LLMO6]. This protocol uses the traversal of spanning trees instead of face
routing on a planarized graph in cases where greedy forwarding fails. The distributed
construction of these spanning trees needs at most 3D rounds, where D is the diameter
of the network graph. Both protocols cannot rely on local information only and thus
have an increased communication overhead.

2.1.4 Beacon-less routing

The described greedy forwarding and face traversal algorithms rely on the assumption
that the positions of neighboring nodes are known. There are also position-based rout-
ing protocols that do not need this information. Instead, they use the position data for
implicit addressing: A message is broadcasted to the neighboring nodes including po-
sition data of the sender and the target. Then the neighbors compete for the forwarding
task, where the contention period is determined by the relative positions to the sender.
The node that is nearest to the destination may answer first and take over the mes-
sage. Protocols that work in this way are beacon-less routing (BLR) [HB03, HBBW04],
contention-based forwarding (CBF) [FWMHO03] and implicit geographic forwarding
(IGF) [BHSS03]. Furthermore, the geographic random forwarding (GeRaF) protocol
also belongs to this class of protocols [ZR03b, ZR03a]]. IGF and CBF work with a greedy
strategy only and thus require a high node density to avoid greedy failures. BLR con-
tains also a recovery strategy: in recovery mode the contention period is chosen pro-
portional to the angular distance to the last edge in recovery mode.

These routing strategies show that position-based routing can be performed com-
pletely reactive. The advantages of reactive and proactive information exchange are
discussed in Section

2.1.5 Position-based Multi-path Strategies

Besides greedy forwarding and face routing, there are multi-path strategies that con-
struct several routes to a destination or use multi-casting or flooding to inform all nodes
in a specific region. One example is Restricted directional flooding [BCSWO98]. The goal of
this algorithm is to handle outdated position information. From the last known posi-
tion of the destination node and its maximum velocity a destination region is obtained.
Then, the sender transmits a packet to all nodes that lie in the direction of this region in
order to flood the whole area in which the destination node lies. This strategy can be
used to reduce the overhead of flooding used by reactive ad hoc routing protocols in
the route discovery phase (location-aided routing, see [KVO00Q]).

Similar approaches are also used for geocasting (multi-casting to a geographic region).
Surveys on geocasting protocols are given by Jiang and Camp [JC02], Maihofer [Mai04]
and Stojmenovic [Sto04) [Sto06]].

10
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Most of these approaches are based on flooding, which is not traffic-efficient though
it can be restricted to a geographic region. The JITE algorithm presented in Chapter [4]
opens a new direction towards traffic-efficient multi-path strategies.

2.1.6 Geographic Clustering

A grid or mesh based subdivision of the plane is used by several position-based routing
protocols (e.g. GRID [LTSO01]) where the grid cells are used for geographic clustering,
i.e. for each cell there is one elected node that is the gateway for the communication with
neighboring clusters. Using only these gateway nodes for forwarding, the remaining
nodes can be freed from inefficient communication tasks.

These approaches for geographic clustering are used for constructing redundant routes
and efficient multicasting or geocasting. GeoGRID [LLS00] is a geocasting protocol
based on GRID that uses flooding for reaching the geocast region. Chang et al. [CCT03]
use a subdivision in hexagonal cells and propose a geocasting scheme that works in
two phases. In the first phase the message is sent to one node in the destination region.
Obstacles regions which are cells without any node are bypassed by flooding. Finally,
geocast region is flooded. Camp and Liu [CLO3] use the inter-gateway communication
to create redundant routes for reaching the geocast region.

The Cell-based Geographic Forwarding Protocol (see Chapter[3) uses an implicit clus-
tering based on a cell structure. The advantage of the cell structure over the planar sub-
graph constructions is that no links to neighboring nodes are explicitly forbidden. Void
regions are characterized by so-called barrier cells, so that a right-hand recovery can be
applied that uses the information about these cells. Topology-based rules that work on
the edges of the network connectivity graph and that require a prior planarization are
not necessary.

2.1.7 Location Services

The third assumption for position-based routing is that the position of the destination
node is known. To provide each node with this information is the task of location ser-
vices. The problem of locating the destination node is somehow similar to the route
discovery problem in ad hoc network protocols. Proactive schemes disseminate rout-
ing information before it is needed, whereas reactive schemes start the route discovery
on demand. Accordingly, a location service may work in a proactive way: each node
maintains a location database and distributes its own position throughout the network
at regular intervals [BCSWO98]. To reduce the update cost, such location databases can
also be maintained by a small number of dedicated nodes that act as location servers.
The location-aided routing (LAR) protocols by Ko and Vaidya [KV00] work completely
reactive. Position information is only used if it is available. If the destination’s position
is unknown, the network is flooded with route requests.

Li et al. [LJCT00] propose a distributed location service, called Grid Location Service
(GLS) that uses a hierarchical geographic subdivision of the plane in order to assign
location information to dedicated hosts. Rao et al. [RPSS03|] as well as Ratnasamy et

11
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al. [RKYT02] use distributed hash tables to assign location information to dedicated
regions in the network, where this information can be looked up by a query which is
geographically forwarded to and answered by a node in this region. Rao et al. [RPSS03]
also propose an algorithm for establishing virtual coordinates that enable geographic
routing if position information is not available.

2.1.8 Related Online Routing Problems

Bose and Morin [BM04b, BM04a] study the online routing problem for triangulations
and plane graphs with certain properties and present constant-competitive algorithms
for routing in these graphs. In triangulations, where there are no local minima, routing
can be done by a greedy strategy as it is used for position-based routing.

2.2 Routing in Faulty Networks

In this work a faulty mesh network is used as an abstract model for studying online
routing algorithms (see Figure [2.5). Routing in faulty networks has also been consid-
ered as an offline problem. In the field of parallel computing the fault-tolerance of
networks is studied, e.g. by Cole et al. [CMS97]. The problem is to construct a routing
scheme in order to emulate the original network. Zakrevski and Karpovski [ZK98]| in-
vestigate the routing problem for two-dimensional meshes. They use a similar model as
they consider store-and-forward routing in two-dimensional meshes. Their algorithm
needs an offline pre-routing stage in which fault-free rectangular clusters are identi-
fied. Routing algorithms for two-dimensional meshes that need no pre-routing stage
are presented by Wu [Wu00]. These algorithms use only local information, but the
faulty regions in the mesh are assumed to be rectangular blocks. In [W]J02] Wu and
Jiang present a distributed algorithm that constructs convex polygons from arbitrary
fault regions by excluding nodes from the routing process. This is advantageous in
the wormhole routing model because it helps to reduce the number of virtual chan-
nels. We will not deal with virtual channels and deadlock-freedom as we consider the
store-and-forward model.

2.3 Online Problems and Performance Measures

Routing in unknown networks as well as navigation in an unknown environment can
be regarded as online problems. Algorithms for such problems have to make decisions
without global knowledge and without knowing about the future. Classical online
problems are, e.g. task scheduling or paging where the algorithm has to handle re-
quests for processors or memory pages without knowing about future requests. The
analysis of these problems led to the framework of the so-called competitive analysis
[MMSS8S), BE98]. The basic idea of the competitive analysis is to consider a competition
between the online algorithm and the best offline strategy. This competition is carried
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out over all instances of the problem. Then, the maximum ratio of the cost of the online
algorithm and optimal offline cost gives the so-called competitive ratio.

In position-based routing as well as in online navigation, the algorithm has to com-
pete with the shortest path to the target. But there are other performance measures
beyond the classical competitive ratio, which have been studied in other fields of re-
search. Navigation problems have been investigated in different research communi-
ties, which Angluin et al. [AWZ00] called “the online competitive analysis community”
and the “theoretical robotics community”. In theoretical robotics the scenarios con-
tain obstacles of arbitrary shape and the performance of algorithms is expressed by
comparing the distance traveled by the robot to the sum of the perimeters of the ob-
stacles [LS87,IAWZ00]. The competitive analysis community has studied various kinds
of scenarios with restrictions on the obstacles (e.g. quadratic, rectangular or convex ob-
stacles). The performance is expressed by the competitive ratio which is the ratio of the
distance traveled by the robot and the length of the shortest obstacle-free path to the
target [PY89, BRS97].

The model of a faulty mesh network connects these two lines of research. The con-
nection between the scenarios considered in online searching and this model is obvious:
Scenarios with a lower bound on the distance between starting point and target point
and with finite obstacle perimeters can be modeled by a mesh network with barriers
consisting of faulty nodes. Online routing in such a network and the problem of navi-
gating to a point in an unknown environment are essentially the same, but the network
model imposes no restrictions on the parallelism. For robot navigation problems it is
not clear how unbounded parallelism can be modeled in a reasonable way. Usually,
navigation strategies are only considered for a constant number of robots. Therefore,
we consider a mesh network with faulty parts as underlying model, which enables us
to study the impact of parallelism on the time needed for finding the target. For the
time analysis we use the competitive ratio as used by the competitive analysis commu-
nity. Moreover, the traffic is compared to the perimeters of the barriers which gives the
comparative traffic ratio (see Section[4.2). This ratio expresses the amount of parallelism
used by the algorithm.

2.4 Online Navigation and Searching

2.4.1 Navigation

Navigation is the task to find a path in an unknown environment to a target, which is
specified by its position (see Figure 2.6). Problems of this type have not only drawn
the attention of the robotics community, they were also studied in the field of online
algorithms, where the competitive analysis is used to evaluate the performance of al-
gorithms. While in theoretical robotics this performance is expressed by the overall
path length in terms of the distance to the target and the perimeter of obstacles, in the
competitive analysis the competitive ratio is mainly used. The competitive ratio com-
pares the cost of an algorithm with the cost of the optimal solution. For online searching
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Figure 2.6: Online navigation: a robot
has to reach a target (indicated by the
flag) with only touch sensing
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Figure 2.5: A mesh network with faulty
nodes

and navigation problems the cost is usually the path-length between source and target.

The competitive analysis of online navigation problems was introduced by Papadi-
mitriou and Yannakakis in 1989 [PY9]1]. They studied the problem of navigation in
two-dimensional scenes with oriented rectangular obstacles. For quadratic obstacles
they showed a lower bound of 3/2 on the competitive ratio. They also introduced
the wall problem, where the goal is to reach a vertical line, and showed a lower bound
of Q(v/d) on the competitive ratio for deterministic algorithms. Blum, Raghavan and
Schieber [BRS97] later found an algorithm for the wall problem that matches this lower
bound. For this problem, randomization can be used to overcome the deterministic
lower bound: Berman et al. [BBET96] presented a randomized algorithm with a com-
petitive ratio of O(n*/®logn).

The algorithms community has studied several related problems with various restric-
tions on the environment or on the obstacles. Blum, Raghavan and Schieber introduced
the room problem, where the starting point is located on the wall of a quadratic room and
the target is the center of the room. The obstacles are also oriented rectangles. In this
problem there is always a path of length d. An optimal algorithm with a competitive
ratio of O(log d) was presented by Bar-Eli et al. [BBFY%4].

For more complex obstacles the navigation problem becomes much harder. In the
case of arbitrary non-convex obstacles, as they are assumed in theoretical robotics, one
can show a linear lower bound on the competitive ratio, i.e. any algorithm exceeds the
optimal path length of d by a factor of d. This is shown in [BRS97] by constructing a
maze-like structure which consists of several corridors, where only one of them leads
to the target (cf. Figure[2.7). The online algorithm has to examine all corridors, whereas
the offline solution is to directly take the right corridor leading to the target. For this
problem there is no better solution than to perform a complete obstacle traversal. The
same considerations lead to the lower bound for traffic for online routing algorithms,
which is stated in Section[4.3
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Figure 2.7: Lower bound scenario for online navigation: A robot
(without vision) has to examine all corridors in the worst case.

Restrictions on the robot

Hemmerling [Hem93] studied the navigation problem for a robot that has neither po-
sition nor distance information. When having a compass, the target can be reached in
O(n?) steps using a rotation counter, where 1 is the number of vertices of the polygonal
obstacles.

Angluin, Westbrook and Zhu [AWZ00] investigated robot navigation under the re-
striction that the robot can only determine the distance to the target instead of having
position information. According to their algorithm, a robot moves towards the target
and follows the obstacle boundaries, but it has no range information to determine the
point where the obstacle boundary can be left. Instead, the criterion for stopping the
boundary traversal is a sequence of local minima and maxima on the obstacle bound-
ary. Like in [LS87] the analysis is focused on the perimeters of the obstacles: As a
performance measure they consider the ratio of the excess distance (which is the length
of the robot’s path minus the straight-line distance) and the sum of the perimeters. In
Section we define a similar comparative measure for the traffic of online routing
algorithms.

2.4.2 Searching and Exploration

Navigation means to reach a target at a position which is known beforehand. If this
position is not known, then the whole environment has to be investigated because the
target can be placed where the algorithm searches last. Problems of this type are known
by the term searching. Another related problem is the exploration of an unknown en-
vironment. Exploration algorithms and searching algorithms have to investigate the
whole environment, but for both problems different competitive measures are used. In
online searching one usually compares the length of the path the algorithm has found
with the length of the shortest path. In contrast, online exploration algorithms have to
compete with the shortest tour that covers the complete environment.

The competitive analysis community has studied several problems ranging from
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searching for a point on a line to the exploration of graphs. Probably the best known
problem is the so-called cow-path problem, which is sometimes mentioned as prime ex-
ample for a competitive analysis: A short-sighted cow searches for a gate in a fence. It
can only detect the gate when standing directly in front of it. So it has to walk along
the fence, but does not know in which direction. The offline solution is simple and the
cost of an offline algorithm is just the distance from the initial position to the gate. The
best online solution (for the cow) is the following doubling strategy: walk one step to
the right, return to the initial position, move two steps to the left, walk back and then
four steps to the right, and so on until the gate is reached. In each iteration the search
depth is doubled. So the length of the cow’s path is only a constant factor larger than
the distance between the starting point and the gate. This strategy is optimal and yields
a competitive ratio of 9. This problem can be regarded as a search for a point on a line
and is a special case of the search on m concurrent rays, where the cow is standing on
a crossroad and has m directions in which it probably finds the goal. Upper and lower
bounds for this problem have been shown by Baeza-Yates et al. [BCR93] and Jaillet and
Stafford [JSO1]. Baeza-Yates et al. describe the Linear Spiral Search algorithm that se-

quentially visits the m rays and chooses a search depth of (%)Z in the i-th iteration.
This is a generalization of the doubling strategy for the case of two rays. For this prob-
lem, randomization helps to overcome the lower bounds of deterministic algorithms.
The randomized SmartCow algorithm of Kao et al. [KRT93] chooses a random initial
offset and a random permutation for visiting the m rays. This algorithm is optimal and
beats the deterministic strategy: It achieves a competitive ratio of approximately 4.59
for m=2, compared to the competitive ratio of 9 for the deterministic algorithm. The
cow-path problem was introduced earlier and independently analyzed by Gal [Gal80]
in the context of game theory. Gal showed the optimality of exponential functions,
which are used for choosing the search depth in this problem. Choosing exponential
functions is not only useful for these kind of search problems. A doubling strategy can
be also used, e.g., to limit the traffic overhead of flooding in networks. This is known
as expanding ring search, which is described in Section We use expanding ring
search as part of the alternating algorithm, which reduces time and traffic overhead at
the same time.

The exploration problem, which is related to searching, has been studied by Deng
et al. [DKP98] for robots with vision capabilities, by Albers et al. [AKS02] for a robot
in a two-dimensional environment, by Kleinberg [Kle94] and Icking et al. [IKKLO05] for
simple grid polygons, Deng and Papadimitriou [DP99] as well as Albers and Henzinger
for graphs [AHO00]. Deng and Papadimitriou showed that the exploration problems can
be solved efficiently for Eulerian and similar graphs. They introduced the definition of
the deficiency of a graph, which is the minimum number of edges that have to be added
to make the graph Eulerian. They present a lower bound of Q(d%m), where d is the
deficiency and m the number of edges in the graph.

A survey of searching and navigation algorithms is given by Berman [Ber98]. Some
of the results are also described in [LaV06].
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2.4.3 Maze Traversal Algorithms

Problems of searching and navigation have been studied long before the advent of mi-
crocomputers. A well-known strategy for traversing a maze is the right-hand rule or
wall-following strategy: by following the wall while keeping one hand (either the left
or the right one) always in touch with the wall, it is guaranteed to find a way out of
a maze. The right-hand rule requires that the starting point has a connection to the
outer walls of the maze. Though this strategy fails in cases where the walls are not
connected, the right-hand rule is often applied for traversing obstacles or barriers in
position-based routing and online navigation. If the target position is known, naviga-
tion algorithms can measure the progress towards the target and define a point where
the obstacle boundary can be left. The robot motion-planning algorithms described
in Section are based on this idea. The following algorithms solve the traversal
problem for arbitrary mazes.

One of the early theoretical works on maze searching, which uses a graph represen-
tation of a maze, is Trémaux’s algorithm [Luc92]. It was already known in the 19'
century as a method for traversing mazes, following a depth-first search strategy. The
algorithm traverses each edge exactly twice (in opposite directions). When arriving at a
node it first uses edges that were not traversed in the same direction and finally leaves
the node by the initial edge.

The problem of escaping from a maze is solved by the Pledge algorithm. This al-
gorithm requires touch sensing and a compass so that the cumulative turn can be
recorded. The algorithm can be described by the following instructions. Choose an
initial direction and move in this direction whenever it is possible. When hitting an
obstacle, follow the walls using the right-hand rule and count the degrees of rotation
when changing the direction. Once the rotation counter is equal to zero, continue walk-
ing in the initial direction. The Pledge algorithm is able to find an exit, even if it is
started inside the maze, whereas the wall-following method using the right-hand rule
has to be started at the outer walls of the maze. The algorithm was named for John
Pledge, who developed this navigation method at an age of 12. A description of the
algorithm and a proof of correctness is presented by Abelson and diSessa [Ad82]]. Fur-
ther maze traversal algorithms and variants are described by Rao et al. [RKSI93] as well
as by Lumelsky and Stepanov [Lum87].

2.4.4 Complexity of Labyrinth Problems

The requirements of Trémaux’s algorithm and the Pledge algorithm are beyond the ca-
pabilities of finite automata; Trémaux’s algorithm uses marks on the edges of the graph
and the Pledge algorithm needs a rotation counter. This raises the question whether
finite automata are able to search mazes.

Budach [Bud75|] gave a negative answer to that question: there is no finite automa-
ton that can search all mazes (see [Bra03] for a proof). A maze is modeled as a two-
dimensional checkerboard with obstacles (cf. Figure4.2). An automaton in a maze has
the advantage of having a compass. With the information about the orientation, a maze
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is easier to search than a planar graph [BK78|]. Coy [Coy77] considered other compu-
tational models and showed that a pushdown automaton is not able to search a maze,
but a linear space-bounded Turing machine can perform this task. Blum and Kozen
[BK78] showed that even a logspace-bounded algorithm can solve this problem. They
also showed that a two pebble automaton can search all mazes where the two peb-
bles simulate a counter. Furthermore, two cooperating automata can perform this task
together. More about maze searching abilities of automata can be found in [Hem77].

In this thesis the algorithms are studied in a less restricted model than finite automa-
tons: Counting is allowed as well as parallelism: in a network, an unbounded number
of cooperative automata is available. However, communication between the parallel
processes is not possible and this is one of the major problems in parallel online rout-
ing.

2.5 Robot Motion-Planning Algorithms

Motion planning is an important research area in robotics and has been studied under
several aspects for various kinds of robots, including autonomous vehicles as well as
manipulator robots, which are used in industrial assembly (see [HA92, [Lat93, [LaV06]).
Many planning algorithms work offline, i.e. they require the environment to be known
a priori. In the following we will concentrate on online planning algorithms that work
in unknown environments. These algorithms solve navigation problems, which are re-
lated to the position-based routing problem. The online planning algorithms described
in the next subsection use essentially the same idea as the greedy forwarding strate-
gies with right-hand recovery in position-based routing. They perform greedy steps
towards the target and circumvent obstacles by using the right-hand rule.

2.5.1 Online Planning in Continuous Environments

In the early 1980s Lumelsky and Stepanov began their work on robot motion planning
algorithms. They developed two basic algorithms, Bugl and Bug2, for navigation in
an unknown environment using only touch sensing and analyzed their performance
[LS84] Lum87, [LS87, [LS86]. Bugl (see Algorithm [I) moves towards the target and fol-
lows boundaries of all obstacles it encounters. It leaves the obstacle boundaries at a
local minimum, i.e. at the point that is nearest to the target. This is illustrated in Fig-
ure2.8

Bug? uses a guide line connecting source and target. It follows the guide line until
the target is reached or an obstacle is hit. Then it performs a partial traversal of the
obstacles using the right-hand rule until the guide line is reached again. Figure
shows a trajectory of this algorithm.

Lumelsky and Stepanov express the performance of their algorithms in terms of the
perimeters of all obstacles and the shortest path. The path length of Bugl is at most
D +1.5p, where D is the Euclidean distance between source and target and p the sum
of perimeters of all obstacles. This matches the lower bound for this class of algorithms
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Figure 2.8: Trajectory for Bugl Figure 2.9: Trajectory for Bug?2
Algorithm 1 Bugl
1: repeat
2: Move towards the target along a straight line.
3: if a barrier is hit then
4: Start a complete right-hand traversal around the barrier
and remember the point p that is nearest to the target.
5: Take the shortest path to p (along the obstacle boundary).
6: end if

7: until target is reached

that use touch sensing [Lum87]]. Bug2 is more efficient in the case of convex obstacles,
which are traversed only partially. However, in scenarios with arbitrary obstacles it
can happen that parts of the obstacles are traversed several times. A comparison of the
path length performance of Bugl, Bug2, and the maze searching algorithms is given in
[Lum91].

A modification of Bugl was proposed by Lucas [Luc88]]. This variant uses the guide
line of Bug?2, performs a complete obstacle traversal and proceeds on the guideline at
the nearest intersection point (i.e. the point where the guide line intersects the obsta-
cle boundary). We use this algorithm as part of the alternating algorithm, which is a
strategy to reduce time and traffic overhead at the same time. A detailed description
follows in Section4.4.1]

The work of Lumelsky and Stepanov has inspired several Bug-like strategies. Sankara-
narayanan and Vidyasagar [SV90a, SV90b] proposed two variants of these algorithms
that attempt to avoid a complete traversal of the obstacles: Algl and Alg?2 leave the ob-
stacle if a local minimum is reached (like Bugl) or the guide line is reached (like Bug2).
When an already visited point is reached while traversing the obstacle, then the direc-
tion is turned and the obstacle is traversed in the opposite direction using the left-hand
rule. The path length of these algorithms is at most D + 2p.

Other strategies were designed, e.g. to reduce the average path length [NHNO03|

19



2 Related Work

NNHO04], work under position and orientation errors [NY98] or incorporate informa-
tion from vision and range sensing [LS90, KRR98, |Shi00]. An overview of these strate-
gies is also given in [LaV06] and [RKSI93].

2.5.2 Motion Planning in Grid-based Environments

The underlying model for the planning algorithms described in the last section is con-
tinuos representation of the environment. There are other models that are based on
the representation by a grid or a quadtree. Offline planning on a grid can be done by
breadth-first search (BFS) or A* algorithms (see [HA92] for some examples). These al-
gorithms are not suitable for online planning for a single robot, because they require
access to all leaves of the search tree. A single robot cannot jump to other parts of the
environment in order to continue the search in a more promising direction [LaV06].
With a team of robots, the navigation tasks can be performed at different places, but
without global communication, the coordination is costly.

Stentz’s D* algorithm [Ste94] is a dynamic variant of an A* algorithm that produces
optimal trajectories for a single robot in a partially known environment. It maintains
estimates of the cost for reaching the goal and updates these cost values during exe-
cution. Therefore, it also works in an initially unknown environment. The trajectories
are optimal based on the information the robot had during execution. However, in an
unknown environment a robot with touch sensing and restricted vision has to collect
this information. This would lead to a traversal of obstacles as it is done by the Bug-like
strategies.

The disadvantage of grid-based map representations is the large memory require-
ment. Therefore, a subdivision of the plane has been used in path-planning to over-
come this problem. The quadtree is a popular choice for constructing efficient data
structures. However, a standard quadtree-based approach for path planning cannot
guarantee that Euclidean shortest paths are found. Chen et al. [CSU97|] proposed a
data structure called the framed quadtree to overcome this problem. The framed quadtree
contains for each leaf additional information about the quadratic region (called frame) it
represents. This information consists of the border nodes of a frame (border nodes cor-
respond to the frame nodes in this work). A path through the environment enters and
leaves obstacle-free frames and consists of straight-line segments that connect these en-
try points. To determine the shortest path, a modified BFS (called wavefront) is started
that has to keep track of all these entry points because traversing a frame on a straight
line between different entry and exit points causes different costs. This algorithm com-
putes the Euclidean shortest path in time O(P) 4+ O(T,), where P is the overall number
of border cells (of obstacle-free leaves) in the quadtree and T}, the time for updating
the pointers to neighboring frames. In our notation, P is O(plogd), where p is the
perimeter of all obstacles and d the length of the shortest path.

The algorithm by Chen et al. can be extended to find conditional shortest paths (i.e.
shortest obstacle-free paths based on known information) in an unknown environment
where the path-planning has to be updated when the information about new obstacles
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arrives. It has been used in connection with the Stentz’s D* algorithm [YSSB98] and
was also extended to the 3-dimensional case [CSU95].

Wavefront propagation algorithms were also proposed for other path-planning prob-
lems (cf. [LaV06]). Hershberger and Suri [HS99] developed an optimal algorithm for
Euclidean shortest paths in the plane among polygonal obstacles. This algorithm also
uses a quadtree-style subdivision and requires O(nlogn) time and O(nlogn) space
where 7 is the number of obstacle vertices.

The JITE algorithm (see Section also uses a subdivision of the environment that
is similar to the quadtree-based approaches for path planning. In path planning, the
environment is subdivided until the squares are obstacle-free (or contain only obsta-
cles), whereas the JITE algorithm allows frames that are intersected by barriers as long
as they do not cause a too long detour. This is crucial for its efficiency.

For searching on the subdivision, the JITE algorithm also uses a breadth-first strategy.
Although this idea to use a BFS on a quadtree is similar, the planning algorithm by
Chen et al. is a sequential offline algorithm. The JITE algorithm performs a parallel
search, and this search is performed online, i.e. the information of one leaf of the BFS
tree is not available at other leaves. This has to be coordinated in order to prevent a
second traffic-consuming exploration of an area that has already been examined. The
challenges both algorithms have to face, are quite different: The planning algorithm
has to map Euclidean shortest path on the rectilinear frames of the quadtree while the
BFS is executed, whereas the JITE algorithm has to construct the subdivision during the
execution of the BFS and to coordinate the parallel branches of the BFES tree.
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Position-based Routing using
a Cell Structure

Position-based routing protocols for wireless networks use positioning capabilities (e.g.
GPS) to make forwarding decisions. These protocols do not rely on the maintenance of
routes, nor do they require a route discovery. Instead, packets are forwarded in the
geographic direction of the packet’s destination. Therefore, these protocols are scal-
able and suitable in dynamic networks like wireless networks. The main prerequisite
is that a node in the network knows its geographical position and the position of the
destination. If each node broadcasts its own position to the neighbors at regular in-
tervals, then all nodes know their neighbors’ positions and are able to choose the next
node that minimizes the distance to the destination. This is the basis for greedy forward-
ing (see Section 2.1). If greedy forwarding fails in case of a local minimum, a recovery
strategy is executed that guides the message around this region, e.g. by applying the
right-hand rule. Such strategies often require a planarization of the network topology
to prevent routing loops. For planarization, several subgraph constructions have been
proposed as described in Section[2.1.3] Unfortunately, the planarization cancels out the
long edges of the original network topology, so that the routing progress is reduced just
in the case when the effective greedy strategy fails.

The Cell-based Geographic Forwarding Protocol (CGFP), which is presented in Sec-
tion[3.3] avoids this disadvantage of planarization. It is based on a geographical cluster-
ing and provides each node with a map of its environment that contains the necessary
information for greedy forwarding and recovery. This map is constructed by subdi-
viding the plane into cells which are classified as link cells or barrier cells. Figure
illustrates this idea. Link cells indicate communication regions, whereas barrier cells
represent void regions where no communication is possible. The map can be appended
to beacon messages, which are necessary for announcing position information. This
way, a node obtains 2-hop information with only a constant data overhead of the bea-
con messages. Moreover, the cell structure provides an implicit planarization that is
required for loop-free paths in recovery mode (i.e. if a barrier is traversed). The Cell-
based Geographic Forwarding Protocol provides a distributed construction of the cell
structure using only local information. It constructs routing paths based on the cell
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Figure 3.1: Unit disk graph with transmission radius r (left) and grid subdivision (right) of a
node set.

structure by a greedy forwarding strategy with right-hand recovery.

In Section |3.4) we will see that paths on the cell structure are equivalent to paths in
the original network. Thus, position-based routing in wireless networks (under the unit
disk graph assumption) is essentially the same as routing on the cell structure, which
can be regarded as a two-dimensional mesh with barriers. In Chapter @] this model
is used to study the impact of parallelism on the efficiency of position-based routing
strategies.

3.1 The Network Model

A wireless network can be modeled as a graph G = (V, E) with |V| = n, where the
nodes V are the participants of the network and the edges E are the communication
links. The nodes are placed in the Euclidean plane and have a fixed transmission radius
r. We assume uniform transmission ranges: there is a link between the nodes u and v
if and only if ||u — v|| < r. For a normalized transmission radius (r = 1) the resulting
graph is called unit disk graph (UDG). Figure 3.1| (left) shows an example.

3.2 Proactive Versus Reactive Information Dissemination

For position-based routing, a node has to know its own position and the position of the
target. We also assume that the positions of the neighbors are known. If this require-
ment should be fulfilled, then the information has to be collected beforehand. This
leads to the question whether this information exchange is necessary.

In a continuous time model, a proactive exchange of position information is not
needed. There are approaches for position-based forwarding without beacon messages
(see Section 2.1.4). Instead of providing neighboring nodes with position information
as basis for their forwarding decisions, the decision about the next hop is based on the
response time of the neighboring nodes: nodes with the most suitable locations an-
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Figure 3.2: Worst-case example for reactive routing

swer earlier than others. However, these protocols require a continuous time space for
distinguishing between response times that represent the positions of the neighboring
nodes.

The assumption of a discrete time model is justified by the fact that the response
time of a node in a wireless network is limited, and therefore in practice a continuous
medium access protocol relying on arbitrarily small time differences does not work.
Moreover, in the worst case, a completely reactive communication protocol needs as
much messages as used by proactive beaconing.

Theorem 3.1 Every reactive position-based communication protocol needs Q)(n) message trans-
missions or w(1) rounds for delivering a single message in the worst case even if the hop distance
between source and target is constant.

Proof: The proof of this theorem follows the ideas presented in [BGI92] using the
situation depicted in Figure The source s can reach n — 3 nodes directly. But only
one of them is on the shortest path of length 3 from s to the destination node ¢. In the
first round s can inform all nodes with one message except two nodes. Then, only one of
them can forward it on the right path toward the destination. Which one is not known
to the network and cannot be determined by the use of the destination coordinates.
Therefore a deterministic algorithm can be forced to try n — 3 attempts until succeeding
by a fooling argument.

For a probabilistic algorithm we choose the first node randomly from the neighbors
of s. If the attempt fails, we retry and choose one of the remaining neighbors. Hence
the expected number of attempts to succeed is n/2 — 1. Thus the necessary messages
to deliver the packet is at least n/2 + 1. ]

This theorem shows that a minimum proactivity is helpful. Thus, we concentrate on
communication protocols that use a proactive exchange of position data. Then the ques-
tion is how the position information can be exploited. The easiest way to disseminate
this information is to include position coordinates in beacon messages that are broad-
casted at regular intervals. This way every node knows the nodes in its neighborhood
and their positions. This position data can also be forwarded to the next neighbors, so
that each node also knows the position of the 2-hop neighbors. This requires to add a
list of neighbors to the beacon messages and this list can be of arbitrary length. Dis-
tributing information over multiple hops and maintaining this information can help
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to detect local minima in static scenarios, but in the case of dynamics and mobility
this leads to the problem of out-dated information. Also the scalability is no longer
ensured. Thus, the proactive information dissemination would contradict the idea of
position-based routing.

The Cell-based Geographic Forwarding Protocol exploits the 2-hop information, but
uses beacon messages with only constant data overhead. Instead of distributing a list
of the neighbors’ positions, each node broadcasts a map of its environment to its neigh-
bors. This map contains information about a constant number of cells, which are clas-
sified as link cells or barrier cells.

In the next subsection we show how to establish a geographic clustering by distribut-
ing 2-hop information. The information about a node’s environment is only broad-
casted to the direct neighbor and not distributed any further.

3.3 The Cell-based Geographic Forwarding Protocol

The Cell-based Geographic Forwarding Protocol (CGFP) consists of two parts: the dis-
tributed construction of the cell structure and the forwarding algorithm.

The first part of the protocol provides the basis for the forwarding. It establishes a
grid subdivision of the plane containing the information about the neighborhood of the
nodes: each node subdivides the area covered by its transmission radius into cells. By
exchanging beacon messages with position coordinates, each node knows the position
of its direct neighbors. Then, the cells between a node and a direct neighbor can be
classified as link cells, the other cells are barrier cells or remain unclassified. With this
classification a node has some kind of map containing the local information of the area
covered by its transmission radius. This map is called view. The information from a
view is appended to the beacon messages, so that other nodes can extend their views.
This way a node obtains the information about its 2-hop neighborhood with only a con-
stant overhead in the size of the beacon messages. This part of the protocol is described

in Section 3311

The second part of the protocol contains the forwarding of messages. If a node re-
ceives a message (and if it is not the destination), it has to select one neighboring node
and send the message to it. This selection is based on the position of the destination
and the local information in the view, which is collected in the first part. The view is
used for a virtual forwarding of the packet from cell to cell using greedy forwarding
with recovery. The link cells in the view indicate regions that can be used for forward-
ing, barrier cells indicate regions where no node can take over a message for further
forwarding. If a virtual path leaves the own cells or reaches the end of the map (un-
classified cells) then the message is physically forwarded to another node. This part of
the protocol is described in Section A detailed description can be found in the
specification [BRO6].
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Figure 3.3: Classification of cells

3.3.1 Establishing the Cell Structure

Each node creates a map of its environment by subdividing the area covered by its
transmission radius into cells. The cells in this cell structure are classified in order to
determine those regions that can be used for routing and those who cannot. The side
length ¢ of a cell is determined by the transmission radius . We will see in Section
how ¢ has to be chosen so that a correct classification of link cells is guaranteed.

Classification of cells

A cell is classified by a node v as

— link cell if it lies completely within half of the transmission radius of v of any
neighboring node (half radius rule) or if it is intersected by an edge (edge intersection
rule).

— barrier cell if all of the following conditions are fulfilled: it lies completely within
the transmission radius 7 of v, it is closer to v than to any other neighboring node,
and it is not a link cell.

— unclassified if it is not covered by the transmission radius, or if it is not a link cell,
but a neighboring node is closer to it than v.

Views

For the cell classification two views are used: View 1 contains the set of cells within
the radius r and their classification. This classification is based on the positions of the
direct (1-hop) neighbors. The information of this view is given to the neighboring nodes
in the beacon messages. View 2 is the enlarged view of a node. It contains the cells
classified by the node (View 1) and by the classifications of the neighbors that add their
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Beacon

Field | Description

ID ID/network address of the sender
pos | geographic position of the sender
view | array containing type and owner of
cells from View 1 of the sender

Figure 3.4: Contents of a beacon message

classification to the beacon messages. View 2 is the basis for routing (forwarding). It is
not included in the beacon and not sent to other nodes.

View 1is a grid, whose side length is 2| r/£| 4 1 so that the the complete transmission
radius is covered. Unit for the dimension is the number of cells. View 2 should also
cover the transmission range of potential neighbors, therefore a side length of 4|r/¢] +
1 is chosen. Each cell in a view has a type and an owner. The owner is either the node
itself or a neighbor. The direct neighbors are stored in a list where their geographical
positions can be looked up.

The views are initialized as follows. In the beginning, all cells are unclassified. Then,
the cells which are completely within the half radius of the node are set to link cells. Cells
between half-radius and transmission radius are set to barrier cells if no other neighbor
is known who is closer to them. After this step, the cell status is updated when beacon
messages arrive.

Updating the Cell Classification

The views have to be updated if neighbors appear, move or disappear, or if the node
that hosts the view moves. As the own movement affects the link cells within the half
radius and link cells intersected by links to the neighbors, View 1 has to be rebuilt from
the position information stored in the list of neighbors. The movement or appearance
of neighbors are recognized by beacon messages, their disappearance can be handled
by timeouts. If a node receives a beacon message from a neighbor, it updates the views
as follows:

1. If the neighbor is already known and if he has moved, then delete the old infor-
mation in View 1 and View 2 (reset the cells owned by the neighbor).

2. Classify the link cells by applying the half radius rule and the edge intersection
rule in View 1.

3. Copy information about cells owned by the neighbor to View 2.

4. Copy classified cells from the beacon message into View 2.
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Figure 3.5: View 1 of node w with an incorrect classification (left), with a correct classification
(middle) and View 1 of node x (right)

The update of the views from a beacon message (Steps 2-4) is described by UPDATE-
CELLS (Algorithm 2). A beacon message includes the geographic position and View 1
of the sender (see Figure [3.4).

The problem of classifying a barrier cell correctly is that the information about this
cell is only reliable if no other node could classify this cell differently. Assume four
nodes u, v, w and x are placed on a line as shown in Figure Node w knows only
v to the west. Node u is beyond its range, and it can only be reached by node v. But
w does not know this. It marks the cells west of node v as barrier cells (in View 1,
beyond v’s half radius) and sends this information eastward to node x. So in View 2 of
node x there are only barrier cells to the west of v. Then, node x would not attempt to
physically forward the packet in that direction, though there is a route. This problem
can even occur if the two nodes in the middle (v and w) are in the same cell.

Thus, a node has to be sure that a cell is a barrier cell, i.e. that there must be other
node that could classify this cell differently. This means for View 1: a cell is classified
as barrier cell if no other node is closer to this cell. Otherwise they are marked as
unclassified.

The correct classification for the example is shown in Figure Node w does not
classify the cells to the west of v as barrier cells. So beyond the link cells around v there
are only unclassified cells. This information is passed to x and used to create View 2
(see Figure [3.6). If x performs the cell-based forwarding by constructing a path west-
ward in View 2, it reaches the unclassified cells and then it has to hand over the packet
to node w. Node w has the information about u in its View 2 and will forward the mes-
sage further in this direction. If u and v are deleted from the picture, then there are no
other nodes to the west of w and the cells beyond w’s half radius can be classified as
barrier cells.
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Figure 3.6: View 2 of node x (containing the information of View 1 of node v)

As a consequence of the problem of barrier classification, a node v leaves a cell C un-
classified if all of the following conditions are true:

C is inside the transmission radius r of node v.

C lies outside the half-radius of node v.

C lies outside the half-radius of any neighbor (i.e. it is not a link cell).

The distance from C to a neighbor is smaller than the distance to v.

If a new neighbor appears, all barrier cells that are closer to the neighbor than the
node itself, have to be set to unclassified. If a neighbor disappears, then each cell that
was owned by this neighbor has to be checked whether it is a link cell of another node.
If this is not the case than it can be classified as barrier only if there is no other neighbor
closer than the node itself. Otherwise, it has to be unclassified.

View 2 is constructed by taking the information from the beacon messages. When a
node v receives a beacon message from a neighbor u, then it adopts the classification
from View 1 of the neighbor, but with the following restrictions:

The own cells in View 2 are not overwritten.

The own cells from the beacon message (owner=0v) are ignored.

Unclassified cells from the beacon message are ignored, except the cell in View 2
is owned by u.

Barrier cells from the beacon message cannot overwrite link cells in View 2.

If a classification of a cell is adopted, then 1 becomes the new owner in View 2 of v.

The update of the cell classification is described by UPDATECELLS (Algorithm [2). It
uses the following functions:

e UPDATEVIEW]1(cell, type, owner) assigns type and owner to the cell in View 1. A
cell of the same type is only overwritten if the position of the new owner is closer
to the cell than the old owner.

e UPDATEVIEW2 works analog to UPDATEVIEW1. It forbids that unclassified cells
overwrite cells of another type by another owner in View 2.
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Algorithm 2 UPDATECELLS(beacon)

1:
2:
3:

=

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

24:
25:
26:

neighbor = beacon.ID
neighbor_cell = local cell containing beacon.pos
for each cell(x,y) in view1 do
if cell.owner # me and GETDISTANCE(me.pos,cell) < r then
d = GETDISTANCE(beacon.pos,cell) // distance from cell to neighbor
if d <r/2 then
UPDATEVIEW1([X,y], type:link, owner:neighbor)
else // if there are barrier cells that are closer to the neighbor:
if cell.type = barrier and (cell.owner = none or cell.owner = neighbor)
and d < GETDISTANCE(me.pos,cell) then
UPDATEVIEW1([x,y], type:unclassified, owner:neighbor)
end if
end if
end if
end for
SETLINKCELLS([0,0], neighbor_cell, neighbor)
for each cell(x,y) in view1 do // copy updated cells into View 2:
if cell.owner = neighbor and (cell.type#barrier or view2[x,y].type#link) then
UPDATEVIEW2([X,y], cell.type, cell.owner)
end if
end for
for each bcell(x,y) in beacon.view do // adopt cell classification from the beacon
veell = view2[x+neighbor_cell.x, y+neighbor_cell.y]
if vcell.owner#me and bcell.owner#me
and (bcell.type#unclassified or vcell.owner = neighbor)
and (bcell.type#barrier or vcell.type#link) then
UPDATEVIEW2([X,y], beell.type, owner:neighbor)
end if
end for

e SETLINKCELLS(celll, cell2, neighbor) sets all cells that are intersected by the line
segment between the own position (me.pos) and the neighbor’s position to link
cells and ensures that these cells are orthogonally connected. The owner of each
cell is either this node (me) or the neighbor, whichever is closer to the cell.

o GETDISTANCE(position, cell) returns the maximum distance from the geographi-
cal position p to any of the corners of the cell c.

31



3 Position-based Routing using a Cell Structure

"{y T

L N

| &i& N !

N N ] link cell

‘ . . . barrier cell

| L i -

v N | | unclassified
LN 1 (out of range)
I R § unclassified

(not owner)

Figure 3.7: Node v (left) and node x (right) and the classification of cells based only on the
positions of the direct neighbors (View 1)

An Example for the Cell Classification

Figure shows View 1 of nodes v and x. The link cells within the half radius are
owned by v and x. Further link cells are determined by the position of the direct neigh-
bors. The remaining cells are either barriers or they remain unclassified if a neighbor
is closer to them. Figure [3.8| shows the enlarged view (View 2) of node v after it has
received beacon messages of all its neighbors. In this view the information from v’s
View 1 and the views of the neighbors are merged by UPDATECELLS. The missing in-
formation in v’s View 1, e.g. the unclassified cells east of v (Figure[3.7]left) are provided
by the neighbors x and w.

The complete picture of the network with further nodes is shown in Figure 3.3| From
node v’s point of view the links outside the transmission radius are unknown.

Figure 3.8: The enlarged view of node v (View 2)
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Figure 3.9: Construction of a right-hand traversal path in View 2

3.3.2 Cell-based Routing

If a node receives a message and if it is not the destination, then it has to forward this
message to another node. If one of the neighbors is the destination node, then it can
simply forward the message to him (see PROCESSPACKET, Algorithm [3). Otherwise it
has to select a neighbor that has the most promising geographical position. This deci-
sion is made by means of the cell structure: the received packet contains the information
about the current cell (where it virtually resides). From this cell the node constructs a
cell path in View 2 by applying a greedy and recovery strategy until the own cells are
left or an unclassified cell is reached. Then the owner of this cell is the neighbor to
whom the packet is forwarded.

In greedy mode a packet is virtually forwarded from cell to cell by choosing always
the orthogonally adjacent cell that is nearer to the target. If the next cell towards the
target is a barrier cell, then no progress is possible and the recovery mode is used. In
recovery mode the barrier is traversed using the right-hand rule. The greedy forward-
ing is resumed if the progress condition is fulfilled, i.e. if the packet is nearer to the target
than the position that was recorded when starting the recovery.

Routing on the cell structure is performed in the local view of a node. Figure
shows a right-hand traversal path in View 2 that is constructed after a node v received
a packet from its neighbor x. When the own cells are left, the packet is physically for-
warded to another neighbor u that has to continue the cell path construction. So the
packet has to contain all necessary information about the current state. The contents of
a packet is listed in Figure[3.10}

The routing on the cell structure is described by FORWARDPACKET (Algorithm[4). FOR-
WARDPACKET performs a greedy forwarding with right-hand recovery on the cells in
View 2 as long as the cells are owned by this node. If the owner changes, then the packet
is physically forwarded to the owner of the next cell. The next cell is determined by
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Packet

Field Description

source ID/network address of the sender
dest destination address

dest_pos | geographic position of the destination
cell_pos | current global cell position of the packet

dir current direction of the packet

mode forwarding mode, either greedy or recovery
rec_cell | global cell position when entering recovery mode
rec_dir direction when recovery was started

Figure 3.10: Contents of a packet

GETNEXTGREEDYCELL or GETNEXTRECOVERYCELL depending on the current mode
of the packet (lines [5-{9). If a cell is traversed a second time in the same direction, then
the target is not reachable and the packet can be dropped (line [1T).

GETNEXTGREEDYCELL (Algorithm [5) determines the orthogonally adjacent cell that
is nearest to the target. If this next cell is a barrier, then the packet is switched to re-
covery mode and the current direction is turned to the left so that the barrier is to the
right-hand side. The current direction and the current position are stored in the packet,
so that it can be checked later whether the progress condition is fulfilled or if the packet
returned to this position.

GETNEXTRECOVERYCELL (Algorithm @ determines the next cell in recovery mode,
i.e. when the border of a barrier is traversed. When the recovery mode starts, the barrier
is to the right. So the first step in this function is a right turn, and if no barrier is there,
then this is the next cell. Otherwise, a left turn is repeated until a non-barrier cell is
found. The recovery mode ends if the progress condition is fulfilled.

If only the first turn to the right is carried out and the next cell is unclassified, then
the packet is physically forwarded to a neighbor. In the neighbor’s view this cell could
be a link cell or a barrier cell. The justTurnedRight flag is used to adjust the direction
so that the recovery mode can continue correctly in the neighbor’s view (line [16| in
FORWARDPACKET).

To avoid symmetry problems, unclassified cells that are owned by the sender of the
packet can be regarded as barrier cells.
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Algorithm 3 PROCESSPACKET(packet)

1:

if packet.dest = me.ID then
hand over packet to application layer
else if packet.dest in list of neighbors then
SEND(packet, packet.dest)
else
FORWARDPACKET(packet)
end if

Algorithm 4 FORWARDPACKET(packet)

1:
2:
3:
4:
5:
6
7
8
9

10:

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

current_cell = GETLOCALCELLPOS(packet.cell_pos)
dest_cell = POS2CELL(packet.dest_pos)
stop = false
while not stop do
if packet.mode = greedy then
next_cell = GETNEXTGREEDYCELL(packet, current_cell)
else
next_cell = GETNEXTRECOVERYCELL(packet, current_cell)
end if
// if a cell is traversed twice in the same direction, then the destination is unreachable:
if next_cell = packet.rec_cell and
packet.rec_dir = (next_cell — current_cell) then

drop packet
end if
if next_cell.owner # me or next_cell is unclassified in view2 then
stop = true // stop if the own cells are left

if packet.mode = recovery and justTurnedRight then
TURNLEFT(packet.dir)

end if
else
current_cell = next_cell // go one step ahead
end if
end while
packet.cell_pos = GETGLOBALCELLPOS(current_cell)
SEND(packet, view2(current_cell).owner) // send pkt. to owner of this cell
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Algorithm 5 GETNEXTGREEDYCELL(packet, current_cell)

1: source_cell = POS2CELL(packet.source_pos)

dest_cell = POS2CELL(packet.dest_pos)

packet.dir = GETDIRECTION(source_cell, current_cell, dest_cell)

next_cell = current_cell + packet.dir // next_cell = pos. of the cell one step ahead

if view2[next_cell.x,next_cell.y].type = barrier then
packet.mode = recovery
packet.dir = TURNLEFT(packet.dir) // turn left in front of a barrier
packet.rec_dir = packet.dir // direction for starting recovery
packet.rec_cell = GetGlobalCellPos(current_cell) // store current cell
return current_cell

end if

: return next_cell

== =
N = 2

Algorithm 6 GETNEXTRECOVERYCELL(packet, current_cell)

1: packet.dir = TURNRIGHT(packet.dir) // turn right, then the barrier is ahead
2: justTurnedRight = true; // remains true if there is no further turn
3: next_cell = current_cell + packet.dir

4: while view2[next_cell.x,next_cell.y].type = barrier do

5. justTurnedRight = false;

6: packet.dir = TURNLEFT(packet.dir) // barrier is to the right after first turn left
7: next_cell = current_cell + packet.dir

8: end while

9: if GETDISTANCE(dest_pos,next_cell) < GETDISTANCE(dest_pos,packet.rec_cell)

then
10: packet.mode=greedy // resume greedy if progress condition fulfilled
11: end if
12: return next_cell

The forwarding algorithms use the following functions:
e SEND(packet, address) sends the packet physically to the node with the specified
address.

e GETDIRECTION(celll, cell2) returns the direction of celll to the orthogonally neigh-
boring cell that is nearest to cell2.

e GETDISTANCE(position, cell) returns the maximum distance from the global po-
sition to any of the corners of the cell.

e TURNLEFT(direction) or TURNRIGHT(direction) return the direction after a 90-
degree turn to the left (counter-clockwise) or to the right (clockwise).

o GETGLOBALCELLPOS(localpos) and GETLOCALCELLPOS(globalpos) convert lo-
cal to global cell coordinates and vice versa.

e POS2CELL(position) returns the global cell coordinates of the given position.
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Figure 3.11: Illustrations for the proof of Lemma|3.1
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3.4 Equivalence of Network and Cell Structure

When using the cell structure for routing instead of the original network topology, vir-
tual paths are created that can be turned into paths in the network. We will see that a
path in the cell structure and a path in the network are equivalent up to a constant fac-
tor with respect to the number of hops, or the number of cells, respectively. We define
such cell-based paths formally as follows.

Definition 3.1 A cell path (Cy, ..., Cy,) consists of link cells, such that C; and C;1q are or-
thogonally neighboring cells.

First we have to ensure that the owners of adjacent cells can reach each other. The
owner of a link cell is one of the nodes whose position has led to the classification of
cells. These nodes are the implicants of a cell.

Definition 3.2 We call an edge the implicant of a link cell if it intersects with the link cell.
Similarly we call a node the implicant of a link cell if all points in the link cell have maximum
distance r /2 to the node.

We show that paths in the network and cell routes are essentially equivalent. The equiv-
alence is based on the connectivity property of a link cell.

Connectivity Property: A link cell C fulfills the connectivity property if there is a direct
connection (i.e. the distance is less or equal to ) between all the implicants for C. In case
of an edge being the implicant this is required for at least one of the incident nodes.

Lemma 3.1 If¢ < /2 r then all link cells fulfill the connectivity property.
8 Yy property

Proof: In the case of two nodes being the implicants of a link cell, this follows by the
triangle inequality, since all points of the link cell have maximum distance r/2 to the
nodes. In the case of a node and an edge as implicants, there is a point in the link cell,
which has at most distance r/2 to one of the nodes of the edge and the connectivity
property follows.
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Figure 3.12: Illustrations for the proof of Theorem

If two edges are implicants for the link cell then the question is: how can the distance
between the closest nodes incident to different edges be maximized? In a worst case
a node v incident to one edge e; is equally distant to both nodes of the other edge
ey, i.e. these three end points form an isosceles triangle. Since there exist two points
p1 on e; and ps on ey with ||p1 — pa|| < V24 (causing e; and e, being implicants of
the same cell), the distance between v and one point on e; (the mid point) is at most
|p1 — p2|| < V2£. Then, the maximum distance between v and u € e, which should
not exceed r, is v/2¢2 + r2 /4. This leads to the bound ¢ < \/3/87. ]

Theorem 3.2 If¢ < %(\@ — 1) r, then paths in the network and cell routes in the cell structure
are equivalent up to a constant factor:

1.) Every path P of the network can be replaced with a cell path P’ of length at most 2[ 7] |P| 41
containing all nodes of the path P, where |P| is the number of nodes on the path.

2.) For every cell path P’ there is a path P of length at most 2 |P’|, where |P'| is the number of
cells on the path.

Proof: 1.) The path P = (uy,...,u,) is substituted as follows. For each edge ¢; :=
(ui, ui11) we add the link cells that are intersected by e;. If we measure the length of
each edge ¢; by using the Manhattan distance between u; and u;,; based on the cell
size, we obtain 2[ 7 ]|P| + 1 cells for the whole path.

2.) For two orthogonally neighboring cells on a cell path the connectivity of the im-
plicants has to be guaranteed. The following considerations refer to the connectivity of
the implicant nodes and edges:

a) Implicant edges: consider two edges e; and e, each of them implicant of one of
the two link cells (see Figure 3.12]a). Then, there are two points p; on e; and p;
on e, with ||p; — p2|| < V/5£. The maximum distance between p; and the nearer
incident node of e, is reached if both nodes of e, are equally distant to p;. If

r > r2/4+502 = ¢ < \/3/20r, then p; is connected to at least one node of e;.
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The case of p, and e is symmetric. This bound guarantees connectivity between
implicant edges, i.e. if £ < /3/20r ~ 0.387rthen Ju € ej,v € ey : |[u —v|| <.

b) Implicant edge and implicant node: consider a node v that is implicant of the cell
C and an edge e that is implicant of the neighboring cell (see Figure b). The
distance between v and any point p; in C is at most r/2. Thus, there is a point p»
on e with ||p; — p2|| < £and ||v — p2|| < § 4 £. The connection of v and one of
the nodes incident to ¢ is guaranteed if > > (5 4+ £)2 + (5)? = ¢ < (V3 -1)r ~
0.366 1.

¢) Implicant nodes: since the distance of each point inside the cell to the implicant
node is at most /2, the two implicant nodes of neighboring cells are always con-
nected.

The transitions between the cells on the cell path P’ are transformed as follows: We
start with P = {u;} where u; is one node in the first link cell of P’. A node u is re-
sponsible for a cell C if u is inside C or implicant of C or incident to an edge that is
implicant of C. We substitute a transition from a cell C; to C;1; as follows: if C; is a link
cell containing the last node of P, then we add a node to P that is responsible for C;.
If C; is a link cell for which the last node u; of P is an implicant, then u cannot always
reach a node u; that is responsible for C;;;. From the considerations above and the
connectivity property we know that there is another node v responsible for C; that is in
reach of u; and u; 1. We add v and u; 1 to P. So we add at most two nodes to P for one
cell of P'. ]

3.4.1 Distributed Route Construction

As the views of the nodes in the network contain only the cell classification of their local
environment, a cell path that runs across several views has to be constructed distribut-
edly. Therefore, we have to ensure that all transitions between cells can be performed
locally or by a physical forwarding to a neighbor that is responsible for the target cell.
The next lemma shows that a transition from an own link cell to another link cell in the
own view is also a valid transition in the view of a neighbor.

Lemma 3.2 Given two nodes u and v. For each pair of adjacent cells (Cy, Cy) in View 2 of node
u holds:

a) If Cy and Cy are link cells and Cy is owned by u and C, is owned by v, then C and Cy are
also link cells in View 2 of v with the same owners.

b) If Cy is a link cell and owned by u and C, is a barrier cell, then Cy is not a link cell in
View 2 of v.

Proof: a) As the case u=v is obvious, we concentrate on the case u#v. If the connectiv-
ity property is fulfilled, then there is always a connection between the implicant nodes
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and the nearest node incident to an implicant edge of two adjacent cells. As the owner
of a cell is an implicant and has the smallest distance to the cell among all implicants,
the owners of adjacent cells know each other and all other implicants. Therefore, it is
not possible that C; (and also C;) has different owners in View 2 of u and View 2 of v.

b) Assume that C; is a link cell in View?2 of node v. Then it is adjacent to C; for which
u is an implicant. Thus, 1 must have a connection to the implicant of C; and cannot
classify it as barrier. |

Lemma [3.2| shows that a transition between two link cells can be handled locally by a
node if it is the owner of both cells is its View 2. If the owner of the target cell is a neigh-
bor, then it is guaranteed that both start and target cell have the same classification in
View 2 of the neighbor. A cell path can be constructed locally in the following way:

— If the next cell is a link cell: if the owner is me, then go to the next cell. If the
owner is a neighbor, then forward the message physically to the neighbor.

— If the next cell is a barrier cell, then stop.

— If the next cell is an unclassified cell, then forward the message physically to the
owner of the unclassified cell.

These rules are considered by the forwarding functions of the Cell-based Geographic
Forwarding Protocol.

3.5 Conclusion and Outlook

We have seen that routing on the cell structure and geographic routing in a wireless
network are equivalent under the unit disk graph assumption. The model of a faulty
mesh network, which is presented in Chapter @is a further abstraction of the cell struc-
ture. Thus, the online routing algorithms that work on a faulty mesh network can also
be applied in wireless networks if position information is available. Furthermore, the
performance measures for routing in faulty mesh networks can be adopted, since the
length of paths in the cell structure is equivalent to the length of paths in the original
network.

Non-uniform Transmission Ranges and Obstacles

The equivalence of the wireless network and the cell structure was shown under the
unit disk graph assumption. This assumption is violated if the transmission ranges are
not uniform or in the presence of obstacles that obstruct radio signal propagation. In
this model, barrier cells represent void regions in a wireless network, but this notion
can be also extended to obstacles. The concept of barrier cells is compatible to this
notion as long as the connectivity property of link cells is satisfied. In Figure an
example is given where this property is violated by obstacles. In such a case the con-
nectivity graph is not planar anymore and position-based traversal algorithms or face
routing algorithms fail. A greedy strategy would run into a local minimum (node w in
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v

Figure 3.13: Position-based traversal strategies fail in the presence of obstacles.

the figure), then a right-hand traversal gets into a loop. Approaches that handle such
cases are described in Section However, the detection of crossing links requires
communication along paths in the network, and these paths may become as large as
the diameter in the worst case.

Outlook

In a dynamic network where nodes join and leave the network or move around, mes-
sage delivery cannot be guaranteed in every situation. Even flooding algorithms may
fail if the network is temporarily partitioned. For an up-to-date cell classification, it is
more important to obtain the newest information than to get a correct assignment of
the owners of the cells. The use of timestamps for the cell classification sent in beacon
messages would help to prevent that up-to-date information is overwritten.

Another aspect is the performance of the protocol, which can be increased by the fol-
lowing extensions. Both greedy forwarding and recovery are based on the cell structure
and the physical forwarding takes place when the own cells are left. In greedy mode,
the owner of the next cell is not always the node that provides the most forwarding
progress. Thus, the next hop in greedy mode could be determined by selecting the
neighbor providing the most progress within the transmission radius (MFR), while the
cell structure is used only in recovery mode. The performance in recovery mode could
be increased if the protocol uses more information about the neighborhood, which is
given in View 2: if the physical forwarding is performed as late as possible, interme-
diate hops can be reduced and possible dead ends can be detected beforehand. The
drawback of this idea is that a node would have to rely on the information from the
neighbors only and this can lead to errors especially in dynamic scenarios. In scenar-
ios with a high node density the collisions between transmitted data packets become
more likely. Then, the geographic clustering that is implicitly given by the cell structure
could be used to define a channel access scheme.

The protocol is implemented and evaluated in a simulation environment by Inés Be-
bea Gonzélez as part of her Master’s thesis [Beb06].
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Online Routing in Faulty
Mesh Networks

Routing in mesh networks has been intensively studied in the field of distributed and
parallel computing. In these networks nodes may fail or may be unavailable and this
failure can often only be detected by its neighbors. A straight-forward approach is to
regularly test the neighbors of each node, to collect this information and distribute a
table of all failed and working nodes throughout the network. We investigate scenarios
where this knowledge is not available before the route discovery starts.

The basic problem is that the faulty nodes are barriers to the routing algorithm and
that the algorithm does not know these barriers. There is no restriction on the size and
the shape of the barriers, so even maze-like structures are possible. For a route discov-
ery the source knows the target position, but the rest of the network is unknown. This
problem is essentially the same as the position-based routing problem in wireless net-
works or the online navigation problem (see Sections[2.1jand[2.4.T). In a situation where
the network is unknown, a fast message delivery can only be guaranteed if every node
forwards the message to all neighbors such that the complete network is flooded. This
results in a tremendous increase of traffic, i.e. the number of node-to-node transmis-
sions. If the algorithm uses a single-path strategy, then the additional effort necessary
to circumvent barriers when searching a path to the destination increases the time.

In this chapter we will consider different techniques to solve the route discovery
problem in faulty mesh networks and analyze how much time they need and how much
traffic they generate. We start our considerations with a description of the model and
the performance measures in the following sections. Section [4.3| shows lower bounds
for time and traffic. In Section [4.4] we review two basic routing strategies: a single-
path algorithm, which is slow but traffic-efficient, and a multi-path or flooding algo-
rithm, which is asymptotically time-optimal but causes a large traffic overhead. Sec-
tion 4.5| shows how a combination of these two basic strategies can result in an algo-
rithm that is efficient in both time and traffic. Finally, Section [4.6| presents the Just-in-
Time-Exploration (JITE) algorithm that solves the route discovery problem asymptoti-
cally as fast as flooding, but causes much less traffic.
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Figure 4.1: Mesh network with faulty Figure 4.2: Faulty meshes are equivalent
nodes (black), routing path and right- to mazes or grid polygons with obstacles.

hand traversal path

4.1 Basic Definitions and Techniques

A two-dimensional mesh network with faulty nodes is defined by a set of nodes V' C
N x N and a set of edges E := {(v,w) : v,w € VA |vy —wx| +|v, —wy| = 1}. Anodev
is identified by its position (vy,vy) € IN x IN in the mesh. There is no restriction on the
size of the network because time and traffic are analyzed with respect to the position
of the given source node and target node in the network. We will see that the major
impact on the efficiency of the routing algorithm is not influenced by the size of the
network.

We assume a synchronized communication: each message transmission to a neigh-
boring node takes one time step. For multi-hop communication we assume the messages
to be transported in a store-and-forward fashion. We also assume that the nodes do not
fail while a message is being transported. Otherwise, a node could take over a message
and then break down. However, there is no global knowledge about faulty nodes. Only
adjacent nodes can determine whether a node is faulty.

In the following the source node is denoted with s and the target node with . The
length of the shortest barrier-free path connecting s and ¢ is denoted with d.

4.1.1 Barriers, Borders and Traversals

The network contains active (functioning) and faulty nodes. Faulty nodes neither par-
ticipate in communication nor can they store information. Faulty nodes that are or-
thogonally or diagonally neighboring form a barrier. A barrier consists only of faulty
nodes and is not connected to or overlapping with other barriers. Active nodes adja-
cent to faulty nodes are called border nodes. All the nodes in the neighborhood (orthog-
onally or diagonally) of a barrier B form the perimeter of B. A path around a barrier in
(counter-)clockwise order is called a right-hand (left-hand) traversal path if every border
node is visited and only nodes in the perimeter of B are used. The perimeter size p(B) of
a barrier B is the number of directed edges of the traversal path. The total perimeter size
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is p := Y jen P(Bi). In other words, the perimeter size is the number of steps required to
send a message from a border node around the barrier and back to the origin, whereby
each border node of the barrier is visited. It reflects the time consumption of finding a
detour around the barrier.

4.2 Comparative Measures

Online algorithms are usually analyzed under comparative measures, because the worst-
case analysis of online problems often does not lead to meaningful results. If we con-
sider the straight-line distance D between source and target, then the worst case sce-
nario is a labyrinth of barriers, leaving only one path of length O(D?) to the target.
So any algorithm has to traverse the labyrinth. However, if the scenario contains less
barriers, the situation is quite different.

In the following we define comparative measures for time and traffic that take the
difficulty of a scenario into account. The difficulty is expressed by the shortest path
and the perimeters of the barriers.

4.2.1 The Competitive Time Ratio

Time is the number of steps needed by the algorithm to deliver a message. This is
equivalent to the length of a path a message takes. Comparing the time of the algorithm
with the optimal time leads to the competitive ratio. This so-called competitive analysis
is well known in the field of online algorithms [BE9S].

Definition 4.1 An algorithm A has a competitive ratio of c if
Vx € Z:Cxa(x) <c-Copt(x)

where 1 is the set of all instances of the problem, C 4 (x) the cost of algorithm A on input x and
Copt(x) the cost of an optimal offline algorithm on the same input.

We compare the time of the algorithm with the length d of the shortest path to the target.
Note that the shortest path uses only non-faulty nodes.

Definition 4.2 Let d be the length of the shortest barrier-free path between source and target. A
routing algorithm has competitive time ratio R; := T/d if the message delivery is performed
in T steps.

4.2.2 The Comparative Traffic Ratio

Traffic is the number of messages the algorithm produces. Regarding traffic, a com-
parison with the best offline behavior would be unfair, because this bound cannot be
reached by any online algorithm. Thus, we define a comparative ratio based on a class of
instances of the problem, which is a modification of the comparative ratio introduced
by Koutsoupias and Papadimitriou [KP00]:
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Figure 4.3: The lower bound scenario of Theorem 4.1} The adver-
sary controls the “exits” which are marked with “?”.

Definition 4.3 An algorithm A has a comparative ratio f(P) if

e : < - mi

p1-..pu € P max Ca(x) < f(P) - min max Cp(x)

where Ip is the set of instances which can be described by the parameter set P, C4(x) the cost
of algorithm A and Cg(x) the cost of an algorithm B from the class of online algorithms 1.

With this definition we address the difficulty that is inherent in a certain class of scenar-
ios that can be described in terms of the two parameters d and p. For any such instance
the online traffic bound is mingeg maxyez,,, Cp(x) = ©(d + p).

Note that for any choice of a scenario an optimal offline algorithm can be found:
maXyer, . mingeg Cp(x) = d. This requires the modification of the comparative ratio
in in order to obtain a fair measure. Thus, we use the online lower bound for
traffic to define the comparative traffic ratio.

Definition 4.4 Let d be the length of the shortest barrier-free path between source and target
and p the total perimeter size. A routing algorithm has comparative traffic ratio Ry :=
M/ (d + p) if the algorithm needs altogether M messages.

The combined comparative ratio addresses both the time efficiency and the traffic effi-
ciency:

Definition 4.5 The combined comparative ratio is the maximum of the competitive time

ratio and the comparative traffic ratio: R, := max{R:, Ry}

4.3 Lower Bounds

An offline algorithm, which has global knowledge, can determine a path to the target in
time d and with d messages, because it does not need to examine multiple paths. Online
algorithms have to search for the target and this can be hindered by barriers. Clearly,
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the target cannot be reached with less than d time steps, but we are also interested in
the traffic that is needed.

The following theorem shows the online lower bound for traffic. A similar proof is
given by Blum et al. [BRS97] for the competitive ratio of online path planning algo-
rithms. A lower bound for path planning algorithms with respect to the perimeter size
is also stated by Lumelsky [Lum87].

Theorem 4.1 Every online routing algorithm needs at least Q(d + p) messages, where d is the
length of the shortest barrier-free path and p the total perimeter size.

Proof: We consider a scenario with k barriers of size 1 x [. These barriers are aligned
in parallel, forming long narrow corridors (see Figure [4.3). At the end of each corridor
an adversary may place a barrier or not (indicated with a question mark in the figure).
Only one corridor has to remain open. The algorithm can detect an exit only by stand-
ing in front of it, i.e. it has to examine the whole corridor. For the length of the shortest
path d holds I < d <1+ 2k + O(1). The total perimeter size is given by the perimeters
of all obstacles and the enclosure, therefore p = k - 21 + O(1). With less than § — O(1)
messages only half of the corridors can be examined. If the adversary chooses the exit
at random, then with probability ; every online routing strategy must fail to reach the
target with less than § — O(1) messages. ]

As a single-path strategy needs one message for each step, this has the following con-
sequence.

Corollary 4.1 Every single-path online routing algorithm needs Q)(d + p) time steps, where d
is the length of the shortest barrier-free path and p the total perimeter size.

The following table summarizes the lower bounds for time and for traffic.

Time Traffic
Online lower bound, single-path  Q(d+p) Q(d+p)
Online lower bound, multi-path Q(d) Q(d+p)
Best offline solution d d

Note that time and traffic are considered independently. This leads to the question
whether there is a trade-off between time and traffic. A linear trade-off is shown in the
next section.

4.3.1 A Trade-off between Time and Traffic

The considerations about the lower bounds for single-path strategies and multi-path
strategies do not answer the question how much traffic has to be invested to increase
the time. The JITE algorithm presented in Section 4.6{shows a poly-logarithmic upper
bound on the combined comparative ratio. It is an open problem whether this bound
is tight or whether there is a poly-logarithmic trade-off between time and traffic. It
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Figure 4.4: Illustrations for the proof of Theorem

is obvious that saving a constant number of messages increases the time by at least
a constant number of steps. But it is not obvious that there is a linear trade-off, i.e.
that reducing traffic by a factor ¢ increases the time by at least a factor of ¢, for two
constants ¢; and c».

In order to show a linear trade-off, we have to consider a scenario where the algo-
rithm has the choice between several paths leading to the target that can be obstructed
by the adversary. This basic idea is used in the proof of Theorem 4.1} but the scenario in
that proof is a worst case for traffic. Therefore it is not suitable here, because there is no
chance to save traffic—not even at the expense of time. Here, we consider a small sce-
nario with a total perimeter size of ©(d) where the minimum time and the number of
messages can be counted exactly. Then we construct a series of these scenarios, where
in each block either time or traffic can be saved. This leads to the linear trade-off.

Theorem 4.2 There is at least a linear trade-off between time and traffic, i.e. Tr + c - time =
Q(d) for a constant c.

Proof: Consider a game between algorithm and adversary. Source and target are
placed in a square of size 9 x 9 as shown in Figure The diagonal is controlled
by the adversary, i.e. the diagonal may consist of barriers, but at least one exit has to
remain open. The optimal time for reaching the target is 16 steps. Achieving optimal
time is only possible if certain points in front of the diagonal are reached within 7 steps,
such that from these points the exit in the diagonal can be found in the next time step.
In the following these points are called outposts. They are depicted with small circles
in the figures. It is not necessary to reach all of the points in front of the diagonal,
because an exit in the diagonal can be reached from two neighboring points as shown
in Figure

The goal of the algorithm is to find a path to the target. The goal of the adversary is to
hinder the algorithm by placing a barrier on the diagonal each time the algorithm tries
to traverse it. However, one exit has to remain open. Thus, if the algorithm should reach
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the target in optimal time, it has to establish enough outposts so that the whole diagonal
is covered, i.e. that for any exit in the diagonal there is always an adjacent outpost, from
which the diagonal can be crossed. Once the exit is reached, the adversary constructs a
new triangle that has to be traversed by the algorithm (see Figure .5).

First, we determine the minimum traffic any algorithm has to spend for construct-
ing enough outposts to cover the diagonal. For that we have to consider all possible
trees that are rooted at the source and whose leaves are the outposts. We simplify this
case study by splitting the triangle into two sub-triangles and a square as shown in Fig-
ure[4.7] Then the total traffic is given by the traffic inside the sub-triangles and traffic
needed to traverse the square (including the exits).

The sub-triangles can be entered from one or two entrances. If there are more than
two entrances, at least two entrances are adjacent. Two adjacent entrances are equiv-
alent to one entrance and a branch inside the sub-triangle, i.e. the traffic remains the
same because saving one message inside the triangle is compensated by an additional
entrance. So we neglect adjacent entrances and concentrate on the cases shown in
Figure This figure shows for each single entrance and each combination of non-
adjacent entrances a traffic-optimal message tree. The minimum traffic when using a
particular entrance (or two entrances) is summarized in the following table.

Sub-triangle Entrance(s) Traffic Case (Fig.
Lower triangle 1entrance a 7 L1
b,c, d 6 L2,13,L4
2 entrances a+c 5 L5
a+d, b+d 4 Le6, L7
Right triangle 1 entrance e 6 R4
f,gh 5 R1,R2,R3
2 entrances e+g, e+h, f+h 4 R5, R6, R7

Now, we consider the square containing the starting point, which is shown in Fig-
ure Reaching both the right upper corner and the left lower corner of the 4 x 4
square from the starting point takes at least 6 messages. Each exit requires an addi-
tional message. The following table shows the combinations of using one or two exits
from the square and the resulting traffic for the square (including the exits).

Case # Entrances Minimum traffic Total traffic Illustrations

L R L R S (L+R+S)  (Fig.[t.6,4.7)
1 1 1 6 5 8 19 S1
2 1 2 6 4 9 19 S2
32 2 1 4 6(e) 9 19 S2; R4
3b 2 1 4 5(f) 10 19 S3,54; R3
4 2 2 4 5 12 21 S5

L = lower triangle, R = right triangle, S = square

In case 1 there are 8 messages needed for the square, in case 2 an additional message is
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Figure 4.5: The complete scenario for the lower-bound (Theorem 4.2

needed because of the additional exit. The total traffic for these two cases is simply the
sum of the minimum traffic for the separate parts. For case 3 we have to distinguish
between (a) using exit e (6 messages in the right triangle) and (b) using one of the other
exits (5 messages in the right triangle). In case 3b there are 10 message required inside
the square because two exits can be reached with 8 messages, but the three exits in this
case are not adjacent and it requires one additional message to reach the third exit and
one more message for the exit itself (see S3 and S4 in Figure [4.6). In case 4 there are
12 message needed for the square because from the tree leading to b and g there must
be a path to the exits e and d (see S5 in Figure [4.6). This path requires two additional
messages, since the exits on the right side as well as on the lower side are not adjacent.
This leads to more than 19 messages in total. Thus, establishing outposts that cover the
whole diagonal requires at least 19 messages.

If each exit in the diagonal should be reached in optimal time, the lower left corner
and the upper right corner of the triangle have to be reached directly, i.e. the exits 2 and
h have to be used. These are the cases L1 and R1 (for one entrance), and L5, L7, R6
and R7 (for two entrances). Two exits from the square (leading to L1 and R1) require
8 messages and result in a total traffic of 20. Three exits require 11 messages because
there is an additional non-adjacent exit that is two steps from the direct path between
starting point and exit a or exit h. Adding the minimum traffic for one sub-triangle with
one entrance and another one with two entrances also results in 20 messages. Finally,
four exits require at least 12 messages. As the minimum traffic for a sub-triangle is 4,
this case requires also 20 messages in total.

Thus, reaching the target in optimal time is only possible with 20 messages. The
minimum traffic of 19 can only be reached if one of the exits a or / is avoided, but then
a detour of two steps is added to either the path to the lower left corner or the upper
right corner.

Now, consider a cascade of k triangles as shown in Figure We know that each
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Figure 4.6: Optimal traffic bounds for the lower sub-triangle (L1-L7) and for the right triangle
(R1-R7) and different entrances (Theorem
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Figure 4.7: Traffic-optimal paths in the sub-square (Theorem[4.2)
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triangle can be traversed with 20 messages without delay in at least 8 time steps or with
19 messages in at least 10 time steps. Assume m of the triangles are traversed without
delay (m € {0, ..., k}). Then, time > 8m + 10(k — m) + 8 and Tr > 20m + 19(k — m) + 8.
The shortest path has length d = 9k + 8 (9 steps to reach the next triangle and finally 8
steps to reach the target).

= Tr> —Jtime+29k+16
= —ltime+ % (d—8)+16

= Tr+ ;time = Q(d)

4.4 Basic Strategies

In this section we review two basic strategies: Lucas’ algorithm, a traffic-efficient single-
path strategy, and expanding ring search, a time-efficient flooding algorithm. A com-
parison shows the basic problems of both approaches. We also describe a variant of
expanding ring search, that is later used for the JITE algorithm.

4.4.1 Lucas’ Algorithm

Lucas’ algorithm [Luc88] is a simple single-path strategy that follows the straight line
connecting source and target and traverses all barriers that intersect this guideline (see
Algorithm [7). It was proposed as a modification of an online path-planning algorithm
of Lumelsky and Stepanov [LS86] (see Section [2.5.1).

Algorithm 7 Lucas’ algorithm

1: repeat

2: Follow the straight line connecting source and target.

3: if a barrier is hit then

4: Start a complete right-hand traversal around the barrier
and remember all points where the straight line is crossed.

5: Go to the crossing point that is nearest to the target.

6: end if

7: until target is reached

This algorithm needs at most d + 3 p steps, where d is the length of the shortest barrier-
free path and p the sum of the perimeter lengths of all barriers. This algorithm matches
the asymptotic lower bound for single-path online algorithms and also the asymptotical
lower bound for traffic.
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4.4.2 Expanding Ring Search

A straightforward multi-path strategy is Expanding Ring Search [JM96|, PBD03], which
is nothing more than to start flooding with a restricted search depth and repeat flood-
ing while doubling the search depth until the destination is reached. This strategy is
asymptotically time-optimal, but it causes a traffic of O(d?), regardless of the presence
of faulty nodes.

The following comparison between expanding ring search with Lucas’ algorithm shows
the advantages and disadvantages of these strategies. Lucas” algorithm performs well
if there are few barriers, but the sequential traversal of a maze takes too much time.
Expanding ring search works efficiently in a maze, but in open space it needs more
messages than necessary. Thus, both strategies fail in optimizing time and traffic at the
same time.

Exp. Ring Search R+ R Lucas’ algorithm Rs R

General OTd) (?iid;) General O(dd+p ) Oéﬁ]p )
Openspace (p <d) O(1) O(d) Openspace (p <d)  O(1) o(1)
Maze (p = d?) o1 01 Maze (p = d?) O(d) o(1)

Both expanding ring search and Lucas’ algorithm have a combined comparative ratio
of O(d).

4.4.3 Continuous Ring Search

We modify the expanding ring search as follows: the source starts flooding without a
depth restriction, but with a delay of o time steps for each hop. If the target is reached, a
notification message is sent back to the source. Then the source starts flooding a second
time, and this second wave, which is not slowed down, is sent out to stop the first
wave. This continuous ring search needs time O(d) and causes a traffic of O(d?), which
is no improvement to expanding ring search. But an area is flooded at most two times,
whereas expanding ring search visits some areas O (log d) times. We use this advantage
for the JITE algorithm.

Lemma 4.1 Continuous ring search with a slow-down of ¢ > 1 finds a path connecting s and t
in time o - d and produces a traffic of at most O ((Z3 d)?) where d is the length of the shortest
path connecting s and t.

Proof: The first wave is slowed down by a factor of o and reaches the target in time o - d
where d is the length of the shortest path. This wave proceeds at a speed of 1/¢ until it
is stopped by the second wave. The second wave is started after a time of od + d when
the notification from the target has reached the source. The notification and the second
wave travel at a speed of 1. Both waves meet at time step t when t/c =t — od — d. This

7@+1) 4 At this time the first wave has reached a distance of t /o = g—ﬂd.

solvestot = — —
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4.5 The Alternating Algorithm

The idea of the alternating algorithm [RS05a] is to combine a single-path strategy with
flooding. Both strategies are applied alternatingly and with a time restriction. We
will see that with this combination a sub-linear combined comparative ratio can be
achieved. For the single-path strategy an algorithm is needed that guarantees to find
the target in O(d + p) time steps, e.g. Lucas’ algorithm. Both strategies are applied with
a search depth restriction (time-to-live). We start with a small search depth and repeat
the single-path strategy and flooding alternatingly with increased search depth until
the target can be reached (see Algorithm ).

Algorithm 8 Alternating Algorithm

1:i=1
2: repeat
3: 6=2"

4  Start Lucas’ algorithm with a maximum search depth of 63/2
5 if target is not reached then

6: Start Flooding with a maximum search depth of §

7: end if

8 i=i+1

9: until target is reached

At first sight, it seems that this algorithm combines the disadvantages of both flooding
and the single-path strategy. But it turns out that it has a better combined competitive
ratio.

Theorem 4.3 Let d be the length of the shortest path connecting s and t. The alternating
algorithm finds the target in time O(d®/?) and produces traffic O(min{d?, d%/? + p}).

Proof: We distinguish between two cases:

Case 1: The target is reached while applying the single-path strategy (line 4). This
strategy uses greedy paths (segments on the guide line) and traversal paths (along the
border of a barrier). As the greedy rule is only applied after a progress towards the
target was made when, the length of the greedy paths is bound by d. The overall length
of the traversal paths is at most % p. The target is reached in d + % p steps, i.e. within
%log(d + 3p) iterations (because 2%/2 < d + 3p). The search depth for flooding in the
previous iteration was 2%/ 3log(d+3p)-1 — 3(d + 3p)*/3. In this case, the target could
not be reached by flooding, but flooding yields optimal paths. Hence, d is larger than
the search depth of flooding in the previous iteration: 3(d + 3p)*/3 < d. This implies
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d + 3p < (2d)3/2. For time and traffic we obtain the following bounds:

Slog(d+3p)-1 ,
time=d+3p+ Y (2¥2+2) <742
i=1
Slog(d+3p)-1
Tr=d+3p+ y (231'/2 +22i> <2(d+ %p)4/3
i=1
Case 2: The target is reached while flooding (line 6). It takes logd iterations to ap-
proach the target through incremental flooding. In each iteration there is an addi-
tional delay caused by the single-path strategy (line 4). Thus, the time is bound by
Zﬁgld 2%i/2 4 91 < 4432, The target is only reached by flooding (with depth d) if the
single-path strategy is forced to make a detour. But any barrier with a perimeter smaller
than d'/2 cannot prevent a message that traverses a barrier from returning to the guide
line and then reaching the target. That means reaching the target by flooding occurs
only if barriers of size p > d'/? are present. If there are smaller barriers (p < d'/?)
then the target can be reached by the single-path strategy and we can apply case 1.

Otherwise, p > d'/2 and the traffic is bound by 2140%111 2%1/2 4 92l < 342 < 3(d + p)3/ 2 m

1=
Corollary 4.2 The alternating algorithm has a combined comparative ratio of O (\/d).

Proof: Follows by the definition of the competitive time ratio and the comparative
traffic ratio, and Theorem |

4.6 The JITE Algorithm

In this section the Just-In-Time Exploration (JITE) algorithm is presented. We start with
an overview, which is followed by a detailed description of the most important part of
the algorithm: the fast exploration.

4.6.1 Overview

The algorithm starts with a search area consisting of four connected quadratic subnet-
works, called squares, with s lying on the common corner (see Figure . If the target
cannot be found inside this search area, new quadratic subnetworks in the environment
are investigated. The search area is enlarged until the target is reached.

For the expansion of the search area, we use the idea of continuous ring search: when
the target is found, the source is notified, which sends out messages to stop the search.
The difference of this algorithm to continuous ring search is that not the whole area is
flooded. Instead of flooding, the algorithm uses a modified breadth-first search. This
BEFS uses only certain paths which are restricted to the borders of squares, called frames,
and the nodes adjacent to barriers. These paths are determined by an exploration strat-
egy before they are visited by the BFS. If a square contains few barriers, it can be tra-
versed easily by a single path. Otherwise it has to be subdivided and examined using
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multiple paths. This way the exploration strategy decides which paths are used by the
BFS.

Exploration is done by following the border of a square (frame). If there are barriers
intersecting the frame, we have to use paths in the interior of the square. A left-hand
or right-hand traversal of the barriers may produce a path that is much longer than the
shortest path. To keep this overhead small, we try to traverse the interior of a square in
a bounded time that depends on the frame size. If this is not possible, we subdivide the
square into 9 smaller squares and try the traversal again. This recursive subdivision
yields the paths that can be used by the BFS and provides an approximation of the
shortest path. Note that this is not an exploration of the complete environment, as it
is often described in the literature (cf. Section [2.4.2). The algorithm stops the further
investigation of a region if there is definitely no possible path to the target.

The exploration process is triggered by the BFS. The leaves of the BFS tree define the
border of the examined area. We call this border the shoreline. The shoreline starts after a
delay, so that there is enough time for the exploration of the initial frames. The shoreline
uses only partitions of frames that are already explored and that contain few barriers
(simple partitions). When the shoreline enters a frame, it triggers the exploration in
neighboring frames. Exploration is only performed in the proximity of the shoreline
and squares are explored just-in-time. As the exploration takes some time, we slow
down the shoreline by a constant factor, so that the squares in proximity to the shoreline
can be explored in time. Therefore, we call these two strategies slow search and fast
exploration. The size of the frames to be explored is proportional to their distance to
the shoreline. As the time needed for the exploration is proportional to the size of the
square, the exploration can be finished in time.

4.6.2 Fast Exploration

The BFS uses the borders of quadratic subnetworks, called frames, which were exam-
ined by the exploration process. The frame of a g x ¢ mesh is the set of framing nodes
F={ve& Voug:vr €{1,8} Vo, € {1,8}}. The exploration process examines a frame
by starting a traversal of the frame nodes and the nodes on the perimeter of a barrier.
As a frame can be partitioned by a barrier, we refer to a partition of a frame which is en-
closed by frame nodes and perimeter nodes (see Figure #.8). A right-hand traversal path
in a partition of a frame is a path containing all frame nodes and perimeter nodes of the
partition, where the nodes are visited in counter-clockwise order. We call a partition of
a frame simple if it is not intersected by complicated barriers. Therefore we require that
a fraction of the frame nodes is accessible and that there are not too many border nodes.

Definition 4.6 A partition of a g x g frame is simple if the partition contains a frame node v
and if a right-hand traversal path starting at v contains at least 4(g — %) frame nodes and at

most g /<y border nodes.

The factor v is determined at the time t when the exploration starts. In the analysis this
is expressed by the notation y(f).
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Frame Barrier

Figure 4.8: Partition of a frame, defined Figure 4.9: Initial frames (solid) and ex-
by a right-hand traversal tended search area

Subdivisions

Non-simple partitions are recursively subdivided until there are only simple partitions.
A subdivision of a frame F is constructed as follows: if F contains a partition that is
not simple, then subdivide F into nine equally-sized sub-frames and apply this rule
recursively to the sub-frames. A subdivision is called perfect if it contains no frames
with side length g > 3 that are intersected by a barrier.

For the difference in the size of neighboring frames a restriction is required, which is
expressed by the following rule:

Subdivision Rule: A simple partition of a 3¢ x 3¢ frame is subdivided

1. if there is an orthogonally neighboring frame of size ¢ x g

oq

2. if there is diagonally neighboring frame of size § x

W
Weq

The 3 x 3-subdivision is used instead of a 2 x 2-subdivision because the latter suf-
fers from a domino effect in the initial situation (see Figure [4.10): If the search area is
enlarged, then the side length for the new squares is doubled. Then a subdivision of
a small square near the source, which may be caused by a small barrier, is sufficient
to trigger a cascade of subdivisions. This would have negative consequences on the
traffic.

The Frame Exploration Algorithm

The exploration of a frame is started from one or more frame nodes which are called
entry nodes. In each initial frame the entry node is the source node, in other frames the
exploration is triggered by the shoreline and then the first nodes that receive a notifica-
tion message (in the fifth round, see below) become entry nodes.
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Figure 4.10: Domino effect in a 2 x 2-subdivision. A subdivision
of the black square triggers subdivisions in the shaded squares.

The exploration of a frame basically consists of a “round-trip communication”: a
frame node injects two traversal messages, one is sent on a right-hand traversal path, the
other on a left-hand traversal path along the frame and the barriers that intersect the
frame (a circular tour along the interior of the frame as shown in Figure £.8). The ideal
case is that these messages meet at some node, but that is not always possible. On the
one hand, complicated barriers can prevent further forwarding. However, the criterion
for simple partitions (see Def. has to be checked without following long traversal
paths along barriers. In a g x ¢ square without barriers each message travels 2g steps
along the frame. In the presence of barriers a detour of at most g/ steps is allowed,
so each message can be stopped after 2(1 + 1/)g steps. The two messages carry a
counter for visited frame nodes and border nodes, so that the criterion for a simple
partition can be checked when they meet. On the other hand, the exploration of a
frame is not always started by a single frame node. So we have to find a mechanism for
concurrent exploration processes. Therefore, we need more than one round to collect
the information and distribute it to the participating nodes.

1% round, “wake-up”: Each entry node generates one message, called wake-up mes-
sage that is sent on a left-hand traversal path around the current partition. A wake-up
message stops if it encounters another entry node that already started a message of
the same type or if it travels more than 4(1 + 1/)g steps. If an entry node does not
receive a wake-up message after 4(1 + 1/)g time steps, this is a proof for too many
barriers. But the reverse is not true. Only if the original message returns to the originat-
ing entry node and visits at most g/ border nodes, then this proves that the current
partition is simple. Note that if the message was stopped by another entry node, it is
unclear which case is true. Therefore, the following rounds are needed. One node has
to be elected as the coordinator for the next round. In this round, the first frame node
in counter-clockwise order after the left upper corner that is accessible in the current
partition becomes the coordinator for the second round. It is the first frame node on the
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left-hand traversal path after visiting the last frame node on the left side of the frame.
If the left side is obstructed by barriers, the partition is not simple and then there is no
coordinator for the second round. Furthermore, if the traversal fails, there is no coordi-
nator. In this case each entry node knows that the partition is not simple after waiting
until the third round.

2™ round, “count”: The coordinator of the second round generates two “counting”
messages. These messages travel clockwise and counter-clockwise on the frame nodes
and perimeter nodes and carry a counter for visited frame nodes and border nodes. If
the messages meet and if they counted together at most g/ border nodes and at least
4(g — %) frame nodes, the partition is simple and the node where they meet becomes
the coordinator for the third round. Otherwise there is no coordinator. In this way a
simple partition can be checked within 2(1 + 1/y)g steps.

3" round, “stop”: If the partition is simple, the coordinator injects two traversal
messages to inform all nodes on the traversal path that the partition is simple and no
further subdivisions are necessary. These messages meet at some node, which becomes
coordinator for the fourth round. If the partition is not simple, there is no coordinator
and no further messages will be produced. From the lack of the third (or the second)
round message all entry nodes of the current partition notice (after waiting 2(1+1/7)g
time steps) that the partition is not simple and has to be subdivided. As the entry nodes
know the arrival time of the shoreline, they will wait (if necessary) and begin with
the first round of the frame exploration algorithm just in time. To ensure that there is
enough time for the exploration of the sub-squares, a pause of A time steps after the
third round is necessary.

Since the messages used in these three rounds are not available at all frame nodes at
the same time, it could happen that another part of the shoreline enters the frame from
another side and trigger a subdivision. Other parts of the shoreline and the explorations
of smaller squares are not stopped by the messages of these three rounds. We will see
that this part of the shoreline does not need to enter a simple partition. The shoreline
and any exploration of smaller frames are not stopped by any of these messages. On
the other hand, any exploration of smaller frames stops any of these three messages.

4™ round, “close”: The coordinator sends two traversal messages to close the par-
tition, i.e. that all explorations inside the partition and also parts of the shoreline that
have entered the frame from another side are stopped. The processes in the interior can
be stopped by simply sending stop messages that follow the paths of the BFS tree from
the frame nodes. Actually, this precaution is not necessary as long as the processes in
the interior of the partition do not interfere with the outside of the frame. If the shore-
line reaches a closed partition, it follows the border of the partition.

With the fourth round the exploration ends. The first round takes 4(1 + 1/7)g time
steps, each successive round 2(1 + 1/7)g time steps plus the additional pause time A
after the third round. Choosing A = (1 + 1/7)g time steps is sufficient for the fol-
lowing reason: after the third round the entry nodes know that the partition is not
simple. Thus, in the remaining A + 2(1 + 1/)g time steps until the end of round four
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there must be enough time for performing four rounds of the exploration of a § x §
sub-square. Therefore, A +2(1+1/v)g > 10(1 + 1/7)% + % = A > 2. Thus, the ex-
ploration of a simple partition takes 12(1 + %) time steps. The induced traffic amounts

to16(1 + 1)g.

5% round, “notify”: A fifth round begins, when the shoreline enters a simple parti-
tion which is already explored. Then the exploration in the neighboring frames has to
be initiated. For this purpose, the node that is reached first by the shoreline sends two
traversal messages that trigger the frame nodes of neighboring frames in order to start
the exploration. These messages are stopped by other messages of this type.

All frame nodes on the border of unexplored frames will be the new entry nodes. The
fifth message gives an estimation when the shoreline will reach this point (at the latest).
Let t be the time that this notify message needs to reach the new entry nodes. From the
considerations in Lemma it follows that this time is bounded by ¢t > % — % = g%—f’.
According to this, the frame size g’ of the neighboring frame is chosen so that g’ is the
largest power of 3 such that g’ < %

We will choose 7y depending on the length of the shortest path. Since this informa-
tion is not known beforehand we have to use an approximation which is given by the
progress of the shoreline. So we choose y depending on the elapsed time t and denote
this by y(f).

4.6.3 Slow Search

The slow search uses a breadth-first search on the frames of the subdivision to propa-
gates a slow proceeding shoreline through the network. The construction and subdivi-
sion of frames is done by the fast exploration algorithm, which is triggered by the shore-
line. When the shoreline arrives, the frames are already constructed and the search for
the target becomes as simple as the continuous ring search algorithm. A BFS is started
on the frames of the subdivision in two waves. The first wave is slowed down by a
constant factor. This factor is determined in Lemma When the target is found and
the source has been notified, a second wave is started on the generated paths in order
to stop the exploration.

We can assume that the target lies on a frame of the subdivision, i.e. ||s — t||.c = 3" for
some k € IN. If this is not the case, we search for any node s’ with ||s’ — t||. = 3F with
the same algorithm and restart the algorithm from s’. This increases time and traffic
only by a constant factor.

In the following, time and traffic of the JITE algorithm are analyzed separately. The
time bound can be achieved because the fast exploration constructs a path network
that approximates the shortest path. This construction is done just in time. Slow search
uses this path system and is delayed only by a constant factor. The traffic bound follows
from the message paths that form the recursive subdivision of the search area.
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4.6.4 Time Analysis

For the time behavior we measure the time that the shoreline (BFS) needs to reach the
target. We can rely on the fact that the shoreline proceeds on already explored frame
nodes, since the “notify”-messages trigger entry nodes to explore frames. If a frame
is subdivided by the exploration process, neighboring frames that are not already ex-
plored are subdivided according to the subdivision rule (see Section . The follow-
ing observation follows directly from this rule:

Observation 4.1 A simple partition of a 3g x 3g frame is not subdivided into smaller frames

1. if all orthogonally neighboring frames are never subdivided below a size of g x g and
contain only simple partitions and

2. ifall diagonally neighboring frames are never subdivided below a size of § x § and contain
only simple partitions.

If the search area is expanded, the side length of the new squares is increased by a factor
of at most 3. Thus, there are no subdivisions of these new squares only because of the
subdivision rule, unless they are intersected by barriers. The restriction on the size of
neighboring squares is one prerequisite that each square can be explored just in time.

Lemma 4.2 If the BFS is slowed down by a constant factor o, each square can be explored in
time.

Proof: A simple partition will not be partitioned by exploration messages because too
many border nodes are found. The only possibility to subdivide such a partition occurs
if the shoreline initiates the sending of a “notify”-message to an entry node and this
message “starves”. Then there may not be enough time to explore the ¢ x ¢ square and
thus it is subdivided. We now prove that this is not the case.

When the shoreline enters an orthogonally neighboring frame A of size ¢ x g at the
entry node v (see Figure [.14), the distance to a node u on the diagonally neighboring

frame B is at least ||u —o[|; > § — %, as the shoreline comes from a neighboring sub-

frame C with side length of at least § and in this frame a detour around a barrier is
restricted to %. The time for notification of an entry node v in B is therefore % — %, the

exploration of B takes 8(1 + %)Sg time steps so that the “close”-message succeeds. The
algorithm chooses a frame size of at most 3g. The exploration is completed before the
shoreline enters B for a constant slow-down factor .

g 8 g g 1
P - z—+1z<1+>3
(3 7) 3 7 0 8

(1+%)g
<= c—1 > 36————
59
3 v
— 02108z:+12540 for ¢ > 4.
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This exploration is always done in time, since the size of the frame is chosen so that
there is enough time to succeed (in the worst case only one unit square is explored).
Since the shoreline proceeds on the frames of the simple partitions, we investigate the
length of shortest paths on such partitions.

Lemma 4.3 Given a g X g mesh with frame nodes u and v. Let P be the shortest barrier-free
path connecting u and v. A perfect subdivision of the mesh contains a path P’ connecting s and
t with length |P'| < 2|P|.

Proof: We observe that the recursive subdivision produces a fine-grained grid in the
proximity of barriers, so that all nodes adjacent to a barrier are part of the grid. If a
part of P goes along a barrier, this part is also contained in the grid. If a part of P goes
through “open space” and is not part of the grid, it has to be replaced by a path on a
frame. The largest detour is caused if the original path enters the frame on the center
of one side and leaves it on the center of the opposite side, which enlarges the original
path by a factor of two. [ |
For each square we allow a small detour depending on the size. It is crucial to know
the maximum number of squares of a given size, which is described by the following
lemma.

Lemma 4.4 Let |P| be the length of path P and (;(P) the number of squares of side length 3!
that are intersected by the path P. Then ¢;(P) < 2% +4.

Proof: In order to determine the number of squares, we consider the following model:
a traveler walks from u to v on the path P. There is a charge for every square. If he enters
a square, he has to pay this charge. But, as a reasonable compensation, he receives a
mileage allowance. If we determine the mileage allowance so that he is guaranteed not
to become insolvent, we obtain an estimation for the maximum number of squares he
can visit.

We consider squares of side length 3/ (level-i squares). Every square costs one dollar.
Therefore, we fix the mileage allowance at a rate of two dollars per side length. The
traveler starts with 4 dollars beforehand. In order to focus on the relevant aspects, we
look at the borders of the squares and especially at the corners. While moving in the
plane, we limit the scope to a quadratic area with the corner of the level-i squares in
the center. This is depicted by the dashed square in Figure a. If he touches the
border, the scope changes (only vertically or horizontally). Visited squares are marked
(shaded). If a visited square is out of the scope, we ignore the mark (see Figure [£.11]b).
Thus, the traveler possibly has to pay twice for a square. If his financial strength allows
to pay this extra cost, then it will suffice in either case.

Figure shows the four cases for possible arrangements of marked (i.e. visited)
and unmarked squares (within the scope). Other arrangements are equivalent to one of
these cases because of symmetry. Transitions between these cases occur if one crosses
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a) ‘ ‘ b)

Figure 4.11: [llustrations for the proof of Lemma a) The transition between squares
(dashed lines) takes place in a quadratic area, called the scope (shaded square). b) This tran-
sition cannot occur because the first mark is ignored when the scope changes.

the horizontal or vertical borders of the scope. One can easily see that transitions lead
either to case @ (— A), where one square is already visited, or to case @ (— B), where
two squares are visited. In the figure the transitions into these cases are written beside
the horizontal and vertical borders of the scope.

The amount of money the traveler must possess at some point is also specified in the
figure. In case @, e.g., there is a joint corner of three unmarked squares. Thus, the trav-
eler needs three dollars when reaching this point. At the border of the scope he needs
only two dollars, because on the way to the center he receives the mileage allowance.
Note that the distance from the border of the scope to the center is half the side length
(distances are measured with respect to the Manhattan metric), for which a mileage
allowance of one dollar is paid. One can see that the specified financial requirements
agree with a mileage allowance of two dollars per side length (2/3') in all the four cases.

A ftifth case applies for the initial situation where we observe no visited square within
the scope. For that case a seed capital of four dollars is required (to pay the charge for
four unmarked squares).

Altogether, for a path of length |P| we need an amount of 2%' + 4 dollars. |

After the exploration a simple partition in a ¢ x ¢ frame contains a detour of at most
¢/ (t), where y(t) is defined as a function of the time of exploration t. Thus, (t) is not
known until the exploration starts. For the time analysis we need a bound for this start
time. The algorithm always starts with small squares. So the exploration of a square of
size 3! is not started until smaller squares up to size 32 are reached by the shoreline,
which happens after ¢(3~! — 1) time steps. For a fraction of (1 —¢),e > 0 we get a
better bound, which is stated in the following lemma.

Lemma 4.5 Let n; be the number of squares with side length 3. Then, at least (1 — &)n; squares
are explored after 3'c/en; time steps.

Proof: The smaller -y(t), the larger is 3/ /7y (t) the length of the detour. Thus, the worst
case is to place as much squares as near as possible to the source node. The start of the
exploration (then y(t) is set) has happened when the shoreline has reached the neigh-
boring squares. If the shoreline has reached a radius of R := 3/ at a time ¢, there are

63



4 Online Routing in Faulty Mesh Networks

@ Al ® B |
' a '8
R R 1
A ‘ ‘
A< T 3 A< 2 2 A
® B @ B
A i
T R 1 T R 1
A 1 I B B~ T 0 L B
””””” | 111
v v
A B

Figure 4.12: Illustrations for the proof of Lemma Marked squares, which have been
visited before, are shaded. Transitions are denoted with arrows. The numbers show the costs
at certain positions.

Figure 4.13: Illustration for the proof of Lemma the black
diamond is the shoreline, in the shaded squares the exploration
has started.
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39

barrier

Figure 4.14: The shoreline enters square A at node v. The explo-
ration of square B must be finished, when the shoreline enters B.

at most 2(r + 2)(r + 3) =: en; squares where the exploration has started or is possibly
finished (see Figure [4.13). For the remaining (1 — €)n; squares, the exploration starts
after t. The radius R must be at least 2(r + 2)(r 4+ 3) > 2r? to cover e n; squares. The
shoreline reaches R at time t = ¢ R. From en; > 2r2 = 2 (R/3i)2 = R < 3i\/en;/2
follows the time bound. [ ]

The variable stop criterion y(f) results in a variable detour and a deformation of
the BES tree. The shoreline needs longer to traverse a square, but the time analysis
will show that this overhead which occurs in the beginning is dominated by the time
needed to traverse those squares that are explored later. Thus, the constant progress of
the shoreline is not affected.

The shoreline uses only the borders of simple partitions and approximates the short-
est path by following traversal paths on simple partitions of frames. These partitions
contain a detour depending on the frame size. The frames that are intersected by
the shortest path are also visited by the shoreline. To obtain a bound on the overall
path length we consider all frame sizes g, count the number of frames of a certain size
(Lemma and add the detour of ¢/(t) per frame.

Theorem 4.4 Let P be the shortest path with length |P| connecting s and t. The JITE algorithm
finds a path P'of length O(|P|) connecting s and t.

Proof: The path P visits ¢;(P) frames of size 3'. We know from Lemmathat ¢i(P) <

2% + 4. The subdivision of the search area contains a path P’ which can be constructed
as follows: determine a shortest path in the perfect subdivision and then add the detour
around the barriers inside the frames. For each explored frame of size 3' this adds a
detour of length at most 3'/~(t), which depends on the time of the exploration. We
have to consider all frames up to size |P|. So the overall length of P’ is given by the
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following term:
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n
The shoreline (BFS) is slowed down by a constant factor ¢ and uses frames which are
explored just-in-time providing a constant factor approximation of the shortest path.

Corollary 4.3 Let d be the length of the shortest path connecting s and t. The JITE algorithm
finds a path connecting s and t in time O(d).
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4.6.5 Traffic Analysis

The traffic depends on the number of quadratic subnetworks (frames) that are explored
and subdivided by the algorithm and that constitute the search area. A subdivision
of a square is caused by barriers inside the square and by subdivisions in neighboring
squares because of the subdivision rule (see Section [4.6.2). Therefore, we distinguish
between barrier-induced subdivisions and neighbor-induced subdivisions. A barrier-induced
subdivision occurs if at least g/ barrier nodes are inside the square (whether they are
found or not). All other subdivisions are called neighbor-induced.

A problem is that neighbor-induced subdivisions can trigger a cascade of further
subdivisions. Especially the 2 x 2-subdivision suffers from this domino effect in the
initial subdivision of the enlarged search area (see Figure where a small barrier
is responsible for subdividing large squares. If a 3 x 3-subdivision is applied in this
case, the domino effect can be prevented. A domino effect can only occur if a square
is subdivided recursively and a barrier-induced subdivision of an inner square triggers
recursive subdivisions up to the top-level square (see Figure[4.15). In this case, we can
shift the responsibility for the subdivisions from the barriers in the small inner square
to the barriers that have caused the recursive subdivision. Therefore, we quote the bar-
riers for the cost of subdivisions of neighboring squares—even if they are not carried
out immediately. This is expressed by the following rule:

Payment Rule: A barrier-induced subdivision of a g x g square pays for
— subdivisions of four neighboring 3¢ x 3¢ squares (Rule 1)

— the subdivision of one neighboring 9¢ x 9¢ square (Rule 2)

A barrier that causes a subdivision “pays” for the (barrier-induced) subdivision of
the current square as well as for the (neighbor-induced) subdivision of the neighboring
squares. This extra cost adds a constant factor to the traffic for exploring a single square.
It can be regarded as amortized traffic.

Lemma 4.6 Let T be the traffic produced by a barrier-induced subdivision of a g X g square.
Then this subdivision causes amortized traffic of at most 14T.

Proof: The traffic of a barrier-induced subdivision is not only quoted to the barriers
inside the square, but also to neighboring squares according to the Payment Rule.

We consider all cases where neighbor-induced subdivisions can occur. There are
three major cases to select a square out of a 3 x 3-subdivision for further subdivision:
the middle square (case 1), a square at the side (case 2) and a square at the corner (case
3) as shown in Figure If the small square “b” in case 1 in the figure is further
subdivided, the subdivision rule requires a subdivision of square “A”. The subdivision
of this orthogonally neighboring square is already paid according to Payment Rule 1,
since the middle square (containing a,b,c) is already subdivided. This triggers a further
subdivision on a higher level, but this case can be reduced to case 1b. This case and the
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Figure 4.15: Worst case for neighbor-induced subdivision: after
the subdivision of the black square the shaded squares have to be
subdivided, too.

alb| A A A A, B,
b’ c
albla alblc
A B Ay |c|d|c] A2 A, |bjd|e|l B,
elfle . - clelf
B B} B>
c
Case 1 Case 2 Case 3

Figure 4.16: Iilustrations for the proof of Lemma Symmetric cases are indicated by apos-
trophes.
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: v : v v : : : v
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Figure 4.17: Payment rules for barriers that cause a subdivision. A subdivision of the black
square pays also the subdivision of the shaded squares. Marked squares (V') are already paid.

other cases are shown in the following table:

Subdivided Induced Payment Further
square subdivision rule subdivisions
casel a) none - -
b) B 1 caselb
) B,B’ 1 case 1b
case2 a) Aq, Ay 1 Aq: none; Ay: case 1bor 3f
b) A 1 none
Q) Ay 1 case lbor 3f
d) none - -
e) A,, B 1 Aj: case 1b or 3f; B: none
f) B 1 none
case3 a) Ay A 1 none
b) A 1 none
Q) Aj, By 1 Aj: none; By: case 1b or 3f
d) none - -
e) B 1 B, — C —caselbor3f
f) By, BS,C 1,2 By, B} — C — case 1bor 3f

We can see that in all these cases the induced subdivisions are paid. Other cases are
symmetric and can be reduced to the ones shown in the table. Note that in case 2 and in
case 3 the neighboring squares containing B or By and B, respectively, must have been
subdivided, because of the first subdivision rule. [ |

Now, as we know the induced traffic by a single square, we are able to analyze the

overall traffic of the algorithm.

Theorem 4.5 The JITE algorithm produces traffic O(d + plog®d).

Proof: We consider the traffic caused by the exploration of ¢ X g squares. The pure
exploration cost of such a square is denoted by E(g) := 5(1 + %)4 g, where 7 is the
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4 Online Routing in Faulty Mesh Networks

number of visits (7 = 7 because of 5 exploration rounds, the shoreline and stop mes-
sages of the continuous ring search), 4 g the length of the sides and (1 + %) the allowed
detour per square.

Assume that there are p border nodes in total. A square is subdivided if it con-
tains g/ or more border nodes. Then we have at most g/iv squares that have to
be subdivided into nine sub-squares (barrier-induced subdivision). Each % X % sub-
square causes the following exploration costs: the exploration of the 9 sub-squares costs
9-E(%). So the amortized traffic amounts to 14 -9 - E($) (Lemma . The traffic for a
square of size ¢ x g with subdivision can be upper-bound as follows.

log;g )
Ti(gx ) <E(g)+ ), L 126 (3 )
i=1

log, &

1 2 p-(t) ( 1) i1
< 1+)4 4 126 (14+——)4-3
1 (14 5 )42 Lo 12 (1 o
<8n-g+plogsg(r(t)+1)1687
<1687 (g + plogs g (logs(t) +1))

Note that y(t) = log(t) depends on the time of exploration and therefore the traffic
is maximized with a maximum choice of ¢, which is ¢|P'| = O(d), where P’ is the
approximation of the shortest path found by the BFS.

From the amortized traffic Tr(g¢ x g) for a g x ¢ square, which includes further sub-
divisions, we obtain the overall traffic for all the squares in the final search area. The
maximum radius of continuous ring search is given by d’ := ZH|P'| = O(d). So the
frames constructed by the fast exploration algorithm grow up to a side length of 3/1084'1,

The search starts with four squares of size 3 x 3 (one square in each quadrant and
the source node in the origin, see Figure [£.9). In the next step this area is increased to
four squares of size 9 x 9 etc. Thus, in the i-th step, the area to be explored has a radius
of 3" (with respect to the Le-norm). It consists of four squares of size 3' x 3' which
are subdivided into squares of side length 3'~!. Thus, in the i-th step there are 8 new
squares of side length 3"~ in each quadrant that have to be explored. As the explored
squares of the previous step are not visited again, we have to count only the new border
nodes in each step: Let p; be the number of border nodes v with 37~! < ||v — || < 3.
Then ) ; p; = p. Note that Tr(g x g) already contains the cost of further subdivisions.
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[logg d'] ) )
Tr<4Tr(3x3) +4 ) 8Tr(3 x3)
i=2
(log; d')+1 _ .
<4c(3+pilogygd) +32 ) ¢ (3’ + pilog, 3'log, d)
i=2
(logy d')+1 ‘
<3 Y (3 +ipilog,d)
i=1
(log;d')+1
< 144cd’ +32clog, d Z ipi
i=0
< 144cd’ +32clogyd (log,d' +1) p

= O(d+ plogd)

Corollary 4.4 The JITE algorithm has a constant competitive time ratio and a comparative
traffic ratio of O(log? d). It has a combined comparative ratio of O (log” d).

4.7 Conclusion and Outlook

Route discovery in faulty mesh networks is an online problem whose difficulty depends
on the barriers in the network. Therefore we define comparative performance measures
that compare the time and the traffic to the lower bound. The lower bound for the time
is determined by the length of the shortest barrier-free path, whereas the online lower
bound for traffic depends on the perimeters of the barriers. We have seen that basic
strategies for online routing are either time-efficient or traffic-efficient but fail to op-
timize both measures. These strategies are outperformed by the JITE algorithm that
solves the problem efficiently with respect to both time and traffic. It works asymptoti-
cally as fast as flooding and approaches the online lower bound for traffic up to a poly-
logarithmic factor. This result answers the question whether there are time-optimal
strategies that decrease the traffic overhead of flooding algorithms significantly.

The following table summarizes the time and traffic performance as well as the com-
bined comparative ratio R, (Def. of the presented algorithms.

Strategy Time Traffic Re

Exp. Ring Search [JM96,PBD03]  O(d) O(d?) O(d)
Lucas” Algorithm [Luc88] Od+p) O@d+yp) O(d)
Alternating Algorithm O(@/?)  O(min{d? d*? +p}) O(d
JITE Algorithm O(d) O(d + plog®d) O(log?d)
Online Lower Bound (cf. [BRS97]) Q(d) Q(d+p) Q1)
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The JITE algorithm combines several techniques. First, the search area is expanded
continuously and thereby an adaptive grid of frames is constructed, which becomes
denser in the proximity of barriers. On this grid a slowly proceeding shoreline (slow
search) simulates a breadth-first search algorithm. This shoreline triggers the just-in-
time exploration of new frames. The artful combination of these techniques lead to an
algorithm which needs time O(d) and traffic O(d + plog? d) where d denotes the length
of the shortest path and p the perimeters of all barriers.

The efficiency of the JITE algorithm is due to the following ideas: The frames of the
grid subdivision provide a constant-factor approximation of the shortest path. They
are used by the slow search algorithm, which is slowed down by a constant factor. This
way the optimal asymptotic time bound is reached. The traffic-efficiency is achieved by
the grid subdivision which is only partially constructed in the proximity of the shore-
line. The grid subdivision becomes denser in the vicinity of barriers. This is necessary
to guarantee the constant-factor approximation of the shortest path, but it causes a log-
arithmic factor regarding the traffic. The second logarithmic factor is due to the detour
that is allowed when traversing a frame and that prevents a large frame from being
subdivided because of a small barrier.

Open problems

The JITE algorithm has a combined comparative ratio of O(log® d) which is due to the
traffic overhead. The question, whether this bound is tight or whether there is a small
logarithmic trade-off between time and traffic remains still open. Furthermore, the time
of the JITE algorithm is delayed by a large constant factor. It seems possible to decrease
this factor without an asymptotic increase of the traffic.

The presented techniques could also be generalized to a routing algorithm for three-
dimensional meshes. However, a simple generalization of the JITE algorithm would
cause a significant increase in traffic. Thus, the problem of an efficient online routing in
higher dimensions is wide open.

The model of a faulty mesh network is also similar to grid-based environment mod-
els, which are used in robot motion planning (see Section. However, it is not clear
if some of the presented techniques can be used for distributed navigation algorithms,
since parallelism, as it can be exploited in communication networks, has no equivalent
in robotics scenarios where only a constant number of robots can be assumed.
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Summary

In this thesis, the efficiency of position-based routing algorithms was studied. We began
our considerations with the problem of position-based routing in wireless networks.
These networks are usually modeled by unit disk graphs. Many known strategies rely
on the geometric properties of these graphs, e.g. the face traversal algorithms. We ab-
stracted from the graph topology issues and presented a position-based routing proto-
col, that is based on a grid subdivision of the plane. This protocol maps the commu-
nication links of the network and the void regions in between to link cells and barrier
cells in the grid subdivision. This cell structure can be constructed locally without extra
communication and provides an implicit planarization, which is required for loop-free
routing in recovery mode. The advantage of this approach over graph planarization
strategies is that no communication links are explicitly forbidden.

Besides these practical considerations, we have shown that routing on the cell struc-
ture is equivalent to routing in the original network. The cell structure corresponds to
the model of a mesh network with faulty nodes. Based on this model, we have stud-
ied position-based routing algorithms under the aspect of routing time and traffic, i.e.
the number of produced messages. For the analysis we use comparative measures that
compare the time and the traffic of the algorithm with the lower bounds for online al-
gorithms. The known approaches are either time-efficient or traffic-efficient, but fail to
optimize both. As single-path routing strategies are not able to reach the lower time
bound, parallelism is inevitable for time-optimal online routing. But is it necessary
to flood the network in order to optimize the routing time? The answer to this ques-
tion is given in this thesis. We presented the JITE algorithm that delivers a message
in time O(d) with traffic O(d + plog? d) where d is the length of the shortest path and
p the number of border nodes being adjacent to faulty nodes. This algorithm works
asymptotically as fast as flooding, which is the best possible strategy when optimizing
routing time. But in contrast to flooding, this algorithm is nearly traffic-optimal up to a
poly-logarithmic factor.

Further work on this routing problem includes the question for efficient routing in
three-dimensional meshes and the question whether the obtained bounds are tight or
whether there is a small logarithmic trade-off between time and traffic.
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