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1 Introduction

The increasing inter-connectivity of modern computer systems has led to the phenomenon of
massive data sets occuring in the form of data streams. Terabytes of Internet traffic is guided
along routers having small memory, telecommunication companies collect gigabytes of com-
munication data each day which have to be analyzed automatically. In almost each area of our
digital life a huge amount of data is created. Parts of the data are stored in gigantic data centers
on thousands of large hard discs for later analysis. But most of the data is created on the fly,
never stored anywhere, and forgotten after seconds.

In this thesis we concentrate on the analysis of such elusive data appearing as a data stream.
In the data stream model the data arrives one item by one, and can not be stored locally. We try
to maintain a small summary or sketch of the data in local memory. This summary should later
help us to answer certain kinds of queries about the data.

A big part of this thesis we will concentrate on a very common problem on huge data sets:
Clustering. The computational task of clustering is to partition a given input into subsets of
equal characteristics. These subsets are usually called clusters and ideally consist of similar
objects that are dissimilar to objects in other clusters. This way one can use clusters as a coarse
representation of the data. We loose the accuracy of the original data set but we reduce the
complexity of the data.

Clustering has straightforward applications in data streaming scenarios. First, we are supposed
to handle data sets we are not able to store. Reducing the complexity of these data sets using
clustering can give us the ability to store the clustered data for later examination. Second, on
such huge data sets clustering often is an effective method to understand the structure of the data
set at all. It solves the problem not to see the wood for the trees, which often evolves in the
analysis of huge data sets.

To cluster a data set one first has to define a distance measure between objects. This is of-
ten done in practice by mapping all objects to points in a d-dimensional Euclidean space. The
distance between the objects can then be measured by the Euclidean distance between points. Fi-
nally one can use established clustering objectives like k-median or k-means and corresponding
algorithms to cluster the data.

One of the main results of this thesis is a technique to reduce the complexity of a huge point
set to a weighted point set of logarithmic size, called coreset. On the small coreset still good
approximate clusterings for the whole point set can be computed.

We will show how to maintain a coreset using polylogarithmic memory on dynamic geomet-
ric data streams, consisting of insertions and deletions of points. Our algorithm will give us the
ability to compute (1±ε)-approximate k-median, k-means, and MaxCut clusterings on dynamic
goemetric data streams using polylogarithmic memory. Having a (problem dependent) mapping
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1 Introduction

of objects to Euclidean points in mind, we can also compute clusterings on dynamic data streams
of arbitrary items.

We now give an overview of the results developed in this thesis.
After introducing some notation, the data stream models, and the clustering objectives used

throughout the paper in Chapter 2, we start the development of data stream algorithms in Chap-
ter 3. The data streams we consider here follow the turnstyle model, i.e. they consist of update
operations on a high dimensional vector. We show how to sample sets of indices almost uni-
formly at random from the support of the current vector. This is equivalent to sampling random
elements from a dynamic multiset P given as a data stream of insert and delete operations. The
algorithm usesO(log2(UM/δ)) memory bits whereU denotes the dimension of the vector (resp.
the number of possible elements to be included in the set), M an upper bound on each vector
component (resp. the multiplicity of single elements), and δ the desired statistical difference of
the sampling to a uniform one. The difficulty here lies in the desired uniformity of the sampling
independently of the multiplicity of the elements in P. Furthermore, if the current multiset P
is small after many insert and many delete operations, we must be able to reconstruct P to get
uniform samples.

We apply this sampling technique to point sets in Chapter 4 and present low-storage data
structures to sample points from a dynamic geometric data stream consisting of insertions and
deletions of points from the d-dimensional discrete Euclidean space {1, . . . , ∆ − 1}d. The sam-
pling is done almost uniformly. We also show direct applications of our sampling technique. Let
P be the dynamically evolving point set encoded in the stream.

The data structures developed in Section 4.2 maintain ε-nets and ε-approximations of range
spaces of P having small VC-dimension D. The number of memory bits our data structures use
is bounded by poly(D, ε−1, log(∆/δ)), where δ is the desired error probability. Although we
do not store the whole point set, we can, after passing over the dynamic geometric data stream,
approximately answer certain queries on ranges (e.g. about the number of points in a given
rectangle) using the statistics we maintain.

Based on a more sophisticated sampling of points and their respective neighbourhood we also
present a low storage data structure to approximate the weight of a Euclidean minimum spanning
tree of the points in P in Section 4.4.

The results of Chapters 3 and 4 have been published in [G. Frahling, P. Indyk and C. Sohler,
Sampling in Dynamic Data Streams and Applications, In: Proceedings of the 21st Annual Sym-
posium on Computational Geometry (SoCG), pages 142–149, 2005. Invited to the special issue
of SoCG 2005, to appear in International Journal of Computational Geometry and Applications
(IJCGA)].

The heart of the thesis is Chapter 5. We develop (1 + ε)-approximation algorithms for k-
median, k-means, MaxCut, maximum weighted matching (MaxWM), maximum travelling sales-
person (MaxTSP), and average distance. Our algorithms compute a small weighted coreset con-
sisting of O(k · logn/εO(d)) points that approximates the input point set with respect to the
considered problem. The coresets can be computed in nearly linear time.

Having a coreset one only needs a fast approximation algorithm for the weighted problem to
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compute a solution quickly. In fact, even an exponential algorithm is sometimes feasible as its
running time may still be polynomial in n. We will use algorithms from [61] to compute (1+ε)-
approximate solutions for k-median and k-means on the coreset in poly(logn, exp(1/ε)) time.
For MaxCut our technique (reducing the complexity of the big point set to a small coreset and
then compute an approximate solution on the coreset) will lead the the fastest known PTAS (in
terms of n) for Euclidean MaxCut. It is presented in Section 5.5.3.

The new coreset method also has the advantage that it does not rely on assumptions on the op-
timal clustering solution (in constrast to previous approaches like [61]). This helps us to develop
the first efficient algorithms to maintain coresets and during the m insert / delete operations of a
dynamic geometric data stream. The space used and the update time per insert / delete operation
are bounded by poly(ε−1, logm, log∆) for constant k and dimension d. At each point of time
during the dynamic geometric data stream we can efficiently extract a coreset from the summary
held in memory and compute an (1± ε)-approximate solution for k-median, k-means, MaxCut,
and all other problems. The algorithms are presented in Chapter 6.

Chapters 5 and 6 are based on [G. Frahling and C. Sohler, Coresets in Dynamic Geometric
Data Streams, In: Proceedings of the 37th Annual ACM Symposium on Theory of Computing
(STOC), pages 209–217, 2005].

In Chapter 7 we will use the coreset technique developed in Chapter 5 to develop an efficient
kinetic data structure to maintain a (1 + ε)-approximate MaxCut clustering of n points moving
linearly in Rd. The data structure is able to answer queries of the form “to which side of the
partition belongs query point p?” during the whole movement of the points, each query in time
polylogarithmical in n.

Previously it was not known if a set of n points moving linearly could forceΩ(n2) updates of
a (1± ε)-approximate MaxCut solution. Our data structure shows that such effort is not needed:
Under linear motion the data structure processes a number of events linear in n, each requiring
O(log2 n) time. A flight plan update can also be performed in small expected time, when it is
performed on a point chosen uniformly from the set of points. No efficient kinetic data structures
for MaxCut have been known before.

In Chapter 8 we present an efficient implementation of a k-means clustering algorithm. Our
algorithm is a variant of KMHybrid [83, 104], i.e. it uses a combination of Lloyd-steps and
random swaps, but as a novel feature it uses the coreset construction of Chapter 5 to speed up
the algorithm. The main strength of the algorithm is that it can quickly determine clusterings of
the same point set for many values of k. This is necessary in many applications, since, typically,
one does not know a good value for k in advance. Once we have clusterings for many different
values of k we can determine a good choice of k using a quality measure of clusterings that is in-
dependent of k, for example the average silhouette coefficient. The average silhouette coefficient
can be approximated using coresets.

To evaluate the performance of our algorithm we compare it with algorithm KMHybrid [104]
on typical 3D data sets for an image compression application and on artificially created instances.
Our data sets consist of 300, 000 to 4.9 million points. We show that our algorithm significantly
outperforms KMHybrid on most of these input instances. Additionally, the quality of the solu-
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1 Introduction

tions computed by our algorithm deviates less than that of KMHybrid.
We also compute clusterings and approximate average silhouette coefficients for each k be-

tween 1 and 100 for our input instances and discuss the performance of our algorithm in detail.
The description of the algorithm and experimental results have been previously published in
[G. Frahling and C. Sohler, A Fast k-Means Implementation using Coresets, In:Proceedings of
the 22nd Annual Symposium on Computational Geometry (SoCG), pages 135–143, 2006. Invited
to the special issue of SoCG 2006, to appear in International Journal of Computational Geome-
try and Applications (IJCGA)].

Chapter 9 concentrates on graphs given as a data stream of edges. We develop space bounded
algorithms that with probability at least 1−δ compute a (1±ε)-approximation of the number of
small motifs in these graphs. All algorithms are based on random sampling. Our first algorithm
does not make any assumptions on the order of edges in the stream and approximates the number
of triangles occuring in the input graph. It uses space that is inversely related to the ratio between
the number of triangles and the number of triples with at least one edge in the induced subgraph,
and uses constant expected processing time per edge.

Our second triangle counting algorithm is designed for incidence streams (all edges incident
to the same vertex appear consecutively). It uses space that is inversely related to the ratio
between the number of triangles and the number of paths of length two in the graph and also has
small expected processing time per edge. These results significantly improve over previous work
[117, 81]. We generalize the results to the counting of cliques of size k.

Last but not least we present an algorithm to count the number of bipartite cliques (K3,3) with
three nodes in each partition in directed incidence streams with bounded out-degree of the nodes.
The space needed for the approximation is inversly related to the ratio between the number of
K3,3 and the number of bipartite cliques having one node in the destination partition (K3,1).

Since the space complexity of our algorithms depends only on the structure of the input graph
and not on the number of nodes, our algorithms scale very well with increasing graph size and
provide a basic tool to analyze the structure of large graphs.

The algorithms to count triangle motifs have been published together with some experiments
in [L. Buriol, G. Frahling, S. Leonardi, A. Marchetti-Spaccamela, and C. Sohler, Counting Trian-
gles in Data Streams, In: Proceedings of the 25th ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems (PODS), pages 253–262, 2006].

1.1 Motivation

A UC Berkeley study of Lyman and Varian [96] reports that in 2002, the most current year
for which there are figures, human mankind stored about 5 exabytes of information (that is 5
million terabytes or 37,000 times the information in the Libraries of Congress). This is just
the information which is stored. Most of the information created by human mankind, about 18
exabytes by the same study, is created on the fly and then forgotten. Most of this data would be
interesting for later examination, but can’t be stored because of high data rate or storage capacity
limits.
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1.1 Motivation

A prominent example for such data is the internet traffic at a backbone router. Assume we
want to maintain some statistics about the routed packets. It would be way to costly to store
the required information (e.g., source and destination) for every packet routed. It seems to be
much more attractive to maintain a small sketch (or synopsis) of the data seen so far. Such a
sketch should contain an approximation of the information we are interested in. This leads us to
data streaming algorithms. They process the data one item by one without storing them. After
processing the stream they are able to answer certain queries about the data.

There are many other examples of data streaming scenarios: Telephone call network opti-
mization, sensor networks, banking and credit card transactions, peer to peer connection and
transmission data, financial stock trade data, etc.

Data streaming algorithms often even have an advantage in environments where huge data sets
are actually stored. According to the study cited above about 92% of the stored data is held on
hard disks. From these discs the data can be read sequentially at high rate. Unfortunately only the
data items below the head(s) of the hard disk can be accessed immidiately. If we decide to read
data from another position on the disk, the disk head has to be moved and after the movement we
have to wait for the disk to turn to the desired data item. This takes milliseconds of time even on
current high speed disks. Real life applications for huge data therefore try to avoid this random
access and just read data sequentially.

Data streaming algorithms can be fed with a sequential stream of the data, avoiding random
access at all. If for a given problem we are able to find a data streaming algorithm working with
limited main memory, we can guarantee not to trigger any hard disk head moves.

Dynamic Geometric Data Streams. Let us assume we have a data stream consisting of
insertions and deletions of objects into a big setQ. To learn something about the structure of the
set Q we have to examine the relations of the objects of Q to each other. First questions arise
about the difference of objects. To answer such questions we first have to define what difference
of objects means.

A first attempt would be to model complicated distance measures between objects of Q. To
each pair of objects (a, b) we assign a number d(a, b) measuring the distance between the
objects. This attempt would give us a precise modelling of difference, but has a major drawback:
How can we store the distances between pairs of objects when we are not even able to store the
objects themselves?

The only solution to this problem is to provide an implicit distance measure between objects.
In practice objects are often mapped to a d-dimensional Euclidean space by a mapping α. The
distance d(a, b) between objects is then measured as the Euclidean distance between α(a) and
α(b) and can be computed implicitly. The dynamic data stream of objects then translates natu-
rally into a dynamic geometric data stream, consisting of insertions and deletions of points, by
assigning α to each object in the stream.

There are even more direct applications of dynamic geometric data streams: Sensor networks,
mobile ad-hoc networks, or the analysis of astrophysical data often provide us directly with
data streams of positional data, i.e. data streams of points in Rd. For example, in a mobile
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1 Introduction

ad-hoc network the participants may regularly broadcast updates of their current position. All
participants want to maintain information about the distribution of the participants to maintain an
efficient communication network. Since mobile devices have usually limited memory it would
be nice to do this using only a small amount of space. Of course, one can model an update as
deleting the old position and inserting the new one. Therefore, the model of dynamic geometric
data streams applies.

In the context of dynamic geometric data streams we have to reduce the complexity of the
point sets. We are able just to store some small representation. Using that we want to answer
certain queries about the points. In the geometric context one of the most interesting questions
arises about the distribution of points. In Section 4.2 we will address queries like “How many
points lie in a certain rectangle?” and show how to answer them by maintaining ε-nets and ε-
approximations of points in small space.

In the context of mobile ad-hoc and sensor networks often the question about the efficience of
the current communication networks arises. We can see the Euclidean minimum spanning tree as
one of the most efficient communication networks, minimizing to the total length of connections
between sensors. Estimating the weight of the Euclidean spanning tree of the current network
gives us information about the efficience of the current communication structure. We will show
how to measure this Euclidean spanning tree weight in Section 4.4.

Clustering. The problem of clustering data sets according to some similarity measure belongs
to the most extensively studied optimization problems. Clustering often plays the role of the first
step to understand huge data sets. Clustered data help to identify big groups of similar items in
the data. Furthermore one can easily find similar items of a query item.

Search engines like Ask.com advertise the ability to present websites on one topic as a cluster
to the user. Amazon buyers are clustered to find other users having similar interests. There are
many more applications in computational biology, machine learning, data mining and pattern
recognition. Since the quality of a clustering is rather problem dependent, there is no general
clustering algorithm. Consequently, over the years many different clustering algorithms have
been developed.

The most prominent and widely used clustering algorithm is Lloyd’s algorithm sometimes also
referred to as the k-means algorithm. This algorithm requires the input set to be a set of points in
the d-dimensional Euclidean space. Its goal is to find k cluster centers and a partitioning of the
points such that the sum of squared distances to the nearest center is minimized. The algorithm
is a heuristic that converges to a local optimum. The main benefit of Lloyd’s algorithm is its
simplicity and its foundation on analysis of variances. Also, it is relatively efficient.

One major drawback of the k-means algorithm is that it needs access to the whole point set
in each iteration. In the data streaming scenarios described above it can therefore not be applied
directly.

We will provide a method to reduce the complexity of the point set P to a weighted coreset
in Chapter 5. This method is the first to efficiently compute (1 ± ε)-approximate k-median, k-
means and MaxCut-clusterings in dynamic geometric data streams, where deletions of points are
allowed (see Chapter 6). The reduction is done using only polylogarithmic space, and is therefore
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1.1 Motivation

applicable to huge dynamic geometric data streams. Using a mapping of objects to Euclidean
spaces as described above our reduction technique can also be applied to huge dynamic data
streams consisting of insertions and deletions of arbitrary objects.

In Chapter 8 we present an efficient implementation of our coreset reduction technique. It
shows that even for data sets in main memory our method can be used to accelerate the first steps
of the popular k-means method and achieve faster convergence. It can also be used in scenarios
where the number of clusters is not specified in advance, because it is suitable to quickly compute
clusterings for different numbers of k.

Clustering Kinetic Data. Clustering is also playing a central role in ad-hoc mobile commu-
nication and sensor networks, where the underlying communication structures often depend on
the proximity or other similarity characteristics of the stations in motion. For example, mobile
networks are often organized in hierarchical clusters, where all the stations inside one cluster are
in a close proximity and have direct communication. The hierarchy of clusters then induces a
tree structure on their leaders which can be used to establish communication (or perform other
data management tasks) between different clusters.

Maintaining clusters of mobile nodes is a very challenging task in mobile networks, because of
the dynamic character of the moving nodes. Good clustering algorithms should ensure a tradeoff
between the quality of the clustering at any given time and its stability and efficiency under
motion.

In Chapter 7 we will develop the first kinetic data structure for MaxCut clustering. We assume
that n points (the sensors) are moving along linear trajectories. We show that in this scenario we
are able to maintain an approximate MaxCut clustering with Õ(n) effort during the motion of
points. Updates on the point velocities can be handled efficiently.

Our algorithm is based on the coreset construction technique described in Chapter 5. Since
the coreset construction generally applies to the k-means and k-median problems as well, we
are confident that our ideas to develop kinetic data structures using coresets can lead to efficient
kinetic data structures for k-means and k-median clustering in the future as well.

Counting Motifs in Graphs. Graphs are fundamental structures for modeling complex re-
lationships between data in Web documents, chemical compounds, XML, social networks etc.
A basic tool to uncover their structural design principles and to extract relevant information is
to mine the most frequent interconnection patterns occurring in the graph. The computation of
network indices based on counting the number of certain small subgraphs is a basic tool in the
analysis of the structure of large networks.

As an example, the occurrence of a very large number of certain dense subgraphs has been
observed in the Webgraph, the graph formed by Web pages and hyperlinked connections [88],
in the attempt of tracing the emergence of hidden cyber-communities. A stochastic model of
the growth of the Webgraph [89], the ”copying model”, has then been developed and uses these
dense subgraphs as building blocks of the process of network formation.

Another example are large software systems. The simplest way of reusing the software is
to duplicate some portion of the program and later adapt it to some specific needs. In [121]
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1 Introduction

it is argued that the analysis of frequent network motifs in software architectures suggests that
duplication and diversification mechanisms are responsible for a significant part of the observed
topological features of large software graphs.

Since huge graphs (webgraph crawls for example) do not fit into main memory, we have to
find algorithms working on graphs stored on disks. To avoid random access at all we will look
into algorithms working on streams of edges.

Recent implementations and experiments suggest that our algorithms are suitable to compute
good estimations on the number of triangles of real webgraph crawls in time comparable to the
time to read the graph from the hard disc. Some of the experimental results have already been
published in [17].

1.2 Related Work
We subdivide the related work into the subjects data streams, geometric data streams, clustering,
kinetic data structures, and work related to the counting of motifs in graphs.

Data Streams. In 1996 Alon, Matias, and Szegedy analyzed data streaming algorithms to
approximate the frequency moments [4] and also gave lower bounds on the memory needed
for the approximation. The paper laid the foundation for a big amount of research done in
the subsequent years. Some areas of interest are the counting of distinct items and estimating
frequency moments [4, 22, 40, 46, 57, 77], the counting of frequent items [24, 30] and the
computation of histograms [48, 53, 79]. For other work on streaming algorithms in general
we refer to the survey by Muthukrishnan [105].

Ganguly, Garofalakis, and Rastogi gave a method to track set expression cardinalities in dy-
namic data streams [46]. Their method can potentially be altered to provide random samples as
done in Chapter 3. However, this was not the purpose of [46] and the alterations needed are
not stated in the paper. Cormode and Muthukrishnan[31] developed a sampling technique for
dynamic data streams similar to the technique given in Chapter 3. Their result was obtained at
the same time independently of our publication [42].

Geometric Data Streams. One of the first geometric problems studied on a stream of points
was to approximate the diameter of a point set in the plane [36] using O(1/ε) space. Later this
problem has also been considered in higher dimensions [74], where an algorithm with space
complexity O(dn1/(c

2−1)) to maintain a c-approximate diameter for c >
√
2 has been obtained.

Chan and Sadjad proposed an algorithm to maintain an approximation of the diameter in the
sliding window model [33]. In this model one considers an infinite input stream but only the last
n elements are relevant (the window). They gave a (1 + ε)-approximation algorithm for fixed
dimension, which stores O(( 1

ε
)(d+1)/2 log R

ε
) points and where R denotes the ratio between the

diameter and the smallest pairwise distance between two points in the window.
Cormode and Muthukrishnan introduced the radial histogram [29] to approximate different

geometric problems in the plane. A radial histogram is a subdivision of the plane given by con-
centric circles around a center point and halflines starting at the center. This way we can assign
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1.2 Related Work

every point in the stream to a cell of the radial histogram. Problems that can be approximated via
radial histrograms include the diameter, convex hull, and the furthest neighbor problem. Hersh-
berger and Suri showed how to maintain a set of 2r points such that the distance from the true
convex hull of the points seen so far is O(D/r2) where D is the current diameter of the sample
set [69].

Agarwal et al. introduced a framework for approximating various extent measures of point
sets for constant dimension [2]. Their technique can be used to obtain streaming algorithms
for problems like the diameter, width, smallest bounding box, ball, and cylinder of the point
set. Chan used this framework to develop improved streaming algorithms (using less space than
previous ones) for a number of geometric problems with constant dimension including diameter,
width, minimum-radius enclosing cylinder, minimum width enclosing annulus, etc.

Bagchi et al. [9] gave two deterministic streaming algorithms that maintain ε-nets and ε-
approximations under insertions of points. They apply their algorithm to approximate several
robust statistics in data streams including Tukey depth, simplicial depth, regression depth, the
Thiel-Sen estimator and the least median of squares. Since their algorithm is deterministic it
cannot be extended to the dynamic streaming model including deletions. Suri et al. gave both
deterministic and randomized algorithms to compute a (weighted) ε-approximation for ranges
that are axis-aligned boxes [118].

Indyk introduced the model of dynamic geometric data streams used in this thesis [75]. He
gave O(d · log∆)-approximation algorithms for (the weight of) minimum weighted match-
ing, minimum bichromatic matching and minimum spanning tree. He also showed how to
approximate the weight of an optimal solution of the facility location problem within a factor
of O(d log2∆). For the k-median problem he gave a (1 + ε) approximation algorithm with
query time O(∆kd · k · ε−d−1(log∆+ 1

ε
log 1

ε
)) (exhaustive search). He also developed a O(1)-

approximation that needs O(∆d · k · ε−d−1(log∆+ 1
ε

log 1
ε
)) time to compute an approximation

from the maintained data structure. He further gave a (1 + ε,O(log∆(log∆ + log(1/ε)/ε))-
approximation algorithm, i.e. an algorithm that returnsO(log∆(log∆+log(1/ε)/ε))·kmedians
whose cost is at most 1 + ε times the cost of an optimal algorithm. This algorithm has polylog-
arithmic query time. All of the algorithms given above work using O((k + log∆ + 1/ε)O(1))

space.

Minimum Spanning Tree Approximation. The problem of estimating the weight of a
minimum spanning tree has been considered in the context of sublinear time approximation
algorithms. The first such algorithm for the minimum spanning tree weight is designed for
sparse graphs and computes a (1+ε)-approximation [25]. It has a running time of Õ(D ·W/ε2)
when the edge weights are in a range from 1 to W and the average degree of the input graph is
D. In the geometric context a Õ(

√
n/εO(1)) time (1+ ε)-approximation algorithm was given, if

the point set can be accessed using certain complex data structures [32]. In the metric case one
can compute a (1+ ε)-approximation of the minimum spanning tree weight inO(n/εO(1)) time
[20].
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1 Introduction

Clustering. It is beyond the scope of this section to give a comprehensive overview of the
clustering literature. We want to concentrate on results using coresets and then give a brief
overview of the most important developments with focus on partitioning algorithms. For a more
comprehensive overview of the work in clustering we refer to the surveys/books [14, 65, 80].

Har-Peled and Mazumdar gave (1 + ε)-approximation algorithms for the k-median and k-
means problem, when the points are given in a data stream consisting of insertions (and no
deletions) [61]. Their algorithm is based on maintaining coresets of logarithmic size. They
also mention the extension of their results to the case of dynamic streaming algorithms as an
interesting open problem.

Chan used coresets to approximate different geometric problems including diameter and min-
volume bounding box [19]. Together with Sadjad he considered the diameter and width of a
point set in the sliding window model [20].

In the context of clustering algorithms several other coreset constructions have been developed
for the k-median and k-means clustering problem [8, 60]. These coresets found applications
in approximation algorithms [8, 60] and clustering of moving data [59]. Also for projective
clustering, coresets have been developed [63].

Apart from clustering, coresets have found applications in basic problems in computational
geometry, for example, to compute an approximation of the smallest enclosing ball of a point set
[7] or to approximate extent measure of point sets [2, 19].

An overview of coreset constructions is given in [3].

The most popular algorithm for the k-means clustering problem is Lloyd’s algorithm [41, 62,
95, 97]. It is known that this algorithm converges against a local optimum [115]. Recently,
a number of very efficient implementations of this algorithm have been developed [5, 82, 83,
108, 109, 110]. These algorithms reduce the time needed to compute the nearest neighbors
in a Lloyd’s iteration, which is the most time consuming step of the algorithm. Arthur and
Vassilvitskii showed that there are instances which require 2Ω(

√
n) iterations [6].

In the Euclidean space there are many (1 + ε)-approximation algorithms for the k-means
clustering problem [8, 38, 61, 71, 90, 99]. Also for the k-means problem in metric spaces efficient
constant factor approximation algorithms are known [83, 100].

The quality of random sampling in metric spaces has been analyzed for some clustering prob-
lems including the metric and the Euclidean k-median [34, 102]. The analysis can be easily
extended to the k-means clustering problem. A testbed for k-means clustering algorithms has
been given in [104].

Streaming algorithms for clustering problems have also been considered in the more general
metric space setting [23, 54, 101]. The currently best known algorithm for the k-median problem
is a O(1)-approximation using O(k · polylog n) space [21].

MaxCut. MaxCut is known to be Max-SNP-hard for general graphs. It has a very easy 0.5-
approximation algorithm and an exciting 0.87856-approximation algorithm by Goemans and

10
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Williamson [50]. For metric graphs (and hence also for geometric instances), Fernandez de la
Vega, Karpinski, and Kenyon [37] designed a PTAS which computes a (1 ± ε)-approximation
in time O(n2 · 2O(1/ε2)). Indyk [72] designed a PTAS for metric graphs having runtime O(n ·
logn · (2(1/ε)O(1)

+ logn)). These are also the best known algorithms for the Euclidean version
of MaxCut, for which it is still not known if the problem is NP-hard.

Kinetic Data Structures. There has been a lot of work on designing KDS for various cluster-
ing problems. For example, there are efficient KDS for the problems of finding (approximately)
minimum number of squares (or other geometric objects) that contain all the input points [47, 68]
and for the problem of finding k clusters of minimum maximum radius that cover all points [59];
for other examples, see e.g., [1, 15, 56, 68]. However, unlike the MaxCut problem studied in this
thesis, the prior work typically has focused on clustering problems in which each clustered set
has been defined only by the inner-cluster properties. In contrast, the MaxCut is the problem of
clustering the input set of points into two sets for which the sum of the inter-cluster distances is
maximized, that is, for which the dissimilarity between the points in different clusters is maxi-
mized. Comparing to the other clustering problems, MaxCut depends more on global properties
of the input points and as such it requires different (novel) techniques to be solved efficiently.

Counting Motifs in Graphs. Recently much attention has been devoted to the analysis of
complex networks arising in information systems, software systems, overlay networks etc. Min-
ing the most frequent subgraphs is here aimed to identify the building blocks of universal classes
of complex networks [78, 92]. As an example, the occurrence of a very large number of certain
dense subgraphs has been observed in the Webgraph, the graph formed by Web pages and hyper-
linked connections [88], in the attempt of tracing the emergence of hidden cyber-communities.
A stochastic model of the growth of the Webgraph [89], the ”copying model”, has these dense
subgraphs as building blocks of the process of network formation.

D. Coppersmith and S. Winograd showed that the number of triangles in a subgraph can be
counted using matrix multiplication [27]. Schank and Wagner [112] give an extensive experi-
mental study of the performance of algorithms for counting and listing triangles in graphs.

Finding frequent graph patterns also finds application to graph databases[123].
Valverde and Sol used the analysis of frequent network motifs in software architectures to

argue that network models based on duplication and diversification mechanisms accounts for a
significant part of the observed topological features of large software graphs [121].

11
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2 Preliminaries

In this chapter we introduce notations and models used throughout the thesis. In Section 2.1 we
begin with general notations.

We will then formally introduce different data stream models and complexity measures used
for the analysis of data stream algorithms in Section 2.2. After considering general data streams
consisting of arbitrary items we will concentrate on point sets and graphs encoded as data
streams.

A big part of the thesis introduces new methods to cluster huge point sets into groups of points.
In Section 2.3 we will introduce different clustering objectives, i.e. the k-median, k-means, and
MaxCut clustering.

2.1 General Notations
We begin with some basic notations and definitions.

We define
R+ := {x ∈ R | x > 0} .

We use the Õ-notation to hide polylogarithmic factors. Formally let f : R→ R+ and g : R→
R+ be functions with positive function values. We use the notation

f(n) = Õ(g(n))

to measure the growth of f(n) with n→∞, iff there is a constant k ∈ N such that

f(n) = O(g(n) · logk(g(n))) as n→∞ .

We will use [n] to denote the set {0, . . . , n− 1}. For a, b ∈ R we define

(a, b) := {x ∈ R | x > a∧ x < b}

and
[a, b] := {x ∈ R | x ≥ a∧ x ≤ b} .

For x ∈ R and ε ∈ R+ we define

(x± ε) := [x− ε, x+ ε] .

We define multiplications of intervals (a, b) with positive scalars x ∈ R+ as

[a, b] · x := x · [a, b] := [a · x, b · x]

and multiplications of positive intervals (a, b) and (c, d) having 0 < a < b and 0 < c < d as:

[a, b] · [c, d] := [a · c, b · d] .

13



2 Preliminaries

Euclidean Spaces

The d-dimensional vector space Rd is the set of all d-tupels (x1, . . . , xd) of real numbers
x1, . . . , xd. The elements of the space are called vectors or points. For each point p ∈ Rd we
denote the ith component of the point as p(i), such that p = (p(1), p(2), . . . , p(d)). Addition and
subtraction of points in Rd gives again a point in Rd and is defined component-wise:

∀p,q∈Rd(p+ q)(i) = p(i) + q(i) .

The multiplication of a scalar x ∈ R with a point p ∈ Rd gives again a point in Rd and is defined
as

(x · p)(i) = x · p(i) .

Throughout the paper we will always assume that d is a constant. Therefore we will write
O(d) = O(1).

If we restrict the coordinates of a point set to a subset R of R we write Rd for the set of
d-tupels of numbers from R. In the thesis we will use the special cases [0, 1]d where R is the
compact interval of numbers between 0 and 1, and [∆]d = {0, . . . , ∆− 1}d with ∆ ∈ N.

As distance measure between the points we will often use the Euclidean distance d : Rd ×
Rd → R+ defined as

d(p, q) :=

√√√√ d∑
i=1

(p(i) − q(i))2 .

We generalize this definition to sets, i.e.

∀p∈Rd∀Q⊂Rdd(p,Q) = min
q∈Q

d(p, q)

and
∀Q⊂Rd∀R⊂Rdd(Q,R) = min

q∈Q,r∈R
d(q, r) .

For a finite set P = {p1, . . . , pn} of points from Rd the center of gravity µ(P) is itself a point
in Rd and defined as

µ(P) = (µ(P)(1), . . . , µ(P)(d)) with µ(P)(i) :=
1

n
·
∑
p∈P

p(i) .

We also call the center of gravity µ(P) the mean of P.

2.2 Data Streams
We now define different types of data streams. The first models we present, the cash register
and turnstyle models, are very general and encode (huge) multisets of arbitrary items. We will
then present special cases of these cash register and turnstyle models we obtain when we con-
sider points in [∆]d as items. The respective data streams are called geometric data streams and
dynamic geometric data streams. Finally we will define streams which encode graphs.
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2.2 Data Streams

Cash Register and Turnstyle Model

We first define the cash register and turnstyle models of data streams. They are very gen-
eral and have been subject of many recent theoretical and practical papers. See the survey of
Muthukrishnan [105] for a lineup of recent results.

LetQ be a finite set ofU items of different kinds. Let q0, . . . , qU−1 be these items. We assume
that Q is a very huge set.

The data streams we consider encode a multiset of items from Q into a data stream. We use
a U-dimensional vector x = (x0, x1, . . . , xU−1) to describe this multiset: xi signals that we have
exactly xi items of kind qi in the current multiset. We assume that we always have at mostM−1

items of the same kind in our multiset, i.e. x ∈ [M]U.
We assume that at the beginning of the data stream the multiset is empty, i.e. allU components

of x are zero.
In the turnstyle model the data stream consists of a sequence of m update operations on the

vector x. Each update operation has the form UPDATE(i, a) with i ∈ [U] and a ∈ {−M, . . . ,M}

and means that we have to add a to xi. All update operations in the stream lead to an xi value
within {0, . . . ,M − 1}. Thus, at any moment, 0 ≤ xi < M for i ∈ [U] (our algorithms will
not verify this assumption). An operation UPDATE(i, a) with a ≥ 0 can be seen as adding a
items of kind qi to our current multiset. An operation UPDATE(i,−a) with a > 0 can be seen
as deleting a items of kind qi from our current multiset. This way we have a huge multiset of
items encoded in the stream which is dynamically changing.

In the cash register model all UPDATE(i, a) operations have a value a ≥ 0. Therefore we have
to deal only with insertions of items into the current multiset, deletions do not occur in the stream.

Our algorithms see the data streams one update operation by one and we cannot store all data
items due to memory restrictions. Particularly random access to the data is impossible. At cer-
tain times the algorithms are asked to answer certain queries about the current vector x resp.
the current multiset. For example in Chapter 3 we show how to return a random element from
the current multiset, each element with approximately the same probability independently of it’s
multiplicity.

Most of our algorithms will output just an approximate solution to a given problem. For ex-
ample when we consider optimization problems on the current point set, we will only require
the algorithm to return a solution having objective function value within (1 ± ε) · Opt, where
Opt denotes the optimal objective function value. We call this solution a (1 ± ε)-approximate
solution. We will always assume that ε < 1/100.

Space complexity. We assume that the size U of the set of possible items, the length of the
streamm, and the maximum number of occurences of one itemM can be very huge. In particular
it is impossible to store the whole set of items locally.

Therefore the whole data stored by our algorithm should have bit complexity which is at most
polylogarithmic in U,m, andM.
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2 Preliminaries

Time complexity. We measure time complexity in the Real Random Access Machine (Real
RAM) model, as usual in computational geometry to avoid calculations bounding numerical
errors. However, note that all algorithms could be altered to use only numbers that could be
stored using c = O

(
log
(
mUM
ε

))
bits, where ε is a small value related to the accuracy of our

data streaming algorithms. Since all of our geometric algorithms return approximate results, we
are confident that all stated computation times can also be proven in a RAM model having c bits
per register.

There are two different measures of time complexity. First, in many real world scenarios we
have to react very fast to each UPDATE operation. Therefore we are supposed to develop algo-
rithms which spend time polylogarithmic in U,m, and M to process an UPDATE operation. The
polynomial degree should be as small as possible. Second there is the time to answer a query on
the current set of items. The time can be considerably longer than the update time, but it should
also preferably be polylogarithmic in U,m, andM.

Dynamic Geometric Data Streams

The model of dynamic geometric data streams has been first defined in [75]. A dynamic ge-
ometric data stream consists of m UPDATE operations on a point set P ∈ [∆]d in a discrete
d-dimensional space which is initially empty. We always assume that ∆ > 100. An UPDATE op-
eration can be an ADD(p) operation of a point p ∈ [∆]d, which inserts p into P, or a REMOVE(p)

operation, which deletes p from P. We assume that no point is inserted when it is already in P
and that no point is deleted from P when it is not currently in the set.

The model of dynamic geometric data streams can be seen as a special case of the turnstyle
model by settingU = ∆d andM = 2. We again assume that we only have access to the sequence
one operation by one, and are allowed to use a number of memory bits polylogarithmic in ∆ and
m.

Adjacency Streams

Recently much effort has been made to investigate the structure of the webgraph. The difficulty
here is that it is quite impossible to hold huge structures in main memory. In a first scenario we
could have crawls on the webgraph on hard disc, and are able to access this data. However,
random access is very slow and has to be avoided. If we find algorithms which deal with the set
of edges given as a data stream, we could solve problems on the webgraph only using sequential
access to the data.

In another scenario one or more computers just crawl webpages. They read pages, follow links
and read the pages they are directed to recursively. This way these crawlers provide us with a
stream of edges.

In the adjacency stream model the data stream encodes an undirected graph G = (V, E). We
assume that we first are given the node set V and that we are able to store it in local memory.
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2.3 Clustering

Then we are able to read a data stream of edges sequentially, i.e. one edge by one. We are not
allowed to go back in the data stream and read a previous item. We try to develop algorithms
which use less memory bits than needed to encode the graph, i.e. o(|E|) memory bits. This model
is called One pass adjacency stream model. Algorithms working in this model are called One
pass algorithms.

When the data is stored on hard disk we can do multiple passes over the data by reading them k
times sequentially. We then speak of the k pass adjacency stream model and k pass algorithms.

Incidence Streams

Incidence streams are a special form of adjacency streams, but now the edges have a special
kind of ordering. In the incidence model we assume that each edge (v,w) appears twice, once
as (v,w) and once as (w, v). The whole set of 2 · |E| edges is then presented as a data stream
ordered by source nodes. The model is more restricted than the general adjacency model. We
will develop algorithms for incidence streams in Section 9.2 having better memory bounds than
the algorithms for adjacency streams.

In Section 9.4 we will alter the model a little bit. We will look at directed graphs having
bounded out-degree of the nodes. We are again presented a data stream of edges, but this time
each (directed) edge appears just once. The edges are ordered by destination nodes.

2.3 Clustering

Assume we have a huge set of objects O. To understand the structure of the set it is often a good
idea to group the objects into clusters, such that that objects in the same cluster are similar to each
other and different from objects in other clusters. To do that we first have to define the notion of
different. Mathematically this means to define a distance function d : O ×O → R+ on pairs of
objects. Two objects having a large distance are different. The distance function can be defined
in various ways. One way is to embed the points in the d-dimensional Euclidean space Rd by
an embedding α : O → Rd. We can then define the distance between objects as the Euclidean
distance between the corresponding points:

∀a,b∈Od(a, b) := d(α(a), α(b)) =

√√√√ d∑
i=1

(α(a)(i) − α(b)(i))2 .

Having such an embedding in mind we concentrate in the following on clustering points in Rd.

Based on the distance measure d between points we now define certain clustering objectives,
i.e. what is a good clustering and what is a bad clustering.

For huge point sets often the k-median or k-means objective functions are used to define good
clusterings. They have the advantage that each cluster can be represented by one single cluster
center.
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2 Preliminaries

The k-median and k-means objectives measure the distance of all points to their corresponding
cluster centers in the following way:

Weighted Euclidean k-median clustering.

In the weighted Euclidean k-median clustering problem we are given a weighted set P of
points in the Rd with weight function w : P → R+. The goal is to find a set C = {c1, . . . , ck} of
k cluster centers in Rd and a partition of the set P into k clusters C1, . . . , Ck such that

Median(P,C,C1, . . . , Ck) :=

k∑
i=1

∑
p∈Ci

w(p) · d(p, ci)

is minimized. In the unweighted version of the problem all point weights are 1.

If the partition C1, . . . , Ck relates each point to its nearest cluster center, i.e. if

∀p∈P∀i
(
p ∈ Ci ⇒ d(p, ci) = min

j
d(p, cj)

)
,

then we shortly write

Median(P,C) := Median(P,C,C1, . . . , Ck) .

Weighted Euclidean k-means clustering.

In the weighted Euclidean k-means clustering problem we are given a weighted set P of points
in the Rd with weight function w : P → R+. The goal is to find a set C = {c1, . . . , ck} of k
cluster centers in Rd and a partition of the set P into k clusters C1, . . . , Ck such that

Means(P,C,C1, . . . , Ck) :=

k∑
i=1

∑
p∈Ci

w(p) · d(p, ci)2

is minimized. In the unweighted version of the problem all weights are 1.

If the partition C1, . . . , Ck relates each point to its nearest cluster center, i.e. if

∀p∈P∀i
(
p ∈ Ci ⇒ d(p, ci) = min

j
d(p, cj)

)
,

then we shortly write
Means(P,C) := Means(P,C,C1, . . . , Ck) .
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Weighted Euclidean MaxCut clustering.

The Euclidean MaxCut problem is the classical MaxCut problem on Euclidean graphs. There-
fore, the goal is to find a partition of a point set P into two sets L and R such that the weight of
the edges of the complete Euclidean

Cut(P, L, R) :=
∑
p∈L

∑
q∈R

d(p, q)

is maximized.

2.4 Chernoff Bounds with Limited Independence
We finally want to introduce a variant of Chernoff bounds from [113] we will frequently use in
the analysis of the streaming algorithms we develop. In contrast to traditional Chernoff bounds
[58] they assume only k-wise independence of the underlying random variables. A set of random
variables is called k-wise independent if the random variables in every subset of k variables are
independent.

Theorem 1 (Theorem 5, [113]) . If X is the sum of k-wise independent random variables, each
of which is confined to the interval [0, 1] with µ = E[X], then:

• For δ ≤ 1:

– if k ≤ bδ2µe−1/3c, then Pr[|X− µ| ≥ δµ] ≤ e−bk/2c.

– if k = bδ2µe−1/3c, then Pr[|X− µ| ≥ δµ] ≤ e−bδ2µ/3c.

• For δ ≥ 1:

– if k ≤ bδµe−1/3c, then Pr[|X− µ| ≥ δµ] ≤ e−bk/2c.

– if k = bδµe−1/3c, then Pr[|X− µ| ≥ δµ] ≤ e−bδµ/3c.

• For δ ≥ 1 and k = dδµe:

Pr[|X− µ| ≥ δµ] ≤ e
−δ ln(1+δ)µ

2 < e
−δµ

3 .
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3 Sampling Data Streams

In this chapter we consider the problem to take a random sample from a dynamic multiset of
elements. The sampling should be uniform, i.e. each element of the set should be chosen with
almost the same probability independent of it’s multiplicity. The dynamic multiset is given as
a data stream of insert and delete operations. Usually it is represented by a high dimensional
vector. The stream is then a stream of update operations on this vector as defined in the turnstyle
model in Section 2.2.

In this section we present a general sampling technique on turnstyle data streams. We denote
that theoretically a similar method can be obtained from the methods Ganguly, Garofalakis, and
Rastogi used in [46]. However, they did not state a sampling result as this was not the purpose
of [46]. Cormode and Muthukrishnan[31] developed a sampling technique for turnstyle streams
similar to the technique given here. Their result was obtained at the same time independently of
our publication [42].

Our methods to sample random elements from turnstyle streams will be specialized to dynamic
geometric data streams in Chapter 4. We also give some direct applications of the sampling
method there. In Chapter 6 we will use the sampling results together with coreset techniques to
compute clusterings of dynamic data streams.

We denote by x ∈ [M]U the current vector and by UPDATE(i, a) the update operations of the
vector encoded within the stream.

Let Supp(x) = {i ∈ [U]|xi > 0} be the support of x. We use notation ‖x‖0 = |Supp(x)|. After
passing over the sequence of update operations we want to be able to answer queries which ask
about a uniformly distributed random element i from Supp(x). We want to return the index i and
the vector component value xi.

Since we are working on a high dimensional vector x = (x0, . . . , xU−1), we don’t want to use
Θ(U · logM) memory bits needed by a trivial algorithm. Instead we will develop a data structure
which accomplishes the task in space complexity polylogarithmic inM and U.

Our data structure is parametrized by two numbers ε, δ > 0. The operations are as follows:

• UPDATE(i, a): performs xi ← xi + a, where i ∈ [U], a ∈ {−M. . .M}.

• SAMPLE: returns either a pair (i, xi) for some i ∈ [U] or a flag FAIL. The procedure
satisfies the following constraints:

– If a pair (i, xi) is returned, then i is chosen at random from Supp(x) such that for any
j ∈ Supp(x),
Pr[i = j] = 1

‖x‖0
± δ.
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3 Sampling Data Streams

– The probability of returning FAIL is at most δ.

Keeping O(s) instances of this data structure it is possible to choose a sample set S of size s
(almost) uniformly at random from the non-zero entries of v.

Our sample data structure uses two elementary data structures. The first such structure checks
whether there is exactly one non-zero entry in x. If this is the case the index of the entry and its
value it returned. The second data structure approximates the number of non-zero entries in x.

3.1 The Unique Element (UE) Data Structure

The first elementary data structure called UE checks whether there is exactly one non-zero entry
in x. The data structure is deterministic. It supports the following operations on a vector x =

(x0, . . . , xU−1) with entries from [M].

• UPDATE(i, a): as above

• REPORT: if ‖x‖0 6= 1, then it returns FAIL. If ‖x‖0 = 1, then it returns the unique pair
(i, xi) such that xi > 0.

The data structure keeps three counters c0, c1, and c2 which are initialized to 0. Our UPDATE

operation will ensure that cj =
∑
i∈[U] xi · ij at any point of time. The operations UPDATE and

REPORT are implemented as follows:

'

&

$

%

UPDATE(i, a)

c0 = c0 + a

c1 = c1 + a · i
c2 = c2 + a · i2

REPORT

if c0 · c2 − c21 6= 0 or c0 = 0 then return FAIL
else i← c1/c0

xi ← c0
return (i, xi)

Claim 3.1.1 The data structure UE uses O(log(UM)) bits of space. One UPDATE operation
needsO(1) time and a REPORT query needsO(1) time. UE returns FAIL if and only if ‖x‖0 6= 1.
Otherwise, it correctly returns the unique pair (i, xi) with xi 6= 0.

Proof : The maximum value of the counters c0, c1, c2 is O(U3 · M) and so the counters
need O(log(UM)) bits. It remains to prove that the data structure correctly recognizes the case
‖x‖0 = 1 and returns the unique pair (i, xi) with xi 6= 0. From xi ≥ 0 for all i ∈ [U] it follows
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3.2 The Distinct Elements (DE) Data Structure

that c0 = 0, if and only if ‖x‖0 = 0. Furthermore

c0 · c2 − c21 =

∑
i∈[U]

xi

 ·
∑
i∈[U]

xi · i2 −

∑
i∈[U]

xi · i

2

=

∑
i∈[U]

xi

 ·
∑
i∈[U]

xi · i2 −
∑
i,j∈[U]

·xi · i · xj · j

=
∑
i,j∈[U]

xixj · j2 −
∑
i,j∈[U]

xi · i · xj · j

=
1

2

∑
i,j∈[U]

xixj · j2 +
1

2

∑
i,j∈[U]

xixj · i2 −
∑
i,j∈[U]

xixj · i · j

=
1

2

∑
i,j∈[U]

xixj(j
2 − 2ij+ i2)

=
1

2

∑
i,j∈[U]

xixj(j− i)
2 .

All summands are zero unless there exist i, j ∈ [U] with i 6= j and xi, xj > 0. In the latter case
one summand is positive. Hence, c0 · c2 − c1 > 0 iff ‖x‖0 > 1. The correctness of the data
structure follows immediately. 2

3.2 The Distinct Elements (DE) Data Structure
The data structure supports two operations on a vector x = (x0, . . . , xU−1) with entries from
[M]:UPDATE (as above) and REPORT, which with probability 1 − δ returns a value k ∈ [0,U]

such that ‖x‖0 ≤ k ≤ (1+ψ) · ‖x‖0; the numbers δ and ψ are parameters.
One can use a data structure from Ganguly, Garofalakis, and Rastogi[46] to solve this problem

usingO(1/ψ2 · log(1/ψ) log(1/δ) log(U) log(UM)) bits of space. An UPDATE operation needs
O( 1

ε2 · log(1/δ)) time, a REPORT operation needs O(logU) time.

3.3 A Sample Data Structure using Totally Random
Hash Functions

The basic idea behind our data structure is to use a hash function that maps the universe to
a smaller space [2j]. The value 2j corresponds to a guess of the number of non-zero entries
currently present in vector x. Assuming a fully random hash function every non-zero entry is
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3 Sampling Data Streams

mapped to 0 with the same probability. Further, the probability that exactly one non-zero entry
is mapped to 0 can be checked using our unique elements data structure. If this is the case, our
sample data structure returns the corresponding entry (it returns the index and the value of the
entry). We now give the procedure in detail.

Our data structure uses hash functions hj, j ∈ [dlogUe+ 1]. Each hj is of the form hj : [U]→
[2j]. Initially, we assume that each hj is a fully random hash function, we relax this assumption
later. The value 2j corresponds to the guess that, currently, there are roughly 2j non-zero entries
in x.

In addition, we use:

• Unique Element data structures UEj, j ∈ [dlogUe+ 1], and

• A Distinct Elements data structure DE, with parameters ψ = 1 and error probability
parameter 1/22.

We write UEj.UPDATE resp. UEj.REPORT to denote an UPDATE resp. REPORT operation for
data structure UEj.The operations are implemented as follows:

'

&

$

%

UPDATE(i, a)

for j ∈ [dlogUe+ 1] do
if hj(i) = 0 then
UEj.UPDATE(i, a)

DE.UPDATE(i, a)

SAMPLE

j = dlog(DE.REPORT)e
return UEj.REPORT

Correctness. Assume that DE is correct. Note that this happens with probability at least
1 − 1/22. We have UEj.REPORT 6= FAIL, iff |Supp(x) ∩ h−1

j (0)| = 1. Since we assume fully
random hash functions, the element reported by UEj is an element chosen uniformly at random
from Supp(x).

It remains to show a lower bound on the probability of |Supp(x) ∩ h−1
j (0)| = 1. Denote Sj =

h−1
j (0) and ` = ‖x‖0. Because of j = dlog(DE.REPORT)e and ‖x‖0 ≤ log(DE.REPORT) ≤
2‖x‖0, we observe ` ≤ 2j ≤ 4`. Thus

Pr[|Sj ∩ Supp(x)| = 1] = ` · 2−j · (1− 2−j)`−1 ≥ 1/4 · (1− 1/`)`−1 .

The function (1−1/`)`−1 is monotonically decreasing for ` ≥ 1 and lim`→∞(1−1/`)`−1 = 1/e.
Therefore we obtain:

Pr[|Sj ∩ Supp(x)| = 1] ≥ 1

4e
≥ 1

11
.

Since the error probability in our distinct elements structure is at most 1/22, we obtain that
our algorithm returns with probability 1/11− 1/22 = 1/22 a random element.

24



3.4 A Sample Data Structure using Random Number Generators

3.4 A Sample Data Structure using Random Number
Generators

We will now give two different methods to overcome the assumption of totally random hash func-
tions and achieve space complexity polylogarithmic inM and U. First we will present a general
approach based on the random number generator of Nisan [106]. The method introduces a small
additive error in the probability of each element to be sampled. This error can be translated into
a small multiplicative error of ε. However, the method is difficult to implement and for many
applications a multiplicative error is sufficient. In Section 3.5 we will present a method based
on pairwise independent hash functions. It is easy to implement but introduces a multiplicative
error in the probability of each element to be sampled.

To replace the assumption of fully random hj we use the following lemma developed by Indyk
[73] which is based on Nisans random number generator [106].

Lemma 3.4.1 [73] Consider an algorithm A which, given a stream S ′ of pairs (i, a), and a
function f : [n ′]× {0, 1}R

′ × {−M ′ . . .M ′}→ {−M ′O(1) . . .M ′O(1)}, does the following:

• Set O = 0; Initialize length-R ′ chunks R0 . . . R[n ′] of independent random bits

• For each new pair (i, a): perform O = O+ f(i, Ri, a)

• Output A(S ′) = O

Assume that the function f(·, ·, ·) is supported with an evaluation algorithm using O(C + R ′)

space and O(T) time. Then there is an algorithm A ′ producing output A ′(S), that uses only
O(C + R ′ + log(M ′n ′)) bits of storage and O([C + R ′ + log(M ′n ′)] log(n ′R ′)) random bits,
such that

Pr[A(S) 6= A ′(S)] ≤ 1/n ′

over some joint probability space of randomness of A and A ′. The algorithm A ′ uses O(T +

log(n ′R ′)) arithmetic operations per each pair (i, a). ut

For each fixed j our algorithm uses the hash function hj to select a subset Sj := {i ∈ [U] :

hj(i) = 0} of indices. Each index is in the set Sj with probability 1/2j. The UE data structure
maintains the values c0 =

∑
i∈Sj

xi, c1 =
∑
i∈Sj

xi · i, and c2 =
∑
i∈Sj

xi · i2.
Instead of using a hash function hj to select the set Sj we can use chunks R0, . . . , RU−1 of

logU random bits. We select Sj as

Sj := {i ∈ [U] : all of the first j bits of Ri are 0} .

Again each index i ∈ [U] is selected to be in the set Sj with probability 1/2j. An update (i, a)

on the UE data structure then simply adds the functions f0 to c0, f1 to c1, and f2 to c2, where

• f1(i, Ri, a) :=
{
0 iff one of the first j bits of Ri is 1
a iff all of the first j bits of Ri are 0
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• f2(i, Ri, a) :=
{

0 iff one of the first j bits of Ri is 1
a·i iff all of the first j bits of Ri are 0

• f3(i, Ri, a) :=
{

0 iff one of the first j bits of Ri is 1
a·i2 iff all of the first j bits of Ri are 0

We use Lemma 3.4.1 and plug in the values n ′ = 1/δ+U,M ′ = U ·M, R ′ = dlog(U)e, and
C = log(UM). We can replace the random bits Ri by O([C + R ′ + log(M ′n ′)] log(n ′R ′)) =

O(log(UM/δ) log(U/δ)) random bits. We use the same random bits for all j and get an algo-
rithm having the desired properties and using justO(log2(UM/δ)) bits of storage. The distribu-
tion changes by less than δ.

Lemma 3.4.2 Given a sequence of update operations on a vector x = (x0, . . . , xU−1) with en-
tries from [M], there is a data structure that with probability 1/22− δ returns a pair (i, xi) with
i ∈ Supp(x) and returns a flag FAIL otherwise. The statistical difference from the distribution
of the returned pair to a uniform distribution is at most δ, particularly Pr[i = j] = 1/‖x‖0 ± δ
for every j ∈ Supp(x). The algorithm uses O

(
log2(UM/δ)

)
space. ut

Theorem 2 (Sampling in data streams.) Let be δ ≤ 1
44

. Given a sequence of update opera-
tions on a vector x = (x0, . . . , xU−1) with entries from [M], there is a data structure that with
probability 1 − δ returns s pairs (i0, xi0), . . . , (is−1, xis−1

) with ij ∈ Supp(x) and returns a flag
FAIL otherwise. The returned pairs are independent of each other and may contain duplicates.
The statistical difference from the distribution of each returned pair to a uniform distribution is
at most δ, particularly for all j ∈ Supp(x) and all k ∈ [s] : Pr[ik = j] = 1

‖x‖0
± δ. The algorithm

uses O
((
s+ log(1/δ)

)
· log2(UM/δ)

)
space.

Proof :
We apply Lemma 3.4.2 and invoke 352 ·(s+ ln(1/δ)) instances of the data structure, each with

independent random choices. Let Y denote the random variable for the number of instances that
return a random pair. Since δ ≤ 1

44
the probability of each instance to return a random element

is greater than 1
44

. Hence, E[Y] ≥ 8 · (s+ ln(1/δ)) and

Pr[Y < s] ≤ Pr[Y ≤ (1− (1/2))E[Y]] ≤ e(1/2)2·E[Y]/2 ≤ δ .

Therefore with probability at least 1− δ we have at least s samples. We return the first s samples
we obtain from the instances. 2

We will now show that we can recover the whole vector x, if we spend space slightly larger
than ‖x‖0. This will be useful in situations when the support of the current vector is very small.

Corollary 3.4.3 Given a sequence of update operations on a vector x = (x0, . . . , xU−1) with
entries from [M] and given an oracle which tells us in advance the value of ‖x‖0 at the end of
the stream, there is a data structure that with probability 1− δ returns all pairs
(i0, xi0), . . . , (i‖x‖0−1, xi‖x‖0−1

) and returns a flag FAIL otherwise.
The algorithm uses

O
(
‖x‖0 · log U

δ
· log2

(
UM
δ

))
space.
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Proof : If U < 22 we can store the whole vector using log(M) space. Otherwise 1
2U

≤ 1
44

and we can apply the data structure of Theorem 2 with s = 2‖x‖0(ln ‖x‖0 + ln(2/δ)) and error
probability parameter δ

2U
. We simply return all distinct samples we obtain.

Let us fix an arbitrary index j ∈ Supp(x). We have

Pr[∀k∈[s] : j 6= ik] ≤
(
1−

1− δ
2U

‖x‖0
)s ≤ (1−

1

2‖x‖0
)s ≤ e− ln ‖x‖0−ln(2/δ) =

δ

2‖x‖0
.

It follows from the Union Bound:

Pr[∃
j∈Supp(x)

∀k∈[s] : j 6= ik] ≤ ‖x‖0 ·
δ

2‖x‖0
≤ δ/2 .

Therefore, the overall probability of failure is at most δ.
The space requirement of the algorithm is:

O

((
s+ log

2U

δ

)
· log2

(
UM

δ ′

))
= O

((
‖x‖0 ·

(
log ‖x‖0 + log

1

δ

)
+ log

U

δ

)
· log2

(
UM

δ

))
= O

(
‖x‖0 · log

U

δ
· log2

(
UM

δ

))
.

2

A second consequence can be obtained by translating Theorem 2 (which uses independent
draws and thus the sample set may contain multiple copies of the same point) to the case of
sampling of random subsets.

Corollary 3.4.4 Let s ≤ ‖x‖0/2. Given a sequence of update operations on a vector x =

(x0, . . . , xU−1) with entries from [M], there is a data structure that with probability 1−δ returns
a subset S ⊂ Supp(x) of s indices and all pairs (i, xi) for i ∈ S and returns a flag FAIL
otherwise. The statistical difference from the distribution of the returned subset to a uniform
distribution is at most δ, particularly Pr[j ∈ S] = s

‖x‖0
± δ for every j ∈ Supp(x).

The algorithm uses O
((
s+ log(U/δ)

)
· log2(UM/δ)

)
space.

Proof : Let us first assume that we have a data structure that returns an index distributed exactly
uniformly among Supp(x). Then we can select s ′ = c ·

(
s + log(1/δ)

)
indices i ′0, . . . , i

′
s ′ from

Supp(x) uniformly at random with repetitions, where c is a suitable constant. Since s ≤ ‖x‖0/2
we know that for each i ′j we have with probability at least 1/2 an index that is not among the
previously chosen indices. And so we get that with probability at least 1 − δ/2 we have at least
s distinct indices among i ′0, . . . , i

′
s ′ for c large enough. If there are more than s distinct indices

among i ′0, . . . , i
′
s we choose s indices uniformly at random from the distinct indices. Clearly, the

computed index set is distributed uniformly at random.
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We use Theorem 2 to select s ′ indices almost uniformly at random. It remains to deal with
the fact that Theorem 2 does not provide us with an exact uniform distribution. We will use
error probability parameter δ ′ = δ/(s ′ · U) when we apply the theorem. Each time when we
choose a random point the statistical difference to the uniform distribution is at most δ ′ ·U. Since
we choose s ′ elements the overall statistical difference of our process to the ideal one described
above is at most δ ′ · U · s ′ = δ. Therefore,Pr[j ∈ S] = s

‖x‖0
± δ for every j ∈ Supp(x) and the

overall probability of error is at most δ.
The space needed by the algorithm is

O

((
s ′ + log

(
1

δ ′

))
· log2

(
UM

δ ′

))
= O

((
s+ log

(
1

δ

)
+ log

(
s ′ ·U
δ

))
· log2

(
U2M(s+ 1

δ
)

δ

))

= O

((
s+ log

(
U

δ

))
· log2

(
UM

δ

))
.

2

Lemma 3.4.5 Given a sequence of update operations on a vector x = (x0, . . . , xU−1) with en-
tries from [M], there is a data structure that returns all pairs (i, xi) with i ∈ Supp(x) when
‖x‖0 ≤ A and a flag FAIL if ‖x‖0 > A. The algorithm works with probability 1 − δ and uses
O
(
A · log

(
U
δ

)
· log2

(
UM
δ

))
space.

Proof : We start the algorithm of Corollary 3.4.3 with the assumption that ‖x‖0 = 2A+ 2 and
with error probability parameter δ ′ = δ/2. We call it algorithm 1. In case that ‖x‖0 ≤ 2A+ 2 at
the end of the stream, this algorithm reconstructs all pairs (i, xi) with i ∈ Supp(x).

In parallel we start the algorithm of Corollary 3.4.4 with s = A + 1 and error probability
parameter δ ′ = δ/2 and call it algorithm 2. If algorithm 2 returns A + 1 elements, we return
FAIL. If it returns less than A + 1 elements, we know that with probability 1 − δ/2 we have
‖x‖0 < 2A+ 2. In that case algorithm 1 provides us with all pairs (i, xi) with i ∈ Supp(x) with
probability 1 − δ/2. We count the number of pairs. If ‖x‖0 ≤ A, we return all pairs, otherwise
we return FAIL. 2

Remark 3.4.6 All of the results stated with an additive error of δ can be transfered to a multi-
plicative error of δ: When we apply the results with δ ′ = δ/U, we get an additive error of δ/U.
So each element is sampled with probability 1

‖x‖0
± δ

U
. Since 1

‖x‖0
≥ 1

U
we conclude that each

element is sampled with probability 1
‖x‖0

· (1 ± δ). Since all memory bounds depend only on
O
(
log U

δ

)
the replacement of δ by δ

U
does not change the memory bounds.
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3.5 A Sample Data Structure using Pairwise
Independent Hash Functions

In this section we focus on the development of a sample data structure that only uses pairwise
independent hash functions[18] instead of the approach using a pseudo-random generator. We
will consider a relative error instead of an additive error.
The basic idea behind the second sample data structure is similar to the structure using totally
random hash functions.

Assume we knew the number n of non-zero entries in our vector x. Then we could use a
hash function h that maps [U] to a space somewhat larger than n, say to [n/ε]. It is easy to see
that such a hash function has εn collisions in expectation. This means that typically most of the
non-zero entries in x do not collide. We choose a value α ∈ [n/ε] uniformly at random and
check using the UE data structure whether exactly one non-zero entry was mapped to α. If this
is the case we return the corresponding unique pair (i, xi) with h(i) = α and xi 6= 0.

Since there are only few collisions this probability is close to n/(n/ε) = ε. If we keep
O(1/ε) instances of the data structure, one of them is likely to return a pair. We will show that
the index of the returned pair is almost uniformly distributed among the non-zero entries in x. To
deal with the fact that we do not know the value n and that it changes over time we follow the
approach of Section 3.3. We will keep logU hash functions hj, 1 ≤ j ≤ dlogUe + 2 each cor-
responding to a guess n ≈ 2j. It will suffice to work with a good guess, which can be identified
using our DE data structure.

We now give a detailed description of our sample data structure. Our data structure uses
O(logU · log(1/δ)/ε) pairwise independent hash functions hj,k with j ∈ [dlogUe+ 2], k ∈ [I],
and number of instances I =

⌈
log(1−ε/32) (δ/2)

⌉
= O(log(1/δ)/ε)). Each hj,k is of the form

hj,k : [U]→ [T ] with T :=
⌈
2j+1/ε

⌉
and corresponds to the k-th hash function for the j-th guess,

n ≈ 2j. For each hash function we choose a value αj,k, j ∈ [dlogUe + 2], k ∈ [I], uniformly at
random from [T ]. Additionally, we need UE data structures UEj,k for j ∈ [dlogUe + 2] and k ∈
[I]. Each of these data structure is supposed to handle a subset of the UPDATE(i, a) operations
in the input stream. Namely, data structure UEj,k will process all updates with hj,k(i) = αj,k.
We also need one instance of the DE data structure using parameters ψ = 1 and error probability
parameter δ ′ = δ/2.

All hash functions, αj,k andUEj,k are initialized during a separate initialization step. We write
UEj,k.UPDATE to denote an UPDATE operation for data structure UEj,k.

The operations UPDATE and SAMPLE are implemented as follows:'

&

$

%

UPDATE(i, a)

for j ∈ [dlogUe+ 2] do
for k ∈ [I] do

if hj,k(i) = αj,k
then UEj,k.UPDATE(i, a)

DE.UPDATE(i, a)

SAMPLE

j = dlog(DE.REPORT)e
if ∀kUEj,k.REPORT=FAIL then return FAIL
k0 ← min{k | UEj,k.REPORT 6= FAIL}

return UEj,k0
.REPORT
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Lemma 3.5.1 Given a sequence of update operations on a vector x = (x0, . . . , xU−1) with
entries from [M], there is a data structure that with probability 1 − δ returns a pair (i, xi)

with i ∈ Supp(x) such that Pr[i = j] = (1 ± ε)/‖x‖0 for every j ∈ Supp(x). The algo-
rithm uses O (log(UM/ε) · logU · log(1/δ)/ε) space. An UPDATE operation can be done in
O(logU · log(1/δ)/ε) time and a SAMPLE query can be processed in O(logU + log(1/δ)/ε)

time.

Proof : Denote n := |Supp(x)| = ‖x‖0 and assume that DE returns a value DE.REPORT

having n ≤ DE.REPORT ≤ 2n, which happens with probability at least 1 − δ/2. We choose
j = dlog(DE.REPORT)e such that n ≤ 2j ≤ 4n.

Let k ∈ [I] be fixed. For simplicity of notation we define h = hj,k and α = αj,k. We say that
l ∈ [U] is chosen, if it is the only entry xl from x with xl 6= 0 and h(l) = α.

For fixed l,m the probability over the choice of h for the event h(l) = h(m) is 1/T by
pairwise independence. Let us fix an l with xl 6= 0. Using the union bound we get

Pr[∃mxm 6= 0∧ h(l) = h(m)] ≤ (n− 1)/T ≤ ε · (n− 1)/2j+1 ≤ ε/2

Since α is chosen uniformly at random from the target space [T ] and independently of the choice
of h, the events h(l) = α and ∃m (xm 6= 0∧ h(l) = h(m)) are independent. Therefore,

1

T
≥ Pr[l is chosen] = Pr[h(l) = α] · (1−Pr[∃m (xm 6= 0∧ h(l) = h(m))]) ≥ 1

T
· (1−ε/2) .

Since these events are disjoint for all l we get

n

T
≥ Pr[any element is chosen] ≥ n

T
· (1− ε/2) .

It follows for each l with xl 6= 0

Pr[l is chosen | any element is chosen] ≥ 1

T
· (1− ε/2)

/n
T

= (1− ε/2) · 1/n

and

Pr[l is chosen | any element is chosen] ≤ 1/T

n/T · (1− ε/2)
=

1

n · (1− ε/2)
≤ 1

n
(1+ ε) .

Thus, when an element is chosen, it is chosen almost uniformly at random from Supp(x). It
remains to show that for at least one k an element is chosen. From the argumentation above it
follows:

Pr[any element is chosen] ≥ n

T
(1− ε/2) ≥ εn

2j+2
(1−

ε

2
) ≥ ε

16
(1−

ε

2
) = (2− ε)

ε

32
≥ ε

32

Note that our data structure fails exactly when the data structure DE does not work (probability
δ/2) or when no element is chosen for all k. No element is chosen, when for all k the data
structure UEj,k fails. Since the number of instances I is

⌈
log(1−ε/32) (δ/2)

⌉
we know that the
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probability that no element is chosen for any k is at most (1− ε/32)I ≤ δ/2. Hence the overall
probability of error is at most δ and our data structure is correct with probability at least 1− δ.

The algorithm uses O(logU · log(1/δ)/ε) hash functions, αj,k values and UE data structures.
Each hash function uses O(logU) space, each αj,k value uses O(log(U/ε)) space and each UE
data structures usesO(log(UM)) space. The DE data structure usesO(log(1/δ) log(U) log(UM))

space.
Hence the overall space complexity is O (log(UM/ε) · logU · log(1/δ)/ε). We can evaluate

the hash function in constant time and obtain the stated running times. 2

Theorem 3 (Sampling in data streams.) Given a sequence of update operations on a vector
x = (x0, . . . , xU−1) with entries from [M], there is a data structure that with probability 1 − δ

returns s pairs (i0, xi0), . . . , (is−1, xis−1
) with ij ∈ Supp(x) and returns a flag FAIL otherwise.

The returned pairs are independent of each other and may contain duplicates. For all j ∈
Supp(x) and all k ∈ [s] : Pr[ik = j] = 1±ε

‖x‖0
. The algorithm uses

O
((
s+ log(1/δ)

)
· log(UM/ε) · log(U)/ε

)
space. An UPDATE operation can be processed in O((s + log(1/δ)) · log(U)/ε) time. A query
operation can be processed in O((s+ log(1/δ)) · (logU+ 1/ε)) time.

Proof :
We apply Lemma 3.5.1 and invoke 16 · (s + ln(1/δ)) instances of the data structure, each

with independent random choices and error probability parameter 1/2. Let Y denote the random
variable for the number of instances that return a random pair. The probability of each instance
to return a random element is greater than 1/2. Hence, E[Y] ≥ 8 · (s+ ln(1/δ)) and

Pr[Y < s] ≤ Pr[Y ≤ (1− (1/2))E[Y]] ≤ e(1/2)2·E[Y]/2 ≤ δ .

Therefore with probability at least 1− δ we have at least s samples. We return the first s samples
we obtain from the instances. 2

Corollary 3.5.2 Given a sequence of update operations on a vector x = (x0, . . . , xU−1) with
entries from [M] and given an oracle which tells us in advance the value of ‖x‖0 at the end of
the stream, there is a data structure that with probability 1− δ returns all pairs
(i0, xi0), . . . , (i‖x‖0−1, xi‖x‖0−1

) and returns a flag FAIL otherwise.
The algorithm uses

O (‖x‖0 · (log ‖x‖0 + log(1/δ)) · log(UM) · logU) space. UPDATE operations and query op-
erations can be processed in O (‖x‖0 · (log ‖x‖0 + log(1/δ)) · logU) time.

Proof : We apply Theorem 3 with s = 2‖x‖0(ln ‖x‖0+ln(2/δ)), ε = 1/2, and error probability
parameter δ/2 and simply return all distinct samples we get.

Let us fix an arbitrary index j ∈ Supp(x). We have

Pr[∀k∈[s] : j 6= ik] ≤
(
1−

1− ε

‖x‖0
)s ≤ (1−

1

2‖x‖0
)s ≤ e− ln ‖x‖0−ln(2/δ) =

δ

2‖x‖0
.
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It follows from the Union Bound:

Pr[∃
j∈Supp(x)

∀k∈[s] : j 6= ik] ≤ ‖x‖0 ·
δ

2‖x‖0
≤ δ/2 .

Since the sampling fails with a probability at most δ/2, the overall probability of failure is at
most δ.

2

A second consequence can be obtained by translating Theorem 3 (which uses independent
draws and thus the sample set may contain multiple copies of the same point) to the case of
returning subsets.

Corollary 3.5.3 Let s ≤ ‖x‖0/2. Given a sequence of update operations on a vector x =

(x0, . . . , xU−1) with entries from [M], there is a data structure that with probability 1−δ returns
a subset S ⊂ Supp(x) of s indices and all pairs (i, xi) for i ∈ S and returns a flag FAIL oth-
erwise. The algorithm uses O

((
s+ log(1/δ)

)
· log(UM) · log(U)

)
space. UPDATE operations

and query operations can be processed in O((s+ log(1/δ)) · log(U)) time.

Proof : We use the data structure of Theorem 3 with parameter ε = 1/2 and error probability
parameter δ ′ = δ/2 to obtain s ′ = c · (s+ log(1/δ)) indices i ′0, . . . , i

′
s ′ from Supp(x) uniformly

at random with repetitions, where c is a suitable constant.
Since s ≤ ‖x‖0/2we know that for each i ′j either we have at least s different indizes previously

chosen or i ′j is with probability at least 1−ε
‖x‖0

· (‖x‖0 − s) ≥ 1/4 an index that is not among the
previously chosen indices. We get that with probability at least 1−δ/2 we have at least s distinct
indices among i ′0, . . . , i

′
s ′ for c large enough. If there are more than s distinct indices among

i ′0, . . . , i
′
s we choose arbitrarily s indices from the distinct indices and return them. 2

Lemma 3.5.4 Given a sequence of update operations on a vector x = (x0, . . . , xU−1) with en-
tries from [M], there is a data structure that returns all pairs (i, xi) with i ∈ Supp(x) when
‖x‖0 ≤ A and a flag FAIL if ‖x‖0 > A. The algorithm works with probability 1 − δ and uses
O (A · (logA+ log(1/δ)) · log(UM) · logU) space. UPDATE operations and query operations
can be processed in O(A · (logA+ log(1/δ)) · log(U)) time.

Proof : We start the algorithm of Corollary 3.5.2 with the assumption that ‖x‖0 = 2A+ 2 and
with error probability parameter δ ′ = δ/2. We call it algorithm 1. In case that ‖x‖0 ≤ 2A+ 2 at
the end of the stream, this algorithm reconstructs all pairs (i, xi) with i ∈ Supp(x).

In parallel we start the algorithm of Corollary 3.5.3 with s = A + 1 and error probability
parameter δ ′ = δ/2 and call it algorithm 2. If algorithm 2 returns A + 1 elements, we return
FAIL. If it returns less than A + 1 elements, we know that with probability 1 − δ/2 we have
‖x‖0 < 2A+ 2. In that case algorithm 1 provides us with all pairs (i, xi) with i ∈ Supp(x) with
probability 1 − δ/2. We count the number of pairs. If ‖x‖0 ≤ A, we return all pairs, otherwise
we return FAIL. 2
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In this Chapter we will transfer the sampling technique of Section 3.4 to the context of dynamic
geometric data streams. It gives us the ability to choose a point almost uniformly at random from
the current point set P encoded in a dynamic geometric data stream.

Based on that we will provide randomized streaming algorithms for three well-studied geo-
metric problems over dynamic geometric streams:

1. Maintaining an ε-net of P; that is, a subset N ⊂ P such that for any range R from a fixed
family of ranges of VC dimension D (e.g., set of all rectangles), we have |N ∩ R| > 0, if
|R∩P|

|P|
≥ ε. We show how to maintain an a set of Õ(D+log(1/δ)

ε
) points that with probability

1− δ is an ε-net of P.

Our data structure uses O
(
( log(1/δ)

ε
+ D

ε
log D

ε
) · d2 · log2(∆/δ)

)
space.

2. Maintaining an ε-approximation of P; that is, a subset A ⊂ P, such that for any range R
from a fixed family of ranges of bounded VC dimension D, we have |A∩R|

|A|
= |R∩P|

|P|
± ε. In

this case our algorithm maintains a set of Õ(D+log(1/δ)
ε

) points that with probability 1 − δ

is an ε-approximation.

Our data structure uses O
(
1
ε2

(
D log D

ε
+ log 1

δ

)
d3 log3 ∆

δ

)
space.

The ε-approximations have applications to many problems, including Tukey depth, simpli-
cial depth, regression depth, the Thiel-Sen estimator, and the least median of squares [9].

3. Maintaining a (1 + ε)-approximation of the cost of minimum weight tree spanning the
points in P. This quantity in turn enables to achieve constant factor approximations for
other problems, such as TSP or Steiner tree cost. Our algorithms use space O(log(1/δ) ·
(log∆/ε)O(d)), and is correct with probability 1− δ.

Having a random sample of points from the technique developed in the last chapter, the al-
gorithms to maintain ε-nets and ε-approximations will follow relatively easily from [66] and
[119].

To compute the weight of the Euclidean minimum spanning tree our sampling procedure is
used in a more subtle way. It is known that the EMST weight can be expressed as a formula de-
pending on the number of connected components in certain subgraphs of the complete Euclidean
graph of the current point set [25, 20]. We use an algorithm from [25] to count the number
of connected components in these subgraphs. This algorithm is based on a BFS-like procedure
starting at a randomly chosen point p. The BFS runs for a constant number of rounds only and
one can show that it can never leave a ball around p of certain radius. Therefore, it suffices
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to maintain a random sample point and all points in a certain radius around this sample point.
This task can also be approximately performed by a variant of our sampling routine described in
Section 4.3.

4.1 Sampling Geometric Data Streams
First, we observe that we can apply our data structure in the setting of dynamic geometric data
streams in the following way. We will use U = ∆d andM = 2,[M] = {0, 1}. An ADD(p) opera-
tion with p = (p0, . . . , pd−1) is implemented as an UPDATE(P, 1) operation with P =

∑
j p0 ·∆j,

i.e. by interpreting p as a ∆-ary number with d digits. In a similar way, a REMOVE(p) opera-
tion translates to UPDATE(P,−1). Using the SAMPLE procedure we can get a pair (i, xi) having
xi = 1, which can also be re-interpreted as the corresponding unique point p = (p0, . . . , pd−1)

with i =
∑
j p0 · ∆j. Thus we can sample a point from the current point set.

We will now translate the results of Section 3.4 to the context of dynamic geometric data
streams.

Theorem 4 (Sampling in geometric data streams.) Given a sequence of ADD and REMOVE

operations of points from the discrete space [∆]d, there is a data structure that with probability
1− δ returns s points r0, . . . , rs−1 from the current point set P = {p0, . . . , pn−1} and a flag FAIL
otherwise. The returned points are independent of each other and may contain duplicates. The
statistical difference from the distribution of each sample point to a uniform distribution is at
most δ

∆d , particularly Pr[ri = pj] = 1
n
± δ

∆d for every j ∈ [n].
The algorithm uses O

((
s+ log(1/δ)

)
· d2 · log2(∆/δ)

)
space.

Proof : We apply Theorem 2 with δ ′ = δ/∆d. 2

We remark that Theorem 4 requires that no point in P occurs more than once, i.e. P is not a
multiset.

Corollary 4.1.1 Given a sequence of ADD and REMOVE operations of points from the discrete
space [∆]d, there is a data structure that with probability 1 − δ returns the current point set
P = {p0, . . . , pn−1}.

The algorithm uses O
(
nd3 log3

(
∆
δ

))
space.

Proof : This corollary follows directly from Corollary 3.4.3. 2

Corollary 4.1.2 Let s ≤ n/2. Given a sequence of ADD and REMOVE operations of points from
the discrete space [∆]d, there is a data structure that with probability 1− δ returns a subset S =

{r0, . . . , rs−1} of s points from the current point set P = {p0, . . . , pn−1}. The statistical difference
from the distribution of the returned subset to a uniform distribution is at most δ

∆d , particularly
Pr[pj ∈ S] = s

n
± δ
∆d for every j ∈ [n]. The algorithm usesO

((
s+ d · log(∆/δ)

)
· d2 · log2(∆/δ)

)
space.

Proof : This corollary follows directly from Corollary 3.4.4. 2
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4.2 ε-Nets and ε-Approximations in Data Streams

A consequence of Theorem 4 is that we can get ε-nets and ε-approximations of the current point
set. We briefly recapitulate the definitions required for ε-nets and ε-approximations, which can,
for example, be found in [52].

Definition 4.2.1 (Range Spaces) Let X be a set of objects and R be a family of subsets of X.
Then we call the set system Σ = (X, R) a range space. The elements of R are the ranges of Σ. If
X is a finite set, then Σ is called a finite range space.

Definition 4.2.2 (VC-dimension) The Vapnik-Chervonenkis dimension (VC-dimension) of a
range space Σ = (X, R) is the size of the largest subset of X that is shattered by R. We say
that a set A is shattered by R, if {A ∩ r|r ∈ R} = 2A.

Definition 4.2.3 (ε-nets, ε-approximation) Let Σ = (X, R) be a finite range space. A subset
N ⊂ X is called ε-net, if N ∩ r 6= ∅ for every r ∈ R with |r| ≥ ε|X|. A subset A ⊆ X is called
ε-approximation, if for every r ∈ R we have

∣∣ |A∩r|
|A|

− |r|
|X|

∣∣ ≤ ε.

Obviously, an ε-approximation is always an ε-net, while the contrary is not necessarily true.

A Data Streaming Algorithm for ε-Approximations. The following theorem by Vapnik
and Chervonenkis shows that for any finite range space with constant VC-dimensionD a random
sample of size Õ(D+log(1/δ)

ε2 ) is an ε-approximation with probability at least 1− δ.

Theorem 5 [119] There is a positive constant c such that if (X, R) is any range space of VC-
dimension at mostD,A ⊂ X is a finite subset and ε, δ > 0, then a random subset B of cardinality
s of A where s is at least the minimum between |A| and

c

ε2
·
(
D · log

D
ε

+ log
1

δ

)
is an ε-approximation for A with probability at least 1− δ.

We can now combine Corollary 4.1.2 (or Corollary 4.1.1 in the case that the current point
set is small) with Theorem 5 to obtain a data structure that with probability 1 − δ returns an
ε-approximation of the current point set.

Theorem 6 Given a sequence of ADD and REMOVE operations of points from the discrete space
[∆]d, there is a data structure that with probability 1 − δ returns a set A of Õ(D+log(1/δ)

ε2 ) points
that is an ε-approximation of a range space (X, R) with VC-dimension D. The algorithm uses
O
(
1
ε2

(
D log D

ε
+ log 1

δ

)
d3 log3 ∆

δ

)
space.
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Proof : Let a = c
ε2 ·

(
D · log D

ε
+ log 3

δ

)
. By Theorem 5 a sample set of size a is an ε-

approximation with probability at least 1− δ/3. Let P = {p0, . . . , pn−1} denote the current point
set. We can easily track the size n of P by increasing a counter with every ADD operation and
decreasing it with every REMOVE operation. If n ≤ a we use the data structure from Corollary
4.1.1 of size O

(
ad3 log3 ∆

δ

)
to recover P completely.

If n > a we will use our data structure from Corollary 4.1.2 of size O
(
ad3 log3 ∆

δ

)
to obtain

a random sample of size a. We will use failure parameter δ ′ = δ/3. This guarantees that
the overall statistical difference from the same process using the uniform distribution is at most
δ ′/∆d · n ≤ δ/3. Similarly, the data structure fails with probability at most δ ′ ≤ δ/3. And a
set of size a is with probability 1 − δ/3 an ε-approximation. Summing up the errors we get an
ε-approximation with probability 1− δ.

The space requirement follows immediately from Corollaries 4.1.2 and 4.1.1 and Theorem 5.
2

A Data Streaming Algorithm for ε-Nets. Haussler and Welzl showed that a random sam-
ple of size Õ(D+log(1/δ)

ε
) is an ε-net with probability at least 1− δ.

Theorem 7 [66] Let (X, R) be a range space of VC-dimension D, let A be a finite subset of X
and suppose 0 < ε, δ < 1. Let N be a set obtained by m random independent draws from A,
where

m ≥ max
(4
ε

log
2

δ
,
8 · D
ε

log
8 · D
ε

)
then N is an ε-net for A with probability at least 1− δ.

Combining Theorem 4 with Theorem 7 we obtain

Theorem 8 Given a sequence of ADD and REMOVE operations of points from the discrete space
[∆]d, there is a data structure that with probability 1 − δ returns a set N of Õ(D+log(1/δ)

ε
) points

that with probability at least 1−δ is an ε-net of a range space (X, R) with VC-dimensionD. The
algorithm uses O

(
( log(1/δ)

ε
+ D

ε
log D

ε
) · d2 · log2(∆/δ)

)
space.

Proof : We use a random sample (with repetitions) as given by the data structure from Theorem
4. We choose failure parameter δ ′ = δ/3. Since the statistical difference from the exact uniform
distribution is at most δ ′ = δ/3, the failure probability is at most δ ′ = δ/3, and a set of size
max

(
4
ε

log 2
δ ′
, 8·D
ε

log 8·D
ε

)
is an ε-net with probability at least 1− δ ′ = 1− δ/3, we get that our

sample is an ε-net with probability at least 1− δ. 2

4.3 Random Sampling with Neighborhood Information
We now want to develop a more sophisticated sampling strategy. We would like to draw a
set of points (almost) uniformly at random and for each point we also would like to know its

36



4.3 Random Sampling with Neighborhood Information

neighborhood, for example all points within a distance of at most z or all points in a square with
side length z centered at the random point. Formally, we define a neighborhood in the following
way.

Definition 4.3.1 (V-neighborhood) Let V = {v0, . . . , vZ−1} denote a set of grid vectors with
v0 = (0, . . . , 0). We define the V-neighborhood of a point p to be the setN (V, p) =

⋃
i∈Z{p+vi}.

We call Z = |V | the size of the V-neighborhood.

We will typically assume that the size Z of a V-neighborhood is small, i.e. polylogarithmic.
We show that we are able to get information about the V-neighborhood of a sample point. This
can be achieved in the following way:

For simplicity we identify [∆]d with [∆d], such that P ⊂ {0, . . . , ∆d−1} and V ⊂ {0, . . . , ∆d−

1}. We use Theorem 2 withU = ∆d andM = 2Z to map the problem from the discrete Euclidean
space to a vector problem. We want to maintain the invariant that the vector x represents the
neighborhood of each point in the way:

∀p∈∆d xp =

Z−1∑
j=0

aj · 2j with aj =

{
1 iff p+ vj ∈ P
0 iff p+ vj /∈ P

(4.1)

where P denotes the current point set after insert and delete operations.
Particularly xp = 1 mod 2⇔ p ∈ P.

To maintain the invariant we have to translate the insert and delete operations of points into Z
update operations in the following way:

for all i ∈ [Z]

ADD(p) −→ if p− vi ∈ [∆d] then
UPDATE(p− vi, 2

i)

for all i ∈ [Z]

REMOVE(p) −→ if p− vi ∈ [∆d] then
UPDATE(p− vi,−2

i)

We have to deal with the fact that the sample data structure used in Theorem 2 samples ele-
ments from Supp(x), which is a larger set than P.

Lemma 4.3.2 |P| ≥ ‖x‖0

Z
.

Proof : Let be i ∈ Supp(x), so xi = 0. Because of equation (4.1) there must be a responsible
point p ∈ P with i ∈ N (p). Since |N (p)| = Z, p can be responsible for the positivity of at
most Z entries xi. We conclude that there are at most |P| · Z entries i with xi 6= 0. We conclude
|P| ≥ ‖x‖0

Z
. 2
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We apply Theorem 2 with s ′ = 16 ·Z · (s+ ln(δ/2)) and δ ′ = δ
Z·∆d and get a set S ′ consisting

of s ′ pairs (i, xi) with xi 6= 0. Starting with an empty sample set S we check for every pair (i, xi)

if xi = 1 mod 2. If this is the case we add the pair (i, xi) (containing the sample point i ∈ P) to
our sample set S. We stop the procedure when |S| = s.

We first show that the set S contains at least s sample points with probability 1 − δ. Let Y be
the random variable for the number of samples having xi = 1 mod 2 (being sample points from
P). For each sample (i, xi) ∈ S ′ and each p ∈ P we have

Pr[i = p] =
1

‖x‖0
± δ ′ ≥ 1

|P| · Z
− δ ′ ≥ 1

2 · |P| · Z
.

It follows that
E[Y] ≥ 1

2 · |P| · Z
· |P| · s ′ = 8(s+ ln δ/2) .

From Chernoff Bounds [58]:

Pr[Y < s] ≤ Pr[Y ≤ (1−
1

2
)E[Y]] ≤ e(1/2)2·E[Y]/2 ≤ δ

2
.

Since Theorem 2 gives us s ′ samples with probability at least 1 − δ/2, we conclude that the
constructed set S consists of at least s samples (i, xi) having xi = 1 mod 2 with probability
1− δ. It remains to show that the sampling is almost uniform.

Let S = {(r1, xr1), . . . , (rs, xrs)} and let (k, xk) be the first sample returned by the algorithm
of Theorem 2. By the method to construct the set S we see that for all i ∈ {1, . . . , s} and all
p ∈ P:

Pr[ri = p] = Pr[k = p] · ‖x‖0
|P|

=

(
1

‖x‖0
± δ ′

)
· ‖x‖0

|P|
=
1

|P|
± δ

Z
· ‖x‖0
|P| · ∆d

Since |P| ≥ ‖x‖0

Z
by Lemma 4.3.2 we have:

Pr[ri = p] =
1

|P|
± δ

∆d
.

The space requirement to apply Theorem 2 with s ′ = 16·Z·(s+ln(δ/2)), δ ′ = δ
Z·∆d ,U = ∆d,

andM = 2Z is:

O

((
s ′ + log

(
1

δ ′

))
· log2

(
UM

δ ′

))
= O

((
Z ·
(
s+ log

(
2

δ

))
+ log

(
Z∆d

δ

))
· log2

(
∆d · 2Z · Z · ∆d

δ

))
= O

(
s · Z3 · d3 log3

(
∆

δ

))
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Theorem 9 Let the set V = {v0, . . . , vZ−1} be fixed. Given a sequence of ADD and REMOVE

operations of points from the discrete space [∆]d, there is a data structure that with probability
1 − δ returns s points r0, . . . , rs−1 from the current point set P = {p0, . . . , pn−1} such that
Pr[ri = pj] = 1

n
± δ

∆d for every j ∈ [n]. The points are independent of each other and may
contain duplicates. Additionally, the algorithm returns the sets P ∩ N (V, ri) for every i ∈ [s].
The algorithm uses Õ

(
s · Z3 · d3 · log3(∆/δ)

)
space. ut

4.4 Estimating the Weight of a Euclidean Minimum
Spanning Tree

In this section we will show how to estimate the weight of a Euclidean minimum spanning tree in
a dynamic geometric data stream. We denote by P = {p1, . . . , pn} the current point set. Further
EMST denotes the weight of the Euclidean minimum spanning tree of the current set.

We impose log1+ε(
√
d∆) square grids over the point space. The side lengths of the grid

cells are ε·(1+ε)i
√
d

for 0 ≤ i ≤ log1+ε(
√
d∆). Our algorithm maintains certain statistics of the

distribution of points in the grids. We show that these statistics can be used to compute a (1+ε)-
approximation of the weight EMST.

Our computation is based on a formula from [33] for the value of the minimum spanning tree
of an n point metric space. Let GP denote the complete Euclidean graph of a point set P and
W an upper bound on its longest edge. Further let c((1+ε)i)

P denote the number of connected
components in G((1+ε)i)

P , which is the subgraph of GP containing all edges of length at most
(1+ ε)i. Under these assumptions we can use the formula from [33]:

1

1+ ε
· EMST ≤ n−W + ε ·

log1+εW−1∑
i=0

(1+ ε)ic
((1+ε)i)
P ≤ EMST (4.2)

where n is the number of points in P.
Instead of considering the number of connected components in G(t)

P for t = (1 + ε)i we first
move all points of P to the centers of a grid of side length ε·t√

d
. After removing multiplicities

we obtain the point set P(t). Then we consider the graph G(t) whose vertex set is P(t) and
that contains an edge between two points if their distance is at most t. Instead of counting
the connected components in G(t)

P we count the connected components in G(t). It follows from
Claim 4.4.1 that this only introduces a small error. We denote by c(t) the number of connected
components of G(t). Then we get

Claim 4.4.1
c

(1+ε)i+1

P ≤ c(1+ε)i ≤ c(1+ε)i−2

P

Proof : Let us consider two arbitrary points p, q ∈ P and the centers of their corresponding
cells p ′, q ′ in the grid graphG((1+ε)i). Recall that the corresponding grid has side length ε·(1+ε)i

√
d

.
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Thus by moving p and q to the centers of the corresponding grid cells their distance changes by
at most ε · (1+ ε)i.

Now assume that p, q are in the same connected component in G((1+ε)i−2)
P . Then they are

connected by a path of edges of length at most (1 + ε)i−2. If we now consider the path of the
corresponding centers of grid cells, then any edge of the path has length at most (1 + ε)i−2 +

ε · (1+ ε)i ≤ (1+ ε)i . Therefore, p ′, q ′ are in the same connected component of the grid cell
graph. We conclude c(1+ε)i ≤ c(1+ε)i−2

P .
Assume that p and q are in the same connected component of the grid graph G((1+ε)i). They

are connected by a path of edges of length at most (1 + ε)i in the grid graph G((1+ε)i). After
switching to the point graph GP any edge of the corresponding path has a length of at most
(1 + ε)i + ε(1 + ε)i = (1 + ε)i+1. Therefore p and q are in the same connected component of
G

((1+ε)i+1)
P . We conclude c(1+ε)i+1

P ≤ c(1+ε)i . 2

We denote by n(t) = |P(t)| the number of non-empty grid cells of side length εt√
d

. Our algo-

rithm maintains approximations ñ, W̃, ñ(t), and c̃(t) (for t = (1 + ε)0, (1 + ε)1, (1 + ε)2, . . . )
of the number n of points currently in the set, the diameter W, the size n(t) of P(t), and the
number c(t) of connected components in G(t), respectively. The approximation is then derived
by inserting the maintained approximations into formula 4.2.

In the following we discuss the data structures we need to maintain our approximations.

4.4.1 Required Data Structures
Number of points. We observe that we can remember the value of n exactly by increas-
ing/decreasing ñ in case of an ADD/REMOVE operation.

Diameter. We show how to maintain an approximation W̃ of W with W ≤ W̃ ≤ 4
√
dW,

whereW is the largest distance between two points in the current point set. To do so, we maintain
an approximation W̃j of the diameter of the point set in each of the d dimensions with Wj ≤
W̃j ≤ 4Wj, where Wj is the diameter in dimension j for 1 ≤ j ≤ d. The maximum of the W̃j is
our approximation W̃.

We maintain the diameter of the point set in dimension j in the following way: For each
i ∈ {0, ..., log∆} we introduce two one-dimensional grids Gi,1 and Gi,2, each of them having
cells of side length 2i. Gi,2 is displaced by 2(i−1) against Gi,1. Let gi,1 and gi,2 be the number of
occupied cells in the grid Gi,1, Gi,2, respectively.

We use our Distinct Elements data structure from Section 3.2 to count the number of grid cells
containing a point. We only want to distinguish between the case gi,1 = 1 and gi,1 > 1 (we
assume that there is always at least one point in the set; otherwise the problem becomes trivial).

If there is exactly one point in the current set we have g0,1 = 1 and g0,2 = 1 and the diameter
is 0. Otherwise, the diameter must be at least 1. Therefore in the finest grids G0,1 and G0,2 at
least two cells are occupied, which means that g0,1 > 1 and g0,2 > 1. We now find the smallest
value i such that gi+1,1 = 1 or gi+1,2 = 1. In this case we know thatWj ≤ 2i+1.
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Since gi,1 > 1 and gi,2 > 1, we know that in both grids Gi,1 and Gi,2 at least two cells are
occupied. This means that the convex hull of the point set contains the border of a cell in both
grids Gi,1 and Gi,2. Since these cell borders have a distance of at least 2i−1 we have Wj ≥ 2i−1.
Therefore, we can output W̃j = 2i+1 as a 4-approximation of the diameter in dimension j.

Size of P(t). The problem to find an estimation ñ(t) with (1−ε)n(t) ≤ ñ(t) ≤ n(t) is equivalent
to maintaining the number of distinct elements in a data stream. This can be seen as follows.
Once a point arrives we can determine its grid cell from its position. Thus we can interpret
the input stream as a stream of grid cells and we are interested in the number of distinct grid
cells. This can be approximated using an instance of the Distinct Elements (DE) data structure
of Section 3.2.

The Sample Set. To approximate the number of connected components we have to maintain
multisets S(t) of points chosen uniformly at random (with repetitions) from P(t). We will use VR
to denote the set of grid vectors of length at most R. For each point p ∈ S(t) we maintain all
points in the VR-neighborhood of p for some suitably chosen value R. Since our input stream
contains ADD and REMOVE operations of points from P rather than P(t) we have to map every
point from P to the corresponding point from P(t). This may have the effect that P(t) becomes a
multiset although P is not. This is no problem because our procedure from Lemma 3.4.2 samples
from the support of the vector (or, in this case from the support of the multiset). Straightforward
modifications of Theorem 9 show that we can also maintain the required sets S(t).

Having such a sample and the value ñ(t) we can use an algorithm from [25] to obtain the num-
ber of connected components with sufficiently small error. This is proven in Section 4.4.2 using
a modified analysis that charges the error in the approximation to the weight of the minimum
spanning tree. This way we get our estimation c̃(t) of c(t).

4.4.2 Computing c̃(t)

In this section we show how to compute our estimator c̃(t). To do this we will use our sample set
S(t). In the computation of the sample set S(t) we need to specify the value R. We choose

R := log(
√
d · ∆)2d+4

√
dε−2 · t .

Further we need in the following the valueD := R/t. Our algorithm for estimating c(t) works
as follows. First, we check, if W̃ < 4εt. If that is the case, W < 4εt follows and for an
arbitrary sample point we know that every point of the current point set is contained in the radius
R. Therefore, we know the whole graph G(t) and can compute c(t) exactly.

Thus let us assume W̃ ≥ 4εt. In this case our algorithm is essentially similar to the one
presented in [25], but our analysis is somewhat different. The difference comes from the special
structure of our input graphsG(t). We exploit the lower bound from Lemma 4.4.2 below to relate
the error induced by our approximation algorithm to the weight of the EMST.
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Lemma 4.4.2 If W̃ ≥ 4εt then

EMST ≥ n(t)εt√
d2d+1

.

Proof : We distinguish between the case n(t) ≥ 2d+1 and n(t) < 2d+1.
We start with the case n(t) ≥ 2d+1. In this case we can color the grid cells using 2d colors
in such a way that no two adjacent cells have the same color. Since we have n(t) occupied
cells there must be one color c which is assigned to at least dn(t)

2d e occupied cells. Notice that
dn(t)

2d e ≥ 2. The occupied cells of the same color are pairwise not adjacent, therefore any pair
of points that is contained in two distinct of these cells has a distance of at least ε·t√

d
. We can

conclude EMST ≥
(⌈

n(t)

2d

⌉
− 1
)
εt√
d
≥
(⌈

n(t)

2d

⌉
− 1
2

⌈
n(t)

2d

⌉)
εt√
d
≥ n(t)εt√

d2d+1 .

In the second case we getW ≥ εt√
d
≥ n(t)εt√

d2d+1 since W̃ ≥ 4εt. This implies the result. 2

We now present a description of our method to estimate c(t). The idea is pick a random set of
vertices (with repetition) and start a BFS with a stochastic stopping rule at each vertex v from
the sample to determine the size of the connected component of v. If the BFS explores the whole
connected component we set a corresponding indicator variable β to 1 and else to be 0. To
implement this algorithm we can use our sample set S(t). The sample set provides a multiset of
points from P(t) chosen uniformly at random. It also provides all other points within a distance
of at most R = Dt. Since we consider only edges of length at most t and since the algorithm
below stops exploring a component when it has size D or larger, the BFS cannot reach a point
with distance more than R from the starting vertex. Therefore, our sample set S(t) is sufficient
for our purposes. We remark that the random points from S(t) are not chosen exactly uniformly.
We will choose the failure parameter δ ′ in the sampling data structure in such a way that the
deviation from the uniform distribution is between (1 − ε) and (1 + ε) times its probability in
the uniform distribution (this means, we choose δ ′ = ε · δ/∆d and each point p ∈ P(t) is chosen
with probability (1± ε) · 1

n(t) ). We take care of this fact in the analysis. The algorithm we use is
given below.'

&

$

%

APPROXCONNECTEDCOMPONENTS(P, t, ε)
Choose s points q1, . . . , qs ∈ P(t) uniformly at random
for each qi do

Choose integer X according to distribution Prob[X ≥ k] = 1/k

if X ≥ D then βi = 0

else
if Connected component of G(t) containing qi has at most X vertices

then set βi = 1

else set βi = 0

Output: ĉ(t) = en(t)

s
·
∑s
i=1 βi

Thus, βi is an indicator random variable for the event that the connected component containing
qi has at most X vertices. We first show upper and lower bounds on the expected output value of

42



4.4 Estimating the Weight of a Euclidean Minimum Spanning Tree

the algorithm. Then we compute the variance and use it to show that the output is concentrated
around its expectation. We obtain

E[βi] =
∑

conn. comp.
C in G(t)

Pr[qi ∈ C] · Pr[X ≥ |C| ∧ X < D]

≤
∑

conn. comp.
C in G(t)

Pr[qi ∈ C] · Pr[X ≥ |C|]

≤
∑

conn. comp.
C in G(t)

(1+ ε) · |C|

n(t)
· 1
|C|

= (1+ ε) · c
(t)

n(t)
.

For the output value

ĉ(t) =
ñ(t)

s
·
s∑
i=1

βi

of our algorithm we obtain

E[ĉ(t)] ≤ ñ(t)

n(t)
(1+ ε)c(t) ≤ (1+ ε)c(t) . (4.3)

From

E[βi] =
∑

conn. comp.
C in G(t)

Pr[qi ∈ C] · Pr[X ≥ |C| ∧ X < D]

≥
∑

conn. comp.
C in G(t)

(1− ε) · |C|

n(t)
·
(
1

|C|
−
1

D

)

= (1− ε) ·
( c(t)

n(t)
−
1

D

)
and Lemma 4.4.2 we obtain

E[ĉ(t)] ≥ (1− ε) · ñ
(t)

n(t)

(
c(t) −

n(t)

D

)
≥ (1− ε)2

(
c(t) −

EMST · 2d+1
√
d

εtD

)
(4.4)

≥ (1− 2ε)

(
c(t) −

ε · EMST
8t log(

√
d · ∆)

)
. (4.5)

Our next step is to find an upper bound for the variance of ĉ(t). Since the βi are {0, 1} random
variables, we get:
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Var[βi] ≤ E[β2i ] = E[βi] ≤ (1+ ε) · c
(t)

n(t)
.

By mutual independence of the β ′
is we obtain for the variance of ĉ(t) for fixed ñ(t):

Var[ĉ(t)] = Var[
ñ(t)

s

s∑
i=1

βi]

=

(
ñ(t)
)2

s2
· s · Var[βi]

≤ (1+ ε) · (ñ(t))2

s
· c

(t)

n(t)

≤ (1+ ε) · n
(t)c(t)

s
.

Using (4.3) and (4.5) we obtain

|c(t) − E[ĉ(t)]| ≤ 2εc(t) +
3ε · EMST

8 · t · log(
√
d · ∆)

. (4.6)

We choose s, the number of sample points, as

s := (1+ ε)
22d+10 · d · log2(

√
d · ∆) · log1+ε(

√
d · ∆)

ε4
= O

(
log3∆
ε5

)
.

Chebyshev’s inequality and Lemma 4.4.2 imply:

Pr
[∣∣ĉ(t) − E[ĉ(t)]| ≥ ε · EMST

8 · t · log(
√
d · ∆)

]
≤ (1+ ε) · n

(t) · c(t)

s
· 64 · t

2 · log2(
√
d · ∆)

ε2 · EMST2

≤ (1+ ε) · 64 · d · 2
2d+2 · log2(

√
d · ∆)

s · ε4

≤ 1

4 log1+ε(
√
d · ∆)

.

Therefore we get together with (4.6):

Lemma 4.4.3 With probability 1− 1

4 log1+ε(
√
d·∆)

we have |ĉ(t) − c(t)| ≤ 2εc(t) + ε·EMST
2·t·log(

√
d·∆)

.

It follows from the union bound that with probability at least 3/4 all c̃(t) values satisfy the
inequality in Lemma 4.4.3. It remains to sum up the overall error taking into account that we
considered connected components of the graph G(t) and not of the corresponding subgraph of
GP. Intuitively, the connected component of G(t) are sufficient because in each of the G(t) we
moved every point by at most εt which is small compared to the threshold edge length of t.
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Lemma 4.4.4 Let M̃ be the output of our algorithm. Then

∣∣EMST − M̃
∣∣ ≤ 69√d · ε · EMST .

Proof : We will first show that our output value

M̃ := n− W̃ + ε

log1+ε
fW−1∑

i=0

(1+ ε)ic̃((1+ε)i)

is close to

Mp := n− W̃ + ε

log1+ε
fW−1∑

i=0

(1+ ε)ic((1+ε)i)
p

which is a (1+ ε)-approximation of the EMST value by equation (4.2). From Lemma 4.4.3 and
Claim 4.4.1 it follows that

(1− 2ε)c((1+ε)i+1)
p −

ε · EMST
2(1+ ε)i log(

√
d∆)

≤ c̃((1+ε)i)

≤ (1+ 2ε)c
((1+ε)i−2)
P +

ε · EMST
2(1+ ε)i log(

√
d∆)

holds with probability at least 1 − 1
4 log1+ε(

√
d·∆)

. By the union bound and some calculation we
get with probability 3/4:

ε ·
log1+ε

fW−1∑
i=0

(1+ ε)ic̃((1+ε)i) ≥ ε · (1− 2ε)

log1+ε
fW−1∑

i=0

(1+ ε)ic((1+ε)i+1)
p −

1

2
ε · EMST

≥ ε · (1− 2ε)

log1+ε
fW∑

i=1

(1+ ε)i−1c((1+ε)i)
p − ε · EMST

≥ ε · 1− 2ε

1+ ε

log1+ε
fW−1∑

i=0

(1+ ε)ic((1+ε)i)
p −

ε(1− 2ε)

1+ ε
n− ε · EMST

≥ (1− 4ε) · ε
log1+ε

fW−1∑
i=0

(1+ ε)ic((1+ε)i)
p − εn− ε · EMST

and
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ε ·
log1+ε

fW−1∑
i=0

(1+ ε)ic̃((1+ε)i)

≤ 1

2
ε · EMST + ε

log1+ε
fW−3∑

i=−2

(1+ ε)i+2(1+ 2ε)c((1+ε)i)
p

≤ ε · EMST + ε(1+ ε)2(1+ 2ε)

log1+ε
fW−1∑

i=0

(1+ ε)ic̃((1+ε)i)
p + 2ε(1+ ε)(1+ 2ε)n

≤ (1+ 11ε) · ε
log1+ε

fW−1∑
i=0

(1+ ε)ic
((1+ε)i)
P + 12εn+ ε · EMST

which gives us (together with W̃ ≤ 4
√
d · EMST and n ≤ EMST) a bound on the difference of

MP and M̃:

∣∣∣MP − M̃
∣∣∣ ≤ 11ε2

log1+ε
fW−1∑

i=0

(1+ ε)ic
((1+ε)i)
P + 12εn+ ε · EMST

= 11ε(MP − n+ W̃) + 12εn+ ε · EMST

≤ 24ε · EMST + 44ε
√
d · EMST .

By the triangle inequality and (4.2) we get the final result:∣∣∣M̃− EMST
∣∣∣ ≤

∣∣∣M̃−MP

∣∣∣ + |MP − EMST| ≤ 24ε · EMST + 44ε
√
d · EMST + ε · EMST

≤ 69ε
√
d · EMST .

2

From this lemma our final result follows immediately using standard amplification techniques
to ensure that the estimation is correct at every point of time.

Theorem 10 Given a sequence of insertions / deletions of points from the discrete d-dimensional
space {1, . . . , ∆}d there is a streaming algorithm that uses O(log3(1/δ) · (log(∆)/ε)O(d)) space
and O(log3(1/δ) · (log(∆)/ε)O(d)) time (for constant d) for each update and computes with
probability 1−δ a (1+ε)-approximation of the weight of the Euclidean minimum spanning tree.

ut
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In this chapter we introduce a method to reduce the complexity of huge point sets. Assume we
are given a huge point set P. To understand the structure of the point set it is often a good idea to
partition the point set into clusters, such that two points near one another are in the same cluster,
but points having a big distance of each other are in different clusters. In this section we will
look at different clustering objectives: The k-median, k-means, and MaxCut clustering.

Computing clusterings on the huge point sets directly is often impossible. Traditional cluster-
ing algorithms usually have time and space complexity at least linear in the number of points and
need random access to the data. For huge point sets which do not fit into our local memory at all
traditional algorithms are not applicable.

In this chapter we will address this problem by introducting a new technique to reduce the
complexity of the point set. We will combine points to so called weighted coreset points. One
coreset point p having a weight of w(p) then represents w(p) points of our input instance. We
will compute a coreset having certain theoretical guarantees. The most important ones are that
it is small (it’s size is logarithmic in the number of points) and that each clustering solution
computed on the coreset is a (1± ε)-approximate solution on the input point set.

Unlike previous coreset construction techniques [8, 60, 61] our method does not make assump-
tions on the distribution of points in advance. This will enable us to develop the fastest known
PTAS for Euclidean MaxCut in Section 5.5.3, the first efficient k-median and k-means clustering
algorithms for dynamic geometric data streams in Chapter 6, the first kinetic data structures for
MaxCut in Chapter 7 and efficient k-means implementations for huge point sets in Chapter 8.

5.1 Definitions

The most important problems we will address with our coreset technique are the clustering prob-
lems k-median, k-means, and MaxCut as defined in Section 2.3. However, we will define a set of
other example problems here, which can as well be solved using the coreset technique presented
later.

The maximum matching problem asks to find a perfect matching of the points in P that maxi-
mizes the sum of the length of the matching edges. For a matching M we denote its cost by

MaxMatching(P,M) =
∑

(p,q)∈M

d(p, q) .

The maximum travelling salesperson problem is to find a simple cycle C (a tour) of the points in
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P with maximal cost. We denote its cost by

MaxTSP(P, C) =
∑

(p,q)∈C

d(p, q) .

We will also consider the problem to compute the average distance between points in P.

5.1.1 Oblivious Optimization Problems

In this section we define oblivious optimization problems over point sets. Intuitively, an oblivious
optimization problem has the property that for a fixed input the set of feasible solutions depends
on the cardinality of the input set and not on the input set itself. Hence, there is a set of solutions
that are feasible independent of the position of the input points. The quality of the solutions,
however, may depend on the positions. MaxCut, MaxMatching, MaxTSP, and AverageDistance
can be formulated as oblivious optimization problems.

Let us consider an optimization problem Π on point sets in the Rd. Π can be either a maxi-
mization or minimization problem.

We call Π an oblivious optimization problem, if it has the following structure. For any n tu-
ple of points P = (p1, . . . , pn) let SΠ(n) denote the set of feasible solutions, i.e. the set of
feasible solutions depends only on the size of the input instance and not on the instance itself.
Further, we have for each n ∈ N and s ∈ SΠ(n) an objective function cost(n,s)Π that assigns to
P = (p1, . . . , pn) a non-negative cost. We assume that given a permutation π of the points and
a solution s, there is always another solution s ′ having the cost cost(n,s

′)
Π (π(p1), . . . , π(pn)) =

cost(n,s)Π (p1, . . . , pn) (We say that Π does not depend on the order of the points). If Π is a maxi-
mization (minimization) problem then one seeks to find for a given P = {p1, . . . , pn} the solution
s∗ that maximizes (minimizes) cost(n,s)Π (p1, . . . , pn). We write OptΠ(P) := cost(n,s

∗)
Π (p1, . . . , pn).

Example 5.1.1 Euclidean MaxCut: A feasible solution s consists of a partition of {1, . . . , n}

into 2 groupsC1, C2. For technical reasons we scale the usually used cost of the MaxCut problem
by 1

n
. The cost of s on P = {p1, . . . , pn} is then given by

cost(n,s)maxcut(p1, . . . , pn) =
1

n

∑
i∈C1

∑
j∈C2

d(pi, pj) .

Example 5.1.2 Euclidean MaxMatching: Assume that n is even. A feasible solution s is a
partition of {1, . . . , n} into n/2 pairs E1, . . . , En/2 where Ei = (ai, bi). The cost of s on P =

{p1, . . . , pn} is given by

cost(n,s)maxmatching(p1, . . . , pn) =

n/2∑
i=1

d(pai
, pbi

) .
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Example 5.1.3 Euclidean MaxTSP: A feasible solution s is a permutation of {1, . . . , n}. The
cost of s on P = {p1, . . . , pn} is given by

cost(n,s)maxtsp(p1, . . . , pn) = d(ps(n), ps(1)) +

n−1∑
i=1

d(ps(i), ps(i+1)) .

Example 5.1.4 Average Distance: Since we only want to estimate the value of the average dis-
tance, there is only one feasible solution s. For technical reasons we scale the average distance
of the points by n and denote the costfunction of the solution by:

cost(n,s)avgdistance(p1, . . . , pn) =
1

n− 1

n∑
i=1

∑
j∈{1,...,n}\{i}

d(pi, pj) .

Since the definition of the solution is oblivious of the position of points we can speak of
the change of the cost of solution s when moving from point set P to another point set P ′. In
particular our coreset construction needs the following two conditions.

Definition 5.1.5 (`-Lipschitz) Let ` ≥ 1 be a constant. We say that cost(n,s)Π is `-Lipschitz, if for
arbitrary points p1, . . . , pn and p ′1, . . . , p

′
n with

∑n
i=1 d(pi, p

′
i) ≤ D we have∣∣cost(n,s)Π (p1, . . . , pn) − cost(n,s)Π (p ′1, . . . , p

′
n)
∣∣ ≤ ` ·D

and
p1 = p2 = ... = pn =⇒ cost(n,s)Π (p1, . . . , pn) = 0 .

We call Π `-Lipschitz, if for every n ∈ N and s ∈ SΠ(n) the objective function cost(n,s)Π is
`-Lipschitz.

Definition 5.1.6 (λ-mean preserving) Let λ ≤ 1 be a constant. We say that Π is λ-mean pre-
serving, if for any point set P in Rd we have

OptΠ(P) ≥ λ ·
∑
p∈P

d(p, µ) ,

where µ := µ(P) is the mean or center of gravity of P (see Section 2.1).

We will show that all optimization problems stated before are `-Lipschitz and λ-means pre-
serving with constants ` and λ.

Lemma 5.1.7 The Euclidean MaxCut problem is `-Lipschitz with ` = 1 and λ-mean preserving
with λ = 1

4
.
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Proof : We first show that MaxCut is 1-Lipschitz.∣∣cost(n,s)Π (p1, . . . , pn) − cost(n,s)Π (p ′1, . . . , p
′
n)
∣∣

=
∣∣ 1
n

∑
i∈C1

∑
j∈C2

d(pi, pj) −
1

n

∑
i∈C1

∑
j∈C2

d(p ′i, p
′
j)
∣∣

≤ 1

n

∑
i∈C1

∑
j∈C2

∣∣d(pi, pj) − d(p ′i, p
′
j)
∣∣

=
1

n

∑
i∈C1

∑
j∈C2

max {d(pi, pj) − d(p ′i, p
′
j), d(p

′
i, p

′
j) − d(pi, pj)}

≤ 1

n

∑
i∈C1

∑
j∈C2

max{d(pi, p
′
i) + d(p ′i, p

′
j) + d(p ′j, pj) − d(p ′i, p

′
j),

d(p ′i, pi) + d(pi, pj) + d(pj, p
′
j) − d(pi, pj)}

=
1

n

∑
i∈C1

∑
j∈C2

(d(pi, p
′
i) + d(p ′j, pj))

≤ 1

n

∑
i∈C1

n · d(pi, p ′i) +
1

n
· n ·
∑
j∈C2

d(pj, p
′
j)

=

n∑
i=1

d(pi, p
′
i) = D

To show that MaxCut is λ-mean preserving we first we show the following known inequality
(also shown in [39]):

d(p, µ) ≤ 1

n

∑
q∈P

d(p, q) . (5.1)

First, note that by projecting all points on the line through p and µ, the left side does not change
and the right side does not increase. We can therefore assume that all points lie on a line, i.e. that
all points are real numbers. For real numbers we obtain:

d(p, µ) = |p− µ| = |p−
1

n
·
∑
q∈P

q| =
1

n
· |n · p−

∑
q∈P

q|

=
1

n
· |
∑
q∈P

(p− q)| ≤ 1

n

∑
q∈P

|p− q| .

We now show that MaxCut is λ-mean preserving with λ = 1
4
. We first consider a random

cut C1, C2. For each i ∈ {1, ..., n} we flip an unbiased coin to decide whether it belongs to
C1 or to C2. Since for every pair of indices i, j the probability of separating the indices is 1

2
,

the distance from pi to pj is counted in the sum with probability 1
2
. The expected value of the

objective function 1
n

∑
i∈C1

∑
j∈C2

d(pi, pj) is therefore 1
4n

∑
p,q∈P d(p, q). Since Opt denotes
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the maximum value of such a cut, we have

Opt ≥ 1

4n

∑
p,q∈P

d(p, q)

From equation (5.1) it follows that

Opt ≥ 1

4

∑
p∈P

d(p, µ)

which means that the Euclidean MaxCut problem is λ-mean preserving with λ = 1
4

2

Lemma 5.1.8 The Euclidean Maximum Weighted Matching problem is `-Lipschitz with ` = 1

and λ-mean preserving with λ = 1
2
.

Proof : We first show that Euclidean Maximum Weighted Matching is 1-Lipschitz.∣∣cost(n,s)Π (p1, . . . , pn) − cost(n,s)Π (p ′1, . . . , p
′
n)
∣∣

=
∣∣ n/2∑
i=1

d(pai
, pbi

) −

n/2∑
i=1

d(p ′ai
, p ′bi

)
∣∣

≤
n/2∑
i=1

∣∣d(pai
, pbi

) − d(p ′ai
, p ′bi

)
∣∣

=

n/2∑
i=1

max{d(pai
, pbi

) − d(p ′ai
, p ′bi

), d(p ′ai
, p ′bi

) − d(pai
, pbi

)}

≤
n/2∑
i=1

max{d(pai
, p ′ai

) + d(p ′ai
, p ′bi

) + d(p ′bi
, pbi

) − d(p ′ai
, p ′bi

),

d(p ′ai
, pai

) + d(pai
, pbi

) + d(pbi
, p ′bi

) − d(pai
, pbi

)}

=

n/2∑
i=1

(d(pai
, p ′ai

) + d(p ′bi
, pbi

))

=

n∑
i=1

d(pi, p
′
i) = D

where the last equality comes from the fact that {1, ..., n} is partitioned into pairs (ai, bi).
To show that it is 1

2
-mean preserving we look at a random matching constructed the following

way: We connect the first index i = 1 to one other index j ∈ {1, . . . , n} \ {1} uniformly chosen
from all other indices. Then we delete both indices from {1, ..., n} and go on with this construc-
tion until all indices are matched. Notice that each pair (i, j) with i 6= j belongs to our matching
with probability 1

n−1
. WhenM denotes the aggregated cost of this matching, then
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Opt ≥ E[M] =
1

2(n− 1)

n∑
i,j=1

d(pi, pj) ≥
1

2n

n∑
i,j=1

d(pi, pj) ≥
1

2

∑
p∈P

d(p, µ)

where the last inequality follows from equation 5.1.
2

Lemma 5.1.9 The Euclidean Maximum Travelling Salesman problem is `-Lipschitz with ` = 2

and λ-mean preserving with λ = 1.

Proof : We first show that Euclidean Maximum Travelling Salesman is 2-Lipschitz.∣∣cost(n,s)Π (p1, . . . , pn) − cost(n,s)Π (p ′1, . . . , p
′
n)
∣∣

=
∣∣d(ps(n), ps(1)) +

n−1∑
i=1

d(ps(i), ps(i+1)) − d(p ′s(n), p
′
s(1)) −

n−1∑
i=1

d(p ′s(i), p
′
s(i+1))

∣∣
≤

∣∣d(ps(n), ps(1)) − d(p ′s(n), p
′
s(1))

∣∣+ n−1∑
i=1

∣∣d(ps(i), ps(i+1)) − d(p ′s(i), p
′
s(i+1))

∣∣
= max{d(ps(n), ps(1)) − d(p ′s(n), p

′
s(1)), d(p

′
s(n), p

′
s(1)) − d(ps(n), ps(1))}

+

n−1∑
i=1

max{d(ps(i), ps(i+1)) − d(p ′s(i), p
′
s(i+1)), d(p

′
s(i), p

′
s(i+1)) − d(ps(i), ps(i+1))}

≤ max{d(ps(n), p
′
s(n)) + d(p ′s(n), p

′
s(1)) + d(p ′s(1), ps(1)) − d(p ′s(n), p

′
s(1)),

d(p ′s(n), ps(n)) + d(ps(n), ps(1)) + d(ps(1), p
′
s(1)) − d(ps(n), ps(1))}

+

n−1∑
i=1

max{d(ps(i), p
′
s(i)) + d(p ′s(i), p

′
s(i+1)) + d(p ′s(i+1), ps(i+1)) − d(p ′s(i), p

′
s(i+1)),

d(p ′s(i), ps(i)) + d(ps(i), ps(i+1)) + d(ps(i+1), p
′
s(i+1)) − d(ps(i), ps(i+1))}

= d(ps(n), p
′
s(n)) + d(p ′s(1), ps(1)) +

n−1∑
i=1

d(ps(i), p
′
s(i)) + d(p ′s(i+1), ps(i+1))

= 2

n∑
i=1

d(ps(i), p
′
s(i)) = 2

n∑
i=1

d(pi, p
′
i) = 2 ·D .

To show that it is 1-mean preserving we look at a random permutation s chosen uniformly
from the set of permutations: Notice that each possible edge (i, j) with i 6= j appears in the sum
with probability 1

n−1
+ 1
n−2

≥ 2
n−1

. WhenM denotes the aggregated cost of this solution, then

Opt ≥ E[M] ≥ 1

n− 1

n∑
i,j=1

d(pi, pj) ≥
1

n

n∑
i,j=1

d(pi, pj) ≥
∑
p∈P

d(p, µ)

where the last inequality follows from equation 5.1. 2
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Lemma 5.1.10 The Euclidean Average Distance problem is `-Lipschitz with ` = 4 and λ-mean
preserving with λ = 1.

Proof : We first show that Euclidean Average Distance is 4-Lipschitz.∣∣cost(n,s)Π (p1, . . . , pn) − cost(n,s)Π (p ′1, . . . , p
′
n)
∣∣

=
∣∣ 1

n− 1

n∑
i=1

∑
j∈{1,...,n}\{i}

d(pi, pj) −
1

n− 1

n∑
i=1

∑
j∈{1,...,n}\{i}

d(p ′i, p
′
j)
∣∣

≤ 1

n− 1

n∑
i=1

∑
j∈{1,...,n}\{i}

∣∣d(pi, pj) − d(p ′i, p
′
j)
∣∣

=
1

n− 1

n∑
i=1

∑
j∈{1,...,n}\{i}

max{d(pi, pj) − d(p ′i, p
′
j), d(p

′
i, p

′
j) − d(pi, pj)}

≤ 1

n− 1

n∑
i=1

∑
j∈{1,...,n}\{i}

max{d(pi, p
′
i) + d(p ′i, p

′
j) + d(p ′j, pj) − d(p ′i, p

′
j),

d(p ′i, pi) + d(pi, pj) + d(pj, p
′
j) − d(pi, pj)}

=
1

n− 1

n∑
i=1

∑
j∈{1,...,n}\{i}

d(pi, p
′
i) + d(pj, p

′
j)

≤ 2

n

n∑
i,j=1

2 · d(pi, p ′i) = 4 ·
n∑
i=1

d(pi, p
′
i) = 4 ·D

Euclidean Average Distance is 1-mean preserving:

1

n− 1

n∑
i=1

∑
j∈{1,...,n}\{i}

d(pi, pj) =
1

n− 1

n∑
i,j=1

d(pi, pj) ≥
n

n− 1

n∑
i=1

d(pi, µ) ≥
∑
p∈P

d(p, µ)

2

5.1.2 Coresets
Intuitively, a coreset is a small weighted set of points that approximates a large (typically un-
weighted) point set with respect to an optimization problem. We first give a definition of coresets
for k-median and k-means clustering [61].

Definition 5.1.11 (Coresets I.) [61] Let P be a weighted set of n points in the Rd. A weighted
point set Pcore in Rd is an ε-coreset for the k-median problem, if for every set C of k centers
(1 − ε) · Median(P,C) ≤ Median(Pcore, C) ≤ (1 + ε) · Median(P,C) . In a similar way a
weighted point set Pcore is an ε-coreset for the k-means clustering problem, if every set C of k
centers (1− ε) ·Means(P,C) ≤ Means(Pcore, C) ≤ (1+ ε) ·Means(P,C) .
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5 The Coreset Method

Now we generalize the definition of coresets to arbitrary oblivious optimization problems.
Our definition will be only for unweighted point sets. However, by replacing weighted points by
multiple copies we can easily generalize this definition to weighted point sets.

Definition 5.1.12 (Coresets II.) Let Π be an oblivious optimization problem. Let P be a set of n
points in the Rd. A weighted set of points Pcore in the Rd with weight function w : Pcore → N is
an ε-coreset forΠ, if there exists a mapping γ : P → Pcore that satisfies the following constraints.

• For every q ∈ Pcore we have |γ−1(q)| = w(q).

• For every solution s ∈ SΠ(n) we have

cost(n,s)Π (p1, . . . , pn) − ε · OptΠ(P) ≤ cost(n,s)Π (γ(p1), . . . , γ(pn))

≤ cost(n,s)Π (p1, . . . , pn) + ε · OptΠ(P) .

For an ordered point set P := (p1, . . . , pn) we define γ(P) = (γ(p1), . . . , γ(pn)). Since the
oblivious optimization problem does not depend on the order of the points, we can define
OptΠ(Pcore, w) := OptΠ(γ(P)).

From Definition 5.1.12 the definition of coresets for the problems Euclidean MaxCut, Eu-
clidean MaxTSP, Euclidean MaxMatching, und average distance follows.

Lemma 5.1.13 Let Π be an oblivious optimization problem, P be a set of n points in the Rd and
let Pcore ⊂ Rd with weight function w : Pcore → N be an ε-coreset for P and Π. Then

OptΠ(Pcore, w) ∈ OptΠ(P) · (1± ε)

and
OptΠ(P) ∈ OptΠ(Pcore, w) · (1± 2ε) .

ut

5.2 Coresets for k-Median
We now give a description of our technique to construct coresets of small size. We always assume
that all points lie in a bounding cube of sidelength 1, for example [0, 1]d. This can be achieved
by scaling the points appropriately. Additionally we assume that the optimal objective function
value Opt of the respective problem is at least 1/∆̃. We only need a weak bound ∆̃, since all
space and time bounds of our algorithms will depend logarithmically on ∆̃.

In this section we describe our coreset construction for the k-median problem. The next chap-
ters will adapt the techniques to construct coresets for k-means and oblivious optimization prob-
lems.
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5.2 Coresets for k-Median

5.2.1 Construction of the Coreset

We impose Z nested square grids G0, . . . ,GZ−1 over the point space for some parameter Z =⌈
log
(
4·k·10d·n(1+logn)·d(d+1)/2·e∆

εd+1

)⌉
+ 1. The side length of the grid cells in grid Gi is 1

2i . Our
goal will be to identify for each grid Gi its heavy cells, i.e. cells that contain more than a certain
threshold of points. This threshold depends on the side length of the grid cells and grows with
its inverse (the smaller the cells, the larger the threshold). We will parametrize the threshold by
some small value δ < n, which is specified later.

Definition 5.2.1 (Heavy Cells) We call a cell of grid Gi heavy, if it contains at least δ · 2i points
of P. A grid cell that is not heavy is light.

Our process consists of two phases. In phase I we determine the coreset points. In phase II
we determine their weight. We begin with a description of phase I. The algorithm starts with the
coarsest grid G0. First, it identifies every heavy cell in G0. Note that grid G0 consists of only one
cell containing all points. Since δ < n this cell is a heavy cell. Then the algorithm subdivides
every heavy cell C into 2d equal sized quadratic subcells. These subcells are contained in grid
G1. We call C the parent cell of these subcells. If none of these subcells is heavy we place a
coreset point in the center of the cell. Otherwise, the algorithm recurses this process with all
heavy subcells. The recursion eventually stops because at some point a heavy cell is required to
have more than n points inside.

It remains to determine the weight of each coreset point. This is done in phase II of the
algorithm. We can think of phase two as ‘moving the points’ to their corresponding coreset
points. The weight of a coreset point is simply the number of points moved to its position. The
movement must satisfy the following invariant

(a) every point stays in the smallest heavy cell it is contained it.

By our construction, every heavy cell must contain a coreset point. Thus it is easy to satisfy our
invariant. We can simply move every point p of P to an arbitrary coreset point that is contained in
the smallest heavy cell containing p. Finally, the weights of each coreset point is determined by
the number of points moved to it. We will prove that for suitably chosen δ the resulting weighted
set of points Pcore is an ε-coreset for the k-median problem of size O(k · logn/εd).

Below we describe our algorithm in pseudocode. It computes the coreset Pcore together with
weights w(p) for each point p ∈ Pcore.

'

&

$

%

COMPUTECORESET(P,Opt)
Let H1, . . . ,Hh denote the heavy cells in grid G0
return

⋃h
i=1 COMPUTECORESETPOINTS(Hi)
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5 The Coreset Method

'

&

$

%

COMPUTECORESETPOINTS (cell C)
if C has no heavy subcells then
p← center of C
w(p)← number of points in C
return {p}

else
Let H1, . . . ,Hh denote the heavy subcells of C
Let L1, . . . ,L` denote the light subcells of C
Letm denote the number of points in

⋃`
i=1 Li

Pcore =
⋃h
i=1 COMPUTECORESETPOINTS(Hi)

Let q be an arbitrary point in Pcore

w(q)← w(q) +m

return Pcore

We will now prove that the point set computed by COMPUTECORESET is indeed an ε-coreset
for k-median.

We denote byL(i) the set of non-empty light cells of grid Gi whose parent cell is heavy. Notice
that

⋃
i L(i) partitions the plane.

Claim 5.2.2 Any point p ∈ L(i) is moved a distance of at most
√
d

2i−1 during our coreset con-
struction.

Proof : Our invariant assures that every point p stays within the smallest heavy cell it is
contained in. Every point p that is contained in L(i) is contained in a heavy cell in grid Gi−1.
Therefore, it is moved at most the diagonal length of cells in Gi−1, i.e.

√
d

2i−1 . 2

From now on let C be an arbitrary fixed set of k centers. We partition the sets L(i) into two
subsets Lnear(i) and Ldist(i). Lnear(i) contains all cells C whose distance minq∈C d(q, C) to the
nearest center from C is at most 4

ε
·
√
d
2i , i.e.

Lnear(i) = {C ∈ L(i) | min
q∈C

d(q, C) ≤ 4

ε
·
√
d

2i
} .

Ldist(i) contains all other cells from L(i), i.e.

Ldist(i) = {C ∈ L(i) | min
q∈C

d(q, C) >
4

ε
·
√
d

2i
} .

Claim 5.2.3 The total movement
∑
i

∑
p∈Ldist(i)

√
d

2i−1 of points in distant cells satisfies

∑
i

∑
p∈Ldist(i)

√
d

2i−1
≤ ε

2
Median(P,C) .
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5.2 Coresets for k-Median

Proof : We use a charging argument from [61].

∑
i

∑
p∈Ldist(i)

√
d

2i−1
=

ε

2

∑
i

∑
p∈Ldist(i)

4

ε
·
√
d

2i

≤ ε

2
·Median(P,C) ,

where the last inequality follows from the fact that every point in Ldist(i) contributes more than
4
ε
·
√
d
2i to the cost of the solution C. 2

Claim 5.2.4 For δ ≤ εd+1·Opt
4·k·10d·(1+logn)·d(d+1)/2 we get

∑
i

∑
p∈Lnear(i)

√
d

2i−1
≤ ε

2
Median(P,C) .

Proof : We observe that the furthest point in a cell in Lnear(i) can have a distance of at most√
d
2i + 4

ε
·
√
d
2i =

(
1+ 4

ε

)
·
√
d
2i to the nearest center. Hence, every cell in Lnear(i) is contained in

a cube of sidelength 2 ·
(
1+ 4

ε

)
·
√
d
2i that is centered at one of the k centers of C. Each of these

cubes has volume
(
2 ·
(
1+ 4

ε

)
·
√
d
2i

)d
≤
(
10
ε

)d ·(√d
2i

)d
. Every cell in grid Gi has volume

(
1
2i

)d.

Hence, there can be at most k ·
(
10
ε

)d · dd/2 cells in Lnear(i).
Each of the considered cells is light and so it contains at most δ · 2i points. Hence for our

choice of δ:∑
i

∑
p∈Lnear(i)

√
d

2i−1
=

∑
i:Lnear(i) 6=∅

∑
p∈Lnear(i)

√
d

2i−1

≤
∑

i:Lnear(i) 6=∅

(
k ·
(
10

ε

)d
· dd/2

)
·
(
δ · 2i

)
·

(√
d

2i−1

)

≤
∑

i:Lnear(i) 6=∅

δ ·

(
2 · k ·

(
10

ε

)d
· dd/2

)
·
√
d

≤ ε

2
·

 1

1+ logn

∑
i:Lnear(i) 6=∅

Opt


≤ ε

2
· Median(P,C)

1+ logn
· |{i : Lnear(i) 6= ∅}|

Now we observe that Lnear(i) 6= ∅ implies that there are non-empty light cells in grid Gi and
heavy cells in grid Gi−1. We can have non-empty light cells only if δ · 2i > 1, since otherwise
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all non-empty cells are heavy. We can have heavy cells in grid Gi−1 only if δ · 2i−1 ≤ n,
since otherwise all cells are light. Hence we sum up only over those values of i that satisfy
1/2 < δ · 2i−1 ≤ n. Clearly, these are at most 1+ logn distinct values and so we get

ε

2
· Median(P,C)

1+ logn
· |{i : Lnear(i) 6= ∅}| ≤ ε

2
·Median(P,C) ,

which concludes the proof of Claim 5.2.4 2

Lemma 5.2.5 The set Pcore is an ε-coreset for δ ≤ εd+1·Opt
4·k·10d·(1+logn)·d(d+1)/2 .

Proof : We first observe that every point of P is contained in some cell in
⋃
i L(i). By Claim

5.2.2 we know that every point that is contained in a grid cell in L(i) is moved a distance of at
most

√
d

2i−1 . Therefore, Claims 5.2.3 and 5.2.4 imply that the points are moved an overall distance
of at most εMedian(P,C). Finally, we observe that the cost of any set of k centers changes by at
most ±D when the points of the point set P are moved by an overall distance of D. Hence the
set Pcore constructed by our algorithm is an ε-coreset for k-median. 2

5.2.2 Size of the Coreset

Our next step is to give an upper bound on the size of the coreset. For every grid Gi we define
M(i) to be the set of heavy cells that do not have a heavy subcell. Notice that the cells M(i)

are exactly those cells that contain a coreset point. Hence, it will be sufficient to determine the
cardinality of this set.

Definition 5.2.6 (Center cells) Let Copt denote an optimal set of k centers for the k-median
problem. A cell C in grid Gi is called a center cell, if its distance to the nearest center in Copt is
less than

√
d

2i+1 , i.e. if minq∈Copt d(q, C) <
√
d

2i+1 .
We define Mcenter(i) = {C ∈ M(i)|C is center cell} to be the subset of M(i) that are center

cells. We use Mexternal(i) = M(i) \ Mcenter(i) to denote the remaining cells of M(i). We call
these cells external cells.

Claim 5.2.7 Every external cell contributes at least δ ·
√
d/2 to the cost Opt of Copt.

Proof : Every external cell C ∈ M(i) is a heavy cell and so it contains at least δ·2i points. Each
point contributes at least

√
d

2i+1 to the cost of the optimal solution. Hence the overall contribution
of the points in C is at least δ ·

√
d/2. 2

Lemma 5.2.8 If δ ≥ εd+1·Opt
8·k·10d·(1+logn)·d(d+1)/2 , the size of the coreset is at most 17·k·10

d·(2+logn)·dd/2

εd+1 =

O(k · logn/εd+1).
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Proof : From Claim 5.2.7 it follows that∣∣⋃
i

Mexternal(i)
∣∣ ≤ 2 · Opt

δ ·
√
d
.

All cells from Mcenter(i) are contained in k cubes of sidelength 2
(√

d
2i +

√
d

2i+1

)
= 3·

√
d

2i . Since

each cube volume is
(
3·
√
d

2i

)d
and each cell volume is

(√
d
2i

)d /
dd/2, we know that∣∣Mcenter(i)

∣∣ ≤ k · 3d · dd/2 .
Using similar arguments as in the proof of Claim 5.2.4 we obtain that M(i) 6= ∅ for at most
1+ logn distinct values of i. Therefore, we get∣∣⋃

i

Mcenter(i)
∣∣ ≤ (logn+ 1) · k · 3d · dd/2 .

Since
⋃
iM(i) =

⋃
i

(
Mexternal(i)∪Mcenter(i)

)
, the size of the coreset is at most 2·Opt

δ·
√
d
+(logn+

2) · k · 3d · dd/2.
For δ ≥ εd+1·Opt

8·k·10d·(1+logn)·d(d+1)/2 , the size of the coreset is at most 17·k·10
d·(2+logn)·dd/2

εd+1 . 2

5.2.3 Finding a suitable value of δ
The coreset construction so far was dependent on a value of δ, which itself was dependent on the
unknown value of Opt. We show how to find a suitable value of δ.

A good value for δ can be found using the statements of Lemma 5.2.5 and 5.2.8. Let be
δ0 := εd+1·Opt

4k·10d(1+logn)d(d+1)/2 .

• All coresets constructed with a value δ ≤ δ0 are ε-coresets according to Lemma 5.2.5.

• All coresets constructed with a value δ ≥ δ0/2 have a size of at most S := 17·k·10d·(2+logn)·dd/2

εd+1

according to Lemma 5.2.8.

For each value of j ∈ {0, 1, . . . , blog(n · ∆̃ ·
√
d)c} let be

δ(j) =
εd+1

4k · 10d(1+ logn)d(d+1)/2 · ∆̃
· 2j .

Denote that the coreset constructed for the highest value of δ(j) is of size at most S because
this value of δ is greater than δ0 ·n ·

√
d/(2 ·Opt), which is bigger than δ0/2, since all points lie

in a unit cube.
We want to identify a value j0 ∈ {0, 1, . . . , blog(n · ∆̃ ·

√
d)c}, such that

the coreset constructed with the value δ = δ(j0) is of size at most S and
the coreset constructed with the value δ = δ(j0 − 1) is of size greater than S.

If the coreset constructed with the value δ = δ(0) is of size at most S, we set j0 = 0. The value
j0 can be easily obtained performing a binary search on the values of j.
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Lemma 5.2.9 The coreset constructed with δ = δ(j0) is an ε-coreset for P. The size of the
coreset is at most S.

Proof : By the choice of j0 the size of the computed coreset is at most S.
We show that the constructed coreset is an ε-coreset. If j0 = 0 then the coreset is an ε-coreset

because δ(j0) = δ0/(Opt · ∆̃) ≤ δ0.
If j0 6= 0 then the coreset constructed for the value δ = δ(j0 − 1) = δ(j0)/2 of size greater

than S. Therefore we must have δ(j0)/2 < δ0/2. It follows δ(j0) < δ0 and the computed coreset
is an ε-coreset. 2

In each iteration of the binary search we have to decide if the size of the coreset is at most
S. This can be done by constructing the coreset and stopping the process if the number of
disjoint heavy cells exceeds S. The marking process yielding to the actual coreset can be seen
as a quadtree traversal. Each inner node of this quadtree corresponds to a heavy cell. If on
one grid the number of heavy cells exceeds S, we stop the process. Since we have at most
Z = O(log(n · ∆̃/ε)) grids, the tree traversal can be done in time O(S · log(∆̃ · n/ε)) =

O(k · logn · log(∆̃ · n/ε)/εd+1).
Since we haveO(log log(∆̃ ·n)) iterations of the binary search, the coreset can be constructed

in time O(k · logn · log(∆̃ · n/ε) log log(∆̃ · n)/εd+1).
Note that given a point set P we can first build a quadtree of depth Z of the points in time

O(n ·Z) = O(n · log(n · ∆̃/ε)). Using this quadtree we can then answer queries on the number
of points in certain grid cells in constant time.

Theorem 11 Assume that we are given a point set P ⊂ [0, 1]d of size n ∈ N and the guarantee
that the value Opt of an optimal k-median solution is at least 1/∆̃. For each value of i ∈
{0, 1, . . . , Z} with Z =

⌈
log
(
4·k·10d·n(1+logn)·d(d+1)/2·e∆

εd+1

)⌉
+ 1 we have a square grid Gi over the

point space, all cells of side length 1
2i .

Given an oracle, which answers queries on the number of points in grid cells in constant time,
we can compute in time O(k · logn · log(∆̃ · n/ε) · log log(∆̃ · n)/εd+1) an ε-coreset of size
O(k · logn/εd+1) for k-median.

A respective oracle can be constructed in time O(n · log(n · ∆̃/ε)).

5.3 Coresets for k-Means
We show how to modify our coreset construction for the k-median problem in a way such that it
works for the k-means problem.

5.3.1 Construction of the Coreset
We again use Z nestes square grids G0, . . . ,GZ for Z =

⌈
log
(
8·k·33d+1·n(1+logn)·d(d+2)/2·e∆

εd+2

)⌉
+ 1.

The side length of the cells in grid Gi is 1
2i . We use the following modified definition for heavy

cells.
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Definition 5.3.1 (Heavy Cells) We call a grid cell of grid Gi heavy for the k-means clustering
problem, if it contains at least δ · 4i points.

We use the same invariant as in the construction of the coreset for the k-median problem, i.e.
every point stays in the smallest heavy cell it is contained in. Similarly, as in the construction
for k-median we denote by L(i) the set of non-empty light cells in grid Gi whose parent cell is
heavy. We get the following modified version of Claim 5.2.2 with an analogous proof.

Claim 5.3.2 Any point p ∈ L(i) is moved a distance of at most
√
d

2i−1 during our coreset con-
struction. ut

From now on let C be an arbitrary fixed set of k centers. We partition the sets L(i) into two
subsets Lnear(i) and Ldist(i). Lnear(i) contains all cells C whose distance minq∈C d(q, C) to the
nearest center from C is at most 16

ε
·
√
d
2i , i.e.

Lnear(i) = {C ∈ L(i) | min
q∈C

d(q, C) ≤ 16

ε
·
√
d

2i
} .

Ldist(i) contains all other cells from L(i), i.e.

Ldist(i) = {C ∈ L(i) | min
q∈C

d(q, C) >
16

ε
·
√
d

2i
} .

Claim 5.3.3 For any point p ∈ P let p̂ denote its corresponding coreset point. Then we have∣∣∑
i

∑
p∈Ldist(i)

d(p,C)2 −
∑
i

∑
p∈Ldist(i)

d(p̂, C)2
∣∣ ≤ ε

2
Means(P,C)

Proof : We use a charging argument similar to one from [61]. Let p be an arbitrary point in P
and p̂ be the corresponding coreset point. By Claim 5.3.2 we know that d(p, p̂) ≤

√
d

2i−1 . We get

d(p̂, C)2 ≤

(
d(p,C) +

√
d

2i−1

)2
= d(p,C)2 + 2d(p,C) ·

√
d

2i−1
+

d

4i−1

and since d(p,C) >
√
d

2i−1 :

d(p̂, C)2 ≥

(
d(p,C) −

√
d

2i−1

)2
≥ d(p,C)2 − 2d(p,C) ·

√
d

2i−1
−

d

4i−1
.

We also know that d(p,C) ≥ 16
ε
·
√
d
2i and so

∣∣d(p,C)2 − d(p̂, C)2
∣∣ ≤ 2d(p,C) ·

√
d

2i−1
+

d

4i−1

≤ ε

4
d(p,C)2 +

(ε
8

)2
d(p,C)2

≤ ε

2
d(p,C)2 .
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We get

∣∣∣∣∣∣
∑
i

∑
p∈Ldist(i)

d(p,C)2 −
∑
i

∑
p∈Ldist(i)

d(p̂, C)2

∣∣∣∣∣∣ ≤
∑
i

∑
p∈Ldist(i)

∣∣d(p,C)2 − d(p̂, C)2
∣∣

≤
∑
i

∑
p∈Ldist(i)

ε

2
d(p,C)2 ≤ ε

2
Means(P,C) .

2

Our next step is to give an upper bound on the change of the contribution of points in near
cells.

Claim 5.3.4 For δ ≤ εd+2·Opt
8(1+logn)·k·33d+1·d(d+2)/2 we get

∣∣ ∑
i:Lnear(i) 6=∅

∑
p∈Lnear(i)

(
d(p,C)2 − d(p̂, C)2

)∣∣ ≤ ε

2
·Means(P,C) .

Proof : We use a similar volume argument as in the proof of Claim 5.2.4. Any cell in Lnear(i)

must be contained in one of k cubes of volume
[
2
(
16
√
d

ε·2i +
√
d
2i

)]d
=
[(
32
ε

+ 1
) √

d
2i

]d
≤
(
33
ε

)d ·(√
d
2i

)d. Each cell has a volume of
( √

d√
d·2i

)d. Therefore, there can be at most k ·
(
33
ε

)d · dd/2 such
cells.

Let p be an arbitrary point in Lnear(i) and p̂ be the corresponding coreset point. We will show
d(p̂, C)2 − d(p,C)2 ≤

(
3+ 16

ε

)
· d
4i−1 and d(p̂, C)2 − d(p,C)2 ≥ −

(
3+ 16

ε

)
· d
4i−1 :

We observe that d(p,C) ≤ (1+ 8
ε
) ·

√
d

2i−1 . We get

d(p̂, C)2 ≤

(
d(p,C) +

√
d

2i−1

)2

≤ d(p,C)2 + 2d(p,C) ·
√
d

2i−1
+

d

4i−1

≤ d(p,C)2 + 2

(
1+

8

ε

)
·
√
d

2i−1
·
√
d

2i−1
+

d

4i−1

≤ d(p,C)2 +

(
3+

16

ε

)
· d

4i−1
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Case A: d(p,C) ≥
√
d

2i−1 . Then:

d(p̂, C)2 ≥

(
d(p,C) −

√
d

2i−1

)2

≥ d(p,C)2 − 2d(p,C) ·
√
d

2i−1
−

d

4i−1

≥ d(p,C)2 − 2

(
1+

8

ε

)
·
√
d

2i−1
·
√
d

2i−1
−

d

4i−1

≥ d(p,C)2 −

(
3+

16

ε

)
· d

4i−1

Case B: d(p,C) <
√
d

2i−1 . Then

d(p̂, C)2 ≥ 0 ≥ d(p,C)2 −
d

4i−1
≥ d(p,C)2 −

(
3+

16

ε

)
· d

4i−1

Altogether we obtain
∣∣d(p̂, C)2 − d(p,C)2

∣∣ ≤ (3+ 16
ε

)
· d
4i−1 .

Each of the considered cells is light and so it contains at most δ · 4i points. Hence for our
choice of δ: ∣∣∣∣∣∣

∑
i:Lnear(i) 6=∅

∑
p∈Lnear(i)

(
d(p,C)2 − d(p̂, C)2

)∣∣∣∣∣∣
≤

∑
i:Lnear(i) 6=∅

∑
p∈Lnear(i)

∣∣d(p,C)2 − d(p̂, C)2
∣∣

≤
∑

i:Lnear(i) 6=∅

δ · 4i︸ ︷︷ ︸
number of points per cell

· k ·
(
33

ε

)d
· dd/2︸ ︷︷ ︸

number of cells

·
(
3+

16

ε

)
· d

4i−1

≤
∑

i:Lnear(i) 6=∅

δ · 4 · k ·
(
33

ε

)d+1

· dd/2d

≤ ε

2
·

 1

1+ logn
·
∑

i:Lnear(i) 6=∅

Opt


≤ ε

2
·Means(P,C) ,

where the last inequality follows from a similar argument as in the proof of Claim 5.2.4. 2

It follows immediately, that

Lemma 5.3.5 The set Pcore is an ε-coreset for δ ≤ εd+2·Opt
8(1+logn)·k·33d+1·d(d+2)/2 . ut
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5 The Coreset Method

5.3.2 Size of the Coreset
We adapt the proof for the k-median problem to k-means. In the following we give the slightly
changed definitions we require. For every grid Gi we define M(i) to be the set of heavy cells
that do not have a heavy subcell.

Definition 5.3.6 (Center cells) LetCopt denote an optimal set of k centers for the k-means prob-
lem. A cell C in grid Gi is called a center cell, if its distance to the nearest center in Copt is less
than

√
d

2i+1 , i.e. if minq∈Copt d(q, C) <
√
d

2i+1 .

We define Mcenter(i) = {C ∈ M(i)|C is center cell} to be the subset of M(i) that are center
cells. We use Mexternal(i) = M(i) \Mcenter(i) to denote the remaining cells of M(i). We call
these cells external cells.

Claim 5.3.7 Every external cell contributes at least δ · d/4 to the cost Opt of Copt.

Proof : Every external cell C is a heavy cell and so it contains at least δ · 4i points. Each point
contributes at least

( √
d

2i+1

)2 to the cost of the optimal solution. Hence the overall contribution of
the points in C is at least δ · d/4. 2

Lemma 5.3.8 If δ ≥ εd+2·Opt
16(1+logn)·k·33d+1·d(d+2)/2 , the size of the coreset is at most 65(1+logn)·k·33d+1·dd/2

εd+2 =

O(k logn/εd+2).

Proof : From Claim 5.3.7 it follows that∣∣⋃
i

Mexternal(i)
∣∣ ≤ 4 · Opt

δ · d
.

All cells from Mcenter(i) are contained in k cubes of sidelength 2
(√

d
2i +

√
d

2i+1

)
= 3·

√
d

2i . Since

each cube volume is
(
3·
√
d

2i

)d
and each cell volume is

(√
d
2i

)d /
dd/2, we know that∣∣Mcenter(i)

∣∣ ≤ k · 3d · dd/2 .
Using similar arguments as in the proof of Claim 5.2.4 we obtain that M(i) 6= ∅ for at most
1+ logn distinct values of i. Therefore, we get∣∣⋃

i

Mcenter(i)
∣∣ ≤ (logn+ 1) · k · 3d · dd/2 .

Since
⋃
iM(i) =

⋃
i

(
Mexternal(i) ∪ Mcenter(i)

)
, the size of the coreset is at most 4·Opt

δ·d +

(logn + 1) · k · 3d · dd/2. For δ ≥ εd+2·Opt
16(1+logn)·k·33d+1·d(d+2)/2 , the size of the coreset is at most

65(1+logn)·k·33d+1·dd/2

εd+2 . 2
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5.3.3 Finding a suitable value of δ
To find a suitable value of δ we use the method of Section 5.2.3. We plug in the values δ0 :=

εd+2·Opt
8(1+logn)·k·33d+1·d(d+2)/2 and S := 65(1+logn)·k·33d+1·dd/2

εd+2 , and set for j ∈ {0, 1, . . . , blog(n · ∆̃ ·
√
d)c}:

δ = δ(j) =
εd+2

8(1+ logn) · k · 33d+1 · d(d+2)/2 · ∆̃
· 2j .

Doing a binary search on the values of j we again find a value j0 such that the coreset constructed
with the value δ = δ(j0) is of size at most S and the coreset constructed with the value δ =

δ(j0 − 1) is of size greater than S (if there is no such value we set j0 = 0). Lemma 5.2.9 and
it’s proof can be stated in the same way and the coreset constructed for this value of δ is then an
ε-coreset for k-means.

Theorem 12 Assume that we are given a point set P ⊂ [0, 1]d of size n ∈ N and the guar-
antee that the value Opt of an optimal k-means solution is at least 1/∆̃. For each value of
i ∈ {0, 1, . . . , Z} with Z =

⌈
log
(
8·k·33d+1·n(1+logn)·d(d+2)/2·e∆

εd+2

)⌉
+ 1 we have a square grid Gi

over the point space, all cells of side length 1
2i .

Given an oracle, which answers queries on the number of points in grid cells in constant time,
we can compute in time O(k · logn · log(∆̃ · n/ε) · log log(∆̃ · n)/εd+2) an ε-coreset of size
O(k · logn/εd+2) for k-means.

A respective oracle can be constructed in time O(n · log(n · ∆̃/ε)).

5.4 Coresets for Oblivious Optimization Problems
Let us assume that Π is `-Lipschitz and λ-mean preserving. We show that under these conditions
our k-Median algorithm run on instance P constructs a weighted point set Pcore that is an ε-coreset
for Π. We modify our proofs of the k-median coreset.

5.4.1 Construction of the Coreset
We also use Z nested grids Gi with side length 1

2i for Z =
⌈

log
(
n(1+logn)·d(d+1)/2·(10`)d+1·e∆

εd+1·λd

)⌉
+1.

We use the same definition of heavy cells.

Definition 5.4.1 (Heavy Cells) We call a cell of grid Gi heavy, if it contains at least δ · 2i points
of P. A grid cell that is not heavy is light.

We denote by L(i) the set of light cells of grid Gi whose parent cell is heavy. Notice that each
point is contained in exactly one cell of

⋃
i L(i). Claim 5.2.2 still holds.

We partition the sets L(i) into two subsets Lnear(i) and Ldist(i). Lnear(i) contains all cells C
whose distance d(µ, C) to the center of gravity µ is at most 4·`

ε·λ ·
√
d
2i , i.e.

Lnear(i) = {C ∈ L(i) | d(µ, C) ≤ 4 · `
ε · λ

·
√
d

2i
} .
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Ldist(i) contains all other cells from L(i), i.e.

Ldist(i) = {C ∈ L(i) | d(µ, C) >
4 · `
ε · λ

·
√
d

2i
} .

Claim 5.4.2 ∑
i

∑
p∈Ldist(i)

√
d

2i−1
≤ ε

2 · `
· Opt .

Proof : Any point in Ldist(i) has a distance of more than 4·`
ε·λ ·

√
d
2i from the center of gravity µ.

Therefore, we get ∑
i

∑
p∈Ldist(i)

√
d

2i−1
=

ε · λ
2 · `
∑
i

∑
p∈Ldist(i)

4 · `
ε · λ

·
√
d

2i

≤ ε · λ
2 · `
∑
i

∑
p∈Ldist(i)

d(p, µ)

≤ ε

2 · `
· Opt

where the last inequality holds because Π is λ-mean preserving. 2

Claim 5.4.3 For δ ≤ εd+1·λd·Opt
(1+logn)·d(d+1)/2·(10·`)d+1 we get

∑
i:L(i) 6=∅

∑
p∈Lnear(i)

√
d

2i−1
≤ ε

2 · `
Opt .

Proof : We observe that the furthest point in a cell in Lnear(i) can have a distance of at most
(1 + 4`

ελ
) ·

√
d
2i to the center of gravity. Hence, every cell in Lnear(i) is contained in a cube of

sidelength 2 ·
(
1+ 4`

ελ

) √
d
2i . The cube has volume

(
2 ·
(
1+ 4`

ελ

) √
d
2i

)d
≤
(
10`·

√
d

ελ·2i

)d
. Since every

cell in grid Gi has volume
(
1
2i

)d, there can be at most
(
10`
ελ

)d · dd/2 cells in Lnear(i).
Each cell in Lnear(i) is light and so it contains at most δ · 2i points. Hence,∑

i:L(i) 6=∅

∑
p∈Lnear(i)

√
d

2i−1

≤
∑

i:L(i) 6=∅

δ · 2i ·
(
10 · `
ελ

)d
· dd/2 ·

√
d

2i−1

≤ ε

2 · `
· Opt

for our choice of δ and using the same arguments as in Claim 5.2.4. 2
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Lemma 5.4.4 The set Pcore is an ε-coreset for δ ≤ εd+1·λd·Opt
(1+logn)·d(d+1)/2·(10·`)d+1 .

Proof : We first observe that every point of P is contained in exactly one cell in
⋃
i L(i). By

Claim 5.2.2 we know that every point that is contained in a grid cell in L(i) is moved a distance
of at most

√
d

2i−1 . Therefore, Claims 5.4.2 and 5.4.3 imply that the points are moved an overall
distance of at most ε

`
Opt. Since the optimization problem Π is `-Lipschitz we know that the cost

of any solution changes by at most±ε ·Opt under this movement. Hence the set Pcore constructed
by our algorithm is a coreset. 2

5.4.2 Size of the Coreset
Our next step is to give an upper bound on the size of the coreset. For every grid Gi we define
M(i) to be the set of heavy cells that do not contain a heavy subcell. Notice that the cells M(i)

are exactly those cells that contain a coreset point. Hence, it will be sufficient to determine the
cardinality of this set.

Definition 5.4.5 (Center Cells) Let µ denote the center of gravity of P. A cell C in grid Gi is
called a center cell, if its distance to µ is at most

√
d

2i+1 , i.e. if d(µ, C) ≤
√
d

2i+1 .

We define Mcenter(i) = {C ∈ M(i)|C is center cell} to be the subset of M(i) that are center
cells. We use Mexternal(i) = M(i) \Mcenter(i) to denote the remaining cells of M(i). We call
these cells external cells. We use G =

∑
p∈P d(p, µ) to denote the sum of distances to the center

of gravity.

Claim 5.4.6 Every external cell contributes at least δ ·
√
d/2 to G.

Proof : Every external cell C is a heavy cell and so it contains at least δ · 2i points. Each point
has a distance of at least

√
d

2i+1 to the center of gravity. Hence the overall contribution of the points
in C is at least δ ·

√
d/2. 2

Lemma 5.4.7 If δ ≥ εd+1·λd·Opt
2(1+logn)·d(d+1)/2·(10·`)d+1 , the size of the coreset is at most

4 · (1+ logn) · dd/2 · (10`)d+1

εd+1 · λd+1
= O(logn/εd+1) .

Proof : From Claim 5.4.6 and G =
∑
p∈P d(p, µ) ≤ 1

λ
· Opt it follows that∣∣⋃

i

Mexternal(i)
∣∣ ≤ 2 · Opt

δ · λ ·
√
d

) .

All cells from Mcenter(i) are contained in a cube of sidelength 2
(√

d
2i +

√
d

2i+1

)
= 3·

√
d

2i . Since the

cube volume is
(
3·
√
d

2i

)d
and each cell volume is

(
1
2i

)d, we know that∣∣Mcenter(i)
∣∣ ≤ 3d · dd/2 .
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Using similar arguments as in the proof of Claim 5.2.4 we obtain that M(i) 6= ∅ for at most
1+ logn distinct values of i. Therefore, we get∣∣⋃

i

Mcenter(i)
∣∣ ≤ (logn+ 1) · 3d · dd/2 .

Since
⋃
iM(i) =

⋃
i

(
Mexternal(i) ∪ Mcenter(i)

)
, the size of the coreset is at most 2·Opt

δ·λ·
√
d

+

(logn + 2) · 3d · dd/2. If δ ≥ εd+1·λd·Opt
2(1+logn)·d(d+1)/2·(10·`)d+1 , the size of the coreset is at most

4·(1+logn)·dd/2·(10`)d+1

εd+1·λd+1 .
2

5.4.3 Finding a suitable value of δ
To find a suitable value of δ we use the method of Section 5.2.3. We plug in the values δ0 :=

εd+1·λd·Opt
(1+logn)·d(d+1)/2·(10·`)d+1 and S := 4·(1+logn)·dd/2·(10`)d+1

εd+1·λd+1 , and set for j ∈ {0, 1, . . . , blog(n · ∆̃ ·
√
d · `)c}:

δ = δ(j) =
εd+1 · λd

(1+ logn) · d(d+1)/2 · (10 · `)d+1 · ∆̃
· 2j .

Doing a binary search on the values of j we again find a value j0 such that the coreset con-
structed with the value δ = δ(j0) is of size at most S and the coreset constructed with the value
δ = δ(j0− 1) is of size greater than S (if there is no such value we set j0 = 0). Lemma 5.2.9 and
it’s proof can be stated in the same way and the coreset constructed for this value of δ is then an
ε-coreset for the respective problem.

Theorem 13 Assume that we are given a point set P ⊂ [0, 1]d of size n ∈ N and the guarantee
that the value Opt of an optimal solution of the oblivious optimization problem is at least 1/∆̃.
For each value of i ∈ {0, 1, . . . , Z} with Z =

⌈
log
(
n(1+logn)·d(d+1)/2·(10`)d+1·e∆

εd+1·λd

)⌉
+ 1 we have a

square grid Gi over the point space, all cells of side length 1
2i .

Given an oracle, which answers queries on the number of points in grid cells in constant
time, we can compute in time O(logn · log(∆̃ · n/ε) · log log(∆̃ · n)/εd+1) an ε-coreset of size
O(logn/εd+1) for the respective problem.

A respective oracle can be constructed in time O(n · log(n · ∆̃/ε)).

Corollary 5.4.8 Given a set P of n points in Rd, a coreset for an oblivious optimization problem
can be constructed in time O(n · log(n/ε) + log2(n/ε) · log logn/εd+1).

Proof : We first scale the points such that all points lie in [0, 1]d and that there are two points
p, q ∈ P and a dimension i ∈ {1, . . . , d}, such that |p(i) −q(i)| = 1. Since the problem is λ-mean
preserving, we can conclude from the triangle inequality that Opt ≥ λ/2. Therefore we can set
∆̃ := 2/λ and have Opt ≥ 1/∆̃. We apply our coreset technique on the scaled point set. After
constructing the coreset we rescale the points. 2
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5.5 Constructing Solutions on the Coreset
In this section we will shortly show how to construct solutions to the various problems after
computing the coreset.

5.5.1 k-Median
We follow an approach of Har-Peled and Mazumdar [61].

Lemma 5.5.1 [61] Given a weighted set Pcore of |Pcore| points in Rd with total weight n, one
can compute a set D of size O(k2ε−2d log2 n) such that at least one subset C ⊂ D of size k
is a (1 ± ε)-approximate solution to the k-median problem on Pcore. The running time of this
algorithm is O(|Pcore| · log2 n+ k5 log9 n+ k2ε−2d log2 n).

As in [61] we can use this candidate set and an algorithm from [87] to compute a solution:

Lemma 5.5.2 [87] Given a weighted point set Pcore of |Pcore| points in Rd, with total weight n, a
setD of size at most |Pcore| such that at least one subset C ⊂ D of size k is a (1±ε)-approximate
solution to the k-median problem on Pcore, and a parameter δ > 0, one can compute a (1 ± ε)-
approximate k-median clustering of Pcore using only centers from D. The overall running time is
O(ρ · |Pcore| · (logk)(logn) log(1/δ)), where ρ = exp[O((1+ log 1/ε)/ε)d − 1]. The algorithm
succeeds with probability ≥ 1− δ.

Theorem 14 On the coreset Pcore we can compute a (1 ± ε)-approximate k-median solution in
time

O(ρk2 · logk · log3 n · log(1/δ) + k · log3 n · ε−d−1 + k5 log9 n+ k2ε−2d log2 n)

where ρ = exp[O((1+ log 1/ε)/ε)d − 1].

5.5.2 k-Means
We again follow an approach of Har-Peled and Mazumdar [61] to compute a (1±ε)-approximate
k-means clustering on Pcore. They use the following lemma:

Lemma 5.5.3 [99] Given a weighted set Pcore of |Pcore| points in Rd with total weight n, one can
compute a set D of size O(k2ε−2d logn · log( 1

ε
)) such that at least one subset C ⊂ D of size

k is a (1 ± ε)-approximate solution to the k-means problem on Pcore. The running time of this
algorithm is O(|Pcore| · log(|Pcore|) + |Pcore| · ε−d log 1

ε
).

As in [61] we can this candidate set D to compute a solution. We simply enumerate all k-
tuples in D, and compute the k-means clustering value of each candidate center set. This takes
O(|D|k · k · |Pcore|) time. The best tuple provides the required approximation.

Theorem 15 On the coreset Pcore we can compute a (1 ± ε)-approximate k-means solution in
time

Õ(k2k+2 · ε−2kd−d−2 · logk+1 n) .
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5.5.3 MaxCut
In this section we describe how to compute a MaxCut on the computed coreset. We adapt an
algorithm from [39] for unweighted metric MaxCut, which reduces metric MaxCut to MaxCut
in big dense weighted graphs. In general we could replace each weighted point by a number of
unweighted points and run [39] on the unweighted instance (having n nodes). Such a technique
has also been used in [72].

To avoid building the graph of size n we construct a new reduction from MaxCut on coresets
to MaxCut in small dense graphs. We will prove that the reduction can be done in space and time
polylogarithmic in n.

We assume that our coreset construction always constructs the coreset points exactly in the
middle of a heavy cell. Then we can use a property of our coreset, that each point p ∈ Pcore has
either a big weight or is far away from the next coreset point. Using this property the techniques
of this section follow the ideas of [39].

For every coreset point p ∈ Pcore let w(p) denote the weight of point p. We also assume that
n =
∑
p∈Pcore

w(p). For each partition (L, R) of Pcore we write

Cut(Pcore, L, R) =
∑

p∈L,q∈R

w(p) ·w(q) · d(p, q)

and for each complete graph G = (V, E) with weight function ω : E → R+ and each partition
(L, R) of V we write

Cut(Pcore, L, R) =
∑

p∈L,q∈R

ω(p, q) .

Recall that Opt denotes the value of an optimum cut (LOpt, ROpt) of the input point set P, scaled
by 1/n:

Opt = max
(L,R) partition of P

1

n
·
∑

p∈L,q∈R

d(p, q) .

We scale the distances such that the weighted average distance between the coreset points is
1, i.e. ∑

p,q∈Pcore

w(p) ·w(q) · d(p, q) = n2 .

In the following we will always assume that this equality holds.

Lemma 5.5.4
n

4
≤ Opt ≤ 2 · n

Proof : Since Pcore is an ε-coreset for P, we have:

Opt = max
(L,R) partition of P

1

n
·
∑

p∈L,q∈R

d(p, q)

≤ 1

1− ε
· max

(L,R) partition of Pcore

1

n
·
∑

p∈L,q∈R

w(p) ·w(q) · d(p, q) ≤ 2 · n
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To show that Opt ≥ n/4 we consider a random cut (A,B), where each point p ∈ Pcore is
independently put into A with probability 1/2 and otherwise put into B. The probability of each
edge (p, q) to be in the cut is then 1/2. By linearity of expectation the expected value of the cut
is E[Cut(Pcore, A, B)] = 1/2 ·

∑
p,q∈Pcore

w(p) ·w(q) · d(p, µ) = n2/2. Therefore the maximum
cut on Pcore must have a value greater than n2/2. Since Opt is the value of a maximum cut on P
scaled by 1/n and since Pcore is an ε-coreset for P, we conclude

Opt ≥ (1− ε) · n/2 ≥ n/4 .

2

We will use the coreset Pcore of an instance started with a value of δ fulfilling

εd+1 · Opt
80 · (1+ logn) · dd/2 · 40d

≤ δ ≤ εd+1 · Opt
10 · (1+ logn) · dd/2 · 40d

.

We can easily find such a value of δ because of Lemma 5.5.4. We define

β :=
εd+1

80 · (1+ logn) · dd/2 · 40d

Then we have
β ≤ δ

Opt
.

Lemma 5.5.5 For each point p ∈ Pcore let d(p) := min{d(p, q) | q ∈ Pcore} be the distance to
the next coreset point. Then we have:

d(p) ·w(p) ≥ β · n
8

.

Proof :
Our algorithm constructs the coreset points beginning with the finest grid GZ−1. In a grid Gi

a coreset point p is introduced in the middle of a cell C, iff C is heavy and has no heavy subcell
(only in that case we would already have a coreset point within C). Since the grid Gi has side
length 1

2i we conclude d(p) ≥ 1
2·2i . Since the cell C is heavy and all points in the cell are

mapped to p, we have w(p) ≥ δ · 2i and therefore d(p) · w(p) ≥ δ
2
≥ β·Opt

2
≥ β·n

8
. After

introducting the coreset point p no other coreset point can be introduced within distance 1
2·2i of

p, because the coreset construction goes on with larger cells and the distance to the border of the
cell containing p is then again at least 1

2·2i . Our method introduces no new coreset points in cells
already containing a coreset point. Since the weight of a coreset point can only increase during
the coreset construction, the lemma follows. 2

Definition 5.5.6 (Distance Weight) [39]: The distance weight ωp of a coreset point p ∈ Pcore

is defined asωp := w(p) ·
∑
q∈Pcore

w(q)d(p, q).
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5 The Coreset Method

Definition 5.5.7 (Graph of Clones) We define a weighted complete graphW = (X, E) where X
(called the set of clones) is a multiset of points. Each point p ∈ Pcore is cloned to create

⌊
8·ωp

ε·β·n2

⌋
identical points of X, and the edge between p ′ ∈ X, a clone of p ∈ Pcore, and q ′ ∈ X, a clone of
q ∈ Pcore, has weight

ep ′q ′ :=
ε2β2n4 ·w(p) ·w(q)

64 ·ωp ·ωq
· d(p, q) .

Edges between clones p ′, q ′ of the same point have weight ep ′q ′ := 0.

Lemma 5.5.8 :We have for each p ∈ Pcore:⌊
8 ·ωp
ε · β · n2

⌋
≥ (1− ε) · 8 ·ωp

ε · β · n2
.

Proof : Let p ∈ Pcore be an arbitrary coreset point. Then Lemma 5.5.5 shows:

ωp =
∑
q∈Pcore

w(p) ·w(q) · d(p, q) ≥
∑
q∈Pcore

w(q) · β · n
8

=
β · n2

8
.

Therefore:
8ωp

ε · β · n2
≥ 1

ε

and the lemma follows. 2

We now show that the constructed auxiliary graphW = (X, E) is small.

Lemma 5.5.9
(1− ε) · 8

εβ
≤ |X| ≤ 8

εβ

Proof : We have

|X| =
∑
p∈Pcore

⌊
8 ·ωp
ε · β · n2

⌋
≥
∑
p∈Pcore

(1− ε) · 8 ·ωp
ε · β · n2

= (1− ε) ·
∑

p,q∈Pcore

8

ε · β · n2
·w(p) ·w(q) · d(p, q) = (1− ε) · 8

ε · β

where the last equality comes from the scaling of the point distances and

|X| =
∑
p∈Pcore

⌊
8 ·ωp
ε · β · n2

⌋
≤
∑
p∈Pcore

8 ·ωp
ε · β · n2

=
8

ε · β
.

2
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Lemma 5.5.10 Each cut (L, R) of Pcore corresponds to a cut (L ′, R ′) ofW having the value

Cut(W,L ′, R ′) ≥ (1− ε)2 · Cut(Pcore, L, R) .

Each cut (L ′, R ′) ofW can easily be extended to a cut (L, R) of Pcore having the value

Cut(Pcore, L, R) ≥ Cut(W,L ′, R ′) .

Proof : Consider a cut (L, R) of Pcore, and let (L ′, R ′) be the induced cut of W where all clone
vertices of a point p ∈ L belong to L ′ and all clone vertices of a point p ∈ R belong to R ′. We
have:

Cut(W,L ′, R ′) =
∑

p ′∈L ′,q ′∈R ′

ep ′q ′

=
∑

p∈L,q∈R

⌊
8 ·ωp
ε · β · n2

⌋
·
⌊
8 ·ωq
ε · β · n2

⌋
· ε

2β2n4 ·w(p) ·w(q) · d(p, q)

64 ·ωp ·ωq

≥
∑

p∈L,q∈R

(1− ε)2 ·w(p) ·w(q) · d(p, q) = Cut(Pcore, L, R) .

On the other hand let (L ′, R ′) be an arbitrary cut of W. We will first alter the set (L ′, R ′) in a
way such that the value of the cut does not decrease and all clone vertices of a point p ∈ Pcore

belong to the same partition.
Consider a point p ∈ Pcore and let v be one of the clone vertices. We compute the values

CL :=
∑
w∈L ′

ev,w

and
CR :=

∑
w∈R ′

ev,w .

Notice that the value of the cut increases by CL − CR if we move one clone vertex of p from L ′

to R ′. If we move one clone vertex of p from R ′ to L ′ the value of the cut decreases by CL −CR.
If CL ≥ CR we put all clone vertices of p into R ′, not decreasing the cut. If CL < CR we

put all clone vertices of p into L ′, not decreasing the cut. We do this iteratively for all vertices
p ∈ Pcore. After that for each vertex p ∈ Pcore all clone vertices belong to the same partition.

We then construct a cut (L, R) of Pcore in the following way: We put a point p ∈ Pcore into
partition L if its clone vertices belong to partition L ′. Otherwise we put p into R. The value of
the cut is then:

Cut(Pcore, L, R) =
∑

p∈L,q∈R

w(p) ·w(q) · d(p, q)

≥
∑

p∈L,q∈R

⌊
8 ·ωp
ε · β · n2

⌋
·
⌊
8 ·ωq
ε · β · n2

⌋
· ε

2β2n4 ·w(p) ·w(q) · d(p, q)

64 ·ωp ·ωq

=
∑

p ′∈L ′,q ′∈R ′

ep ′q ′ = Cut(W,L ′, R ′)
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5 The Coreset Method

2

Lemma 5.5.10 shows that each (1 ± ε)-approximate solution of MaxCut on W can be ex-
trapolated to a (1 ± ε)3-approximate solution of MaxCut on Pcore. It remains to show how to
compute an approximate MaxCut on W. We will use an algorithm of [51] to compute such an
approximate solution. The algorithm works for so called dense graphs. We can show that W is
dense by showing that the maximum weight of an edge is at most a constant factor larger than
the average edge weight.

Lemma 5.5.11 maxp ′,q ′∈X(ep ′q ′) ≤ 16 · avgp ′,q ′∈X(ep ′q ′)

Proof : The average value of an edge e ∈ E is:∑
p,q∈Pcore

⌊
8·ωp

ε·β·n2

⌋
·
⌊
8·ωq

ε·β·n2

⌋
ε2β2n4·w(p)·w(q)·d(p,q)

64·ωp·ωq

|X|2

≥
∑
p,q∈Pcore

(1− ε)2 ·w(p) ·w(q) · d(p, q)

|X|2
= (1− ε)2

n2

|X|2
≥ (1− ε)2

n2 · ε2 · β2

64

where the last inequality comes from Lemma 5.5.9.

To show an upper bound for all edge weights we use that for each point p ∈ Pcore:

ωp

w(p)
=
∑
q∈Pcore

w(q) · d(p, q) =
1

n

( ∑
q,z∈Pcore

w(q) ·w(z) · d(p, q)

)

=
1

2n

(( ∑
q,z∈Pcore

w(q) ·w(z) · d(p, q)

)
+

( ∑
q,z∈Pcore

w(q) ·w(z) · d(p, z)

))

≥ 1

2n
·
∑

q,z∈Pcore

w(q) ·w(z) · d(q, z) =
n

2

Now take an arbitrary edge between clone vertices of p and q. Using the triangle inequality and
the fact that for arbitrary a, b ≥ 1 we have a+b

a·b ≤ 2
min{a,b}

, we can bound the weight of the edge
as follows:

ep ′q ′ =
d(p, q) · ε2β2n4 ·w(p) ·w(q)

64 ·ωp ·ωq

≤
1
n

(∑
z∈Pcore

w(z) · (d(p, z) + d(z, q)
)
· ε2β2n4 ·w(p) ·w(q)

64 ·ωp ·ωq

=
ε2β2n3

64
·
(
ωp

w(p)
+

ωq

w(q)

)
· w(p) ·w(q)

ωp ·ωq

≤ ε2β2n3

64
· 2

min{
ωp

w(p)
,
ωq

w(q)
}
≤ ε2β2n3

64
· 4
n

=
ε2β2n2

16
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We conclude

max
p ′,q ′∈X

(ep ′q ′) ≤ 1

(1− ε)2
· 4 · avgp ′,q ′∈X(ep ′q ′) ≤ 16 · avgp ′,q ′∈X(ep ′q ′) .

2

Since W is a dense graph we can apply the algorithm of [51] to find a (1 ± ε)-approximate
MaxCut (L ′, R ′) forW inO

(
|X|2 · 2((1/ε)O(1))

)
= O

(
log2 n · 2((1/ε)O(1))

)
time. We extrapolate

this cut to a (1 ± ε)3 = (1 ± O(ε))-approximate Maxcut (L, R) on Pcore and get the following
result:

Theorem 16 A (1+ ε)-approximate MaxCut (L, R) on Pcore can be found in time

O
(

log2 n · 2((1/ε)O(1))
)
.

Remark 5.5.12 We can even compute in the same time an implicit MaxCut (A,B) of the input
point set P from the coreset:

After computing a good cut (L, R) of Pcore we can provide a partition of the whole space [0, 1]d

into two parts L and R. During our coreset construction we store the information about the
mappings of points to coreset points. When the points of a cell C are mapped to a coreset point
p ∈ L during the coreset construction, we assign the whole cell C to L. When the points of a
cell C are mapped to a coreset point p ∈ R during the coreset construction, we assign the whole
cell C to R. After the construction of the partition (L,R) of the plane we know that the partition
(A,B) of P with A := P ∩ L and B := P ∩R is a (1+ ε)-approximate MaxCut of P.

The computation of (L,R) from (L, R) can be done in poly(logn, 1/ε) time and space.

Together with the results of Corollary 5.4.8 we obtain the fastest method published so far (in
terms of n) to find a (1 ± ε)-approximation of the Euclidean MaxCut of a point set. Previous
methods had runtime O(n · logn · (2(1/ε)O(1)

+ logn)) [72] and O(n2 · 2O(1/ε2)) [37].

Theorem 17 Given a set P of n points in Rd, a (1± ε)-approximate solution for the Euclidean
MaxCut of the points can be found in time O(n · log(n/ε) + log2 n · log logn · 2((1/ε)O(1))).

5.5.4 MaxMatching
We are not aware of a method to compute an approximate MaxMatching solution on the weighted
coreset points directly without expanding the coreset.

One could replace each point p ∈ Pcore having weight w(p) by w(p) unweighted points and
run the algortihm of Gabow[45], which finds an exact best solution in O(n3) time.

5.5.5 MaxTSP
We are again not aware of a method to find a (1 ± ε)-approximation of the MaxTSP tour even
on unweighted points. We could obtain a solution on the coreset Pcore by expanding the coreset
to a point set of size n and running an exhaustive search. The running time is O(n!).
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5 The Coreset Method

5.5.6 AverageDistance

The weighted average distance 1
n2

∑
p,q∈Pcore

w(p) · w(q) · d(p, q) on the coreset Pcore can be
easily computed in time O(|Pcore|

2) = O(log2 n · ε−d−2).

5.6 Coresets via Sampling

In the last sections we introduced a coreset construction technique, which is suitable to reduce the
complexity of a huge point set. We showed that the huge point set can be replaced by a weighted
point set of logarithmic size, which still holds all information needed to compute approximate
solutions for various clustering problems. However, to construct the coreset we need access to
the whole point set, which is not always given in real world applications dealing with huge point
sets.

In this chapter we will alter the construction such that it depends only on point samples. We
will show that the information about all point samples can itself be stored in polylogarithmic
memory. This will help us to develop data streaming algorithms in Chapter 6. The point sample
technique will also help us to maintain MaxCut clusterings of points when points are moving
along linear trajectories. See Chapter 7 for details.

We still assume that all points lie in [0, 1]d and that Opt ≥ 1/∆̃.

5.6.1 k-Median

We again consider Z grids G0, . . . ,GZ−1 for Z =
⌈

log
(
4·k·10d·n(1+logn)·d(d+1)/2·e∆

εd+1

)⌉
+ 1, grid Gi

having cell side length 1
2i . In each grid Gi we pick a random sample Si of points. To select our

random sample we take every point with probability

pi := min
{ α

δ · 2i
, 1
}

into our sample Si, where
α = 6 · ε−2 ln(2 · Z · 2Z·d/ρ)

and ρ is the desired error probability of our algorithm. The sampling is done at least α-wise
independently, which means that for each set A ⊂ P of at most α points and each partition
{B,C} of A:

Pr[B ⊂ Si ∧ C ∩ Si = ∅] = (pi)
|B| · (1− pi)

|C| .

Essentially this means that for each subset A ⊂ P of size α the sampling is done independently.
We will show that it follows from a variant of Chernoff bounds [113] that we can approximate

the number of points in every heavy cell up to a multiplicative error of (1 ± ε) just using our
point samples. The approximations will furthermore be good enough to detect the heavy cells
and to construct an ε-coreset in the same way as described before.
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Definition 5.6.1 (Considered as Heavy) For each cell C in grid Gi we define nC as the number
of points in C. We define our estimation on the number of points as

ñC := |Si ∩ C| · 1
pi
.

A cell C in grid Gi is considered as heavy, if

ñC ≥ (1− ε) · δ · 2i .

Lemma 5.6.2 The following events hold with probability at least 1 − ρ/2 for all grids Gi and
each grid cell in Gi:

• If i ≤ log( 2
εδ

), then ñC = nC .

• If C contains at least δ · 2i−1 points, then (1− ε) · nC ≤ ñC ≤ (1+ ε) · nC .

• If C contains less than δ · 2i−1 points, then ñC < (1 − ε) · δ · 2i (and the cell C is not
considered as heavy).

Proof : If i ≤ log( 2
εδ

) then pi = 1, the sample set equals the point set, and ñC = nC .
Let C be an arbitrary grid cell in Gi. To prove the last two statements for the single cell C we

use Theorem 1 of Section 2.4.

For each point p ∈ P let Xp denote the indicator random variable for the event that p ∈ Si.
We want to show that

∑
p∈C Xp does not deviate much from its expectation. If a cell contains at

least δ · 2i−1 points then E[
∑
p∈C Xp] ≥ α/2. From Theorem 1 it follows:

Pr
[∣∣∑
p∈C

Xp − E[
∑
p∈C

Xp]
∣∣ ≥ ε · E[

∑
p∈C

Xp]
]
≤ e− min{bα/2c,bε2α/6c}

Plugging in
∑
p∈C Xp = ñC · pi and E[

∑
p∈C Xp] = nC · pi we obtain

Pr
[∣∣ñC − nC

∣∣ ≥ ε · nC] ≤ ρ

2 · Z · 2Z·d
,

and the second statement follows with probability 1− ρ
2·Z·2Z·d .

Assume that C contains at most δ · 2i−1 points. If C contains exactly δ · 2i−1 points, we can
conclude from the formula above that

ñC ≤ (1+ ε) · nC < (1+ 1/3) · δ · 2i−1 = (1− 1/3) · δ · 2i < (1− ε) · δ · 2i

holds with probability 1 − ρ/(2 · Z · 2Zd). We observe that the distribution of ñC displaces
towards lower values when the number of points in the cell decreases, which means that Pr

[
ñC <

(1− ε)δ · 2i
]
≥ 1− ρ/(2 · Z · 2Zd) also holds for smaller numbers of points in C.
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We conclude that the two statements are valid for one fixed single cell C with probability
1 − ρ/(2 · Z · 2Zd). Since we have at most Z grids, each grid having at most 2Z·d cells, the two
statements are valid with probability 1− ρ/2 for all cells in all grids by the union bound.

2

If ñC ≥ (1− ε) · δ · 2i, a cell C ∈ Gi is considered as heavy. This way, we detect every heavy
cell but we also consider some light cells as heavy.

We then compute a coreset by introducing a coreset point in each cell considered as heavy (as
described in Section 5.2.1). This will increase the size of our coreset. The following corollaries
show that the size of the coreset is still logarithmic in n.

Corollary 5.6.3 Assume that the statements of Lemma 5.6.2 hold for all cells in all grids (which
happens with probability 1− ρ/2).

If δ ≥ εd+1·Opt
8·k·10d·(1+logn)·d(d+1)/2 , the size of the computed coreset is at most 33·k·10

d·(2+logn)·dd/2

εd+1 =

O(k · logn/εd+1).

Proof : We can easily modify the proof of Lemma 5.2.8 by plugging in δ/2 for the old
value of δ. The proof stays exactly the same and we can conclude that the size of the coreset
is at most 4·Opt

δ·
√
d

+ (logn + 2) · k · 3d · dd/2, which is smaller than the stated coreset size for

δ ≥ εd+1·Opt
8·k·10d·(1+logn)·d(d+1)/2 .

2

An important property of our sample technique is that although the sample can be large, it just
occupies a small number of cells (and can, as we show later, be stored efficiently).

Lemma 5.6.4 Let δ ≥ εd+1·Opt
8·k·10d·(1+logn)·d(d+1)/2 . Then we have points from at most

193 · Z · k · 10d · (1+ logn) · dd/2 · ln(2 · Z · 2Zd/ρ)
εd+3

= Õ(k · logn · log2(∆̃) · log(ρ−1)/εd+3)

cells in the union of our sample sets with probability at least 1− ρ/2.

Proof : Let Gi be a fixed grid. We determine an upper bound on the number of points in non-
center grid cells. Let us recall from the proof of Lemma 5.2.8 that every point except for those
contained in the k · 3d · dd/2 center cells has a distance of at least

√
d

2i+1 to the nearest center in an
optimal solution. Thus the overall number of points in non-center cells is at most Opt·2i+1

√
d

. Let Xp
denote the indicator random variable for the event that p ∈ Si. LetD denote the set of non-center
grid cells. We have E[

∑
p∈D Xp] ≤ pi ·

Opt·2i+1
√
d

≤ 2·α·Opt
δ·
√
d

. We will assume E[
∑
p∈D Xp] = 2·α·Opt

δ·
√
d

as the distribution of
∑
p∈D Xp displaces towards lower values when E[

∑
p∈D Xp] <

2·α·Opt
δ·
√
d

.
Applying Theorem 1 from Section 2.4 we get

Pr
[∑
p∈D

Xp ≥
4 · α · Opt

δ ·
√
d

]
≤ Pr

[∣∣∑
p∈D

Xp − E[
∑
p∈D

Xp]
∣∣ ≥ E[

∑
p∈D

Xp]
]

≤ e− min{bα/2c,bε2 α
δ
/3c} ≤ ρ

2Z
.
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Therefore, with probability at least 1 − ρ/(2Z) we have at most 4·α·Opt
δ·
√
d

points from non-center
cells in our sample. If no two of these points are contained in the same grid cell we get an
upper bound of 4·α·Opt

δ·
√
d

on the number of non-center cells that contain a sample point. Since there
are at most k · 3d · dd/2 center cells the number of cells occupied by sample points is at most
4·α·Opt
δ·
√
d

+ k · 3d · dd/2 ≤ 193·k·10d·(1+logn)·dd/2·ln(2·Z·2Zd/ρ)
εd+3 .

Since these arguments hold for each of the Z grids with probability 1 − ρ/(2Z), the Lemma
follows from the union bound. 2

To obtain a coreset we use the estimations ñC of the number of points in cells to identify the
cells we consider as heavy (all cells having ñC ≥ (1−ε)δ 2i). Since all heavy cells are considered
as heavy we obtain a finer coreset than before. We will now show how to find a good assignment
of weights to the computed coreset points, such that the computed coreset is an ε-coreset for P.

Since the weight of a coreset point will also depend on the number of points in some light
cells, we have to estimate the number of points in these cells. To get an estimate for all required
cells we use the following procedure. We require that the estimate ñC for the number of points in
a cell considered as heavy is a (1± ε)-approximation and that in every cell C ∈ Gi considered as
light there are not more than δ · 2i points (our coreset construction uses only these assumptions,
and they hold according to Lemma 5.6.2 with probability 1− ρ/2).

We call a cell useful, if it is either considered as heavy or a direct subcell of a cell considered
as heavy. We have to deal with the fact that the sum of the total estimated number of points∑

Cisubcell of C ñCi
in the subcells of C can exceed the estimated number of points ñC in C. To

avoid this we have to compute new integral estimates EC for the number of points in each useful
cell C, which still have the guarantee to be near the real value nC and which are consistent with
the values ECi

of the subcells of EC . We do this by first computing upper and lower bounds UC
resp. LC on nC for all useful cells. We will then adjust these bounds to be consistent with the
bounds for the subcells. Finally we will use the bounds to compute new estimates EC .

For i > log( 2
εδ

) and every cell C ∈ Gi considered as heavy we define LC = dñC/(1+ ε)e and
UC = bñC/(1− ε)c. For i > log( 2

εδ
) and every cell C ∈ Gi considered as light we define LC = 0

and UC = bδ2ic. For i ≤ log( 2
εδ

) and every cell C ∈ Gi we define LC = ñC and UC = ñC (since
we know the number of points in C exactly). Using these definitions we know for every cell that
LC ≤ nC ≤ UC).

The estimates EC can be computed bottom-up by adjusting the bounds LC and UC in cases of
conflicts:

We first compute new lower and upper bounds LC and UC for all useful cells bottom-up.
We look at the smallest cell C considered as heavy. Let Ci, i ∈ {1, ..., 2d} be its subcells. If∑2d

i=1 LCi
> LC , we set LC :=

∑2d

i=1 LCi
. If
∑2d

i=1UCi
< UC , we set UC :=

∑2d

i=1UCi
. After the

assignment LC ≤ nC ≤ UC still holds. We use this technique for all cells considered as heavy
(in the order of increasing size), getting better bounds LC and UC . From these bounds we then
compute the values EC top-down. Since the bounds LC andUC are always at least as strong as the
bounds of the subcells, we can always easily find integral values EC satisfying LC ≤ EC ≤ UC

and
∑2d

i=1 ECi
= EC .

Corollary 5.6.5 Assume that the statements of Lemma 5.6.2 are true for all grids and all cells.
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5 The Coreset Method

Then for each cell C identified as heavy we have (1− 4ε)nC ≤ EC ≤ (1+ 4ε)nC .
For each cell C ∈ Gi with i ≤ log( 2

εδ
) we have EC = nC .

All estimates EC are integral and consistent with the estimates ECi
for the subcells Ci of C.

Proof : The claim follows directly from the following two sequences of inequalities.

EC ≥ LC ≥ ñC/(1+ ε) ≥ 1− ε

1+ ε
nC ≥ (1− 2ε)nC

and

EC ≤ UC ≤ ñC/(1− ε) ≤ 1+ ε

1− ε
nC ≤ (1+ 4ε)nC .

2

We now apply the algorithm described in Section 5.2 to our estimations EC and compute a
coreset.

Lemma 5.6.6 If δ ≤ εd+1·Opt
4·k·10d·(1+logn)·d(d+1)/2 and ε < 1/15, the coreset computed with respect to

the values EC is a 11ε-coreset of P with probability 1− ρ.

Proof : Let P ′ be a point set that is distributed according to our estimations EC (so for every
useful cell C we have |P ′∩C| = EC). The proof of Lemma 5.2.5 shows that the coreset computed
by our algorithm is an ε-coreset for P ′. Let Q = {q1, . . . , qm} be the computed coreset points.
We will show that if we would know the point sets P and P ′, we could (using the coreset method)
compute mappings γ : P → Q and γ ′ : P ′ → Q and corresponding weight functionsw : Q→ N
and w ′ : Q → N, such that (Q,w) is an ε-coreset for P and (Q,w ′) is an ε-coreset for P ′ and
for all qi ∈ Q we have:

(1− 4ε)(w(qi) − 1) ≤ w ′(qi) ≤ (1+ 4ε)w(qi) + 1 (5.2)

and

w(qi) ≤
1

ε
=⇒ w(qi) = w ′(qi) . (5.3)

From that we will conclude that each solution on the point set P ′ differs by at most a factor of
(1 +O(ε)) from the solution on the point set P. Since the computed coreset is an ε-coreset for
P ′ it follows that it is a O(ε)-coreset for P.

Let us construct the mappings γ and γ ′. Lemma 5.2.5 shows that we construct a (1 + ε)-
coreset when we map each point p to a coreset point in the smallest heavy cell it is contained
in. We start the assignment of points to coreset points within the smallest useful cells. Since the
smallest useful cells are not heavy we do not assign any points to them. We proceed to assign
points in the useful cells at the next higher level. Going through the levels bottom-up we will
assign all points in useful cells and maintain the invariants (5.2) and (5.3).
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5.6 Coresets via Sampling

Let C be a cell considered as heavy. If there is no subcell considered as heavy, the algorithm
introduces a new coreset point q. We map all EC points from P ′ to q and all nC points from P

to q. Then w(q) = EC and w ′(q) = nC . Notice that w(q) < 1
ε

can only happen for a coreset
point q when a cell in grid Gi or a subcell is considered as heavy. Then δ · 2i−1 < 1

ε
according

to Lemma 5.6.2. This only happens in grids Gi with i < log( 2
εδ

) where EC = nC (Corollary
5.6.5) and therefore w(q) = w ′(q) after the assignment. This shows that invariant (5.3) holds.
Invariant (5.2) follows directly from Corollary 5.6.5.

Let us now consider the case that C ∈ Gi has already c coreset points q1, . . . , qc ∈ Q with
weightsw(qi) andw ′(qi), respectively and let us assume that the invariants (5.2) and (5.3) hold
for all these coreset points. Let l := nC −

∑c
i=1w(qi) resp. l ′ := EC −

∑c
i=1w

′(qi) be the
number of points which have to be assigned to the coreset points qi by γ resp. γ ′.

We consider six cases:

• l = 0 and l ′ = 0: In this case nothing has to be assigned and the invariant holds by the
assumption of the induction step.

• l > 0 and l ′ = 0 and i ≥ log( 2
εδ

): Each cell considered as heavy has at least δ · 2i−1
points accordings to Lemma 5.6.2 (The threshold can only have been higher during the
coreset constructions so far). Therefore each coreset point must have a weight of at least
δ · 2i−1 ≥ 1

ε
. It remains to show invariant (5.2). We have

(1− 4ε)

c∑
i=1

w(qi) = (1− 4ε)(nC − l) < (1− 4ε)nC ≤ EC =

c∑
i=1

w ′(qi) .

Therefore for one qi we have (1−4ε)w(qi) < w
′(qi) and we can assign at least one point

from P to qi by γ without violating invariant (5.2). After that assignment either l = 0 or
we find again a qi we can assign points to. We go on with this assignment until l = 0.

• l = 0 and l ′ > 0 and i ≥ log( 2
εδ

): Again we only have to show invariant (5.2). We have

c∑
i=1

w ′(qi) = EC − l ′ < EC

≤ (1+ 4ε)nC = (1+ 4ε)(nC − l) = (1+ 4ε)

c∑
i=1

w(qi) .

Therefore for one qi we havew ′(qi) < (1+4ε)w(qi) and we can assign at least one point
from P ′ to qi by γ ′ without violating the invariant. After that assignment either l ′ = 0 or
we again find a qi we can assign points to. We go on with this assignment until l ′ = 0.

• l > 0 and l ′ = 0 and i < log( 2
εδ

): In this case we have EC = nC and

c∑
i=1

w(qi) = nC − l < nC = EC =

c∑
i=1

w ′(qi) .

81



5 The Coreset Method

Since all w(qi) and w ′(qi) are integral, we have w(qi) ≤ w ′(qi) − 1 for one qi and we
can assign at least one point from P to qi by γ without violating the invariants. After that
assignment either l = 0 or we find again a qi we can assign points to. We go on with this
assignment until l = 0.

• l = 0 and l ′ > 0 and i < log( 2
εδ

): Again we have EC = nC and

c∑
i=1

w ′(qi) = EC − l ′ < EC = nC = (nC − l) =

c∑
i=1

w(qi) .

Therefore for one qi we have w ′(qi) ≤ w(qi) − 1 and can assign at least one point from
P ′ to qi by γ ′ without violating the invariant. After that assignment either l ′ = 0 or we
again find a qi we can assign points to. We go on with this assignment until l ′ = 0.

• l > 0 and l ′ > 0: We assign min{l, l ′} points from P to q1 by γ and min{l, l ′} points from
P ′ to q1 by γ ′. This does not violate the invariant. After the assignment we are in one of
the other cases.

After the inductive assignment we have constructed mappings γ and γ ′ and corresponding
weight functions w,w ′, such that invariants (5.2) and (5.3) hold. Using the invariants it is easy
to show that for all coreset points q:

(1− 5ε)w(q) ≤ w ′(q) ≤ (1+ 5ε)w(q) . (5.4)

If w(q) ≤ 1
ε

the inequality follows from invariant (5.3). If w(q) > 1
ε

we have:

w ′(q) ≥ (1−4ε)(w(q)−1) ≥ (1−4ε)(w(q)−ε·w(q)) = (1−4ε−ε+4ε2)w(q) ≥ (1−5ε)w(q)

and
w ′(q) ≤ (1+ 4ε)w(q) + 1 ≤ (1+ 4ε)w(q) + ε ·w(q) = (1+ 5ε)w(q)

and inequality (5.4) follows.

Let A denote the coreset computed by our sample algorithm. Since A is an ε-coreset for P ′

we know for each set of centers C:

Median(A,C) ∈ (1± ε) ·Median(P ′, C) .

From the arguments above we know that

Median(P ′, C) ∈ 1

1± ε
·Median((Q,w ′), C) ⊂ (1± 2ε) ·Median((Q,w ′), C) .

Since the weights w ′(q) and w(q) of each coreset-point in q ∈ Q differ by at most 5ε ·w(q),
we can conclude:

Median((Q,w ′), C) ∈ (1± 5ε) ·Median((Q,w), C) .
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5.6 Coresets via Sampling

Since (Q,γ) is an ε-coreset for P, we obtain:

Median((Q,w), C) ∈ (1± ε) ·Median(P,C) .

Alltogether we get for ε < 1/15 :

Median(A,C) ∈ (1± ε)2 · (1± 2ε) · (1± 5ε) ·Median(P,C) ⊂ (1± 11ε) ·Median(P,C) .

2

5.6.2 k-Means
In this section we will adapt the sampling technique of the last section to the problem k-means.
The proofs will be very similar to the proofs of the last section.

We again consider Z nested grids G0, . . . ,GZ−1 for Z =
⌈

log
(
8·k·33d+1·n(1+logn)·d(d+2)/2·e∆

εd+2

)⌉
+

1, grid Gi having cell side length 1
2i . In each grid Gi we pick a random sample Si of points. To

select our random sample we take every point with probability

pi = min
{ α

δ · 4i
, 1
}

into our sample Si, where
α = 6 · ε−2 ln(2 · Z · 2Z·d/ρ)

and ρ is the desired error probability of our algorithm. The sampling is done at least α-wise
independently, which means that for each set A ⊂ P of at most α points and each partition
{B,C} of A:

Pr[B ⊂ Si ∧ C ∩ Si = ∅] = (pi)
|B| · (1− pi)

|C| .

Essentially this means that for each subset A ⊂ P of size α the sampling is done independently.
We will show that it follows from a variant of Chernoff bounds [113] that we can approximate

the number of points in every heavy cell up to a multiplicative error of (1 ± ε) just using our
point samples. The approximations will furthermore be good enough to detect the heavy cells
and to construct an ε-coreset in the same way as described before.

Definition 5.6.7 (Considered as Heavy) For each cell C in grid Gi we define nC as the number
of points in C. We define our estimation on the number of points as

ñC := |Si ∩ C| · 1
pi
.

A cell C in grid Gi is considered as heavy, if

ñC ≥ (1− ε) · δ · 4i .

Lemma 5.6.8 The following events hold with probability at least 1 − ρ/2 for all grids Gi and
each grid cell in Gi:
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• If i ≤ log4(
2
εδ

), then ñC = nC .

• If C contains at least δ · 4i/2 points, then (1− ε) · nC ≤ ñC ≤ (1+ ε) · nC .

• If C contains less than δ · 4i/2 points, then ñC < (1 − ε) · δ · 4i (and the cell C is not
considered as heavy).

Proof : If i ≤ log4(
2
εδ

) then pi = 1, the sample set equals the point set, and ñC = nC .
Let C be an arbitrary grid cell in Gi. To prove the last two statements for the single cell C we

use Theorem 1 of Section 2.4.

For each point p ∈ P let Xp denote the indicator random variable for the event that p ∈ Si.
We want to show that

∑
p∈C Xp does not deviate much from its expectation. If a cell contains at

least δ · 4i/2 points then E[
∑
p∈C Xp] ≥ α/2. From Theorem 1 it follows:

Pr
[∣∣∑
p∈C

Xp − E[
∑
p∈C

Xp]
∣∣ ≥ ε · E[

∑
p∈C

Xp]
]
≤ e− min{bα/2c,bε2α/6c}

Plugging in
∑
p∈C Xp = ñC · pi and E[

∑
p∈C Xp] = nC · pi we obtain

Pr
[∣∣ñC − nC

∣∣ ≥ ε · nC] ≤ ρ

2 · Z · 2Z·d
,

and the second statement follows with probability 1− ρ
2·Z·2Z·d .

Assume that C contains at most δ · 4i/2 points. If C contains exactly δ · 4i/2 points, we can
conclude from the formula above that

ñC ≤ (1+ ε) · nC < (1+ 1/3) · δ · 4i/2 = (1− 1/3) · δ · 4i < (1− ε) · δ · 4i

holds with probability 1 − ρ/(2 · Z · 2Zd). We observe that the distribution of ñC displaces
towards lower values when the number of points in the cell decreases, which means that Pr

[
ñC <

(1− ε)δ · 4i
]
≥ 1− ρ/(2 · Z · 2Zd) also holds for smaller numbers of points in C.

We conclude that the two statements are valid for one fixed single cell C with probability
1 − ρ/(2 · Z · 2Zd). Since we have at most Z grids, each grid having at most 2Z·d cells, the two
statements are valid with probability 1− ρ/2 for all cells in all grids by the union bound.

2

If ñC ≥ (1− ε) · δ · 4i, a cell C ∈ Gi is considered as heavy. This way, we detect every heavy
cell but we also consider some light cells as heavy.

We then compute a coreset by introducing a coreset point in each cell considered as heavy (as
described in Section 5.3.1). This will increase the size of our coreset. The following corollaries
show that the size of the coreset is still logarithmic in n.

Corollary 5.6.9 Assume that the statements of Lemma 5.6.8 hold for all cells in all grids.
If δ ≥ εd+2·Opt

16·k·33d+1·(1+logn)·d(d+2)/2 , the size of the computed coreset is at most

129 · k · 33d+1 · (1+ logn) · dd/2

εd+2
= O(k · logn/εd+2) .
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Proof : We can easily modify the proof of Lemma 5.3.8 by plugging in δ/2 for the old
value of δ. The proof stays exactly the same and we can conclude that the size of the coreset
is at most 8·Opt

δ·d + (logn + 1) · k · 3d · dd/2, which is smaller than the stated coreset size for
δ ≥ εd+2·Opt

16·k·33d+1·(1+logn)·d(d+2)/2 .
2

An important property of our sample technique is that although the sample can be large, it just
occupies a small number of cells (and can, as we show later, be stored efficiently).

Lemma 5.6.10 Let δ ≥ εd+2·Opt
16·k·33d+1·(1+logn)·d(d+2)/2 . Then we have points from at most

769 · Z · k · 33d+1 · (1+ logn) · dd/2 · ln(2 · Z · 2Zd/ρ)
εd+4

= Õ(k·logn·log2(∆̃)·log(ρ−1)/εd+4)

cells in the union of our sample sets with probability at least 1− ρ/2.

Proof : Let Gi be a fixed grid. We determine an upper bound on the number of points in
non-center grid cells. Let us recall from the proof of Lemma 5.3.8 that every point except for
those contained in the k · 3d · dd/2 center cells has a distance of at least

√
d

2i+1 to the nearest center
in an optimal solution and therefore contributes with at least d

4i+1 to the optimal solution. Thus
the overall number of points in non-center cells is at most Opt·4i+1

d
. Let Xp denote the indicator

random variable for the event that p ∈ Si. Let D denote the set of non-center grid cells. We have
E[
∑
p∈D Xp] ≤ pi ·

Opt·4i+1

d
≤ 4·α·Opt

δ·d . We will assume E[
∑
p∈D Xp] = 4·α·Opt

δ·d as the distribution
of
∑
p∈D Xp displaces towards lower values when E[

∑
p∈D Xp] <

4·α·Opt
δ·d .

Applying Theorem 1 of Section 2.4 we get

Pr
[∑
p∈D

Xp ≥
8 · α · Opt
δ · d

]
≤ Pr

[∣∣∑
p∈D

Xp − E[
∑
p∈D

Xp]
∣∣ ≥ E[

∑
p∈D

Xp]
]

≤ e− min{bα/2c,bε2 α
δ
/3c} ≤ ρ

2Z
.

Therefore, with probability at least 1 − ρ/(2Z) we have at most 8·α·Opt
δ·d points from non-center

cells in our sample. Since in the worst case no two of these points are contained in the same grid
cell we get an upper bound of 8·α·Opt

δ·d on the number of non-center cells that contain a sample
point. Since there are at most k · 3d · dd/2 center cells the number of cells occupied by sample
points is at most 8·α·Opt

δ·d + k · 3d · dd/2 ≤ 769·k·33d+1·(1+logn)·dd/2·ln(2·Z·2Zd/ρ)
εd+4 .

Since these arguments hold for each of the Z grids with probability 1 − ρ/(2Z), the Lemma
follows from the union bound. 2

To obtain a coreset we use the estimations ñC of the number of points in heavy cells to identify
the cells we consider as heavy (all cells having ñC ≥ (1 − ε)δ 4i). Since all heavy cells are
considered as heavy we obtain a finer coreset than before. We will now show how to find a
good assignment of weights to the computed coreset points, such that the computed coreset is an
ε-coreset for P.
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Since the weight of a coreset point will also depend on the number of points in some light
cells, we have to estimate the number of points in these cells. To get an estimate for all required
cells we use the following procedure. We require that the estimate ñC for the number of points
in a heavy cell is a (1± ε)-approximation and that in every cell C ∈ Gi considered as light there
are not more than δ · 4i points (our coreset construction uses only these assumptions, and they
hold according to Lemma 5.6.8 with probability 1− ρ/2).

We call a cell useful, if it is either considered as heavy or a direct subcell of a cell considered
as heavy. We have to deal with the fact that the sum of the total estimated number of points∑

Cisubcell of C ñCi
in the subcells of C can exceed the estimated number of points ñC in C. To

avoid this we have to compute new integral estimates EC for the number of points in each useful
cell C, which still have the guarantee to be near the real value nC and which are consistent with
the values ECi

of the subcells of EC . We do this by first computing upper and lower bounds UC
resp. LC on nC for all useful cells. We will then adjust these bounds to be consistent with the
bounds for the subcells. Finally we will use the bounds to compute new estimates EC .

For i > log4(
2
εδ

) and every cell C ∈ Gi considered as heavy we define LC = dñC/(1+ε)e and
UC = bñC/(1−ε)c. For i > log4(

2
εδ

) and every cell C ∈ Gi considered as light we define LC = 0

andUC = bδ4ic. For i ≤ log4(
2
εδ

) and every cell C ∈ Gi we define LC = ñC andUC = ñC (since
we know the number of points in C exactly). Using these definitions we know for every cell that
LC ≤ nC ≤ UC).

The estimates EC can be computed bottom-up by adjusting the bounds LC and UC in cases of
conflicts:

We first compute new lower and upper bounds LC and UC for all useful cells bottom-up.
We look at the smallest cell C considered as heavy. Let Ci, i ∈ {1, ..., 2d} be its subcells. If∑2d

i=1 LCi
> LC , we set LC :=

∑2d

i=1 LCi
. If
∑2d

i=1UCi
< UC , we set UC :=

∑2d

i=1UCi
. After the

assignment LC ≤ nC ≤ UC still holds. We use this technique for all cells considered as heavy
(in the order of increasing size), getting better bounds LC and UC . From these bounds we then
compute the values EC top-down. Since the bounds LC andUC are always at least as strong as the
bounds of the subcells, we can always easily find integral values EC satisfying LC ≤ EC ≤ UC

and
∑2d

i=1 ECi
= EC .

Corollary 5.6.11 Assume that the statements of Lemma 5.6.8 are true for all grids and all cells.
Then for each cell C identified as heavy we have (1− 4ε)nC ≤ EC ≤ (1+ 4ε)nC .
For each cell C ∈ Gi with i ≤ log4(

2
εδ

) we have EC = nC .
All estimates EC are integral and consistent with the estimates ECi

for the subcells Ci of C.

Proof : The proof follows exactly the proof of Corollary 5.6.5. 2

We now apply the algorithm described in Section 5.3 to our estimations EC and compute a
coreset.

Lemma 5.6.12 If δ ≤ εd+2·Opt
8·k·33d+1·(1+logn)·d(d+2)/2 and ε < 1/15, the coreset computed with respect

to the values EC is an 11ε-coreset of P with probability 1− ρ.
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Proof : Let P ′ be a point set that is distributed according to our estimations EC (so for every
useful cell C we have |P ′∩C| = EC). The proof of Lemma 5.3.5 shows that the coreset computed
by our algorithm is an ε-coreset for P ′. Let Q = {q1, . . . , qm} be the computed coreset points.
Following exactly the proof of Lemma 5.6.6 we can show that if we would know the point sets P
and P ′, we could (using our coreset method) compute mappings γ : P → Q and γ ′ : P ′ → Q and
corresponding weight functions w : Q → N and w ′ : Q → N, such that (Q,w) is an ε-coreset
for P and (Q,w ′) is an ε-coreset for P ′ and for all qi ∈ Q we have:

(1− 5ε)w(qi) ≤ w ′(qi) ≤ (1+ 5ε)w(qi) (5.5)

Let A denote the coreset computed by our sample algorithm. From Lemma 5.3.5 we know for
each set of centers C:

Means(A,C) ∈ (1± ε) ·Means(P ′, C) .

From the arguments above we know that

Means(P ′, C) ∈ 1

1± ε
·Means((Q,w ′), C) ⊂ (1± 2ε) ·Means((Q,w ′), C) .

Since the weights w ′(q) and w(q) of each coreset-point in q ∈ Q differ by at most 5ε ·w(q),
we can conclude:

Means((Q,w ′), C) ∈ (1± 5ε) ·Means((Q,w), C) .

Since (Q,γ) is an ε-coreset for P, we obtain:

Means((Q,w), C) ∈ (1± ε) ·Means(P,C) .

Alltogether we get for ε < 1/15 :

Means(A,C) ∈ (1± ε)2 · (1± 2ε) · (1± 5ε) ·Means(P,C) ⊂ (1± 11ε) ·Means(P,C) .

2

5.6.3 Oblivious Optimization Problems

We again consider Z grids G0, . . . ,GZ−1 for Z =
⌈

log
(

(10`)d+1·n(1+logn)·d(d+1)/2·e∆
εd+1·λd

)⌉
+ 1, grid Gi

having cell side length 1
2i . In each grid Gi we pick a random sample Si of points. To select our

random sample we take every point with probability

pi = min
{ α

δ · 2i
, 1
}

into our sample Si, where
α = 6 · ε−2 ln(2 · Z · 2Z·d/ρ)
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and ρ is the desired error probability of our algorithm. The sampling is done at least α-wise
independently, which means that for each set A ⊂ P of at most α points and each partition
{B,C} of A:

Pr[B ⊂ Si ∧ C ∩ Si = ∅] = (pi)
|B| · (1− pi)

|C| .

Essentially this means that for each subset A ⊂ P of size α the sampling is done independently.
We will show that it follows from a variant of Chernoff bounds [113] that we can approximate

the number of points in every heavy cell up to a multiplicative error of (1 ± ε) just using our
point samples. The approximations will furthermore be good enough to detect the heavy cells
and to construct a coreset in the same way as described before.

Definition 5.6.13 (Considered as Heavy) For each cell C in grid Gi we define nC as the number
of points in C. We define our estimation on the number of points as

ñC := |Si ∩ C| · 1
pi
.

A cell C in grid Gi is considered as heavy, if

ñC ≥ (1− ε) · δ · 2i .

Lemma 5.6.14 The following events hold with probability at least 1 − ρ/2 for all grids Gi and
each grid cell in Gi:

• If i ≤ log( 2
εδ

), then ñC = nC .

• If C contains at least δ · 2i−1 points, then (1− ε) · nC ≤ ñC ≤ (1+ ε) · nC .

• If C contains less than δ · 2i−1 points, then ñC < (1 − ε) · δ · 2i (and the cell C is not
considered as heavy).

Proof : The proof is exactly the same as the proof of Lemma 5.6.2. 2

If ñC ≥ (1− ε) · δ · 2i, a cell C ∈ Gi is considered as heavy. This way, we detect every heavy
cell but we also consider some light cells as heavy.

We then compute a coreset by introducing a coreset point in each cell considered as heavy (as
described in Section 5.4.1). This will increase the size of our coreset. The following corollaries
show that the size of the coreset is still logarithmic in n.

Corollary 5.6.15 Assume that the statements of Lemma 5.6.14 hold for all cells in all grids.
If δ ≥ εd+1·λd·Opt

2·(10`)d+1·(1+logn)·d(d+1)/2 , the size of the computed coreset is at most 9·(10`)
d+1·(2+logn)·dd/2

λd+1·εd+1 =

O(logn/εd+1).

Proof : We can easily modify the proof of Lemma 5.4.7 by plugging in δ/2 for the old
value of δ. The proof stays exactly the same and we can conclude that the size of the coreset
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5.6 Coresets via Sampling

is at most 4·Opt
δ·λ·

√
d

+ (logn + 2) · 3d · dd/2, which is smaller than the stated coreset size for

δ ≥ εd+1·λd·Opt
2·(10`)d+1·(1+logn)·d(d+1)/2 .

2

An important property of our sample technique is that although the sample can be large, it just
occupies a small number of cells (and can, as we show later, be stored efficiently).

Lemma 5.6.16 Let δ ≥ εd+1·λd·Opt
2·(10`)d+1·(1+logn)·d(d+1)/2 . Then we have points from at most

49 · Z · (10`)d+1 · (1+ logn) · dd/2 · ln(2 · Z · 2Zd/ρ)
εd+3 · λd+1

= Õ(logn · log ∆̃ · log(ρ−1)/εd+3)

cells in the union of our sample sets with probability at least 1− ρ/2.

Proof : Let Gi be a fixed grid. We determine an upper bound on the number of points in non-
center grid cells. Let us recall from the proof of Lemma 5.4.7 that every point except for those
contained in the 3d · dd/2 center cells has a distance of at least

√
d

2i+1 to the center of gravity and
contributes at least λ ·

√
d

2i+1 to the cost of an optimal solution. Thus the overall number of points
in non-center cells is at most Opt·2i+1

λ·
√
d

. Let Xp denote the indicator random variable for the event

that p ∈ Si. LetD denote the set of non-center grid cells. We have E[
∑
p∈D Xp] ≤ pi ·

Opt·2i+1

λ·
√
d

≤
2·α·Opt
δ·λ·

√
d

. We will assume E[
∑
p∈D Xp] = 2·α·Opt

δ·λ·
√
d

as the distribution of
∑
p∈D Xp displaces towards

lower values when E[
∑
p∈D Xp] <

2·α·Opt
δ·λ·

√
d

.
Applying Theorem 1 of Section 2.4 we get

Pr
[∑
p∈D

Xp ≥
4 · α · Opt

δ · λ ·
√
d

]
≤ Pr

[∣∣∑
p∈D

Xp − E[
∑
p∈D

Xp]
∣∣ ≥ E[

∑
p∈D

Xp]
]

≤ e− min{bα/2c,bε2 α
δ
/3c} ≤ ρ

2Z
.

Therefore, with probability at least 1 − ρ/(2Z) we have at most 4·α·Opt
δ·λ·

√
d

points from non-center
cells in our sample. In the worst case no two of these points are contained in the same grid cell
and we get an upper bound of 4·α·Opt

δ·λ·
√
d

on the number of non-center cells that contain a sample
point. Since there are at most 3d · dd/2 center cells the number of cells occupied by sample
points is at most 4·α·Opt

δ·λ·
√
d

+ 3d · dd/2 ≤ 49·(10`)d+1·(1+logn)·dd/2·ln(2·Z·2Zd/ρ)
εd+3·λd+1 .

Since these arguments hold for each of the Z grids with probability 1 − ρ/(2Z), the Lemma
follows from the union bound. 2

To obtain a coreset we use the estimations ñC of the number of points in heavy cells to identify
the cells we consider as heavy (all cells having ñC ≥ (1 − ε)δ 2i). Since all heavy cells are
considered as heavy we obtain a finer coreset than before. We will now show how to find a
good assignment of weights to the computed coreset points, such that the computed coreset is an
ε-coreset for P.
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5 The Coreset Method

Since the weight of a coreset point will also depend on the number of points in some light
cells, we have to estimate the number of points in these cells. To get an estimate for all required
cells we use the following procedure. We require that the estimate ñC for the number of points
in a heavy cell is a (1± ε)-approximation and that in every cell C ∈ Gi considered as light there
are not more than δ · 2i points (our coreset construction uses only these assumptions, and they
hold according to Lemma 5.6.14 with probability 1− ρ/2).

We use exactly the same technique described for k-median to obtain consistent estimates EC:
We call a cell useful, if it is either considered as heavy or a direct subcell of a cell considered

as heavy. We have to deal with the fact that the sum of the total estimated number of points∑
Cisubcell of C ñCi

in the subcells of C can exceed the estimated number of points ñC in C. To
avoid this we have to compute new integral estimates EC for the number of points in each useful
cell C, which still have the guarantee to be near the real value nC and which are consistent with
the values ECi

of the subcells of EC . We do this by first computing upper and lower bounds UC
resp. LC on nC for all useful cells. We will then adjust these bounds to be consistent with the
bounds for the subcells. Finally we will use the bounds to compute new estimates EC .

For i > log( 2
εδ

) and every cell C ∈ Gi considered as heavy we define LC = dñC/(1+ ε)e and
UC = bñC/(1− ε)c. For i > log( 2

εδ
) and every cell C ∈ Gi considered as light we define LC = 0

and UC = bδ2ic. For i ≤ log( 2
εδ

) and every cell C ∈ Gi we define LC = ñC and UC = ñC (since
we know the number of points in C exactly). Using these definitions we know for every cell that
LC ≤ nC ≤ UC).

The estimates EC can be computed bottom-up by adjusting the bounds LC and UC in cases of
conflicts:

We first compute new lower and upper bounds LC and UC for all useful cells bottom-up.
We look at the smallest cell C considered as heavy. Let Ci, i ∈ {1, ..., 2d} be its subcells. If∑2d

i=1 LCi
> LC , we set LC :=

∑2d

i=1 LCi
. If
∑2d

i=1UCi
< UC , we set UC :=

∑2d

i=1UCi
. After the

assignment LC ≤ nC ≤ UC still holds. We use this technique for all cells considered as heavy
(in the order of increasing size), getting better bounds LC and UC . From these bounds we then
compute the values EC top-down. Since the bounds LC andUC are always at least as strong as the
bounds of the subcells, we can always easily find integral values EC satisfying LC ≤ EC ≤ UC

and
∑2d

i=1 ECi
= EC .

Corollary 5.6.17 Assume that the statements of Lemma 5.6.14 are true for all grids and all cells.
Then for each cell C identified as heavy we have (1− 4ε)nC ≤ EC ≤ (1+ 4ε)nC .
For each cell C ∈ Gi with i ≤ log( 2

εδ
) we have EC = nC .

All estimates EC are integral and consistent with the estimates ECi
for the subcells Ci of C.

Proof : Exactly as the proof of Corollary 5.6.5 2

We apply the algorithm described in Section 5.4 to our estimations EC and compute a coreset.

Lemma 5.6.18 If δ ≤ εd+1·λd·Opt
(10`)d+1·(1+logn)·d(d+1)/2 and ε < 1/12, the coreset computed with respect

to the values EC is a 67 `
λ
ε-coreset of P with probability 1− ρ.
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5.6 Coresets via Sampling

Proof : Let P ′ be a point set that is distributed according to our estimations EC (so for every
useful cell C we have |P ′∩C| = EC). The proof of Lemma 5.4.4 shows that the coreset computed
by our algorithm is an ε-coreset for P ′. Let Q = {q1, . . . , qm} be the computed coreset points.
Exactly as in the proof of Lemma 5.6.6 we can show that if we would know the point sets P and
P ′, we could (using our coreset method) compute mappings γ : P → Q and γ ′ : P ′ → Q and
corresponding weight functions w : Q → N and w ′ : Q → N, such that (Q,w) is an ε-coreset
for P and (Q,w ′) is an ε-coreset for P ′ and for all qi ∈ Q we have:

(1− 5ε)w(q) ≤ w ′(q) ≤ (1+ 5ε)w(q) . (5.6)

This guarantees that each solution on (Q,w) can differ from a solution on (Q,w ′) by at most
10 `

λ
ε · Opt(Q,w):

Consider a movement of points from (Q,w) to (Q,w ′). The total movement increases when
we first move each moved point to the center of gravity µ and then in a second step to its desti-
nation. Since w ′(q) ≥ (1 − 5ε)w(q), we know that for each q ∈ Q at most 5εw(q) points are
moved away from q. The total movement of the first step therefore is smaller than∑

q∈Q

5εw(q)d(q, µ) .

Since the considered problem is `-Lipschitz, this movement changes the objective function by at
most

` ·
∑
q∈Q

5εw(q)d(q, µ) .

Now we look at the second movement step. Sincew ′(q) ≤ (1+5ε)w(q) we know that for each
q ∈ Q at most 5εw(q) points are moved from the center of gravity to q. The total movement of
the second step must therefore be smaller than∑

q∈Q

5εw(q)d(q, µ)

which changes the objective function again by at most

` ·
∑
q∈Q

5εw(q)d(q, µ) .

Since the problem is λ-mean preserving we conclude that the total change of the objective
function caused by both movements is at most

10ε` ·
∑
q∈Q

w(q)d(q, µ) ≤ 10`

λ
· ε · Opt(Q,w) (5.7)

We constructed different mappings proving coreset properties for different sets. We use the
notation E : Q → N for the coreset weight function computed by our sampling algorithm and
m : γ(P)→ γ ′(P) for the mapping which moves points as shown in the last paragraph.

We know the following facts:
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5 The Coreset Method

1. γ : P → Q proves that (Q,w) is a coreset for P

2. m : γ(P)→ γ ′(P) changes the cost of a solution by at most 10 `
λ
ε · Opt(γ(P))

3. γ ′ : P ′ → Q proves that (Q,w ′) is a coreset for P ′

4. α : P ′ → Q (as constructed by our algorithm) proves that (Q,E) is a coreset for P ′.

Let P = (p1, . . . , pn) be the set of input points and s ∈ SΠ(n) a solution of the oblivious
optimization problem Pi. The mapping γ ◦m ◦ γ ′−1 ◦ α : P → α(γ ′−1(m(γ(P)))) proves that
(Q,E) is a 67 `

λ
ε-coreset for P:

We write cost(P) for cost(n,s)Π (P) and Opt(P) for OptΠ(P) and conclude:

cost(α(γ ′−1(m(γ(P))))) (5.8)
∈ cost(γ ′−1(m(γ(P))))± ε · Opt(γ ′−1(m(γ(P)))) (5.9)
⊂ cost(m(γ(P)))± 2ε · Opt(γ ′−1(m(γ(P)))) (5.10)
⊂ cost(m(γ(P)))± 4ε · Opt(m(γ(P))) (5.11)

⊂ cost(γ(P))±
(
4ε · Opt(γ(P)) + 4ε · 10 `

λ
ε · Opt(γ(P)) + 10

`

λ
ε · Opt(γ(P))

)
(5.12)

⊂ cost(γ(P))± 44 `
λ
ε · Opt(γ(P)) (5.13)

⊂ cost(P)±
(
44
`

λ
ε · Opt(P) + 44

`

λ
ε · ε · Opt(γ(P)) + ε · Opt(P)

)
(5.14)

⊂ cost(P)± 67 `
λ
ε · Opt(P) (5.15)

where (5.9) comes from the fact 4, (5.10) from fact 3, (5.11) because of Lemma 5.1.13 and fact
3, (5.12) because of the bounded movement costs of m (fact 2), (5.13) because of ` ≥ 1, λ ≤ 1,
and ε ≤ 1/2, and (5.14) because of fact 1. 2
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6 Coresets in Data Streams

In this chapter we introduce algorithms to compute coresets on dynamic geometric data streams.
We will combine the coreset results of Chapter 5 with methods of Chapter 3 to sample items in
data streams.

We shortly recapitulate the results of Chapter 5, particularly Section 5.6. To state the results
for all problems at once we use the following definitions:

For the k-median problem we set
δ0 := εd+1·Opt

4·k·10d·(1+logn)·d(d+1)/2 ,

j0 := dlog(n · ∆̃ ·
√
d)e,

Z :=
⌈

log
(
4·k·10d·n(1+logn)·d(d+1)/2·e∆

εd+1

)⌉
+ 1,

SC := 33·k·10d·(2+logn)·dd/2

εd+1 ,
pi := min

{
α
δ·2i , 1

}
,

A := 193·Z·k·10d·(1+logn)·dd/2·ln(2·Z·2Zd/ρ)
εd+3 , and

∆̃ := ∆.

For the k-means problem we set
δ0 := εd+2·Opt

8·k·33d+1·(1+logn)·d(d+2)/2 ,

j0 := dlog(n · ∆̃ ·
√
d)e,

Z :=
⌈

log
(
8·k·33d+1·n(1+logn)·d(d+2)/2·e∆

εd+2

)⌉
+ 1,

SC := 129(1+logn)·k·33d+1·dd/2

εd+2 ,
pi := min

{
α
δ·4i , 1

}
,

A := 769·Z·k·33d+1·(1+logn)·dd/2·ln(2·Z·2Zd/ρ)
εd+4 , and

∆̃ := ∆2.

For oblivious optimization problems we set
δ0 := εd+1·λd·Opt

(10`)d+1·(1+logn)·d(d+1)/2 ,

j0 := dlog(n · ∆̃ ·
√
d · `)e,

Z :=
⌈

log
(

(10`)d+1·n(1+logn)·d(d+1)/2·e∆
εd+1·λd

)⌉
+ 1,

SC := 9·(1+logn)·dd/2·(10`)d+1

εd+1·λd+1 ,
pi := min

{
α
δ·2i , 1

}
,

A := 49·Z·(10`)d+1·(1+logn)·dd/2·ln(2·Z·2Zd/ρ)
εd+3·λd+1 , and
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6 Coresets in Data Streams

∆̃ := ∆/λ.

For all problems we set
α := 6 · ε−2 ln(2 · Z · 2Z·d/ρ)

and
ρ := ψ/(3j0),

where ψ is the maximum error probability that our data streaming algorithm is allowed to have.

In Section 5.6 we showed that for a set of n points in [0, 1]d with Opt ≥ 1/∆̃ an ε-coreset
for k-median, k-means and oblivious optimization problems can be extracted using only the
following statistics:

• Z nested grids G0, . . . ,GZ. Each cell in Gi has side length 1
2i .

• In each grid Gi a sample Si of points, each point chosen to be in Si with probability pi.
The sampling is assumed to be α-wise independently.

Note that we don’t need to know the exact location of each sample point. During our construction
we only use the information about the number of sample points in certain cells of the grid.
Therefore the information we have to compute in our data stream is the following:

1. The coordinates and size of each cell C occupied by at least one sample point.

2. The number of sample points Si ∩ C in each occupied cell C.

Notice that according to Lemmas 5.6.4, 5.6.10, and 5.6.16 all information we need can be
stored in small space:

Lemma 6.0.19 Let δ ≥ δ0/2. Then we have points from at most A cells in the union of our
sample sets with probability at least 1− ρ/2. ut

The extracted coreset is a coreset according to Lemmas 5.6.6, 5.6.12, and 5.6.18 and the size
of it is small according to Corollarys 5.6.3, 5.6.9, and 5.6.15:

Lemma 6.0.20 The following statements hold with probability at least 1− ρ/2:
If δ ≤ δ0, we can compute a coreset from only the statistics 1 and 2. The coreset then is an

O(ε)-coreset of P.
If δ ≥ δ0/2, the size of the computed coreset is at most SC. ut

By dividing all point coordinates by 1/∆, we can ensure that all points lie in [0, 1]d. We can
also assume that we always have Opt ≥ 1/∆̃:

For k-median we know the exact solution when we currently only have k points in the data
stream. We can use a data structure of Lemma 3.5.4 to obtain the exact point coordinates in that
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case. Otherwise Opt ≥ 1/∆̃, because we have two points of (scaled) distance at least 1/∆ = 1/∆̃

in one cluster.
For k-means we also know the exact solution when we only have k points in the stream.

Otherwise Opt ≥ 1/∆2 = 1/∆̃, because we have two points of (scaled) distance at least 1/∆ in
one cluster.

Having an oblivious optimization problem Π we also are able to recover the point set, if it
consists of only one point by Lemma 3.5.4. If P consists of at least two points p and q, they
must have a scaled distance of at least 1/∆. Therefore the total distance of all points to the center
of gravity µ is at least 1/∆. Since Π is λ-mean preserving, we have Opt ≥ λ

∑
p∈P d(p, µ) ≥

λ/∆ = 1/∆̃.

6.1 Insertions

We show how to maintain the statistics 1 and 2 when the data stream consists only of insertions
of points. Since we do not know the right value of δ in advance, we follow the approach of
the Sections 5.2.3, 5.3.3, and 5.4.3. We start in parallel j0 different instances I1, . . . , Ij0 of our
algorithm, instance Ij with a value of δ = δ(j) = c · 2j for a constant c (see Sections 5.2.3, 5.3.3,
and 5.4.3 for the definition of c).

For each j we maintain at most A cells Cj,1, . . . , Cj,A and the number of sample points sj,l
within each cell Cj,l. For each instance Ij we maintain a value RUNNINGj, which is 1 if the
instance is still running or 0 if the instance has been stopped, and a value cj which denotes the
number of cells currently stored by the j-th instance.

An insert operation of a point p is done as follows:

'

&

$

%

INSERT(p)

for each j do
if RUNNINGj = 1 then

for each i ∈ {1, . . . , Z} do
Do a biased coin flip with Pr[coin shows heads] = pi.
if coin shows heads do

Let C ∈ Gi denote the cell in grid Gi that contains the point p.
if ∃l∈{1,...,cj} Cj,l = C do

set sj,l ← sj,l + 1. // update number of sample points within this cell
else do

if cj > A do
set RUNNINGj = 0. // stop storing cells for this j

else do
set cj ← cj + 1.
set Cj,cj

← C. // store cell occupied by point
set sj,cj

← 1. // store number of sample points within this cell

95



6 Coresets in Data Streams

The choice of j0 ensures that for one j we have 1
2
· δ0 ≤ δ(j) ≤ δ0 (see Sections 5.2.3, 5.3.3,

and 5.4.3). According to Lemma 6.0.19 for this choice of δ = δ(j) we have at most A cells
occupied by sample points. Therefore we have cj ≤ A during the algorithm and RUNNINGj = 1.
From Lemma 6.0.20 we know that when we extract a coreset from the statistics for this value of
j, we obtain an O(ε)-coreset for the respective problem. We also obtain an O(ε)-coreset from
all statistics having smaller values of j, since they used a smaller value of δ = δ(j).

We use the smallest value of j such that RUNNINGj = 1. From the corresponding statistics
Cj,1, . . . , Cj,cj

and sj,1, . . . , sj,cj
we compute our coreset, which is an O(ε)-coreset for P. If the

coreset size is bigger than SC we know from Lemma 6.0.20 that δ(j) < δ0/2. Therefore we can
set j← j+ 1, still knowing that δ(j) ≤ δ0 and the computed coreset for this value of j is also an
O(ε)-coreset. We go on with this method until the size of the constructed coreset is at most SC.

Theorem 18 Given a data stream of point insertions our streaming algorithm maintains a data
structure for ε-coresets for k-median, k-means, and oblivious optimization problems. At any
point of time anO(ε) coreset for the respective problem can be extracted with probability 1−ψ.

The data structure for k-median needs Õ(k·log4(∆)·log(1/ψ)/εd+3) space, the data structure
for k-means needs Õ(k · log4(∆) · log(1/ψ)/εd+4) space and the data structure for oblivious
optimization problems needs Õ(log4(∆) · log(1/ψ)/εd+3) space.

An insertion can be processed in O(log(∆) · log(k · ∆/ε)) time.
An ε-coreset for k-median can be extracted in O(k log3∆/εd+1) time.
An ε-coreset for k-means can be extracted in O(k log3∆/εd+2) time.
An ε-coreset for oblivious optimization problems can be extracted in O(log3∆/εd+1) time.

Proof : We set ρ = ψ/(3 · j0). By the union bound Lemma 5.6.2 and Lemma 5.6.4 hold with
probability 1 − ψ for all choices of j. Thus with probability 1 − ψ the returned coreset is an
O(ε)-coreset.

We will now count the number of memory cells we use. For each of the j0 = O(log∆)

instances we maintain at most A counters. They occupy j0 ·A memory cells, each consisting of
O(log∆) bits. The respective values of A lead to the stated memory bounds.

When a new point arrives in the stream we process one for-loop for each of the j0 values of
j and each of the Z values of i. Using hash tables the query ∃l∈{1,...,cj} Cj,l = C can be done in
constant time. All other operations of the algorithm run in constant time as well. Therefore the
time to insert a point is O(Z · j0) = O(log(∆) · log(k · ∆/ε)).

We will now bound the coreset extraction time for k-median. Let us first assume we know
the right value of δ in advance. Since (according to the proof of Lemma 5.2.8) there are at
most O(k logn/εd+1) heavy cells in each grid, we have a bound of O(k log2∆/εd+1) on the
number of heavy cells. The marking process yielding to the actual coreset can be seen as a
quadtree traversal. Since each inner node of this tree corresponds to a heavy cell, the tree traversal
can be done in time O(k log2∆/εd+1). Since we have to do this process for each value of
δ (and then choose the minimum value with a small coreset), we get a total running time of
O(k log3∆/εd+1).

For k-means resp. oblivious optimization problems the number of heavy cells in each grid
is O(k logn/εd+2) resp. O(logn/εd+1). Therefore we get a total coreset extraction time of
O(k log3∆/εd+2) for k-means and O(log3∆/εd+1) for oblivious optimization problems. 2
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6.2 Deletions
When we allow deletions two problems occur. First, when we encounter a DELETE operation of
a point p, we have to decide if this point is a sample point. We achieve this by replacing the coin
flips in our algorithm by the use of an α-wise independent hashfunction hi,j : ∆d → [⌈

∆d

ρ

⌉]
.

We choose all points p having hi,j(p) < pi ·
⌈
∆d

ρ

⌉
as sample points.

Lemma 6.2.1 The choice of the sample points is done α-wise independently. Each point p ∈ P
is chosen to be a sample point with probability p ∈ [pi, pi +

ρ
∆d ]. The total statistical difference

to the method which samples each point with probability pi is at most ρ.

Proof :

p =

⌈
pi ·

⌈
∆d

ρ

⌉⌉
⌈
∆d

ρ

⌉ ≥ pi

and

p =

⌈
pi ·

⌈
∆d

ρ

⌉⌉
⌈
∆d

ρ

⌉ ≤
pi ·

⌈
∆d

ρ

⌉
+ 1⌈

∆d

ρ

⌉ = pi +
1⌈
∆d

ρ

⌉ ≤ pi + ρ

∆d
.

Since we have at most ∆d points, the errors in the probability to sample each single point sum
up to a total statistical difference of at most ρ. 2

We conclude that for a fixed j our sampling method behaves with probability 1−ρ exactly like
an α-wise independent sampling of each point with probability pi. Since ρ = ψ/(3j0) we have
that with probability 1−ψ/3 all samplings behave exactly as demanded.

The second problem is that we cannot stop an instance of our algorithm if the number cj of
occupied cells exceeds A. For example, it could happen that in the first half of the stream many
points are inserted and the number of occupied cells cj is way too large. But then most of these
points can be deleted in the second half of the stream such that we eventually have less than A
occupied cells. If we want to obtain a coreset at that point of time we have to know the respective
statistics 1 and 2.

To overcome this problem we use the data structure of Lemma 3.5.4. The data structure
supports update operations on the entries of a high dimensional vector x and is able to recover
the whole vector, as long as the support of the vector is smaller than SC.

Let j be fixed. Let C0, . . . , Ct with t = O(∆d) denote the set of all cells in all grids Gi for
one fixed j. Let xi denote the number of sample points in the cell Ci. When we are able to
recover the whole vector x = (x0, . . . , xt) after insert- and delete- operations of sample points,
we can reconstruct the statistics 1 and 2. Therefore for each j we use a data structure RECOVERj
of Lemma 3.5.4 with parameters U = Θ(∆d), M = Θ(∆d), and error probability parameter
ρ = ψ/(3j0). Then with probability 1−ψ/3 the structures RECOVERj work for each j.

Let UPDATEj denote an UPDATE operation on the data structure RECOVERj. We implement
INSERT and DELETE operations of points in the following way:
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INSERT(p)

for each j do
for each i ∈ {1, . . . , Z} do

if hi,j(p) < pi ·
⌈
∆d

ρ

⌉
do // p is sample point

Let Cl ∈ Gi denote the cell that contains the point p.
UPDATEj(l, 1).'

&

$

%

DELETE(p)

for each j do
for each i ∈ {1, . . . , Z} do

if hi,j(p) < pi ·
⌈
∆d

ρ

⌉
do // p is sample point

Let Cl ∈ Gi denote the cell that contains the point p.
UPDATEj(l,−1).

The method ensures that xl always represents the number of sample points within the cell Cl.

Theorem 19 Given a data stream of point insertions and deletions our streaming algorithm
maintains a data structure for ε-coresets for k-median, k-means. At any point of time an O(ε)-
coreset for the respective problem can be extracted with probability 1−ψ.

The data structure for k-median needs Õ(k · log6(∆) · log(∆/ψ)/εd+3) space, the data struc-
ture for k-means needs Õ(k·log6(∆)·log(∆/ψ)/εd+4) space and the data structure for oblivious
optimization problems needs Õ(log6(∆) · log(∆/ψ)/εd+3)) space.

Insertions and deletions of points can be processed in Õ(k · log6(∆) · log(∆/ψ)/εd+3) time for
k-median, for k-means in Õ(k · log6(∆) · log(∆/ψ)/εd+4) time and for oblivious optimization
problems in Õ(log6(∆) · log(∆/ψ)/εd+3)) time.

An ε-coreset for k-median can be extracted in Õ(k log5∆ · log(∆/ψ)/εd+3) time.
An ε-coreset for k-means can be extracted in Õ(k log5∆ · log(∆/ψ)/εd+4) time.
An ε-coreset for oblivious optimization problems can in Õ(log5∆ · log(∆/ψ)/εd+3) time be

extracted.

Proof : We have that with probability 1 − ψ/3 the hash functions doing the sampling behave
like sampling each point α-wise independently with probability pi. We condition on this event.

We used data structures RECOVERj that work with probability 1−ψ/3 for all j. We condition
on this event.

In that event we can recover the whole vector x, which represents exactly the statistics 1 and
2. Therefore we can construct an O(ε)-coreset. The coreset construction works with probability
1−ψ/3 according to Lemmas 5.6.2 and Lemma 5.6.4.

Let us now bound the space needed. For j0 values of j we have to store the data structure
RECOVERj of Lemma 3.5.4, each using space

O
(
A · (logA+ log(1/ρ)) · log2∆

)
= Õ

(
A · log2(∆) · log(∆/ψ)

)
.
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Therefore the total space to store all data structures RECOVERj is Õ
(
A · log3(∆) · log(∆/ψ)

)
.

The space consumption of the hash functions is negligible compared to the space consumption
of the RECOVERj structures. We obtain the stated memory bounds by inserting the right values
of A.

To process an update we have to process j0 ·Z update operations on RECOVER structures, each
takingO(A · (logA+ log(1/ρ)) · log∆) time. Alltogether this takes Õ(Z ·A · log2∆ · log(∆/ψ))

time, which dominates the whole processing time. Plugging in the values of Z andA leads to the
stated update times.

To extract the coreset for a fixed value of j we first have to extract the statistics 1 and 2
from RECOVERj. This takes O(A · (logA + log(∆/ψ)) · log∆) = Õ(A · log∆ · log(∆/ψ))

time. Plugging in the value A and multiplying that by j0 = O(log∆) (the number of possible
values of j), we obtain a total recovery time for k-median of Õ(k log5∆ · log(∆/ψ)/εd+3),
which dominates the coreset extraction time of O(k log3∆/εd+1). For k-means and oblivious
optimization problems we get the stated results in the same way. 2

6.3 Maximum Spanning Tree

In our publication [43] we stated the problem to find a maximum spanning tree of points in
a Euclidean space as an oblivious optimization problem, which is solvable using our coreset
method. Although this can be done in general, the problem is not `-Lipschitz for a constant `,
and therefore the proofs of the previous chapters do not apply. In this section we want to close
this gap to the publication [43] and develop a very simple and more effective method to construct
a coreset for the maximum spanning tree problem.

We will first define the maximum spanning tree problem as an oblivious optimization problem.

Definition 6.3.1 (Euclidean MaxSP) The Euclidean maximum spanning tree problem (MaxSP)
asks for a spanning tree connecting all points of a given input point set P ⊂ Rd of size n, such
that the total length of all tree edges is maximized.

The problem can be formulated as an oblivious optimization problem:
We look at a complete graph Kn with node set {1, . . . , n}. A feasible solution s for the MaxST

problem is then a spanning tree of Kn. Let T be the set of edges of this spanning tree of Kn. The
cost of s on P = {p1, . . . , pn} is then given by

cost(n,s)maxtsp(p1, . . . , pn) =
∑

(a,b)∈T

d(pa, pb) .

This definition of MaxSP as an oblivious optimization problem also defines ε-coresets for
MaxSP by Definition 5.1.12.

We first show how to construct a coreset when we have access to the whole input point set P.
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We compute an approximation B̃ to the biggest extent of the point set in one dimension. Es-
pecially we set

B := min
p,q∈P

min
i∈{1,...,d}

∣∣p(i) − q(i)
∣∣ .

and assume that we have computed an approximation B̃ satisfying B ≤ B̃ ≤ 2 · B.
We then introduce a grid consisting of square cells of side length ε·eB

8
√
d

. Notice that at most

(8 ·
√
d/ε)d cells in the grid are occupied by points of P.

We introduce a coreset point in each non-empty grid cell and map all input points from P lying
in a cell C to the corresponding coreset point in C.

Lemma 6.3.2 The construction given above constructs an ε-coreset for P. The coreset size is
O( 1

εd ).

Proof : Let s be an arbitrary solution. We denote by T the corresponding spanning tree
connecting the points from P. T contains less than n edges. Since each endpoint of an edge is
moved a distance at most ε · B̃/8, we conclude that the length of each edge changes by at most
ε · B̃/4. The total change of the cost of the solution s is therefore at most n ·ε · B̃/4 ≤ n ·ε ·B/2.

We now show that this change is smaller than ε · OptΠ(P) by constructing a spanning tree
having large cost. We first connect the two points p1 and p2 of P defining the extent B by an
edge. We iterate over the rest of the nodes. A node q ∈ P\{p1, p2} is connected to p1 by an edge
iff d(q, p1) ≥ d(q, p2). Otherwise q is connected to p2 by an edge. The cost of the resulting
spanning tree is then at least

d(p1, p2) + (n− 2) · d(p1, p2)/2 ≥ n · B/2 .

Therefore the costs OptΠ(P) of an optimum solution must be greater than n ·B/2. It follows that
the change of the cost of the solution s by mapping points to coreset points is bounded by

n · ε · B/2 ≤ ε · OptΠ(P) .

2

The statistics we need to construct a coreset can be easily maintained in a dynamic geometric
data stream consisting of insertions and deletions of points from {0, . . . ∆− 1}d using techniques
of the previous sections. Let ψ be a desired error probability we want to achieve.

We start dlog(d · ∆) + 1e parallel instances of a streaming algorithm, each with a different
value of j ∈ {0, . . . , dlog(d · ∆)e}. For each instance we set B̃j := 2j.

Instance j introduces a square grid Gj of cell side length ε·fBj

8
√
d

. Let Cj,1, . . . , Cj,l be the cells
of Gj. The instance uses the data structure of Lemma 3.5.4 with values U = ∆d, M = ∆d,
A = (8 ·

√
d/ε)d, and δ = ψ/dlog(d · ∆) + 1e, which is able to recover the support of a large

vector x under UPDATE operations on x, when the support is smaller thanA. For each INSERT(p)

operation in the stream instance j discovers the cell Cj,i containing the point p. It then triggers
an UPDATE(i, 1) operation on its data structure, increasing the value xi by 1. A DELETE(p)
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operation is transformed into an UPDATE(i,−1) operation on the data structure, decreasing the
value xi by 1. This way we ensure that the vector entry xi always equals the number of cells in
Cj,i.

We can extract a coreset in the following way. We assume that all data structures to recover
the vectors work well (which happens by the Union Bound with probability 1 − ψ). We query
all data structures of all instances to recover the support of their corresponding vectors. The data
structures return FAIL only if the support of their corresponding vector is larger than A. This
way we can decide which grids contain at most A occupied cells.

We take the instance with the lowest value of j having at mostA occupied cells and use the data
structure of that instance to recover the corresponding vector x. This vector contains the infor-
mation about the set of occupied cells in Gj and the number of points within each cell. Using that
information we construct a coreset by introducing a coreset point within each occupied cell of Gj
and setting the weight of each coreset point to the number of input points in the corresponding
cell.

Theorem 20 Given a dynamic geometric data stream of insert and delete operations of points
from {0, . . . , ∆ − 1}d, there is an algorithm that maintains a data structure for ε-coresets for
MaxST. At any point of time an ε-coreset can be extracted with probability 1−ψ. The size of the
coreset is O(1/εd). The data structure uses O

(
1
εd · log

(
log∆
ε·ψ

)
· log2∆

)
space. Insertions and

deletions of points can be processed in O
(
1
εd · log

(
log∆
ε·ψ

)
· log∆

)
time.

Proof : We first prove that the returned coreset is indeed an ε-coreset for MaxST. We know that
there is one instance started with a value of B̃j0 satisfying B ≤ B̃j0 ≤ 2 ·B. By the argumentation
above we have at most A occupied cells in the corresponding grid. If we would construct a
coreset from the information of that instance, this would be an ε-coreset. However, we construct
the coreset from the information of the instance having the smallest value of j and at most A
occupied grid cells. Therefore the coreset is constructed from an instance j with value j ≤ j0.
We have either j = j0 or the grid of instance j is even finer than that of instance j0. Therefore the
constructed coreset is an ε-coreset. It’s size is at most A.

The space and update time we need is dominated by the space and update time of the dlog(d ·
∆)+1e data structures from Lemma 3.5.4. This leads to the stated space requirements and update
times.

2
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7 A Kinetic Data Structure for MaxCut

In this chapter we will focus on clustering moving points as described in the framework of kinetic
data structures (KDS). The framework of kinetic data structures has been introduced by Basch
et al. [12] and it has been used since as the central model of studying geometric objects in
motion, see, e.g., [2, 12, 55, 56] and the references therein. The KDSs are data structures for
maintaining a certain attribute (for example, in the case of a clustering problem, assignment of
the points to the clusters) for a set of continuously moving geometric objects. The main idea
underlying the framework of KDSs is that even if the input objects are moving in a continuous
fashion, the underlying combinatorial structure of the moving objects changes only at discrete
times. Therefore, there is no need to maintain the data structure continuously but rather only
when certain combinatorial events happen: a KDS maintains a configuration function of interest
by watching for updates needed to be performed when an event occurs.

In the kinetic setting, we consider a set of points in Rd that are continuously moving. Each
point follows a (known) trajectory that is defined by a continuous function of time; for simplicity
of presentation, we will assume that it is a linear function. In other words, every point is moving
with a constant speed along a line; the line and the speed are the parameters of the movement of
a given point. Additionally, we allow the points to change their trajectory, i.e., to perform a flight
plan update.

To measure the quality of a KDS, we will consider the following two most important perfor-
mance measures (for more details, see, e.g., [55, 56]): the time needed to update the KDS when
an event occurs and the bound for the number of events that may occur during the motion. An-
other important measure is the time to handle flight plan updates.

In this chapter we describe a kinetic data structure to maintain a (1 − ε)-approximation of a
maximum cut. Our data structure supports queries of the type

• to which side of the partition belongs query point p?

To support such a query the data structure maintains a subdivision of the space that has complex-
ity O(logn/εd+1). Each cell of the subdivision is colored red or blue. Every point located in a
red cell is red and every point in a blue cell is blue. Then our colored partition into red and blue
points is a (1− ε)-approximation to the MaxCut.

Our data structure uses two auxiliary kinetic data structures, kinetic turnament trees as defined
in Section 7.1 and a data structure to approximate the bounding cube as defined in Section 7.2.
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7.1 Kinetic Turnament Trees
In this section we recap a construction of randomized turnament trees from Basch [11]. There are
other structures leading to better amortized time bounds (e.g. [16]). We will use the construction
from [11] because it deterministically achieves almost the same runtime bounds, but these bounds
hold even in the worst case.

A randomized turnament tree is a randomized data structure to maintain the maximum (or the
minimum, depending on applications) point from a set P = {p1, . . . , pn} of n linearly moving
points in R1. It stores all points in the leafs of a binary tree. Inner nodes of the tree always store
the bigger point of the two child nodes (and therefore the maximum of the subtree). It also stores
an event queue, that is a priority queue holding the times of the next events when inner nodes
will change (when we get a new maximum in the subtree, i.e. when the two children of a node
change their order).

When a point stored in an inner node changes, the maximum of the subtree must have changed.
The number of times this can happen is bounded by the number of nodes in the subtree. Summing
up over all inner nodes we get that the total number of changes of inner nodes is at most O(n ·
logn).

When an inner node changes at an event, it can lead to changes of the inner nodes above.
Notice that we treat these additional changes as seperate events. Therefore each such event can
be processed in O(logn) time (we just have to adapt the event queue and test if we have an
immidiate event for the parent node as well).

An insertion of a point can be done by inserting a leaf into the tree and adjusting the inner
nodes in timeO(log2 n). A deletion of a point can be done by deleting the respective leaf in time
O(log2 n), adjusting the inner nodes, and move the rightest leaf to the position of the deleted leaf
in time O(log2 n) to balance the tree.

Theorem 21 ([11]) Let P be an initially empty set of points moving along linear trajectories
in R1. Let σ = σ1, . . . , σm be a sequence of m operations σi of the form INSERT(p, ti) and
DELETE(p, ti), such that for any two operations σi, σj with i < j we have ti < tj (the operations
are performed sequentially in time). An INSERT(p, ti) inserts at time ti point p into P. A
DELETE(p, ti) removes p from P at time ti. A kinetic turnament tree maintains the biggest
element of P. It requires O(logm) time to process an event and the expected number of events
is O(m logm). Insertions and deletions are performed in expected time O(log2m).

7.2 Approximating the Bounding Cube
Our data structure uses an data structure from Agarwal, Har-Peled, and Varadarajan [2]:

Theorem 22 ([2]) Let P be a set of n points moving in Rd. If P is moving linearly, then after
O(n) preprocessing, we can construct a kinetic data structure of size O(1) that maintains a 2-
approximation of the smallest orthogonal box containing P. The data structure processes O(1)

events, and each event takes O(1) time. The sides of the maintained box are moving linearly
between the events.
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It can be decided in constant time if a flight plan update of a point p changes the data structure.
At each point of time only flight plan updates of a constant number of points can potentially
change the data structure.

We use this data structure to efficiently maintain a bounding cube B of P having the following
properties.

• All points lie in B during the whole movement of points.

• There is always one dimension, such that the extent of the point set in the dimension is at
least half the side length of B.

• The data structure to maintain the bounding cube processes O(d2) events.

• Between these events all side borders of the bounding cube are moving linearly.

• Given a flight plan update we can decide in time O(d) if the data structure has to be
updated.

• At each point of time only flight plan updates of O(d) points can potentially change the
data structure.

For each dimension we maintain a 2-approximation of the 1-dimensional extent using the
KDS from [2] (see Theorem 22 above). Using these approximations we can easily maintain an
approximation B of a smallest bounding cube of P by maintaining a cube having the highest
extent as side length.

Each extent data structure processesO(1) events. Between such events the dimension that de-
fines the size of the bounding cube can change although none of the one dimensional extent data
structures processes an event. This happens when the size of the bounding cube is determined by
a new one dimensional extent. This can happen at most d times. Therefore, we can have at most
O(d2) events.

We store the approximation of each extent in a kinetic turnament tree whose priority is given
by the width of the 1-dimensional approximations.

7.3 The Kinetic Data Structure for MaxCut
Our kinetic data structure for MaxCut uses the data structure of the last section to maintain a
bounding cube B. This data structure processes O(d2) events, which we call major events.

Between all major events we will set up a data structure to maintain a coreset under a lin-
ear movement of the bounding box B. We will use the technique described in Section 5.6.3 to
construct coresets for oblivious optimization problems using point samples. Recall that MaxCut
(with objective function scaled by 1/n) is an oblivious optimization problem which is `-Lipschitz
with ` = 1 and λ-mean preserving with λ = 1/4.
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The coreset technique assumes that all points always lie within [0, 1]d and that we have a lower
bound 1/∆̃ on Opt (recall that Opt denotes the cost of an optimum cut devided by n). This can
easily be achieved in the following way: Between two major events we know that the movement
of the bounding cube B is linear. At each major event we scale and move all coordinates in a way
such that the bounding cube B is [0, 1]d. Since the scaling function is linear in the time t, after
this scaling still all point movements are linear.

Since there is always one dimension such that the extent of the point set in that dimension is
at least half the side length of the bounding cube, the sum of distances of these two points to the
center of gravity is at least 1/2. Since MaxCut is 1/4-mean preserving, we know that Opt ≥ 1/∆̃
for ∆̃ = 8.

In the following we assume that all points lie in [0, 1]d and that the bounding cube B = [0, 1]

does not move.
We will maintain Z nested square grids G0, . . .GZ for

Z =

⌈
log
(
8 · 10d+1 · 4d · n(1+ logn) · d(d+1)/2

εd+1

)⌉
+ 1 .

Grid Gi partitions [0, 1]d into 2id cells of side length 1/2i. We assume that these cells are num-
bered from 1 to 2id and that the index of a cell can be computed efficiently from its coordinates
and that the neighbors of a cell can also be computed efficiently.

Let j0 := blog(8 · n ·
√
d)c. For j ∈ {0, . . . , j0} let be

δ = δ(j) =
εd+1

8 · (1+ logn) · d(d+1)/2 · (40)d+1
· 2j .

For each value of j ∈ {0, . . . , j0} and each grid Gi we create a sample Si,j, each point chosen
independently with probability pi,j = min{ α

δ·2i , 1}, where α = 6 · ε−2 · ln(2 · Z · 2Z·d · j0/ψ).
To simplify the notation we set

K :=
6 · ln(2 · Z · 2Z·d · j0/ψ) · 8 · (1+ logn) · d(d+1)/2 · 40d+1

εd+3
=
α · 2j

δ
.

Notice that K is polylogarithmic in n and does not depend on i or j, and that

pi,j = min
{
K

2i+j
, 1

}
Following the ideas of Section 5.4.3 there is at least one value of δ(j), such that the coreset

constructed using this value of δ = δ(j) is smaller than a constant S = O(logn/εd+1) (Corollary
5.6.15), and an O(ε)-coreset for MaxCut (Lemma 5.6.18). We can easily identify such a value
of δ by taking the coreset constructed with the smallest value of δ, such that the size is at most S.

For each 1 ≤ i ≤ Z, we maintain under the movement of points
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• the set of all cells containing sample points, and

• the number of sample points in each non-empty cell.

A (1+ε)-approximate solution on the coreset can be efficiently computed using the algorithm
of Section 5.5.3 in time O

(
log2 n · 2((1/ε)O(1))

)
.

The data structure. At each major event we calculate a new linear scaling of the movements
of points, such that all points lie in the scaled bounding cube B = [0, 1]d as described earlier. We
will then setup the following data structure and maintain it until the next major event triggers.

We assume that the cells in grid Gi are numbered from 1 to 2id. For each sample set Si,j we
maintain a search tree Ti,j that stores the cells in grid Gi that contain at least one point from Si,j.
For each non-empty cell we maintain 2d kinetic turnament trees. For 1 ≤ k ≤ d we maintain
one kinetic max-turnament tree and one kinetic min-turnament tree, where the priority of points
is given by their k-th coordinate. To implement these turnament trees we use a kinetic turnament
trees that efficiently supports insertion and deletions of points (see Section 7.1).

The events. Additionally to the events caused by the kinetic turnament trees, our data struc-
ture stores the following (possible) events in a global event queue. For each grid Gi and each
non-empty cell we have an event for each dimension k, 1 ≤ k ≤ d when the maximum or
minimum point with respect to that dimension crosses the corresponding cell boundary in that
dimension. These events are called minor events. Additionally, we have major events that occur
when an event causes to change the movement of the bounding cube. At major events the whole
data structure is updated as defined above.

Every event in a kinetic turnament tree is called a turnament event.

Time to process events. We first consider minor events. In every minor event, a point p in
some set Si,j moves from one cellC1 of the grid into another cellC2. Therefore, p is deleted from
2d turnament trees corresponding toC1 and is inserted into the 2d turnament trees corresponding
to C2. If the point moves into a cell that was previously empty, we must insert the cell index of
C2 into the search tree Ti,j and initialize the 2d turnament trees. If p was the only point in C1 we
have to delete the 2d turnament trees. Since (cf. Section 7.1) in O(logn) time one can insert a
point in a turnament tree or search tree and since any insertion in a kinetic turnament tree creates
O(logn) new events in expectation, we get:

Lemma 7.3.1 Any minor event can be processed inO(d log2 n) time. It createsO(d logn) new
events in kinetic turnament trees in expectation.

Next we want to analyze the running time required to setup the whole data structure at major
events.

Lemma 7.3.2 Any major event can be processed in expected time O(d · K · n · logn)
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Proof : The time to setup our data structure at a major event is dominated by the time to setup
the kinetic turnament trees for the boundary events. Since each kinetic turnament tree consisting
of m points can be constructed in time O(m · logm) we have to count the number of sample
points in all kinetic turnament trees. Each sample point is inserted into 2d kinetic turnament
trees. The expected number of points in Si,j is Kn/2i+j. By linearity of expectation we get that
the total number of points in all kinetic turnament trees is∑

i,j

2d · Kn
2i+j

= O(dKn) .

2

Remark 7.3.3 Instead of setting up the data structure at major events we can precompute the
major events in time O(d2 · n). Then in time O(d2 · n) we can precompute all times of major
events and the corresponding scaled positions and velocities of the points. From that we can
setup all data structures at the beginning instead of setting them up at major events. Using this
technique we get a total expected setup time ofO(d3 ·K ·n · logn) and can process major events
in time O(1) by just switching to the precomputed structure.

Analysis of the number of events. In Section 7.2 we showed:

Lemma 7.3.4 There are at most O(d2) major events. ut

Since (after scaling the points and velocities at major events) the bounding cube B = [0, 1]d is
fixed between major events, it follows that for every grid Gi the boundaries of the grid cells are
fixed as well between major events. Therefore we get:

Lemma 7.3.5 During the linear motion between major events every point crosses at most d ·
(2i − 1) cells in grid Gi.

Proof : Let us consider an arbitrary point p. We regard the cell boundaries in each dimension
separately. In grid Gi we have 2i − 1 internal boundaries. Since p moves linearly in time, p can
cross each boundary at most once. Since this can happen in each of the dimensions, the lemma
follows. 2

Corollary 7.3.6 The expected number of minor events is O(d3 Kn · Z).

Proof : The expected number of minor events involving points from Si,j is at most Kn
2i+j ·d ·2i =

dKn/2j between two major events. Summing up over all i, j and multiplying it with the number
O(d2) of major events, we get that there are at most O(d3 KnZ) events. 2

Corollary 7.3.7 The expected number of turnament events is O(d4 · K · n · Z · logn).

Proof : Every minor event creates a number of O(d logn) new events in kinetic turnament
trees. Linearity of expectation implies that the expected number of events in kinetic turnament
trees is O(d4 · K · n · Z · logn). 2
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Flight plan updates. In KDS it is typically assumed that at certain points of time the “flight
plan” of an object can change. At every such flight plan update the data structure is notified that
a point now moves in another direction (possibly at a different speed). Such a flight plan update
compels us to update all events in the event queue that involve this particular point. In our case
we distinguish between two types of points. First, there is a constant number of points on which
flight plan updates change the data structure maintaining the bounding cube. If the movement of
one of these points is changed we have to setup a whole new data structure in timeO(d3 ·K ·n).

If the flight plan of any other point is updated the movement of the bounding cube and the
scaling of the points stays the same. We simply have to update all events the point is involved
in. Since it requires O(log2 n) time to update a randomized kinetic turnament tree we have to
compute the expected number of such kinetic turnament trees a point is involved in. Every point
is stored in 2d kinetic turnament trees for each set Si,j it is contained in. We get

Lemma 7.3.8 Let p ∈ P be an arbitrary point. Then p is stored in O(dK) kinetic turnament
trees in expectation.

Proof : The probability that p is contained in set Si,j is at most K/2i+j. Hence, we get that the
expected number of sets Si,j that contain p is∑

i,j

K

2i+j
=
∑
i

1

2i

∑
j

K

2j
≤
∑
i

2K

2i
= O(K) .

The lemma follows from the fact that every point is stored in 2d kinetic turnament trees for each
set Si,j it is contained in. 2

Assume we fix some point of time and specify for each point an arbitrary flight plan update.
If we choose one of these updates uniformly at random then the expected time to perform the
update is small, i.e., the average cost of a flight plan update is low.

Lemma 7.3.9 A flight plan update can be done inO(d ·(d3+ logn) · logn ·K) average expected
time.

Proof : It requires O(log2 n) time to do a flight plan update of a kinetic turnament tree. In
expectation every point is stored in O(dK) kinetic turnament trees. Hence the expected time
required to update these turnament trees is O(dK log2 n). Additionally, we have to deal with
updates of the O(d) points that change the bounding cube structure. We can process such an
update in O(d3 · K · n · logn) time. Averaging over all points we get that the average expected
update time for these kind of updates is O(d

n
· d3 Kn logn) = O(d4 · K · logn). 2

Extracting the coreset. We describe how to extract a small coreset from our data structure.
We try to find a value of j such that the coreset constructed with the value δ = δ(j) has size of
at most S = O(logn/εd+1) (Corollary 5.6.15), and that the size of the coreset constructed with
δ = δ(j − 1) is greater than S. By Corollary 5.6.15 and Lemma 5.6.18 this coreset is then with
probability 1−ψ/j0 an ε-coreset for MaxCut.
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7 A Kinetic Data Structure for MaxCut

Testing the coreset size for one value of j ∈ {0, . . . , j0} and extracting one coreset of size S can
be done in time O(log2 n/εd+1):

Since (according to the proof of Lemma 5.4.7) there are at mostO(logn/εd+1) heavy cells in
each grid Gi, we have a bound of O(log2 n/εd+1) on the number of heavy cells. The marking
process yielding to the actual coreset can be seen as a quadtree traversal. Since each inner node
of this tree corresponds to a heavy cell, the tree traversal can be done in time O(log2 n/εd+1).
When we see that we have too many heavy cells we stop the process.

We can search for the right value of j using a binary search. This takes a total time of
O(log2 n · log logn/εd+1). Since we construct less than j0 coresets, the whole process works
with probability 1−ψ.

Computing an approximate MaxCut from the coreset. According to Section 5.5.3 we
can compute a (1±ε)-approximate MaxCut-solution from the coreset inO

(
log2 n · 2((1/ε)O(1))

)
time.

We can apply this algorithm to the computed coreset and obtain our main result. In the theorem
we assume that d is a constant.

Theorem 23 There is a kinetic data structure that maintains a (1 + ε)-approximation for the
Euclidean MaxCut problem, which is correct with probability 1−ψ. The data structure answers
queries of the form ’to which side of the partition belongs query point p?’ inO(log2 n · log logn ·
ε−2(d+1) ·21/εO(1)

) time. Under linear motion the data structure processes expected Õ(n log(ψ−1)
εd+3 )

events, which require O(log2 n) time. A flight plan update can be performed in Õ( log4 n·log(ψ−1)
εd+3 )

average expected time, where the average is taken over the worst case update times of the points
at an arbitrary point of time. The data structure needs an expected setup time of Õ(n·log(ψ−1)

εd+3 ).ut
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8 An Efficient k-Means Implementation using
Coresets

In this chapter we develop an efficient k-means clustering algorithm called CoreMeans. The
main new idea is that the algorithm uses the coreset construction of Section 5.3 to speed up the
computation of the clustering. Our algorithm first computes a small coreset of the input points
and then runs variant of KMHybrid [104, 83], which is a combination of Lloyd’s algorithm and
random swaps. Then the algorithm doubles the size of the coreset and runs for a few steps on this
coreset. This process is done until the coreset coincides with the whole point set. The coreset
computation is supported by a quadtree (or higher dimensional equivalent) based data structure.
This data structure can also be used to speed up nearest neighbor queries.

We will compare our algorithm with algorithm KMHybrid [104, 83] in Section 8.3. On most
of the input instances our algorithm significantly outperforms KMHybrid, especially for low
dimensional instances. For high dimensional instances our algorithm finds good solutions faster
but KMHybrid’s solution after a few seconds is slightly better. If we want to compute a clustering
for one value of k the running time of both algorithms is often dominated by the setup time to
compute auxiliary data structures. In this case CoreMeans benefits from its smaller setup time.

However, in many applications we do not know the right value of k in advance. In such a
case one has to compute clusterings for many different values of k. Then one can use a quality
measure independent of k to find out the best clustering. A prominent quality measure for such
a scenario is the average silhouette coefficient [86]. Although there are no theoretical guarantees
for the average silhouette coefficient, it is often used to evaluate the quality of different cluster-
ings. Unfortunately, computing the average silhouette coefficient for one clustering takes time
quadratic in the number of points, which is not feasible for point sets of medium and large size.
However, we would like to compute the sihouette coefficient for many values of k.

In this situation we can see the real strength of coresets. Using coresets it is possible to find
clusterings and compute their average silhouette coefficient for large point sets and many values
of k. For example, we computed clusterings for k = 1, . . . , 100 and approximated their average
silhouette coefficient for a set of more than 4.9million points in 3D consisting of the RGB values
of an image in a few seconds on one core of an Intel Pentium D dual core processor with 3 GHz
core frequency. In higher dimensions we did the same computations for an (artificially created)
point set of 300, 000 points in 20 dimensions for all values of k between 1 and 100 in less than
8 minutes. Without coresets, the computation of the sihouette coefficient even for one value of k
takes several hours.

First, we develop some notation and introduce the basic k-means method.
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8 An Efficient k-Means Implementation using Coresets

8.1 Definitions and Notations
In this chapter we will deal with weighted and unweighted sets of points. We will always assume
that the set P represents the input instance, which is an unweighted set of n points in the Rd.
A weighted point set will usually be denoted by R. The weights of the points in R are given by
w(r) for every r ∈ R. We will only consider integer weights in this paper. For each point p ∈ Rd
let p(j) denote it’s j-th coordinate.

Recall the definition of the k-means clustering problem from Section 2.3.
Two easy characterizations of an optimal k-means solution are known. We state them in

Lemma 8.1.1 and Lemma 8.1.2:

Lemma 8.1.1 Let C = {c1, . . . , ck} be a set of fixed cluster centers with |C| = k. Let C1, . . . , Ck
be a partition of P which fulfills

p ∈ Ci ⇒ ∀j∈{1,...,k}d(p, ci) ≤ d(p, cj) .

Then the partition C1, . . . , Ck minimizes the k-means objective function for the fixed set of cen-
ters C. ut

We write Means(P,C) to denote the cost of an optimal partition of P with respect to the cen-
ters in C. In a similar way we write Means(R,C) to denote the cost of an optimal partition of a
weighted set R with respect to C.

The other way around we can easily find the best centers for a given partition. The result is
also well known (and proven in many publications like [94]).

Lemma 8.1.2 Let C1, . . . , Ck be a fixed partition of P. For all i ∈ {1, . . . , k} let ci := µ(Ci)

be the center of gravity of Ci as defined in Section 2.1. Then the centers c1, . . . , ck minimize the
k-means objective function for the fixed partition C1, . . . , Ck of P.

Proof : We can do the minimization within each cluster seperately. Therefore we have to show
for a set of points Q, that the function f : Rd → R with f(r) =

∑
q∈Q d(q, r)

2 is minimized at
r = µ(Q).

We have

f(r) =
∑
q∈Q

d(q, r)2 =
∑
q∈Q

d∑
i=1

(q(i) − r(i))2 =

d∑
i=1

∑
q∈Q

(q(i) − r(i))2 .

Therefore we can minimize each dimension seperately: For i ∈ {1, . . . , d} let

fi(x) =
∑
q∈Q

(q(i) − x)2 .

When we chose r(i) such that fi(r(i)) =
∑
q∈Q(q(i) − r(i))2 is minimized, then r minimizes f.

112



8.1 Definitions and Notations

Let i ∈ {1, . . . , d} be fixed. Obviously fi : R→ R is continuously differentiable. Furthermore
limx→∞ fi(x) = ∞ and limx→−∞ fi(x) = ∞. Therefore fi must have a global minimum, and at
that global minimum we must have f ′(x) := d

dx
f(x) = 0.

We observe:
f ′(x) =

∑
q∈Q

2 · (x− q(i)) .

Therefore we have

f ′(x) = 0 ⇔ ∑
q∈Q

2 · (x− q(i)) = 0⇔ (∑
q∈Q

x

)
−

(∑
q∈Q

q(i)

)

⇔ |Q| · x =
∑
q∈Q

q(i) ⇔ x =
1

|Q|

∑
q∈Q

q(i) ⇔ x = µ(Q)(i) .

Therefore µ(Q) is the only point in Rd minimizing f. 2

8.1.1 The Basic k-Means Method

Based on the observations of Lemma 8.1.1 and Lemma 8.1.2 that it is easy to compute an optimal
partition for a fixed set of centers and an optimal set of centers for a fixed partition, a simple and
elegant clustering heuristic has been developed [41, 95, 97]. Nowadays, one often refers to this
heuristic as the k-means algorithm or Lloyd’s algorithm. This algorithm runs in iterations. At
the beginning of an iteration the algorithm has a set of k centers {c1, . . . , ck}. Every iteration
consists of two steps:

1. For every p ∈ P compute its nearest center in {c1, . . . , ck}. Partition P into k setsC1, . . . , Ck
such that Ci contains all points whose nearest center is ci (and break ties arbitrarily).

2. For every cluster Ci compute its center of gravity µ(Ci), i.e. the optimal center of that
cluster. Then set ci := µ(Ci) for every 1 ≤ i ≤ k.

Each iteration runs inO(ndk) time. Typically, the algorithm runs for a fixed number of iterations
(standard values are in the range from 50 to 500). It is well known that the algorithm only
converges to a local optimum and that the quality of this solution depends strongly on the initial
set of centers. Therefore, the algorithm is usually repeated several times with different sets of
initial centers and the best discovered partition is returned.

8.1.2 Algorithm KMHybrid

In the experiments we compare our algorithm to an algorithm called KMHybrid [104, 83].
KMHybrid combines Lloyd’s algorithm with swapping of centers (moving centers away to the
position of a random point to break local minima) and a variant of simulated annealing. The
algorithm does one swap followed by a sequence of Lloyd’s steps and an acceptance test. If the
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8 An Efficient k-Means Implementation using Coresets

current solution passes the test, the algorithm continues with the current solution. Otherwise, it
restores the old one. The acceptance test is based on a variant of simulated annealing. Addition-
ally, the algorithm uses a kD-tree to speed up nearest neighbor search in the Lloyd’s steps. For
more details see [104, 83].

8.1.3 The Silhouette Coefficient
In many applications the right number of clusters is not known in advance. Since the k-means
objective function drops monotonically as k increases, one needs a different measure for the
quality of a clustering that is independent of k. Such a measure is provided by the average
silhouette coefficient [86] of the clustering. The silhouette coefficient of a point pi is computed
as follows. First compute the average distance of pi to the points in the same cluster as pi. Then
for each cluster C that does not contain pi compute the average distance from pi to all points in
C. Let bi denote the minimum average distance to these clusters. Then the silhouette coefficient
of pi is defined as (bi − ai)/max(ai, bi).

The value of the silhouette coefficient of a point varies between −1 and 1. A value near −1

indicates that the point is clustered badly. A value near 1 indicates that the point is well-clustered.
To evaluate the quality of a clustering one can compute the average silhouette coefficient of all
points.

8.2 The Algorithm
We first provide a high level description of our algorithm and then we give some more details on
the implementation.

Our algorithm uses the observation that the first iterations of k-means algorithms or swapping
heuristics do not need the accuracy of the whole point set. Our algorithm uses the coreset con-
struction technique of Section 5.3 to reduce the complexity of the point set. The hope is that the
first iterations of iterative algorithms can be done much more efficiently on small coresets, still
significantly improving the objective function.

The algorithm starts to compute a coreset of size roughly 2k and chooses k points from this
coreset as a starting solution. Then it repeats max{40/

√
k, 2} times1 the following two steps,

which form the main loop of the algorithm.

• First it runs Lloyd’s algorithm for d steps. After this, the current solution is compared to
the previously best and the algorithm continues with the better of these solutions.

• In the second step, the algorithm chooses a number k0 between 0 and k uniformly at
random. Then it picks centers from the current set of centers according to the following
probability distribution until k0 different centers are chosen. The probability that the center

1The value comes from the idea that the time to extract the coreset should be comparable to the time to run
iterations on the coreset. Without a dependency on k here, the coreset extraction time dominates the algorithm
runtime for small values of k at the beginning of the algorithm. The special value 40/

√
k has been empirically

adjusted.
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COREMEANS(P, k)

m← 2k

whilem ≤ |P| do
Compute coreset of sizem.
ifm = 2k then
C← k random points from coreset
K← C

repeat max{40/
√
k, 2} times (* Main loop *)

Do d iterations of Lloyd’s algorithm starting with C
Let C denote the current solution
if Means(P, K) < Means(P,C) then
C← K

K← C

Choose k0 randomly from {0, . . . , k}

Swap k0 centers from C with points chosen uniformly from the coreset
m← 2 ·m

Figure 8.1: The COREMEANS algorithm

of cluster Cj is chosen is 1

|Cj|·
∑k

i=1
1

|Ci|

, where C1, . . . , Ck denotes the current clustering.

Therefore centers of smaller clusters are picked with higher probability. Finally, these k0
random centers are replaced by points chosen uniformly at random from the coreset.

After the main loop is finished the algorithm doubles the size of the coreset and continues with
the main loop. This is done until the coreset is the whole point set. The algorithm is given in
Figure 8.1.

To support efficient computation of coresets and to speed up nearest neighbor queries in
Lloyd’s algorithm we use a quadtree or its higher dimensional equivalent. Our approach is the
analog to the kD-tree algorithm from [83]. The root of the quadtree corresponds to a bounding
box of the point set. With each occupied cell B associated with a node of the quadtree we store:

• The number nB = |P ∩ B| of points contained in the cell,

• A vector bB = (b
(1)
B , . . . , b

(d)
B ) with b(i)

B :=
∑
p∈P∩B p

(i),

• The sum of the squared `2-norm of the point vectors
eB :=

∑
p∈P∩B ‖p‖22 =

∑
p∈P∩B

∑d
i=1(p

(i))2.

This information can be used to quickly compute the exact cost of the partition of P that cor-
responds to a given partition of the coreset. The same precomputations have also been used in
[83, 124]. Since all points from one cell are assigned to the same coreset point and hence to the
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same cluster, we can compute the cost of a cluster C in the following way. Let B1, . . . , Bl be the
disjoint cells assigned to C. We first compute the center of gravity c := µ(C) using the formula

µ(C)(i) =
1

|C|
·
∑
p∈C

p(i) =

l∑
j=1

∑
p∈P∩Bj

p(i) =

l∑
j=1

b
(i)
Bj
.

Then we have to compute

∑
p∈C

d(p, c)2 =
∑
p∈C

d∑
i=1

(p(i) − c(i))2 =
∑
p∈C

d∑
i=1

[
(p(i))2 − 2p(i)c(i) + (c(i))2

]
=

l∑
j=1

eBj
− 2 ·

d∑
i=1

c(i) ·
l∑
j=1

b
(i)
Bj

+

l∑
j=1

nBj
·

(
d∑
i=1

(c(i))2

)
,

which can be done efficiently by using the information stored with each cell. Notice that the
runtime of this computation only depends on the number of cells, not on the number of points
inside the cells.

In our implementation we fixed the depth of the quadtree to 112. To build the tree we pro-
ceeded bottom-up. We identify the non-empty cells in the grid corresponding to the 11-th level
of the tree. The non-empty cells are stored in a hash table with cell coordinates as keys. After
we have computed the non-empty cells in the finest grid we iterate over these cells and compute
all non-empty cells in the next coarser grid together with the corresponding point statistics.

To compute a coreset of around m points we first have to identify a good guess for δ. Larger
values of δ lead to a smaller coreset but also to a worse approximation (see Section 5.3). We find
a good value by setting δ to a large value and dividing it iteratively by 1.3. After each iteration
we compute the heavy cells from the cell statistics, and from that the size of the coreset (without
computing the actual coreset points). For high values of δ this is done very fast since the coreset
size can be computed using a few large cells. Alltogether the time to compute the coreset size is
negligible compared to the coreset computation time.

The coreset for a given value of δ is computed using a recursive depth first search function on
the quadtree cells. For the root cell we call a function COMPUTECORESETPOINTS (see Figure
8.2). This function has a cell as input parameter as well as statistics about points to be moved
into that cell. COMPUTECORESETPOINTS adds the input points to the cell statistics. Then for
each subcell it checks heaviness. If there is at least one heavy subcell, it calls COMPUTECORE-
SETPOINTS for all heavy subcells. The points given as function parameter and the points in
all light subcells are then moved into a heavy subcell by adding up their statistics and giving
these statistics to one call of COMPUTECORESETPOINTS as function parameters. If a cell has no

2During the computation of big coresets in later iterations it can happen that the coreset extraction needs point
information of deeper levels. However, since we used images as test instances with 8 bits per color channel, a
depth of 11 was enough. We believe that this also suffices for most other real world scenarios.
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Global variables used in functions COMPUTECORESETPOINTS, COMPUTEASSIGN-
MENTFORCELL, AND COMPUTEASSIGNMENT

L : the current set of centers.
For each center c ∈ L:
nc ∈ N : the number of points assigned to the center.
bc =∈ Rd : the sum of coordinates of points assigned to the center.
ec =∈ R : the sum of squared `2-norms of points assigned to the center.

R : the coreset computed by COMPUTECORESETPOINTS.
For each cell C with points in it:
nC ∈ N, bC ∈ Rd, eC ∈ R: The statistics for the points P ∩ C in cell C.
ñC ∈ N, b̃C ∈ Rd, ẽC ∈ R: The statistics for the points PC in cell C taking

into account the movement of points into cells during coreset construction.

'

&

$

%

COMPUTECORESETPOINTS returns a set of coreset points, each being a triple from
N× Rd × R.
COMPUTECORESETPOINTS(Cell C,n ∈ N, b ∈ Rd, e ∈ R)

ñC ← nC + n.
b̃C ← bC + b.
ẽC ← eC + e.
Let H1, . . . , Hh be the heavy subcells of C.
Let L1, . . . , Ll be the light subcells of C.
for j=1,. . . l do:
ñLj
← 0. // Points are moved into a heavy cell.

b̃Lj
← (0, . . . , 0) ∈ Rd.

ẽLj
← 0.

N← n+
∑l
j=1 nLj

. // Number of points to be assigned.
B← b+

∑l
j=1 bLj

.
E← e+

∑l
j=1 eLj

.
if C has at least one heavy subcell do:
Coreset← COMPUTECORESETPOINTS(H1,N, B, E).
for j = 2, . . . , h do:

Coreset← Coreset ∪ COMPUTECORESETPOINTS(Hj, 0,
−→
0 , 0).

else
Coreset← {(N,B, E)}. // Create new coreset point.

RETURN Coreset.

Figure 8.2: The COMPUTECORESETPOINTS function
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heavy subcell, a coreset point is introduced from the statistics about cell points and the statistics
given as function input.

To speed up of the later k-means algorithm we store the following statistics: For each cell
occupied by coreset points we store a pointer to a corresponding coreset point (if there is one)
and pointers to all subcells containing coreset points. For a cell B let PB be the points from P

which are in cell B after moving points during the coreset construction. During the construction
of coreset R we additionally compute for each cell B the corresponding coreset statistics (i.e. the
cell statistics taking into account that points are moved into cells during the coreset construction):

• The number ñB = |PB| of points contained in the cell (after moving points).

• A vector b̃B = (b̃
(1)
B , . . . , b̃

(d)
B ) with b̃(i)

B :=
∑
p∈PB

p(i),

• The sum of the squared `2-norm of the point vectors
ẽB :=

∑
p∈PB

‖p‖22 =
∑
p∈PB

∑d
i=1(p

(i))2.

See Figure 8.2 for details. The function COMPUTECORESETPOINTS returns a set of triples
from N×Rd×R, where triple (n ′, b ′, e ′) stands for a coreset point representing n ′ points from
the input instance with coordinate sum b ′ and sum of squared `2-norm e ′.

One iteration of the k-means algorithm is done as follows: Instead of searching the nearest
center for each coreset point separately we use an approach analogous to the kd-tree approach
as in [83]. We start with a list L of all centers as possible candidates for nearest centers and do
a depth first walk on those quadtree cells which contain a coreset point. For each cell C in the
quadtree we check if we can rule out that some centers q in L are the nearest center to any point
in C. This is done by first computing the point l from L that is nearest to the center of C. Then
we check for each point q ∈ L, whether C lies completely on the same side as l of the bisector
between l and q. All centers which cannot be nearest centers for coreset points in C are evicted
from L and the algorithm proceeds to the children of cell C.

If |L| = 1 we know the nearest center for all coreset points within the cell. Since we hold
statistics for all coreset points within each cell we can then assign all coreset points in one step
to the center l ∈ L and stop.

If |R ∩ C| = 1, we compute the distances of the coreset point to all l ∈ L directly, assign the
coreset point and stop the depth first walk.

See Figure 8.3 for details.

Computation of silhouette coefficients. The computation of silhouette coefficients for
each point pi is speeded up in the following way: We first compute the average distance ai to
all points in the same cluster. To compute bi, the minimum over average distances bi,j to points
in other clusters Cj, we identify the second nearest cluster center cl and compute the average
distance bi,l to all points in Cl. In most cases bi,l is the minimum of all bi,j for other clusters. To

118



8.2 The Algorithm

'

&

$

%

COMPUTEASSIGNMENTFORCELL(Cell C,List of possible centers L ⊂ L)
if |R ∩ C| = 1 do: // Only one coreset point in C.

Let g ∈ R ∩ C be the coreset point in cell C.
Compute center l ∈ L nearest to g.
nl ← nl + ñC.
bl ← bl + b̃C.
el ← el + ẽC.

else: // more than one coreset point in C.
Let a be the center of cell C.
Compute the center l ∈ L having smallest distance to a.
for each q ∈ L :

if each point of cell B has smaller distance to l than to q do:
L→ L \ {q}.

if |L| = 1 do: // Then L = {l}.
nl ← nl + ñC.
bl ← bl + b̃C.
el ← el + ẽC.

else: // |L| ≥ 2.
for each subcell C̃ of C having a coreset point do:

COMPUTEASSIGNMENTFORCELL(C̃,L).

COMPUTEASSIGNMENT()

for each l ∈ L do:
nl ← 0.
bl ← (0, . . . , 0) ∈ Rd.
el ← 0.

COMPUTEASSIGNMENTFORCELL (Largest cell C, L).

Figure 8.3: The COMPUTEASSIGNMENT function'
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SILHOUETTE(K)
m← 5.
whilem ≤ K do:

Compute coreset of sizem.
for each k ∈ {1, . . . , 100} do

Use main loop of CoreMeans to compute clustering.
Compute average silhouette coefficients for the current coreset and centers.

m← 2 ·m.

Figure 8.4: The SILHOUETTE function
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Setup Times
Instance Size KMHybrid CoreMeans
Tower 4,915,200 28.59 4.77
Bridge 3,145,728 18.13 2.95
PaSCO 3,145,728 19.41 4.29
Frymire 1,234,390 4.71 0.65
Clegg 716320 2.76 1.05

Monarch 393,216 1.43 0.63
Artificial5D 300,000 2.27 1.49

Artificial10D 300,000 3.71 2.17
Artificial15D 300,000 4.71 2.70
Artificial20D 300,000 6.09 3.87

Table 8.1: Data sets and setup time.

get a certificate for this, we use the lower bound d(pi, cj) ≤ bi,j. We check for all other clusters
if d(pi, cj) ≥ bi,l. If this inequality holds then bi,l ≤ bi,j and bi,j cannot be the minimal one. In
that case we save the computations of all distances to points in cluster Cj.

8.3 Experiments

We implemented our algorithm using C++. The code was compiled using gcc version 3.4.4 using
optimization level 2 (-O2). We compare our algorithm the implementation of KMHybrid from
[83]. KMHybrid was compiled using the same compiler and also with optimization level 2. We
ran it using the standard settings given by the developers.

We ran our experiments on an Intel Pentium D dual core processor with two cores. Both
algorithms used only one core with core frequency 3 GHz. The computer has 2 GByte RAM.

8.3.1 Data Sets

We performed our experiments on two different types of instances. The first type of instance
consists of images and we want to cluster the RGB values of the pixels. Thus the input points
lie in 3D and the i-th input point corresponds to the RGB-values of the i-th pixel of the image.
Such a clustering has applications in lossy data compression, since one can reduce the palette of
colors used in the picture to the colors corresponding to the cluster centers.

Our test images consist of three large images (Tower, Bridge, and PaSCo) and three medium
size images (Monarch, Frymire, and Clegg). The latter images are commonly used to evaluate the
performance of image compression algorithms. The exact sizes of the test images can be found in
Table 8.3.1. The images are available at homepages.uni-paderborn.de/frahling/coremeans.html
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Artificially Created Instances.

The second type of instance is artificially created. Instance ArtificialxD consists of 300, 000
points in x dimensions. The instance is generated by taking a random point from one of 20
Gaussian distributed clusters, whose centers are picked uniformly at random from the unit cube.
The standard deviation of the Gaussian distribution is 0.02 ·

√
d, i.e. it is the product of the

one dimensional Gaussian distribution with standard deviation 0.02. An example of a sample of
points from instance Artificial2D is given in Figure 8.15.

8.3.2 Comparison of CoreMeans and KMHybrid
To evaluate the performance of CoreMeans we compare our algorithm to KMHybrid. We first
compare the setup times for both algorithms, i.e. the time to construct the auxiliary data struc-
tures. If one wants to compute a clustering for fixed value of k then the setup times often domi-
nate the running time of the algorithm. If a good value of k is not known, then one often wants
to compute a clustering for multiple values of k. In this case, it is more interesting to compare
the running time of both algorithms without setup time (however, the time to extract the coresets
from the data structure is contained in the given running times). This is done in Sections 8.3.2 to
8.3.2. In Section 8.3.2 we compare both algorithm for different input sizes. In Section 8.3.2 we
focus on the performance with increasing dimension, and in Section 8.3.2 we investigate into the
dependence on the number of clusters.

Setup time

The times to compute the auxiliary data structure are given in Table 8.3.1. The time to build these
structures does not depend on k. The setup time for KMHybrid is between 1.5 to 7 times higher
than that of CoreMeans. There is a tendency that the gap becomes larger for larger instances.
However, there seems to be also an dependence on the distribution of points as the largest factor
was achieved for the medium size instance Frymire.

If one computes a clustering for one value of k then the setup time is typically larger than the
computation time. Even for the larger instances both algorithms obtain a good clustering in a
few seconds (see also Section 8.3.2).
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Dependence on Input Size

To evaluate the dependence on the input size we run both algorithms on instance Monarch, Clegg,
Frymire, PaSCo, Bridge, and Tower. We used paramter k = 50. In general, CoreMeans performs
better for smaller k (see Section 8.3.2) and tends to perform similar to KMHybrid as k increases.
The results are shown in Figures 8.5 to 8.10. The plots give the average performance of 10
runs. The vertical bars indicate the best and worst solution found within these runs. The relative
performance of CoreMeans increases slightly with the size of n. We would like to emphasize
that the difference between the best and worst solution found during the 10 runs is much smaller
for CoreMeans. Therefore, to guarantee a good solution we have to run KMHybrid more often
than CoreMeans. Another interesting observation is that CoreMeans achieves slightly better
approximations for larger instances.
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Figure 8.5: Performance on data set Monarch for k = 50 excluding setup time.
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Figure 8.6: Performance for Clegg for k = 50 excluding setup time.
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Figure 8.7: Performance for Frymire for k = 50 excluding setup time.
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Figure 8.8: Performance for PaSCo for k = 50 excluding setup time.
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Figure 8.9: Performance for Bridge for k = 50 excluding setup time.
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Figure 8.10: Performance for Tower for k = 50 excluding setup time.

Dependence on the Dimension

Next we are interested in the dependence on the dimension. To evaluate this dependence, we
compare the average performance of 10 runs of KMHybrid and CoreMeans for k = 20 on the
instances ArtificialxD for x = 5, 10, 15, and 20. The graphs are shown in Figure 8.11 and 8.12.
CoreMeans performs better on all instances. The most significant difference in performance can
be found in the 5D instance, where CoreMeans performs a factor 10 − 30 better. The higher
the dimension the smaller is the advantage of CoreMeans. In these experiments the deviation
of KMHybrid was much bigger than that of CoreMeans. Although CoreMeans shows the much
better average performance, the best solution found by KMHybrid was better than the best so-
lution found by CoreMeans. Overall, the performance of the algorithm for medium dimensions
was much better than theory predicts with an exponential dependence on the dimension.
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Figure 8.11: Performance for ArtificialxD with x = 5 and x = 10 excluding setup time.
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Figure 8.12: Performance for ArtificialxD with x = 15 and x = 20 excluding setup time.
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Dependence on the Number of Clusters

To investigate in the dependence on the number of cluster centers, we ran a number of experi-
ments on different inputs. Due to space limitations we only present results for k = 10, 50, 100,

and 200 for instance Bridge. These results are typical for the performance we encountered. As
before, the Figures 8.13 and 8.14 show the average performance of 10 runs excluding the setup
times. Typically, our algorithm performs significantly better for small values of k. For example,
for k = 10 CoreMeans often performs a factor 10 − 100 better. Additionally, the quality of the
solutions computed by KMHybrid varies significantly. CoreMeans is less sensitive to the random
choices of the algorithm. As a consequence one must perform more runs of KMHybrid to obtain
a good solution with high probabilty. As k grows larger the performance gap between the two
algorithms decreases. The reason for this is that the quality of the coreset decreases as k grows.
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Figure 8.13: Performance for Bridge with k = 10 and k = 50 excluding setup time.
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Figure 8.14: Performance for Bridge with k = 100 and k = 200 excluding setup time.

8.3.3 Computing the Silhouette Coefficient

We computed the approximate average silhouette coefficient for 1 ≤ k ≤ 100 for instances
Tower, Clegg, Monarch, and ArtificialxD with x = 2, 10, 20 using coresets of different sizes.
Table 8.2 summarizes the running times of our tests. The second column gives the overall running
time for the computation and the third column states the time spend to compute the silhouette
coefficients. Since the time to compute the silhouette coefficient is quadratic in the coreset size,
the fraction of time spent for this computation increases significantly with increasing coreset
size.

To show the effectivity of our method we focus on instance Artificial2D. A sample of points
from this instance is shown in figure 8.15. The average silhouette coefficent for this instance
and coreset sizes 427, 1616, and 6431 is given in Figure 8.16. We see that even the smallest
coreset suffices to approximate the coefficient quite well. The only problem is that the silhouette
coefficient increases slightly with k. A reason for this may be that the number of centers is
already relatively large compared to the number of coreset points. If some centers contain only
one point, then they have silhouette coefficient exactly 1 and this may lead to slightly increasing
coefficient, if k is large compared to the coreset size. For our applications a coreset of size
roughly 1600 will definitly suffice. There is almost no difference to one with more than 6000
points.

The highest silhouette coefficient value was achieved for 14 clusters (using the larger coreset)
by the cluster centers shown in Figure 8.15. The reason why only 14 clusters were found (al-
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though we had 20 cluster centers) can be explained by the fact that some of the clusters were
very close to each other and so the clustering coefficient is higher when one assigns only one
center to these clusters.

Instance Coreset Time Silhouette
Tower 404 7.99 0.84

1607 19.24 6.43
Clegg 423 4.69 0.8

1720 15.07 6.58
Monarch 428 4.80 0.77

1626 15.37 6.11
Artificial2D 427 2.52 0.62

1616 7.73 4.3
6431 51.89 45.57

Artificial10D 400 43.34 1.88
1711 123.38 17.68

Artificial20D 408 139.58 4.18
1778 442.5 40.62

Table 8.2: Time to compute clusterings and approximate average silhouette coefficients. The
second column contains the overall running time (including setup). The third column
gives the time required to compute the approximate average silhouette coefficient.
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Figure 8.15: A sample of points from instance Artificial2D. The bold points are the centers that
achieve the best average silhouette coefficient.
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Figure 8.16: The average silhouette coefficient of Artificial2D.

8.3.4 Summary
Summarizing we can say that our algorithm CoreMeans performs very well compared to KMHy-
brid [104] for small dimension and small to medium k. When we compare the computation time
of CoreMeans with KMHybrid we see that for one clustering the running time of both algo-
rithms is typically dominated by the setup time. The quality of the solutions varies less than that
of KMHybrid, which implies that we need fewer runs to guarantee a good solution.

The main strength of our algorithm is to quickly find relatively good approximations for many
values of k, for example when a good value for k is not known in advance. In this case, we can
also use the coresets to compute the average clustering coefficient and thus to find a good choice
of k.
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9 Counting Motifs in Data Streams

In this chapter we present estimators for the number of triangles, the number of cliques of any
size, and the number of bipartite cliques K3,3 with three nodes in each partition for graphs given
as a data stream of edges. Our data stream algorithms compute a (1 + ε)-approximation of the
respective value with probability 1− δ.

To estimate the number of triangles for a graph given as an adjacency stream, our algorithm
usesO( 1

ε2 · log(1
δ
) · (1+ |T1|+|T2|

|T3|
) · log(|V |)) memory bits, where Ti denotes the set of node-triples

having i edges in the induced subgraph (see Definition 9.1.1). This is always better than the naive
sampling algorithm that requires O( 1

ε2 log(1
δ
)(1 + |T0|+|T1|+|T2|

|T3|
) · log(|V |)) memory bits, while it

strongly improves theO( 1
ε2 ·log(1

δ
)·(1+ |T1|+|T2|

|T3|
)3·log |V |) solution provided in [117]. Comparing

our results in this model with the previous work in [81], we obtain a one-pass algorithm that
achieves the same space bound and better update time as the three pass algorithm from [81]. The
two other algorithms in [81] either require bounded maximum degree or are incomparable to our
result because the space complexity depends on different parameters (e.g., the number of cycles
of length 4 and 6 in the graph).

The number of memory bits used by our algorithm still depends on the value of |T1|/|T3|, that
can be as large as O(|E| · |V |). Our method in the case of graphs in arbitrary order is therefore of
practical interest for networks with a large number of triangles.

We then develop a method of greater practical relevance for graphs given as an incidence
stream of edges which uses O( 1

ε2 log(1
δ
) log2(|V |)(1 + |T2|

|T3|
)) bits. To give a flavor of the quality

of our result, observe that |T3|
|T2|

is exactly equal to 1/3 of the inverse of the transitivity coefficient
of the graph, a universal measure closely related to the clustering coefficient, whose value for
networks of practical interest is rarely bigger than 105. Our algorithmic results improve the
result of [117] that requires O( 1

ε2 log(1
δ
) log(|V |)(1 + |T2|

|T3|
)2 + d log |V |) memory bits (where d

denotes the maximum degree of the graph) and improves over the naive sampling method.
Our method is suitable to be adapted to several other classes of subgraphs. As an example we

provide an algorithm to estimate the number of cliques of size α in the incidence stream model
that uses O( 1

ε2 log(1
δ
) log2(|V |)(1 + |Sα|

|Kα|
)) memory bits, where Sα is the set of stars of α nodes

and Kα is the set of cliques of size α in the graph.

Denote by Ki,j the set of complete bipartite cliques in the graph where each of i vertices link
to all of j other vertices. As a last contribution we provide a data stream algorithm that provides
an approximation of the number of K3,3 of the graph in the incidence stream model ordered by
destination nodes with outdegree bounded by ∆ which needs O

(
log2(|V |) · |K3,1|·∆2 ln( 1

δ
)

|K3,3|·ε2

)
mem-
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ory bits.

In Section 9.1 we present our algorithm to count the number of triangles in the adjacency
stream model (as defined in Section 2.2). For input graphs given as an incidence stream (see
Section 2.2), we develop a better algorithm to count the number of triangles in Section 9.2.
This algorithm will be generalized to cliques of any size in Section 9.3. Section 9.4 presents an
algorithm to count bipartite cliques K3,3 in the incidence stream model.

9.1 Counting Triangles in Adjacency Streams
We consider an undirected graph G = (V, E) without self-loops. Each edge is an unordered pair
of nodes (v,w) such that (v,w) = (w, v). We assume that V = {1, . . . , n} and n is known in
advance, and that G is then given as an adjacency stream consisting of all edges in the graph as
defined in Section 2.2. The edges appear in arbitrary order and no edge is repeated in the stream.
There is no bound on the degree of the nodes.

Definition 9.1.1 (Node triples, T0, T1, T2, T3) We define a node triple as a set {v1, v2, v3} ⊂ V

consisting of exactly 3 different nodes of V . We partition the set of node triples into four sets
T0, T1, T2, and T3. A node triple {v1, v2, v3} belongs to

• T0 iff no edge exists between the nodes v1, v2, and v3,

• T1 iff exactly one of the edges (v1, v2), (v2, v3), and (v3, v1) exists,

• T2 iff exactly two of the edges (v1, v2), (v2, v3), and (v3, v1) exist,

• T3 iff all of the edges (v1, v2), (v2, v3), and (v3, v1) exist (i.e. iff {v1, v2, v3} is a triangle).

Therefore |T3| denotes the number of triangles in G.

The algorithms we present here find a (1 ± ε)-approximation of |T3| using local memory of
sizeΘ

(
1
ε2

(
1+ |T1|+|T2|

|T3|

)
· log |V |

)
. In social graphs and the webgraph the value (|T1|+ |T2|)

/
|T3|

usually is O(|V |).

9.1.1 3 Pass Algorithm
We will first present an algorithm which passes three times over the stream and computes a
(1 ± ε)-approximation on the number of triangles. A different algorithm with the same space
complexity has been presented in [81]. However, our algorithm has a significantly improved
update time and as we later show, we can combine the three passes to a one-pass algorithm.

We introduce a streaming algorithm SAMPLETRIANGLE, which outputs a {0, 1} variable β
with expected value 3|T3|/(|T1| + 2 · |T2| + 3 · |T3|). The algorithm is given in Figure 9.1.

It is easy to see that each of the passes can be implemented in a single pass over the set of
edges (i.e., the input stream) using O(1) memory cells, each storing O(log |V |) bits.
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SAMPLETRIANGLE

1st. Pass:
Count the number of edges |E| in the stream

2nd. Pass:
Sample an edge e = (a, b) uniformly chosen from E

Choose a node v uniformly from V \ {a, b}.
3rd. Pass:

if (a, v) ∈ E∧ (b, v) ∈ E then set β← 1

else set β← 0

return β

Figure 9.1: The 3-pass algorithm SAMPLETRIANGLE for adjacency streams

Lemma 9.1.2 Algorithm SAMPLETRIANGLE outputs a value β with expected value

E[β] =
3|T3|

|T1| + 2 · |T2| + 3 · |T3|

Furthermore
|T1| + 2 · |T2| + 3 · |T3| = |E| · (|V | − 2)

and
|T3| = E[β] · |E| · (|V | − 2)/3 .

Proof : We look at all node triples. Each triple belongs to one of the sets T0, T1, T2, or T3.
The algorithm chooses such a triple by choosing an edge e = (a, b) together with one node
v ∈ V \ {a, b}. Therefore, no triple from T0 is chosen.

We will show how many different choices of one edge and one node choose a node triple be-
longing to T1 (resp. T2, T3). Since all pairs of one edge and one node have the sample probability
to be chosen, we can then compute the probability to select a triangle.

Let us denote by t = {w1, w2, w3} a fixed triple from T1. Wlog. let be (w1, w2) ∈ E and so
(w2, w3), (w3, w1) /∈ E. The algorithm chooses t, iff it samples edge (w1, w2) and vertex w3.
Therefore there are exactly |T1| choices of an edge and a node that select a triple from T1.

Now assume t ∈ T2. Then t is chosen by SAMPLETRIANGLE, iff one of the two edges in the
triple is sampled and v equals to the remaining node of the triple. Therefore there are exactly
2 · |T2| choices of an edge and a node that select a triple from T2.

For the same reason, a triple in T3 is chosen whenever one of its three edges and the remaining
vertex is chosen. Therefore there are exactly 3 · |T3| choices of an edge and a node that select a
triple from T3. These are exactly the choices that lead to β = 1.

We conclude that

E[β] =
3|T3|

|T1| + 2 · |T2| + 3 · |T3|
.
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Since there are |E| · (|V | − 2) = |T1| + 2 · |T2| + 3 · |T3| choices to sample an edge and a node,
it follows that |T3| = E[β] · |E| · (|V | − 2)/3. 2

A streaming algorithm COUNTTRIANGLES, which outputs an estimate of |T3|, easily follows.
It can be adjusted using an input parameter s.'

&

$

%

COUNTTRIANGLES ( s ∈ N )
Run s instances of SAMPLETRIANGLE in parallel.
Let βi be the value returned by the ith instance.
T̃3 ← (

1
s

∑s
i=1 βi

)
· |E| · (|V | − 2)

/
3.

return T̃3.

Figure 9.2: The 3-pass algorithm COUNTTRIANGLES for adjacency streams

Lemma 9.1.3 Algorithm COUNTTRIANGLES outputs a value T̃3 having expected value E[T̃3] =

|T3|. If s ≥ 1
ε2 · |T1|+2·|T2|+3·|T3|

|T3|
· ln(2

δ
). then with probability 1 − δ the algorithm outputs a value

T̃3 satisfying
(1− ε) · |T3| ≤ T̃3 ≤ (1+ ε) · |T3| .

Proof : We use Chernoff’s Bounds [58]:

Pr
[1
s

s∑
i=1

βi ≥ (1+ ε)E[β]
]
< e−ε2·E[β]·s/3

Pr
[1
s

s∑
i=1

βi ≤ (1− ε)E[β]
]
< e−ε2·E[β]·s/2

For s ≥ 1
ε2 · |T1|+2·|T2|+3·|T3|

|T3|
· ln(2

δ
) the sum of both probabilities is bounded by δ. The lemma

follows now from Lemma 9.1.2 stating that |T3| = E[β] · |E| · (|V | − 2)/3. 2

Lemma 9.1.3 guarantees that algorithm COUNTTRIANGLES outputs a value T̃3 having the
right expectation.

However, there could be applications which need guaranteed approximation bounds. When
we run COUNTTRIANGLES with a predefined number of instances s, it outputs an estimation T̃3
on |T3|, but the requirement s ≥ 1

ε2 · |T1|+2·|T2|+3·|T3|
|T3|

· ln(2
δ
) of Lemma 9.1.3 is impossible to check.

We can not find out if we used enough instances to ensure a (1± ε)-approximation.
To overcome this problem we later develop a new algorithm COUNTTRIANGLESSAFE based

on COUNTTRIANGLES. It outputs a pair (T̃3, ε̃) and guarantees that T̃3 is a (1±ε̃)-approximation
of |T3| with probability 1− δ.
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COUNTTRIANGLESSAFE ( s ∈ N, ψ ∈ (0, 1) )
Set r← d2 · log(2/ψ)e.
Set t← ds/(4 log(2/ψ))e.
Run r instances of COUNTTRIANGLES(t) in parallel.

Let T̃3
(i)

be the value returned by the ith instance.

Set T̃3 ← mediani(T̃3
(i)

).

Set ε̃←√
176fT3

· |T1|+2·|T2|+3·|T3|
s

· log 2
ψ

=
√

176fT3
· |E|·(|V |−2)

s
· log 2

ψ
.

return (T̃3, ε̃).

Figure 9.3: The 3-pass algorithm COUNTTRIANGLESSAFE for adjacency streams

Let us first analyse the update time of COUNTTRIANGLES. As before we analyse time in the
Real RAM model. Note that we could also show our results in a RAM model, assuming that all
stored values (each needing O(log |V |) memory bits to be stored) fit into one single register.

If we implement the different instances of our algorithm independently of each other, we re-
quire O(s) time to process each edge during the third pass. We show how to reduce this to
expected constant time. Before we invoke the third pass, we collect all edge-vertex pairs chosen
by different instances of the algorithm. For each pair with edge e = (a, b) and vertex v we
would like to find out whether (a, v) and (b, v) are in E. Therefore, we construct a set M of
missing edges that for each such edge-vertex pair contains the edges (a, v) and (b, v). Next, we
construct a hash table forM using a uniform hash function that requires linear space, as proposed
in [107]. Now we can implement the third pass in the following way. For each edge e, we lookup
whether it is in the set M. If e ∈M we mark it. These steps can both be done in expected con-
stant time. In a postprocessing step we can then determine the edge-vertex pairs that are triangles.

We now develop an algorithm COUNTTRIANGLESSAFE based on COUNTTRIANGLES. It has
a number s and a desired error probability ψ as input parameters and outputs a pair (T̃3, ε̃).
The algorithm gives the guarantee that T̃3 is a (1 ± ε̃)-approximation of |T3| with probability
1 − ψ. It runs at most s instances of SAMPLETRIANGLE in parallel. We show the pseudocode
of COUNTTRIANGLESSAFE in Figure 9.3.

Lemma 9.1.4 Let (T̃3, ε̃) be the output of algorithm COUNTTRIANGLESSAFE. With probability
1−ψ the following statements are true:

• (1− ε̃) · |T3| < T̃3 < (1+ ε̃) · |T3|

• If s ≥ 352
ε2 · |T1|+2·|T2|+3·|T3|

|T3|
· log(2/ψ), then the algorithm outputs (T̃3, ε̃) with ε̃ ≤ ε.

Proof : COUNTTRIANGLESSAFE outputs (T̃3, ε̃) with ε̃ =
√

176fT3
· |T1|+2·|T2|+3·|T3|

s
· log 2

ψ
.
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Therefore we have T̃3 = 176
ε̃2 · |T1|+2·|T2|+3·|T3|

s
· log 2

ψ
. Because of the choice of t it follows

T̃3 ≥
44

ε̃2
· |T1| + 2 · |T2| + 3 · |T3|

t
. (9.1)

From Markov’s inequality it follows that

∀i∈{1,...,r}Pr
[
T̃3

(i)
≥ 11 · E[T̃3

(i)
]
]
≤ 1

11
.

Since for all i we have E[T̃3
(i)

] = |T3| it follows:

∀i∈{1,...,r}Pr
[
T̃3

(i)
≥ 11 · |T3|

]
≤ 1

11
.

Because of T̃3 = mediani(T̃3
(i)

) we can only have T̃3 ≥ 11 · |T3| if for at least r/2 values of i

we have T̃3
(i)
≥ 11 · |T3|. For each single value of i the probability for that is smaller than 1/11 as

shown above. The probability to have at least r/2 values of i fulfilling that equation is therefore
bounded by:

Pr
[
T̃3 ≥ 11 · |T3|

]
≤
(
r

r/2

)
·
(
1

11

)r/2
≤
(
e · r
r/2

)r/2
·
(
1

11

)r/2
=

(
2e

11

)r/2
≤
(
1

2

)r/2
≤ ψ/2 .

From inequality (9.1) we conclude

Pr
[44
ε̃2
· |T1| + 2 · |T2| + 3 · |T3|

t
≥ 11 · |T3|

]
≤ ψ/2

and finally

Pr
[
|T3| ≤

4

ε̃2
· |T1| + 2 · |T2| + 3 · |T3|

t

]
≤ ψ/2 .

In the following we therefore condition on the event that |T3| >
4
ε̃2 · |T1|+2·|T2|+3·|T3|

t
(which

happens with probability at least 1−ψ/2). Then for δ := 1/11 we have ln(2/δ) ≤ 4 and

t ≥ 1

ε̃2
· |T1| + 2 · |T2| + 3 · |T3|

|T3|
· ln
(
2

δ

)
.

Therefore by Lemma 9.1.3 each instance of COUNTTRIANGLES outputs a value T̃3
(i)
∈ (1± ε̃) ·

|T3| with probability at least 1− δ = 1− 1
11

.

Since T̃3 is set to the median of all T̃3
(i)

, we can only have T̃3 /∈ (1± ε̃) · |T3| if for at least r/2

of the T̃3
(i)

we have T̃3
(i)
/∈ (1± ε̃) · |T3|. The probability for that is bounded by:

Pr
[
T̃3 /∈ (1± ε̃) · |T3|

]
≤
(
r

r/2

)
·
(
1

11

)r/2
≤
(
e · r
r/2

)r/2
·
(
1

11

)r/2
=

(
2e

11

)r/2
≤
(
1

2

)r/2
≤ ψ/2 .
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9.1 Counting Triangles in Adjacency Streams

The first statement of the lemma follows directly.

We now show the second statement. We condition on the event that T̃3 ≤ (1 + ε̃)|T3|, which
happens with probability 1−ψ by the first statement of the lemma.

If s ≥ 352
ε2 · |T1|+2·|T2|+3·|T3|

|T3|
· log 2

ψ
then we have

|T3| ≥
352

ε2
· |T1| + 2 · |T2| + 3 · |T3|

s
· log

2

ψ

and therefore

T̃3 ≥
|T3|

2
≥ 176

ε2
· |T1| + 2 · |T2| + 3 · |T3|

s
· log

2

ψ
.

It follows directly:

ε ≥

√
176

T̃3
· |T1| + 2 · |T2| + 3 · |T3|

s
· log

2

ψ
= ε̃ .

2

Notice that r · t ≤ s for s ≥ 8 log(2/ψ). Therefore we have at most s instances of SAMPLE-
TRIANGLE running in parallel. The time SAMPLETRIANGLESAFE(s) needs to process an edge
in the stream is therefore at most the time SAMPLETRIANGLE(s) needs.

We summarize our results in the following theorem. We remark that we significantly improve
the update time over the previously best result from [81] while achieving the same space com-
plexity. The update time in [81] is roughly proportional to the space complexity compared to
expected constant time for our algorithm.

Theorem 24 There is a 3-Pass streaming algorithm to count the number of triangles in a stream
of edges up to a multiplicative error of 1 ± ε with probability at least 1 − ψ, which needs
O( 1

ε2 · log( 1
ψ
) · (1+ |T1|+|T2|

|T3|
) · log |V |) memory bits and constant expected update time. ut

9.1.2 1 Pass Algorithm

In this section we show that the previous 3-pass algorithms can be implemented in one pass us-
ing the same amount of space and constant expected amortized update time, if |E| is significantly
larger than the number of instances we run.

We first show how to adapt algorithm SAMPLETRIANGLE. We observe that we can find a
random edge in one pass by reservoir sampling [120], i.e. choosing the first edge as a sample
edge and replacing this edge by the ith edge of the stream with probability 1/i. It is known that
this method can be implemented in O(log |V |) expected time per sample (not counting the time
to read the stream) by randomly choosing the next index of the replacing edge according to an
appropriate probability distribution.
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SAMPLETRIANGLEONEPASS

i← 1

for each edge e = (u,w) in the stream do
Flip a coin. With probability 1/i do
a← u; b← w;
v← Node uniformly chosen from V \ {a, b}

x← false; y← false
end do
if e = (a, v) then x← true
if e = (b, v) then y← true
i← i+ 1

end for
if x = true ∧ y = true then return β← 1 else return β← 0.

Figure 9.4: The 1-pass algorithm SAMPLETRIANGLEONEPASS for adjacency streams

We combine this with the third pass and obtain algorithm SAMPLETRIANGLEONEPASS as
shown in Figure 9.4. It may happen that we sample an edge e = (a, b) of the stream together
with a node v, but we do not see the edge (a, v) or (b, v) in the subsequent stream (because they
appeared before the edge e). In this case, we do not detect a, b, v as a triangle. However, we
detect a, b, v, iff (a, b) is the first edge of the triangle that appears in the stream. This changes
the expected value of β by a factor of 3.

Lemma 9.1.5 Algorithm SAMPLETRIANGLEONEPASS outputs a valueβ having expected value

E[β] =
|T3|

|T1| + 2 · |T2| + 3 · |T3|
.

Proof : The proof is similar to the proof of Lemma 9.1.2, taking into account that only 1/3 of
the choices that select a T3-triple actually detect a triangle and lead to value β = 1. 2

An algorithm COUNTTRIANGLESONEPASS outputting an estimation T̃3 of |T3| can be devel-
oped similarly to COUNTTRIANGLES (see Figure 9.5).

Lemma 9.1.6 Algorithm COUNTTRIANGLESONEPASS outputs a value T̃3 having expected value
E[T̃3] = |T3|. If s ≥ 3

ε2 · |T1|+2·|T2|+3·|T3|
|T3|

· ln(2
δ
). then with probability 1 − δ the algorithm outputs

a value T̃3 satisfying
(1− ε) · |T3| ≤ T̃3 ≤ (1+ ε) · |T3| .

Proof : The proof is similar to the proof of Lemma 9.1.3 (with an additional factor of 3 in most
formulas). 2
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COUNTTRIANGLESONEPASS ( s ∈ N )
Run s instances of SAMPLETRIANGLEONEPASS in parallel.
Let βi be the value returned by the ith instance.
T̃3 ← (

1
s

∑s
i=1 βi

)
· |E| · (|V | − 2).

return T̃3.

Figure 9.5: The 1-pass algorithm COUNTTRIANGLESONEPASS for adjacency streams'
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COUNTTRIANGLESONEPASSSAFE ( s ∈ N, ψ ∈ (0, 1) )
Set r← d2 · log(2/ψ)e.
Set t← ds/(4 log(2/ψ))e.
Run r instances of COUNTTRIANGLESONEPASS(t) in parallel.

Let T̃3
(i)

be the value returned by the ith instance.

T̃3 ← mediani(T̃3
(i)

).

Set ε̃←√
528fT3

· |T1|+2·|T2|+3·|T3|
s

· log 2
ψ

=
√

528fT3
· |E|·(|V |−2)

s
· log 2

ψ
.

return (T̃3, ε̃).

Figure 9.6: The 1-pass algorithm COUNTTRIANGLESONEPASSSAFE for adjacency streams

Similarly to COUNTTRIANGLESSAFE we can develop a one pass algorithm COUNTTRIAN-
GLESONEPASSSAFE (Figure 9.6) which outputs an approximation T̃3 together with an approxi-
mation guarantee.

Lemma 9.1.7 Let (T̃3, ε̃) be the output of algorithm COUNTTRIANGLESONEPASSSAFE. With
probability 1−ψ the following statements are true:

• (1− ε̃) · |T3| < T̃3 < (1+ ε̃) · |T3|

• If s ≥ 1056
ε2 · |T1|+2·|T2|+3·|T3|

|T3|
· log(2/ψ), then the algorithm outputs (T̃3, ε̃) with ε̃ ≤ ε.

Proof : The proof can be done similarly to the proof of Lemma 9.1.3 (with an additional factor
of 3 in most formulas). 2

By applying the reservoir sampling algorithm from [120] to select the edge, the selection re-
quiresO(log |V |) expected time for each instance of SAMPLETRIANGLEONEPASS for the whole
stream. Additionally we use the hash table approach from the previous chapter to efficiently find
instances of SAMPLETRIANGLEONEPASS which search for an edge in the stream. Alltogether
we get expected O(1+ s · log |E|

|E|
) update time per edge in the stream.
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9 Counting Motifs in Data Streams

Theorem 25 There is a 1-Pass streaming algorithm to count the number of triangles in a stream
of edges up to a multiplicative error of 1 ± ε with probability at least 1 − ψ, which needs
O( 1

ε2 · log( 1
ψ
) · (1+ |T1|+|T2|

|T3|
) · log |V |) memory bits and expected update timeO(1+ 1

ε2 · |T1|+|T2|
|T3|

·
log |E|

|E|
· log 1

ψ
).

9.2 Counting Triangles in Incidence Streams

When a graph G = (V, E) is coded as an incidence stream (see Section 2.2) all edges incident
to the same vertex appear subsequently in the stream. First arrive all edges incident to vertex
v1, followed by all edges incident to v2, and so on. The ordering v1, . . . , vn of the vertices can
be arbitrarily, i.e. determined by an adversary. We consider undirected graphs and so each edge
appears twice (within the incidence list of both incident nodes). There is no bound on the degree
of the nodes (in contrast to [117]).

Often large graphs (e.g. the webgraph) are stored on hard discs as incidence lists of edges.
Our methods can therefore be used to approximate the number of triangles in these graphs using
only sequential access to the data.

9.2.1 3 Pass Algorithm

We again will first develop a 3-pass algorithm, and later combine the passes to get a one pass
algorithm. Let di denote the degree of node vi. The 3-pass algorithm SAMPLETRIANGLE2 is
presented in Figure 9.7. The algorithm SAMPLETRIANGLE2 can be implemented using O(1)

memory cells, each consisting of O(log |V |) bits.

'
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%

SAMPLETRIANGLE2
1st. Pass:

Count the number P of paths of length 2 in the graph G.
2nd. Pass:

Uniformly choose one of these paths using algorithm UNIFORMTWOPATH(P).
Let (a, v, b) be this path.

3rd. Pass:
Test if edge (a, b) appears within the stream.

if (a, b) ∈ E then set β← 1

else set β← 0

return β

Figure 9.7: The 3-pass algorithm SAMPLETRIANGLE2 for incidence streams
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9.2 Counting Triangles in Incidence Streams

We observe that the number of paths of length 2 in the graph G is exactly

P := |T2| + 3 · |T3| =
|V |∑
i=1

di · (di − 1)/2 .

Thus we can easily count the number of paths of length 2 by determining the degree of each
node. This is possible because the edges appear as an incidence stream.

The second pass can be implemented using reservoir sampling. However, we propose a differ-
ent approach which achieves slightly better amortized running time and is based on the following
idea. If v is incident to the nodes w1, w2, ..., wd, we define an order on the possible paths of
length 2 with v in the middle in the following way: (w1, v,w2) < (w1, v,w3) < (w2, v,w3) <

(w1, v,w4), ... . The triples (wi, v,wj) are ordered firstly by max{i, j}. Ties are ordered by i.
We choose a value k ∈ {1, . . . , P} uniformly at random and want to select the k-th triple

(wi, v,wj) in the order given above. i and j can be computed from k using the formulas given in
Figure 9.8. The k-th triple is chosen, if the node v is in the middle of enough paths of length 2.
Otherwise we search for the k− dv · (dv − 1)/2-th path within the next incidence list.

The algorithm UNIFORMTWOPATH is presented in Figure 9.8.'
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UNIFORMTWOPATH(P)

Select value k uniformly from the set {1, . . . , P}

For each node v in the incidence list do
If k > 0 then

Set j← ⌈√
2k+ 1

4
+ 1
2

⌉
Set i← j− j2−j

2
+ k− 1

Pass over the complete incidence list of node v.
If incidence list of v contains more than j edges then
a← the ith node in the incidence list of v
b← the jth node in the incidence list of v
w← v

end if
d← degree of node v
k← k− d2−d

2

end if
end do
return edges (a,w, b)

Figure 9.8: The 1-pass algorithm UNIFORMTWOPATH for incidence streams
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9 Counting Motifs in Data Streams

Lemma 9.2.1 Algorithm SAMPLETRIANGLE2 outputs a value β with expected value

E[β] =
3 · |T3|

|T2| + 3 · |T3|

Proof : We look at all triples of nodes in V . Each triple belongs to one of the sets T0, T1, T2, or
T3. The algorithm chooses such a triple by choosing a node v together with two adjacent edges.
Therefore the selected triples belong to the set T2 ∪ T3. We select a triple from T2, if we choose
the unique node adjacent to both edges and the corresponding edges. Therefore there are exactly
|T2| choices that choose a triple belonging to T2.

A triple from set T3 can be chosen in three different ways by selecting one of the three nodes
of the triple together with both adjacent edges. Since each choice of a path of length two has the
same probability, the probability of choosing a triple in T3 is exactly 3 · |T3|/(|T2| + 3 · |T3|) as
stated. 2

A streaming algorithm COUNTTRIANGLES2, which outputs an estimate of |T3|, easily follows.
It can be adjusted using an input parameter s and is given in Figure 9.9.'
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COUNTTRIANGLES2 ( s ∈ N )
Run s instances of SAMPLETRIANGLE2 in parallel.
Let βi be the value returned by the ith instance.
T̃3 ← (

1
s

∑s
i=1 βi

)
· |T2|+3·|T3|

3
=
(
1
s

∑s
i=1 βi

)
·
∑
v∈V dv · (dv − 1)/6.

return T̃3.

Figure 9.9: The 3-pass algorithm COUNTTRIANGLES2 for incidence streams

Lemma 9.2.2 Algorithm COUNTTRIANGLES2 outputs a value T̃3 having expected value E[T̃3] =

|T3|. If s ≥ 1
ε2 · |T2|+3·|T3|

|T3|
· ln(2

δ
). then with probability 1 − δ the algorithm outputs a value T̃3

satisfying
(1− ε) · |T3| ≤ T̃3 ≤ (1+ ε) · |T3| .

Proof : Equivalent to the proof of Lemma 9.1.3. 2

We can again develop an algorithm COUNTTRIANGLESSAFE2 based on COUNTTRIANGLES2.
It has a number s and a desired error probability ψ as input parameters and outputs a pair (T̃3, ε̃)

where ε̃ signals that T̃3 is an (1± ε̃)-approximation of |T3|. It uses at most s parallel instances of
SAMPLETRIANGLE2. We show the pseudocode of COUNTTRIANGLESSAFE2 in Figure 9.10.

Lemma 9.2.3 Let (T̃3, ε̃) be the output of algorithm COUNTTRIANGLESSAFE2. With probabil-
ity 1−ψ the following statements are true:

• (1− ε̃) · |T3| < T̃3 < (1+ ε̃) · |T3|
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COUNTTRIANGLESSAFE2 ( s ∈ N, ψ ∈ (0, 1) )
Set r← d2 · log(2/ψ)e.
Set t← ds/(4 log(2/ψ))e.
Run r instances of COUNTTRIANGLES2(t) in parallel.

Let T̃3
(i)

be the value returned by the ith instance.

T̃3 ← mediani(T̃3
(i)

).

Set ε̃←√
176fT3

· |T2|+3·|T3|
s

· log 2
ψ

=
√

88fT3
·

∑
v∈V dv·(dv−1)

s
· log 2

ψ
.

return (T̃3, ε̃).

Figure 9.10: The 3-pass algorithm COUNTTRIANGLESSAFE2 for adjacency streams

• If s ≥ 352
ε2 · |T2|+3·|T3|

|T3|
· log(2/ψ), then the algorithm outputs (T̃3, ε̃) with ε̃ ≤ ε.

Proof : Equivalent to the proof of Lemma 9.1.4. 2

To get small amortized expected update time we proceed as follows. Each time when the
incidence list of a new vertex starts, we compute the values i and j for every instance. Then we
insert the j-values into a global priority queue keeping a pointer to the corresponding instance.
When we then process the incidence list of the current vertex we maintain a global counter for the
number of neighbors of the current vertex we have seen. If this number is equal to the smallest
value stored in the priority queue we remove it and process the corresponding instance. After the
incidence list has been processed, we empty the priority queue. This way, each instance of the
algorithm requiresO(1) time per vertex. Additionally, we needO(s · log |V |) time to process the
removal of the smallest element in the priority queue. Overall, the amortized cost of the second
pass is O(1 + s · |V |

|E|
), which is constant for moderately large values of |E|. To implement the

third pass we use hashing in a similar way as in the algorithm for adjacency lists. This leads to
expected constant update time for the third pass.

Theorem 26 There is a 3-Pass streaming algorithm to count the number of triangles in incidence
streams up to a multiplicative error of 1± ε with probability at least 1−ψ, which needs

O

(
1

ε2
· |T2| + 3 · |T3|

|T3|
· log

(
1

ψ

)
· log |V |

)
memory bits and amortized expected update time

O

(
1+

1

ε2
· |T2| + 3 · |T3|

|T3|
· log

(
1

ψ

)
· |V |

|E|

)
.
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9.2.2 1 Pass Algorithm

To get a one pass algorithm we will again combine the passes of SAMPLETRIANGLE2. The first
pass only counts the number P of paths of length 2 in the graph. Instead of counting this number
in advance, we will start an instance of the streaming algorithm for each guess P̃ of the number
of length-2-paths in the set {1, 2, 4, 8, ..., |V |3}. In parallel we will count P. At the end we can
find one instance started with a value P̃ satisfying P ≤ P̃ < 2P. We choose the result of this
instance as the result of our algorithm.

We have to develop a data stream algorithm which only relies on an estimation P̃ fulfilling
P ≤ P̃ < 2P.

To combine the second and third pass we only test all edges seen after drawing the sample.
The algorithm SAMPLETRIANGLEONEPASS2 is given in Figure 9.11 and can be implemented
using O(log2 |V |) memory bits.'
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SAMPLETRIANGLEONEPASS2
do the following things in parallel for i = 0, 1, 2, . . . , blog(|V |3)c :

Let be P̃i := 2i.
Uniformly choose one path of length 2 using algorithm UNIFORMTWOPATH(P̃i).
If UNIFORMTWOPATH did not select a path until the end of the stream, then return ⊥.
Let (a, v, b) be the selected path.
After choosing the path, test if edge (a, b) appears within the rest of the stream.
if (a, b) appears in the stream after the incidence list of v then set βi ← 1

else set βi ← 0

in parallel to the for loop do: count the number P =
∑
v dv(dv − 1)/2.

set β← βdlogPe
return β

Figure 9.11: The 1-pass algorithm SAMPLETRIANGLEONEPASS2 for incidence streams

Lemma 9.2.4 Algorithm SAMPLETRIANGLEONEPASS2 outputs with probability at least 1/2 a
value β having expected value

E[β] =
2 · |T3|

|T2| + 3 · |T3|
.

Otherwise it outputs the value ⊥.

Proof : We set β = βi with i = dlogPe at the end of the algorithm. This value of βi has been
set to 0 or 1, if UNIFORMTWOPATH(P̃i) did select a path of length two. Since P̃i = 2dlogPe we
have P ≤ P̃i < 2 · P.

UNIFORMTWOPATH(P̃i) selects a path of length two by first choosing k ∈ {1, . . . , P̃i} uni-
formly at random and then selecting the k− th path of length two in the stream. If k ≤ P̃i/2 we
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have k ≤ P and therefore a path is selected. This happens with probability 1/2 and in that case
SAMPLETRIANGLEONEPASS2 does not output ⊥.

Let us now condition on the event that β 6= ⊥ and analyse the expected value of β.
Let {a, b, c} be a fixed triangle. Wlog. we assume that we see the incidence list of a first in

the stream, then the incidence list of b and then the incidence list of c.
In the algorithm SAMPLETRIANGLE2 we detected the triangle by selecting (a, b, c), (c, a, b),

or (b, c, a) as the path of length two.
Now only the selections of (a, b, c) or (c, a, b) lead to a detection of the triangle (because

the edge (c, a) resp. (c, b) appears in the incidence stream after selecting b resp. a). The
selection of (b, c, a) as a path of length two is done using the incidence list of c. Therefore the
incidence lists of a and b have passed and we don’t detect the edge (a, b). We conclude that the
probability to output β = 1 (under the condition that β 6= ⊥) is exactly 2/3 times the probability
of SAMPLETRIANGLE2 to output β = 1.

2

A streaming algorithm COUNTTRIANGLESONEPASS2, which outputs an estimate of |T3|, eas-
ily follows. It can be adjusted using an input parameter s and is given in Figure 9.12.'

&

$

%

COUNTTRIANGLESONEPASS2 ( s ∈ N )
Run s instances of SAMPLETRIANGLEONEPASS2 in parallel.
Let s ′ be the number of instances not returning ⊥.
Let βi be the value returned by the ith such instance (not returning ⊥).

T̃3 ← (
1
s ′

∑s ′

i=1 βi

)
· |T2|+3·|T3|

2
=
(
1
s ′

∑s ′

i=1 βi

)
·
∑
v∈V dv · (dv − 1)/4.

return T̃3.

Figure 9.12: The 1-pass algorithm COUNTTRIANGLESONEPASS2 for incidence streams

Lemma 9.2.5 Algorithm COUNTTRIANGLESONEPASS2 outputs a value T̃3 having expected
value E[T̃3] = |T3|. If ε ≤ 1/2 and s ≥ 6

ε2 · |T2|+3·|T3|
T3

· ln(4
δ
). then with probability 1 − δ

the algorithm outputs a value T̃3 satisfying

(1− ε) · |T3| ≤ T̃3 ≤ (1+ ε) · |T3| .

Proof : The expected value of T̃3 follows easily from Lemma 9.2.4.
Let be ε ≤ 1/2 and s ≥ 6

ε2 · |T2|+3·|T3|
T3

· ln(4
δ
). First we show that s ′ ≥ 3

2·ε2 · |T2|+3·|T3|
T3

· ln(4
δ
)

with probability at least 1− δ/2.
Let cj ∈ {0, 1} be the random indicator variable which is 1 if the jth instance of SAMPLETRI-

ANGLEONEPASS2 returns 0 or 1 and which is 0 if the jth instance returns ⊥. By Lemma 9.2.4
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we have E[cj] ≥ 1/2. By Chernoff Bounds [58]:

Pr
[ s∑
j=1

cj ≤ (
s

2
· E[cj])

]
= Pr

[1
s

s∑
j=1

cj ≤
1

2
· E[cj]

]
< e− 1

4
·E[cj]·s/2 .

Therefore we have:

Pr
[
s ′ ≤ 3

2 · ε2
· |T2| + 3 · |T3|

T3
· ln(

4

δ
)
]
≤ e−s/16 ≤ δ/4

for ε < 1/2.

We now condition on the event that s ′ ≥ 3
2·ε2 · |T2|+3·|T3|

T3
· ln(4

δ
).

We again use Chernoff Bounds [58]:

Pr
[ 1
s ′

s ′∑
i=1

βi ≥ (1+ ε)E[β]
]
< e−ε2·E[β]·s ′/3

Pr
[ 1
s ′

s ′∑
i=1

βi ≤ (1− ε)E[β]
]
< e−ε2·E[β]·s ′/2

For s ′ ≥ 3
2·ε2 · |T2|+3·|T3|

|T3|
· ln(4

δ
) the sum of both probabilities is bounded by δ/2.

2

We can again develop an algorithm COUNTTRIANGLESONEPASSSAFE2 based on COUNT-
TRIANGLESONEPASS2. It has a number s and a desired error probability ψ as input parameters
and outputs a pair (T̃3, ε̃). T̃3 then is a (1 ± ε̃)-approximation of |T3| with probability 1 − ψ. It
uses at most s parallel instances of SAMPLETRIANGLEONEPASS2. We show the pseudocode of
COUNTTRIANGLESONEPASSSAFE2 in Figure 9.13.'
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COUNTTRIANGLESONEPASSSAFE2 ( s ∈ N, ψ ∈ (0, 1) )
Set r← d2 · log(4/ψ)e.
Set t← ds/(4 log(4/ψ))e.
Run r instances of COUNTTRIANGLESONEPASS2(t) in parallel.

Let T̃3
(i)

be the value returned by the ith instance.

T̃3 ← mediani(T̃3
(i)

).

Set ε̃←√
1056fT3

· |T2|+3·|T3|
s

· log 4
ψ

=
√

528fT3
·

∑
v∈V dv·(dv−1)

s
· log 4

ψ
.

return (T̃3, ε̃).

Figure 9.13: The 1-pass algorithm COUNTTRIANGLESONEPASSSAFE2 for adjacency streams
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Lemma 9.2.6 Let (T̃3, ε̃) be the output of algorithm COUNTTRIANGLESONEPASSSAFE2. With
probability 1−ψ the following statements are true:

• (1− ε̃) · |T3| < T̃3 < (1+ ε̃) · |T3|

• If s ≥ 2112
ε2 · |T2|+3·|T3|

|T3|
· log(4/ψ), then the algorithm outputs (T̃3, ε̃) with ε̃ ≤ ε.

Proof : Equivalent to the proof of Lemma 9.1.4. 2

We use techniques to reduce the amortized update time as shown in the previous section.
Since we start O(log |V |) parallel instances for different guesses of P̃, the amortized update time
increases by a factor of O(log |V |).

Theorem 27 There is a 1-Pass streaming algorithm to count the number of triangles in incidence
streams up to a multiplicative error of 1± ε with probability at least 1−ψ, which needs

O

(
1

ε2
·
(
1+

|T2|

|T3|

)
log
(
1

ψ

)
· log2 |V |

)
memory bits and amortized expected update time

O

(
log(|V |) ·

(
1+

1

ε2
·
(
1+

|T2|

|T3|

)
log
(
1

ψ

)
·
(

|V |

|E|

)))
.

9.3 Counting Cliques of Arbitrary Size

Using the approach of the previous sections we can count cliques of α nodes in incidence streams
as well using one pass. We assume that α is a small constant. Let Sα be the set of α-stars (α
nodes v1, . . . , vα and edges (v1, v2), . . . , (v1, vα)) in G and Kα be the set of cliques of size α in
G. Our memory bounds will depend on |Sα|/|Kα|. In network analysis we are interested in those
networks where this ratio is small, for example constant.

We use the method UNIFORMSTAR given in Figure 9.14 to uniformly choose an α-star. It uses
O(log |V |) memory bits and has expected running time O(|V | · log |V |), not counting the time to
read the stream. The selected star is then used by SAMPLECLIQUEONEPASS given in Figure
9.15. Each instance of SAMPLECLIQUEONEPASS uses O(log2 |V |) memory bits. When we run
s parallel instances of SAMPLECLIQUEONEPASS, the whole method has amortized expected
running time O(s · |V |·log |V |

|E|
+ 1) per edge.

Lemma 9.3.1 Algorithm SAMPLECLIQUEONEPASS with probability at least 1/2 outputs a value
β having expected value

E[β] =
2 · |Kα|

|Sα|

Otherwise it outputs the value ⊥.
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UNIFORMSTAR(P)

Select value k uniformly from the set {1, . . . , P}.
For each node v in the stream do

Use the reservoir sampling technique of [120] to obtain α− 1 sample nodes
from the incidence list of v.

Let d be the degree of node v.
If
(
d
α−1

)
≥ k then

return sample nodes.
end if
k← k−

(
d
α−1

)
end do
return ⊥.

Figure 9.14: The 1-pass algorithm UNIFORMSTAR for adjacency streams

Proof : We set β = βi with i = dlogPe at the end of the algorithm. This value of βi has been
set to 0 or 1, if UNIFORMSTAR(P̃i) did select a star. Since P̃i = 2dlogPe we have P ≤ P̃i < 2 · P.

UNIFORMSTAR(P̃i) selects a star by first choosing k ∈ {1, . . . , P̃i} uniformly at random and
then selecting the k-th star in the stream. If k ≤ P̃i/2 we have k ≤ P and therefore a star is
selected. This happens with probability 1/2 and in that case SAMPLECLIQUEONEPASS outputs
β = 0 or β = 1.

Let us now condition on the event that β 6= ⊥ and analyse the expected value of β.
If the star is sampled from the incidence list of v and v is the first or the second of the star-

nodes within the stream we can find all other edges after selecting the sample star. So if the star
belongs to a clique, this clique is detected.

However, if v is the third or a later node in the stream we miss the edge connecting the first and
second node of the star. When we fix a clique, the probability that the chosen node v is first or
second node of the clique in the stream is 2/α. Therefore two choices of stars lead to a detection
of a fixed clique. It follows that the expected value of β is

E[β] =
2

α
· α · |Kα|

|Sα|

2

A streaming algorithm COUNTCLIQUESONEPASS, which outputs an estimate of |Kα|, easily
follows. It can be adjusted using an input parameter s and is given in Figure 9.16.

Lemma 9.3.2 Algorithm COUNTCLIQUESONEPASS outputs a value K̃α having expected value
E[K̃α] = |Kα|.
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SAMPLECLIQUEONEPASS

Do the following things in parallel for i = 0, 1, 2, . . . , blog(|V |3)c :
Let be P̃i = 2i.
Uniformly choose one path of length 2 using algorithm UNIFORMSTAR(P̃i).
If UNIFORMSTAR did not select a star until the end of the stream, then return ⊥.
Let (v1, v2, ..., vα) be this star with v1 as middle node.
After choosing the path, test if each edge (vi, vj) for i, j ∈ {2, . . . , α} and i 6= j appears

within the rest of the stream.
if all edges appear in the stream after the incidence list of v then set βi ← 1

else set βi ← 0

in parallel do: count the number P =
∑
v∈V
(
dv

α−1

)
of stars in the graph.

set β← βdlogPe
return β

Figure 9.15: The 1-pass algorithm SAMPLECLIQUEONEPASS for incidence streams'
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%

COUNTCLIQUESONEPASS ( s ∈ N )
Run s instances of SAMPLECLIQUEONEPASS in parallel.
Let s ′ be the number of instances not returning ⊥.
Let βi be the value returned by the ith such instance (not returning ⊥).

K̃α ← (
1
s ′

∑s ′

i=1 βi

)
· |Sα|

/
2 =

(
1
s ′

∑s ′

i=1 βi

)
·
∑
v∈V
(
dv

α−1

)/
2.

return K̃α.

Figure 9.16: The 1-pass algorithm COUNTCLIQUESONEPASS for incidence streams

If ε ≤ 1/2 and s ≥ 6
ε2 · |Sα|

|Kα|
· ln(4

δ
). then with probability 1− δ the algorithm outputs a value

K̃α satisfying
(1− ε) · |Kα| ≤ K̃α ≤ (1+ ε) · |Kα| .

Proof : Equivalent to the proof of Lemma 9.2.5. 2

Based on that we can again develop an algorithm COUNTCLIQUESONEPASSSAFE. It has a
number s and a desired error probability ψ as input parameters and outputs a pair (K̃α, ε̃). The
algorithm gives the guarantee that K̃α is a (1± ε)-approximation of |Kα| with probability 1−ψ

and uses at most s parallel instances of SAMPLECLIQUEONEPASS. We show the pseudocode of
COUNTCLIQUESONEPASSSAFE in Figure 9.17.

Lemma 9.3.3 Let (K̃α, ε̃) be the output of algorithm COUNTCLIQUESONEPASSSAFE. With
probability 1−ψ the following statements are true:
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COUNTCLIQUESONEPASSSAFE ( s ∈ N, ψ ∈ (0, 1) )
Set r← d2 · log(4/ψ)e.
Set t← ds/(4 log(4/ψ))e.
Run r instances of COUNTCLIQUESONEPASS(t) in parallel.

Let K̃α
(i)

be the value returned by the ith instance.

K̃α ← mediani(K̃α
(i)

).

Set ε̃←√
1056fKα

· |Sα|
s
· log 4

ψ
=

√
1056fKα

·
∑

v∈V ( dv
α−1)

s
· log 4

ψ
.

return (K̃α, ε̃).

Figure 9.17: The 1-pass algorithm COUNTCLIQUESONEPASSSAFE for adjacency streams

• (1− ε̃) · |Kα| < K̃α < (1+ ε̃) · |Kα|

• If s ≥ 2112
ε2 · |Sα|

|Kα|
· log(4/ψ), then the algorithm outputs (K̃α, ε̃) with ε̃ ≤ ε.

Proof : Equivalent to the proof of Lemma 9.1.4. 2

Theorem 28 There is a 1-Pass streaming algorithm to count the number of Kα in incidence
streams up to a multiplicative error of 1± ε with probability at least 1−ψ, which needs

O

(
1

ε2
·
(
1+

|Sα|

|Kα|

)
· log(

1

ψ
) · log2 |V |

)
memory bits and has amortized expected update time

O

(
1+

(
1

ε2
·
(
1+

|Sα|

|Kα|

)
· log

(
1

ψ

)
· log2 |V | · |V |

|E|

))
.

9.4 Counting K3,3 in Incidence Streams
We propose a method to estimate the number of K3,3, when the graph is directed and given as
an incidence stream and the outdegree of each node is bounded by ∆. The stream of edges is
ordered by destination nodes (so we see for each destination node all source nodes after one
another). Our assumption is justified because in large social graphs and the webgraph there are
often only a small number of links going out of each node. The graphs are often stored on hard
disk(s) and for each node all incoming edges are precomputed and stored with the graph.

We do not assume any ordering by source nodes. Let K3,3 denote the set of K3,3 minors and
K3,1 denote the set of K3,1 minors as shown in Figure 9.18.

We will first show how we can choose a K3,1 uniformly at random from the stream. This is
done similarly to choosing the length-2-paths in the triangle algorithm for incidence lists. We
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Figure 9.18: A K3,1 (on the left) and a K3,3 (on the right).

start a number of different estimations on the number of K3,1. In parallel we count the number
|K3,1| =

∑|V |
i=1 di · (di − 1) · (di − 2)/6.

We will extend the method UNIFORMTWOPATH to a method UNIFORMK3,1 as shown in Fig-
ure 9.19. It has an estimation P of |K3,1| as input parameter and selects uniformly at random
one K3,1 motif from the incidence stream. Using UNIFORMK3,1 we can develop a method
SAMPLEK3,3, outputting a variable β whose expectation is related to the number |K3,3|. The
method SAMPLEK3,3 is given in Figure 9.20. It can be implemented using O(log2 |V |) memory
bits. '

&

$

%

UNIFORMK3,1(P)

Select value k uniformly from the set {1, . . . , P}.
For each node v in the incidence list do:

If k > 0 then
Set h← ⌈

f−1(k)
⌉

(with f(x) :=
(
x
3

)
)

Set k2 ← k− f(h− 1)

Set i← ⌈√
2k2 + 1

4
+ 1
2

⌉
Set j← i− i2−i

2
+ k2 − 1

Pass over the complete incidence list of node v.
If incidence list of v contains more than j edges then
a← the hth node in the incidence list of v
b← the ith node in the incidence list of v
c← the jth node in the incidence list of v
u← v

end if
d← degree of node v
k← k− d·(d−1)·(d−2)

6

end if
end do
return edges (a, u),(b, u) and (c, u)

Figure 9.19: The 1-pass algorithm UNIFORMK3,1 for directed incidence streams
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SAMPLEK3,3
Do the following things in parallel for i = 0, 1, 2, . . . , blog(|V |4)c :

Let be P̃i = 2i.
From all K3,1 occuring in the stream choose one uniformly using UNIFORMK3,1(P̃i).
If UNIFORMK3,1 did not select a K3,1 until the end of the stream, then return ⊥.
Let the three edges of the chosen K3,1 be (a, u), (b, u) and (c, u)

Select uniformly x1, x2 ∈ {a, b, c}

Choose uniformly random variables k1, k2 ∈ {1, 2, . . . ∆}

If k1 = k2 ∧ x1 = x2 then set βi ← 0

else:
Go on passing over the rest of stream (the part behind the occurence of the K3,1).
Select (x1, v) as the k1-th edge (x1, ·) after selecting the K3,1.
Select (x2, w) as the k2-th edge (x2, ·) after selecting the K3,1.
From the time of selecting (x1, v):

check, if (a, v),(b, v),(c, v) are present in the stream
From the time of selecting (x2, w):

check, if (a,w),(b,w),(c,w) are present in the stream
If both is the case, then set βi ← 1 else set βi ← 0.

In parallel to the for loop count the number |K3,1| = P =
∑
v∈V
(
dv

3

)
of K3,1 in the graph.

set β← βdlogPe
return β

Figure 9.20: The 1-pass algorithm SAMPLEK3,3 for directed incidence streams

Lemma 9.4.1 Algorithm SAMPLEK3,3 outputs with probability at least 1/2 a random value β
having

E[β] =
2 · |K3,3|

9 · ∆2 · |K3,1|
.

Otherwise it outputs the value ⊥.

Proof : We set β = βi with i = dlogPe at the end of the algorithm. This value of βi has been
set to 0 or 1, if UNIFORMK3,1(P̃i) did select a K3,1. Since P̃i = 2dlogPe we have P ≤ P̃i < 2 · P.

UNIFORMK3,1(P̃i) selects a K3,1 by first choosing k ∈ {1, . . . , P̃i} uniformly at random and
then selecting the k-th K3,1 in the stream. If k ≤ P̃i/2 we have k ≤ P and therefore a K3,1 is
selected. This happens with probability 1/2 and in that case SAMPLEK3,3 does not output ⊥.

Let us now condition on the event that β 6= ⊥ and analyse the expected value of β. Let
(a, b, c, u, v,w) be an arbitrary fixed K3,3 with edges directed from a,b,c to u,v and w. Let u
be the vertex whose incidence list appears first within the incidence stream, v, w occuring after
u withing the stream. The K3,3 will be detected exactly when all of the following events occur:

154



9.4 Counting K3,3 in Incidence Streams

• a, b, c, u are chosen as K3,1 with u being the destination node

• v and w must be chosen

• x1 must be the first within the incidence list of v.

• x2 must be the first within the incidence list of w.

The probability of the first event is 1/|K3,1|.
Conditioned on the first event the probability to choose v and w is 2/∆2: Each edge (x1, ·)
appearing after (x1, u) in the stream has a probability of 1/∆ to be chosen by the algorithm. We
know that (x1, v) and (x1, w) appear after (x1, u) in the stream. Therefore each of these two
edges has a probability of 1/∆ to be chosen. By a similar argument we have independently a
probability of 1/∆ to choose the edge (x2, v) resp. (x2, w). We select the nodes v and w if we
either select (x1, v) and (x2, w) or (x1, w) and (x2, v). Therefore the probability to choose v and
w is 2/∆2.

Observe that the probability for v andw to be chosen does not depend on the choice of x1 and
x2. We can therefore exchange the order in which we analyse these events.
Conditioned on the first two events the probability for the third event is 1/3, also the probability
for the fourth event. We get alltogether a probability of 2

9·∆2·|K3,1|
to choose the fixed K3,3. 2

A streaming algorithm COUNTK3,3, which outputs an estimate of |K3,3|, easily follows. It can
be adjusted using an input parameter s. It is given in Figure 9.21.'

&

$

%

COUNTK3,3 ( s ∈ N )
Run s instances of SAMPLEK3,3 in parallel.
Let s ′ be the number of instances not returning ⊥.
Let βi be the value returned by the ith such instance (not returning ⊥).

K̃3,3 ← (
1
s ′

∑s ′

i=1 βi

)
· 9
2
· ∆2 · |K3,1| =

(
1
s ′

∑s ′

i=1 βi

)
· 9
2
· ∆2 ·

∑
v∈V
(
dv

3

)
.

return K̃3,3.

Figure 9.21: The 3-pass algorithm COUNTK3,3 for adjacency streams

Lemma 9.4.2 Algorithm COUNTK3,3 outputs a value K̃3,3 having expected value E[K̃3,3] =

|K3,3|. If ε ≤ 1/2 and s ≥ 54
ε2 · ∆

2·|K3,1|
|K3,3|

· ln(2
δ
) then with probability 1 − δ the algorithm outputs

a value K̃3,3 satisfying

(1− ε) · |K3,3| ≤ K̃3,3 ≤ (1+ ε) · |K3,3| .

Proof : Equivalent to the proof of Lemma 9.2.5. 2
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COUNTK3,3SAFE ( s ∈ N, ψ ∈ (0, 1) )
Set r← d2 · log(4/ψ)e.
Set t← ds/(4 log(4/ψ))e.
Run r instances of COUNTK3,3 (t) in parallel.

Let K̃3,3
(i)

be the value returned by the ith instance.

Set K̃3,3 ← mediani(K̃3,3
(i)

).

Set ε̃←√
9504·∆2gK3,3

· |K3,1|
s

· log 4
ψ

=

√
9504·∆2gK3,3

·
∑

v∈V (dv
3 )

s
· log 4

ψ
.

return (K̃3,3, ε̃).

Figure 9.22: The 3-pass algorithm COUNTK3,3SAFE for adjacency streams

We can develop an algorithm COUNTK3,3SAFE based on COUNTK3,3. It has a number s and a
desired error probability ψ as input parameters and outputs a pair (K̃3,3, ε̃). The algorithm gives
the guarantee that K̃3,3 is a (1±ε)-approximation of |K3,3| with probability 1−ψ. It uses at most
s parallel instances of SAMPLEK3,3. We show the pseudocode of COUNTK3,3SAFE in Figure
9.22.

Lemma 9.4.3 Let (K̃3,3, ε̃) be the output of algorithm COUNTK3,3SAFE. With probability 1−ψ

the following statements are true:

• (1− ε̃) · |K3,3| < K̃3,3 < (1+ ε̃) · |K3,3|

• If s ≥ 19008·∆2

ε2 · |K3,1|
|K3,3|

· log(4/ψ), then the algorithm outputs (K̃3,3, ε̃) with ε̃ ≤ ε.

Proof : Equivalent to the proof of Lemma 9.1.4. 2

Theorem 29 There is a 1-Pass streaming algorithm to count the number of K3,3 in incidence
streams ordered by destination nodes with outdegree bounded by ∆ up to a multiplicative error
of ε with probability at least 1−ψ, which needs

O

(
log2(|V |) ·

|K3,1| · ∆2 ln( 1
ψ
)

|K3,3| · ε2

)

memory bits.
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10 Conclusions

In this thesis we developed new methods to analyse dynamic geometric data streams and obtain
structural information about the large data sets encoded in the streams.

In Chapter 3 we first developed a method to draw a uniform random sample from a multi-
set, when the multiset is given as a turnstyle data stream. The method we propose is a building
block for various data stream algorithms. As examples we showed in Chapter 4 some direct
consequences of the new sampling method, i.e. how to maintain ε-nets and ε-approximations
of points when the point set is given as a dynamic geometric data stream. We also developed
a method to estimate the weight of a minimum tree spanning all the points encoded in a dy-
namic geometric data stream. As random sampling and ε-approximations are powerful tools in
computational geometry we believe that our techniques have many more applications.

The space used by the algorithm for ε-approximations, i.e. roughly O(1/ε2), is essentially
optimal as a function of ε. This is, because it is known that, for some range spaces, the size of
ε-approximations tends to 1/ε2 as the VC dimension tends to infinity. However, for some range
spaces smaller ε-approximations can be constructed, even for points delivered in an insertions-
only stream. For example, [118] showed how to compute ε-approximations for ranges defined
by halfspaces in d dimensions of size roughly O(1/ε2−2/(d+1)). We do not know how to extend
this result to dynamic geometric data streams.

To estimate the weight of the minimum spanning tree of the points encoded in a dynamic ge-
ometric data stream we used O(log3(1/δ) · (log(∆)/ε)O(d)) space. Although we give the first
algorithm at all to estimate the value in space polylogarithmic in ∆, we believe that one can de-
velop algorithms having much better memory bounds.

One of the central results of this thesis, a universal method to construct coresets for k-median,
k-means, MaxCut, and more problems, has been given in Chapter 5. Our method is much simpler
than previous coreset methods [8, 60, 61] and makes less assumptions about the distribution of
the points. The only information needed to construct coresets is the number of points in heavy
cells (cells containing a certain number of points) of certain square grids. The simplicity of our
method enabled us to develop the fastest known PTAS for Euclidean MaxCut in Section 5.5.3
and the first efficient methods to maintain coresets for k-median, k-means, MaxCut, and more
problems on dynamic geometric data streams in Chapter 6.

The coreset we obtain is of size O(k · logn/εd+1) for k-median, O(k · logn/εd+2) for k-
means and O(logn/εd+1) for all other problems we consider. Recently some methods have
been proposed to obtain smaller coresets for k-median and k-means. Har-Peled and Kushal [60]
showed how to compute ε-coresets of size O(k2/εd) for k-median and of size O(k3/εd+1) for
k-means (not dependent on n). However, their coreset construction does not apply to dynamic
geometric data streams. Their results indicate that the space dependency of our algorithms on n
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could also be improved.
All space requirements of our coreset algorithms depend exponentially on d (we did not state

it in the formulas because we assumed a constant dimension). Therefore our methods are not
suited for high dimensional data. Recently Chen [26] proposed a method to obtain coresets us-
ing space which depends polynomially on d. His method is suited for streams of insertions of
points, but does not translate to streams of insertions and deletions. It remains an interesting
open problem to develop coreset methods for dynamic geometric data streams, which have space
complexity polynomial in the dimension d.

In Chapter 7 we used our coreset technique to develop the first kinetic data structure for the
Euclidean MaxCut problem. Our KDS can be extended to MaxTSP, MaxMatching, and average
distance. However, the time to compute a solution from the coreset (which has to be done for
each query to the data structure, or, alternatively with each event) can differ significantly.

Extending our KDS to k-median and k-means clustering requires additional ideas. The tech-
nical problem is here that one cannot get a lower bound on the solution from the width of the
bounding box. Hence, it is not clear how to get an upper bound on the number of events. De-
veloping kinetic data structures for k-median and k-means therefore remains an interesting open
problem.

In Chapter 8 we presented an efficient implementation of a k-means clustering algorithm using
coresets. Our algorithm performs very well compared to KMHybrid [105] for small dimension
and small to medium k. The quality of the solutions varies less than that of KMHybrid, which
implies that we need fewer runs to guarantee a good solution. The main strength of our algorithm
is to quickly find relatively good approximations for many values of k, for example when a good
value for k is not known in advance. In this case, we can also use the coresets to compute the
average clustering coefficient and thus to find a good choice of k.

As mentioned above recently some constructions for smaller coresets [26, 60] have been de-
veloped. It would be interesting to measure if the usage of these smaller coresets would lead to
even faster convergence of k-means based algorithms.

We have proposed a methodology in Chapter 9 to find (1±ε)-approximations on the number of
frequent subgraphs of large graphs given as data streams. The amount of samples resp. memory
bits needed by our algorithms depend on the number of certain small structures in these graphs.
Recent results on the internal structure of the webgraph or large sozial graphs [17, 81, 89, 92,
78] suggest that the amount of space needed by our algorithm to count motifs is constant or at
most logarithmic in the number of nodes for these graphs. Recent tests [17] suggest that our
algorithms can compute good estimations on the number of triangles of real webgraph crawls in
time comparable to the time to read the graph from the hard disc.
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