Adaptive Steuerung
der Lastverteilung
datenparalleler Anwendungen

in Grid-Umgebungen

Dissertation
von
Sabina Rips

Schriftliche Arbeit zur Erlangung des Grades
eines Doktors der Naturwissenschaften

Fakultit fiir Elektrotechnik, Informatik und Mathematik
der Universitdt Paderborn

Paderborn, Juni 2006

Meiner Tochter Saskia

Kurzfassung

Simulationstechniken haben einen immer héheren Stellenwert in Industrie und
Wissenschaft. Thre hohe Komplexitat wird oft durch den Einsatz von Parallel-
rechnern bewiéltigt. Durch Simulation immer komplexerer Sachverhalte reichen
selbst diese oftmals nicht aus, um effizient Berechnungen durchfiihren zu kénnen.
Umgebungen wie das Grid, in dem eine Vielzahl von leistungsstarken Ressourcen
gekoppelt sind, stellen dafiir eine geeignete Plattform bereit.

Die Simulationsprogramme, entwickelt fiir eine homogene Umgebung, wie sie
ein Parallelrechner darstellt, weisen jedoch Defizite auf, wenn eine heterogene
und dynamische Umgebung wie das Grid genutzt werden soll. Dieses betrifft
insbesondere die Lastverteilung, die eine effiziente Ressourcenausnutzung und
damit auch kurze Laufzeiten erméglicht.

Das Ziel dieser Arbeit war daher, eine Lastverteilungssteuerung fiir Grid-
Umgebungen zu entwickeln, die Anwenderprogramme und deren Lastvertei-
lungswerkzeuge unterstiitzt, die Heterogenitét und Dynamik des Grids zu nut-
zen.

Dafiir wurden Methoden entwickelt und evaluiert, die durch Monitoring
die Umgebung abtasten und analysieren und auf Basis dieser gewonnenen In-
formationen die Kommunikationsstruktur der Umgebung ebenso wie die Lei-
stungsfiahigkeit der Recheneinheiten erfassen und fiir Lastverteilung verwerten.

Dabei wird der Heterogenitéit der Recheneinheiten dadurch Rechnung getra-
gen, dass ihre Leistungsfihigkeit zur Laufzeit gemessen und die optimale Last
entsprechend dieser Ergebnisse ermittelt wird.

Die Kommunikationsverbindungen werden beriicksichtigt, indem Last mog-
lichst nur zwischen Recheneinheiten mit schnellen Verbindungen umverteilt wird,
sofern dieses zu einem ausreichenden Lastgleichgewicht des kompletten Systems
fithrt. Hierfiir wird eine hierarchische Struktur benutzt, die zur Laufzeit ermit-
telt wird und den aktuellen Netzwerkzustand repréasentiert.

Sowohl der Aufbau dieser Hierarchie als auch Lastverteilungsentscheidungen
werden verteilt getroffen, ohne Einsatz einer zentralen Instanz, was Ausfallsi-
cherheit und Skalierbarkeit unterstiitzt.

Fine Umsetzung und Validierung des Konzepts wurde durch das Werkzeug
mLB (meta Load Balancer) realisiert.

ii

Inhaltsverzeichnis

1 Einleitung
1.1 Motivation
1.2 Ziel der Arbeit o
1.3 Aufbau der Arbeito

2 Begriffsklirung/Grundlagen
2.1 Begriffsklérung o oo
2.2 Grundlagen
2.3 Charakteristika der Anwendungen
2.3.1 Parallele Anwendungen
2.4 Konzepte der Lastverteilung
2.4.1 Lastverteilungsgrundlagen
2.4.2 Lastverteilung fiir gitterbasierte Anwendungen
2.4.3 Integration von Lastverteilung
2.4.4 Lastverteilungswerkzeuge
2.5 Charakteristika der Zielumgebung
2.5.1 Entwicklung des Gridcomputings
2.5.2 Leistungen von Grid-Umgebungen
2.5.3 Bewertungsverfahren
2.5.4 Monitoring-Systemeo
2.6 Analyse der Eckpunkte
2.6.1 Monitoring

3 Anforderungskatalog
3.1 Anforderungen an die Lastverteilungssteuerung
3.2 Anforderungen an die Monitoring-Umgebung

4 Lastverteilung in Grid-Umgebungen
4.1 Grundkonzept der adaptiven Steuerung der Lastverteilung
4.2 Kapazitdtenabhingige Lastverteilung
4.3 Netzwerkabhingige Lastverteilung
4.3.1 Hierarchie
4.3.2 Hierarchieerkennung und -aktualisierung
4.3.3 Lokalisierung geeigneter Lastverteilungspartner

iii

W o

=~

© ~J = Ut O

10

12
14
14
16
16
17
20
22
24
24

29
29
32

iv INHALTSVERZEICHNIS
4.4 Leistungsmessungen 52
4.4.1 Ermittlung der Berechnungsgeschwindigkeit 53

4.4.2 Ermittlung der Kommunikationsgeschwindigkeit 53

4.5 Integration in den Lastverteilungszyklus 55

5 Meta Load Balancer mLB 59
5.1 Entwicklungszieleo oo 59
5.2 Architektur/Design oo 60
5.2.1 Interne Architektur von mLB 63

5.2.2 Kommunikationsmonitor (KM) 64

5.2.3 Anwendungsmonitor (AM) 65

5.2.4 Lastverteilungssteuerungs (LBS-) Modul 65

5.2.5 Zusammenspiel der Module 66

5.3 Anwendungslastverteiler 67

6 Validierung 69
6.1 Anforderungen an die Monitoring-Umgebung 69
6.1.1 Skalierbarkeit 69

6.1.2 Verfiigbarkeit 0oL 69

6.1.3 Effizienz o 70

6.2 Lastverteilungssteuerung mit mLB 70
6.2.1 Kapazitdtenangepasste Lastverteilung 71

6.2.2 Netzwerkabhéngige Lastverteilung 71

6.2.3 Reaktion auf Zustandsénderungen 71

6.2.4 Skalierbarkeito 72

6.2.5 Gesamteffizienz 72

6.3 Beschreibung der Testplattform 72
6.4 Validierung durch eine Simulationsumgebung 73
6.4.1 Validierung der Monitoring-Umgebung 73

6.4.2 Beschreibung des FEM-Simulators 78

6.4.3 Validierung vonmLB 78

6.5 Validierung durch eine bestehende FEM-Anwendung 87
6.5.1 Voraussetzungen fiir die Nutzung einer FEM-Anwendung 87

6.5.2 Parameterstudien L. 89

6.6 Geplante Funktionalitdten 90
6.7 Zusammenfassung Lo 91

7 Resiimee 93
Literaturverzeichnis 95
A Abkiirzungsverzeichnis 101
B Benutzerschnittstelle 103
C Architektur der Testumgebung 107

Kapitel 1

Einleitung

1.1 Motivation

In den letzten Jahren haben Simulationstechniken stark an Bedeutung gewonnen
[LO1]. Die Minimierung der Entwicklungskosten eines Produktes ist nur einer
von vielzdhligen Griinden. Oftmals muss die Funktionsfahigkeit eines Produk-
tes simulativ gepriift werden, bevor die Produktion eines Prototypen beginnen
kann. Hierzu zéhlt z. B. die Motorentwicklung. Bei jeder geplanten Anderung der
Brennraumgeometrie kénnen Motorinnenstromungen und Verbrennungsprozes-
se simuliert werden, anstatt jedesmal einen kompletten Motor produzieren und
testen zu miissen. Neben Kostenersparnis wird hier auch Zeitersparnis erreicht,
wichtig, um heutzutage konkurrenzfiahig zu bleiben.

Die Entwicklung von Schiffen, Flugzeugen oder auch Raumfahrzeugen ist
ohne vorherige Simulation undenkbar geworden.

In anderen Bereichen ist die Simulation die einzige Moglichkeit, Ph&nomene
zu erforschen. Vorhersagen iiber das Wetter oder aber auch von Naturkata-
strophen, wie z. B. die Auswirkungen von Tsunamis und Gletscherschmelzen,
gehoren hierzu. Das Einstein-Jahr 2005 brachte viele Simulationen aus dem Be-
reich der numerischen Relativitit hervor. Auf dem Gebiet der Astrophysik sind
schwarze Locher ebenfalls nicht ohne Simulationen zu erkunden. Beispiele von
Simulationen zeigt Abbildung 1.1 .

Was all diesen Anwendungsbeispielen gemeinsam ist, ist ihre hohe Kom-
plexitét, die eine enorme Leistungsfahigkeit der Rechenressource erfordert. Es
miissen Gleichungen mit Millionen von Unbekannten gelost werden, deren Be-
rechnungen mehrere Tage beanspruchen kénnen [Tur96).

Sequentielle Software st68t hier schnell an ihre Grenzen. Die Kapazitéit des
Hauptspeichers reicht nicht aus und die Simulationszeiten werden unakzeptabel
hoch. Daher gibt es zunehmend parallele Anwendungen, die besonders auch auf
massiv parallelen Systemen arbeiten.

Imit freundlicher Genehmigung von Prof. Dr. R. Léhner

2 KAPITEL 1. EINLEITUNG

=4

[
G

FEFLO97

ESI -GMU

Surface Pressure

Strémungssimulation eines Schiffes Strémungssi fon einer Kuhlflissigkeit um einen Chip

Abbildung 1.1: Beispiele von Stromungssimulationen [Loe]

Die immer komplexer werdenden Anwendungen stehen der Entwicklung von
zugreifbaren Ressourcen gegeniiber. Diese werden immer leistungsfihiger und
verfiigbarer. Betrachtet man z. B. die Rechenkapazitéiten von Ein- und Mehr-
prozessormaschinen, so erkennt man ihren hohen Leistungszuwachs: Zirka alle
fiinf Jahre verdreifacht sich die Leistungsfihigkeit von Prozessoren und Spei-
chern.

Aber nicht nur die Leistungsfihigkeit der einzelnen Maschinen ist angestie-
gen, sondern auch ihre Verfiigbarkeit. Viele Institutionen besitzen heutzutage ei-
gene leistungsstarke Rechenressourcen, die vor wenigen Jahren nur in grofien Re-
chenzentren vorzufinden waren. Dieses hohe Potenzial an Rechenkapazitéit hat
viele Bereiche des Hochleistungsrechnens vorangetrieben. Es erméglicht Rech-
nungen auf lokalen Maschinen, die sonst nur durchzufithren waren, wenn Ma-
schinen von Hochleistungsrechenzentren genutzt werden konnten.

Ein grofier Bereich des Hochleistungsrechnens befasst sich mit Struktur- und
Stromungssimulationen. Diese Anwendungen, die vor Jahren nur auf groffen Par-
allelrechnern bearbeitet werden konnten, kénnen heutzutage zum Teil schon auf
einzelnen Maschinen berechnet werden. Um jedoch noch komplexere Simula-
tionen durchfiihren zu kénnen, reichen keineswegs einzelne Systeme aus. Selbst
grofle Parallelrechner reichen oftmals nicht aus, um hochkomplexe Aufgaben zu
16sen.

Um dieses zu ermoglichen, miissen Hochleistungsrechner gekoppelt werden.
Eine Umgebung, die dieses leistet, ist das Grid. Das Grid ist definiert als eine
Hochleistungsressource, die durch die Kopplung mehrerer Rechenressourcen zu-
stande kommt [FK03].

Das Vorhandensein des Grids schlieit jedoch keinesfalls eine effiziente Nut-
zung mit ein. Ohne Unterstiitzung konnen parallele Anwendungen diese Hoch-
leistungsressource meist nicht angemessen nutzen. Entwickelt fiir ein homogenes
System, wie es Parallelrechner darstellen, sind diese Anwendungen im Allgemei-

1.2. ZIEL DER ARBEIT 3

nen nicht in der Lage, die Heterogenitéit des Grids zu beachten und diese fiir
eine effiziente Berechnung auszunutzen.

Die Motivation, das Grid zu nutzen, liegt fiir den FEM2-Anwender in zwei
Hauptzielen begriindet:

e Die Machbarkeit von Berechnungen: Durch Einsatz des Grids kann die
Komplexitit der Anwendung um Faktoren erhéht werden.

e Schnellere Ausfiihrungszeiten: Durch Nutzung des Grids kénnen Laufzei-
ten drastisch reduziert werden.

Fiir beide Aspekte bedarf es einer Unterstiitzung der Anwendung, insbeson-
dere im Bereich Lastverteilung. Eine intelligente Lastverteilung gewéhrleistet die
Machbarkeit von Ausfithrungen dadurch, dass Prozesse nicht vorzeitig aufgrund
des Fehlens von Ressourcen abgebrochen werden miissen. Zudem werden durch
eine optimale Verteilung der Rechenlast schnellere Ausfithrungszeiten erreicht.

1.2 Ziel der Arbeit

Das Ziel von Lastverteilungsmethoden fiir Struktur- und Strémungssimulatio-
nen ist im Allgemeinen die gleichméfiige Aufteilung des Simulationsgebietes auf
die Prozessoren. Diese Gleichverteilung der Rechenlast ist angemessen fiir ho-
mogene Umgebungen, wie sie z. B. bei Parallelrechnern zu finden ist. Das Grid
hingegen ist gekennzeichnet durch die unterschiedliche Leistungsfahigkeit der
eingesetzten Ressourcen. Um dieser Heterogenitdt gerecht zu werden und ei-
ne effiziente Lastverteilung zu ermoglichen, bedarf es einer Unterstiitzung der
Anwendung, die die Charakteristika des Grids beriicksichtigen.

Ziel ist es aber nicht, neue Lastverteilungsmethoden zu entwickeln, sondern
vorhandene, bewédhrte Strategien dabei zu unterstiitzen, ihre Berechnungen an
die Umgebung anzupassen.

Dafiir miissen drei Aspekte betrachtet werden:

e die Charakteristika der parallelen Anwendungen, bzw. die Merkmale der
zu verteilenden Last und ihre Abhéngigkeiten voneinander,

e die Lastverteilungsmethoden in Abh#ngigkeit von der Klasse der Anwen-
dungen und

e die Charakteristika der Grid-Umgebung.

Abbildung 1.2 zeigt die Wechselwirkung dieser drei Aspekte. Die Umgebung
beeinflusst das Laufzeitverhalten der Anwendung. In einer leistungsstarken Um-
gebung konnen kiirzere Laufzeiten als in einer leistungsschwécheren erwartet
werden. Die Anwendung setzt Lastverteilung ein, um optimierte Laufzeiten zu

2Finite Element Method, verbreitete Methode in der Strémungssimulation

4 KAPITEL 1. EINLEITUNG

Anwendung
wirkt auf

wirkt auf ruft auf

Umgebung

v

Lastverteilung

Abbildung 1.2: Wechselwirkung der Hauptkomponenten

erreichen.

Wurde Lastverteilung bisher unabhéngig von der Umgebung betrachtet, so gilt
es nun, eine Verbindung zwischen Lastverteilung und Umgebung herzustellen,
um durch eine addquate Lastverteilungssteuerung eine hohe Effizienz der An-
wendung zu erreichen.

1.3 Aufbau der Arbeit

Die Grundlagen fiir die drei Hauptkomponenten Anwendung, Lastverteilung
und Umgebung sind Thema von Kapitel 2. Ausgehend von deren Merkmalen,
werden in Kapitel 3 Anforderungen fiir eine geeignete Lastverteilungssteuerung
abgeleitet. Das Losungskonzept ist Thema von Kapitel 4, das die entwickelten
Strategien zur adaptiven Steuerung von Lastverteilung vorstellt. Die Umsetzung
dieser Konzepte, die durch das Werkzeug mLB realisiert wurde, ist Inhalt von
Kapitel 5. Kapitel 6 zeigt die Ergebnisse der Validierung von mLB. Ein Resiimee
bildet in Kapitel 7 den Abschluss dieser Arbeit.

Kapitel 2

Begriffskldrung/Grundlagen

2.1 Begriffskliarung
In diesem Abschnitt werden grundlegende Begriffe erklért.

Bandbreite: Bandbreite ist die Differenz zwischen der hochsten und niedrig-
sten Frequenz einer Verbindung, d. h. die Breite ihres reservierten Fre-
quenzbandes. Meist ist hiermit jedoch die Daten(transfer)rate gemeint,
die angibt, wieviele Daten pro Sekunde iiber eine Netzwerkverbindung
iibertragen werden konnen.

Effizienz: Effizienz ist das Verhéltnis eines in definierter Qualitit vorgegebe-
nen Nutzens zu dem Aufwand, der zur Erreichung des Nutzens notig ist.
Ein effizientes Verhalten fiihrt daher wie auch ein effektives Verhalten zur
Erzielung eines Nutzens, hélt aber im Unterschied zu diesem den dafiir
notwendigen Aufwand moglichst gering.

Last: Last bezeichnet hier die Rechenlast der Anwendung, die durch die Pro-
blemgrofle gegeben ist und auf die sich der Lastverteiler der Anwendung
bezieht. Sie besteht aus mehreren Lasteinheiten. Bei gitterbasierten An-
wendungen bilden die Gitterzellen die Lasteinheiten.

Latenz: Latenz gibt die Zeitspanne an, die ein Datenpaket vom Sender zum
Empfanger benotigt.

PE: In dieser Arbeit wird vorausgesetzt, dass auf jeder Recheneinheit ein An-
wendungsprozess bearbeitet wird. Damit bilden sie eine Einheit. Fiir die
einfachere Lesbarkeit wird hier der Begriff , PE“ fiir ,, Anwendungsprozess,
der auf einer Recheneinheit bearbeitet wird* verwendet.

Recheneinheit: eine CPU mit dazugehorigen Komponenten.

Rechenknoten: System, bestehend aus einer oder mehreren Recheneinheiten,
wie z. B. Multiprozessor-Architekturen.

6 KAPITEL 2. BEGRIFFSKLARUNG/GRUNDLAGEN

Skalierbarkeit: Eine Anwendung gilt allgemein als skalierbar, wenn grofiere
parallele Konfigurationen in der gleichen Zeit proportional gréfiere Pro-
bleme 16sen kénnen als kleinere Probleme auf kleineren Konfigurationen
[KDFT03]. Ein gut skalierbares paralleles Programm bené&tigt bei der dop-
pelten Anzahl von Prozessoren die Hélfte der Rechenzeit.

In dieser Arbeit wird unter Skalierbarkeit von Zusatzkosten verstanden,
dass die Gesamtzusatzkosten maximal proportional zu der Anzahl an Pro-
zessoren wachsen.

2.2. GRUNDLAGEN 7

2.2 Grundlagen

Im folgenden Abschnitt werden zunéchst die Prinzipien der Zielanwendung be-
schrieben. Die Charakteristika des Grids zusammen mit den Zielsetzungen der
Lastverteilung fithren in Abschnitt 3.1 zu einem Anforderungskatalog, dessen
Punkte erfiillt werden miissen, um adidquate Lastverteilung fiir Anwendungen,
wie z. B. Stromungssimulationen, durchfiihren zu kénnen.

2.3 Charakteristika der Anwendungen

Numerische Stromungssimulation (Computational Fluid Dynamics, CFD)
ist die systematische Anwendung von Rechensystemen und numerischen Losungs-
techniken auf mathematische Modelle, die entworfen wurden, um Strémungs-
phénomene zu beschreiben und zu simulieren.

CFD gehort zu einem Bereich von Simulationstechniken, die von Ingenieu-
ren und Physikern genutzt werden, um das Verhalten eines ingenieurwissen-
schaftlichen Produkts oder einer physikalischen Situation vorherzusagen oder
zu rekonstruieren.

In der numerischen Stréomungssimulation sind Finite Elemente Verfahren
(Finite Element Methods, FEM) eine weit verbreitete Technik. Dabei wird ein
geometrischer Raum durch die Benutzung eines Gitters diskretisiert, indem das
Grundgebiet in einfache Teilgebiete, die so genannten Gitterzellen, zerlegt wird.
Fiir diese Teilgebiete werden dann jeweils eine oder mehrere numerische Glei-
chungen gelost. Abbildung 2.1 ! zeigt die Oberflichengitter eines Space-Shuttles
und die eines Autos.

Oberflachengitter eine Shuttles Oberflachengitter eines Autos

Abbildung 2.1: Beispielgitter [Loe]

Imit freundlicher Genehmigung von Prof. Dr. R. Léhner

8 KAPITEL 2. BEGRIFFSKLARUNG/GRUNDLAGEN

Die Simulation beginnt, indem fiir jede Zelle Berechnungen durchgefiihrt
werden. Das geschieht solange, bis eine vorgegebene Restabweichung eingehalten
oder unterschritten wird.

Handelt es sich um eine adaptive Anwendung, so wird das Gitter abhéngig
von dem zuvor erhaltenen Ergebnis an markanten Punkten (z. B. Stoflkanten)
verfeinert und auf diesem veriinderten Gitter weitergearbeitet (siche Abbildung
2.2).

HDC(>

Abbildung 2.2: Beispiel einer Gitterverfeinerung

Gitterdnderungen kénnen aber auch durch sich verdndernde Geometrien er-
folgen. So dndert sich der Innenraum eines Zylinders durch die Bewegung des
Kolbens. Im Ansaugtakt wird der Raum immer grofler, da der Kolben sich nach
unten bewegt. Damit erhoht sich die Anzahl an Zellen mit jedem Grad Kur-
belwellenwinkel. Am unteren Totpunkt kann die Zellanzahl durchaus auf das
Doppelte angestiegen sein [JLKT99]. Abbildung 2.3 zeigt das Gitter einer Mo-
torgeometrie (Zylinder, Ein- und Auslasskanal) zur Simulation von Stromungs-
und Verbrennungsprozessen, links am oberen Totpunkt, rechts am unteren.

D D

360 Grad Kubelwellenwinkel: 148.342 Zellen 540 Grad Kurbelwellenwinkel: 273.738 Zellen

Abbildung 2.3: Beispiel einer Gitteranderung durch Kolbenbewegung

Diese Verdnderung der Zellanzahl fithrt auch zur Verdnderung der Rechen-
last. Es miissen mehr numerische Gleichungen gel6st werden. Das Datenauf-
kommen auf den betroffenen Recheneinheiten steigt erheblich. Aus anfinglich

2.3. CHARAKTERISTIKA DER ANWENDUNGEN 9

Hunderttausenden kénnen Millionen von Gleichungen werden [Tur96]. Der Spei-
cherplatzbedarf solch einer Anwendung iibersteigt dann oftmals die vorhande-
nen Ressourcen. Ist die Rechenplattform nicht leistungsfihig genug, muss ein
Abbruch der Berechnung erfolgen.

Parallele Software hingegen bietet die Moglichkeit des Einsatzes von mehre-
ren Rechenressourcen, um diese Rechenlast zu bewiltigen. Insbesondere massiv
parallele Systeme mit mehreren hundert Rechenknoten bilden eine geeignete
Plattform fiir diese Anwendungen.

2.3.1 Parallele Anwendungen

Fiir die parallele Berechnung muss das Gitter auf die Prozessoren verteilt wer-
den. Dafiir wird es in Teile zerlegt (Gebietszerlegung). Auf jeder dieser Teile
(Partitionen) wird dann die Berechnung durchgefiihrt, unterbrochen durch den
Informationsaustausch zwischen den Prozessoren. Abbildung 2.4 zeigt den prin-
zipiellen Ablauf einer parallelen FEM-Anwendung.

Prozessor 0 Prozessor 1 Prozessor n-1
Lésen Lésen Lésen
numerischer numerischer ¢ numerischer
Gleichungen Gleichungen Gleichungen

U U &

Informationsaustausch

b ¥ &

Lésen Lésen Lésen
numerischer numerischer ¢ numerischer
Gleichungen Gleichungen Gleichungen

Abbildung 2.4: Ablauf einer parallelen FEM-Anwendung

Die Randzellen jeder Partition haben sogenannte Halozellen. Das sind Ko-
pien der angrenzenden Nachbarzellen, die auf einer entfernten Recheneinheit
liegen. Dadurch liegen die Informationen iiber diese Zellen bereits wihrend der
Berechnung vor, d. h. es muss bei Bedarf nur auf die Halozellen auf der lokalen
Recheneinheit zugegriffen werden, anstatt eine Kommunikation mit der entspre-
chenden entfernten Recheneinheit durchzufiihren. In jeder Iteration werden die
Informationen aller Randzellen einer Partition, deren Kopien sich als Halos auf
einer bestimmten Recheneinheit befinden, gemeinsam an die entsprechenden
Recheneinheiten geschickt. So wird fiir jeden benachbarten Prozessor nur eine
Nachricht benétigt. Dennoch bedeutet das Vorhandensein vieler Randzellen ein
hohes Kommunikationsaufkommen, da die Nachrichtengréfie abhéngig von der
Anzahl der zu verschickenden Zellen ist.

10 KAPITEL 2. BEGRIFFSKLARUNG/GRUNDLAGEN

Andert sich das Gitter, so erfolgt dies zum Ende der Berechnung hin oftmals
nur in einigen wenigen Regionen (z. B. Stoflkanten oder kleinerer Raum im
Kompressionstakt) und damit auch auf einigen wenigen Recheneinheiten.

Die Anzahl an Zellen und somit die Rechenlast auf jeder Recheneinheit ent-
wickelt sich dadurch unterschiedlich. Dieses fiithrt zu einem Ungleichgewicht,
das die Effizienz der Berechnung stark beeintréchtigen kann. Um Effizienzver-
lusten vorzubeugen, wird daher die Rechenlast neu verteilt, also Lastverteilung
durchgefiihrt.

2.4 Konzepte der Lastverteilung

Lastverteilung dient dazu, verteilte Anwendungen zu optimieren. Dabei steht
im Allgemeinen die Minimierung der Laufzeit einer verteilten Anwendung im
Vordergrund. Andere Aspekte, wie z. B. Speicherauslastung, kénnen ebenfalls
Ziele von Lastverteilung sein.

Um die Optimierung der Gesamtlaufzeit zu erreichen, ist das Hauptziel von
Lastverteilung, gleiche Rechenzeiten aller Prozesse durch angemessene Vertei-
lung der Rechenlast zu erzielen. Dieses Ziel basiert auf der Grundlage, dass der
Prozess mit der héchsten Laufzeit die Gesamtlaufzeit bestimmt.

2.4.1 Lastverteilungsgrundlagen

Lastverteilung kann grundsétzlich zu zwei unterschiedlichen Zeitpunkten aus-
gefithrt werden:

e zu Beginn einer Berechnung (initiale Partitionierung) und

e wihrend einer Berechnung (Lastrepartitionierung)

Bei der initialen Partitionierung werden die zu berechnenden Daten in
Teile zerlegt, um sie dann anschliefend iiber die Recheneinheiten zu verteilen.
Im Allgemeinen wird dieses zentral, d. h. von einer einzelnen Recheneinheit,
durchgefiihrt. Eine gute initiale Partitionierung ermoglicht den Beginn einer ef-
fizienten Berechnung.

Wird wihrend einer Berechnung ein Ungleichgewicht, z. B. durch Verfeine-
rung des Gitters, erzeugt, sind groflie Effizienzverluste zu erwarten. In diesem

Fall muss die Last balanciert werden. Das kann entweder durch

e Neu-Partitionierung oder

e Lastumverteilung

erreicht werden.

2.4. KONZEPTE DER LASTVERTEILUNG 11

Bei der Neu-Partitionierung werden die Daten auf einer Recheneinheit
gesammelt, um anschliefend wieder, wie bei der initialen Partitionierung, neu
verteilt zu werden. Dieser Ansatz hat sich insbesondere dann bewéihrt, wenn
z. B. durch programmiertechnische Einschréinkungen kein Verschieben der Last
von einem Prozessor zu einem anderen moglich ist. Dieses gilt z. B. fiir Program-
me, die in Fortran 77 geschrieben sind und keine dynamische Speicherverwaltung
unterstiitzen.

Bei einer Lastumverteilung wird wiahrend des Simulationsprozesses die
Last zu anderen Prozessoren verschoben (Lastmigration). Erfolgt diese Umver-
teilung dynamisch zur Laufzeit und ist sie abhéngig von der Lastentwicklung
wéhrend der Berechnung, so wird dies als dynamische Lastverteilung be-
zeichnet.

Entstehen Lastunterschiede durch Verédnderungen, die zur Laufzeit auftre-
ten, wie z. B. die Veréinderung der Zellenanzahl bei Gitterverfeinerungen, dann
muss dynamische Lastverteilung eingesetzt werden, um eine effiziente Berech-
nung zu erzielen. In dieser Arbeit werden nur Methoden der dynamischen Last-
verteilung betrachtet, da nur diese fiir komplexe, dynamische Simulationsan-
wendungen geeignet sind.

Der Lastverteilungszyklus

Soll Lastverteilung stattfinden, so erfolgt dieses in mehreren Schritten. Diese
bilden wiederum einen Lastverteilungszyklus. Ein Lastverteilungszyklus besteht
aus einer Entscheidungsphase und einer Durchfiihrungsphase.

In der Entscheidungsphase werden folgende Fragestellungen beantwortet:

e Wann wird Lastverteilung durchgefiithrt?

e Wieviel Last muss migriert werden?

e Welche Last muss migriert werden?

e Wohin/Woher muss Last migriert werden?

Hierbei wird oftmals nur der erste Teil, d. h., wann wird Lastverteilung
durchgefiihrt, von der Endanwendung bearbeitet. Die anderen Bereiche werden
dann von Lastverteilungswerkzeugen iibernommen. Hier stehen dem Benutzer
eine Vielzahl von miichtigen Werkzeugen zur Verfiigung (sieche Kapitel 2.4.4).

In der Durchfiihrungsphase erfolgt die Lastmigration. Daten werden ver-
schoben und miissen auf einer anderen Recheneinheit integriert werden. Diese
Migration erfordert einen erheblichen Eingriff in die Daten und Datenstruktu-
ren der Anwendung. Daher kann die Migration nur von der Anwendung selbst
geleistet werden.

12 KAPITEL 2. BEGRIFFSKLARUNG/GRUNDLAGEN

2.4.2 Lastverteilung fiir gitterbasierte Anwendungen

In dieser Anwendungsklasse sind Gebietszerlegungsmethoden weit verbrei-
tet: Das Gesamtgebiet wird in Teilgebiete zerlegt, auf denen dann parallel die
Berechnung erfolgt. Abbildung 2.5 zeigt die Zerlegung eines Gebietes in vier
Teilgebiete.

Prozessor 0 Prozessor 1
—> <
—> <
—> <
> <
LYoy R
N A Ao
—> <
—> <
> <
> <
Prozessor 2 Prozessor 3

Abbildung 2.5: Teilpartitionen auf vier Prozessoren

Um adiquate Lastverteilungsmethoden entwickeln zu kénnen bzw. vorhan-
dene Werkzeuge auswihlen zu konnen, miissen die Charakteristika der zu vertei-
lenden Last und ihre Abhéingigkeiten untereinander bekannt sein. Im Folgenden
wird daher die Arbeitsweise von parallelen Finite-Elemente-Anwendungen be-
schrieben.

Die Gitterstruktur einer FEM-Anwendung wird auf einen Graphen, den so-
genannten dualen Graphen, abgebildet (siche Abbildung 2.6). Dabei bildet
jede Gitterzelle einen Knoten, Knoten benachbarter Zellen werden durch Kan-
ten verbunden. Dieser Graph spiegelt die Berechnungen, dargestellt durch die
Knoten des Graphen, und die Kommunikation, dargestellt durch die Kanten des
Graphen, wider.

Bei einer parallelen Anwendung existieren sogenannte Schnittkanten zwi-
schen den einzelnen Teilgraphen. Diese sind Kanten, die iiber Prozessorgrenzen
hinweg fithren und notwendige Kommunikation zwischen den Prozessoren re-
prisentieren. Sei also G = (V, E) dualer Graph, V die Menge der Knoten, F
die Menge der Kanten, e = (v,w) € E eine Kante von Knoten v zu Knoten
w, v,w € V, PE;, PE; PEs, v wird von PE; berechnet, w von PEj;, i # j.

2.4. KONZEPTE DER LASTVERTEILUNG 13

Abbildung 2.6: Abbildung eines Beispielgitters auf den dualen Graphen

Dann ist e = (v,w) Schnittkante. Die Anzahl an Schnittkanten zwischen zwei
PEs wird als Schnitt bezeichnet. Abbildung 2.7 zeigt dazu ein Beispiel.

Partition 1 auf PE Partition 2 auf PE Partition 1 auf PE Partition 2 auf PE

]
: ol v i
Partition 3 auf PE r Partition 4 auf PE Partition 3 auf PE Partition 4 auf PE
Prozessorgrenze Schnittkanten
Gitter in 4 Teilpartitionen dualer Graph mit Schnittkanten

Abbildung 2.7: Beispiel von Schnittkanten

Ein wichtiges Merkmal der Arbeitsweise von FEM-Anwendungen ist der re-
ge Datenaustausch zwischen benachbarten Elementen und, abhéngig vom ma-
thematischen Verfahren, dem geringen Austausch globaler Informationen unter
den einzelnen Teilgebieten. Jedes Element erhélt Daten von seinem benach-
barten Element, zusédtzlich werden in manchen Methoden wenige globale Da-
ten bendtigt. Bei iterativen Losern zum Beispiel berechnet jeder Prozessor die
Norm des Residuums iiber seinen Teil des Gitters. Alle Prozessoren benotigen
den minimalen Wert von diesem, um zu entscheiden, ob die Lésung konvergiert
(ndheres siehe [FWM94]). Dieses bedingt globalen Datenaustausch.

Da eine hohe Anzahl an n6tigem Datenaustausch zwischen den Elementen
erforderlich ist, sollte dieser so wenig wie moglich iiber Prozessorgrenzen hinweg
geschehen. Neben dem allgemeinen Ziel von Lastverteilung, die Last gleichméfig
zu verteilen, fiihrt der letzte Aspekt zu dem weiteren Ziel, die Anzahl an Schnitt-
kanten, d. h. den Schnitt, zu minimieren.

14 KAPITEL 2. BEGRIFFSKLARUNG/GRUNDLAGEN

Um diesen Anforderungen gerecht zu werden, bedarf es komplexer graphen-
theoretischer Kenntnisse, und aufwéndiger Umsetzung zu einer lauffihigen An-
wendung. Diese Komplexitdt fithrte dazu, dass die Entwicklung von Lastver-
teilungsmethoden fiir gitterbasierte Anwendungen oftmals nicht vom CFD-Ent-
wickler selbst geleistet wurde, sondern in einem eigenstédndigen Forschungsgebiet
Fuf} fasste. Durch die dualen Graphen wurde eine einheitliche Datenstruktur ge-
schaffen, die die Schnittstelle zu den Lastverteilern bildet und auf denen diese
arbeiten kénnen.

2.4.3 Integration von Lastverteilung

Waihrend der Laufzeit findet regelméflig ein Datenaustausch zwischen den Zellen
statt. Diese Zeitpunkte stellen Synchronisationspunkte der Anwendung dar, an
denen Kommunikation zwischen den Prozessoren stattfindet. Da alle an Lastver-
teilung beteiligten Prozessoren zur gleichen Zeit diese initiieren miissen, werden
dafiir die Synchronisationspunkte genutzt (siehe Abbildung 2.8).

Prozessor 0 Prozessor 1 Prozessor n-1
Lésen Lésen Lésen
numerischer numerischer ¢ numerischer
Gleichungen Gleichungen Gleichungen

@ @ @ ‘ é@ Lastverteilung

\ Informationsaustausch

4 < &

Loésen Loésen Losen
numerischer numerischer c 0 numerischer
Gleichungen Gleichungen Gleichungen

Abbildung 2.8: Ablauf einer parallelen FEM-Anwendung mit Lastverteilung

2.4.4 Lastverteilungswerkzeuge

Die Aufgabe der Lastverteilungswerkzeuge besteht darin, basierend auf dem
dualen Graphen, zu entscheiden, welche Knoten zu welcher Partition verschoben
werden miissen, um ein Lastgleichgewicht (wieder-)herzustellen. Die eigentliche
Migration der Gitterzellen iibernimmt die Anwendung selbst, da dieses ein Zu-
griff auf die Daten der Anwendung erfordert.

Bei der Auswahl von Lastverteilungsalgorithmen werden nur parallele Algo-
rithmen betrachtet, da bei Einsatz von massiv-parallelen Systemen sequentielle
Methoden nicht geeignet sind. Fiir eine sequentielle Lastverteilung ist es erfor-
derlich, zunéchst die Daten auf einem zentralen Prozessor einzusammeln, neu
zu partitionieren, um sie dann wieder neu zu verteilen. Dieses Vorgehen ist nicht
anwendbar in der Gridumgebung, da

2.4. KONZEPTE DER LASTVERTEILUNG 15

e es einen betrichtlichen sequentiellen Bottleneck gibt (da der Geschwindig-
keitszuwachs nach Amdahl [Amd67] vor allem vom sequentiellen Anteil des
parallelen Problems abhingt),

e oftmals nicht geniigend Hauptspeicher auf einer Hostmaschine verfiigbar
ist, um das gesamte verteilte Gitter zu speichern und

e hohe Kosten beim Kommunizieren mit dem gesamten Gitter entstehen

e und damit auch die notwendige Skalierbarkeit gefdhrdet ist.

Die Hauptziele der Lastverteilung fiir gitterbasierte Anwendungen sind:

1. GleichmiBige Verteilung der Last auf alle Prozessoren, so dass alle Pro-
zessoren zur gleichen Zeit an einem Synchronisationspunkt ankommen.

2. Minimierung der Interprozessor-Kommunikation, so dass Zusatzaufwand
vermieden wird.

Bezugnehmend auf den dualen Graphen (siehe Abschnitt 2.4.2), bedeutet dies:

1. Teilung des Graphen in Partitionen mit der gleichen Anzahl von Knoten

2. Minimierung des Schnitts

Um dieses NP-vollsténdige Problem zu l6sen, wurden viele Heuristiken und
leistungsstarke Methoden entwickelt [BS94, KK97, WCE'95, SKK03, WLR93,
OA02, FWM94, Gro91].

Eine Vielzahl von ihnen zielt darauf ab, das Gitter zu Beginn der Berech-
nung sequentiell in gleiche Teile zu zerlegen. Die so entstandenen Teilpartitionen
werden dann auf die Prozessoren verteilt.

Dynamisches Verhalten einer Anwendung, z. B. durch Gitterverfeinerung
oder aber Strukturdnderungen, erfordert jedoch auch eine Umverteilung der Last
zur Laufzeit. Dieses wird durch dynamische Lastverteilungsmethoden [DMP97,
WCE97] erreicht. Anstatt die Teilgitter auf einem Prozessor zu sammeln und
das daraus entstehende Gesamtgitter wiederum neu zu zerlegen, werden bei
diesen Verfahren einzelne Gitterzellen von Prozessor zu Prozessor verschoben
[SSLKO0O]. Neben der gleichen Lastmenge je Prozessor und der Schnittkanten-
minimierung wurden nun auch Lastumverteilungskosten betrachtet. Ein weiteres
Ziel dieser Verfahren liegt daher in der Minimierung der notwendigen Migrati-
onskosten. Dieses wird realisiert durch Minimierung der Anzahl zu verschieben-
der Gitterzellen zusammen mit dem Verschieben zwischen méglichst wenigen
Prozessoren.

So ist das Ziel von Diffusionsverfahren [Cyb89, HB99], den Unterschied zwi-
schen der Original-Partition und der neuen Partition so minimal wie moglich
zu halten. Dieses wird dadurch erreicht, indem sie inkrementelle Veréanderungen

16 KAPITEL 2. BEGRIFFSKLARUNG/GRUNDLAGEN

an der Partitionierung vornehmen, um ein Gleichgewicht herzustellen.

Multilevel-Verfahren [Bar95, HB93, KK98, SKK97, WCO01] sind heutzuta-
ge weitverbreitete Methoden hoher Giite. Sie bestehen aus mehreren Phasen.
In der ersten Phase wird der duale Graph durch Zusammenfassen von Knoten
vergrobert und das Problem damit verkleinert. Auf dieser reduzierten Problem-
groffe wird dann der entsprechende Algorithmus, um geeignete Partitionen zu
berechnen, ausgefiihrt. In der letzten Phase wird der Graph bis zu seiner Origi-
nalgrofle wieder verfeinert. Dabei werden bestimmte Optimierungsvorschriften
beachtet.

Jostle [jos] und ParMETIS [par], die populérsten Werkzeuge in diesem Ge-
biet, bieten neben dem Einsatz von Multilevel-Verfahren auch die Moglichkeit,
unterschiedlich grofle Teilpartitionen zu generieren. Sie erméglichen es der FEM-
Anwendung, Werte, die sich auf die Partitionsgrofien beziehen, bei ihrem Aufruf
mit anzugeben. Diese Werte beinhalten den Anteil an Gesamtgitterzellen, den
jeder Prozessor erhalten soll. Jostle bzw. ParMETIS erzeugen daraufhin die
gewiinschten Partitionsgréfen. Die Benutzung von Zoltan [BDH99] gewihrlei-
stet ebenso diese Funktionalitét. Allerdings benutzt Zoltan als Lastverteilungs-
methoden unter anderem Jostle und ParMETIS.

Jostle bietet noch eine weitere, interessante Funktionalitdt fiir heteroge-
ne Umgebungen. Es eroffnet die Moglichkeit, heterogene Netzwerke mit zu
berticksichtigen. Dafiir erwartet es einen gewichteten Prozessorgraphen, der das
Kommunikationsnetzwerk représentiert. Ziel ist es nun, den dualen Graphen
auf diesen Prozessorgraphen abzubilden. Dafiir wird die in Jostle verwende-
te Multilevel-Methode in der letzten Phase erweitert. Jostle optimiert in dieser
Phase den Schnitt durch Austausch von Knoten zwischen Partitionen (basierend
auf dem Kernighan-Lin-Algorithmus [KL70]). Wenn es durch diesen Austausch
zu einer Verringerung des Schnitts kommt, so werden diese Knoten vertauscht.
In der modifizierten Version entscheidet das Gewicht der betroffenen Kante im
Prozessorgraph, ob ein wirklicher Gewinn erreicht werden kann.

Soll diese Funktionalitit von Jostle benutzt werden, so bleibt es allerdings der
Anwendung iiberlassen, den Prozessorgraphen zu erstellen.

Hier wird deutlich, dass die Betrachtung der Umgebung eine Grundvoraus-
setzung fiir eine effiziente Lastverteilung darstellen kann. Daher werden im fol-
genden Abschnitt die Charakteristika der Zielumgebung aufgezeigt.

2.5 Charakteristika der Zielumgebung

2.5.1 Entwicklung des Gridcomputings

Schon lange besteht der Wunsch, Rechenressourcen zu koppeln. Das Verschalten
von Workstations, PCs, SMPs, etc., um nicht genutzte Ressourcen einzusetzen
und die Verfligbarkeit von hohen Rechenkapazititen bereit zu stellen, ist heut-

2.5. CHARAKTERISTIKA DER ZIELUMGEBUNG 17

zutage weit verbreitet. Unterstiitzt wurde dieses Bestreben von PVM (Parallel
Virtual Machine) [pvim], einem Software Paket, das die Verschaltung von und
den Nachrichtenaustausch zwischen Rechnern, auch unterschiedlicher Architek-
tur, vereinfacht. PVM wurde durch MPICH [mpial, einer Implementierung des
Message Passing Standards MPI (Message Passing Interface) [mpib], weitestge-
hend abgelost.

In den 1990er Jahren begannen Hochleistungsrechenzentren, Parallelrech-
ner zu verschalten, um die Komplexitdt aufwéindiger Berechnungen noch stei-
gern zu konnen. So entstand das Metacomputing [Gen99], wie es z. B. am
Hochstleistungsrechenzentrum Stuttgart durchgefithrt wurde [Res01]. Zusam-
men mit anderen Hochleistungsrechenzentren, wie z. B. das Leibniz Rechenzen-
trum Miinchen oder das Forschungszentrum Jiilich, wurden in Deutschland viele
Projekte durchgefiihrt [EHR 98], bei denen lokale Maschinen wie die Cray T3E,
einer der schnellsten Parallelrechner ihrer Zeit, mit weiteren Hochleistungsrech-
nern iiber WANs gekoppelt wurden. In anderen Projekten [RRS99] wurden diese
nationalen Rechner auch mit Maschinen aus den USA verbunden, um hochkom-
plexe parallele Rechnungen, wie z. B. die Simulation vom Wiedereintritt eines
Shuttles in die Erdatmosphére mit der Software URANUS [RBB198], durch-
zufiihren.

Die gemeinsame Nutzung verteilter Ressourcen wurde zu einem géngigen
Prozedere, welches aber wieder neu zu lésende Probleme, wie z. B. Kompati-
bilitdt der Software, aufwarf. Die Kopplung von Hochleistungsrechnern, eben-
so wie jene von anderen verteilten Ressourcen wiesen dhnliche Probleme und
Moglichkeiten auf. Es entstand das neue Forschungsgebiet des Gridcomputings.

1998 griindeten Grid Entwickler und Anwender das Global Grid Forum
(GGF [ggf]), um Grid Standards zu definieren und Ideen auszutauschen. Fo-
ster [FKO03] definiert das Grid als eine Hardware und Software Infrastruktur,
die einen zuverldssigen, konsistenten und kostengiinstigen Zugriff auf Hochlei-
stungsrechner erméglicht.

Das Verschalten und Nutzen dieser Hochleistungsrechenressourcen war in
den letzten Jahren Inhalt vieler Projekte [AJC00, EHR98]. In der Initiative
TeraGrid [ter] haben sich grofie Universititen und Rechenzentren zusammen-
geschlossen, um Rechenleistung von 40 Teraflops und nahezu zwei Petabytes
Speicher zu erreichen. Die Kommunikation des TeraGrids erreicht in einem de-
dizierten, nationalen Netzwerk bis zu 20 Gigabits pro Sekunde.

2.5.2 Leistungen von Grid-Umgebungen

Diese Arbeit fokussiert einen Teil des Gridcomputings besonders, das ,,Distri-
buted Supercomputing“[Mes03], das die Verschaltung mehrerer Hochleistungs-
rechner umfasst.

Abbildung 2.9 zeigt eine Beispielkonfiguration, bei der Hochleistungsrechner

18 KAPITEL 2. BEGRIFFSKLARUNG/GRUNDLAGEN

Rechenzentrum A
Rechenzentrum B

I WAN

Rechenzentrum C

Abbildung 2.9: Beispielkonfiguration eines , Distributed Supercomputers®

verschiedener Rechenzentren gekoppelt sind. Dabei erfolgt die Vernetzung in-
nerhalb von Rechenzentrum B iiber ein schnelles lokales Netzwerk. Oftmals wird
hier ein HIPPI (High Performance Parallel Interface [hip]) eingesetzt. Die Re-
chenzentren kommunizieren untereinander iiber ein Wide Area Network (WAN).
Die Kommunikation innerhalb jeder einzelnen Maschine erfolgt iiber ein System
Area Network (SAN). Dieses kann ein internes Netzwerk des Maschinenherstel-
lers sein, wie z. B. das der Cray XT3 [xt3], oder aber ein Hochleistungsnetzwerk
fiir PC-Cluster, wie z. B. Infiniband [inf].

Diese Beispielkonfiguration kann als ein heterogener Cluster betrachtet wer-
den, d. h. unterschiedliche Recheneinheiten sind durch unterschiedliche Kommu-
nikationsverbindungen verbunden. Dieser Cluster zeichnet sich im Hinblick auf
Gridcomputing dadurch aus, dass mehrere Parallelrechner und/oder PC-Cluster
miteinander zu einer virtuellen Maschine verschaltet werden. Die Kommunika-
tionsverbindungen zwischen den einzelnen Recheneinheiten variieren somit von
sehr schnellen SANs innerhalb der einzelnen Maschinen {iber Highspeed-LANs
innerhalb eines Rechenzentrums bis hin zu WANS, die Rechenzentren miteinan-
der verbinden.

In anderen Bereichen des Gridcomputings werden eher Farmen von PCs und
einzelne dedizierte PC-Cluster, verbunden durch LANs und WANSs, miteinander
verschaltet.

Was beiden Bereichen gemeinsam ist, ist ihre Heterogenitét, sowohl im Be-
reich der Rechenleistung der einzelnen Recheneinheiten als auch im Bereich
ihrer Kommunikationsverbindungen. LAN-Standard-Netzwerke, wie z. B. Fast

2.5. CHARAKTERISTIKA DER ZIELUMGEBUNG 19

Ethernet, verfiigen iiber bis zu 100 MegaBit pro Sekunde Bandbreite und 80
us Latenz. Das wesentlich schnellere Gigabit Ethernet erméglicht Bandbreiten
bis zu einem GigaBit pro Sekunde. Innerhalb von Clustern verbreitete Hoch-
geschwindigkeitsnetzwerke hingegen, wie z. B. Myrinet [myr], Infiniband [inf]
oder QSNet von Quadrics [qua] erreichen Bandbreiten bis zu 9 GBit/s und 2
s Latenz. Tabelle 2.1 zeigt eine Ubersicht iiber einige verbreitete Verbindungs-
technologien [nws06].

Technologie Anbieter MPI Latenz Bandbreite/Link

usec, short msg | unidirektional,
MBit/s

NUMAIlink 4 (Altix) | SGI 1 3200

RapidArray (XD1) Cray 1,8 20001

QsNet II Quadrics 2 9002

Infiniband Voltaire 3,5 8303

High Performance | IBM 5 10004

Switch

Myrinet XP2 Myricom 5,7 4955

SP Switch 2 IBM 18 5006

Ethernet verschiedene | 30 100

Tabelle 2.1: Latenz und Bandbreiten einiger Verbindungstechnologien

Betrachtet man die Rechenleistung eines Standardprozessors, so belduft sich
diese auf maximal einen GFLOPS (Giga Floating Point Operations per Second).
Hochleistungsprozessoren, wie z. B. der PowerPC 970, erreichen hingegen bis zu
9,2 GFLOPS.

Die zur Verfiigung stehende Leistung kann von diesen Maximalwerten je-
doch nicht abgeleitet werden. Faktoren wie Speicherbandbreite, Cachegrofien
und verfiighbarer Hauptspeicher haben einen relevanten Einfluss auf die Leistung
einer Recheneinheit. Auflerdem kann sie durch unterschiedliche Auslastungen
oder auch Austille wihrend der Laufzeit variieren. Systemprozesse oder Prozes-
se anderer Benutzer bestimmen den Auslastungsgrad der CPU. Das Netzwerk
ist nicht immer dediziert. Nachrichten miissen sich dann Verbindungen teilen.
Weiterhin kénnen komplette Netzwerkverbindungen ausfallen und im laufenden
Betrieb durch andere, teils wesentlich langsamere, ersetzt werden. Vorausgesetzt
die Software gestattet es, kann z. B. von einem Infiniband-Netzwerk mit einer
Dateniibertragungsrate von mehreren Gigabits pro Sekunde auf ein Fast Ether-
net mit bis zu 100 MegaBit pro Sekunde innerhalb eines PC-Clusters umgeschal-
tet werden. Fiir die Anwendung ist dieses Geschehen vollstéindig transparent.
Einzig die Geschwindigkeit bei der Ubertragung von Nachrichten veréndert sich.

20 KAPITEL 2. BEGRIFFSKLARUNG/GRUNDLAGEN

Das Vorhandensein der unterschiedlichen Leistungsfihigkeit im Hinblick auf
Kommunikation und Berechnung wurde im letzten Abschnitt aufgezeigt, ihre
Feststellung und damit Bewertung der Umgebung ist Thema des folgenden Ab-
schnitts.

2.5.3 Bewertungsverfahren

Die Bewertung der Rechenumgebung kann sowohl statisch als auch dynamisch
erfolgen.

Statische Bewertung

Wird die Bewertung der Umgebung statisch bestimmt, so erfolgt dieses vor der
Laufzeit der Anwendung. Entscheidungen, auch wihrend der Laufzeit, basieren
auf diesen ermittelten statischen Kapazitaten.

Statische Kapazitéiten von Recheneinheiten #ndern sich nicht und bein-
halten Merkmale wie Prozessortyp, Taktfrequenzen, Grofle des Hauptspeichers,
Grofle des Caches oder auch Busbreiten. Weit verbreitete Prozessoren von Ar-
beitsplatzrechnern sind z. B. der Intel Pentium 3, oftmals getaktet mit Werten
von circa einem Gigahertz. Aktuelle Prozessortypen sind z. B. der Intel Pentium
4 oder AMD Athlon 64 mit einer Taktfrequenz von iiber drei Gigahertz.

Eine einfache Weise Systeme zu beurteilen, stellt die FLOPS-Rate dar.
FLOPS (Floating Point Operations per Second) gibt die maximale Anzahl an
FlieSkomma-Operationen pro Sekunde an, die eine CPU erreichen kann. Damit
bildet dieser Wert eine obere Schranke, die von einer realen Anwendung jedoch
nicht erreicht werden kann.

Zwei der wichtigsten Parameter von Netzwerkverbindungen sind Latenz
und Bandbreite. Niedrige Latenzen und hohe Bandbreiten kennzeichnen leis-
tungsfdhige Netzwerke.

Topologien von Netzwerken sind ein weiterer wichtiger Aspekt, um auf ihre
Leistungsfihigkeit schliefen zu kénnen. So miissen Nachrichten in Torustopolo-
gien von Knoten zu Knoten weitergeleitet (,geroutet*) werden und teilen sich
damit Netzwerkverbindungen. Direkt verschaltete (,switched*) Recheneinhei-
ten hingegen haben iiber einen ,,Switch®“(Umschalter) direkte Verbindung zum
Kommunikationspartner.

Die oben beschriebenen Parameter kénnen z. B. Datenblédttern entnommen
werden und verdndern sich wiahrend der Laufzeit nicht.

Eine andere Moglichkeit ist, durch standardisierte Metriken die Leistungs-
fihigkeit eines Systems zu evaluieren (Benchmarking). Fiir anwendungsspe-
zifisches Benchmarking werden vor dem Anwendungslauf Testmessungen mit
der Anwendung selbst oder einer vergleichbaren Anwendung durchgefiihrt und
das System bewertet. Standardisierte Benchmarks werden von der ,,Standard

2.5. CHARAKTERISTIKA DER ZIELUMGEBUNG 21

Performance Evaluation Corporation“(SPEC [spe]) erstellt und gewartet. Die-
se werden auf die neueste Generation von Hochleistungsrechnern angewendet
und die Ergebnisse publiziert. Anhand der Gréfie des Benchmark-Wertes kann
die Leistungsfahigkeit einer Maschine der anderer Maschinen gegeniibergestellt
bzw. bewertet werden. So verfiigt z. B. die IBM IntelliStation POWER 285
Workstation mit POWERS+ CPU (1900 MHz) iiber einen SPEC{p2000-Wert
von 2838 und zéhlt damit derzeit (Februar 2006) zu den schnellsten Maschinen.
Maschinen wie IBM eServer pSeries 660 Model 6H1 mit RS64 IV CPU (600
MHz) erreichen hingegen einen SPEC{p2000-Wert von nur 245 [spe06].

Diese Werte zeigen das grofie Spektrum an Leistungsfiahigkeit vorhandener Res-
sourcen.

Sowohl Benchmarking als auch das Zugrundelegen von technischen Daten
sind geeignet, die allgemeine Leistungsfihigkeit von Systemen zu bewerten und
Systeme hinsichtlich ihrer maximal méglichen Leistung zu vergleichen (z. B. fiir
Kaufentscheidungen). Sollen diese Informationen jedoch fiir eine Anwendung
von Nutzen sein, so sind diese Verfahren eher geeignet fiir dedizierte Syste-
me. Es werden bei jeder Rechnung die gleichen Parameter zugrunde gelegt.
Dadurch entsteht eine Reproduzierbarkeit und damit Vergleichbarkeit von Re-
chenldufen. Ein weiterer groler Vorteil ist, dass keine zusétzlichen Verwaltungs-
kosten wiahrend der Laufzeit entstehen und damit die Laufzeit der Anwendung
erhohen. Da die meisten Systeme jedoch von mehreren Anwendern benutzt wer-
den, stehen jedem Prozess geringere Kapazititen, bedingt durch Ressourcen-
Teilung, zur Verfiigung. Daher sind diese Verfahren nur bedingt anwendbar fiir
Anwendungen auf Mehrbenutzersystemen. Im Hintergrund laufende Betriebs-
systemprozesse erniedrigen zusétzlich die Verfiigbarkeit der Ressourcen.

Dynamische Bewertung

Dynamische Kapazitdten werden zuséitzlich durch die Auslastung der einzel-
nen Ressourcen bestimmt. In nicht-dedizierten Systemen stehen der Anwendung
durch Betriebssystemprozesse oder Prozesse anderer Benutzer nicht die komplet-
ten Ressourcen zur Verfiigung. Die Last &ndert sich in Abhéngigkeit von dem
Ressourcenverbrauch aller laufenden Prozesse. Um auf Systemzustandsédnde-
rungen unmittelbar reagieren zu koénnen, erfolgt die Bewertung des Systems
wéihrend des Anwendungslaufs.

Ein Nachteil dieses Verfahrens ist der Zusatzaufwand wéhrend der Laufzeit,
der durch Beobachtung des Systems entsteht. Eine Reproduzierbarkeit der Mes-
sergebnisse ist ebenfalls durch die Unvorhersehbarkeit des Systemzustands nicht
gegeben.

Um dem dynamischen Charakter des Grids gerecht zu werden, kénnen fiir
eine angemessene Lastverteilung nur dynamische Verfahren eingesetzt werden,
die die Leistungsfihigkeit einer Ressource zur Laufzeit messen (Monitoring).
Nur auf diese Weise kann gewéhrleistet werden, dass die Last entsprechend der

22 KAPITEL 2. BEGRIFFSKLARUNG/GRUNDLAGEN

aktuellen Situation von Netzwerk und Recheneinheiten verteilt werden kann.

2.5.4 Monitoring-Systeme

Sowohl fiir die Analyse der Rechenleistung als auch fiir die des Netzwerks wur-
den verschiedene Monitoring-Systeme entwickelt. Eine grundlegende Unterschei-
dung betrifft dabei die Zeit der Messwert- bzw. Ergebnisverfiighbarkeit. Sie kann
zum einen nach der Laufzeit gegeben sein (Offline-Monitoring) bzw. wihrend
der Laufzeit (Online-Monitoring) [Sim00]. Offline-Monitoring erstellt Protokolle
eines Anwendungslaufes. Mit Hilfe dieser konnen Performance-Probleme analy-
siert und die Anwendung entsprechend optimiert werden. Beim Online-Monito-
ring kann die Anwendung direkt auf die Daten zugreifen und damit auf System-
zustandsénderungen reagieren.

Zu den Offline-Monitoring Systemen gehéren [GTCT00, PK03]. Sie benut-
zen Mechanismen, bei denen das Verhalten der Anwendung mitprotokolliert
wird. NetLogger [GTC100] arbeitet mit dieser Methode als Diagnosesystem
fiir Performance-Probleme. Es liefert eine komplette Ubersicht iiber das Sy-
stem, indem es Monitoring auf Netzwerk-, Maschinen- und Anwendungsebene
kombiniert. Dadurch wird das Auffinden von Leistungseinbriichen einer Anwen-
dung unterstiitzt. Ein Nachteil dieser Verfahren ist, dass sie eine grole Menge
von Beobachtungsdaten erzeugen, die gegebenenfalls zu Analyse-Komponenten
transferiert werden miissen.

Auch wenn diese Systeme einen guten Uberblick iiber das Laufzeitverhalten
einer Anwendung liefern, bieten sie nicht die Moglichkeit, das Verhalten der An-
wendung in Abhéngigkeit vom Systemzustand wahrend der Laufzeit zu steuern.

Das Grundprinzip anderer Systeme ist, mittels Sensoren Systemparameter
zu erfassen [LMK103, WSH99] und diese an eine zentrale Instanz weiterzulei-
ten, die die Messwerte weiterverarbeitet.

Die Methode von Agarwala et al. [APKT03] nutzt das virtuelle Linux Datei-
system /proc und erweitert es um Systeminformationen von entfernten Maschi-
nen in einem /dproc Dateisystem. Dabei werden die Informationen zwischen
den Maschinen mittels Kernel-Kernel-Kommunikation ausgetauscht. Die CPU-
Auslastung wird periodisch durch einen Thread, der die Task-Liste des Kernels
untersucht, beobachtet. Das Netzwerkmonitoring wird durch ein Modul, das
den Netzwerkverkehr auf allen offenen Verbindungen beobachtet, bewerkstel-
ligt. /dproc arbeitet auf Systemebene und erfordert eine Kernel-Erweiterung.

Der Network-Analyser [MPO1] zielt auf die addquate Verteilung von Tasks
ab. Er sammelt Informationen von Workstation-Zusténden, wie z. B. CPU-Last,
Prozess-Zusténde, Ein-/Ausgabe der letzten 24 Stunden. Auf dieser Basis wer-
den Auslastungsvorhersagen unter Zuhilfenahme von stochastischen Verfahren
getroffen, die fiir die Verteilung der Tasks als Grundlage genommen werden. Die

2.5. CHARAKTERISTIKA DER ZIELUMGEBUNG 23

erwartete Ausfithrungszeit von Tasks wird ebenfalls abgeschétzt.

Fiir das Grid-Umfeld wurden Monitoring-Systeme entwickelt, die die speziel-
le Netzwerkstruktur des Grids bertiicksichtigen, die im Allgemeinen aus mehreren
Subnetzen besteht.

GridMon [LTT] beobachtet Netzwerke, um Fehler und Ineffizienz zu identi-
fizieren und um Annahmen iiber die zu erwartende Leistungsfahigkeit machen
zu konnen. Die Beobachtungen beziehen sich auf Konnektivitat, Paketverluste,
Durchsatz und Round Trip Time. GridMon arbeitet auf Systemebene. Fiir sei-
nen Einsatz miissen dedizierte Maschinen bereitgestellt werden, die jeweils ein
lokales Netzwerk beobachten. Diese Maschinen fithren wiederum Messungen un-
tereinander aus, um die Verbindungen zwischen ihnen zu analysieren.

Remos [LMKT03] (REsource MOnitoring System) erfasst Netzwerkdaten
und sagt zukiinftiges Verhalten, basierend auf historischen Daten, vorher. Da-
durch, dass die Anwendung nur auf eine Anfrage hin Informationen erhélt, wird
der Overhead klein gehalten. Das Sammeln der Netzwerkdaten erfolgt mittels
Kollektoren, die hierarchisch angeordnet sind. Auf unterster Ebene ist ein Kol-
lektor verantwortlich fiir das Einbringen von Informationen iiber sein Netzwerk.
So ist ein lokaler Kollektor z. B. zusténdig fiir das Sammeln von Daten seines
LANSs. Lokale oder globale Kollektoren auf entfernten Sites konnen kontaktiert
werden, um Informationen iiber diese entfernten Sites zu erhalten.

Der Network Weather Service (NWS) [Wol03] ist ein verteiltes System, das
die Leistungsfihigkeit von Netzwerk und Rechenressourcen periodisch beob-
achtet und dynamisch vorhersagt. Das Performance-Monitoring erfolgt mittels
Sensoren. Diese erzeugen Informationen iiber Netzwerk, CPU und Speicher.
Basierend auf diesen Informationen, werden numerische Modelle benutzt, um
Vorhersagen fiir zukiinftiges Verhalten zu treffen. Zusétzlich gestartete Prozes-
se (,probe“-Programme) werden sowohl fiir Performance-Messungen der CPU
eingesetzt als auch fiir die des Netzwerks. Die Anordnung der Sensoren ist hier-
archisch, was den Einsatz fiir grofle Systeme unterstiitzt.

Im Rahmen der Globus-Allianz [Glo], die sich zum Ziel setzt, grundlegende
Technologien fiir das Grid zu entwickeln, wurden auch Monitoring-Systeme spe-
ziell fiir das Grid entwickelt. So bietet z. B. Ganglia [MCCO04] die Moglichkeit,
Monitoring-Daten von Clustern zu sammeln. Dabei nutzt es die hierarchische
Struktur, die durch die Verschaltung mehrerer Cluster zustande kommt. Ganglia
setzt , Monitoring-Daemons* ein, die in gewissen Absténden Leistungsinforma-
tionen erfassen.

All diese Systeme arbeiten auf Betriebssystemebene. Sie beobachten die vor-
handenen Leistungsfihigkeiten der Komponenten CPU und Netzwerk. Bei eini-
gen Systemen [APK'03, MPO01] erfolgt dieses durch passive Sensoren, d. h. es
werden Informationen, die dem Betriebssystem bereits vorliegen, abgefragt. Mit

24 KAPITEL 2. BEGRIFFSKLARUNG/GRUNDLAGEN

aktiven Sensoren arbeiten GridMon, Remos und NWS. Hier werden Prozesse
explizit gestartet, um Messungen durchzufiihren.

Auslastungsvorhersagen basieren auf historischen Daten. Das bedeutet, dass
von vergangenen Auslastungen auf zukiinftige geschlossen wird, also ein sich
wiederholendes Auslastungsprofil vorausgesetzt wird.

2.6 Analyse der Eckpunkte

Betrachtet man die in Abschnitt 2.4.4 beschriebenen Lastverteilungsmethoden
und ihre Ziele, so wird schnell deutlich, dass Lastverteilung in einer heterogenen
Umgebung wie das Grid nur dann zur Effizienzsteigerung fiihren kann, wenn sie
Umgebungsparameter bei ihren Entscheidungen miteinbezieht.

Die meisten der vorgestellten Lastverteilungsmethoden aus Abschnitt 2.4.4
gehen von einer Gleichverteilung der Last, und damit der Graphknoten, als
Ziel aus. Dieses ist jedoch nur in homogenen Umgebungen angemessen, wie
sie z. B. in Parallelrechnern zu finden sind. Das Grid weist jedoch eine hete-
rogene und dynamische Struktur auf, in der Maschinen mit unterschiedlicher
Leistungsfihigkeit an der Durchfithrung einer Anwendung beteiligt sind (sie-
he Abschnitt 2.5.1). Wie wichtig die Beriicksichtigung dieser Heterogenitét ist,
wird von Entwicklern einiger Lastverteilungsmethoden hervorgehoben [SKK03,
WLR93, EMP00, RNO1, BL02]. So beschreiben Eickermann et al. [EHR 98],
dass die Anpassung der Last an die Umgebung zu grofilen Effizienzsteigerun-
gen fithren kann. Das Werkzeug MinEX von Das et. al [DHBO02] nutzt ebenfalls
Informationen iiber die Umgebung, um Lastverteilung entsprechend der Um-
gebung durchzufiithren, betrachtet jedoch keine dynamischen Werte, sondern
bezieht sich auf vorangegangene Performance-Studien.

Soll Heterogenitéit beriicksichtigt werden, so ist eine Voraussetzung, dass
das Lastverteilungswerkzeug Teilpartitionen unterschiedlicher Grofie generieren
kann. Diese Moglichkeit wird aber nur von wenigen Werkzeugen, wie z. B. Jostle
und ParMETIS, geboten.

Zur Unterstiitzung dieser Werkzeuge bedarf es einer Instanz, die die Um-
gebung analysiert und die aufbereiteten Informationen an die Lastverteilung
weitergibt. Damit schliefit sich die Liicke zwischen Umgebung und Lastvertei-
lung (siehe Abbildung 2.10).

Die Umgebungsanalyse muss dabei durch geeignete Bewertungsmethoden erfol-
gen. Eine angemessene Methode stellt dabei das Monitoring dar, das zur Laufzeit
Informationen tiber die Umgebung ermittelt und zur Verfiigung stellt.

2.6.1 Monitoring

Das erforderliche Monitoring-System muss bei geringem Overhead dazu in der
Lage sein, hinreichende Informationen iiber den Status der Recheneinheit wie
auch den des Netzwerks zu liefern.

2.6. ANALYSE DER ECKPUNKTE 25

Anwendung wirkt auf

ruft auf
Umgebung
/

i unterstiitzende

v ' Instanz !

Lastverteilung |< ~

wirkt auf

Abbildung 2.10: Erweiterung der Komponenten

Um dieses zu gewéhrleisten, muss es folgende Eigenschaften aufweisen:
o Skalierbarkeit
o Effizienz
e Verfiigbarkeit auf Benutzerebene

Skalierbarkeit wird erméglicht, indem das Sammeln von Monitoring-Daten
und ihre Weiterverarbeitung verteilt erfolgt. Werden zentrale Instanzen einge-
setzt, so wiirden sie, insbesondere in massiv-parallelen Systemen wie das Grid,
zu einem Flaschenhals werden. Einen weiteren Aspekt stellt die Ausfallsicher-
heit dar. Féllt die zentrale Instanz aus, so ist das System nicht mehr arbeitsfihig
und muss terminieren. Nur ein verteiltes System ermoglicht ein Weiterarbeiten
bei Ausfall einer Recheneinheit.

Die Forderung nach Effizienz beinhaltet, dass aussagekriftige Informatio-
nen iiber das System gesammelt werden koénnen, wobei der notwendige Zusatz-
aufwand gering bleibt. Der Spagat zwischen einem hohen Informationsgehalt der
gesammelten Daten einerseits und einem moglichst geringen Overhead anderer-
seits ist eine schwierige Aufgabe bei der Entwicklung von Monitoring-Systemen.

Daten iiber den Systemzustand miissen fiir die Anwendung zugreifbar sein.
Ein Eingriff in das Betriebssystem bzw. zusétzliche Installationen sollten nicht
notwendig sein. Dieses wiirde zum einen die Unterstiitzung der Systemadmi-
nistration erfordern und zum anderen das Angebot nutzbarer Maschinen ein-
schrinken, da das Vorhandensein bestimmter Software vorausgesetzt werden
miisste. Um den Anforderungen aller Benutzer gerecht zu werden, miissen sol-
che Systeme iiber ein umfangreiches Informationsangebot verfiigen. Dieses wi-
derspricht jedoch der Forderung nach Effizienz, d. h. ausschliefliche Sammlung
notwendiger Informationen.

Ein wesentlicher Aspekt ist aber, dass ausschliellich die der Anwendung zur

26 KAPITEL 2. BEGRIFFSKLARUNG/GRUNDLAGEN

Verfligung stehenden Ressourcen bewertet werden sollen. Daher muss das Mo-
nitoring auf Anwendungsebene stattfinden.

Alle in Abschnitt 2.5.4 vorgestellten Systeme arbeiten auf Betriebssysteme-
bene. Um die erforderlichen Daten zu erhalten, muss Software installiert werden,
oder es miissen sogar komplette Maschinen zur Verfiigung gestellt werden (Grid-
Mon). Informationen dariiber, welche Kapazititen der eigenen Anwendung zur
Verfiigung gestellt werden, kénnen nicht geliefert werden.

Ein wichtiger Punkt ist, dass alle Methoden voraussetzen, dass Informatio-
nen iiber den Aufbau des Netzwerks vorliegen, die Struktur also bekannt ist. Ein
statischer, hierarchischer Aufbau bildet die Grundlage. Dieses impliziert wie-
derum das Vorhandensein von Software, die diese Information bereitstellt. Ein
weiterer Aspekt ist, dass sich die Struktur des Netzwerks aus Anwendungssicht
zur Laufzeit dndern kann. Dieses erfordert ein System, dass auf diese Struk-
turdnderungen dynamisch reagiert.

Die vorgestellten Verfahren bieten ein grofles Spektrum an Informationen,
um den Bediirfnissen vieler Anwendungen gerecht zu werden. Diese Informa-
tionsvielfalt {iberschreitet jedoch den im Rahmen dieser Arbeit notwendigen
Informationsbedarf, der sich rein auf die Rechen- und Netzwerkkapazitéiten fiir
die entsprechende Anwendung bezieht. Der zu hohe Aufwand des Monitorings
fithrt zu einer geringeren Effizienz.

Somit konnen nicht alle Anforderungen an ein Monitoring-System erfiillt
werden, da sich Skalierbarkeit auf vorhandene Informationen iiber das Netzwerk
stiitzt und Effizienz durch zu grofie Informationsfiille eingeschréinkt ist.

Daher wird auf keines der vorhandenen Systeme zuriickgegriffen, sondern
ein eigenes Monitoring-System entwickelt, um den Anforderungen gerecht zu
werden.

Die unterstiitzende Instanz aus Abbildung 2.10 besteht also aus den zwei
Bereichen Monitoring und Lastverteilungssteuerung (sieche Abbildung 2.11).

In den nichsten Kapiteln werden zunichst Anforderungen an diese zwei
Bereiche herausgearbeitet und anschliefend Loésungen vorgestellt.

2.6. ANALYSE DER ECKPUNKTE

Anwendung ‘ .
. xktauf
ft auf
; ruftau Umgebung
H [

wirkt auf

27

: l Monitoring
¥ |
Lastverteilung |< - - - ~1 Lastverteilungsunterstiitzung

Abbildung 2.11: Teile der Unterstiitzungskomponente

28

KAPITEL 2. BEGRIFFSKLARUNG/GRUNDLAGEN

Kapitel 3

Anforderungskatalog

Nach der Analyse der Eckpunkte im letzten Kapitel kristallisieren sich zwei
Bereiche heraus, fiir die Methoden entwickelt werden miissen:

e Zum einen fiir die Lastverteilungssteuerung, das eigentliche Ziel dieser
Arbeit, und

e fiir das Monitoring-System, das die Grundlage fiir die Lastverteilungs-
steuerung bildet.

Ein Anforderungskatalog fiir beide Bereiche ist Thema dieses Kapitels.

3.1 Anforderungen an die Lastverteilungssteue-
rung

Die Anforderungen ergeben sich aus den drei in den vorangegangenen Abschnit-

ten beschriebenen Eckpunkten Anwendung, Lastverteilung und Umgebung (sie-
he Abbildung 3.1).

Anwendung

Umgebung Lastverteilung

Abbildung 3.1: Abhéngigkeiten

Dabei haben diese drei Punkte folgende Merkmale:

29

30 KAPITEL 3. ANFORDERUNGSKATALOG
Umgebung:

1. Es liegt ein heterogenes System zugrunde, die Leistungsfihigkeit der
Recheneinheiten kann stark differieren, sowohl in ihrer CPU-Leistung
als auch in ihrem Speicherangebot.
= heterogene Recheneinheiten

2. Das Grid besteht aus unterschiedlichen Kommunikationsnetzwerken,
die sich durch ihre Ubertragungsraten extrem unterscheiden kénnen.
= heterogene Netzwerke

3. Die Netzwerkstruktur des Grids ist hierarchisch. Subnetze werden
gekoppelt. Diese bilden Netze, die wiederum gekoppelt werden.

4. Durch Ressourcenteilung #dndert sich sowohl die Leistungsfahigkeit
der Netzwerkverbindungen als auch die der Prozessoren wihrend der
Laufzeit.
= dynamisches System

5. Es handelt sich um ein massiv-paralleles System. Eine hohe An-
zahl an Recheneinheiten muss verwaltet werden.

Anwendung:

1. Die Berechnungen basieren auf Gitter.
= gitterbasierte Anwendung

2. Die Gitterzellen tauschen oft Daten mit ihren Nachbarn aus. Es exi-
stiert ein hohes Kommunikationsaufkommen.
= eng kommunikativ gekoppelt

3. Die Gitter konnen aus Millionen von Zellen bestehen. Fiir jede Zelle
miissen Daten gespeichert werden.
= hoher Speicherbedarf

4. Oftmals ist eine Schnittstelle zu frei verfiigharen Lastverteilungswerk-
zeugen vorhanden. Die Anwendung stellt dann den dualen Gra-
phen des Gitters zur Verfiigung.

5. Bei der Entwicklung von Simulationswerkzeugen stehen deren Leis-

tungsfahigkeit und damit numerische Verfahren im Vordergrund. Der
Bereich der Lastverteilung ist Teil eines anderen Arbeitsgebietes (Gra-
phentheorie), das insbesondere von Experten wirkungsvoll umgesetzt
werden kann.

Anwendung und Lastverteilung stellen damit zwei getrennte und in
sich abgeschlossene, aber voneinander abhéngige Bereiche dar.

Lastverteilungsmethoden:

1.

Neben der gleichmifligen Verteilung der Gitterzellen auf die
Prozessoren ist die Minimierung der Schnittkanten Ziel der Last-
verteilung.

3.1. ANFORDERUNGEN AN DIE LASTVERTEILUNGSSTEUERUNG 31

2. Die Verfiigbarkeit parallel arbeitender Werkzeuge ist stark be-
grenzt.

3. Nur wenige Werkzeuge bieten die Moglichkeit, Partitionsgréfien
vorzugeben. Ist diese Funktionalitéit allerdings vorhanden, so ist es
Aufgabe des Anwenders, diese Grofien zu bestimmen.

4. Die Verbindungsstruktur des Systems wird oftmals nicht betrachtet.

5. Lastverteilung wird zwischen allen Prozessen durchgefiihrt.

Das geplante Zusammenspiel dieser Aspekte zeigt Abbildung 3.2.

Anwendung e T
- gitterbasiert \ N
- eng komm.gekoppelt - h?teroghe'n .
- hoher Speicherbedarf = EEE TS
zu migrierende - dynamisch
Last : ' - massiv-parallel
H ! :
: o v
dualer Graph || V | Monlt‘armg |
: ‘ J :
itie 5 | a |
PartitionsgroBe | ===~~~ ! Lastverteilungsunterstiitzung |
i i

Lastverteilung

- Schnittkantenminimierung
- gleichm. Verteilung

Abbildung 3.2: Zusammenspiel der Eckpunkte

Durch diese Charakteristika ergeben sich folgende Anforderungen an eine
Lastverteilungssteuerung, die die Merkmale der Umgebung betrachtet und diese
wirkungsvoll nutzt:

e Anpassung der Lastmenge an die Kapazitéiten der einzelnen Prozessoren

e Beriicksichtigung der Existenz von unterschiedlich schnellen Kommuni-
kationsverbindungen durch Vermeidung langsamer Verbindungen bei der
Lastverteilung

e Ausnutzung der hierarchischen Netzwerkstruktur

e Reaktion auf Zustandsénderungen (Prozessor-/Netzwerklast) wihrend der
Laufzeit

e Verwaltung einer grofen Anzahl an Prozessoren

32 KAPITEL 3. ANFORDERUNGSKATALOG

e Nutzung vorhandener Lastverteilungswerkzeuge, entweder die der Anwen-
dung oder aber allgemeiner Werkzeuge (z. B. Jostle) muss weiterhin mog-
lich sein

e Transparenz fiir den Benutzer, d. h. kein Zusatzaufwand fiir den Entwick-
ler

e geringer Overhead, sowohl in Bezug auf Speicher (speicherintensive An-
wendung) als auch auf Laufzeit

Um diese Anforderungen zu erfiillen, wurde ein Konzept entwickelt, das in
Kapitel 4 vorgestellt wird. Die Umsetzung dieses Konzepts mit anschlielender
Validierung wird darlegen, ob bzw. inwieweit es den obigen Anforderungen ent-
spricht.

3.2 Anforderungen an die Monitoring-Umgebung

Fiir das Monitoring-System miissen folgende Anforderungen erfiillt werden, um
den Forderungen Skalierbarkeit, Effizienz und Verfiigharkeit auf Benutzerebene
nachzukommen:

e Skalierbarkeit:
Das Monitoring muss verteilt erfolgen. Es darf keine zentrale Instanz not-
wendig sein, weder bei der Messwerterzeugung noch bei der Verarbeitung
der Messwerte.

e Verfiigbarkeit:

— Es muss Online-Monitoring eingesetzt werden, da die Anwendung in
der Lage sein muss, auf aktuelle Systemzustéinde zu reagieren.

— Das Monitoring muss auf Anwendungsebene stattfinden. Die Infor-
mationen auf Betriebssystemebene liefern nur allgemeine Informa-
tionen, nicht jedoch jene, die iiber die Leistungskapazitiaten fiir die
Anwendung Auskunft geben.

— Aktive Sensoren konnen ermitteln, welche Kapazititen der Anwen-
dung zur Verfiigung stehen. Wichtig ist, sie so zu integrieren, dass sie
das Laufzeitverhalten der Anwendung nicht veréndern.

o Effizienz:
Um Effizienz zu ermdoglichen, miissen hinreichende Informationen bei mi-
nimalem Overhead ermittelt werden. Dieses kann erreicht werden, indem
Anzahl und Giite der Messwerte so gro wie notig, aber so klein wie
moglich werden. Dazu dienen die folgenden Strategien:

— Anzahl der notwendigen Informationen:
Es werden nur relevante Informationen iiber die zu beobachtende
Anwendung gesammelt.

3.2. ANFORDERUNGEN AN DIE MONITORING-UMGEBUNG 33

— Aussagekraft der Informationen:
Die fiir die Aussagekraft notwendige Granularitit der Information
bestimmt die Genauigkeit der Messungen und die Hohe des Daten-
aufkommens. Diese sollte moglichst gering sein, um den Overhead
minimal zu halten. Daher werden folgende Ziele angestrebt:

% Monitoring der Recheneinheiten:
Die Informationen miissen ausreichend sein, um die Last ent-
sprechend der Leistungsfihigkeit der einzelnen Recheneinheiten
zu verteilen.

* Monitoring des Netzwerks:
Wesentlich sind hier die Zeiten fiir die Dauer eines Nachrichten-
austausches innerhalb der Anwendung. Mit Hilfe der Messwerte
muss eine Einschiitzung der Ubertragungsgeschwindigkeiten von
Nachrichten moglich sein und damit auch eine Vergleichbarkeit
der Verbindungen. Dieses betrifft aber nur Verbindungen, die die
Anwendung benutzt.

— Effizienz durch Dynamik:
Das Monitoring selbst sollte auf das System reagieren, indem die
Anzahl der Monitoring-Aufrufe abhéngig vom Zustand des Systems
ist.

Das entwickelte Monitoring beriicksichtigt die Forderungen Gropps in [GL99].
Dabei stellt Gropp besonders die Schwierigkeit heraus, exakte, reproduzierbare
Messungen im parallelen Umfeld durchzufithren, da Parallelismus auch immer
ein wenig Nichtdeterminismus beinhalte. Auch Kielmann et al. [KBMT02] se-
hen diese Schwierigkeit und begegnen dieser, indem sie einen Netzwerksimulator
entwickelten.

Gropp sieht als besondere Gefahren bei Performance-Messungen:

1.

Der Verbindungsaufbau erfolgt in manchen Systemen dynamisch. Daher
kann die erste Kommunikation viel langer dauern.

. Ein im Hintergrund laufendes Dateisystem kann viel der verfiigharen Kom-

munikationsbandbreite in Anspruch nehmen.

. In einigen Anwendungen wird Latency-Hiding durch Uberlappen von Be-

rechnung und Kommunikation eingesetzt.

Dedizierte, geschaltete (switched) Netzwerke haben eine ganz andere Leis-
tung als gemeinsam genutzte Netzwerkstrukturen.

. Zeitereignisse, die im Verhiiltnis zur Uhrenauflésung kurz sind, sind schwie-

rig zu messen.

. Die Messwerte sind abhéngig vom Kommunikationsmuster.

Punkt-zu-Punkt-Kommunikation verhalt sich anders als Kommunikation
zwischen mehreren Prozessoren

34 KAPITEL 3. ANFORDERUNGSKATALOG

Als Losungen zu den oben genannten Problemen schlidgt Gropp vor:

ad 1 Die erste Kommunikation darf bei den Messungen nicht beriicksichtigt
werden.

ad 2 Konkurrenzsituationen mit nicht in Bezug stehenden Anwendungen oder
Jobs sollten ebenfalls betrachtet werden.

ad 3 Uberlappen von Berechnung und Kommunikation sollten mitberiicksich-
tigt werden.

ad 4 Die Gesamtbandbreite sollte nicht mit Punkt-zu-Punkt-Bandbreite ver-
wechselt werden.

ad 5 Sehr kurzen Zeitereignissen sollte Beachtung geschenkt werden.
ad 6 Messe nicht mit einem einzigen Kommunikationsmuster.

ad 7 Messe mit mehr als zwei Prozessoren.

Auf Basis dieser Regeln entwickelten Gropp et al. das MPI-Performance-
Analyse-Werkzeug perftest. Es misst die Leistungsfahigkeit einiger grundlegen-
der MPI-Routinen in unterschiedlichen Situationen (siehe [per]).

Diese Forderungen bildeten die Grundlage bei der Entwicklung eines eigenen
Monitoring-Systems, das in Abschnitt 4.4 beschrieben wird.

Kapitel 4

Lastverteilung in
Grid-Umgebungen

Nachdem im letzten Kapitel Anforderungen fiir eine umgebungsspezifische Unter-
stiitzung fiir Lastverteilung aufgezeigt wurden, wird nun ein Losungsansatz be-
schrieben.

4.1 Grundkonzept der adaptiven Steuerung der
Lastverteilung

Die im Folgenden présentierte Strategie zielt darauf ab, dem Anforderungska-
talog aus dem letzten Kapitel gerecht zu werden, indem sie

1. die Recheneinheiten bewertet und die Lastmenge ihren Kapazitéiten an-
passt (Adaption an heterogene Rechenleistung),

2. die Netzwerke bewertet und schnelle Verbindungen den langsameren bei
Lastverteilung und Datenmigrationen vorzieht.

Fiir eine Anwendung, die auf einem System mit heterogenem Netzwerk
lauft, bedeuten die stark unterschiedlichen Netzwerkgeschwindigkeiten,
dass sich die Transferraten um das Hundertfache unterscheiden kénnen.

Datenmigrationen bei Lastverteilung sind davon besonders betroffen. Sind
die Migrationszeiten sehr hoch, so steigt der Overhead fiir Lastverteilung
und somit sinkt auch seine Effizienz. Ubersteigt der Overhead den Lauf-
zeitgewinn durch Lastverteilung (Kosten-Nutzen-Analyse), so verschlech-
tert sich die Gesamtlaufzeit der Anwendung und das Ziel von Lastvertei-
lung ist verfehlt.

Ein Ziel der Lastverteilungsstrategie ist es daher, Datenmigrationen tiber
sehr langsame Verbindungen zu minimieren. Lastverteilung zwischen Re-
cheneinheiten mit hohen Ubertragungsraten werden hingegen bevorzugt.

35

36 KAPITEL 4. LASTVERTEILUNG IN GRID-UMGEBUNGEN

3. diese Bewertungen zur Laufzeit durchfiihrt und Entscheidungen basierend
auf ihren aktuellen Werten trifft und damit auf die dynamische Umgebung
reagiert.

4. die Strategie aus einer lokalen Sicht heraus (dezentrale Strategie) umsetzt
und damit Skalierbarkeit erméglicht.

Dadurch sollen die Hauptziele der Lastverteilung erreicht werden:

1. Die Laufzeit der Anwendung wird optimiert durch gleichméflige Auslas-
tung der Recheneinheiten und damit auch schnellere Terminierung.

2. Der Zusatzaufwand fiir die Lastverteilung wird minimiert durch Nutzung
schneller Verbindungen und damit auch kiirzerer Datenmigrationszeiten.

In den folgenden Abschnitten werden Konzepte vorgestellt, mit denen diese
Ziele erreicht werden sollen.

4.2 Kapazitidtenabhingige Lastverteilung

Ein wichtiger Aspekt, um eine gleichmiflige Auslastung der Recheneinheiten
zu gewdhrleisten, ist eine Verteilung der Last in Abhéingigkeit von der Leis-
tungsfahigkeit der einzelnen Recheneinheit. Aus Anwendersicht heraus bezieht
sich die Leistungsfihigkeit auf die dem Anwendungsprozess (AP) zur Verfiigung
stehenden Leistung.

Die Leistung einer Recheneinheit ist bestimmt durch ihre Berechnungsge-
schwindigkeit (siehe Abschnitt 4.4.1). Sei calc_speed die Berechnungsgeschwin-
digkeit einer Recheneinheit, dann ist ihre Leistung = 1/calc_speed.

Seien AP; und AP; Prozesse der Anwendung, 0 < 4,5 < n, n = |An-
wendungsprozesse|. Seien Leistung; und Leistung; die Leistungsfdhigkeit der
Recheneinheiten RE; bzw. RE;, AP; wird auf RE; bearbeitet, AP; auf RE},
Last; und Last; die Last von AP; bzw. AP;, dann ist ein Ziel der Lastverteilung,
dass zu jedem Zeitpunkt ¢ gilt:

Last; ~ Last;
Leistung; Leistung;

, YV AP, AP (4.1)

Um die optimale Last eines Anwendungsprozesses AP; zu berechnen, wird
zunichst die optimale Lastrate optimale Lastrate;, d. h. der optimale Anteil an
der Gesamtlast, bestimmt.

Dabei ist die Gesamtlast

n—1
Lastiy,; = Z Last; (4.2)
§=0
Leistung;

T, (4.3)
> j—o Leistung;

optimale Lastrate; =

4.3. NETZWERKABHANGIGE LASTVERTEILUNG 37

Damit gilt:

n—1
Z optimale Lastrate; =1 (4.4)
§=0

Die optimale Last fiir AP;, optimale Last;, ist damit die anteilige Lastmenge
der Gesamtlast Last;,; fiir den optimalen Fall und berechnet sich wie folgt:

optimale Last; = optimale Lastrate; x Last;, (4.5)

Durch die Adaptivitidt der Anwendung verindert sich ihre aktuelle Last
wéhrend der Laufzeit und kann zu einem Abweichen von der optimalen Last
fiihren. Weicht die aktuelle Last von der optimalen Last ab, so existiert ein
Ungleichgewicht, das die Effizienz der Berechnung gefdhrden kann.

Das Ungleichgewicht von AP;, Ungleichgewicht;, berechnet sich aus:

aktuelle Last;
optimale Last;
wobei aktuelle Last; die aktuelle Last von AP; ist.

Ungleichgewicht; = |1 — | (4.6)

Ein geringes Ungleichgewicht, bei dem die zu erwartenden Kosten fiir sei-
ne Behebung hoher sind als der zu erwartende Laufzeitgewinn, wird toleriert.
Kann dieses Ungleichgewicht jedoch zu Effizienzverlusten fithren, so muss eine
Umverteilung der Last durchgefiihrt werden.

Sollen Kosten und Nutzen von Lastverteilung bewertet werden, setzt dieses
das Vorhandensein von Laufzeit-Informationen iiber zukiinftige Berechnungen
voraus. Da diese Informationen i. A. nicht vorliegen (keine Vorhersehbarkeit),
basiert die Feststellung eines Ungleichgewichts auf einem festen Schwellwert
balance_tolerance. Wird balance_tolerance iiberschritten, d. h.

Ungleichgewicht > balance_tolerance,
so wird Lastverteilung initiiert.

4.3 Netzwerkabhingige Lastverteilung

Die Betrachtung des Netzwerks ist ein wesentlicher Bestandteil dieser Arbeit.
Andere Entwickler sehen zwar die Wichtigkeit dieses Aspekts, beriicksichtigen
sie jedoch nicht in ihren Konzepten.

Durch das Vorhandensein unterschiedlich schneller Kommunikationsnetzwer-
ke entstehen Klassen von Kommunikationsgeschwindigkeiten. Werden Rechen-
einheiten, die durch Verbindungen einer Geschwindigkeitsklasse gekoppelt sind,
zu Subsystemen zusammengefasst, so entsteht eine Hierarchie von Subsyste-
men. Werden z. B. MPP-Systeme mit einem im Vergleich zu ihrem internen
Netzwerk um Faktoren langsameren Netzwerk gekoppelt, so bildet jedes MPP-
System fiir sich ein Subsystem. Falls einige Recheneinheiten der MPP-Systeme
iiber einen schnelleren Weg als das SAN kommunizieren, z. B. iiber ihren ge-
meinsamen Speicher (,,shared memory“-Kommunikation), bilden diese Knoten

38 KAPITEL 4. LASTVERTEILUNG IN GRID-UMGEBUNGEN

ein Subsystem auf niedrigster Ebene. Auf hochster Hierarchieebene bildet das
Gesamtsystem ein Subsystem.

Das folgende Beispiel (siehe Abbildung 4.1) zeigt die Kopplung zweier PC-
Cluster mittels Ethernet (Ubertragungsrate bis zu 100 Mbit/s). Die Knoten je-
des PC-Clusters kommunizieren iiber SCI (Scalable Coherent Interface [IEE93],
maximal 4 GBit/s) bzw. Infiniband (maximal 10 GBit/s). Innerhalb jedes Kno-
tens erfolgt die Kommunikation iiber den gemeinsamen Speicher (Geschwindig-
keit bestimmt durch Speicherzugriffszeiten). Somit bilden sich drei Hierarchie-
stufen.

Infiniband PC-Cluster SCI PC-Cluster
_ _feror]orua] Torui]
| I
\ |
- :
Ethernet T T
K, . " T T
(<100 MBit/s) | |
- =
F 1 T
[
4‘ ‘ —
7/ SCI
infiniband Kommunikation
Kommunikation (<4 GBit/s)
-cpu1 -cpuz
(<10 GBit/s)
shared memory
Kommunikation
(Speicherzugriffszeit)
Ethernet

Infiniband/SCI

"shared memory"

Abbildung 4.1: Beispiel: Abbildung einer Systemkonfiguration auf eine Hierar-
chie

Die Lastverteilungsstrategie macht sich diese Hierarchie zu Nutze, indem
Lastverteilung auf moglichst niedriger Hierarchieebene, und damit mit méglichst
niedrigen Kommunikationskosten, durchgefiihrt wird.

4.3.1 Hierarchie

Die Hierarchie von Subsystemen wird durch einen Baum dargestellt, dessen
Knoten jeweils ein System mit folgenden Eigenschaften représentieren:

4.3. NETZWERKABHANGIGE LASTVERTEILUNG 39

o die Wurzel représentiert das ganze System

e ein innerer Knoten représentiert ein Subsystem, bestehend aus allen PEs
des darunter liegenden Teilbaums

e die Blatter reprisentieren einzelne PEs

e fiir jedes Subsystem gilt, dass die Kommunikation zwischen den PEs in-
nerhalb eines Subsystems schneller ist als die Kommunikation zwischen
PEs iiber Subsystemgrenzen hinweg

Abbildung 4.1 zeigt ein statisches Netzwerk. Da sich wihrend der Laufzeit
die Kommunikationsgeschwindigkeiten &ndern kénnen und dieses Auswirkungen
auf die Struktur der Hierarchie hat, wird eine Hierarchieerkennung zur Laufzeit
durchgefiihrt.

4.3.2 Hierarchieerkennung und -aktualisierung

Das Ziel der Hierarchieerkennung ist, unterschiedliche Klassen von Kommuni-
kationsgeschwindigkeiten zu eruieren und diese auf eine hierarchische Struktur
abzubilden.

Die Subsysteme auf unterster Ebene sind dabei durch die niedrigsten Kom-
munikationszeiten gekennzeichnet. Hohere Ebenen stellen Kommunikationsge-
schwindigkeiten zwischen den einzelnen Subsystemen der darunter liegenden
Ebene dar. Somit reprisentiert jede Ebene der Hierarchie eine Klasse von Kom-
munikationsgeschwindigkeiten. Je hoher die Hierarchieebene, desto langsamer
die Kommunikationsverbindungen zwischen den PEs.

Ein definiertes Ziel der Lastverteilung ist, schnelle Verbindungen zu bevorzu-
gen. Um dieses zu gewiéhrleisten, kann die hierarchische Struktur dahingehend
genutzt werden, dass Lastverteilung innerhalb von Subsystemen auf moglichst
niedriger Ebene durchgefiihrt wird. Dieses setzt die Annahme voraus, dass sei-
tens der Anwendung nicht alle PEs am Lastverteilungsprozess beteiligt sein
miissen.

Ein Lastgleichgewicht des Systems kann oftmals hergestellt werden, wenn le-
diglich in einem Subsystem, anstatt auf dem kompletten System, Lastverteilung
durchgefiihrt wird. Aufgabe ist es also, einen Teilbaum auf niedrigster Hierar-
chiestufe zu finden, durch den ein allgemeines Lastgleichgewicht hergestellt wer-
den kann, indem seine zugehorigen PEs ihre Last untereinander umverteilen. In
dem Beispiel aus Abbildung 4.2 reicht es aus, wenn zwei PEs Last untereinander
austauschen, um ein Gesamtgleichgewicht zu erreichen.

Hierarchieerkennung

Die Basis bei der Erstellung der Hierarchiestruktur bilden die Kommunikations-
geschwindigkeiten zu anderen PEs. Dabei ist es unerheblich, wie die Struktur

40 KAPITEL 4. LASTVERTEILUNG IN GRID-UMGEBUNGEN

Ethernet

Infiniband/SCI

"shared memory"

Ungleichgewicht 00 00 0 O 00 0 0 06 06 00
tausche
Last aus

Abbildung 4.2: Wiederherstellung des Lastgleichgewichts

der Hardware aufgebaut ist. Es werden keine Annahmen iiber Konfigurationen
gemacht. Stattdessen basieren alle Entscheidungen auf Messungen, die wihrend
der Laufzeit stattfinden.

Die Erkennung der hierarchischen Struktur erfolgt verteilt. Jedes PE arbeitet
aus seiner lokalen Sicht heraus. Eine zentrale Instanz ist nicht vorhanden.

Zunéchst werden alle PEs, zu denen die schnellsten Kommunikationsverbin-
dungen bestehen, zu einem (Basis-) Subsystem zusammengefasst. Die néchste
Hierarchieebene wird aus PEs mit den zweithéchsten Geschwindigkeiten gebil-
det, usw. Die letzte Ebene umfasst alle PEs des Systems. In Bezug auf Last-
verteilung kann somit sichergestellt werden, dass stets ein Gleichgewicht erzielt
werden kann, da im schlechtesten Fall alle PEs beteiligt werden.

Fiir die Ermittlung der hierarchischen Struktur werden folgende Phasen
durchlaufen (siehe Abbildung 4.3):

1. Ermittlung potenzieller Subsystempartner: Berechnung einer Kandidaten-
liste

2. Ergebnisaustausch der PEs untereinander

3. Bestimmung der endgiiltigen Subsystempartner

Berechnung der Kandidatenliste

Die Klassenaufteilung erfolgt anhand einer aufsteigend sortierten Liste aller
Kommunikationszeiten. Fiir die unterste Ebene bildet jedes PE) eine Kandi-
datenliste fiir ein Subsystem K cmd,lC aus allen PEs PE;,0 < j, k < n mit Kom-
munikationszeiten ¢t(PEy, PE;) € RT, durch:

Sei

T = (t(PEy, PE;,),...,t(PEy, PE;, _,)),
wobei t(PEy, PE;,) < t(PEy, PE;,,)
V1<j<n-—1, i #i, falls ¢ #ri; #Ek,

4.3. NETZWERKABHANGIGE LASTVERTEILUNG 41
Berechnung der Berechnung der Berechnung der
Kandidatenlisten Kandidatenlisten Kandidatenlisten

Informationsaustausch
Bestimmung der Bestimmung der Bestimmung der
Subsysteme Subsysteme Subsysteme
Abbildung 4.3: Phasen der Strukturermittlung
(4.7)

Sei weiterhin DIFF TOLERANCFE ein fester, aber beliebiger Wert grofler
als 1. Sei D = DIFF TOLERANCE.

Dann ist eine Kandidatenliste K omd,lC definiert durch:

Kand}, = {PEL}U{PE;; [1<j <, (4.8)
_ t(PEy,PE; 11)
mit r=n, fals Spp s <D Vi<s<n—1

oder r=min{s|]l <s<n-1, % > D,i; #k}

Durch die Verhiltnisbildung zweier aufeinanderfolgender Kommunikations-
zeiten werden grofie Unterschiede zwischen diesen Zeiten aufgedeckt. Nur PEs,
deren Kommunikationszeiten um einen kleinen Faktor (= DIFF_.TOLERANCE)
abweichen, gehoren somit zu der Kandidatenliste.

Damit besteht eine Kandidatenliste fiir ein Subsystem aus PEs mit den
geringsten Kommunikationszeiten. Das Verhéltnis des PEs mit der hochsten
Kommunikationszeit innerhalb des Subsystems zu demjenigen mit der gering-
sten Kommunikationszeit ausserhalb des Subsystems ist grofler als der Wert von
DIFF_TOLERANCE. Dieser Wert kennzeichnet also einen Sprung in der sor-
tierten Liste der Kommunikationszeiten, und damit auch die néchste Ebene an
Kommunikationszeiten.

Fiir die Erkennung der hoheren Hierarchiestufen werden nicht die einzelnen
PEs, sondern die Subsysteme betrachtet. Dabei wird jedes Subsystem durch ein
beliebiges, aber festes PE représentiert. Nur diese PEs sind an der Subsystem-
bildung fiir die aktuelle Ebene beteiligt.

42 KAPITEL 4. LASTVERTEILUNG IN GRID-UMGEBUNGEN

Seien die Kommunikationszeiten t(Subj, Sub’) zwischen Subsystemen auf
Ebene [gegeben. Sei n; die Anzahl der Subsysteme auf Ebene I.
Sei

Tckom = (t(Subﬁc,Subﬁl), ...,t(Subﬁc, Subénlil)),
wobei t(Subk,Subﬁj) < t(Subl, PE!)

141

V1<j<mn—1, i;#i,, falls i #ri; #Fk,

Dann ist eine Kandidatenliste fiir ein Subsystem hoherer Ebene (I + 1)
Kand'! definiert durch:

Kand™ = {Subj} U{Subl, 1 <j <, (4.9)

t(Subj,,Subl_ ;)
t(Subl,Subl_ ;)

t(Subl, ,SubéS)

r=mny, falls
maut
oder r=min{s|l <s<mn; —1, > D,i; # k}
Da auf diese Weise in jedem Schritt der Subsystembildung mindestens zwei
Systeme zusammengefasst werden, terminiert dieses Verfahren.

Durch diese Methode werden Groéflenordnungen von Kommunikationszeiten
herausgestellt. Netzwerkverbindungen, die um ein Vielfaches schneller sind als
andere, werden von weniger leistungsstarken abgegrenzt. Diese Abgrenzung er-
folgt durch den Wert DIFF_TOLERANCE.

Ergebnisaustausch

Da die Berechnung verteilt erfolgt, bestimmen die PEs die Subsysteme aus ihrer
eigenen Sicht heraus. Es muss jedoch gewéhrleistet sein, dass die Hierarchie auf
jedem PE in gleicher Weise aufgebaut wird. Das liegt darin begriindet, dass
alle an Lastverteilung beteiligten PEs Lastverteilung zur gleichen Zeit initiieren
miissen. Dieses erfordert die Kenntnis {iber ihre Subsystemmitglieder.

Die Tatsache, dass die Bestimmung der Subsysteme nicht auf absoluten Ge-
schwindigkeiten, sondern auf deren Verhiltnisse zueinander basiert, und diese
abhéngig von der Grofle des ersten Elements in der Liste der Kommunikations-
zeiten sind, kann zu unterschiedlichen Listen fithren (sieche Abbildung 4.4).

4.3. NETZWERKABHANGIGE LASTVERTEILUNG 43

Beispiel 4.3.2.1:

0.2 sec

0.2 sec a

Abbildung 4.4: Gemessene Kommunikationszeiten in einem Beispielsystem

Die Listen der Kommunikationsgeschwindigkeiten sehen fiir Beispiel 4.3.2.1
wie folgt aus:

T (0,1 0,2)
T, (0,1 0,2)
T2 .. :(02 0,2)

Der erste Wert der Liste von PEy (= 0,2) ist wesentlich hoher als der der
anderen PEs. Er entspricht vielmehr ihren zweiten Werten. Dieses zeigt, dass
PE5 auf unterster Ebene keine Subsystempartner hat. Da die globale Sicht fiir
die einzelnen PEs nicht existiert, d. h. PFEs verfiigt iiber keine Informationen
iiber die Werte der anderen PEs, miissen aus den lokalen Informationen die
Subsysteme entsprechend ihres Kommunikationsverhaltens gebildet werden.

Die obigen Listen fithren bei DIFF TOLERANCE < 2 zu folgenden Kan-
didatenlisten:

Kand): {PE,, PE,}
Kand%: {PEo,PEl}
Kand%: {PEo,PEl,PE2}

Hierbei ist die eigene PE-Nummer immer Bestandteil der Liste.

Um in solchen Fillen zu einem einheitlichen Ergebnis zu gelangen, wird eine
Berechnung der Subsystemzusammenstellungen durchgefiihrt.

Hierfiir miissen jedem PE alle Kandidatenlisten vorliegen. Dieses erfordert
einen Datenaustausch der PEs untereinander und damit eine kollektive Ope-
ration. Dieser Abgleich der Ergebnisse ist zwingend erforderlich, um identische
Resultate aller PEs zu gewéhrleisten und damit eine Voraussetzung fiir eine
spitere Lastverteilung zu schaffen.

44 KAPITEL 4. LASTVERTEILUNG IN GRID-UMGEBUNGEN

Bestimmung der Subsystempartner

Nach dem Austausch der Listen erfolgt die Berechnung wiederum verteilt.

Dabei werden zunichst alle eindeutig erkannten Subsysteme als solche in
die Hierarchie aufgenommen. Dies bedeutet, dass alle in der Kandidatenliste
auftretenden PEs iiber die gleichen Listen verfiigen (in Beispiel 4.3.2.1 die Liste
von PEy und PE}).

Werden auf diese Art und Weise nicht alle PEs erfasst, so werden die Sub-
systeme auf Basis von Schnittmengenbildung der Ergebnislisten bestimmt.

Die am h#ufigsten auftretenden Schnittmengen bilden die neuen Subsyste-
me. Kann ein Element nicht zugeordnet werden, dann bildet es ein Subsystem
mit nur einem Element (isolierter Knoten). In Beispiel 4.3.2.1 bildet PE5 auf
unterster Ebene ein Subsystem mit nur einem Knoten.

Durch das Prinzip der Schnittmengenbildung von Kandidatenlisten werden
nur PEs zusammengefasst, zwischen denen die fiir die aktuelle Ebene schnellsten
Verbindungen bestehen.

Das Vorgehen zeigt das folgende Beispiel:

Beispiel 4.3.2.2:
Aufgrund der Kommunikationszeiten wurden folgende Kandidatenlisten er-
mittelt:

Kand): {PEy, PE,, PE3}
Kcmd%: {PE‘l7 PE‘Q7 PE3}
Kcmd%: {PEo, PEl, PEQ, PE3}
Kandé: {PE(), PEl, PEQ, PEg}

Die Verbindung zwischen PFEy und PFE; ist um Faktoren langsamer als die
zu den anderen Knoten. Daher tauchen diese Elemente nicht gegenseitig in ihren
Listen auf. Bildet man die Schnittmenge {iber alle Kandidatenlisten, so ist

Kand} N Kand} N Kandy N Kand = {PFE,, PE3}.

PE5 und PE3 haben die schnellsten Verbindungen zueinander und kénnen
zu einem Subsystem kombiniert werden. Dieses ist jedoch sehr klein. Fiir die
Lastverteilung ist es vorteilhafter, die Gréfle eines Subsystems zu maximieren,
da dann mehr PEs bei einer potenziellen Lastumverteilung zur Verfiigung ste-
hen. So kann die obige Liste durch die Elemente PEj oder PE; erweitert werden,
ohne dass die Regel zur Subsystembildung verletzt wird. Um dieses zu erreichen,
werden Schnittmengen zwischen jeweils zwei Kandidatenlisten gebildet. Die am
hiufigsten auftretenden Schnittmengen bilden dann neue Subsysteme.

4.3. NETZWERKABHANGIGE LASTVERTEILUNG 45

Zu Beispiel 4.3.2.2:

Schnittmenge | Kand}, Kand} Kand} Kand}
Kand}| ~ {PE.,PE3} {PEo, PEs, PEs} {PEy, PEs, PEs}
Kand}| - - {PE,,PEs,PE3s} {PE,,PE>, PE3}
Kand}| - - - {PEy, PE:\, PEy, PEs3}

Da die Operation kommutativ ist, muss nur die obere Halfte der Tabelle
angegeben werden.

Die am hiufigsten auftretenden Schnittmengen sind {PFEy, PEy, PEs} und
{PE1, PEy, PE3} (je zwei Mal). Wird die erste Menge gewiihlt, so entsteht ein
Subsystem aus den PEs PEy, PE5 und PE3. PE; bleibt isoliert und bildet sein
eigenes Subsystem (siehe Abbildung 4.5).

T

PEg PE2 PEj PE

Abbildung 4.5: Ergebnishierarchie zu Beispiel 4.3.2.2

Subsystembildung auf héherer Ebene

Auf unterster Ebene sind alle PEs am Prozess der Subsystembildung beteiligt.
Auf hoheren Ebenen iibernimmt ein beliebiges, aber festes PE jedes Subsystems
die Funktion eines Masterknotens. Beim Erkennungsprozess der Hierarchie auf
nicht unterster Ebene werden nur zwischen diesen Masterknoten Entscheidungen
iiber neue Subsystembildungen getroffen. Nur die Masterknoten gehoéren zur
Struktur der néchst hoheren Ebene. Jedes PE hat somit nur Informationen
iiber jene Subsysteme, zu denen es zugehorig ist.

Wird das Beispiel 4.3.2.2 um weitere Subsysteme auf unterster Ebene erwei-
tert, so konnte es folgendermaflen aussehen:

Beispiel 4.3.2.3:

B AN
PEg PE> PE3 PEq PE, PEs PEg PE; PEg

Abbildung 4.6: Erweiterung des Beispiels 4.3.2.2

46 KAPITEL 4. LASTVERTEILUNG IN GRID-UMGEBUNGEN

Alle PEs kennen die Mitglieder ihrer Subsysteme. Die PEs PEy, PE,, PE,
und PFE; sind Masterknoten (hier gekennzeichnet durch ,,* “) und sind an der
Bildung der néchsten Hierarchieebene beteiligt. Diese erfolgt wie bereits fiir die
unterste Ebene beschrieben nach Bildungsvorschrift 4.9.

Angenommen, die Masterknoten PE} und PE} sowie PE} und PE? bilde-
ten jeweils Subsysteme auf der néchsten Ebene (Ebene zwei), dann verfiigen nur
diese PEs iiber Informationen iiber diese neuen Subsysteme. Ihre Subsystem-
partner auf Ebene eins haben keinerlei Informationen dariiber.

Dieses hat zum einen den Vorteil, dass die nicht beteiligten PEs (PE,, PEs,
PEs, PEg, PEg), andere Aufgaben losen kénnen (z. B. Rechnungen im Rah-
men der Anwendung), und zum anderen, dass sich die Anzahl an notwendigen
Kommunikationen von Ebene zu Ebene verringert.

Die Hierarchie sieht nun folgendermaflen aus:

Ebene 3

Ebene 2

1 1
PE, PE;
Ebene 1

PEg PEo> PEz PEq PE4 PEs PEg PE7 PEg

Abbildung 4.7: Erweiterung des Beispiels 4.3.2.2

4.3. NETZWERKABHANGIGE LASTVERTEILUNG 47

Hierarchieaktualisierung

Wihrend der Laufzeit konnen sich Kommunikationsgeschwindigkeiten stark ver-
dndern. Die bestehende hierarchische Struktur reprisentiert dann nicht mehr die
aktuelle Netzwerksituation. Sie muss daher an die aktuell vorhandenen Messwer-
te angepasst werden. Damit reagiert das System auf sich veréindernde Netzwerk-
strukturen bzw. -qualitéiten.

Es gibt mehrere Félle, bei denen die hierarchische Struktur aufgrund von
verdnderten Kommunikationsgeschwindigkeiten angepasst werden muss:

1. Subsysteme miissen zu einem Subsystem zusammengefasst werden (sie-
he Abbildung 4.8), da die gemessenen Geschwindigkeiten zwischen zwei
oder mehreren Subsystemen jenen innerhalb der Subsysteme dhneln (z. B.
durch Ausfall oder Umschalten von Netzwerken).

PEg PEo> PEq PE3 PE4 PEs PEg PE7

Abbildung 4.8: Zusammenfassen zweier Subsysteme

48 KAPITEL 4. LASTVERTEILUNG IN GRID-UMGEBUNGEN

2. Ein oder mehrere PEs bzw. Subsysteme miissen zu anderen Subsystemen
wandern (siehe Abbildung 4.9), da sich die Kommunikationsgeschwindig-
keiten zwischen einzelnen PEs oder aber Subsystemen veridndert haben

(z.B. durch Netzwerkstérungen).

PEg PE2 PEq PE3 PE4 PEs PEg PEy
V\/

PEyg PEs PEq PE3 PE4 PEs PEg PE7y

Abbildung 4.9: Wechsel zu einem anderen Subsystem

4.3. NETZWERKABHANGIGE LASTVERTEILUNG 49

3. PEs oder Subsysteme werden zu isolierten Knoten (siehe Abbildung 4.10).

PEg PEs PEq PEg3 PE4 PEs PEg: PEy

PEg PEs PEq PEg3 PE4 PEs PEg PEy

Abbildung 4.10: Bildung eines isolierten Knotens

Diese Situationen haben folgende Auswirkungen auf die Struktur der Hierarchie:

Fall 1: Miissen Subsysteme zusammengefasst werden, so sind die betroffenen
PEs bzw. Subsysteme beteiligt. Die Hierarchiestruktur muss nur auf der
betroffenen Ebene verindert werden. Um diese Anderungen jedoch aufzu-
decken, muss jede Ebene iiberpriift werden. Dafiir ist es stets notwendig:

1. eine Kandidatenliste fiir die aktuelle Ebene zu bestimmen

2. diese mit der Kandidatenliste aus der letzten Aktualisierung zu ver-
gleichen

Dieses entspricht einem deutlichen Mehraufwand zu dem des Hierarchie-
aufbaus, da hier zur Bestimmung der Kandidatenliste noch der Vergleich
hinzukommt.

Fall 2: Miissen Subsysteme bzw. PEs verschoben werden, so hat dieses nicht
nur Auswirkungen auf die betroffenen Subsysteme selber, sondern mogli-
cherweise auch auf die komplette hierarchische Struktur (sieche Abbildung
4.11).

Fall 3: Wird ein Knoten isoliert, so kann sich seine eigene Subsystemstruktur,
die des vorherigen Masters und die des Masters auf hoherer Ebene éndern.
Bei starken Verdnderungen der Kommunikationszeiten, kénnen sich die-
se Modifikationen durch den ganzen Baum ziehen. So kann der isolierte
Knoten z. B. auch direkter Nachfolger der Wurzel werden.

50 KAPITEL 4. LASTVERTEILUNG IN GRID-UMGEBUNGEN

3
PE,

6

/

PEg PEo PEq PEg PE4 PEs PEg PEy

Abbildung 4.11: Strukturdnderung durch Verschiebung eines Elements

In allen diesen Fillen ist es moglich, dass die Struktur auf jeder Ebene
gedndert bzw. tiberpriift werden muss. Da dieses einen grofleren Aufwand ge-
geniiber dem eines Neuaufbaus darstellt, wird statt einer Aktualisierung ein
Neuaufbau der Hierarchie durchgefiihrt.

Die hierarchische Struktur kann nun dazu benutzt werden, bei einem beste-
henden Ungleichgewicht geeignete Lastverteilungspartner zu finden.

4.3.3 Lokalisierung geeigneter Lastverteilungspartner

Ist ein Ungleichgewicht entdeckt worden, dann erfolgt die Suche nach den Last-
verteilungspartnern, wobei deren Verbindungen zueinander moglichst schnell
sein sollen. Das Ziel ist, ein Subsystem niedrigster Hierarchiestufe zu lokalisie-
ren, durch dessen Re-Balancierung ein Lastgleichgewicht des Gesamtsystems
erzielt werden kann. Das ist dann der Fall, wenn die Gesamtlast dieses Subsys-
tems seiner optimalen Last entspricht, dieses aber nicht fiir seine Teilsysteme
gilt.

Die optimale Last eines Subsystems Subé- (optimale Lastg,,;) wird durch
Aufsummieren der einzelnen optimalen Lastwerte optimale Last Subl~! der zu-
gehorigen Subsysteme, bzw. auf unterster Ebene PEs, bestimmt, d. h.

4.3. NETZWERKABHANGIGE LASTVERTEILUNG 51

optimale La"StSubé. = Z optimale Lastsubzfl (4.10)
Subl ™t €Sub,

Wird ein Lastungleichgewicht lokal auf einem PE PE; festgestellt (siehe
Gleichung 4.6), so schickt PE; eine Anfrage an seinen Masterknoten PE;. Dieser
iiberpriift darauthin das Gleichgewicht seines Subsystems Subjl.

e Besteht kein Ungleichgewicht, so ist der gesuchte Teilbaum gefunden. In-
nerhalb dieses Teilbaums wird nun das Ungleichgewicht jedes Subsystems
iiberpriift. Alle PEs, die zu einem unbalancierten Subsystem gehoren, bil-
den die Lastverteilungspartner fiir den aktuellen Zyklus.

e Besteht jedoch ein Ungleichgewicht in dem Subsystem Subé, so schickt
PE; eine Anfrage an seinen Masterknoten auf hoherer Ebene (I 4 1).

Dieses Prozedere wird solange durchgefiihrt, bis ein balanciertes Subsys-
tem gefunden wurde. Spétestens bei der Wurzel, die alle PEs des Systems
repréasentiert, wird ein Gleichgewicht gefunden, da das Gesamtsystem stets
in sich balanciert ist. Die aktuelle Last des Gesamtsystems entspricht im-
mer seiner optimalen Last und damit ist:

aktuelle Lastgesamt

Ungleichgewichty yrzer = |1 |=1-1] =0 (4.11)

~ optimale Lastgesamt

Abbildung 4.12 zeigt ein Beispiel zur Ortung von fiir Lastverteilung geeig-
neten Subsystemen. PEj entdeckt ein Lastungleichgewicht von 0,3 und schickt
eine Anfrage an seinen Masterknoten. In diesem Falle ist PFy selbst Représen-
tant auf néchst hoherer Ebene (gekennzeichnet durch PE}). PE} iiberpriift das
Gleichgewicht seines Subsystems auf Ebene eins und stellt fest, dass ein Un-
gleichgewicht von 0,1 besteht. Es schickt ebenfalls eine Anfrage an den Master-
knoten der niichst htheren Ebene (PE?). Dieser stellt fest, dass sein Subsystem
balanciert ist, d. h. die Gesamtlast seines Subsystems ist gleich seiner optimalen
Last.

PFE5 entdeckt ebenfalls ein Ungleichgewicht (0,3) und stellt eine Anfrage an
PE}, das diese weiterreicht. Auf Ebene zwei wird festgestellt, dass innerhalb
dieses Subsystems Lastverteilung erfolgen muss. Die unbalancierten Teilbdume
mit den PEs PEy, PEs, PE>;, PE, und PE3 kénnen durch Austausch ihrer
Last ein Gleichgewicht erzielen.

PE7 und PEjg bilden eine zweite Lastverteilungspartition, die von der ersten
jedoch génzlich unabhéngig ist.

52 KAPITEL 4. LASTVERTEILUNG IN GRID-UMGEBUNGEN

balanciert?

200

balanciert?

PE;|| ¥ ja

AN

uGgw uGgw
uGcw

o =6 I

f';‘s‘:e"e (130] [100] [100] [100] [70] [100] [100] 80 120

UGW=Ungleichgewicht

Abbildung 4.12: Lokalisierung von Lastverteilungspartnern

4.4 Leistungsmessungen

Als Basis fiir das Erkennen der Hierarchie zum einen und fiir die Bestimmung
der Lastmenge je PE zum anderen, dienen Kommunikations- bzw. Berechnungs-
geschwindigkeit. Diese werden aus Messwerten berechnet, die zur Laufzeit er-
mittelt wurden. Dadurch wird Aktualitit gewéhrleistet.

Die Leistungsmessungen begriinden sich auf die in Kapitel 3.2 beschriebenen
Grundsitze Skalierbarkeit, Effizienz und Verfiighbarkeit auf Anwenderebene.

Skalierbarkeit wird ermdoglicht, indem das Monitoring vollsténdig verteilt er-
folgt. Jedes PE fiihrt das eigene Monitoring durch. Die Daten werden lokal
gesammelt. Werte, die auf diesen Messergebnissen basieren, werden lokal
berechnet.

Verfiigbarkeit ist dadurch gegeben, dass innerhalb der Anwendung Leistungs-
messungen durchgefithrt werden. Auf Informationen des Betriebssystems
wird nicht zugegriffen. Die Daten, die die Anwendung ermittelt, kénnen
auch von dieser genutzt werden.

Effizienz bedeutet, dass hinreichende Informationen mit méglichst wenig Over-
head erzeugt werden.
Hinreichende Informationen bedeuten fiir den Netzwerkbereich ein Er-
mitteln von Gréflenordnungen von Kommunikationsgeschwindigkeiten im
Hinblick auf die Anwendung. Die Messwerte dienen der Bildung der Sub-
systeme, werden also lediglich fiir die Aufteilung in unterschiedliche Ge-

4.4. LEISTUNGSMESSUNGEN 33

schwindigkeitsklassen benotigt. Dieses erfolgt durch die Messung von Nach-
richten an Synchronisationspunkten der Anwendung.

Fiir die Leistungsfihigkeit der Recheneinheiten miissen Berechnungsge-
schwindigkeiten der Lasteinheiten bestimmt werden. Messen von Rechen-
phasen der Anwendung liefert die notwendigen Informationen.

Die Feststellung von Berechnungs- und Kommunikationsgeschwindigkeit er-
folgt unabhingig voneinander und wird im Folgenden detailliert beschrieben.

4.4.1 Ermittlung der Berechnungsgeschwindigkeit

Die Leistungsfiahigkeit einer Recheneinheit wird im Hinblick auf die Anwendung
bestimmt. Diese dient dazu, die Last entsprechend dieser Leistungsfahigkeit
auf die einzelnen PEs zu verteilen. Was benotigt wird, ist daher ein Maf fiir
die Leistungsféhigkeit, auf dessen Grundlagen entschieden werden kann, wieviel
Last innerhalb welcher Zeit bewéltigt werden kann.

Da Lastverteilung in gitterbasierten Anwendungen die Menge der Zellen ver-
teilt, bedarf es einer Aufwandsbestimmung je Zelle. In diesem Verfahren wird
daher bestimmt, wie lange ein PE fiir die Berechnung einer Zelle benétigt. Diese
Rechengeschwindigkeit zeigt nicht nur die Kapazitdten der CPU, sondern be-
zieht auch Faktoren wie Speicherauslastung mit ein. So erhoht sich z. B. die
Laufzeit einer Anwendung, wenn der Hauptspeicher dermafien belegt ist, dass
in den Swap-Bereich ausgelagert werden muss.

Um die Rechengeschwindigkeit je Zelle zu bestimmen, wird zunéchst die Be-
rechnung mehrerer Zellen gemessen und anschliefend diese Gesamtzeit durch die
Anzahl der Zellen geteilt. Dieses Vorgehen erfiillt die fiinfte Forderung Gropps,
sehr kurze Zeitereignisse zu beriicksichtigen. Der Aufwand fiir die Berechnung
einer Zelle liegt im Millisekundenbereich, zu kurz, um aussagekréftige Messun-
gen zu erhalten. Weiterhin wird der Ansatz damit der Forderung nach Effizienz
gerecht. Anstatt vieler kurzer Zeiten werden wenige lange erfasst. Der Overhead
wird dadurch minimal gehalten.

Ein wichtiger Aspekt ist die Aktualitéit der Messwerte, um auf Anderungen
der fiir die Anwendung vorhandenen Leistungskapazitéit reagieren zu kénnen.
Dieses betrifft die Nutzung der Ressource durch andere Prozesse. Um jedoch
abzufangen, dass kurzzeitige Auslastungsspitzen das Bild verféilschen, werden
Messwerte iiber einen bestimmten Zeitraum gemittelt. Dadurch wird erreicht,
dass die zu erwartende Leistungsfihigkeit, die fiir die Lastverteilung ausschlag-
gebend ist, erfasst wird.

4.4.2 FErmittlung der Kommunikationsgeschwindigkeit

Das Ausnutzen von Synchronisationspunkten der Anwendung bildet eine wich-
tige Basis fiir das Monitoring. Somit wird das Laufzeitverhalten der Anwendung
nicht beeinflusst.

54 KAPITEL 4. LASTVERTEILUNG IN GRID-UMGEBUNGEN

Synchronisationspunkte sind durch das Ablaufschema von FEM-Anwendun-
gen vorgegeben. Wie in Abschnitt 2.3 beschrieben, folgen Rechenphasen jeweils
Phasen des Datenaustausches und damit auch Kommunikation. Diese Kommu-
nikation betrifft zum einen den Datenaustausch von benachbarten PEs, um Er-
gebnisse der Randzellen auszutauschen. Zum anderen werden diese Phasen auch
fiir Lastverteilung genutzt. Viele FEM-Anwendungen benétigen auch den Aus-
tausch globaler Informationen. Dieses bedingt Kommunikation, an denen alle
PEs beteiligt sind (kollektive Kommunikation). Diese kollektiven Kommunika-
tionen stellen Synchronisationspunkte dar und werden genutzt, um Leistungs-
messungen des Netzwerks durchzufiihren.

Durch den Mangel einer globalen Uhr in einer verteilten Umgebung, wurde
die Methode der Ping-Pong-Messungen gewéhlt. Hierbei wird die Laufzeit einer
Nachricht gemessen, die von einem Sender zum Empfinger und wieder zuriick
geschickt wird (siehe Abbildung 4.13). Um die Nachrichtenlaufzeit (= T3 — Tp)
zu messen, ist es in diesem Verfahren erforderlich, dass der Empfanger emp-
fangsbereit ist und die Nachricht direkt weiterschicken kann, d. h. T — T1 < €.

Zeit PE, PE, Zeit

T

o Senden %
T, Empfangen

3

Empfangen T,

Senden T2

Abbildung 4.13: Ping-Pong-Schema

Um zu gewahrleisten, dass die Empfangsbereitschaft gegeben ist, wird zu
Beginn der Anwendungslaufzeit ein Kommunikationsplan berechnet, der die
Reihenfolge der einzelnen Messungen wie auch die Kommunikationspartner be-
stimmt.

Anhand dieses Kommunikationsplans, der auf jedem PE berechnet wird, er-
kennt jedes PE, wann es mit welchem Partner kommunizieren muss.

Soll eine Messung zwischen den Kommunikationspartnern PE; und PE);
stattfinden, so wird der erste Ping-Pong-Lauf nicht gemessen. Damit wird Gropp-
Forderung Nummer eins, die erste Messung nicht zu beriicksichtigen, erfiillt.
Danach werden fiir eine Messung mehrere Nachrichtenldufe durchgefiihrt.

Wird eine Kommunikationsverbindung von PE; zu PE; gemessen, so ini-
tiiert nur einer der beiden PEs die Messung. Es wird also entweder PE; —

4.5. INTEGRATION IN DEN LASTVERTEILUNGSZYKLUS 55

PE; — PE; gemessen oder aber PE; — PE; — PE;. Das nicht-messende PE
erhilt den Messwert dann vom Initiator. Diese Methode geht davon aus, dass die
Kommunikation symmetrisch ist, eine Grundvoraussetzung fiir die Subsystem-
bildung.

Weiterhin werden die Kosten, und damit der Overhead fiir die Lastverteilung,
minimiert, indem nur die Hélfte der Kommunikationsverbindungen gemessen
wird.

Die Nachrichtengrofie richtet sich zum einen nach der Anwendung, zum an-
deren soll sie so klein wie moglich sein, um einen hohen Zusatzaufwand zu ver-
meiden. Dieses trifft auch fiir die Haufigkeit der Messungen zu. Eine Evaluierung
der optimalen Nachrichtengréfle und der geeigneten Abstéinde der Messungen
findet sich in Abschnitt 6.4.3.

Der Kommunikationsplan

Die Ping-Pong-Messungen werden von allen Prozessen gleichzeitig aufgerufen.
Ziel ist es, alle Kommunikationswege , abzutasten“. Dabei muss die Laufzeit
so minimal wie moglich sein, um den Overhead fiir die Lastverteilung zu mi-
nimieren. Um alle Kommunikationsvarianten (d. h. welches PE kommuniziert
mit welchem anderen PE) abzudecken und Kollisionen zu vermeiden, wird ein
Kommunikationsplan berechnet. Anhand dieses Plans fiihrt jedes PE zu einer
entsprechenden Zeit ein Senden bzw. Empfangen von Nachrichten zu bzw.von
einem definierten anderen PE aus.

Durch diesen Plan wird gewéhrleistet, dass das empfangende PE empfangs-
bereit ist und die Nachricht direkt zuriickschicken kann. Die Ergebnisse der
Messungen werden allerdings von der darunter liegenden Technologie beein-
flusst. Bei verschalteten Netzwerken, wie z. B. Infiniband, behindern sich die
Nachrichten nicht. Die Ergebnisse zeigen die Ubertragungsgeschwindigkeit zwi-
schen den beiden betreffenden PEs, unabhéngig vom iibrigen Netzwerkverkehr.
In Torus-Topologien hingegen, wie sie z. B. in SCI-Netzwerken zu finden sind,
sind die Nachrichtenlaufzeiten stark abhéngig von der Gesamtauslastung des ak-
tuellen Rings. Bei den hier gemessenen Kommunikationsgeschwindigkeiten flief3t
auch die Auslastung des Gesamtnetzes mit ein. Dieses Phénomen ist beabsich-
tigt, da an den Synchronisationspunkten alle PEs Informationen austauschen
und damit auch die Gesamtnetzwerklast beeinflussen.

Die Berechnungsgeschwindigkeit, die der Bearbeitungszeit je Zelle entspricht,
und die Kommunikationsgeschwindigkeit, die Nachrichtenlaufzeiten zwischen
PEs angibt, bilden die Basis fiir die Umsetzung des Konzepts.

4.5 Integration in den Lastverteilungszyklus

In den vorangegangenen Abschnitten wurden die einzelnen Konzepte der ka-
pazitdten- und netzwerkabhéngigen Lastverteilung vorgestellt. Wie diese Me-

56 KAPITEL 4. LASTVERTEILUNG IN GRID-UMGEBUNGEN

thoden in den Lastverteilungszyklus integriert werden konnen, ist Thema des
folgenden.

Lastverteilung gliedert sich, wie in Kapitel 2.2 beschrieben, in mehrere Schritte:
1. Entscheidungsphase:

(a) Wann wird Lastverteilung durchgefiihrt?
Diese Entscheidung obliegt der Endanwendung. Nur diese verfiigt
itber Informationen, wann sich die Lastmenge dndert. In Abhéngig-
keit von der Hohe des Ungleichgewichts kann diese sich fiir bzw. gegen
eine Umverteilung der Last entscheiden.
Wird Lastverteilung durchgefiihrt, so werden folgende Fragestellun-
gen von einem bestehenden Lastverteilungswerkzeug (z. B. Jostle,
ParMETIS) oder aber von einer anwendungseigenen Lastverteilungs-
methode bearbeitet:

(b) Wieviel Last muss migriert werden?
(¢) Welche Last muss migriert werden?

(d) Wohin/Woher muss Last migriert werden?

2. Durchfiihrungsphase: Datenmigration
Hier erfolgt die Verschiebung der Last durch die Anwendung.

Durch die neu entwickelte Strategie erweitert sich dieser Lastverteilungszyklus
wie folgt:

1. Entscheidungsphase:

(a) Wann wird Lastverteilung durchgefiihrt?
Wird Lastverteilung von der Anwendung initiiert, so wird diese Ent-
scheidung weitergereicht und Folgendes bearbeitet:

i. Entscheidung iiber die prinzipielle Durchfiihrung von Lastvertei-
lung in Abhéngigkeit vom Ungleichgewicht
Wird Lastverteilung durchgefiihrt, dann:
ii. Aktualisierung der Hierarchie und der Lastwerte
iii. Lokalisierung der Lastverteilungspartner
iv. Aufbereitung der Eingabedaten fiir das Lastverteilungswerkzeug

Aufruf des Anwendungslastverteilers:
In dieser Phase wird der Anwendungslastverteiler (ALB) (z. B. Jost-
le) mit dem zuvor bestimmten Subsystem aufgerufen. Dabei wird dem
ALB angegeben, wieviel Last jeder PE erhalten soll (abhéngig von
seiner Berechnungsgeschwindigkeit). Der ALB hat dann die Aufgabe,
zu berechnen:

(b) Welche Last muss migriert werden?

4.5. INTEGRATION IN DEN LASTVERTEILUNGSZYKLUS 57

(¢) Wohin/Woher muss Last migriert werden?

2. Durchfiihrungsphase: Datenmigration

Die Kontrolle wird nun wieder der Anwendung iibergeben. Diese fiihrt die
Verschiebung der Last, basierend auf den Ergebnissen des Lastverteilers,
und die Einbindung dieser auf dem Zielprozessor durch.

- - - - > Anwendung

_ ? \
Wann Umgebung

Monitoring

1
|
|
~ > J
|
|
|
|

zu migrierende
Last

—'Lastverteilungssteuerung

,,,,,,,,,,,,,,
|
|

I

|

| |
| |
| = v |
| Lastverteilung |« _ |qualer Graph |
: — Wieviel v
: - Welche <q-------- | PartitionsgroBe
I — Wohin/Woher

|

|

Abbildung 4.14: Platzierung des neuen Moduls

Abbildung 4.14 zeigt die Platzierung der Lastverteilungssteuerung. Die er-
forderliche Partitionsgrofie soll nun durch die Steuerung bestimmt werden.

Die Umsetzung dieser Konzepte zusammen mit deren Integration in eine
Anwendung ist Thema des néchsten Abschnitts.

58

KAPITEL 4. LASTVERTEILUNG IN GRID-UMGEBUNGEN

Kapitel 5

Meta Load Balancer mLB

Die Konzepte aus dem letzten Kapitel wurden in dem Werkzeug Meta Load
Balancer mLB umgesetzt. Die Entwicklungsziele sowie deren Umsetzung sind
Thema dieses Kapitels.

5.1 Entwicklungsziele

Bedingt durch die Anforderungen der Anwendung zusammen mit den Gege-
benheiten der Umgebung, mussten grundlegende Design-Richtlinien eingehalten
werden. Diese ergaben sich aus folgenden Entwicklungszielen:

Skalierbarkeit: Die Effizienz einer parallelen Anwendung ist immer abhingig
von ihrer Skalierbarkeit. Skalierbarkeit in einer Umgebung wie das Grid, in
die Tausende an Ressourcen integriert sein konnen, kann nur eine verteilte
Software ermdoglichen.

Portabilitit: Das Grid zeichnet sich nicht nur durch eine heterogene Rechenum-
gebung aus. Auch ist die zur Verfiigung stehende Software nicht inner-
halb jeden Zentrums gleich. Daher wurde nur Software eingesetzt, deren
Verfiigbarkeit sichergestellt ist.

Minimale Eingriffe in die Anwendung: Es darf nicht notwendig werden,
bestehende Anwendungen in grofem Umfang abéindern zu miissen, um
mLB einsetzen zu konnen. Ein einfaches Benutzen (,easy to use“) von
Software erhoht die Akzeptanz seitens der Anwender und damit auch ihren
Einsatz.

(Gridfdhigkeit): Hier geht es um softwaretechnische Moglichkeiten, die An-

wendung in der Grid-Umgebung laufen zu lassen. Dieser Aspekt wird zwar
beriicksichtigt, ist aber nicht Aufgabe von mLB.

99

60 KAPITEL 5. META LOAD BALANCER MLB

5.2 Architektur/Design

Die angestrebten Entwicklungsziele bestimmen das Design von mLB.

Skalierbarkeit wurde durch eine verteilte Architektur ermdoglicht (siehe Ab-
bildung 5.1). mLB lduft auf jedem Knoten der Anwendung. Entscheidungen wer-
den verteilt getroffen. Lediglich wenige Informationsaustausche sind notwendig.

Recheneinheit

e e @°

Recheneinheit

Recheneinheit

Abbildung 5.1: Verteilte Architektur von mLB

Portabilitit: Ein heutiger Kommunikationsstandard bietet MPI (Messa-
ge Passing Interface). Leistungsangaben von Netzwerktechnologien, wie z. B.
Latenz, werden meist fiir die Kommunikation mit MPI angegeben (siehe auch
Tabelle 2.1). Dieses ist ein Kennzeichen fiir seine starke Verbreitung.

MPI wurde entwickelt als ein Standard fiir Message-Passing-Funktionen, das
ein Konsortium von Entwicklern und Hardware-Herstellern erstellte. Es beinhal-
tet die Definition von Kommunikationsroutinen. Die Spezifikation der Schnitt-
stellen ermdoglicht zum einen die Portierbarkeit von Anwenderprogrammen. Zum
anderen konnen Hersteller und Entwickler eine effiziente, architekturspezifische
Implementierung von Kommunikationsroutinen bereitstellen.

5.2. ARCHITEKTUR/DESIGN 61

Die Kommunikation von MPI ist nur iber Kommunikatoren moglich. Einem
Kommunikator liegt eine Gruppe von Prozessen zugrunde. Bei Programmstart
existiert eine einzige Gruppe, die alle Prozesse umfasst. Wéhrend der Laufzeit
kann die Anwendung Prozessgruppen bzw. neue Kommunikatoren bilden. Damit
ist es moglich, die Menge der Prozesse in Teilmengen zu zerlegen.

MPI bietet Routinen fiir Punkt-zu-Punkt-Kommunikation und kollektive
Kommunikation, bei der alle Prozesse eines angegebenen Kommunikators be-
teiligt sind.

Eine Implementierung von MPI ist fiir jede Architektur verfiighar. Gréften-
teils gibt es fiir die jeweilige Netzwerktechnologie optimierte Versionen. MPI-
Pakete gehoren mittlerweile auch optional zu vielen Standard-Linux-Distributio-
nen. Durch die freie Verfiigharkeit von MPICH, einer Implementierung des Ar-
gonne National Laboratory, besteht auch die Moglichkeit, diese Software selbst
zu iibersetzen.

MPICH verfiigt iiber Schnittstellen fiir drei Programmiersprachen: C, C++
und Fortran. Fiir die Implementierung von mLB wurde die Sprache C gewéhlt.
Fortran77 wurde nicht in Betracht gezogen, da es keine dynamische Speicher-
verwaltung unterstiitzt (siche Abschnitt 6.5.1). Anwendungen, die in C++ ge-
schrieben sind, konnen problemlos die C-Schnittstelle verwenden.

Minimale Eingriffe in die Anwendung: mLB nutzt das MPI-Profiling-
Interface fiir die netzwerkabhiingige Lastverteilung (siche Abbildung 5.2). Mit
Hilfe dieses Interfaces ist es bei Aufruf einer MPI-Routine seitens der Anwen-
dung moglich, statt der entsprechenden MPI-Routine eine andere Funktion auf-
zurufen. Diese Moglichkeit wird von mLB genutzt, um Netzwerk-Monitoring
anzustoflen.

Recheneinheit

Abbildung 5.2: mLB mit MPI-Profiling Interface

62 KAPITEL 5. META LOAD BALANCER MLB

Gridfdhigkeit wurde durch den Einsatz von PACX-MPI [pac| realisiert.
PACX-MPI ist eine Grid-Computing-Erweiterung von MPI. Es stellt die Kom-
munikation zwischen unterschiedlichen MPI-Implementierungen zur Verfiigung.
Damit konnen auf den einzelnen Systemen die optimierten MPI-Versionen ge-
nutzt werden, untereinander kommunizieren diese dann iiber PACX-MPI. Die
Vorgehensweise von PACX-MPI zeigt Abbildung 5.3.

MPI-System A MPI-System B
Prozess 1...i Démon Damon Prozess i+1...n
Anwendung : : : : Anwendung
‘ Pacx Pacx Pacx Pacx
MPI MPI MPI MPI
TCP TCP
Hardware Hardware

Abbildung 5.3: Kommunikationsprinzip von Anwendungen unter PACX-MPI
(entnommen aus [pac])

5.2. ARCHITEKTUR/DESIGN 63

5.2.1 Interne Architektur von mLB

mLB besteht aus zwei Monitoring-Komponenten und dem LBS-Modul (siehe
Abbildung 5.4):

1. Kommunikationsmonitor: Dieser realisiert die netzwerkabhéngige Last-
verteilung und erhilt seine Informationen aus der Umgebung.

2. Anwendungsmonitor: Dieser realisiert die kapazitdtenabhéngige Lastver-
teilung und erhélt seine Informationen von der Anwendung.

3. LBS- (Load Balancing Support, Lastverteilungssteuerungs-)Modul:
Dieses Modul verarbeitet die Informationen aus dem Kommunikationsmo-
nitor und dem Anwendungsmonitor.

Abbildung 5.4: Internes mLB Design

64 KAPITEL 5. META LOAD BALANCER MLB

5.2.2 Kommunikationsmonitor (KM)

Der KM beobachtet das Netzwerk, indem Kommunikationsgeschwindigkeiten
gemessen werden. Er nutzt das MPI-Profiling-Interface. Damit ist er transparent
fiir die Anwendung.

Der Aufruf einer kollektiven MPI-Routine aktiviert den KM. Anstatt aus-
schliellich die kollektive Kommunikation auszufiihren, erfolgt nach Beendigung
dieser Kommunikation eine Messung der Netzwerkverbindungen. Dieser Zeit-
punkt ist pradestiniert fiir solche Messungen, da er einen Synchronisationspunkt
darstellt. Der Ablauf der Anwendung &ndert sich dadurch nicht.

Ein Beispiel dazu zeigt die Realisierung von Profiling der MPI-Barrier-Funktion:

Beispiel 5.1:

int MPI_Barrier (MPI_Comm kommunikator)

{

result = PMPI_Barrier (kommunikator);
Ping-Pong-Messungen() ;
return result;

3

Recheneinheit

Abbildung 5.5: mLB-Architektur mit Kommunikationsmonitor

Der KM ist durch eine Bibliothek realisiert, die sowohl die Messung des
Netzwerks iiber das MPI-Profiling-Interface als auch die Erkennung der hierar-
chischen Subsystemstruktur umfasst. Einfaches Hinzubinden dieser Bibliothek
zum Objektcode der Anwendung erméglicht die Nutzung des KM.

5.2. ARCHITEKTUR/DESIGN 65

Der KM arbeitet autonom. Er ist nicht abhéngig von den anderen Modulen.
Durch seine Implementierung als Bibliothek kann er auch fiir andere Bereiche des
Grid-Computings eingesetzt werden, bei denen die Systemstruktur eine wichtige
Rolle spielt.

5.2.3 Anwendungsmonitor (AM)

Der AM erfasst anwendungsspezifische Daten. Dazu gehoren insbesondere die
Berechnungsgeschwindigkeit und die Anzahl der Lasteinheiten.

Weiterhin wird hier die Dauer von Lastverteilungszyklen gemessen, d. h.
die Kosten der Lastverteilung. Diese besteht zum einen aus der Dauer fiir die
Bestimmung der Last (wieviel, wohin, welche) und zum anderen aus der Zeit
fiir die Migration der Last. Diese Informationen dienen der Kosten-Nutzen-
Analyse, um festzustellen, ob der Gewinn durch Lastverteilung grofer ist als die
Lastverteilungskosten selber. Nur wenn dieses gegeben ist, ist die Durchfithrung
von Lastverteilung effizienzsteigernd.

Durch die Erfassung der Lastverteilungskosten wurde eine Basis zur Kosten-
Nutzen-Analyse geschaffen. Die zu erwartende Zeitersparnis ist mit einfachen
Methoden in einem dynamischen System wie dem Grid kaum zu erfassen. Da-
her ist dieser Aspekt in dieser Arbeit nicht genauer untersucht worden.

Da der Anwendungsmonitor Daten der Anwendung erfasst, erfordert seine
Nutzung die Integration einiger Funktionsaufrufe in den Anwendercode. Die-
se Funktionsaufrufe beinhalten das Messen von Zeit zwischen zwei Messpunk-
ten oder aber die einfache Ubermittlung von Werten, wie z. B. die Anzahl an
Lasteinheiten (bzw. Zellen), zum mLB. Anhang B gibt eine Ubersicht iiber die
Funktionen der Benutzerschnittstelle.

5.2.4 Lastverteilungssteuerungs (LBS-) Modul

Das LBS-Modul nutzt die Werte des KMs und AMs und verarbeitet diese zu
Informationen fiir die Lastverteilungsunterstiitzung der Anwendung. Aus den
Berechnungsgeschwindigkeiten wird die optimale Lastrate bestimmt (siche Ab-
schnitt 4.2). Diese wiederum bestimmt zusammen mit der Anzahl an Lastein-
heiten die optimale Lastmenge, die der anwendungseigene Lastverteiler fiir seine
Entscheidungen benotigt.

Die Feststellung, welche PEs an Lastverteilung beteiligt werden, wird eben-
falls vom LBS-Modul getroffen.

Bei der Ortung des Ungleichgewichts in der Hierarchie muss sichergestellt
sein, dass mindestens zwei Subsysteme gefunden werden, die ein Ungleichgewicht
aufweisen. Durch den Toleranzwert fiir ein Lastungleichgewicht und auch durch
Rundungsfehler kann es geschehen, dass nur ein Subsystem gefunden wird. Um
diesem zu entgegnen, wird der Toleranzwert solange reduziert, bis mindestens
zwei Subsysteme gefunden werden, die dann ihre Last untereinander austau-
schen konnen.

66 KAPITEL 5. META LOAD BALANCER MLB

Die Entscheidung, ob Lastverteilung iiberhaupt initiiert werden muss, wird
von der Anwendung selber auf das LBS-Modul tibertragen. Da eine Kosten-
Nutzen-Analyse derzeit noch nicht stattfinden kann, basiert diese Entscheidung
auf einem festen, aber vom Anwenderprogramm einstellbaren Wert. Dieser Wert
gibt an, welches Ungleichgewicht akzeptiert wird. Erst wenn jenes oberhalb die-
ses Schwellwertes liegt, wird Lastverteilung durchgefiihrt. Dadurch wird ver-
mieden, dass bei minimalem Ungleichgewicht (derzeit liegt der Wert bei fiinf
Prozent) Lastverteilung durchgefiihrt wird.

Die Aufbereitung aller Informationen fiir den anwendungseigenen Lastver-
teiler (siehe Abschnitt 5.3) schliefit die Arbeit des LBS-Moduls im aktuellen
Lastverteilungszyklus ab.

5.2.5 Zusammenspiel der Module

Abbildung 5.6 zeigt das Zusammenspiel von Kommunikationsmonitor, Anwen-
dungsmonitor und LBS-Modul.

Anwendung KM

=

anwendungs—
eigener
Lastverteiler

LBS-Modul

Abbildung 5.6: Zusammenspiel der mLB-Module

Erfolgt wihrend der Berechnung ein kollektiver Aufruf seitens der Anwen-

5.3. ANWENDUNGSLASTVERTEILER 67

dung, so wird dieser Aufruf an den KM weitergeleitet. Dieser fithrt daraufhin
Messungen des Netzwerks durch und ermittelt die Kommunikationsgeschwin-
digkeiten zu anderen PEs.

Die Berechnungszeiten fiir lastreprisentierende Rechenschritte werden vom
AM erfasst, ebenso wie Lastinformationen (z. B. Anzahl Gitterzellen auf loka-
lem PE).

Wird von der Anwendung Lastverteilung initiiert, so wird dieser Aufruf an
das LBS-Modul weitergereicht. Dieses berechnet aus den Berechnungsgeschwin-
digkeiten und der Lastinformation die optimale Last sowie das Lastungleichge-
wicht des lokalen PEs. Es stofit den Hierarchieaufbau an, der vom KM iiber-
nommen wird. Ist die Hierarchie aktuell, so erfolgt die Lokalisierung der Last-
verteilungspartner.

mLB nutzt das MPI-Konzept der Kommunikatoren, indem es aus den PEs
des Subsystems, in dem Lastverteilung durchgefiihrt werden soll, einen Kommu-
nikator bildet. Dieser Kommunikator wird dem Anwendungslastverteiler (ALB)
iibergeben. Das Subsystem agiert somit aus Sicht des ALBs wie eine komplette
Anwendung, der Teilgraph, der dem ALB iibergeben wird, wie ein kompletter
Graph.

5.3 Anwendungslastverteiler

Derzeit existiert eine Schnittstelle zu dem bereits vorgestellten Lastverteilungs-
werkzeug Jostle [WCE96]. Jostle wurde aufgrund seiner Flexibilitéit gewéhlt. Es
ermoglicht der Anwendung, die ZielgroBen der Partitionen vorzugeben. Diese
Fiahigkeit ist eine Voraussetzung, um die kapazitéitenabhéingige Lastverteilung
einsetzen zu kénnen.

Die netzwerkabhéingige Lastverteilung kann ebenfalls mit Jostle durchgefiihrt
werden. Jostle nutzt MPI und akzeptiert einen von der Anwendung vorgegebe-
nen MPI-Kommunikator.

Die Parameter, die fiir den Aufruf von Jostle notwendig sind, werden vom
LBS-Modul aufbereitet und weitergereicht.

Jostle-Schnittstelle:

void pjostle(int nnodes, int offset, int *core, int *halo,
int *index, int *degree, int *node_wt,
int *partition, int local_nedges, int *edges,
int *edge_wt, int *network,
int output_level, int dimension, double* coords);

68 KAPITEL 5. META LOAD BALANCER MLB

mL B-Schnittstelle:

void AppDoMetalB(int nnodes, int offset, int *core, int *halo,
int *index, int *degree, int *node_wt,
int *partition, int local_nedges, int *edges,
int *edge_wt, int *network,
int output_level, int dimension, double* coords)
int 1lb_phase,
int *global_nodes_lb_part, int *local_nodes_opt);

Die Anwendung iibergibt mLB als Parameter den kompletten dualen Gra-
phen. Fiir den Jostle-Aufruf werden einige dieser Parameter folgendermafien
gedndert:

nnodes: Gesamtanzahl der Knoten im gewé&hlten Subsystem

halo: Die Schnittkanten, die Verbindungen zu PEs darstellen, die nicht zum
Subsystem gehoren, miissen eleminiert werden. Das Halo-Feld, in dem die
entsprechenden Halos angegeben werden, muss entsprechend modifiziert
werden.

index: In Jostle gibt es mehrere Moglichkeiten, die Graphknoten zu indizieren.
Beim zusammenhingenden Format wird eine fortlaufende Nummerierung
der Knoten vorausgesetzt. So befinden sich die Knoten 0, ..., |[nodespg,|—1
auf PEy, Knoten |nodespg,|,...,|nodespg,| — 1 auf PEj, usw., wobei
|nodespg,| die Anzahl Graphknoten auf PE; sind. Der Vorteil dieses For-
mats ist es, dass nicht jeder Knotenindex angegeben werden muss, wie es
in einem anderen von Jostle unterstiitzten Format der Fall ist.

Ein Nachteil dieses Formats bei Benutzung von mLB ist es, dass dieses
hergestellt werden muss, wenn nur Teilgraphen an Jostle iibergeben wer-
den, die sich nicht auf fortlaufend nummerierten PEs, beginnend mit PFE,
befinden.

degree: Dieses Feld beinhaltet den Grad jedes Graphknotens. Durch Wegfall
einiger Halos erniedrigt sich der Grad (= Anzahl Nachbarn) der entspre-
chenden Knoten.

local_nedges: Die Anzahl an lokalen Kanten dndert sich durch die vorherigen
Punkte ebenfalls.

edges: Die Kantenliste wird ebenfalls entsprechend modifiziert.

network: Die Anzahl an beteiligten PEs reduziert sich von der Gesamtanzahl
zu der Anzahl der PEs im Subsystem.

processor_wt: In diesem Feld wird die Gewichtung der einzelnen PEs und
damit auch die Menge an Ziellast angegeben. Die kapazitdtenabhéngige
Lastverteilung wird durch dieses Feld ermoglicht.

Kapitel 6

Validierung

Nachdem die Konzepte und deren Umsetzung vorgestellt wurden, erfolgt nun
ihre Validierung. Dabei muss iiberpriift werden, ob die Ziele aus den Anforde-
rungskatalogen (siehe Kapitel 3) erreicht wurden.

6.1 Anforderungen an die Monitoring-Umgebung

Um die Monitoring-Umgebung zu validieren, miissen folgende Aspekte unter-
sucht werden:

e Skalierbarkeit
o Verfiigharkeit
o Effizienz

Die Erfiillung dieser Forderungen wurde iiberpriift und, falls erforderlich,
durch Tests validiert.

6.1.1 Skalierbarkeit

Durch seine verteilte Architektur ist eine Basis fiir die Skalierbarkeit des Moni-
torings geschaffen worden. Die Feststellung der Berechnungsgeschwindigkeiten
erfolgt lokal und ist daher irrelevant fiir diesen Aspekt. Der bestimmende Faktor
fiir die Skalierungseigenschaft von mLB sind die Ping-Pong-Tests. Daher wur-
den Messungen durchgefiihrt, bei denen diese Kommunikationstests jeweils auf
einer unterschiedlichen Anzahl an Prozessoren durchgefiihrt wurden.

6.1.2 Verfiigbarkeit

Diese ist gegeben, da das Monitoring nur fiir die Anwendung arbeitet und von
dieser gesteuert wird. Damit kann zu jedem beliebigen Zeitpunkt auf alle not-
wendigen Informationen zugegriffen werden.

69

70 KAPITEL 6. VALIDIERUNG

6.1.3 Effizienz

Hier muss iiberpriift werden, ob die gewonnenen Messwerte genau das liefern,
was erzielt werden soll, wobei der Aufwand fiir ihre Feststellung so minimal wie
moglich ist. In Bezug auf die Messwerte fiir die Kommunikationsgeschwindig-
keiten ist festzustellen, ob die gewonnenen Ergebnisse das Kommunikationsver-
halten der Anwendung représentieren und die Messungen nur einen geringen
Overhead erzeugen.

Zur Feststellung des Overheads wurde die Laufzeit der Ping-Pong-Messungen

erfasst. Ein wichtiger Aspekt ist hier die Grofle der Nachrichten, die bei diesen
Messungen verschickt werden. Diese sollte so klein wie moglich, aber so grofl
wie notig gewéhlt werden. Werden zu viele Daten verschickt, dann wird sich der
Overhead der Messungen, und damit auch des kompletten Monitorings, erhéhen.
Bei Wahl einer zu geringen Datenmenge kann die Aussagekraft der Messungen
zu gering sein.
Ziel bei der Wahl dieser Grofle ist es, reprisentative Nachrichten auszutauschen,
um auf Basis der Messwerte eine Hierarchie aufzubauen, die das Kommuni-
kationsverhalten der Anwendung widerspiegelt. Dazu wurden Messungen mit
unterschiedlichen Nachrichtengréfien durchgefiihrt.

Die Haufigkeit der Messungen bestimmt den Overhead entscheidend. Daher
wurde bereits die Forderung nach Dynamik angefiihrt. Diese wurde bisher nicht
explizit integriert. Zeitabhéngiges Monitoring wurde stattdessen eingesetzt. Das
bedeutet, erst nach Ablauf eines bestimmten Intervalls werden erneut Messun-
gen durchgefiihrt. Angemessene Werte fiir dieses Intervall wurden bei Testlaufen
mit einer FEM-Anwendung evaluiert, mit dem Ziel wenige, aber ausreichend
viele Messungen durchzufiihren, um den aktuellen Netzwerkstatus zu ermitteln.

In Bezug auf die Messwerte fiir die Berechnungsgeschwindigkeiten muss ge-
priift werden, ob die Messung der Berechnungseinheiten ein gutes Maf fiir die
Geschwindigkeit der Recheneinheiten darstellt. Die Ergebnisse der Lastvertei-
lung, die auf diesen Messwerten basiert, werden diese Fragestellung klaren.

6.2 Lastverteilungssteuerung mit mLB

Fiir die Validierung der Lastverteilungssteuerung mit mLB wurden folgende
Aspekte iiberpriift:

e im Hinblick auf die kapazitéitenangepasste Lastverteilung:
die optimale Nutzung der Ressourcen,

e im Hinblick auf die netzwerkabhéngige Lastverteilung:
die Beriicksichtigung unterschiedlicher Kommunikationsgeschwindigkeiten,

e die Reaktion auf Zustandsdnderungen,
e Skalierbarkeit und

o Gesamteffizienz.

6.2. LASTVERTEILUNGSSTEUERUNG MIT MLB 71

6.2.1 Kapazititenangepasste Lastverteilung

Werden die Kapazitdten der Recheneinheiten optimal genutzt, so erreichen al-
le PEs ihre Synchronisationspunkte, an denen Nachrichten ausgetauscht wer-
den, zur gleichen Zeit. Damit entstehen keine oder nur minimale Wartezeiten
bei diesen kollektiven Kommunikationen. Um diese Wartezeiten festzuhalten,
wurde die Zeit zwischen Initiierung und Zustandekommen der Kommunikation
gemessen. Diese Messungen sind ein wichtiger Anhaltspunkt fiir die optimale
Ausnutzung der Kapazititen der Recheneinheiten.

6.2.2 Netzwerkabhingige Lastverteilung

Das Ziel war hier die Beriicksichtigung unterschiedlicher Kommunikationsge-
schwindigkeiten bei der Lastverteilung. Dafiir werden schnellere Kommunikati-
onswege langsameren gegeniiber bevorzugt, indem Lastverteilung in Subsyste-
men durchgefiithrt wird.

Die Richtigkeit dieser Vorgehensweise kann zum einen iiberpriift werden, in-

dem Zeitmessungen von Lastverteilung mit einer unterschiedlichen Anzahl von
PEs und Lastmengen und zum anderen Messungen von Lastverteilung {iber un-
terschiedliche Kommunikationswege (z. B. Ethernet, Infiniband, gemeinsamer
Speicher) durchgefiihrt werden.
Ein weiterer wichtiger Aspekt ist hier aber auch der richtige Aufbau der Hier-
archie, d. h. einer Struktur, die die Geschwindigkeiten der von der Anwen-
dung genutzten Kommunikationswege repréasentiert. Dafiir spielt der Parameter
DIFF_TOLERANCE (sieche Gleichung 4.8) eine wesentliche Rolle. Diese Varia-
ble bestimmt die Granularitit der Hierarchiestruktur. Bei einem groflen Wert
werden wenige groe Subsysteme gebildet, bei einem kleinen hingegen viele klei-
ne Systeme. Die optimale Grofle dieser Variablen muss in den Tests ermittelt
werden.

Durch die Art der Bestimmung der Kandidatenliste, d. h. Verhéltnisbildung
der einzelnen Kommunikationszeiten zusammen mit dem Wert von DIFF_TO-
LERANCE, zeigen das erste Listenelement einer Hierarchiestufe zusammen mit
dem letzten Element der vorhergehenden Ebene die Gréflenunterschiede der
Kommunikationszeiten zwischen den Ebenen auf.

Um die korrekte Arbeitsweise des Hierarchieaufbaus zu iiberpriifen, wurde
in einem dediziert genutzten System die erzeugte hierarchische Struktur mit den
vorliegenden Netzwerkparametern verglichen.

6.2.3 Reaktion auf Zustandsinderungen

Durch Erfassung der Messwerte wiahrend der Laufzeit werden aktuelle Werte
betrachtet. Diese dienen, bei der netzwerkabhéngigen Lastverteilung, dem Hier-
archieaufbau, sobald die Struktur benétigt wird. Die Hierarchie reprisentiert
damit stets die Netzwerkkapazitédten.

Fiir die kapazitdtenabhéngige Lastverteilung werden Messwerte gemittelt.
Die Anzahl der zu mittelnden Werte kann vom Anwenderprogramm bestimmt

72 KAPITEL 6. VALIDIERUNG

werden. Veradndert sich die zur Verfiigung stehende Kapazitéit einer Rechenein-
heit, so findet dieses Beriicksichtigung durch die zuletzt gewonnenen Werte.

Damit ist die Forderung der dynamischen Anpassung an Zustandsénderun-
gen erfiillt.

6.2.4 Skalierbarkeit

Den Nachweis hieriiber erbringen Laufzeitmessungen, die in einer Simulations-
umgebung mit einer unterschiedlichen Anzahl von PEs erfolgten. Diese wurde
so entwickelt, dass Skalierbarkeitsprobleme seitens des Simulationsprogrammes
ausgeschlossen werden. Auf dieser Basis konnte die Skalierungseigenschaft von
mLDB gemessen werden.

6.2.5 Gesamteflizienz

Diese ergibt sich durch den Nutzen von mLB verglichen mit seinem Overhead.
Hierfiir wurden Vergleichsmessungen zwischen Testldufen mit mLB und jene
ohne mLB durchgefiihrt.

Kontrolliert werden musste hier auch, ob die vom ALB erzeugten Partitionen
von der Anwendung weiterverarbeitet werden kénnen. Der Teilgraph, der von
mLB erzeugt wird und der dem ALB iibergeben wird, wird isoliert rebalanciert.
Kanten, die zu nicht an Lastverteilung beteiligten PEs fithren, werden nicht
betrachtet. Dieses Vorgehen kann dazu fithren, dass die Anwendung die derart
erzeugten Partitionen nicht oder nur mit grofiem Aufwand weiterverarbeiten
kann.

Dieser Aspekt kann durch eine Integration von mLB in eine vorhandene
Anwendung analysiert werden.

Die Validierung erfolgte hauptséchlich mit Hilfe eines selbst entwickelten
Simulators. Nur wenige Parameter wurden mit Hilfe einer bestehenden FEM-
Anwendung evaluiert.

Der Vorteil dieses Vorgehens liegt darin, dass Probleme, die von der FEM-
Anwendung ausgelost werden konnen, ausgeschlossen werden. Dieses betrifft
insbesondere Skalierbarkeitsprobleme, da viele FEM-Anwendungen nur auf einer
begrenzten Anzahl an Prozessoren lauffihig sind. Ein vorzeitiges Terminieren
aufgrund von Speicherplatzproblemen seitens der Anwendung (sehr verbreitet
in diesem Bereich) konnte dadurch ebenfalls vermieden werden.

6.3 Beschreibung der Testplattform

Die Tests erfolgten auf einem PC-Cluster des parallelen Rechenzentrums der
Universitit Paderborn (PC?) der Produktlinie hpe-Line. Seine 200 Rechenkno-
ten, jeweils bestiickt mit zwei Xeon Prozessoren mit 4 GByte Hauptspeicher

6.4. VALIDIERUNG DURCH EINE SIMULATIONSUMGEBUNG 73

(genauere technische Informationen befinden sich im Anhang C), sind sowohl
iiber ein Infiniband-Netzwerk verbunden, als auch {iber Ethernet.

Zur Kommunikation stehen dem Benutzer unterschiedliche MPI-Implemen-
tierungen zur Verfiigung. Kommunikation iiber Infiniband wird von ScaMPI
unterstiitzt. ScaMPI wurde von Scali Computer (www.scali.com) insbesondere
fiir Gigabit Ethernet, Myrinet, Infiniband und SCI entwickelt. Beim Einsatz von
ScaMPT hat die Anwendung die Moglichkeit, zwischen Netzwerktechnologien zu
wéhlen. Das bedeutet fiir die eingesetzte Plattform, dass die Rechenknoten ent-
weder iiber Ethernet oder iiber Infiniband kommunizieren kénnen. Erfolgt Kom-
munikation zwischen Prozessoren, die sich auf einem Rechenknoten befinden, so
erfolgt dies iiber ihren gemeinsamen Speicher (shared memory Kommunikation).

Diese unterschiedlichen Kommunikationsmoglichkeiten bieten eine Umge-
bung, in der ,Distributed Supercomputing®, fiir das mLB entwickelt wurde,
unter kontrollierten Bedingungen simuliert werden kann. Mehrere Rechenparti-
tionen, die jeweils aus mehreren iiber Infiniband kommunizierenden Rechenk-
noten bestehen, konnen mit Hilfe von PACX-MPI iiber Ethernet miteinander
kommunizieren. Dabei stellt jede Rechenpartition ein paralleles System dar. Die
Verschaltung dieser Partitionen mit PACX-MPI unterscheidet sich prinzipiell
nicht von einer Koppelung mehrerer, geografisch verteilter Parallelrechner mit
PACX-MPI.

Fiir die Rechnungen auf dem Infiniband-Cluster wurden Rechenknoten re-
serviert. Diese standen dadurch exklusiv zur Verfiigung. Durch die Architek-
tur des Infiniband-Netzwerks (ein zentraler Switch) stehen auch die Verbindun-
gen zwischen den reservierten Rechenknoten dem Benutzer uneingeschrankt zur
Verfiigung. Einzig die Kommunikation tiber Ethernet findet nicht exklusiv statt.
Die Ubertragungsraten sind somit abhingig von der Auslastung des Ethernet-
Switches durch den anderen Netzwerkverkehr.

6.4 Validierung durch eine Simulationsumgebung

6.4.1 Validierung der Monitoring-Umgebung

Zur Validierung der Skalierbarkeit der Kommunikationsmessungen (Ping-Pong-
Messungen) wurde ein einfaches MPI-Programm, das kollektive Operationen
durchfiihrt, eingesetzt. Um auf die Funktionalititen der netzwerkabhéngigen
Lastverteilung zugreifen zu kénnen, wurde diesem Programm die entsprechen-
de mLB-Bibliothek hinzugefiigt. Es wurden Testlaufe auf dem hpc-Line-Cluster
durchgefiihrt. Um ausschliefllich das entwickelte Monitoring zu testen, ohne dass
die darunter liegende Konfiguration der Kommunikationstechnologie Einfluss
nehmen kann, wurde Ethernet-Kommunikation gewihlt. Gemessen wurde von
zwei bis zu 180 Prozessen. Das Ergebnis zeigt Abbildung 6.1.

Es ist deutlich zu erkennen, dass die Kurve Spriinge aufweist. Der sprung-
hafte Anstieg der Messwerte ist auf den Kommunikationsplan (siehe Abschnitt
4.4.2) zuriickzufithren. Bei acht Kommunikationspartnern existieren z. B. 28

74 KAPITEL 6. VALIDIERUNG

Ping-Pong-Messwerte, Ethernet, je 10.000 Pingpongs

600 T T T T T T T T T
500 *
/\ o
|
I
(o
\
1l
|
400 |- ‘ g
c
[
2
E 300 - ‘ 4
[
»n |
A ‘M“'
| \/\“\\‘”‘u‘
Mo
iy
200 J 8
|
|
|
100 /,~/‘\/,,J g
-
|
A
el
0 1 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180 200
PEs

Abbildung 6.1: Ergebnisse von Kommunikationsmessungen auf einer unter-
schiedlichen Anzahl von PEs

Kommunikationsmoglichkeiten. Bei der Aufstellung des Kommunikationsplans
werden diese Kommunikationspaare in sieben Durchldufe von jeweils vier par-
allelen Kommunikationen aufgeteilt. Bei neun bis 16 Kommunikationspartnern
(36 bzw. 120 Kommunikationspaare) werden 15 Durchldufe mit ein bis vier par-
allelen Kommunikationen ermittelt, d. h. mehr als das Doppelte an Durchlaufen
ist notwendig. Abbildung 6.2 zeigt die Anzahl der Kommunikationsdurchlaufe
in Abhéngigkeit von den PEs.

Dieses zeigt, dass der Algorithmus zur Erstellung des Kommunikationsplans
nicht optimal ist. Die Skalierung der Ping-Pong-Messungen ist jedoch nicht
gefahrdet.

Die Spriinge der Kurve aus Abbildung 6.2 entsprechen denen aus Abbildung
6.1 (siche Abbildung 6.3). Die Berechnung der Zeit pro Kommunikationsdurch-
lauf (siche Abbildung 6.4) zeigt, dass diese sich nur leicht ansteigend &ndert.

6.4. VALIDIERUNG DURCH EINE SIMULATIONSUMGEBUNG 75

Anzahl durchgefiihrter paarweiser Kommunikationen
300 T T T T T T T T T

250 R

200 B

Durchlaufe
@
o
T
1

100 - ‘ R

50 ‘ B

0 [1 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180 200
PEs

Abbildung 6.2: Kommunikationsdurchliufe

Ein optimierter Kommunikationsplan ldsst daher eine gute Skalierbarkeit
erwarten.

Die Gesamteffizienz des Monitorings zeigt sich bei der Laufzeitanalyse von
Anwendungstestlaufen. Eine geeignete Nachrichtengrofie konnte in diesem Zuge
ebenfalls festgestellt werden. Dynamik wird im Rahmen der Untersuchung einer
realen FEM-Anwendung beleuchtet.

76

KAPITEL 6. VALIDIERUNG

Ping-Pong-Messwerte, Ethernet, je 10.000 Pingpongs

600 T T T T T T T T
Kommunikationsdurchlaufe
Ping-Pong-Messwerte -
500 E
400 i E
c
[
B
El 300 E
[
n I
——
200 ‘ f
100 | r “ |
|
B}
ﬁ‘
JJ
0 pd 1 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180 200

PEs

Abbildung 6.3: Kommunikationsdurchldufe mit Messergebnissen

6.4. VALIDIERUNG DURCH EINE SIMULATIONSUMGEBUNG 7

Zeit pro Kommunikationsdurchlauf

1 T T T T T T T T T

0.8 | i

0.6 1

Sekunden

04 .

02 — N AN—"

\

- A
I \\ \fv' UV
/ L

0 ! ! ! ! ! ! ! ! !

0 20 40 60 80 100 120 140 160 180 200
PEs

Abbildung 6.4: Zeit pro Kommunikationsdurchlauf in Abhéngigkeit von der An-
zahl an PEs

78 KAPITEL 6. VALIDIERUNG

6.4.2 Beschreibung des FEM-Simulators

Der entwickelte FEM-Simulator représentiert das Verhalten einer parallelen
FEM-Anwendung. Fiir jede Iteration wird eine Schleife durchlaufen, in der
zunéchst die Last erhsht wird (Nachbildung von Gitterverfeinerungen). Die-
se Lasterhchung erfolgt auf einer bestimmten Quote von PEs. Diese erhalten
jeweils eine unterschiedliche zusétzliche Last (=Anzahl Gitterzellen). Somit ent-
steht ein Ungleichgewicht zwischen den PEs.

Nach der Lasterhohung findet Lastverteilung statt und damit der Aufruf des
ALBs. Datenmigration, und damit die Herstellung einer balancierten Verteilung
der Anwendungslast, wird nicht benotigt, da keine kompletten Datenstrukturen
bei dieser Simulation zu verschieben sind.

Nach der Lastverteilung erfolgt die Berechnung. Dabei werden arithmetische
Operationen durchgefiihrt, die das Losen von Gleichungen innerhalb einer realen
FEM-Anwendung nachbilden. Mit dem Austausch von Informationen zwischen
den PEs schlieit diese Rechenphase ab. Dabei werden MPI-Nachrichten zwi-
schen benachbarten PEs ausgetauscht. Im realen Fall sind dieses PEs, die sich
Schnittkanten des dualen Graphen teilen. Im Simulator werden die Nachbarn
eines PEs festgelegt. Inhalt der zu verschickenden Nachrichten ist ein Feld mit
doppelt genauen Gleitkomma-Werten der Lénge ,, Anzahl lokaler Gitterzellen“.
Es werden also Werte fiir jede lokale Gitterzelle ausgetauscht. Dieses entspricht
der Arbeitsweise einer realen FEM-Anwendung.

Heterogenitéit in Bezug auf Leistungsfdhigkeit der Prozessoren wird durch
zusétzliche Last einzelner PEs simuliert.

Der Simulator erfiillt die Voraussetzungen einer Testumgebung fiir die Grund-
funktionalitdten: Er arbeitet parallel, kommuniziert mittels MPI und ist adap-
tiv.

6.4.3 Validierung von mLB
Es wurden zwei Testszenarien erstellt:
e FEM-Simulator ohne mLB

e FEM-Simulator mit mLB

Fiir die Tests mit mLB wurde der Aufruf des ALBs durch den Aufruf ei-
ner Funktion von mLB ersetzt. Dadurch wird das LBS-Modul (siche Abschnitt
5.2.4) aktiviert. Dieses fithrt die Uberpriifung des Lastgleichgewichts durch und
gegebenenfalls den Aufruf des ALBs mit den neu generierten Parametern.

Mit dem Simulator wurden folgende Aspekte untersucht:

e Die Laufzeiten des ALBs Jostle bei Einsatz:

— auf unterschiedlicher Anzahl von PEs und

6.4. VALIDIERUNG DURCH EINE SIMULATIONSUMGEBUNG

— mit unterschiedlicher Anzahl von Graphknoten,

die geeignete Nachrichtengrofe fiir die Ping-Pong-Messungen und

der Aufbau der hierarchischen Struktur in einem dedizierten System,

e die angemessene Verteilung der Last zusammen mit

Jostle-Laufzeiten

der Gesamteffizienz von mLB.

79

Jostle wurde mit unterschiedlicher Anzahl an Gesamtgraphknoten und PEs ge-
testet. Dabei wurden zum einen die Laufzeiten bei einer unterschiedlichen An-
zahl von PEs, aber festen Anzahl an Graphknoten verglichen (siehe Abbildung

6.5).

Sekunden

Jostle-Laufzeiten

T T T T
124.764 nnodes
246.765 nnodes
490.199 nnodes --------
974.822 nnodes

1.942.962 nnodes

30 40 50 60 70 80

PEs

Abbildung 6.5: Jostle-Laufzeiten in Abhéngigkeit von der Anzahl an PEs

80 KAPITEL 6. VALIDIERUNG

Abbildung 6.6 zeigt den Vergleich bei fester Anzahl an PEs, aber unter-
schiedlicher Graphknotenzahl.

Jostle-Laufzeiten
6 T T T T T T T

Sekunden
w
T

0 JI 1 1 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Grahknoten (in Tausend)

Abbildung 6.6: Jostle-Laufzeiten in Abhéingigkeit von der Anzahl an Graphkno-
ten

Die Ergebnisse zeigen, dass besonders deutliche Unterschiede bei der Berech-
nung einer groflen Anzahl an Graphknoten bestehen.

Arbeitet Jostle z. B. mit 1,9 Millionen Graphknoten auf 20 PEs, so benotigt
es circa 1,3 Sekunden. Verringert sich die Anzahl der PEs von 20 auf vier und
die Anzahl an Graphknoten entsprechend, so betrigt die Laufzeit von Jostle
weniger als 0,8 Sekunden. Das bedeutet eine Laufzeitersparnis von iiber 60 Pro-
zent. Da Lastverteilung innerhalb einer Anwendung oftmals in jeder Iteration
durchgefiihrt wird, summieren sich die Zeitersparnisse.

Reale FEM-Anwendungen rechnen oftmals mit mehreren Millionen Graph-
knoten. Lastverteilung, die nicht die gesamte Anzahl an Knoten verarbeiten
muss, was durch mLB erreicht wird, ldsst noch grofiere Laufzeitgewinne erwar-
ten.

6.4. VALIDIERUNG DURCH EINE SIMULATIONSUMGEBUNG 81

Erkennung der Hierarchiestruktur

In einem dediziert genutzten System, wie es durch die Reservierung von Rechen-
knoten vorlag, muss mLB den Aufbau des Netzwerks erkennen. Das bedeutet,
dass PEs auf dem gleichen Rechenknoten, die {iber den gemeinsamen Speicher
kommunizieren, iiber die schnellste Verbindung verfiigen und damit auf un-
terster Ebene ein Subsystem bilden. Infiniband bildet somit die néchst héhere
Ebene. Wird zudem noch Ethernet eingesetzt, so bildet diese die hichste Sub-
systemebene.

Die Evaluierung der geeigneten Nachrichtengrofie, die im néchsten Abschnitt
stattfindet, zeigt zum einen auch, dass auf Basis der gewonnenen Messwerte eine
Hierarchie erkannt wird, und zum anderen welche Werte die Variable DIFF _TO-
LERANCE annehmen sollte.

Nachrichtengrofle

Getestet wurden hier Nachrichten der Gréfle 1 Byte, 1.000 Byte und 64.000
Byte mit acht und mit achtzig PEs.

Werden Ping-Pong-Messungen durchgefiihrt, so besteht eine Messung aus
mehreren Sende- und Empfangsaktionen. Der Grund liegt darin, dass auf einigen
Plattformen die Zeiten fiir ein einziges Senden und Empfangen zu kurz sind, um
messbar zu sein. Daher wurden jeweils fiinf Nachrichtendurchlaufe durchgefiihrt,
um ein einzelnes Messergebnis zu erhalten.

Nachrichten- #PEs Laufzeit 1. Ebene 2. Ebene Verhéltnis

grofie (Byte) (Sekunden) (Sekunden) (Sekunden) —2:Lbenc
1 8 0,0505 0,000002 0,00001 5
1.000 8 0,0833 0,000005 0,00002 4
64.000 8 1,1511 0,000075 0,0003 4
1 80 1,2148 0,000004 0,00001 2,5
1.000 80 1,9197 0,000007 0,00002 2,9
64.000 80 26,0948 0,000082 0,0003 3,7

Tabelle 6.1: Laufzeiten bei Ausfithrung von 100 Ping-Pong-Messungen

Tabelle 6.1 zeigt eine Ubersicht iiber die Messergebnisse. Die Spalten vier und
fiinf mit den Uberschriften ,1. Ebene und ,,2. Ebene“ geben die durchschnitt-
lichen Kommunikationszeiten zwischen PEs auf der entsprechenden Ebene an.
In der verwendeten Testumgebung bedeutet dies, dass fiir Ebene eins Kommu-
nikation {iber den gemeinsamen Speicher gemessen wurde, Ebene zwei zeigt die
Zeiten fiir die Infiniband-Kommunikation. Die letzte Spalte zeigt die Verhélt-
nisse der beiden Kommunikationszeiten. Anhand dieses Verhéltnisses wird die

82 KAPITEL 6. VALIDIERUNG

hierarchische Struktur erkannt. Die hohen Werte, die in der Tabelle auftreten,
indizieren eine gute Erkennung dieser Struktur.

Deutlich zu erkennen ist, dass eine Nachrichtengréfie von 64.000 Byte ho-
he Laufzeiten verursacht, der Informationsgehalt jedoch nicht hoher ist als je-
ner, der durch kleinere Nachrichten erzeugt wird. Nachrichtengréfien von einem
und 1.000 Byte liefern einen hohen Informationsgehalt bei niedrigen Laufzeiten.
Nachrichten der Linge ein Byte sind nicht repriasentativ fiir die Anwendung und
wurden daher nicht fiir das Monitoring gewéhlt. Stattdessen wurden Nachrich-
ten der Grofle 1.000 Byte verschickt, da diese einen relativ niedrigen Overhead
erzeugen und gleichzeitig aber einen hohen Informationsgehalt liefern.

Nachrichten der Gréfle von einem und 1.000 Byte wurden auch mit PACX-
MPI getestet.

Nachrichten- #PEs Laufzeit 1. Ebene 2. Ebene 3. Ebene

grofle (Byte) (Sek.) (Sek.) (Sek.) (Sek.)
1 2x2+42x4 660 0,000003 0,000013 0,0003
1.000 2x4+4-2x4 240 0,000003 0,000014 0,0004

Tabelle 6.2: Laufzeiten bei Ausfithrung von 100 Ping-Pong-Messungen unter
PACX-MPI

Tabelle 6.2 zeigen Messungen mit 12 und 16 PEs. Dabei wurden auf je-
dem Rechenknoten, wie oben auch, zwei Prozesse gestartet, die {iber gemeinsa-
men Speicher kommunizierten. Dieses zeigen die Werte fiir Ebene eins. Die bei-
den PACX-MPI-Partitionen kommunizierten iiber Ethernet (zu erkennen durch
die Messwerte fiir Ebene 3). In der 16er Konfiguration wurden je PACX-MPI-
Partition vier Rechenknoten eingesetzt, bei der 12er Konfiguration waren es zwei
und vier Rechenknoten. Die Messungen zeigten hohe Kosten, die den gleichen
Informationsgehalt wie die MPI-Messungen lieferten. Durch den Einsatz von
Ethernet war die Gesamtlaufzeit abhéngig von der aktuellen Netzauslastung.
Daher konnten keine direkten Zusammenhénge von Nachrichtengrofle und Lauf-
zeit festgestellt werden. Die hohen Laufzeiten zeigen jedoch, dass Monitoring in
dieser Konfiguration teuer ist. Die Anzahl der Ping-Pong-Messungen sollte da-
her minimal sein.

Der Wert fiir DIFF_TOLERANCE muss fiir die obigen Ergebnisse kleiner
als 2,5 (niedrigster Wert der letzten Spalte aus Tabelle 6.1) gewihlt werden. Da
es sich bei den Messwerten jedoch um gemittelte Werte handelt, und somit die
Verhéltnisse der Kommunikationszeiten zwischen den Ebenen zum Teil geringer
sind, wurde DIFF_TOLERANCE auf den Wert 1,6 gesetzt. Damit konnte die
Hierarchie in allen Tests erkannt werden.

6.4. VALIDIERUNG DURCH EINE SIMULATIONSUMGEBUNG 83

Gesamteffizienz und Skalierbarkeit

Die Aspekte, die in den vorangegangenen Abschnitten analysiert wurden, zeigen
geringe Zusatzkosten bei Anwendung von mLB. Der Nutzen und damit auch
seine Effizienz kann nur durch Vergleichsmessungen einer Anwendung ohne mLB
festgestellt werden.

Abbildung 6.7 zeigt Messungen mit und ohne mLB mit unterschiedlich vielen
PEs. Die Berechnung startete jeweils mit 150.000 Zellen, bzw. Graphknoten, und

durchlief 35 Iterationen. In jeder Iteration wurde die Zellanzahl um circa 50.000
Zellen erhoht.

Laufzeit einer Simulation, 35 Iterationen, 150.000 - 1.783.560 Zellen
3000 T T

' Glesamtlatllfzeit mi{ mLB L
Gesamtlaufzeit ohne mLB

2500 -

2000 -

1500 -

Sekunden

1000 [|

s00 F
\

0 10 20 30 40 50 60 70 80
PEs

Abbildung 6.7: Laufzeitvergleich mit/ohne mLB

Es ist deutlich zu sehen, dass mit mLB wesentlich bessere Ergebnisse als

ohne mLB erzielt werden. Teilweise reduziert sich die Laufzeit um iiber zwei
Drittel.

Diese grofie Effizienzsteigerung durch mLB ist zum einen auf optimierte Last-

84 KAPITEL 6. VALIDIERUNG

verteilung und zum anderen auf niedrige Zusatzkosten zuriickzufiihren.
In den néchsten Abschnitten wird daher sowohl der Effekt einer angemesse-
nen Lastverteilung, als auch die Hohe der Zusatzkosten von mLB gezeigt.

Angemessene Lastverteilung

Ein Indiz fiir eine Lastverteilung entsprechend der vorhandenen Ressourcen ist,
neben dem Laufzeitgewinn, die Wartezeit bei einer kollektiven Kommunikation.
Je kiirzer diese ist, desto gleichméfliger konnte die Last von den Prozessoren
abgearbeitet werden.

Eine Analyse der Wartezeiten zeigt grofie Unterschiede bei Einsatz mit bzw.
ohne mLB. Abbildung 6.8 zeigt die maximalen Wartezeiten von PEs bei ei-

Wartezeiten bei kollektiven Nachrichten

10000 T T T . T T B T T
minimale Wartezeiten (mLB) ———
maximale Wartezeiten (mLB)

minimale Wartezeiten (ohne mLB) --------
maximale Wartezeiten (ohne mLB)
1000 | s
100 | s

Sekunden

0.1

0.01

0.001

1e-04 1 1 1 1 1
0 10 20 30 40 50 60 70 80

PEs

Abbildung 6.8: Vergleich der Wartezeiten bei kollektiven Nachrichten

ner kollektiven Kommunikation. Die gemessenen Werte ohne mLB sind durch-
schnittlich um das Zehnfache hoher als jene mit mLB.

6.4. VALIDIERUNG DURCH EINE SIMULATIONSUMGEBUNG 85

Diese niedrigen Wartezeiten zeigen eine gute Anpassung der Last an die
aktuelle Leistungsfihigkeit der Prozessoren.

Kosten von mLB

Zur Analyse der Kosten von mLB wurden folgende Messwerte erfasst:
1. Monitoring-Kosten (Ping-Pong-Messungen)
2. Kosten fiir die Lokalisierung des Ungleichgewichts in der Hierarchie
3. Gesamtkosten fiir die angepasste Lastverteilung

4. Durchschnittliche Jostle-Laufzeiten

Kosten von mLB

100 T T T T T T T
Monitoring—Kosten
Lokalisierung des Ungleichgewichts
Gesamtkosten fiir angepasste Lastverteilung --------
durchschnittl. Jostle-Laufzeit
10 B
1k i
c
[0
c .
2 |
3 T \W—k/‘f o
- /
0.1 | / B
“rj
/
001 | .
0001 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80

PEs

Abbildung 6.9: Kosten von mLB

86 KAPITEL 6. VALIDIERUNG

Abbildung 6.9 zeigt die Kosten von mLB.

Deutlich zu erkennen ist, dass die Monitoring-Kosten (wenige Zehntel Sekun-
den), ebenso wie die Kosten zum Auffinden eines Ungleichgewichts (wenige Hun-
dertstel Sekunden) sehr niedrig sind. Die Gesamtkosten fiir die angepasste Last-
verteilung schlieflen die Kosten fiir den Aufbau der Hierarchie, die Bestimmung
der optimalen Last eines PEs sowie die Durchfithrung von Jostle mit ein. Auch
hier sind die geringen Kosten deutlich zu erkennen. Die Laufzeiten fiir Jostle
bilden den Hauptanteil bei den Ergebnissen. Zieht man diese ab, so erhédlt man
ebenfalls sehr kleine Werte fiir den Aufwand, verursacht durch mLB.

Jostle-Laufzeiten mit und ohne mLB

60 T T T T T T
mitmLB ——
ohne mLB
50
40 \‘
|
|
|
c |
o |
2 \
5 30 ‘ B
S \
)
@ |
|
|
|
20 \‘ E
|
|
\
10 | . E
\
B ~
o 1 1 1 ~ 1 1 I I
0 10 20 30 40 50 60 70 80

PEs

Abbildung 6.10: Jostle-Laufzeiten bei Einsatz mit und ohne mLB

Abbildung 6.10 zeigt den Vergleich von Jostle-Laufzeiten der gleichen Test-
ldufe mit und ohne mLB. Eine deutliche Reduktion der Laufzeiten durch mLB
ist auch hier zu erkennen. Interessant ist aber auch der Kurvenverlauf. Zunéchst
sinken die Jostle-Laufzeiten, zwar etwas stéirker, aber dhnlich denen ohne Ein-

6.5. VALIDIERUNG DURCH EINE BESTEHENDE FEM-ANWENDUNGS87

satz von mLB. Ab 36 PEs liegen die Jostle-Laufzeiten nur noch im Zehntel-
Sekunden-Bereich.

Das liegt darin begriindet, dass meist nur noch Zweiergruppen von PEs Last-
verteilung untereinander durchfiihren. Dabei sind jene PEs beteiligt, die sich
jeweils auf einem Rechenknoten befinden und iiber ihren gemeinsamen Speicher
kommunizieren. Diese parallellaufenden Zweiergruppen bearbeiten jeweils we-
sentlich weniger Graphknoten als es bei einem Aufruf von Jostle mit allen PEs
der Fall wire. Betrachtet man in Abbildung 6.6 den steilen Anstieg der Kurve
fiir zwei PEs, so wird deutlich, dass besonders bei dieser niedrigen Anzahl an
PEs die Anzahl der Graphknoten eine entscheidende Rolle fiir die Laufzeit von
Jostle spielt. Dieses erkliart den steilen Abfall der Jostle-Laufzeiten, da mit zu-
nehmender Anzahl an PEs die Grofie je Lastverteilungsprozess kleiner wird.

Beim Einsatz von Netzwerken mit geringeren Ubertragungsraten, wie z. B.
Ethernet, ist die Minimierung von Jostle-Aufrufen und der an Lastverteilung
beteiligter PEs, die jeweils Kommunikation implizieren, ein wichtiger Aspekt.
Die Messungen mit PACX-MPI (siehe Tabelle 6.2) zeigten die htheren Kommu-
nikationskosten bei Nutzung von Ethernet. Daher kann erwartet werden, dass
die Lastverteilungskosten in solch einer Umgebung durch mLB noch stirker re-
duziert werden.

Generell ist in Abbildung 6.9 zu beobachten, dass bei Erhohung der Anzahl
an PEs die Kosten von mLB nur gering steigen. Eine Skalierbarkeit der Anwen-
dung ist somit nicht gefihrdet.

Der Aufwand von mLB im Verhiltnis zur Gesamtlaufzeit der Anwendung
ist in Abbildung 6.11 zu sehen.

Hier wird besonders deutlich, dass die Zusatzkosten von mLB nur einen sehr
geringen Anteil an der Gesamtlaufzeit darstellen. Diese Tatsache zusammen mit
der grofien Laufzeitverbesserung zeigt die hohe Effizienz von mLB.

6.5 Validierung durch eine bestehende FEM-An-
wendung

Einige Parameter konnten erst durch Beobachtung des Verhaltens einer realen
FEM-Anwendung eingestellt werden. Dieses betrifft insbesondere die Féhigkeit,
auf den Teilpartitionen, die durch die modifizierte Lastverteilung entstanden
sind, weiterzuarbeiten und den Wert fiir das zeitabhéngige Monitoring.

6.5.1 Voraussetzungen fiir die Nutzung einer FEM-An-
wendung

Um mLB in ein bestehendes Finite Elemente Werkzeug zu integrieren, muss
dieses die folgenden Voraussetzungen erfiillen:

88

KAPITEL 6. VALIDIERUNG

Laufzeit einer Simulation und Kosten von mLB

! ' G'esamtlatljfzeit mii mLB L
| Monitoring—Kosten
1200 | Lokalisierung des Ungleichgewichts --------
| Gesamtkosten flir angepasste Lastverteilung
| durchschnittl. Jostle-Laufzeit
|
|
|
|
1000 | \‘ e
|
|
|
|
|
800 \‘ i
\
c \
[0)
©
c
2 \
[} 600 \ E
»
\
400 \ g
\
\
200 E
0* i S— S——— | Ed— SR —— ———— E—— A—
0 10 20 30 40 50 60 70 80

PEs

Abbildung 6.11: Laufzeiten und Kosten von mLB

Parallelitét: Die Software muss bereits in einer parallelen Version vorlie-
gen.

MPI: Die Kommunikation wird mittels MPI realisiert.

Adaptivitét: wihrend der Laufzeit sollte sich die Last dndern, da anson-
sten Lastverteilung nicht bené6tigt wird.

Die Anzahl der adaptiven Werkzeuge ist jedoch stark begrenzt.

Datenmigration: Es muss moglich sein, zur Laufzeit Last zu verschieben.
Programmiersprachen wie z. B. Fortran77 bieten keine dynamische Spei-
cherverwaltung. Implementierungen, die diese Sprache einsetzen, kénnen
daher nicht genutzt werden. Dieses reduziert die Anzahl der in Frage
kommenden Werkzeuge, da auch heutzutage diese Programmiersprache
aufgrund ihrer Unterstiitzung der Mathematik verbreitet ist. Ein weite-

6.5. VALIDIERUNG DURCH EINE BESTEHENDE FEM-ANWENDUNGS89

rer Grund liegt darin, dass viele FEM-Werkzeuge iiber eine lange Histo-
rie verfiigen. Diese hochkomplexe und sehr umfangreiche Software zu re-
implementieren wiirde zu einem groffen Aufwand fithren, ihr Nutzen ist
im Verhéltnis jedoch zu gering.

Die aktuelle Implementierung von mL B wurde speziell auf gitterbasierte An-
wendungen abgestimmt. Die Schnittstellen zur Anwendung sind angepasst an
deren Erfordernisse. Um diese Schnittstellen nutzen zu kénnen, miissen folgende
Punkte erfiillt sein:

e Messbarkeit von Berechnungsabschnitten, die Berechnungseinheiten re-
prasentieren, die im Verhéltnis zur Anzahl der Zellen stehen.
Als Lasteinheit dient eine Gitterzelle. Es muss daher moglich sein, den
Aufwand fiir die Berechnung einer Zelle zu messen, und diese durch die
Schnittstelle mLB zu iibergeben.

e Vorliegen des dualen Graphen

Diese Voraussetzungen werden von dem Werkzeug padfem? [BKMO03] erfiillt,
das an der Universitdt Paderborn von Dr. Stephan Blazy und Oliver Marquardt
entwickelt wurde.

Fiir Parameterstudien wurde mLB in padfem? integriert. Die erzielten Er-
gebnisse werden im Folgenden vorgestellt.

6.5.2 Parameterstudien
Zeitabhingiges Monitoring:

Monitoring bei jedem kollektiven Aufruf fithrt zu sehr hohen Laufzeiten.
Die gewonnenen Messwerte dienen der Darstellung des aktuellen Netz-
werkzustandes und sollen auch jenen in der nahen Zukunft darlegen. Die
Aktualitéit der Messwerte ist also zeitabhéngig. Daher wurde ein Zeitin-
tervall gesucht, innerhalb dessen die Messungen hochstens durchgefiihrt
werden.

Es wurde eine Variable MONITORING_INTERVAL eingefiihrt, die den
minimalen Abstand in Sekunden zwischen zwei Messungen angibt. Soll ei-
ne Messung erfolgen, so wird zunéchst iiberpriift, ob zwischen der letzten
Messung und der anstehenden mindestens MONITORING_INTERVAL
Sekunden liegen. Ist dieses der Fall, so erfolgt eine neue Messung, an-
sonsten unterbleibt sie.

Testldufe mit padfem? haben ergeben, dass ein Monitoring-Intervall von
vier Sekunden eine gute Grofle darstellt. Der Overhead bleibt damit gering,
die Aussagekraft der Messungen ist vorhanden.

Die Nutzung einer festen Variablen stellt keine endgiiltige Losung dar.
Die Abstédnde zwischen den Messungen sollten abhéingig vom Verhalten
der Anwendung sein.

90 KAPITEL 6. VALIDIERUNG

Arbeiten auf neu erstellten Partitionen:

Mit mLB werden oftmals nur Teilgitter neu partitioniert. Abhéngigkeiten
zwischen diesen Teilgittern und dem Gesamtgitter werden nicht betrach-
tet.

Bei den Testlidufen mit padfem? ergaben sich jedoch keine Schwierigkeiten
bei der Fortfithrung der Berechnung auf dem neu partitionierten Gitter.

6.6 Geplante Funktionalititen

Alle Konzepte konnten weitgehend umgesetzt werden. Manche Entscheidungen
basieren jedoch auf festen Schwellwerten, anstatt auf dynamisch angepassten
Parametern.

Insbesondere sind davon folgende Bereiche betroffen:

DIFF_TOLERANCE: Dieser Parameter bestimmt die Granularitit der Sub-
system-Bildung. Er ist derzeit auf einen festen Wert (1.6) gesetzt. Hier
muss gepriift werden, ob und gegebenenfalls wann eine dynamische An-
passung sinnvoll ist und wie diese aussehen kann.

Anzahl gemittelter Messwerte: Kommunikations- und Berechnungsge-
schwindigkeiten bilden sich aus gemittelten Messwerten. Derzeit bilden je
50 Messwerte dafiir die Basis. Es muss iiberpriift werden, inwiefern dieser
Wert fiir die Darstellung des Systemzustands geeignet ist. Ein grofier Wert
repréasentiert einen durchschnittlichen Zustand. Je kleiner dieser Wert ist,
desto mehr représentiert er die aktuelle Situation. Eine Untersuchung, ob
dieser Wert abhéingig von der Dauer der Anwendung oder anderen Para-
metern ist, ist wiinschenswert.

Monitoring-Intervall: Derzeit wird ein zeitabhéngiges Monitoring eingesetzt,
um ein Uberfluten von Messungen zu vermeiden. Geeigneter erscheint je-
doch ein Monitoring abhéngig vom Verhalten der Anwendung.

In einer FEM-Anwendung werden die Rechenzeiten zwischen zwei Last-
verteilungszyklen immer ldnger, da sich die Anzahl an Zellen im Laufe
der Berechnung immer wenig dndert. Monitoring sollte daher auch immer
seltener oder aber zeitnah zu dem Lastverteilungszyklus stattfinden. Ein
Messen der Kommunikationsverbindungen nur direkt vor dem Lastvertei-
lungsaufruf ist eine weitere Alternative, die iiberpriift werden miisste.

Neben der Analyse dieser Parameter, muss noch ein Konzept zur Kosten-
Nutzen-Analyse entwickelt werden.

Die entstehenden Kosten fiir Lastverteilung konnen zum Teil abgeschéitzt
werden und auf entstandenen basieren, vorausgesetzt die Kosten der letzten
Lastverteilungszyklen liegen vor.

6.7. ZUSAMMENFASSUNG 91

Der Nutzen lisst sich jedoch nur schwer feststellen. Es miissten dafiir Vor-
hersagen getroffen werden iiber eventuelle Laufzeitverbesserungen. Nur dann
kann entschieden werden, ob Lastverteilung durchgefiihrt wird oder nicht.

Derzeit wird als Schwellwert fiir Lastverteilung der Wert 0,09 gesetzt. Dieser
reduziert sich jedoch bei der Lokalisierung des Ungleichgewichts automatisch um
0,01, falls nicht ausreichend Lastverteilungspartner gefunden werden konnten.

6.7 Zusammenfassung

In diesem Kapitel wurde die Erfiillung der Anforderungen an die Lastvertei-
lungssteuerung durch mLB {iberpriift. Dabei wurden zwei Teilaspekte getrennt
evaluiert: das Monitoring des Netzwerks und die darauf aufbauenden Funktio-
nen von mLDB selbst.

Durch Messungen des Aufwandes von Ping-Pong-Kommunikationen wur-
de die Skalierbarkeit der Monitoring-Funktionen nachgewiesen. Die Evaluie-
rung einer geeigneten Nachrichtengrofle fiir diese Messungen und der zeitlichen
Absténde zwischen ihnen, fithrte zu einem guten Kosten-Nutzen-Verhéltnis und
bestéitigt damit auch die Effizienz des Monitorings.

Die Wirksamkeit von mLB wurde durch Laufzeitmessungen eines FEM-
Simulators gezeigt. Durch Anpassung der Last an die zur Verfiigung stehenden
Ressourcen einer Recheneinheit und minimierter Lastverteilung (in Bezug auf
Anzahl ihrer Aufrufe, beteiligte PEs und Anzahl zu verteilender Graphknoten)
konnten grofie Laufzeitgewinne erzielt werden. Diesen hohen Gewinnen stehen
nur niedrige Zusatzkosten entgegen. Die Effizienz von mLB ist daher sehr grof3.

92

KAPITEL 6. VALIDIERUNG

Kapitel 7
Resiimee

In der vorliegenden Arbeit wurden Konzepte und deren Umsetzung fiir die
Steuerung von Lastverteilung in Grid-Umgebungen vorgestellt. Dabei wurde
der Fokus auf die Verteilung von Last datenparalleler Anwendungen gesetzt.

Zunéchst wurden dafiir die Merkmale von Umgebung, Anwendung und Last-
verteilung herausgestellt und analysiert.

Bei der Analyse der Grid-Umgebung zeigte sich, dass ihre Leistungsfihigkeit
aus Sicht der Anwendung stark abhéngig von der Auslastung ist. Nur durch
Monitoring zur Laufzeit kann daher eine Bewertung des Systems erfolgen. Das
Monitoring muss dabei Effizienz, Skalierbarkeit und Verfiigbarkeit bieten, um
die Effizienz der Endanwendung nicht zu gefdhrden.

Die Untersuchung unterschiedlicher Monitoring-Werkzeuge endete mit dem

Resultat, dass keines der vorgestellten Werkzeuge den Anforderungen entsprach.
Aus diesem Grund wurde ein eigenes Monitoring entwickelt, das zum einen durch
Ping-Pong-Messungen das Netzwerk analysiert und zum anderen die Dauer von
Berechnungsschritten der Anwendung misst.
Die Evaluierung dieses Monitorings zeigte seine hohe Effizienz durch geringe
Laufzeiten und hohen Informationsgehalt. Gesteuert durch das Verhalten der
Anwendung, konnte Verfiigbarkeit der Monitoring-Daten gewahrleistet werden.
In Bezug auf Skalierbarkeit zeigten sich Schwichen des Netzwerkmonitorings.
Es stellte sich jedoch heraus, dass diese durch Optimierung eines Algorithmus,
der die Kommunikationspartner festlegt, hergestellt werden kann.

Im Mittelpunkt standen adaptive, parallele FEM-Anwendungen. Ihre Ar-
beitsweise kennzeichnet sich dadurch, dass nach Rechenphasen immer wieder
Kommunikationsphasen stattfinden, in denen Informationen zwischen den Pro-
zessoren synchron ausgetauscht werden. Diese Synchronisationspunkte werden
unter anderem dazu genutzt, Lastverteilung durchzufiihren.

Fiir Lastverteilung werden dabei meist vorhandene Werkzeuge eingesetzt, die
effizient die zu verschiebende Last bestimmen. Ohne Steuerung der Anwendung
zielen diese darauf ab, die Last in gleichen Anteilen auf die Prozessoren zu
verteilen.

93

94 KAPITEL 7. RESUMEE

Das im Rahmen dieser Arbeit entwickelte Werkzeug mLB greift in diesen
Prozess ein, indem es die Hohe der optimalen Last als Eingabeparameter fiir
den Lastverteiler der Anwendung bestimmt. Diese basiert auf den gewonnenen
Monitoring-Daten und zielt darauf ab, die Anwendungslast der zur Verfiigung
stehenden Leistungsfahigkeit anzupassen.

Testergebnisse zeigten, dass dieses Vorgehen zu extremen Laufzeitverbesse-
rungen fithrt. Durch Anpassung der Last werden die Synchronisationspunkte
von allen Prozessen nahezu gleichzeitig erreicht. Wartezeiten an diesen Punkten
reduzierten sich um mehrere Faktoren.

Neben dieser effizienten kapazitdtenabhéingigen Verteilung der Last, wird
auch das Netzwerk beriicksichtigt. Basierend auf den Ergebnissen des Netz-
werkmonitorings wird zur Laufzeit eine Hierarchie aufgebaut, die den aktuel-
len Status der Kommunikationsverbindungen reprisentiert. mLB bestimmt mit
Hilfe dieser Hierarchie, welche Prozesse Lastverteilung durchfiihren und gegebe-
nenfalls, mit welchen anderen Prozessen sie ihre Last umverteilen, stets mit dem
Ziel, die schnellsten Verbindungen zu nutzen. Dadurch kénnen mehrere paral-
lel laufende Gruppen von Prozessen, die jeweils untereinander Lastverteilung
durchfiihren, entstehen.

Messungen haben gezeigt, dass auch dieses Konzept ein hohes Leistungspo-
tenzial birgt. Lastverteilung wird oftmals nur auf wenigen Prozessoren, und da-
mit auch mit geringerer Last, aufgerufen. Enorme Zeitersparnis zeigt sich, wenn
Lastverteilung nur zwischen Prozessoren, die iiber gemeinsamen Speicher kom-
munizieren, durchgefiithrt wird. Die Laufzeiten des Lastverteilungswerkzeuges
reduzieren sich dann drastisch, auch durch die geringere Last, deren Verteilung
es neu zu bestimmen gilt.

Mit mLB wurde ein verteiltes, skalierbares, adaptives Werkzeug entwickelt,
mit dessen Hilfe es gelingt, die Effizienz von Anwendungen in Grid-Umgebungen
zu steigern. Durch die minimal notwendigen Eingriffe in den Code, lisst sich
mLB problemlos in vorhandene Anwendungen integrieren. Das macht es nicht
nur zu einem leistungsfahigen, sondern auch anwendbaren Werkzeug fiir effizi-
ente Berechnungen in der Grid-Umgebung.

Literaturverzeichnis

[AJC00]

[Amd67)

[APK*03]

[Bar95]

[BDH*99)

[BKMO03]

[BL02]

[BSY4]

[Cyb89]

R.J. Allan, J.M.Brooke, and F. Costen. Grid-based High-
Performance Computing. Technical report, UKHEC Collaboration,
http://www.dl.ac.uk/TCSC/UKHEC/metacomputing/metacom-
puting.pdf, May 2000.

G.M. Amdahl. Validity of the single processor approach to achie-
ving large-scale computing capabilities. In AFIPS Conference Pro-
ceedings, page 483. AFIPS Press, 1967.

S. Agarwala, C. Poellabauer, J. Kong, K. Schwan, and M. Wolf.
System-Level Resource Monitoring in High-Performance Computing
Environments. Journal of Grid Computing, 1:273 — 289, 2003.

Stephen T. Barnard. PMRSB: Parallel Multilevel Recursive Spectral
Bisection. In Proceedings of the Supercomputing ’95, December 1995.

Erik Boman, Karen Devine, Robert Heaphy, Bruce Hendrickson,
William Mitchell, Matthew St. John, and Courtenay Vaughan. Zol-
tan home page. http://www.cs.sandia.gov/Zoltan, 1999.

S. Blazy, O. Kao, and O. Marquardt. padfem — An Efficient, Com-
fortable Framework for Massively Parallel FEM-Applications. In
Proceedings of EuroPVM/MPI 2003, pages 681-685, 2003.

Christopher A. Bohn and Gary B. Lamont. Load Balancing on a He-
terogeneous Cluster of PCs. Future Generation Computer Systems,
18:389 — 400, January 2002.

Stephen T. Barnard and Host D. Simon. A Fast Multilevel Imple-
mentation of Recursive Spectral Bisection for Partitioning Unstruc-

tured Problems. Concurrency: Practice and Exzperience, 6(2):101—
17, April 1994.

George Cybenko. Dynamic Load Balancing for Distributed Memory

Multiprocessors. Journal of Parallel and Distributed Computing,
7:279 — 301, 1989.

95

96

[DHB02]

[DMPY7]

[EHR*98]

[EMP00]

[FK03]

[FWMOA4]

[Gen99)

[Glo]
[Gro91]

[GTCH00]

[HB93]

LITERATURVERZEICHNIS

Sajal K. Das, Daniel J. Harvey, and Rupak Biswas. MinEX: a
latency-tolerant dynamic partitioner for grid computing applicati-
ons. Future Generation Computer Systems, 18:477-489, 2002.

Ralf Diekmann, Burkhard Monien, and Robert Preis. Load Ba-
lancing Strategies for Distributed Memory Machines. In H. Satz
F. Karsch, B. Monien, editor, Multi-Scale Phenomena and Their
Simulation, pages 255 — 266. World Scientific Singapore, New Jer-
sey, London, Hong Kong, 1997.

Th. Eickermann, J. Henrichs, M. Resch, R. Stoy, and R. Vdlpel.
Metacomputing in Gigabit Environments: Networks, Tools and Ap-
plications. Parallel Computing, 24:1847 — 1872, 1998.

Robert Elsésser, Burkhard Monien, and Robert Preis. Diffusive
Load Balancing Schemes on Heterogeneous Networks. In G. Bilar-
di et al, editor, 12th ACM Symposium on Parallel Algorithms and
Architectures (SPAA), volume 1461, pages 30 — 38, 2000.

I. Foster and C. Kesselman. The Grid: Blueprint for a New Com-
puting Infrastructure. Morgan Kaufmann Publishers, Inc., 2003.

Geoffrey C. Fox, Roy D. Williams, and Paul C. Messina. Parallel
Computing Works! Morgan Kaufmann Publishers, Inc., 1994.

Wolfgang Gentzsch. Metacomputing: from workstation clusters to
Internet computing. Future Generation Computer Systems, 15:537
— 538, 1999.

The global grid forum home page. http://www.ggf.org.

William Gropp and Ewing L. Lusk. Reproducible Measurements of
MPI Performance Characteristics. In Jack Dongarra, Emilio Luque,
and Tomas Margalef, editors, 6th Furopean PVM/MPI Users’ Group
Meeting, pages 11-18, 1999.

The Globus Alliance: Globus Toolkit.

W. Gropp. Parallel Computing and Domain Decomposition. Tech-
nical report, Mathematics and Computer Science Division, Argonne
National Laboratory, 1991.

D. Gunter, B. Tierney, B. Crowley, M. Holding, and J. Lee. Net-
Logger: A Toolkit for Distributed System Performance Analysis. In
Proceedings of the IEEE Mascots 2000 Conference, 2000.

Y. F. Hu and R. J. Blake. Initial Experience with Multilevel Recur-
sive Spectral Bisection Algorithm. Information Quaterly for High
Performance Computing in Engineering 4, SERC Daresbury Labo-
ratory, October 1993.

LITERATURVERZEICHNIS 97

[HB99]
[hip]
[IEE93)

[inf]
[JLK*99]

[jos]
[KBM*02]

[KDF+03]

[KK97]

[KK98]

[KL70]

[LO1]

[Loe]

[LMK™*03]

Y. F. Hu and R. J. Blake. An improved diffusion algorithm for
dynamic load balancing. Parallel Computing, 25:417-444, 1999.

Webpage High-Performance Parallel Interface (HIPPI) Standards
Activities. http://www.hippi.org.

IEEE. IEEE Standard for the Scalable Coherent Interface (SCI). In
IEEE Std, pages 1596-1992. IEEE Computer Society, 1993.

Infiniband. http://www.infinibandta.org.

H. Jasak, J.Y. Luo, B. Kaludercic, A.D. Gosman, H. Echtle, Z. Li-
ang, F. Wirbeleit, M. Wierse, S. Rips, A. Werner, F. Fernstom, and
A. Karlsson. Rapid CFD Simulation of Internal Combustion Engi-
nes. In International Congress and Exposition, Detroit, Michigan,
number 1999-01-1185. SAE, March 1999.

Jostle homepage. http://staffweb.cms.gre.ac.uk /~c.walshaw /jostle/.

Thilo Kielmann, Henri E. Bal, Jason Maassen, Rob van Nieuwpoort,
Lionel Eyraud, Rutger Hofman, and Kees Verstoep. Programming
environments for high-performance Grid computing: the Albatross
project. Future Generation Computer Systems, 18:1113-1125, 2002.

Ken Kennedy, Jack Dongarra, Geoffrey Fox, William Gropp, and
Dan Reed. Parallel Programming Considerations. In Jack Dongar-
ra, lan Foster, Geoffrey Fox, William Gropp, Ken Kennedy, Linda
Torczon, and Andy White, editors, Sourcebook of Parallel Compu-
ting, pages 43 — 71. Morgan Kaufmann Publishers, 2003.

George Karypis and Vipin Kumar. A Fast and High Quality Mul-
tilevel Scheme for Partitioning Irregular Graphs. Technical report,
University of Minnesota, August 1995, updated in 1997.

George Karypis and Vipin Kumar. Multilevel Algorithms for Multi-
Constraint Graph Partitioning. Technical Report 98-019, University
of Minnesota, May 1998.

B. W. Kernighan and S. Lin. An efficient heuristic procedure for
partitioning graphs. The Bell System Technical Journal, 49(2):291
-307, February 1970.

R. Lohner. Applied CFD Techniques. J. Wiley & Sons, 2001.

R. Lohner. Pictures from Simulations.
http://www.scs.gmu.edu/~rlohner/pages/pics/compflows.html.

B. Lowekamp, N. Miller, R. Karrer, T. Gross, and P. Steenkiste.
Design, Implementation, and Evaluation of the Remos Network Mo-
nitoring System. Journal of Grid Computing, 1:75 — 93, 2003.

98

[LTT)]

[MCC04]

[Mes03]

[MPO1]

[mpial

[mpib]
[myr]

[nws06]

[0A02]

[pac]

[par]

[per]

[PK03]

[pvim]

[qua]

LITERATURVERZEICHNIS

M. Leese, R. Tyer, and R. Tasker. Network Performance Mo-
nitoring for the Grid. UK e-Science, 2005 All Hands Meeting,
http://gridmon.dl.ac.uk.

Matthew L. Massie, Brent N. Chun, and David E. Culler. The
Ganglia Distributed Monitoring System: Design, Implementation,
and Experience. Parallel Computing, 30, July 2004.

Paul Messina. Distributed Supercomputing Applications. In Ian
Foster and Carl Kesselman, editors, The Grid: Blueprint for a New
Computing Infrastructure. Morgan Kaufmann, 2003.

Thierry Monteil and Patricia Pascal. Task Allocation Using Proces-
sor Load Prediction on Multiprocessors Cluster. In Dan Grigoras,
Alex Nicolau, Bernard Toursel, and Bertil Folliot, editors, Advan-
ced Environments, Tools, and Applications for Cluster Computing,
IWCC 2001, pages 126 — 135, 2001.

MPICH homepage. http://www-unix.mes.anl.gov/mpi/mpich.

The Message Passing Interface (MPI) standard. http://www-
unix.mes.anl.gov/mpi.

Myrinet. http://www.myri.com/myrinet/overview.

Informationsseite iiber SGI®NUM Alink™ Interconnect Fa-
bric. http://www.sgi.com/products/servers/altix/numalink.html,
February 2006.

A. Osman and H. Ammar. Dynamic load balancing strategies for
parallel computers. In Proceedings of the First International Sympo-
stum on Parallel and Distributed Computing (ISPDC’2002), 2002.

PACX-MPI homepage. http://www.hlrs.de/organization/pds/pro-
jects/pacx-mpi.

ParMETIS homepage. http://glaros.dtc.umn.edu/gkhome /metis/par-
metis/overview.

Description of MPPTEST.
http://www-unix.mcs.anl.gov/mpi/mpich/perftest.

N. Podhorszki and P. Kacsuk. Monitoring Message Passing App-
lications in the Grid with GRM and R-GMA. In Proceedings of
EuroPVM/MPI’2003, Venice, Ttaly, 2003.

PVM homepage. http://www.csm.ornl.gov/pvm/.

Qsnet von Quadrics. http://www.quadrics.com.

LITERATURVERZEICHNIS 99

[RBB198] M. Resch, T. Beisel, H. Berger, K. Bidmon, E. Gabriel, R. Kel-

[Res01]

[RNO1]

[RRS99)

[Sim00]

[SKK97]

[SKKO03]

[spe]

[spe06]

[SSLK00]

[ter]

[Tur96]

ler, and D. Rantzau. Clustering T3Es for Metacomputing Ap-
plications. In Cray User Group Proceedings. Available online at
http:/ /www.cug.org, 1998.

Michael Resch. Metacomputing in Simulationsanwendungen. PhD
thesis, Universitat Stuttgart, 2001.

Tiberiu Rotaru and Hans-Heinrich Négeli. Heterogeneous Dynamic
Load Balancing. In Dan Grigoras, Alex Nicolau, Bernard Toursel,
and Bertil Folliot, editors, Advanced Environments, Tools, and App-
lications for Cluster Computing, IWCC 2001, pages 136 — 144, 2001.

Michael M. Resch, Dirk Rantzau, and Robert Stoy. Metacompu-
ting Experience in a Transatlantic Wide Area Application Testbed.
Future Generation Computer Systems, 15:807 — 816, 1999.

Jens Simon. Werkzeugunterstiitzte effiziente Nutzung von Hochlei-
stungsrechnern. PhD thesis, Paderborn University, Berlin, Februar
2000. Blunk-Verlag, ISBN 3-934445-03-9.

Kirk Schloegel, George Karypis, and Vipin Kumar. Multilevel Dif-
fusion Schemes for Repartitioning of Adaptive Meshes. Technical
report: 97-013, University of Minnesota, Department of Computer
Science, June 1997.

Kirk Schloegel, George Karypis, and Vipin Kumar. Graph partitio-
ning for high-performance scientific simulations. In Jack Dongarra,
Tan Foster, Geoffrey Fox, William Gropp, Ken Kennedy, Linda Torc-
zon, and Andy White, editors, Sourcebook of Parallel Computing,
pages 491 — 541. Morgan Kaufmann Publishers, 2003.

SPEC (Standard Performance Evaluation Corporation) homepage.
http://www.spec.org/.

Webpage: All SPEC CPU2000 Results Published by SPEC.
http://www.spec.org/cpu2000/results/cpu2000.html, February
2006.

Arjen Schoneveld, Peter M.A. Sloot, Martin Lees, and Erwan Ka-
ryadi. A framework for dynamic load balancing: A case study on
explosive containment simulation. Parallel Computing, 26:737 — 751,
2000.

The teragrid home page. http://www.teragrid.org.

S. Turek. Recent Benchmark Computations of Laminar Flow
Around a Cylinder. In Proc. 3rd World Conference in Applied Com-
putational Fluid Mechanics, Freiburg, 1996.

100 LITERATURVERZEICHNIS

[WCO01] C. Walshaw and M. Cross. Multilevel Mesh Partitioning for Hete-
rogeneous Communication Networks. Future Generation Comput.
Syst., 17(5):601 — 623, 2001.

[WCE195] C. Walshaw, M. Cross, M. G. Everett, S. Johnson, and K. McMa-
nus. Partitioning & Mapping of Unstructured Meshes to Parallel
Machine Topologies. In A. Ferreira and J. Rolim, editors, Procee-
dings of Irregular °95: Parallel Algorithms for Irreqularly Structured
Problems, volume 980 of LNCS, pages 121 — 126. Springer, 1995.

[WCE96] C. Walshaw, M. Cross, and M. G. Everett. Parallel Partitioning
of Unstructured Meshes. In P. Schiano et al, editor, Parallel Com-
putational Fluid Dynamics: Algorithms and Results Using Advanced
Computers, pages 174-181. Elsevier, Amsterdam, 1997. (Proc. Par-
allel CFD’96, Capri, 1996).

[WCE97] C. Walshaw, M. Cross, and M. G. Everett. Parallel Dynamic Graph
Partitioning for Adaptive Unstructured Meshes. Journal of Parallel
and Distributed Computing, 47(2):102-108, 1997. originally publis-
hed as Univ. Greenwich Tech. Rep. 97/IM/20.

[WLR93] Marc H. Willebeek-LeMair and Anthony P. Reeves. Strategies for
Dynamic Load Balancing on Highly Parallel Computers. I[IEEE
Transactions on Parallel and Distributed Systems, 4(9):979 — 993,
1993.

[Wol03] Rich Wolski. Experiences with Predicting Resource Performance
On-line in Computational Grid Settings. ACM SIGMETRICS Per-
formance Evaluation Review, 30(4):41 — 49, March 2003.

[WSH99] Rich Wolski, Neil T. Spring, and Jim Hayes. A network weather
service: a distributed resource performance forecasting service for
metacomputing. Future Generation Computer Systems, 15:757 —
768, 1999.

[xt3] Produktbeschreibung Cray XT3. http://www.cray.com/products/xt3/.

Anhang A

Abkiirzungsverzeichnis

ALB:
AP:
LAN:

MPP:

SAN:
SMP:

WAN:

Anwendungslastbalancierer
Anwendungsprozess

Local Area Network

Massively Parallel Processing
System Area Network
Symmetrisches Multiprozessorsystem

Wide Area Network

101

102 ANHANG A. ABKURZUNGSVERZEICHNIS

Anhang B

Benutzerschnittstelle

Anwendungsmonitor

Fiir das Monitoring der Anwendung werden folgende Funktionen eingesetzt:

e AppCurrentTime()
e AppMonitor()

void AppCurrentTime(void)

Ausgabe:

return value elapsed time on the calling processor
Funktion fiir die Zeitmessungen: gibt die Zeit in Sekunden an, die seit einem

bestimmten Zeitpunkt vergangen ist;
derzeit realisiert durch MPI_Wtime() (= gettimeofday())

103

104

ANHANG B. BENUTZERSCHNITTSTELLE

void AppMonitor(char *entry, void *value)

Ubergabe von Parametern an den AM,

entry gibt dabei an, um welchen Ubergabewert es sich handelt, value den Wert

an sich

Eingabe:
char *entry
“nprocs”
"ncells”
9 prOC”
71cells”
b : b
mig_num

”mig_proc”
”mig_time”
71b_time”
”new_local_nodes’
b lbﬂ
?calc_time”

)

?print”
”end_lb_cycle”
string”
”cell_calc_time”

” get_avg_cell _time”

void *value

LBS-Modul

one of following strings:

number of processes

number of global nodes

own ID (MPI rank)

number of local cells

number of cells to migrate
proc ID to which to migrate
time for cell migration

time for Ib tool

number of current local cells

0 (=no 1b done) or 1 (=Ib done)
time between 2 1b cycles

own proc ID (MPI rank)
indicates next lb cycle

prints any string to output file
calculation time for one cell
returns average time for
calculation of one cell

value, depends on entry

Fiir die Nutzung der Lastverteilungssteuerung stehen der Anwendung fol-

gende Funktionen zur Verfiigung:

e AppBeforeLoadBalancing()
e AppDoMetaL.B()

e AppAfterLoadBalancing()
e AppAfterLoadTransfer()

105

int AppBeforelLoadBalancing (int myrank, int nproc,

Eingabe:
int myrank
int nprocs
int global_nodes
int local_nodes

MPI_Comm com

Ausgabe:

int global_nodes, int local_nodes,
MPI_Comm com)

own rank

number of processes

total number of load elements (cells)
number of local load elements (cells)

communicator

return value 2 in case of initial partitioning (Ib necessary)

1 if load balancing necessary

0 if not

Hier wird die Zeitmessung eines Berechnungszyklus gestoppt, Lastparameter
erfasst (Lastmenge etc.) und das Lastgleichgewicht bestimmt.

void AppDoMetalB (int
int
int
int
int
int

nnodes, int offset, int core, int halo,
*index, int *degree, int *node_wt,
*partition, int local_nedges, int *edges,
*edge_wt, int *network, int *processor_wt,
output_level, int dimension, double* coords,
1b_phase, int *global_nodes_lb_part,

int *local_nodes_opt)
Eingabe:
alle Jostle Parameter
int Ib_phase load balancing phase (2 = initial Ib, 1 = runtime 1b)
Ausgabe:
int *global_nodes_Ib_part total number of cells of each load balancing
partition
int *local_nodes_opt optimal number of local cells (based on cal-

culation speed)

Aufruf des Meta-Lastverteilers. Diese Schnittstelle ist angelehnt an den Auf-
ruf zum Anwendungslastverteiler Jostle. Die ersten Parameter sind identisch zu
denen von Jostle, nur die letzten drei sind mL B-spezifisch.

106 ANHANG B. BENUTZERSCHNITTSTELLE

Durch diesen Aufruf wird das Ungleichgewicht lokalisiert, Datenstrukturen
fiir den ALB (Jostle) vorbereitet und der ALB (Jostle) fiir das entsprechende
Subsystem aufgerufen.

void AppAfterLoadBalancing(int myrank, int procs)
Eingabe:
int myrank own rank
int nprocs number of processes
Hat Lastverteilung stattgefunden, so wird hier lediglich die Zeit fiir den
letzten Lastverteilungszyklus festgehalten und die Erfassung der Migrationszeit

gestartet. Das Einbinden dieser Funktion ist optional, da eine Kosten-Nutzen-
Rechnung derzeit nicht durchgefithrt wird.

void AppAfterLoadTransfer(int myrank, int procs)
Eingabe:
int myrank own rank
int nprocs number of processes
Erfassung der Migrationszeit nach Beendigung der Durchfithrung. Das Ein-

binden dieser Funktion ist optional, da eine Kosten-Nutzen-Rechnung derzeit
nicht durchgefiithrt wird.

Anhang C

Architektur der
Testumgebung

Folgendes stammt von der Homepage des PC? (www.upb.de/pc2):

Architecture of the ARMINIUS cluster

* System Configuration
o 400 processors 64-bit INTEL Xeon
o 16 processors AMD Opteron
o 2.6 TFLOPS peak performance
o 900 GByte main memory
* Compute Node Configuration (200 nodes)
o Dual INTEL Xeon 3.2 GHZ EM64T
o 4 GByte main memory
o 80 GByte local disk
o InfiniBand HCA PCI-e
* Visualization Node Configuration (8 nodes)
o Dual AMD Opteron 2.2 GHz AMD64
o 8 GByte main memory
o nVidia Quadro FX 4500 PCI-e
o InfiniBand HCA PCI-e
* Infiniband Switch Fabric Configuration
o 216 port InfinIO 9200
Disk Storage Configuration
o 5 TByte Fibre Channel RAID
o 10 TByte parallel file system
* Software Configuration
o 64-bit Linux Redhat AS 4
o GNU Tools
o INTEL Compiler C/C++, Fortran
o0 Message Passing Interfaces

*

107

108 ANHANG C. ARCHITEKTUR DER TESTUMGEBUNG

Scali MPI-Connect
NCSA MPICH-vmi
0SU MvAPICH
INTEL MPI
o Scientific libraries
+ INTEL MKL
+ ATLAS
+ Goto Lib
o Scientific Visualization
+ AMIRA

+ 4+ +

+

