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Kurzfassung

Simulationstechniken haben einen immer höheren Stellenwert in Industrie und
Wissenschaft. Ihre hohe Komplexität wird oft durch den Einsatz von Parallel-
rechnern bewältigt. Durch Simulation immer komplexerer Sachverhalte reichen
selbst diese oftmals nicht aus, um effizient Berechnungen durchführen zu können.
Umgebungen wie das Grid, in dem eine Vielzahl von leistungsstarken Ressourcen
gekoppelt sind, stellen dafür eine geeignete Plattform bereit.

Die Simulationsprogramme, entwickelt für eine homogene Umgebung, wie sie
ein Parallelrechner darstellt, weisen jedoch Defizite auf, wenn eine heterogene
und dynamische Umgebung wie das Grid genutzt werden soll. Dieses betrifft
insbesondere die Lastverteilung, die eine effiziente Ressourcenausnutzung und
damit auch kurze Laufzeiten ermöglicht.

Das Ziel dieser Arbeit war daher, eine Lastverteilungssteuerung für Grid-
Umgebungen zu entwickeln, die Anwenderprogramme und deren Lastvertei-
lungswerkzeuge unterstützt, die Heterogenität und Dynamik des Grids zu nut-
zen.

Dafür wurden Methoden entwickelt und evaluiert, die durch Monitoring
die Umgebung abtasten und analysieren und auf Basis dieser gewonnenen In-
formationen die Kommunikationsstruktur der Umgebung ebenso wie die Lei-
stungsfähigkeit der Recheneinheiten erfassen und für Lastverteilung verwerten.

Dabei wird der Heterogenität der Recheneinheiten dadurch Rechnung getra-
gen, dass ihre Leistungsfähigkeit zur Laufzeit gemessen und die optimale Last
entsprechend dieser Ergebnisse ermittelt wird.

Die Kommunikationsverbindungen werden berücksichtigt, indem Last mög-
lichst nur zwischen Recheneinheiten mit schnellen Verbindungen umverteilt wird,
sofern dieses zu einem ausreichenden Lastgleichgewicht des kompletten Systems
führt. Hierfür wird eine hierarchische Struktur benutzt, die zur Laufzeit ermit-
telt wird und den aktuellen Netzwerkzustand repräsentiert.

Sowohl der Aufbau dieser Hierarchie als auch Lastverteilungsentscheidungen
werden verteilt getroffen, ohne Einsatz einer zentralen Instanz, was Ausfallsi-
cherheit und Skalierbarkeit unterstützt.

Eine Umsetzung und Validierung des Konzepts wurde durch das Werkzeug
mLB (meta Load Balancer) realisiert.
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Kapitel 1

Einleitung

1.1 Motivation

In den letzten Jahren haben Simulationstechniken stark an Bedeutung gewonnen
[L0̈1]. Die Minimierung der Entwicklungskosten eines Produktes ist nur einer
von vielzähligen Gründen. Oftmals muss die Funktionsfähigkeit eines Produk-
tes simulativ geprüft werden, bevor die Produktion eines Prototypen beginnen
kann. Hierzu zählt z. B. die Motorentwicklung. Bei jeder geplanten Änderung der
Brennraumgeometrie können Motorinnenströmungen und Verbrennungsprozes-
se simuliert werden, anstatt jedesmal einen kompletten Motor produzieren und
testen zu müssen. Neben Kostenersparnis wird hier auch Zeitersparnis erreicht,
wichtig, um heutzutage konkurrenzfähig zu bleiben.

Die Entwicklung von Schiffen, Flugzeugen oder auch Raumfahrzeugen ist
ohne vorherige Simulation undenkbar geworden.

In anderen Bereichen ist die Simulation die einzige Möglichkeit, Phänomene
zu erforschen. Vorhersagen über das Wetter oder aber auch von Naturkata-
strophen, wie z. B. die Auswirkungen von Tsunamis und Gletscherschmelzen,
gehören hierzu. Das Einstein-Jahr 2005 brachte viele Simulationen aus dem Be-
reich der numerischen Relativität hervor. Auf dem Gebiet der Astrophysik sind
schwarze Löcher ebenfalls nicht ohne Simulationen zu erkunden. Beispiele von
Simulationen zeigt Abbildung 1.1 1.

Was all diesen Anwendungsbeispielen gemeinsam ist, ist ihre hohe Kom-
plexität, die eine enorme Leistungsfähigkeit der Rechenressource erfordert. Es
müssen Gleichungen mit Millionen von Unbekannten gelöst werden, deren Be-
rechnungen mehrere Tage beanspruchen können [Tur96].

Sequentielle Software stößt hier schnell an ihre Grenzen. Die Kapazität des
Hauptspeichers reicht nicht aus und die Simulationszeiten werden unakzeptabel
hoch. Daher gibt es zunehmend parallele Anwendungen, die besonders auch auf
massiv parallelen Systemen arbeiten.

1mit freundlicher Genehmigung von Prof. Dr. R. Löhner
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2 KAPITEL 1. EINLEITUNG

Strömungssimulation eines Schiffes Strömungssimulation einer Kühlflüssigkeit um einen Chip

Abbildung 1.1: Beispiele von Strömungssimulationen [Loe]

Die immer komplexer werdenden Anwendungen stehen der Entwicklung von
zugreifbaren Ressourcen gegenüber. Diese werden immer leistungsfähiger und
verfügbarer. Betrachtet man z. B. die Rechenkapazitäten von Ein- und Mehr-
prozessormaschinen, so erkennt man ihren hohen Leistungszuwachs: Zirka alle
fünf Jahre verdreifacht sich die Leistungsfähigkeit von Prozessoren und Spei-
chern.

Aber nicht nur die Leistungsfähigkeit der einzelnen Maschinen ist angestie-
gen, sondern auch ihre Verfügbarkeit. Viele Institutionen besitzen heutzutage ei-
gene leistungsstarke Rechenressourcen, die vor wenigen Jahren nur in großen Re-
chenzentren vorzufinden waren. Dieses hohe Potenzial an Rechenkapazität hat
viele Bereiche des Hochleistungsrechnens vorangetrieben. Es ermöglicht Rech-
nungen auf lokalen Maschinen, die sonst nur durchzuführen waren, wenn Ma-
schinen von Hochleistungsrechenzentren genutzt werden konnten.

Ein großer Bereich des Hochleistungsrechnens befasst sich mit Struktur- und
Strömungssimulationen. Diese Anwendungen, die vor Jahren nur auf großen Par-
allelrechnern bearbeitet werden konnten, können heutzutage zum Teil schon auf
einzelnen Maschinen berechnet werden. Um jedoch noch komplexere Simula-
tionen durchführen zu können, reichen keineswegs einzelne Systeme aus. Selbst
große Parallelrechner reichen oftmals nicht aus, um hochkomplexe Aufgaben zu
lösen.

Um dieses zu ermöglichen, müssen Hochleistungsrechner gekoppelt werden.
Eine Umgebung, die dieses leistet, ist das Grid. Das Grid ist definiert als eine
Hochleistungsressource, die durch die Kopplung mehrerer Rechenressourcen zu-
stande kommt [FK03].

Das Vorhandensein des Grids schließt jedoch keinesfalls eine effiziente Nut-
zung mit ein. Ohne Unterstützung können parallele Anwendungen diese Hoch-
leistungsressource meist nicht angemessen nutzen. Entwickelt für ein homogenes
System, wie es Parallelrechner darstellen, sind diese Anwendungen im Allgemei-
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nen nicht in der Lage, die Heterogenität des Grids zu beachten und diese für
eine effiziente Berechnung auszunutzen.

Die Motivation, das Grid zu nutzen, liegt für den FEM2-Anwender in zwei
Hauptzielen begründet:

• Die Machbarkeit von Berechnungen: Durch Einsatz des Grids kann die
Komplexität der Anwendung um Faktoren erhöht werden.

• Schnellere Ausführungszeiten: Durch Nutzung des Grids können Laufzei-
ten drastisch reduziert werden.

Für beide Aspekte bedarf es einer Unterstützung der Anwendung, insbeson-
dere im Bereich Lastverteilung. Eine intelligente Lastverteilung gewährleistet die
Machbarkeit von Ausführungen dadurch, dass Prozesse nicht vorzeitig aufgrund
des Fehlens von Ressourcen abgebrochen werden müssen. Zudem werden durch
eine optimale Verteilung der Rechenlast schnellere Ausführungszeiten erreicht.

1.2 Ziel der Arbeit

Das Ziel von Lastverteilungsmethoden für Struktur- und Strömungssimulatio-
nen ist im Allgemeinen die gleichmäßige Aufteilung des Simulationsgebietes auf
die Prozessoren. Diese Gleichverteilung der Rechenlast ist angemessen für ho-
mogene Umgebungen, wie sie z. B. bei Parallelrechnern zu finden ist. Das Grid
hingegen ist gekennzeichnet durch die unterschiedliche Leistungsfähigkeit der
eingesetzten Ressourcen. Um dieser Heterogenität gerecht zu werden und ei-
ne effiziente Lastverteilung zu ermöglichen, bedarf es einer Unterstützung der
Anwendung, die die Charakteristika des Grids berücksichtigen.

Ziel ist es aber nicht, neue Lastverteilungsmethoden zu entwickeln, sondern
vorhandene, bewährte Strategien dabei zu unterstützen, ihre Berechnungen an
die Umgebung anzupassen.

Dafür müssen drei Aspekte betrachtet werden:

• die Charakteristika der parallelen Anwendungen, bzw. die Merkmale der
zu verteilenden Last und ihre Abhängigkeiten voneinander,

• die Lastverteilungsmethoden in Abhängigkeit von der Klasse der Anwen-
dungen und

• die Charakteristika der Grid-Umgebung.

Abbildung 1.2 zeigt die Wechselwirkung dieser drei Aspekte. Die Umgebung
beeinflusst das Laufzeitverhalten der Anwendung. In einer leistungsstarken Um-
gebung können kürzere Laufzeiten als in einer leistungsschwächeren erwartet
werden. Die Anwendung setzt Lastverteilung ein, um optimierte Laufzeiten zu

2Finite Element Method, verbreitete Methode in der Strömungssimulation
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Lastverteilung

Umgebung

Anwendung

wirkt auf

wirkt auf

ruft auf

Abbildung 1.2: Wechselwirkung der Hauptkomponenten

erreichen.
Wurde Lastverteilung bisher unabhängig von der Umgebung betrachtet, so gilt
es nun, eine Verbindung zwischen Lastverteilung und Umgebung herzustellen,
um durch eine adäquate Lastverteilungssteuerung eine hohe Effizienz der An-
wendung zu erreichen.

1.3 Aufbau der Arbeit

Die Grundlagen für die drei Hauptkomponenten Anwendung, Lastverteilung
und Umgebung sind Thema von Kapitel 2. Ausgehend von deren Merkmalen,
werden in Kapitel 3 Anforderungen für eine geeignete Lastverteilungssteuerung
abgeleitet. Das Lösungskonzept ist Thema von Kapitel 4, das die entwickelten
Strategien zur adaptiven Steuerung von Lastverteilung vorstellt. Die Umsetzung
dieser Konzepte, die durch das Werkzeug mLB realisiert wurde, ist Inhalt von
Kapitel 5. Kapitel 6 zeigt die Ergebnisse der Validierung von mLB. Ein Resümee
bildet in Kapitel 7 den Abschluss dieser Arbeit.



Kapitel 2

Begriffsklärung/Grundlagen

2.1 Begriffsklärung

In diesem Abschnitt werden grundlegende Begriffe erklärt.

Bandbreite: Bandbreite ist die Differenz zwischen der höchsten und niedrig-
sten Frequenz einer Verbindung, d. h. die Breite ihres reservierten Fre-
quenzbandes. Meist ist hiermit jedoch die Daten(transfer)rate gemeint,
die angibt, wieviele Daten pro Sekunde über eine Netzwerkverbindung
übertragen werden können.

Effizienz: Effizienz ist das Verhältnis eines in definierter Qualität vorgegebe-
nen Nutzens zu dem Aufwand, der zur Erreichung des Nutzens nötig ist.
Ein effizientes Verhalten führt daher wie auch ein effektives Verhalten zur
Erzielung eines Nutzens, hält aber im Unterschied zu diesem den dafür
notwendigen Aufwand möglichst gering.

Last: Last bezeichnet hier die Rechenlast der Anwendung, die durch die Pro-
blemgröße gegeben ist und auf die sich der Lastverteiler der Anwendung
bezieht. Sie besteht aus mehreren Lasteinheiten. Bei gitterbasierten An-
wendungen bilden die Gitterzellen die Lasteinheiten.

Latenz: Latenz gibt die Zeitspanne an, die ein Datenpaket vom Sender zum
Empfänger benötigt.

PE: In dieser Arbeit wird vorausgesetzt, dass auf jeder Recheneinheit ein An-
wendungsprozess bearbeitet wird. Damit bilden sie eine Einheit. Für die
einfachere Lesbarkeit wird hier der Begriff

”
PE“ für

”
Anwendungsprozess,

der auf einer Recheneinheit bearbeitet wird“ verwendet.

Recheneinheit: eine CPU mit dazugehörigen Komponenten.

Rechenknoten: System, bestehend aus einer oder mehreren Recheneinheiten,
wie z. B. Multiprozessor-Architekturen.

5
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Skalierbarkeit: Eine Anwendung gilt allgemein als skalierbar, wenn größere
parallele Konfigurationen in der gleichen Zeit proportional größere Pro-
bleme lösen können als kleinere Probleme auf kleineren Konfigurationen
[KDF+03]. Ein gut skalierbares paralleles Programm benötigt bei der dop-
pelten Anzahl von Prozessoren die Hälfte der Rechenzeit.
In dieser Arbeit wird unter Skalierbarkeit von Zusatzkosten verstanden,
dass die Gesamtzusatzkosten maximal proportional zu der Anzahl an Pro-
zessoren wachsen.
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2.2 Grundlagen

Im folgenden Abschnitt werden zunächst die Prinzipien der Zielanwendung be-
schrieben. Die Charakteristika des Grids zusammen mit den Zielsetzungen der
Lastverteilung führen in Abschnitt 3.1 zu einem Anforderungskatalog, dessen
Punkte erfüllt werden müssen, um adäquate Lastverteilung für Anwendungen,
wie z. B. Strömungssimulationen, durchführen zu können.

2.3 Charakteristika der Anwendungen

Numerische Strömungssimulation (Computational Fluid Dynamics, CFD)
ist die systematische Anwendung von Rechensystemen und numerischen Lösungs-
techniken auf mathematische Modelle, die entworfen wurden, um Strömungs-
phänomene zu beschreiben und zu simulieren.

CFD gehört zu einem Bereich von Simulationstechniken, die von Ingenieu-
ren und Physikern genutzt werden, um das Verhalten eines ingenieurwissen-
schaftlichen Produkts oder einer physikalischen Situation vorherzusagen oder
zu rekonstruieren.

In der numerischen Strömungssimulation sind Finite Elemente Verfahren
(Finite Element Methods, FEM) eine weit verbreitete Technik. Dabei wird ein
geometrischer Raum durch die Benutzung eines Gitters diskretisiert, indem das
Grundgebiet in einfache Teilgebiete, die so genannten Gitterzellen, zerlegt wird.
Für diese Teilgebiete werden dann jeweils eine oder mehrere numerische Glei-
chungen gelöst. Abbildung 2.1 1 zeigt die Oberflächengitter eines Space-Shuttles
und die eines Autos.

Oberflächengitter eines Autos Oberflächengitter eine Shuttles 

Abbildung 2.1: Beispielgitter [Loe]

1mit freundlicher Genehmigung von Prof. Dr. R. Löhner
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Die Simulation beginnt, indem für jede Zelle Berechnungen durchgeführt
werden. Das geschieht solange, bis eine vorgegebene Restabweichung eingehalten
oder unterschritten wird.

Handelt es sich um eine adaptive Anwendung, so wird das Gitter abhängig
von dem zuvor erhaltenen Ergebnis an markanten Punkten (z. B. Stoßkanten)
verfeinert und auf diesem veränderten Gitter weitergearbeitet (siehe Abbildung
2.2).

�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
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�������������������
�������������������

�������������������
�������������������
�������������������

Abbildung 2.2: Beispiel einer Gitterverfeinerung

Gitteränderungen können aber auch durch sich verändernde Geometrien er-
folgen. So ändert sich der Innenraum eines Zylinders durch die Bewegung des
Kolbens. Im Ansaugtakt wird der Raum immer größer, da der Kolben sich nach
unten bewegt. Damit erhöht sich die Anzahl an Zellen mit jedem Grad Kur-
belwellenwinkel. Am unteren Totpunkt kann die Zellanzahl durchaus auf das
Doppelte angestiegen sein [JLK+99]. Abbildung 2.3 zeigt das Gitter einer Mo-
torgeometrie (Zylinder, Ein- und Auslasskanal) zur Simulation von Strömungs-
und Verbrennungsprozessen, links am oberen Totpunkt, rechts am unteren.

360 Grad Kubelwellenwinkel: 148.342 Zellen 540 Grad Kurbelwellenwinkel: 273.738 Zellen

Abbildung 2.3: Beispiel einer Gitteränderung durch Kolbenbewegung

Diese Veränderung der Zellanzahl führt auch zur Veränderung der Rechen-
last. Es müssen mehr numerische Gleichungen gelöst werden. Das Datenauf-
kommen auf den betroffenen Recheneinheiten steigt erheblich. Aus anfänglich
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Hunderttausenden können Millionen von Gleichungen werden [Tur96]. Der Spei-
cherplatzbedarf solch einer Anwendung übersteigt dann oftmals die vorhande-
nen Ressourcen. Ist die Rechenplattform nicht leistungsfähig genug, muss ein
Abbruch der Berechnung erfolgen.

Parallele Software hingegen bietet die Möglichkeit des Einsatzes von mehre-
ren Rechenressourcen, um diese Rechenlast zu bewältigen. Insbesondere massiv
parallele Systeme mit mehreren hundert Rechenknoten bilden eine geeignete
Plattform für diese Anwendungen.

2.3.1 Parallele Anwendungen

Für die parallele Berechnung muss das Gitter auf die Prozessoren verteilt wer-
den. Dafür wird es in Teile zerlegt (Gebietszerlegung). Auf jeder dieser Teile
(Partitionen) wird dann die Berechnung durchgeführt, unterbrochen durch den
Informationsaustausch zwischen den Prozessoren. Abbildung 2.4 zeigt den prin-
zipiellen Ablauf einer parallelen FEM-Anwendung.

Lösen 
numerischer
Gleichungen

Lösen 
numerischer
Gleichungen

Prozessor 0

Lösen 
numerischer
Gleichungen

Lösen 
numerischer
Gleichungen

Prozessor 1

Lösen 
numerischer
Gleichungen

Lösen 
numerischer
Gleichungen

Prozessor n−1

Informationsaustausch

Abbildung 2.4: Ablauf einer parallelen FEM-Anwendung

Die Randzellen jeder Partition haben sogenannte Halozellen. Das sind Ko-
pien der angrenzenden Nachbarzellen, die auf einer entfernten Recheneinheit
liegen. Dadurch liegen die Informationen über diese Zellen bereits während der
Berechnung vor, d. h. es muss bei Bedarf nur auf die Halozellen auf der lokalen
Recheneinheit zugegriffen werden, anstatt eine Kommunikation mit der entspre-
chenden entfernten Recheneinheit durchzuführen. In jeder Iteration werden die
Informationen aller Randzellen einer Partition, deren Kopien sich als Halos auf
einer bestimmten Recheneinheit befinden, gemeinsam an die entsprechenden
Recheneinheiten geschickt. So wird für jeden benachbarten Prozessor nur eine
Nachricht benötigt. Dennoch bedeutet das Vorhandensein vieler Randzellen ein
hohes Kommunikationsaufkommen, da die Nachrichtengröße abhängig von der
Anzahl der zu verschickenden Zellen ist.
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Ändert sich das Gitter, so erfolgt dies zum Ende der Berechnung hin oftmals
nur in einigen wenigen Regionen (z. B. Stoßkanten oder kleinerer Raum im
Kompressionstakt) und damit auch auf einigen wenigen Recheneinheiten.

Die Anzahl an Zellen und somit die Rechenlast auf jeder Recheneinheit ent-
wickelt sich dadurch unterschiedlich. Dieses führt zu einem Ungleichgewicht,
das die Effizienz der Berechnung stark beeinträchtigen kann. Um Effizienzver-
lusten vorzubeugen, wird daher die Rechenlast neu verteilt, also Lastverteilung
durchgeführt.

2.4 Konzepte der Lastverteilung

Lastverteilung dient dazu, verteilte Anwendungen zu optimieren. Dabei steht
im Allgemeinen die Minimierung der Laufzeit einer verteilten Anwendung im
Vordergrund. Andere Aspekte, wie z. B. Speicherauslastung, können ebenfalls
Ziele von Lastverteilung sein.

Um die Optimierung der Gesamtlaufzeit zu erreichen, ist das Hauptziel von
Lastverteilung, gleiche Rechenzeiten aller Prozesse durch angemessene Vertei-
lung der Rechenlast zu erzielen. Dieses Ziel basiert auf der Grundlage, dass der
Prozess mit der höchsten Laufzeit die Gesamtlaufzeit bestimmt.

2.4.1 Lastverteilungsgrundlagen

Lastverteilung kann grundsätzlich zu zwei unterschiedlichen Zeitpunkten aus-
geführt werden:

• zu Beginn einer Berechnung (initiale Partitionierung) und

• während einer Berechnung (Lastrepartitionierung)

Bei der initialen Partitionierung werden die zu berechnenden Daten in
Teile zerlegt, um sie dann anschließend über die Recheneinheiten zu verteilen.
Im Allgemeinen wird dieses zentral, d. h. von einer einzelnen Recheneinheit,
durchgeführt. Eine gute initiale Partitionierung ermöglicht den Beginn einer ef-
fizienten Berechnung.

Wird während einer Berechnung ein Ungleichgewicht, z. B. durch Verfeine-
rung des Gitters, erzeugt, sind große Effizienzverluste zu erwarten. In diesem
Fall muss die Last balanciert werden. Das kann entweder durch

• Neu-Partitionierung oder

• Lastumverteilung

erreicht werden.



2.4. KONZEPTE DER LASTVERTEILUNG 11

Bei der Neu-Partitionierung werden die Daten auf einer Recheneinheit
gesammelt, um anschließend wieder, wie bei der initialen Partitionierung, neu
verteilt zu werden. Dieser Ansatz hat sich insbesondere dann bewährt, wenn
z. B. durch programmiertechnische Einschränkungen kein Verschieben der Last
von einem Prozessor zu einem anderen möglich ist. Dieses gilt z. B. für Program-
me, die in Fortran 77 geschrieben sind und keine dynamische Speicherverwaltung
unterstützen.

Bei einer Lastumverteilung wird während des Simulationsprozesses die
Last zu anderen Prozessoren verschoben (Lastmigration). Erfolgt diese Umver-
teilung dynamisch zur Laufzeit und ist sie abhängig von der Lastentwicklung
während der Berechnung, so wird dies als dynamische Lastverteilung be-
zeichnet.

Entstehen Lastunterschiede durch Veränderungen, die zur Laufzeit auftre-
ten, wie z. B. die Veränderung der Zellenanzahl bei Gitterverfeinerungen, dann
muss dynamische Lastverteilung eingesetzt werden, um eine effiziente Berech-
nung zu erzielen. In dieser Arbeit werden nur Methoden der dynamischen Last-
verteilung betrachtet, da nur diese für komplexe, dynamische Simulationsan-
wendungen geeignet sind.

Der Lastverteilungszyklus

Soll Lastverteilung stattfinden, so erfolgt dieses in mehreren Schritten. Diese
bilden wiederum einen Lastverteilungszyklus. Ein Lastverteilungszyklus besteht
aus einer Entscheidungsphase und einer Durchführungsphase.
In der Entscheidungsphase werden folgende Fragestellungen beantwortet:

• Wann wird Lastverteilung durchgeführt?

• Wieviel Last muss migriert werden?

• Welche Last muss migriert werden?

• Wohin/Woher muss Last migriert werden?

Hierbei wird oftmals nur der erste Teil, d. h., wann wird Lastverteilung
durchgeführt, von der Endanwendung bearbeitet. Die anderen Bereiche werden
dann von Lastverteilungswerkzeugen übernommen. Hier stehen dem Benutzer
eine Vielzahl von mächtigen Werkzeugen zur Verfügung (siehe Kapitel 2.4.4).

In der Durchführungsphase erfolgt die Lastmigration. Daten werden ver-
schoben und müssen auf einer anderen Recheneinheit integriert werden. Diese
Migration erfordert einen erheblichen Eingriff in die Daten und Datenstruktu-
ren der Anwendung. Daher kann die Migration nur von der Anwendung selbst
geleistet werden.
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2.4.2 Lastverteilung für gitterbasierte Anwendungen

In dieser Anwendungsklasse sind Gebietszerlegungsmethoden weit verbrei-
tet: Das Gesamtgebiet wird in Teilgebiete zerlegt, auf denen dann parallel die
Berechnung erfolgt. Abbildung 2.5 zeigt die Zerlegung eines Gebietes in vier
Teilgebiete.

Prozessor 1Prozessor 0

Prozessor 2 Prozessor 3

Abbildung 2.5: Teilpartitionen auf vier Prozessoren

Um adäquate Lastverteilungsmethoden entwickeln zu können bzw. vorhan-
dene Werkzeuge auswählen zu können, müssen die Charakteristika der zu vertei-
lenden Last und ihre Abhängigkeiten untereinander bekannt sein. Im Folgenden
wird daher die Arbeitsweise von parallelen Finite-Elemente-Anwendungen be-
schrieben.

Die Gitterstruktur einer FEM-Anwendung wird auf einen Graphen, den so-
genannten dualen Graphen, abgebildet (siehe Abbildung 2.6). Dabei bildet
jede Gitterzelle einen Knoten, Knoten benachbarter Zellen werden durch Kan-
ten verbunden. Dieser Graph spiegelt die Berechnungen, dargestellt durch die
Knoten des Graphen, und die Kommunikation, dargestellt durch die Kanten des
Graphen, wider.

Bei einer parallelen Anwendung existieren sogenannte Schnittkanten zwi-
schen den einzelnen Teilgraphen. Diese sind Kanten, die über Prozessorgrenzen
hinweg führen und notwendige Kommunikation zwischen den Prozessoren re-
präsentieren. Sei also G = (V,E) dualer Graph, V die Menge der Knoten, E
die Menge der Kanten, e = (v, w) ∈ E eine Kante von Knoten v zu Knoten
w, v, w ∈ V , PEi, PEj PEs, v wird von PEi berechnet, w von PEj , i 6= j.
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Abbildung 2.6: Abbildung eines Beispielgitters auf den dualen Graphen

Dann ist e = (v, w) Schnittkante. Die Anzahl an Schnittkanten zwischen zwei
PEs wird als Schnitt bezeichnet. Abbildung 2.7 zeigt dazu ein Beispiel.

Partition 2 auf PE2Partition 1 auf PE1

Partition 3 auf PE3 Partition 4 auf PE4

Partition 1 auf PE1 Partition 2 auf PE2

Partition 3 auf PE3 Partition 4 auf PE4

SchnittkantenProzessorgrenze

Gitter in 4 Teilpartitionen dualer Graph mit Schnittkanten

w

v

Abbildung 2.7: Beispiel von Schnittkanten

Ein wichtiges Merkmal der Arbeitsweise von FEM-Anwendungen ist der re-
ge Datenaustausch zwischen benachbarten Elementen und, abhängig vom ma-
thematischen Verfahren, dem geringen Austausch globaler Informationen unter
den einzelnen Teilgebieten. Jedes Element erhält Daten von seinem benach-
barten Element, zusätzlich werden in manchen Methoden wenige globale Da-
ten benötigt. Bei iterativen Lösern zum Beispiel berechnet jeder Prozessor die
Norm des Residuums über seinen Teil des Gitters. Alle Prozessoren benötigen
den minimalen Wert von diesem, um zu entscheiden, ob die Lösung konvergiert
(näheres siehe [FWM94]). Dieses bedingt globalen Datenaustausch.

Da eine hohe Anzahl an nötigem Datenaustausch zwischen den Elementen
erforderlich ist, sollte dieser so wenig wie möglich über Prozessorgrenzen hinweg
geschehen. Neben dem allgemeinen Ziel von Lastverteilung, die Last gleichmäßig
zu verteilen, führt der letzte Aspekt zu dem weiteren Ziel, die Anzahl an Schnitt-
kanten, d. h. den Schnitt, zu minimieren.
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Um diesen Anforderungen gerecht zu werden, bedarf es komplexer graphen-
theoretischer Kenntnisse, und aufwändiger Umsetzung zu einer lauffähigen An-
wendung. Diese Komplexität führte dazu, dass die Entwicklung von Lastver-
teilungsmethoden für gitterbasierte Anwendungen oftmals nicht vom CFD-Ent-
wickler selbst geleistet wurde, sondern in einem eigenständigen Forschungsgebiet
Fuß fasste. Durch die dualen Graphen wurde eine einheitliche Datenstruktur ge-
schaffen, die die Schnittstelle zu den Lastverteilern bildet und auf denen diese
arbeiten können.

2.4.3 Integration von Lastverteilung

Während der Laufzeit findet regelmäßig ein Datenaustausch zwischen den Zellen
statt. Diese Zeitpunkte stellen Synchronisationspunkte der Anwendung dar, an
denen Kommunikation zwischen den Prozessoren stattfindet. Da alle an Lastver-
teilung beteiligten Prozessoren zur gleichen Zeit diese initiieren müssen, werden
dafür die Synchronisationspunkte genutzt (siehe Abbildung 2.8).

������������������������������������������������������

������������������������������������������������������

Lösen 
numerischer
Gleichungen

Lösen 
numerischer
Gleichungen

Prozessor 0

Lösen 
numerischer
Gleichungen

Lösen 
numerischer
Gleichungen

Prozessor 1

Lösen 
numerischer
Gleichungen

Lösen 
numerischer
Gleichungen

Prozessor n−1

Informationsaustausch
Lastverteilung

Abbildung 2.8: Ablauf einer parallelen FEM-Anwendung mit Lastverteilung

2.4.4 Lastverteilungswerkzeuge

Die Aufgabe der Lastverteilungswerkzeuge besteht darin, basierend auf dem
dualen Graphen, zu entscheiden, welche Knoten zu welcher Partition verschoben
werden müssen, um ein Lastgleichgewicht (wieder-)herzustellen. Die eigentliche
Migration der Gitterzellen übernimmt die Anwendung selbst, da dieses ein Zu-
griff auf die Daten der Anwendung erfordert.

Bei der Auswahl von Lastverteilungsalgorithmen werden nur parallele Algo-
rithmen betrachtet, da bei Einsatz von massiv-parallelen Systemen sequentielle
Methoden nicht geeignet sind. Für eine sequentielle Lastverteilung ist es erfor-
derlich, zunächst die Daten auf einem zentralen Prozessor einzusammeln, neu
zu partitionieren, um sie dann wieder neu zu verteilen. Dieses Vorgehen ist nicht
anwendbar in der Gridumgebung, da
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• es einen beträchtlichen sequentiellen Bottleneck gibt (da der Geschwindig-
keitszuwachs nach Amdahl [Amd67] vor allem vom sequentiellen Anteil des
parallelen Problems abhängt),

• oftmals nicht genügend Hauptspeicher auf einer Hostmaschine verfügbar
ist, um das gesamte verteilte Gitter zu speichern und

• hohe Kosten beim Kommunizieren mit dem gesamten Gitter entstehen

• und damit auch die notwendige Skalierbarkeit gefährdet ist.

Die Hauptziele der Lastverteilung für gitterbasierte Anwendungen sind:

1. Gleichmäßige Verteilung der Last auf alle Prozessoren, so dass alle Pro-
zessoren zur gleichen Zeit an einem Synchronisationspunkt ankommen.

2. Minimierung der Interprozessor-Kommunikation, so dass Zusatzaufwand
vermieden wird.

Bezugnehmend auf den dualen Graphen (siehe Abschnitt 2.4.2), bedeutet dies:

1. Teilung des Graphen in Partitionen mit der gleichen Anzahl von Knoten

2. Minimierung des Schnitts

Um dieses NP-vollständige Problem zu lösen, wurden viele Heuristiken und
leistungsstarke Methoden entwickelt [BS94, KK97, WCE+95, SKK03, WLR93,
OA02, FWM94, Gro91].

Eine Vielzahl von ihnen zielt darauf ab, das Gitter zu Beginn der Berech-
nung sequentiell in gleiche Teile zu zerlegen. Die so entstandenen Teilpartitionen
werden dann auf die Prozessoren verteilt.

Dynamisches Verhalten einer Anwendung, z. B. durch Gitterverfeinerung
oder aber Strukturänderungen, erfordert jedoch auch eine Umverteilung der Last
zur Laufzeit. Dieses wird durch dynamische Lastverteilungsmethoden [DMP97,
WCE97] erreicht. Anstatt die Teilgitter auf einem Prozessor zu sammeln und
das daraus entstehende Gesamtgitter wiederum neu zu zerlegen, werden bei
diesen Verfahren einzelne Gitterzellen von Prozessor zu Prozessor verschoben
[SSLK00]. Neben der gleichen Lastmenge je Prozessor und der Schnittkanten-
minimierung wurden nun auch Lastumverteilungskosten betrachtet. Ein weiteres
Ziel dieser Verfahren liegt daher in der Minimierung der notwendigen Migrati-
onskosten. Dieses wird realisiert durch Minimierung der Anzahl zu verschieben-
der Gitterzellen zusammen mit dem Verschieben zwischen möglichst wenigen
Prozessoren.

So ist das Ziel von Diffusionsverfahren [Cyb89, HB99], den Unterschied zwi-
schen der Original-Partition und der neuen Partition so minimal wie möglich
zu halten. Dieses wird dadurch erreicht, indem sie inkrementelle Veränderungen
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an der Partitionierung vornehmen, um ein Gleichgewicht herzustellen.

Multilevel-Verfahren [Bar95, HB93, KK98, SKK97, WC01] sind heutzuta-
ge weitverbreitete Methoden hoher Güte. Sie bestehen aus mehreren Phasen.
In der ersten Phase wird der duale Graph durch Zusammenfassen von Knoten
vergröbert und das Problem damit verkleinert. Auf dieser reduzierten Problem-
größe wird dann der entsprechende Algorithmus, um geeignete Partitionen zu
berechnen, ausgeführt. In der letzten Phase wird der Graph bis zu seiner Origi-
nalgröße wieder verfeinert. Dabei werden bestimmte Optimierungsvorschriften
beachtet.

Jostle [jos] und ParMETIS [par], die populärsten Werkzeuge in diesem Ge-
biet, bieten neben dem Einsatz von Multilevel-Verfahren auch die Möglichkeit,
unterschiedlich große Teilpartitionen zu generieren. Sie ermöglichen es der FEM-
Anwendung, Werte, die sich auf die Partitionsgrößen beziehen, bei ihrem Aufruf
mit anzugeben. Diese Werte beinhalten den Anteil an Gesamtgitterzellen, den
jeder Prozessor erhalten soll. Jostle bzw. ParMETIS erzeugen daraufhin die
gewünschten Partitionsgrößen. Die Benutzung von Zoltan [BDH+99] gewährlei-
stet ebenso diese Funktionalität. Allerdings benutzt Zoltan als Lastverteilungs-
methoden unter anderem Jostle und ParMETIS.

Jostle bietet noch eine weitere, interessante Funktionalität für heteroge-
ne Umgebungen. Es eröffnet die Möglichkeit, heterogene Netzwerke mit zu
berücksichtigen. Dafür erwartet es einen gewichteten Prozessorgraphen, der das
Kommunikationsnetzwerk repräsentiert. Ziel ist es nun, den dualen Graphen
auf diesen Prozessorgraphen abzubilden. Dafür wird die in Jostle verwende-
te Multilevel-Methode in der letzten Phase erweitert. Jostle optimiert in dieser
Phase den Schnitt durch Austausch von Knoten zwischen Partitionen (basierend
auf dem Kernighan-Lin-Algorithmus [KL70]). Wenn es durch diesen Austausch
zu einer Verringerung des Schnitts kommt, so werden diese Knoten vertauscht.
In der modifizierten Version entscheidet das Gewicht der betroffenen Kante im
Prozessorgraph, ob ein wirklicher Gewinn erreicht werden kann.
Soll diese Funktionalität von Jostle benutzt werden, so bleibt es allerdings der
Anwendung überlassen, den Prozessorgraphen zu erstellen.

Hier wird deutlich, dass die Betrachtung der Umgebung eine Grundvoraus-
setzung für eine effiziente Lastverteilung darstellen kann. Daher werden im fol-
genden Abschnitt die Charakteristika der Zielumgebung aufgezeigt.

2.5 Charakteristika der Zielumgebung

2.5.1 Entwicklung des Gridcomputings

Schon lange besteht der Wunsch, Rechenressourcen zu koppeln. Das Verschalten
von Workstations, PCs, SMPs, etc., um nicht genutzte Ressourcen einzusetzen
und die Verfügbarkeit von hohen Rechenkapazitäten bereit zu stellen, ist heut-
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zutage weit verbreitet. Unterstützt wurde dieses Bestreben von PVM (Parallel
Virtual Machine) [pvm], einem Software Paket, das die Verschaltung von und
den Nachrichtenaustausch zwischen Rechnern, auch unterschiedlicher Architek-
tur, vereinfacht. PVM wurde durch MPICH [mpia], einer Implementierung des
Message Passing Standards MPI (Message Passing Interface) [mpib], weitestge-
hend abgelöst.

In den 1990er Jahren begannen Hochleistungsrechenzentren, Parallelrech-
ner zu verschalten, um die Komplexität aufwändiger Berechnungen noch stei-
gern zu können. So entstand das Metacomputing [Gen99], wie es z. B. am
Höchstleistungsrechenzentrum Stuttgart durchgeführt wurde [Res01]. Zusam-
men mit anderen Hochleistungsrechenzentren, wie z. B. das Leibniz Rechenzen-
trum München oder das Forschungszentrum Jülich, wurden in Deutschland viele
Projekte durchgeführt [EHR+98], bei denen lokale Maschinen wie die Cray T3E,
einer der schnellsten Parallelrechner ihrer Zeit, mit weiteren Hochleistungsrech-
nern über WANs gekoppelt wurden. In anderen Projekten [RRS99] wurden diese
nationalen Rechner auch mit Maschinen aus den USA verbunden, um hochkom-
plexe parallele Rechnungen, wie z. B. die Simulation vom Wiedereintritt eines
Shuttles in die Erdatmosphäre mit der Software URANUS [RBB+98], durch-
zuführen.

Die gemeinsame Nutzung verteilter Ressourcen wurde zu einem gängigen
Prozedere, welches aber wieder neu zu lösende Probleme, wie z. B. Kompati-
bilität der Software, aufwarf. Die Kopplung von Hochleistungsrechnern, eben-
so wie jene von anderen verteilten Ressourcen wiesen ähnliche Probleme und
Möglichkeiten auf. Es entstand das neue Forschungsgebiet des Gridcomputings.

1998 gründeten Grid Entwickler und Anwender das Global Grid Forum
(GGF [ggf]), um Grid Standards zu definieren und Ideen auszutauschen. Fo-
ster [FK03] definiert das Grid als eine Hardware und Software Infrastruktur,
die einen zuverlässigen, konsistenten und kostengünstigen Zugriff auf Hochlei-
stungsrechner ermöglicht.

Das Verschalten und Nutzen dieser Hochleistungsrechenressourcen war in
den letzten Jahren Inhalt vieler Projekte [AJC00, EHR+98]. In der Initiative
TeraGrid [ter] haben sich große Universitäten und Rechenzentren zusammen-
geschlossen, um Rechenleistung von 40 Teraflops und nahezu zwei Petabytes
Speicher zu erreichen. Die Kommunikation des TeraGrids erreicht in einem de-
dizierten, nationalen Netzwerk bis zu 20 Gigabits pro Sekunde.

2.5.2 Leistungen von Grid-Umgebungen

Diese Arbeit fokussiert einen Teil des Gridcomputings besonders, das
”
Distri-

buted Supercomputing“[Mes03], das die Verschaltung mehrerer Hochleistungs-
rechner umfasst.

Abbildung 2.9 zeigt eine Beispielkonfiguration, bei der Hochleistungsrechner
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SAN

LAN

Rechenzentrum C

Rechenzentrum A
Rechenzentrum B

WAN

Abbildung 2.9: Beispielkonfiguration eines
”
Distributed Supercomputers“

verschiedener Rechenzentren gekoppelt sind. Dabei erfolgt die Vernetzung in-
nerhalb von Rechenzentrum B über ein schnelles lokales Netzwerk. Oftmals wird
hier ein HIPPI (High Performance Parallel Interface [hip]) eingesetzt. Die Re-
chenzentren kommunizieren untereinander über ein Wide Area Network (WAN).
Die Kommunikation innerhalb jeder einzelnen Maschine erfolgt über ein System
Area Network (SAN). Dieses kann ein internes Netzwerk des Maschinenherstel-
lers sein, wie z. B. das der Cray XT3 [xt3], oder aber ein Hochleistungsnetzwerk
für PC-Cluster, wie z. B. Infiniband [inf].

Diese Beispielkonfiguration kann als ein heterogener Cluster betrachtet wer-
den, d. h. unterschiedliche Recheneinheiten sind durch unterschiedliche Kommu-
nikationsverbindungen verbunden. Dieser Cluster zeichnet sich im Hinblick auf
Gridcomputing dadurch aus, dass mehrere Parallelrechner und/oder PC-Cluster
miteinander zu einer virtuellen Maschine verschaltet werden. Die Kommunika-
tionsverbindungen zwischen den einzelnen Recheneinheiten variieren somit von
sehr schnellen SANs innerhalb der einzelnen Maschinen über Highspeed-LANs
innerhalb eines Rechenzentrums bis hin zu WANs, die Rechenzentren miteinan-
der verbinden.

In anderen Bereichen des Gridcomputings werden eher Farmen von PCs und
einzelne dedizierte PC-Cluster, verbunden durch LANs und WANs, miteinander
verschaltet.

Was beiden Bereichen gemeinsam ist, ist ihre Heterogenität, sowohl im Be-
reich der Rechenleistung der einzelnen Recheneinheiten als auch im Bereich
ihrer Kommunikationsverbindungen. LAN-Standard-Netzwerke, wie z. B. Fast
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Ethernet, verfügen über bis zu 100 MegaBit pro Sekunde Bandbreite und 80
µs Latenz. Das wesentlich schnellere Gigabit Ethernet ermöglicht Bandbreiten
bis zu einem GigaBit pro Sekunde. Innerhalb von Clustern verbreitete Hoch-
geschwindigkeitsnetzwerke hingegen, wie z. B. Myrinet [myr], Infiniband [inf]
oder QSNet von Quadrics [qua] erreichen Bandbreiten bis zu 9 GBit/s und 2
µs Latenz. Tabelle 2.1 zeigt eine Übersicht über einige verbreitete Verbindungs-
technologien [nws06].

Technologie Anbieter MPI Latenz Bandbreite/Link

µsec, short msg unidirektional,
MBit/s

NUMAlink 4 (Altix) SGI 1 3200

RapidArray (XD1) Cray 1,8 20001

QsNet II Quadrics 2 9002

Infiniband Voltaire 3,5 8303

High Performance
Switch

IBM 5 10004

Myrinet XP2 Myricom 5,7 4955

SP Switch 2 IBM 18 5006

Ethernet verschiedene 30 100

Tabelle 2.1: Latenz und Bandbreiten einiger Verbindungstechnologien

Betrachtet man die Rechenleistung eines Standardprozessors, so beläuft sich
diese auf maximal einen GFLOPS (Giga Floating Point Operations per Second).
Hochleistungsprozessoren, wie z. B. der PowerPC 970, erreichen hingegen bis zu
9,2 GFLOPS.

Die zur Verfügung stehende Leistung kann von diesen Maximalwerten je-
doch nicht abgeleitet werden. Faktoren wie Speicherbandbreite, Cachegrößen
und verfügbarer Hauptspeicher haben einen relevanten Einfluss auf die Leistung
einer Recheneinheit. Außerdem kann sie durch unterschiedliche Auslastungen
oder auch Ausfälle während der Laufzeit variieren. Systemprozesse oder Prozes-
se anderer Benutzer bestimmen den Auslastungsgrad der CPU. Das Netzwerk
ist nicht immer dediziert. Nachrichten müssen sich dann Verbindungen teilen.
Weiterhin können komplette Netzwerkverbindungen ausfallen und im laufenden
Betrieb durch andere, teils wesentlich langsamere, ersetzt werden. Vorausgesetzt
die Software gestattet es, kann z. B. von einem Infiniband-Netzwerk mit einer
Datenübertragungsrate von mehreren Gigabits pro Sekunde auf ein Fast Ether-
net mit bis zu 100 MegaBit pro Sekunde innerhalb eines PC-Clusters umgeschal-
tet werden. Für die Anwendung ist dieses Geschehen vollständig transparent.
Einzig die Geschwindigkeit bei der Übertragung von Nachrichten verändert sich.
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Das Vorhandensein der unterschiedlichen Leistungsfähigkeit im Hinblick auf
Kommunikation und Berechnung wurde im letzten Abschnitt aufgezeigt, ihre
Feststellung und damit Bewertung der Umgebung ist Thema des folgenden Ab-
schnitts.

2.5.3 Bewertungsverfahren

Die Bewertung der Rechenumgebung kann sowohl statisch als auch dynamisch
erfolgen.

Statische Bewertung

Wird die Bewertung der Umgebung statisch bestimmt, so erfolgt dieses vor der
Laufzeit der Anwendung. Entscheidungen, auch während der Laufzeit, basieren
auf diesen ermittelten statischen Kapazitäten.

Statische Kapazitäten von Recheneinheiten ändern sich nicht und bein-
halten Merkmale wie Prozessortyp, Taktfrequenzen, Größe des Hauptspeichers,
Größe des Caches oder auch Busbreiten. Weit verbreitete Prozessoren von Ar-
beitsplatzrechnern sind z. B. der Intel Pentium 3, oftmals getaktet mit Werten
von circa einem Gigahertz. Aktuelle Prozessortypen sind z. B. der Intel Pentium
4 oder AMD Athlon 64 mit einer Taktfrequenz von über drei Gigahertz.

Eine einfache Weise Systeme zu beurteilen, stellt die FLOPS-Rate dar.
FLOPS (Floating Point Operations per Second) gibt die maximale Anzahl an
Fließkomma-Operationen pro Sekunde an, die eine CPU erreichen kann. Damit
bildet dieser Wert eine obere Schranke, die von einer realen Anwendung jedoch
nicht erreicht werden kann.

Zwei der wichtigsten Parameter von Netzwerkverbindungen sind Latenz
und Bandbreite. Niedrige Latenzen und hohe Bandbreiten kennzeichnen leis-
tungsfähige Netzwerke.

Topologien von Netzwerken sind ein weiterer wichtiger Aspekt, um auf ihre
Leistungsfähigkeit schließen zu können. So müssen Nachrichten in Torustopolo-
gien von Knoten zu Knoten weitergeleitet (

”
geroutet“) werden und teilen sich

damit Netzwerkverbindungen. Direkt verschaltete (
”
switched“) Recheneinhei-

ten hingegen haben über einen
”
Switch“(Umschalter) direkte Verbindung zum

Kommunikationspartner.

Die oben beschriebenen Parameter können z. B. Datenblättern entnommen
werden und verändern sich während der Laufzeit nicht.

Eine andere Möglichkeit ist, durch standardisierte Metriken die Leistungs-
fähigkeit eines Systems zu evaluieren (Benchmarking). Für anwendungsspe-
zifisches Benchmarking werden vor dem Anwendungslauf Testmessungen mit
der Anwendung selbst oder einer vergleichbaren Anwendung durchgeführt und
das System bewertet. Standardisierte Benchmarks werden von der

”
Standard
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Performance Evaluation Corporation“(SPEC [spe]) erstellt und gewartet. Die-
se werden auf die neueste Generation von Hochleistungsrechnern angewendet
und die Ergebnisse publiziert. Anhand der Größe des Benchmark-Wertes kann
die Leistungsfähigkeit einer Maschine der anderer Maschinen gegenübergestellt
bzw. bewertet werden. So verfügt z. B. die IBM IntelliStation POWER 285
Workstation mit POWER5+ CPU (1900 MHz) über einen SPECfp2000-Wert
von 2838 und zählt damit derzeit (Februar 2006) zu den schnellsten Maschinen.
Maschinen wie IBM eServer pSeries 660 Model 6H1 mit RS64 IV CPU (600
MHz) erreichen hingegen einen SPECfp2000-Wert von nur 245 [spe06].
Diese Werte zeigen das große Spektrum an Leistungsfähigkeit vorhandener Res-
sourcen.

Sowohl Benchmarking als auch das Zugrundelegen von technischen Daten
sind geeignet, die allgemeine Leistungsfähigkeit von Systemen zu bewerten und
Systeme hinsichtlich ihrer maximal möglichen Leistung zu vergleichen (z. B. für
Kaufentscheidungen). Sollen diese Informationen jedoch für eine Anwendung
von Nutzen sein, so sind diese Verfahren eher geeignet für dedizierte Syste-
me. Es werden bei jeder Rechnung die gleichen Parameter zugrunde gelegt.
Dadurch entsteht eine Reproduzierbarkeit und damit Vergleichbarkeit von Re-
chenläufen. Ein weiterer großer Vorteil ist, dass keine zusätzlichen Verwaltungs-
kosten während der Laufzeit entstehen und damit die Laufzeit der Anwendung
erhöhen. Da die meisten Systeme jedoch von mehreren Anwendern benutzt wer-
den, stehen jedem Prozess geringere Kapazitäten, bedingt durch Ressourcen-
Teilung, zur Verfügung. Daher sind diese Verfahren nur bedingt anwendbar für
Anwendungen auf Mehrbenutzersystemen. Im Hintergrund laufende Betriebs-
systemprozesse erniedrigen zusätzlich die Verfügbarkeit der Ressourcen.

Dynamische Bewertung

Dynamische Kapazitäten werden zusätzlich durch die Auslastung der einzel-
nen Ressourcen bestimmt. In nicht-dedizierten Systemen stehen der Anwendung
durch Betriebssystemprozesse oder Prozesse anderer Benutzer nicht die komplet-
ten Ressourcen zur Verfügung. Die Last ändert sich in Abhängigkeit von dem
Ressourcenverbrauch aller laufenden Prozesse. Um auf Systemzustandsände-
rungen unmittelbar reagieren zu können, erfolgt die Bewertung des Systems
während des Anwendungslaufs.

Ein Nachteil dieses Verfahrens ist der Zusatzaufwand während der Laufzeit,
der durch Beobachtung des Systems entsteht. Eine Reproduzierbarkeit der Mes-
sergebnisse ist ebenfalls durch die Unvorhersehbarkeit des Systemzustands nicht
gegeben.

Um dem dynamischen Charakter des Grids gerecht zu werden, können für
eine angemessene Lastverteilung nur dynamische Verfahren eingesetzt werden,
die die Leistungsfähigkeit einer Ressource zur Laufzeit messen (Monitoring).
Nur auf diese Weise kann gewährleistet werden, dass die Last entsprechend der
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aktuellen Situation von Netzwerk und Recheneinheiten verteilt werden kann.

2.5.4 Monitoring-Systeme

Sowohl für die Analyse der Rechenleistung als auch für die des Netzwerks wur-
den verschiedene Monitoring-Systeme entwickelt. Eine grundlegende Unterschei-
dung betrifft dabei die Zeit der Messwert- bzw. Ergebnisverfügbarkeit. Sie kann
zum einen nach der Laufzeit gegeben sein (Offline-Monitoring) bzw. während
der Laufzeit (Online-Monitoring) [Sim00]. Offline-Monitoring erstellt Protokolle
eines Anwendungslaufes. Mit Hilfe dieser können Performance-Probleme analy-
siert und die Anwendung entsprechend optimiert werden. Beim Online-Monito-
ring kann die Anwendung direkt auf die Daten zugreifen und damit auf System-
zustandsänderungen reagieren.

Zu den Offline-Monitoring Systemen gehören [GTC+00, PK03]. Sie benut-
zen Mechanismen, bei denen das Verhalten der Anwendung mitprotokolliert
wird. NetLogger [GTC+00] arbeitet mit dieser Methode als Diagnosesystem
für Performance-Probleme. Es liefert eine komplette Übersicht über das Sy-
stem, indem es Monitoring auf Netzwerk-, Maschinen- und Anwendungsebene
kombiniert. Dadurch wird das Auffinden von Leistungseinbrüchen einer Anwen-
dung unterstützt. Ein Nachteil dieser Verfahren ist, dass sie eine große Menge
von Beobachtungsdaten erzeugen, die gegebenenfalls zu Analyse-Komponenten
transferiert werden müssen.

Auch wenn diese Systeme einen guten Überblick über das Laufzeitverhalten
einer Anwendung liefern, bieten sie nicht die Möglichkeit, das Verhalten der An-
wendung in Abhängigkeit vom Systemzustand während der Laufzeit zu steuern.

Das Grundprinzip anderer Systeme ist, mittels Sensoren Systemparameter
zu erfassen [LMK+03, WSH99] und diese an eine zentrale Instanz weiterzulei-
ten, die die Messwerte weiterverarbeitet.

Die Methode von Agarwala et al. [APK+03] nutzt das virtuelle Linux Datei-
system /proc und erweitert es um Systeminformationen von entfernten Maschi-
nen in einem /dproc Dateisystem. Dabei werden die Informationen zwischen
den Maschinen mittels Kernel-Kernel-Kommunikation ausgetauscht. Die CPU-
Auslastung wird periodisch durch einen Thread, der die Task-Liste des Kernels
untersucht, beobachtet. Das Netzwerkmonitoring wird durch ein Modul, das
den Netzwerkverkehr auf allen offenen Verbindungen beobachtet, bewerkstel-
ligt. /dproc arbeitet auf Systemebene und erfordert eine Kernel-Erweiterung.

Der Network-Analyser [MP01] zielt auf die adäquate Verteilung von Tasks
ab. Er sammelt Informationen von Workstation-Zuständen, wie z. B. CPU-Last,
Prozess-Zustände, Ein-/Ausgabe der letzten 24 Stunden. Auf dieser Basis wer-
den Auslastungsvorhersagen unter Zuhilfenahme von stochastischen Verfahren
getroffen, die für die Verteilung der Tasks als Grundlage genommen werden. Die



2.5. CHARAKTERISTIKA DER ZIELUMGEBUNG 23

erwartete Ausführungszeit von Tasks wird ebenfalls abgeschätzt.

Für das Grid-Umfeld wurden Monitoring-Systeme entwickelt, die die speziel-
le Netzwerkstruktur des Grids berücksichtigen, die im Allgemeinen aus mehreren
Subnetzen besteht.

GridMon [LTT] beobachtet Netzwerke, um Fehler und Ineffizienz zu identi-
fizieren und um Annahmen über die zu erwartende Leistungsfähigkeit machen
zu können. Die Beobachtungen beziehen sich auf Konnektivität, Paketverluste,
Durchsatz und Round Trip Time. GridMon arbeitet auf Systemebene. Für sei-
nen Einsatz müssen dedizierte Maschinen bereitgestellt werden, die jeweils ein
lokales Netzwerk beobachten. Diese Maschinen führen wiederum Messungen un-
tereinander aus, um die Verbindungen zwischen ihnen zu analysieren.

Remos [LMK+03] (REsource MOnitoring System) erfasst Netzwerkdaten
und sagt zukünftiges Verhalten, basierend auf historischen Daten, vorher. Da-
durch, dass die Anwendung nur auf eine Anfrage hin Informationen erhält, wird
der Overhead klein gehalten. Das Sammeln der Netzwerkdaten erfolgt mittels
Kollektoren, die hierarchisch angeordnet sind. Auf unterster Ebene ist ein Kol-
lektor verantwortlich für das Einbringen von Informationen über sein Netzwerk.
So ist ein lokaler Kollektor z. B. zuständig für das Sammeln von Daten seines
LANs. Lokale oder globale Kollektoren auf entfernten Sites können kontaktiert
werden, um Informationen über diese entfernten Sites zu erhalten.

Der Network Weather Service (NWS) [Wol03] ist ein verteiltes System, das
die Leistungsfähigkeit von Netzwerk und Rechenressourcen periodisch beob-
achtet und dynamisch vorhersagt. Das Performance-Monitoring erfolgt mittels
Sensoren. Diese erzeugen Informationen über Netzwerk, CPU und Speicher.
Basierend auf diesen Informationen, werden numerische Modelle benutzt, um
Vorhersagen für zukünftiges Verhalten zu treffen. Zusätzlich gestartete Prozes-
se (

”
probe“-Programme) werden sowohl für Performance-Messungen der CPU

eingesetzt als auch für die des Netzwerks. Die Anordnung der Sensoren ist hier-
archisch, was den Einsatz für große Systeme unterstützt.

Im Rahmen der Globus-Allianz [Glo], die sich zum Ziel setzt, grundlegende
Technologien für das Grid zu entwickeln, wurden auch Monitoring-Systeme spe-
ziell für das Grid entwickelt. So bietet z. B. Ganglia [MCC04] die Möglichkeit,
Monitoring-Daten von Clustern zu sammeln. Dabei nutzt es die hierarchische
Struktur, die durch die Verschaltung mehrerer Cluster zustande kommt. Ganglia
setzt

”
Monitoring-Daemons“ ein, die in gewissen Abständen Leistungsinforma-

tionen erfassen.

All diese Systeme arbeiten auf Betriebssystemebene. Sie beobachten die vor-
handenen Leistungsfähigkeiten der Komponenten CPU und Netzwerk. Bei eini-
gen Systemen [APK+03, MP01] erfolgt dieses durch passive Sensoren, d. h. es
werden Informationen, die dem Betriebssystem bereits vorliegen, abgefragt. Mit
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aktiven Sensoren arbeiten GridMon, Remos und NWS. Hier werden Prozesse
explizit gestartet, um Messungen durchzuführen.

Auslastungsvorhersagen basieren auf historischen Daten. Das bedeutet, dass
von vergangenen Auslastungen auf zukünftige geschlossen wird, also ein sich
wiederholendes Auslastungsprofil vorausgesetzt wird.

2.6 Analyse der Eckpunkte

Betrachtet man die in Abschnitt 2.4.4 beschriebenen Lastverteilungsmethoden
und ihre Ziele, so wird schnell deutlich, dass Lastverteilung in einer heterogenen
Umgebung wie das Grid nur dann zur Effizienzsteigerung führen kann, wenn sie
Umgebungsparameter bei ihren Entscheidungen miteinbezieht.

Die meisten der vorgestellten Lastverteilungsmethoden aus Abschnitt 2.4.4
gehen von einer Gleichverteilung der Last, und damit der Graphknoten, als
Ziel aus. Dieses ist jedoch nur in homogenen Umgebungen angemessen, wie
sie z. B. in Parallelrechnern zu finden sind. Das Grid weist jedoch eine hete-
rogene und dynamische Struktur auf, in der Maschinen mit unterschiedlicher
Leistungsfähigkeit an der Durchführung einer Anwendung beteiligt sind (sie-
he Abschnitt 2.5.1). Wie wichtig die Berücksichtigung dieser Heterogenität ist,
wird von Entwicklern einiger Lastverteilungsmethoden hervorgehoben [SKK03,
WLR93, EMP00, RN01, BL02]. So beschreiben Eickermann et al. [EHR+98],
dass die Anpassung der Last an die Umgebung zu großen Effizienzsteigerun-
gen führen kann. Das Werkzeug MinEX von Das et. al [DHB02] nutzt ebenfalls
Informationen über die Umgebung, um Lastverteilung entsprechend der Um-
gebung durchzuführen, betrachtet jedoch keine dynamischen Werte, sondern
bezieht sich auf vorangegangene Performance-Studien.

Soll Heterogenität berücksichtigt werden, so ist eine Voraussetzung, dass
das Lastverteilungswerkzeug Teilpartitionen unterschiedlicher Größe generieren
kann. Diese Möglichkeit wird aber nur von wenigen Werkzeugen, wie z. B. Jostle
und ParMETIS, geboten.

Zur Unterstützung dieser Werkzeuge bedarf es einer Instanz, die die Um-
gebung analysiert und die aufbereiteten Informationen an die Lastverteilung
weitergibt. Damit schließt sich die Lücke zwischen Umgebung und Lastvertei-
lung (siehe Abbildung 2.10).

Die Umgebungsanalyse muss dabei durch geeignete Bewertungsmethoden erfol-
gen. Eine angemessene Methode stellt dabei das Monitoring dar, das zur Laufzeit
Informationen über die Umgebung ermittelt und zur Verfügung stellt.

2.6.1 Monitoring

Das erforderliche Monitoring-System muss bei geringem Overhead dazu in der
Lage sein, hinreichende Informationen über den Status der Recheneinheit wie
auch den des Netzwerks zu liefern.
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Anwendung

Umgebung

unterstützende
Instanz

Lastverteilung

wirkt auf

ruft auf

wirkt auf

Abbildung 2.10: Erweiterung der Komponenten

Um dieses zu gewährleisten, muss es folgende Eigenschaften aufweisen:

• Skalierbarkeit

• Effizienz

• Verfügbarkeit auf Benutzerebene

Skalierbarkeit wird ermöglicht, indem das Sammeln von Monitoring-Daten
und ihre Weiterverarbeitung verteilt erfolgt. Werden zentrale Instanzen einge-
setzt, so würden sie, insbesondere in massiv-parallelen Systemen wie das Grid,
zu einem Flaschenhals werden. Einen weiteren Aspekt stellt die Ausfallsicher-
heit dar. Fällt die zentrale Instanz aus, so ist das System nicht mehr arbeitsfähig
und muss terminieren. Nur ein verteiltes System ermöglicht ein Weiterarbeiten
bei Ausfall einer Recheneinheit.

Die Forderung nach Effizienz beinhaltet, dass aussagekräftige Informatio-
nen über das System gesammelt werden können, wobei der notwendige Zusatz-
aufwand gering bleibt. Der Spagat zwischen einem hohen Informationsgehalt der
gesammelten Daten einerseits und einem möglichst geringen Overhead anderer-
seits ist eine schwierige Aufgabe bei der Entwicklung von Monitoring-Systemen.

Daten über den Systemzustand müssen für die Anwendung zugreifbar sein.
Ein Eingriff in das Betriebssystem bzw. zusätzliche Installationen sollten nicht
notwendig sein. Dieses würde zum einen die Unterstützung der Systemadmi-
nistration erfordern und zum anderen das Angebot nutzbarer Maschinen ein-
schränken, da das Vorhandensein bestimmter Software vorausgesetzt werden
müsste. Um den Anforderungen aller Benutzer gerecht zu werden, müssen sol-
che Systeme über ein umfangreiches Informationsangebot verfügen. Dieses wi-
derspricht jedoch der Forderung nach Effizienz, d. h. ausschließliche Sammlung
notwendiger Informationen.
Ein wesentlicher Aspekt ist aber, dass ausschließlich die der Anwendung zur
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Verfügung stehenden Ressourcen bewertet werden sollen. Daher muss das Mo-
nitoring auf Anwendungsebene stattfinden.

Alle in Abschnitt 2.5.4 vorgestellten Systeme arbeiten auf Betriebssysteme-
bene. Um die erforderlichen Daten zu erhalten, muss Software installiert werden,
oder es müssen sogar komplette Maschinen zur Verfügung gestellt werden (Grid-
Mon). Informationen darüber, welche Kapazitäten der eigenen Anwendung zur
Verfügung gestellt werden, können nicht geliefert werden.

Ein wichtiger Punkt ist, dass alle Methoden voraussetzen, dass Informatio-
nen über den Aufbau des Netzwerks vorliegen, die Struktur also bekannt ist. Ein
statischer, hierarchischer Aufbau bildet die Grundlage. Dieses impliziert wie-
derum das Vorhandensein von Software, die diese Information bereitstellt. Ein
weiterer Aspekt ist, dass sich die Struktur des Netzwerks aus Anwendungssicht
zur Laufzeit ändern kann. Dieses erfordert ein System, dass auf diese Struk-
turänderungen dynamisch reagiert.

Die vorgestellten Verfahren bieten ein großes Spektrum an Informationen,
um den Bedürfnissen vieler Anwendungen gerecht zu werden. Diese Informa-
tionsvielfalt überschreitet jedoch den im Rahmen dieser Arbeit notwendigen
Informationsbedarf, der sich rein auf die Rechen- und Netzwerkkapazitäten für
die entsprechende Anwendung bezieht. Der zu hohe Aufwand des Monitorings
führt zu einer geringeren Effizienz.

Somit können nicht alle Anforderungen an ein Monitoring-System erfüllt
werden, da sich Skalierbarkeit auf vorhandene Informationen über das Netzwerk
stützt und Effizienz durch zu große Informationsfülle eingeschränkt ist.

Daher wird auf keines der vorhandenen Systeme zurückgegriffen, sondern
ein eigenes Monitoring-System entwickelt, um den Anforderungen gerecht zu
werden.

Die unterstützende Instanz aus Abbildung 2.10 besteht also aus den zwei
Bereichen Monitoring und Lastverteilungssteuerung (siehe Abbildung 2.11).

In den nächsten Kapiteln werden zunächst Anforderungen an diese zwei
Bereiche herausgearbeitet und anschließend Lösungen vorgestellt.
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Abbildung 2.11: Teile der Unterstützungskomponente
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Kapitel 3

Anforderungskatalog

Nach der Analyse der Eckpunkte im letzten Kapitel kristallisieren sich zwei
Bereiche heraus, für die Methoden entwickelt werden müssen:

• Zum einen für die Lastverteilungssteuerung, das eigentliche Ziel dieser
Arbeit, und

• für das Monitoring-System, das die Grundlage für die Lastverteilungs-
steuerung bildet.

Ein Anforderungskatalog für beide Bereiche ist Thema dieses Kapitels.

3.1 Anforderungen an die Lastverteilungssteue-
rung

Die Anforderungen ergeben sich aus den drei in den vorangegangenen Abschnit-
ten beschriebenen Eckpunkten Anwendung, Lastverteilung und Umgebung (sie-
he Abbildung 3.1).

Anwendung

Umgebung Lastverteilung

Abbildung 3.1: Abhängigkeiten

Dabei haben diese drei Punkte folgende Merkmale:

29



30 KAPITEL 3. ANFORDERUNGSKATALOG

Umgebung:

1. Es liegt ein heterogenes System zugrunde, die Leistungsfähigkeit der
Recheneinheiten kann stark differieren, sowohl in ihrer CPU-Leistung
als auch in ihrem Speicherangebot.
⇒ heterogene Recheneinheiten

2. Das Grid besteht aus unterschiedlichen Kommunikationsnetzwerken,
die sich durch ihre Übertragungsraten extrem unterscheiden können.
⇒ heterogene Netzwerke

3. Die Netzwerkstruktur des Grids ist hierarchisch. Subnetze werden
gekoppelt. Diese bilden Netze, die wiederum gekoppelt werden.

4. Durch Ressourcenteilung ändert sich sowohl die Leistungsfähigkeit
der Netzwerkverbindungen als auch die der Prozessoren während der
Laufzeit.
⇒ dynamisches System

5. Es handelt sich um ein massiv-paralleles System. Eine hohe An-
zahl an Recheneinheiten muss verwaltet werden.

Anwendung:

1. Die Berechnungen basieren auf Gitter.
⇒ gitterbasierte Anwendung

2. Die Gitterzellen tauschen oft Daten mit ihren Nachbarn aus. Es exi-
stiert ein hohes Kommunikationsaufkommen.
⇒ eng kommunikativ gekoppelt

3. Die Gitter können aus Millionen von Zellen bestehen. Für jede Zelle
müssen Daten gespeichert werden.
⇒ hoher Speicherbedarf

4. Oftmals ist eine Schnittstelle zu frei verfügbaren Lastverteilungswerk-
zeugen vorhanden. Die Anwendung stellt dann den dualen Gra-
phen des Gitters zur Verfügung.

5. Bei der Entwicklung von Simulationswerkzeugen stehen deren Leis-
tungsfähigkeit und damit numerische Verfahren im Vordergrund. Der
Bereich der Lastverteilung ist Teil eines anderen Arbeitsgebietes (Gra-
phentheorie), das insbesondere von Experten wirkungsvoll umgesetzt
werden kann.
Anwendung und Lastverteilung stellen damit zwei getrennte und in
sich abgeschlossene, aber voneinander abhängige Bereiche dar.

Lastverteilungsmethoden:

1. Neben der gleichmäßigen Verteilung der Gitterzellen auf die
Prozessoren ist dieMinimierung der Schnittkanten Ziel der Last-
verteilung.
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2. Die Verfügbarkeit parallel arbeitender Werkzeuge ist stark be-
grenzt.

3. Nur wenige Werkzeuge bieten die Möglichkeit, Partitionsgrößen
vorzugeben. Ist diese Funktionalität allerdings vorhanden, so ist es
Aufgabe des Anwenders, diese Größen zu bestimmen.

4. Die Verbindungsstruktur des Systems wird oftmals nicht betrachtet.

5. Lastverteilung wird zwischen allen Prozessen durchgeführt.

Das geplante Zusammenspiel dieser Aspekte zeigt Abbildung 3.2.

Lastverteilungsunterstützung

Monitoring

Partitionsgröße

dualer Graph

zu migrierende
Last

− hoher Speicherbedarf
− eng komm.gekoppelt
− gitterbasiert

Anwendung

− Schnittkantenminimierung
− gleichm. Verteilung

Umgebung

− hierarchisch
− dynamisch
− massiv−parallel

− heterogen

Lastverteilung

Abbildung 3.2: Zusammenspiel der Eckpunkte

Durch diese Charakteristika ergeben sich folgende Anforderungen an eine
Lastverteilungssteuerung, die die Merkmale der Umgebung betrachtet und diese
wirkungsvoll nutzt:

• Anpassung der Lastmenge an die Kapazitäten der einzelnen Prozessoren

• Berücksichtigung der Existenz von unterschiedlich schnellen Kommuni-
kationsverbindungen durch Vermeidung langsamer Verbindungen bei der
Lastverteilung

• Ausnutzung der hierarchischen Netzwerkstruktur

• Reaktion auf Zustandsänderungen (Prozessor-/Netzwerklast) während der
Laufzeit

• Verwaltung einer großen Anzahl an Prozessoren
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• Nutzung vorhandener Lastverteilungswerkzeuge, entweder die der Anwen-
dung oder aber allgemeiner Werkzeuge (z. B. Jostle) muss weiterhin mög-
lich sein

• Transparenz für den Benutzer, d. h. kein Zusatzaufwand für den Entwick-
ler

• geringer Overhead, sowohl in Bezug auf Speicher (speicherintensive An-
wendung) als auch auf Laufzeit

Um diese Anforderungen zu erfüllen, wurde ein Konzept entwickelt, das in
Kapitel 4 vorgestellt wird. Die Umsetzung dieses Konzepts mit anschließender
Validierung wird darlegen, ob bzw. inwieweit es den obigen Anforderungen ent-
spricht.

3.2 Anforderungen an die Monitoring-Umgebung

Für das Monitoring-System müssen folgende Anforderungen erfüllt werden, um
den Forderungen Skalierbarkeit, Effizienz und Verfügbarkeit auf Benutzerebene
nachzukommen:

• Skalierbarkeit:
Das Monitoring muss verteilt erfolgen. Es darf keine zentrale Instanz not-
wendig sein, weder bei der Messwerterzeugung noch bei der Verarbeitung
der Messwerte.

• Verfügbarkeit:

– Es muss Online-Monitoring eingesetzt werden, da die Anwendung in
der Lage sein muss, auf aktuelle Systemzustände zu reagieren.

– Das Monitoring muss auf Anwendungsebene stattfinden. Die Infor-
mationen auf Betriebssystemebene liefern nur allgemeine Informa-
tionen, nicht jedoch jene, die über die Leistungskapazitäten für die
Anwendung Auskunft geben.

– Aktive Sensoren können ermitteln, welche Kapazitäten der Anwen-
dung zur Verfügung stehen. Wichtig ist, sie so zu integrieren, dass sie
das Laufzeitverhalten der Anwendung nicht verändern.

• Effizienz:
Um Effizienz zu ermöglichen, müssen hinreichende Informationen bei mi-
nimalem Overhead ermittelt werden. Dieses kann erreicht werden, indem
Anzahl und Güte der Messwerte so groß wie nötig, aber so klein wie
möglich werden. Dazu dienen die folgenden Strategien:

– Anzahl der notwendigen Informationen:
Es werden nur relevante Informationen über die zu beobachtende
Anwendung gesammelt.
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– Aussagekraft der Informationen:
Die für die Aussagekraft notwendige Granularität der Information
bestimmt die Genauigkeit der Messungen und die Höhe des Daten-
aufkommens. Diese sollte möglichst gering sein, um den Overhead
minimal zu halten. Daher werden folgende Ziele angestrebt:

∗ Monitoring der Recheneinheiten:
Die Informationen müssen ausreichend sein, um die Last ent-
sprechend der Leistungsfähigkeit der einzelnen Recheneinheiten
zu verteilen.

∗ Monitoring des Netzwerks:
Wesentlich sind hier die Zeiten für die Dauer eines Nachrichten-
austausches innerhalb der Anwendung. Mit Hilfe der Messwerte
muss eine Einschätzung der Übertragungsgeschwindigkeiten von
Nachrichten möglich sein und damit auch eine Vergleichbarkeit
der Verbindungen. Dieses betrifft aber nur Verbindungen, die die
Anwendung benutzt.

– Effizienz durch Dynamik:
Das Monitoring selbst sollte auf das System reagieren, indem die
Anzahl der Monitoring-Aufrufe abhängig vom Zustand des Systems
ist.

Das entwickelte Monitoring berücksichtigt die Forderungen Gropps in [GL99].
Dabei stellt Gropp besonders die Schwierigkeit heraus, exakte, reproduzierbare
Messungen im parallelen Umfeld durchzuführen, da Parallelismus auch immer
ein wenig Nichtdeterminismus beinhalte. Auch Kielmann et al. [KBM+02] se-
hen diese Schwierigkeit und begegnen dieser, indem sie einen Netzwerksimulator
entwickelten.

Gropp sieht als besondere Gefahren bei Performance-Messungen:

1. Der Verbindungsaufbau erfolgt in manchen Systemen dynamisch. Daher
kann die erste Kommunikation viel länger dauern.

2. Ein im Hintergrund laufendes Dateisystem kann viel der verfügbaren Kom-
munikationsbandbreite in Anspruch nehmen.

3. In einigen Anwendungen wird Latency-Hiding durch Überlappen von Be-
rechnung und Kommunikation eingesetzt.

4. Dedizierte, geschaltete (switched) Netzwerke haben eine ganz andere Leis-
tung als gemeinsam genutzte Netzwerkstrukturen.

5. Zeitereignisse, die im Verhältnis zur Uhrenauflösung kurz sind, sind schwie-
rig zu messen.

6. Die Messwerte sind abhängig vom Kommunikationsmuster.

7. Punkt-zu-Punkt-Kommunikation verhält sich anders als Kommunikation
zwischen mehreren Prozessoren
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Als Lösungen zu den oben genannten Problemen schlägt Gropp vor:

ad 1 Die erste Kommunikation darf bei den Messungen nicht berücksichtigt
werden.

ad 2 Konkurrenzsituationen mit nicht in Bezug stehenden Anwendungen oder
Jobs sollten ebenfalls betrachtet werden.

ad 3 Überlappen von Berechnung und Kommunikation sollten mitberücksich-
tigt werden.

ad 4 Die Gesamtbandbreite sollte nicht mit Punkt-zu-Punkt-Bandbreite ver-
wechselt werden.

ad 5 Sehr kurzen Zeitereignissen sollte Beachtung geschenkt werden.

ad 6 Messe nicht mit einem einzigen Kommunikationsmuster.

ad 7 Messe mit mehr als zwei Prozessoren.

Auf Basis dieser Regeln entwickelten Gropp et al. das MPI-Performance-
Analyse-Werkzeug perftest. Es misst die Leistungsfähigkeit einiger grundlegen-
der MPI-Routinen in unterschiedlichen Situationen (siehe [per]).

Diese Forderungen bildeten die Grundlage bei der Entwicklung eines eigenen
Monitoring-Systems, das in Abschnitt 4.4 beschrieben wird.



Kapitel 4

Lastverteilung in
Grid-Umgebungen

Nachdem im letzten Kapitel Anforderungen für eine umgebungsspezifische Unter-
stützung für Lastverteilung aufgezeigt wurden, wird nun ein Lösungsansatz be-
schrieben.

4.1 Grundkonzept der adaptiven Steuerung der
Lastverteilung

Die im Folgenden präsentierte Strategie zielt darauf ab, dem Anforderungska-
talog aus dem letzten Kapitel gerecht zu werden, indem sie

1. die Recheneinheiten bewertet und die Lastmenge ihren Kapazitäten an-
passt (Adaption an heterogene Rechenleistung),

2. die Netzwerke bewertet und schnelle Verbindungen den langsameren bei
Lastverteilung und Datenmigrationen vorzieht.

Für eine Anwendung, die auf einem System mit heterogenem Netzwerk
läuft, bedeuten die stark unterschiedlichen Netzwerkgeschwindigkeiten,
dass sich die Transferraten um das Hundertfache unterscheiden können.

Datenmigrationen bei Lastverteilung sind davon besonders betroffen. Sind
die Migrationszeiten sehr hoch, so steigt der Overhead für Lastverteilung
und somit sinkt auch seine Effizienz. Übersteigt der Overhead den Lauf-
zeitgewinn durch Lastverteilung (Kosten-Nutzen-Analyse), so verschlech-
tert sich die Gesamtlaufzeit der Anwendung und das Ziel von Lastvertei-
lung ist verfehlt.

Ein Ziel der Lastverteilungsstrategie ist es daher, Datenmigrationen über
sehr langsame Verbindungen zu minimieren. Lastverteilung zwischen Re-
cheneinheiten mit hohen Übertragungsraten werden hingegen bevorzugt.

35
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3. diese Bewertungen zur Laufzeit durchführt und Entscheidungen basierend
auf ihren aktuellen Werten trifft und damit auf die dynamische Umgebung
reagiert.

4. die Strategie aus einer lokalen Sicht heraus (dezentrale Strategie) umsetzt
und damit Skalierbarkeit ermöglicht.

Dadurch sollen die Hauptziele der Lastverteilung erreicht werden:

1. Die Laufzeit der Anwendung wird optimiert durch gleichmäßige Auslas-
tung der Recheneinheiten und damit auch schnellere Terminierung.

2. Der Zusatzaufwand für die Lastverteilung wird minimiert durch Nutzung
schneller Verbindungen und damit auch kürzerer Datenmigrationszeiten.

In den folgenden Abschnitten werden Konzepte vorgestellt, mit denen diese
Ziele erreicht werden sollen.

4.2 Kapazitätenabhängige Lastverteilung

Ein wichtiger Aspekt, um eine gleichmäßige Auslastung der Recheneinheiten
zu gewährleisten, ist eine Verteilung der Last in Abhängigkeit von der Leis-
tungsfähigkeit der einzelnen Recheneinheit. Aus Anwendersicht heraus bezieht
sich die Leistungsfähigkeit auf die dem Anwendungsprozess (AP) zur Verfügung
stehenden Leistung.

Die Leistung einer Recheneinheit ist bestimmt durch ihre Berechnungsge-
schwindigkeit (siehe Abschnitt 4.4.1). Sei calc speed die Berechnungsgeschwin-
digkeit einer Recheneinheit, dann ist ihre Leistung = 1/calc speed.

Seien APi und APj Prozesse der Anwendung, 0 ≤ i, j < n, n = |An-
wendungsprozesse|. Seien Leistungi und Leistungj die Leistungsfähigkeit der
Recheneinheiten REi bzw. REj , APi wird auf REi bearbeitet, APj auf REj ,
Lasti und Lastj die Last von APi bzw. APj , dann ist ein Ziel der Lastverteilung,
dass zu jedem Zeitpunkt t gilt:

Lasti
Leistungi

=
Lastj

Leistungj

, ∀ APi, APj (4.1)

Um die optimale Last eines Anwendungsprozesses APi zu berechnen, wird
zunächst die optimale Lastrate optimale Lastratei, d. h. der optimale Anteil an
der Gesamtlast, bestimmt.

Dabei ist die Gesamtlast

Lasttot =

n−1
∑

j=0

Lastj (4.2)

optimale Lastratei =
Leistungi

∑n−1
j=0 Leistungj

(4.3)



4.3. NETZWERKABHÄNGIGE LASTVERTEILUNG 37

Damit gilt:

n−1
∑

j=0

optimale Lastratej = 1 (4.4)

Die optimale Last für APi, optimale Lasti, ist damit die anteilige Lastmenge
der Gesamtlast Lasttot für den optimalen Fall und berechnet sich wie folgt:

optimale Lasti = optimale Lastratei ∗ Lasttot (4.5)

Durch die Adaptivität der Anwendung verändert sich ihre aktuelle Last
während der Laufzeit und kann zu einem Abweichen von der optimalen Last
führen. Weicht die aktuelle Last von der optimalen Last ab, so existiert ein
Ungleichgewicht, das die Effizienz der Berechnung gefährden kann.

Das Ungleichgewicht von APi, Ungleichgewichti, berechnet sich aus:

Ungleichgewichti = |1−
aktuelle Lasti
optimale Lasti

| (4.6)

wobei aktuelle Lasti die aktuelle Last von APi ist.

Ein geringes Ungleichgewicht, bei dem die zu erwartenden Kosten für sei-
ne Behebung höher sind als der zu erwartende Laufzeitgewinn, wird toleriert.
Kann dieses Ungleichgewicht jedoch zu Effizienzverlusten führen, so muss eine
Umverteilung der Last durchgeführt werden.

Sollen Kosten und Nutzen von Lastverteilung bewertet werden, setzt dieses
das Vorhandensein von Laufzeit-Informationen über zukünftige Berechnungen
voraus. Da diese Informationen i. A. nicht vorliegen (keine Vorhersehbarkeit),
basiert die Feststellung eines Ungleichgewichts auf einem festen Schwellwert
balance tolerance. Wird balance tolerance überschritten, d. h.

Ungleichgewicht > balance tolerance,
so wird Lastverteilung initiiert.

4.3 Netzwerkabhängige Lastverteilung

Die Betrachtung des Netzwerks ist ein wesentlicher Bestandteil dieser Arbeit.
Andere Entwickler sehen zwar die Wichtigkeit dieses Aspekts, berücksichtigen
sie jedoch nicht in ihren Konzepten.

Durch das Vorhandensein unterschiedlich schneller Kommunikationsnetzwer-
ke entstehen Klassen von Kommunikationsgeschwindigkeiten. Werden Rechen-
einheiten, die durch Verbindungen einer Geschwindigkeitsklasse gekoppelt sind,
zu Subsystemen zusammengefasst, so entsteht eine Hierarchie von Subsyste-
men. Werden z. B. MPP-Systeme mit einem im Vergleich zu ihrem internen
Netzwerk um Faktoren langsameren Netzwerk gekoppelt, so bildet jedes MPP-
System für sich ein Subsystem. Falls einige Recheneinheiten der MPP-Systeme
über einen schnelleren Weg als das SAN kommunizieren, z. B. über ihren ge-
meinsamen Speicher (

”
shared memory“-Kommunikation), bilden diese Knoten
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ein Subsystem auf niedrigster Ebene. Auf höchster Hierarchieebene bildet das
Gesamtsystem ein Subsystem.

Das folgende Beispiel (siehe Abbildung 4.1) zeigt die Kopplung zweier PC-
Cluster mittels Ethernet (Übertragungsrate bis zu 100 Mbit/s). Die Knoten je-
des PC-Clusters kommunizieren über SCI (Scalable Coherent Interface [IEE93],
maximal 4 GBit/s) bzw. Infiniband (maximal 10 GBit/s). Innerhalb jedes Kno-
tens erfolgt die Kommunikation über den gemeinsamen Speicher (Geschwindig-
keit bestimmt durch Speicherzugriffszeiten). Somit bilden sich drei Hierarchie-
stufen.
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Abbildung 4.1: Beispiel: Abbildung einer Systemkonfiguration auf eine Hierar-
chie

Die Lastverteilungsstrategie macht sich diese Hierarchie zu Nutze, indem
Lastverteilung auf möglichst niedriger Hierarchieebene, und damit mit möglichst
niedrigen Kommunikationskosten, durchgeführt wird.

4.3.1 Hierarchie

Die Hierarchie von Subsystemen wird durch einen Baum dargestellt, dessen
Knoten jeweils ein System mit folgenden Eigenschaften repräsentieren:
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• die Wurzel repräsentiert das ganze System

• ein innerer Knoten repräsentiert ein Subsystem, bestehend aus allen PEs
des darunter liegenden Teilbaums

• die Blätter repräsentieren einzelne PEs

• für jedes Subsystem gilt, dass die Kommunikation zwischen den PEs in-
nerhalb eines Subsystems schneller ist als die Kommunikation zwischen
PEs über Subsystemgrenzen hinweg

Abbildung 4.1 zeigt ein statisches Netzwerk. Da sich während der Laufzeit
die Kommunikationsgeschwindigkeiten ändern können und dieses Auswirkungen
auf die Struktur der Hierarchie hat, wird eine Hierarchieerkennung zur Laufzeit
durchgeführt.

4.3.2 Hierarchieerkennung und -aktualisierung

Das Ziel der Hierarchieerkennung ist, unterschiedliche Klassen von Kommuni-
kationsgeschwindigkeiten zu eruieren und diese auf eine hierarchische Struktur
abzubilden.

Die Subsysteme auf unterster Ebene sind dabei durch die niedrigsten Kom-
munikationszeiten gekennzeichnet. Höhere Ebenen stellen Kommunikationsge-
schwindigkeiten zwischen den einzelnen Subsystemen der darunter liegenden
Ebene dar. Somit repräsentiert jede Ebene der Hierarchie eine Klasse von Kom-
munikationsgeschwindigkeiten. Je höher die Hierarchieebene, desto langsamer
die Kommunikationsverbindungen zwischen den PEs.

Ein definiertes Ziel der Lastverteilung ist, schnelle Verbindungen zu bevorzu-
gen. Um dieses zu gewährleisten, kann die hierarchische Struktur dahingehend
genutzt werden, dass Lastverteilung innerhalb von Subsystemen auf möglichst
niedriger Ebene durchgeführt wird. Dieses setzt die Annahme voraus, dass sei-
tens der Anwendung nicht alle PEs am Lastverteilungsprozess beteiligt sein
müssen.

Ein Lastgleichgewicht des Systems kann oftmals hergestellt werden, wenn le-
diglich in einem Subsystem, anstatt auf dem kompletten System, Lastverteilung
durchgeführt wird. Aufgabe ist es also, einen Teilbaum auf niedrigster Hierar-
chiestufe zu finden, durch den ein allgemeines Lastgleichgewicht hergestellt wer-
den kann, indem seine zugehörigen PEs ihre Last untereinander umverteilen. In
dem Beispiel aus Abbildung 4.2 reicht es aus, wenn zwei PEs Last untereinander
austauschen, um ein Gesamtgleichgewicht zu erreichen.

Hierarchieerkennung

Die Basis bei der Erstellung der Hierarchiestruktur bilden die Kommunikations-
geschwindigkeiten zu anderen PEs. Dabei ist es unerheblich, wie die Struktur
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Abbildung 4.2: Wiederherstellung des Lastgleichgewichts

der Hardware aufgebaut ist. Es werden keine Annahmen über Konfigurationen
gemacht. Stattdessen basieren alle Entscheidungen auf Messungen, die während
der Laufzeit stattfinden.

Die Erkennung der hierarchischen Struktur erfolgt verteilt. Jedes PE arbeitet
aus seiner lokalen Sicht heraus. Eine zentrale Instanz ist nicht vorhanden.

Zunächst werden alle PEs, zu denen die schnellsten Kommunikationsverbin-
dungen bestehen, zu einem (Basis-) Subsystem zusammengefasst. Die nächste
Hierarchieebene wird aus PEs mit den zweithöchsten Geschwindigkeiten gebil-
det, usw. Die letzte Ebene umfasst alle PEs des Systems. In Bezug auf Last-
verteilung kann somit sichergestellt werden, dass stets ein Gleichgewicht erzielt
werden kann, da im schlechtesten Fall alle PEs beteiligt werden.

Für die Ermittlung der hierarchischen Struktur werden folgende Phasen
durchlaufen (siehe Abbildung 4.3):

1. Ermittlung potenzieller Subsystempartner: Berechnung einer Kandidaten-
liste

2. Ergebnisaustausch der PEs untereinander

3. Bestimmung der endgültigen Subsystempartner

Berechnung der Kandidatenliste

Die Klassenaufteilung erfolgt anhand einer aufsteigend sortierten Liste aller
Kommunikationszeiten. Für die unterste Ebene bildet jedes PEk eine Kandi-
datenliste für ein Subsystem Kand1

k aus allen PEs PEj , 0 ≤ j, k < n mit Kom-
munikationszeiten t(PEk, PEj) ∈ R

+, durch:
Sei

T k
com = (t(PEk, PEi1), ..., t(PEk, PEin−1

)),

wobei t(PEk, PEij
) ≤ t(PEk, PEij+1

)

∀ 1 ≤ j < n− 1, ij 6= ir, falls i 6= r, ij 6= k,
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Bestimmung der
Subsysteme

Bestimmung der
Subsysteme

Berechnung der
Kandidatenlisten

Berechnung der
Kandidatenlisten

Bestimmung der
Subsysteme

Berechnung der
Kandidatenlisten

Informationsaustausch

Abbildung 4.3: Phasen der Strukturermittlung

(4.7)

Sei weiterhin DIFF TOLERANCE ein fester, aber beliebiger Wert größer
als 1. Sei D = DIFF TOLERANCE.

Dann ist eine Kandidatenliste Kand1
k definiert durch:

Kand1
k = {PEk} ∪ {PEij

|1 ≤ j < r, (4.8)

mit







r = n, falls
t(PEk,PEis+1)
t(PEk,PEis ) < D ∀ 1 ≤ s < n− 1

oder r = min{s|1 ≤ s < n− 1,
t(PEk,PEis+1)
t(PEk,PEis ) ≥ D, ij 6= k}







Durch die Verhältnisbildung zweier aufeinanderfolgender Kommunikations-
zeiten werden große Unterschiede zwischen diesen Zeiten aufgedeckt. Nur PEs,
deren Kommunikationszeiten um einen kleinen Faktor (= DIFF TOLERANCE)
abweichen, gehören somit zu der Kandidatenliste.

Damit besteht eine Kandidatenliste für ein Subsystem aus PEs mit den
geringsten Kommunikationszeiten. Das Verhältnis des PEs mit der höchsten
Kommunikationszeit innerhalb des Subsystems zu demjenigen mit der gering-
sten Kommunikationszeit ausserhalb des Subsystems ist größer als der Wert von
DIFF TOLERANCE. Dieser Wert kennzeichnet also einen Sprung in der sor-
tierten Liste der Kommunikationszeiten, und damit auch die nächste Ebene an
Kommunikationszeiten.

Für die Erkennung der höheren Hierarchiestufen werden nicht die einzelnen
PEs, sondern die Subsysteme betrachtet. Dabei wird jedes Subsystem durch ein
beliebiges, aber festes PE repräsentiert. Nur diese PEs sind an der Subsystem-
bildung für die aktuelle Ebene beteiligt.
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Seien die Kommunikationszeiten t(Subl
k, Sub

l
j) zwischen Subsystemen auf

Ebene l gegeben. Sei nl die Anzahl der Subsysteme auf Ebene l.
Sei

T k
com = (t(Sublk, Sub

l
i1
), ..., t(Sublk, Sub

l
inl−1

)),

wobei t(Sublk, Sub
l
ij
) ≤ t(Sublk, PE

l
ij+1

)

∀ 1 ≤ j < nl − 1, ij 6= ir, falls i 6= r, ij 6= k,

Dann ist eine Kandidatenliste für ein Subsystem höherer Ebene (l + 1)
Kandl+1

m definiert durch:

Kandl+1
k = {Sublk} ∪ {Sub

l
ij
|1 ≤ j < r, (4.9)

mit







r = nl, falls
t(Subl

k,Subl
is+1)

t(Subl
k
,Subl

is
)
< D ∀ 1 ≤ s < nl − 1

oder r = min{s|1 ≤ s < nl − 1,
t(Subl

k,Subl
is+1)

t(Subl
k
,Subl

is
)
≥ D, ij 6= k}







Da auf diese Weise in jedem Schritt der Subsystembildung mindestens zwei
Systeme zusammengefasst werden, terminiert dieses Verfahren.

Durch diese Methode werden Größenordnungen von Kommunikationszeiten
herausgestellt. Netzwerkverbindungen, die um ein Vielfaches schneller sind als
andere, werden von weniger leistungsstarken abgegrenzt. Diese Abgrenzung er-
folgt durch den Wert DIFF TOLERANCE.

Ergebnisaustausch

Da die Berechnung verteilt erfolgt, bestimmen die PEs die Subsysteme aus ihrer
eigenen Sicht heraus. Es muss jedoch gewährleistet sein, dass die Hierarchie auf
jedem PE in gleicher Weise aufgebaut wird. Das liegt darin begründet, dass
alle an Lastverteilung beteiligten PEs Lastverteilung zur gleichen Zeit initiieren
müssen. Dieses erfordert die Kenntnis über ihre Subsystemmitglieder.

Die Tatsache, dass die Bestimmung der Subsysteme nicht auf absoluten Ge-
schwindigkeiten, sondern auf deren Verhältnisse zueinander basiert, und diese
abhängig von der Größe des ersten Elements in der Liste der Kommunikations-
zeiten sind, kann zu unterschiedlichen Listen führen (siehe Abbildung 4.4).
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Beispiel 4.3.2.1:

0
PE

1
PE

2
PE

0.2 sec

0.1 sec 0.2 sec

Abbildung 4.4: Gemessene Kommunikationszeiten in einem Beispielsystem

Die Listen der Kommunikationsgeschwindigkeiten sehen für Beispiel 4.3.2.1
wie folgt aus:

T 0
com : (0,1 0,2)
T 1

com : (0,1 0,2)
T 2

com : (0,2 0,2)

Der erste Wert der Liste von PE2 (= 0,2) ist wesentlich höher als der der
anderen PEs. Er entspricht vielmehr ihren zweiten Werten. Dieses zeigt, dass
PE2 auf unterster Ebene keine Subsystempartner hat. Da die globale Sicht für
die einzelnen PEs nicht existiert, d. h. PE2 verfügt über keine Informationen
über die Werte der anderen PEs, müssen aus den lokalen Informationen die
Subsysteme entsprechend ihres Kommunikationsverhaltens gebildet werden.

Die obigen Listen führen bei DIFF TOLERANCE < 2 zu folgenden Kan-
didatenlisten:

Kand1
0: {PE0, PE1}

Kand1
1: {PE0, PE1}

Kand1
2: {PE0, PE1, PE2}

Hierbei ist die eigene PE-Nummer immer Bestandteil der Liste.

Um in solchen Fällen zu einem einheitlichen Ergebnis zu gelangen, wird eine
Berechnung der Subsystemzusammenstellungen durchgeführt.

Hierfür müssen jedem PE alle Kandidatenlisten vorliegen. Dieses erfordert
einen Datenaustausch der PEs untereinander und damit eine kollektive Ope-
ration. Dieser Abgleich der Ergebnisse ist zwingend erforderlich, um identische
Resultate aller PEs zu gewährleisten und damit eine Voraussetzung für eine
spätere Lastverteilung zu schaffen.
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Bestimmung der Subsystempartner

Nach dem Austausch der Listen erfolgt die Berechnung wiederum verteilt.
Dabei werden zunächst alle eindeutig erkannten Subsysteme als solche in

die Hierarchie aufgenommen. Dies bedeutet, dass alle in der Kandidatenliste
auftretenden PEs über die gleichen Listen verfügen (in Beispiel 4.3.2.1 die Liste
von PE0 und PE1).

Werden auf diese Art und Weise nicht alle PEs erfasst, so werden die Sub-
systeme auf Basis von Schnittmengenbildung der Ergebnislisten bestimmt.

Die am häufigsten auftretenden Schnittmengen bilden die neuen Subsyste-
me. Kann ein Element nicht zugeordnet werden, dann bildet es ein Subsystem
mit nur einem Element (isolierter Knoten). In Beispiel 4.3.2.1 bildet PE2 auf
unterster Ebene ein Subsystem mit nur einem Knoten.

Durch das Prinzip der Schnittmengenbildung von Kandidatenlisten werden
nur PEs zusammengefasst, zwischen denen die für die aktuelle Ebene schnellsten
Verbindungen bestehen.

Das Vorgehen zeigt das folgende Beispiel:

Beispiel 4.3.2.2:
Aufgrund der Kommunikationszeiten wurden folgende Kandidatenlisten er-

mittelt:

Kand1
0: {PE0, PE2, PE3}

Kand1
1: {PE1, PE2, PE3}

Kand1
2: {PE0, PE1, PE2, PE3}

Kand1
3: {PE0, PE1, PE2, PE3}

Die Verbindung zwischen PE0 und PE1 ist um Faktoren langsamer als die
zu den anderen Knoten. Daher tauchen diese Elemente nicht gegenseitig in ihren
Listen auf. Bildet man die Schnittmenge über alle Kandidatenlisten, so ist

Kand1
0 ∩Kand1

1 ∩Kand1
2 ∩Kand1

3 = {PE2, PE3}.

PE2 und PE3 haben die schnellsten Verbindungen zueinander und können
zu einem Subsystem kombiniert werden. Dieses ist jedoch sehr klein. Für die
Lastverteilung ist es vorteilhafter, die Größe eines Subsystems zu maximieren,
da dann mehr PEs bei einer potenziellen Lastumverteilung zur Verfügung ste-
hen. So kann die obige Liste durch die Elemente PE0 oder PE1 erweitert werden,
ohne dass die Regel zur Subsystembildung verletzt wird. Um dieses zu erreichen,
werden Schnittmengen zwischen jeweils zwei Kandidatenlisten gebildet. Die am
häufigsten auftretenden Schnittmengen bilden dann neue Subsysteme.
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Zu Beispiel 4.3.2.2:

Schnittmenge Kand1
0 Kand1

1 Kand1
2 Kand1

3

Kand1
0 – {PE2, PE3} {PE0, PE2, PE3} {PE0, PE2, PE3}

Kand1
1 – – {PE1, PE2, PE3} {PE1, PE2, PE3}

Kand1
2 – – – {PE0, PE1, PE2, PE3}

Da die Operation kommutativ ist, muss nur die obere Hälfte der Tabelle
angegeben werden.

Die am häufigsten auftretenden Schnittmengen sind {PE0, PE2, PE3} und
{PE1, PE2, PE3} (je zwei Mal). Wird die erste Menge gewählt, so entsteht ein
Subsystem aus den PEs PE0, PE2 und PE3. PE1 bleibt isoliert und bildet sein
eigenes Subsystem (siehe Abbildung 4.5).

PE2 PE3 PE1PE0

Abbildung 4.5: Ergebnishierarchie zu Beispiel 4.3.2.2

Subsystembildung auf höherer Ebene

Auf unterster Ebene sind alle PEs am Prozess der Subsystembildung beteiligt.
Auf höheren Ebenen übernimmt ein beliebiges, aber festes PE jedes Subsystems
die Funktion eines Masterknotens. Beim Erkennungsprozess der Hierarchie auf
nicht unterster Ebene werden nur zwischen diesen Masterknoten Entscheidungen
über neue Subsystembildungen getroffen. Nur die Masterknoten gehören zur
Struktur der nächst höheren Ebene. Jedes PE hat somit nur Informationen
über jene Subsysteme, zu denen es zugehörig ist.

Wird das Beispiel 4.3.2.2 um weitere Subsysteme auf unterster Ebene erwei-
tert, so könnte es folgendermaßen aussehen:

Beispiel 4.3.2.3:

PE2 PE3PE0 PE6 PE8PE5PE4PE1 PE7

PE0
1 PE4

1 PE7
1PE1

1

Abbildung 4.6: Erweiterung des Beispiels 4.3.2.2
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Alle PEs kennen die Mitglieder ihrer Subsysteme. Die PEs PE0, PE1, PE4

und PE7 sind Masterknoten (hier gekennzeichnet durch
”
1 “) und sind an der

Bildung der nächsten Hierarchieebene beteiligt. Diese erfolgt wie bereits für die
unterste Ebene beschrieben nach Bildungsvorschrift 4.9.

Angenommen, die Masterknoten PE1
0 und PE1

1 sowie PE1
4 und PE1

7 bilde-
ten jeweils Subsysteme auf der nächsten Ebene (Ebene zwei), dann verfügen nur
diese PEs über Informationen über diese neuen Subsysteme. Ihre Subsystem-
partner auf Ebene eins haben keinerlei Informationen darüber.

Dieses hat zum einen den Vorteil, dass die nicht beteiligten PEs (PE2, PE3,
PE5, PE6, PE8), andere Aufgaben lösen können (z. B. Rechnungen im Rah-
men der Anwendung), und zum anderen, dass sich die Anzahl an notwendigen
Kommunikationen von Ebene zu Ebene verringert.

Die Hierarchie sieht nun folgendermaßen aus:

PE2 PE3PE0 PE6 PE8PE5PE4PE1 PE7

PE0
1 PE4

1 PE7
1PE1

1

PE0
2 PE4

2

PE0
3

Ebene 1

Ebene 2

Ebene 3

Abbildung 4.7: Erweiterung des Beispiels 4.3.2.2
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Hierarchieaktualisierung

Während der Laufzeit können sich Kommunikationsgeschwindigkeiten stark ver-
ändern. Die bestehende hierarchische Struktur repräsentiert dann nicht mehr die
aktuelle Netzwerksituation. Sie muss daher an die aktuell vorhandenen Messwer-
te angepasst werden. Damit reagiert das System auf sich verändernde Netzwerk-
strukturen bzw. -qualitäten.

Es gibt mehrere Fälle, bei denen die hierarchische Struktur aufgrund von
veränderten Kommunikationsgeschwindigkeiten angepasst werden muss:

1. Subsysteme müssen zu einem Subsystem zusammengefasst werden (sie-
he Abbildung 4.8), da die gemessenen Geschwindigkeiten zwischen zwei
oder mehreren Subsystemen jenen innerhalb der Subsysteme ähneln (z. B.
durch Ausfall oder Umschalten von Netzwerken).

PE2PE0 PE4 PE5 PE7PE1 PE3 PE6

PE2PE0 PE4 PE5 PE7PE1 PE3 PE6

Abbildung 4.8: Zusammenfassen zweier Subsysteme
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2. Ein oder mehrere PEs bzw. Subsysteme müssen zu anderen Subsystemen
wandern (siehe Abbildung 4.9), da sich die Kommunikationsgeschwindig-
keiten zwischen einzelnen PEs oder aber Subsystemen verändert haben
(z. B. durch Netzwerkstörungen).

PE2PE0 PE4 PE5 PE7PE1 PE3 PE6

PE2PE0 PE4 PE5 PE7PE1 PE3 PE6

Abbildung 4.9: Wechsel zu einem anderen Subsystem
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3. PEs oder Subsysteme werden zu isolierten Knoten (siehe Abbildung 4.10).

PE2PE0 PE4 PE5 PE7PE1 PE3 PE6

PE2PE0 PE4 PE5PE1 PE3 PE6 7PE

Abbildung 4.10: Bildung eines isolierten Knotens

Diese Situationen haben folgende Auswirkungen auf die Struktur der Hierarchie:

Fall 1: Müssen Subsysteme zusammengefasst werden, so sind die betroffenen
PEs bzw. Subsysteme beteiligt. Die Hierarchiestruktur muss nur auf der
betroffenen Ebene verändert werden. Um diese Änderungen jedoch aufzu-
decken, muss jede Ebene überprüft werden. Dafür ist es stets notwendig:

1. eine Kandidatenliste für die aktuelle Ebene zu bestimmen

2. diese mit der Kandidatenliste aus der letzten Aktualisierung zu ver-
gleichen

Dieses entspricht einem deutlichen Mehraufwand zu dem des Hierarchie-
aufbaus, da hier zur Bestimmung der Kandidatenliste noch der Vergleich
hinzukommt.

Fall 2: Müssen Subsysteme bzw. PEs verschoben werden, so hat dieses nicht
nur Auswirkungen auf die betroffenen Subsysteme selber, sondern mögli-
cherweise auch auf die komplette hierarchische Struktur (siehe Abbildung
4.11).

Fall 3: Wird ein Knoten isoliert, so kann sich seine eigene Subsystemstruktur,
die des vorherigen Masters und die des Masters auf höherer Ebene ändern.
Bei starken Veränderungen der Kommunikationszeiten, können sich die-
se Modifikationen durch den ganzen Baum ziehen. So kann der isolierte
Knoten z. B. auch direkter Nachfolger der Wurzel werden.
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PE7

PE0
3

PE6
1

PE0
1 PE1

1

PE0
2

PE2PE0 PE1 PE3

PE0
3

PE2PE0 PE4 PE5 PE7PE1 PE3 PE6

PE0
1

PE1
1 PE6

1PE4
1

PE0
2 PE4

2

PE5
2

PE5
1

PE5 PE64PE

Abbildung 4.11: Strukturänderung durch Verschiebung eines Elements

In allen diesen Fällen ist es möglich, dass die Struktur auf jeder Ebene
geändert bzw. überprüft werden muss. Da dieses einen größeren Aufwand ge-
genüber dem eines Neuaufbaus darstellt, wird statt einer Aktualisierung ein
Neuaufbau der Hierarchie durchgeführt.

Die hierarchische Struktur kann nun dazu benutzt werden, bei einem beste-
henden Ungleichgewicht geeignete Lastverteilungspartner zu finden.

4.3.3 Lokalisierung geeigneter Lastverteilungspartner

Ist ein Ungleichgewicht entdeckt worden, dann erfolgt die Suche nach den Last-
verteilungspartnern, wobei deren Verbindungen zueinander möglichst schnell
sein sollen. Das Ziel ist, ein Subsystem niedrigster Hierarchiestufe zu lokalisie-
ren, durch dessen Re-Balancierung ein Lastgleichgewicht des Gesamtsystems
erzielt werden kann. Das ist dann der Fall, wenn die Gesamtlast dieses Subsys-
tems seiner optimalen Last entspricht, dieses aber nicht für seine Teilsysteme
gilt.

Die optimale Last eines Subsystems Subl
j (optimale LastSubjl) wird durch

Aufsummieren der einzelnen optimalen Lastwerte optimale Last
Sub

l−1

k

der zu-

gehörigen Subsysteme, bzw. auf unterster Ebene PEs, bestimmt, d. h.
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optimale LastSubl
j
=

∑

Sub
l−1

k
∈Subj

optimale Last
Sub

l−1

k

(4.10)

Wird ein Lastungleichgewicht lokal auf einem PE PEi festgestellt (siehe
Gleichung 4.6), so schickt PEi eine Anfrage an seinen Masterknoten PEj . Dieser
überprüft daraufhin das Gleichgewicht seines Subsystems Sub1j .

• Besteht kein Ungleichgewicht, so ist der gesuchte Teilbaum gefunden. In-
nerhalb dieses Teilbaums wird nun das Ungleichgewicht jedes Subsystems
überprüft. Alle PEs, die zu einem unbalancierten Subsystem gehören, bil-
den die Lastverteilungspartner für den aktuellen Zyklus.

• Besteht jedoch ein Ungleichgewicht in dem Subsystem Subl
j , so schickt

PEj eine Anfrage an seinen Masterknoten auf höherer Ebene (l + 1).

Dieses Prozedere wird solange durchgeführt, bis ein balanciertes Subsys-
tem gefunden wurde. Spätestens bei der Wurzel, die alle PEs des Systems
repräsentiert, wird ein Gleichgewicht gefunden, da das Gesamtsystem stets
in sich balanciert ist. Die aktuelle Last des Gesamtsystems entspricht im-
mer seiner optimalen Last und damit ist:

UngleichgewichtWurzel = |1−
aktuelle Lastgesamt

optimale Lastgesamt

| = |1−1| = 0 (4.11)

Abbildung 4.12 zeigt ein Beispiel zur Ortung von für Lastverteilung geeig-
neten Subsystemen. PE0 entdeckt ein Lastungleichgewicht von 0,3 und schickt
eine Anfrage an seinen Masterknoten. In diesem Falle ist PE0 selbst Repräsen-
tant auf nächst höherer Ebene (gekennzeichnet durch PE1

0). PE
1
0 überprüft das

Gleichgewicht seines Subsystems auf Ebene eins und stellt fest, dass ein Un-
gleichgewicht von 0,1 besteht. Es schickt ebenfalls eine Anfrage an den Master-
knoten der nächst höheren Ebene (PE2

0). Dieser stellt fest, dass sein Subsystem
balanciert ist, d. h. die Gesamtlast seines Subsystems ist gleich seiner optimalen
Last.

PE3 entdeckt ebenfalls ein Ungleichgewicht (0,3) und stellt eine Anfrage an
PE1

4 , das diese weiterreicht. Auf Ebene zwei wird festgestellt, dass innerhalb
dieses Subsystems Lastverteilung erfolgen muss. Die unbalancierten Teilbäume
mit den PEs PE0, PE5, PE2, PE4 und PE3 können durch Austausch ihrer
Last ein Gleichgewicht erzielen.

PE7 und PE8 bilden eine zweite Lastverteilungspartition, die von der ersten
jedoch gänzlich unabhängig ist.
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Abbildung 4.12: Lokalisierung von Lastverteilungspartnern

4.4 Leistungsmessungen

Als Basis für das Erkennen der Hierarchie zum einen und für die Bestimmung
der Lastmenge je PE zum anderen, dienen Kommunikations- bzw. Berechnungs-
geschwindigkeit. Diese werden aus Messwerten berechnet, die zur Laufzeit er-
mittelt wurden. Dadurch wird Aktualität gewährleistet.

Die Leistungsmessungen begründen sich auf die in Kapitel 3.2 beschriebenen
Grundsätze Skalierbarkeit, Effizienz und Verfügbarkeit auf Anwenderebene.

Skalierbarkeit wird ermöglicht, indem das Monitoring vollständig verteilt er-
folgt. Jedes PE führt das eigene Monitoring durch. Die Daten werden lokal
gesammelt. Werte, die auf diesen Messergebnissen basieren, werden lokal
berechnet.

Verfügbarkeit ist dadurch gegeben, dass innerhalb der Anwendung Leistungs-
messungen durchgeführt werden. Auf Informationen des Betriebssystems
wird nicht zugegriffen. Die Daten, die die Anwendung ermittelt, können
auch von dieser genutzt werden.

Effizienz bedeutet, dass hinreichende Informationen mit möglichst wenig Over-
head erzeugt werden.
Hinreichende Informationen bedeuten für den Netzwerkbereich ein Er-
mitteln von Größenordnungen von Kommunikationsgeschwindigkeiten im
Hinblick auf die Anwendung. Die Messwerte dienen der Bildung der Sub-
systeme, werden also lediglich für die Aufteilung in unterschiedliche Ge-
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schwindigkeitsklassen benötigt. Dieses erfolgt durch die Messung von Nach-
richten an Synchronisationspunkten der Anwendung.
Für die Leistungsfähigkeit der Recheneinheiten müssen Berechnungsge-
schwindigkeiten der Lasteinheiten bestimmt werden. Messen von Rechen-
phasen der Anwendung liefert die notwendigen Informationen.

Die Feststellung von Berechnungs- und Kommunikationsgeschwindigkeit er-
folgt unabhängig voneinander und wird im Folgenden detailliert beschrieben.

4.4.1 Ermittlung der Berechnungsgeschwindigkeit

Die Leistungsfähigkeit einer Recheneinheit wird im Hinblick auf die Anwendung
bestimmt. Diese dient dazu, die Last entsprechend dieser Leistungsfähigkeit
auf die einzelnen PEs zu verteilen. Was benötigt wird, ist daher ein Maß für
die Leistungsfähigkeit, auf dessen Grundlagen entschieden werden kann, wieviel
Last innerhalb welcher Zeit bewältigt werden kann.

Da Lastverteilung in gitterbasierten Anwendungen die Menge der Zellen ver-
teilt, bedarf es einer Aufwandsbestimmung je Zelle. In diesem Verfahren wird
daher bestimmt, wie lange ein PE für die Berechnung einer Zelle benötigt. Diese
Rechengeschwindigkeit zeigt nicht nur die Kapazitäten der CPU, sondern be-
zieht auch Faktoren wie Speicherauslastung mit ein. So erhöht sich z. B. die
Laufzeit einer Anwendung, wenn der Hauptspeicher dermaßen belegt ist, dass
in den Swap-Bereich ausgelagert werden muss.

Um die Rechengeschwindigkeit je Zelle zu bestimmen, wird zunächst die Be-
rechnung mehrerer Zellen gemessen und anschließend diese Gesamtzeit durch die
Anzahl der Zellen geteilt. Dieses Vorgehen erfüllt die fünfte Forderung Gropps,
sehr kurze Zeitereignisse zu berücksichtigen. Der Aufwand für die Berechnung
einer Zelle liegt im Millisekundenbereich, zu kurz, um aussagekräftige Messun-
gen zu erhalten. Weiterhin wird der Ansatz damit der Forderung nach Effizienz
gerecht. Anstatt vieler kurzer Zeiten werden wenige lange erfasst. Der Overhead
wird dadurch minimal gehalten.

Ein wichtiger Aspekt ist die Aktualität der Messwerte, um auf Änderungen
der für die Anwendung vorhandenen Leistungskapazität reagieren zu können.
Dieses betrifft die Nutzung der Ressource durch andere Prozesse. Um jedoch
abzufangen, dass kurzzeitige Auslastungsspitzen das Bild verfälschen, werden
Messwerte über einen bestimmten Zeitraum gemittelt. Dadurch wird erreicht,
dass die zu erwartende Leistungsfähigkeit, die für die Lastverteilung ausschlag-
gebend ist, erfasst wird.

4.4.2 Ermittlung der Kommunikationsgeschwindigkeit

Das Ausnutzen von Synchronisationspunkten der Anwendung bildet eine wich-
tige Basis für das Monitoring. Somit wird das Laufzeitverhalten der Anwendung
nicht beeinflusst.
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Synchronisationspunkte sind durch das Ablaufschema von FEM-Anwendun-
gen vorgegeben. Wie in Abschnitt 2.3 beschrieben, folgen Rechenphasen jeweils
Phasen des Datenaustausches und damit auch Kommunikation. Diese Kommu-
nikation betrifft zum einen den Datenaustausch von benachbarten PEs, um Er-
gebnisse der Randzellen auszutauschen. Zum anderen werden diese Phasen auch
für Lastverteilung genutzt. Viele FEM-Anwendungen benötigen auch den Aus-
tausch globaler Informationen. Dieses bedingt Kommunikation, an denen alle
PEs beteiligt sind (kollektive Kommunikation). Diese kollektiven Kommunika-
tionen stellen Synchronisationspunkte dar und werden genutzt, um Leistungs-
messungen des Netzwerks durchzuführen.

Durch den Mangel einer globalen Uhr in einer verteilten Umgebung, wurde
die Methode der Ping-Pong-Messungen gewählt. Hierbei wird die Laufzeit einer
Nachricht gemessen, die von einem Sender zum Empfänger und wieder zurück
geschickt wird (siehe Abbildung 4.13). Um die Nachrichtenlaufzeit (= T3 − T0)
zu messen, ist es in diesem Verfahren erforderlich, dass der Empfänger emp-
fangsbereit ist und die Nachricht direkt weiterschicken kann, d. h. T2 − T1 < ε.
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Abbildung 4.13: Ping-Pong-Schema

Um zu gewährleisten, dass die Empfangsbereitschaft gegeben ist, wird zu
Beginn der Anwendungslaufzeit ein Kommunikationsplan berechnet, der die
Reihenfolge der einzelnen Messungen wie auch die Kommunikationspartner be-
stimmt.

Anhand dieses Kommunikationsplans, der auf jedem PE berechnet wird, er-
kennt jedes PE, wann es mit welchem Partner kommunizieren muss.

Soll eine Messung zwischen den Kommunikationspartnern PEi und PEj

stattfinden, so wird der erste Ping-Pong-Lauf nicht gemessen. Damit wird Gropp-
Forderung Nummer eins, die erste Messung nicht zu berücksichtigen, erfüllt.
Danach werden für eine Messung mehrere Nachrichtenläufe durchgeführt.

Wird eine Kommunikationsverbindung von PEi zu PEj gemessen, so ini-
tiiert nur einer der beiden PEs die Messung. Es wird also entweder PEi →
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PEj → PEi gemessen oder aber PEj → PEi → PEj . Das nicht-messende PE
erhält den Messwert dann vom Initiator. Diese Methode geht davon aus, dass die
Kommunikation symmetrisch ist, eine Grundvoraussetzung für die Subsystem-
bildung.
Weiterhin werden die Kosten, und damit der Overhead für die Lastverteilung,
minimiert, indem nur die Hälfte der Kommunikationsverbindungen gemessen
wird.

Die Nachrichtengröße richtet sich zum einen nach der Anwendung, zum an-
deren soll sie so klein wie möglich sein, um einen hohen Zusatzaufwand zu ver-
meiden. Dieses trifft auch für die Häufigkeit der Messungen zu. Eine Evaluierung
der optimalen Nachrichtengröße und der geeigneten Abstände der Messungen
findet sich in Abschnitt 6.4.3.

Der Kommunikationsplan

Die Ping-Pong-Messungen werden von allen Prozessen gleichzeitig aufgerufen.
Ziel ist es, alle Kommunikationswege

”
abzutasten“. Dabei muss die Laufzeit

so minimal wie möglich sein, um den Overhead für die Lastverteilung zu mi-
nimieren. Um alle Kommunikationsvarianten (d. h. welches PE kommuniziert
mit welchem anderen PE) abzudecken und Kollisionen zu vermeiden, wird ein
Kommunikationsplan berechnet. Anhand dieses Plans führt jedes PE zu einer
entsprechenden Zeit ein Senden bzw. Empfangen von Nachrichten zu bzw.von
einem definierten anderen PE aus.

Durch diesen Plan wird gewährleistet, dass das empfangende PE empfangs-
bereit ist und die Nachricht direkt zurückschicken kann. Die Ergebnisse der
Messungen werden allerdings von der darunter liegenden Technologie beein-
flusst. Bei verschalteten Netzwerken, wie z. B. Infiniband, behindern sich die
Nachrichten nicht. Die Ergebnisse zeigen die Übertragungsgeschwindigkeit zwi-
schen den beiden betreffenden PEs, unabhängig vom übrigen Netzwerkverkehr.
In Torus-Topologien hingegen, wie sie z. B. in SCI-Netzwerken zu finden sind,
sind die Nachrichtenlaufzeiten stark abhängig von der Gesamtauslastung des ak-
tuellen Rings. Bei den hier gemessenen Kommunikationsgeschwindigkeiten fließt
auch die Auslastung des Gesamtnetzes mit ein. Dieses Phänomen ist beabsich-
tigt, da an den Synchronisationspunkten alle PEs Informationen austauschen
und damit auch die Gesamtnetzwerklast beeinflussen.

Die Berechnungsgeschwindigkeit, die der Bearbeitungszeit je Zelle entspricht,
und die Kommunikationsgeschwindigkeit, die Nachrichtenlaufzeiten zwischen
PEs angibt, bilden die Basis für die Umsetzung des Konzepts.

4.5 Integration in den Lastverteilungszyklus

In den vorangegangenen Abschnitten wurden die einzelnen Konzepte der ka-
pazitäten- und netzwerkabhängigen Lastverteilung vorgestellt. Wie diese Me-
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thoden in den Lastverteilungszyklus integriert werden können, ist Thema des
folgenden.

Lastverteilung gliedert sich, wie in Kapitel 2.2 beschrieben, in mehrere Schritte:

1. Entscheidungsphase:

(a) Wann wird Lastverteilung durchgeführt?

Diese Entscheidung obliegt der Endanwendung. Nur diese verfügt
über Informationen, wann sich die Lastmenge ändert. In Abhängig-
keit von der Höhe des Ungleichgewichts kann diese sich für bzw. gegen
eine Umverteilung der Last entscheiden.
Wird Lastverteilung durchgeführt, so werden folgende Fragestellun-
gen von einem bestehenden Lastverteilungswerkzeug (z. B. Jostle,
ParMETIS) oder aber von einer anwendungseigenen Lastverteilungs-
methode bearbeitet:

(b) Wieviel Last muss migriert werden?

(c) Welche Last muss migriert werden?

(d) Wohin/Woher muss Last migriert werden?

2. Durchführungsphase: Datenmigration
Hier erfolgt die Verschiebung der Last durch die Anwendung.

Durch die neu entwickelte Strategie erweitert sich dieser Lastverteilungszyklus
wie folgt:

1. Entscheidungsphase:

(a) Wann wird Lastverteilung durchgeführt?
Wird Lastverteilung von der Anwendung initiiert, so wird diese Ent-
scheidung weitergereicht und Folgendes bearbeitet:

i. Entscheidung über die prinzipielle Durchführung von Lastvertei-
lung in Abhängigkeit vom Ungleichgewicht

Wird Lastverteilung durchgeführt, dann:

ii. Aktualisierung der Hierarchie und der Lastwerte

iii. Lokalisierung der Lastverteilungspartner

iv. Aufbereitung der Eingabedaten für das Lastverteilungswerkzeug

Aufruf des Anwendungslastverteilers:

In dieser Phase wird der Anwendungslastverteiler (ALB) (z. B. Jost-
le) mit dem zuvor bestimmten Subsystem aufgerufen. Dabei wird dem
ALB angegeben, wieviel Last jeder PE erhalten soll (abhängig von
seiner Berechnungsgeschwindigkeit). Der ALB hat dann die Aufgabe,
zu berechnen:

(b) Welche Last muss migriert werden?
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(c) Wohin/Woher muss Last migriert werden?

2. Durchführungsphase: Datenmigration

Die Kontrolle wird nun wieder der Anwendung übergeben. Diese führt die
Verschiebung der Last, basierend auf den Ergebnissen des Lastverteilers,
und die Einbindung dieser auf dem Zielprozessor durch.

Anwendung

− Wann?
Umgebung

− Wieviel

− Wohin/Woher

− Welche

Lastverteilung

Monitoring

Lastverteilungssteuerung

Partitionsgröße

zu migrierende
Last

dualer Graph

Abbildung 4.14: Platzierung des neuen Moduls

Abbildung 4.14 zeigt die Platzierung der Lastverteilungssteuerung. Die er-
forderliche Partitionsgröße soll nun durch die Steuerung bestimmt werden.

Die Umsetzung dieser Konzepte zusammen mit deren Integration in eine
Anwendung ist Thema des nächsten Abschnitts.
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Kapitel 5

Meta Load Balancer mLB

Die Konzepte aus dem letzten Kapitel wurden in dem Werkzeug Meta Load
Balancer mLB umgesetzt. Die Entwicklungsziele sowie deren Umsetzung sind
Thema dieses Kapitels.

5.1 Entwicklungsziele

Bedingt durch die Anforderungen der Anwendung zusammen mit den Gege-
benheiten der Umgebung, mussten grundlegende Design-Richtlinien eingehalten
werden. Diese ergaben sich aus folgenden Entwicklungszielen:

Skalierbarkeit: Die Effizienz einer parallelen Anwendung ist immer abhängig
von ihrer Skalierbarkeit. Skalierbarkeit in einer Umgebung wie das Grid, in
die Tausende an Ressourcen integriert sein können, kann nur eine verteilte
Software ermöglichen.

Portabilität: Das Grid zeichnet sich nicht nur durch eine heterogene Rechenum-
gebung aus. Auch ist die zur Verfügung stehende Software nicht inner-
halb jeden Zentrums gleich. Daher wurde nur Software eingesetzt, deren
Verfügbarkeit sichergestellt ist.

Minimale Eingriffe in die Anwendung: Es darf nicht notwendig werden,
bestehende Anwendungen in großem Umfang abändern zu müssen, um
mLB einsetzen zu können. Ein einfaches Benutzen (

”
easy to use“) von

Software erhöht die Akzeptanz seitens der Anwender und damit auch ihren
Einsatz.

(Gridfähigkeit): Hier geht es um softwaretechnische Möglichkeiten, die An-
wendung in der Grid-Umgebung laufen zu lassen. Dieser Aspekt wird zwar
berücksichtigt, ist aber nicht Aufgabe von mLB.

59
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5.2 Architektur/Design

Die angestrebten Entwicklungsziele bestimmen das Design von mLB.

Skalierbarkeit wurde durch eine verteilte Architektur ermöglicht (siehe Ab-
bildung 5.1).mLB läuft auf jedem Knoten der Anwendung. Entscheidungen wer-
den verteilt getroffen. Lediglich wenige Informationsaustausche sind notwendig.
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Abbildung 5.1: Verteilte Architektur von mLB

Portabilität: Ein heutiger Kommunikationsstandard bietet MPI (Messa-
ge Passing Interface). Leistungsangaben von Netzwerktechnologien, wie z. B.
Latenz, werden meist für die Kommunikation mit MPI angegeben (siehe auch
Tabelle 2.1). Dieses ist ein Kennzeichen für seine starke Verbreitung.

MPI wurde entwickelt als ein Standard für Message-Passing-Funktionen, das
ein Konsortium von Entwicklern und Hardware-Herstellern erstellte. Es beinhal-
tet die Definition von Kommunikationsroutinen. Die Spezifikation der Schnitt-
stellen ermöglicht zum einen die Portierbarkeit von Anwenderprogrammen. Zum
anderen können Hersteller und Entwickler eine effiziente, architekturspezifische
Implementierung von Kommunikationsroutinen bereitstellen.
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Die Kommunikation von MPI ist nur über Kommunikatoren möglich. Einem
Kommunikator liegt eine Gruppe von Prozessen zugrunde. Bei Programmstart
existiert eine einzige Gruppe, die alle Prozesse umfasst. Während der Laufzeit
kann die Anwendung Prozessgruppen bzw. neue Kommunikatoren bilden. Damit
ist es möglich, die Menge der Prozesse in Teilmengen zu zerlegen.

MPI bietet Routinen für Punkt-zu-Punkt-Kommunikation und kollektive
Kommunikation, bei der alle Prozesse eines angegebenen Kommunikators be-
teiligt sind.

Eine Implementierung von MPI ist für jede Architektur verfügbar. Größten-
teils gibt es für die jeweilige Netzwerktechnologie optimierte Versionen. MPI-
Pakete gehören mittlerweile auch optional zu vielen Standard-Linux-Distributio-
nen. Durch die freie Verfügbarkeit von MPICH, einer Implementierung des Ar-
gonne National Laboratory, besteht auch die Möglichkeit, diese Software selbst
zu übersetzen.

MPICH verfügt über Schnittstellen für drei Programmiersprachen: C, C++
und Fortran. Für die Implementierung von mLB wurde die Sprache C gewählt.
Fortran77 wurde nicht in Betracht gezogen, da es keine dynamische Speicher-
verwaltung unterstützt (siehe Abschnitt 6.5.1). Anwendungen, die in C++ ge-
schrieben sind, können problemlos die C-Schnittstelle verwenden.

Minimale Eingriffe in die Anwendung: mLB nutzt das MPI-Profiling-
Interface für die netzwerkabhängige Lastverteilung (siehe Abbildung 5.2). Mit
Hilfe dieses Interfaces ist es bei Aufruf einer MPI-Routine seitens der Anwen-
dung möglich, statt der entsprechenden MPI-Routine eine andere Funktion auf-
zurufen. Diese Möglichkeit wird von mLB genutzt, um Netzwerk-Monitoring
anzustoßen.

MPI Profiling Interface

mLB

Anwendung

Recheneinheit

Abbildung 5.2: mLB mit MPI-Profiling Interface
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Gridfähigkeit wurde durch den Einsatz von PACX-MPI [pac] realisiert.
PACX-MPI ist eine Grid-Computing-Erweiterung von MPI. Es stellt die Kom-
munikation zwischen unterschiedlichen MPI-Implementierungen zur Verfügung.
Damit können auf den einzelnen Systemen die optimierten MPI-Versionen ge-
nutzt werden, untereinander kommunizieren diese dann über PACX-MPI. Die
Vorgehensweise von PACX-MPI zeigt Abbildung 5.3.

MPI−System B

Pacx
MPI

Hardware

Anwendung

Pacx

Prozess i+1...nDämon

MPIMPI

Pacx

TCP

Pacx
MPI

Hardware

Anwendung

Prozess 1...i

MPI−System A

Dämon

TCP

Abbildung 5.3: Kommunikationsprinzip von Anwendungen unter PACX-MPI
(entnommen aus [pac])
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5.2.1 Interne Architektur von mLB

mLB besteht aus zwei Monitoring-Komponenten und dem LBS-Modul (siehe
Abbildung 5.4):

1. Kommunikationsmonitor: Dieser realisiert die netzwerkabhängige Last-
verteilung und erhält seine Informationen aus der Umgebung.

2. Anwendungsmonitor: Dieser realisiert die kapazitätenabhängige Lastver-
teilung und erhält seine Informationen von der Anwendung.

3. LBS- (Load Balancing Support, Lastverteilungssteuerungs-)Modul:
Dieses Modul verarbeitet die Informationen aus dem Kommunikationsmo-
nitor und dem Anwendungsmonitor.

Kommunikationsmonitor
netzwerkabhängige Lastverteilung

Anwendung Umgebung

Anwendungsmonitor
kapazitätenabhängige Lastverteilung

mLB

Lastverteilungsunterstützung
LBS

Abbildung 5.4: Internes mLB Design
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5.2.2 Kommunikationsmonitor (KM)

Der KM beobachtet das Netzwerk, indem Kommunikationsgeschwindigkeiten
gemessen werden. Er nutzt das MPI-Profiling-Interface. Damit ist er transparent
für die Anwendung.

Der Aufruf einer kollektiven MPI-Routine aktiviert den KM. Anstatt aus-
schließlich die kollektive Kommunikation auszuführen, erfolgt nach Beendigung
dieser Kommunikation eine Messung der Netzwerkverbindungen. Dieser Zeit-
punkt ist prädestiniert für solche Messungen, da er einen Synchronisationspunkt
darstellt. Der Ablauf der Anwendung ändert sich dadurch nicht.
Ein Beispiel dazu zeigt die Realisierung von Profiling der MPI-Barrier-Funktion:

Beispiel 5.1:

int MPI_Barrier(MPI_Comm kommunikator)

{

...

result = PMPI_Barrier(kommunikator);

Ping-Pong-Messungen();

return result;

}

MPI Profiling Interface

MPI

Anwendung

mLB
Kommunikationsmonitor

Recheneinheit

Abbildung 5.5: mLB-Architektur mit Kommunikationsmonitor

Der KM ist durch eine Bibliothek realisiert, die sowohl die Messung des
Netzwerks über das MPI-Profiling-Interface als auch die Erkennung der hierar-
chischen Subsystemstruktur umfasst. Einfaches Hinzubinden dieser Bibliothek
zum Objektcode der Anwendung ermöglicht die Nutzung des KM.
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Der KM arbeitet autonom. Er ist nicht abhängig von den anderen Modulen.
Durch seine Implementierung als Bibliothek kann er auch für andere Bereiche des
Grid-Computings eingesetzt werden, bei denen die Systemstruktur eine wichtige
Rolle spielt.

5.2.3 Anwendungsmonitor (AM)

Der AM erfasst anwendungsspezifische Daten. Dazu gehören insbesondere die
Berechnungsgeschwindigkeit und die Anzahl der Lasteinheiten.

Weiterhin wird hier die Dauer von Lastverteilungszyklen gemessen, d. h.
die Kosten der Lastverteilung. Diese besteht zum einen aus der Dauer für die
Bestimmung der Last (wieviel, wohin, welche) und zum anderen aus der Zeit
für die Migration der Last. Diese Informationen dienen der Kosten-Nutzen-
Analyse, um festzustellen, ob der Gewinn durch Lastverteilung größer ist als die
Lastverteilungskosten selber. Nur wenn dieses gegeben ist, ist die Durchführung
von Lastverteilung effizienzsteigernd.

Durch die Erfassung der Lastverteilungskosten wurde eine Basis zur Kosten-
Nutzen-Analyse geschaffen. Die zu erwartende Zeitersparnis ist mit einfachen
Methoden in einem dynamischen System wie dem Grid kaum zu erfassen. Da-
her ist dieser Aspekt in dieser Arbeit nicht genauer untersucht worden.

Da der Anwendungsmonitor Daten der Anwendung erfasst, erfordert seine
Nutzung die Integration einiger Funktionsaufrufe in den Anwendercode. Die-
se Funktionsaufrufe beinhalten das Messen von Zeit zwischen zwei Messpunk-
ten oder aber die einfache Übermittlung von Werten, wie z. B. die Anzahl an
Lasteinheiten (bzw. Zellen), zum mLB. Anhang B gibt eine Übersicht über die
Funktionen der Benutzerschnittstelle.

5.2.4 Lastverteilungssteuerungs (LBS-) Modul

Das LBS-Modul nutzt die Werte des KMs und AMs und verarbeitet diese zu
Informationen für die Lastverteilungsunterstützung der Anwendung. Aus den
Berechnungsgeschwindigkeiten wird die optimale Lastrate bestimmt (siehe Ab-
schnitt 4.2). Diese wiederum bestimmt zusammen mit der Anzahl an Lastein-
heiten die optimale Lastmenge, die der anwendungseigene Lastverteiler für seine
Entscheidungen benötigt.

Die Feststellung, welche PEs an Lastverteilung beteiligt werden, wird eben-
falls vom LBS-Modul getroffen.

Bei der Ortung des Ungleichgewichts in der Hierarchie muss sichergestellt
sein, dass mindestens zwei Subsysteme gefunden werden, die ein Ungleichgewicht
aufweisen. Durch den Toleranzwert für ein Lastungleichgewicht und auch durch
Rundungsfehler kann es geschehen, dass nur ein Subsystem gefunden wird. Um
diesem zu entgegnen, wird der Toleranzwert solange reduziert, bis mindestens
zwei Subsysteme gefunden werden, die dann ihre Last untereinander austau-
schen können.
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Die Entscheidung, ob Lastverteilung überhaupt initiiert werden muss, wird
von der Anwendung selber auf das LBS-Modul übertragen. Da eine Kosten-
Nutzen-Analyse derzeit noch nicht stattfinden kann, basiert diese Entscheidung
auf einem festen, aber vom Anwenderprogramm einstellbaren Wert. Dieser Wert
gibt an, welches Ungleichgewicht akzeptiert wird. Erst wenn jenes oberhalb die-
ses Schwellwertes liegt, wird Lastverteilung durchgeführt. Dadurch wird ver-
mieden, dass bei minimalem Ungleichgewicht (derzeit liegt der Wert bei fünf
Prozent) Lastverteilung durchgeführt wird.

Die Aufbereitung aller Informationen für den anwendungseigenen Lastver-
teiler (siehe Abschnitt 5.3) schließt die Arbeit des LBS-Moduls im aktuellen
Lastverteilungszyklus ab.

5.2.5 Zusammenspiel der Module

Abbildung 5.6 zeigt das Zusammenspiel von Kommunikationsmonitor, Anwen-
dungsmonitor und LBS-Modul.

RSRSRSRSRSRSRSRSRSRSRSRSRSR
RSRSRSRSRSRSRSRSRSRSRSRSRSR
RSRSRSRSRSRSRSRSRSRSRSRSRSR
TSTSTSTSTSTSTSTSTSTSTSTSTST
TSTSTSTSTSTSTSTSTSTSTSTSTST
TSTSTSTSTSTSTSTSTSTSTSTSTST

Messungen der
Rechenzeiten

Kommunikations−
geschwindigkeit

Berechnungs−
geschwindigkeit

anwendungs−
eigener
Lastverteiler

kollektiver
MPI−Aufruf

Ping−Pong−
Messungen

Bereitstellung der
Lastverteiler−Eingaben

Hierarchie−
aufbau/update

Lastinformation
Lastinformation

Lokalisierung der Lastverteilungspartner

optimale Last

Lastverteilungspartner

Lastverteilung

AM

Anwendung KM

Ungleichgewicht?

Lastmigration

LBS−Modul

Abbildung 5.6: Zusammenspiel der mLB-Module

Erfolgt während der Berechnung ein kollektiver Aufruf seitens der Anwen-
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dung, so wird dieser Aufruf an den KM weitergeleitet. Dieser führt daraufhin
Messungen des Netzwerks durch und ermittelt die Kommunikationsgeschwin-
digkeiten zu anderen PEs.

Die Berechnungszeiten für lastrepräsentierende Rechenschritte werden vom
AM erfasst, ebenso wie Lastinformationen (z. B. Anzahl Gitterzellen auf loka-
lem PE).

Wird von der Anwendung Lastverteilung initiiert, so wird dieser Aufruf an
das LBS-Modul weitergereicht. Dieses berechnet aus den Berechnungsgeschwin-
digkeiten und der Lastinformation die optimale Last sowie das Lastungleichge-
wicht des lokalen PEs. Es stößt den Hierarchieaufbau an, der vom KM über-
nommen wird. Ist die Hierarchie aktuell, so erfolgt die Lokalisierung der Last-
verteilungspartner.

mLB nutzt das MPI-Konzept der Kommunikatoren, indem es aus den PEs
des Subsystems, in dem Lastverteilung durchgeführt werden soll, einen Kommu-
nikator bildet. Dieser Kommunikator wird dem Anwendungslastverteiler (ALB)
übergeben. Das Subsystem agiert somit aus Sicht des ALBs wie eine komplette
Anwendung, der Teilgraph, der dem ALB übergeben wird, wie ein kompletter
Graph.

5.3 Anwendungslastverteiler

Derzeit existiert eine Schnittstelle zu dem bereits vorgestellten Lastverteilungs-
werkzeug Jostle [WCE96]. Jostle wurde aufgrund seiner Flexibilität gewählt. Es
ermöglicht der Anwendung, die Zielgrößen der Partitionen vorzugeben. Diese
Fähigkeit ist eine Voraussetzung, um die kapazitätenabhängige Lastverteilung
einsetzen zu können.

Die netzwerkabhängige Lastverteilung kann ebenfalls mit Jostle durchgeführt
werden. Jostle nutzt MPI und akzeptiert einen von der Anwendung vorgegebe-
nen MPI-Kommunikator.

Die Parameter, die für den Aufruf von Jostle notwendig sind, werden vom
LBS-Modul aufbereitet und weitergereicht.

Jostle-Schnittstelle:

void pjostle(int nnodes, int offset, int *core, int *halo,

int *index, int *degree, int *node_wt,

int *partition, int local_nedges, int *edges,

int *edge_wt, int *network,

int output_level, int dimension, double* coords);
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mLB-Schnittstelle:

void AppDoMetaLB(int nnodes, int offset, int *core, int *halo,

int *index, int *degree, int *node_wt,

int *partition, int local_nedges, int *edges,

int *edge_wt, int *network,

int output_level, int dimension, double* coords)

int lb_phase,

int *global_nodes_lb_part, int *local_nodes_opt);

Die Anwendung übergibt mLB als Parameter den kompletten dualen Gra-
phen. Für den Jostle-Aufruf werden einige dieser Parameter folgendermaßen
geändert:

nnodes: Gesamtanzahl der Knoten im gewählten Subsystem

halo: Die Schnittkanten, die Verbindungen zu PEs darstellen, die nicht zum
Subsystem gehören, müssen eleminiert werden. Das Halo-Feld, in dem die
entsprechenden Halos angegeben werden, muss entsprechend modifiziert
werden.

index: In Jostle gibt es mehrere Möglichkeiten, die Graphknoten zu indizieren.
Beim zusammenhängenden Format wird eine fortlaufende Nummerierung
der Knoten vorausgesetzt. So befinden sich die Knoten 0, ..., |nodesPE0

|−1
auf PE0, Knoten |nodesPE0

|, ..., |nodesPE1
| − 1 auf PE1, usw., wobei

|nodesPEi
| die Anzahl Graphknoten auf PEi sind. Der Vorteil dieses For-

mats ist es, dass nicht jeder Knotenindex angegeben werden muss, wie es
in einem anderen von Jostle unterstützten Format der Fall ist.

Ein Nachteil dieses Formats bei Benutzung von mLB ist es, dass dieses
hergestellt werden muss, wenn nur Teilgraphen an Jostle übergeben wer-
den, die sich nicht auf fortlaufend nummerierten PEs, beginnend mit PE0,
befinden.

degree: Dieses Feld beinhaltet den Grad jedes Graphknotens. Durch Wegfall
einiger Halos erniedrigt sich der Grad (= Anzahl Nachbarn) der entspre-
chenden Knoten.

local nedges: Die Anzahl an lokalen Kanten ändert sich durch die vorherigen
Punkte ebenfalls.

edges: Die Kantenliste wird ebenfalls entsprechend modifiziert.

network: Die Anzahl an beteiligten PEs reduziert sich von der Gesamtanzahl
zu der Anzahl der PEs im Subsystem.

processor wt: In diesem Feld wird die Gewichtung der einzelnen PEs und
damit auch die Menge an Ziellast angegeben. Die kapazitätenabhängige
Lastverteilung wird durch dieses Feld ermöglicht.



Kapitel 6

Validierung

Nachdem die Konzepte und deren Umsetzung vorgestellt wurden, erfolgt nun
ihre Validierung. Dabei muss überprüft werden, ob die Ziele aus den Anforde-
rungskatalogen (siehe Kapitel 3) erreicht wurden.

6.1 Anforderungen an die Monitoring-Umgebung

Um die Monitoring-Umgebung zu validieren, müssen folgende Aspekte unter-
sucht werden:

• Skalierbarkeit

• Verfügbarkeit

• Effizienz

Die Erfüllung dieser Forderungen wurde überprüft und, falls erforderlich,
durch Tests validiert.

6.1.1 Skalierbarkeit

Durch seine verteilte Architektur ist eine Basis für die Skalierbarkeit des Moni-
torings geschaffen worden. Die Feststellung der Berechnungsgeschwindigkeiten
erfolgt lokal und ist daher irrelevant für diesen Aspekt. Der bestimmende Faktor
für die Skalierungseigenschaft von mLB sind die Ping-Pong-Tests. Daher wur-
den Messungen durchgeführt, bei denen diese Kommunikationstests jeweils auf
einer unterschiedlichen Anzahl an Prozessoren durchgeführt wurden.

6.1.2 Verfügbarkeit

Diese ist gegeben, da das Monitoring nur für die Anwendung arbeitet und von
dieser gesteuert wird. Damit kann zu jedem beliebigen Zeitpunkt auf alle not-
wendigen Informationen zugegriffen werden.

69
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6.1.3 Effizienz

Hier muss überprüft werden, ob die gewonnenen Messwerte genau das liefern,
was erzielt werden soll, wobei der Aufwand für ihre Feststellung so minimal wie
möglich ist. In Bezug auf die Messwerte für die Kommunikationsgeschwindig-
keiten ist festzustellen, ob die gewonnenen Ergebnisse das Kommunikationsver-
halten der Anwendung repräsentieren und die Messungen nur einen geringen
Overhead erzeugen.

Zur Feststellung des Overheads wurde die Laufzeit der Ping-Pong-Messungen
erfasst. Ein wichtiger Aspekt ist hier die Größe der Nachrichten, die bei diesen
Messungen verschickt werden. Diese sollte so klein wie möglich, aber so groß
wie nötig gewählt werden. Werden zu viele Daten verschickt, dann wird sich der
Overhead der Messungen, und damit auch des kompletten Monitorings, erhöhen.
Bei Wahl einer zu geringen Datenmenge kann die Aussagekraft der Messungen
zu gering sein.
Ziel bei der Wahl dieser Größe ist es, repräsentative Nachrichten auszutauschen,
um auf Basis der Messwerte eine Hierarchie aufzubauen, die das Kommuni-
kationsverhalten der Anwendung widerspiegelt. Dazu wurden Messungen mit
unterschiedlichen Nachrichtengrößen durchgeführt.

Die Häufigkeit der Messungen bestimmt den Overhead entscheidend. Daher
wurde bereits die Forderung nach Dynamik angeführt. Diese wurde bisher nicht
explizit integriert. Zeitabhängiges Monitoring wurde stattdessen eingesetzt. Das
bedeutet, erst nach Ablauf eines bestimmten Intervalls werden erneut Messun-
gen durchgeführt. Angemessene Werte für dieses Intervall wurden bei Testläufen
mit einer FEM-Anwendung evaluiert, mit dem Ziel wenige, aber ausreichend
viele Messungen durchzuführen, um den aktuellen Netzwerkstatus zu ermitteln.

In Bezug auf die Messwerte für die Berechnungsgeschwindigkeiten muss ge-
prüft werden, ob die Messung der Berechnungseinheiten ein gutes Maß für die
Geschwindigkeit der Recheneinheiten darstellt. Die Ergebnisse der Lastvertei-
lung, die auf diesen Messwerten basiert, werden diese Fragestellung klären.

6.2 Lastverteilungssteuerung mit mLB

Für die Validierung der Lastverteilungssteuerung mit mLB wurden folgende
Aspekte überprüft:

• im Hinblick auf die kapazitätenangepasste Lastverteilung:
die optimale Nutzung der Ressourcen,

• im Hinblick auf die netzwerkabhängige Lastverteilung:
die Berücksichtigung unterschiedlicher Kommunikationsgeschwindigkeiten,

• die Reaktion auf Zustandsänderungen,

• Skalierbarkeit und

• Gesamteffizienz.
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6.2.1 Kapazitätenangepasste Lastverteilung

Werden die Kapazitäten der Recheneinheiten optimal genutzt, so erreichen al-
le PEs ihre Synchronisationspunkte, an denen Nachrichten ausgetauscht wer-
den, zur gleichen Zeit. Damit entstehen keine oder nur minimale Wartezeiten
bei diesen kollektiven Kommunikationen. Um diese Wartezeiten festzuhalten,
wurde die Zeit zwischen Initiierung und Zustandekommen der Kommunikation
gemessen. Diese Messungen sind ein wichtiger Anhaltspunkt für die optimale
Ausnutzung der Kapazitäten der Recheneinheiten.

6.2.2 Netzwerkabhängige Lastverteilung

Das Ziel war hier die Berücksichtigung unterschiedlicher Kommunikationsge-
schwindigkeiten bei der Lastverteilung. Dafür werden schnellere Kommunikati-
onswege langsameren gegenüber bevorzugt, indem Lastverteilung in Subsyste-
men durchgeführt wird.

Die Richtigkeit dieser Vorgehensweise kann zum einen überprüft werden, in-
dem Zeitmessungen von Lastverteilung mit einer unterschiedlichen Anzahl von
PEs und Lastmengen und zum anderen Messungen von Lastverteilung über un-
terschiedliche Kommunikationswege (z. B. Ethernet, Infiniband, gemeinsamer
Speicher) durchgeführt werden.
Ein weiterer wichtiger Aspekt ist hier aber auch der richtige Aufbau der Hier-
archie, d. h. einer Struktur, die die Geschwindigkeiten der von der Anwen-
dung genutzten Kommunikationswege repräsentiert. Dafür spielt der Parameter
DIFF TOLERANCE (siehe Gleichung 4.8) eine wesentliche Rolle. Diese Varia-
ble bestimmt die Granularität der Hierarchiestruktur. Bei einem großen Wert
werden wenige große Subsysteme gebildet, bei einem kleinen hingegen viele klei-
ne Systeme. Die optimale Größe dieser Variablen muss in den Tests ermittelt
werden.

Durch die Art der Bestimmung der Kandidatenliste, d. h. Verhältnisbildung
der einzelnen Kommunikationszeiten zusammen mit dem Wert von DIFF TO-
LERANCE, zeigen das erste Listenelement einer Hierarchiestufe zusammen mit
dem letzten Element der vorhergehenden Ebene die Größenunterschiede der
Kommunikationszeiten zwischen den Ebenen auf.

Um die korrekte Arbeitsweise des Hierarchieaufbaus zu überprüfen, wurde
in einem dediziert genutzten System die erzeugte hierarchische Struktur mit den
vorliegenden Netzwerkparametern verglichen.

6.2.3 Reaktion auf Zustandsänderungen

Durch Erfassung der Messwerte während der Laufzeit werden aktuelle Werte
betrachtet. Diese dienen, bei der netzwerkabhängigen Lastverteilung, dem Hier-
archieaufbau, sobald die Struktur benötigt wird. Die Hierarchie repräsentiert
damit stets die Netzwerkkapazitäten.

Für die kapazitätenabhängige Lastverteilung werden Messwerte gemittelt.
Die Anzahl der zu mittelnden Werte kann vom Anwenderprogramm bestimmt
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werden. Verändert sich die zur Verfügung stehende Kapazität einer Rechenein-
heit, so findet dieses Berücksichtigung durch die zuletzt gewonnenen Werte.

Damit ist die Forderung der dynamischen Anpassung an Zustandsänderun-
gen erfüllt.

6.2.4 Skalierbarkeit

Den Nachweis hierüber erbringen Laufzeitmessungen, die in einer Simulations-
umgebung mit einer unterschiedlichen Anzahl von PEs erfolgten. Diese wurde
so entwickelt, dass Skalierbarkeitsprobleme seitens des Simulationsprogrammes
ausgeschlossen werden. Auf dieser Basis konnte die Skalierungseigenschaft von
mLB gemessen werden.

6.2.5 Gesamteffizienz

Diese ergibt sich durch den Nutzen von mLB verglichen mit seinem Overhead.
Hierfür wurden Vergleichsmessungen zwischen Testläufen mit mLB und jene
ohne mLB durchgeführt.

Kontrolliert werden musste hier auch, ob die vom ALB erzeugten Partitionen
von der Anwendung weiterverarbeitet werden können. Der Teilgraph, der von
mLB erzeugt wird und der dem ALB übergeben wird, wird isoliert rebalanciert.
Kanten, die zu nicht an Lastverteilung beteiligten PEs führen, werden nicht
betrachtet. Dieses Vorgehen kann dazu führen, dass die Anwendung die derart
erzeugten Partitionen nicht oder nur mit großem Aufwand weiterverarbeiten
kann.

Dieser Aspekt kann durch eine Integration von mLB in eine vorhandene
Anwendung analysiert werden.

Die Validierung erfolgte hauptsächlich mit Hilfe eines selbst entwickelten
Simulators. Nur wenige Parameter wurden mit Hilfe einer bestehenden FEM-
Anwendung evaluiert.

Der Vorteil dieses Vorgehens liegt darin, dass Probleme, die von der FEM-
Anwendung ausgelöst werden können, ausgeschlossen werden. Dieses betrifft
insbesondere Skalierbarkeitsprobleme, da viele FEM-Anwendungen nur auf einer
begrenzten Anzahl an Prozessoren lauffähig sind. Ein vorzeitiges Terminieren
aufgrund von Speicherplatzproblemen seitens der Anwendung (sehr verbreitet
in diesem Bereich) konnte dadurch ebenfalls vermieden werden.

6.3 Beschreibung der Testplattform

Die Tests erfolgten auf einem PC-Cluster des parallelen Rechenzentrums der
Universität Paderborn (PC2) der Produktlinie hpc-Line. Seine 200 Rechenkno-
ten, jeweils bestückt mit zwei Xeon Prozessoren mit 4 GByte Hauptspeicher
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(genauere technische Informationen befinden sich im Anhang C), sind sowohl
über ein Infiniband-Netzwerk verbunden, als auch über Ethernet.

Zur Kommunikation stehen dem Benutzer unterschiedliche MPI-Implemen-
tierungen zur Verfügung. Kommunikation über Infiniband wird von ScaMPI
unterstützt. ScaMPI wurde von Scali Computer (www.scali.com) insbesondere
für Gigabit Ethernet, Myrinet, Infiniband und SCI entwickelt. Beim Einsatz von
ScaMPI hat die Anwendung die Möglichkeit, zwischen Netzwerktechnologien zu
wählen. Das bedeutet für die eingesetzte Plattform, dass die Rechenknoten ent-
weder über Ethernet oder über Infiniband kommunizieren können. Erfolgt Kom-
munikation zwischen Prozessoren, die sich auf einem Rechenknoten befinden, so
erfolgt dies über ihren gemeinsamen Speicher (shared memory Kommunikation).

Diese unterschiedlichen Kommunikationsmöglichkeiten bieten eine Umge-
bung, in der

”
Distributed Supercomputing“, für das mLB entwickelt wurde,

unter kontrollierten Bedingungen simuliert werden kann. Mehrere Rechenparti-
tionen, die jeweils aus mehreren über Infiniband kommunizierenden Rechenk-
noten bestehen, können mit Hilfe von PACX-MPI über Ethernet miteinander
kommunizieren. Dabei stellt jede Rechenpartition ein paralleles System dar. Die
Verschaltung dieser Partitionen mit PACX-MPI unterscheidet sich prinzipiell
nicht von einer Koppelung mehrerer, geografisch verteilter Parallelrechner mit
PACX-MPI.

Für die Rechnungen auf dem Infiniband-Cluster wurden Rechenknoten re-
serviert. Diese standen dadurch exklusiv zur Verfügung. Durch die Architek-
tur des Infiniband-Netzwerks (ein zentraler Switch) stehen auch die Verbindun-
gen zwischen den reservierten Rechenknoten dem Benutzer uneingeschränkt zur
Verfügung. Einzig die Kommunikation über Ethernet findet nicht exklusiv statt.
Die Übertragungsraten sind somit abhängig von der Auslastung des Ethernet-
Switches durch den anderen Netzwerkverkehr.

6.4 Validierung durch eine Simulationsumgebung

6.4.1 Validierung der Monitoring-Umgebung

Zur Validierung der Skalierbarkeit der Kommunikationsmessungen (Ping-Pong-
Messungen) wurde ein einfaches MPI-Programm, das kollektive Operationen
durchführt, eingesetzt. Um auf die Funktionalitäten der netzwerkabhängigen
Lastverteilung zugreifen zu können, wurde diesem Programm die entsprechen-
de mLB-Bibliothek hinzugefügt. Es wurden Testläufe auf dem hpc-Line-Cluster
durchgeführt. Um ausschließlich das entwickelte Monitoring zu testen, ohne dass
die darunter liegende Konfiguration der Kommunikationstechnologie Einfluss
nehmen kann, wurde Ethernet-Kommunikation gewählt. Gemessen wurde von
zwei bis zu 180 Prozessen. Das Ergebnis zeigt Abbildung 6.1.

Es ist deutlich zu erkennen, dass die Kurve Sprünge aufweist. Der sprung-
hafte Anstieg der Messwerte ist auf den Kommunikationsplan (siehe Abschnitt
4.4.2) zurückzuführen. Bei acht Kommunikationspartnern existieren z. B. 28
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Abbildung 6.1: Ergebnisse von Kommunikationsmessungen auf einer unter-
schiedlichen Anzahl von PEs

Kommunikationsmöglichkeiten. Bei der Aufstellung des Kommunikationsplans
werden diese Kommunikationspaare in sieben Durchläufe von jeweils vier par-
allelen Kommunikationen aufgeteilt. Bei neun bis 16 Kommunikationspartnern
(36 bzw. 120 Kommunikationspaare) werden 15 Durchläufe mit ein bis vier par-
allelen Kommunikationen ermittelt, d. h. mehr als das Doppelte an Durchläufen
ist notwendig. Abbildung 6.2 zeigt die Anzahl der Kommunikationsdurchläufe
in Abhängigkeit von den PEs.

Dieses zeigt, dass der Algorithmus zur Erstellung des Kommunikationsplans
nicht optimal ist. Die Skalierung der Ping-Pong-Messungen ist jedoch nicht
gefährdet.

Die Sprünge der Kurve aus Abbildung 6.2 entsprechen denen aus Abbildung
6.1 (siehe Abbildung 6.3). Die Berechnung der Zeit pro Kommunikationsdurch-
lauf (siehe Abbildung 6.4) zeigt, dass diese sich nur leicht ansteigend ändert.
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Abbildung 6.2: Kommunikationsdurchläufe

Ein optimierter Kommunikationsplan lässt daher eine gute Skalierbarkeit
erwarten.

Die Gesamteffizienz des Monitorings zeigt sich bei der Laufzeitanalyse von
Anwendungstestläufen. Eine geeignete Nachrichtengröße konnte in diesem Zuge
ebenfalls festgestellt werden. Dynamik wird im Rahmen der Untersuchung einer
realen FEM-Anwendung beleuchtet.
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6.4.2 Beschreibung des FEM-Simulators

Der entwickelte FEM-Simulator repräsentiert das Verhalten einer parallelen
FEM-Anwendung. Für jede Iteration wird eine Schleife durchlaufen, in der
zunächst die Last erhöht wird (Nachbildung von Gitterverfeinerungen). Die-
se Lasterhöhung erfolgt auf einer bestimmten Quote von PEs. Diese erhalten
jeweils eine unterschiedliche zusätzliche Last (=Anzahl Gitterzellen). Somit ent-
steht ein Ungleichgewicht zwischen den PEs.

Nach der Lasterhöhung findet Lastverteilung statt und damit der Aufruf des
ALBs. Datenmigration, und damit die Herstellung einer balancierten Verteilung
der Anwendungslast, wird nicht benötigt, da keine kompletten Datenstrukturen
bei dieser Simulation zu verschieben sind.

Nach der Lastverteilung erfolgt die Berechnung. Dabei werden arithmetische
Operationen durchgeführt, die das Lösen von Gleichungen innerhalb einer realen
FEM-Anwendung nachbilden. Mit dem Austausch von Informationen zwischen
den PEs schließt diese Rechenphase ab. Dabei werden MPI-Nachrichten zwi-
schen benachbarten PEs ausgetauscht. Im realen Fall sind dieses PEs, die sich
Schnittkanten des dualen Graphen teilen. Im Simulator werden die Nachbarn
eines PEs festgelegt. Inhalt der zu verschickenden Nachrichten ist ein Feld mit
doppelt genauen Gleitkomma-Werten der Länge

”
Anzahl lokaler Gitterzellen“.

Es werden also Werte für jede lokale Gitterzelle ausgetauscht. Dieses entspricht
der Arbeitsweise einer realen FEM-Anwendung.

Heterogenität in Bezug auf Leistungsfähigkeit der Prozessoren wird durch
zusätzliche Last einzelner PEs simuliert.

Der Simulator erfüllt die Voraussetzungen einer Testumgebung für die Grund-
funktionalitäten: Er arbeitet parallel, kommuniziert mittels MPI und ist adap-
tiv.

6.4.3 Validierung von mLB

Es wurden zwei Testszenarien erstellt:

• FEM-Simulator ohne mLB

• FEM-Simulator mit mLB

Für die Tests mit mLB wurde der Aufruf des ALBs durch den Aufruf ei-
ner Funktion von mLB ersetzt. Dadurch wird das LBS-Modul (siehe Abschnitt
5.2.4) aktiviert. Dieses führt die Überprüfung des Lastgleichgewichts durch und
gegebenenfalls den Aufruf des ALBs mit den neu generierten Parametern.

Mit dem Simulator wurden folgende Aspekte untersucht:

• Die Laufzeiten des ALBs Jostle bei Einsatz:

– auf unterschiedlicher Anzahl von PEs und
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– mit unterschiedlicher Anzahl von Graphknoten,

• die geeignete Nachrichtengröße für die Ping-Pong-Messungen und

• der Aufbau der hierarchischen Struktur in einem dedizierten System,

• die angemessene Verteilung der Last zusammen mit

• der Gesamteffizienz von mLB.

Jostle-Laufzeiten

Jostle wurde mit unterschiedlicher Anzahl an Gesamtgraphknoten und PEs ge-
testet. Dabei wurden zum einen die Laufzeiten bei einer unterschiedlichen An-
zahl von PEs, aber festen Anzahl an Graphknoten verglichen (siehe Abbildung
6.5).
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Abbildung 6.6 zeigt den Vergleich bei fester Anzahl an PEs, aber unter-
schiedlicher Graphknotenzahl.
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Die Ergebnisse zeigen, dass besonders deutliche Unterschiede bei der Berech-
nung einer großen Anzahl an Graphknoten bestehen.

Arbeitet Jostle z. B. mit 1,9 Millionen Graphknoten auf 20 PEs, so benötigt
es circa 1,3 Sekunden. Verringert sich die Anzahl der PEs von 20 auf vier und
die Anzahl an Graphknoten entsprechend, so beträgt die Laufzeit von Jostle
weniger als 0,8 Sekunden. Das bedeutet eine Laufzeitersparnis von über 60 Pro-
zent. Da Lastverteilung innerhalb einer Anwendung oftmals in jeder Iteration
durchgeführt wird, summieren sich die Zeitersparnisse.

Reale FEM-Anwendungen rechnen oftmals mit mehreren Millionen Graph-
knoten. Lastverteilung, die nicht die gesamte Anzahl an Knoten verarbeiten
muss, was durch mLB erreicht wird, lässt noch größere Laufzeitgewinne erwar-
ten.



6.4. VALIDIERUNG DURCH EINE SIMULATIONSUMGEBUNG 81

Erkennung der Hierarchiestruktur

In einem dediziert genutzten System, wie es durch die Reservierung von Rechen-
knoten vorlag, muss mLB den Aufbau des Netzwerks erkennen. Das bedeutet,
dass PEs auf dem gleichen Rechenknoten, die über den gemeinsamen Speicher
kommunizieren, über die schnellste Verbindung verfügen und damit auf un-
terster Ebene ein Subsystem bilden. Infiniband bildet somit die nächst höhere
Ebene. Wird zudem noch Ethernet eingesetzt, so bildet diese die höchste Sub-
systemebene.

Die Evaluierung der geeigneten Nachrichtengröße, die im nächsten Abschnitt
stattfindet, zeigt zum einen auch, dass auf Basis der gewonnenen Messwerte eine
Hierarchie erkannt wird, und zum anderen welche Werte die Variable DIFF TO-
LERANCE annehmen sollte.

Nachrichtengröße

Getestet wurden hier Nachrichten der Größe 1 Byte, 1.000 Byte und 64.000
Byte mit acht und mit achtzig PEs.

Werden Ping-Pong-Messungen durchgeführt, so besteht eine Messung aus
mehreren Sende- und Empfangsaktionen. Der Grund liegt darin, dass auf einigen
Plattformen die Zeiten für ein einziges Senden und Empfangen zu kurz sind, um
messbar zu sein. Daher wurden jeweils fünf Nachrichtendurchläufe durchgeführt,
um ein einzelnes Messergebnis zu erhalten.

Nachrichten- #PEs Laufzeit 1. Ebene 2. Ebene Verhältnis
größe (Byte) (Sekunden) (Sekunden) (Sekunden) 2.Ebene

1.Ebene

1 8 0,0505 0,000002 0,00001 5

1.000 8 0,0833 0,000005 0,00002 4

64.000 8 1,1511 0,000075 0,0003 4

1 80 1,2148 0,000004 0,00001 2,5

1.000 80 1,9197 0,000007 0,00002 2,9

64.000 80 26,0948 0,000082 0,0003 3,7

Tabelle 6.1: Laufzeiten bei Ausführung von 100 Ping-Pong-Messungen

Tabelle 6.1 zeigt eine Übersicht über die Messergebnisse. Die Spalten vier und
fünf mit den Überschriften

”
1. Ebene“ und

”
2. Ebene“ geben die durchschnitt-

lichen Kommunikationszeiten zwischen PEs auf der entsprechenden Ebene an.
In der verwendeten Testumgebung bedeutet dies, dass für Ebene eins Kommu-
nikation über den gemeinsamen Speicher gemessen wurde, Ebene zwei zeigt die
Zeiten für die Infiniband-Kommunikation. Die letzte Spalte zeigt die Verhält-
nisse der beiden Kommunikationszeiten. Anhand dieses Verhältnisses wird die
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hierarchische Struktur erkannt. Die hohen Werte, die in der Tabelle auftreten,
indizieren eine gute Erkennung dieser Struktur.

Deutlich zu erkennen ist, dass eine Nachrichtengröße von 64.000 Byte ho-
he Laufzeiten verursacht, der Informationsgehalt jedoch nicht höher ist als je-
ner, der durch kleinere Nachrichten erzeugt wird. Nachrichtengrößen von einem
und 1.000 Byte liefern einen hohen Informationsgehalt bei niedrigen Laufzeiten.
Nachrichten der Länge ein Byte sind nicht repräsentativ für die Anwendung und
wurden daher nicht für das Monitoring gewählt. Stattdessen wurden Nachrich-
ten der Größe 1.000 Byte verschickt, da diese einen relativ niedrigen Overhead
erzeugen und gleichzeitig aber einen hohen Informationsgehalt liefern.

Nachrichten der Größe von einem und 1.000 Byte wurden auch mit PACX-
MPI getestet.

Nachrichten- #PEs Laufzeit 1. Ebene 2. Ebene 3. Ebene
größe (Byte) (Sek.) (Sek.) (Sek.) (Sek.)

1 2x2+2x4 660 0,000003 0,000013 0,0003

1.000 2x4+2x4 240 0,000003 0,000014 0,0004

Tabelle 6.2: Laufzeiten bei Ausführung von 100 Ping-Pong-Messungen unter
PACX-MPI

Tabelle 6.2 zeigen Messungen mit 12 und 16 PEs. Dabei wurden auf je-
dem Rechenknoten, wie oben auch, zwei Prozesse gestartet, die über gemeinsa-
men Speicher kommunizierten. Dieses zeigen die Werte für Ebene eins. Die bei-
den PACX-MPI-Partitionen kommunizierten über Ethernet (zu erkennen durch
die Messwerte für Ebene 3). In der 16er Konfiguration wurden je PACX-MPI-
Partition vier Rechenknoten eingesetzt, bei der 12er Konfiguration waren es zwei
und vier Rechenknoten. Die Messungen zeigten hohe Kosten, die den gleichen
Informationsgehalt wie die MPI-Messungen lieferten. Durch den Einsatz von
Ethernet war die Gesamtlaufzeit abhängig von der aktuellen Netzauslastung.
Daher konnten keine direkten Zusammenhänge von Nachrichtengröße und Lauf-
zeit festgestellt werden. Die hohen Laufzeiten zeigen jedoch, dass Monitoring in
dieser Konfiguration teuer ist. Die Anzahl der Ping-Pong-Messungen sollte da-
her minimal sein.

Der Wert für DIFF TOLERANCE muss für die obigen Ergebnisse kleiner
als 2,5 (niedrigster Wert der letzten Spalte aus Tabelle 6.1) gewählt werden. Da
es sich bei den Messwerten jedoch um gemittelte Werte handelt, und somit die
Verhältnisse der Kommunikationszeiten zwischen den Ebenen zum Teil geringer
sind, wurde DIFF TOLERANCE auf den Wert 1,6 gesetzt. Damit konnte die
Hierarchie in allen Tests erkannt werden.
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Gesamteffizienz und Skalierbarkeit

Die Aspekte, die in den vorangegangenen Abschnitten analysiert wurden, zeigen
geringe Zusatzkosten bei Anwendung von mLB. Der Nutzen und damit auch
seine Effizienz kann nur durch Vergleichsmessungen einer Anwendung ohnemLB
festgestellt werden.

Abbildung 6.7 zeigt Messungen mit und ohnemLBmit unterschiedlich vielen
PEs. Die Berechnung startete jeweils mit 150.000 Zellen, bzw. Graphknoten, und
durchlief 35 Iterationen. In jeder Iteration wurde die Zellanzahl um circa 50.000
Zellen erhöht.
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Abbildung 6.7: Laufzeitvergleich mit/ohne mLB

Es ist deutlich zu sehen, dass mit mLB wesentlich bessere Ergebnisse als
ohne mLB erzielt werden. Teilweise reduziert sich die Laufzeit um über zwei
Drittel.

Diese große Effizienzsteigerung durchmLB ist zum einen auf optimierte Last-
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verteilung und zum anderen auf niedrige Zusatzkosten zurückzuführen.
In den nächsten Abschnitten wird daher sowohl der Effekt einer angemesse-

nen Lastverteilung, als auch die Höhe der Zusatzkosten von mLB gezeigt.

Angemessene Lastverteilung

Ein Indiz für eine Lastverteilung entsprechend der vorhandenen Ressourcen ist,
neben dem Laufzeitgewinn, die Wartezeit bei einer kollektiven Kommunikation.
Je kürzer diese ist, desto gleichmäßiger konnte die Last von den Prozessoren
abgearbeitet werden.

Eine Analyse der Wartezeiten zeigt große Unterschiede bei Einsatz mit bzw.
ohne mLB. Abbildung 6.8 zeigt die maximalen Wartezeiten von PEs bei ei-
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Abbildung 6.8: Vergleich der Wartezeiten bei kollektiven Nachrichten

ner kollektiven Kommunikation. Die gemessenen Werte ohne mLB sind durch-
schnittlich um das Zehnfache höher als jene mit mLB.
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Diese niedrigen Wartezeiten zeigen eine gute Anpassung der Last an die
aktuelle Leistungsfähigkeit der Prozessoren.

Kosten von mLB

Zur Analyse der Kosten von mLB wurden folgende Messwerte erfasst:

1. Monitoring-Kosten (Ping-Pong-Messungen)

2. Kosten für die Lokalisierung des Ungleichgewichts in der Hierarchie

3. Gesamtkosten für die angepasste Lastverteilung

4. Durchschnittliche Jostle-Laufzeiten
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Abbildung 6.9 zeigt die Kosten von mLB.
Deutlich zu erkennen ist, dass die Monitoring-Kosten (wenige Zehntel Sekun-
den), ebenso wie die Kosten zum Auffinden eines Ungleichgewichts (wenige Hun-
dertstel Sekunden) sehr niedrig sind. Die Gesamtkosten für die angepasste Last-
verteilung schließen die Kosten für den Aufbau der Hierarchie, die Bestimmung
der optimalen Last eines PEs sowie die Durchführung von Jostle mit ein. Auch
hier sind die geringen Kosten deutlich zu erkennen. Die Laufzeiten für Jostle
bilden den Hauptanteil bei den Ergebnissen. Zieht man diese ab, so erhält man
ebenfalls sehr kleine Werte für den Aufwand, verursacht durch mLB.
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Abbildung 6.10 zeigt den Vergleich von Jostle-Laufzeiten der gleichen Test-
läufe mit und ohne mLB. Eine deutliche Reduktion der Laufzeiten durch mLB
ist auch hier zu erkennen. Interessant ist aber auch der Kurvenverlauf. Zunächst
sinken die Jostle-Laufzeiten, zwar etwas stärker, aber ähnlich denen ohne Ein-
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satz von mLB. Ab 36 PEs liegen die Jostle-Laufzeiten nur noch im Zehntel-
Sekunden-Bereich.

Das liegt darin begründet, dass meist nur noch Zweiergruppen von PEs Last-
verteilung untereinander durchführen. Dabei sind jene PEs beteiligt, die sich
jeweils auf einem Rechenknoten befinden und über ihren gemeinsamen Speicher
kommunizieren. Diese parallellaufenden Zweiergruppen bearbeiten jeweils we-
sentlich weniger Graphknoten als es bei einem Aufruf von Jostle mit allen PEs
der Fall wäre. Betrachtet man in Abbildung 6.6 den steilen Anstieg der Kurve
für zwei PEs, so wird deutlich, dass besonders bei dieser niedrigen Anzahl an
PEs die Anzahl der Graphknoten eine entscheidende Rolle für die Laufzeit von
Jostle spielt. Dieses erklärt den steilen Abfall der Jostle-Laufzeiten, da mit zu-
nehmender Anzahl an PEs die Größe je Lastverteilungsprozess kleiner wird.

Beim Einsatz von Netzwerken mit geringeren Übertragungsraten, wie z. B.
Ethernet, ist die Minimierung von Jostle-Aufrufen und der an Lastverteilung
beteiligter PEs, die jeweils Kommunikation implizieren, ein wichtiger Aspekt.
Die Messungen mit PACX-MPI (siehe Tabelle 6.2) zeigten die höheren Kommu-
nikationskosten bei Nutzung von Ethernet. Daher kann erwartet werden, dass
die Lastverteilungskosten in solch einer Umgebung durch mLB noch stärker re-
duziert werden.

Generell ist in Abbildung 6.9 zu beobachten, dass bei Erhöhung der Anzahl
an PEs die Kosten von mLB nur gering steigen. Eine Skalierbarkeit der Anwen-
dung ist somit nicht gefährdet.

Der Aufwand von mLB im Verhältnis zur Gesamtlaufzeit der Anwendung
ist in Abbildung 6.11 zu sehen.

Hier wird besonders deutlich, dass die Zusatzkosten von mLB nur einen sehr
geringen Anteil an der Gesamtlaufzeit darstellen. Diese Tatsache zusammen mit
der großen Laufzeitverbesserung zeigt die hohe Effizienz von mLB.

6.5 Validierung durch eine bestehende FEM-An-
wendung

Einige Parameter konnten erst durch Beobachtung des Verhaltens einer realen
FEM-Anwendung eingestellt werden. Dieses betrifft insbesondere die Fähigkeit,
auf den Teilpartitionen, die durch die modifizierte Lastverteilung entstanden
sind, weiterzuarbeiten und den Wert für das zeitabhängige Monitoring.

6.5.1 Voraussetzungen für die Nutzung einer FEM-An-
wendung

Um mLB in ein bestehendes Finite Elemente Werkzeug zu integrieren, muss
dieses die folgenden Voraussetzungen erfüllen:
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• Parallelität: Die Software muss bereits in einer parallelen Version vorlie-
gen.

• MPI: Die Kommunikation wird mittels MPI realisiert.

• Adaptivität: während der Laufzeit sollte sich die Last ändern, da anson-
sten Lastverteilung nicht benötigt wird.
Die Anzahl der adaptiven Werkzeuge ist jedoch stark begrenzt.

• Datenmigration: Es muss möglich sein, zur Laufzeit Last zu verschieben.
Programmiersprachen wie z. B. Fortran77 bieten keine dynamische Spei-
cherverwaltung. Implementierungen, die diese Sprache einsetzen, können
daher nicht genutzt werden. Dieses reduziert die Anzahl der in Frage
kommenden Werkzeuge, da auch heutzutage diese Programmiersprache
aufgrund ihrer Unterstützung der Mathematik verbreitet ist. Ein weite-
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rer Grund liegt darin, dass viele FEM-Werkzeuge über eine lange Histo-
rie verfügen. Diese hochkomplexe und sehr umfangreiche Software zu re-
implementieren würde zu einem großen Aufwand führen, ihr Nutzen ist
im Verhältnis jedoch zu gering.

Die aktuelle Implementierung von mLB wurde speziell auf gitterbasierte An-
wendungen abgestimmt. Die Schnittstellen zur Anwendung sind angepasst an
deren Erfordernisse. Um diese Schnittstellen nutzen zu können, müssen folgende
Punkte erfüllt sein:

• Messbarkeit von Berechnungsabschnitten, die Berechnungseinheiten re-
präsentieren, die im Verhältnis zur Anzahl der Zellen stehen.
Als Lasteinheit dient eine Gitterzelle. Es muss daher möglich sein, den
Aufwand für die Berechnung einer Zelle zu messen, und diese durch die
Schnittstelle mLB zu übergeben.

• Vorliegen des dualen Graphen

Diese Voraussetzungen werden von dem Werkzeug padfem2 [BKM03] erfüllt,
das an der Universität Paderborn von Dr. Stephan Blazy und Oliver Marquardt
entwickelt wurde.

Für Parameterstudien wurde mLB in padfem2 integriert. Die erzielten Er-
gebnisse werden im Folgenden vorgestellt.

6.5.2 Parameterstudien

Zeitabhängiges Monitoring:

Monitoring bei jedem kollektiven Aufruf führt zu sehr hohen Laufzeiten.
Die gewonnenen Messwerte dienen der Darstellung des aktuellen Netz-
werkzustandes und sollen auch jenen in der nahen Zukunft darlegen. Die
Aktualität der Messwerte ist also zeitabhängig. Daher wurde ein Zeitin-
tervall gesucht, innerhalb dessen die Messungen höchstens durchgeführt
werden.

Es wurde eine Variable MONITORING INTERVAL eingeführt, die den
minimalen Abstand in Sekunden zwischen zwei Messungen angibt. Soll ei-
ne Messung erfolgen, so wird zunächst überprüft, ob zwischen der letzten
Messung und der anstehenden mindestens MONITORING INTERVAL
Sekunden liegen. Ist dieses der Fall, so erfolgt eine neue Messung, an-
sonsten unterbleibt sie.

Testläufe mit padfem2 haben ergeben, dass ein Monitoring-Intervall von
vier Sekunden eine gute Größe darstellt. Der Overhead bleibt damit gering,
die Aussagekraft der Messungen ist vorhanden.

Die Nutzung einer festen Variablen stellt keine endgültige Lösung dar.
Die Abstände zwischen den Messungen sollten abhängig vom Verhalten
der Anwendung sein.
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Arbeiten auf neu erstellten Partitionen:

Mit mLB werden oftmals nur Teilgitter neu partitioniert. Abhängigkeiten
zwischen diesen Teilgittern und dem Gesamtgitter werden nicht betrach-
tet.
Bei den Testläufen mit padfem2 ergaben sich jedoch keine Schwierigkeiten
bei der Fortführung der Berechnung auf dem neu partitionierten Gitter.

6.6 Geplante Funktionalitäten

Alle Konzepte konnten weitgehend umgesetzt werden. Manche Entscheidungen
basieren jedoch auf festen Schwellwerten, anstatt auf dynamisch angepassten
Parametern.

Insbesondere sind davon folgende Bereiche betroffen:

DIFF TOLERANCE: Dieser Parameter bestimmt die Granularität der Sub-
system-Bildung. Er ist derzeit auf einen festen Wert (1.6) gesetzt. Hier
muss geprüft werden, ob und gegebenenfalls wann eine dynamische An-
passung sinnvoll ist und wie diese aussehen kann.

Anzahl gemittelter Messwerte: Kommunikations- und Berechnungsge-
schwindigkeiten bilden sich aus gemittelten Messwerten. Derzeit bilden je
50 Messwerte dafür die Basis. Es muss überprüft werden, inwiefern dieser
Wert für die Darstellung des Systemzustands geeignet ist. Ein großer Wert
repräsentiert einen durchschnittlichen Zustand. Je kleiner dieser Wert ist,
desto mehr repräsentiert er die aktuelle Situation. Eine Untersuchung, ob
dieser Wert abhängig von der Dauer der Anwendung oder anderen Para-
metern ist, ist wünschenswert.

Monitoring-Intervall: Derzeit wird ein zeitabhängiges Monitoring eingesetzt,
um ein Überfluten von Messungen zu vermeiden. Geeigneter erscheint je-
doch ein Monitoring abhängig vom Verhalten der Anwendung.

In einer FEM-Anwendung werden die Rechenzeiten zwischen zwei Last-
verteilungszyklen immer länger, da sich die Anzahl an Zellen im Laufe
der Berechnung immer wenig ändert. Monitoring sollte daher auch immer
seltener oder aber zeitnah zu dem Lastverteilungszyklus stattfinden. Ein
Messen der Kommunikationsverbindungen nur direkt vor dem Lastvertei-
lungsaufruf ist eine weitere Alternative, die überprüft werden müsste.

Neben der Analyse dieser Parameter, muss noch ein Konzept zur Kosten-
Nutzen-Analyse entwickelt werden.

Die entstehenden Kosten für Lastverteilung können zum Teil abgeschätzt
werden und auf entstandenen basieren, vorausgesetzt die Kosten der letzten
Lastverteilungszyklen liegen vor.
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Der Nutzen lässt sich jedoch nur schwer feststellen. Es müssten dafür Vor-
hersagen getroffen werden über eventuelle Laufzeitverbesserungen. Nur dann
kann entschieden werden, ob Lastverteilung durchgeführt wird oder nicht.

Derzeit wird als Schwellwert für Lastverteilung der Wert 0,09 gesetzt. Dieser
reduziert sich jedoch bei der Lokalisierung des Ungleichgewichts automatisch um
0,01, falls nicht ausreichend Lastverteilungspartner gefunden werden konnten.

6.7 Zusammenfassung

In diesem Kapitel wurde die Erfüllung der Anforderungen an die Lastvertei-
lungssteuerung durch mLB überprüft. Dabei wurden zwei Teilaspekte getrennt
evaluiert: das Monitoring des Netzwerks und die darauf aufbauenden Funktio-
nen von mLB selbst.

Durch Messungen des Aufwandes von Ping-Pong-Kommunikationen wur-
de die Skalierbarkeit der Monitoring-Funktionen nachgewiesen. Die Evaluie-
rung einer geeigneten Nachrichtengröße für diese Messungen und der zeitlichen
Abstände zwischen ihnen, führte zu einem guten Kosten-Nutzen-Verhältnis und
bestätigt damit auch die Effizienz des Monitorings.

Die Wirksamkeit von mLB wurde durch Laufzeitmessungen eines FEM-
Simulators gezeigt. Durch Anpassung der Last an die zur Verfügung stehenden
Ressourcen einer Recheneinheit und minimierter Lastverteilung (in Bezug auf
Anzahl ihrer Aufrufe, beteiligte PEs und Anzahl zu verteilender Graphknoten)
konnten große Laufzeitgewinne erzielt werden. Diesen hohen Gewinnen stehen
nur niedrige Zusatzkosten entgegen. Die Effizienz von mLB ist daher sehr groß.
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Kapitel 7

Resümee

In der vorliegenden Arbeit wurden Konzepte und deren Umsetzung für die
Steuerung von Lastverteilung in Grid-Umgebungen vorgestellt. Dabei wurde
der Fokus auf die Verteilung von Last datenparalleler Anwendungen gesetzt.

Zunächst wurden dafür die Merkmale von Umgebung, Anwendung und Last-
verteilung herausgestellt und analysiert.

Bei der Analyse der Grid-Umgebung zeigte sich, dass ihre Leistungsfähigkeit
aus Sicht der Anwendung stark abhängig von der Auslastung ist. Nur durch
Monitoring zur Laufzeit kann daher eine Bewertung des Systems erfolgen. Das
Monitoring muss dabei Effizienz, Skalierbarkeit und Verfügbarkeit bieten, um
die Effizienz der Endanwendung nicht zu gefährden.

Die Untersuchung unterschiedlicher Monitoring-Werkzeuge endete mit dem
Resultat, dass keines der vorgestellten Werkzeuge den Anforderungen entsprach.
Aus diesem Grund wurde ein eigenes Monitoring entwickelt, das zum einen durch
Ping-Pong-Messungen das Netzwerk analysiert und zum anderen die Dauer von
Berechnungsschritten der Anwendung misst.
Die Evaluierung dieses Monitorings zeigte seine hohe Effizienz durch geringe
Laufzeiten und hohen Informationsgehalt. Gesteuert durch das Verhalten der
Anwendung, konnte Verfügbarkeit der Monitoring-Daten gewährleistet werden.
In Bezug auf Skalierbarkeit zeigten sich Schwächen des Netzwerkmonitorings.
Es stellte sich jedoch heraus, dass diese durch Optimierung eines Algorithmus,
der die Kommunikationspartner festlegt, hergestellt werden kann.

Im Mittelpunkt standen adaptive, parallele FEM-Anwendungen. Ihre Ar-
beitsweise kennzeichnet sich dadurch, dass nach Rechenphasen immer wieder
Kommunikationsphasen stattfinden, in denen Informationen zwischen den Pro-
zessoren synchron ausgetauscht werden. Diese Synchronisationspunkte werden
unter anderem dazu genutzt, Lastverteilung durchzuführen.

Für Lastverteilung werden dabei meist vorhandene Werkzeuge eingesetzt, die
effizient die zu verschiebende Last bestimmen. Ohne Steuerung der Anwendung
zielen diese darauf ab, die Last in gleichen Anteilen auf die Prozessoren zu
verteilen.
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Das im Rahmen dieser Arbeit entwickelte Werkzeug mLB greift in diesen
Prozess ein, indem es die Höhe der optimalen Last als Eingabeparameter für
den Lastverteiler der Anwendung bestimmt. Diese basiert auf den gewonnenen
Monitoring-Daten und zielt darauf ab, die Anwendungslast der zur Verfügung
stehenden Leistungsfähigkeit anzupassen.

Testergebnisse zeigten, dass dieses Vorgehen zu extremen Laufzeitverbesse-
rungen führt. Durch Anpassung der Last werden die Synchronisationspunkte
von allen Prozessen nahezu gleichzeitig erreicht. Wartezeiten an diesen Punkten
reduzierten sich um mehrere Faktoren.

Neben dieser effizienten kapazitätenabhängigen Verteilung der Last, wird
auch das Netzwerk berücksichtigt. Basierend auf den Ergebnissen des Netz-
werkmonitorings wird zur Laufzeit eine Hierarchie aufgebaut, die den aktuel-
len Status der Kommunikationsverbindungen repräsentiert. mLB bestimmt mit
Hilfe dieser Hierarchie, welche Prozesse Lastverteilung durchführen und gegebe-
nenfalls, mit welchen anderen Prozessen sie ihre Last umverteilen, stets mit dem
Ziel, die schnellsten Verbindungen zu nutzen. Dadurch können mehrere paral-
lel laufende Gruppen von Prozessen, die jeweils untereinander Lastverteilung
durchführen, entstehen.

Messungen haben gezeigt, dass auch dieses Konzept ein hohes Leistungspo-
tenzial birgt. Lastverteilung wird oftmals nur auf wenigen Prozessoren, und da-
mit auch mit geringerer Last, aufgerufen. Enorme Zeitersparnis zeigt sich, wenn
Lastverteilung nur zwischen Prozessoren, die über gemeinsamen Speicher kom-
munizieren, durchgeführt wird. Die Laufzeiten des Lastverteilungswerkzeuges
reduzieren sich dann drastisch, auch durch die geringere Last, deren Verteilung
es neu zu bestimmen gilt.

Mit mLB wurde ein verteiltes, skalierbares, adaptives Werkzeug entwickelt,
mit dessen Hilfe es gelingt, die Effizienz von Anwendungen in Grid-Umgebungen
zu steigern. Durch die minimal notwendigen Eingriffe in den Code, lässt sich
mLB problemlos in vorhandene Anwendungen integrieren. Das macht es nicht
nur zu einem leistungsfähigen, sondern auch anwendbaren Werkzeug für effizi-
ente Berechnungen in der Grid-Umgebung.
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Anhang A

Abkürzungsverzeichnis

ALB: Anwendungslastbalancierer

AP: Anwendungsprozess

LAN: Local Area Network

MPP: Massively Parallel Processing

SAN: System Area Network

SMP: Symmetrisches Multiprozessorsystem

WAN: Wide Area Network
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Anhang B

Benutzerschnittstelle

Anwendungsmonitor

Für das Monitoring der Anwendung werden folgende Funktionen eingesetzt:

• AppCurrentTime()

• AppMonitor()

void AppCurrentTime(void)

Ausgabe:

return value elapsed time on the calling processor

Funktion für die Zeitmessungen: gibt die Zeit in Sekunden an, die seit einem
bestimmten Zeitpunkt vergangen ist;
derzeit realisiert durch MPI Wtime() (= gettimeofday())
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void AppMonitor(char *entry, void *value)

Übergabe von Parametern an den AM,
entry gibt dabei an, um welchen Übergabewert es sich handelt, value den Wert
an sich

Eingabe:
char *entry one of following strings:

”nprocs” number of processes

”ncells” number of global nodes

”proc” own ID (MPI rank)

”lcells” number of local cells

”mig num” number of cells to migrate

”mig proc” proc ID to which to migrate

”mig time” time for cell migration

”lb time” time for lb tool

”new local nodes” number of current local cells

”lb” 0 (=no lb done) or 1 (=lb done)

”calc time” time between 2 lb cycles

”print” own proc ID (MPI rank)

”end lb cycle” indicates next lb cycle

”string” prints any string to output file

”cell calc time” calculation time for one cell

”get avg cell time” returns average time for

calculation of one cell

void *value value, depends on entry

LBS-Modul

Für die Nutzung der Lastverteilungssteuerung stehen der Anwendung fol-
gende Funktionen zur Verfügung:

• AppBeforeLoadBalancing()

• AppDoMetaLB()

• AppAfterLoadBalancing()

• AppAfterLoadTransfer()
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int AppBeforeLoadBalancing (int myrank, int nproc,

int global_nodes, int local_nodes,

MPI_Comm com)

Eingabe:

int myrank own rank

int nprocs number of processes

int global nodes total number of load elements (cells)

int local nodes number of local load elements (cells)

MPI Comm com communicator

Ausgabe:

return value 2 in case of initial partitioning (lb necessary)

1 if load balancing necessary

0 if not

Hier wird die Zeitmessung eines Berechnungszyklus gestoppt, Lastparameter
erfasst (Lastmenge etc.) und das Lastgleichgewicht bestimmt.

void AppDoMetaLB (int nnodes, int offset, int core, int halo,

int *index, int *degree, int *node_wt,

int *partition, int local_nedges, int *edges,

int *edge_wt, int *network, int *processor_wt,

int output_level, int dimension, double* coords,

int lb_phase, int *global_nodes_lb_part,

int *local_nodes_opt)

Eingabe:

alle Jostle Parameter

int lb phase load balancing phase (2 = initial lb, 1 = runtime lb)

Ausgabe:

int *global nodes lb part total number of cells of each load balancing
partition

int *local nodes opt optimal number of local cells (based on cal-
culation speed)

Aufruf des Meta-Lastverteilers. Diese Schnittstelle ist angelehnt an den Auf-
ruf zum Anwendungslastverteiler Jostle. Die ersten Parameter sind identisch zu
denen von Jostle, nur die letzten drei sind mLB-spezifisch.
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Durch diesen Aufruf wird das Ungleichgewicht lokalisiert, Datenstrukturen
für den ALB (Jostle) vorbereitet und der ALB (Jostle) für das entsprechende
Subsystem aufgerufen.

void AppAfterLoadBalancing(int myrank, int procs)

Eingabe:

int myrank own rank

int nprocs number of processes

Hat Lastverteilung stattgefunden, so wird hier lediglich die Zeit für den
letzten Lastverteilungszyklus festgehalten und die Erfassung der Migrationszeit
gestartet. Das Einbinden dieser Funktion ist optional, da eine Kosten-Nutzen-
Rechnung derzeit nicht durchgeführt wird.

void AppAfterLoadTransfer(int myrank, int procs)

Eingabe:

int myrank own rank

int nprocs number of processes

Erfassung der Migrationszeit nach Beendigung der Durchführung. Das Ein-
binden dieser Funktion ist optional, da eine Kosten-Nutzen-Rechnung derzeit
nicht durchgeführt wird.



Anhang C

Architektur der
Testumgebung

Folgendes stammt von der Homepage des PC2 (www.upb.de/pc2):

Architecture of the ARMINIUS cluster

* System Configuration

o 400 processors 64-bit INTEL Xeon

o 16 processors AMD Opteron

o 2.6 TFLOPS peak performance

o 900 GByte main memory

* Compute Node Configuration (200 nodes)

o Dual INTEL Xeon 3.2 GHZ EM64T

o 4 GByte main memory

o 80 GByte local disk

o InfiniBand HCA PCI-e

* Visualization Node Configuration (8 nodes)

o Dual AMD Opteron 2.2 GHz AMD64

o 8 GByte main memory

o nVidia Quadro FX 4500 PCI-e

o InfiniBand HCA PCI-e

* Infiniband Switch Fabric Configuration

o 216 port InfinIO 9200

* Disk Storage Configuration

o 5 TByte Fibre Channel RAID

o 10 TByte parallel file system

* Software Configuration

o 64-bit Linux Redhat AS 4

o GNU Tools

o INTEL Compiler C/C++, Fortran

o Message Passing Interfaces
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+ Scali MPI-Connect

+ NCSA MPICH-vmi

+ OSU MvAPICH

+ INTEL MPI

o Scientific libraries

+ INTEL MKL

+ ATLAS

+ Goto Lib

o Scientific Visualization

+ AMIRA


