
Service Matching
with Contextualised Ontologies

Dissertation

Schriftliche Arbeit zur Erlangung
des akademischen Grades eines

Doktors der Naturwissenschaften

Fakultät für Elektrotechnik, Informatik und Mathematik
der Universität Paderborn

Ulf Rerrer-Brusch

Paderborn, Oktober 2006

ii

To Margit and Clara

iv

Acknowledgements

I would like to gratefully and sincerely thank my advisor Odej Kao for his expert guidance, un-
derstanding, patience, and most importantly, his friendship during my work at Paderborn
University. His academic research and mentorship are a powerful example for me. I am
not sure many PhDs are given the opportunity to develop their own individuality and self-
sufficiency by being allowed to work with such independence. For everything you have done
for me, I thank you.

I am also grateful to Thorsten Hampel who agreed to review this thesis. Furthermore, I
would like to thank Irene Roger who provided the so much needed humor and entertainment
in what could have otherwise been a somewhat stressful work environment. My dear col-
leagues as members of our little doctoral group Bernd Eßmann, Frank Götz, Tomasz Mistrzyk,
and Simon Oberthür for their constructive thoughts and ideas. And of course all members of
PC2 who became wonderful colleagues in recent time.

I am not able to mention all students who supported me during this thesis, but I want to
name a few who helped me to realize this work. All members of the project group “Location-
based Services” contributed their generous help in the experimental phase of this research,
thanks a lot! Also thank you to Georg Birkenheuer, Bernd Eßmann, Frank Götz, Wilke Hagel-
weide, Ludger Lecke and Florian Pepping for proofreading parts of this dissertation and their
support. I have appreciated all the support of the Department of Computer Science at the
University of Paderborn during the years of my PhD study.

Finally, I would like to thank my lovely wife Margit for her everlasting love and continuous
support. Even in hard times she was a great source of encouragement and had a lot of patience
for my work. Often, she and Clara helped me to forget about work for a little while. Without
them, this work could not have been completed.

v

vi

Abstract

In this thesis, we look at the problem of how the quality of service discovery can be increased.
Three major issues are addressed to solve this problem: service annotation, service composi-
tion, and service contextualization.

Service annotation is the process of describing a service with semantic meta-data. In tra-
ditional service discovery a request fails instantly if keywords do not match the descriptions.
With semantically annotation the service’s meaning is machine-processable and automatic
service matching is possible. Unfortunately, creating these annotations is mostly handwork.

Service composition allows increasing the set of possible matches. If the function of a ser-
vice does not match a request exactly, it will fail. Composeable services can combine basic
functionality from different services to meet the individual request precisely. The immense
amount of semantic information needs to be handled efficiently here.

Service contextualization integrates context information into the matching process. User’s
and service’s contexts contain facts of their individual environments and preferences. It can
be used to improve the discovery quality by eliminating mismatches.

We present approaches that contribute to the previously described issues. The goal of this
thesis is to improve the quality of service matching with an automatic semantic service annota-
tion framework, manageable service composition consideration and a service contextualization
approach.

The main elements of the thesis are a WSDL-to-OWL-S algorithm, which creates automati-
cally semantic annotations to new developed Web services without extensive manual descrip-
tion work, a matching-cut procedure reducing the available semantic information in the ser-
vice composition process which makes compositions considerable in the service discovery,
and a service contextualization technique integrating context information from different do-
mains into the service matching process completes the contribution.

We have implemented the approaches prototypically. The matchmaking components were
evaluated with a large set of real semantic Web services to show the benefits of our ap-
proaches.

vii

viii

Contents

1 Introduction 1
1.1 Problem Definition . 2

1.1.1 Service Annotation . 3
1.1.2 Semantic Service Composition . 4
1.1.3 Semantic Service Contextualization . 4

1.2 Contribution . 5
1.3 Synopsis . 6

2 Context-Aware Services 9
2.1 What is Context? . 10

2.1.1 Context-Awareness . 11
2.1.2 Context Modeling Approaches . 13

2.2 Location-based Services . 15
2.2.1 Classification and Characteristics . 16
2.2.2 Positioning Techniques and Technologies 19
2.2.3 WLAN Positioning Features . 29

2.3 Computer-supported Cooperative Work . 30
2.4 Summary . 33

3 Semantic Web Services 35
3.1 Understanding Web Services . 36
3.2 The Semantic Web Vision . 38
3.3 Syntactic Standards . 39

3.3.1 Visualizing Information with HTML . 39
3.3.2 Exchanging Information with XML . 39
3.3.3 Service Interface Description with WSDL 40

3.4 Resource Description with RDF . 41
3.5 Ontology Languages . 42

3.5.1 RDF Schema . 43
3.5.2 OWL . 45

3.6 Semantic Web Services . 46
3.6.1 OWL-S . 47
3.6.2 Service Discovery . 50
3.6.3 Service Execution . 50

ix

3.7 Summary . 50

4 Semantic Service Annotation 53
4.1 Problem Definition . 54
4.2 Framework for Semantic Web Service Development 55

4.2.1 Obtaining Ontologies . 56
4.2.2 Web Service Design and Implementation 56
4.2.3 WSDL Description Generation . 57
4.2.4 OWL-S Description Generation . 57
4.2.5 Accommodate Results, Testing and Deployment 58

4.3 WSDL-to-OWL-S Algorithm . 58
4.3.1 Document Parsing . 60
4.3.2 Type Matching . 60
4.3.3 Process Matching . 61
4.3.4 OWL-S Instance Creation . 64

4.4 Concept Appliance: Printing Service Annotation 64
4.4.1 Ontology Selection . 65
4.4.2 Web Service Creation . 65
4.4.3 WSDL Creation . 66
4.4.4 OWL-S Creation . 66

4.5 Summary and Results . 70

5 Semantic Service Composition 71
5.1 Problem Definition . 71
5.2 Matchmaker Requirements . 72
5.3 Matching Workflow . 73

5.3.1 Document Parsing . 74
5.3.2 Semantic Matching: Ontology Matching 74
5.3.3 Semantic Matching: Service Profile Matching 75
5.3.4 Semantic Matching: Matching-Cut Definition 77
5.3.5 Semantic Matching: Service Model Matching 79
5.3.6 Semantic Matching: Overall Correspondence Calculation 80
5.3.7 Syntactic Matching . 80
5.3.8 Service Composition . 81

5.4 Concept Appliance: Printing Service Composition 82
5.4.1 Ontology and Service Profile Matching . 82
5.4.2 Matching-Cut Definition and Semantic Matching 84
5.4.3 Syntactic Matching . 85
5.4.4 Service Composition . 86

5.5 Summary and Results . 86

6 Semantic Service Contextualization 89
6.1 Upper Context Ontology . 89
6.2 Problem Definition . 91

x

6.3 Context Matching Approach . 92
6.4 Context Matching Workflow . 92

6.4.1 Context Acquisition . 93
6.4.2 Knowledge Maintenance . 94
6.4.3 Knowledge Sharing . 95
6.4.4 Context Association . 96
6.4.5 Context Ontology Matching . 96
6.4.6 Contextualized Service Matching . 97

6.5 Concept Appliance: Printing Service Contextualization 98
6.5.1 Context Acquisition . 98
6.5.2 Knowledge Maintenance . 98
6.5.3 Knowledge Sharing and Context Association 99
6.5.4 Ontology Matching . 99
6.5.5 Contextualized Service Matching . 100

6.6 Summary and Results . 100

7 Prototype and Evaluation 101
7.1 Prototype . 101

7.1.1 CoBaSS - A Context-based Service System 102
7.1.2 Environment . 104
7.1.3 Fingerprinting Algorithm . 106
7.1.4 Positioning Results . 108

7.2 Evaluation . 110
7.2.1 OWL-S Test Collection . 111
7.2.2 Matchmaker Performance . 113

7.3 Summary . 115

8 Conclusions and Outlook 117
8.1 Summary . 118
8.2 Outlook . 119

List of Figures 121

List of Tables 122

Bibliography 124

xi

xii

Introduction 1
We’re not lost. We’re locationally challenged.

John M. Ford

The emerging world of mobility is characterized by a multiplicity of exciting new technolo-
gies, applications, and services. The narrower sense of mobile computing is data processing
on small and portable devices like notebooks, personal digital assistants (PDAs) or mobile
phones [133]. Due to the mobility and location independence of the participating users new
challenges in technology arise. Wireless communication and ad hoc network organization are
only two aspects evolved in the mobile device context. The air, for example as shared commu-
nication medium, is interference-sensitive, has limited bandwidth, and holds fragile privacy
properties [124]. However, these challenges are overcome.

But the mobility also enables new ways in application and service employment. Amongst
the most promising ones is the ability to identify the exact geographical location of a mobile
user at any time. This ability opens the door to a new world of innovative services, which are
commonly referred to as location-based services [12]. Applications for emergency services,
car navigation systems, or intelligent “yellow maps” use the location information to improve
the service’s value and convenience for instance in useability.

Regarding more environmental issues than only the location of a user leads to the con-
cept of contexts. Context-awareness in mobile computing is awareness of the physical envi-
ronment surrounding a user and their mobile device. With advances in sensor technology,
awareness of physical conditions can now be embedded in small mobile devices at low cost.
Even without further sensing capabilities, user activities, preferences and states generate a
complex structure of personalized context information. Context is a key concept in natural
language processing and more generally in human-computer interaction [141]. For instance
applications can use contexts to adapt graphical user interfaces or other application features
to context information such as user preferences and interaction status.

When dealing with services e.g. Web services, the application area is not only human-
computer interaction, but also computer-computer interaction. The difficulty in this area is
to make the content more easily machine-processable and to provide intelligent techniques
to make the meaning of data machine-understandable. The Semantic Web [17] is supposed
to make data located anywhere on the Web accessible and understandable, especially to ma-

2 Introduction

chines. For instance, ontologies are a form of knowledge representation about a specific do-
main of the world and can be used to reason about objects in that domain and relations be-
tween them. Ontologies make information machine-processable and due to their relations
between different concepts also understandable.

The rapid progress of the “information society” in the past decade has been made possible
by the removal of many technical barriers. Producing, storing and transporting information
in large quantities are no longer significant problems. Once created and stored it is also pos-
sible to move the information around in almost unlimited fashion. Global connectivity to the
Internet has solved the transportation issues bringing not only offices, but also households
on-line with high bandwidth. The most urgent remaining problems lie in the field of informa-
tion finding and information integration. The more information is available, the harder it is
to locate the particular piece one is looking for. Even when it is possible to find any particular
piece of information, it is very hard to combine it with any other information one may already
possess. Information is only meaningful in its context, but most techniques available for pub-
lishing, locating and retrieving information deal with single, isolated pieces of information
without the source environment.

In the case of services, a service discovery is difficult, matching user’s request satisfactory.
While many similar services are available e.g. in a service registry, which service should a client
use? Which service meets the requirements best? Is my interpretation of the service descrip-
tion the right one? Three issues improve the quality of the service selection.

Firstly, context information is useful in service selection. For example, when Alice wants
to print her presentation slides, the closest printer to her current position is selected instead
of her preferred printer in the office. If she wants to print photos, a color printer is selected
automatically.

Secondly, service compositions result in more and better alternatives in service selection.
When Bob wants to print for example a “.doc” document, but all network printers are only ca-
pable to print postscript documents a service composition can be useful. One service converts
“.doc” documents in postscript documents and another service prints postscript documents
on network printers. A composition of both services is able to print “.doc” documents.

Thirdly, semantic descriptions help to discover services by meaning instead of syntactic de-
scriptions. If Charlie for example is looking for a service to print his thesis, a semantic service
registry would offer a university printing service, because the semantic description matches
the user request. Also a copy shop service would be suggested as alternative because its mean-
ing is related to “printing” even if the term does not emerge. A building service presenting
blueprints will be ignored although the term “print” appears in its description.

This thesis focuses on the automatic annotation of Web services, the service composeabil-
ity, and the contextualization of ontologies in order to improve the quality of semantic service
matching.

1.1 Problem Definition

Service matching is the process of comparing service provider advertisements with user ser-
vice requests. The searching process for suitable matchings is occasionally also called dis-

1.1 Problem Definition 3

covery. Providers and users should be interpreted here in a very generic manner. Anyone
providing a service, from one to some thousand services, is called provider. Anyone request-
ing a service is called requestor. This might be a human user e.g. searching for a specific Web
service or another application or system gathering information provided by other services.

A service in this context is a software system designed to support interoperable machine-to-
machine or human-to-machine interaction over a network [1, 22]. Services can be anything
[165, 166], from network services over travel and banking services to business services. An
often-cited example of a service is that of a stock quote service, in which the requestor asks for
the current price of a specified stock, and the response gives the stock price [151]. This is one
of the simplest forms of a Web service in that the request is filled almost immediately. Service
matching is not restricted to Web services, but in this thesis we have mostly Web services in
mind when talking about services.

1.1.1 Service Annotation

In order to enable a high quality service matching fulfilling the needs of different users, we
need detailed described user requests and service advertisement. These descriptions contain
domain specific background knowledge. The background knowledge for the services is already
available at the stage of the service development, but usually not specified immediately and
directly by the programmer. Manual semantic annotation after finishing the development is a
very complex, time-consuming, and error-prone work. Therefore, a framework for automated
service annotation is needed, supporting the programmer during the development process
annotating a service investing only slightly more work. A thoroughly semantic description
can capture the meaning of the service which can be used to improve the quality of the service
matching. For instance, synonyms like “buy” and “purchase” are completely different words,
but have the same meaning. Homonyms like “order” have completely different meanings in
different contexts (“order” in the sense of proper arrangements and “order” in the sense of a
commercial document to a request). Both confuse machines without the help of semantics.

For traditional service registries informal service descriptions are provided describing the
service’s function and purpose superficial. A semantic annotation to a service is much more
precise, specifying inputs, outputs, preconditions, and effects using concepts from commonly
agreed ontologies. These ontologies provide a shared understanding of certain terms and
concepts in a specific domain.

When creating a new Web service, e.g. a book selling service, the developer usually has ac-
cess to domain specific knowledge specified in company-wide knowledge-bases. Here, terms
like “book”, “credit card”, or “customer address” and the relations between them are defined
e.g. in an ontology concerning books and an ontology describing business process concepts.
So it is easy for the programmer to associate the appropriate ontologies in the domain of the
new Web service. Now an algorithm can associate the correct concepts to the service’s inputs
like the requested book and the number of a valid credit card, and the customer’s delivery ad-
dress to the service’s output likewise. This process can be automatized using the generated
interface description of a Web service. This interface description contains all essential infor-
mation concerning the Web service. The specified inputs and outputs use previously defined
simple data types such as a credit card number, or complex data types like a book composed of

4 Introduction

author, ISBN number, publisher, etc. This data types can be matched to the commonly known
concepts in a domain specific knowledge-base.

1.1.2 Semantic Service Composition

In a traditional service discovery a request fails if keywords in the request do not match the
manual service description. With semantically annotated services the meaning of the service’s
inputs and outputs can be understood. Unfortunately, if the function of a service still does not
fit the request exactly, the request fails also. E.g. if a user is looking for a print service to print
his/her “.doc” file, the request will fail, even if a print service is available, but only capable of
printing postscript files. If the service matching concerns composeable services, a composition
of a “doc2ps” translation service and a “printing” service will successfully match the request.
A service composition is therefore able to improve the matching quality significantly.

With the help of semantic annotated services the meaning of the request and available ser-
vices can be understand to successfully match the request with a composition of multiple
basic services. All elements affecting the matching originate from ontologies, syntax and se-
mantic descriptions. After gathering all information a reduction to the relevant elements for
the matching needs to be performed in order to reduce the matching complexity. This reduc-
tion enables us to combine services from different domains identifying the shared concepts
of different knowledge-base descriptions to match the created composition to the request.

This thesis focuses on the issues directly involved with the matching of semantic Web ser-
vices. Many interesting problems exist in the area of service composition, which are not con-
sidered here such as transaction safety, security issues, or privacy concerns [1, 65, 67, 98].

1.1.3 Semantic Service Contextualization

In larger service registries the number of matching services and possible matching service
compositions increases significantly. A user might seek for any service or service compo-
sition matching his/her requirements. Huge result sets may be generated to rather generic
queries. Often, it is difficult for the user himself to specify any restrictive constraints to reduce
the result set. However, the user’s and service’s contexts contain descriptions of their individ-
ual environments. A service request depends highly on the current situation of the requestor.
Furthermore, the services offered by providers depend on their current environment. On both
sides context information helps to conclude certain facts or preferences useful for the match-
ing process. It reduces the result set to a query.

Service contextualization describes the process of integrating context information into the
service description. This procedure comes along with a second advantage. By eliminating
mismatching results concluded from the current circumstances improves the result quality
significantly. Applying this approach not only to syntactical context descriptions like in mo-
bile or pervasive computing [71, 72], but using semantic description tools to understand the
meaning of the environmental properties enables this possibility. Using a shared understand-
ing through common terms and concepts enables to compare contextualized services from
different domains using different context descriptions.

The already mentioned example of a printing service is also suited to illustrate the contextu-

1.2 Contribution 5

alization benefits and will be repeatedly considered throughout this thesis. For example users
select a printing service to print his/her documents. The request is automatically enhanced
with additional context information specifying the location of the requestor and the contex-
tualized service adapts to this information by printing the document to the closest printer to
the user. When the activity of the user changes from e.g. printing business emails to printing
private photos the context information reduces the matching services capable of printing to
those able to print colored documents.

Summarizing, this thesis considers the aspects of automatic service annotation during the
development process of Web services. The resulting semantic service descriptions improve
the quality of the matching compared to traditional service matching approaches. The se-
mantic annotations are further used to evaluate different service compositions resulting in
better adapted and more alternative services to user requests. It is important to stress out
that even services from different domains are composeable due to the ontology-based de-
scriptions. At last, context information is integrated to reduce the service matching result set
to only relevant services. Furthermore, the contextualization improves the matching quality
significantly.

1.2 Contribution

In this thesis we propose solutions to the different steps in the service matching process de-
fined above to increase the quality of the matching result. In order to constitute realistic ex-
periments for a contextualized semantic service matching we started to developed different
services and descriptions to apply our approaches. From the huge variety of context issues
Web services can contain, we choose the location property as an easy but not trivial to gener-
ate and describable context property. We developed a novel positioning technique for wireless
LANs (WLANs) to determine the location of WLAN devices within buildings using the regu-
lar wireless network infrastructure. We achieved an adequate positioning accuracy to apply
several location-based services, a specialized form of context-aware services. Our enhanced
fingerprinting algorithm matches current signal strength measurements with previously col-
lected reference vectors calculating the device’s position. The signal measurements are taken
from multiple access points, directly at the mobile device.

In the area of annotating semantically Web services we developed a novel framework to
support the service developer in the service creation process. Our WSDL-to-OWL-S algorithm
enables the developer to annotate the new service automatically without investing extensive
additional work like in the common manual annotation process. A WSDL interface descrip-
tion can be generated automatically in many programming languages [4, 6]. Our approach
uses the W3C Web Ontology Language for Services (OWL-S) to describe the semantics of a Web
service. The data types defined in the WSDL document and used in the interface description
are associated automatically with concepts from domain specific ontologies selected by the
service developer. These associations are adequate to generate a complete OWL-S service de-
scription.

As we match semantically described services to user requests, an exact match is often un-
successful. A service composition of basic services generates much more alternatives for a

6 Introduction

successful service matching. We propose a procedure to check the composeability of services
comparing their semantic OWL-S description. If inputs, outputs, and preconditions match,
the composed service is encapsulated and functions as a new alternative in a user’s service
discovery. Our approach combines even semantic Web services from completely different do-
mains. The associated ontologies are compared and shared concepts are identified. Our new
matching-cut procedure reduces the available semantic information to the relevant entities
in order to match the preconditions and outputs of one service to the inputs and precondi-
tions to a second service. This allows a much higher matching quality than in other semantic
matchmaking approaches which usually only consider the service profiles.

Context information is useful to adapt applications and services to the users needs. In
service matching, context information helps to identify requestor preferences and providers
application areas. We use context information to enhance the semantic service matching
process. Our strategy for a service contextualization integrates semantically described con-
text information into the service descriptions modeled in ontologies. To compare and match
services using different context interpretation – or more abstract context providers – we de-
veloped an upper context ontology. This upper ontology enables context ontologies from
different sources to associate to one common knowledge-base on a high level. Therefore,
shared concepts and interpretations can be identified and the contextualized services can be
matched to user requests. If requestors also use context information in their queries, our ap-
plied methods use this information to reduce the matching sets and eliminate mismatching
services.

Finally, we present our prototype system for the location-based services and evaluate our
service matching of contextualized semantic Web services. A test set of over 500 semantically
annotated Web services from different domains including numerous sample queries is used
to evaluate the matchmaker performance and illustrate the benefits of out approaches.

1.3 Synopsis

In the following chapter 2 we introduce context-awareness. Context related terms are defined
and modeling approaches are discussed. Furthermore, location-based services are classified
and characterized, including an overview of positioning techniques and positioning technolo-
gies in order to automatically sense location information as one context property. The chapter
closes with a short review of computer-supported cooperative work (CSCW) as one applica-
tion scenario for useful location-based services.

The next chapter 3 presents the vision of the Semantic Web and discusses the standards and
technologies used to bring this vision into being. The major building blocks are WSDL, RDF,
and OWL-S which form the foundation of the idea presented in this thesis.

Chapter 4 is devoted to the automation of the semantic description generation process.
Here, the framework supporting a Web service developer in the semantic annotation process
is described. The annotation is used in chapter 5 to check for service composeability in order
to create better service matching alternatives. The inputs, outputs, and precondition descrip-
tions are matched after a significantly reduction of the relevant semantic information. Chap-
ter 6 presents the contextualization approach as third and last step to improve the semantic

1.3 Synopsis 7

service matching.
Chapter 7 shows an evaluation and discusses the experiences gained and the lessons

learned while experimenting with the presented approaches. In chapter 8, we conclude the
work in this thesis and we give an outlook on future research directions.

8 Introduction

Context-Aware Services 2
I’ve done some things I wish I could erase. ...
I invented mistakes. But the mistakes must be
seen in context, and they must be weighed along
with the positives.

Sammy Davis, Jr.

“Let not the mobile phone ring at the theater or as my mother-in-law serves dinner”. The
motivation of context-aware computing springs from the natural desire to preserve ourselves
from its intrusion into social situations. It is not coincidental that the notion of context-
awareness has become increasingly popular as technology has become ever more pervasive.

Context is a key issue in the integration between humans and computers, describing the
surrounding facts that add meaning to something. Humans are quite successful at reacting
appropriately in everyday situations understanding its meaning. The richness of the language
they share, the common understanding of how the world works, and an implicit understand-
ing of information are only a few of many factors making this behavior possible. This implicit
information, or context, can be used to enhance the traditional ways of providing input to a
computer and to design more powerful and useful computational services.

The concept of context and context-aware computing increasingly gained importance in
the area of distributed systems since the 90’s. Since then, it seemed to be a promising solution
for a lot of problems which have been implied by the usage of mobile devices in ever-changing
environments. In the ubiquitous computing paradigm sensing a person’s environment plays
an important role. Therefore, the classic contents of contexts in the early days were location,
time, and temperature or network bandwidth. Exotic hardware sensors were embedded to
realize numerous prototypes in the field of mobile computing devices. Context computing,
which includes the collection, transformation, interpretation, provision and delivery of con-
text information, is regarded as the origin to develop smart environments and applications.

The basic idea introducing context in the field of computing is to gain more information
about the surroundings as mentioned before. Casually, using this additional information
makes it possible to reduce the information overload in computing systems. The magnitude of
information today’s services and systems are dealing with is much too high and far to complex
for intelligent human-computer-interaction. Real-time and other interactive systems require

10 Context-Aware Services

mechanisms like taxonomies, classifications or filters provided by contexts to realize adequate
results. Context-awareness facilitates simplified, convenient and efficient systems, but what
exactly is context?

2.1 What is Context?

Most people understand what context is, but they find it hard to define it precisely. The word
context is defined for example as “the interrelated conditions in which something exists or
occurs” in the Merriam-Webster Dictionary 1. The use of the word tends to be vague because
everything in the world happens in a certain context.

The study of contexts spans over a lot of disciplines from Philosophy over Communication,
Computer Science, Linguistic, to Industrial Engineering. The term has also been used in many
ways and different areas of computer science e.g. Artificial Intelligence or Mobile Communi-
cation.

Previous definitions of context are done by enumeration of examples, by choosing synonyms
for context, or by categorizing the environmental aspects. Context, relevant in the field of
computing services, was firstly defined by researchers of pervasive computing listing features
of environments. SCHILIT and THEIMER [137] refer to context as location, identities of nearby
people and objects, as well as changes to those objects. RYAN ET AL. [135] define context as the
user’s location, environment, identity and time. BROWN ET AL. [26] specify the location, iden-
tities of people around the user, time, season, temperature etc. These definitions are difficult
to apply. They enumerate several attributes to a context. It is not clear, whether a specific type
of information is listed in the definition of a context, or not.

Other definitions provide simply synonyms for context. For example FRANKLIN and
FLASCHBART [51] view context as the situation of the user. WARD ET AL. [160] see context
as the state of the applications surroundings and RODDEN ET AL. [131] define it to be the ap-
plication’s settings. As with definitions by example, definitions by synonyms for context are
difficult to apply because some consider context to be the user’s environment while others
consider the application’s environment.

With lessons learned operational and practical context definitions were finally provided. By
categorizing environment aspects a formal concept suitable for broad application scenarios
was developed. SCHILIT ET AL. [138] claims that the important aspects can be qualified by
where you are, who you are with, and what resources are nearby. Thus, a computing, user, and
physical environment cover the constantly changing execution aspects of a context. DEY ET

AL. [40] define the user’s physical, social, emotional and informational state. Finally, PASCOE

[116] defines context to be of physical and conceptual states of interest to a particular entity.
In these definitions context is all about the whole situation relevant to an application and
its users. In some cases, the physical environment may be important, while in others it may
be completely immaterial. The most popular and for this work most adequate definition of
context is given by DEY and ABOWED [39].

1http://www.m-w.com

http://www.m-w.com

2.1 What is Context? 11

Definition 2.1 (context)
Context is any information that can be used to characterize the situation of an entity. An entity
is a person, place, or object that is considered relevant to the interaction between a user and
an application, including the user and applications themselves.

This definition makes it easier to enumerate the context for a given application scenario. If a
piece of information can be used to characterize the situation of a participant in an interac-
tion, then that information is part of the context. For example the user’s location can be used
to characterize the user’s situation. If the user is located in the United States, the sum of the
weights will be presented in terms of pounds and ounces. If the user is located in Germany,
these values will be presented in terms of kilograms.

2.1.1 Context-Awareness

Contexts, which follow our definition 2.1, can still cover different pieces of information to
build a context. This information can be categorized in context types to help to understand
the intention and the designated usage of a particular context. Context-aware applications,
which are defined below, look at the who, where, when and what of entities and use this infor-
mation to determine why the situation is occurring. There are certain types of contexts that
are, in practice, more important than others. These are location, identity, time and activity.
These primary context types characterize the situation of a particular entity and can be dis-
tinguished from secondary context types. Primary types act as indices into other sources of
contextual information. For example, given a person’s identity, related information such as
phone numbers or email addresses can be acquired to set up a detailed context. This two-
tiered approach is proposed in [39], but similar type definitions occur in [135, 138].

When applications begin to use context or in a finer expression adapting their behavior to
context we come to the definition of context-awareness. It is commonly agreed that the first
research investigation of context-aware computing was Olivetti’s Active Badge system [159].
This system locates users within a building using infrared badges attached to each user and
routes calls for each user to the closest available telephone. Since then, there have been many
attempts to define context-aware computing. HULL ET AL. [77] and PASCOE [116] use context
by giving computing devices the ability to detect and sense, interpret and respond to aspects
of user’s local environment and the computing devices themselves. SALBER ET AL. [136] de-
fine context-aware to be the ability to provide maximum flexibility of a computational service
based on knowledge of the user’s context. Getting more specific applications changing their
behavior dynamically based on context is referred to as adapting to context. RYAN ET AL. [135]
describes applications that monitor input from environmental sensors and allow users to se-
lect from a range of physical and logical contexts according to their current interests and ac-
tivities. Combining all these aspects leads us to the common definition of context-aware com-
puting or context-awareness also by DEY and ABOWED [39].

Definition 2.2 (context-awareness)
A system or application is context-aware if it uses context to provide relevant information to
the user and adapts its behavior according to the context, where relevancy depends on the
user’s task.

12 Context-Aware Services

This definition is more general than some of the above mentioned definitions, but other spe-
cific definitions do not fit. For example, an application that simply displays the context of the
user’s environment to the user is not modifying its behavior, but it is context-aware.

Context-aware systems, which follow our definition 2.2, can still have a broad variety of fea-
tures. A further attempt helping to define the field of context-aware applications more closely
are a categorization or classification of features into an taxonomy. DEY and ABOWED [39] sug-
gest three categories for feature classification of context-aware applications. The first is pre-
sentation which contains all features for presenting information and services to a user. This
interaction technique presents a list of objects and places, where items relevant to the user’s
context are emphasized to ease the user’s choice. Applications in the category of automatic
execution of a services list services which are executed automatically when the right combi-
nation of context exists. Usually these are actions based on simple if-then rules. The last
element in the taxonomy is tagging of context to information for later retrieval. Here the abil-
ity to associate data with the user’s context is captured. Information like e.g. virtual notes can
be associated to objects and places to provide details on these items when other users come
close-by.

The previously discussed definitions of context and context-awareness are kept in a more
general notion, but most of them do not consider the concept of services in all its facilities.
The definitions are restricted to user/device or user/service interactions. Context-aware sys-
tems, firstly used in the ubiquitous computing paradigm, usually have a user-centered view of
the applications and do not consider automatic service-to-service interaction. Therefore, we
define the term context-aware service to emphasize the important role of services in today’s
systems.

Definition 2.3 (context-aware service)
A service is context-aware if its output or behavior is influenced or enhanced by relevant con-
text information. Without context a context-aware service is still operational.

To have an even clearer distinction between regular services and services using context we
will work with another type of services, defined as context-based services. A context-based
service computes its output based on a context. The main difference between both definitions
arises when context information is not available to services. A context-based service does not
fulfill any task in this situation while a context-aware service can operate furthermore in a
different way.

Definition 2.4 (context-based service)
A service is context-based if its output or behavior can only be applied if relevant context infor-
mation is provided to the service. Without context a context-based service has no significant
function.

An open question still is how to model contexts properly. This is considered in the next sec-
tion.

2.1 What is Context? 13

2.1.2 Context Modeling Approaches

In previous works, both informal and formal context models have been proposed. Informal
context models are often based on proprietary representation schemes which have no facil-
ities to ease shared understanding about context between different systems. The CONTEXT

TOOLKIT [38] for example represents context in form of attribute-value tuples, and COOLTOWN

[91] proposed a Web-based model of context in which each object has a corresponding Web
description. Formal context models commonly employ formal modeling approaches to ma-
nipulate context. ER2 models or first-order predicates are only some examples [72, 122]. In
the following, different modeling approaches are introduced and evaluated.

Realizing context-aware systems or services requires thoroughly modeled contexts. Many
different context modeling approaches exist. In [148] these approaches are classified by the
scheme of data structures which are used to exchange contextual information in the respec-
tive systems. A well designed context modeling and retrieval approach is a key accessor to
the context in any context-aware system. The categories for context modeling approaches
are key-values pairs, markup schemes, graphical models, logic-based models, object-oriented
models and ontology-based models.

The model of key-value-pairs is the most simple data structure for modeling contextual in-
formation introduced by SCHILIT ET AL. [138]. In many frameworks information is stored in
e.g. environment variables as a list of attributes in a key-value manner. The discovery proce-
dure operates as an exact matching algorithm on exactly these attributes. Key-value pairs are
easy to use, but lack of sophisticated structuring and the imminent danger of unrecognized
inconsistency because no inheritance can be applied. This makes efficient context retrieval
algorithms impossible.

Markup scheme models provide a hierarchical data structure of tags with attributes and con-
tent. Typical representatives of this kind are profiles usually based upon a derivative of the
popular markup language XML3. For example, HELD ET AL. [71] propose a profile approach
supporting the full flexibility of RDF4 to express natural structures of profile information as
required for contextual information. Context models in this category oftentimes are either
proprietary or limited to a small set of contextual aspects, or both. Strengths are often the
applicability to existing markup-centric infrastructures of a dynamically computing environ-
ment like Web services.

UML5 is a very well known general purpose modeling instrument with a strong graphical
component. Graphical models are, due to their generic structure, also an appropriate model
to contextual information. BAUER [14] for instance models context aspects as UML exten-
sions. In general, graphical models are in particular useful for structuring, but are usually not
used on instance level.

When context is realized through facts, expressions and rules a logic-based modeling tech-
nique is used. Logic defines the condition on which a concluding expression or fact may be
derived from a set of other expressions or facts. MCCARTHY ET AL. [101] introduced contexts

2Entity Relationship Models
3Extensible Markup Language
4Resource Description Language
5Unified Modeling Language

14 Context-Aware Services

as abstract mathematical entities with properties useful in artificial intelligence. Other ap-
proaches like GRAY ET AL. [58] use first-order predicate logic as a formal representation of
contextual propositions and relations. The level of formality is extremely high in logic-based
context systems. They are usually composed distributed, but partial validation is difficult to
maintain. Without partial validation the specification of contextual information is very error-
prone.

The intention behind all object oriented modeling approaches for contextual information is
encapsulation and reuseability, as always in the object-oriented paradigm. The main benefit
of an object-oriented approach is helping to cover parts of the problem arising from the dy-
namics of contexts in changing environments. The details of context processing are encapsu-
lated on object level and hence hidden to other system parts. Access to contextual information
is provided through specified interfaces only. SCHMIDT ET AL. [141] uses so-called cues col-
lecting values of a single physical or logical sensor. The context is modeled as an abstraction
level on top of the available cues. Therefore, the cue objects provide contextual information
through their interfaces, hiding details of determining the exact values.

Ontologies are a good instrument to specify concepts and interrelations. Using ontologies
provides an uniform way for specifying a core concept as well as an arbitrary amount of sub-
concepts and facts. Altogether it allows a sharing and reuse of contextual knowledge in an
highly dynamic computing system. The knowledge is evaluated using ontology reasoners.
WANG ET AL. [158] for instance, created an upper ontology which captures general features
of basic contextual entities and a collection of domain specific ontologies and their features
in each subdomain. This allows contextual reasoning using inference engines developed for
description languages. The CoBrA system by CHEN ET AL. [32] uses a broker-centric agent ar-
chitecture to provide runtime support for context-aware systems. Ontological concepts char-
acterize here entities such as persons and places to describe their contexts.

For instance, to provide a printing service with a context the environment and properties of
a printer can be described via an ontology. Figure 2.1 shows a small part of such an ontology.
Here, a postscript printer (PSPrinter) is a subtype of a Printer and has next to its usual prop-
erties like Name also environmental properties. E.g. the location of the printer is specified with
the InRoom property. This allows together with further information about the building map to
conclude which printer is nearest to a user. This feature is used for example by location-based
services described in the next section.

Strong similarities between the modeling instruments of ontologies and objects-based
manners are obvious. Concepts and facts in ontologies are analogue to classes and instances
in object oriented modeling approaches. Both have a distributed nature, but can partial val-
idate contextual knowledge which is highly desirable is contextual systems. The quality of
information provided in contexts usually varies over time. A working set of information is typ-
ically incomplete or ambiguous. This should be covered by the model. At a level of formality
an ontology modeling approach is more precise and traceable than modeled by objects. A
precise definition of terms and a sharing of the same interpretation of the data in each partic-
ipating party of an interaction is indispensable. Therefore, the shared “understanding” of the
underlying meaning in contextual information can only be achieved with an ontology-based
modeling approach.

2.2 Location-based Services 15

1 <owl:Class rdf:ID=" Printer"/>

2 ...

3 <owl:Class rdf:ID=" PSPrinter">

4 <rdfs:subClassOf rdf:resource ="# Printer"/>

5 </owl:Class >

6 <owl:DatatypeProperty rdf:ID="Name">

7 <rdfs:range rdf:resource ="&xsd;string"/>

8 </owl:DatatypeProperty >

9 <owl:DatatypeProperty rdf:ID=" InRoom">

10 <rdfs:range rdf:resource ="&xsd;string"/>

11 </owl:DatatypeProperty >

12 <owl:Class rdf:ID=" PagesLeft "/>

13 <owl:DatatypeProperty rdf:ID="Pages">

14 <rdfs:domain rdf:resource ="# AmountPages "/>

15 <rdfs:range rdf:resource ="&xsd;nonNegativeInteger "/>

16 </owl:DatatypeProperty >

17 ...

Figure 2.1: Example of a context modeled with ontologies

2.2 Location-based Services

Filling context descriptions with content can be a time-consuming job. Despite the risk of
incompleteness and ambiguity already mentioned in the previous section, the up-to-dateness
and reliability of the provided information has a considerable value. Therefore, the desire to
automatically sense different parameters especially for mobile users emerged very soon. The
most important pieces of information are the primary context contents identity, time, location
and activity. To determine the current time and identity of a user respectively his/her device is
not very complex. Almost any mobile communication device is registered to a service provider
when active and speaking of personal mobile devices a user can usually be identified by its
device. To specify the precise location and activity of a mobile device is much more difficult.
Different mobile devices require miscellaneous positioning techniques often separated from
the applied communication technique. If the behavior of an application or the result of a
service is a function of its location it is referred to as location-aware.

The term location-based service [12] is a concept that denotes applications integrating geo-
graphic location with the general notion of services. Many examples exist - mainly in the field
of mobile phone networks - including applications or emergency services, car navigation or
“yellow maps” as a combination of yellow pages and maps. LBSs6 have on the one hand a
long tradition (since the 70s the U.S. Department of Defence operates the GPS7 and is on the
other hand relatively new due to the newly developed technologies in mobile communica-
tion. Location-based services present many challenges in terms of research, industrial and
commercial concerns. Approximately 20% of current mobile network operators income [140]
is coming from SMS8. To fulfill the growing needs of the business, operators invested in new

6Location-based Services
7Global Positioning System
8Short Message Services

16 Context-Aware Services

technologies like mobile messaging via MMS9 and mobile Internet via UMTS10. LBSs are the
new challenge over the next years. The user’s location is an important dimension in this new
data-service-oriented world.

Famous, and two of the first examples for location-based services in mobile phone net-
works, are the FINDFRIEND application from AT&T Wireless [9, 149] as well as E-911 service
from the U.S. government [125] respectively the FCC11.

The visionary and forward-thinking FINDFRIEND application delivers relevant user infor-
mation about the location of a friend’s cell phone position. Together with a GIS12 database
the application can transform the latitude/longitude coordinates pinpointing the location of
a user’s mobile phone into an address, city and state by reverse geocoding. The goal was to
provide enhanced solutions for people to stay in touch with their friends and family, to find
one another and to get directions to nearby locations. AT&T Wireless created the first-ever
find friend application delivered over mMode (a WAP13 derivate) to provide these services. It
also obtains POI14 information in proximity to a mobile phone position similar to the Yellow
Pages. For example, it helps to find the nearest cinema, toy shop, gas station or airport. A user
interface with driving directions to the once selected destination is then provided.

The second service concerns the U.S. public emergency system. The traditional emergency-
calling service 911 automatically routes calls to the nearest 911 call center (PSAP15) and deliv-
ers a caller’s location to the appropriate public safety entity, based on the phone’s fixed ad-
dress. It associates between the caller’s line and the to this line registered address. This is
often used in times of fire, break-ins or kidnapping where communicating one’s location is
difficult. With the increasing amount of cell phones there was needed to locate mobile callers.
The E-91116 service uses GPS17 and other technologies like radio location from cellular net-
works to detect the caller.

2.2.1 Classification and Characteristics

Both applications, AT&T’s FINDFRIEND as well as E-911, are visionary and early developments
in the field of LBSs in mobile phone networks. Meanwhile, the market shows many interesting
services from different areas which are more sophisticated than experimental toys. To get a
baseline understanding of the potential the services and applications using location informa-
tion can be classified into information, emergency, navigation, tracking, billing and assistance
services.

9Multimedia Messaging Service
10Universal Mobile Telecommunications System
11Federal Communications Commission
12Geographic Information System
13Wireless Application Protocol
14Point-of-Interest
15Public Saftey Answering Point
16Enhanced 911
17Global Positioning System

2.2 Location-based Services 17

Category Push/Pull Active/Passive Example
navigation pull active vehicle, tourist
tracking push passive children, goods, fleetmanagement
information pull active maps, schedules, weatherforcast,

points of interests
emergency pull active emergency, breakdown
billing push passive home-zones, toll
assistance push active/passive shopping, office

Table 2.1: LBS application classification

Providing information to a user depending on his/her current position is the nature of LBS
and can be placed in the category of information services when realized without additional
features. POIs are defined for travel services providing information about local sightseeing ob-
jects, Yellow Pages services notify about special local institutions like public swimming pools
or tourist centers in the surrounding area. Infotainment services announce local events or
location-specific multimedia content to interested users.

Services concerning emergency issues are the most obvious and plausible propose when
thinking of location related or location-based services. Individuals - unaware of their exact lo-
cation - in a case of an emergency (injury, criminal attack, etc.) use their mobile device to call
for help. With life-threatening injuries a call for assistance can be used to reveal automatically
the exact position of the caller extremely fast. Alarmed emergency forces are directed imme-
diately to the right location using the positioning capabilities of the mobile device. In times of
break-ins or kidnapping any public safety entity can be informed even without speaking with
the victim. Services like the E-911, as mentioned in the paragraph above, are at the moment
applied in the North America or E-112 respectively in the European Union.

Entering a foreign city or area the traveler’s need for directions within the current geograph-
ical location can be satisfied with applications from the navigation category. These services
allow finding places (shops, hotels, gas stations, etc.) depending on the traveler’s location
together with detailed maps and route descriptions (positions, directions, traffic conditions,
point-of-interest information, etc.) transferred to a mobile device. Well established car navi-
gation systems already provide these services. Starting with basic transformation from coor-
dinates into street addresses and vice versa (geocoding and reverse geocoding) lead to ideas
for more dynamic and complex services. The potential of more general LBS in this category
lies in combined indoor and outdoor navigation connected with the power of highly interac-
tive and user-friendly mobile devices like handhelds. Possible scenarios are finding special
areas in malls or the presentation of a company on huge fairs.

Location-matters are of course important if objects or persons are lost. Tracking services
are LBSs that help to find things or control the track of an object. Examples are applied for the
discovery of lost children, stolen cars or elderly people who got lost in huge places like shop-
ping malls. Applications allowing companies to locate their personnel (salesman or mainte-
nance crews) as well as monitoring the state and position of part for supply chain manage-
ment are highly demanded services.

18 Context-Aware Services

Different location-sensitive billing systems can be applied depending on the current state
and location of a customer. These billing services usually control which customer is charged
at which rate for a specific service. For instance, a network operator defines a small zone
around the customer’s home including the garden, neighbor houses, etc where the customer
usually accomplishes private calls. In this “home zone” calls from the mobile phone are
cheaper than outside. Also possible are location-sensitive advertisements as another exam-
ple of location-based billing systems. A message like “enter the coffee shop to your left and
get 10% discount on a coffee” advertises nearby products to a different price.

The last category for LBSs completing this listing can be named as assistance services. These
services work on location-based as well as context-based information. Besides just making
location-specific information available to a user, an assistant LBS goes a step further and in-
terprets the users habits and behavior at certain place and makes decisions for the user. For
example, a shopping assistance service in a mall or supermarket can add the customer’s fa-
vorite desert to his/her shopping list, if it is on sale and the supply at home is diminished.

The six described categories information, emergency, navigation, tracking, billing and as-
sistance for location-based services are a recommendation proposed in this work. Although
the term LBS is well known for several years, no commonly accepted classification exists
[54, 139, 140]. More or less categories as well as different terms to group certain services are
imaginable. Future services may also need additional categories, but the universal nature of
this classification should be sufficient enough to classify any service.

Besides from mobile phone networks, location-based services originate from many do-
mains. The above classification gives an idea of the diversity, potential and richness of useful
LBSs. The resulting heterogeneity reflects in the commonly used terms concerning these fea-
tures in different communities. The expressions position and location are used frequently in
a similar manner. Apart from it varying representation, a position can be defined as follows.

Definition 2.5 (position)
A position is an exact, unique place based on a geographic coordinate system.

The term location has a more relative meaning than position and can be defined as subse-
quently described.

Definition 2.6 (location)
A location is a position in physical space expressed relative to the position of another point or
object.

Now, with a precise definition of a location, the term location-awareness can be defined
analog to the previous definition of context-awareness (definition 2.2). The LBS community
has not produced a consistent definition of location-awareness yet [16,37,69,86,123]. A lot of
synonyms like position-awareness or situation-awareness exist similar to the irregular defini-
tions of context. Location-awareness is defined here as follows.

Definition 2.7 (location-awareness)
A system or application is location-aware if it uses location information to provide relevant
information to the user, were relevancy depends on the user’s task. The system output or
behavior is a function of the location.

2.2 Location-based Services 19

This definition comes as expected. Location information is a part of the more general
context-information and therefore location-aware systems are a subset of context-aware sys-
tems. The systems behavior or output is reproducible at the same location. Therefore, the
reaction of the system can be referred to as a function of the location. Like context-aware
and context-based services, location-aware and location-based services can be defined in the
same manner.

Definition 2.8 (location-aware service)
A service is location-aware if its output or behavior is influenced or enhanced by relevant lo-
cation information. Without location information a location-aware service is still operational.

Definition 2.9 (location-based service)
A service is location-based if its output or behavior can only be applied if relevant location
information is provided to the service. Without location information a location-based service
has no significant function.

Location-based services do have a lot of important properties and interesting characteris-
tics. Apart from numerous features advertised by commercial service providers, some techni-
cal properties are comprehensible. The design of location-based applications or services can
be split into person-oriented and device-oriented approaches. Person-oriented LBSs often fo-
cus on the location of a person or use the position of a person to enhance a service. Usually the
person to be located is aware of his/her locating-request and can control the attempt. Applica-
tions for communication, commerce and entertainment usually use person-oriented services,
because user-service-interaction is required. Applications providing device-oriented services
are not personalized. Instead a device or the state of a device is determined unnoticed. There-
fore, an object or a group of people can be located, which are usually not in control or aware
of the locating procedure. Tracking services usually work device-oriented.

A second characteristic for LBSs concerns the information flow between user and service.
Services can be distinguished between push and pull services. If a services is invoked actively
by user information is pulled from this service. A push service, in contrast, means that a user
receives information as a result of his or her surroundings without actively requesting it. A
user usually previously subscribes for this kind of service.

Another aspect can be introduced with third-party interaction. A active service is initiated
by the location request of a user itself. If a third-party - another user, or a different service -
locates an individual the service is passive. Typical passive services originate from the tracking
category whereas active services are usually information services.

2.2.2 Positioning Techniques and Technologies

Communicating without wires is not a new concept. Broadcasting radio and television are two
common examples of wireless communication; others include satellites, cordless and cellular
phones, or even remote controls and car door locks. Most of these examples employ com-
munications via radio waves or the use of infrared light. Next to the ability to communicate
without wires these technologies have the power to determine a receivers location. A receiver
can identify a signal, determine the angle of the received signal, or measure the signal strength
of the received radio waves and process its origin.

20 Context-Aware Services

The underlying technology and position technique is essential for a location-based ser-
vice system. The positioning itself is based on sophisticated physics and mathematics which
“sense” the location of an object or user. LBSs require location information as input. This can
be sensed automatically using the right technology and positioning technique.

Positioning Techniques

Some basic techniques appear again and again in combination with different technologies
in the context of determining positions. Cell-based, time-based, attenuation-based, and
proximity-based solutions are frequently used. They have in common that usually wireless
signals are used. Depending on the application area other techniques like scene-based or
probability-based approaches are also applicable. Figure 2.2 shows an illustration of these
techniques.

COO18 [30, 73, 133, 153, 164] is the most popular technique when a cell-based solution is
chosen. In a wireless network a stationary base station is used to propagate signals to a spe-
cific area. The position of each station is known and if a device is within communication
range a connection is usually established. Identifying a cell in a cellular-based network makes
is possible to draw conclusions from the position of a receiver. Usually a device connects to
the strongest signal in range and the position of the base station is decisive. Substituting a cell
in several different sectors can improve the accuracy which otherwise depends mainly on the
cell-size.

Triangulation [73, 133, 164] computes the location with geometric properties of triangles
using either distances or angles and allows a more accurate positioning. In order to deter-
mine the distance between transmitter and receiver the signal propagation delay (time) or the
received signal strength (attenuation) can be measured. Both, time-based and attenuation-
based approaches use lateration to measure the distance to a number of multiple reference
points (base stations). For angulation approaches, e.g. AOA19 the angle between receiver and
multiple transmitters is used to calculate the position of the receiver.

Mobile phone networks traditionally work with time-based techniques [73,133,163,164] to
determine the location of mobile phones if an accuracy higher than cell of origin is required.
In TOF20 also known as TOA21 the time it takes a signal from transmitter to receiver is mea-
sured. Knowing the propagation time of the signals and the exact position of the base station
allows determining the position of the mobile phone using triangulation. This requires high
precision instruments and clocks on both ends of the transmission due to the propagation
speed of radio waves. The E-OTD22 also know as TDOA23 is a variation of TOF where all base
stations emit a synchronous timing signal. Calculating the time differences from several base
stations on the receiving device allows determining its position. Especially on the mobile de-
vice the current mode, battery status and signal strength have a major influence on the result

18Cell of Origin
19Angle of Arrival
20Time of Flight
21Time of Arrival
22Enhanced Observed Time Difference
23Time Difference of Arrival

2.2 Location-based Services 21

in both approaches. Signal interferences and reflection have a medium effect on these mea-
surements (see section 2.2.3). To avoid these disadvantages the RTOF24 technique demands
the receivers to send an acknowledgement back to the transmitter immediately. The transmit-
ter receives the acknowledgement message back on the same way the original signal was send.
Measuring this roundtrip time only requires precise instruments and clocks on the transmit-
ter and is therefore much easier to apply in mobile phone networks.

A characteristic of electromagnetic waves is the straight-forward propagation (line-of-sight)
together with a proportional decrease of the signal strength at increasing distance. This atten-
uation [10,49,73,115] can be used to calculate the distance between transmitter and receivers
knowing the output signal strength at the transmitter. RSS25 [124] measures the received sig-
nal strength from the transmitter at the receiver and determines in triangulation similar to
TOF the position of the receiver. Many influences like atmospheric properties, for example
humidity, affect the signal propagation and have a major impact on the positioning accuracy
in this technique.

(a) Cell-based (b) Time-based (c) Attenuation-based

(d) Proximity-based (e) Scene analysis (f) Probabilistic

Figure 2.2: Overview of positioning techniques

24Roundtrip Time of Flight
25Received Signal Strength

22 Context-Aware Services

Proximity-based positioning techniques [8, 73, 109, 159] determine if a user is “near” to a
know location. The user’s presence is sensed through physical contact, monitoring, or ob-
serving. Pressure sensors, touch sensors, or capacitive field detectors sense physical contact.
Monitoring is done by determining when e.g. a device is in range of a wireless cellular access
point (see COO above). Observing means for example if a user uses her/his credit card at a
point-of-sale terminal, which can be used to infer the location of the user.

In a scene analysis [73, 121, 126] users are observed by a reference point in order to draw
conclusions about the position of the observer or the user in the scene. Usually the observed
scenes are simplified to obtain the features that are easy to represent and compare. The lo-
cation of objects and users can be inferred using passive observation and features that do
not correspond to geometric characteristics. Measuring geometric quantities often requires
motion or the emission of signals. A static analysis usually looks up recognized features in
a database with a preset of objects already mapped to locations. A more dynamic approach
tracks differences between successive scenes in order to estimate a location.

The use of probabilistic techniques [21,29,50,73,132,162] provides a natural way to handle
uncertainty and errors e.g. in signal power measurements. For the location estimation with
a probabilistic-based technique machine learning is usually applied. A positioning system is
initiated with training data and in a test-phase randomly determined test points are chosen,
computed and compared to the correct coordinates.

Positioning Technologies

The previous section describes the principle way positioning can be accomplished. Only in
combination with a technology using specific hardware leads to a helpful positioning system.
The upcoming trend for mobile computing in the 90’s created visionary, but also unordinary
approaches testing also wireless communication technologies not intended for positioning
originally. In the following paragraph satellite-, network-, infrared-, RF-, ultrasound-, and
video-based technologies are shortly introduced together with established examples imple-
menting these technologies for a positioning propose.

The idea for satellite-based navigation is very old, because is has multiple powerful advan-
tages. The positioning itself is available around the globe even in abandoned regions, environ-
mental conditions like the weather only have a small effect on the result, and a high accuracy
can be achieved. The famous GPS26 [57] is the only working system at the moment. Vehicle
(car, ship, plane, etc.) navigation, logistic coordination, fleet management, and cargo tracking
are only a few applications based on GPS today. Once designed for military use from the U.S.
Department of Defence, a life without a civil usage of the positioning system in our modern
life is unthinkable.

A user, who wants to determine his/her position via satellite, needs the exact position of the
satellites as well as the distance to them. If three satellites are in visual range, the exact loca-
tion can be calculated using the lateration technique of the triangulation method mentioned
above. The GPS system, operational since 1995, consists of 24 satellites in six orbits. In most
places on earth five satellites are available, which have four atomic clocks each sending syn-

26Global Positioning System

2.2 Location-based Services 23

chronized the current time and the satellite’s position to its receivers. The - today very small -
receivers calculate the current position with this data.

Due to economy reasons, GPS receivers are not equipped with atomic clocks. Therefore, a
forth satellite signal acquires correction data and allows the high accuracy [133]. GPS works
in two modes. The SPS27 guaranties an accuracy of 100 meters in 95% of all cases. The bad
performance is caused by an artificial error called “selective availability”. This mode was de-
activated in May 2000 and the more accurate and encrypted PPS28 was disposed for civil usage
delivering a 22 meter accuracy in 95% of all cases or a 10 meter accuracy in 90% of all cases.
Auxiliary terrestrial transmitters enhance the GPS signal to an exactness of one to three meters
in a method called D-GPS29. The United States have reservations to activate the SPS mode in
times of crises.

The EU and the ESA30 are building GALILEO [52], which’s release date is in 2008. GALILEO

intends a higher precision than GPS up to ten meters without and one meter with additional
auxiliary terrestrial transmitters. The 27 satellite system will have several commercial services
with different accuracies, which allows indoor positioning (with auxiliary transmitters) and no
fallback in times of a crisis. The Soviet pendant GLONASS [55] to GPS was developed in the cold
war. Initial satellites were released in 1982, but the full operating mode with 24 satellites was
never reached, due to the short lifetime (three years) and insufficient funding of its satellite
program.

The satellite technology is ideal for the intention of location-based services due to the huge
coverage, the easy access, and high accuracy of the positioning data. Unfortunately, com-
plex location-based applications require a lot of communication and interaction with other
networks, services, applications, and users. This is not possible with a read-only satellite sys-
tem and without a universal data network. Furthermore, satellite signals cannot be received
indoors and in signal shadow areas without immense additional efforts.

Next in the line of positioning systems are network-based approaches. Each network
provider has a unique radio frequency band. Mobile phones and the network they operate
under vary significantly from provider to provider, and even from nation to nation. However,
all of them communicate through electromagnetic radio waves with a cell site base station,
the antennas of which are usually mounted on a tower, pole, or building. Triangulation of
time-based techniques was applied early to determine the position of a mobile device besides
the cell-based information.

GSM31, GPRS32 and UMTS33 are the most favorite and established technologies in the evo-
lution of network standards. GSM builds the second generation (2G) of mobile phones. In
addition to voice transmission small amounts of data are transferred between base station
and mobile device. SMS messages are one example, but also cell information is shared which
can be used for LBS like the “home zone” scenario (see section 2.2.1). New third genera-

27Standard Positioning Service
28Precise Positioning Service
29Differential GPS
30European Space Agency
31Global System for Mobile Communications
32General Packet Radio Service
33Universal Mobile Telecommunications System

24 Context-Aware Services

tion (3G) phones in GPRS and UMTS networks have much more computational power. Bet-
ter displays and higher transmission rates enable more complex mobile services, especially
location-based services. Sadly, the data communication in those networks is strictly propri-
etarily. Besides the limited capabilities of human interaction with the mobile device, the cre-
ation of individual location-aware applications is not possible.

Infrared (IR) wireless communication was one of the first technologies for short-range wire-
less communication. This technology is used in devices such as remote controls, PDAs34,
notebooks, etc. Infrared makes use of the invisible light spectrum just beyond the red wave-
length in the visible spectrum. In particular, one standard method for infrared communica-
tion is specified by the IrDA35 [80]. It is designed for short-range, low-power wireless commu-
nication.

Advantages of the technology are the very low priced hardware. Simple LEDs36 can be used
as transmitter, simple photodiodes as receiver. Infrared requires typically a line-of-sight path
between transmitter and receiver while other technologies can penetrate solid objects. Its
usage necessitates no license. Unfortunately, infrared communication has a relatively small
bandwidth. In addition, the full bandwidth can only be achieved in very short ranges, with
no obstacles in the line-of-sight, and with no jamming entities like heat sources nearby. The
limited range of an IR network for positioning is a handicap in providing ubiquitous coverage.
Although it is often deployed for solely location determination, it does not provide traditional
data networks services. Therefore, it is not suitable for complex LBSs.

Positioning systems using infrared technology normally employ transmitters as beacons
combined with proximity- or cell-based techniques. The ACTIVEBADGE system [159] intro-
duced by WANT ET AL. was an early and significant contribution to the field of location-aware
systems. Sensors placed at known positions in the ceiling within a building receive the unique
identifier infrared signal from a badge worn by a person to be located. The beacon signal emits
every ten seconds and relays this to a location manager software, which provides the location
information for further disposal. Unfortunately, the ACTIVEBADGE system suffers from several
drawbacks. First, it scales poorly due to the limited range or IR. Secondly, it cause significant
installation and maintenance costs and finally the system performs badly in direct sunlight
environments.

Radio Frequency (RF) technologies employ transmitters and receivers tuned to produce
and consume electromagnetic waves of a given frequency spectrum. Via modulation indi-
vidually information can be encoded and interpreted. Bluetooth, WLAN37, UWB38, and other
wireless communications operate with RF. It can penetrate many solid obstacles such as cloth-
ing, human bodies, walls, doors, and the alike. This means there is no need for a undisturbed
line-of-sight between transmitter and receiver.

To overcome the problem of limited range of IR technology the RFID39 [48] was developed
building a beacon-based (or tag-based) location system. Unfortunately, these RFID systems,

34Personal Digital Assistants
35Infrared Data Association
36Light Emitting Diode
37Wireless Location Area Network
38Ultra-Wideband
39Radio Frequency Identification

2.2 Location-based Services 25

like their IR counterparts, are often build for the solely propose of determining locations and
do not provide any data network capability. A basic RFID consists of three components; the
antenna, a transceiver with a decoder, and a RF-tag electronically programmed to emit unique
signatures. Antennas are the link between tag and transceiver, which controls the system’s
data acquisition and communication. It sends radio signals to activate the tag - coming in a
wide variety of shapes and sizes - and read and write data to it. Active RFIDs are powered by an
internal battery and are typically read/write. Passive RFIDs operate without a separate power
source and obtain power generated from the reader by magnetic induction. They reflect the
RF transmission and add information by modulating the signal. Passive tags are much more
lighter than active tags, less expensive, and offer a virtually unlimited operational life [48].
The trade-off is that they have shorter read ranges and require a high-powered reader. RFID
systems use either low frequencies (30-500 KHz) or high frequencies (2.4 GHz) offering read
ranges up to 50 meters (special antennas increase this to 300 meters) and response times less
than 100 milliseconds.

LANDMARC [109] is a reliable and cost-effective location-sensing system developed by NI ET

AL. that uses active RFIDs for locating objects inside buildings. The reader determines the
tag’s location based on the received signal strength from the tag (one of eight discrete power
levels). As the reader only reports whether a tag is in its detection range or not, the system
uses a proximity-based technique. In contrast of having more readers in place to increase the
accuracy, the LANDMARC system employs the idea of having extra reference tags as reference
points like landmarks in our daily life. These reference tags at known locations can also be
located by the system on a scene-based manner to eliminate environmental effects that con-
tribute to the variations off the detection range. The system spends one minute each time to
scan the eight discrete power levels to estimate the signal strength of all tags in range. A prob-
lem is the changing behavior due to different chips and circuits as well as batteries even from
the same RFID vendor. This causes a poor latency and accuracy of the overall system.

In search of other technologies to realize positioning systems ultrasound-based systems
achieve a considerably high precision. Because the speed of sound (330 m/s) is low compared
to radio signals, it is easier to get an exact measurement without high technical effort. Disad-
vantageous is the need for specialized and expensive hardware. Usually a TOF lateration or a
proximity-based technique with beacons is applied.

The ultrasound positioning system ACTIVEBAT [66] proposed by HARTER ET AL. obtains a
high precision of ten centimeters using an ultrasound time-of-flight approach. A user carries
a so-called Bat, which is a device that sends a short ultrasound impulse upon a request. Sta-
tionary devices at know locations, that are assembled at the ceiling, receive the ultrasound
signal and immediately pass his information to a location server via a wired network. The
CRICKET [118] system from PRIYANTHA ET AL. switches the roles of transmitter and receiver
compared to the ACTIVEBAT system. Fixed installed beacons send ultrasound signals received
by mobile badges. CRICKET and its successor CRICKETCOMPASS [119] rely on beacons trans-
mitting a RF signal combined with an ultrasound wave. A receiver estimates its position by
listening to the beacon emissions and finds out which one is the nearest.

Realizing a truly scene-based positioning technique video-based technologies are the pre-
ferred choice. Video data is collected an evaluated in intensive computations. Visual tags
such as colored badges have patterns that can be recognized easily and with fixed cameras at

26 Context-Aware Services

known positions and orientations a user or object can be positioned.
In the CYBERCODE [126] system by REKIMOTO ET AL. the mobile user is equipped with a

small camera, mounted for example on the user’s head. Visual tags are attached on walls
inside a building. In this case, the visual tags have fixed positions and the camera is mobile.
If the camera detects two or more tags it can determine its own positions. CYBERCODE like
other technologies in this area lack of low accuracy and high computational power to process
positioning results.

Radio Frequency-based technologies offer a more sophisticated way of positioning when
used in a beacon-like manner (RFID) implementing a proximity-based technique. The pop-
ularity of RF-based wireless communication and the wide variety of technologies available
allow exploiting other techniques such as attenuation. Bluetooth and WLAN operate in the
license-free 2.4 GHz ISM40 spectrum. The signal propagation and the resulting received sig-
nal strength decreases with growing distance and is therefore a function of the distance to the
source.

Bluetooth [20, 105] gained huge popularity within a short time and chipsets working with
Bluetooth are implanted everywhere (phones, cameras, printers, accessories, computing de-
vices, etc.). It is a low power and low cost technology building a multi-functional communi-
cation standard providing IP and even voice services. Bluetooth was not made originally for
location determination. However, devices in a Bluetooth environment need a mechanism to
identify, synchronize and finally connect to their neighbors. Such mechanisms are built into
Bluetooth and can be used to obtain an accurate positioning system. The specification per-
mits any device to assume either role - master or slave - for one communication link. The role
of master does not imply special privileges or authority; instead it governs the synchroniza-
tion of the FHSS41 [124] communication between devices. The master-slave relationship is
necessary in Bluetooth’s low level communication, but usually devices operate as equivalent
peers. The master determines the frequency hopping pattern (based upon its address) and
the phase for the hopping sequence (based upon its clock). Then all (maximal seven) active
slaves plus a single master in a piconet hop together in unison. The first of two Bluetooth posi-
tioning approaches, which is a proximity detection, finds the nearest access point from which
the location can be inferred. The second uses the get-link-quality and a read-received-signal-
strength-interface operation in the Bluetooth specification [20]. Once a connection is estab-
lished can process the attenuation information and compute the relative distance to each
other and hence the relative distance to a known position. Location systems using Bluetooth
technology suffer from a high latency of about 30 seconds and high implementation costs due
to the short range, but a universal data network.

The BLUEPOINT [30] system introduced by CHAN ET AL. is an architecture that realizes Blue-
tooth locating infrastructures and a middleware shielding the distribution and heterogeneity
of the underlying communication network. The system only works cell-based, where access
points help to identify the location of mobile units. Several attributes of access points such
as the ID, physical location, location aliases, and remarks are provided to the system. Since
the active range of a Bluetooth device is just tem meters it is still offers a relatively high accu-

40License-free RF Spectrum for Industrial, Scientific and Medical Usage
41Frequency Hopping Spread Spectrum

2.2 Location-based Services 27

racy, but needs many access points. In a future version of the system, an accessability of the
received signal strength information is planned.

Even more familiar to normal users than Bluetooth is Wireless LAN, also WLAN or WiFi spec-
ified in the IEEE 802.11 standard [35,78]. The extensive commercial promotion created a hype
in recent years. Nearly every purchasable notebook is equipped with a WLAN device. Vendors
offering numerous affordable wireless gadgets, business efforts like HotSpots in public places,
and easy-to-use software created a widespread acceptance for WLAN technology. Many char-
acteristics of WLAN make this technology ideal for location-based services: mobility, afford-
ability, flexibility, and acceptance.

Working in the 2.4 GHz ISM band, the radio frequency technology WLAN offers 13 partly
superposed channels. Different national regulatories in Europe, America and Asia enforced
slightly dissenting specifications, e.g. 11 channels in the U.S. High data bandwidth (up to 54
Mbit/s in IEEE 802.11a) and moderate indoor ranges (30-80 meters) underline the popularity.
A mature security concept and the extensibility through bridges and repeaters complete the
feature list of a successful technology.

WLAN as a RF technology can penetrate solid to a certain degree and is therefore suitable for
positioning in combination with a attenuation technique. In the infrastructure mode access
points also structure the wireless network in cells which allows to apply a cell-based position-
ing approach. Both attributes make the technology most suitable for positioning systems.

One of the first systems was RADAR [10,11] developed by BAHL ET AL. at Microsoft Research
in the year 2000. The user location and tracking system uses an attenuation technique pro-
cessing signal strength information from multiple overlapping access points. It estimates the
position with comparison of online measurements with previously collected empirical mea-
surements. This stored radio map delivers several ranked best matches which are triangulated
to the resulting location estimate. RADAR combines in this fingerprinting approach attenua-
tion and scene analysis techniques. The implemented NNSS42 algorithm performed with an
3-4 meter accuracy in 50% of all cases. This result was achieved in an artificial environment
with a high access point density. Enhancements such as a signal propagation model or track-
ing issues to improve the accuracy were introduced in [11].

CASTRO ET AL. introduced another system named NIBBLE [29] implementing a positioning
system using WLAN technology. It combines scene analysis, attenuation-based, and proba-
bilistic techniques. It uses a Bayesian network with an applied probabilistic modeling which
can learn the room locations of a building. It infers the location of a wireless client from signal
quality measures and has a modular structure providing a high flexibility when base stations
are added, removed or spatially reconfigured. The system relies on a fusion service. One com-
ponent is an evidential reasoning model that aggregates and interprets sensor information.
The second component is a resource optimization model minimizing the costs of the gath-
ered data. NIBBLE provides several interfaces that are available to application designers to
implement LBSs freely. It achieved an accuracy about 97% for one experimental site.

42Nearest Neighbor in Signal Space

28 Context-Aware Services

Figure 2.3: Overview of positioning technologies

Apart from the already mentioned and in the community for mobile computing matured
systems – Figure 2.3 gives an overview over the systems – a lot of additional and partially exotic
technologies exist. For example, MOTIONSTAR [8] uses magnetic field sensors for location de-
termination. The PAL43 [49] system was developed to assess the capability of ultra-wideband
(UWB) geolocation. UWB is a developing communication technology that delivers very high-
speed wireless data exchange across relatively short distances with a low-power pulse trans-
mission.

Positioning Systems

Together a positioning technique and a positioning technology result in a powerful position-
ing system. This system can determine the location of a user or device in a certain area. De-
spite the different characteristics of the underlying technique and technology a positioning
system does have its own features. In a way the positioning system has to deal with diverse
characteristics originate from the used methods. The other way around applications does
have different requirements to a positioning system.

A geographic coordinate system expresses every location on Earth by two coordinates. Lati-
tude is the angle between any point and the equator. Longitude is the angle east or west of an
arbitrary point on Earth. By combining these two angles, the horizontal position of any loca-
tion on Earth can be specified. The Cartesian coordinate system is used to uniquely determine
each point through three numbers. Each number lies on one of the x-, y-, and z-axis with its
origin is the Earth centum. Whatever coordinate system is used, a global location informa-
tion needs an absolute coordinate system. Sometimes a relative position declaration is more
useful, because it represents the location of a user in reference to an observer. Thus it is not
unique and not the same or all possible observers.

Indoor as well as outdoor positioning systems have besides the intention of location deter-
mination only a few things in common. Therefore, a distinction between both types is useful.
In most instances completely different hardware and different approaches are used. Outdoor

43Precision Asset Location

2.2 Location-based Services 29

systems aspire at wide coverage like with satellite technology. Indoor positioning systems
usually intend or a high accuracy in difficult environments.

The location information returned by a positioning system can either be physical or sym-
bolic [54,73]. Physical location can be expressed as mathematically-based coordinates like for
example a person is positioned at 42023′49′′N by 23027′76′′W at a 12-meter elevation. Sym-
bolic position information describes abstract ideas of an objets, e.g. “in room F2.104 at Fuer-
stenallee 11”.

The last but most important characteristic is the accuracy. The positioning technology
comes along with a error in measurement like any other physical measurement. This error re-
sults in an inaccuracy depending on the current environment. Locationing at different times
on the same location can obtain in different measurements. User and application have to be
aware of this inaccuracy.

2.2.3 WLAN Positioning Features

The previous section described many different technologies to realize an indoor wireless po-
sitioning system. As a result WLAN seems to be the most promising solution. In special use
cases alternative methods favorable, but in most assignments the following arguments are ac-
complished. First of all, to apply an indoor positioning system acquisition and maintenance
costs for the needed infrastructure have to be low. Secondly, the accuracy has to fulfill the
requirements for all intended scenarios. The positioning technique providing location-based
services is usually in addition to the regular wireless communication. For complex location-
based services an adequate data network is needed furthermore. Altogether WLAN is the first
choice to assure most LBSs scenarios.

In [129] we examined the suitability of WLAN as positioning system for LBSs. Unfortunately,
several features of the wireless network influence the attributes used for positioning, some ad-
vantageously some not. Radio frequency signal propagation in the spectrum used by WLAN
underlies attenuation, shadowing, reflection, refraction, and scattering effects [139]. The at-
tenuation at increasing distance is very useful, but is accompanied by attenuations caused by
walls, windows and floors as well as atmospheric influences like changing humidity levels. An
extreme form of attenuation or absorption is shadowing. Obstacles like mountains, buildings
or vehicles disturb be propagation of the RF signal. Indoors e.g. solid steel in thick walls has
the same effect. Moreover, for high frequencies (WLAN uses 2.4/5.0 GHz, mobile phones e.g.
9.9 GHz) even obstacles like the water in human bodies cause shadowing effects.

(a) Attenuation (b) Shadowing (c) Reflection (d) Refraction (e) Scattering

Figure 2.4: Radio-frequency signal influences

30 Context-Aware Services

Signal reflection depends on the objects and its material due to the physical laws. As an
advantage, transmitter and receiver do not need a free line-of-sight. On the other hand
multi-path signal propagation is the consequence of reflection. Shadowing and reflections
are caused by objects much larger than the wavelength of radio frequency signals. Refrac-
tion and scattering are wave-effects when dealing with objects in magnitude of the emitted
wavelength (GSM for instance has a wavelength about 10cm). After a refraction usually at an
edge of an obstacle the direction of the originally signal is slightly changed. The last effect to
mention is scattering and produces multiple weaker signals in different directions - like white
light is split into rainbow colors. Because all effects can occur simultaneously their signal
strength, direction and further propagation is hardly to predict. Figure 2.4 illustrates all signal
influences.

2.3 Computer-supported Cooperative Work

Previous sections argued about context-based applications and as a more restricted approach
location-based applications or services. Technical aspects like positioning techniques and
positioning technologies are important to understand the technological possibilities in this
area, but in the same way application scenarios for context-based systems contribute impor-
tant aspects. They give an impression on how the technology is used, which convenience
they provide, and, most important, motivate to further steps in application and technology
development.

In the case of LBS the classification in section 2.2.1 gives an first impression on possible ap-
plication areas. This work started with an collaboration scenario building virtual communi-
ties which illustrate vividly the convenience and power of complex context-based or location-
based services. A more general term for this kind of scenario is computer-supported cooper-
ative work (CSCW) [60]. It combines the understanding of the way people work in groups
with the enabling technologies of computer networking, and associated hardware, software,
services and techniques [161]. Therefore, CSCW-systems consider collaboration and coordi-
nation issues, as well as coordination and communication in computer systems. They collect
and aggregate information about users, which cannot be derived directly from user commu-
nication or behavior separately.

Applications in the CSCW-area are typical examples for context-aware systems. A group of
users can cooperate and share their knowledge in many different ways. In a cooperative rela-
tionship context information is an important source of information. It can be used to auto-
mate processes and provide convenience for communication and collaboration. For example,
a group of students meet in a room to work on the same task, or a teacher is lecturing his/her
class. Nowadays, massive usage of modern hardware and software supports cooperative col-
laboration in these examples. Mobile devices like PDA’s and notebooks as well as high-end
equipment, such as electronic whiteboards or video conferencing systems, and complex soft-
ware systems like Lotus Notes are used. With this infrastructure electronic documents and
other materials are shared among the participants on a media-level. Contact information can
be shared on a personal-level to keep contact after meetings. All these materials and informa-
tion build different contexts as described in section 2.1.

2.3 Computer-supported Cooperative Work 31

An example, especially in a mobile environment, is the notice and identification of potential
collaboration partners. It is essential for a successful cooperative work. A collaboration can be
established by filtering user contexts for location information. The relative proximity to other
users can for instance lead to the foundation of a collaborative group (e.g. all users sitting
around the same table). Even without the knowledge of the absolute position information,
this can accomplish a useful support for cooperation processes.

With location-awareness social relationships among participants of the collaborative en-
vironment can be created. Different roles and privileges can be defined depending on each
user’s context. The manual assignment of user roles and privileges in a collaboration sce-
nario is a complex task, where the administrative overhead can be reduced by using context
information. For example, is a user located at the speakers desk and other users are located
as a group around a table, the roles of moderator and audience as well as their resource ac-
cess authorization can be automatically assigned easily. In [128] we introduced for example a
location-aware file-sharing service which can be accessed only in a certain proximity. There-
fore, resources can be easily shared in an ad-hoc collaboration group.

CSCW-systems are a good choice to illustrate the benefits and capabilities of context- and
location-aware applications. They work in a mobile environment and have highly interac-
tive and cooperative processes demanded by groupware systems [45]. Other reasons are the
possibility to implement complex and adaptive services, which introduce new challenges.

In [90] we introduced a proximity-based technique for virtual community collaboration. It
takes advantage of recent advances in wireless technology and the increasing demand to ex-
tensive user mobility. It senses automatically the proximity of mobile users and offers a flexi-
ble peer-to-peer platform for collaboration services. The system works with the infrastructure
mode of IEEE 802.11 wireless access points to create different zones according to the ranges of
each access point. A user is registered automatically when in range of one access point and is
mapped to its zone. In this virtual community interaction with other members can take place
without any prior exchange of contact information or agreeing on communication to a ded-
icated server. The collaboration platform supports the user by providing a background com-
munication over an universal service protocol. It can easily integrate several tools and custom
services to support cooperation and collaboration. No central component, which is usually
needed in CSCW-systems, is required. The collaboration is based on peer-to-peer commu-
nication which supports the typical no resident behavior in a mobile collaboration scenario.
Figure 2.5 illustrates the location-based approach for a collaboration platform.

In [89] we presented the implemented protocol with more detail and also introduced first
services for the platform. A messaging service, which is an important part of any CSCW-
system, fulfils the basic communication requirements. The status, role and identification of
each user can be comprehended with the displayed user status and group structure of the
current session within the messenger’s window. Messaging and file transfer are designed in
the usual look-and-feel of well established messengers to provide an intuitive user interface.
A second service implements the document sharing idea mentioned above.

A CSCW-systems acceptance is based on its productivity and usability. In [88] we intro-
duced therefore more complex services such as audio/video module and a shared-whiteboard
extension to increase the systems capabilities. Subsequently, now each member can share the
new services to collaborate on difficult tasks. A group can now also be characterized by its

32 Context-Aware Services

functionality (e.g. ongoing video conference) or particular security settings (e.g. private white-
board sessions), where the user has to ask for invitation, before he/she can enter the forum.

With ongoing work we discovered major problems sharing documents, distributing audio
and video stream, and reliable mobile communication on the peer-to-peer based platform.
Due to hardly predictable transfer rates and node mobility in wireless networks, especially in
ad hoc and peer-to-peer structures, we developed specific routing algorithms [82, 83]. DHT44

are commonly agreed to be a good approach when storing information on a peer-to-peer
based network [134, 147]. However, existing algorithms are often limited to 1 : 1 communica-
tion relationships and are thus not suitable for typically resource sharing, which is essential in
CSCW-systems. Our reactive routing algorithm for sharing resources in wireless ad hoc net-
works is based on swarm-intelligence. In opposite to existing approaches, it gives estimate
initial pheromone values and introduces n : m, n, m ≥ 1 communication. The system builds
lowest stretch routes and considers fault tolerance and load balancing aspects. For more de-
tails, see [82, 83].

Figure 2.5: Classroom example where location information defines collaboration roles and privileges

Further attempts to provide more capabilities, usability, and overall convenience in the us-
age of a CSCW-system, lead to ongoing thoughts in location estimation accuracy, automated
service discovery and better service matching for user requirements. The next chapters con-
sider these aspects discussing semantic issues.

44Distributed Hash Tables

2.4 Summary 33

2.4 Summary

In this chapter we introduced context-awareness. Context related terms were defined and
modeling approaches for context information were discussed. Filling context descriptions
with content turned out to be eventually incomplete and ambiguous. Sensing the context
automatically can overcome these drawbacks. We focused on the location information as ma-
jor component in a context resulting in a detailed review of location-based services. After
classification and characterization of this type of services an overview of current positioning
techniques and technologies was given.

To develop highly interactive and complex context-aware services useful to the remaining
service matching aspects in this thesis, the indoor positioning via WLAN signal strengths was
identified as an interesting approach. Here, devices like PDAs and notebooks can be localized
without additional hardware components. A short review of the application area computer-
supported cooperative work was given at the end of the chapter. CSCW is one application
scenario where indoor location-based services are very useful.

34 Context-Aware Services

Semantic Web Services 3
We’ve all heard that a million monkeys banging on
a million typewriters will eventually reproduce the
entire works of Shakespeare. Now, thanks to the
Internet, we know this is not true.

Robert Wilensky

The WWW1 has changed the way people communicate with each other and the way busi-
ness is conducted. It lies at the heart of a revolution that is currently transforming the devel-
oped world towards a knowledge economy and, more broadly speaking, to a knowledge so-
ciety. Originally computers were used for computing numerical calculations. Currently their
predominant use is for information processing.

Most of today’s Web content is suitable for human consumption. Even Web content that
is generated automatically from databases is usually presented without the additional struc-
turing information found in databases. Keyword-based search engines, such as Google2 and
Yahoo3, are the main tools for using today’s Web. It is clear that the Web would not have
been the huge success it was, were it not for search engines. However, despite improvements
in search engine technology, the difficulties remain. The amount of Web content outspaces
technological progress [97].

An alternative approach is to represent Web content in a form that is more easily machine-
processable and to use intelligent techniques to take advantage of these representations. The
Semantic Web, propagated by the W3C4, is an initiative that will accept this challenge. It is
important to understand that the Semantic Web will not be a new global information highway
parallel to the existing WWW; instead it will gradually evolve out of the existing Web.

1World Wide Web
2www.google.com
3www.yahoo.com
4World Wide Wed Consortium

www.google.com
www.yahoo.com

36 Semantic Web Services

3.1 Understanding Web Services

Today’s Web content is very often presented in form of Web services. They do not merely
provide static information, but involve interaction with users and often allow users to effect
some action. For example, user interaction with an online music store involves searching
for CDs and titles by various criteria, reading reviews and listening to samples, adding CDs
to a shopping cart and buying it by providing credit card and shipping details. Web services
accomplish these tasks in a brilliant way. The task of creating and deploying Web services
is not all that different than what developers currently do for traditional Web applications.
The tendency on all platforms is to automate as much as possible in creating Web services
under interoperable standards. Web services are software applications that can be discovered,
described, and accessed based on XML5 and standard Web protocols over networks.

Several definitions range from very generic to very specific. Basically: a Web service is a col-
lection of protocols and standards used for exchanging data between applications [1]. More de-
tailed: Web services are self-contained, modular business applications that have open, Internet-
oriented, standards-based interfaces [154]. Very specific: a Web service is a software applica-
tion identified by a URI, whose interfaces and bindings are capable of being defined, described,
and discovered as XML artifacts. A Web service supports direct interactions with other software
agents using XML-based messages exchanged via Internet-based protocols [22].

The concept of Web services is not new. It has been around since the early days of the In-
ternet. Distributed objects in order to created interactive distributed systems were developed
by several companies under different names. Microsoft called them DCOM6, IBM called them
SOM7, and Java RMI8. The company consortium Object Management Group converged upon
the standard called CORBA9 [112]. Their result is a standards-based open interface on which
distributed client/server applications can be developed. Web services offer the same features,
but achieved a break-through by using platform-neutral, Internet-scalable, and language-
independent standards [1].

Besides the use of open and free standards [68] other advantages for Web services exist. The
communication over TCP/IP is usually done via the mature HTTP10 protocol that avoids prob-
lems with firewalls occurring e.g. in CORBA, DCOM, or RMI systems. Web services can encap-
sulate other services to reuse older or proprietary services. Platform-neutrality and language-
independency hide system heterogeneity. Altogether a flexible and established architecture
evolved [1]. On the other side Web services have a problem with performance. The heavy use
of XML requires parsing partially big data files and the considerable overhead for adminis-
tration have a negative influence on the performance. In the field of security aspects a lot of
catch-up work has been done recently [13, 67, 79, 106], but making integrity, confidentiality,
authentication, and authorization broadly available needs still some efforts [74].

Web services already brought new ideas and influences to EAI11 [65, 76, 96] and Grid-

5eXtensible Markup Language
6Distributed Component Object Model
7System Object Model
8Remote Method Invocation
9Common Object Request Broker Architecture

10Hypertext Transfer Protocol
11Enterprise Application Integration

3.1 Understanding Web Services 37

Computing [31, 53]. The main application area is doubtless the business-to-business sector
where business processes can be undertaken beyond company borders [28].

Web services are usually associated with different roles if taken into action [42]. In a SOA12

architecture [110] a service provider implements and provides a specific service, which must
be published in a service registry. The service consumer can invoke a service after looking it up
in this registry. The dynamic binding between consumer and provider is done by exchanging
further information via open protocol communication. In [128] we examined this aspect for
location-based services.

Completing this high-level overview of the basics of Web services questions about service
access, description and discovery have to be answered. SOAP [107] is the “envelope” that
packages the XML messages that are send over HTTP between clients and Web services. As
defined by the W3C, SOAP is a lightweight protocol for exchange of information in a decentral-
ized, distributed environment. It provides a standard language for tying applications and ser-
vices or services and services together. The syntax of SOAP is fairly simple and contains the en-
velope that wraps the message, a description of how the data is encoded, and the application-
specific message itself in a so-called body. Request and response messages are exchanged
which can get complicated. Luckily, developers do not necessarily have to understand the
details of SOAP. Many tools, often integrated in Web service development tools, create SOAP
handlers automatically.

Whereas SOAP is the communication language of Web services, WSDL13 [23] is the way
communication details and application-specifics are described. The W3C defines WSDL as
an XML format for describing network services as a set of endpoints operating on messages con-
taining either document-oriented or procedure-oriented information. To know how to send
messages to a particular Web service, an application can look at the WSDL and dynamically
construct SOAP messages. WSDL describes the operational information: where a service is
located, what the service does, and how to invoke it. The format is not intended to be human-
readable, but toolkits like [4] create WSDL to existing Web services automatically.

If the location and function of a Web service is known, applications can easily communi-
cate with them. However, for a dynamic search for Web services based on the features they
provide, a registry is needed. UDDI14 [154] was created to facilitate the discovery of business
processes. It is an evolving technology being implemented and embraced by major vendors.
Organizations can register public information about their Web services and types of services
with UDDI. The company’s contact information, business categories, and technical informa-
tion about the services are exposed. UDDI is limited to “browsing” the information to discover
relevant services. Obviously, there are security concerns about placing information in a public
registry. Much like public Internet Web pages, a organization has to decide what information
should be published. Although the limited flexibility and capabilities of UDDI leaves a lot
functionality to be desired, private UDDI registries are very common for internal integration
in huge companies [43, 98].

Web service technology has become a major building block or business processes over the
Internet. The used free and open standards have matured and are well established in orga-

12Service-Oriented Architecture
13Web Service Description Language
14Universal Description, Discovery, and Integration

38 Semantic Web Services

nizations environments. Great potential for current research lies in the area of semantics for
Web services. The Semantic Web and Web services go hand in hand. XML, a self-describing
language, and WSDL, a language that describes the SOAP interfaces of Web services, are not
enough. Automated support is needed in dealing with numerous specialized data formats.
Ontologies are the key enabling concept for the Semantic Web and Semantic Web services,
interweaving human understanding with machine processability.

3.2 The Semantic Web Vision

What is the Semantic Web? The word semantic implies meaning. For the Semantic Web, se-
mantic indicates that the meaning of data on the Web can be discovered – not just by people,
but also computers. The driving force on the Semantic Web initiative is TIM BERNERS-LEE,
the very person who invented the WWW in the late 1980s. He expects from this initiative the
realization of his original vision of the Web, a vision where the meaning of information played
a far more important role than it does in today’s Web [3]. In his vision [17] software as well
as people can find, read, understand, and use data over the World Wide Web to accomplish
useful goals for users. People surf the Web, read the labels on Hyperlinks, and decide which
link to follow. A machine cannot do this, yet. In brief, the Semantic Web is supposed to make
data located anywhere on the Web accessible and understandable, both to people and to ma-
chines.

When in 2001 TIM BERNERS-LEE published his vision of the Semantic Web in the well known
Scientific American article [17], a lively discussion about the concept arose and is still ongo-
ing. In this vision, he describes the principles of what he proposes as the successor of the
World Wide Web as we know it today. The key aspect is to make the information on the WWW
understandable for computers by creating semantic annotations in addition to the human-
readable information presented on Web pages. The main components of the Semantic Web,
are firstly structured annotations on Web pages (expressed in XML), which extend the tradi-
tional WWW and enable applications to capture certain facts. These facts can be linked to
further information contained in ontologies, which make it possible to determine the “mean-
ing” of the information and to deduce further information by using inference rules. Concepts
stored in ontologies can be identified by using URIs15 as identifiers. URIs provide a way to
create bridges from one ontology to another by linking certain concepts that exist in both on-
tologies. At last, agents are taking actions, which are computer programs or scripts that act on
behalf of a human and are usually considered as electronic “personal assistants”. Significant
properties of agents are autonomy of action, ability to communicate, adaptiveness, learning
aptitude and mobility. Within the Semantic Web scenario, agents are expected to carry out
tasks by communicating and negotiating with each other, using ontologies and inference ca-
pabilities to establish a common but dynamically vocabulary.

To realize this vision different technologies were developed to fulfill the required aspects
step by step. Instead of mixing layout and content together in HTML16, XML allows to define

15Uniform Resource Identifiers
16Hypertext Markup Language

3.3 Syntactic Standards 39

own data structures and separate layout from content. RDF17 encodes assertions about spe-
cific things written in XML in form of simple triples. These triples form webs of information
about related things. With OWL18 the common understandings of certain concepts and ideas
is possible. More complex relationships than in RDF can be expressed. For a specific domain
the common terminology and the concepts are shared and can be easily referenced.

3.3 Syntactic Standards

In order to bring the vision of the Semantic Web into being, the research community created
standards, recommendations, development frameworks, APIs19, and databases. These lan-
guages and frameworks evolved and matured over several years and form the major building
blocks for the Semantic Web and the foundation for further steps in this thesis.

3.3.1 Visualizing Information with HTML

Creating a Web page on the Internet is currently the most frequently and extensively used
technique for sharing information. These pages contain information in form of free and struc-
tured text, images, and possibly audio or video sequences. The HTML language is used to
create these pages. The language provides primitive tags that can be used to annotate text or
embedded files in order to determine the order and style in which they should be visualized.
It is important to note that the markup provided by HTML does only by accident refer to the
content of the information provided. Usually it covers only the way it should be structured
and presented on a page. It was created to make information processable by machines, but
not understandable. The freedom of saying anything about any subject led to a wide accep-
tance of this technology. However, the inherent heterogeneity is a most challenging problem
giving systems access to this information. XML is one way to handle this heterogeneity with-
out reducing the “freedom” too much.

3.3.2 Exchanging Information with XML

In order to overcome the fixed annotation scheme provided by HTML, XML was proposed as
extensible language allowing users to define his/her own tags to indicate the type of content
annotated by the tag. It turned out that the main benefit of XML actually lies in the opportu-
nity to exchange data in a structured way.

The XML specification [24] provides a formal grammar used in well-formed documents. An
XML document is valid if it has an associated type definition in a DTD20 file and complies
with the grammatical constraints of that definition [157]. In a document each element is de-
limited by a start and end tag, a type and a set of attributes consisting of a name and a value.
The additional constraints in a DTD refer to the logical structure of the document including
tag nesting and tag allowance/requirement. Better than DTD’s, XML Schema [46] provide a

17Resource Description Framework
18Web Ontology Language
19Application Programming Interface
20Document Type Definition

40 Semantic Web Services

much more comprehensible way to define the structure of an XML document. Elements used
in a XML Schema definition are of the type “element” and have attributes that define restric-
tions and default values to be used when no attribute value is defined. The information within
such element is simply a list of further element definitions. XML Schema support constraints
on attributes, provide a sophisticated structure, and use the namespace mechanism allowing
combinations of different schema [46]. It is possible to encode rather complex data structures
and exchange information across different formats. However, a user must commit to a data
model (XML schema) in order to make use of the information. Therefore, it lacks an impor-
tant advantage of meta-information, which is provided in RDF. In addition, many tools such
as parsers have been developed that enable the information exchange between applications.
However, there is no inherent meaning associated with the nesting of the XML elements. It is
up to the application to interpret the nesting. Figure 3.1 shows two different XML documents
expressing the same fact.

1 <device >

2 <id >4223 </id >

3 <owner >Ulf </owner >

4 <room >F2.104 </room >

5 </device >

6 ...

7 <device id ="4223" owner ="Ulf">

8 <room >F2.104 </room >

9 </device >

Figure 3.1: Different XML documents expressing the same fact

3.3.3 Service Interface Description with WSDL

To advertise and discover Web services a structured and non proprietary description is nec-
essary. The Web Service Description Language (WSDL) [23] uses XML and XML Schema to
provide a machine-readable description delivered together with the Web service itself. A Soft-
ware program can consult this description to learn exactly how to invoke this Service, which
inputs are required, and which outputs are generated.

WSDL has five first level elements: type, message, portType, binding, and service. The
types provide data type definitions used in messages for data exchange. XSD21 types are
the default type system preferred by WSDL. Simple types like xsd:string, xsd:integer, or
xsd:boolean are simply linked. Complex types consist of numerous simple or complex type
recursively together with e.g. restrictions or control structures to accomplish a higher com-
plexity. The WSDL message element represents an abstract definition of data to be transmit-
ted as request or response. It consists of a number of parts referring to parameters and their
types. The concrete operations of a Web service are defined with the portType element. Each
wsdl:operation refers to input and output messages any their type. Types specify the mes-

21XML Schema

3.4 Resource Description with RDF 41

sage intentions for e.g. one-way, notification, or request-response usage. The service tag is
used to aggregate a set of related portTypes. The wsdl:binding specifies concrete protocol
and data format specifications for the operations and messages defined by a particular port-
Type. It specifies a style of interaction (for instance RPC22), the transport protocol (for instance
HTTP), and the encoding style used along the operation definitions. Usually a SOAP binding is
used provided by the soap:binding and soap:operation elements. The concrete inputs and
outputs to invoke a specific Web service method are thus specified.

3.4 Resource Description with RDF

XML and WSDL are purely syntactical and structural in nature. It often encodes an
application-specific data model. Consequently, further approaches have to look for a meta-
model to describe information and define its meaning. The RDF specification [99] has been
proposed as a data model for representing meta-data about objects using XML syntax.

The basic underlying model is very simple. Every type of information about a resource,
which may be a Web page or an XML element, is expressed in terms of a triple (subject, pred-
icate, object) so-called RDF statements. Thereby, the predicate is a two-placed relation that
connects the subject (or resource) to a certain object. The object can be a data type, another
resource or an untyped value (literal). Additionally, the value can be replaced by a variable
representing a resource that is further described by linking triples making assertions about
the properties of the represented resource. Using the reification mechanism we can make
statements about facts (other statements) by nesting triples [99]. RDF also allows multiple
values for single properties in collections (bag, sequence, and alternative). A problem arising
from the nature of the Web is name collisions when something is referring to a different Web
site, that might use different RDF models to annotate data. RDF uses name spaces to connect
a name to a source that is then used to annotate each name in an RDF document defining its
origin.

RDF is domain independent in that no assumptions about a particular domain of discourse
are made. It is up to the users to define their own ontologies (see section 3.5) for the user’s do-
main in an ontology definition language such as RDF Schema (RDFS) [25]. Unfortunately, the
name RDF Schema is not a good choice, since it suggests that RDF Schema has a similar rela-
tion to RDF as XML Schema to XML. This, however, is not the case. XML Schema constraints
the structure of the XML document, whereas RDF Schema defines the vocabulary used in the
RDF data model.

For example, the ontology to express the fact above 3.2 has to define the concept of a “de-
vice” and the relationship “has name” in its vocabulary. Expressing the fact above as RDF
statement needs a subject (a resource) to make a statement about. To be able to make a
statement about a device the URI http://lobass.com/device_id4223 is used. The predi-
cate defines the kind of information to be expressed about the subject. The statement “has-
DeviceName” is defined in an ontology and used be the URI http://lobass.com/ontology#
hasDeviceName. The object defines the value of the predicate. Here, it’s the name of the device
“nb-ulf2”. Figure 3.2 shows the triple put together in a complete document.

22Remote Procedure Call

http://lobass.com/device_id4223
http://lobass.com/ontology#hasDeviceName
http://lobass.com/ontology#hasDeviceName

42 Semantic Web Services

1 <?xml version ="1.0"? >

2 <rdf:RDF

3 xmlns:lobass ="http :// lobass.com/ontology #"

4 xmlns:rdf="http :// www.w3.org /1999/02/22 -rdf -syntax -ns#"

5 <rdf:Description rdf:about ="http :// lobass.com/device_id4223" >

6 <mymusic:hasDeviceName >nb-ulf2</lobass:hasDeviceName >

7 </rdf:Description >

8 </rdf:RDF >

Figure 3.2: RDF syntax of an example statement

3.5 Ontology Languages

RDF provides a way to express simple statements about resources, using subject-predicate-
object triples. However, to use RDF we also need the possibility to define the vocabulary that
is used in the RDF statements. This controlled vocabulary is also called ontology. For a given
domain the ontology defines the concepts found in the domain, the relationships between
these concepts, and the properties used to describe the concepts. Ontologies are defined in
an ontology definition language. Good descriptions including introductions can be found
in [47, 56]. In the following paragraphs the two ontology languages the W3C defined for the
Semantic Web: RDF Schema and OWL are introduced.

Different approaches for capturing semantics have been developed in different scientific
communities [61]. To argue for ontologies as a technology for approaching the problem of
explicating semantic knowledge about information has several aspects. The sharing can be
done at different levels of formality and different extents of explication [84]. Also the transla-
tion process between two vocabularies is an important aspect [150].

In general, each person has his/her individual view on the World and the things he/she
has to deal with every day. However, there is a common basis of understanding in terms of
the language we use to communicate with each other. The common understanding using
this shared vocabulary lies on the idea of how the World is organized. This is often called
“conceptualization”. Using a shared terminology according to a specific conceptualization
of the World remains unfortunately mostly implicit. Ontologies have set out to overcome the
problem of implicit and hidden knowledge by making conceptualizations of a domain explicit.
This corresponds to one of the most popular definitions in computer science for the term
ontology, where an ontology is an explicit specification of a conceptualization [59]. An ontology
is used to make assumptions about the meaning of a term available.

Typically, an ontology has two levels, the instance level and the terminological level, also
called the assertional box (A-Box) and the taxonomical box (T-Box) in description logics. The
instances in the A-Box model the concrete individuals in the specific domain, while the ter-
minological level defines the abstract concepts and relationships between these concepts. A
standard example is an ontology about families. In the T-Box, concepts like “person”, “male”,
“female”, “father”, “mother”, “grandfather”, and so on are defined. Additionally, relationships
between these concepts can be defined like “isChildOf”, “isParentOf”, etc. In the A-Box, the
individuals and their concrete relationships are defined, e.g. “Alice isChildOf Bob” and “Alice

3.5 Ontology Languages 43

is female” etc. An important part of ontologies is the possibility to encode generic facts about
the domain which is modeled. For the family ontology, these can be facts like “if A isChildOf
B, then B isParentOf A”, or “a mother is always female”, or “if A is a brother of B’s mother or
father, then A is an uncle of B”.

Reasoners and inference engines are tools that evaluate generic facts and draw conclusions
from these facts. This makes information explicit which is only contained implicitly in the
ontology. A reasoner may be queried via some query language to deliver instances and their
values, as well as concept and attribute names on the ontologies known to the reasoner. There
are a lot of types of formalisms to describe an ontology and therefore there are also numerous
reasoners such as DL reasoners, rule engines, or first order logic provers [130].

3.5.1 RDF Schema

RDF Schema (RDFS) [25] is a simple ontology definition language that allows users to define
the vocabulary needed to describe the resources in the domain with meta-data. To define
the ontology RDFS uses the RDF triples format. In RDFS users can define classes, properties,
and relationships to model the concepts in the domain. Terms that are defined in the RDFS
language specification have the XML namespace prefix rdfs:; terms defined in the RDF spec-
ification have the prefix rdf:. A class is defined as a group of things with common character-
istics like in object-oriented programming. Inheritance is realized when the subclass inherits
the characteristics of a superclass. The classes used as resources in the ontology definition are
rdfs:Class, rdfs:Literal, and rdfs:Properties. The concept of containers and reification
can be used for a more clearly and strict modeling. A RDF Schema model also includes several
property primitives. These are instances of the rdf:Property class and provide a mechanism
for expressing relationships between classes and their instances or superclasses. The most
important ones are rdf:type, rdfs:subClassof, rdfs:domain and rdfs:range. A full list of all
classes and properties can be found at [25].

To get an impression of an ontology, a small example can help. Taking the domain of
location-based services, some basic concepts (classes) such as “notebook”, “PDA”, “mobile
phone”, “mobile device”, “owner” and “room” can be identified. As relationship between these
concepts one can think of “has owner” and “is in room” for example. Subclass relationships
between “mobile device” and the classes “notebook”, “PDA”, and “mobile phone” are obvious.
As properties to describe the classes “has owner name”, “is in room number”, or “has device
name” can be used.

Figure 3.3 shows the RDF visualization as graph of a simple ontology for the described
location-based services example. In the ontology the resources MobileDevice, Owner, Room
and Notebook are classes, because they are related to the rdfs:Class resource with the
rdf:type property. E.g. the class Notebook is also declared to be a rdfs:subClassOf the
class MobileDevice. The ontology further defines five properties. The ownerName property
can only be used to describe an instance of the Owner class (and all its subclasses), since
rdfs:domain is specified (room respectively). The hasOwner property can further only take
objects as value, that are an instance of the Owner class, since rdfs:range is specified. The
properties ownerName and roomNumber take a literal as object, since the range is defined to be
a rdfs:Literal.

44 Semantic Web Services

Figure 3.3: RDF graph of an example ontology

An RDF graph that uses this ontology is described in figure 3.4. The hasOwner property
points to an anonymous resource, which is instance of the class Owner. Anonymous resources
are used for resources that never be referred to directly from outside the RDF description.
However, it is needed to represent an instance of the Owner class, that is described by the
ownerName property.

The expressiveness of RDF Schema introduced in the previous section is very limited. RDF
Schema can be used to define subclass hierarchies, properties, and domain and range restric-
tions of those properties [3]. However, a number of characteristic use cases that cannot be
covered by RDF Schema are mentioned in the literature [70]. Researchers identified the need
for a more powerful ontology modeling language. This lead to a joint initiative to define a
more expressive language, called DAML+OIL23 [34]. DAML+OIL was in turn the starting point
for the W3C to define the Web Ontology Language (OWL) [15], now the recommendation for
ontology definitions.

23Join of DARPA Markup Language (DAML) [146] and Ontology Inference Layer (OIL) [75]

3.5 Ontology Languages 45

Figure 3.4: RDF graph of an ontology that uses the above example ontology

3.5.2 OWL

OWL provides another possibility to specify ontologies besides RDF Schema. It provides a
number of additional modeling primitives that increase the expressiveness compared to RDF
Schema [3]. For example the local scope of properties is one shortcoming of RDF Schema
which can be expressed in OWL. If the property eats should be defined in the domain of
Sheep and Tiger classes, the rdfs:range primitive cannot be used defining that a Sheep only
eats plants, while a Tiger only eats meat. Disjoint classes, such as the classes Male and Female

cannot be declared in RDF Schema. Also, boolean combination of classes are not possible. E.g.
the class Person is the disjoint union of the classes Male and Female. RDF Schema does not
provide cardinality restrictions such as a person has exactly two parents or other special char-
acteristics of properties (transient (e.g. “greater than”), unique (e.g. “is mother of”), or inverse
(e.g. “eats and is eaten by”)).

The W3C followed two major goals while specifying the OWL language. First, to define an
ontology language with the maximum expressiveness. Secondly, providing efficient reasoning
support. Since these goals hardly go together, three different sub-languages were defined,
each geared to fulfill different aspects of the full requirements [15].

OWL Lite supports those users primarily needing a classification hierarchy and simple con-
straints. For example, while it supports cardinality constraints, it only permits cardinality val-
ues of 0 (not existing) or 1 (existing). Quantifier like “all” and “some” exist also. It should be
simpler to provide tool support for OWL Lite than its more expressiveness, but also has the
lowest formal complexity of all OWL sub-languages.

OWL DL supports those users who want the maximum expressiveness while retaining com-
putational completeness (all conclusions are guaranteed to be computable) and decidability
(all computations will finish in finite time). OWL DL got its name due to the correspondence
with description logics. It includes all OWL language constructs, but they can be used only un-
der certain restrictions (for example, while a class may be a subclass of many classes, a class
cannot be an instance of another class).

46 Semantic Web Services

OWL Full is meant for users who want maximum expressiveness and the syntactic freedom
of RDF with all possibilities, but no computational guarantees. For example, in OWL Full a
cardinality constraint on the class of all classes can be imposed, limiting the number of classes
that can be described in an ontology. It is unlikely that any reasoning software will be able to
support complete reasoning for every feature in OWL Full.

Regarding the above example of an ontology for a location-based service system (see figure
3.3), this ontology can be defined in OWL. OWL documents usually become large very fast.
The complete OWL ontology can be found in the appendix. Here, only a few impressions on
the possibilities of OWL are shown. Figure 3.5 shows at first the definition of the class Notebook

1 <owl:Class rdf:ID=" Notebook">

2 <rdfs:subClassOf rdf:resource ="# MobileDevice "/>

3 </owl:Class >

4 ...

5 <owl:Class rdf:about ="# Notebook">

6 <owl:disjointWith rdf:resource ="# PDA"/>

7 <owl:disjointWith rdf:resource ="# MobilePhone "/>

8 </owl:Class >

9 ...

10 <owl:Class rdf:about ="# MobileDevice">

11 <rdfs:subClassOf >

12 <owl:Restriction >

13 <owl:onProperty rdf:resource "# deviceName "/>

14 <owl:minCardinality rdf:datatype ="& xsd;string">

15 1

16 </owl:minCardinality >

17 </owl:Restriction >

18 </rdfs:subClassOf >

19 </owl:Class

20 ...

21 <rdf:Description rdf:ID="4223" >

22 <rdf:type rdf:resource ="# Notebook"/>

23 </rdf:Description >

Figure 3.5: Ontology example in OWL

as a rdfs:subClassOf of the class MobileDevice. It is defined as disjoint from the classes PDA
and MobilePhone using the owl:disjointWith element. After that an example for a property
restriction with owl:Restriction follows. The property deviceName is only allowed once for
the class MobileDevice. OWL does not have any predefined data types; instead it allows one
to use XML Schema data types such as in rdf:datatype="&xsd;string". At last, instances of
classes are declared as in RDF, as you can see in the closing example.

3.6 Semantic Web Services

At present, the use of Web services requires human involvement, as discussed previously in
section 3.1. The Semantic Web vision, as applied to Web services, aims at automating the

3.6 Semantic Web Services 47

discovery, invocation, composition, and monitoring of Web services by providing machine-
interpretable descriptions of services. Besides the pure syntactic handling of Web services
the combination of Semantic Web technologies and Web service technologies lead to a new
and very powerful instrument: Semantic Web (enabled) Web services (SWWS). Figure 3.6 was
introduced by FENSEL in [3] and illustrates the combination of technologies.

Figure 3.6: Technology classification for semantic Web services

3.6.1 OWL-S

Web sites and consequently Web services should be able to employ a set of basic classes and
properties by declaring and describing services. Therefore, an ontology of services is needed.
OWL-S [100] is an initiative that has developed an ontology language for Web services. It mi-
grated from DAML-S [102] and makes use of OWL, so it can be viewed as a layer on top of
OWL. Other languages such as WSML24 [27], BPEL4WS25 [2] or WSE26 [104] exist to describe
SWWS. They have strict intentions like BPEL4WS to model business workflows, or require
complex reasoners like WSML. This makes OWL-S the most flexible and most accepted lan-
guage to model SWWS. The ontology-based approach encompasses efforts to populate the
Web with content and services having formal semantics. The ultimate goal of OWL-S is to
provide an ontology that allows software to discover, execute and compose Web services au-
tomatically [100]. Currently the structure of OWL-S is threefold and consists of a service profile
for advertising and discovering services, a process model which gives a detailed description of
a service’s operations and a service grounding which provides details on how to interoperate
with a service via message exchange. These constructs describe a Web service in adequate de-
tails to automatically discover, invoke, compose and execute the service [100]. The following
paragraphs briefly describe the particular elements. For more detailed descriptions see [100].

24Web Service Modeling Language
25Business Process Execution Language
26Web Service Enhancements

48 Semantic Web Services

Profiles

In service discovery profiles are applied in two ways. On one hand, they are used by service
providers to publish Web services. These profiles are called advertisements. On the other
hand, profiles are used by a service requestor to describe the service to be searched for. During
a regular discovery this request is compared with published advertisements to find matching
services.

The profile class describes the properties of a service. This contains the description of the
service and its functional and non-functional properties. The functional description is based
on the transformation of data and states during the execution of a Web service. The profile
specifies the inputs that a Web service requires, the outputs that it generates, the precon-
ditions that must hold in order to execute the service, and effect that the execution causes.
Therefore, it is known what a service does. The IOPEs (inputs, outputs, preconditions, and
effects) are specified by referring to the classes process:Input, process:ConditionalOutput,
process:Precondition, and process:ConditionalEffect of the process ontology.

Non-functional parameters are divided in two sections. First as semi-structured informa-
tion intended for human readers that has no relevance for the semantic service discovery,
e.g. profile:serviceName, profile:textDescription, etc. Second non-functional parame-
ters can be specified as sub-classes of profile:ServiceParameter to incorporate additional re-
quirements regarding service capabilities into the discovery process, e.g. security or quality-
of-service requirements.

Process Models

The process ontology is used to define process models that describe the execution of a Web
service in detail by specifying the data flow and control flow between particular methods of
the Web service. Hereby, the service’s application logic is presented to the outside. In order to
achieve the results defined in a profile a user or a software has to execute the corresponding
process model step by step considering all defined dependencies between inputs, outputs
and preconditions, effects.

The execution graph of a process model can be composed of different types of processes
and control constructs. OWL-S defines three classes of processes. From the view of a caller
atomic processes are executed in a single step which corresponds to the invocation of a Web
service method. Simple processes are used to specify abstract views of concrete processes and
are thus not executable. Composite processes are specified through composition of atomic,
simple, and composite processes recursively. Control constructs define the specific execution
orderings on the contained processes. Unordered, Sequence, and If-Then-Else are the most
used constructs here.

Groundings

The previously described profiles and process models serve as abstract specifications of Web
service characteristics. The grounding enables concrete communication with a Web service
by binding abstract inputs and outputs of atomic processes to message formats. It also pro-

3.6 Semantic Web Services 49

vides XSLT27-Stylesheets for transformations between XML and RDF. The service grounding
defines how atomic processes are invoked over WSDL operations and hence executed.

OWL-S defines exemplarily an ontology or grounding process descriptions to WSDL. Three
corresponding elements of WSDL and OWL-S are described. Firstly, an atomic process corre-
sponds to a wsdl:operation. Secondly, inputs and outputs of an atomic process are referred
to wsdl:parts in the input and output message definitions of WSDL. Thirdly, the types used
in the inputs and outputs in OWL-S correspond to the concept of abstract types in WSDL.

A WsdlGrounding contains one WsdlAtomicProcessGrounding for each atomic process of
the corresponding process model. WsdlOperationRef defines the access to the Web service
methods using properties operation and portType. Additionally, the WSDL messages are ref-
erenced using WsdlInputMessage and WsdlOutputMessage. The mapping of parameter types
is defined using rdf:List of WsdlInputMessageMaps or WsdlOutputMessageMaps. OWL-S con-
siders two ways of referring the appropriate OWL representations. Firstly, the Web service
can refer to the OWL class representing the parameter type directly by owlsParameter. Sec-
ondly, for contemporary Web services OWL-S uses XSLT to convert parameter descriptions
from OWL-S to XML Schema and vice versa.

Figure 3.7 shows an overview of all major classes in the OWL-S ontology. More detailed
descriptions can be found in [100].

Figure 3.7: OWL-S ontology overview

27eXtensible Stylesheet Language Transformation

50 Semantic Web Services

3.6.2 Service Discovery

The OWL-S profile is the main data structure used for service discovery. Its role is twofold.
Both service requests and service advertisements are usually described as profiles. In order
to search for suitable Web services the requestor creates a request containing functional and
non-functional properties of the Web service looked for and sends it to a service registry. The
service registry compares the request to the registered advertisements and returns the match-
ing results. This process is called matchmaking of services. In a realistic application scenario it
must be assumed that an advertisement does not match a request exactly in most cases. This
thesis offers some solutions to this problem.

3.6.3 Service Execution

Very likely, different Web services which generate the same results may differ in their execu-
tion. E.g. a location-aware printing service require to register for a customer account before
printing to set to default context environments, whereas others could require full customer
information and settings each time. The information how a Web service must be executed in
detail is provided by the process model.

To be able to execute an atomic process of the process model by invoking a Web service
method a user must first allocate values for the required parameters and provide appropriate
containers for the result to be returned. All necessary information for this task is either de-
rived from the user’s knowledge-base or enquired by interaction with the user. Hereafter, the
user uses appropriate messages for communication with the Web service using the grounding
definition. As part of this, the parameter values must be transformed into semantically lower
representations, i.e. XML schema values in the case of SOAP. After successfully invoking the
particular Web service method the user can process the results.

In the Semantic Web vision the execution of semantic Web service is usually done by agent
representing users. They have a local knowledge-base specifying the users task and intentions
described in shared and understandable terms due to the usage of ontologies. The agents
are able to understand the requirements and results of a Web service. Together with the se-
mantically service description the just mentioned tasks like invoking a Web service method,
transforming the result, creating proper communication messages, and forming appropriate
result containers are manageable tasks for this kind of agents. [36] gives an closer look on the
capabilities and behavior of Semantic Web agents.

3.7 Summary

In this chapter we started with an introduction to Web services. With the presentation of the
Semantic Web vision semantic Web services as combination of Web services and semantics
became a very powerful instrument for machine-to-machine interaction. The following part
reviewed the building blocks of this technology, discussing standards like XML, WSDL, and
RDF capable of modeling and structuring knowledge. We introduced OWL as expressive tool
to describe ontologies and identified OWL-S as perfect language to describe semantic Web
services and populate Web services with content and formal semantics simultaneously. The

3.7 Summary 51

goal of OWL-S is to provide an ontology that allows machines to discover, execute, and com-
pose Web services automatically.

52 Semantic Web Services

Semantic Service Annotation 4
If there is no struggle, there is no progress.

Frederick Douglass

The aim of Web services is to make services available, reuseable and easily accessible to
a broad community addressing humans and machines. As shown in section 3.1 the old-
fashioned way to publish, discover, invoke and execute Web services is using a UDDI registry.
The intentions of the Semantic Web are to make the services and information on the World
Wide Web more accessible through machine-readable meta-data. The Semantic Web proce-
dures help to understand services more detailed resulting in a better service discovery. Due
to the connection via ontologies to commonly accepted knowledge the meaning of a service’s
function as well as the intention of a service requestor can be comprehended. This shared
understanding allows service requestor and providers to talk in the same terms about their
intentions. This enables a high quality service matching. Although major improvements in
this field have been made in recent research activities, a fully functional semantic discovery is
far away. This work concentrates on the different aspects annotation, composition and con-
textualization towards a semantic service matching, which is the important part of the service
discovery.

The usual way for a service requestor to discover an appropriate Web service is to browse
through registries which list all available services for a certain domain. Here, service providers
publish their services and give manually created descriptions of the service’s functions. The
level of detail as well as the used vocabulary in the description is usually not prescribed or
restricted. In UDDI for example, as the most famous service registry, this description can be
written by an external consulter, an internal economist or the actual service developer him-
self. All of them can describe the same service properly, but use different styles, words and
background knowledge. Therefore, it is hard to match the right service only with this descrip-
tion. The conventional way in service discovery is to classify the available services roughly
into unchangeable and non-expandable service categories. After that only the service inter-
faces are described on a syntactic level specifying the numbers and types of service inputs and
outputs. Often this interface description is done in WSDL and can be generated automatically
having the source code of the service available.

54 Semantic Service Annotation

To overcome this drawback of unusable service descriptions and use the additional infor-
mation Semantic Web tools can be integrated in service registries mechanisms. This allows
comprehending semantic service descriptions provided by the service publisher which can
be matched against semantic queries from service requestors. Due to a common understand-
ing of shared terms by using ontologies it is possible to match services and queries exactly
assuming both sides deliver a complete, correct, and meaningful semantic description. On
the publisher side the semantic service description needs to be created manually. No tools
are available to automatically generate semantic service descriptions such as the WSDL tools
to generate syntactic descriptions because the meaning of a service cannot be extracted pure
syntactic interface descriptions or the source code itself. Editors like Protégé [95,108] support
developers in editing annotations or service descriptions, but only can check for inconsisten-
cies or errors. Still, the description has to be made by hand.

The aim in this part of this work is to propose a framework for the Web service developer.
This framework guides the developer through the whole development process starting at the
service design stage up to actual programming and annotation process closing with the ser-
vice deployment. This makes it possible to collect and deduce enough semantic information
about the created service to automatically generate a semantic annotation.

4.1 Problem Definition

A semantic annotation to a service specifies inputs, outputs, preconditions, and effects pre-
cisely. It uses terms and concepts described in ontologies to describe the services. The re-
lations within the ontology entities enables machines to process the interface descriptions
easily. The meaning of the service is processable and false interpretations due to synonyms
(e.g. “buy” and “purchase”) and homonyms (e.g. “order” in the sense of proper arrangement
and “order” in the sense of a commercial document to a request).

To a given Web service implementation it is possible to deduce a generic interface descrip-
tion. For example the JAVA2WSDL tool [4] generates automatically a WSDL document to a
given java program. An automatized semantic service annotation, e.g. in form of an OWL-S
document, is impossible only regarding the Web service implementation. The semantic infor-
mation is not available or deducible directly from the source code. It is implicitly integrated
and only humans may be able to figure out their meaning. But at the stage of the service
development, the programmer can easily associate an appropriate ontology for the service’s
domain. Now it is possible in most cases to assign the correct concepts in the ontology to the
data types used in the Web service implementation. These data types are used to describe the
service interfaces and therefore it is possible to deduce the semantic meaning of the service
resulting in a new WSDL-to-OWL-S algorithm generating automatically a semantic annota-
tion.

In the example of a book selling service, the developer specifies an ontology about book
and an ontology describing business processes to the service. Then, terms like “book”, “credit
card”, or “customer delivery address” and the relations between them are defined. An algo-
rithm is now able to compare the simple and complex data types used in the WSDL interface
description to the concepts described in the ontology. An automatically association is possi-

4.2 Framework for Semantic Web Service Development 55

ble in most cases. If any ambiguities occur, a small selection of alternatives can be presented
to the developer in order to continue the process. At the end, a fully semantically describe
Web service is created without investing significantly more work. The following framework
fulfills this purpose.

4.2 Framework for Semantic Web Service Development

A thorough annotated semantic Web service is the foundation of precise service matching.
Useful annotations are usually made manually constructing WSDL and OWL-S descriptions
after implementing the Web services. Several tools exist to support the design and implemen-
tation process. For some programming languages like Java tools automatically generate WSDL
descriptions, but high level descriptions as OWL-S need to be created manually. This section
presents a framework we introduced in [18] which supports developers in the annotation pro-
cess during the service implementation and automatically generate OWL-S descriptions with
the help of a new WSDL-to-OWL-S algorithm.

(a) Usual annotation procedure (b) New annotation framework

Figure 4.1: Comparison of the usual and the new semantic Web service annotation procedure

The usual annotation procedure is done mostly by hand and therefore an error-prone and
time-consuming work. The stepwise procedure is shown in figure 4.1 a) starting with the Web

56 Semantic Service Annotation

service design, followed by actual implementation. After that tools can be used to generate
WSDL descriptions directly from the source code. Subsequently, the developer can create a
semantic annotation producing an OWL-S description using his/her background knowledge.
This step can be assisted by several tools and editors, but the semantic information has to be
entered manually in all cases. Finally, the annotated Web service can be deployed.

The framework described in detail in the following paragraphs consists of six steps guiding
the developer from the conception stage up to a running and well annotated Web service.
In comparison to the usual annotation procedure our framework can automatically generate
the OWL-S description in step five according to a WSDL-to-OWL-S algorithm. Figure 4.1 b)
shows that to collect the needed semantic information a continuous support during the whole
development process is necessary. Furthermore, before beginning to design the Web service
the developer has to pick appropriate ontologies in the specific domain of the service. This
allows referring to known semantic concepts and terms during the whole procedure.

4.2.1 Obtaining Ontologies

Step one of the new framework covers the acquisition of relevant ontologies. It is likely that
the service provider or maintainer has already existing semantic descriptions or ontologies for
other purposes, but in the same domain of the service to be implemented. Thus, the shared
knowledge within the provider’s environment can be used and integrated in the service de-
scription. This method is also advantageous considering the fact, that many developers agree
to the same facts and interpretations to reduce mistakes and inconsistency errors in the on-
tologies. Even if no such previous work is available to the developer, other open source meta-
ontologies such as OPENCYC [113], WORDNET [33], and SUMO [111] exist or search engines like
SWOOGLE [156] designed for semantic information can be used. With a set of ontologies the
developer to revert to known concepts in the company’s domain acting as knowledge-base.

4.2.2 Web Service Design and Implementation

The next two steps according to the framework are the design and the implementation of the
Web service. Design refers to as the common way of programmers to model their approach
with standard tools like UML before implementation. The new part realizing the continu-
ously support is the use of the classes of the chosen domain ontology and thus its vocabulary
to describe the service’s program and communication. Still, in a semi-automatic way a pro-
grammer needs suggestions which ontology classes are more likely than others during the
implementation. The suggestions depend on the selected names and structure of the used
data types. With this help the implementation can be completed easily.

In [18] we used the programming language Java resulting in some adjustments during this
step. The framework performs an OWL to Java transformation where for all relevant ontol-
ogy classes and relationships corresponding Java classes are created like in [87, 108]. As OWL
supports multiple inheritances, Java interfaces are used to maintain class relationships. Prop-
erties without a specific domain have their assessor function declared in the abstract interface
“thing”. Multi ranged properties are a problem as Java only supports one type variables. Lists
of objects are used in this case. Other adaptations due to their complexity can be found in [87].

4.2 Framework for Semantic Web Service Development 57

4.2.3 WSDL Description Generation

The next step cares about the creation of the WSDL document belonging to the just imple-
mented Web service. The JAVA2WSDL tool [4] from the APACHE AXIS project can create a
WSDL document, based on a Java file and is therefore used in this framework. The WSDL in-
terface description enables SOAP communication like in all standard Web services and also
allows the binding of the service to the corresponding OWL-S description. For every public
Java method, a WSDL operation is created. WSDL only supports a syntactical description of
the input and output messages. The values of the description consist only of data types and
the message and operation names. What the service really does is not described in this way.
But if the operation and complex type names in the WSDL description are unique during the
framework process the automatic annotation algorithm (see section 4.3) can use these names
to verify the correctness of the matching between the WSDL operations and the OWL-S sim-
ple processes. Then, atomic processes based on the matched simple process can be created
building the connection to the ontologies and thus the meaning of the service. Further details
can be found in the algorithm, see section 4.3.

4.2.4 OWL-S Description Generation

Based on the WSDL description from the previous step, step five of the framework generates
the new OWL-S instance layered ontology document using a new WSDL-to-OWL-S algorithm
described in section 4.3. As WSDL is simply an interface description only syntactical issues
about the service are mentioned in its description. Semantic descriptions are involved at this
stage. We assume, that the number of different meanings of a service is related to the asso-
ciated category ontology. Each meaning is represented by exactly one simple process in the
category ontology. Otherwise, the developer would have created a different category ontology
in step one of this framework. To match WSDL elements to OWL-S components several steps
are necessary.

First, WSDL complex types of the WSDL messages are matched with their corresponding
OWL classes. If the lexical and syntactical structures of the created Java classes from step
three of the framework are unaltered, they match exactly due to the generation procedure. If
the developer has changed Java classes a check of the correct cardinalities of the OWL class
properties is performed. If the matching fails, a new OWL class is created. WSDL messages
with simple types can used untouched, because they are using the same XSD types from the
XML-schema.

Secondly, WSDL operations are tried to match to OWL-S simple processes. For an exact
mapping an atomic process is needed as mentioned before, but the available atomic pro-
cesses origin from a category ontology the developer found in an archive or somewhere else.
Thus, it is usually not possible to alter this atomic process to suit to the developer’s special
proposes. Therefore, the framework takes the best matching simple process from the category
ontology and creates a more suitable atomic process in the OWL-S instance. This creation is
only invoked if the simple process matches to the WSDL operation. To achieve this, the al-
gorithm checks if every message parts of the input and output messages of the operation can
be matched with exact one input and one output of the simple process. In other terms, ev-

58 Semantic Service Annotation

ery input and output of the process has to fit to its corresponding counterparts in the WSDL
operation. If successfully, we found a syntactical match for the WSDL description.

The remaining semantic parts are the preconditions and effects of the simple process. There
is no way to be certain if the meaning of the simple process really matches the developer’s
intention. However, the developer chose carefully a suitable category ontology in step one of
the framework. This reduces the possibility of misapprehension and wrong interpretations of
the service’s meaning.

After a successful matching a new OWL-S atomic process is created, based on the selected
simple process. It heirs inputs and outputs of the simple process as well as the preconditions
and effects. Consequently, the WSDL operation is annotated with a complete semantic de-
scription. If the matching fails, a new atomic process is created anyway. It satisfies the WSDL
operation structure without taking care of the category ontology. Preconditions and effects
have to be added manually.

Concluding activities to complete the OWL-S instance creation consider the service ground-
ing and service profile. Based on the new atomic process an OWL-S grounding is created to
bind to the matching operations. If the corresponding simple process refers to a service profile
in the category ontology it is copied to the new OWL-S instance, but can of course be altered
to be more suitable to the developer.

4.2.5 Accommodate Results, Testing and Deployment

In the final step of the framework the developer is involved to be sure the so far automatic
procedures were correct and fit the human intentions and interpretations. We use the Protégé
editor to check and if necessary alter the created OWL-S instance. In case of a failure in the
previous step of the framework the atomic process description only contains the syntactical
frame reflecting the WSDL contents. Unfortunately, the service developer has to add the miss-
ing semantic annotations manually here. Minor changes like the correct contact information
or further service maintenance facts can be made at this stage easily.

The semantic Web service is now ready for testing and deployment. We use, due to the
programming language Java, the APACHE AXIS project [4] in combination with the Web ser-
vice container TOMCAT [5]. Thus, the Web service and its OWL-S description is published and
invocation test such as an invocation by an OWL-S execution engine with simulated precon-
ditions and effects and other trails are applied.

4.3 WSDL-to-OWL-S Algorithm

This section provides a deeper insight into the main step of the semi-automatic annotation
framework, the WSDL-to-OWL-S algorithm. Other existing approaches like the WSDL2OWL
tool [4] create only empty atomic process descriptions reflecting the in- and outputs of the
WSDL document to the OWL-S layer. [85] and [117] only support users during the search for
appropriate ontologies, and frameworks like [81, 92, 120] only guide through the manual an-
notation process and provide no automatisms at all. The intention of this new WSDL-to-
OWL-S algorithm is to make as much annotations automatically as possible. This can only be

4.3 WSDL-to-OWL-S Algorithm 59

achieved by gathering additional information from the programmer during the development
process. Therefore, the framework guides the service developer during all steps and provides
selections of supposable choices in all major aspects.

The structure of our algorithm is illustrated in figure 4.2 and consists of four steps, document
parsing, type matching, process matching, and instance creation. First the algorithm parses the
available documents and extracts the necessary information. Then, it matches OWL classes
and WSDL complex types. After that it matches WSDL operations with OWL processes. Fi-
nally, it produces a new OWL-S instance containing the Web service annotation.

Figure 4.2: Structure of the WSDL-to-OWL-S algorithm

60 Semantic Service Annotation

4.3.1 Document Parsing

The algorithm needs several documents to extract necessary information to work properly. In
most parts the OWL-S API [143] for Java was used to read and store the parsed information
into program variables. One essential document is the WSDL description of the Web service
to be annotated. This description contains among other things the complex types and opera-
tions defining the input and output messages. A wsdl:type is used to describe complex types,
which have OWL classes as counterparts. A wsdl:message contains wsdl:part tags with at-
tributes name and type. The type attribute defines if its simple or complex. Simple message
parts refer to a XSD schema type, where complex types refer to an ordered (e.g. sequence)
number of elements such as again simple or complex types. The wsdl:portType tags con-
tains wsdl:operation linking to the corresponding processes. wsdl:input and wsdl:output

connect wsdl:messages to these operations.
The second input document is the OWL file. It describes the domain ontology anchoring

the Web service to the shared understanding in the specific domain. Classes, properties, and
restrictions are part of this file. Several classes in this ontology have the same syntax, but dif-
ferent meanings. The ontology is restricted to those classes, which are actually used to avoid
problems during the matching phase of the algorithm. To connect an OWL class with a WSDL
complex type every owl:Class construct is linked to an wsdl:complexType. All elements of
the complex type are then linked to an owl:DatatypeProperty or owl:ObjectProperty.

The OWL-S category description is another input to the algorithm. There are simple pro-
cesses, composite processes, and a profile description. If several simple processes with the
same syntax but different meaning exist here, a restriction to the actually used processes sim-
plifies the algorithm also. The algorithm only needs the input and output properties of atomic
or simple processes owls:hasInput and owls:hasOutput from the very large OWL-S process
class set.

Finally, the algorithm is able to use a default profile as input. It provides specific informa-
tion for the service maintainer, which are usually the same for all Web services of the same
organization. All these information from the WSDL, OWL, OWL-S, and profile files are hold in
a data structure providing this data to the algorithm for further process.

4.3.2 Type Matching

With all necessary information at hand, the algorithm starts with the type matching procedure
finding or creating OWL classes, based on WSDL types. Every message in a WSDL document
has a type. For each type a corresponding class or data type has to be chosen in OWL-S. Prim-
itive XSD types like xsd:string or xsd:integer are not converted as the same types are used
in OWL-S. The structure and the syntactical naming of complex XSD types is compared with
the structure and naming of the OWL classes. An exact matching is obtained if the structure
and the naming is exactly the same of the wsdl:complexType and the owl:Class and both are
linked together. No matching is reached if no conformity can be found at all. In the case
of multiple matchings, more than one matching alternatives are possible. Here, the possible
solutions are presented to the developer with the request to select the appropriate one. The
selected OWL class is then linked to the WSDL complex type.

4.3 WSDL-to-OWL-S Algorithm 61

In the case of no matchings the wsdl:complexType has no relation to the given domain on-
tology. Thus, the Web service developer seems to have created a new Java class and therefore
the algorithm creates a new owl:Class. Only a frame of the owl:Class can be provided au-
tomatically here, copying the name of the complex type from the Java class and arranging all
simple XSD types and already matched complex types which are components of the complex
type definition.

Figure 4.3: The process flow of the OWL:Class and WSDL:Type matcher

4.3.3 Process Matching

The third step of the algorithm matches an OWL-S simple process with a WSDL operation and
creates an atomic process with a proper grounding as result. A WSDL operation is originally
equivalent to an OWL-S atomic process. Because the available atomic processes origin from a
category ontology the developer found in an archive or somewhere else, it is usually not pos-
sible to alter these atomic processes. Therefore, the algorithm matches the WSDL operation
to the simple processes and creates a new atomic process. The matching is similar to the pro-
cedure in the previous type matching process. The process matcher compares the structure
and syntactical naming of the WSDL operations with the OWL-S simple processes.

62 Semantic Service Annotation

Figure 4.4: The process flow of the atomic process creator

The in- and output message parts are compared with the in- and outputs of potential sim-
ple processes. If an exact matching is found a new atomic process is created based on the
matched simple process. For instance, the operation name will be set as identifier of the
matched process. In the case of ambiguous matching results the help of the developer is
required one more time. If no matching could be found the atomic process class with its
parameters is created, based on the WSDL operation, but further contents have to be added
manually. To complete the new category instance the algorithm takes the preconditions and
effects given by the selected simple process and links them to the new atomic process.

In addition to the created OWL-S atomic process, the OWL-S process grounding is instanti-
ated. Its function is to bind the process to the WSDL document. This procedure works auto-
matically due to the reuse of the matched WSDL and OWL-S tags from the previous activities.
In detail, the procedure goes on as follows. First, as basic set up for the grounding description
the tag grounding:Process is linked to the relevant process:AtomicProcess. Subsequently,
the URI of the WSDL document is linked to the instance of grounding:wsdlDocument. Fur-
thermore, the WSDL operation is bound to the grounding. The grounding:wsdlOperationRef

contains URIs to the WSDL operations and WSDL port types in grounding:operation

and grounding:portType. The instance of grounding:wsdlOperationRef is then linked
to the grounding:wsdlOperation. As fourth step the URI of the WSDL port is linked
to the instance of grounding:wsdlPort. The same is done with the WSDL reference,
WSDL service, and WSDL version linking the instances of grounding:wsdlReference,
grounding:wsdlService, and grounding:wsdlVersion. Finally, the input grounding is

4.3 WSDL-to-OWL-S Algorithm 63

created due to the information available from the previous matching process. For
each input the grounding:wsdlInputMessageMap is instantiated with the input parame-
ter grounding:owlsParameter and the corresponding message grounding:wsdlMessagePart.
The output parameters are bound equally. The grounding:wsdlInputMessageMapList enu-
merates all grounding:wsdlInputMessageMaps. Output message maps are treated respec-
tively. This completes the automatic generated OWL-S process grounding for the atomic pro-
cess.

A final remark in this process matching paragraph involves composite processes. So far all
simple processes are considered if they are instantiated by newly created atomic processes.
Composite processes consist of several simple and atomic processes and are put together
by control structures. This allows constructing complex correlations of processes resulting
in powerful and complex Web services. Instead of matching WSDL operations to simple pro-
cesses also composite processes can be used as matching candidates for complex WSDL oper-
ations. The algorithm can pass recursively through the construction of the composite process.
Existing control structures are split, split-join, sequence, iterate, repeat-until, repeat-while,
any-order, choice, and if-then-else.

Figure 4.5: The process flow of the simple process and WSDL operation matcher

64 Semantic Service Annotation

4.3.4 OWL-S Instance Creation

The final step in the WSDL-to-OWL-S algorithm creates the service and profile class of the
OWL-S instance completing the OWL-S instance consequently. OWL-S acts as upper ontol-
ogy in our approach and thus the OWL-S document needs some basic data besides the OWL
classes, OWL-S processes, profile, and service descriptions. This data is independent to the
performance and outputs of the algorithm. We provide a template describing this data such
as defining the produced document as OWL-S document and standard imports and names-
pace definitions [18].

The profile class of the OWL-S instance can be easily created using information from the
algorithm so far. The profile:hasProcess should be linked to the corresponding atomic pro-
cess for instance. The same can be done with profile properties profile:hasPrecondition

and profile:hasResult if existing, as well as the profile:hasOutput and profile:hasInput

tags. As mentioned in section 4.2 we use a “default profile” description to fill out con-
tact information etc. in the profile:contactInformation, profile:serviceCategory, and
profile:serviceClassification tags. This data can be altered if necessary by the service
developer afterwards. The tags profile:textDescription, profile:serviceParameter, and
profile:serviceProduct should be instantiated finally. These tags provide data about the
atomic process and can be therefore copied from the chosen simple process corresponding to
the atomic process.

The service class can also be created easily. The service has to connect the process model,
service grounding, and service profile. Therefore, a new service class needs to be instantiated
and linked to the simple and atomic processes. The service:supports property links to the
service grounding and the service:presents property links to the profile. In an additional
step the atomic process, the grounding, and the profile have to be linked to the service in the
opposite direction. The value ServiceName finally becomes the name or ID of the service.

Now, the OWL-S instance is completed. Most parts are created and filled out automatically.
However, in most cases the Web service developer has to correct the output of this WSDL-to-
OWL-S algorithm afterwards. Nevertheless, this algorithm is a great help in the annotation
process of a semantic Web service.

4.4 Concept Appliance: Printing Service Annotation

This section describes a short walk-through of the suggested framework with an illustrative
example. By doing this, the abstract framework becomes more intuitive and our conclusions
for the remaining parts in this thesis more understandable. The example will be a printing ser-
vice implemented at the University of Paderborn. The service is able to receive any postscript
document and print it on any network printer within the university. It is realized as location-
based Web service, which enables the service to integrate location information and location
constraints from a service request into the service behavior and outgoing results. For instance,
a requestor can demand in a request to print the document to the nearest printer available. In
the query the requestors location will be specified and the nearest available printer can be
determined.

4.4 Concept Appliance: Printing Service Annotation 65

4.4.1 Ontology Selection

Before the programming begins, we follow step one of the framework and select suitable on-
tologies in the domain of the new Web service. We can provide the framework with several
ontologies, one is a location ontology, which describes geometric characteristics like “Coordi-
nate”, “InBuilding” or “InRoom” and concepts like “Room”, “Floor”, “Corridor” etc. A printer
ontology covers basic concepts and relations concerning printers at our university. Here,
terms such as “PrinterName”, “InputFileType”, “MaxResolution”, “MemorySize”, “DuplexCa-
pability”, etc. are described.

We select both domain ontologies, location and printer together with the upper ontology
OWL-S. The OWL-S ontology specifies that the resulting Web service will have inputs, outputs,
preconditions, and effects. It can capture the atomic, simple, and complex processes of the
service as well as the service and process model.

4.4.2 Web Service Creation

The second step in the framework states, that now the Web service can be modeled. The
developer is free to choose any preferred tools supporting this process. Due to the very small
and simple service we want to illustrate here, we do not present any UML state charts etc.
Instead, we give a short overview of the service’s interface and its basic process modeling.

The inputs and outputs of the service are easy to determine. The above service description
requires that the service has a file and the requestor’s location as input. Only both informa-
tion enable the service to realize a location-based printing service. The output will be the ID
respectively the name of the printer selected by the service to print the document. Precondi-
tions and effects are usually harder to determine. In this case, the preconditions are related
to the inputs of the service. One precondition is, that the specified location has to be within
a university building. Otherwise, the service will not be able to determine the nearest printer
available to the requestor’s position. The other precondition is the type of the input file. All
network printers are only capable of printing raw postscript documents directly on the print-
ers. Any other file types have to be converted by software, which is not part of this service. The
effect of the service has to describe, that the printer prints the received document. Figure 4.6
shows the Web service and its interface.

Figure 4.6: In- and outputs of the location-based printing Web service

66 Semantic Service Annotation

Based on this description the Web service can be implemented. We decided to implement
the functionality in Java in order to use the Java2WSDL tool [4] in the next step. Another reason
is the usage of the OWL2Java tool [87] which is able to generate corresponding interfaces and
classes for the Web service from the domain ontologies directly. The classes are conform to
the Java Bean standard and are a good starting point for the remaining application logic to be
implemented.

4.4.3 WSDL Creation

The Java2WSDL tool from the APACHE AXIS project creates a WSDL interface description file
based on the Java classes implementing the location-based printing service. For every pub-
lic Java method a WSDL operation is created. If the Java methods use simple Java variables
as parameters, the communication messages in WSDL are realized by simple data types and
the corresponding XSD types. Figure 4.7 shows as example a Java code snippet realizing a
method returning the printer name to a corresponding printer ID getPrinterName(String

PrinterID). It has the printer ID of type string as parameter and the printer name as return
value. The corresponding part in the WSDL document is shown in Figure 4.8.

A complex type does not occur in this snippet of the example, but is conducted easily with
the <complexType> element. For instance, the Web service input requires the location of the
requestor. This is specified with a relative coordinate within the university. The complex type
coordinate consists of a x, y, and z component, each of simple type xsd:float. They are
arranged as sequence with the <sequence> element in WSDL.

1 String PrinterID = "f2-425-lw";

2 String PrinterName = "Worf";

3 ...

4 /**

5 * gets the printer name by ID

6 * @param PrinterID ID of the printer

7 * @return PrinterName name of the printer

8 */

9 public String getPrinterName (String PrinterID)

10 {

11 if (PrinterID == this.PrinterID)

12 return this.PrinterName;

13 }

Figure 4.7: getPrinterName method in the location-based printing Web service

4.4.4 OWL-S Creation

At this point in the framework, the WSDL-to-OWL-S algorithm is activated. It creates a new
OWL-S layered ontology document based on the WSDL description, the OWL-S category, and
OWL domain ontologies. After parsing all relevant documents, the algorithm performs the
type matching. If primitive types like xsd:integer or like in the getPrinterName method

4.4 Concept Appliance: Printing Service Annotation 67

1 <?xml version ="1.0"? >

2 <definitions

3 <!-- Namespace definitions -->

4 targetNamespace ="http :// upb.de/MyNamespace"

5 xmlns:tns="http :// upb.de/MyNamespace"

6 xmlns:soap="http :// schemas.xmlsoap.org/wsdl/soap/"

7 xmlns:xsd="http :// www.w3.org /2001/ XMLSchema"

8 xmlns ="http :// schemas.xmlsoap.org/wsdl/">

9 ...

10 <!-- Messages definitions -->

11 <wsdl:message name=" getPrinterName_Input">

12 <wsdl:part name=" PrinterID" type ="& xsd;string"/>

13 </wsdl:message >

14 <wsdl:message name=" getPrinterName_Output">

15 <wsdl:part name=" PrinterName" type ="& xsd;string"/>

16 </wsdl:message >

17 ...

18 <!-- PortType definitions -->

19 <wsdl:portType name=" getPrinterName_PortType">

20 <wsdl:operation name=" getPrinterName_Operation">

21 <wsdl:input message ="tns:getPrinterName_Input"/>

22 <wsdl:output message ="tns:getPrinterName_Output"/>

23 </wsdl:operation >

24 </wsdl:portType >

25 ...

26 <!-- Binding definitions -->

27 <wsdl:binding name=" getPrinterName_SoapBinding" type="tns:getPrinterName_

PortType">

28 <soap:binding style =" document" transport ="http :// schemas.xmlsoap.org/soap/

http"/>

29 <wsdl:operation name=" getPrinterName_Operation">

30 <soap:operation soapAction ="tns:setPrinterName "/>

31 <wsdl:input >

32 <soap:body parts=" PrinterID "/>

33 </wsdl:input >

34 <wsdl:output >

35 <soap:body parts=" PrinterName "/>

36 </wsdl:output >

37 </wsdl:operation >

38 </wsdl:binding >

39 ...

40 </definitions >

Figure 4.8: Corresponding WSDL descriptions to the getPrinterName Java methods

xsd:string types are used, they are not converted and used directly in the OWL-S document.
Sequentially, WSDL complex types are compared with OWL classes. If a wsdl:complexType

has the same structure and naming as an owl:Class both are linked together. In the location-
based printing example, the complex type Coordinate has the same structure and naming as
the owl:Class rdf:ID="Coordinate" specified in the location ontology. Both contain three

68 Semantic Service Annotation

sequenced xsd:float elements named x, y, and z.
The second part of the algorithm executes the process matching, matching WSDL opera-

tions with OWL-S simple processes. Here, the developer can reuse OWL-S descriptions from
other implementations if matching correctly, or new OWL-S template descriptions are gen-
erated. In this case, the templates have to be completed manually by the developer. We

1 <process:SimpleProcess rdf:ID=" getPrinterName">

2 <process:hasInput >

3 <process:Input rdf:ID=" PrinterID">

4 <process:parameterType rdf:resource ="& xsd;string"/>

5 </process:Input >

6 </process:hasInput >

7 <process:hasOutput >

8 <process:Output rdf:ID=" PrinterName">

9 <process:parameterType rdf:resource ="& xsd;string"/>

10 </process:Output >

11 </process:hasOutput >

12 </process:SimpleProcess >

Figure 4.9: Simple process getPrinterName in the OWL-S description

need an atomic process mapping each WSDL operation from available OWL-S descriptions,
but often the atomic processes in a category ontology cannot be altered. Simple processes
describe an abstract view of an atomic process hiding certain details that are irrelevant in
this view or confidential. The structure and naming of each WSDL operation is compared
to each available simple process in the selected OWL-S descriptions. Here, the WSDL oper-
ation getPrinterName Operation matches the OWL-S simple process getPrinterName from
an already existing OWL-S service description, see figure 4.9. The in- and output message
parts from the WSDL document (PrinterID as xsd:string and PrinterName as xsd:string)
are compared with the in- and outputs of the simple Process. Here, they match exactly. If this
is not the case, a template will be generated containing the correct numbers of inputs and
outputs, the process names and parameter data types. The developer can then easily fill out
the remaining information.

After successfully matching a simple process to the WSDL operation, a new corresponding
atomic process can be generated. Figure 4.10 shows the atomic process getPrinterName.

The WSDL to OWL algorithm continues with the instantiation of the OWL-S ground-
ing binding the new process to the WSDL document. The grounding:process refer-
ences to the process:AtomicProcess and grounding:wsdlDocument is referencing to the
WSDL document. Further, grounding:wsdlOperationRef point to the WSDL operations and
grounding:portType to the WSDL port type definitions. Message maps are generated for each
WSDL message part and thus each OWL-S parameter. The grounding is usually a simple but
very long document mainly with references connecting the WSDL elements with the OWL-S
elements and therefore not shown here.

The remaining steps in the OWL-S instance creation are the generation of the service and
profile class. Here, the default preamble template (partly shown in figure 4.11) is used contain-

4.4 Concept Appliance: Printing Service Annotation 69

1 <process:AtomicProcess rdf:ID=" getPrinterName">

2 <process:hasInput >

3 <process:Input rdf:ID=" PrinterID">

4 <process:parameterType rdf:resource ="& xsd;string"/>

5 </process:Input >

6 </process:hasInput >

7 <process:hasOutput >

8 <process:Output rdf:ID=" PrinterName">

9 <process:parameterType rdf:resource ="& xsd;string"/>

10 </process:Output >

11 </process:hasOutput >

12 </process:AtomicProcess >

Figure 4.10: Generated atomic process getPrinterName

ing standard imports, namespace definitions, etc. including references to the used ontologies.
The profile and service information are added using standard information easily available to
the service developer.

1 <?xml version ="1.0"? >

2 <rdf:RDF

3 <!-- Namespace definitions -->

4 xmlns:rdfs="http :// www.w3.org /2000/01/rdf -schema #"

5 xmlns:owl="http :// www.w3.org /2002/07/ owl#"

6 xmlns:grd="http :// www.daml.org/services/owl -s/1.1/ Grounding.owl#"

7 xmlns:xsd="http :// www.w3.org /2001/ XMLSchema #"

8 ...

9 <!-- Service definitions -->

10 <service:Service rdf:ID=" PrintingService">

11 <service:presents rdf:resource ="# PrintingService_Profile"/>

12 <service:describedBy rdf:resource ="# PrintingService_ProcessModel "/>

13 <service:supports rdf:resource ="# PrintingService_Grounding"/>

14 ...

15 </service:Service >

16 <!-- Profile definitions -->

17 <profileHierarchy:PrintingService rdf:ID=" PrintingService_Profile">

18 <profile:has_process rdf:resource =" PrintingService_ProcessModel "/>

19 <profile:serviceName >Printing Service </ profile:serviceName >

20 <profile:contactInformation rdf:resource ="# PrintingService_Contacts"/>

21 <profile:hasInput rdf:resource ="# PrinterID"/>

22 <profile:hasOutput rdf:resource ="# PrinterName "/>

23 ...

24 </profileHierarchy >

25 ...

Figure 4.11: Preamble template, service and profile class for the OWL-S instance

Now, the OWL-S document for the example printing service is complete. Framework steps

70 Semantic Service Annotation

six and seven are the accommodation of the results and the Web service testing and deploy-
ment.

4.5 Summary and Results

The goal of this chapter is to get a thoroughly annotated semantic Web service. We assumed
to support the developer at the service development directly is the best way. The proposed
framework helps the developer to create mostly automatically the needed semantic descrip-
tions and documents for Web service in development. Thus, the manual creation of complex
and error-prone descriptions is not necessary any more.

This framework allows gathering semantic meta-data directly from the Web service devel-
oper and is no longer encoded implicitly in the syntactical descriptions. A lot of semantic
information can be derived from the WSDL descriptions together with the assigned domain
and category ontologies. The new WSDL-to-OWL-S algorithm is able to find a corresponding
simple process in the category ontology matching the WSDL operations. Atomic processed
based on the chosen simple process are created and bound to the operations. A well described
OWL-S instance is created afterwards to complete the Web service’s semantics. In [18] proto-
type tests showed a fine working environment if the amount of available simple processes is
limited. Too many very similar processes increase false assumptions and a lot of user inter-
action. Therefore, the benefits of an automatic approach are lapsed. But, in a Web service
developer environment, as assumed, the framework gives considerably support.

Semantic Service Composition 5
Insanity: doing the same thing over and over again
and expecting different results.

Albert Einstein

The prior chapter described the automatic annotation process of a Web service. Standard
Web services become semantically described Web services by using shared terms out of an on-
tology and respecting structures and descriptions due to the upper ontology OWL-S. Because
the manual creation of a semantic service description is a time-consuming and error-prone
work, we presented a WSDL-to-OWL-S algorithm supporting Web service developers. Unfor-
tunately, a semantic service matching is in many cases not enough. In order to come to a fully
satisfying service matching the possibility of service composition is discussed in this section.
The second step in our approach is therefore to check the composeability of basic seman-
tic Web services to fulfill complex user requests. The semantic annotation allows thereby a
much more advanced and precise composition than in traditional composition approaches
such as BPEL4WS1 [2] or WSCI2 [7]. MCILRAITH ET AL. introduced a semantic-based Web
service composition [103], but our approach is not as restricted as their approach depending
on explicit business goal definitions [145]. We introduced some basics of our approach, a se-
mantic Web service matchmaker, in [64]. It takes the semantically described inputs, outputs,
preconditions, and effects into account and realizes through a clever matching result reduc-
tion the composition of Web services. The following sections present the problem definition,
requirements, and workflow of the matchmaker.

5.1 Problem Definition

Our approach of an OWL-S matchmaker provides different basic matching functions such as
ontology matching, service grounding matching, service profile matching, and service pro-
cess matching for a composition of semantic Web services using WSDL, OWL-S, and SWRL3.

1Business Process Execution Language for Web Services
2Web Service Choreography Interface
3Semantic Web Rule Language

72 Semantic Service Composition

This concept is embedded in a framework considering several steps resulting in a service com-
position. In a common scenario a user requests a service accomplishing a specific task. With
the help of semantic annotated services the meaning of request and available services can
be understand to match each other. Unfortunately, one service does usually not satisfy a re-
quest directly. Therefore, a composition of multiple basic services is often required to meet
the request. The standard example is such a case is the request for a travel booking service
combining hotel, flight, and car booking services. Many problems arise in this scenario rang-
ing from transaction safety to service security aspects which are not goal of this thesis. We
concentrate on matching the outputs, preconditions, effects of one service to the inputs and
preconditions of a second service. This can be repeated several times and the resulting combi-
nation will then hopefully match the user’s request. The challenge lies in the fact, that services
from different domains with different ontologies are combined here. Thus, the matchmaker
has to meet some fundamental requirements described in the next paragraph.

In the domain of printing services, which was multiple mentioned so far, the following ex-
ample is possible. A user is looking for a service printing “.doc” files to the nearest printer
available. The semantic description of a location-based printing service helps to identify the
exact outputs and effects matching the request. Unfortunately, the service is only capable to
handle postscript files as input to the service. Only in combination with another service trans-
ferring the “.doc” file into a postscript file satisfyingly matches the user’s request. The OWL-S
matchmaker is capable of finding these suitable combinations.

5.2 Matchmaker Requirements

To conduct a service matching towards a service composition the matchmaker has to perform
several steps. Each step fulfils a certain task in the corresponding framework and has specific
requirements.

First, all elements affecting the matching which originate from ontologies, syntax, and se-
mantic descriptions need to be identified. Thus, all information from the user request, partic-
ipating ontologies, and service information need to be available. In a matching-cut definition
(see section 5.3) all these elements are collected and a reduction to the relevant elements (for
the matching) is performed. This reduces the matching complexity and makes a semantically
service matching possible.

After gathering all information, the each two different domain ontologies need to be com-
pared with an ontology matching. The meaning of connecting elements between two ser-
vices needs to be the same. Thus, parts of both ontologies assigned to the services have to
be aligned. In a semantic matching component, the framework needs to compare the service
profiles, service models, and service groundings. Relevant information describes essential
parts of each service turning the balance of a successful of unsuccessful service matching. Be-
sides all semantic information, a syntactical matching considering the in- and outputs have of
course to be checked. Like before, only the relevant parts in the WSDL syntactical description
need to be considered in the service matching process.

Having worked with ontologies, syntax, and service descriptions separately, the overall cor-
respondence between services has to be determined. A weighting of each aspect has to be

5.3 Matching Workflow 73

performed carefully to calculate the service matching degree. If the service matching degree
is sufficient a service composition can be prepared. The service matching results in precise
connections of inputs and outputs of all participating services.

5.3 Matching Workflow

The matchmaking process realizes different matching parts considering ontologies, syntax,
and semantic service descriptions. Languages providing this information are WSDL, OWL,
and SWRL. Preconditions and effects of services for example, can be modeled precisely with
SWRL in OWL statements [144]. Starting with ontology comparisons using the FOAM frame-
work from EHRING and SURE [44], the OWL-S API [143] for Java is used again like in the anno-
tation process in chapter 4 before. Thus, all relevant information is available in efficient data
structures on the implementation level. Further semantic information like the service profile,
service process descriptions, and service grounding details are used to realize a substantiated
service matching. The service composition after a successful matching is realized with the
“automatic composition and invocation” approach of SHESHAGIRI ET AL. [142].

Figure 5.1: Overview of the OWL-S matchmaker composition process

The matching procedure consists of eight steps illustrated in figure 5.1. The previously men-
tioned requirements note several comparisons of different service description parts in no spe-
cific order. As we look closer to the matching procedure a naturally order appears. First, of

74 Semantic Service Composition

course the necessary information has to be loaded and parsed. After that the service profile
matching and the ontology matching can be done parallel, due to their independency. They
result in the matching-cut which has to be evaluated afterwards. Surprisingly, the next step
considers further semantic activity. In step four and five of the matching procedure the ser-
vice model matching and the overall semantic correspondence is determined. Only now the
syntactic information originating from the WSDL description is considered before in the last
step the service composition is done. This goes along with the following idea. The meaning
of for example a Web service input parameter can be described in many different ways and of
course in many different syntax fashions. The syntactical descriptions may differ significantly
causing a clear failure of the matching, but the semantic descriptions are much closer related
due to the ontological connections. Therefore, the semantically comparison is executed be-
fore and syntactical comparison. The following paragraphs discuss each step more precisely.

5.3.1 Document Parsing

The matching procedure requires some necessary information from several documents usu-
ally provided with an adequate annotated semantic Web service. The relevant ontologies are
parsed to have the shared understanding of each service available which is defined in the on-
tology’s terms, concepts, and interrelationships. The OWL-S API [143] ensures a storage in
efficient data structures to save the document’s structure and naming issues. Also the service
descriptions via OWL-S files are parsed to get the service’s profile, classification, maintainer
information, in- and output descriptions, and grounding details. The syntax information from
the according WSDL description is also parsed and loaded like in the annotation process in
section 4.3.1.

5.3.2 Semantic Matching: Ontology Matching

Steps two through four involve the semantic matching parts of the matching procedure.
Firstly in 2a) the participating ontologies are matched. The ontology comparison uses the
FOAM procedure from EHRIG and SURE [44]. Within this procedure corresponding parts out
of different ontologies are searched using different methods to evaluate the similarity. The
goal is to find for each concept in an ontology A a corresponding concept in ontology B with
the same or very similar semantic. The methods are building a stack (see figure 5.2a)) start-
ing with two methods working on entity level, two for semantic networks, ten for description
logics, one for restrictions and two for the application vocabulary. All seventeen methods are
used and contribute their results, which are weighted and aggregated to an overall result. The
aggregation also controls the run of multiple rounds (see figure 5.2b)) of each method using
preliminary results again as input to improve the matching performance. The usage of each
single method, its weights and thresholds in the aggregation, and the number of rounds are
parameterized and can be adjusted from outside. The configuration of the threshold is of
major importance for the quality of the result. Raising the threshold increases the match-
ing precision, but decreases the amount of hits for corresponding ontology concepts. Hence,
FOAM is a flexible, adaptive, and automatic way to compare ontologies and determine their
common concepts ideal for the needs in this thesis. We evaluated other approaches and the

5.3 Matching Workflow 75

exact parameterization of the FOAM procedure. We received best results with the strategy “De-
cisionTree”, which defines the weights of the given methods. The number of iterations is set to
19, so the process runs 20 comparisons. A threshold of 90 percent produces comprehensible
results in an afterwards manual consultation.

(a) FOAM similarity stack (b) FOAM matching process

Figure 5.2: Similarity stack and matching process of FOAM [44]

5.3.3 Semantic Matching: Service Profile Matching

In 2b) the service profiles are matched. Figure 5.3 shows the process flow of the ser-
vice profile matching. Profiles are originally intended to advertise a service and in-
clude non-functional parameters like profile:serviceName, profile:serviceParameter,
and profile:contactInformation. Functional parameters are included as well in the profile
describing the in- and outputs (profile:hasInput, profile:hasOutput) and the precondi-
tions (profile:hasPrecondition). The effects are not considered, because they only describe
the changes to the outside world and are included in the outputs implicitly [142]. Their com-
prehension does neither improve the comparison nor the additional non-functional param-
eters like security or quality-of-service. They need to be evaluated in the service discovery
long before the actual service matching [19]. Requestors usually also express their queries by
defining a service profile they expect. Therefore, it is likely all major characteristics of a ser-
vice are defined in the service profile. The profile matching in this work is integrated in a more
complex matching process to achieve a higher matching quality. The profile matching (step
2b)) can be done partly in parallel to the ontology matching (step 2a)). The non-functional
parameters concerned in the profile matching are independent to the used ontologies, but
the functional parameters are using concepts of the participated ontologies already.

The similarity of each non-functional profile component is determined by their lexico-
graphical property. This approach is like in other keyword-based comparisons, because the
non-functional profile description is independent to the assigned ontologies, and thus we do
not have a shared understanding or meaning useful for the comparison. We evaluated that if

76 Semantic Service Composition

more than 75 percent of the letters of the corresponding elements are identical, the parame-
ters can be evaluated as match. If the agreement is between 50 and 75 percent, a correspon-
dence is possible and with less than 50 percent a correspondence is highly improbable. Sum-
marizing each parameter similarity can therefore lead to a matching decision of the profile
element, although it is not very precise.

Figure 5.3: The process flow of the service profile matching

For the correspondence of the functional components in the service profile of the Web ser-
vice the results from the ontology matching are used. The FOAM result file contains all corre-
sponding elements of both ontologies. The in- and outputs in the service profile description
are constructed with these elements. Aim of this matching is the composition of two Web ser-
vices. Thus, one or more outputs of one service have to match one or more inputs of another
service. Only in this case a successful sequence of both services can be achieved. So, if for in-
stance an output of one service profile uses exactly the same elements as an input in the other
service profile – corresponding to the FOAM result file – these functional parameters match
perfectly and the services are composeable.

The FOAM result file also delivers a similarity degree of two corresponding concepts. Con-
sequently it is possible that one output matches exactly one input, but the use concept is
only to a certain percentage corresponding to another concept. In this case a user-defined
threshold can be used to determine flexibility of the matching process in this aspect. We sug-

5.3 Matching Workflow 77

gest a threshold of 75 percent. Any similarity degree below this value increases the chance
of failure in the whole matching process. If more than one functional parameter is available
on either Web service several combinations become possible. The service profile matcher
simply iterates all inputs and outputs matching every possible constellation. This is a time-
consuming task, but necessary to recognize all composition configurations. For each input-
output-combination the pair with the highest similarity is chosen. To determine an aggre-
gated similarity degree for the composition of two Web services the lowest similarity of all
functional parameter pairs is identified. A calculated average similarity would not reflect the
natural impression. For example, if a pair of Web services is composed with two pairs of func-
tional parameters, the weaker connection is dominant for the whole connectivity. Therefore,
we forward only the weaker result to the further steps in the matching process.

The existence of one successful combination of a pair of functional parameters is needed
to proceed with the matching. Therefore, we define its non-existence or its existence with a
similarity degree below the threshold of 75 percent as an stop criterion. If more than one suc-
cessful combination defines the connection between two Web services the weakest similarity
degree defines the overall similarity degree.

The similarity of two service profiles is the common basis for many semantic matching
approaches. Unfortunately, considering possible Web service compositions increases the
amount of semantic information and the amount of matching candidates dramatically. Only
a reduction to the relevant core of needed information for a semantic matching makes this
approach possible.

5.3.4 Semantic Matching: Matching-Cut Definition

At this step of the matching procedure we combine the results of the previous ontology match-
ing and the non-functional and functional parameter matching of the service profiles to the
definition of a so-called matching-cut. This procedure is new, because other approaches
like [114, 152] only consider the service profile alone to match service advertisements with
user requests. Any composition of services if normally far to complex to be solved in sufficient
time. By combining the results of the ontology matching and the profile matching it is possible
to reduce the available semantic information of two services to the relevant information for a
successful composition. The corresponding elements in both participating ontologies, as well
as the non-functional and functional parameter matchings from the service profile constitute
the basis for the matching-cut. The comparison of two ontologies alone does not state any
similarity of two Web services. Likewise, the similarity of non-functional parameters in two
service profiles of two Web services does not state any similarity. Only the functional param-
eters described with highly similar elements from corresponding ontologies assigned to each
Web service and a certain similarity in the non-functional service profiles is significant. This
significant similarity decides about the Web service’s composeability. Furthermore, after the
matching-cut aggregation we consider the service model describing the internal Web services
structure and the processes used in the services to support this decision extensively.

The matching-cut defines the “working area” for the matching. The goal of this procedure
is to reduce the amount of all relevant information to a manageable amount of only impor-
tant information considering a composition of two Web services. It allows composing Web

78 Semantic Service Composition

services with a small syntactical, but with a high semantically compatibility. This informa-
tion reduction is already done with the preliminary steps 2a) and 2b). Now we aggregate and
weight this information. The following information is available in the matching-cut:

• corresponding ontology elements (intersection of ontologies)

• mapping of corresponding ontology elements and the functional parameters

• similarity degree of the functional parameters

• similarity degree of the non-functional parameters

The first fraction in the matching-cut contains the matching elements of the ontologies
which are used by the Web services. Figure 5.4 illustrates this. The corresponding ontology
concepts are used to gain a better appreciation and interpretation of the applied terms. The
second fraction consists of the matching parts in the non-functional parameters like the con-
tact information, which is not as important as the first fraction. The third part of the matching-
cut imports the matching of the functional parameters with its mappings to the shared ontol-
ogy concepts. This is the most important part of the information aggregation. If has a major
influence on the composeability and thus the matching result. For instance, only if a service
output matches another service’s input regarding its parameters and semantic interpretations
a composition is successful. This information lies in the mapping between the functional pa-
rameters and its ontological roots.

Figure 5.4: Matching-cut illustration

5.3 Matching Workflow 79

The non-functional matching result comes with a matching degree of full, maybe, or none
correspondence. This is taken into account with 25 percent total participation. The functional
parameter matching contributes 75 percent to the result. We say a fully correspondence is
achieved with at least one successful match between a pair of in- and outputs across two Web
services where the similarity degree of the partitioned concepts is greater than 90%. Maybe
correspondence is awarded if at least one successful matching pair exists where the similarity
degree is greater than 75%. No correspondence is reached if no pair of input to output or output
to input of two services can be found. This result can be taken to decide for a premature end of
the matching procedure. Considering information in the service model description can lead
to further improvements in the next step. After that the overall matching degree is determined
and a final decision towards composeability is made.

5.3.5 Semantic Matching: Service Model Matching

The service model describes the internal logic of the Web service defining the atomic, simple,
and composite processes constructing the service process behavior with control constructs.
Each process has at least in- and outputs and applicable also preconditions and effects. The
internal process structure is not interesting for a service matching. They only result in a de-
tailed functional and transformation description, which does not improve the quality of a ser-
vice matching with hardly composeable services. However, the service model can contribute
to the matching. The parameter descriptions on model level can hold more information as
the parameter descriptions on the profile level such as quality demands on certain parame-
ters. The profile level is more like an interface description of the service where as the model
level is a module description of the service.

In this work only the atomic processes are regarded, because they are the basis for the sim-
ple and composite processes. The control structures do not influence the matching results
at all and thus do not improve the matching quality. Best-practice to describe the parameter
conditions arising are SWRL preconditions [144]. The procedure to use SWRL will be impor-
tant part of the next OWL-S specification version 1.2. The restriction to atomic processes is
further limited in combination with the usage of elements only from the matching-cut. This
means only atomic processes with more than one parameter containing shared descriptions
is used for the matching. Thus, only atomic processes with a significant contribution to the
service’s interfaces are considered.

The so far gathered information from the functional parameters of the service profile are
confirmed and verified by the service model matching. The service model is evaluated for
both semantic Web services. The IOPEs (inputs, outputs, preconditions, and effects) of the
service profile are compared with the IOPEs of the relevant atomic processes to identify dif-
ferences. Fully correspondence between both Web service’s service models is given if no differ-
ence can be determined or the model describes more than all functional parameters within
the service profile. A maybe correspondence emerges if several elements differ between ser-
vice profile and service model, but still all parameters in the service profile are described in
the service model. Are not all functional parameters of the service profile covered in the ser-
vice model an inconsistence is highly possible. Therefore, no correspondence is given and the
Web service composition is aborted.

80 Semantic Service Composition

5.3.6 Semantic Matching: Overall Correspondence Calculation

This is the last part in the sequence of semantic matching issues calculating the overall se-
mantic Web service’s correspondence. We consider the results of the matching-cut which in-
cludes the ontology correspondence and the functional and non-functional service profile
correspondence. Furthermore, we take the results of the service model matching into ac-
count. All three procedures were described in the prior paragraphs and are now aggregated
with certain weights. The matching-cut represents the most important part and is weighted
with 60 percent. Service profile matching and service model matching are each weighted with
20 percent and all three correspondence degrees are grouped in a tuple of (full, maybe, none)
correspondence. The first component represents the sum of all three full correspondence
percentage values, the second the sum of maybe correspondences, and the third the sum of
all none correspondence percentage values. This tuple is then interpreted as result after four
steps of the matching procedure as follows.

A Web service matching between two semantically annotated Web services is possible if the
first component of the tuple (full correspondence) is greater than 75 percent, or the first com-
ponent is greater than 50 percent together with at least 25 percent in the second component
(maybe correspondence). This constellation stands for a major influence of the matching-cut,
due to its 60 percent proportion. The matching-cut evaluation is most important and cannot
be compensated by other minor matching results. An automatic service matching without
further user interactions can be done on this basis, unless the service model matching results
with maybe. In this case the user has to identify implicit functional parameters for the service
composition.

The matching between two semantically annotated Web services maybe possible if the first
component of the tuple is below 50 percent, but the sum of the first and the second value is
greater than 50 percent. This constellation indicates a possible service correspondence, but
not enough information for an automatically composition. The user has to decide about the
continuation of the matching process in this case.

At last, the matching is not possible in all other cases. Here, the matching-cut indicates
insufficient corresponding elements and thus no basis for a suitable service composition is
given. The matching process is terminated here.

5.3.7 Syntactic Matching

The basic service matching procedure is completed with the overall semantic correspondence
calculation in step five. The syntactic information is usually described in the language WSDL
which is part of a semantic Web service annotation. We considered this information implicitly
due to the service model treatment, where OWL-S atomic processes are examined. They are
based on WSDL operations.

In this paragraph we take the WSDL description as preparation of a Web service composi-
tion. The results from step four are taken to check the signatures of the functional parameters.
Figure 5.5 shows the WSDL matching. In the case of mismatching data types often a simple
transformation can deliver a suitable output of a Web service to an input of another Web ser-
vice.

5.3 Matching Workflow 81

Additionally, the emerging composed service can derive is own annotation from the inter-
nal services. The input parameters of the composed semantic Web service are the sum of
all inputs of all internal Web services without the inputs directly served by outputs of other
Web services. The output parameters of the composed semantic Web service is analogously
the sum of all outputs of all internal Web services without the ones delivering inputs to other
services directly. The preconditions of the composed service are the sum of all preconditions.

Figure 5.5: The process flow of the WSDL matching

5.3.8 Service Composition

The final step of the matching procedure is done with the announcement if two semantic
Web services are composeable. In an additional step this composition now has to be realized.
Therefore, different workarounds like the one of SHESHAGIRI [142] can be used. The results
of the matching procedure are extensive and the composition should be realized without any
troubles. Figure 5.6 illustrates an example of a composed Web service containing semantic
Web services.

82 Semantic Service Composition

Figure 5.6: Example of a composed semantic Web service

5.4 Concept Appliance: Printing Service Composition

An example service composition walk-through is presented in this section to illustrate the
OWL-S matchmaking procedure proposed in this chapter. Two services exist in this scenario.
The doc2ps transforms any “.doc” file into a postscript file and the location-based printing
service previously described in 4.4 is capable of printing any postscript document on net-
work printers within the university. Only a composition of both services is able to match a
request like print a “.doc” file on the nearest printer available. Both services are semantically
annotated, but originate from different domains. The doc2ps service has an OWL-S descrip-
tion and is connected to a document ontology describing different types of documents and
concepts useful in this domain. The printing service has also a OWL-S description and uses
concepts from a printing and a location ontology.

5.4.1 Ontology and Service Profile Matching

In the first step of our proposed OWL-S matchmaking procedure all relevant documents are
parsed. Here, the location, printing, and document ontologies are loaded, as well as the OWL-
S documents for the doc2ps and the printing services. The ontologies provide background
information about the used terms, concepts, and interrelationships between the concepts and
the OWL-S files provide information about the service profile, maintainer, in- and outputs,
and grounding details.

By performing step 2a) the participating ontologies are matched with FOAM tool regarding
special settings. Selecting the “DecisionTree” strategy, 19 iterations, and a 90 percent thresh-
old delivers the corresponding concepts of the ontologies. Table 5.1 shows an excerpt of the
FOAM result file.

5.4 Concept Appliance: Printing Service Composition 83

Concept Ontology 1 Concept Ontology 2 Matching Degree
http://localhost/services/ http://localhost/services/

document.owl#Person location.owl#Person 1.0
http://localhost/services/ http://localhost/services/

document.owl#GMT_UTC-1 printing.owl#GMT_UTC-1 1.0
http://localhost/services/ http://localhost/services/

document.owl#PrinterName location.owl#Printer 0.8
http://localhost/services/ http://localhost/services/

document.owl#Creator printing.owl#Submitter 0.3
http://localhost/services/ http://localhost/services/

document.owl#PSFile printing.owl#PostscriptFile 1.0
http://localhost/services/ http://localhost/services/

document.owl#Inputdocument printing.owl#Inputfile 0.9
http://localhost/services/ http://localhost/services/

document.owl#PrinterName printing.owl#PrinterName 1.0

Table 5.1: Ontology matching excerpt of FOAM result file

In step 2b) the service profiles of the doc2ps and printing services are matched. The func-
tional parameters (inputs, outputs, and preconditions) and the non-functional parameters
(service category, service classification, and maintainer information) are compared. Figure
5.7 shows the service profile of the doc2ps service. Unfortunately, classification, category, and
maintainer information are completely different for the doc2ps and the printing service. The
keyword-based comparisons of e.g. “doc2ps converter” and “location-based printing service”
in profile:serviceName are zero. This usually occurs when comparing services from different
domains.

1 <profile:Profile rdf:ID="Doc2PS_Profile">

2 <service:isPresentedBy rdf:resource ="# Doc2PS_Service"/>

3 <profile:serviceName xml:lang="en">doc2ps converter </ profile:serviceName >

4 <profile:textDescription xml:lang="en">This service converts a .doc file

into a .ps file.</profile:textDescription >

5 <profile:contactInformation >

6 <actor:email >urerrer@upb.de </actor:email >

7 ...

8 </profile:contactInformation >

9 <profile:serviceClassification rdf:resource ="# Document"/>

10 <profile:serviceCategory rdf:resource ="# Documentconverter "/>

11 <profile:hasPrecondition rdf:resource ="# FileExists "/>

12 <profile:hasInput rdf:resource ="# DocFile"/>

13 <profile:hasOutput rdf:resource ="# PSFile"/>

14 <profile:hasEffect rdf:resource ="# FileConvertedEffect "/>

15 </profile:Profile >

Figure 5.7: OWL-S profile of doc2ps service

http://localhost/services/
http://localhost/services/
document.owl#Person
location.owl#Person
http://localhost/services/
http://localhost/services/
document.owl#GMT_UTC-1
printing.owl#GMT_UTC-1
http://localhost/services/
http://localhost/services/
document.owl#PrinterName
location.owl#Printer
http://localhost/services/
http://localhost/services/
document.owl#Creator
printing.owl#Submitter
http://localhost/services/
http://localhost/services/
document.owl#PSFile
printing.owl#PostscriptFile
http://localhost/services/
http://localhost/services/
document.owl#Inputdocument
printing.owl#Inputfile
http://localhost/services/
http://localhost/services/
document.owl#PrinterName
printing.owl#PrinterName

84 Semantic Service Composition

In the case of functional properties there is a match. “PSFile” is an output specified by
profile:hasOutput in the doc2ps service profile and “PostscriptFile” an input specified by
profile:hasInput in the printing service. Both are identical due to the corresponding con-
cepts in the ontology matching (see Figure 5.1, line 5).

5.4.2 Matching-Cut Definition and Semantic Matching

As the sole comparison of used ontologies for Web services does not state any service similar-
ity, the matching cut is defined now for the printing example. To come to a composeability
decision too much irrelevant information is available. Unused ontology concepts or useless
non-functional parameters do not contribute to the composeability check. The relevant ele-
ments are divided in three fractions. The first fraction contains the corresponding concepts
used in both service descriptions, e.g. “Person”, “PrinterName”, or “PSFile”. The second frac-
tion contains the non-functional parameter matching parts, which is empty in our example.
The third and last fraction contains the functional parameter matching parts. The “PSFile”
with “PostscriptFile” matching as described before gets an successful match with a similarity
degree of 1.0. According to the weighting with 75% of 1.0 (functional parameters), 25% of zero
(non-functional parameters), and 0% of zero points (ontology concepts) the matching-cut
has a valuation of 0.75. Due to the once awarded fully correspondence the matching process
continues.

1 <process:AtomicProcess rdf:ID=" DocFile2PSFile">

2 <process:hasInput >

3 <process:Input rdf:ID="# DocFile">

4 <process:parameterType rdf:resource ="& xsd;base64 Binary"/>

5 </process:Input >

6 </process:hasInput >

7 <process:hasPrecondition rdf:resource ="# FileExists "/>

8 <process:hasEffect >

9 <process:Effect >

10 <process:Effect rdf:resource ="# FileConvertedEffect "/>

11 </process:Effect >

12 </process:hasEffect >

13 <process:hasOutput >

14 <process:Output >

15 <process:parameterType rdf:resource ="# PSFile"/>

16 </process:Output >

17 </process:hasOutput >

18 </process:AtomicProcess >

Figure 5.8: Atomic process in the OWL-S service model of the doc2ps service

The next step of the matching process performs the service model matching. Atomic pro-
cesses are the basis for simple and composite processes and describe the internal processing
of a service. The used control structures do not influence the matching result and thus do
not improve the matching quality. The IOPEs of the service profiles are compared with the

5.4 Concept Appliance: Printing Service Composition 85

IOPEs of the atomic processes to identify differences. Only atomic processes using functional
parameters appearing in the matching-cut are considered. Figure 5.8 shows the atomic pro-
cess DocFile2PSFile of the doc2ps service which uses only functional parameters mentioned
in the matching-cut. There is no difference between the IOPEs in the service profile (see fig-
ure 5.7) and the IOPEs in the service model. Thus no inconsistencies are detected and fully
correspondence is given in this example.

Now, the semantic matching parts are completed and the overall correspondence can be
calculated. The matching-cut result is weighted with 60% and the service profile and service
model matching each with 20%. Each correspondence degrees are grouped in a tuple of (full,
maybe, none) correspondence percentage values. In the matching of the doc2ps and printing
service the following result tuple is calculated: The matching-cut concludes a full correspon-
dence (100, 0, 0), the non-functional parameter parts of the service profile matching did not
match (0, 0, 100), and the service model matching concludes a full correspondence (100, 0,
0). Weighted and summarized this results in (80, 0, 20) representing two very good matching
services. The first tuple component is greater than 75%. This means the service matching is
possible and therefore the matching process continues.

5.4.3 Syntactic Matching

The atomic processes are mapped to WSDL operations in the service grounding part of the
semantic OWL-S service description. The WSDL description is provided with a semantically
annotated service, but its information is also provided in the OWL-S service model implicitly
and already processed in the service model matching.

1 <!-- Messages definitions -->

2 <wsdl:message name=" DocFile2PSFile_Input">

3 <wsdl:part name=" PSFile" type ="& xsd;base64 Binary"/>

4 </wsdl:message >

5 ...

6 <!-- PortType definitions -->

7 <wsdl:portType name=" DocFile2PSFile_PortType">

8 <wsdl:operation name=" DocFile2PSFile_Operation">

9 <wsdl:input message ="tns:DocFile2PSFile_Input"/>

10 ...

11 </wsdl:operation >

12 </wsdl:portType >

Figure 5.9: WSDL operation of the doc2ps service

Here, we take the WSDL description as preparation of the Web service composition. The sig-
natures of the functional parameters with its naming and data types of both to be composed
Web services are compared. If the data type does not match, a transformation component is
needed. The output “PSFile” of the doc2ps service will be connected to the “Postscript” input
of the printing service. The respective WSDL operations and data types in WSDL are identical.
Figure 5.9 shows the WSDL operation of the doc2ps Web service.

86 Semantic Service Composition

5.4.4 Service Composition

After successfully checking the composeability of the doc2ps and the printing service the ac-
tual composition can be performed. The input parameters of the composed semantic Web
service are the sum of all inputs of all internal Web services without the inputs directly served
by outputs of other Web services. Due to the used input of the printing service in the com-
position the only input of the composed service is the “DocFile” file. The output parameters
of the composed semantic Web service are the sum of all outputs of all internal Web services
without the outputs directly served by inputs of other Web services. Here, the only output is
“location” of the printed document. Figure 5.10 shows the final composition of the doc2ps and
printing service. The SHESHAGIRI workaround realizes the actual composition and invocation
of the composed service.

Figure 5.10: Composed doc2ps+printing semantic Web service

5.5 Summary and Results

The aim of this chapter was to take a thoroughly annotated semantic Web service and under-
stand more of its inputs, outputs, preconditions, and effects. Traditional service discoveries
only search for dedicated services matching exactly the user’s service requests. With a service
composition we want to meet more users and serve better results using the full power of the
service’s semantic descriptions. The composition can be seen as preliminary step towards a
more precise, comprehensive, acceptable, and successful service matching.

With the concept of the OWL-S matchmaker we introduced a complex tool to check the
composeability of two semantically annotated Web services. It takes the inputs, outputs, pre-
conditions, and effects into account and reduces the amount of available information to the
essential parts with the matching-cut procedure. This allows a good performance and un-
ambiguous results towards a service matching. In [64] we tested several services and partly
complex scenarios. We discovered problems if services are imprecisely with their descrip-

5.5 Summary and Results 87

tions. For instance, complex data types like an ISBN number are difficult to model, due the
lack of modeling constructs in OWL-S. If an ISBN number is modeled with a xsd:string data
type it is difficult or the matchmaker to match this parameter exactly. Assuming extensive and
suitable modeled Web services satisfying matching results are guaranteed.

In the last part of this chapter we presented the concept appliance by describing a detailed
example of a doc2ps and printing service composition.

88 Semantic Service Composition

Semantic Service
Contextualization

6
The important thing in science is not so much to
obtain new facts as to discover new ways of
thinking about them.

Sir William Bragg

Service contextualization describes the process of integrating context information into ser-
vice description. This procedure is useful in several ways. As users might seek for any services
or service compositions that match their requirements, these generic queries generate rather
huge result sets. By using automatically provided context information describing the user’s
circumstances a lot of mismatches can be eliminated. Also by collecting context information
on the user and the service side, new facts and preferences can be concluded. Both aspects
have a significant impact on the quality of the matching results.

Chapter 4 describes a way to annotate semantic Web services thoroughly and mostly auto-
matically during the development process of a semantic Web service. This step is necessary
for a semantic service matching incorporating the meaning of a service. In chapter 5 we used
this annotation to compose services. This allows matching more complex service requests
only satisfiable through service combinations. Here, services from different domains with
matching semantic descriptions are composed. Therefore, much more service combinations
are available delivering a better request matching result. This section considers now the gen-
eral concept of contexts to improve the matching results further profiting of the additional
information contexts can deliver. We propose a contextualized service matching approach to
involve the benefits of contexts in semantic service matching. This approach promises a high
precision service matching result combining all three mentioned components.

6.1 Upper Context Ontology

In order to share knowledge provided by context an ontological representation is most advan-
tageous. Despite the fact, that an ontology describes the shared understanding of a specific
domain, usually different ontologies exist describing the same area. Heterogeneous sources

90 Semantic Service Contextualization

develop different knowledge representations sometimes due to ignorance of other existing
ontologies, sometimes because they do not agree on partial interpretations of the domain
knowledge.

Here, we present an extensible context ontology. Due to the evolving nature of context
aware computing and the huge variety of systems, sensors, and environmental facts a com-
plete formalization of all context information is infeasible. In other domains huge ontologies
are created [155] trying to cover all knowledge in a very small domain suitable for all potential
users. In [18] e.g. we defined a location ontology collecting the knowledge what a location is.
In the domain of context-aware computing this is impossible. Future developments can lead
to completely different structures and facts for contexts, which are today unthinkable. There-
fore, we developed a hierarchical structure of context ontologies to overcome this drawback.
At a very detailed level, several context ontologies exits to be flexible and extensible for future
developments. An upper-level context ontology is now able to connect these domain ontolo-
gies with a few very basic concepts all domains can agree upon. This procedure is very com-
mon in the ontology modeling area, but has not been applied successfully to context-aware
computing so far. Approaches like the CONON ontology [158] or the COBRA ontology [32] suf-
fer from inflexibility and too domain specific context modeling.

Figure 6.1: Overview of the context ontology modeling

We found, that “identity”, “time”, “location”, and “activity” are most fundamental context
concepts to capture the information about a situation. These primary contextual entities not
only form the skeleton of a context, but also act as indices into associated information. The
objectives of our context model include modeling a set of upper-level entities, and providing
flexible extensibility to add specific concepts in different application areas.

6.2 Problem Definition 91

In realistic context-aware environments, applications, systems, and services are usually
grouped as a collection of sub-domains for different environments such as home, office, or ve-
hicle. Context information in each sub-domain shares common concepts such as identity, lo-
cation, time, or activity that can be modeled using a general context model. While the detailed
features in the sub-domains differ significantly, the general context model is highly unspecific
and global, but common to all models below, that connections can be made. Therefore, the
separation of application domains encourages the reuse of general concepts, and provides a
flexible interface for defining specific knowledge.

Summarizing, the upper context ontology is a high-level ontology which captures general
features of basic contextual entities. The specific context ontology is a flexible and extensible
collection of domain-specific ontologies, which define the details of general concepts and
their features in each sub-domain. Figure 6.1 gives an overview of the ontology modeling.

The concrete upper context model is structured around a set of abstract entities represent-
ing the primary context types as well as a set of abstract subclasses, see figure 6.1. Each entity
is associated with properties (e.g. Person:name or Location:longitude) and relations with
other entities (e.g. locatedIn). The hierarchical structuring is done with the owl:subClassOf

property, thus providing the extensions. Figure 6.2 shows a partial definition of a specific on-
tology or an office application domain. In the specific context ontology concrete sub-classes
are defined to model the given environment closer (e.g. Building or Room for an indoor loca-
tion).

Figure 6.2: Partial definition of a specific context ontology for an office application

6.2 Problem Definition

The service contextualization integrates context information of any kind into the service de-
scription. Examples can consider identity information like the name, surname, or email ad-
dress of a person. Properties concerning time and location like a request sending time or the
current user’s position are often very useful in matching appropriate services. Also activity
contexts like a user is “reading emails in the office” or “watching a movie at home” help to find
more suitable services. The contextualized service matching approach uses this information

92 Semantic Service Contextualization

to improve the matching quality.
Gathering context information from the current environment of an user or service can be

done by sensors. Maintaining this information is essential, because sensor information is only
useful if correct and up to date. Often several services or several users share specific context
information. For example, a WLAN monitor can provide information about the activity and
location of several users in the area. As a context provider this information can be shared and
used in several applications and services. With the help of the previously described upper
context ontology it is possible to connect different context descriptions on a very high level.
Identifying corresponding concepts in heterogeneous context ontologies make it possible to
compare context information from different domains. Finally, the contexts help to perform a
high quality service matching.

6.3 Context Matching Approach

A clearly defined context ontology is helpful to describe user, system, service, and applica-
tion environments with a commonly agreed terminology. This thesis makes the approach
to use context information for service matching. A semantic Web service delivers annotated
information to classify and understand the service. With detailed knowledge of the service
interfaces provided with OWL-S individual service composition is possible. A service request
depends highly on the current situation of the requestor. Furthermore, the provider offer ser-
vices depending on the current environment. Both arguments involve context information.
For example, the request “print the document on a printer nearby” is difficult to fulfill. Con-
sidering semantic Web services together with their contextualized situation makes it possible
to accomplish this task. This section describes a service matching approach integrating con-
text information. Therefore, we call it contextualized service matching.

6.4 Context Matching Workflow

Figure 6.3 shows the schematic overview of the contextualized service matching process. In a
first step context information must be acquired reading for example data from low-level sen-
sors or special middleware facilities. After that this information has to be stored in a proper
way (e.g. ontologies) to maintain its information easily. Continually maintenance such as con-
sistency checks of the acquired knowledge is essential. To provide the context information to
other applications or services a knowledge sharing step is required afterwards. Here, the con-
text domain ontologies are assigned with a newly developed upper context ontology to share
the context information from different domains. In a further step service requestors and ser-
vice providers have to commit to a specific context domain ontology when describing their
requests and advertisements. A context ontology matching is performed afterwards match-
ing the corresponding concepts of the different ontologies. The approach is concluded by the
contextualized service matching using the share knowledge of the contexts.

6.4 Context Matching Workflow 93

Figure 6.3: Overview of the contextualized service matching process

6.4.1 Context Acquisition

Context is any information that can be used to characterize the situation of a person, a device,
or a non-computing object. To enable context-awareness, a system must provide users access
to context. The process of acquiring context from the physical environment is called context
acquisition and the first step in this approach.

One approach to enable systems to acquire context is to access directly low-level sensors. To
access contexts in the real world requires sensors, but thanks to the advance of sensing tech-
nology, a diverse type of contexts can be made available to users and other software systems.
Many mobile devices have user interfaces to directly access e.g. proximity range sensors or
touch sensors. From the proximity range sensors, the device can determine an approximate
distance between a physical object and the device itself. From touch sensors a device can
determine whether a user is holding it or not and how long. The variety of hardware sensors
is immense and adaptable to every situation imaginable. In [89] we introduced a collabora-
tion platform using WLAN access points as proximity sensors. WLAN devices in the range of a
specific access point are automatically registered and assigned to local collaboration groups.
Each access point has an internal table managing the connected devices holding device spe-
cific information and statistics. With SNMP1 this information is accessible and is retrieved and

1Simple Network Management Protocol

94 Semantic Service Contextualization

used by the collaboration system. However, regardless of which software system acquires the
raw data from low-level sensors, individual software applies their own interpretation of con-
texts. This approach has some potential problems. In order to extend an existing system to
consider additional contexts, the system must be modified and the context acquisition proce-
dure rewritten. Unfortunately, in most cases the acquisition procedure is tightly coupled with
the application implementation, thus such design discouraged code reuse.

Another approach is to acquire contexts from some kind of middleware infrastructures that
in turn interact with low-level sensors and users to acquire contexts. To overcome the tight
coupling of sensor accessing and application implementation, middleware approaches have
been proposed to facilitate context acquisitions [38, 91]. We introduced in [127, 128] the
location-based service platform LoBaSS with is a middleware for indoor location-based ser-
vices sensing WLAN signal strengths and determine a device’s position. The system hides the
actual location determination. A location component offers the client’s position to other ser-
vices for further processing. This encapsulation makes it possible to develop more general
and less specific location-based services and the location sensing technique can be replaced
trouble-free with other technologies and techniques. Middleware approaches separate low-
level sensing details from high-level implementations. However, in a dynamic environment
middleware approaches face knowledge consistency problems when supporting large-scale
systems. Furthermore, individual software modules can usually only access context through
their own context acquisition components. Because context sensed by low-level sensors can
be noisy and possibly inaccurate, inconsistencies and conflicting knowledge are highly pos-
sible [41]. Moreover, complex middleware infrastructures cannot be integrated into devices
with limited computing resources. Sensing context and interpreting context are often com-
putation intensive operations. Quite this category of small mobile devices is the target appli-
cation area for context-aware systems, but the resource-poor devices cannot accommodate
the demands of middleware infrastructures.

The third and best way for our purposes is to acquire contexts from servers which maintain
situational knowledge about the current environment and function as context providers. The
idea is to relieve the burden of sensing context and computing context completely from the
local clients by shifting these tasks into resource-rich servers. These servers appear as con-
text providers and are enable of reasoning contexts as their main advantage. A context server
can maintain contextual knowledge on the behalf of a service, software component, or soft-
ware agent. It aggregates low-level sensor information to deduce additional knowledge. A
context server also divides the physical world into specific domains where customized rea-
soning rules can be applied. A team of context servers can therefore provide contexts from
different domains and users or software applications can assign to one context server using
the contextual knowledge provided.

6.4.2 Knowledge Maintenance

The knowledge maintenance follows the knowledge acquisition procedure. Knowledge in-
tensive applications with constantly changing knowledge-bases require continually mainte-
nance [63]. This is definitely the case for context ontologies representing facts about highly
dynamic environments. For all knowledge acquisition techniques mentioned in the previ-

6.4 Context Matching Workflow 95

ously section a continually revision of the contextual knowledge is important. It ensures a
consistent and coherent knowledge-base which is fundamental for further processing and
upcoming conclusions.

Maintenance activities are triggered when inconsistency in the current ontology is detected
in the information adding process or when information is removed by a user, for example for
privacy reasons. A typical scenario where inconsistency may occur is a noisy physical envi-
ronment. The noise results in difficulties while sensing context. The acquired information
here my be incorrect and can cause an inconsistent knowledge-base. Another aspect how in-
consistencies may occur is that the stored knowledge does not accurately reflect the dynamic
changes in the environment.

The first step in this maintenance part of our approach is to detect inconsistencies. Once
detected, further actions can take place. Due to the context modeling via ontologies incon-
sistencies can be detected by regular reasoners or inference engines. We use the RACER rea-
soner [62] which works excellent with OWL ontologies and its performance is adequate for
these small domain context ontologies. For example, we model the rule that “a person cannot
be in two different rooms at the same time”. The fact “Alice is attending a meeting in room
F2.425” does not cause any problems. If another fact like “Alice is using the elevator in build-
ing Fuerstenallee 11” is added the knowledge-base becomes inconsistent. Here, the reasoner
detects the incorrectness of the ontology.

If inconsistencies are detected several actions can be applied ranging from avoiding incon-
sistencies, to diagnosing and repairing inconsistencies, to trying to reason in the presence of
the inconsistent facts, and to tracking the inconsistencies over the development history of an
ontology. [63] gives an nice overview of these techniques. We try to avoid inconsistencies in
the first place. A radical approach is to forbid all actions which lead to inconsistent ontologies.
The drawback here is to loose the dynamic properties which are typically for context-aware
systems and additionally the loss of expressive power of the ontology is substantial. The strat-
egy we consider here is to continually monitor the changes to an ontology and check the im-
pact of the change operation. Note, that an ontology can only become inconsistent by adding
facts due to its monotonicity [63].

If anyway an inconsistency is detected, it is localized by determining all unsatisfiable con-
cepts. This subset is the source of the problem. The conflict between the identified entities
has to be resolved. This task is difficult, because in most cases there is no unique way of re-
solving a conflict but a set of alternatives. Often, there is no logical criterion selecting the best
solution. Therefore, a common approach is to let the user resolve the conflict.

6.4.3 Knowledge Sharing

To execute the following two steps knowledge sharing and context association we use the con-
cept of context providers introduced in the context acquisition step. The context providers act
as abstraction of the different software components acquiring and providing context infor-
mation to specific applications. Here, a context provider acquires information from several
sensors, applies it to the internal ontological context model, and continually refreshes the
knowledge-base.

This opens the possibility for several applications and services to use the same context

96 Semantic Service Contextualization

model and due to the semantic contents share the same context interpretation. The context
provider holds information about a specific domain stored in a local ontology. This ontology
takes care of the semantic interpretations shared in this domain. If two applications use the
same context provider application to application data exchange is very easy. The information
is interpreted in the same way and therefore no semantic mismatching arises. We call this
procedure knowledge sharing.

6.4.4 Context Association

A close related step and a consequently continuation of this idea is the process of freely con-
text association. A typically publisher and subscriber scenario is used here. Several context
providers offer their context information and interpretation for specific domains. Of course
other context providers can specify the same information in the same domain differently. In
this case two context providers offer the same information, but serve different interpretations
and modeling approaches. Applications or services can then subscribe to these providers us-
ing the offered data and semantic interpretations which are most suitable to their purpose.
By this context association the knowledge is shared among several entities, but the domain
specific properties and variety in interpretations are kept alive.

6.4.5 Context Ontology Matching

A side-effect resulting from the previously context association step is the generalization of the
context providing. Instead of two services or applications share the same context provider,
we can use this technique for general service matching. A service requestor can, in the same
way as a service provider, subscribe to a context provider and therefore associate the request
like a provider with a domain specific context description. Again, the context providers can
be identical, or different to suit the intended interpretations and models.

In the first case, the context providers are identical. Here, no further context ontology
matching is needed. The underlying ontologies for the service provider and the service re-
questor are the same. They share already the same terms, concepts, and interpretations of
their contextual information.

In the second case, the context providers and therefore the ontologies to describe the con-
textual information for service provider and service requestor are different. Similar to the se-
mantic service composition procedure during the composition technique mentioned in the
previous chapter the approach from EHRIG and SURE [44] is used to match both ontologies.
As result, a new ontology is created containing the shared concepts of both ontologies. Due
to the configuration of the procedure of the ontology comparison, the result is more or less
successful.

We evaluated again a parameterization with the “DecisionTree” strategy and an iteration
count of greater than 15 iterations as most promising. Unfortunately, the context ontologies
can be relatively incompatible. To manage this situation we introduced the upper context
ontology in section 6.1. The general concepts in this ontology act as connectors between two
domain ontologies. A domain context ontology A is compared with the upper ontology with
the ontology matcher. The same procedure is done with the second ontology B and the upper

6.4 Context Matching Workflow 97

ontology. At last, both results are compared with the ontology matcher resulting in a set of
shared concepts of both ontologies A and B.

With this procedure it is possible to find the shared concepts of a service requestor and a ser-
vice provider even if they use different context providers with different modeling approached
to describe their contextual information.

6.4.6 Contextualized Service Matching

The final step in this procedure is the actual usage of the contextual information for the ser-
vice matching. The preliminary steps aim at constructing the same ontological structure of
the context information. They managed to build a connection through the upper context on-
tology between both service descriptions to be compared. Furthermore, they now share the
same terms and concepts still with different properties.

The matching works in a sequential order to compare the available property information.
The knowledge sharing and context association steps delivers an ontology for the service re-
quest and an ontology for the service advertisement, both connected to the upper context
ontology working as synchronization points. The service matching starts on the highest level
in the upper ontology. Here, the four primary context types act as nodes separating the below
concepts in four branches. The matching process picks one of it, e.g. “location” and tries to
match the information contained in the properties belonging to this concept in both ontolo-
gies. This comparison works like in the semantic composeability test in the previous chapter.
Due to the context association process corresponding service request and service advertise-
ment descriptions are lexicographically identical.

If this high-level concept has a relationship to other concepts more information in this
branch is available. The matching proceeds with the next concept by following the relation-
ship descriptions to the next concept and compares its properties with the corresponding
concept in the other ontology. This method is repeated until all concepts in this branch are
processed. To avoid circles and repetitions a list of already processed concepts is memorized.

If the algorithm picks for example the “location” concept of the upper context ontology,
the succeeding concepts are described in domain ontologies (e.g. an office domain ontology)
and connected via relationships (e.g. “Building” with “inBuilding”). A further concept in the
process is for example “Room” with the “hasRoom” relationship or “Floor” with “hasFloor”
which are equally leveled in the ontology modeling, but processed sequential here. At each
matching step the concept’s properties are compared.

Which concepts are considered for the service matching depends on the available informa-
tion and the ontology modeling. Regardless how the information is encoded and how much
information is available, the shared ontological representation ensures only available and cor-
responding concepts described in both participating ontologies are used and compared with
each other. In both cases, either successful or unsuccessful matching one concept in a sin-
gle branch of the ontology, the comparison continues until all corresponding concepts are
processed.

After comparing every available context information from both ontologies, the overall
matching degree is calculated. This is done by summarizing the number of successful
matched properties. Each match is multiplied with its level. The level is defined as shortest

98 Semantic Service Contextualization

path to one of the four high level concepts in the upper context ontology. E.g if two properties
match at the highest level at the “location” concept, it is multiplied times one. If properties
on a lower level, e.g. “Building” the multiplier is two, matching “Room” properties are on level
three. The same procedure is done with the remaining branches identity, time, and activity.

The matching of one service request with one service advertisement results due to this pro-
cedure in a single number. Comparing several advertisements with the same request can
therefore be ranked easily. The highest ranked service is the best matching service or the
request.

6.5 Concept Appliance: Printing Service Contextualization

In the domain of printing services the following scenario of location-based printing service
can be applied again to illustrate the contextualizing service matching approach. A user op-
erates with a notebook using a WLAN network device. When looking for a service to print a
postscript document on the “nearest network printer available” different context information
is used. The service request uses the context information from a WLAN context provider in
the WLAN network determining the current location of the notebook within the building. The
printing service also uses the locations of all printers in the building provided with current sta-
tus information from the printer context provider. When looking for best matching services
to the printing request the context ontologies of both providers are linked together and com-
mon concepts are identified. Thus, the location information in the request and the service
advertisement can be used to specify the nearest printer available.

6.5.1 Context Acquisition

The first step of the contextualized service matching concerns the process of context acquisi-
tion. From the three possible approaches (directly access low-level sensors, use middleware
infrastructure for sensors, use abstract context providers) to acquire contexts the printing ex-
ample chooses the context providers. Here, a WLAN context provider holds information about
the connected devices in the wireless network. Technical information like the IP and MAC ad-
dresses are provided, as well as activity issues like current routing information. A connected
positioning system like the component in the LoBaSS system (see chapter 7) can determine
the current position of an active device due to signal strength measurements.

On the services side the printing service uses a different context provider. The printer con-
text provider holds static information about each network printer in the building. The printer
names, types, and capabilities e.g. duplex or color are available in the provided context. To
each printer its location is specified via concrete coordinates of the building (e.g. (23.3,
56.7, 7.3)) and an informal text description (e.g. in room F2.510).

6.5.2 Knowledge Maintenance

The highly dynamic environment of mobile WLAN devices forces the next step of knowl-
edge maintenance. The location information is updated recently to receive accurate service
matchings. The knowledge maintenance step ensures here the consistency and coherence

6.5 Concept Appliance: Printing Service Contextualization 99

of the knowledge-base. Maintenance activities are activated when inconsistencies are de-
tected. So the first step is to detect inconsistencies. For example the location information
of a specific WLAN device is stored in the knowledge-base: “WLANDevice=nb-kao5 isLocate-
dAt PosXZY=(5.3, 20.7, 11.5) atTime Time=Tue Sep 7 16:58:05 CEST 2006”. Due to sig-
nal noise the positioning can be incorrect. E.g if the same device is located several ten meters
away only two seconds later. The device cannot move so fast and therefore the second loca-
tion must be wrong. Another example is that one device cannot be in two different places at
the same time. These rules have to be specified and can be controlled by a regular reasoner.
Figure 6.4 shows an example of such a rule in OWL restricting the cardinality of location to
one. Inconsistencies can be avoided, ignored, diagnosed and repaired, or even tracked over

1 <owl:Class rdf:ID=" WLANDevice">

2 <rdfs:subClassOf >

3 <owl:Restriction >

4 <owl:onProperty rdf:resource ="# isLocatedAt "/>

5 <owl:cardinality rdf:datatype ="& xsd;nonNegativeInteger">

6 1

7 </owl:cardinality >

8 </owl:Restriction >

9 </rdfs:subClassOf >

10 </owl:Class >

Figure 6.4: Consistency rule in OWL

the deployment history to be resolved later. In this example we try to avoid inconsistencies by
defining restrictive constraints such as the cardinality of the WLANDevice class.

6.5.3 Knowledge Sharing and Context Association

The WLAN and printer context providers acquire information from their associated sen-
sors, apply them to their internal ontological context model, and continually refreshing their
knowledge-bases. Any service or application can freely associate with these context providers
to use the provided information such as device locations or printer status. Due to the fact
that multiple applications or services can apply to the same context provider, its knowledge is
shared among each other.

For example the location concept with relations to coordinates, rooms, floors etc. provided
by the ontology of the WLAN context provider can be used by the printer service and the
location-based printing service together.

6.5.4 Ontology Matching

The step of context ontology matching depends on how many context providers with different
context ontologies are involved in the service matching process. Here, the two WLAN and
printer context provider specify their own ontologies to model the context information locally.
Whatever context provider the user associates, the second way of ontology matching with

100 Semantic Service Contextualization

separate ontologies has to be chosen. Here, similar to the ontology matching in chapter 5 the
ontologies are compared and the corresponding concepts in both ontologies are identified.
Now, shared context concepts between service requestor and all context providers are found.

6.5.5 Contextualized Service Matching

The last step in this procedure of matching contextualized services is the actual service match-
ing. The process starts to compare the available property information of each corresponding
ontology concept. For example the concept “location” is one synchronization point in the
upper context ontology of both context ontologies from the WLAN and the printer context
provider. If the service requestor specifies the location of the user “in room F2.425” due to the
WLAN context provider, the same location can be identified in the printer context using the
very same location. Here, the printer “lw-f2-kao” is in the same room “F2.425” and therefore
the nearest available printer.

6.6 Summary and Results

In this chapter we have described semantic service contextualization. This process of inte-
grating context information into service descriptions and therefore into the service match-
making process is useful and successful in several ways. Firstly, generic queries generate huge
result set which can be reduced easily filtering irrelevant matchings. Secondly, mismatches
can be eliminated, and thirdly new facts and preferences about the user and the service can
be concluded.

We introduced an upper context ontology in order to combine different context ontologies
from different domains in the service matching process. The upper ontology specifies the
major concepts identity, time, location, and activity where all other context concepts can be
subsumed. This allows comparing different context ontologies from different sources. The
context information becomes available through the process of context acquisition where low-
level sensors can be accesses directly. We suggest the concept of context providers acting as an
abstraction providing context information to users and services. By associating the provided
context users and services can share their contextual knowledge. This is used to increase the
quality of the service matching.

In the last part of the chapter we presented the concept appliance by describing a detailed
example of a printing service contextualization.

Prototype and Evaluation 7
A complex system that works is invariably found to
have evolved from a simple system that worked.

John Gall

In the previous chapters we introduced three major approaches to improve the quality of
matching semantically annotated Web services. This is achieved by thoroughly annotating
services, checking for composeability possibilities and integrating context information into
the matching process. In this chapter we discuss the experiences gained and the lessons
learned while developing and implementing the prototype CoBaSS which realizes a context-
based service system. An evaluation of the system measuring the matching quality improve-
ment we achieved is difficult. We decided to show the operability of our approach by imple-
menting a prototype and apply it to a general test set. No standard test collection for semantic
Web service matching exists yet, but the used OWLS-TC2 test set [93] provides over 500 ser-
vices from many domains and is commonly agreed to be a good basis. It gives a good impres-
sion for a real-world service matching and the possibility to compare it to other approaches.

7.1 Prototype

To implement a prototype, we started developing location-based services as a specialized, but
good example for context-based services. We realized the multiple mentioned location-based
printing service and many other location-related services. To advertise and manage these
services the Location-based Service System (LoBaSS) [127–129] was developed. It provides a
platform for universal location-based Web services and uses WLAN technology to locate mo-
bile devices with different capabilities, especially indoors. The system was used to make own
experiences in WLAN positioning algorithms and served as framework for complex location-
based Web services. More details of the system together with further extensions can be found
in [127–129]. To gain detailed results in the field of semantic service matching for this work,
LoBaSS was extended and modified to handle context-based and context-aware Web services.
Furthermore, the OWL-S composition checker and interfaces to context providers were inte-
grated. The resulting CoBaSS system is presented in the following section.

102 Prototype and Evaluation

7.1.1 CoBaSS - A Context-based Service System

CoBaSS consists of several components with different functionality; a service-manager,
service-matcher, special services like a location- and a map-server, context providers, Web
services and a client application. The main component is the service-manager. It includes
a Web-engine for service presentation and user interaction via standard Browsers. A small
client application forms another component necessary to make service requests including
context information like the current location. We used a signal strength positioning tech-
nique to determine the location. The transformation from signal emission measurements to
locations in a coordinate system is done in the location-server component. The map-server
is another useful part of the architecture generating maps showing the location of the device
and surrounding objects in the close-by vicinity. The service-matcher finds suitable services
to client requests from the pool of known services. Interfaces to general context providers re-
alize connections to clients, services, and the main manager component integrating context
information in the whole process. Several encapsulated Web services are administrated by the
service-manager and use its contextualization and organization features. These services use
the provided context and location information. Figure 7.1 gives an overview of the compo-
nents which are described in more detail in the following paragraphs.

Figure 7.1: CoBaSS system overview

The service-manager implements the central interface to the system and dispatches all
main events from user registration, over service management, to communication bridging.
This component includes a Web-engine for different purposes. First, it contains a Web server
to advertise the entire system and provides a central portal via standard Browsers for user

7.1 Prototype 103

interaction. It also acts as registry and gateway to the system. It forwards communication
requests to the relevant services and organizes the further client service communication in
sessions. A device-dependent presentation for the different device capabilities (e.g. notebook,
PDA, or mobile phone) is created with the help of different XSL1-stylesheet for different device
classes.

The location-server implements the core for the position estimation and holds a database
with reference values from offline received signal strength measurements. The realized fin-
gerprinting technique combines attenuation and scene analysis techniques to determine the
devices location as main context information. Therefore, the location-server receives a vector
from the client application with current values of the received signal strength to all available
WLAN access points in range. This is compared with the offline values by an enhanced algo-
rithm to estimate the client’s positions. As result, the relative location in form of coordinates
is returned to the service-manager for further processing. More detailed descriptions and the
enhanced algorithm can be found in [129].

The map-server component is on the one hand an example for the integration of a basic ser-
vice into the flexible system architecture. On the other hand it is a frequently used service use-
ful for nearly every other service in the system due to the nature of LBSs, namely illustrating
positions. The map-server provides the system with the possibility to generate dynamically
multi-layered vector-maps with miscellaneous objects and their positions included. Rooms,
floors, devices with dynamic properties and users can be displayed.

The context providers gather the location information from the location server and addi-
tional context information from all major components. Each context provider holds the in-
formation regarding local ontologies and provides upon request detailed context information
of services and clients.

The service matcher integrates the new approaches of this work by realizing the OWL-S ser-
vice matcher to check for possible service compositions. Furthermore, it contains the con-
textualized service matcher, which regards the requested and current context information of
client and service using the information from the context providers. The service matcher de-
livers a result of the best matching services to the service-manager, which presents the result
to the requestor.

The client itself is usually a mobile device equipped with a wireless LAN communication
unit. Due to the broad variety of devices with very differential display capabilities only weak
requirements to hard- and software are intended by CoBaSS. The system only needs a Browser
which is almost always present in this class of devices. Therefore, any service can display and
interact with the user via standard visual capabilities of a Browser. So far client compilations
for Windows, Linux, Mac, and WindowsMobile operating systems exist.

At last the system provides an open interface for location-based services using the systems’
features. The basic communication between user and service is encapsulated by the service-
manager. The location-server delivers the user’s position upon service request and the maps
created by the map-server can easily be integrated into a new service. So far a location-based
print service [127], file-sharing service [128], and public transportation information service
[128] have been implemented.

1Extensible Stylesheet Language

104 Prototype and Evaluation

7.1.2 Environment

The intentions for the CoBaSS system were at first to make own experiences with WLAN po-
sitioning algorithms realizing indoor location-based services. At the beginning the RADAR

system and its fingerprinting algorithm described in [10, 11] was taken and implemented,
because it seemed most suitable and promised good positioning results. Unfortunately, the
original RADAR itself was tested and evaluated in a very small and homogenous environment.
This artificial environment is only sufficient for first experiences, but not for true applica-
tions. To gain experiences towards a real-world realization, we used the Fürstenallee building
of the University of Paderborn for the implemented prototype representing a typical applica-
tion scenario in an office or industry building. Only by doing this, effects such as the antenna
type dependency and floor to floor interferences lead to algorithm improvements compared
to the original RADAR algorithm.

The Fürstenallee 11 building accommodates most parts of the computer science depart-
ment of the university distributed over all three floors. The buildings base is about 53m x
97m. The first and second floor are with 53m x 56m smaller, resulting in an overall expanse of
approx. 11000 m2. The building is equipped with thirteen WLAN access points covering the
entire building (four on each floor, one on the roof). Peculiar is the center of the building. An
atrium is drawing through the entire building from the base floor to the top which results in
difficulties for the positioning approach. Here, access points from many floors and from far
away can be received with strong and fluctuating signals. Figure 7.2(a) shows the building and
7.2(b) the atrium.

(a) Fürstenallee building (b) Fürstenallee atrium (c) Floorplan with grid

Figure 7.2: Testenvironment: Fürstenallee building

For a fingerprinting positioning approach a precise acquisition of the signal space is indis-
pensable. A homogenous 2.4m x 2.4m grid of measurement points was chosen resulting in
approx. 1800 reference points for the entire building. Figure 7.2(c) illustrates the measure-
ment grid. By visualizing the signal space for one access point in figure 7.3 the decision for
a fingerprinting approach is confirmed without any doubt. The chaotic signal propagation is
obvious. It is not possible to calculate the exact signal propagation considering all obstacles
and effects in the building.

7.1 Prototype 105

(a) AP-F2425 signal on floor F2 (b) AP-F2425 signal on floor F1

Figure 7.3: Signal strength for the same access point on different floors

To compare the used environment to others, relevant and objective characteristics can be
determined. More meaningful than coverage area, grid size, or quantity of access points are
properties such as the access point density, mean access point distance, access point range
or access point coverage area. The access point density measures the ration between quantity
of access points and overall coverage area. The mean access point distance is defined by the
average distance between two neighbored access points. Finally, the access point range and
coverage area can easily be determined. All these values are strongly related to the algorithm’s
performance and are calculated in table 7.1 below for the Fürstenallee environment and the
original RADAR environment. These values clarify the much more difficult Fürstenallee envi-
ronment which lead to several smaller, but in the sum significant changes in the fingerprint-
ing algorithm used for the positioning. The RADAR algorithm achieved an accuracy of 3.0m to
4.3m, our changes achieved also a good average accuracy of 3.6m.

Characteristic CoBaSS RADAR

coverage area ca. 11000 m2 ca. 980 m2

number of access points 13 3
number of floors 3 1
number of reference points 1800 70
access point density 0.0012 ap/m2 0.0030 ap/m2

mean access point distance 28 m 24 m
access point range 40 m 30 m
access point coverage area 220 m2 320 m2

Table 7.1: Environment characteristics of the Fürstenallee building and the RADAR site

106 Prototype and Evaluation

7.1.3 Fingerprinting Algorithm

CoBaSS implemented at first the RADAR algorithm described in [10, 11]. Poor positioning re-
sults of more than 12m inaccuracy lead to adaptations, extensions and changes in the algo-
rithm. Reasons for the poor performance are mainly the special circumstances in the applied
real-world environment mentioned in the next paragraph. Implementation details are pre-
sented here. The originally RADAR algorithm can be divided into an off-line and an on-line
phase.

During the off-line phase the entire working area of the positioning system probed with ref-
erence measurements. With regular intervals between two reference points a grid of measure-
ments is created representing the signal space of the radio signal propagation. This so-called
radio map contains at each point the relative coordinates of the physical space and the signal
strengths to each access point and therefore the signal space. These information are stored in
a database.

In a second phase, the on-line phase, current signal strength measurements on a mobile
device at a specific location are determined and compared to all reference points. A metric
is used to compare the multi-dimensional vectors in signal space. The best matching refer-
ence point according to the metric is computed and its assigned physical location is returned
as result of the location estimation for the mobile device. Figure 7.4 illustrates the general
procedure of the algorithm with both phases and steps towards a location estimation.

BAHL ET AL. themselves introduced an enhancement in [11] considering more than only
one best matching reference point. By triangulating the k best matches the performance in-
creases significantly. Our experiments verify this result. With k = 5 the best results were
achieved. Taking this setting as basis CoBaSS make additional enhancements and changed in
several ways in both phases.

Figure 7.4: RADAR algorithm and positioning procedure

7.1 Prototype 107

First, as mentioned in section 7.1.4 the device orientation has an influence on the signal
strength measurement, but it is relatively low. To reduce the amount of measurements this
action was abandoned. Instead the grid interval between two reference points is chosen in a
way that the resulting positioning accuracy is still accurate enough for the system compared
to the expenses of conducting more measurements. In [129] we showed, that the positioning
accuracy is in the order of the grid spacing size. The grid layout is shown in figure 7.2 c).
The second enhancement is, that at each point the measurement is repeated several times to
eliminate dynamic signal irritations. Unrealistic values are erased and the mean value of the
remaining measurements is determined as the signal strength for the relevant reference point.

Major changes were also applied in the on-line phase. The device positioning happens by
assigning the position of the best matching reference point to the current device position.
To determine the best matching point a metric compares the multi-dimensional signal space
tuples of the current device SSc with all reference point tuples SSx, x ∈ R in the signal space
R. RADAR uses a simple Euclidian distance metric for this purpose.

dEuklid = min
x∈R

√
(SSx,1 − SSc,1)2 + (SSx,2 − SSc,2)2 + · · ·+ (SSx,n − SSc,n)2

where (SSc,1, SSc,2, . . . , SSc,n) is the tuple of the current device signal strength measurements
to each access point i = 1 . . . n and (SSx,1, SSx,2, . . . , SSx,n), x ∈ R are all tuples in the database
(reference points x in signal space R. Our experiences showed that this metric is inappropri-
ate in most situations. It often occurs that the measurements on the mobile device are less
precise. Weak access points are often not received and therefore they are = 0 in SSc, but 6= 0
in SSx because the reference measurements were performed with higher quality equipment.
Considering this, CoBaSS uses a weighted Euclidian distance with scalars α and β weakening
the importance of a specific tuple component if one of the comparing components is equals
zero.

dweightedEuklid =

 n∑
i=1

(SSx,i − SSc,i) if SSx,i, SSc,i > 0 or SSx,i, SSc,i = 0

α(SSx,i − SSc,i) if SSx,i = 0 and SSc,i > 0

β(SSx,i − SSc,i) if SSx,i > 0 and SSc,i = 0

1
2

The last changes were made due to the fact that in the Fürstenallee building as test envi-
ronment has more than one floor and an atrium. Determining a mobile device’s position very
close to the atrium causes often high inaccuracy. The estimated position switches between all
floors according to the similar signal strength in the open space near the edge of the atrium.
This problem is solved by using information from the k best matches result. It the majority of
all k matches are on one floor, the estimated position is mapped to this floor. With k = 5 this
works quiet good. This concerns only the z-coordinate, x- and y-coordinates are calculated
via triangulation of all k best matches as before.

The next section presents the results of the modified location estimation approach in
CoBaSS. Since the original RADAR algorithm performed poorly with an inaccuracy of 12 me-
ters, an average accuracy of 3 meters in CoBaSS is better than expected handling a difficult
application area.

108 Prototype and Evaluation

7.1.4 Positioning Results

Besides the resulting accuracy of the applied positioning technique presented in this para-
graph, other results were evaluated during the experiments. For instance, observed character-
istic WLAN effects have significant influence on the positioning technique. These influencing
effects are presented in 7.1.4.

Positioning Accuracy

The primary result for a positioning system like CoBaSS is the accuracy of the positioning.
In the environment presented above, several validation points were selected. At least 5% of
the amount of reference points on each floor was taken as validation points to determine the
accuracy. They are spread randomly over each floor, but it was assured, that “easy” positions
to locate (e.g. in the middle of a room or corridor) were considered, as well as “hard” positions
(e.g. in niches or corners). For each validation point several location estimation attempts were
performed. As result the average accuracy is about 3.12 meters for the whole building. The
middle floor F1 performed best, due to the central location with access points on the next
floor above and below. Floor F0 performed worst, because the area is twice as big as the other
floors holding only the same number of access points. Table 7.2 shows the overview of the
results.

Floor Validation Points Deviation
average deviation on floor F0 51 3.58 m
average deviation on floor F1 26 2.60 m
average deviation on floor F2 28 3.41 m
overall accuracy 104 3.12 m

Table 7.2: Average CoBaSS positoining accuracy

Influencing Factors

The WLAN signal attenuation is suitable as positioning technique. In [129] we analyzed this
suitability closer and detected the usual radio signal effects such as attenuation, shadow-
ing, reflection, refraction, and scattering. With the implementation of the CoBaSS system
other, unforeseen influencing factors had to be examined. In [129] we observed that the sig-
nal strength at the same place in the building varies over time. The variation lies below the
tolerance of the signal strength measurement (1-3 dBm2).

Floors, ceilings, walls or their explicit absence in the case of doors, windows, or atriums are
static obstacles in signal propagation, but produce stable and reproducible signal strength at
the same place. The signal strength definitely is a function of the distance to access points (see
figure 7.5 (a)) as introduced in [10]. Likewise changes in atmospheric conditions like humidity,
temperature, or cellular respiration (range of an access point changes with the number of

2dBm is the ratio between two measurements of electrical power (decibel) referenced to 1 mW

7.1 Prototype 109

connections) occur in WLAN networks [124], but could not be verified to have a significant
effect on the signal strength. The effects were also below signal tolerance, see figure 7.5 (b).

Dynamic obstacles are for instance humans passing by who have a significant signal influ-
ence. This can also be recognized by the orientation of the device’s antenna. In one direction
the user is in the line-of-sight between antenna and the access point, in another direction the
line-of-sight is not disturbed. The CoBaSS system manages this influence by collecting sev-
eral data sets of signal strength measurements in a short period of time. Deleting runaway
measurements and taking the average signal strength for the short interval eliminates most
dynamic signal displacements.

(a) Signal strength to distance ratio

(b) Long-time WLAN measurement

Figure 7.5: Signal strength measurements

110 Prototype and Evaluation

The product diversity and manifoldness of WLAN device manufacturers is enormous. The
different chipsets on the market integrated by the manufacturers and even devices identical
in construction receive the WLAN signal at the same place in different signal strengths. The
construction type of the WLAN antenna has also a significant influence on the received signal
strength. Three major types can be distinguished. First, mobile devices usually have net-
work device connected to a USB3 or PCMCIA4 slot. These kinds of devices have an integrated
small antenna. For the second type, notebooks and similar devices usually have integrated
antennas along the device’s display. These antennas are larger compared to the expansion
cards and have better quality properties. The best results can be achieved with the third type,
stand-alone antennas connected to the device. They are usually omnidirectional and have low
damping characteristics [124]. Although different devices result in different received signal
strengths the measurements with the same device at the same place are reproducible [129].
The CoBaSS system takes this into account by implementing the fingerprinting algorithm only
with relative signal strength values. To determine the difference between reference values and
current WLAN device measurements the algorithm compares only the relative distance in sig-
nal space and not absolute values. Table 7.3 summarizes all influence factors, opposes the
significance of the effect, and sketches the CoBaSS adaptation to compensate the effect.

Influence Factor Significance CoBaSS Adaptation
static obstacles (walls etc.) high fingerprinting algorithm
dynamic obstacles (e.g. humans) low average signal computation
atmospheric conditions none no adaptation
cellular respiration none no adaptation
antenna orientation medium no adaptation
antenna construction type medium relative comparisons
device manufacturer medium relative comparisons

Table 7.3: Influence Factors and adaptations of CoBaSS

7.2 Evaluation

The three major approaches proposed in this work improving the matchmaking of seman-
tically annotated Web services need to be evaluated to be compareable to other works. The
OWL-S matchmaker for the composeability checks as well as the contextualized matchmak-
ing procedures were integrated in the matchmaking component of CoBaSS. As test set we use
the OWLS-TC2 [93] developed by the DFKI5 which is available as open source6. So far, no
standard test collection for OWL-S service matchmaking does exist. Other matchmaking ap-
proaches usually use small self-created test scenarios which make them difficult to compare
objective. The OWLS-TC2 is the best alternative towards the goal of independent evaluation

3Universal Serial Bus
4Personal Computer Memory Card International Association
5German Research Center for Artificial Intelligence
6http://projects.semwebcentral.org/projects/owls-tc

http://projects.semwebcentral.org/projects/owls-tc

7.2 Evaluation 111

and compatibility containing over 500 real-world semantic Web services from different do-
mains.

7.2.1 OWL-S Test Collection

The OWLS-TC2 test collection is available in the second version from December 2005. It pro-
vides 576 semantic Web services written in OWL-S 1.1. An OWL-S 1.0 description is also avail-
able for backward compatibility. The services origin from seven different domains, namely
education, medical care, food, travel, communication, economy, and weapon. The majority
of these services were retrieved from public IBM UDDI registries, semi-automatically trans-
formed from WSDL to OWL-S, extended with appropriate input and output concepts, and
then stored locally for the test collection. The collection also provides a set of 28 test queries
each of which is associated with a relevance set of 10 to 20 services. OWLS-TC2 works locally
installing a simple local Web server with all services, descriptions, ontologies, and queries in
subdirectories. This is necessary, since all ontologies expected to be available locally by sev-
eral semantic matchmakers, and problems with incorrect paths to access ontologies can thus
be avoided.

The services in the collection underlie some restrictions. The process model contains
atomic processes only. Groundings in WSDL are not included and the service profiles are
kept minimal restricted only to ServiceName, textDescription, hasInput, and hasOutput. Ef-
fects and preconditions are not described. Unfortunately, some of this restrictions effect the
matching approaches in this work, but their influence is appreciable. The number of services
and queries are related to each of these domains are as follows:

Domain #Services #Queries
education 135 6
medical care 52 1
food 25 1
travel 106 6
communication 29 2
economy 206 11
weapon 25 1

Table 7.4: Number of domains, services, and queries in the OWLS-TC2 collection

The collection contains 28 queries representing different users requesting services. The
queries are formulated via OWL-S service profiles and specify certain inputs and outputs rel-
evant to the user. For example query number four represents a user who is interested to know
the price of a car and a bicycle and is specified in the file 1personbicyclecar_price_service.
owls. The query describes two inputs (CAR and 1PERSONBICYCLE) and one output PRICE in-
cluding all necessary ontology links and an atomic process description. Further details to all
queries and services can be found in [93]. Table 7.5 states all specified queries and their cor-
responding domains.

1personbicyclecar_price_service.owls
1personbicyclecar_price_service.owls

112 Prototype and Evaluation

No. Domain Query
1 economy car_price_service.owls

2 economy book_price_service.owls

3 economy dvdplayermp3player_price_service.owls

4 economy 1personbicyclecar_price_service.owls

5 economy bookpersoncreditcardaccount_price_service.owls

6 economy maxprice_cola_service.owls

7 economy bookpersoncreditcardaccount__service.owls

8 economy shoppingmall_cameraprice_service.owls

9 economy recommendedprice_coffeewhiskey_service.owls

10 economy userscience-fiction-novel_price_service.owls

11 economy preparedfood_price_service.owls

12 food grocerystore_food_service.owls

13 communication title_comedyfilm_service.owls

14 communication title_videomedia_service.owls

15 education researcher-in-academia_address_service.owls

16 education university_lecturer-in-academia_service.owls

17 education governmentdegree_scholarship_service.owls

18 education publication-number_publication_service.owls

19 education novel_author_service.owls

20 education country_skilledoccupation_service.owls

21 medical care hospital_investigation_service.owls

22 travel surfing_destination_service.owls

23 travel surfinghiking_destination_service.owls

24 travel geographical-regiongeographical-region_map_service.owls

25 travel surfingorganization_destination_service.owls

26 travel citycountry_hotel_service.owls

27 travel geopolitical-entity_weatherprocess_service.owls

28 weapon governmentmissle_funding_service.owls

Table 7.5: List of queries in the OWLS-TC2 collection

The queries in the collection are each associated with a set of 12 to 21 services that are sub-
jectively defined as “relevant” or “not relevant”. A service is judged “relevant” if any piece of
it is relevant, regardless of how small the piece is in relation to the rest of the service descrip-
tion. Table 7.6 shows the set of relevant services of the test collection for query number four.
The test set also provides string similarity values calculated for each service in the set to each
query. These values give a clue on how a non-semantic matchmaker will perform. The seman-
tic descriptions can be used and compared lexicographically without any semantic meaning.
Three different similarity metrics used in the test set are Cosine (Cos), Extended Jacquard (EJ),
and the Jenson-Shannon (JS) similarity metric [94]. These are the most prominent string sim-
ilarity metrics for pure text-based information retrieval.

car_price_service.owls
book_price_service.owls
dvdplayermp3player_price_service.owls
1personbicyclecar_price_service.owls
bookpersoncreditcardaccount_price_service.owls
maxprice_cola_service.owls
bookpersoncreditcardaccount__service.owls
shoppingmall_cameraprice_service.owls
recommendedprice_coffeewhiskey_service.owls
userscience-fiction-novel_price_service.owls
preparedfood_price_service.owls
grocerystore_food_service.owls
title_comedyfilm_service.owls
title_videomedia_service.owls
researcher-in-academia_address_service.owls
university_lecturer-in-academia_service.owls
governmentdegree_scholarship_service.owls
publication-number_publication_service.owls
novel_author_service.owls
country_skilledoccupation_service.owls
hospital_investigation_service.owls
surfing_destination_service.owls
surfinghiking_destination_service.owls
geographical-regiongeographical-region_map_service.owls
surfingorganization_destination_service.owls
citycountry_hotel_service.owls
geopolitical-entity_weatherprocess_service.owls
governmentmissle_funding_service.owls

7.2 Evaluation 113

Service Cos EJ JS OWLS- OWLS+
MX4 Context

1personbicyclecar_price_service.owls 0.98 1.00 1.00 exact match
1personbicyclecar_price_Kohlservice.owls 0.97 0.96 0.98 exact match
1personbicyclecar_price_TheBestservice.owls 0.97 1.00 1.00 exact match
auto1personbicycle_price_service.owls 0.97 0.96 0.97 plugin match
bicyclecar_priceyear_service.owls 0.81 0.72 0.81 plugin match
carcycle_price_service.owls 0.95 0.95 0.97 plugin match
carbicycle_recommendedprice_service.owls 0.93 0.89 0.94 plugin match
cyclecar_pricetaxedprice_service.owls 0.93 0.84 0.95 plugin match
cycle1personbicycle_price_service.owls 0.71 0.63 0.75 plugin match
cyclecar_recommendedpriceineuro_service.owls 0.90 0.87 0.92 subsumes match
1personbicycle4wheeledcar_price_service.owls 0.97 0.96 0.97 failed match
4wheeledcarbicycle_price_service.owls 0.96 0.99 0.99 failed match

Table 7.6: Relevant set of services to query 4 in the OWLS-TC2 collection

The last both columns in table 7.6 represent the successful or unsuccessful matching re-
sult of two matchmakers. One is the matchmaker integrated in CoBaSS realizing the OWL-
S Matchmaker including the contextualized matching concepts named OWLS+Context. The
OWLS-MX [94] matchmaker is the only other matchmaker so far evaluated its experimental
results with the OWLS-TC2 test set. It is a hybrid approach combining logic-based reasoning
and content-based information retrieval techniques. The results to query four of the OWLS-
MX variant number four are also listed in table 7.6. The result of their total comparison is
described in the next section.

7.2.2 Matchmaker Performance

The contextualized OWL-S matchmaker from the CoBaSS system was tested with the services,
queries, and service descriptions from the OWLS-TC2 test set. Figure 7.6 shows the summa-
rized matching result for each of the 28 queries matching all 576 services in the test set. In
the figure the percentage of successful service matching of relevant services is illustrated. Ad-
ditionally to the OWLS+Context and the OWLS-MX4 matchmaker results the purely syntac-
tically working Jenson-Shannon (JS) similarity is shown. If the JS value is greater than 0.7
the service is rated as a match, because it can be seen as sufficiently similar. Sometimes this
text-based retrieval technique outperforms both semantic working matchmakers due to the
simple queries. But in the majority of all queries, the benefit of the semantic descriptions
exceeds the results of the JS.

1personbicyclecar_price_service.owls
1personbicyclecar_price_Kohlservice.owls
1personbicyclecar_price_TheBestservice.owls
auto1personbicycle_price_service.owls
bicyclecar_priceyear_service.owls
carcycle_price_service.owls
carbicycle_recommendedprice_service.owls
cyclecar_pricetaxedprice_service.owls
cycle1personbicycle_price_service.owls
cyclecar_recommendedpriceineuro_service.owls
1personbicycle4wheeledcar_price_service.owls
4wheeledcarbicycle_price_service.owls

114 Prototype and Evaluation

Figure 7.6: Total matching result of contextualized OWL-S matchmaker for all OWLS-TC2 queries

The general better performance of the OWLS+Context matchmaker in comparison to the
OWLS-MX4 matchmaker can be explained with the integrated matching-cut definition and
the used context information. Although the environment in the test set barely includes el-
ements which emphasis the benefits of integrated context information or complete OWL-S
descriptions, the matchmaker takes advantage of the semantic reduction in the matching-cut
process.

To get an impression on the quality of the matchmaker’s performance different measures
have to be considered. There are various ways to measure how well the retrieved information
matches the intended information. To evaluate this quality of a retrieval result the most fre-
quent used measures are recall and precision. Recall is the ratio of the number of relevant
entities retrieved to the total number of relevant entities. Precision is the ratio of the number
of relevant records retrieved to the total number of irrelevant and relevant records retrieved.
Therefore, with recall we answer the question of “have I found the most relevant material or
am I missing important items” (i.e. avoiding false negatives) and with precision we consider
“how much junk have I retrieved” (i.e. avoiding false positives).

Figure 7.7 shows the recall-precision-graph. The micro-averaged recall-precision curve
shows again the results of both semantic matchmaker OWLS+Context and OWLS-MX4 as
well as the JS performance. Both are superior to the text-based retrieval. The OWLS+Context
matchmaker performs close to the OWLS-MX4 matchmaker in high precision as well as high
recall areas. However, for discovery of semantic Web services, precision may be more impor-
tant to users than recall, since the set of relevant services is subject to continuous change in
practice.

7.3 Summary 115

Figure 7.7: Recall-precision performance of OWL-S matchmaker with contextualization

7.3 Summary

In this section, we have presented details of the prototype implementation and a thoroughly
evaluation of the matchmaker component which shows a good performance of the methods
presented in this thesis.

We have shows that it is possible to develop a prototype for complex location-based and
context-based services. The position in indoor environments can be used easily without ex-
pensive hardware sensors. The accuracy of approximately three meters is sufficient enough
to use WLAN signal strength measurements for an indoor positioning system.

We have further evaluated the matchmaker component integrated in the CoBaSS system.
It implements the OWL-S Matchmaker approach including the matching-cut definition and
integrates the contextualized service matching aspects. The evaluation with the OWLS-TC2
test set containing over 500 semantically annotated Web services was successful. A Recall-
Precision analysis showed significant improvement of our approaches compared with other
semantic matchmaking approaches. Therefore, the goal of this thesis to increase the quality
of semantic service matching is achieved.

116 Prototype and Evaluation

Conclusions and Outlook 8
Luck is being in the right place at the right time,
but location and timing are to some extent under
our control.

Natasha Josefowitz

The open world of wireless, mobile, and pervasive computing brings information to the fin-
ger tips of human beings anytime and anywhere. More and more devices we carry around are
networked and provide us with a never ending stream of information. They range from mobile
phones and PDAs with wireless network access to information and entertainment systems in
modern cars. The network capability of these devices helps to publish their local knowledge to
any person or service interested and receive global knowledge or use information from exter-
nal services. But this information is only valuable if the surrounding context is also captured
and the meaning of the information can be understood in its context.

The biggest source of information is the Web. Billions of pages provide information about
virtually everything you can imagine. However, this information is pure text presented with-
out any background. Web applications provide their Web pages usually in HTML format only.
The content of the Web pages is expressed in natural language, weakly structured with HTML
tags, and its semantics not accessible to machines. Because information is only meaningful
in its context, it is left to humans to extract the content and combine it with the context of the
page to understand the meaning of the information.

In machine-to-machine and human-to-machine interaction Web services play an important
role realizing a dynamic information source. The more information is available, the harder it is
to locate the particular piece one is looking for. The major challenge is to discover and retrieve
only relevant information and understand its meaning due to the semantic background and
the surrounding context.

The goal of the Semantic Web initiative is to provide tools to make the Web’s content
machine-processable and give the information on the Web a well defined meaning. It is for-
malized using semantic meta-data that is based on concepts defined in ontologies. Therefore,
the existence of semantically annotated Web pages and Web services is crucial to realize a high
quality information discovery.

118 Conclusions and Outlook

8.1 Summary

This dissertation addresses the issues of automatic service annotation, service composition,
and service contextualization in order to improve the quality of semantic service matching.
We used the concept of context-aware services with an special focus on location-based services
as an practical application of our research. Context is a key issue in the integration between
humans and computers adding meaning to something. Location is one of four primary com-
ponents identity, location, time and activity which characterize the context of a situation. An
indoor positioning via WLAN signal strengths was identified to be an interesting approach
to automatically sense the location of an mobile device within a building. We used among
other things the sensed location information to automatically fill context descriptions to cre-
ate location-based services with an expressive service description.

A thoroughly created service description helps to make the meaning of a service processable
to machines. RDF is only sufficient to describe resources. Ontologies, for example specified
in OWL, have a greater expressiveness and provide a greater pool of modeling primitives. In
the respect of describing services, OWL-S turned out to be the best choice providing a good
opportunity to combine Semantic Web technologies with Web service technologies. It allows
creating machine-processable service descriptions in order to automatically discover, com-
pose, and execute Web services. To realize a proper semantic service matching a thorough
semantic description is essential. The process of building this description requires usually a
lot of human involvement. It is not possible to automatically derive a semantic service de-
scription from interface descriptions like WSDL or even from the service’s source code due to
the lack of detailed semantic meta-information. We propose a mostly automatic annotation
framework supporting the service developer in the annotation process. The framework allows
to gather all necessary semantic meta-data during the service development process directly
from the developer. The proposed new WSDL-to-OWL-S algorithm is then able to create a
corresponding semantic service description.

Real-world Web services live on their global availability and accessibility. The problem is
usually to advertise a Web service properly, so its intentions and function can be understood
and the service itself can be found easily. In traditional service discovery a request fails in-
stantly if keywords in the request do not match the manual created service description. With
semantic annotated services the meaning of the service is machine-processable and can be
understood. In many cases the precise inputs and outputs of a service do not meet a request
exactly. Therefore, this thesis considered the issue of service composition in order to enhance
the quality of service matchings. The semantic annotation allows a much more advanced and
precise service composition than in traditional approaches. The amount of semantic infor-
mation concerning all elements towards a semantic service composition is enormous. Thus,
we developed a matching-cut method to reduce this amount to only relevant information for
a successful service composition. It is integrated in an OWL-S matchmaker which also con-
siders all participating ontologies, the OWL-S service profiles, service models, and WSDL de-
scriptions. The matchmaker is able to check for composeability of two semantic Web services
from different domains. It considers all inputs, outputs, preconditions, and effects by reduc-
ing the available information to the essential parts with the matching-cut procedure and thus
improves the quality of the service matching.

8.2 Outlook 119

With growing numbers of services in registries and possible service compositions it gets
harder to successfully match the appropriate service meeting a user’s request. Huge result sets
are the consequence. However, user’s and service’s contexts contain descriptions of their indi-
vidual environment. Service requests depend highly on the current situation of the requestor.
Thus, the contribution of context information in the matchmaking process can improve the
matching result significantly. The semantic service contextualization in this thesis takes this
argument and integrates context descriptions into the OWL-S matchmaker. With the help of a
new developed upper context ontology and the concept of context providers, requestors, and
service provider from different domains can use their context information. This improves,
once again, the quality of semantic service matching.

Finally, this thesis includes details of an implemented prototype, the CoBaSS system and
an evaluation of the matchmaking component in a large Web service test set. CoBaSS is a
context-based service system intentionally started to give indoor location-based services a
try. Here, we enhanced a positioning technique using WLAN signal strength measurements in
combination with a fingerprinting algorithm. This results in a sufficient and accurate indoor
positioning system delivering positions of Web service users. CoBaSS was then extended to
a semantic and context-aware service system processing semantic service descriptions and
context information such as identity, time, location and activity.

The evaluation of the matchmaking approach is accomplished by the usage of the OWLS-
TC2 test set. It contains over 500 semantic annotated Web services including sample queries
and relevancy service sets. The analysis showed that although the test set does not inte-
grate any context information the performance of the matchmaker is good. The matching-cut
method with the aid of ontology matching and service model matching improves the service
matching quality significantly. Recall-precision analysis showed also a good performance in
all aspects of the matching results compared to other matchmaking approaches. Therefore,
the goal of this thesis to improve the quality of semantic service matching is succeeded.

8.2 Outlook

We have designed a system for high quality semantic Web service matchmaking and made a
sufficient contribution to this area. However, the field of semantic matchmaking is broad and
many aspects needs still to be investigated. We have concentrated on service annotation, con-
text integration, and composition aspects. A number of issues were left out, but are interesting
to examine in the future.

Possible directions for future research consider new approaches in the still young Semantic
Web area. The new WSDL 2.0, SAWSDL, or SWRL languages are most promising contributions
and worthwhile to investigate. Some aspects such as privacy concerns especially in the ser-
vice composition area were ignored in this thesis. Here, much work can be done and various
improvements can be achieved.

The used service test set to evaluate the performance of the matchmaker does not include
any context information. This is needed to unfold the full potential of our matchmaking ap-
proach. Thus, any support in this direction will further expose the benefits of contextualized
service matchmaking. The semantic Web service community recently announced the need

120 Conclusions and Outlook

for a semantic Web service matchmaker contest. Future efforts are surely to compete at such
an event with our approaches.

Finally, the implementations of CoBaSS are still in a prototype stage. Overall system perfor-
mance and scalability aspects were so far only secondary goals. Here, further improvements
are planned.

List of Figures

2.1 Example of a context modeled with ontologies 15
2.2 Overview of positioning techniques . 21
2.3 Overview of positioning technologies . 28
2.4 Radio-frequency signal influences . 29
2.5 Classroom example where location information defines collaboration roles and

privileges . 32

3.1 Different XML documents expressing the same fact 40
3.2 RDF syntax of an example statement . 42
3.3 RDF graph of an example ontology . 44
3.4 RDF graph of an ontology that uses the above example ontology 45
3.5 Ontology example in OWL . 46
3.6 Technology classification for semantic Web services 47
3.7 OWL-S ontology overview . 49

4.1 Comparison of the usual and the new semantic Web service annotation procedure 55
4.2 Structure of the WSDL-to-OWL-S algorithm . 59
4.3 The process flow of the OWL:Class and WSDL:Type matcher 61
4.4 The process flow of the atomic process creator 62
4.5 The process flow of the simple process and WSDL operation matcher 63
4.6 In- and outputs of the location-based printing Web service 65
4.7 getPrinterName method in the location-based printing Web service 66
4.8 Corresponding WSDL descriptions to the getPrinterName Java methods 67
4.9 Simple process getPrinterName in the OWL-S description 68
4.10 Generated atomic process getPrinterName . 69
4.11 Preamble template, service and profile class for the OWL-S instance 69

5.1 Overview of the OWL-S matchmaker composition process 73
5.2 Similarity stack and matching process of FOAM [44] 75
5.3 The process flow of the service profile matching 76
5.4 Matching-cut illustration . 78
5.5 The process flow of the WSDL matching . 81
5.6 Example of a composed semantic Web service 82
5.7 OWL-S profile of doc2ps service . 83

122 LIST OF FIGURES

5.8 Atomic process in the OWL-S service model of the doc2ps service 84
5.9 WSDL operation of the doc2ps service . 85
5.10 Composed doc2ps+printing semantic Web service 86

6.1 Overview of the context ontology modeling . 90
6.2 Partial definition of a specific context ontology for an office application 91
6.3 Overview of the contextualized service matching process 93
6.4 Consistency rule in OWL . 99

7.1 CoBaSS system overview . 102
7.2 Testenvironment: Fürstenallee building . 104
7.3 Signal strength for the same access point on different floors 105
7.4 RADAR algorithm and positioning procedure . 106
7.5 Signal strength measurements . 109
7.6 Total matching result of contextualized OWL-S matchmaker for all OWLS-TC2

queries . 114
7.7 Recall-precision performance of OWL-S matchmaker with contextualization . . 115

List of Tables

2.1 LBS application classification . 17

5.1 Ontology matching excerpt of FOAM result file . 83

7.1 Environment characteristics of the Fürstenallee building and the RADAR site . . 105
7.2 Average CoBaSS positoining accuracy . 108
7.3 Influence Factors and adaptations of CoBaSS . 110
7.4 Number of domains, services, and queries in the OWLS-TC2 collection 111
7.5 List of queries in the OWLS-TC2 collection . 112
7.6 Relevant set of services to query 4 in the OWLS-TC2 collection 113

124 LIST OF TABLES

Bibliography

[1] ALONSO, G. ; CASATI, F. ; KUNO, H.: Web Services – Concepts, Architectures and Applica-
tions. Springer, 2003. – ISBN 3–54–044008–9

[2] ANDREWS, T. ; CURBERA, F. ; DHOLAKIA, H. ; GOLAND, Y. ; KLEIN, J. ; LEYMANN, F. ; LIU, K.
; ROLLER, D. ; SMITH, D. ; TRICKOVIC, I. ; WEERAWARANA, S.: Business Process Execution
Language for Web Services (BEPL4WS). – ftp://www6.software.ibm.com/software/

developer/library/ws-bpel.pdf

[3] ANTONIOU, G. ; HARMELEN, F. v.: A Semantic Web Primer. MIT Press, 2004. – ISBN
0–26–201210–3

[4] APACHE JAKARTA PROJECT: The Apache eXtensible Interaction System (AXIS). – http:

//ws.apache.org/axis/

[5] APACHE JAKARTA PROJECT: Apache Tomcat. – http://jakarta.apache.org/tomcat/

[6] APACHE JAKARTA PROJECT: The Axis C++ WSDL2Ws Tool. – http://ws.apache.org/

axis/cpp/arch/WSDL2Ws.html

[7] ARKIN, Assaf ; ASKARY, Sid ; FORDIN, Scott ; JEKELI, Wolfgang ; KAWAGUCHI, Kohsuke
; ORCHARD, David ; POGLIANI, Stefano ; RIEMER, Karsten ; STRUBLE, Susan ; TAKACSI-
NAGY, Pal ; TRICKOVIC, Ivana ; ZIMEK, Sinisa: Web Service Choreography Interface
(WSCI) 1.0. – http://www.w3.org/TR/2002/NOTE-wsci-20020808

[8] Ascension Technologies Inc.: MotionStar User Manual. – http://www.ascension-tech.

com

[9] AT&T: Find Friend Application. – http://www.attws.com/mmode/features/findit/

FindFriends/

[10] BAHL, P. ; PADMANABHAN, V. N.: RADAR: An In-Building RF-based User Location and
Tracking System. In: Proceedings of the IEEE Conference on Information and Communi-
cation (InfoComm’00), 2000, S. 775–784

[11] BAHL, P. ; PADMANABHAN, V. N. ; BALACHANDRAN, A.: Enhancements to the RADAR
User Location and Tracking System / Microsoft Research. 2001 (MSR-TR-2000-12). –
Forschungsbericht

ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf
ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf
http://ws.apache.org/axis/
http://ws.apache.org/axis/
http://jakarta.apache.org/tomcat/
http://ws.apache.org/axis/cpp/arch/WSDL2Ws.html
http://ws.apache.org/axis/cpp/arch/WSDL2Ws.html
http://www.w3.org/TR/2002/NOTE-wsci-20020808
http://www.ascension-tech.com
http://www.ascension-tech.com
http://www.attws.com/mmode/features/findit/FindFriends/
http://www.attws.com/mmode/features/findit/FindFriends/

126 BIBLIOGRAPHY

[12] BARNES, Stuart J.: Location-Based Services: The State-of-the-Art. In: e-service Journal
2 (2003), Nr. 3, S. 59–70

[13] BARTEL, M. ; BOYER, J. ; FOX, B. ; LAMACCHIA, B. ; SIMON, E.: XML-Signature Syntax and
Processing. – http://www.w3.org/TR/xmldsig-core/

[14] BAUER, J.: Identification and Modeling of Contexts for Different Information Scenarios
in Air Traffic, Technical University of Berlin, Diplomarbeit, 2003

[15] BECHHOFER, S. ; HARMELEN, F. v. ; HENDLER, J. ; HORROCKS, I. ; MCGUINNESS, D. L. ;
PATEL-SCHNEIDER, P. F. ; STEIN, L. A.: Web Ontology Language (OWL). 2004. – http:

//www.w3.org/TR/owl-ref/

[16] BERESFORD, A.R. ; STAJANO, F.: Location Privacy in Pervasive Computing. In: IEEE
International Magazine on Pervasive Computing 2 (2003), Nr. 1, S. 46–55

[17] BERNERS-LEE, T. ; HANDLER, J. ; LASSILA, O.: The Semantic Web. In: Scientific American
284 (2001), Nr. 5, S. 28–37

[18] BIRKENHEUER, Georg: A Framework for Semantic Web Service Development, University
of Paderborn, Diplomarbeit, 2006

[19] BIRMAN, Ken: The Untrustworthy Web Service Revolution. In: IEEE Computer Magazine
1 (2006), Nr. 1, S. 98–100

[20] BLUETOOTH SPECIAL INTEREST GROUP: Bluetooth. – http://www.bluetooth.org

[21] BOHN, Jürgen ; VOGT, Harald: Robust Probabilistic Positioning Based on High-Level
Sensor-Fusion and Map Knowledge / ETH Zürich. 2003 (ETH-TR-421). – Forschungs-
bericht

[22] BOOTH, D. ; HAAS, H. ; MCCABE, F. ; NEWCOMER, E. ; CHAMPION, M. ; FERRIS, C. ; OR-
CHARD, D.: Web Services Architecture. – http://www.w3.org/TR/ws-arch/

[23] BOOTH, D. ; LIU, C. K.: Web Services Description Language (WSDL) Version 2.0 Primer. –
http://www.w3.org/TR/wsdl20-primer/

[24] BRAY, T. ; PAOLI, J. ; SPERBERG-MCQUEEN, C. M. ; MALER, E. ; YERGEAU, F.: Ex-
tensible Markup Language (XML) 1.0 Specification. – http://www.w3.org/TR/2004/

REC-xml-20040204/

[25] BRICKLEY, D. ; GUHA, R.V.: RDF Schema Specification 1.0. – http://www.w3.org/TR/

2000/CR-rdf-schema-20000327/

[26] BROWN, P. J. ; BOVEY, J. D. ; CHEN, X.: Context-aware Applications: From the Labora-
tory to the Marketplace. In: IEEE International Journal on Personal Communications 4
(1997), Nr. 5, S. 58–64

http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/owl-ref/
http://www.bluetooth.org
http://www.w3.org/TR/ws-arch/
http://www.w3.org/TR/wsdl20-primer/
http://www.w3.org/TR/2004/REC-xml-20040204/
http://www.w3.org/TR/2004/REC-xml-20040204/
http://www.w3.org/TR/2000/CR-rdf-schema-20000327/
http://www.w3.org/TR/2000/CR-rdf-schema-20000327/

BIBLIOGRAPHY 127

[27] BRUIJN, J. de ; LAUSEN, H. ; KRUMMENACHER, R. ; POLLERES, A. ; PREDOIU, L. ; KIFER, M. ;
FENSEL, D.: Web Service Modeling Language (WSML). – http://www.wsmo.org/TR/d16/

d16.1/v0.21/

[28] CASATI, Fabio ; SHAN, Eric ; DAYAL, Umeshwar ; SHAN, Ming-Chien: Business-oriented
Management of Web services. In: International Journal Communications of the ACM 46
(2003), Nr. 10, S. 55–60

[29] CASTRO, P. ; CHIU, P. ; KREMENEK, T. ; MUNTZ, R.: A Probabilistic Room Location Ser-
vice for Wireless Networked Environments. In: Proceedings of the IEEE Conference on
Ubiquitous Computing (UbiComp’01), 2001, S. 18–34

[30] CHAN, A. T. S. ; LEONG, H. V. ; CHAN, J. ; HON, A. ; LAU, L. ; LI, L.: BluePoint: A Bluetooth-
based Architecture for Location-Positioning Services. In: Proceedings of the ACM Inter-
national Symposium on Applied Computing (SAC’03), 2003, S. 990–995

[31] CHARTERS, Stuart M. ; HOLLIMAN, Nicolas S. ; MUNRO, Malcolm: Visualisation on the
Grid: A Web Service Approach. In: Proceedings of the UK e-Science All Hands Meeting,
2004, S. 103–111

[32] CHEN, H. ; FININ, T. ; JOSHI, A.: Using OWL in a Pervasive Computing Broker. In: Pro-
ceedings of the Workshop on Ontologies in Open Agent Systems (AAMAS’03), 2004, S. 97–
104

[33] COGNITIVE SCIENCE LABORATORY PRINCETON UNIVERSITY: Wordnet Project. – http:

//wordnet.princeton.edu

[34] CONNOLLY, D. ; HARMELEN, F. v. ; HORROCKS, I. ; MCGUINNESS, D. L. ; PATEL-SCHNEIDER,
P. R. ; STEIN, L. A.: DAML+OIL Reference Description. – http://www.w3.org/TR/daml+

oil-reference/

[35] CROW, B. P. ; WIDJAJA, I. ; KIM, J. ; SAKAI, P.: IEEE 802.11 Wireless Local Area Networks.
In: IEEE Communications Magazine 35 (1997), Nr. 9, S. 116–126

[36] DACONTA, Michael C.: The Semantic Web. John Wiley and Sons, 2003. – ISBN 0–47143–
257–1

[37] DEARMAN, David ; HAWKEY, Kirstie ; INKPEN, Kori M.: Effect of Location-awareness on
Rendezvous Behaviour. In: Proceedings of the Conference on Human Factors in Comput-
ing Systems (CHI’05), 2005, S. 1929–1932

[38] DEY, A. K.: A Conceptual Framework and a Toolkit for Supporting the Rapid Prototyping
of Context-Aware Applications. In: International Journal on Human-Computer Interac-
tion 16 (2001), Nr. 2, S. 97–166

[39] DEY, A. K. ; ABOWD, G. D.: Towards a Better Understanding of Context and Context-
Awareness / Georgia Institue of Technology. 1999 (GIT-GVU-99-22). – Forschungs-
bericht

http://www.wsmo.org/TR/d16/d16.1/v0.21/
http://www.wsmo.org/TR/d16/d16.1/v0.21/
http://wordnet.princeton.edu
http://wordnet.princeton.edu
http://www.w3.org/TR/daml+oil-reference/
http://www.w3.org/TR/daml+oil-reference/

128 BIBLIOGRAPHY

[40] DEY, A. K. ; ABOWD, G. D. ; WOOD, A.: CyberDesk: A Framework for Providing Self-
Integrating Context-Aware Services. In: International Journal on Knowledge-Based Sys-
tems 11 (1999), Nr. 1, S. 3–13

[41] DEY, Anind K. ; MANKOFF, Jen ; ABOWD, Gregory D.: Distributed Mediation of Imper-
fectly Sensed Context in Aware Environments. In: Proceedings of the Thirdteenth ACM
Symposium on User Interface Software and Technology (UIST’00), 2000, S. 76–91

[42] DOSTAL, W. ; JECKLE, M. ; MELZER, I.: Service-orientierte Architekturen mit Web Ser-
vices. Konzepte - Standards - Praxis. Spektrum Akademischer Verlag, 2005. – ISBN 3–82–
741457–1

[43] DUSTDAR, Schahram ; TREIBER, Martin: A View Based Analysis on Web Service Reg-
istries. In: International Journal on Distributed and Parallel Databases 18 (2005), Nr. 2,
S. 147–171

[44] EHRIG, Marc ; SURE, York: Ontology Mapping - An Integrated Approach. In: Proceedings
of the European Semantic Web Symposium (ESWS’04), 2004, S. 76–91

[45] ELLIS, C. A. ; GIBBS, J. ; REIN, G. L.: Groupware: Some Issues and Experiences. In: ACM
International Journal on Communications 34 (1991), Nr. 1, S. 38–59

[46] FALLSIDE, D. C. ; WALMSLEY, P.: XML Schema Primer. – http://www.w3.org/TR/

xmlschema-0/

[47] FENSEL, Dieter: Ontologies: A Silver Bullet for Knowledge Management and Electronic
Commerce. Springer, 2003. – ISBN 3–54000–302–9

[48] FINKENZELLER, K.: RFID-Handbuch – Grundlagen und praktische Anwendungen in-
duktiver Funkanlagen, Transponder und kontaktloser Chipkarten. Hanser Verlag, 2002.
– ISBN 3–446–22071–2

[49] FONTANA, R. J. ; GUNDERSON, S. J.: Ultra-Wideband Precision Asset Location System. In:
Proceedings of the IEEE Conference on Ultra Wideband Systems and Technologies, 2002

[50] FOX, Dieter ; BURGARD, Wolfram ; THRUN, Sebastian: Markov Localization for Mo-
bile Robots in Dynamic Environments. In: Journal of Artificial Intelligence Research
11 (1999), Nr. 1, S. 391–427

[51] FRANKLIN, D. ; FLACHSBART, J.: All Gadget and No Representation Makes Jack a Dull
Environment / AAAI Spring Symposium on Intelligent Environments. 1998 (SS-98-02).
– Forschungsbericht

[52] GALILEO: EUROPEAN SATELLITE NAVIGATION SYSTEM: GALILEO. – http://ec.europa.

eu/dgs/energy_transport/galileo/index_en.htm

[53] GANNON, D. ; ALAMEDA, J. ; AL., O. C.: Building Grid Portal Applications From a Web
Service Component Architecture. In: International Journal Proceedings of the IEEE 93
(2005), Nr. 3, S. 551–563

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://ec.europa.eu/dgs/energy_transport/galileo/index_en.htm
http://ec.europa.eu/dgs/energy_transport/galileo/index_en.htm

BIBLIOGRAPHY 129

[54] GIAGLIS, G. M.: Towards a Classification Framework for Mobile Location Services. Idea
Group Publishing, 2002, S. 67–85. – ISBN 1–591–40044–9

[55] GLONASS: GLOBAL NAVIGATION SATELLITE SYSTEM: GLONASS. – http://www.

glonass-center.ru/

[56] GOMEZ-PEREZ, A.: Ontological Engineering. Springer, 2003. – ISBN 1–85233–551–3

[57] GPS: GLOBAL POSITIONING SYSTEM: GPS. – http://www.navcen.uscg.gov/default.

htm

[58] GRAY, P. ; SALBER, D.: Modelling and Using Sensed Context Information in the Design
of Interactive Applications. In: Proceedings of the Eighth International Conference on
Engineering for Human-Computer Interaction (EHCI’01), 2001, S. 317–325

[59] GRUBER, T.: Towards Priniciples for the Design of Ontologies Used for Knowledge Shar-
ing. In: International Journal of Human-Computer Studies 43 (1995), Nr. 5, S. 907–928

[60] GRUDIN, J.: Computer-supported cooperative work: Its history and participation. In:
International IEEE Journal of Computers 27 (1994), Nr. 5, S. 19–26

[61] GUARINO, N. ; GIARETTA, P.: Ontologies and Knowledge Bases: Towards a Termino-
logical Clarification. In: Towards Very Large Knowledge Base - Knowledge Building and
Knowledge Sharing, 1995, S. 25–32

[62] HAARSLEV, V. ; MÖLLER, R.: Description of the RACER System and its Applications. In:
Proceedings of the International Workshop on Description Logics (DL’01), 2001, S. 131–
141

[63] HAASE, Peter ; HARMELEN, Frank van ; HUANG, Zhisheng ; STUCKENSCHMIDT, Heiner ;
SURE, York: A Framework for Handling Inconsistency in Ontologies. In: Proceedings of
the Fourth International Semantic Web Conference (ISWC’05), 2005, S. 353–367

[64] HAGELWEIDE, Wilke: SAM4OWL-S: Semi-Automatischer Matchmaker für OWL-S, Uni-
versity of Paderborn, Diplomarbeit, 2006

[65] HAMMER, Katherine: Web Services and Enterprise Integration. In: eAI Journal 3 (2001),
Nr. 1, S. 12–15

[66] HARTER, A. ; HOPPER, A. ; STEGGLES, P. ; WARD, A. ; WEBSTER, P.: The Anatomy a Context-
aware Application. In: Proceedings of the ACM/IEEE Conference on Mobile Computing
and Networking (Mobicom’99), 1999, S. 59–68

[67] HARTMAN, B. ; FLINN, D. J. ; BEZNOSOV, K.: Mastering Web Services Security. Wiley, 2003.
– ISBN 0–47–126716–3

[68] HAUSER, T. ; LÖWER, U. M.: Web Services - Die Standards. Galileo Computing, 2003. –
ISBN 3–89–842393–X

http://www.glonass-center.ru/
http://www.glonass-center.ru/
http://www.navcen.uscg.gov/default.htm
http://www.navcen.uscg.gov/default.htm

130 BIBLIOGRAPHY

[69] HAZAS, M. ; SCOTT, J. ; KRUMM, J.: Location-aware Computing Comes of Age. In: IEEE
International Magazine on Computer 37 (2004), Nr. 2, S. 95–97

[70] HEFLIN, J.: Web Ontology Language (OWL) Use Cases and Requirements. – http://www.

w3.org/TR/webont-req/

[71] HELD, A. ; BUCHHOLZ, S. ; SCHILL, A.: Modeling of Context Information for Pervasive
Computing Applications. In: Proceedings of the World Multiconference on Systemics,
Cybernetics and Informatics (SCI’02), 2002, S. 97–104

[72] HENRICKSEN, Karen: Modeling Context Information in Pervasive Computer Systems.
In: Proceedings of the International Conference on Pervasive Computing (Pervasive’02),
2002, S. 97–104

[73] HIGHTOWER, J. ; BORRIELLO, G.: Location Systems for Ubiquitous Computing. In: IEEE
International Magazine on Computers 34 (2001), Nr. 8, S. 57–66

[74] HILDEBRANDT, M.: Sicherheitsrisiken und Sicherheitskonzepte von XML Web Services
dargestellt an einem E-Business-Szenario, Fachhochschule Bonn-Rhein-Sieg, Diplomar-
beit, 2003

[75] HORROCKS, I. ; FENSEL, D. ; BROEKSTRA, J. ; DECKER, S. ; ERDMANNA, M. ; GOBLE, C.
; HARMELEN, F. v. ; KLEIN, M. ; STAAB, S. ; STUDER, R. ; MOTTA, E.: Ontology Infer-
ence Layer (OIL) White Paper. 2000. – http://www.ontoknowledge.org/oil/downl/

oil-whitepaper.pdf

[76] HUANG, S.-X. ; FAN, Y.-S. ; ZHAO, D.-Z. ; MEI, C.-Y. ; ZHANG, L.: Webservice-based Enter-
prise Application Integration. In: Computer Integrated Manufacturing Systems Journal
9 (2003), Nr. 10, S. 864–867

[77] HULL, R. ; NEAVES, P. ; BEDFORD-ROBERTS, J.: Towards Situated Computing. In: Pro-
ceedings of the first International Symposium on Wearable Computers, 1997, S. 146–153

[78] IEEE 802.11 WORKING GROUP: IEEE 802.11. – http://grouper.ieee.org/groups/802/

11/

[79] IMAMURA, T. ; DILLAWAY, B. ; SIMON, E.: XML-Encryption Syntax and Processing. – http:

//www.w3.org/TR/xmlenc-core/

[80] IRDA: INFRARED DATA ASSOCIATION: IrDA. – http://www.irda.org

[81] JAEGER, Michael C. ; ENGEL, Lars ; GEIHS, Kurt: A Methodology for Developing OWL-S
Descriptions. In: Proceedings of the First International Conference on Interoperability of
Enterprise Software and Applications (INTEROP-ESA’05), 2005, S. 153–166

[82] JANACIK, Peter ; KAO, Odej ; RERRER, Ulf: An Approach Combining Routing and Re-
source Sharing in Wireless Ad Hoc Networks Using Swam-Intelligence. In: Proceedings
of the Seventh ACM/IEEE International Symposium on Modeling, Analysis and Simula-
tion of Wireless and Mobile Systems (MSWiM’04), 2004, S. 31–40

http://www.w3.org/TR/webont-req/
http://www.w3.org/TR/webont-req/
http://www.ontoknowledge.org/oil/downl/oil-whitepaper.pdf
http://www.ontoknowledge.org/oil/downl/oil-whitepaper.pdf
http://grouper.ieee.org/groups/802/11/
http://grouper.ieee.org/groups/802/11/
http://www.w3.org/TR/xmlenc-core/
http://www.w3.org/TR/xmlenc-core/
http://www.irda.org

BIBLIOGRAPHY 131

[83] JANACIK, Peter ; KAO, Odej ; RERRER, Ulf: A Routing Approach Using Swam-Intelligence
for Resource Sharing in Wireless Ad Hoc Networks. In: Proceedings of the International
Symposium on Trends in Communications (SYMPOTIC’04), 2005, S. 170–174

[84] JASPER, R. ; USCHOLD, M.: A Framework for Understanding and Classifying Ontology
Applications. In: Proceedings of the IJCAI’99 Workshop on Ontologies and Problem-
Solving Methods (KRR5), 1999, S. 1101–1115

[85] JOHNSTON, Eddie ; HESS, Andreas ; KUSHMERICK, Nicholas: ASSAM: A Tool for Semi-
automatically Annotating Semantic Web Services. In: Proceedings of the Third Interna-
tional Semantic Web Conferernce (ISWC’04), 2004, S. 320–334

[86] KAASINEN, Eija: User Needs for Location-aware Mobile Services. In: Springer Interna-
tional Magazine on Personal and Ubiquitous Computing 7 (2003), Nr. 1, S. 70–79

[87] KALYANPUR, Aditya ; PASTOR, Daniel J. ; BATTLE, Steve ; PADGET, Julian: Automatic
mapping of OWL ontologies into Java. In: Proceedings of the Sixteenth International
Conference on Software Engineering and Knowledge Engineering (SEKE’04), 2004, S. 151–
157

[88] KAO, Odej ; RERRER, Ulf: Multimedia Services for Location-Aware, Ad-hoc Collabora-
tion in Wireless Networks. In: Proceedings of the International Conference on Wireless
Networks (ICWN’04), 2004, S. 549–555

[89] KAO, Odej ; RERRER, Ulf: A Platform for Location-Aware, Ad-hoc Collaboration in Wire-
less Networks. In: Proceedings of the International Workshop on Positioning, Navigation
and Communication (WPNC’04), 2004, S. 171–178

[90] KAO, Odej ; RERRER, Ulf: Peer-to-Peer Based Collaboration for Virtual Communities.
IDEA Group Inc., 2005, S. 27–39. – ISBN 1–59140–563–7

[91] KINDBERG, Tim: People, Places, Things: Web Presence for The Real World / HP Labs.
2000 (HPL-2000-16). – Forschungsbericht

[92] KLEIN, Michel ; NOY, Natalya F.: A Component-Based Framework For Ontology Evo-
lution. In: Proceedings of the International Workshop on Ontologies and Distributed
Systems (IJCAI’03), 2003, S. 153–166

[93] KLUSCH, Matthias: OWL-S Service Retrieval Test Collection Version 2. – http://

projects.semwebcentral.org/projects/owls-tc/

[94] KLUSCH, Matthias ; FRIES, Benedikt ; SYCARA, Katia: Automated Semantic Web Ser-
vice Discovery with OWLS-MX. In: Proceedings of the ACM International Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS’06), 2006, S. 226–235

[95] KNUBLAUCH, Holger ; FERGERSON, Ray W. ; NOY, Natalya F. ; MUSEN, Mark A.: The
Protégé OWL Plugin: An Open Development Environment for Semantic Web Applica-
tions. In: Proceedings of the Third International Semantic Web Conference (ISWC’04),
2004, S. 229–237

http://projects.semwebcentral.org/projects/owls-tc/
http://projects.semwebcentral.org/projects/owls-tc/

132 BIBLIOGRAPHY

[96] KONTOGIANNIS, Kostas ; SMITH, Dennis ; O’BRIEN, Liam: On the Role of Services in
Enterprise Application Integration. In: Proceedings of the 10th International Workshop
on Software Technology and Engineering Practice, 2002, S. 103–111

[97] KRILL, Paul: Overcoming Information overload. 2000. – http://archive.infoworld.

com/articles/ca/xml/00/01/10/000110caoverload.xml

[98] LEYMANN, F. ; ROLLER, D. ; SCHMIDT, M.-T.: Web Services and Business Process Man-
agement. In: IBM Systems Journal 41 (2002), Nr. 2, S. 198–211

[99] MANOLA, F. ; MILLER, E.: Resource Description Framework (RDF) Specification. – http:

//www.w3.org/TR/rdf-primer/

[100] MARTIN, D. ; BURSTEIN, M. ; HOBBS, J. ; LASSILA, O. ; MCDERMOTT, D. ; MCILRAITH,
S. ; NARAYANAN, S. ; PAOLUCCI, M. ; PARSIA, B. ; PAYNE, T. ; SIRIN, E. ; SRINIVASAN,
N. ; SYCARA, K.: OWL-S: Semantic Markup for Web Services. – http://www.w3.org/

submissions/OWL-S

[101] MCCARTHY, J.: Notes on Formalizing Contexts. In: Proceedings of the Thirteenth Inter-
national Joint Conference on Artificial Intelligence, 1997, S. 555–560

[102] MCILRAITH, Sheila ; NARAYANAN, Srini ; PAOLUCCI, Massimo ; PARSIA, Bijan ; SIRIN,
Evren ; SRINIVASAN, Naveen ; SYCARA, Katia: DAML-S Draft Release. – http://www.

daml.org/services/daml-s/0.9/

[103] MCILRAITH, Sheila ; SON, Tran C.: Adapting Golog for Composition of Semantic Web
Services. In: Proceedings of the Eights International Conference on Principles of Knowl-
edge Respresentation and Reasoning (KRR’02), 2002, S. 482–493

[104] MICROSOFT CORPORATION: Microsoft Web Service Enhancements (WSE). – http:

//msdn.microsoft.com/webservices/webservices/building/wse/default.aspx

[105] MILLER, B. A. ; BISDIKIAN, C.: Bluetooth Revealed - The Insider’s Guide to an Open Speci-
fication for Global Wireless Communications. Prentice Hall, 2001. – ISBN 0–13–090294–2

[106] MISHRA, P. ; LOCKHART, H.: Security Assertion Markup Language (SAML). – http://www.

oasis-open.org/committees/tc_home.php?wg_abbrev=security

[107] MITRA, N.: SOAP Version 1.2 Primer. – http://www.w3.org/TR/soap12-part0/

[108] MUSEN, Mark ; NOY, Natasha ; O’CONNOR, Martin ; REDMOND, Timothy ; RUBIN, Daniel
; TU, Samson ; TUDORACHE, Tania ; VENDETTI, Jennifer: Protégé. – http://protege.

stanford.edu/

[109] NI, L. M. ; LIU, Y. ; LAU, Y. C. ; PATIL, A. P.: LANDMARC: Indoor Location Sensing Us-
ing Active RFID. In: Proceedings of the IEEE Conference on Pervasive Computing and
Communications (PerCom’03), 2003, S. 407–415

[110] NICKULL, D.: Service-oriented Architecture Reference Model. – http://www.oasis-open.

org/committees/tc_home.php?wg_abbrev=soa-rm

http://archive.infoworld.com/articles/ca/xml/00/01/10/000110caoverload.xml
http://archive.infoworld.com/articles/ca/xml/00/01/10/000110caoverload.xml
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/submissions/OWL-S
http://www.w3.org/submissions/OWL-S
http://www.daml.org/services/daml-s/0.9/
http://www.daml.org/services/daml-s/0.9/
http://msdn.microsoft.com/webservices/webservices/building/wse/default.aspx
http://msdn.microsoft.com/webservices/webservices/building/wse/default.aspx
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security
http://www.w3.org/TR/soap12-part0/
http://protege.stanford.edu/
http://protege.stanford.edu/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm

BIBLIOGRAPHY 133

[111] NILES, Ian ; PEASE, Adam: Towards a Standard Upper Ontology. In: Proceedings of the
ACM International Conference on Formal Ontology in Information Systems (FOIS’01),
2001, S. 2–9

[112] OBJECT MANAGEMENT GROUP (OMG): Common Object Request Broker Architecture
(CORBA/IIOP). 2004. – http://www.omg.org/technology/documents/corba_spec_

catalog.htm

[113] OPENCYC: Opencyc Project. – http://www.opencyc.com

[114] PAOLUCCI, Massimo ; KAWAMURA, Takahiro ; PAYNE, Terry R. ; SYCARA, Katia: Semantic
Matching of Web Services Capabilities. In: Proceedings of the First International Seman-
tic Web Conference (ISWC’02), 2002, S. 333–341

[115] PAPAZAFEIROPOULOS, G. ; PRIGOURIS, N. ; MARIAS, G. F. ; HADJIEFTHYMIADES, S. ; MER-
AKOS, L.: Retrieving Position From Indoor WLANs Through GWLC. In: Proceedings of
IST Conference on Mobile and Wireless Communications, 2003, S. 97–104

[116] PASCOE, J.: Adding Generic Contextual Capabilities to Wearable Computers. In: Pro-
ceedings of the Second International Symposium on Wearable Computers, 1998, S. 92–99

[117] PATIL, Abhijit A. ; OUNDHAKAR, Swapna A. ; SHETH, Amit P. ; VERMA, Kunal: Meteor-S
Web Service Annotation Framework. In: Proceedings of the Thirdteenth International
Conference on the World Wide Web (WWW’04), 2004, S. 553–562

[118] PRIYANTHA, N. ; CHAKRABORTY, A. ; BALAKRISHNAN, H.: The Cricket Location Support
System. In: Proceedings of the ACM/IEEE Conference on Mobile Computing and Net-
working (Mobicom’00), 2000, S. 32–43

[119] PRIYANTHA, N. ; MIU, A. ; BALAKRISHNAN, H. ; TELLER, S.: The Cricket Compass for
Context-aware Mobile Applications. In: Proceedings of the ACM/IEEE Conference on Mo-
bile Computing and Networking (Mobicom’01), 2001, S. 1–14

[120] RAJASEKARAN, Preeda ; MILLER, John ; VERMA, Kunal ; SHETH, Amit: Enhancing Web
Services Description and Discovery to Facilitate Composition. In: Proceedings of the
First International Workshop on Semantic Web Services and Web Process Composition
(SWSWPC’04), 2004, S. 55–68

[121] RANDALL, Julian ; AMFT, Oliver ; BOHN, Jürgen ; BURRI, Martin: LuxTrace - Indoor Posi-
tioning Using Building Illumination. In: Personal and Ubiquitous Computing Journal 1
(2006), Nr. 1, S. 391–427

[122] RANGANATHAN, Anand: A Middleware for Context-Aware Agents in Ubiquitous Com-
puting Environments. In: Proceedings of the International Conference on Middleware
(USENIX’02), 2002, S. 97–104

[123] RANGANATHAN, Anand ; AL-MUHTADI, Jalal ; CHETAN, Shiva ; CAMPBELL, Roy ; MICKU-
NAS, M. D.: MiddleWhere: A Middleware for Location Awareness in Ubiquitous Com-
puting Applications. In: Proceedings of the ACM/IFIP/USENIX International Conference
on Middleware (Middleware’04), 2004, S. 397–401

http://www.omg.org/technology/documents/corba_spec_catalog.htm
http://www.omg.org/technology/documents/corba_spec_catalog.htm
http://www.opencyc.com

134 BIBLIOGRAPHY

[124] RECH, J.: Wireless LANs - 802.11-WLAN-Technologie und praktische Umsetzung im De-
tail. Heise Verlag, 2004. – ISBN 3–936931–04–6

[125] REED, J. H. ; KRIZMAN, K. J. ; WOERNER, B. D. ; RAPPAPORT, T. S.: An Overview of the
Challenges and Progress in Meeting the E-911 Requirement for Location Service. In:
IEEE International Magazine on Communications 36 (1998), S. 30–37

[126] REKIMOTO, J. ; AYATSUKA, Y.: CyberCode: Designing Augmented Reality Environments
with Visual Tags. In: Proceedings of the ACM Conference on Designing Augmented Reality
Environments, 2000, S. 1–10

[127] RERRER, Ulf: Location-aware Web Service Architecture using WLAN Positioning. In:
Proceedings of the International Workshop on Context-Aware Mobile Systems (CAMS’05),
2005, S. 237–245

[128] RERRER, Ulf: Location-awareness for a Service-oriented Architecture using WLAN Posi-
tioning. In: Proceedings of the Third European Conference on Web Services (ECOWS’05),
2005, S. 106–112

[129] RERRER, Ulf ; KAO, Odej: Suitability of Positioning Techniques for Location-based Ser-
vices in wireless LANs. In: Proceedings of the Workshop on Positioning, Navigation and
Communication (WPNC’05), 2005, S. 51–56

[130] ROBINSON, J. A. ; VORONKOV, Andrei: Handbook of Automated Reasoning. MIT Press,
2001. – ISBN 0–26218–223–8

[131] RODDEN, T. ; CHEVERST, K. ; DAVIS, K. ; DIX, A.: Exploiting Context in HCI Design for
Mobile Systems. In: Proceedings of the Workshop on Human Computer Interaction with
Mobile Devices, 1998, S. 97–104

[132] ROOS, T. ; MYLLYMAEKI, P. ; TIRRI, H. ; MISIKANGAS, P. ; SIEVAENEN, J.: A Probabilis-
tic Approach to WLAN User Location Estimation. In: International Journal of Wireless
Information Networks 9 (2002), Nr. 3, S. 155–164

[133] ROTH, J.: Mobile Computing - Grundlagen, Technik, Konzepte. dpunkt Verlag, 2002. –
ISBN 3–89864–165–1

[134] ROWSTRON, Antony ; DRUSCHEL, Peter: Pastry: Scalable, Decentralized Object Location,
and Routing for Large-Scale Peer-to-Peer Systems. In: Lecture Notes in Computer Science
2218 (2001), Nr. 1, S. 329+

[135] RYAN, N. S. ; PASCOE, J. ; MORSE, D. R.: Enhanced Reality Fieldwork: The Context-aware
Archaeological Assistant. In: Proceedings of the Comference of Computer Applications in
Archaeology, 1997, S. 97–104

[136] SALBER, D. ; DEY, A. K. ; ABOWD, G. D.: Ubiquitous Computing: Defining an HCI Re-
search Agenda for an Emerging Interaction Paradigm / Georgia Institue of Technology.
1998 (GIT-GVU-98-01). – Forschungsbericht

BIBLIOGRAPHY 135

[137] SCHILIT, B. ; ADAMS, N. ; WANT, R.: Disseminating Active Map Information to Mobile
Hosts. In: IEEE International Journal on Networks 8 (1994), Nr. 5, S. 22–32

[138] SCHILIT, B. ; THEIMER, M.: Context-Aware Computing Applications. In: Proceedings of
the First International Workshop on Mobile Computing Systems and Applications, 1994,
S. 85–90

[139] SCHILLER, J.: Mobilkommunikation. Pearson Studium, 2003. – ISBN 3–8273–7060–4

[140] SCHILLER, J. ; VOISARD, A.: Location-based Services. Morgan Kaufmann, Elsevier, 2004.
– ISBN 1–55860–929–6

[141] SCHMIDT, A. ; LADERHOVEN, K. V.: There is More to Context Than Location. In: Interna-
tional Journal on Computers and Graphics 23 (1999), Nr. 6, S. 893–901

[142] SHESHAGIRI, Mithun: Automatic Composition and Invocation of Semantic Web Services,
University of Maryland, Diplomarbeit, 2004

[143] SIRIN, Evren: OWL-S API Java Documentation. – http://www.mindswap.org/2004/

owl-s/api/doc/javadoc/

[144] SIRIN, Evren ; PARSIA, Bijan: Planning for Semantic Web Services. In: Proceedings of the
Third International Semantic Web Conference (ISWC’04), 2004, S. 237–246

[145] SRIVASTAVA, Biplav ; KOEHLER, Jana: Web Service Composition-Current Solutions and
Open Problems. In: Proceedings of the International Workshop on Planning for Web
Services (ICAPS’03), 2003, S. 28–35

[146] STEIN, L. A. ; CONNOLLY, D. ; MCGUINNESS, D.: DAML-ONT Intitial Release. – http:

//www.daml.org/2000/10/daml-ont.html

[147] STOICA, Ion ; MORRIS, Robert ; KARGER, David ; KAASHOEK, Frans ; BALAKRISHNAN,
Hari: Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications. In: Pro-
ceedings of the ACM Special Interest Group on Data Communications Conference (SIG-
COMM’01), 2001, S. 149–160

[148] STRANG, T. ; LINNHOFF-POPIEN, C.: A Context Modeling Survey. In: Proceedings of the
Workshop on Advanced Context Modelling, Reasoning and Management, 2004, S. 97–104

[149] STRASSMANN, M. ; COLLIER, C.: Case Study: Development of the Find Driend Application.
Morgan Kaufmann, Elsevier, 2004, S. 27–39. – ISBN 1–55860–929–6

[150] STUCKENSCHMIDT, H. ; HARMELEN, F. v.: Information Sharing on the Semantic Web.
Springer, 2004. – ISBN 3–54–020594–2

[151] SUN: Sun Java Web Service Tutorial. – http://java.sun.com/webservices/tutorial.

html

http://www.mindswap.org/2004/owl-s/api/doc/javadoc/
http://www.mindswap.org/2004/owl-s/api/doc/javadoc/
http://www.daml.org/2000/10/daml-ont.html
http://www.daml.org/2000/10/daml-ont.html
http://java.sun.com/webservices/tutorial.html
http://java.sun.com/webservices/tutorial.html

136 BIBLIOGRAPHY

[152] SYCARA, Katia ; WIDOFF, Seth ; KLUSCH, Matthias ; LU, Jianguo: Larks: Dynamic Match-
making Among Heterogeneous Software Agents in Cyberspace. In: Proceedings of the In-
ternational Conference on Autonomous Agents and Multi-Agent Systems (AAAS’02), 2002,
S. 173–203

[153] TREVISANI, Emiliano ; VITALETTI, Andrea: Cell-ID Location Technique, Limits and Ben-
efits: An Experimental Study. In: Proceedings of the Sixth IEEE Workshop on Mobile
Computing Systems and Applications (WMCSA’04), 2004, S. 51–60

[154] UDDI.ORG: UDDI Technical White Paper. 2000. – http://www.uddi.org/pubs/Iru_

UDDI_Technical_White_Paper.pdf

[155] UNIVERSITY OF MANCHESTER: Bio Ontologies Community. – http://bio-ontologies.

man.ac.uk/

[156] UNIVERSITY OF MARYLAND, BALTIMORE COUNTY: Swoogle: The Semantic Web Search
Engine. – http://swoogle.umbc.edu

[157] VONHOEGEN, H.: Einstieg in XML. Galileo Computing, 2004. – ISBN 3–89–842–488–X

[158] WANG, X. H. ; ZHANG, D. Q. ; GU, T. ; PUNG, H. K.: Ontology-based Context Modeling
and Reasoning Using OWL. In: Proceedings of the Second IEEE Conference on Pervasive
Computing and Communications (PerComm’04), 2004, S. 18–22

[159] WANT, R. ; HOPPER, A. ; FALCAO, V. ; GIBBONS, J.: The Active Badge Location System.
In: ACM Transactions International Journal on Information Systems 10 (1992), Nr. 1, S.
91–102

[160] WARD, A. ; JONES, A. ; HOPPER, A.: A New Location Technique for the Active Office. In:
IEEE International Journal on Personal Communications 4 (1997), Nr. 5, S. 42–47

[161] WILSON, P.: Computer-supported cooperative work: An Introduction. Kluwer Academic
Publishers, 1991. – ISBN 0–79–231–446–8

[162] YOUSSEF, M. A. ; AGRAWALA, A. ; SHANKAR, A. U.: WLAN Location Determination via
Clustering and Probability Distributions / University of Maryland. 2002 (CS-TR-4350
and UMIACS-TR-20002-30). – Forschungsbericht

[163] YOUSSEF, Moustafa ; YOUSSEF, Adel ; RIEGER, Chuck ; SHANKAR, Udaya ; AGRAWALA,
Ashok: PinPoint: An Asynchronous Time-Based Location Determination System. In:
Proceedings of the Fourth International Conference on Mobile Systems, Applications, and
Services (MobiSys’06), 2006, S. 97–104

[164] ZHAO, Yilin: Standardization of Mobile Phone Positioning for 3G Systems. In: IEEE
International Magazine on Communications 40 (2002), Nr. 7, S. 108–116

[165] ZHU, F. ; ZHU, W. ; MUTKA, M. W. ; NI, L.: Expose or Not? A Progressive Exposure Ap-
proach for Service Discovery in Pervasive Computing Environments. In: Proceedings of
the Third International IEEE Conference on Pervasive Computing and Communications
(PerCom’05), 2005, S. 225–234

http://www.uddi.org/pubs/Iru_UDDI_Technical_White_Paper.pdf
http://www.uddi.org/pubs/Iru_UDDI_Technical_White_Paper.pdf
http://bio-ontologies.man.ac.uk/
http://bio-ontologies.man.ac.uk/
http://swoogle.umbc.edu

BIBLIOGRAPHY 137

[166] ZHU, Feng ; MUTKA, Matt ; NI, Lionel: Classification of Service Discovery in Pervasive
Computing Environments / Michigan State University, East Lansing. 2002 (MSU-CSE-
02-24). – Forschungsbericht

	Introduction
	Problem Definition
	Service Annotation
	Semantic Service Composition
	Semantic Service Contextualization

	Contribution
	Synopsis

	Context-Aware Services
	What is Context?
	Context-Awareness
	Context Modeling Approaches

	Location-based Services
	Classification and Characteristics
	Positioning Techniques and Technologies
	WLAN Positioning Features

	Computer-supported Cooperative Work
	Summary

	Semantic Web Services
	Understanding Web Services
	The Semantic Web Vision
	Syntactic Standards
	Visualizing Information with HTML
	Exchanging Information with XML
	Service Interface Description with WSDL

	Resource Description with RDF
	Ontology Languages
	RDF Schema
	OWL

	Semantic Web Services
	OWL-S
	Service Discovery
	Service Execution

	Summary

	Semantic Service Annotation
	Problem Definition
	Framework for Semantic Web Service Development
	Obtaining Ontologies
	Web Service Design and Implementation
	WSDL Description Generation
	OWL-S Description Generation
	Accommodate Results, Testing and Deployment

	WSDL-to-OWL-S Algorithm
	Document Parsing
	Type Matching
	Process Matching
	OWL-S Instance Creation

	Concept Appliance: Printing Service Annotation
	Ontology Selection
	Web Service Creation
	WSDL Creation
	OWL-S Creation

	Summary and Results

	Semantic Service Composition
	Problem Definition
	Matchmaker Requirements
	Matching Workflow
	Document Parsing
	Semantic Matching: Ontology Matching
	Semantic Matching: Service Profile Matching
	Semantic Matching: Matching-Cut Definition
	Semantic Matching: Service Model Matching
	Semantic Matching: Overall Correspondence Calculation
	Syntactic Matching
	Service Composition

	Concept Appliance: Printing Service Composition
	Ontology and Service Profile Matching
	Matching-Cut Definition and Semantic Matching
	Syntactic Matching
	Service Composition

	Summary and Results

	Semantic Service Contextualization
	Upper Context Ontology
	Problem Definition
	Context Matching Approach
	Context Matching Workflow
	Context Acquisition
	Knowledge Maintenance
	Knowledge Sharing
	Context Association
	Context Ontology Matching
	Contextualized Service Matching

	Concept Appliance: Printing Service Contextualization
	Context Acquisition
	Knowledge Maintenance
	Knowledge Sharing and Context Association
	Ontology Matching
	Contextualized Service Matching

	Summary and Results

	Prototype and Evaluation
	Prototype
	CoBaSS - A Context-based Service System
	Environment
	Fingerprinting Algorithm
	Positioning Results

	Evaluation
	OWL-S Test Collection
	Matchmaker Performance

	Summary

	Conclusions and Outlook
	Summary
	Outlook

	List of Figures
	List of Tables
	Bibliography

