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1 Introduction

The efficient usage of parallel computing resources plays a key role for many large

scale scientific simulations. These applications usually follow the single-instruction

multiple-data (SIMD) concept and consist of a huge number of small calculations

that operate iteratively and are related via data dependencies. In order to minimize

the overall computation time, an efficient parallelization requires these tasks to be

distributed equally among all processing nodes.

Because of the dependencies between the calculations, a data distribution involves

communication in the processing network. Hence, additional costs in terms of la-

tency and bandwidth occur and have to be considered when determining the data

assignment onto the processors.

The calculations and their dependencies can be modeled by the vertices and edges

of a graph. The objective to split this graph into equally sized parts, such that

the number of edges between different parts is minimal, is known as the graph-

partitioning problem. It occurs as a subproblem in many applications and is dif-

ficult to solve. Though several analytical bounds for special cases of this problem

are known, their proofs are either not constructive nor are the involved algorithms

suited for practical use. Hence, heuristics have been developed that deliver good so-

lutions quickly, and these are widely applied in the field of parallel and distributed

computing.

The most successful heuristics are described in chapter 2. The Spectral Bisection

is based on properties derived from the algebraic representation of the graph and

assigns the vertices according to an eigenvector. The popular linear ordering mecha-

nisms induced by Space-Filling Curves rely on geometric information. These are very

fast, but they run into problems if the provided coordinates do not correlate with

the graph structure. As an enhancement, we introduce the Graph-Filling Curves, a

new linear ordering approach that reflects the connectivity information more closely

and therefore enables better distributions. To improve a given partitioning, so called

refinements can be applied. Usually, these are Kernighan-Lin based, but the alter-
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Figure 1.1: After refining the mesh, the computational load is unbalanced (left). A bal-

ancing flow is computed (middle) and elements are migrated accordingly (right).

native Helpful-Set bisection refinement heuristic often finds solutions with less cut

edges. Applying such a refinement inside an hierarchical approach is currently most

successful graph partitioning strategy, known as the Multilevel Paradigm. The graph

partitioning library Party proceeds this way and creates its hierarchy according to

2-approximations of a maximum matchings. In chapter 3 we describe our improved

implementation of the Helpful-Sets refinement heuristic and compare the obtained

results with other state-of-the-art libraries.

Many simulations generate work load dynamically what degrades an existing dis-

tribution. Hence, the load must be reassigned during the run-time of the application.

The redistribution should keep the costs induced by the task migration as low as

possible while still assuring a balanced work load and little communication costs.

An application showing the importance of an efficient load balancing scheme is the

parallel adaptive finite element (FE) simulation. The involved meshes consist out of

several million elements that discretize the geometric space and that are distributed

evenly onto the processing nodes. Each processor starts computing independently

on its part until the next global communication step is required. Depending on the

application, the mesh is refined and coarsened in some areas during the computa-

tion which causes an imbalance between the processor loads. For example, exact

simulations of turbulences in fluid dynamics depend on such refinements. In these

situations, the computational load must be rebalanced as sketched in figure 1.1.

Rebalancing load involves two subproblems: Computing a balancing flow, i. e.

determining how much work load needs to be migrated over the communication

links, and the choice of the tasks to be placed on or migrated between the processing

nodes.
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Efficient methods to answer the first question have been developed and are de-

scribed in chapter 4. In the according model, all calculations can be performed

independently from each other, meaning that either no data dependencies between

the tasks exist or that their communication costs are negligible. When rearranging

the work load, the focus lies on minimizing the number of migrating tasks, or, from

the network’s point of view, in stressing the communication links as little as pos-

sible. An usual assumption is that tasks are splittable arbitrarily. This problem is

referred to as dynamic load balancing. A flow that is minimal in the || · ||2-norm (Eu-

clidean norm) can be computed by solving a system of linear equations. However,

this presumes global knowledge of all load values. In contrast, the same solution

can be obtained with an iterative diffusion process only utilizing local information,

and we depict the General Diffusion Scheme and its generalizations. Optimal pa-

rameters can be determined for selected processor topologies and we summarize our

investigations on the behavior of the scheme in dynamically changing networks.

Once a balancing flow has been computed, most existing repartitioning libraries

restrict the vertex movements in the refinement process accordingly. Thus, the re-

finement procedure that is designed to reduce the number of cut edges locally now

becomes also responsible for global decisions like the movement and placement of

whole partitions. However, our observations show that though this method, in com-

bination with a graph hierarchy, works well in some cases, it often results in bad

partition arrangements. With an increasing number of graph changes and conse-

quent repartitionings, the computed domains tend to become long and thin and

eventually fall apart. This behavior also indicates that the commonly used edge-cut

metric does not always measures the quality of a partitioning satisfactorily. Several

other aspects like domain connectivity or small domain boundaries, which are often

desired by the application developers, are not reflected at all. Hence, heuristics that

also consider these additional metrics are desirable.

In this thesis we propose a new general graph repartitioning method, but which is

designed to balance parallel adaptive numerical simulations. In contrast to existing

heuristics, the presented approach does not focus on few cut edges, but essentially

computes well shaped domains that closely conform to the informal specifications

stated by the developers of numerical simulations.

The new heuristic runs a number of diffusion processes in a learning framework.

In each learning iteration, the vertices are assigned to the partitions according to the

load distribution of the diffusion. These distributions reflect important information

9



1 Introduction

about the graph structure like the connectivity and distances between the vertices

and the domains. Hence, the accumulated global knowledge enables the learning

process to determine good partition arrangements. To enhance the reliability of

the procedure, we modify the General Diffusion Scheme to better meet our special

requirements, and analyse the resulting process in chapter 5.

The parallel nature of the diffusion and its integration into the learning frame-

work allow a direct and efficient parallelization. We implement two different par-

allelization strategies in our repartitioning library Flux, which contains additional

improvements that further reduce the computation-time. The included experiments

show that our new heuristic often finds better solutions than state-of-the-art parti-

tioning libraries, not only concerning the domain shape but also with regard to the

number of boundary vertices and the classical edge-cut metric. A new set of bench-

marks allows us to observe the behavior of the partitioning libraries over many graph

adaptations. Additionally, we have integrated our library into a parallel adaptive

simulation environment to study and evaluate the new method. All results confirm

the above statement for every single time step. Hence, our new graph partition-

ing and repartitioning heuristic computes solutions that meet the requirements of

parallel adaptive numerical simulations very well.

Publications

Parts of this thesis have been reviewed for and published in the proceedings of

the International Conference on Computational Science and Its Applications, 2003,

the International Conference on Parallel and Distributed Processing Techniques and

Applications, 2003, the 7th International Conference on Parallel Computing Tech-

nologies, 2003, the 18th International Parallel and Distributed Processing Sympo-

sium, 2004, the 7th International Parallel and Distributed Processing Symposium,

2004, the 17th International Conference on Parallel and Distributed Computing Sys-

tems, 2004, the 16th International Symposium on Computer Architecture and High

Performance, 2004, the Parallel and Distributed Computing and Networks Con-

ference, 2005, the International Conference on Parallel and Distributed Processing

Techniques and Applications, 2005, the 8th International Conference on Parallel

Computing Technologies, 2005, European Conference on Parallel Computing, 2005,

the 20th International Parallel and Distributed Processing Symposium, 2006, and

European Conference on Parallel Computing, 2006.

10



2 Graph Partitioning

This chapter begins with a definition of the graph partitioning problem, and we

refer to a number of theoretical bounds on it. We continue to present relevant

heuristic approaches and discuss their properties. The Spectral Bisection employs

attributes of the algebraic representation of a graph and is a popular method in the

process of designing digital circuit layouts. Linear orderings enumerate the graph’s

vertices and assign vertex intervals of appropriate size to the processors. While

common orderings are related to coordinates, we introduce an alternative algorithm

that better reflects the graph structure. Next, we describe the two local refinement

strategies Kernighan-Lin and Helpful-Sets, which can be applied to improve a given

partitioning. Refinement is one of the key components in the multilevel framework,

together with a matching strategy that creates the involved graph hierarchy. We

conclude this chapter with a reference to state-of-the-art graph partitioning and

repartitioning libraries that base on this multilevel strategy.

2.1 Problem Definition

Formally the graph partitioning problem can be defined as follows. Given an undi-

rected graph G = (V, E) with vertices V and edges E, a partitioning π of G into P

domains is defined as a function

π : V → {1, . . . , P}.

Hence, the vertices V of the graph are assigned to the P pairwise disjoint parts Vi:

V = V1 ∪ . . . ∪ VP with Vi ∩ Vj = ∅ ∀ i 6= j.

In case of P = 2, π is also called bisection. The balance (or imbalance) of a parti-

tioning bal(π) reflects the largest size of a partition in relation to the average:

bal(π) =
maxi{|Vi|}
|V |/P

.
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2 Graph Partitioning

π is totally balanced, if bal(π) = 1, which is only possible, if P divides |V | . The

edge-cut (or cut) is defined as the number of edges incident to two vertices from

different parts

cut(π) = |{{v, u} ∈ E : π(v) 6= π(u)}| .

Now, the graph partitioning problem consists in finding a totally balanced parti-

tioning with the smallest possible edge-cut. It is known to be NP-complete [GJ79],

hence optimal solutions for large input instances cannot be determined in a reason-

able amount of time.

In case of a bisection, the minimal possible cut of a balanced partitioning is called

bisection width

bw(G) = min
π
{cut(π) : π is a totally balanced bisection of G}.

Already for regular graphs, the graph bisection problem as the simplest form of the

graph partitioning problem is NP-complete in [BCLS87].

2.2 Analytical Bounds

Several analytical bounds on the graph bisection width are known. There exists an

algorithm which calculates a cut-size that differs from the bisection width by not

more than a factor of O(
√
|V | · log(|V |)) [FKN00]. This first sub-linear approxima-

tion factor has been improved to O(log2(|V |)) [FK02].

Analytical results on regular graphs show that almost every large d-regular graph

G = (V, E) has a bisection width of at least cd · |V | where cd → d
4

as d→∞ [CE88,

Bol88]. These bounds can be improved for small values of d. Almost every large

3-regular graph has a bisection width of at least 1
9.9
|V | ≈ 0.101|V | [KM92, KM93].

On the other hand, all sufficiently large 3-regular graphs possess a bisection width

of at most 1
6
|V | [MP01]. Almost all large 4-regular graphs have a bisection width of

at least 11
50
|V | = 0.22|V | [Bol88], while it is at most 2

5
|V | in case of sufficiently large

4-regular graphs.

Some approaches calculate lower bounds on the graph bisection width. These

bounds can be used to evaluate the quality of the existing upper bounds as well as to

speed up Branch & Bound strategies determining the bisection width of moderately-

sized graphs. One lower bound of the bisection width based on a routing scheme

for all pairs of vertices [Lei92]. A small congestion of the routing scheme leads to a

12



2.3 Global Methods

large lower bound. Lower bounds on the bisection width can also be derived from

algebraic graph theory by relating the bisection problem to an eigenvalue problem.

It is well known that the bisection width of a graph G = (V, E) is at least λ2|V |/4
with λ2 being the second smallest eigenvalue of the Laplacian matrix of G. This

spectral bound is tight for some graphs [BEM+04].

Furthermore, the structure of an optimal bisection can be used to derive improved

spectral lower bounds on certain graph classes [BEM+04]. For some classes of d-

regular graphs one can prove an improved lower bound on the bisection width of

roughly (d/(d− 2)) · (λ2|V |/4). Furthermore, one can prove a lower bound of (10 +

λ2
2−7λ2)/(8+3λ3

2−17λ2
2 +10λ2) · (λ2|V |/2) for the bisection width of all sufficiently

large 3-regular graphs and a lower bound of (5− λ2)/(7− (λ2 − 1)2) · (λ2|V |/2) for

the bisection width of all sufficiently large 4-regular graphs. These lower bounds

are better than the classical bound of λ2|V |/4 for sufficiently large graphs and are

applicable to Ramanujan graphs [Chi92, Mor94]. Any sufficiently large 3-regular

Ramanujan graph has a bisection width of at least 0.082|V | while sufficiently large

4-regular Ramanujan graphs have a bisection width of at least 0.176|V |. These values

are the best lower bounds for explicitly constructible 3- and 4-regular graphs [MP01].

Though these bounds are of high theoretical interest, they are far from acceptable

for real applications. Furthermore, the algorithms behind them are often very com-

plicated and are not suitable to design fast and efficient general graph partitioning

algorithms. Due to the problem’s practical importance, a number of heuristics have

been developed that usually provide ’good enough’ solutions quickly.

2.3 Global Methods

Graph partitioning heuristics that operate directly on the input-graph are referred

to as global methods. Due to the large problem sizes of common applications, it is

difficult for a global method to be fast and to deliver good solutions. Apart from

simple greedy algorithms, a few applicable approaches have been developed.

2.3.1 Spectral Bisectioning

A popular partitioning method is the Spectral Bisection which works on the Lapla-

cian matrix L, an algebraic representation of the graph. L contains the vertex

degrees on the main diagonal, the off-diagonal entries L(ij) are set to −1, if the edge

(i, j) exists and 0 otherwise.

13



2 Graph Partitioning

The bisection is based on the eigenvector e corresponding to the the second-

smallest eigenvalue λ2 of L. e is called Fiedler Vector [Fie73, Fie75] and expresses

the graph’s algebraic connectivity. The median m of all e’s components is determined

and the vertices v of the graph are split into V1 = {v ∈ V : ev < m} and V2 = {v ∈
V : ev ≥ m} [PSL90]. According to Fiedler’s results, at least one of the subgraphs

is connected if G is connected. The results of the Spectral Bisection are usually

fairly good considering that it is a global approach, but local improvements are

still possible. Furthermore, the computation of λ2 is quite costly for large graph

instances. An extension of this approach utilizes more eigenvectors and allows to

divide the graph into more than 2 domains [HL93].

2.3.2 Linear Orderings

Some applications request to partition structurally identical graphs. This is nec-

essary if computational load changes on the processing nodes occur rapidly and

unpredictably or if the number of available processors changes frequently. In these

cases the load has to be rebalanced very quickly to avoid the overall runtime being

dominated by the load-balancing algorithm.

An extremely fast approach to balance structurally identical graphs consisting of

vertices with varying vertex weights is given by implicit partitioning : Initially, the

graphs vertices are rearranged according to a certain scheme, such that the following

partitioning problems are reduced to simply splitting the node list into intervals of

appropriate size. To keep the edge-cut reasonable low and the partitions compact,

the node ordering has to preserve locality.

Finding a linear ordering of a graph is a combinatorial problem and has been

studied extensively with respect to various objective functions. There exist a number

of theoretical bounds, approximation algorithms, and heuristics [DPS02]. Most of

the considered metrics are not suited to determine good orderings for implicit graph

partitioning. Even the wire-length metrics (also denoted as edge sum, minimum 1-

sum, or bandwidth sum) that does reflect some kind of locality, usually does not lead

to a small global edge-cut of the implicit partitionings. For example, optimizing this

metric always results in placements of the first and last vertex of the curve far away

from each other, what is neither required nor helpful for an implicit partitioning.

14
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post.peano.grid16.ps 29.04.02 10:49 size 256 (-1-1073782286)

Hilbert

post.lebesgue.grid16.ps 29.04.02 11:39 size 256 (-1-1073782286)

Lebesgue

post.sierpinski.grid16.ps 04.09.02 10:04 size 256 (-1-1)

Sierpiński

Figure 2.1: Structure of selected space-filling curves in the 16× 16 grid.

Space-Filling Curves

Space-filling Curves (SFC) are geometric representations of bijective mappings M :

{1, . . . , Nm} → {1, . . . , N}m. The curve M traverses all Nm cells in the m-

dimensional grid of size N . They have been introduced by Peano and Hilbert in the

late 19th century [Hil91, Sag94]. Three well known types are sketched in figure 2.1.

Although space-filling curves were initially defined on grids, they can also be

used to determine node orderings in unstructured meshes. The graphs’ vertices

are separated recursively and aligned according to the underlying curve structure.

The recursion is repeated until each subpart contains a single vertex. Note that

this computation requires vertex coordinates. From the definition of the curves

follows that the corresponding separators are n− 1-dimensional hyper-planes in the

n-dimensional space. The locality preserving properties ensure that each interval of

the curve forms a partition with a to some extend limited number of edges to the

remainder of the graph.

However, this only holds as long as the given mesh structure allows a suitable em-

bedding of the curve, like it is the case for regular grids. If this is not possible, the

purely geometric separation destroys the locality properties of the ordering which are

necessary to find good graph partitioning solutions. Comparisons between advanced

graph partitioning heuristics and space-filling curves [HD00, SKK02, SW03] reveal

that the advanced partitioning tools determine solutions with a lower edge-cut. Es-

pecially in some configurations that often occur in FE mesh partitioning, space-filling

curves tend to produce partitionings of bad quality. The most important cases are:

The number of requested partitions is small, the mesh contains holes (un-discretized

15



2 Graph Partitioning

Figure 2.2: Defining a locality preserving curve is often difficult if the graph separation

is based on geometric information (left). A separation based on graph partitioning can

overcome this problem (right).

regions embedded in the mesh), or unevenly refined regions exist whose expansion is

of lower dimension than the overall problem (e.g. a 2-dimensional area within a 3-

dimensional FE mesh). This is a consequence of ignoring the provided connectivity

information but only relying on coordinates.

The example given in figure 2.2 (left) sketches a graph with two holes in a refined

area. The graph is separated according to a SFC based ordering. Here, large parts

of the cuts traverse deeply refined areas. Since boundaries of partitions based on

orderings often coincide with the separators of high levels, the resulting implicit

partitioning quality can be expected to be quite poor. Furthermore, a curve has to

cover every vertex in a region before entering the next one. Hence, in the shown

case, the curve loses much of its locality.

Graph-Filling Curves

In the following, we present a more suitable method to subdivide the vertices and

arrange them in a locality preserving way than it is possible with SFCs. The main

idea is to construct a curve which does not rely on geometry based separators and

static ordering rules which can hardly be embedded into unstructured meshes.

In figure 2.2 (right) the sketched separators are based on a high quality 4-partition-

ing. Assuming that they are part of the final solution, it becomes clear that now a

partitioning with a much lower edge-cut can be found than in case of the coordinate

based approach.

16



2.3 Global Methods

Figure 2.3: Phase 1: The construction of a hierarchy based on a partitioning algorithm.

In every level, the (sub-)graph is divided into 3 parts (left). The resulting tree hierarchy

is shown (right).

To find a suitable linear locality preserving ordering, we propose the following

two-phase algorithm. In the first phase, the graph is recursively partitioned and the

corresponding hierarchy tree is constructed. In the second phase, an appropriate

rearrangement within the tree is performed, which is supposed to improve the locality

of the ordering.

In the partitioning phase, each recursion divides the current subgraph into k parts,

where k is a small constant. This phase continues until only one vertex in a subgraph

remains. The first two levels of this process are illustrated in figure 2.3 for k = 3.

Traversing the constructed hierarchy defines the order of its leaf nodes represent-

ing the graph’s vertices. The second phase of the algorithm tries to optimize this

ordering by suitably rearranging the successors of each node in the tree. This means

that we allow a locally restricted reordering of nodes on the same level. In the cur-

rent implementation, the vertices are ordered such that the number of edges between

consequent subgraphs is maximized.

Since our aim is to determine orderings that induce a small global edge-cut, we

propose to link partitions with a large common boundary. This increases the proba-

bility that the curve will still be connected in the lower levels of the tree’s hierarchy.

A possible rearrangement in the hierarchy tree is sketched in figure 2.4. Starting

with the solution given in figure 2.3, the nodes representing subgraphs G2 and G3

17



2 Graph Partitioning

Figure 2.4: Phase 2: Traversing the hierarchy defines a curve. Its locality might be

improved by exchanging subgraphs (and their successors) of the same levels.

are exchanged, as well as the nodes G3.1 and G3.3. The nodes G2.i are shifted to the

right, respectively. Note, that all rearrangement operations involve nodes with the

same successor only. Hence, the previously defined orderings in higher levels remain

unchanged. On the right hand side of the figure, the old (top) and the new (bottom)

curve is plotted in the sketched graph.

From the description of the algorithm follows that there is an obvious dependency

between the choice of the parameter k and the number of possible rearrangements

in the second phase. A small k leads to a high grade of convolution while a large k

increases the flexibility in the reordering of the hierarchy. In the case of bisections,

there are obviously only two possibilities to traverse the successors of each node.

Due to the relationship to the graph’s structure rather than to its geometric shape

we call the generated traversals graph-filling curves (GFC).

To provide a detailed example, we analyze the space-filling and graph-filling curves

on the relatively small ’airfoil.1’ mesh. This unstructured mesh consists of 4253

vertices and 12289 edges and contains holes with a very fine discretized region around

them. Figure 2.5 shows the computed curves and the partitioned graph. The top

row displays the obtained SFC and GFC orderings while the bottom illustrations

present the resulting implicit 5-partitionings. The orderings are indicated by a curve

ranging from red to blue. For the SFC approach we applied the Hilbert curve while

the GFC is based on recursive bipartitioning combined with the proposed ordering

algorithm.
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The SFC ordering starts in the lower left corner and follows the Hilbert curve

to the lower right corner. The course of the separators of the higher levels is well

visible, especially the first vertical one which results in only one connection between

the left and the right part of the curve. As one can see, there are a lot of curve

segments crossing the holes in the graph. Partitions based on such an ordering will

contain vertices from both sides of the hole as demonstrated below for the implicit

5-partitioning. As expected, the upper left partition contains vertices from above

as well as from below the large hole. Furthermore, the course of the horizontal

separator of the highest level leads to a very large cut between both partitions on

the left hand side. A closer view reveals similar cuts between other partition pairs.

The GFC ordering starts close to the right end of the large hole in the area of fine

discretization. The curve continues below the smallest and the left hole. It surrounds

the group of holes in counter clockwise order and ends close to its starting point. On

a first view, the curve seems quite convoluted. This effect emerges from a missing

local optimization phase.

A closer look reveals that these obvious misalignments of the curve almost always

affect only vertices close together. Hence, it only influences the quality of an induced

partition at its entrance and exit to the partition. Furthermore, one can see that the

curve crosses the holes only once. The resulting 5-partitioning is shown in the lower

right illustration. Apart from some single vertices, only one partition is disconnected

and split into two parts. The partition in the lower left corner has additional vertices

in the region between the two smaller holes.

With a global edge-cut of 318, the implicit 5-partitioning based on the GFC

approach is much better than the one obtained according to the Hilbert curve, which

has an edge-cut of 624. As a comparison, elaborated graph partitioning heuristics

like Party and Metis are able to find separators with an edge-cut of 202 and 231,

respectively. Although the latter values are smaller, the numbers give an indication

of the improvement due to the new linear ordering approach.

The experiments presented in the following are based on a set of well known 2-

and 3-dimensional FEM graphs. The 2-dimensional graphs ’biplane.9’ and ’shock.9’

have a grid-like structure in which all edges are axis aligned. ’crack’ and ’big’ are

much more unstructured with arbitrarily oriented edges at triangular elements. All

of the 3-dimensional benchmark graphs ’rotor’, ’wave’ and ’hermes’ base on a mesh

discretization into tetrahedrons. Especially ’rotor’ has a widespread zone consisting

of very fine elements.
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airfoil1.sfc.ps 31.05.05 16:12 size 4253 airfoil1.sfc.ps 31.05.05 16:16 size 4253

space-filling curve graph-filling curve

Figure 2.5: SFC and a GFC based implicit 5-partitionings in comparison.
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Figure 2.6: Comparing SFC vs. GFC orderings according to the edge-cut for the graphs

’big’ (left) and ’rotor’ (right).

In figure 2.6, the edge-cut of the implicitly generated partitionings based on SFC

and GFC orderings in the meshes ’big’ and ’rotor’ are displayed. As in all following

experiments, the number of created partitions ranges from 2 to 128. To be able to

estimate the benefit of GFC as well as the overall quality, the obtained edge-cuts

are normalized to those calculated by Metis. Note, that in case of ’big’ the SFC

ordering is based on the Sierpiński curve, since further examinations have revealed

that this ordering leads to the best solutions in unstructured meshes. The GFC

ordering depends on the parameter k for the recursive partitioning in phase 1. The

results for k = 3 and k = 4 are labeled as GFC3 and GFC4, respectively. For the

’rotor’ mesh, the SFC ordering is based on the 3-dimensional variants of the Hilbert

and the Lebesgue curve, labeled by SFCH and SFCL, respectively.

It becomes obvious that the GFC approach is superior to SFC over the whole

range of examined partition numbers. Remarkable is the fact that in contrast to

SFC, the partition quality induced by the GFC ordering is less influenced by the

number of desired partitions. Most of the solutions have a quality better than

factor 1.5 in relation to Metis. That means that the obtained implicit partitioning

has an increase in edge cut of less than 50% compared to the elaborated graph

partitioning library. Values lower than 1 arise from the good solutions delivered by

the Party library, which we apply as the underlying graph partitioner. The GFC

profits directly from these separators which are better than those of Metis.

As mentioned above, the quality of resulting partitionings depends on the right

choice of k. Especially for a small number of partitions, the edge-cut of the obtained

results befalls a high variation. For example, the GFC4 ordering leads to good results
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in case of 2- and 4-partitionings but is bad in case of the 3-partitioning. In this case

GFC3 performs much better. Although this behavior has been expected, it is inter-

esting to see that the difference almost disappears for larger number of partitions.

Further experiments with other values of k have confirmed this observation.

The quality of partitions induced by GFC with parameters k = 3 and k = 4 are

much closer to the results of Metis. 79% (k = 3) and 84% (k = 4) of the achieved

edge-cuts are below the factor 1.4. The averages in normalized quality are 1.33

(k = 3) and 1.30 (k = 4). This means that we can expect an increase in edge-cut

of just one third compared to Metis, instead of a factor of 3 to 4. The variation

of the values is much smaller compared to SFC orderings and again less dependent

on the number of partitions. Furthermore, different values for the parameter k

have less influence while the choice of the space-filling curve (Lebesgue vs. Hilbert)

has dramatic consequences on the partition quality, especially for small partition

numbers. Most of the values obtained for both SFC variants lie in the range of 3 to

4. The Hilbert curve induces even worse results in case of small partition numbers

with a peak (8.7) in case of the bisection. Note that this value is omitted to allow

a more concise scaling. For partitionings into 5 or less parts the Lebesgue curve

reaches better qualities, but the overall behavior of both geometric schemes is not

acceptable for most applications.

The experimental results for all graphs of our test-set are summarized in table 2.1.

The edge-cuts achieved by Metis, SFC, and GFC are given for the 4-, 16-, and

64-partitioning. For the unstructured meshes ’crack’ and ’big’, the ordering was

generated according to the structure of the Sierpiński curve, while all others follow

the Lebesgue curve or its 3-dimensional extension. Among the traditional SFC

orderings, these settings achieve the best or close to the best results. The GFC

approach is based on the parameter k = 3 for the recursive partitioning because

k = 2 or k = 4 will automatically induce high quality P -partitionings if P is a

power of 4.

The table shows that in almost all cases GFC outperforms SFC, in many cases even

dramatically. Only in two settings (64-partitioning of ’crack’ and 16-partitioning of

’shock.9’) the edge-cut of the partitioning induced by a SFC ordering is slightly bet-

ter than the one of the solution based on GFC. Compared to Metis, the edge-cut of

solutions computed with SFC is in average about 2.1 times as high ([1.35, . . . , 3.82]).

Applying GFC instead, this factor can be decreased down to a value of 1.4 ([1.26, . . . ,

1.86]).
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Table 2.1: Comparison of edge cuts: Metis, SFC (Lebesgue), and GFC.

4-partitioning 16-partitioning 64-partitioning
Graph Metis SFC GFC Metis SFC GFC Metis SFC GFC

crack 408 1066 648 1218 2013 1831 2781 3927 3944
big 344 993 481 1099 2267 1701 2843 4854 4166

biplane.9 193 468 256 800 1235 1086 1906 2888 2653
shock.9 449 637 632 1208 1675 1700 2902 3915 3832
brack 3493 7696 6508 13225 28086 18696 29432 61054 39755
rotor 8829 27976 12726 24477 93526 32996 52190 182657 67499
wave 21682 32101 27349 48183 78592 65050 94342 138787 120314

hermes 46258 121152 65364 119219 266479 154419 241771 473081 322317

Note, that the computation time of the GFC algorithm is by far longest. This

is due to the multiple invocation of the graph partitioner as well as the additional

rearrangement phase. However, the ordering for a graph has to be determined only

once and all implicit partitionings can thereafter be constructed in almost no time.

Our experimental results show that in general the new ordering approach pro-

duces partitionings with a quality much closer to the best known solutions than its

geometric counterparts, indicating that the GFC approach is superior to SFC over

the whole range of examined partition numbers. Remarkable is the fact that in con-

trast to SFC, the partition quality induced by the GFC ordering is less influenced

by the number of desired partitions. Compared to the graph partitioning library

Metis, the number of cut edges obtained by the implicit partitioning is now usually

less than 50% higher.

2.4 Local Heuristics

While global heuristics compute a partitioning from scratch, local heuristics improve

a given partitioning. This is achieved by local rearrangements that exchange vertices

or sets of vertices between the partitions, also called refinements.

2.4.1 Kernighan-Lin

The Kernighan-Lin (KL) heuristic [KL70] is one of the earliest graph bisectioning

heuristics and has been developed to optimize placements of electronic circuits. The

original algorithm by Kernighan and Lin is based on the exchange of vertex pairs.
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The decision of which vertices to be exchanged is based on their gain. Denoting

the edge-weight of an edge (u, v) as w(u, v), for the current bisection π

ex(v) =
∑

(v,u)∈E,π(v) 6=π(u)

w(v, u) , in(v) =
∑

(v,u)∈E,π(v)=π(u)

w(v, u)

state the external and internal degree of a vertex v. The gain is then defined as the

edge-cut reduction that would occur if v was moved to the other partition:

gain(v) = ex(v)− in(v).

Thus, if v and u are two vertices, one from each partition, then swapping them

reduces the edge cut by gain(u) + gain(v) − 2w(v, u), where w(v, u) is the edge-

weight of (v, u), or 0 if this edge does not exist.

To escape local minima, the KL algorithm performs several passes. In each pass,

every vertex is allowed to change partitions once. The vertex pairs are sorted ac-

cording to their gain and the ones with the highest gain are migrated greedily. Since

many vertex pairs with the same gain exists, several scanning strategies have been

investigated [Dut93]. The edge-cut reduction is recorded, and finally migrations are

unrolled to the best recorded solution that occurred during a pass. To speed up the

process, a pass can be aborted if the edge-cut reduction falls below a certain value.

This value has to be chosen with care, since if the passes are exited to early the

algorithm will be stuck in local minima.

The KL algorithm has been modified [FM82, Kri84] such that a single vertex is

moved followed by a move of another vertex in the reverse direction. Doing so, the

time complexity of a pass has been reduced from Θ(|V |2 log |V |) to Θ(|E|). However,

it should be noted that swapping vertex pairs gives a better edge-cut improvement.

Furthermore, the stated run-times only hold if the edges are either unweighted or

limited to some discrete values such that a bucket sort mechanism can be applied,

otherwise it will rise to Θ(|V | log |V |+ |E|) [Dut93].

Further extensions of the KL algorithm allow to refine the edge-cut in case of

more than 2 partitions [HL95]. Note, that a k-way refinement is significantly more

complicated than a 2-way refinement because vertices can be moved to a number

of partitions which enlarges the optimization space combinatorially. Hence, some

simplifications have been invented that still result in a powerful heuristic [KK97].
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2.4.2 Helpful-Sets

Just as KL, the Helpful-Set (HS) refinement heuristic is based on local search. Be-

ginning with a given initial bisection π, it tries to reduce the edge cut with the help

of local rearrangements. However, their choice is the main difference to KL since the

heuristic does not only migrate single vertices but vertex sets. It starts to search for

l-helpful sets, that is a subset of nodes from either partition V1 or V2 that decreases

the edge cut by l if moved to the other partition. If such a set is found, it is migrated

and the algorithm then tries to find a balancing set in the opposite partition that

eliminates the caused imbalance and does not increase the edge cut by more than

l − 1. Moving this set results in a total edge cut reduction of at least 1. The whole

process is repeated until no more improvements can be made.

The heuristic is derived from theoretical analysis on regular graphs. As long as

the edge-cut is above a certain value, one can show that a helpful set and a balancing

set do exist. Utilizing this knowledge provides constructive bounds for the bisection

width [HM91, MD97]. If G = (V, E) is a d-regular graph with even d, d ≥ 4 and the

number of vertices in the graph is large enough, the bisection width bw(G) of G is

bounded by

bw(G) ≤ d− 2

4
|V |+ 1.

The Helpful-Set heuristic [DMP95, MPD00, MS04] is the algorithmic result of

the above theorem and includes several generalizations like the handling of graphs

with arbitrary vertex degrees and graphs with vertex and edge weights. It has been

successfully implemented in the graph partitioning library Party [Pre00]. Our new

enhanced version is presented in chapter 3.

2.5 The Multilevel Scheme

A breakthrough in the field of graph partitioning is the introduction of the multilevel

scheme [HL95, SKK97]. Instead of immediately computing a partitioning for the

large input graph, vertices are contracted and a smaller instance with a similar

structure is generated. On this graph, the partitioning problem is solved applying a

global heuristic. Due to the reduced size it is easier to find sufficiently good solutions.

Afterwards, vertices of the original graph are assigned to partitions according to

their representatives in the smaller instance. On every level, the obtained solution

is further enhanced by a local refinement heuristic.
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To obtain a global solution on the smaller instance, the described process can

be repeated recursively, until in the lowest level only a very small graph remains.

Hence, a very basic global heuristic can be applied and it can even be omitted if the

number of remaining vertices equals the requested number of partitions. Using a

level hierarchy allows to determine good solutions quickly, even for large instances,

since the refinement process always starts with a good and quite balanced solution

from the next lower level. Hence, no major partition rearrangements are necessary.

Summarized, a multilevel algorithm consists of two or three important tasks: An

algorithm deciding which vertices are combined in the next level, a global parti-

tioning algorithm applied in the lowest level if necessary, and a local refinement

algorithm that improves the quality of a given partitioning.

2.5.1 Matching Algorithms

To create a smaller, similar graph for the next level of the multi-level scheme, usu-

ally a matching algorithm is applied. The matched vertices are joined and the edges

combined accordingly. A matching algorithm for multilevel partitioning is supposed

to be fast and to have a high matching cardinality and matching weight. Because

of the time constraints, the calculation of a maximum cardinality matching or even

a maximum weighted matching would be too time consuming. Therefore, fast algo-

rithms calculating maximal matchings are applied.

A very simple algorithm is based on a greedy strategy always adding the next

heavier free edge to the matching [Avi83]. A number of alternative approaches have

been proposed [HL95, KK98b, KK99], but do not provide any quality guarantee.

In contrast, the LAM algorithm [Pre99, MPD00] guarantees to find a maximum

weighted matching with at least half the weight of the optimal solution. It has been

the first linear time approximation algorithm for maximum weighted matchings.

The discovery of this algorithm initiated a number of improvements [DH03b, DH03a]

which simplify the algorithm and improve the approximation factor. All of them

follow the same strategy: Starting with an initial empty matching, the vertices of

the graph are visited in a specific order. For each visited vertex v, it is checked if

v is free, i. e. can still be matched, and if v is adjacent to at least one unmatched

vertex. If v is free and all neighbors are already matched, v remains free. Otherwise,

if v is unmatched and at least one free neighbor exists, the edges to free neighbors

are rated and an edge with highest rating is added to the matching.
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2.5.2 Partitioning Libraries

The efficiency of a graph partitioning heuristic in terms of run-time and solution

quality strongly depends on its implementation. Besides specialised realizations

inside some applications, there exist several general purpose libraries. They all base

in the multilevel scheme, but vary in their implementation details and parameter

settings. The most prominent examples are:

Chaco [HL94] is one of the first freely available library. It includes several varia-

tions of the Spectral Bisection approach as well as a multi-dimension spectral

partitioner. Both can be applied within the multilevel approach. Additionally,

the KL refinement heuristic is implemented.

Jostle [Wal02] applies the KL heuristic within the multilevel scheme, and addition-

ally includes a simple technique that addresses the domain shape. Additionally,

it contains a balancing strategy that can handle multiple vertex weights.

Metis [KK98a] is a family of programs for partitioning unstructured graphs and

hypergraphs and computing fill-reducing orderings of sparse matrices. It con-

sists of different frontends: pMetis and kMetis are recursive and direct graph

partitioners. hMetis is a program for partitioning hypergraphs such as those

corresponding to VLSI circuits. Furthermore, methods for multi-constraint

and multi-objective partitioning are implemented in some of the packages.

Party [Pre98] applies the Helpful-Set heuristic to find local improvements. Fur-

thermore, it is the first library that employs an approximation scheme of a

maximum weighted matching to create the graph hierarchy. Since the pub-

lication of version 2.001 [Pre00], we have implemented several enhancements

addressing the solution quality and the library’s reliability as described in

chapter 3.

WGPP [Gup96] is a package for partitioning graphs and for computing fill-reduced

orderings of sparse matrices for their direct factorization. It generates multiple

coarsenings of the same graph and selects the best one when the refined graph

becomes large enough and applies some additional preprocessing.
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2.6 Graph Repartitioning

Each time the computational mesh in a dynamic application is adapted, the vertices

representing the workload have to be redistributed between the processing nodes.

Here, besides the balancing and a small edge-cut, the additional objective to keep

the number of migrating vertices small has to be considered.

A first idea to address this problem is to compute a partitioning from scratch

and then map the old partitions onto the new ones such that the migration is

small [SKK97]. However, this still causes many vertices to change, and less migration

occurs if the partitioning process takes the current distribution into account.

Better results can be obtained by adopting the multilevel scheme. The global

partitioning step on the lowest level is replaced by a vertex assignment that re-

flects the current vertex distribution of the original graph. To obtain such a unique

assignment, the matching can be restricted to join only vertices of the same parti-

tion. Depending on how many levels are generated, the assignment is more or less

accurate, and one can either target on a small edge-cut or little migration.

Alternatively, it is possible to focus on the overall goal, a short application run-

time. Plum [BO98] globally repartitions the computational mesh and determines

whether rebalancing the workload would reduce the total execution time. If an

improvement in the load balance can be achieved, Plum utilizes one of its sev-

eral remapping algorithms to minimize the required data movement. The library

MinEX [DHB02] optimizes Plum’s objective inside a KL refinement. These ap-

proaches counter the possibility that perfectly balanced loads with minimal commu-

nication can still incur excessive redistribution costs for adaptive applications.

If the graph is already distributed on the processing nodes, it is desirable to apply

a distributed repartitioning algorithm. Often, due to memory requirements, it is not

even possible to assemble the whole graph on a single node.

However, although there exist a large number of sequential libraries, only a few

parallel implementations are available. This is due to the complexity involved in

parallel programming. Furthermore, the mostly KL based refinement heuristics

are basically of sequential nature, hence modifications are required that introduce

new limitations. The most popular distributed libraries are the parallel versions

of Metis [KK96, KK98a] and Jostle [WCE97, Wal00, WC00]. These tools basically

apply the same techniques as their sequential counterparts, are quite fast and deliver

solutions of acceptable quality for most applications.
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Library

This chapter describes the graph partitioning library Party. The library is based

on the multilevel strategy and applies the LAM matching heuristic as well as the

Helpful-Set bisection refinement presented in the last chapter.

First, we introduce a novel evaluation scheme which increases the significance of

the information obtained in run-time experiments. Analyzing the gathered data,

we have been able to improve the matching strategy and especially the Helpful-Set

implementation of which we provide a detailed description.

Using a common set of graph instances, we then compare Party’s original [Pre00]

and our latest implementation with the state-of-the-art graph partitioning pack-

ages Metis and Jostle. In contrast to other evaluations, we also record the quality

deviation reflecting the library’s reliability. While usually solutions with almost

equally sized partitions are requested, we additionally examine the behavior under

less restricted balance constraints. Applying bisections recursively, Party is able to

partition a graph into more than two parts. We conclude this chapter with the re-

sults of extensive tests covering the range of two to 50 partitions. It turns out that

Party’s new implementation is often able to outperform direct partitioning libraries

like Metis and Jostle.

3.1 An Improved Evaluation Scheme

Due to the complexity of the graph partitioning problem, experiments are the usual

way to compare and evaluate different heuristics. These tests are performed on an

agreed set of representative graph instances [Wal]. However, using a fixed set of

graphs to test a partitioning library includes some drawbacks. Even if not intended,

it is easy to adopt an algorithm to the test set, meaning that the results become

better for the selected graphs but deteriorate for others. During the development
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Figure 3.1: The original graph and its data structure (left) is transformed by a vertex

permutation σ = (2, 3, 1, 0) into the new graph (right).

of the Helpful-Set heuristic, we have experienced this several times. To overcome

this problem, we first enlarge the test set. This makes the undesired adoption more

unlikely, but still the number of available instances remains quite limited. Another

approach we found is based on permutation. It should be mentioned that generating

random graphs is no solution to the problem since their structure and their properties

are completely different to those of ’real world’ problems. However, a graph can be

partly randomized maintaining its structure. This is done by permuting its vertices.

Figure 3.1 shows an example of how this construction works. First, a random

permutation σ of numbers 0 to |V | − 1 is determined. σ is then used to map each

vertex v of the original graph G to vertex σ(v) in the new graph G′. Next, the newly

generated sequence of G’s vertex numbers is sorted, changing the vertices’ order.

After that, the edges are adopted to the new graph by transforming an edge (vi, vj)

into edge (vσ(i), vσ(j)). Last, the outgoing edges of each vertex are sorted according

to their destination’s vertex number. It is obvious that the remaining graph G′ has

exactly the same structure and properties than the original G. However, in our

experiments it is shown that the influence of the permutations on the partitioning

results is surprisingly high.

To make use out of this observation, we create a new evaluation scheme, based

on the described technique. With each graph in our test set, we performed 100

runs. The first run consists of partitioning the original, unchanged graph, while

for all following runs the graphs vertices are permuted. We are aware that this

scheme does not solve the evaluation problem completely since an algorithm can

still be tailored for special graph types. But at least this becomes more difficult
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Figure 3.2: Numerical results computing bisections of the 100×100 grid

for single test graphs that now represents a class of graphs. Last but not least, the

method delivers some data about the variation of the solution quality. One can now

determine if an algorithm does always find solutions of about the same quality or if

they highly differ to each other, supplying a measurement for reliability. Thus, we

believe that the permutation scheme makes comparisons more meaningful.

The results obtained in the experiments can be displayed in a chart generated by

a script. Figure 3.2 gives an example. It shows the results we obtain when bisecting

the 100x100 grid, which we choose because optimal solutions (with edge cut 100)

are known. The left part shows the bisection quality. The edge cut is displayed on

the x-axis while the y-axis displays the weight of the largest partition (pwmax), that

is the balance. Every mark of each type represents the result of one of 100 runs

for each of the libraries, respectively. Furthermore, the first run with the genuine,

unchanged graph is represented by a solid mark, while the average of all 100 runs is

displayed by a large solid mark. The right part shows the required resources. Since

these do not depend much on the permutation, only the average time and memory

consumption from all runs for this graph is displayed.
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In figure 3.2, the yellow, orange, and red squares display the results obtained

using Jostle with 0%, 1% and 3% allowed imbalance, respectively. One can see that

the average edge cut computed gets smaller with a higher imbalance allowance. The

average solution for 3% allowed imbalance is of a good quality (103.4), and the figure

reveals that there is some variation due to the randomization. This variation is even

higher for Metis, whose results are displayed with the upper light (pMetis) and

lower dark (kMetis) blue triangles. Especially for kMetis, achieving an average edge

cut of 126.4, the variation is very high, both for the edge cut and for the balance.

While the results obtained by pMetis, Jostle with no imbalance and the former

implementation of Party (green diamonds) show a similar behavior for the edge cut,

the new implementation of Party (black circles) does compute less divergent (often

identical) solutions here, reaching an average edge cut of 100.9. On the right hand

side the average resource amount consumed by the different libraries is displayed.

In case of the 100x100 grid, Jostle needs longest to compute its results, followed by

Metis and Party, while Metis needs the largest amount of memory.

An important point that can be observed is that if the libraries were compared

based on only the original graph, their rating would have been different. Metis

(kMetis and pMetis) and Jostle with 1% and 3% imbalance allowance would have

performed worse while Jostle with no imbalance and Party would have come off

better, resulting in different conclusions.

The reason for the large variations is due to the libraries’ implementation. During

the refinement process, all vertices whose migration reduces the edge-cut by the same

value are stored in an unsorted container. Vertices from the best bucket are chosen

for migration, however, their order varies according to the vertex permutation.

The same observation can be made for partitioning libraries that randomize the

vertex selection for the buckets. Using different seeds for the random number gen-

erator results in similar variations concerning the solution quality [Els02]. However,

our approach is also applicable to implementations that are deterministic.

3.2 Implementation Enhancements

This section provides implementation details of the main components in the Party

graph partitioning library. Though the new version is a complete rewrite, we focus on

the realized improvements compared to the former code [Pre00]. First, we describe

changes to the matching strategy that prevent the generation of star like graphs.
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Then, we list the implementation of the Helpful-Set bisection refinement heuristic

in detail.

3.2.1 Weight Limited Coarsening

The coarsening phase in Party is based on the Locally-Heaviest matching algorithm

(LAM) that is presented in [Pre99]. This algorithm computes a 2-approximation

of a maximum weighted matching in linear time. However, without modifications

it will often create star-like graphs, meaning that some very heavy vertices with

very high degree are generated. This makes the result unusable because neither is

the structure of the coarsened graph similar to the original instance anymore nor

is it possible to combine the vertices of a star-like graph appropriately such that a

smaller graph of about half the size can be created for the next level.

To prevent this, we modify the LAM algorithm to only consider vertices as match-

ing pairs if their combined weight does not exceed twice the weight of the lightest

plus the weight of the heaviest vertex that occurs in the whole graph. This ensures

that heavy vertices are only matched with light ones if at all, what leads to more

equal weights. If too few matching pairs exist, a second round of the LAM algo-

rithm is performed, what usually only happens in case of large variations of vertex

weights. Additionally, we introduce a factor (set to 2/3) by that a graph has to

shrink before the next level of the multi-level scheme is reached. This avoids run-

ning the expensive local refinement if a graph does not significantly differ in its size

compared to its larger predecessor on the next higher level. If a graph does not meet

this requirement, it is coarsened again.

3.2.2 The Improved Helpful-Set Implementation

The Helpful-Set heuristic is derived from theoretical observations as mentioned in

chapter 2. However, although even if we know of the existence of a helpful and a

balancing set, it is not clear how to find them quickly. Therefore, the helpful and

balancing sets are built greedily, taking into account that some sets are overlooked.

The helpfulness of a single vertex is defined in a similar manner as the helpfulness

of a vertex set and represents the edge cut reduction that would occur if a vertex

changes its partition. To find the vertices with the highest helpfulness, they are

stored inside a priority queue sorted according to their current value. Note that

not all vertices but only those are included in the queue that have at least one
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neighbor in a foreign partition, what is called lazy-initialization [WC00]. Depending

on the number of vertices and the edge weights, this queue is now either realized

as a bucket, similar to other libraries, or alternatively as a red-black tree, reducing

time and memory requirements if too many buckets were empty which often occurs

in lower levels of the graph hierarchy.

Adaptive limitation The bisection refinement heuristic searches for l-helpful sets,

that is a subset of nodes from either partition V1 = A or V2 = B decreasing the edge

cut by l if moved to the other partition. If such a set is found, it is migrated and

the algorithm then tries to find a balancing set in the same manner that eliminates

the caused imbalance but also does not increase the edge cut by more than l− 1. If

the search is successful, the set is moved, what results in a total edge cut reduction

of at least 1. Otherwise the migration of the helpful set is undone and l is adjusted.

The whole process is repeated until no more improvements can be made.

It has turned out that the crucial point when implementing the Helpful-Set algo-

rithm is the choice of the helpfulness value l of the sets to be searched for. If l is

chosen too low, then promising sets are overlooked, while setting l too high quickly

increases the runtime but usually does not discover better sets. The former imple-

mentation in Party therefore uses a technique called adaptive limitation [DMP95]

to determine l. Setting it to cut/2 initially, l is halved or set to the best occurring

helpfulness if a l-helpful-set cannot be found in any of the two sets and doubled if

the search has succeeded.

The improvements we made here can be characterized into several aspects. First,

instead of using the same limit value l for both sets A and B, we introduce a separate

one for each. This also leads to some changes in the adaptive limitation. Second,

we include the possibility of having slight imbalances. This feature has also been

implemented in Jostle and Metis, and it has proven to be quite successful since slight

imbalances often make better edge cuts possible. If an imbalance of i%, 0 ≤ i ≤ 100

is required, a partition’s weight may not exceed d|V |/2∗(100+i)/100e. Especially in

deeper levels of the multilevel approach it is not necessary (often not even possible)

to completely balance the two sets. Thus, there is still some benefit even if fully

balanced solutions are requested. Third, the former implicit balancing mechanism

has been moved to the end of the algorithm and is performed explicitly, now always

ensuring the requested bounds and increasing the reliability of the library. Figure 3.3

lists the new implementation.
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01 HelpfulSet(A,B) /* Current bisection is into partitions A and B */
02 lA ← lB ← cut/2 /* Initialize the limits */
03 while lA + lB > 0 /* Search for edge cut reductions until both limits are 0 */
04 if lA = 0 or 2 · lA < lB /* Choose the more promising partition */
05 Swap(A,B) /* Exchange names of the partitions */
06 SA = BuildHS(A, lA,−d/2, smax) /* Search for a lA-helpful set SA */
07 if h(SA) < lA /* If the helpfulness of SA is smaller than wanted ...
08 lA ← b(SA) ... adjust the limit for the next search */
09 if lB > h(SA) /* Test if a more helpful set can be found in the other partition */
10 SB = BuildHS(B, lB ,−d/2, smax) /* Search for a lB-helpful set SB */
11 if h(SB) ≥ h(SA) /* Name the partition with the better set ’A’ ...
12 Swap(A,B)
13 else

14 lB ← b(SB) ... and reduce the limit of the other partition */
15 UndoBuild(SB) /* undo the build operation for the less promising set */
16 if h(SA) < 0 /* Check, if a helpful set was found at all ...
17 lA ← b(SA) ... and save its helpfulness */
18 continue /* Proceed with the next loop in line 3 */
19 lA ←min(lA, h(SA)) /* Adjust the limit for the next search */
20 MoveSet(SA) /* Move the helpful set */
21 min← (w(B)− wmax(B)− grace)+ /* Determine the minimum ...
22 max← (w(B)− wmin(B) + grace)+ ... and maximum weight for the balancing set */
23 SB = BuildBS(B, 1− h(SA),min, max) /* Search for a balancing set */
24 if wl ≤ w(SB) ≤ wh and h(SB) > −h(SA) /* Check, if the balancing set is ok */
25 MoveSet(SB) /* Yes: Move the balancing set */
26 lA ← lA + dlog lAe /* Increase the limits */
27 lB ← lB + 1
28 else

29 UndoBuild(SB) /* No: Undo the build operation and ...
30 UndoMove(SA) the movement of the helpful set */
31 lA ← lA/4 /* Reduce the limits */
32 lB ← lB/2
33 Balance(A,B, grace) /* Enforce balanced partitions by moving vertices greedily */

Figure 3.3: Implementation of the improved Helpful-Set bisection heuristic.
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Like in the former implementation, the limits lA and lB are set to half the current

edge cut initially (line 2). The following loop (line 3-32) is then performed until

both limits are 0. If the currently first set’s limit lA is much smaller than B’s one

(line 4), the names of the sets A and B are exchanged (line 5). This ensures that a

helpful set is first searched for in the more promising looking partition. During the

search, the helpful set may neither become less than −d/2 helpful, where d is the

average degree of a vertex, nor contain more than smax (in our implementation 128)

vertices (line 6). If a lA-helpful set (SA) (with weight w(SA) and helpfulness h(SA))

cannot be found (line 7), the limit is reduced to the best helpfulness (b(SA)) that has

occurred during the search. Then, it is decided if a search in partition B is wanted

(line 9). If so, SB is determined (line 10). The set with the better helpfulness is

named SA (line 11,12) and kept while the other partition’s limit is reduced and the

set deleted (line 15). If the helpfulness of SA is less than 0, the limits are adjusted

(line 17,18) and the procedure is repeated, otherwise lA is adjusted, SA is moved

to B (line 20) and the balancing phase is entered. There (line 21,22), the allowed

weight interval [min, max] of the balancing set is calculated. Due to the high vertex

weights in lower levels of the multilevel method, this calculation includes a variable

grace (that equals half the largest vertex weight), what introduces more flexibility.

Within these bounds a balancing set SB is then looked for that does not increase

the edge cut by more than 1 − h(SA) (line 23). If such a set can be found (line

24), it is moved to A (line 25) and the limits of both sets are increased (line 26,27).

Otherwise, SB is canceled (line 29), SA is moved back to A (line 30) and limits lA

and lB are decreased. Finally (line 33), if no more improvements can be made, the

balance is checked and corrected if necessary by greedily moving the currently best

vertices.

2-Processor SMP Multithreading To obtain more than two partitions, bisections

can be applied recursively. Since their invocation describes a binary tree, a possible

parallelization is straightforward. After processing the root node of the tree (that is

bisecting the original graph), each of the two parts is then processed by one of the

two processors. No communication is required between them, since the subproblems

are completely independent, what makes the implementation very easy.

The question of how to use the second processor for the initial bisection remains.

Note, that this root problem is the largest bisection problem of the whole computa-

tion and thus requires most of the resources. Nevertheless, in the current version of
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the Party library no further parallelism is implemented inside the bisection. Instead,

we use the second processor to improve the partitionings’ quality by computing the

same problem (with different representations) twice and keeping the best result.

To create an alternative representation, a graph permutation is required. Here, we

apply the same mechanism as described in section 3.1.

3.3 Experimental Results

This section presents the results that we obtain applying the old and new imple-

mentation of Party and the state-of-the-art graph partitioning libraries Jostle and

Metis. We first look at bisections computed by the two versions of Party, and then

compare these results with those of Jostle and Metis. Next, we loosen the balance

constraints to allow for a larger variation of the partition sizes before we conclude

this section with the results of extensive tests that cover partitionings of two to 50

parts.

All experiments perform 100 runs with different graph representations according

to our evaluation scheme and have been performed on a Pentium III 933 MHz dual

processor system with 1 GB of main memory. Our test set contains well-known

graphs that are listed in table 3.3. Since our main motivation comes from the field

of FEM computations, most of the instances are originated in this area. We apply

the evaluation method presented in section 3.1, but shorten the presentation to the

average results.

3.3.1 Balanced Partitionings

First, we compare the improved implementation of the Helpful-Set method with the

former one. While the old version of Party can only compute fully balanced parti-

tionings, we run the new implementation with 0%, 1% and 3% imbalance allowance

respectively. In these tests, we do not use multiple threads.

The average results are displayed in table 3.2. The numbers in this table show that

in all tested cases the new implementation achieves a smaller average edge cut even

if no imbalance is allowed. As expected, a higher imbalance allowance decreases the

edge-cut in most cases, because the feasible solution set size is enlarged. However,

in rare cases the opposite can sometimes be observed like for the ’dime.20’ graph.

Here, the average edge cut increases from 185.0 in case of no allowed imbalance to
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Table 3.1: Graphs in the test set and some of their properties.

degree
Graph |V | |E| min avg max diameter origin

144 144649 1074393 4 14.86 26 35 FEM 3D
4elt 15606 45878 3 5.88 10 67 FEM 2D

airfoil.1 4253 12289 3 5.78 9 43 FEM 2D
biplane.9 21701 42038 2 3.87 4 102 FEM 2D

crack 10240 30380 3 5.93 9 84 FEM 2D
dime.20 224843 336024 2 2.99 3 1105 FEM 2D dual
grid100 10000 19800 2 3.96 4 198 FEM 2D
m14b 214765 1679018 4 15.64 40 33 FEM 3D

memplus 17758 54196 1 6.10 573 10 digital memory circuit
ocean 143437 409593 1 5.71 6 229 FEM 3D dual

stufe.10 24010 46414 2 3.87 4 54 FEM 2D
t60k 60005 89440 2 2.98 3 495 FEM 2D dual

vibrobox 12328 165250 8 26.81 120 3 vibroacoustic matrix
wave 156317 1059331 3 13.55 44 38 FEM 3D

190.0 with 3% imbalance. This can be explained with the larger solution space, too,

because there might be more and probably worse local optima now. A closer look

on the detailed data of this experiment reveals that the cut size of the best solution

found during all 100 runs is smaller for 3% imbalance than in the 1% or 0% case.

Comparing the computed edge-cuts of the old and new implementation, we report

a quality improvement (QI) of 1.2% up to 19.6%. As table 3.2 shows, the improved

version does neither require considerably more time nor memory. Hence, we claim

the new version to be superior to the old one.

The results of Jostle and Metis are shown in table 3.3 and 3.4. Jostle accepts

an imbalance parameter and we used values of 3% (default), 1% and 0% of allowed

imbalance. The genuine version of Metis does not allow to adjust the imbalance

parameter, instead it is set to constant 0% and 3% for the two versions pMetis and

kMetis, respectively.

Comparing the resource requirements, Party always consumes least memory, but

Metis (kMetis and pMetis) is fastest. In some cases, Party can compete with Metis,

while in some others it is slightly slower than Jostle. This difference between the

graphs is probably due to the applied matching strategies, resulting in a different

number of graph levels and refinements.
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Table 3.2: Average solution quality and resource requirements obtained by the old and

new Party implementation. The best result is printed bold while results not within 10%

(quality) and 25% (resources) of this value are shaded gray.

Party (old) Party (new)
Graph imbal.=0% imbal.=0% imbalance=1% imbalance=3% QI

edge cut edge cut edge cut pwmax edge cut pwmax

144 6963.1 6730.2 6682.9 72844.6 6814.1 74152.6 3.5%
4elt 167.6 148.6 149.7 7854.9 149.4 7925.5 12.8%

airfoil.1 84.3 81.5 78.8 2139.7 77.5 2174.6 3.4%
biplane.9 90.5 79.9 78.7 10917.8 77.4 11043.7 13.2%

crack 203.3 192.5 192.2 5155.4 191.3 5221.1 5.6%
dime.20 213.4 185.8 189.5 113058.4 190.0 114377.9 14.8%
grid100 106.9 100.2 100.9 5042.8 100.9 5141.0 6.7%

memplus 5858.7 5791.4 5744.5 8965.9 5642.3 9139.8 1.2%
m14b 4127.0 3956.8 4004.0 108236.1 4081.8 110064.4 4.3%
ocean 551.1 496.1 505.9 72142.9 391.6 72932.5 11.1%

stufe.10 62.2 52.0 51.3 12073.2 51.0 12204.9 19.6%
t60k 100.3 91.9 88.7 30218.4 79.4 30836.2 9.1%

vibrobox 11974.8 11711.7 11691.8 6191.4 11730.0 6269.4 2.2%
wave 9445.8 9104.9 9070.8 78797.0 9049.6 80052.5 3.7%

Party (old) Party (new)
Graph imbalance=0% imbal.=0% imbal.=1% imbal.=3% all

time memory time time time memory

144 1.949 45741.8 2.000 2.200 2.318 38744.7

4elt 0.054 2008.9 0.060 0.061 0.061 1855.9

airfoil.1 0.011 537.1 0.014 0.014 0.014 518.4

biplane.9 0.074 2186.9 0.075 0.076 0.075 2494.1
crack 0.035 1348.1 0.046 0.046 0.046 1473.1

dime.20 1.227 18678.6 1.285 1.282 1.287 23215.9
grid100 0.031 1027.0 0.034 0.034 0.034 1144.2

memplus 0.161 4620.6 0.372 0.384 0.374 5774.8
m14b 3.337 71679.4 3.602 3.748 3.810 61310.7

ocean 1.204 22517.8 1.262 1.287 1.277 26266.7
stufe.10 0.079 2435.8 0.083 0.083 0.083 2780.9

t60k 0.241 5152.4 0.234 0.235 0.235 6325.5
vibrobox 0.160 7320.1 0.287 0.368 0.433 5576.5

wave 2.051 46399.3 2.234 2.388 2.471 40790.6
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Table 3.3: Numerical results obtained with Jostle.

Jostle
Graph imbalance=0% imbalance=1% imbalance=3% all

edge cut time edge cut time pwmax edge cut time pwmax memory

144 7047.8 2.257 7040.0 2.186 72765.6 7030.4 2.180 73263.4 47072.7
4elt 169.9 0.113 164.7 0.113 7836.7 162.8 0.115 7911.7 2721.4

airfoil.1 88.5 0.028 86.6 0.024 2134.4 84.0 0.024 2162.2 739.0
biplane.9 105.0 0.148 101.1 0.145 10903.9 99.4 0.145 10993.3 3338.8

crack 205.8 0.070 203.7 0.069 5137.0 201.4 0.071 5185.3 1794.5
dime.20 243.3 1.504 228.5 1.463 112942.7 224.3 1.462 113713.1 31531.6
grid100 117.0 0.062 111.9 0.065 5007.8 103.4 0.069 5038.1 1560.4

memplus 6183.7 0.356 6140.5 0.340 8966.5 6092.3 0.325 9085.6 5887.4
m14b 4221.7 3.355 4206.3 3.298 107916.2 4203.5 3.298 108592.4 72498.3
ocean 564.4 1.361 500.1 1.334 72319.8 438.6 1.330 73078.1 29339.7

stufe.10 64.8 0.151 62.8 0.148 12052.3 62.5 0.148 12118.0 3712.4
t60k 101.4 0.382 97.1 0.370 30129.8 92.8 0.369 30469.2 8577.2

vibrobox 11802.8 0.417 11858.3 0.392 6218.7 11821.1 0.402 6320.0 6800.3
wave 9404.2 2.392 9416.5 2.267 78628.5 9410.1 2.263 79262.9 48204.8

Table 3.4: Numerical results obtained with Metis.

pMetis kMetis
Graph imbalance=0% imbalance=3%

edge cut time memory edge cut time pwmax memory

144 6855.9 1.321 73596.3 6989.6 1.515 72642.1 70080.5
4elt 160.5 0.060 3969.8 169.0 0.062 7888.2 3596.9

airfoil.1 84.7 0.016 1078.6 88.5 0.014 2168.9 982.5
biplane.9 84.8 0.081 4581.5 89.2 0.083 10949.4 4060.0

crack 199.8 0.043 2820.0 210.8 0.042 5188.9 2580.5
dime.20 192.0 1.011 41622.7 194.1 1.169 112598.3 36157.1
grid100 112.9 0.036 2147.2 126.4 0.035 5071.2 1910.7

memplus 6555.6 0.118 6739.4 6583.8 0.125 9126.8 6535.7
m14b 4056.9 2.163 114897.6 4145.0 2.452 107573.8 109672.5
ocean 504.5 0.837 40283.4 512.9 0.958 72108.5 36795.2

stufe.10 59.0 0.084 5084.7 61.7 0.090 12092.0 4507.3
t60k 96.5 0.225 11276.4 105.5 0.253 30192.2 9820.6

vibrobox 11792.4 0.158 10640.1 11857.4 0.148 6297.5 10419.6
wave 9381.0 1.372 74861.3 9441.4 1.558 78539.7 71069.1
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To simplify the quality comparison, the computed edge-cuts are listed again for

0% and 3% imbalance allowance in table 3.5, which additionally states the edge-cut

deviation. Note that we have extended pMetis with the imbalance feature, not the

authors of this package.

One can see that Party computes the solutions with the lowest average edge-cut

for almost all graphs of the test set, followed by Jostle and pMetis. Furthermore,

it is evident that permuting the graphs’ vertices has a large impact on the results

computed by all libraries. The variation of the edge cut produced by Jostle is usually

highest, followed by Metis, whereas Party usually calculates partitionings of more

similar quality.

Summarizing the results, we have demonstrated that our new implementation of

the Helpful-Set heuristic in the Party library is a powerful and reliable refinement

tool that, applied inside a multilevel framework, can compete with and often even

outperform state-of-the art graph partitioning libraries.

3.3.2 Less Restrictively Balanced Partitionings

In the following we increase the balance allowance and present the results for the

15% and 75% imbalance settings. It is obvious that by loosen the balance restrictions

of the graph bisection problem, partitionings with fewer cut edges become possible.

However, this decrease is often not continuous. Looking at the 100x100 grid for

example, the optimal bisection width is 100. This is still the case if slight imbalances

are allowed. Only if one partition may contain 49 · 50 = 2450 vertices or less (which

corresponds to more than 50% imbalance), the edge cut can be decreased to 99 or

less. Furthermore, local minima sometimes prevent the expected effects of increasing

the imbalance value.

Our experiments show that the time and memory requirements equal those for

the balanced setting. As before, Metis usually runs fastest. Party always consumes

the smallest and Metis the largest amount of memory. Thus, we omit the exact

numbers and focus on the partition quality. Table 3.6 contains the average edge-cut

values obtained for the graphs of the test set.

One can see that a high imbalance allowance usually allows fewer cut edges. Again,

there are a few exceptions to this rule. The most obvious instance is the ’ocean’

graph. Although a good solution of 361.9 can be found with less than 3% imbalance,

Party can only find an average of 499.6 cut edges with the less tight restrictions of
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Table 3.5: The average edge-cut and its standard deviation during 100 runs computed by

Jostle, Metis and Party with an imbalance allowance of 0% and 3% respectively. The best

result is printed bold while results not within 10% of this value are shaded gray.

Jostle pMetis kMetis Party (new)
Graph edge cut ± edge cut ± edge cut ± edge cut ±

no imbalance allowed

144 7047.8 536.2 6853.2 210.3 7711.6 304.9 6730.2 77.0
4elt 169.9 27.2 161.9 23.8 217.6 26.6 148.6 14.5

airfoil.1 88.5 8.7 84.6 7.2 138.4 121.3 81.5 5.1
biplane.9 105.0 26.6 84.8 10.8 107.2 14.8 79.9 5.8

crack 205.8 15.5 200.1 13.9 263.3 15.6 192.5 7.3
dime.20 243.3 33.3 191.1 18.3 215.4 20.4 185.8 21.9
grid100 117.0 11.0 113.3 9.2 155.9 10.5 100.2 1.1

memplus 6183.7 208.5 6587.3 216.6 6802.6 191.3 5791.4 115.9
m14b 4221.7 569.9 4058.7 132.6 4552.8 408.6 3956.8 58.3
ocean 564.4 262.7 506.4 19.8 751.2 39.7 496.1 16.4

stufe.10 64.8 22.0 59.4 18.7 81.5 21.6 52.0 4.7
t60k 101.4 12.4 97.0 10.4 113.2 15.4 91.9 4.1

vibrobox 11802.8 380.7 11799.4 318.7 18279.4 592.2 11711.7 151.6
wave 9404.2 398.1 9372.1 346.0 10404.0 387.8 9104.9 192.1

allowed imbalance = 3%

144 7030.4 541.6 6855.9 211.2 6989.6 236.1 6814.1 151.6
4elt 162.8 26.4 160.5 23.4 169.0 19.6 149.4 15.4

airfoil.1 84.0 8.3 84.7 7.0 88.5 8.3 77.5 5.0
biplane.9 99.4 26.2 84.8 10.8 89.2 11.7 77.4 5.0

crack 201.4 14.4 199.8 14.2 210.8 10.9 191.3 6.7
dime.20 224.3 29.5 192.0 20.3 194.1 18.2 190.0 24.6
grid100 103.4 7.7 112.9 9.9 126.4 7.9 100.9 0.6

memplus 6092.3 206.7 6555.6 223.2 6583.8 236.4 5642.3 114.9
m14b 4203.5 567.0 4056.9 131.4 4145.0 349.5 4081.8 124.0
ocean 438.6 296.2 504.5 21.5 512.9 49.8 391.6 64.6

stufe.10 62.5 22.0 59.0 16.9 61.7 18.5 51.0 5.6
t60k 92.8 14.1 96.5 9.8 105.5 49.9 79.4 4.9

vibrobox 11821.1 426.2 11792.4 319.1 11857.4 367.1 11730.0 207.9
wave 9410.1 393.7 9381.0 344.6 9441.4 352.7 9049.6 182.9
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Table 3.6: The average edge-cut and its standard deviation during 100 runs computed by

Jostle, Metis and Party with an imbalance allowance of 15% and 75% respectively. The

best result is printed bold while results not within 10% of this value are shaded gray.

Jostle pMetis kMetis Party (new)
Graph edge cut ± edge cut ± edge cut ± edge cut ±

allowed imbalance = 15%

144 6990.1 557.6 6850.8 199.9 6991.2 248.5 6987.8 299.1
4elt 159.3 22.0 162.5 23.8 167.5 18.0 150.8 10.9

airfoil.1 72.2 13.4 84.6 8.4 81.5 10.9 60.6 5.9
biplane.9 94.0 22.8 84.6 10.1 89.4 12.5 75.1 6.7

crack 199.1 10.3 200.2 14.8 209.2 8.9 189.5 6.6
dime.20 210.7 25.8 195.0 21.6 193.4 17.1 160.9 11.3
grid100 100.9 4.3 112.7 9.4 126.1 7.9 101.0 0.8

memplus 5796.3 217.6 6569.2 208.5 6020.6 302.4 5000.2 97.4
m14b 4159.7 484.3 4077.4 223.2 4107.8 111.7 4186.8 151.0
ocean 422.4 290.4 504.0 20.7 503.2 54.9 421.7 49.6

stufe.10 58.3 22.6 62.0 21.1 60.6 19.0 45.2 9.6
t60k 78.5 17.3 95.3 14.7 89.8 17.0 68.1 7.0

vibrobox 11681.7 532.4 11800.6 326.5 11796.1 365.0 11695.6 234.7
wave 9410.1 475.3 9373.6 351.3 9456.3 348.6 9363.0 505.3

allowed imbalance = 75%

144 5694.9 823.5 8049.1 1863.4 7710.1 1799.9 5002.4 310.1
4elt 133.9 17.5 167.1 23.4 165.4 24.6 122.1 9.9

airfoil.1 57.0 8.2 74.2 13.9 69.0 13.5 54.5 4.6
biplane.9 68.3 15.0 86.3 18.8 81.9 18.9 56.6 7.1

crack 153.3 25.3 187.5 20.3 190.2 19.6 124.9 6.4
dime.20 53.1 40.9 134.4 69.1 119.3 61.8 28.7 13.9
grid100 81.0 8.8 117.5 13.6 118.6 11.4 74.2 2.3

memplus 1960.2 298.5 3519.7 386.7 3600.0 346.0 1561.0 53.1
m14b 4063.7 628.6 4333.9 675.1 4316.3 1158.0 3709.1 607.5
ocean 438.6 188.2 520.3 109.2 513.9 67.5 499.6 84.3

stufe.10 56.9 17.8 62.0 18.8 59.3 16.7 46.0 4.9
t60k 68.3 6.4 80.6 15.7 77.4 13.7 60.7 6.1

vibrobox 8844.1 1026.1 12822.1 1134.8 14146.4 1425.5 5551.0 401.5
wave 6765.4 1851.9 11537.7 2427.5 10690.7 2017.8 4894.8 1167.2
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3 The PARTY Graph Partitioning Library

75% imbalance allowance. Again, this can be explained with the strong increase of

feasible solutions and the emerging of local minima, which makes the search in the

refinement procedure much more complicated.

Nevertheless, apart from the ’ocean’ graph, Party performs quite well and calcu-

lates partitionings that often outperform those found by Metis and Jostle. This is

especially noticeable for very large imbalances. While for high imbalance settings

the quality of the partitionings computed by Jostle is better than the one obtained

using Metis, this differs for small imbalance allowances where Metis (either pMetis

or kMetis) produces slightly better average results.

Concerning the deviation, one can see that variations occur for all three libraries,

but again it is usually smallest for the Party library. However, from the results we

obtain it is not clear if and how the reliability of the algorithms is influenced by

weakening the balancing constraints, as in some cases the variation becomes smaller

while the opposite can be observed for other graphs. We think that this might

depend too much on the graphs’ structure and hence no general rule can be stated.

3.3.3 Recursive vs. Direct Partitioning

So far we have only considered bisections. In the following experiments, we partition

the graphs into two to 50 parts. We apply the evaluation scheme from section 3.1

and compare the average results of 100 runs. Besides our recursive bisectioning

library Party we consider the recursive library pMetis and the direct k-partitioning

library Jostle. While Metis and Jostle are sequential, we utilize one (1P) or two

(2P) processors for Party, and denote the use of the additional first bisection with

(2P+). No imbalance is allowed in all settings. For a better readability, we display

all values relative to those obtained using pMetis and restrict the presentation to

some selected examples that cover the observations of the whole range of results.

Figure 3.4 shows the results for the ’144’ graph. One can see that for this graph

Jostle performs fastest, except if a bisection is requested. pMetis is next and Party

needs longest to compute its solutions. With the one processor setting, Party is

about a factor of 1.3 slower than pMetis, while the multi-threaded versions can

reduce this gap due to the parallel speedup that becomes larger with an increasing

number of partitions. The 2P+ setting needs much more time that the 2P one,

what shows that generating a permuted graph is currently a very costly operation.

Looking at the average solution quality, Party performs best for 10 partitions or less
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Figure 3.4: Average edge-cuts (top) and run-times (bottom) for the graph ’144’ for Jostle

(yellow squares), pMetis (blue triangles), and Party (gray (1P)/black (2P) circles and

magenta pentagons (2P+)).

and always better than pMetis. Note that the 1P and 2P setting always produce

identical results. In case of more than 10 partitions, the direct approach in Jostle

can outperform the recursive schemes of pMetis and Party by about 2-4%. While the

2P+ setting increases the run-time compared to the 2P one, which is most visible for

a small number of partitions, the additional computations have only a small effect

on the average partition quality.

The results obtained for the ’144’ graph reflect exactly what we expected before

running the experiments. For a small number of partitions, the recursive approach is

superior to the direct one while the opposite is true for a large number of partitions.

pMetis performs faster than Party while the latter computes smaller edge cuts.

Except for bisection problems where of course dedicated heuristics are the best
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Figure 3.5: Average edge-cuts (top) and run-times (bottom) for the graph ’grid100’ for

Jostle (yellow squares), pMetis (blue triangles), and Party (gray (1P)/black (2P) circles

and magenta pentagons (2P+)).

choice, direct approaches like Jostle are fastest. However, in the following we see

that these conclusions are not transferable to other graphs in general.

On a regular grid, Party is known to perform very well. Hence, exceptionally

good results can be obtained on this almost 4-regular graph as shown in figure 3.5.

The bisection computed by Party contains less than 90% of the cut-edges as those

calculated by Jostle or pMetis, and even for large partition numbers Party finds the

best solutions. With 1 processor, our new implementation takes about 20% longer

than pMetis and Jostle, while the threaded version is fastest.

In case of the ’biplane.9’ graph, (figure 3.6), the single threaded version of Party is

almost as fast as pMetis. The average solution quality computed by Party is about

5% better than the one obtained using pMetis. For a small number of partitions

46



3.3 Experimental Results

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00
5 10 15 20 25 30 35 40 45 50

av
er

ag
e 

tim
e 

(s
) (

re
la

tiv
e 

to
 (p

m
et

is
)

jostle
pmetis

party 1P
party 2P

party 2P+

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

5 10 15 20 25 30 35 40 45 50

av
er

ag
e 

ed
ge

 c
ut

 (r
el

at
iv

e 
to

 p
m

et
is

)

number of partitions

jostle
pmetis

party 1P
party 2P

party 2P+

Figure 3.6: Average edge-cuts (top) and run-times (bottom) for the graph ’biplane.9’ for

Jostle (yellow squares), pMetis (blue triangles), and Party (gray (1P)/black (2P) circles

and magenta pentagons (2P+)).

up to 20, both recursive approaches compute better results than Jostle, while from

there on pMetis performs worst.

The values obtained when applying the libraries to the ’ocean’ graph are given

in Figure 3.7. Party computes the best average solutions while those of the direct

approach in Jostle have a higher edge-cut than pMetis and Party, even for a large

number of partitions. From 30 partitions on, the solution quality decreases even

further, although the computation time enlarges.

The ’stufe.10’ graph (Figure 3.8) is clearly a domain of recursive bisection heuris-

tics due to its structure. Jostle is faster, but also computes solutions with a more

than 50% larger edge-cut than Party. With a larger partition number, this difference

becomes smaller, but also the run-time of Jostle increases.
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Figure 3.7: Average edge-cuts (top) and run-times (bottom) for the graph ’ocean’ for

Jostle (yellow squares), pMetis (blue triangles), and Party (gray (1P)/black (2P) circles

and magenta pentagons (2P+)).

Summarizing our observations, we conclude that with the exception of a bisection

a direct approach as implemented in Jostle (or kMetis) is usually faster than a

recursive one. This is not surprising since the multilevel scheme has to be executed

for each node of the recursive binary tree, while it is only performed once in a direct

library. However, in many cases the run-time of Jostle increases faster with an

increasing number of partitions than it does for the recursive approaches.

Concerning the average solution quality, the experiments show that the recur-

sive libraries pMetis and Party compute much better results for small numbers of

partitions than the direct approach in Jostle (and kMetis). Even for larger parti-

tion numbers, Jostle does not find significantly better solutions. This is somewhat

unexpected since a direct approach has more choices to reduce the edge-cut.
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Figure 3.8: Average edge-cuts (top) and run-times (bottom) for the graph ’stufe.10’ for

Jostle (yellow squares), pMetis (blue triangles), and Party (gray (1P)/black (2P) circles

and magenta pentagons (2P+)).

3.4 Upshot

The presented improved Helpful-Set heuristic is a powerful bisection refinement pro-

cedure. Together with the restricted matching strategy, our graph partitioning li-

brary Party combines two very effective key components for the multi-level approach.

The average solution quality that we obtain with the new implementation of Party

often surpasses the results computed by Metis and Jostle, while the resource de-

mands are comparable. The quality variation of the partitionings delivered by Party

is smaller, which we ascribe to the new evaluation scheme that we applied during

the development. Hence, we claim Party to be one of the leading graph partitioning

libraries.
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This chapter describes a technique to re-balance dynamically changing load in a

network. It forms the basis for the key components of the algorithms presented in the

next chapter. In contrast to the graph partitioning problem, the underlying model

assumes that the distributed computations can be performed independently from

each other, and does not consider data dependencies between the work packages.

When determining a rearrangement of the calculations, the main attention lies on

the traffic reduction in the network. Furthermore, the applied model usually assumes

that the work load can be split arbitrarily. This problem is referred to as dynamic

load balancing.

Formally, the load balancing problem is defined as follows. Given a connected

graph G = (V, E) representing the network with n = |V | processing nodes where

each node v contains work load wv, the goal is to move load across the links e ∈ E

such that finally the weight of each node is (approximately) equal to

w =
∑
v∈V

wv/n.

A flow f ∈ R|E| is a balancing flow, if it satisfies the equation Af = w − w,

where A ∈ {−1, 0, 1}|V |×|E| denotes the vertex-edge incidence matrix of G, and each

column has exactly two entries −1 and 1 according to the two nodes incident to the

corresponding edge. The signs implicitly define an arbitrary but fixed direction. In

case of fe > 0 we send load in the direction of the edge while fe < 0 means that

load is moved in the reverse direction.

Among all balancing flows, we are interested in the one that is minimal according

to the || · ||2-norm, that is the unique solution of the minimization problem

min ! ‖f‖2 =

√∑
e∈E

(fe)2 over all balancing flows f.

If the global imbalance vector w − w is known, it is possible to find a solution to

this problem by solving a linear system of equations [HB99]. But assuming a more
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4 Diffusion

restrictive environment allowing processors of the parallel network only to access

information of their direct neighbors, load information has to be exchanged locally

in iterations until a balancing flow has been computed.

Two subclasses of local iterative load balancing algorithms are the diffusion schemes

[Cyb89, Boi90] and the dimension exchange schemes [Cyb89, XL97]. These two

classes reflect different communication abilities of the network. Diffusion algorithms

assume that a processor can send and receive messages to/from all of its neighbors

simultaneously, while the dimension exchange approach is more restrictive and only

allows a processor to communicate with one of its neighbors in each iteration. The

alternating direction iterative scheme [EFMP99] represents a mixture of the diffu-

sion and dimension exchange methods. It reduces the number of iteration steps

needed for networks constructed by Cartesian products of graphs. The drawback

of this scheme is that the resulting flow may have load migration loops tending to

infinity.

4.1 The General Diffusion Scheme

The General Diffusion Scheme or First Order Scheme (FOS) [Cyb89, Boi90] is de-

rived from Gauss-Seidel-Iterations and performs only local operations, i. e. data is

only read from neighboring nodes.

Definition 1 (FOS). Given a connected graph G = (V, E), an initial work load

distribution w(0) on its vertices and suitable constant α. In each iteration k, the

First Order Scheme performs the operations:

x
(k−1)
e=(u,v) = α (w(k−1)

u − w(k−1)
v )

f (k)
e = f (k−1)

e + x(k−1)
e

w(k)
v = w(k−1)

v −
∑

e=(v,∗)∈E

x(k−1)
e ,

with x
(k)
e being the amount of load exchanged via edge e in iteration k and f

(k)
e

denoting the overall computed flow via edge e.

The First Order Scheme features two important properties. First, it balances the

work load in a network [Cyb89], hence the load values w(k) converge to w. Second, in

the converged state the computed flow f (∞) is the minimal balancing flow according

to the || · ||2-norm [DFM98, DFM99].
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The Laplacian matrix L of G can be expressed as L = AAT . Defining M = I−αL,

FOS can be written in matrix notation as

w(k+1) = Mw(k).

M is called the diffusion matrix. It is nonnegative, symmetric, doubly stochastic,

and of rank n − 1. If we denote the eigenvalues of L in non decreasing order with

λi, 1 ≤ i ≤ n, it is known that λ1 = 0 with eigenvector (1, . . . , 1) and λn ≤ 2D,

where D is the maximum degree of all vertices in G [CDS95]. If α < 1/λn, M has

the eigenvalues µi = 1−αλi in the range −1 < µn < . . . < µ1 = 1. The convergence

rate of the First Order Scheme depends on γ = max{|µ2|, |µn|} < 1, the second

largest eigenvalue of M according to absolute values, which is called the diffusion

norm of M. This rate expresses how fast the error ek = wk − w converges to zero.

A system is called to be ε-balanced after the kth iteration step if ‖ek‖2 ≤ ε · ‖e0‖2.
The diffusion norm γ is influenced by the parameter α. A simple choice is to set

all αe = (1 + maxdeg(G))−1, but for many important graph classes better values

are known as described in the next paragraph. The full knowledge of L’s spectrum

even allows to determine the optimal value [DFM99, EFMP99]. In this case, only

m iteration steps are necessary where m is the number of different eigenvalues of L.

This knowledge can be applied to reduce the communication in bus like intercon-

nections. This network type allows each processor to communicate with every other,

but only one transfer can be executed at a time. To reduce the bus allocations, a

virtual topology is introduced which restricts the processors’ communication to a

few peers only. In order to speed up the load balancing process, topologies with a

small degree and few different eigenvalues are of interest [EKM03].

4.2 Further Results on Diffusion

This subsection covers some extensions and generalizations of the First Order Scheme.

First, we mention the Second Order Scheme which is obtained by overrelaxating

FOS. The First Order Scheme is also applicable in inhomogeneous networks, which

can contain vertex weights, edge weights or both. For selected network topologies,

it is possible to compute the parameters for the optimal convergence speed. Fur-

thermore, FOS is also applicable in dynamic networks.

53



4 Diffusion

4.2.1 Overrelaxation and Generalization

Similar to the overrelaxation known from the Jacobi-Iterations, this method can

also be applied to the First Order Scheme. This results in the Second Order Scheme

(SOS) [GMS98] of the form

w(1) = Mw(0), w(k) = βMw(k−1) + (1− β)w(k−2), k = 2, 3, . . .

The fastest convergence is achieved for β = 2/(1+
√

1− µ2
2), where µ2 is the second

smallest eigenvalue of the diffusion matrix M. The Chebyshev method [DFM99]

differs from SOS only by the fact that β depends on k according to

β1 = 1, β2 =
2

2− µ2
2

, βk =
4

4− µ2
2βk−1

, k = 3, 4, . . .

Generalized, a polynomial based load balancing scheme is any scheme for which the

work load w(k) in step k can be expressed in the form w(k) = pk(M)w(0) with pk ∈ Πk,

the set of all polynomials p of degree deg(p) ≤ i satisfying p(1) = 1.

All polynomial diffusion schemes converge towards the || · ||2-minimal balancing

flow [DFM99]. If α and β are chosen optimally, SOS converges faster than FOS

by almost a quadratic factor, while the Chebyshev method performs asymptotically

identical to SOS.

4.2.2 Inhomogeneous Networks

To incorporate heterogeneous computing capacities of the processing nodes and

nonuniform communication costs in the network, the diffusion schemes can be gener-

alized. In such an environment, computations perform faster if the load is balanced

proportionally to the nodes’ computing speed sv:

wv := sv ·

(
n∑

i=1

wi/

n∑
i=1

si

)
.

Diffusion in networks with communication links of different capacities are analyzed

in [DFM99, SG99]. It is shown that the existing balancing schemes can be modified,

such that roughly speaking faster communication links get a higher load migration

volume than slower ones. If the capacities of the links e ∈ E are denoted with ce,

the minimal balancing flow computed by the diffusion schemes can be defined as

min ! ‖f‖2 =

√∑
e∈E

(fe)2

ce

over all balancing flows f.

These two generalizations can be combined [EMP02].
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Optimal diffusion matrices

In order to improve the convergence of the First and Second Order Schemes, the edge

weights of a graph can be adjusted such that the diffusion norm of its corresponding

weighted diffusion matrix is minimized. In the following, we summarize the optimal

values for some selected graph topologies [EMS02].

For unweighted edge-transitive graphs like Cycles, Hypercubes, complete graphs

or the Star, the condition number is maximized if all edges are assigned the same

weight due to the automorphisms. Hence, all edge weights can be set to 1.

Cayley graphs are constructed by generators Ω. In these cases, the condition

number of the Laplacian matrix is maximized, if for any two edges e and f generated

by the same generator ω ∈ Ω the edge weights of e and f are equal.

For Cartesian products of two unweighted graphs G and H with λ2(G) ≤ λ2(H),

the diffusion schemes on G×H can be improved by assigning the weight λ2(H)/λ2(G)

to the edges contained in G and 1 to the edges contained in H.

As a consequence, edges belonging to the same dimension of a Torus must have the

same weight. Furthermore, a d-dimensional Torus can be viewed as a Cartesian prod-

uct of d Cycles. Since the eigenvalues of a Cycle of length n are 2− 2 cos(2πj
n

), 0 ≤
j < n, the polynomial based diffusion algorithms have their fastest convergence rate,

if the edge-weights of cycle i, 1 ≤ i ≤ d are set to (2 − 2 cos(2π
n1

))/(2 − 2 cos(2π
ni

)),

where n1 ≤ n2 ≤ · · · ≤ nd are the cycle lengths.

Other graphs with a similar structure are d-dimensional Grids. These are not Cay-

ley graphs and it is known that edges of the same dimension do not necessarily need

to have the same edge weight [DMN97]. However, considering them as Cartesian

products of Paths of length n1 ≤ n2 ≤ · · · ≤ nd, we can also improve the diffusion

algorithms. Similar to the Torus, improved results are achieved by setting the edge

weight of a dimension i to (2− 2 cos( π
n1

))/(2− 2 cos( π
ni

)).

The d-dimensional Cube Connected Cycles Network CCC(d) contains cycle and

hypercube edges and is a Cayley graph. The optimal value of the condition number

of the Laplacian of a weighted CCC(d) is achieved by setting the weights of all cycle

edges to 1 and the weights of all hypercube edges to a = 2 ·
√

2 1√
d

+O(1
d
).

The d-dimensional Butterfly Network BF(d) contains path and cross edges, but

is not a Cayley graph and therefore the optimal edge weights cannot be determined

with the previously applied methods. It turns out that the condition number of

the Laplacian is maximized if all edge weights are set to 1. However, extending the
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BF(d) by wrap around edges our technique becomes applicable again. Similar to

the CCC, the optimal condition number occurs when the weight of the cycle edges

equals 1 and the weight of the cross edges are a = 1√
2−1

+ O(1/
√

d). However,

there is no significant improvement of the condition number for large d. The same

parameter a can be computed for the d-dimensional de Bruijn graph DB(d).

Experimental Results To show the effects of varying edge weights we have im-

plemented a simulation program. While it is possible to determine eigenvalues of

relatively small networks from the Laplacian itself, we are not able to do this for

larger networks in a reasonable amount of time. Therefore, we determine the second

smallest and largest eigenvalues of these graphs by either using explicit formulas or

by reducing their calculations to the computation of eigenvalues of only parts of the

original graph.

Prior to the first iteration of the simulation, the network’s load is either distributed

randomly (RS) over the network or placed onto a single node (SS), while we normal-

ize the balanced load (w = 1). The total amount of load is therefore equal to the

total number of nodes n in the graph. We apply FOS and SOS and keep iterating

until an almost evenly distributing flow is calculated. For our tests, we define this

to be archived as soon as after the kth iteration ||wk − w ||2 is less than 0.01. For

both diffusion schemes, we have chosen the optimal value of α = 1/(λ2 + λn), for

SOS we set β = 2/(1 +
√

1− µ2
2).

Figures 4.1 through 4.4 show some results of our experiments. In all experiments,

we fix one edge weight to 1 (usually the cycle edges) while the other are weighted

with a (usually the hypercube edges). For each selection of a on the x-axis the
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resulting convergence rate µ2 of FOS applied on the specific network type (left)

and the number of iterations needed by SOS to compute a balancing flow (right) is

shown. Note, that since the results are very similar for any combination of one of

the schemes (FOS/SOS) and one of the initial load patterns (RS/SS), we have only

included those for the SOS and SS.

As we can see from the figures, the closer a is to the optimal value aopt, the smaller

becomes the number of iterations needed to compute a balancing flow on all network

types and savings up to 28% can be archived.

4.2.3 Dynamic Networks

The First Order Scheme can also be applied to balance load in dynamic networks

where communication links fail from time to time or are present depending on the

distance of nodes moving in space. Its convergence depends on the average value

of the quotient of the second smallest eigenvalue of the Laplacian matrix and the

maximum vertex degree of the networks occurring during the iterations [EMS04]. If

(Gk)k≥0 defines a sequence of graphs and ΛK = (
∑K

k=1 λk
2/d

k
max)/K is the average

value of λk
2/d

k
max occurring during the first K iterations, the First Order Scheme

needs at most K steps to ε-balance the system, where

K = O
(

1

ΛK

· ln(1/ε)

)
.

If λk
2/d

k
max is always larger than some value λ

d
, then at most

K = O
(

d

λ
· ln(1/ε)

)
iteration steps are required.
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4 Diffusion

Experiments To test the load balancing in a dynamic environment we select a

mobile ad-hoc network (MANET) model. The simulation area is the unit-square

and 256 nodes are placed randomly within it. Prior to an iteration step of the gen-

eral diffusion scheme, edges are created between nodes depending on their distance.

Here, we apply the disc graph model (e.g. [WL02]) which simply uses a uniform

communication radius for all nodes. After executing one diffusion step, all nodes

move toward their randomly chosen way point, or stay there for a while before de-

termining a new one. Once they have reached it, they pause for 3 iterations before

continuing to their next randomly chosen destination. This model has been pro-

posed in [JM96] and is widely applied in the ad-hoc network community to simulate

movement. Note, that when determining neighbors as well as during the movement,

the unit-square is considered to have wrap-around borders, that means nodes leav-

ing on one side of the square will reappear at the proper position on the other side.

Again, we average the results from 25 independent runs and the displayed charts

are double logarithmic.

The dynamic scheme computes α(i,j) for each edge (i, j) in every iteration, based

only on local information: α(i,j) = 1/ (c ·max{deg(i), deg(j)}). We compare it to

three different static implementations. Each of them chooses a constant α to be

used for all vertices in all iterations. The first one, ’clique’, considers that possibly

all nodes can become neighbors and therefore sets α to 1/(c · |V | − 1). This choice

guarantees convergence but for the price of a high number of required iterations, since

the number of neighbors is usually much smaller and hence only a small amount of

load is transferred. The algorithm ’first’ tries to avoid this by investigating the

initial configuration. It determines the highest degree of all nodes and sets α to

1/(c ·maxdeg(G0)). The disadvantages are that this operation requires some global

view on the graph and the convergence is not ensured either. We should mention that

the first iteration is not the one directly after the random placement of the nodes,

but we always perform 25 rounds including movement only before the simulation

starts to ensure similar graph properties in every iteration. A way to estimate the

vertex degrees with less global knowledge is performed by ’probability’. Knowing

the total number of nodes, the uniform communication radius r and the area of the

simulation space, the expected number of neighbors is |V −1| · r2. Hence, α is set to

1/(c · |V − 1| · r2). Nevertheless, the resulting diffusion scheme might also diverge.

Figure 4.5 gives an example of a MANET and the load situation after 10 iterations

using the dynamic approach. Since the communication radius is relatively small
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4.2 Further Results on Diffusion

Figure 4.5: MANET: Load situation after 10 iterations. The simulation is run on the

unit-square with wrap around. The initial load is placed on a single node. The disc radius

is 0.1 and nodes move by a distance of 0.01 in each iteration. Nodes with a heavy load

are displayed red while empty notes are drawn black. The thin grey lines indicate the

movement direction.
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Figure 4.6: r = 0.2, s ∈ [0.001 . . . 0.001]
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Figure 4.7: r = 0.2, s ∈ [0.001 . . . 0.005]

(0.01), the graph is disconnected. One can see how the load has already spread into

the network, indicated by the different colors. Vertices of the different connected

components are almost balanced in this picture due to their slow movement speed.

Additional to the parameters SS/RS and c described we can alter the communi-

cation radius and the minimal and maximal vertex speed. However, we restrict our

presentation to some selected results. In all experiments we place all load on a single

vertex (SS) and set c = 1.1.

Figure 4.6 shows the error in every iteration of the general diffusion scheme for

all four described approaches in a setting with a relatively large communication

radius r = 0.2 and a slow movement rate s = 0.001. As expected, using ’clique’

requires many iterations until the load is balanced. The ’first’ approach performs

already much better, but is again outperformed by the dynamic approach. A slightly

faster convergence is archived by ’probability’, which overtakes ’dynamic’ after a few

iterations. Figure 4.7 is based on a very similar setting. However, the increase of

the maximal vertex speed causes convergence problems applying the ’probability’

implementation.

By further increasing the vertex movement rate, the number of iterations decreases

what is displayed in figures 4.8 and 4.9. These pictures are very similar to the one

shown in figure 4.6, with the difference that through the higher speed of the vertices

and the resulting faster changes in the graph structure speeds up the convergence

rate of all test candidates. After a few iterations, the ’first’ approach almost performs

as fast as the ’probability’ and the dynamic approach for speeds between [0.1 . . . 0.2].

The next two figures 4.10 and 4.11 show the results for a smaller communication

radius. In both cases, using ’probability’ does not lead to a balanced load situation
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Figure 4.8: r = 0.2, s ∈ [0.01 . . . 0.05]
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Figure 4.9: r = 0.2, s ∈ [0.1 . . . 0.2]
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Figure 4.10: r = 0.1, s ∈ [0.001 . . . 0.001]
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Figure 4.11: r = 0.1, s ∈ [0.001 . . . 0.05]

since possibly more load is sent than available. The dynamic approach performs best,

followed by ’first’ and ’clique’. One interesting observation is, that accelerating the

nodes highly affects the convergence rate of all algorithms. The reason for this is

that now load is not only distributed over the edges but is also spread by the fast

moving vertices that “visit” many other nodes.

This is even more the case in the following figures 4.12 and 4.13. In figure 4.12,

the communication radius equals the movement rate of the nodes. The error apply-

ing ’first’ decreases slower than for the dynamic approach, but at a certain point

’dynamic’ is overtaken and ’first’ ends up with the fastest computation. We are not

sure of the cause for this behavior. Reasons could be found in the high movement

rates. As mentioned earlier, convergence is not guaranteed for ’first’ and maybe

a very good constant has been determined for this setting. However, this means

that the calculations performed for ’dynamic’ are not optimal and leaves some open

questions for further research.
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Figure 4.12: r = 0.05, s ∈ [0.05 . . . 0.05]
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Figure 4.13: r = 0.05, s ∈ [0.2 . . . 0.2]

The last figure 4.13 shows an example with an extremely high vertex speed set

to 4 times the communication radius. Within this configuration load is primarily

distributed by the movement of the vertices. Nevertheless, the dynamic scheme

outperforms all others in contrast to the situation in figure 4.12.

Summarized, the dynamic scheme is a reliable load distribution strategy in dy-

namic networks and, compared to the three alternatives, performs fastest in most

settings.
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5 Shape Optimized Partitioning

This chapter introduces our novel graph partitioning and repartitioning heuristic

Flux. In contrast to other libraries, Flux does not explicitly try to minimize the

edge-cut, but implicitly focuses on good partition shapes. The shapes are optimized

by diffusion processes that are embedded in a learning framework. Our experiments

show that this method generates high quality solutions.

After giving a motivation, we introduce the learning framework and describe the

evolution process of the new diffusion scheme FOS/C. We reveal some of FOS/C’s

properties and propose a number of enhancements for a fast and reliable implementa-

tion. Next, we present experimental results with our sequential and parallel library,

where we do not only consider the established metric edge-cut but also alternative

and more suited metrics like the number of boundary vertices.

5.1 Motivation

The existing graph partitioning heuristics provide good solutions and are quite fast.

However, although great progress has been made in this area, many questions re-

main [Hen98]. While the global edge-cut is the classical metric that most graph

partitioners optimize, it is not necessarily the metric that models the real costs of

an application. In FEM computations for example, the true communication volume

can significantly differ from the number of cut edges. In this case, the number of

vertices situated at partition boundaries reflects the amount of information to be

exchanged much more accurately. Another questionable point is the commonly ap-

plied norm. In synchronized computations, the slowest processor specifies the overall

speed, hence the maximum norm is appropriate, while the usually applied edge-cut

is a summation norm.

Dynamically changing applications often require a work load distribution that

guarantees both, a low overhead caused by the load migration and little communi-

cation during the calculation. This results in a multi-objective optimization, com-
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10000 vertices, no vertexweights, 39600 edges, no edgeweights, cut 617, pw interval [833..834] 10000 vertices, no vertexweights, 39600 edges, no edgeweights, cut 625, pw interval [810..858] 10000 vertices, no vertexweights, 39600 edges, no edgeweights, cut 671, pw interval [832..836]

10000 vertices, no vertexweights, 39600 edges, no edgeweights, cut 549, pw interval [760..856] 10000 vertices, no vertexweights, 39600 edges, no edgeweights, cut 532, pw interval [825..850]

Figure 5.1: Dividing a grid into 12 partitions using the software libraries pMetis, kMetis,

vMetis, Jostle, Party and the new shape optimizing approach (top left to bottom right).

prising the dynamic load balancing as well as the graph partitioning problem. An

unbalanced partition πt has to be transformed into a balanced distribution πt+1 while

obeying the two objectives.

Most of the existing implementations first determine how much load to migrate

and then restrict the exchange steps of the local refinement process according to this

number. Better solutions can be obtained by integrating the migration costs directly

into the objective function of the improvement procedure [BO98, SKK00, DHB02].

Our new heuristic proceeds this way, while it focuses on optimizing the partition

shapes rather than the edge-cut. It is based on the same framework as an earlier ap-

proach [DPSW00] which iteratively decreases the partition aspect ratios. However,

the latter algorithm has a couple of drawbacks concerning balancing and paralleliza-

tion. We overcome these limitations by replacing the framework’s most important

steps by diffusive operations.

This combination results in a heuristic that delivers solutions which already differ

from those of other libraries on the first view due to the round looking domains.

For example, figure 5.1 displays the partitionings of different implementations for a

64



5.2 The Bubble Framework

regular grid. As one can see, the shape optimizing approach (bottom right) delivers

partition shapes that are close to a circle where the graph structure allows this.

Although we cannot prove any quality bounds of our new heuristic yet, we con-

clude from our experiments that the solutions we obtain often outperform existing

heuristics according not only to the shape and the number of boundary vertices

but surprisingly also to the edge-cut. Furthermore, the proposed approach is also

applicable to repartition a graph and keeps the number of migrating vertices small.

Last but not least, the new heuristic contains a high degree of parallelism.

5.2 The Bubble Framework

The Bubble Framework [DPSW00] has evolved from simple greedy algorithms com-

puting bisections of graphs. It is related to clustering algorithms [Mac67], but in

contrast to graphs the latter operate on points in n-dimensional space and their im-

plicitly given Euclidean distances. Starting with an initial, often randomly chosen

vertex (seed) per partition, all sub-domains are grown simultaneously in a breadth-

first manner. Colliding parts form a common border and keep on growing along

this border – “just like soap bubbles”. After the whole graph has been covered and

all vertices of the graph have been assigned this way, each component computes

its new center that acts as the seed in the next iteration. This is usually repeated

until a stable state, where the movement of all seeds is small enough, is reached.

This procedure is based on the observation that within “perfect” bubbles, the center

and the seed vertex coincide. Distances in this framework may either be chosen as

Euclidean distances or as path lengths in a graph. In the latter case, no geometrical

information is required. Summarized, a bubble algorithm mainly consists of the

following three phases that are also illustrated in figure 5.2:

Init A vertex for each partition is determined. These vertices act as the seeds in the

first iteration.

Grow Starting from their seeds, all partitions grow in a breadth-first manner until

all vertices are assigned.

Move All partitions determine a new center vertex. These vertices become the seeds

in the next iteration.
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5 Shape Optimized Partitioning

Figure 5.2: The three operations of the learning bubble framework: Init: Determination

of initial seeds for each partition (left). Grow: Growing around the seeds (middle). Move:

Movement of the seeds to the partition centers (right).

These three operations can be implemented in several ways. We first summarize

existing implementations before introducing the new diffusion based method.

5.2.1 Previous Implementations

To our knowledge and apart from simple greedy heuristics there are two implementa-

tions that apply the bubble framework to solve FEM graph partitioning problems.

The first one is part of a former version of the Party graph partitioning library.

There, the implementation of the three phases can roughly be described as follows:

Init The initial seeds are determined randomly.

Grow Starting from every seed a breadth-first algorithm on the graph is applied.

During this process the partitions alternately acquire one of their free neighbor

vertices until all vertices are assigned.

Move The vertex with the minimal maximal distance to all other vertices of the

same partition becomes the new seed.

This approach shows several problems. The initial placement of the partitions

may be very bad, requiring many iterations until it is fixed, but even then the

partition sizes usually vary extremely. The time spent on finding new seeds is quite

large since a breadth-first-search has to be solved for every vertex. Moreover, the

partition quality is not considered at all. Another important disadvantage is that

the growing phase cannot be parallelized because vertices are assigned serially and

earlier assignments have a great impact on later decisions.
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5.2 The Bubble Framework

A second approach is implemented in a former version of the FEM simulation tool

PadFEM [DPSW00]:

Init The first initial seed is randomly chosen among the vertices with smallest de-

gree. Then, to determine the seed for the next partition, a breadth-search is

performed with all seeds as starting points. The last vertex found becomes

the seed for the next partition. This is repeated until all seeds have been

determined.

Grow The smallest partition with at least one adjacent unassigned vertex grabs the

vertex with the smallest Euclidean distance to its seed.

Move The new seed of a partition becomes the vertex for which the sum of Euclidean

distances to all other vertices of the same partition is minimal. To find this

vertex quickly, some successive approximation is used.

This algorithm solves some of the problems we have seen in the first approach.

The initial seeds are distributed more evenly over the graph. Since the smallest pos-

sible partition gathers the next vertex, more attention is paid on the balance, and

also the determination of the center has been improved to work faster. By including

coordinates in the choice of the next vertex, the partitions are usually also geomet-

rically well shaped (and connected), which is the main goal of this approach. Other

quality metrics are not considered. By relying on vertex coordinates this approach

is only applicable if these are provided, and sometimes the Euclidean distance does

not coincide at all with the path length between vertices. This can often be observed

if an FEM mesh contains “holes”, in which case a partition may be placed around it.

It is a general problem when working with coordinates and occurs more heavily for

example in space-filling-curve based partitionings [SW03]. Experiments also reveal

that the selection mechanism, though improved by preferring under-weighted par-

titions, does still not lead to sufficiently well balanced domains [DPSW00]. Hence,

to fix this, some additional computations are added after the last bubble iteration.

Concerning a possible parallelization, the situation stays the same as described be-

fore because the selection process of the vertices is still strictly serial.
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5.3 Diffusion Based Mechanisms

This section describes how we integrate diffusion into the Bubble Framework. The

main idea is based on the observation that load primarily diffuses into densely con-

nected regions of the graph rather than into sparsely connected ones. Following this

observation, we expect to identify sets of vertices that possess a high number of

internal and a small number of external edges.

To assign the vertices to the partitions, we execute the diffusion algorithm exactly

P times, each time with a different kind of load. To distinguish between these loads

we color them with colors from 1 to P , respectively. After all load is distributed,

we place the vertices to that partition they obtained load from. If a vertex contains

more than one kind of load, meaning that it could be part of more than one domain,

it is assigned to the partition of which it received the highest amount from. Hence,

a partition can crowd others out of parts of the graph if it itself already contains a

higher load nearby. The implementation of the operations Grow and Move can be

described as follows:

Grow Independently for each partition, load is placed on the center vertices and dis-

tributed applying a diffusion scheme. Each vertex is assigned to that partition

it has received the highest load amount from.

Move The vertex containing most load of color p becomes the new center vertex of

partition p.

Performing these two steps and looking at the properties of a diffusive load dis-

tribution, we realize that the vertex with the highest load amount is the previous

center vertex again. Hence, the centers and therefore the partitions do not move and

no learning occurs. To overcome this problem, we introduce an alternative initial

load placement for the diffusion process. Instead of only placing load on the single

center vertex, we distribute it evenly among all vertices of a partition. Doing so, we

obtain three different combinations of initial load placements and resulting vertex

assignments:

Grow/Assignment Place load on the center vertex, perform the diffusion process

and assign the vertices according to the highest load amount to obtain a par-

titioning.
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Initial situation

Initial load
distribution

Final load
distribution

Partitioning /
New centers

Figure 5.3: Schematic view: Placing load on single vertices (left) or a partition (right),

the diffusion process and the assignment of the vertices to the partitions (left and right)

or determination of the centers (right) according to the load.

Grow/Consolidation Place load evenly distributed on all vertices of the partition,

perform the diffusion process, and assign the vertices according to the highest

load amount to obtain a partitioning.

Move/Contraction Place load evenly distributed on all vertices of the partition,

perform the diffusion process, and for each partition select the vertex with the

highest load as the new center.

The three combinations are also illustrated in figure 5.3. On the left hand side, load

is placed on the center vertices and the diffusion process leads to a partitioning,

while placing load on the partitions can either be used to improve a partitioning or

to determine new center vertices as shown on the right. Note, that we denote the

vertices we place load on as set of source vertices. Depending on the operation, this

set contains either the single center vertex or all vertices of a partition.

The operations Grow/Assignment and Move/Contraction are required for the

Bubble Framework, Grow/Consolidation is optional and can be applied in between,

even several times. Our experiments show that multiple invocations often improve

the solution quality.
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5 Shape Optimized Partitioning

The total load amount W that we place in the system is set to the number of ver-

tices |V | of the graph. Note, that the choice of W only scales the final load distribu-

tion and therefore has no real impact on the solution, as long as it is the same value

for all partitions. When performing a Grow/Consolidation or Move/Contraction

operation, we evenly distribute that load on all source vertices. Hence, vertices of

smaller partitions will contain more load to be spread into the graph, which supports

balancing. Adjusting the load amount per partition is a way to balance the partition

sizes and is discussed later.

For the Init phase, several alternatives are possible. As mentioned, on the one

hand a random distribution may place vertices suboptimal, but on the other hand it

is more likely that vertices in dense regions are chosen. In case of a repartitioning, it

is possible to perform a Contraction to obtain centers. This can also be done after

vertices have been assigned to a partition randomly. Currently, the following choices

are implemented in our library:

Init/Random Center Randomly determine P single disjoint vertices as partition

centers.

Init/Repartition Perform a Move/Contraction on a given partitioning to obtain the

center vertices.

Init/Random Partition Compute a balanced random partitioning and proceed with

Init/ Repartition.

Inserting the proposed diffusive operations into the Bubble Framework, the re-

sulting algorithm roughly looks like as sketched in figure 5.4. The input consists of

the graph G that is also capable of storing load and flow vectors, and the parameters

i and l specifying the number of the different iterations to be performed.

The outer iteration (line 01) starts determining single center vertices for each of the

partitions. If no partitioning π is present, it either selects random vertices (line 03)

or computes a random vertex assignment (line 05). Now, in case of an existing par-

titioning, the center vertices are then obtained by performing a Move/Contraction,

consisting of the a load distribution (line 09), the diffusion process (line 10) and the

center determination (line 11).

The following inner loop (line 12), which has to be executed at least once, contains

the Grow/Assignment and Grow/Consolidation operation. Note, that for each par-

tition the set of source vertices S contains either the single center vertex or all the
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5.3 Diffusion Based Mechanisms

00 Algorithm DiffusiveBubble(G, i, l)

01 in each iteration i

02 if not π exists

03 case random-center

04 c = determine-random-centers(G)

05 case random-partition

06 π = random-partitioning(G)

07 if π exists

08 parallel for each partition p

09 wp = distribute-load-on-parts(G, p, π)

10 wp = diffusion(G, p, wp)

11 c = determine-centers(G, w)

12 in each loop l

13 parallel for each partition p

14 wp = distribute-load-on-sources(G, p, S)

15 wp = diffusion(G, p, wp)

16 π = determine-partitioning(G, w)

17 return π

Figure 5.4: Sketch of the Diffusive Bubble algorithm.

partition’s vertices, depending on the previous operation. The load wp is distributed

evenly among the source vertices (line 14), distributed via the diffusion process (line

15), and finally the vertices are assigned to obtain a partitioning π (line 16).

The sketched algorithm mainly contains a collection of loops. Of those, the loops

over the partitions (lines 08 and 13) and the diffusion operation can be fully paral-

lelized. Also the vertex assignment is a distributed operation, only the maximum

computations during the contraction requires a global view on the whole partition.

Another interesting point is that the presented algorithm does not contain any ex-

plicit objectives. These are somewhat hidden inside the diffusion processes of the

growth and movement operations.

The most important and most costly part of the algorithm is the calculation of

the diffusion. To be applicable, the solution of the applied scheme must possess two

properties. As already mentioned, it is necessary for the learning framework that

load should spread faster into dense regions of the graph. The diffusion schemes from
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Figure 5.5: Load distribution originated at a single seed after 50 FOS iterations. Vertices

with high load are colored red while empty vertices are black.

chapter 4 fulfill this constraint because they are known to compute a || · ||2-minimal

flow. However, to obtain connected sub-domains and to reduce the migration during

a repartitioning, the load must be distributed in a hill-like manner with its peak close

to the originating center. Figure 5.5 gives an example of such a distribution. Note,

that although the vertices in the lower part are closer to the seed vertex, much more

load reaches the vertices inside the denser upper part than those in the lower one

since there are more paths into this region.

The diffusion schemes presented in chapter 4 balance the load completely. Since

this contradicts the requested hill-like load distribution, they are not directly ap-

plicable and have to be modified. Three possible ways are described and discussed

in the following. In an evolutionary process, we have first looked into the two ap-

proaches FOS/L and FOS/A. However, both of them are superseded by FOS/C,

and we therefore mainly focus on this scheme.
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5.3.1 The Limited First Order Scheme

A first idea to obtain a hill-like load distribution is to stop FOS before it converges.

This means that we perform some FOS iterations before we interrupt the scheme

and define the current load distribution as the final result. We refer to this approach

as Limited First Order Scheme (FOS/L).

The combination of FOS/L and the Bubble Framework computes promising look-

ing partitionings when comparing them with those of other heuristics. As an ex-

ample, figure 5.6 shows the average results of a 16-partitioning obtained on the ’bi-

plane.9’ graph. The Bubble Framework is run with 4 learning iterations and 4 loops,

respectively. The other libraries included in this experiment are those described in

chapter 2, and the bars display the minimum, maximum and average results from

100 runs together with the standard deviation as mentioned in chapter 3.

Besides the edge-cut and the balance, the number of external edges, boundary ver-

tices, and the resulting amount of information to be send and received by a partition

is displayed, all stated in maximum, Euclidean and summation norm, respectively 1.

One can see that the edge-cut (and hence the number of external edges) computed

by the shape optimizing approach is comparable to the results of Metis and Jostle.

However, the number of boundary vertices (and hence the send/receive volume) of

the new approach is significantly smaller in all norms. Similar results are obtained

for other test instances [Sch04].

Although applying FOS/L yields good results already, especially when consider-

ing that the Bubble Framework is a global approach, one major problem remains:

Determining the number of FOS iterations until the diffusion process is interrupted.

This number is difficult to choose, since it depends on the graph, the number of

partitions as well as on the current partition placement. If too few steps are per-

formed, the load has not spread widely enough and vertices may remain completely

empty, while too many iterations equalize the load such that it is no longer possible

to determine a good partitioning. Since we are unable to state a general rule to

obtain a good number, we have selected some appropriate values by hand for the

experiments, often determined in a large number of runs. Of course, this is usu-

ally not applicable in practice. Thus, although FOS/L serves as a working proof of

concept, a more reliable diffusion process is required.

1A summary of applied metrics and norms is given in section 5.7.1
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Figure 5.6: Detailed results obtained for the 12 partitioning of the ’biplane.9’ graph. Re-

sults are shown (from left to right) for: kMetis (dark blue triangle), pMetis (light blue tri-

angles), Jostle (squares) with 0% (yellow), 1% (orange) and 3% (red) imbalance allowance,

Party (old) (green diamonds), Party (new) (black circles) and the shape optimizing ap-

proach applying the limited diffusion scheme (magenta circles). Each bar displays the

average value of 100 independent runs with a large mark, the standard deviation of the

values with a wide bar, the minimum and maximum values with thin bars and the result

for the first run with a small mark.
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5.3.2 The First Order Scheme with Absolute Draining

In this subsection we introduce the FOS/A diffusion scheme. In contrast to the

original First Order Scheme, this scheme does not converge towards the completely

balanced load situation. Instead, it is disturbed such that the converged solution

has similar properties as the load distribution after some FOS iterations described

in the last subsection. This eliminates the problem of finding a suitable number of

FOS/L iterations since one can always iterate until convergence.

The disturbance is realized by decreasing the load on each vertex by an absolute

value δA. Note, that if a vertex contains less load than δA, only the existing load

is subtracted, and therefore all load values remain non-negative. To keep the total

load amount in the system constant, all subtracted load is added equally distributed

to the set of source vertices S ⊆ V . As before, for each partition this set contains

either the single center vertex or all the vertices from that partition. Formally, the

proposed scheme can be described as follows.

Definition 2 (FOS/A). Let G = (V, E) be a connected graph and S ⊂ V be the

chosen set of source vertices. The entries of the vector s are either set to sv = 1/|S|,
if v ∈ S, or 0 otherwise. Let δA > 0 be the absolute drain constant and W > 0 the

total load in the system. Furthermore, set α(u,v) = 1/(1 + max {deg(u), deg(v)}) for

each edge e = (u, v) in G. In iteration k, let w
(k)
v denote the load on vertex v and

x
(k)
e the flow exchanged over edge e. Initially, set w(0) = 0 and ∆(0) = W . Then, the

iteration scheme FOS/A performs in each iteration i the following computations:

x
(k)
e=(u,v) = αe ·

(
w(k)

u − w(k)
v

)
t(k+1)
v = w(k)

v −
∑

e=(v,∗)

x(k)
e + sv∆

(k)

d(k+1)
v = min

(
t(k+1)
v , δA

)
w(k+1)

v = t(k+1)
v − d(k+1)

v

∆(k+1) =
∑
v∈V

d(k+1)
v

The first two steps of the scheme are almost equal to those of FOS, extended by

the addition of the subtracted load ∆. The last three steps decrease the load and

calculate the total subtracted load for the next iteration.

During the first iteration, all load is placed on the source vertices. Then, it

diffuses into the graph, similar to the original First Order Scheme, because the
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subtracted load is relatively small compared to the amount on a vertex. The load

continues to spread, more and more vertices are reached, and therefore ∆ increases.

At some point, however, the furthest vertices only obtain less than δA load, which

is completely subtracted and sent back to the sources. Hence, nothing remains on

these vertices, the spreading slows down and eventually stops.

Figures 5.7 through 5.10 show some important variables of a sample experiment

on the ’biplane.9’ graph with a single source vertex. In figure 5.7 and 5.8 we can see

that during the first iterations of FOS/A, the amount of subtracted load ∆ increases

quickly, but the increase slows down such that the change |∆(k) −∆(k−1)| becomes

finally zero. Consequently, the exchange
∑

e∈E xe over the edges has reached a stable

state and therefore also the load lv on each vertex does not change any more.

However, the convergence is not smooth. Figures 5.9 and figure 5.10 report the

load on the vertices that have at least δA load, called inner vertices, and those with

less than δA load which are denoted as border vertices. One can see that the number

of inner vertices mainly grows, but not continuously. Especially in later iterations

the set of inner vertices sometimes even decreases again. Hence, also the load on

the border vertices oscillates. At some point, however, there are no more changes.

The displayed data is collected in an experiment on an unstructured graph, what

allows the behaviour to be explained as follows. In the beginning, the load on the

vertices is much higher than δA, hence it spreads from the seed vertex into the graph

in all directions. At some point, it might reach an area with a different structure,

hence the distribution speed changes. For example, if the vertex degree in an area

is larger than the average, the load flows faster. This causes load that has been sent

into another direction to be reverted and vertices, that have already received more

than δA load before might become empty again. Hence, there occur wave-like effects

in the distribution until every reachable part of the graph is ’known’ by the diffusion

process and the load has been placed accordingly.

Although all our experiments show that the FOS/A scheme converges, we have

been unable to prove this yet. Finding the iteration from which on the sets of inner

and border vertices become stable turns out to be an important unsolved question

due to the involved minimum computation in the diffusion scheme.

Nevertheless, we have implemented FOS/A into our framework and run numerous

tests [Sch05]. As an example, some frames of a repartitioning experiment with the

’slowtric’ benchmark2 are displayed in figure 5.11. Here, a mesh sequence of 101

2The properties of this benchmark are described in section 5.7.2.
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frames is generated according to three circles rotating around the center of the

squared simulation area. The circle sizes differ and due to a similar attractor placed

in each of the circles, the area around the smaller circles is refined more deeply.

Furthermore, the overall number of triangles increases slightly over time. Besides

Metis and Jostle, we run the shape optimizing approach with randomly chosen initial

centers, W = |V | load in each partition, a drain value of δA = 0.01, and perform 1

iteration and 12 loops to partition and repartition the meshes into 12 sub-domains.

The solutions of Metis are shown in the middle left column. While the initial

solution looks acceptable, there seem to be some problems in later balancing steps.

A closer look to e.g. frame 50 reveals that one partition is degenerated into three

parts, one of them only consisting of a few vertices. Metis applies a local exchange

heuristic that usually takes care of a few isolated vertices and assigns them to ad-

jacent partitions. However, other frames show even single isolated triangles, and

we guess that this problem is related to the parallelization of the exchange proce-

77



5 Shape Optimized Partitioning

Mesh Metis Jostle Shape (FOS/A)

Figure 5.11: Frames 0, 49, 50, 51, and 100 of the ’slowtric’ benchmark. From left to

right, the FE mesh and the solutions computed by Metis, Jostle and the shape optimizing

approach applying FOS/A are shown.
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dure. Furthermore, partitions sometimes are thin or contain long extensions into

their neighbors, which deteriorates the partition shapes and increases the boundary

length and the communication volumes. The distributions calculated with Jostle

(middle right) are usually of a better shape, though partitions are occasionally dis-

connected. When looking at the partition movement, it is interesting to see that

domains in deeply refined areas (e.g. around the smallest circle) try to follow these

locations. This property is even more distinct in the solutions obtained with the new

approach (right). Furthermore, the shape optimized approach computes straighter

boundaries and also computes connected domains.

The recorded metrics are displayed in figure 5.12. The left column contains the

data according to the || · ||1-norm while on the right side the || · ||∞-norm has been

applied. The || · ||2-norm is omitted. The first row contains the balance, displayed

as the maximal size of a partition. It reveals the imbalance setting of Metis to

3%, although sometimes up to 6% are reached. The parallel version of Jostle is

invoked with the same value, but ignores this setting. Our scheme does not provide

an imbalance parameter, but usually achieves partition sizes with less than 5%

imbalance with some exceptions in other benchmarks.

The next four rows contain the edge-cut, the number of boundary vertices, the

communication volume (send and receive volumes are added) and the partition di-

ameter. The first three of them are related due to the small vertex degree of the

graphs. One can see that the values of the solutions computed by Metis are higher

than those for the partitionings obtained with Jostle or the shape optimizing ap-

proach. This general observation holds for all of our benchmark sets. Looking at the

diameter, Metis computes disconnected domains in some frames. In other bench-

marks we can observe this even more frequently. The same holds for Jostle, though

degenerated partitions occur less often.

The last row displays the migration (outgoing and incoming elements are summed

up). Here, Metis seems to follow a different strategy than the two other libraries,

moving either very little or a huge amount of data while the migration volume of

Jostle and Party/DB is more constant over the frames.

Concerning the run-time, our sequential implementation of the shape optimized

approach applying FOS/A requires about two to three magnitudes longer than the

libraries Metis and Jostle. The disturbance of FOS/A slows down the diffusion

process even more and its multiple invocation in the learning framework requires

lots of computing resources.
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Figure 5.12: Results of all 101 frames of the ’slowtric’ benchmark for Metis (blue triangles),

Jostle (red squares) and Bubble (FOS/A) (green pentagons).
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5.3.3 The First Order Scheme with Constant Draining

We are now introducing the FOS/C diffusion scheme. Like FOS/A, this scheme

is also based on FOS and disturbed in every iteration. However, in contrast to

FOS/A, the disturbance is not restricted to the non-empty vertices but performed

on all vertices. Hence, negative loads become possible.

The FOS/C scheme executes two operations in each iteration. While the first

one is the original diffusion, the second step introduces the disturbance by shifting

a small load amount δ > 0 from all vertices of the graph to some selected source

vertices S ⊂ V . This disturbance can be described by the drain vector d ∈ Rn,

which is defined as

dv =

{
δ · |V |/|S| − δ : v ∈ S

−δ : otherwise

This vector is added to the load vector resulting from the original diffusion step.

Note that, since 〈d,1〉 = 0, this does not change the total amount of system load.

The new scheme is formally described in the following definition.

Definition 3 (FOS/C). Given a connected graph G = (V, E) and a suitable con-

stant α. Let δ > 0 be the drain constant and d the corresponding drain vector. Let

S ⊂ V be the set of source vertices. In iteration k, w
(k)
v denotes the load on vertex

v and x
(k)
e the exchange over edge e. Let w(0) represent the initial load situation. In

each iteration k, the FOS/C scheme performs the computations:

x
(k)
e=(u,v) = α ·

(
w(k)

u − w(k)
v

)
w(k+1)

v = w(k)
v −

∑
e=(v,∗)

x(k)
e + dv.

In matrix notation, FOS/C can be written as

w(k+1) = Mw(k) + d

where M denotes I−αL like for FOS with L being the Laplacian matrix. L can be

expressed as L = AAT , where A is the vertex edge incidence matrix of G. Note,

that L does not have full rank.

In general, the existence of a solution of a linear system involving a Laplacian

matrix L depends on the right hand side of the linear equation. The equation

Lx = b has a solution (and then infinitely many), iff b ⊥ 1. The next lemma states

that the || · ||2-minimal balancing flow can be computed by solving a system of linear

equations.
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Lemma 1 ([HB99]). Consider the quadratic flow minimization problem

min! ||f ||2 with respect to Af = b

Provided that b ⊥ 1, the solution to this problem is given by

f = AT x, where Lx = b

To prove the convergence of FOS/C, we require the following observation.

Lemma 2. Let M be a diffusion matrix and b be a vector perpendicular to 1. Then,

lim
k→∞

(I + M + M2 + · · ·+ Mk)b = (I−M)−1b

Proof. Recall that 1 is an eigenvector to the simple eigenvalue 1 of M. Since b ⊥ 1,

i.e.
∑n

j=1 bj = 0, it follows that limk→∞Mk+1b = 0. Hence,

lim
k→∞

(I−M)(I + M + M2 + · · ·+ Mk)b

= lim
k→∞

(I−Mk+1)b = lim
k→∞

b−Mk+1b

= b

Therefore, (I + M + M2 + · · ·+ Mk) is the inverse to (I−M) for k →∞ and any

vector perpendicular to 1, so that the claim follows.

Now, we are able to state the following theorem.

Theorem 1 (Convergence of FOS/C). The FOS/C scheme converges for any

arbitrary initial load vector w(0).

Proof. Repeatedly applying the diffusion matrix to the initial load vector w(0), we

obtain

w(1) = Mw(0) + d

w(2) = Mw(1) + d = M(Mw(0) + d) + d

= M2w(0) + (M + I)d
...

w(k) = Mkw(0) + (Mk−1 + · · ·+ M + I)d
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Due to lemma 2, this yields

w(∞) = M∞w(0) + (I−M)−1d

= M∞w(0) + (αL)−1d

w(∞) is composed of two parts. M∞w(0) is the evenly balanced load w that FOS

computes. Hence, the load differences only depend on L and d. This means that

the solution of the disturbed scheme FOS/C can also be determined by solving a

system of linear equations. Looking at the load in the converged state, the following

observation can be made.

Corollary 1. When converged, the load w(∞) of FOS/C can be characterized as:

w(∞) = Mw(∞) + d

⇔ (I−M)w(∞) = d

⇔ αLw(∞) = d

⇔ Lw(∞) = d/α

Hence, the load distribution of FOS/C in its converged state can be determined by

solving the system of linear equations Lw(∞) = d/α.

For our purpose, the scaling factor α can be omitted. Due to the rank of the

Laplacian matrix, the solution Lw = d is only determined up to an additive constant

reflecting the total load in the system. Hence, by solving the linear system of

equations this constant cannot be determined, meaning that only the load differences

between the vertices are unique.

In fact, in the converged state of FOS/C, all load that is moved onto the source

vertices via the disturbance described by d has to be sent back in one iteration step.

Hence, according to lemma 1, following corollary can be made.

Corollary 2. The load differences

f = AT w(∞)

in the converged state of the disturbed diffusion scheme FOS/C equal the

|| · ||2-minimal flow f

that balances the load vector d, sending from the vertices in S the load δ to every

vertex in the graph.
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This means that we can obtain the load differences of the solution of FOS/C with

well known methods which calculate the || · ||2-minimal flow that balances the initial

load distribution d. These are for example the genuine diffusion schemes FOS and

SOS, or solvers for linear systems of equations like the Conjugate Gradient (CG) or

Algebraic Multigrid approach.

Once the balancing flow has been determined, the vertex loads w(∞) of FOS/C can

be assigned accordingly with a suitable chosen constant, e.g. such that
∑

v∈V w
(∞)
v =

0. This choice also ensures that the load distributions computed for each partition

have a common reference point and are therefore comparable. An alternative way,

which generalizes this method and additionally improves the numerical stability, is

discussed in the next subsection.

5.3.4 Numerical Stability by Influence Range Reduction

The load differences of the distribution in the converged state of the FOS/C scheme

equal the || · ||2-minimal flow that sends δ load from the source vertices to every

other vertex in the graph. Hence, we can compute w(∞) by solving the system of

linear equations

Lw(∞) = d.

However, although this linear system has infinitely many solutions because of d

being perpendicular to 1, the limited numerical precision causes errors and the

solvers often diverge in practice. In the following, we present a modification of the

linear system such that the involved matrix becomes positive definite instead of

semi-definite which eliminates numerical problems.

To understand the meaning of the altered linear system, we first generalise the

flow problem that we solve. We construct a new graph Gφ that is composed of the

graph G and an extra vertex x that is connected with every other vertex of G. All

edges e ∈ E of G are assigned a capacity of ce = 1 while the capacity of the edges

incident to x are set to some constant φ > 0. Again, we equally place load on the

set of source vertices S, but now only let load drain from the extra vertex x. Since

we minimize f according to the || · ||2-norm, the load will not be sent directly to x,

but also makes some ’detours’ via other vertices in G.

The weight constant φ determines the spreading of the flow. If φ is large, it is

’cheaper’ to send most load directly to x, while if φ is small, the costs of the ’detour’

into the graph are compensated by less utilized edges incident to x that can be
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Figure 5.13: Flow towards x in case of a small (left) and large (right) parameter φ.

chosen. In the extreme cases, if φ→∞, all load is sent directly to x, while if φ→ 0,

the || · ||2-minimal flow will converge towards the solution obtained previously for

the unmodified graph.

The modification weakens the influence of vertices that are far away from the set

of source vertices and therefore not of interest to a partition. Of course, all edges

still carry some load, since we compute the || · ||2-minimal flow. However, due to

the limited computational accuracy, the ones distant to the sources remain empty in

practice as sketched in figure 5.13, displaying the flow over the extra edges depending

on the choice of φ.

Formally, let G = (V, E) be an undirected, connected graph. If we extend G by an

additional vertex x and connect it to every other vertex with an edge of weight φ, we

obtain the graph Gφ = (V ∪{x}, E∪{{v, x} : v ∈ V }) with edge weights ce = 1 ∀e ∈
E and c{v,x} = φ ∀v ∈ V . The weighted Laplacian matrix Lφ ∈ R|V |+1×|V |+1 of Gφ is

defined as Lφ = AφCAφ
T, where Aφ denotes the unweighted vertex-edge incidence

matrix of Gφ, and the entries of the diagonal matrix C ∈ R|E|+|V |×|E|+|V | are set to

(cee) = ce. If we denote the unweighted Laplacian matrix of G with L ∈ Z|V |×|V |,

the weighted Laplacian matrix Lφ of Gφ can be written as:

Lφ =



 L + φI


−φ

...

−φ

−φ · · · −φ |V | · φ


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The drain vector is extended accordingly. To subtract |V | · δ load from the extra

vertex x and add it equally to the set S of source vertices, dφ looks like

dφv =


δ · |V |/|S| : v ∈ S

−δ · |V | : v is the extra vertex x

0 : otherwise

Now, we compute the load distribution by solving the according linear system of

equations

Lφw
(∞)
φ = dφ.

The introduction of the extra vertex seems to introduce global information, since

x is connected to every other vertex. Accordingly, the last row and column of Lφ

are completely occupied. Hence, some solvers like the algebraic multigrid cannot be

applied directly. Furthermore, the rank of the modified matrix is still not full since

Lφ is still a Laplacian matrix.

However, solving an under-determined system of linear equations can be simpli-

fied [Kaa88]. Fixing as many entries of the solution vector as the dimension of the

null space and deleting the corresponding rows and columns from the matrix and

right hand side, one can obtain a solution by solving a fully determined system.

Hence, the numerical problems can be overcome by fixing the value of the extra

vertex to be zero and deleting the row and column appended to L before. What

remains is the addition of φ to the diagonal values of L. This results in a symmetric

positive-definite matrix Lφ
′ = L+φI, whose condition is controlled by the parameter

φ. To obtain the load differences on the modified graph, we can now solve the fully

determined linear system

Lφ
′wφ

′ = dφ
′,

where dφ
′ and wφ

′ equal dφ and wφ without the entry for the extra vertex, respec-

tively. Note that this preconditioning is well-defined by the notion of the extra

vertex and interpretable as explained before.

After eliminating the entries for the extra vertex from the matrix, the structure of

Lφ
′ is the same as of L, hence, the introduced global information is eliminated again.

Furthermore, the entry for the extra vertex in the solution vector w′
φx

is defined to

be zero. Hence, it automatically acts as a common reference point and the load

distributions for different partitions are now comparable without post-processing.
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5.4 Balancing

Our experiments on a torus show that the proposed shape optimizing approach leads

to almost equal partition sizes. The partitionings displayed in figure 5.14 illustrate

the learning process. However, when being applied on inhomogeneous topologies,

additional balancing becomes necessary. In the following, we describe two methods

to improve the balance.

Figure 5.14: An initial random assignment on a 256×128 torus (top left) and the partition-

ings after 1, 2, 5, and 10 Grow/Consolidation operations, respectively. The final solution

(bottom right), where no more changes occur, is obtained after 120 operations. In this ex-

ample, a Move/Contraction is performed after every 10 invocations of Grow/Consolidation.

Note that the final partitioning is composed of almost perfect hexagons, which is the regu-

lar shape with the most corners that can fully cover the 2-dimensional plane and therefore

possesses the smallest boundary compared to its area.
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5.4.1 Scale Balancing

A first idea to establish equal partition sizes is to adjust the amount of load that

is placed on the partitions. If a partition is too small or too large, its total load

amount is increased or decreased for the next learning step of the Bubble Framework.

However, this requires the execution of additional diffusion processes and is therefore

quite costly.

Instead of recomputing the load distribution, it is possible to adjust already ex-

isting solutions. Remember that the Bubble Framework assigns a vertex v to that

partition with the highest load value

πv = p : wp
φ
′
v
≥ wq

φ
′
v
∀q.

As described in the previous section, we obtain the load vectors wp
φ
′ by solving the

linear system of equations Lφ
′wp

φ
′ = dp

φ
′ for each partition p, where the extra vertex

x implicitly serves as common point of reference with a predefined load value of 0.

Hence, since the computed load values correspond to a || · ||2-minimal flow, changing

the total load amount in the system is equivalent to scaling the final load vector wp
φ
′.

The scaling factor ξp for a partition p is determined in an iterative process. Ini-

tially, ξ0
p is set to 1. If we denote the actual partition weights by ωp and the total

weight by Ω, we first calculate the desired balanced weight ω̄ = Ω/P . Next, we deter-

mine the scale coefficients ζp = (ω̄/ωp)
2, which are limited to the range [0.5, . . . , 2].

Now, the new scale factors ξp are computed as ξi+1
p = ξi

p · θ + (1 − θ) · ζp. The

parameter θ acts as damping factor and prevents that too small partitions become

too large in the next step and vice versa. It is usually set to 0.9, and we perform

twice the partition graph’s diameter many iterations. The vertex assignment is then

altered according to

πv = p : ξp · wp
φ
′
v
≥ ξq · wq

φ
′
v
∀q.

In many cases, the proposed simple scale balancing works very well. An example

showing the maximal scaled load on the vertices and the resulting partitioning is

given in figure 5.15. One can see that the balancing preserves the partition shapes.

However, if the center vertices are not well distributed over the graph and a high

imbalance occurs, it fails and cannot ensure equal sized partitions. In this case, we

apply an additional greedy balancing step.
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Figure 5.15: The maximal scaled load per vertex and the resulting partitioning.

5.4.2 Greedy Balancing

The initial random choice of center vertices can lead to situations where the parti-

tions are not well distributed in the graph. Depending also on other aspects like the

diameter of the partition graph, the scaling approach proposed in the last subsection

is not able to properly balance the domain sizes. In extreme cases as shown in fig-

ure 5.16, the too large and too small domains are situated in opposite regions of the

graph and a huge number of scaling iterations was required, since only neighboring

partitions are affected first in the wave-like process.

If the scale balancing is not able to reduce the maximal partition overweight to

less than 5%, we apply a greedy balancing. The greedy balancing is based on a

|| · ||2-minimal balancing flow on the partition-graph that we compute as described

in chapter 4. According to this flow, we now choose vertices for migration. A vertex

v in partition p is considered, if the flow from partition p to partition q is positive, v

is adjacent to a vertex u in q, and if the partition size of p is not too small. Among all

considered vertices we move that one which causes the smallest error wq
φ
′
v
−wp

φ
′
v

with

regard to the load situation on the vertices. Once the vertex is moved, we upgrade

the vertex values and reduce the balancing flow by 1. Note that these changes are

local and only neighboring vertices are affected. The process is repeated until the

flow on all edges of the partition graph is less than 0.5.
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Figure 5.16: The graph ’stufe.10’ partitioned into 24 domains as an example instance

where balancing by scaling does not work well due to the graph structure. However,

the greedy balancing can successfully be applied and align the partition sizes without

deteriorating the solution quality.

5.4.3 Smoothing

To further enhance the partition quality, we perform a final post-processing step

called smoothing. Once the learning process in the Bubble Framework has been

completed, the smoothing further straightens the partition boundaries by migrating

vertices that possess more neighbors in a different partition than neighbors in their

own part. This procedure also eliminates possible artifacts in form of single isolated

vertices that sometimes occur due to the limited numerical precision in the load

calculation. Vertices with this property are considered, and the same migration

process as described for the greedy balancing is performed.

In its current implementation, the smoothing does not consider the balancing.

Hence, it might destroy an equal vertex distribution. However, from our experiments

we conclude that because the fraction of affected vertices at the partition boundaries

is relatively small, the imbalance usually does not increase by more than 1%.
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5.5 The Flux Heuristic

Integrating the load distribution approach presented in the last section into the

Bubble Framework, we obtain the Flux algorithm sketched in figure 5.17. Initially,

it proceeds as described in figure 5.4 (lines 01 – 06), either choosing some center

vertices randomly, or performing a consolidation step on either a random or the

currently existing partitioning. The computation of the Move/Contraction (lines 09

– 11) and the Grow/Assignment and Grow/Consolidation operations (lines 14-16)

is adapted. Instead of performing the diffusion iteratively, we compute the solution

of FOS/C by solving systems of linear equations. For each partition p, we initialise

the drain vectors dp
φ
′ according to the current partitioning π. As described, load is

placed on the set of source vertices containing either a single center vertex (line 09)

or the whole partition (line 14). The linear systems are solved, and the new center

vertices (line 11) or partitionings (line 14) are determined.

The balancing is inserted after the Grow/Assignment and Grow/Consolidation

operations (line 17). It consists of the scale balancing and additionally performs a

greedy balancing if the partition sizes vary by more than a given factor. Furthermore,

the final solution is smoothed (line 18), before it is returned.

An interesting point is the lack of an explicit objective function. Except for

the balancing process, the Flux heuristic does not contain any explicit directives

concerning the metric to optimize. Hence, the diffusion process and the resulting

load distribution are fully responsible for the solution quality.

The run-time of Flux greatly depends on the linear equation solver, and, of course,

the parameters i and l. All other computations require only linear run-time or are

negligible. Hence, an efficient linear solver is required, which is capable of processing

several systems of equations with the same matrix Lφ
′ but different right sides dp

φ
′.

5.6 Implementation

To solve the involved systems of linear equations, we decide to apply a Conjugate

Gradient (CG) solver. It is known to be a fast and reliable method to solve sparse

positive definite linear systems. To improve the convergence rate of this iterative

solver, several preconditioners are available. In the following subsections, we describe

additional enhancements that address our specific problem instances.

Note that no work is necessary to set up the sparse matrix Lφ
′, because it contains
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00 Algorithm FLUX(G, i, l, φ)

01 in each iteration i

02 if not π exists

03 case random-center

04 c = determine-random-centers(G)

05 case random-partition

06 π = random-partitioning(G)

07 if π exists /* contraction */

08 parallel for each partition p

09 set dp
φ
′
v

=

{
δ · |V |/|{v : πv = p}| : πv = p

0 : otherwise

10 solve Lφ
′wp

φ
′ = dp

φ
′

11 πv =

{
p :wp

φ
′
v
≥ wp

φ
′
u
∀u ∈ V

−1 : otherwise

12 in each loop l /* assignment & optional consolidations */

13 parallel for each partition p

14 set dp
φ
′
v

=

{
δ · |V |/|{v : πv = p}| : πv = p

0 : otherwise

15 solve Lφ
′wp

φ
′ = dp

φ
′

16 πv = p : wp
φ
′
v
≥ wq

φ
′
v
∀q ∈ {1, . . . , P}

17 π = balance(π, wφ) /* balancing */

18 return smooth(π) /* smoothing */

Figure 5.17: Sketch of the Flux heuristic.

the vertex degree plus φ on the main diagonal and off-diagonal entries for every

edge. Hence, it matches our graph representation and the same sparse indexed data

structures can be used.

Apart from CG, the Algebraic Multigrid approach is another efficient and state-

of-the-art method for solving a linear system of equations. In our case, it might even

appear to be predestined, since its costly preprocessing only depends on the matrix

while solving the system afterwards is quite fast. Since we solve many systems with

the same matrix Lφ
′ that differ only in the right side dp

φ
′, the preprocessing step has

to be performed only once. First experiments are presented in [MMS06]. If it was

possible to transfer the following techniques from the CG solver to the Algebraic

Multigrid solver, we predict a significant run-time reduction.
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Our implementation of the Flux heuristic for shared memory machines is straight-

forward. We follow exactly the formulation given in figure 5.17. Optionally, the

linear systems can be solved by multiple threads. Usually, this version of our library

is applied to compute an initial mesh distribution for a parallel simulation.

To repartition the data during an adaptive parallel simulation, we have imple-

mented a distributed version of the Flux library that is based on the message pass-

ing interface (MPI). In this case we assume that the domains are already placed on

the processing nodes. In the following, we describe important enhancements that

further speed up the computations.

5.6.1 Partial Graph Coarsening

As described before, a vertex is assigned according to the maximum load value.

Hence, we notice that due to the hill-like manner of the solutions only a part of them

is relevant to the vertex assignment. Although the load distribution corresponds to

an || · ||2-minimal flow and every vertex receives some load from every partition, it

is clear that in some areas the load from some partitions is negligible for the vertex

assignments. The introduction of the parameter φ bars the load from spreading too

far into the graph even more.

Hence, it is not necessary to compute the exact solution for all vertices of the

graph, but only in important areas surrounding the respective partition, and refer to

an approximation elsewhere. Of course, the important parts depend on the partition

placements and are different for each of the P linear systems.

The observation can be exploited to both speed up the computations and reduce

the memory requirements in a parallel implementation. Prior to the first compu-

tation, each domain creates a local level hierarchy. Similar as in the Party library,

this hierarchy is based on a 2-approximation of a maximum weighted matching that

is restricted to edges connecting local vertices. These are then combined to form

the vertices of the graph in the next level. Now, the idea is to solve the linear sys-

tems with different solution accuracies on the domains by utilizing a composition of

different hierarchy levels.

To solve a linear system, we first project the drain vector onto the respective

vertices of the lowest hierarchy level and compute the load values there. Figure 5.18

(left) illustrates a solution for one partition on the lowest levels. One can see that

the highest solution values can be found in and close to the originating domain.
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8.695211e-01 1.155947e+03 1.226557e-02 1.760585e+03

Figure 5.18: Vertex heights on the lowest levels (left) and the final solution with local

accuracy on the respective levels (middle). The shown solution has been computed for

the pink domain leading to the displayed partitioning (right). Edges between vertices of

different domains (the initial partitioning) are cut.

Since the matching process preserves the graph structure, the solution on the

lowest level is similar to the expected load distribution in the original graph. Hence,

we are able to use it to determine the most relevant parts of the solution. Important

domains within 10% of the highest occurring load value will be switched to a higher

hierarchy level while the unimportant ones remain on the lowest one.

Figure 5.18 (middle) gives an example of a load distribution that has been cal-

culated with varying accuracy. In the important regions of the graph, the linear

system is solved on the highest hierarchy level, that is the original graph, while in

areas further away from the respective domain lower levels are used.

Note that for each of the P linear systems a different part of the graph is im-

portant. Thus, the hierarchy levels that contribute to the respective solution differ

for every system. To perform the communication, we require a data structure that

allows to send and map the numerical data between the boundary vertices of differ-

ent levels. Implementation details are given in the next paragraph. Furthermore,

our library solves all systems simultaneously with a CG solver and we concatenate

the data sent by all P instances. Hence, in every iteration of the solver only one

message is sent in every direction between two neighboring partitions.

A Distributed Graph Data Structure A distributed linear system is usually real-

ized via local copies of the numerical values stored at the partition boundaries, which

are updated in every iteration of the solver. Figure 5.19 (left) sketches an example.
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Figure 5.19: Sketch of the distributed graph data structure. A graph with 12 vertices is

divided into two partitions. The halo vertices mirroring their originals at the boundaries

are displayed white and the matching on the higher level is indicated in gray. Coarsening

the original graph shown left results in a weighted graph displayed in the middle. The

combination of two different levels is drawn right.

According to the domain decomposition, every processing node contains its part of

the graph plus local copies of the adjacent vertices of neighboring partitions. These

additional vertices are called the halo. Note, that we store a separate halo vertex

for every cut edge. Hence, the same vertex can be mirrored several times.

Mirroring the same vertex to store one copy for each edge has several advantages

if we further ensure that all vertices, as well as their numerical data, are stored in an

array first sorted by the vertex domain, and additionally, that the halo vertices are

in the same order as their represented originals in the neighboring domain. Every

halo vertex is of degree one. Hence, to communicate the load values between the

partitioning boundaries, we only have to run over the halo vertices and copy the

numerical data of their only neighbor into the message buffer. The buffer is then

communicated and because the halo vertices on the receiving domain are subse-

quently stored in memory, the message buffer can just be copied in a single block.

This property still remains after combining vertices on the next hierarchy level as

illustrated in figure 5.19 (middle). Hence, no global identifiers are required.

Using different levels in one linear system raises the question of how to obtain

the halo values of vertices that do not exist in the current level of the neighboring

partition as shown in figure 5.19 (right). Our implementation proceeds as follows.

To transfer the solution values between different levels at the domain boundaries, the

domain using the higher level is in charge of either combining the numbers to be sent

or distributing them on receiving, according to the calculated matching. Figure 5.20

sketches an example in more detail. The halo values for the lower hierarchy level

are obtained by a weighted summation of the numerical data from the higher level.
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Figure 5.20: Sketch of the communication process between different hierarchy levels. The

red arrows indicate the combining operation while the interpolation is drawn in green.

As an example, if two vertices v1 and v2 with weights s1 and s2 and solution vectors

w1 and w2 are matched to v1,2, the new vertex l1,2 with weight s1,2 = w1 + w2 in the

lower level obtains the value w1,2 = (s1 ∗w1 +s2 ∗w2)/s1,2. For the reverse direction,

the values for the higher hierarchy level are simply copied from their representatives

in the lower level. Note that this described transformation is applicable not only

between two consecutive levels, but between arbitrary ones in the hierarchy.

Although we now have to solve two linear systems per partition, a small one on

the lowest hierarchy levels and the second one on the mixed levels, less run-time

is required in total compared to solving one system on the original graph, if the

number of partitions is large enough. The lowest levels of the hierarchy are very

small and can be processed quickly. The additional time spent in this computation

is compensated by the reduction of the system sizes in the second computation.

5.6.2 Domain Decomposition and Domain Sharing

The domain decomposition (DD) approach is the usual way to distribute a graph

representing a system of linear equations on a parallel computer. Following this

practice, the implemented preconditioned CG solver requires three communications

per iteration, one matrix communication that updates the halo values and two scalar

products. Hence, the number of messages is proportional to the number of iterations,

which typically grows with the system size.

Since we solve P linear systems concurrently, an alternative distribution scheme

for the computations exists. Instead of having every node process the chosen hier-

archy level of its own domain for each of the P systems, it is possible to assemble
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one complete linear system on every processor. The systems are then solved locally

without any communication, and finally the solution is sent back to the domains.

We call this approach domain sharing (DS).

Domain sharing requires copies of all domains on every other node, which usually

is impossible due to the involved memory requirements. However, we have seen that

an accurate solution is not required in all areas of the graph, especially if the number

of partitions is large. Hence, mainly lower levels of the hierarchy are requested what

reduces the memory requirements significantly.

5.6.3 Multilevel Strategy

The multilevel strategy (refer to section 2.5) is a very powerful approach to determine

good partitionings quickly. Hence, we can utilize the level hierarchy not only to

reduce the size of the linear systems but also to speed up the learning process.

Instead of running the learning process in the Bubble Framework on the original

graph, we apply it on the intermediate levels and project the solution onto the next

higher level to obtain a good initial partition placement. Experiments show that

only one Move/Contraction operation per level is sufficient to obtain solutions that

are comparable to other state-of-the-art partitioning libraries [MMS06]. However,

when performing a repartitioning, the domains and the resulting center vertices are

already well-distributed in the graph. Hence, in this case the multilevel strategy is

obsolete and because we focus on this kind of application, learning on multiple levels

is currently not activated in our parallel library.

5.7 Experiments

This section contains some of the experimental results we obtain with the Flux li-

brary. We first introduce the metrics and norms that we consider to express the

quality of a partitioning. Next, we describe the benchmark sets. Besides the known

static graph instances from the graph partitioning community, we also create new

test instances containing graph sequences. These sequences reflect dynamic changes

of a graph and allow to record repartitioning results. We continue with the pre-

sentation of some selected experiments which cover different settings of Flux and a

comparison with Metis and Jostle. Finally, we report about the integration of Flux

into the parallel adaptive finite element simulation tool PadFEM.
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5.7.1 Metrics and Norms

To measure the quality of a partitioning, a number of metrics are possible. The

traditional one is the edge-cut, that is the number of edges between different par-

titions, but it is known that this usually does not model the real costs [Hen98].

Depending on the application, some of the metrics might be more important than

others. Hence, we consider a number of them which can be described as follows and

are measured per partition p.

External edges Number of edges that are incident to exactly one vertex of partition

p, meaning that they are in-between two partitions:

ext(p) = |{e = (u, v) ∈ E : π(u) = p ∧ π(v) 6= p}|

Boundary vertices Number of vertices of partition p that are incident to at least

one external edge:

bnd(p) = |{v ∈ V : π(v) = p ∧ ∃u ∈ V : π(u) 6= p ∧ (v, u) ∈ E}|

Diameter The longest shortest path between two vertices of the partition p. Infinity,

if the partition is not connected.

Outgoing migration Number of vertices that are migrated from partition p to an-

other partition.

Incoming migration Number of vertices that are migrated from another partition

to partition p.

The number of vertices at the partition boundary reflects the amount of informa-

tion to be sent to a neighboring partition more precisely than the edge-cut. Usually,

the boundary vertices are mirrored in the neighboring partition and updated before

every iteration, such that the locally operating algorithms can access their data.

Hence, data has to be communicated only once for each vertex, even if it has more

than one pair in that partition. Note that the number of boundary vertices does

not exactly match the amount of information to be sent due to vertices that are

adjacent to more than one neighboring partition. However, only a few such vertices

exist and in our experiments these numbers are negligible.
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Additionally, the quality of a partitioning depends on its balance. A less balanced

solution does not necessarily cause problems during the computation, but of course

allows other metrics to improve further.

The metrics recorded for every partition are summarized according to three dif-

ferent norms. Given the values x1, . . . , xP , these norms are defined as follows:

Summation Norm

||X||1 := x1 + . . . + xP

Euclidean Norm

||X||2 := (x2
1 + · · ·+ x2

P )1/2

Maximum Norm

||X||∞ := max
i=1..P

xi

The || · ||1-norm (summation norm) is a global norm. The global edge cut belongs

into this category (it equals half the external edges in this norm). In contrast to

the || · ||1-norm, the || · ||∞-norm (maximum norm) is a local norm only considering

the worst value. This norm is favorable if synchronized processes are involved. The

|| · ||2-norm (Euclidean norm) is in between the || · ||1 and the || · ||∞-norm and reflects

the global situation as well as local peaks.

5.7.2 Benchmarks

As mentioned in chapter 2, some collections of graphs exist, which serve as a bench-

mark set in a large number of publications. To compare Flux with the established

graph partitioning libraries, we use a subset of these test instances. Our presentation

includes the graphs that are listed in table 5.1.

While a graph partitioning benchmark only consists of single graphs, the evalua-

tion of load balancing heuristics requires sequences of them. Unfortunately, there is

no such benchmark collections available. Thus, we have developed a basic though

very expandable generator which produces graph sequences with properties that are

very similar to those of adaptive two dimensional FEM computations [MS05]. The

creation of the test sets is explained in the following.
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Table 5.1: Graphs in the test set and some of their properties.

degree
Graph |V | |E| min avg max diameter origin

airfoil1 4253 12289 3 5.78 9 43 FEM 2D
biplane.9 21701 42038 2 3.87 4 102 FEM 2D

crack 10240 30380 3 5.93 9 84 FEM 2D
grid100 10000 19800 2 3.96 4 198 FEM 2D
ocean 143437 409593 1 5.71 6 229 FEM 3D dual

shock.9 36476 71290 2 3.909 4 237 FEM 2D
stufe.10 24010 46414 2 3.87 4 54 FEM 2D
wave 156317 1059331 3 13.55 44 38 FEM 3D

Graph Sequences and Transitions

A graph sequence reflects the changes of the discretization caused by the mesh re-

finement and coarsening procedure. Each graph, also called frame, is the dual to the

static mesh at that point when the load balancing algorithm is started. Performing

the mesh adaptation in parallel, new elements usually belong to the domain they

have been created in. To be able to provide this information independently of a

given partitioning, each of the inserted elements must be assigned to one element of

the preceding graph. This allows to place the new objects onto the same processor

as their predecessors and therefore to model the parallel behavior, even if the actual

partitioning is not known. Since elements can also be removed and the order of ex-

isting elements can change, it is necessary to assign a predecessor to every element

of the new mesh. We refer to this data as transition information.

Figure 5.21 gives an example. On the left, two consecutive frames of the mesh are

shown. Their dual graph, which forms the input for the load balancers, is displayed

next to them. Note, that the graphs’ vertices are numbered continuously from 0 to

|V | − 1 and that a vertex’s number can be different in the following frame, although

it itself has not been altered.

With an artificially generated sequence, the evaluation of a new algorithm can be

performed much faster than if it is run inside a real application since no mathematical

computations or meshing operations have to be performed. Being independent of

the availability of models and mathematical code is another important advantage.

Furthermore, the large amount of numerical data in real simulations prevents the

use of common hardware that now is sufficient for the tests.
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Figure 5.21: Two consecutive frames of a mesh sequence (left) and their corresponding

dual graph used for partitioning (middle left). During the creation process, the predecessor

of each node in the new graph has been recorded (middle right). With this additional

transition information any given partitioning can be mapped (right).

The minimal required input for a dynamic benchmark consists of a number of

graphs and the interleaving transition information. Optionally, it is possible to

provide some more data to draw the graph or even the originating mesh. Visual

evaluation of the results sometimes reveals important deficiencies and possible im-

provements and should not be underestimated. Vertex coordinates for the graph,

which are a requirement when testing geometric approaches, can be provided easily.

A Basic Sequence Generator

During the development process of a load balancing heuristic, many single features

and their combinations have to be tested. Some of them only consider special cases

that rarely occur in real simulations but that are nevertheless important to be han-

dled correctly to ensure the stability of the partitioning and load balancing library.

To be able to generate the required constellations, we have created a basic tool that

outputs artificial mesh sequences.

The applied mesh generation process is based on a known refinement scheme.

Starting with a 2-dimensional square divided into two triangles, the latter can be

refined by always inserting a new vertex at a triangle’s base (which is the longest

edge). Since this scheme is regular, we obtain meshes with angles of 45 and 90

degree only. Before a triangle is split, we check if this leads to a T-intersection.
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In this case, the affected larger triangle is split first, which is a recursive process.

Merging is also possible if none of the anticipating triangles is required anymore to

avoid T-intersections. Note, that the whole refinement tree is stored at all time and

that the triangles of the mesh are the leaves of this tree.

To determine which triangle to split, we insert so called attractors. These are

currently implemented as points, but other geometric shapes are possible. All trian-

gles compute the ratio of their area and the distance to the closest attractor. These

values are stored in a priority queue, such that always the triangle with the largest

ratio can be determined and be selected for refinement next. A second queue holds

triangles for merging, which is also performed based on the distance/area ratio.

Furthermore, we use a geometry to cut areas out of the mesh. If a triangle is

fully covered by the geometry, it is marked inactive and will no longer be part of

the mesh. Currently, the geometry is limited to circle sets, but extensions are also

possible here.

The means described so far allow us to generate a static mesh. To create a se-

quence of meshes with small changes between them, traces are assigned to both,

attractors and the geometry. A trace describes how an object changes its position

over time. Furthermore, the attractors can vary their weight and the global refine-

ment threshold can be adjusted via time-depended functions. After the adjustments

have taken place, all values are updated, and triangles that are now too large are

split or merged if too small.

It is obvious that the generated meshes are unusable for mathematical computa-

tions. A closer look at the border of the circles in figures 5.22 to 5.31 reveals that

the circle surface is not approximated smoothly at all what for example will cause

a fluid dynamics simulation to fail. However, since the graph partitioning and load

balancing algorithms only consider the dual graph of the mesh they are not affected.

Our experiments with meshes generated this way show that the created instances

reflect the properties and behavior of real problem instances well enough to lead to

meaningful results.

To record the transition information described in the previous section, we proceed

as follows. Before each time step, all triangles of the mesh are assigned a serial

number. The dual graph is then saved on disk with the vertices stored in their

assigned serial order. If a triangle is split, both children of this triangle inherit its

number. When merging two triangles, the number of the left triangle is assigned.

After the mesh adaptation, the old serial numbers now contain the information about
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the predecessor of each vertex in the previous graph. This forms the transition data.

New serial numbers are assigned to the adapted graph, and the collected transition

data is stored in a file according to the new vertex enumeration.

Due to geometry movements, it can happen that triangles marked inactive become

active again, e.g., after a circle has changed its position. These leafs do not have

a valid transition number. To handle this case, all triangles with valid numbers

propagate their data in the tree towards the root with the left child of an inner

node having priority. In a second step, triangles without valid numbers are assigned

the same number as their parent. This ensures that the uncovered triangles will be

placed in the same partition as one of their neighbors.

To display meshes graphically, we create additional files that contain the three

triangle coordinates according to the vertices of each dual graph. With this addi-

tional geometric information we are able to generate the postscript images that are

presented in the following.

Test-set Sequences

The included experiments are based on ten graph sequences. Frames 0, 25, 50, 75,

and 100 of the sequences are displayed in figures 5.22 to 5.31, respectively. In the

first four settings, the geometry (red) is constant and only the refinement of the mesh

elements varies. The ’refine’ benchmark refines the mesh around a circle positioned

in the center of the simulation area. In the ’change’ sequence, also some elements

are combined and the mesh is coarsened around the second circle. In the ’heat’

benchmark, the geometry covers large parts of the simulation area, leading to some

long and thin simulation spaces. The refined area moves from the top left corner to

the bottom right. The ’ring’ and ’ring2’ sequences rotate the refined area in a ring

like geometry, and ’ring2’ additionally contains an object therein. In the ’circles’

benchmark, three circles of different size rotate in a row around the center. The

smaller a circle, the finer is the mesh discretization. Figures 5.28 and 5.29 rotate

the same circles, too, but they are placed equidistant. In the ’fasttric’ benchmark,

the movement speed is twice as high as in the ’slowtric’ case. In the benchmarks

’bubbles’ and ’trace’ some circles cross the simulation area. While in the first case

the area is refined according to the distance to the geometry, the ’trace’ benchmark

delays the coarsening such that many elements remain on the path of the geometry.

All instances shown are designed to contain about 20000 elements. Depending on

the setting, this number varies over time due to the mesh adaptation. Additionally,
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Figure 5.22: Frames 0, 25, 50, 75, and 100 of the ’refine’ sequence.

Figure 5.23: Frames 0, 25, 50, 75, and 100 of the ’change’ sequence.

Figure 5.24: Frames 0, 25, 50, 75, and 100 of the ’heat’ sequence.

Figure 5.25: Frames 0, 25, 50, 75, and 100 of the ’ring’ sequence.

Figure 5.26: Frames 0, 25, 50, 75, and 100 of the ’ring2’ sequence.
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Figure 5.27: Frames 0, 25, 50, 75, and 100 of the ’circles’ sequence.

Figure 5.28: Frames 0, 25, 50, 75, and 100 of the ’slowtric’ sequence.

Figure 5.29: Frames 0, 25, 50, 75, and 100 of the ’fasttric’ sequence.

Figure 5.30: Frames 0, 25, 50, 75, and 100 of the ’bubbles’ sequence.

Figure 5.31: Frames 0, 25, 50, 75, and 100 of the ’trace’ sequence.
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we created larger versions of some benchmarks by tightening the area restrictions of

the triangles to 1/10 of the usual value, which results in graph sequences of 100000

to one million vertices per frame.

5.7.3 Numerical Results

In this subsection we present numerical data from our experiments with the Flux

library. We first look at the partitioning problem, measure the influence of differ-

ent parameter settings, and compare our results with those computed with other

libraries. We continue with similar experiments for the repartitioning problem and

report on the results we obtained on the graph sequences. Finally, we examine the

run-times of the distributed implementation in a parallel computing environment.

Graph Partitioning

The most important parameters of the Flux heuristic are the number of learning

steps (iterations and loops) and the influence range reduction φ. To demonstrate

their meaning, we run a number of experiments on the graphs of our test sets and

vary only one of these values. Due to the similarity of the results, we limit the

presentations to 12 or 16 partitions, and show only two detailed examples each.

The experiments are performed with our sequential library on a 3.0 GHz Pentium

4 computer equipped with 2 GB of RAM. According to the evaluation scheme from

section 3.1, each bar displays the average value of 10 independent runs with a large

mark, the standard deviation of the values with a wide bar, the minimum and

maximum values with thin bars and the result for the first run with a small mark.

Influence of φ From the theoretical analysis presented in section 5.3.4, we know

that the parameter φ influences the run-time as well as the partition quality. A

large φ reduces the number of iterations that are required in the CG solver due the

modified matrix L′
φ and bars the load from spreading far into the graph, which leads

to a different solution. Furthermore, it is clear that φ has to be in a certain range.

If too large, vertices in the graph will remain empty, and a value too close to zero

often leads to divergence in the CG solver due to the limited numerical precision.

Hence, we run experiments with φ ∈ {0.05, 0.01, 0.005, 0.001, 0.0005}, respectively.

The initial partition centers are determined randomly (Init/Random Center). The

results for the ’biplane.9’ and ’ocean’ graph are presented in figure 5.32 and 5.33.
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(magenta).
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As in each of the following charts, the run-time is displayed first. It meets the

expectation and a smaller φ increases the number of CG iterations and therefore the

execution time. An interesting point is that Flux performs fastest on the original

graph representation (small dot) in case of the ’ocean’ graph, while the opposite can

be observed for the ’biplane.9’ graph. We explain this behavior with caching effects,

because ’ocean’ is larger than ’biplane.9’ and therefore its data does not fit into the

processor cache. However, this might point to a possible optimization.

Next, the number of external edges is displayed in summation and maximum

norm. In general, increasing φ improves the partition quality, although there are

some exceptions to this rule as for example in case of the ’biplane.9’ benchmark

with a small φ, where no better solution can be found. Enlarging φ also reduces the

variance of the results and the algorithm becomes more reliable. Another observation

is that the maximum norm of the edge-cut shows some correlations with the number

of boundary vertices shown in the following columns.

For the number of boundary vertices, the influence of φ is less obvious. For the

two displayed examples, the total boundary is more or less equal for several values

of φ and in case of the ’ocean’ graph the maximum boundary does increase for any

smaller φ except 0.0005. Note, that the variance of the values is larger than the

differences between their means. Hence, a conclusion is difficult to make. However,

also considering the results of the remaining graphs of our test set, we state that a

smaller φ usually leads to less boundary vertices in both norms.

Concerning the diameter, the same rule as for the external edges and the bound-

ary can be observed, although there is again an exception in case of the ’ocean’

benchmark when choosing φ = 0.005.

Summarizing these experiments, we observe that the partition quality usually

improves in all metrics and norms with a lower choice of φ. However, as already

mentioned, choosing φ too small results in numerical instabilities, hence we decide

to take 0.001 as the default.

Number of Iterations and Loops Altering the number learning steps has a direct

influence on both, the run-time and the solution quality. Performing more iterations

or loops results in a longer execution time as shown in figures 5.34 and 5.35 for the

’biplane.9’ and ’ocean’ graph. Also, the already described caching effect is noticeable.

From the values of the 2/2, 4/2 and 8/2 settings shown for the ’biplane.9’ and ’ocean’

graphs, we observe, that running more iterations usually decreases the edge-cut, the
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number of boundary vertices as well as the partition diameter.

However, the Grow/Consolidation operation in the optional loops has an even

larger impact on the solution quality. As displayed, performing 2 iterations with 8

loops results in better solutions than running 4 iterations with 4 loops. However,

the more operations are performed, the smaller is the additional quality gain what

also indicates the convergence of the learning process. In many cases, the results of

the 4/4 settings are already close to those of the 8/8 ones while the latter requires

four times as long. We therefore decide to run 4 iterations with 4 loops per default.

We conclude that the introduction of the optional Grow/Consolidation operation

accelerates the learning procedure, because it improves the partition quality quickly.

Hence, if the run-time and hence the number of possible operations is limited, it is

usually promising to perform more loops in less iterations. Furthermore, we can

see that depending on the initial solution, not too many Move/Contractions and

Grow/Assignments are required to achieve a good solution quality. In case of the

repartitioning problem with an assumed fairly good initial distribution, even one

iteration might be sufficient.

Comparison to other Libraries To be able to rate the Flux library, we compare

its solutions to those of the state-of-the-art partitioning libraries Metis, Jostle and

Party. In the following comparison, Flux runs with its default setting of 4 itera-

tions, 4 loops and φ = 0.001, and uses randomly chosen initial partition centers.

Figures 5.36 and 5.37 display the detailed results for the ’biplane.9’ and ’ocean’

graphs. A summary for the remaining graphs of the test set is listed in table 5.2.

Comparing the run-time, the sequential Flux heuristic is dramatically slower than

the other libraries. The difference is about three orders of magnitude. As mentioned,

most of the time is spend solving the linear systems of equations. Due to the

complexity of the latter, we expect the gap to become even larger with an increasing

problem size in case of the sequential implementation.

The second column of the charts shows that all libraries stay inside their allowed

balance bounds. kMetis, Party and Flux operate with 3% imbalance allowance,

Jostle is invoked with 3%, 1% and 0%, respectively, and pMetis computes completely

balanced domains.

Concerning the edge-cut, we confirm the ranking from the experiments in chap-

ter 3. Party finds the solutions with the least cut edges, followed by Jostle and

Metis. The results of the Flux library are usually comparable with those of Jostle
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Figure 5.36: Average results for the ’biplane.9’ graph divided into 16 parts running kMetis

(blue), pMetis (cyan), Jostle (with imbalance 0% (yellow), 1% (orange), 3% (red)), Party

(black) and Flux (magenta) with 4 iterations, 4 loops and φ = 0.001.
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Figure 5.37: Average results for the ’ocean’ graph divided into 16 parts using kMetis
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Table 5.2: Average partitioning quality when dividing the graphs from the test set into

16 domains with 3% imbalance allowance using kMetis, Jostle, Party and Flux. Flux runs

4 iterations with 4 loops, and set φ = 0.001. The best results are printed bold.

time weight ex. edges boundary
graph library (s) max sum max sum max

kMetis 0.0 272.9 557.8 102.4 558.1 51.1
airfoil.1 Jostle (3%) 0.0 272.9 545.2 106.1 541.1 51.6

Party 0.1 274.0 552.7 97.9 552.0 49.3
Flux 9.4 313.1 531.5 90.8 531.7 46.0

kMetis 0.1 1395.6 827.9 152.6 1407.9 127.4
biplane.9 Jostle (3%) 0.2 1393.1 772.3 141.4 1384.3 123.5

Party 0.2 1398.0 763.1 137.8 1409.6 124.3
Flux 101.3 1397.8 799.6 143.8 1263.1 110.0

kMetis 0.1 658.2 1251.5 221.8 1229.4 108.1
crack Jostle (3%) 0.1 657.8 1187.1 210.5 1164.6 102.6

Party 0.1 660.0 1220.8 215.6 1198.1 105.7
Flux 34.6 643.0 1241.9 215.9 1218.8 104.7

kMetis 0.0 641.6 711.0 123.2 1212.0 102.7
grid100 Jostle (3%) 0.1 641.4 659.7 116.1 1205.8 104.0

Party 0.1 643.8 614.6 105.5 1165.3 98.8
Flux 20.3 703.3 662.2 114.2 1122.7 87.6

kMetis 1.3 9228.9 10085.0 1936.9 14885.7 1421.1
ocean Jostle (3%) 2.2 9231.2 9043.2 1821.0 14855.1 1476.7

Party 3.6 9234.0 8989.6 1779.1 15728.8 1524.7
Flux 3967.9 9234.0 9385.9 1949.1 13261.6 1310.2

kMetis 0.1 1543.3 722.8 125.2 1177.8 101.9
stufe.10 Jostle (3%) 0.3 1541.7 770.7 167.8 1283.3 139.5

Party 0.2 1546.4 678.9 110.4 1200.0 98.6
Flux 116.8 1581.4 722.6 107.1 962.5 71.1

kMetis 1.9 10061.9 48660.4 7977.4 25198.8 2071.3
wave Jostle (3%) 3.7 10059.2 48411.7 8090.9 25039.4 2078.4

Party 7.0 10063.0 48621.6 7957.7 24768.6 2038.4
Flux 6574.8 9969.7 46416.7 7836.5 23989.0 2010.0

112



5.7 Experiments

and better than those computed by pMetis or kMetis. The same holds for the exter-

nal edges in maximum norm. In some cases like ’airfoil.1’ and ’wave’, Flux can even

outperform Party. Note, that all libraries except for Flux focus on a small edge-cut.

In contrast, the Flux heuristic optimizes the domain shape in order to produce

small partition boundaries. In almost all tested cases, this goal is achieved and

partitionings with the least number of boundary vertices are found in both norms

as indicated in table 5.2. In some cases, these numbers are almost 30% smaller than

for the next better result, while Flux finds solutions that are about 15% better on

average in this metric. An exception is the ’crack’ graph, where the solutions with

small edge-cut are almost identical to those with a small boundary.

Graph Repartitioning

In this subsection we present an extraction of the results we obtained when applying

the distributed Flux heuristic on the graph sequences of our test set. Again, we

report about the influence of Flux’s parameters and evaluate the results of our

library with regard to those of the parallel versions of Metis and Jostle.

Parameters Comparing the results of the Flux library with different parameter

settings, we come to the same conclusion as in case of the graph partitioning problem.

A smaller choice of φ and more iterations and loops usually improve the solution

quality, but also enlarge the run-time. As an example, figures 5.38 and 5.39 display

the results for different parameters for all 101 frames of the ’slowtric’ sequence.

As shown in figure 5.38, reducing φ leads to fewer cut-edges, fewer boundary ver-

tices and a smaller partition diameter. While there is a large improvement between

0.05 and 0.005, the gain is smaller when switching to φ = 0.0005. Running 2 loops

and 2 iterations results in the worst partition quality, while the 4/4 and 8/8 settings

deliver better results as reported in figure 5.39. While a difference between the latter

two cases is noticeable if applying the summation norm, it almost vanishes in the

maximum norm.

When processing a graph sequence, we record the vertex migration as an additional

metric. To be comprehensive, only the sum of outgoing and incoming vertices is

displayed. From the data reported in the last row of figures 5.38 and 5.39 we

observe that choosing a smaller φ or more learning steps increases the number of

vertex changes slightly. This is reasonable since a good partition placement with

fewer cut edges and smaller boundaries requires more vertices to be migrated.
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Figure 5.38: Results of the Flux library for all 101 frames of the ’slowtric’ benchmark

and 12 parts running 4 iterations and 4 loops for different values of φ: 0.05 (red), 0.005

(green), 0.0005 (magenta).
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Figure 5.39: Results of the Flux library for all 101 frames of the ’slowtric’ benchmark and

12 parts running 2/2 (red) 4/4 (green), and 8/8 (black) iterations/loops, and with the

default φ = 0.001.
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Comparison to other Libraries The charts listed in figures 5.40 and 5.41 display

the solutions of the Flux heuristic together with those of the parallel versions of

Metis and Jostle for the ’slowtric’ and ’bigslowtric’ sequence, respectively. Since the

experiments have been performed on different machines, the run-time is not listed,

but as before Flux performs by far slowest.

According to the top chart in figure 5.40, the libraries stay inside their balance

bounds of 3%, with some exceptions in case of Metis. Furthermore, Jostle ignores

the imbalance allowance and almost delivers totally balanced solutions.

The second row contains the number of external edges in summation and maxi-

mum norm. Most of the time, Flux is able to find the best solutions while Jostle

produces results with an about 5% and Metis with an about 20% higher edge-cut.

In the maximum norm, this gap rises to about 12% and 35%, respectively. Similar

observations can be made for the boundary displayed in the next row. The number

of external edges and boundary vertices seems to be linked and differences are hard

to spot for this sequence. It can be explained with the limited vertex degrees (at

most 3) in combination with the small graph size.

The diameter shows the same tendencies as the number of external edges or bound-

ary vertices. The advantage of Flux is slightly larger in case of the maximum norm

than in the summation norm. Furthermore, there are some frames missing in case

of Metis which indicates non-connected partitions.

The last row displays the migration. The results for Metis differs to those of Flux

or Jostle, because this library migrates either very few or a large number of vertices.

Jostle and Flux proceed much more steadily whereas Flux moves a slightly smaller

amount of elements then Jostle.

Since the ’slowtric’ benchmark consists of rather small graphs, we use the same

geometry description to generate the ’bigslowtric’ sequence. It is identical except

for the number of vertices, which is increased from around 20000 to 100000. The

results of our experiments with this benchmark are displayed in figure 5.41.

The overall picture is very similar to what we observed in case of the ’slowtric’

benchmark before. Due to the increased graph size, it is easier to balance the parti-

tions and the Flux library usually finds solutions with less than 0.5% imbalance. As

before, Flux computes the partitionings with the fewest cut edges. In the summa-

tion norm the advantage to Jostle increases slightly to around 7.5%, and to around

25% when comparing with Metis. In maximum norm, the values of 25% and 55%

are even larger. Again, the number of boundary vertices is closely coupled to the
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number of cut edges, hence a similar improvement can be observed. Looking at the

diameter, we see that the partitions computed with Metis are disconnected even

more often. As for the ’slowtric’ benchmark, Flux determines the domains with the

smallest diameter. Concerning the vertex migration, Metis follows its alternative

strategy, while Flux moves a very constant number of vertices during the transitions

between all frames of the benchmark.

The ’slowtric’ and ’bigslowtric’ benchmarks indicate that the observations made

on the small instances are in general transferable to the larger ones, what we confirm

on several other sequences. The benefit of well shaped partitions with straight

boundaries becomes larger with an increasing problem size, resulting in a better

solution quality in case of Flux compared to the other libraries.

The results for the remaining graph sequences of our test set are similar to the

shown ’slowtric’ example and endorse the previous observations. To be comprehen-

sive, we only list the values of an arbitrary frame in table 5.3. More specific, we

compare the results of Metis, Jostle and Flux after processing frame 66.

As shown, the solution quality is highest when applying the Flux heuristic. In both

included norms the domains usually have fewer external edges, the least number of

boundary vertices, the smallest diameter. Additionally, a comparable very steady

amount of migration occurs. There are only a few exceptions as in case of the ’trace’

sequence where our library finds slightly worse results than Jostle. In some cases,

Jostle and Flux migrate many more vertices then Metis, but this is only due to the

alternative strategy and Metis average value is higher than that of Jostle or Flux.

To provide a better impression of the results, figures 5.42 through 5.45 display

the domains computed by Metis, Jostle and Flux in frame 66 for the ’change’,

’ring’, ’slowtric’, and ’trace’ benchmarks, respectively. In all examples it is clearly

visible that Flux determines a good partition placement that allows well shaped

domains with straight boundaries. Jostle’s distribution is still reasonable, while,

Metis produces many jagged shapes what explains the high number of cut edges

and boundary vertices.

Furthermore, we observe that Flux is the only library that produces symmetric

looking partitions on symmetric meshes as in case of the ’change’ and ’ring’ se-

quence. Tracing the partition placement over several frames, we notice that the

domains computed by Flux almost follow the graph geometry. Partitions that are

located in refined parts of the mesh move along with these areas. This observation

is unique for Flux. In contrast, in the solutions determined by Jostle and Metis the
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Figure 5.40: Results of all 101 frames of the ’slowtric’ benchmark and 12 parts running

Metis (blue), Jostle (red), and Flux (black) with 4 iterations, 4 loops, and φ = 0.001.
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Figure 5.41: Results of all 101 frames of the ’bigslowtric’ benchmark and 12 parts running

Metis (blue), Jostle (red), and Flux (black) with 4 iterations, 4 loops, and φ = 0.001.
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Table 5.3: Solution quality of the 12 partitionings after processing frame 66 with Metis,

Jostle and Flux. The best results are printed bold.

wgt. ex. edges boundary diameter migration
seq. lib. max sum max sum max sum max sum max

Metis 1.05 57.0 492.0 57.0 492.0 524.0 151.8 0.0 0.0

refine Jostle 1.02 49.0 452.0 48.0 445.0 492.0 142.4 748.0 244.5
Flux 1.02 51.0 446.0 48.0 437.0 461.0 133.2 196.0 72.0

Metis 1.04 79.0 668.0 78.0 652.0 711.0 207.1 14.0 14.0

change Jostle 1.00 62.0 558.0 62.0 552.0 674.0 195.3 508.0 171.9
Flux 1.03 60.0 514.0 60.0 509.0 620.0 179.2 638.0 208.7

Metis 1.04 50.0 300.0 50.0 291.0 14.0 12.2

heat Jostle 1.00 43.0 268.0 43.0 265.0 1008.0 298.5 1254.0 482.9
Flux 1.02 40.0 262.0 39.0 261.0 989.0 294.4 436.0 155.9

Metis 1.03 125.0 954.0 125.0 947.0 1299.0 385.9 14026.0 4963.4
ring Jostle 1.00 119.0 806.0 119.0 798.0 1216.0 365.9 10714.0 4031.3

Flux 1.01 92.0 744.0 92.0 740.0 1146.0 346.7 11694.0 3879.6

Metis 1.03 74.0 554.0 73.0 550.0 8700.0 2820.5
ring2 Jostle 1.00 67.0 482.0 67.0 479.0 888.0 265.1 5740.0 1981.8

Flux 1.01 55.0 454.0 55.0 452.0 858.0 255.4 4770.0 1649.1

Metis 1.03 84.0 760.0 83.0 754.0 794.0 230.5 8096.0 2637.8
circles Jostle 1.00 83.0 682.0 83.0 664.0 755.0 219.5 3662.0 1449.3

Flux 1.01 77.0 642.0 77.0 639.0 685.0 198.2 4714.0 1796.2

Metis 1.03 106.0 976.0 106.0 974.0 994.0 288.1 6746.0 2367.2
slowtric Jostle 1.00 119.0 938.0 118.0 927.0 1011.0 295.5 8418.0 2982.9

Flux 1.02 86.0 854.0 86.0 847.0 900.0 260.8 5020.0 1807.2

Metis 1.03 93.0 906.0 93.0 899.0 906.0 265.4 8554.0 3073.8
fasttric Jostle 1.00 90.0 808.0 90.0 804.0 883.0 257.4 7162.0 2704.7

Flux 1.02 75.0 792.0 75.0 783.0 818.0 237.3 7004.0 2682.3

Metis 1.03 91.0 744.0 88.0 725.0 795.0 231.0 4834.0 1605.8
bubbles Jostle 1.00 69.0 624.0 66.0 614.0 724.0 209.7 2240.0 756.5

Flux 1.02 66.0 604.0 66.0 599.0 709.0 204.9 1306.0 461.8

Metis 1.04 86.0 774.0 84.0 756.0 745.0 217.0 338.0 162.3

trace Jostle 1.00 66.0 586.0 64.0 570.0 691.0 200.5 1084.0 370.8
Flux 1.01 70.0 590.0 70.0 585.0 668.0 193.1 970.0 382.7
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Figure 5.42: Frame 66 of the ’change’ benchmark. From left to right the solutions com-

puted by Metis, Jostle and Flux (4 iterations, 4 loops, φ = 0.001) are shown.

Figure 5.43: Frame 66 of the ’ringrot’ benchmark. From left to right the solutions com-

puted by Metis, Jostle and Flux (4 iterations, 4 loops, φ = 0.001) are shown.

geometry moves through the domains. Another point is that the partitions delivered

by Flux are always connected. As shown, Metis and less frequently Jostle produce

disconnected domains.

Parallel Run-times The previous experiments show that the Flux library outper-

forms state-of-the-art repartitioning libraries with regard to the solution quality on

graphs derived from numerical simulations. However, its run-time is much higher due

to the involved numerical computations. In the following we present experimental

results that study the parallel execution time in more detail.

In a distributed simulation, each of the processors already contains one part of

the mesh when the load balancing algorithm starts. In the experiments we measure

the parallel run-times that are required by 8, 16, 32 and 64 processors to repartition

the graph. Note that in the current implementation the number of processors must
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Figure 5.44: Frame 66 of the ’slowtric’ benchmark. From left to right the solutions

computed by Metis, Jostle and Flux (4 iterations, 4 loops, φ = 0.001) are shown.

Figure 5.45: Frame 66 of the ’bubble’ benchmark. From left to right the solutions com-

puted by Metis, Jostle and Flux (4 iterations, 4 loops, φ = 0.001) are shown.

match the number of domains.

Due to similarities, we limit the presentation to one experiment. The mesh in

the included example is taken from the ’bigtrace’ benchmark and represents the

last transition of that sequence. The considered graph contains 832779 vertices and

1248312 edges. The parameters of our distributed implementation are 2 iterations

with 8 loops and φ = 0.001. The experiments are run on the Arminius Cluster,

where each of the nodes is equipped with two 64 bit Xeon 3.2 GHz processors and

4 GB of memory. The available interconnection networks are gigabit Ethernet or

Infiniband, and communication is realized through the Scampi MPI implementation.

The main difference between the runs are the parameters for the CG solver, the

most costly part of the computation. We can choose to apply one (1T) or two

(2T) threads per node, precondition with the inverse of the matrix main diagonal

(PCG), and decide to disable or enable the partial graph coarsening presented in
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section 5.6.1. In the latter case, the data of the linear systems can either be dis-

tributed via the domain decomposition (DD) or the domain sharing (DS) approach

introduced in section 5.6.2. Furthermore, we can choose to communicate via the

Ethernet (eth) or Infiniband (ib) interconnection.

The results of the experiment are listed in table 5.4. Besides the run-time, we

also list the memory requirements. Furthermore, we include the edge-cut and the

total number of boundary vertices for each setting to validate the results. Note that

though the same linear system is solved, the numerical imprecision and the different

execution order of the processor instructions lead to slightly different results. Fur-

thermore, utilizing the graph hierarchy also influences the solution quality. However,

while there are some variations, mainly in case of the edge-cut, no significant changes

concerning the solution quality can be reported.

The memory consumption of the Flux library is moderate. Distributing the linear

systems according to the domain decomposition scheme, each processing node only

stores its own data. In contrast, the domain sharing approach assembles its linear

system representing the whole graph. However, it only requires more memory in case

of small partition numbers, where a higher amount is allocated during the computa-

tion than for the initialization process that loads the graph from disk. This results

from the large partition sizes and the small domain distances, meaning that each

processor requires the complete information of all other parts. With an increasing

partition number, mostly lower hierarchy levels of negligible size are requested.

Comparing the two interconnections networks, we observe that the gigabit Eth-

ernet performs faster when using 8 processing nodes. The reason for this remains

unclear, a possible cause are implementation issues in the Scampi library. From 16

partitions on, the Infiniband switch works more efficient. However, this difference is

larger when applying the domain decomposition approach, where multiple commu-

nications are required in each iteration of the CG solver. Using domain sharing, a

large amount of data has to be transfered before and after solving the linear system,

but no communication occurs inside the CG solver itself. Connections with higher

latency benefit from fewer and larger data packages, what explains the recorded data

shown in the table.

Comparing the domain decomposition and the domain sharing approaches them-

selves, we conclude that domain sharing is always superior. Again, sending only a

few large data packages is more efficient than communicating many small ones due

to the latency.
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Table 5.4: Results of the distributed Flux library repartitioning frame 100 of the ’bigtrace’

sequence on the Arminius Cluster in parallel.

full graph partly coarsened graph
P net DD DD DS

CG PCG CG PCG CG PCG
1T 2T 1T 2T 1T 2T

eth time 296 258 323 892 183 162 630 136 128
ib time 398 368 425 1108 242 204 868 181 174

8 mem 38 38 42 36 36 36 50 53 53
cut 2346 2346 2347 2373 2369 2369 2370 2373 2370

bound 712 712 712 710 708 708 708 704 705

eth time 303 226 327 571 141 131 493 115 115
ib time 301 221 322 526 119 98 357 83 75

16 mem 36 36 39 35 35 35 35 35 35
cut 4048 4048 4060 4054 4091 4091 4046 4087 4080

bound 568 568 568 570 569 569 569 569 569

eth time 440 383 458 423 123 101 293 82 76
ib time 423 366 439 395 110 86 265 81 72

32 mem 35 35 38 34 34 34 39 40 40
cut 6210 6210 6201 6262 6226 6226 6283 6219 6247

bound 425 425 425 415 419 419 415 418 419

eth time 451 401 464 227 81 76 130 54 49
ib time 426 378 449 189 66 63 132 49 47

64 mem 35 35 38 34 34 34 34 34 34
cut 9256 9256 9256 9229 9251 9251 9247 9259 9271

bound 317 317 317 317 321 321 320 321 321

The implemented CG solver can optionally precondition the system with the in-

verse of the matrix diagonal. Since the input graph is unweighted and the dual graph

of the mesh is almost 3-regular, a benefit can only be expected when using differ-

ent hierarchy levels. Accordingly, when solving the linear systems on the full graph

only, the run-times are shorter when disabling the preconditioner as shown in the

first three columns. However, computing a solution on the partly coarsened graphs,

preconditioning reduces the run-time by a factor between 3 and 5 as reported in the

three middle and right three columns.

From the table we can also see that running a separate thread on each of the

processors further speeds up the execution, but the run-time reduction is very mod-
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erate. We think that the limited benefit might result from interferences with the

Scampi library.

So far we have looked into values that are computed with the same number of

processing nodes. For the following vertical comparison, one should have in mind

that the number of linear systems that have to be solved equals the number of

domains. Hence, a linear speedup results in a constant execution time.

When computing solutions on the full graph, more partitions lead to a longer

run-time. The increase is larger in case of the gigabit Ethernet, which indicates

that this behavior occurs not only because of the computational load but also due

to the growing communication volume. However, in case of the partly coarsened

approach the opposite can be observed and a larger partition number requires less

execution time. This can be explained with the reduction of the linear system size

which occurs because more and more parts can be replaced with lower levels of

the hierarchy. However, since the graph size is constant, the partitions become

smaller. Hence, less local computations have to be executed and the fraction of the

communication overhead rises, what slows down and eventually limits the benefit.

Hence, we suppose that Flux scales best if the problem size grows together with the

number of processing nodes.

5.7.4 Application in PadFEM

To test the Flux library in a real application, we integrate it into the PadFEM [BM05]

package. This package includes a variety of tools to solve partial differential equa-

tions on tetrahedral meshes in parallel. In regions where the solution quality does

not meet the requirements, it generates refinements through its distributed adap-

tation module. For the graph partitioning process, every tetrahedron of the mesh

is associated with a vertex of the dual graph, which then forms the input data for

the partitioning and repartitioning algorithms. Hence, the dynamic changes in the

mesh result in graph sequences.

From our experiments we conclude that Flux also works reliable on graphs de-

rived from 3-dimensional simulations. As in case of the 2-dimensional sequences, it

computes well shaped connected domains with few boundary vertices. Figure 5.46

gives an example of a 3-dimensional mesh occurring in the DFG standard simula-

tion benchmark [MS96] after several refinement steps. The domains are extruded

for a better view. Since the initial distribution has been computed with Party, there
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Figure 5.46: Extruded 64 partitioning during a 3-dimensional parallel adaptive simulation.

are still some areas that contain square like domains. However, these are slowly

transformed by Flux into a ball like shape. In the refined regions, this has already

happened. Though Flux performs slowly in comparison to other heuristics, its frac-

tion of the overall run-time is only around 2% in case of the perfomed fluid flow

computation.

Unfortunately, we cannot directly compare the results of Flux with those of Metis

or Jostle. Metis produces disconnected partitions, which form an illegal input for

some of the mathematical computations. Jostle crashes once the graph size be-

comes to large. Hence, the Flux library is currently the only working load balancer.

However, we think that the properties observed in the 2-dimensional test-cases also

hold for input from 3-dimensional meshes. Remember that Flux does not use vertex

coordinates but only relies on the connectivity information of the dual graph. The

degree of 3-dimensional dual graphs is usually higher than for two dimensions, hence

a larger number of domains is required to benefit from the partly coarsened hierarchy

levels. Again, Flux performs much slower than libraries that base on the multi-level

scheme, but its solution quality is superior. Depending on the application, this can

either be beneficial or not.
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5.7.5 Upshot

The presented new graph partitioning and repartitioning heuristic Flux delivers high

quality solutions. Although it does not contain any explicit objectives other than

the balancing, it is able to compute connected well shaped domains with short and

straight boundaries, a small diameter and little cut edges. Hence it very well satisfies

the demands of a range of applications, like the given example of balancing parallel

adaptive numerical simulations.

We impute the superior solution quality to the diffusion process that gathers

global information about the graph structure, screens relevant information due to

the properties of the load distribution, and directs the learning framework in order

to find good partition placements. Heuristics that are implemented in Metis, Jostle

and Party are missing this kind of information. Hence, although these libraries

contain very good refinement algorithms, only local changes cannot eliminate the

effects of wrong global conditions.

Furthermore, the proposed shape optimizing algorithm mainly consists of easily

parallelizable computations, what might an important advantage over commonly

used vertex exchange refinement heuristics, considering the upcoming multi-core

processors. The drawback of the presented approach is the high computational

costs, which can be reduced slightly by the described techniques.
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6 Conclusion

In this thesis we address the graph partitioning and repartitioning problem. In

particular, we focus on load balancing in a distributed numerical simulation. We

provide an overview on commonly applied techniques and list state-of-the-art imple-

mentations. Furthermore, we present several enhancements to existing approaches.

We introduce the Graph-Filling Curves, present a better evaluation scheme, and

improve the Helpful-Set bisection refinement procedure that is implemented in the

Party library. Additionally, we summarize some new results on diffusion schemes

for certain network types.

The main contribution of this thesis is the new repartitioning heuristic Flux. In

contrast to other existing libraries, we follow an alternative strategy and do not

focus on a small edge-cut. Instead, we optimize the domain shapes by applying a

diffusion process embedded inside a learning framework. We formulate and analyse

the new diffusion scheme FOS/C that meets our special requirements.

While the solutions computed with Flux also contain a small number of cut edges,

our experiments show that the main benefit of the new heuristic is the ability to

find well shaped and connected domains with a small number of boundary vertices,

what meets the requirements of distributed numerical simulations. Furthermore,

the proposed mechanism contains many calculations that can easily be performed

in parallel. The main drawback of Flux is the large number of involved numerical

computations. We present some techniques that reduce the computational load.

Nevertheless, in its current implementation the Flux library is two to three mag-

nitudes slower than other distributed state-of-the-art heuristics. Depending on the

application, this overhead might or might not be justified by the better solution

quality. Since some of the algorithms in the PadFEM simulation environment de-

pend on good partition shapes and require connected domains, the Flux library is

currently the only applicable load balancer.

For future prospects, we think that a combination of a local refinement strat-

egy together with a technique that collects some global information beforehand is
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most promising. Although local vertex exchanges can quickly improve the solution

quality, the large number of equally rated improvement steps often causes wrong

decisions that downgrade the overall situation. Some additional infomation about

the structural properties in the for a partition relvant regions of the graph can guide

the exchange procedure, and differentiate between the otherwise indistinguishable

local choices. Hence, combining local and global methods might result in both, a

short run-time and high quality solutions.
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[Hil91] D. Hilbert. Über die stetige Abbildung einer Linie auf ein Flächenstück. Math-
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