
Real-Time Multitasking in Embedded Systems
Based on Reconfigurable Hardware

Dissertation

A thesis submitted to the
Faculty of Computer Science, Electrical Engineering and Mathematics

of the
University of Paderborn

in partial fulfillment of the requirements for the
degree of Dr. rer. nat.

by

Klaus Danne

Paderborn, Germany
date of submission: 11.9.2006



Supervisors:
Prof. Dr. Franz J. Rammig
Prof. Dr. Marco Platzner

Reviewers:
Prof. Dr. Franz J. Rammig
Prof. Dr. Marco Platzner
Prof. Dr. Daniel D. Gajski

Additional members of the oral examination committee:
Prof. Dr. Ulrich Rückert
Dr. Ulf Lorenz

Date of submission:
September 11, 2006

Date of public examination:
November 22, 2006



Acknowledgements

This PhD thesis was carried out during my work at the University of Paderborn in
Germany as a member of the Design of Parallel Systems group under Prof. Dr. Franz. J.
Rammig, from July 2002 to June 2005, and as a member of the Computer Engineering
group under Prof. Dr. Marco Platzner, from July 2005 to November 2006. The work was
partially supported by the German Research Foundation (Deutsche Forschungsgemein-
schaft) in the research training group 776 Automatic Configuration in Open Systems.

I would like to thank Prof. Rammig for supervising my thesis, supporting my work
as member of his group, and sharing in his great knowledge concerning embedded sys-
tems and computer science research in general. Likewise, I thank my co-supervisor
Prof. Platzner. He employed me as a researcher just shortly after he became professor
at Paderborn University and supported a great part of my publications as co-author.
In addition, my thanks go to Prof. Dr. Daniel D. Gajski, who was a third reviewer as
well as Prof. Dr. Ulrich Rückert and Dr. Ulf Lorenz, who were additional members of
the oral examination commission.

Further, without mentioning everyone personally, I would like to thank many col-
leagues that helped me during my time at Paderborn University:

Prof. Dr. Christophe Bobda as a coauthor of several publications and for proofreading
my thesis; my teammates Dr. Stefan Ihmor and Florian Dittmann for constructive and
interesting discussions; Tales Heimfahrt and Marcelo Götz for teaching me the Brazilian
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Abstract

This thesis presents fundamental work in the new area of multi-tasking on reconfigurable
hardware devices (RHDs) under real-time conditions.

RHDs can now execute several hardware-tasks (computations implemented as digital
circuits) in parallel due to the increasing logic capacity, as well as sequentially due to
runtime reconfiguration capabilities. To use RHDs for real-time workloads of embed-
ded system applications, scheduling techniques and execution environments that create
predictable task timings are required.

Specifically, we consider the problem of scheduling periodic real-time tasks for execution
on shared RHD resources, which makes the problem different from single- and multipro-
cessor scheduling. In our first model, tasks are modeled by their resource requirements
(area), their inter-arrival period and their computation time. Tasks can be executed
in parallel as long as their accumulated area does not exceed the device area and can
be preempted at any time. We develop three novel earliest deadline first (EDF) based
scheduling methods and evaluate their performance.

1. The global EDF scheduler assigns device resources to all active tasks globally. For
this algorithm we present a linear-time scheduling test which proves for a given
task set at design time that it will be scheduled without missing any deadlines.

2. The partitioned EDF scheduler divides a task set at design-time into several sub-
sets. Each subset is scheduled independently according to the EDF rule onto
separate device resources. The feasibility of the schedule is achieved by consider-
ing the single processor EDF bound during partitioning. Integer linear program-
ming (ILP) is used to compute the optimal partitioning while a next fit heuristic
computes close to optimal results for even large task sets.

3. MSDL is a server based scheduling method which groups tasks into periodic servers
for parallel execution. At runtime, servers are loaded onto the RHD and executed
according to EDF. Only one server is running at a time, making this algorithm
suitable for RHDs which do not support partial reconfiguration.

In our analytic performance comparison we show that there is no dominance among
the three approaches. However, our simulation studies show that, on average, global
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EDF outperforms partitioned EDF, which outperforms MSDL. Further we showed that
the global EDF scheduling test is rather pessimistic. We analyze the reconfiguration
overheads for all three approaches and include them within the schedulability tests.
Simulation experiments show that global EDF suffers significantly more from this over-
head than the other schedulers.

Two extensions of our task model are presented in order to consider the specific char-
acteristics of reconfigurable applications: First we consider tasks for which not only one
but several alternative implementations (circuits) exist. We present an ILP model to se-
lect the optimal implementations for the partitioned EDF scheduler, which considerably
improves the scheduling performance. Second, we consider tasks memory usage under
real-time constraints. We present a method for efficiently sharing RAM-banks without
jeopardizing task deadlines, thus reducing the required memory resources.

Finally we describe our prototype FPGA based real-time kernel which, in contrast to
others, is a hardware-only system with the operating system functions entirely imple-
mented in hardware. Our prototype implements MSDL, uses full device reconfiguration,
and is thus suitable for most of today’s reconfigurable devices.

In summary, the thesis presents a foundation for real-time multitasking on RHDs, in-
cluding models, algorithms, analysis and prototypical implementation.



CHAPTER 1

Introduction

The aim of this thesis is to enable the use of runtime reconfigurable hardware for com-
puting time-critical tasks in embedded systems.

Besides circuit prototyping and glue-logic replacement there are two major application
domains where reconfigurable hardware devices (RHDs) are most useful: High Perfor-
mance Computing and Embedded Systems.

In high performance computing, RHDs can be used to speed up special applications. Ex-
ample systems which have achieved enormous speedups by using pure field programmable
gate array (FPGA) solutions or FPGAs as co-processors of host computers can be found
in [31][95]. Cray’s XD1 machine [34] is a commercial example for super-computing using
XILINX FPGAs. Also not the application domain targeted by this work, several of the
methods explored within this thesis may be equally applicable within high performance
computing systems.

In the application domain of embedded systems, RHD based platforms are gaining in
popularity and are sometimes preferred to microprocessor based systems because they
can:

� respond to input values within very short latencies (shorter than software solu-
tions),

� achieve high throughputs in data flow driven applications (parallelism within a
task),

� process many computations in parallel without decrease in performance (multi-
tasking in space),

� communicate to peripheral devices via high number of user definable I/O pins.

3



1 Introduction

Applications within the embedded systems domain include network- and communica-
tions systems such as Ethernet switches, data processing applications and industrial
measurement systems like digital logic analyzers, military and aerospace systems as for
example satellites, digital imaging and video systems such as digital cameras, consumer
electronics such as audio players, automotive applications such as Siemens car enter-
tainment system VDO Dayton and many more [45][55][4].

The applications mentioned above share some common key characteristics:

� they contain computations which are mostly regular, data flow oriented and in-
clude digital signal processing, which can be efficiently computed on RHDs,

� they can be complex, i.e. they may consist of several different computational tasks,

� they have to react within precise time constraints to their environment, i.e., they
are real-time applications.

Supporting the design of such characterized embedded applications for execution on
RHD platforms is the aim of this thesis.

1.1 Motivation to Real-Time Multitasking

Multitasking is useful if the application is composed of several well separated com-
putational tasks that should be processed quasi simultaneously on limited hardware
resources. The concept of multitasking, in combination with the corresponding oper-
ating system (OS) support, enables efficient sharing of resources due to adequate task
scheduling, allows dynamic changes of the application due to introduction of new tasks
during runtime and greatly simplifies application development since tasks can be devel-
oped quite independent from each other.

As further motivation, we list several example tasks with real-time constraints which
appear in real-world applications. Most of the mentioned applications come from the
automotive domain. Some refer to only conceptual systems and some to existing imple-
mentations.

Engine control system: A task controlling the engine such as the gas injection and
ignition process. Indeed this task may include several sub-controller tasks. The
computation of these sub-tasks is based on the cyclic evaluation of the differential
equation systems of the corresponding mechatronic controllers. Kopetz describes
such example controller in [64] p. 22.

Vehicle cruise controller: In [8], Axelsson from Volvo Technological Development de-
scribes a case study of an advance cruise controller for cars. It keeps the car at
a desired speed, but also uses a forward looking radar to avoid collisions with
obstacles. The system is composed of several tasks, such as: wheel-speed measur-
ing ; speed control which adapts the speed to the desired value; driver-interaction
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1.1 Motivation to Real-Time Multitasking

which checks for break and throttle pedals; obstacle-detection which looks for ob-
stacles ahead; brake-control and throttle-control which perform deceleration and
acceleration.

Radar system: Several upper class cars use a radar system for measuring the distance
to the cars driving ahead [32]. Such long distance control is used by the cruise
control. The implementation of radar signal processing on FPGAs is issued in [6].

Camera driving assistance: The company MobilEye[1] develops several car driver as-
sistance applications based on camera image processing, among them pedestrian
detection, headway monitoring and warning, forward collision warning, night vi-
sion and many more [54]. For the detection of lane marks and vehicles, images are
processed through a chain of various processes: 1. selecting candidate regions of
interest, 2. single frame classification, 3. multi-frame approval and 4. range mea-
surement. To achieve the required real-time image processing performance of 30
frames per second, the company developed a system on chip (SoC) which hosts
two RISC processors and dedicated video processing units and runs at 120 MHz.

All of these tasks have a couple of common features. They are based on computations
which can be efficiently implemented on RHDs, have to be evaluated periodically, and
are subject to hard real-time constraints. Such systems are targeted within this thesis.

Challenges

When designing embedded systems, a key challenge is to implement all required func-
tionalities, meet the required performance and time constraints, but at modest cost.
Hence, the system resources have to be used efficiently. For processor based systems,
operating systems support resource sharing via multitasking, and appropriate scheduling
algorithms ensure the efficient utilization of shared resources while meeting all real-time
constraints.

The more reconfigurable architectures push into embedded systems and take over com-
putations formerly implemented on processors or in application specific integrated cir-
cuits (ASICs), the more important it becomes to apply the same techniques to RHDs
in order to use their resources efficiently. RHDs increase the existing challenges in the
following three ways:

1. Design of novel reconfigurable architectures: Most of today’s available commercial
reconfigurable architectures support dynamic reconfiguration only in a limited
fashion. The reconfiguration time of FPGAs ranges from some hundred microsec-
onds to tens of milliseconds, which makes runtime reconfiguration infeasible for ap-
plications requiring very short response times. Also partial reconfiguration, which
allows reconfiguring a part of the device resources for a new task while other parts
keep executing other tasks, has only limited support. Moreover, the architectures
do not provide native support for storing and restoring the state of a task before
/ after interruption, which is a requirement for preemptive multitasking.

5



1 Introduction

Much promising research is currently being performed to overcome these draw-
backs, including coarse-grain RHDs and other devices with multiple configuration-
context memories on chip [96][31][50] (see Section 2.1).

2. Runtime environments for reconfigurable devices: Multitasking on RHDs requires
some kind of support from a runtime or operating system, similar to an OS for
processor based platforms. Such a system needs to manage the RHD resources,
control the execution of hardware-tasks and control the device reconfiguration at
runtime. Moreover, such an OS has to provide programming interfaces for the
application developer to abstract details from the underlying hardware.

Several prototypes of operating systems for FPGAs have been developed by re-
search groups, but still are far behind their counterparts in the processor world
[102][57][105][85].

3. Task scheduling and placement: Scheduling and placement methods are required,
which allow the OS to efficiently utilize RHD resources for the application tasks
and, if needed, deal with real-time requirements. Since the task and resource mod-
els of single- and multiprocessor systems are different from those of reconfigurable
devices, their scheduling methods cannot be directly applied for RHDs. Moreover,
tasks scheduling for RHDs under real-time constraints has been rarely addressed
by researchers (e.g. in [80][90]). Scheduling problems for RHDs are much less un-
derstood and only a few proposed scheduling approaches exist compared to the
classical scheduling problems for processor and multiprocessor platforms.

Hence, there is a considerable need for research in this area in order to catch up
with the state of the art of scheduling methods for processors.

1.2 Contribution of This Thesis

The main contributions of this thesis are related to the third challenge mentioned above,
namely (real-time) scheduling methods for reconfigurable architectures. For the well
known problem of scheduling periodic real-time tasks, we present one of the first work
considering runtime reconfigurable architectures. Three basic scheduling methods are
developed and evaluated. Two are driven by the basic (multi)-processor scheduling
methods and the third is specially designed for devices without partial reconfiguration
support.

A second contribution is given in the area of operating systems for reconfigurable archi-
tectures. As a proof of concept, a prototype of an FPGA based real-time kernel (FBRK)
has been implemented. In contrast to other work, it is completely implemented in (re-
configurable) hardware and designed for full- rather than partial reconfigurable devices.
It implements the developed scheduling strategy for devices without partial reconfigu-
ration support and hence is suitable for a wide range of today’s devices and platforms.

The contributions in the field of real-time scheduling methods are described more pre-
cisely in the following list:
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1.3 Chapter Outline

� A new task and resource model for reconfigurable architectures as a generalization
of a simple multi-processor model, and definition of the periodic real-time tasks
scheduling problem within this context. For this problem, we introduce three in-
dependent scheduling strategies based on global scheduling, partitioned scheduling
and server based scheduling. We develop a linear-time scheduling test for the global
scheduling strategy, and introduce and analyze optimal and heuristic algorithms
for the partitioned scheduling and server based scheduling strategy.

� The performance of all three strategies is compared analytically and by simula-
tion studies. We show that the three approaches do not dominate each other in
performance. Simulation results show, that for many cases the global scheduling
strategy achieves high device resource utilization of over 90% and outperforms the
partitioned scheduling strategy. In contrast, when a scheduling test is required to
predict that no deadline will be missed, significantly higher resource utilization is
achieved by the partitioned scheduling strategy compared to the global scheduling
strategy.

As the reconfiguration time cannot be neglected, the associated overhead is in-
cluded within the analysis of all three strategies. Main results state that the
overhead is bounded and in many cases stays reasonably small, if the device con-
figuration time is less than 10% of the runtime of the shortest task. Furthermore,
the partitioned scheduling and server based scheduling methods suffer much less
from this overhead than the global scheduler.

� In order to deal with the specific characteristics of hardware tasks and reconfig-
urable platforms, we generalize and extend our model. The first generalization
allows considering tasks, for which not only one but several alternative circuit
implementations exist. For such applications, the optimal variant selection is
computed by integer linear programming, which improves considerably the per-
formance of the partitioned scheduler compared to tasks without variants.

Secondly, we extend our model to consider tasks’ memory usage under real-time
constraints. We present a method to efficiently share memory banks of the plat-
form among tasks without jeopardizing task deadlines.

In summary this thesis presents a foundation for real-time multitasking on RHDs, pre-
senting the models, algorithms, analysis and a prototypical implementation.

1.3 Chapter Outline

The thesis has the following organization:

Chapter 2 Background and Related Work provides a background to this thesis and
summarizes the related work. It discusses the different kinds of reconfigurable hardware
architectures that we consider as processing devices throughout this work. The concept
of hardware-tasks is introduced and previously reported multitasking models for such
tasks are reviewed and classified. Finally, the chapter presents related work in real-time
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scheduling, including single and multiprocessor scheduling algorithms for periodic tasks
and the few research on real-time scheduling for RHDs.

Chapter 3 Problem Modeling and Metrics introduces the task and resource models and
the basic notations used within this work. The general problem of scheduling periodic
real-time tasks onto an RHD is defined.

Chapter 4 Three Scheduling Algorithms presents our main methods to schedule periodic
task onto RHDs, namely global EDF scheduling, partitioned EDF scheduling and server
based scheduling. The scheduling conditions and basic analysis are developed.

Chapter 5 Comparison of Algorithm Scheduling Performance evaluates the quality of our
three proposed methods. Only the pure scheduling performance without considering any
reconfiguration overhead is compared. The first part presents an analytic comparison
and derives qualitative statements. The second part presents results from numerous
simulation experiments, showing how the algorithms perform in average.

Chapter 6 Execution Model and Overhead Analysis goes away from the idealistic task
model and accounts for execution time overheads. For each scheduling method a suitable
reconfiguration model and its runtime system requirements are described. The time
overhead resulting from device reconfigurations is included in the scheduling conditions
of each algorithm. Finally, the results from simulation experiments on the algorithm
performance including overheads are shown.

Chapter 7 Model Extensions takes special characteristics of hardware-tasks into account.
A first part presents methods for a generalized task model that allows specifying not
only one but several implementation variants per tasks - each with a different area and
computation time. The second part captures the memory requirements of hardware-
tasks. A method for sharing physical platform memories between parallel executed task
is shown which has the potential to considerable reduce the memory requirements.

Chapter 8 Prototype: FPGA Based Real-Time Kernel describes our realization for the
server based scheduler. The system architecture and an automated synthesis flow are
described. Finally, results on the logic requirements and timings are reported.

Chapter 9 Conclusion and Outlook finalizes the thesis with a summary, draws conclusions
and presents suggestions for future research.
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CHAPTER 2

Background and Related Work

This chapter provides a background to this thesis and summarizes the related work.

The first section discusses the different kinds of reconfigurable hardware architectures
that we consider as processing devices throughout this work. It gives a background
to fine and coarse grain reconfigurable devices, the different reconfiguration modes and
discusses the architecture of typical embedded systems based on such devices. Since
reconfigurable devices and computing systems have been surveyed several times (e.g. in
[31] p. 11 ff.), we keep this section therefore small.

In Section 2.2, we briefly introduce the concept of hardware-tasks, which refers to com-
putational tasks implemented as digital circuits for execution on an RHD. By means
of an example of a hardware task, several characteristics such as resource requirements
and execution times are discussed.

The third section concentrates on multi-tasking on reconfigurable hardware. In order
to be able to develop a reasonable task and resource model for our work (Chapter 3),
six different device resource sharing models, that have been used in the literature, are
discussed and classified (Section 2.3). We clear out why only two of the six models
will be considered in our scheduling approaches. Afterwards, we present related work
that has specifically targeted the problem of scheduling tasks on RHD architectures.
While this documents the attraction of the research field, it shows that most work
does not consider tasks with real-time constraints. Finally the section closes with a
brief description of projects that have implemented reconfigurable systems supporting
hardware multitasking. It shows that various prototypes exist, which support execution
environments as they will be assumed in our task and resource model of Chapter 3.

The last part of this chapter presents related work in real-time scheduling (Section 2.4).
We introduce the periodic task model and clarify its importance, since it is used as a ba-
sis for our task model. Furthermore, we present the basics of single processor scheduling
algorithms, since they are also fundamental to all scheduling methods for parallel archi-
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tectures. Scheduling methods for multiprocessors are discussed in more detail, since the
multiprocessor model is closely related to our RHD resource model and, furthermore,
the basic techniques of multiprocessor scheduling have been inspired two of our three
scheduling methods which will be introduced in Chapter 4. Finally, we close with the
few work considering real-time scheduling for RHDs or similar architectures. We con-
clude, that the problem considered in this work is actually novel, but as well a straight
forward extension of the basic single- and multiprocessor scheduling problems. Further-
more, the approaches we use are based on scheduling methods with strong foundation
in literature.

2.1 Reconfigurable Hardware Devices

This section gives a background on different types of reconfigurable hardware devices
(RHD), their inner architecture and how they are used to implement computations.

The most prominent type of RHD is the field-programmable gate array (FPGA). It
was invented in the eighties and is a further development of early programmable logic
devices. Even if the FPGAs where mainly invented for prototyping of digital circuits
and for implementing glue logic, researchers got attracted by the feature of runtime re-
configuration (or runtime reprogramming) of these devices, which allows general FPGA
based computations. Since then, the research field Reconfigurable Computing [31][46]
was born, which focuses on new RHD based computing paradigms beside the Von Neu-
mann paradigm as well as on the invention of new RHD architectures to overcome the
drawbacks of commercial available FPGAs.

First we will take a closer look to the architecture of RHDs which can be classified into
fine-grained architectures, which are basically FPGAs and coarse-grained architectures,
which are mostly academically proposed devices or prototypes from startup companies.

2.1.1 Fine-Grain RHDs (FPGAs)

The term fine-grain is used to denote devices, which can be configured on bit-level. We
use fine-grain RHD as a synonym for FPGA.

The basic architecture of today’s FPGAs is shown in Figure 2.1 and consists mainly of
an array of programmable logic blocks, programmable interconnect as well as general
purpose input output cells. The logic blocks can be configured to implement small
logic functions and registers, which can be composed to larger digital circuits by the
programmable interconnect. A typical structure of a logic block is shown in Figure 2.2.
Its main components are look-up tables (LUTs) to implement combinatorial logical and
flip flops to implement storage. An n input LUT is an n-address memory, which can
store the 2n possible values of a Boolean function with n input variables. To implement a
specific Boolean function, the LUT is programmed with the function’s truth table. The
input values are used to address the LUT and the data output represents the value of the
function. The output of the LUT is either fed into a flip flop of the logic block or directly
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2.1 Reconfigurable Hardware Devices

Figure 2.1: Basic structure of an FPGA

connected to the logic block’s output. Typically, 4-input LUTs are used, since many
studies show that they present a good tradeoff for most digital designs [2]. Recently,
Xilinx switched from 4- to 6-input LUTs in their latest Virtex-V architecture [33]. Altera
uses in their Stratex-II architecture adaptive logic modules with a configurable LUT size,
which can be used e.g. as one 7-input LUT or as two 4-input LUTs [3].

The flip flops of the logic blocks are used to implement the storage registers inside a
digital design. They are connected to a global clock network and support features like
synchronous or asynchronous reset.

The programmable interconnect consists of configurable crossbar switches, which allow
establishment of connections between outputs and inputs of the logic blocks as well as
to the I/O cells.

Also these elements are all what is needed to implement a digital design, modern FPGAs
include many more types of resources to achieve better performance and efficiency.
Typical resources of the market leader FPGA vendors are briefly described below.

Block RAMs are dedicated blocks of static RAM of medium size (typical with a size of
18 kBit), which can be used to store larger amounts of data onto the device. In
contrast to flip flops which can be accessed independent of each other, the data

Figure 2.2: Structure of FPGA logic block (source: [106])
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of each block RAM memory may only be read or written sequential on a word by
word basis. (Some devices provide dual ported block RAM.)

Carry logic is a special logic inside the logic blocks to forward carry bits to improve the
performance of arithmetic functions such as adders.

DSP cores are dedicated functional units like multiplier and multiply-accumulate struc-
tures to improve the performance of digital signal processing functions.

Processor cores are dedicated microprocessor cores hosted on the FPGA chip. They
are used for complex system-on-chip designs which include software and hardware
parts.

High speed I/O transceivers are dedicated transceiver circuits which implement sev-
eral high speed I/O standards to enable serial I/O of several GBit per second.

Clock managers are units, which allow generating and distributing clock signals with
minimal skew throughout the FPGA chip. Modern FPGAs support multiple global
clock networks enabling multi clock designs.

Tri state buffers are components, to support on chip communication bus systems with
multiple clients.

FPGAs are typically programmed using an ASIC-like design flow. Design entry is usu-
ally provided in a hardware description language like VHDL or VeriLog. The design
flow includes the synthesis of the design into a net-list, mapping the net-list to the
components provided by the FPGA and a place and route step, in which components
are allocated to specific FPGA resources and connected via the configurable intercon-
nect. Based on the result a programming file for the FPGA, also called a bit-stream, is
generated which can be directly downloaded into the FPGA configuration memory.

2.1.2 Coarse-Grain RHDs

Like FPGAs, coarse-grain RHDs are based on an array of programmable logic blocks
called processing elements and programmable interconnect. In contrast to the fine-grain
FPGAs, coarse grain RHDs provide programmability on word-width level of e.g. 8, 16,
24 or 32 bits [50][35][56][13]. The processing elements are not based on LUTs anymore,
but provide arithmetic operations like addition, multiplication and shift on word level
operands. Therefore, sometimes these devices are referred to as ALU arrays. The LUT
approach, which allows the implementation of general functions, is not feasible on word
width level: Imagine a processing element with two 16-bit inputs and one 16-bit output.
Enabling programmability of a general logic function would require 16 times a 32-bit
input LUT which results in 16×232 bit = 8 GB of memory for each processing element.

The operation on word-width level gives the coarse-grain RHDs several advantages com-
pared to FPGAs: The arithmetic functions are implemented as dedicated circuits, which
makes them much smaller in terms of chip-size and faster than functions implemented
on FPGA logic blocks. Also the crossbar switches become simpler, as not single signals
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but entire buses of signals are connected at once. Since a coarse-grain RHD consists of
much fewer processing elements than an FPGA of comparable chip size, the configura-
tion memory is dramatically reduced. E.g. to program the device to implement a 16
bit multiply-accumulate unit, only two processing elements and the crossbar in between
have to be configured, compared to tens or hundreds of logic blocks and crossbars that
have to be configured when the same function is implemented on an FPGA. This re-
duction of configuration memory is directly translated to higher reconfiguration speed.
Typically, coarse-grain devices can be reprogrammed several times as fast as FPGAs.

The coarse-grain RHDs gain these benefits at the cost of sacrificing some flexibility,
which makes them inefficient when the problem does not mainly consists of word-width
arithmetic operations. For example an add operation of 3-bits operands could occupy
an entire 32 bit processing element.

2.1.3 Configuration Memory and Reconfiguration

The current function and behavior of the RHD is determined by the content of its
configuration memory. This memory consists of static RAM memory cells, which are
distributed on the device array. For each logic block of an FPGA, there are configuration
memory cells storing the content of the LUT, the information about how the flip flop
is connected, its initial state and its reset mode. The configuration memory of the
processing elements of coarse-grain devices basically determines the function of the ALU.
The configuration memory of the crossbar switches determines the connections of the
logic blocks or processing elements inputs and outputs to routing channels as well as
which horizontal and vertical routing lines are connected.

Since the configuration memory consist of SRAM cells, it can be programmed arbitrarily
often, which does not only allows the definition of the function of the RHD after the
chip production, but also changing it online during runtime. Therefore, we distinguish
between static configuration and dynamic reconfiguration. Moreover, some RHDs allow
reprogramming some parts of the configuration memory and therefore to change the
functionality of only some logic blocks or processing elements respectively, while others
keep operating. Therefore, we distinguish between full- and partial device reconfigura-
tion.

Architecture of Configuration Memory

For physical reasons, the SRAM cells of the configuration memory have to be local
to the elements they are configuring.1 A simple and area efficient method to make
the configuration memory accessible from outside the device is to connect all its cells
to a long shift register. The RHD can be reprogrammed by sequentially shifting new
configuration bits into the configuration memory until the entire device is reconfigured.
Obviously this addressing schema allows only full configuration and the device cannot
be used during the time of the reconfiguration process. Also the reconfiguration time is

1It is inefficient in terms of path delay and chip area to rout long connection lines between configuration
memory cells and the elements to configure.
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very long, since only 1-bit per clock cycle can be written.

These drawbacks can be overcome by a more sophisticated configuration memory ar-
chitecture. The width of the configuration interface can be enhanced, which allows to
reprogram several bits in parallel. The configuration memory can be made partial ac-
cessible by allowing addressing certain portions of it at the cost of extra chip area for
address decoding. For example the FPGAs of the Xilinx Virtex and VirtexII families al-
low reprogramming entire columns of logic blocks, which allows a partial reconfiguration
of the FPGA at a rather coarse level.

Reconfiguration times of coarse-grain reconfigurable architectures are typically much
shorter than that of FPGAs, since they have less cells and hence a much smaller con-
figuration memory. A further approach to overcome the long reconfiguration time are
multi-context devices [31][35][96]. These devices have not only one but some few con-
figuration memories for all device resources on chip. While this adds considerable cost
in terms of chip area, it allows changing from one configuration to another within few
clock cycles.

Within our resource model of Chapter 3 we consider only the homogeneous cells of an
RHD and neglect additional resources such as I/O pins, DSP functions and embedded
microprocessors. How such additional resource can be included within our model and our
scheduling methods will be discussed in the future work section of Chapter 9. Dedicated
memory blocks of the RHD and external SRAM banks are considered in our extended
model of Section 7.2.

2.1.4 Architecture of RHD Based Computer Platforms

By the term RCP (RHD based computer platform) we denote an embedded computer
system, whose main computational resources consist of RHDs (see Figure 2.3). The
main computational tasks of the applications are executed on the RHD, e.g. by pro-
gramming the device with digital circuits compiled as FPGA configuration bit-streams.
Microprocessors are optional and their usage is not given special consideration within
this thesis. However, microprocessors may be included within the system as separate
chips external to the RHD, or integrated as dedicated circuits within the RHD (e.g.
Xilinx VirtexII Pro [108]) or as soft core CPUs2, which are implemented out of RHD
logic cells (e.g. the Xilinx Microblaze or the Altera NIOS).

Beside the RHDs, the system includes memory to store the RHD programming data
as well as application data and peripheral I/O devices to communicate with the envi-
ronment. Additionally, a device controlling the reconfiguration process of the RHD is
included. Concrete examples for FPGA based reconfigurable computing platforms are
the RC100, RC200, RC300 from CELOXICA [27], the XF-board [98] from ETH Zurich,
the Erlangen Slot Machine [20], or development boards distributed by XILINX. Some
platforms are module based and can include several FPGA such as the RAPTOR 2000
system [62]. An example of a system including a coarse-grain RHD is the DAPDNA-EB4

2A soft core CPU is a CPU which is implemented as FPGA design.
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Figure 2.3: Architecture of an RHD based platform

board of the IPFlex company, which includes two DAPDNA-2 reconfigurable processors
consisting of 376 processing elements each [56].

As for the memories, the platforms typically host several SRAM (static RAM) banks
which are directly connected to the RHD. They are used to store processing data to
which relatively fast access with predictable timing is required, but which is too large to
be stored in on-chip memories. Additionally non-volatile memory such as flash memory
is included to store the configuration data (programming files) and other persistent
data. Larger but slower DRAMs (dynamic RAM) are included to store large blocks of
application data, which is accessed with subject to weaker timing constraints.

RCPs often have a wide set of peripheral I/O. This includes for example digital-analog
and analog-digital converters, video and audio interfaces such as S-VIDEO or VGA,
standard interfaces like PS2, USB, fire-wire, network interfaces such as Ethernet or
CAN, and user definable digital I/O.

In the models and methods used in this thesis we abstract from platform details and
consider as platform resources only the logic blocks or processing elements of the RHD,
the internal and external SRAM memory banks, the memory hosting the RHD configu-
ration data as well as the bus connections between these resources. We neglect several
additional resources and details for the following reasons:

� Details have to be abstracted, to keep the model valid for wide class of RCPs from
different vendors as well as to keep the model complexity low.

� Microprocessors are not included within the model, since we assume they are
used only for controlling the execution and reconfiguration of the RHD, not for
executing the application tasks themselves. Such hybrid systems, which couple
microprocessors with RHDs and use both for computation (e.g. [56]) open the issue
of hardware–software co-design[92][75]. That is another independent research field
and its topics are not addressed within this thesis.

� An RCP according to our model has only one RHD. From a practical point of
view, multiple RHDs appear mostly in high-performance computing systems such
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as Cray’s XD1 [34] with the aim to get highest computational power at any price.
In contrast, in embedded system design the challenge is rather to choose from the
wide range of different size RHDs the smallest one that satisfies the application
requirements.

From a theoretical point of view, multiple RHDs open issues which are stronger
related to parallel processor systems than to the special characteristics of RHDs.
Such issues are for example clustering and partitioning of applications and localiza-
tion of communication, which have been exhaustively studied for multiprocessors
but are not addressed within this thesis.

2.2 Hardware Tasks

In our application model of Chapter 3 and later on in the enhanced application models
of Chapter 7, we will make several assumptions for the characteristics of application
tasks. To give a better idea of what kind of tasks we consider and to show that the
assumptions we make are reasonable, this section presents a short case study of an image
processing task based on Discrete Cosine Transformation (DCT) computations.

Example 1. We assume an image processing system which includes a task that computes
the DCT coefficients of the rows of an image. The data to be processed has a fix size of
N samples, each coded by 16 bits on which an 8 point one dimensional DCT should be
performed.

Task 1
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Data
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 out FIFO
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 SRAM 2
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Figure 2.4: Example of a DCT task on platform
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Figure 2.4 illustrates how this task is realized on an FPGA based platform. Since the
image data may be too large for FPGA internal block RAMs, the N input samples as
well as the output coefficients to be computed are stored in the external SRAM banks 1
and 2 respectively. For the actual DCT computation a XILINX 1-D DCT IP-core [107]
is used. Since the external RAM banks have a word width of 32 bits but the samples
are 16 bit values, input and output FIFOs3 are introduced to buffer the input samples
and the produced output coefficients respectively and to convert between the 32 and 16
bit words.

variant FPGA area throughput ext. RAM port access exec. time
(slices) (sample/clk) period amount utiliz. N=1024

1 982 1 2 clks 1 Ö32 bit word 50% 1028 clks
2 767 8 / 9 9 clks 4 Ö32 bit words 45% 1185 clks
3 589 8 / 17 17 clks 4 Ö32 bit words 24% 2232 clks

Table 2.1: Size, throughput and memory access pattern of several variants of a XILINX
8 point 1D-DCT IP core [107].

As reported in the DCT IP-core data-sheet [107], the designer can choose between several
implementation variants with a trade-off between FPGA area and throughput as shown
in Table 2.1. To guaranty that the DCT core can achieve these throughput values – which
is mandatory for real-time processing – the FIFOs have to be chosen of appropriate size
and a certain access rate to the external RAMs has to be guaranteed. The required access
rate to external memory is reported in the middle column of Table 2.1. E.g. variant 1
processes one 16-bit sample per clock cycle. Therefore, within a period of 2 clock cycles
the task reads one 32 bit word from SRAM1 into the input FIFO. In contrast variant 3
has a throughput of 8/17. Hence it reads within a period of 17 clock cycles 4 data words
from the external RAM. Note that since a FIFO buffers the data it does not matter in
which exact clock cycles the data is read from the RAM - as long as 4 words within a
period of 17 clocks are read.4 Thus, the RAM access pattern of the task has the nature of
periodic real-time access: At the beginning of a period it requests to read/write a certain
amount of data from/to the external RAM bank into/out of the FIFO. The deadline for
this transaction is the beginning of the next period to prevent an underflow or overflow
of the FIFO buffers.

The total worst case execution time of the DCT example task is computed using Equa-
tion 2.1. Beside the internal latency of the DCT core, two times the RAM access period
is added to account the initial filling of the input FIFO and the final deflating of the
output FIFO.

exectime =
N

throughput
+ DCTlatency + 2×RAMaccessperiod (2.1)

For a data size of N = 1024 samples, the execution time according to Equation 2.1 for
3first in first out buffers
4The same rates apply for the write access to the SRAM2.
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each of the three variants of the task is reported in Table 2.1 as well.

This case study of a DCT task showed that it is reasonable to assume application models
where tasks have the following characteristics:

� Tasks may be realized as various implementation variants with different perfor-
mance vs. RHD-resource tradeoffs. Such various implementations can be achieved
by considering different circuit architectures. For example, a multiplication can
be realized by a bit-serial or a bit-parallel architecture, hence resulting in a small
but slow and in a fast but large circuit.

� A task variant requires a specific amount of RHD resource. For FPGA devices,
the synthesis tool typically provides information on how many FPGA slices are
required by the design. Often, slice resources are further distinguished to the
number of required LUTs and flip flops. Additional resources are reported as well,
such as the required block RAMs, or multiplier cores. Hence, the basic resources
can be captured by a scalar value (e.g. number of FPGA slices) or by a resource
vector.

� A task variant may have a known execution time which is usually given by the
number of required clock-cycles divided by the clock-frequency at which the task
is executed. Determining the worst case execution time of a hardware task is
discussed in the next paragraph.

� A task may require external memory to store larger amounts of data and may
access it periodically within hard real-time constraints.

These assumptions are the motivation for our application models used within this thesis,
namely the basic periodic real-time tasks model, introduced in Chapter 3, and the model
extensions by task variants and periodic memory access, introduced in Chapter 7.

Worst Case Task Execution Time

Determining the execution time is often not as easy as it has been for the DCT task of
the example above and a deeper analysis is required. Without knowledge on the tasks’
execution times we cannot develop a scheduling strategy, which allows us to guaranty
that a task will finish before some given deadline. Moreover, in order to guaranty hard
deadlines of tasks we have to design the system for peak load situations; even if in
average the load of the system is low. Hence, we would like to know an upper bound on
the execution time for each task. This is done by a so called worst case execution time
(WCET) analysis, which is another research field within real-time systems and out of
the scope of this thesis (see e.g. [64] p.86ff. and [24]p.411ff.). Rather we briefly discuss
the issues of WCET analysis of hardware tasks executed on reconfigurable architectures
compared to software tasks running on CPUs.

The WCET is mainly influenced by the program flow of the task itself and the micro
architecture of the machine executing the task.
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Program flow: To determine the WCET, the first step is the analysis of the program
flow of the considered task. Usually, it is described by directed graph models
capturing the sequential basic blocks and control decisions. Once the computation
times of the basic blocks are known, the directed graph can be collapsed. For
example a branch is collapsed to one node by assigning the WCET of the longer
path. Loops are replaced by accounting n times the WCET of the body, where n
is the bound on the number of loop iterations (loops must be bounded to have a
bounded WCET of the task).

In general, the program flow analysis is independent of whether the task is imple-
mented as hardware or software, but the high amount of concurrency in hardware
tasks might make their analysis more challenging. However, many applications
considered for the execution on reconfigurable hardware are data flow dominated,
such as signal processing tasks, filters, coders and decoders. Due to few control
decisions, such tasks are often simpler to analyze than arbitrary tasks.

Micro architecture: The WCET of the task’s basic blocks can be derived by account-
ing the time required by the clock cycles in case of hardware tasks or by the
instructions in case of software tasks.

Unfortunately, determining the time for an instruction on modern CPUs can be
quite difficult. The data and instruction cache of processors provide enormous
speedups when fetching instructions and accessing data, but this is transparent to
the programming model. To be able to account these speedups when computing
the WCET requires a detailed analysis of the program code together with the
cache model, in order to know which items can be guaranteed to be inside the
cache and which not. This becomes even harder, when a task can be interrupted
by another task which might overwrite some cache values. Also the pipelined
execution of instructions does not provide guaranteed performance, since we have
to consider pipeline stalls.

In case of a hardware task, the programming model (i.e. VHDL) does not abstract
from platform details that influence the number of clock cycles required by a basic
block. Often this number can be directly achieved from the register transfer level
(RTL) description, or results from the scheduling phase of high level architecture
synthesis. In other cases, the vendor of an IP-core reports on the required clock
cycles in the according data-sheets. The maximal clock frequency is reported by
the place and route tools for a specific target device.

We can conclude that for many hardware tasks of our interest, obtaining the WCET
is not a major issue. Analyzing the WCET for arbitrary hardware tasks might be yet
another research topic.
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2.3 Multi-Tasking on Reconfigurable Hardware

This section presents an overview of work in the field of RHD based multi tasking, which
is directly related to this thesis. Additional work, which includes models and methods
that are related to- or applied within the methods of this thesis, is introduced in the
following chapters.

We categorize different models of RHD based multitasking that have been proposed in
related work. The related systems can be classified according to the following properties:

RCP Architecture: Existing or proposed systems are either based on single RHDs,
based on multiple RHDs or are hybrid systems coupling microprocessors with
RHDs.

RHD Resource Sharing Model: Many approaches exist on how systems allow multiple
tasks to share the RHD resources. The most relevant are discussed in detail in
Section 2.3.1.

Task execution model: The system may or may not allow preemptive multitasking.

Application model: It can be distinguished between off-line and online-problems. In
the first case, the entire application parameters such as the tasks and their ar-
rival and execution times are known at design time. For example the application
to be scheduled for execution is modeled in the form of a directed acyclic task-
graph. Typical optimization goals are to minimize the overall execution time or
to minimize the required resources, i.e., the size of the RHD. In online-problems,
application parameters such as the tasks and their arrival times are determined
at runtime. Therefore the system has to determine at runtime, which resources
are assigned to the tasks without knowing which tasks have to be executed in the
future. A typical optimization goal in this scenario is to minimize the average
response time of tasks.

2.3.1 Resource Sharing Models

There exist numerous approaches how multiple tasks share the resources of an RHD.
These are sometimes closely related to the supported reconfiguration features of the
devices, i.e. if the RHD supports unrestricted partial, column-wise partial or only full
reconfiguration. We describe six models; models (a) to (c) are based on full device
reconfiguration and models (d) to (f) are based on partial reconfiguration.

(a) Static Partitioning: If multiple tasks have to be processed by one RHD, today’s
practice would be, using the static assignment partitioning approach, which is
illustrated in Figure 2.5-(a). All system tasks are integrated within one RHD
configuration, which is loaded to the RHD while the system is booting and stay
active until the system shuts down. In this approach, the RHD behaves similar to
an ASIC. The required size of the RHD is determined by the sum of the resource
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Figure 2.5: RHD Resource sharing approaches based on full RHD configuration.

requirements of all tasks. Since no timesharing of RHD area takes place, task
scheduling and sophisticated resource management methods are obsolete. This
greatly simplifies the system implementation. This approach is efficient when
most of the tasks need to be running most of the time. It becomes ineffective
when some tasks have to be executed just once or only sporadically from time to
time, since all existing tasks allocate resources no matter whether they are running
or not.

(b) Non-Space Partitioning: The simplest approach to realize multitasking with re-
source reuse is a time sharing approach without partitioning the area of the RHD
(see Figure 2.5-(b)). The entire RHD resources are assigned to only one task at a
time. To switch from one task to another, the entire device is fully reconfigured.
Either each task runs until completion before the RHD is configured for execution
of another task (non-preemptive multitasking), or tasks can get interrupted and
resumed later to free the RHD for other tasks (preemptive multitasking). Con-
cerning the resource management, this approach is equivalent to a single processor
model and all existing scheduling strategies of that field can be applied. Systems
following this approach are e.g. [58, 83, 69, 84, 85].

This model has the drawback, that only one task is executed at a time. Since no
parallelism between tasks can be exploited, the design options are limited. I.e., we
cannot speed up the application by choosing a larger RHD with more resources.
Also the device utilization becomes inefficient if the tasks vary much in their area
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requirement. The required RHD size is determined by the area requirement of the
largest task. We call this internal fragmentation, since each task is enlarged to
the full device size, but leaving resources inside the task boundaries idle, which is
illustrated by black RHD cells in the figures. Furthermore, for the realization of
a quasi simultaneous task execution the RHD has to be reconfigured frequently,
which adds a great time overhead and hence presents another drawback.

(c) Free Space Partitioning - Time Sharing: A combination of the two approaches above
is the free space partitioning - time sharing model, which is illustrated in Fig-
ure 2.5-(c). In a certain RHD configuration, the RHD resources are freely dis-
tributed among a set of running tasks. In praxis, several task source files are
synthesized into the same device configuration [58]5[104][49]. The only placement
constraint is that the sum over the area of all tasks from this running set is less
or below the area of the RHD. Timesharing of the RHD is realized by full device
configuration. The example in Figure 2.5-(c) shows task 1, 2 and 3 running. If
task 1 is preempted by task 4, the entire device is reconfigured by a configuration
containing tasks 2,3 and 4.

Using this approach, whenever a new task starts, the device gets reconfigured and
all running tasks have to be interrupted. Hence, the system needs to support func-
tionality to rescue the inner state of the interrupted task during the reconfiguration
process, no matter if preemptive or non-preemptive multitasking is considered.

The main drawback of this approach is that one configuration file has to be cre-
ated off-line for every combination of running tasks that can occur during the
execution of the application. This can result in large memory requirements for
storing the configuration files. In general, the number of configuration files grows
exponentially with the number of tasks, but can be reduced and bounded by a
proper scheduling strategy.

We can overcome this drawback, if the system is able to construct the configuration
data for the RHD out of a set of partial RHD configuration bit-streams during
runtime. This way, only the programming data of each task is stored only once as
a partial RHD configuration bit-stream. Composing a full configuration file out of
a set of partial configuration data requires address relocation such as it has been
implemented in systems described in [52][53] [60].

Another drawback is the high time overhead resulting from the full device recon-
figuration and the interruption of all running tasks whenever the RHD is recon-
figured.

The advantage of this model is the practicability: It is realizable on any full re-
configurable device omitting the problems involved with partial reconfiguration.
Moreover the model has the potential of high device utilization. No task internal
fragmentation occurs, since the area allocated to a task is variable. Also no ex-
ternal fragmentation occurs, in the sense that an additional task can always be
added to the executing tasks, if the sum of the area of all running tasks does not
exceed the device size. The reason is, that the task locations can be rearranged
whenever the device is fully reconfigured.

5uses full configuration, but system consists of n parallel FPGAs and each task requires a ≤ n FPGAs
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In Section 4.3 we present a scheduling algorithm, which uses this resource model
and keeps the number of configuration files bounded by the number of tasks.
Hence, it overcomes the main drawback of this model. Further, we will use this
resource model and the designed scheduling algorithm for our prototype of an
RHD based real time system in Section 8.

(d) Equal Slot Partitioning: Figure 2.6-(d) shows a widely used resource sharing ap-
proach, where the RHD area is partitioned into a fixed number of m slots of equal
size [101][100][97]. Every running task gets exactly the RHD resources of one slot
assigned, which means that at most m tasks can be in execution in parallel. If a
new task is selected for execution due to termination or preemption of a running
task, the RHD area of the according slot is reconfigured by the configuration data
of the new task. This is done via partial reconfiguration, which keeps the executing
tasks of the other slots unaffected during this process. Concerning the resource
management, this approach is equivalent to a homogeneous multi-processor model.

The major disadvantage of this model is the internal task fragmentation, which
results generally in low device utilization. Since each task has to fit into a slot, the
slot size has to be chosen according to the largest task of the application which
also determines the number of slots for a given device. All other tasks are enlarged
to this slot size.

There are several advantages of this model: Among the models using partial re-

Figure 2.6: RHD Resource sharing approaches based on partial RHD configuration
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configuration, it is the one with the easiest technical implementation. The model
is consistent with the constraints of most of todays partial reconfigurable FPGAs
like XILINX Virtex and VirtexII devices which require the reconfiguration of en-
tire columns of the logic blocks. Systems using this approach are introduced in
[101][100][97]. Also, the management of allocated and free resources has low com-
plexity, since the slots are equivalent and only the number of allocated or free slots
has to be considered. Hence, no placement strategy is necessary. The equivalence
to a homogeneous multi-processor enables the reuse of many scheduling strategies
developed in the research field of parallel systems.

(e) One Dimensional Partitioning: An extension of the equal slot partitioning is the
one dimensional partitioning model, referred to as 1D model from now on. As
shown in Figure 2.6-(e), the tasks are stripes of full RHD array height, but with
variable width and are placed side by side on the device. If a running task ter-
minates or gets preempted, its occupied resources are deallocated. A new task
selected for execution is placed into a free continuous area of adequate width.
This model is called one dimensional partitioning, since each task has a footprint
with one fixed and one variable dimension. Proposed systems using this approach
are for example [59, 22, 43, 99].

Compared to the slot approach (d), this model has the advantage of high potential
device utilization, since the size of tasks can scale according to their resource
requirements (almost no internal task fragmentation). This comes at the cost of
external fragmentation. Situations can occur, where there is enough free space
on the RHD for a new task but not as a continuous stripe. To minimize such
situations and to get good device utilization would require sophisticated placement
strategies as well as management of free continuous stripes. This resource model is
no longer equivalent to a homogeneous multiprocessor. The appearing scheduling
and optimization problems rather have relations to orthogonal packing problems.
Furthermore, the model still fits to the capabilities of today’s partial reconfigurable
FPGAs and design tools: The task footprints are constrained to be stripes of the
device array. However, if the actual task position onto the device is unknown
at design time, the system needs to support task relocation, which brings new
realization challenges but has been successfully implemented by the authors of
[60].

We use the 1D model for our global scheduling method in Section 4.1, which
requires task relocation, and for our partitioned scheduling method in Section 4.2,
which works without task relocation.

(f) Two Dimensional Partitioning: A further extension is the two dimensional parti-
tioning approach, where tasks are modeled as rectangles of variable width and
length which can be freely placed onto the RHD, as shown in Figure 2.6-(f). Run-
ning tasks are exchanged by partial device reconfiguration of the affected area
[38, 40, 14, 41, 93, 94, 42].

This approach enables more flexibility concerning the shape of a task’s footprint.
In the one dimensional approach of model (e), the resource requirements of a task
have to be distributed within a rectangle of full device height - which generally
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results in an unbalanced ratio of rectangle height to width. This can affect the
ability to place and route the task logic and the task’s performance (e.g. maximal
clock frequency) since the path length increases. Also the internal fragmentation
of model (f) is less than that of model (e), since in the latter the smallest unit
of resources is one entire RHD column. However, studies have shown that these
negative effects are relatively small [59].

One major practical drawback of this approach is that most of today’s commercial
available devices do not support this kind of free partial reconfiguration. Some
devices allowing free addressing of the element to reconfigure are the coarse grain
XPP architecture [13] and – to some extend – Xilinx Virtex 4 FPGAs [74]. Also
I/O communication issues occur, when tasks are placed in the middle of the RHD
area with no direct connection to I/O cells. Possible solutions are network on chip
approaches like [19]. Also the algorithmic problems involved to optimize the task
placement and scheduling become more complex. The dimension of the packing
problems increases and in scenarios where tasks arrive online, the management of
free and occupied device resources becomes much more complex than in the 1D
model [14].

The characteristics of the six introduced approaches of resource sharing are summarized
in Table 2.2.

issue \ model a) static b) no space c) free space d) slot e) 1D f) 2D

reconfiguration static full full partial partial partial

supported
RHDs

all SRAM based column-wise reconf. free reconf.

model similar
to:

ASIC uniprocessor - multi-
processor

memory
allocation

-

utilization low low high medium high high

area fragmen-
tation

non high intern non medium
intern

extern;
low intern

extern

reconfiguration
overhead

non high high medium low low

complexity of
placement

non non non low medium high

complexity of
scheduling

non low high medium high high

task interrup-
tion

non for preemp-
tive MT

always for preemptive MT; for de-fragmentation

implementation
complexity

low low medium medium medium high

references [7] [58, 83, 69,
84, 85]

[58, 104, 49] [101, 100,
97]

[59, 22, 43,
99, 60]

[38, 40, 14,
41, 93, 94,
42]

Table 2.2: Comparison of resource sharing models
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2.3.2 Task Scheduling and Placement Methods for RHDs

Scheduling and placement of tasks on RHD based systems has recently attracted much
attention in research. The work differs in the considered resource models (e.g. slotted,
1D, 2D, etc.) and the considered scheduling problems (e.g. off-line vs. online task acti-
vation, preemptive vs. non-preemptive, independent vs. precedence constraints). More-
over, all approaches described here do not consider hard real-time tasks but rather mini-
mize cost functions like total make-span or average respond time. Scheduling approaches
for real-time tasks on processor machines as well as on RHD devices are described in
more detail in Section 2.4.

Fekete, Teich et al. studied off-line scheduling and placement of synchronous activated
task with precedence constraints onto an RHD, assuming the 1D and the 2D resource
model. For the problems of minimizing the total make-span for a given device size,
and for the problem of finding the smallest device for a given time-limit, they presented
an optimal method [44] [94]. The central idea is, to represent feasible solutions using
so called packing classes, which can be efficiently represented as interval graphs. A
packing class captures not the absolute task positions in the x, y and time dimension on
the device, but rather captures whether the placement of two tasks overlap in a certain
dimension or not. Hence, the search space is considerably reduced and a branch and
bound method allows finding optimal solutions in reasonable time.

Danne et al. kept up with an extended problem where task variants are considered
[DS05]. The off-line problem of temporal partitioning and temporal placement of data
flow graphs for reconfigurable systems was studied by Bobda in [18].

Bazargan et al. considered the placement of online arriving, independent and non-
preemptable tasks onto an RHD under the 2D model [14]. When a task arrives it is
either directly placed or rejected. The goal is to maximize the fraction of accepted tasks.
For the efficient management of the free space onto the device, two methods have been
proposed which have been evaluated together with several different placement heuristics
such as bottom-left, first-fit and best-fit.

Walder et al. kept up with a similar online problem and improved placement qualities
by allowing task footprint transformations [99]. Köster et al. considered placement of
tasks onto inhomogeneous RHDs, where not all resources are arranged in an array [63].

2.3.3 Dynamic Reconfigurable Systems

Many research projects involve multitasking on RHD based platforms and several proto-
types have been implemented. Often, the systems are specialized for a certain applica-
tion domain and use individual models, making an exact classification and comparison
of these systems difficult. Therefore, we select some representative projects which have
a rather high relation to our work for a brief description. The first three systems fol-
low a fully FPGA reconfiguration approach, whereas the last three systems have been
designed for partial reconfiguration.
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Simmler’s OS: Simmler at el. developed an operating system for preemptive multi-
tasking on FPGA co-processors [83][84][69]. Their system couples a host CPU with an
FPGA co-processor board. Considered applications run on the host CPU and use the
FPGA to accelerate computation intensive tasks. A task running on the FPGA may be
preempted by a higher priority task. Restoring the state of a preempted task before its
resumption is realized by a configuration read-back, extract and write-back approach via
the FPGAs configuration interface.

An interesting feature of the system is the set of several SRAM banks, which are con-
nected via a switch to the FPGA as well as to the host CPU. RAM-banks are assigned
to tasks exclusively, such that their contents do not need to be swapped when a task
switch occurs. While the system presents a feasible prototype of preemptive hardware-
multitasking, its main drawback is that only one hardware-task runs at a time. I.e.,
it implements the resource sharing model (b) Non-Space Partitioning, which has the
disadvantages described above.

SONIC: This project aims to map real-time video applications to a specifically de-
signed reconfigurable computing platform called SONIC, (later called UltraSONIC)
[104]. The platform consists of multiple modules each combining an FPGA with one
local external RAM bank. A bus system connects the modules with a host computer.

The application is specified as a directed acyclic graph (DAG) of tasks where edges
represent data dependencies. The tasks are partitioned into hardware and software
tasks, therefore the system is a truly hybrid system, where the host processor is not
only used for control issues but to execute parts of the application. The hardware
tasks are clustered to FPGA configurations, such that the device size is taken into
consideration. Tasks in the DAG are processed from top to bottom and hardware tasks
are loaded on demand via full FPGA configuration. The aim of the schedule is to
minimize the make span. Although multiple tasks reside on a programmed FPGA,
only one is active at a time due to the limitation of the single port external memory.
(Our work explicitly solves this problem by scheduling RAM accesses of tasks to RAM
banks under real-time constraints as introduced in Section 7.2.) However, in the SONIC
system multiple tasks can run in parallel when mapped to separate hardware modules.
Task communication occurs only at the beginning and end of a task execution and is
done via the local memory. The SONIC system shares FPGA area using model (c) free
space – time sharing. Hence, it is related to our prototype of Chapter 8, where we use
the same resource model. In contrast to our work, no parallel execution of tasks onto an
RHD takes place and the RAM banks cannot be shared by simultaneous executing task.
Furthermore, task preemption is not allowed and deadlines of tasks are not considered.

SPARCS: SPARCS [49] stands for Synthesis and Partitioning for Adaptive Reconfig-
urable Computers. The aim of the project is to map a high level specification application
onto a reconfigurable architecture. In contrast to our RCP architecture, the authors as-
sume a platform hosting multiple FPGAs, each coupled with only one external memory
bank. Throughout an interconnection network, the FPGAs are connected to memory
storing bit-streams, to one (large) shared memory on board, and to I/O devices. The
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application is specified as a directed graph, where nodes can be either tasks or logical
memory buffers. The edges represent either channels or dependencies. Dependencies
among the task represent control flow, whereas channels represent inter-task or task-to-
memory communication.

The high level synthesis involves two basic steps: In the temporal partitioning phase,
the application is partitioned into temporal segments such that these segments can be
executed sequentially considering the task dependencies. Moreover, it is ensured that
the logic cell and memory requirements of each segment do not exceed the platform
resources. Afterwards, in the spatial partitioning phase the tasks of each temporal
segment are divided into partitions, such that each fits within one FPGA and the logical
memories are mapped to the physical board memories. Using standard synthesis tools,
one FPGA programming file for each partition is created. At runtime, a controller
reconfigures the FPGAs according to a global schedule, using full device configuration.

In contrast to our work, in SPARCS each task is contained within one and only one
partition (configuration). Thus, a non-preemptive multitasking model is considered and
each task finishes its processing within one partition. Also, no real-time constraints
are associated with the tasks. Interestingly enough, the SPARCS system is one of the
few that considers several implementation variants for each task that allow to explore
various area-latency tradeoffs of a task. The variants are used to balance the latency of
tasks within a partition. Similarly we consider task variants in our extended task model
of Section 7.1, but in contrast to the SPARC system we consider periodic real-time task
rather than static task graphs.

ESM: The Erlangen Slot Machine (ESM) [20][21] is an FPGA based reconfigurable
platform. It has been specially designed, targeting applications which use partial FPGA
reconfiguration. One main advantage of the system is, that it allows each hardware-task
to access its peripheral resources independent of its location via a crossbar. Also several
types of inter task communication are supported by special communication lines. The
system allows placing tasks relocatable according to the 1D resource approach, and
hence provides an implementation platform for multi-tasking applications.

RAPTOR2000, REPLICA Kalte et al. developed a rapid prototyping system called
RAPTOR 2000 [62], which is able to host several FPGA modules and supports partial
FPGA reconfiguration. Based on the RAPTOR platform, they developed a framework
for dynamically reconfigurable systems focusing on the 1D resource model. The reloca-
tion of tasks onto the FPGA is supported by the REPLICA [60] filter. RECPLICA is a
hardware circuit, which takes a partial FPGA bit-stream of a task and a target FPGA
location as inputs. The column addresses within the bit-stream are manipulated on
the fly, such that the output bit-stream can be used to configure the task at the desired
position onto the FPGA. Moreover, they implemented task context saving and restoring
by using the FPGA configuration interface [61]. A state extraction filter allows storing
the register content of a task that has just been stopped, by reading the current FPGA
configuration and extracting the state of the flip flops. Later on, when the task has
to be resumed, even at a different position, a state inclusion filter allows merging the
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state information into the configuration bit-stream of the task before it is loaded onto
the FPGA. Hence, the REPTOR2000 system together with its tools presents a working
prototype and proof of concept for preemptive multitasking on FPGAs under the 1D
resource model. It supports all requirements for the execution model assumed in our
global- and partitioned scheduling methods of Chapter 4.

XFORCES: The Executives for Reconfigurable Embedded Systems (XFORCES) project
aims to investigate and develop an operating system kernel for reconfigurable hardware
devices [100][102][103]. The runtime system loads tasks on the FPGAs. For more
sophisticated dynamically reconfigurable systems, the runtime system also schedules
tasks at runtime and saves the context of preempted tasks. Furthermore, it establishes
communication interfaces between the tasks, no matter whether they are mapped to the
same or different FPGAs.

The XF-board [98] was developed as a platform for the XFORCES OS prototype. It
hosts two FPGAs where on the first one a soft core CPU is implemented that controls the
overall system. The second FPGA is used as a reconfigurable resource for the execution
of hardware-tasks. All I/O devices and memory banks are connected to the left and
right device edges of the second FPGA. Hence, many routing problems are avoided and
the design matches the requirements of a 1D partial reconfiguration model.

To avoid the manual creation of the bus infrastructure for the OS kernel and the tasks,
which is a hard an error prone process, the XFOSgen tool was developed. It generates the
OS logic and communication structure in conjunction with task templates of different
width. Hence, it considerably simplifies the design of a reconfigurable multitasking
application.

This section summarized related work on multitasking of hardware tasks. We introduced
several resource sharing models used in literature, presented work on different scheduling
problems and briefly described prototype systems implementing some kind of hardware
multitasking. In summary, hardware multitasking has obtained much attention by re-
searches, numerous related scheduling problems have been studied and several system
prototypes have been built, proving feasibility of the technique. However, real-time
constraints considerations have been omitted in most of the presented work.
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2.4 Real-Time Scheduling

This section gives a background on those parts of real-time scheduling, which are directly
related to our work.

2.4.1 A Background on RT Systems

Real-time systems are embedded computer systems, that must react within precise time
constraints to events from their environment [25]. The correctness of the system depends
not only on the logical correct computation of results but also on temporal correctness,
i.e. the time at which the results are delivered. A computation is temporally correct if
it finishes within a specified time frame [23].

In a multitasking system, a task Ti is typically modeled by its arrival or release time ri,
its worst case computation time Ci and its timing constraint is modeled by a deadline
di, which represents the time until the task has to complete its execution. Depending
on the consequences of missing a deadline, the literature distinguishes at least between
two classes of real-time tasks:

If a hard real-time task misses its deadline, this can cause catastrophic consequences
on the entire system. For example, a task controlling the airbag system of a car. If it
decides to fire the airbag – and this result is produced too late – it is worth nothing. This
can be modeled by a value function of the task, which equals one before the deadline
of the task and is minus infinity after the deadline of the task. Hence, if only one task
misses its deadline there is no value of the entire system.

If a soft real-time task misses its deadline, the performance of the system decreases but
it can still work correctly. The computed result is not useless, but it is less valuable
than if it would be produced before the tasks deadline. Examples are video systems,
where a frame displayed a little too late may reduce the system quality. In this case the
value function of the task is one before its deadline and decreases monotonically after
its deadline until it reaches a value of zero.

Furthermore, a real-time system can have a static or a dynamic task set. In a static real-
time system, the task set is fixed and all task parameters as arrival times, computation
times and deadlines are known a priori at design time.6 Therefore, we design the system
for the worse case scenario and a task schedule can be computed off-line and validated,
whether every deadline is met or not. In a dynamic real-time system, a new task can be
(unpredictable) activated at runtime. Therefore, without further assumptions we cannot
guarantee that all released tasks can be processed within there deadlines. A common
method to deal with unpredictable task activations is to introduce an acceptance test.
When a task is requested at runtime, a procedure checks whether the new task can be
processed within its deadline without jeopardizing the timing constraints of the other
tasks. When this test is negative the task activation is rejected, otherwise it is accepted
and planned for execution. Obviously, the application has to be designed to deal with

6At least worst case assumptions have to be known
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task rejections for example by specifying an alternative system behavior.

It is further distinguished between aperiodically released and periodically released tasks.
In the later case, a task is released multiple times in a periodic manner, i.e. the time
between two releases of the task is constant and denoted as the period of the task.
This is a reasonable assumption for many real-time applications. Examples are control
processes of mechatronic systems, where control outputs are computed based on period-
ically sampled sensor values. Often the assumption is made, that the relative deadline
of a periodic task is equal to its period, i.e. the task has to finish its computation before
its next release. Some relaxation of periodic tasks are sporadic tasks, where the period
presents the minimum inter-arrival time of two task instances. Most results for periodic
tasks do also apply to sporadic tasks.

2.4.2 RT Scheduling Problems and Algorithms for Uniprocessor Systems

A task schedule defines at any point in time, the allocation of system resources to the
application tasks. In the simplest model, only the processor of a single-processor system
is considered. In this case, a schedule is a step-function over time, where the value of the
function defines the ID of the task that is executed by the processor at a given point in
time. A schedule is said to be feasible, if all (hard real-time) tasks meet their deadlines.

The construction of a schedule is done by a scheduling algorithm. For static task sets,
this could be done off-line and the schedule could be stored in a dispatcher table. How-
ever, this is only useful in some cases. In most cases, the parameters of a static task set
present only worst-case parameters, such as the worst case computation time of a task.
In average, the computation time may be much smaller. Hence to benefit from early
terminating tasks, most systems use scheduling algorithms online and at runtime, but
verify the feasibility of the scheduling strategy off-line at design time against the worst
case parameters of a task set. Also the memory requirements by the dispatcher table
might be too high.

Another aspect of a scheduling algorithm is, whether it constructs a preemptive or a non-
preemptive schedule. A preemptive schedule is in general more flexible and a feasible
schedule can be computed with less effort than in the non-preemptive case. However,
the system has to support task preemption at a reasonable cost.

Aperiodic Task Sets on Uniprocessors

For aperiodic task sets the earliest deadline first (EDF) algorithm has been proposed
by Horn [51].7 It follows a simple rule:

Among all released tasks always the task with the earliest absolute deadline is assigned
to the processor.

Therefore, whenever a task gets activated, it is inserted into a deadline sorted ready-
queue. The task at the head of the queue is selected for execution if currently no task is

7The results of the original reference have been summarized in [25], p. 50 ff.
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in execution or if the deadline of the head task is less than that of the task in execution.
In the latter case, the task in execution is preempted by the head task – therefore EDF
constructs a preemptive task schedule. The EDF schedule can be computed within
O(n2) steps, where n is the number of tasks. EDF have been shown to be optimal in the
sense, that it finds a feasible schedule to a given task set if one exists [36]7. Moreover,
it can be modified to optimally schedule task sets with precedence constraints [28]7.

Finding a feasibly non-preemptive task schedule for tasks with arbitrary arrival times
has been proven to be NP-hard even for the single processor case [68]. Therefore, an
optimal algorithm for the non-preemptive case is computational complex such as the
tree search method of Bartley (see [25] p.58 ff.) which runs in O(n · n!) time. For large
task sets, such runtime is unacceptable and we have to fall back on heuristic approaches,
such as the Spring algorithm [87].

Periodic Task Sets on Uniprocessors

The periodic task model introduced by Liu and Layland in [72] is widely-accepted (e.g.
as a standard model in textbooks [25]p. 71 ff.,[24]p. 399 ff.) and has been probably
the most studied subject in real-time scheduling [82]. In this model, each task has a
known worst case execution time Ci and is requested periodically with a rate Pi. For
the problem of scheduling a task set to a uniprocessor system, two particular algorithms
have received the major attention.

Rate Monotonic (RM): RM is a fixed priority assignment schema. It assigns priorities
to the tasks according to increasing request rates and this assignment stays fix during
runtime. I.e. the task with the smallest period gets the highest priority. At runtime,
always the active task with the highest priority is selected for execution.

It has been shown, that RM is optimal among all fixed priority assignment schemas [72].
However, that is only for fixed priority assignment schemas and there are cases, where
RM does not find a feasibly schedule, even if one exists. In general, RM is not able
to utilize the processor up to 100%. Liu and Layland [72] provided a sufficient but not
necessary scheduling test by providing an upper bound to the processor utilization:

n∑
i=1

Ci

Pi
≤ n ·

(
21/n − 1

)
, and for arbitrary large n : lim

n→∞

n∑
i=1

Ci

Pi
≤ ln 2 (2.2)

According to Equation 2.2, all task sets that accumulate the processor by less than
about 69% will be feasibly scheduled by RM. The test is pessimistic, e.g. some task sets
do not satisfy Equation 2.2 but are still schedulable by RM. However, the test is tight
in the sense that there exist still cases where the task set utilizes the processor only by
ln 2 + ε which cannot be scheduled by RM.

Better scheduling tests for RM, that are less pessimistic have been proposed. In par-
ticular the so called hyperbolic bound of Equation 2.3 was shown in [77][17] (see [25] for
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details).8

n∏
i=1

(
Ci

Pi
+ 1

)
≤ 2 (2.3)

Earliest Deadline First (EDF): The EDF rule as it has been introduced for aperiodic
tasks above can be applied to periodic tasks as well. It assigns the highest priority
always to the active task with the closest absolute deadline. Since the priority of a task
may change at runtime when another task is released or terminates, EDF is called a
dynamic priority assignment schema.

EDF has been shown to be optimal for periodic task sets scheduled on a uniprocessor
system. It is able to schedule all task sets that utilize the processor by not more than
100%. Hence, the exact scheduling condition is given by:

n∑
i=1

Ci

Pi
≤ 1 (2.4)

Obviously the performance of EDF is much better than that of RM and it is easier
to check, if a particular task set will be feasibly scheduled. However, due to the fixed
priorities, an RM dispatcher is very easy to implement and hence, RM is still widely
used in industrial systems.

A detailed comparison study between EDF and RM for all important aspects has been
presented in [26]. Clearly, EDF is favored over RM, as it has a better performance, is
easier to analyze and usually produces less context switches than RM. For the same
reasons, all of our proposed three scheduling approaches presented in Section 4 use EDF
as basis. Only when we schedule the memory read- and write accesses for the RAM
buses in Section 7.2, where scheduling decisions have to be made within one clock cycle,
we fall back to the RM schema. An implementation of an EDF scheduler, which requires
list data-structures, seems not to be adequate for that case.

2.4.3 RT Scheduling Problems and Algorithms for Multiprocessor Systems

The scheduling of tasks on parallel or distributed systems is much more challenging
than scheduling tasks on a single resource. As reconfigurable architectures belong to
the class of parallel systems, we present approaches on the multiprocessor scheduling
problem which are closely related to our work.

At this point, we are not able to survey the large amount of work that has been done on
this topic. We rather introduce the basic methods used for multiprocessor scheduling

8It appears that the bound has been first proven in [77] and successfully used for multiprocessor
scheduling in [78]. Independently, Buttazzo et. al. provided the hyperbolic bound of Equation 2.3 in
[17] and presented further analysis.
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and go into detail, whenever a method is closely related to our proposed methods or has
been used within this thesis.

Definition 1 (periodic multiprocessor scheduling problem). Given a set of periodic tasks
T1 to Tn each with a worst case computation time Ci and a period Pi and a machine with
m processors of equal speed. Find a schedule that assigns the n tasks to the m processors
over time such that each task executes for Ci units within each period. Assumptions:

� Task preemption is permitted. A task can be preempted and later on resumed at
no cost.

� Task migration is permitted. A preempted task can be resumed at a different pro-
cessor at no cost.

� Task parallelism is forbidden. A task can only execute on one processor at a time.

The scheduling approaches to this problem can be categorized into two main classes,
namely partitioned and global (non-partitioned) scheduling [5].

Partitioned Scheduling

In a partitioned schedule, all instances of a task are executed on the same processor.
Hence, the set of n tasks is partitioned into m subsets, each associated with one pro-
cessor. At runtime, each processor executes only its associated task set using some
standard uniprocessor scheduling algorithm such as EDF or RM.

The partitioned scheduling method has attracted much attention for two reasons. The
first is a practical issue: In a partitioned schedule no task migration occurs, which might
be difficult to implement and might introduce much more time overhead than a normal
context switch. Actually, the system can be simply composed out of several unipro-
cessor systems, which are loosely coupled and all implement their own independent
uniprocessor scheduler.

The second reason concerns the theoretical analysis: The multiprocessor scheduling
problem is reduced to a partitioning problem, where each subset of tasks has to be feasi-
bly scheduled by a uniprocessor algorithm. Hence, all results achieved for uniprocessor
scheduling algorithms, such as the scheduling conditions for EDF or RM, can be reused.
We will first discuss the dynamic priority assignment under EDF and afterwards the
fixed priority assignment under RM, which is more complex to analyze.

Dynamic Priority Partitioned Schedulers: Consider that an independent EDF sched-
uler is used for each processor. Since EDF schedules all task sets up to a processor
utilization of 100% (see Equation 2.4), the problem evolves to a classical bin-packing
problem. Each task is an item of size equal to its processor utilization Ui = Ci/Pi and
each processor is a bin of size 1. For solving the NP-hard bin-packing problem, we can
use one of the several bin-packing approximation algorithms [29]. Typical choices for
real-time schedulers have been first fit (FF), best fit (BF) and first fit decreasing (FFD)
and best fit decreasing (BFD) [88]. In the later two algorithms the tasks are sorted
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according to decreasing utilization values before they are packed to the bins (proces-
sors). It has been shown (see [29]), that the BFD and FFD assignment schemes have
asymptotic upper bounds of 11/9, meaning that the number of processors used by BFD
or FFD is only 1.222 . . . times the number required by an optimal assignment in the
asymptotic case. Hence, these heuristics offer a quite good performance.

We pick up this basic approach of partitioning the task sets and then scheduling each
subset individually by EDF and extend the approach to our task and resource model in
Section 4.2. We show that in that case our scheduling problem is no longer equivalent
to simple bin-packing, but equivalent to two-dimensional level strip packing [73].

Fixed Priority Partitioned Schedulers: The multiprocessor scheduling problem using
the partitioning approach becomes more challenging when the rate monotonic algorithm
is used for each processor. More complex schedulability conditions have to be used to
decide whether a processor (bin) is full or not. For example, the condition of Equation 2.2
can be used, when a first fit decreasing heuristic is used to assign tasks to processors
and each processor uses the RM scheduler. However, the quality of such assignment can
be quite bad: For the RM scheduler in conjunction with an FFD task assignment an
asymptotic bound of 2 has been shown (see [23]), meaning that it may happen that an
assignment requires twice the number of processors compared to the optimal assignment.

In [70][23], the authors proposed an improved assignment schema based on the fact, that
RM achieves better processor utilization than that of Equation 2.2, if the task periods
show some special relation (e.g. harmonic periods). Hence they group tasks with nicely
related periods together - with the result that for light-weight tasks all processors could
be almost fully utilized. Hence, surprisingly the drawback of the low RM performance
in the uniprocessor case can be overcome in the multiprocessor case.

Moreover, in [78] the authors considered the RM algorithm with an FFD assignment,
but used the improved RM scheduling condition of Equation 2.3. They showed, that
due to this improved RM scheduling condition the assignment uses in worst case 1.66 . . .
times the number of processors used by an optimal assignment.

Global (non-partitioned) Scheduling

In a global or non-partitioned schedule, a task is allowed to be preempted on one pro-
cessor and to be resumed on another processor. For architectures where the penalty
of task migration is low, such as multiprocessors with a shared memory, this can be a
reasonable alternative to the partitioned schedules. Due to the higher freedom of the
task to processor assignment, there exist task sets that can be scheduled by a global
scheduler but cannot be scheduled by a partitioned scheduler. The challenge is, to de-
sign good global schedulers that achieve a high scheduling performance and that can be
proven to schedule a particular task set, by means of an efficient computable scheduling
test. Again, we can distinguish between fixed and dynamic assigned task priorities.
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Fixed Priority Global Schedulers: The rate monotonic priority assignment scheme can
be also used for a global scheduler. In global rate monotonic scheduling (GRMS) the
tasks get fixed priorities assigned in order of decreasing task periods. At runtime the
dispatcher selects the m active tasks with the highest priority for execution on the m
processors.

In [66] an efficient computable scheduling condition for GRMS has been developed and
the performance has been compared to several partitioning schemes based on the RM
scheduler. It turned out that the scheduling condition is rather pessimistic and allows
only about 50% utilization of the processors in average. However, an exact scheduling
test based on simulation over the task sets hyper-period shows, that GRMS feasibly
schedules task sets up to 80% processor utilization. This performance is comparable to
– or only slightly worse than – that of the best partitioning schemes. However, it stays
more robust against variation of task set parameters. The authors showed that GRMS
can outperform partitioning schemes for soft real-time systems, where some deadline
misses can be afforded. Especially when the worst-case computation times of the tasks
are inaccurate, the GRMS profits from the global processor assignment since overloaded
processors take advantage from spare processing power of under-loaded processors.

In [5], the authors studied a different fixed priority assignment schema for global mul-
tiprocessor scheduling. Whereas RM assigns priorities only according to task periods,
their proposed algorithm TkC assigns priorities according to the difference between
task period and task computation time. More specific, the priority of a task Ti is set to
Pi−k ·Ci, where higher values mean higher priorities. Based on simulation experiments,
they found out that for a value of k = 1.1, their algorithm achieved the best performance
in average and significant improvements over the GRMS. Moreover, T1.1C commonly
outperforms the best RM partitioning algorithms. However, the authors failed to present
an efficient scheduling test for T1.1C. Hence, the main fields of application are still soft
real-time systems.

As mentioned earlier, we use dynamic-priority assignment schemes (especially EDF) for
our scheduling methods, hence the results of the fixed-priority global schedulers are of
minor interest for our work. However, in principle we could replace the dynamic EDF
priority assignment in our global scheduler of Section 4.1 by a fixed assignment such as
RM. In that case, the results of the work mentioned above would become most relevant.
We leave this option for further work.

Dynamic Priority Global Schedulers: The dynamic-priority EDF assignment scheme,
which is optimal for uniprocessors (see Section 2.4.2) and has been successfully applied
in partitioned multiprocessor scheduling, can also be used for global multiprocessor
scheduling.

A global EDF scheduler always executes on the m processors the m active tasks with
the shortest absolute deadlines. Unfortunately, global EDF is no longer optimal. Sev-
eral sufficient polynomial time scheduling tests for global EDF have been developed
[48][47][16][11][10] and surveyed and compared in [16] and [11]. There exist three basic
scheduling tests for global multiprocessor EDF:
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1. Goossens et al. [48] developed a utilization based test, using the resource augmen-
tation approach introduced in [81]. It is based on the following idea: A uniform
multiprocessor (each with individual speed) is considered, on which the task set
can be feasibly scheduled by an optimal scheduling algorithm. Then a homoge-
neous multiprocessor is considered (all processors have the same speed) and the
number of processors is increased until it can be guaranteed that the global EDF
scheduler does, at any time, at least the same amount of work on the task set, than
the optimal algorithm on the uniform multiprocessor. It follows that also EDF
feasibly schedules the task set and the following scheduling condition is derived:

Theorem 1 ([48]). A periodic task set Γ = {T1, . . . , Tn} can be feasibly scheduled
by EDF onto an identical multiprocessor of m unit capacity processors, if:

n∑
i=1

Ci

Pi
≤ UT

max + m · (1− UT
max) (2.5)

where UT
max is the highest time utilization of any task appearing in Γ.

In Section 4.1, we define global EDF schedulers for our RHD execution model
and develop a scheduling test based on the Goossens et al. [48] multiprocessor
scheduling test. Hence, we skip the details of the test of Theorem 1 at this place
and go into more detail in Section 4.1.2, where we discuss the relation between
the multiprocessor scheduling test and our work.

2. Baker presented a sufficient scheduling condition in [10] and later on improved it
in [11]. It is based on the idea that if a task Ti misses its deadline, there must be
a certain amount of other tasks that have been executed between the release time
and deadline of Ti. If it is possible to show that the task set cannot generate this
certain amount of load, Ti will never miss its deadline.

3. Bertogna et al. kept up with a similar idea, that a task must suffer certain inter-
ference by other tasks between its release time and its deadline. Since computing
this interference turns out to be difficult, they present an upper bound to the
interference using the workload generated by the task set. Based on that, they
present a linear time scheduling condition.

The three scheduling tests are surveyed and compared in [16] and in [11]. It turns out,
that they do not dominate each other. I.e. each of the scheduling tests accepts some
task sets that the others do not accept. Hence the best known scheduling test is to
combine all three of them [11] – and each subtest is an important contribution to the
state of the art. Further, it turned out in simulation studies that the scheduling tests
are still very pessimistic – meaning that they reject many task sets even if they would be
successfully scheduled by global EDF [16]. Moreover, the performance achieved by the
global EDF scheduling tests is still short compared to the best partitioned scheduling
approaches [11]. As it has been the case for the fixed priority RM schedulers, it seems
that the global EDF schedulers have their main advantages in soft real time systems,
where they have to deal with inexact worst case task execution times.

37



2 Background and Related Work

PFAIR Scheduling: The proportionate fairness (PFAIR) scheduling is a global schedul-
ing method proposed by Baruah et al. [12] [86]. Theoretical, PFAIR scheduling is opti-
mal and has a linear-time exact scheduling test. The basic idea is, that tasks should be
executed at a steady rate. To achieve this, the tasks are divided into quantum-length
subtasks. In order to be optimal, the task execution times have to be multiples of the
quantum-length. This results in a unrealistic small quantum-length and unrealistic many
subtasks for general task systems. An option is to round the execution times to defined
quantum-length but that will bring a drawback of decreasing scheduling performance.
The major problem is that, due to the many subtasks, a PFAIR schedule generally in-
troduces much more context switches than other schedulers. As in our execution model
a context switch corresponds to a reconfiguration of the RHD, and the associated time-
overhead is generally higher than that of microprocessors, PFAIR scheduling seems not
to be adequate for reconfigurable architectures. However, studying PFAIR scheduling
in our context might be a subject for future work.

2.4.4 Real-Time Scheduling on RHDs and Similar Architectures

Even if there has been a large amount of research on hardware-multitasking on RHDs
and associated scheduling problems, up to now there has been only few research on
real-time scheduling for RHD architectures.

Steigers et al. Online Schedulers: In [90][89], the authors first describe the design of
an operating system for reconfigurable architectures that is able to execute hardware
tasks according to the 1D model. E.g. each task footprint spans an arbitrary width but
the entire device array height can be placed at an arbitrary horizontal array position.
Further, they assume non-preemptive execution of tasks. The authors consider the
problem of scheduling (and placing) online arriving real-time tasks onto the device.
Each task is characterized by its arrival time ai, its computation time Ci, its deadline di

and its required width wi of device area. Since tasks arrive online and arrival times are
not known in advance, the system implements an acceptance test which either accepts
a task – if and only if the scheduler could find a feasible schedule for this task, or rejects
it. The challenge is to design a scheduling and placement method, such that only a
minimum fraction of tasks get rejected.

Beside a reference method, they propose two scheduling algorithms for the described
problem: The reference method simply checks whenever a task arrives, if there is free
device area to place and to start it immediately. If not, the task is rejected. The
other two methods increase the acceptance ratio by planning the task execution into
future. Starting a task Ti may be delayed until time di − Ci and it still will meet its
deadline. The horizon technique keeps a list of free available intervals of device area,
which is an area interval that is currently free or becomes free at some future time and
will not be occupied by any task already planned for future execution. This scheduling
horizon, defined by the currently executing tasks and the tasks already planned for future
execution, is used for searching a place for a newly arriving task. If one is found, the
task is planned and the area is marked as occupied by updating the scheduling horizon.
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The computational more complex stuffing method is an improvement, by considering
all free device areas, even if they will be occupied by a planned task at some time
in future. In simulation studies, the authors show that the horizon technique rejects
considerable less tasks than the reference model, but is outperformed by the stuffing
method. Moreover the methods have been extended to a 2D task model, where task
footprints are rectangles that can be arbitrary placed. Up to now, the authors did not
present bounds on the worst case behavior of their scheduling methods. Further studies
considering sophisticated methods to manage the free device area have been presented
in [91].

The work is strongly related to the topic of this thesis. However, it differs from our work
in the following aspects. In [90], online scheduling of aperiodic tasks with unknown
arrival times has been considered. Hence the scheduler has to reject arriving tasks
for which the required deadline cannot be guaranteed. In contrast, we consider the
execution of static task sets, where task have periodic or sporadic arrival times. Our
main goal is to decide at design-time, if a task set can be scheduled or not. Some of
our methods can deal with dynamic task sets as well, but in that case it is decided if a
new periodic task can be added to the system. Another difference is, that we consider
preemptive multitasking while in [90] non-preemptive multitasking has been considered.

RT Schedulers for Hypercubes: Hypercubes are similar to our RHD model in the
aspect, that the amount of occupied computational resources may be different for each
task. Where RHD tasks require a certain amount of device area, hypercube tasks require
a sub-cube of certain dimension. I.e. a task occupies 1, 2, 4, . . . processors of the total
machine, which have to be organized in a hypercube network.

Babbar et al. studied the problem of scheduling online arriving, independent, preempt-
able tasks onto a hypercube and proposed the Buddy/RT algorithm, which is a straight
forward extension of the Buddy method, and a Stacking algorithm, which is shown
to perform better [9]. Mohaparta kept up with the same problem and improved the
performance with his proposed Deferred Earliest Deadline First algorithm [76]. The
problem of synchronous, independent, non-preemptable hypercube task scheduling has
been studied by Kwon et al. [65]. While the hypercube resource model is quite similar
to our RHD models, the considered scheduling problems are different since we study
periodic real-time tasks within this work.

A real-time scheduling problem, considering tasks with implementation variants as we
do in Section 7.1.1, has been recently studied by Lee et al. [67]. In their model, each
scalable real-time task comes in certain implementations, each for a different number of
processors and hence, has a different computation time. While they have studied the
problem of online arriving aperiodic task scheduling, their resource model is different
from our extended resource model of Section 7.1.1 as well. We require a task to allocate a
continuous amount of RHD resources. In contrast, they assume that any free processors
of the system can be used to execute a parallel task.
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Pellizzonis et al. Allocation of Real-Time Tasks to Hybrid Systems: In [80, 79]
Pellizzoni et al. consider the execution of periodic real-time tasks by a system composed
of a CPU and an FPGA. Each task exists in a hardware and a software implementation
and can be migrated between the two devices. An allocation assigns some tasks to the
CPU, where they are scheduled according to EDF, and the other tasks to the FPGA,
where they run (occupy resources) during their entire period. At runtime, new arriving
tasks have to pass an acceptance test. If a task is accepted, it is always assigned to
the CPU. Hence, a reconfiguration of the FPGA, which might add a considerable time
overhead, is not necessary. Later on, the system tries to migrate as much load to the
FPGA as possible, in order to keep the CPU utilization low. During migration, a task
allocates resources on both devices. After a task bits-stream has been configured on
the FPGA, the task computation is handed over from CPU to the FPGA between two
task periods. Since the CPU utilization is always kept at a minimum, the probability
that a new task can be accepted is maximized. In their analysis, the authors present an
acceptance test which not only guaranties that the new task can be executed without
jeopardizing any deadline, but also that the system can later on perform task migrations
which will lead to the new optimal allocation. Further, they present a method to select
the tasks to migrate from the CPU to the FPGA and vice versa.

This work is strongly related to our work since it considers periodic hardware tasks.
However, it differs greatly due to the following aspects: Each task exist in a hardware
and software configuration, but only the software tasks are scheduled at runtime. All
tasks assigned to the FPGA run permanently and no device area is shared over time.
Hence, hardware tasks are non-preemptive and they allocate resources during their entire
period, even if their computation time is much less than their period. This may lead
to a low utilization of the FPGA. Rather than considering the scheduling of hardware
tasks onto a reconfigurable device, their work concentrates on the dynamic allocation
from tasks to a CPU and FPGA.

2.5 Chapter Conclusion

This chapter has provided the background and related work for this thesis. We have dis-
cussed the architecture and reconfiguration features of today’s RHDs and how they are
employed to process hardware-tasks. Related work on multi-tasking of hardware-tasks
on RHDs has been introduced in Section 2.3. We classified six resource sharing models
used in literature, three based on full- and three based on partial device reconfiguration.
Our resource model of Chapter 3 will cover only two of them, the most advanced model
based on full device reconfiguration and the 1D partial reconfiguration model. The 2D
model will not be considered directly, since it has the discussed disadvantages in com-
plexity and practicability. Further, we have summarized research on scheduling and
placement of hardware-tasks and introduced several projects, which have implemented
dynamically reconfigurable systems providing multitasking environments. Hence, we
conclude that multitasking of hardware-tasks on reconfigurable devices is reasonable
and feasible.
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Finally, in Section 2.4 we provided the background in real-time scheduling. We discussed
related work in multiprocessor scheduling and showed that the basic results and methods
known for processor based systems have not been developed for reconfigurable devices
so far. Closing this gap is a major aim of this thesis.

Based on the gathered background, the next chapter will define our basic task and
resource model and the problem of scheduling tasks with real-time constraints to recon-
figurable devices.
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CHAPTER 3

Problem Modeling and Metrics

This chapter introduces the task and resource models and the basic notations used
within this work. The general scheduling problem is defined. Utilization metrics are
introduced that allow us to capture the load generated by a task set. Furthermore, some
basic necessary conditions for the schedulability of task sets are derived.

3.1 Task and Resource Models

We consider real-time applications that consist of a set of independent aperiodic or
periodic tasks which have to be scheduled for execution such that each task meets its
deadline. The processing device is an RHD which provides resources to execute several
tasks in parallel. Moreover, we consider preemptive multitasking, i.e. the execution of
a task may be preempted by a higher priority task and resumed later on.

Our particular interest is in the widely-accepted and well-studied periodic task model
introduced by Liu and Layland in [72]. This simple task model is not just one among
many task models in real-time systems. It is used as a basic model in well-established
textbooks such as [25](p. 71 ff.) and [24](p. 399 ff.). Moreover, the model has been used
widely by researchers, such that [72] became one of the most cited research papers in
computer science.1

However, before we come to the periodic tasks, we need to introduce the notations of
aperiodic tasks, called jobs from now on, first.

1With over 1500 citations, [72] is rated as second most cited document by the CiteSeer scientific
literature digital library of 2005.
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Aperiodic Real-Time Tasks: An aperiodic real-time task is called job and denoted by
Ji. Each job Ji is characterized by its release time ri, its deadline di, its (worst case)
computation time Ci, and by the amount of required reconfigurable logic resources -
referred to as the job’s area - Ai. These parameters are illustrated in the scheduling
diagram of Figure 3.1, where an upward arrowhead presents the task’s release time and
a downward arrowhead presents its deadline.

Ji

2

4

ri

0 1 2 3 4 5 6 7 8 9 10 11 12

d
e
v
i
c
e
 
a
r
e
a

time

di

fi

Ai

si

Ci

0

Figure 3.1: Parameters of a single aperiodic job

A job can be in several states. We call a job active when it has been released but not
yet terminated. An active job is in one of two states, running or ready. A job is running
after it has been dispatched by the scheduler and executes on the RHD. A ready job is
waiting in a ready queue to be selected for execution (Figure 3.2). A job Ji terminates
at the latest after it has been running for Ci time units. It may terminate earlier, since
Ci presents an upper bound on its execution time. The finishing time of a job Ji is
denoted by fi. A set of jobs I is said to be feasibly scheduled by some algorithm onto
some execution platform, if and only if fi ≤ di holds for all jobs.
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Figure 3.2: States of a job and a periodic task respectively

The notations for arbitrary (aperiodic) real-time tasks are summarized in the following
list:

I denotes a set of jobs
Ji denotes a job and refers to some concerned computation to be done
Ci denotes the worst case computation time of Ji

Ai denotes the area requirement of Ji

ri denotes the absolute release or arrival time of Ji
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di denotes the absolute deadline of Ji until which the computation has to be done
si denotes the start time, when job Ji begins its execution
fi denotes the finishing time of Ji

RHD Resources: In this work, we consider an RHD H as execution platform. H offers
a certain amount of computational resources A(H) which is also referred to as the area
of the device. A(H) may correspond to the number of configurable logic blocks of an
FPGA or to the processing elements of a coarse-grain reconfigurable architecture. At
any point in time the RHD H can be reconfigured to execute an arbitrary set of jobs
R ⊆ I, if all jobs in R are active and fit together on the device:

∑
Ji∈R

Ai ≤ A(H) (3.1)

As we consider preemptive multitasking, an executing job Ji may be preempted by a
higher priority job and later on resumed. The time overhead associated with preemption
will be neglected in our first scheduling analysis but will be analyzed in Chapter 6.

This job and resource model presents a generalization of the (simple) homogeneous
multiprocessor model. Each instance of a set of real-time jobs to be scheduled onto an
m processor machine can easily be expressed using our model: The area of each job is
set to 1 and the area of the device H is set to A(H) = m.

Periodic Real-Time Tasks: As mentioned before, our main interest is in applications
with period real-time tasks. A periodic task, often called just task from now on, is
denoted by Ti and refers to some computation which has to be performed periodically.
As shown in Figure 3.2, a periodic task does not leave the system after termination but
goes in idle state and waits for its next release which is triggered by a periodic timer.

Considering a periodic task set Γ, each periodic task Ti ∈ Γ represents a sequence of
jobs, alternatively called task instances, which are the actual objects to be scheduled
for execution on the considered RHD. Ti,j denotes the jth instance of the task Ti and
has the same form as an aperiodic job:

Ti,j(Ci,j , Ai,j , ri,j , di,j) (3.2)

The according periodic task Ti is described by four parameters which are used to define
the parameters of all of its task instances Ti,j :

Ti(Pi, Di, Ci, Ai) (3.3)

The relation between task and task instance parameters is illustrated in Figure 3.3, which
shows an example scheduling diagram of a task Ti(Pi = 5, Di = 4, Ci = 3, Ai = 3).

The computation time Ci and area Ai of the periodic task directly define the computa-
tion time and area of all task instances. Hence, Ci,j = Ci and Ai,j = Ai.
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Figure 3.3: Parameters of a periodic task

The task period Pi defines the release time of the task instances Ti,j . For simplification,
we assume that the first instance of each task is released at t = 0, i.e. ri,1 = 0. We
differentiate between periodic and sporadic task activations.

Periodic task activation: The task instances Ti,j are requested at a fixed periodic rate.
I.e. the interval between two releases of the task is fixed and given by its period
Pi. Therefore, the release times are given by:

ri,j = (j − 1) · Pi : j ≥ 2 (3.4)

Sporadic task activation: For a sporadic task, the parameter Pi presents a minimum
inter-arrival time. The distance between two task requests may be as short as Pi,
but can be longer as well. Therefore, the release time ri,j of Ti,j is at least:

ri,j ≥ ri,j−1 + Pi : j ≥ 2 (3.5)

The relative deadline Di of a periodic task defines the absolute deadlines of the task
instances Ti,j . The deadline of a task instance is generally given by its release time plus
the relative deadline:

di,j = ri,j + Di (3.6)

In our scheduling analysis, we restrict this general form and distinguish two cases:

Implicit deadline: (Di = Pi) Most often, we assume that the relative deadline is equal to
the period of the task. I.e. the deadline of one task instance is equal to the release
time of the next instance. This simplifies our scheduling analysis. Whenever we
do not explicitly specify a relative deadline Di for a task, we assume that it is
equal to the task’s period.
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3.2 Feasible Schedule

Constrained deadline: (Di ≤ Pi) In this more general form, the relative deadline is less
or equal to the task’s period. I.e. the deadline of one task instance can be at some
time before, but not later than the release time of the next task. Some of our
results can be easily extended to consider this more general form of task sets.

The notations used for periodic real-time tasks and their instances are summarized in
the following list:

Γ denotes a set of periodic or sporadic tasks
Ti denotes a generic periodic task of Γ

Ti,j denotes the jthe instance of task Ti.
Pi denotes the period of Ti,
Di denotes the relative deadline of Ti

Ci denotes the computation time of Ti and all its task instances
Ai denotes the area requirement of Ti and all its task instances
ri,j denotes the absolute release or arrival time of Ti,j

di,j denotes the absolute deadline of Ti,j

si,j denotes the start time, when Ti,j begins its execution
fi,j denotes the finishing time of Ti,j

3.2 Feasible Schedule

Generally speaking, we would like to schedule and execute a set of jobs I, such that
each job meets its deadline. In the case that we consider a periodic task set Γ the jobs
of I are the task instances Ti,j of the periodic tasks.

Formally a schedule can be described by a function2 R : R+ → P(I). R(t) denotes the
set of jobs from I running at time t. A schedule R is called feasible if each job Ji is
scheduled for execution for at least Ci time units within the interval given by its release
time ri and its deadline di. In order to be feasible on a particular device H, the schedule
R(t) must keep at any time t ≥ 0 the bound on device resources given by Equation 3.1.

An example task set Γ∗ of four tasks and a feasible schedule are shown in Figure 3.4.
The table specifies the period, computation time and area of each task. The Ui values
will be explained in the following section. The scheduling diagram presents a feasible
schedule of Γ∗ on a device with an area of A(H) = 8. While the time-line shows the
release times and deadlines of the tasks, the lower part of the figure illustrates which
tasks instances are in execution at a certain moment. The vertical dashed lines denote,
that the task instance T3,1 is preempted at t = 4 and resumed at t = 6. The feasibility
of the schedule can be easily proven: It is obvious that for the time interval 0 ≤ t ≤ 12
each released task instance terminates before its deadline and that the device resources
are not exceeded. This interval of length 12 has a special meaning, since it presents
the hyper-period of the task set Γ∗. The hyper-period is the least common multiplier
of the periods of a task set. The pattern of task releases repeats with the hyper period

2P (I) denotes the power set of I
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of a task set. Hence, a feasible schedule defined over the hyper-period can be repeated
infinity times without any missed deadline.

Ti Pi Ci Ai UT
i US

i

T1 4 2 4 1/2 2
T2 6 5 2 5/6 5/3
T3 12 3 6 1/4 3/2
T4 12 2 2 1/6 1/3∑

1.75 5.5

0 1 2 3 4 5 6 7 8 9 10 11 12T1,T2,T3,T4 T2 T1,T2,T3,T4T1 T1
T1,1 T2,1T3,1 T1,2 T3,1 T2,2T1,3device area T4,1

Figure 3.4: Example task set Γ∗ and a feasible schedule.

Scheduling challenges: We are interested in developing various scheduling algorithms
and finding answers for each algorithm to the following questions:

1. Given a task set Γ, can we execute it on a reconfigurable device H with area A(H),
such that all deadlines are met?

2. What is the size of the smallest device on which Γ can be feasibly executed?

3. How does this feasible schedule R look like?

3.3 Utilization Metrics

We define two utilization metrics to measure the computational load generated by a
periodic task Ti or a set of tasks Γ, respectively. Similar to the processor utilization
factor defined in single processor real-time scheduling, we define the time-utilization
factor of a task Ti to be:

UT (Ti) =
Ci

Pi
(3.7)

It presents the fraction of time a certain task occupies the device in order to complete
its execution. Respectively we define the time-utilization factor for the complete task
set Γ to be:

UT (Γ) =
∑
Ti∈Γ

Ci

Pi
(3.8)

For the special case that all tasks are executed sequentially, UT (Γ) is the fraction of
time the RHD spends executing tasks whereas 1− UT (Γ) is the idle time.
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Since a running task usually does not occupy the entire device, we define a system-
utilization metric that captures the degree by which the device is utilized by Ti:

US(Ti) = UT (Ti) ·Ai (3.9)

In order to measure the load generated by a task set Γ, we now define the total system-
utilization of a task set by summing up the system utilization factors of all tasks:

US(Γ) =
∑
Ti∈Γ

US(Ti) ·Ai (3.10)

Since in general we consider devices H with an arbitrary area A(H), we define the
relative system-utilization as the fraction a certain task set Γ utilizes a particular device
H:

URS(Γ,H) =
US(Γ)
A(H)

(3.11)

Often we simply consider devices H of size A(H) = 1. In this case, there will be no
difference between US and URS . Whenever it is clear from the context that we consider
the utilization of a task Ti, we may use the notation UT

i instead of UT (Ti) and US
i

instead of US(Ti) respectively. The time and system utilization factors of the example
task set Γ∗ are shown in the table of Figure 3.4.

Schedulability Conditions: The question whether a given task set Γ can be feasibly
scheduled onto a device H by any algorithm, or if it will be feasibly scheduled by a
particular algorithm, is not trivial to answer. Obviously some necessary conditions are,
that:

� Each task must have a time-utilization not greater than 100%:
UT (Ti) ≤ 1 : ∀Ti ∈ Γ

� Each task must fit onto the device:
Ai ≤ A(H) : ∀Ti ∈ Γ

� The relative system utilization must not be greater than 100%:
USR(Γ,H) ≤ 1

However, these conditions are only necessary and not sufficient. In particular there exist
task sets with an infinitesimal small system-utilization, which cannot be scheduled by
any algorithm. As example consider a task set Γ = {T1, T2} with P1 = P2 = 10 where
the first task has a computation time of C1 = ε and an area of A1 = A(H) while the
parameters of the second task are C2 = 10 and A2 = ε. The system utilization of
Γ computes to limε→0 US(Γ) = ε

10A(H) + ε = 0. However, since both tasks cannot be
executed in parallel the task set cannot be feasibly scheduled, as illustrated in Figure 3.5.
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Figure 3.5: Scheduling Anomaly: An infeasible task set with infinitesimal system uti-
lization

3.4 Chapter Conclusion

This chapter has defined our model of real-time applications for execution on reconfig-
urable devices. In particular we defined the notations for aperiodic jobs and periodic
task sets. The execution model allows task preemption. The resource model has been
kept rather simple: A task requires a certain (scalar) amount of logic resources and a
device can execute tasks in parallel as long as its resources are not exceeded. This simple
model generalizes the common multi-processor models, where each task requires exactly
one processor. As another simplification we neglected the time overhead associated with
the device reconfiguration. However, it will be included into our analysis in Chapter 6.

For our simple task model, we have defined the properties of a feasible task schedule.
Moreover, utilization metrics that capture the load of a periodic task set have been
defined. On this basis, the next chapter will propose various scheduling strategies. The
goal is to guaranty at design time, that a particular task set will be feasibly scheduled
by a certain algorithm.
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CHAPTER 4

Three Scheduling Algorithms

Within this chapter, we introduce three main methods to schedule periodic task sets to
RHDs according to the model described in the preceding chapter, namely global EDF
scheduling, partitioned EDF scheduling and server based scheduling.

1. The idea of global scheduling is, to manage the resources globally, and dynamically
assign ready tasks to free resources whenever they become available. As a conse-
quence, a task might get assigned different resources over runtime. For example
in case of a multiprocessor machine a task may be started on one processor and
be resumed on another. While this method leads to very good resource utilization
in average, it is rather difficult to predict the schedulability of a task set.

In Section 4.1 the multiprocessor global EDF scheduling method is adapted to our
task model in a straight forward way and yields two global scheduling algorithms,
namely EDF-NextFit and EDF-First-k-Fit. We develop a scheduling test based
on the task set parameters that can be evaluated in linear-time. In our analysis we
prove, that both algorithms produce a feasible schedule when the test conditions
are satisfied.

We presented these algorithms in [DP05a, DP05c] and the scheduling analysis in
[DP06a].

2. The idea of partitioned scheduling is to partition a task set and to assign each
partition a fraction of the platform resources off-line. In case of a multiprocessor
machine this means that a particular task is always executed on the same processor.

In Section 4.2 we adapt the multiprocessor partitioned EDF scheduling method to
our resource model. We formulate the problem of finding a feasible partitioning of
a given task set. We discuss the relation to two-dimensional packing problems and
apply two methods to solve it. The first is called optimal-partitioned-EDF and
uses integer linear programming (ILP) to solve the problem to optimality. Since
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solving the ILP takes exponential time, the second method is a simple and fast
heuristic called Next-Fit-Deceasing-Area. For the heuristic we develop and prove
a scheduling condition which can be evaluated in linear time.

Most of our results on partitioned scheduling have been presented in [DP06b].

3. The idea of server based scheduling is to execute application tasks by (virtual)
server tasks. While periodic server tasks are usually used to serve the requests of
aperiodic application tasks, we present a totally different and novel approach.

In Section 4.3 we present a method to schedule periodic tasks onto an RHD by
means of periodic servers. Tasks are grouped to servers for parallel execution but
the computation of tasks may be distributed among many servers. We present
a heuristic called Merge-Servers-Distribute-Load (MSDL) that creates a set of
servers in such a way, that all application tasks are guaranteed to meet their
deadlines. Furthermore, the number of servers is kept small. As a result, each
server can be compiled to a separate RHD programming file (bit-stream) which
makes the approach feasible for all reconfigurable devices and not only for partial
reconfigurable RHDs.

We presented our results on server bases scheduling in [DP05a, DP05c].

Hence the chapter extends the two popular multiprocessor scheduling approaches to our
RHD model and presents a novel approach especially designed to avoid the restrictions
of partial device reconfiguration.
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4.1 Global Scheduling

4.1 Global Scheduling

In a global EDF schedule for a multiprocessor platform, all active tasks are sorted
according to non-decreasing deadlines in a global ready-queue. If m is the number
of processors, the first m tasks of the ready-queue are selected for execution. As a
consequence, a task might be started on one processor, becomes preempted by a higher
priority task and, later on, be resumed on another processor. While this method can
lead to very good resource utilization, it is rather difficult to predict the scheduleability
of a task set.

However, within this section we adapted this method to our task and resource model
and define two global scheduling algorithms. We develop a scheduling test based on
task set utilization parameters that can be evaluated in linear-time. In our analysis we
prove, that both algorithms produce a feasible schedule when the test conditions are
satisfied.

4.1.1 Earliest Deadline First on RHDs

The Earliest Deadline First rule has been proven optimal for single processor systems
and has also been successfully used in global (non-partitioning) multiprocessor schedul-
ing [81, 48]. In multiprocessor systems, the number of active jobs that can be executed
in parallel depends only on a platform parameter, i.e., the number of processors. Apply-
ing EDF to our RHD execution model, we find that the number of active jobs that can
be executed in parallel shows a more complex relation between the platform parameter
A(H) and parameters of the job set, Ai. Therefore, we see at least two possibilities
to define EDF for our RHD model, which we call EDF-First-k-Fit and EDF-Next-Fit
respectively. EDF-First-k-Fit executes jobs according to the following definition:

Definition 2 (EDF-First-k-Fit). Let Q = (J1, . . . , Jm) be the list of all active jobs, w.l.g.
sorted after non-decreasing deadlines. EDF-First-k-Fit selects at any time the first k jobs
R = {J1 . . . Jk} of Q for execution, with the largest k for which

∑
Ji∈R Ai ≤ A(H) holds.

In addition to the formal definition, we present a pseudo code implementation of the
EDF-FkF dispatching procedure in Algorithm 1. It is called by the scheduler each time
a new job is activated or a running job terminates.

Note, that according to this definition EDF-First-k-Fit (EDF-FkF) creates a preemptive
schedule, since a newly activated job Ji may cause a preemption if it has a shorter
deadline than any of the running jobs. Moreover, EDF-FkF executes tasks strictly in
deadline order in the sense that for any pair of active jobs, Ji ∈ R, Jj /∈ R ⇒ di ≤ dj .
It follows that EDF-FkF is priority driven according to the definition given in [48].

The EDF-FkF algorithm may leave some RHD resources idle, even if there are ready
jobs that would fit onto the device in addition to the first k jobs selected for execution.
In order to exploit these resources, we define an enhanced algorithm called EDF-Next-Fit
(EDF-NF):
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Algorithm 1 Earliest Deadline First - First k Fit
Require: list Q of active tasks, sorted by non-decreasing absolute deadlines
1: procedure EDF-NF(Q,H)
2: R← ∅
3: Arunning = 0
4: k = 1
5: while Arunning + Ak ≤ A(H) and |Q| ≥ k do
6: R← R ∪ Jk

7: Arunning ← Arunning + Ak

8: k ← k + 1
9: end while

10: return R
11: end procedure

Definition 3 (EDF-Next-Fit). At any time, the set of running tasks R is determined
according to the following algorithm: Start with R← ∅ and scan all active jobs Ji ∈ Q in
order of non-decreasing deadlines. Ji is added to R if and only if

∑
Jk∈R∪Ji

Ak ≤ A(H).

Again, we present a pseudo code implementation of the EDF-NF dispatching procedure
in Algorithm 2.

Algorithm 2 Earliest Deadline First - Next Fit
Require: list Q of active tasks, sorted by non-decreasing absolute deadlines
1: procedure EDF-NF(Q,H)
2: R← ∅
3: Arunning = 0
4: for i← 1, |Q| do
5: if Arunning + Ai ≤ A(H) then
6: R← R ∪ Ji

7: Arunning = Arunning + Ai

8: end if
9: end for

10: return R
11: end procedure

A part of the EDF-FkF and EDF-NF schedules for an example task set is shown in
Figure 4.1. The difference between the two schedules lies in the execution of T4,1. EDF-
FkF schedules T4,1 not before T3,1 has terminated (hatched task), whereas EDF-NF
schedules T4,1 as soon as there are idle resources (speckled task).

Lemma 1. EDF-NF is superior to EDF-FkF in the sense that if a set of jobs I is
feasibly scheduled by EDF-FkF, the same is true for EDF-NF.

Proof Sketch. Let R(t) and Q(t) be the set of running and active jobs at time t in
the EDF-FkF schedule and R̃(t) Q̃(t) in the EDF-NF schedule, respectively. We can
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Figure 4.1: A schedule for Γ∗ by EDF-FkF vs. EDF-NF

observe that for an equal set of active jobs, EDF-NF will execute at least the same jobs
as EDF-FkF , i.e., if Q = Q̃ then R ⊆ R̃. Further, if the active jobs in the EDF-NF
schedule become a subset of those in the EDF-FkF schedule due to earlier terminations,
each job that is active in both schedules and executed by EDF-FkF will also be executed
by EDF-NF , i.e., if Jk ∈ Q̃ ⊆ Q then Jk ∈ R⇒ Jk ∈ R̃.

Since both schedulers start with identical sets of active jobs, Q(0) = Q̃(0), and experi-
ence the same job activations over time, it follows that Q̃(t) ⊆ Q(t) for all t > 0 and
every job Jk scheduled by EDF-NF will have a finishing time smaller or equal to the
finishing time when scheduled by EDF-FkF.

4.1.2 Relation to Multiprocessor EDF

The scheduling test we will present for EDF-NF is related to an earlier reported schedul-
ing test for EDF upon multiprocessors. In fact, when all RHD tasks have equal area
Ai = Aconst, our execution model merges into a multiprocessor with b A(H)

Aconst
c proces-

sors. Therefore, we first introduce the utilization-based scheduling test for identical
multiprocessors presented by Goossens, Funk and Baruah [48]:

Theorem 2 ([48]). A periodic task set Γ can be feasibly scheduled by EDF onto a
multiprocessor of m identical unit capacity processors, if:

UT (Γ) ≤ UT
max + m · (1− UT

max) (4.1)

where UT
max is the task with the highest time utilization appearing in Γ.

The proofs for this theorem and its tightness can also be found in [48]. We provide an
example here that illustrates the scheduling test using a geometrical explanation and in
addition proves the tightness of the bound of (Equation 4.1). Assume five tasks to be
scheduled on an m = 4 processor machine. T1 to T4 have equal periods of Pi = 6 and
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equal computation times of Ci = 2, respectively. Task T5 has also a period of P5 = 6
and a computation time of C5 = 4. As EDF may schedule tasks with equal deadlines
in arbitrary order, Figure 4.2 presents a valid EDF schedule. From time 2 on, T5 is
the only active task which results in idle times for three processors. An infinitesimal
increase of the computation times of tasks T1 to T4 to Ci = 2 + 6

4ε would cause task T5

to miss its deadline. The theorem condition is tight, since:

∀ε > 0 : UT (Γ) = 2 + ε > UT
max + m(1− UT

max) = 2 (4.2)

Theorem 2 limits the maximum utilization a feasibly schedulable task set can have in
dependence of the maximal utilization UT

max and the number of processors m. This
limit can be derived by accumulating the utilization-rectangles shown in the utilization
diagram on the right side of Figure 4.2. The task with the highest time utilization
occupies a 1× UT

max rectangle, while all other tasks together occupy a m× (1− UT
max)

rectangle. Adding both terms derives the upper bound on U(Γ) shown in Theorem 2.
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Figure 4.2: EDF multiprocessor schedule

4.1.3 Schedulability Analysis for EDF-FkF

This section presents a scheduling test for the EDF-FkF algorithm applied to a periodic
task set executing on an RHD. It is a sufficient but not necessary condition, i.e., it will
reject any task set that EDF-FkF fails to schedule on the considered RHD, but may also
reject task sets that could indeed be feasibly scheduled by EDF-FkF. Since EDF-NF is
superior to EDF-FkF, the theorem holds for both algorithms.

Theorem 3 (EDF-FkF scheduling condition). Any periodic task set Γ can be feasibly
scheduled by EDF-FkF onto an RHD H with area A(H) ≥ Amax, if:

∀Tk ∈ Γ : (4.3)
US(Γ) ≤ (A(H)−Amax) ·

(
1− UT (Tk)

)
+ US(Tk)
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where Amax is the largest area of all tasks in Γ.

The proof of Theorem 3 follows a resource augmentation approach [81] and is closely
related to the multiprocessor scheduling test of [48] which we have just discussed in
Section 4.1.2. We will proceed in three steps:

1. We construct a theoretical multi-RHD machine π, on which a given task set Γ can
be feasibly scheduled by some algorithm OPT (Section 4.1.3.1).

2. We calculate the required size of a (unit-speed) single-RHD machine H such that
any algorithm with a property called α-work-conserving, applied to the task set Γ
does at any time at least as much work on the task set Γ as the algorithm OPT
on the multi-RHD machine (Section 4.1.3.2).

3. We prove that EDF-FkF fulfills the α-work-conserving property and show, that
it produces a feasible schedule for Γ on H (Section 4.1.3.3).

4.1.3.1 Machine Definitions

First, we refine the RHD model by defining a speed factor for an RHD. While real
devices do have different speed grades, we use speed here purely as a means to construct
the proof for Theorem 3.

Definition 4 (RHD). An RHD H is a processing device with area A(H) and speed
S(H). It can execute a set of jobs R simultaneously, iff

∑
Ji∈R A(Ji) ≤ A(H). If a job

Ji is in execution on H for t units of time, it completes S(H) · t units of its execution
requirement, i.e., of its computation time Ci. We define the computing capacity of H
as Cap(H) = A(H) · S(H).

Definition 5 (multi-RHD). A multi-RHD π is a set of RHDs {H1,H2, . . . }, each with
its own area A(Hj) and speed S(Hj). At each point of time, each RHD Hj can execute
its individual set Rj of jobs, iff

∑
Ji∈Rj

A(Ji) ≤ A(Hj) for all Hj ∈ π. The capacity of
π is defined as Cap(π) =

∑
Hj∈π Cap(Hj).

Now we are able to define a specific multi-RHD machine where for each task an RHD
is reserved that matches exactly the task’s area and has a speed which fully utilizes the
device:

Definition 6 (feasible-multi-RHD). For a given periodic task set Γ, we define a multi-
RHD π with capacity Cap(π) = US(Γ) such that for any task Ti ∈ Γ there is an RHD
Hj ∈ π with A(Hj) = Ai and S(Hj) = UT (Ti). Algorithm OPT assigns each task Ti to
its corresponding RHD Hj.

By construction, all task instances will meet their deadlines under OPT on this multi-
RHD machine.
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4.1.3.2 Work Done by Algorithms

A uniprocessor scheduling algorithm is work-conserving, if it never idles the processor
while there are any active jobs left in the ready queue. In the same way, [48] extended
the definition to identical multiprocessors: a scheduling algorithm for identical multi-
processors is work-conserving, if it never idles any processor while there are any active
jobs in the ready queue. By these definitions, EDF is work-conserving for both the
uniprocessor and the identical multiprocessor model.

We now apply the concept of work-conservation to RHD machines. In an RHD machine
the utilization of the device depends on the areas of the jobs. Therefore, we base our
definition of work-conserving on the minimal utilized RHD area:

Definition 7 (α-work-conserving). An algorithm for scheduling jobs onto an RHD H is
said to be α-work-conserving, iff it utilizes at least a fraction α of the device area A(H)
whenever there are active jobs waiting in the ready queue. In an overload situation
there are tasks in the ready queue waiting for execution. In contrast, in an underload
situation all active jobs are running.

As a next step, we define a function W that captures the amount of work done on a
given job or job set by some algorithm on some machine.

Definition 8 (Work-done function). A job with computation time Ci and area Ai rep-
resents Ci · Ai work. If the job has been executed for t time units on an S(H) speed
RHD, the work that has been done on this job is t · S(H) · Ai. Let I denote any set of
jobs and π any multi-RHD platform. For any algorithm alg and time instance t ≥ 0,
let W (alg, π, I, t) denote the amount of work done on jobs of I over the interval [0, t),
when I is scheduled by alg on π.

The following lemma states that on a specific single RHD H, an α-work-conserving
algorithm will never do less work than the algorithm OPT on the reference platform π
of Definition 6.

Lemma 2. Let Γ be a periodic task set with at least two tasks and UT
max < 1. Let I be

the related set of jobs produced by Γ. Let π and OPT be the multi-RHD machine and
scheduling algorithm according to Definition 6. Further, let H be a single RHD with
speed S(H) = 1. If

∀Hk ∈ π : α ·A(H) ≥ Cap(π)− Cap(Hk)
1− S(Hk)

(4.4)

the work done on I until any point in time t ≥ 0 by any α-work-conserving algorithm
αWC on RHD H is never less than the work done on I by algorithm OPT on the
multi-RHD π:

W (αWC, H, I, t) ≥W (OPT, π, I, t) (4.5)

Proof. Suppose that while Equation 4.4 holds, in contradiction to Lemma 2 there exists
a time instance t0 such that

W (αWC, H, I, t0) < W (OPT, π, I, t0), (4.6)
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i.e., algorithm αWC does less work on H than algorithm OPT on π. Then there must
exist at least one job Tk,j with release time rk,j < t0 that has not finished execution at
time t0, and during the interval [rk,j , t0) the algorithm αWC did strictly less work than
algorithm OPT .

According to Definition 7 the single RHD machine is either in overload or underload
situation. Note that a fully utilized RHD with an empty ready queue denotes an under-
load situation. Let x denote the portion of time in interval [rk,j , t0) where the system is
overloaded, and y the portion where it is underloaded.

Considering job Tk,j during time interval [rk,j , t0), we can observe that:

� Algorithm αWC executes Tk,j for at least y time units, i.e., it does at least y ·Ak

work on Tk,j .

� Algorithm OPT executes Tk,j for at most x+y time units, i.e., OPT does at most
(x + y) · S(Hk) ·Ak work on Tk,j .

� By our contradiction assumption, OPT performs more work on Tk,j than αWC:

(x + y) · S(Hk) ·Ak > y ·Ak (4.7)

Now we consider the work done on the entire set of jobs I during interval [rk,j , t0). We
can observe that:

� The overall work done by algorithm αWC on H is at least x·α·A(H)+y·Ak. During
overload the RHD is utilized by at least a fraction of α and during underload at
least Tk,j must be executing since it has not finished until t0.

� The overall work done by algorithm OPT on π is at most (x + y) ·Cap(π), which
corresponds to a full utilization of all RHDs.

� By our contradiction assumption, OPT performs more work on I than αWC:

(x + y) · Cap(π) > x · α ·A(H) + y ·Ak (4.8)

Now we show that Equations 4.7 and 4.8 cannot be true, if Equation 4.4 in Lemma 2
holds. To that end, we multiply Equation 4.7 by (α·A(H)

Ak
−1) and add it to Equation 4.8:

(
α ·A(H)

Ak
− 1) · (x + y) · S(Hk) ·Ak + (x + y) · Cap(π) >

(
α ·A(H)

Ak
− 1) · y ·Ak + x · α ·A(H) + y ·Ak (4.9)

[(
α ·A(H)

Ak
− 1) · S(Hk) ·Ak + Cap(π)](x + y) > α ·A(H)(x + y) (4.10)
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Cap(π)− Cap(Hk) > α ·A(H) · (1− S(Hk)) (4.11)

Equation 4.11 contradicts the condition of Equation 4.4. Hence, the proof assumption
must be wrong and Equation 4.5 holds which proves the lemma.

4.1.3.3 EDF Feasibility

As the last step, we will show that EDF-FkF is an αWC algorihtm.

Lemma 3. EDF-FkF is an α-work-conserving algorithm, with

α = 1− Amax

A(H)
, (4.12)

where Amax is the largest of all task areas.

Proof Sketch. The lemma states that in an overload situation, at most Amax area of the
RHD stays idle. Assume, in contradiction, that EDF-FkF selects the first k jobs out of
the list of active jobs Q = J1, . . . , Jm for execution, such that the amount of free area
A(H) −

∑k
i=1 Ai would be greater than Amax. In this case, the next ready job Jk+1

could also be executed in addition to the first k tasks as its area is bound by Amax.
Then, the assumption must be wrong.

Proof of Theorem 3. We have made the following observations:

1. For the special case, that Γ contains a task Tk with UT (Tk) = 1, the condition of
Theorem 3 simplifies to US(Γ) ≤ US(Tk) and can only be fulfilled for task sets
with only one task. Obviously, this task will always meet its deadlines.

2. For the general case we know from Definition 6, that for any task set Γ with
UT

max < 1 there exists a multi-RHD π with Cap(Hk) = US(Tk) on which Γ can be
feasibly scheduled by OPT .

3. We know from Lemma 2 that the work done until some time t ≥ 0 by any α-work-
conserving algorithm on H is at least as much as the work done by OPT on π.
The area of the single RHD H is determined according to Equation 4.4.

4. We know from Lemma 3 that EDF-FkF is α = (1−Amax
A(H) ) -work-conserving. Hence

Equation 4.4 holds for EDF-FkF.

5. We know by definition that the work done by EDF-FkF is always on the most
urgent jobs, i.e., the ones with the closest deadlines. It remains to show, that as
the work done by EDF-FkF is i) never less than the work done by OPT on π and
ii) always done on the most urgent jobs, all jobs must meet their deadlines under
EDF-FkF on H. Let I be the set of jobs indexed by decreasing EDF-FkF priority
(non-decreasing deadlines). Considering only the scheduling of {J1}, EDF-FkF
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4.1 Global Scheduling

clearly meets the deadline since it does at least the same work until d1 than
the algorithm OPT . Assume the EDF-FkF schedule of the set {J1, . . . , Jk} ⊂ I
is feasible. The EDF-FkF schedule of the increased set {J1, . . . , Jk+1} will be
equivalent to the former one, except for job Jk+1, thus J1 to Jk will still meet
their deadlines. Since by time dk+1, EDF-FkF has done at least the same work
than OPT, also Jk+1 meets its deadline. It follows by induction, that all jobs of I
meet their deadlines under EDF-FkF on H.

The condition of Theorem 3 is derived from Equation 4.4 by replacing Cap(·) by US(·),
S(·) by UT (·), Hk by Tk and, finally, substituting α according to Equation 4.12.

4.1.3.4 Example Illustrating Tightness of the EDF-FkF Scheduling Condition

This subsection gives an example that illustrates an EDF-FkF schedule and shows that
the condition of Theorem 3 is tight.

Ti Pi Ci Ai UT (Ti) US(Ti)

T1 20 11 + 20ε 3 0.55 + ε 1.65 + 3ε
T2 20 11 + 20ε 2 + ε 0.55 + ε 1.1 + 2.55ε + ε2

T3 20 20ε 3 ε 3ε
T4 20 9 1 0.45 0.45

3.2 + 8.55ε + ε2

Table 4.1: Example task set Γ̂

Table 4.1 shows a periodic task set Γ̂ to be scheduled by EDF-FkF onto an RHD H with
A(H) = 8. Let ε << 1 be a small, but positive number. An example schedule is shown
in Figure 4.3. Note that job T4,1 does not start execution before T3,1 has started and,
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Figure 4.3: EDF-FkF schedule of Γ̂
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therefore, will miss its deadline by ε time units. Evaluating the condition of Theorem 3
for all k shows that task T4 is critical, i.e., for k = 4 any infinitesimal positive ε breaks
the scheduling condition.

∀k : US(Γ) ≤ (A(H)−Amax) · (1− UT (Tk)) + US(Tk)

k = 1 : 3.2 + 8.55ε + ε2 ≤ 3.85− 2ε

k = 2 : 3.2 + 8.55ε + ε2 ≤ 3.35− 2.45ε + ε2

k = 3 : 3.2 + 8.55ε + ε2 ≤ 5− 2ε

k = 4 : 3.2 + 8.55ε + ε2 > 3.2

4.1.4 Conclusion on global EDF

We have proposed two adaptations of the global EDF scheduling rule for our application
model, namely EDF-FkF and EDF-NF. The schedulers are called global, since a certain
job is allowed to execute at any location on the RHD and moreover, after preemption
it may resume its execution at a different location. We have been able to develop a
scheduling condition, which guaranties that all tasks of a periodic task set will hold
their deadlines. The condition can be evaluated in linear time and is valid for both
algorithms. How well the algorithm performs will be analyzed in Chapter 5.

The next section will introduce our second scheduling method, which is an adaptation
of partitioned multiprocessor scheduling approaches to our considered RHD execution
model.
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4.2 Partitioned Scheduling

4.2 Partitioned Scheduling

In the context of multiprocessors, a non-partitioned or global schedule is one, where
different instances of a periodic task can be executed on different processors and even
preempted task instances may migrate to another processor before resuming execution.
In contrast, in a partitioned schedule, all instances of a task are executed on the same
processor. In this section we apply the concept of partitioned scheduling to our RHD
execution model. We define a partitioned schedule and the according problem of finding
the least resource consuming partitioning, which still guarantees a feasible task sched-
ule. To solve this problem, we apply integer linear programming as well as a heuristic
approach.

4.2.1 Partitioned Scheduling on RHDs

The concept of partitioned scheduling can be applied to our RHD execution model. We
present the following definition:

Definition 9 (partitioned schedule). A schedule R of a set of jobs I is said to be
partitioned by χ, if the following statements hold:

1. χ = {G1, G2, . . . , Gm} is a partitioning of I. That is, χ is a set of disjoint subsets
of I, called partition-blocks, such that the union of all partition-blocks in χ results
in I.

2. At any point in time, at most one job of each partition-block is in execution on
the reconfigurable device. This can be formally expressed by:

∀t ≥ 0 : R(t) ∈ G1 ×G2 × · · · ×Gm (4.13)

Each partition block is exclusively assigned a certain area of the reconfigurable device.
The area requirement of a partition block A(Gj) is determined by its largest task; the
required overall device area A(χ) is given by the accumulated area over all partitions:

A(Gi) = max
Jk∈Gi

(Ak), A(χ) =
∑
Gi∈χ

A(Gi) (4.14)

Most of the time we are interested in pure periodic task sets Γ. In order to apply results
from uniprocessor scheduling of periodic task sets to our model, it is most useful to
consider the case that all instances of a periodic task belong to the same partition-
block. Hence we use the following definition, when considering periodic task sets:

Definition 10 (periodic partitioned schedule). If the jobs of I are instances of periodic
tasks, a schedule R partitioned by χ is said to be periodic partitioned, if for each periodic
task Ti all of its instances Ti,j belong to the same partition-block.
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4 Three Scheduling Algorithms

We use a simplified notation for the partitioning χ of a period partitioned schedule R: If
for instance all task instances of T1 and T2 belong to the partition-block Gi, we simply
write Gi = {T1, T2} rather than writing Gi = {T1,1, T1,2, . . . , T2,1, T2,2, . . .}. Also we use
the notation T1 ∈ Gi rather than T1,j ∈ Gi. Hence, Gi denotes a set of periodic tasks,
rather than a set of instances of periodic tasks.

Since each partition-block presents an independent task system of its own, we can easily
formulate a test whether a given partitioned schedule is feasible by applying the basic
results from single-processor EDF scheduling theory:

Lemma 4 (EDF feasible periodic partitioned schedule). Let R be a schedule of a periodic
task set Γ with periodic partitioning χ, where the tasks of each partition Gi ∈ χ are
scheduled separately by EDF. The schedule is feasible on H if:

� A(χ) ≤ A(H), i.e., all partitions fit onto the device and,

� ∀Gi ∈ χ : UT (Gi) ≤ 1, i.e., all partitions have a time utilization of less then 100%.

Proof. The tasks of each partition-block can be separately scheduled by EDF, same as
in a uniprocessor system. Since the EDF uniprocessor utilization bound holds for all
partitions, all deadlines are met.

Ti Pi Ci Ai UT (Ti) US(Ti)
T1 4 2 1/2 1/2 1/4
T2 6 5 1/4 5/6 5/24
T3 12 3 3/4 1/4 3/16
T4 12 2 1/4 1/6 1/24

1.75 0.69

Table 4.2: Example task set Γ∗

To illustrate an example of an EDF periodic partitioned schedule, consider the example
task set Γ∗ of Table 4.2. Let some algorithm partition the task set to two partition-
blocks, e.g. χ = {G1 = {T1, T3, T4}, G2 = {T2}}. The left-hand side of Figure 4.4 shows
the partitioning χ and illustrates the division of the device area. The according parti-
tioned EDF schedule R is shown on the right-hand side of Figure 4.4. Both partition-
blocks are scheduled using a separate EDF scheduler. Since both partition-blocks have
a time utilization of less than 100% the schedule is feasibly:

(UT (G1) = 1/2 + 1/4 + 1/6 ≤ 1, UT (G2) = 5/6 ≤ 1) (4.15)

Note, that in the schedule, the task T4 cannot execute in parallel to T1 even if there
would be enough free area, since by Definition 9 no more than one task of each partition
can execute simultaneously.

Based on Lemma 4 we are able to define an optimization problem in order to find
optimal partitioned schedules. To this end, we formulate the problem of finding the
least resource-consuming EDF Feasibly Partitioned Schedule (EFPS):
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Figure 4.4: Example partitioning of Γ∗ and the according schedule

Definition 11 (EFPS problem). Given a periodic task set Γ, find:

� a partitioning χ of Γ,

� subject to ∀Gi ∈ χ : UT (Gi) ≤ 1,

� minimize A(χ)

Solving the EFPS problem answers directly the question of the smallest device on which
Γ can be executed. Γ can be feasibly scheduled on any device where A(H) ≥ A(χ)
holds. From the resulting partitioning χ, we can easily derive the scheduling function
R by applying a separate EDF scheduler to the tasks of each partition-block.

4.2.2 Relation to 2-Dimensional Packing Problems

The EFPS problem (Definition 11) is equivalent to the Two-Dimensional Level Strip-
Packing Problem (2LSP)[73], which is a variant of the Two-Dimensional Strip Packing
(2SP) problem. In 2SP, a set of rectangular items is packed into a strip of given width
but infinite height such that the height of the required strip is minimized. The packing
must be non-overlapping, orthogonal, and without rotation of the rectangles. In the
2LSP variation of 2SP, the rectangular items have to be packed in rows forming levels.
The bottom of the first level is the bottom of the empty strip. The bottom of each other
level is determined by a horizontal cut line on top of the highest item in the previous
level. Within a level, items are not allowed to be packed on top of each other.

In Definition 11, the tasks Ti can be modeled as rectangular items where the time utiliza-
tion factor UT (Ti) corresponds to the rectangle width and the area A(Ti) corresponds
to the rectangle height. The width of the strip is set to one, according to the maximal
allowed time utilization of an EDF schedule. Each slot of the reconfigurable device –
and the set of tasks Gi assigned to it – corresponds to one level of the packing. Finally,
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the required device area corresponds to the height of the strip. See an example of tasks
drawn as rectangles and packed in levels in the utilization diagram on the left side of
Figure 4.4.

In the following we will study two approaches to solve the EFPS problem: The first
one is to solve EFPS optimally by Integer Linear Programming (ILP), which seems to
be reasonable since efficient ILP models which have been successfully applied to 2LSP
problems of interesting size have been proposed recently [73]. Since solving an ILP
cannot be done in polynomial time, our second approach is a simple heuristic which has
been proposed to solve two-dimensional packing problems. We analyze the algorithm
in the context of our general scheduling problem described in Chapter 3, and derive
a utilization-based scheduling condition which allows a qualitative comparison to our
other approaches.

4.2.3 Optimal Partitioning by ILP

We can solve our EFPS problem optimally by coding the problem as an integer linear
program and apply a standard solver tool. In an ILP model, we formulate the problem
by defining a set of integer decision variables, a set of linear constraint equations and a
linear cost function. Formally, an ILP can be formulated in the following form:

Given a rational matrix A, a rational constraint vector b, and a rational cost vector c,
determine

{max c · x|A · x ≤ b, x is integer}. (4.16)

Within this work, ILP-models are never written in the form of Equation 4.16, but use
a more readable form were the cost function and the multiple constraint equations are
separated according to their meaning.

On modeling the EFPS problem, a straight forward way would be to introduce binary
decision variables xl,i that indicate, weather task Ti is packed into partition-block Gl.
The constraint that time-utilization of a partition-block is bounded by 1 (see Defini-
tion 11) could be expressed by

∑n
1 UT (Ti) ·xl,i ≤ 1 for all l ∈ {1, . . . , n}. However, using

such simple coding of the decision variables leads to two problems:

� There is no straight forward way to model the cost function.

� The model contains much redundancy. E.g. it is irrelevant for the EFPS solution, if
some set of tasks is packed into partition-block 1 or into partition-block 2, but this
results in different configurations of the ILP decision variables. Such redundancy
in coding can cause a large increase in time required by the ILP solver tool.

Therefore, we adopt the slightly more complicated but more efficient ILP model for 2LSP
proposed by Lodi at el. [73]. According to the model of Lodi, we make the following
basic assumptions without loss of generality:
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Order of tasks: The tasks Ti ∈ Γ, i ∈ {1, . . . , n} are sorted and numbered by non-
increasing area, such that:

A(Ti) ≤ A(Ti+1), i = 1, . . . , n− 1. (4.17)

Order of partition blocks: The task Ti having the largest area within a partition-block
is said to initialize the partition-block. The index i is also used to index this
partition-block. I.e., if the largest task in a partition-block is Tl, the partition-
block is denoted by Gl.

It follows, that a partitioning χ has n = |Γ| potential partition-blocks G1 . . . Gn

(some maybe empty), and that the partition-blocks are sorted by non-increasing
areas, i.e. A(Gl) ≥ A(Gl+1). Further, the area of a partition-block is equal to the
area of the task that initializes the partition-block, i.e., A(Gi) = A(Ti).

For any task Ti ∈ Γ we can therefore differentiate the following cases:

� Ti initializes a partition-block, i.e. Ti ∈ Gi, or

� Ti is packed within a partition-block with greater area, forcing the partition-block
index to be smaller than i. I.e. Ti ∈ G1 ∪ · · · ∪Gi−1.

The assumptions made are without loss of generality but reduce the search space con-
siderably, since a task Ti cannot be assigned to an arbitrary partition block Gl.

When modeling the ILP, the binary decision variables xl,i are used to indicate whether
task Ti is packed into partition block Gl or not:

xl,i =

{
1 if Ti ∈ Gl

0 if Ti /∈ Gl

l = {1, . . . , n}, i = {1, . . . , n : i ≥ l} (4.18)

Index l ranges from 1 to n, since there can be at most n partition-blocks. Index i ranges
from 1 to n, but due to the observations made above, i is always greater or equal to l.
Therefore, the ILP model uses n · (n + 1)/2 binary variables.

Note, that the variables xl,i with l = i indicate, whether Gl is initialized or not. If
xl,l = 1 the partition-block Gl is said to be initialized and its largest task is Tl. If
xl,l = 0, Gl is uninitialized and empty:

A(Gl) =

{
A(Tl) if xl,l = 1
0 if xl,l = 0

l = {1, . . . , n} (4.19)

The final binary ILP model is given in Equation 4.20 and has three main components:

1. The cost function accumulates the area required by all non-empty partition-blocks,
hence minimizing the overall area A(χ).
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2. The second equation ensures that each task is packed into one and only one
partition-block.

3. The third equation enforces EDF schedulability. Each non-empty partition-block
must have a time-utilization less than or equal to 1, i.e.,UT (Gl) ≤ 1. Note,
that this equation also ensures, that no task can be packed into an uninitialized
partition-block, i.e., into a partition-block with xl,l = 0.

The final ILP can be written as:

min
n∑

l=1

A(Tl) · xl,l

i∑
l=1

xl,i = 1, i ∈ {1, . . . , n}

m∑
i=l

UT (Ti) · xl,i ≤ 1 · xl,l, l ∈ {1, . . . , n}

(4.20)

Let n be the number of tasks in Γ, then the complexity of the corresponding ILP model
accounts to n · (n + 1)/2 binary variables and 2 · n constraints. Such model complexity
is practical. We were able to optimally solve most problem instances with a size of n
up to 30 in less than 15 seconds, to provide a rough appraisal. To solve the ILP model,
we employed the lp solve library [15] version 4.0 on a 2.8 GHz Pentium 4 machine.

Example 2. To illustrate the ILP model, Figure 4.5 visualizes an example partitioning
of a task set Γ = {T1, T2, T3, T4}, that has been partitioned into two partition-blocks,
G1 = {T1, T2, T4} and G2 = {T3}. The according variable configuration is shown in the
table. T1 initializes partition-block G1 and therefore x1,1 = 1. The other tasks T2, T4 in
G1 imply, that x1,2 = 1 and x1,4 = 1. T3 initializes partition-block G3, thus x3,3 = 1.
No tasks have been assigned to partition-blocks G2 and G4, therefore they do not exist
in χ. Note, that the variables marked with “-” are not needed, since by convention each
partition-block Gl can only contain tasks Ti with index i ≥ l.

The presented ILP (Equation 4.20), which has been adopted from [73], allows us to solve
the EFPS problem and hence find the optimal partitioned schedule for a periodic task
set. We will analyze and compare the performance of this approach to other schedulers
in Chapter 5. Moreover, this ILP model will be the basis for an extended ILP, which
allows us to solve the enhanced scheduling problem, where numerous implementation
variants for each task are considered (see Section 7.1.2).

However, since the ILP model is not practicable for task sets with n >> 30, we analyze
a fast polynomial time heuristic in the next section.
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Figure 4.5: Example of partitioning χ and the according decision variable configuration

4.2.4 Next-Fit-Decreasing-Area Partitioning

This section presents and analyzes a simple heuristic in the context of our EFPS prob-
lem. The goal is twofold: On one hand, we want to be able to apply the partitioned
scheduling approach to task sets of large size, which is impractical using the ILP model.
On the other hand, as we will see, the analysis of the heuristic will help us in the
quantitative comparison of the proposed scheduling methods.

To solve the two-dimensional packing problems 2SP and 2LSP, Coffman et al. [30]
studied the Next-Fit-Deceasing-Height algorithm. It first sorts all rectangles according
to non-increasing height. The first rectangle is packed left-justified on the bottom of the
container (first level). The next rectangle is packed on the right of the former one, if
the width of the container is not exceeded. Otherwise, the level is closed by a horizontal
line on top of the tallest rectangle. A new level is created on top of the last one, and
the rest of the items are packed in the same manner.

In [30] was shown, that for any instance of a 2SP problem, i.e. any set of rectangles X,
the packing height obtained by the Next-Fit-Deceasing-Height algorithm (denoted by
NFDH(X)) is bounded. The bound is given by

NFDH(X) ≤ 2 ·OPT (X) + 1, (4.21)

where the height of the rectangles is normalized to 1 and OPT (X) denotes the height
of an optimal packing of X.

Since a packing computed by the Next-Fit-Deceasing-Height algorithm is always done
in levels, we can use it to compute a periodic partitioned schedule that is feasible by
EDF. Since the height of the rectangles corresponds to the area of the periodic tasks,
the algorithm is called Next-Fit-Deceasing-Area (NFDA) and shown in Algorithm 3.

The NFDA algorithm has a time complexity of O(n log n), since sorting the tasks is the
most time consuming part. Hence it can be used to compute the partitioning of very
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Algorithm 3 Next-Fit-Decreasing-Area
1: procedure NFDA(Γ)
2: sort and index after non-increasing area(Γ)
3: k ← 1
4: Gk ← ∅
5: for i← 1, |Γ| do
6: if UT (Gk) + UT (Ti) ≤ 1 then . EDF utilization condition
7: Gk ← Gk ∪ Ti . add to current level
8: else
9: k ← k + 1 . open new level

10: Gk ← ∅
11: end if
12: end for
13: return χ← {G1, . . . , Gk}
14: end procedure

large task sets. In Section 5.2 we will analyze the scheduling performance of NFDA on
a set of simulation benchmarks.

Since NFDA has such low time complexity, a utilization-based scheduling condition is
not really necessary for use in praxis. If we want to test whether NFDA can feasibly
schedule a certain task set Γ onto an device H, we simply compute the partitioning and
check whether it exceeds the device area or not.

However, a utilization based test condition is useful for the further analysis. It gives us
a more general comparison to other algorithms. In particular, our concern is the com-
parison of the performance guaranteed by NFDA-partitioned-EDF to the performance
guaranteed for the global EDF schedulers by Theorem 3. It turned out in our simulation
experiments, that all task sets accepted by the global EDF scheduling test of Theorem 3
where also feasibly scheduled by NFDA-partitioned-EDF. Proving this dominance, is the
main motivation for the development of a utilization based test condition for NFDA.
The previously reported analysis and the achieved bound of Equation 4.21 is not useful
to provide a scheduling test, since the packing achieved by OPT (X) is an arbitrary
packing and not a packing in levels. Hence, OPT (X) does not provide a valid solution
for our partitioning problem. Our utilization based scheduling condition for NFDA is
presented in the next theorem:

Theorem 4 (NFDA-partitioned-EDF scheduling condition). For a periodic task set Γ
and RHD H, an EDF feasible periodic partitioning is found by the NFDA heuristic if:

US(Γ) ≤ (A(H)−Amax) · (1− UT
max) + US

max (4.22)

where Amax, UT
max, US

max are the largest area, time-utilization and system-utilization of
any tasks in Γ.

Based on Theorem 4 we will be able to to prove the following theorem, which says that
the NFDA-partitioned-EDF scheduler always outperforms the global EDF scheduling
test developed in Section 4.1.
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4.2 Partitioned Scheduling

Theorem 5 (NFDA-partitioned-EDF vs. EDF-FkF). For every periodic task set Γ
accepted by the EDF-FkF scheduling test of Theorem 3 an EDF feasibly partitioned
schedule is found by the NFDA heuristic.

Proof of Theorem 4. Consider an arbitrary partitioning χ of a task set Γ, which has
been computed by NFDA. We derive a lower bound on the total system utilization
US(χ) of the tasks within partitioning χ, as a function of the required device area A(χ)
and some other task set parameters:

US(χ) ≥ f(A(χ), Amax, UT
max, US

max) (4.23)

Replacing A(χ) by an actual device area A(H), the function f(· · · ) presents an upper
bound on the task set’s system utilization that is guaranteed to be feasibly packed:

US(Γ) ≤ f(A(H), Amax, UT
max, US

max) (4.24)

To illustrate the system utilization packed in the various partition-blocks (also called
levels), Figure 4.6 shows an example partitioning by NFDA. Since tasks are sorted with
respect to non-increasing areas before being partitioned, it follows that A(Gl+1) ≤ A(Gl)
and that the smallest task in a level l has at least area A(Gl+1). Moreover, let xl denote
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Figure 4.6: Example partitioning of NFDA for (a) a task set with UT
max ≤ 0.5 and (b) a

task set with UT
max > 0.5

71
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the fraction of unused time-utilization in level a l. From all tasks in a level l, the first
one has area A(Gl) and the other tasks, if any, have at least an area of A(Gl+1). The
first task in a level l has at least a time utilization equal or greater then xl−1, since
otherwise the task would have been packed into level l − 1. The total time utilization
in level l is 1− xl. Thus, the amount of system utilization packed into level Gl given by
(area Ötime-util.) of the first task + (area Ötime-util.) of other tasks accounts to: 1

∀l ≥ 2 : US(Gl) ≥ A(Gl) · xl−1 + A(Gl+1) ·max{(1− xl − xl−1), 0}
≥ A(Gl) · xl−1 + A(Gl+1) · (1− xl − xl−1)

(4.25)

The system utilization for level l = 1 is slightly different, since we cannot guaranty any
time-utilization for the first task, i.e. x0 is undefined since there is no level below the
first level. Let x0 be a value in ]0, 1] and US(0, x0) be the cumulative system-utilization
of tasks packed in level 1 from the left boarder up to x0, illustrated by the dotted box
in Figure 4.6. The cumulative system-utilization of level 1 is given by the US(0, x0) +
(area Ötime-util.) of other tasks, if any. It accounts to:

US(G1) ≥ US(0, x0) + A(G2) ·max{(1− x1 − x0), 0}
= US(0, x0) + A(G2) · (1− x1 − x0) + A(G2) ·max{(x1 + x0 − 1), 0}︸ ︷︷ ︸

%

(4.26)

Note, that % is a correction term and is equal to zero, as long as x0 + x1 ≤ 1.

Summing up the system utilization of the first level (Equation 4.26) and all other levels,
Equation 4.25 results in the lower bound on the overall system utilization of the entire
packing:

∑
Gl∈χ

US(Gl) ≥ US(0, x0) + % +
m∑

l=2

(1− xl−2) ·A(Gl) (4.27)

The maximal time utilization of a task in Γ, denoted by UT
max, presents an upper bound

to the xl variables in Equation 4.27. Therefore we can replace them in Equation 4.27
and get a new lower bound on the system utilization in Equation 4.28, which directly
leads to Equation 4.29.2 Note, that % = 0 for UT

max ≤ 0.5, but becomes positive for
UT

max > 0.5.

US(χ) ≥ US(0, UT
max) + % +

m∑
l=2

(1− UT
max) ·A(Gl) (4.28)

⇔

US(χ) ≥ US(0, UT
max) + % + (1− UT

max)[
m∑

l=1

A(Gl)−A(G1)] (4.29)

1We define A(Gl) = 0 : l > m, i.e. the area of non existing levels above the top level is zero. Hence, the
system utilization of the top level is according to Equation 4.25 given by US(Gm) ≥ A(Gm) · xm−1.

2In our assumptions x0 can take any value from ]0, 1]. Hence we are allowed to choose x0 = UT
max.
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4.2 Partitioned Scheduling

Substituting
∑m

l=1 A(Gl)→ A(χ) and A(G1)→ Amax leads to:

US(χ) ≥ US(0, UT
max) + % + (1− UT

max)(A(χ)−Amax) (4.30)

Now let Tk be the task with greatest system utilization, i.e. US(Tk) = US
max. We

distinguish between two cases, where Tk can be packed by NFDA:

1. Tk is packed in the first level within the interval [0, UT
max]. Obviously, it follows

US(0, UT
max) ≥ US(Tk).

2. Tk is placed only partially within the interval [0, UT
max] of the first level, or placed

in a different level. Then, all tasks packed within the interval [0, UT
max] have an

area greater than or equal to Ak, since tasks are packed by decreasing areas.

a) Level 1 is filled from left to right at least up to UT
max. Hence, the system

utilization is at least as much as that of Tk, i.e. US(0, UT
max) ≥ Ak · UT

max ≥
US(Tk). This case is illustrated in Figure 4.6-(a).

b) Level 1 is not filled up to UT
max, which can only be the case, if UT

max > 0.5. In
this case, level 1 is at least filled up to (1− UT

max) and hence US(0, UT
max) ≥

Ak · (1− UT
max). But still % = A(G2) ·max{(2UT

max − 1), 0} has to be added,
and is greater than zero in this case. Since Tk is placed in level 2 or above,
A(G2) ≥ Ak. Adding it up, results in:

US(0, UT
max) + % ≥ Ak · (1−UT

max) + Ak · (2UT
max − 1) = Ak ·UT

max ≥ US(Tk)
(4.31)

This case is illustrated in Figure 4.6-(b).

Hence, in all cases we can substitute US(0, UT
max) + % by US

max in Equation 4.30, which
leads to the lower bound on US(χ) and presents the upper bound on US(Γ) of Theorem 4.

US(χ) ≥ US
max + (1− UT

max)(A(χ)−Amax) (4.32)

⇔ US(Γ) ≤ US
max + (1− UT

max)(A(H)−Amax) (4.33)

Now that we have proven the scheduling condition for NFDA-partitioned-EDF we are
ready to prove that this condition dominates our scheduling condition for the global
EDF schedulers (Theorem 5).

Proof of Theorem 5. The upper bound on the system utilization of the EDF-FkF schedul-
ing condition in Theorem 3 is given by:

∀Tk ∈ Γ : US(Γ) ≤ (A(H)−Amax) ·
(
1− UT (Tk)

)
+ US(Tk) (4.34)
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On the other hand, the bound given for the NFDA-partitioned-EDF algorithm in The-
orem 4 is given by:

US(Γ) ≤ (A(H)−Amax) · (1− UT
max) + US

max (4.35)

Let w.l.g. T1 be the task with the maximal time utilization, i.e. U(T1) = UT
max. Then

the EDF-FkF scheduling condition is bounded from above by:

US(Γ) ≤ (A(H)−Amax) ·
(
1− UT

max

)
+ US(T1) (4.36)

Since US(T1) ≤ US
max, Equation 4.36 is bounded from above by the NFDA-partitioned-

EDF scheduling condition of Equation 4.35. Therefore, the bound given by the NFDA-
partitioned-EDF scheduling condition is always greater than that given by the EDF-FkF
scheduling condition.

4.2.5 Conclusion on Partitioned EDF

In this section we adapted the partitioned approach for multi-processor systems to our
RHD execution model. A task set is partitioned off-line. At runtime, the tasks of each
partition-block are executed by a separate EDF scheduler on a separated part of the
device area. Hence, the challenge is to find a feasible partitioning of the task set. We
proposed two methods:

1. The optimal partitioning, i.e. the partitioning that requires the least amount of
resources but still guarantees all deadlines, is computed via integer linear pro-
gramming. This method is feasible for task sets containing up to about 30 tasks.

2. In order to partition sets of >> 30 tasks, we studied the simple Next-Fit-Decreasing-
Area heuristic. We derived a utilization based scheduling test, which is important
for the analytic comparison of the global EDF vs. the partitioned scheduling ap-
proaches. In particular we showed that all task sets accepted by our global EDF
scheduling condition will also be scheduled by NFDA-partitioned-EDF.

It would be interesting, to apply further heuristics, such as the First-Fit-Decreasing-
Height (FFDH) which has been shown to perform always better than NFDH [30]. How-
ever, we omit a deeper analysis of FFDH, since for our analytic comparison to the global
EDF schedulers our results from the NFDA analysis have been sufficient. In particu-
lar we showed with Theorem 5 that NFDA-partitioned-EDF schedules all the task sets
accepted by our global EDF scheduling test (and even more). A detailed analysis of
the performance achieved by the partitioned schedulers follows in Chapter 5. The next
section will introduce our third and last scheduling method.
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4.3 Server-Based Scheduling

4.3 Server-Based Scheduling

Periodic servers are a well-known concept in real-time scheduling [25](p. 111 ff.). They
are usually used to serve aperiodic requests of application tasks in a system mixed of
periodic and aperiodic tasks. Here we only keep the basic idea, that a periodic server
executes application tasks, and hence use the same term server. However, we do not
challenge the execution of mixed periodic / aperiodic task sets, but use periodic servers
to create a feasible schedule for the periodic hardware tasks of our execution model.
Within a server, several application tasks execute in parallel. The aim is to find servers
that can be sequentially executed on an RHD and hence no partial reconfiguration is
required. This makes the method applicable for a wide set of reconfigurable devices.

We present a scheduling technique called Merge Server Distribute Load (MSDL). To
construct a schedule, the MSDL algorithm uses the concept of server tasks, or briefly
servers. A server is a periodic task that reserves execution time and RHD area for other
tasks. We define a server as Si = (Vi, Pi, Ci, Ai), where Vi = {Ta, Tb, . . . } ⊆ Γ is a set of
tasks for which execution time and area is reserved. Pi, Ci, Ai denote the period, the
computation time and the area of the server, respectively. The area of a server is set
equal to the sum of the areas of tasks represented by the server:

Ai =
∑

Tk∈Vi

Ak (4.37)

Consequently, whenever the server Si is running, all tasks it represents are running.

The rationale of the MSDL algorithm is to construct a set of servers Ω from the original
task set Γ, such that any feasible schedule for Ω implies a feasible schedule for Γ. More
specifically, MSDL constructs a set of servers Ω by properly merging tasks together for
parallel execution. The resulting servers are then scheduled for sequential execution on
the RHD with the single processor EDF algorithm. Feasibility of the resulting set of
servers is thus efficiently checked by the utilization test:

UT (Ω) ≤ 1 (4.38)

4.3.1 The Merge-Server Distribute Load (MSDL) Algorithm

Algorithm 4 shows the pseudo code for the MSDL technique. First, each of the initial
tasks is turned into a server (line 3). Then the main loop is entered in which, iteratively,
a server pair is identified (line 8) and merged (line 12) if possible. If no valid server pair
can be found anymore, the algorithm exits and returns Ω as the final set of servers
(line 10). A feasible schedule is found by MSDL, if the final set of servers has a time
utilization less or equal to one, i.e. UT (Ω) ≤ 1.

The selection of the two servers Sx and Sy that should be merged is done by calling the
function SelectBestPairToMerge() (line 8).

A pair of servers Sx and Sy is valid for a merge, if the following two predicates hold:
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� The set of represented tasks is disjoint:

Vx ∩ Vy = ∅ (4.39)

� The tasks of both servers fit together onto the RHD:

Ax + Ay ≤ A(H) (4.40)

If a valid pair of servers Sx and Sy has been selected, they are merged. This is done
by the MergeServers() function. It takes the current server set Ωold and the servers
Sx, Sy to be merged as inputs and returns the new server set after the merge. Without
loss of generality, we assume that server Sy has a shorter or equal period than Sx. A
new server Sz is created representing all tasks of the two original servers (line 16). The
period and the computation time for Sz are set equal to those of Sy. Therefore, Sz is a
full replacement of Sy, and Sy can be removed from Ω (line 19). The computation time
of Sx is reduced, since the new server Sz reserves area and computation time for the
tasks of Sx as well. The actual reduction of the computation time Cx depends on how
often the new server Sz executes within the period of Sx. A pessimistic approximation
for the reduction of Cx is given by:

takeOverT ime(Sx, Sz) = Cz(bPx/Pzc − 1) (4.41)

For the implementation of the SelectBestPairToMerge() function, several heuristics are
conceivable. In our current version we employ a greedy strategy that selects the pair
of servers giving the greatest reduction in time utilization UT (Ωold) − UT (Ωnew) per
increase of system utilization US(Ωnew)−US(Ωold).3 That is, SelectBestPairToMerge()
scans each pair of servers Si, Sj that is valid for a merge (line 28). The temporary new
server set Ωnew is computed, by merging Si, Sj . Afterwards, the profit of this merge
is computed (line 30). Finally, the SelectBestPairToMerge() function returns the pair
Si, Sj , that gains the highest profit.

For example, we apply the MSDL algorithm to an example task set of three tasks. Then,
in Section 4.3.2, we provide a more involved analysis to compute the exact computation
time reduction.

Example 3. Table 4.3 shows the set of servers Ω∗
k generated in each iteration k of

the MSDL algorithm. Initially, the servers Ω∗
0 = {S1, S2, S3} are created. In the first

iteration, S1 and S2 are selected and merged into S4. S2 receives the new computation
time C2 ← C2−2 = 3. The server with the shorter period, S1, is removed. In the second
iteration, the residual S2 and S3 are merged into S5. Not only the server with the shorter
period is removed, but also S3 since its computation time is reduced to zero. Ω∗

2 is the
final server set, since neither V4, V5 are disjunct nor A4 + A5 ≤ 1. As shown in Table
4.3, the time utilization factor UT (Ω∗

2) = 1. Consequently, Ω∗
2 can be feasibly scheduled

by EDF. The resulting schedule is shown in Figure 4.7. The figure also indicates the
original tasks of Γ∗ executed inside the servers. Compared to a global EDF-NF schedule

3Ωold denotes the set of servers before, whereas Ωnew denotes the server set after merging the selected
pair of servers.
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Algorithm 4 Merge Server - Distribute Load
1: procedure MSDL(Γ,H)
2: Ω← ∅
3: for all Ti ∈ Γ do . init
4: Si ← ({Ti}, Pi, Ci, Ai)
5: Ω← Ω ∪ Si

6: end for
7: loop
8: Sx, Sy ← SelectBestPairToMerge(Ω,H)
9: if no pair found then

10: return Ω . exit
11: end if
12: Ω← MergeServers(Ω, Sx, Sy)
13: end loop
14: end procedure

15: function MergeServers(Ωold, Sx, Sy)
16: Sz ← (Vx ∪ Vy, Py, Cy, Ax + Ay) . Py ≤ Px

17: Cx ← Cx − takeOverT ime(Sx, Sz)
18: Ωnew ← Ωold ∪ Sz . add server
19: Ωnew ← Ωold \ Sy

20: if Cx ≤ 0 then
21: Ωnew ← Ωold \ Sx

22: end if
23: return Ωnew

24: end function

25: function SeclectBestPairToMerge(Ωold,H)
26: bestProfit← 0
27: for all Si 6= Sj ∈ Ωold do
28: if Pi < Pj and Vi ∩ Vj = ∅ and Ai + Aj ≤ A(H) then . for all valid pairs
29: Ωnew ← MergeServers(Ωold, Sj , Si) . do temporary merge
30: profit← UT (Ωold)−UT (Ωnew)

US(Ωnew)+US(Ωold)
. compute profit

31: if profit > bestProfit then
32: bestProfit← profit
33: Sx ← Sj

34: Sy ← Si

35: end if
36: end if
37: end for
38: return Sx, Sy
39: end function
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of the task set, MSDL requires only two RHD programming files. Table 4.3 also lists
the system utilization factor US

i which increases over the iterations, since larger servers
will reveal more idle areas and times inside their reservations. In essence, MSDL trades
system utilization for time utilization to allow for an efficient schedulability test and to
reduce the number of RHD configurations.

Si Vi Pi Ci Ai UT
i US

i

S1 T1 4 2 1/2 1/2 1/4
S2 T2 6 5 1/4 5/6 5/24
S3 T3 12 3 3/4 1/4 3/16∑

1.58 0.65

��S1 T1 4 0 1/2 0 0
S2 T2 6 3 1/4 1/2 1/8
S3 T3 12 3 3/4 1/4 3/16
S4 T1, T2 4 2 3/4 1/2 3/8∑

1.25 0.69

��S2 T2 6 0 1/4 0 0
��S3 T3 12 0 3/4 0 0
S4 T1, T2 4 2 3/4 1/2 3/8
S5 T2, T3 6 3 1 1/2 1/2∑

1 0.88

Table 4.3: Servers generated for the example task set Γ∗ by the MSDL algorithm
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Figure 4.7: Schedule of server task set generated by MSDL

4.3.2 Exact Evaluation of Computation Time Reduction

In Equation 4.41, we made the pessimistic assumption that a server Sz with Pz ≤ Px

executes only for m = bPx/Pzc−1 times between the release time and deadline of server
Sx. Therefore, the computation time of Sx was reduced by mCz. A further reduction
of Cx is possible, if we take into account that the server instances of Sz which are not
fully contained between the release time and deadline of server Sx can still be useful.
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Figure 4.8: Case analysis of computation time reduction

The precise amount of this reduction depends on the actual phase between Sx and Sz.
Figure 4.8 illustrates the two cases that have to be distinguished:

Case A shows an example with Px = 9 and Pz = 4. Pessimistically, the server Sz

is guaranteed to execute m = b94c − 1 = 1 times between the release time and
deadline of Sx. As Figure 4.8-A illustrates, there is one instance of server Sz

being e time units too early to be included in the considered period of Sx, and
one instance of server Sz being l time units too late. In a worst-case schedule,
the server Sz executes at the beginning of its early instance and at the end of
its late instance, resulting in some wasted computation time (denoted by black
boxes) for Sx. However, some amount of the computation time of Sz may still
be useful to execute Sx, as denoted by the gray box of the first instance of Sz.
Let δ = e + l denote the amount of time of the early and late server instances
which are outside the considered period of Sx. The time δ can be computed by
δ = (m + 2) ∗ Pz − Px. Let Cel denote the computation time of the early and
late server instances, which is guaranteed to be within the considered period of
Sx. Then, Cel can be computed by Cel = max(2 × Cz − δ, 0). Therefore, in case
A the time Cel is exactly the amount by which Cx can be reduced in addition to
Equation 4.41.

Case B of Figure 4.8 illustrates the second case, where the server Sz is executed m+1
times within the considered period of Sx. In this case, δ changes to δ̃ = (m + 3) ∗
Pz −Px and Cel changes to C̃el = max(2×Cz − δ̃, 0), respectively. It follows that
in case B the time by which Cx can be reduced in addition to Equation 4.41 is
given by Cz + C̃el.
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Since we have to consider the worst case (out of case A and case B), the precise reduction
of the computation time is determined by:

takeOverT ime(Sx, Sz) = min
{

Cz(bPx/Pzc − 1) + max
[
2Cz − ((bPx/Pzc+ 1)Pz − Px)︸ ︷︷ ︸

δ

, 0
]
,

Cz bPx/Pzc+ max
[
2Cz − ((bPx/Pzc+ 2)Pz − Px)︸ ︷︷ ︸

δ̃

, 0
]}

(4.42)

4.3.3 Properties of MSDL

We designed MSDL especially for the full reconfiguration approach. Hence the number
of the required bit-streams for a schedule should be small. Here we show, that it is
bounded by the number of tasks.

Lemma 5 (Number of generated Servers by MSDL). Let Γ be a periodic task set and
Ω the set of servers generated by the MSDL algorithm. Then, the number of servers is
bounded by the number of tasks, i.e.

|Ω| ≤ |Γ| (4.43)

Proof. Initially, MSDL starts with as many servers as tasks in the task set. In every
loop iteration, one server is added to Ω but one or two servers are removed from Ω (line
19). Hence, |Ω| ≤ |Γ| will hold in each iteration.

The bounded number of generated servers is one major advantage of MSDL when it
comes to system realization. Each server can be implemented as one RHD configuration
file (bit-stream), and the configurations are scheduled and executed sequentially onto
the RHD employing a full reconfiguration model. We will discuss these realization issues
in detail in Chapter 6.

Time complexity of MSDL: The time complexity of the MSDL algorithm is polyno-
mial. Without giving a formal proof we describe how MSDL can be computed in O(n4)
time, where n is the number of tasks in Γ.

The MergeServers() function can be evaluated in O(1) time, if we assume that the union
of the task sets Vx and Vy is done by copying references.

The loop of the SelectBestPair() function iterates through all server pairs. Since the
number of servers are bounded by n, the loop has at most n2 iterations. Within the
loop body, comparing the periods, checking the area constraint, calling MergeServers()
and computing the profit would take O(1) time. Checking, whether the represented
task sets Vx, Vy are disjoint, would take O(1) as well, if we store for each server pair a
disjoint-flag. These flags can be updated, after each MergeServers() call in the MSDL
procedure. Hence, the runtime of SelectBestPair() has the order O(n2).
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The MSDL procedure itself first initializes one server for each task, which takes time of
the order O(n). After initialization, there are (n2−n

2 ) server pairs with disjunct task sets
(as many as edges in a complete graph). The main loop iterates, until no server pair
can be merged anymore. Each merge reduces the number of disjunct server pairs by at
least one. Hence the main loop runs at most (n2−n

2 ) times. The time for the loop body
is dominated by the time for the SelectBestPair() function. Hence, the total runtime of
MSDL has the order O(n4).

The MSDL worst case runtime complexity of order O(n4) is acceptable, since the servers
for a task set are constructed at design time. In practice, we have been able to evaluate
MSDL on task sets of 200 tasks and more within some minutes. If needed, the worst
case complexity can be reduced, if less time consuming heuristics for the SelectBestPair()
function are used.

4.3.4 Conclusion on Server-Based Scheduling

The main idea of server based scheduling is, to execute the original tasks within server
tasks. With the MSDL algorithm, we have presented a heuristic that computes at design
time a set of servers for a given task set. At runtime, the servers will be scheduled by
sequential EDF. Hence, the simple scheduling condition of EDF can be applied to the
set of servers. The main advantage of MSDL is, that it creates at most as many servers
as tasks existing in the original task set. Hence, we can use this approach with a simple
full reconfiguration model, for which we compile one RHD configuration for each server.

For selecting the servers to be merged, as well as for the assignment of computation
time and period to the server created in a merge, several heuristics can be developed.
However, we omit studying further heuristics for the MergeServers() function, since our
current implementation guaranties that only n servers are generated. Furthermore, for
such a greedy server generation method, our SelectBestPair() function promises the
highest scheduling performance. It may be possible to develop scheduling heuristics
that achieve a higher scheduling performance and/or create fewer servers than MSDL,
by creating the server set using meta-heuristics such as genetic algorithms or simulating
annealing. We leave this option for future work.

4.4 Chapter Conclusion

Within this chapter we have presented our three main approaches to schedule periodic
real-time tasks to RHDs. We successfully adopted the idea of global scheduling and
presented the two global EDF scheduling algorithms EDF-NF and EDF-FkF. Based on
a resource augmentation approach, we developed a linear-time scheduling condition that
holds for both algorithms.

Also the second popular multiprocessor scheduling approach, partitioned scheduling, has
been successfully adapted for our RHD execution model. We formulated the partitioning
problem and presented the ILP based optimal-partitioned-EDF and the heuristic NFDA-
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4 Three Scheduling Algorithms

partitioned-EDF to solve it.

As third method, we developed the server based approach for the scheduling of periodic
tasks and presented the MSDL heuristic. This novel approach is specially suited for
systems which do not support partial reconfiguration of the RHD.

While within this chapter we introduced, defined and provided basic analysis for each of
our three main scheduling methods, we said few about how good the methods perform.
Hence the next chapter will analyze and compare the performance of all approaches.
This is done in two ways, analytically as well as by simulation studies.
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CHAPTER 5

Comparison of Algorithm Scheduling Performance

Within this chapter we will compare the scheduling performance of the proposed algo-
rithms using two methods. First, we will present an analytic comparison in Section 5.1
and derive qualitative statements that tell us whether one algorithm dominates another
or not. Together with scheduling conditions achieved in earlier analysis within this work
we will be able to present a VENN-diagram which shows the relations among the sets
of task sets, scheduled by the various algorithms.

Second, we will present the quantitative results from numerous simulation experiments
in Section 5.2. They show which algorithm performs better in average, dependent on
various parameters of the task sets. These results support a designer in choosing the
appropriate algorithm for a particular system.

5.1 Analytical Comparison and Scheduling Anomalies

In an analytical comparison of the algorithms we are interested in whether one dominates
the other or if the algorithms have unequal scheduling power in the sense, that there
are task sets that can be feasibly scheduled by the first approach but not by the second
and vice versa.

In our further analysis, we use zalgo to denote the set of all task sets Γ feasibly scheduled
by some algorithm algo.

Partitioned EDF vs. Global EDF

Theorem 6. Neither the optimal-partitioned-EDF algorithm is dominant to EDF-NF
nor vice versa.
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5 Comparison of Algorithm Scheduling Performance

Proof. We first show, that we can construct example task sets Γ, which cannot be sched-
uled by any partitioned EDF algorithm but are feasibly scheduled by global EDF-NF
and even by EDF-FkF. Hence, we prove with our example that zEDF-FkF * zopt.-part.-EDF.

We construct the example task set ΓA of three tasks, each with the same period, e.g.
Pi = 5. The first task has an arbitrary small computation time, e.g. C1 = ε but requires
100 % of the device area, i.e. A1 = A(H) = 5. The two other tasks both require an
arbitrary small amount of RHD area, e.g. Ai = ε but have a computation time of half
their period, i.e. Ci = 2.5. The resulting task set including utilization values is shown
in Table 5.1.

Ti Pi Ci Ai UT (Ti) US(Ti)
T1 5 ε A(H) = 5 ε/5 ε
T2 5 2.5 ε 1/2 0.5ε
T3 5 2.5 ε 1/2 0.5ε

1 + ε
5 2ε

Table 5.1: Example of a task set ΓA without feasible partitioning

Clearly, no feasible partitioning of ΓA exists. We cannot execute all tasks within one
partition block, e.g. G1 = {T1, T2, T3}, since the time utilization UT (G1) exceeds 1 and
one task would miss its deadline as shown in Figure 5.1-(a) by the speckled task. Also a
partitioning with more partition-blocks such as χ = {G1 = {T1, T2}, G2 = {T3}} is not
feasible, since the partition-blocks do not fit together onto the device, i.e. A(χ) > A(H),
as shown in Figure 5.1-(a) by the hashed task.

On the other hand, ΓA will be feasibly scheduled by the global EDF-NF scheduling
algorithm as shown in Figure 5.1-(b). The reason is that once all tasks are active, EDF-

T1,1

0 1 2 3 4 5
time

T2,1

ε

T1,1

T1, T2, T3

0 1 2 3 4 5

d
e
v
i
c
e
 
a
r
e
a

time

T2,1

A(H)

ε

ε

T̃3,1

T̂3,1

d
e
v
i
c
e
 
a
r
e
a

A(H)

T3,1

T1, T2, T3 T1, T2, T3 T1, T2, T3

(a) (b)

Figure 5.1: Scheduling anomaly: A task set infeasible by any partitioned schedule, but
feasibly by global EDF-NF.
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5.1 Analytical Comparison and Scheduling Anomalies

NF will select either T1 or T2 and T3 for execution. If we assume that EDF-FkF selects
tasks instances with equal deadlines in order of their indices, ΓA will also be feasibly
scheduled by EDF-FkF.

Our observations hold for any ε between 0 < ε ≤ 2.5. Hence, we can create task sets of
any relative system utilization US(Γ)

A(H) ∈ (0, 1] which are feasibly scheduled by EDF-FkF
but infeasible by opt.-part.-EDF.

Now we prove that zopt.-part.-EDF * zEDF-NF by constructing task sets ΓB which are
feasible by the partitioning algorithm opt.-part.-EDF but infeasible by the global EDF-
NF scheduler. ΓB consists of three tasks, where T1 and T2 have an arbitrary small
computation time of e.g. C1 = C2 = ε but each requires 50% of the device area, e.g.
A1 = A2 = A(H)/2. The third task requires an arbitrary small area of A3 = ε but has
a computation time equal to its period, e.g. C3 = P3 = 5. Let the period of the tasks
T1, T2 be smaller then that of T3, e.g. P1 = P2 = 4. The resulting task set considering
a device of area A(H) = 4 is shown in Table 5.2.

Ti Pi Ci Ai UT (Ti) US(Ti)
T1 4 ε 0.5A(H) = 2 0.25ε 0.5ε
T2 4 ε 0.5A(H) = 22 0.25ε 0.5ε
T3 5 5 ε 1 ε

1 + 0.5ε 2ε

Table 5.2: Example task set ΓB

The NFDA heuristic produces a partitioning of G1 = {T1, T2} and G2 = {T3} which
obviously can be feasibly scheduled as shown in Figure 5.2-(a). On the other hand,
the schedule created by global EDF-NF is infeasible. As illustrated in Figure 5.2-(b),
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Figure 5.2: Scheduling anomaly: A task set infeasible by global EDF-NF but feasible
by partitioned EDF NFDH.
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5 Comparison of Algorithm Scheduling Performance

EDF-NF will execute the tasks T1 and T2 first, which leads to the deadline miss of T3.
Our observation holds for all ε within 0 < ε ≤ 2. Hence, we can create task sets of any
relative system utilization US(Γ)

A(H) ∈ (0, 1] which can be scheduled by NFDA-part.-EDF
but not by EDF-NF.

Partitioned EDF and Global EDF vs. MSDL

Theorem 7. Neither the optimal-partitioned-EDF algorithm nor EDF-NF algorithm
dominate the MSDL algorithm nor vice versa.

Proof. We first show that there exists very simple task sets, that are feasibly scheduled
by optimal-partitioned-EDF and EDF-NF, but our proposed MSDL algorithm fails.
Afterwards we provide two example task sets. Both are feasibly scheduled by our MSDL
heuristic, but the first one is infeasible by opt.-part.-EDF and the second by EDF-NF.

Consider the task set ΓC = {T1, T2, T3}, where all three task have the same period,
e.g. Pi = 10 and same computation time e.g. Ci = 4 and an arbitrary small area
Ai = ε. Clearly the tasks cannot be scheduled entirely sequential, since the total time
utilization is given by UT (ΓC) = 1.2. However, merging tasks into servers as used
by the MSDL approach is not feasible. Let w.l.g. T1 and T2 be the tasks selected for
merging into a server S3 with period PS = 10 and computation time CS = 4. S3 fully
replaces T1, but the takeovertime(T1, S3) of Equation 4.42 evaluates to zero, i.e. the
server S3 cannot take over any amount of the computation time of task T2. Hence,
the overall time utilization UT (ΓC) cannot be reduced to ≤ 1 by server merging. On
the other hand it is obvious, that the global EDF-NF and EDF-FkF methods as well
as the optimal-partitioned-EDF and also the NFDA-partitioned-EDF method feasibly
schedule ΓC , since all three tasks can be executed in parallel. Hence, we showed that
zEDF-FkF * zMSDL and that zopt.-part.-EDF * zMSDL.

Next we consider the task set ΓD of Table 5.3. which is infeasible by any partitioned

Ti Pi Ci Ai UT (Ti) US(Ti)
T1 5 1 A(H) 0.2 0.2A(H)
T2 5 3 ε 0.6 0.6ε
T3 10 3 ε 0.3 0.3ε

1.1

Si Pi Ci Ai UT US

S1 = {T1} 5 1 A(H) 0.2 0.2A(H)
S4 = {T2, T3} 5 3 2ε 0.6 1.2ε

0.8

Table 5.3: Example task set ΓD without feasible partitioning and feasible set of servers
ΩD
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5.1 Analytical Comparison and Scheduling Anomalies

scheduler for the same reason1 as it is for task set ΓA. The MSDL scheduler will merge
task T2 and T3 into a server S4 with period P4 = 5 and computation time C4 = 3, hence
T2 is fully replaced by the server. The reduced computation time of T3 can be computed
according to Equation 4.41 and evaluates to zero.

C3 ← C3 − C4 · (b
P4

P3
c − 1) = 0 (5.1)

Since the final set of servers ΩD = {S1, S4} has a time utilization below one, it can be
feasibly scheduled. Hence we showed that zMSDL * zopt.-part.-EDF.

Next we consider the example task set ΓE given in Table 5.4. As shown in the EDF-
NF schedule in Figure 5.3-a, the first instance of task T3 will miss its deadline. The
reason is, that T3 has a large period and hence a far deadline for the first instance T3,1.
Therefore, it gets preempted 10 times by the tasks T1 and T2 which have shorter periods
and hence closer deadlines.

Ti Pi Ci Ai UT (Ti) US(Ti)
T1 100 12 0.5A(H) 0.12 0.12
T2 100 12 0.5A(H) 0.12 0.12
T3 1000 900 ε 0.90 0.9ε

Table 5.4: Example task set ΓE

When applying the MSDL algorithm on ΓE , it merges task T1 and T3 into a server
S4 with P4 = 100, C4 = 12. T1 gets fully replaced and the computation time of T3 is
reduced by 9 times the computation time of the server.

C3 ← C3 − C4 · (b
P4

P3
c − 1) = 900− 12 · 9 = 792 (5.2)

In the next merge, T2 and the remaining part of T3 are merged into S5, and C3 is
reduced further by 108 units to 684. The final set of servers shown in Table 5.5 has a
time utilization of 0.924. The schedule of the servers and the tasks inside the servers is
shown in Figure 5.3-b. Hence we showed by the example, that zMSDL * zEDF-NF.

Si Pi Ci Ai UT

S3 = {T3} 1000 684 ε 0.684
S4 = {T1, T3} 100 12 0.5A(H) 0.120
S5 = {T2, T3} 100 12 0.5A(H) 0.120∑

0.924

Table 5.5: Feasible set of servers created by MSDL for task set ΓE

87



5 Comparison of Algorithm Scheduling Performance

T1,1

T1, T2, T3

0 100 200 300 400 500

d
e
v
i
c
e

a
r
e
a

T2,1

A(H)

T1, T2

(a)

T3,1

time600 700 800 900 1000

T1, T2 T1, T2 T1, T2 T1, T2 T1, T2

T1, T2 T1, T2 T1, T2 T1, T2, T3

d
e
v
i
c
e

a
r
e
a

A(H)

(b)

0 100 200 300 400 500 time600 700 800 900 1000

S3 ↔ {T3} S4 ↔ {T3, T1} S5 ↔ {T3, T2}Legend of Servers: 

T2,2
T2,10

T1,2 T1,10

...

...

T2,1T1,1

T3,1

Figure 5.3: Scheduling anomaly: A task set infeasible by global EDF-NF but feasible
by MSDL.

Relation Between all Algorithms

At the end of our analysis we are able to present the relations between all proposed
scheduling methods as a big picture. Figure 5.4 shows the sets of feasibly scheduled task
sets by the different algorithms as VENN-diagram. The rectangle presents the set of all
task sets Γ, for which a feasible schedule exists. Of course none of our proposed methods
schedules all these task sets, since they all are suboptimal algorithms. The region in
the center represents all task sets accepted by the EDF-FkF scheduling condition of
Theorem 3. It is a true subset of the task sets de facto scheduled by EDF-FkF which
again is a true subset of the task sets de facto scheduled by EDF-NF :

zEDF-FkF-condition ⊂ zEDF-Fkf ⊂ zEDF-NF (5.3)

On the other hand we showed by Theorem 5 that all task sets accepted by the EDF-
1 One partition-block is infeasible, since the time utilization is greater than one. Two or three partition-

blocks are infeasible, since the device area is exceeded.
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MSDL

all schedulable task sets Γ

Figure 5.4: The relation between feasibly scheduled task sets by the proposed algorithms
as VENN-diagram.

FkF scheduling condition are also feasibly scheduled by the partitioned EDF scheduler
using the NFDA-partitioning heuristic. Obviously, the optimal-partitioned-EDF sched-
uler dominates the NFDA-partitioned-EDF algorithm. These relations are shown in
Equation 5.4 and correspond to the right side of the VENN-diagram:

zEDF-FkF-condition ⊂ zNFDA-partitioned-EDF ⊂ zoptimal-partitioned-EDF (5.4)

Finally we showed by constructing counter examples, that the task sets scheduled by
three basic approaches EDF-NF, optimal-partitioned-EDF and MSDL are not subsets of
each other. In particular we showed, that EDF-FkF is no subset of optimal-partitioned-
EDF or MSDL, that NFDA-partitioned-EDF is no subset of EDF-NF or MSDL and
that MSDL is no subset of EDF-NF or optimal-partitioned-EDF. 2

2An complete proof of the set-relations shown in the VENN-diagram would require the construction
of a task set for each of the 19 intersections. Beside the presented task sets for the major relations
we abstain from presenting further task sets at this place. However, we found task sets for each
intersection during our intensive simulations on random generated benchmarks.
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5.2 Simulation Results

Due to our analytic comparison and analysis we are able to tell whether one algorithm
dominates another one or not, and furthermore know scheduling conditions for some
of the proposed algorithms. However, it tells us little about how good the algorithms
perform on task sets appearing in practice, nor does it tells us anything about which
method performs better for task sets of certain characteristics.

In order to answer those questions, an experimental evaluation on application bench-
marks becomes necessary. The best one could do is using benchmarks which are widely
accepted in the community and consist of applications appearing in practice. Not sur-
prisingly, those benchmarks do not exist, since we consider novel methods for a novel
and rarely studied problem. Hence, we have to rely on synthetically created bench-
marks. In order to construct meaningful task sets one idea is to look at the parameters
of typical FPGA tasks, such as the area of Discrete Wavelet Transform design or an
MPEG 2 Video Decoder. On the other hand we can consider the amount of resources
provided by today’s modern FPGAs as proper values for the device area. We concluded
that this strategy is of little use, since today’s device and design sizes are very variable.
For example, the Discrete Wavelet Transform design requires only 20% of an XILINX
Virtex II XC2V3000 FPGA, but will exceed the size of the smaller but still modern
XILINX Spartan III FPGAs. Also we know little on typical task computation times,
since they depend considerably on the amount of data to be processed. As conclusion
we decided to create benchmarks of pure synthetic task sets, but tried to cover wide
ranges of the task set parameters.

The next paragraph precisely describes our benchmark generation methods and discusses
some characteristics of the created task sets. This should enable the reader to reproduce
the benchmarks, validate results and compare our algorithms to other methods.

Afterwards, we present results from simulations that show the performance of the algo-
rithms and the impact of the tasks’ area and time-utilization values, the impact of the
number of tasks in a task set and how the performance increases when various algorithms
are combined.

5.2.1 Creation of Benchmarks

Recall that a task set Γ consist of periodic tasks Ti each specified by a triple parameter
Ti(Pi, Ci, Ai). The main characteristics of the tasks are UT (Ti) = Ci/Pi as well as
US(Ti) = Ci/Pi · Ai whereas our main interest in the task set’s characteristics are the
number of task n = |Γ| and the overall system utilization US(Γ) =

∑n
i=1 US(Ti).

A benchmark creation method creates a given number of task sets {Γ1,Γ2, . . .} by choos-
ing the task parameters and task set sizes according to some rules. To define meaningful
rules is rather difficult. For example we cannot choose all task parameters from intervals
with a uniform (or normal) distribution, since the parameters depend on each other. In
our first task set generation method we decided to keep the Ai and UT

i values of the
tasks uniformly distributed.
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5.2 Simulation Results

Our first task set generation method works as follows: Each task set is composed of ran-
domly generated tasks Ti. For the creation of tasks a benchmark BM specifies an interval
[cmin, cmax] of natural numbers for the task’s computation times, an interval [amin, amax]
for the task’s areas, and an interval [uT

min, uT
max] for the task’s time-utilization factor.

A task is created by randomly choosing its parameters from the intervals with a uni-
form distribution. Its period is computed according to its computation time and time-
utilization. In order to create the task sets Γ ∈ BM with system-utilization distributed
from 0% to 100%, randomly generated tasks are added to a task set until a specified
task set system-utilization US(Γ) is reached. Furthermore, a task set is dismissed when
its hyper period exceeds a given limit. This is necessary to keep the simulation time of
the global EDF algorithms within reasonable bounds. The pseudo code of the algorithm
creating one task set is shown in Algorithm 5.

Algorithm 5 Benchmark Creation Method 1
1: procedure createTaskSet(US

bound,HPbound)
2: repeat
3: Γ← ∅
4: repeat
5: T ← createTask
6: Γ← Γ ∪ T
7: until US(Γ) > US

bound

8: Γ← Γ \ T
9: until hyperperiod (Γ) ≤ HPbound

10: end procedure
11: procedure createTask
12: C ← rand([cmin, cmax] )
13: A← rand([amin, amax] )
14: tempUT ← rand([uT

min, uT
max] )

15: P ← round( C
tempUT )

16: return T (P,C,A)
17: end procedure

While the values for the tasks’ area, computation time and time-utilization are uniformly
distributed within some interval, the periods, the system-utilization and the number of
tasks is a result of the creation method. To get a deeper idea of the characteristics
of the benchmarks created by the described method we study the distribution of all
parameters of interest. We create our standard benchmark BMstd using the following
parameters:

param(BMstd) = {cmin = 1, cmax = 30, amin = 0.1, amax = 0.5, uT
min = 0.1, uT

max = 0.5}
(5.5)

The characteristics of the created tasks are illustrated in Figure 5.5. The histograms
show the various task parameters, their values and their relative frequency. As specified
in the benchmark parameters, the task computation times Ci and area values Ai are
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uniformly distributed in [1, 30] and [0.1, 0.5] respectively. Since we required a uniform
distribution of the time-utilization UT (Ti) ∈ [0.1, 0.5], the periods Pi will result with
values between 2 and 300 with a distribution as shown in the second histogram of
Figure 5.5. Moreover, since the Ai and UT (Ti) are uniformly distributed in [0.1, 0.5],
the system utilization of the tasks US(Ti) is between 0.1 and 0.25 and distributed as
shown in the fifth histogram. The last plot in the figure shows the average number of
tasks n in a task set Γ, when creating task sets of various system-utilization US(Γ).
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Figure 5.5: Characteristics of BMsdt tasks and task sets

5.2.2 Performance on Standard Benchmark BMstd

In our first simulation experiment, we created our standard benchmark BMstd with
ten thousand task sets with various system-utilization values. The hyper-period was
bounded by 100000, to keep the simulation time reasonably small.

Figure 5.6 compares the scheduling performance of all proposed algorithms on the bench-
mark BMstd. The graphs where created by partitioning the 10000 task sets into 20
classes according to their US(Γ) value. For each class and algorithm one data point was
determined. The y-values of the data points present the success-rate, i.e. the fraction of
feasibly scheduled task sets of a class by the particular algorithm. The x-values present
the mean system-utilization of the task sets of a class.

Global EDF Scheduling: The global EDF-NF approach is the algorithm with the best
performance on our standard benchmark. It is able to schedule about 50% of the task
sets of the class with a mean system utilization factor around 81% and accepts almost
all task sets with US less than 70%. The performance drop of the global EDF-FkF
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Figure 5.6: Performance of algorithms on BMsdt

scheduler compared to EDF-NF seems to be rather small. However, the difference
is significant for task sets with a system utilization within [0.75, 0.9], where EDF-NF
generates feasibly schedules for four times as many task sets than EDF-FkF. In contrast
to the relative good performance of the global schedulers EDF-FkF and EDF-NF it
is shown that our scheduling test (EDF-FkF-condition) developed in Section 4.1.3 is
rather pessimistic. It accepts almost all task sets with US(Γ) < 0.5 but rejects almost
all task sets with US(Γ) > 0.5. However, this large discrepancy between the amount of
task sets actually feasibly scheduled and the amount accepted by the scheduling test is
in conformance to the results reported for the related multiprocessor scheduling tests
[16].

Partitioned EDF Scheduling: On our standard benchmark the partitioning schedulers
show a significant worse performance than the global schedulers. From task sets with
US(Γ) around 0.78, only 20% could be scheduled by the optimal-partitioned-EDF algo-
rithm, while EDF-NF schedules up to 80%. However, opt.-partitioned-EDF still sched-
ules 75% of task sets with US(Γ) around 0.7 and almost every task set with US(Γ) < 0.6.
When using the simple Next-Fit-Decreasing-Area heuristic to partition the task sets,
the performance drops only slightly compared to the optimal partitioning achieved by
solving an ILP model. It has to be mentioned, that the graphs for the partitioning
approaches represent the task sets which could be feasibly partitioned and hence can be
guaranteed to be feasibly scheduled, while the global EDF graphs represent the results
achieved by simulating the schedule over the entire hyper-period. While the partitioning
can be done in reasonable time, the simulation over the hyper-period may often be too
time consuming.
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Server Based Scheduling: The approach based on executing tasks within periodic
servers presented in Section 4.3 shows the worst performance on our standard bench-
mark.3 MSDL is able to schedule only few task sets with a US exceeding 0.7, and
achieves an acceptance rate of 50% for task sets with a US around 0.6. However, with
this relatively poor performance MSDL may still be reasonable and the method of choice,
since it has various advantages when it comes to system realization (See Chapter 6).

5.2.3 Impact of Area and Time-utilization

In the next experiment we will study the impact of the tasks area and time-utilization
values on the performance of the various scheduling algorithms. Hence we created two
more benchmarks. In the BMsmallAbigUT benchmark, the average task area has been
halved while time-utilization has been doubled compared to the BMstd benchmark.
For the BMbigAsmallUT benchmark we did the same vice versa. Table 5.6 shows the
parameters used for the benchmark generation in detail.

benchmark cmin cmax amin amax uT
min uT

max

BMstd 1 30 0.10 0.50 0.10 0.50
BMsmallAbigUT 1 30 0.05 0.25 0.20 1.00
BMbigAsmallUT 1 30 0.20 1.00 0.05 0.25

Table 5.6: Benchmark parameters

Using this parameters we achieved benchmarks comparable to BMstd in terms of tasks’
system-utilization and task sets size, but with different distribution of the area and time-
utilization values. Especially the ratio of Ai/UT (Ti) is different. In the BMstd some
few tasks have an extreme Ai/UT (Ti) ratio of 5 to 1 and 1 to 5 respectively, most tasks
have a 1 to 1 ratio as shown in the first histogram of Figure 5.7. In contrast, the tasks

3except the EDF scheduling condition which we do not treat as scheduling algorithm
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Figure 5.7: Distribution of the tasks’ Ai to UT (Ti) ratio of the BMsdt,BMsmallAbigUT

and BMbigAsmallUT benchmarks.
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of BMsmallAbigUT can have a Ai/UT (Ti) ratio as small as 1 to 20. The second histogram
of Figure 5.7 shows, that for this benchmark the most frequent ratio is about 1 to 5.
The tasks of the BMbigAsmallUT benchmark have exactly the converse distribution of
the Ai/UT (Ti) ratio, which is shown in the last plot of Figure 5.7.
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Figure 5.8: Performance of algorithms on BMsmallAbigUT and BMbigAsmallUT bench-
marks.

The performance evaluation of the scheduling algorithms on the BMsmallAbigUT and
BMbigAsmallUT is shown in Figure 5.8. 4

The opt.-partitioned-EDF and the global EDF-NF show almost identical performance on
the BMsmallAbigUT benchmark. Compared to the results of the BMstd benchmark, the
performance of opt.-partitioned-EDF has considerably improved while the performance
of global EDF-NF stays almost constant. One possible reason for the improvement
of the opt.-partitioned-EDF is that the benchmark contains no tasks with large area
and hence situations as shown by the anomaly in Figure 5.1 cannot occur. The opposite
effect can be seen in the performance evaluation of the BMbigAsmallUT benchmark: Here,
the performance gap between the opt.-partitioned-EDF and the EDF-NF has slightly
grown compared to the BMstd benchmark.

Figure 5.9 compares the performance on the three benchmarks for the algorithms EDF-
NF, opt.-part.-EDF and MSDL separately. It can be seen that while the performance
of EDF-NF is almost constant on the three benchmarks, the performance of opt.-part.-
EDF is better on tasks with small area and gets worse on tasks with large area. However,
the greatest sensitivity on the ratio of task area to time-utilization is shown by MSDL.
The performance on the BMsmallAbigUT benchmark drops dramatically compared to the
standard benchmark. The reason is, that in order to find a feasible set of servers, MSDL
has to fulfill a high number of server merges since the tasks have rather small area values.
Each merge adds some overhead into the set of servers. The opposite effect takes place

4 From the global schedulers we present only the better EDF-NF and leave out the evaluation of the
EDF-FkF, since our simulations did not show interesting differences among the two global schedulers
in the sensitivity on the Ai/UT (Γi) ratio.
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5 Comparison of Algorithm Scheduling Performance

on task sets with large area values. On the BMbigAsmallUT benchmark MSDL performs
as well as EDF-NF and significantly better than opt.-part.-EDF (see Figure 5.8 right
side). Here, only few server merges are required to find the final set of servers and thus
little overhead is introduced. However, the experiment also indicates that MSDL may
perform poor on task sets with a large number of tasks, since these may require a large
number of server merges as well. This assumption is confirmed by the next experiment.
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Figure 5.9: Performance of algorithms EDF-NF, opt.-part.-EDF and MSDL on the
BMstd,BMsmallAbigUT and BMbigAsmallUT benchmarks.

5.2.4 Performance of Combined Algorithms

In Section 5.1 we showed that the major scheduling approaches do not dominate each
other. Hence, combining two or more of the scheduling algorithms might increase the
scheduling performance compared to the single algorithms. We analyzed the perfor-
mance of all promising algorithm combinations as they are: EDF-NF + opt.-part.-EDF,
EDF-NF + MSDL, opt.-part.-EDF + MSDL and EDF-NF + opt.-part.-EDF + MSDL.
Combinations including the algorithms EDF-FkF and NFDH-part.-EDF have a lower
performance and thus have been omitted in our analysis.

The performance evaluation has been done on all three benchmarks BMstd,BMsmallAbigUT

and BMbigAsmallUT . However, only in two cases the combination of algorithms yielded
a non-negligible increase in performance:

When applying EDF-NF + opt.-part.-EDF to the BMsmallAbigUT benchmark, much
more task sets could be feasibly scheduled in comparison to the task sets scheduled by
only EDF-NF or only opt.-part.-EDF. Especially when the task set’s system utilization
is in the range of 0.75 and 0.85 this algorithm combination increases the performance by
about 10% as shown in Figure 5.9-left. However on the other two benchmarks, where
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5.2 Simulation Results

the performance of EDF-NF is considerably higher than that of opt.-part.-EDF, the
combination of both algorithm did only show negligible performance increase compared
to EDF-NF.

The combination of EDF-NF + MSDL applied to the BMbigAsmallUT benchmark showed
a small increase in performance compared to EDF-NF. Figure 5.9-right shows, that this
improvement stays always less then about 3%. On the other benchmarks, we got no
benefit from combining EDF-NF + MSDL.

The combinations opt.-part.-EDF + MSDL did not show performance improvement on
any of the three benchmarks. On BMstd and BMsmallAbigUT the performance was not
better than that of opt.-part.-EDF and on BMbigAsmallUT was not better than that
of MSDL. Also considering all three algorithms did not show an advantage compared
to the performance achieved by EDF-NF + opt.-part.-EDF and EDF-NF + MSDL
respectively.
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Figure 5.10: Performance of combined algorithms on BMsmallAbigUT and BMbigAsmallUT

benchmarks.

5.2.5 Impact of Number of Tasks

In order to analyze how well the proposed algorithms scale we created task sets with
various numbers of tasks. Our benchmark creation method of Section 5.2.1 is not able
to create task sets with a large number of tasks but a small hyper-period, since the task
periods are arbitrary. Moreover, the number of tasks in a task set is not constant within
a benchmark. Hence we choose a different method that creates task sets with a given
number of tasks and keeps the hyperperiod small by choosing periods from a given set
of harmonic related values.

The entire creation method is shown as pseudo code in Algorithm 6. First we choose for
all n tasks a period from a given set and a temporary area and time-utilization value.
We compute a scaling factor scale by dividing the desired task set’s system utilization by
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the actual task set’s system utilization. Afterwards, we scale all area values and select
the computation time, such that the final task set Γ has the desired system utilization.

Algorithm 6 Benchmark Creation Method 2
1: procedure createTaskSet(n, US

nominal, PeriodSet)
2: US

actual ← 0
3: for all i ∈ {1, n} do . Choose period and temp. area and time utiliz.
4: Pi ← chooseFrom PeriodSet

5: ai ← rand([0,1])
6: ui ← rand([0,1])
7: US

actual ← US
actual + ai · ui

8: end for
9: scale← US

nominal/US
actual

10: for all i ∈ {1, n} do . Scale area values and select comp times
11: Ai ← ai ·

√
scale

12: Ci ← dPi · ui ·
√

scalee
13: Γ← Γ ∪ Ti(Pi, Ci, Ai)
14: end for
15: return Γ
16: end procedure

Using this, three benchmarks of 10000 task sets each have been created, where all task
sets of BM10Tasks contain 10 tasks, all task sets of BM20Tasks contain 20 tasks and the
task sets of BM50Tasks contain 50 tasks respectively. The periods have been chosen
from PeriodSet = {100, 200, 400, 600, 800, 1000, 2000, 4000, 6000, 8000, 10000}, such
that the hyper period is bounded by 120000 and the simulation time for each task set
is reasonably small.

Figure 5.11 compares the performance of the three benchmarks for the algorithms EDF-
NF, NFDA-part.-EDF and MSDL separately. 5 It can be seen that the performance of
EDF-NF and NFDA-part.-EDF improves on the task sets with greater number of tasks.
The reason is, that the tasks of BM20Tasks and BM50Tasks have in average smaller area
and time-utilization values as the tasks of BM10Tasks. When EDF-NF selects the tasks
for execution or NFDA-part.-EDF packs tasks into levels, the amount of wasted device
resources by fragmentation is small compared to task sets with ”larger” tasks.

In contrast, the performance of MSDL methods gets worse, as the number of tasks in
the task sets increases (Figure 5.11, right side). As mentioned earlier, each merge of
two tasks or servers introduces an overhead into the task set, since one of the tasks
is afterwards executed with a period smaller than its original period. The greater the
number of tasks of the task sets, the greater the overall time-utilization UT (Γ) of the
task set (in average) is. Hence, it requires more merges to reduce the UT (Γ) to less than
or equal to one and it becomes more likely that the method terminates before a feasible
set of servers is found.

5From the partitioned EDF methods we present only the NFDA heuristic since the optimal partitioning
for task sets of 50 tasks could not be computed in reasonable time.
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Figure 5.11: Performance of algorithms EDF-NF, NFDA-part.-EDF and MSDL on task
sets with 10, 20 and 50 tasks.

5.3 Conclusion on Algorithm Performance

We have compared the performance of the proposed algorithm analytically as well as
by simulations on synthetic benchmarks. The main conclusions concerning the pure
scheduling performance of the algorithms are summarized below:

dominance: The three basic approaches, global EDF scheduling, partitioned EDF schedul-
ing and server based EDF scheduling do not dominate each other. However, the
simulation study showed that combining the algorithms yields a rather low per-
formance improvement.

robustness: For each of the basic scheduling algorithms there exist task sets, that are in-
feasible by the particular algorithm, have an infinitesimal small system-utilization,
but can be feasibly scheduled by some algorithm.

pessimistic analysis of global EDF: The scheduling test for the global EDF algorithms
is pessimistic in the sense, that each accepted task set will also be scheduled by
the NFDA-partitioned-EDF method.

average performance: In most cases, the global EDF approach shows the best perfor-
mance followed by the partitioned EDF approaches. The performance of MSDL
and the global EDF scheduling test is much worse.

sensitivity: The performance of global EDF seems to be insensitive on the ratio of
the task’s area to the task’s time-utilization values, while the partitioned EDF
improves with tasks with small area and MSDL improves with tasks with large
area.
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5 Comparison of Algorithm Scheduling Performance

scaling: The performance of the global and partitioned EDF methods significantly im-
prove with task sets with many but ”small” tasks, while the performance of MSDL
does not.

While this performance analysis of this chapter totally neglected any overheads, the
next chapter describes the execution models and associated overheads in detail.
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CHAPTER 6

Execution Model and Overhead Analysis

Up to now, we have neglected any system overheads due to reconfiguration, context
switching, and running the scheduling routines in our analysis. Neglecting such over-
heads is a common practice in microprocessor-based real-time systems, but only justified
when the time overhead is small compared to the task computation times. For recon-
figurable hardware, the time overheads can only be discussed in conjunction with the
actually used reconfiguration mode. In this chapter we outline the reconfiguration mod-
els, list the requirements on the runtime system and model the resulting reconfiguration
overheads for each of our three scheduling methods. Hence we will be able to pro-
vide off-line scheduling tests which consider the reconfiguration overhead. Finally we
will repeat some of our simulation experiments on the algorithm performance including
reconfiguration overheads.

We presented the overhead analysis for global EDF in [DP06a], for partitoned EDF in
[DP06b] and for MSDL in [DMP06].

6.1 Global EDF Overhead Model

6.1.1 Reconfiguration Modes and Task Placement

In this section, we outline an execution model for a reconfigurable hardware platform
that matches the global EDF scheduling techniques developed in Section 4.1. We further
pose some requirements on the runtime system managing the hardware platform. Then
we become in a position that enables us to model and analyze the overheads involved.

Recall that generally reconfigurable hardware devices can be reconfigured using either
a full or a partial reconfiguration mode. During a full reconfiguration, the complete
device undergoes the reprogramming process. We surveyed different full- and partial
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6 Execution Model and Overhead Analysis

reconfiguration models in Section 2.3.1 of the background chapter. From the three full
reconfiguration models, only model c free space - time sharing matches our task model
requirements. However, using our global EDF methods with the full reconfiguration
mode shows some severe drawbacks that will restrict EDF-NF and EDF-FkF to very
small task sets:

� According to the global EDF schedule, we have to compile a separate full config-
uration bit-stream for each set of running tasks before runtime. This can easily
be done using standard device vendor tools, and full reconfiguration is supported
by all SRAM-based reconfigurable devices. Compiling several tasks into one con-
figuration bit-stream justifies our scalar area model, i.e., the tasks fit onto the
device if

∑
Ji∈R Ai ≤ A(H). Unfortunately, we have to simulate the schedule for

the complete hyper period to determine the sets of running tasks. For larger task
sets, this cannot be done in reasonable time. Further, we have to store all the
full configuration bit-streams during runtime. This is unacceptable especially for
embedded systems with stringent memory constraints.

� In the full reconfiguration model c, the preemption of a specific task affects all
tasks currently running, independent of their actual priority. This not only adds
huge overheads to the actual tasks’ execution time, but makes the analysis of
the reconfiguration overheads overly pessimistic. The resulting schedulability test
would be rendered useless for all except the smallest task sets.

A partial reconfiguration model allows us to reprogram only a fraction of the device
during a reconfiguration step, while the other parts of the device remain computing.

From the three resource models of Section 2.3.1 which use partial reconfiguration, only
the 1D partitioning model (e) and the 2D partitioning model (f) allow tasks with
arbitrary area values.

1D area model

T2

T4

T1
A(H) A1

A2

A4

T2

T4
T1

2D area model

Figure 6.1: Partial reconfiguration models supporting arbitrary task areas

In the 2D area model, tasks have rectangular footprints and can be placed anywhere on
the device. An example is illustrated in the right-hand side of Figure 6.1. Placing such
rectangular footprints leads to fragmentation problems, i.e., a new task cannot be placed
onto the device although there is sufficient free area. While 2D defragmentation tech-
niques have been proposed [37][39], they are hard to implement and cannot completely
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6.1 Global EDF Overhead Model

overcome the fragmentation problem. Hence, our area constraint,
∑

Ji∈R Ai ≤ A(H), is
not sufficient to guarantee feasible task placements.

In contrast, the 1D area model requires tasks to have rectangular footprints which span
the entire device width, but may have arbitrary heights. An example is illustrated in the
left-hand side of Figure 6.1. The task height is then proportional to the task area Ai.
In design practice, such footprints can be obtained by applying appropriate constraints
during circuit synthesis. To justify our scalar area model, we still have to ensure that
the device is unfragmented at any time. For this we propose the following placement
and reconfiguration scheme:

� Tasks are stacked on the device from bottom to top. The order of tasks corresponds
to their scheduling priority, such that tasks with closer deadlines are placed below
tasks with deadlines further away.

� Whenever a task terminates, all tasks above are shifted downwards by a relocation
process. Tasks below, i.e., the ones with closer deadlines, remain unaffected.

� Whenever a task starts or resumes from preemption, it is placed according to its
deadline. Specifically, all tasks with greater deadlines are shifted upwards. Again,
tasks with closer deadlines remain unaffected.

Figure 6.2 shows an example of a schedule using the proposed placement and reconfig-
uration scheme. Whenever a task is being preempted or resumed, only those tasks with
later deadlines are preempted or relocated and receive an overhead. In Figure 6.2, solid
lines at the end of task executions denote terminations; dashed lines denote preemptions
due to scheduling decisions. Note that task T4 is preempted by the scheduler at time 7,
while task T3 is just relocated for two times.
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Figure 6.2: A schedule including reconfiguration times

The proposed partial reconfiguration scheme offers the following key advantages: First,
we do not have to preempt all running tasks on a task preemption, which results in
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an improved scheduling performance. Second, the time required to reconfigure a part
of the device is substantially smaller than the time required for a full reconfiguration.
Thus, the reconfiguration time overhead is lowered. Third, the system has to store only
one partial configuration bit-stream for each task, greatly reducing the required memory
capacity. The fact that the tasks’ bit-streams are independent opens up the possibility
of online scheduling scenarios, where new periodic tasks enter the system at runtime
and have to pass an acceptance test.

6.1.2 Runtime System Requirements

For the global EDF scheduling algorithms, we require a reconfigurable hardware execu-
tion model and runtime environment featuring the following characteristics:

� the device is partially reconfigurable using the 1D area model

� the tasks are relocatable

� the runtime system supports task preemption

While some of these features are research issues for themselves, their feasibility has
already been demonstrated in a number of projects [102][21][97]. Among these charac-
teristics, hardware task preemption is perhaps the least-investigated one. The context
of a hardware task is given by all of its state-holding elements, i.e. registers and memory
elements. Depending on the actual task instance, the state-holding elements might be
distributed over its complete logic area. Related work has demonstrated the feasibility
of preemptive multitasking by two different approaches:

The first approach realizes task preemptions by stopping the clock and reading back
the device configuration. Appropriate tools can then be used to extract the task’s state
from the read-back bit-stream. The state information is used to initialize the storage
elements of the task before it is resumed [61].

The second approach shifts the responsibility for saving and restoring the context to the
hardware task itself. To that end, the task must be extended with an interface which
allows stopping and starting the task and signaling the task to save or restore its state
[Dan04b, Dan04c]. This interface together with some kind of logic that is necessary
for task communication and I/O is indicated by the right-most logic cell columns in
Figure 6.1.

6.1.3 Reconfiguration Overheads

For the following analysis, we lump together all overheads due to reconfiguration, context
save and restore, and running the scheduler. This is sensible as the reconfiguration
overhead will be by far the dominating part. The basic approach to account for the
reconfiguration overhead is to increase the tasks’ computation times by the amount of
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time spent in the reconfiguration process. We denote treconfig as the time required to
reconfigure the entire device with a new task set. In an EDF schedule, a task preemption
can only occur when other tasks are released. For a periodic task set, we know in advance
how many task releases can appear within a certain period of time and thus we can derive
the worst-case number of preemptions Ni for a task instance Ti. While a task instance
of Ti is in execution, a task Tk may be released d Pi

Pk
e times at maximum. However,

only b Pi
Pk
c releases of Tk can have a higher priority and hence cause a preemption of Ti.

Summing up, the maximal number of preemptions Ni a task instance Ti may experience
accounts to:

Ni =
∑
Tk∈Γ

⌊
Pi

Pk

⌋
− 1 (6.1)

Analyzing the proposed 1D placement and reconfiguration scheme, we obtain the fol-
lowing observations:

� An instance of a task Ti is shifted upwards or preempted only when higher priority
task instances are released. In the worst case, this may happen Ni times.

� An instance Ti,j of a task Ti is shifted downwards or resumes from preemption only
when higher priority task instances terminate. On one hand, a number of higher
priority tasks will already be running when Ti,j starts execution. These tasks
might terminate and cause Ti,j to shift downwards. In the worst-case, there might
be as much as n− 1 such tasks, n being the overall number of tasks. On the other
hand, we can have Ni higher-priority task instances released and terminated while
Ti,j is running. Again, the terminations cause Ti,j to shift downwards. The total
number of times a task may be shifted downwards or resumes from preemption is
then bounded by:

Mi = Ni + (n− 1) (6.2)

Generally, the number of tasks already running when Ti,j starts will be much
smaller than n − 1. We can derive a better bound employing an area argument:
Obviously, the tasks running at the same time as Ti cannot occupy more than
A(H)−Ai of the device’s area resource.

Oi = max
∀Rl⊆Γ\Ti

|Rl| :
∑

Tk∈Rl

Ak ≤ A(H)−Ai (6.3)

Thus, we can bound the number of tasks causing a shift downward or a resume
by:

Mi = Ni + Oi (6.4)

The total number of times a task instance may have to be reconfigured is bounded by
its upward shifts plus its downward shifts plus one for the first start. The time overhead
can be accounted for by increasing the computation time of each task to:
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C̃i = Ci + (1 + 2 ·Ni + Oi) · treconf (6.5)

Note that we are using the full device reconfiguration time to derive this bound although
the underlying model is based on partial reconfiguration. This is necessary as one task
start or termination event can potentially lead to several task preemptions, resumes or
shifts. As practical reconfigurable devices have only one reconfiguration port, the single
tasks’ reconfigurations have to be serialized. In the worst case, we have to pessimistically
assume that the whole device undergoes reconfiguration. A more detailed analysis could
try to exploit a more realistic area-proportional partial reconfiguration time.

Based on the modified task computation times of Equation 6.5, we can compute new
time- and system-utilization values for the tasks:

ŨT
i =

C̃i

Pi
(6.6)

ŨS
i = ŨT

i ·Ai (6.7)

(6.8)

Using these modified utilization values in our EDF-FkF scheduling test of Theorem 3
results in the scheduling test which considers the reconfiguration overhead:

∀Tk ∈ Γ : (6.9)

ŨS(Γ) ≤ (A(H)−Amax) ·
(
1− ŨT (Tk)

)
+ ŨS(Tk)

We will statistically evaluate the performance of the global EDF scheduler considering
reconfiguration overheads later within this chapter.

6.2 Partitioned EDF Overhead Model

6.2.1 Reconfiguration Modes and Task Placement

The partitioned scheduling approach matches perfectly the 1D partial reconfiguration
model and even task relocation is not required. Like in the 1D area partial reconfig-
uration model used for global EDF, the tasks have rectangular footprints which span
the entire device width, but may have arbitrary height. In our model, the height is
proportional to the tasks area.

The device resources are statically partitioned into slots - one for each partition-block
Gk ∈ χ determined by the partitioning algorithm. The task with the largest area re-
quirement Ai among all tasks of a partition-block defines the size of its slot. At runtime,
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for each partition-block a separate EDF scheduler decides which task is executed. Re-
call, that only one task per partition-block can be in execution at a time. For each
partition-block the task selected by EDF is configured to the device area of the accord-
ing slot. It is executed until it terminates or gets preempted by a higher priority task
of the same partition-block. Using such an execution model, a task is always executed
in the same position on the device area and this position is determined at design time.
Hence, task relocation is not an issue.

Tasks are loaded to the slots using partial reconfiguration. However, since it may happen
that more then one slot has to be reconfigured at the same time, the reconfigurations
have to be serialized which increases the delay.

6.2.2 Runtime System Requirements

The partitioned EDF scheduling approach requires a runtime environment featuring the
following characteristics:

� the device is partially reconfigurable using the 1D model

� the tasks do not have to be relocatable

� the runtime system supports task preemption

Such a reconfiguration model is one of the simplest, among the partial reconfiguration
models (see 2.3.1). Numerous prototypes implement the partial 1D reconfiguration
based on slots of static size. Since the task position is determined at design time, the
approach may also deal with devices, which have a not fully homogeneous resources
array.

6.2.3 Reconfiguration Overheads

Accounting to the reconfiguration overhead for the partitioned schedule is much easier,
than it has been for the global schedule. The reason is that each partition-block repre-
sents a task system on its own. Whenever preemption occurs, only the according slot is
reconfigured and the tasks executing in other slots do not get interrupted.

Let Gl be the partition block which contains Ti. The maximum number of times an
instance of task Ti may become preempted is given by:

Ni =
∑

Tj∈Gl

⌊
Pi

Pj

⌋
− 1 (6.10)

Equation 6.10 has the same form, as Equation 6.1 but considers only the tasks within
partition-block Gl rather than the tasks of the entire task set Γ. Hence, the number
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of preemptions Ni for each task will generally be smaller than in the global scheduling
case.

Now we are ready to account for the reconfiguration overhead by increasing the compu-
tation time of all tasks in Γ. We have to add (1 + Ni) times the required time for the
device reconfiguration1, once for reconfiguring the task before it starts execution and
Ni times when it needs to resume its execution after preemption (Equation 6.11). The
time utilization of the task increases according to Equation 6.12.

C̃k
i = Ck

i + (1 + Ni) · treconf (6.11)

ŨT (T k
i ) = UT (T k

i ) +
(1 + Ni) · treconf

Pi
(6.12)

Obviously, a partitioning χ of a task set Γ might be feasible to schedule on neglecting
the reconfiguration overhead, but may become infeasible on considering the increased
time utilization of Equation 6.12. To decide whether a feasible partitioning χ including
reconfiguration overhead exists, is a difficult problem:

The optimal partitioning χ of tasks depends on the tasks’ time utilization ŨT , but
the actual time utilization of a task depends on the partitioning, i.e., on the tasks in
the same partition-block. One might think about packing rectangles that change their
widths during the packing process, depending on the other rectangles currently packed
to the same level. We cannot reasonably account for this cross dependency in our ILP
model.

Making the simplifying assumption that the overheads due to preemption are similar
for all partition blocks, the following two steps seem to be a reasonable heuristic:

1. Given the task set Γ and device area A(H), compute the partitioning χ that
minimizes the maximal time utilization over all partition blocks:

min
(

max
Gl∈χ

(
UT (Gl)

))
(6.13)

2. Account for the reconfiguration overhead of each task according to Equation 6.12.
If the updated time-utilization factors for each partition block ŨT (Gl) are still less
or equal to one, the partitioned schedule is still feasible.

In Section 6.4 we will statistically evaluate the performance of the partitioned EDF
scheduler considering reconfiguration overheads, where the partitioning is computed
according to the described approach.

1 Note, that we have to account the time treconf for a full device reconfiguration, even if we assume
partial reconfiguration. Although the time to reconfigure a small portion of the device will be shorter
than treconf , in the worst case all partition blocks may request a reconfiguration simultaneously.
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6.3 Server Based MSDL Overhead Model

6.3.1 Reconfiguration Modes and Task Placement

The server based MSDL scheduler has been developed targeting systems, which support
no partial but only full device reconfiguration. Particularly, the resource model (c) of
Section 2.3.1 which we called free space partitioning - time sharing is used. For a set Γ
of n tasks, the MSDL algorithm creates at maximum n servers S1, S2, . . .. Each server Si

represents a subset Vi ⊆ Γ of the original tasks, and whenever the server executes, all of
its represented tasks can execute. Hence, each server becomes one RHD configuration,
i.e. one device bit-stream. The configurations are loaded sequentially onto the RHD.
Which configuration is loaded is determined by a sequential EDF schedule of the accord-
ing servers. Whenever a server Si gets preempted by a higher priority server Sj all tasks
of Vi become interrupted. Some tasks of Si may also be included in server Sj , and hence
they are only interrupted for the time the device is being reconfigured. The other tasks
are preempted and will be resumed later on when Si, or another server including these
tasks, is scheduled for execution again. However, even if a task Tk is included in Si and
Sj its state has to be stored before and restored after the reconfiguration process, since
the circuit-elements of Tk might be placed and routed at completely different locations
on the device within the bit-streams of Si and Sj (see Figure 2.5).

6.3.2 Runtime System Requirements

The server based MSDL scheduling approach requires a runtime environment featuring
the following characteristics:

� the device supports full reconfiguration during runtime (partial reconfiguration is
not required)

� no task relocation during runtime is required

� the runtime system supports task preemption

6.3.3 Reconfiguration Overheads

Reconfiguration overhead in an MSDL schedule occurs due to the start or resumption
of the servers. Since the periodic servers of Ω are scheduled by the EDF exactly like
periodic tasks, we know that the maximum number of times a server Si gets preempted
by a higher priority server is given by Equation 6.14, where Pi, Pj denotes the periods
of the servers Si, Sj and not the periods of the original tasks Ti, Tj .

Ni =
∑
Sj∈Ω

⌊
Pi

Pj

⌋
− 1 (6.14)
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6 Execution Model and Overhead Analysis

Hence, we can account for the time overhead due to device reconfiguration by increasing
the computation time of each server. Each server gets reconfigured one time when it
starts execution and may be reconfigured Ni times, when it resumes from preemption.

C̃i = Ci + (1 + Ni) · treconf (6.15)

After increasing the server computation time, we can update the time-utilization of the
server set Ω.

ŨT (Ω) =
∑
Si∈Ω

C̃i

Pi
(6.16)

The time-utilization ŨT (Ω) includes the worst case time-overhead that can occur due
to device reconfiguration. Hence, a scheduling test for an MSDL generated server set
which accounts for the reconfiguration overhead is given by:

ŨT (Ω) ≤ 1 (6.17)

6.4 Performance Evaluation Including Overhead

In this section, we evaluate the influence of the reconfiguration overhead on the schedul-
ing performance of the proposed algorithms. Therefore, we simulated all algorithms
on our standard benchmark BMstd, but this time including the reconfiguration over-
head.2 The reconfiguration time has been varied between 0.1, 1, 10 time-units, which
corresponds to 1%, 10% and 100% of the computation time of the shortest task.

6.4.1 Global EDF Overhead Evaluation

First, we have applied our new EDF schedulability test including reconfiguration over-
heads of Equation 6.9 to our standard benchmark BMstd. Figure 6.3-left shows the
success rates for the original scheduling test without reconfiguration overheads and with
device reconfiguration time varied between 0.1, 1, 10 time-units, which corresponds to
1%, 10% and 100% of the computation time of the shortest task. The results show that
the effect of device reconfiguration can almost be neglected, when the reconfiguration
time is about 1% of the runtime of the shortest task. Even with a reconfiguration time in
the range of 10% of the runtime of the shortest task, a considerable number of task sets
could be guaranteed. Only when the reconfiguration time increases further, a stronger
performance loss can be observed.

The same evaluation has been done on a second benchmark called BMstd2. It has
been generated using the same method than for BMstd, but the time-utilization factors

2The computation times and periods have been scaled by a factor of 10 to provide a higher resolution
for scheduling simulations.
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Figure 6.3: Performance of the EDF-FkF scheduling test including reconfiguration over-
heads on the benchmark BMstd (left) and BMstd2 (right)

UT (Ti) and areas Ai have been chosen from the interval [0.01, 0.2]. Hence, the tasks
in BMstd2 could be denoted light-weight. On the other hand, the number of tasks per
task set increased to about 100. Figure 6.3-right shows the results. For small tasks with
small time-utilization, our scheduling condition is less pessimistic and accepts task sets
of 65% system utilization and more. However, the more tasks we have in the task set,
the more preemptions can occur and the higher the reconfiguration overheads are. For
benchmark BMstd2, a device reconfiguration time of 1% of the shortest task runtime
already reduces the amount of accepted task sets considerably.
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Figure 6.4: Performance of EDF-NF obtained by exact simulation, including reconfigu-
ration overheads (BMstd)

Figure 6.4 shows the scheduling performance for the simulated EDF-NF scheduler on
benchmark BMstd including reconfiguration overheads. Again, the device reconfigura-
tion time treconfig has been varied between 1%, 10% and 100% of the computation time
of the shortest task. The simulated execution of the EDF-NF scheduler does not suffer
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6 Execution Model and Overhead Analysis

from the pessimism of our scheduling test. Therefore, we get reasonably small losses
in performance for reconfiguration times of values one and more orders of magnitude
smaller than the smallest task computation time. For reconfiguration times in the same
range as the task computation times, the performance drop is again quite dramatic.

6.4.2 Partitioned EDF Overhead Evaluation

To evaluate the overhead in case of partitioned scheduling methods, we applied the opt.-
part.-EDF algorithm again on our standard benchmark (BMstd). The feasibility of a
task set including reconfiguration overheads was determined according to the heuristic
method introduced in 6.2. The results are shown in Figure 6.5 with a device reconfig-
uration time varied between 0.1, 1, 10 time-units, which corresponds to 1%, 10% and
100% of the computation time of the shortest task.

The results show that the effect of device reconfiguration can almost be neglected,
when the runtime of the shortest task is about one magnitude higher than the device
reconfiguration time. Even at reconfiguration times in the range of the runtime of the
shortest task, a considerable number of task sets could be feasibly scheduled.
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Figure 6.5: Performance of opt.-partitioned-EDF including reconfiguration overheads
(BMstd)

6.4.3 Server Based MSDL Overhead Evaluation

Also the impact of reconfiguration overheads on the MSDL scheduling method has been
evaluated on the BMstd benchmark. The results in Figure 6.6 show that a reconfigura-
tion time of 0.1, which corresponds to 1% of the computation time of the shortest task,
decreases the performance of MSDL almost negligibly. For a reconfiguration time of 1.0,
the performance drop becomes considerable, but even for a reconfiguration time of 10,
a considerable amount of task sets can be feasibly scheduled.
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Figure 6.6: Performance of MSDL including reconfiguration overheads (BMstd)

6.5 Conclusion on Execution Models and Overhead

For the three proposed scheduling approaches, this chapter discussed the runtime re-
quirements, modeled the reconfiguration overhead, included it within the schedulability
tests and finally evaluated the impact of the overhead in simulation experiments.

Runtime Requirements: We discussed the execution models and the according over-
head for all of our proposed scheduling algorithms. We showed how the schedule ob-
tained by a certain algorithm can actually be executed on a reconfigurable device and
what are the resulting requirements to the runtime-system. While all scheduling ap-
proaches create preemptive schedules and hence require a mechanism to store and recover
the state of tasks, the requirements concerning the reconfiguration model are different.
The global EDF schedulers have the hardest requirements - the runtime system has to
support 1D partial reconfiguration and task relocation. This makes the implementation
rather difficult, and requires target architectures with a homogeneous arrangement of
resources. The partitioned EDF schedulers require 1D partial reconfiguration as well,
but no task relocation, since a task will always have the same place on the device area.
A static partitioning of the device area into slots is suitable - which matches perfectly
the XILINX supported partial design flow for Virtex FPGAs [71]. Moreover, the sim-
plicity of the model suggests that it can be implemented on most devices that support
partial reconfiguration in any form. The server based MSDL scheduler has the least
requirements to the reconfiguration model. When switching from one server to another,
the entire device area is reconfigured. Hence, this scheduler can be used with any device
that supports runtime reconfiguration.

Reconfiguration Overheads: Concerning the time overheads due to the device re-
configurations at runtime, we have derived extended scheduling conditions for all our
scheduling approaches. The basic approach was, to derive an upper bound on the num-
ber of preemptions or relocations a task or server may undergo in the worst case. Doing
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6 Execution Model and Overhead Analysis

so, we could account for the overhead by increasing the computation time with a time
penalty for each preemption or relocation. The scheduling condition for each algorithm
could be used with the modified computation time, and hence take the configuration
overheads into consideration. Partial device reconfiguration is usually faster then con-
figuring the entire device. Up to now we failed to take advantage from this fact, since in
the worst case all tasks have to be configured onto the device at the same time. However,
we can expect that the overall reconfiguration time penalty can be reduced by a deeper
analysis.

Our performance evaluation shows that the reconfiguration time has considerably more
impact on the global EDF schedulers, than on the partitioned EDF or the server based
MSDL schedulers. One reason is, that in a global EDF schedule each preemption may
not only effect the preempted task but also cause a relocation of other running tasks.
In a partitioned EDF schedule, only tasks within the same partition can preempt each
other. Moreover, a preemption within one partition does not disturb the execution of
the tasks in other partitions. In a MSDL schedule, the maximum number of preemptions
depends on the number of servers, which is usually smaller then the number of tasks.

However, for all schedulers the reconfiguration overheads increase more or less with the
number of tasks. Partly, a drop in performance can be compensated. Larger task sets
are easier to schedule, at least for global EDF and partitioned EDF, since they contain
smaller tasks which leads to less resource fragmentation.

In conclusion, the evaluation on our standard benchmark shows that the performance
drop due to the reconfiguration overhead is acceptable, when the task computation time
is at least one order of magnitude higher than the device reconfiguration time.
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CHAPTER 7

Model Extensions

Within this chapter we will present two important extensions to our simple task model
of Chapter 3. By capturing more of the typical characteristics of hardware-tasks, we
aim to improve the resource management of the reconfigurable system.

The first model extension allows specifying not only one but several implementation
variants per task – each with different area and computation time. These variants can
be considered in a task schedule and our results show a significant improvement in
scheduling performance. These results have been also presented in [DP06b].

The second model extension captures the memory requirements of application tasks.
When tasks require a considerable amount of data memory, they will typically use
dedicated RAM which can be either block RAM inside the reconfigurable device or
external RAM banks. We will show that sharing such RAM banks among tasks without
jeopardizing timing constraints is feasible, reduces the overall memory requirements and
can even be used for inter task communication. The main results of this section have
been also presented in [DP05b].

7.1 Periodic Tasks with Variants

One, if not the fundamental characteristic of reconfigurable hardware, is that a certain
computational job can be implemented in many alternative ways, exploring the tradeoffs
between fast but resource-consuming and slower but resource-saving versions. Even
third party IP-cores can often be obtained as several variants, differing in area and
speed, as Example 1 of the DCT computation in Section 2.2 has shown. Assume a
system consisting of several periodic real-time tasks has to be realized, and for all or
some of the tasks we have alternative implementations to choose from. This raises a
question, which implementation variant to choose for which task. We may gain an
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7 Model Extensions

advantage by selecting particular variants, since we may be able to greatly reduce the
resource fragmentation and hence increase the scheduling performance.

First we extend our task model in such a way that makes us able to deal with implemen-
tation variants. Afterwards, we present for the partitioned EDF scheduler a detailed
method to obtain the optimal task variant selection. It follows a performance evaluation
which demonstrates the performance increase compared to task sets scheduled without
considering variants (Section 7.1.4). For the global EDF and the server bases scheduler,
we have not yet developed methods to deal with task variants. Hence, we will discuss
only rough approaches at the end of this section.

7.1.1 Variant-Rich Tasks

We consider the scheduling of a set of n variant-rich periodic tasks z = {Γ1,Γ2, . . . Γn}
onto a reconfigurable device H. Each variant-rich periodic task Γi ∈ z refers to some
computation which has to be performed periodically. The instances Γi,j of task Γi are
released with period Pi. Each task instance is associated with an absolute deadline di,j .
We assume that the relative deadline of Γi equals its period.

Each variant-rich task Γi exists in one or more implementation variants Γi = {T 1
i , T 2

i , . . .}.
Each variant T k

i ∈ Γi is specified by a worst-case computation time Ck
i and the amount

of required reconfigurable logic resources Ak
i . Table 7.1 shows an example task set with

four periodic tasks z∗ = {Γ1,Γ2,Γ3,Γ4}. The first two tasks have two implementation
variants.

Γi T k
i Pi Ck

i Ak
i UT (T k

i ) US(T k
i )

Γ1 T 1
1 12 3 6 1/4 3/2

T 2
1 6 3 1/2 3/2

Γ2 T 1
2 4 2 4 1/2 2

T 2
2 1 8 1/4 2

Γ3 T 1
3 6 5 3 5/6 5/2

Γ4 T 1
4 12 2 2 1/6 1/3

Table 7.1: Example of a variant-rich task set z∗

The notations used for variant-rich periodic real-time tasks and their instances are
summarized in the following list:

z denotes a set of periodic or sporadic variant-rich tasks
Γi denotes a generic variant-rich periodic task

Γi,j denotes the jthe instance of variant-rich task Γi

Pi denotes the period of Γi

Di denotes the relative deadline of Γi

T k
i denotes the kth implementation variant of Γi

Ck
i denotes the computation time of variant T k

i

Ak
i denotes the area requirement of variant T k

i
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ri,j denotes the absolute release or arrival time of Γi,j

di,j denotes the absolute deadline of Γi,j

si,j denotes the start time, when Γi,j begins its execution
fi,j denotes the finishing time of Γi,j

Feasible Schedule of Variant-Rich Tasks

In order to perform the requested execution of a task instance Γi,j , one of the task’s
implementation variants T k

i ∈ Γi has to be loaded (configured) onto the device and
executed for Ck

i time units. During this execution, an amount Ak
i of the device area is

occupied.

Generally speaking, we would like to schedule and execute a set of periodic tasks on the
reconfigurable device such that each task instance meets its deadline. Let Γ denote the
unified set of all implementation variants of all variant-rich tasks.

Γ = {Γ1 ∪ Γ2 ∪ · · · ∪ Γn} (7.1)

A schedule for a set of periodic variant-rich tasks z is given by a function R : R+ → P(Γ).
R(t) denotes the set of task implementations from Γ running at time t. A schedule is
called feasible, if for each request ri,j of task Γi one of its implementations T k

i ∈ Γi is
scheduled for execution for at least Ck

i time units within the interval given by the release
time and deadline of Γi.

We consider only schedules R, where the selection of variants is static. Hence, the same
variant T k

i of a task Γi is used for the entire schedule. We express a selection by the
function f(i), that selects exactly one implementation variant T

f(i)
i for each task Γi.

The set of all selected implementations is denoted by Γ|f = {T f(1)
1 , T

f(2)
2 , . . .}.

For example, Figure 7.1 displays a possible schedule for the variant-rich task set shown in
Table 7.1 on a device with an area of 10 units. The upper part of Figure 7.1 indicates the
release times and deadlines of the tasks. The lower part illustrates which implementation
variants of the tasks are executed, and how they share the device area over time. In
this example schedule always the first variant of each task is chosen. It occurs one task
preemption at time 4, which is denoted by a dotted line. The schedule shown can easily
be proven feasible, because every task instance meets its deadline for the entire hyper-
period of the task set (which amounts to 12 time units). The hyper-period is the least
common multiple of all task periods. Recall that a feasible schedule defined over the
hyperperiod can be repeated an infinite number of times.

Utilization Metrics for Variant-Rich Tasks

We have already introduced the time-utilization UT and the system-utilization US for
tasks and task sets of our basic model (without variants). In our extended model (with
variants), the metrics are defined for implementation variants T k

i of a variant-rich task
Γi and not for the task itself.

117



7 Model Extensions

T
1

2,1

T
1

1,1

T
1

3,1

T
1

4,1

T
1

1,1

T
1

2,2 T
1

2,3
2

4

6

8

10

T
1

3,2

Γ1, Γ2, Γ3, Γ4 Γ2 Γ3 Γ2 Γ1, Γ2, Γ3, Γ4

0 1 2 3 4 5 6 7 8 9 10 11 12

d
e
v
i
c
e
 
a
r
e
a

time

Figure 7.1: Preemptive global schedule of variant-rich tasks

The time-utilization given by

UT (T k
i ) =

Ck
i

Pi
(7.2)

is the fraction of time a certain task implementation T k
i occupies the device in order to

complete its execution. The cumulative time-utilization for a set of task-variants Γ̃ ⊆ Γ
is defined as

UT (Γ̃) =
∑

T k
i ∈Γ̃

UT (T k
i ). (7.3)

Obviously, a set of task implementations Γ̃ cannot be executed sequentially if UT (Γ̃) > 1.
In the same way we define the system-utilization metric, which captures the degree by
which the device is utilized by T k

i :

US(T k
i ) = UT (T k

i ) ·Ak
i (7.4)

In order to measure the load generated by a variant-rich task set z, we now define
the total system-utilization of z by summing up the system utilization factors of all
variant-rich tasks. If a task has several alternative implementations, we account for the
one with the minimal system-utilization:

US(z) =
∑
Γi∈z

min
T k

i ∈Γi

(
US(T k

i )
)

(7.5)

Thus, US(z) is the minimum amount of combined area and time required by the variant-
rich task set. If US(z) > A(H) ·1, no feasible schedule exists since the system is utilized
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by more than 100%. We use the US metric in our simulation study, in order to rate the
performance of the proposed scheduling algorithm.

Differences between the model with- and without implementation variants

What has been a task Ti in our old model, is now represented by a variant-rich task
Γi = {T 1

i , T 2
i , . . . , Tm

i }. Each implementation variant of the new model T k
i has the same

structure as a task of the old model (period, deadline, computation time, area) - that
is why we use the same symbol T .

What has been a task set Γ in our old model, is now represented by a set of variant-rich
tasks z = {Γ1,Γ2, . . . ,Γn}. Since a variant-rich task Γi of the new model has the same
structure as a periodic task set in our old model, we use the same symbol Γ.

7.1.2 Partitioned Scheduling of Variant-Rich Tasks

We can apply the concept of partitioned scheduling straight forward to our generalized
task model with implementation variants.

Definition 12 (partitioned schedule of variant-rich task sets). A schedule R for a pe-
riodic variant-rich task set z is said to be partitioned by χ with selection f , if the
following three statements hold:

1. f(i) is a function that selects exactly one implementation variant T
f(i)
i for each

task Γi. The set of all selected implementations is denoted by Γ|f = {T f(1)
1 , T

f(2)
2 , . . .}.

2. χ = {G1, G2, . . . , Gm} is a partitioning of Γ|f . That is, χ is a set of disjoint
subsets of Γ|f , called partition blocks, such that the union of all partition blocks
results in Γ|f .

3. At any point in time, at most one task implementation of each partition block is
executed on the reconfigurable device.

Each partition block is exclusively assigned a certain area of the reconfigurable device.
The area requirement of a partition block A(Gj) is determined by its largest task; the
required overall device area A(χ) is given by the accumulated area over all partitions:

A(Gj) = max
T k

i ∈Gj

(Ak
i ), A(χ) =

∑
Gj∈χ

A(Gj) (7.6)

Since each partition block presents an independent task system of its own, we can easily
formulate a test to figure out whether a given partitioned schedule is feasible or not by
applying the basic results from single-processor EDF theory:

Lemma 6 (EDF feasibly partitioned schedule of variant-rich tasks). Given a periodic
variant-rich task set z, let f be a selection function and R be a schedule of the selected
task variants Γ|f with partitioning χ, such that the tasks of each partition Gi ∈ χ are
scheduled separately by EDF. The schedule is feasible on the reconfigurable device H if:
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� A(χ) ≤ A(H), i.e., all partitions fit onto the device, and

� ∀Gi ∈ χ : UT (Gi) ≤ 1, i.e., all partitions have a time utilization of less than 100%.

Proof. The tasks implementations within each partition-block can be separately sched-
uled by EDF, such as in a uniprocessor system. Since the EDF uniprocessor utilization
bound holds for all partitions, all deadlines are met.
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Figure 7.2: Example of a partitioned EDF schedule of a variant-rich task set

Figure 7.2 illustrates an EDF partitioned schedule on the example of the task set Γ∗

shown in Table 7.1. In this example, the first variant for each task has been selected, i.e.,
Γ∗|f = {T 1

1 , T 1
2 , T 1

3 , T 1
4 }, and two partition-blocks have been generated, e.g., χ = {G1 =

{T 1
1 , T 1

3 , T 1
4 }, G2 = {T 1

2 }}. The left-hand side of Figure 7.2 presents the partitioning χ
and illustrates the division of the device area. The according partitioned EDF schedule
R is shown on the right-hand side of Figure 7.2. Since both partition blocks have a time
utilization of less than 100%, the schedule is feasible:

UT (G1) = 1/2 + 1/4 + 1/6 ≤ 1, UT (G2) = 5/6 ≤ 1

Based on Lemma 6 we are able to define an optimization problem in order to answer
our scheduling questions from Section 3.2. To this end, we formulate the problem of
finding the least resource-consuming EDF Feasibly Partitioned Schedule (EFPS) for a
variant-rich task set:

Definition 13 (EFPS of variant-rich tasks problem). Given a periodic variant-rich task
set z, find:

� a function f that selects a variant for each task and

� a partitioning χ of the selected variants Γ|f ,
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� subject to UT (Gi) ≤ 1 : ∀Gi ∈ χ,

� minimize A(χ).

Solving the EFPS of variant-rich tasks problem answers directly our formulated schedul-
ing questions: The smallest device that allows to feasibly execute z is of size A(H) :=
A(χ). The according decision problem is also solved. Given z and a device H, z can
be feasibly scheduled if A(H) ≥ A(χ). From the resulting partitioning χ, we can easily
derive the scheduling function R.

This problem can be optimally solved using an integer linear programming approach,
which we will present in the next section. The development and evaluation of further
heuristics is omitted at this place and left for future work.

7.1.3 Optimal Partitioning by ILP

In this section we develop an extension of the binary ILP model for the 2-dimensional
level strip-packing problem [73], which we used to compute partitioning for tasks without
variants in Section 4.2. Our extension is able to deal with implementation variants for
tasks. Instead of modeling each task by a single rectangle, we apply the ILP model
on the set of rectangles corresponding to all task variants. The ILP constraints are
modified, such that one and only one variant of each task is packed.

According to the model of [73], we make the following basic assumptions:

Order of task variants: We sort and renumber the set of all variants Γ, according to
non-increasing area of the task variants. Let Γ̄ denote the sorted set:

Γ = {T 1
1 , T 2

1 , T 3
1 , . . . , T 1

2 , T 2
2 , . . . , T 1

n , . . . } (7.7)

Γ̄ = {T̄1, T̄2, T̄3, . . .}, (7.8)

A(T̄j) ≥ A(T̄j+1), j = 1, . . . , |Γ̄| − 1

The index function δ(i, k) maps the index of a variant T k
i in Γ to the according

task variant in Γ̄, i.e., T̄δ(i,k) = T k
i .

Order of partition blocks: The task implementation T̄l having the largest area within
a partition block is said to initialize the partition block. The index l is also used
to index the partition block, i.e., if the largest variant in a partition block is T̄l

the partition block is denoted as Gl.

It follows, that a partitioning χ has m = |Γ| potential partition blocks G1 . . . Gm

(some may be empty), and that the partition blocks are sorted by non-increasing
areas, i.e., A(Gl) ≥ A(Gl+1). Further, the area of a partition block is equal to the
area of the task variant that initializes the partition block, i.e., A(Gl) = A(T̄l).
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7 Model Extensions

Considering an arbitrary solution to our formulated EFPS of variant-rich tasks problem,
we can now, based on the assumptions made above, differentiate three cases for each
task implementation variant T̄j ∈ Γ̄:

� T̄j is not packed in any Gl since another implementation variant of the task is
selected and packed.

� T̄j initializes a partition block, i.e., Tj ∈ Gj .

� T̄j is packed into a partition block with greater area, forcing the partition block
index to be smaller than j.

The assumptions made are without loss of generality but reduce the search space con-
siderably, since a task implementation T k

i cannot be assigned to an arbitrary partition
block Gl. When modeling the ILP, we use the binary decision variable xl,j to indicate
that the task variant T̄j is packed into partition block Gl:

xl,j =

{
1 if T̄j ∈ Gl

0 if T̄j /∈ Gl

with l = {1, . . . , |Γ|}, j = {1, . . . , |Γ| : j ≥ l} (7.9)

If xl,j = 1 and j = l, the partition block Gl is said to be initialized and its largest task
variant is T̄l. If xl,l = 0, Gl is uninitialized and empty. The resulting ILP has three
main components:

1. The cost function accumulates the area required by all non-empty partition blocks,
hence minimizing the overall area A(χ).

2. A set of constraints ensures that for each variant-rich task Γi exactly one variant
T k

i is packed into one of the partition blocks. For the variant-rich task Γi with m
variants this can be expressed by the term:

δ(i,1)∑
l=1

xl,δ(i,1)

 +

δ(i,2)∑
l=1

xl,δ(i,2)

 + · · ·

+

δ(i,k)∑
l=1

xl,δ(i,k)

 + · · ·+

δ(i,m)∑
l=1

xl,δ(i,m)

 = 1 (7.10)

The first term of Equation 7.10 equals one, if T 1
i is packed into some partition

block, the second term checks whether variant T 2
i is packed into some partition

block, and so on. Note, that by convention a variant T k
i can only be packed into

G1, . . . , Gδ(i,k). Therefore, the upper bounds of the sum indices are given by δ(i, k).

3. Another set of constraints enforces EDF schedulability. Each non-empty partition
block must have a time utilization less or equal than 1, i.e., UT (Gl) ≤ 1.
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7.1 Periodic Tasks with Variants

The final binary ILP can be written as:

min
|Γ|∑
l=1

A(T̄l) · xl,l

|Γi|∑
k=1

δ(i,k)∑
l=1

xl,δ(i,k)

 = 1, i ∈ {1, . . . , n}

n∑
j=l

UT (T̄j) · xl,j ≤ 1 · xl,l, l ∈ {1, . . . , |Γ|}

(7.11)

Let n be the number of tasks in z and |Γ| be the cumulative number of variants over
all tasks. The corresponding ILP contains |Γ| · (|Γ|+ 1)/2 binary variables and n + |Γ|
constraints.

Example illustrating the binary ILP with task variants

To illustrate the ILP model, we consider again the example task set in Table 7.2.

Γi T k
i Pi Ck

i Ak
i UT (T k

i ) US(T k
i )

Γ1 T 1
1 12 3 6 1/4 3/2

T 2
1 6 3 1/2 3/2

Γ2 T 1
2 4 2 4 1/2 2

T 2
2 1 8 1/4 2

Γ3 T 1
3 6 5 3 5/6 5/2

Γ4 T 1
4 12 2 2 1/6 1/3

Table 7.2: Example of a variant-rich task set z∗

The four tasks of z∗ have a total of six task implementations (the set Γ) which get
sorted and re-numbered according to non-increasing areas. The resulting set Γ̄ is given
by:

Γ̄ = {T̄1 := T 2
2 , T̄2 := T 1

1 , T̄3 := T 1
2 , T̄4 := T 2

1 , T̄5 := T 1
3 , T̄6 := T 1

4 } (7.12)

Figure 7.3 shows the optimal partitioning χ, which consists of the two partition blocks
G3 = {T 2

1 , T 1
2 } and G5 = {T 1

3 , T 1
4 }. Since |Γ| = 6, the ILP model contains 6 · (6+1)/2 =

21 binary variables. The configuration of the decision variables xl,j is shown in the table
beside the figure. The required overall device area is 7 units. For comparison: If each
task comes only in one variant (the first one), the optimal partitioning would require
9 units of device area. Figure 7.4 shows the optimal partitioning and the according
decision variable configuration, in case only the first variant of each task is considered.
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Figure 7.3: Optimal partitioning of z∗ and the according decision variable configuration
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Figure 7.4: Sub-optimal partitioning of z∗, considering only the first variant of each
task.

7.1.4 Performance Evaluation for Variant-Rich Tasks

Introducing implementation variants for tasks makes it more likely, that an EDF feasible
partitioned schedule exists for a reconfigurable device of given size. However, finding such
a schedule becomes computationally more complex since the design space grows rapidly
with the number of implementation variants. In order to evaluate the benefit we gain
by introducing implementation variants we present a simulation study.

To create a benchmark of task sets without and with variants, we used the following
procedure: First, we generated periodic task sets z (with only one variant per task)
with various system utilization by composing randomly generated task implementations
according to our BMstd parameters. For each task Γ1 = {T 1

i }, the area A1
i was chosen

according to a uniform distribution in [0.1, 0.5] and the computation time and period
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7.1 Periodic Tasks with Variants

were chosen1 such that UT (T 1
i ) is uniformly distributed in [0.1, 0.5]. Such a setup creates

task sets of up to 15 tasks. Based on these task sets, we created task sets with variants
using the following methods:

3 variants per task: To the existing variant T 1
i of each task, we added one variant

T 2
i with half the computation time but double the area requirement, i.e., T 2

i =
(P 1

i , 1
2 · C

1
i , 2 · A1

i ), and another variant with doubled computation time but only
half the area requirement, i.e., T 3

i = (P 1
i , 2 · C1

i , 1
2 ·A

1
i ).

1 to 5 variants per task: For each task the number of variants was randomly chosen
from 1 to 5. Each variant T k

i was created choosing a form factor q from the
continuous interval [1, 4] and a sign s from {−1,+1}. The computation time and
area were set to Ck

i = C1
i · qs and Ak

i = A1
i · q−s, respectively. Note, that each

variant still has the same system utilization as the initial variant since US(T k
i ) =

Ck
i /Pi ·Ak

i = C1
i · qs/Pi ·A1

i q
−s = US(T 1

i ).
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Figure 7.5: Performance of opt.-part.-EDF on task sets with implementation variants

Figure 7.5 shows the relative scheduling success rates, depending on the task sets system
utilization, when scheduled onto a device H of size A(H) = 1. For an average system
utilization of 0.7, the optimally partitioned EDF schedule produced feasible solutions
for about 80% of the task sets in the reference case (with only one variant per task).
Introducing two additional implementation variants for each task yields an enormous
advantage - even task sets with average system utilization of 0.87 could be scheduled
with an 80% success rate. If some tasks have more and some tasks have less variants,

1First UT (T 1
i ) was chosen from [0.1, 0.5], then C1

i was chosen from {1,...,30} and the period was set to
P 1

i = round (C1
i /UT (T 1

i )).
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we can also observe a great improvement over the reference case. 80% of the task sets
with average US ' 0.83 could be successfully scheduled.

To solve the ILP model, we employed the lp solve library version 4.0 on a 2.8 GHz
Pentium 4 machine. We were able to optimally solve most problem instances with a size
of |Γ| up to 30 in less than 15 seconds. That is, we could compute the schedule for 30
tasks with only one implementation variant, or for 10 tasks with three variants each. In
particular, from the 1000 task sets generated for the evaluation in Figure 7.5, only 28
exceeded the 15 second time limit.

7.1.5 Approaches for Global- and Server Scheduling of Variant-Rich Tasks

Selecting the right task variants to improve the scheduling performance of our global
EDF schedulers or our server based scheduler is rather difficult. Up to now, we have
not explored the possibility of choosing variants for these schedulers deeply. We rather
present some rough approaches and leave their evaluation for future work.

Global EDF for Variant-Rich Tasks

The simulation results of our performance study in Section 5.2 have shown, that the
global EDF-NF scheduler performance is almost independent of the ratio between area
and task computation time. Hence, we cannot expect an improvement of the schedul-
ing performance by following simple rules like select for each task the variant with the
smallest computation time (respectively smallest area).

A more constructive method can be developed, by considering the global EDF schedu-
lability test of Theorem 4 which we have derived in Chapter 4. The schedulability test
allows us to rate whether a given selection of implementation variants is guaranteed to
be feasible by EDF-FkF or not. Hence, we can formulate the following optimization
problem:

Definition 14 (EDF-FkF scheduling condition variant selection problem). Given a
periodic variant-rich task set z, find:

� a function f(i) that selects one variant for each task Γi

� such that for the set of selected variants Γ|f the EDF-FkF scheduling test holds,
i.e.,

∀T k
i ∈ Γ|f : US(Γ|f ) ≤ (A(H)−Amax) ·

(
1− UT (T k

i )
)

+ US(T k
i )

where Amax is the largest area of all implementation variants in Γ|f .

� minimize A(H).

Solving this problem yields the best selection f of implementation variants of our variant-
rich tasks in the sense, that it is guaranteed by our scheduling condition that EDF-FkF
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7.1 Periodic Tasks with Variants

finds a feasible schedule on a device of size A(H). For any other selection f̃ we would
require a device of equal or larger size.

One idea to solve such problem is, to apply a suitable meta heuristic such as simulating
annealing, tabu search or a genetic algorithm. In this case, the heuristic would propose
new selections f and then evaluate the scheduling condition which can be done in linear
time. Evaluation of such an approach is subject to future work.

Server Based MSDL of Variant-Rich Tasks

Similar to the global scheduler, it is rather difficult to find a good variant selection for
the server based MSDL scheduling method. However, we will formalize the optimization
problem and present a simple heuristic as rough draft.

The problem of selecting the right variants for an MSDL schedule can be formulated as
follows:

Definition 15 (MSDL scheduling variant selection problem). Given a variant-rich task
set z, find a selection function f and a device H such that when MSDL is applied
to the selected variants it creates a feasible set of servers and the device size A(H) is
minimized, i.e.

� Ω = MSDL(Γ|f ,H) with UT (Ω) ≤ 1 and

� minimize A(H).

Also meta-heuristics can be considered for this problem, their runtime may be unac-
ceptably long due to the high time complexity of the MSDL procedure which has the
order O(n4). Instead, we find it more reasonable to develop problem specific heuristics.
In contrast to the performance of the global EDF schedulers, the server based MSDL
scheduler has appeared to be very sensitive to the ratio of the task area to the task
time-utilization (Section 5.2). Figure 5.9 has shown, that MSDL performs better on
tasks with large area but small time-utilization. Hence a heuristic rule such as select
for all tasks the variant with the smallest computation time seems to be promising. Once
again a detailed evaluation remains subject of future work.

In summary, we have shown that considering task variants considerably improves the
scheduling performance. We evaluated this for the partitioned EDF scheduler in detail
and also presented rough approaches how the selection of variants could be utilized in
the global and server based schedulers.

The next part of this chapter deals with an extension of our basis model that captures
the memory access of tasks under real time constraints.
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7.2 Periodic Tasks with Memory Access

Typical hardware tasks process data in a streaming fashion; hence they demand large
memory buffers and access them periodically. Up to now we have neglected the issue
of the task’s data access under real-time constraints. In this section, we extend our
application model by logical data buffers, which are used by the tasks. The problem
of assigning data buffers to physical memories for a given application is addressed. We
show that sharing physical memory banks between tasks is feasible and reduces the
required memory resources. Moreover, knowledge of the actual task schedule helps to
reduce the memory requirement even further.

Usually, a reconfigurable computing platform provides several relatively large external
banks of SRAM to store data processed by hardware tasks. With today’s fast-growing
FPGA capacities the number of tasks that can run simultaneously will in general be
much higher than the number of external memories. Furthermore, hardware tasks op-
timized for throughput may access several memories at the same time. Hence, a simple
one-to-one assignment between tasks and memories is unrealistic. Memories will be
shared among tasks, and tasks will access several memories.

The required versatile memory assignment opens up two issues. First, a proper ad-
dressing mechanism has to be introduced to ensure that data of one task is stored and
addressed separately from the data of other tasks – unless the intention is implementing
inter-task communication via shared memory access. We have solved this issue by a
page table mechanism that maps logical address to physical addresses [Dan04b].

The second and more challenging issue is resolving conflicts when simultaneously exe-
cuting tasks attempt to write or read from the same memory bank at the same time.
Since the memories are usually single-port memories, only one access can be performed
per clock cycle. A simple mutual exclusion mechanism protecting the memory port is
insufficient, since this would lead to an unpredictable timing and could enlarge the worst
case execution time of a task.

Our approach to solve the problem of sharing physical RAMs but guarantee timing is
to apply a fix-priority scheduling mechanism to determine the order of memory accesses
in case of access conflicts. To this end we assume that the tasks access memory in a
deterministic and known pattern. Particularly, we assume periodic RAM accesses such
as demonstrated by the DCT-task in Example 1 of Section 2.2.

Before introducing our model, we continue the example to illustrate the problem:

Example 4. Assume two simultaneously executing tasks, each computing an 8-point 1D
discrete cosine transform (DCT) on its own data set. Figure 7.6-(a) shows the mapping
of the two tasks onto an FPGA. For this example, we use two different variants of the
DCT core [107] described in Section 2.2. We repeat the characteristics of the DCT core
in Table 7.3.

Task 1 has to process a set of 500 words and is implemented using variant 2 while Task 2
has to process a set of 2000 words and is implemented using variant 3. As denoted in
the scheduling diagram of Figure 7.6-(b), Task 1 reads from and writes to its RAM banks
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7.2 Periodic Tasks with Memory Access

variant FPGA area throughput ext. RAM port access
(slices) (sample/clk) period amount utiliz.

1 982 1 2 clks 1 Ö32 bit word 50%
2 767 8 / 9 9 clks 4 Ö32 bit words 45%
3 589 8 / 17 17 clks 4 Ö32 bit words 24%

Table 7.3: Size, throughput and memory access pattern of several variants of a XILINX
8 point 1D-DCT IP core [107].

4 words every 9 clock cycles, while Task 2 makes 4 accesses every 17 clock cycles. Due
to the FIFO buffers residing within the hardware tasks, the requested RAM accesses do
not have to take place exactly in the clock cycles shown in Figure 7.6-(b), but can be
scheduled any time within their period of 9 and 17 clock cycles, respectively. The question
remains, whether four separate RAM banks are required as shown in Figure 7.6-(a), or
if fewer RAM banks can be shared between the tasks. If we assume that all RAMs have a
size of 4000 words, the input data of Task 1 and Task 2 could be stored in SRAM1 and
the output data of both tasks in SRAM2. If we assign the accesses of Task 1 a higher
priority than the accesses of Task 2, all memory accesses can be feasibly scheduled, as
shown in Figure 7.6-(c).
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Figure 7.6: (a) Application of Example 4 mapped to an reconfigurable platform; (b)
schedule using four memory banks; (c) schedule using two memory banks

7.2.1 The Buffer Assignment Problem

The example has shown that physical RAM banks can be shared among simultaneously
executing tasks. We now formalize the problem of minimizing the number of required
memories. The following assumptions form the basis of our model:
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� Tasks use memory in the form of logical buffers, which are accessed periodically.
The memory accesses must be completed within the given period, i.e., deadlines
equal periods.

� Each task can use many logical buffers.

� A logical buffer can be used by several tasks.

� Each logical buffer is assigned to one and only one physical memory.

� Write and read accesses of tasks to physical memories are scheduled using the
fixed-priority Rate Monotonic (RM) algorithm.

Definition 16 (memory-demanding RT application). A memory-demanding RT appli-
cation Υ is a tuple Υ = (Γ, B, s, L, ω, α). Γ is a set of periodic tasks. B = {B1, B2, . . . }
is a set of logical buffers representing the memory requirements of the application. The
size of a buffer is given by s : B → N, where s(Bi) denotes the size of Bi in terms of
words. L ⊆ Γ×B is a relation from Γ to B, expressing which task is using which buffer,
where (Ti, Bj) ∈ L denotes that Ti is using buffer Bj. We assume that a task is using
a buffer by a pattern of periodic write or read accesses. ω : L → N specifies the access
periods in clock cycles, where ω(Ti, Bj) represents the period of accesses of task Ti to
buffer Bj. α : L → N is a function, where α(Ti, Bj) denotes the number of requested
read or write accesses of task Ti to buffer Bi, which have to be performed within one
period ω(Ti, Bj).

Note, that the relation L between tasks Γ and logical buffers B is a many–to–many
relationship, which allows a task to use several logical buffers, but also one logical buffer
to be used by several tasks.

The mapping of the logical buffers to the physical memories of a platform is modeled
by a buffer assignment function:

Definition 17 (buffer assignment:). A buffer assignment of a given application Υ is
an injective function a : B → M , which assigns each logical buffer Bi ∈ B required
by the application to one physical memory bank Mk ∈ M of the platform. For simpler
notation, we define the binary variables âi,k ∈ {0, 1} such that âi,k = 1 if a(Bi) = Mk

and 0 otherwise. I.e., ai,k = 1, iff buffer Bi is assigned to memory Mk. A buffer
assignment a is called feasible, if

1. the logical buffers assigned to each memory Mk do not exceed its size, and

2. all resulting access requests to the physical memories are performed within their
deadlines, when scheduled by RM.

Note, that the buffer assignment of Definition 17 is a function, which requires that a
logical buffer is mapped to one and only one physical memory. Distributing a logical
buffer to many physical memories is not considered. Also the function is injective,
requiring that every buffer is assigned to a memory.
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7.2 Periodic Tasks with Memory Access

As an illustration, an instance of a memory demanding RT application Υ and a particular
mapping of buffers to physical memories can be drawn as a graph. Figure 7.7 shows
the graph according to Example 4. Tasks Γ, logical buffers B and physical memories
M are the graph nodes plotted as circles, squares and rectangles respectively, the latter
two labeled with their according size s. The edges between tasks and buffers represent
the usage relation L, labeled with the number of accesses α and periods ω. The buffer
assignment function a, which has to be computed, is represented by edges from B to
M .

According to Definition 17, a feasible buffer assignment is subject to two conditions.
Obviously, the memory size condition is fulfilled, if and only if Equation 7.13 holds
where s(Mk) denotes the size of the memory bank Mk.

|B|∑
i=1

âi,ks(Bi) ≤ s(Mk), ∀Mk ∈M (7.13)

The second condition concerning the schedulability of access to memory under the RM
algorithm is more involved. Since each buffer Bi has been uniquely assigned to a memory
Mk, and this assignment does not change during runtime, the scheduling condition can
be checked for each involved physical memory separately. This problem is equivalent to
testing the schedulability of a periodic RT task sets scheduling onto a uniprocessor by
RM. A sufficient but not necessary condition can be derived by computing the utilization
factor of the processor utilization, which is in our case the utilization factor of the
physical memory port. Recall, that any periodic task set can be scheduled by RM,
given the processor utilization is less then ln2, i.e. less than ≈ 69 % (see [25]p. 78 ff.
and Section 2.4.2).
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Figure 7.7: Graph representation of the memory demanding RT application Υ of Ex-
ample 4, with tasks Γ, logical buffers B and their assignment to physical
memories M .
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Following the same concept, we define two access utilization factors modeling the RAM
port utilization: µB(Bi) expressing the utilization of the virtual RAM port of a logical
buffer Bi, and µM (Mi) expressing the utilization of the port of a physical memory Mi

as a consequence of the assignment of buffers to that memory.

Let L(Γ, Bi) ⊆ L denote all edges from tasks incidence to buffer Bi, than the virtual
port utilization µB(Bi) is defined as:

µB(Bi) =
∑

l∈L(Γ,Bi)

α(l)
ω(l)

(7.14)

The utilization factor of a physical memory port µM (Mi) results from summing up all
logical utilization factors of buffers assigned to that memory. It is calculated through:

µM (Mk) =
|B|∑
i=1

âi,kµB(Bi) (7.15)

Applying the test condition from RM scheduling, we can derive a sufficient (but not
necessary) condition to guaranty a feasible schedule of all memory accesses:

µM (Mk) ≤ ln 2, ∀Mk ∈M (7.16)

Based on the two conditions for a feasible buffer assignment, we formulate the following
optimization problem:

Definition 18 (2C-BA (two constraint buffer assignment)). Given a memory demand-
ing application Υ and a set of platform memories M each with a certain cost c(Mk),
find a feasible buffer assignment a : B →M subject to:

�

∑|B|
i=1 âi,ks(Bi) ≤ s(Mk), ∀Mk ∈M and

� µM (Mk) ≤ ln 2, ∀Mk ∈M ,

� min
∑

c(Mk) of used memories, i.e. minimize the total cost of used memories.

7.2.2 Task Schedule Aware Buffer Assignment

We can weaken the constraints of feasible buffer assignments and therefore extend the
set of feasible buffer assignments by taking into account the actual schedule of hardware
tasks, i.e. the possible sets of parallel running tasks. Hence, an optimization strategy
may find better assignments that require less physical memory banks.

In a given task schedule R(t) not all tasks Ti ∈ Γ are executed in parallel, but only a
certain subset ζj ⊆ Γ is executed at any given time. The number of different running
sets appearing in the schedule is finite, and is denoted by ζ = {ζ1, ζ2, . . . }. Therefore,
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we can compute the utilization of each virtual buffer port µB and each physical memory
port utilization µM separately for each running set ζj . Thus, only the usage relations
in L from the tasks of a specific running set ζj to a specific buffer Bi – denoted by
L(ζj , Bi) ⊆ L – are considered. The virtual memory port utilization and physical port
utilization are reduced and change to:

µB(Bi, ζj) =
∑

l∈L(ζj ,Bi)

α(l)
ω(l)

≤ µB(Bi) (7.17)

µM (Mk, ζj) =
|B|∑
i=1

âi,kµB(Bi, ζj) ≤ µM (Mk) (7.18)

As a result, the access scheduling condition changes from Equation 7.16 to Equation 7.19,
which has to be checked for all combinations of memories and running sets.

µM (Mk, ζj) ≤ ln 2, ∀(Mk, ζj) ∈M × ζ (7.19)

We illustrate the advantage of the task schedule aware buffer assignment by extending
Example 4.

Example 5. Assume the application Υ of Example 4 extended by two additional tasks
T3, T4 that share another buffer B5 of 1000 words. Both tasks access this buffer once
within a period of 5 clock cycles. Figure 7.8 illustrates this application as a graph, where
tasks Γ, logical buffers B and physical memories M are the graph nodes plotted as circles,
squares and rectangles, respectively. Assume further that in a given task schedule, either
the tasks ζ1 = {T1, T2} or ζ2 = {T2, T3, T4} are running simultaneously. Buffer B5 is
assigned to memory M2, in addition to B2 and B4. Then the utilization of the RAM
port of M2 is calculated to be µM (M2, ζ1) = 4/9 + 4/17 ≈ 0.68 for the first running set
and µM (M2, ζ2) = 4/17 + 2/5 ≈ 0.64 for the second running set. Therefore, the buffer
assignment is feasible according to Equation 7.19. In contrast to that, the utilization
without considering the running sets amounts to µM (M2) ≈ 1.08, making the buffer
assignment infeasible according to Equation 7.16.

The example showed, that the memory banks required by an application can be reduced,
when the task schedule is taken into account. This motivates us, to formulate the
problem of a schedule aware buffer assignment.

Definition 19 (schedule aware buffer assignment (SA-BA)). Given a memory demand-
ing application Υ and the finite set ζ = {ζ1, ζ2, . . . } of the different running sets of its
task schedule, find a feasible buffer assignment a : B →M subject to

�

∑|B|
i=1 âi,ks(Bi) ≤ s(Mk), ∀Mk ∈M and

� µM (Mk, ζj) ≤ ln 2, ∀Mk ∈M,∀ζj ∈ ζ

� min
∑

c(Mk) of used memories, i.e. minimize the total cost of used memories.
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Figure 7.8: Memory demanding RT application from Example 5, illustrating different
running sets of a task schedule.

7.2.3 Buffer Assignment Based on Integer Programming

Solving the 2C-BA and SA-BA problems to optimality is rather difficult. Both are
generalizations of the classical bin-packing problem and hence cannot be solved in poly-
nomial time. For solving instances of large size, suboptimal methods like approximation
algorithms and heuristics are needed.

However, in this work we are rather interested in comparing the cost of a non-schedule
aware buffer assignment to that of a schedule aware buffer assignment. Moreover, many
applications of interest may be of rather medium complexity, e.g. up to some tens of
tasks and buffers.

Hence, we present an integer linear programming approach to solve simplified versions
of the 2C-BA and SA-BA problems. The assumptions we make are:

� All platform memories are of equal size and equal cost. Hence we minimize the
number of used memories.

� For the RM scheduling condition we use the fix utilization bound of ln2, rather
than the more precise bound of n(21/n − 1). This makes our port utilization
pessimistic, but enables us to use an ILP formulation.

For this modified versions of 2C-BA and SA-BA problem we present an efficient binary
integer program:
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7.2 Periodic Tasks with Memory Access

Equations 7.20 to 7.23 specify the non schedule-aware buffer assignment problem, while
replacing Equation 7.23 by Equation 7.24 specifies the schedule-aware buffer assignment
problem.

The binary variables are âi,k ∈ {0, 1}, where âi,k = 1 iff buffer Bi is assigned to memory
Mk. The index range for i and k is {1 . . . |B|} with i ≥ k, which exploits the symmetry
of the problem and leads to a complexity of |B|2/2 variables.

min
|B|∑
i=1

âi,i (7.20)

i∑
k=1

âi,k = 1, i ∈ {1 . . . |B|} (7.21)

|B|∑
i=k+1

âk,k[sM − s(Bk)]− âi,ks(Bi) ≥ 0, k ∈ {1 . . . |B|} (7.22)

|B|∑
i=k+1

âk,k[ln 2− µB(Bk)]− âi,kµB(Bi) ≥ 0, k ∈ {1 . . . |B|} (7.23)

|B|∑
i=k+1

âk,k[ln 2− µB(Bk, ζj)]− âi,kµB(Bi) ≥ 0, (k, j) ∈ {1 . . . |B|} × {1 . . . |ζ|} (7.24)

The objective function (Equation 7.20) minimizes the number of memories where buffers
have been assigned to, since ai,i is set to 1 iff any buffer is assigned to Mi. Equation 7.21
ensures that each buffer is assigned exactly once. Equation 7.22 and Equation 7.23/7.24
consider respectively the maximal size and maximal port utilization of each memory.

7.2.4 Simulation Results

In our experiments, we could solve both variants of the ILP for problem sizes of up
to |B| = 15 in reasonable time. Solving one instance took less than one minute using
lp solve version 4.0 on a 2.8 GHz Pentium IV machine. Table 7.4 presents the results
for randomly generated problem instances, each with 15 tasks and 15 buffers. Each
buffer is used by 1 or 2 tasks. In the various test cases, the virtual buffer port utiliza-
tion µB(Bi) and the buffer size s(Bi) (in percent of the memory bank size) have been
chosen equally distributed from the reported intervals. For the schedule-aware buffer
assignment problem, a task schedule with 15 running sets, each containing 1 to 3 tasks,
has been assumed. For each test case the table reports on the number of required phys-
ical memory banks of: the buffer assignment without sharing memory banks; the non
schedule aware assignment; and the schedule aware buffer assignment.
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test parameter used memories (in average)
no equally distributed non mem non sched. schedule

port util. µB(Bi) buffer size s(Bi) sharing aware aware
1 [0, 0.69] [0, 100%] 15 10.42 8.85
2 [0, 0.69] [0, 50%] 15 8.90 4.49
3 [0, 0.50] [0, 50%] 15 5.94 4.26
4 [0, 0.25] [0, 50%] 15 4.29 4.29
5 [0, 0.69] [0, 25%] 15 8.90 3.47
6 [0, 0.50] [0, 25%] 15 5.97 2.67
7 [0, 0.25] [0, 25%] 15 3.23 2.33

Table 7.4: Simulation results of 2C-BA and SA-BA problems.

Without sharing memory banks each buffer is assigned to one physical memory exclu-
sively, thus 15 memories are used in all test cases. In the first test case, the average
buffer port utilization and size are chosen relatively large. Hence, only in few cases mul-
tiple buffers can be assigned to one memory bank which results in about 10-11 memory
banks for the non schedule-aware assignment. A schedule aware assignment results in 8-
9 memories which is an further reduction of about 15%. As the port utilization and size
of the buffers decreases, the number of used memories is reduced considerably. For all
test cases except test no 4, the schedule aware assignment gives a further cost reduction
compared to the non schedule aware assignment. In test case no 4, the virtual port uti-
lization is small compared to the relative buffer size. Hence, the RAM size and not the
port utilization is the major limitation. Therefore, weaken the RAM port constraints
by a schedule aware assignment brings no further improvement. Test case no 5, where
the port utilization is choose large and the buffer size is choose small, shows the greatest
difference (about 60% further improvement) between the cost of a schedule-aware and
a non schedule aware assignment.

7.2.5 Concluding Discussion on Memory Demanding RT Applications

In this section we extended our application model by the memory requirements of the
tasks. The goal was, to share physical memories among the tasks without jeopardizing
timing constraints. We have presented a formal model of a buffer assignment prob-
lem and exploited the fact that the conditions for a successful scheduling of memory
accesses under RM can be weakened by considering the actual combinations of tasks
running simultaneously. This schedule aware buffer assignment is particularly interest-
ing in combination with the presented server based task scheduling algorithm MSDL of
Section 4.3. As MSDL produces a rather small number of running sets, the resulting
ILP is likely to stay within a realistic problem size. The simulation results indicate, that
sharing memories between buffers reduces the total memory cost considerably and that
further reductions can be achieved by a schedule aware buffer assignment.

For the memory port utilization we have used the simple RM scheduling bound of ln 2.
Using better RM scheduling conditions (see Section 2.4.2) would potentially improve our
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results. However, using the RM hyperbolic bound would bring non-linear conditions into
the assignment problem. Hence using an ILP approach would not be straightforward.
Using the RM bound of Equation 2.2 for a fix n would be an option for an ILP approach,
but even for small n the bound is close to ln 2 and hence we cannot expect considerable
improvements. We leave the investigating of non ILP based buffer assignment methods
in combination with improved RM scheduling conditions as a subject of future work.

Sharing RAM banks among tasks can further be used to implement inter-task communi-
cation. A particular mechanism for the communication among periodic tasks is the use
of Cyclical Asynchronous Buffers (CABs) (see [25] p.319 ff.). Hard real-time tasks can
access CABs without blocking the sender or receiver, for example to exchange messages
containing current sensor values. A CAB provides a one-to-many communication chan-
nel. Hence CABs can be implemented using our many-to-many logical buffers, extended
by some simple handshaking functionality.

7.3 Chapter Conclusion

Within this chapter we generalized and extended our task model in two directions in
order to respect the special characteristics of hardware-tasks.

When implementing a computational task as a digital circuit on an RHD, the designer
can choose several architectures resulting in different tradeoffs between area and com-
putation time. This is captured, by modeling a task as a set of implementation variants.
We have shown that considering these variants within the task schedule can considerably
increase the performance.

Hardware-tasks typically process high amounts of data which cannot be kept within
the task circuit but has to be stored in dedicated RAM resources. In our approach,
we extended the model to capture the memory requirements of the tasks. Both, the
required RAM size and the utilization of the RAM port have been modeled. Task may
share a physical RAM bank, iff its size is not exceeded and the access to the RAM-port
is feasible under the RM priority schema. We presented a method to assign task buffers
to RAM-banks, which allows the minimization of the memory requirements and makes
inter-task communication feasible.
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CHAPTER 8

Prototype: FPGA Based Real-Time Kernel

This chapter presents our prototype of an FPGA based real-time system. It implements
the server based scheduler (MSDL) and hence uses the free space - time sharing resource
model which is based on full FPGA reconfiguration. In contrast to others, the kernel
is a hardware-only system with the OS functions entirely implemented in hardware.
We first describe the architecture of the system and the kernel and the phases of the
scheduler cycle. Afterwards, we present an automated synthesis flow. It takes the task
set parameters and the source files of the kernel and the tasks as input and generates
the required FPGA bit-streams of the entire system. Finally, results on the system’s
logic requirements and timings are reported.

Up to now we have build no prototype systems for the global EDF and partitioned EDF
algorithms. These methods are both based on the 1D resource model. Since several
prototypes that follow the 1D model and moreover implement task relocation and state
saving have been reported previously [60][20][21][61], we found that no additional proof
of concept is necessary within this work.

We previously reported on our prototype in [DMP06].

8.1 System Architecture

8.1.1 An All-Hardware Runtime System

We have implemented an all-hardware runtime system for the execution of MSDL sched-
ules. The decision for implementing the complete runtime system in hardware was
driven by the fact that a hardware scheduler can control the user tasks in a very effi-
cient manner and, thus, minimize the runtime overhead and deliver maximum scheduling
performance. In a processor-based real-time runtime system, a periodic timer triggers
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8 Prototype: FPGA Based Real-Time Kernel

a kernel function that maintains time in terms of system ticks. The smaller the timer
period is, the finer the system’s time resolution is but the higher the runtime overhead
is. In our all-hardware runtime system, the scheduler runs in parallel to the user tasks
and, thus, no execution time is wasted for updating the internal time reference.

As the runtime system itself undergoes full device reconfiguration, we have to include
it in each single configuration bit-stream. On one hand, this opens up the opportunity
for compile-time optimization of parts of the runtime system to specific servers. On the
other hand, we also have to save and restore the context of the runtime system.

Our prototype is based on a CELOXICA RC203 board. Figure 8.1 shows the system
architecture consisting of an FPGA, a CPLD, a flash memory card and two banks of
SRAM. The CPLD is connected to FPGA user I/Os, to the FPGA configuration port,
as well as to the flash memory card. This way, the CPLD acts as a reconfiguration
controller that reads configuration bit-streams from the flash memory card on request
of the logic implemented in the FPGA.

The main runtime system components shown in Figure 8.1 comprise the timer, the
scheduler, the task management and an optional memory management unit (MMU).

Timer: The timer provides the time reference for the system by scaling down the clock
to a system tick signal with a user-defined period. All execution times and periods
are expressed in terms of system ticks.

Scheduler: The scheduler is the central part of the runtime system as it controls which
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Figure 8.1: System architecture
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8.1 System Architecture

user tasks are executed at any given time. The scheduler further decides whether
the FPGA has to be reconfigured and, if so, what the proper configuration is. To
control the execution of servers and tasks, three states are introduced: READY,
RUN, and IDLE. A server (task) is in the RUN state, when it is currently being
executed on the FPGA. A server (task) in the READY state has been released
and has not yet terminated, but it is not currently being executed on the FPGA.
This implies that another server is currently assigned to the FPGA. Finally, a
server (task) enters the IDLE state, when its current instance has terminated. In
this case, the server (task) has to wait for its next release.

Task Management: The task manager controls the task operations and the context
switching. Whenever a reconfiguration is required, the scheduler triggers the task
manager to save the entire system context. Similarly, the task manager is called
to restore the entire system context after the FPGA reconfiguration. The task
manager is comprised of a server-independent part and a server-dependent part.
The server-independent part is identical in all configuration bit-streams and im-
plements a logic to save and restore the context of the runtime system. The
server-dependent part (speckled objects in Figure 8.1) implements a logic to start,
stop and resume the user tasks and to save and restore their contexts. Since each
server contains a different set of user tasks, and each user task has a different
context size, we apply server-specific optimizations in the compilation process.

MMU: The memory management unit is an optional component. In a runtime system
without MMU, the task manager is connected directly to an SRAM bank. This
SRAM is then exclusively used as intermediate context storage. The second SRAM
bank is devoted to implement data storage for the user tasks. Using an MMU, such
as the one described in [Dan04c, Dan04b, DP05b], the SRAM banks are divided
into pages which can be shared among the runtime system and the user tasks.

8.1.2 Scheduler Data Structures

Executing an MSDL schedule means applying the sequential EDF scheduling policy
to a precomputed set of servers. To this end, the scheduler implements several data
structures. The server control block array (SCBarray) holds for each server the following
constants: ID, period, computation time, the address of the corresponding bit-stream
file in the flash memory, and the set of tasks which constitute the server. The variable
part of the data structure stores the server’s current server state, its absolute deadline,
and its remaining computation time. The register RunningServer contains the ID of
the server in execution.

In general, the task periods may differ from the server periods. Tasks can start and
terminate at arbitrary times within their servers. Hence, also the task states can differ
from those of the servers, requiring the scheduler to implement another data structure
for tasks. The task control block array (TCBarray) holds for each task the following
constants: ID, period, and the size of the context. The variable fields are the task’s
current state and its absolute deadline.

141



8 Prototype: FPGA Based Real-Time Kernel

The ready queue is used to store a list of servers in the ready state, sorted according
to non-decreasing absolute deadlines. We do not implement the ready queue directly,
but provide a single register, ReadyQueueHead, that points to the entry in SCBarray
holding the server with the currently earliest deadline. Additionally, each element of
SCBarray contains a field which points to the next server in the ready queue.

8.1.3 The Scheduler Cycle

Time proceeds in system ticks. The period of the system tick corresponds to a user-
defined number of clock cycles which is constant during the application’s runtime. A
scheduling cycle denotes all the operations of the scheduler during a system tick period.

There are basically two different sequences of scheduler operations during a cycle, de-
pending on whether a device reconfiguration is needed or not. These two cases are
outlined in Figure 8.2.

In any case, the scheduler cycle starts with the Run Tasks (RT) phase. Here, all tasks
that are included in the current server and are in the READY state are set to the RUN
state. Consequently, these tasks receive a signal to start or resume their execution. In
the example of Figure 8.2, S1 starts execution. Then, the scheduler idles until almost
the end of the system tick period. During this time interval, the user tasks are executed
and some may terminate.

The first scheduler phase after the delay is called end cycle. Here, the scheduler decreases
the remaining computation time of the currently running server. If the remaining com-
putation time reaches zero, the server has finished its execution for its current period
and its state is set to IDLE.
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Figure 8.2: Scheduler phases during a system tick period

In the following scheduler phase wake up, the scheduler checks if any server or task has
reached the end of its period. This is done by comparing the absolute deadlines to the
system tick. If a server or task is at the end of its period, it is set to the READY state
and its deadline is set to di = di + Pi. In case of a server, the remaining computation
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time is set to the server’s initial computation time.

The Dispatch Server (DPS) phase increments the system tick and determines the server
that should run in the next system tick period following the EDF rule. Since the queue
of ready servers is sorted according to non-decreasing deadlines, DPS only compares
the deadline of the running server to that of the first server in the ready queue. If
the currently running server terminates or has to be preempted, the first server in the
ready queue becomes the next running server. In this case, shown in Figure 8.2-(a),
the Save System Context (SSC) phase is entered next. If the currently running server
is determined to continue execution, shown in Figure 8.2-(b), a delay phase is entered
next.

If a device reconfiguration is intended, the SSC phase requests all currently running
tasks to stop their execution. Then, the contexts of all user tasks are stored in the
external SRAM, followed by the context of the runtime system. Upon completion of
the context saves, the scheduler triggers the FPGA reconfiguration and the subsequent
Reconfiguration (RC) phase is entered. After reconfiguration, the scheduler executes the
Load System Context (LSC) phase and restores first the context of the runtime system
and, afterwards, the contexts of all tasks in the new server running. The following RT
phase starts the next scheduler cycle (system tick period).

The total time required by the SSC, RC, LCS, and RT phases is denoted as runtime
system overhead as it cannot be used for user task execution. This overhead actually
combines overheads due to device reconfiguration (RC), task and runtime system context
saves and restores (SSC, LCS), and runtime system management overhead (RT).

In case no device reconfiguration is intended, the scheduler enters another delay phase
after the DPS phase. The duration of this delay matches exactly the sum of the SSC, RC
and LSC phases. By this, we ensure a constant time interval for each system tick. As
can be observed from Figure 8.2, the runtime system overhead only occurs if the system
switches from one configuration to another. If a server executes for several system ticks,
which can be expected to be the regular case, there is no runtime overhead at all.

The presented scheduler cycle assumes that a system tick period is larger than the
reconfiguration time. While this constraint on the system tick period simplifies the
time keeping and scheduling processes, it also limits the system’s time resolution. An
alternative implementation could make use of an external, non-reconfigured real-time
clock as a time reference and reduce the system tick period considerably.

8.2 Synthesis Tool Flow

Figure 8.3 shows the basic steps of the synthesis tool flow that generates the configura-
tion bit-streams for a particular application. We use CELOXICA’s parallel programming
language Handel-C to specify the runtime system and the user tasks.

The application, i.e., the task set Γ, is specified in textual form (appl.txt) and contains
the period, worst-case computation time, and area requirement for each user task. The
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task_n.hcc

task_2.hcc


RTOS Files
Task Source Files


MSDL

Algorithm


Appl. Meta Data


HandelC preproc.

HandelC compiler


Backend Tools

(map, place & route,


bitfile generation)


task_1.hcc


...hcc

schedul.hcc


kernel.hcc


server_m.bit

server_1.bit


server_0.bit


FPGA Bitfiles


task_serv_data.hch

...

#define T1_PERIOID  1000

#define T1_contextsize 16

...

#define S1_period 500

#define S1_compTime 50

#define S1_taskset  0x010F

#define S1_flashAdr 0x7F

...


appl.txt

P1 = 1000,

C1 = 300,

A1 = 30 %,

P2 = 3500

C2 = 450

A2 = 22 %

...


Figure 8.3: Synthesis tool flow
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first step of the tool flow calls the MSDL algorithm to compute a feasible set of servers
Ω (see Section 4.3). If such a feasible set of servers is found, the relevant task and
server parameters are written into the Handel-C header file task serv data.hch. This
file contains mainly preprocessor macros, defining several properties of the servers and
tasks such as the IDs and periods. Furthermore, for each server the computation time,
the set of included tasks, and the address of the configuration bit-stream in the flash
memory card is defined.

The second step of the tool flow takes this header file together with the Handel-C source
files for the user tasks and the runtime system and creates the individual configuration
bit-streams for the server tasks. We use the Handel-C compiler (CELOXICA DK4) and
standard FPGA vendor tools (XILINX ISE 7.2) for this step.

Besides the m servers generated by MSDL, we create another bit-stream for an idle-
server (server 0). The idle server contains only the runtime system but no user tasks.
This server is run as initial configuration after system startup and when all other servers
are idle. When the synthesis tool flow is completed, all m + 1 server bit-streams are
stored onto the flash memory card at their respective addresses. After system power-
on, the CPLD automatically configures the idle server into the FPGA. The scheduler
takes over control and decides which server to reconfigure next according to the MSDL
schedule.

User tasks are free to use logic, memory and I/O resources of the FPGA, as long as
they implement the pre-defined interface to the runtime system. This interface allows
the runtime system to start and stop a task and to initiate context save and restore
operations. Although our current prototype expects user tasks specified in Handel-C,
integrating other HDL components into the synthesis flow is still straight-forward.

8.3 Synthesis Results

We have implemented the entire system on CELOXICA’s RC203 board, which hosts a
XILINX Virtex II 3000 FPGA, two 2-MB SRAM banks and a 64 MB SmartMedia flash
memory card. An FPGA configuration bit-stream has a size of approximately 1.25MB,
which allows us to store up to 50 server bit-streams on the flash memory card.

To determine the area requirement for the runtime system, we have conducted synthe-
sis experiments with different numbers of tasks and servers. These experiments use a
runtime system without MMU and minimal user task implementations in order to re-
duce the effect of the user task logic on our measurements. The results are presented in
Table 8.1. The number of required LUTs grows with the number of servers and ranges
from 16% to 45% of the overall LUT resources. The required number of Flip Flops (FFs)
grows slower and ranges from 5% to 14% of the overall device FFs. Assigning almost
50% of the device resources to the runtime system might look unrealistic at the first
glance. However, this number corresponds to the rather high number of 15 servers and
15 tasks, respectively. Then, these figures have been derived from a first, unoptimized
version of the runtime system. For example, all scheduler data structures are currently
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implemented as registers. Mapping these structures to Block-RAM will reduce the re-
quired resources substantially. Finally, in the future we expect that much larger devices
will become available, reducing the relative overheads for such a runtime system.

# tasks # servers LUTs (% of device) FFs (% of device)
15 3 7786 (27%) 2703 (9%)
15 6 9802 (33%) 3028 (10%)
15 9 10297 (35%) 3390 (11%)
15 12 11655 (40%) 3725 (12%)
15 15 13109 (45%) 4030 (14%)
3 3 4470 (16%) 1336 (5%)
6 3 5297 (18%) 1677 (6%)
9 3 6123 (21%) 2019 (7%)
12 3 6948 (24%) 2361 (8%)
15 3 7787 (27%) 2703 (9%)

Table 8.1: Runtime system size for various numbers of tasks and servers

The time overheads for the runtime system are fairly small. With s as the number of
servers and t as the number of overall tasks, we measured a runtime for the SSC phase
of 3s+7t clock cycles and for the LSC phase of 3s+8t cycles. The wake up phase takes
3s + t cycles and, finally, the end cycle and DPS phases take just one clock cycle each.
For a runtime system controlling 3 servers and 9 tasks we achieved a maximal clock
frequency of about 50 MHz. Although the Virtex II 3000 could be reconfigured within
some 20 ms via the SelectMap interface, the speed of the SmartMedia flash memory
card limits the reconfiguration time on the RC203 board to 180 ms.

We further measured the overhead of the logic inside the user tasks needed for storing
and loading the tasks’ contexts by synthesis experiments. We organized the context
registers in form of a shift register chain and measured the number of additional LUTs
required to implement the load and store functions. The results reveal an overhead of 2
LUTs per bit for a context register of 32 bit. This overhead decreases to 1.2 LUTs per
bit for context register sizes of 256 and more.

8.4 Chapter Conclusion

In this chapter, we presented a prototype system that executes periodic real-time tasks
on dynamically reconfigurable hardware. We used the MSDL scheduling technique which
offers an efficient off-line schedulability test and requires a minimal number of device
configurations. We showed an implementation of this technique on an FPGA board,
including an all-hardware runtime system and the corresponding synthesis tool flow.

For the future, we plan to port the system to an FPGA platform with shorter reconfig-
uration time. Although we consider it a benefit of our approach that it can work with
full device reconfiguration, and thus with all SRAM-based devices on the market, we
also intend to investigate partial device reconfiguration. A natural way to utilize partial
reconfigurability in our prototype would be to keep the runtime system permanently in
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the device and only reconfigure between different servers. Alternatively, an embedded
CPU could be used to implement the runtime system. Prototypes for the global EDF
and partitioned EDF schedulers may also be subject of future work.
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CHAPTER 9

Conclusion and Outlook

9.1 Summary

In this thesis we presented our investigation on real-time multitasking on reconfigurable
architectures. Application tasks were implemented as digital circuits and executed on
a runtime reconfigurable hardware device such as an FPGA. While the general concept
of executing hardware-tasks with RHDs had been proven feasible in several prototypes
[102][57][105], and scheduling and placement of hardware-tasks had been given much
attention by the research community (e.g. in [14][94]), only minor results on real-time
multitasking on RHDs had been developed so far. We presented several key contributions
to this field within our work: We defined the periodic task model for RHDs, where each
task requires some amount of logic resources to be executed. An arbitrary set of tasks
can run in parallel as long as the cumulative task area does not exceeded the device
area. For such a model we presented three major scheduling methods:

1. The global EDF algorithms were inspired from global EDF scheduling methods for
multiprocessors. The new EDF algorithms were denoted as EDF-NF and EDF-
FkF. They manage resources globally, meaning that any resource can be assigned
to any task. Following a resource augmentation approach [81], we presented the
first known scheduling test for these algorithms. The test can be computed in
O(n) time, n being the number of tasks. Simulations showed that, in conformance
to results derived for multiprocessor scheduling, the test is pessimistic for task sets
with high system utilization. Further, the simulations showed that the EDF-NF
algorithm gives a non-negligible improvement over EDF-FkF.

2. The partitioned EDF algorithms were also inspired by traditional multiprocessor
scheduling algorithms. The task set is partitioned into partition-blocks at de-
sign time and exclusive device resources are assigned to each partition-block. At
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runtime, the tasks of each partition-block are scheduled by a separate EDF sched-
uler. We showed the relation of this partitioning problem to the two-dimensional
level-strip packing problem. We employed a previously reported ILP model to
compute the optimal partitioning and a next-fit heuristic to achieve a close to
optimal partitioning for large task sets.

3. In the MSDL method the computation of the user tasks is distributed into peri-
odic servers tasks. At design time, the tasks are grouped to servers for parallel
execution. At runtime, the servers are executed sequentially according to EDF.
Since only one server executes at a time, this approach is suitable for systems and
devices which do not support partial reconfiguration.

While in our analytic performance comparison we showed that there is no dominance
among the three approaches, our simulation studies showed that on average, global
EDF outperforms partitioned EDF, which outperforms MSDL. Further it was shown
that the global EDF scheduling test is rather pessimistic. Concerning execution model
overhead, we analyzed the reconfiguration overhead for all three approaches and included
it within the schedulability tests. Simulation experiments showed that global EDF
suffers significantly more from overhead when compared to the two other schedulers.

Two extensions of our task model were presented in order to consider the specific charac-
teristics of reconfigurable applications: First we considered tasks for which not only one
but several alternative implementations (circuits) exist. We presented an ILP model to
select the optimal implementations for the partitioned EDF scheduler, which consider-
ably improved the scheduling performance. Second, we considered tasks memory usage
under real-time constraints. We presented a method efficiently sharing RAM-banks
without jeopardizing task deadlines, hence reducing the required memory resources.

Finally, we described our prototype FPGA based real-time kernel which, in contrast to
others, is a hardware-only system with the OS functions entirely implemented in hard-
ware. The prototype implements the MSDL approach, uses full device reconfiguration,
and is hence suitable for most of today’s reconfigurable devices.

9.2 Drawn Conclusions

From our work and results we draw the following conclusions:

Practicability of real-time multitasking on RHDs: Multitasking on RHDs is feasible,
even under real-time conditions. However, several technical issues such as reconfig-
uration overheads, partial runtime reconfiguration support and state saving today
still limit the practicability.

The overheads associated with the device reconfiguration are generally not negligi-
ble and present the strongest limitation. However, it can be successfully included
within the scheduling conditions of all approaches. Simulation results indicate,
that the overheads can almost be neglected, if the reconfiguration time is one
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order of magnitude (two orders in case of global EDF ) smaller than the compu-
tation time of the shortest task. Commercial FPGAs have, depending on their
size, reconfiguration times from some hundreds of micro seconds up to some tens
of milliseconds. Considering such devices, our results suggest that hardware tasks
should have computation times of at least about 5 milliseconds. Moreover, a great
deal of research is on its way aiming to a reduction of the reconfiguration time.
For example, multi-context architectures [31] store several configurations on-chip
and allow rapid switching between them. Yet another approach are coarse-grained
reconfigurable devices, based on ALU arrays or ALU/look-up table hybrids and
bus-wide interconnects. These devices have reconfiguration times in the order of
microseconds. Applying our scheduling techniques to such platforms renders hard-
ware tasks feasibly with computation times as low as some tens of microseconds.

Partial reconfiguration is, if at all, only weakly supported by today’s RHD archi-
tectures. Often, the tasks footprints have to be rectangularly shaped, spanning
the entire device size in one dimension. Inhomogeneous resources make task re-
location difficult. However, our scheduling algorithms deal with these limitations:
The one-dimensional area model, used by global EDF and partitioned EDF, can be
realized with today’s devices. Partitioned EDF avoids task relocation and MSDL
does not rely on partial reconfiguration at all.

Several reported prototypes of runtime environments prove the concept of hardware-
multitasking, including task preemption. A working prototype for the free space
partitioned - time sharing resource model used by MSDL, which realizes state
saving via dedicated task interfaces, has been presented in this work.

The algorithms: All three approaches generate schedules with predictable task timings
and achieve an acceptable high device utilization.

Global EDF achieves the highest average performance. While this makes it a
promising approach, only a fraction of this performance can be guaranteed by our
schedulability test. Moreover, the approach requires task relocation and suffers
greatly from reconfiguration overheads. Hence, global EDF may only be useful
in several special cases where the task sets are small such that the hyper-period
can be simulated or cases where online acceptance tests are required. This may
change, if further research comes up with less pessimistic schedulability tests.

Partitioned EDF combines good performance with low reconfiguration overheads
and few requirements to the execution model. The optimal partitioning can be
computed in reasonable time for task sets up to 30 tasks and even more. Hence,
it should be the chosen method if the system supports partial reconfiguration.

MSDL has the lowest performance, but enables multitasking for system that do
not support partial reconfiguration.

Problem relations to multiprocessor systems: The execution models used for RHDs
share many relations to multiprocessor models. In particular, our resource model
presents a generalization of a simple multiprocessor model. Our work showed
that several scheduling approaches used in multiprocessor environments can be
extended for the RHD model. This suggests, that potentially even more ideas

151



9 Conclusion and Outlook

from multiprocessor scheduling methods could be used to develop further RHD
scheduling algorithms.

Importance of alternative task implementations: We can conclude from our results
that considering alternative task implementations generally yields a better schedul-
ing performance. We proved this in particular for the partitioned scheduler, where
we computed the optimal selection of alternatives via an ILP.

9.3 Outlook and Future Work

This work presented key methods for periodic real-time scheduling on RHDs. Since the
topic has been only rarely addressed before, we developed only basic methods for simple
task models. Hence, the work opens up a great field for future research. At this point we
suggest four concrete lines of future work. (More details can be found in the according
chapters.)

Improvement of presented schedulers: One direction of future work should concen-
trate on the improvement of the presented methods. For global EDF, better
schedulability conditions could be developed, based on their multiprocessor coun-
terparts [11]. For the server based scheduler, the presented MSDL algorithm
involves greedy heuristic choices for the selection of servers to merge. Future work
should evaluate other approaches in order to improve the scheduling performance.

For the extended model which considers alternative task implementations, only
the optimal-partitioned-EDF method has been considered. How task variants can
be considered in global EDF and MSDL has been roughly outlined but needs to
be evaluated in future work. Another idea is the development of approximation
algorithms that compute partitioned EDF schedules even for large task sets.

Non-preemptive multitasking: Scheduling periodic real-time onto RHDs in the non-
preemptive case has not been addressed yet. It is useful since the reconfigura-
tion overheads are reduced and all implementation issues of task interruption are
avoided. Non-preemptive schedulers generally achieve less device utilization than
preemptive schedulers, but the effect of reduced reconfiguration overhead could
compensate that drawback.

Generalizations of the model: Throughout this work, we assumed that the relative
task deadlines Di are equal to periods Pi. However, the basic idea of our ap-
proaches should also work with deadlines less than periods. The multiprocessor
EDF schedulability test of [48] has been successfully extended to this case in [16],
hence we believe we can do the same for our global EDF schedulability test. For
partitioned EDF, we cannot use the simple time utilization EDF bound UT ≤ 1
for each partition anymore. Rather, we should replace it by a processor demand
criteria [25], p.101. This can be easily done for the next fit heuristic, but since this
leads to non-linear scheduling conditions the ILP approach will not work anymore.
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Moreover, in our model the required task resources are simply modelled by a scalar
area value. Future work can extend this to resource vectors, e.g. to cover FPGA
resources such as the number of LUTs, FFs, block-RAMs and multiplier-blocks.

Implementation of prototypes: This work presented a prototype implementing the MSDL
scheduler. For global EDF and partitioned EDF, prototypes could be built on any
system supporting the 1D partial reconfiguration model.

In summary, this thesis presented new fundamental work in real-time multitasking on
RHDs. While we focused on the development and analysis of scheduling algorithms for
periodic tasks, we moreover presented a prototypical system realization. Perhaps just
as important this work also showed that much more research is required to utilize the
promising runtime reconfiguration capabilities of RHDs in next generation embedded
systems. We hope that our work motivates more research is this exciting new area.
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