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1
Einleitung

Der Luftverkehr gehört zu den wichtigsten Verkehrsträgern weltweit und hat groÿen Ein�uss
auf die wirtschaftliche, touristische und soziale Entwicklung von Ländern und Regionen.
In den letzten Jahrzehnten ist seine Bedeutung überdurchschnittlich gewachsen, wie die
Statistiken der IATA (International Air Transport Association) zum Passagieraufkommen in
Abbildung 1.1 zeigen. Dabei ist allerdings in den letzten fünf Jahren ein leichtes Ab�achen der
Zuwachsraten durch Terroranschläge, Militärkon�ikte und das überregionale Ausbrechen von
Krankheiten zu beobachten. Nichtsdestotrotz wird für die Zukunft ein anhaltender Anstieg
des Passagier- und Frachtaufkommens im Luftverkehr erwartet.

Sinkende Wachstumsraten, hohe Treibsto�preise und zunehmender Konkurrenzdruck gerade
von so genannten Billig�uglinien haben in den letzten Jahren viele Fluglinien in die Verlust-
zone getrieben (Abbildung 1.1). Erste Insolvenzen und Übernahmen sind die Folge. Dabei
ist die Gewinnstruktur einer Fluggesellschaft von hohen, kaum beein�ussbaren Fixkosten für
die Durchführung von Flügen bei gleichzeitig schwer prognostizierbaren Erlösen aus Ticket-
verkäufen geprägt.

Die vielversprechenste Strategie für eine Fluggesellschaft liegt in dieser Situation vor allem
darin, die Kosten des Flugbetriebs zu senken. Die Planung des Einsatzes der Ressourcen, in
erster Linie der Flugzeuge und der Crews, spielt dabei die zentrale Rolle bei der Frage der
Kostene�zienz.

Die Planung bei einer Fluggesellschaft ist ein aufwendiger, mehrstu�ger Prozess, der von
mehreren Expertenteams durchgeführt wird, die unterschiedlichste Aufgaben lösen müssen.
Erste Planungen beginnen dabei bereits ein paar Jahre vor dem Beginn einer Flugplanpe-
riode (Sommer/Winter-Flugplan). Die Planungsteams pro�tieren bei ihrer Arbeit stark von
der Hilfe entscheidungsunterstützender Systeme (Decision Support Systems). Diese Systeme
bereiten die benötigten Informationen auf, stellen sie strukturiert zur Verfügung und regeln
den Informationsaustausch zwischen den verschiedenen Planungsprozessen. Einen entschei-
denden Beitrag leisten die in diesen Systemen integrierten Optimierungskomponenten. Sie

1



2 1 Einleitung

die Integration von SAA federführend begleiten. SAA bedient allein in Afrika
48 Ziele und verfügt über eine der jüngsten Flotten der Welt. TAP wird
zusammen mit Spanair und VARIG eine wichtige Rolle innerhalb der Star
Alliance im Europa–Südamerika-Verkehr spielen. US Airways sorgt mit ihren
Drehkreuzen in Philadelphia und Charlotte für eine weitere Verbesserung
des Netz- und Produktangebots der Allianz in den USA und in der Karibik. 

Star Alliance hat auch im Regionalbereich an Stärke gewonnen. Die
finnische Fluggesellschaft und SAS-Tochter Blue1 sowie Adria Airways und
Croatia Airlines, beide langjährige Partner der Lufthansa, sind die ersten
Mitglieder des neuen Star-Regionalkonzepts. Damit werden auch regionale
Zielorte in das globale Streckennetz der Allianz integriert.

Die Star Alliance-Partner-Airlines konnten im Jahr 2004 weitere Syner-
gien beim Einkauf realisieren. Ein im Mai geschlossenes Abkommen für
den Media-Einkauf ermöglicht Millionen-Einsparungen für die Fluggesell-
schaften. Zu den gemeinsamen Projekten zählen ferner die gegenseitige
Nutzung und Akzeptanz von elektronischen Tickets und Check-in Auto-
maten sowie das gemeinsame Vorgehen bei Flughafen- und Terminal-
neubauten wie zum Beispiel in Narita (Tokio/Japan).

Die wirtschaftlichen Probleme der amerikanischen Airline Industrie
zwangen die Star Alliance-Partner United Airlines, Air Canada und US Air-
ways Gläubigerschutz zur Restrukturierung nach Chapter 11 bzw. unter dem
CCAA (Kanada) zu suchen. Air Canada konnte das Restrukturierungsver-

Corporate Governance 14 ı Strategie 18 ı Aktionsplan 25 ı Unsere Kunden 28 ı Unsere Mitarbeiter 39 ı Flotte und Innovation 47 ı Nachhaltigkeit 52

66

Die Drehkreuze der Lufthansa und ihrer Partner-Airlines

Im Sommer 2005 umfasst der Lufthansa Flugplan 373 Destinationen in 94 Ländern –
in Deutschland sind es 24, in Europa 134, in Amerika 132, in Asien/Pazifik 50 und in
Afrika/Nahost 33 Zielorte. Sie werden direkt, über die Lufthansa Drehkreuze Frankfurt
und München oder die der Partner-Airlines bedient.
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Safety
2004 was the safest year ever for air transport. The industry-wide
hull loss rate declined by 10% to 0.78 hull losses per million
sectors flown. 

IATA Members significantly outperformed the industry on safety.
IATA Member airlines account for 94% of scheduled international
traffic but were only involved in 39% of hull losses. The hull loss
rate for IATA Members stood at 0.57 per million sectors. 

Over 1.8 billion people traveled safely in 2004.  Despite great
progress, IATA has an aggressive programme to lead the industry
to even safer levels.

News In Brief
Award for Global ATM roadmap 
The IATA Industry Global ATM Implementation Roadmap won the
prestigious "Future Systems Award" at the ATC Maastricht
Conference, in February 2005. 

The objective of developing the Roadmap is to provide a frame-
work for tomorrow's ATM infrastructure which can eliminate the
costs of unnecessary equipment. The cost of procuring, installing
and certifying new equipment can be as much as US$1 million per
system per aircraft. 

The Global ATM Implementation Roadmap will be incorporated into
the Global Air Navigation Plan, to be published in August 2005. It
will also provide an important basis for IATA’s contribution to the
development of a European masterplan known as SESAME.

New Bangkok International Airport Charges
Following meetings with IATA, the Thai Minister of Transport
announced that a 15% increase in landing fees, scheduled to take
effect in October will be deferred until the NBIA opens operation-
ally. An announcement on the opening date has been deferred until
at least June, and airlines will be given six months’ notice of the
date. The Minister also confirmed the establishment of a structured
consultation process involving the Thai authorities and the airlines.

An agenda for Europe
IATA's Director General challenged the new European Commission
to do better on aviation policy during a major speech in Brussels,
March 16. There has been a EUR 5.9 billion annual cost burden
imposed by governments on the European airline industry, whether
from bad regulation, failing to take responsibility for security costs
or inefficient infrastructure. A copy of the speech is available at
www.iata.org/pressroom.

New Names in IATA Management 
• General Counsel: Robert McGeorge, formerly Senior Trial

Attorney at the US Department of Justice

• Director Security: Neal Parker, formerly RCMP Superintendent

• Regional VP, North America: Douglas Lavin, formerly Assistant
Administrator at the FAA

• Global Head of Cargo: Aleksander Popovich, formerly Head of
Business Transformation at British Airways

• Director IT & CIO: Sam Sahana, formerly Technical Director at
Cendant

• Director Corporate Communications: Anthony Concil, formerly
head of IATA's communications in Asia

Looking at the Numbers
Jet fuel prices
If rising oil prices made last year financially challenging for the
airline industry, this year looks worse.  

Oil prices averaged US$46 a barrel in the first quarter, and ended
March at new highs above US$55.  Jet fuel averaged US$1.53 a
gallon.  Last year, oil prices averaged US$38.3 a barrel and jet fuel
US$1.27 a gallon. It is hard to foresee an average price 2005
significantly less than the financial markets consensus forecast of
US$43 a barrel for Brent crude oil.  There is a hefty refinery margin
to pay for jet fuel on top of this of around US$12, twice the normal
level.  

In 2004, some 40% of the industry's fuel bill was hedged.  This
year, the proportion is around 20%.  As a result we forecast that
the industry's fuel bill will rise from over US$60 billion last year to
US$76 billion or 20% of operating expenses this year. This year
will be even more challenging for industry profitability.

The profit outlook

Last year, entirely because of the rise in the fuel bill, the industry
lost an estimated US$4.8 billion, taking accumulated losses to
over US$36 billion since 9/11. The US airlines faced the brunt of
financial pressures, losing an estimated US$10 billion.  By contrast
European and Asia-Pacific airlines saw profits rise in spite of jet
fuel prices.  

In 2005, traffic growth will be slower than in 2004 as the pace of
economic activity decelerates from last year's 30-year high.
Downward pressure on yields is unlikely to diminish.  

There is no alternative to taking more costs out of the business.
Airlines have been successful in doing this to a greater degree
than expected, with non-fuel unit costs falling an average of 2-3%
annually in recent years.  But with expected increases in fuel cost
we are forecasting the industry will see continued large losses in
the US and smaller profits in Asia-Pacific and Europe.  Industry-
wide in 2005 we expect losses to total US$5.5 billion.

International Traffic Jan-Feb 2005

IOSA Update
• A total of 59 airlines has been audited to date.  27 are on the

IOSA Registry created 18 months ago. IATA expects 100
airlines to be audited in 2005

• The IOSA Programme should receive ISO:9000 accreditation
by mid 2005
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Abbildung 1.1: Oben: Beispiel für ein Internationales Flugnetzwerk; unten: Statistik zur An-
zahl der Passagierkilometer und zur Entwicklung der Gewinne und Verluste
in der Luftverkehrsbranche (Quelle: StarAlliance, IATA)

haben zum Ziel, kostengünstige Lösungen für komplexe Planungsszenarien, die von Experten
de�niert werden, zu liefern. Auf dieser Grundlage können Entscheidungen getro�en werden,
die den Ressourceneinsatz entscheidend verbessern.

Eine zentrale Bedeutung in diesem Prozess fällt der Flotteneinsatzplanung einer Fluggesell-
schaft zu. In der mittel- und kurzfristigen Planung muss dabei der Einsatz der Flugzeug-
�otten für einen gegebenen Flugplan festgelegt werden. Flugzeuge verursachen mit Abstand
die höchsten Fixkosten in der Bilanz einer Fluggesellschaft, sind deshalb eine knappe und
teure Ressource, und ihr e�zienter Einsatz ist ausschlaggebend für den Erfolg des Unterneh-
mens. Durch die Flottenzuweisung werden zum Einen ein Groÿteil der anfallenden Kosten,
insbesondere Treibsto�- und Crewkosten, festgelegt. Auf der anderen Seite begrenzen die
unterschiedlichen Sitzkapazitäten der Flotten die maximale Anzahl an Passagieren, die auf
Flugstrecken transportiert werden können, und de�nieren so die Transportkapazität des Flug-
netzes, die mit dem prognostizierten Transportbedarf abgestimmt sein muss. Dabei kommt
es in zunehmenden Maÿe darauf an, bei der Planung eines Teilprozesses wesentliche Aspekte
nachgelagerter Prozesse zu berücksichtigen, um eine höhere E�zienz der Gesamtplanung zu
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Abbildung 1.2: Übersicht über den Prozess der Flugplanung

erreichen.

1.1 Prozess der Flugplanung

In diesem Abschnitt beschreiben wir kurz die Planungsaufgaben innerhalb einer Fluggesell-
schaft. Ein Überblick ist in Abbildung 1.2 dargestellt. Die Grundlage für den Betrieb einer
Fluggesellschaft stellt die e�ziente Planung und das Management des Flugnetzes dar. Die
daraus resultierende Transportleistung muss vom Marketing und Revenue Management den
Flugpassagieren angeboten und verkauft werden. Schlieÿlich erfordert die Umsetzung eines
Flugplans auch den möglichst optimalen Einsatz des Personals: Piloten, Flugbegleiter und
Bodenpersonal.

In jedem dieser Bereiche sind die unterschiedlichsten Planungen mit teils konkurrierenden
Zielsetzungen durchzuführen. Erschwerend kommt hinzu, dass sich der Planungsprozess über
einen sehr langen Zeitraum von mehreren Jahren erstreckt, die Ziele währenddessen variie-
ren und zwischen den einzelnen Planungsaufgaben teils starke Abhängigkeiten existieren.
Nichtsdestotrotz werden wegen der verschiedenen Planungshorizonte und der enormen Kom-
plexität der Einzelprobleme die Planungsaufgaben meist von separaten Abteilungen getrennt
voneinander durchgeführt. Allerdings gelangt man bei den Fluggesellschaften immer mehr zu
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der Überzeugung, dass vor allem durch ein abgestimmtes Vorgehen zwischen den einzelnen
Planungsteams eine e�zientere Gesamtplanung möglich ist und damit weitere Kosteneinspa-
rungen realisiert werden können.

In der Langfristplanung, 3 - 1 Jahr vor dem Start des Flugbetriebs, kann die Maximierung
des Gewinns aus dem Betrieb des Flugnetzwerks als das wichtigste Ziel identi�ziert werden.
In der Mittelfristplanung (1 Jahr - 6 Monate) geht es vor allem um eine möglichst optimale
Abstimmung zwischen dem Flugplan und den Ressourcen. In der Kurzfristplanung (6 Monate
- 4 Wochen) wird der Einsatz der Ressourcen kontinuierlich an die Marktnachfrage angepasst
und die entstehenden Kosten werden minimiert. In der Implementierungsphase (ab 4 Wochen
vor dem Start) und in der Kontrollphase (ab 2 Wochen) werden Ausfälle und Sonderereignisse
unter der Vorgabe der Kostenminimierung behandelt.

Als Kommunikationswerkzeug zwischen den einzelnen Planungsabteilungen, aber auch für
Flugpassagiere, Reisebüros, Flugallianzpartner und Flughäfen, werden wichtige Zwischener-
gebnisse der Planung in unterschiedlichsten Formen weitergegeben. Im unteren Bereich der
Abbildung 1.2 sind die Pläne dargestellt, die im gewissen Sinne Meilensteine in diesem Prozess
bilden.

Der Budget-Plan wird 1 Jahr vor dem Start erstellt und de�niert den �nanziellen Rahmen
des Flugplans für alle Bereiche der Fluggesellschaft. Der IATA-Plan dient als Grundlage für
die halbjährliche IATA-Konferenz (Slot-Konferenz), bei der Vertreter aller Fluggesellschaften
und der Flughäfen zusammenkommen, um über Verkehrs- und Landerechte (slots) zu ver-
handeln. Die Informationen im o�ziellen Flugplan werden von Passagieren und Reisebüros
für ihre Reiseplanung benutzt. Der Crew-Plan wird 6 Wochen vor dem Start erstellt und
dient als Grundlage für die verbindliche Zuteilung der Ressourcen (Flugzeuge und Crews).
Änderungen können ab diesem Zeitpunkt nur mit relativ hohem Aufwand vorgenommen
werden. Der operative Flugplan (4 Wochen vor dem Start) wird zur Flugplanumsetzung be-
nötigt. Kurzfristige Anpassungen sind immer notwendig und werden im Tagesverkehrsplan
den betro�enen Bereichen zur Verfügung gestellt.

Im Folgenden gehen wir auf die einzelnen Planungsphasen und ihre Aufgaben für die Ge-
samtplanung ein.

Flottenplanung Die Neubescha�ung von Flugzeugen ist ein langwieriger Prozess. Anhand
der strategischen Ziele der Fluggesellschaft, wie zum Beispiel Wachstumsstrategie, an-
gestrebte Marktposition, Zustand der aktuellen Flugzeug�otte, und langfristiger Nach-
frageprognosen wird in der Flottenplanung die Struktur der zukünftigen Flugzeug�otte
festgelegt. Als Ergebnis werden Flugzeuge neu geordert oder stillgelegt, die Flughafen-
struktur ausgebaut und neue Regionen als Flugziele ausgewählt.

Netzwerkplanung Die Planung umfasst in dieser Phase die De�nition der anzu�iegen-
den Flughäfen, die Anzahl der Flüge zwischen je zwei Flughäfen, die Wochentage
und genauen Zeiten der Flüge und die Verknüpfung von Flügen auf groÿen Flughäfen
(Hub-Struktur). Die Szenarien werden von Planungsabteilungen ausgearbeitet und mit
Verfahren der Marktmodellierung bewertet.

Marktmodellierung Die Aufgabe der Marktmodellierung besteht darin, die Nachfrage
nach der Transportleistung der Fluggesellschaft vorherzusagen. Die Grundlage bildet
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eine Prognose der potentiellen Reisenden zwischen einzelnen Regionen oder Städten
und wird anhand historischer Daten geschätzt. In Abhängigkeit von der Konkurrenzsi-
tuation und dem eigenen Flugnetz werden die Reisenden den eigenen Flugstrecken zu-
geordnet, das erwartete Transportaufkommen bewertet und die sich ergebenden Erlöse
geschätzt. In dieser frühen Planungsphase stellt die Marktmodellierung das Hauptbe-
wertungswerkzeug für die Güte anderer Planungsprozesse dar.

Flottenzuweisung (Fleet Assignment) Durch das Zuweisen von Flugzeugtypen an die
einzelnen Flüge des Flugnetzes wird die Transportkapazität der Fluggesellschaft festge-
legt. Die vorhandene Flotte wird möglichst kostenoptimal eingeplant, um die erwartete
Nachfrage zu bedienen. Flugzeugtypen unterscheiden sich in vielen Faktoren, wie zum
Beispiel in Kapazität, Reichweite und Kostenstruktur. Zu beachten sind bei der Planung
diverse Restriktionen bezüglich der Flugzeuge, Flughäfen, Wartungsanforderungen usw.
In der Mittelfristplanung wird auf der Basis einer repräsentativen Standardperiode (ein
Tag oder eine Woche) geplant. In der Kurzfristplanung geht man auf eine konkrete
Zeitperiode (fully-dated) über.

Umlaufplanung der Flugzeuge (Aircraft Rotation) Hier werden die konkreten Flug-
zeuge den einzelnen Strecken zugewiesen und so auch die Reihenfolge, in der Flüge
nacheinander von einem Flugzeug bedient werden, festgelegt. Die resultierenden Flug-
zeugumläufe müssen sämtliche Wartungsregeln berücksichtigen sowie die verbindungs-
abhängigen Erlöse (through revenues) optimieren.

Preis- und Konditionenpolitik (Pricing) Das Ticket für einen Flug stellt kein einheitli-
ches Gut dar. Vielmehr werden unterschiedlichen Kundengruppen (Geschäftsreisende,
Freizeitreisende) di�erenzierte Produkte angeboten, mit unterschiedlichen Konditio-
nen, wie zum Beispiel Stornierungsmöglichkeiten und Mindestaufenthalten. Darüber
hinaus sind Ticketpreise auch vom Zeitpunkt und Ort des Kaufs (Flughafen, Reise-
agentur, Internet) abhängig. Die De�nition der Buchungsklassen und der zugehörigen
Preise ist die Aufgabe des Pricings.

Ertragsmanagement (Revenue Management) Das Revenue Management steuert die
Sitzplatzverfügbarkeit der vom Pricing festgelegten Buchungsklassen. Die betriebs-
wirtschaftlichen Eigenschaften eines Sitzes auf einer Flugstrecke sind: niedrige variable
und hohe �xe Kosten, keine Lagerfähigkeit, schwankende Nachfrage und Knappheit der
Ressource. In dieser Situation muss versucht werden, jeden Platz mit einem möglichst
hohen Erlös zu verkaufen. Die zentrale Frage lautet: Ist es besser, einen Platz zum
jetzigen Zeitpunkt sicher mit geringen Erlösen zu verkaufen oder auf eine unsichere
Nachfrage in der Zukunft mit höheren Erlösen zu warten?

Crew Pairing Die Erzeugung der Arbeitspläne für das �iegende Personal (Piloten und Flug-
begleiter) ist ähnlich wie die Flugzeugeinsatzplanung zweigeteilt. Zuerst werden im
Crew Pairing anonyme Arbeitspläne, die komplizierte Dienst- und Ruheregelungen re-
spektieren müssen, erstellt. Die resultierenden Arbeitspläne (pairings) müssen dabei
den Personalbedarf und die geforderten Quali�kationen der durchzuführenden Flüge
abdecken und sind insbesondere von den eingesetzten Flugzeugtypen abhängig. Ziel
ist es auch hier, möglichst kostengünstige Arbeitspläne zu �nden, indem beispielsweise
die Anzahl an Übernachtungen klein gehalten wird.
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Crew Rostering Im Crew Rostering werden die konkreten Personen den vorher generier-
ten Arbeitsplänen zugewiesen, so dass für die jeweiligen Personen gültige Dienstpläne
entstehen. Dabei werden neben Abwesenheitszeiten (Urlaub, Schulungen, usw.) im-
mer häu�ger auch persönliche Präferenzen des �iegenden Personals bei der Planung
berücksichtigt, um die allgemeine Personalzufriedenheit zu erhöhen.

Operations Control Beim Operations Control handelt es sich um einen Querschnittspro-
zess, der alle Bereiche einer Fluggesellschaft betri�t. Hauptaufgabe ist die Überwa-
chung der Flugplanumsetzung und die Aufrechterhaltung des Flugbetriebs im Falle von
Störungen (Verspätungen, Ausfällen, usw.). Dem Operations Manager stehen diverse
Handlungsalternativen zur Verfügung, wie zum Beispiel das Verschieben von Flugstarts,
der Einsatz von Ersatzcrews oder das Streichen von Flügen. Dabei kommt es häu�g
zu Umplanungen, die alle Bereiche einer Fluggesellschaft betre�en. Die Auswirkungen
sollten für Passagiere möglichst gering sein, aber auch die Fluggesellschaft ist daran
interessiert, möglichst schnell wieder zum �Normalbetrieb� zurückzukehren.

Literatur über Flugplanung

Die betriebswirtschaftlichen Aspekte des Luftverkehrs werden in den beiden Lehr- und Hand-
büchern von [Sterzenbach and Conrady, 2003] und [Maurer, 2003] ausführlich dargestellt.

In [Barnhart et al., 2003] geben die Autoren einen Überblick über viele der in der Flugplanung
auftretenden Optimierungsprobleme und identi�zieren die groÿen Herausforderungen für die
Zukunft in diesem Bereich. Auf alle in diesem Abschnitt beschriebenen Planungsprozesse
wird eingegangen und der aktuelle Stand der Forschung umrissen.

In [Yu and Thengvall, 2002] und [Yu and Yang, 1998] wird ebenfalls auf die verschiedenen
Optimierungsprobleme der Flugplanung eingegangen. Die grundlegenden Optimierungsmo-
delle werden vorgestellt und die aktuellen Lösungsmethoden beschrieben.

Der Einsatz computerunterstützter Entscheidungssysteme mit integrierten Optimierungskom-
ponenten in der Flugplanung wird in [Suhl, 1995] behandelt.

In [Klabjan, 2005] geht der Autor auf den Einsatz von Column-Generation-Techniken in der
Flugplanung, speziell in den Bereichen Crew-, Flotten- und Frachtplanung, ein.

In seiner Dissertation untersucht [Kliewer, 2005] den Prozess der Netzwerkplanung und gibt
einen allgemeinen Überblick über die sonstigen Optimierungsprobleme bei Fluggesellschaften.

1.2 Ziele der Arbeit

Die Ziele der vorliegenden Arbeit liegen in einem tieferen Verständnis der Flottenzuweisung
in der Flugplanung und in der Entwicklung von praxistauglichen Algorithmen zur Lösung
solcher Optimierungsprobleme. Insbesondere geht es dabei um die Integration verschiedener
Planungsphasen wie dem Ertragsmanagement oder dem Operations Control mit der Flotten-
zuweisung.
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Daraus ergeben sich die folgenden Unterziele:

• Untersuchung der algorithmischen Komplexität von Flottenzuweisungsproblemen mit
verschiedenen Ausprägungen und Erweiterungen

• Entwicklung und Evaluierung von e�zienten, exakten und heuristischen Lösungsver-
fahren für das Grundproblem

• Identi�kation von Schwachstellen bzw. wünschenswerten Erweiterungen des Grundmo-
dells, insbesondere im Hinblick auf die Berücksichtigung von Anforderungen anderer
Planungsphasen

• Entwicklung neuer Algorithmen und Modelle für obige Erweiterungen

1.3 Aufbau der Arbeit

Nach der Einleitung wird in Kapitel 2 das zentrale Optimierungsproblem dieser Arbeit, die
Flottenzuweisung im Flugverkehr, formal eingeführt. Nach einer Literaturübersicht zum Stand
der Forschung werden die Eingabedaten spezi�ziert und zwei Varianten der Flottenzuweisung
anhand ganzzahliger linearer Programme (IPs) de�niert. Die erste Variante arbeitet auf einem
zyklischen Planungszeitraum und wird hauptsächlich in der mittelfristigen Planung eingesetzt,
die zweite Variante arbeitet auf einem konkreten (azyklischen) Planungszeitraum und �ndet
ihre Anwendung in der kurzfristigen Planung.

Im Kapitel 3 behandeln wir die algorithmische Komplexität von Flottenzuweisungsproblemen.
Zuerst wird das allgemeine Flottenzuweisungsproblem anhand von relevanten Merkmalen wie
zyklische/azyklische Variante, Flottenanzahl, operationelle Eigenschaften der Flotten usw.
klassi�ziert und es werden die bekannten Ergebnisse in diesem Bereich vorgestellt. Es folgen
neue Erkenntnisse zu Erweiterungen von 1-Flotten-Zuweisungsproblemen und insbesondere
für azyklische Flottenzuweisungsprobleme. Das Highlight stellt der in Abschnitt 3.4 präsen-
tierte Beweis der strengen NP-Vollständigkeit des Flottenzuweisungsproblems für bereits zwei
Flotten dar.

In Kapitel 4 werden verschiedene selbstentwickelte exakte und heuristische Lösungsverfah-
ren für das Flottenzuweisungsproblem vorgestellt. Nach einer Beschreibung von elementaren
Transformationen, die azyklische in zyklische Flottenzuweisungsprobleme konvertieren kön-
nen, und der Präsentation eines etablierten IP-Modells, des Time Space Networks, folgt die
Beschreibung von neuen Lokale Suche Heuristiken für das Flottenzuweisungsproblem, einem
Hill Climbing und einem Simulated Annealing Verfahren. Das Hauptaugenmerk wird dabei
auf die verwendete problemspezi�sche Nachbarschaft gelegt, die es erlaubt, schnell zulässige
Nachbarlösungen zu �nden. In den Abschnitten 4.5 und 4.6 werden wichtige praxisrelevante
Erweiterungen des Grundmodells eingeführt, die sich aus Anforderungen anderer Planungs-
prozesse ergeben, und wird beschrieben, wie sich die Lokale Suche Heuristiken daran anpassen
lassen und wie sich neue IP-Modelle, die Grundlage für exakte Lösungsverfahren sind, dafür
entwerfen lassen. Anschlieÿend beschreiben wir verschiedene Preprocessing-Techniken, um
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die Eingaben von Flottenzuweisungsproblemen aufzubereiten, ihre Zulässigkeit abzuschät-
zen und die Eingabegröÿe zu verkleinern. Am Ende wird die Performance der vorgestellten
Verfahren und Techniken mittels Realdaten evaluiert.

Das stochastische Flottenzuweisungsproblem wird in Kapitel 5 eingeführt, motiviert und de�-
niert. Dabei handelt es sich um eine Erweiterung des azyklischen Flottenzuweisungsproblems,
bei der Flüge mit vorgegebenen Wahrscheinlichkeiten �gestört� werden, was dem Verhalten
bei der Umsetzung des Flugplans entspricht. Es ergibt sich ein mehrstu�ges Entscheidungs-
problem unter Unsicherheit, von dem wir zeigen können, dass es PSPACE-vollständig ist. Wir
beschreiben einen neuen Lösungsansatz für derartige Probleme, der auf einer Modellierung
als spezielles 2-Personen-Spiel aufsetzt und eine heuristische Spielbaumbewertung verwendet.
Abschlieÿende experimentelle Ergebnisse zeigen die Überlegenheit des Ansatzes gegenüber
deterministischen Verfahren im Störungsmanagement/Operations Control.

In Kapitel 6 beschreiben wir verschiedene mögliche Integrationen der Phasen Marktmodel-
lierung bzw. Ertragsmanagement und Flottenzuweisung. Nach einer Vorstellung der beiden
Planungsphasen werden die Schwachstellen bei der klassischen Bewertung von Flottenzu-
weisungen identi�ziert und das Potential einer integrierten Planung untersucht. Es werden
mehrere Integrationsstrategien vorgestellt, die verschiedene Unzulänglichkeiten der klassi-
schen Lösungsbewertung in der Flottenzuweisung beheben. Die durchgeführten Experimente
belegen das Potential dieser integrierten Planung.

Im Kapitel 7 werden die Ergebnisse der Arbeit zusammengefasst und ein Ausblick für die
weitere Forschung gegeben.

1.4 Ausgewählte Publikationen

Die Ergebnisse dieser Arbeit wurden in folgenden Publikationen verö�entlicht:

Begutachtete Beiträge:

• Ehrho�, J., Grothklags, S., and Lorenz, U. (2005). Parallelism for perturbation mana-
gement and robust plans. In Proc. 11th International Euro-Par Conference (EUROPAR
2005), volume 3648 of LNCS, pages 1265�1274, Lisbon, Portugal.

• Ehrho�, J., Grothklags, S., and Lorenz, U. (2005). Das Reparaturspiel als Formalisie-
rung von Planung unter Zufallsein�üssen, angewendet in der Flugplanung. In Günther,
H.-O., Mattfeld, D. C., and Suhl, L., editors, Supply Chain Management und Logistik:
Optimierung, Simulation, Decision Support, pages 337�358. Physica Verlag, Heidel-
berg.

• Grothklags, S. (2003). Fleet assignment with connection dependent ground times. In
Battista, G. D. and Zwick, U., editors, Proc. 11th Annual European Symposium on
Algorithms (ESA 2003), volume 2832 of LNCS, pages 667�678, Budapest, Hungary.
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• Ehrho�, J., Grothklags, S., Halbsgut, J., Lorenz, U., and Sauerwald, T. (2003). Robust
plans and disruption management in aircraft scheduling with the help of game tree
search. In Proc. 43rd Annual Symposium of the Airline Group of the International
Federation of Operational Research Societies (AGIFORS 2003), Paris, France.

• Weber, K., Sun, J., Sun, Z., Kliewer, G., Grothklags, S., and Jung, N. (2003). Systems
integration for revenue-creating control processes. Journal of Revenue and Pricing
Management, 2:120�137.

• Grothklags, S., Kliewer, G., and Weber, K. (2002). Improving revenue by system in-
tegration and co-operative optimization. In Proc. 42nd Annual Symposium of the
Airline Group of the International Federation of Operational Research Societies (AGI-
FORS 2002), Honolulu, USA.

Sonstige Beiträge:

• Grothklags, S., Lorenz, U., and Sauerwald, T. (2006). On the computational complexity
of multi-stage decision making under uncertainty for aircraft scheduling. In Operations
Research (OR 2006), Karlsruhe, Germany.

• Grothklags, S., Lorenz, U., and Sauerwald, T. (2006). Stochastic airline �eet as-
signment is PSPACE-complete. In 5th Cologne-Twente Workshop on Graphs and
Combinatorial Optimization (CTW 2006), Lambrecht, Germany.

• Grothklags, S., Lorenz, U., and Sauerwald, T. (2004). Experiments with the repair
game. In Aviation Application Cluster at Institute for Operations Research and Mana-
gement Science (INFORMS), Denver, USA.

• Fahle, T., Feldmann, R., Götz, S., Grothklags, S., and Monien, B. (2003). The aircraft
sequencing problem. In Klein, R., Six, H.-W., and Wegner, L. M., editors, Computer
Science in Perspective, volume 2598 of LNCS, pages 152�166. Springer.

• Götz, S., Grothklags, S., Kliewer, G., and Tschöke, S. (1999). Solving the weekly
�eet assignment problem for large airlines. In Proceedings of the Third Metaheuristics
International Conference (MIC 1999), pages 241�246, Angra dos Reis, Brasil.

1.5 Notationen

In der Arbeit werden die folgenden Notationen verwendet:

• N bezeichnet die Menge der natürlichen Zahlen ohne die Null

• N0 bezeichnet die Menge der natürlichen Zahlen inklusive der Null

• Z bezeichnet die Menge der ganzen Zahlen
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• R bezeichnet die Menge der reellen Zahlen

• [k] := {0, 1, . . . , k − 1} steht für die Menge der ersten k Zahlen aus N0 (k ∈ N)

• ⊕k steht für den Additionsoperator auf der Restklasse [k], k ∈ Z; d.h. für a, b ∈ N0

gilt a⊕k b := (a + b) mod k

• 	k steht für den Subtraktionsoperator auf der Restklasse [k], k ∈ Z; d.h. für a, b ∈ N0

gilt a	k b := (a− b) mod k

• P steht für die Klasse von Entscheidungsproblemen, die sich in polynomieller Zeit von
deterministischen Turing-Maschinen lösen lassen

• NP steht für die Klasse von Entscheidungsproblemen, die sich in polynomieller Zeit
von nicht-deterministischen Turing-Maschinen lösen lassen

• PSPACE steht für die Klasse von Entscheidungsproblemen, die sich mit polynomiellem
Platz von Turing-Maschinen lösen lassen

1.6 Grundlegende Literatur

In dieser Arbeit werden unterschiedliche algorithmische Konzepte und Optimierungsverfah-
ren vorgestellt und untersucht. Zum grundlegenden Verständnis der benutzten Konzepte
der linearen (ganzzahligen) Optimierung, Flussalgorithmen, Lokale Suche Heuristiken, Spiel-
baumsuche, Komplexitätstheorie usw. verweisen wir auf die folgende Literatur:

• R. K. Ahuja, T. L. Magnati, and J.B. Orlin. Network Flows: Theory, Algorithms, and
Applications. Prentice Hall, 1993.

• T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. The MIT
Press, 1990.

• M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-completeness. Freeman, 1979.

• G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. Wiley,
1988.

• G. L. Nemhauser, A. H. G. Rinnooy Kan, M. J. Todd. Optimization. Elsevier Science,
1989.

• C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and
Complexity. Dover Publications, 1998.

• L. A. Wolsey. Integer Programming. Wiley, 1998.



2
Das Flottenzuweisungsproblem

In diesem Kapitel de�nieren wir das zentrale Optimierungsproblem dieser Arbeit, das Flotten-
zuweisungsproblem. Zuerst geben wir eine Literaturübersicht zum Stand der Forschung auf
diesem Gebiet. Anschlieÿend führen wir das Flottenzuweisungsproblem ein, präsentieren seine
Eingabedaten und de�nieren mit Hilfe von IP-Modellen die zwei gebräuchlichen Varianten
des Flottenzuweisungsproblems, zyklische und azyklische.

2.1 Literaturübersicht

Das Problem der Flottenzuweisung im Flugverkehr beschäftigt Forscher seit über 50 Jahren.
Die ersten Arbeiten stammen von [Ferguson and Dantzig, 1956]. Die von ihnen entwickelten
Modelle bildeten bereits die Zuweisung von Flugzeugen auf Flüge ab und erö�neten eine jahr-
zehntelange intensive Forschung auf diesem Gebiet. Frühe Ansätze für das Fleet Assignment
Problem (FAP) arbeiteten mit heuristischen Varianten des Frank-Wolfe Algorithmus und
nutzten die Netzwerk-Struktur des Problems aus [Soumis et al., 1980]. Im Übersichtsartikel
von [Etschmaier and Mathaisel, 1984] werden die frühen Arbeiten beschrieben.

Die existierenden Arbeiten lassen sich grob in drei Bereiche unterteilen. Zum einen wird das
Flottenzuweisungsproblem in Form eines (gemischt-)ganzzahligen linearen Programms (IP)
modelliert und mit bekannten Verfahren aus der ganzzahligen linearen Optimierung gelöst.
Typischerweise kommt dabei ein Branch&Bound-Verfahren zum Einsatz, wobei in den Knoten
jeweils LP-Relaxierungen des Problems berechnet werden. Wir nennen diesen Bereich �exakte
Verfahren�, da sie zumindest potentiell in der Lage sind, optimale Flottenzuweisungen zu
berechnen, wenn auch häu�g die Branch&Bound-Suche heuristisch beschleunigt wird. Der
andere Bereich beschreibt heuristische Lösungsverfahren für die Flottenzuweisung, wobei
hier zumeinst Lokale Suche-Ansätze verfolgt werden. In letzter Zeit rücken verstärkt Aspekte
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der Erweiterung des Grundmodells bzw. der Integration mit anderen Planungsphasen in den
Fokus der Forschung.

Daneben haben [Gu et al., 1994] die Komplexität des FAP untersucht. Das Hauptergebnis
ihrer Arbeit ist, dass das Flottenzuweisungsproblem ab drei Flugzeugtypen NP-vollständig
ist.

Exakte Verfahren Mit [Abara, 1989] erschien die erste Arbeit, die ein exaktes mathema-
tisches Modell in Form eines ganzzahligen linearen Programms für das Flottenzuweisungspro-
blem de�nierte. Abara formuliert das FAP als ein erweitertes Mehrgüter-Flussproblem, dem
das so genannte Connection Network zugrunde liegt. Die entstehenden IP-Modelle lassen
sich für kleinere Instanzen mit Hilfe von Branch&Bound-gestützten IP-Lösern exakt lösen.

[Daskin and Panayotopoulos, 1989] verwenden einen auf Lagrange-Relaxation basierenden
Ansatz für das FAP, bei dem Routen, die von einem Hub ausgehen, mehrere Zwischen-
�ughäfen besuchen und zum Hub zurückkehren, Flugzeugtypen zugewiesen werden.

Das bis heute am häu�gsten in der Praxis eingesetzte Modell zur Flottenzuweisung stammt
von [Hane et al., 1995]. Ähnlich wie Abara formulieren sie das FAP als ein erweitertes Mehr-
güter-Flussproblem. Das zugrunde liegende Netzwerk, das Time Space Network, hat aber
den Vorteil, mit im Vergleich zum Connection Network erheblich weniger Kanten auszukom-
men, so dass auch groÿe Instanzen gelöst werden können. Im Rahmen des Branch&Bound
Algorithmus werden die LP-Probleme in jedem Knoten mit einem Interior-Point Algorithmus
oder einem Steepest-Edge Simplex-Algorithmus gelöst. Einen sehr wichtigen Bestandteil bil-
den problemspezi�sche Reduktionsverfahren, wie zum Beispiel die Inselbildung oder die Wahl
der Branching-Variablen.

Das Time Space Network Modell bildete die Basis für viele Folgearbeiten im Bereich der Flot-
tenzuweisung. [Berge and Hopperstad, 1993] stellen verschiedene heuristische Preprocessing-
Techniken für das Time Space Network Modell vor und modi�zieren das Modell, um auf
Schwankungen der Passagiernachfrage kurzfristig reagieren zu können. Das erste Mal wird
die Flottenzuweisung in [Desaulniers and Desrosiers, 1997] auf Wochenbasis durchgeführt.
Zuvor waren nur Tagesprobleme betrachtet worden.

Die wissenschaftlichen Erkenntnisse sind dabei auch sehr schnell von der Flugindustrie mit Er-
folg in die Praxis umgesetzt worden. Insbesondere durch den Einsatz kommerzieller IP-Löser
wie zum Beispiel CPLEX konnten zuverlässige Optimierungssysteme für die Flottenzuwei-
sung etabliert werden. Die Ergebnisse von [Abara, 1989] wurden in Zusammenarbeit mit
American Airlines erreicht. [Hane et al., 1995] entwickelten ihre Modelle und Lösungsverfah-
ren für Delta Air Lines. [Subramanian et al., 1994] berichten über ihre Erfahrungen mit den
groÿen FAP-Modellen bei Delta Air Lines. Die Arbeiten bei USAir in diesem Bereich werden
in [Rushmeier and Kontogiorgis, 1997] dargestellt.

Die Diplomarbeit von [Nitschke, 1997] vergleicht mehrere exakte Verfahren für das Problem
der Flottenzuweisung.

Heuristische Verfahren Die oben erwähnten exakten Verfahren können potentiell die
bearbeiteten Flottenzuweisungsprobleme optimal lösen und liefern im Fall, dass sie vorzeitig
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beendet werden, um akzeptable Laufzeiten zu garantieren, zumindest eine belastbare Aussage
über die erzielte Lösungsqualität in Form einer oberen Schranke auf den optimalen Gewinn.
Da im Flottenzuweisungsproblem gerade auf der Erlösseite mit Schätzwerten gearbeitet wird,
reicht eine nahezu optimale Lösung in der Praxis aus.

Heuristische Ansätze verzichten generell darauf, den Beweis der Optimalität zu führen, und
lassen im Allgemeinen auch keine verlässlichen Aussagen über die erreichte Lösungsqualität
zu. Ihnen geht es vielmehr darum, in kurzer Zeit möglichst gute zulässige Lösungen zu liefern.

Heuristische Verfahren für die Flottenzuweisung modi�zieren zumeist existierende Zuweisun-
gen, um bessere Lösungen zu �nden. Von den bereits erwähnten Arbeiten stellen zum Beispiel
[Berge and Hopperstad, 1993] Heuristiken, die mehrfach ein Minimum Cost Flow Problem
lösen, oder die DELPRO-Methode, die die Zuweisung von zwei Flugsequenzen tauscht, vor.
Neuere Arbeiten, die ebenfalls fertige FAP-Lösungen anpassen, sind [Jarrah et al., 2000],
[Talluri, 1996], [Sharma et al., 2000] und [Yan and Young, 1996].

[Radicke, 1994] beschreibt in seiner Dissertation verschiedene heuristische Algorithmen für
das FAP, die billigste Kreise in speziell konstruierten Graphen suchen und die Zuweisung
der Flugzeugtypen auf diesen Kreisen verändern. Zunächst wird der Algorithmus für zwei
Flugzeugtypen vorgestellt und dann auf mehrere Flotten erweitert.

In Paderborn wurden im Rahmen von mehreren Projekten heuristische Verfahren für das FAP
entwickelt. In der Diplomarbeit von [Grothklags, 2000] sind Simulated Annealing Algorithmen
vorgestellt worden, die auf einer komplexen, aber e�zienten Nachbarschaft aufbauen. Die
neueren Entwicklungen zu diesen Verfahren werden in Kapitel 4 vorgestellt.

Sosnowska präsentiert in [Sosnowska, 1999], [Sosnowska and Rolim, 2000] Simulated Anne-
aling und GRASP-Algorithmen, die auf kleineren Flugplänen getestet werden. Dabei kommen
Nachbarschaften ähnlich denen von Radicke zum Einsatz.

Erweiterungen In der Arbeit von [Rexing, 1997] werden die Ab�ugzeiten von Flügen
nicht mehr als fest angenommen, sondern es werden alternative Ab�ugzeiten de�niert. Die-
ser neue Freiheitsgrad erlaubt es, die Struktur eines Flugplans leicht zu verändern, um bessere
Anschlüsse für Flugzeuge zu ermöglichen. Die Festlegung der Startzeit eines Fluges ist klas-
sischerweise eigentlich Aufgabe der Netzwerkplanung.

In Kooperation mit dem Georgia Institute of Technology hat die amerikanische Firma SA-
BRE Inc., Marktführer für Softwarelösungen bei Fluggesellschaften, ein so genanntes O&D
Fleet Assignment System entwickelt [Jacobs and Günther, 2000], [Jacobs et al., 2000]. Das
mathematische Modell für das FAP, ein Time Space Network Modell, wird periodisch mit ap-
proximierten Werten für die erzielbaren Erlöse auf Flügen im Netzwerk aktualisiert. Es werden
allerdings keine Ergebnisse über die Laufzeiten oder die Qualität der berechneten Lösungen
verö�entlicht. Eine ähnliche Zielsetzung verfolgen wir mit unseren Arbeiten in Kapitel 6.

Die Dissertation von [Lohatepanont, 2002] beschreibt zwei Modelle für Itinerary Based Fleet
Assignment Probleme (IFAM). Im zweiten Modell wird zusätzlich noch der Netzwerkentwurf
integriert. IFAM Modelle versuchen die Gewinnberechnung zu verbessern, indem Passagier-
�üsse im Flugnetzwerk nachgebildet werden und zur Erlösbestimmung herangezogen werden,
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um so genannte Netzwerke�ekte zu erfassen. Beide Modelle haben mit ihrer enormen Grö-
ÿe selbst für kleine Instanzen zu kämpfen und können nur durch den Einsatz aggressiver
heuristischer Preprocessing-Techniken Lösungen liefern.

[Barnhart et al., 1998] stellen so genannte Flight String Modelle für das Flottenzuweisungs-
problem vor, um einen wesentlichen Aspekt der Umlaufplanung, regelmäÿige Wartungsereig-
nisse, in die Flottenzuweisung zu integrieren. Hier werden nicht mehr Flugzeuge an einzelne
Flüge sondern an Flugsequenzen zugewiesen, die die geforderten Wartungsrestriktionen er-
füllen. Wegen der exponentiellen Anzahl an möglichen Flugsequenzen müssen diese in einem
Branch&Price-Prozess dynamisch generiert werden. Trotzdem lassen die langen Laufzeiten
nur die Bearbeitung kleiner bis mittlerer Instanzen zu.

Die Arbeit von [Shenoi, 1996] befasst sich mit der Integration der Flottenzuweisung mit
dem Crew Scheduling. [Cohn and Barnhart, 2003] und [Klabjan et al., 2002] berücksichtigen
neben dem Crew Pairing auch noch die Umlaufplanung während der Flottenzuweisung.

[Li et al., 2006] beschreiben in ihrer Arbeit eine Integration der Flottenzuweisung mit dem
Frachtrouting. Sie entwickeln ein integriertes IP-Modell, das sie mittels Benders-Dekomposi-
tion lösen.

2.2 Problemdefinition

Beim Flottenzuweisungsproblem in der Flugplanung (airline �eet assignment problem; FAP)
muss für einen vorgegebenen Flugplan bestimmt werden, welche der vorhandenen Flugzeug-
�otten (oder auch Flugzeugtypen) welchen Flug übernehmen soll. Der Flugplan besteht
dabei aus einer Menge von so genannten Legs (Non-Stop-Flüge zwischen zwei Flughäfen),
die jeweils durch ihren Start- und Ziel�ughafen sowie ihre Ab�ugzeit de�niert sind.

Bei der Zuweisung eines Flugzeugtyps an ein Leg können eine ganze Reihe von Faktoren
einen Ein�uss auf die Flottenauswahl haben:

• erwartetes Passagieraufkommen auf dem Leg

• Sitzplatzangebot eines Flugzeugtyps

• erwartete Erlöse

• Treibsto�verbrauch

• benötigte Crew-Gröÿe

• Flugdistanz des Legs

• maximale Reichweite eines Flugzeugtyps

• wichtige Anschluss�üge eines Legs

• maximale Geschwindigkeit eines Flugzeugtyps
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• Wartungsmöglichkeiten am Start- bzw. Ziel�ughafen

• Verfügbarkeit zum Flugzeugtyp passender Gates am Start- bzw. Ziel�ughafen

• Lärmschutzau�agen am Start- bzw. Ziel�ughafen

• Lautstärke eines Flugzeugtyps

• . . .

Die ersten fünf Punkte haben einen direkten Ein�uss auf den Gewinn, der sich mit einer
Zuweisung erzielen lässt, und werden deshalb typischerweise in Form einer zu optimierenden
Zielfunktion berücksichtigt.

Die darauf folgenden Punkte beschreiben eher Beschränkungen an die Flotten, die einem Leg
zugewiesen werden dürfen. Es ist zum Beispiel o�ensichtlich, das ein Langstrecken�ug nicht
von einem Flugzeug mit zu kurzer Reichweite ge�ogen werden darf. Hierbei handelt es sich
um eine unbedingt einzuhaltende Einschränkung. Andererseits geben wichtige Anschluss�üge
eine spätestmögliche Landezeit für ein Leg vor, damit die Passagiere genügend Zeit zum
Umsteigen haben. Zu langsame Flugzeugtypen können hier zwar prinzipiell eingesetzt, sollten
dann aber in der Zielfunktion zusätzlich bestraft werden.

Neben den bisher erwähnten Aspekten werden an eine zulässige Lösung für das Flottenzuwei-
sungsproblem noch die Forderungen gestellt, dass jedes Leg des Flugplans von genau einer
Flugzeug�otte ge�ogen wird und dass die Lösung mit der verfügbaren Anzahl an Flugzeugen
der einzelnen Flotten auskommt. Diese Bedingungen machen das Flottenzuweisungsproblem
im Allgemeinen NP-schwer (Kapitel 3).

Somit handelt es sich bei dem Flottenzuweisungsproblem in der Flugplanung um ein kombina-
torisch schweres Optimierungsproblem, das aus der Menge von zulässigen Flottenzuweisungen
diejenige auswählen soll, die den höchsten Gesamtgewinn erzielt.

In dieser Arbeit unterscheiden wir zwischen zwei Varianten des Flottenzuweisungsproblems,
zyklischen und azyklischen.

Bei der zyklischen Flottenzuweisung wird der Planungszeitraum als zyklisch angesehen. Das
heiÿt, dass das Ende der Planungsperiode nahtlos an den Beginn der Planungsperiode an-
schlieÿt. Hier kann es zum Beispiel passieren, dass ein Leg, das zu einem Zeitpunkt nahe des
Endes der Planungsperiode startet, eine kleinere Lande- als Startzeit besitzt. Die zyklische
Flottenzuweisung kommt hauptsächlich in der Mittelfristplanung zum Einsatz.

Bei der azyklischen Flottenzuweisung kann der Planungszeitraum als unbeschränkt ange-
sehen werden. Eine Konsequenz daraus ist, dass die Landezeiten von Legs immer gröÿer
als ihre Startzeiten sind. Azyklische Flottenzuweisungsprobleme treten typischerweise in der
Kurzfristplanung und im Störungsmanagement auf.

In der Literatur ist bisher fast ausschlieÿlich die zyklische Variante untersucht worden, obwohl
beide Varianten in der Praxis von groÿer Bedeutung sind und teilweise Unterschiede in ihrer
algorithmischen Komplexität aufweisen (Kapitel 3).
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2.2.1 Eingabedaten

De�nition 2.1 (Eingabeparameter). In ihrer allgemeinsten Form besteht eine Instanz des
Flottenzuweisungsproblems aus den folgenden Eingabedaten:

T ∈ N; Länge der Planungsperiode
F Menge der Flotten
Nf ∈ N Anzahl verfügbarer Flugzeuge von Flotte f ∈ F
L Menge der Legs
S Menge der Flughäfen, die von Legs aus L benutzt werden
Fl ⊆ F mit Fl 6= ∅; Menge der Flotten, die Leg l ∈ L �iegen können
sd

l ∈ S; Start�ughafen von Leg l ∈ L
sa

l ∈ S; Ziel�ughafen von Leg l ∈ L
tdl,f ∈ [T ]; Startzeitpunkt von Leg l ∈ L, wenn es von einem Flugzeug der

Flotte f ∈ Fl ge�ogen wird
bl,f ∈ N; Blockzeit von Leg l ∈ L, wenn es von einem Flugzeug der Flotte

f ∈ Fl ge�ogen wird
gl,m,f ∈ N0; Mindestbodenzeit (auf Flughafen sa

l ), wenn ein Flugzeug der Flotte
f ∈ Fl im Anschluss an Leg l ∈ L das Leg m ∈ L �iegt

P Gewinnfunktion, die zu einem zulässigen Fleet Assignment den resultie-
renden Gewinn berechnet

Die benötigten Eingabedaten für ein zyklisches bzw. azyklisches Flottenzuweisungsproblem
unterscheiden sich praktisch nicht voneinander. Im azyklischen Fall kann die Periondenlänge
T als unendlich angesehen werden, da hier die Länge der Planungsperiode implizit durch die
Start-, Block- und Mindestbodenzeiten der Legs de�niert wird.

Die Menge Fl gibt für jedes Leg an, welche Flugzeugtypen dem Leg zugewiesen werden
dürfen. Unter anderem können operationelle Restriktionen (Reichweite, Lärmschutz, . . . )
die Menge der möglichen Flotten für ein Leg einschränken. Da in einer zulässigen Flotten-
zuweisung jedem Leg genau ein Flugzeugtyp zugewiesen werden muss, ist eine notwendige
Bedingung für die Existenz einer zulässigen Lösung, dass alle Fl mindestens eine Flotte
enthalten.

Abhängig von der eingesetzten Flotte gibt tdl,f den Startzeitpunkt eines Legs an. Meistens
ist der Startzeitpunkt in der Praxis unabhängig von der eingesetzten Flotte, da dieser auf
den internationalen Slot-Konferenzen zwischen den Fluggesellschaften weit vor der eigent-
lichen Flotteneinsatzplanung ausgehandelt wird. Ist der Startzeitpunkt unabhängig von der
eingesetzten Flotte, bezeichnen wir ihn auch einfach mit tdl .

bl,f bezeichnet die Dauer eines Legs in Abhängigkeit von der eingesetzten Flotte. Diese Dauer
umfasst neben der eigentlichen Zeit, während der sich das Flugzeug in der Luft be�ndet,
auch die Zeit auf dem Start- und Ziel�ughafen, die das Flugzeug zwischen Gate/Terminal
und Start- bzw. Landebahn benötigt. bl,f wird in der Flugplanung Blockzeit genannt.1

1 Blocks sind die Bremsklötze, die während der Standzeit eines Flugzeugs auf einem Flughafen um die
Bereifung gelegt werden, und die Blockzeit bezeichnet die Zeit, während der ein Flugzeug unterwegs ist
(o�-blocks).
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Vereinfachend wird in der Literatur teilweise angenommen, dass die Blockzeit unabhängig
von der verwendeten Flugzeug�otte ist. In einem solchen Fall bezeichnen wir die Blockzeit
auch einfach mit bl. Diese Annahme ist in der Praxis aber höchstens bei Kurzstrecken�ügen
realistisch und kann dazu führen, dass bereits durch die Modellierung der erzielbare Gewinn
geschmälert wird.

Ein groÿes Problem im Zusammenhang mit der Blockzeit stellt die Tatsache dar, dass es
sich bei der Blockzeit eigentlich nicht um eine feste, bekannte Zahl handelt. In Abhängigkeit
von der Verkehrsdichte, dem Wetter, usw. schwankt die tatsächliche Blockzeit eines Legs
von Mal zu Mal, und die Blockzeit sollte eher als eine Zufallsverteilung aufgefasst werden.
In der traditionellen Flugplanung wird nichtsdestotrotz eine feste Dauer angenommen, z.B.
der Mittelwert oder eine Dauer, die in 70% der Fälle ausreicht. Welche Konsequenzen sich
aus einer genaueren Berücksichtigung von zufallsverteilten Blockzeiten ergeben, ist Thema
von Kapitel 5.

Nach der Landung von Leg l auf dem Flughafen sa
l kann ein Flugzeug vom Typ f als

nächstes einen weiteren Flug m durchführen, der von eben diesem Flughafen startet (sd
m =

sa
l ). Allerdings kann es dies nicht direkt im Anschluss an seine Landezeit tdl,f ⊕T bl,f tun,
sondern es muss erst eine gewisse Zeit am Terminal warten, damit die Passagiere aus- und
einsteigen können, das Gepäck ent- und beladen werden kann, das Flugzeug neu betankt
werden kann, usw. Die Zeit, die für diese Handlungen mindestens eingeplant werden muss,
wird Mindestbodenzeit gl,m,f genannt.

In der hier eingeführten allgemeinen Form handelt es sich bei gl,m,f um eine verbindungsab-
hängige Mindestbodenzeit, da sie, neben dem Flugzeugtyp, sowohl von dem landenden als
auch startenden Leg abhängt. Bisher ist in der Literatur fast ausschlieÿlich der Fall betrachtet
worden, dass die Mindestbodenzeit nur von dem landenden Leg (oder, noch spezieller, dem
Flughafen) und dem Flugzeugtyp abhängig ist. Wir nennen diese Art von Mindestbodenzei-
ten �ottenabhängig und bezeichnen sie mit gl,f . In diesem Fall kann die Mindestbodenzeit
ohne Beschränkung der Allgemeinheit der (ebenfalls �ottenabhängigen) Blockzeit tdl,f zu-
geschlagen werden und in der weiteren Planung als Null bzw. nicht relevant angenommen
werden.

In der Praxis treten aber häu�g Fälle auf, bei der die Mindestbodenzeit eben auch vom
Folgeleg abhängig ist. Zum Beispiel kann die Mindestbodenzeit zwischen zwei Langstrecken-
�ügen um bis zu 30 Minuten länger sein als zwischen einem Langstrecken�ug und einem
Kurzstrecken�ug, da unter anderem mehr Gepäck ent- und beladen werden muss. Die Zeit-
unterschiede sind in diesem Fall allerdings im Allgemeinen nicht besonders groÿ.

Gravierender fallen die Zeitunterschiede bei verbindungsabhängigen Mindestbodenzeiten in
folgendem Fall aus: Ein Flughafen besitzt separate Terminals für Inlands- und Auslands�ü-
ge. Das Auslandsterminal stellt zusätzliche Einrichtungen für Einreise- und Zollformalitäten
bereit. Wenn nun das Flugzeug eines ankommenden Auslands�ugs als nächstes einen In-
lands�ug absolvieren soll, muss es vom Auslandsterminal zum Inlandsterminal mit Hilfe eines
Schleppers gezogen werden, was deutlich über eine Stunde dauern kann. Würde das Flugzeug
als nächstes einen weiteren Ausland�ug durchführen, könnte es am Auslandsterminal bleiben
und die Mindestbodenzeit wäre entsprechend kürzer.

Streng genommen handelt es sich bei verbindungsabhängigen Mindestbodenzeiten um An-
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forderungen, die erst in der auf die Flottenzuweisung anschlieÿenden Planungsphase der
Rotationsbildung berücksichtigt werden müssten, da es nicht die Aufgabe der Flottenzuwei-
sung ist, die Folgebeziehungen von Legs festzulegen. Allerdings führt eine Nichtberücksichti-
gung von verbindungsabhängigen Mindestbodenzeiten während der Flottenzuweisung unter
Umständen dazu, dass während der Rotationsbildung keine zulässigen Lösungen gefunden
werden können. Mit verbindungsabhängigen Mindestbodenzeiten werden somit Teilaspekte
einer nachgelagerten Planungsaufgabe in die Flottenzuweisung integriert.

Die Bewertung einer zulässigen Flottenzuweisung erfordert, wenn sie möglichst genau erfolgen
soll, in der Praxis eine aufwendige Berechnung. Kapitel 6 geht näher darauf ein. Wir nehmen
hier erst einmal an, dass diese Berechnung von einer Funktion P durchgeführt wird, die als
Eingabe eine (beliebig kodierte) zulässige Lösung übergeben bekommt und als Ergebnis den
Gewinn dieser Lösung liefert.

Als vereinfachende Näherung wird traditionell in die Flottenzuweisung angenommen, dass der
Gewinn, den ein Leg l abwirft, nur von der dem Leg l zugewiesenen Flotte f abhängt: Un-
terschiedliche Flugzeugtypen verursachen unterschiedliche Kosten, wenn sie ein Leg �iegen,
und können unterschiedlich viele Passagiere mitnehmen und damit unterschiedlich viel Erlös
erwirtschaften. Sogenannte Netzwerke�ekte (siehe Kapitel 6) bleiben dabei unberücksichtigt.

Eine etwas genauere Gewinnberechnung lässt sich durchführen, wenn man neben Leg-Flotten-
abhängigen Gewinnen auch so genannte verbindungsabhängige Gewinne berücksichtigt. Zum
Beispiel verursacht das weiter vorne erwähnte Schleppen eines Flugzeugs von einem Auslands-
zu einem Inlandsterminal zusätzliche Kosten, die mit verbindungsabhängigen Gewinnen mo-
delliert werden können. Ferner ist es so, dass sich die Attraktivität von Flugverbindungen
erhöht, wenn man bei einem Zwischenstopp das Flugzeug nicht wechseln muss. Es sollten
also bevorzugt solche Flüge nacheinander von einem Flugzeug bedient werden, die von vielen
Passagieren als Flugverbindung genutzt werden. Dies erhöht das Passagieraufkommen und
erlaubt höhere Ticketpreise. Ähnlich wie bei den verbindungsabhängigen Bodenzeiten wer-
den verbindungsabhängige Gewinne traditionell eigentlich erst während der Rotationsbildung
berücksichtigt und optimiert.

De�nition 2.2 (Alternative Eingabeparameter). Alternativ zu der Gewinnfunktion P können
als Eingabedaten Leg-Flotten- und verbindungsabhängige Gewinne angegeben werden:

pl,f ∈ Z; Gewinn, den Leg l ∈ L abwirft, wenn es von Flotte f ∈ F bedient
wird

pl,m,f ∈ Z; (zusätzlicher) Gewinn, wenn ein Flugzeug der Flotte f ∈ F nach-
einander die Legs l ∈ L und m ∈ L bedient

Die Eingabe einer Flottenzuweisungsinstanz lässt sich normalerweise mit O(|F| · |L|) Zahlen
kodieren. Dies gilt o�ensichtlich, wenn keine verbindungsabhängigen Mindestbodenzeiten und
Gewinne berücksichtigt werden müssen. Verbindungsabhängige Angaben können im worst-
case O(|F| · |L|2) Zahlen erfordern. Allerdings lassen sie sich meistens sehr einfach e�zienter
Kodieren.2

2 Zum Beispiel durch Weglassen von Null-Werten.
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2.2.2 Das zyklische Flottenzuweisungsproblem

Das zyklische Flottenzuweisungsproblem wird überwiegend in der mittelfristigen, strategi-
schen Planung eingesetzt, wo für einen repräsentativen Zeitraum (typischerweise ein Tag
oder eine Woche) der Flotteneinsatz geplant werden soll.

Eine zulässige Lösung muss hier auf ein beliebiges Vielfaches des Planungszeitraums aus-
gedehnt werden können, indem einfach entsprechend viele Lösungskopien aneinandergereiht
werden. Dies ist gleichbedeutend mit der Forderung, dass in einer zulässigen Lösung für je-
de Flotte auf jedem Flughafen die Anzahl an von dieser Flotte bedienten startenden Legs
gleich der Anzahl an landenden Legs ist. Man sagt in diesem Zusammenhang auch, dass
die Flughäfen bezüglich der Starts und Landungen jeder Flotte balanciert sein müssen. Eine
notwendige Bedingung für die Existenz einer solchen Lösung ist o�ensichtlich, dass bereits
im Eingabe�ugplan die Anzahl von startenden mit der Anzahl von landenden Legs auf jedem
Flughafen übereinstimmt.

Eines der ersten Modelle, das für das zyklische Flottenzuweisungsproblem entwickelt wurde,
stammt von [Abara, 1989]. Es handelt sich um ein ganzzahliges lineares Programm (IP),
das als ein erweitertes ganzzahliges (Mehrgüter-)Fluss-Problem angesehen werden kann. Das
zugrunde liegende gerichtete Flussnetzwerk G = (V, E), Connection Network genannt, ist
wie folgt de�niert:

V = {(l, f) | l ∈ L ∧ f ∈ Fl} ⊆ L × F
E =

{
((l, f), (m, f)) | (l, f), (m, f) ∈ V ∧ sa

l = sd
m

}
,

wobei die Kantenkapazitäten alle 1 sind. Es gibt keine expliziten Quellen oder Senken im
Netzwerk.

Die Knoten des Netzwerks bestehen aus Leg-Flotten-Tupeln. Für jede erlaubte Zuweisung
einer Flotte an ein Leg existiert ein Knoten. Zwischen zwei Knoten existiert genau dann eine
Kante, wenn die zugehörigen Legs l und m nacheinander von einem Flugzeug bedient werden
können. Dafür muss zum einen die Flotte beider Knoten gleich sein, da ein Flugzeug nicht
seine Flottenzugehörigkeit ändern kann. Zum anderen muss der Ziel�ughafen von Leg l mit
dem Start�ughafen von Leg m übereinstimmen. Das heiÿt, es sind keine Überführungs�üge
(ferry �ights) zwischen verschiedenen Flughäfen zugelassen. Nach dieser Konstruktion be-
steht das Connection Network aus |F| viele unabhängigen Teilnetzwerken, da nie Knoten,
die mit unterschiedlichen Flotten assoziiert sind, miteinander durch eine Kante verbunden
sind.

Es ist anzumerken, dass bei der Entscheidung, ob zwei Legs nacheinander von einem Flugzeug
bedient werden können, die Start- und Landezeiten keine Rolle spielen. Die Zyklizität der
Planungsperiode erlaubt es, dass ein Flugzeug nach seiner Landung jedes vom Lande�ughafen
startende Leg erreichen kann, also insbesondere auch Legs, deren Startzeit vor der eigenen
Landezeit liegt.

Die Güter, die im Connection Network verschickt werden können, repräsentieren die Flug-
zeuge der einzelnen Flotten. Ein Fluss von 1 auf einer Kante ((l, f), (m, f)) steht für ein
Flugzeug der Flotte f , das erst Leg l und anschlieÿend Leg m bedient. Der Durch�uss durch
einen Knoten (l, f) gibt damit die Anzahl der Flugzeuge von Typ f an, die Leg l bedienen.
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An einen Fluss im Connection Network, der eine zulässige Flottenzuweisung repräsentiert,
werden die folgenden erweiterten Anforderungen gestellt:

• Jedes Leg muss von genau einem Flugzeug bedient werden, das heiÿt, der Gesamtdurch-
�uss durch alle Knoten, die ein Leg l repräsentieren, muss genau 1 sein. Hierdurch
werden die aus Graphensicht unabhängigen Teilnetzwerke des Connection Networks
miteinander gekoppelt.

• Die Flusserhaltung in jedem Knoten garantiert, dass ein Flugzeug nach der Landung
immer ein passendes Anschlussleg besitzt. In Abwesenheit von Quellen und Senken
können so nur zirkuläre Flüsse im Netzwerk entstehen, und es ist garantiert, dass die
Flughäfen je Flotte bezüglich Starts und Landungen balanciert sind.

• Der Fluss muss mit der vorgegebenen Flugzeuganzahl je Flotte auskommen. Ein Weg,
die von einem Fluss benötigte Flugzeuganzahl einer Flotte f zu bestimmen, ist, einen
Schnitt durch das Netzwerk �zu einem festen Zeitpunkt t� zu legen und den Fluss über
diesen Schnitt zu bestimmen. t kann im Prinzip beliebig innerhalb der Planungperiode
gewählt werden. Besonders einfach ist es aber, den Periodenbeginn zu wählen.

All diese Bedingungen lassen sich einfach in ein ganzzahliges lineares Programm übersetzten.
Wir de�nieren dazu:

Al,f = {m ∈ L | sd
m = sa

l ∧ f ∈ Fm}
Menge der Legs, die von einem Flugzeug der Flotte f ∈ Fl direkt im
Anschluss an Leg l ∈ L ge�ogen werden können

Bl,f = {k ∈ L | sa
k = sd

l ∧ f ∈ Fk}
Menge der Legs, die von einem Flugzeug der Flotte f ∈ Fl direkt vor Leg
l ∈ L ge�ogen werden können

ρ(t1, t2) =

{
1 , falls t1 > t2
0 , sonst

Indikatorfunktion, die angibt, ob das o�ene Intervall (t1, t2) in der zykli-
schen Gruppe [T ] den Wert Null (Periodenbeginn) enthält oder nicht

tal,m,f = tdl,f ⊕T bl,f ⊕T gl,m,f

Ankunftszeit (ready time) genannter Zeitpunkt, ab dem ein Flugzeug von
Flotte f nach der Landung von Leg l bereit ist, Leg m als nächstes zu
bedienen

g∗l,m,f = gl,m,f + (tdm,f 	T tal,m,f ) tatsächliche Bodenzeit, wenn die Legs l und m
nacheinander von einem Flugzeug der Flotte f bedient werden

∆l,m,f =
⌊

bl,f+g∗l,m,f

T

⌋
+ ρ(tdl,f , t

d
m,f )

Anzahl Flugzeuge von Flotte f , die benötigt werden, wenn die Legs l und
m nacheinander von Flotte f bedient werden

Die Mengen Al,f bzw. Bl,f repräsentieren die direkten Nachfolger bzw. Vorgänger eines
Knotens (l, f) im Connection Netzwerk. ∆l,m,f beschreibt, wie oft eine Kante zwischen den
Knoten (l, f) und (m, f) den Periodenbeginn �schneidet� und entspricht damit der Anzahl
an Flugzeugen von Flotte f , die ein Fluss von 1 auf dieser Kante verbraucht. Es wird dabei
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angenommen, dass eine Kante ((l, f), (m, f)) den Zeitraum vom Start des Legs l bis zum
Start des Folgelegs m repräsentiert.

Die Funktion ρ(t1, t2) bestimmt, wie oft das Intervall (t1, t2) den Periodenanfang enthält.3 Da
die Dauer einer Kante im Connection Network (Blockzeit + Mindestbodenzeit + zusätzliche
Bodenzeit bis zum nächsten Ab�ug) gröÿer als die Periodendauer sein kann, ist es möglich,
dass eine Kante mehr als ein Flugzeug verbraucht. Der erste Term in der De�nition von ∆l,m,f

bestimmt, wie viele Flugzeuge allein durch die Block- und Bodenzeit verbraucht werden. Der
zweite Term bestimmt, ob zusätzlich noch zwischen dem Ab�ug von Leg l und demWeiter�ug
mit Leg m ein Periodenbeginn liegt.

Bemerkung 2.3. Der Begri� Ankunftszeit für tal,m,f bezeichnet hier nicht den Zeitpunkt, zu
dem ein Flugzeug am Terminal ankommt, sondern den Zeitpunkt, ab dem es seinen nächsten
Flug absolvieren kann. Im Falle von verbindungsabhängigen Mindestbodenzeiten hängt dieser
Zeitpunkt auch vom Folgeleg m ab.

Liegen keine verbindungsabhängigen Mindestbodenzeiten vor, schreiben wir für die Ankunfts-
zeit auch einfach tal,f .

Das Modell verwendet nur eine Klasse von Variablen, die den Fluss auf den Kanten des
Connection Networks repräsentieren:

xl,m,f Boolsche Variable, die anzeigt, ob die Legs l und m unmittelbar nach-
einander von einem Flugzeug der Flotte f ∈ F bedient werden sollen
(xl,m,f = 1) oder nicht (xl,m,f = 0)

Das zyklische Flottenzuweisungsproblem lässt sich damit wie folgt formulieren:

Modell 2.4 (Zyklisches Connection Network).

Maximiere P (x) (2.1)

unter den Nebenbedingungen∑
f∈Fl

∑
m∈Al,f

xl,m,f = 1 ∀l ∈ L (2.2)

∑
k∈Bl,f

xk,l,f −
∑

m∈Al,f

xl,m,f = 0 ∀l ∈ L, f ∈ Fl (2.3)

∑
l∈L:f∈Fl

∑
m∈Al,f

∆l,m,fxl,m,f ≤ Nf ∀f ∈ F (2.4)

xl,m,f ∈ {0, 1} ∀l ∈ L, f ∈ Fl, m ∈ Al,f (2.5)

Die Gleichungen (2.2) bestimmen für jedes Leg l den Gesamtdurch�uss durch seine zuge-
hörigen Knoten im Connection Network und legen diesen Wert auf 1 fest. Damit wird, wie
vorne erwähnt, jedes Leg von genau einer Flotte bedient. Der Durch�uss durch einen Knoten
wird dabei einfach mit Hilfe seines Ausgangs�usses bestimmt.4

3 Dies kann entweder gar nicht der Fall sein (t1 ≤ t2) oder einmal (t1 > t2).
4Alternativ kann natürlich auch der Eingangs�uss in einen Knoten verwendet werden.
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Die Gleichungen (2.3) sind die normalen Flusserhaltungsgleichungen. Da im Connection Net-
work keine Quellen und Senken existieren, ist die rechte Seite immer gleich Null. Hierdurch
wird sicher gestellt, dass sich die Flottenzuweisung eines Legs l nicht während des Flugs
ändern kann: Wenn ein Flugzeug von Flotte f im Anschluss an Leg l ein Leg m bedient
(xl,m,f = 1), so muss es vorher ein passendes Leg k bedient haben (xk,l,f = 1).

Die Ungleichungen (2.4) beschränken für jede Flotte die Anzahl verwendeter Flugzeuge. Dazu
wird für jede Flotte der Gesamt�uss �über einen Schnitt zum Zeitpunkt Null� bestimmt.

Die Bedingungen (2.5) de�nieren die verwendeten Variablen als Boolsch. Wegen der im
Vergleich zu einem normalen Fluss-Problem zusätzlichen Bedingungen (2.2) und (2.4) kann
ansonsten nicht garantiert werden, dass ein ganzzahliger Fluss gefunden wird.

Schlieÿlich legt die Zielfunktion (2.1) fest, dass wir unter allen zulässigen Flottenzuweisungen
eine mit maximalem Gewinn suchen.

Ist die Gewinnfunktion in Form von Leg-Flotten- und verbindungsabhängigen Gewinnen gege-
ben, kann die Zielfunktion (2.1) wie folgt ersetzt werden, und wir erhalten eine Formulierung
als ganzzahliges lineares Programm:

Maximiere
∑
l∈L

∑
f∈Fl

∑
m∈Al,f

(pl,f + pl,m,f )xl,m,f (2.6)

Aus der Variablenbelegung einer zulässigen Lösung von Modell 2.4 lässt sich praktisch direkt
die Zuweisung der Flotten an die einzelnen Legs ablesen und somit eine Lösung für das
Flottenzuweisungsproblem bestimmen. Darüber hinaus gibt das Modell zusätzlich explizit
an, in welcher Reihenfolge die Legs des Flugplans von den Flugzeugen der einzelnen Flotten
bedient werden sollen. Dies ist mehr als von einem klassischen Flottenzuweisungsproblem
verlangt wird und eigentlich Teil der nachgelagerten Planungsphase der Umlaufgenerierung.
Allerdings können so einfach verbindungsabhängige Mindestbodenzeit und Gewinne bereits
während der Flottenzuweisung berücksichtigt werden.

Das Connection Network Modell 2.4 ist damit eine sehr ausdrucksstarke Methode, Flot-
tenzuweisungsprobleme zu modellieren und zu lösen. Es hat allerdings einen gravierenden
Nachteil, der das Modell in der Praxis bereits für mittelgroÿe Probleminstanzen unattraktiv
macht: Die entstehenden ganzzahligen linearen Programme enthalten zu viele Variablen und
können (zumindest mit Standardlösern) selbst auf aktuellen Computern kaum gelöst werden.

Beobachtung 2.5 (Gröÿe des Connection Network Modells). Eine Flottenzuweisungsin-
stanz mit Legmenge L und Flottenmenge F erzeugt ein Connection Network Modell mit
O(|F| · |L|2) vielen Variablen und O(|F| · |L|) Nebenbedingungen. O�ensichtlich lässt sich
ein entsprechendes Modell in polynomieller Zeit erzeugen.

Beim Zählen der Nebenbedingungen haben wir die Variablende�nitionen 2.5 nicht mitberück-
sichtigt, da diese in IP-Lösern typischerweise nicht in Form von expliziten Nebenbedingungen
sondern als Attribut der Variablen berücksichtigt werden.
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Problematisch ist hier, dass die Variablenanzahl quadratisch mit der Leganzahl wachsen kann.
Der schlimmste Fall tritt ein, wenn es einen Flughafen gibt, auf dem alle Legs entweder
starten oder landen. Unglücklicherweise haben reale Flugnetzwerke gerade die Eigenschaft,
dass fast alle Legs von einem (bzw. einigen wenigen) Flughäfen5 starten bzw. dort landen.
Reale Probleminstanzen führen somit tatsächlich zu einem Connection Network Modell mit
Θ(|F| · |L|2) vielen Variablen.

2.2.3 Das azyklische Flottenzuweisungsproblem

Das azyklische Flottenzuweisungsproblem kommt normalerweise in der kurzfristen, taktischen
Planung zum Einsatz und dient dazu, für einen konkreten Zeitraum eine Flottenzuweisung
zu berechnen. Man spricht in diesem Zusammenhang auch von einer fully-dated Planung.
Die Dauer der Planungsperiode kann je nach Einsatzzweck stark variieren, von einem halben
Tag im Störungsmanagement bis hin zu 6 oder mehr Wochen in der Kurzfristplanung bei
sich ändernden Flugplänen.

Im Gegensatz zur zyklischen Flottenzuweisung kann man bei der azyklischen Variante die
Planungsperiode als unbeschränkt ansehen, was zur Folge hat, dass für jedes Leg seine
Landezeit gröÿer ist als seine Startzeit und ein Flugzeug nach seiner Landung als nächstes
nur Legs bedienen kann, die später starten.

Desweiteren wird die Forderung fallen gelassen, dass die Lösung eines azyklischen Flottenzu-
weisungsproblems beliebig oft hintereinander ausgeführt werden kann. Daher müssen weder
die Eingabedaten noch eine zulässige Lösung bezüglich der Starts und Landungen auf den
einzelnen Flughäfen balanciert sein.

Die Anzahl verfügbarer Flugzeuge je Flotte f kann beim azyklischen Flottenzuweisungspro-
blem wie bei der zyklischen Variante explizit mit dem Eingabeparameter Nf vorgegeben
werden. In der Praxis gebräuchlicher sind allerdings Untervarianten, bei denen die Vertei-
lung der Flugzeuge der Flotten auf die einzelnen Flughäfen zu Beginn und/oder zum Ende
der Planungsperiode vorgegeben werden. Die Gesamtanzahl verfügbarer Flugzeuge je Flotte
ergibt sich dann implizit durch Aufsummieren über alle Flughäfen.

De�nition 2.6 (Alternative Eingabeparameter). Alternativ zu den Gesamt�ugzeuganzahlen
Nf können als Eingabedaten für das azyklische Flottenzuweisungsproblem die Verteilung der
Flugzeuge zu Beginn und/oder zum Ende der Planungsperiode angegeben werden:

N b
s,f ∈ N0; Anzahl Flugzeuge von Flotte f , die zu Beginn der Planungsperiode

auf dem Flughafen s ∈ S bereit stehen
N e

s,f ∈ N0; Anzahl Flugzeuge von Flotte f , die am Ende der Planungsperiode
auf dem Flughafen s ∈ S verfügbar sein müssen

Das Connection Network Modell von [Abara, 1989] lässt sich einfach an die azyklische Va-
riante anpassen. Das wesentliche Teil G = (V, E) des zugrunde liegenden Flussnetzwerk ist

5 Solche Flughäfen werden Hubs genannt.
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wie folgt de�niert:

V = {(l, f) | l ∈ L ∧ f ∈ Fl} ⊆ L × F
E =

{
((l, f), (m, f)) | (l, f), (m, f) ∈ V ∧ sa

l = sd
m ∧ tal,m,f ≤ tdm,f

}
,

wobei die Kantenkapazitäten wieder alle 1 sind. Je nach der Art und Weise, wie die verfügba-
ren Flugzeuge je Flotte vorgegeben sind, muss dieses Teilnetzwerk noch passend um Quellen
und Senken erweitert werden. Wir gehen hier nicht näher darauf ein; die Details lassen sich
aber aus der folgenden Beschreibung des resultierenden ganzzahligen linearen Programms
und seiner Untervarianten entnehmen.

Der Hauptunterschied (neben der Existenz von Quellen und Senken) zwischen dem zyklischen
und dem azyklischen Connection Networks liegt in der De�nition der Kantenmenge E. Im
azyklischen Fall existiert eine Kante zwischen zwei Knoten (l, f) und (m, f) nur dann, wenn
zusätzlich zu den Bedingungen der zyklischen Variante die Ankunftszeit von Leg l nicht hinter
der Startzeit von Leg m liegt, da ein Flugzeug eine solche Legfolge nicht bedienen könnte.

Eine Folge daraus ist, dass es sich beim dem Connection Network im azyklischen Fall um
einen gerichteten azyklischen Graphen (DAG) handelt, da Kanten als in die Zukunft gerichtet
angesehen werden können. Ein Fluss in dem Netzwerk lässt sich somit immer in eine Menge
von Pfaden aufteilen und jeder Pfad repräsentiert dabei die Folge von Legs, die ein Flugzeug
nacheinander bedienen muss. Ferner liefert die Anzahl der Pfade damit auch die insgesamt
benötigte Flugzeuganzahl.

Für das lineare Programm des azyklischen Flottenzuweisungsproblems de�nieren wir nun:

Āl,f = {m ∈ L | sd
m = sa

l ∧ f ∈ Fm ∧ tal,m,f ≤ tdm,f} ∪ {∗}
Menge der Legs, die von einem Flugzeug der Flotte f ∈ Fl direkt im
Anschluss an Leg l ∈ L ge�ogen werden können

B̄l,f = {k ∈ L | sa
k = sd

l ∧ f ∈ Fk ∧ tak,l,f ≤ tdl,f} ∪ {∗}
Menge der Legs, die von einem Flugzeug der Flotte f ∈ Fl direkt vor Leg
l ∈ L ge�ogen werden können

Hierbei ist ∗ 6∈ L die Bezeichnung für ein Hilfsleg, das anzeigt, dass ein Leg kein direktes
Vorgänger- bzw. Nachfolgerleg besitzt.

Das azyklische Flottenzuweisungsproblem lässt sich damit wie folgt formulieren:

Modell 2.7 (Azyklisches Connection Network).

Maximiere P (x) (2.7)
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unter den Nebenbedingungen∑
f∈Fl

∑
m∈Āl,f

xl,m,f = 1 ∀l ∈ L (2.8)

∑
k∈B̄l,f

xk,l,f −
∑

m∈Āl,f

xl,m,f = 0 ∀l ∈ L, f ∈ Fl (2.9)

∑
l∈L:f∈Fl

xl,∗,f ≤ Nf ∀f ∈ F (2.10)

xl,m,f ∈ {0, 1} ∀l ∈ L, f ∈ Fl, m ∈ Al,f (2.11)

x∗,l,f ∈ {0, 1} ∀l ∈ L, f ∈ Fl (2.12)

Das Modell unterscheidet sich kaum von dem zyklischen Connection Network Modell 2.4. Die
Mengen Āl,f und B̄l,f der möglichen Vorgänger und Nachfolger eines Legs sind entsprechend
der azyklischen Struktur des Fluss-Netzwerks angepasst worden. Es existieren zusätzliche
Variablen x∗,l,f bzw. xl,∗,f

6, die Fluss von einer Quelle bzw. zu einer Senke transportieren
können. Ein Fluss von 1 für solch eine Variable zeigt an, dass das zugehörige Leg l das erste
bzw. das letzte Leg ist, dass von einem Flugzeug der Flotte f bedient wird. Entsprechend
wird durch die Ungleichungen (2.10) die Flugzeuganzahl je Flotte f dadurch begrenzt, dass
die Anzahl der Legs bestimmt wird, die als letztes von einem Flugzeug der Flotte f bedient
werden.

Die Zielfunktion (2.7) lässt sich wie im zyklischen Fall linearisieren, falls nur Leg-Flotten- und
verbindungsabhängige Gewinne in der Eingabe gegeben sind. Somit lässt sich dann das azy-
klische Flottenzuweisungsproblem ebenfalls mittels eines ganzzahligen linearen Programms
beschreiben. Allerdings wächst auch hier die Variablenanzahl quadratisch mit der Leganzahl.

Modell 2.7 beschreibt den Fall, dass in der Eingabe die Flugzeuganzahlen je Flotte gegeben
sind. Sind alternativ die Verteilungen der Flugzeuge zu Periodenbeginn und zum Periodenende
vorgegeben, ersetzt man die Ungleichungen (2.10) durch

ws,f +
∑

l∈L:f∈Fl∧sd
l =s

x∗,l,f = N b
s,f ∀s ∈ S, f ∈ F (2.13)

ws,f +
∑

l∈L:f∈Fl∧sa
l =s

xl,∗,f = N e
s,f ∀s ∈ S, f ∈ F (2.14)

ws,f ∈ N0 ∀s ∈ S, f ∈ F (2.15)

Die Gleichungen (2.13) bestimmen für jeden Flughafen s, wie viele Flugzeuge der Flotte f
dort ihre Arbeit aufnehmen, und setzen diesen Wert mit der vorgegebenen Anzahl gleich.
Entsprechendes leisten die Gleichungen (2.14) für die Flugzeuge einer Flotte f , die ihren
Dienst auf Flughafen s beenden. Die zusätzlichen Variablen ws,f unterstützen den Fall, dass
Flugzeuge auf einem Flughafen während der gesamten Planungsperiode warten und wäh-
renddessen kein einziges Leg bedienen.

Sind in der Eingabe die Verteilungen entweder nur zu Periodenbeginn oder am Periodenende
vorgegeben, lässt man im Modell die Gleichungen der nicht spezi�zierten Grenze einfach weg.

6 Die Variablen xl,∗,f werden im Modell von den Bedingungen (2.11) de�niert.
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3
Komplexität

Die Flottenzuweisung gehört zu den besonders schweren Optimierungsproblemen. Selbst stark
eingeschränkte Unterproblemklassen sind bereits streng NP-vollständig. Zuerst teilen wir da-
her in diesem Kapitel das Flottenzuweisungsproblem anhand relevanter Charakteristika in
verschiedene Unterproblemklassen auf. Wir stellen die bisher bekannten Ergebnisse vor, die
sich allesamt nur mit der zyklischen Flottenzuweisung beschäftigen. Dann untersuchen wir
den Ein-Flotten-Fall genauer und zeigen, dass sich das Problem auch mit zusätzlichen An-
forderungen wie verbindungsabhängigen Mindestbodenzeiten zumeist noch e�zient lösen
lässt. Den Hauptteil bildet die anschlieÿende Reduktion von SAT auf den Zwei-Flotten-Fall,
die zeigt, dass bereits die meisten Flottenzuweisungsprobleme mit zwei Flotten streng NP-
vollständig und nicht approximierbar sind. Abschlieÿend untersuchen wir speziell die azykli-
schen Problemklassen genauer. Es stellt sich heraus, das manche azyklischen Flottenzuwei-
sungsprobleme einfacher zu lösen sind als ihre zyklischen Entsprechungen. Nichtsdestotrotz
ist aber das Optimierungsproblem der azyklischen Flottenzuweisung für mehr als zwei Flotten
wie im zyklischen Fall streng NP-vollständig.

In diesem Kapitel werden wir Komplexitätsergebnisse zu Entscheidungs- und Optimierungs-
problemen vorstellen. Für Komplexitätsaussagen über Optimierungsprobleme gilt dabei:

Bemerkung 3.1. Wenn von einem Optimierungsproblem gesagt wird, dass es zu NP gehört
bzw. NP-vollständig ist, meinen wir, dass das korrespondierende Entscheidungsproblem zu
NP gehört bzw. NP-vollständig ist.

Dabei lautet beispielsweise das korrespondierende Entscheidungsproblem zu einem Maximie-
rungsproblem

Finde x∗ ∈ L mit f(x∗) = max
x∈L

f(x)

wie folgt:
Existiert ein x ∈ L mit f(x) ≥ F?

27
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3.1 Problemklassen

Für die Komplexitätbetrachtungen in diesem Kapitel benötigen wir eine detaillierte Unter-
scheidung von verschiedenen Entscheidungs- und Optimierungsproblemen, die im Rahmen
der Flottenzuweisung auftreten können. Dabei spielen unter anderem die Flottenanzahl und
die operationellen Eigenschaften der Flotten eine zentrale Rolle. Wir de�nieren deshalb:

De�nition 3.2. FAP(p, t, f, s[, e]) steht für die Problemklasse von Flottenzuweisungspro-
blemen mit den folgenden Attributen:

• p ∈ {Feas, Inf, Opt} de�niert das zu betrachtende Optimierungs- oder Entschei-
dungsproblem.

� Feas steht für das Entscheidungsproblem, ob eine zulässige Lösung existiert oder
nicht.

� Inf steht für ein Optimierungsproblem, bei dem es keine Beschränkung für die
Flugzeuganzahl der Flotten gibt.

� Schlieÿlich steht Opt für das Optimierungsproblem mit beschränkter Flugzeugan-
zahl.

• t ∈ {Cy,Ac,Ac0, Ac1, Ac2} legt fest, ob es sich um ein zyklisches (t = Cy) oder
azyklisches (t = Ac) Flottenzuweisungsproblem handelt. Bei azyklischen Varianten
unterscheiden wir bei Bedarf ferner, ob die Verteilung der Flugzeuge der einzelnen
Flotten zum Periodenbeginn bzw. -ende gar nicht spezi�ziert ist (t = Ac0), an einer der
Grenzen (t = Ac1) oder an beiden Grenzen (t = Ac2). Ac stellt somit die Vereinigung
der Fälle Ac0, Ac1 und Ac2 dar.

• f = |F| ∈ N steht für die Anzahl der verschiedenen Flotten.

• s ∈ {Eq, Or,Ar} de�niert die operationellen Eigenschaften der Flotten.

� Eq steht dafür, dass alle Flotten alle Legs in gleicher Zeit �iegen können.

� Or steht dafür, dass alle Flotten alle Legs �iegen können und es eine Ordnung
f1, . . . , f|F| auf den Flotten (Geschwindigkeit) gibt, so dass für alle l ∈ L gilt:
i < j =⇒ bl,fi

≤ bl,fj

� Ar steht für den allgemeinsten Fall, bei dem für jedes Leg unabhängig die er-
laubten Flotten und deren Flugzeiten festgelegt sind.

• Optional können als letzte Attribute weitere Eigenschaften de�niert werden.

� e = Cdt besagt, dass verbindungsabhängige Mindestbodenzeiten auftreten dür-
fen. Wird Cdt nicht angegeben, wird ohne Beschränkung der Allgemeinheit an-
genommen, dass alle Mindestbodenzeiten Null sind.1

1 Etwaige Mindestbodenzeiten lassen sich in diesem Fall den Blockzeiten zuschlagen (siehe Seite 17).
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� e = Cdp besagt, dass verbindungsabhängige Gewinne de�niert sein dürfen. Wird
Cdp nicht angegeben, wird angenommen, dass in der Zielfunktion nur Leg-
Flotten-abhängige Gewinne auftreten.

� e = Big besagt, dass Block- und Mindestbodenzeiten gröÿer als die Länge der
Planungsperiode sein dürfen. Wird Big nicht angegeben, wird angenommen, dass
die Blockzeit plus die anschlieÿende Mindestbodenzeit eines jeden Legs kleiner als
die Länge der Planungsperiode ist.

In allen Fällen gehen wir davon aus, dass die Startzeiten der Legs unabhängig von der
verwendeten Flotte sind und dass die zu optimierende Gewinnfunktion die Form der linearen
Zielfunktion (2.6) besitzt.

Nicht alle möglichen Attributkombinationen führen zu sinnvollen Problemklassen. So macht
es für eine Problemklasse mit p = Inf keinen Sinn, die azyklischen Untervarianten Ac1
und Ac2 zu betrachten, da diese implizit die Flugzeuganzahl vorgeben. Desweiteren macht
für azyklische Problemklassen die Angabe von e = Big keinen Sinn, da bei azyklischen
Flottenzuweisungsproblemen die Periodenlänge als unbeschränkt angesehen werden kann.
Schlieÿlich ist bei Problemklassen mit nur einer Flotte (f = 1) das Attribut s bedeutungslos.

Satz 3.3. Alle oben de�nierten Problemklassen des Flottenzuweisungsproblems FAP(∗) ge-
hören zu NP.

Beweis. Alle Probleminstanzklassen FAP(∗) lassen sich o�ensichtlich mit Hilfe von ganzzah-
ligen linearen Programmen gemäÿ der Modelle 2.4 und 2.7 modellieren. Für p = Feas ist
die Zielfunktion irrelevant, und für p = Inf können die Ungleichungen (2.4) bzw. (2.10) im
jeweiligen Modell entfallen.

Nach Beobachtung 2.5 lassen sich somit Instanzen der Klassen FAP(∗) in polynomieller Zeit
auf das Problem der ganzzahligen linearen Programmierung reduzieren, das bekanntermaÿen
NP-vollständig ist [Borosh and Treybis, 1976], [Karp, 1972] und damit in NP liegt.

Bemerkung 3.4. Die Klassen FAP(Feas, ∗) und FAP(Inf, ∗) sind in der entsprechenden
Klasse FAP(Opt, ∗) in dem Sinne enthalten, dass ein Algorithmus für FAP(Opt, ∗) auch
alle Probleme aus FAP(Feas, ∗) und FAP(Inf, ∗) in gleicher Zeit lösen kann. Umgekehrt
übertragen sich NP-Vollständigkeitsaussagen über Klassen FAP(Feas, ∗) oder FAP(Inf, ∗)
direkt auf die entsprechende FAP(Opt, ∗)-Klasse.

3.2 Bekannte Ergebnisse

Es existieren nur wenige Arbeiten, die sich mit der algorithmischen Komplexität des Flotten-
zuweisungsproblems beschäftigen, und es existieren nur Arbeiten zum zyklischen Flottenzu-
weisungsproblem.
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3.2.1 Ergebnisse von Gu et al.

Die meisten bekannten Ergebnisse stammen aus der Arbeit von [Gu et al., 1994]. Darin wird
die Komplexität der zyklischen Klassen FAP(p, Cy, f, Eq) für p ∈ {Feas, Inf} und f ∈ N
untersucht. Es handelt sich dabei um die Problemklassen mit den restriktivsten Einschrän-
kungen an die operationellen Eigenschaften der Flotten und an die Gewinnfunktion.

Satz 3.5. Für p ∈ {Feas, Inf} gilt:

1. Instanzen der Klassen FAP(p, Cy, 1, Eq) können in polynomieller Zeit gelöst werden.

2. Instanzen der Klasse FAP(Inf, Cy, 2, Eq) können in polynomieller Zeit gelöst werden.

3. Die Klassen FAP(p, Cy, f, Eq) sind für f ≥ 3 streng NP-vollständig.

Näheres zu 1. folgt in Abschnitt 3.3.1. Instanzen aus FAP(Inf, Cy, 2, Eq) lassen sich auf
Single(!)-Commodity-Min-Cost-Flow-Probleme reduzieren und dann mit bekannten polyno-
miellen Algorithmen lösen [Ahuja et al., 1993]. Die Komplexität der Klassen FAP(Feas, Cy,
2, Eq) und FAP(Opt, Cy, 2, Eq) ist unbekannt. Auf die Klassen aus 3. lassen sich ganzzahlige
Zwei-Güter-Flussprobleme reduzieren, die, wie in [Even et al., 1976] bewiesen, bekannterma-
ÿen NP-vollständig sind. Ähnliche Reduktionen verwenden wir in Abschnitt 3.5 für azyklische
Flottenzuweisungsprobleme.

Darüber hinaus wird in [Gu et al., 1994] gezeigt, dass bereits die Klasse FAP(Feas, Cy, 1, Eq)
streng NP-vollständig ist, wenn man von zulässigen Lösungen zusätzlich verlangt, dass alle
Flugzeuge der Flotte eine gemeinsame Rundtour absolvieren müssen.

Eine wichtige Konsequenz aus den Ergebnissen von [Gu et al., 1994] ist:

Folgerung 3.6. Das zyklische Flottenzuweisungsproblem FAP(Opt, Cy, ∗) ist für mehr als
zwei Flotten streng NP-vollständig. Desweiteren ist es nicht in polynomieller Zeit approxi-
mierbar, falls P 6= NP ist.

Beweis. Da die Klassen FAP(p, Cy, f, Eq) die meisten Einschränkungen an eine Flotten-
zuweisungsinstanz bezüglich Flotteneigenschaften und Gewinnfunktion stellen, können all-
gemeinere Probleme nicht einfacher sein. Nach Bemerkung 3.4 überträgt sich die stren-
ge NP-Vollständigkeit von FAP(Feas, ∗) und FAP(Inf, ∗) auf FAP(Opt, ∗). Die Nicht-
Approximierbarkeit ist eine direkte Konsequenz aus der Tatsache, dass bereits FAP(Feas, Cy,
3, Eq) NP-vollständig ist.

3.2.2 Ergebnisse von Radicke

Die einzige weitere Arbeit, in der sich Ergebnisse zur Komplexität der Flottenzuweisung
�nden, ist die Dissertation von [Radicke, 1994]. Für den zyklischen Zwei-Flotten-Fall zeigt
er:

Satz 3.7.
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1. Die Klasse FAP(Opt, Cy, 2, Ar) ist streng NP-vollständig.

2. Die Klasse FAP(Feas, Cy, 2, Eq, Big) ist NP-vollständig.

Punkt 1. wird durch eine Reduktion von SAT bewiesen. Hierbei müssen die beiden Flotten
sowohl unterschiedliche Blockzeiten für einzelne Legs besitzen können als auch manche Legs
nur von einer der beiden Flotten bedient werden dürfen. Eine neue, allgemeinere Redukti-
on, die stärkere Einschränkungen an die Flotten erlaubt, sowohl für zyklische als auch für
azyklische Flottenzuweisungsprobleme geeignet ist und die strenge NP-Vollständigkeit der
FAP(Feas, ∗)-Variante zeigt, wird in Abschnitt 3.4 vorgestellt.

In einer kurzen Nebenbemerkung erwähnt Radicke, dass sich Punkt 2. durch eine Reduktion
vom Subset-Sum-Problem beweisen lässt. In der Literatur werden häu�g die FAP(∗, Big)-
Problemklassen nicht als Flottenzuweisungsprobleme im engeren Sinne angesehen, da sie aus
Praxissicht unrealistisch sind.

3.3 Der Ein-Flotten-Fall

Bei nur einer Flotte f ist das Flottenzuweisungsproblem dahingehend trivial, dass klar ist,
das jedem Leg eben diese eine Flotte zugewiesen werden muss. Ohne verbindungsabhän-
gige Gewinne ist damit auch der erzielbare Gewinn leicht durch

∑
l∈L pl,f in linearer Zeit

berechenbar. Somit bleibt im Ein-Flotten-Fall (ohne verbindungsabhängige Gewinne) nur die
Frage zu klären, ob es überhaupt eine zulässige Lösung gibt.

Die Hauptaufgabe besteht folglich darin zu überprüfen, ob die vorgegebene Flugzeugan-
zahl eingehalten wird. Wir bestimmen hier die Anzahl benötigter Flugzeuge ähnlich wie im
Connection Network Modell, indem wir zählen, wo sich am Periodenanfang wie viele Flug-
zeuge be�nden.

3.3.1 Ohne verbindungsabhängige Mindestbodenzeiten

Für Flottenzuweisungsprobleme ohne verbindungsabhängige Mindestbodenzeiten lässt sich
bei gegebener Flottenzuweisung die Anzahl der auf einem Flughafen benötigten Flugzeuge
mit Hilfe der so genannten Wartefunktion e�zient bestimmen. Sei dazu

z : L → F
die vorgegebene Flottenzuweisung

ndf
s (t) =

∣∣{l ∈ L | z(l) = f ∧ sd
l = s ∧ tdl,f ≤ t

}∣∣
die Anzahl an Starts auf Flughafen s von Flotte f im Intervall [0, t]

naf
s (t) =

∣∣{l ∈ L | z(l) = f ∧ sa
l = s ∧ tal,f ≤ t

}∣∣
die Anzahl an Landungen auf Flughafen s von Flotte f im Intervall [0, t]

nf
s (t) = naf

s (t)− ndf
s (t)



32 3 Komplexität

De�nition 3.8 (Wartefunktion). Zu einer vorgegebenen Flottenzuweisung z ist die War-
tefunktion W f

s : [T ] → N0 für einen Flughafen s ∈ S und eine Flotte f ∈ F wie folgt
de�niert:

W f
s (t) = nf

s (t) + n̄f
s ,

wobei

n̄f
s = −min

t∈[T ]
nf

s (t)

ist.

Nach [Gu et al., 1994] gilt:

Satz 3.9. Für eine gegebene zulässige Zuweisung z eines Flottenzuweisungsproblems ohne
verbindungsabhängige Mindestbodenzeiten müssen zum Periodenbeginn auf einem Flughafen
s von Flotte f mindestens n̄f

s Flugzeuge warten, damit alle Starts und Landungen auf die-
sem Flughafen während der Planungsperiode ausgeführt werden können. Ferner reicht diese
Anzahl auch aus.

W f
s (t) beschreibt dann für jeden Zeitpunkt t ∈ [T ] der Planungsperiode, wie viele Flugzeuge

von Flotte f zum Zeitpunkt t auf Flughafen s warten.

Bemerkung 3.10. Nach De�nition ist der Wertebereich der Wartefunktion nicht-negativ
und nimmt während der Planungsperiode mindestens einmal den Wert Null an.

Ein Flughafen s ist bezüglich der Starts und Landungen einer Flotte f genau dann balanciert,
wenn nf

s (T − 1) = 0 gilt. Also muss eine zulässige Lösung eines zyklischen Zuweisungspro-
blems nf

s (T −1) = 0, oder äquivalent W f
s (T −1) = n̄f

s , für alle Flughäfen s und alle Flotten
f erfüllen.

In zyklischen Flottenzuweisungsproblemen können sich zum Periodenbeginn bereits einige
Flugzeuge in der Luft be�nden. Wie bei der De�nition des zyklischen Connection Networks
in Abschnitt 2.2.2 lässt sich deren Anzahl wie folgt bestimmen:

Satz 3.11. Bei einer zulässigen Zuweisung z eines zyklischen Flottenzuweisungsproblems
ohne verbindungsabhängige Mindestbodenzeiten be�nden sich zu Periodenbeginn von Flot-
te f

ñf =
∑

l∈L:z(l)=f

⌊
bl,f + gl,f

T

⌋
+ ρ(tdl,f , t

a
l,f )

viele Flugzeuge in der Luft.

Daraus folgt nun:

Satz 3.12. Instanzen der Klassen FAP(Opt, t, 1, Ar[, Big]) mit t ∈ {Cy,Ac} lassen sich in
Zeit O(|L| log |L|) lösen.
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Beweis. Die einzig mögliche Zuweisung ist, jedes Leg mit der einen verfügbaren Flotte f zu
bedienen. Deren Gewinn

∑
l∈L pl,f kann in Zeit O(|L|) berechnet werden.

Es verbleibt zu überprüfen, ob die Zuweisung zulässig ist, das heiÿt, die geforderte Flug-
zeuganzahl einhält und, im zyklischen Fall, balanciert ist. Dazu bestimmen wir mittels der
Wartefunktionen die zum Periodenbeginn benötigten Flugzeuge auf den Flughäfen. Man legt
ein Array mit den Start- (sd

l , t
d
l,f ) und Landeereignissen (sa

l , t
a
l,f ) aller Legs l an und sor-

tiert dieses lexikographisch nach Flughafen und Zeit. Ein anschlieÿender linearer Scan liefert
alle n̄f

s -Werte und überprüft, falls nötig (t = Cy), ob die einzelnen Flughäfen bezüglich
Starts und Landungen balanciert sind. All dies lässt sich o�ensichtlich in Zeit O(|L| log |L|)
durchführen.

Im zyklischen Fall be�nden sich zusätzlich noch ñf Flugzeuge in der Luft, was in Zeit O(|L|)
berechnet werden kann.

Alle Werte aufsummiert ergeben die insgesamt von der Zuweisung benötigte Anzahl Flug-
zeuge von Flotte f , die mit der vorgegebenen Anzahl verglichen wird. Für den Fall, dass bei
azyklischen Problemen die Verteilungen der Flugzeuge auf den Flughäfen zu Periodenbeginn
und/oder zum Periodenende vorgegeben sind (t ∈ {Ac1, Ac2}), lässt sich die Zulässigkeit
direkt an den n̄f

s - und W f
s (T − 1)- Werten ablesen.

Bemerkung 3.13. Neben der Überprüfung, ob eine gegebene Zuweisung z für ein Flotten-
zuweisungsproblem ohne verbindungsabhängige Mindestbodenzeiten zulässig ist, lassen sich
auch zu z passende Flugzeugumläufe in Zeit O(|L| log |L|) bestimmen. Dabei wird dann wie
im Connection Network Modell jedem Leg l ein Nachfolgeleg m zugewiesen, das als nächstes
von dem Flugzeug, das l ge�ogen hat, bedient wird. Ein einfaches FIFO-Verfahren auf den
sortierten Start-/Landeereignissen reicht dafür aus [Gertsbach and Gurevich, 1977].

3.3.2 Mit verbindungsabhängigen Mindestbodenzeiten

Bei Flottenzuweisungsproblemen mit verbindungsabhängigen Mindestbodenzeiten lassen sich
die Flugzeuganzahlen nicht mehr so einfach mit der Wartefunktion bestimmen. Hier müssen
zumeist Matching-Probleme auf bipartiten Graphen gelöst werden.

Satz 3.14. Instanzen der zyklischen Klassen FAP(Opt, Cy, 1, Ar, Cdt[, Big]) lassen sich in
Zeit O(|L|3) lösen.

Beweis. Das zyklische Connection Network Modell 2.4 sieht für die Klasse FAP(Opt, Cy, 1,
Ar, Cdt[, Big]) wie folgt aus:

Maximiere
∑
l∈L

∑
m∈Al,f

pl,fxl,m,f (3.1)
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unter den Nebenbedingungen∑
m∈Al,f

xl,m,f = 1 ∀l ∈ L (3.2)

∑
k∈Bl,f

xk,l,f −
∑

m∈Al,f

xl,m,f = 0 ∀l ∈ L (3.3)

∑
l∈L

∑
m∈Al,f

∆l,m,fxl,m,f ≤ Nf (3.4)

xl,m,f ∈ {0, 1} ∀l ∈ L, m ∈ Al,f (3.5)

Einsetzen von (3.2) in (3.1) liefert

Maximiere
∑
l∈L

∑
m∈Al,f

pl,fxl,m,f =
∑
l∈L

pl,f

∑
m∈Al,f

xl,m,f =
∑
l∈L

pl,f

und zeigt, dass alle zulässigen Lösungen den selben Gewinn erwirtschaften und die Zielfunk-
tion ignoriert werden kann.

Einsetzen von (3.2) in (3.3) und Berücksichtigen von Gleichung (3.4) als Zielfunktion liefert
das Modell:

Minimiere
∑
l∈L

∑
m∈Al,f

∆l,m,fxl,m,f (3.6)

unter den Nebenbedingungen∑
m∈Al,f

xl,m,f = 1 ∀l ∈ L (3.7)

∑
k∈Bl,f

xk,l,f = 1 ∀l ∈ L (3.8)

xl,m,f ∈ {0, 1} ∀l ∈ L, m ∈ Al,f (3.9)

O�ensichtlich existiert nun genau dann eine zulässige Zuweisung für das Ursprungsproblem,
wenn das transformierte Modell eine Lösung mit Zielfunktionswert kleiner gleich Nf besitzt.
Bei dem transformierten Modell handelt es sich aber um ein normales Assignment Problem2

mit 2|L| Knoten und O(|L|2) Kanten, dass sich in Zeit O(|L|3) lösen lässt [Kuhn, 1955].

Satz 3.15. Die zyklische Klasse FAP(Opt, Cy, 1, Ar, Cdt, Cdp, Big) ist NP-vollständig.

Beweis. Wir reduzieren das ganzzahlige Rucksackproblem

Maximiere
∑
i∈[n]

vixi (3.10)

2 oder auch bipartites gewichtetes Matching-Problem
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unter den Nebenbedingungen∑
i∈[n]

wixi ≤ W (3.11)

xi ∈ {0, 1} ∀i ∈ [n] (3.12)

auf die Klasse FAP(Opt, Cy, 1, Ar, Cdt, Cdp, Big). Das ganzzahlige Rucksackproblem ge-
hört zu den klassischen NP-vollständigen Optimierungsproblemen [Karp, 1972].

Die Flottenzuweisungsinstanz besteht aus einer Flotte f mit W + 2n Flugzeugen und 4n
Legs. Die Planungsperiode erstreckt sich über drei Zeiteinheiten (T = 3). Zu jedem Gut
i ∈ [n] des Rucksacks gehören die Legs l1i , l2i , l3i und l4i . Die Legs verkehren zwischen den
n + 1 vielen Flughäfen [n + 1], wobei für Gut i ∈ [n] gilt:

sd
l1i

= sd
l2i

= sa
l3i

= sa
l4i

= n

sa
l1i

= sa
l2i

= sd
l3i

= sd
l4i

= i

tdl1i
= tdl2i

= 0

tdl3i
= tdl4i

= 1

bl1i
= bl2i

= bl3i
= bl4i

= 1

gl1i ,l3i ,f = wi · T
pl1i ,l3i ,f = vi

Alle übrigen Gewinne und Mindestbodenzeiten sind Null.

Jede zulässige Flottenzuweisung muss zum Periodenbeginn (mindestens) 2n Flugzeuge auf
Flughafen n zur Verfügung stellen, da als erstes 2n Legs zum Zeitpunkt Null von dort
starten. Die Legs selber verbrauchen keine Flugzeuge, da sie nicht über das Periodenende
hinaus operieren. Für Flughafen i gibt es nur zwei Möglichkeiten, wie Flugzeuge die dort
startenden und landenden Legs bedienen können:

• Ein Flugzeug �iegt nacheinander die Legs l1i und l3i , ein anderes nacheinander die Legs
l2i und l4i . Das bringt einen Gewinn von vi, verbraucht aber bwi·T

T c = wi Flugzeuge.

• Ein Flugzeug �iegt nacheinander die Legs l1i und l4i , ein anderes nacheinander die Legs
l2i und l3i . Das bringt keine Gewinn, verbraucht aber auch keine Flugzeuge auf Flughafen
i.

Mit Flughafen i lässt sich also direkt die Entscheidung modellieren, ob Gut i in den Rucksack
aufgenommen werden soll oder nicht.

Damit existiert genau dann eine Lösung des Rucksackproblems mit Wert v∗, wenn das kon-
struierte Flottenzuweisungsproblem eine Lösung mit Gewinn v∗ besitzt.

Satz 3.16. Instanzen der azyklischen Klasse FAP(Opt,Ac, 1, Ar, Cdt) lassen sich in Zeit
O(|L|2.5) lösen.
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Beweis. Da der erzielbare Gewinn jeder zulässigen Lösung wie im Beweis zu Satz 3.12 gleich
ist, müssen wir wieder nur testen, ob wir mit der vorgegebenen Flottengröÿe auskommen.

Wie wir in Abschnitt 2.2.3 dargelegt haben, lässt sich die Anzahl benötigter Flugzeuge einer
gegebenen Flottenzuweisung im azyklischen Fall dadurch ermitteln, dass auf den einzelnen
Flughafen gezählt wird, wie viele Flugzeuge dort jeweils ihren Dienst beenden. Dafür ist es
nötig, neben der eigentlichen Flottenzuweisung zu jedem Leg l sein etwaiges Nachfolgeleg
m zu kennen, das heiÿt das Leg, mit dem das Flugzeug, das Leg l ge�ogen hat, seine
Reise fortsetzt. Legs ohne Nachfolgeleg sind gleichbedeutend mit einem Flugzeug, das auf
dem entsprechenden Ziel�ughafen seinen Einsatz beendet. Entsprechend zeigt ein Leg ohne
Vorgängerleg an, dass ein Flugzeug auf dem entsprechenden Start�ughafen seinen Dienst
aufnimmt.

Das Problem, zu einer gegebenen Flottenzuweisung z eine �ugzeugminimale Verknüpfung
der Legs zu �nden, lässt sich als bipartites Matching-Problem formulieren. Jedes Leg l wird
dabei durch zwei Knoten la und ld repräsentiert, die für die Landung bzw. den Start des Legs
stehen. Zwischen einem Landeknoten la und einem Startknoten md existiert genau dann
eine Kante, wenn die betro�enen Legs nacheinander von einem Flugzeug bedient werden
können, das heiÿt, wenn z(l) = z(m), sa

l = sd
m und tal,m,f ≤ tdm,f gilt. Der so konstruierte

Graph ist o�ensichtlich bipartit und besteht aus |L| Knoten je Partition und O(|L|2) Kanten.
Ein maximales Matching für diesen Graphen lässt sich somit in Zeit O(|L|2.5) bestimmen
[Even and Tarjan, 1975], [Hopcroft and Karp, 1973] und die Anzahl Landeknoten, die von
keiner Kante überdeckt werden, entspricht der Anzahl benötigter Flugzeuge.

Für den Fall, dass die Verteilungen der Flugzeuge auf den Flughäfen zu Periodenbeginn
und/oder zum Periodenende vorgegeben sind, wertet man die Anzahl nicht überdeckter
Lande- bzw. Start-Knoten �ughafenweise aus und vergleicht diese mit den vorgegebenen
Verteilungen.

Satz 3.17. Instanzen der azyklischen Klasse FAP(Opt,Ac, 1, Ar, Cdt, Cdp) lassen sich in
Zeit O(|L|3) lösen.

Beweis. Ähnlich wie im Beweis zu Satz 3.16 transformieren wir eine Flottenzuweisungsinstanz
in ein Matching-Problem, diesmal allerdings ein gewichtetes bipartites Matching-Problem
(Assignment Problem). Die Grundkonstruktion ist die selbe wie im Beweis zu Satz 3.16. Eine
Kante zwischen den Knoten la und md bekommt dabei das Gewicht pl,m,f zugewiesen. Damit
wird durch das Matching der verbindungsabhängige Teil des Gesamtgewinns maximiert.3

Um nun noch die Anzahl verfügbarer Flugzeuge einzuhalten und da beim Assignment Problem
nur vollständige Matchings eine Lösung darstellen, werden Nf zusätzliche Lande- und Nf

zusätzliche Startknoten dem Netzwerk hinzugefügt. Jeder der zusätzlichen Landeknoten ist
mit allen Startknoten (auch den zusätzlichen) über eine Kante verbunden. Entsprechend sind
die zusätzlichen Startknoten mit allen Landeknoten verbunden. Die zusätzlichen Lande- bzw.
Startknoten repräsentieren explizit den Dienstbeginn bzw. -ende eines Flugzeugs.

Für groÿe Nf ist obige Konstruktion nicht in polynomieller Zeit durchführbar. Allerdings
können wir ohne Beschränkung der Allgemeinheit Nf durch |L| begrenzen, da insgesamt

3 Der Leg-Flotten-abhängige Teil des Gewinns ist für jede Lösung wieder gleich.
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höchstens |L| Flugzeuge überhaupt einen Flug durchführen können. Somit besteht obiger
Graph aus höchstens 2|L| Knoten je Partition und O(|L|2) Kanten. Kanten zwischen den
zusätzlichen Knoten sind notwendig, damit ein Teil der Flugzeuge komplett untätig bleiben
kann.

Für den Fall, dass die Verteilungen der Flugzeuge auf den Flughäfen zu Periodenbeginn
und/oder zum Periodenende vorgegeben sind, fügt man (im Falle des Periodenbeginns) an-
statt der Nf zusätzlichen Landeknoten N b

s,f zusätzliche Landeknoten für jeden Flughafen
s ein. Die zusätzlichen Landeknoten eines Flughafens s werden dabei nur mit Startknoten
verbunden, deren Leg von s startet. Analog verfährt man für das Periodenende.

Es ist leicht zu zeigen, dass jedes vollständige Matching auf diesem Graphen mit einer zulässi-
gen Flottenzuweisung korrespondiert und dass ein gewichtmaximales vollständiges Matching
eine gewinnmaximale Flottenzuweisung repräsentiert. Ein gewichtmaximales vollständiges
Matching kann in Zeit O(|L|3) bestimmt werden [Kuhn, 1955].

3.4 Der Zwei-Flotten-Fall

In diesem Abschnitt präsentieren wir ein neues Vollständigkeitsergebnis: Zu entscheiden,
ob ein Flottenzuweisungsproblem, egal ob zyklisch oder azyklisch, eine zulässige Lösung
besitzt, ist bereits für zwei Flotten streng NP-vollständig. Bisher war dies nur für drei Flotten
bekannt. Allerdings müssen wir für unsere Reduktion erlauben, dass die eingesetzten Flotten
unterschiedliche Geschwindigkeiten besitzen.

Satz 3.18. Die Klassen FAP(Feas, t, f, Or) mit t ∈ {Cy,Ac} und f ≥ 2 sind streng
NP-vollständig.

Wir beweisen diesen Satz, indem wir SAT auf die FAP(Feas, 2, f, Or)-Klasse reduzieren.
SAT war das erste Problem, für das gezeigt wurde, dass es NP-vollständig ist [Cook, 1971].
Dazu bilden wir die Arbeitsweise einfacher Boolscher Schaltkreise mit Hilfe spezieller Flugha-
fenkonstrukte nach, die wir vor dem eigentlichen Beweis zunächst vorstellen. Legs zwischen
Flughafenkonstrukten übernehmen die Rolle von elektrischen Leitungen. Alle Flughafenkon-
strukte sind bezüglich ihrer Starts- und Landungen balanciert, so dass sie sowohl für zyklische
als auch azyklische Flottenzuweisungsprobleme eingesetzt werden können.

Für die gesamte Reduktion nehmen wir an:

• Es kommen zwei Flotten zum Einsatz. Eine repräsentiert den Wahrheitswert Wahr
und wird im Folgenden mit T bezeichnet. Die andere repräsentiert den Wahrheitswert
Falsch und wird mit F bezeichnet.

• Flotte T ist die schnellere der beiden Flotten und kann jedes Leg zwei Zeiteinheiten
schneller �iegen als Flotte F . Wir geben daher im Folgenden nur für Flotte T die
Blockzeiten bzw. Ankunftszeiten von Legs an. Die entsprechenden Zeiten für Flotte F
ergeben sich direkt daraus.

• Die Startzeiten aller Legs sind unabhängig von der verwendeten Flotte.
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Abbildung 3.1: Flughafenkonstrukt Paar P (t)

• Alle Mindestbodenzeiten sind Null.

Die nun folgenden Flughafenkonstrukte sind nur Ausschnitte eines vollständigen Flugplans.
Sie de�nieren die Starts und Landungen von Legs auf einem oder mehreren Flughäfen. Dabei
werden die beteiligten Legs häu�g nicht vollständig spezi�ziert, das heiÿt, dass zum Bei-
spiel für ein von einem Flughafenkonstrukt startenden Leg zwar die Startzeit de�niert wird,
nicht aber die Blockzeit/Ankunftszeit und der Ziel�ughafen. Erst die spätere Verknüpfung
der Flughafenkonstrukte miteinander spezi�ziert die Legs vollständig und de�niert einen voll-
ständigen Flugplan. Die Flughafenkonstrukte sind parametrisiert, um die exakten Start- und
Landezeiten der beteiligten Legs variieren zu können.

Wir werden im Anschluss an die De�nition eines jeden Flughafenkonstrukts seine zentralen
Eigenschaften im Hinblick auf die folgende Reduktion beweisen. Die korrekte Funktionsweise
eines Flughafenkonstrukts ist dabei nur dann gewährleistet, wenn zu Beginn der Planungspe-
riode keinerlei Flugzeuge auf dem Flughafen/den Flughäfen des Konstrukts verfügbar sind.
Diese Voraussetzung wird von der Reduktion sichergestellt.

De�nition 3.19 (Paar P (t)). Ein Paar P (t) besteht aus einem Flughafen mit zwei ankom-
menden Legs q1 und q2 und zwei ab�iegenden Legs p1 und p2. Die Start- und Landezeiten
sind dabei wie folgt de�niert:

taq1,T = t

taq2,T = t + 2

tdp1
= t + 2

tdp2
= t + 3

Man beachte, dass dadurch implizit taq1,F = t + 2 und taq2,F = t + 4 sind.

Abbildung 3.1 zeigt auf der linken Seite eine schematische Darstellung eines Paares. Die senk-
rechte Linie in der Mitte symbolisiert den Flughafen. Die Pfeile auf der rechten Seite stehen
für ab�iegende Legs, wobei die Pfeilenden den Startzeitpunkt auf dem Flughafen markieren.
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Die Zeitachse verläuft dabei von oben nach unten. Die ankommenden Legs auf einen Flugha-
fen werden auf der linken Seite dargestellt. Die Pfeilspitzen markieren hier die Ankunftszeit.
Da die Ankunftszeit eines Legs von der eingesetzten Flotte abhängig ist, wird jedes ankom-
mende Leg durch zwei Pfeile mit gemeinsamem Endpunkt dargestellt: Der durchgehende
Pfeil markiert die Ankunftszeit, wenn das Leg von Flotte T bedient wird, und der gestrichel-
te Pfeil die Ankunftszeit mit Flotte F . Der Übersichtlichkeit halber werden Ereignisse, die
eigentlich gleichzeitig auf einem Flughafen statt�nden, in einer schematischen Darstellung
manchmal entzerrt. Dies hat dann aber keinen Ein�uss auf die korrekte Funktionsweise eines
Flughafenkonstrukts.

Jedes Flughafenkonstrukt hat eine logische Funktion, die bei der Reduktion einer SAT-Formel
zum Einsatz kommt. Zur Beschreibung dieser logischen Funktion sind nicht immer alle Legs
eines Flughafenkonstrukts relevant. Daher existiert zu jedem Flughafenkonstrukt eine ab-
strakte Blockdarstellung, die nur die für die logische Funktion notwendigen Legs ohne Zeit-
bezug darstellt. Die Blockdarstellung eines Paares �ndet sich in der rechten Hälfte von
Abbildung 3.1. Hier zeigt sich, dass die Hauptaufgabe eines Paares die Bereitstellung von
zwei �Ausgangsleitungen� ist. Dabei gilt:

Lemma 3.20. Wenn für ein Paar P (t) zu Beginn der Planungsperiode keine Flugzeuge auf
dem Paar-Flughafen warten, kann P (t) nur genau dann Teil einer zulässigen Flottenzuweisung
z sein, wenn z(q2) = T ist. Wird ferner das Leg q1 des Paares von Flotte F bedient, müssen in
einer zulässigen Flottenzuweisung entweder z(p1) = T∧z(p2) = F oder z(p1) = F∧z(p2) =
T sein.

Beweis. Wenn z(q2) = F wäre, würde Leg q2 erst zum Zeitpunkt t+4 landen. Im azyklischen
Fall stünden dann aber für die beiden ab�iegenden Legs p1 und p2 nur das Flugzeug des Legs
q1 als Vorgänger zur Verfügung und eines der beiden Legs könnte nicht bedient werden.
Im zyklischen Fall müsste das Flugzeug von q2 über das Periodenende hinaus auf seinen
nächsten Flug warten, würde also ein wartendes Flugzeug zu Periodenbeginn verursachen.
Folglich muss z(q2) = T sein.

Damit stehen für die Legs p1 und p2 je ein Flugzeug der Flotten T und F zur Verfügung und
die beiden einzigen zulässigen Zuweisungen an p1 und p2 sind z(p1) = T ∧ z(p2) = F oder
z(p1) = F ∧ z(p2) = T .

Die logische Funktion eines Paares ist es damit, zwei Legs mit komplementärer Flottenzu-
weisung bereitzustellen.

De�nition 3.21 (Oder On(t)). Ein Oder On(t) (n ∈ N) besteht aus einem Flughafen
mit n ankommenden Legs i1, . . . , in und n ab�iegenden Legs h1, . . . , hn. Die Start- und
Landezeiten sind dabei wie folgt de�niert:

taij ,T = t ∀j ∈ {1, . . . , n}
tdh1

= t

tdhj
= t + 2 ∀j ∈ {2, . . . , n}
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Abbildung 3.2: Flughafenkonstrukt Oder On(t)

Lemma 3.22. Wenn für ein Oder On(t) zu Beginn der Planungsperiode keine Flugzeuge
auf dem Oder-Flughafen warten, kann On(t) nur genau dann Teil einer zulässigen Flotten-
zuweisung z sein, wenn ein Leg ij (j ∈ {1, . . . , n}) mit z(ij) = T existiert.

Beweis. Werden alle ankommenden Legs ij von Flotte F bedient, landen sie alle nach dem
Start von Leg h1. h1 könnte also entweder nicht bedient werden oder ein Flugzeug würde zu
Periodenbeginn auf dem Oder-Flughafen warten müssen.

Umgekehrt reicht ein Leg ij mit z(ij) = T aus, um das ab�iegende Leg h1 zu erreichen.
Alle übrigen Legs hk starten nach der Ankunft der restlichen ik, unabhängig von deren
Flottenzuweisung.

Abbildung 3.2 zeigt einen schematischen Oder-Flughafen und dessen Blockdarstellung.

De�nition 3.23 (Duplikator D2(t)). Ein Duplikator D2(t) besteht aus einem Flughafen mit
drei ankommenden Legs i, x1 und x2 und drei ab�iegenden Legs h1, . . . , h3. Die Start- und
Landezeiten sind dabei wie folgt de�niert:

tax1,T = t + 4

tai,T = t + 5

tax2,T = t + 6

tdh1
= t + 5

tdh2
= t + 6

tdh3
= t + 8

Zusätzlich enthält der Duplikator noch zwei Paare P1(t) und P2(t). Das ab�iegende Leg p2

von Paar Pj(t) ist dabei identisch mit Leg xj und das ab�iegende Leg p1 von Paar Pj(t)
wird im Duplikator oj genannt (j ∈ {1, 2}).

Abbildung 3.3 zeigt ein schematisches Duplikator-Konstrukt und dessen Blockdarstellung.
Man beachte, dass die Legs xj im Duplikator vollständig spezi�ziert sind und echt positive
Blockzeiten besitzen. Die logische Funktion eines Duplikators ist, die Flottenzuweisung seines
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Abbildung 3.3: Flughafenkonstrukt Duplikator Dn(t)

Legs i auf die Legs o1 und o2 zu übertragen. Dabei darf er bei einer Zuweisung z(i) = T
fehlerhaft arbeiten, wichtig ist nur, dass in diesem Fall z(o1) = z(o2) = T möglich ist.

Lemma 3.24. Wenn für einen Duplikator D2(t) zu Beginn der Planungsperiode keine Flug-
zeuge auf dem Duplikator-Flughafen warten und für seine Paare die Voraussetzungen von
Lemma 3.20 gelten, dann gilt:

1. D2(t) kann nur dann Teil einer zulässigen Zuweisung z mit z(i) = F sein, wenn
z(o1) = z(o2) = F gilt.

2. Aus Sicht des Operators D2(t) gibt es eine zulässige Zuweisung z mit z(i) = z(o1) =
z(o2) = T .

Beweis.

1. Wenn z(i) = F ist, landet Leg i nach den Starts von Leg h1 und h2. Daher muss
z(x1) = z(x2) = T gelten. Nach Lemma 3.20 gilt dann aber z(o1) = z(o2) = F .

2. Die Zuweisung z(i) = z(h1) = z(o1) = z(o2) = T und z(x1) = z(x2) = z(h2) =
z(h3) = F ist aus Sicht des Duplikators zulässig und erfüllt die Voraussetzungen des
Lemmas.

Für unsere Reduktion benötigen wir Duplikatoren mit mehr als zwei �Ausgangsleitungen�.

De�nition 3.25 (Duplikator Dn(t)). Ein Duplikator Dn(t) (n > 2) besteht aus n − 1
Duplikatoren D2(t), die wie in Abbildung 3.3 für D4(t) gezeigt kaskadiert werden.



42 3 Komplexität

Man beachte, dass alle D2-Duplikatoren in solch einer Kaskadierung zum selben Zeitpunkt t
�starten� und dass die dadurch vollständig spezi�zierten Legs zwischen den D2-Duplikatoren
allesamt echt positive Blockzeiten besitzen. Wie man leicht sieht, gilt Lemma 3.24 auch für
allgemeine Duplikatoren Dn(t).

Wir kennen nun alle Zutaten, um eine SAT-Instanz in ein Flottenzuweisungsproblem zu
transformieren.

De�nition 3.26 (Transformation einer SAT-Instanz B in einen Flottenzuweisungsinstanz
FA(B)). Sei B =

∧
i∈C

∨ci

j=1 lij eine Boolsche Formel in konjunktiver Normalform, wobei
C die Menge der Klauseln, ci ∈ N die Länge von Klausel i ∈ C und li,j das j-te Literal von
Klausel i ∈ C ist. V sei die Menge der Variablen in B, und |l| bezeichne die Häu�gkeit von
Literal l in B.

Wir transformieren B wie folgt in eine Flottenzuweisungsinstanz FA(B):

• Für jede Variable v ∈ V generieren wir ein Paar Pv(1). Die beiden Ausgänge von Pv(1)
werden dabei mit den Literalen v und v̄ markiert.

• Für jedes Literal l mit |l| > 1 generieren wir einen D|l|(1)-Duplikator, dessen Eingangs-
leg i mit dem mit l markierten Ausgangsleg eines Variablen-Paares gleichgesetzt wird.
Alle Ausgänge des Duplikators werden mit l markiert.

• Für jede Klausel i ∈ C generieren wir ein Oder Oci
(4) und verknüpfen seine ci Ein-

gangslegs mit zu den Literalen lij korrespondierenden, noch nicht vollständig spezi�-
zierten Ausgangslegs von Literal-Duplikatoren bzw. Variablen-Paaren. Die mit einem
Literal l markierten Ausgangslegs von Duplikatoren bzw. Paaren reichen nach Kon-
struktion aus, um die Eingänge aller Klausel-Oders zu verknüpfen.

• Nicht alle Legs sind dadurch bis jetzt voll spezi�ziert worden. Legs ohne spezi�zierten
Start�ughafen (und Ab�ugzeit) sind nach Konstruktion ausnahmslos die Eingänge von
Paaren. Sei N die Anzahl dieser Paare. Die 2N Eingangslegs der Paare starten alle
zum Zeitpunkt Null auf einem zusätzlichen Flughafen XY Z.

• Alle jetzt noch nicht vollständig spezi�zierten Legs (ausnahmslos Ausgangslegs) landen
zum Zeitpunkt 9 auf Flughafen XY Z, wenn sie von Flotte T bedient werden. (Die
Landezeit für Flotte F ist damit 11.)

• Wir stellen insgesamt je N Flugzuge von Flotte T und F zur Verfügung. Wenn wir
für die azyklischen Untervarianten Ac1 bzw. Ac2 die Flugzeugverteilung zum Peri-
odenanfang und/oder -ende spezi�zieren müssen, sagen wir, dass sich die Flugzeuge
aller Flotten zum Periodenanfang bzw. zum Periodenende auf dem Flughafen XY Z
aufhalten sollen.

• Die Periodenlänge im zyklischen Fall beträgt T = 12.

Die Paaranzahl N setzt sich aus den Variablen-Paaren und den Paaren in den Literal-
Duplikatoren zusammen. Da ein Duplikator Dn(t) aus 2(n− 1) Paaren besteht gilt:

N = |V |+
∑

l Literal:|l|≥2

2(|l| − 1)
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Abbildung 3.4: Die Boolsche Formel (x∨ ȳ ∨ z)∧ (ȳ ∨ z̄) transformiert in eine Flottenzuwei-
sungsinstanz

Da alle Flughafen-Konstrukte balanciert sind, muss das auch für den Flughafen XY Z gelten,
das heiÿt, auf XY Z enden auch insgesamt 2N Legs.

Man prüft leicht nach, dass durch die Konstruktion in De�nition 3.26 eine formal korrekte
Flottenzuweisungsinstanz FA(B) erzeugt wird. Insbesondere sind sämtliche (implizit durch
die Start- und Landezeiten de�nierten) Blockzeiten echt positiv.

Abbildung 3.4 zeigt das Ergebnis obiger Transformation für die Boolsche Formel (x ∨ ȳ ∨
z) ∧ (ȳ ∨ z̄) in Blockdarstellung.

Beweis von Satz 3.18. Wir reduzieren SAT auf FAP(Feas, t, f, Or) und verwenden dazu die
Transformation aus De�nition 3.26. Die Transformation lässt sich o�ensichtlich in polynomi-
eller Zeit ausführen und der Betrag sämtlicher in der Flottenzuweisungsinstanz auftretenden
Zahlen ist polynomiell in der Instanzgröÿe beschränkt.

Für jede zulässige Zuweisung einer Flottenzuweisungsinstanz FA(B) gilt nach Konstruktion:

• Da zu Periodenbeginn von Flughafen XY Z insgesamt 2N Legs starten und uns ins-
gesamt nur 2N Flugzeuge zur Verfügung stehen, müssen sich alle Flugzeuge zu Peri-
odenbeginn auf Flughafen XY Z aufhalten.

• Da später auf Flughafen XY Z insgesamt 2N Legs enden, be�nden sich zum Peri-
odenende alle Flugzeuge wieder auf Flughafen XY Z.

• Ferner kann sich zu Periodenbeginn auf keinem anderen Flughafen ein Flugzeug auf-
halten.

• Nach Lemma 3.20 müssen daher die q2-Legs aller N Paare von Flotte T bedient werden.
Da die qi-Legs aller Paare von Flughafen XY Z starten, bleiben für die q1-Legs der
Paare nur Flugzeuge der Flotte F übrig.
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• Daher erfüllt jede zulässige Zuweisung die Voraussetzungen der Lemmata 3.20, 3.22
und 3.24.

• Vorgegebene Verteilungen der Flugzeuge der beiden Flotten (Untervarianten Ac1 und
Ac2) werden implizit erfüllt.

Es verbleibt zu zeigen, dass eine Boolsche Formel B genau dann erfüllbar ist, wenn die
Flottenzuweisungsinstanz FA(B) eine zulässige Lösung besitzt.

⇒ Sei b : V → {F, T} eine erfüllende Variablenbelegung der Formel B. Den Eingangslegs
aller Paare wird gemäÿ obiger Beschreibung eine Flotte zugewiesen. Allen mit Literal v
markierten Legs in FA(B) wird die Flotte b(v) zugewiesen und allen mit v̄ markierten Legs
wird die Flotte b(v) zugewiesen (v ∈ V ). Damit werden den Ausgängen der Variablen-Paare
komplementäre Flotten zugewiesen und die Flottenbelegung der i- und oj-Legs eines jeden
Duplikators ist identisch. Da b erfüllend ist, besitzt ferner jedes Oder-Flughafenkonstrukt
mindestens ein Eingangsleg mit Flottenzuweisung T . Somit lassen sich nach den Lemmata
3.20, 3.22 und 3.24 allen verbleibenden Legs Flotten derart zuweisen, dass insgesamt eine
zulässige Zuweisung entsteht.

⇐ Sei z eine zulässige Zuweisung für FA(B). Daraus konstruieren wir eine Variablenbelegung
b für die Formel B, indem wir b(v) die Flotte zuweisen, die das mit Literal v markierte
Ausgangsleg des Variablen-Paares Pv(1) zugewiesen bekommen hat. b ist dann eine erfüllende
Variablenbelegung für Formel B.

Annahme: b ist nicht erfüllend.

Dann gibt es eine Klausel i in B, deren Literale allesamt F liefern. Da z aber zulässig ist, muss
nach Lemma 3.22 eines der Eingangslegs des zu i gehörenden Oder-Flughafenkonstrukts von
Flotte T bedient werden. Dieses Leg bezeichnen wir mit L, und es sei mit Literal l markiert.
v sei die Variable des Literals l.

L kann zwei verschiedene Arten von Start�ughafen besitzen. Der Start�ughafen von L kann
zum Variablen-Paar Pv(1) gehören. Ansonsten gehört der Star�ughafen von L zum Duplikator
D|l|(1). Das Eingangsleg i dieses Duplikators muss dann ebenfalls von Flotte T bedient
werden, da ansonsten nach Lemma 3.24 alle Ausgänge des Duplikators F sein müssen. Auch
i ist mit Literal l markiert und der Start�ughafen von i gehört zum Variablen-Paar Pv(1).

Also wird das mit l markierte Ausgangsleg des Variablen-Paares Pv(1) von Flotte T bedient.
Ist l = v, ist nach De�nition b(v) = T und Klausel i von B wäre erfüllt. Ist l = v̄, wird
nach Lemma 3.20 das Ausgangsleg von Pv(1), das mit v markiert ist, von Flotte F bedient.
Also ist b(v) = F und Klausel i von B wäre auch in diesem Fall erfüllt. Dies liefert den
gewünschten Widerspruch.

Folgerung 3.27. Die Klassen FAP(Opt, t, f, Or) mit t ∈ {Cy,Ac} und f ≥ 2 sind streng
NP-vollständig und nicht in polynomieller Zeit approximierbar, falls P 6= NP gilt.

Beweis. Die Argumentation verläuft wie im Beweis zu Folgerung 3.6.
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Die Reduktion in diesem Kapitel funktioniert nur dann, wenn die Flugzeug�otten verschiedene
Geschwindigkeiten besitzen. Erlaubt man verbindungsabhängige Gewinne, kann man aber ein
vergleichbares Ergebnis auch für gleich schnelle Flotten zeigen:

Folgerung 3.28. Die Klassen FAP(Opt, t, f, Eq, Cdp) mit t ∈ {Cy,Ac} und f ≥ 2 sind
streng NP-vollständig.

Beweis. Die Reduktion verläuft wie im Beweis zu Satz 3.18. Flotte F ist nun aber genauso
schnell wie Flotte T . Dadurch mögliche, zusätzliche Verbindungen für Flotte F werden mit
verbindungsabhängigen Gewinnen von −1 bestraft. Alle übrigen Gewinne sind Null.

Wie man leicht sieht, gilt dann, dass eine Boolsche Formel B genau dann erfüllbar ist, wenn
es eine Flottenzuweisung mit einem Gewinn von (mindestens) Null gibt.

3.5 Weitere azyklischen Ergebnisse

Hier präsentieren wir Komplexitätsaussagen für azyklische Flottenzuweisungsprobleme, wobei
wir an die Flotten die gleichen restriktiven Anforderungen wie [Gu et al., 1994] stellen.

Satz 3.29. Instanzen der Klasse FAP(Feas, Ac0, f, Eq) mit f ≥ 1 lassen sich in Zeit
O(|L| log |L|+ |F|) lösen.

Beweis. Dieses Problem lässt sich für f > 1 direkt auf FAP(Feas, Ac0, 1, Eq) reduzieren.
Da sich die einer Flotte zugewiesenen Legs im azyklischen Fall in Flugzeugumläufe aufteilen
lassen, die jeweils genau ein Flugzeug benötigen, und da die Flugzeuge aller Flotten in der
Klasse FAP(Feas, Ac0, f, Eq) aus operationeller Sicht identisch sind, lassen sich die Umläufe
einer Ein-Flotten-Lösung beliebig auf mehrere Flotten aufteilen, solange insgesamt genügend
Flugzeuge zur Verfügung stehen.

Das Bestimmen der Gesamt�ugzeuganzahl über alle Flotten benötigt Zeit O(|F|) und der
Ein-Flotten-Fall ist in Zeit O(|L| log |L|) entscheidbar (siehe Satz 3.12).

Satz 3.30. Instanzen der Klasse FAP(Feas, Ac1, f, Eq) mit f ≥ 1 lassen sich in Zeit
O(|L| log |L|+ |F| · |S|) lösen.

Beweis. Auch dieses Problem lässt sich mit derselben Begründung wie im Beweis zu Satz 3.29
für f > 1 direkt auf FAP(Feas, Ac1, 1, Eq) reduzieren. Das Bestimmen der Gesamt�ugzeu-
ganzahl pro Flughafen über alle Flotten benötigt Zeit O(|F| · |S|).

Die Argumentation der vorherigen beiden Beweise lässt sich nicht auf die Klasse FAP(Feas,
Ac2, f, Eq) übertragen, da man hierfür bei der Generierung eines Flugzeugumlaufs explizit
den Start- und Ziel�ughafen vorgeben können müsste. Dies ist sehr wahrscheinlich schwierig,
denn es gilt:

Satz 3.31. Die Klasse FAP(Feas, Ac2, f, Eq) mit f ≥ 3 ist streng NP-vollständig.
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Der Beweis beruht auf einer Reduktion von dem gerichteten ganzzahligen Zwei-Güter-Fluss-
problem mit Kantenkapazitäten von 1. Das Problem lässt sich wie folgt de�nieren:

De�nition 3.32 (Das gerichtete ganzzahlige Zwei-Güter-Flussproblem mit Kantenkapzitä-
ten von 1).

Gegeben: Ein gerichteter Graph G = (V, E), zwei Knotenpaare (s1, t1), (s2, t2) ∈ V 2 und
zwei Transportbedarfe R1, R2 ∈ N.

Existieren in G R1 Wege von s1 nach t1 und R2 Wege von s2 nach t2, die kantendisjunkt
sind?

In [Even et al., 1976] wurde gezeigt:

Satz 3.33. Das gerichtete ganzzahlige Zwei-Güter-Flussproblem mit Kantenkapazitäten von
1 ist streng NP-vollständig. Dies gilt sogar, wenn der Graph azyklisch ist.

Beweis von Satz 3.31. Das Zwei-Güter-Flussproblem sei durch den gerichteten azyklischen
Graphen G = (V, E), die Knotenpaare (s1, t1), (s2, t2) ∈ V 2 und R1, R2 ∈ N gegeben. Die
Knotenmenge V = {v1, . . . , vn} sei topologisch sortiert. in(vi) sei der Eingangsgrad von
Knoten vi ∈ V und out(vi) sein Ausgangsgrad.

Wir konstruieren aus G wie folgt einen Flugplan:

• Jeder Knoten des Graphen vi ∈ V wird zu einem Flughafen.

• Jede Kante (vi, vj) ∈ E wird zu einem Leg mit Start�ughafen vi und Ziel�ughafen vj.

• Alle Legs, die von Flughafen vi starten, besitzen Startzeit i.

• Die Blockzeit aller Legs ist 1.

• Alle Mindestbodenzeiten sind Null.

Wegen der topologischen Sortierung der Knoten (und der Blockzeiten von 1) ist sichergestellt,
dass alle Legs, die auf einem Flughafen vi landen, eine Ankunftszeit kleiner gleich i besitzen
und damit alle von vi startenden Legs erreichen können. Also korrespondiert jeder Weg von s
nach t in G eineindeutig mit einem Flugzeugumlauf im Flugplan, der auf Flughafen s beginnt,
auf Flughafen t endet und der die den Kanten des Wegs entsprechenden Legs bedient.

Wir benötigen drei Flotten f1, f2 und f3, die wie folgt auf die Flughäfen verteilt werden:

N b
s1,f1

= R1

N e
t1,f1

= R1

N b
s2,f2

= R2

N e
t2,f2

= R2

N b
v,f3

= max{−d(v), 0} ∀v ∈ V

N e
v,f3

= max{d(v), 0} ∀v ∈ V
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Alle nicht spezi�zierten N b
s,f - und N e

s,f -Werte sind Null und d(v) ist wie folgt de�niert:

d(v) = in(v)− out(v) + N b
v,f1

−N e
v,f1

+ N b
v,f2

−N e
v,f2

Die Flotte f3 ist notwendig, da eine zulässige Flottenzuweisung allen Legs eine Flotte zuweisen
muss. Flotte f3 dient ausschlieÿlich dazu, Legs, die weder von f1 noch von f2 benutzt werden,
�aufzubrauchen�.

O�ensichtlich lässt sich eine Zwei-Güter-Flussprobleminstanz in polynomieller Zeit in obiges
Flottenzuweisungsproblem transformieren, und der Betrag der dabei auftretenden Zahlen ist
polynomiell durch die Eingabegröÿe beschränkt, solange dies auch für R1 und R2 gilt.

Es verbleibt noch zu zeigen, dass es genau dann die geforderten kantendisjunkten Wege in
G gibt, wenn das konstruierte Flottenzuweisungsproblem eine zulässige Lösung besitzt.

⇐. In einer zulässigen Lösung des Flottenzuweisungsproblems gibt es R1 Flugzeugumläufe
(von Flotte f1), die auf Flughafen s1 beginnen und auf Flughafen t1 enden, da nur auf Flug-
hafen s1 zu Beginn Flugzeuge der Flotte f1 verfügbar sind und am Periodenende sich alle
diese Flugzeuge auf Flughafen t1 aufhalten. Entsprechend gibt es R2 Umläufe (von Flotte
f2), die auf Flughafen s2 beginnen und auf Flughafen t2 enden. Da Legs in einer zuläs-
sigen Flottenzuweisung nicht mehr als einmal von einem Flugzeug bedient werden dürfen,
entsprechen diese Umläufe kantendisjunkten Wegen im Ursprungsgraphen G.

⇒. Wir konstruieren zu einem kantendisjunkten Wegesystem für G wie folgt eine Lösung
des Flottenzuweisungsproblems:

• Die Kanten, die zu Wegen zwischen s1 und t1 gehören, werden von Flotte f1 bedient.

• Die Kanten, die zu Wegen zwischen s2 und t2 gehören, werden von Flotte f2 bedient.

• Alle Kanten, denen dann noch keine Flotte zugewiesen wurde, werden von Flotte f3

bedient.

Damit wird jeder Kante genau eine Flotte zugewiesen. Wegen der Korrespondenz von Wegen
in G und Flugzeugumläufen im Flugplan ist diese Zuweisung für die Flotten f1 und f2 zulässig,
das heiÿt, sie hält die vorgegebene Flugzeugverteilung für die Flotten f1 und f2 ein.

Für einen beliebigen Flughafen v sei nun ai bzw. di die Anzahl an Legs, die auf Flughafen v
landen bzw. starten und von Flotte fi bedient werden (i ∈ {1, 2, 3}). Die Flottenzuweisung
ist nun auch bezüglich Flotte f3 zulässig, wenn gilt:

• Falls a3 > d3, beenden a3 − d3 Flugzeuge von Flotte f3 ihren Dienst auf Flughafen
v. d3 ankommende Flugzeuge von Flotte f3 bedienen als nächstes die d3 ab�iegenden
Legs. Dies ist gleichbedeutend damit, dass N b

v,f3
= 0 und N e

v,f3
= a3 − d3 gilt.

• Falls a3 = d3, bedienen alle ankommenden Flugzeuge von Flotte f3 als nächstes die
d3 ab�iegenden Legs, oder kürzer N b

v,f3
= 0 und N e

v,f3
= 0.

• Falls a3 < d3, muss entsprechend N b
v,f3

= d3 − a3 und N e
v,f3

= 0 gelten.
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Zusammenfassend ist damit die Zuweisung bezüglich Flotte f3 dann zulässig, wenn gilt:

a3 − d3 = N e
v,f3

−N b
v,f3

= max{d(v), 0} −max{−d(v), 0} = d(v)

Da unsere Flottenzuweisung für die Flotten f1 und f2 zulässig ist, gilt für i ∈ {1, 2}:

ai + N b
v,fi

= di + N e
v,fi

⇐⇒ di − ai = N b
v,fi

−N e
v,fi

Daraus folgt nun die Zulässigkeit der Flottenzuweisung auch für Flotte f3:

a3 − d3 = (in(v)− a1 − a2)− (out(v)− d1 − d2)

= in(v)− out(v) + d1 − a1 + d2 − a2

= in(v)− out(v) + N b
v,f1

−N e
v,f1

+ N b
v,f2

−N e
v,f2

= d(v)

Satz 3.34. Die Klasse FAP(Opt,Ac, f, Eq) mit f ≥ 3 ist streng NP-vollständig. Dies gilt
bereits für Gewinne aus {0, 1}.

Beweis. Für die azyklische Untervariante Ac2 folgt das Ergebnis direkt aus Satz 3.31. Für
die Varianten Ac0 und Ac1 erweitern wir die Konstruktion aus dem Beweis von Satz 3.31.
Wir können dabei ohne Beschränkung der Allgemeinheit annehmen, dass R1 ≤ |E| und
R2 ≤ |E| gilt, da ansonsten klar ist, dass nicht ausreichend viele kantendisjunkte Wege
existieren können.4

Wir erweitern den Flugplan aus dem Beweis von Satz 3.31 wie folgt:

• es gibt zwei neue Flughäfen s∗ und t∗.

• Von s∗ starten R1 Legs zu Flughafen s1. Die Legs starten zum Zeitpunkt Null. Wenn
die Legs von Flotte f1 bedient werden, erwirtschaften sie einen Gewinn von 1.

• Von s∗ starten R2 Legs zu Flughafen s2. Die Legs starten zum Zeitpunkt Null. Wenn
die Legs von Flotte f2 bedient werden, erwirtschaften sie einen Gewinn von 1.

• Von Flughafen t1 �iegen R1 Legs zum Flughafen t∗. Die Legs starten zum Zeitpunkt
n. Wenn die Legs von Flotte f1 bedient werden, erwirtschaften sie einen Gewinn von
1.

• Von Flughafen t2 �iegen R2 Legs zum Flughafen t∗. Die Legs starten zum Zeitpunkt
n. Wenn die Legs von Flotte f2 bedient werden, erwirtschaften sie einen Gewinn von
1.

• Alle übrigen Gewinne sind Null.

4 Falls si = ti ist, kann es trotzt Ri > |E| eine zulässige Lösung geben. Allerdings haben wir es dann mit
einem in polynomieller Zeit entscheidbaren Ein-Güter-Fluss-Problem zu tun.
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• Wir stellen R1 Flugzeuge von Flotte f1, R2 Flugzeuge von Flotte f2 und |E| Flugzeuge
von Flotte f3 zur Verfügung.

Damit gilt weiterhin, das jedes ankommende Leg auf einem Flughafen jedes dort startende
Leg erreichen kann. Der maximal erzielbare Gewinn ist o�ensichtlich 2R1 + 2R2 und wird
genau dann erreicht, wenn die neuen Legs von s∗ nach si bzw. von ti nach t∗ von Flotte fi

bedient werden (i ∈ {1, 2}). Dafür müssen alle Flugzeuge der Flotten f1 und f2 ihren Dienst
auf Flughafen s∗ aufnehmen und auf Flughafen t∗ beenden. Für eine Lösung mit Gewinn
2R1 +2R2 erzwingen wir so implizit, dass die Flugzeugumläufe von f1 und f2 den gesuchten
kantendisjunkten Wegen in G entsprechen. Die verfügbaren Flugzeuge von Flotte f3 reichen
aus, um jedes nicht von f1 oder f2 benötigte Leg zu bedienen.

Analog zum Beweis von Satz 3.31 kann man dann zeigen, dass genau dann die geforderten
kantendisjunkten Wege in G existieren, wenn es eine zulässige Flottenzuweisung mit einem
Gewinn von (mindestens) 2R1 + 2R2 gibt.

Satz 3.35. Instanzen der Klasse FAP(Inf, Ac0, f, Ar, Cdt) mit f ≥ 1 lassen sich in Zeit
O(|L| · |F|) lösen.

Beweis. Da uns unbeschränkt viele Flugzeuge von jeder Flotte zur Verfügung stehen, können
wir jedes Leg von einem eigenen Flugzeug �iegen lassen. In Zeit O(|L| · |F|) kann man für
jedes Leg die pro�tabelste der für das Leg zugelassenen Flotten ermitteln. Die Existenz von
verbindungsabhängigen Mindestbodenzeiten spielt folglich keine Rolle.

3.6 Zusammenfassung

Die wichtigsten Ergebnisse dieses Kapitels sind in den Tabellen 3.1 bis 3.4 zusammengefasst.
�NP-v.� steht dabei für �NP-vollständig� und �s. NP-v.� für �streng NP-vollständig�. Für
Einträge mit einem �?� ist unbekannt, ob sich die Probleme in polynomieller Zeit lösen
lassen. Es ist aber nach Satz 3.3 klar, dass alle Probleme zur Klasse NP gehören.

Für FAP(Opt, ∗)-Problemklassen, deren FAP(Feas, ∗)-Varianten bereits NP-vollständig sind,
gilt, dass sie nicht in polynomieller Zeit approximierbar sind, falls P 6= NP ist (Satz 3.6 und
3.27). Dies ist für fast alle Problemklassen mit mehr als zwei Flotten der Fall.

Die bekannten Ergebnisse aus Abschnitt 3.2 �nden sich allesamt in Tabelle 3.2. Der Beitrag
dieser Arbeit lässt sich in drei Bereiche untergliedern:

• Neue Ergebnisse zur NP-Vollständigkeit für Flottenzuweisungsprobleme mit zwei Flot-
ten

• Vergleich der bekannten Ergebnisse für das zyklische Flottenzuweisungsproblem mit
entsprechenden azyklischen Varianten

• Auswirkung von Modellerweiterungen wie verbindungsabhängigen Mindestbodenzeiten
und Gewinnen
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e t = Cy t = Ac

[Big] O(|L| log |L|) O(|L| log |L|)
Cdt[, Big] O(|L|3) O(|L|2.5)
Cdt, Cdp ? O(|L|3)

NP-v. für e = Big

Tabelle 3.1: Algorithmische Komplexität des Flottenzuweisungsproblems mit einer Flotte
FAP(Opt, t, 1, Ar, e)

p f = 1 f = 2 f ≥ 3

Feas O(|L| log |L|) ? s. NP-v.
NP-v. für e = Big

Inf O(|L| log |L|) P (min cost �ow) s. NP-v.
Opt O(|L| log |L|) ? s. NP-v.

NP-v. für e = Big
s. NP-v. für e = Cdp

Tabelle 3.2: Algorithmische Komplexität des zyklischen Flottenzuweisungsproblems für gleich
schnelle Flotten FAP(p, Cy, f, Eq)

p t = Ac0, Ac1 t = Ac2
f = 1 f = 2 f ≥ 3 f = 1 f = 2 f ≥ 3

Feas O(|L| log |L|+ |L| · |F|) O(|L| log |L|) ? s. NP-v.
Inf O(|L| · |F|) nicht de�niert
Opt O(|L| log |L|) ? s. NP-v. O(|L| log |L|) ? s. NP-v.

s. NP-v. für s. NP-v. für
e = Cdp e = Cdp

Tabelle 3.3: Algorithmische Komplexität des azyklischen Flottenzuweisungsproblems für
gleich schnelle Flotten FAP(p, t, f, Eq)

p t = Cy t = Ac
f = 2 f ≥ 3 f = 2 f ≥ 3

Feas s. NP-v. s. NP-v.
Inf P s. NP-v. O(|L| · |F|)
Opt s. NP-v. s. NP-v.

Tabelle 3.4: Algorithmische Komplexität des Flottenzuweisungsproblems für Flotten mit un-
terschiedlichen Geschwindigkeiten FAP(p, t, f, Or)
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Die Reduktion in Abschnitt 3.4 zeigt, dass das Zulässigkeitsproblem bereits für zwei Flotten
streng NP-vollständig ist, wenn man Flotten mit unterschiedlichen Geschwindigkeiten erlaubt.
Dies gilt sowohl für zyklische als auch azyklische Flottenzuweisungsprobleme. Daraus folgt
direkt die strenge NP-Vollständigkeit für Optimierungsprobleme mit zwei gleich schnellen
Flotten und verbindungsabhängigen Gewinnen. Damit kann man sagen, dass das Problem der
zyklischen bzw. azyklischen Flottenzuweisung bereits für zwei Flotten streng NP-vollständig
und nicht approximierbar ist (Tabelle 3.4).

Beim Vergleich der Ergebnisse zwischen zyklischen und azyklischen Problemen fällt auf, dass
azyklische Probleme manchmal leichter zu lösen sind. Während zum Beispiel die Klasse
FAP(Opt, Cy, 1, Ar, Cdt, Cdp, Big) NP-vollständig, ist lässt die azyklische Variante in Zeit
O(|L|3) lösen (Tabelle 3.1). Entsprechendes gilt für die Problemklassen FAP(Feas, Cy, f,
Eq) und FAP(Inf, Cy, f, Eq) mit mindestens drei Flotten. Allerdings zeigt sich hier, dass
sich auch die azyklischen Varianten in ihrer Komplexität unterscheiden können, denn die
Klasse FAP(Feas, Ac2, f, Eq) ist im Gegensatz zu den Ac0- und Ac1-Varianten streng NP-
vollständig (Tabelle 3.3).

Die jetzt noch o�enen Punkte betre�en fast ausschlieÿlich Klassen mit zwei Flotten, die
über dieselben operationellen Eigenschaften verfügen. Bereits kleine Erweiterungen wie ver-
bindungsabhängige Gewinne oder sehr lange Blockzeiten führen dazu, das die Probleme
NP-vollständig werden. Aber es ist unklar, ob das auch für die nicht-erweiterten Klassen
gilt. Schlieÿlich stellt sich für die Klassen FAP(Opt,Ac0, f, Eq) und FAP(Opt,Ac1, f, Eq)
die Frage, ob die Probleme in irgend einer Form in polynomieller Zeit approximierbar sind.
Dies sind die einzigen Opt-Klassen, für die das korrespondierende Zulässigkeitsproblem in
polynomieller Zeit gelöst werden kann (Tabelle 3.3).
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4
Lösungsverfahren

In diesem Kapitel stellen wir verschiedene neu entwickelte exakte und heuristische Lösungsver-
fahren für das Flottenzuweisungsproblem vor, die sowohl für die zyklische als auch azyklische
Variante geeignet sind. Wir starten mit einer Beschreibung von einfachen Transformationen,
mit denen sich azyklische in zyklische Flottenzuweisungsprobleme umwandeln lassen. Als
nächstes präsentieren wir das von [Hane et al., 1995] eingeführte Time Space Network Mo-
dell, eine IP-Formulierung des Flottenzuweisungsproblems, mit der sich auch groÿe Instanzen
lösen lassen. Dieses Modell bildet die Basis für unsere exakten Lösungsverfahren.

In den Abschnitten 4.3 und 4.4 folgt die Beschreibung unserer Lokale Suche Verfahren, die
einen Hill Climbing- bzw. Simulated Annealing-Ansatz verfolgen. Das zentrale Thema ist
die dabei zum Einsatz kommende problemspezi�sche Nachbarschaft für das Flottenzuwei-
sungsproblem. Anschlieÿend zeigen wir, wie zwei für die Praxis wichtige Erweiterungen für
das Flottenzuweisungsproblem, verbindungsabhängige Mindestbodenzeiten/Gewinne und die
so genannte Homogenität einer Zuweisung, berücksichtigt werden können. Wir modi�zieren
dafür unsere Heuristiken und präsentieren neue IP-Formulierungen.

Es folgt die Beschreibung von Preprocessing-Techniken, mit deren Hilfe sich zum einen vorab
die Zulässigkeit einer Instanz abschätzen lässt und die zum anderen die Eingabegröÿe einer
Instanz verkleinern können. Insbesondere die exakten Ansätze pro�tieren davon. Als letz-
tes evaluieren wir die in diesem Kapitel vorgestellten Lösungsverfahren, Erweiterungen und
Preprocessing-Techniken mittels realer Instanzen, die aus den Planungsabteilungen verschie-
dener Fluggesellschaften stammen.

4.1 Elementare Transformationen

Die in Kapitel 2 de�nierten zyklischen und azyklischen Flottenzuweisungsprobleme sind sehr
allgemein gehalten. Sie unterstützen Spezialitäten wie

53
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• zyklische und verschiedene azyklische Varianten

• eingeschränkte Auswahl an möglichen Flotten für ein Leg

• �ottenabhängige Block- und Startzeiten

• verbindungsabhängige Mindestbodenzeiten und Gewinne

• Block- und Mindestbodenzeiten, die länger als die Planungsperiode sind

In diesem Kapitel werden wir noch weitere praxisrelevante Erweiterungen vorstellen.

Ein in der Praxis einsetzbares Lösungsverfahren für die Flottenzuweisung muss nicht not-
wendigerweise alle diese Spezialitäten unterstützen, da sie, abhängig vom Verfahren, nicht
oder nur sehr schwer zu implementieren sind. Das Flottenzuweisungsproblem mit den meisten
Einschränkungen, das noch als solches anerkannt wird, ist die Klasse FAP(Opt, Cy, f, Eq)
aus Kapitel 3. Keine der oben angegebenen Spezialitäten wird von ihr direkt unterstützt.

Flottenzuweisungsprobleme mit manchen Spezialitäten lassen sich allerdings trotzdem durch
ein Verfahren lösen, das diese Spezialitäten eigentlich gar nicht unterstützt. Ein einfaches Bei-
spiel dafür ist die eingeschränkte Auswahl an möglichen Flotten für ein Leg. Unterstützt ein
Lösungsverfahren dies nicht, können trotzdem Instanzen mit dieser Spezialität gelöst werden,
indem nicht-zulässige Zuweisungen mit hohen Strafkosten belegt werden. Optimal arbeiten-
de Lösungsverfahren werden solche Zuweisungen dann nicht verwenden. Werden eigentlich
nicht unterstützte Spezialitäten wie in diesem Beispiel über die Zielfunktion modelliert, kann
es allerdings bei Heuristiken dazu führen, dass diese eine eigentlich unzulässige Lösung pro-
duzieren. Ferner ist es häu�g so, dass einen direkte Unterstützung von Spezialitäten, sofern
möglich, zu deutlich e�zienteren Algorithmen führt.

Wie der nun folgende Satz zeigt, reicht es aus, ein Lösungsverfahren für das zyklische Flot-
tenzuweisungsproblem zu besitzen. Die azyklischen Varianten Ac1 und Ac2 lassen sich sehr
e�zient auf den zyklischen Fall reduzieren. Möglich ist dies auch für die azyklische Variante
Ac0. Allerdings benötigt man hier eine zusätzliche Flotte.

Satz 4.1. Es gilt:

1. FAP(Opt,Ac2, f, ∗) =p FAP(Opt,Ac1, f, ∗) ≤p FAP(Opt,Ac0, f, ∗)

2. FAP(Opt,Ac2, f, ∗) =p FAP(Opt,Ac1, f, ∗) ≤p FAP(Opt, Cy, f, ∗)

3. FAP(Opt,Ac0, f, ∗) ≤p FAP(Opt, Cy, f + 1, ∗)

�≤p� steht dabei für �(einfach) in polynomieller Zeit reduzierbar�.

Beweis. Wir werden in diesem Beweis häu�g Legs verwenden, die nur von einer Auswahl
der Flotten bedient werden können. Unterstützt die betrachtete Problemklasse dies nicht
direkt, lässt sich dies, wie weiter oben beschrieben, über die Zielfunktion simulieren. Für eine
azyklische Flottenzuweisungsinstanz sei T die späteste Ankunftszeit aller Legs.
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FAP(Opt,Ac2, f, ∗) ≤p FAP(Opt,Ac1, f, ∗):

Wir führen einen zusätzlichen Flughafen XY Z ein. Für jeden Flughafen s und jede Flotte f
starten von Flughafen s zum Zeitpunkt T insgesamt N e

s,f Legs zum Flughafen XY Z, die nur
von Flotte f bedient werden dürfen. Die Blockzeit aller dieser Legs sei 1. Wir können nun
die Flugzeugverteilung zum Periodenende weglassen, da nach Konstruktion sichergestellt ist,
dass sich nun am Periodenende alle Flugzeuge auf Flughafen XY Z be�nden müssen und
vorher in der passenden Anzahl N e

s,f von den jeweiligen Flughäfen gekommen sind.

FAP(Opt,Ac1, f, ∗) ≤p FAP(Opt,Ac2, f, ∗):

Wir beschreiben hier nur den Fall, dass für eine Instanz aus FAP(Opt,Ac1, f, ∗) die Vertei-
lung der Flugzeuge zu Periodenbeginn vorgegeben ist. Der Fall, bei dem die Verteilung am
Periodenende vorgegeben ist, verläuft ähnlich.

Mit der Verteilung der Flugzeuge zu Periodenbeginn ist für eine Instanz auch bekannt, wie
viele Flugzeuge sich am Ende der Planungsperiode auf jedem Flughafen be�nden.1 Auf einem
Flughafen s mit Ds startenden und As ankommenden Legs müssen sich bei einer zulässigen
Flottenzuweisung am Periodenende

Es =
∑
f∈F

N b
s,f + As −Ds

Flugzeuge auf Flughafen s aufhalten.

Wir führen nun einen neuen Flughafen XY Z ein. Von jedem Flughafen s starten zum
Zeitpunkt T insgesamt Es neue Legs zum Flughafen XY Z mit Blockzeit 1. Damit wird
o�ensichtlich sichergestellt, dass eine zulässige Zuweisung der transformierten Instanz die
Flugzeuge aller Flotten zum Periodenende auf Flughafen XY Z versammelt, und wir können
die Verteilung der Flugzeuge zum Periodenende angeben:

N e
XY Z,f =

∑
s∈S

N b
s,f

FAP(Opt,Ac1, f, ∗) ≤p FAP(Opt,Ac0, f, ∗):

Wir verfahren hier analog zu dem Fall FAP(Opt,Ac2, f, ∗) ≤p FAP(Opt,Ac1, f, ∗), um die
Verteilung der Flugzeuge am Periodenende zu eliminieren. Die Gesamt�ugzeuganzahl der
einzelnen Flotten berechnet sich wie folgt:

Nf =
∑
s∈S

N e
s,f

FAP(Opt,Ac2, f, ∗) ≤p FAP(Opt, Cy, f, ∗):

Wir eliminieren die Verteilung der Flugzeuge zu Periodenbeginn und zum Periodenende wie im
Fall FAP(Opt,Ac2, f, ∗) ≤p FAP(Opt,Ac1, f, ∗) und benutzen in beiden Fällen den selben
zusätzlichen Flughafen XY Z. Die Gesamt�ugzeuganzahl der einzelnen Flotten berechnet

1 Nur die Gesamtanzahl über alle Flotte ist bekannt!
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sich durch Nf =
∑

s∈S N e
s,f . Jeder Flughafen ist nun balanciert und auf Flughafen XY Z

müssen sich sowohl zum Periodenbeginn als auch zum Periodenende alle Flugzeuge aufhalten.
Damit ist jede zulässige Lösung auch automatisch zyklisch und wir können die Periodenlänge
T der zyklischen Instanz auf T + 2 festsetzen.

FAP(Opt,Ac0, f, ∗) ≤p FAP(Opt, Cy, f + 1, ∗):
Das Problem hier ist, dass wir für die einzelnen Flughäfen nicht wissen, wie viele Flugzeuge
dort insgesamt zum Periodenanfang bzw. -ende warten. Die zyklische Instanz muss in der
Lage sein, genügend Flugzeuge auf allen Flughäfen zur Verfügung zu stellen, ohne genau zu
wissen wie viele das sind.

Dazu führen wir wieder einen zusätzlichen Flughafen XY Z ein, von dem für jeden Flughafen
s zu Periodenbeginn Ds Legs nach s aufbrechen. Zum Periodenende kommen von jedem
Flughafen s As Legs nach XY Z zurück. Ds und As bezeichnen dabei wieder die Anzahl
an Starts bzw. Landungen, die auf Flughafen s statt�nden. Im worst-case benötigt jedes
startenden Leg ein eigenes Flugzeug, so dass die so zur Verfügung gestellten neuen Legs
ausreichen, um genügend Flugzeuge auf jedem Flughafen zur Verfügung zu stellen. Damit
starten und landen auf XY Z jeweils |L| Legs und alle Flughäfen sind balanciert.

Nicht alle neuen Legs können aber von den verfügbaren Flugzeugen gleichzeitig bedient wer-
den. Daher führen wir eine zusätzliche Flotte mit |L| vielen Flugzeugen ein, die ausschlieÿlich
die neu hinzugefügten Legs bedienen kann. Eigentlich nicht benötigte neue Legs werden von
der neuen Flotte bedient, die ansonsten den restlichen Flugplan nicht weiter beein�ussen
kann.

Es ist nun nicht schwer zu zeigen, dass die transformierte zyklische Instanz genau dann
eine Lösung mit Gewinn G besitzt, wenn dies auch für die azyklische Ursprungsinstanz zu-
tri�t. Dabei sind die Flottenzuweisungen der beiden Lösungen bezüglich des ursprünglichen
Flugplans identisch.

Bemerkung 4.2. Nach den Ergebnissen aus Kapitel 3 ist klar, dass FAP(Opt, t, f, ∗) =p

FAP(Opt, t′, f ′, ∗′) für t, t′ ∈ {Cy,Ac,Ac0, Ac1, Ac2} und f, f ′ ≥ 3 gilt, da all diese Klassen
NP-vollständig sind. Allerdings sind die dafür notwendigen Reduktionen sehr wahrscheinlich
nicht so einfach wie die aus Satz 4.1.

4.2 Time Space Network

Liegt für eine Problemklasse P eine Formulierung als (gemischt-ganzzahliges) lineares Pro-
gramm vor, liefern die etablierten Lösungsverfahren der linearen bzw. ganzzahligen linearen
Programmierung direkt ein exaktes Lösungsverfahren für P . In Kapitel 2 haben wir das
Flottenzuweisungsproblem mittels ganzzahliger linearer Programme (Modelle 2.4 und 2.7)
de�niert, so dass wir damit prinzipiell bereits ein Lösungsverfahren für das Flottenzuwei-
sungsproblem angegeben haben. Allerdings haben wir bereits in Kapitel 2 angemerkt, dass
sich diese Modelle wegen ihrer Gröÿe in der Praxis nicht bewährt haben.

Für eine etwas eingeschränktere Klasse von Flottenzuweisungsproblemen de�nieren wir in
diesem Abschnitt nun ein weiteres gemischt-ganzzahliges lineares Modell. Dabei darf das
Flottenzuweisungsproblem



4.2 Time Space Network 57

• keine verbindungsabhängigen Mindestbodenzeiten und

• keine verbindungsabhängigen Gewinne

beinhalten. Daraus folgt, dass die Ankunftszeit eines Legs nur von der Flotte abhängig ist,
die dieses Leg bedient (und nicht auch noch vom Folgeleg). In Abschnitt 4.5 stellen wir ein
von uns neu entwickeltes Modell vor, das auch verbindungsabhängige Mindestbodenzeiten
und verbindungsabhängige Gewinne unterstützt.

Das im Folgenden beschriebene Modell, das so genannte Time Space Network Modell, ist in
[Hane et al., 1995] für zyklische Flottenzuweisungsprobleme eingeführt worden und kann als
das in der Praxis am häu�gsten eingesetzte Verfahren zur Flottenzuweisung im Flugverkehr
angesehen werden. Wie bei den Connection Network Modellen aus Kapitel 2 handelt es sich
bei dem Time Space Network Modell um die IP-Formulierung eines erweiterten ganzzahligen
(Mehrgüter-)Flussproblems.

4.2.1 Zyklisches Modell

Das dem Modell zugrunde liegende gerichtete Flussnetzwerk G = (V, E), Time Space Net-
work genannt, besteht aus folgenden Knoten:

V =
{
(sd

l , f, tdl,f ) ∈ S × F × [T ] | l ∈ L ∧ f ∈ Fl

}
∪{

(sa
l , f, tal,f ) ∈ S × F × [T ] | l ∈ L ∧ f ∈ Fl

}
Bei V handelt es sich um die Menge aller möglichen Flugereignisse, die in einer Flottenzu-
weisung auftreten können. Ein Flugereignis (s, f, t) ∈ S × F × [T ] beschreibt dabei den
Zeitpunkt t eines möglichen Starts oder einer möglichen Ankunft auf Flughafen s von einem
Flugzeug der Flotte f .

Zu einem Ereignis v ∈ V de�nieren wir wie folgt die zu diesem Ereignis gehörenden ankom-
menden (La

v) und ab�iegenden (Ld
v) Leg-Flotten-Kombinationen:

La
v =

{
(l, f) ∈ L × F | v = (sa

l , f, tal,f )
}

Ld
v =

{
(l, f) ∈ L × F | v = (sd

l , f, tdl,f )
}

Wir partitionieren die Knotenmenge in Teilmengen von Ereignissen, die auf dem selben Flug-
hafen s ∈ S für die selbe Flotte f ∈ F statt�nden:

Vs,f = V ∩ {s} × {f} × [T ]

Seien {v0, . . . , vn−1} = Vs,f die Knoten von Vs,f aufsteigend sortiert nach den Ereigniszeit-
punkten. Wir de�nieren zu jedem Knoten v = vi ∈ Vs,f seinen Vorgänger v− = v(i−1) mod n ∈
Vs,f und seinen Nachfolger v+ = v(i+1) mod n ∈ Vs,f . Ferner bezeichnen wir mit vmin

s,f = v0

das frühste Ereignis in Vs,f und mit vmax
s,f = vn−1 das späteste Ereignis.
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Abbildung 4.1: Ausschnitt aus einem Time Space Network (für eine Flotte f). Die fetten
Kanten markieren einen möglichen Flugzeugumlauf.

Die Kantenmenge E des Time Space Networks

E =
{(

(sd
l , f, tdl,f ), (s

a
l , f, tal,f )

)
| l ∈ L ∧ f ∈ Fl

}
∪{

(v, v+) | v ∈ V
}

besteht aus zwei Arten von Kanten. Die erste Art wird Flugkanten genannt, und verbindet das
Startereignis eines Legs l, wenn es von Flotte f bedient wird, mit seinem Ankunftsereignis.
Die zweite Art von Kanten sind die Bodenkanten, die die Ereignisse jeder Vs,f -Teilmenge
zyklisch miteinander verbinden.

Abbildung 4.1 zeigt den Ausschnitt eines Time Space Networks für eine Flotte f . Für jede
weitere Flotte kommt ein ähnliches Netzwerk zum Gesamtnetzwerk hinzu. Wegen unter-
schiedlicher Start- und Blockzeiten und etwaigen Flotteneinschränkungen an Legs können
sich die Teilnetzwerke der einzelnen Flotten topologisch durchaus voneinander unterschei-
den.

Die Güter, die im Time Space Network verschickt werden können, repräsentieren die Flugzeu-
ge der einzelnen Flotten. Ein Fluss von 1 auf einer Flugkante symbolisiert, dass das zugehörige
Leg von der zugehörigen Flotte bedient wird. Bodenkanten überführen auf einem Flughafen
ankommende Flugzeuge zu ihrem nächsten Ab�ugereignis. Da sich auf einem Flughafen zu
einem Zeitpunkt mehrere Flugzeuge aufhalten dürfen, ist die Kapazität der Bodenkanten
unbeschränkt.

Eine Konsequenz daraus ist, dass ein Time Space Network Modell keine Verknüpfung zwi-
schen ankommenden und ab�iegenden Legs berechnet. Wenn über eine Bodenkante ein Fluss
von zwei �ieÿt und am Endknoten ein Flugzeug den Flughafen verlässt, legt das Time Space
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Network Modell nicht fest, welches der beiden Flugzeuge starten soll. Bodenkanten anony-
misieren daher auf einem Flughafen ankommende Flugzeuge.

Die Anzahl der durch einen Fluss im Time Space Network verbrauchten Flugzeuge bestimmen
wir wie im Fall des Connection Networks, indem wir den Gesamt�uss je Flotte über einen
Schnitt zum Periodenbeginn messen. Dazu de�nieren wir für jede Flotte f ∈ F

V ∆
f =

⋃
s∈S

{vmin
s,f }

als die Menge der frühsten Ereignisse einer Flotte. Bodenkanten zu Vorgängern dieser Ereig-
nisse führen über den Schnitt am Periodenanfang. Ferner verbraucht ein Leg l ∈ L, wenn es
von Flotte f ∈ Fl bedient wird, ähnlich wie im Connection Network

∆l,f =

⌊
bl,f + gl,f

T

⌋
+ ρ(tdl,f , t

a
l,f )

viele Flugzeuge.

Das Modell verwendet zwei Klassen von Variablen, die den Fluss auf den Kanten des Time
Space Networks repräsentieren:

yl,f Boolsche Variable, die anzeigt, ob das Leg l von einem Flugzeug der Flotte
f ∈ F bedient werden soll (yl,f = 1) oder nicht (yl,f = 0)

zv,v+ Anzahl zwischen den Ereignissen v = (s, f, t) und v+ auf dem Flughafen
s wartenden Flugzeuge von Flotte f

Das zyklische Flottenzuweisungsproblem lässt sich damit wie folgt formulieren:

Modell 4.3 (Zyklisches Time Space Network).

Maximiere
∑
l∈L

∑
f∈Fl

pl,fyl,f (4.1)

unter den Nebenbedingungen ∑
f∈Fl

yl,f = 1 ∀l ∈ L (4.2)∑
(l,f)∈La

v

yl,f −
∑

(l,f)∈Ld
v

yl,f + zv−,v − zv,v+ = 0 ∀v ∈ V (4.3)

∑
l∈L:f∈Fl

∆l,fyl,f +
∑

v∈V ∆
f

zv−,v ≤ Nf ∀f ∈ F (4.4)

yl,f ∈ {0, 1} ∀l ∈ L, f ∈ Fl (4.5)

zv,v+ ∈ N0 ∀v ∈ V (4.6)

Die Zielfunktion (4.1) maximiert den Gesamtgewinn der Flottenzuweisung. Die Gleichun-
gen (4.2) garantieren, dass jedes Leg von genau einer Flotte bedient wird. Hierüber werden
die aus Graphensicht unabhängigen Teilnetzwerke je Flotte miteinander gekoppelt. Die Glei-
chungen (4.3) sind die normalen Flusserhaltungsgleichungen für jedes Ereignis.
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Die Ungleichungen (4.4) beschränken für jede Flotte die Anzahl verwendeter Flugzeuge. Dazu
wird für jede Flotte der Gesamt�uss �über einen Schnitt zum Zeitpunkt Null� bestimmt.
Dieser setzt sich aus den sich zu diesem Zeitpunkt in der Luft be�ndlichen Flugzeugen
(erste Summe) und den auf den einzelnen Flughäfen wartenden Flugzeugen (zweite Summe)
zusammen.

Die Bedingungen (4.5) de�nieren die verwendeten Flugkanten-Variablen als Boolsch und die
Bedingungen (4.6) de�nieren die Bodenkanten-Variablen als nicht-negativ. Alternativ zu den
Bedingungen (4.6) reicht es dabei, die Bodenkanten-Variablen als

zv,v+ ≥ 0 ∀v ∈ V (4.7)

zu de�nieren, da etwaige fraktionale Anteile nur Teil eines zyklischen fraktionalen Flusses
auf den Bodenkanten eines Flughafens sein können. Ein solcher Teil�uss verbraucht aber
nur entsprechend viele Flugzeuge und stört die eigentliche Flottenzuweisung an Legs nicht
weiter.

Die Menge der Flugereignisse V hat eine Gröÿe kleiner gleich 2|L|·|F|, da jedes Leg-Flotten-
Paar zu zwei Ereignissen gehört. Entsprechend viele Bodenkanten gibt es. In Abschnitt 4.7.2
werden wir zeigen, dass sich diese Anzahl durch ein einfaches Preprocessing immer mindestens
zu |L| · |F| machen lässt. Daraus folgt:

Beobachtung 4.4 (Gröÿe des Time Space Network Modells). Eine Flottenzuweisungsin-
stanz mit Legmenge L und Flottenmenge F erzeugt ein Time Space Network Modell mit
O(|F| · |L|) vielen Variablen und O(|F| · |L|) Nebenbedingungen. O�ensichtlich lässt sich
ein entsprechendes Modell in polynomieller Zeit erzeugen.

Der groÿe Vorteil des Time Space Network Modells im Vergleich zum Connection Network
Modell ist, dass seine Variablenanzahl nur linear mit der Leg- und Flottenanzahl wächst. Dies
macht das Modell selbst für groÿe Instanzen mit tausenden von Legs lösbar.

4.2.2 Azyklisches Modell

Das Time Space Network Modell von [Hane et al., 1995] lässt sich einfach an das azyklische
Flottenzuweisungsproblem anpassen:

• Die Knotenmenge im zugrunde liegenden Flussnetzwerk bleibt unverändert.

• Aus der Kantenmenge werden all die Bodenkanten entfernt, die den Periodenbeginn
enthalten, das heiÿt, alle Kanten (vmax

s,f , vmin
s,f ) (s ∈ S, f ∈ F).

• Der Vorgänger des frühsten Ereignisses eines jeden Flughafens wird auf das Hilfsereignis
∗ gesetzt: (vmin

s,f )− = ∗

• Der Nachfolger des spätesten Ereignisses eines jeden Flughafens wird ebenfalls auf das
Hilfsereignis ∗ gesetzt: (vmin

s,f )+ = ∗

Das azyklische Time Space Network Modell lässt sich damit wie folgt formulieren:
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Modell 4.5 (Azyklisches Time Space Network).

Maximiere
∑
l∈L

∑
f∈Fl

pl,fyl,f (4.8)

unter den Nebenbedingungen ∑
f∈Fl

yl,f = 1 ∀l ∈ L (4.9)∑
(l,f)∈La

v

yl,f −
∑

(l,f)∈Ld
v

yl,f + zv−,v − zv,v+ = 0 ∀v ∈ V (4.10)

∑
v∈V ∆

f

z∗,v ≤ Nf ∀f ∈ F (4.11)

yl,f ∈ {0, 1} ∀l ∈ L, f ∈ Fl (4.12)

zv,v+ ∈ N0 ∀v ∈ V (4.13)

z∗,v ∈ N0 ∀v ∈
⋃
f∈F

V ∆
f (4.14)

Das zyklische und das azyklische Time Space Network Modell unterscheiden sich praktisch
nur in den Ungleichungen (4.11). Im azyklischen Modell wird hier einfach nur der Fluss in je-
den Flughafen aufsummiert, da sich im azyklischen Fall zum Periodenbeginn keine Flugzeuge
in der Luft be�nden können.

Durch eine passende Fixierung der z∗,v- bzw. zv,∗-Variablen lassen sich alternativ zu den
Ungleichungen (4.11) die Flugzeugverteilungen der Flotten auf den einzelnen Flughäfen zu
Periodenbeginn bzw. zum Periodenende vorgeben.

4.3 Lokale Suche Heuristiken

In diesem Abschnitt präsentieren wir von uns entwickelte Lokale Suche Heuristiken für das
Flottenzuweisungsproblem: ein Hill Climbing Verfahren und ein Simulated Annealing Verfah-
ren. Beide Algorithmen verwenden dabei dieselbe Nachbarschaft.

Die Verfahren werden seit einigen Jahren von mehr als zehn internationalen Fluggesellschaften
für ihre Flotteneinsatzplanung verwendet. Dabei haben sie sich auch in der Praxis bewährt,
indem sie zuverlässig pro�table Flottenzuweisungen in kurzer Zeit berechnen konnten.

Die in Abschnitt 4.3.1 beschriebene Nachbarschaft spielt dabei die zentrale Rolle für die
Heuristiken. Im Vergleich zu vielen anderen Optimierungsproblemen ist es beim Flottenzu-
weisungsproblem bereits schwierig,2 überhaupt eine zulässige Lösung zu �nden. Auch das für
eine Lokale Suche Heuristik essentielle Ändern einer existierenden Lösung führt beim Flot-
tenzuweisungsproblem leicht dazu, dass die neue Lösung unzulässig wird. Daher ist die hier
zum Einsatz kommenden Nachbarschaft recht komplex, vor allem im Vergleich zu anderen

2 genauer gesagt NP-vollständig, siehe Kapitel 3
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Optimierungsproblemen wie dem Traveling Salesman Problem, aber dennoch e�zient. Unse-
re Nachbarschaft garantiert, dass eine zulässige Lösung beim Nachbarschaftsübergang nicht
unzulässig wird, und ist auf der anderen Seite ausdrucksvoll genug, um den Lösungsraum
e�ektiv durchsuchen zu können.

Wie auch schon das in Abschnitt 4.2 vorgestellte Time Space Network Modell unterstützen
unsere Heuristiken nicht alle Besonderheiten des in Kapitel 2 de�nierten Flottenzuweisungs-
problems. Es darf

• keine verbindungsabhängigen Mindestbodenzeiten,

• keine verbindungsabhängigen Gewinne,

• keine �ottenabhängigen Startzeiten und

• keine Block- und Mindestbodenzeiten, die länger als die Planungsperiode sind,

beinhalten. Flottenabhängige Startzeiten und lange Block- und Mindestbodenzeiten treten
bei Flottenzuweisungsproblemen in der Praxis sehr selten auf. Damit können die hier be-
schriebenen Heuristiken aus Praxissicht dieselben Probleminstanzen optimieren, wie das Ti-
me Space Network Modell aus Abschnitt 4.2. Wie man die Heuristiken erweitert, um verbin-
dungsabhängige Mindestbodenzeiten zu unterstützen, beschreiben wir in Abschnitt 4.5.

Eine wichtige Einschränkung unserer Heuristiken ist, dass

• eine zulässige Flottenzuweisung für die Eingabeinstanz

bekannt sein muss.3 Je nach Anwendungsfall ist diese Einschränkung unproblematisch bis
nicht-akzeptabel. In der strategischen Planung wird halbjährlich die grobe Flotteneinsatzpla-
nung für die nächste Saison durchgeführt. Dabei ändern sich die Flugpläne für die betrach-
teten Standardplanungsperioden typischerweise von Mal zu Mal kaum. In diesem Fall kann
man also auf die Lösung der vorherigen Planungsperiode zurückgreifen. Auf der anderen Sei-
te muss im Störungsmanagement auf unvorhergesehene Situationen reagiert werden, die die
aktuelle Planung über den Haufen werfen. Hier ist häu�g keine zulässige Lösung bekannt, da
die Hauptaufgabe des Störungsmanagements gerade das Wiederherstellen eines zulässigen
Plans ist.

Ein groÿer Vorteil von Heuristiken im Allgemeinen ist, dass sie meistens nicht darauf ange-
wiesen sind, dass sich die zu lösende Problemstellung gut linearisieren lässt, also in Form von
linearen Ungleichungen und einer linearen Zielfunktion ausdrücken lässt. In Abschnitt 4.6 und
Kapitel 6 sieht man, dass hier unsere Heuristiken linearen Programmen überlegen sind.

Wir beschreiben im Folgenden nur die Vorgehensweise für zyklische Flottenzuweisungsproble-
me. Die Verfahren sind aber auch für die azyklischen Varianten angepasst und implementiert
worden. Die Details sind eher technischer Natur und werden in dieser Arbeit daher nicht
beschrieben.
3 Die Flugzeuganzahlen dürfen dabei durchaus überschritten werden. Allerdings garantieren die Verfahren
dann nicht, dass sie überhaupt eine zulässige Lösung zurückliefern.
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4.3.1 Swap-Change-Nachbarschaft

Das Verändern einer Lösung eines Flottenzuweisungsproblems geschieht dadurch, dass die
Flottenzuweisung von einigen Legs verändert wird. Beim Verändern einer gegebenen zulässi-
gen Lösung für das zyklische Flottenzuweisungsproblem müssen dabei zwei Punkte besonders
beachtet werden:

• Die neue Lösung muss weiterhin bezüglich der Starts und Landungen der einzelnen
Flotten auf den Flughäfen balanciert sein.

• Die vorgegebenen Flugzeuganzahlen je Flotte dürfen nicht überschritten werden.

Dies sind die beiden zentralen Eigenschaften, die die Komplexität des Flottenzuweisungspro-
blems ausmachen.

4.3.1.1 Balanciertheit

Das Ändern der Flottenzuweisung nur eines Legs führt automatisch dazu, dass die neue Zu-
weisung unbalanciert ist. Also muss bei einem Nachbarschaftübergang die Flottenzuweisung
für eine Menge von Legs geändert werden, um die Zulässigkeit zu erhalten. Wir de�nieren
dazu den Begri� der Legfolge.

De�nition 4.6 (Legfolge). Gegeben sei eine zulässige Zuweisung z : L → F , auch aktuelle
Lösung genannt, einer Flottenzuweisungsinstanz.

Eine nicht-leere Folge von Legs F = (l1, . . . , ln), li ∈ L, heiÿt Legfolge (mit n Legs), wenn
gilt:

li 6= lj ∀i 6= j

z(li) = z(lj) ∀i, j ∈ {1, . . . , n}
sa

li
= sd

li+1
∀i ∈ {1, . . . , n− 1}

Wir de�nieren |F | = n als die Länge der Legfolge, sd
F = sd

l1
als den Start�ughafen der

Legfolge und sa
F = sa

ln
als deren Ziel�ughafen. Fi = li bezeichnet das i-te Leg der Legfolge

und z(F ) = z(l1) die der Legfolge zugewiesene Flotte.

Die Legfolge heiÿt balanciert, wenn sd
F = sa

F gilt.

Mit dem Zuweisen einer Flotte f an eine Legfolge F bezeichnen wir Vorgang, die Flotten-
zuweisung aller Legs der Legfolge auf f zu ändern.

Beobachtung 4.7. Durch das Zuweisen einer neuen Flotte f an eine Legfolge F ist garan-
tiert, dass auf allen Flughäfen bis auf den Start- und Ziel�ughafen der Legfolge die �otten-
weise Balancierung der Zuweisung erhalten bleibt.

Die Nachbarschaft unserer Heuristiken ist durch zwei Arten von Nachbarschaftübergängen
de�niert. Der eine Übergang weist einer balancierten Legfolge eine neue Flotte zu und wird
Change-Übergang genannt. Der zweite Übergang tauscht die Flottenzuweisung zweier Leg-
folgen gegeneinander aus und wird Swap-Übergang genannt.
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XYZ

XYZ

balancierte
Legfolge F

alte Flotte

neue Flotte

Abbildung 4.2: Change-Übergang

Change-Übergang Sind bei einer Legfolge F der Start- und Ziel�ughafen identisch
(sd

F = sa
F ), so heiÿt die Legfolge balanciert. Dieser Flughafen wird auch kurz der Flughafen

der (balancierten) Legfolge F genannt.

Weist man nun einer balancierten Legfolge eine neue Flotte zu, so bleibt die Balanciertheit
des Flugplans erhalten; auf dem Start�ughafen der Legfolge, der gleichzeitig auch der Ziel-
�ughafen ist, wird bei der alten Flotte ein Start und eine Landung gelöscht, die bei der neuen
Flotte hinzukommen.

Die Zuweisung einer neuen Flotte an eine balancierte Legfolge wird als Change bezeichnet
(Abbildung 4.2). Ein Change ist der eine Typ von Nachbarschaftsoperation, der in den hier
beschriebenen Lokale Suche Algorithmen verwendet wird.

Swap-Übergang Der andere Typ von verwendeter Nachbarschaftsoperation benutzt zwei
Legfolgen F und G, deren Flotten ausgetauscht werden, d.h. der Legfolge F wird die Flot-
te z(G) von Legfolge G und der Legfolge G wird Flotte z(F ) zugewiesen. Damit dieser
Austausch etwas bewirkt, sollte selbstverständlich z(F ) 6= z(G) gelten.

Um bei diesem Austausch die Balanciertheit des Flugplans zu erhalten, müssen die Legfolgen
F und G ferner folgendes erfüllen:

sd
F = sd

G und sa
F = sa

G

Die Start�ughäfen der Legfolgen müssen, ebenso wie die Ziel�ughäfen, gleich sein. F und G
bilden dann ein balanciertes Legfolgenpaar.

Durch den Austausch wird auf dem Start�ughafen für Flotte z(F ) der Start von Legfolge F
gelöscht, dafür kommt der Start von Legfolge G hinzu; der Flughafen bleibt balanciert. Der
Ziel�ughafen verliert für Flotte z(F ) die Landung von Legfolge F und bekommt dafür die
Landung von Folge G, bleibt also ebenfalls balanciert. Analog gilt dieses für den Start- und
Ziel�ughafen für Flotte z(G).

Diese Nachbarschaftsoperation, der Austausch der Flotten eines balancierten Legfolgenpaars,
wird von nun an als Swap bezeichnet. Abbildung 4.3 stellt den Verlauf eines Swaps nochmals
schematisch dar.
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BBB

Legfolge F

Legfolge G
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Abbildung 4.3: Swap-Übergang

4.3.1.2 Flugzeuganzahl

Die vorgestellten Nachbarschaftsübergänge Swap und Change stellen bisher nur sicher, dass
durch ihre Anwendung die Balanciertheit einer zulässigen Lösung nicht verletzt wird. Dabei
sicherzustellen, dass auch die vorgegebenen Flugzeuganzahlen eingehalten werden, ist auf-
wendiger. Der Trick dabei ist, dass man Legfolgen e�zient derart konstruieren kann, dass
durch das Zuweisen einer neuen Flotte an eine Legfolge auf jedem von der Legfolge besuch-
ten Flughafen keine zusätzlichen Flugzeuge der beiden betro�enden Flotten warten müssen.
Damit kann sich die Gesamt�ugzeuganzahl je Flotte nicht erhöhen, und eine zulässige Zu-
weisung bleibt durch einen Change- bzw. Swap-Übergang zulässig.

Wir beschreiben hier zuerst nur, wie die benötigte Flugzeuganzahl einer Zuweisung von den
Heuristiken bestimmt wird. Die Details, wie diese Informationen auch dazu genutzt werden
können, um bei der Generierung von Legfolgen sicher zu stellen, dass diese keine zusätzlichen
Flugzeuge im Fall einer Neuzuweisung erfordern, ist im Detail in Abschnitt 4.4 beschrieben.

Wartefunktion, 0-Zonen und Inseln Die von einer aktuellen Lösung benötigten Flug-
zeuge der einzelnen Flotten werden wie in Abschnitt 3.3.1 beschrieben mittels der Warte-
funktion bestimmt. Darüber hinaus fasst die Wartefunktion die Legs eines Flughafen/Flotten-
Paars zu Gruppen, den so genannten Inseln, zusammen; alle Legs einer Insel müssen unbe-
dingt untereinander rotationell verknüpft werden, um mit der minimalen Flugzeuganzahl
auszukommen ([Gertsbach and Gurevich, 1977]). Zuerst de�nieren wir dafür:

De�nition 4.8 (0-Zone). Sei W f
s eine Wartefunktion. Die gröÿtmöglichen Intervalle [wk

S, wk
E),

in denen die Funktion Wsf (t) = 0, t ∈ [wk
S, wk

E) ist und für die während der Zeit (wk
S, wk

E)
keine Starts und Landungen erfolgen, heiÿen 0-Zonen. |W f

s | stehe für die Anzahl dieser In-
tervalle und sie seien mit k ∈ {1, . . . , |W f

s |} derart nummeriert, dass wk
S < wl

S für k < l
gilt.
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Während dieser 0-Zonen stehen auf dem Flughafen also keine Flugzeuge zur Verfügung, und
es �nden keine Flugereignisse statt. Da jede Wartefunktion mindestens einmal den Wert Null
annimmt, existiert für jede Wartefunktion mindestens eine 0-Zone.

De�nition 4.9 (Insel). Sei W f
s eine Wartefunktion mit |W f

s | 0-Zonen [wk
S, wk

E). Die |W f
s |

Intervalle [w1
E, w2

S], [w2
E, w3

S], . . . , [w
|W f

s |
E , w1

S] zwischen den 0-Zonen heiÿen Inseln.

Im folgenden werden ein paar o�ensichtliche Eigenschaften von Inseln aufgeführt. Sei [iS, iE]
eine Insel der Wartefunktion W f

s :

• Jedes Flugereignis eines balancierten Flugplans kann genau einer Insel zugeordnet wer-
den, zu der es gehört.

• Es gilt W f
s (t) > 0 für t ∈ [iS, iE), das heiÿt, während einer Insel steht mindestens ein

Flugzeug von Flotte f auf Flughafen s zur Verfügung.

• Zum Beginn der Insel (Zeitpunkt iS) landet (mindestens) ein Flugzeug von Flotte f
auf Flughafen s.

• Zum Zeitpunkt iE startet (mindestens) ein Flugzeug.

• Für zyklische Flottenzuweisungsprobleme gehören zu einer Insel genausoviele Start- wie
Landeereignisse, die Insel ist also balanciert.

Im azyklischen Fall gilt dies für alle Inseln bis auf die zeitlich erste und letzte Insel.
Wenn zu Periodenbeginn bzw. zum Periodenende Flugzeuge auf dem Flughafen warten,
sind die zugehörigen Inseln an der Periodengrenzen nicht balanciert.

Es kann auf einem Flughafen zu einer so genannten entarteten Insel kommen. Ist der Lan-
dezeitpunkt t0 eines Legs identisch mit dem Startzeitpunkt eines anderen und fallen beide
Ereignisse in eine Phase, zu der kein Flugzeug auf dem Flughafen verfügbar ist, bleibt die
Wartefunktion zum Zeitpunkt t0 gleich Null. Trotzdem entsteht eine Insel [t0, t0], eine ent-
artete Insel mit Dauer Null.

Abbildung 4.4 zeigt die Starts und Landungen einer Flotte f auf Flughafen XY Z und die
zugehörige Wartefunktion. Desweiteren sind die resultierenden 0-Zonen und Inseln dargestellt.

4.3.1.3 Generieren eines Nachbarschaftsübergangs

Sowohl Swaps als auch Changes bedienen sich Legfolgen, deren Flottenzuweisung geändert
wird. Diese Legfolgen werden mittels einer eingeschränkten Tiefensuche generiert, Dies ge-
schieht dynamisch während der Suche nach einem Nachbarn im Lokale Suche Optimierer.
Ausgangspunkt für die Generierung einer Legfolge ist dabei immer ein Leg l und eine Flotte
f . l ist das erste Leg der zu generierenden Legfolge F und f ist die neue Flotte, die der
Legfolge zugewiesen werden soll. In einer eingeschränkten Tiefensuche wird F schrittweise
um passende Legs erweitert, bis eine Legfolge gefunden wird, die die Anforderungen an einen
Change- bzw. Swap-Übergang erfüllt.

Auch hierzu �nden sich die Details im Abschnitt 4.4.1.5.
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Abbildung 4.4: Wartefunktion, 0-Zonen und Inseln

4.3.2 Hill Climbing Heuristik

Der Hill Climbing Algorithmus ist einer der einfachsten Lokale Suche Algorithmen. Algorith-
mus 1 zeigt seine prinzipielle Vorgehensweise. Ausgehend von einer initialen Lösung durch-
sucht der Algorithmus die Nachbarschaft der aktuellen Lösung nach einer mit besserem
Gewinnwert. Findet er eine solche, so wird diese zur neuen aktuellen Lösung, ansonsten wird
der Algorithmus beendet.

Algorithmus 1 Hill Climbing Algorithmus
1: S = initiale Lösung
2: while es gibt Nachbarn Snew von S mit P (Snew) > P (S) do
3: S = Snew

4: return S

O�ensichtlich ist die von einem Hill Climbing Algorithmus generierte Lösung ein lokales
Optimum. Die Folge der aktuellen Lösungen hat einen monoton steigenden Gewinnwert und
endet in einem lokalen Maximum (oder �Gipfel�), daher der Name Hill Climber.

Es gibt zwei Varianten des Hill Climbing Algorithmus, die sich darin unterscheiden, welche
bessere Lösung aus der Nachbarschaft der aktuellen Lösung ausgewählt wird:

• die erste im Verlauf der Suche gefundenen bessere Nachbarlösung

• die Nachbarlösung mit dem besten Gewinnwert

Da die Nachbarschaft einer Lösung zumeist sehr groÿ ist, mithin die komplette Durchsu-
chung lange dauert, wird meistens die erste Variante bevorzugt, da sie die geringere Laufzeit
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verspricht. Auch unser Hill Climbing Algorithmus für das Flottenzuweisungsproblem arbeitet
so. Dabei durchsucht er die Nachbarschaft der aktuellen Lösung zwar systematisch, aber in
zufälliger Reihenfolge (siehe Abschnitt 4.4.1.5).

Der groÿe Vorteil des Hill Climbing Algorithmus liegt in seiner geringen Laufzeit, vor al-
lem im Vergleich zu Simulated Annealing oder Tabu Search Ansätzen, da zumeist nach
vergleichsweise wenigen Schritten ein lokales Maximum gefunden wird. Allerdings kann die
Lösungsqualität einer lokal-optimalen Lösung beliebig schlecht sein und der Hill Climbing
Algorithmus ist damit sehr abhängig von der verwendeten initialen Lösung.

4.3.3 Simulated Annealing Heuristik

Die unerwünschte Eigenschaft des Hill Climbing Algorithmus, in einem schlechten lokalen
Optimum enden zu können, hat zu einer ganzen Reihe von Metaheuristiken (Tabu Search,
genetische Algorithmen, . . . ) geführt, die diesen Makel zu beheben versuchen. Um aus lokalen
Optima entkommen zu können, lassen diese Verfahren auch Übergänge zu Nachbarn zu, die
einen schlechteren Gewinnwert besitzen.

Algorithmus 2 Simulated Annealing Algorithmus
1: S = initiale Lösung
2: T = Starttemperatur
3: repeat

4: repeat

5: Snew = Nachbarlösung von S
6: ∆ = P (Snew) - P (S)

7: if (∆ > 0 oder r < e
∆
T ) then

8: S = Snew

9: until Gleichgewichtszustand erreicht
10: Reduziere Temperatur T
11: until keine Verbesserungen mehr erreichbar
12: return S

Eine dieser Metaheuristiken ist Simulated Annealing; es handelt sich dabei eher um eine ganze
Klasse von Algorithmen, die dem allgemeinen Schema von Algorithmus 2 folgen. Sie hat sich
einerseits in der Praxis bei einer groÿen Anzahl von kombinatorischen Optimierungsproblemen
als Lösungsheuristik bewährt, und ermöglicht andererseits durch ihre stochastischen Eigen-
schaften theoretische Aussagen über ihr Konvergenzverhalten [Hájek, 1985, Hájek, 1988].

Im Gegensatz zum Hill-Climber werden mit einer gewissen Wahrscheinlichkeit auch schlech-
tere Nachbarn akzeptiert. Die Wahrscheinlichkeit, mit der dieses passiert, hängt dabei zum
einen vom Maÿ der möglichen Verschlechterung und zum anderen von einem Steuerungspa-
rameter, genannt Temperatur, ab. Je gröÿer die Verschlechterung und je kleiner die Tempe-
ratur, desto geringer ist die Wahrscheinlichkeit, dass ein verschlechternder Nachbarschafts-
übergang akzeptiert wird.

Der Algorithmus iteriert nun dieses Generieren, Akzeptieren bzw. Verwerfen von Übergängen
und senkt dabei im Verlauf die Temperatur immer weiter ab. Dies hat zur Folge, dass zum
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Ende des Algorithmus fast nur noch verbessernde Übergänge akzeptiert werden. Schlieÿlich
wird die letzte im Verlauf des Algorithmus gefundene Lösung als Ergebnis zurückgegeben.

Die verschiedenen Simulated Annealing Varianten unterscheiden sich ihrem Abkühlungssche-
ma: der Art und Weise, wie die Temperatur festgesetzt und verändert wird und wann die
einzelnen Schleifen des Simulated Annealing Algorithmus beendet werden.

In unserer Implementierung verwenden wir ein adaptives Abkühlungsschema, das für Vehicle
Routing Problem in [Osman, 1993] entwickelt worden ist. Dabei wird sowohl die Starttem-
peratur als auch die Abkühlungsgeschwindigkeit derart gewählt, dass sehr gute Lösungen in
akzeptabler Zeit gefunden werden.

4.4 Details zur Swap-Change-Nachbarschaft

Hier beschreiben wir die Details zu der in Abschnitt 4.3 eingeführten Nachbarschaft, die von
den Lokale Suche Verfahren zur Flottenzuweisung verwendet wird. Abschnitt 4.4.1 kümmert
sich ausführlich um die Nachbarschaftsübergänge, wie sie generiert werden und welche Ei-
genschaften sie haben. Da durch die verwendete Nachbarschaft die Gesamt�ugzeuganzahl
einer Lösung kaum gezielt beein�usst werden kann, widmet sich Abschnitt 4.4.2 Methoden,
die versuchen, Lösungen mit weniger Flugzeugen und unterschiedlicher Flottenauslastung zu
�nden.

4.4.1 Nachbarschaft

Die Nachbarn einer aktuellen Lösung lassen sich in den in dieser Arbeit beschriebenen Heu-
ristiken durch die beiden in Abschnitt 4.3.1 beschriebenen Übergänge Change und Swap
erreichen; diese beiden Arten von Übergängen erhalten dabei die Balanciertheit der Lösung.

Sowohl Swaps als auch Changes bedienen sich Legfolgen, deren Flottenzuweisung geändert
wird. Diese Legfolgen werden mittels einer eingeschränkten Tiefensuche generiert. Dies ge-
schieht dynamisch während der Suche nach einem Nachbarn im Lokale Suche Optimierer.

Generiert man diese Legfolgen mehr oder weniger zufällig, hat das zur Folge, dass die Nach-
barschaftsübergänge zwar die Balanciertheit erhalten, die Flugzeuganzahl aber meistens über-
schritten wird; man �ndet mit zufälligen Legfolgen nur sehr selten Übergänge, die zu einer
gültigen Nachbarlösung führen, einer Lösung, die auch die vorgegebene Flugzeuganzahl ein-
hält.

Da aber das Generieren einer Legfolge mittels Tiefensuche ein recht zeitaufwendiger Arbeits-
schritt ist und ein Lokale Suche Algorithmus eine groÿe Anzahl an Nachbarschaftsübergängen
untersuchen muss, um gute Lösungen zu �nden, sollte man im Hinblick auf die Laufzeit des
Algorithmus am besten nur solche Übergänge erzeugen, die gewährleisten, dass die Flugzeu-
ganzahl nicht verletzt wird.

Die Heuristiken verfolgen diesen Weg, indem sie zielgerichtet nur solche Übergänge erzeugen
(bzw. überhaupt erzeugen können), die die Flugzeuganzahl jeder Flotte der aktuellen Lösung
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nicht erhöht; verletzt die aktuelle Lösung die vorgegebene Flugzeuganzahl nicht, so gilt dies
auch nach einem Nachbarschaftsübergang. Die Suche nach Übergängen, insbesondere das
Generieren von passenden Legfolgen mittels Tiefensuche, wird durch diese Vorgabe kaum
erschwert sondern, im Gegenteil, beschleunigt, da sich aus der Vorgabe, keine Flugzeuge
zusätzlich benutzen zu wollen, Beschränkungen für die maximale Dauer von Legfolgen und
für mögliche Anschluss-Legs ableiten lassen, die den Suchbaum der Tiefensuche einschränken.

Allerdings ergibt sich hieraus auch eine unter Umständen unerwünschte Eigenschaft der Nach-
barschaft: Benutzt eine aktuelle Lösung weniger Flugzeuge als vorgegeben, so tun dies auch
alle davon abgeleiteten Lösungen. Ein einmal eingespartes Flugzeug wird (ohne zusätzliche
Maÿnahmen) nie wieder reaktiviert, auch wenn sich dadurch höhere Gewinne erzielen lieÿen.
In den meisten Fällen stellt diese Eigenschaft allerdings keine wirkliche Einschränkung dar,
da eingesparte Flugzeuge die Kosten senken und gerne als Reserve für kurzfristige Störungen
im Flugplan bereitgehalten werden.

Abschnitt 4.4.1.1 beschreibt, wie man Legfolgen grundsätzlich konstruieren muss, damit sie
bei der Verwendung durch Swaps und Changes nicht zu einem Mehrverbrauch an Flugzeugen
führen. Abschnitt 4.4.1.2 legt dar, welche speziellen zusätzlichen Anforderungen ein Change
an die verwendete balancierte Legfolge stellt und Abschnitt 4.4.1.3 tut dies für die bei einem
Swap involvierten Legfolgen. Abschnitt 4.4.1.4 beschreibt wie die Kostenänderung, die über
das Akzeptieren bzw. Verwerfen eines Übergangs im SA-Algorithmus entscheidet, bestimmt
wird, und der letzte Abschnitt 4.4.1.5 geht auf die zufällige Auswahl von Nachbarschafts-
übergängen für die aktuelle Lösung ein.

4.4.1.1 Legfolgen

Die für die beiden Nachbarschaftsübergangsarten Change und Swap benötigten Legfolgen
werden mit einer eingeschränkten Tiefensuche erzeugt. Dabei wird darauf geachtet, dass die
so konstruierten Legfolgen nicht zu einem Flugzeugmehrverbrauch auf den Zwischenstationen
führen, wenn ihnen eine neue Flotte zugewiesen wird.

Eingeschränkte Tiefensuche Sowohl Changes als auch Swaps beruhen darauf, Legfol-
gen eine geänderte Flotte zuzuweisen. In beiden Fällen werden diese Legfolgen nach einem
gemeinsamen Prinzip, der eingeschränkten Tiefensuche, konstruiert. Die Tiefensuche unter-
liegt dabei einer Tiefenbeschränkung tmax und einer Gradbeschränkung gmax.

Als Eingabedaten bekommt die Tiefensuche ein Leg l, dem eine Flotte e = z(l) (alte Flotte)
zugewiesen ist, und eine Flotte f 6= e vorgegeben; l soll das erste Leg in der zu konstruie-
renden Legfolge sein und f stellt die neue Flotte dar, die an die Legfolge zugewiesen werden
soll.

Allgemein muss die konstruierte Legfolge dabei gewährleisten, dass durch die Zuweisung der
neuen Flotte an sie keine zusätzlichen Flugzeuge auf den Zwischenstationen benötigt werden,
sowohl für die alte als auch für die neue Flotte. Weitere spezielle Anforderungen ergeben
sich aus der Art des Übergangs (Change oder Swap) und werden in den entsprechenden
Abschnitten weiter unten beschrieben.
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Die Tiefensuche arbeitet rekursiv und bekommt in jedem Schritt eine Legfolge F übergeben.
Initial besteht diese Legfolge dabei nur aus dem vorgegebenen Leg l. Während jedem Rekur-
sionsschritt wird die Legfolge um ein Leg erweitert. Die Vorgehensweise stellt sich wie folgt
dar:

• Erfüllt die Legfolge F die (von dem Übergang) an sie gestellten Bedingungen, merke
dir diese Legfolge und beende diesen Schritt.

• Besteht die Legfolge aus tmax Legs, so ist die maximale Suchtiefe erreicht; breche
diesen Rekursionsschritt dann ab.

• Ansonsten bestimme das Kandidaten-Intervall [kS, kE] ⊆ [T ], während dem alle mög-
lichen Folgelegs starten müssen, um keinen Mehrverbrauch an Flugzeugen zu verursa-
chen.

• Bestimme die Menge der Kandidaten: alle Legs, die aktuell von der alten Flotte e
ge�ogen werden, während des Kandidaten-Intervalls [kS, kE] vom Ziel-Flughafen sa

F

der Legfolge F starten und auch von der neuen Flotte f ge�ogen werden können.

• Wähle aus der Menge der Kandidaten maximal gmax Legs aus, hänge an die Legfolge
jeweils eines dieser Legs an und führe rekursiv einen Schritt mit der erweiterten Legfolge
durch.

Zwei Punkte der Tiefensuche bedürfen noch weiterer Erklärungen: �Wie bestimmt man das
Kandidaten-Intervall [kS, kE]?� und �Welche gmax Kandidaten wählt man aus, um die Legfolge
zu erweitern?�. Diesen Punkten widmen sich die nächsten beiden Abschnitte.

Kandidaten-Intervall Bei der Tiefensuche spielt das Kandidaten-Intervall eine zentrale
Rolle: es legt auf den Zwischenstationen das Zeitintervall fest, während dem mögliche Fol-
gelegs starten müssen, damit die generierte Legfolge keine zusätzlichen Flugzeuge auf den
Zwischenstationen benötigt. Zur Bestimmung des Kandidaten-Intervalls werden hier die Me-
chanismen aus Abschnitt 4.3.1.2, die Wartefunktionen und Inseln von Flughäfen, verwendet.

Zunächst betrachten wir die Auswirkungen, die das Ändern der Flotte einer Legfolge auf einen
betro�enen Zwischen�ughafen haben. Aus Sicht der alten Flotte e werden zwei Flugereig-
nisse, eine Landung und ein Start, auf der Zwischenstation gelöscht, aus Sicht der neuen
Flotte f kommen diese beiden Flugereignisse neu hinzu. Im Bereich zwischen den beiden
Flugereignissen ändern sich dabei die Werte der Wartefunktion.

Je nach der zeitlichen Lage des Start- und Landeereignisses zueinander ergeben sich die in
Abbildung 4.5 gezeigten Auswirkungen für die Wartefunktion der alten bzw. neuen Flotte.
F|F | stellt das Leg dar, dessen Landeereignis betro�en ist, und k bezeichnet das Leg des
Startereignisses. Dabei wird die Landezeit von F|F | als fest angenommen und ∆W f

XY Z gibt
die Änderungen für die Wartefunktion in Abhängigkeit von der Startzeit von k an. Dies
entspricht der Situation während der Tiefensuche: Für das letzte, fest vorgegebene Leg der
Legfolge F|F | sollen alle passenden Anschlusslegs k gesucht werden.
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Abbildung 4.5: Auswirkungen auf die Wartefunktion von Zwischenstationen beim Ändern der
Flottenzuweisung einer Legfolge

Für die alte Flotte nimmt der Wert der Wartefunktion zwischen Lande- und Startereignis um
eins ab, falls k später startet als F|F | landet; ansonsten nimmt die Wartefunktion zwischen
Start- und Landeereignis um eins zu. Für die neue Flotte f stellt sich die Situation genau
umgekehrt dar.

Durch Änderungen an einer Wartefunktion werden nun genau dann zusätzliche Flugzeuge
erforderlich, wenn ihr Wert wegen der Änderungen in einem Bereich negativ wird: Die War-
tefunktion beschreibt die Anzahl der Flugzeuge einer Flotte, die auf einem Flughafen zur
Verfügung stehen. Eine negative Anzahl ist dabei nicht zulässig und kann nur dadurch aus-
geglichen werden, dass man zusätzliche Flugzeuge der betro�enen Flotte für die gesamte
Periodendauer auf dem Flughafen bereitstellt.

Unter Zuhilfenahme dieser Vorüberlegungen lässt sich nun das Kandidaten-Intervall exakt
bestimmen. Man sucht für ein ankommendes Leg F|F | das Zeitintervall, in dem alle möglichen
Folgelegs starten müssen, um zu keinem Mehrverbrauch an Flugzeugen zu führen.

Alte Flotte Im Falle der alten Flotte werden das Leg F|F | und ein Folgeleg auf der Zwi-
schenstation gelöscht, d.h. wenn das Folgeleg früher startet als F|F | landet werden die Werte
der Wartefunktion in einem Bereich erhöht und wenn das Folgeleg später startet werden die
Werte der Wartefunktion im Bereich zwischen Landung und Start um 1 verringert. Nur der
letzte Fall ist interessant, da dadurch die Wartefunktion ggf. negativ werden kann.

Abbildung 4.6 zeigt das Leg F|F | auf der Zwischenstation, die Insel, zu der F|F | gehört,
und die zugrundeliegende Wartefunktion. Die gestrichelte Linie beschreibt den Verlauf der
Wartefunktion in Abhängigkeit vom Startzeitpunkt des Folgelegs, nachdem F|F | und das
Folgeleg gelöscht worden sind.

Wie man sieht, werden die Werte der Wartefunktion für die alte Flotte negativ, sobald die
Startzeit des Folgelegs gröÿer ist als der Endzeitpunkt der Insel, zu der F|F | gehört. Das
bedeutet, dass aus Sicht der alten Flotte alle Legs, die früher starten, mögliche Folgelegs
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Abbildung 4.6: Rechte Schranke des Kandidaten-Intervalls

sein können. Die Endzeit der Insel von F|F | liefert also die rechte Schranke kE des Kandidaten-
Intervalls.

Neue Flotte Im Falle der neuen Flotte werden das Leg F|F | und ein Folgeleg auf der
Zwischenstation hinzugefügt, d.h. wenn das Folgeleg später startet als F|F | landet werden
die Werte der Wartefunktion in einem Bereich erhöht und wenn das Folgeleg früher startet
werden die Werte der Wartefunktion im Bereich zwischen Start und Landung um 1 verringert.
Nur der letzte Fall ist interessant, da dadurch die Wartefunktion ggf. negativ werden kann.

Abbildung 4.7 zeigt das Leg F|F | auf der Zwischenstation, zu der er hinzugefügt werden
soll und die entsprechende Wartefunktion. Dabei sind zwei Fälle zu unterscheiden: links fällt
der Landezeitpunkt von F|F | in einen Bereich, während dem kein Flugzeug verfügbar ist,
rechts fällt der Landezeitpunkt in den Bereich einer existierenden Insel. Die gestrichelte Linie
beschreibt jeweils den Verlauf der Wartefunktion in Abhängigkeit vom Startzeitpunkt des
Folgelegs, nachdem F|F | und das Folgeleg hinzugefügt worden sind.

Sind zum Landezeitpunkt von F|F | keine Flugzeuge der neuen Flotte verfügbar (Abbildung
4.7 links), führt jedes Folgeleg mit einer kleineren Startzeit zu einem Mehrverbrauch von
einem Flugzeug. In diesem Fall sind aus Sicht der neuen Flotte also nur solche Legs mögliche
Folgeleg-Kandidaten, die später starten als F|F | landet. Die linke Schranke kS des Kandidaten-
Intervalls entspricht folglich der Landezeit von F|F |.

Fällt der Landezeitpunkt von F|F | in den Bereich einer Insel (Abbildung 4.7 rechts), steht
während der Insel ein Flugzeug der neuen Flotte zur Verfügung. Damit kann ein Folgeleg ohne
Auswirkungen auf die Flugzeuganzahl während dieser Insel früher starten als F|F | landet, d.h.
die linke Schranke kS des Kandidaten-Intervalls fällt mit dem Beginn der Insel zusammen, in
die F|F | fällt.
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Symbiose Aus der Situation der alten Flotte lässt sich eine rechte zeitliche Schranke kE

für das Kandidaten-Intervall ableiten, die Situation auf dem Zwischen�ughafen der neuen
Flotte liefert eine linke Schranke kS. Diese beiden Schranken zusammen liefern also das
Kandidaten-Intervall [kS, kE] für das Leg F|F |. Der linke Teil von Abbildung 4.8 stellt diesen
Sachverhalt zusammenfassend dar.

Es bleibt anzumerken, dass die Landezeit von F|F | für die alte und neue Flotte im allgemeinen
verschieden ist. In seltenen Fällen kann dadurch der Fall eintreten, dass das Kandidaten-
Intervall leer ist (Abbildung 4.8 rechts); dann gibt es nur Folgelegs für F|F |, die zu einem
Mehrbedarf an Flugzeugen führen und es lassen sich keine Kandidaten �nden. Die Legdauer
von F|F | muss dabei für die alte Flotte kleiner sein als für die neue Flotte und die Insel der
alten Flotte, zu der F|F | gehört, darf sich nicht viel länger über die Landezeit von F|F | hinaus

F|F |

F|F |

F|F |

F|F |

XYZXYZ

XYZXYZ

kEkS kSkE
Kandidaten-Intervall

leeres Intervall

alte Sub�eet
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neue Sub�eet

Abbildung 4.8: Kandidaten-Intervall
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erstrecken.

Ist das Kandidaten-Intervall nicht leer, so gibt es auch mindestens ein Leg, das währenddessen
vom Zwischen�ughafen mit der alten Flotte startet, nämlich das letzte um kE startende Leg,
das zur Insel von F|F | gehört. Allerdings kann selbst dann die Menge der Kandidaten leer
sein, da die neue Flotte die während des Kandidaten-Intervalls startenden Legs auch �iegen
können muss.

Die mittels Kandidaten-Intervallen konstruierten Legfolgen weisen eine erwähnenswerte Be-
sonderheit auf: sie lassen es auch zu, dass Folgelegs eher starten als ihre Vorgängerlegs landen.
Diese Legfolgen können also nicht von einem Flugzeug nacheinander bedient werden. Dies
ist nur dadurch ohne Flugzeugmehrverbrauch möglich, weil ein bereits auf der Zwischensta-
tion wartendes Flugzeug die Legfolge mit dem Folgeleg fortführt, bevor das Flugzeug des
Vorgängerlegs ankommt.

Kandidaten-Wahl Die Tiefensuche der Legfolgengenerierung unterliegt aus Gründen der
Laufzeit einer Gradbeschränkung, d.h. die Legfolge wird in jedem Rekursionsschritt nur mit
maximal gmax Kandidaten verlängert und weiter untersucht. Stehen mehr Kandidaten zur
Verfügung, so werden nur gmax davon ausgewählt.

Alle Kandidaten sind als gleichwertig zu betrachten, was die Auswirkungen auf die Flugzeu-
ganzahl betri�t, sie führen garantiert nicht zu einem Mehrverbrauch. Deshalb sind verschie-
dene Auswahlstrategien implementiert worden:

RANDOM Es werden rein zufällig gmax Legs aus der Kandidaten-Menge bestimmt.

TIME Es werden die gmax Legs ausgewählt, deren Startzeiten am nächsten an der Landezeit
von F|F | liegen.

BEST Es werden die gmax Legs ausgewählt, die durch eine Flottenänderung von der alten
Flotte e zur neuen Flotte f den pro�tabelsten Ein�uss auf den Gewinn haben, d.h. für
die pl,e − pl,f am kleinsten ist.

4.4.1.2 Change

Beim Change-Übergang wird die Flotte einer balancierten Legfolge geändert. Als Vorgabe
bekommt ein Change dabei ein Leg l und eine Flotte f 6= z(l) geliefert. Ziel des Changes
ist es, eine balancierte Legfolge mit l als erstem Leg zu generieren, der als neue Flotte f
zugewiesen werden kann, ohne dabei mehr Flugzeuge als vorher zu benötigen.

Die Legfolge wird wie im vorherigen Abschnitt 4.4.1.1 beschrieben mittels eingeschränkter
Tiefensuche erzeugt. Eine Bedingung, die ein Change dabei an die Legfolge stellt, ist ihre
Balanciertheit, d.h. die Tiefensuche soll sich nur solche Legfolgen F merken, bei denen Start-
und Ziel�ughafen gleich sind (sd

F = sa
F ).

Mit allein dieser Bedingung liefert die Tiefensuche dann solche Legfolgen, die bei einem
Change die Balanciertheit des Flugplans erhalten und die auf Zwischenstationen nicht zu
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Abbildung 4.9: Change-Übergang

einem Mehrbedarf an Flugzeugen führen. Es muss also nur noch gewährleistet werden, dass
auch auf dem Start-/Ziel�ughafen der Legfolge kein weiteres Flugzeug benötigt wird.

Die Situation bei einem Change stellt sich auf dem Start-/Ziel�ughafen wie in Abbildung
4.9 gezeigt dar. Eine balancierte Legfolge mit l als erstem Leg wird aus der alten Flotte
gelöscht und zu der neuen Flotte f hinzugefügt. Die gestrichelte Linie stellt dabei jeweils
den Verlauf der Wartefunktionen nach dem Change dar. Das Beispiel zeigt den normalen
Fall, bei dem der Landezeitpunkt der Legfolge hinter dem Startzeitpunkt liegt. Hierbei steht
nach dem Change während der Dauer der Legfolge ein zusätzliches Flugzeug der alten Flotte
zur Verfügung und für die neue Flotte wird währenddessen ein Flugzeug benötigt.

Das bedeutet, dass in diesem Fall ein Mehrbedarf an Flugzeugen nur für die neue Flotte
entstehen kann. Um dem entgegenzuwirken, muss während der gesamten Dauer der Legfolge
auf dem Start-/Ziel�ughafen ein Flugzeug der neuen Flotte verfügbar sein, oder anders
ausgedrückt: Die Startzeit der Legfolge (und damit die Startzeit des ersten Legs l) muss
in den Bereich einer bestehenden Insel für die neuen Flotte f fallen und die Legfolge darf
maximal bis zum Ende dieser Insel andauern. Diese Situation wird auch in Abbildung 4.9
dargestellt.

Damit ergeben sich die endgültigen Bedingungen, die ein Change an die Legfolgen stellt, die
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von der Tiefensuche generiert werden:

• Die Legfolge muss balanciert sein.

• Die Legfolge darf höchstens so lange dauern, wie die Insel der neuen Flotte, in die die
Startzeit des ersten Legs l fällt.

Steht zum Startzeitpunkt von l für die neuen Flotte kein Flugzeug zur Verfügung, wird die
Tiefensuche erst gar nicht gestartet; es lässt sich keine Legfolge �nden, die nicht zu einem
Mehrbedarf an Flugzeugen führt. Ferner wird die Tiefensuche durch die Beschränkung der
Legfolgendauer nochmals eingeschränkt: Es werden nur solche Kandidaten zur Verlängerung
der Legfolge herangezogen, deren Landezeit innerhalb der maximalen Legfolgendauer liegt; im
Ende�ekt wird dadurch bereits die Dauer der Legfolgen begrenzt und gleichzeitig vermieden,
Legfolgen, die eh schon zu lange dauern, weiter zu verlängern.

Bei allen obigen Überlegungen ist ein Aspekt der mittels Tiefensuche generierten Legfolgen
unberücksichtigt geblieben: Auf Zwischenstationen können Folgelegs früher starten als ihre
Vorgängerlegs landen. Dadurch ist es möglich, dass sich die Dauer einer Legfolge durch das
Hinzufügen weiterer Legs insgesamt verkürzt. Dies kann soweit gehen, dass eine Legfolge
früher landet als sie startet.

Standardmäÿig werden solche Legfolgen für Changes nicht erzeugt, indem gefordert wird,
dass die Landezeit aller Kandidaten gröÿer sein muss als die Startzeit der Legfolge selbst.
Optional kann diese Beschränkung allerdings aufgehoben werden, es ergibt sich dabei aber
eine neue Zeitbarriere: Landet die Legfolge früher als sie startet, wird durch den Change
im Bereich zwischen Landung und Start für die alte Flotte ein Flugzeug erforderlich,4 d.h.
der Anfangszeitpunkt der Insel der alten Flotte, zu der l gehört, ist der frühestmögliche
Landezeitpunkt der Legfolge.

4.4.1.3 Swap

Der Swap-Übergang tauscht die Flotten der Legfolgen eines balancierten Legfolgenpaars
untereinander aus. Wie der Change-Übergang bekommt er dabei als Vorgabe ein Leg l und
eine Flotte f 6= z(l) übergeben. Ziel ist es dabei, zu einer zu generierenden Legfolge mit
l als erstem Leg eine passende Legfolge, die von Flotte f bedient wird, zu �nden, so dass
beide Legfolgen ein balanciertes Legfolgenpaar bilden und sich beim Austausch ihrer beiden
Flotten kein Flugzeugmehrbedarf einstellt.

Ein Swap benötigt also zwei Legfolgen. Sie werden nacheinander mittels eingeschränkter
Tiefensuche erzeugt. Zuerst wird nach einer Legfolge E mit l als erstem Leg gesucht, an die
Flotte f zugewiesen werden kann. An die Legfolge E werden keine besonderen Bedingungen
gestellt, auÿer der, dass sie möglichst aus tmax Legs bestehen soll.

Die zweite zu generierende Legfolge F , die aktuell von Flotte f ge�ogen wird und an die
Flotte e = z(l) zugewiesen werden soll, muss nun mit E bzw. einem Teil von E ein ba-
lanciertes Legfolgenpaar bilden. Abbildung 4.10 zeigt oben die Legfolge E und unten einen

4 Bei der neuen Flotte kommt währenddessen ein zusätzliches Flugzeug hinzu.
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Abbildung 4.10: Swap-Übergang

Suchbaum, der bei der Tiefensuche nach F auftreten kann. Die gestrichelten Legs bilden
dabei ein mögliches balanciertes Legfolgenpaar; dabei werden nur die ersten 4 Legs von E
benutzt. Als Mindestvoraussetzung muss F folglich auf dem Start�ughafen von E (und damit
von l) starten und auf einem der Ziel�ughäfen der Legs aus E landen.

Obige Vorgehensweise garantiert, dass die Balanciertheit des Flugplans erhalten bleibt. Da-
mit ferner die Flugzeuganzahl durch den Swap nicht erhöht wird, müssen die Start- und
Landezeiten der beiden Legfolgen aneinander angepasst sein.5 Ähnlich wie beim Kandidaten-
Intervall der Tiefensuche lassen sich aus der Startzeit von E bzw. den Landezeiten der Legs
von E Intervalle ableiten, in denen die Start- bzw. Ziellegs von F liegen müssen, damit das
balancierte Legfolgenpaar beim Swap keine zusätzlichen Flugzeuge erforderlich macht. Wie
man diese Intervalle genau bestimmt, ist weiter unten beschrieben.

Die Suche nach der zweiten Legfolge F verläuft nun wie folgt:

• Für jedes Leg k der Legfolge E wird das Intervall Ik bestimmt, während dem eine
potentielle zweite Legfolge F landen muss, um keinen Flugzeugmehrverbrauch zu ver-
ursachen. Alle Legs, die während des Intervalls Ik auf dem Ziel�ughafen von k landen
und die mit Flotte f ge�ogen werden, werden als mögliche Ziellegs der zweiten Legfolge
F mit k markiert.

• Mittels der Startzeit von E wird das Intervall I bestimmt, während dem F starten
muss. Mit allen Legs, die während des Intervalls I vom Start�ughafen von F starten
und die mit Flotte f ge�ogen werden, wird eine Tiefensuche gestartet. Dabei wird an
die zu generierenden Legfolgen die Bedingung gestellt, dass sie mit einem im ersten
Punkt markierten Zielleg enden müssen.

In Abbildung 4.10 sind die Legs von E mit den Zahlen von 1 bis 5 bezeichnet. Im Suchbaum
von F �nden sich diese Bezeichner an den markierten Ziellegs. Alle Pfade von der Wurzel zu

5 Die Tiefensuche garantiert, dass auf den Zwischenstationen der beiden Legfolgen kein Mehrbedarf an
Flugzeugen entsteht.



4.4 Details zur Swap-Change-Nachbarschaft 79

�����
�����
�����
�����

�����
�����
�����
�����

1

0

−1

BBB
∆W f

BBB

Abbildung 4.11: Verschieben eines Landeereignisses

einem dieser markierten Ziellegs stellen mögliche Legfolgen dar, die zusammen mit E bzw.
einem Pre�x davon ein balanciertes Legfolgenpaar ohne Flugzeugmehrverbrauch bilden.

Bevor die Intervalle, in denen die Start- bzw. Ziellegs liegen müssen, genauer beschrieben
werden, folgen noch zwei Anmerkungen zur e�zienten Implementierung von Swaps:

• Die Menge möglicher Startlegs von F ergibt sich aus der Startzeit der Legfolge E
und damit des Legs l, sie lässt sich also schon vor der Generierung von E bestimmen.
Ist diese Menge leer, kann kein Swap gefunden werden und E braucht erst gar nicht
erzeugt zu werden.

• Weiter oben wurde erwähnt, dass an die Legfolge E keine besonderen Bedingungen
gestellt werden. Mit der Kenntnis, wie die Suche nach der zweiten Legfolge verläuft,
sollte aber die Legfolge E zumindest ein Zielleg markieren, da sonst während der
zweiten Tiefensuche keine gültigen Legfolgen gefunden werden können.

Ziellegs Bei der Suche nach möglichen Ziellegs der zweiten Legfolge eines Swaps stellt
sich einem folgende Ausgangssituation dar: Für ein bekanntes Leg k der ersten Legfolge
E sollen alle möglichen Legs bestimmt werden, die für die zweite Legfolge als letztes Leg
(Zielleg) in Frage kommen; sie müssen aktuell von Flotte f ge�ogen werden, den selben
Ziel�ughafen wie k besitzen und zeitlich so zu k passen, dass auf dem Ziel�ughafen weder
für die Flotte e noch für f ein Mehrbedarf an Flugzeugen entsteht.

Bei einem Swap wird auf dem Ziel�ughafen für die Flotte e bzw. f das Landeereignis eines
Legs gelöscht, und dafür kommt das Landeereignis eines anderen Legs hinzu. Aus der Sicht
des Flughafens spielen aber nur die Zeitpunkte, zu denen Flugereignisse statt�nden, eine
Rolle, die sie verursachenden Legs sind nicht relevant. Folglich können die Auswirkungen
eines Swaps auf den Ziel�ughafen auch als zeitliches Verschieben eines Landeereignisses
interpretiert werden.

Abbildung 4.11 zeigt die Konsequenzen, die sich aus dem Verschieben von Landeereignissen
für die Wartefunktion des entsprechenden Flughafens ergeben. Kritisch in Bezug auf die
Flugzeuganzahl sind demnach solche Verschiebungen, bei denen das Landeereignis später zu
liegen kommt, da hierdurch der Wert der Wartefunktion in einem Bereich um 1 kleiner wird.
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Abbildung 4.12: Intervall der Ziellegs eines Swaps

Daraus ergibt sich das Intervall, in dem die Landezeiten möglicher Ziellegs liegen müssen, wie
in Abbildung 4.12 gezeigt. Die rechte Grenze wird dabei durch die Situation für die Flotte e
vorgegeben. Hier wird das Landeereignis des Legs k zu dem Landeereignis eines Ziellegs hin
�verschoben�; das Landeereignis des Ziellegs darf dabei nur dann später eintreten, wenn es
innerhalb der Insel bleibt, zu der k gehört.

Die linke Grenze des Zielleg-Intervalls wird durch die Situation für Flotte f bestimmt. Hier
wird das Landeereignis eines Ziellegs zum Landeereignis von k hin �verschoben�;6 kritisch
wird es hier also, wenn das Zielleg früher landet als Leg k. Dies ist nur erlaubt, wenn das
Landeereignis von Leg k in eine bestehende Insel von Flotte f fällt, und auch dann nur bis
zum Beginn dieser Insel (Abbildung 4.12 links). Ansonsten stellt der Landezeitpunkt von k
selbst die linke Grenze des Intervalls dar (Abbildung 4.12 rechts).

Da die Zielleg-Intervalle auf den Landezeiten von Legs beruhen, die je nach Flotte unter-
schiedlich sein können, kann hier, ähnlich wie bei den Kandidaten-Intervallen aus Abschnitt
4.4.1.1, der Fall eintreten, dass ein leeres Intervall entsteht; dann gibt es für Leg k keine
passenden Ziellegs. Aber selbst wenn das Zielleg-Intervall nicht leer ist, kann es sein, dass
währenddessen auf dem Ziel�ughafen keine Legs mit Flotte f landen.

Startlegs Bei der Suche nach möglichen Startlegs der zweiten Legfolge eines Swaps stellt
sich einem folgende Ausgangssituation dar: Für das vorgegebene erste Leg l der Legfolge
E sollen alle möglichen Legs bestimmt werden, die für die zweite Legfolge als erstes Leg
(Startleg) in Frage kommen; sie müssen aktuell von Flotte f ge�ogen werden, denselben
Start�ughafen wie l besitzen und zeitlich so zu l passen, dass auf dem Start�ughafen weder
für die Flotte e noch für f ein Mehrbedarf an Flugzeugen entsteht.

Bei einem Swap wird auf dem Start�ughafen für die Flotte e bzw. f das Startereignis ei-
nes Legs gelöscht, und dafür kommt das Startereignis eines anderen Legs hinzu. Analog zu
den Landeereignissen bei Ziellegs kann dies aus der Sicht des Flughafens als das zeitliche
Verschieben eines Startereignisses angesehen werden. Wie aus Abbildung 4.13 ersichtlich ist,
führt dabei ein Vorverlegen eines Startereignisses dazu, dass die Werte der Wartefunktion in
dem Bereich der Verschiebung um 1 abnehmen. Vorverlegungen führen also zu einem Flug-
zeugmehrbedarf, wenn sie über die Insel, zu der das Startereignis gehört, hinaus durchgeführt
werden.
6 In diesem Fall ist also das Ziel der Verschiebung bekannt (k), nicht aber der Start (Zielleg).
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Die Situation bei Startereignissen ist also genau entgegengesetzt zur Situation bei Landeereig-
nissen. Folglich vertauschen bei der Bestimmung des Startleg-Intervalls die beiden Flotten
ihre Rollen; Flotte e liefert die linke Grenze und Flotte f die rechte (Abbildung 4.14).

Der Beginn der Insel, zu der das Startleg l der ersten Legfolge gehört, liefert die linke Schranke
des Startleg-Intervalls, da das Startereignis von l nicht darüber hinaus vorgezogen werden
kann, ohne die Wartefunktion von Flotte e negativ zu machen. Leg l stellt für Flotte f das
Ziel der Verschiebung des Startereignisses dar, Startlegs können also ohne Bedenken früher
starten. Spätere Startzeiten sind nur erlaubt, wenn währenddessen auf dem Start�ughafen ein
Flugzeug von Flotte f verfügbar ist, die rechte Grenze des Startleg-Intervalls wird demnach
durch den Startzeitpunkt von l oder, falls der Start von l in eine existierende Insel von Flotte
f fällt, durch das Ende eben dieser Insel festgelegt.

Das Startleg-Intervall kann im Gegensatz zum Zielleg-Intervall nicht leer sein, da die Start-
zeiten aller Legs unverändert bleiben, egal mit welcher Flotte sie ge�ogen werden. Trotzdem
ist es möglich, dass im Startleg-Intervall keine Legs vom Start�ughafen mit Flotte f starten;
es kann dann kein balanciertes Legfolgenpaar ohne Flugzeugmehrbedarf existieren, bei dem l
das erste Leg der einen Legfolge ist und dessen andere Legfolge von Flotte f ge�ogen wird.

4.4.1.4 Auswirkung auf die Gewinnfunktion

Die Entscheidung, ob ein Nachbarschaftsübergang von einem Lokale Suche Algorithmus
akzeptiert oder verworfen wird, wird anhand der Änderung ∆P der Gewinnfunktion, die
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durch den Übergang bewirkt wird, getro�en. Der Wert von ∆P muss also für jeden Übergang
bestimmt werden.

Sowohl ein Change als auch ein Swap weisen einer Menge von Legs M ⊂ L neue Flotten
zu. Für ein Leg l ∈ M sei ẑ(l) ∈ F diese neue Flotte. Da der Gewinn eines Legs allein von
der das Leg �iegenden Flotte bestimmt wird, ergibt sich die Gewinnsdi�erenz eines Changes
bzw. Swaps einfach aus

∆P =
∑
l∈M

(
pl,ẑ(l) − pl,z(l)

)
,

wobei es sich bei den einzelnen Gewinnen um vorgegebene konstante Werte handelt.

4.4.1.5 Wahl eines Nachbarn

In jedem Schritt eines Lokale Suche Algorithmus muss für die aktuelle Lösung ein zufälliger
Nachbar erzeugt und bewertet werden. Im Falle der Swap-Change-Nachbarschaft muss man
sich bei der Wahl eines Nachbarn zuerst auf die Art des Übergangs (Change oder Swap)
festlegen. Sowohl bei einem Change (l, f)C als auch bei einem Swap (l, f)S müssen dann
ein Leg l und eine neue Flotte f ausgewählt werden. l soll das erste Leg einer Legfolge sein,
deren alte Flotte e gegen Flotte f ausgetauscht werden soll. Im Falle eines Changes ist die
Legfolge balanciert und im Falle eines Swaps muss noch eine weitere passende Legfolge,
ge�ogen von Flotte f , gesucht werden, der Flotte e zugewiesen wird.

Dabei kann es passieren, dass die Tiefensuche keine entsprechenden Legfolgen �nden kann,
die die Bedingungen erfüllen, die der Change bzw. Swap an sie stellen. In diesem Fall müssen
solange andere Vorgaben (l, f)X ausgewürfelt werden, bis sich daraus ein gültiger Übergang
generieren lässt.

Häu�ger tritt jedoch der Fall ein, dass für eine Vorgabe (l, f)X während der Tiefensuche
mehrere gültige Übergänge gefunden werden. Eine Vorgabe (l, f)X steht damit nicht für einen
speziellen Nachbarschaftsübergang sondern für eine Gruppe von Übergängen mit ähnlichen
Eigenschaften. Aus dieser Gruppe muss dann einer dieser Übergänge ausgewählt werden. In
den Lokale Suche Heuristiken sind dazu verschiedene Varianten implementiert worden. Sie
wählen folgenden Übergang aus:

• den ersten gefundenen Übergang (FIRST)

• den Übergang mit der besten Gewinndi�erenz ∆P (BEST)

• den ersten Übergang mit positiver Gewinndi�erenz; falls kein solcher existiert, den mit
der besten Gewinndi�erenz (ACCEPT)

• den ersten Übergang, dessen Gewinndi�erenz oberhalb eines vorgegebenen Wertes liegt
(BETTER)

FIRST Soll der erste gefundene Übergang ausgewählt werden, kann die Tiefensuche abge-
brochen werden, sobald ein gültiger Übergang generiert ist. Diese Wahl stellt damit
die schnellste Methode dar, einen Nachbarschaftsübergang zu �nden.
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Kombiniert man dies mit einer zufälligen Auswahl von Folgeleg-Kandidaten während
der Tiefensuche (Abschnitt 4.4.1.1), werden rein zufällige Nachbarschaftsübergänge
erzeugt.

BEST Dieses (wie auch die folgenden) Auswahlverfahren sucht im Rahmen der Vorgabe
(l, f)X zielgerichtet nach �guten� Nachbarschaftsübergängen, die eher akzeptiert wer-
den.

BEST wählt dabei den Übergang mit der besten Gewinndi�erenz ∆P aus. Dafür muss
während der Tiefensuche der Suchbaum vollständig abgearbeitet werden, diese Metho-
de braucht für die Generierung von Übergängen also am längsten.

ACCEPT Ein Übergang wird auf jeden Fall dann akzeptiert, wenn seine Gewinndi�erenz
positiv ist. Sobald ein solcher Übergang gefunden ist bricht diese Methode die Tie-
fensuche ab, ansonsten arbeitet sie wie BEST. Dadurch wird zu einer Vorgabe (l, f)X

genau dann ein akzeptierender Übergang gefunden, wenn dies auch die BEST-Auswahl
tun würde.

Vor allem zu Beginn der Lokale Suche Algorithmen, wenn es noch viele Übergänge mit
positiver Gewinndi�erenz gibt, beschleunigt ACCEPT die Generierung von Übergängen
gegenüber BEST.

BETTER Neben der Vorgabe (l, f)X wird hierbei während der Generierung eines Übergangs
noch eine Schranke S vorgegeben, die die Gewinndi�erenz eines Übergangs überschrei-
ten muss. Sobald ein solcher Übergang gefunden ist, wird die Tiefensuche abgebrochen,
ansonsten wird kein Übergang zurückgeliefert.

Diese Auswahlmethode ist in erster Linie für den Hill Climbing Algorithmus implemen-
tiert worden; hierbei wird S auf 0 gesetzt, da nur verbessernde Nachbarschaftsüber-
gänge interessieren. Sie lässt sich aber auch für den Simulated Annealing Algorithmus
verwenden: Man legt dabei vor der Generierung des Übergangs fest, welche Gewinn-
di�erenz man noch akzeptieren will, und setzt dazu

S = T · ln(random) mit zufälligem random ∈ [0, 1),

wobei T für die aktuelle Temperatur im Simulated Annealing Algorithmus steht. Wird
ein entsprechender Übergang gefunden, so gilt für dessen Gewinndi�erenz

∆P > S = T · ln(random) ⇐⇒ e
∆P
T > random,

die Schranke wird demnach gemäÿ Boltzmann-Verteilung festgelegt.

Wie bei ACCEPT wird hierbei genau dann ein akzeptierender Übergang gefunden, wenn
auch BEST einen �nden würde. Die Tiefensuche wird aber frühestmöglich abgebrochen.

Die sich aus den Vorgaben (l, f)X ergebene Nachbarschaft einer Lösung ist riesig. Dement-
sprechend groÿ ist auch die Anzahl an Iterationen, die ein Lokale Suche Algorithmus durch-
führen muss, um gute Lösungen zu �nden. Eine schnelle Konvergenzrate ist im Hinblick auf
die Gesamtlaufzeit vorteilhaft. Die zielgerichtete Suche nach akzeptierenden Übergängen,
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wie sie von den Auswahlverfahren BEST, ACCEPT und BETTER betrieben wird, führt zu
einer schnelleren Konvergenzrate im SA-Algorithmus.

Zusätzlich wird der Lösungsraum zwar zufällig, aber systematisch durchsucht. Dazu werden
alle möglichen Vorgaben (l, f)X in einer Liste gespeichert, die zufällig permutiert wird. Die
zur Generierung von Nachbarn nötigen Vorgaben werden nun nacheinander aus der Liste
gewählt; kommt man dabei an das Ende der Liste, wird diese erneut zufällig permutiert und
man beginnt von vorne.

4.4.2 Flugzeuganzahl

Die Flugzeuganzahl ist bei den in dieser Arbeit beschriebenen Lokale Suche Algorithmen ein
kritischer Faktor. Durch beliebige Nachbarschaftsübergänge steigt die benötigte Flugzeugan-
zahl unkontrolliert stark an, sie lässt sich aber andererseits nur schwer verringern.

Allgemein macht die Beschränkung der Flugzeuganzahl das Fleet Assignment zu einem
schweren Problem; ein besonderer Grund, warum Lokale Suche-Verfahren davon betro�en
sind, liegt darin, dass das Verringern der Flugzeuganzahl im Verhältnis zur Nachbarschaft
ein eher globales Ereignis darstellt, das sich kaum durch einzelne unkoordinierte Übergänge
erreichen lässt.

Die Übergänge der Swap-Change-Nachbarschaft garantieren, dass durch sie keine zusätzli-
chen Flugzeuge erforderlich werden. Es gibt aber Situationen, in denen man die Flugzeugan-
zahl einer Lösung gezielt verringern oder den Flugzeugbedarf einer Flotte auf Kosten einer
anderen Flotte verkleinern möchte:

• Überschreitet die Initiallösung eines Fleet Assignment Problems die vorgegebene Flug-
zeuganzahl, so muss diese verringert werden, um überhaupt zulässige Lösungen zu
�nden.

• Arbeitet man mit einer Kostenfunktion, die auch die �xen Kosten der tatsächlich einge-
setzten Flugzeuge berücksichtigt, oder will man allgemein möglichst wenig Flugzeuge
einsetzten, müssen auch Lösungen untersucht werden, die weniger Flugzeuge als vor-
gegeben benötigen und Flotten unterschiedlich stark auslasten.

Zu diesem Zweck sind in den Lokale Suche Algorithmen spezielle Verfahren implementiert
worden, die versuchen, die Flugzeuganzahl einer Lösung insgesamt zu verringern oder ein von
einer Flotte benötigtes Flugzeug in eine andere Flotte zu verschieben. Letzteres Verfahren
dient dabei zum einen dazu, eine Lösung, die von einzelnen Flotten zu viele Flugzeuge
benötigt und andere Flotten noch nicht vollständig auslastet, gültig zu machen. Zum anderen
kann damit für Lösungen mit ungenutzten Flugzeugen die Auslastung der einzelnen Flotten
geändert werden, beispielsweise können gezielt Flugzeuge kostenträchtiger Flotten eingespart
werden.

Beide Verfahren können optional aktiviert werden, wobei sie periodisch, normalerweise nach
jeder Temperaturstufe im SA-Algorithmus, aufgerufen werden. Sie sind damit nicht Teil der
eigentlichen Nachbarschaft der Lokale Suche Heuristiken.
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Abbildung 4.15: Eine Flotte vs. Mehrere Flotten

4.4.2.1 Verringern der Flugzeuganzahl

Das Verfahren zur Verringerung der Flugzeuganzahl stützt sich auf den in Abschnitt 4.7.1.1
erläuterten Vergleich von Lösungen mit einer und mehreren Flotten. Die Flugzeuganzahl, die
der Flugplan benötigt, wenn er nur mit der einen virtuellen Flotte f̃ ge�ogen wird, stellt eine
untere Schranke für die Flugzeuganzahl im Mehr-Flotten-Fall dar. Stimmt die Gesamtanzahl
an Flugzeugen einer Lösung mit mehreren Flotten mit dieser unteren Schranke überein, kann
die Flugzeuganzahl nicht weiter verringert werden.

Ansonsten besteht die Möglichkeit, dass die Flugzeuganzahl einer Lösung reduziert werden
kann. Die im Vergleich zur virtuellen Flotte zusätzlich benötigten Flugzeuge werden dadurch
verursacht, dass durch die Aufteilung auf verschiedene Flotten Legs die gemäÿ virtueller
Flotte richtigen Anschlusslegs nicht erreichen können, da sie verschiedenen Flotten zugeteilt
sind. Abbildung 4.15 zeigt ein einfaches Beispiel.

Flughäfen, auf denen so etwas passiert, lassen sich einfach ermitteln, wenn man die Summe
der wartenden Flugzeuge aller Flotten zum Periodenende mit der Anzahl der wartenden Flug-
zeuge der virtuellen Flotte vergleicht. Ist die Summe gröÿer, können auf diesem Flughafen
möglicherweise Flugzeuge eingespart werden. Im Beispiel ist die Anzahl der wartenden Flug-
zeuge auf Flughafen XYZ zum Periodenende für die virtuelle Flotte 0, während die Summe
für die zwei Flotten f1 und f2 1 ist.

Auf solchen Flughäfen wartet zu jedem Zeitpunkt der Standardperiode mindestens ein Flug-
zeug, allerdings nicht immer ein Flugzeug derselben Flotte. Die Wartezeit, die sich über die
gesamte Standardperiode erstreckt, teilt sich auf verschiedene Flotten auf. Ziel ist es nun,
diese Wartezeit bei einer Flotte zu kumulieren, d.h. von dieser Flotte wartet dann während
der gesamten Standardperiode ein Flugzeug auf dem Flughafen, welches eingespart werden
kann.

Anschaulich gesprochen müssen dazu alle 0-Zonen einer Flotte auf dem betro�enen Flughafen
aufgefüllt werden. Ein Change bewirkt für die alte Flotte, dass die Werte der Wartefunktion
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Abbildung 4.16: Einsparen eines Flugzeugs

zwischen Start und Landung des Changes um 1 gröÿer werden. Überbrückt der Change dabei
eine oder mehrere 0-Zonen der alten Flotte, werden diese aufgefüllt. Ein solcher Change lässt
sich recht häu�g �nden, da während des Zeitraums der 0-Zonen irgendein Flugzeug einer
anderen Flotte auf dem Flughafen zur Verfügung steht. Abbildung 4.16 zeigt, wie durch
einen Change die einzige 0-Zone von Flotte f2 aufgefüllt wird und dass dadurch die benötigte
Flugzeuganzahl um 1 sinkt.

Das Verfahren zum Verringern der Flugzeuganzahl verläuft nun folgendermaÿen:

• Es werden alle Flughäfen bestimmt, auf denen potentiell Flugzeuge eingespart werden
können, indem die Anzahl der zum Periodenende wartenden Flugzeuge für die virtuelle
Flotte mit der Summe der Flugzeuganzahlen der aktuellen Lösung verglichen wird.

• Auf jedem dieser Flughäfen wird nacheinander für jede Flotte versucht, ihre 0-Zonen
durch Changes aufzufüllen; wenn dies gelingt, konnte ein Flugzeug eingespart wer-
den und der Vorgang wird solange wiederholt, bis sich die Flugzeuganzahl nicht mehr
verringern lässt.

Die Suche nach einem Change, der eine 0-Zone überbrückt, verläuft recht e�zient; bei der
anderen am Change beteiligten Flotte, der neuen Flotte, muss für die Dauer der 0-Zone
ein Flugzeug zur Verfügung stehen, was die Wahl möglicher neuer Flotten einschränkt. Der
Beginn der Insel der neuen Flotte bestimmt dabei, welche Legs der alten Flotte als Startleg
für den Change in Frage kommen; ihre Startzeit muss innerhalb der Insel der neuen Flotte
liegen. Für jedes dieser Legs wird mittels Tiefensuche nach einem Change gesucht, der die
0-Zone überbrückt.

4.4.2.2 Verschieben von Flugzeugen

Das Verschieben von Flugzeugen arbeitet so ähnlich wie das Verringern der Flugzeuganzahl.
Für eine Flotte, die ein Flugzeug weniger benötigen soll, werden alle 0-Zonen eines Flughafens
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durch Changes aufgefüllt. Dabei darf sich der Flugzeugbedarf einer anderen Flotte einmal
um 1 erhöhen. Dadurch bleibt die Flugzeuganzahl insgesamt gleich.

Bei der Wahl des Flughafens, auf dem ein Flugzeug verschoben werden soll, werden solche
Flughäfen bevorzugt, auf denen viele Flugereignisse statt�nden (das erleichtert die Suche
nach Changes) und auf denen die Flotte nur wenige kurze 0-Zonen besitzt, die überspannt
werden müssen.

Dadurch, dass sich während des Verschiebens die Flugzeuganzahl einer anderen Flotte er-
höhen darf, wird in dieser anderen Flotte Platz gescha�en, um auch die übrigen Changes
aufnehmen zu können, da die Erhöhung der Flugzeuganzahl ein Flugzeug dieser Flotte für
die Dauer der gesamten Standardperiode verfügbar macht.

4.5 Verbindungsabhängige Mindestbodenzeiten und Ge-
winne

In diesem Abschnitt beschreiben wir, wie verbindungsabhängige Mindestbodenzeiten und Ge-
winne bei der Flottenzuweisung e�zient berücksichtigt werden können. Wir stellen zum einen
in Abschnitt 4.5.1 ein neues ganzzahliges lineares Modell vor, das für reale Instanzen die Vor-
teile des Time Space Network Modells (geringe Gröÿe) mit denen des Connection Network
Modells (hohe Ausdruckskraft) vereint. Zum anderen beschreiben wir in Abschnitt 4.5.2, wie
die Lokale Suche Heuristiken modi�ziert werden können, um verbindungsabhängige Mindest-
bodenzeiten zu unterstützen.

4.5.1 Hybrides Modell

Das jetzt vorgestellte ganzzahlige lineare Programm für das Flottenzuweisungsproblem ist
eine Kombination aus Connection Network und Time Space Network Modell. Das Hybride
Modell arbeitet nur dann korrekt, wenn alle verbindungsabhängigen Gewinne nicht-negativ
sind. Dies ist allerdings keine Einschränkung, da mit modi�zierten Gewinnen

pl,f = pl,f + min
n∈Al,f

{pl,n,f}

pl,m,f = pl,m,f − min
n∈Al,f

{pl,n,f}

sichergestellt werden kann, dass alle verbindungsabhängigen Gewinne gröÿer gleich Null sind,
ohne dass sich dabei die Lösungsbewertung ändert. Wir nehmen daher ohne Beschränkung
der Allgemeinheit an, dass

• alle verbindungsabhängigen Gewinne nicht-negativ sind.

Damit das Hybride Modell in der Praxis gegenüber dem Connection Network Modell im
Vorteil ist, das heiÿt lineare Programme mit (deutlich) weniger Variablen erzeugt, dürfen
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• nur wenige, echt positive verbindungsabhängige Gewinne enthalten sein und

• sich die verbindungsabhängigen Mindestbodenzeiten gl,m,f eines jeden Leg-Flotten Paa-
res (l, f) nicht allzusehr voneinander unterscheiden.

Beide Bedingungen werden von realen Probleminstanzen typischerweise erfüllt (siehe Ab-
schnitt 2.2.1).

4.5.1.1 Zyklisches Hybrides Modell

Da das Hybride Modell unter anderem von einem Time Space Network Modell abgeleitet
wird, überlegen wir uns zuerst, wie man für eine Flottenzuweisungsinstanz mit verbindungs-
abhängigen Mindestbodenzeit ein Time Space Network Modell konstruieren kann, dass nur
zulässige Zuweisungen als Lösung besitzt, notwendigerweise aber nicht alle zulässigen Zu-
weisungen.

Dazu müssen wir zu jedem Leg-Flotten-Paar (l, f) eine �ottenabhängige Mindestbodenzeit
gl,f derart angeben, dass durch sie für eine zulässige Lösung im Time Space Network Modell
garantiert wird, dass keine verbindungsabhängigen Mindestbodenzeiten verletzt werden:

gl,f = min
{
g∗l,m,x | m ∈ Al,f : ∀n ∈ Al,f : gl,n,x ≤ g∗l,m,x + (tdn,f 	T tdm,f )

}
Die Mindestbodenzeit gl,f wird auf die tatsächliche Bodenzeit g∗l,m,f gesetzt, die ein Flug-
zeug von Flotte f auf dem Flughafen verbringt, wenn es als nächstes das spezielle Leg m
bedient. Dadurch entspricht der Ankunftszeitpunkt von Leg l im Time Space Network der
Ab�ugzeit von Leg m. Daraus ergibt sich im Time Space Network Modell für ein beliebiges
Leg n, das vom Ziel�ughafen von l startet, eine zusätzliche Bodenzeit von tdn,f 	T tdm,f , also
eine tatsächliche Bodenzeit von g∗l,m,f + (tdn,f 	T tdm,f ). Das Leg m wird nun minimal so
gewählt, dass dessen tatsächliche Bodenzeit gerade groÿ genug ist, damit die tatsächlichen
Bodenzeiten im Time Space Network die Mindestbodenzeiten im Connection Network nicht
unterschreiten. Die Minimumsbildung für gl,f ist wohl de�niert, da zumindest das Leg n mit
der gröÿten Mindestbodenzeit gl,n,f eine zulässige Wahl darstellt.

Damit sind alle zulässigen Lösungen für das Time Space Network auch zulässig im Connection
Network. Allerdings kann es passieren, dass im Time Space Network einzelne Verbindungen
zwischen zwei Legs l und m mehr Bodenzeit verbrauchen (und damit unter Umständen
mehr Flugzeuge), als dies tatsächlich notwendig wäre. Es können also nicht alle zulässigen
Flottenzuweisungen von dem so konstruierten Time Space Network Modell erzeugt werden.

Abbildung 4.17 zeigt für ein Leg l die Wahl der �ottenabhängigen Boden- und damit auch
Ankunftszeit. Ab dem �ottenabhängigen Ankunftszeitpunkt von Leg l stellen alle startenden
Legs zulässige Folgelegs für l dar. In dem Intervall zwischen der minimalen verbindungsab-
hängigen Ankunftszeit von Leg l und seiner �ottenabhängigen Ankunftszeit können sich so
allerdings startende Legs be�nden, die eigentlich zulässige Folgelegs sind aber im Time Space
Network nicht erreicht werden können.

Im Hybriden Modell werden die fehlenden Verbindungsmöglichkeiten dadurch realisiert, dass
dem Time Space Network Modell noch das Connection Network Modell zur Seite gestellt
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Abbildung 4.17: Wahl der �ottenabhängigen Ankunftszeit im Time Space Network. Gestri-
chelte ausgehende Legs stellen unzulässige Folgelegs für Leg l dar.
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Abbildung 4.18: Ausschnitt aus einem Hybriden Modell

wird. Die Knoten des dem Hybriden Modell zugrunde liegenden Flussnetzwerks bestehen aus
der Vereinigung der Knotenmengen des Time Space Networks und des Connection Networks.
Die Kanten des Connection Networks werden unverändert übernommen. Gleiches gilt für die
Bodenkanten des Time Space Networks. Die Flugkanten des Time Space Networks werden
in zwei Teile aufgespalten: Die Flugkante für das Leg-Flotten-Paar (l, f) macht einen Zwi-
schenstopp auf dem zugehörigen Leg-Flotten-Paar-Knoten des Connection Networks. Im
Leg-Flotten-Paar-Knoten kann nun alternativ entschieden werden, ob die Reise eines Flug-
zeugs über die ausgehende Flugkante im Time Space Network weiter verlaufen soll oder über
eine Verbindungskante im Connection Network. Abbildung 4.18 zeigt einen Ausschnitt aus
einem Hybriden Netzwerk.

Das zyklische Hybride Modell kann damit wie folgt formuliert werden, wobei alle Bezeichner
aus den De�nitionen des Connection Network (Abschnitt 2.2.2) und Time Space Network
Modells (Abschnitt 4.2) übernommen werden.

Modell 4.10 (Zyklisches Hybrides Modell).

Maximiere
∑
l∈L

∑
f∈Fl

pl,f

ya
l,f +

∑
m∈Al,f

pl,m,fxl,m,f

 (4.15)
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unter den Nebenbedingungen

∑
f∈Fl

ya
l,f +

∑
m∈Al,f

xl,m,f

 = 1 ∀l ∈ L (4.16)

∑
(l,f)∈La

v

ya
l,f −

∑
(l,f)∈Ld

v

yd
l,f + zv−,v − zv,v+ = 0 ∀v ∈ V (4.17)

∑
k∈Bl,f

xk,l,f −
∑

m∈Al,f

xl,m,f + yd
l,f − ya

l,f = 0 ∀l ∈ L, f ∈ Fl (4.18)

∑
l∈L:f∈Fl

∆l,fy
a
l,f +

∑
m∈Al,f

∆l,m,fxl,m,f

+
∑

v∈V ∆
f

zv−,v ≤ Nf ∀f ∈ F (4.19)

xl,m,f ∈ {0, 1} ∀l ∈ L, f ∈ Fl, (4.20)

m ∈ Al,f

ya
l,f , y

d
l,f ∈ {0, 1} ∀l ∈ L, f ∈ Fl (4.21)

zv,v+ ∈ N0 ∀v ∈ V (4.22)

Die Zielfunktion (4.15) kombiniert die Zielfunktionen des Time Space und Connection Net-
work Modells. Gleichungen (4.17) sind die Flusserhaltungsgleichungen des Time Space Net-
works. Da die Flugkanten aufgeteilt worden sind, unterscheiden wir hier jetzt zwischen ab-
�iegenden (yd

l,f ) und ankommenden Flugkanten (ya
l,f ). Gleichungen (4.18) entsprechen den

Flusserhaltungsgleichungen des Connection Networks. Neben den Verbindungskanten müs-
sen hier jetzt auch die ankommenden und ab�iegenden Flugkanten eines Leg-Flotten-Paares
(l, f) berücksichtigt werden. Hierdurch werden das Time Space Network und das Connection
Network miteinander gekoppelt. Ungleichungen (4.19) beschränken die Flugzeuganzahl und
stellen eine Kombination der entsprechenden Ungleichungen im Time Space und Connecti-
on Network Modell dar. Flugzeuge können jetzt durch Flugkanten, Verbindungskanten oder
Bodenkanten verbraucht werden. Die Variablen sind in (4.20) bis (4.22) wie für die ursprüng-
lichen Modelle de�niert.

Der Grund, warum negative verbindungsabhängige Gewinne pl,m,f in diesem Modell nicht
erlaubt sind, ist, dass ansonsten nicht ausgeschlossen werden kann, dass ein Flugzeuge nach-
einander die Legs l und m bedient, ohne die dafür anfallenden Kosten zu tragen, indem es
über die Bodenkanten des Time Space Networks ausweicht. Dies ist zwar auch bei positiven
verbindungsabhängigen Kosten möglich, allerdings erzwingt hier die Zielfunktion für optimale
Lösungen, dass die gewinnbringendere Alternative über die Verbindungskante des Connection
Networks gewählt wird.

Eine wichtige Frage verbleibt.

Was ist überhaupt der Vorteil des Hybriden Modells gegenüber dem Connection
Network Modell?

Beide Modelle sind gleich ausdrucksstark, aber in der bisher beschriebenen Form ist das
Hybride Modell sogar gröÿer als das Connection Network Modell - ein komplettes Time
Space Network Modell ist dazugekommen.
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Der springende Punkt ist, dass im Hybriden Modell nicht alle Verbindungskanten des Connec-
tion Networks notwendig sind, um alle zulässigen Lösungen erzeugen und bewerten zu können.

• Aus Sicht der Zielfunktion reichen all die Verbindungskanten, für die echt positive
Gewinne de�niert sind aus, da für Verbindungskanten mit Gewinn Null der alternative
Weg durch das Time Space Network gleich viel Gewinn erbringt.

• Für die Zulässigkeit reicht es aus, nur die Verbindungskanten zu berücksichtigen, für die
ansonsten das Time Space Network eine zu lange tatsächliche Bodenzeit verursachen
würde.

Daraus folgt, dass die Mengen Al,f und Bl,f wie folgt verkleinert werden können, ohne die
Menge der zulässigen Flottenzuweisungen und deren Bewertung zu verändern:

Al,f = {m ∈ L | sd
m = sa

l ∧ f ∈ Fm ∧ (pl,m,f > 0 ∨ g∗l,m,f < gl,f )}
Bl,f = {k ∈ L | sa

k = sd
l ∧ f ∈ Fk ∧ (pk,l,f > 0 ∨ g∗k,l,f < gk,f )}

Bei realen Instanzen mit wenigen echt positiven verbindungsabhängigen Gewinnen und nur
verhältnismäÿig kleinen Variationen in den verbindungsabhängigen Mindestbodenzeiten führt
dies dazu, dass die Mengen Al,f und Bl,f konstante Gröÿe haben und die Variablenanzahl des
Modells dadurch (wie im Time Space Network Modell) nur linear in der Leganzahl wächst.
Im worst case ist das Wachstum aber wie im Connection Network Modell quadratisch in der
Leganzahl.

4.5.1.2 Azyklisches Hybrides Modell

Der Vollständigkeit halber wollen wir jetzt noch kurz das azyklische Hybride Modell vorstellen.
Die Grundidee ist die selbe wie im zyklischen Fall. Wir entfernen dazu aus den Mengen Āl,f

und B̄l,f die Hilfslegs ∗. Ihre Rolle wird vom Time Space Network übernommen. Ferner
de�nieren wir die �ottenabhängige Mindestbodenzeit gl,f für das Time Space Network Modell
wie folgt:

gl,f = min{g∗l,m,f | m ∈ Āl,f : ∀n ∈ L : (sd
n = sa

l ∧ f ∈ Fn ∧ tdn,f ≥ tdm,f ) ⇒ n ∈ Āl,f} ∪ {∞}

So ist sichergestellt, dass nach dem Ankunftszeitpunkt tal,f eines Legs l im Time Space
Network nur noch Legs den Ziel�ughafen von l verlassen, die auch zu einer zulässigen Ver-
knüpfung führen. Da im azyklischen Fall die Menge Āl,f leer sein kann, wird in diesem Fall
die Mindestbodenzeit gl,f auf Unendlich gesetzt.

Damit lässt sich das azyklische Hybride Modell wie folgt aufstellen:

Modell 4.11 (Azyklisches Hybrides Modell).

Maximiere
∑
l∈L

∑
f∈Fl

pl,f

ya
l,f +

∑
m∈Āl,f

pl,m,fxl,m,f

 (4.23)
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unter den Nebenbedingungen

∑
f∈Fl

ya
l,f +

∑
m∈Āl,f

xl,m,f

 = 1 ∀l ∈ L (4.24)

∑
(l,f)∈La

v

ya
l,f −

∑
(l,f)∈Ld

v

yd
l,f + zv−,v − zv,v+ = 0 ∀v ∈ V (4.25)

∑
k∈B̄l,f

xk,l,f −
∑

m∈Āl,f

xl,m,f + yd
l,f − ya

l,f = 0 ∀l ∈ L, f ∈ Fl (4.26)

∑
v∈V ∆

f

z∗,v ≤ Nf ∀f ∈ F (4.27)

xl,m,f ∈ {0, 1} ∀l ∈ L, f ∈ Fl, m ∈ Āl,f (4.28)

ya
l,f , y

d
l,f ∈ {0, 1} ∀l ∈ L, f ∈ Fl (4.29)

zv,v+ ∈ N0 ∀v ∈ V (4.30)

z∗,v ∈ N0 ∀v ∈
⋃
f∈F

V ∆
f (4.31)

Die Mengen Āl,f und B̄l,f des azyklischen Connection Network Modells lassen sich dabei mit
derselben Begründung wie im zyklischen Fall wie folgt verkleinern:

Āl,f = {m ∈ L | sd
m = sa

l ∧ f ∈ Fm ∧ tal,m,f ≤ tdm,f ∧ (pl,m,f > 0 ∨ tdm,f < tal,f )}
B̄l,f = {k ∈ L | sa

k = sd
l ∧ f ∈ Fk ∧ tak,l,f ≤ tdl,f ∧ (pk,l,f > 0 ∨ tdl,f < tak,f )}

Eine Verbindungskante ist nur dann explizit erforderlich, wenn sie einen echt positiven Ge-
winn beisteuert oder eine Verknüpfung von Legs erlaubt, die im Time Space Netzwerk nicht
möglich ist.

4.5.2 Erweiterung der Lokale Suche Heuristiken

Die jetzt vorgestellte Erweiterung der Lokale Suche Heuristiken erlaubt es, mit ihnen auch
Probleminstanzen mit verbindungsabhängigen Mindestbodenzeiten zu optimieren. Verbin-
dungsabhängige Gewinne werden allerdings nicht unterstützt. Wie beim Hybriden Modell
sollten sich bei den Eingabeinstanzen für die erweiterten Heuristiken

• die verbindungsabhängigen Mindestbodenzeiten gl,m,f eines jeden Leg-Flotten Paares
(l, f) nicht allzusehr voneinander unterscheiden.

Wir beschreiben hier wie in Abschnitt 4.3 nur die Erweiterungen für das zyklische Flotten-
zuweisungsproblem.

Die Grundidee der Erweiterung sieht folgendermaÿen aus. Die eigentliche Generierung der
Nachbarschaftsübergänge bleibt unverändert. Die benötigten Flugzeuganzahlen werden wei-
terhin mittels der Wartefunktionen ermittelt. Dazu müssen passende �ottenabhängige Min-
destbodenzeiten für jedes Leg-Flotten Paar de�niert werden. Anders als im Hybriden Modell
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XYZ
m

unzulässige Verbindungen

Leg l (Ankunftszeit für minimale verbindungsabhängige Bodenzeit g∗l,m,f )

Abbildung 4.19: Wahl der �ottenabhängigen Ankunftszeit für Lokale Suche Heuristiken. Ge-
strichelte ausgehende Legs stellen unzulässige Folgelegs für Leg l dar.

werden sie jedoch hier so gewählt, dass alle zulässigen Verknüpfungen prinzipiell erlaubt sind.
Dadurch kann allerdings der Fall eintreten, dass auch unzulässige Nachbarn generiert werden.
Daher wird vor der Entscheidung, ob während der Tiefensuche tatsächlich ein zulässiger Über-
gang gefunden worden ist, überprüft, ob der neue Nachbar auch alle verbindungsabhängigen
Mindestbodenzeiten beachtet.

Die �ottenabhängige Mindestbodenzeit eines Leg-Flotten Paares (l, f) wird für die Erweite-
rung der Heuristiken wie folgt de�niert:

gl,f = min
{
g∗l,m,f | m ∈ L ∧ f ∈ Fm

}
Damit wird, wie oben beschrieben, erreicht, dass nach dem Ankunftsereignis eines Legs l alle
zulässigen Folgelegs später ab�iegen und somit von Leg l erreicht werden können. Leider sind
so allerdings potentiell auch Legs erreichbar, die keine zulässige Verknüpfung darstellen.7

Abbildung 4.19 zeigt für ein Leg l die Wahl der �ottenabhängigen Boden- und damit auch
Ankunftszeit. Ab dem �ottenabhängigen Ankunftszeitpunkt von Leg l �nden sich alle zu-
lässigen Folgelegs für l wieder. Allerdings können so manche der später startenden Legs
unzulässige Folgelegs sein.

Um festzustellen, ob eine gegebene Flottenzuweisung auch die verbindungsabhängigen Min-
destbodenzeiten beachtet, reicht es aus, die Inseln der einzelnen Wartefunktionen unabhängig
voneinander zu betrachten. Nach den Bemerkungen aus Abschnitt 4.3.1.2 müssen die Legs
jeder Insel untereinander verknüpfbar sein, ohne dass dabei ein Flugzeug über die Insel hinaus
auf dem Flughafen warten muss. Ohne verbindungsabhängige Mindestbodenzeiten ist dies
implizit garantiert - eine FIFO-Verknüpfung führt immer zum Ziel. Mit verbindungsabhängi-
gen Mindestbodenzeiten muss dies explizit überprüft werden.

Seien dazu für eine Insel I = [IS, IE] von Flotte f die ankommenden Legs mit i1, . . . , in
bezeichnet und die ab�iegenden Legs mit o1, . . . , on. Man beachte, dass die Anzahl der
ankommenden Legs einer Insel immer gleich der Anzahl der ab�iegenden Legs ist. Wir fassen

7 Die Verknüpfung ist nur insofern unzulässig, als sie mehr Flugzeuge erfordern würde als mittels der
Wartefunktionen bestimmt. Im zyklischen Fall kann ein Flugzeug immer genügend viele Planungsperioden
lang auf einem Flughafen warten, um ein beliebiges von dort startendes Leg zu erreichen.
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die Legs der Insel als die Knoten eines bipartiten Graphen G = (Vi ∪ Vo, E) auf:

Vi = {i1, . . . , in}
Vo = {o1, . . . , on}

Ein ankommendes Leg ik ist dabei genau dann mit einem ab�iegenden Leg ol verbunden,
wenn diese Legs innerhalb der Insel nacheinander von einem Flugzeug der Flotte f bedient
werden können:

(ik, ol) ∈ E ⇔ tdol,f
∈ [taik,f , IE] ∧ gik,f + (tdol,f

	T taik,f ) ≥ gik,ol,f

Leg ol muss zum einen nach dem Ankunftszeitpunkt von Leg ik in der Insel starten, und zum
anderen muss die dabei auftretende Bodenzeit mindestens so groÿ wie die verbindungsab-
hängige Mindestbodenzeit zwischen den Legs ik und ol sein.

O�ensichtlich gilt nun:

Satz 4.12. Die Legs einer Insel lassen sich genau dann innerhalb der Insel miteinander
verknüpfen, wenn der oben konstruierte bipartite Graph ein perfektes Matching besitzt.

Die Erweiterung besteht folglich darin, dass sich zu jeder Insel einer aktuellen Lösung ein
perfektes Matching der ein- und ausgehenden Legs gehalten wird. Die initiale Berechnung
kann mittels eines Max-Flow-Algorithmus in Zeit O(n2.5) für Inseln mit n eingehenden Legs
durchgeführt werden [Even and Tarjan, 1975, Hopcroft and Karp, 1973]. Geschwindigkeits-
fördernd kommt dabei zum Tragen, dass die Berechnung nicht auf allen Ereignissen eines
Flughafens gleichzeitig zu erfolgen braucht, sondern dass man inselweise vorgehen kann.

Das Update nach einem Nachbarschaftsübergang arbeitet sogar noch schneller. Hierbei wer-
den pro betro�ener Insel normalerweise nur zwei Legs gelöscht bzw. eingefügt, so dass ein
Groÿteil des existierenden Matchings wiederverwendet werden kann. Ein oder zwei Flusserwei-
terungsschritte mit Aufwand O(n2) reichen aus, um das perfekte Matching wiederherzustellen
bzw. um festzustellen, dass kein perfektes Matching existiert und der Nachbarschaftsüber-
gang unzulässig ist. Darüber hinaus sind von einem Übergang selten mehr als 10 Inseln von
Änderungen betro�en, so dass insgesamt der Test auf Zulässigkeit nach einem Nachbar-
schaftübergang sehr e�zient durchgeführt werden kann.

Mit dieser Erweiterung ist damit sichergestellt, dass, vorausgesetzt man startet mit einer
zulässigen Zuweisung, die Heuristiken auch Probleminstanzen mit verbindungsabhängigen
Mindestbodenzeiten optimieren können und dabei garantieren können, nur zulässige Lösun-
gen zu produzieren.

4.6 Homogenität

Eine häu�g gewünschte Eigenschaft von Flottenzuweisungen für mehrtägige Planungsperi-
oden ist, dass für Gruppen von Legs nach Möglichkeit gleiche bzw. ähnliche Flugzeugtypen
eingesetzt werden sollen.
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In einer Wochenplanung startet beispielsweise täglich um 10:00 ein Leg von Frankfurt nach
New York. Es wäre nun schön, wenn in einer Flottenzuweisung möglichst viele dieser Legs
von einem Flugzeugtyp bedient würden, da dies den an die Kunden herauszugebenden Flug-
plan übersichtlicher und attraktiver macht, die Planung auf dem Boden vereinfacht, unter
Umständen in New York nur Wartungspersonal für einen Flugzeugtyp erforderlich macht,
usw.

Es handelt sich dabei nicht um eine harte Einschränkung sondern eine Bedingung, die nur
insoweit berücksichtigt werden sollte, dass sie keine zu hohen Gewinnausfälle verursacht.
Dazu de�nieren wir

De�nition 4.13 (Homogenität). Sei ein Flottenzuweisungsproblem mit Flugplan L und
Flotten F , eine Zuweisung z : L → F für den Flugplan und eine Menge von Leggruppen
Gi ⊆ L (i ∈ {1, . . . , n}) gegeben.

Die Homogenität einer Leggruppe Gi ist de�niert durch

H(Gi) = |Gi| −max
f∈F

|{l ∈ Gi | z(l) = f}|

und die Homogenität der Zuweisung durch

H(z) =
n∑

i=1

H(Gi)

H(Gi) entspricht damit der minimalen Anzahl an Legs, deren Zuweisung man ändern muss,
damit die Legs der Leggruppe Gi von nur einem Flugzeugtyp bedient werden. Legs, deren
Zuweisung dafür geändert werden muss, werden inhomogene Legs genannt. Ein Wert von
Null für H(Gi) sagt somit aus, dass den Legs der Leggruppe nur ein Flottentyp zugewiesen
worden ist. H(z) ist ein Maÿ für die Homogenität einer Zuweisung - je kleiner H(z), desto
homogener die Leggruppen.

Damit unsere Lösungsverfahren nun möglichst homogene Zuweisungen produzieren, erweitern
wir die Zielfunktion um Strafkosten für Inhomogenität

Maximiere P (z)− cHH(z),

wobei cH > 0 die Strafkosten pro inhomogenem Leg bezeichnen. Ein groÿer Wert für cH

wird zu sehr homogenen optimalen Zuweisungen führen, ein kleiner Wert zu Zuweisungen
mit groÿem Gewinn, wobei homogene, fast gewinnmaximale Zuweisungen bevorzugt werden.

4.6.1 Für Lokale Suche Heuristiken

Da die Inhomogenität einer Zuweisung sehr einfach und schnell algorithmisch berechnet
werden kann, lassen sich bei der Wahl eines Nachbarn neben den Gewinnänderungen auch
die Änderungen der Inhomogenitätskosten einfach berücksichtigen.
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4.6.2 Für lineare Programme

Im Gegensatz zu den Lokale Suche Heuristiken bereitet das Berücksichtigen der Homogenität
von Zuweisungen in unseren linearen Programmen für das Flottenzuweisungsproblem einige
Schwierigkeiten. Die Homogenität ist wegen der Maximumsbildung eine konkave Eigenschaft,
die sich nur aufwendig linearisieren lässt.

Wir stellen daher drei Alternativen zur Berücksichtigung von homogenen Lösungen in unseren
linearen Programmen vor - jede mit unterschiedlichen Vor- und Nachteilen. Zwei Ansätze sind
exakt, ein Ansatz arbeitet nur heuristisch und kann damit die Optimalität seiner Lösung nicht
garantieren.

4.6.2.1 Modell mit wenigen zusätzlichen Variablen

Bei der Beschreibung der exakten Ansätze betrachten wir nur die Modellierung, die für
die Bestimmung der Inhomogenitätskosten einer Leggruppe nötig ist. Da diese Berechnung
unabhängig von anderen Leggruppen ist, muss anschlieÿend nur für jede Leggruppe ein
entsprechendes Modell dem Gesamtmodell für die Flottenzuweisung hinzugefügt werden.

Für eine Leggruppe Gi ergibt sich folgende Problemstellung:

Modell 4.14.

Maximiere
∑
l∈Gi

∑
f∈Fl

pl,fyl,f − cHh (4.32)

unter den Nebenbedingungen∑
f∈Fl

yl,f = 1 ∀l ∈ Gi (4.33)

h = |Gi| −max
f∈F

( ∑
l∈Gi:f∈Fl

yl,f

)
(4.34)

h ≥ 0 (4.35)

yl,f ∈ {0, 1} ∀l ∈ Gi, f ∈ Fl (4.36)

Die Zielfunktion (4.32) maximiert den Gewinn der Zuweisung abzüglich der Inhomogenitäts-
kosten. Die Gleichungen (4.33) stellen sicher, dass jedem Leg genau eine Flotte zugewiesen
wird und entsprechen genau den Überdeckungsgleichungen im Time Space Network Modell.
Für das Connection Network Modell muss man yl,f einfach überall durch

∑
m∈Al,f

xl,m,f er-
setzen. Gleichung (4.34) berechnet die Inhomogenität der Zuweisung. Dabei handelt es sich
im Moment noch nicht um eine lineare Bedingung.

Wir formulieren Gleichung (4.34) daher wie folgt um:∨
f∈F

h +
∑

l∈Gi:f∈Fl

yl,f ≥ |Gi| (4.37)
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Nur eine der Ungleichungen (4.37) muss erfüllt werden. In einer optimalen Lösung sei dies die
Ungleichung von Flotte f . Wegen cH > 0 wird nun h in der optimalen Lösung so klein wie
möglich gewählt, also so, dass die Ungleichung (4.37) für Flotte f mit Gleichheit erfüllt wird.
Aus demselben Grund wird in einer optimalen Lösung f so gewählt, dass

∑
l∈Gi:f∈Fl

yl,f ma-
ximal ist, da dadurch h möglichst klein werden kann. Somit ist (4.37) für cH > 0 äquivalent
zu (4.34).

Disjunktionen der Form (4.37) sind in linearen Programmen nicht erlaubt. Sie lassen sich
aber linearisieren, indem man sie durch∑

f∈F

bf = 1 (4.38)

h +
∑

l∈Gi:f∈Fl

yl,f ≥ bf |Gi| ∀f ∈ F (4.39)

bf ∈ {0, 1} ∀f ∈ F (4.40)

ersetzt.

Daraus ergibt sich also das folgende ganzzahlige lineare Programm zur Berechnung von
Zuweisungen an eine Leggruppe, die auch Inhomogenitätskosten berücksichtigt:

Modell 4.15 (HLOW).

Maximiere
∑
l∈Gi

∑
f∈Fl

pl,fyl,f − cHh (4.41)

unter den Nebenbedingungen∑
f∈F

bf = 1 (4.42)∑
f∈Fl

yl,f = 1 ∀l ∈ Gi (4.43)

h +
∑

l∈Gi:f∈Fl

yl,f ≥ bf |Gi| ∀f ∈ F (4.44)

h ≥ 0 (4.45)

bf ∈ {0, 1} ∀f ∈ F (4.46)

yl,f ∈ {0, 1} ∀l ∈ Gi, f ∈ Fl (4.47)

Für jede Leggruppe müssen damit zusätzlich 1 + |F| Variablen ((4.45), (4.46)) und 1 + |F|
Bedingungen ((4.42), (4.44)) dem linearen Programm für die Flottenzuweisung hinzugefügt
werden.

Das groÿe Manko von Modell 4.15 ist, dass in der LP-Relaxierung die Inhomogenität h immer
Null ist, also keinerlei Inhomogenitätskosten auftreten. Dadurch erhält man sehr schlechte
Schranken im Branch&Bound-Löser und keine verlässliche Rückmeldung an die Baumsuche,
welche bf -Variablen wie �xiert werden sollen.
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Satz 4.16. Für die LP-Relaxierung von Modell 4.15 gilt:

Für jede zulässige Belegung der yl,f -Variablen existieren bf -Zuweisungen, so dass h = 0
gewählt werden kann.

Beweis. Setzt man

bf =

∑
l∈Gi:f∈Fl

yl,f

|Gi|
∀f ∈ F

h = 0

kann man leicht überprüfen, dass alle Bedingungen der LP-Relaxierung von Modell 4.15
erfüllt sind.

4.6.2.2 Höherdimensionales Modell

Wir stellen nun eine alternative Formulierung zur Berechnung der Inhomogenitätskosten vor,
deren LP-Relaxierung nur ganzzahlige Ecken besitzt und somit scharfe Schranken produziert.
Wir leiten dabei dieses Modell von Ideen von Balas zur Disjunktiven Programmierung ab:

Satz 4.17 ([Balas, 1998]). Gegeben Pi = {x ∈ Rn : Aix ≥ bi} 6= ∅, i ∈ Q. Die Menge
PQ = conv

⋃
i∈Q Pi ist die Menge der x ∈ Rn, für die Vektoren (yi, yi

0) ∈ Rn+1, i ∈ Q,
existieren, so dass (x, (yi, yi

0)i∈Q) zu P =∑
i∈Q

yi = x (4.48)∑
i∈Q

yi
0 = 1 (4.49)

Aiyi ≥ biyi
0 ∀i ∈ Q (4.50)

yi
0 ≥ 0 ∀i ∈ Q (4.51)

gehört. Es gilt ferner:

• Falls x∗ eine Ecke von PQ ist, dann ist (x∗, (ȳi, ȳi
0)i∈Q) eine Ecke von P mit (ȳk, ȳk

0) =
(x∗, 1) für ein k ∈ Q und (ȳi, ȳi

0) = (0, 0) für i ∈ Q \ {k}.

• Falls (x̄, (ȳi, ȳi
0)i∈Q) eine Ecke von P ist, dann ist x̄ = ȳk und ȳk

0 = 1 für ein k ∈ Q,
(ȳi, ȳi

0) = (0, 0) für i ∈ Q \ {k} und x̄ eine Ecke von Pk.

Der Satz 4.17 beschreibt, wie man die Vereinigung von Polytopen durch eine Transformation
in einen höherdimensionalen Raum bilden kann, ohne dabei die Informationen über ihre Ecken
zu verlieren. Desweiteren werden dabei keine ganzzahligen Variablen benötigt.
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Der Lösungsraum von Modell 4.14 lässt sich wegen Bedingung (4.37) als Vereinigung der
Polytope Pt = ∑

f∈Fl

yl,f = 1 ∀l ∈ Gi (4.52)

h +
∑

l∈Gi:t∈Fl

yl,t ≥ |Gi| (4.53)

h ≥ 0 (4.54)

yl,f ∈ {0, 1} ∀l ∈ Gi, f ∈ Fl (4.55)

mit t ∈ F beschreiben. Die Pt de�nierende Matrix ist vollständig unimodular, da sie, nachdem
man Ungleichung (4.53) mit -1 multipliziert hat, in jeder Spalte maximal zwei {-1,1}-Einträge
aufweist und jede Spalte mit zwei nicht-Null Einträgen die Spaltensumme Null besitzt. Man
kann also Bedingung (4.55) durch

yl,f ≥ 0 ∀l ∈ Gi, f ∈ Fl (4.56)

ersetzen, ohne die konvexe Hülle von Pt zu verändern.

Nach Satz 4.17 lässt sich damit unser Problem wie folgt formulieren:

Modell 4.18.

Maximiere
∑
l∈Gi

∑
f∈Fl

pl,f

(∑
t∈F

yt
l,f

)
− cH

(∑
t∈F

ht

)
(4.57)

unter den Nebenbedingungen∑
t∈F

bt = 1 (4.58)∑
f∈Fl

yt
l,f = bt ∀l ∈ Gi, t ∈ F (4.59)

ht +
∑

l∈Gi:t∈Fl

yt
l,t ≥ bt|Gi| ∀t ∈ F (4.60)

bt ≥ 0 ∀t ∈ F (4.61)

ht ≥ 0 ∀t ∈ F (4.62)

yt
l,f ≥ 0 ∀l ∈ Gi, f ∈ Fl, t ∈ F (4.63)

Man beachte, dass bei dieser Konstruktion keine ganzzahligen Variablen mehr benötigt wer-
den, die LP-Relaxierung also schärfstmöglich ist. Allerdings erkauft man sich diesen Vorteil,
durch eine um den Faktor |F| höhere Anzahl an Variablen und Bedingungen: Es werden
(2 + |Gi| · |F|) · |F| Variablen und 1 + |F|+ |Gi| · |F| Bedingungnen benötigt.

Im konkreten Fall lässt sich allerdings aus Modell 4.18 ein erheblich kleineres, äquivalentes
Modell mit weniger Variablen ableiten:
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Modell 4.19 (HBAL).

Maximiere
∑
l∈Gi

∑
f∈Fl

pl,fyl,f − cH

(∑
f∈F

hf

)
(4.64)

unter den Nebenbedingungen∑
f∈F

bf = 1 (4.65)∑
f∈Fl

yl,f = 1 ∀l ∈ Gi (4.66)

hf +
∑

l∈Gi:f∈Fl

y∗l,t ≥ bf |Gi| ∀f ∈ F (4.67)

y∗l,f ≤ bf ∀l ∈ Gi, f ∈ Fl (4.68)

y∗l,f ≤ yl,f ∀l ∈ Gi, f ∈ Fl (4.69)

bf ≥ 0 ∀f ∈ F (4.70)

hf ≥ 0 ∀f ∈ F (4.71)

yl,f , y
∗
l,f ≥ 0 ∀l ∈ Gi, f ∈ Fl (4.72)

Modell 4.19 erzeugt (2+ |Gi|) · |F| zusätzliche Variablen und 1+ |F|+2|Gi| · |F| zusätzliche
Bedingungen pro Leggruppe.

Lemma 4.20. Für die Modelle 4.18 und 4.19 gilt:

• Wenn (yt
l,f , h

t, bt) zum Lösungsraum von Modell 4.18 gehört, dann gehört (yl,f , y
∗
l,f , h

t, bt)

zum Lösungsraum von Modell 4.19, wobei yl,f =
∑

t∈F yt
l,f und y∗l,f = yf

l,f für alle
l ∈ L, f ∈ Fl ist.

• Wenn (yl,f , y
∗
l,f , h

t, bt) eine optimale Lösung von Modell 4.19 ist, dann existieren yt
l,f ,

so dass (yt
l,f , h

t, bt) zum Lösungsraum von Modell 4.18 gehört, und
∑

t∈F yt
l,f = yl,f

und yf
l,f = y∗l,f für alle l ∈ L, f ∈ Fl ist.

Beweis. Den ersten Punkt rechnet man leicht nach.

Für den zweiten Punkt gilt, dass in einer optimalen Lösung (yl,f , y
∗
l,f , h

t, bt) für Modell 4.19
wegen cH > 0 alle Ungleichungen (4.67) mit Gleichheit erfüllt sind und für alle l ∈ L,
f ∈ Fl (mindestens) eine der Ungleichungen (4.68) bzw. (4.69) mit Gleichheit erfüllt ist,
also y∗l,f = min{yl,f , bf} gilt.

Der zweite Punkt ist also bewiesen, wenn wir für jedes Leg l die yt
l,f -Werte so festlegen

können, dass

1.
∑

f∈Fl
yt

l,f = bt für alle t ∈ F (Bedingung (4.59)),

2.
∑

t∈F yt
l,f = yl,f für alle f ∈ Fl und
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3. yf
l,f = min{yl,f , bf} für alle f ∈ Fl

gilt.

Wir initialisieren dazu eine |F| × |F|-Matrix M mit Null. Eintrag M(f, t) repräsentiert den
Wert yt

l,f . Sei ferner

M(f, ∗) = yl,f −
∑
t∈F

M(f, t)

M(∗, t) = bt −
∑
f∈F

M(f, t)

F =
∑
f∈F

M(f, ∗)

T =
∑
t∈F

M(∗, t)

Zu Beginn gilt o�ensichtlich

F =
∑
f∈F

M(f, ∗) =
∑
f∈F

yl,f = 1 =
∑
t∈F

bt =
∑
t∈F

M(∗, t) = T

Unter dem Setzen eines Eintrags M(f, t) verstehen wir die Zuweisung von min{M(f, ∗), M(∗, t)}
an M(f, t). Dadurch wird

• M(f, ∗) oder M(∗, t) zu Null und

• F und T nehmen um den selben Betrag M(f, t) ab, sind also insbesondere anschlieÿend
immer noch gleich.

Zuerst setzen wir nun alle Elemente M(f, f) der Hauptdiagonalen von M . Dadurch wird
Punkt 3. erfüllt, da dieses Setzen unabhängig voneinander geschehen kann. Solange dann
noch eine M(f, ∗) > 0 existiert, suchen wir ein M(∗, t) > 0 (ein solches muss wegen F = T
existieren) und setzen M(f, t). Dieser Eintrag kann vorher noch nicht gesetzt worden sein, da
ansonsten M(f, ∗) oder M(∗, t) bereits Null gewesen wäre. Nach spätestens 2|F| Setzungen
gilt F = T = 0 und M erfüllt auch die Punkte 1. und 2.

Satz 4.21. Jede optimale Ecke vom Lösungsraum von Modell 4.19 ist ganzzahlig und ent-
spricht einer optimalen Lösung von Modell 4.14.

Beweis. Sei e∗ = (yl,f , y
∗
l,f , h

t, bt) ein optimale Ecke von Modell 4.19. Falls e∗ nicht ganz-
zahlig ist, ist auch die nach Lemma 4.20 zu e∗ gehörende Lösung e′ = (yt

l,f , h
t, bt) von

Modell 4.18 nicht ganzzahlig. Nach Satz 4.17 ist aber das Polytop von Modell 4.18 ganz-
zahlig und e′ kann keine Ecke sein, ist also eine echte Linearkombination von (ganzzahligen)
Ecken p′1, . . . , p

′
k des Lösungsraums von Modell 4.18. Die gemäÿ Lemma 4.20 zu den Ecken

p′1, . . . , p
′
k gehörenden Punkte p1, . . . , pk von Modell 4.19 sind dann aber ebenfalls ganz-

zahlig, mithin von e∗ verschieden und liefern eine Linearkombination für e∗. Dies steht im
Widerspruch zu der Annahme, dass e∗ eine Ecke ist. e∗ muss demnach ganzzahlig sein.

Die Ecken von Modell 4.18 korrespondieren nach Satz 4.17 mit den zulässigen Lösungen von
Modell 4.14. Damit tun dies auch die optimalen Ecken von Modell 4.19.
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4.6.2.3 Heuristisch

Die Bestimmung der Inhomogenitätskosten einer Leggruppe G wäre trivial, wenn die Flotte
f ∗, die die meisten Legs in der Gruppe �iegt, vorab bekannt wäre. Dann bräuchten nur die
Gewinne pl,f wie folgt angepasst werden:

pnew
l,f = pl,f − cH ∀l ∈ G, f 6= f ∗

Es wären keine weiteren Variablen oder Bedingungen notwendig.

Die Heuristische Berücksichtigung der Inhomogenitätskosten funktioniert nun folgenderma-
ÿen:

• Löse die LP-Relaxierung des Flottenzuweisungsmodells ohne Berücksichtigung von In-
homogenitätskosten.

• Bestimme für jede Leggruppe G die Flotte f ∗ mit

∑
l∈L

yl,f∗ = max
f∈F

(∑
l∈L

yl,f

)

Modi�ziere wie oben beschrieben die Gewinne pl,f für die Legs der Leggruppe.

• Löse anschlieÿend das Flottenzuweisungsproblem mit der modi�zierten Gewinnfunkti-
on.

Bei diesem Ansatz wird die Modellgröÿe durch die Inhomogenitäten nicht verändert. Es muss
nur eine zusätzliche LP-Relaxierung berechnet werden. Bei dieser Vorgehensweise ist klar,
dass der Wert der zurückgelieferten Zuweisung nur eine untere Schranke auf den maximalen
Gewinn darstellt - man kann ja beim Festlegen auf eine Flotte f ∗ für eine Leggruppe G die
falsche Wahl getro�en haben, was zu unnötig hohen Inhomogenitätskosten führt.

4.7 Preprocessing

4.7.1 Zulässigkeitstests

Mit ein paar einfachen Tests lässt sich vor der eigentlichen Optimierung in vielen Fällen über-
prüfen, ob eine gegebene Flottenzuweisungsinstanz überhaupt zulässige Lösungen besitzen
kann.

Zum einen muss dafür natürlich gelten:

• Für alle Legs l ∈ L: Fl 6= ∅

• Für zyklische Instanzen müssen sämtliche Flughäfen bezüglich Starts und Landungen
balanciert sein.
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Ansonsten ist der Hauptgrund, weshalb eine Instanz keine zulässige Lösung besitzt, dass die
Flugzeuganzahl nicht ausreicht, um alle Legs zu bedienen. Glücklicherweise lässt sich leicht
eine in der Praxis sehr zuverlässige untere Schranke für die Gesamtanzahl an Flugzeugen
ausrechnen, die mindestens für eine gegebene Instanz benötigt werden. Vergleicht man diese
Schranke mit der tatsächlichen Flugzeuganzahl über alle Flotten, kann man zu kleine Flotten
sehr zuverlässig vor der eigentlichen Optimierung erkennen. Dazu wird eine neue Flotte,
virtuelle Flotte genannt, eingeführt und geschaut, wie viele Flugzeuge diese eine Flotte für
den Flugplan benötigt. Ist die virtuelle Flotte passend de�niert, ergibt sich so eine untere
Schranke für mehrere Flotten [Gu et al., 1994].

4.7.1.1 Flugzeuganzahl bei flottenabhängigen Mindestbodenzeiten

Hier verwenden wir das Verfahren aus Satz 3.12. Die virtuelle Flotte f̂ wird dabei folgender-
maÿen de�niert:

• Flotte f̂ kann alle Legs bedienen.

• Alle Mindestbodenzeiten von Flotte f̂ sind Null.

• Für alle Legs l wird die Blockzeit für Flotte f̂ wie folgt de�niert:

bl,f̂ = min
f∈F

(bl,f + gl,f )

So ist sichergestellt, dass jeder Flugzeugumlauf einer realen Flotte auch von der virtuellen
Flotte übernommen werden kann, und die benötigte Flugzeuganzahl für die virtuelle Flotte
stellt eine untere Schranke auf die Gesamt�ugzeuganzahl aller Flotten dar.

4.7.1.2 Flugzeuganzahl bei verbindungsabhängigen Mindestbodenzeiten

Hier verwenden wir die Verfahren aus den Sätzen 3.14 und 3.16. Die virtuelle Flotte f̂ wird
dabei folgendermaÿen de�niert:

• Flotte f̂ kann alle Legs bedienen.

• Alle Blockzeiten von Flotte f̂ sind Null.

• Für alle Legs l und möglichen Folgelegs m, sd
m = sa

l , wird die verbindungsabhängige
Mindestbodenzeit für Flotte f̂ wie folgt de�niert:

gl,m,f̂ = min
f∈F

(bl,f + g∗l,m,f )

So ist sichergestellt, dass jeder Flugzeugumlauf einer realen Flotte auch von der virtuellen
Flotte übernommen werden kann, und die benötigte Flugzeuganzahl für die virtuelle Flotte
stellt eine untere Schranke auf die Gesamt�ugzeuganzahl aller Flotten dar.
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XYZ

notwendige Bodenkanten

n1 n2bi

Abbildung 4.20: Flughafen mit notwendigen und nicht-notwendigen Bodenkanten. Ereignisse
innerhalb der Ellipse können zusammengefasst werden.

4.7.2 Für Time Space Network Modelle

Für die Time Space Network Modelle8 aus Abschnitt 4.2 lässt sich einfach die Anzahl an
Ereignissen und damit auch Bodenkanten verringern, ohne die Menge der zulässigen Zuwei-
sungen zu ändern.

Bodenkanten haben zwei zentrale Funktionen im Time Space Network:

• Weiterleiten von Flugzeugen von einem Ereignis eines Flughafens zum nächsten.

• Sicherstellen, dass auf einem Flughafen niemals eine negative Anzahl an Flugzeugen
wartet.

Der erste Punkt lässt sich auch dann noch gewährleisten, wenn einige benachbarte Ereignisse
eines Flughafen-Flotten-Paares zu einem Knoten zusammengefasst werden. Das Zusammen-
fassen kann dabei so geschehen, dass die Bodenzeiten von ankommenden Legs der Ereignisse
so vergröÿert werden und die Ab�ugzeiten von ab�iegenden Legs so verschoben werden, dass
die Ankünfte bzw. Starts auf einen Zeitpunkt fallen. Dadurch gehen dann die ursprünglichen
Bodenkanten zwischen den zusammengefassten Ereignissen verloren.

Die Frage ist nun, ob es Bodenkanten gibt, für die dieses Entfernen trotzdem nicht ermöglicht,
dass auf dem Flughafen eine negative Anzahl an Flugzeugen wartet. Die Antwort darauf
lautet:

Nur Bodenkanten, die von einem Flugereignis mit einem ab�iegenden Leg zu
einem Flugereignis mit einem ankommenden Leg führen, sind notwendig.

Die Begründung dafür ist folgendermaÿen (siehe Abbildung 4.20). Für nicht-notwendige
Bodenkanten b1, . . . , bk, die zwischen zwei notwendigen Bodenkanten n1 und n2 verlaufen,
gilt:

• Zu Beginn von b1 kommt mindestens ein Leg an, da sonst n1 keine notwendige Bo-
denkante wäre.

8 Das hier Gesagte gilt auch für den Time Space Network Teil des Hybriden Modells aus Abschnitt 4.5.1.
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• Am Ende von bk startet mindestens ein Leg, da sonst n2 keine notwendige Bodenkante
wäre.

• Dazwischen dürfen bis zum Beginn von einer Bodenkante bi zuerst nur Legs ankommen
und danach nur Legs ab�iegen, da ansonsten eine der Bodenkanten bj notwendig wäre.

• Das heiÿt, bis zur Bodenkante bi kann der Fluss auf den Bodenkanten b1, . . . , bi nur
zunehmen. Wenn er für die notwendige Bodenkante n1 nicht-negativ ist, muss er das
auch für die Kanten b1, . . . , bi sein.

• Nach bi kann der Fluss auf den Bodenkanten bis zu n2 nur abnehmen. Wenn er für
die notwendige Bodenkante n2 nicht-negativ ist, muss er das auch für die vorherigen
nicht-notwendigen Bodenkanten bi, . . . , bk sein.

Daraus folgt, dass man all die Ereignisse eines Time Space Networks zusammenfassen kann,
die durch nicht-notwendige Bodenkanten miteinander verbunden sind. Dadurch wird erreicht,
dass jedes Ereignis mindestens aus einem ankommenden und einem ab�iegenden Leg besteht,
die Anzahl der Ereignisse (und damit auch der Bodenkanten) also nicht gröÿer als |L| · |F|
sein kann.

4.7.3 Heuristisches Leg-Verschmelzen

Die Leganzahl einer Flottenzuweisungsinstanz ist der dominierende Faktor für die Laufzeit
der in dieser Arbeit vorgestellten Lösungsverfahren. Dies gilt in besonderem Maÿe für die IP-
Ansätze. Eine Möglichkeit, die Leganzahl einer Probleminstanz zu verkleinern, ist, mehrere
Legs zu einem neuen Leg zu verschmelzen.

4.7.3.1 Verschmelzen von Legs

Beim Zusammenfassen von Legs geht es darum, eine Menge von Legs durch ein neues,
einzelnes Leg zu ersetzen, das deren Aufgabe übernimmt. Dabei soll gewährleistet sein, dass
eine zulässige Lösung, die auf einem Flugplan mit zusammengefassten Legs basiert, auch eine
zulässige Lösung für den originalen Flugplan liefert und dass der Gewinn beider Lösungen
identisch ist.

Um dieses zu erreichen, muss es sich bei der Menge von Legs, die zusammengefasst werden
sollen, um eine Legfolge F handeln. Das neue Leg lF hebt zur Startzeit des ersten Legs von
F vom Start�ughafen der Legfolge ab und landet auf deren Ziel�ughafen. Die Starts und
Landungen auf den Zwischenstationen werden durch das neue Leg also praktisch gestrichen.
Die Flugdauer des Legs lF ergibt sich aus den Gesamt�ugdauern aller zu F gehörenden Legs
und den dazwischen auftretenden tatsächlichen Bodenzeiten. Entsprechend ergibt sich der
Gewinn von lF aus den Einzelgewinnen der Legs zuzüglich etwaiger verbindungsabhängiger
Gewinne.

Dabei muss sichergestellt sein, dass es zumindest eine Flotte f gibt, von der ein Flugzeug die
Legfolge F nacheinander bedienen kann. Flotten, die nicht dazu in der Lage sind, werden aus
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der Menge der erlaubten Flotten FlF für Leg lF gestrichen. Legfolgen F , für die sich FlF = ∅
ergibt, werden nicht zusammengefasst, da dies ansonsten automatisch zu einer unzulässigen
Flottenzuweisungsinstanz führen würde.

4.7.3.2 Konstruktion der Legfolgen

Mittels des Flugplans selbst kann man Legs �nden, die vernünftigerweise von einem Flugzeug
nacheinander ge�ogen werden sollten. �Vernünftigerweise� bedeutet in diesem Fall, dass an-
sonsten Flugzeuge unnötig lange auf Flughäfen warten müssten. Da Flugzeuge eine knappe
und teure Ressource sind, kann dies in der Regel nicht zu einem �guten� Flugplan führen;
durch das Zusammenfassen von Legs wird also in diesem Fall der Lösungsraum in der Pra-
xis kaum eingeschränkt. Nichtsdestotrotz handelt es sich bei dieser Vorgehensweise um eine
Heuristik.

Auf schwach frequentierten Flughäfen kommt es häu�g zu der Situation, dass ein Leg an-
kommt, kurze Zeit später ein anderes startet und sonst für lange Zeit kein Flugereignis
statt�ndet. Diese Legs sind potentielle Kandidaten für eine Zusammenlegung. Würden sie
nicht direkt im Anschluss von einem Flugzeug ge�ogen werden, hätte dies meistens (aber
eben nicht immer) zur Folge, dass während der gesamten Planungsperiode ein Flugzeug
auf dem Flughafen nutzlos wartet; dabei handelt es sich um eine Situation, die gerade auf
schwach frequentierten Flughäfen nicht vorkommen sollte. Dies ist sogar teilweise eine harte
Forderung, die von Fluggesellschaften an eine zulässige Flottenzuweisung gestellt wird.

Um diese Kandidaten zuverlässig identi�zieren zu können, reicht ein Kriterium wie oben
erwähnt nicht aus. Hier hilft die in Abschnitt 4.7.1.1 beschriebene Flugplananalyse mit der
virtuellen Flotte.9 Die Inseln, die sich für die virtuelle Flotte ergeben, beinhalten Legs, die nur
untereinander verknüpft werden dürfen, wenn keine unnötigen Flugzeuge auf dem Flughafen
der Insel warten sollen.

Für einfache Inseln, die nur aus einem ankommenden und einem startenden Leg bestehen,
folgt so unmittelbar, dass ihre Legs nacheinander von einem Flugzeug ge�ogen werden müssen
- die Legs sollten also verschmolzen werden. Diese Idee ist bereits von [Hane et al., 1995]
eingesetzt worden, allerdings wurden dort die einfachen Inseln heuristisch bestimmt. Wir
verallgemeinern diesen Ansatz jetzt für beliebige Inseln.

Ähnlich wie in Abschnitt 4.5.2 beschrieben erzeugen wir für jede Insel einen bipartiten Gra-
phen G der ankommenden und ab�iegenden Legs und verbinden Legs über eine Kante, wenn
es eine (reale) Flotte gibt, die nacheinander die beiden Legs innerhalb der Insel bedienen
kann. Für diesen Graphen bestimmen wir wie folgt all die Kanten, die zu jedem perfekten
Matching gehören:

• Bestimme perfektes Matching e1, . . . , en von G.

• Für jede Kante ei:

9Auch im Falle von verbindungsabhängigen Mindestbodenzeiten wird für dieses heuristische Preprocessing
eine virtuelle Flotte mit �ottenabhängigen Mindestbodenzeiten verwendet.
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� Lösche ei aus G.

� Prüfe, ob G weiterhin ein perfektes Matching enthält. Wenn nicht, gehört ei zu
jedem perfekten Matching von G.

� Füge ei wieder zu G hinzu.

Die Laufzeit dieses Algorithmus ist O(n3). Die initiale Berechnung eines perfekten Matching
benötigt Zeit O(n2.5). Für jede Kante ei kann nach ihrem Löschen durch eine Flusserweite-
rung mit Laufzeit O(n2) festgestellt werden, ob weiterhin ein perfektes Matching existiert.

Gehört eine Kante zu jedem perfekten Matching, müssen die beiden betro�enen Legs nach-
einander von einem Flugzeug ge�ogen werden, um zwischen den Inseln keine Flugzeuge auf
dem zur Insel gehörenden Flughafen warten zu lassen. Die so gefundenen Kanten de�nieren
also die Legfolgen, nach denen Legs verschmolzen werden. Insbesondere werden so auch die
Verbindungen von einfachen Inseln zuverlässig erkannt.

Diese Analyse sollte wie gesagt nur für schwach frequentierte Flughäfen durchgeführt werden,
da es auf stark frequentierten Flughäfen, Hubs genannt, durchaus erwünscht ist, dass nicht
benötigte Flugzeuge dort warten. Hier kann die Wartefunktion mit ihren Inseln keine Hilfe
leisten, da sie nur den Fall beschreibt, dass sich die minimal benötigte Anzahl an Flugzeugen
auf dem Flughafen aufhält.

4.7.3.3 Weitere Konsequenzen für IP-Modelle

Für IP-Modelle - Connection Network, Time Space Network und Hybrides Modell - können
die Informationen über die Inseln der virtuellen Flotte auf schwach frequentierten Flughä-
fen ferner dazu verwendet werden, nicht erwünschte Verbindungs- und Bodenkanten aus
dem Modell zu entfernen. In einer Lösung, die auf den schwach frequentierten Flughäfen
nicht mehr Flugzeuge benötigt wie die virtuelle Flotte, muss der Fluss auf Verbindungs-
und Bodenkanten, die zwischen den Inseln der virtuellen Flotte verlaufen, Null sein und die
entsprecheden Variablen können aus den IP-Modellen entfernt werden.

4.8 Experimentelle Ergebnisse

4.8.1 Datensätze

Für unsere Experimente standen uns 17 reale Datensätze aus den Planungsabteilungen ver-
schiedener Fluggesellschaften zur Verfügung. Sie unterscheiden sich bezüglich ihrer Gröÿe,
Flugnetzstruktur, Erweiterungen, usw. Zu allen Datensätzen war eine zulässige Flottenzuwei-
sung gegeben, so dass sie auch von den Lokale Suche Heuristiken optimiert werden konnten,
denen ja eine zulässige initiale Lösung mitgegeben werden muss.

In Tabelle 4.1 sind die wichtigsten Merkmale der Datensätze zusammengefasst. Wir verwen-
den die Buchstaben A bis Q als Bezeichnung für die Datensätze. In der Spalte �Legs� wird die
Anzahl der Legs im Datensatz angegeben, in der Spalte �Flotten� die Anzahl verschiedener
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Datensatz Legs Flotten Flugzeuge Flughäfen Flotten/Leg azyklisch? cdt?

A 116 2 10 18 2.0 Nein Nein
B 288 3 27 29 3.0 Nein Nein
C 3337 4 88 68 4.0 Nein Nein
D 4378 11 175 75 3.2 Nein Nein
E 4449 9 154 73 6.7 Nein Nein
F 4449 9 154 73 6.8 Nein Nein
G 4311 11 154 74 7.9 Nein Nein
H 3911 10 130 63 8.9 Nein Nein
I 4253 11 151 74 10.1 Nein Nein
J 4565 11 159 75 10.3 Nein Nein
K 4602 12 224 84 2.3 Nein Ja
L 5243 23 216 76 1.7 Nein Ja
M 6285 18 272 95 2.9 Nein Ja
N 6287 18 261 96 2.9 Nein Ja
O 6287 18 258 96 2.9 Nein Ja
P 9007 9 179 74 7.9 Ja Nein
Q 42226 13 317 148 5.4 Ja Nein

Tabelle 4.1: Eigenschaften der 17 Probleminstanzen für die Flottenzuweisung

Flugzeugtypen, in der Spalte �Flugzeuge� die Gesamtanzahl an verfügbaren Flugzeugen über
alle Flotten und in der Spalte �Flughäfen� die Anzahl der besuchten Flughäfen.

Bei den meisten Datensätzen können manche Legs nicht von allen Flotten bedient werden
(Fl 6= F). In der Spalte �Flotten/Leg� wird daher die durchschnittliche Anzahl an Flotten,
die für ein Leg zulässig sind, angegeben. Nur bei den Datensätzen A, B und C können alle
Flotten alle Legs bedienen.

Die letzten beiden Spalten klassi�zieren die Datensätze genauer. Es wird angegeben, ob
es sich bei dem Datensatz um eine zyklischen oder azyklische Instanz handelt (Spalte
�azyklisch?�) und ob die Instanz verbindungsabhängige Mindestbodenzeiten enthält (Spalte
�cdt?�). Daraus ergeben sich drei Gruppen. Die Datensätze A bis J sind zyklische Flotten-
zuweisungsprobleme ohne verbindungsabhängige Mindestbodenzeiten, bei den Datensätze K
bis O handelt es sich um zyklische Probleminstanzen mit verbindungsabhängigen Mindest-
bodenzeiten und die letzten beiden Datensätze P und Q bilden die Gruppe der azyklischen
Instanzen ohne verbindungsabhängige Mindestbodenzeiten.

Azyklische Flottenzuweisungsprobleme mit verbindungsabhängigen Mindestbodenzeiten stan-
den uns nicht zur Verfügung, allerdings lässt sich jede zyklische Instanz auch als eine azykli-
sche Instanz au�assen und als solche optimieren. In Abschnitt 4.8.8 vergleichen wir so die
Performance der Verfahren für zyklische und azyklische Flottenzuweisungsprobleme.

Die gröÿten Datensätze sind die beiden azyklischen Instanzen mit über 9000 bzw. 42000
Legs. Die Planungsperiode umfasst bei Datensatz P einen Zeitraum von zwei Wochen, bei
Datensatz Q sind es sogar vier Wochen. Allen zyklischen Datensätzen ist eine Planungsdauer
von einer Woche zu eigen.
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Innerhalb einer jeden Gruppe sind die Datensätze nach ihrer Gröÿe aufsteigend geordnet.
Wir de�nieren die Gröÿe eines Datensatzes dabei als das Produkt aus den Spalten �Legs�
und �Flotten/Leg�. Dies korrespondiert sehr genau mit der tatsächlichen Eingabegröÿe, da
für jede zulässige Leg-Flotten-Kombination eine Reihe von Werten wie Blockzeit, Gewinn,
usw. angegeben werden muss. Das Produkt aus Leganzahl und Flottenanzahl wäre gerade
für Datensätze, bei denen Legs nicht von allen Flotten bedient werden können, nicht so
aussagekräftig. So kann es passieren, dass Datensatz H als gröÿer als Datensatz D angesehen
wird, obwohl er sowohl aus weniger Legs als auch aus weniger Flotten besteht. Dafür kann
in Datensatz H aber ein Leg im Durchschnitt von fast allen Flotten bedient werden.

Aus Datenschutzgründen dürfen wir bei den Ergebnissen zu den Testläufen nicht die konkret
erzielten Gewinne nennen. Stattdessen geben wir die Abweichung bezüglich des optimalen
Gewinns an, sofern dieser bekannt ist. Ansonsten geben wir die Abweichung bezüglich der
besten bekannten oberen Schranke des Gewinns für die jeweilige Instanz an.

4.8.2 Methodik

Alle Experimente sind auf einem PC mit 3.0GHz-Pentium 4-Prozessor und 1 GB Arbeitsspei-
cher unter Redhat Enterprise Linux 4 durchgeführt worden. Als Lösungsverfahren für das
Flottenzuweisungsproblem kamen selbstgeschriebene Programme zum Einsatz, die die Ver-
fahren aus diesem Kapitel implementieren. Jedes der Programme steht in einer Variante für
das zyklische und azyklische Flottenzuweisungsproblem zur Verfügung.

Lokale Suche Heuristiken Es sind die beiden in Abschnitt 4.3 beschriebenen Lokale
Suche Verfahren auf Hill Climbing- bzw. Simulated Annealing-Basis implementiert worden.
Wir kürzen hier den Hill Climbing Algorithmus mit HC und den Simulated Annealing Al-
gorithmus mit SA ab. Alle in diesem Kapitel beschriebenen Erweiterungen sind vollständig
umgesetzt worden und können bei Bedarf aktiviert werden.

In Abschnitt 4.4 werden einige Parameter, die die Nachbarschaftgenerierung steuern, be-
schrieben. Für unsere Testläufe haben wir bei der Generierung der Legsequenzen die Tie-
fensuche mit einer maximalen Tiefe von 6 und einem maximalen Grad von 4 je Knoten
verwendet. Die Kandidatenauswahl in jedem Knoten erfolgt nach der BEST-Strategie (Ab-
schnitt 4.4.1.1), das heiÿt, es werden unter den möglichen Kandidaten die vier gewinn-
trächtigsten ausgewählt. Während der Tiefensuche können mehrere zulässige Nachbarn ge-
funden werden und wir wählen unter diesen Nachbarn gemäÿ der BETTER-Strategie (Ab-
schnitt 4.4.1.5). Somit wird die Tiefensuche beendet, sobald ein Nachbar gefunden worden ist,
der von der Lokalen Suche auf jeden Fall akzeptiert wird. Damit ist die Nachbar-Generierung
zielgerichtet auf das schnelle Finden von Nachbarn, die von der Lokalen Suche akzeptiert
werden, ausgerichtet. Dies beschleunigt die Konvergenz der Lokale Suche Verfahren. Die hier
beschriebenen Einstellungen haben sich in der Praxis bei vielen Fluggesellschaften bewährt.

Da es sich bei den beiden Lokale Suche Verfahren um randomisierte Algorithmen handelt,
geben wir im Folgenden bei diesen Verfahren für die Laufzeiten und Lösungsqualitäten immer
Mittelwerte aus zehn Testläufen an. Die Varianz dieser Werte über die zehn Testläufe ist im
Allgemeinen so gering, dass wir auf detailliertere Angaben verzichten.
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IP-basierte Verfahren Je nachdem, ob verbindungsabhängige Bodenzeiten in einer In-
stanz vorkommen, verwenden die IP-basierten Verfahren ein Time Space Network Modell
(Abschnitt 4.2) oder ein Hybrides Modell (Abschnitt 4.5.1). Die resultierenden ganzzahligen
linearen Programme werden von Standard-IP-Lösern gelöst. Dabei kann zum einen ILOG
CPLEX 9.1 oder zum anderen CBC (Coin Branch and Cut solver) aus der freien COIN-OR-
Library10 zum Einsatz kommen. Mit CPLEX bezeichnen wir im Folgenden IP-Verfahren, die
CPLEX als Löser einsetzen, und mit CBC die Verfahren, die CBC verwenden. Das verwen-
dete Modell wird dabei nicht weiter spezi�ziert und ergibt sich aus den Eigenschaften der
Eingabeinstanz.

Beide IP-Löser basieren auf einem klassischen Branch&Bound-Ansatz, bei dem in jedem
Knoten eine LP-Relaxierung des Problems gelöst wird. Liefert die LP-Relaxierung eine nicht-
ganzzahlige Lösung, wird eine fraktionale binäre Variable x ausgewählt und zwei Unterpro-
bleme mit x = 0 und x = 1 erzeugt. Wir verzweigen ausschlieÿlich über die binäre Variablen
xl,m,f bzw. yl,f , da diese die eigentliche Flottenzuweisung de�nieren. Die Ganzzahligkeit der
Bodenkantenvariablen zv,v+ ergibt sich dann automatisch. Stehen mehrere fraktionale Varia-
blen zur Auswahl, wählen wir die Variable mit dem gröÿten Ein�uss in der Zielfunktion aus,
das heiÿt die Variable mit dem gröÿten pl,f -Wert.

Man kann verschiedene Baumdurchlaufstrategien während einer Branch&Bound Suche ein-
setzen. Wir verwenden zuerst eine Tiefensuch-Strategie, bis wir eine erste zulässige, sprich
ganzzahlige Lösung gefunden haben. Dann wechseln wir zu einer Bestensuche. Wir versuchen
also zuerst möglich schnell eine zulässige Lösung zu produzieren. Wegen der verwendeten
Verzweigungsstrategie ist dabei die erste gefundene zulässige Lösung in der Praxis bereits
von sehr hoher Qualität, weist also ein kleines integrality-gap auf.

Bereits bei mittelgroÿen Flottenzuweisungsinstanzen benötigt eine vollständige Branch&
Bound Suche, die beweisbar eine optimale Flottenzuweisung liefert, zu viel Zeit. Wir ver-
wenden daher die eigentlich exakten IP-basierten Verfahren zumeist approximativ. Wir ge-
ben dabei eine relative Abweichung r vor und beenden die Branch&Bound-Suche, sobald
wir eine zulässige Lösung gefunden haben, die beweisbar höchstens r vom Optimum ent-
fernt ist. Bezeichnet PL den Gewinn einer gefundenen Lösung L und PUB die sich aus den
LP-Relaxierungen der Branch&Bound-Knoten ergebene obere Schranke auf den maximalen
Gewinn, so brechen wir die Suche ab, wenn gilt:

PUB − PL

PUB

≤ r

Wir verwenden typischerweise r = 0.005, so dass wir Lösungen produzieren, die höchstens
0.5% vom Optimum abweichen. In praktisch allen Fällen erfüllt bereits die erste gefundene
ganzzahlige Lösung diese Bedingung. Berücksichtigt man dann noch, dass es sich vor allem
bei den Erlöswerten in Flottenzuweisungsproblemen nur um Schätzwerte handelt, deren Feh-
ler weit gröÿer als 0.5% sind, reichen die so bestimmten, fast optimalen Lösungen in der
Praxis vollkommen aus.

Während der Branch&Bound Suche müssen fortwährend LP-Relaxierungen gelöst werden.
Das CPLEX-Verfahren verwendet dabei in der Wurzel den Barrier-Algorithmus, ein Interior-
Point-Verfahren, da sich damit vor allem groÿe LPs am schnellsten lösen lassen. Während

10http://www.coin-or.org
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Daten- HC SA CBC CPLEX
satz Zeit Qual. Zeit Qual. Zeit Qual. Zeit Qual.

A 0.00 opt 0.04 opt 0.01 opt 0.02 opt
B 0.02 0.52% 0.19 0.01% 0.07 opt 0.10 opt
C 3.18 1.27% 47.39 0.74% 15.34 0.00% 5.62 0.00%
D 4.61 0.87% 41.59 0.25% 61.86 0.01% 40.22 0.02%
E 6.62 1.22% 98.19 0.31% 154.40 0.00% 167.11 0.03%
F 7.13 0.58% 119.07 0.33% 100.19 0.00% 62.68 0.00%
G 8.52 0.90% 136.83 0.14% 86.08 0.00% 74.16 0.01%
H 8.06 2.40% 73.55 1.31% 60.86 0.00% 38.05 0.00%
I 17.59 1.26% 438.93 0.18% 657.17 0.02% 285.16 0.02%
J 13.89 1.08% 140.25 0.39% 154.14 0.01% 241.46 0.01%
K 5.58 0.26% 284.10 0.08% 6.36 opt 5.26 opt
L 0.37 0.52% 2.62 0.16% 3.53 0.10% 0.94 0.26%
M 9.62 3.12% 70.55 0.94% 57.39 0.00% 41.82 0.01%
N 19.63 2.82% 161.70 1.70% 234.22 0.04% 281.17 0.11%
O 6.94 2.86% 328.49 1.18% 415.59 0.08% 375.24 0.10%
P 20.66 1.27% 544.26 0.80% 1002.73 0.01% 991.82 0.01%
Q 433.15 0.45% 9090.19 0.10% 5435.33 0.00% 1938.11 0.00%

Tabelle 4.2: Laufzeit und Lösungsqualität bei maximalem Preprocessing

der Baumsuche kommt, wie bei praktisch jedem Standard-IP-Löser, der duale Simplex-
Algorithmus zum Einsatz, da dieser die Basislösung des Vaterknotens als gute initiale Basis
verwenden kann. In COIN-OR ist noch kein brauchbares Interior-Point-Verfahren implemen-
tiert, so dass von CBC alle Knoten mit der dualen Simplex-Methode gelöst werden.

4.8.3 Vergleich der Verfahren

In Tabelle 4.2 werden für die vier Verfahren HC, SA, CBC und CPLEX die Laufzeiten und
erreichten Lösungsqualitäten auf allen 17 Probleminstanzen wiedergegeben. In der Spalte
�Zeit� ist dabei die Laufzeit des jeweiligen Verfahrens in Sekunden angegeben. Die Spalte
�Qual.� beschreibt die Qualität der von einem Verfahren produzierten Lösung. Hier wird
die relative Abweichung (in Prozent) des Lösungsgewinns bezüglich der optimalen Lösung
angegeben.

Für die Instanzen N bis Q ist der Wert der optimalen Lösung nicht bekannt, und hier ist
die Abweichung bezüglich der besten bekannten oberen Schranke angegeben. Die Schranken
stammen aus der Branch&Bound-Suche des CBC- bzw. CPLEX-Verfahrens: Die dort in den
Knoten berechneten LP-Relaxierungen stellen obere Schranken auf den erzielbaren Gewinn
in dem entsprechenden Unterbaum dar, und der maximale Wert einer LP-Relaxierung der
noch aktiven Knoten des Suchbaums ist damit eine obere Schranke auf den Gewinn einer
optimalen Lösung.

Ein Wert von beispielsweise 0.26% sagt aus, dass die vom Lösungsverfahren berechnete
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Verfahren HC SA CBC CPLEX
Qualität 1.259% 0.507% 0.016% 0.034%

Tabelle 4.3: Durchschnittliche Lösungsqualität bei maximalem Preprocessing

Zuweisung mit Gewinn PL sich zum optimalen Gewinn P ∗ wie folgt verhält:

P ∗ − PL

P ∗ = 0.0026

Das heiÿt, je kleiner die Prozentzahl, desto besser ist die Lösung. Für die Instanzen, für die
nur eine obere Schranke PUB bekannt ist, gilt P ∗ ≤ PUB und damit

P ∗ − PL

P ∗ = 1− PL

P ∗ ≤ 1− PL

PUB

=
PUB − PL

PUB

,

falls P ∗ > 0 ist, was bei allen 17 Testinstanzen der Fall ist. Also stellen in diesem Fall die
Qualitätswerte obere Schranken für die tatsächliche Abweichung dar.

In den �Qual.�-Spalten taucht an manchen Stellen der Eintrag �opt� auf. Dies besagt, dass das
Verfahren eine optimale Lösung zurückgeliefert hat. Ein Wert von �0.00%� besagt hingegen
nur, dass die Lösung fast optimal ist. Die relative Abweichung ist echt gröÿer Null aber
kleiner als 0.005%.

Bei allen Testläufen in Tabelle 4.2 ist vor der eigentlichen Optimierung der Datensatz mit
allen (heuristischen) Preprocessing-Techniken aus Abschnitt 4.7.3 aufbereitet worden. Die
Angaben zur Qualität beziehen sich auf den Wert der optimalen Lösung der aufbereiteten
Instanz, nicht auf den optimalen Gewinn der unveränderten Instanz. In Abschnitt 4.8.4 gehen
wir näher auf die Auswirkungen der verschiedenen Preprocessing-Techniken ein.

Qualität Die beiden IP-basierten Verfahren CBC und CPLEX liefern die Lösungen mit der
besten Qualität. Die durchschnittliche Abweichung liegt bei nur 0.016% für CBC und 0.034%
für CPLEX. Es folgt SA mit einer durchschnittlichen Abweichung von 0.507% und am Ende
HC mit 1.259%.

Diese Reihenfolge zeigt sich übereinstimmend bei allen Datensätzen und ist wenig überra-
schend. Der Hill Climbing Algorithmus ist die einfachste Lokale Suche Heuristik und läuft
Gefahr, in schlechten lokalen Optima stecken zu bleiben. Simulated Annealing versucht genau
dies zu umgehen, indem vor allem anfangs auch Verschlechterungen zugelassen werden.

CBC und CPLEX sind als IP-Löser potentiell exakte Verfahren, denen hier erlaubt worden
ist, die Suche bei einem relativen Fehler von 0.5% zu beenden. Bei den zurückgelieferten
Lösungen handelt es sich in allen Fällen um die erste gefundene ganzzahlige Lösung im
Branch&Bound-Baum. Bei realen Flottenzuweisungsproblemen treten also allem Anschein
nach nur sehr kleine integrality gaps auf. Nichtsdestotrotz kann der Aufwand zum Schlieÿen
dieser Lücke, das heiÿt zum Bestimmen des Optimums, enorm sein, wie Abschnitt 4.8.7
zeigt.
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Interessant ist die Tatsache, dass CBC in allen Fällen marginal bessere (oder zumindest gleich
gute) Lösungen produziert wie CPLEX. Dabei bekommen beide IP-Löser das gleiche lineare
Programm als Eingabe und auch die Baumsuchen laufen grundsätzlich ähnlich ab. Allerdings
sind uns die genauen Interna von CPLEX nicht bekannt, so dass es hier vielleicht doch kleine
Unterschiede zwischen CBC und CPLEX gibt, die für das Verhalten verantwortlich sind.

Es fällt auf, dass die Gewinnabweichungen für die Instanzen K bis O allgemein höher ausfallen
als für die restlichen Datensätze. Dies gilt sowohl für die Heuristiken als auch die IP-basierten
Verfahren. Die Instanzen K bis O enthalten verbindungsabhängige Mindestbodenzeiten, und
diese scheinen das Flottenzuweisungsproblem insgesamt zu verkomplizieren.

Laufzeit Die Betrachtung der Laufzeit der Verfahren auf den Testinstanzen fällt gemischter
aus. Wie nicht anders zu erwarten war, ist HC in fast allen Fällen das mit Abstand schnellste
Lösungsverfahren. Die Laufzeiten der übrigen drei Verfahren SA, CBC und CPLEX bewegen
sich in ähnlichen Regionen, wobei sie meistens mindestens um den Faktor 10 langsamer sind
als HC. Allerdings ist hier die Streuung relativ groÿ.

Eine Besonderheit stellt der Datensatz K dar. Hier haben die IP-basierten Verfahren keine
Schwierigkeit innerhalb von Sekunden die optimale Lösung zu berechnen, wohingegen die
Lokale Suche Verfahren hart arbeiten müssen und ein Vielfaches an Laufzeit benötigen. Da-
für konnten zwei Gründe ausgemacht werden. Zum einen ist die Zielfunktion der Instanz
so strukturiert, dass bereits die LP-Relaxierung in der Wurzel ganzzahlig ist. Darüberhinaus
sind die Gewinnwerte der Leg-Flotten-Kombinationen so bescha�en, dass dabei auch die
LP-Relaxierung sehr schnell gelöst werden kann. Auf der anderen Seite starten die Lokale
Suche Verfahren mit einer sehr schlechten Startlösung, so dass verhältnismäÿig viele Nach-
barschaftsübergänge notwendig sind, um in die Nähe des Optimums zu gelangen. Ferner sind
hier die Unterschiede in den verbindungsabhängigen Mindestbodenzeiten pro Leg mit teil-
weise über 5 Stunden sehr groÿ, was es für die Nachbarschaftsgenerierung schwierig macht,
überhaupt zulässige Übergänge zu �nden.

Von den drei Verfahren SA, CBC und CPLEX ist CPLEX in 10 von 17 Fällen das schnellste
Verfahren. Fünf Vergleiche gewinnt SA und CBC ist nur auf den beiden kleinsten Instanzen
A und B am schnellsten, wo die Laufzeiten allerdings schon fast unter die Messgenauigkeit
fallen. Dass der CPLEX-Optimierer CBC in fast allen Fällen schlägt, liegt hauptsächlich daran,
dass die LP-Relaxierung der Wurzeln in CPLEX wegen des Einsatzes eines Interior-Point-
Verfahrens um Faktoren schneller ist als in CBC mit seinem dualen Simplex-Algorithmus. Im
nächsten Abschnitt 4.8.4 wird dies noch genauer herausgearbeitet.

SA kann in den meisten Fällen nur knapp mit den IP-basierten Verfahren mithalten und muss
sich bei dem gröÿten Datensatz Q deutlich geschlagen geben. Vor einigen Jahren war SA den
IP-basierten Verfahren in Bezug auf die Laufzeit noch deutlich überlegen, allerdings führt
die fortlaufende Verbesserung der Standard-IP-Löser dazu, dass dieser Vorsprung mittlerweile
aufgeholt werden konnte. Den entscheidenden Beitrag leisten aber vor allem die verwendeten
problemspezi�schen Preprocessing-Techniken aus Abschnitt 4.7.3. Wir gehen im nächsten
Abschnitt genauer darauf ein.
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Fazit Alle Verfahren scha�en es, in akzeptabler Zeit Lösungen auch für groÿe Flottenzu-
weisungsprobleme zu liefern. Die erzielten Lösungsqualitäten sind dabei insbesondere bei den
Verfahren SA, CBC und CPLEX gut bis hervorragend.

Das schnellste Verfahren ist dabei HC, das auch eine Instanz mit über 40000 Legs in un-
ter 8 Minuten optimieren kann. Allerdings kann man sich bei HC nicht darauf verlassen,
immer Lösungen von ausreichender Qualität zu erhalten - sie können bis zu 3% vom Opti-
mum abweichen, was in der Realität bei groÿen Fluggesellschaften Millionen-Euro-Beträge
im Jahr ausmacht. HC ist daher eher für eine schnelle Beurteilung der Auswirkungen von
Planänderungen geeignet.

CBC und CPLEX liefern fast optimale Lösungen und benötigen dabei auch auf groÿen In-
stanzen selten mehr als 15 Minuten Zeit. Nur bei der Instanz Q mit ihren über 40000 Legs
liegen die Laufzeiten im Bereich von 11

2
bzw. 1

2
Stunden. Dabei ist CPLEX häu�g das etwas

schnellere Verfahren, produziert dafür aber Lösungen von marginal schlechterer Qualität.

Im Vergleich zu den IP-basierten Verfahren fällt SA ein wenig zurück. Bei vergleichbaren,
teils aber auch höheren Laufzeiten kann es mit einer durchschnittlichen Lösungsqualität von
0.5% nicht mit CBC bzw. CPLEX mithalten. Darüberhinaus kann SA prinzipbedingt keine
Garantie auf die Lösungsqualität geben und benötigt eine zulässige Startlösung. Allerdings
ist SA das einzige Verfahren, mit dem sich die in Kapitel 6 beschriebene Integration von
Flottenzuweisung und Ertragsmanagement durchführen lässt. Wie die Experimente dort zei-
gen, lässt sich dadurch die tatsächliche Lösungsqualität nocheinmal deutlich steigern, da die
dort verwendete Zielfunktion die Verhältnisse in der Realität besser abbildet.

4.8.4 Preprocessing-Techniken

Hier untersuchen wir die Auswirkungen der heuristischen Preprocessing-Techniken aus Ab-
schnitt 4.7.3. Uns interessiert zum einen, wie sich die Preprocessing-Techniken auf die In-
stanzgröÿe, vor allem die Leganzahl, auswirkt und was dies für die Laufzeiten der verschie-
denen Optimierungsverfahren bedeutet.

Bei den beschriebenen Preprocessing-Techniken handelt es sich um Heuristiken, die zu einem
Verlust an realisierbarem Gewinn führen können. Zum anderen untersuchen wir daher diesen
E�ekt. Die Heuristiken gehen von der Prämisse aus, das auf schwach-frequentierten Flughäfen
Flugzeuge nicht unnütz warten sollen, und können unter dieser Voraussetzung Legs auf diesen
Flughäfen zusammenfassen. Wir haben bei allen Experimenten die fünf gröÿten Flughäfen
(Hubs) einer jeden Instanz von diesem Preprocessing ausgeschlossen, da auf Hubs diese
Prämisse nicht gilt.

Wir unterscheiden vier Arten, nach denen die Instanzen vor der eigentliche Optimierung
aufbereitet werden.

kein Preprocessing Hierbei werden die Datensätze unverändert an den Optimierer wei-
tergegeben. Die optimale Lösung hat der gröÿten Gewinn.

einfache Inseln Hier werden Legs zusammengefasst, die zu einfachen Inseln gehören. Die-
ses Verfahren wurde bereits in [Hane et al., 1995] eingesetzt.
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Daten- kein Prepro. einfache Inseln alle Inseln komplett
satz Legs FH Legs FH ∆-Gewinn Legs FH ∆-Gewinn ∆-Gewinn

A 116 18 87 7 - 87 7 - -
B 288 29 233 13 - 233 13 - -
C 3337 68 2293 21 - 2293 21 - -
D 4378 75 3351 21 0.00% 3228 20 0.00% 0.00%
E 4449 73 3389 20 0.26% 3376 20 0.26% 0.29%
F 4449 73 3393 20 0.00% 3370 20 0.00% 0.00%
G 4311 74 3326 22 0.00% 3326 22 0.00% 0.06%
H 3911 63 3131 23 0.19% 3131 23 0.19% 0.38%
I 4253 74 3347 21 0.18% 3347 21 0.18% 0.27%
J 4565 75 3531 24 0.00% 3531 24 0.00% 0.00%
K 4602 84 3913 28 0.01% 3862 28 0.01% 0.01%
L 5243 76 4325 38 2.55% 4133 31 2.80% 2.82%
M 6285 95 5033 25 0.32% 4482 22 1.01% 1.31%
N 6287 96 5053 26 0.61% 4486 24 0.90% 0.99%
O 6287 96 5053 26 0.38% 4486 24 0.56% 0.61%
P 9007 74 7412 45 0.02% 7380 45 0.02% 0.31%
Q 42226 148 34116 91 0.11% 33668 91 0.12% 0.27%

Tabelle 4.4: Auswirkung von Preprocessing auf die Instanzgröÿe und den Gewinn

alle Inseln Alle Inseln werden darauf untersucht, ob es innerhalb der jeweiligen Insel Verbin-
dungen gibt, die auf jeden Fall verwendet werden müssen, um keine Flugzeuge unnütz
auf dem Flughafen warten zu lassen. Es stellt eine Verallgemeinerung des �einfache
Insel�-Preprocessing dar.

komplett Diese Technik lässt sich nur bei IP-basierten Verfahren einsetzen und verbietet
zusätzlich explizit Fluss zwischen Inseln von schwach-frequentierten Flughäfen. Die
Leganzahl wird dadurch nicht weiter verringert, aber es werden weniger Variablen in
den IP-Modellen benötigt.

Falls die Startlösung der heuristischen Verfahren keine unnützen Flugzeuge auf schwach-
frequentierten Flughäfen einsetzt, garantieren HC und SA implizit, dass dies auch für
die von ihnen zurückgelieferten Lösungen der Fall ist, da Nachbarschaftsübergänge
nicht zu einem Mehrverbrauch an Flugzeugen auf Flughäfen führen können. Insofern
wird diese Preprocessing-Variante von den Heuristiken automatisch verwendet.

Gewinneinbußen In Tabelle 4.4 werden die Auswirkungen der Preprocessing-Techniken
auf die Instanzgröÿe und den einhergehenden Gewinnrückgang wiedergegeben. In den �Leg�-
Spalten ist dabei die Anzahl an Legs, die nach dem Preprocessing übrigbleiben wiedergeben,
und in den �FH�-Spalten steht, wie viele Flughäfen von diesen Legs noch ange�ogen werden.
Für die Preprocessing-Variante �komplett� sind diese Werte nicht angegeben, da sie sich
nicht von den Werten der Variante �alle Inseln� unterscheiden.
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Preprocessing kein Prepro. einfach Inseln alle Inseln komplett
∆-Gewinn - 0.272% 0.356% 0.431%

Tabelle 4.5: Durchschnittliche Gewinneinbuÿen durch Preprocessing

Die �∆-Gewinn�-Spalten geben den Rückgang des erzielbaren optimalen Gewinns durch das
jeweilige Preprocessing an. Die Angaben beziehen sich auf den relativen Verlust bezüglich
des Gewinns einer optimalen Lösung der nicht-aufbereiteten Instanz. Allerdings sind diese
optimalen Gewinne nur für die kleinsten Instanzen bekannt - in den anderen Fällen haben
wir, wie im vorherigen Abschnitt ausführlich beschrieben, oberer Schranken auf die optimalen
Gewinne verwendet. Ein Eintrag von 0.26% bedeutet demnach, dass mit der entsprechenden
Preprocessing-Trechnik höchstens noch ein Gewinn in Höhe von 99.74% der Originalinstanz
erzielt werden kann. Der Eintrag �-� steht dafür, dass sich der Wert einer optimalen Lösung
durch das entsprechende Preprocessing nicht verringert.

Durch die Preprocessing-Techniken kann die Leganzahl einer Instanz im Durchschnitt um ein
Viertel verringert werden. Ein Groÿteil der Einsparung wird dabei bereits durch das �einfache
Insel�-Preprocessing erreicht. Die Ausweitung auf alle Inseln bringt nur für Instanzen mit
verbindungsabhängigen Mindestbodenzeiten eine weitere deutliche Abnahme der Leganzahl.
Bei den übrigen Instanzen wird dadurch die Leganzahl kaum oder gar nicht weiter verringert.
Gerade bei verbindungsabhängigen Mindestbodenzeiten sind innerhalb von Inseln der virtu-
ellen Flotte viele Verbindungen zwischen Legs unzulässig, so dass hier häu�ger erzwungende
Legverbindungen gefunden werden können.

Dass das Zusammenfassen von Legs gerade auf kleinen Flughäfen sehr e�ektiv ist, bewei-
sen die Zahlen zu den ange�ogenen Flughäfen der Instanzen. Ihre Anzahl sinkt durch das
Preprocessing im Durchschnitt um den Faktor 3 bis 4. Die Mehrzahl der Flughäfen einer ty-
pischen Flottenzuweisungsinstanz sind schwach-frequentiert und die Legs partitionieren sich
dort komplett zu einfachen Inseln.

Die durch Preprocessing zu erwartenden durchschnittlichen Gewinneinbuÿen liegen im Be-
reich von 0.3%. Dabei gibt es Instanzen, die fast gänzlich immun gegenüber Gewinneinbuÿen
durch Preprocessing sind (z.B. Datensatz F, J und K) und andere, wo der erzielbare Gewinn
um über 2% einbricht (Datensatz L). Gerade die Datensätze mit verbindungsabhängigen
Mindestbodenzeiten (K bis O) scheinen stärker davon betro�en zu sein.

Unterschiede zwischen der �einfache Inseln�-Variante und der �alle Inseln�-Variante machen
sich praktisch nur bei Instanzen mit verbindungsabhängigen Mindestbodenzeiten bemerkbar,
da nur hier signi�kant mehr Legs durch die �alle Inseln�-Variante zusammengefasst werden.
Der Schritt hin zur �komplett�-Variante für IP-basierte Verfahren senkt den erzielbaren Ge-
winn in den meisten Fällen nochmal wahrnehmbar.

Laufzeit der IP-basierten Verfahren Kommen wir nun zu den Auswirkungen der ver-
schiedenen Preprocessing-Techniken auf die Laufzeit der Optimierungsverfahren. Für eine
repräsentative Auswahl von Instanzen sind die Ergebnisse dazu in den Tabellen 4.6 bis 4.11
zusammengefasst.
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Prepro- Datensatz C
cessing yl,f zv,v+ xl,m,f Spalten Zeilen Zeit pro Übergang (ms)

kein 13348 8821 0 22169 12162 0.17
einfache I. 8777 4684 0 13461 6981 0.19
alle I. 8777 4684 0 13461 6981 0.19
komplett 8723 4139 0 12862 6976 -

Prepro- CBC CPLEX HC SA
cessing Wurzel Knoten Zeit Wurzel Knoten Zeit Zeit Zeit

kein 77.68 11 88.84 16.82 6 26.84 3.32 35.61
einfache I. 19.71 8 22.83 3.53 7 5.55 3.33 46.87
alle I. 19.71 8 22.83 3.53 7 5.55 3.18 47.39
komplett 13.54 7 15.34 2.41 7 5.62 - -

Tabelle 4.6: Auswirkung von Preprocessing auf die Modellgröÿe und Laufzeit; Datensatz C

Prepro- Datensatz E
cessing yl,f zv,v+ xl,m,f Spalten Zeilen Zeit pro Übergang (ms)

kein 29925 16378 0 46303 20836 0.19
einfache I. 20981 9920 0 30901 13318 0.16
alle I. 20822 9847 0 30669 13232 0.17
komplett 20577 8489 0 29066 13252 -

Prepro- CBC CPLEX HC SA
cessing Wurzel Knoten Zeit Wurzel Knoten Zeit Zeit Zeit

kein 481.36 21 606.31 92.28 20 221.38 8.66 102.77
einfache I. 153.40 13 195.50 27.80 19 68.85 7.11 106.79
alle I. 136.23 12 166.89 29.95 13 54.65 6.62 98.19
komplett 99.25 41 154.40 28.17 106 167.11 - -

Tabelle 4.7: Auswirkung von Preprocessing auf die Modellgröÿe und Laufzeit; Datensatz E
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Prepro- Datensatz I
cessing yl,f zv,v+ xl,m,f Spalten Zeilen Zeit pro Übergang (ms)

kein 42984 22932 0 65916 27196 0.21
einfache I. 30734 13748 0 44482 17106 0.20
alle I. 30734 13748 0 44482 17106 0.20
komplett 29932 11327 0 41259 17032 -

Prepro- CBC CPLEX HC SA
cessing Wurzel Knoten Zeit Wurzel Knoten Zeit Zeit Zeit

kein 1104.37 215 3322.23 274.35 229 3637.04 16.48 349.25
einfache I. 414.48 100 1011.00 69.10 158 956.67 18.03 423.22
alle I. 414.48 100 1011.00 69.10 158 956.67 17.59 438.93
komplett 225.13 99 657.17 49.49 50 285.16 - -

Tabelle 4.8: Auswirkung von Preprocessing auf die Modellgröÿe und Laufzeit; Datensatz I

Prepro- Datensatz J
cessing yl,f zv,v+ xl,m,f Spalten Zeilen Zeit pro Übergang (ms)

kein 47058 24645 0 71703 29221 0.17
einfache I. 31021 13976 0 44997 17518 0.14
alle I. 31021 13976 0 44997 17518 0.13
komplett 29678 11597 0 41275 17438 -

Prepro- CBC CPLEX HC SA
cessing Wurzel Knoten Zeit Wurzel Knoten Zeit Zeit Zeit

kein 375.36 87 1360.41 312.51 187 3415.89 14.85 212.43
einfache I. 112.99 137 500.93 74.17 152 522.75 13.66 122.87
alle I. 112.99 137 500.93 74.17 152 522.75 13.89 116.72
komplett 53.51 62 154.14 62.48 100 241.46 - -

Tabelle 4.9: Auswirkung von Preprocessing auf die Modellgröÿe und Laufzeit; Datensatz J
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Prepro- Datensatz M
cessing yl,f zv,v+ xl,m,f Spalten Zeilen Zeit pro Übergang (ms)

kein 18068 11273 5217 34558 17600 0.57
einfache I. 14362 7888 4414 26664 13519 0.28
alle I. 12699 6573 4254 23526 11675 0.25
komplett 12585 5729 4239 22553 11697 -

Prepro- CBC CPLEX HC SA
cessing Wurzel Knoten Zeit Wurzel Knoten Zeit Zeit Zeit

kein 209.05 309 1017.93 33.02 508 1836.21 18.18 156.40
einfache I. 72.19 65 200.07 16.73 109 104.24 9.77 106.34
alle I. 33.99 70 116.60 13.90 71 55.56 9.62 70.55
komplett 17.29 50 57.39 12.85 82 41.82 - -

Tabelle 4.10: Auswirkung von Preprocessing auf die Modellgröÿe und Laufzeit; Datensatz M

Prepro- Datensatz N
cessing yl,f zv,v+ xl,m,f Spalten Zeilen Zeit pro Übergang (ms)

kein 18168 11369 8177 37714 17768 0.29
einfache I. 14563 7937 6245 28745 13780 0.42
alle I. 12910 6537 6092 25539 11890 0.66
komplett 12828 5872 6067 24767 11899 -

Prepro- CBC CPLEX HC SA
cessing Wurzel Knoten Zeit Wurzel Knoten Zeit Zeit Zeit

kein 282.21 417 2429.25 41.02 383 2067.49 6.13 93.43
einfache I. 133.79 219 627.36 18.70 367 775.31 7.79 142.97
alle I. 73.02 299 442.55 14.16 206 270.13 19.63 161.70
komplett 54.77 178 234.22 12.89 220 281.17 - -

Tabelle 4.11: Auswirkung von Preprocessing auf die Modellgröÿe und Laufzeit; Datensatz N



120 4 Lösungsverfahren

Im oberen Teil werden für jeden betrachteten Datensatz die Auswirkung des Preproces-
sings auf die Modellgröÿe der IP-basierten Verfahren und auf die durchschnittliche Generie-
rungszeit eines Nachbarn für die Lokale Suche Verfahren aufgezeigt. Die yl,f -, zv,v+- und
xl,m,f -Spalten geben dabei die Anzahl entsprechender Variablen in den IP-Modellen wieder.
Die folgenden �Spalten�- und �Zeilen�-Spalten fassen nochmal die Gröÿe der resultierenden
Constraint-Matrix zusammen. All diese Angaben beziehen sich natürlich auf die IP-basierten
Verfahren CBC und CPLEX.

Für die Lokale Suche Verfahren HC und SA wird in der Spalte �Zeit pro Übergang� die
durchschnittliche Zeit in Millisekunden für die Generierung eines Nachbarn angegeben. Für
das �komplett�-Preprocessing fehlt dabei diese Angabe, da es nur bei IP-basierten Verfahren
zum Einsatz kommt.

Im unteren Teil werden für jedes Verfahren und jede Preprocessing-Variante die resultierenden
Lösungszeiten in Sekunden in den �Zeit�-Spalten angegeben. Für die IP-basierten Verfahren
werden zusätzlich noch die Zeit zum Lösen der LP-Relaxierung in der Wurzel und die Anzahl
der während der Branch&Bound-Suche besuchten Knoten angegeben. Auch hier entfallen
für das �komplett�-Preprocessing die Zeiten der Lokale Suche Verfahren.

Die Ergebnisse für die IP-basierten Verfahren sind eindeutig: Je mehr Legs durch das Pre-
processing zusammengefasst werden, desto weniger Variablen werden in den IP-Modellen
benötigt, desto kleiner werden die Constraint-Matrizen und desto schneller lassen sich die
LP-Relaxierungen lösen. Da in den meisten Fällen dabei auch die Anzahl besuchter Knoten
während der Branch&Bound Suche kleiner wird, sinken die Lösungszeiten durch Preproces-
sing gewaltig. Einsparungen um den Faktor 10 und mehr sind gerade bei groÿen Instanzen
üblich, wenn man die Laufzeiten der nicht-aufbereiteten und der �komplett� aufbereiteten
Instanzen miteinander vergleicht.

Es fällt auf, dass die Wurzelknoten vom CBC-Verfahren um einiges langsamer gelöst werden
als vom CPLEX-Verfahren. Dies ist den unterschiedlichen LP-Lösern geschuldet, die CBC
bzw. CPLEX im Wurzelkonten einsetzen. Wie oben bereits erwähnt, steht in CPLEX mit
dem Barrier-Algorithmus ein Interior-Point-Verfahren zur Verfügung, das sehr e�zient auf
unseren IP-Modellen arbeitet. Die Dauer der anschlieÿenden Branch&Bound Suche wird im
wesentlichen von der Anzahl besuchter Knoten bestimmt, da hier beide IP-Löser ähnlich
e�ziente duale Simplex Methoden verwenden.

Normalerweise sinken mit der Modellgröÿe auch die Anzahl besuchter Knoten im Branch&
Bound Baum, so dass sich eine Verkleinerung der Modellgröÿe doppelt positiv auswirkt.
Bei manchen Instanzen scheint es aber so zu sein, dass insbesondere durch ein �komplett�-
Preprocessing die Knotenanzahl auch ansteigen kann - diese Preprocessing-Variante birgt
also die Gefahr, die IP-Modelle strukturell komplizierter zu machen. Besonders deutlich ist
dieser E�ekt bei Datensatz E in Tabelle 4.7 zu beobachten.

Nichtsdestotrotz gilt im Allgemeinen, dass man für kurze Laufzeiten der IP-basierten Verfah-
ren die Datensätze soweit wie möglich aufbereiten und verkleinern sollte. Die Algorithmen
werden dadurch um Faktoren schneller.

Laufzeit der Lokale Suche Verfahren Die Lokale Suche Verfahren HC und SA reagie-
ren auf Preprocessing nicht so eindeutig wie die IP-basierten Verfahren CBC und CPLEX.
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Hier lassen sich alle möglichen E�ekte beobachten: die Laufzeit kann durch Preprocessing
sinken (Datensatz J und M), nahezu unverändert bleiben (Datensatz C, E und I) oder sogar
ansteigen (Datensatz N).

Eine mögliche Erklärung dafür, dass sich Preprocessing nicht so günstig auf die Lokale Suche
Verfahren auswirkt, ist wie folgt. Bei der Generierung der Legsequenzen für die Lokale Suche
Verfahren kommt es auf schwach-frequentierten Flughäfen häu�g vor, das für ein ankommen-
des Leg nur ein Folgelegkandidat existiert, der zusammen mit dem ankommenden Leg eine
einfache Insel bildet. In diesem Fall wird der Tiefensuchbaum nicht besonders breit und lässt
sich schnell durchsuchen. Das Preprocessing verknüpft nun aber bereits vor der eigentlichen
Optimierung solche Legs, so dass für aufbereitete Instanzen der Tiefensuchbaum breiter und
sogar im gewissen Sinne tiefer wird. Die produzierten Legsequenzen bestehen zwar weiter-
hin aus maximal sechs (ggf. zusammengefassten) Legs, durch das Zusammenfassen können
sie aber e�ektiv mehr als sechs ursprüngliche Legs repräsentieren. So wird die Gröÿe der
Nachbarschaft einer Instanz durch Preprocessing implizit vergröÿert und die E�ekte durch
die verringerte Leganzahl wieder aufgefressen.

Fazit Für die IP-basierten Verfahren ist ein gründliches Preprocessing immer anzuraten, da
die Laufzeiten so um Faktoren gesenkt werden können. Dabei gilt generell, dass je weniger
Legs und damit Variablen ein IP-Modell enthält, desto schneller lässt es sich lösen. Für
lokale Suche Verfahren ist Preprocessing aus Laufzeitüberlegungen nicht so entscheidend, da
es sich nur in manchen Fällen laufzeitsenkend auswirkt und im Extremfall sogar zu längeren
Laufzeiten führen kann.

Demgegenüber steht der unvermeidliche Verlust an erzielbarem Gewinn durch die hier be-
handelten Preprocessing-Techniken. Für die meisten Instanzen hält sich dieser Verlust in
engen Grenzen und spielt kaum eine Rolle in der Praxis. Es ist sogar vielmehr so, dass viele
Fluggesellschaften auf schwach-frequentierten Flughäfen keine über�üssigen Flugzeuge am
Boden warten haben wollen und dafür lieber auf ein paar Promille an Gewinn verzichten.
Die Preprocessing-Techniken arbeiten nach dieser Prämisse und ihr Einsatz erzeugt damit
implizit Flottenzuweisungen mit dieser gewünschten Eigenschaft.

4.8.5 Verbindungsabhängige Mindestbodenzeiten

In diesem Abschnitt wollen wir untersuchen, wie sich verbindungsabhängige Mindestbodenzei-
ten bei der Optimierung von Flottenzuweisungsproblemen auswirken. Die dafür notwendigen
Anpassungen an den IP-Modellen bzw. Lokale Suche Heuristiken sind recht gravierend, so
dass negative Auswirkungen auf die Laufzeit und gegebenenfalls auch die Lösungsqualität zu
erwarten sind.

Um diesen Vergleich auf strukturell ähnlichen Instanzen durchführen zu können, haben wir die
fünf Datensätze K bis O dupliziert und daraus Instanzen K' bis O' ohne verbindungsabhängige
Mindestbodenzeiten erzeugt. Dabei kam das in Abschnitt 4.5.2 vorgestellte Verfahren zum
Einsatz, mit dem bereits für die Lokale Suche Verfahren �ottenabhängige Mindestbodenzeiten
aus verbindungsabhängigen Mindestbodenzeiten berechnet wurden. Die Menge der zulässigen
Lösungen der Instanzen K' bis O' ist damit eine Obermenge der zulässigen Lösungen der
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Daten- HC SA CBC CPLEX
satz Zeit Qual. Zeit Qual. Zeit Qual. Zeit Qual.

K 5.58 0.26% 284.10 0.08% 6.36 opt 5.26 opt
K' 3.18 0.12% 236.95 0.03% 3.25 opt 2.68 opt
L 0.37 0.52% 2.62 0.16% 3.53 0.10% 0.94 0.26%
L' 0.53 0.49% 5.44 0.36% 6.15 0.37% 1.02 0.20%
M 9.62 3.12% 70.55 0.94% 57.39 0.00% 41.82 0.01%
M' 6.29 3.73% 55.89 0.57% 34.71 0.01% 23.23 0.02%
N 19.63 2.82% 161.70 1.70% 234.22 0.04% 281.17 0.11%
N' 5.14 2.49% 74.59 1.85% 118.95 0.01% 88.72 0.04%
O 6.94 2.86% 328.49 1.18% 415.59 0.08% 375.24 0.10%
O' 6.31 2.74% 55.37 1.68% 137.11 0.03% 141.88 0.07%

Tabelle 4.12: Laufzeit und Lösungsqualität für Instanzen mit (X) und ohne (X') verbindungs-
abhängige Mindestbodenzeiten bei maximalem Preprocessing

Instanzen K bis O. Von der Flugplanstruktur und der Gewinnfunktion sind sich ansonsten die
Instanzen so ähnlich wie nur möglich.

Tabelle 4.12 fasst die Ergebnisse dieser Untersuchung zusammen. Wie schon in Tabelle 4.2
werden für die vier Verfahren HC, SA, CBC und CPLEX die Laufzeiten und erreichten Lö-
sungsqualitäten auf den 10 untersuchten Instanzen wiedergegeben. In der Spalte �Zeit� ist
dabei die Laufzeit des jeweiligen Verfahrens in Sekunden angegeben. Die Spalte �Qual.� be-
schreibt die Qualität der von einem Verfahren produzierten Lösung. Hier wird die relative
Abweichung (in Prozent) des Lösungsgewinns bezüglich der optimalen Lösung angegeben.

Die Lösungsqualitäten scheinen weitgehend unabhängig davon zu sein, ob eine Instanz mit
oder ohne verbindungsabhängigen Mindestbodenzeiten gelöst werden muss. Sie bewegen
sich im direkten Vergleich zweier Instanzen X und X' auf ähnlichem Niveau für jedes der
betrachteten Verfahren. Mal wird für die eine Instanz eine etwas bessere Lösung produziert,
mal für die andere. Es lässt sich höchstens eine leichte Tendenz ausmachen, dass die IP-
basierten Verfahren für die Instanzen ohne verbindungsabhängige Mindestbodenzeiten etwas
näher an die optimale Lösung gelangen können.

Ansonsten ändert sich gegenüber dem generellen Vergleich der Verfahren in Abschnitt 4.8.3
nichts: die IP-basierten Verfahren erzeugen fast optimale Lösungen, gefolgt von SA und mit
Abstand dahinter HC.

Zumindest für die gröÿeren Instanzen M bis O sinken die Laufzeiten ohne verbindungsabhän-
gige Mindestbodenzeiten bei allen Verfahren deutlich, typischerweise um den Faktor 2 bis 3.
Bei den Lokale Suche Verfahren spart man sich das vergleichsweise aufwendige Überprüfen
der Gültigkeit eines Nachbarn mittels perfekter Matchings, die ansonsten ständig aktuell ge-
halten werden müssen. Bei den IP-basierten Verfahren kommt hauptsächlich die geringere
Modellgröÿe zum tragen, da keine Verbindungsvariablen xl,m,f mehr benötigt werden.

In Tabelle 4.13 ist dies beispielhaft für die beiden Datensätze O und O' wiedergegeben.
Der Aufbau der Tabelle entspricht dem der Tabellen 4.6 bis 4.11. Es werden oben die re-
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Prepro- Datensatz O und O'
cessing yl,f zv,v+ xl,m,f Spalten Zeilen Zeit pro Übergang (ms)

kein 18168 11369 8177 37714 17768 0.29
kein 18074 11260 0 29334 17565 0.21
einfache I. 14563 7937 6245 28745 13780 0.40
einfache I. 13791 7826 0 21617 12897 0.19
alle I. 12910 6537 6092 25539 11890 0.59
alle I. 12061 6436 0 18497 10940 0.20
komplett 12828 5872 6067 24767 11899 -
komplett 11979 5771 0 17750 10949 -

Prepro- CBC CPLEX HC SA
cessing Wurzel Knoten Zeit Wurzel Knoten Zeit Zeit Zeit

kein 280.30 414 1984.69 38.14 478 2622.96 6.77 91.08
kein 229.74 176 1062.85 43.22 255 1050.15 4.89 43.60
einfache I. 134.98 225 579.93 18.81 190 415.89 5.14 108.59
einfache I. 81.09 70 234.81 18.70 106 186.51 4.80 55.65
alle I. 75.86 323 535.24 18.66 376 619.04 6.94 328.49
alle I. 52.04 80 177.07 13.99 103 112.65 6.31 55.37
komplett 61.46 302 415.59 13.09 321 375.24 - -
komplett 36.28 74 137.11 11.18 141 141.88 - -

Tabelle 4.13: Auswirkung von verbindungsabhängigen Mindestbodenzeiten auf die Modell-
gröÿe und Laufzeit; Datensatz O und O'

sultierenden Modellgröÿen und durchschnittlichen Zeiten für die Nachbargenerierung für die
verschiedenen Preprocessing-Varianten angegeben. Die obere Zeile einer jeden Variante steht
dabei für Datensatz O und die untere Zeile für Datensatz O'. Im unteren Teil werden ent-
sprechend die Laufzeiten unserer vier Verfahren gegenübergestellt.

Bei den IP-Modellen fallen ohne verbindungsabhängige Mindestbodenzeiten vor allem die
Verbindungsvariablen xl,m,f weg, was die Variablenanzahl um knapp ein Drittel reduziert.
Entsprechen schneller können die LP-Relaxierungen gelöst werden, wobei im Wurzelknoten
CPLEX gegenüber CBC wieder im Vorteil ist. Au�ällig ist, das neben der schnelleren Lösbar-
keit der LP-Relaxierungen auch deutlich weniger Knoten im Branch&Bound Baum besucht
werden. Zusammengenommen ergibt sich durch die Bank ein Laufzeitvorteil um den Faktor
3 bei den IP-basierten Verfahren, wenn man auf verbindungsabhängige Mindestbodenzeiten
verzichtet.

Auch die Lokale Suche Verfahren können Instanzen ohne verbindungsabhängige Mindestbo-
denzeiten schneller lösen. Insbesondere SA kann bei der �alle Inseln�-Preprocessing-Variante
um den Faktor 6 zulegen. Bei der Instanz O handelt es sich um eine Instanz, bei der das
Preprocessing negativ auf die Laufzeit der Lokale Suche Verfahren wirkt. Die durchschnittli-
che Zeit zum Generieren eines Nachbarschaftsübergangs verdoppelt sich mit zunehmendem
Preprocessing von 0.29ms auf 0.59ms. Dieser E�ekt tritt ohne verbindungsabhängige Min-
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Daten- Leg- IP mit Hom. IP mit HBAL IP mit HLOW
satz gruppen Spalten Zeilen Spalten Zeilen Spalten Zeilen

A 36 269 192 645 765 377 301
B 62 1142 686 2366 2639 1390 935
C 563 12862 6976 30418 35896 15677 9792
D 696 14401 8474 77442 112285 22753 16827
E 688 29066 13252 81221 99675 35946 20133
F 688 29949 13384 75912 93615 36829 20265

Tabelle 4.14: IP-Modellgröÿen für unterschiedliche Homogenitätsmodelle

destbodenzeiten nicht mehr auf. Dementsprechend sind die Laufzeiten der Instanz O' nicht
besonders vom Preprocessing abhängig.

4.8.6 Homogenität

Wir untersuchen hier, was für Auswirkungen das Erstellen von homogenen Flottenzuweisun-
gen auf die Lösungsverfahren hat. Wir haben in Abschnitt 4.6 beschrieben, wie die Lokale
Suche Verfahren und die IP-basierten Verfahren heuristisch mit Homogenitätskosten umge-
hen können. Starten wollen wir aber mit der Untersuchung der beiden exakten Möglichkeiten
für die IP-basierten Verfahren.

Exakte Modellierung Bei den beiden exakten Ansätzen zur Berücksichtigung von Ho-
mogenitätskosten werden die IP-Modelle für die Flottenzuweisung um Modelle der Form
HBAL 4.19 oder HLOW 4.15 erweitert - für jede zu berücksichtigende Leggruppe muss ein
Modell hinzugefügt werden. Die hinzugefügten Modelle dienen dabei ausschlieÿlich der Be-
rechnung der Inhomogenität einer Flottenzuweisung, um diese mit Strafkosten versehen in
der Zielfunktion berücksichtigen zu können.

Tabelle 4.14 zeigt für die Datensätze A bis F, wie sich die IP-Modelle durch das Hinzu-
fügen der Homogenitätskomponenten vergröÿern. Für jeden Datensatz wird in der Spalte
�Leggruppen� die Anzahl zu berücksichtigender Leggruppen angegeben - entsprechend viele
Teilmodelle müssen dem Flottenzuweisungsmodell hinzugefügt werden. Die Spalten mit der
Überschrift �IP mit Hom.� beschreiben die IP-Modellgröÿe für die heuristische Variante zur
Berücksichtigung von Homogenitätskosten, bei der nur die Zielfunktion des Ursprungsmo-
dells verändert wird und keine neuen Komponenten hinzugefügt werden. Die Spalten mit den
Überschriften �IP mit HBAL� und �IP mit HLOW� geben die Modellgröÿen für die beiden
exakten Modellierungen an.

Beide Varianten HBAL und HLOW vergröÿern die IP-Modelle deutlich, wobei HBAL nochmal
deutlich mehr Variablen und vor allem Gleichungen dem Ursprungsmodell hinzufügt. Nach
den Ausführungen in den Abschnitten 4.6.2.1 und 4.6.2.2 ist dies nicht überraschend.

In Tabelle 4.15 sind die Laufzeiten und erzielten Lösungsqualitäten des CPLEX-Optimierers
mit den unterschiedlichen Varianten zur Homogenitätsbestimmung wiedergegeben. Zum Ver-
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Daten- CPLEX ohne Hom. CPLEX mit Hom. CPLEX mit HBAL CPLEX mit HLOW
satz Zeit Qual. Zeit Qual. Zeit Qual. Zeit Qual.

A 0.02 opt 0.03 0.22% 0.04 opt 0.19 0.00%
B 0.10 opt 0.28 0.43% 1.17 0.43% 1221.46 0.50%
C 5.62 0.00% 14.85 2.86% 4901.66 0.38% ? ?
D 40.22 0.02% 76.62 0.09% 34100.65 0.05% ? ?
E 167.11 0.03% 311.40 0.17% 10520.09 0.10% ? ?
F 62.68 0.00% 176.15 0.32% 22677.68 0.31% ? ?

Tabelle 4.15: Laufzeit und Lösungsqualität der exakten Homogenitätsmodelle

gleich sind zusätzlich noch unter der Überschrift �CPLEX ohne Hom.� die Ergebnisse ohne
Homogenitätskosten angegeben. Die Lösungsqualitäten der Varianten mit Homogenitätskos-
ten (letzten drei Blöcke) beziehen sich für die Datensätze B bis F nur auf obere Schranken
des optimalen Zielfunktionswerts, da die optimalen Zielfunktionswerte unbekannt sind. Man
beachte, dass die Lösungen der Spalten �CPLEX ohne Hom.� einer anderen Zielfunktionsbe-
wertung unterliegen als die restlichen Spalten, da bei den �CPLEX ohne Hom.�-Ergebnissen
keine Homogenitätskosten berücksichtigt werden.

Die exakte Variante HLOW war nur für die beiden kleinsten Instanzen A und B in der Lage,
Lösungen zu produzieren. Alle anderen Testläufe wurden nach einem Tag abgebrochen. Die
HBAL-Variante scha�t es immerhin, Lösungen für die ersten sechs Datensätze zu liefern.
Die dabei benötigten Rechenzeiten sind allerdings enorm groÿ für die verhältnismäÿig klei-
nen Testinstanzen. Die heuristische Variante unter der Überschrift �CPLEX mit Hom.� ist
bedeutend schneller und kommt in den meisten Fällen sehr nahe an die Lösungsqualität der
exakten Verfahren heran. Eine Ausnahme bildet der Datensatz C, bei dem die heuristische
Manipulation der Zielfunktion zu Lösungen führt, die mit 2.86% Abweichung vom Optimum
verhältnismäÿig schlecht ist.

Insgesamt die der Performance der exakten Modellierungen für Homogenitätskosten ent-
täuschend. Die IP-Modelle für die Flottenzuweisung werden dadurch sehr viel gröÿer und
schwerer zu lösen. Es konnte damit überhaupt nur für die sechs kleinsten Instanzen eine
Lösung gefunden werden. Obwohl das Modell HLOW weniger Variablen und Gleichungen
dem Grundmodell hinzufügt, ist seine Performance noch bedeutend schlechter als die des
HBAL-Modells, da die LP-Relaxierung des HLOW-Modells praktisch unbrauchbar ist (siehe
dazu Satz 4.16).

Heuristische Berücksichtigung Nachdem die exakten Ansätze in der Praxis nicht in
der Lage sind, Lösungen in vernünftiger Zeit zu liefern, konzentrieren wir uns jetzt auf die heu-
ristischen Ansätze zur Berücksichtigung von Homogenitätskosten. Die ohnehin heuristischen
Lokale Suche Verfahren können diese Kosten einfach mitberechnen und in der Zielfunktion
berücksichtigen, die IP-basierten Verfahren lösen zuerst die Instanz ohne die Berücksichtigung
von Homogenitätskosten und modi�zieren anhand dieses Ergebnisses nur die Zielfunktion,
um Homogenitätskosten zu berücksichtigen (siehe Abschnitt 4.6.2.3).

Da wir für die Datensätze G bis O weder eine (gute) obere Schranke auf den Wert der
optimalen Zielfunktion mit Homogenitätskosten geschweige denn den optimalen Wert selber
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kennen, bewerten wir für diese Datensätze die Qualität von Lösungen mit Homogenitäts-
kosten anhand der oberen Schranke des �CPLEX mit Hom.�- bzw. �CBC mit Hom.�-Laufs,
je nachdem welche Schranke gröÿer ist. Dabei handelt es sich aber nicht um eine obere
Schranke für das tatsächliche Optimum, da die �CPLEX/CBC mit Hom.�-Läufe nur eine
heuristische Zielfunktion verwenden, von der wir nur wissen, dass sie kleiner gleich der tat-
sächlichen Zielfunktion ist. Es ist daher zu erwarten, dass die in den Tabellen 4.16 und 4.17
angegebenen Gewinnabweichungen für die Datensätze G bis O zu gering sind.

Tabelle 4.16 zeigt die Laufzeiten und Lösungsqualitäten der Lokale Suche Verfahren mit
und ohne Berücksichtigung von Homogenitätskosten. Die gleichen Angaben �nden sich in
Tabelle 4.17 für die IP-basierten Verfahren mit heuristischer Berücksichtigung von Homoge-
nitätskosten.

Es fällt auf, dass vor allem HC an Lösungsqualität verliert, wenn Homogenitätskosten be-
rücksichtigt werden müssen. Bei SA tritt dieser E�ekt nicht ganz so deutliche auf, allerdings
verliert auch SA gegenüber der normalen Variante zum Teil deutlich an Lösungsqualität,
wenn Homogenitätskosten im Spiel sind (Datensatz C, G, K). Dabei muss ferner berücksich-
tigt werden, dass die Qualitätsangaben für die Datensätze G bis O eher noch zu optimistisch
sind.

Die IP-basierten Verfahren schlagen sich deutlich besser, was die Lösungsqualität angeht. Sie
sind den Lokale Suche Verfahren immer überlegen. Projiziert man die gesicherten Lösungs-
qualitäten für die Datensätze A bis F auf die restlichen Datensätze, kann man von einer
Lösungsqualität von ungefähr 0.40% ausgehen, wobei einzelne Ausreiÿer zum Schlechten
nicht ausgeschlossen sind, wie Datensatz C lehrt.

Die Laufzeiten der Lokale Suche Verfahren werden von den Homogenitätskosten nicht be-
sonders verschlechtert. Teilweise kommt es zu einer Verdoppelung der Laufzeit (HC auf
Datensatz D, SA auf Datensatz E), aber gerade das SA-Verfahren erfährt durch Homoge-
nitätskosten auch deutlich kürzere Laufzeiten (Datensatz I und O). Da die Berechnung der
Homogenitätskosten kaum zusätzliche Zeit erfordert, muss der Grund dafür bei der geän-
derten Zielfunktion gesucht werden. In manchen Fällen scheinen Homogenitätskosten sich
förderlich auf die Konvergenz des adaptiven Simulated Annealing Algorithmus auszuwirken,
in anderen Fällen stören sie die Konvergenz.

Die IP-basierten Verfahren müssen durch die heuristische Berücksichtigung von Homogeni-
tätskosten doppelte Arbeit verrichten, da sie den Datensatz zuerst ohne Homogenitätskosten
lösen müssen, um die Zielfunktion heuristisch anpassen zu können. Daher ist eine Verdop-
pelung der Laufzeit nicht überraschend. Es scheint ferner so zu sein, dass die angepasste
Zielfunktion die Instanzen in vielen Fällen schwerer zu lösen macht, da in vielen Fällen die
Laufzeiten um mehr als den erwarteten Faktor 2 anwachsen.

4.8.7 IP-basierte Verfahren: exakt vs. approximativ

Wir haben in den bisherigen Experimenten die prinzipiell exakt arbeitenden IP-basierten
Verfahren nur approximativ verwendet, indem wir die Branch&Bound Suche beendet haben,
sobald wir eine Lösung, die beweisbar nicht weiter als 0.5% vom Optimum entfernt ist,
gefunden haben.
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Daten- HC ohne Hom. HC mit Hom. SA ohne Hom. SA mit Hom.
satz Zeit Qual. Zeit Qual. Zeit Qual. Zeit Qual.

A 0.00 opt 0.00 1.64% 0.04 opt 0.03 0.22%
B 0.02 0.52% 0.04 0.73% 0.19 0.01% 0.25 0.43%
C 3.18 1.27% 4.46 12.54% 47.39 0.74% 39.47 5.78%
D 4.61 0.87% 10.95 2.30% 41.59 0.25% 53.18 0.52%
E 6.62 1.22% 11.65 1.78% 98.19 0.31% 192.43 0.27%
F 7.13 0.58% 8.34 4.16% 119.07 0.33% 117.85 0.90%

G 8.52 0.90% 9.93 1.84% 136.83 0.14% 122.74 1.64%
H 8.06 2.40% 11.03 4.70% 73.55 1.31% 39.28 1.34%
I 17.59 1.26% 69.09 4.57% 438.93 0.18% 210.22 0.93%
J 13.89 1.08% 22.10 4.31% 140.25 0.39% 211.95 1.37%
K 5.58 0.26% 7.29 1.66% 284.10 0.08% 270.39 0.88%
L 0.37 0.52% 0.49 1.02% 2.62 0.16% 4.72 0.29%
M 9.62 3.12% 10.61 4.65% 70.55 0.94% 64.38 0.78%
N 19.63 2.82% 24.18 3.38% 161.70 1.70% 112.19 2.01%
O 6.94 2.86% 10.94 3.35% 328.49 1.18% 119.73 1.82%

Tabelle 4.16: Laufzeit und Lösungsqualität der Lokale Suche Verfahren mit und ohne Be-
rücksichtigung von Homogenitätskosten

Daten- CPLEX ohne Hom. CPLEX mit Hom. CBC ohne Hom. CBC mit Hom.
satz Zeit Qual. Zeit Qual. Zeit Qual. Zeit Qual.

A 0.02 opt 0.03 0.22% 0.01 opt 0.02 0.22%
B 0.10 opt 0.28 0.43% 0.07 opt 0.12 0.43%
C 5.62 0.00% 14.85 2.86% 15.34 0.00% 52.84 2.37%
D 40.22 0.02% 76.62 0.09% 61.86 0.01% 198.49 0.03%
E 167.11 0.03% 311.40 0.17% 154.40 0.00% 464.49 0.25%
F 62.68 0.00% 176.15 0.32% 100.19 0.00% 706.13 0.38%

G 74.16 0.01% 299.86 0.01% 86.08 0.00% 85.60 0.00%
H 38.05 0.00% 211.15 0.03% 60.86 0.00% 393.23 0.02%
I 285.16 0.02% 679.72 0.01% 657.17 0.02% 1030.43 0.01%
J 241.46 0.01% 665.74 0.02% 154.14 0.01% 729.21 0.03%
K 5.26 opt 19.38 0.00% 6.36 opt 36.62 0.00%
L 0.94 0.26% 3.38 0.09% 3.53 0.10% 8.42 0.10%
M 41.82 0.01% 170.49 0.07% 57.39 0.00% 135.01 0.05%
N 281.17 0.11% 741.57 0.05% 234.22 0.04% 347.58 0.08%
O 375.24 0.10% 809.01 0.09% 415.59 0.08% 325.68 0.05%

Tabelle 4.17: Laufzeit und Lösungsqualität der IP-basierten Verfahren mit und ohne heuris-
tischer Berücksichtigung von Homogenitätskosten
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Daten- exakt approximativ
satz Knoten Zeit Knoten Zeit Fehler

A 0 0.01 0 0.01 -
B 0 0.07 0 0.07 -
C 28 6.79 7 5.62 0.00%
D 182340 25150.17 98 40.22 0.02%
E 2006 910.18 106 167.11 0.03%
F 5408 1572.99 21 62.68 0.00%
G 427 254.23 21 74.16 0.01%
H 36 45.44 6 38.05 0.00%
I 109534 101344.99 50 285.16 0.02%
J 20064 8680.36 100 241.46 0.01%
K 0 5.26 0 5.26 -
L 44405 253.21 20 0.94 0.26%
M 967472 137096.96 82 41.82 0.01%

Tabelle 4.18: Laufzeiten und besuchte Branch&Bound-Knoten von CPLEX im exakten bzw.
approximativen Modus bei maximalem Preprocessing

Die dabei tatsächliche auftretenden so genannten integrality gaps sind zumeist erheblich
kleiner und liegen im Bereich von 0.02%. Trotzdem ist das exakte Lösen dieser Probleme
extrem aufwendig.

Um dies zu zeigen, haben wir in Tabelle 4.18 die Datensätze A bis M einmal exakt bis zum
beweisbaren Optimum und einmal wie bisher approximativ mit CPLEX gelöst. CPLEX ist
gegenüber CBC für das exakte Lösen besser geeignet, da hier anscheinend stärkere Cuts
generiert werden. Neben den Laufzeiten in Sekunden geben wir in den Spalten �Knoten� die
Anzahl besuchter Branch&Bound Knoten an und zeigen in der Spalte �Fehler� den relativen
Gewinnverlust der approximativen gegenüber der optimalen Lösung an.

Die auftretende Laufzeitverlängerung beim Wechsel vom approximativen zum exakten Lösen
ist teilweise gigantisch. Bei Instanz M wächst die Laufzeit um einen Faktor von über 3000 auf
über 38 Stunden. Dabei müssen fast 12000 mal so viele Knoten während der Branch&Bound
Suche betrachtet werden. Ähnlich schlimm verhält es sich mit den Datensätzen D, I und
L. Aber auch bei den meisten anderen Datensätzen steigt die Laufzeit um Faktoren an,
wenn man nach einer optimalen Lösung sucht. Tendenziell kann man sagen, dass je tiefer
im Branch&Bound Baum die erste ganzzahlige Lösung gefunden wird, desto länger benötigt
man zum Berechnen des Optimums.

Die Experimente in diesem Abschnitt sind dabei mit den vollständig aufbereiteten Einga-
beinstanzen durchgeführt worden. Ohne Preprocessing wären die Laufzeiten noch sehr viel
höher. Aber selbst bei maximalem Preprocessing ist es nicht gelungen, die gröÿten Instanzen
N bis Q optimal zu lösen. Die entsprechenden Läufe sind nach drei Tagen ohne Ergebnis
abgebrochen worden.
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Daten- SA CBC
satz zyklisch azyklisch zyklisch azyklisch

A 0.04 0.05 0.01 0.02
B 0.19 0.29 0.07 0.12
C 47.39 52.24 15.34 20.13
D 41.59 49.58 61.86 48.63
E 98.19 107.92 154.40 145.45
F 119.07 151.90 100.19 110.08
G 136.83 202.59 86.08 112.07
H 73.55 135.80 60.86 76.19
I 438.93 397.90 657.17 435.87
J 140.25 268.08 154.14 218.88
K 284.10 305.22 6.36 7.80
L 2.62 17.90 3.53 1.40
M 70.55 234.65 57.39 64.53
N 161.70 274.66 234.22 260.22
O 328.49 238.07 415.59 204.11

Tabelle 4.19: Laufzeiten der Verfahren SA und CBC auf zyklischen und azyklischen Flotten-
zuweisungsinstanzen bei maximalem Preprocessing

4.8.8 Zyklische vs. azyklische Flottenzuweisungsprobleme

Zum Schluss wollen wir noch kurz untersuchen, ob sich zyklische oder azyklischen Instanzen
schneller lösen lassen. Dazu haben wir die zyklischen Instanzen A bis O sowohl mit einem
zyklischen als auch einem azyklischen Flottenzuweisungsoptimierer gelöst. Zyklische Daten-
sätze eignen sich als Eingabe für beide Varianten von Flottenzuweisungsproblemen und lassen
so einen direkten Vergleich der Leistungsfähigkeit der zyklischen bzw. azyklischen Löser zu.
Da jede zyklische Lösung eines Flottenzuweisungsproblems insbesondere auch eine Lösung
für die entsprechende azyklische Variante darstellt, haben die azyklischen Optimierer mehr
Freiheiten als ihre zyklischen Kollegen.

In Tabelle 4.19 sind die Ergebnisse für die beiden Lösungsverfahren SA und CBC dargestellt.
Wir beschränken uns hier auf diese beiden Verfahren, die stellvertretend für die Lokale Suche
und IP-basierten Verfahren stehen. Es wird für jeden Datensatz die Laufzeit in Sekunden
angegeben, die der zyklische bzw. azyklische Optimierer zum Lösen benötigt.

Die Unterschiede zwischen zyklischen und azyklischen Instanzen sind bei beiden Verfahren
nicht besonders groÿ. CBC löst mal die zyklische und mal die azyklische Instanz schneller.
Ein klarer Trend ist hier nicht zu erkennen. Bei den IP-basierten Verfahren hängt es sehr
stark davon ab, wie früh man während der Branch&Bound Suche auf die erste ganzzahlige
Lösung stöÿt, und dies lässt sich im Einzelfall kaum vorhersagen.

Für SA gilt ähnliches. Mal wird die zyklische, mal die azyklische Instanz schneller gelöst.
Allerdings gewinnt der azyklische SA-Löser nur bei den beiden Instanzen I und O. Die ande-
ren Male hat der zyklische SA-Löser die Nase vorn. Das mag ein Indiz dafür sein, dass das
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azyklische Flottenzuweisungsproblem von unseren Lokale Suche Verfahren ein wenig langsa-
mer gelöst werden kann als das zyklische Flottenzuweisungsproblem. Die Freiheitsgrade sind
im azyklischen Fall ein wenig gröÿer, was sich auch in einer etwas gröÿeren Nachbarschaft
wiederspiegelt.

4.9 Zusammenfassung

Wir haben in diesem Kapitel verschiedene neue heuristische und exakte Optimierungsverfah-
ren für das Flottenzuweisungsproblem in der Flugplanung vorgestellt.

Die heuristischen Lösungsverfahren basieren auf der Lokale Suche-Idee und verwenden eine
problemspezi�sche Nachbarschaft, die speziell für das Flottenzuweisungsproblem entwickelt
worden ist und die schnell (in deutlich weniger als einer Millisekunde) zulässige Nachbarn zu
einer aktuellen Lösung produzieren kann. Die erreichbare Lösungsqualität ist für das Simu-
lated Annealing Verfahren mit durchschnittlich 0.5% gut. Das Hill Climbing Verfahren fällt
demgegenüber etwas ab, hat aber den Vorteil der mit Abstand schnellste Flottenzuweisungs-
optimierer zu sein, so dass er sich zur schnellen Beurteilung von alternativen Planungssze-
narien eignet.

Die Nachbarschaft der Lokale Suche Verfahren lässt sich leicht an erweiterte Anforderungen
für das Flottenzuweisungsproblem wie beispielsweise verbindungsabhängige Mindestboden-
zeiten oder die Berücksichtigung von Homogenitätskosten anpassen, ohne dabei allzuviel an
Performance zu verlieren. Insbesondere können die Lokale Suche Verfahren durch die Inte-
gration mit den Planungsprozessen Marktmodellierung und Ertragsmanagement (Kapitel 6)
eine verbesserte und genauere Lösungsbewertung bei der Optimierung einsetzen, und damit
die reale Qualität der produzierten Lösungen nochmals deutlich verbessern.

Die exakten Verfahren sind IP-basiert und bauen auf dem Time Space Network Modell für
die Flottenzuweisung auf. Die Lösungszeiten der Verfahren liegen dabei im gleichen Bereich
wie die Optimierungszeiten des heuristischen Simulated Annealing Verfahrens, wenn man
die Eingabeinstanzen durch den Einsatz von Preprocessing-Techniken vor der eigentlichen
Optimierung heuristisch verkleinert und darauf verzichtet, die Branch&Bound Suche bis zum
Ende auszuführen, und nach dem Finden einer Lösung mit beweisbar guter Qualität die Suche
abbricht. Die durch das heuristische Preprocessing verursachten Gewinneinbuÿen liegen dabei
mit durchschnittlich 0.3% in einem akzeptablen Rahmen. Die aus dem nur approximativen
Einsatz der Branch&Bound Suche resultierende Abnahme an Lösungsqualität ist dagegen
mit zumeist deutlich weniger als 0.1% vernachlässigbar. Damit schlagen sie die Simulated
Annealing Heuristik, da sie in vergleichbarer, teilweise sogar kürzerer Zeit qualitativ bessere
Lösungen liefern.

Wir konnten auch die exakten Verfahren um die Fähigkeit erweitern, verbindungsabhängige
Mindestbodenzeiten (und Gewinne) und Homogenitätskosten zu unterstützen. Verbindungs-
abhängige Mindestbodenzeiten sind dabei exakt modelliert worden und führen auf realen
Testinstanzen zu einer um den Faktor 2 bis 3 höheren Laufzeit. Wir konnten auch die Be-
rücksichtigung von Homogenitätskosten in der Zielfunktion exakt modellieren, allerdings sind
die resultierenden IP-Modell wegen ihrer Gröÿe und damit verbundenen extrem langen Lö-
sungszeit kaum brauchbar. Eine heuristische Umsetzung von Homogenitätskosten konnte
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dagegen überzeugen und liefert qualitativ hochwertige Ergebnisse bei ungefähr verdoppelter
Laufzeit gegenüber dem Grundmodell.

Die von den exakten Verfahren aufgestellten IP-Modelle sind mit Standard-IP-Optimieren
gelöst worden. Dabei kam zum einen das kommerzielle ILOG CPLEX und zum anderen das
freie CBC aus der COIN-OR-Library zum Einsatz. Im direkten Vergleich konnte sich dabei
CPLEX praktisch kaum von CBC absetzen.

Abschlieÿend kann gesagt werden, dass sich mit den in diesem Kapitel präsentierten Ver-
fahren auch groÿe reale Flottenzuweisungsprobleme mit mehr als 40000 Legs fast optimal
in weniger als einer Stunde lösen lassen. Die Lokale Suche Verfahren haben dabei ihre volle
Praxistauglichkeit bei mehreren internationalen Fluggesellschaften seit einigen Jahren unter
Beweis gestellt und geholfen, die Flotteneinsatzplanung entscheidend zu verbessern.

Damit werden natürlich auch neue Begehrlichkeiten auf Seiten der Fluggesellschaften ge-
weckt. Der Trend geht hier zunehmend in Richtung einer stärkeren Integration der verschie-
denen Planungsprozesse. Zusätzliche Anforderungen, die ihren Ursprung in benachbarten
Planungsprozessen haben, sollen daher bereits bei der Flottenzuweisung berücksichtigt wer-
den. Dazu gehören

• die Verwendung einer genaueren Zielfunktion für die Bewertung von Flottenzuweisun-
gen,

• das Erstellen von robusten Plänen, die unemp�ndlicher gegenüber Störungen sind,

• die Berücksichtigung von Wartungsaspekten,

• die Integration mit der Crewplanung,

• usw.

Auf die ersten beiden Punkte gehen wir in den folgenden beiden Kapiteln noch näher ein.
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5
Das stochastische
Flottenzuweisungsproblem

In diesem Kapitel führen wir das stochastische Flottenzuweisungsproblem ein, bei dem man-
che der Eingabedaten, wie beispielsweise die Blockzeit, keine feste Zahl sondern eine Zu-
fallsvariable sind, mit der sich Störungen im Flugbetrieb modellieren lassen. Ziel ist es hier
darauf zu achten, dass die produzierten Flottenzuweisungen unemp�ndlich gegenüber Stö-
rungen sind und gegebenenfalls einfach repariert werden können.

Dabei handelt es sich nicht um eine künstliche Erweiterung des Flottenzuweisungsproblems
sondern um ein bedeutendes Real-World-Problem, mit dem Fluggesellschaften täglich im
Störungsmanagement konfrontiert sind und das trotzdem bisher nicht untersucht worden ist.

Neben der Erkenntnis, dass es sich bei der stochastischen Flottenzuweisung um ein PSPACE-
vollständiges Problem handelt, präsentieren wir in diesem Kapitel eine generische Methode,
wie sich das stochastische Flottenzuweisungsproblem als ein spezielles 2-Personen-Spiel mo-
dellieren und über eine Spielbaumauswertung lösen lässt.

5.1 Motivation

Ein Plan ist eine Lösung eines Zuweisungsproblems, das sich über mehrere Zeitschritte er-
streckt. Der gröÿte Teil der Forschung im Bereich der Optimierung von Plänen beschäftigt
sich mit der Generierung statischer, vorberechneter Pläne in dem Sinne, dass man annimmt,
die zum Planungszeitpunkt vorliegenden Plandaten seien vollständig bekannt und unver-
änderbar. Traditionellerweise werden Pläne erzeugt, die das Ziel haben, den Gewinn unter
Verwendung von festen Schätzdaten bzw. �Erwartungsdaten� zu maximieren.

133
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Sobald ein vorberechneter Plan in der echten Welt eingesetzt wird, werden verschiedene
Unsicherheitsaspekte des Systems, in dem der Plan abläuft, zu Störungen führen, so dass
der ursprüngliche Plan seine Güte oder sogar seine Zulässigkeit verliert. Es ist dann die
Aufgabe des Störungsmanagements, einen teilweise neuen Plan zu entwickeln, der das System
wieder in einen zulässigen Zustand überführt. Der alte Plan wird also schnell auÿer Kraft
gesetzt, bzw. muss �repariert� werden, oder es muss sogar komplett neu geplant werden. Dies
verursacht im Allgemeinen beträchtliche Kosten, die den eigentlich vorausgeplanten Gewinn
massiv schmälern können.

Nichtsdestotrotz wird häu�g ein vorberechneter Plan benötigt, um sicherzustellen, dass die
vorhandenen Ressourcen prinzipiell ausreichen, um langfristige Ziele optimieren zu können
und um als Grundlage für nachgelagerte Planungsstufen zu dienen. Im Falle von Fluggesell-
schaften, aber auch anderen fahrplangebundenen Verkehrsbetrieben wie ÖPNV oder Eisen-
bahngesellschaften, dienen Pläne ferner als Kommunikationswerkzeug mit den Kunden und
stellen damit das für den Kunden sichtbare Produkt des Unternehmens dar.

Erstrebenswert ist es allerdings, dass der Plan so gebaut wird, dass er sich im Falle von
auftretenden Störungen einfach, schnell und kostengünstig reparieren lässt. Auch die vom
Störungsmanagement ausgearbeiteten Neu- oder Umplanungen sollten diese Eigenschaft be-
sitzen, da anschlieÿend mit weiteren Störungen zu rechnen ist. Insofern lassen sich die beiden
Probleme, das initiale Erstellen eines Plans und das Beheben von Störungen, nicht völlig von-
einander trennen.

Häu�g besitzen Planer Informationen über das reale Verhalten einer sich verändernden Um-
gebung in Form von Wahrscheinlichkeitsverteilungen über die Eingabedaten, ignorieren diese
aber bewusst, um die Planung, die auch so schon kompliziert und aufwendig genug ist, zu
vereinfachen.

Wir stellen in diesem Kapitel das Reparaturspiel vor, eine generische Methodik für allgemei-
ne mehrstu�ge Planungsprobleme, die mit stochastischen Eingabegröÿen sinnvoll umgehen
kann, indem sie beispielsweise die erwarteten Gewinne optimiert. Das Verfahren basiert auf
der Modellierung der Planungsaufgabe als spezielles 2-Personen-Spiel und der Auswertung
des resultierenden Spielbaums mittels eines modi�zierten Alphabeta-Algorithmus.

5.1.1 Szenario für die stochastische Flottenzuweisung

Wir betrachten hier hauptsächlich das Problem der stochastischen Flottenzuweisung im Be-
reich des Störungsmanagements. Gegeben ist ein zulässiger azyklischer Flugplan inklusive
Flottenzuweisung, der umgesetzt werden soll. Im Störungsmanagement, das Teil des Ope-
rations Control ist, haben wir es im Gegensatz zur langfristigen Planung immer mit dem
Flugplan eines konkreten Zeitraums zu tun, so dass hier nur die azyklische Variante des Flot-
tenzuweisungsproblems Sinn macht. Während der operationellen Durchführung treten nun
unvorhergesehene Ereignisse (Störungen) auf, die die vorausberechnete Planung unzulässig
machen können. Wir betrachten hier zwei Arten von Störungen:

• Ein Leg weist eine gegenüber der ursprünglichen Planung verlängerte Blockzeit auf.
Das verspätete Flugzeug kann also unter Umständen nicht das ihm zugedachte Folgeleg
erreichen.
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• Ein Leg fällt komplett aus, entweder wegen eines schwerwiegenden technischen Defekts
oder als Folge monetärer Überlegungen, da das Leg nicht gut ausgelastet ist.

Aufgabe des Störungsmanagements ist es nun, bei Bekanntwerden von Störungen unverzüg-
lich zu reagieren und den Flugplan, wenn nötig, zu reparieren. Dabei können vom Störungs-
management folgende Aktionen veranlasst werden:

• Verschieben des Starts eines Legs nach hinten. Kurze Verspätungen können so abge-
fangen werden. Es besteht aber die Gefahr, dass sich dadurch Verspätungen weit in
die Zukunft fortp�anzen.

• Ändern der Flottenzuweisung eines Legs. Unter Umständen steht von einer anderen
Flotte ein Flugzeug zur Verfügung, das einen wegen einer Verspätung verpassten An-
schluss�ug übernehmen kann.

• Streichen eines Legs. Gerade bei Ausfall eines Legs ist das Streichen weiterer Legs oft
die einzige Möglichkeit, wieder einen zulässigen Flugplan zu produzieren.

Durch diese Aktionen soll wieder ein zulässiger Flugplan erzeugt werden. Dabei kann natürlich
nur Ein�uss auf zukünftige, noch nicht gestartete Legs genommen werden. Das Hauptan-
liegen ist dabei, so wenig Änderungen wie möglich am Ursprungsplan vorzunehmen. Gründe
dafür sind:

• Der Ursprungsplan ist für den Kunden das Produkt der Fluggesellschaft und Änderun-
gen sorgen hier schnell für unzufriedene Kunden.

• Der Ursprungsplan ist unter der Prämisse der Gewinnmaximierung erstellt worden, und
groÿe Änderungen haben im Allgemeinen negative Auswirkungen auf den erzielbaren
Gewinn.

• Der Ursprungsplan dient als Grundlage für eine ganze Reihe weiterer Planungen. Crews
müssen den Legs zugewiesen werden und übernehmen häu�g mehrere Legs, die ein
Flugzeug nacheinander bedient, so dass Änderungen von Folgelegs gravierende Aus-
wirkungen im Crew-Bereich nach sich ziehen. Auch die Bodenabfertigung, Wartung,
usw. sind auf verlässliche Informationen über den Flugplan mit seiner Flottenzuweisung
angewiesen.

Die Qualität einer Umplanung wird daher anhand ihrer getätigten Änderungen bewertet.
Zusammen mit unserem Industriepartner, Lufthansa Systems, haben wir für jede der oben
aufgeführten Änderungsaktionen Kosten de�niert, die die Schwere der Änderung ausdrücken.
Legstreichungen sind am teuersten, danach kommen Flottenwechsel. Das Verschieben von
Legs wird in Abhängigkeit von der Dauer der Verschiebung bewertet. Dazu kommen noch
Änderungen auf der Einnahmeseite, da durch Flugplanänderungen unter Umständen Passa-
giere zu anderen Fluggesellschaften wechseln. Es kann aber in seltenen Fällen auch der Fall
eintreten, dass durch Änderungen zusätzliche Erlöse erzielt werden können, da sich neue Um-
steigemöglichkeiten ergeben oder durch einen Flottentausch zusätzliche Sitzplätze verfügbar
werden.
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Bis hierher lässt sich das Problem der Flottenzuweisung im Störungsmanagement als eine
deterministische Planungsaufgabe ansehen. In der Praxis wird sie bis heute auch als solche
behandelt. Wir stellen in Abschnitt 5.4.2.2 ein auf dem Time Space Network aufbauendes
Modell vor, das diese deterministische Planungsaufgabe löst.

Nun ist aber das Störungsmanagement ein fortlaufender Prozess. Nachdem eine Störung be-
hoben worden ist, tritt eher früher als später die nächste Störung auf, die eine Umplanung
erforderlich macht. Wir gehen hier davon aus, dass zukünftige Störungen nicht vollkommen
unerwartet eintreten, sondern das zu jedem Leg eine diskrete Wahrscheinlichkeitsverteilung
gegeben ist, die mögliche Verspätungen und Ausfälle beschreibt. Dann lässt sich das Stö-
rungsmanagement als ein mehrstu�ger Entscheidungsprozess unter Unsicherheit ansehen -
der Optimierer repariert einen gestörten Plan, anschlieÿend treten zufällig neue Störungen
ein, woraufhin der Optimierer wieder in Aktion treten muss, usw. - und die Bewertung ei-
ner Umplanung für eine akute Störung sollte nicht nur von der aktuellen Situation sondern
auch von möglichen zukünftigen Störungen abhängig gemacht werden. Das heiÿt, neben den
tatsächlich anfallenden Kosten für eine durchzuführende Umplanung sollten auch die erwar-
teten Kosten für zukünftige Umplanungen mitberücksichtigt werden, und wir erhalten das
stochastische Flottenzuweisungsproblem im Störungsmanagement.

Neben der Verwendung im Störungsmanagement lässt sich die hier beschriebene stochasti-
sche Flottenzuweisung allerdings auch beim Erstellen der initialen Flottenzuweisung einsetzen:

• Es lassen sich Zeitpunkte identi�zieren, die hohe erwartete Umplanungskosten verur-
sachen. Dafür simuliert man die während der Planungsperiode möglicherweise auftre-
tenden Störungen und protokolliert die anfallenden Umplanungskosten.

• Sind erst einmal die kritischen Zeitpunkte eines Flugplans identi�ziert, kann man ver-
suchen, durch lokale Neuplanungen die Robustheit des Planes zu erhöhen und damit
die erwarteten Umplanungskosten zu senken.

5.1.2 Literaturübersicht

Der Bereich der Optimierung von stochastischen Flottenzuweisungsproblemen ist bislang
in der Literatur nicht betrachtet worden, obwohl das Berücksichtigen von stochastischen
Eingabedaten als einer der bedeutenden und gewinnsteigernden Aspekte in der Flugplanung
angesehen wird [Barnhart et al., 2003].

Die hier betrachteten Planungsaufgaben fallen in den Bereich der �Mehrstu�gen Entschei-
dungen unter Unsicherheit�. Es ist ein Teilgebiet des gröÿeren Feldes von entscheidungstheo-
retischen Ansätzen [Horvitz et al., 1988], zu dem auch die (lineare) stochastische Program-
mierung gehört [Engell et al., 2001], [Römisch and Schultz, 2001].

Manchmal wird in diesem Zusammenhang der Begri� �robuster Plan� verwendet, der in zwei-
erlei Bedeutung auftritt: Zum einen informell als Plan, dessen Wert relativ unsensibel auf
mögliche Realisierungen der echten Welt reagiert, aber dann auch als Plan, der bei schlimmst-
möglichem Verlauf der exogenen Ein�üsse noch gültig bleibt. Bei robuster Planung (vgl.
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[Scholl, 2001]) geht man also von einer grundsätzlichen Risikoscheu des Anwenders bei Ent-
scheidungssituationen mit ausgeprägter Unsicherheit der verfügbaren Informationen aus. Wir
verstehen in diesem Kapitel unter �robust� die informelle Interpretation, sehen unsere Arbeiten
aber im Bereich zwischen robuster Optimierung und stochastischer Optimierung, wobei wir
uns zunächst am Erwartungswert orientieren und nicht an Minmax-, (µ, σ)-, Bernoulli- oder
anderen Kriterien [Daniels and Kouvelis, 1995], [Kouvelis et al., 2000], [Mulvey et al., 1995,
Scholl, 2001].

Die Erkenntnis, dass sich mehrstu�ge Entscheidungsprobleme unter Unsicherheit in Form von
speziellen 2-Personen-Spielen ausdrücken lassen, stammt bereits von [Papadimitriou, 1985].
Er geht in seiner Arbeit allerdings nur auf die theoretischen Aspekte ein und zeigt, dass
die Klasse der mehrstu�gen Entscheidungsprobleme unter Unsicherheit (unter moderaten,
eher technischen Einschränkungen) der Klasse PSPACE entspricht. [Leon et al., 1994] stellen
in ihrer Arbeit ein Verfahren vor, das diese Erkenntnis speziell für ein Job-Shop-Problem
umsetzt. Die Algorithmus ist allerdings stark abhängig von dem betrachteten Job-Shop-
Problem, und die resultierenden Spielbaumauswertung ist nicht besonders e�zient.

Der Alphabeta-Algorithmus [Knuth and Moore, 1975] bildet die Grundlage der Spielbaum-
suchalgorithmen. In professionellen Computerspiel-Programmen [Donninger et al., 2004] wird
meistens die Negascout-Variante [Reinefeld, 1983] des Alphabeta-Algorithmus benutzt. Die
wichtigste Beobachtung über die letzten 40 Jahre hinweg in Spielen wie Schach und Ähnli-
chen ist dabei, dass der Spielbaum wie ein Fehler�lter wirkt. Deshalb gilt: �Je schneller und
je intelligenter der Suchalgorithmus ist, desto besser werden die Spielergebnisse.� Dass die-
ses nicht selbstverständlich ist, zeigen theoretische Untersuchungen zu Fehlerfortp�anzungen
von [Nau, 1979], [Althöfer, 1988] und [Lorenz and Monien, 2004].

Es ist nicht für jedes mehrstu�ge Entscheidungsproblem unter Unsicherheit sinnvoll zu ver-
suchen, es mittels aufwendiger Verfahren mit potentiell exponentieller Laufzeit wie der Spiel-
baumsuche zu lösen. In manchen Fällen lassen sich schnelle Approximationsverfahren mit
polynomieller Laufzeit angeben, so zum Beispiel für ein in [Shmoys and Swamy, 2004] be-
schriebenes stochastisches Set-Cover Problem oder für ausgewählte stochastische Scheduling
Probleme [Mörhing et al., 1999]. Allerdings handelt es sich bei der stochastischen Flotten-
zuweisung um ein PSPACE-vollständiges Problem (Abschnitt 5.3), dessen deterministische
Variante bereits NP-vollständig und nicht approximierbar ist (Kapitel 3). Hier ist nicht zu
erwarten, dass sich polynomielle Approximationsalgorithmen �nden lassen.

5.2 Games against Nature

Papadimitriou führt in seinem Artikel [Papadimitriou, 1985] einen neuen Formalismus für
Entscheidungsprobleme unter Unsicherheit ein, der auf 2-Personen-Spielen mit einem zufällig
agierenden Gegenspieler beruht. Er nennt diese Spiele Games against Nature und zeigt, dass
es sich dabei (unter sehr allgemeinen Annahmen) um eine alternative Charakterisierung der
Klasse PSPACE handelt.

De�nition 5.1 (Game against Nature). Eine Problemklasse Π ist ein Spiel gegen die Natur
(Game against Nature), wenn für Π und jede Instanz x von Π (mit Eingabelänge |x|) gilt:
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• Es existieren ein festes Polynom p und eine feste Konstante d ∈ N für Π.

• Zu x existieren Mengen von Zuständen Z0, . . . , Zp(|x|). Jeder Zustand s ∈ Zi lässt
sich in Platz O(p(|x|) kodieren. Zi enthält die möglichen Zustände nach der i-ten
Entscheidung. Z0 enthält nur den initialen Zustand und Zp(|x|) die Endzustände.

• Jeder Nicht-Endzustand besitzt d viele, mit ihm assoziierte Entscheidungen {1, . . . , d}.

• Zu jeder Entscheidung j eines Zustands s ∈ Zi existiert eine diskrete Wahrschein-
lichkeitverteilung über Zi+1, die wir mit Dj

s = {(sj
1, w

j
1), . . . , (s

j
m, wj

m)} bezeichnen.
Dabei gehören die sj

k zur Zustandsmenge Zi+1 und die Wahrscheinlichkeiten wj
k sind

p(|x|)-bittige rationale, echt-positive Zahlen mit
∑m

k=1 wj
k = 1. Ferner darf Dj

s nur ma-
ximal p(|x|) viele Wahrscheinlichkeiten echt gröÿer Null enthalten, das heiÿt es muss
m ≤ p(|x|) gelten.

• Zu jedem Endzustand s sind ganzzahlige Kosten c(s) de�niert, wobei |c(s)| ≤ 2p(|x|)

ist.

• Zu Π gehören zwei feste Algorithmen A und B mit Laufzeit O(p(n)).

� Bei Eingabe eines Instanz x, eines Zustands s, einer Entscheidung j und einer
Zahl k liefert A das Paar (sj

k, w
j
k) zurück.

� Bei Eingabe einer Instanz x und eines Zustands s entscheidet B, ob s ein End-
zustand ist, und gibt für Endzustände zusätzlich c(s) zurück.

Die Aufgabe ist es, eine beste Strategie (eine Strategie mit minimalen bzw. maximalen er-
warteten Kosten) für eine Instanz x zu ermitteln, bzw. (für das zu Π korrespondierende
Entscheidungsproblem) zu entscheiden, ob es eine Strategie mit Kosten kleiner gleich (Mini-
mierungsproblem) bzw. gröÿer gleich (Maximierungsproblem) einer vorgegebenen Schranke
gibt.

Dabei ist noch zu klären, was wir unter einer Strategie und deren erwartete Kosten verstehen
wollen. Wir de�nieren dazu:

De�nition 5.2 (Spielbaum). Der Spielbaum T der Instanz x eines Spiels gegen die Natur
ist wie folge de�niert:

• Der Baum besteht aus 2p(|x|) − 1 Ebenen Z0, E0, Z1, E1, . . . , Ep(|x|)−1, Zp(|x|). Die
Knoten in Ebene Zi entsprechen den Zuständen Zi von x und die Knoten der Ebene
Ei entsprechen allen Entscheidungen der Zustände aus Zi.

• s ∈ Zi ist mit j ∈ Ei verbunden, wenn j eine der d Entscheidungen von s ist. Die
entsprechenden Kanten heiÿen Entscheidungskanten.

Ist j die j-te Entscheidung von s, so verlaufen von j Kanten zu allen Zuständen in der
Wahrscheinlichkeitsverteilung Dj

s = {(sj
1, w

j
1), . . . , (s

j
m, wj

m)}. Die Kante zum Zustand
sj

k wird mit der Wahrscheinlichkeit wj
k markiert und Zufallskante genannt.

• Die Knoten s der letzten Ebene Zp(|x|) werden mit ihren Kosten c(s) markiert.
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Streng genommen muss es sich bei dem Spielbaum nur um einen Level-Graphen und nicht um
einen Baum handeln, da verschiedene Entscheidungen bzw. Zufallsereignisse später wieder
zu ein und demselben Folgezustand führen dürfen. Wir bleiben aber bei der Bezeichnung
�Spielbaum�, da sie auch in diesem Fall gebräuchlicher ist.

Wir assoziieren zwei Spieler mit den Knoten eines Spielbaums. Zu den Zustandsknoten gehört
der Spieler �Optimierer�, der für einen gegebenen Zustand die nächste (möglichst optimale)
Entscheidung zu tre�en hat. Zu den Entscheidungsknoten gehört der Spieler �Natur�, der
zufällige Ereignisse auslösen kann. Wir nennen daher Zustandsknoten auch Optimiererknoten
und Entscheidungsknoten auch Naturknoten.

De�nition 5.3 (Strategie). Eine Strategie S eines Spielbaums T eines Spiels gegen die
Natur ist ein Teilgraph von T , den man erhält, wenn für jeden Zustandsknoten s ∈ Zi alle
bis auf eine ausgehende Entscheidungskante löscht. Der zusammenhängende Graph, der den
initialen Zustand (die Wurzel des Baumes) enthält, ist dann eine Strategie von T .

Mit einer Strategie wird damit dem Optimierer ein �Regelwerk� in die Hand gegeben, wie er
sich in jeder Situation beim eintreten eines Zufallsereignisses als nächstes verhalten soll.

De�nition 5.4 (Kosten einer Strategie/eines Spielbaums). Die (erwarteten) Kosten einer
Strategie S sind rekursiv de�niert, indem jedem Knoten v der Strategie Kosten c(v) zuge-
ordnet werden:

• Für Endzustände s ∈ Zp(|x|) entsprechen die Kosten in der Strategie den gegebenen
Kosten c(v) im Spiel gegen die Natur.

• Für innere Zustandsknoten s ∈ Zi sind die Kosten gleich den Kosten des einzigen
Kindes (einem Entscheidungsknoten) von s.

• Für einen Entscheidungsknoten j ∈ Ei, der die j-te Entscheidung von Zustand s ∈ Si

ist und zu dem die diskrete Wahrscheinlichkeitsverteilung Dj
s = {(sj

1, w
j
1), . . . , (s

j
m, wj

m)}
gehört, gilt:

c(j) =
m∑

k=1

wj
k · c(s

j
k)

Hier werden also die erwarteten Kosten der Entscheidung bestimmt.

• Die Kosten c(S) der Strategie sind dann die Kosten des initialen Zustands.

Eine Strategie S mit minimalen Kosten wird optimale Strategie genannt.1 Die Kosten c(T )
eines Spielbaums T sind die Kosten einer optimalen Strategie.

Um eine optimale Strategie und die Kosten eines Suchbaums T zu bestimmen, müssen
nicht alle möglichen Strategien von T bewertet werden. Ein Suchbaum lässt sich auch direkt
bewerten und daraus eine optimale Strategie ablesen. Dazu seien die Kosten eines Knotens

1 Im Falle eines Maximierungsproblems ist eine Strategie mit maximalen Kosten optimal.
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Abbildung 5.1: Ein Spielbaum mit einer optimalen (maximalen) Strategie

im Suchbaum für Endzustände und Entscheidungsknoten wie im Fall von Strategien de�niert.
Für innere Zustandsknoten s mit Kindern (Entscheidungen) {1, . . . , d} sei:

c(s) =
d

min
j=1

c(j)

Die Kosten der Wurzel von T (initialer Zustand) entsprechen dann den Kosten des Baumes
und man erhält eine optimale Strategie, indem man für jeden inneren Zustandsknoten s eine
Kante zu einem Entscheidungskind mit minimalen Kosten auswählt.2

In Abbildung 5.1 ist ein Spielbaum inklusive der Kostenwerte der einzelnen Knoten darge-
stellt. An den Ausgangskanten der Naturknoten stehen die Wahrscheinlichkeiten, mit denen
die entsprechenden Folgezustände erreicht werden. Die fetten Linien bilden die optimale
(maximale) Strategie des Spielbaums.

Praktisch jedes Entscheidungsproblem unter Unsicherheit mit einer polynomiell beschränk-
ten Anzahl an aufeinanderfolgenden Entscheidungen lässt sich als Spiel gegen die Natur
au�assen. Die Einschränkungen in De�nition 5.1 sind eher technischer Natur:

• Die Einschränkung, dass in jedem Zustand nur konstant viele Entscheidungen möglich
sind, lässt sich durch das Einfügen von polynomiell vielen Zwischenzuständen auf eine
exponentielle Anzahl an Entscheidungen je Zustand anheben. Wichtig ist, dass dabei
die Anzahl an Zustandsmengen Zi polynomiell bleibt.

2 Im Falle von Maximierungsproblemen bildet man das Maximum über die Kosten der Entscheidungskinder.
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• Entsprechendes gilt für die Einschränkung, dass die Zufallsverteilungen nur polynomiell
viele echt positive Wahrscheinlichkeiten besitzen dürfen.

• Häu�g werden bei Entscheidungsproblemen die Kosten nicht von den Endzuständen
bestimmt, sondern von den Entscheidungen und Zufallsereignissen, die zu einem End-
zustand führen. Da die Zustände ausreichend Platz bieten, ist es hier möglich, sich in
den Zuständen die Historie an Entscheidungen und Zufallsereignissen zu merken und
diese Informationen im Endzustand zur Berechnung der Kosten zu verwenden.

Papadimitriou hat nun gezeigt:

Satz 5.5 ([Papadimitriou, 1985]). Die Klasse der Spiele gegen die Natur3 entspricht der
Klasse PSPACE.

Insbesondere heiÿt dies, dass sich Spiele gegen die Natur mit polynomiellen Platz lösen
lassen. In seinem Artikel gibt er auch sechs Beispiele für Spiele gegen die Natur an, die
PSPACE-vollständig sind. Eines davon ist:

De�nition 5.6 (Modi�ed Stochastic SAT (SSAT')). Gegeben ist eine Boolsche Formel
B in konjunktiver Normalform über die Variablen x1, . . . , xn (n gerade) und eine rationale
Konstante q ∈ [0, 1].

Die Frage ist, ob die Formel B mit Wahrscheinlichkeit gröÿer gleich q erfüllt werden kann,
wobei ungerade Variablen x2i−1 mit dem Existenzquantor belegt sind und gerade Variablen
x2i mit einem speziellen stochastischen Quantor R, der folgendermaÿen de�niert ist.

Mit Wahrscheinlichkeit von jeweils 1
4
gilt für Rx:

• Rx verhält sich wie der Existenzquantor ∃x.

• x wird auf Wahr �xiert.

• x wird auf Falsch �xiert.

• Die Formel ist unerfüllbar.

Formal lautet die Frage also:

∃x1,Rx2,∃x3, . . . ,Rxn : Pr(B(x1, . . . , xn) = Wahr) ≥ q

Satz 5.7 ([Papadimitriou, 1985]). SSAT' ist PSPACE-vollständig.

SSAT' lässt sich o�ensichtlich als Spiel gegen die Natur au�assen. Der Optimierer muss sich
zunächst für Variable x1 entscheiden, welchen Wahrheitswert er ihr zuweist. Daraufhin würfelt
die Natur aus, wie sich der stochastische Quantor von Variable x2 verhält. Nun entscheidet
der Optimierer für die Variablen x2 und x3, welcher Wahrheitswert zugewiesen werden soll,4

3 genauer die korrespondierenden Entscheidungsprobleme
4 Je nachdem, wie sich der R-Quantor von x2 verhält, ist die Belegung für x2 teilweise vorgegeben, bzw.
es ist klar, dass die komplette Formel unerfüllbar ist.
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usw. Anhand der Zuweisungen an die Variablen auf dem Pfad vom initialen Zustand (keine
Variable zugewiesen) zu einem Endzustand (alle Variablen zugewiesen) kann dann bestimmt
werden, ob B erfüllt ist. Falls ja, weisen wir dem Endzustand Kosten Eins zu, ansonsten
Null. O�ensichtlich ist B genau dann mit Wahrscheinlichkeit gröÿer gleich q erfüllbar, wenn
es eine Strategie mit Kosten mindestens q gibt.

Im nächsten Abschnitt de�nieren wir stochastische Flottenzuweisungsprobleme als Spiele
gegen die Natur. Wir zeigen, dass bereits einfachste Varianten ebenfalls PSPACE-vollständig
sind.

5.3 Komplexität

Wir de�nieren hier einige einfache stochastische Flottenzuweisungsprobleme und untersu-
chen ihre algorithmische Komplexität. Im Vergleich zu dem in Abschnitt 5.4 betrachteten
Reparaturspiel treten hier keine Legausfälle auf und wir erlauben als Reparaturaktionen keine
Legstreichungen und teilweise auch keine Startverschiebungen. Nichtsdestotrotz sind derar-
tige stochastische Flottenzuweisungsprobleme zumeist bereits PSPACE-vollständig.

De�nition 5.8 (SFAPfeas(f)). Grundlage für eine Instanz von SFAPfeas(f) ist die deter-
ministische Klasse FAP(Feas, Ac, f, Or). Darüberhinaus sind eine Teilmenge LS ⊆ L der
Legs, eine disjunkte Aufteilung der Planungsperiode in Intervalle I1, . . . , In und eine rationale
Konstante q ∈ [0, 1] gegeben.

SFAPfeas(f) ist ein Spiel gegen die Natur mit folgenden Regeln:

• Optimierer und Natur führen abwechselnd jeweils n Züge (O1, N1, . . . , On, Nn) aus.

• In Zug Oi weist der Optimierer allen Legs, die im Intervall Ii starten, eine Flotte zu.

• In Zug Ni verlängert die Natur zufällig und unabhängig mit Wahrscheinlichkeit 1
2
die

Blockzeit aller Legs, die im Intervall Ii starten und zu LS gehören, um Eins.

• Ein Endzustand ist zulässig, wenn die Flottenzuweisung, die sich aus dem Pfad vom
initialen Zustand (kein Leg zugewiesen) zum Endzustand (alle Legs zugewiesen und
teilweise gestört) de�niert, eine zulässige (deterministische) Flottenzuweisung darstellt.

Die Frage ist, ob es eine Strategie gibt, so dass sich mit Wahrscheinlichkeit mindestens q
eine zulässige Flottenzuweisung ergibt.

O�ensichtlich handelt es sich bei SFAPfeas(f) um ein Spiel gegen die Natur gemäÿ De�ni-
tion 5.1.

Satz 5.9. SFAPfeas(2) ist PSPACE-vollständig.



5.3 Komplexität 143

Beweis. Als Spiel gegen die Natur gehört SFAPfeas(2) zu PSPACE.

Um die Vollständigkeit zu zeigen, reduzieren wir SSAT' aus De�nition 5.6 auf SFAPfeas(2).
Sei dazu

∃x1,Rx2,∃x3, . . . ,Rxn : Pr(B(x1, . . . , xn) = Wahr) ≥ q

eine Instanz von SSAT'. Wir verwenden hier fast die gleiche Transformation wie in De�niti-
on 3.26. Die Änderungen sind wie folgt:

• Das Paar, das Variable xi repräsentiert, beginnt zum Zeitpunkt 4i, d.h. wir fügen für
Variable xi das Paar Pxi

(4i) dem Flugplan hinzu.

Die Startzeit der beiden Eingangslegs qj eines Paars, das Variable xi repräsentiert, wird
auf 4(i− 1) gesetzt.

• Die Zeitpunkte aller übrigen Flughafenkonstrukte werden um 4(n + 1) Zeiteinheiten
nach hinten verschoben. Dadurch bleiben alle Blockzeiten im Flugplan echt positiv.

• LS besteht aus den Eingangslegs qj aller Paare, die eine R-quanti�zierten Variable x2i

repräsentieren.

• Die Planungsperiode wird in die Intervalle I0, . . . , In unterteilt, wobei Ii = [4i, 4(i+1)[
für i ∈ {0, . . . , n− 1} und In = [4n,∞[ sind.

• q wird direkt von der SSAT'-Instanz übernommen.

Die Transformation lässt sich o�ensichtlich in polynomieller Zeit durchführen. Die Struktur
des Flugplans wird gegenüber De�nition 3.26 nicht geändert, nur die Variablen-Paare werden
kaskadiert in der Zeit angeordnet. Abbildung 5.2 zeigt die Kaskadierung der ersten vier
Variablen-Paare mit ihren Eingangslegs.

Nach Konstruktion muss der Optimierer in Intervall Ii entscheiden, wie er die Ausgangs-
legs vom Paar, das Variable xi repräsentiert, zuweisen will. Unter den Voraussetzungen von
Lemma 3.20 gilt dann:

• Falls xi ∃-quanti�ziert ist, gehören die Eingangslegs des Paars nicht zur Menge LS

und können deshalb keine verlängerte Blockzeit aufweisen. Der Optimierer kann hier
also frei entscheiden, welche der beiden zulässigen Zuweisungen für die Ausgangslegs
er wählt. Das Flughafenkonstrukt verhält sich wie ein Existenzquantor.

• Falls xi R-quanti�ziert ist, gehören die Eingangslegs des Paars zur Menge LS und
können während des Intervalls Ii−1 von der Natur jeweils um eine Zeiteinheit verlängert
worden sein. Hier sind nun vier Fälle möglich, die jeweils mit Wahrscheinlichkeit 1

4

eintreten:

q1 gestört q2 gestört zulässige Zuweisungen an (p1, p2)
Nein Nein (T, F ), (F, T )
Nein Ja (F, T )
Ja Nein (T, F )
Ja Ja - (unzulässig)
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Px1

Px2

Px3

Px4

I3 I4

84 12 16 20

I2I1I0

0
XYZ

Zeit

Abbildung 5.2: Kaskadierung der Variablen-Paare

Damit verhält sich das Flughafenkonstrukt exakt wie ein R-Quantor. (Zur Erinnerung:
Einer der Ausgänge pj steht für das Literal xi, der andere Ausgang für das Literal x̄i.)

Abbildung 5.3 zeigt die vier möglichen Fälle, wie sich die Eingangslegs eines Variablen-Paares
einer R-quanti�zierten Variablen verspäten können, und welche Konsequenzen dies für die
zulässigen Zuweisungen der Ausgangslegs hat.

Es verbleibt noch zu zeigen, dass die Boolsche Formel B genau dann mit Wahrscheinlichkeit
mindestens q erfüllbar ist, wenn das oben konstruierte stochastische Flottenzuweisungspro-
blem mit Wahrscheinlichkeit mindestens q zulässig ist.

⇒ Nach dem oben Gesagten über die Variablen-Paare lässt sich wie im Beweis zu Satz 3.18
jede Strategie für die SSAT'-Instanz, die mit Wahrscheinlichkeit p erfüllbar ist, direkt in eine
Strategie für das stochastische Flottenzuweisungsproblem transformieren, die mit derselben
Wahrscheinlichkeit p zulässig ist.

Dazu muss man sich nur klar machen, dass eine Strategie SB der SSAT'-Instanz strukturell
mit einer Strategie S für das stochastische Flottenzuweisungsproblem übereinstimmt.

SB ist ein Baum mit n + 1 Ebenen, wobei sich in Ebene 1 nur die Wurzel be�ndet und in
Ebene n + 1 die Endzustände.

• Auf der Ebene 2i, 1 ≤ i ≤ n
2
, be�nden sich Naturknoten, die das Verhalten des R-

Quantors für Variable x2i festlegen. Jeder dieser Naturknoten hat einen Ausgangsgrad
von vier, wobei jede Kante mit Wahrscheinlichkeit 1

4
gewählt wird.
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q1 und q2 nicht gestört

q1 und q2 gestörtq1 nicht gestört, q2 gestört

q1 gestört, q2 nicht gestört

freie Wahl

Abbildung 5.3: Die vier Störungsfälle für ein Variablen-Paar

• Auf Ebene 2i+ 1, 0 ≤ i < n
2
be�nden sich Optimierer-Knoten mit Ausgangsgrad eins,

die die Belegung der Variablen x2i+1 und ggf. x2i festlegen. Für x2i muss dabei dann
eine Belegung festgelegt werden, wenn der Vorgängernaturknoten auf Ebene 2i den
R-Quantor zu einem ∃-Quantor gemacht hat.

• Die Endzustände auf Ebene n + 1 müssen ggf. noch die Belegung für Variable xn

festlegen und dann auswerten, ob die Boolsche Formel B mit der Variablenbelegung,
die sich durch den Pfad von der Wurzel zum Endzustand de�niert, erfüllend ist.

• SB hat damit 4n/2 = 2n viele Blätter.

Die Struktur von S, einer Strategie für das stochastische Flottenzuweisungsproblem, ist wie
folgt. Da die Flottenzuweisungsinstanz die Planungsperiode in n+1 Intervalle aufteilt, müss-
te sich eigentlich ein Strategiebaum mit 2n+3 Ebenen ergeben. Allerdings treten wegen der
speziellen Konstruktion der Flottenzuweisungsinstanz Störungen nur in den ungeraden Inter-
vallen I1, I3, I5, . . . , In−1 auf - nur dort starten Eingangslegs vonR-quanti�zierten Variablen-
Paaren. Somit können die Optimierer-Entscheidungen der Ebenen I2i und I2i+1, 0 ≤ i < n

2
,

zu einer Entscheidung zusammengefasst werden, und S ist ein Baum mit n + 1 Ebenen,
nummeriert von 1 bis n + 1.
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• In Ebene 2i, 1 ≤ i ≤ n
2
, be�nden sich wieder Naturknoten, die Legs aus LS im Intervall

I2i−1 stören. Dies sind genau die Eingangslegs des Variablen-Paars von Variable x2i. Wie
oben ausgeführt, können somit vier Störungsszenarien, jeweils mit Wahrscheinlichkeit
1
4
, auftreten. Die Knoten in Level 2i von Strategie S entsprechen also genau den

Knoten in Level 2i von Strategie SB.

• Auf Ebene 2i + 1, 0 ≤ i < n
2
, be�nden sich Optimierer-Knoten mit Ausgangsgrad

eins, die die Zuweisung für die Legs, die in den Intervallen I2i und I2i+1 starten,
festlegen. Damit werden insbesondere die Ausgangslegs der Variablen-Paare für die
Variablen x2i+1 und x2i zugewiesen und damit analog zum Beweis von Satz 3.18 deren
�Variablenbelegung� festgelegt.

• In Ebene n + 1 be�nden sich die Endzustände. Diese müssen noch den Ausgangslegs
des Variablen-Paars Pxn und allen übrigen Legs der restlichen Flughafenkonstrukte eine
Flotte zuweisen. Dies geschieht wie im Beweis zu Satz 3.18. Dann kann geprüft werden,
ob es sich um eine zulässige Flottenzuweisung handelt oder nicht.

• Also hat auch die Strategie S insgesamt 4n/2 = 2n viele Endzustände.

Die Strategien S und SB sind demnach isomorph und eine Strategie SB für die SSAT'-Instanz
lässt sich direkt in eine Strategie S für die SFAPfeas-Instanz mit gleicher Zulässigkeitswahr-
scheinlichkeit überführen.

⇐ Sei S eine Strategie für das stochastische Flottenzuweisungsproblem mit Zulässigkeits-
wahrscheinlichkeit p. Sei E die Menge der zulässigen Endzustände von S. Jeder Pfad von
der Wurzel der Strategie zu einem Zustand aus E beschreibt eine zulässige deterministi-
sche Flottenzuweisung. Für sie muss nach dem Beweis von Satz 3.18 gelten, dass jedes
Variablen-Paar den Voraussetzungen von Lemma 3.20 genügt und dass die zu der Flottenzu-
weisung gehörende Variablenbelegung der Formel B, de�niert durch die Ausgangsbelegung
der Variablen-Paare, erfüllend ist.

Da also zumindest für die Teilstrategie S ′, die aus den Pfaden von der Wurzel von S zu den
zulässigen Zuweisungen E besteht, die Voraussetzungen von Lemma 3.20 gelten, verhalten
sich alle Variablen-Paare der Teilstrategie S ′ wie ∃- bzw. R-Quantoren, und die Teilstrategie
korrespondiert direkt zu einer Teilstrategie S ′

B für die Boolsche Formel B, die nur erfüllende
Variablenbelegungen enthält. Erweitert man S ′

B beliebig zu einer vollständigen Strategie SB,
ist diese mindestens mit Wahrscheinlichkeit p erfüllend.

Für das Problem SFAPfeas sind die Handlungsmöglichkeiten des Optimierers stark einge-
schränkt: die einzige Entscheidung, die er tre�en kann, ist die Zuweisung einer Flotte an
ein Leg. Im Falle, dass, wie hier, Legs verspätet ankommen können, ist es natürlich, dem
Optimierer als weitere Handlungsalternative zu erlauben, Legs verspätet starten zu lassen.
Erlaubt man hier aber zu viele Freiheiten, wird zumindest das Zulässigkeitsproblem einfach:

De�nition 5.10 (SFAPfeas′(f)). Die Klasse SFAPfeas′(f) ist fast wie die Klasse SFAPfeas(f)
aus De�nition 5.8 de�niert. Die einzige Erweiterung besteht darin, dass der Optimierer im
Zug Oi den Startzeitpunkt eines jeden Legs, das ursprünglich im Intervall Ii starten sollte,
beliebig weit nach hinten verschieben darf.
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Satz 5.11. SFAPfeas′(f) ∈ P.

Beweis. Wir brauchen nur zu überprüfen, ob die Gesamt�ugzeuganzahl F einer Instanz x
von SFAPfeas′(f) ausreicht, um eine Instanz x′ der deterministischen Variante FAPfeas(1)
mit einer Flotte und F Flugzeugen zu lösen:

• Im hier betrachteten azyklischen Fall kann jeder Umlauf eines Flugzeugs von x′ durch
das Flugzeug einer beliebigen Flotte von x durchgeführt werden.

• Dabei spielen unterschiedliche Blockzeiten und eventuell auftretende Störungen keine
Rolle, da die Startzeiten der Legs eines Umlaufs beliebig weit �auseinander� gezogen
werden können, so dass die Anschlusslegs auf jeden Fall erreicht werden können.

Wir modellieren eine Instanz von FAPfeas(1) als gerichteten Multi-Graph G = (V, E). Die
Knotenmenge V entspricht den Flughäfen und für jedes Leg l fügen wir eine Kante (sd

l , s
a
l )

der Kantenmenge hinzu. Jeder kantendisjunkte Pfad in G entspricht damit einem legalen
Umlauf eines Flugzeugs. Man beachte, dass Start- und Ankunftszeiten von Legs keine Rolle
spielen, da wir die Startzeit eines jeden Legs beliebig weit nach hinten schieben dürfen,
so dass ein Flugzeug, das auf einem Flughafen s landet, jedes von dort startende Leg als
nächstes bedienen kann.

Die Frage nach der minimal benötigten Anzahl Flugzeuge ist damit o�ensichtlich identisch
zu der Frage nach der minimalen Anzahl an kantendisjunkten Pfaden in G, die alle Kanten
beinhalten. Diese Problem lässt sich in polynomieller Zeit mittels eines erweiterten Eulerpfad-
Algorithmus lösen. Bezeichne dabei out(v) den Ausgangsgrad eines Knoten v und in(v)
seinen Eingangsgrad:

1. Für jeden Knoten v mit out(v) > in(v):

• Konstruiere out(v) − in(v) kantendisjunkte Pfade, die in v starten, nur bisher
unbenutzte Kanten verwenden und nicht erweiterbar sind.

Unter nicht erweiterbaren Pfaden verstehen wir hier Pfade, die in einem Knoten
enden, der keine unbenutzten ausgehenden Kanten mehr besitzt.

2. Für jede noch unbenutzte Kante e:

• Konstruiere einen nicht erweiterbaren kantendisjunkten Kreis K aus unbenutzten
Kanten, der e enthält.

• Verschmelze K dabei mit vorher konstruierten Kreisen, wenn diese einen gemein-
samen Knoten mit K besitzen.

• Verfügt ein so konstruierter Kreis über einen gemeinsamen Knoten zu einem Pfad,
so füge den Kreis in den Pfad ein.

3. Breche jeden noch existierenden Kreis K an einem beliebigen Knoten zu einem Pfad
auf.
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Die in Schritt 1. konstruierten Pfade sind o�ensichtlich nötig, um alle Kanten des Graphen
abzudecken. Ist der Ausgangsgrad eines Knoten v gröÿer als sein Eingangsgrad, können
out(v) − in(v) ausgehende Kanten keinen direkten Vorgänger besitzen und entsprechend
viele Pfade müssen mindestens in dem Knoten v beginnen. Im Anschluss an 1. hat jeder
Knoten in G eine balancierte Anzahl an eingehenden und ausgehenden unbenutzten Kanten.
Die verbleibenden unbenutzten Kanten werden in Schritt 2. durch Kreise überdeckt. Das
beschriebene Verschmelzen mit anderen Kreisen und Pfaden sorgt dafür, dass dabei nur
eine minimale Anzahl an Kreisen entsteht. Die Kreise, die vor Schritt 3. übrig sind, stellen
jeweils eine schwache Zusammenhangskomponente von G dar, die eine Eulertour besitzt.
O�ensichtlich ist für jede solche Zusammenhangskomponente ein weiterer Pfad notwendig,
der in Schritt 3. erzeugt wird. Am Ende liefert der Algorithmus also die minimale Anzahl an
kantendisjunkten Pfaden, die alle Kanten von G enthalten.

Der Algorithmus hat dabei o�ensichtlich polynomielle Laufzeit.

Die Ab�ugzeit eines Legs beliebig lange nach hinten schieben zu können, ist nicht realistisch.
Verlangt man für das Verschieben eines Legs Kosten von Eins pro Zeiteinheit, erhält man ein
halbwegs praxisnahes Optimierungsproblem, das allerdings wieder PSPACE-vollständig ist.

De�nition 5.12 (SFAP(f)). Die Klasse SFAP(f) ist ein zur Klasse SFAPfeas′(f) gehören-
des Optimierungsproblem. Die Kosten eines Endzustand sind unendlich, wenn der Endzustand
eine unzulässige Flottenzuweisung repräsentiert. Ansonsten bestimmen sich die Kosten eines
Endzustands aus der Summe der Zeiteinheiten, um die der Optimierer die Startzeiten von
Legs verschoben hat.

Eine Strategie für eine Instanz von SFAP(f) hat damit nur dann endliche Kosten, wenn alle
ihre Endzustände zulässige Flottenzuweisungen repräsentieren. Die Kosten der Strategie ent-
sprechen der erwarteten Anzahl an Zeiteinheiten, um die die Ab�ugzeiten von Legs insgesamt
nach hinten verschoben werden müssen.

Satz 5.13. SFAP(2) ist PSPACE-vollständig.

Beweis. SFAP(2) gehört als Spiel gegen die Natur zu PSPACE.

Um die Vollständigkeit zu zeigen, reduzieren wir QSAT auf SFAP(2). QSAT wird allgemein
als das klassische PSPACE-vollständige Problem angesehen [Stockmeyer, 1976]. Sei dazu

∃x1,∀x2,∃x3, . . . ,∀xn : B(x1, . . . , xn) = Wahr

eine QSAT-Instanz.

Die Transformation einer QSAT-Instanz in ein stochastisches Flottenzuweisungsproblem er-
folgt wie im Beweis zu Satz 5.9. Die Rolle der R-Quantoren übernehmen dabei natürlich die
∀-Quantoren. Auÿerdem werden sämtliche Landungen auf Flughafen XY Z auf einen neuen
Flughafen XY Z ′ umgeleitet. Die Kostenschranke wird auf q = n

8
festgelegt.

Nach dem Beweis zu Satz 5.11 benötigt der so konstruierte Flugplan für eine zulässige
Flottenzuweisung 2N Flugzeuge, da von Flughafen XY Z 2N Legs starten und keines landet.
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N ist dabei die Anzahl an Paar-Konstrukten, die in der Flottenzuweisungsinstanz enthalten
sind. Alle anderen Flughäfen bis auf XY Z ′ sind balanciert, auf XY Z ′ kommen nur Legs an,
und der Flugplan besteht nur aus einer einzigen schwachen Zusammenhangskomponente.
Alle verfügbaren 2N Flugzeuge der Flotten T und F müssen daher von Flughafen XY Z
starten und jedes dieser Flugzeuge bedient genau eines der ab�iegenden Legs.

Es ist damit klar, dass die Voraussetzungen der Lemmata 3.20 bis 3.24 für zulässige Zuwei-
sungen gelten müssen und dass ein Flughafenkonstrukt genau dann keine Kosten verursacht,
wenn es gemäÿ den Aussagen der Lemmata eingesetzt wird. Nur dann kann eine zulässige
Zuweisung de�niert werden, bei der der Ab�ug von Legs nicht verschoben werden muss.

Im Falle von Verspätungen, die nur bei ∀-quanti�zierten Variablen-Paaren Px2i
(8i) auftreten

können, gilt, dass unter den Voraussetzungen von Lemma 3.20 das Paar, wenn höchstens
eines der Eingangslegs qj verspätet ist, eine Zuweisung für die Ausgangslegs erzeugen kann,
die keine Kosten verursacht (siehe Beweis zu Satz 5.9). Wenn beide Eingangslegs verspätet
ankommen, muss das Ausgangsleg p1 um eine Zeiteinheit nach hinten verschoben werden,
damit eine zulässige Flottenzuweisung zustande kommen kann.5 Dies folgt aus den Beobach-
tungen im Beweis von Satz 5.9 zu R-quanti�zierte Variablen und deren Variablen-Paaren.
Somit tragen die n

2
Variablen-Paare mindestens erwartete Kosten von jeweils 1

4
zu den Ge-

samtkosten bei. Mithin kann es (unter den Voraussetzungen von Lemma 3.20) keine Strategie
mit Gesamtkosten echt kleiner q geben.

Es gilt nun, dass die QSAT-Instanz genau dann erfüllbar ist, wenn die konstruierte Flotten-
zuweisungsinstanz erwartete Kosten von (höchstens) q besitzt.

⇒ Sei S eine erfüllende Strategie der QSAT-Instanz. Diese de�niert wie im Beweis zu Satz 5.9
sofort eine Teilstrategie S ′ für das Flottenzuweisungsproblem, wobei für jede ∀-quanti�zierte
Variable eines der Eingangslegs des korrespondierenden Variablen-Paares verspätet eintri�t.
(Dies ist nach dem Beweis zu Satz 5.9 gleichbedeutend mit dem Fixieren der Variable auf
T oder F .) Alle Endzustände von S ′ sind ferner zulässige Flottenzuweisungen und kommen
ohne Startverschiebungen aus, generieren also keine Kosten.

Wir müssen S ′ nun noch für die Fälle, das keine oder zwei Verspätungen in einem Variablen-
Paar auftreten, erweitern, um eine Gesamtstrategie für das Flottenzuweisungsproblem zu
bekommen. Für den Fall, dass keine Verspätung im Paar Px2i

(8i) auftritt, kopieren wir einfach
einen der beiden Äste für die Variable x2i. Ohne Verspätung kann jede Ausgangsbelegung des
Paares ohne Kosten realisiert werden. Für den Fall, dass beide Eingangslegs qj verspätet sind,
verschieben wir den Start von p1 um eine Zeiteinheit und kopieren wieder einen der beiden
Äste für die Variable x2i in die Strategie S ′. Durch das Verschieben von p1 sind wieder
beide Ausgangsbelegungen zulässig, und wir erhalten eine komplette Strategie S ′ für das
Flottenzuweisungsproblem, das nur aus zulässigen Endknoten besteht. Die erwarteten Kosten
belaufen sich auf genau q, da nur die n

2
Variablen-Paare von ∀-quanti�zierten Variablen

erwartete Kosten von jeweils 1
4
generieren.

5 Damit sich die hier auftretende Verzögerung von p1 nicht auf den Rest des Flugplans auswirken kann,
ersetzen wir das Leg p1 durch zwei Legs pd

1 und pa
1 . Der Start�ughafen von pd

1 entspricht dem Start�ug-
hafen von p1 und der Ziel�ughafen von pa

1 dem Ziel�ughafen von p1. Die beiden Legs begegnen sich auf
einem neuen Flughafen und der Abstand zwischen der Ankunft von pd

1 und dem Ab�ug von pa
1 ist 3.

Damit können Verzögerungen von 1 (und unterschiedliche Blockzeiten) kostenlos aufgefangen werden.
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⇐ Sei S eine Strategie für das Flottenzuweisungsproblem mit Kosten höchstens q. Da die
Kosten endlich sind, beschreibt jeder Endzustand eine zulässige Flottenzuweisung. Unter den
Voraussetzungen von Lemma 3.20 muss S nach obigen Ausführungen genau Kosten q besit-
zen und die Kosten werden ausschlieÿlich für Variablen-Paare mit zwei Eingangsverspätungen
produziert. In der Teilstrategie S ′, die für jedes ∀-quanti�zierte Variablen-Paar nur die Fälle
mit genau einer Verspätung enthält, treten somit keine Legverschiebungen auf. Diese Teil-
strategie korrespondiert dann aber direkt zu einer erfüllenden Strategie für die QSAT-Formel.

Bleibt noch die Frage zu klären, ob S vielleicht nicht die Voraussetzungen von Lemma 3.20
erfüllen muss. Dann ist es möglich, dass zu einem Paar P1 zwei Flugzeuge der Flotte T
�iegen. Selbst im Fall, dass sich beide Eingangslegs verspäten, muss keines der Ausgangslegs
verschoben werden, um für P1 eine zulässige Flottenzuweisung zu �nden. Die erwarteten
Kosten des Paares P1 können also Null sein. Allerdings muss es zu einem Variablen-Paar
P1 mit zwei ankommenden Flugzeugen von Flotte T ein Paar P2 mit zwei ankommenden
Flugzeugen von Flotte F geben, da die Gesamt�ugzeuganzahl ansonsten nicht ausreicht,
um alle startenden Legs von Flughafen XY Z zu bedienen. Für dieses Paar muss dann aber
das Leg p2 immer um mindestens eine Zeiteinheit verschoben werden, das Paar P2 hat
also erwartete Kosten von mindestens Eins. Im Durchschnitt über beide Paare ergeben sich
erwartete Kosten von mindestens 1

2
pro Paar, was zu viel ist um unter der Kostenschranke

q zu bleiben. Mit der gleichen Argumentation erzeugt auch eine Zuweisung von T an q1

und F an q2 mindestens erwartete Kosten von Eins. Der Fall, dass die Voraussetzungen von
Lemma 3.20 nicht erfüllt sind, kann also für eine Strategie mit Kosten q nicht eintreten.

5.4 Reparaturspiel

Beim Reparaturspiel handelt es sich um ein Spiel gegen die Natur mit speziellen Eigen-
schaften, wie sie für stochastische Flottenzuweisungsprobleme im Störungsmanagement aus
Abschnitt 5.1.1 typisch sind.

5.4.1 Problemdefinition

Im Vergleich zu allgemeinen Spielen gegen die Natur gehen wir beim Reparaturspiel von
folgenden Besonderheiten aus:

• Wir wollen die Planung für einen vorgegebenen Planungszeitraum durchführen. Da-
bei wollen wir zu jedem Zeitpunkt einen Plan für den kompletten Planungszeitraum
besitzen, der im Fall, dass der �Normalfall� eintritt, zulässig ist.

• Im Laufe des Planungszeitraums werden wir zu de�nierten Zeitpunkten über zufäl-
lige Störungen informiert, die in Form von diskreten Wahrscheinlichkeitsverteilungen
gegeben sind. Als Reaktion darauf müssen wir bis zum Eintreten der nächsten Störun-
gen den aktuellen Plan so reparieren, dass bis zum Ende der Planungsperiode wieder
ein zulässiger Plan entsteht. Insbesondere reicht es an dieser Stelle nicht aus, nur die
unmittelbar folgenden Aktionen zu planen.
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• Wir bewerten Reparaturen anhand ihrer durchgeführten Änderungen bezüglich des ak-
tuellen Plans. Nach einer Reparatur wird der reparierte Plan zum neuen aktuellen Plan,
und später folgende Reparaturen werden bezüglich des neuen Plans bewertet. Das hat
zur Folge, dass die Gesamtkosten von Reparaturen über den gesamten Planungszeit-
raum additiv sind und einmal verursachte Reparaturkosten nicht wieder ausgeglichen
werden können.

Auf das stochastische Flottenzuweisungsproblem übertragen ergibt sich:

De�nition 5.14 (Reparaturspiel für das stochastische Flottenzuweisungsproblem (REPGA-
ME)). Grundlage für eine Instanz von REPGAME ist ein azyklisches deterministisches Flot-
tenzuweisungsproblem mit einer nicht notwendigerweise zulässigen Flottenzuweisung. Für
jedes Leg ist eine diskrete Wahrscheinlichkeitsverteilung für mögliche Verspätungen und eine
Wahrscheinlichkeit für den Ausfall des Legs gegeben, und die Planungsperiode ist in disjunkte
Intervalle I1, . . . , In aufgeteilt.

REPGAME ist ein Spiel gegen die Natur mit folgenden Regeln:

• Optimierer und Natur führen abwechselnd jeweils n Züge (O1, N1, . . . , On, Nn) aus.

• In Zug Oi generiert der Optimierer für alle Legs, die in den Intervallen Ii bis In starten,
eine (deterministisch) zulässige Flottenzuweisung. Er darf dabei

� Den Start von Legs nach hinten verschieben.

� Die Flottenzuweisung von Legs ändern.

� Legs komplett streichen.

Dabei verursacht er Kosten, die abhängig von den Änderungen bezüglich des aktuellen
Plans sind.

• In Zug Ni stört die Natur zufällig anhand der vorgegebenen Wahrscheinlichkeiten die
Legs, die während des Intervalls Ii starten.

• Die Kosten von Endzuständen ergeben sich aus den aufaddierten Kosten aller vom
Optimierer durchgeführten Umplanungen auf dem Weg von der Wurzel des Spielbaums
hin zum jeweiligen Endzustand.

Ziel des Spiels ist es, eine Strategie mit minimalen erwarteten Kosten zu �nden. Da Stra-
tegien im Allgemeinen exponentiell groÿ sind, reicht es alternativ aus, neben den minimalen
erwarteten Kosten nur den Plan des Optimierers in Zug O1 anzugeben, da hierdurch die
unmittelbar anstehenden Entscheidungen festgelegt werden.

Das so de�nierte Reparaturspiel ist eine Verallgemeinerung von Problem SFAP(f) aus De�-
nition 5.12 und somit ebenfalls PSPACE-vollständig.
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Algorithmus 3 mimav(Knoten v, Wert α, Wert β)
1: generiere alle Nachfolger v1, . . . , vb von Knoten v
2: if b = 0 then

3: return c(v) {Blatt}
4: cost = 0
5: for i = 1 . . . b do
6: if v ist MAX-Knoten then
7: α = max{α,mimav(vi, α, β)}
8: if α ≥ β oder i = b then
9: return α
10: if v ist MIN-Knoten then
11: β = min{β,mimav(vi, α, β)}
12: if α ≥ β oder i = b then
13: return β
14: if v ist Natur-Knoten then
15: {Seien w1, . . . , wb die Wahrscheinlichkeiten der Knoten v1, . . . , vb}

16: α′ = max{α−(cost+U ·
Pb

j=i+1 wj)

wi
, L}

17: β′ = min{β−(cost+L·
Pb

j=i+1 wj)

wi
, U}

18: cost = cost + wi ·mimav(vi, α
′, β′)

19: if cost + L ·
∑b

j=i+1 wj ≥ β then

20: return β
21: if cost + U ·

∑b
j=i+1 wj ≤ α then

22: return α
23: if i = b then
24: return cost

5.4.2 Lösungsverfahren

5.4.2.1 Der mimav-Algorithmus

Für die Auswertung von Spielbäumen hat sich in der Praxis der Alphabeta-Algorithmus
und seine Varianten bewährt. Er lässt sich verhältnismäÿig leicht modi�zieren, um auch
Naturspieler berücksichtigen zu können. Besonders e�zient lässt sich dabei der Naturspieler
implementieren, wenn untere und obere Schranken auf die Kosten aller Knoten bekannt sind.

Seien nun U und L untere bzw. obere Schranken aller möglichen Kosten, die das Spiel anneh-
men kann. Wenn die Natur am Zug ist, besitzt jeder Zug der Natur eine vorgegebene Wahr-
scheinlichkeit, und die Kosten der Nachfolger werden gewichtet mit ihrer Wahrscheinlichkeit
aufsummiert. Wenn wir uns also an einem Naturknoten be�nden und die Untersuchung der
ersten Nachfolger dazu geführt hat, dass auch im Extremfall der Wert des Knotens nicht mehr
unter eine Schranke β fallen kann, haben wir einen Cut-o�. Analoges gilt natürlich auch für
die α-Schranke. Algorithmus 3 ist eine Beschreibung erweiterten Alphabeta-Verfahrens. Auf-
gerufen wird der Algorithmus mit mimav(Wurzel, L, U) und liefert als Ergebnis die optimalen
erwarteten Kosten des Spielbaums.
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Wir haben in Algorithmus 3 sowohl den Fall berücksichtigt, dass es sich bei dem Optimierer
um einen Maximierer als auch einen Minimierer handeln kann. In der beschriebenen Form un-
terstützt der Algorithmus sogar den Fall, dass neben dem Optimierer und der Natur noch ein
dritter Spieler, ein direkter Konkurrent des Optimierers, der diesem möglichst stark schaden
will, am Spiel teilnimmt.

Die Auswertung der MAX- bzw. MIN-Knoten entspricht dem normalen vorgehen eines Alpha-
beta-Algorithmus. Uns interessieren nur noch die genauen Kosten im Bereich zwischen α
und β, und wenn ein Maximierer einen Nachfolger mit höheren Kosten als β �ndet, kann die
Suche in diesem Knoten abgebrochen werden. Entsprechendes gilt für MIN-Knoten, wenn
ein Nachfolger mit Kosten kleiner α gefunden wird.

Die Situation ist für Natur-Knoten ein wenig komplizierter. Die Kosten eines Natur-Knotens
werden im Gegensatz zu MAX- bzw. MIN-Knoten nicht nur von einem Nachfolger de�niert
sondern ergeben sich aus einer gewichteten Summe der Kosten aller Nachfolger. Auch wenn
einzelne Kosten unterhalb von α bzw. oberhalb von β liegen, heiÿt das nicht, dass dies auch
für die gewichtete Summe gilt.

Schauen wir uns dazu die Situation nach der Bewertung des Nachfolgers vi in Zeile 18
an. Die Knoten v1 bis vi sind bereits berechnet und die Summe ihrer gewichteten Kosten
steht in cost. Die restlichen Knoten vi+1, . . . vb werden nun noch mindestens L ·

∑b
j=i+1 wj

zu dieser Summe beitragen. Liegt also diese untere Schranke auf die Naturknotenkosten
oberhalb von β, können wir die Suche in Zeile 20 abbrechen. Entsprechend wird in Zeile 21
eine obere Schranke auf die Naturknotenkosten berechnet und die weitere Suche in Zeile 22
abgebrochen, wenn die obere Schranke unterhalb von α liegt.

Im Vergleich zu MAX- und MIN-Knoten müssen ferner die Nachfolger von Naturknoten mit
veränderten Schranken α′ und β′ aufgerufen werden, da ja auch Nachfolgerkosten auÿerhalb
des für den Naturknoten relevanten Intervalls zu Naturknotenkosten zwischen α und β führen
können. Vor der Auswertung von Knoten vi ist UB = cost + U ·

∑b
j=i+1 wj eine obere

Schranke auf den Anteil, den die Nachfolgeknoten ohne vi zur gewichteten Summe beitragen.
Ist nun der Anteil von vi zu dieser Summe kleiner als α−UB, so wird die Naturknotensumme
den Wert α garantiert nicht übersteigen können. Also interessieren uns für den Knoten vi

nur die genauen Kosten ab α′ = α−UB
wi

, und diese Grenze wird in Zeile 16 bestimmt. Analog
verläuft die Berechnung der oberen Grenze β′ in Zeile 17. Das resultierende Intervall wird
dabei noch zusätzlich an die überhaupt möglichen Kosten von Knoten angepasst, indem der
Schnitt mit dem Intervall [L, U ] gebildet wird.

Mit Algorithmus 3 ist es prinzipiell möglich, jedes Spiel gegen die Natur auszuwerten. Aller-
dings muss der Algorithmus dabei mindestens die Knoten einer optimalen Strategie besuchen
und im worst-case sogar den ganzen Spielbaum durchlaufen. In beiden Fällen erfordert dies
aber exponentiellen Aufwand. Selbst verhältnismäÿig kleine Spiele wie Schach lassen sich so
nicht in akzeptabler Zeit exakt lösen.

In Abschnitt 5.4.2.3 präsentieren wir daher eine heuristische Variante des mimav-Algorithmus.
Dafür benötigen wir allerdings ein Verfahren, um das deterministische Flottenzuweisungspro-
blem im Störungsmanagement zu lösen.
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5.4.2.2 Modell für die deterministische Flottenumplanung

Die De�nition des deterministischen Flottenumplanungsproblems entspricht der des Repara-
turspiels ohne stochastische Ein�üsse:

De�nition 5.15 (Deterministisches Flottenumplanungsproblem (DETFAP)). Grundlage für
eine Instanz von DETFAP ist ein azyklisches deterministisches Flottenzuweisungsproblem mit
einer nicht notwendigerweise zulässigen Flottenzuweisung.

Es soll eine zulässige Flottenzuweisung berechnet werden, wobei

• der Start von Legs nach hinten verschoben werden kann,

• die Flottenzuweisung von Legs geändert werden kann und

• Legs komplett gestrichen werden dürfen.

Dabei fallen Kosten an, die abhängig von den Änderungen bezüglich des gegebenen Plans
sind.

Ziel ist es, eine Flottenzuweisung mit minimalen Umplanungskosten zu �nden.

Im Vergleich zu einem normalen Flottenzuweisungsproblem müssen wir also Legs verschie-
ben und streichen können und eine geänderte Zielfunktion verwenden. Die Heuristiken aus
Abschnitt 4.3 lassen sich nicht für das Flottenumplanungsproblem einsetzen, da keine zuläs-
sige initiale Flottenzuweisung bekannt ist. Alle IP-basierten Modelle lassen sich aber einfach
erweitern, um die Anforderungen der Flottenumplanung zu unterstützen. Wir beschreiben
hier nur die dafür notwendigen Modi�kationen für das Time Space Network Modell aus
Abschnitt 4.2. Die Ideen lassen sich leicht auf die übrigen Modelle übertragen.

Die Fähigkeit, Verschiebungen zu modellieren, geschieht auf folgende Weise: Wir schränken
die Freiheitsgrade, wie ein Leg l verschoben werden kann, auf eine endliche (kleine) Menge
Dl = {d1, . . . , d|Dl|} ⊂ N0 von |Dl| vielen Verschiebungen ein. Dabei ist d1 immer gleich
Null und steht für den Fall, dass das Leg nicht verschoben wird.

Wir kreieren nun eine neue Legmenge L′, in die wir für jedes Leg l ∈ L der ursprünglichen
Legmenge |Dl| Kopien lD = {l1, . . . , l|Dl|} von l aufnehmen. Alle Attribute (Start�ughafen,
Ziel�ughafen, zulässige Flotten, Blockzeiten, Mindestbodenzeiten) des ursprünglichen Legs
l werden an die Kopien unverändert weitergereicht. Einzig die Startzeit von Leg li wird auf
tdli,f = tdl,f + di gesetzt, also um di Minuten nach hinten verschoben.

Um Legs streichen zu können, führen wir zu jedem Leg l ∈ L des ursprünglichen Flugplans
eine zusätzliche binäre Variable yl,∗ ein, die anzeigt, ob ein Leg gestrichen werden soll (yl,∗ =
1) oder nicht (yl,∗ = 0).

Aus der neuen Legmenge L′ wird nun ein normales Time Space Network wie in Abschnitt 4.2.2
aufgebaut. Mit den dort verwendeten Bezeichnungen lässt sich das deterministische Flotte-
numplanungsproblem wie folgt formulieren:
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Modell 5.16 (DETFAP).

Minimiere
∑
l∈L′

∑
f∈Fl

cl,fyl,f +
∑
l∈L

cCyl,∗ (5.1)

unter den Nebenbedingungen

yl,∗ +
∑
k∈lD

∑
f∈Fk

yk,f = 1 ∀l ∈ L (5.2)∑
(l,f)∈La

v

yl,f −
∑

(l,f)∈Ld
v

yl,f + zv−,v − zv,v+ = 0 ∀v ∈ V (5.3)

∑
v∈V ∆

f

z∗,v ≤ Nf ∀f ∈ F (5.4)

yl,∗ ∈ {0, 1} ∀l ∈ L (5.5)

yl,f ∈ {0, 1} ∀l ∈ L′, f ∈ Fl (5.6)

zv,v+ ∈ N0 ∀v ∈ V (5.7)

z∗,v ∈ N0 ∀v ∈
⋃
f∈F

V ∆
f (5.8)

Gegenüber dem normalen azyklischen Time Space Network Modell 4.5 haben sich hier nur
die Zielfunktion und die Gleichungen (5.2) geändert. Die Gleichungen (5.2) stellen nun für
jedes Leg l ∈ L der ursprünglichen Legmenge sicher, das höchstens einer Kopie von l aus
der neuen Legmenge L′ eine Flotte zugewiesen wird. Wird dabei die yl,∗-Variable auf Eins
gesetzt, wird keine der zu Leg l gehörenden Flugkanten im Time Space Network verwendet
und das Leg damit aus dem Flugplan gestrichen.

Für die veränderte Zielfunktion (5.1) führen wir zunächst die folgenden Bezeichnungen ein:

cT Kosten für die Verschiebung eines Legs um eine Zeiteinheit
cE Kosten für das Ändern der Flottenzuweisung eines Legs
cC Kosten für das Streichen eines Legs
δT (l) Anzahl Zeiteinheiten, um die das Leg l ∈ L′ gegenüber seinem Original

nach hinten verschoben worden ist
δE(l, f) = 1, falls für ein Leg l ∈ L′ die Flottenzuweisung des Originals nicht

Flugzeugtyp f ist; sonst ist δE(l, f) = 0
δP (l, f) Änderungen auf der Erlösseite, wenn anstatt des Originals mit seiner ur-

sprünglichen Flottenzuweisung das geänderte Leg l ∈ L′ von Flotte f
bedient wird

Die Umplanungskosten für ein Leg l ∈ L′, wenn es von einem Flugzeug der Flotte f ge�ogen
wird, belaufen sich damit zu

cl,f = δT (l) · cT + δE(l, f) · cE + δP (l, f)

und können in der Zielfunktion direkt den entsprechenden yl,f -Variablen zugeordnet werden.
Dazu kommen noch die Strafkosten für Legstreichungen, die von den yl,∗-Variablen angezeigt
werden.
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Unter der Annahme, dass keine weiteren Störungen auftreten, ist eine mit Modell 5.16 be-
stimmte Umplanung kostenminimal.

Aus der De�nition der Zielfunktion ergibt sich in der Praxis ein sehr e�zientes Laufzeitver-
halten beim Lösen von deterministischen Flottenumplanungsproblemen. Da die Zielfunktion
Abweichungen von einer existierenden, im Normalfall nur leicht gestörten Flottenzuweisung
bestraft, zeigen unsere experimentellen Ergebnisse, dass sich auch groÿe Instanzen in wenigen
Sekunden lösen lassen, da die Zielfunktion implizit in Richtung einer fast zulässigen Lösung
optimiert.

5.4.2.3 Heuristischer mimav-Algorithmus

Da eine vollständige Spielbaumauswertung nicht praktikabel ist, beschränkt man sich bei
Alphabeta- und verwandten Algorithmen auf eine heuristische Baumauswertung, wobei die
Suchtiefe und Suchbreite beschränkt werden. Daraus ergeben sich eine Reihe von zu beant-
wortenden Fragen:

• Wie sollen Suchtiefe und -breite beschränkt werden?

Soll der Baum beispielsweise immer nur bis zu einer vorgegebenen Tiefe durchsucht
werden, oder soll knotenabhängig die Suchtiefe angepasst werden?

• Im Falle, dass die Suchbreite beschränkt wird, welche Nachfolgeknoten sollen unter-
sucht werden und welche ignoriert werden?

• Da man bei einer beschränkten Suchtiefe keine Endzustände im Spielbaum erreicht,
muss geklärt werden, wie die Blätter des beschränkten Baums bewertet werden sollen.

Wir verwenden für unseren heuristischen mimav-Algorithmus eine feste Suchtiefe von derzeit
3. So halten sich die auftretenden Laufzeiten in erträglichen Grenzen.

Durch die besondere Struktur des Reparaturspiels ist eine Blattbewertung, auch wenn es
sich nicht um einen Endzustand handelt, sehr einfach, da sich die Kosten eines Blattes aus
der Summe der Umplanungskosten von der Wurzel bis zum Blatt zusammensetzen. Dabei
wird implizit angenommen, dass nach dem vom Blatt repräsentierten Planungsintervall keine
weiteren Störungen und damit Umplanungskosten mehr anfallen. Insofern handelt es sich bei
dieser Blattbewertung natürlich um eine Heuristik.

Der interessanteste Punkt beim heuristischen mimav-Algorithmus ist die Art und Weise, wie
die Suchbreite in jedem Knoten des Spielbaums beschränkt wird. Abhängig vom Knotentyp
setzen wir dafür spezielle Zuggeneratoren ein.

Der Zuggenerator für die Natur untersucht, welche Ab�üge im aktuellen Planungs-
intervall anstehen. Die atomaren Störungen �Streichung� und �Verspätung um x Minuten�
werden für jedes Leg, das in diesem Zeitraum den Boden verlässt, generiert. Die atomaren
Störungen werden gemäÿ ihren (vorgegebenen) Eintrittswahrscheinlichkeiten gewichtet. Im
Prinzip würden wir jetzt gerne alle diese atomaren Störungen sowie alle ihre Kombinationen
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untersuchen. Leider führt dies zu einer zu groÿen Anzahl möglicher Szenarien und damit zu
einem zu hohen Knotengrad. Zurzeit beschränken wir daher die Suchbreite dadurch, dass wir
nur atomare Störungen betrachten.

Wir gehen dabei wie folgt vor. Seien l1, . . . , ln die Legs, die im aktuellen Planungsinter-
vall starten und damit von der Natur gestört werden können. Für Leg li seien Si Störun-
gen (Verspätungen oder Ausfälle) mit Eintrittswahrscheinlichkeiten wi

1, . . . w
i
Si
gegeben. Mit

wi
0 = 1−

∑Si

s=1 wi
s bezeichnen wir die Wahrscheinlichkeit, dass das Leg li nicht gestört wird.

Wir gehen davon aus, dass die Störungen der Legs unabhängig voneinander sind, so dass
sich in diesem Planungszeitraum insgesamt

n∏
i=1

(Si + 1)

verschiedene Szenarien ergeben. Bereits bei sechs Legs mit jeweils vier Störungen ergeben
sich so 56 = 15625 verschiedene Szenarien, die alle untersucht werden müssten. Dies ist bei
weitem zu viel, so dass wir uns entschieden haben, beim Zuggenerator für die Natur aus-
schlieÿlich die atomaren Szenarien zu betrachten, also die Szenarien, bei denen (höchstens)
ein Leg gestört wird. Dann kommen wir mit

1 +
n∑

i=1

Si

vielen Szenarien aus. Im Beispiel von oben wären das also nur noch 1 + 6 · 4 = 25 Fälle.

Jetzt verbleibt aber die Schwierigkeit, den eingeschränkten Szenarien brauchbare Eintritts-
wahrscheinlichkeiten zuzuweisen. Das Szenario, bei dem bei Leg li die s-te Störung auftritt
und ansonsten alle übrigen Legs ungestört sind, tritt eigentlich nur mit Wahrscheinlichkeit
wi

s ·
∏

j 6=i w
j
0 auf. Würde man nur diese Wahrscheinlichkeiten verwenden, würde das Szenario,

bei dem gar keine Störung auftritt, mit viel zu hoher Wahrscheinlichkeit eintreten.

Wir weisen daher dem Szenario Si
s, bei dem nur für Leg li die s-te Störung auftritt, die

folgende Wahrscheinlichkeit zu:

Pr(Si
s) =

(
1−

n∏
j=1

wj
0

)
wi

s∑n
j=1

∑Sj

t=1 wj
t
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Damit bleibt für das Szenario S0, bei dem keine Störung eintritt, die Wahrscheinlichkeit

Pr(S0) = 1−
n∑

i=1

Si∑
s=1

Pr(Si
s)

= 1−

(
n∑

i=1

Si∑
s=1

(
1−

n∏
j=1

wj
0

)
wi

s∑n
j=1

∑Sj

t=1 wj
t

)

= 1−

((
1−

n∏
j=1

wj
0

) ∑n
i=1

∑Si

s=1 wi
s∑n

j=1

∑Sj

t=1 wj
t

)

= 1−

(
1−

n∏
j=1

wj
0

)

=
n∏

j=1

wj
0

übrig, was genau der eigentlichen Eintrittswahrscheinlichkeit dieses Szenarios entspricht. Die
Restwahrscheinlichkeit wird gemäÿ der wi

s-Wahrscheinlichkeiten gleichmäÿig auf die übrigen
atomaren Szenarien Si

s aufgeteilt.

Der Zuggenerator für den Optimierer erzeugt mehrere �gute�, aber unterschiedliche
Reparaturalternativen für einen gestörten Plan. Sie führen alle so schnell und kostengünstig
wie möglich zurück in den aktuellen gestörten Plan. Dabei kann jede Alternative aus einer
Mehrzahl von Reparaturoperationen bestehen: aus Startverschiebungen, aus Neuzuweisungen
von Flotten an Legs und aus Streichungen von Legs.

Die spezielle Struktur des Reparaturspiels gibt begründete Ho�nung, dass die so ausgewählten
Reparaturalternativen zu guten Ergebnissen für den heuristischen mimav-Algorithmus führen.
Da die Kosten einer zum jetzigen Zeitpunkt durchgeführten Umplanung später nicht mehr
ausgeglichen werden können, führen sehr wahrscheinlich nur Umplanungen mit fast optimalen
deterministischen Umplanungskosten auch zu geringen erwarteten Gesamtreparaturkosten.

Als Basis benutzen wir dabei das deterministische Flottenumplanungsmodell DETFAP 5.16
aus Abschnitt 5.4.2.2, um Reparaturalternativen zu erzeugen. Wir modi�zieren jedoch die
Branch&Bound Suche des IP-Lösers. Wenn eine neue ganzzahlige Lösung (also in unseren
Worten eine gute und gültige Reparaturalternative) gefunden worden ist, wird diese Lösung
gespeichert und durch Hinzufügen geeigneter Cuts für den Rest der Branch&Bound Suche für
ungültig erklärt. Die Branch&Bound Suche terminiert, sobald c viele Reparaturalternativen
gefunden worden sind. Zurzeit benutzen wir c = 3.

Heutige IP-Löser, wie die von uns eingesetzten Verfahren CPLEX und CBC, unterstützen
das benutzergesteuerte Generieren von Cuts während der Branch&Bound Suche über ein
Callback-Interface. Wann immer in einem Knoten während der Branch&Bound Suche eine
ganzzahlige Lösung gefunden wird, werden die benutztereigenen Routinen aufgerufen, die
die gefundene Lösung untersuchen können. Dabei können sie entscheiden, ob sie die ganz-
zahlige Lösung akzeptieren wollen oder nicht. Durch das Hinzufügen von benutzereigenen
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Cuts (zusätzlichen Ungleichungen) zum Modell können sie so eine eigentlich aus IP-Sicht
zulässige Lösung unzulässig machen und die Branch&Bound Suche zwingen, nach anderen
ganzzahligen Lösungen zu suchen.

Der Vorteil dieser Vorgehensweise liegt darin, dass so zumindest für das Flottenumplanungs-
problem das Finden von mehr als einer guten zulässigen Lösung kaum länger dauert als das
Bestimmen nur einer Lösung mit dem Modell DETFAP. Beide Verfahren scha�en es durch-
schnittlich in unter 10 Sekunden einen gestörten Plan zu reparieren und eine oder eben auch
mehrere gute Reparaturvorschläge zurückzuliefern.

Da wir nur eine verschwindend kleine Auswahl an Reparaturalternativen betrachten wol-
len, müssen diese zwei Anforderungen erfüllen, um für den heuristischen mimav-Algorithmus
nützlich zu sein:

• Sie müssen die akuten Störungen kostengünstig reparieren, da nach den obigen Ausfüh-
rungen einmal angefallene Reparaturkosten später nicht wettgemacht werden können.

• Die Reparaturalternativen sollten trotzdem strukturell möglichst verschieden sein, um
in unterschiedliche Bereiche des Spielbaums vordringen zu können.

Es ist sehr wahrscheinlich wenig hilfreich, wenn man zwei Reparaturalternativen gelie-
fert bekommt, die sich nur darin unterscheiden, dass ein Leg 5 Zeiteinheiten verscho-
ben worden ist. Zukünftige Störungen werden sich in beiden Reparaturalternativen sehr
ähnlich auswirken.

Den ersten Punkt erreichen wir dadurch, dass wir zum Generieren der Reparaturalternativen
das Modell DETFAP einsetzen, das kostenminimale Reparaturvorschläge erzeugt.

Die zweite Anforderung stellen wir dadurch sicher, dass wir sehr spezielle Cuts dem Modell
hinzufügen, um eine gefundene Lösung und zu ihr strukturell ähnliche Lösungen von der
weiteren Branch&Bound Suche auszuschlieÿen.

Die Standardmethode, um speziell für IPs mit 0-1-Variablen eine eigentlich zulässige Lösung
abzuschneiden, sieht wie folgt aus. Seien x1, . . . , xn die 0-1 Variablen eines IP-Modells, die in
einer ganzzahligen Lösung den Wert 1 zugewiesen bekommen haben. Durch das Hinzufügen
der Ungleichung

n∑
i=1

xi ≤ n− 1 (5.9)

wird die ganzzahlige Lösung unzulässig, da die linke Seite für die aktuelle ganzzahlige Lösung
zu n ausgewertet wird.

Da die wesentlichen Entscheidungsvariablen yl,f im Modell DETFAP binär sind, lieÿe sich
diese Technik prinzipiell zur Generierung von Cuts für DETFAP einsetzen. Allerdings würden
so neben der aktuellen Lösung keine weiteren Lösungen für die Branch&Bound Suche ab-
geschnitten, insbesondere würde beispielsweise das Verschieben nur eines Legs sofort wieder
zu einer zulässigen Lösung führen.
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Um auch wirklich unterschiedliche Lösungsvorschläge zu bekommen, muss man also die zu-
sätzlichen Cuts sorgfältig auswählen. Wir berücksichtigen für Cuts nur Entscheidungsvaria-
blen von Legs, die anders gehandhabt werden (verschoben, neu zugewiesen oder gestrichen)
als im Originalplan. Das heiÿt in unseren Cuts tauchen grundsätzlich nur die yl,∗-Variablen
und yl,f -Variablen, für die δT (l) > 0 oder δE(l, f) = 1 gilt, auf. Genau diese Variablen
zeigen Reparaturaktionen am ursprünglichen Flugplan an, und da wir nach möglichst unter-
schiedlichen Reparaturalternativen suchen, sollten auch nur diese Variablen zur Entscheidung
herangezogen werden.

Sei daher für eine aktuelle ganzzahlige Lösung während der Branch&Bound Suche im DETFAP-
Modell Y die Menge an yl,f bzw. yl,∗-Variablen, die einen Wert von 1 haben und für eine
Reparaturaktion stehen. Ist Y = ∅ heiÿt das, das der ursprüngliche Flugplan nicht repariert
zu werden braucht, und wir generieren keine Cuts und geben uns mit der einen �Reparatu-
ralternative� zufrieden, da es aus der Sicht des Störungsmanagements keinen Sinn macht,
einen zulässigen Plan auf Verdacht zu ändern.

Ansonsten bilden wir für die aktuelle Lösung Umlaufpläne für die Flugzeuge (siehe Bemer-
kung 3.13) und Partitionieren die Menge Y in Teilmengen Y∗, Y1, . . . , Yk. In Y∗ sind alle
yl,∗-Variablen enthalten. In Yi sind jeweils die yl,f -Variablen zusammengefasst, die gemäÿ
obiger Umlaufgenerierung von einem Flugzeug i bedient werden. Es gibt also k Flugzeuge,
die geänderte Legs �iegen.

In der Menge Y∗ be�nden sich alle Variablen, die anzeigen, dass ein Leg gestrichen werden
soll. Falls Y∗ 6= ∅ ist, generieren wir für diese Menge einen Cut gemäÿ Ungleichung (5.9).
Dadurch müssen in zukünftigen Lösungen andere Legs gestrichen werden.

Ferner konstruieren wir wie folgt einen Cut für jede der Mengen Yi = {yl1,f , . . . , yln,f}:

n∑
j=1

∑
m∈L(lj)

ym,f ≤ n− 1,

wobei L(lj) für die Menge von Legs steht, die wie lj Kopien eines gemeinsamen Originallegs
sind, dass heiÿt sie stehen eigentlich für dasselbe Leg mit verschobenen Ab�ugzeiten. Bis
auf die zusätzliche Summe über die Menge L(lj) handelt es sich also auch hierbei um einen
Cut gemäÿ Ungleichung (5.9). Man beachte, dass in der Summe

∑
m∈L(lj)

ym,f wegen Glei-
chung (5.2) nur genau die Variable ylj ,f den Wert Eins besitzt und der Cut damit tatsächlich
die aktuelle Lösung abschneidet.

Damit muss jedes der k Flugzeuge, das reparierte Legs �iegt, in zukünftigen Lösungen etwas
anders machen. Dabei reicht es wegen der Summe über die Menge L(lj) nicht aus, einfach
nur ein Leg etwas zu verschieben.

Durch die so generierten Cuts werden also neben der aktuellen Lösung auch strukturell
ähnliche Lösungen von der weiteren Branch&Bound Suche ausgeschlossen, und wir erhalten
gute, aber verschiedene Reparaturalternativen.
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5.5 Experimentelle Ergebnisse

Ziel der experimentellen Untersuchung war es herauszu�nden, ob die Berücksichtigung von
stochastischen Daten zu einem verbesserten Störungsmanagement führt. Dabei sollte das
etablierte deterministische Modell DETFAP aus Abschnitt 5.4.2.2 mit dem stochastischen
Modell REPGAME aus Abschnitt 5.4.1 verglichen werden. REPGAME-Instanzen wurden da-
bei mit dem heuristischen mimav-Algorithmus aus Abschnitt 5.4.2.3 gelöst. Wir nennen im
Folgenden DETFAP auch deterministisches Verfahren und REPGAME stochastisches Verfah-
ren. Deterministisch/stochastisch bezieht sich dabei auf die Eingabedaten, beide Algorithmen
arbeiten deterministisch.

Ein analytischer Vergleich der erzeugten Lösungen gestaltet sich schwierig, so dass wir uns
mit unserem industriellen Partner Lufthansa Systems auf die Evaluation in einer Simulati-
onsumgebung geeinigt haben.

5.5.1 Lösungsbewertung durch Simulation

Die Basis für unsere Simulation und die Eingabe für den Simulator stellt ein kontinentaler
Lufthansa Flugplan dar. Zusätzlich stehen uns weitere Daten zur Verfügung, um alternative
Pläne für die Reparatur berechnen und sich daraus ergebene Änderungen an Ticketerlösen
bestimmen zu können. Der Plan besteht aus 20603 Flügen, die von 144 Flugzeugen aus 6
Flotten bedient werden.

Der Simulator teilt nun den Planungszeitraum in 15-minütige Intervalle auf und erzeugt
nacheinander für jedes Intervall Störungen, die von einem der beiden Reparaturverfahren
behoben werden müssen. Jeder Ab�ug des aktuellen Umlaufplans stellt ein mögliches Ereignis
dar, wobei das betro�ene Leg gestört werden kann, das heiÿt, es kann in unserem Fall um
30, 60 oder 120 Minuten verzögert werden oder auch ganz aus dem Flugplan gestrichen
werden. Die Störungen treten dabei jeweils mit einer vorgegebenen Wahrscheinlichkeit auf.
Bezeichnet T den aktuellen Simulationszeitpunkt, dann betrachtet und stört der Simulator
alle Ereignisse im Intervall [T, T + 15[, übergibt die Störungen an ein Reparaturverfahren,
wartet auf den reparierten Flugplan und geht 15 Minuten in der Zeit vorwärts.

Die Aufgabe der Reparaturverfahren besteht nun darin, die während der Simulation auftre-
tenden Störungen möglichst kostene�zient über den zu simulierenden Zeitraum hinweg zu
beheben. Als Bewertung der Simulationsergebnisse haben wir vier relevante Maÿe während
der Simulation protokolliert und über eine gewichtete Kostenfunktion zu unseren Reparatur-
kosten umgerechnet. Als Maÿe kamen dabei die Summe der benötigten Startverschiebungen
in Minuten (TIM), die Anzahl der Wechsel eines Flugzeugtyps für ein Leg (ECH) und die
Anzahl der Flug-Streichungen (CNL) zum Einsatz. Zusätzlich haben wir noch die Ände-
rungen der Erlöse, die sich aus geänderten Passagierzahlen ergeben, berücksichtigt. Unser
Industriepartner hat als Kostenfunktion c(TIM,ECH,CNL,Erlöse) = 50 TIM + 10000 ECH +
100000 CNL - Erlöse vorgeschlagen, mit der wir die Simulationsergebnisse der verschiedenen
Reparaturverfahren verglichen haben.

Den Reparaturverfahren sind dabei die Parameter des Simulators bekannt, das heiÿt beide
Verfahren setzen zur Bewertung ihrer Reparaturlösungen die selben Kostenparameter wie der
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deterministisches Reparaturverfahren stochastisches Reparaturverfahren
Datum TIM ECH Erlöse c TIM ECH Erlöse c ∆c

01/03 6270 0 0 313500 5850 0 0 292500 21000
01/04 6090 0 0 304500 6540 2 2219 344781 -40281
01/05 5820 0 0 291000 5910 0 0 295500 -4500
01/06 6240 2 -3717 335717 5910 2 -3717 319217 16500
01/07 5160 4 -28602 326602 5130 4 -28073 324573 2029
01/08 3600 4 -51674 271674 3570 4 -47784 266284 5390
01/09 5250 2 -28193 310693 5370 2 -6091 294591 16102
01/10 5730 0 0 286500 5940 0 0 297000 -10500
01/11 6270 4 -19915 373415 6090 4 -19915 364415 9000
01/12 6660 0 0 333000 6420 0 0 321000 12000
01/13 6750 4 -24790 402290 6810 2 -8782 369282 33008
01/14 5730 0 0 286500 5670 0 0 283500 3000
01/15 3390 0 0 169500 3270 0 0 163500 6000
01/16 5880 2 -4775 318775 5880 0 0 294000 24775∑

78840 22 -161666 4323666 78360 20 -112143 4230143 93523

Tabelle 5.1: Simulationsergebnisse für Wahrscheinlichkeiten 0.001/0.02/0.8/0.12

Simulator ein. Dem stochastischen Verfahren sind darüber hinaus auch die Intervalleinteilung
des Simulators und die Wahrscheinlichkeiten der möglichen Störungen bekannt, so dass sich
ein vollständig spezi�ziertes Reparaturspiel REPGAME für die stochastische Flottenzuwei-
sung ergibt.

5.5.2 Simulationsergebnisse

Wir haben den realen Flugplan der Lufthansa mit 144 Flugzeugen in 6 Flotten mit 20603
Legs in 14 aufeinander folgende Tage aufgeteilt und daraus 14 unabhängige Teilpläne als
Testinstanzen generiert, für jeden der 14 Tage eine Instanz. Wie oben bereits erwähnt, wird
dabei jede Instanz in 15-Minuten-Intervalle eingeteilt. Der Simulator kann verschiedene Re-
paraturverfahren zur Störungsbehebung einsetzen, und so haben wir das deterministische mit
dem stochastischen Verfahren verglichen. Es ging dabei primär um die Frage, ob man für
das gegebene Problem unter halbwegs realistischen Annahmen überhaupt Heuristiken �nden
kann, die eine deterministische Planung schlagen.

In einem ersten Testlauf haben wir die Wahrscheinlichkeiten für Legausfälle/Verspätungen um
120 Minuten/Verspätungen um 60 Minuten/Verspätungen um 30 Minuten auf 0.001/0.02/
0.8/0.12 festgelegt. Die Ergebnisse �nden sich in Tabelle 5.1. Die Spalten 2 bis 5 zeigen die
Ergebnisse des deterministischen Verfahrens, die Spalten 6 bis 9 gehören zum stochastischen
mimav-Reparaturverfahren. Flug-Streichungen (CNL) werden nicht gezeigt, da sie wegen
der geringen Wahrscheinlichkeit während der Simulation nicht aufgetreten sind. Die ∆c-
Spalte zeigt die Kostendi�erenz der c-Spalten der zwei Reparatur-Engines; positive Werte
bedeuten, dass das stochastische Verfahren weniger Reparaturkosten verursacht hat als das
deterministische. Wie aus der Tabelle ersichtlich wird, gewinnt das stochastische Verfahren
11 von 14 Tagen gegenüber dem deterministischen. Über alle 14 Tage zusammen kann der
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Tag 01/03 Tag 01/04 Tag 01/05
# Proz. Zeit Speedup Zeit Speedup Zeit Speedup

1 226057 1.00 193933 1.00 219039 1.00
2 128608 1.76 111612 1.73 126915 1.73
4 68229 3.31 59987 3.23 66281 3.30
8 46675 4.84 40564 4.78 46065 4.75

Tabelle 5.2: Speedups der parallelisierten Baumsuche im mimav-Algorithmus

deterministisches Reparaturverfahren stochastisches Reparaturverfahren
Datum TIM CNL ECH Erlöse c TIM CNL ECH Erlöse c ∆c

01/03 12210 8 2 -684 1431184 12120 8 2 -11374 1437374 -6190
01/04 11460 6 1 2028 1180972 11550 4 0 1145 976355 204617
01/05 10950 6 4 -24978 1212478 11340 8 5 -20407 1437407 -224929
01/06 13830 8 1 -5654 1507154 13470 8 1 -2567 1486067 21087
01/07 10530 7 2 -28385 1274885 10950 7 3 -33248 1310748 -35863
01/08 6000 4 4 -49501 789501 5430 2 4 -49784 561284 228217
01/09 11640 4 2 -29410 1031410 11570 4 2 -20977 1019477 6933
01/10 11730 6 3 -20403 1236903 11130 6 3 -25713 1212213 24690
01/11 12060 8 0 2003 1400997 12150 6 3 12119 1225381 175616
01/12 12030 6 2 -1971 1223471 11790 8 2 974 1408526 -185055
01/13 12630 8 0 580 1430920 12570 6 1 1036 1237464 193456
01/14 10410 6 4 -38488 1198988 10020 6 4 -36133 1177133 21855
01/15 5790 2 0 -1000 490500 5760 2 0 -1000 489000 1500
01/16 12270 5 0 -133 1113633 12090 4 0 257 1004243 109390∑

153540 84 25 -195996 16522996 152040 79 30 -185672 15987672 535324

Tabelle 5.3: Simulationsergebnisse für Wahrscheinlichkeiten 0.003/0.04/0.16/0.24

mimav-Algorithmus 2.21% an Reparaturkosten einsparen.

Was die Qualität der produzierten Reparaturpläne angeht, kann das stochastische Verfahren
das DETFAP-Modell in allen drei Kategorien TIM, ECH und Erlöse schlagen. Das ist ein wenig
überraschend, da wir erwartet haben, dass das stochastische Verfahren die �billigen� TIMs
einsetzen würde, um die teureren ECHs zu vermeiden und damit die Gesamtreparaturkosten
zu senken.

Für jeden Reparaturschritt eines 15-Minuten-Intervalls benötigt der deterministische Algo-
rithmus ungefähr 8 Sekunden. Der stochastische Verfahren ist ungefähr 200-mal langsamer,
da es im Mittel 213 Suchknoten in jedem Schritt untersuchen muss. Eine Parallelisierung
mittels dynamischer Lastverteilung brachte auch das stochastische Verfahren unter die wich-
tige Realzeitgrenze. In Tabelle 5.2 sind die Laufzeiten der Simulation in Sekunden und die
erreichten Speedups mit bis zu 8 Prozessoren für die ersten drei Tage angegeben. Mit nur
einem Prozessor beläuft sich die Simulationszeit mit dem mimav-Algorithmus für einen Tag
simulierter Flugplan auf 2.5 Tage. Mit vier Prozessoren sinkt diese Zeit auf 18 Stunden.und
damit unter die simulierte Planungsdauer.

In einem zweiten Lauf haben wir die Wahrscheinlichkeiten für Störungen auf 0.003/0.04/0.16/
0.24 erhöht. Dann sieht ein typischer Testlauf wie in Tabelle 5.3 dargestellt aus.

Die Spalten 2 bis 6 von Tabelle 5.3 zeigen die Ergebnisse des deterministischen IP-Verfahrens
aus Abschnitt 5.4.2.2, die Spalten 7 bis 11 gehören zu der stochastischen Heuristik aus Ab-
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Lauf 1 Lauf 2 Lauf 3 Lauf 4 Lauf 5

Woche 1 70293 27696 32261 -9238 -15799
Woche 2 8389 48778 11580 -1253 9144

Tabelle 5.4: Durchschnittliche eingesparte tägliche Reparaturkosten des stochastischen Ver-
fahrens gegenüber dem deterministischen Verfahren

schnitt 5.4.2.3. Die ∆c-Spalte zeigt die Kostendi�erenz der c- Spalten der zwei Reparaturver-
fahren; positive Werte bedeuten, dass das stochastische Verfahren weniger Reparaturkosten
verursacht hat als das deterministische. Wie aus der Tabelle ersichtlich wird, gewinnt das
stochastische Verfahren 10 von 14 Tagen gegenüber dem deterministischen. Über alle 14
Tage zusammen kann die stochastische Heuristik 3.32% Reparaturkosten einsparen.

Hier können wir auch sehen, dass der mimav-Algorithmus weniger von den sehr teuren Flug-
Streichungen produziert, dafür aber zusätzliche ECHs in Kauf nimmt. Eine interessante Be-
obachtung ist, dass man an den Ergebnissen erkennen kann, dass es sich beim 8. und 15.
Januar um Sonntage handeln muss. Störungen haben an diesen Tagen signi�kant geringere
Auswirkungen, da der Schedule an Sonntagen nicht so �dicht gepackt� ist.

Zwei bis drei Prozent Einsparungen sehen zwar schon schön aus, die gegebenen Daten klären
aber noch nicht die Signi�kanz der Ergebnisse. Obwohl an jedem Simulationstag fast 100
Entscheidungen getro�en werden, konnten wir die einzelnen Entscheidungen nicht direkt zur
Klärung von Signi�kanzfragen zu Hilfe nehmen, da die einzelnen Entscheidungen nicht unab-
hängig voneinander sind. Innerhalb eines Tages sind die Entscheidungen Folgeentscheidungen
von Folgeentscheidungen, usw.

Die Resultate von einzelnen Tagen sind ebenfalls mit Vorsicht zu genieÿen. Zum einen schei-
nen sie nicht einer Normalverteilung zu genügen, zum anderen sind sie auch von der Struktur
des Plans an einem bestimmten Tag abhängig. Wir nehmen daher Durchschnittswerte auf
Wochenbasis als Messpunkte.

Wir haben deshalb zusätzliche Testläufe mit den bereits oben verwendeten Störungswahr-
scheinlichkeiten 0.003/0.04/0.16/0.24 durchgeführt. Dabei kam jeweils ein anderer Random-
Seed zum Einsatz. Als Messpunkte wurden die durchschnittlichen Tagesreparaturkosten über
eine komplette Woche genommen, wobei wir davon ausgehen, dass sich die beiden Wochen
des Plans �hinreichend wenig� in ihrer Struktur unterscheiden. Damit sind strukturelle Ein-
�üsse (auÿer denjenigen, die auf die Pseudo-Zufälligkeit des Zufallsgenerators zurückzuführen
sind) eliminiert, und wir erhalten insgesamt 10 Messpunkte, die in Tabelle 5.4 angegeben
sind.

Ein Eintrag Woche i / Lauf j beschreibt den durchschnittlichen absoluten Tagesgewinn bzw.
-verlust des stochastischen Verfahrens gegenüber dem deterministischen Verfahren in Woche
i bei Simulationslauf j. Positive Werte sind günstig für das stochastische Verfahren. Der
Mittelwert über diese Werte beträgt 18185 Einheiten, die Standardabweichung 26762. Gehen
wir nun davon aus, dass die gegebenen Durchschnittswerte annähernd normalverteilt sind,
ergibt sich mit Hilfe der t-Verteilung, dass mit 95% Sicherheit der stochastische Algorithmus
besser ist als der deterministische.
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5.6 Zusammenfassung

Wir haben in diesem Kapitel das stochastische Flottenzuweisungsproblem de�niert und mo-
tiviert, dass es sich dabei um ein wichtiges Real-World-Problem handelt, mit dem Flugge-
sellschaften täglich im Störungsmanagement konfrontiert sind.

Wir konnten zeigen, dass selbst einfachste Untervarianten des stochastischen Flottenzuwei-
sungsproblems PSPACE-vollständig sind.

Das stochastische Flottenzuweisungsproblem ist ein mehrstu�ges Entscheidungsproblem un-
ter Unsicherheit. Solche Probleme lassen sich als Spiel gegen die Natur modellieren und mit
unserem generischen mimav-Algorithmus lösen. Die spezielle Struktur der stochastischen
Flottenzuweisung, die wir Reparaturspiel nennen, erlaubt dabei, den mimav-Algorithmus er-
folgreich heuristisch einzusetzen.

Unsere experimentellen Ergebnisse zeigen, dass durch das Spielen des Reparaturspiels ro-
bustere (Teil-)Pläne für die Flottenumplanung im Störungsmanagement erzeugt werden als
mit etablierten deterministischen Verfahren. Unser vorausschauender Reparaturalgorithmus
schlägt ein �kurzsichtiges�, exaktes IP-Verfahren statistisch signi�kant in der vereinbarten
Simulationsumgebung.
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6
Integration von Ertragsmanagement
und Flottenzuweisung

Dieses Kapitel beginnen wir mit einer Motivation zur Integration unterschiedlicher Planungs-
schritte in der Flugplanung. Wir gehen genauer auf die Aufgaben der Marktmodellierung und
des Ertragsmanagements ein. Anschlieÿend stellen wir drei Integrationsstrategien vor, die die
Flottenzuweisung mit den beiden anderen Planungsphasen verbinden und auf diese Weise die
Qualität des Planungsprozesses erhöhen.

6.1 Motivation

Durch die Integration von Planungsphasen kann die Gesamtqualität der Planung einer Flug-
gesellschaft weiter verbessert werden. Der Hauptgrund dafür liegt in den teils starken Ab-
hängigkeiten, die zwischen den einzelnen Planungsphasen bestehen, und den vereinfachenden
Annahmen, die zum Beispiel in der Flottenzuweisung über die Gewinnermittlung der Markt-
modellierung angenommen werden.

Die meisten Modelle der Flottenzuweisung gehen von lokal berechenbaren Gewinnen aus,
das heiÿt, es wird angenommen, dass sich der Gesamtgewinn aus unabhängigen Leggewin-
nen zusammensetzt, wobei die Leggewinne ausschlieÿlich von der dem Leg zugewiesenen
Flotte abhängig sind. In diesem Fall wäre die Gewinnfunktion durch die pl,f -Werte exakt
beschreibbar. Auf der Kostenseite kann diese Annahme als ausreichend realistisch angese-
hen werden, allerdings ist die Lage auf der Erlösseite im Allgemeinen komplizierter, wie das
folgende Beispiel zeigt.

Auf einem Leg von FRA nach JFK würden gerne 300 Passagiere mit�iegen, die jeweils
e500 für ein Ticket bezahlen. Beim Einsatz eines Flugzeugs mit 300 Sitzplätzen auf diesem

167
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Leg ergeben sich also Erlöse von e150000. Beim Einsatz eines Flugzeuges mit nur 200
Passagieren können 100 Passagiere nicht mitgenommen werden und die Erlöse belaufen sich
nur auf e100000. Was ist an dieser Betrachtung unrealistisch?

• Häu�g benutzen Flugpassagiere nicht nur ein Leg, um ihrer Reise durchzuführen, son-
dern eine Folge von mehreren Legs, so genannte Reiserouten oder Itineraries.

Ist nun aber ein Leg einer Reiseroute nicht verfügbar, wird die gesamte Reiseroute
nicht gebucht und bezahlt. Somit kann das Nicht-Befördern der 100 Passagiere auch
zu Erlösausfällen auf anderen Legs führen. Dieser E�ekt wird spill genannt.

• Gleichzeitig wird durch das etwaige Freiwerden von Sitzplätzen auf anderen Legs zu-
sätzlichen Passagieren die Möglichkeit gegeben, diese Legs zu buchen, was zusätzliche
Erlöse bringen kann.

• Desweiteren werden sich die 100 Passagiere, die abgewiesen wurden, nach alternativen
Reiserouten umsehen. Es ist zu erwarten, dass zumindest ein Teil von ihnen auf andere
Legs der Fluggesellschaft ausweicht und dort für zusätzliche Erlöse sorgt. Dieser E�ekt
wird recapture genannt.

All diese E�ekte, Spill&Recapture- oder Netzwerk-E�ekte genannt, lassen sich nicht exakt
durch rein lokale, lineare Gewinnbewertungen modellieren, und auch der Einsatz von ver-
bindungsabhängigen Gewinnen reicht dafür nicht aus. Bei der Gewinnfunktion handelt es
sich in der Realität um eine hochgradig nicht-lineare Funktion, die nur kompliziert zu be-
rechnen ist. Es ist die Aufgabe der Marktmodellierung, zu einem Flugplan mit gegebener
Flottenzuweisung den zu erwartenden Gewinn möglichst exakt zu bestimmen.

Je weiter man sich dem Tag der eigentlichen Umsetzung der Flugplanung nähert, desto ge-
nauer lassen sich aus den bereits eingegangenen Ticketbuchungen die vom Marktmodell nur
recht grob geschätzten Passagierzahlen und erwarteten Erlöse vorhersagen. Die Planungs-
abteilung mit den genauesten Informationen in diesem Bereich ist das Ertragsmanagement.
Beim Übergang zur kurzfristigen Planung sollte man daher in der Flottenzuweisungen die
Daten des Ertragsmanagements zur Erlösermittlung verwenden.

6.2 Marktmodellierung

Die Aufgabe der Marktmodellierung ist es, in der lang- bis mittelfristigen Planung die zu
erwartende Passagiernachfrage auf den eigenen Legs einer Fluggesellschaft möglichst ge-
nau vorherzusagen. Damit kann die Pro�tabilität eines Flugplans abgeschätzt werden. Die
Marktbewertung ist damit die zentrale Kontrollinstanz für die im Laufe der Zeit entwickelten
Flugplanszenarien (siehe auch Abbildung 1.2 auf Seite 3). Die parallel verlaufende Planung
der Ressourcen greift immer wieder auf das Marktmodell zurück, um Veränderungen zu
bewerten.
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Abbildung 6.1: Die Vorgehensweise der Marktmodellierung

6.2.1 Überblick

Die Eingaben, Steuerungsparameter und Ausgaben der Marktmodellierung beschreibt die
folgenden Tabelle.

Marktmodellierung

Eingabe Märkte (Städtepaare (O&D-Paare) mit Transportbedarf)
Flugplan (Legs mit zugewiesener Flotte)
ggf. Informationen zu konkurrierenden Fluggesellschaften und Verkehrsmitteln

Parameter Regeln für den Aufbau der Reiserouten
Parameter für die Verteilung der Marktnachfrage
De�nition der Kosten
De�nition der Erlöse

Ausgabe Passagier�uss
Gewinn = Erträge - Kosten des Flugplans

Ausgangspunkt ist der geschätzte (globale) Transportbedarf in Form von Märkten. Jeder
Markt repräsentiert dabei die Menge an Personen, die von einer Stadt/Region (origin) zu
einer anderen Stadt/Region (destination) gelangen wollen. Solch ein Markt wird daher auch
O&D-Paar genannt. Auf der anderen Seite steht die verfügbare Transportkapazität in Form
eines zugewiesenen Flugplans. Neben dem eigenen Flugnetzwerk bieten aber auch andere
Fluggesellschaften Transportkapazitäten an, und man berücksichtigt teilweise sogar alter-
native Verkehrsmittel mit PKW und Eisenbahn. Die konkurrierenden Transportkapazitäten
werden dabei meist vereinfacht berücksichtigt, um die Datengröÿe halbwegs erträglich zu
halten.

In Abbildung 6.1 wird gezeigt, wie aus diesen Daten prinzipiell der auf das eigene Flugnetz
entfallende Passagier�uss und die erwarteten Gewinne bestimmt werden. Zuerst werden für
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jeden Markt die relevanten Reiserouten (Itineraries) bestimmt. Es gibt typischerweise sehr
viele Möglichkeiten, um von A nach B zu gelangen, so dass hier eine Auswahl nach Attrakti-
vität getro�en wird: die Ticketkosten sollten klein sein, die Reisezeit sollte kurz sein, es sollte
nicht zu oft umgestiegen werden usw.

Der zentrale Punkt, auf den wir weiter unten noch näher eingehen, ist die anschlieÿende Auf-
teilung der Marktnachfrage auf die generierten Reiserouten. Dabei kommen bei den meisten
Fluggesellschaften Verhaltensmodelle zum Einsatz, die die Wahl eines einzelnen Passagiers
von seinen persönlichen Präferenzen abhängig machen. In diesem Schritt bleiben Kapazi-
tätsbeschränkungen der Legs zunächst unberücksichtigt und man erhält den unbeschränkten
Transportbedarf (unconstraint demand) für jede Reiseroute.

Der unbeschränkte Transportbedarf übersteigt eventuell die Anzahl verfügbarer Sitzplätze
auf einzelnen Legs. In diesem Fall müssen einige Passagiere einen alternative Reiseroute
wählen. Ebenfalls über Verhaltensmodelle wird vorhergesagt, wie sich abgewiesene Passagiere
verhalten und welche alternativen Reiserouten sie wählen werden (Spill&Recapture). Es ergibt
sich ein erfüllbarer Passagier�uss im Flugnetz (constraint demand).

Damit ist für jedes Leg bekannt, wie viele Passagiere es verwenden werden. Daraus werden
dann die zu erwartenden Erlöse berechnet und die variablen Kosten bestimmt. Die �xen
Kosten eines Legs ergeben sich aus der dem Leg zugewiesenen Flotte und man kann den
Gesamtgewinn des Flugplans bestimmen.

6.2.2 Verhaltensmodelle

Modelle des Passagierverhaltens (passenger choice models) basieren auf Präferenzen der
Passagiere und erlauben Voraussagen, für welche der angebotenen Reisealternativen sich
ein Passagier entscheiden wird. Im Marktmodell kommen dabei vor allem Discrete-Choice-
Modelle, noch genauer so genannte Logit-Modelle, zum Einsatz.

Die nachfolgende Darstellung der Discrete-Choice-Theorie lehnt sich stark an das Buch
von [Ben-Akiva and Bierlaire, 1985] an. Die Grundlagen werden auch im Buchkapitel in
[Ben-Akiva and Bierlaire, 1999] vorgestellt. In [Koppelman and Sethi, 2000] werden diverse
Logit-Modelle behandelt und deren Stärken und Schwächen miteinander verglichen.

Der Entscheidungsprozess eines Passagiers wird von vier Komponenten beschrieben: Ent-
scheider, Alternativen, Attributen und Entscheidungsregel. Das Szenario ist wie folgt: Der
Entscheider hat aus einer Menge der Alternativen eine auszuwählen. Die Entscheidung wird
nach der Entscheidungsregel vorgenommen, die die Attribute der Alternativen auswertet.
Jeder Entscheider besitzt eine Nutzenfunktion, die von den Attributen abhängt. Da dem
Entscheider nicht unbedingt vollständige Informationen vorliegen, beein�usst eine Zufalls-
komponente die ansonsten deterministische Nutzenfunktion.

Mit den folgenden Parametern
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Cn Auswahlmenge des Entscheiders n
i Alternative i ∈ Cn aus der Auswahlmenge von n
xi,n,k Attribut k für die Kombination (i, n)
βk Gewichtsparameter für Attribut k der Alternative i
Vi,n deterministischer Anteil der Nutzenfunktion des Entscheiders n bei der Alternative i
εi,n Zufallsterm
Ui,n Nutzenfunktion des Entscheiders n bei der Alternative i

lässt sich die Entscheidungs�ndung mittels der folgenden Funktionen beschreiben:

Vi,n =
∑

k

βkxi,n,k

Ui,n = Vi,n + εi,n

Pr(i | Cn) = Pr(Ui,n = max
j∈Cn

Uj,n)

Der deterministische Nutzen Vi,n ist eine Summe der gewichteten Attribute einer Alternative.
In der Nutzenfunktion Ui,n des Entscheiders n kommt noch zusätzlich eine Komponente εi,n

vor, die die Zufälligkeit der Entscheidung abbilden soll. Der Passagier entscheidet sich damit
für die wertvollste Alternative Ui,n = maxj∈Cn Uj,n.

Wählt man εi,n gemäÿ unabhängiger Gumbel-Verteilungen

F (ε) = e−e−µ(ε−η)

, µ > 0 (scale), η (location)

ist die Wahrscheinlichkeit, dass ein Entscheider die Alternative i aus der Menge Cn auswählt,
relativ einfach zu berechnen:

Pr(i | Cn) =
eµVi,n∑

j∈Cn
eµVj,n

Discrete-Choice-Modelle mit Gumbel-verteilten Zufallsvariablen bilden die Klasse der so ge-
nannten Logit-Modelle. Die Vorteile sind ihre einfache Implementierbarkeit und die Verfüg-
barkeit von Schätzalgorithmen, die es erlauben, alles Passagiere eines Marktes gleichzeitig
auf die verfügbaren Reiserouten zu verteilen. Dem steht der Nachteil gegenüber, dass Logit-
Modelle keine gegenseitigen Abhängigkeiten zwischen den Alternativen berücksichtigen kön-
nen. Es gibt andere Discrete-Choice-Modelle, zum Beispiel Dogit- und Probit-Modelle, die
mit Abhängigkeiten umgehen können und andere Zufallsverteilungen einsetzen. Diese haben
sich in der Praxis allerdings wegen ihres deutlich höheren Rechenaufwands nicht durchsetzen
können ([Müller-Bungart, 2003, Scheidler, 2003]).

Unser Industriepartner Lufthansa Systems, und damit auch wir, verwenden eine Logit-basierte
Marktmodellierung wie in Abbildung 6.1. Die genaue Funktionsweise und die verwendeten
Steuerungsparameter können in dieser Arbeit nicht beschrieben werden, da vor allem die Kali-
brierung der Steuerparameter über die Brauchbarkeit der Marktmodellierung entscheidet und
damit ein gut gehütetes Betriebsgeheimnis darstellt. In einem internen Dokument von Luft-
hansa Systems [Lefeld and Pölt, 1995] werden die fünf Bestandteile des Marktmodells de-
tailliert beschrieben: Connection-Builder, das Logit-Modell, das Spill&Recapture Modul, das
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Kosten-Modul und die Pro�tabilitätsbewertung. In [Sieber, 1995] wird die Spill&Recapture
Komponente genauer vorgestellt. In der technischen Dokumentation [LufthansaSystems, 1997]
werden Eingabedaten, Parameter und das Verhalten des Marktmodells beschrieben. Im Pro-
jektbericht [PARALOR, 1997] wird das Marktmodell und dessen Parallelisierung im Rahmen
des BMBF-Projekts beschrieben.

Neben dem hier beschriebenen Logit-basierten Verfahren zur Marktmodellierung existieren
noch eine Reihe anderer Verfahren mit unterschiedlichen Stärken und Schwächen. In seiner
Dissertation gibt [Kniker, 1998] einen Überblick.

6.3 Ertragsmanagement

Der in diesem Abschnitt gegebene Überblick über die Verfahren im Ertragsmanagement
(Revenue Management) folgt der Beschreibung im Buch von [Talluri and van Ryzin, 2005].

6.3.1 Übersicht

Die Aufgaben des Ertragsmanagements beinhalten die Aufteilung der Plätze auf einem
Flug in unterschiedliche Kategorien, die Festlegung der Ticketpreise und die Steuerung der
Ticketverkäufe. Diese Aufgaben werden während der ganzen Buchungsperiode wahrgenom-
men, das heiÿt zwischen der Verö�entlichung des Flugplans für eine Periode (Sommer-
/Winter�ugplan) und dem jeweiligen Flug. Das oberste Ziel des Ertragsmanagements ist
dabei:

Verkaufe das richtige Flugticket zum richtigen Zeitpunkt an die richtige Person
zum richtigen Preis.

Daraus resultieren die wesentlichen Merkmale eines Ertragsmanagement-Systems:

Product differentiation Die Tickets werden nach Verkaufs- und Umbuchungsbedingun-
gen (Business, Economy, Discount) mit bis zu zehn unterschiedlichen Preisklassen
di�erenziert.

Dynamic pricing Während des Buchungszeitraums werden die Preise dynamisch an die
Nachfrage angepasst.

Inventory control Die Verfügbarkeit der einzelnen Preisklassen wird ständig überwacht
und unter der Berücksichtigung von Buchungsprognosen angepasst.

Im Bild 6.2 ist der Aufbau eines typischen Revenue Management Systems dargestellt. Zu-
nächst werden die relevanten historische Daten werden gesammelt und für die Prognosen
aufbereitet. Die Passagiernachfrage wird modelliert und daraus werden Buchungsprognosen
erstellt, die laufend angepasst und verfeinert werden müssen.
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Abbildung 6.2: Ein Ertragsmanagementsystem (Quelle: [Talluri and van Ryzin, 2005])

Die Optimierung muss eine optimale Steuerung des Ticketverkaufs organisieren. Die ak-
tuellen Preise werden festgelegt, und die Regeln für die Annahme oder das Abweisen von
Buchungsanfragen werden aufgestellt.

Das Reservierungssystem empfängt über sämtliche Verkaufskanäle (Reisebüros, Call-Center,
Internet) Anfragen und bedient sie nach der aktuell gültigen Steuerungsstrategie.

Die wichtigsten Bestandteile eines Ertragsmanagementsystems sind die Prognosemodelle für
Buchungen und die Optimierungsverfahren zur Kapazitätssteuerung. Sie machen das eigent-
liche Revenue Management Modell aus.

Die Prognosemodelle müssen der Tatsache Rechnung tragen, dass unterschiedliche Kunden-
gruppen ein unterschiedliches Buchungsverhalten an den Tag legen. In Abbildung 6.3 sind
die zeitlichen Verläufe beispielhaft dargestellt. Business-Kunden buchen typischerweise erst
ein Paar Tage vor Ab�ug und möchten vor allem �exible Umbuchungsmöglichkeiten erhalten.
Economy- und Discount-Kunden buchen lange vor Ab�ug und nehmen diverse Restriktionen
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Abbildung 6.3: Buchungsverhalten unterschiedlicher Kundengruppen

(beispielsweise Wochenend-Regeln) in Kauf, vorausgesetzt der Ticketpreis bleibt niedrig.

6.3.2 Kapazitätssteuerung

Die grundsätzliche Frage des Revenue Managements lautet deswegen:

Soll eine Economy- oder Discount-Buchungsanfrage jetzt akzeptiert werden oder
lohnt es sich, den betre�enden Platz für eine spätere Business-Anfrage zu reser-
vieren?

Verkauft man jetzt, besteht die Gefahr, dass im Flugzeug früh keinen freien Plätze mehr
verfügbar sind und spätere gewinnbringende Business-Anfragen abgewiesen werden müssen.
Verkauft man das Ticket jetzt nicht, kann es passieren, dass das Flugzeug halb-leer auf Reise
gehen muss. In beiden Fällen verliert man Erlöse.

Im einfachsten Fall von nur zwei Klassen mit Preisen p1 und p2 (p1 > p2) und als Wahr-
scheinlichkeitsverteilungen gegebenen Bedarfen D1 und D2 kann der Platz x an die Anfrage
zum Preis p2 vergeben werden, falls gilt:

p2 ≥ p1 · Pr(D1 ≥ x)

Der Preis p2 übersteigt also den erzielbaren erwarteten Preis für diesen Sitz in der Klasse 1.
Da die Funktion Pr(D1 ≥ x) fallend in x ist, existiert ein optimaler Wert x∗1 mit:

p2 = p1 · Pr(D1 ≥ x∗1)
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Bei einer kontinuierlichen Wahrscheinlichkeitsfunktion F (x) für D1 kann dieser optimale
Wert mit Littlewood's Regel bestimmt werden ([Littlewood, 1972]):

x∗1 = F−1(1− p2/p1)

Entsprechend dieser Regel kann eine Buchungsgrenze von x∗1 Plätzen de�niert werden, die
die Klasse-1 vor Klasse-2 Buchungen schützt: Es werden x∗1 Plätze exklusiv für Klasse-1-
Passagiere reserviert. Bei sich ändernden Preisen oder Bedarfsverteilungen muss diese Grenze
natürlich entsprechend angepasst werden.

Eine Verallgemeinerung dieser Regel auf n Klassen wurde von [Belobaba, 1989] vorgeschla-
gen. Die heuristische Strategie EMSR-b (expected marginal seat revenue - version b) �ndet
eine sehr breite Verwendung in Ertragsmanagementsystemen vieler Fluggesellschaften.

Dabei geht man bei n Klassen mit Preisen p1 > p2 > . . . > pn und als Zufallsvariablen
gegebenen Klassenbedarfen D1, . . . , Dn davon aus, dass die Ticketanfragen in umgekehrter
Klassenreihenfolge n, . . . , 2, 1 das Ertragsmanagementsystem erreichen. Nach den billigen
Tickets wird also zuerst verlangt.

In der Runde mit Ticketanfragen von Klasse j +1 suchen wir nach einer Buchungsgrenze xj

für die Klassen 1, . . . , j. Der Gesamtbedarf dieser Klassen ist Sj =
∑j

k=1 Dk, ebenfalls eine
Zufallsvariable. Der gewichtete Durchschnittspreis der Klassen 1, . . . , j ist

p̄j =

∑j
k=1 pk · E[Dk]∑j

k=1 E[Dk]

Die Buchungsgrenze xj wird daher auf

Pr(Sj > xj) =
pj+1

p̄j

festgelegt. In jeder Runde kann so bestimmt werden, wie viele Buchungsanfragen in der
jeweiligen Preisklasse akzeptiert werden können.

6.3.3 Bid prices

Auch das Ertragsmanagement steht vor dem Problem, dass die Sitzplätze eines Legs häu�g
nicht unabhängig von anderen Legs vergeben werden können. Die Problematik ist ähnlich
wie bei der linearen Gewinnfunktion der Flottenzuweisung in Abschnitt 6.1.

Bei der Anfrage eines Kunden nach einer Reiseroute, für die er p bezahlen will, steht das
Ertragsmanagementsystem vor dem Problem, den Ticketpreis auf die verschiedenen Legs der
Reiseroute aufteilen zu müssen. Ist das gescha�t, kann es aber passieren, dass das System
dem Kunden nur Plätze für einige Legs der Reiseroute verkaufen möchte. Der Kunde hat
aber ein Paketangebot gemacht und will entweder die komplette Reiseroute �iegen können
oder auf alle Flüge verzichten.
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In diesem Fall muss die Kapazitätskontrolle auf der Netzwerkebene ausgeführt werden und
wir kommen in den Bereich des O&D-Revenue Managements (origin-destination revenue
management). Von den existierenden Arten der Netzwerkkontrolle möchten wir in diesem
Abschnitt auf die bid-price Steuerung eingehen.

Ein bid-price de�niert eine Preisschwelle für jeden Sitz auf Legs im Netzwerk. Bei einer
Buchungsanfrage für eine Reiseverbindung, die eventuell aus mehreren Legs besteht, wird
deren Preis mit der Summe der bid-prices der einzelnen Legs verglichen und die Anfrage
dann akzeptiert, wenn der gebotene Preis höher ist.

Bid-price-Kontrollstrategien sind nicht immer optimal, liefern aber eine gute Approximation
der optimalen Kontrolle [Talluri and van Ryzin, 1998].

Bid-prices können mit unterschiedlichen Methoden berechnet werden:

• Globale Approximationsmethoden:

� deterministisches lineares Modell

� probabilistisches oder randomisiertes lineares Modell

• Dekompositionsmethoden:

� OD factors Methode

� prorated EMSR

� DAVN: displacement-adjusted virtual nesting

� Dynamische Programmierung

� iterative DAVN

� iterative prorated EMSR

Wir gehen hier nicht genauer auf die einzelnen Verfahren ein. Die EMSR-Varianten basieren
auf den Beschreibungen des vorherigen Abschnitts, da neben den Buchungsgrenzen implizit
auch die Wertigkeit von Sitzen ermittelt werden kann. In Abschnitt 6.4.2 verwenden wir das
deterministische lineare Modell, um eine verbesserte Zielfunktion für das Flottenzuweisungs-
problem zu erhalten.

Das Ergebnis dieser Methoden ist ein bid-price für jedes Legs, genauer jeden Sitz eines Legs,
im Netzwerk. Die bid-prices geben damit sehr genau den Wert von Sitzplatzkapazitäten auf
den einzelnen Legs wieder. Dies ist eine Information, die wir in Abschnitt 6.4.3 benutzen,
um eine genauere Erlösschätzung, als sie das Marktmodell liefern kann, dem heuristischen
Flottenzuweisungsoptimierer verfügbar zu machen.
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6.4 Integrationsstrategien

Allen nun vorgestellten Integrationsstrategien ist gemein, dass sie dem Flottenzuweisungspro-
blem eine verbesserte Zielfunktion liefern sollen. Grundsätzlich werden dabei Zwischenlösun-
gen während der Optimierung eines Flottenzuweisungsproblems an die integrierten Algorith-
men übergeben, die darauf aufbauend eine neue, an die aktuelle Zwischenlösung angepasste
Zielfunktion zurückliefern.

Ein Wechsel der Zielfunktion während eines Optimierungslaufs ist für IP-Löser praktisch kaum
zu bewerkstelligen. Ferner stehen während der Branch&Bound-Suche nicht immer zulässi-
ge Zwischenlösungen zur Verfügung, so dass die hier beschriebenen Integrationsstrategien
ausschlieÿlich mit den heuristischen Lokale Suche Verfahren aus Abschnitt 4.3 realisierbar
sind.

6.4.1 Marktmodellierung und Flottenzuweisung

Das Marktmodell wird bereits dazu verwendet, die (lineare) Zielfunktion eines Flottenzu-
weisungsproblems aufzustellen. Das Vorgehen ist in Abbildung 6.1 auf Seite 169 dargestellt.
Eigentlich berechnet das Marktmodell für einen gegebenen Flugplan inklusive Flottenzuwei-
sung nur den erwarteten Gewinn (pro Leg). Wir benötigen aber zusätzlich für jedes Legs
den Gewinn, der sich aus den alternativ möglichen Flottenzuweisungen an dieses Leg ergibt.
Hierzu wird die Flottenzuweisung jeweils eines Legs geändert und aus den sich ergebenden
Kosten- und Erlösänderungen die Gewinndi�erenz zur Originalzuweisung bestimmt. Dies lie-
fert den Gewinn, wenn das betro�ene Leg von einer alternativen Flotte bedient wird, und
wir erhalten so alle pl,f -Werte, die unsere Zielfunktion de�nieren.

Wie wir in Abschnitt 6.1 gesehen haben, verhält sich die so de�nierte Zielfunktion aber
nur dann wie das Marktmodell, wenn sich gegenüber der zur Berechnung verwendeten Flot-
tenzuweisung die Flotte höchstens eines Legs ändert. Bei mehr als einer Änderung können
die Zielfunktion und das Marktmodell eine Zuweisung unterschiedlich bewerten, da nur das
Marktmodell alle Netzwerke�ekte berücksichtigen kann.

Da die Lokale Suche Verfahren nicht auf eine lineare Zielfunktion angewiesen sind, ist eine
erste Idee, die Lösungsbewertung in der Heuristik einfach komplett dem Marktmodell zu
überlassen und so immer mit einer Marktmodell-konformen Lösungsbewertung zu arbeiten.
Allerdings verhindern die vor allem im Vergleich zur Nachbarschaftgenerierung sehr langen
Laufzeiten des Marktmodells einen solchen Ansatz. Es können pro Sekunde hunderte von
Nachbarn generiert und mit einer linearen Zielfunktion bewertet werden, die Zeiten für eine
Lösungsbewertung durch das Marktmodell liegen im Minutenbereich.

Daher verwendet diese Integrationsstrategie eine periodische Kommunikation zwischen der
Lokalen Suche Heuristik und dem Marktmodell. Abbildung 6.4 zeigt die Vorgehensweise.

Nachdem zunächst in der ersten Phase die Marktmodellierung eine lineare Zielfunktion für
das Flottenzuweisungsproblem aufgestellt hat, beginnt die Optimierung der Flottenzuweisung
durch den Simulated Annealing Algorithmus. Die Kommunikation �ndet jeweils nach einer
abgeschlossenen Temperaturstufe des Simulated Annealing Algorithmus statt. Die aktuelle
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Abbildung 6.4: Kopplung der Marktmodellierung und der Flottenzuweisung

Zuweisung wird an das Marktmodell gesendet. Die empfangene Lösung wird im Marktmo-
dell neu bewertet, indem die neuen Kapazitäten auf den Flügen bei der Berechnung des
Passagier�usses berücksichtigt werden. Da die Lösungen aus der Flottenzuweisung keine
Startzeiten verändern, sind eine erneute Berechnung der Reiserouten und die Bestimmung
des unconstraint demand nicht notwendig. Nur durch die Spill&Recapture-E�ekte ergibt
sich eine veränderte Zielfunktion, die wie zu Beginn aufgestellt wird und anschlieÿend dem
Simulated Annealing Algorithmus übergeben wird.

Die Häu�gkeit der Kommunikation und die Anzahl der Kommunikationsrunden ist veränder-
bar:

• Beginn der Kommunikation: Nach Erreichen einer vorgegebenen Akzeptanzrate im
Simulated Annealing Algorithmus. Dadurch kann z.B. vorgegeben werden, dass in der
Anfangsphase der Optimierung, in der die Lösung noch sehr stark verändert wird, keine
Kommunikation statt�nden soll. Der Standardwert für die Akzeptanzrate liegt bei 20%.

• Häu�gkeit der Kommunikation: Anzahl der Temperaturstufen zwischen zwei Kommu-
nikationsphasen. Das Kommunikationsmuster kann auch dynamisch verändert werden.
In der Anfangsphase kann zum Beispiel nach jeder 10. Temperaturstufe kommuniziert
werden, später wird immer häu�ger kommuniziert, bis am Ende der Optimierung nach
jeder Stufe die Lösung verschickt wird.

• Schwelle für die Kommunikation: Die Kommunikation soll erst statt�nden, wenn ei-
ne vorgegebene Anzahl von Flügen eine andere Flotte zugewiesen bekommen hat.
Dadurch wird erreicht, dass eine zeitintensive Kommunikation nicht für ganz wenige
Veränderungen in der Flottenzuweisung angestoÿen wird.

• Anzahl der Kommunikationsrunden: Die Anzahl kann vom Systembenutzer vorgege-
ben werden. Damit kann erreicht werden, dass für bestimmte Analysen eine schnelle
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Antwort geliefert wird und nicht unbedingt die vollständige Konvergenz des Verfahrens
abgewartet werden muss.

Als Hauptvorteil dieser Kopplung kann die bessere Berücksichtigung der Netzwerke�ekte ge-
nannt werden. Diese E�ekte werden vom Marktmodell berücksichtigt und explizit modelliert.
Durch die angepasste Zielfunktion kann die Lokale Suche die Auswirkung der Flottenände-
rung im Netzwerk erkennen und durch weitere Optimierung darauf reagieren. Die Ergebnisse
der Experimente mit dem neuen System werden im Abschnitt 6.5 präsentiert.

Der Nachteil des Verfahrens liegt hauptsächlich in der zeitintensiven Neubewertung durch
das Marktmodell. Typischerweise werden ca. 10-20% der Legs mit einer anderen Flotte ge-
�ogen und dementsprechend müssen Passagiere auf sämtlichen Reiserouten, die diese Flüge
benutzen, neu bewertet werden. Die im nächsten Abschnitt vorgestellte Vorgehensweise ver-
sucht, einen Kompromiss zwischen der Genauigkeit der Voraussagen über den Passagier�uss
und der Berechnungsgeschwindigkeit zu �nden.

6.4.2 Berücksichtigung des Passagierflusses

Ziel dieser Integrationsstrategie ist es, die aufwendige Neuberechnung der Zielfunktion durch
das Marktmodell zu beschleunigen, indem diese durch ein lineares Passagier�ussmodell ap-
proximiert wird. Der Passagier�uss im Netzwerk wird dabei als ein lineares Mehrgüter-
Flussproblem aufgefasst. Wir beschreiben zunächst das Modell des Passagier�usses auÿerhalb
des Marktmodells und gehen danach auf die besonderen Integrationsaspekte ein.

6.4.2.1 Modell des Passagierflusses

Die Verteilung der Passagiere auf die Flüge des Flugnetzwerks kann mit einem Netzwerk�uss
modelliert werden. Das Passenger Flow Modell (PFM) bildet den Passagier�uss im Netzwerk
als ein Mehrgüter-Flussproblem ab. Die Güter entsprechen den Passagieren in den unter-
suchten Märkten (Reiseverbindungen zwischen zwei Städten). Die Kanten des Netzwerks
werden von den Legs gebildet. Die Kapazitäten sind durch die Sitzplatzanzahl der eingesetz-
ten Flugzeuge auf den Legs de�niert. Gesucht ist ein gültiger Fluss im Netzwerk mit dem
maximalen Gewinn als Zielfunktion. An dieser Stelle verweisen wir auf einen wichtigen Un-
terschied zu Modellen des Passagierverhaltens hin: die Passagiere entscheiden sich nicht für
die für sie günstigste Verbindung. Es wird vielmehr angenommen, dass die Fluggesellschaft
durch Steuerung der Buchungen die Passagiere auf die Verbindungen bringen kann, die den
Gewinn der Gesellschaft maximieren.

Bei der De�nition der Transportgüter können unterschiedliche Detaillierungsgrade gewählt
werden. Für jeden Markt (Städtepaare) benötigt man mindestens ein Transportgut. Des
Weiteren können zusätzlich die Reiseroute (itinerary), die Klasse (Economy, Business, First),
die Buchungsklasse (fare) und/oder der Ort des Ticketverkaufs (point of sale) berücksichtigt
werden.

Wir de�nieren an dieser Stelle das Passenger Flow Modell für die gröbste Detaillierungsstufe:
auf ODI-Basis (origin, destination, itinerary). Dazu benötigen wir die folgenden Eingabedaten:
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L Legs des Flugplans
S Menge der Flughäfen
OD ⊆ S2 Menge aller Passagier-Märkte
dod Geschätzte Anzahl der Passagiere im Markt od
P od Mögliche Reiserouten für Passagiere aus dem Markt od
δl,p Indikator, der angibt, ob ein Leg l zur Route p gehört (δl,p = 1) oder nicht (δl,p = 0)
f od Erlöse pro Passagier aus dem Markt od
cl Kapazität (Sitzplatzanzahl) des Legs l

Für jede Reiseroute p eines Marktes od führen wir eine Variable xod
p ein, die die Anzahl der Pas-

sagiere von Markt od auf Reiseroute p beschreibt. Dann lässt sich das ODI-Passagier�ussmodell
wie folgt aufstellen:

Modell 6.1 (Passenger Flow Modell (PFM)).

Maximiere
∑

od∈OD

∑
p∈P od

f odxod
p (6.1)

unter den Nebenbedingungen∑
p∈P od

xod
p ≤ dod ∀od ∈ OD (6.2)

∑
od∈OD

∑
p∈P od

δl,px
od
p ≤ cl ∀l ∈ L (6.3)

xod
p ≥ 0 ∀od ∈ OD, p ∈ P od (6.4)

Die Zielfunktion (6.1) maximiert die Erlöse der Fluggesellschaft. Die Restriktionen (6.2)
stellen sicher, dass auf allen möglichen Reiserouten, die den Markt od bedienen, nicht mehr
Passagiere transportiert werden als geschätzt wurden. Die Ungleichungen (6.3) erzwingen,
dass die Kapazität auf den Legs nicht überschritten wird. Die Entscheidungsvariablen xod

p

werden nicht als ganzzahlig vorausgesetzt, da es sich bei den Passagierzahlen um Schätzungen
handelt. Wegen einer inhärenten Ungenauigkeit der Prognosen der Passagierzahlen wird an
dieser Stelle auf die Ganzzahligkeit verzichtet und mit fraktionalen Flüssen gearbeitet.

Lineare Passagier�ussmodelle werden in der Literatur für unterschiedliche Zwecke benutzt
[Glover et al., 1982], [Phillips et al., 1991], [Farkas, 1996]. Neben einer Modellierung des
Passagier�usses im Netzwerk werden ähnliche Modelle im Bereich des Ertragsmanagements
dazu verwendet, Buchungsanfragen zu verarbeiten und über die Verfügbarkeit von Plät-
zen auf Flügen zu entscheiden [Boer et al., 2002], [Boyd, 2002], [Williamson, 1988] und
[Williamson, 1992].

6.4.2.2 Beschreibung der Integrationsstrategie

Bei dieser Variante modellieren wir den Passagier�uss mit Hilfe des Passenger Flow Modells
und koppeln diese neue Komponente an die Lokale Suche Heuristik. Abbildung 6.5 zeigt die
Vorgehensweise.
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Abbildung 6.5: Passenger Flow Modell als Zwischenkomponente

Die Schritte bis zur ersten Lösungsübermittlung verlaufen wie bei der Integration des Markt-
modells. Anstatt nun die aktuelle Flottenzuweisung an das Marktmodell zu schicken, ver-
wenden wir das PFM, um eine aktualisierte Zielfunktion zu bestimmen. Das Passenger Flow
Modell berechnet neben einem Passagier�uss zusätzliche Informationen und schickt diese als
neue Zielfunktion an die Flottenzuweisung.

Die Kernidee besteht darin, für jede Netzwerkkante die dualen Variablen zu berechnen und
diese der Flottenzuweisung zur Verfügung zu stellen. Die Nebenbedingungen (6.3) begrenzen
den Fluss auf den Legs. Der Wert der dualen Variable gibt für ein Leg an, wie groÿ die
Änderung der Zielfunktion bei einer Änderung der Kapazität um genau eine Einheit ist. Im
Bereich des Ertragsmanagements werden die dualen Werte daher häu�g auch als bid-prices
verwendet.

Kanten, deren Kapazität vom Passagier�uss nicht komplett ausgeschöpft wurde, haben nach
der Complementary-Slackness-Bedingung einen dualen Wert von Null. Der Simulated An-
nealing Algorithmus für die Flottenzuweisung bekommt die dualen Werte aller Kanten im
Netzwerk und erhält dadurch die Information, welche Kanten einen Engpass darstellen. Die
Zielfunktion wird entsprechend angepasst. Konkret wird der duale Wert bei den Koe�zienten
der Flugzeugtypen aufaddiert, die eine höhere Kapazität besitzen als die aktuelle Zuweisung.
Bei Flugzeugtypen mit geringerer Kapazität wird der Zielfunktionskoe�zient um den dualen
Wert reduziert.

Die Änderung der Zielfunktion im Simulated Annealing Algorithmus soll bewirken, dass die
Typzuweisung besser dem geschätzten Passagier�uss entspricht. Wie der Algorithmus auf die
Anpassung der Zielfunktion reagiert, wird in Abschnitt 6.5 untersucht.

Der Vorteil der zweiten Integrationsstrategie im Vergleich zu der ersten ist die schnellere
Anpassung der Zielfunktion durch das Passenger Flow Modell. Auÿerdem wird hier aktiv ver-
sucht, Engpässe im Netzwerk zu beheben. Dadurch werden insbesondere die Netzwerke�ekte
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besser berücksichtigt. Die Kommunikationsstruktur lässt sich ebenfalls in Bezug auf Beginn,
Häu�gkeit und Anzahl der Kommunikationsrunden steuern.

6.4.3 Ertragsmanagement und Flottenzuweisung

Die letzte Integrationsstrategie verbindet die Systeme des Ertragsmanagements mit der Flot-
tenzuweisung. Die Motivation kommt aus der Tatsache, dass circa drei Monate vor dem
Start eines Legs bereits einige Buchungen im Ertragsmanagementsystem vorliegen und da-
durch eine genauere Abschätzung der Gewinne als mit einem Marktmodell möglich wird. Die
kurzfristige Änderungsplanung der Flottenzuweisung kann entscheidend von dieser besseren
Gewinnschätzung pro�tieren.

Das im Abschnitt 6.2 vorgestellte Marktmodell berechnet ca. ein halbes Jahr vor dem Start
der nächsten Flugplanperiode Prognosen zu den Passagierzahlen im Netzwerk. Diese Pro-
gnosen werden zur Schätzung der erzielbaren Erlöse herangezogen. Neben der Erlösrechnung
berücksichtigt das Marktmodell auch die Kosten für die Ausführung des Flugplans, die haupt-
sächlich von den auf den Legs eingesetzten Flugzeugtypen abhängig sind. Die Zielsetzung der
Flottenzuweisung besteht in der Maximierung der Gewinnfunktion unter Einhaltung sämtli-
cher operationeller Restriktionen.

Zur Schätzung der Erlöse geht das Verfahren von Reiserouten aus, die keine Unterscheidung
nach Klassen (First, Business, Economy) beinhalten. Vielmehr wird ein Durchschnittsertrag
für alle Klassen berechnet. Die Nachfrage-Prognosen werden lediglich als Mittelwerte ver-
wendet, der Prognosefehler bleibt in diesem Fall unberücksichtigt.

Im O&D-Revenue-Management werden Steuerparameter zur Bestimmung der Verfügbarkeit
von Flügen und zur Entscheidung von Buchungsanfragen berechnet. Im Gegensatz zur lokalen
Steuerung berücksichtigt die O&D-Steuerung Verdrängungse�ekte innerhalb des Flugnetzes
(Netzwerke�ekte). Die Nachfrage-Prognose berücksichtigt nicht nur die Reiserouten, sondern
auch die Buchungsklassen, die eine genauere Betrachtung als die Klassen (First, Business,
Economy) erlaubt. Weiterhin werden auch Prognose-Fehler erfasst und in die Schätzung
eingearbeitet.

Wie auch in den beiden bereits beschriebenen Integrationsstrategien erfolgt zunächst die
initiale Bewertung des Ausgangs�ugplans durch das Marktmodell. Die Kommunikation des
Systems für die Flottenzuweisung erfolgt in diesem Fall mit dem O&D Revenue Management
System (siehe Abbildung 6.6).

Zunächst lädt das Revenue Management System Prognosen (einschlieÿlich Prognose-Fehler)
aus der Forecast Datenbank. Der O&D Optimizer berechnet daraus mit Hilfe der iterative
prorated EMSR-Methode die Steuerparameter (bid-prices) und übermittelt sie an die Gesamt-
Erlös-Schätzung. Im letzten Schritt wird unter Berücksichtigung der aktuellen Flottenzuwei-
sung eine Erlösschätzung ermittelt. Diese Information wird dem Flottenzuweisungssystem
zur Verfügung gestellt. Die Kostenberechnung erfolgt weiterhin auf der Grundlage der vom
Marktmodell ermittelten Daten.

Dieses Integrationsstrategie ist im Rahmen einer Vorstudie zusammen mit Lufthans Systems
erarbeitet worden. Sie ist allerdings noch nicht in die Praxis umgesetzt.
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Abbildung 6.6: Einbeziehung von genaueren Erlösprognosen in der kurzfristigen Flottenzu-
weisung

6.5 Experimentelle Ergebnisse

Für die Experimente in diesem Abschnitt standen uns nur zwei brauchbare Datensätze zur
Verfügung. Die Eingaben und Parameter eines Marktmodells sind sehr viel detaillierter als
die Instanzen eines einfachen Flottenzuweisungsproblems und werden von Fluggesellschaften
nicht nach drauÿen gegeben. Die Datensätze werden stellvertretend für eine Reihe von Szena-
rien benutzt, die bei mehreren Kunden von Lufthansa Systems ausgewertet wurden. Unsere
Resultate spiegeln nach deren Aussagen das typische Verhalten der Integrationsstrategien
wieder.

6.5.1 Datensätze

Zunächst beschreiben wir die zugrunde liegenden Netzwerke und die Passagierdaten, die für
die Experimente benutzt wurden.

Anzahl Datensatz A Datensatz B

Legs 6287 9228
Flughäfen 97 160
Märkte 20358 6680
Itineraries (Reiseverbindungen) 34963 160635
Direkte itineraries 6740 14240
Single-connections (1 Zwischenstopp) 26573 140160
Double-connections (2 Zwischenstopps) 1650 5440
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Der Datensatz A basiert auf einem kleineren Netzwerk als der Datensatz B, es wurden
aber mehr Märkte berücksichtigt. Die Anzahl der Reiseverbindungen hängt stark von den
Einstellungen des Marktmodells ab.

Damit sich Netzwerke�ekte auf die Gewinnberechnung auswirken, müssen Flottenzuweisungs-
instanzen zwei Eigenschaften besitzen:

• Es muss Legs geben, mit denen mehr Fluggäste �iegen wollen als Sitzplätze in dem
kleinsten Flugzeug, das das jeweilige Leg bedienen kann, verfügbar sind.

Ansonsten könnte jede zulässige Flottenzuweisung immer alle Passagiere transportieren
und die Erlöse wären konstant.

• Es muss Passagiere geben, deren Reiserouten aus mehr als einem Leg zusammengesetzt
sind.

Wenn auf einem Leg l für solch einen Passagier kein Platz im Flugzeug verfügbar
ist, �iegt er keines der Legs der Reiseroute. Die Gesellschaft verliert also nicht nur die
Erlöse des Passagiers für Leg l sondern für alle Legs der Reiseroute. Dies lässt sich aber
mit der in der Flottenzuweisung verwendeten linearen Zielfunktion nicht modellieren.

Wir untersuchen nun die beiden Datensätze auf diese Eigenschaften. Bezeichne dazu

P Menge aller möglichen Itineraries
Pc Menge der Itineraries, die aus mehr als einem Leg bestehen
dp Unkapazitierte Anzahl an Passagieren auf der Itinerary p

Die Passenger Connectivity Ratio, gibt an, wie groÿ der Anteil der Passagiere ist, die über
mehrere Zwischenstationen zu ihrem Ziel�ughafen reisen.

De�nition 6.2 (Passenger Connectivity Ratio). Das Passenger Connectivity Ratio ist das
Verhältnis der Anzahl der Verbindungs-Passagiere zu der Gesamtanzahl der Passagiere im
Netzwerk:

PCR =

∑
p∈Pc

dp∑
p∈P dp

Datensatz A besitzt eine Passenger Connectivity Ratio von 0.57, bei Datensatz B beläuft sie
sich auf 0.36. In beiden Datensätzen sind also die Reiserouten vieler Passagiere aus mehreren
Legs zusammengesetzt, so dass Netzwerke�ekte auftreten können.

Betrachtet man die Sitzplatzkapazitäten der möglichen Flugzeugtypen auf einer Flugstrecke
und die geschätzte Anzahl der Passagiere auf dieser Flugstrecke, lassen sich drei Klassen von
Legs de�nieren:

uncapacitated Die Nachfrage auf dem Leg liegt unterhalb der kleinsten Kapazität der
möglichen Flugzeugtypen.

potentially capacitated Die Nachfrage auf dem Leg liegt oberhalb der kleinsten Kapazität
der möglichen Flugzeugtypen, aber unterhalb der gröÿten möglichen Kapazität auf der
Strecke.
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overcapacitated Die Nachfrage auf dem Leg liegt oberhalb der gröÿten Kapazität der
möglichen Flugzeugtypen.

Für unsere beiden Testinstanzen sieht die Verteilung auf die Klassen wie folgt aus:

Legs Datensatz A Datensatz B

uncapacitated 1312 (21%) 2835 (30%)
potentially capacitated 1588 (25%) 3805 (41%)
overcapacitated 3345 (54%) 2591 (29%)

Hier zeigt sich, dass ein Groÿteil der Legs der Passagiernachfrage nicht gewachsen sein wer-
den. Es müssen also Passagiere zurückgewiesen werden, und beide Datensätze erfüllen die
Voraussetzungen, das Netzwerke�ekte auftreten können. Datensatz A ist davon potentiell
stärker betro�en, da er mehr überlastetet Legs enthält und auch mehr Passagiere, die Rei-
serouten mit mehr als einem Leg benutzen.

6.5.2 Ergebnisse der Integrationsstrategien

In der Abbildung 6.7 sind 15 Szenarien mit der ersten Integrationsstrategie dargestellt. Der
Gewinnwert der Startlösung wird in diesem Experiment mit 100% angegeben. Das Ergebnis
der Flottenzuweisung ohne die Interaktion mit dem Marktmodell (Fleet Assignment) erzielt
im Durchschnitt eine Verbesserung von knapp einem Prozent gegenüber der Startlösung. Die
in dieser Arbeit vorgestellte erste Integrationsstrategie erzielt eine durchschnittliche Verbes-
serung von 8%. Die absoluten Gewinnzahlen können auch hier nicht angegeben werden, weil
sie eine vertrauliche Information der jeweiligen Fluggesellschaft darstellen.

Die zweite Integrationsstrategie implementiert das Modell des Passagier�usses als eine zu-
sätzliche Komponente an der Schnittstelle zwischen der Marktmodellierung und der Flotten-
zuweisung. Das lineare Programm steuert die Zielfunktion der Flottenzuweisung mittels der
dualen Werte der Kapazitätsrestriktionen der Flugstrecken (siehe Abschnitt 6.4.2).

In der Abbildung 6.8 ist das Konvergenzverhalten der Integration des Modells des Passa-
gier�usses mit der Flottenzuweisung auf dem Datensatz B dargestellt. Im oberen Bild der
Abbildung 6.8 sind die dualen Werte über die gesamte Laufzeit zu sehen. Bei den ersten Ite-
rationen sind die dualen Werte relativ groÿ und steuern den Simulated Annealing Algorithmus
entsprechend stark an. Zum Ende der Berechnung werden die dualen Werte deutlich kleiner.
Die Kapazitätszuweisung im Simulated Annealing Algorithmus wurde an den vorhergesagten
Fluss angepasst. Die Erhöhung der Kapazitäten auf den entsprechenden Flugstrecken würde
keinen gröÿeren Zugewinn mehr bedeuten.

Im unteren Teil der Abbildung 6.8 wurde die Di�erenz in der Zielfunktion des Simulated
Annealing Algorithmus jeweils vor und nach einer Iteration mit dem Passagier�ussmodell
protokolliert. Auch hier ist die Konvergenz des Verfahrens deutlich zu sehen. Die Bewertung
der aktuellen Lösung durch das System der Flottenzuweisung und das Modell des Passagier-
�usses nähern sich im Verlauf der Optimierung stark an.
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14 100% 100.8% 108.0%
15 100% 100.8% 108.8%
Mittelwert 100.9% 108.0%

Abbildung 6.7: Ergebnisse der ersten Integrationsstrategie

6.6 Zusammenfassung

In diesem Kapitel haben wir uns mit der Integration der Flottenzuweisung mit der Marktmo-
dellierung bzw. dem Ertragsmanagement beschäftigt. Wir haben die beiden Planungsphase
beschrieben und das durch sie erzielbare Verbesserungspotential für die Flottenzuweisung
untersucht. In der Mittelfristplanung erfolgt die Integration mit der Marktmodellierung. Da-
durch werden die im Flugnetz auftretenden Netzwerke�ekte besser berücksichtigt. In der
Kurzfristplanung werden die wesentlich genaueren Passagierprognosen und Erlösschätzungen
aus dem Ertragsmanagement benutzt, um die Kapazitäten durch veränderte Flottenzuwei-
sung besser auf den Passagier�uss anzupassen.

Anhand der Experimente kann festgestellt werden, dass die Integration der Phasen der Markt-
modellierung und der Flottenzuweisung erfolgreich durchgeführt worden ist. Die implemen-
tierte Strategie wird bei mehreren Fluggesellschaften im Produktionsbetrieb eingesetzt und
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Abbildung 6.8: Konvergenz der dualen Werte und der Di�erenz in der Zielfunktion

leistet einen groÿen Beitrag zur Steigerung der Pro�tabilität der Flugpläne.

Die zweite Integrationsstrategie ist als Forschungsprototyp implementiert und mit realen
Daten einer Fluggesellschaft getestet worden. Die Übernahme der Erkenntnisse in die Pla-
nungssysteme der Fluggesellschaften steht noch bevor.

Die dritte Integrationsstrategie wird in naher Zukunft im Rahmen einer umfangreicheren Stu-
die evaluiert. Die hohe Aufwand für die Anpassung des Ertragsmanagement-Systems konnten
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im Rahmen dieser Arbeit nicht geleistet werden. Eine Auswertung der Ergebnisse dieser Inte-
grationsstrategie steht bevor. Die vorbereitenden Analysen seitens Lufthansa Systems lassen
auf ein hohes Potential der vorgeschlagenen Vorgehensweise schlieÿen.



7
Zusammenfassung und Ausblick

Im Rahmen der vorliegenden Arbeit wurde das Problem der Flottenzuweisung in der Flug-
planung behandelt. Es handelt sich dabei um eine der wichtigsten Planungsaufgaben bei
der Erstellung eines Flugplans. Die in der Arbeit für das Flottenzuweisungsproblem entwi-
ckelten Algorithmen kommen in kommerziellen entscheidungsunterstützenden Systemen zum
Einsatz, wo sie die Qualität der Flotteneinsatzplanung vieler Fluggesellschaften erfolgreich
verbessern konnten.

Die Flottenzuweisung ist ein kombinatorisch schweres Optimierungsproblem, bei dem den
vorgegebenen Flügen eines Flugplans die sie operierenden Flugzeugtypen zugewiesen werden
müssen. Dabei muss sichergestellt werden, dass jedem Flug genau ein Flugzeugtyp zugewie-
sen wird und die benötigten Flugzeuge in der vorhandenen Flotte verfügbar sind. Aufgrund
unterschiedlicher Sitzkapazitäten und operationeller Kosten der einzelnen Flugzeugtypen ist
die Zielsetzung der Flottenzuweisung, eine gewinnmaximale, zulässige Lösung zu liefern.

Wir konnten neue Ergebnisse zur Komplexität des Flottenzuweisungsproblems zeigen. Ins-
besondere ergibt sich, dass das Flottenzuweisungsproblem bereits für zwei Flugzeugtypen
streng NP-vollständig und nicht in polynomieller Zeit approximierbar ist. Des Weiteren ha-
ben wir die bekannten Ergebnisse vervollständigt, indem wir die Komplexität des azyklischen
Flottenzuweisungsproblems und die Auswirkungen von Problemerweiterungen wie verbin-
dungsabhängigen Gewinnen untersucht haben.

Zum Lösen des Flottenzuweisungsproblems haben wir neue exakte und heuristische Ver-
fahren entwickelt. Die exakten Verfahren basieren auf IP-Formulierungen des Problems, die
mit Standardlösern aus dem Bereich der ganzzahligen linearen Optimierung gelöst werden.
Verschiedene neue Modelle für erweiterte Flottenzuweisungsprobleme sind entwickelt und
vorgestellt worden. Die heuristischen Lösungsverfahren basieren auf der Lokale Suche-Idee,
wobei hier die verwendete problemspezi�sche Nachbarschaft dafür verantwortlich ist, dass
gute Lösungen in kurzer Zeit gefunden werden.

189



190 7 Zusammenfassung und Ausblick

Durch die Berücksichtigung von stochastischen Eingabedaten, etwa für die Dauer eines Flug-
es, konnten wir störungsunemp�ndlichere Pläne generieren, die beim Auftreten von Verspä-
tungen kostengünstig repariert werden können. Wir haben gezeigt, dass dadurch allerdings
die Flottenzuweisung sogar PSPACE-vollständig wird. Durch die Beschreibung als ein Spiel
gegen die Natur lässt sich das Problem aber zumindest heuristisch mittels Spielbaumsuche
lösen, und experimentelle Ergebnisse haben gezeigt, dass selbst diese heuristischen Lösun-
gen den Lösungen von Modellen, die nur mit nicht-stochastischen Eingabedaten arbeiten,
überlegen sind.

Durch die Integration der Flottenzuweisung mit der Marktmodellierung und dem Ertragsma-
nagement konnten wir ferner die Bewertung von Zuweisungen erheblich verbessern, da die in
der Flottenzuweisung zumeist angenommene lineare Gewinnfunktion nicht realitätsnah ge-
nug ist. Wir haben verschiedene Integrationsstrategien für unserer Lokale Suche Heuristiken
beschrieben und gezeigt, dass sich dadurch der tatsächlich erzielbare Gewinn von Flottenzu-
weisungen deutlich steigern lässt.

Die Erkenntnisse dieser Arbeit führen zu neuen interessanten Fragestellungen und Anwen-
dungsmöglichkeiten:

• Die aktuellen Lösungsverfahren für das Flottenzuweisungsproblem sind in der Lage,
auch sehr groÿe Probleminstanzen in verhältnismäÿig kurzer Zeit fast optimal zu lösen.

Somit ergibt sich Spielraum, das Flottenzuweisungsproblem um weitere praxisrelevan-
te Anforderungen zu erweitern und damit stärker mit anderen Planungsaufgaben zu
verknüpfen.

Ein natürlicher Kandidat in diesem Zusammenhang ist das Rotation Building, bei dem
aus der Lösung einer Flottenzuweisung Einsatzpläne für konkrete Flugzeuge erstellt
werden. Eine Hauptschwierigkeit ist hier die Sicherstellung der erforderlichen War-
tungsarbeiten.

Ein weiterer Kandidat ist die Crewplanung. Die Crewplanung ist in hohem Maÿe von
der Flotteneinsatzplanung abhängig und eine zumindest teilweise Berücksichtigung von
komplizierten Anforderungen wie Ruhezeitregeln in der Flottenzuweisung würde zu
deutlich verbesserten Crewplänen führen.

• Stochastische Eingabedaten kommen nicht nur in der Flottenzuweisung vor sondern
treten in praktisch allen realen Planungsproblemen auf. Mit dem Reparaturspiel haben
wie ein generisches Modellierungs- und Lösungsverfahren für mehrstu�ge Entschei-
dungsprobleme mit stochastischen Eingabedaten entwickelt.

Der Einsatz der Reparaturspiels für andere Optimierungsprobleme aus den Bereichen
Verkehrs- oder Produktionsplanung sollte auch hier zu robusteren, besseren Lösungen
führen können.

• Das Potential der Integration von Ertragsmanagement und Flottenzuweisung ist noch
nicht vollständig ausgeschöpft. Bereits durch die Verwendung der vergleichsweise gro-
ben Methoden der Marktmodellierung lassen sich bedeutend bessere Flottenzuwei-
sungen produzieren. Das Ertragsmanagement sollte hier nochmals eine Verbesserung
erzielen können, eine Umsetzung und Evaluierung der in dieser Arbeit vorgestellten
Integrationsstrategie steht aber noch aus.
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