Test Generation Using Event
Sequence Graphs

Zur Erlangung des akademischen Grades

DOKTORINGENIEUR
(Dr.-Ing.)

der Fakultit fiir Elektrotechnik, Informatik und Mathematik
der Universitdt Paderborn
vorgelegte Dissertation

von
Dipl.-Ing. Christof J. Budnik
aus Bielefeld
Referent: Prof. Dr.-Ing. Fevzi Belli
Korreferent: Prof. Dr.-Ing. Ina Schieferdecker
Tag der miindlichen Priifung: 21. Dezember 2006

Paderborn, den 29.01.2007

Diss. 14/229

To my late grandfather
Johannes

Acknowledgement

I would like to thank my parents for their steady morally support and encourage-
ment that enabled me to start and conclude my Ph.D. studies.
I also thank my supervisors, Professor Fevzi Belli for inspiring me into soft-
ware testing and research, and Prof. Ina Schieferdecker for her valuable advices.
My thanks go also to Prof. Lee White (University of Michigan), Prof. Nimal
Nissanke (London South Bank University), and Prof. Aditya P. Mathur (Purdue
University) for fruitful discussions and comments that helped to shape this thesis.

Declaration

The work presented in this thesis has been drawn from research undertaken be-
tween January 2002 and October 2006 at the Department of Electrical Engineer-
ing, University of Paderborn.

Much of the work has been published elsewhere as follows:

= Belli, F.,, Budnik, C.J., Nissanke, N.: Modeling, Analysis and Testing of System Vulner-
abilities. Work-in-Progress Papers of the 23rd IFIP International Conference on Formal
Techniques for Networked and Distributed Systems (FORTE), 2003, p. 11.

= Belli, F., Budnik, C.J., Nissanke, N: Finite-State Modeling, Analysis and Testing of Sys-
tem Vulnerabilities. Proceedings of the 17th International Conference on Architecture of
Computing Systems (ARCS), Lecture Notes in Informatics (LNI), vol. 41, 2004, pp. 19-33.

= Belli, F., Budnik, C.J.: Minimal Spanning Set for Coverage Testing of Interactive Sys-
tems. Proceedings of the first International Colloquium on Theoretical Aspects and Com-
puting (ICTAC), Lecture Notes of Computer Science (LNCS), vol. 3407, Springer, 2004,
pp- 220-234.

= Belli, F., Budnik, C.J.: Towards Optimization of the Coverage Testing of Interactive Sys-
tems., Proceedings of the 28th International Computer Software and Applications Confer-
ence (COMPSAC), IEEE Computer Science, 2004, pp. 18-19.

= Belli, F., Budnik, C.J.: Towards Minimization of Test Sets for Coverage Testing of Inter-
active Systems. Proceedings of the Conference on Software Engineering (SE), Lecture
Notes in Informatics (LNI), vol. 64, 2005, pp. 79-90.

= Belli, F., Budnik, C.J.: Test Cost Reduction for Interactive Systems. Proceedings of the
Conference on Sicherheit, Lecture Notes in Informatics (LNI), vol. 62, 2005, pp. 149-160.

= Belli, F.,, Budnik, C.J.: Towards Minimization of Test Sets for Human-Computer Systems.
Proceedings of thel8th International Conference on Industrial & Engineering Applica-

tions of Artificial Intelligence & Expert Systems (IEA/AIE), Lecture Notes in Computer
Science (LNCS), vol. 3533, Springer, 2005, pp. 300-309.

= Belli, F., Budnik, C.J.: Towards Self-Testing of Component-Based Software. Proceedings
of the 29th Annual International Computer Software and Applications Conference
(COMPSAC), IEEE Computer Society, vol. 2, 2005, pp. 205-210.

= Belli, F., Budnik, C.J., Hollmann, A.: A Holistic Approach to Testing of Interactive Sys-
tems using Statecharts. Proceedings of the 2nd South-East European Workshop on Formal
Methods (SEEFM), South-Eastern European Research Center SEERC, 2005.

= Belli, F., Budnik, C.J., Hollmann, A.: Holistic Testing of Interactive Systems Using State-
charts. Journal of Mathematics, Computing & Teleinformatics (AMCT), vol. 1(3), 2005,
pp- 54-64.

= Belli, F,, Budnik, C.J., White, L.: Event-based Modeling, Analysis and Testing of User In-
teractions: Approach and Case Study. Journal of Sofiware Testing, Verification and Reli-
ability (STVR), vol. 16(1), John Wiley & Sons, Ltd, 2006, pp. 3-32.

= Belli, F., Budnik, C.J., Hollmann, A.: Holistic Testing of Interactive Systems Using State-
charts. Proceedings of the Conference on Sicherheit, Lecture Notes in Informatics (LNI),
vol. 77, 2006, pp. 345-356.

= Hollmann, A., Belli, F., Budnik, C.J.: Test Case Generation and Selection Based on State-
charts. Student Program Paper of the 17th IEEE International Symposium on Software
Reliability Engineering (ISSRE), to appear, 2006.

= Belli, F., Budnik, C.J.: Test Minimization for Human-Computer Interaction. International
Journal of Artificial Intelligence, Neural Networks, and Complex Problem-Solving Tech-
nologies, vol. 26(2), Springer, 2007.

I declare that the work in this thesis is original work I undertook between the
dates of registration for the Degree of Doctor of Electrical Engineering at the Uni-
versity of Paderborn.

Table of Contents

Symbols and Notation v
1 Introduction 1
1.1 Software and itS FEAtUIES..........cceecuieiirieriieieeee ettt nse e enaenneas 1
1.2 SOFEWATE TESTNG. ... eeteeiieieeieeie et et et et et et e e etessaessaesseesseensesseesseesseenseanseassenssenseensenn 3
1.3 Testing INteractive SYSLEIMSccuieiieieeieriieiieieeteste st ete et e seeseeseeesseeseeeneesseeseenseensesseesseas 4
1.4 Objectives, and Novelty of the Workccoeiiiieiiiiiiieeee e 5
| O 1114 1 T PSRRI 6
2 Related Work 9
2.1 TeStiNg TECHNMIQUES. .. cuititieeietieiieteie ettt ettt es et et e s b st ebeeaees e e e et e sbeseeneenee 9
2.2 Finite-State-Based Test GeNEration..........c.cccueereerreeriieieieeieesieereeeeseesreesreeseesesseesseesseens 10
2.3 Digraphs for Modeling and Test GENerationc.ecueeevereereesreenreeieeeeeseesseesseeesesneneens 12
2.4 Test Generation fOr GUISc.ccievuieiieiiiiesieeeie ettt eese e sseensees 12
2.5 Conclusion of the Comparison with Related Workcccooecvieiinieiieciieiicieeee e, 14
2.0 SUIMIMATY ..eveiiiieiiieeeiiee ettt sttt e st e et e st ee et ee s bt e sabeesbtesabtesabteeabteebbeenbeeenaaeebeeenbeesaseean 14
3 Event Sequence Graphs 15
3.1 FOrMAlIZALION.ietieeieeiieitieieete e ste st e sttt et e et eseee st esteenseessessaessaesseenseensesnsesneenseanseensenns 15
3.2 Modeling Functions and Malfunctionscccecueeieriereenieeniesie e 20
3.3 FaUlt MOAEL ..ttt ettt e et e e b e e s abe e s b e e saaeessbaessneessaeennaenes 24
3.4 Handling Other FEattres.coiiiiiiiiiieeieieeie ettt s enaens 25
3.5 SUITIMATY .ottt ettt ettt h e b et e bt et ee b e satesbeesbee bt e bt enteeneeeseeneeenteans 28
4 Test Process, Test Generation and Test Execution 29
4.1 ODJECLIVES .euteuteteetietientete ettt ettt e te et et e st et e e ae et e eseeseent e b e teeaeebeeseen e e s e b eabeebeeaeeneenteneeneensenes 29
.2 TSt PTOCESS .eeeutieeiieeitterte ettt et ettt et e ettt et ettt e s tte e bae e st e esbbeeabeesseessbeesaeensseensseenseesnseean 31
4.3 Test Generation and Execution Alorithm..........ccccooveriiiviiiiinienieeeieeeeeeseee e 32

i

4.4 Exploiting the Structural Features of SUT for Further Reduction of Test Effort 41
4.5 Test Configuration and TeSt COSt.......cceruerierierieriieie e ete sttt ete e seesree e esseeaesnnens 43
4.0 SUIMIMALYeeeteeieeie ettt ee et et et et eseeeseeebeesae e et enseemeeeaeeeseeeseenseenteenseensesmeesneesneenseeneesneenns 45
5 Case Study 1: The RealJukebox - RJB 47
oI N @ o] Tt <SS 47
5.2 System Description and Model............ccoiiiiiiiiiiiieeeee e 48
5.3 TeSt REPIESENTATION .ouvvieiiieiiieeiieeiieeeiie et estteetteeseteestaeesaaeetaeessreestaeessaessaeensseensseessannsens 51
54 TSt GONETALION. ..ccuuiieiieetieeiieeitteeiteerteeetteetteeteeeaaeebaeesteessaeessaeesseesnseeenseeanseeenseesnseesnsens 52
5.5 RESUILS .ottt ettt ettt s et et e esb e e sb e e ta e te e b e esaeeraeeaeesaeenseenseenrens 54
5.6 Analysis 0f the RESUILSccuiiiiiiiiieiicie ettt s eene s 59
5.7 Fault DEECLIONeeevieiieiieeieiieiteeste ettt ettt ettt e e e teebeesbeessesaaesaaeseesseensesssanseesseensens 61
5.8 Defense MEChANISIM........c.cccueiieriieieeie ettt ettt eaesaeseeesseeseensesneesseanseenseensens 65
5.9 DISCUSSION. .. .eetietietieiieetiesteeteenteeeteseeesseeseensesssesseesseenseanseassesssenseensesnsesnsesnsesseeseenseensennsens 66
S5.10 SUIMIMATY ...ttt ettt et ettt et e et e e et e es e ebeesae e st emeeeneeeaeessee st enteenseeneeeneenseennes 66
6 Considering Safety Aspects 67
6.1 Risks and Risk OTdering..........ccoeieiuieiiieiieieiieeee ettt 67
6.2 Quantification Of RODUSINESS......cc.ccviiieiiieiicie ettt s 69
6.3 A Comprehensive Example: Railway CroSSing.........ccoceeoeeieieieienienieneseseseeeeeeeeeeeeens 69
0.4 SUIMATY ..ottt ettt ettt et e b e sb e e s bt e bt et e ea et eaeeebeesbee bt enbeemteebeebeenees 77
7 Case Study 2: Extending the Approach to Statecharts 79
7.1 Modeling Functions and Malfunctionsccceeveeeveiieiieneenieeieeeeeeeseesreeseeaeseneseennes 79
7.2 Test Criteria and Their Application to Statecharts.............cceeceevierieciieiieniereee e 83
7.3 TeSt Case GENEIATIONccueeeieeeeeeieriieieeteeteeseesteeseesestesseesseesseenseanseesaesseesseensesnsesnsesseenses 85
7.4 Testing the Marginal Strip Mower — RSM13cccooiiiiiiiiieeeeeee e 86
7.5 Discussion: ESG vS. StateChartsccceeierieniieriisie ettt 92
AN 1011 0 3 oSS 94
8 Tool Support 95
8.1 TeSt Case GENETATIONcccuvieiiieeiieesiiieeieeiteestteestteestaeestaeessseesteeessseesaeessseeseeessseesseensseensens 95
8.2 TSt CaSe ANALYSIS....ecuiriiitietietiete ettt ettt ettt sttt ettt st st sb ettt 97
8.3 More Automation — Towards Self-TeStingcccuereriririireiieeee e 99
8.4 Remarks for Further Research and Development............cc.occeeveiienieiieieieeieeieeie s 108
8.5 SUIMMATY ..euviiiiiieiie ettt ettt ettt ettt ettt et e e sttt e sabeessbeesabeesnbeesaseesabessaseesaseenseesnses 109
9 Discussion and Conclusion 111
9.1 Advantages and Disadvantages of Modeling with ESGcccooiviiniieiecieeeeeeee 112
9.2 Recommendations fOr PractiCeccueeierieriieiiieie ettt 112
9.3 Conclusion and Perspectives for Future Workccoooveviiiiiiieniiieeeeeeee 114
Bibliography 115
A Case Study 1: The RealJukebox - RJB 127

A.l ESGs 0fthe Case StUAY Loooiiiiiiieieieeee et 127

A.2 List of Faults Revealed..........cccooiiriiiiiiiiiiiiiicccescsectteeese e
B Case Study 2: Marginal Strip Mower — RSM13

B.1 Statecharts of the Case StUAY 2.......ccuiiiiiiiiiee e e
B.2 List of Faults Revealedcoooiiiiiiiiieeee e

il

Symbols and Notation

Set Theory

{X1, X2, ..., Xn}

%

x eM
McN
M UN
M\N
M xN
[Mm]

MuN

Basic Sets

Vsys
Z(ESG)
T'(ESG)

Set of elements X1, Xo, ..., Xn

The empty set

X is an element of M

M is a subset of N

Union of sets M and N

Difference of sets M and N

Cartesian product of sets M and N

A bag M as a set of elements where each element has an occur-
rence number

Union of bags M and N

Set of system dysfunctions

A finite set of edges

Set of system functions

Set of predecessors of vertex v

Set of successors of vertex v

The regular Set denoted by the regular expression r
A finite set of labeled vertices

Set of environmental events

Set of system response

Set of entry nodes of an given ESG
Set of exit nodes of an given ESG

vi

Miscellaneous
diff(v)

DM
ESG
ESG
ES;

I(ES)

1COV

lmax

a(ES)

B
»(ES)

Abbreviations
CES
CESG
CPP
CTS
EP

ES
ESG
FCES
FCTS
FEP
FES
FSA
FTP
FTS
GATE

Symbols and Notations

The function denotes the number of predecessor events of v mi-
nus the number of its successor events

Defense Matrix

Inversion of an ESG

Completion of an ESG

Event Sequences of length i

Function which determine the number of vertices of an given
event sequence

Sum of length of ESs up to a given length

Maximum length of an ES to be covered

Function that determine the initial vertex of an given event se-
quence

Weight factor

Function that determine the end vertex of an given event se-
quence

Test costs

Finite sequence X, X2, ..., Xm

concatenation of event sequences

Risk ordering relation

Complete Event Sequence
Completed ESG

Chinese Postman Problem

Complete Transition Sequence

Event Pair

Event Sequence

Event Sequence Graph

Faulty Complete Event Sequence
Faulty Complete Transition Sequence
Faulty Event Pair

Faulty Event Sequence

Finite State Automata

Faulty Transition Pair

Faulty Transition Sequence
Generation and Analysis of Test Event Sequences

GUI
MSCES
MSFCES
SUT

TP

TS

Ul

UML
XML

Trademark Notice:

Graphical User Interface

Minimal Spanning Complete Event Sequence
Minimal Spanning Faulty Complete Event Sequence
System under Test

Transition Pair

Transition Sequence

User Interface

Unified Modeling Language

Extended Markup Language

Intel® and Pentium® are registered trademarks of Intel Corp.

RealJukebox® and RealNetworks® are registered trademarks of RealNetworks Inc.
Windows NT® is a registered trademark of Microsoft Corp.

WinRunner® is a registered trademark of Mercury Interactive Inc.

All other trademarks are trademarks of their respective owners.

Vil

1 Introduction

This chapter describes the motivation, context and intended contribution of this
thesis. Starting point is the existing work and terminology used, the goals are
identified and the software quality features considered are outlined. A holistic
view is introduced to generate and select adequate test cases from a behavior
model of the system under consideration.

1.1 Software and its Features

In terms of behavioral patterns, the relationships between the system and its envi-
ronment, i.e., the user, the natural environment, etc., can be described as proac-
tive, reactive or interactive. In the case of proactivity, the system generates the
stimuli, which evoke the activity of its environment. In the case of reactivity, the
system behavior evolves through its responses to stimuli generated by its envi-
ronment. Most systems are nowadays interactive in the sense that the user and the
system itself can be both pro- and reactive.

When observing an interactive system, depending on the expectations of the
user concerning the system behavior, a distinction is to be made between desir-
able and undesirable situations or events. The sum of desirable and undesirable
events defines the critical system properties that are global quality factors, e.g., re-
liability, correctness, safety, robustness, user-friendliness, etc. Any deviation
from the desirable behavior amounts to an undesirable situation; the fact that the
system can be unintentionally transferred into such a state might be viewed as a

2 Introduction

vulnerability of the system. The consideration of vulnerabilities necessitates a
clear understanding of the notion of undesirability.

A failure is a manifestation of a given form of vulnerability and, as a result, af-
fects the ability of the system to perform its functions [[EEE90]. During the exe-
cution of the system, a failure can be realized, or triggered, by an error as an in-
correct and thus, an undesirable, system state. An error can eventually be traced
back to a human action, or inaction, leading to an incorrect or undesirable result
and, thus, to a fault. In other words, a chain of incidences “fault — error — fail-
ure” emerges, where A — B means that 4 causes, or leads to, B [ALRO04, Lap92].
The notion of “undesirability” is the key characteristic applicable to the terms
fault, error and failure. In this context, the terms “fault” and “error” are often used
synonymously as the cause of a “failure”.

Achieving given software quality is an investigation for the existence of faults.
In the following the undesirable behavior is discussed for the different quality as-
pects (see also [IEEE90]).

Correctness refers to the extent to which the system behavior corresponds to
the requirements. A system is said to be correct if its behavior matches the in-
tended, desirable behavior for all input data.

Reliability focuses on the actual use of the system over time. A system may
have faults but still be highly reliable if the faults (as undesirable events) appear
only on inputs that never occur in actual use.

In the case of safety, the vulnerability originates from within the system due to
potential failures and its spill-over effects causing potentially extensive damage to
its environment. In the face of such failures, the environment could be a helpless,
passive victim. The goal of the system design in this case is to prevent faults that
could potentially lead to such failures or, in worst cases, to mitigate the conse-
quences at run-time should such failures ever occur.

In case of robustness, the system performs well not only under ordinary con-
ditions but also under unusual conditions that stress its designers' assumptions. In-
teractive systems are usually too big and too complicated for a single human mind
to comprehend in their entirety, and thus it is difficult for their developers to be
able to discover and eliminate all the errors, or to even be certain as to what extent
of errors exist. This is especially true with regard to subtle errors that only make
their presence known in unusual circumstances. In this case the system should not
lock up the computer, cause damage to data or send the user through an endless
chain of dialog boxes without purpose.

In contrast to safety and robustness the lack of user friendliness of an interac-
tive system is a milder form of system vulnerability. A failure to be user-friendly

1.2 Software Testing 3

is still a failure to fulfill a system attribute, though it may typically cause an an-
noyance or an irritation to the user, possibly leading to confusion and complaints.
However, disastrous consequences cannot be entirely ruled out under stressed
conditions of the user if the interactive system is intended to mediate between a
safety critical application and its operator.

1.2 Software Testing

Software quality is the dominant success criterion in software industry. As soft-
ware applications are becoming more sophisticated, complex and expensive, it is
obvious that software quality is growing.

Activities associated with ensuring correct and safe operation of software are
known as verification and validation (V&V). Verification implies that software
under consideration is checked during its development concerning design re-
quirements, asking the question: “Does the implementer work correct?” [BBL76].
Validation ensures that the delivered system satisfies the customer requirements,
asking the question: “Does the system work correct?” Both Verification as Vali-
dation of the requirements as early as possible avoids unnecessary and costly re-
work.

Validation activities usually require a behavioral model. This model is typi-
cally documented in a set of requirements specification documents that specify
functional and non-functional behavior of the software under consideration. Func-
tional requirements describe the actions of the system in terms of the operations
that should take place in response to a series of external events. Non-functional
requirements place constraints on this behavior, such as memory limitations, real-
time deadlines and safety properties.

Testing is the traditional and still most common validation method in the soft-
ware industry to achieve this goal. It is usually carried out applying test cases to
the system under test (SUT). While constructing test cases, one generally has to
produce meaningful test inputs and then to determine the expected system outputs
for these inputs. A fest oracle is a means, automated or manual, for checking the
correctness of the outputs computed by a SUT. Hence, software testing requires
the existence of such an oracle, i.e., an external source of correct information
about the expected behavior and output of the software. Because testing requires
the execution of the software, it is classified as a dynamic analysis technique.

The purpose of testing is to assure the system quality and along with this to re-
veal faults. However, the testing itself will rather identify the fault not the error. In

4 Introduction

fact the faults are to be fixed. For this purpose, an erroneous situation is to be de-
veloped that causes a failure and thus cannot be hidden from the environment,
e.g., the user of the system. This thesis primarily applies testing to the validation
problem.

1.3 Testing Interactive Systems

An interface that enables information to be passed between a human user and
hardware or software components of a computer system is defined as a user in-
terface (UI) [IEEE90].

With the growing complexity of interactive software systems, also their (UI),
mostly realized graphically (graphical user interfaces, GUI), become more com-
plex. Accordingly, the test and analysis process becomes more and more tedious
and costly. In this particular kind of system, the user interface can have an envi-
ronment, that is, the plant, the device or the equipment, which the Ul is intended
for and embedded in, controlling technical processes.

While developing interactive systems, construction of the user interactions de-
serves special care, and should be handled separately because it requires different
skills, and maybe different techniques than construction of common software.
This fact has been recognized very early, defining a User Interaction Management
System that can be independent of the application, graphics package, etc. [TH83].
The design part of the UI development needs a good understanding of the user and
his/her needs, while the implementation part requires familiarity with the technical
equipment, e.g., programming platform, language, etc. [Shn98]. Testing requires
both: a good understanding of user requirements, and familiarity with the techni-
cal equipment.

Testing of Uls is an important step in the development of interactive systems
as it checks the compliance of the system with the user requirements. Thereby, the
Ul is considered as a set of system functions. Black-box testing of the Ul means
testing of the behavior of the system and thus, its system functions. Accordingly,
to generate test cases for a Ul, one has to first identify the test objects and test ob-
jectives. The test objects are the instruments for the input, e.g., windows, icons,
menus, pointers, commands, function keys, alphanumerical keys, etc. The objec-
tive of a test is to generate the expected system behavior (i.e., desirable event) as
an output. In a broader sense, the test object is the SUT; the objective of the test is
to gain confidence in the SUT.

1.4 Objectives, and Novelty of the Work 5

In order to meet the market demands and resource requirements, testing should
be automated to become more effective and be more efficient (i.e., faster,
cheaper), considering also deployment of test tools. For industrial black-box test-
ing of Uls, most of the conventional tools include capture/replay features for re-
cording and analyzing of test scenarios. In spite of the maturity and quality of
these tools, a lot of manual effort is needed that is costly and error-prone.

1.4 Objectives, and Novelty of the Work

Software testing is a widely used method in practice for quality assurance. But the
required test inputs are still not systematically generated in an efficient manner,
and testing becomes an uncontrollable process and therefore unusable. The rea-
sons are missing models from the design or a present informal specification so
that adequate test inputs cannot be derived systematically. This drawback can be
solved by the present approach with the help of a graph model called Event Se-
quence Graph (ESG) which has been introduced by F. Belli [Bel01]. An ESG is a
simple albeit powerful formalism for capturing the behavior of a variety of inter-
active systems that include embedded systems and graphical user interfaces. A
collection of ESGs is proposed as a model of an interactive system.

Based on ESG notion, this thesis introduces a holistic view of fault modeling
that requires an additional, complementary step to system modeling. Thus, both
the desirable and undesirable behavior of the system is specified at the same level
of design granularity. In other words, intended and unintended usage scenarios
will be generated to check both that system behavior is in according to the user
expectations and faults are handled properly.

The objective is to systematize the test generation process with a twin-track
strategy. The first is to confine the scope of tests by targeting them at a given
stage at a chosen system attribute. This is achieved by an ordering of system states
according to the risks posed to that attribute and by selecting tests that address
specific faults. The second is to devise test plans where the tests are naturally or-
dered according to diminishing returns in terms of their cost-effectiveness. Tech-
nically, this is based on test length. This is possible because the tests are formu-
lated in terms of sequences of non-faulty event pairs in the ESG model when test-
ing the system for correctness of desirable (functional) features, and sequences of
non-faulty event pairs followed a faulty event pair when testing for any unde-
sirable outcome.

6 Introduction

The novelty of the approach is the modeling, analysis and testing of system
behaviors, with respect to both correct and faulty behaviors, based on ESGs. The
approach focuses on testing a system for correctness with respect to its behavioral
requirements and for its robustness against incorrect usage in terms of user inputs,
and analyzing the consequences under possible malfunction of the environment. It
is based on two simple ideas. First, the desirable behavior of the user and the SUT
is modeled using a finite set of ESGs. Second, each ESG in this set is inverted al-
gorithmically to obtain a formal representation of the undesirable user behavior
and to work out the corresponding desired response by the SUT. The set of ESGs
and their inversions are then used for test generation and for system malfunction
analysis.

In brief, a model-based black-box test methodology for an efficient test case
selection is introduced for testing interactive systems, mostly represented by their
user interfaces. The main contributions of this work are:

(1) an ESG based formalism for the modeling and analysis of the behavior of

discrete, event-based, sequential systems;

(i1) a test generation algorithm that takes an ESG as input and generates ade-
quate tests for testing the behavior of a SUT under expected and unex-
pected conditions, and

(ii1) an evaluation of the feasibility and effectiveness of the proposed modeling
and test generation schemes using two case studies.

(iv) Tools that are necessary for an effective deployment of the approach are
introduced and discussed.

(v) Lessons learned from intensive and extensive application of the approach
to industrial projects are summarized.

1.5 Outline

The remainder of this thesis is organized as follows. The next chapter provides a
summary of the related literature and establishes the relationship between finite-
state automata (FSA) based models and ESG based models of system behavior.

Chapter 3 is a rigorous introduction to Event Sequence Graph (ESG) which is
a simple albeit powerful formalism for capturing the behavior of interactive sys-
tems that include embedded systems and graphical user interfaces.

In Chapter 4 the test process is described for the generation of tests from ESGs
to check for the correctness of system behavior in the presence of expected and
unexpected input event sequences. The test generation algorithm is customizable

1.5 Outline 7

in the sense that it allows a tester to generate test sequences based on an evalua-
tion of their cost of execution and the benefit derived.

Chapter 5 reports a case study that investigates the fault detection effective-
ness and the cost of test generation.

An example in Chapter 6 demonstrates the analytical power of ESG based
modeling and risk analysis.

An extending of the approach to statecharts is given in Chapter 7. Applying
the modeling of functions and malfunctions leads to additional rules for the test
case generation which are evaluated in a second case study.

Chapter 8 provides an overview of a toolkit developed to support ESG based
modeling and test generation.

A discussion related to the current work and directions for further research ap-
pear in Chapter 9.

2 Related Work

This chapter reviews the existing work in related areas, i.e., on modeling, specifi-
cation and test generation. Comparisons with the approach developed in the the-
sis are supposed to show its originality.

2.1 Testing Techniques

Testing is the execution of a program with the aim of causing failures and thus re-
veals faults. There is no justification, however, for any assessment on the correct-
ness of the system under test based on the success or failure of a single test, be-
cause there can potentially be an infinite number of test cases, even for very sim-
ple programs.

To overcome this shortcoming of testing, formal methods have been proposed,
which introduce models that represent the relevant features of the SUT. The mod-
eled, relevant features are either functional behavior or the structural issues of the
SUT, leading to specification-oriented testing or implementation-oriented testing,
respectively. Once the model is established, it “guides” the test process to gener-
ate and select test cases, which form sets of test cases (also called test suites)
[Bei90, Bin00]. The selection is guided by an adequacy criterion, which provides
a measure of how effective a given set of test cases is in terms of its potential to
reveal faults. Most of the existing adequacy criteria are coverage-oriented
[ZHM97]. The ratio of the portion of the specification or code that is covered by
the given test set in relation to the uncovered portion can then be used as a deci-
sive factor in determining the point in time at which to stop testing (test termina-

10 Related Work

tion) [Ham96]. Another problem that arises is the determination of the test out-
comes (oracle problem) [Bin00, Ham96].

In [BelO1] a fault model is introduced this thesis is based on, which consider
not only the desirable situations, but also the undesirable ones. A similar fault
model is also used in the mutation analysis and testing approach which systemati-
cally and stepwise modifies the SUT using mutation operations [DLS78]. This
approach has been well understood, is widely used and, thus, has become quite
popular. Although originally applied to implementation-oriented unit testing, mu-
tation operations have also been extended to be deployed at more abstract, higher
levels, e.g., integration testing, state-based testing, etc. [DMMO1]. Once applied to
the graphical representation of a SUT, mutation operations can be viewed as ele-
ments of the complementing steps of the event sequence graphs, as introduced in
Chapter 3. Such operations have also been independently proposed by other au-
thors, e.g., “state control faults” for fault modeling by Bochmann and Petrenko
[BP94], or for “transition-pair coverage criterion” and “complete sequence crite-
rion” by Offutt et.al. [OLAAO3]. However, the latter two notions have been pre-
cisely introduced in [BelO1] and [WAOO], respectively, prior to the work of Offutt
et al., where they also appeared.

Several approaches have been proposed to assess the robustness of software-
based systems. Fetzer and Xiao [FX02] have proposed techniques for increasing
the robustness of C libraries using wrappers. Huhns and Holderfield [HHO02]
equate robustness to the resilience of software failures and suggest redundancy
and appropriate granularity as a way to achieve it. Kropp et al. have proposed an
automated method, the Ballista approach, for testing the robustness of software
[KKS98]. The proposed ESG approach differs from the approaches cited in that it
allows modeling on incorrect behavior, which is often the cause of software sys-
tems’ lack of robustness and provides an algorithmic approach to the test genera-
tion for testing the software-based system for robustness.

2.2 Finite-State-Based Test Generation

Test generation based on finite-state models has been an active area of research
for many decades. Chow proposed the W-method for generating tests from finite-
state models [Cho78]. There are, however, significant differences between the
goals and assumptions of the W-method and the approach presented in this work.
First, conformance testing generates tests to detect faults clearly defined by some
hypotheses, e.g. transition errors, missing, or extra states. The approach in this

2.2 Finite-State-Based Test Generation 11

thesis generates test cases to cover the ESG. Second, the W-method assumes two
models are available, i.e. the system model and the design model. These two mod-
els are then compared. The first model is required to be correct; the second one is
to be checked against the correct model. The approach in this work supposes the
existence of only one model that describes the correct behavior of the system.
This model is exploited to generate tests to check the real, implemented SUT, i.e.
the SUT is tested against its specification. Third, conformance testing assumes the
system under consideration behaves deterministically and is completely specified
by a finite-state automaton. These assumptions are not necessarily fulfilled by
Uls; therefore, they are not made by the approach presented in this work.

Chow’s work was followed with the Wp-method [FBKA91], the Unique In-
put-Output Sequences method [SD88], Transition Tour method [ADLU9I1,
NT81], Distinguishing Sequences method [Sar89], and several empirical evalua-
tions [BP94, SS97]. Finite-state models have also been proposed as a means for
the specification and analysis of system behavior [Par69, Sha80]. More recently,
researchers have proposed ways to generate tests from a variety of UML specifi-
cations such as statecharts and sequence diagrams [FMMD94, OLAAO03].

Most finite-state based test generation methods focus on some form of cover-
age, e.g., transition coverage [ADLU91, OLAAO03, Rob00, SLD92, WAO00], and
state identification [Cho78, SD88]. The test generation algorithm introduced in
this work achieves complete coverage of ESGs [Bel01, MBO03] through the use of
the Chinese Postman problem [EJ73, Kwa62] for managing round trips. In addi-
tion, the algorithm also formalizes and generalizes the notion of pair-wise testing
[CDFP97, TL02] by including the ability to generate tests that cover all possible
n-tuple of events for some n>/. While the number of generated tests can become
impractically large for increasing n, the algorithm can be applied selectively to in-
dividual ESGs with different values of n. This feature renders the algorithm cus-
tomizable to the criticality needs of a system. ESGs that correspond to the most
critical portions of a system can be tested more thoroughly using higher values of
n. Note that higher values of n allow the generation of tests that enable testing a
system for errors revealed only through specific sequences of inputs; such errors
are known to be hard to find. This is one of the advantages of the approach intro-
duced in this work.

Another state-oriented group of approaches to test case generation and cover-
age assessment is based on model checking, e.g., the SCR (Software Cost Reduc-
tion) method, as described in [GH99]. These approaches identify negative and
positive scenarios to generate test cases automatically from formal requirements
specifications. Thus they attempt to overcome the problem of testing that is not

12 Related Work

exhaustive, e.g., “black-box checking”, which combines “black-box testing” and
“model checking” [PelO1]. Although this approach considers the appearance of
desirable and undesirable events by means of models with not only positive but
also negative scenarios, the problem is that these events are constructed intuitively
and are therefore neither systematic nor complete.

2.3 Digraphs for Modeling and Test Generation

Digraphs, with variations in terminology, have been used for modeling finite-state
behavior since the work of Kleene and Myhill [Kle56, Myh57]. Chhikara et al.
use event sequence diagrams to study dynamic probabilistic risk analysis [CHOO].
Memon et al. use event flow graphs to model Ul event sequences as test cases
[MPSO01]. Event graphs and timed event graphs are also used in other areas of re-
search such as simulation [Sch95] and automatic control [LL95].

In this work ESGs are used for modeling system behavior, test generation, and
robustness testing (see also [GBBDO05]), which are based on a finite sequence of
events. ESGs allow a modeler to think in terms of system “events” instead of sys-
tem “states.” Our experience with designers and programmers in the real-time
software industry suggests that ESGs are often easier to use for modeling the dis-
crete behavior of a system than the traditional finite-state machine that requires
the use of “states.”

2.4 Test Generation for GUIs

White and Almezen took a different approach to the problem of test generation us-
ing finite-state models [WAO00, WAAO1]. Their work is in the context of generat-
ing tests for testing GUIs. Rather than use the traditional Mealy or Moore ma-
chines, they propose an alternative representation of user-responsibilities using the
idea of complete interaction sequences. A complete interaction sequence is repre-
sented using a finite-state model where user actions, such as OPEN FILE and
EDIT, label the states and the edges are unlabeled. Thus the expected behavior in
response to an event is implicit and specified elsewhere in contrast to the tradi-
tional finite-state models that indicate explicitly the system response to an input as
an output label on each transition. The entire system is modeled as a collection of
complete interaction sequences. An advantage of the approach based on complete
interaction sequences lies in its scalability and intuitiveness. Instead of creating a

2.4 Test Generation for GUIs 13

single composite finite-state model, multiple complete interaction sequences, each
representing a user responsibility, are created thereby simplifying the task of
model construction and test generation. This thesis instead introduces a refinement
(see also [HI98, Mar97]) to decompose a system hierarchy in multiple ESGs,
which in turn can be tested separately.

A different approach for GUI testing has been recently published by Memon et
al. [IMPS00, MPSO01], which deploys methods of knowledge engineering to gener-
ate test cases, test oracles, etc., and to handle the test termination problem: from a
knowledge engineering point of view, the testing of a GUI system represents a
typical planning problem that can be solved using a goal-driven strategy
[MPSO01]. Given a set of operators, an initial state and a goal state, the planner is
expected to produce a sequence of operators that will change the initial state to the
goal state. For the GUI testing problem described above, this means that the test
sequences have to be constructed dependent upon both the desirable, correct
events and the undesirable, faulty events.

There have also been other GUI testing papers from this research group.
Memon et al. [MPS01/2] have also written a more general paper on GUI testing
that emphasizes coverage criteria involving events and event sequences. They de-
compose the GUI system into components and emphasize a hierarchy of interact-
ing components in their generated tests. Thus, the components can be tested in
isolation. They have provided a case study showing the correlation between this
coverage criterion and that of the underlying code coverage. A more recent paper
[MBHNO3] has shown how a more streamlined GUI testing method can be used
for regression testing. Both approaches, i.e. those of Memon et al. and of Gargan-
tini and Heitmeyer, use some heuristic methods to cope with the state explosion
problem.

Few research work can be found for test automation of interactive systems, es-
pecially concerning of their GUIs. The industrial state-of-the-art strategy for
automated testing involves ad-hoc deployment of record/playback tools [Azu93,
Kep94]. However, more research work has been done on regression testing of
GUI to avoid obsolescence of the generated test cases whenever the structure of
the GUI is modified [MS03, Whi96]. This work does not try to repair unusable
test cases, because the model is maintained and not the test cases. Thus, changes
in the system only have to be fixed in the model, where all test cases were gener-
ated again.

14 Related Work

2.5 Conclusion of the Comparison with Related Work

The approach presented here is different from the finite-state based approaches in
that ESGs are based on a finite sequence of events, rather than states. The idea of
inversion, or complementing, makes ESG-based modeling distinct from other test
generation approaches. ESGs and their complements allow modeling the desirable
behavior of a system in the presence of both expected and unexpected inputs as
events. The latter model allows for the quantification of the robustness of a system
and hence raises the possibility of incorporating system robustness into its overall
reliability. While the inversion of finite-state machines needs some theoretical
skills, inversion of ESGs is intuitive and easily done by a test designer without ac-
cess to automata theory.

2.6 Summary

The proposed ESG approach differs from the approaches cited here in that it (a)
allows the modeling of incorrect behavior that is often the cause of lack of ro-
bustness of software systems and (b) provides an algorithmic approach to test
generation for testing a software-based system for robustness.

3 Event Sequence Graphs

This chapter introduces the event sequence graphs (ESGs) to model both the de-
sirable and undesirable behavior of a system under consideration which interacts
with its environment through ordered pairs of environment stimuli/ system re-
sponse. In this context, the environment can be one or more human users, a set of
service seekers, also other technical systems, or any combination thereof. The
terms “‘user” and “environment” is thereafter used interchangeably.

3.1 Formalization

An Event Sequence Graph (ESG) is a device to model a subset of the interactions
between a system and its user. The complete set of interactions is captured in
terms of a set of ESGs, where each ESG represents a possibly infinite set of event
sequences [BBWO06]. An event, an externally observable phenomenon, can be a
user stimulus or a system response, punctuating different stages of the system ac-
tivity.

Definition 3.1 (Event Sequence Graph): An event sequence graph
ESG=(V,E,=,I') is adirected graph with

VO : a finite set of labeled vertices (nodes),

E c V' xV :afinite set of edges (arcs),

E,I"cV : finite sets of distinguished vertices £ € =, and y € [, called entry
nodes and exit nodes, respectively, wherein Vv € V' there is at least

15

16 Event Sequence Graphs

one sequence of vertices <§,vo. . .,Vk> from one & € = to vy =vand
one sequence of vertices <v0, e VE, 7/> from vo=v to one y € I with

(vi,vy)€E fori=0,...,k—1 and v=¢,y .

H(ESG), ITESG) represents the entry nodes and exit nodes of a given ESG, re-
spectively. To mark the entry and exit of an ESG, all £ € & are preceded by a
pseudo vertex / & V'and all y € I" are followed by another pseudo vertex /| £ V.

The set V' is partitioned into two subsets Veny and Vsys such that
V=V oV .V NV =0

env sys 2 env Sys

where Veny 1s the set of environmental events (i.e., user inputs) and Vsys a set of
system responses. The distinction between the sets Ven, and Vsys is important be-
cause the events in the latter are controllable within the system, whereas the
events in the former are assumed to be not subject to such control. Entries are not
necessarily to be contained in Vep, and the exits in Vsys even if that holds in most
cases. Thus, it is assumed that the system has already been running and that exits
do not necessarily mean a system shut-down.

The semantics of an ESG is as follows. Any v € V represents an event which is
referred by its label. For two events v, v’ € V, the event v’ must be enabled after
the execution of v if and only if (v, v’) € E.

© aﬂg 0

Figure 3.1: An ESG with A as entry and B as exit and pseudo vertices /, /

Example 3.1: For the ESG given in Figure 3.1: V' ={A, B, C}, Z={A},
Fz{B}, and E:{(A,C), (A,B), (B,C), (C,B)}. Note that arcs from pseudo

vertex [/ and to pseudo vertex / are not included in E.

3.1 Formalization 17

For a vertex veV , N'(v) denotes the set of all successors of v, and N (v)
denotes the set of all predecessors of v.

Definition 3.2 (Refinement): Given an ESG, say ESG, =(V|,E,, =,,1), a vertex
veV,,and an ESG, say ESG, =(V,,E,,=,,I",) with V"V, = . Then replacing
v by ESG; produces a refinement of ESG,, say ESG,=(V,,E;,=,,I;) with
Vi=V,uV,\{v}, and E,=E UE,UE UE

post

\E, acea (- set difference op-
eration), wherein E,, = N"(v)x Z(ESG,) (connections of the predecessors of v
with the entry nodes of ESG:), E,, =1 (ESG,)xN"(v) (connections of exit
nodes of ESG, with the successors of v), and E, —{(v[,v), (v,vk)} with

replaced ~—

v, € N"(v) and v, € N"(v) (replaced arcs of ESG).

ESG of higher level abstrac- / Refined ESG of vertex X
tion (,.mother ESG)

Refined X, embedded in
its context within the
“mother” ESG

Figure 3.2: Refinement of a vertex v and its embedding in the refined ESG

As Figure 3.2 illustrates, every predecessor of vertex v of the ESG of higher
level abstraction points to the entries of the refined ESG. In analogy, every exit of
the refined ESG points to the successors of v. The refinement of v in its context
within the original ESG of higher level abstraction contains no pseudo vertices /
and / because they are only needed for the identification of entries and exits of the
ESG of a refined vertex.

18 Event Sequence Graphs

Figure 3.3: A Refinement of the vertex A of the ESG given in Figure 3.1

Example 3.2: In Figure 3.3 the refinement of the vertex A of ESG; is given as
ESG,. ESG; is the resulting refinement of ESG;. Note that the pseudo vertices [
and / of ESG; are not included in ESGs3.
More precisely, ESG; is given as V;={A, B, C}, E;={(A, B), (A, C), (B, C), (C,
B)}. In the refinement, i.e., ESG, of A, the predecessors and successors are
N (v)={}, N'(v)={B, C} and the refinement of ESG, is given by V,={U, V,
Wi, E=~{(U, V), (U, W), (W, V), (V, W)}, S(ESG)={U} and TTESG,)={V, W}.
The resultant ESG; is represented by
V=V, o\ {v}={A,B, C} U {U, V, W} \ {A}={B, C, U, V, W} and
E3 = E] (o EZ o Epre (o Epost \ E]replaced

={(A,B),(A, C),(B,C),(C,B); w{(UW),UW), VW), WViu{}u

{(V, B), (V.C), (W, B), (W, C)} \ {(A, B), (A, C)}
= {C()B; C). (C, B), (U V), (U, W), (V, W), (W, V), (V, B), (V, C), (W, B), (W,

The complement of an ESG, denoted by ESG , includes all the edges not in-
cluded in the ESG, but with no new entry or exit edges. The complement of the
ESG in Figure 3.1 appears in Figure 3.4.

Definition 3.3 (Inversion): The inverse (or complementary) ESG is then defined
as ESG=(V,E,=Z, ') with E=VxV\E.

3.1 Formalization 19

Figure 3.4: ESG — Complement of the ESG given in Figure 3.1

Finally, the completed ESG, referred to as CESG, is constructed as the super-

position of the ESG and its complement ESG . For example, superposition of the

ESG in Figure 3.1 and its complement in Figure 3.4 leads to a CESG shown in
Figure 3.5.

Definition 3.4 (Completion): For an ESG=(V,E,=,I"), its completion is de-
fined as ESG =(V,E,5,I") with E=EUE.

Figure 3.5: CESG — Completed ESG of the ESG given in Figure 3.1

Figure 3.5 illustrates ESG , which can systematically be constructed in three
steps:

* Add arcs in the opposite direction wherever only one-way arcs exist.

* Add self-loops to vertices wherever none exist.

* Add arcs between vertices wherever no arcs connect them.

ESG (the inversion of the ESG) consists of arcs that will be added to the ESG

to construct the ESG (completion of the ESG).

20 Event Sequence Graphs

Interaction patterns implicit in an ESG, ESG, and CESG, can also be ex-
pressed in terms of a regular expression [Pra97, Sal69; Sha80]. For example, the
following regular expression

r=A(A'B+C) B

captures all interaction patterns implicit in the CESG in Figure 3.5. The expres-
sion indicates that A can either be followed by a pattern of a sequence of one or
more events of A followed by B or by the event C and, furthermore, this pattern
can recur multiple times. Finally, the expression is terminated by the event B.
Note that Kleene’s star operation “*”, which is not used in this example, indicates
an arbitrary number of occurrences, including the empty sequence. Note also that
a CESG and the corresponding regular expression capture, respectively, all valid
and invalid sequences of events.

Let R denote the regular set denoted by the regular expression . Given a sys-
tem M and an ESG M, that models a set of interactions between the user and M, it
is referred to the corresponding regular expression as 7(M,) and the regular set as
R(M.). Thus R(M,) denotes a possibly infinite set of strings, or event sequences in
the present context, over the alphabet V. Often, it is a finite set of ESGs that model
all interactions of concern with M. R(M) denotes the set of all interactions mod-
eled by the ESGs in this set. It is easy to obtain R(M) as

R(M,)URM,,)U..UR(M,) given the n ESGs M, M,,,..,.M,, that model

the behavior of M.

ESGs are comparable to the Myhill graphs [Myh57], which are also adopted as
computation schemes [[an60], or as syntax diagrams, e.g., as used in [JW74] to
define the syntax of Pascal. The difference between the Myhill graphs and the
ESGs as introduced here is that the symbols, which label the nodes of an ESG, are
interpreted not merely as symbols or meta-symbols of a language, but as opera-
tions on an event set (see also Event Sequences [Kor96]). A flexible visualization
at different abstraction levels is given through view graphs [Gos02].

3.2 Modeling Functions and Malfunctions

The term system function, or simply function, are used to refer to the correct be-
havior of the SUT while the term malfunction, or dysfunction, refers to its incor-
rect behavior. Using the event terminology above, functions and malfunctions can
be represented as regular expressions over the set V.

3.2 Modeling Functions and Malfunctions 21

For a system M, event sequences over V' that belong to R(M,) denote system

functions, while R(M,) denote malfunctions. Let I denote the set of system func-
tions and D the set of system malfunctions, where

FcR(M,)andD c RIM,).

Let 2 be the set of all event sequences over V, then 2 represents the union of

all functions and malfunctions given by R(M,)UR(M,). Thus, the complement
of R(M,) is R(M,)=X"\R(M,)=R(M,)ORM,)\R(M,).

To test a system, one generally produces meaningful test inputs and the list of
corresponding expected system outputs. Accordingly, a test represents the exe-
cution of the SUT and comparison of the outcome with the expected. When the
test results are in accordance with the test expectations, the test succeeds other-
wise it fails. Some nodes in an ESG represent environmental events, e.g., user in-
puts lead to expected system responses, which are also considered as events.

A sequence of n consecutive edges is an event sequence (ES) of length n+1,
giving an (n+1)-tuple of events.

Definition 3.5 (Event Sequence): Let V, E be defined as in Definition 3.1. Then
any sequence of vertices <v0,...,vk> is called an event sequence (ES) if

(vi,viy)€ E, fori=0,...,k—1.

Note that the pseudo vertices /, / are not included in the ESs. An ES = <v[,vk>

of length 2 is called an event pair (EP), i.e., each edge of the ESG can be consid-
ered as an EP. Accordingly an event triple, event quadruple, etc. can be defined.
Furthermore, « (initial) and @ (end) are functions to determine the initial ver-

tex and end vertex of an ES, e.g., for ES= <v0,...,vk>, initial vertex and end vertex
are a(ES)=v,, o(ES)=v,, respectively.

Finally, the function /(length) of an ES determines the number of its vertices.
In particular, if /(ES)=1 then ES = <vi> is an ES of length 1.

Note that the pseudo vertices / and / are not considered in generating any ESs.
Neither are they considered to determine the initial vertex, end vertex, and length
of the ESs.

22 Event Sequence Graphs

Example 3.3: For the ESG given in Figure 3.1, BCBC is an ES of length 4 with
the initial vertex b and end vertex C.

A complete ES (CES) starts at an entry of the ESG and ends at an exit, i.e., it
represents a walk through the ESG. The set of the CESs specifies the system func-

tions F. Alternately viewed, the CESs constitute legal words of the regular set de-
fined by an ESG.

Definition 3.6 (Complete Event Sequence): An ES is a complete ES (or, it is
called a complete event sequence,CES), if a(ES)zf € 5 is an entry and

a)(ES)zyeF is an exit.

Example 3.4: ACB is a CES of the ESG given in Figure 3.1.

CESs represent walks from the entry of the ESG to its exit realized by the
form (initial) user inputs— (interim) system responses — ... — (final) system re-
sponse.

Note that a CES may invoke no interim system responses during user-system
interaction, i.e., it may consist of consecutive user inputs that lead to the exit.

Analogous to the notion of EP, faulty (or illegal) event pairs (FEP) are intro-

duced as the edges of the corresponding ESG .

Definition 3.7 (Faulty Event Pair): Any EP of the ESG is a faulty event pair
(FEP) for ESG.

Example 3.5: CA of the given ESG in Figure 3.4 is a FEP.

Further, an EP of the ESG can be extended to a faulty, or an illegal, event tri-
ple by adding a subsequent FEP (if there exists one) to this EP, e.g., AB and BB
of Figure 3.5, resulting in ABB. Thus a faulty event triple consists of three con-
secutive nodes in an ESG where the last two nodes constitute an FEP. In general,
a faulty event sequence (FES) of the length n consists of n-1 events that form a
(legal) ES of length n-2 and of two events at the end that form an FEP.

3.2 Modeling Functions and Malfunctions 23

Definition 3.8 (Faulty Event Sequence): Let ES =<v0,...,vk> be an event se-
quence of length k+1 of an ESG and FEP = <vk,vm> a faulty event pair of the
corresponding ESG . The concatenation of the ES and FEP then forms a faulty

event sequence FES = <v0,__qvk , vm> .

Faulty event sequences have only one FEP at its end because of a simple rea-
son: in the error state in which the system should lead it is not observable what
kind of system changes have been evoked, if any. Thus, it is essential to reset the
system before triggering another FEP. Error states are also not distinguished
which lapse a superposition of FEPs, i.e., conducting more than one FEP immedi-
ately after another.

Example 3.6: For the ESG given in Figure 4, BCA is an FES of length 3.

Definition 3.9 (Faulty Complete Event Sequence): An FES is complete (or, it is
called a faulty complete event sequence, FCES) if & (FES)= ¢ € & isanen-

try. The ES as part of a FCES is called a starter.

Note that Definition 3.9 explicitly points out that a FCES does not finish at an
exit, unlike a CES that must finish at an exit.

Example 3.7: For the ESG given in Figure 3.5, the FEP CA of the ESG can be
completed to the FCES ACBCA by using the ES ACBC as a starter. Note that the
[is not included in the FCES as it is a pseudo vertex.

The starter ACBC in Example 3.7 is arbitrarily chosen, and hence the varia-
tion in length of an FCES is always attributable to starters prior to this special
FEP under consideration. The result is then FCESs of various lengths. Thus, the
“length” in the test process primarily relates to the CESs.

Given an ESG e, faulty CESs (FCESs) can be constructed systematically using
FEPs as follows.

(a) An FEP that starts at the entry of e is also an FCES.

(b) An FEP fthat does not start at the entry of e is not executable
and is extended by adding suitable prefixes. Each ES that starts
at the entry of e and ends at the first symbol of fis prefixed to f

24 Event Sequence Graphs

and the resulting sequence becomes an FCES. Such prefixes are
referred to as starters.

Note that the attribute “complete” in FCES expresses only the fact that an FEP
might have been “completed” by means of an ES as a prefix to make it executable
(otherwise it is not complete, i.e., not executable). Thus, an FCES is an FES that
starts at the entry node but fails to reach the exit node. For a given SUT, the set of
FCES is referred as the set V.

3.3 Fault Model

This approach assumes that a specification is given describing the functional sys-
tem tasks to construct appropriate ESGs, in accordance with the user expectations.

Definition 3.10 (Test Case): A fest case is an ordered pair of an input and ex-
pected output of the SUT. Any number of test cases can be extended to a fest set.

Since a CES is supposed to successfully run the system it can be used as a test
case. The test inputs are thereby determined by the events and the expected out-
puts as the system response that has been reached.

Definition 3.11 (Fault): A test fails if the CES starting at the entry node
(i) cannot reach the exit node due to a failure, e.g., system crash (sequencing
fault), or
(i1) reaches the exit node, but does not deliver the expected outputs (functional

fault).

Accordingly, a FCES is supposed to cause a failure, or if there is an exception
handling mechanism [Goo75, RLT78], an error message about the impairment of
the events; otherwise a sequencing fault occurs. In this context exception handling
is not used concerning any specific programming languages but rather in general.
A sequencing fault can also occur in the starter portion, i.e., in the ES as the prefix
of the FCES. FCES-based functional faults do not make any sense as they are
supposed to exclude the expected behavior of the system. This fault model as-
sumes that there is no user error, i.e., upon a faulty user input the system has to in-
form the user, and, wherever possible, point him or her properly in the right direc-
tion in order to reach the anticipated desirable situation. Due to this requirement,

3.4 Handling Other Features 25

the complementary view was introduced to consider potential user errors in the
modeling of the system (see also [Gau95, KPY99]).

Although the fault model is very simple and makes clear how the oracle prob-
lem is handled: a CES-based test case is supposed to succeed a test by reaching
the exit node whereby a FCES-based one passes the test when the system indicate
a fault. In spite of its simplicity, the fault model is sufficiently powerful to guaran-
tee revealing all sequencing faults, provided that ESs and FCESs to be covered are
sufficiently long (Sections 4.3.1 and 4.3.2). The approach cannot, however, guar-
antee to detect all functional faults, because in case a test succeeds, the user must
validate that the expected output has been obtained.

3.4 Handling Other Features

3.4.1 States and Outputs

Traditional finite-state automata (FSA) consist of states and transitions labeled by
inputs, and in the case of a Mealy machine, also outputs. While an ESG is a finite,
memoryless, device, in the sense that it consists of a finite set of nodes and verti-
ces, the transitions are unlabeled. Merging the states and inputs/outputs of the
FSA to derive the corresponding ESG considerably simplifies the fault modeling.
As an example, the ESG of Figure 3.1 is represented as an FSA (Figure 3.6(a))
which then is completed by an error state (Figure 3.6(b)). Figure 3.5 is then com-
pared with Figure 3.6(b) in order to illustrate the fault modeling features in FSAs.

«-T- &
_error ,<--

-

---"B.C

(a) FSA which is equivalent to the ESG (b) Completed FSA
of Figure 3.1

Figure 3.6: Completed FSA of Figure 3.1, leading to a total of 7 edges

26 Event Sequence Graphs

If the underlying ESG has n vertices, the corresponding CESG has at most

n” edges that connect each of the n vertices with every other vertex [Wes96]. The
ESG in Figure 3.1 has three events, leading to a total of 9 edges (3 = 9) of the
CESG in Figure 3.5, without counting the entry and exit edges. Assuming that the
corresponding FSA in Figure 3.6(a) has four states and an input alphabet of three
symbols, A, B and C, the corresponding, completed FSA is given in Figure 3.6(b)
with an extra state “error”. For the sake of simplicity, edges are allowed to be as-
sociated with multiple inputs, e.g., with B,C. Evidently, a completed FSA with n
states and an input alphabet of the cardinality m hasm-n edges (without counting
the entry and exit edges). Thus, the example of the completed FSA in Figure 3.6
has a total of 12 edges (3-4 = 12); with the edge labeled with two inputs counted
as a double edge. The approach presented in this thesis is different from the finite-
state based approaches, in that ESGs are based on a finite sequence of events
rather than states, and therefore disregards the detailed internal behavior of the
system. Hence, an ESG is a more abstract representation compared to a state tran-
sition diagram of a FSA.

3.4.2 Handling Context Sensitivity

When using ESGs to model an application, e.g., a graphical user interface, there is
often a need for using the same command, or the same icon, for similar operations
in different contexts or in different hierarchical levels of the application. An ex-
ample is the operation delete used for deleting a symbol, a record, or even a file.
In such cases, the system usually carries out the proper action using the context in-
formation. The approach introduced, however, eliminates the need for being ex-
plicit about the hierarchy information in abstracting the real system into an ESG
model.

(D @lg\}@c

Figure 3.7: Interaction ambiguities caused by the double occurrence of A

3.4 Handling Other Features 27

As an example, Figure 3.7 depicts an ESG that has two different nodes (indi-
cated by shading) with the same label A and therefore, can be initiated or triggered
by the same input A. While constructing the EPs and FEPs, and accordingly the
CESs and FCESs, one needs to differentiate between the node A that leads to B or
C, and the node A that can be reached via B and leads only to C. This ambiguity
can be resolved simply by indexing, for example, A; identifying the first appear-
ance of A, and A; identifying the latter one. This indexing implies the syntactical,
or contextual, position and can help with the reconstruction of different hierarchi-
cal levels that have been “flattened” in the course of modeling.

3.4.3 Extension of the Fault Model

Based on past work related to fault modeling [BG91, DLS78, DMMO01, DO91,
EB84, FMMD94] and denoting inputs, outputs, states, or transitions as elements,
the following fault model is obtained.

» Omission error (o-error) — an element has been omitted.

= [nsertion error (i-error) — an element has been inserted

= Corruption error (c-error) — an element has been corrupted.

Note that a c-error can be represented by an o-error followed immediately by
an i-error, with a different element being inserted for the omitted element.

When applied to the elements of a Mealy automaton, these hypotheses are ca-
pable of delivering test cases to detect a variety of defects, e.g., whether an edge is
missing as a result of a defect of the next state function, or if an output is missing
or corrupted, since the output function does not work properly, etc. [Gil62,
Glu63]. The hypotheses can be extended from single errors to multiple (n) errors
[EB84]:

» o"-errors — n elements have been omitted.

» ["-errors — n elements have been inserted.

» ("-errors — n elements have been corrupted.

Finally, to represent arbitrary types of faults within the context of a finite-state
model, an appropriate combination of these hypotheses is necessary, e.g., “a tran-
sition is forgotten, or inserted, or two transitions have been interchanged” can be
represented by o+i” +c, where “+” represents the logical operator for “(exclu-
sive) or”. The described fault model can generate many classification schemes for
coverage, based on, for example, [CBCH+92, MS03, OLAAO03].

This extension can also be applied to ESG-based modeling, and enables, in
turn, a precise assignment of severity levels to undesirable events in accordance
with experience and judgment of the tester (see Section 5.8).

28 Event Sequence Graphs

3.5 Summary

Event sequence graphs (ESG) visualize human-machine interaction in a formal,
but nevertheless lucid and easy to understand way. It is clear that such a represen-
tation disregards the detailed internal behavior of the system, which is given by
means of its different states and, hence, an ESG is a more abstract representation.
Furthermore, the ESG representation is adequate first for the complementary view
and thus for a precise fault model. Second, the notion of refinement, as introduced
in this chapter, strongly supports to model and analyze also even very complex
systems by hierarchically decomposing them.

4 Test Process, Test Generation and Test Execu-
tion

In this chapter the focus is on test generation from an ESG model. The method de-
scribed in this section uses ESGs and their complements as inputs and primarily
generates a test set that is complete with respect to a model-based coverage crite-
rion introduced. Along with this, algorithms and results known from graph theory
are adopted and extended to minimize the test set constructed, considering also
structural features of the SUT. Parts of this chapter have been published in
[BB04].

4.1 Objectives

As already mentioned when discussing the fault model (Section 3.3), a CES, by
definition, is expected to lead a SUT to a desirable state, and hence it may be
viewed as a test input against which the SUT is expected to produce a correct out-
put. The generation of CESs is one of the objectives of the test generation proce-
dure described. The other objective is to generate FCESs from the complement of
ESGs that together model the whole system behavior — both the desirable and the
undesirable parts. Upon the input of an FCES, the SUT is expected to transfer it-
self temporarily into an error state and might invoke a fault detection/correction
procedure, provided that an appropriate exception handling mechanism has been
implemented. Thus, while CESs are used to test for the correct behavior of an
SUT, the FCESs are used to check for the correctness of exception handling.

29

30 Test Process, Test Generation and Test Execution

A test generation algorithm is sought that, given an ESG and the correspond-
ing CESG, generates tests that satisfy the following coverage criteria.

Definition 4.1 (Coverage Criteria):

(a) Cover all event pairs in the ESG, and
(b) Cover all faulty event pairs of the CESG.

Note that a test set that satisfies the first of the two criteria above consists of
CESs while the one that satisfies the second consists of FCESs. Thus, all transi-
tions in the ESG and CESG will necessarily be covered by the CESs and FCESs,
respectively [Bel01, BD97]. However, this criterion is more powerful than the
transition or node coverage criterion [OLAAO3] as, in addition, it requires the
coverage of pairs of nodes in the ESG and its corresponding CESG, thus the cov-
erage of the FEPs. Later in Section 4.3.3 it is shown how this pair-wise coverage
can be generalized to n-tuple, n >2, coverage and the cost and benefits of such an
extension. Moreover, Case Study 1 (Section 5.5) demonstrates the fault detection
capability of FCESs.

It is obvious that there exist a large number of solutions to the test generation
problem as stated above. For example, when an ESG has a loop, one could obtain
a long chain of events that constitute a CES. This observation leads us to impose
the following additional constraints on the test generation process.

Definition 4.2 (Constraints):

(a) The sum of the lengths of the generated CESs should be minimal.
(b) The sum of the lengths of the generated FCESs, should be minimal.

The constraints on lengths of the tests generated allow for a reduction in the
cost of test execution. One might argue that minimizing test length might have an
adverse effect on fault detection. While this is true in general, the experiments
show that the effect is minimal. Further, the coverage criteria can be made more
powerful by increasing the value of »n in the n-tuple coverage to be obtained
thereby further reducing any negative effect of reducing the length of tests on the
fault detection effectiveness.

The set of CESs that satisfies (Definition 4.1(a)) and (Definition 4.2(a)) for a
given ESG is referred to as the minimal spanning set for the coverage of event se-
quences of ESG (MSCES). An MSCES is a complete and minimal set of test cases

4.2 Test Process 31

aimed at exercising all event-sequences of a given length and related to the desir-
able behavior of the SUT. Similarly, the set of FCESs that satisfy (Definition
4.1(b)) and (Definition 4.2(b)) is referred to as the minimal spanning set for the
coverage of faulty event sequences (MSFCES). A MSFCES is a complete and
minimal set of test cases aimed at exercising the SUT against faulty input se-
quences that test the exception handling behavior of the SUT.

4.2 Test Process

Once the tests have been constructed, they are input to the SUT. In case a CES is
input, it must be checked if the system behaves as expected on a correct input. In
the case an FCES is input, it must be checked if the system is able to recover from
faulty inputs. The lack of a system’s ability to respond as desired to an FCES is
considered as a lack of robustness. When an FCES is input, an undesirable behav-
ior might occur, for example, because an exception handler is missing or incor-
rectly implemented.

The test process is summarized by the given Algorithm 4.1. The approach as-
sumes that the system is modularly structured, e.g., having a set of well-defined
functional tasks f,...,f, given by the specification. Each of these tasks represents a
system response and can be modeled by a set of ESGs which are constructed prior
testing.

A major problem is the determination of the correct (i.e., desirable) and faulty
(i.e., undesirable) behavior, also known as the oracle problem [Bin00, Ham94].
The present approach handles the oracle problem effectively by embedding the
expecting behavior within the CES itself. Recall that both types of events, from
the environment and responses generated by the system, are a part of a CES.

The coverage-oriented test process of the approach leads to test cases which
exercise the specified functions of the implemented SUT with the goal to cover
these functions. This coverage must be, of course, economical in terms of the
number of test cases. Therefore, a stopping rule (test termination) of the test case
generation is needed. This is given in the Algorithm 4.1 by the coverage of the
event sequences of increasing length, which is determined by analyzing the
model.

32

Test Process, Test Generation and Test Execution

Algorithm 4.1 (Test Generation and Execution):

Input: A set of well defined functional tasks f,...,f, represented by appropri-

ate ESGs with:
n := number of the functional tasks of the system
length = required length of the event sequences to be covered

Output: A test report of failed and succeeded test cases

1

N

o U W

10

11

FOR i:=1 TO n DO
BEGIN

Generate ESG
FOR k:=2 TO length DO
BEGIN
Cover all ESs of length k by means of CESs
subject to minimizing the sum of lengths of
the CESs //Section 4.3.1
END
Cover all FEPs by means of FCESs subject to
minimizing the sum of the lengths of the FCESs
//Section 4.3.2
END
Apply the test set given by the selected CESs and
FCESs to the SUT.
Observe the system output to determine whether
the system response is in compliance with the
expectation.

4.3 Test Generation and Execution Algorithm

In this section the algorithms used for the generation of CESs and FCESs is
sketched given an ESG and its complement. Algorithms presented here are exten-
sions of the well-known algorithm for solving the Chinese Postman Problem
(CPP) [EJ73].

A solution to the CPP is a minimum length closed walk that covers each edge
of the given graph at least once. A solution to this problem for a given ESG satis-

4.3 Test Generation and Execution Algorithm 33

fies the first constraint in Definition 4.2. However, such a solution might fail to
satisfy the first criteria in Definition 4.1 which requires that all event pairs be also
covered. It is the satisfaction of Definition 4.1 and its generalization that requires
an extension to the algorithm for solving the CPP. A similar extension is also
needed for generating FCESs from CESG.

4.3.1 Minimal Spanning Set for the Coverage of ESs

As mentioned earlier in Chapter 3, a CES represents a legal walk, traversing the
ESG from its entry to the exit. Given an ESG e, a complete legal walk contains
each EP in e at least once. A complete legal walk is minimal if its length cannot be
reduced without changing it to an incomplete legal walk. A minimal legal walk is
considered ideal when it contains every EP exactly once.

Legal walks can be generated easily for a given ESG as CESs. It is not, how-
ever, always feasible to construct a complete or an ideal walk. Using results from
graph theory [Wes96], MSCESs can be constructed as follows:

(1) Check whether an ideal walk exists.

(i1) If not, check whether a complete walk exists and construct a minimal one.

(ii1)If there is no complete walk, construct a set of walks such that (a) all EPs

are covered and (b) the sum of the lengths of all walks is minimal.

For each of the three steps Figure 4.1 includes a corresponding ESG which il-
lustrates different steps of the construction of MSCESs.

1)
e‘\ Q MSCES = Ideal walk = {ACABCBD}
(D) % O
i)
’ ’ e\ e MSCES = Minimal legal walk =
o e‘e o {ABCBACBD}

iif)
’e\ e MSCES = {ACBC, ABABD}
0 @‘e)

Figure 4.1: Construction of MSCESs for different ESGs

34 Test Process, Test Generation and Test Execution

The MSCES problem introduced here is expected to have a lower degree of
complexity than the Chinese Postman Problem as the edges of the ESG are not
weighted, i.e., the adjacent nodes are equidistant. In the following the results rele-
vant to the calculation of test costs are summarized and that make the test process
scalable [Dre98].

An algorithm described in [Thi03] to solve the CPP determines a minimal tour
that covers the edges of a given strongly connected graph. Transformation of an
ESG into a strongly connected graph is illustrated in Figure 4.2. Addition of a
backward edge, indicated as a chain dotted arrow from / to /, transforms the ESG
in Figure 4.2(a) to a strongly connected graph in Figure 4.2(b).

(a) An example ESG (b) Transferring walks into tours and
balancing the nodes

Figure 4.2: ESG transformation for the coverage of ESs

The labels of the vertices in Figure 4.2(b) indicate the balance of these vertices
as the difference between the number of incoming edges and the number of the
outgoing edges. These balance values determine the number of additional edges
that will be identified by searching the all-shortest-paths and solving the optimiza-
tion problem. The problem can then be transformed into the construction of an
Euler tour for this graph [Wes96]. This tour may have multiple occurrences of the
backward edge indicating the number of walks.

Example 4.1: For the ESG given in Figure 4.2(a), the minimal tour (based on
Figure 4.2(b)) and the minimal set of the legal walks (i.e., CESs) covering the EPs
is given by:

Minimal Tour = [ACBCJ[ABABD]J,

MSCES = {ACBC, ABABD}

4.3 Test Generation and Execution Algorithm 35

Note that no entire walks exist. Therefore, an ideal walk cannot be con-
structed.

It is obvious that a large number of events can exist for large systems resulting
in a large number of nodes. By means of the introduced refinement (see Definition
3.2), the system can be divided into several ESGs to reduce the nodes and
therewith the calculation period of the algorithm. But to fulfill the coverage crite-
ria in Definition 4.1, the additional EPs of a refined vertex also have to be consid-
ered for test generation. Therefore it is claimed that at least one CES for each en-
try and exit node as an initial and end vertex respectively has to exist. This prob-
lem is already be solved by considering the pseudo vertices / and /.

In Algorithm 4.2, ¢ and o denote the pseudo nodes of the ESG, the symbol :=
the assignment command. Given an event ve V, diff(v) denotes the number of
predecessor events of v minus the number of its successor events, which enables
the construction of the bags (or multisets) 4, B in the FOR-loop. The notation

[] for bags and U for bag unions are introduced. They can be defined informally
as follows. For instance, if diff{v)=3 in the first iteration step, assuming that A is

initially empty, the bag A will consist of three instances of v, i.e., A = [v, v,

v] after the assignment there. Note that [v, v. v] #{v}, because the two entities

on either side of the inequality sign # are of different types; on the LHS is a bag
(with three instances of v), whereas on the RHS is a singleton set with one ele-

ment v. Turning to U, note that [v, v v] v [v] = [v,v v,v] .

Theorem 4.1: MSCES can be constructed in time O(|V/]°)

Proof (sketched; see also [Thi03]): The shortest paths from one node to all other
ones can be determined by a depth-first-search in O(|E|+|V]), as ESG under con-
sideration is an unweighted graph. Furthermore, because |E[>>|V]+1 holds for a
strongly connected graph, the complexity can be approximated to O(|E|). Result-
ing in O(|V]*|E]) for the shortest path of all nodes to all others. The Hungarian Al-
gorithm that solves the assignment problem has the complexity O(|/]’) and the al-
gorithm next to determine the Euler-Tour has the complexity O(|E|*|V]). Thus, the
total complexity is determined by O(|V|*|E|) + O(7)) + O(E[*|V]) = O(V). O

36 Test Process, Test Generation and Test Execution

Algorithm 4.2 (Generation of MSCES):

Input: ESG=(V, E, £ I); =, =]
Output: MSCES

1 add arc(ESG, (c,¢g));

2 bags A, B, M := [1;

3 set MSCES := J; //empty bags & set
4 FOREACH node veV U {o,eg} DO

5 BEGIN

6 IF diff(v) > 0 THEN

7 FOR i:=1 TO diff (v) DO

A =AU [V];
IF diff(v) < 0 THEN

o]

10 FOR i:=1 TO diff(v) DO

11 B :=BUY [v]

12 END;

13 m := |A|] = |BJ; //cardinality
14 D[1 .. m][1l .. m]; //distance matrix D
15 FOREACH node veA DO

16 compute shortest paths(v,B,D);

17 M := solveAssignmentProblem (D) ;

18 FOREACH (i, j)eM DO

19 BEGIN

20 Path := get shortest path(i,J);

21 FOREACH arc eePath DO

22 add arc (ESG, e)

23 END; B

24 EulerTourList := compute Euler tour (ESG);

25 start := 1;

26 FOR i:=2 TO length (EulerTourList)-1 DO
27 BEGIN

28 IF (getElement (EulerTourlList,i) = o) THEN

4.3 Test Generation and Execution Algorithm 37

29 MSCES := MSCES U getPartiallist(
EulerTourList,start,i);

30 start := i+l

31 END;

32 RETURN MSCES;

4.3.2 Minimal Spanning Set for the Coverage of FESs

In comparison to the interpretation of the CESs as legal walks, by definition ille-
gal walks are realized by FCESs that never reach the exit node. An illegal walk is
minimal if the length of its starter cannot be further reduced.

Assuming that an ESG has n vertices and d edges as EPs, then exactly

u=n’>—d edges are the FEPs. Thus, at most # FCESs of minimal length, i.e., of
length 2, are available. These FCESs emerge when the node (nodes) following the
entry node is (are) followed immediately by a faulty input. Accordingly, the maxi-
mal length of an FCES can be n; these are subsequences of CESs with their last
event being replaced by an FEP. Therefore, the number of FCESs is determined
precisely by the number of FEPs. An FEP that represents an FCES is of a constant
length of 2 and therefore cannot be shortened. It remains to be noticed that only
the starters of the remaining FEPs can be minimized, e.g., using the algorithm
given in [Dij59].

Example 4.2: The minimal set of the illegal walks for the graph in Figure 4.2(a)
is

FCES={AA, AD, ABA, ACA, ACC, ACD, ABDB, ABDA, ABDD}

While constructing the MSCESs, it is taken into account the ESs that are used
to form starters to construct MSFCESs. The ESs used as starters need not be cov-
ered by additional CESs. This can help save costs if the test budget is limited, as is
often the case in practice.

The determination and specification of the CESs and FCES should ideally be
carried out during the definition of the user requirements, often long before the
system is implemented. They are then a part of the system test specification. Cer-
tainly, CESs and FCESs can also be produced incrementally at any later time,
even during testing.

38 Test Process, Test Generation and Test Execution

4.3.3 Generating Event Sequences with Length > 2

A phenomenon in testing interactive systems that most testers seem to be familiar
with is that faults can be frequently detected and reproduced only in some context.
This makes a test sequence of a length>2 necessary since repetitive occurrences of
some subsequences are needed to cause a failure to occur/recur.

Consider the following scenario: based on the ESG given in Figure 4.3, the
tester assumes that the EP given by BC always reveals a fault, no matter if exe-
cuted within ABC, ABABC, or ABDCBC,; i.c., the test cases containing BC al-
ways detect the fault in any context. In this case, the fault is said to be a static one,
as it can be detected without a context. Furthermore, the same scenario (so the as-
sumption) demonstrates that the EP BA reveals another fault, but only in the con-
text of ABCBAC, and never within ABAC, or ABACBDC, etc. In this case the
fault is said to be a dynamic one.

Figure 4.3: Static faults vs. dynamic faults (discussed events are shadowed)

Such observations clearly indicate that the test process must be applied to
longer ESs than 2 (EPs).

Therefore, an ESG can be transformed into a graph in which the nodes can be
used to generate test cases of length > 2, in the same way that the nodes of the
original ESG are used to generate EPs and to determine the appropriate MSCES.

Figure 4.4 illustrates the generation of ESs of length=3. In this example adja-
cent nodes of the extended ESG are concatenated, e.g., AB is connected with BD,
leading to ABBD. The shared event, i.e., B, occurs only once producing ABD as
an ES of length=3. In case ESs of length=4 are to be generated, the extended
graph must be extended another time using the same algorithm.

4.3 Test Generation and Execution Algorithm 39

© e’t@\y» 0

Figure 4.4: Extending the ESG for covering ESs of length=3

Theorem 4.2: At each transformation, starting with a completed ESG, the number
of edges stepwise increases to [V]*"/ where & is the length of the ES to be covered
with k>2, keN.

Proof (by mathematical induction):

P 2
Initial Step. f =2 ;m - |V|3 §|V|k+I
i

n+l k=n k+1

n 2
Inductive Step. j — 5, ;(|V_|) = |V|2”‘"+1 = |V :|V|

i

n+\2
(:EIM) -

The common procedure embodying this approach is given in Algorithm 4.3.

k+1

k=n+1:

na2 k=n+1
=

40 Test Process, Test Generation and Test Execution

Algorithm 4.3 (Generating ESs and FESs with length > 2):

Input: ESG=(V, E, 5 I); e =[, 0=], ESG’=(V’, E’, =, I"’) with V'=@,
g=[,0=]
Output: ESG'=(V", E’, =", I'"), &'=[, o'=];

1 FOREACH (i,j)eE DO
2 BEGIN
3 addNode (ESG’, (ES (ESG,1) @© o (ES(ESG,3j)));
4 removeArc (ESG, (i,73))
5 END;
6 FOREACH ieV’ DO
7 BEGIN
8 FOREACH je V'’ DO
9 IF(ES(ESG’,1) @ o (ES(ESG’,7j)) =

o (ES(ESG’,1)) @ (ES(ESG’,7j)) THEN
10 addArc (ESG’, (i,73))
11 FOREACH (k,1) with k=¢ DO
12 IF (ES (ESG’,i) =

ES(ESG,1l) @ o (ES(ESG’,1)) THEN

13 addArc (ESG’, (¢’ ,1));
14 FOREACH (k,1) with 1l=c DO
15 IF (ES(ESG’,1i) =

(ES(ESG’,1i)) @ ES(ESG, k) THEN

o
16 addArc (ESG’, (1,0’));
17 RETURN ESG’;

4.4 Exploiting the Structural Features of SUT for Further Reduction of Test
Effort 41

4.4 Exploiting the Structural Features of SUT for Further Re-
duction of Test Effort

The approach has been applied to the testing and analysis of the GUIs of different
kinds of systems, leading to a considerable amount of practical experience
[BelO1]. A great deal of test effort could be saved considering the structural fea-
tures of the SUT. Thus, there is further potential for the reduction of the cost of
the test process.

root
IData
modal ; ; modeless
[Gpentontiodal... | Clase
children children

Figure 4.5: Modal windows vs. modeless windows and an example of an mode-
less opened window

Analysis of the structure of the GUIs delivers the following features:

* Windows of commercial systems are nowadays mostly hierarchically
structured, i.e., the root window invokes children windows that can invoke
further (grand) children, etc.

= Some children windows can exist simultaneously with their siblings and
parents; they will be called modeless (or non-modal) windows. Other chil-
dren, however, must “die”, i.e., close, in order to resume their parents
(modal windows).

Figure 4.5 represents these window types as a “family tree”. In this tree, a uni-
directional edge indicates a modal parent-child relationship. A bidirectional edge
indicates a modeless one.

Because modal windows must be closed before any other window can be in-
voked, it is not necessary to consider the FESs of the parent and children. This is
true only for the FCESs and MSFCES as test inputs considering the structure in-

42 Test Process, Test Generation and Test Execution

formation might impact the structure of the ESG, but not the number of the CESs
and MSCESs as test inputs.

Main window A ’ \'\Modal window

Main window

Modal
Form

Figure 4.6: Modification of the ESG of the example in Figure 4.5 by considering
the modality feature

Thus, similar to the strong-connectedness and symmetrical features [SS97],
the modality feature is extremely important for testing since it avoids unnecessary
test efforts. Figure 4.6 represents the modified ESG, which separates the event
“Modal Form” takes the modality into account that avoids unnecessary FEPs.

Theorem 4.3: The separation of one node of an ESG with |V] nodes leads in
worst-case to | V]+1 test cases to cover all legal and illegal event pairs.

Proof: The total number of edges (including the self-loops) of a digraph with |V
nodes is |V]* which determines the number of total number of legal and illegal
event pairs. Let o be the number of separated nodes with 0<o<|V| before the de-

4.5 Test Configuration and Test Cost 43

composition. After decomposition, the number of nodes of the original ESG is re-
duced by o+1 because a virtual node has to represent the 5+1 nodes that had been
separated. The new ESG possesses then exactly these o+1 nodes. Therefore, after
the decomposition two ESGs exist: the previous one with J edges less plus one
and a new one with ¢ edges. Thus, the number of test cases is given by the func-
tion:

F(V).6)=(V|-6+1) +&* = (v

’5)‘5:1 - f(|V

,5)\52‘” =" +1 0

[V |+1
2

Theorem 4.4: The separation of nodes of an ESG with |V] nodes leads in

2
best-case to 2(@} test cases to cover all legal and illegal event pairs.

Proof: For the function f(|V ,5) = (|V| -0+ 1)2 +6° of the Theorem 4.3 above,

there exists a minimum for 6 = | V2|+1 , because
of(|V]o '
ﬂl—”=—2|V|+45—2 with =2V |+45 -2 =0 = & = /141
06 3
2 2 2
Thus, resulting in f(|V|,5)‘§_M:(|V£+1) +(|V£+1j :2(|V£+lj | i
2

4.5 Test Configuration and Test Cost

The number and length of the event sequences are the primary factors that influ-
ence the cost of the test process. In order to compare the costs of different test
configuration by a case study (see Section 5.5), a precise definition of these no-
tions is necessary.

Definition 4.3 (Test Configuration): A test configuration is defined as a quintu-
ple (I, .#ES, I, #CES,) with

i%27cov?

= /[asthe given maximum length of the ESs to be covered,

max

» #ES, as the number of ESs of length 7, with i = 2, 3, /

ceey max °

44 Test Process, Test Generation and Test Execution

= /. asthe sum of lengths of CESs to cover all ESs of up to a given maxi-

cov

mum length /

max

» #CES as the number of the CESs, and

* [e R asthe weight factor for conducting multiple tests
/ /

max max.

which determine the test costs for ESs as ¥ .= - Z#ESi +Z#ESi 2,

i=2 i=2

and fest costs for CESs as ¥ips =P #CES+I

One could consider the test costs of a test configuration to depend on only the
number of tests; however, this would neglect the length of the tests and the costs
of restart/undo before conducting a new test. The formulae ¥, and ¥ ., have

been introduced to avoid this oversimplification.
The costs formulae ¥, and ¥, in the Definition 4.3 have two terms. The

first term determines the maximum number of ESs (in ¥,¢) and the maximum
number of CESs (in ¥,); the latter is the maximum number of tests to be run.

Thus, this first term reflects the test costs caused by restarting the system before
initiating another test (test multiplicity). However, a single test can cover several
ESs, even of different length. To adjust to a specific situation, the tester can vary
the weight factor . Typically, £ has the value 1 if the tester has no hint about the
multiplicity of a planned series of tests. The weight factor can be greater than 1 in
order to reflect a situation with disproportionate costs for restarting the system be-
fore a new test. The value of £ can be also zero if the costs of the restart process
are negligible.

The second term in the cost formulae for ¥, and ¥, determines total

length of the test sequences (ESs and CESs) that must be run which contribute the
other part of the costs.
For the deployment of these and ¥ ,¢in the case study (Chapter 5), the as-

sumption is made that each event and every restart have the same test costs, i.e.,

B=l.

4.6 Summary 45

4.6 Summary

Based on the test process, the algorithms introduced determine a minimal number
of legal and illegal test cases to fulfill a well-defined coverage criterion. The test
costs are given by the total length of the CESs and FCESs which are necessary for
the coverage. The length of the ESs can be increased stepwise that enables a scal-
ability of the test costs which increase proportional with the length of the ESs to
be covered.

S5 Case Study 1: The RealJukebox - RJB

The case study presented in this chapter demonstrates the ease-of-use of the ap-
proach and validates the effectiveness of the algorithms developed and analyzed
in the previous section. These algorithms were applied to various components of
the public domain software RealJukebox of the RealNetworks in order to generate
tests. There was no access to the source code and no specification of the applica-
tion was available, except an on-line user manual. Hence all ESGs required for
test generation were derived from the GUI of RealJukebox. Parts of this chapter
have been published in [BBW06].

5.1 Objectives

The objective of this empirical study was to investigate the effect of varying

= event-tuple coverage, i.e., length of the ES to be covered, subsequently re-

ferred to as n-tuple coverage, and

= the number of the event sequences
on the fault detection effectiveness of the CESs and FCESs using the algorithms
sketched in Section 4.3 (see [BSH86, WRHO+00]).

The value of n is considered as a contributor to the cost of the test process; the
larger the value of n the more costly the test process in terms of the human effort
spent in administering the test. The fault detection effectiveness of the generated
test set for n=2, 3, and 4, are studied that correspond to, respectively, pair-wise,
triple, and quadruple coverage.

47

48 Case Study 1: The RealJukebox - RJB

5.2 System Description and Model

RealJukebox (RJB) is a personal music management system to build, manage, and
play individual digital music library on a personal computer. Figure 5.1 is a snap-
shot of the RJB interface showing the main menu. At the top level, the GUI has a
pull-down menu with the options File, Edit, etc., to invoke operations. These op-
tions have further sub-options, and so on. There are additional window compo-
nents allowing navigation through the entries of the menu and sub-menus, creat-
ing many combinations and, accordingly, many applications.

Reallukebox

File Edit “iew Contrals Playlistz Tools Sitez Help

@@9009909: 0@ < 4 2o e Q

P CD not loaded (3]
&)] %@ E & -z

Home co Music Guide | &l Tracks Album Genre Adtistidlbum | Plaplists AutoPlaylists
| (=) Home> Play ¢/ Record CD @ » &
= Mo ad
Orgarizer 2| aist I Album: I Genre: I & x

=% Home

BSEF=y / Record CD I H[TrackMName |
~{# Music Guide sert an audio CO>

€D Al Tracks

-8 Group Tracks by

{3} Recently Played Tracks

-, Search

#-{E3 Playlists

[]---& AutoPlaylists

- Radio Tuner

Devices / Starage

g Create CD = »

& 2 ¥ % % |DTrackis]Checked |Requied: 0,0ME Avalable (C:) 1.1... |[reatiukebox central

Check &l
[JCheck Naone

Figure 5.1: Example of a GUI (RealJukebox of RealNetworks)

In the absence of a manufacturer’s system specification, namely, a functional
description of the RJB, the help facilities and the handbook of the RJB are used to
produce the references for construction of the test cases and test scripts, based on
CES as desirable events. Those functions describe the steps as to how to reach
situations the user wants, i.e., desirable events in terms of system functions (re-
sponsibilities). For this case study, 12 different functions of the SUT (Table 5.1)
were identified.

5.2 System Description and Model 49

Table 5.1: System functions as responsibilities of the system to interact with the

user
1. Play and Record a CD or Track 7. Visualization
2. Create and Play a Playlist 8. Skins
3. Edit Playlists and/or AutoPlaylists 9. Screen Sizes
4. Views Lists and/or Tracks 10. Different Views of Windows
5. Edit a Track 11. Find Music
6. Visit the Sites 12. Configure RJB

In the course of the present case study, a set of ESGs was determined for the
RJB. This task was performed manually by studying the online help function, the
user manual, and the GUI of the RJB and identifying distinct functionalities from
a user’s point of view. The complete set of ESGs is found in Appendix A. As an
example, the ESG in Figure 5.2 represents the top-level GUI to produce the de-
sired interaction Play and Record a CD or Track via the main menu in Figure
5.1. The user can load a CD, select a track and play it. One can then change the
mode, replay the track, or remove the CD, load another CD, etc. Figure 5.2 illus-
trates all sequences of user-system interactions to realize the likely operations that
the user might launch when using the system.

Legend:
. Entry

: Loada CD

- Select track
. Play track

: Mode

: Remove CD
Exit

Figure 5.2: The system function Play and Record a CD or Track represented as
an ESG

50 Case Study 1: The RealJukebox - RJB

Each of the correct interactions, denoted by the nodes in Figure 5.2, defines a
system sub-function that must be refined and represented in a corresponding sub-
ESG, as done in Figure 5.3 for the node P (Play track).

The derivation of ESGs required some experience in designing GUIs and an
understanding of how they function. As is common in modeling processes, the in-
teractions that seem most relevant in the diagram are selected and named so as to
reflect the user’s perspective.

The ESGs of Figure 5.3 refine the vertices of the graph depicted in Figure 5.2.
The refinement Select track describes the alternative ways to select a track. Play
track describes the variety of the functions similar to those encountered in an or-
dinary cassette player. The sub-graph Mode describes the different ways to con-
trol the operation, i.e., playing of the tracks. Any of the design levels can be used
to generate CESs, thus test cases. As refined levels include more information,
more test cases can be generated by analyzing those refined ESGs.

S: Select track P: Play track

Figure 5.3: Refinement of the vertices S, P and M of the ESG in Figure 5.2

Each of the vertices of an ESG in Figure 5.2 and Figure 5.3 represents user in-
puts which interact with the system, leading eventually to events as system re-
sponses that are expected, i.e., correct situations. Thus, each edge of the ESG
represents a pair of subsequent legal events which was defined as an event pair.

5.3 Test Representation 51

5.3 Test Representation

The nodes of an ESG are interpreted as operations on identifiable objects that can
be controlled/perceived by input/output devices, i.e., elements of WIMPs (Win-
dows, Icons, Menus, and Pointers). Thus an event can be a user input (an element
of the set Ve, see Section 3.1), or a system response (an element of the set Vi),
leading or triggering interactively to a succession of user inputs and system out-
puts. Accordingly, a chain of edges from one vertex of an ESG to another is real-
ized by sequences of the form

initial user input(s)— (interim) system response(s) — (interim) user in-
put(s) > ... > (final) system response

which defines an ES as introduced in Chapter 3. An ES may consist of no interim
system responses but only user inputs and a final system response as, for example,
in Figure 5.2. Note that these event sequences are similar to those used by White
et al. [WAOO].

Given the ESG in Figure 5.2, test generation begins with an analysis of the
system function Play and Record a CD or Track. This analysis leads to

EP={LS, LR, SP, SM, SR, PS, PP, PR, PM, MP, MS, MM, MR,
RL, RM}

as the set of EPs.

In the next step CESs are generated which cover the set of EPs. As explained
in Section 3.1, CES is a walk obtained by extending the EPs by appropriate pre-
fixes and/or suffixes. The list

CES={ LSR, LR, LSPR, LSMR, LSR, LSPSR, LSPPR, LSPR,
LSPMR, LSMPR, LSMSR, LSMMR, LSMR, LRLR,
LRMR}

gives the CESs as test inputs. For each EP there is a corresponding CES listed
which by definition has to be started with L and finished by R.

Some CESs, e.g., LSR, occur more than once. This is because LSR can be ob-
tained by adding the suffix R to the event pair LS as well as by adding a prefix L
to the event pair SR. Elimination of this redundancy leads to

CESnew={ LSR, LR, LSPR, LSMR, LSPSR, LSPPR, LSPMR,
LSMPR, LSMSR, LSMMR, LRLR, LRMR }.

52 Case Study 1: The RealJukebox - RJB

The new set of the CESs ensures that all EPs are covered. However, it is not
optimized yet using the minimal length criteria given by MSCES.

Next the set of FCESs are constructed. To do so the set of FEPs is examined.
The dashed edges of the CESG in Figure 5.4 represent the FEPs of the function
Play and Record a CD or Track of the RJB. These edges are listed in the set

FEP={ LL, SL, LP, PL, LM, ML, SS, RP, RR, RS }.

Entry

[:
4“\, L: Loada CD
0 G e.e.@.e - » S: Select track
w P: Play track
M: Mode
R: Remove CD
]: Exit

Figure 5.4: CESG (Completed ESG) of Figure 5.2 (dashed lines: FEPs)

Based on the definitions of the FESs and the FEPs, now the FCESs are sys-
tematically established in two forms:
= FEPs that start at the entry are complete test inputs to trigger undesirable
situations, e.g., LL, LP, and LM of the set FEP.
» FEPs which do not start at the entry, e.g., SL, PL, ML, SS, RP, RR, RS
of the set FEP, need prefixes resulting in

FCES={ LL, LP, LM, LSL, LSPL, LSPML, LSS, LSPMRP,
LSPMRR, LSPMRS }.

Together with these test inputs, the test process can be carried out as described
in Algorithm 4.1.

5.4 Test Generation
As mentioned in Section 5.2, a set of ESGs was derived manually by studying the

user manual of the RJB and through a careful examination of its GUI. The ESGs
were input to a test generation tool (see Chapter 8) to generate CESs and FCESs

5.4 Test Generation 53

that constitute the tests for the RJB in this experiment. The tool uses the algo-
rithms sketched earlier and given in Section 4.3. Tests were generated for pair-
wise, triple, and quadruple event coverage.

Two student testers applied the generated tests to the RJIB semi-automatically
using the tools. The testers worked over a period of two weeks, five days a week
and, on average, six hours per day, thus spending a total of 60 person-hours.
These figures result in approximately 5.5 seconds per test. Faults discovered were
noted and analyzed subsequently for their severity.

RJB was tested on two different PCs with different processors in order to de-
tect and filter likely permanent or transient errors within the hardware and/or sys-
tem software in any one of these test environments. An assumption is made that it
is very unlikely for the same system failure to occur in both PCs.

By means of running the tests on two different platforms, random errors are
excluded that cannot be reproduced. Thus, the reported errors are permanent ones
and have been detected on both platforms (and not on only one stochastically).
Furthermore, they are reproducible in an effective manner, provided that the sys-
tem requirements specified in Table 5.2 are fulfilled.

Table 5.2: Different test systems and their equipment

System Require- System 1 System 2
ments of the Manu- (Test Platform 1) (Test Platform 2)
facturer
Operating system Windows NT with Windows NT with Windows NT with
Service Pack 4 Service Pack 4 Service Pack 4
Computer proc- Intel Pentium Intel Pentium Intel Pentium
essing speed 200 MHz 266 MHz 233 MHz
RAM (available) 32 MB 64 MB (9 MB) 64 MB (16 MB)
Graphics 16 bit color video 32 bit color video 32 bit color video
card (800x600 reso- card (1024x768 reso-card (1024x768 reso-
lution) lution) lution)

The studied platforms are described in Table 5.2. Both these platforms fulfill
the system requirements of the manufacturer; thus compatibility and conformance
problems can be excluded. Significant characteristics are taken into account by
considering the different options of run mode that are listed in the system descrip-

54 Case Study 1: The RealJukebox - RJB

tion. The options differ from each other in the RJB settings: AufoPlay acti-
vated/deactivated, AutoRecord activated/deactivated. Any inconsistencies that
might occur during the testing have been carefully analyzed taking adjusted set-
tings of the RJB into account.

5.5 Results

The number of CESs and FCESs depends on the extent of the connectivity of the
ESG under consideration. In the extreme case, when there is a bi-directional edge
between every pair of vertices and self loops at every vertex, only CESs can be
generated, i.e., the set of FCESs is empty.

Table 5.3 depicts the generated number of test cases for each function from
Table 5.1 sorted by length.

Table 5.3: Test cases for the functions in Table 5.1

Length of Function

covered ES 1. 2. 3. 4 5 6. 7. 8 9. 10. 11. 12
2 78 108 41 145 126 167 49 52 7 14 92 35
3 425 358 81 398 358 162 159 114 10 30 206 157
4 1918 1238 115 793 885 23 456 199 10 66 493 740

In Table 5.4 different values are assigned to the weight factor 3 to take differ-
ent levels of costs of resuming the test process after performing a test into account
(see Section 4.5, Definition 4.3). It becomes apparent that the test cost reduction
increases with

* increasing length of covered ES, and

* increasing weight factor
if CESs are used as test inputs instead of ESs because CESs frequently cover sev-
eral ESs of a given length by one single test (see the last column of Table 5.4).

5.5 Results 55

Table 5.4: Test costs of ES and CES and their percentage reduction

CI;i:]relrg;g EfS Weight factor f Test Cost Wgs Test Cost Wcgs Reduction
2 0 938 826 11.94 %

1 1407 985 29.99 %

2 1876 1144 39.02 %

3 0 4706 3384 28.09 %

1 5962 3854 35.36 %

2 7218 4324 40.09 %

4 0 16414 10865 36.00 %

1 19341 11890 38.52 %

2 22268 12915 42.00 %

An overview of faults found subject to their sequence length is illustrated in
Table 5.5 that summarizes the number of detected faults in the ESs to be covered
by the total test cases from Table 5.3. It clearly shows that the detected faults by
covering ESs of length 2 is a subset of the detected faults by covering ESs of
length 3, which is, in turn, a subset of the detected faults by covering ESs of
length 4.

Table 5.5: Overview of faults found, test cases and their distribution over se-
quence length covered

Clgirelrg;g %fs Detected Faults Additional Faults
2 44 +44
3 56 44+12
4 68 56+12

Table 5.6 shows the number of additional faults detected in different functions
in terms of the length of ESs that are to be covered. In Table 5.6, it is interesting
to note that many faults were detected in function 1, and yet not so many faults
were detected in any of the other functions. Most notable were functions 2, 9 and
10, in which no faults were detected at all. First of all, function 1, Play and Re-

56 Case Study 1: The RealJukebox - RJB

cord a CD or Track, corresponds to very high complexity, as can be seen from
the tests required in Table 5.3 and also in Figure 5.2 and Figure 5.3. Yet by far,
the most faults (28) were detected by just ESs of length 2; no other comparable
number of faults is seen by any other function. Also many other functions re-
quired more tests of length 2, but did not discover nearly this many faults (only 5
faults for function 3 is the next largest number of faults for ES of length 2). Func-
tion 2 has nearly as many tests as function 1; but since this is logic to just create a
playlist, there are clearly not as many faults as in actually playing a CD or track.

As for functions 3, 9 and 10, they are of much lower complexity, and require far
fewer tests than function 1.

Table 5.6: Additional faults by function

Length of Function

coveredES) 5 3 4 5 6 7.8 9. 10. 11. 12
2 280 5 2 1 3 3 0 0 0 2 0
3 3 0 021 0 3 2 0 O0 1 O
4 1 0 320 0 1 3 0 O 1 1

Table 5.7 summarizes the length of covered ESs and the corresponding faults,

classified as functional fault and sequencing fault (for Definition 3.11, see Section
3.3).

Table 5.7: Test case costs and detected faults depending on the event length

Length of Detected Detected Total nb. Sequencing Functional
covered ES Faults by Faults Detected Fault Fault
CES by Faults
FCES
2 24 20 44 16 28
3 24+7 20+5 56 16+8 28+4
4 31+4 25+8 68 24+10 32+2

It is worth mentioning that additional 12 transient faults have been found dur-
ing the testing procedure. These faults have been detected randomly and on only

5.5 Results 57

one of the test systems; thus they could not be reproduced on both test platforms
(see Table 5.2). Therefore, they are not included in Table 5.5 and Table 5.6, which
contain only faults that can be reproduced anytime on either platform exercising
the same test case.

The number of sequencing faults detected by test cases of length 3 and 4 in-
creases obviously slower in relation to those of length 2. Since the faults are inde-
pendent, these longer tests should still be executed, if the test budget and time al-
low for this. Another reason why test cases of length 3 and 4 should be executed
is given by the likely severity of the “expensive” faults, i.e., sequencing faults that
can only be detected with these longer, thus more “expensive”, tests. This situa-
tion is simple to explain: the longer the test procedure lasts, the less populated the
remaining faults become, while one might expect to detect more intricate and sub-
tle faults.

Faults

80

Ofunctional fault Esequencing fault

70

60

50

40

30 A

20

32

3

10

0+

n-tuple

Figure 5.5: Detected sequencing faults and functional faults depending on the
event length

58 Case Study 1: The RealJukebox - RJB

Figure 5.5 shows the detected sequencing faults and functional faults with test
length. Generally there are more functional faults than sequencing faults, specifi-
cally for test lengths of 2 and 3. Only at length 4 are there an equal number of
functional faults and sequencing faults (see also Table 5.7).

Faults

80

OCES BFCES
70

60

50

40 -

30

20 1

31

3

10

n-tuple

Figure 5.6: Detected faults by CES and FCES

It is also interesting to note that FCES-based test cases really did deliver ap-
proximately the same number of faults as the CES-based test cases did (Figure
5.6). Again, it is concluded that the reason is a poor design strategy of the GUI
which concentrates on the realization of the desirable events and neglects the han-
dling of the undesirable ones.

Figure 5.7 combines and refines the results found in Figure 5.5 and Figure 5.6.
It can be observed that the tests based on the CESs of length 4 and on FCESs of
length 4 are very beneficial in detecting defects: 19 defects have been detected by
tests based on FCES of length 4 in relation to only 6 based on FCESs of length 2!
Thus, a clear tendency can be observed that an increasing number and length of
CES-based and FCES-based test cases lead to the detection of an increasing num-

5.6 Analysis of the Results 59

ber of defects. Note, however, that Figure 5.7 does not consider the number of
necessary tests, i.e., test costs.

Faults
40
Ofunctional fault Esequencing fault
35
30
15
25
13 19
207110 2 11
6 7
15 1 %
10 18 20
14 14 14 14
5
I L L
2 ‘ S ‘ 4 2 ‘ <] ‘ 4 n-tuple
CES FCES

Figure 5.7: Sequencing faults and functional faults based on CES/FCES, depend-
ing on the event length

5.6 Analysis of the Results

Table 5.8 displays the number of tests generated, total count of faults detected,
and the cost of detecting a fault measured as faults detected per test case. As
shown, a total of 78,611 tests were generated for different n-tuple event coverage
using the CES-based and FCES-based test generation.

Also, a total of 68 faults were detected when the RJB was tested against these
tests. The number of faults detected increased from 44 through 56 to 68 as n was
raised through the values 2, 3 and 4 in n-tuple coverage. While the tests that cover
all event pairs reveal 44 errors, coverage of event triples, and then event quadru-

60 Case Study 1: The RealJukebox - RJB

ples, leads to the detection of only 12 new errors, in each case. As indicated in the
table, there is a decrease in the number of faults detected per test case 0.0104 to
0.001 for n=2 and 4, respectively. Figure 5.8 shows a plot of the cumulative count
of faults detected versus the count of tests generated for n-tuple event coverage.

Table 5.8: Size of the test set and its fault detection effectiveness measured
against n-tuple coverage.

Total count of faults

Event-tuples No. of test cases Total count of faults de- detected per test case
covered (n) tected
(Costs)
2 (pairs) 4,236 44w 0.0104
3 (triples) 10,512 44014+120ew=5610ta1 0.0053
4 (quadruples) 63,863 (44+12)01g12pew=08 0tal 0.0010
80
No. of test cases (x10%) @ Cumulative fault count
70
63,86
60
50
40
68
30 56
20 44
10,51
10
4,23
0 a
2 3 4 n-tuple

Figure 5.8: Number of test cases and the cumulative number of faults detected vs.
length of test cases

5.7 Fault Detection 61

The following observations from the data in Table 5.8 and Figure 5.8 are ob-
served.

= Test cases derived for pair-wise coverage are the most cost-effective when
compared with tests that cover triples and quadruples, respectively.

» A rapid decline in test effectiveness is observed with the increasing length
of the event sequences used as test cases.

* The test cases derived from ESGs show a higher degree of fault detection
effectiveness than those derived from CESGs. This might have been
caused, however, by the fact that the SUT has a good exception handling
mechanism, even though it is not perfect.

The test effectiveness measured in terms of the cost per detected fault does not
strongly correlate with the event-tuple coverage of the test cases derived from
ESGs. The same is true for the tests derived from CESGs. This observation has
cost implications for test management as the length and the number of the test
cases generated directly effect the cost of testing.

The observation above leads to the recommendation that it is cost-effective to
test a system starting with tests derived from the ESGs that cover only the event
pairs. If the cumulative number of detected faults grows slowly, then one might
terminate the test at this point. Depending on the testing budget, one might then
consider generating and executing tests from ESGs that cover event triples and
quadruples. The same incremental approach seems appropriate for testing excep-
tion handling code using tests generated from CESGs.

5.7 Fault Detection

To illustrate the fault detection capability of the approach, the function Play track
is analyzed. This function is represented by the ESG in Figure 5.9 as a refinement
of node P in Figure 5.2 and Figure 5.3.

Some of the detected faults are listed in Table 5.9. The fault detection process
is simple. As an example, to detect fault 1 in Table 5.9, one starts with the Con-
trol option of the Main Menu of the RJB as in Figure 5.3 and sequentially pushes
the button Rec and then the button Rew, or alternatively, the button FF, as shown
in Figure 5.9 as alternative edges labeled with No. 1. The other faults in Table 5.9,
labeled accordingly in Figure 5.9 with fault numbers, can be detected similarly.
Fault numbers caused by an EP are marked by dotted arcs in Figure 5.9.

62 Case Study 1: The RealJukebox - RJB

Jump
Beginning

Figure 5.9: Completed ESG as a refinement of Figure 5.2

A complete list of the faults detected is included in Appendix B, which also
includes the test sequences that reveal these faults. This list includes also the type
of the fault, as classified in Section 3.3.

Table 5.9: Detected faults related to the system function Play track (node P in
Figure 5.3)

No. Detected Faults Test Case

1 While recording, pushing the forward button or rewind Control Record FF
button stops the recording process without a due warn-
ing.

2 Ifatrack is selected but the pointer refers to another ~ SelectTrack Play
track, pushing the play button invokes playing the se-
lected track; i.e., the situation is ambiguous.

5.7 Fault Detection 63

No. Detected Faults Test Case
3 Menu item Play/Pause does not lead to the same effect Control Play/Pause
as the control buttons that will be sequentially dis- Play/Pause

played and pushed via the main window. Therefore,
pushing play on the control panel while the track is
playing stops the playing.
4 Track position could not be set before starting the play Control Play/Pause

of the file. FF Trackposition
Play/Pause
5 Record Shuffle does not activate shuffling, i.e., tracks CheckOne++ Shuf-
will be processed sequentially. fle Record
6 If the track is in Pause and Record button is pushed, = Control Play/Pause
then the track will be played. Play/Pause Record

7 The system jumps to a track that was not selected and Control Play/Pause
terminates the play-back although the selected tracks FF FF FF
have not been completely played.

Upon the detection of a fault, it was analyzed and categorized (sequenc-
ing/functional fault, ES-/FES-based, length). Then the system was restarted, i.e.,
recovered from the error state and the test process continued. Thus, about 432,000
sec were spent to execute 78,611 test cases, resulting in 5.5 sec. per test.

In order to produce approximating curves for the time between failures over
the failure number, well-known software reliability models [Lyu96] have been
deployed. Those models specify among other things the dependence of the failure
process on fault detection. Using the reliability tool CASRE [LN92] it was found
that the models Musa-Okumoto, Musa-Basic, Geometric, and Jelinski-Moranda
correlated well with the data. Note that each of those models is characterized by a
set of (more or less realistic) assumptions, e.g., that failures independently occur,
or perfect debugging, i.e., fixing an error will not create new fault(s), or errors
fixed earlier have a bigger effect than the ones fixed later, etc. [Lyu96]. One usu-
ally has to combine several models in order to compensate the assumptions that
are not suitable for the SUT. For the case study, the best “goodness of fit” could
be achieved by Geometric model, the results of which are depicted in Figure 5.10
and Figure 5.11 for the CESs and FCESs, respectively.

Case Study 1: The RealJukebox - RJB

™ Time between failures: rjb2.dat B 1ol x|

Blot Resubs Display Settngs Copy Help

- [\

e . T 1

Legend:

1 + Row Data] :
wmed-] # Geometric

2 Time between failures — Seconds B i
2 : :

3 Failure number

30004 -+

2000 -1

Time between failures - Seconds

10004 -4

+

T PRI T SR PR, S SO0 N NN JUES RO 8
1 i T i i i
T z z T T z
] 2 5 3 3 3

Failure number

Figure 5.10: Time between failures based on the CESs of Figure 5.9

[Time between failures: rjb2fis.dat oy [o3
Plob Results Display Settings | Copy Help

+ Raw Data

m Geometric

600, L S L R s

1 + Row Data 4
sod-4| # Geometric

{2 Time between failures — Seconds
13 Failure number

[\9)

400,04 -

0Dl 0 s o T e R e e

Time between failures - Seconds

100,

+r

(13 +

g v : .
- : i A :
I T e .w_tm_.m..{tm_m_.t‘ft.?.ﬂ{_ __________ -

3

o4

T
2
i@

100 -4
150 =4 -

Failure number

Figure 5.11: Time between failures based on the FCESs of Figure 5.9

5.8 Defense Mechanism 65

The number of faults in Figure 5.10 and Figure 5.11 is greater than the real
number because the repetitive occurrence of faults could not be eliminated. The
SUT could also not be corrected before testing it further.

In spite of these imprecise data the deployment of the reliability models under
CASRE clearly revealed the following tendency: the test cases based on CESs are
considerably more cost-efficient than the ones based on FCESs, i.e., the test costs
per detected fault based on CESs are lower, indicating the fact that the SUT has a
rudimentary exception handling mechanism, even if not complete.

5.8 Defense Mechanism

Once the system has been transferred into an erroneous state, it cannot accept any
further legal or illegal inputs, because an undesirable situation can neither be
moved to a desirable one, nor can it be transferred into an even more undesirable
one. This level of abstraction ignores fault propagation, whereby faulty events
could lead to other faults, possibly, of greater severity. Therefore, prior to further
input, the system must recover, i.e., the illegal interaction must be undone by
moving the system into a legal state through a backward, or a forward, recovery
mechanism [Goo75, RLT78].

The construction of the FCESs as described in Section 3.2 guarantees that only
their last two symbols (as an FEP) are incompatible, in other words, for the de-
termination of the position in which a correction can take place, backtracking by
only one symbol is necessary. Having backtracked, possible modes of recovery
(i.e., corrections) depend solely on the number of the different symbols which can
then transfer the system into a correct state. In this sense, as an example, the faulty
event sequence SL of the FCES set in Section 5.3 is “less risky” in terms of flexi-
bility in fault correction than the sequence LL. This is because

» [can be transferred to the only two legal event pairs LS and LR after

backtracking to L,
» while SL can be transferred to three legal event pairs SP, SM and SR af-
ter backtracking to S.

Thus, for self-correction, any FCES that includes SL as a FEP represents a
situation which is “less risky” (more desirable) than an FCES of the same length
that includes LL, for example, in order to automatically navigate the user despite
his/her faulty input.

The fault correction capability can be implemented by adopting a conventional
parsing algorithm known in compiler construction [AHU77]. In uncritical cases a

66 Case Study 1: The RealJukebox - RJB

forward recovery might be more convenient, e.g., wherever possible, alerting im-
mediately the user when an FEP is detected, and continue the operation to reach a
safe state.

The extended fault model (Section 3.4.3) can be extremely useful for forming
fault hypotheses that take the individual risk ratios into account. See also Section
6.1 for a safety related view of this notion.

5.9 Discussion

At first glance, it seems that only 68 faults are detected upon executing approxi-
mately 80,000 test cases (Table 5.8) — a huge test effort to detect a relatively small
number of faults, especially compared to the previous experience [BelO1] with the
same approach. However, the following circumstances appear to explain the situa-
tion and to justify the work:

» The algorithms used for determining MSCES and MSFCES (Section 4.3.1
and 4.3.2) have not been considered here as a way of reducing the number
of tests. This is because their use would have concealed the number of
faults detected by any sequence depending on its length, as well as the
number of the individual test cases that would have been covered by a sin-
gle MSCES or by a single MSFCES.

* Due to intensive and extensive deployment over many years, the product
subjected to test is of high quality.

» Given the above, it was encouraging to note that the approach could detect
faults at all in this product. This motivates us to further refine and improve
the proposed approach.

5.10 Summary

A key conclusion is that the approach facilitates a simple, but nevertheless a cost-
effective, stepwise and straightforward test strategy. This is because it enables the
enumeration of test cases (based on the CES and FCES) and, thereby, helps man-
age the scalability of the test process.

6 Considering Safety Aspects

Additional to the GUI-focused case study of the previous chapter, the case study
of this chapter uses an example based on a railway level crossing. The objective is
to demonstrate the versatility of ESG-based approach for modeling and analysis
of complex systems, considering also aspects of safety. This chapter bases of the
work of Nimal Nissanke [ND02] and applies risk graphs to ESGs.

6.1 Risks and Risk Ordering

Malfunctions of a system are often related to its state. However, since the repre-
sentation based on ESGs is void of any explicit notion of state, it is necessary to
refer to states indirectly in terms of the elements of R(M), which as explained ear-
lier, are event sequences beginning at the entry node. Thus, a string in s € R(M), s
may also be treated as a notation for the state reached by M upon the execution of
the events in s [BBNO4].

In embedded systems, such as a pacemaker or a railway-crossing controller, an
event sequence s may lead the system to a state that has some form of risk associ-
ated with it. Though it is not concerned with the actual quantification of risk, it is
needed an ordering relation based on risk for the states of M. This offers a system-
atic selective approach to test generation.

67

68 Considering Safety Aspects

Definition 6.1 (Risk Ordering): A risk ordering relation E is defined as E = {(s;,

s2)| 81, 52 € R(M) and the risk level associated with state s; is less than that associ-
ated with state s,.}

The risk ordering function above is analogous to that used in [NDO2]. In this
context, risk level of a state quantifies the “degree of the undesirability” of an
event sequence from the perspective of some critical system attribute, which could

be, for example, safety. An analogous interpretation of E can be found for other
system attributes.

The risk ordering relation E is intended as a guide to determining an appropri-

ate response to any faults detected. Such responses are specified in terms of a de-
fense matrix DM that utilizes the risk ordering relation to revert the system state
from its current one to a less, or the least, risky state.

Definition 6.2 (Defense Matrix): Given a set D of malfunctions, the defense ma-
trix DM, and the associated constraint, are defined as DM € R(M)xD — R(M) : ¥

S1,82,d e (s;,d) € dom DM A DM(s;,d) = s; = s, E 5.

Note D (dysfunction) has been introduced in Section 3.2. The above expresses
the requirement that, should one encounter the malfunction d in any given state s,
the system must be brought to a state s,, which is of a lower risk level than s;. A
defense action, which is an appropriately enforced sequence of events, is used to
bring the system into a less risky state. An exception handler executes a defense
action. The actual definition of the defense matrix and the appropriate set X of ex-
ception handlers is the responsibility of a domain expert specializing in the risks
posed by a given malfunction. Relying on this risk based interpretation of state in
terms of event sequences, if x is a defense action appropriate for the scenario im-
plicit in Definition 6.1, then s;x = s,.

A specific benefit of risk ordering in the framework introduced here is that it
allows a systematic approach to the selection of test cases by focusing on one or
more particular vulnerability attribute.

6.2 Quantification of Robustness 69

6.2 Quantification of Robustness

Robustness of a software system is defined as the ability of the system to behave
acceptably in the presence of unexpected inputs [HHO2]. In this thesis it is pre-
ferred to treat robustness as the ability of a system to handle exceptional or faulty
inputs. Thus, while there is an expected set of inputs, its complement is a faulty
set of inputs. The ability of a system to handle acceptably such exceptional inputs
is a measure of its robustness. A set of ESGs that models a SUT behavior defines
the set of expected event sequences. The complement of each ESG in this set,
taken together, defines the set of unexpected input sequences. Robustness is de-
fined with respect to precisely this set of unexpected input sequences.

Several approaches have been proposed to assess the robustness of a system.
The Ballista approach [KKS98] is an elegant way to assess the robustness of a
software system by the generation of special values and random inputs. Here an
alternate ESG based approach is proposed to testing a software system for robust-
ness. This approach allows the quantification of robustness with respect to a uni-
verse of erroneous inputs.

As mentioned in Chapter 3, the complement of an ESG defines a subset of all
possible erroneous or faulty, event sequences. A set of erroneous inputs is ob-
tained for the SUT by complementing each ESG in the set that models the behav-
ior of the SUT. How these faulty sequences are used to generate test inputs that
test the exception handling ability of the SUT has been explained in Section 4.3.2.
Given that there are » tests, each containing a faulty sequence, and that in m, m <
n, of these tests the SUT behaves acceptably and e the number of erroneous in-
puts, e < n, the robustness of the SUT is estimated to be the ratiom /n - n/e.

The robustness measure proposed above is significantly different from the one
obtained using the Ballista approach. While the Ballista approach uses special and
random values of SUT input variables to assess robustness, the ESG approach
uses tests based on faulty event sequences as a way to assess the same. A com-
parison of the two approaches is not within the scope of this work.

6.3 A Comprehensive Example: Railway Crossing

Railway crossings of the kind considered here are found across minor roads out-
side of towns. They often consist of a pair of gates and two traffic lights: red and
green, and also a railway signaling system to control the train movement in the
proximity of the crossing, though the latter is ignored here for simplicity. Note

70 Considering Safety Aspects

that in this model the human is a part of the system environment, e.g., as a driver,
a gate controller, etc. The ESG-based approach enables the consideration of both
the expected, i.e., correct, and faulty behavior of the human operator. Despite its
simplicity, the example is sufficiently expressive for the purpose intended here.
Note, however, that the discussion is based on an ordinary familiarity of the ap-
plication and, therefore, the representation may not be quite accurate from a spe-
cialist’s point of view.

6.3.1 Objectives

The objective of this analytical study is to demonstrate the application of the pro-
posed ESG-based approach for modeling and risk analysis in the area of safety
critical systems (see also [Sto96, Wil91]). For this purpose a simple railway cross-
ing is considered as an example. Though the ESG model generated in this study
can be used to generate tests that are use for testing a simulation model of the
safety critical system, this was not an objective of the study.

6.3.2 System Description and Model

An ESG model of such a crossing is shown in Figure 6.1. The set of input signals
(or events V) are partitioned into the subsets Vs and Venv With

» Vo={R, G, C, O} assystem signals and

» Vew={T, V} as environmental events detected by a system that monitors

the crossing.

Here, R denotes the traffic signal turning red, G the traffic signal turning
green, C gate closing barring vehicular traffic, as well as other road users, from
using the crossing, O for gate opening allowing vehicle traffic through, T train
passing the crossing, and V for a vehicle using the crossing. These events bring
about hazardous states posing different risks to road and train users. The nature of
these hazards varies from state to state of the railway crossing system, some pos-
ing greater vulnerabilities than others. For example, compared to the safest possi-
ble state in which all traffic lights are red, the state in which the gate is open car-
ries a great risk since the road users are now free to cross the junction, exposing
themselves to danger from a passing train. Likewise, the state in which a train is
crossing the junction poses a greater risk than the state in which the gate is closed
as the latter includes also situations when there is no train at the crossing. The ex-
ample, as modeled in Figure 6.1, assumes that the lights turn green “on demand,”
that is, when a vehicle reaches the barrier. Once the lights are changed from red to
green, they cannot be returned to red until at least one vehicle has passed.

6.3 A Comprehensive Example: Railway Crossing 71

Figure 6.1 also indicates the relative risk levels brought about by the occur-
rence of the different events. In the ESG, the events posing greater vulnerabilities
to the users of the system are placed vertically higher than those posing relatively
lower risks. In this respect, it is important to note the significance of placing the
events T and V in V,,, at the top in Figure 6.1. This is because they denote, in ef-
fect, human actions, including potentially faulty actions. Thus, risk level of R is
less then the one of O (“Open gate”) because “Turn red” implies halting the vehi-
cle. In turn, the risk level of O is less than G (“Turn green”) and C (“Close gate”),
etc. Finally, the risk level of V (“Vehicle passes”) and T (“Train passes”) are
maximums as they concern events which have most significant impacts on human
life. Note also that, as a simplification, the above representation does not include
any means to control the movement of trains and the system is assumed to be ini-
tialized with a sequence of signals RC.

%

INCREASING RISK

- ©
8 ()

b Legend:
R - Turn red
t G — Turn green
O - Open gate (for road users)
e C - Close gate
T — Train passes
et V — Vehicle passes

Figure 6.1: An ESG model of a railway level crossing

6.3.3 System Functions and Malfunctions
As is shown by directed arcs in Figure 6.1, the event pairs in this example are
EP ={RG, GV, VV, VR, RC, CT, CO, TT, TO, OG }

while the complete event sequences (CESs) in any complete cycle of system op-
eration can be represented by the regular expression

72 Considering Safety Aspects

RE = (RGV')*R+((RGV*)*RCT*OGV*)*R = (RGV")*
(AM+RCT*OGV"))*R

where A denotes the empty event sequence. The faulty event pairs for the railway
crossing are generated from the complete ESG shown in Figure 6.2. The FEPs are

FEP ={ RR, OO, CC, GG, RO, RT, RV, OR, OC, OT, OV, CR, CV,
CG, TR, TC, TV, TG, VO, VC, VT, VG, GO, GC, GR, GT }.

The FEPs are shown as dashed lines in the CESG in Figure 6.2 while the EPs are
shown as solid lines. In the context of the framework introduced in Chapter 3, the
expression RE above constitutes the system function F, while FEP represents the
set of system malfunctions D, the elements of which are also called vulnerabili-
ties.

INCREASING RISK

Figure 6.2: A CESG model of the railway level crossing with FEPs (dashed
lines: FEPs)

Each FEP in FEP represents the leading pair of signals of an emerging faulty
behavioral pattern, with the first event being an acceptable one and the second an
unacceptable one. Should the first event of any of the FEPs, e.g., RV, matches the
last event in any of the ESs, e.g., in (RGV') R, then concatenation of the corre-
sponding ES and the FEP, e.g.,

6.3 A Comprehensive Example: Railway Crossing 73

(RGV')*RV

describes, or signifies the occurrence of, a specific form of a faulty behavioral pat-
tern.

Concatenation of the corresponding pairs of ESs and FEPs in the appropriate
manner (i.e., by dropping either the last signal of the EP or the first signal of the
FEP) results in expressions not belonging to the language described by R(M) for
system M. Table 6.1 lists the pairs of event sequences and vulnerabilities for the
railway crossing together with their interpretations. In spite of its simplicity, the
interpretations of the conjunctions of the appropriate pairs (ES, FEP) demonstrate
the effectiveness of the approach in revealing the safety-critical situations. Note
that for brevity not all FEPs have been considered in Table 6.1.

Table 6.1: Level crossing vulnerabilities, the level of the faults posed, and possi-
ble defense actions

ES FEP Interpretation Comment Defense
(Column 1) (Colu- (Column 3) (Col- action
mn 2) umn 4) (Col-
umn 5)
(RGV')R RO Gate opens while lights Ignored —

are set to red (No effec-
tive state change is possi-
ble except immediately
after initialization when
the gate was closed).

RT A train arrives prema- Danger RC
turely.
RV Vehicle traffic passes Danger
through red lights.
(RGV')RC CR Lights to revert tored, Ignored —
though already red.

cv Vehicle traffic is attempt- Danger
ing to cross the closed
gate and the red lights.

CG Lights turn green from Danger
red while the gate is
closed.

74

Considering Safety Aspects

ES FEP Interpretation Comment Defense
action
(RGV')'RCT* TR Lights toreverttored Ignored —
while already in red.
TC Gates to close while al- Ignored —
ready closed.
vV Vehicle traffic crosses as Potential None
trains pass. accident
TG Lights turn green as trains Danger T
pass.
(RGV')RCT O OR Lights to revert tored Ignored —
while already in red.
oC Gates to close while al- Ignored —
ready closed.
oT A train arrives after the Danger ¥
gate opened.
ov Vehicle traffic crosses as Danger T
soon as the gate opened
but before the lights
change to green.
(RGV')RCT OG, GO Gates to open though al- Ignored —
RG ready opened.
GC Gates to close after the ~ Annoy- —
lights turn green. ance
GT A train arrives soon after Danger T
the lights turn green.
GR Lights turn red before ve- Ignored —
hicle passes.
(RGV')RCT OGV*, VO Gates to open though al- Ignored —
RGV* ready opened.
vC Gates to close while ve- Danger VR
hicle traffic moving.
VT A train arrives amidst ve- Potential None
hicular traffic. accident
VG Lights to turn green Ignored —
though already green.

1 - Any defense action is outside the scope of the current model due to lack of fea-
tures for controlling train movements.

6.3 A Comprehensive Example: Railway Crossing 75

6.3.4 Defense Mechanism and Risk Graph

To overcome the possible ambiguity in the descriptive nature of Table 6.1, a risk
graph as in Figure 6.3 may be used. The graph expresses the relative risk levels of
states with a greater formality and precision. Each node in the risk graph repre-
sents a state that is reached when a given sequence of events occurs. The set of
event sequences that bring the system to a given state is indicated as a regular ex-
pression in the risk graph.

Using the notation as in Definition 6.1, a directed edge from a state s; to s, in

Figure 6.3 is equivalent to s; E s,, signifying that the risks posed by the state s, is

known to be at the same level as, or exceed, the risks posed by s;. As a convention
in the risk graph, an upward pointing edge signifies that the state lying above
poses a greater risk than the one lying below. Arcs drawn in solid lines, as well as
the states denoted by underlined regular expressions, refer to the normal func-
tional behavior, while those with dashed lines and other (non-underlined) FES
(regular) expressions refer to vulnerability states. To reduce clutter, the diagram

does not show the reflexivity of the permissions in the relation E (i.e., loops at

nodes) and shows the vulnerability states used for demonstrative purposes only,
1.e., it is not complete concerning FEPs. In this particular case, the last event of
most regular expressions, describing a vulnerability state pointed at by a dashed
arc, denotes a human action, such as operating a train. More strikingly, each and
every state, lying highest in the diagram, is described by a regular expression end-
ing with one of the two events T and V, each related to a human action of operat-
ing a train or a vehicle, respectively. Therefore, in addition to the risks associated
with the functional behavior, the risk graph allows a way to represent explicitly
the risks associated with potential human errors.

Having identified potential vulnerabilities, it is possible to provide measures
that counteract them. This is the intention of the defense matrix and exception
handlers. In this connection, an attempt is in Figure 6.3 to propose the defense ac-
tions that may be taken. Due to the limited scope of the model, these actions only
partially address the potential vulnerabilities. This is because all defense actions at
the disposal of the current model are limited to closing the gate or turning the traf-
fic lights to red, thus affecting only the vehicle traffic.

A richer model with features for modeling signaling mechanisms would allow
the means to address other vulnerabilities, namely, those that can be avoided or
mitigated by controlling the train movements. Should Table 6.1 be complete in
these respects, the event sequences listed under column 5 would be equivalent to

76 Considering Safety Aspects

the set of the exception handlers X, while the columns 1, 2 and 5 would amount to
a definition of the required defense matrix implicitly, provided that the data in
these columns satisfies the condition in Definition 6.2.

RGV*T, (RGV*)*RCT*OGT
2 (potential accident)

(RGV*)*RCT*OT

i (belated train crossing)
(RGV*)*RCT*OGT
(dangerous train crossing)
(RGV*)*RT

(premature train crossing)

(RGVH)VC
(early gate closure) :

(RGV)*RV, o
(RGV)*RCV "%~
(vehicles crossing e

(RGV*)*RCT*OV
[]

N
=" (early vehicle

?
.
A
f
e traffic crossing) :

red light) I : 3 [RGVIRCT (RGV*)*RCT'R
o L @ €mmmmmmmmmmooo ;.’RGV’ --------------- >0 D i
R 0.867°G * ST T K
(futile transition) _.gate opened; gate closed; J(qins
. - Vehicles passmg) passing) ‘_“'f_» e (RGV*)*RCG
(RGV)*RCT*OGC ‘-\. T T lights turning
(gate closure from RS A L green from red;
open; lights green) o e e gate closed)
(RGV‘)*RCT* G “RGV
(RGV*)*RCT*0GO ¢ wmooromoroes SL e e, RGVPRC o (RGV*)*RCR
(futile transition) (lights in green; o> lights in red: (futile transition)
gate opened) gate opened;

trains, if any, passed) (RGV*)*RCT*OR,
(RGV*)*RCT*Q 9% === ====mmmmmmmmommmoooo- » ® (RGV*)*RCT*OC

(lights in red, gate opened; (futile transition)
trains, if any, passed)

(RGV')*R @ 4= mm = mmmmmmmm e e (RGV*)*RO
(llghts in red) (futile transition)

Figure 6.3: Risk graph of the railway crossing, covering both the system and vul-
nerability states

Note that the concatenation of expressions in columns 1, 2 and 5 in the appro-
priate manner (i.e., by dropping common events as appropriate) gives the state
aimed at by the defense matrix as a result of invoking the corresponding exception
handler [IEC610, IEC615, Lev86].

6.3.5 Testing Issues

The test process can now be worked out analogous to that described in Section
4.2. Thus, the CES and FCES are systematically constructed and combined to

6.4 Summary 77

cover the edges of the CESG as demonstrated in the introductory example in
Chapter 3, i.e., CES and FCES are input to trigger desirable, and undesirable,
situations, respectively.

In the case of an application such as a railway level crossing, testing of the ap-
plication in requires a simulation model. Such a model could be in software or a
mix of hardware and software. As an example, the test input (RGV+)*RV repre-
sents the event that the vehicle traffic passes through the red lights, which cannot
be realized as a real-life experiment. Furthermore, in order to generate a complete
test case, a meaningfully reactive controlling system is needed, which is outside
the scope of the current model, given the representation in Figure 6.1.

Nevertheless, even this simple model is useful in that it makes such dangerous
situations explicit (visible) and highlights the reactions required of the controlling
system in response to such inputs. Thus, it is evident that one can use the CESG in
Figure 6.2 to simulate all potential test scenarios.

To avoid unnecessary details, the results of the analysis are summarized below
covering all edges of the CESG given in Figure 6.2. It appears that following sets
of event sequences, ESs, are of particular interest when dealing with system vul-
nerabilities

ES ={ (RGV') R, (RGV')RC, (RGV')RCT", (RGV") RCT O,
(RGV')'RCT OG, (RGV')’RCT OGV", (RGV)RCT OGV'R}.

These ESs are possible prefixes, i.e., starters that can be constructed by analyz-
ing the expression RE. The test inputs can be now constructed as described in the
previous section. For example, it is possible to generate RGVRV as an instance of
the sub-string (RGV*) RV. A correct implementation of the railway crossing con-
troller should respond to this test by the defense action RC (see Table 6.1). Thus,
the particular test input RGVRV is designed to test the system response to a simu-
lation of a human error, that is, driving a train through the level crossing prior to
closing the gate, despite the signals having turned red. Other kinds of human er-
rors, particularly those related to poor user interface design [RR97, Shn98], may
be addressed in a similar manner.

6.4 Summary
This chapter illustrated the deployment of the risk ordering relation — an expres-

sion of relative levels of risks posed by hazardous states represents the degree of
undesirability. The modeling and analysis of the example, railway crossing, illus-

78 Considering Safety Aspects

trates the meaningful deployment of regular expressions, also for determination of
defense actions, in an elegant, precise and concise way.

7 Case Study 2: Extending the Approach to State-
charts

Based on [Chr04/2] and [BBHO0S5], this chapter applies the holistic approach de-
scribed in the previous chapters to statecharts which extends conventional state-
transition diagrams taking aspects of hierarchy, concurrency and communication
into account [Har87].

7.1 Modeling Functions and Malfunctions

A statechart diagram compactly describes different constellations of states and
transitions through which the system can proceed during its operation. Statecharts
extend the conventional state-transition diagrams by adding notions of communi-
cation, hierarchy, concurrency, and history. They are de-facto-standardized in the
OMG Unified Modeling Language (UML) Specifications [OMGO03] which are also
used in this work.

A statechart model of a system visualizes the system behavior in a clear and
concise way. For an algebraic representation this work suggests extended regular
expressions based on [Gar89, JS04, OAKO3], the same way regular expressions
adequately represent finite state automata.

Definition 7.1 (Extended Regular Expression): Let £ be an alphabet that com-

poses a set of symbols. The notion of regular expressions across X and the de-
scribed sets of strings are extended to:

79

80 Case Study 2: Extending the Approach to Statecharts

= When E and F are regular expressions, then E||F is a regular expres-
sion describing the concurrency of the languages L(E) and L(F'), that is
L(E||F)=L(E)||L(F)={w|dee€ L(E) and 3f € L(F), weel| f}with
elle=¢lle=e,VeeXandabl|cd=abl||cd)vclab| d)Va,ceX,b,de
2 * with ¢ as the empty string denoting the set {}.

= When E is a regular expression and 4 a pseudo symbol representing the
regular expression £, then the pseudo symbol A describes the language
L(E) that is A=L(E) (4 is handled in a regular expression as a symbol).

= A symbol s is a 3-tupel s=(e,g,a) with event e, guard g, if existing, must be
satisfied, and event e have been occurred, and action a, performed when
event e occurs and guard g is satisfied.

Note that in the next sections the terms “regular expressions” and “‘extended
regular expressions” are used interchangeably. Note also that the computational
power of extended regular expressions is different than the one of regular expres-
sions.

For transferring a statechart in an extended regular expression, each transition
of this statechart will be denoted by a symbol s of the alphabetX . This regular ex-
pression, based on the alphabetX , is to be built by following rules.

(a) Sequential Transition

1 t2 rk
1
—> —> T _’©

Figure 7.1: Sequential transitions

Figure 7.1 represents a sequence of state transitions in a statechart. In an ex-
tended regular expression, a sequence of transitions is denoted by the concatena-
tion operator. For the statechart in Figure 7.1 the corresponding expression is

R=tt,..t,

(b) Choice of Transition

A transition from a single state to a set of follow-on states forms a choice of
transitions. In Figure 7.2, starting at the state s; enables a transition into one of the
following states s>, ...,Sp.

7.1 Modeling Functions and Malfunctions 81

Figure 7.2: Choice of transitions

A choice of transitions is denoted by the union operator “+”. The regular ex-
pression for the statechart in Figure 7.2 is given by
R=t +t,+...+¢,

(c) Transitions To and From States with Hierarchy and Concurrency

The transitions to and from the enclosing state form a sequence. In Figure 7.3,
the transition # is followed by internal transitions; the sequence concludes with
the transition ¢;.

Tk § Composite [,

OO

Figure 7.3: Transitions to and from composite states

Using the pseudo symbol ¢ =t the statechart in Figure

Composite Region 1 ” || tRegion n
7.3 is given by

R=..tt t,

Composite
where tregion i With i=1,...,n denotes a regular expression that represents a se-
quence of internal transitions in region i, starting at the initial state and ending at

any substate s € S,

omposite, Regioni *
An enclosing state with one region describes a composite state with a single
set of substates composed in a hierarchy. Thus, an enclosing state with more than

82 Case Study 2: Extending the Approach to Statecharts

one region describes a composite state of concurrent regions, each with a set of
disjunctive substates.

(d) History State

A transition ending in a history state indicator ‘H’ can be represented by a set
of guarded transitions to substates of the enclosing state. The guard has to be a
variable that saves the last state the system was transferred into within the com-
posite region. Therefore, all internal transitions of the history have to be extended
by an action setting the variable on the source state of the internal transition
(Figure 7.4). To resolve likely conflicts among multi-level transitions (z,), the new
transitions are indicated (#4;, £42).

N
L/
™
L/

w
J
\
=
L\
.
%)
()
w
(. Az
S| A<
2
%)
Ay
' N
w2
[]

Figure 7.4: History state

Based on these four rules, any statechart can be converted into an extended
regular expression by describing the sequences of transitions.

A statechart can be used for modeling interactive systems and analyzed to
generate test cases. For modeling the illegal, i.e., undesirable user interactions the
given statechart is to be complemented by error states and faulty transitions
(Figure 7.5). The notations error state and faulty transition are used for explicitly
describing the faulty behavior of the modeled system.

Faulty transitions run from each state of diagram to an error state caused by
the events that trigger no (legal) transition in the context of this state. In Figure
7.5, only the (legal) transition #; can be triggered when the system is in state s;.
Therefore, the faulty transition from state s; to the error state is triggered by the
faulty transition ¢; ¢, or t,, if the transition set is given by {¢, > 3 t4}. The transi-
tions represented by dashed lines are faulty ones.

7.2 Test Criteria and Their Application to Statecharts 83

LVEGVL UV R VL
v o

Figure 7.5: Fault model - error state and faulty transition
To generate the faulty guarded transitions the guards have to be negated, if ex-
isting. The test criteria introduced in Chapter 4 are based on the coverage of all n-
tuples (n > 2) of legal and illegal events of user interactions. For statechart-based
test case generation, other criteria are needed [OA99].

7.2 Test Criteria and Their Application to Statecharts

Based on the fault model introduced in the last section, legal and faulty transition
pairs can be defined that are to be covered as a stopping rule of the test process.

Definition 7.2 (Transition Pair): A transition pair (TP) is a sequence of a legal
incoming transition to a legal outgoing transition of a state.

Example 7.1: ¢,¢3 113, tst4 (Figure 7.5)

Definition 7.3 (Faulty Transition Pair): A faulty transition pair (FTP) is a se-
quence of a legal incoming transition to a faulty outgoing transition of a state.

Example T.2: 15ty tits, tity, tot;, Lok, toly, ts3ty, t3t2, I313, (Figure 7.5)

The notions of TP and FTP enable the definition of the following coverage cri-
teria.

Definition 7.4 (Transition Pair Coverage): For any state of a statechart, generate
test sequence(s) that sequentially conduct each TPs of any states.

84 Case Study 2: Extending the Approach to Statecharts

Definition 7.5 (Faulty Transition Pair Coverage): For any error state of a state-
chart, generate test sequence(s) that sequentially conduct each FTPs of any state.

Definition 7.4 guarantees that all possible (legal) functions in each state of a
system will be tested and the Definition 7.5 guarantees that all potential malfunc-
tions, which can be derived from the given specification, will be tested. In order to
generate tests, following rules realize the test criteria producing following applica-
tion rules [Chr04/2].

Application Rule: Hierarchy.
(1) A transition to an enclosing state is equivalent to a transition into its initial
substate.
(i) A transition from an enclosing state is equivalent to the transitions from
each of its substates.
(i1i1)) The transition(s) that arose from (i) and (i1) must be taken into account when
constructing legal and faulty transition pairs and test sequences according to
Definition 7.4 and Definition 7.5.

Application Rule: Concurrency.

(1) Any transition within a region i of an enclosing state with concurrency have
to be combined with any other transition in the regions j with j= i to form
(concurrent) transition pairs.

(i) The transition(s) that arose from (i) must be taken into account when con-
structing legal and faulty transition pairs and test sequences according to
Definition 7.4 and Definition 7.5.

Application Rule: History.

(1) A transition to a history state is equivalent to a guarded transition to any
substate of the enclosing state. This guard enables the last state to be the en-
closing state the system was within and to resume from.

(i) The transition(s) that arose from (i) (and negative values of guards for faulty
transitions) must be taken into account when constructing legal and faulty
transition pairs and test sequences according to Definition 7.4 and Definition
7.5.

7.3 Test Case Generation 85

7.3 Test Case Generation

In the following, some definitions are informally introduced that are sufficient to
describe the test generation algorithm.

A sequence of n consecutive (legal) states that represents the sequence of n+1
transitions is called a transition sequence (TS) of the length n+1, e.g., a TP (tran-
sition pair) is a TS of the length 2. A TS is complete if it starts at the initial state
of the statechart diagram and ends at a final state; in this case it is called a com-
plete TS (CTS).

A faulty transition sequence (FTS) of the length n consists of n-1 subsequent
transitions that form a (legal) TS of the length -2 plus a concluding, subsequent
FTP (faulty TP). An FTS is complete if it starts at the initial state of the statechart
diagram; in this case it is called faulty complete TS, abbreviated as FCTS.

The test criteria and the application rules introduced in Chapter 4 for identify-
ing all potential incoming and outgoing transitions of a state enable the applica-
tion of the approach. Generation and selection of test cases are carried out using
the statechart of SUT or its equivalent extended regular expression.

It is assumed that an extended regular expression R over the alphabet X is
given that describes a statechart. The symbols of £ represent the set of transitions
in the statechart diagram; the language L(R) describes all (complete) correct se-

quences of transitions, i.e., complete transition sequences (CTS) in the statechart
that are legal complete sequences of user interactions (complete event sequences,
CES). Based on this set of transition sequences, all legal transition pairs (TP) can
be identified by extracting all possible pairs of transitions given by the CTS. The
remaining pairs of transitions given by the alphabet £ form the set of faulty tran-
sition pairs (FTP). A FCTS is given by the beginning of a CTS and a concluding,
subsequent FTP.

Based on the terminology introduced, Algorithm 7.1 below describes the test
process.

86 Case Study 2: Extending the Approach to Statecharts

Algorithm 7.1 (Test Generation and Execution):

Input: A statechart with
length:= required length of the transition sequences to be covered
Output: A test report of failed and succeeded test cases

1 Generate the completed statechart and apply the
rules for hierarchy, concurrency and history

2 FOR k:=2 TO length DO

3 BEGIN

4 Cover all TSs of length k by means of CTSs
subject to minimizing the sum of lengths of
the CTSs

5 END

Cover all FTSs by means of FCTSs subject to
minimizing the sum of lengths of the FCTSs

7 Apply the test set given by the selected CTSs
and FCTSs to the SUT.

8 Observe the system output to determine whether
the system response is in compliance with the
expectation.

7.4 Testing the Marginal Strip Mower — RSM13

The objective of the case study is on the one hand to demonstrate that the intro-
duced rules are sufficient to generate test cases and on the other hand to compare
the effectiveness of test generation from ESG and statecharts.

7.4.1 System and Fault Model

The SUT used in the case study in this chapter is a control terminal which controls
a marginal strip mower (“RSM 13, Figure 7.6), a sophisticated vehicle that takes
optimum advantage of mowing around guide poles, road signs and trees, etc.

Due to the unique kinematics of the rotating point and due to the specially de-
signed run of the mow head guide, even large areas behind the crash guides are

7.4 Testing the Marginal Strip Mower — RSM 13 87

reached. The shifting enables an exact adjustment of the mowing unit, even in
very narrow areas. The mow head is protected against stoning due to its cutting
system and the optimally arranged cutting units.

D0 0DRoLan®

i

=

=

Figure 7.6: Marginal strip mower (“RSM 13”) and its control desk

Operation is effected either by the power hydraulic of the light truck or by the
front power take-off. The buttons on the control desk [Figure 7.6] simplify the op-
eration, so that, e.g., the mow head returns to working position or to transport po-
sition when a button is pressed. The position of the mow head can also be infi-
nitely varied. An alteration from working on the left to working on the right side
is also possible. Beside the positioning the incline and support pressure of the
mowing unit can be controlled.

7.4.2 Test Generation

The interactions between user and system can be modeled by the statechart given
in Figure 7.7. Therein the substates are hidden and displayed as bars. The transi-
tions to and/or from substates are indeed represented by so-called stubbed transi-
tions [Har87]. The content of the hidden substates is illustrated in a separate state-
chart given in Appendix B. The dashed arcs in Figure 7.7 represent the pseudo
symbol introduced in Definition 7.1 that denotes a sequence of internal transi-
tions. Test cases are generated applying the rules introduced in Section 7.2.

88 Case Study 2: Extending the Approach to Statecharts

C include / Start

. /

1.1

Start

rF 3

Y

/ RSM_Antrieb \

include / RSM_Antrieb

—— 274

RSM AntniebAUS

F 3

RSM AntriebEIN

o /

25
Y
/ RSM_TranspstArbst \
include / RSM_Transpstdrbst
€39
FT7T RSM Transpst -5
esq 0 1 i
i1 -] 1
: #3201 o33
1
Ctime>105 ——— ! ——
- [-
RSM_Automarik ‘- RSM Arbst
Arbeitsst 2534 | A /
€49
RSM_Betrieb I \ RSM_Betrieb I \
include / RSM_Betrieb include / RSM_Betrieb
&4 (77777 i %41 '
] [] Il
| o5z
RSM_Betrich i ' Sy
> Automatik EIN v v m
N - J 1\ osldle
Schwimmst. EIN RSM_BetriebAUS > =

\ Auflagedruck EIN / 2410 _/

Figure 7.7: Statechart diagram of the control unit

®
L
o

7.4 Testing the Marginal Strip Mower — RSM13 89

The statechart diagram given in Figure 7.7 can be converted into an equivalent
extended regular expression given as

R=(e(es,,(€,5(€S5, €en105 (€410€55€5)*€5,,(e, 055 €0) ™ e,y +es5,(e (€8s
50)*(A+es,)€, 0eS5€9) o155, oy (€410€55€50) ¥ €5y, (€,€55€59)*

e,0)¥es;3) e) es,,)* e)*

with the corresponding extended regular expressions of the substates as
€551 =€835 =€ yunier 1 11€S anrier 11 11€S achsverr.
€S yurien1 = (€21€21) % €y
€S yuriev st = (€22 €22) % €55

_ *
€S yensverr. = (€23 €73) %€y 5

_ _ *
sy =S54 =(€31 €31 petease T €32 €32 Release T Ertanpos) T €32

— +
€835 =(€31 €31 Retease + €32 €32 Retease T CManpos) Carbst_ 0K

_ *
€833 = (€31 €31 retease T €32 €32, Retease T Ertanos) * €3.1 Crimes10s

+ (€31 €31 Retease + €32 €32 Retcase T Crtanpos) T €Transpst OK
€S ManPos = €S grm2 Ein—/ Ausklappen || esEin—/Ausklappen ” eSHauptarm auf | ab
eSArmZ Ein—/ Ausklappen = (63.3 eS.S,Release + e3.4 eS.4,Release) *
eSEin—/Ausklappen = (63.5 eS.S,Release + 63.6 eS.é,Release) *

— %
eSHauptarm auf'/ab — (e3.7 63.7,Release + 63.8 e3.8,Release)

€S41 = eSAutomatik(l) || eSAuﬂagedruck,Messerwelle(l) || eSSchWimmstellung(l)
— *
€S Jutomatik(1) = (€41 €4,)
— * k
€S Juflagedruck, Messerwelle(1) — (€4, (€45 €43)™ey5)

= *
eSSchWimmstellung(l) - (64.4 64_4)

es4.2 = eSAutomatik(2) H eSAuﬂagedruck,Messerwelle(Z) || esSchwimmstellung(Z)
— %
€S Jutomatik(2) = (eg1€41)% ey,
— % * %
eSAuﬂagedruck,Messem'elle(Z) - (64.3 e4.3) €42 (e4.2 (64.3 e4.3) 64.2)

= *
esSchwimmstellung(Z) - (64.4 64_4) €44

90

€ss = eSEmf/Ausklappen || €S grm Verschiebung || eSMa"hkopf drehen
— *
eSEin—/Ausklappen - (eS.l eS.l,Release + eS.2 eS.Z,Release)
— *
eSArmVerschiebung - (eS.3 eS.3,Release + 6544 eS.4,Release)

— *
eSMiihkopf drehen — (65.5 eS.S,Release + 65‘6 eS‘G,Release)

Case Study 2: Extending the Approach to Statecharts

Table 7.1 lists the legal incoming and legal outgoing transition of each state.
The analysis of the system by the statechart (Figure 7.7 and Table 7.1) necessi-
tates some abstractions, entailing further refinements of the substates.

Table 7.1: Incoming and outgoing transitions of the statechart diagram in

Figure 7.7
(Legal) Incoming (Legal) Outgoing
State .. .
transitions transitions
Start e, e,
RSM_AntriebAUS e |,€s,, €,,4,65,,
RSM_AntriebEIN €S8,1,€395€ €,5-€5,,

RSM_Transpst
RSM_Autom Arbst
RSM_Arbst
RSM_BetriebAUS

RSM_Betrieb
(AutomatikEIN
Schwimmst.EIN
AuflagedruckEIN)

RSM_Posldle

€,5,683;3
€531,68345€55

€4956537,€55

€310 Clime>10s > €5.7

€31056542565415€57

€410>655

€39,6583 1,653,
e

time>10s

€833,€534563 19

€495€410

€5425€4 19

€4

Based on the statechart diagram given in Figure 7.7 all legal TPs can be identi-
fied for each state of the system. Table 7.1 lists the pairs of legal incoming and le-
gal outgoing transition for the states of the substates. The set of TPs is generated
by the cross product of incoming and outgoing transitions for each state to fulfill

7.4 Testing the Marginal Strip Mower — RSM13 91

the transition pair coverage test criterion in Definition 7.2. For the state

RSM_Antrieb in Figure 7.7 the resulting set of TPs is
TP,

RSM_Antrieb — {e 6,4 ,65,,,€5,,,,,e5,,es, , €5,1€,5,65,165725€39€55€39€532>5

el.leZ.S’ el.leSZ.Z}

CTS can be constructed using the hierarchy application rules introduced in
Section 7.2. As the same TPs can be covered by more than one CTS, a certain re-
dundancy is likely. As an example, the TP e, jes,, is itself already a CTS but also

included another time in the CTS ¢, es, e,,. Test cases for a test specification in
which those redundancies are eliminated for the state RSM_Antrieb are

CTSRSMiAntrieb =1{€,1€,4,€,1€5,,€),,€,,€5,,€5, |,€, €S, €5, ,,€, €,5€;9€, 5, €, 1€,
€39€5,,)

Accordingly, FTPs are generated by constructing all possible pairs if incoming
and faulty outgoing transitions of each state of the statechart (Table 7.2).

Table 7.2: Incoming and faulty outgoing transitions of the statechart diagram in

Figure 7.7
(Legal) Incoming Faulty outgoing
State
transitions transitions
Start €4 €42€25:639563105€495€4105€5.7>6521,65, 35

€531,683756833,683 4,68, 1,684,5655,€;,,.5105

RSM_AntriebAUS ¢, ,es,,

€1:€25:€395€310>€495€4105€5.75€5,2>€53 15

€8325€5335,€534,€541,€545,€55,€

time>10s
RSM_AntriebEIN €551,€395€ €15€245€395€3105€495€410>€57,65, 1,653 15

€53756833,683,4,6541,654,,€55,€

time>10s

RSM_Transpst €,5,6533 €115€245€55€3105€495€4105657,€5, 1,655,
€833568345654156547,€85,€,.5105

RSM_Autom_Arbst €531,6534,€55 €15€245€5:€395€3105€495€41056557,€5, |,

€8)7568315,683,,6853,6834,68,,65,,,€S;

92 Case Study 2: Extending the Approach to Statecharts

(Legal) Incoming Faulty outgoing
State .. L.
transitions transitions
RSM_Arbst €495653,,65 €15€245€75:€395€495€410>6557,65,1,65,,,

€831,6837,68,1,68,4,,685,€,,..10

RSM_BetriebAUS €3105Climes10s2 €57 €1.15€245€25:€395€3105€59,651,65,,,683 |,

€83,,6833,6834,68,,,€55,€

time>10
RSM_Bezfrieb €31056542565415C7 €1.15€245€25,€395€3.105€4.95€557,€5, 15,6525
,(S/i%tfvﬁ;;l;tEZYN €8315€5355€833568345€54 156555 Cipes10
AuflagedruckEIN)

RSM_Posldle €4.105 €55 €115€245€155€395€3105€495€54105€5,15€5;5>

€5315683756833,68345,65,1565475€0510

A meaningful coverage criterion is given by the requirement that each of the
FTPs given in Table 7.2 be executed by means of appropriate FCTSs (see “Faulty
Transition Pair Test Criterion” in Section 7.2).

To execute a FTP, a starter (see Definition 3.9) is necessary that is a legal TS and
starts at the initial state and ends at the state from where the faulty transition can
be triggered. As an example the transition e, is a starter to reach the legal incom-

ing transition of the state Start.
Thus, the sets of CTS and FCTS enable the coverage of the specified system
functions and the malfunctions that can be derived by this specification.

7.5 Discussion: ESG vs. Statecharts

The case study was performed in two different ways to compare the fault detec-
tion capability of ESG vs. statechart modeling as introduced in this chapter. These
different versions are called Case Study #1 and Case Study #2 that was carried out
by one tester and two testers, respectively.

For the Case Study #1 the same tester created the ESGs and statecharts assur-
ing that the models describe the same functionality of the SUT.

To take “exercising effects” into account, Case Study #1was performed two-
fold. First the tester started with the construction of statecharts and then the ESGs

7.5 Discussion: ESG vs. Statecharts 93

were constructed (Stage “A” in Table 7.3). Accordingly, Stage “B” was the other
way around: first ESGs were created and then statecharts.

In the Case Study #2 different testers carried out the modeling job concur-
rently, constructing the ESGs and statecharts separately from each other, i.e., each
tester created the model independently from each other.

Table 7.3 summarizes the results of both strategies. Note that about 50% of the
faults have been detected by means of FCTS, i.e., complementary analysis
[Chr04/2].

Table 7.3: Comparison of the fault detection capability of ESGs vs. statecharts

The sequence of the
construction of Faults detected
ESGs and state- only by ESG

Faults commonly de- Faults detected
tected by ESGand only by state-

charts constructed statecharts charts
#1 Stage A - 48 -
Stage B 2 46 -

As summarized in Table 7.3, Case Study #1 detected 40+ faults (see Appendix
B for the list of faults detected), no matter which model was constructed first.

Unexpectedly, constructing the statecharts and ESG separately by different
testers (Case Study #2) lead to a smaller number of faults detected by statecharts
than the number of faults detected by ESG. This can be explained easily: ESGs
are simpler to be handled, and thus, the tester could work more efficiently, i.e.,
produce more and better detailed ESGs than statecharts, and accordingly, a better
analysis and testing job could be performed.

Note that in the Case Study #2 the ESG model and the statechart model de-
scribe different functionalities of the SUT to avoid any biases in handling of the
models.

To sum up, the comparison of the fault detecting capability of ESGs vs. state-
charts could not point out any significant tendency but confirmed the effectiveness
of the holistic approach when applied to different modeling methods.

This result is very important for the practice and apparently cannot be stressed
strong enough: if the holistic approach is properly applied (no matter to ESGs or

94 Case Study 2: Extending the Approach to Statecharts

to statecharts), it reveals considerably more faults than an analysis that neglects
the complementary view.

7.6 Summary

This chapter is based on [Chr04/2] and [BBHOS] and applies the holistic ap-
proach to statecharts for modeling user-system interaction. For modeling the
faulty system behavior, statechart given is complemented by an error state. In any
non-erroneous, i.e., correct, state any other event than the legal transition transfers
to the error state and forms a faulty transition. The test criteria for coverage of le-
gal transition pairs and faulty transition pairs have been introduced and applied to
a non-trivial control unit of a cutting machine.

Compared to statecharts, ESGs have limitations, primarily for representing
complex notions of communication, hierarchy, concurrency, and history function.
Nevertheless, different case studies have proven that they have about the same
fault detection capability.

8 Tool Support

Generation of test cases from ESG and CESG and determination of the MSCESs
and MSFCESs can be cumbersome and time consuming if done manually. This
chapter describes a toolkit that helps with those tasks.

8.1 Test Case Generation

GenPath (GeneratePath) is a tool which is developed for the generation of test
cases. The tool consists of two subsystems each of which can be opened in its own
frame. One for the generation of ESs and FESs and the other one for the genera-
tion of MSCESs to achieve a given n-tuple event coverage. The input of the tool
takes the ESG in the form of an adjacency matrix, or as a regular expression
stored in a file. The main frame is mainly used to load the input or calculated out-
put files. Several ESGs, which form a hierarchy, can be input together. In this case
an ESG at a lower level in the hierarchy will be a refinement of a node in a higher
level ESG. Figure 8.1 represents the topmost screen of the GenPath tool including
the adjacency matrix of an example ESG. Shown on the right-hand-side are the
sequences of length 3 for the same given ESG, generated subsequently by one of
the subsystems.

The other subsystem shown on the right-hand-side of Figure 8.2 generates
MSCESs for an n-tuple coverage requirement [Hol04]. The main frame of Gen-
Path depicts the result for the illustrated ESG. For this purpose the ESG given can
be extended (Section 4.3.3) for generating sequences with length > 2. In addition,
it displays the ESG under consideration and marks its EPs (Figure 8.2).

95

96

Tool Support
i
Files Edit Tocls “iew Pages ? 8] x|
IR
X4BCD -l
A1111 il
ARER oo
c1101 File Edit Generate Help
pDo0O10 Setings
Input
Length of the Sequencesl_ vl ' Matiy
" Matrices [2]
Sequences ;I
1
A48
AAB
AAC J
AAD
AR
ABD
ACA
Bergit AEE ;I
|
Figure 8.1: Tool GenPath; mode to generate test cases
A1+ GenPath - [Graph_1_2.pth]] - 1ol x|
[Z] Files Edit Tools View Pages 7 18] x|
D@ 4= 8| 2] |
frcs of the MSCES R
{3‘3‘0} C>B Flle Edit tiew Matrix ?
{1“3:]} e |=|=| &[=le| g2 ol L@le M |
0.42] B->D
.11 D>C
(1.62] C>A
.11 A>D
[1.4,0] D->C [additional arc]
251 C3D

MSCES=ACBABDCADCD

Bereit

Bereit

I

Figure 8.2: GenPath to generate MSCES

8.2 Test Case Analysis 97

8.2 Test Case Analysis

To avoid tedious and error-prone manual work, the tool GATE (Generation and
Analysis of Test Event sequences) was built [Chr04]. The tool accepts the adja-
cency matrix of the ESG and automatically generates test inputs of required length
for a given ESG, i.e., ES, FES, CES, and FCES. As a first step, all ESs of a given
length are produced. The tool can generate also CES of a given length which
cover all ESs. Furthermore, GATE determines the effectiveness of a given test
case in terms of covered ES. If no length is explicitly given, the tool constructs a
CES of minimal length that covers all ESs.

S5V GATE
—Generate [~ Preference: :]
[¥ Complets Event Sequencels] up ta length iB [~ Convert symbols to numbers
Exit I
Fel Eriieaiirel up to length i4 [V Execute iteration(s] |2 times
Open Matriz I
—Ainalyze SV GATE A I] 24 Open result I
v weigth factor !1,0 File ESG Conwerk 7
~ESG Matrix: ~States overview : & Help I
1Je3fals s [7] M. [Identifier
10100000 :
0 [0 1 [ofo 1o -k
@80 |0 (0|1 |1 (1|0 i g
o Jo [o "
— 5 Gl
[ES0 01 1o g R
601 001 7]
F 0000000

Figure 8.3: Test tool GATE for test input generation of an ESG

Figure 8.3 depicts the main frame window for test generation. For the example
ESG given by its adjacency matrix in Figure 8.3, GATE generates CESs of up to
length 8 and ESs of up to length 4. The tester requires in this example that loops
be run twice. Furthermore, the weight factor fis set to 1.0 (see Definition 4.3).

Figure 8.4 depicts the output of a test case set which is analyzed in Figure 8.5.
GATE generates ESs (or FESs) and CESs (or FCESs) of different length, depicted
on the right half and left half of the Figure 8.4, respectively.

98 Tool Support

=101x]|

ES(s) | FESEs) |

CES(s) | Fesis)

d Complete Event Sequences up to length: 4

E
Ewvent Sequences up ta length: 8 il
Max. iteration: 2 J - !
length: 1 :iarg‘gth: 2

nurnber of test cases: 0

LS
length: 2 m'g
LR nh
nurnber of test cazes: 1 e
length: 3 EE
L5R i
number of test cases: 1 e
length: 4 Eh
LRLA i
LEMR ip
LSMA i h
hfmgeﬁ’oftestcases-4 nurnber of test cazes: 15
length: 5 :frg‘gﬂﬂﬂ
LRLSHR fily
LEMMR i
LRMPR i
LRMSH e
LSMMR i
LSMPR e
LSMSH g
LSPMRA i
L5PPR nee
L5PSH i
LSRLR
I SRMR =l| IMPR =

Figure 8.4: Test cases generated for ES/FES and CES/FCES

The results of the analysis of the ESG given in Figure 8.3 are summarized in
Figure 8.5. The goal of the analysis is the determination of the coverage ratio of
ESs (column 2) by appropriate CESs (column 1) in increasing order of their
length. As an example, the first line (middle part of the Figure 8.5) indicates that
100% of EPs (as ESs of length 2) are covered by CESs of length 5. These CESs
cover, however, only 57% of the event triple (as ESs of length 3). CESs of length
7 cover 100% of ESs of length up to 4. The bottom part of Figure 8.5 calculates
for ESs and CESs the number of test cases in accordance with Definition 4.3.
These ESs and CESs have been previously determined by the tool GATE as dem-
onstrated in Figure 8.4. Finally, the test costs are given in the right column.

8.3 More Automation — Towards Self-Testing 99

I analyze =B
Analgze of ...
Complete Event Sequences up to length: 8
Ewent Sequences up to length; 4
fax. iteration: 2
CES length | ES lenath coverage of ES[s] by CES(z] _*_I
] 2 100 %
3 57 %
4 18 %
E 2 100 %
K] 100 %
4 58X
7 2 100 % ____I
3 100 %
4 100 % =
] | _'!_I
Hitest cazses] test costs |
ES 973
CES 425

Figure 8.5: Analysis of the generated test cases

8.3 More Automation — Towards Self-Testing

For testing of the software systems powerful commercial capture/replay tools are
available which can significantly support the testing process, including regression
testing. Nevertheless, numerous, time consuming and error-prone manual steps
are still necessary to complete the test process, i.e., construction of adequate, user-
oriented test scripts based on special test cases.

8.3.1 The Principle

Figure 8.6 identifies typical activities to be carried out while testing an interactive
system that is supported by a test tool as follows:
= Capture all manual user-interactions, i.e., include all necessary object
properties of each selected GUI object resulting in a “fully” recorded test
script.

100 Tool Support

= Replay the recorded test scripts and analyze them to detect anomalies.

For automatically testing a SUT, the typical test process, as represented in
Figure 8.6, does not consider the fact that the tester usually has a system model
(specification) as a reference which he, or she, has to check against the recorded
behavioral model of the SUT.

Test Tool
Systesnbyrnder Recording | | Replay/ | Test
test () test scripts Analyze report

Figure 8.6: The common way of test tool-supported GUI testing

Figure 8.7 identifies activities that are necessary to be carried out for this com-
parison in following steps. The identification of the GUI objects of the SUT as
well as the system model are necessary inputs that result in an executable test
script as output.

System under System
test (SUT) model
9
Test Tool
Identify the a Behavioral modelin | b System model in
objects of the // intermediate format intermediate format
GUI of
the SUT
c f
Test d
Execution |) e
Test script Test cases
h
Test
Report

Figure 8.7: Identification of the steps to be automatically carried out

8.3 More Automation — Towards Self-Testing 101

The GUI objects are the instruments for the input, e.g., screens, windows,
icons, menus, pointers, commands, function keys, alphanumerical keys, etc.

After recording of the properties of the GUI objects of the SUT through the
test tool, the relevant information on the structure of the SUT is stored in a GUI
file. Apart from the identification of the GUI objects, the step a (Figure 8.7) con-
verts the GUI file, which incorporates the behavioral model of the SUT, in an in-
termediate, uniform format for further processing.

As a next step, the two inputs g and b (Figure 8.7) are used to convert the sys-
tem model into the same intermediate format as the behavioral model has been
captured by step a. This format unambiguously represents the GUI objects and the
model of the SUT by mapping the (by the step a) identified objects to the objects
of the model.

Step f generates test cases by analyzing the system model given in the inter-
mediate format. Moreover, the test cases and the behavioral model (in the inter-
mediate format) are necessary as input ¢ and e to subsequently generate a test
script in the appropriate format, which can be executed by the test tool.

Finally, the step d loads the test script into the test tool that executes the test
and generates a test report (step 4).

There is a good deal of research work done for modeling of interactive sys-
tems and generation of test cases from this model (steps g and f in Figure 8.6)
[BLO2, Hor99, PFV03]. The model can be state-based, e.g., as UML statecharts
[OMGO03], or event-based, e.g., event sequence graphs [BB04, BelO1]. The inter-
mediate format can be XML [XML10]. Thus, the steps g, f, and d (Figure 8.7) can
effectively be performed, based on sound formal methods.

The steps b, ¢, and e, however need additional effort for automation which is
explained in following sections. As the test method selected is black-box-oriented,
the source code (implementation) of the SUT is not needed for testing. Thus, the
testing of the SUT solely needs domain knowledge, i.e., the information repre-
sented in the system model which is the output of the step g.

8.3.2 Test Script Generation

To enable the comparison for the identification of the objects, both the behavioral
model and the system model are to be transformed into an intermediate format,
e.g., XML. The approach is not applicable if the objects do not completely match
and thus an unambiguous identification of the objects is not possible. However, it
has been working on heuristics to determine a notion of “similarity degree” to en-
able the identification of a common subset of the objects of both models that

102 Tool Support

could enable an automatic testing of the software system covering the corre-
sponding objects.

The objects of an application can be identified by a spy feature that is available
in most commercial test tools. Actually, this feature delivers the information that
is gained during the recording of a system-based application, in a specific context
that includes specific properties at the specific point of recording time. This
means, the information that is available for recognizing the objects is static, i.e., it
has been gained under specific circumstances. However, objects have dynamic
properties that change, e.g., a button that is disabled can be enabled in another
context — e.g., after the recording stops. The capturing, that has recorded this but-
ton in a disabled state, can than recognize the button if and only if it is disabled.

Generally, such a button as an object has more than only one property, e.g.,
window class, label, etc., whereas for this approach only active properties are of
interest. Therefore, a list of objects of an application is necessary, and all in-
stances of these objects, e.g., of a specific button, are to be included in this list.
The recorded objects are usually hierarchically structured by the windows they be-
long to. Figure 8.8 depicts the captured objects of an application by the test tool
WinRunner [WR70]. Consider, however, that the tool features used in the ex-
amples are included in most commercial capture/replay tools.

ap Ed =) x|

File Edit Yiew ©Options Tools Help Eﬂpened window 1 = Imiii
GUI File:
| L1 sampletipp.GUI =] Name : |
Windows/Obijects: Suame - |

= "Opened Window 1" - Leam | EI o

" k.

-4 “Name Modf. | _I 4

L& ok

Ldd “SuName add.. [® sample Windows Application =10 x|

L& “windowsFomms10EDI belete | | | File

L& “windowsFoms10EDI 0

—3 "sys_GrbiBt-a andem’ Dalal : I

FE sys_Maximieren

FE sy Minimieren Data2: I

L

k Cancel
Physical Description: L o l g |
= z
E@Sample Screen O] x|
I

|Obiect list is filtered

Figure 8.8: A sample application and their captured objects by a commercial test

tool

8.3 More Automation — Towards Self-Testing 103

The GUI Map Editor of WinRunner includes a feature for saving of a recorded
window and its objects as a textual GUI file. This file contains the different in-
stances each object can possess. For identification, a name tag can be assigned to
each of these files, e.g., determined by the hashing method. To conclude the step a
of (Figure 8.7), the GUI file is converted into a common format, as to XML,
which many tools are compatible with. Figure 8.9 depicts the extended GUI file of
the object of the “Sample Windows Application” given in Figure 8.8 which se-
mantically corresponds to all following figures.

SampledpplicationGLU1. sml |

3 <XMLROOT:> -]
4 <SCR>
5 <SCRHame:>0Opened Window 1</SCRHName:>
& <SCRAttribute> class: window, lahel: "Opened Window 1"
£¢ WindowsForms10.Window. 8. app3"</SCRAttribute>

7 <SCRExtrafAttribute> rtree state: open, ltree state: open
£+ parent win: "Sample Windows Application', opened by: "menu

¢ "</SCRExtraAttribute>

g <GUIDhject:

3 <GUIDHame>Name :</GUIOHame:>

10 <GUIDAttribute> class: object, label: "Hame :", MSW class.'

£¢ WindowsForms10.STATIC. app3"</GUIDAttribute>

11 <GUIOHash>1687517667</GUI0Hash>

1z </GUIObject:>

13 <GUIDhject:

14 <GUIOHame:0k</GUIDName:>

15 <GUIOAttribute> class: object, label: 0k, MSW class: "Windows'
=+ GUIDAttribute>

16 <GUIOHash>-1321724563</GUIDHash>

17 </GUIDbject:>

18 <GUIObject:>

19 <GUIOName>SurHame :</GUIO0OName:

20 <GUIOAttribute> class: object, label: "SurHame :", MSW class:
£¢ WindowsForms10.STATIC. app3"</GUIODAttribute>

2zl <GUIOHash>1119995427</GUI0Hash> LI

Figure 8.9: Extended GUI file in XML format

For generating test cases automatically, a model of the system is necessary,
e.g., a statechart or an ESG that describes which event can be reached from which
other event. This model is stored also in an intermediate format.

Figure 8.10 depicts the corresponding ESG as a XML file which is generated
by a tool developed by our group as a WinRunner “Add-on”.

104 Tool Support

SampletpplicationGUl xml umitodel zmi |

<MODEL > -
<RELATION>
<MHODE >0+ /MHODE >
<HODE>1687517667</HODE >
</RELATION>

<RELATIONH>
<MHODE>1687517667</MHODE >
10 <HODE>118717499</HODE >

11 <HODE>-1240286778</HODE>
1z </RELATION> |

W0 -1 o n e W

Figure 8.10: XML representation of the model given as an ESG using the
“hashed” IDs

Once the model is available in the intermediate format, test cases can easily be
generated, e.g., using the technique introduced in Chapter 4. For the XML file
given in Figure 8.10, the following example excerpts some of the test cases that
are automatically generated:

Example 8.1: Hash coded identifiers of the test cases that are to be executed in a
test run sequentially.

[-1321724563,-1240296778,118717499,1687517667]
[-1321724563,-1240296778,-1687517667]

The test sequences that are automatically generated must be converted into the
test script language of the selected test tool to enable the execution and analysis in
its replay mode. The conversion is a straight-forward translation, needing only lit-
tle amount of additional information that is not included in the generated test se-
quence: information about the hierarchical structure of the windows, i.e., whether
the objects are to be sequentially executed (i.e., they belong to the same window),
or another window is to be activated (opened) before the next object is to be exe-
cuted.

In WinRunner, this information can be added by means of the command
“set_ window()” to activate another window so that the following object can be
reached. At last the information input parameters for editable objects must be set
by the command “edit_set()” as “textfield”.

8.3 More Automation — Towards Self-Testing 105

i WinRunner - [k:diss' proj'EU-TestAutomation’, Demo’ WRTestscrip! =] |
Eile Edit Create Run Debug Tools Setkings Window Help 12| x|
D@ Evey x| @ 158 g ow | S W DS |53 (N2

Sample Windows Application -

et window ("3ample Windows Application™, 2):

ohj drag ("WindowsFormslO.EDIT.app3™, 57, 5, LEFT):
obhj_drop ("Datal :", 40, 5):

obj_type [("WindowsFormslO.EDIT.app3™,"Hallo World™)
obj_mouse_click ("Ok", 22, 11, LEFT):

Sample Screen
win close ("Sawple Screen'):

Sample Windows Application
set_window ("Sawple Windows Applicatcion', 3);
obj_mouse_click ("Cancel™, 36, 7, LEFT);
menu select_item ("File;Open...");

Press LT ko choose commands |Line: 20 |Run Mame: o

Figure 8.11: Executable Test Script

Figure 8.11 depicts the generated test script which can be replayed in Win-
Runner, whereas Figure 8.12 indicates the corresponding test report on failed and
succeeded test cases.

ﬁa WinRunner Test Results - [K:diss' proj: EU-TestAutomati i = |EI|£|
B Fle Options Tools Window 18] x|
== =] A | S
@ [Test Result fail Batch-Test
|: pazz |: +% Total number of bitmap checkpoints: i}
fail +% Tatal number of GUI checkpoints: 1]
& General Information
Line Ewent Details Reszult Time =
1 |ztart run batch wn 000000
1 |call test pass 0k, 00:00:m
21 |retumn pass Ok 00:00:05
2 |call test fail 0k 00:00: 06
23 |retum fail fail 00:00:18
2 |ztop run batzh fail 00:00:12 =
[Ready [o

Figure 8.12: Test report generated for the test script of Figure 8.11

106 Tool Support

8.3.3 A Prototype of the Environment

The implemented test tools aim to automate the manual steps of the deployment
of commercial test tools during testing the SUT. Following, self developed test
tool components are briefly introduced.

The GUI File Parser summarizes the information on the GUI structure. The
original GUI File of WinRunner is on the left side of Figure 8.13; the extended
GUI file on the right side lists all objects as a tree. This file is converted to an
XML file upon pressing the Button “Export to XML File”.

agwmllunner File Manager . T E ':f i =10] x|

Filz Help

"Opened Window 1" NBEER O pened window 1 N

{ . i claze window, label "Openad®

class: window,))

label: "0pened Window 1", itree_state: open, lree_state: o

MEW clazz "WindowsForms1 0. \wWindow. 8.app3" B~ Hame :

i [+ Ok,

{ E| Surklame :

{ttr[::‘:tt:tt: DDE::_:’ EI WindowsFormz10.EDIT. app3

In_app_stat: dong: - WindowsForms10.EDI T.app3_1

parent_win: S ample Windows Application’’, [=1- S ample \Windows Spplication

opened_by: "menu_select_item(t " Open.. 1" class window, label 'S ample b
itree_state: open, lree_state: o

class: object, - File ;l

4

label: "Surt ame :",

MW _clazs "WindowsFormz10.5TATIC app3" __J ElRe T s |
' x :

K 5DemohSampledpp GUI o

Figure 8.13: The GUI File Parser

The Model Generator opens a previously generated XML file of a GUI for
mapping of its objects to a model (represented also as a XML file). From the left
side of Figure 8.14, the objects can be “dragged and dropped” and inserted as an
end or starting node. Beginning with the end node, the starting node column has to
be filled by those objects from which the end node can be reached. By pressing
the “Add To Model” button the selected component is added to the model.

Once the model of the SUT is generated by the Model Generator, the GUI file
containing the structure information is used to decompose all modal windows.
Thus, each modal window is represented by its own ESG, and can separately be
tested by generating the corresponding MSFCES.

8.3 More Automation — Towards Self-Testing 107

[EModel Generator 1 9-'3'& 1Ol =|

IK: “Demot S ampledpplicationG UL xml

= SCRN ame | Add Eeginning Mode | Add End Node |
i Dpened Window 1 Mo
[=1- SCRAtbute F
‘- class: window, label "Opened J E
- SCRE strabttribute
b thiee state: open, lree_state: o Add Tao Maodel |
E- GUIOkject
- & GUIOName Save Madel |
- bMName:
= GUIDAbute
L. class: ohject, label "Mame ArrayList: Base:
= GEL”DHE'Sh Attributes | Sereen | Hash |
5 BTatHRE class: menu_ SCR -244014373
= GUIObject
i B GUIOHash clazz men_ SCH 10335071935

-
‘ - - ﬂJ _
Expand Al
| Y

Figure 8.14: The Model Generator

As shown in Figure 8.15, one needs only to push “Convert-Button” to start the
Model Decomposer [Sto05] that generates an ESG for each modal window.

Model Decomposition - =, |E||i|

Conyerter

Esg 2(fiom 2] |

< Pl wersion="1.0" encoding="utf-16'"¢> -
<MODEL snalnz: wzi=""http: 4 Avnan w3 org/ 2001 XM LS chema-instance' smins:xsd="http:
<RELATIOM»
<MMODE>-PIB051660< MNODE> — — .
<NODE> #3HFom2ite/NODE> [S oo T =10l x|
<MODE>1</MODE>
</RELATIONS Converter |
<RELATION:
<MMODE>-1183803358< MNODE >
<NODE>#3HForm2#< /NODE> St :
s sghodel |D:AMD Chesgtadel sml
<ARELATIOMN 3
<RELATION> Guikdodel |D:AMD ChguiMadel sl |
<MMODE>0< /MM ODE >
<MNODE>-736051660< /MODE > Jflaptdodel I
</RELATION: i
CRELATIOMN» &
<MNODE>H#3#Fom2#H< /MNODE> Destination path |0 :AMDCY |
<MODE>-1183803358</MODE>
</RELATIOM > Start models Destination modelz
</MODEL>
4| IEsg_Gui ﬂ IEsgs ﬂ Corvvert |
[~ Show/zave lInterkdodel

Figure 8.15: The add-on tool Model Decomposer

108 Tool Support

The end node column can only contain a single node as an end node. When all
objects are mapped, the model can be saved. The generated model can be checked

in a frame (down, right side) where each object is represented by its hash coded
ID.

fEModel Tracer S 1Ol x|
IK:RDemU'\middleHmI.HmI
[=- MODEL [=-#MLROOT - -
- RELATION E-SCR ki
& = SCRName !
- Dpened Window 1 -!I %i%ggg?gg
: E SCRAtrbute 11071 745
- 1BE7E176EY o e class window, label: "0 1B2751 7667
E- RELATION E SCRatrbute i]
E MMNODE L rtree_state: open, lfree_
- L 1607517667 = GUIObject ﬁi
= NODE | = GUIOMame
118717499 o e Mame: 11%35—:-1? 539553
=- NODE =1 GUIDAttribbe 1687517667
1 240286778 ‘o class: object, label 0
£ RELATIOM . E-GUIOHash 5
- MMODE - 16BTH17EET] :
- 18717439 e all0 biesy 1321724563
- NODE = GUIObject 1240286779
PR 1321724563 El--GUIEIName ;! 168751 7EET
= NODE - T I]
LA TARRA —-I—I
Expand I Expand | Trace Path J/
Y

Figure 8.16: The Model Tracer

The Model Tracer generates test sequences from the XML file of a GUI and
XML file of the corresponding model as described in Section 8.3.2. At the same
time when the test cases are generated, which is shown on the right column in
Figure 8.16 (cf. to the example in Section 8.3.2), the executable test script is saved

in a separate directory.
8.4 Remarks for Further Research and Development

If the SUT is modified, e.g., to produce a new release, the test frame, i.e., the
test cases, and consequently, the test script might become obsolete. To avoid this

8.5 Summary 109

obsolescence, the underlying system model is to be automatically updated which
defines an important area of further research.

A key factor of the approach is the unambiguous identification of the objects
of the SUT — both in the system model and the behavioral model. The approach
introduced here requires both models be transformed into an intermediate format,
e.g., XML, to enable to identify the objects. This aspect is unfortunately not sup-
ported to the same extent by all commercial test tools — a fact that might endanger
an automatic identification of the objects. Therefore, it is worthwhile to consider
different components of the approach, e.g., test script construction, for stan-
dardization of the industrial test process and test tools for interactive systems to
enable a broad compatibility and interoperability of the great variety of the exist-
ing test techniques and commercial test tools [GHRS+03].

8.5 Summary

This chapter presents three dedicated tools that were developed to support the test
case generation using ESGs. The tool GenPath generates ESs and FESs of differ-
ent lengths and establishes the MSCESs of the corresponding ESG and its exten-
sion for length > 2. For the analysis of the test cost of the generated test cases, the
GATE tool was applied.

Furthermore, the manual activities during the test were identified and analyzed
to carry them out automatically. For demonstrating the practicability and benefits
of the approach, a commercial test tool (WinRunner) is augmented by test facili-
ties that were developed (as add-ons). However, any other adequate commercial
test tool can be used instead of this one. For modeling the system, any state-based
or event-based method can be used.

The benefits of the add-ons are: Firstly, the approach does not need a sight into
the code of the SUT. Secondly, once the test script has been constructed, the sys-
tem can be automatically tested.

9 Discussion and Conclusion

This work introduced an integrated approach to the modeling, analysis, and test
generation for embedded and interactive systems. Modeling is carried out using

event sequence graphs (ESGs). These graphs and their complements ESGs assist
the verification of the expected system behavior in the presence of expected inputs
as well as the analysis of robustness and risks associated with system behavior in
unexpected situations, thus delivering a holistic view. For modeling complex sys-
tems, the model supports a hierarchical decomposition which in turn breaks down
the complexity of test case generation.

The test process based on the fault model generates test cases as sequences of

events of the ESG and ESG to test whether or not the system behaves as desired
and is robust in the face of interactions with faulty inputs. As ESG (and thus

ESG) is constructed to reflect the user expectations, acting as an oracle of a high
level of trustworthiness. Furthermore, criteria are developed to determine the
completeness of the test process, enabling a scalability of the test costs and a deci-
sion on when to stop testing. These criteria, based on the coverage of edges of the

underlying ESG and ESG , are used to construct a minimal set of test cases.

The case studies presented indicate how ESGs can be used to model and ana-
lyze the behavior of a system. It was also shown how the ESG-based model is
used for test generation. The effectiveness of the tests so generated is reported.

The degree of undesirability is represented in the form of a risk ordering rela-
tion — an expression of relative levels of risks of event sequences. This allows tar-
geting the design of tests at specific system attributes. Further on, the approach is
extended to statecharts as introduced by D. Harel. For this purpose, the test case

111

112 Discussion and Conclusion

generation and selection criteria have been applied to statecharts and their transla-
tion into extended regular expressions and are augmented with faulty transitions.

Finally, the test set generation is supported by tools which were developed,
based on the algorithms introduced in this work. These tools have been integrated
(as add-ons) into the commercial test environment WinRunner, which can be re-
placed by any other adequate commercial test environment to enable an automatic
test generation.

9.1 Advantages and Disadvantages of Modeling with ESG

The event-driven concept of ESG as opposed to a state-driven approach such as
FSAs enables the exploitation of the features of the type-3 languages, including
decidability results on the recognition problem (necessary for effectively com-
plementing the ESG), well-known algorithms used in automata testing, and com-
piler construction, e.g., for handling faulty programs. The trade-off between this
simplification and elegance achieved through ESGs is that it neglects the states of
the SUT and the hierarchical levels of the user interactions.

Generation of test cases that rely on information about the internal behavior of
the system might be difficult to achieve with ESGs. An example is a test designed
to check that a save operation is not executed if the loaded file is write-protected.
Another is a test designed to check that a button has not been deactivated inadver-
tently by a previous operation offered by a menu with many entries for alternative
user inputs. Presentation of such situations with ESGs is generally possible, but
could become tedious. In the latter example, for instance, the likely combinations
of different values of corresponding flags, which could have been set or reset in
different menus, could be numerous. In all these cases, Boolean algebra-based
techniques [Bin00], such as decision tables and Karnaugh-Veith diagrams, might
be helpful for combining them with the ESG for constructing test cases. As in any
problem solving activity, there may not be a “silver bullet” type single test that
can cope with every kind of fault.

9.2 Recommendations for Practice

The ESG-based approach has been applied to the testing of the GUIs of different
industrial applications; e.g., the GUIs of a mobile telephone device, a ticketing
machine, etc. [Bel01]. In addition, the approach has also been used to validate re-

9.2 Recommendations for Practice 113

quirements definitions and to verify and design specifications, both mainly repre-
sented by ESGs. While some of the results of the analysis of the detected faults
were in compliance with the expectations, other results were surprising, and are
summarized below.

Lesson 1. Start Small, but as Early as Possible
The determination and specification of the CESs and FCESs should ideally be car-
ried out during the definition of the user requirements, much before the system is
implemented; the availability of a prototype would be helpful in this task. They
are then a part of the system and the test specification. However, CESs and FCESs
can also be produced incrementally at a later time, even during the test stage, in
order to discipline the test process.

As a strategy, one starts with the CESs and FCESs that cover all event pairs.
Test results and quality targets determine how to proceed further, i.e., whether to
consider testing with event triples and quadruples.

Lesson 2. Good Exception Handling is not necessarily Expensive but Rare
Most GUIs subjected to tests do not consider the handling of the faulty events.
They have only a rudimentary, if any, exception handling mechanism, realized by
a “panic mode” [Goo75] that mostly leads to a crash, or ignores the faulty events.
The number of the exceptions that should be handled systematically, but have not
been considered at all by the GUIs of the commercial systems is presumed to be
on an average about 80%. Poor handling of exceptions has also been reported by
Westley and Necula [WNO4].

Lesson 3. Analysis Prior to Testing Can Reveal Conceptual Flaws

The analysis of ESGs of the GUIs of some commercial systems has revealed sev-
eral conceptual flaws: absence of edges, indicating incomplete exception han-
dling, and missing vertices or events (approximately 20%). This amounts to de-
fective components in the final product, highlighting the flaws in the initial con-
cept and the process of product development. In this connection, the proposed ap-
proach offers an important unexpected benefit: it provides a framework for the ac-
celerated maturation of the product and for exercising the creativity of the devel-
opers.

114 Discussion and Conclusion

9.3 Conclusion and Perspectives for Future Work

The fault model in this work has been intentionally kept simple: states, inputs and
outputs of FSA have been merged into the vertices of an ESG and its complement

ESG , which are uniformly interpreted as events; with no annotation of edges of
either.

If a more sophisticated fault classification model, e.g., Orthogonal Defect
Classification [CBCH+92], is required, the fault model must be extended accord-
ingly, differing across states, inputs and outputs. Following the guidelines in Sec-
tion 3.3, the model extension aims at distinguishing between different kinds of
faults and levels of their severity, leading to a general, effective strategy for fault
handling, e.g., to determine the test set and costs for a given safety level [Sto96].

A first step in this direction has been reported [Gut03] by applying the ap-
proach introduced in this work to Statecharts [HN96]. Further work is planned to
consider UML — an approach already exploited for generating test cases [BL02,
KHBC99, OLAAO03]. However, further research [Hol06] is needed to extending
the notions and algorithms introduced and summarized in this work, particularly
in relation to state explosion caused by additional nodes while completing the
ESG and to account for concurrency in system behavior [RS94, Sch90].

Experience with the ESG based approach suggests that the number of selected
test cases can be reduced by considering structural features of the SUT, e.g., iden-
tifying windows that cannot invoke any child windows, or that cannot simultane-
ously exist with windows of the same hierarchy level, etc. Such ferminal windows
need not be considered combinatorial while generating test cases. This aspect is
likely to help in the elimination of unnecessary and/or infeasible test cases and
thus in a significant cost reduction. Consideration of further modeling notions,
e.g., based on Kripke structures [Pel01], may offer further research avenues.

Finally, additional vulnerability attributes are to be considered, particularly in
applications that can be modeled in a state-based formulation. These include, for
example, security [EVKO02].

Bibliography

[ADLU91] Aho, A.V., Dahbura, A.T., Lee, D., Uyar, M.U.: An optimization

[AHU77]

[ALRO4]

[Azu93]

[BB04]

[BBHO5]

[BBL76]

technique for protocol conformance test generation based on UIO
sequences and rural Chinese postman tours. /[EEE Transaction on
Communication, vol. 39(11), 1991, pp. 1604-1615.

Aho, A.V., Hopcroft, J.E., Ullmann, J.D.: Principles of Compiler
Design. Addison-Wesley, 1977.

Avizienis, A., Laprie, J.C., Randell, B.: Dependability and its
Threats: A Taxonomy. In Proceedings of the IFIP 18th World Com-
puter Congress, Kluwer Academic Publishers, 2004, pp.91-120.

Azulay, A.: Automated testing for X applications. The X Journal,
May-June, 1993, pp. 67-70.

Belli, F., Budnik, C.J.: Minimal spanning set for coverage testing of
interactive systems. Proceedings of the First International Collo-
quium on Theoretical Aspects and Computing (ICTAC), Lecture
Notes of Computer Science (LNCS), vol. 3407, Springer, 2004, pp.
220-234.

Belli, F., Budnik, C.J., Hollmann, A.: Holistic testing of interactive

systems using statecharts. Journal of Mathematics, Computing &
Teleinformatics, vol. 1(3), 2005, pp. 54-64.

Boehm, B.W., Brown, R.R., Lipow, M.: Quantitative evaluation of
software quality. Proceedings of the 2nd International Conference
on Software Engineering (ICSE), 1976, pp. 592-605.

115

116

[BBNO4]

[BBWO06]

[BD97]

[Bei90]

[BelO1]

[BG91]

[Bin00]

[BLO2]

[BP94]

[BSHS6]

Bibliography

Belli, F., Budnik, C.J., Nissanke, N.: Finite state modeling, analysis
and testing of system vulnerabilities. Proceedings of 17th Interna-
tional Conference on Architecture of Computing Systems (ARCS),
Lecture Notes in Informatics (LNI), vol. 41, 2004, pp. 19-33.

Belli, F., Budnik, C.J., White, L.: Event-based modeling, analysis
and testing of user interactions: Approach and case study. Journal of
Software Testing, Verification and Reliability (STVR), vol. 16(1),
John Wiley & Sons, Ltd., 2006, pp. 3-32.

Belli, F., Dreyer, J.: Program segmentation for controlling test cov-
erage. Proceedings of the Sth International Symposium on Sofiware
Reliability Engineering (ISSRE), IEEE Computer Society Press,
1997, pp. 72-83.

Beizer, B.: Software Testing Techniques. ond ed., New York, USA,
Van Nostrand Reinhold Co., 1990.

Belli, F.: Finite-state testing and analysis of graphical user interfaces.
Proceedings of the 12th International Symposium on Software Reli-
ability Engineering (ISSRE), IEEE Computer Society Press, 2001,
pp. 34-43.

Belli, F., Grosspietsch, K.-E.: Specification of fault-tolerant system
issues by predicate/transition nets and regular expressions: Approach
and case study. I[EEE Transactions on Software Engineering, vol.
17(6), 1991, pp. 513-526.

Binder, R.V.: Testing Object-Oriented Systems. Addison-Wesley,
2000.

Briand, L., Labiche, Y.: A UML-based approach to system testing.
Software and System Modeling, vol. 1(1), 2002, pp. 10-42.

Bochmann G.v., Petrenko A.: Protocol testing: Review of methods
and relevance for software testing. Proceedings of the International
Symposium on Software Testing and Analysis (ISSTA), ACM Press,
1994, pp. 109-124.

Basili, V.R., Selby, R.W., Hutchens, D.H.: Experimentation in soft-
ware engineering. [EEE Transactions on Software Engineering, vol.
12(7), 1986, pp. 733-743.

Bibliography 117

[CBCH+92] Chillarege, R., Bhandari, I.S., Chaar, J.K., Halliday, M.J., Moebus,

[CDFP97]

[CHOO]

[Cho78]

[Chr04]

[Chr04/2]

[Dij59]

[DLS78]

[DMMO1]

[DO91]

D.S., Ray, B.K., Wong, M.-Y.: Orthogonal defect classification —
Concept for in-process measurements. /[EEE Transactions on Soft-
ware Engineering, vol. 18(11), 1992, pp. 943-956.

Cohen, D.M., Dalal, S.R., Fredman, M.L., Patton, G.C.: The AETG
system: An approach to testing based on combinatorial design. /[EEE

Transactions on Software Engineering, vol. 23(7), 1997, pp. 437-
444,

Chhikara, R.S, Heydorn, R.P.: Event sequence diagrams for dynamic
probabilistic risk analysis. Annual Report of the Institute for Space
Systems Operations, University of Houston, 2000.

Chow, T.S.: Testing software design modeled by finite-state ma-
chines. IEEE Transactions on Software Engineering, vol. 4(3), 1978,
pp. 178-187.

Christoph, J.: Automatic generation of suboptimal test cases and
their analysis for fault detection and classification of graphical user
interfaces (in German). Technical Report 2004/2, Study Thesis, Uni-
versitit Paderborn, Angewandte Datentechnik, 2004.

Christoph, J.: Requirements definition, design and validation of the
interface of a marginal mower equipment mounted on a truck (in
German). Technical Report 2004/6, Master Thesis, Universitit Pad-
erborn, Angewandte Datentechnik, 2004.

Dijkstra, E.W.: A note on two problems in connection with graphs.
Journal of Numeric Mathematics, 1959, pp. 269-271.

DeMillo, R.A., Lipton, R.J., Sayward, F.G.: Hints on test data selec-
tion: Help for the practicing programmer. [EEE Computer, vol.
11(4), 1978, pp. 34-41.

Delamaro, M.E., Maldonado, J.C., Mathur, A.P.: Interface mutation:
An approach for integration testing. /EEE Transactions on Sofiware
Engineering, vol. 27(3), 2001, pp. 228-247.

DeMillo, R.A., Offutt, A.J.: Constraint-based automatic test data
generation. /[EEE Transactions on Software Engineering, vol. 17(9),
1991, pp. 900-910.

118

[Dre9s]

[EB84]

[EJ73]

[EVK02]

[FBKA91]

[FMMD94]

[FX02]

[Gar89]

[Gau95]

[GBBDO5]

[GH99]

Bibliography

Dreyer, J.: Program Segmentation for Controlling Software Testing
and Analysis. Shaker Verlag, 1998.

Eggers, B., Belli, F.: A theory on analysis and construction of fault-
tolerant systems (in German). Proceedings, Informatik-
Fachberichte, 1984, Springer , pp. 139-149.

Edmonds, J., Johnson, E.L.: Matching, Euler tours, and the Chinese
postman. Mathematical Programming, vol. 5, 1973, pp. 88-124.

Eckmann, S.T., Vigna, G., Kemmerer, R.: STATL: An attack lan-
guage for state-based Intrusion Detection. Journal of Computer Se-
curity, vol. 10(1-2), 2002, 71-103.

Fujiwara, S., Bochmann, G.V., Khendek, F., Amalou, M.: Test selec-
tion based on finite state models. /[EEE Transactions on Software
Engineering, vol. 17(6), 199, pp. 1591-603.

Fabbri, S.C.P.F., Maldonado, J.C., Masiero, P.C., Delamaro, M.E.:
Mutation analysis testing for finite state machines. Proceedings of

the 5th International Symposium on Software Reliability Engineering
(ISSRE), IEEE Computer Society Press, 1994, pp. 220-229.

Fetzer, X., Xiao, Z.: Increasing the robustness of C-libraries using
robustness wrappers. Proceedings of the International Conference
on Dependable Systems & Networks, IEEE Computer Society Press,
2002, pp. 155-166.

Garg, V.K.: Modeling of distributed systems by concurrent regular
expressions. Proceedings of the International Conference on Formal
Techniques for Networked and Distributed Systems (FORTE), 1989,
pp. 313-327.

Gaudel, M.-C.: Testing can be formal, too. Proceedings of Theory
and Practice of Software Development (TAPSOFT), Lecture Notes in
Computer Science (LNCS), vol. 915, 1995, Springer, pp. 82-96.

Gossens, S., Belli, F., Beydeda, S., Dal Cin, M.: View graphs for
analysis and testing of programs at different abstraction levels. Pro-
ceedings of the High-Assurance Systems Engineering Symposium
(HASE), IEEE Computer Society Press, 2005, pp. 201-208.

Gargantini, A., Heitmeyer, C.: Using model checking to generate
tests from requirements specifications. Proceedings of the 7th Euro-

Bibliography 119

[GHRS+03]

[Gil62]

[Glu63]

[Goo75]

[Gos02]

[Gut03]

[Ham94]

[Ham96]

[Har87]

[HHO02]

[HI98]

pean Software Engineering Conference (ESEC-7) and the 7th ACM
SIGSOFT International Symposium on the Foundations of Software
Engineering (FSE-7), Lecture Notes in Computer Science (LNCS),
vol. 1687, 1999, Springer, pp. 146-162.

Grabowski, J., Hogrefe, D., Rethy, G., Schieferdecker, 1., Wiles, A.,
Willcock, C.: An introduction to the testing and test control notation
(TTCN-3). Computer Networks, vol. 42(3), 2003, pp. 375-403.

Gill. A.: Introduction to the Theory of Finite-State Machines.
McGraw-Hill, 1962.

Gluschkow, W.M.: Theorie der abstrakten Automaten, VEB Verlag
der Wissenschaft, 1963.

Goodenough, J.B.: Exception handling — Issues and a proposed nota-
tion. Communications of the ACM, vol. 18(12), 1975, pp. 683-696.

Gossens, S.: Enhancing system validation with behavioral types.
Proceedings of the 7th International Symposium on High-Assurance
Systems Engineering (HASE). IEEE Computer Society Press, 2002,
pp- 201-208.

Gutzeit, Th.: Test case generation from statecharts to validate
graphical user interfaces (in German). Technical Report 2003/6,
Master Thesis, University of Paderborn, Angewandte Datentechnik,
2003.

Hamlet, D.: Foundation of software testing: Dependability theory.
Proceedings of the 2nd ACM SIGSOFT Symposium on Foundations
of Software Engineering, 1994, pp. 128-139.

Hamlet, D.: Predicting dependability by testing. Proceedings of the
International Symposium on Software Testing and Analysis (ISSTA),
ACM Press, 1996, pp. 84-91.

Harel, D.: Statecharts: A visual formalism for complex systems. Sci-
ence of Computer Programming, vol. 8(3), 1987, pp. 231-274.

Huhns, M.N., Holderfield, V.T.: Robust software. IEEE Internet
Computing, vol. 6(2), 2002, pp. 80-82.

Holcombe, M., Ipate, F.: Correct Systems: Building a Business
Process Solution. Springer, 1998.

120

[HN96]

[Hol04]

[Hol06]

[Hor99]

[[an60]

[IEC610]
[IEC615]

[IEEE90]

[JS04]

[TW74]

[Kep94]

[KHBC99]

[KKS98]

Bibliography

Harel, D., Naamad, A.: The STATEMATE semantics of statecharts.
ACM Transactions on Software Engineering and Methodology, vol.
5(4), 1996, pp. 293-333.

Hollmann, A.: Additional tool-support for generation of minimal
spanning complete event sequences by GenPath (in German). Tech-
nical Report 2004/8, Universitit Paderborn, Angewandte Datentech-
nik, 2004.

Hollmann, A.: Extension of a graph-based, holistic approach for
generating and selecting test cases (in German). Ongoing work, Mas-
ter Thesis, Universitit Paderborn, Angewandte Datentechnik, 2006.

Horrocks, 1.: Constructing the User Interface with Statecharts. Addi-
son-Wesley, 1999.

[anov, Y.L.: Logic Schemes of Algorithms. Problems of Cybernetics,
vol. 1, 1960, pp. 82-140.

IEC 61025 Fault Tree Analysis.

IEC 61508 Functional Safety of Electrical/Electronic/Programmable
Electronic Safety-Related Systems, Part 3: Software Requirements.

IEEE Std. 610.12, IEEE Standard Glossary of Software Engineering
Terminology, 1990.

Jansamak, S., Surarerks, A.: Formalization of UML statechart mod-
els using concurrent regular expression. Proceedings of the 27th
Conference on Australasian Computer Science (ACSC), vol. 26,
Australian Computer Society Inc., 2004, pp. 83-88.

Jensen, K., Wirth, N.: Pascal, User Manual and Report. Springer,
1974.

Kepple, L.R.: The black art of GUI testing. Dr. Dobb's Journal of
Software Tools, vol. 19(2), 1994, p. 40.

Kim, Y.G., Hong, H.S., Bae, D.H., Cha, S.D.: Test cases generation
from UML state diagrams. /[EE Proceedings — Software, vol. 146(4),
1999, pp. 187-192.

Kropp, N.P., Koopman, P.J., Siewiorek, D.P.: Automated robustness
testing of off-the-shelf software components. Proceedings of the
28th Annual International Symposium on Fault-Tolerant Computing
(FTCS), IEEE Computer Society Press, 1998, pp. 230-239.

Bibliography 121

[Kle56]

[Kor96]

[KPY99]

[Kwa62]

[Lap92]

[Lev86]

[LL95]

[LN92]

[Lyu96]

[Mar97]

[MB03]

[MBHNO3]

Kleene, S.C.: Representation of events in nerve nets and finite auto-
mata. Automata Studies, Princeton University Press, 1956, pp. 3-41.

Korel, B.: Automated test data generation for programs with proce-
dures. Proceedings of the International Symposium on Software
Testing and Analysis (ISSTA), ACM Press, 1996, pp. 209-215.

Koufareva, 1., Petrenko, A., Yevtushenko, N.: Test generation driven
by user-defined fault models. Proceedings of the 12th IFIP Interna-
tional Workshop on Testing of Communicating Systems (IWTCS).
Kluwer Academic, 1999, pp. 215-236.

Kwan, M.-K.: Graphic programming using odd or even points. Chi-
nese Mathematics, vol. 1, 1962, pp. 273-277.

Laprie, J.C.: Basic Concepts and Terminology. In English, French,
German, Italian and Japanese, IFIP WG 10.4, Dependable Comput-
ing and Fault Tolerance, Springer, 1992.

Leveson, N.G.: Software safety: Why, what, and how. ACM Com-
puter Surveys, vol. 18(2), 1986, pp. 125-163.

Libeaut, L., Loiseau, J.J.: Admissible initial conditions and control
of timed event graphs. Proceedings of the 34th IEEE Conference on
Decision and Control, vol. 2, 1995, pp. 2011-2016.

Lyu, M.R., Nikora, A.P.: CASRE — A computer-aided software reli-
ability estimation tool. Proceedings of the Fifth International Work-
shop on Computer Aided Software Engineering (CASE), 1992, pp.
264-275.

Lyu, M.R.: Handbook of Software Reliability Engineering. McGraw-
Hill, 1996.

Martin, J.C.: Introduction to Languages and the Theory of Computa-
tion. 2™ edn., McGraw-Hill, 1997.

Marré, M., Bertolino, A.: Using spanning sets for coverage testing.
IEEFE Transactions on Software Engineering, vol. 29(14), 2003, pp.
974-984.

Memon, A.M., Banerjee, 1., Hashin, N., Nagarajan, A.: DART: A
framework for regression testing nightly/daily builds of GUI applica-
tions. Proceedings of the International Conference on Software

122

[MPS00]

[MPSO1]

[MPS01/2]

[MS03]

[Myh57]

[NDO2]

[NT81]

[0A99]

[OAKO3]

Bibliography

Maintenance (ICSM), IEEE Computer Society Press, 2003, pp. 410-
419.

Memon, A.M., Pollack, M.E., Soffa, M.L.: Automated test oracles
for GUIs. Proceedings of the 8th ACM SIGSOFT International Sym-
posium on the Foundations of Software Engineering (FSE), ACM
Press, 2000, pp. 30-39.

Memon, A.M., Pollack, M.E., Soffa, M.L.: Hierarchical GUI test
case generation using automated planning. [EEE Transactions on
Software Engineering, vol. 27(2), 2001, pp. 144-155.

Memon, A.M., Pollack, M.E., Soffa, M.L.: Coverage criteria for
GUI testing. Proceedings of the 8th European Software Engineering
Conference (ESEC) and the 9th ACM SIGSOFT International Sym-
posium on the Foundations of Software Engineering (FSE), ACM
Press, 2001, pp. 256-267.

Memon, A.M., Soffa, M.L.: Regression testing of GUIs. Proceed-
ings of the 9th European software engineering conference (ESEC)
held jointly with 11th ACM SIGSOFT international symposium on
Foundations of software engineering (FSE), ACM Press, 2003, pp.
118-127.

Mpyhill, J.: Finite Automata and the Representation of Events. Wright
Air Development Command, vol. 57(624), 1957, pp. 112-137.

Nissanke, N., Dammag, H.: Design for safety in safecharts with risk
ordering of states. Safety Science, vol. 40(9), 2002, pp. 753-763.

Naito, S., Tsunoyama, M.: Fault detection for sequential machines
by transition tours. Proceedings of the IEEE Fault Tolerant Comput-
ing Conference (FTCS), 1981, pp. 238-243.

Offutt, J., Abdurazik, A.: Generating tests from UML specifications.
Proceedings of the 2nd International Conference of The Unified
Modeling Language (UML), vol. 1723, 1999, pp. 416-429.

Okazaki, M., Aoki, T., Katayama, T.: Formalizing sequence dia-
grams and state machines using concurrent regular expression. Pro-
ceedings of the 2nd International Workshop on Scenarios and State

Machines (SCESM), 2003, pp. 74-79.

Bibliography 123

[OLAAO3] Offutt, J., Liu, S., Abdurazik, A., Ammann, P.: Generating test data

[OMGO3]

[Par69]

[Pel01]
[PFV03]

[Pra97]

[RLT78]

[Rob00]

[RR97]

[RS94]

[Sal69]
[Sar89]

[Sch90]

from state-based specifications. Software Testing, Verification and
Reliability, John Wiley & Sons, Ltd., vol. 13(1), 2003, pp. 25-53.

OMG Unified Modeling Language, Specification UML, version 1.5,
2003.

Parnas, D.L.: On the use of transition diagrams in the design of a
user interface for an interactive computer system. Proceedings of the
24th ACM National Conference, ACM Press, 1969, pp. 379-385.

Peled, D.A.: Software Reliability Methods, Springer, 2001.

Pavia, A.C.R., Faria, J.C.P., Vidal, R.F.A.M.: Specification-based
testing of user interfaces. Interactive Systems, Lecture Notes of
Computer Science (LNCS), 2003.

Prather, R.E.: Regular expressions for program computations. The
American Mathematical Monthly, vol. 104(2), 1997, pp. 120-130.

Randell, B., Lee, P.A., Treleaven, P.C.: Reliability issues in comput-
ing system design. ACM Computer Survey, vol. 10(2), 1978, pp.
123-165.

Robinson, H.: Intelligent Test Automation. Software Testing and
Quality Engineering Magazine, September 2000, pp.24-32.

Redmill, F., Rajan, J.: Human Factors in Safety-Critical Systems.
Butterworth-Heinemann, 1997.

Raju, S.C.V., Shaw, A.C.: A prototyping environment for specifying,
executing and checking communicating real-time state machines.
Software - Practice and Experience, vol. 24(2), 1994, pp. 175-195.

Salomaa, A.: Theory of Automata. Pergamon Press, 1969.

Sarikaya, B.: Conformance testing: Architectures and test sequences.
Computer Networks and ISDN Systems, vol. 17(2), 1989, pp. 111-
126.

Schneider, F.B.: Implementing fault-tolerant services using the state
machine approach: A tutorial. ACM Computing Surveys, vol. 22(4),
1990, pp. 299-319.

124

[Sch9s]

[SD88]

[Sha80]

[Shn98]

[SLD92]

[SS97]

[Sto05]

[Sto96]

[THS3]

[Thi03]

[TLO02]

[WA00]

Bibliography

Schruben, L.W.: Building reusable simulators using hierarchical
event graphs. Winter Simulation Conference Proceedings, 1995, pp.
472 -475.

Sabnani, K., Dahbura, A.: A protocol test generation procedure.
Computer Networks and ISDN Systems, vol. 15(4), 1988, pp. 285—
297.

Shaw, A.C.: Software Specification Languages Based on Regular
Expressions. Riddle, W.E., Fairley, R.E. (eds.), Software Develop-
ment Tools, 1980, Springer, pp. 148-176.

Shneiderman, B.: Designing the User Interface: Strategies for Effec-
tive Human-Computer Interaction. 3rd. edn., Addison-Wesley, 1998.

Shen, Y.-N., Lombardi, F., Dahbura, A.T.: Protocol conformance
testing using multiple UIO sequences. /IEEE Transactions on Com-
munications, vol. 40(8), 1992, pp. 1282-1287.

Shehady, R.K., Siewiorek, D.P.:A method to automate user interface
testing using finite state machines. Proceedings of the 27th Interna-
tional Symposium on Fault-Tolerant Computing (FTCS). 1EEE
Computer Society Press, 1997, pp. 80-88.

Stockmaier, C.: Structure-based improvement of the testability of in-
teractive Systems (in German). Technical Report 2005/7, Master
Thesis, Universitit Paderborn, Angewandte Datentechnik, 2005.

Storey, N.: Safety-Critical Computer Systems. Addison-Wesley,
1996.

Thomas, J.J., Hamlin, G.: Graphical input interaction techniques.
ACM Computer Graphics News, vol. 17(1), 1983, pp. 5-30.

Thimbleby, H.: The directed Chinese postman problem. Sofiware -
Practice and Experience, vol. 33(11), 2003, pp. 1081-1096.

Tai, K.-C., Lei, Y.: A test generation strategy for pairwise testing.
IEEE Transactions on Software Engineering, vol. 28(1), 2002, pp.
109-111.

White, L., Almezen, H.: Generating test cases for GUI responsibili-
ties using complete interaction sequences. Proceedings of the 11th
International Symposium on Software Reliability Engineering
(ISSRE), IEEE Computer Society Press, 2000, pp. 111-121.

Bibliography 125

[WAAO1]

[Wes96]
[Whi96]

[Wil91]

[WN04]

[WR70]

White, L., Almezen, H., Alzeidi, N.: User-based testing of GUI se-
quences and their interactions. Proceedings of the 12th International
Symposium on Software Reliability (ISSRE), IEEE Computer Society
Press, 2001, pp. 54-63.

West, D.B.: Introduction to Graph Theory. Prentice Hall, 1996.

White, L.J.: Regression testing of GUI event interactions. Proceed-
ings of the International Conference on Software Maintenance, IEEE
Computer Society Press, 1996, pp. 350-358.

Williams, L.: Formal Methods in the Development of Safety Critical
Software System. Technical Report SERM-014-91, Software Engi-
neering Research, 1991.

Westley, W., Necula, G.: Finding and preventing run-time error han-
dling mistakes. Proceedings of the 19th Annual ACM Conference on
Object-Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA), ACM Press, 2004, pp. 419-431.

WinRunner 7.0, Mercury Interactive, Version Oct. 2004,
http://www.mercuryinteractive.com, 2004.

[WRHO+00]Wohlin, C., Runeson, P., Host, M., Ohlsson, M.C., Regnell, B.,

[XML10]

[ZHM97]

Wesslén, A.: Experimentation in Software Engineering: An Intro-
duction. Kluwer Academic, 2000.

Extensible Markup Language (XML), Bray, T. et.al. (eds.), version
1.0, Wide Web Consortium (W3C), http://www.w3.org/TR/REC-
xml, 1998.

Zhu, H., Hall, P.A.V., May, J.H.R.: Software unit test coverage and
adequacy, ACM Computing Surveys, vol. 29(4), 1997, pp. 366-427.

A Case Study 1: The RealJukebox - RJB

A.1 ESGs of the Case Study 1

Function 1: Play and Record a CD or Track

127

128

Appendix A Case Study 1: The RealJukebox - RJB

View/GoTo/
Play Record CD

NewAutoplaylist:

Tew Auto—
Playlist

A.1 ESGs of the Case Study 1 129

130 Appendix A Case Study 1: The RealJukebox - RJB

Add Tracks: Edit Track Playlist/AutoPlaylist:

Function 4: View Lists and/or Tracks

View Track:

A.1 ESGs of the Case Study 1 131

Load Track:

Edita
Trackin

DEhm @

‘

132 Appendix A Case Study 1: The RealJukebox - RJB

Edit Track in all Tracks: Move Track:
ab @

Open

Multiple

Tracks

Remove
Wissing
Track

<D _—
o) -

]

Function 6: Visit the Sites

Real Juke—
FBox Control

A.1 ESGs of the Case Study 1

133

Visualization Options:

134 Appendix A Case Study 1: The RealJukebox - RJB

e
- P

2 VA ANAN

=X

A.1 ESGs of the Case Study 1 135

Function 9: Sreen Size Function 10: Different Views of Windows

Navigation
Bar

Function 11: Find Music

Wusic in

lmport
Wizard

136 Appendix A Case Study 1: The RealJukebox - RJB

Searching Tracks:

Matching Item:

Search the
Internet

Allofthe
A
@(/ | = .
g
Any of the
\ Words

Contains

Function 12: Configure RJB

Preferences: General:
: []
U pdate
Real Jukebox

Tools

General
Wusic / \\ Devices/
Preferences 2 1L 1
Files Storage
Recording | AN sc— 1nternet
]
Audio

Quality

A.2 List of Faults Revealed 137

A.2 List of Faults Revealed

n_
Fu
ne- tuple
tio- to be Faults detected by CES Fault Type Faults detected by FCES
1(1) cov-
ered
1 2 Shuffle can be enabled when only one functional

track has been selected.

Recording an existing track removes sequencing
(overwrites) the old track from list before
recording is completed.

functional While recording, it is also pos-
sible to forward and/or rewind,
causing the recording process to
stop.

functional Rewind can be activated during
playing a CD or a track in shuf-
fle mode.

Menu item Play/Pause is not the same asfunctional
the control buttons displayed on the main

window. Therefore, pushing start button

on the control panel, while the track is

playing, stops it.

The interaction Play>Pause>Con- sequencing
trols>Jump_To>Beginning continues

playing the same track while Pause is

still displayed.
functional Setting the track position, when
it is paused, continues playing
the file.
If one track is selected but the arrow functional

shows to another track, hitting play starts
playing the selected track.

Check one track on/off is not as a menu functional
item available.

Track position could not be set before ~ functional
playing the file.

Open a file starts playing it. functional

138 Appendix A Case Study 1: The RealJukebox - RJB
n_
Ilfcu_ tuple
tio- to be Faults detected by CES Fault Type Faults detected by FCES
L, cov-
ered
1 2 sequencing Mute button of RJB ignores the

situation where the loudspeaker
has been reset.

CD has been removed; RJB ignored this sequencing
and lists the track names.

AutoPlay cannot start a CD that is al- functional
ready set.

Display does not adjust upon inserting a functional
CD, i.e., its content will not be displayed.

If another track is played in background, sequencing
following error message occurs: “n un-

known Error occurred. For more informa-

tion...”

Pause is ignored if rewind/fast forward functional
is activated (REW/FF/Track position).

Even if Pause is activated, beginning ~ functional
starts the track.

functional Track position is disabled when
stop is activated.

functional Even if Checknone is enabled,
Play/Pause/Stop/Rew/FF/Rec
ord/Beginning can be activated.

functional Checkall and Checknone can-
not be used although a CD is set.

During saving a track on the hard disk, sequencing
the track played sounds jerkily.

REW (rewind) farther than begin of a functional
track does not start the track before.

Record>Shuffle does not cause shufflingsequencing
the tracks; the track list is preceded se-
quentially.

A.2 List of Faults Revealed 139

to be Faults detected by CES Fault Type Faults detected by FCES

1 2 Inthe Pause mode, pushing the Record sequencing
button causes to play the track.

functional ~After activating Checkall and
Checknone, the system doe not
recognize that the action has
been concluded, i.e., the related
buttons are not enabled.

functional A song that is played during Re-
cord can be neither rewound nor
fast forwarded.

Checkall /| Checkone++ and Check- sequencing
oneoff cause during play jerking.

3 Record>Controf>Eject causes removing functional
the CD without warning.

Activating Shuffle causes jerking the re- sequencing

play.
sequencing Multiple changes of songs re-
corded cause the warning that
PC performance would not be
sufficient a replay.
4 Temporarily no jump to the selected sequencing

track, and Stop of the replay although not
all of the selected tracks are replayed.

3 2 In AutoPlaylist a new Playlist canbe functional
created. If desired, then should the way
around be also possible, i.e., a new
AutoPlaylist should be created out of a
Playlist.

3 Play replays the active playlist; Remix functional
can only be activated at Stop.

4 2 sequencing If neither a Genre nor an Artist is
selected while creating a new
AutoPlaylist, every track is
listed in the appropriate list.

140 Appendix A Case Study 1: The RealJukebox - RJB

to be Faults detected by CES Fault Type Faults detected by FCES

4 2 Tacks that are recorded from a CD are functional
temporarily not included In the actual list,

3 If the menu entry File>Move is disabled, sequencing
no track can be moved.

Deleting the Track Info Styles starts the functional
Windows Explorer also from which the
tracks can be replayed.

6 2 NBCi Homepage cannot be visited be- functional
cause the link is obsolete.

functional Quick pushing of MySimon-ad
(bottom right) after clicking any
link triggers the IE error mes-
sage “age cannot be displayed”

functional Unmotivated, random error mes-
sage: “Audio Instant Message
Error in Program RealJukebox”

7 2 functional When Reset is pushed, the but-
ton should be disabled until any
radio button has been touched.

functional If Vis.Settings are activated, all
of the other windows should be
blocked until close button is
pressed.

functional If RJB is minimized, then also
Vis. is minimized.

3 sequencing The list of the song titles of Vis.
in Undock-Mode does not ad-
just if AllTracks of the view bar
is not clicked at the moment of
changing to another song.

sequencing If Vis.Settings are opened, prev
and next Vis. toggle Slide fea-
tures.

When another task active, changing the sequencing

size of the VIs. windows causes switch-
ing to RJB.

A.2 List of Faults Revealed

141

Fu .
e tuple
tio- to be Faults detected by CES Fault Type Faults detected by FCES
cov-
ered
7 4 sequencing Changing the VIs. in Undock
Mode does not change into
Dock Mode when closing the
Undock Mode.
functional Special Effects should be dis-
abled if they do not control any
effect.
When V/s. window in Dock Mode is functional
clicked and moved several times during
the window is settled, causes the settling
to be abandoned.
A newly installed VIs. cannot be re- functional
moved.
8 3 sequencing An active Skin can be deleted.

Clicking Delete Skin makes Explorer
open.

4 In Skin mode, clicking Play twice
causes Stop, not Pause as expected.

11 2 After a search and replaying the tracks
found, the original Playlist is forgotten.

functional

functional

sequencing In Skin mode, minimizing of
the window and immediately
maximizing it moves the win-
dow up to left, northwest.

sequencing Random error: Closing in Skin
mode blocks an immediate
starting right after.

sequencing

functional Searchnow should disable the
buttons Search and Matching
until the end of the search proc-
ess.

142 Appendix A Case Study 1: The RealJukebox - RJB
n-tu-
Il;“u_ ple to
tio- be Faults detected by CES Fault Type Faults detected by FCES
. cov-
ered
11 2 Shuffle Mode does not function during a sequencing
search process.
3 Changing from Searchinternet to Sear- sequencing
challtrack via Menu never functions.

4 sequencing During replaying a track out of a
track list, a search and the Stop
of the track thereafter causes the
track list of the search step to be
active.

12 4 sequencing A re-opening of Preferences,

followed by moving the window
and clicking from Display re-
veals a graphical defect for a
short time.

B Case Study 2: Marginal Strip Mower — RSM13

B.1 Statecharts of the Case Study 2

Function RSM_Antrieb:

f11 RSM_Antrieb \
K o

Antrieb T AUS Antrieb I EIN
.—\ /_> €21

€9n
s Antrieb I EIN

AntriebEIN

Antrieb II AUS

AntriebAUS

,i €23
Achsv. AUS Achsv. EIN —|

- /

143

144 Appendix B Case Study 2: Marginal Strip Mower — RSM 13

Function Main:

[Start
lude / Start

f11

Y

/ RSM_Antrieb \

include / RSM_Antriab

I 874
RSM AntriebAUS

- 1
5331 : 1 85y
v A4
\ RSM AntriebEIN
A 4

/ RSM_TranspstArbst \

™

(=)
in

include / RSM_Transpstdrbst
39
77T RSM Transpst 4--5
©31 4 : :
i #3121 i 9533
o 1
“time>10s —— : ———
RSM_Avromatik 2P RSM Arbst
Arbertsst L /
€49
RSM Betrich I \ RSM_Betrieb II \
include / RSM_Betrieb inciude / RSM_Betrieb
ey ¢ TTTTTTT b Sy d
!] 1 . i
] [} s
RSM_Betrieb 1 1 S 4
P Automatik EIN v v e
S el 7 M_PosIdle
Schwimmst. EIN RSM_BetriebAUS > .

k Auflagedruck EIN _/ 2410 _/

™
un
o

B.1 Statecharts of the Case Study 2

Function RSM_TranspstArbst

145

" .
¥3.8.Relvase

/RSM_TransastArbst \
1 |'f \A - - \ S0
R /
— .- o ‘
38 L 3.1 Releaza ¢ .
B ~
RSM_Transpst Arm2 Am2 7 Arm2
Automatik Einklappen + = 1 — Ausklappen
Transpertstellung . b S 34, Releaze J
. 5.1
935, Relass v 1 P
®arbzt_OK [Einklappen]:[Ein-/Ausklappen :’l Ausklappen
—_
Automatik 035 Sy "
6 Releas
Arveitssteliung | T R
L - 93.7 Ralease ? \ 738 - ~
[Hauptarm auf]: Hauptarm auffaly [————® Hauptarm ab
\\ P
\

Function RSM_Betrieb I

/ RSM_Sefrieh

#3.10

o

Messerwelle AUS
Auflagedruck AUS

rwelle Al
J : fa2

;S ?]

Aufiagedruck EIN

S

J

Y

f43

L

743

3

240

Messerwelle EIN

[

—

Automatik » Automatik
AUS EIN

)

44

Schwimmatellung)
— EIN

faq ™

Schwimmsatellung
|

us

Aufiagedruck EIN

L

f110

146 Appendix B Case Study 2: Marginal Strip Mower — RSM 13

Function RSM_Betrieb I

L -,

/ RSM_Betrieb Il \

! - T

| / \ |
F410

/
/ \
e * |
3.1 Releasd 2 o - =

Einklappen * Ein-isusk appen | == > Ausklappen
o E— ——

g
L.
o
e

=
e

%54 .
———® Arm Versch.

rechis

Arm ‘erseh. A
inks Verschiebung 4
e .-l-_Rc:l.'ﬁ':T.-'FIk

F -
/:
Al
AN

o HELRY |

s % E.SRﬂu'ffT_-'Fr R T 5 I nY
Mahkopf drehen —® Mahkopf drehen |—® Mankopf drehen
VoL inks Ja - rechts J

| ~.\ o535 - 05 5 Rolgasd / .
! /

B.2 List of Faults Revealed

Nb. Function Faults detected
1 RSM_Antrieb When Engine I is deactivated, a change from the view RSM_Antrieb
to the view RSM_ TranspstArbst is only then possible if engine I is
reactivated.
2 When Engine 1 is deactivated, a change from the view RSM_Antrieb

to the view Start is only then possible if engine I is reactivated.

3 When Engine II is deactivated, a change from the view
RSM_Antrieb to the view RSM_TranspstArbst is only then possi-
ble if engine II is reactivated.

4 When Engine II is deactivated, a change from the view
RSM_Antrieb to the view Start is only then possible if engine II is
reactivated.

B.2 List of Faults Revealed 147

Nb.

Function

Faults detected

5 RSM_Antrieb

7 RSM_Transpst

10

11

12

13

14

15

16

Arbst

When Axis Lock is deactivated, a change from the view
RSM_Antrieb to the view RSM_TranspstArbst is only then possi-
ble if Axis Lock is reactivated.

When Axis Lock is deactivated, a change from the view
RSM_Antrieb to the view Start is only then possible if Axis Lock is
reactivated.

A change from the view RSM_TranspstArbst to the view
RSM_Betrieb | is only then possible if the RSM is in transport posi-
tion.

When the function Automatik Transportstellung is activated the
view can be changed neither to RSM_Antrieb or RSM_Betrieb |.
Furthermore, the function Automatik Arbeitsstellung cannot be acti-
vated; neither is possible a manual positioning by the functions Arm2
Ein-/Ausklappen, Ein-/Ausklappen nor Hauptarm auf/ab.

When the function Automatik Arbeitsstellung is activated the view
can be changed neither to RSM_Antrieb or RSM_Betrieb I. Fur-
thermore, the function Automatik Transportstellung cannot be acti-
vated; neither is possible a manual positioning by the functions Arm2
Ein-/Ausklappen, Ein-/Ausklappen nor Hauptarm auf/ab.

When RSM is in a central position, a change from the view
RSM_TranspstArbst to the view RSM_Antrieb is only then possi-
ble if RSM is positioned for transport.

When RSM is in a central position, a change from the view
RSM_TranspstArbst to the view RSM_Betrieb I is only then pos-
sible if RSM is positioned for working.

When RSM is in a working position, a change from the view
RSM_TranspstArbst to the view RSM_Antrieb is only then possi-
ble if RSM is positioned for transport.

When the function Arm2 Einklappen is activated, the function Arm2
Ausklappen can only then be activated if the function Arm2
Einklappen is deactivated.

When the function Arm2 Einklappen is activated, the function
Automatik Transportstellung can only then be activated if the func-
tion Arm2 Einklappen is deactivated.

When the function Arm2 Einklappen is activated, the function
Automatik Arbeitsstellung can only then be activated if the function
Arm2 Einklappen is deactivated.

When the function Arm2 Ausklappen is activated, the function
Arm2 Einklappen can only then be activated if the function Arm2
Ausklappen is deactivated.

148

Nb.

Function

Appendix B Case Study 2: Marginal Strip Mower — RSM 13

Faults detected

17 RSM_Transpst

18

19

20

21

22

23

24

25

26

27

28

29

30

Arbst

When the function Arm2 Ausklappen is activated, the function
Automatik Transportstellung can only then be activated if the func-
tion Arm2 Ausklappen is deactivated.

When the function Arm2 Ausklappen is activated, the function
Automatik Arbeitsstellung can only then be activated if the function
Arm2 Ausklappen is deactivated.

When the function Arm2 Einklappen is activated, the function
Ausklappen can only then be activated if the function Einklappen is
deactivated.

In case function Einklappen is active an activation of function
Automatik Transportstellung is only allowed after deactivating
function Einklappen.

When the function Einklappen is activated, the function Automatik
Arbeitsstellung can only then be activated if the function Einklap-
pen is deactivated.

When the function Ausklappen is activated, the function Einklap-
pen can only then be activated if the function Ausklappen is deacti-
vated.

When the function Ausklappen is activated, the function Automatik
Transportstellung can only then be activated if the function Ausk-
lappen is deactivated.

When the function Ausklappen is activated, the function Aufomatik
Arbeitsstellung can only then be activated if the function Ausklap-
pen is deactivated.

When the function Hauptarm auf is activated, the function Haup-
tarm ab can only then be activated if the function Hauptarm auf is
deactivated.

When the function Hauptarm auf is activated, the function Auto-
matik Transportstellung can only then be activated if the function
Hauptarm aufis deactivated.

When the function Hauptarm aufis activated, the function Auto-
matik Arbeitsstellung can only then be activated if the function
Hauptarm auf is deactivated.

When the function Hauptarm ab is activated, the function Haup-
tarm auf can only then be activated if the function Hauptarm ab is
deactivated.

When the function Hauptarm ab is activated, the function Auto-
matik Transportstellung can only then be activated if the function
Hauptarm ab is deactivated.

When the function Hauptarm ab is activated, the function Auto-
matik Arbeitsstellung can only then be activated if the function
Hauptarm ab is deactivated.

B.2 List of Faults Revealed 149

Nb. Function

Faults detected

31 RSM_Betrieb |

32

33

34

35

36

37 RSM_Betrieb Il

38

39

40

41

42

43

A change from the view RSM_Betrieb_| to the view
RSM_TranspstArbst while function Automatik is active is only
then possible if the function Automatik is deactivated.

When the function Auflagedruck is deactivated, the function
Messerwelle can only then be activated if the function Au-
flagedruck is activated.

A change from the view RSM_Betrieb_1 to the view
RSM_TranspstArbst while function Auflagedruck is active is only
then possible if the function Auflagedruck is deactivated.

A change from the view RSM_Betrieb_| to the view
RSM_TranspstArbst while function Auflagedruck is active is only
then possible if the function Auflagedruck is deactivated.

When the function Messerwelle is activated, the function Au-
flagedruck can only then be deactivated if the function Messerwelle
is deactivated.

A change from the view RSM_Betrieb_| to the view
RSM_TranspstArbst while function Schwimmstellung is active is
only then possible if the function Schwimmstellung is deactivated.
When the function Einklappen is activated, the function Ausklap-
pen can only then be activated if the function Einklappen is deacti-
vated.

A change from the view RSM_Betrieb_II to the view
RSM_Betrieb_I while function Einklappen is active is only then
possible if the function Einklappen is deactivated.

When the function Ausklappen is activated, the function Einklap-
pen can only then be activated if the function Ausklappen is deacti-
vated.

A change from the view RSM_Betrieb_II to the view
RSM_Betrieb_I while function Ausklappen is active is only then
possible if the function Ausklappen is deactivated.

When the function Arm Verschiebung links is activated, the func-
tion Arm Verschiebung rechts can only then be activated if the
function Arm Verschiebung links is deactivated.

A change from the view RSM_Betrieb_Il to the view
RSM_Betrieb_I while function Arm Verschiebung links is active is
only then possible if the function Arm Verschiebung links is deacti-
vated.

When the function Arm Verschiebung rechts is activated, the func-
tion Arm Verschiebung links can only then be activated if the func-
tion Arm Verschiebung rechts is deactivated.

150

Nb. Function

Appendix B Case Study 2: Marginal Strip Mower — RSM 13

Faults detected

44 RSM_Betrieb Il

45

46

47

48

A change from the view RSM_Betrieb_II to the view
RSM_Betrieb_I while function Arm Verschiebung rechts is active
is only then possible if the function Arm Verschiebung rechts is de-
activated.

When the function Mdhkopf drehen links is activated, the function
Mé&hkopf drehen rechts can only then be activated if the function
Méahkopf drehen links is deactivated.

A change from the view RSM_Betrieb_II to the view
RSM_Betrieb_I while function Mdhkopf drehen links is active is
only then possible if the function Mdhkopf drehen links is deacti-
vated.

When the function Mdhkopf drehen rechts is activated, the function
Méhkopf drehen links can only then be activated if the function
Méhkopf drehen rechts is deactivated.

A change from the view RSM_Betrieb_Il to the view
RSM_Betrieb_I while function Mdhkopf drehen rechts is active is
only then possible if the function Mdhkopf drehen rechts is deacti-
vated.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

