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1   Introduction 

This chapter describes the motivation, context and intended contribution of this 
thesis. Starting point is the existing work and terminology used; the goals are 
identified and the software quality features considered are outlined. A holistic 
view is introduced to generate and select adequate test cases from a behavior 
model of the system under consideration. 

1.1   Software and its Features  

In terms of behavioral patterns, the relationships between the system and its envi-
ronment, i.e., the user, the natural environment, etc., can be described as proac-
tive, reactive or interactive. In the case of proactivity, the system generates the 
stimuli, which evoke the activity of its environment. In the case of reactivity, the 
system behavior evolves through its responses to stimuli generated by its envi-
ronment. Most systems are nowadays interactive in the sense that the user and the 
system itself can be both pro- and reactive. 

When observing an interactive system, depending on the expectations of the 
user concerning the system behavior, a distinction is to be made between desir-
able and undesirable situations or events. The sum of desirable and undesirable 
events defines the critical system properties that are global quality factors, e.g., re-
liability, correctness, safety, robustness, user-friendliness, etc. Any deviation 
from the desirable behavior amounts to an undesirable situation; the fact that the 
system can be unintentionally transferred into such a state might be viewed as a 
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vulnerability of the system. The consideration of vulnerabilities necessitates a 
clear understanding of the notion of undesirability. 

A failure is a manifestation of a given form of vulnerability and, as a result, af-
fects the ability of the system to perform its functions [IEEE90]. During the exe-
cution of the system, a failure can be realized, or triggered, by an error as an in-
correct and thus, an undesirable, system state. An error can eventually be traced 
back to a human action, or inaction, leading to an incorrect or undesirable result 
and, thus, to a fault. In other words, a chain of incidences “fault → error → fail-
ure” emerges, where A → B means that A causes, or leads to, B [ALR04, Lap92]. 
The notion of “undesirability” is the key characteristic applicable to the terms 
fault, error and failure. In this context, the terms “fault” and “error” are often used 
synonymously as the cause of a “failure”. 

Achieving given software quality is an investigation for the existence of faults. 
In the following the undesirable behavior is discussed for the different quality as-
pects (see also [IEEE90]).  

Correctness refers to the extent to which the system behavior corresponds to 
the requirements. A system is said to be correct if its behavior matches the in-
tended, desirable behavior for all input data.  

Reliability focuses on the actual use of the system over time. A system may 
have faults but still be highly reliable if the faults (as undesirable events) appear 
only on inputs that never occur in actual use. 

In the case of safety, the vulnerability originates from within the system due to 
potential failures and its spill-over effects causing potentially extensive damage to 
its environment. In the face of such failures, the environment could be a helpless, 
passive victim. The goal of the system design in this case is to prevent faults that 
could potentially lead to such failures or, in worst cases, to mitigate the conse-
quences at run-time should such failures ever occur. 

In case of robustness, the system performs well not only under ordinary con-
ditions but also under unusual conditions that stress its designers' assumptions. In-
teractive systems are usually too big and too complicated for a single human mind 
to comprehend in their entirety, and thus it is difficult for their developers to be 
able to discover and eliminate all the errors, or to even be certain as to what extent 
of errors exist. This is especially true with regard to subtle errors that only make 
their presence known in unusual circumstances. In this case the system should not 
lock up the computer, cause damage to data or send the user through an endless 
chain of dialog boxes without purpose.  

In contrast to safety and robustness the lack of user friendliness of an interac-
tive system is a milder form of system vulnerability. A failure to be user-friendly 
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is still a failure to fulfill a system attribute, though it may typically cause an an-
noyance or an irritation to the user, possibly leading to confusion and complaints. 
However, disastrous consequences cannot be entirely ruled out under stressed 
conditions of the user if the interactive system is intended to mediate between a 
safety critical application and its operator.  

1.2   Software Testing 

Software quality is the dominant success criterion in software industry. As soft-
ware applications are becoming more sophisticated, complex and expensive, it is 
obvious that software quality is growing. 

Activities associated with ensuring correct and safe operation of software are 
known as verification and validation (V&V). Verification implies that software 
under consideration is checked during its development concerning design re-
quirements, asking the question: “Does the implementer work correct?” [BBL76]. 
Validation ensures that the delivered system satisfies the customer requirements, 
asking the question: “Does the system work correct?” Both Verification as Vali-
dation of the requirements as early as possible avoids unnecessary and costly re-
work. 

Validation activities usually require a behavioral model. This model is typi-
cally documented in a set of requirements specification documents that specify 
functional and non-functional behavior of the software under consideration. Func-
tional requirements describe the actions of the system in terms of the operations 
that should take place in response to a series of external events. Non-functional 
requirements place constraints on this behavior, such as memory limitations, real-
time deadlines and safety properties.  

Testing is the traditional and still most common validation method in the soft-
ware industry to achieve this goal. It is usually carried out applying test cases to 
the system under test (SUT). While constructing test cases, one generally has to 
produce meaningful test inputs and then to determine the expected system outputs 
for these inputs. A test oracle is a means, automated or manual, for checking the 
correctness of the outputs computed by a SUT. Hence, software testing requires 
the existence of such an oracle, i.e., an external source of correct information 
about the expected behavior and output of the software. Because testing requires 
the execution of the software, it is classified as a dynamic analysis technique. 

The purpose of testing is to assure the system quality and along with this to re-
veal faults. However, the testing itself will rather identify the fault not the error. In 
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fact the faults are to be fixed. For this purpose, an erroneous situation is to be de-
veloped that causes a failure and thus cannot be hidden from the environment, 
e.g., the user of the system. This thesis primarily applies testing to the validation 
problem. 

1.3   Testing Interactive Systems 

An interface that enables information to be passed between a human user and 
hardware or software components of a computer system is defined as a user in-
terface (UI) [IEEE90]. 

With the growing complexity of interactive software systems, also their (UI), 
mostly realized graphically (graphical user interfaces, GUI), become more com-
plex. Accordingly, the test and analysis process becomes more and more tedious 
and costly. In this particular kind of system, the user interface can have an envi-
ronment, that is, the plant, the device or the equipment, which the UI is intended 
for and embedded in, controlling technical processes. 

While developing interactive systems, construction of the user interactions de-
serves special care, and should be handled separately because it requires different 
skills, and maybe different techniques than construction of common software. 
This fact has been recognized very early, defining a User Interaction Management 
System that can be independent of the application, graphics package, etc. [TH83]. 
The design part of the UI development needs a good understanding of the user and 
his/her needs, while the implementation part requires familiarity with the technical 
equipment, e.g., programming platform, language, etc. [Shn98]. Testing requires 
both: a good understanding of user requirements, and familiarity with the techni-
cal equipment.  

Testing of UIs is an important step in the development of interactive systems 
as it checks the compliance of the system with the user requirements. Thereby, the 
UI is considered as a set of system functions. Black-box testing of the UI means 
testing of the behavior of the system and thus, its system functions. Accordingly, 
to generate test cases for a UI, one has to first identify the test objects and test ob-
jectives. The test objects are the instruments for the input, e.g., windows, icons, 
menus, pointers, commands, function keys, alphanumerical keys, etc. The objec-
tive of a test is to generate the expected system behavior (i.e., desirable event) as 
an output. In a broader sense, the test object is the SUT; the objective of the test is 
to gain confidence in the SUT.  
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In order to meet the market demands and resource requirements, testing should 
be automated to become more effective and be more efficient (i.e., faster, 
cheaper), considering also deployment of test tools. For industrial black-box test-
ing of UIs, most of the conventional tools include capture/replay features for re-
cording and analyzing of test scenarios. In spite of the maturity and quality of 
these tools, a lot of manual effort is needed that is costly and error-prone. 

1.4   Objectives, and Novelty of the Work 

Software testing is a widely used method in practice for quality assurance. But the 
required test inputs are still not systematically generated in an efficient manner, 
and testing becomes an uncontrollable process and therefore unusable. The rea-
sons are missing models from the design or a present informal specification so 
that adequate test inputs cannot be derived systematically. This drawback can be 
solved by the present approach with the help of a graph model called Event Se-
quence Graph (ESG) which has been introduced by F. Belli [Bel01]. An ESG is a 
simple albeit powerful formalism for capturing the behavior of a variety of inter-
active systems that include embedded systems and graphical user interfaces. A 
collection of ESGs is proposed as a model of an interactive system. 

Based on ESG notion, this thesis introduces a holistic view of fault modeling 
that requires an additional, complementary step to system modeling. Thus, both 
the desirable and undesirable behavior of the system is specified at the same level 
of design granularity. In other words, intended and unintended usage scenarios 
will be generated to check both that system behavior is in according to the user 
expectations and faults are handled properly. 

The objective is to systematize the test generation process with a twin-track 
strategy. The first is to confine the scope of tests by targeting them at a given 
stage at a chosen system attribute. This is achieved by an ordering of system states 
according to the risks posed to that attribute and by selecting tests that address 
specific faults. The second is to devise test plans where the tests are naturally or-
dered according to diminishing returns in terms of their cost-effectiveness. Tech-
nically, this is based on test length. This is possible because the tests are formu-
lated in terms of sequences of non-faulty event pairs in the ESG model when test-
ing the system for correctness of desirable (functional) features, and sequences of 
non-faulty event pairs followed a faulty event pair when testing for any unde-
sirable outcome. 
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The novelty of the approach is the modeling, analysis and testing of system 
behaviors, with respect to both correct and faulty behaviors, based on ESGs. The 
approach focuses on testing a system for correctness with respect to its behavioral 
requirements and for its robustness against incorrect usage in terms of user inputs, 
and analyzing the consequences under possible malfunction of the environment. It 
is based on two simple ideas. First, the desirable behavior of the user and the SUT 
is modeled using a finite set of ESGs. Second, each ESG in this set is inverted al-
gorithmically to obtain a formal representation of the undesirable user behavior 
and to work out the corresponding desired response by the SUT. The set of ESGs 
and their inversions are then used for test generation and for system malfunction 
analysis. 

In brief, a model-based black-box test methodology for an efficient test case 
selection is introduced for testing interactive systems, mostly represented by their 
user interfaces. The main contributions of this work are:  

(i) an ESG based formalism for the modeling and analysis of the behavior of 
discrete, event-based, sequential systems;  

(ii) a test generation algorithm that takes an ESG as input and generates ade-
quate tests for testing the behavior of a SUT under expected and unex-
pected conditions, and  

(iii) an evaluation of the feasibility and effectiveness of the proposed modeling 
and test generation schemes using two case studies.  

(iv) Tools that are necessary for an effective deployment of the approach are 
introduced and discussed.  

(v) Lessons learned from intensive and extensive application of the approach 
to industrial projects are summarized. 

1.5   Outline 

The remainder of this thesis is organized as follows. The next chapter provides a 
summary of the related literature and establishes the relationship between finite-
state automata (FSA) based models and ESG based models of system behavior.  

Chapter 3 is a rigorous introduction to Event Sequence Graph (ESG) which is 
a simple albeit powerful formalism for capturing the behavior of interactive sys-
tems that include embedded systems and graphical user interfaces.  

In Chapter 4 the test process is described for the generation of tests from ESGs 
to check for the correctness of system behavior in the presence of expected and 
unexpected input event sequences. The test generation algorithm is customizable 
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in the sense that it allows a tester to generate test sequences based on an evalua-
tion of their cost of execution and the benefit derived.  

Chapter 5 reports a case study that investigates the fault detection effective-
ness and the cost of test generation.  

An example in Chapter 6 demonstrates the analytical power of ESG based 
modeling and risk analysis.  

An extending of the approach to statecharts is given in Chapter 7. Applying 
the modeling of functions and malfunctions leads to additional rules for the test 
case generation which are evaluated in a second case study. 

Chapter 8 provides an overview of a toolkit developed to support ESG based 
modeling and test generation.  

A discussion related to the current work and directions for further research ap-
pear in Chapter 9. 
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2   Related Work 

This chapter reviews the existing work in related areas, i.e., on modeling, specifi-
cation and test generation. Comparisons with the approach developed in the the-
sis are supposed to show its originality. 

2.1   Testing Techniques 

Testing is the execution of a program with the aim of causing failures and thus re-
veals faults. There is no justification, however, for any assessment on the correct-
ness of the system under test based on the success or failure of a single test, be-
cause there can potentially be an infinite number of test cases, even for very sim-
ple programs. 

To overcome this shortcoming of testing, formal methods have been proposed, 
which introduce models that represent the relevant features of the SUT. The mod-
eled, relevant features are either functional behavior or the structural issues of the 
SUT, leading to specification-oriented testing or implementation-oriented testing, 
respectively. Once the model is established, it “guides” the test process to gener-
ate and select test cases, which form sets of test cases (also called test suites) 
[Bei90, Bin00]. The selection is guided by an adequacy criterion, which provides 
a measure of how effective a given set of test cases is in terms of its potential to 
reveal faults. Most of the existing adequacy criteria are coverage-oriented 
[ZHM97]. The ratio of the portion of the specification or code that is covered by 
the given test set in relation to the uncovered portion can then be used as a deci-
sive factor in determining the point in time at which to stop testing (test termina-
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tion) [Ham96]. Another problem that arises is the determination of the test out-
comes (oracle problem) [Bin00, Ham96]. 

In [Bel01] a fault model is introduced this thesis is based on, which consider 
not only the desirable situations, but also the undesirable ones. A similar fault 
model is also used in the mutation analysis and testing approach which systemati-
cally and stepwise modifies the SUT using mutation operations [DLS78]. This 
approach has been well understood, is widely used and, thus, has become quite 
popular. Although originally applied to implementation-oriented unit testing, mu-
tation operations have also been extended to be deployed at more abstract, higher 
levels, e.g., integration testing, state-based testing, etc. [DMM01]. Once applied to 
the graphical representation of a SUT, mutation operations can be viewed as ele-
ments of the complementing steps of the event sequence graphs, as introduced in 
Chapter 3. Such operations have also been independently proposed by other au-
thors, e.g., “state control faults” for fault modeling by Bochmann and Petrenko 
[BP94], or for “transition-pair coverage criterion” and “complete sequence crite-
rion” by Offutt et.al. [OLAA03]. However, the latter two notions have been pre-
cisely introduced in [Bel01] and [WA00], respectively, prior to the work of Offutt 
et al., where they also appeared. 

Several approaches have been proposed to assess the robustness of software-
based systems. Fetzer and Xiao [FX02] have proposed techniques for increasing 
the robustness of C libraries using wrappers. Huhns and Holderfield [HH02] 
equate robustness to the resilience of software failures and suggest redundancy 
and appropriate granularity as a way to achieve it. Kropp et al. have proposed an 
automated method, the Ballista approach, for testing the robustness of software 
[KKS98]. The proposed ESG approach differs from the approaches cited in that it 
allows modeling on incorrect behavior, which is often the cause of software sys-
tems’ lack of robustness and provides an algorithmic approach to the test genera-
tion for testing the software-based system for robustness. 

2.2   Finite-State-Based Test Generation 

Test generation based on finite-state models has been an active area of research 
for many decades. Chow proposed the W-method for generating tests from finite-
state models [Cho78]. There are, however, significant differences between the 
goals and assumptions of the W-method and the approach presented in this work. 
First, conformance testing generates tests to detect faults clearly defined by some 
hypotheses, e.g. transition errors, missing, or extra states. The approach in this 
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thesis generates test cases to cover the ESG. Second, the W-method assumes two 
models are available, i.e. the system model and the design model. These two mod-
els are then compared. The first model is required to be correct; the second one is 
to be checked against the correct model. The approach in this work supposes the 
existence of only one model that describes the correct behavior of the system. 
This model is exploited to generate tests to check the real, implemented SUT, i.e. 
the SUT is tested against its specification. Third, conformance testing assumes the 
system under consideration behaves deterministically and is completely specified 
by a finite-state automaton. These assumptions are not necessarily fulfilled by 
UIs; therefore, they are not made by the approach presented in this work. 

Chow’s work was followed with the Wp-method [FBKA91], the Unique In-
put-Output Sequences method [SD88], Transition Tour method [ADLU91, 
NT81], Distinguishing Sequences method [Sar89], and several empirical evalua-
tions [BP94, SS97]. Finite-state models have also been proposed as a means for 
the specification and analysis of system behavior [Par69, Sha80]. More recently, 
researchers have proposed ways to generate tests from a variety of UML specifi-
cations such as statecharts and sequence diagrams [FMMD94, OLAA03]. 

Most finite-state based test generation methods focus on some form of cover-
age, e.g., transition coverage [ADLU91, OLAA03, Rob00, SLD92, WA00], and 
state identification [Cho78, SD88]. The test generation algorithm introduced in 
this work achieves complete coverage of ESGs [Bel01, MB03] through the use of 
the Chinese Postman problem [EJ73, Kwa62] for managing round trips. In addi-
tion, the algorithm also formalizes and generalizes the notion of pair-wise testing 
[CDFP97, TL02] by including the ability to generate tests that cover all possible 
n-tuple of events for some n>1. While the number of generated tests can become 
impractically large for increasing n, the algorithm can be applied selectively to in-
dividual ESGs with different values of n. This feature renders the algorithm cus-
tomizable to the criticality needs of a system. ESGs that correspond to the most 
critical portions of a system can be tested more thoroughly using higher values of 
n. Note that higher values of n allow the generation of tests that enable testing a 
system for errors revealed only through specific sequences of inputs; such errors 
are known to be hard to find. This is one of the advantages of the approach intro-
duced in this work. 

Another state-oriented group of approaches to test case generation and cover-
age assessment is based on model checking, e.g., the SCR (Software Cost Reduc-
tion) method, as described in [GH99]. These approaches identify negative and 
positive scenarios to generate test cases automatically from formal requirements 
specifications. Thus they attempt to overcome the problem of testing that is not 
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exhaustive, e.g., “black-box checking”, which combines “black-box testing” and 
“model checking” [Pel01]. Although this approach considers the appearance of 
desirable and undesirable events by means of models with not only positive but 
also negative scenarios, the problem is that these events are constructed intuitively 
and are therefore neither systematic nor complete. 

2.3   Digraphs for Modeling and Test Generation 

Digraphs, with variations in terminology, have been used for modeling finite-state 
behavior since the work of Kleene and Myhill [Kle56, Myh57]. Chhikara et al. 
use event sequence diagrams to study dynamic probabilistic risk analysis [CH00]. 
Memon et al. use event flow graphs to model UI event sequences as test cases 
[MPS01]. Event graphs and timed event graphs are also used in other areas of re-
search such as simulation [Sch95] and automatic control [LL95].  

In this work ESGs are used for modeling system behavior, test generation, and 
robustness testing (see also [GBBD05]), which are based on a finite sequence of 
events. ESGs allow a modeler to think in terms of system “events” instead of sys-
tem “states.” Our experience with designers and programmers in the real-time 
software industry suggests that ESGs are often easier to use for modeling the dis-
crete behavior of a system than the traditional finite-state machine that requires 
the use of “states.” 

2.4   Test Generation for GUIs 

White and Almezen took a different approach to the problem of test generation us-
ing finite-state models [WA00, WAA01]. Their work is in the context of generat-
ing tests for testing GUIs. Rather than use the traditional Mealy or Moore ma-
chines, they propose an alternative representation of user-responsibilities using the 
idea of complete interaction sequences. A complete interaction sequence is repre-
sented using a finite-state model where user actions, such as OPEN FILE and 
EDIT, label the states and the edges are unlabeled. Thus the expected behavior in 
response to an event is implicit and specified elsewhere in contrast to the tradi-
tional finite-state models that indicate explicitly the system response to an input as 
an output label on each transition. The entire system is modeled as a collection of 
complete interaction sequences. An advantage of the approach based on complete 
interaction sequences lies in its scalability and intuitiveness. Instead of creating a 
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single composite finite-state model, multiple complete interaction sequences, each 
representing a user responsibility, are created thereby simplifying the task of 
model construction and test generation. This thesis instead introduces a refinement 
(see also [HI98, Mar97]) to decompose a system hierarchy in multiple ESGs, 
which in turn can be tested separately. 

A different approach for GUI testing has been recently published by Memon et 
al. [MPS00, MPS01], which deploys methods of knowledge engineering to gener-
ate test cases, test oracles, etc., and to handle the test termination problem: from a 
knowledge engineering point of view, the testing of a GUI system represents a 
typical planning problem that can be solved using a goal-driven strategy 
[MPS01]. Given a set of operators, an initial state and a goal state, the planner is 
expected to produce a sequence of operators that will change the initial state to the 
goal state. For the GUI testing problem described above, this means that the test 
sequences have to be constructed dependent upon both the desirable, correct 
events and the undesirable, faulty events.  

There have also been other GUI testing papers from this research group. 
Memon et al. [MPS01/2] have also written a more general paper on GUI testing 
that emphasizes coverage criteria involving events and event sequences. They de-
compose the GUI system into components and emphasize a hierarchy of interact-
ing components in their generated tests. Thus, the components can be tested in 
isolation. They have provided a case study showing the correlation between this 
coverage criterion and that of the underlying code coverage. A more recent paper 
[MBHN03] has shown how a more streamlined GUI testing method can be used 
for regression testing. Both approaches, i.e. those of Memon et al. and of Gargan-
tini and Heitmeyer, use some heuristic methods to cope with the state explosion 
problem. 

Few research work can be found for test automation of interactive systems, es-
pecially concerning of their GUIs. The industrial state-of-the-art strategy for 
automated testing involves ad-hoc deployment of record/playback tools [Azu93, 
Kep94]. However, more research work has been done on regression testing of 
GUI to avoid obsolescence of the generated test cases whenever the structure of 
the GUI is modified [MS03, Whi96]. This work does not try to repair unusable 
test cases, because the model is maintained and not the test cases. Thus, changes 
in the system only have to be fixed in the model, where all test cases were gener-
ated again. 



14 Related Work 

2.5   Conclusion of the Comparison with Related Work 

The approach presented here is different from the finite-state based approaches in 
that ESGs are based on a finite sequence of events, rather than states. The idea of 
inversion, or complementing, makes ESG-based modeling distinct from other test 
generation approaches. ESGs and their complements allow modeling the desirable 
behavior of a system in the presence of both expected and unexpected inputs as 
events. The latter model allows for the quantification of the robustness of a system 
and hence raises the possibility of incorporating system robustness into its overall 
reliability. While the inversion of finite-state machines needs some theoretical 
skills, inversion of ESGs is intuitive and easily done by a test designer without ac-
cess to automata theory. 

2.6   Summary 

The proposed ESG approach differs from the approaches cited here in that it (a) 
allows the modeling of incorrect behavior that is often the cause of lack of ro-
bustness of software systems and (b) provides an algorithmic approach to test 
generation for testing a software-based system for robustness. 
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3   Event Sequence Graphs 

This chapter introduces the event sequence graphs (ESGs) to model both the de-
sirable and undesirable behavior of a system under consideration which interacts 
with its environment through ordered pairs of environment stimuli/ system re-
sponse. In this context, the environment can be one or more human users, a set of 
service seekers, also other technical systems, or any combination thereof. The 
terms “user” and “environment” is thereafter used interchangeably. 

3.1   Formalization 

An Event Sequence Graph (ESG) is a device to model a subset of the interactions 
between a system and its user. The complete set of interactions is captured in 
terms of a set of ESGs, where each ESG represents a possibly infinite set of event 
sequences [BBW06]. An event, an externally observable phenomenon, can be a 
user stimulus or a system response, punctuating different stages of the system ac-
tivity.  
 
Definition 3.1 (Event Sequence Graph): An event sequence graph 

( , , , )ESG V E Ξ Γ=  is a directed graph with   
V ≠ ∅  : a finite set of labeled vertices (nodes),  
E V V⊆ ×  : a finite set of edges (arcs),  

, VΞ Γ ⊆  : finite sets of distinguished vertices ξ ∈ Ξ, and γ ∈ Γ, called entry 
nodes and exit nodes, respectively, wherein v V∀ ∈ there is at least   
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 one sequence of vertices 0, , kv vξ …  from one ξ Ξ∈  to vk = v and   

 one sequence of vertices 0, , ,kv v γ…  from v0 = v to one γ Γ∈  with  

 ( )1,i iv v E+ ∈ , for 0, , 1i k= −…  and ,v ξ γ≠ . 
 

Ξ(ESG), Γ(ESG) represents the entry nodes and exit nodes of a given ESG, re-
spectively. To mark the entry and exit of an ESG, all ξ Ξ∈  are preceded by a 
pseudo vertex [ ∉ V and all γ Γ∈  are followed by another pseudo vertex ] ∉ V.  

The set V is partitioned into two subsets Venv and Vsys such that 

 ,  env sys env sysV V V V V= ∪ ∩ = ∅  

where Venv is the set of environmental events (i.e., user inputs) and Vsys a set of 
system responses. The distinction between the sets Venv and Vsys is important be-
cause the events in the latter are controllable within the system, whereas the 
events in the former are assumed to be not subject to such control. Entries are not 
necessarily to be contained in Venv and the exits in Vsys even if that holds in most 
cases. Thus, it is assumed that the system has already been running and that exits 
do not necessarily mean a system shut-down. 

The semantics of an ESG is as follows. Any v ∈ V represents an event which is 
referred by its label. For two events v, v’ ∈ V, the event v’ must be enabled after 
the execution of v if and only if (v, v’) ∈ E. 
 

 
Figure 3.1: An ESG with A as entry and B as exit and pseudo vertices [, ] 

 
Example 3.1: For the ESG given in Figure 3.1: { }, ,V = A  B  C , { }Ξ = A , 

{ }Γ = B , and { }( , ),  ( , ),  ( , ),  ( , )E = A C A B B C C B . Note that arcs from pseudo 
vertex [ and to pseudo vertex ] are not included in E. 
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For a vertex v V∈ , ( )N v+  denotes the set of all successors of v, and ( )N v−  
denotes the set of all predecessors of v. 
 
Definition 3.2 (Refinement): Given an ESG, say 1 1 1 1 1( , , , )ESG V E Ξ Γ= , a vertex 

1v V∈ , and an ESG, say 2 2 2 2 2( , , , )ESG V E Ξ Γ=  with 1 2V V∩ = ∅ . Then replacing 
v by ESG2 produces a refinement of ESG1, say 3 3 3 3 3( , , , )ESG V E Ξ Γ=  with 

{ }3 1 2 \V V V v= ∪ , and 3 1 2 1 \pre post replacedE E E E E E= ∪ ∪ ∪  (\: set difference op-

eration), wherein  2( ) ( )preE N v ESGΞ−= ×  (connections of the predecessors of v 

with the entry nodes of ESG2), 2( ) ( )postE ESG N vΓ += ×  (connections of exit 

nodes of ESG2 with the successors of v), and { }1 ( , ),  ( , )replaced i kE v v v v=  with 

( )iv N v−∈  and ( )kv N v+∈  (replaced arcs of ESG1). 
 

Figure 3.2: Refinement of a vertex v and its embedding in the refined ESG  

 
As Figure 3.2 illustrates, every predecessor of vertex v of the ESG of higher 

level abstraction points to the entries of the refined ESG. In analogy, every exit of 
the refined ESG points to the successors of v. The refinement of v in its context 
within the original ESG of higher level abstraction contains no pseudo vertices [ 
and ] because they are only needed for the identification of entries and exits of the 
ESG of a refined vertex.  
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Figure 3.3: A Refinement of the vertex A of the ESG given in Figure 3.1 

 
Example 3.2: In Figure 3.3 the refinement of the vertex A of ESG1 is given as 
ESG2. ESG3 is the resulting refinement of ESG1. Note that the pseudo vertices [ 
and ] of ESG2 are not included in ESG3.   
More precisely, ESG1 is given as V1 ={A, B, C}, E1 ={(A, B), (A, C), (B, C), (C, 
B)}. In the refinement, i.e., ESG2 of A, the predecessors and successors are 

( )N v− ={}, ( )N v+ ={B, C} and the refinement of ESG2 is given by V2={U, V, 
W}, E2={(U, V), (U, W), (W, V), (V, W)}, Ξ(ESG2)={U} and Γ(ESG2)={V, W}. 
The resultant ESG3 is represented by   
V3 = V1 ∪ V2 \ {v}={A, B, C} ∪ {U, V, W} \ {A}={B, C, U, V, W} and  
E3 = E1 ∪ E2 ∪ Epre ∪ Epost \ E1replaced  

 = {(A, B), (A, C), (B, C), (C, B)} ∪ {(U, V), (U, W), (V, W), (W, V)} ∪ {} ∪  
  {(V, B), (V,C), (W, B), (W, C)} \ {(A, B), (A, C)} 
 = {(B, C), (C, B), (U, V), (U, W), (V, W), (W, V), (V, B), (V, C), (W, B), (W,  
  C)} 
 

The complement of an ESG, denoted by ESG , includes all the edges not in-
cluded in the ESG, but with no new entry or exit edges. The complement of the 
ESG in Figure 3.1 appears in Figure 3.4. 
 
Definition 3.3 (Inversion): The inverse (or complementary) ESG is then defined 
as ESG (V ,E, , )Ξ Γ=  with E V V \ E= × . 
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Figure 3.4: ESG  – Complement of the ESG given in Figure 3.1 

 
Finally, the completed ESG, referred to as CESG, is constructed as the super-

position of the ESG and its complement ESG . For example, superposition of the 
ESG in Figure 3.1 and its complement in Figure 3.4 leads to a CESG shown in 
Figure 3.5.  
 
Definition 3.4 (Completion): For an ( , , , )ESG V E Ξ Γ= , its completion is de-

fined as n lESG (V ,E, , )Ξ Γ=  with lE E E= ∪ . 
 

 
Figure 3.5: CESG – Completed ESG of the ESG given in Figure 3.1 

 
Figure 3.5 illustrates nESG , which can systematically be constructed in three 

steps:  
 Add arcs in the opposite direction wherever only one-way arcs exist. 
 Add self-loops to vertices wherever none exist. 
 Add arcs between vertices wherever no arcs connect them. 

ESG (the inversion of the ESG) consists of arcs that will be added to the ESG 
to construct the nESG (completion of the ESG). 
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Interaction patterns implicit in an ESG, ESG , and CESG, can also be ex-
pressed in terms of a regular expression [Pra97, Sal69; Sha80]. For example, the 
following regular expression  
 r = A(A+B+C)*B 
captures all interaction patterns implicit in the CESG in Figure 3.5. The expres-
sion indicates that A can either be followed by a pattern of a sequence of one or 
more events of A followed by B or by the event C and, furthermore, this pattern 
can recur multiple times. Finally, the expression is terminated by the event B. 
Note that Kleene’s star operation “*”, which is not used in this example, indicates 
an arbitrary number of occurrences, including the empty sequence. Note also that 
a CESG and the corresponding regular expression capture, respectively, all valid 
and invalid sequences of events.  

Let R denote the regular set denoted by the regular expression r. Given a sys-
tem M and an ESG Me that models a set of interactions between the user and M, it 
is referred to the corresponding regular expression as r(Me) and the regular set as 
R(Me). Thus R(Me) denotes a possibly infinite set of strings, or event sequences in 
the present context, over the alphabet V. Often, it is a finite set of ESGs that model 
all interactions of concern with M. R(M) denotes the set of all interactions mod-
eled by the ESGs in this set. It is easy to obtain R(M) as 
R(Me1) ∪ R(Me 2) ∪ ...∪ R(Men ) given the n ESGs 1 2, ,...,e e enM M M  that model 
the behavior of M. 

ESGs are comparable to the Myhill graphs [Myh57], which are also adopted as 
computation schemes [Ian60], or as syntax diagrams, e.g., as used in [JW74] to 
define the syntax of Pascal. The difference between the Myhill graphs and the 
ESGs as introduced here is that the symbols, which label the nodes of an ESG, are 
interpreted not merely as symbols or meta-symbols of a language, but as opera-
tions on an event set (see also Event Sequences [Kor96]). A flexible visualization 
at different abstraction levels is given through view graphs [Gos02]. 

3.2   Modeling Functions and Malfunctions 

The term system function, or simply function, are used to refer to the correct be-
havior of the SUT while the term malfunction, or dysfunction, refers to its incor-
rect behavior. Using the event terminology above, functions and malfunctions can 
be represented as regular expressions over the set V. 
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For a system M, event sequences over V that belong to R(Me) denote system 
functions, while ( )eR M  denote malfunctions. Let F denote the set of system func-
tions and D the set of system malfunctions, where 

 F ⊆ R(Me) and D ⊆ ( )eR M . 

Let Σ* be the set of all event sequences over V, then Σ* represents the union of 
all functions and malfunctions given by ( ) ( )e eR M R M∪ . Thus, the complement 

of ( )eR M  is *( ) Σ \ ( ) ( ) ( ) \ ( )e e e e eR M R M R M R M R M= = ∪ . 
To test a system, one generally produces meaningful test inputs and the list of 

corresponding expected system outputs. Accordingly, a test represents the exe-
cution of the SUT and comparison of the outcome with the expected. When the 
test results are in accordance with the test expectations, the test succeeds other-
wise it fails. Some nodes in an ESG represent environmental events, e.g., user in-
puts lead to expected system responses, which are also considered as events. 

A sequence of n consecutive edges is an event sequence (ES) of length n+1, 
giving an (n+1)-tuple of events. 
 
Definition 3.5 (Event Sequence): Let V, E be defined as in Definition 3.1. Then 
any sequence of vertices 0 , , kv v…  is called an event sequence (ES) if 

( )1,i iv v E+ ∈ , for 0, , 1i k= −… . 
 

Note that the pseudo vertices [, ] are not included in the ESs. An ,i kES v v=  
of length 2 is called an event pair (EP), i.e., each edge of the ESG can be consid-
ered as an EP. Accordingly an event triple, event quadruple, etc. can be defined. 

Furthermore, α (initial) and ω (end) are functions to determine the initial ver-
tex and end vertex of an ES, e.g., for ES= 0 , , kv v… , initial vertex and end vertex 

are ( ) 0ES vα = , ( ) kES vω = , respectively.  
Finally, the function l(length) of an ES determines the number of its vertices. 

In particular, if ( ) 1l ES =  then iES v=  is an ES of length 1. 
Note that the pseudo vertices [ and ] are not considered in generating any ESs. 

Neither are they considered to determine the initial vertex, end vertex, and length 
of the ESs. 
 



22 Event Sequence Graphs 

Example 3.3: For the ESG given in Figure 3.1, BCBC is an ES of length 4 with 
the initial vertex b and end vertex c. 
 

A complete ES (CES) starts at an entry of the ESG and ends at an exit, i.e., it 
represents a walk through the ESG. The set of the CESs specifies the system func-
tions F. Alternately viewed, the CESs constitute legal words of the regular set de-
fined by an ESG. 
 
Definition 3.6 (Complete Event Sequence): An ES  is a complete ES (or, it is 
called a complete event sequence,CES ), if ( )ESα ξ Ξ= ∈  is an entry and 

( )ESω γ Γ= ∈  is an exit. 
 
Example 3.4: ACB is a CES of the ESG given in Figure 3.1. 
 

CESs represent walks from the entry of the ESG to its exit realized by the 
form (initial) user inputs→ (interim) system responses → … → (final) system re-
sponse. 

Note that a CES may invoke no interim system responses during user-system 
interaction, i.e., it may consist of consecutive user inputs that lead to the exit. 

Analogous to the notion of EP, faulty (or illegal) event pairs (FEP) are intro-
duced as the edges of the corresponding ESG . 
 
Definition 3.7 (Faulty Event Pair): Any EP of the ESG  is a faulty event pair 
(FEP) for ESG. 
 
Example 3.5: CA of the given ESG  in Figure 3.4 is a FEP. 
 

Further, an EP of the ESG can be extended to a faulty, or an illegal, event tri-
ple by adding a subsequent FEP (if there exists one) to this EP, e.g., AB and BB 
of Figure 3.5, resulting in ABB. Thus a faulty event triple consists of three con-
secutive nodes in an ESG where the last two nodes constitute an FEP. In general, 
a faulty event sequence (FES) of the length n consists of n-1 events that form a 
(legal) ES of length n-2 and of two events at the end that form an FEP.  
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Definition 3.8 (Faulty Event Sequence): Let 0 , , kES v v= …  be an event se-

quence of length 1k +  of an ESG and ,k mFEP v v=  a faulty event pair of the 

corresponding ESG . The concatenation of the ES and FEP then forms a faulty 
event sequence 0, , ,= … k mFES v v v . 

Faulty event sequences have only one FEP at its end because of a simple rea-
son: in the error state in which the system should lead it is not observable what 
kind of system changes have been evoked, if any. Thus, it is essential to reset the 
system before triggering another FEP. Error states are also not distinguished 
which lapse a superposition of FEPs, i.e., conducting more than one FEP immedi-
ately after another. 
 
Example 3.6: For the ESG given in Figure 4, BCA is an FES of length 3. 
 
Definition 3.9 (Faulty Complete Event Sequence): An FES is complete (or, it is 
called a faulty complete event sequence, FCES) if ( )F E Sα ξ Ξ= ∈  is an en-
try. The ES as part of a FCES is called a starter. 
 

Note that Definition 3.9 explicitly points out that a FCES does not finish at an 
exit, unlike a CES that must finish at an exit. 
 
Example 3.7: For the ESG given in Figure 3.5, the FEP CA of the ESG  can be 
completed to the FCES ACBCA by using the ES ACBC as a starter. Note that the 
[ is not included in the FCES as it is a pseudo vertex. 
 

The starter ACBC in Example 3.7 is arbitrarily chosen, and hence the varia-
tion in length of an FCES is always attributable to starters prior to this special 
FEP under consideration. The result is then FCESs of various lengths. Thus, the 
“length” in the test process primarily relates to the CESs. 

Given an ESG e, faulty CESs (FCESs) can be constructed systematically using 
FEPs as follows.  

 

(a) An FEP that starts at the entry of e is also an FCES. 
(b) An FEP f that does not start at the entry of e is not executable 

and is extended by adding suitable prefixes. Each ES that starts 
at the entry of e and ends at the first symbol of f is prefixed to f 
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and the resulting sequence becomes an FCES. Such prefixes are 
referred to as starters. 

Note that the attribute “complete” in FCES expresses only the fact that an FEP 
might have been “completed” by means of an ES as a prefix to make it executable 
(otherwise it is not complete, i.e., not executable). Thus, an FCES is an FES that 
starts at the entry node but fails to reach the exit node. For a given SUT, the set of 
FCES is referred as the set V. 

3.3   Fault Model 

This approach assumes that a specification is given describing the functional sys-
tem tasks to construct appropriate ESGs, in accordance with the user expectations. 
 
Definition 3.10 (Test Case): A test case is an ordered pair of an input and ex-
pected output of the SUT. Any number of test cases can be extended to a test set. 
 

Since a CES is supposed to successfully run the system it can be used as a test 
case. The test inputs are thereby determined by the events and the expected out-
puts as the system response that has been reached. 
 
Definition 3.11 (Fault): A test fails if the CES starting at the entry node 

(i) cannot reach the exit node due to a failure, e.g., system crash (sequencing 
fault), or 

(ii) reaches the exit node, but does not deliver the expected outputs (functional 
fault). 

 
Accordingly, a FCES is supposed to cause a failure, or if there is an exception 

handling mechanism [Goo75, RLT78], an error message about the impairment of 
the events; otherwise a sequencing fault occurs. In this context exception handling 
is not used concerning any specific programming languages but rather in general. 
A sequencing fault can also occur in the starter portion, i.e., in the ES as the prefix 
of the FCES. FCES-based functional faults do not make any sense as they are 
supposed to exclude the expected behavior of the system. This fault model as-
sumes that there is no user error, i.e., upon a faulty user input the system has to in-
form the user, and, wherever possible, point him or her properly in the right direc-
tion in order to reach the anticipated desirable situation. Due to this requirement, 
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the complementary view was introduced to consider potential user errors in the 
modeling of the system (see also [Gau95, KPY99]). 

Although the fault model is very simple and makes clear how the oracle prob-
lem is handled: a CES-based test case is supposed to succeed a test by reaching 
the exit node whereby a FCES-based one passes the test when the system indicate 
a fault. In spite of its simplicity, the fault model is sufficiently powerful to guaran-
tee revealing all sequencing faults, provided that ESs and FCESs to be covered are 
sufficiently long (Sections 4.3.1 and 4.3.2). The approach cannot, however, guar-
antee to detect all functional faults, because in case a test succeeds, the user must 
validate that the expected output has been obtained.  

3.4   Handling Other Features 

3.4.1   States and Outputs  

Traditional finite-state automata (FSA) consist of states and transitions labeled by 
inputs, and in the case of a Mealy machine, also outputs. While an ESG is a finite, 
memoryless, device, in the sense that it consists of a finite set of nodes and verti-
ces, the transitions are unlabeled. Merging the states and inputs/outputs of the 
FSA to derive the corresponding ESG considerably simplifies the fault modeling. 

As an example, the ESG of Figure 3.1 is represented as an FSA (Figure 3.6(a)) 
which then is completed by an error state (Figure 3.6(b)). Figure 3.5 is then com-
pared with Figure 3.6(b) in order to illustrate the fault modeling features in FSAs. 
 

 
 

(a) FSA which is equivalent to the ESG 
of Figure 3.1 

(b) Completed FSA 

Figure 3.6: Completed FSA of Figure 3.1, leading to a total of 7 edges 
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If the underlying ESG has n  vertices, the corresponding CESG has at most 
2n edges that connect each of the n vertices with every other vertex [Wes96]. The 

ESG in Figure 3.1 has three events, leading to a total of 9 edges (32 = 9) of the 
CESG in Figure 3.5, without counting the entry and exit edges. Assuming that the 
corresponding FSA in Figure 3.6(a) has four states and an input alphabet of three 
symbols, A, B and C, the corresponding, completed FSA is given in Figure 3.6(b) 
with an extra state “error”. For the sake of simplicity, edges are allowed to be as-
sociated with multiple inputs, e.g., with B,C. Evidently, a completed FSA with n  
states and an input alphabet of the cardinality m  has m n⋅ edges (without counting 
the entry and exit edges). Thus, the example of the completed FSA in Figure 3.6 
has a total of 12 edges (3·4 = 12); with the edge labeled with two inputs counted 
as a double edge. The approach presented in this thesis is different from the finite-
state based approaches, in that ESGs are based on a finite sequence of events 
rather than states, and therefore disregards the detailed internal behavior of the 
system. Hence, an ESG is a more abstract representation compared to a state tran-
sition diagram of a FSA. 

3.4.2   Handling Context Sensitivity 
When using ESGs to model an application, e.g., a graphical user interface, there is 
often a need for using the same command, or the same icon, for similar operations 
in different contexts or in different hierarchical levels of the application. An ex-
ample is the operation delete used for deleting a symbol, a record, or even a file. 
In such cases, the system usually carries out the proper action using the context in-
formation. The approach introduced, however, eliminates the need for being ex-
plicit about the hierarchy information in abstracting the real system into an ESG 
model. 
 

 
Figure 3.7: Interaction ambiguities caused by the double occurrence of A 
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As an example, Figure 3.7 depicts an ESG that has two different nodes (indi-
cated by shading) with the same label A and therefore, can be initiated or triggered 
by the same input A. While constructing the EPs and FEPs, and accordingly the 
CESs and FCESs, one needs to differentiate between the node A that leads to B or 
C, and the node A that can be reached via B and leads only to C. This ambiguity 
can be resolved simply by indexing, for example, A1 identifying the first appear-
ance of A, and A2 identifying the latter one. This indexing implies the syntactical, 
or contextual, position and can help with the reconstruction of different hierarchi-
cal levels that have been “flattened” in the course of modeling. 

3.4.3   Extension of the Fault Model 

Based on past work related to fault modeling [BG91, DLS78, DMM01, DO91, 
EB84, FMMD94] and denoting inputs, outputs, states, or transitions as elements, 
the following fault model is obtained.  

 Omission error (o-error) – an element has been omitted. 
 Insertion error (i-error) – an element has been inserted 
 Corruption error (c-error) – an element has been corrupted. 

Note that a c-error can be represented by an o-error followed immediately by 
an i-error, with a different element being inserted for the omitted element.  

When applied to the elements of a Mealy automaton, these hypotheses are ca-
pable of delivering test cases to detect a variety of defects, e.g., whether an edge is 
missing as a result of a defect of the next state function, or if an output is missing 
or corrupted, since the output function does not work properly, etc. [Gil62, 
Glu63]. The hypotheses can be extended from single errors to multiple (n) errors 
[EB84]:  

 on-errors – n elements have been omitted. 
 in-errors – n elements have been inserted. 
 cn-errors – n elements have been corrupted. 

Finally, to represent arbitrary types of faults within the context of a finite-state 
model, an appropriate combination of these hypotheses is necessary, e.g., “a tran-
sition is forgotten, or inserted, or two transitions have been interchanged” can be 
represented by cio ++ 2 , where “+” represents the logical operator for “(exclu-
sive) or”. The described fault model can generate many classification schemes for 
coverage, based on, for example, [CBCH+92, MS03, OLAA03]. 

This extension can also be applied to ESG-based modeling, and enables, in 
turn, a precise assignment of severity levels to undesirable events in accordance 
with experience and judgment of the tester (see Section 5.8). 
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3.5   Summary 

Event sequence graphs (ESG) visualize human-machine interaction in a formal, 
but nevertheless lucid and easy to understand way. It is clear that such a represen-
tation disregards the detailed internal behavior of the system, which is given by 
means of its different states and, hence, an ESG is a more abstract representation. 
Furthermore, the ESG representation is adequate first for the complementary view 
and thus for a precise fault model. Second, the notion of refinement, as introduced 
in this chapter, strongly supports to model and analyze also even very complex 
systems by hierarchically decomposing them. 
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4   Test Process, Test Generation and Test Execu-
tion 

In this chapter the focus is on test generation from an ESG model. The method de-
scribed in this section uses ESGs and their complements as inputs and primarily 
generates a test set that is complete with respect to a model-based coverage crite-
rion introduced. Along with this, algorithms and results known from graph theory 
are adopted and extended to minimize the test set constructed, considering also 
structural features of the SUT. Parts of this chapter have been published in 
[BB04]. 

4.1   Objectives 

As already mentioned when discussing the fault model (Section 3.3), a CES, by 
definition, is expected to lead a SUT to a desirable state, and hence it may be 
viewed as a test input against which the SUT is expected to produce a correct out-
put. The generation of CESs is one of the objectives of the test generation proce-
dure described. The other objective is to generate FCESs from the complement of 
ESGs that together model the whole system behavior – both the desirable and the 
undesirable parts. Upon the input of an FCES, the SUT is expected to transfer it-
self temporarily into an error state and might invoke a fault detection/correction 
procedure, provided that an appropriate exception handling mechanism has been 
implemented. Thus, while CESs are used to test for the correct behavior of an 
SUT, the FCESs are used to check for the correctness of exception handling. 
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A test generation algorithm is sought that, given an ESG and the correspond-
ing CESG, generates tests that satisfy the following coverage criteria. 
 
Definition 4.1 (Coverage Criteria): 

 
(a) Cover all event pairs in the ESG, and  
(b) Cover all faulty event pairs of the CESG.  

 
Note that a test set that satisfies the first of the two criteria above consists of 

CESs while the one that satisfies the second consists of FCESs. Thus, all transi-
tions in the ESG and CESG will necessarily be covered by the CESs and FCESs, 
respectively [Bel01, BD97]. However, this criterion is more powerful than the 
transition or node coverage criterion [OLAA03] as, in addition, it requires the 
coverage of pairs of nodes in the ESG and its corresponding CESG, thus the cov-
erage of the FEPs. Later in Section 4.3.3 it is shown how this pair-wise coverage 
can be generalized to n-tuple, n >2, coverage and the cost and benefits of such an 
extension. Moreover, Case Study 1 (Section 5.5) demonstrates the fault detection 
capability of FCESs. 

It is obvious that there exist a large number of solutions to the test generation 
problem as stated above. For example, when an ESG has a loop, one could obtain 
a long chain of events that constitute a CES. This observation leads us to impose 
the following additional constraints on the test generation process. 
 
Definition 4.2 (Constraints): 

 
(a) The sum of the lengths of the generated CESs should be minimal. 
(b) The sum of the lengths of the generated FCESs, should be minimal.   

 
The constraints on lengths of the tests generated allow for a reduction in the 

cost of test execution. One might argue that minimizing test length might have an 
adverse effect on fault detection. While this is true in general, the experiments 
show that the effect is minimal. Further, the coverage criteria can be made more 
powerful by increasing the value of n in the n-tuple coverage to be obtained 
thereby further reducing any negative effect of reducing the length of tests on the 
fault detection effectiveness. 

The set of CESs that satisfies (Definition 4.1(a)) and (Definition 4.2(a)) for a 
given ESG is referred to as the minimal spanning set for the coverage of event se-
quences of ESG (MSCES). An MSCES is a complete and minimal set of test cases 
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aimed at exercising all event-sequences of a given length and related to the desir-
able behavior of the SUT. Similarly, the set of FCESs that satisfy (Definition 
4.1(b)) and (Definition 4.2(b)) is referred to as the minimal spanning set for the 
coverage of faulty event sequences (MSFCES). A MSFCES is a complete and 
minimal set of test cases aimed at exercising the SUT against faulty input se-
quences that test the exception handling behavior of the SUT. 

4.2   Test Process 

Once the tests have been constructed, they are input to the SUT. In case a CES is 
input, it must be checked if the system behaves as expected on a correct input. In 
the case an FCES is input, it must be checked if the system is able to recover from 
faulty inputs. The lack of a system’s ability to respond as desired to an FCES is 
considered as a lack of robustness. When an FCES is input, an undesirable behav-
ior might occur, for example, because an exception handler is missing or incor-
rectly implemented. 

The test process is summarized by the given Algorithm 4.1. The approach as-
sumes that the system is modularly structured, e.g., having a set of well-defined 
functional tasks f1,…,fn given by the specification. Each of these tasks represents a 
system response and can be modeled by a set of ESGs which are constructed prior 
testing.  

A major problem is the determination of the correct (i.e., desirable) and faulty 
(i.e., undesirable) behavior, also known as the oracle problem [Bin00, Ham94]. 
The present approach handles the oracle problem effectively by embedding the 
expecting behavior within the CES itself. Recall that both types of events, from 
the environment and responses generated by the system, are a part of a CES. 

The coverage-oriented test process of the approach leads to test cases which 
exercise the specified functions of the implemented SUT with the goal to cover 
these functions. This coverage must be, of course, economical in terms of the 
number of test cases. Therefore, a stopping rule (test termination) of the test case 
generation is needed. This is given in the Algorithm 4.1 by the coverage of the 
event sequences of increasing length, which is determined by analyzing the 
model. 
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Algorithm 4.1 (Test Generation and Execution): 

Input: A set of well defined functional tasks f1,…,fn represented by appropri-
ate ESGs with: 

 n  := number of the functional tasks of the system 
 length := required length of the event sequences to be covered  
Output: A test report of failed and succeeded test cases 

 1  FOR i:=1 TO n DO 
 2  BEGIN 
 3    Generate ESG  
 4    FOR k:=2 TO length DO 
 5    BEGIN 
 6      Cover all ESs of length k by means of CESs 
        subject to minimizing the sum of lengths of  
        the CESs                           //Section 4.3.1 
 7    END 
 8    Cover all FEPs by means of FCESs subject to 
      minimizing the sum of the lengths of the FCESs 
                                           //Section 4.3.2 
 9  END 
10  Apply the test set given by the selected CESs and 
    FCESs to the SUT. 
11  Observe the system output to determine whether  
    the system response is in compliance with the  
    expectation. 

4.3   Test Generation and Execution Algorithm 

In this section the algorithms used for the generation of CESs and FCESs is 
sketched given an ESG and its complement. Algorithms presented here are exten-
sions of the well-known algorithm for solving the Chinese Postman Problem 
(CPP) [EJ73].  

A solution to the CPP is a minimum length closed walk that covers each edge 
of the given graph at least once. A solution to this problem for a given ESG satis-
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fies the first constraint in Definition 4.2. However, such a solution might fail to 
satisfy the first criteria in Definition 4.1 which requires that all event pairs be also 
covered. It is the satisfaction of Definition 4.1 and its generalization that requires 
an extension to the algorithm for solving the CPP. A similar extension is also 
needed for generating FCESs from CESG. 

4.3.1   Minimal Spanning Set for the Coverage of ESs 

As mentioned earlier in Chapter 3, a CES represents a legal walk, traversing the 
ESG from its entry to the exit. Given an ESG e, a complete legal walk contains 
each EP in e at least once. A complete legal walk is minimal if its length cannot be 
reduced without changing it to an incomplete legal walk. A minimal legal walk is 
considered ideal when it contains every EP exactly once.  

Legal walks can be generated easily for a given ESG as CESs. It is not, how-
ever, always feasible to construct a complete or an ideal walk. Using results from 
graph theory [Wes96], MSCESs can be constructed as follows: 

(i) Check whether an ideal walk exists.  
(ii) If not, check whether a complete walk exists and construct a minimal one. 
(iii) If there is no complete walk, construct a set of walks such that (a) all EPs 

are covered and (b) the sum of the lengths of all walks is minimal. 
For each of the three steps Figure 4.1 includes a corresponding ESG which il-

lustrates different steps of the construction of MSCESs. 
 

 
Figure 4.1: Construction of MSCESs for different ESGs 
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The MSCES problem introduced here is expected to have a lower degree of 
complexity than the Chinese Postman Problem as the edges of the ESG are not 
weighted, i.e., the adjacent nodes are equidistant. In the following the results rele-
vant to the calculation of test costs are summarized and that make the test process 
scalable [Dre98]. 

An algorithm described in [Thi03] to solve the CPP determines a minimal tour 
that covers the edges of a given strongly connected graph. Transformation of an 
ESG into a strongly connected graph is illustrated in Figure 4.2. Addition of a 
backward edge, indicated as a chain dotted arrow from ] to [, transforms the ESG 
in Figure 4.2(a) to a strongly connected graph in Figure 4.2(b). 
 

  
(a) An example ESG (b) Transferring walks into tours and 

balancing the nodes 

Figure 4.2: ESG transformation for the coverage of ESs 

 
The labels of the vertices in Figure 4.2(b) indicate the balance of these vertices 

as the difference between the number of incoming edges and the number of the 
outgoing edges. These balance values determine the number of additional edges 
that will be identified by searching the all-shortest-paths and solving the optimiza-
tion problem. The problem can then be transformed into the construction of an 
Euler tour for this graph [Wes96]. This tour may have multiple occurrences of the 
backward edge indicating the number of walks. 
 
Example 4.1: For the ESG given in Figure 4.2(a), the minimal tour (based on 
Figure 4.2(b)) and the minimal set of the legal walks (i.e., CESs) covering the EPs 
is given by:  

 Minimal Tour = [ACBC][ABABD][;  
MSCES = {ACBC, ABABD}  
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Note that no entire walks exist. Therefore, an ideal walk cannot be con-
structed.  

It is obvious that a large number of events can exist for large systems resulting 
in a large number of nodes. By means of the introduced refinement (see Definition 
3.2), the system can be divided into several ESGs to reduce the nodes and 
therewith the calculation period of the algorithm. But to fulfill the coverage crite-
ria in Definition 4.1, the additional EPs of a refined vertex also have to be consid-
ered for test generation. Therefore it is claimed that at least one CES for each en-
try and exit node as an initial and end vertex respectively has to exist. This prob-
lem is already be solved by considering the pseudo vertices [ and ]. 

In Algorithm 4.2, ε and σ denote the pseudo nodes of the ESG, the symbol := 
the assignment command. Given an event v∈ V, diff(v) denotes the number of 
predecessor events of v minus the number of its successor events, which enables 
the construction of the bags (or multisets) A, B in the FOR-loop. The notation 
〚〛for bags and ⊎ for bag unions are introduced. They can be defined informally 
as follows. For instance, if diff(v)=3 in the first iteration step, assuming that A is 
initially empty, the bag A will consist of three instances of v, i.e., A =〚v, v, 

v〛after the assignment there. Note that〚v, v, v〛≠{v}, because the two entities 
on either side of the inequality sign ≠ are of different types; on the LHS is a bag 
(with three instances of v), whereas on the RHS is a singleton set with one ele-
ment v. Turning to ⊎, note that〚v, v, v〛⊎〚v〛=〚v, v, v, v〛. 
 
Theorem 4.1: MSCES can be constructed in time O(|V|3) 
 
Proof (sketched; see also [Thi03]): The shortest paths from one node to all other 
ones can be determined by a depth-first-search in O(|E|+|V|), as ESG under con-
sideration is an unweighted graph. Furthermore, because |E|>>|V|+1 holds for a 
strongly connected graph, the complexity can be approximated to O(|E|). Result-
ing in O(|V|*|E|) for the shortest path of all nodes to all others. The Hungarian Al-
gorithm that solves the assignment problem has the complexity O(|V|3) and the al-
gorithm next to determine the Euler-Tour has the complexity O(|E|*|V|). Thus, the 
total complexity is determined by O(|V|*|E|) + O(|V|3) + O(|E|*|V|) = O(|V|3). □ 
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Algorithm 4.2 (Generation of MSCES): 

Input: ESG=(V, E, Ξ, Γ); ε=[, σ =] 
Output: MSCES 

 1  add_arc(ESG,(σ,ε)); 

 2  bags A, B, M := 〚〛; 

 3  set MSCES := ∅;                     //empty bags & set 
 4  FOREACH node v∈V ∪ {σ,ε} DO 
 5  BEGIN 
 6    IF diff(v) > 0 THEN 
 7      FOR i:=1 TO diff(v) DO 

 8        A := A ⊎ 〚v〛; 
 9    IF diff(v) < 0 THEN 
10      FOR i:=1 TO diff(v) DO  

11        B := B ⊎ 〚v〛 
12  END; 
13  m := |A| = |B|;                     //cardinality 
14  D[1 .. m][1 .. m];                  //distance matrix D 
15  FOREACH node v∈A DO 
16    compute_shortest_paths(v,B,D); 
17  M := solveAssignmentProblem(D); 
18  FOREACH (i,j)∈M DO 
19  BEGIN 
20    Path := get_shortest_path(i,j); 
21    FOREACH arc e∈Path DO 
22      add_arc(ESG,e) 
23  END; 
24  EulerTourList := compute_Euler_tour(ESG); 
25  start := 1; 
26  FOR i:=2 TO length(EulerTourList)-1 DO 
27  BEGIN 
28    IF (getElement(EulerTourList,i) = σ) THEN 
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29      MSCES := MSCES ∪ getPartialList( 
                             EulerTourList,start,i); 
30    start := i+1 
31  END; 
32  RETURN MSCES; 

4.3.2   Minimal Spanning Set for the Coverage of FESs 

In comparison to the interpretation of the CESs as legal walks, by definition ille-
gal walks are realized by FCESs that never reach the exit node. An illegal walk is 
minimal if the length of its starter cannot be further reduced.  

Assuming that an ESG has n vertices and d edges as EPs, then exactly 
2u n d= −  edges are the FEPs. Thus, at most u FCESs of minimal length, i.e., of 

length 2, are available. These FCESs emerge when the node (nodes) following the 
entry node is (are) followed immediately by a faulty input. Accordingly, the maxi-
mal length of an FCES can be n; these are subsequences of CESs with their last 
event being replaced by an FEP. Therefore, the number of FCESs is determined 
precisely by the number of FEPs. An FEP that represents an FCES is of a constant 
length of 2 and therefore cannot be shortened. It remains to be noticed that only 
the starters of the remaining FEPs can be minimized, e.g., using the algorithm 
given in [Dij59].  
 
Example 4.2: The minimal set of the illegal walks for the graph in Figure 4.2(a) 
is 
 FCES={AA, AD, ABA, ACA, ACC, ACD, ABDB, ABDA, ABDD}  
 

While constructing the MSCESs, it is taken into account the ESs that are used 
to form starters to construct MSFCESs. The ESs used as starters need not be cov-
ered by additional CESs. This can help save costs if the test budget is limited, as is 
often the case in practice. 

The determination and specification of the CESs and FCES should ideally be 
carried out during the definition of the user requirements, often long before the 
system is implemented. They are then a part of the system test specification. Cer-
tainly, CESs and FCESs can also be produced incrementally at any later time, 
even during testing. 
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4.3.3   Generating Event Sequences with Length > 2 
A phenomenon in testing interactive systems that most testers seem to be familiar 
with is that faults can be frequently detected and reproduced only in some context. 
This makes a test sequence of a length>2 necessary since repetitive occurrences of 
some subsequences are needed to cause a failure to occur/recur.  

Consider the following scenario: based on the ESG given in Figure 4.3, the 
tester assumes that the EP given by BC always reveals a fault, no matter if exe-
cuted within ABC, ABABC, or ABDCBC; i.e., the test cases containing BC al-
ways detect the fault in any context. In this case, the fault is said to be a static one, 
as it can be detected without a context. Furthermore, the same scenario (so the as-
sumption) demonstrates that the EP BA reveals another fault, but only in the con-
text of ABCBAC, and never within ABAC, or ABACBDC, etc. In this case the 
fault is said to be a dynamic one. 
 

 
Figure 4.3: Static faults vs. dynamic faults (discussed events are shadowed) 

 
Such observations clearly indicate that the test process must be applied to 

longer ESs than 2 (EPs). 
Therefore, an ESG can be transformed into a graph in which the nodes can be 

used to generate test cases of length > 2, in the same way that the nodes of the 
original ESG are used to generate EPs and to determine the appropriate MSCES. 

Figure 4.4 illustrates the generation of ESs of length=3. In this example adja-
cent nodes of the extended ESG are concatenated, e.g., AB is connected with BD, 
leading to ABBD. The shared event, i.e., B, occurs only once producing ABD as 
an ES of length=3. In case ESs of length=4 are to be generated, the extended 
graph must be extended another time using the same algorithm.  
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Figure 4.4: Extending the ESG for covering ESs of length=3 

 
Theorem 4.2: At each transformation, starting with a completed ESG, the number 
of edges stepwise increases to |V|k+1 where k is the length of the ES to be covered 
with 2,  k k≥ ∈` . 
 
Proof (by mathematical induction): 
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The common procedure embodying this approach is given in Algorithm 4.3. 
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Algorithm 4.3 (Generating ESs and FESs with length > 2): 

Input: ESG=(V, E, Ξ, Γ); ε = [, σ= ], ESG’=(V’, E’, Ξ’, Γ’) with V’=∅, 
ε’= [, σ’= ]; 

Output: ESG’=(V’, E’, Ξ’, Γ’), ε’= [, σ’=]; 

 1  FOREACH (i,j)∈ E DO 
 2  BEGIN 
 3    addNode(ESG’,(ES(ESG,i) ⊕ ω (ES(ESG,j))); 
 4    removeArc(ESG,(i,j)) 
 5  END; 
 6  FOREACH i∈ V’ DO 
 7  BEGIN 
 8    FOREACH j∈ V’ DO 
 9      IF(ES(ESG’,i) ⊕ ω (ES(ESG’,j)) =  
                   α (ES(ESG’,i)) ⊕ (ES(ESG’,j)) THEN 
10        addArc(ESG’,(i,j)); 
11    FOREACH (k,l) with k=ε DO 
12      IF(ES(ESG’,i) =  
                      ES(ESG,l) ⊕ ω (ES(ESG’,i)) THEN 
13        addArc(ESG’,(ε’,i)); 
14    FOREACH (k,l) with l=σ DO 
15      IF(ES(ESG’,i) =  
                      α (ES(ESG’,i)) ⊕ ES(ESG,k) THEN 
16        addArc(ESG’,(i,σ’)); 
17  RETURN ESG’; 
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4.4   Exploiting the Structural Features of SUT for Further Re-
duction of Test Effort 

The approach has been applied to the testing and analysis of the GUIs of different 
kinds of systems, leading to a considerable amount of practical experience 
[Bel01]. A great deal of test effort could be saved considering the structural fea-
tures of the SUT. Thus, there is further potential for the reduction of the cost of 
the test process. 
 

Analysis of the structure of the GUIs delivers the following features:  
 Windows of commercial systems are nowadays mostly hierarchically 

structured, i.e., the root window invokes children windows that can invoke 
further (grand) children, etc. 

 Some children windows can exist simultaneously with their siblings and 
parents; they will be called modeless (or non-modal) windows. Other chil-
dren, however, must “die”, i.e., close, in order to resume their parents 
(modal windows). 

Figure 4.5 represents these window types as a “family tree”. In this tree, a uni-
directional edge indicates a modal parent-child relationship. A bidirectional edge 
indicates a modeless one. 

Because modal windows must be closed before any other window can be in-
voked, it is not necessary to consider the FESs of the parent and children. This is 
true only for the FCESs and MSFCES as test inputs considering the structure in-

   
Figure 4.5: Modal windows vs. modeless windows and an example of an mode-

less opened window 

modeless modal 

 

     root 

 
     children 

 
     children 



42 Test Process, Test Generation and Test Execution 

formation might impact the structure of the ESG, but not the number of the CESs 
and MSCESs as test inputs. 
 

 
Thus, similar to the strong-connectedness and symmetrical features [SS97], 

the modality feature is extremely important for testing since it avoids unnecessary 
test efforts. Figure 4.6 represents the modified ESG, which separates the event 
“Modal Form” takes the modality into account that avoids unnecessary FEPs. 
 
Theorem 4.3: The separation of one node of an ESG with |V| nodes leads in 
worst-case to |V|2+1 test cases to cover all legal and illegal event pairs. 
 
Proof: The total number of edges (including the self-loops) of a digraph with |V| 
nodes is |V|2 which determines the number of total number of legal and illegal 
event pairs. Let δ be the number of separated nodes with 0<δ<|V| before the de-
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Figure 4.6: Modification of the ESG of the example in Figure 4.5 by considering 

the modality feature 
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composition. After decomposition, the number of nodes of the original ESG is re-
duced by δ+1 because a virtual node has to represent the δ+1 nodes that had been 
separated. The new ESG possesses then exactly these δ+1 nodes. Therefore, after 
the decomposition two ESGs exist: the previous one with δ edges less plus one 
and a new one with δ edges. Thus, the number of test cases is given by the func-
tion: 
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4.5   Test Configuration and Test Cost 

The number and length of the event sequences are the primary factors that influ-
ence the cost of the test process. In order to compare the costs of different test 
configuration by a case study (see Section 5.5), a precise definition of these no-
tions is necessary. 
 
Definition 4.3 (Test Configuration): A test configuration is defined as a quintu-
ple max cov( , # , , # , )il ES l CES β  with 

 maxl  as the given maximum length of the ESs to be covered, 
 # iES  as the number of ESs of length i, with i = 2, 3, …, maxl , 



44 Test Process, Test Generation and Test Execution 

 covl  as the sum of lengths of CESs to cover all ESs of up to a given maxi-
mum length maxl , 

 #CES as the number of the CESs, and 
 β ∈\  as the weight factor for conducting multiple tests  

which determine the test costs for ESs as 
max maxl l

ES i i
i 2 i 2

: # ES # ES iΨ β
= =

= ⋅ + ⋅∑ ∑ , 

  and test costs for CESs as CES cov: # CES lΨ β= ⋅ +  
 

One could consider the test costs of a test configuration to depend on only the 
number of tests; however, this would neglect the length of the tests and the costs 
of restart/undo before conducting a new test. The formulae ESΨ  and CESΨ  have 
been introduced to avoid this oversimplification. 

The costs formulae ESΨ  and CESΨ  in the Definition 4.3 have two terms. The 
first term determines the maximum number of ESs (in ESΨ ) and the maximum 
number of CESs (in CESΨ ); the latter is the maximum number of tests to be run. 
Thus, this first term reflects the test costs caused by restarting the system before 
initiating another test (test multiplicity). However, a single test can cover several 
ESs, even of different length. To adjust to a specific situation, the tester can vary 
the weight factor β . Typically, β has the value 1 if the tester has no hint about the 
multiplicity of a planned series of tests. The weight factor can be greater than 1 in 
order to reflect a situation with disproportionate costs for restarting the system be-
fore a new test. The value of β  can be also zero if the costs of the restart process 
are negligible. 

The second term in the cost formulae for ESΨ  and CESΨ  determines total 
length of the test sequences (ESs and CESs) that must be run which contribute the 
other part of the costs. 

For the deployment of these and CESΨ in the case study (Chapter 5), the as-
sumption is made that each event and every restart have the same test costs, i.e., 
β =1. 
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4.6   Summary 

Based on the test process, the algorithms introduced determine a minimal number 
of legal and illegal test cases to fulfill a well-defined coverage criterion. The test 
costs are given by the total length of the CESs and FCESs which are necessary for 
the coverage. The length of the ESs can be increased stepwise that enables a scal-
ability of the test costs which increase proportional with the length of the ESs to 
be covered. 
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5   Case Study 1: The RealJukebox - RJB 

The case study presented in this chapter demonstrates the ease-of-use of the ap-
proach and validates the effectiveness of the algorithms developed and analyzed 
in the previous section. These algorithms were applied to various components of 
the public domain software RealJukebox of the RealNetworks in order to generate 
tests. There was no access to the source code and no specification of the applica-
tion was available, except an on-line user manual. Hence all ESGs required for 
test generation were derived from the GUI of RealJukebox. Parts of this chapter 
have been published in [BBW06]. 

5.1   Objectives 

The objective of this empirical study was to investigate the effect of varying  
 event-tuple coverage, i.e., length of the ES to be covered, subsequently re-

ferred to as n-tuple coverage, and  
 the number of the event sequences 

on the fault detection effectiveness of the CESs and FCESs using the algorithms 
sketched in Section 4.3 (see [BSH86, WRHO+00]). 

The value of n is considered as a contributor to the cost of the test process; the 
larger the value of n the more costly the test process in terms of the human effort 
spent in administering the test. The fault detection effectiveness of the generated 
test set for n=2, 3, and 4, are studied that correspond to, respectively, pair-wise, 
triple, and quadruple coverage.  
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5.2   System Description and Model 

RealJukebox (RJB) is a personal music management system to build, manage, and 
play individual digital music library on a personal computer. Figure 5.1 is a snap-
shot of the RJB interface showing the main menu. At the top level, the GUI has a 
pull-down menu with the options File, Edit, etc., to invoke operations. These op-
tions have further sub-options, and so on. There are additional window compo-
nents allowing navigation through the entries of the menu and sub-menus, creat-
ing many combinations and, accordingly, many applications. 
 

 
Figure 5.1: Example of a GUI (RealJukebox of RealNetworks) 

 
In the absence of a manufacturer’s system specification, namely, a functional 

description of the RJB, the help facilities and the handbook of the RJB are used to 
produce the references for construction of the test cases and test scripts, based on 
CES as desirable events. Those functions describe the steps as to how to reach 
situations the user wants, i.e., desirable events in terms of system functions (re-
sponsibilities). For this case study, 12 different functions of the SUT (Table 5.1) 
were identified. 
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Table 5.1: System functions as responsibilities of the system to interact with the 
user 

1. Play and Record a CD or Track 7. Visualization 
2. Create and Play a Playlist  8. Skins  
3. Edit Playlists and/or AutoPlaylists  9. Screen Sizes 
4. Views Lists and/or Tracks  10. Different Views of Windows 
5. Edit a Track  11. Find Music 
6. Visit the Sites 12. Configure RJB 
 

In the course of the present case study, a set of ESGs was determined for the 
RJB. This task was performed manually by studying the online help function, the 
user manual, and the GUI of the RJB and identifying distinct functionalities from 
a user’s point of view. The complete set of ESGs is found in Appendix A. As an 
example, the ESG in Figure 5.2 represents the top-level GUI to produce the de-
sired interaction Play and Record a CD or Track via the main menu in Figure 
5.1. The user can load a CD, select a track and play it. One can then change the 
mode, replay the track, or remove the CD, load another CD, etc. Figure 5.2 illus-
trates all sequences of user-system interactions to realize the likely operations that 
the user might launch when using the system. 
 

 
Figure 5.2: The system function Play and Record a CD or Track represented as 

an ESG 
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Each of the correct interactions, denoted by the nodes in Figure 5.2, defines a 
system sub-function that must be refined and represented in a corresponding sub-
ESG, as done in Figure 5.3 for the node P (Play track). 

The derivation of ESGs required some experience in designing GUIs and an 
understanding of how they function. As is common in modeling processes, the in-
teractions that seem most relevant in the diagram are selected and named so as to 
reflect the user’s perspective. 

The ESGs of Figure 5.3 refine the vertices of the graph depicted in Figure 5.2. 
The refinement Select track describes the alternative ways to select a track. Play 
track describes the variety of the functions similar to those encountered in an or-
dinary cassette player. The sub-graph Mode describes the different ways to con-
trol the operation, i.e., playing of the tracks. Any of the design levels can be used 
to generate CESs, thus test cases. As refined levels include more information, 
more test cases can be generated by analyzing those refined ESGs. 
 

 
Figure 5.3: Refinement of the vertices S, P and M of the ESG in Figure 5.2 

 
Each of the vertices of an ESG in Figure 5.2 and Figure 5.3 represents user in-

puts which interact with the system, leading eventually to events as system re-
sponses that are expected, i.e., correct situations. Thus, each edge of the ESG 
represents a pair of subsequent legal events which was defined as an event pair. 
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5.3   Test Representation 

The nodes of an ESG are interpreted as operations on identifiable objects that can 
be controlled/perceived by input/output devices, i.e., elements of WIMPs (Win-
dows, Icons, Menus, and Pointers). Thus an event can be a user input (an element 
of the set Venv, see Section 3.1), or a system response (an element of the set Vsys), 
leading or triggering interactively to a succession of user inputs and system out-
puts. Accordingly, a chain of edges from one vertex of an ESG to another is real-
ized by sequences of the form  

initial user input(s)→ (interim) system response(s) → (interim) user in-
put(s) → … → (final) system response  

which defines an ES as introduced in Chapter 3. An ES may consist of no interim 
system responses but only user inputs and a final system response as, for example, 
in Figure 5.2. Note that these event sequences are similar to those used by White 
et al. [WA00].  

Given the ESG in Figure 5.2, test generation begins with an analysis of the 
system function Play and Record a CD or Track. This analysis leads to 
 
 

EP={ LS, LR, SP, SM, SR, PS, PP, PR, PM, MP, MS, MM, MR, 
RL, RM }  

as the set of EPs. 
In the next step CESs are generated which cover the set of EPs. As explained 

in Section 3.1, CES is a walk obtained by extending the EPs by appropriate pre-
fixes and/or suffixes. The list  

 
CES={ LSR, LR, LSPR, LSMR, LSR, LSPSR, LSPPR, LSPR, 

LSPMR, LSMPR, LSMSR, LSMMR, LSMR, LRLR, 
LRMR } 

 

gives the CESs as test inputs. For each EP there is a corresponding CES listed 
which by definition has to be started with L and finished by R. 

Some CESs, e.g., LSR, occur more than once. This is because LSR can be ob-
tained by adding the suffix R to the event pair LS as well as by adding a prefix L 
to the event pair SR. Elimination of this redundancy leads to 

 
CESnew={ LSR, LR, LSPR, LSMR, LSPSR, LSPPR, LSPMR, 

LSMPR, LSMSR, LSMMR, LRLR, LRMR }. 
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The new set of the CESs ensures that all EPs are covered. However, it is not 
optimized yet using the minimal length criteria given by MSCES.  

Next the set of FCESs are constructed. To do so the set of FEPs is examined. 
The dashed edges of the CESG in Figure 5.4 represent the FEPs of the function 
Play and Record a CD or Track of the RJB. These edges are listed in the set  

 FEP={ LL, SL, LP, PL, LM, ML, SS, RP, RR, RS }.  

 

 
Figure 5.4: CESG (Completed ESG) of Figure 5.2 (dashed lines: FEPs) 

 
Based on the definitions of the FESs and the FEPs, now the FCESs are sys-

tematically established in two forms: 
 FEPs that start at the entry are complete test inputs to trigger undesirable 

situations, e.g., LL, LP, and LM of the set FEP. 
 FEPs which do not start at the entry, e.g., SL, PL, ML, SS, RP, RR, RS 

of the set FEP, need prefixes resulting in 

 
FCES={ LL, LP, LM, LSL, LSPL, LSPML, LSS, LSPMRP, 

LSPMRR, LSPMRS }.  

Together with these test inputs, the test process can be carried out as described 
in Algorithm 4.1. 

5.4   Test Generation 

As mentioned in Section 5.2, a set of ESGs was derived manually by studying the 
user manual of the RJB and through a careful examination of its GUI. The ESGs 
were input to a test generation tool (see Chapter 8) to generate CESs and FCESs 
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that constitute the tests for the RJB in this experiment. The tool uses the algo-
rithms sketched earlier and given in Section 4.3. Tests were generated for pair-
wise, triple, and quadruple event coverage.  

Two student testers applied the generated tests to the RJB semi-automatically 
using the tools. The testers worked over a period of two weeks, five days a week 
and, on average, six hours per day, thus spending a total of 60 person-hours. 
These figures result in approximately 5.5 seconds per test. Faults discovered were 
noted and analyzed subsequently for their severity. 

RJB was tested on two different PCs with different processors in order to de-
tect and filter likely permanent or transient errors within the hardware and/or sys-
tem software in any one of these test environments. An assumption is made that it 
is very unlikely for the same system failure to occur in both PCs. 

By means of running the tests on two different platforms, random errors are 
excluded that cannot be reproduced. Thus, the reported errors are permanent ones 
and have been detected on both platforms (and not on only one stochastically). 
Furthermore, they are reproducible in an effective manner, provided that the sys-
tem requirements specified in Table 5.2 are fulfilled. 
 

Table 5.2: Different test systems and their equipment 

 
System Require-

ments of the Manu-
facturer 

System 1  
(Test Platform 1) 

System 2  
(Test Platform 2) 

Operating system Windows NT with  
Service Pack 4 

Windows NT with  
Service Pack 4 

Windows NT with  
Service Pack 4 

Computer proc-
essing speed 

Intel Pentium  
200 MHz 

Intel Pentium  
266 MHz 

Intel Pentium  
233 MHz 

RAM (available) 32 MB 64 MB (9 MB) 64 MB (16 MB) 
Graphics 16 bit color video 

card (800x600 reso-
lution) 

32 bit color video 
card (1024x768 reso-
lution) 

32 bit color video 
card (1024x768 reso-
lution) 

 
The studied platforms are described in Table 5.2. Both these platforms fulfill 

the system requirements of the manufacturer; thus compatibility and conformance 
problems can be excluded. Significant characteristics are taken into account by 
considering the different options of run mode that are listed in the system descrip-
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tion. The options differ from each other in the RJB settings: AutoPlay acti-
vated/deactivated, AutoRecord activated/deactivated. Any inconsistencies that 
might occur during the testing have been carefully analyzed taking adjusted set-
tings of the RJB into account. 

5.5   Results 

The number of CESs and FCESs depends on the extent of the connectivity of the 
ESG under consideration. In the extreme case, when there is a bi-directional edge 
between every pair of vertices and self loops at every vertex, only CESs can be 
generated, i.e., the set of FCESs is empty. 

Table 5.3 depicts the generated number of test cases for each function from 
Table 5.1 sorted by length. 
 

Table 5.3: Test cases for the functions in Table 5.1 

Function Length of 
covered ES 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.

2 78 108 41 145 126 167 49 52 7 14 92 35
3 425 358 81 398 358 162 159 114 10 30 206 157
4 1918 1238 115 793 885 23 456 199 10 66 493 740

 
In Table 5.4 different values are assigned to the weight factor β to take differ-

ent levels of costs of resuming the test process after performing a test into account 
(see Section 4.5, Definition 4.3). It becomes apparent that the test cost reduction 
increases with 

 increasing length of covered ES, and 
 increasing weight factor 

if CESs are used as test inputs instead of ESs because CESs frequently cover sev-
eral ESs of a given length by one single test (see the last column of Table 5.4). 
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Table 5.4: Test costs of ES and CES and their percentage reduction 

Length of 
covered ES Weight factor β Test Cost ΨES Test Cost ΨCES Reduction 

0 938 826 11.94 % 
1 1407 985 29.99 % 

2 

2 1876 1144 39.02 % 
0 4706 3384 28.09 % 
1 5962 3854 35.36 % 

3 

2 7218 4324 40.09 % 
0 16414 10865 36.00 % 
1 19341 11890 38.52 % 

4 

2 22268 12915 42.00 % 
 

An overview of faults found subject to their sequence length is illustrated in 
Table 5.5 that summarizes the number of detected faults in the ESs to be covered 
by the total test cases from Table 5.3. It clearly shows that the detected faults by 
covering ESs of length 2 is a subset of the detected faults by covering ESs of 
length 3, which is, in turn, a subset of the detected faults by covering ESs of 
length 4. 
 

Table 5.5: Overview of faults found, test cases and their distribution over se-
quence length covered 

Length of 
covered ES Detected Faults Additional Faults 

2 44 +44 
3 56 44+12 
4 68 56+12 

 
Table 5.6 shows the number of additional faults detected in different functions 

in terms of the length of ESs that are to be covered. In Table 5.6, it is interesting 
to note that many faults were detected in function 1, and yet not so many faults 
were detected in any of the other functions. Most notable were functions 2, 9 and 
10, in which no faults were detected at all. First of all, function 1, Play and Re-
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cord a CD or Track, corresponds to very high complexity, as can be seen from 
the tests required in Table 5.3 and also in Figure 5.2 and Figure 5.3. Yet by far, 
the most faults (28) were detected by just ESs of length 2; no other comparable 
number of faults is seen by any other function. Also many other functions re-
quired more tests of length 2, but did not discover nearly this many faults (only 5 
faults for function 3 is the next largest number of faults for ES of length 2). Func-
tion 2 has nearly as many tests as function 1; but since this is logic to just create a 
playlist, there are clearly not as many faults as in actually playing a CD or track. 
As for functions 3, 9 and 10, they are of much lower complexity, and require far 
fewer tests than function 1. 
 

Table 5.6: Additional faults by function 

Function Length of 
covered ES 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 

2 28 0 5 2 1 3 3 0 0 0 2 0 
3 3 0 0 2 1 0 3 2 0 0 1 0 
4 1 0 3 2 0 0 1 3 0 0 1 1 

 
Table 5.7 summarizes the length of covered ESs and the corresponding faults, 

classified as functional fault and sequencing fault (for Definition 3.11, see Section 
3.3).  
 

Table 5.7: Test case costs and detected faults depending on the event length 

Length of  
covered ES 

Detected  
Faults by  

CES 

Detected 
Faults  

by  
FCES 

Total nb. 
Detected 

Faults 

Sequencing  
Fault 

Functional  
Fault 

2 24 20 44 16 28 
3 24+7 20+5 56 16+8 28+4 
4 31+4 25+8 68 24+10 32+2 

 
It is worth mentioning that additional 12 transient faults have been found dur-

ing the testing procedure. These faults have been detected randomly and on only 
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one of the test systems; thus they could not be reproduced on both test platforms 
(see Table 5.2). Therefore, they are not included in Table 5.5 and Table 5.6, which 
contain only faults that can be reproduced anytime on either platform exercising 
the same test case. 

The number of sequencing faults detected by test cases of length 3 and 4 in-
creases obviously slower in relation to those of length 2. Since the faults are inde-
pendent, these longer tests should still be executed, if the test budget and time al-
low for this. Another reason why test cases of length 3 and 4 should be executed 
is given by the likely severity of the “expensive” faults, i.e., sequencing faults that 
can only be detected with these longer, thus more “expensive”, tests. This situa-
tion is simple to explain: the longer the test procedure lasts, the less populated the 
remaining faults become, while one might expect to detect more intricate and sub-
tle faults. 
 

Figure 5.5: Detected sequencing faults and functional faults depending on the 
event length 
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Figure 5.5 shows the detected sequencing faults and functional faults with test 
length. Generally there are more functional faults than sequencing faults, specifi-
cally for test lengths of 2 and 3. Only at length 4 are there an equal number of 
functional faults and sequencing faults (see also Table 5.7). 
 

 
Figure 5.6: Detected faults by CES and FCES 

 
It is also interesting to note that FCES-based test cases really did deliver ap-

proximately the same number of faults as the CES-based test cases did (Figure 
5.6). Again, it is concluded that the reason is a poor design strategy of the GUI 
which concentrates on the realization of the desirable events and neglects the han-
dling of the undesirable ones. 

Figure 5.7 combines and refines the results found in Figure 5.5 and Figure 5.6. 
It can be observed that the tests based on the CESs of length 4 and on FCESs of 
length 4 are very beneficial in detecting defects: 19 defects have been detected by 
tests based on FCES of length 4 in relation to only 6 based on FCESs of length 2! 
Thus, a clear tendency can be observed that an increasing number and length of 
CES-based and FCES-based test cases lead to the detection of an increasing num-
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ber of defects. Note, however, that Figure 5.7 does not consider the number of 
necessary tests, i.e., test costs. 
 

Figure 5.7: Sequencing faults and functional faults based on CES/FCES, depend-
ing on the event length 

5.6   Analysis of the Results 

Table 5.8 displays the number of tests generated, total count of faults detected, 
and the cost of detecting a fault measured as faults detected per test case. As 
shown, a total of 78,611 tests were generated for different n-tuple event coverage 
using the CES-based and FCES-based test generation. 

Also, a total of 68 faults were detected when the RJB was tested against these 
tests. The number of faults detected increased from 44 through 56 to 68 as n was 
raised through the values 2, 3 and 4 in n-tuple coverage. While the tests that cover 
all event pairs reveal 44 errors, coverage of event triples, and then event quadru-
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ples, leads to the detection of only 12 new errors, in each case. As indicated in the 
table, there is a decrease in the number of faults detected per test case 0.0104 to 
0.001 for n=2 and 4, respectively. Figure 5.8 shows a plot of the cumulative count 
of faults detected versus the count of tests generated for n-tuple event coverage. 
 

Table 5.8: Size of the test set and its fault detection effectiveness measured 
against n-tuple coverage. 

Event-tuples  
covered (n) No. of test cases Total count of faults de-

tected  

Total count of faults 
detected per test case 
(Costs) 

2 (pairs) 4,236 44total 0.0104 
3 (triples) 10,512 44old+12new=56total 0.0053 
4 (quadruples) 63,863 (44+12)old+12new=68total 0.0010  

 

 
Figure 5.8: Number of test cases and the cumulative number of faults detected vs. 

length of test cases 
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The following observations from the data in Table 5.8 and Figure 5.8 are ob-
served. 

 Test cases derived for pair-wise coverage are the most cost-effective when 
compared with tests that cover triples and quadruples, respectively.  

 A rapid decline in test effectiveness is observed with the increasing length 
of the event sequences used as test cases. 

 The test cases derived from ESGs show a higher degree of fault detection 
effectiveness than those derived from CESGs. This might have been 
caused, however, by the fact that the SUT has a good exception handling 
mechanism, even though it is not perfect. 

The test effectiveness measured in terms of the cost per detected fault does not 
strongly correlate with the event-tuple coverage of the test cases derived from 
ESGs. The same is true for the tests derived from CESGs. This observation has 
cost implications for test management as the length and the number of the test 
cases generated directly effect the cost of testing.  

The observation above leads to the recommendation that it is cost-effective to 
test a system starting with tests derived from the ESGs that cover only the event 
pairs. If the cumulative number of detected faults grows slowly, then one might 
terminate the test at this point. Depending on the testing budget, one might then 
consider generating and executing tests from ESGs that cover event triples and 
quadruples. The same incremental approach seems appropriate for testing excep-
tion handling code using tests generated from CESGs. 

5.7   Fault Detection 

To illustrate the fault detection capability of the approach, the function Play track 
is analyzed. This function is represented by the ESG in Figure 5.9 as a refinement 
of node P in Figure 5.2 and Figure 5.3. 

Some of the detected faults are listed in Table 5.9. The fault detection process 
is simple. As an example, to detect fault 1 in Table 5.9, one starts with the Con-
trol option of the Main Menu of the RJB as in Figure 5.3 and sequentially pushes 
the button Rec and then the button Rew, or alternatively, the button FF, as shown 
in Figure 5.9 as alternative edges labeled with No. 1. The other faults in Table 5.9, 
labeled accordingly in Figure 5.9 with fault numbers, can be detected similarly. 
Fault numbers caused by an EP are marked by dotted arcs in Figure 5.9. 
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Figure 5.9: Completed ESG as a refinement of Figure 5.2 

 
A complete list of the faults detected is included in Appendix B, which also 

includes the test sequences that reveal these faults. This list includes also the type 
of the fault, as classified in Section 3.3. 
 

Table 5.9: Detected faults related to the system function Play track (node P in 
Figure 5.3) 

No. Detected Faults Test Case 
1 While recording, pushing the forward button or rewind 

button stops the recording process without a due warn-
ing. 

Control Record FF 

2 If a track is selected but the pointer refers to another 
track, pushing the play button invokes playing the se-
lected track; i.e., the situation is ambiguous. 

SelectTrack Play 
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No. Detected Faults Test Case 
3 Menu item Play/Pause does not lead to the same effect 

as the control buttons that will be sequentially dis-
played and pushed via the main window. Therefore, 
pushing play on the control panel while the track is 
playing stops the playing. 

Control Play/Pause 
Play/Pause 

4 Track position could not be set before starting the play 
of the file. 

Control Play/Pause 
FF Trackposition 
Play/Pause 

5 Record Shuffle does not activate shuffling, i.e., tracks 
will be processed sequentially. 

CheckOne++ Shuf-
fle Record 

6 If the track is in Pause and Record button is pushed, 
then the track will be played. 

Control Play/Pause 
Play/Pause Record 

7 The system jumps to a track that was not selected and 
terminates the play-back although the selected tracks 
have not been completely played. 

Control Play/Pause 
FF FF FF 

 
Upon the detection of a fault, it was analyzed and categorized (sequenc-

ing/functional fault, ES-/FES-based, length). Then the system was restarted, i.e., 
recovered from the error state and the test process continued. Thus, about 432,000 
sec were spent to execute 78,611 test cases, resulting in 5.5 sec. per test.  

In order to produce approximating curves for the time between failures over 
the failure number, well-known software reliability models [Lyu96] have been 
deployed. Those models specify among other things the dependence of the failure 
process on fault detection. Using the reliability tool CASRE [LN92] it was found 
that the models Musa-Okumoto, Musa-Basic, Geometric, and Jelinski-Moranda 
correlated well with the data. Note that each of those models is characterized by a 
set of (more or less realistic) assumptions, e.g., that failures independently occur, 
or perfect debugging, i.e., fixing an error will not create new fault(s), or errors 
fixed earlier have a bigger effect than the ones fixed later, etc. [Lyu96]. One usu-
ally has to combine several models in order to compensate the assumptions that 
are not suitable for the SUT. For the case study, the best “goodness of fit” could 
be achieved by Geometric model, the results of which are depicted in Figure 5.10 
and Figure 5.11 for the CESs and FCESs, respectively. 
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Figure 5.10: Time between failures based on the CESs of Figure 5.9 

 

 
Figure 5.11: Time between failures based on the FCESs of Figure 5.9 
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The number of faults in Figure 5.10 and Figure 5.11 is greater than the real 
number because the repetitive occurrence of faults could not be eliminated. The 
SUT could also not be corrected before testing it further.  

In spite of these imprecise data the deployment of the reliability models under 
CASRE clearly revealed the following tendency: the test cases based on CESs are 
considerably more cost-efficient than the ones based on FCESs, i.e., the test costs 
per detected fault based on CESs are lower, indicating the fact that the SUT has a 
rudimentary exception handling mechanism, even if not complete. 

5.8   Defense Mechanism 

Once the system has been transferred into an erroneous state, it cannot accept any 
further legal or illegal inputs, because an undesirable situation can neither be 
moved to a desirable one, nor can it be transferred into an even more undesirable 
one. This level of abstraction ignores fault propagation, whereby faulty events 
could lead to other faults, possibly, of greater severity. Therefore, prior to further 
input, the system must recover, i.e., the illegal interaction must be undone by 
moving the system into a legal state through a backward, or a forward, recovery 
mechanism [Goo75, RLT78]. 

The construction of the FCESs as described in Section 3.2 guarantees that only 
their last two symbols (as an FEP) are incompatible, in other words, for the de-
termination of the position in which a correction can take place, backtracking by 
only one symbol is necessary. Having backtracked, possible modes of recovery 
(i.e., corrections) depend solely on the number of the different symbols which can 
then transfer the system into a correct state. In this sense, as an example, the faulty 
event sequence SL of the FCES set in Section 5.3 is “less risky” in terms of flexi-
bility in fault correction than the sequence LL. This is because 

 LL can be transferred to the only two legal event pairs LS and LR after 
backtracking to L,  

 while SL can be transferred to three legal event pairs SP, SM and SR af-
ter backtracking to S. 

Thus, for self-correction, any FCES that includes SL as a FEP represents a 
situation which is “less risky” (more desirable) than an FCES of the same length 
that includes LL, for example, in order to automatically navigate the user despite 
his/her faulty input. 

The fault correction capability can be implemented by adopting a conventional 
parsing algorithm known in compiler construction [AHU77]. In uncritical cases a 
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forward recovery might be more convenient, e.g., wherever possible, alerting im-
mediately the user when an FEP is detected, and continue the operation to reach a 
safe state. 

The extended fault model (Section 3.4.3) can be extremely useful for forming 
fault hypotheses that take the individual risk ratios into account. See also Section 
6.1 for a safety related view of this notion. 

5.9   Discussion 

At first glance, it seems that only 68 faults are detected upon executing approxi-
mately 80,000 test cases (Table 5.8) – a huge test effort to detect a relatively small 
number of faults, especially compared to the previous experience [Bel01] with the 
same approach. However, the following circumstances appear to explain the situa-
tion and to justify the work: 

 The algorithms used for determining MSCES and MSFCES (Section 4.3.1 
and 4.3.2) have not been considered here as a way of reducing the number 
of tests. This is because their use would have concealed the number of 
faults detected by any sequence depending on its length, as well as the 
number of the individual test cases that would have been covered by a sin-
gle MSCES or by a single MSFCES. 

 Due to intensive and extensive deployment over many years, the product 
subjected to test is of high quality. 

 Given the above, it was encouraging to note that the approach could detect 
faults at all in this product. This motivates us to further refine and improve 
the proposed approach. 

5.10   Summary 

A key conclusion is that the approach facilitates a simple, but nevertheless a cost-
effective, stepwise and straightforward test strategy. This is because it enables the 
enumeration of test cases (based on the CES and FCES) and, thereby, helps man-
age the scalability of the test process. 
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6   Considering Safety Aspects 

Additional to the GUI-focused case study of the previous chapter, the case study 
of this chapter uses an example based on a railway level crossing. The objective is 
to demonstrate the versatility of ESG-based approach for modeling and analysis 
of complex systems, considering also aspects of safety. This chapter bases of the 
work of Nimal Nissanke [ND02] and applies risk graphs to ESGs. 

6.1   Risks and Risk Ordering 

Malfunctions of a system are often related to its state. However, since the repre-
sentation based on ESGs is void of any explicit notion of state, it is necessary to 
refer to states indirectly in terms of the elements of R(M), which as explained ear-
lier, are event sequences beginning at the entry node. Thus, a string in s∈ R(M), s 
may also be treated as a notation for the state reached by M upon the execution of 
the events in s [BBN04].  

In embedded systems, such as a pacemaker or a railway-crossing controller, an 
event sequence s may lead the system to a state that has some form of risk associ-
ated with it. Though it is not concerned with the actual quantification of risk, it is 
needed an ordering relation based on risk for the states of M. This offers a system-
atic selective approach to test generation. 
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Definition 6.1 (Risk Ordering): A risk ordering relation ⊑ is defined as ⊑ = {(s1, 
s2)| s1, s2 ∈ R(M) and the risk level associated with state s1 is less than that associ-
ated with state s2.} 
 

The risk ordering function above is analogous to that used in [ND02]. In this 
context, risk level of a state quantifies the “degree of the undesirability” of an 
event sequence from the perspective of some critical system attribute, which could 
be, for example, safety. An analogous interpretation of ⊑ can be found for other 
system attributes. 

The risk ordering relation ⊑ is intended as a guide to determining an appropri-
ate response to any faults detected. Such responses are specified in terms of a de-
fense matrix DM that utilizes the risk ordering relation to revert the system state 
from its current one to a less, or the least, risky state. 
 
Definition 6.2 (Defense Matrix): Given a set D of malfunctions, the defense ma-
trix DM, and the associated constraint, are defined as DM ∈ R(M)×D → R(M) : ∀ 

s1, s2, d • (s1,d) ∈ dom DM ∧ DM(s1,d) = s2 ⇒ s2 ⊑ s1. 
 

Note D (dysfunction) has been introduced in Section 3.2. The above expresses 
the requirement that, should one encounter the malfunction d in any given state s1, 
the system must be brought to a state s2, which is of a lower risk level than s1. A 
defense action, which is an appropriately enforced sequence of events, is used to 
bring the system into a less risky state. An exception handler executes a defense 
action. The actual definition of the defense matrix and the appropriate set X of ex-
ception handlers is the responsibility of a domain expert specializing in the risks 
posed by a given malfunction. Relying on this risk based interpretation of state in 
terms of event sequences, if x is a defense action appropriate for the scenario im-
plicit in Definition 6.1, then s1 x = s2. 

A specific benefit of risk ordering in the framework introduced here is that it 
allows a systematic approach to the selection of test cases by focusing on one or 
more particular vulnerability attribute. 
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6.2   Quantification of Robustness 

Robustness of a software system is defined as the ability of the system to behave 
acceptably in the presence of unexpected inputs [HH02]. In this thesis it is pre-
ferred to treat robustness as the ability of a system to handle exceptional or faulty 
inputs. Thus, while there is an expected set of inputs, its complement is a faulty 
set of inputs. The ability of a system to handle acceptably such exceptional inputs 
is a measure of its robustness. A set of ESGs that models a SUT behavior defines 
the set of expected event sequences. The complement of each ESG in this set, 
taken together, defines the set of unexpected input sequences. Robustness is de-
fined with respect to precisely this set of unexpected input sequences. 

Several approaches have been proposed to assess the robustness of a system. 
The Ballista approach [KKS98] is an elegant way to assess the robustness of a 
software system by the generation of special values and random inputs. Here an 
alternate ESG based approach is proposed to testing a software system for robust-
ness. This approach allows the quantification of robustness with respect to a uni-
verse of erroneous inputs. 

As mentioned in Chapter 3, the complement of an ESG defines a subset of all 
possible erroneous or faulty, event sequences. A set of erroneous inputs is ob-
tained for the SUT by complementing each ESG in the set that models the behav-
ior of the SUT. How these faulty sequences are used to generate test inputs that 
test the exception handling ability of the SUT has been explained in Section 4.3.2. 
Given that there are n tests, each containing a faulty sequence, and that in m, m ≤ 
n, of these tests the SUT behaves acceptably and e the number of erroneous in-
puts, e ≤ n, the robustness of the SUT is estimated to be the ratio m / n · n / e.  

The robustness measure proposed above is significantly different from the one 
obtained using the Ballista approach. While the Ballista approach uses special and 
random values of SUT input variables to assess robustness, the ESG approach 
uses tests based on faulty event sequences as a way to assess the same. A com-
parison of the two approaches is not within the scope of this work. 

6.3   A Comprehensive Example: Railway Crossing 

Railway crossings of the kind considered here are found across minor roads out-
side of towns. They often consist of a pair of gates and two traffic lights: red and 
green, and also a railway signaling system to control the train movement in the 
proximity of the crossing, though the latter is ignored here for simplicity. Note 
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that in this model the human is a part of the system environment, e.g., as a driver, 
a gate controller, etc. The ESG-based approach enables the consideration of both 
the expected, i.e., correct, and faulty behavior of the human operator. Despite its 
simplicity, the example is sufficiently expressive for the purpose intended here. 
Note, however, that the discussion is based on an ordinary familiarity of the ap-
plication and, therefore, the representation may not be quite accurate from a spe-
cialist’s point of view.  

6.3.1   Objectives 
The objective of this analytical study is to demonstrate the application of the pro-
posed ESG-based approach for modeling and risk analysis in the area of safety 
critical systems (see also [Sto96, Wil91]). For this purpose a simple railway cross-
ing is considered as an example. Though the ESG model generated in this study 
can be used to generate tests that are use for testing a simulation model of the 
safety critical system, this was not an objective of the study. 

6.3.2   System Description and Model 

An ESG model of such a crossing is shown in Figure 6.1. The set of input signals 
(or events V) are partitioned into the subsets Vsys and Venv with 

 Vsys = { R, G, C, O } as system signals and  
 Venv = { T, V } as environmental events detected by a system that monitors 

the crossing.  
Here, R denotes the traffic signal turning red, G the traffic signal turning 

green, C gate closing barring vehicular traffic, as well as other road users, from 
using the crossing, O for gate opening allowing vehicle traffic through, T train 
passing the crossing, and V for a vehicle using the crossing. These events bring 
about hazardous states posing different risks to road and train users. The nature of 
these hazards varies from state to state of the railway crossing system, some pos-
ing greater vulnerabilities than others. For example, compared to the safest possi-
ble state in which all traffic lights are red, the state in which the gate is open car-
ries a great risk since the road users are now free to cross the junction, exposing 
themselves to danger from a passing train. Likewise, the state in which a train is 
crossing the junction poses a greater risk than the state in which the gate is closed 
as the latter includes also situations when there is no train at the crossing. The ex-
ample, as modeled in Figure 6.1, assumes that the lights turn green “on demand,” 
that is, when a vehicle reaches the barrier. Once the lights are changed from red to 
green, they cannot be returned to red until at least one vehicle has passed. 
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Figure 6.1 also indicates the relative risk levels brought about by the occur-
rence of the different events. In the ESG, the events posing greater vulnerabilities 
to the users of the system are placed vertically higher than those posing relatively 
lower risks. In this respect, it is important to note the significance of placing the 
events T and V in Venv at the top in Figure 6.1. This is because they denote, in ef-
fect, human actions, including potentially faulty actions. Thus, risk level of R is 
less then the one of O (“Open gate”) because “Turn red” implies halting the vehi-
cle. In turn, the risk level of O is less than G (“Turn green”) and C (“Close gate”), 
etc. Finally, the risk level of V (“Vehicle passes”) and T (“Train passes”) are 
maximums as they concern events which have most significant impacts on human 
life. Note also that, as a simplification, the above representation does not include 
any means to control the movement of trains and the system is assumed to be ini-
tialized with a sequence of signals RC. 
 

 
Figure 6.1: An ESG model of a railway level crossing 

6.3.3   System Functions and Malfunctions 

As is shown by directed arcs in Figure 6.1, the event pairs in this example are 
 EP ={ RG, GV, VV, VR, RC, CT, CO, TT, TO, OG }  
while the complete event sequences (CESs) in any complete cycle of system op-
eration can be represented by the regular expression 
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 RE = (RGV+)*R+((RGV+)*RCT*OGV+)*R = ((RGV+)* 
(λ+RCT*OGV+))*R  

where λ denotes the empty event sequence. The faulty event pairs for the railway 
crossing are generated from the complete ESG shown in Figure 6.2. The FEPs are 

 FEP ={ RR, OO, CC, GG, RO, RT, RV, OR, OC, OT, OV, CR, CV, 
CG, TR, TC, TV, TG, VO, VC, VT, VG, GO, GC, GR, GT }. 

 

The FEPs are shown as dashed lines in the CESG in Figure 6.2 while the EPs are 
shown as solid lines. In the context of the framework introduced in Chapter 3, the 
expression RE above constitutes the system function F, while FEP represents the 
set of system malfunctions D, the elements of which are also called vulnerabili-
ties.  
 

 
Figure 6.2: A CESG model of the railway level crossing with FEPs (dashed 

lines: FEPs) 

 
Each FEP in FEP represents the leading pair of signals of an emerging faulty 

behavioral pattern, with the first event being an acceptable one and the second an 
unacceptable one. Should the first event of any of the FEPs, e.g., RV, matches the 
last event in any of the ESs, e.g., in (RGV+)*R, then concatenation of the corre-
sponding ES and the FEP, e.g., 
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 (RGV+)*RV  
describes, or signifies the occurrence of, a specific form of a faulty behavioral pat-
tern. 

Concatenation of the corresponding pairs of ESs and FEPs in the appropriate 
manner (i.e., by dropping either the last signal of the EP or the first signal of the 
FEP) results in expressions not belonging to the language described by R(M) for 
system M. Table 6.1 lists the pairs of event sequences and vulnerabilities for the 
railway crossing together with their interpretations. In spite of its simplicity, the 
interpretations of the conjunctions of the appropriate pairs (ES, FEP) demonstrate 
the effectiveness of the approach in revealing the safety-critical situations. Note 
that for brevity not all FEPs have been considered in Table 6.1. 
 

Table 6.1: Level crossing vulnerabilities, the level of the faults posed, and possi-
ble defense actions 

ES 
(Column 1) 

FEP 
(Colu- 
mn 2) 

Interpretation 
(Column 3) 

Comment 
(Col- 
umn 4) 

Defense 
action  
(Col- 
umn 5) 

RO Gate opens while lights 
are set to red (No effec-
tive state change is possi-
ble except immediately 
after initialization when 
the gate was closed). 

Ignored – 

RT A train arrives prema-
turely. 

Danger RC 

(RGV+)*R 

RV Vehicle traffic passes 
through red lights. 

Danger † 

CR Lights to revert to red, 
though already red. 

Ignored – 

CV Vehicle traffic is attempt-
ing to cross the closed 
gate and the red lights. 

Danger † 

(RGV+)*RC 

CG Lights turn green from 
red while the gate is 
closed. 

Danger † 
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ES FEP Interpretation Comment Defense 
action 

TR Lights to revert to red 
while already in red. 

Ignored – 

TC Gates to close while al-
ready closed. 

Ignored – 

TV Vehicle traffic crosses as 
trains pass. 

Potential 
accident 

None 

(RGV+)*RCT+ 

TG Lights turn green as trains 
pass. 

Danger † 

OR Lights to revert to red 
while already in red. 

Ignored – 

OC Gates to close while al-
ready closed. 

Ignored – 

OT A train arrives after the 
gate opened. 

Danger † 

(RGV+)*RCT*O 

OV Vehicle traffic crosses as 
soon as the gate opened 
but before the lights 
change to green. 

Danger † 

GO Gates to open though al-
ready opened. 

Ignored – 

GC Gates to close after the 
lights turn green. 

Annoy-
ance 

– 

GT A train arrives soon after 
the lights turn green. 

Danger † 

(RGV+)*RCT*OG, 
RG 

GR Lights turn red before ve-
hicle passes. 

Ignored – 

VO Gates to open though al-
ready opened. 

Ignored – 

VC Gates to close while ve-
hicle traffic moving. 

Danger VR 

VT A train arrives amidst ve-
hicular traffic. 

Potential 
accident 

None 

(RGV+)*RCT*OGV+, 
RGV+ 

VG Lights to turn green 
though already green. 

Ignored – 

† - Any defense action is outside the scope of the current model due to lack of fea-
tures for controlling train movements. 
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6.3.4   Defense Mechanism and Risk Graph 
To overcome the possible ambiguity in the descriptive nature of Table 6.1, a risk 
graph as in Figure 6.3 may be used. The graph expresses the relative risk levels of 
states with a greater formality and precision. Each node in the risk graph repre-
sents a state that is reached when a given sequence of events occurs. The set of 
event sequences that bring the system to a given state is indicated as a regular ex-
pression in the risk graph. 

Using the notation as in Definition 6.1, a directed edge from a state s1 to s2 in 
Figure 6.3 is equivalent to s1 ⊑ s2, signifying that the risks posed by the state s2 is 
known to be at the same level as, or exceed, the risks posed by s1. As a convention 
in the risk graph, an upward pointing edge signifies that the state lying above 
poses a greater risk than the one lying below. Arcs drawn in solid lines, as well as 
the states denoted by underlined regular expressions, refer to the normal func-
tional behavior, while those with dashed lines and other (non-underlined) FES 
(regular) expressions refer to vulnerability states. To reduce clutter, the diagram 
does not show the reflexivity of the permissions in the relation ⊑ (i.e., loops at 
nodes) and shows the vulnerability states used for demonstrative purposes only, 
i.e., it is not complete concerning FEPs. In this particular case, the last event of 
most regular expressions, describing a vulnerability state pointed at by a dashed 
arc, denotes a human action, such as operating a train. More strikingly, each and 
every state, lying highest in the diagram, is described by a regular expression end-
ing with one of the two events T and V, each related to a human action of operat-
ing a train or a vehicle, respectively. Therefore, in addition to the risks associated 
with the functional behavior, the risk graph allows a way to represent explicitly 
the risks associated with potential human errors. 

Having identified potential vulnerabilities, it is possible to provide measures 
that counteract them. This is the intention of the defense matrix and exception 
handlers. In this connection, an attempt is in Figure 6.3 to propose the defense ac-
tions that may be taken. Due to the limited scope of the model, these actions only 
partially address the potential vulnerabilities. This is because all defense actions at 
the disposal of the current model are limited to closing the gate or turning the traf-
fic lights to red, thus affecting only the vehicle traffic. 

A richer model with features for modeling signaling mechanisms would allow 
the means to address other vulnerabilities, namely, those that can be avoided or 
mitigated by controlling the train movements. Should Table 6.1 be complete in 
these respects, the event sequences listed under column 5 would be equivalent to 
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the set of the exception handlers X, while the columns 1, 2 and 5 would amount to 
a definition of the required defense matrix implicitly, provided that the data in 
these columns satisfies the condition in Definition 6.2. 
 

(RGV+)*R
(lights in red)

(RGV+)*RO
(futile transition)

(RGV+)*RC
(lights in red;
gate opened;
trains, if any, passed)

(RGV+)*RCT*O (lights in red; gate opened; 
trains, if any, passed)

(RGV+)*RCT+

(lights in red;
gate closed; trains 
passing)

(RGV+)*RT

(RGV+)*RCT*OGT
(dangerous train crossing)

(RGV+)*RCT*OT
(belated train crossing)

RGV+T, (RGV+)*RCT*OGT
(potential accident)

(RGV+)*RCT+R ,
(RGV+)*RCT+C
(futile transition)

(RGV+)*RCT*OG

(lights in green; 
gate opened)

RGV+

(lights in green; 
gate opened;

vehicles passing)

(RGV+)VC

(early gate closure)
(RGV+)*RCT*OV

(early vehicle
traffic crossing)

(RGV+)*RV, 
(RGV+)*RCV

(vehicles crossing
red light)

(RGV+)*RCT*OGC
(gate closure from
open; lights green)

(premature train crossing)

(RGV+)*RCT*OGO
(futile transition)

(RGV+)*RCT*OR ,
(RGV+)*RCT*OC
(futile transition)

(RGV+)*RCG
(lights turning 
green from red; 
gate closed)

(RGV+)*RCR
(futile transition)

RGV+O, RGV+G
(futile transition)

 
Figure 6.3: Risk graph of the railway crossing, covering both the system and vul-

nerability states 

 
Note that the concatenation of expressions in columns 1, 2 and 5 in the appro-

priate manner (i.e., by dropping common events as appropriate) gives the state 
aimed at by the defense matrix as a result of invoking the corresponding exception 
handler [IEC610, IEC615, Lev86]. 

6.3.5   Testing Issues 
The test process can now be worked out analogous to that described in Section 
4.2. Thus, the CES and FCES are systematically constructed and combined to 
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cover the edges of the CESG as demonstrated in the introductory example in 
Chapter 3, i.e., CES and FCES are input to trigger desirable, and undesirable, 
situations, respectively. 

In the case of an application such as a railway level crossing, testing of the ap-
plication in requires a simulation model. Such a model could be in software or a 
mix of hardware and software. As an example, the test input (RGV+)*RV repre-
sents the event that the vehicle traffic passes through the red lights, which cannot 
be realized as a real-life experiment. Furthermore, in order to generate a complete 
test case, a meaningfully reactive controlling system is needed, which is outside 
the scope of the current model, given the representation in Figure 6.1.  

Nevertheless, even this simple model is useful in that it makes such dangerous 
situations explicit (visible) and highlights the reactions required of the controlling 
system in response to such inputs. Thus, it is evident that one can use the CESG in 
Figure 6.2 to simulate all potential test scenarios. 

To avoid unnecessary details, the results of the analysis are summarized below 
covering all edges of the CESG given in Figure 6.2. It appears that following sets 
of event sequences, ESs, are of particular interest when dealing with system vul-
nerabilities 

 ES ={ (RGV+)*R, (RGV+)*RC, (RGV+)*RCT+, (RGV+)*RCT*O, 
(RGV+)*RCT*OG, (RGV+)*RCT*OGV+, (RGV)*RCT*OGV+R }. 

 

These ESs are possible prefixes, i.e., starters that can be constructed by analyz-
ing the expression RE. The test inputs can be now constructed as described in the 
previous section. For example, it is possible to generate RGVRV as an instance of 
the sub-string (RGV+)*RV. A correct implementation of the railway crossing con-
troller should respond to this test by the defense action RC (see Table 6.1). Thus, 
the particular test input RGVRV is designed to test the system response to a simu-
lation of a human error, that is, driving a train through the level crossing prior to 
closing the gate, despite the signals having turned red. Other kinds of human er-
rors, particularly those related to poor user interface design [RR97, Shn98], may 
be addressed in a similar manner. 

6.4   Summary 

This chapter illustrated the deployment of the risk ordering relation – an expres-
sion of relative levels of risks posed by hazardous states represents the degree of 
undesirability. The modeling and analysis of the example, railway crossing, illus-
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trates the meaningful deployment of regular expressions, also for determination of 
defense actions, in an elegant, precise and concise way. 
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7   Case Study 2: Extending the Approach to State-
charts 

Based on [Chr04/2] and [BBH05], this chapter applies the holistic approach de-
scribed in the previous chapters to statecharts which extends conventional state-
transition diagrams taking aspects of hierarchy, concurrency and communication 
into account [Har87]. 

7.1   Modeling Functions and Malfunctions 

A statechart diagram compactly describes different constellations of states and 
transitions through which the system can proceed during its operation. Statecharts 
extend the conventional state-transition diagrams by adding notions of communi-
cation, hierarchy, concurrency, and history. They are de-facto-standardized in the 
OMG Unified Modeling Language (UML) Specifications [OMG03] which are also 
used in this work. 

A statechart model of a system visualizes the system behavior in a clear and 
concise way. For an algebraic representation this work suggests extended regular 
expressions based on [Gar89, JS04, OAK03], the same way regular expressions 
adequately represent finite state automata. 
 
Definition 7.1 (Extended Regular Expression): Let Σ  be an alphabet that com-
poses a set of symbols. The notion of regular expressions across Σ  and the de-
scribed sets of strings are extended to: 
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 When E  and F  are regular expressions, then E || F  is a regular expres-
sion describing the concurrency of the languages ( )L E  and ( )L F , that is 

( || ) ( ) || ( ) { | ( ) ( ),L E F L E L F w e L E and f L F= = ∃ ∈ ∃ ∈ || }w e f∈ with 
|| || , and || ( || ) ( || )e e e e a b c d a b c d c a b dε ε= = ∀ ∈Σ = ∪ , , ,a c b d∀ ∈Σ ∈
*Σ  with ε as the empty string denoting the set {}. 

 When E is a regular expression and A a pseudo symbol representing the 
regular expression E, then the pseudo symbol A describes the language 
L(E) that is A=L(E) (A is handled in a regular expression as a symbol). 

 A symbol s is a 3-tupel s=(e,g,a) with event e, guard g, if existing, must be 
satisfied, and event e have been occurred, and action a, performed when 
event e occurs and guard g is satisfied. 

 
Note that in the next sections the terms “regular expressions” and “extended 

regular expressions” are used interchangeably. Note also that the computational 
power of extended regular expressions is different than the one of regular expres-
sions. 

For transferring a statechart in an extended regular expression, each transition 
of this statechart will be denoted by a symbol s of the alphabet Σ . This regular ex-
pression, based on the alphabet Σ , is to be built by following rules. 
 
(a) Sequential Transition 
 

 
Figure 7.1: Sequential transitions 

 
Figure 7.1 represents a sequence of state transitions in a statechart. In an ex-

tended regular expression, a sequence of transitions is denoted by the concatena-
tion operator. For the statechart in Figure 7.1 the corresponding expression is 
 1 2 ... kR t t t=  
 
(b) Choice of Transition 

A transition from a single state to a set of follow-on states forms a choice of 
transitions. In Figure 7.2, starting at the state s1 enables a transition into one of the 
following states s2, …,sn. 
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Figure 7.2: Choice of transitions 

A choice of transitions is denoted by the union operator “+”. The regular ex-
pression for the statechart in Figure 7.2 is given by  
 1 2 kR t t t= + + +…  
 
(c) Transitions To and From States with Hierarchy and Concurrency 

The transitions to and from the enclosing state form a sequence. In Figure 7.3, 
the transition tk is followed by internal transitions; the sequence concludes with 
the transition t1. 
 

 
Figure 7.3: Transitions to and from composite states 

 
Using the pseudo symbol  || ... ||Composite Region 1 Region nt t t=  the statechart in Figure 

7.3 is given by  
 ...  k Composite lR t t t=  
where tRegion i with i=1,…,n denotes a regular expression that represents a se-
quence of internal transitions in region i, starting at the initial state and ending at 
any substate Composite, Region is S∈ . 

An enclosing state with one region describes a composite state with a single 
set of substates composed in a hierarchy. Thus, an enclosing state with more than 
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one region describes a composite state of concurrent regions, each with a set of 
disjunctive substates. 
 
(d) History State 

A transition ending in a history state indicator ‘H’ can be represented by a set 
of guarded transitions to substates of the enclosing state. The guard has to be a 
variable that saves the last state the system was transferred into within the com-
posite region. Therefore, all internal transitions of the history have to be extended 
by an action setting the variable on the source state of the internal transition 
(Figure 7.4). To resolve likely conflicts among multi-level transitions (t4), the new 
transitions are indicated (t41, t42). 
 

 
Figure 7.4: History state 

 
Based on these four rules, any statechart can be converted into an extended 

regular expression by describing the sequences of transitions. 
A statechart can be used for modeling interactive systems and analyzed to 

generate test cases. For modeling the illegal, i.e., undesirable user interactions the 
given statechart is to be complemented by error states and faulty transitions 
(Figure 7.5). The notations error state and faulty transition are used for explicitly 
describing the faulty behavior of the modeled system. 

Faulty transitions run from each state of diagram to an error state caused by 
the events that trigger no (legal) transition in the context of this state. In Figure 
7.5, only the (legal) transition t3 can be triggered when the system is in state s1. 
Therefore, the faulty transition from state s1 to the error state is triggered by the 
faulty transition t1, t2, or t4, if the transition set is given by {t1, t2, t3, t4}. The transi-
tions represented by dashed lines are faulty ones. 
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Figure 7.5: Fault model - error state and faulty transition 

 
To generate the faulty guarded transitions the guards have to be negated, if ex-

isting. The test criteria introduced in Chapter 4 are based on the coverage of all n-
tuples (n ≥ 2) of legal and illegal events of user interactions. For statechart-based 
test case generation, other criteria are needed [OA99]. 

7.2   Test Criteria and Their Application to Statecharts 

Based on the fault model introduced in the last section, legal and faulty transition 
pairs can be defined that are to be covered as a stopping rule of the test process. 
 
Definition 7.2 (Transition Pair): A transition pair (TP) is a sequence of a legal 
incoming transition to a legal outgoing transition of a state. 
 
Example 7.1: t1t3, t2t3, t3t4 (Figure 7.5) 
 
Definition 7.3 (Faulty Transition Pair): A faulty transition pair (FTP) is a se-
quence of a legal incoming transition to a faulty outgoing transition of a state. 
 
Example 7.2: t1t1, t1t2, t1t4, t2t1, t2t2, t2t4, t3t1, t3t2, t3t3, (Figure 7.5) 
 

The notions of TP and FTP enable the definition of the following coverage cri-
teria. 
 
Definition 7.4 (Transition Pair Coverage): For any state of a statechart, generate 
test sequence(s) that sequentially conduct each TPs of any states. 
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Definition 7.5 (Faulty Transition Pair Coverage): For any error state of a state-
chart, generate test sequence(s) that sequentially conduct each FTPs of any state. 
 

Definition 7.4 guarantees that all possible (legal) functions in each state of a 
system will be tested and the Definition 7.5 guarantees that all potential malfunc-
tions, which can be derived from the given specification, will be tested. In order to 
generate tests, following rules realize the test criteria producing following applica-
tion rules [Chr04/2]. 
 
Application Rule: Hierarchy. 

(i) A transition to an enclosing state is equivalent to a transition into its initial 
substate. 

(ii) A transition from an enclosing state is equivalent to the transitions from 
each of its substates. 

(iii) The transition(s) that arose from (i) and (ii) must be taken into account when 
constructing legal and faulty transition pairs and test sequences according to 
Definition 7.4 and Definition 7.5. 

 
Application Rule: Concurrency. 

(i) Any transition within a region i of an enclosing state with concurrency have 
to be combined with any other transition in the regions j with j≠ i to form 
(concurrent) transition pairs. 

(ii) The transition(s) that arose from (i) must be taken into account when con-
structing legal and faulty transition pairs and test sequences according to 
Definition 7.4 and Definition 7.5. 

 
Application Rule: History. 

(i) A transition to a history state is equivalent to a guarded transition to any 
substate of the enclosing state. This guard enables the last state to be the en-
closing state the system was within and to resume from. 

(ii) The transition(s) that arose from (i) (and negative values of guards for faulty 
transitions) must be taken into account when constructing legal and faulty 
transition pairs and test sequences according to Definition 7.4 and Definition 
7.5. 
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7.3   Test Case Generation 

In the following, some definitions are informally introduced that are sufficient to 
describe the test generation algorithm. 

A sequence of n consecutive (legal) states that represents the sequence of n+1 
transitions is called a transition sequence (TS) of the length n+1, e.g., a TP (tran-
sition pair) is a TS of the length 2. A TS is complete if it starts at the initial state 
of the statechart diagram and ends at a final state; in this case it is called a com-
plete TS (CTS). 

A faulty transition sequence (FTS) of the length n consists of n-1 subsequent 
transitions that form a (legal) TS of the length n-2 plus a concluding, subsequent 
FTP (faulty TP). An FTS is complete if it starts at the initial state of the statechart 
diagram; in this case it is called faulty complete TS, abbreviated as FCTS. 

The test criteria and the application rules introduced in Chapter 4 for identify-
ing all potential incoming and outgoing transitions of a state enable the applica-
tion of the approach. Generation and selection of test cases are carried out using 
the statechart of SUT or its equivalent extended regular expression. 

It is assumed that an extended regular expression R over the alphabet Σ  is 
given that describes a statechart. The symbols of Σ  represent the set of transitions 
in the statechart diagram; the language ( )L R  describes all (complete) correct se-
quences of transitions, i.e., complete transition sequences (CTS) in the statechart 
that are legal complete sequences of user interactions (complete event sequences, 
CES). Based on this set of transition sequences, all legal transition pairs (TP) can 
be identified by extracting all possible pairs of transitions given by the CTS. The 
remaining pairs of transitions given by the alphabet Σ  form the set of faulty tran-
sition pairs (FTP). A FCTS is given by the beginning of a CTS and a concluding, 
subsequent FTP. 

Based on the terminology introduced, Algorithm 7.1 below describes the test 
process. 
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Algorithm 7.1 (Test Generation and Execution): 

Input: A statechart with 
 length:= required length of the transition sequences to be covered 
Output: A test report of failed and succeeded test cases 

1  Generate the completed statechart and apply the 
   rules for hierarchy, concurrency and history 
2  FOR k:=2 TO length DO 
3  BEGIN 
4    Cover all TSs of length k by means of CTSs 
     subject to minimizing the sum of lengths of  
     the CTSs 
5  END 
6  Cover all FTSs by means of FCTSs subject to 
   minimizing the sum of lengths of the FCTSs 
7  Apply the test set given by the selected CTSs 
   and FCTSs to the SUT. 
8  Observe the system output to determine whether 
   the system response is in compliance with the 
   expectation. 

7.4   Testing the Marginal Strip Mower – RSM13 

The objective of the case study is on the one hand to demonstrate that the intro-
duced rules are sufficient to generate test cases and on the other hand to compare 
the effectiveness of test generation from ESG and statecharts. 

7.4.1   System and Fault Model 
The SUT used in the case study in this chapter is a control terminal which controls 
a marginal strip mower (“RSM 13”, Figure 7.6), a sophisticated vehicle that takes 
optimum advantage of mowing around guide poles, road signs and trees, etc.  

Due to the unique kinematics of the rotating point and due to the specially de-
signed run of the mow head guide, even large areas behind the crash guides are 



7.4   Testing the Marginal Strip Mower – RSM13 87 

reached. The shifting enables an exact adjustment of the mowing unit, even in 
very narrow areas. The mow head is protected against stoning due to its cutting 
system and the optimally arranged cutting units. 
 

Figure 7.6: Marginal strip mower (“RSM 13”) and its control desk 

 
Operation is effected either by the power hydraulic of the light truck or by the 

front power take-off. The buttons on the control desk [Figure 7.6] simplify the op-
eration, so that, e.g., the mow head returns to working position or to transport po-
sition when a button is pressed. The position of the mow head can also be infi-
nitely varied. An alteration from working on the left to working on the right side 
is also possible. Beside the positioning the incline and support pressure of the 
mowing unit can be controlled. 

7.4.2   Test Generation 

The interactions between user and system can be modeled by the statechart given 
in Figure 7.7. Therein the substates are hidden and displayed as bars. The transi-
tions to and/or from substates are indeed represented by so-called stubbed transi-
tions [Har87]. The content of the hidden substates is illustrated in a separate state-
chart given in Appendix B. The dashed arcs in Figure 7.7 represent the pseudo 
symbol introduced in Definition 7.1 that denotes a sequence of internal transi-
tions. Test cases are generated applying the rules introduced in Section 7.2.  
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Figure 7.7: Statechart diagram of the control unit 
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The statechart diagram given in Figure 7.7 can be converted into an equivalent 
extended regular expression given as 
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with the corresponding extended regular expressions of the substates as 
.2.21.2 |||| AchsverrIIAntriebIAntrieb eseseseses ==  
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drehenMähkopfebungArmVerschiAusklappenEin eseseses ||||/5 −=  
*)( ,2.52.5,1.51.5/ ReleaseReleaseAusklappenEin eeeees +=−  
*)( ,4.54.5,3.53.5 ReleaseReleaseebungArmVerschi eeeees +=  

*)( ,6.56.5,5.55.5 ReleaseReleasedrehenMähkopf eeeees += . 

 
Table 7.1 lists the legal incoming and legal outgoing transition of each state. 

The analysis of the system by the statechart (Figure 7.7 and Table 7.1) necessi-
tates some abstractions, entailing further refinements of the substates. 
 

Table 7.1: Incoming and outgoing transitions of the statechart diagram in  
Figure 7.7 

State (Legal) Incoming 
 transitions 

(Legal) Outgoing  
transitions 

Start 2.4e  1.1e  

RSM_AntriebAUS 1.1 2.2,e es  2.4 2.1,e es  

RSM_AntriebEIN 2.1 3.9 1.1, ,es e e  2.5 2.2,e es  

RSM_Transpst 2.5 3.3,e es  3.9 3.1 3.2, ,e es es  

RSM_Autom_Arbst 3.1 3.4 2.5, ,es es e  10time se >  

RSM_Arbst 4.9 3.2 2.5, ,e es e  3.3 3.4 3.10, ,es es e  

RSM_BetriebAUS 3.10 10 5.7, ,time se e e>  4.9 4.10,e e  

RSM_Betrieb  
(AutomatikEIN 
Schwimmst.EIN 
AuflagedruckEIN) 

3.10 4.2 4.1 5.7, , ,e es es e  4.2 4.10,es e  

RSM_PosIdle 4.10 5,e es  5.7e  

 
Based on the statechart diagram given in Figure 7.7 all legal TPs can be identi-

fied for each state of the system. Table 7.1 lists the pairs of legal incoming and le-
gal outgoing transition for the states of the substates. The set of TPs is generated 
by the cross product of incoming and outgoing transitions for each state to fulfill 
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the transition pair coverage test criterion in Definition 7.2. For the state 
RSM_Antrieb in Figure 7.7 the resulting set of TPs is 

 
 

RSM_Antrieb 1.1 2.4 1.1 2.1 2.2 2.4 2.2 2.1 2.1 2.5, 2.1 2.2 3.9 2.5 3.9 2.2
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                       , }

e e e es es e es es es e es es e e e es

e e e es

=
.  

CTS can be constructed using the hierarchy application rules introduced in 
Section 7.2. As the same TPs can be covered by more than one CTS, a certain re-
dundancy is likely. As an example, the TP 1.1 2.1e es  is itself already a CTS but also 
included another time in the CTS 1.1 2.1 2.4e es e . Test cases for a test specification in 
which those redundancies are eliminated for the state RSM_Antrieb are 

 
 

RSM_Antrieb 1.1 2.4 1.1 2.2 2.4 1.1 2.2 2.1 1.1 2.1 2.2 1.1 2.5 3.9 2.5 1.1 2.5

3.9 2.2

CTS { , , , , ,

                          }

e e e es e e es es e es es e e e e e e

e es

=
.  

Accordingly, FTPs are generated by constructing all possible pairs if incoming 
and faulty outgoing transitions of each state of the statechart (Table 7.2). 
 

Table 7.2: Incoming and faulty outgoing transitions of the statechart diagram in 
Figure 7.7 

State (Legal) Incoming
 transitions 

Faulty outgoing  
transitions 

Start 2.4e  2.4 2.5 3.9 3.10 4.9 4.10 5.7 2.1 2.2

3.1 3.2 3.3 3.4 4.1 4.2 5 10

, , , , , , , , ,
, , , , , , , time s

e e e e e e e es es
es es es es es es es e >

RSM_AntriebAUS 1.1 2.2,e es  1.1 2.5 3.9 3.10 4.9 4.10 5.7 2.2 3.1

3.2 3.3 3.4 4.1 4.2 5 10

, , , , , , , , ,
, , , , , , time s

e e e e e e e es es
es es es es es es e >

 

RSM_AntriebEIN 2.1 3.9 1.1, ,es e e  1.1 2.4 3.9 3.10 4.9 4.10 5.7 2.1 3.1

3.2 3.3 3.4 4.1 4.2 5 10

, , , , , , , , ,
, , , , , , time s

e e e e e e e es es
es es es es es es e >

 

RSM_Transpst 2.5 3.3,e es  1.1 2.4 2.5 3.10 4.9 4.10 5.7 2.1 2.2

3.3 3.4 4.1 4.2 5 10

, , , , , , , , ,
, , , , , time s

e e e e e e e es es
es es es es es e >

 

RSM_Autom_Arbst 3.1 3.4 2.5, ,es es e  1.1 2.4 2.5 3.9 3.10 4.9 4.10 5.7 2.1

2.2 3.1 3.2 3.3 3.4 4.1 4.2 5

, , , , , , , , ,
, , , , , , ,

e e e e e e e es es
es es es es es es es es

 



92 Case Study 2: Extending the Approach to Statecharts 

State (Legal) Incoming
 transitions 

Faulty outgoing  
transitions 

RSM_Arbst 4.9 3.2 2.5, ,e es e  1.1 2.4 2.5 3.9 4.9 4.10 5.7 2.1 2.2

3.1 3.2 4.1 4.2 5 10

, , , , , , , , ,
, , , , , time

e e e e e e es es es
es es es es es e >

 

RSM_BetriebAUS 3.10 10 5.7, ,time se e e>  1.1 2.4 2.5 3.9 3.10 5.9 2.1 2.2 3.1

3.2 3.3 3.4 4.2 5 10

, , , , , , , , ,
, , , , , time

e e e e e e es es es
es es es es es e >

 

RSM_Betrieb  
(AutomatikEIN 
Schwimmst.EIN 
AuflagedruckEIN) 

3.10 4.2 4.1 5.7, , ,e es es e 1.1 2.4 2.5 3.9 3.10 4.9 5.7 2.1 2.2

3.1 3.2 3.3 3.4 4.1 5 10

, , , , , , , , ,
, , , , , , time

e e e e e e es es es
es es es es es es e >

 

RSM_PosIdle 4.10 5,e es  1.1 2.4 2.5 3.9 3.10 4.9 4.10 2.1 2.2

3.1 3.2 3.3 3.4 4.1 4.2 10

, , , , , , , , ,
, , , , , , time

e e e e e e es es es
es es es es es es e >

 

 
A meaningful coverage criterion is given by the requirement that each of the 

FTPs given in Table 7.2 be executed by means of appropriate FCTSs (see “Faulty 
Transition Pair Test Criterion” in Section 7.2). 
To execute a FTP, a starter (see Definition 3.9) is necessary that is a legal TS and 
starts at the initial state and ends at the state from where the faulty transition can 
be triggered. As an example the transition 1.1e  is a starter to reach the legal incom-
ing transition of the state Start. 

Thus, the sets of CTS and FCTS enable the coverage of the specified system 
functions and the malfunctions that can be derived by this specification. 

7.5   Discussion: ESG vs. Statecharts 

The case study was performed in two different ways to compare the fault detec-
tion capability of ESG vs. statechart modeling as introduced in this chapter. These 
different versions are called Case Study #1 and Case Study #2 that was carried out 
by one tester and two testers, respectively. 

For the Case Study #1 the same tester created the ESGs and statecharts assur-
ing that the models describe the same functionality of the SUT. 

To take “exercising effects” into account, Case Study #1was performed two-
fold. First the tester started with the construction of statecharts and then the ESGs 
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were constructed (Stage “A” in Table 7.3). Accordingly, Stage “B” was the other 
way around: first ESGs were created and then statecharts. 

In the Case Study #2 different testers carried out the modeling job concur-
rently, constructing the ESGs and statecharts separately from each other, i.e., each 
tester created the model independently from each other. 

Table 7.3 summarizes the results of both strategies. Note that about 50% of the 
faults have been detected by means of FCTS, i.e., complementary analysis 
[Chr04/2]. 
 

Table 7.3: Comparison of the fault detection capability of ESGs vs. statecharts 

The sequence of the 
construction of 
ESGs and state-

charts constructed 

Faults detected 
only by ESG 

Faults commonly de-
tected by ESG and 

statecharts 

Faults detected 
only by state-

charts 

Stage A - 48 - #1 
Stage B 2 46 - 

 #2 12 21 5 
 

As summarized in Table 7.3, Case Study #1 detected 40+ faults (see Appendix 
B for the list of faults detected), no matter which model was constructed first. 

Unexpectedly, constructing the statecharts and ESG separately by different 
testers (Case Study #2) lead to a smaller number of faults detected by statecharts 
than the number of faults detected by ESG. This can be explained easily: ESGs 
are simpler to be handled, and thus, the tester could work more efficiently, i.e., 
produce more and better detailed ESGs than statecharts, and accordingly, a better 
analysis and testing job could be performed. 

Note that in the Case Study #2 the ESG model and the statechart model de-
scribe different functionalities of the SUT to avoid any biases in handling of the 
models. 

To sum up, the comparison of the fault detecting capability of ESGs vs. state-
charts could not point out any significant tendency but confirmed the effectiveness 
of the holistic approach when applied to different modeling methods. 

This result is very important for the practice and apparently cannot be stressed 
strong enough: if the holistic approach is properly applied (no matter to ESGs or 
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to statecharts), it reveals considerably more faults than an analysis that neglects 
the complementary view. 

7.6   Summary 

This chapter is based on [Chr04/2] and [BBH05] and applies the holistic ap-
proach to statecharts for modeling user-system interaction. For modeling the 
faulty system behavior, statechart given is complemented by an error state. In any 
non-erroneous, i.e., correct, state any other event than the legal transition transfers 
to the error state and forms a faulty transition. The test criteria for coverage of le-
gal transition pairs and faulty transition pairs have been introduced and applied to 
a non-trivial control unit of a cutting machine.  

Compared to statecharts, ESGs have limitations, primarily for representing 
complex notions of communication, hierarchy, concurrency, and history function. 
Nevertheless, different case studies have proven that they have about the same 
fault detection capability. 
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8   Tool Support 

Generation of test cases from ESG and CESG and determination of the MSCESs 
and MSFCESs can be cumbersome and time consuming if done manually. This 
chapter describes a toolkit that helps with those tasks. 

8.1   Test Case Generation 

GenPath (GeneratePath) is a tool which is developed for the generation of test 
cases. The tool consists of two subsystems each of which can be opened in its own 
frame. One for the generation of ESs and FESs and the other one for the genera-
tion of MSCESs to achieve a given n-tuple event coverage. The input of the tool 
takes the ESG in the form of an adjacency matrix, or as a regular expression 
stored in a file. The main frame is mainly used to load the input or calculated out-
put files. Several ESGs, which form a hierarchy, can be input together. In this case 
an ESG at a lower level in the hierarchy will be a refinement of a node in a higher 
level ESG. Figure 8.1 represents the topmost screen of the GenPath tool including 
the adjacency matrix of an example ESG. Shown on the right-hand-side are the 
sequences of length 3 for the same given ESG, generated subsequently by one of 
the subsystems. 

The other subsystem shown on the right-hand-side of Figure 8.2 generates 
MSCESs for an n-tuple coverage requirement [Hol04]. The main frame of Gen-
Path depicts the result for the illustrated ESG. For this purpose the ESG given can 
be extended (Section 4.3.3) for generating sequences with length > 2. In addition, 
it displays the ESG under consideration and marks its EPs (Figure 8.2). 
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Figure 8.1: Tool GenPath; mode to generate test cases 

 

 
Figure 8.2: GenPath to generate MSCES 
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8.2   Test Case Analysis 

To avoid tedious and error-prone manual work, the tool GATE (Generation and 
Analysis of Test Event sequences) was built [Chr04]. The tool accepts the adja-
cency matrix of the ESG and automatically generates test inputs of required length 
for a given ESG, i.e., ES, FES, CES, and FCES. As a first step, all ESs of a given 
length are produced. The tool can generate also CES of a given length which 
cover all ESs. Furthermore, GATE determines the effectiveness of a given test 
case in terms of covered ES. If no length is explicitly given, the tool constructs a 
CES of minimal length that covers all ESs. 
 

Figure 8.3: Test tool GATE for test input generation of an ESG 

 
Figure 8.3 depicts the main frame window for test generation. For the example 

ESG given by its adjacency matrix in Figure 8.3, GATE generates CESs of up to 
length 8 and ESs of up to length 4. The tester requires in this example that loops 
be run twice. Furthermore, the weight factor β is set to 1.0 (see Definition 4.3). 

Figure 8.4 depicts the output of a test case set which is analyzed in Figure 8.5. 
GATE generates ESs (or FESs) and CESs (or FCESs) of different length, depicted 
on the right half and left half of the Figure 8.4, respectively. 
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Figure 8.4: Test cases generated for ES/FES and CES/FCES 

 
The results of the analysis of the ESG given in Figure 8.3 are summarized in 

Figure 8.5. The goal of the analysis is the determination of the coverage ratio of 
ESs (column 2) by appropriate CESs (column 1) in increasing order of their 
length. As an example, the first line (middle part of the Figure 8.5) indicates that 
100% of EPs (as ESs of length 2) are covered by CESs of length 5. These CESs 
cover, however, only 57% of the event triple (as ESs of length 3). CESs of length 
7 cover 100% of ESs of length up to 4. The bottom part of Figure 8.5 calculates 
for ESs and CESs the number of test cases in accordance with Definition 4.3. 
These ESs and CESs have been previously determined by the tool GATE as dem-
onstrated in Figure 8.4. Finally, the test costs are given in the right column. 
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Figure 8.5: Analysis of the generated test cases 

8.3   More Automation – Towards Self-Testing 

For testing of the software systems powerful commercial capture/replay tools are 
available which can significantly support the testing process, including regression 
testing. Nevertheless, numerous, time consuming and error-prone manual steps 
are still necessary to complete the test process, i.e., construction of adequate, user-
oriented test scripts based on special test cases. 

8.3.1   The Principle 
Figure 8.6 identifies typical activities to be carried out while testing an interactive 
system that is supported by a test tool as follows: 

 Capture all manual user-interactions, i.e., include all necessary object 
properties of each selected GUI object resulting in a “fully” recorded test 
script. 
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 Replay the recorded test scripts and analyze them to detect anomalies. 
For automatically testing a SUT, the typical test process, as represented in 

Figure 8.6, does not consider the fact that the tester usually has a system model 
(specification) as a reference which he, or she, has to check against the recorded 
behavioral model of the SUT.  
 

 
Figure 8.6: The common way of test tool-supported GUI testing 

 
Figure 8.7 identifies activities that are necessary to be carried out for this com-

parison in following steps. The identification of the GUI objects of the SUT as 
well as the system model are necessary inputs that result in an executable test 
script as output. 
 

 
Figure 8.7: Identification of the steps to be automatically carried out 
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The GUI objects are the instruments for the input, e.g., screens, windows, 
icons, menus, pointers, commands, function keys, alphanumerical keys, etc. 

After recording of the properties of the GUI objects of the SUT through the 
test tool, the relevant information on the structure of the SUT is stored in a GUI 
file. Apart from the identification of the GUI objects, the step a (Figure 8.7) con-
verts the GUI file, which incorporates the behavioral model of the SUT, in an in-
termediate, uniform format for further processing. 

As a next step, the two inputs g and b (Figure 8.7) are used to convert the sys-
tem model into the same intermediate format as the behavioral model has been 
captured by step a. This format unambiguously represents the GUI objects and the 
model of the SUT by mapping the (by the step a) identified objects to the objects 
of the model. 

Step f generates test cases by analyzing the system model given in the inter-
mediate format. Moreover, the test cases and the behavioral model (in the inter-
mediate format) are necessary as input c and e to subsequently generate a test 
script in the appropriate format, which can be executed by the test tool. 

Finally, the step d loads the test script into the test tool that executes the test 
and generates a test report (step h). 

There is a good deal of research work done for modeling of interactive sys-
tems and generation of test cases from this model (steps g and f in Figure 8.6) 
[BL02, Hor99, PFV03]. The model can be state-based, e.g., as UML statecharts 
[OMG03], or event-based, e.g., event sequence graphs [BB04, Bel01]. The inter-
mediate format can be XML [XML10]. Thus, the steps g, f, and d (Figure 8.7) can 
effectively be performed, based on sound formal methods. 

The steps b, c, and e, however need additional effort for automation which is 
explained in following sections. As the test method selected is black-box-oriented, 
the source code (implementation) of the SUT is not needed for testing. Thus, the 
testing of the SUT solely needs domain knowledge, i.e., the information repre-
sented in the system model which is the output of the step g. 

8.3.2   Test Script Generation 
To enable the comparison for the identification of the objects, both the behavioral 
model and the system model are to be transformed into an intermediate format, 
e.g., XML. The approach is not applicable if the objects do not completely match 
and thus an unambiguous identification of the objects is not possible. However, it 
has been working on heuristics to determine a notion of “similarity degree” to en-
able the identification of a common subset of the objects of both models that 
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could enable an automatic testing of the software system covering the corre-
sponding objects. 

The objects of an application can be identified by a spy feature that is available 
in most commercial test tools. Actually, this feature delivers the information that 
is gained during the recording of a system-based application, in a specific context 
that includes specific properties at the specific point of recording time. This 
means, the information that is available for recognizing the objects is static, i.e., it 
has been gained under specific circumstances. However, objects have dynamic 
properties that change, e.g., a button that is disabled can be enabled in another 
context – e.g., after the recording stops. The capturing, that has recorded this but-
ton in a disabled state, can than recognize the button if and only if it is disabled. 

Generally, such a button as an object has more than only one property, e.g., 
window class, label, etc., whereas for this approach only active properties are of 
interest. Therefore, a list of objects of an application is necessary, and all in-
stances of these objects, e.g., of a specific button, are to be included in this list. 
The recorded objects are usually hierarchically structured by the windows they be-
long to. Figure 8.8 depicts the captured objects of an application by the test tool 
WinRunner [WR70]. Consider, however, that the tool features used in the ex-
amples are included in most commercial capture/replay tools. 
 

 
Figure 8.8: A sample application and their captured objects by a commercial test 

tool 
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The GUI Map Editor of WinRunner includes a feature for saving of a recorded 
window and its objects as a textual GUI file. This file contains the different in-
stances each object can possess. For identification, a name tag can be assigned to 
each of these files, e.g., determined by the hashing method. To conclude the step a 
of (Figure 8.7), the GUI file is converted into a common format, as to XML, 
which many tools are compatible with. Figure 8.9 depicts the extended GUI file of 
the object of the “Sample Windows Application” given in Figure 8.8 which se-
mantically corresponds to all following figures. 
 

 
Figure 8.9: Extended GUI file in XML format 

 
For generating test cases automatically, a model of the system is necessary, 

e.g., a statechart or an ESG that describes which event can be reached from which 
other event. This model is stored also in an intermediate format.  

Figure 8.10 depicts the corresponding ESG as a XML file which is generated 
by a tool developed by our group as a WinRunner “Add-on”. 
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Figure 8.10: XML representation of the model given as an ESG using the 

“hashed” IDs 

 
Once the model is available in the intermediate format, test cases can easily be 

generated, e.g., using the technique introduced in Chapter 4. For the XML file 
given in Figure 8.10, the following example excerpts some of the test cases that 
are automatically generated: 
 
Example 8.1: Hash coded identifiers of the test cases that are to be executed in a 
test run sequentially. 
[-1321724563,-1240296778,118717499,1687517667] 
[-1321724563,-1240296778,-1687517667] 
 

The test sequences that are automatically generated must be converted into the 
test script language of the selected test tool to enable the execution and analysis in 
its replay mode. The conversion is a straight-forward translation, needing only lit-
tle amount of additional information that is not included in the generated test se-
quence: information about the hierarchical structure of the windows, i.e., whether 
the objects are to be sequentially executed (i.e., they belong to the same window), 
or another window is to be activated (opened) before the next object is to be exe-
cuted. 

In WinRunner, this information can be added by means of the command 
“set_window()” to activate another window so that the following object can be 
reached. At last the information input parameters for editable objects must be set 
by the command “edit_set()” as “textfield”.  
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Figure 8.11: Executable Test Script 

 
Figure 8.11 depicts the generated test script which can be replayed in Win-

Runner, whereas Figure 8.12 indicates the corresponding test report on failed and 
succeeded test cases. 
 

 
Figure 8.12: Test report generated for the test script of Figure 8.11 
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8.3.3   A Prototype of the Environment 
The implemented test tools aim to automate the manual steps of the deployment 
of commercial test tools during testing the SUT. Following, self developed test 
tool components are briefly introduced. 

The GUI File Parser summarizes the information on the GUI structure. The 
original GUI File of WinRunner is on the left side of Figure 8.13; the extended 
GUI file on the right side lists all objects as a tree. This file is converted to an 
XML file upon pressing the Button “Export to XML File”. 
 

 
Figure 8.13: The GUI File Parser 

 
The Model Generator opens a previously generated XML file of a GUI for 

mapping of its objects to a model (represented also as a XML file). From the left 
side of Figure 8.14, the objects can be “dragged and dropped” and inserted as an 
end or starting node. Beginning with the end node, the starting node column has to 
be filled by those objects from which the end node can be reached. By pressing 
the “Add To Model” button the selected component is added to the model. 

Once the model of the SUT is generated by the Model Generator, the GUI file 
containing the structure information is used to decompose all modal windows. 
Thus, each modal window is represented by its own ESG, and can separately be 
tested by generating the corresponding MSFCES. 
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Figure 8.14: The Model Generator 

 
As shown in Figure 8.15, one needs only to push “Convert-Button” to start the 

Model Decomposer [Sto05] that generates an ESG for each modal window. 
 

 

Figure 8.15: The add-on tool Model Decomposer 
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The end node column can only contain a single node as an end node. When all 
objects are mapped, the model can be saved. The generated model can be checked 
in a frame (down, right side) where each object is represented by its hash coded 
ID. 
 

 
Figure 8.16: The Model Tracer 

 
The Model Tracer generates test sequences from the XML file of a GUI and 

XML file of the corresponding model as described in Section 8.3.2. At the same 
time when the test cases are generated, which is shown on the right column in 
Figure 8.16 (cf. to the example in Section 8.3.2), the executable test script is saved 
in a separate directory. 

8.4   Remarks for Further Research and Development 

If the SUT is modified, e.g., to produce a new release, the test frame, i.e., the 
test cases, and consequently, the test script might become obsolete. To avoid this 
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obsolescence, the underlying system model is to be automatically updated which 
defines an important area of further research. 

A key factor of the approach is the unambiguous identification of the objects 
of the SUT – both in the system model and the behavioral model. The approach 
introduced here requires both models be transformed into an intermediate format, 
e.g., XML, to enable to identify the objects. This aspect is unfortunately not sup-
ported to the same extent by all commercial test tools – a fact that might endanger 
an automatic identification of the objects. Therefore, it is worthwhile to consider 
different components of the approach, e.g., test script construction, for stan-
dardization of the industrial test process and test tools for interactive systems to 
enable a broad compatibility and interoperability of the great variety of the exist-
ing test techniques and commercial test tools [GHRS+03]. 

8.5   Summary 

This chapter presents three dedicated tools that were developed to support the test 
case generation using ESGs. The tool GenPath generates ESs and FESs of differ-
ent lengths and establishes the MSCESs of the corresponding ESG and its exten-
sion for length > 2. For the analysis of the test cost of the generated test cases, the 
GATE tool was applied. 

Furthermore, the manual activities during the test were identified and analyzed 
to carry them out automatically. For demonstrating the practicability and benefits 
of the approach, a commercial test tool (WinRunner) is augmented by test facili-
ties that were developed (as add-ons). However, any other adequate commercial 
test tool can be used instead of this one. For modeling the system, any state-based 
or event-based method can be used. 

The benefits of the add-ons are: Firstly, the approach does not need a sight into 
the code of the SUT. Secondly, once the test script has been constructed, the sys-
tem can be automatically tested. 
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9   Discussion and Conclusion 

This work introduced an integrated approach to the modeling, analysis, and test 
generation for embedded and interactive systems. Modeling is carried out using 
event sequence graphs (ESGs). These graphs and their complements ESGs  assist 
the verification of the expected system behavior in the presence of expected inputs 
as well as the analysis of robustness and risks associated with system behavior in 
unexpected situations, thus delivering a holistic view. For modeling complex sys-
tems, the model supports a hierarchical decomposition which in turn breaks down 
the complexity of test case generation. 

The test process based on the fault model generates test cases as sequences of 
events of the ESG and ESG  to test whether or not the system behaves as desired 
and is robust in the face of interactions with faulty inputs. As ESG (and thus 
ESG ) is constructed to reflect the user expectations, acting as an oracle of a high 
level of trustworthiness. Furthermore, criteria are developed to determine the 
completeness of the test process, enabling a scalability of the test costs and a deci-
sion on when to stop testing. These criteria, based on the coverage of edges of the 
underlying ESG and ESG , are used to construct a minimal set of test cases. 

The case studies presented indicate how ESGs can be used to model and ana-
lyze the behavior of a system. It was also shown how the ESG-based model is 
used for test generation. The effectiveness of the tests so generated is reported.  

The degree of undesirability is represented in the form of a risk ordering rela-
tion – an expression of relative levels of risks of event sequences. This allows tar-
geting the design of tests at specific system attributes. Further on, the approach is 
extended to statecharts as introduced by D. Harel. For this purpose, the test case 
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generation and selection criteria have been applied to statecharts and their transla-
tion into extended regular expressions and are augmented with faulty transitions. 

Finally, the test set generation is supported by tools which were developed, 
based on the algorithms introduced in this work. These tools have been integrated 
(as add-ons) into the commercial test environment WinRunner, which can be re-
placed by any other adequate commercial test environment to enable an automatic 
test generation. 

9.1   Advantages and Disadvantages of Modeling with ESG 

The event-driven concept of ESG as opposed to a state-driven approach such as 
FSAs enables the exploitation of the features of the type-3 languages, including 
decidability results on the recognition problem (necessary for effectively com-
plementing the ESG), well-known algorithms used in automata testing, and com-
piler construction, e.g., for handling faulty programs. The trade-off between this 
simplification and elegance achieved through ESGs is that it neglects the states of 
the SUT and the hierarchical levels of the user interactions.  

Generation of test cases that rely on information about the internal behavior of 
the system might be difficult to achieve with ESGs. An example is a test designed 
to check that a save operation is not executed if the loaded file is write-protected. 
Another is a test designed to check that a button has not been deactivated inadver-
tently by a previous operation offered by a menu with many entries for alternative 
user inputs. Presentation of such situations with ESGs is generally possible, but 
could become tedious. In the latter example, for instance, the likely combinations 
of different values of corresponding flags, which could have been set or reset in 
different menus, could be numerous. In all these cases, Boolean algebra-based 
techniques [Bin00], such as decision tables and Karnaugh-Veith diagrams, might 
be helpful for combining them with the ESG for constructing test cases. As in any 
problem solving activity, there may not be a “silver bullet” type single test that 
can cope with every kind of fault. 

9.2   Recommendations for Practice 

The ESG-based approach has been applied to the testing of the GUIs of different 
industrial applications; e.g., the GUIs of a mobile telephone device, a ticketing 
machine, etc. [Bel01]. In addition, the approach has also been used to validate re-
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quirements definitions and to verify and design specifications, both mainly repre-
sented by ESGs. While some of the results of the analysis of the detected faults 
were in compliance with the expectations, other results were surprising, and are 
summarized below. 
 
Lesson 1. Start Small, but as Early as Possible 
The determination and specification of the CESs and FCESs should ideally be car-
ried out during the definition of the user requirements, much before the system is 
implemented; the availability of a prototype would be helpful in this task. They 
are then a part of the system and the test specification. However, CESs and FCESs 
can also be produced incrementally at a later time, even during the test stage, in 
order to discipline the test process. 

As a strategy, one starts with the CESs and FCESs that cover all event pairs. 
Test results and quality targets determine how to proceed further, i.e., whether to 
consider testing with event triples and quadruples. 
 
Lesson 2. Good Exception Handling is not necessarily Expensive but Rare 
Most GUIs subjected to tests do not consider the handling of the faulty events. 
They have only a rudimentary, if any, exception handling mechanism, realized by 
a “panic mode” [Goo75] that mostly leads to a crash, or ignores the faulty events. 
The number of the exceptions that should be handled systematically, but have not 
been considered at all by the GUIs of the commercial systems is presumed to be 
on an average about 80%. Poor handling of exceptions has also been reported by 
Westley and Necula [WN04].  
 
Lesson 3. Analysis Prior to Testing Can Reveal Conceptual Flaws 
The analysis of ESGs of the GUIs of some commercial systems has revealed sev-
eral conceptual flaws: absence of edges, indicating incomplete exception han-
dling, and missing vertices or events (approximately 20%). This amounts to de-
fective components in the final product, highlighting the flaws in the initial con-
cept and the process of product development. In this connection, the proposed ap-
proach offers an important unexpected benefit: it provides a framework for the ac-
celerated maturation of the product and for exercising the creativity of the devel-
opers. 
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9.3   Conclusion and Perspectives for Future Work 

The fault model in this work has been intentionally kept simple: states, inputs and 
outputs of FSA have been merged into the vertices of an ESG and its complement 
ESG , which are uniformly interpreted as events; with no annotation of edges of 
either. 

If a more sophisticated fault classification model, e.g., Orthogonal Defect 
Classification [CBCH+92], is required, the fault model must be extended accord-
ingly, differing across states, inputs and outputs. Following the guidelines in Sec-
tion 3.3, the model extension aims at distinguishing between different kinds of 
faults and levels of their severity, leading to a general, effective strategy for fault 
handling, e.g., to determine the test set and costs for a given safety level [Sto96]. 

A first step in this direction has been reported [Gut03] by applying the ap-
proach introduced in this work to Statecharts [HN96]. Further work is planned to 
consider UML – an approach already exploited for generating test cases [BL02, 
KHBC99, OLAA03]. However, further research [Hol06] is needed to extending 
the notions and algorithms introduced and summarized in this work, particularly 
in relation to state explosion caused by additional nodes while completing the 
ESG and to account for concurrency in system behavior [RS94, Sch90].  

Experience with the ESG based approach suggests that the number of selected 
test cases can be reduced by considering structural features of the SUT, e.g., iden-
tifying windows that cannot invoke any child windows, or that cannot simultane-
ously exist with windows of the same hierarchy level, etc. Such terminal windows 
need not be considered combinatorial while generating test cases. This aspect is 
likely to help in the elimination of unnecessary and/or infeasible test cases and 
thus in a significant cost reduction. Consideration of further modeling notions, 
e.g., based on Kripke structures [Pel01], may offer further research avenues. 

Finally, additional vulnerability attributes are to be considered, particularly in 
applications that can be modeled in a state-based formulation. These include, for 
example, security [EVK02]. 
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A   Case Study 1: The RealJukebox - RJB 

A.1   ESGs of the Case Study 1 

Function 1: Play and Record a CD or Track 
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Function 2: Create and Play a Playlist 
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Function 3: Edit Playlists and/or AutoPlaylists 
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Function 4: View Lists and/or Tracks 
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Function 5: Edit a Track 
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Function 6: Visit the Sites 
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Function 7: Visualization 
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Function 8: Skins 
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Function 9: Sreen Size  Function 10: Different Views of Windows 

 

 

 

 
Function 11: Find Music 
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Function 12: Configure RJB 
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A.2   List of Faults Revealed  

Fu
nc-
tio-
n 

n-
tuple 
to be 
cov-
ered 

Faults detected by CES Fault Type Faults detected by FCES 

1 2 Shuffle can be enabled when only one 
track has been selected. 

functional 

  Recording an existing track removes 
(overwrites) the old track from list before 
recording is completed. 

sequencing

 

   functional While recording, it is also pos-
sible to forward and/or rewind, 
causing the recording process to 
stop. 

   functional Rewind can be activated during 
playing a CD or a track in shuf-
fle mode. 

  Menu item Play/Pause is not the same as 
the control buttons displayed on the main 
window. Therefore, pushing start button 
on the control panel, while the track is 
playing, stops it. 

functional 

  The interaction Play>Pause>Con-
trols>Jump_To>Beginning continues 
playing the same track while Pause is 
still displayed. 

sequencing

 

   functional Setting the track position, when 
it is paused, continues playing 
the file. 

  If one track is selected but the arrow 
shows to another track, hitting play starts 
playing the selected track. 

functional 

  Check one track on/off is not as a menu 
item available. 

functional 

  Track position could not be set before 
playing the file. 

functional 

  Open a file starts playing it. functional 
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Fu
nc-
tio-
n 

n-
tuple 
to be 
cov-
ered 

Faults detected by CES Fault Type Faults detected by FCES 

1 2  sequencing Mute button of RJB ignores the 
situation where the loudspeaker 
has been reset. 

  CD has been removed; RJB ignored this 
and lists the track names. 

sequencing

  AutoPlay cannot start a CD that is al-
ready set. 

functional 

  Display does not adjust upon inserting a 
CD, i.e., its content will not be displayed.

functional 

 

  If another track is played in background, 
following error message occurs: “n un-
known Error occurred. For more informa-
tion...” 

sequencing

  Pause is ignored if rewind/fast forward 
is activated (REW/FF/Track position). 

functional 

  Even if Pause is activated, beginning 
starts the track. 

functional 

 

  functional Track position is disabled when 
stop is activated. 

  functional Even if Checknone is enabled, 
Play/Pause/Stop/Rew/FF/Rec
ord/Beginning can be activated. 

  

 

functional Checkall and Checknone can-
not be used although a CD is set. 

  During saving a track on the hard disk, 
the track played sounds jerkily. 

sequencing

  REW (rewind) farther than begin of a 
track does not start the track before. 

functional 

  Record>Shuffle does not cause shuffling 
the tracks; the track list is preceded se-
quentially. 

sequencing
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Fu
nc-
tio-
n 

n-
tuple 
to be 
cov-
ered 

Faults detected by CES Fault Type Faults detected by FCES 

1 2 In the Pause mode, pushing the Record 
button causes to play the track. 

sequencing  

  functional After activating Checkall and 
Checknone, the system doe not 
recognize that the action has 
been concluded, i.e., the related 
buttons are not enabled. 

  

 

functional A song that is played during Re-
cord can be neither rewound nor 
fast forwarded. 

  Checkall / Checkone++ and Check-
oneoff cause during play jerking. 

sequencing  

 Record>Control>Eject causes removing 
the CD without warning. 

functional 

 Activating Shuffle causes jerking the re-
play. 

sequencing

 

 

3 

 sequencing Multiple changes of songs re-
corded cause the warning that 
PC performance would not be 
sufficient a replay. 

 4 Temporarily no jump to the selected 
track, and Stop of the replay although not 
all of the selected tracks are replayed. 
 

sequencing  

2 In AutoPlaylist a new Playlist can be 
created. If desired, then should the way 
around be also possible, i.e., a new 
AutoPlaylist should be created out of a 
Playlist. 

functional  3 

3 Play replays the active playlist; Remix 
can only be activated at Stop. 

functional  

4 2  sequencing If neither a Genre nor an Artist is 
selected while creating a new 
AutoPlaylist, every track is 
listed in the appropriate list. 
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Fu
nc-
tio-
n 

n-
tuple 
to be 
cov-
ered 

Faults detected by CES Fault Type Faults detected by FCES 

4 2 Tacks that are recorded from a CD are 
temporarily not included In the actual list, 

functional  

 3 If the menu entry File>Move is disabled, 
no track can be moved. 

sequencing

  Deleting the Track Info Styles starts the 
Windows Explorer also from which the 
tracks can be replayed. 

functional 

 

6 2 NBCi Homepage cannot be visited be-
cause the link is obsolete. 

functional  

  functional Quick pushing of MySimon-ad 
(bottom right) after clicking any 
link triggers the IE error mes-
sage “age cannot be displayed” 

  

 

functional Unmotivated, random error mes-
sage: “Audio Instant Message 
Error in Program RealJukebox” 

7 functional When Reset is pushed, the but-
ton should be disabled until any 
radio button has been touched. 

 functional If Vis.Settings are activated, all 
of the other windows should be 
blocked until close button is 
pressed. 

 

2  

functional If RJB is minimized, then also 
Vis. is minimized. 

 sequencing The list of the song titles of Vis. 
in Undock-Mode does not ad-
just if AllTracks of the view bar 
is not clicked at the moment of 
changing to another song.  

 

 

sequencing If Vis.Settings are opened, prev 
and next Vis. toggle Slide fea-
tures. 

 

3 

When another task active, changing the 
size of the Vls. windows causes switch-
ing to RJB. 

sequencing  
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Fu
nc-
tio-
n 

n-
tuple 
to be 
cov-
ered 

Faults detected by CES Fault Type Faults detected by FCES 

7 4 sequencing Changing the Vls. in Undock 
Mode does not change into 
Dock Mode when closing the 
Undock Mode. 

  

 

functional Special Effects should be dis-
abled if they do not control any 
effect. 

     

  When Vls. window in Dock Mode is 
clicked and moved several times during 
the window is settled, causes the settling 
to be abandoned. 

functional  

  A newly installed Vls. cannot be re-
moved. 

functional  

 sequencing An active Skin can be deleted. 3 

Clicking Delete Skin makes Explorer 
open. 

functional  

In Skin mode, clicking Play twice 
causes Stop, not Pause as expected. 

functional  

sequencing In Skin mode, minimizing of 
the window and immediately 
maximizing it moves the win-
dow up to left, northwest. 

8 

4 

 

sequencing Random error: Closing in Skin 
mode blocks an immediate 
starting right after. 

11 2 After a search and replaying the tracks 
found, the original Playlist is forgotten. 

sequencing  

   functional Searchnow should disable the 
buttons Search and Matching 
until the end of the search proc-
ess. 
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Fu
nc-
tio-
n 

n-tu-
ple to 

be 
cov-
ered 

Faults detected by CES Fault Type Faults detected by FCES 

11 2 Shuffle Mode does not function during a 
search process. 

sequencing  

 3 Changing from SearchInternet to Sear-
challtrack via Menu never functions. 

sequencing  

 4  sequencing During replaying a track out of a 
track list, a search and the Stop 
of the track thereafter causes the 
track list of the search step to be 
active. 

12 4  sequencing A re-opening of Preferences, 
followed by moving the window 
and clicking from Display re-
veals a graphical defect for a 
short time. 
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B   Case Study 2: Marginal Strip Mower – RSM13 

B.1   Statecharts of the Case Study 2 

Function RSM_Antrieb: 
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Function Main: 
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Function RSM_TranspstArbst: 

 
 
Function RSM_Betrieb I: 

 
 
 
 
 



146 Appendix B   Case Study 2: Marginal Strip Mower – RSM13 

Function RSM_Betrieb II: 

 

B.2   List of Faults Revealed 

Nb. Function Faults detected 

1  RSM_Antrieb When Engine I is deactivated, a change from the view RSM_Antrieb 
to the view RSM_TranspstArbst is only then possible if engine I is 
reactivated. 

2  When Engine I is deactivated, a change from the view RSM_Antrieb 
to the view Start is only then possible if engine I is reactivated. 

3  When Engine II is deactivated, a change from the view 
RSM_Antrieb to the view RSM_TranspstArbst is only then possi-
ble if engine II is reactivated. 

4  When Engine II is deactivated, a change from the view 
RSM_Antrieb to the view Start is only then possible if engine II is 
reactivated. 
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Nb. Function Faults detected 

5 RSM_Antrieb When Axis Lock is deactivated, a change from the view 
RSM_Antrieb to the view RSM_TranspstArbst is only then possi-
ble if Axis Lock is reactivated. 

6  When Axis Lock is deactivated, a change from the view 
RSM_Antrieb to the view Start is only then possible if Axis Lock is 
reactivated. 

7  RSM_Transpst 
 Arbst 

A change from the view RSM_TranspstArbst to the view 
RSM_Betrieb I is only then possible if the RSM is in transport posi-
tion. 

8  When the function Automatik Transportstellung is activated the 
view can be changed neither to RSM_Antrieb or RSM_Betrieb I. 
Furthermore, the function Automatik Arbeitsstellung cannot be acti-
vated; neither is possible a manual positioning by the functions Arm2 
Ein-/Ausklappen, Ein-/Ausklappen nor Hauptarm auf/ab. 

9  When the function Automatik Arbeitsstellung is activated the view 
can be changed neither to RSM_Antrieb or RSM_Betrieb I. Fur-
thermore, the function Automatik Transportstellung cannot be acti-
vated; neither is possible a manual positioning by the functions Arm2 
Ein-/Ausklappen, Ein-/Ausklappen nor Hauptarm auf/ab. 

10  When RSM is in a central position, a change from the view 
RSM_TranspstArbst to the view RSM_Antrieb is only then possi-
ble if RSM is positioned for transport. 

11  When RSM is in a central position, a change from the view 
RSM_TranspstArbst to the view RSM_Betrieb I is only then pos-
sible if RSM is positioned for working. 

12  When RSM is in a working position, a change from the view 
RSM_TranspstArbst to the view RSM_Antrieb is only then possi-
ble if RSM is positioned for transport. 

13  When the function Arm2 Einklappen is activated, the function Arm2 
Ausklappen can only then be activated if the function Arm2 
Einklappen is deactivated. 

14  When the function Arm2 Einklappen is activated, the function 
Automatik Transportstellung can only then be activated if the func-
tion Arm2 Einklappen is deactivated. 

15  When the function Arm2 Einklappen is activated, the function 
Automatik Arbeitsstellung can only then be activated if the function 
Arm2 Einklappen is deactivated. 

16  When the function Arm2 Ausklappen is activated, the function 
Arm2 Einklappen can only then be activated if the function Arm2 
Ausklappen is deactivated. 
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Nb. Function Faults detected 

17  RSM_Transpst 
 Arbst 

When the function Arm2 Ausklappen is activated, the function 
Automatik Transportstellung can only then be activated if the func-
tion Arm2 Ausklappen is deactivated. 

18  When the function Arm2 Ausklappen is activated, the function 
Automatik Arbeitsstellung can only then be activated if the function 
Arm2 Ausklappen is deactivated. 

19  When the function Arm2 Einklappen is activated, the function 
Ausklappen can only then be activated if the function Einklappen is 
deactivated. 

20  In case function Einklappen is active an activation of function 
Automatik Transportstellung is only allowed after deactivating 
function Einklappen. 

21  When the function Einklappen is activated, the function Automatik 
Arbeitsstellung can only then be activated if the function Einklap-
pen is deactivated. 

22  When the function Ausklappen is activated, the function Einklap-
pen can only then be activated if the function Ausklappen is deacti-
vated. 

23  When the function Ausklappen is activated, the function Automatik 
Transportstellung can only then be activated if the function Ausk-
lappen is deactivated. 

24  When the function Ausklappen is activated, the function Automatik 
Arbeitsstellung can only then be activated if the function Ausklap-
pen is deactivated. 

25  When the function Hauptarm auf is activated, the function Haup-
tarm ab can only then be activated if the function Hauptarm auf is 
deactivated. 

26  When the function Hauptarm auf is activated, the function Auto-
matik Transportstellung can only then be activated if the function 
Hauptarm auf is deactivated. 

27  When the function Hauptarm auf is activated, the function Auto-
matik Arbeitsstellung can only then be activated if the function 
Hauptarm auf is deactivated. 

28  When the function Hauptarm ab is activated, the function Haup-
tarm auf can only then be activated if the function Hauptarm ab is 
deactivated. 

29  When the function Hauptarm ab is activated, the function Auto-
matik Transportstellung can only then be activated if the function 
Hauptarm ab is deactivated. 

30  When the function Hauptarm ab is activated, the function Auto-
matik Arbeitsstellung can only then be activated if the function 
Hauptarm ab is deactivated. 
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Nb. Function Faults detected 

31  RSM_Betrieb I A change from the view RSM_Betrieb_I to the view 
RSM_TranspstArbst while function Automatik is active is only 
then possible if the function Automatik is deactivated. 

32  When the function Auflagedruck is deactivated, the function 
Messerwelle can only then be activated if the function Au-
flagedruck is activated. 

33  A change from the view RSM_Betrieb_I to the view 
RSM_TranspstArbst while function Auflagedruck is active is only 
then possible if the function Auflagedruck is deactivated. 

34  A change from the view RSM_Betrieb_I to the view 
RSM_TranspstArbst while function Auflagedruck is active is only 
then possible if the function Auflagedruck is deactivated. 

35  When the function Messerwelle is activated, the function Au-
flagedruck can only then be deactivated if the function Messerwelle 
is deactivated. 

36  A change from the view RSM_Betrieb_I to the view 
RSM_TranspstArbst while function Schwimmstellung is active is 
only then possible if the function Schwimmstellung is deactivated. 

37  RSM_Betrieb II When the function Einklappen is activated, the function Ausklap-
pen can only then be activated if the function Einklappen is deacti-
vated. 

38  A change from the view RSM_Betrieb_II to the view 
RSM_Betrieb_I while function Einklappen is active is only then 
possible if the function Einklappen is deactivated. 

39  When the function Ausklappen is activated, the function Einklap-
pen can only then be activated if the function Ausklappen is deacti-
vated. 

40  A change from the view RSM_Betrieb_II to the view 
RSM_Betrieb_I while function Ausklappen is active is only then 
possible if the function Ausklappen is deactivated. 

41  When the function Arm Verschiebung links is activated, the func-
tion Arm Verschiebung rechts can only then be activated if the 
function Arm Verschiebung links is deactivated. 

42  A change from the view RSM_Betrieb_II to the view 
RSM_Betrieb_I while function Arm Verschiebung links is active is 
only then possible if the function Arm Verschiebung links is deacti-
vated. 

43  When the function Arm Verschiebung rechts is activated, the func-
tion Arm Verschiebung links can only then be activated if the func-
tion Arm Verschiebung rechts is deactivated. 
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Nb. Function Faults detected 

44  RSM_Betrieb II A change from the view RSM_Betrieb_II to the view 
RSM_Betrieb_I while function Arm Verschiebung rechts is active 
is only then possible if the function Arm Verschiebung rechts is de-
activated. 

45  When the function Mähkopf drehen links is activated, the function 
Mähkopf drehen rechts can only then be activated if the function 
Mähkopf drehen links is deactivated. 

46  A change from the view RSM_Betrieb_II to the view 
RSM_Betrieb_I while function Mähkopf drehen links is active is 
only then possible if the function Mähkopf drehen links is deacti-
vated. 

47  When the function Mähkopf drehen rechts is activated, the function 
Mähkopf drehen links can only then be activated if the function 
Mähkopf drehen rechts is deactivated. 

48  A change from the view RSM_Betrieb_II to the view 
RSM_Betrieb_I while function Mähkopf drehen rechts is active is 
only then possible if the function Mähkopf drehen rechts is deacti-
vated. 
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