
Algorithmic methods for ordinary
differential equations

Dissertation

zur Erlangung des Doktorgrades
der Fakultät für Elektrotechnik, Informatik und Mathematik

der Universität Paderborn

vorgelegt von

Kai Frederik Gehrs

Paderborn, den 31. Oktober 2006

Gutachter der Dissertation:

Prof. Dr. Benno Fuchssteiner (Betreuer der Dissertation, Universität Paderborn)

Prof. Dr. Athanassios S. Fokas (University of Cambridge)
Dr. habil. Cornelia Schiebold (Mid Sveden University)
Prof. Dr. Walter Strampp (Universität Kassel)

Tag der mündlichen Prüfung:

26.01.2007

“Sie sagen zu mir
schließ auf diese Tür

die Neugier wird zum Schrei
was wohl dahinter sei.”

— T. Lindemann

Abstract

In this thesis, new algorithmic methods for ordinary differential equations
(ODEs) are developed as well as the foundation of the algebraic basis for these
methods. The aim of this thesis is of a rather practical nature, i.e. the pre-
sentation of practical and efficient algorithms and heuristics for the solution of
ODEs, which can directly be implemented in the framework of a general pur-
pose computer algebra system. The emphasis is clearly put on “practical and
efficient”. However, in order to achieve this goal, a rather extensive algebraic
setup is developed and new and customized notions are designed. Extensions of
the methods developed by E. S. Cheb-Terrab et. al. in the 1990s are presented.
These extensions can be used to compute integrating factors of third and higher
order non–linear ODEs. Furthermore, a new approach for the computation of
integrating factors of ODEs arising from the application of special skew sym-
metric operators is developed. A more general approach and yet unpublished
symmetry result by B. Fuchssteiner is presented. New applications of this re-
sult are discussed and it is shown, how the symmetry results by Cheb-Terrab
et. al. can be used in this more general theoretical setting. Finally, by intro-
duction of a new type of symmetries (non–local symmetries) a link between
two theories (differential Galois theory and symmetry analysis), which were up
to now considered to be totally disjoint, is established. Technically seen, this
amounts to a combination of symmetry methods and the theory of nilpotent
flows in order to give a new algorithmic approach for computing the important
symmetric powers of linear differential operators.

Zusammenfassung

In dieser Arbeit werden neue algorithmische Methoden zur Lösung gewöhnlicher
Differentialgleichungen (kurz ODEs) vorgestellt. Ziel der Arbeit ist die Darstel-
lung von praktischen und effizienten Algorithmen und Heuristiken für ODEs
sowie die dafür nötigen algebraischen Grundlagen, die sich auch praktisch in
einem Computeralgebra System implementieren lassen. Die Betonung liegt auf
“praktisch und effizient”. Zur Realisierung dieser Verfahren werden neue al-
gebraische Strukturen definiert und die für die Algorithmen notwendigen the-
oretischen Grundlagen entwickelt. Es werden Verallgemeinerungen der von
E. S. Cheb-Terrab et. al. in den 1990er Jahren entwickelten Verfahren für
ODEs vorgestellt. Diese können zur Berechnung von integrierenden Faktoren
für nicht–lineare ODEs dritter und höherer Ordnung verwendet werden. Ferner
werden neue effiziente Verfahren zur Berechnung von integrierenden Faktoren
vorgestellt, die durch Anwendung schiefsymmetrischer Operatoren entstehen.
Anwendungen eines neuen und bisher nicht publizierten Integrabilitätsresultats
von B. Fuchssteiner werden diskutiert und es wird gezeigt, wie sich die von Cheb-
Terrab entwickelten Symmetriemethoden in den allgemeineren Kontext dieses
neuen Resultats einbetten lassen. Schließlich wird durch Einführung eines neuen
Symmetrietyps (nicht–lokale Symmetrien) eine Verbindung zwischen zwei bis
dato völlig disjunkten Theorien (Differentialgaloistheorie und Symmetrieanal-
yse) hergestellt. Technisch gesehen wird durch die Kombination von Symme-
triemethoden und der Theorie nilpotenter Flüsse ein neuer Zugang zur Berech-
nung der wichtigen symmetrischen Potenzen von linearen Differentialoperatoren
entwickelt.

Acknowledgement

I would like to thank

• Prof. Dr. Benno Fuchssteiner for so many things among which there are: in-
troducing me to the MuPAD family, his unbelievable patience, support and
encouragement, introducing me to the topic of differential equations and for
much much more

• Prof. Dr. Walter Oevel for many many interesting and enlightening discussions

• The department of mathematics at the university of Paderborn especially in-
cluding the Rechnerbetreuung Mathematik

• ICMS for their support and the chance to discuss some of the results of
this thesis with the participants (especially Prof. Dr. Malcolm MacCallum,
Prof. Dr. Alexandre V. Mikhailov and Prof. Dr. Sergey Tsarev) at the confer-
ence “Algebraic Theory of Differential Equations” at Heriot–Watt University,
Edinburgh, 2006

• Computeralgebra–Fachgruppe Deutschland for the invitation to the conference
of the Computeralgebra–Fachgruppe Deutschland, Kassel, 2005

• Dr. habil. Cornelia Schiebold and Prof. Dr. Bernd Carl for their invitation to a
talk about some of the ideas of this thesis at the Friedrich–Schiller–Universität
in Jena, 2005

• My family Dodo, Bodo, Michael, Julia and Jenni for their support

• Dr. Bernd Engel, Mike Menne, Lars Tegeler

• Jürgen Billing, Alessandro Dell’Aere, René S. Kaup, Jörn Maas and Tatjana
Schmücker for constructive criticism and their friendship

• Christopher Creutzig, Klaus Drescher, Ralf Hillebrand, Dr. Oliver Kluge, Mar-
tin Knelleken, Torsten Metzner, Dr. Andreas Sorgatz, Dr. Stefan Wehmeier and
the rest of the MuPAD family for their support

• Doris and Antonius Hillebrand for more than their tolerance and the lovely
roses in front of my living room

• Studienstiftung des Deutschen Volkes, especially Dr. Susanne Happ, Dr. Petra
Neumann and Prof. Dr. Dr. Dr. Hubertus R. Drobner

• Last but not least: Richard Z. Kruspe, Paul Landers, Till Lindemann, Christian
Lorenz, Oliver Riedel and Christoph Schneider

Contents

Introduction 5
Two examples . 5
This thesis . 7

Outline of approach . 8
What is new in this thesis? 12

1 Symmetries 15
1.1 Generalized symmetries and their generators 17

1.1.1 Curve functions . 18
1.1.2 Groups of transformations and symmetry groups 19
1.1.3 Prolongations . 21
1.1.4 Lie point symmetries and first order ODEs 27

1.2 The methods of Cheb-Terrab for first order ODEs 28
1.3 Symmetries of evolution equations 31
1.4 Lie point symmetries in phase space 34
1.5 Integration via commuting symmetries 37

1.5.1 Tensors, Lie derivatives and exterior derivatives 37
1.5.2 An integrability result 40
1.5.3 Examples and applications 45

1.6 Conclusions . 64
1.6.1 Resumé . 64
1.6.2 Open problems and perspectives 65

2 Integrating factors 67
2.1 Introduction . 67
2.2 Basic terminology . 68
2.3 Integrating factors and Associated ODEs 72
2.4 Integrating factors for second order ODEs 75
2.5 The Euler Operator: Exactness of an ODE 78

1

2.6 Integrating factors for third order ODEs 79
2.6.1 Integrating factors µ(x, y). 80
2.6.2 Integrating factors µ(x, y′). 83
2.6.3 Integrating factors µ(y, y′). 87
2.6.4 Integrating factors µ(y′′). 91
2.6.5 Integrating factors f(x, y, y′)(y′′)m. 96

The case µ = f(x, y, y′)(y′′)m, m ∈ N 97
The case µ = f(x, y, y′) 1

(y′′)m , m ∈ N, m ≥ 3 102

The case µ = f(x, y, y′) 1
y′′

. 107
2.7 Generalizations to higher order ODEs 111

2.7.1 Integrating factors µ(y(i), y(n−2)), 0 ≤ i ≤ n− 3. 112
2.7.2 Integrating factors µ(x, y(n−2)). 114
2.7.3 Integrating factors µ(y(i), y(j)), 0 ≤ i < j ≤ n− 3. 116
2.7.4 Integrating factors µ(y(n−1)). 119
2.7.5 Integrating factors f(x, y, y′, . . . , y(n−2))(y(n−1))m. 120

The case µ = f(x, y, y′, . . . , y(n−2))(y(n−1))m, m ∈ N . . . 120
The case µ = f(x, y, y′, . . . , y(n−2)) 1

(y(n−1))m , m ∈ N, m ≥ 3 124

The case µ = f(x, y, y′, . . . , y(n−2)) 1
y(n−1) 126

2.8 Conclusions . 128
2.8.1 Resumé . 128
2.8.2 Open problems and perspectives 130

3 Skew symmetric hierarchies 133
3.1 Basic terminology and general definitions 134
3.2 Canonical form of differential expressions 139
3.3 Computing integrating factors 146
3.4 Fundamental forms of skew symmetric operators 159
3.5 Recursion formulas for symbolic integration 165
3.6 Conclusions . 176

3.6.1 Resumé . 176
3.6.2 Back to the symmetries 177
3.6.3 Integrating factors and symmetry generators: the mixed

case . 180
3.6.4 Open problems and perspectives 181

4 Non–local symmetries 185
4.1 Non–local symmetries for 2nd order linear ODEs 187
4.2 Overview: Nilpotent and recursive flows 189

4.2.1 Nilpotent flows for second order linear ODEs 193

2

4.3 Overview: Basics in differential Galois theory 196
4.3.1 Symmetric powers . 199
4.3.2 Applications of symmetric powers 201
4.3.3 Computation of symmetric powers 203

4.4 An alternative algorithm for symmetric powers 204
4.5 Conclusions . 209

4.5.1 Resumé . 209
4.5.2 Open problems and perspectives 209

Bibliography 213

List of some notation 221
Chapter 1 . 221
Chapter 2 . 222
Chapter 3 . 222
Chapter 4 . 223

Glossary of Algorithms 225

Index 227

3

Introduction

In this thesis, algorithmic methods for ordinary differential equations are devel-
oped. The aim of this thesis is of a rather practical nature, i.e. the presentation
of practical and efficient algorithms and heuristics for the solution of ordinary
differential equations, which can directly be implemented in the framework of a
general purpose computer algebra system. The emphasis is clearly put on “prac-
tical and efficient” algorithms and heuristics. However, in order to achieve this
goal, a rather extensive algebraic setup is developed and new and customized
notions are designed.

Two examples

To make clear, what is meant by “practical and efficient”, let us roughly sketch
two examples, which will be discussed in detail in the later course of this thesis:
consider a third order non–linear ordinary differential equation

y′′′(x) =
y′(x)

y(x)
y′′(x)− y(x)2 y′(x)

and assume that an integrating factor for this equation should be found (see
also [45], p. 602, ODE 7.7 for this example). The general theory proposes to
compute an integrating factor by means of solving a system of linear partial
differential equations (see [11]). But an integrating factor for that equation
can easily be computed from the right–hand–side of the equation. Multiplying
the equation by 1

y(x)
provides an exact equation, i.e. the whole equation can

be integrated and, hence, the order of the equation can be reduced by 1. This
integrating factor can be found without solving any auxiliary ordinary or partial
differential equations using only very elementary techniques. It can be deduced
simply by a careful inspection of the structure of the right–hand–side of the
equation (see also Example 2.14 on page 90 for details on how this integrating

5

6

factor can be found).

In the framework of a computer algebra system, where in general an elaborate
symbolic solver for partial differential equations is not available, an approach
for the computation of integrating factors not having to compute the solutions
of further auxiliary ordinary or partial differential equations is desirable.
Furthermore, even if methods or special heurstics for solving partial differential
equations for the computation of integrating factors are available (as e.g. in the
case of the computer algebra system Maple), approaches in the above sense
should be preferred, since in practice they work more efficiently (see also [11]).

As a second example, consider a seventh order ordinary differential equation

0 = 35 u7 ux + 35 uxxx u5 + 385 u4 ux uxx + 420 u3 u3
x + 14 uxxxxx u3+

154 uxxxx u2 ux + 280 uxxx u2 uxx + 476 uxxx u u2
x + 672 u ux u2

xx+

2 uxxxxxxx u + 420 u3
x uxx + 14 uxxxxxx ux + 42 uxxxxx uxx + 70 uxxx uxxxx,

where u = u(x), ux = u′(x), uxx = u′′(x) etc. This equation admits the inte-
grating factor

G =
5u6

2
+ 10u3uxx + 20u2u2

x + 2uxxxxu + 8uxxxux + 6x2
xx.

Multiplication of the equation by G provides an exact equation and the order
of the differential equation can be reduced via integration. Again, as in the
former example, the integrating factor can be determined without solving any
auxiliary ordinary or partial differential equations.

In contrast to the above example, where the stated integrating factor is found
mainly by using pattern matching methods applied to the right–hand–side of
the equation, the integrating factor G is obtained by new methods for so–called
skew symmetric hierarchies of ordinary differential equations introduced in
Chapter 3 of this thesis. The computation of the reduction by means of the
integrating factor G is discussed in details in Example 3.43 on page 172.
Furthermore, Chapter 3 provides the necessary algebraic setup, which allows to
compute this reduction without performing any direct integration.

Although the methods for the computation of integrating factors in the two
examples above are completely different, there is one common property:
both methods provide an integrating factor and in the intermediate steps of

7

computation no auxiliary ordinary or partial differential equation has to be
solved. By “practical and efficient algorithms” we mean such methods.

In the 1990s, E. S. Cheb-Terrab et. al. developed computer algebra methods
for the computation of symmetries and integrating factors of mainly first and
second order ordinary differential equations, which — among other theoretical
aspects — are based on pattern matching analysis of the ordinary differential
equations under consideration (see [7], [9], [10], [11], [12], [13]).

These methods provided amazing results in practice: e.g. large classes of the
ordinary differential equations listed in the well–known book by E. Kamke (see
[45]) could be tackled using these new methods. And for the computation of
symmetries and integrating factors of these classes of equations, the solution of
any auxiliary ordinary or partial differential equations could mainly be avoided.
The method used to compute the integrating factor in the first example stated
above is one of the algorithms presented in the framework of this thesis, which
are inspired by the ideas of Cheb-Terrab et. al.

This thesis

In this thesis, among other items, extensions of the methods of Cheb-Terrab
et. al. are presented. These extensions can be used to compute integrating
factors of third and higher order non–linear ordinary differential equations.
Furthermore, a new approach for the computation of integrating factors of
ordinary differential equations arising from the application of special skew
symmetric operators is discussed. By means of these methods, the integrating
factor in the second example stated above is obtained.

However, a main emphasis of this work lies on the symmetry analysis of
ODEs, where new approaches and notions are presented. Incidentally, for first
order ordinary differential equations the concepts of symmetry analysis and
integrating factors are identical (see also Section 2.8.1 for further remarks on
this statement). Hence, for those more general classes of ordinary differential
equations, where these two approaches differ, new unifying viewpoints have
to be designed. In particular, a more general approach1 and yet unpublished
symmetry result established by B. Fuchssteiner is presented. Applications of

1More general in comparison to the symmetry methods used by Cheb-Terrab et. al. in [7],
[9], [10], [12] and [13].

8

this result are discussed. Especially, we show, how the symmetry results by
Cheb-Terrab et. al. can be used in this more general theoretical setting.

Finally, a new connection between differential Galois theory and symmetry anal-
ysis of differential equations — two seemingly disparate areas — is presented.
This connection is established with the help of the theory of nilpotent and re-
cursive flows introduced in [27] (see also [28] and [29]). It leads to a new and
fast algorithm for the computation of the important symmetric powers of linear
differential operators. Symmetric powers of linear differential operators play an
important role for the classification of solutions of homogeneous linear ordinary
differential equations in the framework of differential Galois theory (see e. g. [6],
[60]).

Outline of approach

This thesis is organized in four chapters.

Chapter 1:
Symmetries

The first chapter is dedicated to symmetry methods for solving differen-
tial equations. Various notions of transformation groups (defined by how
they depend on the initial solutions to which they are applied) leading
to different types of symmetries like Lie point symmetries, Lie–Bäcklund
symmetries, local and non–local symmetries are introduced. Basic prop-
erties of these are discussed.

The methods of Cheb-Terrab et. al. presented in [7], [9], [10], [12], [13] us-
ing Lie point symmetries for the solution of first order ordinary differential
equations are briefly summarized. Afterwards, the representation of ordi-
nary differential equations and symmetries in phase space is introduced.

A new and yet unpublished integrability result based on independent and
commuting symmetry generators by B. Fuchssteiner is presented. In the
last and main part of the chapter, new applications of this result are
discussed. Furthermore, it is shown, how the methods by Cheb-Terrab
et. al. can be embedded in the setting of the new integrability result.

Further examples for the application to higher order ordinary differential
equations and systems of linear ordinary differential equations with
constant coefficients are discussed. The main results of this chapter
constitute the applications and examples for the new integrability result.

9

Finally, at the very end of the chapter, conclusions and open problems
are discussed.

Chapter 2:
Integrating factors

The notions of integrating factors and exact ordinary differential equations
are introduced. In the sense of the ideas of Cheb-Terrab et. al. in [11], the
most general class of n-th order ordinary differential equations associated
with an integrating factor is presented. The ideas of Cheb-Terrab et. al. for
the computation of integrating factors of second order equations are briefly
summarized.

After introducing the Euler operator as a tool for testing the exactness
of ordinary differential equations, we present extensions of the methods
by Cheb-Terrab et. al. for the computation of integrating factors for third
order ordinary differential equations.

These results are generalized to n-th order equations, n ∈ N, n ≥ 3, in
the last part of the chapter. The main results of this chapter constitute
the algorithms and heuristics for the computation of integrating factors
of n-th order ordinary differential equations. Finally, at the very end of
the chapter, conclusions and open problems are discussed.

Chapter 3:
Skew symmetric hierarchies

Extended integrating factors and canonical forms of differential expres-
sions are introduced. We embed these notions in a new algebraic frame-
work, which allows the definition of a density valued scalar product. After-
wards, skew symmetric hierarchies of ordinary differential equations and
their integrating factors are constructed via certain skew symmetric dif-
ferential operators (skew symmetric with respect to this density valued
scalar product).

The theoretical basis for the fast computation of these ordinary differential
equations and their integrating factors is developed. Therefore the new
notion of the fundamental form of a skew symmetric operator is intro-
duced as an essential tool for the computation of the members of a skew
symmetric hierarchy, the computation of their integrating factors and for
the reduction of their order. With the help of the fundamental form, both

10

computational tasks — the computation of integrating factors and the re-
duction of the order of the differential equations under consideration —
are achieved without performing any integrations.

This is done in the last part of the chapter, which is dedicated to present
recursive schemes for the computation of integrating factors and reductions
of ordinary differential equations arising as members of skew symmetric
hierarchies. The fact that integrations can be avoided via these recursive
schemes makes the methods discussed in this chapter even more efficient
than the algorithms presented in Chapter 2.

The main results of this chapter constitute Section 3.3, pp. 146, where the
construction of skew symmetric hierarchies is developed, and Section 3.5,
pp. 165, where the recursive schemes are given.

Finally, at the very end of the chapter, conclusions and open problems
are stated as well as possible extensions of the methods are indicated.
A link between the symmetry methods as discussed in Chapter 1 and
integrating factor methods as discussed in this chapter is stated.

Chapter 4:
Non–local symmetries: A link to differential Galois theory

This chapter is dedicated to non–local symmetries as defined in the frame-
work of Chapter 1. Mainly, non–local symmetries for ordinary differential
equations are symmetries given by partial differential equations, i.e. they
act on the initial solution curves in a non–local way. With the help of
a special non–local symmetry for second order linear ordinary differen-
tial equations a link between the theory of nilpotent flows introduced by
B. Fuchssteiner and M. Lo Schiavo and the differential Galois theory of
linear differential equations is established.

This provides a new approach for the computation of the important sym-
metric powers of linear differential operators. Since this chapter deals with
seemingly disparate areas for the treatment of ordinary differential equa-
tions, the theory of nilpotent and recursive flows in sense of the works [27],
[28] and [29] is presented.

Afterwards, basic notions and results from differential Galois theory are
summarized. Symmetric powers of linear differential operators are intro-
duced and well–known applications of these for the classification of solu-
tions appearing among homogeneous linear ordinary differential equations

11

are summarized. A short overview on known methods for the computation
of symmetric powers is given.

Then a special nilpotent flow associated with second order homogeneous
linear ordinary differential equations (corresponding to the generator of
a non–local symmetry group) is presented. This nilpotent flow is finally
used to present an alternative approach for the computation of symmetric
powers of second order homogeneous linear ordinary differential operators.
This is the only case, where already a fast algorithm is available in the
literature (see [6]). Our approach is more simple and even beats this
extremely fast algorithm in our practical implementation.

Open problems and perspectives for further research in this area are dis-
cussed at the end of the chapter.

The notation slightly varies from chapter to chapter. E.g., in the first two
chapters the dependent variable will be denoted by y = y(x). In Chapter
3 we denote the dependent variable by u = u(x). The reason for this is
that, in the special setting of each chapter, the mostly used notation from
the cited references has been adopted to make it as easy as possible to refer
to the literature and to pay respect to the work already achieved by other
mathematicians and by which the results of this thesis are inspired.

Furthermore, each chapter is nearly self–contained. E.g., if one is more
interested in the computation of integrating factors than in symmetry methods
for ordinary differential equations, Chapter 2 and Chapter 3 can be read
independently of the results presented in Chapter 1 and Chapter 4 (except for
the last part of Chapter 3, where a link to the symmetry methods discussed in
the framework of Chapter 1 is given).

Although many algorithmical results are presented, this thesis does not contain
any source code of experimental implementations, which have been done
during the time within the results of this thesis have been developed. There
are at least two reasons for this fact: first of all, a presentation of complete
implementations would have overstepped the framework of this thesis, and,
secondly, the aim is to give a formulation of the methods, which is independent
of a specific computer algebra system. Hence, all algorithms in this thesis
are given in pseudo–code, but the formulation is always very close to a final
implementation e.g. in the framework of a general purpose computer algebra
system. However, all algorithms presented in this thesis have experimentally
been implemented in the computer algebra system MuPAD to get a rough

12

impression on how these methods work in practice and to compute most of the
examples given in this thesis.

A list summarizing the most important notations used in the following chapters
can be found on page 221. Since the algorithms and heuristics developed in
this thesis contribute a major part of the work, a glossary of algorithms can be
found at the end of this thesis on page 225. Keywords and names with a central
relevance for this thesis can be found using the index on page 227.

What is new in this thesis?

In Chapter 1 we state a new and yet unpublished symmetry result by
B. Fuchssteiner, which allows to characterize the solutions of ordinary dif-
ferential equations admitting a sufficient number of independent commuting
symmetry generators. Obviously, the applications of this new result must be
new. Therefore, the main new aspect in this chapter is the exploration of the
applicability of this symmetry result in several examples. We show, how the
results by Cheb-Terrab et. al. presented in [7], [9], [10], [12] and [13] can be
used in the setting of the new symmetry result. Further applications, e.g. in
the context of systems of linear differential equations with constant coefficients,
are presented.

In Chapter 2, all algorithms and heuristics for the computation of integrating
factors of third and higher order non–linear ordinary differential equations
are new. These results are inspired by the algorithms of E. S. Cheb-Terrab
et. al. for second order ordinary differential equations (see [7]).

The algorithms for the computation of integrating factors and the reduction of
equations as elements of a skew symmetric hierarchy discussed in Chapter 3 are
new. Especially, the algebraic setup and the notion of the fundamental form of
a skew symmetric differential operator, the algorithm for the computation of
this form as well as the resulting recursion formulas for symbolic integration and
the reduction of ordinary differential equations presented at the end of Chapter
3 are new. These methods are generalizations of the algorithmic considerations
presented in the framework of the talks “Neue Methoden zur algorithmischen
Lösung nicht–linearer ODEs über Symmetrien und integrierende Faktoren” at
the “Computeralgebra Tagung 2005” and “Some practical algorithms for the
solution of ODEs via symmetry methods and integrating factors” at the ICMS
workshop on “Algebraic Theory of Differential Equations” (see also [31] and

13

[35]).

Finally, Chapter 4 presents a new connection between differential Galois theory
and symmetry analysis of differential equations. This new connection gives a
link between two areas, which are in general considered to be disparate. With
the help of this link a new, simple and fast algorithm for the computation of
the important symmetric powers of second order linear differential operators is
given at the end of the chapter.

Chapter 1

Symmetries

In the years 1997 and 1998, E. S. Cheb-Terrab et. al. published at least four
papers introducing new algorithms and heuristics to compute solutions of
ordinary differential equations (ODEs) using symmetry generators ([7], [9],
[10], [12] and [13]). They implemented these algorithms and heuristics in the
computer algebra system Maple1.

As a benchmark for the new algorithmic ideas, Cheb-Terrab et. al. used
their implementations to solve ODEs from the well–known book “Differential-
gleichungen” by E. Kamke (see also [45]). The results showed that the new
methods helped to improve the former ODE solver of Maple drastically.
Detailed results of these tests and of performance tests are listed in section 4
of [7]. Usually, computing Lie point symmetries of ODEs requires solving a
system of partial differential equations. The success and the efficiency of the
algorithms by Cheb-Terrab et. al. is based on the fact that Lie point symmetries
for wide classes of ODEs can be computed without solving any differential
equations. This becomes possible by using elaborate techniques to recognize
the symmetries more or less directly from the form of the ODE given, i.e. by
using elaborate techniques in pattern matching of differential expressions. We
will come back to the ideas of Cheb-Terrab et. al. in Section 1.2 of this chapter.

What we want to keep in mind is that symmetry methods in the spirit of

1The computer algebra system Maple developed by the company Maplesoft, currently
available in version 10, still offers the algorithms and heuristics implemented by E. S. Cheb-
Terrab et. al. in the framework of the ODEtools–package. The latest news concerning this
package and further packages for solving partial differential equations developed and improved
by Cheb-Terrab et. al. can be found on Cheb-Terrab’s homepage [15].

15

16 CHAPTER 1. SYMMETRIES

Cheb-Terrab et. al. may be used for solving classes of ODEs in the framework
of a computer algebra system without having to solve the associated systems
of partial differential equations again and again. These symmetry methods
for solving ODEs are not only interesting from a theoretical point of view,
but also from a completely practical point of view of someone implementing
algorithms in a computer algebra systems not being able (or willing due to loss
of efficiency) to solve systems of partial differential equations to find solutions
of ODEs. Furthermore these partial differential equations may not be solvable
in general.

Nevertheless, as far as we know, Cheb-Terrab et. al. use symmetry methods
mostly to solve first order ODEs. A possible reason for this is the fact that
for first order ODEs, the Lie point symmetry methods as used by Cheb-Terrab
et. al. and integrating factor methods as introduced in Chapter 2 are closely
connected. We will come back to this statement in the framework of the
conclusions for Chapter 2 in Section 2.8. They completely leave out even-
tually possible applications of Lie–Bäcklund symmetries instead of Lie point
symmetries. These constitute for ODEs of order higher than 1 a considerable
extension of the notion of symmetry. The reason for this omission may be
that Lie’s famous result (see [64] p. 86 or [51], Theorem 2.64, p. 155) does not
apply to these symmetries. Hence, they may not be used to derive from them
integrating factors in a direct way.

For higher order ODEs, Cheb-Terrab et. al. mainly propose algorithms to
compute integrating factors, which can be used to reduce the order of a given
higher order ODE by 1 and thereby introducing a constant of integration. We
believe that one of the reasons for using integrating factors for higher order
ODEs is a completely practical one: integrating factors directly help to reduce
the order of a given ODE by 1, whereas in general a single Lie–Bäcklund
symmetry generator does not seem to suffice to reduce the order of an ODE
admitting this symmetry. Even in the case that sufficiently many symmetries
admitted by a given ODE have been found, there is still a problem in charac-
terizing the solutions of the ODE. We always have to keep in mind that we do
not want to use some arbitrary method to compute solutions of an ODE, but
a practical method, i.e. a method computing the results of an ODE in such a
form that the user of a computer algebra system may use the result for further,
practical computations. The question of the representation of solutions is a
very important prerequisite for further subsequent computations.

1.1. GENERALIZED SYMMETRIES AND THEIR GENERATORS 17

In the following when we speak about symmetries or symmetry generators we
refer to Lie–Bäcklund symmetries, which comprise Lie point symmetries as
a special case. New results by B. Fuchssteiner using symmetry generators of
this kind to completely characterize the solutions of ODEs (of arbitrary order
and admitting sufficiently many symmetries) will help to find a new way of
representing the solutions of ODEs. Since the definition of symmetries in the
results of B. Fuchssteiner are formulated in a more general setting and differ
from the definition of symmetries used by Cheb-Terrab et. al. in [7], [9], [10],
[12] and [13], we first present the different notions of symmetries and then show
how the results already established by Cheb-Terrab et. al. can be interpreted
in a more general setting and in the framework of a more general notion of
integrability.

We will see that the corresponding results may not only be used for first or
second order ODEs, but for general n-th order ODEs, n ≥ 1, or even for certain
systems of ODEs as long as sufficiently many symmetry generators for the ODE
or the system of ODEs under consideration are known. This means that a unified
theory for solving ODEs and systems of ODEs with the help of sufficiently
many symmetry generators is established leading to practical methods to express
solutions in terms of conserved quantities.

1.1 Generalized symmetries and their infinites-

imal generators

Since in this section we want to give an intuitive understanding of different
notions of symmetries, we assume for all functions, curves, and transformations
considered here that they are sufficiently often differentiable. This section is
based on the lectures by B. Fuchssteiner [32].

The notion of symmetry we shall build up in such generality that all notions
known to us (Lie point symmetries, Lie–Bäcklund symmetries, time–dependent
symmetries, local symmetries, non–local symmetries) will turn out to be special
cases. In order to give a first orientational survey we present here the general
setting without proving every detail. Those details explicitly needed in the
sequel will be proved when needed. In case those details have to be applied in
a more special situations, we will give a suitable reference to the literature.

18 CHAPTER 1. SYMMETRIES

1.1.1 Curve functions

Solutions y(x) of ordinary differential equations (ODEs) are curves in x–y–space.
So let us consider some arbitrary curve parametrized by some parameter t (in
the following called time)

Γ = {(x(t), y(t)) | t in some parameter space},

where the parameter space is in general a 1–dimensional manifold, e.g. the
real numbers R. If we parametrize the curve given by a function y(x) by the
parameter x, then we simply write

Γ = {(x, y(x)) | x ∈ R}

and call that the functional parametrization, i.e. the parametrization of the
second component by the first. In the case, functional parametrization is chosen,
we also simply write y instead of y(x). Whenever x and y are considered to
depend in t, we will explicitly state this dependence by writing x(t) and y(t),
such that no ambiguity in the notation will arise.

Definition 1.1. A curve function Q is a map

Q : (Γ, x(t), y(t)) → R,

which does not depend on the parametrization chosen for the curve.

Example 1.2. Let us give some examples:

Q(Γ, x(t), y(t)) := x(t), (1.1.1)

Q(Γ, x(t), y(t)) := y(t), (1.1.2)

Q(Γ, x(t), y(t)) :=
(d

dt
y(t)

)(d

dt
x(t)

)−1

. (1.1.3)

This last quantity is the same as the derivative

d

dx
y(x) = y′(x),

if the functional parametrization were chosen. So, to no surprise, all higher
derivatives

y(k)(x) :=
dk

dxk
y(x),

k ∈ N, are fulfilling that condition. However, there are other quantities like

Q(Γ, x, y(x)) := y(x− ϕ(x)), (1.1.4)

if functional parametrization is taken and ϕ is a suitable function. �

1.1. GENERALIZED SYMMETRIES AND THEIR GENERATORS 19

Definition 1.3. We call a curve function a local curve function, if when written
in functional parametrization it depends only on x and the derivatives y(k)(x),
k = 0, 1, 2, . . ., but not on other properties of the curve.

Example 1.4. The curve functions (1.1.1) (1.1.2) and (1.1.3) are local curve
functions, but (1.1.4) is not a local curve function. �

1.1.2 Groups of transformations and symmetry groups

We are interested in transformations Γ → Γ̃ from one curve Γ to another curve
Γ̃ given by

(x(t), y(t)) → (Q1(Γ, x(t), y(t)), Q2(Γ, x(t), y(t))),

where Q1, Q2 are curve functions. Even more we are interested in families of
such transformations Γ → R(Γ, ε) depending on some parameter ε given by

(x(t), y(t)) → (Q1(Γ, x(t), y(t), ε), Q2(Γ, x(t), y(t), ε)). (1.1.5)

Definition 1.5. A family of transformations (1.1.5) is said to be a one–
parameter group of transformations, if for all Γ and ε1, ε2 we have

R(R(Γ, ε1), ε2) = R(Γ, ε1 + ε2),

R(Γ, 0) = Γ.

Definition 1.6. A transformation (or a group of transformations, respectively)
is said to be a symmetry (or a symmetry group, respectively) for a given ODE,
if solution curves are mapped onto solution curves.

Symmetry groups are difficult to describe, therefore attention is turned onto
their infinitesimal aspects. We consider the derivative of the right–hand–side of
(1.1.5) with respect to ε at ε = 0:

(ξ(Γ, x(t), y(t)), η(Γ, x(t), y(t))) :=
(∂

∂ε |ε=0
Q1(Γ, x(t), y(t), ε),

∂

∂ε |ε=0
Q2(Γ, x(t), y(t), ε)

)
.

Definition 1.7. The map

(Γ, x(t), y(t)) → (ξ(Γ, x(t), y(t)), η(Γ, x(t), y(t)))

is said to be the infinitesimal generator of the transformation family (1.1.5).

20 CHAPTER 1. SYMMETRIES

For reasons of abbreviation, the pair of functions ξ(Γ, x(t), y(t)) and
η(Γ, x(t), y(t)) may also be referred to as the infinitesimal generator of
(1.1.5).

If the family is a group, then this generator characterizes the group uniquely,
i.e. the group can be recovered by some formal type of exponentiation (which
however can only be carried out by solving some differential equations). The
functions coming up in the infinitesimal curve–generator obviously are curve
functions as well. The name curve–generator is chosen in order to avoid mixing
this up with another type of infinitesimal generator for this transformation.

Definition 1.8. A group of transformations is said to be:

(i) A Lie point group, if the functions ξ and η do not depend on Γ, but only
on the point (x(t), y(t)).

(ii) An autonomous group, if ξ = 0, i.e. if when written in functional
parametrization, the independent variable does not change.

(iii) A time–independent group, if when the curve is given in functional
parametrization, the functions ξ and η only depend on y, but not explicitly
on x. If not time–independent, then the group is called time–dependent.

(iv) A local group when the functions ξ and η are local curve functions, i.e.
when the curve is given in functional parametrization, they only depend
on y, eventually on x, and derivatives y(k), k ∈ N, of the dependent variable
y with respect to the independent variable x.

(v) A Lie–Bäcklund group, if it is autonomous and local.

Later on we shall give examples for all these notions, also for non–local groups
(we refer to Chapter 4 for such kinds of groups).

In the sequel we shall show that non–autonomous groups always can be
replaced by autonomous groups, however then for example Lie point groups
become Lie–Bäcklund groups (see Section 1.4). Furthermore we shall see that
time–dependent groups can be replaced by time–independent groups, for that
however dimension of phase space has to be increased (see Section 1.3).

In order to keep closer to the notation used in the literature when dealing with
Lie point symmetries we perform a slight change in notation. We assume (1.1.5)

1.1. GENERALIZED SYMMETRIES AND THEIR GENERATORS 21

constitutes a group and we write

(x(t), y(t)) → (x̃(Γ, x(t), y(t), ε), ỹ(Γ, x(t), y(t), ε))

instead. Then using generators and choosing functional parametrization we find:

x → x̃ = x̃(Γ, x, y, ε) = x + ε ξ(Γ, x, y) + terms of higher order in ε,

y → ỹ = ỹ(Γ, x, y, ε) = y + ε η(Γ, x, y) + terms of higher order in ε.

Here the precise meaning of “terms of higher order in ε” is that the first two
terms constitute the Taylor polynomial of first order in ε.

The functions ξ(Γ, x, y) and η(Γ, x, y) are then in formal analogy as in the usual
theory of Lie point symmetries given by

ξ(Γ, x, y) =
∂

∂ε |ε=0
x̃(Γ, x, y, ε), (1.1.6)

η(Γ, x, y) =
∂

∂ε |ε=0
ỹ(Γ, x, y, ε). (1.1.7)

See e.g. [64], Section 2 of Chapter I, [4], Chapter 2, or [51], Chapter 2.

Now we consider an n-th order ODE of the form

H(x, y(x), y′(x), . . . , y(n)(x)) = 0, (1.1.8)

where

H = y(n)(x)− Φ(x, y(x), y′(x), y′′(x), . . . , y(n−1)(x)). (1.1.9)

As before, y(k)(x), k ∈ N, denotes the k-th derivative of the dependent variable
y with respect to the independent variable x. In order to find infinitesimal
criteria, whether or not a given group of transformations is a symmetry group,
we have to consider (as it is customary in the Lie point transformation case),
how the derivatives y(k)(x) change under such transformations. This leads to
prolongations.

1.1.3 Prolongations

We consider an arbitrary transformation with respect to an arbitrary
parametrization

(x(t), y(t)) → (x̃(Γ, x(t), y(t), ε), ỹ(Γ, x(t), y(t), ε))

22 CHAPTER 1. SYMMETRIES

and compute first ỹ(k), which shall denote the k-th derivative of the curve in
functional parametrization, i.e. the k-th derivative of ỹ with respect to x̃. By
the chain rule we obtain along the curve

d

dx̃
=
(dx̃

dt

)−1 d

dt
.

From this we find

ỹ(k) =

(((dx̃

dt

)−1 d

dt

)k

ỹ(Γ, x(t), y(t), ε)

)
.

The derivative of that with respect to ε at ε = 0 we call the k-th prolongation
of η denoted by η[k](Γ, x(t), y(t)), i.e.

η[k](Γ, x(t), y(t)) =
∂

∂ε |ε=0

(((dx̃

dt

)−1 d

dt

)k

ỹ(Γ, x(t), y(t), ε)

)
. (1.1.10)

Contrary to the literature (see e.g. Chapter I of [64]), we here put the index k
into square brackets, this in order to avoid misinterpreting η[k](Γ, x(t), y(t)) as
a k-th derivative.

Now we have a look at η[k+1] given by

η[k+1](Γ, x(t), y(t)) =
∂

∂ε |ε=0

(dx̃

dt

)−1
(

d

dt

((dx̃

dt

)−1 d

dt

)k

ỹ(Γ, x(t), y(t), ε)

)
.

Now using the product rule for the ε-derivative for this as a product of two
factors, choosing for Γ functional parametrization and keeping in mind that
x̃(ε = 0) = x, ỹ(ε = 0) = y, then we obtain the recursion formula

η[k+1](Γ, x, y(x)) =
d

dx
η[k](Γ, x, y(x)) +

(
∂

∂ε |ε=0

(dx̃

dx

)−1
)

y(k+1).

Now using

∂

∂ε |ε=0

(dx̃

dx

)−1

= −dξ

dx
,

we obtain the final result

η[k+1](Γ, x, y(x)) =
d

dx
η[k](Γ, x, y(x))− dξ

dx
y(k+1). (1.1.11)

1.1. GENERALIZED SYMMETRIES AND THEIR GENERATORS 23

Comparing this with the literature ([64], Section 2.3 of Chapter I, [51], Section
2.3, or [4], Section 2.3.2), where the Lie point case is treated, we see that the
prolongation formulas do not differ from this more special case2.

Prolongations are needed when infinitesimal changes of local curve functions are
to be computed. Consider a local curve function

P := P (x, y(x), y′(x), . . . , y(n)(x)),

n ∈ N, on a curve Γ translated by ε under some one–parameter group of trans-
formations with ξ, η given by (1.1.6) and (1.1.7), i.e. on the curve given by the
points

(x̃(ε), ỹ(ε)) := (x̃(Γ, x(t), y(t), ε), ỹ(Γ, x(t), y(t), ε)).

So, we consider P depending on ε

P (ε) := P (x̃, ỹ(x̃), ỹ′(x̃), . . . , ỹ(n)(x̃))

and want to compute its derivative with respect to ε at ε = 0. Then obviously
by the chain rule we obtain

∂

∂ε |ε=0
P (ε) = ξ(Γ, x, y(x))

∂P

∂x
+

∞∑
k=0

η[k](Γ, x, y(x))
∂P

∂y(k)
.

Of course, this formally infinite series stops after the highest derivatives in P
have been encountered, i.e. in the above notation the index k reaches from 0 to
n.

Definition 1.9. The operator

X = ξ(Γ, x, y(x))
∂

∂x
+

∞∑
k=0

η[k](Γ, x, y(x))
∂

∂y(k)
(1.1.12)

is called the infinitesimal generator of the one–parameter group (on local quan-
tities).

Since the prolongations η[k], k ∈ N, are completely determined by ξ(Γ, x, y(x))
and η(Γ, x, y(x)) and (1.1.11), we may also write for abbreviation

X = ξ(Γ, x, y(x))
∂

∂x
+ η(Γ, x, y(x))

∂

∂y

2In Section 3.7 of [3] an implementation of the prolongation formula for generators of Lie
point symmetries in the computer algebra system Mathematica is discussed.

24 CHAPTER 1. SYMMETRIES

or
X = (ξ(Γ, x, y(x)), η(Γ, x, y(x))).

For an intuitive understanding of further considerations it is helpful to know the
following basic principle:

Remark 1.10. Consider some manifold M (manifold variable denoted by u) and
a submanifold M0 (all sufficiently often differentiable) and some one–parameter
group of transformations R(ε) on M . Then if and only if the vector field

∂

∂ε |ε=0
R(ε)(u)

is tangential to M0 for all points on M0, then the group of transformations R(ε)
leaves M0 invariant3.

Now we return to the differential equations of the form (1.1.8), (1.1.9) respec-
tively, consider H as a local curve function, take M to be the infinite dimensional
manifold of all suitably often differential curves given by functions y(x) and de-
fine M0 to be the submanifold, where H = 0, i.e. the solutions of the ODE under
consideration. Then application of the remark yields:

Theorem 1.11. A general one–parameter group of curve transformations with
infinitesimal generator X (see (1.1.12)) is a symmetry group for the ODE H = 0
(see (1.1.8), (1.1.9)) if and only if 4

XH(x, y, y′, y′′, . . . , y(n)) = 0 mod H = 0. (1.1.13)

Proof. For a proof of this theorem in case of Lie point transformations see [64],
p. 19.

Note that (1.1.13) is equivalent to saying

XΦ(x, y, y′, y′′, . . . , y(n)) = η[n] mod y(n) = Φ (1.1.14)

by (1.1.9).

3Proving this fact here is not really necessary, because whenever we need it for special cases
we will give explicit proofs or references. Furthermore, since proving this to its full extent,
i.e. on infinite dimensional manifolds, we would need a tedious amount of infinite–dimensional
manifold theory, which would go beyond the aim of this thesis.

4Here, XH = 0 mod H = 0 is just the customary way of saying that the expression XH
has to be zero on the submanifold given by H = 0.

1.1. GENERALIZED SYMMETRIES AND THEIR GENERATORS 25

If X is the infinitesimal generator of a Lie point symmetry group, i.e. an
operator, where the functions ξ and η only depend on the points x, y, satisfying
(1.1.13), then X is also referred to as an admissible Lie point operator for
the equation H = 0 (see also Section 1.2.1 of the PhD thesis by A. S. Fokas [21]).

Applications on how to solve ODEs using Lie point symmetries are discussed
in general in [64] and [51] (see there especially Lie’s Theorem in [64] p. 86 or
[51], Theorem 2.64, p. 155).

Equation (1.1.13) is called a determining (partial differential) equation for the
functions ξ(x, y), η(x, y), η[k](x, y, y′, . . . , y(k)), 1 ≤ k ≤ n (see e.g. Section 9.2.2
of [43]). By Theorem 1.11, one can compute the infinitesimal generator of a
symmetry group by solving the determining partial differential equation. How-
ever, this result is rather of theoretical interest for the framework of this thesis,
since in most cases solving (1.1.13) for ξ(x, y), η(x, y), η[k](x, y, y′, . . . , y(k)),
1 ≤ k ≤ n, is as difficult as solving the original ODE (1.1.8).

Of course, the notion of a generator also makes sense in case a corresponding
group is not known and may eventually require solving complicated ODEs or
partial differential equations. Let us complete the notions for this more general
case.

Consider two curve functions

(ξ(Γ, x, y), η(Γ, x, y)).

By these we consider an ε–linear change of the curve by (thus considering (ξ, η)
as the generator of a perturbation of the curve)

x → x̃ = x̃(x, y, ε) = x + ε ξ(Γ, x, y), (1.1.15)

y → ỹ = ỹ(x, y, ε) = y + ε η(Γ, x, y), (1.1.16)

and we form the prolongations in the same way as above, i.e. by using the
formula (1.1.10).

Definition 1.12. Then the operator given by (1.1.12) is said to be an infinitesi-
mal symmetry generator (or for short symmetry generator) for the ODE (1.1.8),
respectively (1.1.9), if (1.1.13) holds.

In this situation any solution of the ODE (1.1.8), respectively (1.1.9), is mapped
by (1.1.15), (1.1.16) onto a curve, which fulfills the equation up to first order in ε.

26 CHAPTER 1. SYMMETRIES

Now the following is obvious:

Remark 1.13. For a given ODE, the symmetry generators form a vector space,
i.e. sums, differences and scalar multiples are again symmetry generators. This
observation is a direct consequence of (1.1.13).

Lemma 1.14. There is one universal symmetry generator for all ODEs (1.1.8),
respectively (1.1.9), namely

(ξ(Γ, x, y), y′ ξ(Γ, x, y)), (1.1.17)

where ξ(Γ, x, y) is some curve function and y = y(x), i.e. functional
parametrization is chosen.

Proof. The k-th prolongation of

η = y′ ξ(Γ, x, y)

is given by
η[k] = ξy(k+1).

This assertion follows using induction by k. For k = 1 and by using (1.1.11),
we obtain

η[1] =
d

dx
η − dξ

dx
y′

=
dξ

dx
y′ + ξy′′ − dξ

dx
y′

= ξy′′.

The same arguments provide the desired result for η[k], k ≥ 1. Choosing X as
in (1.1.12), application of X to the ODE H = 0 yields

XH = ξ
∂H

∂x
+

∞∑
k=1

ξ y(k+1) ∂H

∂y(k)

= ξ
d

dx
H,

which clearly is zero.

Finding for such a generator the corresponding group amounts in the local case
to finding general solutions of systems of ODEs (phase space). For the non–local
case often the group can be determined by solving partial differential equations
(see also Chapter 4).

1.1. GENERALIZED SYMMETRIES AND THEIR GENERATORS 27

1.1.4 Lie point symmetries and first order ODEs

We close this section with a remark on how to use Lie point symmetries to tackle
first order ODEs.

Remark 1.15. In the case of a first order ODE

y′(x) = Φ(x, y(x)) (1.1.18)

the determining equation for the infinitesimals ξ(x, y) and η(x, y) of a Lie point
symmetry admitted by (1.1.18) reads

ηx + (ηy − ξx)Φ− ξyΦ
2 − ξΦx − ηΦy = 0. (1.1.19)

This equation is obtained by applying the symmetry generator X = ξ(x, y) ∂
∂x

+
η(x, y) ∂

∂y
to the right–hand–side of (1.1.18) and afterwards setting the result

equal to zero (modulo (1.1.18)). Hence, given the ODE (1.1.18), computing a
Lie point symmetry means solving the partial differential equation (1.1.19) for
ξ(x, y) and η(x, y). In terms of ξ(x, y), η(x, y) and Φ(x, y) the formal implicit
solution of (1.1.18) can be given in terms of the line integral∫

dy − Φ dx

η − ξ Φ
= c, (1.1.20)

c a constant (see [10] or [4], Section 3.2 concerning solution formulas for first
order ODEs of type (1.1.18) using the generator of a Lie point symmetry).

If we denote the solution of (1.1.18) written in implicit form (1.1.20) by ϕ(x, y),
then there are “constants of integration” c1(y) and c2(x), such that

ϕ(x, y) = −
∫

Φ(x, y)

η(x, y)− ξ(x, y)Φ(x, y)
dx + c1(y),

ϕ(x, y) =

∫
1

η(x, y)− ξ(x, y)Φ(x, y)
dy + c2(x).

The “constants of integration” c1(y) and c2(x) may be computed by comparing
the two representations of ϕ(x, y) and, hence, a more concrete representation
for ϕ(x, y) may be found.

Despite of the compact formula for characterizing the solutions of (1.1.18), the
authors of [10] remark that there are no general rules helping to solve (1.1.19)
for any given Φ.

28 CHAPTER 1. SYMMETRIES

1.2 The methods of Cheb-Terrab et. al. for first

order ODEs

In this section we give a summary of the ideas of Cheb-Terrab et. al. to compute
symmetries of first order ODEs. We mainly refer to the work presented in [10].
The basic algorithmic idea of Cheb-Terrab et. al. to solve first order ODEs
(1.1.18) using Lie point symmetries can be summarized as follows: instead
of trying to find a symmetry of a given ODE from the determining equation
(1.1.19), try to find out if the given ODE belongs to a class of ODEs admitting
a certain form of symmetries. This informal statement and the approach
suggested by Cheb-Terrab et. al. is best explained by considering a concrete
example.

Assume, we want to compute the infinitesimal generator X = ξ(x, y) ∂
∂x

+
η(x, y) ∂

∂y
of a Lie point symmetry of a first order ODE (1.1.18). Furthermore,

assume, the ODE admits a symmetry of the form

X = (F (x) + G(y))
∂

∂x
, (1.2.1)

i.e. ξ(x, y) = F (x) + G(y) and η(x, y) = 0. From this specialized form of the
symmetries and the determining equation (1.1.19), Cheb-Terrab et. al. once
compute the most general class of ODEs admitting a symmetry of this form
by hand (as symbolic pre–processing), i.e. they insert the special form of ξ and
η into the determining equation (1.1.19) for the infinitesimals and solve this
equation for Φ. This provides a representation of Φ in terms of the symmetry
generator:

y′(x) = Φ(x, y) =

((
G(y)y

∫
dx

(F (x) + G(y))2
− I(y)

)
(F (x) + G(y))

)−1

,

(1.2.2)

where I(y) is as an arbitrary function in its argument5.

In the next step, Cheb-Terrab et. al. establish a necessary and sufficient criterion
to decide, whether a given concrete first order ODE of the form (1.1.18) belongs

5 The function or expression I(y) can be viewed a constant of the integration arising from
the integration of 1

(F (x)+G(y))2 with respect to x.

1.2. THE METHODS OF CHEB-TERRAB FOR FIRST ORDER ODES 29

to the class of first order ODEs given by (1.2.2). The first observation is that
whenever a given ODE belongs to the class (1.2.2), one obtains

Φ
∂2

∂x2

(1

Φ

)
=

∂2

∂x2 F (x)

F (x) + G(y)
. (1.2.3)

Hence, a necessary condition for a given ODE of the form (1.1.18) to belong to
the class (1.2.2) is that the differential expression

∂

∂y

((
Φ

∂2

∂x2

(1

Φ

))−1
)

=
∂

∂y

(F (x) + G(y)
∂2

∂x2 F (x)

)
=

∂
∂y

G(y)

∂2

∂x2 F (x)
(1.2.4)

is a product of a function depending only on y and a function depending only
on x, namely the product of ∂

∂y
G(y) and the reciprocal of ∂2

∂x2 F (x).

Assume, for a given first order ODE of the form (1.1.18) we find that (1.2.4)
separates by product in the above mentioned sense. Then the reciprocal of the
factor depending only on x is a candidate for the second derivative of a function
F (x), which may be an essential part of a symmetry generator for the given
ODE. Now, multiplication of the factor arising from (1.2.4) only depending on
x with (1.2.3) and afterwards computing the reciprocal of the result obtained
gives a candidate for F (x) + G(y).

If (1.2.4) separates by product in x and y and a candidate for F (x) + G(y)
is computed in the above mentioned manner, then a sufficient condition for
the ODE under consideration to admit a Lie point symmetry with infinitesimal
generator X = (F (x) + G(y)) ∂

∂x
is that the expression

∂

∂x

(
(F (x) + G(y))Φ

)
+ Φ2 ∂

∂y

(
F (x) + G(y)

)
(1.2.5)

is equal to zero. The correctness of this criterion can be seen from the proofs
of Proposition 3 and Proposition 4 in [10].

What is remarkable is that the sufficient and necessary criterion to decide,
whether a given first order ODE of the form (1.1.18) admits a Lie point
symmetry of the form (1.2.1), does not require solving any auxiliary ODEs
or even partial differential equations to find a symmetry generator of the

30 CHAPTER 1. SYMMETRIES

prescribed form. This fact is indeed the main aspect, why the algorithms
presented in [10] are so efficient. According to the authors of [10], many of
the ODEs presented in [45] admit relatively simple symmetry patterns such as
(1.2.1).

Of course, the authors of [10] succeeded in classifying many further ODEs due
to other symmetry patterns. To name a few more: the patterns for Lie point
symmetry generators of the form X = (F (x) + G(y)) ∂

∂y
, X = F (x)G(y) ∂

∂x
,

X = F (x)G(y) ∂
∂y

, X = F (x) ∂
∂x

+ G(x) ∂
∂y

, X = F (y) ∂
∂x

+ G(y) ∂
∂y

, etc. and
the corresponding classes of ODEs admitting such generators have successfully
been classified.

We do not state these results here in detail. The main point to keep in mind
is that in the case of first order ODEs of the form (1.1.18), efficient methods
to compute symmetries and thereby solutions of the ODEs are still available.
Additionally, these methods provide algorithms to compute symmetry gener-
ators, which are relatively simple to implement in any computer algebra system.

Once, the symmetry generator of a given ODE is detected, the solutions can be
represented in implicit form using (1.1.20).

Note that the results presented in this section are only applicable to first order
ODEs of the form (1.1.18). Cheb-Terrab et. al. also published some results
concerning the computation of Lie point symmetries of second order ODEs
(see [9]). Unfortunately, as far as we know, the results concerning the solution
of second order ODEs of the form y′′(x) = Φ(x, y(x), y′(x)) using symmetry
methods and elaborate pattern matching as in the case of first order ODEs are
not published in detail. The paper [9] presenting the ideas for second order
ODEs is more a technical documentation of a special implementation in the
computer algebra system Maple than a detailed description of the underlying
mathematical ideas.

The reasons for not giving a detailed description of the ideas seem unclear. We
suppose that the methods using Lie point symmetries to compute solutions of
ODEs of order two or even higher order did not produce the desired results in
practice or are at least not that efficient as desired. The reason for this fact
certainly may be that because of the relevance of Lie–Bäcklund symmetries
for these equations the class of equations, which can be solved by Lie point
symmetries, is not as exhaustive as in the first order case. But this is specula-

1.3. SYMMETRIES OF EVOLUTION EQUATIONS 31

tion. As computational tasks the authors mention in general the determining
of certain differential invariants, the determining of first integrals and, finally,
the determining of canonical coordinates for the associated Lie group. The
emphasis lies on the word group, since the knowledge of the complete symmetry
group allows to reduce the order of the ODE under consideration by 1 (see
e.g. [51], page 140 ff.).

Cheb-Terrab et. al. seem to favor integrating factor methods for treating ODEs
of order at least 2 as it becomes clear by further publications, where symmetry
methods do not seem to obtain further attention by the authors.

We will now consider evolution equations in phase space and symmetries of
such equations. This provides the general setting for formulating the new and
yet unpublished results by B. Fuchssteiner concerning the integration of higher
order ODEs, when sufficiently many symmetry generators are available.

1.3 Symmetries in the context of evolution

equations

Let M be some C∞-manifold, the manifold variable we denote by u, and u(t),
t ∈ R, denotes the variable for a C∞-curve on M , i.e. the variable on the manifold
of all C∞-curves on M . For abbreviation we use ut to denote the derivative of
u(t) with respect to t. So, in order to avoid overabundance of notation when
it is obvious that a curve is meant we write u instead of u(t). We consider the
evolution equation

ut = K(u), (1.3.1)

where K(u) is some vector field on M . In the following we deal with symmetries
of equations of the form (1.3.1).

Note that the right–hand–side of (1.3.1), i.e. the vector field K(u), is assumed
not to depend explicitly on the independent variable t. In the literature, e.g. in
the well–known book by P. J. Olver [51], one distinguishes between the notion
of time–dependent symmetries and symmetries, which do not explicitly depend
on the independent variable.

However it turns out that by introducing an additional component for the
points on the manifold one is able to consider any time–dependent symmetry as

32 CHAPTER 1. SYMMETRIES

a time–independent symmetry on this modified manifold. So for our purposes
and in the whole course of this thesis it will turn out to be sufficient to consider
only symmetries and evolution equations not explicitly depending on the
independent variable, since we can always switch to phase space representation
with one component more (see also Remark 1.19 below).

We consider one–parameter groups of C∞–diffeomorphisms on the manifold M ,
which for reasons of abbreviation will simply be referred to as diffeomorphisms.
A C∞–diffeomorphism is a one–to–one infinitely often differentiable map such
that its inverse is again infinitely often differentiable. A one–parameter diffeo-
morphism group is a map

(u, t) → R(t)(u)

infinitely often differentiable on the product M × R = {(u, t) | u ∈ M, t ∈ R}
assigning to each t ∈ R a diffeomorphism R(t) on M such that

R(t1 + t2) = R(t1) ◦R(t2),

R(0) = id,

for all t1, t2 ∈ R, where ◦ denotes the composition of maps and id the identity
map6.

Remark 1.16. Transformation groups on M and equations of the form (1.3.1)
are closely connected in the following way: If (1.3.1) has for all t and all initial
conditions u(t = 0) = u0 a unique solution7 denoted by u(t, u0), then the map

(u0, t) → R(t)(u0) := u(t, u0)

defines a transformation group, whose infinitesimal generator is K(u).

The proof is a simple argument coming from the fact that the right–hand–side
of (1.3.1) does not explicitly depend on t, i.e. the solution for the initial
condition u(t = t0) := u(t0, u0) is the same as u(t, u0).

If R(t), t ∈ R, is a one–parameter diffeomorphism group, then

Γ(u) :=
d

dt |t=0
R(t)

6This implies that all the maps R(t) commute and that R(−t) is the inverse of R(t), t ∈ R.
7We do not discuss theoretical uniqueness conditions in the framework of this thesis. There

are generalizations, e.g. of the well–known Picard Theorem for ODEs, which can be applied
in the general setting of evolution equations (see e.g. [1], Chapter 2).

1.3. SYMMETRIES OF EVOLUTION EQUATIONS 33

is again said to be its infinitesimal generator. The generator Γ may be computed
using the directional derivative

Γ(u) =
∂

∂ε |ε=0
(R(t + ε)(u))|t=0 . (1.3.2)

By JΓ, KK we denote the commutator of the vector fields K and Γ defined as

JΓ, KK(u) := K ′(u)[Γ(u)]− Γ′(u)[K(u)]

:=
∂

∂ε |ε=0

(
K(u + ε Γ(u))− Γ(u + ε K(u))

)
. (1.3.3)

The derivatives K ′(u)[Γ(u)] and Γ′(u)[K(u)] are also referred to as directional
derivatives in the literature (see e.g. [51], Section 4.1 on variational calculus).

A one–parameter diffeomorphism group R(t), t ∈ R, is said to be a symmetry
group for (1.3.1), if it maps solutions of (1.3.1) to solutions of (1.3.1).

For details on the above stated definitions we refer to [51].

The following theorem gives exactly that kind of characterization of symmetries
of evolution equations, which will be used for the rest of this chapter.

Theorem 1.17. The generator Γ(u) of a one–parameter diffeomorphism group
is the generator of a symmetry group for (1.3.1) if and only if JΓ, KK = 0.

Proof. The proof follows from [51], Proposition 5.19, p. 310.

Methods on how to use symmetries in the context of evolution equations to
compute solutions of such equations are discussed in detail in [51].

Again, especially in view of Remark 1.16, the notion of a generator also makes
sense in case a corresponding group is not known and may require solving further
ODEs or partial differential equations:

Definition 1.18. A C∞–vector field Γ(u) is said to be an infinitesimal symmetry
generator (or for short symmetry generator) for (1.3.1), if JΓ, KK = 0 holds.

34 CHAPTER 1. SYMMETRIES

Remark 1.19. Any n-th order ODE of the form (1.1.8), respectively (1.1.9),
can be written in phase space notation as

y
y′

...
y(n−1)

x


t︸ ︷︷ ︸

=:~ut

=


y′

y′′

...
Φ(x, y, y′, . . . , y(n−1))

1


︸ ︷︷ ︸

=: ~K(~u)

(1.3.4)

with initial condition x(t = 0) = 0. Hence, the solutions of (1.3.4) and (1.1.9)
differ only insofar as (1.3.4) contains in addition to those solutions from (1.1.9)
all those solutions obtained by a translation of the independent variable x.

How Lie point symmetries of n-th order ODEs can be transformed to symmetries
of the corresponding evolution equations in phase space, is summarized in the
next section.

1.4 Transformation of Lie point symmetries to

phase space

Since we want to view any n-th order ODE as an evolution equation in phase
space, we need a way to transform Lie point symmetries to symmetries of
the type presented in the preceding section. The problem is that in the
definition of Lie point symmetries we considered point transformations affecting
the dependent variable y = y(x) and the independent variable x. In the
above presented symmetry definition 1.18 for equations of type (1.3.1), the
symmetry generator does not explicitly depend on the independent variable:
the symmetries in the context of evolution equations do not transform the
independent variable (time–independent symmetry).

Hence, we first have to present a way how to transform a Lie point symmetry
generator arising from a point transformation affecting the independent variable
to a Lie–Bäcklund symmetry defined by another transformation not affecting
the independent variable. This transformation is given in the following lemma8:

8See also Theorem 5.2.3-1. in Section 5 on Noether’s Theorem and Lie–Bäcklund Symme-
tries of [4]. Lemma 1.20 is special case of this result. We give a more elementary proof of this
result than the one presented in [4].

1.4. LIE POINT SYMMETRIES IN PHASE SPACE 35

Lemma 1.20. The generator

(ξ(x, y), η(x, y))

is a symmetry generator for (1.1.8), respectively (1.1.9), if and only if

(0, η(x, y)− ξ(x, y) y′) (1.4.1)

is a symmetry generator for (1.1.8), respectively (1.1.9).

Proof. By Lemma 1.14, (ξ(x, y), y′ ξ(x, y)) is a symmetry generator (universal
symmetry generator) for (1.1.8), respectively (1.1.9). Hence, using Remark 1.13,
(ξ(x, y), η(x, y)) is a symmetry generator for (1.1.8), respectively (1.1.9), if and
only if (0, η(x, y)− ξ(x, y) y′) is a symmetry generator for the ODE.

Lemma 1.20 implies that whenever X = (ξ(x, y), η(x, y)) is the generator
of a Lie point symmetry group in the sense of Definition 1.8 (i), then
X̃ = (0, η(x, y)− ξ(x, y) y′) is a generator of the Lie–Bäcklund symmetry group
in the sense of Definition 1.8 (v), i.e. the generator of an autonomous and local
symmetry group (which might of course not be known explicitly).

Now each of the symmetry generators of the type (1.4.1) does not affect the
independent variable x. Hence, we can interpret each of these as a symmetry of
the general type presented in the preceding section in the context of evolution
equations.

Proposition 1.21. Let

X = (η(x, y)− ξ(x, y) y′)
∂

∂y

be a symmetry generator of (1.1.8), respectively (1.1.9), and set

~u =


y
y′

...
y(n−1)

x


as in Remark 1.19. Then

~Γ(~u) =


η − ξy′

η[1] − ξy′′

...
η[n−1] − ξΦ

0

 (1.4.2)

36 CHAPTER 1. SYMMETRIES

is a symmetry generator for the evolution equation (1.3.4) in the sense of Defi-
nition 1.18, where η[1], η[2], . . . , η[n−1] are to be computed using recursion formula
(1.1.11) for the prolongations.

Proof. We have to show that J~Γ, ~KK is the zero vector. We have

J~Γ, ~KK =

u

wwwww
v


η − ξy′

η[1] − ξy′′

...
η[n−1] − ξΦ

0

 ,


y′

y′′

...
Φ(x, y, y′, . . . , y(n−1))

1



}

�����
~

.

The first component of the above vector is given by

1[η[1] − ξy′′]− (η − ξy′)y[y
′]− (η − ξy′)y′ [y

′′]− (η − ξy′)x[1]

= η[1] − ξy′′ − (ηy − ξyy
′)y′ + ξy′′ − ηx + ξxy

′

= η[1] + y′
dξ

dx
− dη

dx
= 0

by (1.1.11). For the second component we obtain

1[η[2] − ξy′′′]− (η[1] − ξy′′)y[y
′]− (η[1] − ξy′′)y′ [y

′′]− (η[1] − ξy′′)y′′ [y
′′′]−

(η[1] − ξy′′)x[1]

= η[2] − ξy′′′ − (η[1]
y − ξyy

′′)y′ − η
[1]
y′ y

′′ + ξy′′′ − η[1]
x + ξxy

′′

= η[2] + y′′
dξ

dx
− dη[1]

dx
= 0

again by (1.1.11). By the same simple computations, the first n−2 components

of the commutator of ~Γ and ~K vanish. The last component vanishes, since the
n-th components of ~Γ and ~K are constant. The (n− 1)-st component of J~Γ, ~KK
is given by

Φy[η − ξy′] + Φy′ [η
[1] − ξy′′] + . . . + Φy(n−1) [η[n−1] − ξΦ]− (η[n−1] − ξΦ)y[y

′]−
(η[n−1] − ξΦ)y′ [y

′′]− . . .− (η[n−1] − ξΦ)y(n−1) [Φ]− (η[n−1] − ξΦ)x[1]

= ξΦx + ηΦy + η[1]Φy′ + . . . + η[n−1]Φy(n−1) −
dη[n−1]

dx
+ Φ

dξ

dx

= η[n] − dη[n−1]

dx
+ Φ

dξ

dx
= 0,

1.5. INTEGRATION VIA COMMUTING SYMMETRIES 37

where we have used Theorem 1.11, to conclude that ξΦx + ηΦy + η[1]Φy′ + . . . +
η[n−1]Φy(n−1) = η[n], and again (1.1.11).

Lemma 1.20 and Proposition 1.21 directly imply

Theorem 1.22. Any symmetry generator of the form (ξ(x, y), η(x, y)) of an
ODE of the form (1.1.8), respectively (1.1.9), can be transformed to a symmetry
generator of the corresponding evolution equation (1.3.4).

Remark 1.23. If a symmetry generator of (1.1.8), respectively (1.1.9), is of the
form

(0, η(x, y)),

one simply has to set ξ(x, y) = 0 in Proposition 1.21. Then the formulas are
still correct, i.e. the symmetry generator (1.4.2) of the corresponding evolution
equation (1.3.4) is given by

~Γ(~u) =


η

η[1]

...
η[n−1]

0

 .

1.5 Complete integration via commuting sym-

metry generators

In this section we discuss a new and yet unpublished result established by
B. Fuchssteiner and present some new applications of this result to certain
classes of differential equations. The result can be formulated in the general
setting of evolution equations. So we first have to fix some notations and to
summarize some well–known results to be used later on.

1.5.1 Tensors, Lie derivatives and exterior derivatives

The following definitions and results from the fields of differential forms and
tensor analysis can be found e.g. in [57]. We only give a very rough and short
summary to fix the notation concerning those aspects, which we will need later
on.

38 CHAPTER 1. SYMMETRIES

Let now the manifold M be some (n+1)-dimensional vector space9 V . By L(V)

we denote the set of all vector fields on V , by L̂(V) the set of all covector fields
on V and by F(V) the set of all scalar fields on V . Vector fields will be written as
column vectors, whereas covector fields will be represented by row vectors. The
application of a covector field Γ ∈ L̂(V) to some vector field K ∈ L(V) will be
denoted by 〈Γ, K〉. The set of all n-times-covariant and m-times-contravariant

tensors on V is denoted by T(n,m)(V). For a fixed Γ(u) ∈ L̂(V) the map defined
by

T1 : L(V) → F(V), K 7→ 〈Γ, K〉

is a 1-times-covariant tensor, i.e. we identify L̂(V) as a subset of T(1,0)(V). For
K(u) ∈ L(V) the map

T2 : L̂(V) → F(V), Γ 7→ 〈Γ, K〉

is a 1-times-contravariant tensor, i.e. we identify L(V) as a subset of T(0,1)(V).

We summarize some basic definitions and properties of Lie derivatives LK with
respect to a vector field K ∈ L(V):

• If f(u) ∈ F(V), then the Lie derivative of f(u) with respect to K(u) is
defined as

LKf(u) := 〈grad f(u), K(u)〉,
where by grad f(u) we denote the gradient of f with respect to u, i.e. the
covector field (

∂
∂u0

f(u) ∂
∂u1

f(u) · · · ∂
∂u1

f(u)
)
,

if u0, u1, . . . , un are the n + 1 components of u.

• If G(u) ∈ L(V), then the Lie derivative of G(u) with respect to K(u) is
defined as

LKG(u) := JK(u), G(u)K,

where JK(u), G(u)K again denotes the commutator of K(u) and G(u) as
defined in (1.3.3).

• For Γ(u) ∈ L̂(V) and G(u) ∈ L(V), the Lie derivative of Γ(u) with respect
to K(u) is defined by

〈LKΓ(u), G(u)〉 := LK(〈Γ(u), G(u)〉)− 〈Γ(u), LKG(u)〉.
9The definitions are nearly the same, when considering a general manifold M , which is

in general not a vector space. For our purposes it is sufficient, to consider the more special
situation of vector spaces.

1.5. INTEGRATION VIA COMMUTING SYMMETRIES 39

We assume that in the above stated results and the following course of this
section all necessary differentiations can be performed without explicitly
pointing this out.

For arbitrary n-times-covariant-m-times-contravariant tensors T ∈ T(n,m)(V),

K1, . . . , Kn ∈ L(V) and Γ1, . . . , Γm ∈ L̂(V), the Lie derivative LKT of T with
respect to K ∈ L(V) is the linear map LK : T(n,m)(V) → T(n,m)(V) defined by

(LKT)(K1, . . . , Kn, Γ1, . . . , Γm) = LK(T (K1, . . . , Kn, Γ1, . . . , Γm))−
n∑

i=1

T (K1, . . . , Ki−1, LKKi, Ki+1, . . . , Kn, Γ1, . . . , Γm)−

m∑
j=1

T (K1, . . . , Kn, Γ1, . . . , Γj−1, LKΓj, Γj+1, . . . , Γm).

In the following we will not consider Lie derivatives on arbitrary tensors. We
simply need the above definition to present the general definition of the exterior
derivative.

Note that the product rule holds for Lie derivatives, i.e.

LK(〈Γ(u), G(u)〉 = 〈LKΓ(u), G(u)〉+ 〈Γ(u), LKG(u)〉

for all K(u), G(u) ∈ L(V) and Γ(u) ∈ L̂(V). This is a direct consequence of
the definition of the Lie derivative of a covector field.

In the following the application of arbitrary tensors to vector fields and covector
fields, respectively, is denoted as multiplication. The exterior derivative d is the
linear map

d : T(n,0)(V) → T(n+1,0)(V),

recursively defined by

d(0) := 0,

〈df(u), K(u)〉 := LKf(u),

(dT) ·K(u) := LK(T)− d(T ·K(u))

for all f(u) ∈ F(V), K(u) ∈ L(V) and T ∈ T(n,0)(V), n ∈ N.

40 CHAPTER 1. SYMMETRIES

We will only consider exterior derivatives of scalar fields and covector fields.
Note that for f(u) ∈ F(V) and K(u) ∈ L(V) we have

〈df(u), K(u)〉 = 〈grad f(u), K(u)〉.

For a covector field Γ(u) ∈ L̂(V) and K(u) ∈ L(V) we obtain

(dΓ) ·K(u) = LKΓ(u)− d(〈Γ(u), K(u)〉).

Remark 1.24. (Existence of potentials) Let Γ(u) ∈ L̂(V) be a closed covec-
tor field, i.e. dΓ(u) = 0. Then at least locally there is a scalar field s(u) ∈ F(V),
such that

ds(u) = Γ(u).

Such a scalar field s(u) will also be referred to as a potential of the covector
field Γ(u). This result is known as the famous Poincaré Lemma (see also [51],
Section 1.5 on differential forms)10.

1.5.2 An integrability result

We use the same notation as in the preceding part of this section, i.e. the
manifold is an (n + 1)–dimensional vector space V .

Consider the evolution equation

ut = K0(u), (1.5.1)

u = u(t), t ∈ R, and K0 a vector field in u. Let K1(u), . . . , Kn(u) be symmetry
generators for (1.5.1), i.e.

JK0(u), Ki(u)K = 0

for all 1 ≤ i ≤ n. Furthermore we assume that

• {K0(u), K1(u), . . . , Kn(u)} ⊆ V is set of linear independent vector fields
for each u = u(t), t ∈ R

and

• JKi(u), Kj(u)K = 0 for all 1 ≤ i, j ≤ n.

10The underlying setting in Section 1.5 on differential forms of [51] is much more general
than we will need here. For our purposes the closed covector fields under consideration will
simply be gradients of scalar functions.

1.5. INTEGRATION VIA COMMUTING SYMMETRIES 41

We fix a point u(0) ∈ V and parameterize the line between u(0) and some
arbitrary point u ∈ V via

U(λ, u) = u(0) + λ(u− u(0)) (1.5.2)

for 0 ≤ λ ≤ 1. Since {K0(u), K1(u), . . . , Kn(u)} ⊆ V is linear independent
(i.e. a basis of V), we find scalar coefficients βi(λ, u), 0 ≤ i ≤ n, such that

u− u(0) =
n∑

i=0

βi(λ, u) Ki(U(λ, u)). (1.5.3)

Define

sj(u) =

∫ 1

0

βj(λ, u) dλ (1.5.4)

for all 0 ≤ j ≤ n.

Theorem 1.25. (B. Fuchssteiner, 2005) Under the above assumptions we
define covector fields Γ0(u), . . . , Γn(u), such that

〈Γi(u), Kj(u)〉 = δij

for all 0 ≤ i, j ≤ n, where by δij we denote the usual Kronecker symbol, i.e. δij =
1 when i = j and δij = 0 otherwise. Then:

(i) LKj
(Γi) = 0 for all 0 ≤ i, j ≤ n.

(ii) Γi is a closed covector field for all 0 ≤ i ≤ n.

Proof. Note that since {K0(u), . . . , Kn(u)} forms a basis of V , it is sufficient
to characterize the covector fields Γ0(u), . . . , Γn(u) by their application to
K0(u), . . . , Kn(u). The rest follows by taking linear combinations.

(i) We have LKj
(〈Γi, Ks〉) = LKj

(δis) = 0 for all 0 ≤ i, j, s ≤ n. Furthermore
LKj

(Ks) = JKj, KsK = 0. By the product rule for Lie derivatives, we find

0 = LKj
(〈Γi, Ks〉) = 〈LKj

(Γi), Ks〉+ 〈Γi, LKj
(Ks)〉︸ ︷︷ ︸

=0

,

i.e. 〈LKj
(Γi), Ks〉 = 0. Since {K0(u), K1(u), . . . , Kn(u)} ⊆ V is a basis of V

and 〈LKj
(Γi), Ks〉 = 0 holds for all 0 ≤ s ≤ n, it follows LKj

(Γi) = 0. This

42 CHAPTER 1. SYMMETRIES

proves the first assertion of the theorem.

(ii) Since
(dΓi) ·Ks = LKs(Γi)︸ ︷︷ ︸

=0

−d(〈Γi, Ks〉︸ ︷︷ ︸
δis

),

for all 0 ≤ s ≤ n, it follows d(Γi) = 0, i.e. Γi is a closed vector field for all
0 ≤ i ≤ n.

The central result of this section is the following theorem, which shows how to
characterize the solutions of any evolution equation of the form (1.5.1) under
the assumption that we have n commuting and linear independent symmetry
generators.

Theorem 1.26. (B. Fuchssteiner, 2005) The solutions of the evolution equa-
tion (1.5.1) are then characterized in implicit form by

s0(u(t))
s1(u(t))

...
sn(u(t))

 =


s0(u(0)) + t
s1(u(0))

...
sn(u(0))

 , (1.5.5)

where the si(u(t)), 0 ≤ i ≤ n, are defined as in (1.5.4).

Proof. Let Γ0(u), . . . , Γn(u) be the covector fields as defined in Theorem 1.25.
For j ∈ {0, . . . , n} it follows from (1.5.3) and the definition of the covector field
Γj that

〈Γj(U(λ, u)), u− u(0)〉 =
〈
Γj(U(λ, u)),

n∑
i=0

βi(λ, u) Ki(U(λ, u))
〉

=
n∑

i=1

βi(λ, u) · 〈Γj(U(λ, u)), Ki(U(λ, u))〉︸ ︷︷ ︸
=δij

= βj(λ, u).

Hence, by (1.5.4) we obtain

sj(u) =

∫ 1

0

βj(λ, u) dλ

=

∫ 1

0

〈Γj(U(λ, u)), u− u(0)〉 dλ

=

∫ 1

0

〈Γj(u(0) + λ · (u− u(0))), u− u(0)〉 dλ,

1.5. INTEGRATION VIA COMMUTING SYMMETRIES 43

i.e. sj(u) is a potential of Γj(u) and dsj(u) = Γj(u). It follows :

d

dt
sj(u) = 〈dsj(u), ut〉 = 〈Γj(u), K0(u)〉 = δ0j,

i.e.
d

dt
s0(u(t)) = 1 and

d

dt
si(u(t)) = 0,

for 1 ≤ i ≤ n. Here we have used (1.5.1) to replace ut by K0(u). This completes
the proof of the theorem.

Remark 1.27. This theorem should not be mixed up with Lie’s celebrated
result (see e.g. [64] p. 86 or [51], Theorem 2.64, p. 155). Lie’s result deals
with the case of Lie point symmetries and the present result with flows in n-
dimensional space, which corresponds — if ODEs of higher order are considered
— to the case of Lie–Bäcklund symmetries. The difference to Lie’s theorem
becomes clear by the fact that generators for Lie point are two dimensional
flows11.

In Remark 1.19 on page 33 we stated that we can always write any ODE in
the scalar case in phase space notation, i.e. we can view any such ODE as an
evolution equation of the form (1.5.1).

Hence, Theorem 1.26 is applicable to those types of differential equations of the
form (1.1.9), which we discussed in Section 1.1 and Section 1.2 and, especially,
in the context of Lie point symmetries. The methods of Cheb-Terrab et. al. can
be transferred to the more general setting of Theorems 1.25 and 1.26 as we will
see in the following part of this chapter. Further examples and applications
making use of Theorem 1.26 are discussed in the next subsection.

Remark 1.28. In the proof of Theorem 1.26 we saw that the functions si(u),
0 ≤ i ≤ n, as defined in (1.5.4) can be obtained as the potentials of the cov-
ector fields Γi(u), 0 ≤ i ≤ n, as defined in Theorem 1.25. When applying the
results of Theorem 1.25 and Theorem 1.26 to ODEs, where sufficiently many
independent commuting symmetry generators are known, we practically pro-
ceed as follows: in a first step we compute the phase space representation of the
ODE and the symmetry generators providing the vector fields Ki(u), 0 ≤ i ≤ n,

11 A generalization of the results stated in Theorem 1.25 and Theorem 1.26 combining
symmetries and conserved quantities of an evolution equation is sketched in the framework
of Section 3.6.4 on page 181 at the end of Chapter 3, where we discuss open problems and
perspectives.

44 CHAPTER 1. SYMMETRIES

where K0(u) = K(u) corresponds to the right–hand–side of the phase space
representation of the ODE to be solved. We then create the matrix

A[K0,...,Kn] =
(

K0(u) · · · Kn(u)
)
, (1.5.6)

whose i-th column consists of the vector field Ki(u) for 0 ≤ i ≤ n. Then we
compute the inverse A−1

[K0,...,Kn] of A[K0,...,Kn] and obtain

A−1
[K0,...,Kn] =

 Γ0(u)
...

Γn(u)

 ,

i.e. the i-th row of the matrix A−1
[K0,...,Kn] gives the covector field Γi(u) for

0 ≤ i ≤ n. Since Γi(u) is closed, we can compute the potential si(u) of Γi(u)
for 0 ≤ i ≤ n.

The solutions of the ODE under consideration are then characterized by the
conserved quantities

s0(u) = c0 + t,

s1(u) = c1,

...

sn(u) = cn,

where c0, c1, . . . , cn are constants of integration, which are determined by suit-
able initial values for the ODE under consideration. By conserved quantities
we mean that si(u), 1 ≤ i ≤ n, does not change along the orbits of (1.5.1),
which is the case if and only if LKsi(u) = 0 for 1 ≤ i ≤ n (i.e. the application
of the gradient of si(u), 1 ≤ i ≤ n, to the vector field K(u) provides 0). In the
case of s0(u), we obtain LKs0(u) = 1.

The scalar quantities si(u), 0 ≤ i ≤ n, can be viewed as new coordinates, in
which the original flow given by (1.5.1) becomes linear in t with respect to
the first coordinate12 s0(u) and constant with respect to all other coordinates
si(u), 1 ≤ i ≤ n. From a more general viewpoint, the set of all u satisfying
s0(u) = c0 + t, s1(u) = c1, . . . , sn(u) = cn contribute an invariant manifold
associated with (1.5.1). See also Chapter I of [21] for details.

12A coordinate with this property is also known as an action angle variable.

1.5. INTEGRATION VIA COMMUTING SYMMETRIES 45

Note that to invert A[K0,...,Kn] means to compute the inverse of a matrix
with symbolic coefficients. Using standard Gaussian elimination to compute
A−1

[K0,...,Kn] may not be efficient enough for larger values of n, since the perfor-
mance of standard Gaussian elimination on symbolic matrices suffers from an
increasing expression swell. This expression swell arises from the division by
pivot elements during the elimination process. Costly normalization strategies
have to be applied to the arising matrix components on the one hand to keep
the components as small and simple as possible and on the other hand to be
able to decide, which elements serve as pivot elements in the elimination process
(i.e. one has to decide, whether a complex symbolic expression simplifies to
zero or not).

Hence, in a practical implementation of the above proposed strategy it is
essential to use specialized algorithms for the inversion of symbolic matrices to
keep up efficiency. Such an algorithm, which works fine in practice and in the
examples we considered, is proposed by Sasaki and Murao in [55]13.

We will consider some examples at the end of the next subsection, where we
perform such computations for concrete ODEs.

1.5.3 Examples and applications

We now discuss some applications of Theorem 1.25 and Theorem 1.26. The
idea of this section is on the one hand to show, how well–known methods
for solving ODEs, such as separation of variables for first order ODEs and
Lie symmetry methods, can be obtained and interpreted in the theoretical
framework of Theorem 1.25 and Theorem 1.26. On the other hand we will
discuss the application of Theorem 1.26 to systems of ODEs with constant
coefficients to see, which kind of solution formulas can be deduced using
the new symmetry methods. Furthermore we consider a combination of the
methods by Cheb-Terrab et. al. used in [7], [9], [10], [13] and the results of
Theorem 1.26 for the case of second order linear ODEs.

In the first example we show that Theorem 1.25 and Theorem 1.26 applied in
the case of first order ODEs of the form y′(x) = f(y(x)) provide the well–known
formula for separation of variables.

13An implementation of these methods is already available in the standard distribution of
the MuPAD library “linalg” for linear algebra computations.

46 CHAPTER 1. SYMMETRIES

Example 1.29. (Separation of variables) Consider the ODE

y′(x) = f(y(x)) (1.5.7)

for some given function f in its argument. When looking at standard text books
about ODEs (see e.g. [66]), formally the solution of such an ODE is computed
via the method of separation of variables, i.e. we write

dy

dx
= y′(x) = f(y)

and then obtain the solution in implicit form as∫ y

y(0)

1

f(z)
dz = x + c,

where c denotes some constant of integration and y(0) some suitable initial
value to be considered.

Now we consider the problem of solving (1.5.7) with the help of Theorem
1.26. Since the phase space for the ODE (or vector space as considered in
Theorem 1.26) is 1-dimensional, we are in the case n = 0, i.e. in the notation
of the preceding subsection we do not need any further symmetry generator to
characterize the solutions of y′(x) = f(y(x)) with the help of Theorem 1.26.

It follows from (1.5.3) that

y − y(0) = β(λ, y)f(y(0) + λ(y − y(0))),

and, hence,

β(λ, y) =
y − y(0)

f(y(0) + λ(y − y(0)))
.

Thus, by (1.5.4) we obtain

s(y) =

∫ 1

0

y − y(0)

f(y(0) + λ(y − y(0)))
dλ =

∫ y

y(0)

1

f(z)
dz

by using the apparent substitution z := y(0) + λ(y − y(0)). By Theorem 1.26,
the solutions of y′(x) = f(y(x)) are implicitly given by s(y) = s(y(0)) + x,
which directly corresponds to the representation of the solutions obtained from
the method of separation of variables. �

1.5. INTEGRATION VIA COMMUTING SYMMETRIES 47

In Section 1.4 on page 34 we discussed, how to transform the generators of
Lie point symmetries to symmetry generators in phase space notation. In the
following example we see that in the case of a first order ODE and a given
Lie point symmetry, application of Theorem 1.26 provides the same solution
formula as stated in (1.1.20) on page 27.

Especially, this implies that the results to solve ODEs via symmetry methods
already established by Cheb-Terrab et. al. in [7], [9], [10], [12] and [13] can
directly be transferred to the more general setting of Theorem 1.26.

Example 1.30. (Lie point symmetries of first order ODEs) We consider
a general first order ODE of the form

y′(x) = Φ(x, y(x)) (1.5.8)

and assume that (1.5.8) admits a Lie point symmetry with symmetry generator

X = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y
. (1.5.9)

In phase space notation as introduced in Remark 1.19 on page 33 we have to
consider

u =

(
y
x

)
i.e. the ODE (1.5.8) corresponds to the evolution equation

ut =

(
Φ(u)

1

)
︸ ︷︷ ︸

=K0(u)

.

In Section 1.4 on page 34 we stated how to transform the generator of a Lie
point symmetry to phase space. In our situation, this provides the vector field

K1(u) =

(
η(u)− ξ(u) · Φ(u)

0

)
(1.5.10)

corresponding to the symmetry generator (1.5.9). To compute the potentials of
the coefficients β1(λ, u) and β2(λ, u) in the linear combination of K0(U(λ, u))
and K1(U(λ, u)) as stated in (1.5.3) on page 41, we choose a straight line as
parameterization between u(0) and u, i.e.

U(λ, u) = u(0) + λ(u− u(0)) =

(
y(0) + λ(y − y(0))

λx

)
.

48 CHAPTER 1. SYMMETRIES

Then we obtain

K0(U(λ, u)) =

(
Φ(U(λ, u))

1

)
,

K1(U(λ, u)) =

(
η(U(λ, u))− ξ(U(λ, u))Φ(U(λ, u))

0

)
.

We have to consider the system of linear equations

u− u(0) = β0(U(λ, u)) K0(U(λ, u)) + β1(U(λ, u)) K1(U(λ, u)),

whose solution is given by

β0 = x,

β1 =
y − y(0)− x · Φ(U(λ, u))

η(U(λ, u))− ξ(U(λ, u))Φ(U(λ, u))
.

Hence, it follows

s0(u) =

∫ 1

0

x dλ = x + c0,

s1(u) =

∫ 1

0

y − y(0)− x · Φ(U(λ, u))

η(U(λ, u))− ξ(U(λ, u))Φ(U(λ, u))
dλ,

where c0 denotes a constant of integration.

We may write the integral defining s1(u) in the form

s1(u) =

∫ 1

0

〈(
1

η(U(λ,u))−ξ(U(λ,u))Φ(U(λ,u))

− Φ(U(λ,u))
η(U(λ,u))−ξ(U(λ,u))Φ(U(λ,u))

)
,

(
y − y(0)

x

)〉
dλ

where by

〈(
1

η(U(λ,u))−ξ(U(λ,u))Φ(U(λ,u))

− Φ(U(λ,u))
η(U(λ,u))−ξ(U(λ,u))Φ(U(λ,u))

)
,

(
y − y(0)

x

)〉
we mean the usual

standard scalar product of the two vectors. Form the last representation of
s1(u) we already see that this integral corresponds to the line integral appearing
in the solution formula for first order ODEs (1.1.20) on page 27.

Due to Theorem 1.26, the solutions of (1.5.8) are characterized in implicit form
via

x + c0 = s0(u(0)) + t,∫ 1

0

y − y(0)− x · Φ(U(λ, u))

η(U(λ, u))− ξ(U(λ, u))Φ(U(λ, u))
dλ = s1(u(0)).

1.5. INTEGRATION VIA COMMUTING SYMMETRIES 49

The first equation is a consequence of converting the scalar ODE (1.5.8) to
phase space and introducing a new independent variable t. It simply states that
x and t differ up to a constant, which is clear, since from the representation of
(1.5.8) in phase space we read–off that the derivative of x with respect to t is
1. This fact is simply mirrored by the first equation including s0.

The second equation involving s1 is exactly the solution formula for a first order
ODE of the form (1.5.8) admitting the Lie point symmetry (1.5.9) as stated in
(1.1.20) on page 27. �

In the next two examples we apply the ideas provided by Theorem 1.26 to sys-
tems of differential equations to find implicit characterizations for their solutions
with the help of commuting symmetry generators.

Example 1.31. (Systems of ODEs with constant coefficients) Let
M1, . . . ,Mn ∈ Rn×n be (n× n)-matrices with real components such that

JMi, MjK = Mj Mi −Mi Mj = 0

for all 1 ≤ i, j ≤ n. Consider as manifold M the n-dimensional vector space,
where these matrices act, and here in particular the vector fields

~u → Kk(~u) := Mk ~u

for 1 ≤ k ≤ n, where

~u =

 u1
...

un


denotes the manifold variable. Clearly these vector fields commute, since the
matrices do commute. Now we form a matrix as in (1.5.6) and call an element
~u ∈ M generic, if this matrix

A~u =
(

K1(~u) · · · Kn(~u)
)

=
(

M1 ~u · · · Mn ~u
)

has rank n, i.e. is an invertible matrix. At generic ~u the vector fields
K1(~u), . . . , Kn(~u) are linear independent.

For some arbitrary but fixed i ∈ {1, . . . , n} we consider a system of differential
equations

~u(t)t = Mi ~u(t), (1.5.11)

50 CHAPTER 1. SYMMETRIES

with n-dimensional phase space. This system we want to solve for a generic
initial condition14 ~u(0). One should observe that when ~u(0) is generic, then all
~u(t) are generic. This is true, because the matrix

A~u(t) =
(

M1 ~u · · · Mn ~u
)

is obtained from
A~u(0) =

(
M1 ~u(0) · · · Mn ~u(0)

)
by application of the exponential of Mi, clearly an invertible matrix.

Now we consider the quantities introduced in (1.5.3) and (1.5.4) (see page 41).
By this we obtain for λ ∈ [0, 1] with regard to the fixed ~u(0)

~β(λ, ~u) = (A~u(0) + λ(A~u−~u(0)))
−1(~u− ~u(0)), (1.5.12)

where we put the different βj as entries into a vector ~β. In the same way we
can put the sj as entries into a vector15

~s(~u) =

∫ 1

0

~β(λ, ~u) dλ. (1.5.13)

Here one should observe that there is a connected open set Ω in the vector
space under consideration, which contains ~u(0) and where for ~u in the set Ω the
~β(λ, ~u) are never singular16. We then consider the components of ~s(~u) as new
coordinates on the connected open set Ω and find that the orbit of (1.5.11) in
these new coordinates is linear in the i-th component and zero in the others:

~s(~u(t)) =



0
...
0
t
0
...
0


. (1.5.14)

14In a while we will see what to do in important cases for non–generic initial conditions.
15This means that we take the line integral from ~u(0) to ~u along the straight line connecting

them. Since for this quantity line integrals are path independent, we could take any other
path connecting these two points, thus avoiding eventual singularities on that line. However,
for getting simple and compact formulas and for demonstrating the method, we have chosen,
this is the most simple path.

16This is a consequence of the closedness of the spectrum of a continuous linear operator.

1.5. INTEGRATION VIA COMMUTING SYMMETRIES 51

If instead of (1.5.11) the equation with another Mj is chosen, then only the
component linear in t is the j-th one instead of the i-th one.

If we take other points in Ω as initial condition for our equations, say with
~s(~u(0)) = ~s(0), then the solution for (1.5.11) reads

~s(~u(t)) =



s1(0)
...

si−1(0)
t + si(0)
si+1(0)

...
sn(0)


. (1.5.15)

The inversion of the symbolic matrix A~u(0) +λ (A~u−~u(0)) as stated in (1.5.12) can
be done using special computational methods as discussed in [34] and [2]. For a
matrix A(t), whose components depend on the variable t, it is known that A(t)−1

can be expanded as a Laurent series at the origin. The main results stated in [2]
provide efficient algorithms for the computation of the coefficients of such series.

The assertions of the foregoing results follow from Theorem 1.26, however, we
additionally present a direct proof here (see also [33]).

First we state that a formal integration for obtaining the ~s(~u) in different form
is given by

~s(~u) = ln(A−1
~u(0)A~u)(A~u − A~u(0))

−1(~u− ~u(0)). (1.5.16)

With the help of this we then show that (1.5.15) gives the solutions of ~u(t)t =
Mi~u(t) in implicit form. Without loss of generality we may assume i = 1. We
evaluate on the orbits of ~u(t)t = M1~u(t) and obtain

~β(λ, ~u(t)) = (A~u(0) + λ (A~u(t)−~u(0)))
−1 (~u(t)− ~u(0))

= (I1 + λ A−1
~u(0)A~u(t)−~u(0))

−1 A−1
~u(0) (~u(t)− ~u(0))

= (I1 − λ (A−1
~u(0)A~u(t)−~u(0)) + λ2 (A−1

~u(0)A~u(t)−~u(0))
2 − . . .)

A−1
~u(0) (~u(t)− ~u(0)).

52 CHAPTER 1. SYMMETRIES

Hence, integration with respect to λ and the usual series expansions of the
function ln provide:

~s(~u(t)) =

∫ 1

0

~β(λ, ~u(t)) dλ

=
(

I1 − 1

2
(A−1

~u(0) A~u(t)−~u(0)) +
1

3
(A−1

~u(0) A~u(t)−~u(0))
2 − . . .

)
A−1

~u(0) (~u(t)− ~u(0))

=
(
(A−1

~u(0) A~u(t)−~u(0))−
1

2
(A−1

~u(0) A~u(t)−~u(0))
2 +

1

3
(A−1

~u(0) A~u(t)−~u(0))
3 − . . .

)
(A−1

~u(t)−~u(0) A~u(0)) A−1
~u(0) (~u(t)− ~u(0))

= ln(I1 + A−1
~u(0) A~u(t)−~u(0)) A−1

~u(t)−~u(0) (~u(t)− ~u(0))

= ln(A−1
~u(0) A~u(t)) A−1

~u(t)−~u(0) (~u(t)− ~u(0)),

which is the representation of ~s(~u(t)) as claimed in (1.5.16).

Next we have to see that (1.5.15) gives the solutions of ~u(t)t = M1~u(t) in
implicit form. Since ~u(t)t = M1~u(t) is a system with constant coefficients, the
explicit solution can always be formally written as ~u(t) = etM1~u(0), where etM1

denotes the exponential of the matrix tM1 in the usual way (see e.g. [66]).

This provides

~s(~u(t)) = ln(A−1
~u(0) A~u(t)) A−1

~u(t)−~u(0) (~u(t)− ~u(0))

= ln
(
A−1

~u(0)

(
M1 etM1 ~u(0) · · · Mn etM1 ~u(0)

))
((

M1 etM1 ~u(0) · · · Mn etM1 ~u(0)
)
− A~u(0)

)−1
(etM1~u(0)− ~u(0))

= ln(A−1
~u(0) etM1 A~u(0)) (etM1 A~u(0) − A~u(0))

−1(etM1 ~u(0)− ~u(0))

= A−1
~u(0) ln(etM1) A~u(0) A−1

~u(0) (etM1 − I1)−1 (etM1 − I1)) ~u(0)

= A−1
~u(0) tM1 ~u(0)

= t~e1,

where ~e1 denotes the transposed of the vector (1, 0, . . . , 0) and etM1 and Mi

commute, since M1 and Mi commute, 1 ≤ i ≤ n. This proves the assertion. �

1.5. INTEGRATION VIA COMMUTING SYMMETRIES 53

Example 1.32. (The obvious applications of the last example) One
should observe that the usual solution function for a system with constant
coefficients is not suitable for determining explicit symbolic solutions algorith-
mically. The reason is that for the explicit representation of the exponential
of a matrix the zeroes of its characteristic polynomial have to be determined,
which may not be possible for degrees higher than four17.

However, Example 1.31 shows that explicit formulas may be obtained algorith-
mically if changes in coordinates and quadratures are taken into consideration.
Equations having such solution formulas are said to be integrable, a notion
which is well–known in the context of Hamiltonian systems.

The only task, which remains open for showing that a system with constant
coefficients

~u(t)t = M~u(t)

is integrable, is the construction of the matrices, which were needed in Example
1.31. That however is obvious: Take i = 2 and

M1 := I1 , M2 := M1, . . . , Mn := Mn−1,

then for generic initial conditions all the foregoing results can be applied. How-
ever, what do we do when the solution is looked for an initial value ~u(0), which
is non–generic, i.e. for which the matrix(

~u(0) M ~u(0) M2 ~u(0) · · · Mn−1 ~u(0)
)

does not have rank n, i.e. where the columns are not linear dependent?

Well, that is simple: If we have rank n − k, then we take the vector space
spanned by the basis given by the n − k linear independent columns of the
matrix. This vector space then is invariant under M . Thus, when represented
with respect to that basis, M becomes an (n − k) × (n − k) matrix, and the
initial value is generic. Hence also the non–generic situation is integrable.

Another but similar class of equations integrable by this method is that of
homogeneous linear differential equations with constant coefficients. Consider

u(n)(t) + mn−1 u(n−1)(t) + . . . + m1 u′(t) + m0 u(t) = 0, (1.5.17)

17Even if this is possible in special cases or for polynomial equations of order 3 and 4, the
representations of the roots of the characteristic polynomials in exact form may in general
lead to awfully complicated expressions.

54 CHAPTER 1. SYMMETRIES

mi ∈ R, 0 ≤ i ≤ n− 1, u(t) some real valued function. In phase space notation
we obtain

u(t)
u′(t)

...
u(n−1)(t)


t︸ ︷︷ ︸

~u(t)t

=


0 1 0 · · · 0
0 0 1 · · · 0
...

. 0
0 0 0 1

−m0 −m1 −m2 · · · −mn−1


︸ ︷︷ ︸

=M


u(t)
u′(t)

...
u(n−1)


︸ ︷︷ ︸

=~u(t)

(1.5.18)

and we are back at what we considered a few lines ago. Here we always have a
generic situation. �

The next example is in a way a negative example. We discuss the application
of Theorem 1.26 to find symmetries of second order homogeneous linear
differential equations. It turns out that Theorem 1.26 combined with an ansatz
similar to the strategies used by Cheb-Terrab et. al. in [7], [9], [10], [12] and
[13] to find symmetries of first order ODEs in the situation of second order
linear ODEs does not lead to new ways of finding solutions.

Nevertheless, the example is interesting in so far that it demonstrates the well–
known link between homogeneous linear ODEs and their associated Riccati
equations.

Example 1.33. (Second order homogeneous linear ODEs) We consider
second order homogeneous linear ODEs, i.e. ODEs of the form

z′′(x) = f1(x) z′(x) + f0(x) z(x) (1.5.19)

for given functions f0(x), f1(x). Note that any second order homogeneous linear
ODE can be transformed to the more special form

y′′(x) = a(x) y(x) (1.5.20)

using the transformation

z(x) = y(x) exp
(
−
∫

f1(x)dx

2

)
.

Hence, we restrict our attention to ODEs of the form (1.5.20). To be able to
apply Theorem 1.26 to the situation considered here, we work with the phase

1.5. INTEGRATION VIA COMMUTING SYMMETRIES 55

space representation of (1.5.20), which is u0

u1

x


t︸ ︷︷ ︸

=ut

=

 u1

au0

1


︸ ︷︷ ︸

=K0(u)

, (1.5.21)

where u0 = u0(x) = y(x) and u1 = u1(x) = y′(x).

Every second order homogeneous linear ODE written in phase space notation
admits the symmetry generator

K1 =

 u0

u1

0

 , (1.5.22)

i.e. JK0(u), K1(u)K = 0 (scaling symmetry). To be able to use Theorem 1.26,
we have to find another symmetry generator K2(u) admitted by (1.5.21), such
that K0(u), K1(u) and K2(u) are linear independent and, additionally, the
commutator of K1(u) and K2(u) vanishes.

In general, if we search for a symmetry generator K2(u) of the form

K2(u) =

 k1(u0, u1, x)
k2(u0, u1, x)

0

 , (1.5.23)

where k1(u0, u1, x) and k2(u0, u1, x) are scalar functions in their arguments, and
u

v

 u1

au0

1

 ,

 k1(u0, u1, x)
k2(u0, u1, x)

0

}

~ =

 0
0
0


u

v

 u0

u1

1

 ,

 k1(u0, u1, x)
k1(u0, u1, x)

0

}

~ =

 0
0
0

 .

The vanishing of the commutators provides the determining equations

k1u0u1 + k1u1au0 + k1x − k2 = 0, (1.5.24)

k2u0u1 + k2u1au0 + k2x − ak1 = 0, (1.5.25)

k1u0u0 + k1u1u1 − k1 = 0, (1.5.26)

k2u0u0 + k2u1u1 − k2 = 0, (1.5.27)

56 CHAPTER 1. SYMMETRIES

for the components k1(u0, u1, x) and k2(u0, u1, x) of the symmetry generator
K2(u) (we use indices for the corresponding partial derivatives).

From the last two equations we choose the ansatz k1 = f1(x)u0 + f2(x)u1 as
well as k2 = g1(x)u0 + g2(x)u1 for some unknown functions f1(x), f2(x), g1(x)
and g2(x). Insertion of these representations for k1 and k2 into the first two
equations provides

f1u1 + f2au0 + f1xu0 + f2xu1 − g1u0 − g2u1 = 0, (1.5.28)

g1u1 + g2au0 + g1xu0 + g2xu1 − af1u0 − af2u1 = 0. (1.5.29)

It follows for f1, f2, g1 and g2 that

f1 + f2x = g2, (1.5.30)

af2 + f1x = g1, (1.5.31)

g1 + g2x = af2, (1.5.32)

ag2 + g1x = af1. (1.5.33)

Inserting equation (1.5.32) for g1 into equation (1.5.31), we find g2x = −f1x,
i.e. g2 = −f1 + c1, where c1 is a constant.

Hence, equations (1.5.30), (1.5.31), (1.5.32) and (1.5.33) are equivalent to

2f1 + f2x − c1 = 0, (1.5.34)

g1 − f1x = af2, (1.5.35)

g2 = −f1 + c1, (1.5.36)

a(c1 − 2f1) + g1x = 0. (1.5.37)

Solving equation (1.5.34) for f1 and inserting this representation for f1 into
(1.5.35), (1.5.36) and (1.5.37), we obtain

f1 =
c1

2
− f2x

2
, (1.5.38)

g1 = af2 −
f2xx

2
, (1.5.39)

g2 =
c1

2
+

f2x

2
, (1.5.40)

af2x + g1x = 0. (1.5.41)

1.5. INTEGRATION VIA COMMUTING SYMMETRIES 57

Insertion of the total derivative of the right–hand–side of (1.5.39) into (1.5.41)
provides 2af2x + axf2 − 1

2
f2xxx = 0. This equation we write in the form (af 2

2 −
1
2
f2f2xx + 1

4
f 2

2x)x = 0, from which we finally obtain

f1 =
c1

2
− f2x

2
, (1.5.42)

g1 =
1
2
f2f2xx − 1

4
f 2

2x − 1
2
f2f2xx + c2

f2

=
−1

4
f 2

2x + c2

f2

, (1.5.43)

g2 =
c1

2
+

f2x

2
, (1.5.44)

a =
1
2
f2f2xx − 1

4
f 2

2x + c2

f 2
2

. (1.5.45)

After Multiplication of (1.5.45) by 4 and setting c2 = 0, it follows

4a =
2f2f2xx − f 2

2x

f 2
2

⇐⇒ 4a = 2
(f2x

f2

)
x

+
(f2x

f2

)2

. (1.5.46)

Setting z(x) := f2x

f2
, we can write the right–hand–side of the equivalence (1.5.46)

as

4a = 2z′(x) + z(x)2. (1.5.47)

It follows that f2 can be obtained as the solution of the Riccati ODE (1.5.47)
as well as afterwards solution of the first order homogeneous linear ODE
f ′2(x) = z(x)f2(x). Since there is no general method to compute closed
symbolic solutions of Riccati ODEs of the form (1.5.47), the ansatz under
consideration is not successful in general18.

A possible ansatz to simplify the problem in determining an additional sym-
metry generator K2(u) in the sense of the strategies presented in [7], [9], [10],
[12] and [13] by Cheb-Terrab et. al. would be to take into account simplifying
assumptions concerning the dependencies of the components k1(u0, u1, x) and
k2(u0, u1, x) of K2(u) on u0, u1, x. In [10], Cheb-Terrab et. al. inspect first order
non–linear ODEs admitting such simpler forms of symmetry generators. We
started considering the ansatz k1 = f1(x)u0+f2(x)u1 and k2 = g1(x)u0+g2(x)u1

for the components of the desired third symmetry generator K2(u). To avoid

18See for example the book [66] for further results on Riccati ODEs and methods to find so-
lutions of such ODEs. In Section 4.1 of [53] the authors discuss special algorithmic approaches
to determine at least special solutions — so–called rational solutions — of Riccati ODEs.

58 CHAPTER 1. SYMMETRIES

having to solve a Riccati ODE of type (1.5.47) to determine f1, f2, g1 and g2,
we take the simplifying assumptions g1(x) = 0 and f2(x) = 0 into account,
i.e. k1 = k1(u0, x) and k2 = k2(u1, x).

Under this assumptions, the original determining equations (1.5.30), (1.5.31),
(1.5.32) and (1.5.33) for the components of K2(u) read

f1 = g2, (1.5.48)

f1x = 0, (1.5.49)

g2x = 0, (1.5.50)

ag2 = af1. (1.5.51)

But from these equations it follows f1 = c1, g2 = c2 for constants c1, c2 and
from (1.5.51) again c1 = c2. Finally from f1 = c1, g2 = c1, f2 = 0 and g1 = 0
it follows that K2(u) is a scalar multiple of K1(u) and, hence, of no use for
applying Theorem 1.26 (the vector fields need to be linear independent).

An alternative ansatz could be to assume f2(x) = 0 and g2(x) = 0,
i.e. k1 = k1(u0, x) and k2 = k2(u1, x). Under these assumptions we obtain
f1(x) = 0 and g1(x) = 0, i.e. K2(u) is zero and again useless.

Taking into account that f1(x) = 0 and g2(x) = 0, i.e. k1 = k1(u1, x) and
k2 = k2(u0, x), the determining equations (1.5.30), (1.5.31), (1.5.32) and (1.5.33)
provide

f2x = 0, (1.5.52)

af2 = g1, (1.5.53)

g1 = af2, (1.5.54)

g1x = 0. (1.5.55)

Now from equation (1.5.52) it follows f2 = c1, c1 a constant, and from equation
(1.5.55) we find g1 = c2 for a constant c2. Using (1.5.53) or (1.5.54) it follows
a = c2

c1
, i.e. the homogeneous linear ODE under consideration has constant coeffi-

cients and, hence, belongs to the class of ODEs already treated in Example 1.31.

The restrictions we considered concerning the dependencies of the components
of the desired third symmetry generator are too strong. Even in the case, where
we assume that only one of the functions f1(x), f2(x), g1(x) and g2(x) vanishes,

1.5. INTEGRATION VIA COMMUTING SYMMETRIES 59

we do not get a satisfying result: e.g. if we assume that f2(x) = 0, we find from
(1.5.30), (1.5.31), (1.5.32) and (1.5.33) the determining system

f1 = g2, (1.5.56)

f1x = g1, (1.5.57)

g1 + g2x = 0, (1.5.58)

ag2 + g1x = af1. (1.5.59)

From (1.5.59) we conclude g1 = c1, c1 a constant, since af1 = ag2 by
(1.5.56), and, thus, from (1.5.58) that g2 = −

∫
g1 dx + c2 = −c1x + c2

for a constant c2. From (1.5.57) it follows f1 =
∫

c1dx = c1x + c3 for a
constant c3 and, because of (1.5.56), we must have c1 = −c1, i.e. c1 = 0 and
c2 = c3 and K2(u) is again a scalar multiple of K1(u) and, hence, of no use for us.

Drawing a conclusion from these computations, we state that for second order
linear ODEs neither the methods by Cheb-Terrab et. al. in [7], [9], [10], [12]
and [13] nor a combination of these methods with Theorem 1.26 provide a
satisfying result. Apart from the trivial symmetry generators obtained when
taking simplifying assumptions on the dependencies of the desired symmetry
generator into account, we saw that in general to determine the desired third
symmetry can lead to the question of being able to find solutions of a Riccati
ODE of type (1.5.47). Although any second order homogeneous linear ODE can
be associated with a Riccati ODE of type (1.5.47)19, this example shows that
in the situation of second order homogeneous linear ODEs Theorem 1.26 does
not seem to provide new insights into ways of finding solutions. �

Now we come back to the case of non–linear ODEs. The following two examples
demonstrate the use of Theorem 1.26 in the case of concrete third order non–
linear ODEs, where two commuting symmetry generators are known.

Example 1.34. Consider the ODE

y′′′(x) =
y′′(x)2

2y′(x)
.

This ODE can easily be reduced to a second order ODE by introducing a new
function z(x) = y′(x). We do not reduce this ODE, since we directly want to

19See for example the book [51], Section 2.6, Theorem 2.66 and Example 2.69.

60 CHAPTER 1. SYMMETRIES

apply Theorem 1.26 to it20.

Since the right–hand–side of the ODE does not depend on x explicitly, the phase
space for the ODE is of dimension 3 and we do not have to introduce a new
independent variable t for x. The phase space representation is given by u0

u1

u2


x︸ ︷︷ ︸

=ux

=

 u1

u2

u2
2

2u1


︸ ︷︷ ︸

K0(u)

, (1.5.60)

where u0 = u0(x) = y(x), u1 = u1(x) = y′(x) and u2 = u2(x) = y′′(x). Equation
(1.5.60) admits the two commuting symmetry generators

K1(u) =


8u3

1

u3
2

12u2
1

u2
2

12u1

u2

 , K2(u) =

 1

0

0

 ,

i.e. JK0(u), K1(u)K = JK0(u), K2(u)K = JK1(u), K2(u)K = 0. We now follow the
steps of computations described in Remark 1.28. First we build the matrix

A[K0,K1,K2] =


u1

8u3
1

u3
2

1

u2
12u2

1

u2
2

0

u2
2

2u1

12u1

u2
0

 ,

whose columns consist of the three commuting vector fields K0(u), K1(u), K2(u),
and compute its inverse given by

A−1
[K0,K1,K2] =


0 2

u2
−2u1

u2
2

0 − u2
2

12u2
1

u2

6u1

1 −4u1

3u2

2u2
1

3u2
2

 .

20Although at first glance it seems to be skilful to reduce the order of the ODE, the ODE in
the above stated and non–reduced form is a good example to illustrate the results of Theorem
1.26 simply because the expressions arising from the computation of the covector fields Γi(u)
introduced in Theorem 1.25 are not too large to be displayed within the framework of this
example. A more complex ODE is treated in the framework of the next example below.

1.5. INTEGRATION VIA COMMUTING SYMMETRIES 61

Now the rows of A−1
[K0,K1,K2] correspond to the closed covector fields

Γ0(u), Γ1(u), Γ2(u) introduced in Theorem 1.25, i.e. by writing these covector
fields as row vectors we obtain

Γ0(u) =
(

0 2
u2

−2u1

u2
2

)
,

Γ1(u) =
(

0 − u2
2

12u2
1

u2

6u1

)
,

Γ2(u) =
(

1 −4u1

3u2

2u2
1

3u2
2

)
.

Finally, computing the potentials s0(u), s1(u), s2(u) of Γ0(u), Γ1(u), Γ2(u), re-
spectively, provides

s0(u) =
2u1

u2

, s1(u) =
u2

2

12u1

, s2(u) = u0 −
2u2

1

3u2

.

Hence, due to Theorem 1.26, the solutions of the ODE (still in phase space
notation) are implicitly characterized by

2u1

u2

= c0 + x,
u2

2

12u1

= c1, u0 −
2u2

1

3u2

= c2,

for constants of integration c0, c1, c2. Reintroducing the original dependent vari-
able y(x), the equations read

2y′(x)

y′′(x)
= c0 + x,

y′′(x)2

12y′(x)
= c1, y(x)− 2y′(x)2

3y′′(x)
= c2. (1.5.61)

One easily verifies

d

dx

(2y′(x)

y′′(x)

)
= 1,

d

dx

(y′′(x)2

12y′(x)

)
= 0,

d

dx

(
y(x)− 2y′(x)2

3y′′(x)

)
= 0

by performing the total differentiation with respect to x and afterwards
substituting the appearing third derivatives of y(x) by the right–hand–side of
the ODE under consideration.

Equations (1.5.61) can be viewed as an algebraic system of equations in the
indeterminates y(x), y′(x) and y′′(x). Hence, the explicit form of the solution can
be obtained via a suitable elimination method for systems of algebraic equations.
In this concrete example we obtain the solution

y(x) = c1x
3 + c3

0c1 + 3c2
0c1x + 3c0c1x

2 + c2,

where we used MuPAD to obtain this representation. �

62 CHAPTER 1. SYMMETRIES

To see that Theorem 1.26 indeed provides a powerful theoretical basis for a
practical characterization of the solutions of relatively complex ODEs, where
sufficiently many commuting symmetry generators are known, let us consider
as a last example a more complex third order ODE.

Example 1.35. We consider the third order ODE

y′′′(x) =
y′′(x)(y′(x) +

√
y′(x)2 − y(x)y′′(x))

y(x)
. (1.5.62)

Since the right–hand–side of the ODE does not explicitly depend on x, we do
not have to introduce a new independent variable when considering it in phase
space. The phase space representation of the ODE is given by

 u0

u1

u2


x︸ ︷︷ ︸

=ux

=


u1

u2

u2(u1+
√

u2
1−u0u2)

u0


︸ ︷︷ ︸

K0(u)

, (1.5.63)

where u0 = u0(x) = y(x), u1 = u1(x) = y′(x) and u2 = u2(x) = y′′(x). Equation
(1.5.63) admits the two commuting symmetry generators

K1(u) =


16(
√

u2
1−u0u2−u1)4

u4
2

−32(
√

u2
1−u0u2−u1)3

u3
2

48(
√

u2
1−u0u2−u1)2

u2
2

 , K2(u) =


−2(

√
u2
1−u0u2−u1)

u2

1

0

 ,

i.e. JK0(u), K1(u)K = JK0(u), K2(u)K = JK1(u), K2(u)K = 0. Again we pro-
ceed as described in Remark 1.28. We construct the matrix A[K0,K1,K2], whose
columns consist of the three commuting symmetry generators:

A[K0,K1,K2] =


u1

16(
√

u2
1−u0u2−u1)4

u4
2

−2(
√

u2
1−u0u2−u1)

u2

u2 −32(
√

u2
1−u0u2−u1)3

u3
2

1

u2(u1+
√

u2
1−u0u2)

u0

48(
√

u2
1−u0u2−u1)2

u2
2

0

 .

1.5. INTEGRATION VIA COMMUTING SYMMETRIES 63

Computing the inverse is again no problem at all. It can be done very efficiently
even using standard methods like standard Gaussian elimination and no
specialized algorithms for dealing with symbolic matrix components. Although
the inverse is easy to compute, its components are very large expressions due to
the expression swell21. For this reason, they are not presented here explicitly.

Proceeding as described in Remark 1.28, the rows of the matrix A−1
[K0,K1,K2]

correspond to the closed covector fields Γ0, Γ1, Γ2 as introduced in Theorem
1.25. Computing the potentials s0(u), s1(u), s2(u) of the closed covector fields
introduced in (1.5.4), we obtain an implicit characterization of the solutions of
(1.5.62) in form of the system s0(u) = c0 + x, s1(u) = c1, s2(u) = c2, where
c0, c1, c2 are constants of integration. Since the expressions for s0(u), s1(u) and
s2(u) are very large, we only present the result for s1(u) as an example. The

representation computed for s1(u) is a fraction f(u)
g(u)

, whose numerator f(u) is
given by

f(u) = 2 u3
0 u1 u5

2 − 2
√

u2
1 − u0 u2 u3

0 u5
2 − 2 u2

0 u3
1 u4

2+

2
√

u2
1 − u0 u2 u2

0 u2
1 u4

2 + 3
√

u2
1 − u0 u2 u0 u4

1 u3
2−

4

√
(u2

1 − u0 u2)
3
u0 u2

1 u3
2 +

√
(u2

1 − u0 u2)
5
u0 u3

2−

2
√

u2
1 − u0 u2 u6

1 u2
2 + 4

√
(u2

1 − u0 u2)
3
u4

1 u2
2−

2

√
(u2

1 − u0 u2)
5
u2

1 u2
2,

whereas the denominator g(u) is

g(u) = 16
(
− 12 u4

0 u1 u3
2 + 2

√
u2

1 − u0 u2 u4
0 u3

2 + 36 u3
0 u3

1 u2
2−

14
√

u2
1 − u0 u2 u3

0 u2
1 u2

2 − 24 u2
0 u5

1 u2+

13
√

u2
1 − u0 u2 u2

0 u4
1 u2 + 6

√
(u2

1 − u0 u2)
3
u2

0 u2
1 u2+√

(u2
1 − u0 u2)

5
u2

0 u2 + 2
√

u2
1 − u0 u2 u0 u6

1

− 2

√
(u2

1 − u0 u2)
5
u0 u2

1

)
.

21This is the case even after applying elaborate simplification algorithms to the components
of the matrix to decrease the size of the expressions.

64 CHAPTER 1. SYMMETRIES

For our computations we used MuPAD on the one hand to obtain the above
expressions and on the other hand to verify, whether g(u)

f(u)
is indeed a conserved

quantity of the ODE under consideration. Substituting u0 by y(x), u1 by y′(x)

and u2 = y′′(x) in g(u)
f(u)

, computing the total derivative of the arising expression
with respect to x and finally reducing this expression modulo the original ODE,
i.e. replacing y′′′(x) by the right–hand–side of the original ODE, the expression
simplifies to 0 as desired. �

Of course, in complex examples like the one discussed above, it is not always
possible to compute explicit representations for the solutions of the ODE
under consideration. In the case, where the solutions are given by a set of
polynomial equations in the dependent variable y(x) and its derivatives, even
simple elimination strategies or Groebner basis techniques may be used to find
explicit formulas for the solutions.

In the case, where the equations of the system characterizing the solutions of an
ODE involve roots of polynomial expressions or even more complex functions in
y(x) and its derivatives, the chances are not that good to find explicit solutions.
Nevertheless, the characterization of solutions is a completely algebraic one and
may for some classes of such systems of equations be solved by special algorithms
for the computation of symbolic solutions or even by heuristic ansatzes. Imagine,
we are only interested in finding certain classes of solutions such as exponential
functions or even polynomials. Then the set of equations, which implicitly
characterize the solutions, may be helpful to decide, whether such solutions
exist, and if so, to compute them.

1.6 Conclusions

1.6.1 Resumé

The main results discussed in this chapter are the applications of Theorem 1.26
by B. Fuchssteiner, which allows the complete integration of ODEs admitting
sufficiently many commuting and independent symmetry generators.

We showed how the successful Lie point symmetry methods established
by Cheb-Terrab et. al. in [7], [9], [10], [12] and [13] can be embedded into
the framework of Theorem 1.26. Furthermore, we discussed applications of
Theorem 1.26 for the cases of second order homogeneous linear ODEs and n-th

1.6. CONCLUSIONS 65

order homogeneous linear ODEs with constant coefficients.

The Examples 1.34 and 1.35 illustrated that the application of Theorem 1.26
provides an implicit characterization of the solutions of the ODEs under con-
sideration in terms of conserved quantities. This is an alternative way of repre-
senting the solutions of an ODE in implicit form, which allows to draw further
conclusions concerning the structure of solutions, for which in most cases even
no explicit representation can be computed without introducing new classes of
special functions22.

1.6.2 Open problems and perspectives

1. Using the result provided by Theorem 1.26 in the framework of a computer
algebra system to solve ODEs requires methods for determining sufficiently
many independent and commuting symmetry generators. A possible way
to determine such symmetry generators can be seen in generalizations of
the pattern matching methods introduced by Cheb-Terrab et. al. in [7],
[9], [10], [12] and [13]. Algorithms for computing the desired symmetries
without solving auxiliary ODEs or even partial differential equations for
the case of n-th order ODEs, n ∈ N, n ≥ 2, have to be developed.

2. Furthermore, if not sufficiently many symmetry generators can be found,
other techniques for solving the ODE under consideration or at least re-
ducing its order have to be found. An alternative approach helping to
reduce the order of an ODE is the computation of integrating factors.
Some algorithms and heuristics for finding such integrating factors are
discussed in the framework of the next two chapters.

22An example for the introduction of new functions as solutions of ODEs are the Bessel
functions, which can be defined as the solutions of a second order homogeneous linear ODE
(see e.g. [38], p. 125 and pp. 622).

Chapter 2

Integrating factors and
associated ODE families

2.1 Introduction

In this chapter we present algorithms for computing integrating factors of
certain classes of n-th order non–linear ODEs, n ≥ 3. The results are inspired
by the former work of E. S. Cheb-Terrab and A. D. Roche published in [11].

In [11], the authors treat the case of second order ODEs. There exist certain
extensions of this work to higher order ODEs also done by E. S. Cheb-Terrab.
To our knowledge these results have never been published in a journal or as a
preprint on the web. The only hint we could find is a description of certain
functions of the “detools”-package included in the computer algebra system
Maple1. This description can be found on the website [14] and currently gives
no precise information on the improvements for the case of ODEs of order at
least 3. In the description of the function “intfactor”2 the author speaks about
“certain classes” of third and higher order ODEs for which the order can be
reduced if the integrating factor is a polynomial in a certain derivative of the
dependent variable of the ODE considered.

Our extensions of the ansatzes of E. S. Cheb-Terrab and A. D. Roche for
finding integrating factors for second order ODEs directly base on the ideas

1The computer algebra system Maple is currently available in version 10. Since a few
years E. S. Cheb-Terrab is a member of the symbolic computation group associated with
Maple. He has implemented his algorithms in Maple.

2This function is an essential part of the Maple “detools”-package.

67

68 CHAPTER 2. INTEGRATING FACTORS

presented in [11]. In fact we mostly do not make further assumptions on the
special form of the integrating factor to be computed except for the fact that
it does not depend on all “possible variables”3. We rather take assumptions
into account concerning the algebraic form of the ODEs considered and find
heuristics for computing candidates for integrating factors of these ODEs.

We give a more detailed outline of these ideas in Section 2.6. First of all we
present a short overview on the ideas of E. S. Cheb-Terrab and A. D. Roche
described in [11].

2.2 Basic terminology

We consider n-th order ODEs in the independent variable x and the dependent
variable y(x) of the form

y(n)(x) = Φ(x, y(x), y′(x), . . . , y(n−1)(x)). (2.2.1)

Definition 2.1. We call (2.2.1) an exact ODE if the expression

y(n)(x)− Φ(x, y(x), y′(x), . . . , y(n−1)(x)) (2.2.2)

is a total derivative, i.e. if there is a function R = R(x, y(x), y′(x), . . . , y(n−1)(x))
such that

d

dx
R(x, y(x), y′(x), . . . , y(n−1)(x)) = y(n) − Φ(x, y(x), y′(x), . . . , y(n)(x)).

(2.2.3)

The function R(x, y(x), y′(x), . . . , y(n−1)(x)) is called a first integral and it pro-
vides the conserved quantity

R(x, y(x), y′(x), . . . , y(n−1)(x)) = c (2.2.4)

of (2.2.1), c some constant of integration.

The notion of a general n-th order exact ODE does not seem to be a traditional
terminology in the classical literature on differential equations. The notion of
an exact ODE is more commonly known from the context of first order ODEs
of the form

A(x, y(x)) + y′(x) B(x, y(x)) = 0, (2.2.5)

3This rather unprecise formulation will become clear in the next part of this chapter.

2.2. BASIC TERMINOLOGY 69

where A(x, y(x)) and B(x, y(x)) are arbitrary expressions in x and y(x). A first
order ODE of the form (2.2.5) is said to be an exact ODE if the vector field

~V (x, y(x)) =

(
A(x, y(x))
B(x, y(x))

)
has a potential, i.e. if the condition

∂A(x, y)

∂y
=

∂B(x, y)

∂x

holds. If R(x, y(x)) is a potential of the vector field ~V (x, y(x)), then the solutions
of (2.2.5) are given in implicit form by R(x, y(x)) = c, c a constant. Furthermore
we have

d

dx
R(x, y(x)) =

∂R(x, y)

∂x
+ y′(x)

∂R(x, y)

∂y

= A(x, y(x)) + y′(x)B(x, y(x)).

Hence, the right–hand–side of (2.2.5) is a total derivative. Definition 2.1 is a
sensible generalization of the commonly known notion of first order exact ODEs
also used by Cheb-Terrab et. al. in [11].

Remark 2.2. The exactness of an ODE of the form (2.2.1) can be proved with-
out performing any integrations using the Euler operator, which is introduced
in Theorem 2.6 in Section 2.5.

For a general ODE of the form (2.2.5), an expression µ(x, y(x)) is called an
integrating factor if

µ(x, y(x)) (A(x, y(x)) + y′(x) B(x, y(x))) = 0 (2.2.6)

is an exact ODE. The following definition is the generalization of the notion of
integrating factors for general n-th order ODEs of the form (2.2.1).

Definition 2.3. An expression µ(x, y(x), . . . , y(n−1)(x)) is called an integrating
factor for (2.2.1) if

µ(x, y(x), y′(x), . . . , y(n−1)(x))
(
y(n)(x)− Φ(x, y(x), y′(x), . . . , y(n−1)(x))

)
= 0

(2.2.7)

is an exact n-th order ODE.

70 CHAPTER 2. INTEGRATING FACTORS

Assume, we have found an integrating factor µ(x, y(x), . . . , y(n−1)(x)) for an n-th
order ODE of the form (2.2.1). Then we know that there is a first integral, i.e. an
expression of the form R(x, y(x), y′(x), . . . , y(n−1)(x)), such that the solutions of
(2.2.1) are given in implicit form by

R(x, y(x), y′(x), . . . , y(n−1)(x)) = cn,

where cn is a constant of integration. Hence, finding an integrating factor,
multiplying it by y(n)(x) − Φ(x, y(x), y′(x), . . . , y(n−1)(x) and afterwards inte-
grating the resulting expression provides a reduction of the order of (2.2.1) by
1. If R(x, y(x), y′(x), . . . , y(n−1)(x)) = cn can be solved for y(n−1), we obtain an
(n− 1)-st order ODE

y(n−1)(x) = Φ̃(cn, x, y(x), y′(x), . . . , y(n−2)),

where the right–hand–side only contains x, y(x) and derivatives of y(x) with
respect to x up to order n − 1 as well as the constant of integration cn. For
this ODE we search for another integrating factor µ̃(x, y(x), y′(x), . . . , y(n−2)(x))
and proceed again as described above. Finally, if it is always possible to solve
the resulting first integrals for the highest derivatives and if we succeed to find
enough integrating factors, we obtain an implicit expression of the form

Ψ(c1, c2, . . . , cn, x, y(x)) = 0,

i.e. a reduction of (2.2.1) giving solutions of (2.2.1) in implicit form de-
pending on n constants of integration (whose choice depends on suitable
initial values y(x0) = y0, y′(x0) = y1, . . . y(n−1)(x0) = yn−1 for certain values
x0, y0, y1, . . . , yn−1 of the coefficient domain under consideration) and x and
y(x), only.

The main problem in trying to solve n-th order ODEs of the form (2.2.1) by
searching for integrating factors is that an integrating factor is in general deter-
mined by a partial differential equation. In the situation of (2.2.1), the deter-
mining equation4 for an integrating factor of the form µ(x, y(x), . . . , y(n−1)(x))
is given by

∂H

∂y
− d

dx

(∂H

∂y′

)
+

d2

dx2

(∂H

∂y′′

)
+ . . . + (−1)n dn

dxn

(∂H

∂y(n)

)
= 0, (2.2.8)

4Equation (2.2.8) is obtained by applying the Euler operator to the differential expression
H (see Theorem 2.6 in Section 2.5 for the introduction of the Euler operator).

2.2. BASIC TERMINOLOGY 71

where H = H(x, y(x), y′(x), . . . , y(n)(x)) is given by

H := µ(x, y(x), y′(x), . . . , y(n−1)(x))(y(n)(x)− Φ(x, y(x), y′(x), . . . , y(n−1)(x))).

Equation (2.2.8) can be written in the form

A(x, y(x), y′(x), . . . , y(2n−3)(x)) + y(2n−2)(x)B(x, y(x), y′(x), . . . , y(n−1)(x)) = 0,

where A(x, y(x), y′(x), . . . , y(2n−3)(x)) is a polynomial expression of degree n−1
in y(n)(x) and a linear polynomial expression in y(k)(x), n < k ≤ 2n− 3.

Even in the case n = 2, i.e. when the ODE under consideration is a second order
ODE

y′′(x) = Φ(x, y(x), y′(x))

for which an integrating factor µ(x, y(x), y′(x)) has to be found, equation (2.2.8)
is of the form

A(x, y(x), y′(x)) + y′′(x)B(x, y(x), y′(x)) = 0.

By setting A(x, y(x), y′(x)) = 0 and B(x, y(x), y′(x)) = 0, one obtains the sys-
tem of partial differential equations

0 =(y′µy′y − µy + µy′x)Φ + (Φy′x + y′Φy′y − Φy)µ + (y′)2µyy+

(µyΦy′ + µy′Φy + 2µxy)y
′ + µy′Φx + µxΦy′ + µxx,

0 =y′µy′y + Φµy′y′ + µΦy′y′ + 2µy + 2µy′Φy′ + µy′x,

where indices denote partial derivatives. For these determining equations and
further details we refer to [11], Section 2. Cheb-Terrab et. al. remark that
solving this system of partial differential equations is in principle as hard to
solve as the original ODE.

Recall that our focus lies on methods for solving ODEs in the programming
environment of a computer algebra system, where we do not have the possibility
(or are not willing due to a loss of efficiency) to use an elaborate symbolic
solver for partial differential equations. Therefore we are interested in ways of
finding integrating factors without solving any partial differential equations or
even other auxiliary ODEs.

The main idea to reach this goal for second order ODEs of the form
y′′(x) = Φ(x, y(x), y′(x)) presented in [11] is: do not search for integrating

72 CHAPTER 2. INTEGRATING FACTORS

factors of the most general form µ = µ(x, y(x), y′(x)), but try to compute
integrating factors of the form such as µ = µ(x, y(x)), µ = µ(x, y′(x)) and
µ = µ(y(x), y′(x)), i.e. assume a more special form for the integrating factors
to be computed.

Under this special assumptions on the form of the integrating factors to be
computed, Cheb-Terrab et. al. succeeded in giving necessary and sufficient con-
ditions for a second order ODE of the form y′′(x) = Φ(x, y(x), y′(x)) to admit
an integrating factor depending only on two of the “variables” x, y(x) and y′(x).

The basic ideas are:

• Compute the most general class of second order ODEs of the from

y′′(x) = Φ(x, y(x), y′(x))

admitting an integrating factor of the prescribed form.

• Find a necessary condition for a given second order ODE to belong to such
a general class of ODEs.

• Read–off the integrating factor from the ODE.

Of course, “reading–off integrating factors” has to be specified in detail. In
general, we mean by “reading–off integrating factors” the fact that we do not
need to solve any system of partial differential equations nor auxiliary ODEs
to compute an integrating factor. We will describe the ideas of Cheb-Terrab
et. al. in Section 2.4. Before we come to discuss these ideas, we use the following
section to introduce the above mentioned most general class of ODEs associated
with an integrating factor.

2.3 The ODE family associated with a given

integrating factor

The basic idea used by E. S. Cheb-Terrab and A. D. Roche in [11] to compute
integrating factors of ODEs is outlined in the following. For reasons of
abbreviation we write y for y(x), y′ for y′(x), y(i) for y(i)(x), 1 ≤ i ≤ n from
now on. Partial derivatives will be denoted by corresponding indices.

2.3. INTEGRATING FACTORS AND ASSOCIATED ODES 73

Assume that µ(x, y, y′, . . . , y(n−1)) is an integrating factor for (2.2.1) and
R(x, y, y′, . . . , y(n−1)) is a first integral. Then we have

0 = µ(x, y, y′, . . . , y(n−1))
(
y(n) − Φ(x, y, y′, . . . , y(n−1))

)
=

d

dx
R(x, y, y′, . . . , y(n−1))

= Rx + y′ Ry + y′′ Ry′ + . . . + y(n) Ry(n−1) .

Since Φ does not depend on y(n), we can conclude from the above equation that

µ(x, y, y′, . . . , y(n−1)) y(n) = Ry(n−1)(x, y(x), y′(x), . . . , y(n−1)) y(n)

and, hence,

µ(x, y, y′, . . . , y(n−1)) = Ry(n−1)(x, y(x), y′(x), . . . , y(n−1)).

Formal integration with respect to y(n−1) (we simply view y(n−1) as a symbolic
variable as if it did not depend on the independent variable x) provides the
following representation of the first integral R = R(x, y, y′, . . . , y(n−1)), where
G(x, y′, y′′, . . . , y(n−2)) is an arbitrary function in its arguments and plays the
role of a “constant of integration”:

R(x, y, y′, . . . , y(n−1)) = G(x, y, y′, . . . , y(n−2))+∫
µ(x, y, y′, . . . , y(n−1)) dy(n−1).

Remark 2.4. Note, that the integral∫
µ(x, y, y′, . . . , y(n−1)) dy(n−1)

has to be understood as a “partial integral”, i.e. we view x, y, y′, . . . , y(n−1) as
independent variables and treat the integrand µ(x, y, y′, . . . , y(n−1)) as a func-
tion of y(n−1) and — with respect to the integration — symbolic “constants”
x, y, y′, . . . , y(n−2).

Inserting the above representation for R into the equation

Rx + y′ Ry + y′′ Ry′ + . . . + y(n) Ry(n−1) = 0,

74 CHAPTER 2. INTEGRATING FACTORS

we obtain

0 =
(
G(x, y′, y′′, . . . , y(n−2)) +

∫
µ(x, y, y′, . . . , y(n−1)) dy(n−1)

)
x
+

y′
(
G(x, y′, y′′, . . . , y(n−2)) +

∫
µ(x, y, y′, . . . , y(n−1)) dy(n−1)

)
y
+

y′′
(
G(x, y′, y′′, . . . , y(n−2)) +

∫
µ(x, y, y′, . . . , y(n−1)) dy(n−1)

)
y′

+ . . . +

y(n)
(
G(x, y′, y′′, . . . , y(n−2)) +

∫
µ(x, y, y′, . . . , y(n−1)) dy(n−1)

)
y(n−1)

.

Since (∫
µ(x, y, y′, . . . , y(n−1)) dy(n−1)

)
y(n−1)

= µ(x, y, y′, . . . , y(n−1))

and G does not depend on y(n−1), we obtain from the above equation by solving
for y(n) the representation

y(n) =− 1

µ

[(
G +

∫
µ dy(n−1)

)
x

+ y′
(
G +

∫
µ dy(n−1)

)
y
+

y′′
(
G +

∫
µ dy(n−1)

)
y′

+ . . . + y(n−1)
(
G +

∫
µ dy(n−1)

)
y(n−2)

]
.

This equation containing the general function G = G(x, y, y′, . . . , y(n−2)) can
be viewed as the most general class of n-th order ODEs of the form (2.2.1)
admitting an integrating factor µ = µ(x, y, y′, . . . , y(n−1)). We have proved:

Theorem 2.5. If an n-th order ODE (2.2.1) can be turned into an exact n-th
order ODE by multiplication with an integrating factor µ = µ(x, y, y′, . . . , y(n−1))
it must be of the form

y(n) =− 1

µ

[(
G +

∫
µ dy(n−1)

)
x

+ y′
(
G +

∫
µ dy(n−1)

)
y
+

y′′
(
G +

∫
µ dy(n−1)

)
y′

+ . . . + y(n−1)
(
G +

∫
µ dy(n−1)

)
y(n−2)

]
with some function G = G(x, y, y′, . . . , y(n−1)) in its argument. The integrations
with respect to y(n−1) have to be understood in the sense of Remark 2.4.

In other words: Being an element of the above class of n-th order ODEs is a
necessary condition for the existence of an integrating factor of the from µ =
µ(x, y, y′, . . . , y(n−1)).

In the later course of this chapter we will consider numerous applications of
Theorem 2.5. Hence, we refer to the following sections for concrete examples.

2.4. INTEGRATING FACTORS FOR SECOND ORDER ODES 75

2.4 Integrating factors for second order ODEs

The application of what we here called Theorem 2.5 to the case of second order
ODEs has been done by E. S. Cheb-Terrab and A. D. Roche in [11]. The basic
ideas can be illustrated in the most simple way by considering an example from
[11].

Due to Theorem 2.5 the most general class of second order ODEs admitting an
integrating factor of the form µ = µ(x, y, y′) is given by

y′′ =− 1

µ

[(
G +

∫
µ dy′

)
x

+ y′
(
G +

∫
µ dy′

)
y

]
, (2.4.1)

where G = G(x, y).

In general it seems much too complicated to decide whether a given concrete
second order ODE belongs to the class (2.4.1).

What Cheb-Terrab and Roche did is assuming that µ does not depend on x, y
and y′, but only on x and y or x and y′ or y and y′. Let us consider the case
µ = µ(x, y), i.e. µ does not contain y′.

By taking this restriction into account, the most general class of second order
ODEs admitting an integrating factor of the form µ = µ(x, y) simplifies (2.4.1)
to

y′′ = − 1

µ(x, y)

[(
G(x, y) +

∫
µ(x, y) dy′

)
x

+ y′
(
G(x, y) +

∫
µ(x, y) dy′

)
y

]
= − 1

µ(x, y)

[
Gx(x, y) + y′ µx(x, y) + y′ Gy(x, y) + (y′)2 µy(x, y)

]
= −µy(x, y)

µ(x, y)
(y′)2 − Gy(x, y) + µx(x, y)

µ(x, y)
y′ − Gx(x, y)

µ(x, y)
,

i.e. the ODEs under consideration are of the form

y′′ = a(x, y) (y′)2 + b(x, y) y′ + c(x, y), (2.4.2)

where a(x, y), b(x, y) and c(x, y) can be determined in terms of µ(x, y) and

76 CHAPTER 2. INTEGRATING FACTORS

G(x, y) as

a(x, y) = −µy(x, y)

µ(x, y)
, (2.4.3)

b(x, y) = −Gy(x, y) + µx(x, y)

µ(x, y)
, (2.4.4)

c(x, y) = −Gx(x, y)

µ(x, y)
. (2.4.5)

Hence, a given concrete second order ODE can only admit an integrating factor
of the form µ = µ(x, y), if it is a quadratic polynomial in y′ with coefficients in x
and y. This is an easy to verify criterion and in the case that a given ODE is of
the form (2.4.2), the functions a(x, y), b(x, y) and c(x, y) can be read–off easily5.

Cheb-Terrab and Roche succeeded in solving the equations (2.4.3), (2.4.4)
and (2.4.5). Depending on the fact, whether 2ax(x, y) − by(x, y) equals zero
or not, and some easy to verify integrability conditions, they could establish
closed form solutions for the searched for integrating factor µ(x, y) or at
least a reduction of the problem of solving the system of partial differential
equations (2.4.3), (2.4.4) and (2.4.5) to the computation of a solution of a
second order homogeneous linear ODE. In the case, where a closed form
solution for µ(x, y) could be obtained, this solution involves integrations, but it
is given only in terms of the coefficients a(x, y), b(x, y) and c(x, y) and partial
derivatives of these with respect to x and y. Especially, no further solutions of
additional auxiliary ODEs or partial differential equations need to be computed.

More precisely, in the case 2ax(x, y) − by(x, y) 6= 0, Cheb-Terrab and Roche
succeeded to express the total derivative

µx(x, y)

µ(x, y)
+ y′

µy(x, y)

µ(x, y)

of ln(µ(x, y)), y = y(x), with respect to x only in terms of a(x, y), b(x, y) and
c(x, y) and partial derivatives of these with respect to x and y. Once they got
this, the result for µ(x, y) is obtained by computing the integral of this total
derivative and afterwards applying the exponential function to the result. We
skip the technical details here, since we will not make direct use of the results

5This is not only a theoretical statement. The determination of a(x, y), b(x, y) and c(x, y)
is easy to implement in any general purpose computer algebra system since all these software
packages offer fast and efficient routines for handling polynomial expressions.

2.4. INTEGRATING FACTORS FOR SECOND ORDER ODES 77

by Cheb-Terrab and Roche for the case of second order ODEs (we only make
use of the general underlying ideas used to find integrating factors).

In the case 2ax(x, y) − by(x, y) = 0 the situation is a bit more complicated.
Then µ(x, y) cannot be directly determined similar to the method described
above. It turns out that µ(x, y) is mainly obtained by means of an integral
of a function ν(x), which arises as a solution of a second order homogeneous
linear ODE. Indeed, this fact can be viewed as a simplification of the original
problem of determining µ(x, y) as a solution of a system of partial differential
equations. Of course, the computation of the solution ν(x) of a second order
homogeneous linear ODE is a problem in itself.

Although there is no generic formula giving the solution of such an ODE in
general, differential Galois theory provides various specialized algorithms for
the computation of such solutions (see e.g. [53] or [20]). And it has to be
emphasized that having to compute ν(x) as a solution of a linear ODE is the
only case in [11], where an auxiliary ODE has to be solved to find an integrating
factor.

As a conclusion: Cheb-Terrab and Roche established an “algebraic” criterion,
which is easy to verify, to decide, whether a given second order ODE admits
an integrating factor µ = µ(x, y). In nearly all cases discussed in [11] they
succeeded in solving the symbolic system of partial differential equations
(2.4.3), (2.4.4) and (2.4.5) for general functions a(x, y), b(x, y) and c(x, y) once
by hand, i.e. in a step of pre–processing not using a computer algebra system.
Once, the solution is found, the integrating factor is given by this solution.

The main point is that the solving of the system of partial differential equations
(2.4.3), (2.4.4) and (2.4.5) is done “once by hand”, such that the resulting
formulas for the solutions can be directly implemented in a computer algebra
system and the system does not have to solve such a system of partial
differential equations for every input ODE again6.

Nevertheless, it has be to mentioned that the procedure sketched above to treat
integrating factors of second order ODEs of the form µ = µ(x, y) is the easiest
case among the three different cases µ = µ(x, y), µ = µ(x, y′) and µ = µ(y, y′)

6Proceeding this way it is even possible to implement the above strategy in a computer
algebra system, which does not offer any routines for the symbolic solution of linear partial
differential equations associated with the integrating factor.

78 CHAPTER 2. INTEGRATING FACTORS

treated in [11]. Especially the case µ = µ(x, y′) turns out to be far more
complicated than the above discussed case.

The aim of this part of the thesis is to present possible extensions of the ideas
used for second order ODEs for ODEs of order three and higher. For our cases
we first of all need to have a way to check whether a given n-th order ODE is
already exact or not.

2.5 The Euler Operator: Proving the exactness

of an ODE

To check, whether a given n-th order ODE of the form (2.2.1) is exact, one can
use the so–called Euler Operator. The following theorem is a special case of
Theorem 2.1 in [36], where the authors also propose to use the Euler operator
as an algorithmical tool for a test for exactness (see also [51], Theorem 4.4 and
Example 4.5, pp. 250).

Theorem 2.6. Let f(x, y, y′, . . . , y(n)) be a function in x, y and the i-th deriva-
tives y(i) of y, 1 ≤ i ≤ n. Then f(x, y, y′, . . . , y(n)) is a total derivative if and
only if

n∑
i=0

(−1)i di

dxi

(∂f(x, y, y′, . . . , y(n))

∂y(i)

)
= 0. (2.5.1)

Here we use the convention d0

dx0 (
∂f(x,y,y′,...,y(n))

∂y(0)) = ∂f(x,y,y′,...,y(n))
∂y

.

Proof. A proof of a more general version of this theorem implying the above
assertion can be found in [51], Theorem 4.4 and Example 4.5, pp. 250.

Theorem 2.6 states that a given n-th order ODE can be checked for exactness
without performing any integration.

The application of the Euler operator can be turned directly into an easy
to implement and efficient algorithm to check for the exactness of a differ-
ential equation7. We will make extensive use of Theorem 2.6 in the next sections.

7An implementation of the Euler operator in the computer algebra system Mathematica
is discussed in Section 3.6.3 and Section 3.6.4 of [3].

2.6. INTEGRATING FACTORS FOR THIRD ORDER ODES 79

Note that the determining equation for an integrating factor of an n-th order
ODE presented in (2.2.8) can also be obtained by application of the Euler op-
erator to the differential expression

µ(x, y(x), y′(x), . . . , y(n−1)(x))(y(n)(x)− Φ(x, y(x), y′(x), . . . , y(n−1)(x))

and afterwards setting the result equal to zero.

2.6 Integrating factors for third order ODEs

As stated in the introduction to this chapter there are extensions to n-th order
ODEs, n ≥ 3, of the methods of Cheb-Terrab and Roche described in [11]. As
far as we know, these extensions and the algorithmic details used to treat ODEs
of order n ≥ 3 are not explained in detail nor published within the framework
of an article or preprint.

The only information we could find is available in the internet on the web-
site [8] by E. S. Cheb-Terrab providing the HTML-documentation of the
“detools”-package in the computer algebra system Maple. There the authors
of the package mention that “certain classes” of third and higher order
ODEs can be treated in the sense of the above described techniques if the
integrating factor is a polynomial in a certain derivative of the dependent
variable of the ODE considered. We think that this restriction concerning
the algebraic structure of the integrating factors considered seemed necessary
to the authors to proceed in the same or a similar way as described in Section 2.4.

As far as we can see, further restrictions of such kind must be taken into account
to be able to obtain results leading to implementable and efficient algorithms8.
In the following we consider third order ODEs

y′′′ = Φ(x, y, y′, y′′). (2.6.1)

As in the preceding sections, we write y′′′, y′′, y′ and y in the following instead
of y′′′(x), y′′(x), y′(x) and y(x). Due to Theorem 2.5, if µ = µ(x, y, y′, y′′) is an

8By “implementable and efficient algorithms” we mean that the algorithms and heuristics
established in the following part of this chapter serve to compute integrating factors not using
any auxiliary ODEs or even partial differential equations to be solved.

80 CHAPTER 2. INTEGRATING FACTORS

integrating factor of ODE (2.6.1), the ODE must be of the form

y′′′ =− 1

µ

[(
G +

∫
µ dy′′

)
x

+ y′
(
G +

∫
µ dy′′

)
y
+ y′′

(
G +

∫
µ dy′′

)
y′

]
,

(2.6.2)

where G = G(x, y, y′), the “constant” of integration, is an arbitrary function in
its arguments. In the following we investigate the cases

• µ = µ(x, y),

• µ = µ(x, y′),

• µ = µ(y, y′),

• µ = µ(y′′),

• µ = f(x, y, y′) (y′′)m, m ∈ Z \ {−2, 0}.

In contrast to the results for second order ODEs published in [11], where the
authors give necessary and sufficient conditions for the existence of integrating
factors of special classes of ODEs, we mainly give necessary conditions9. An
advantage of our algorithms for third order ODEs introduced in the next sub-
sections is the fact that they can easily be generalized to n-th order ODEs.
These generalizations are discussed at the end of this chapter.

2.6.1 Integrating factors µ(x, y).

Under the assumption µ = µ(x, y), the class of ODEs (2.6.2) can be written as

y′′′ = −µx + y′ µy + Gy′

µ
y′′ − Gx + y′ Gy

µ
. (2.6.3)

Due to Theorem 2.5, this is the most general class of third order ODEs
admitting an integrating factor of the form µ = µ(x, y). For the class (2.6.3) of
ODEs we did not find a satisfying algorithmic approach to check, whether a
given ODE of order three belongs to the class or not. So we took into account
another simplifying assumption. We assumed that the “constant” of integration
G = G(x, y, y′) does not depend on y′.

9See also Remark 2.17 of Section 2.6.4 for more precise information on what is meant by
giving only necessary conditions.

2.6. INTEGRATING FACTORS FOR THIRD ORDER ODES 81

This assumption leads to the general family of ODEs

y′′′ = −µx + y′ µy

µ
y′′ − Gx + y′ Gy

µ
(2.6.4)

to be taken into account10. If G does not depend on y′, (2.6.4) obviously is a
linear polynomial in y′′. This fact is easy to verify for a given third order ODE.
The leading coefficient of this polynomial in y′′ is again a linear polynomial, but
in y′, since µ = µ(x, y) does not depend on y′ by assumption. We set:

a(x, y) := −µx

µ
, b(x, y) := −µy

µ
, (2.6.5)

i.e. the leading coefficient of (2.6.4) viewed as a polynomial in y′′ can be written
as a(x, y) + y′ b(x, y). For the coefficients of the polynomial a(x, y) + y′ b(x, y)
in y′ the symmetry of second derivatives must hold, i.e.

ay(x, y) = bx(x, y). (2.6.6)

By ∫
a(x, y) dx + b(x, y) dy

we denote the function of x and y uniquely determined up to the addition of a
constant, such that its partial derivatives with respect to x and y satisfy(∫

a(x, y) dx + b(x, y) dy
)

x
= a(x, y)

and (∫
a(x, y) dx + b(x, y) dy

)
y

= b(x, y).

Then a candidate11 for an integrating factor is obtained by

µ(x, y) = exp
(
−
∫

a(x, y) dx + b(x, y) dy
)
. (2.6.7)

Our results can be summarized in the form of the following algorithm, which
tries to compute an integrating factor µ = µ(x, y) of a given third order ODE.

10In subsection 2.6.5 on pp. 96 we discuss alternative algorithms and heuristics, for which
we do not use this simplifying assumption.

11We use the notion of “candidates” for integrating factors, since the above stated conditions
are only necessary conditions for the existence of an integrating factor of the prescribed form.
See also Remark 2.17 on page 95, where we present further explanations on the fact why our
conditions are not sufficient.

82 CHAPTER 2. INTEGRATING FACTORS

Algorithm 2.7. (Computing integrating factors of the form µ = µ(x, y)
of third order ODEs) Given a third order ODE y′′′ = Φ(x, y, y′, y′′) proceed
as follows:

1. Check the ODE for exactness, i.e. set

Ψ(x, y, y′, y′′, y′′′) := y′′′ − Φ(x, y, y′, y′′)

and compute

A := Ψy −
d

dx
Ψy′ +

d2

dx2
Ψy′′ −

d3

dx3
Ψy′′′ .

If A = 0 the input ODE is already exact and can be integrated directly.
Stop the algorithm.

2. Check, whether Φ(x, y, y′, y′′) is a linear polynomial in y′′. If not, stop the
algorithm.

3. Check, whether the leading coefficient of Φ(x, y, y′, y′′) as a polynomial in
y′′ is itself a linear polynomial in y′. If not, stop the algorithm.

4. Determine the coefficients a(x, y) and b(x, y) as in (2.6.5) and check
whether (2.6.6) is fulfilled. If not, stop the algorithm.

5. Compute (2.6.7) as a candidate for µ.

6. Compute

A := (µ Ψ)y −
d

dx
(µ Ψ)y′ +

d2

dx2
(µ Ψ)y′′ −

d3

dx3
(µ Ψ)y′′′ .

If A = 0, µ is an integrating factor for the ODE. Return the result for µ.
Otherwise stop the algorithm. M

Proof. The correctness of the algorithm follows from the preceding discussion.

In step 1 and step 6 we make use of the Euler operator to check for exactness
(see Theorem 2.6). The following example demonstrates the use of Algorithm
(2.7) for determining an integrating factor of a third order ODE belonging to
the special class of ODEs (2.6.4) under consideration.

2.6. INTEGRATING FACTORS FOR THIRD ORDER ODES 83

Example 2.8. The ODE

y′′′ = −y′′ − y′ y′′ − y

exp(x + y)
− x

y′

exp(x + y)

is not exact, since application of the Euler operator (Theorem 2.6) to the ex-
pression

y′′′ + y′′ + y′ y′′ +
y

exp(x + y)
+ x

y′

exp(x + y)

provides x−y
exp(x+y)

, i.e. the expression is not a total derivative. The functions

a(x, y) and b(x, y) in step 4 of Algorithm 2.7 are given by

a(x, y) = −1, b(x, y) = −1.

Hence, a candidate for an integrating factor of the given ODE is computed by
(2.6.7) providing

µ(x, y) = exp
(
−
∫

a(x, y) dx + b(x, y) dy
)

= exp(x + y),

where the constant of integration can be ignored, since whenever µ(x, y) is
an integrating factor, then also c µ(x, y) for an arbitrary non–zero constant c.
Multiplication of

y′′′ + y′′ + y′ y′′ +
y

exp(x + y)
+ x

y′

exp(x + y)

by µ and afterwards application of the Euler operator to this expression proves
that the resulting expression is indeed a total derivative and, hence,

µ(x, y) = exp(x + y)

is an integrating factor for the given ODE. �

2.6.2 Integrating factors µ(x, y′).

Under the assumption µ = µ(x, y′), the class of ODEs (2.6.2) can be written as

y′′′ = −µy′

µ
(y′′)2 − µx + Gy′

µ
y′′ − Gx + y′ Gy

µ
. (2.6.8)

84 CHAPTER 2. INTEGRATING FACTORS

Due to Theorem 2.5, this is the most general class of third order ODEs
admitting an integrating factor of the form µ = µ(x, y′). As in the preceding
case µ = µ(x, y), we take into account the simplifying assumption, that the
“constant” of integration G = G(x, y, y′) does not depend on y′.

Under this assumption (2.6.8) becomes

y′′′ = −µy′

µ
(y′′)2 − µx

µ
y′′ − Gx + y′ Gy

µ
. (2.6.9)

Since µ and G do not depend on y′′, (2.6.9) can be viewed as a quadratic
polynomial in y′′ with coefficients depending on x, y and y′. We define

a(x, y′) := −µy′

µ
, b(x, y′) := −µx

µ
, (2.6.10)

i.e. a(x, y′) is the coefficient of (y′′)2 and b(x, y′) is the coefficient y′′. Again, for
these functions the symmetry of second derivatives must hold, i.e.

ax(x, y′) = by′(x, y′). (2.6.11)

If we denote by ∫
a(x, y′)dy′ + b(x, y′)dx

the function in x and y′ uniquely determined up to the addition of a constant,
whose partial derivatives with respect to y′ and x satisfy(∫

a(x, y′)dy′ + b(x, y′)dx
)

y′
= a(x, y′)

and (∫
a(x, y′)dy′ + b(x, y′)dx

)
x

= b(x, y′).

A candidate12 for µ = µ(x, y′) is found to be

µ(x, y′) = exp
(
−
∫

a(x, y′) dy′ + b(x, y′) dx
)
. (2.6.12)

From the above discussion we can deduce Algorithm 2.9, which tries to compute
an integrating factor of the form µ = µ(x, y′).

12We use the notion of “candidates” for integrating factors, since the above stated conditions
are only necessary conditions for the existence of an integrating factor of the prescribed form.
See also Remark 2.17 on page 95, where we present further explanations on the reason why
our conditions are not sufficient.

2.6. INTEGRATING FACTORS FOR THIRD ORDER ODES 85

Algorithm 2.9. (Computing integrating factors of the form µ = µ(x, y′)
of third order ODEs) Given a third order ODE y′′′ = Φ(x, y, y′, y′′) proceed
as follows:

1. Check the ODE for exactness, i.e. set

Ψ(x, y, y′, y′′, y′′′) := y′′′ − Φ(x, y, y′, y′′)

and compute

A := Ψy −
d

dx
Ψy′ +

d2

dx2
Ψy′′ −

d3

dx3
Ψy′′′ .

If A = 0 the input ODE is already exact and can be integrated directly.
Stop the algorithm.

2. Check, whether Φ(x, y, y′, y′′) is a quadratic polynomial in y′′. If not, stop
the algorithm.

3. Check, whether the coefficients of (y′′)2 and y′′ in Φ(x, y, y′, y′′) viewed as
a polynomial in y′′ do not contain y. If not, stop the algorithm.

4. Determine the functions a(x, y′) and b(x, y′) as in (2.6.10) and check,
whether (2.6.11) is fulfilled. If not, stop the algorithm.

5. Compute (2.6.12) as a candidate for µ.

6. Compute

A := (µ Ψ)y −
d

dx
(µ Ψ)y′ +

d2

dx2
(µ Ψ)y′′ −

d3

dx3
(µ Ψ)y′′′ .

If A = 0, µ is an integrating factor of the ODE. Return the result for µ.
Otherwise stop the algorithm. M

Proof. The correctness of the algorithm follows from the preceding discussion.

Steps 1 and 6 of Algorithm 2.9 make use of the Euler operator to decide, whether
the corresponding expression is a total derivative. Let us consider an example,
in which Algorithm 2.9 can be applied.

86 CHAPTER 2. INTEGRATING FACTORS

Example 2.10. The ODE

y′′′ = −(y′′)2 − y′′ − 2 x y

exp(x + y′)
− x2 y′

exp(x + y′)

is not exact, since application of the Euler operator (Theorem 2.6) to the ex-
pression

y′′′ + (y′′)2 + y′′ +
2 x y

exp(x + y′)
+ x2 y′

exp(x + y′)

provides

1

exp(x + y′)

(
2 y + 4 x y′ − x2 y′ + 2 x2 y′′ − 2 x y+

x2 − x2 y′ y′′ − 2 x y y′′ + 2 exp(x + y′) y′′′′
)
,

i.e. the expression is not a total derivative. The functions a(x, y′) and b(x, y′)
in step 4 of the Algorithm 2.9 are given by

a(x, y′) = −1, b(x, y′) = −1.

Hence, a candidate for an integrating factor of the given ODE is computed by
(2.6.12) providing

µ(x, y′) = exp
(
−
∫

a(x, y′) dy′ + b(x, y′) dx
)

= exp(x + y′),

where the constant of integration can be ignored, since whenever µ(x, y′) is
an integrating factor, then also c µ(x, y′) for an arbitrary non–zero constant c.
Multiplication of

y′′′ + (y′′)2 + y′′ +
2 x y

exp(x + y′)
+ x2 y′

exp(x + y′)

by µ and afterwards applying the Euler operator to this expression proves that
the resulting expression is indeed a total derivative and, hence,

µ(x, y′) = exp(x + y′)

is an integrating factor for the given ODE. �

2.6. INTEGRATING FACTORS FOR THIRD ORDER ODES 87

2.6.3 Integrating factors µ(y, y′).

Under the assumption µ = µ(y, y′), the class of ODEs (2.6.2) can be written as

y′′′ = −µy′

µ
(y′′)2 − µy y′ + Gy′

µ
y′′ − Gx + y′ Gy

µ
. (2.6.13)

Due to Theorem 2.5, this is the most general class of third order ODEs
admitting an integrating factor of the form µ = µ(y, y′). As in the treatment
of the preceding cases µ = µ(x, y) and µ = µ(x, y′), we take into account the
simplifying assumption that the “constant” of integration G = G(x, y, y′) does
not depend on y′.

Under this assumption (2.6.13) becomes

y′′′ = −µy′

µ
(y′′)2 − µy y′

µ
y′′ − Gx + y′ Gy

µ
. (2.6.14)

As in the case µ = µ(x, y′), the ODE (2.6.14) can be viewed as a quadratic
polynomial in y′′, since G and µ do not depend on y′′. We consider

a(y, y′) := −µy′

µ
, b(y, y′) := −µy y′

µ
. (2.6.15)

The symmetry conditions for the second derivatives (2.6.6) and (2.6.11) are
slightly different in the case µ = µ(y, y′) compared to the preceding cases µ =
µ(x, y) and µ(x, y′). In the situation of (2.6.14)

ay(y, y′) =
(b(y, y′)

y′

)
y′

(2.6.16)

must hold. Similar to the former cases, where we computed candidates for
integrating factors µ = µ(x, y) and µ = µ(x, y′), we denote by∫

a(y, y′) dy′ +
b(y, y′)

y′
dy

the function in y and y′ uniquely determined up to the addition of a constant,
such that its partial derivatives with respect to y′ and y satisfy(∫

a(y, y′) dy′ +
b(y, y′)

y′
dy
)

y′
= a(y, y′)

88 CHAPTER 2. INTEGRATING FACTORS

and (∫
a(y, y′) dy′ +

b(y, y′)

y′
dy
)

y
=

b(y, y′)

y′
.

Then a candidate13 for µ = µ(y, y′) is obtained to be

µ(y, y′) = exp
(
−
∫

a(y, y′) dy′ +
b(y, y′)

y′
dy
)
. (2.6.17)

We summarize our results in an algorithm, which tries to compute an integrating
factor of the form µ(y, y′) for a given third order ODE.

Algorithm 2.11. (Computing integrating factors of the form µ = µ(y, y′)
of third order ODEs) Given a third order ODE y′′′ = Φ(x, y, y′, y′′) proceed
as follows:

1. Check the ODE for exactness, i.e. set

Ψ(x, y, y′, y′′, y′′′) := y′′′ − Φ(x, y, y′, y′′)

and compute

A := Ψy −
d

dx
Ψy′ +

d2

dx2
Ψy′′ −

d3

dx3
Ψy′′′ .

If A = 0 the input ODE is already exact and can be integrated directly.
Stop the algorithm.

2. Check, whether Φ(x, y, y′, y′′) is a quadratic polynomial in y′′. If not, stop
the algorithm.

3. Check, whether the coefficients of (y′′)2 and y′′ in Φ(x, y, y′, y′′) viewed as
a polynomial in y′′ only depend on y and y′. If not, stop the algorithm.

4. Determine the functions a(y, y′) and b(y, y′) as in (2.6.15) and check,
whether (2.6.16) is fulfilled. If not, stop the algorithm.

5. Compute (2.6.17) as a candidate for µ.

13We use the notion of “candidates” for integrating factors, since the above stated conditions
are only necessary conditions for the existence of an integrating factor of the prescribed form.
See also Remark 2.17 on page 95, where we present further explanations on the reasons why
our conditions are not sufficient.

2.6. INTEGRATING FACTORS FOR THIRD ORDER ODES 89

6. Compute

A := (µ Ψ)y −
d

dx
(µ Ψ)y′ +

d2

dx2
(µ Ψ)y′′ −

d3

dx3
(µ Ψ)y′′′ .

If A = 0, µ is an integrating factor of the ODE. Return the result for µ.
Otherwise stop the algorithm. M

Proof. The correctness of the algorithm follows from the preceding discussion.

Algorithm 2.11 is used to find an integrating of a member of the special class of
ODEs (2.6.14) in the next example.

Example 2.12. The ODE

y′′′ = −(y′′)2 − y′ y′′ − y

exp(y + y′)
− x

y′

exp(y + y′)

is not exact, since application of the Euler operator (Theorem 2.6) to the ex-
pression

y′′′ + (y′′)2 + y′ y′′ +
y

exp(y + y′)
+ x

y′

exp(y + y′)

provides

1

exp(y + y′)

(
− y − y y′ + 2 x y′′ − y y′′ − x (y′)2 + 2 y′−

x y′ y′′ + 2 exp(y + y′) y′′′′
)
,

i.e. the expression is not a total derivative. The functions a(y, y′) and b(y, y′) in
step 4 of the Algorithm 2.11 are given by

a(y, y′) = −1, b(y, y′) = −y′.

Hence, a candidate for an integrating factor of the given ODE is computed by
(2.6.17) providing

µ(y, y′) = exp
(
−
∫

a(y, y′) dy′ +
b(y, y′)

y′
dy
)

= exp(y + y′),

90 CHAPTER 2. INTEGRATING FACTORS

where the constant of integration can be ignored, since if µ(y, y′) is an integrating
factor, then also c µ(y, y′) for any non–zero constant c. Multiplication of

y′′′ + (y′′)2 + y′ y′′ +
y

exp(y + y′)
+ x

y′

exp(y + y′)

by µ and afterwards applying the Euler operator to this expression proves that
the resulting expression is indeed a total derivative and, hence,

µ(y, y′) = exp(y + y′)

is an integrating factor for the given ODE. �

Remark 2.13. Algorithms 2.7, 2.9 and 2.11 also work in the cases, where µ
does not depend on two elements of the set {x, y, y′}, but only on one of them.
The special cases µ = µ(x), µ = µ(y) and µ = µ(y′) are automatically treated by
the algorithms stated. This also implies that e.g. for computing an integrating
factor of the form µ = µ(y), Algorithm 2.7 or Algorithm 2.11 may be used. This
fact is illustrated by Example 2.14.

Example 2.14. The ODE

y′′′ =
y′

y
y′′ − y2 y′ (2.6.18)

is not exact, but it admits the integrating factor µ = µ(y) = 1
y

(see [45], p. 602,

ODE 7.7).

The functions a(x, y) and b(x, y) in step 4 of Algorithm 2.7 are given by

a(x, y) = 0, b(x, y) =
1

y
.

Hence, a candidate for an integrating factor of the given ODE is computed by
(2.6.7) providing

µ(x, y) = exp
(
−
∫

a(x, y) dx + b(x, y) dy
)

=
1

y
.

Indeed, this is an integrating factor for (2.6.18) and constants of integration
can be ignored as in the preceding examples of this section.

2.6. INTEGRATING FACTORS FOR THIRD ORDER ODES 91

Alternatively, also Algorithm 2.11 can be used to determine the searched for
integrating factor. The functions a(y, y′) and b(y, y′) in step 4 of the Algorithm
2.11 are given by

a(y, y′) = 0, b(y, y′) =
y′

y
.

Hence, a candidate for an integrating factor of the given ODE is computed by
(2.6.17) providing

µ(y, y′) = exp
(
−
∫

a(y, y′) dy′ +
b(y, y′)

y′
dy
)

=
1

y
,

i.e. application of both algorithms 2.7 and 2.11 leads to the same integrating
factor. �

2.6.4 Integrating factors µ(y′′).

Under the assumption µ = µ(y′′), the general class of ODEs (2.6.2) reads

y′′′ = −Gx + y′ Gy + y′′ Gy′

µ
. (2.6.19)

Due to Theorem 2.5, this is the most general class of third order ODEs admitting
an integrating factor of the form µ = µ(y′′). Since G(x, y, y′) is an arbitrary
function in its arguments, the class of ODEs (2.6.19) is not of such a simple
algebraic structure as the classes discussed for the cases µ = µ(x, y), µ = µ(x, y′)
and µ = µ(y, y′), where we demanded that G(x, y, y′) does not depend on y′ and
found out that the class of ODEs is polynomial in y′′. In the above class (2.6.19)
it even does not really simplify the situation if we assume that G(x, y, y′) does
not depend on y′, since this assumption provides

y′′′ = − 1

µ
y′′ − Gx + y′ Gy

µ
. (2.6.20)

At first glimpse, it seems easy to find out µ as the negative reciprocal of the
coefficient of y′′. But since µ depends on y′′, the right–hand–side of the equation
does not need to be a polynomial in y′′. Furthermore, the problem of computing
µ from the right–hand–side of the ODE by simple means as used in the preceding

92 CHAPTER 2. INTEGRATING FACTORS

part of this section has not been simplified by assuming that G(x, y, y′) does not
depend on y′. If we drop this assumption, the class of ODEs can be written as

y′′′ = −Gy′

µ
y′′ − Gx + y′ Gy

µ
. (2.6.21)

To read–off µ from the right–hand–side of this equation is not more difficult
than to find a candidate for µ in equation (2.6.20), since G does not depend on
y′′ anyway.

Hence, instead of taking into account the simplifying assumption that the “con-
stant” of integration G(x, y, y′) does not depend on y′ as in the treatment of the
preceding cases, we demand for the case µ = µ(y′′), that µ(0) 6= 0. If µ(0) 6= 0,
µ cannot be of the form µ = y′′g(y′′) for an arbitrary function g(y′′), hence, 1

µ

is a proper factor of
Gy′

µ
y′′

and
Gx + y′ Gy

µ
.

Thus one can try to factor the right–hand–side of (2.6.21) into the product of
a factor depending only on y′′ as a candidate for − 1

µ
and a second factor as a

candidate for
Gy′ y

′′ + Gx + Gy y′.

If this second factor is a linear polynomial in y′′ with coefficients depending
only on x, y and y′ and a total derivative, there is at least a chance that the
negative reciprocal of the first factor depending only on y′′ is a candidate for
an integrating factor14.

Of course, we should first investigate, if there is a term of the form g(y′′) y′′ in
(2.6.21). If this is the case, we may assume that G(x, y, y′) indeed does not de-
pend on y′, i.e. we are in the situation of (2.6.20) and the reciprocal of g(y′′) is a
candidate for an integrating factor of the given ODE (in fact, the negative of the
reciprocal of g(y′′) corresponds to µ(y′′), but constant multiples can be ignored).

14Of course, finding a common factor depending only on y′′ in an arbitrary expression
in x, y, y′ and y′′ is a difficult problem and one cannot expect to succeed in all possible
settings. Nevertheless, modern computer algebra systems offer routines for factoring not only
polynomials, but also arbitrary expressions.

2.6. INTEGRATING FACTORS FOR THIRD ORDER ODES 93

We sum up the ideas for the case µ = µ(y′′), µ(0) 6= 0, in the following algo-
rithm15:

Algorithm 2.15. (Computing integrating factors of the form µ = µ(y′′),
µ(0) 6= 0, of third order ODEs) Given a third order ODE y′′′ = Φ(x, y, y′, y′′)
proceed as follows.

1. Check the ODE for exactness, i.e. set

Ψ(x, y, y′, y′′, y′′′) := y′′′ − Φ(x, y, y′, y′′)

and compute

A := Ψy −
d

dx
Ψy′ +

d2

dx2
Ψy′′ −

d3

dx3
Ψy′′′ .

If A = 0 the input ODE is already exact and can be integrated directly.
Stop the algorithm.

2. Try to find out, if Φ(x, y, y′, y′′) contains a factor g(y′′) depending only on
y′′. If this is not the case, stop the algorithm.

3. Let Φ(x, y, y′, y′′) = g(y′′) h(x, y, y′, y′′). Compute

T := hy −
d

dx
hy′ +

d2

dx2
hy′′ −

d3

dx3
hy′′′ .

If T = 0, i.e. h(x, y, y′, y′′) is a total derivative and a linear polynomial in
y′′, go to step 4. If this is not the case, stop the algorithm.

4. Choose µ = 1
g(y′′)

as a candidate for an integrating factor of the given
ODE.

5. Set Ψ(x, y, y′, y′′, y′′′) := y′′′ − Φ(x, y, y′, y′′) and compute

A := (µ Ψ)y −
d

dx
(µ Ψ)y′ +

d2

dx2
(µ Ψ)y′′ −

d3

dx3
(µ Ψ)y′′′ .

If A = 0, µ is an integrating factor of the ODE. Return the result for µ.
Otherwise stop the algorithm. M

15In principle it should better be called a heuristic than an algorithm, since it strongly
depends on the power of the factoring routine available, when implemented in practice.

94 CHAPTER 2. INTEGRATING FACTORS

Proof. The correctness of the algorithm follows from the preceding discussion.

Note that in step 1 of Algorithm 2.15 first of all the algorithms 2.7, 2.9 and 2.11
should be used, since they are much more systematic. The above algorithm may
be considered as the “last hope” for finding an integrating factor depending
only on y′′ if algorithms 2.7, 2.9 and 2.11 fail.

We apply Algorithm 2.15 in an example of an ODE belonging to the general
class of ODEs (2.6.19).

Example 2.16. Consider the ODE

y′′′ =
cos(x + y + y′)

exp(y′′)
+ y′

cos(x + y + y′)

exp(y′′)
+ y′′

cos(x + y + y′)

exp(y′′)
.

This ODE is not a member of the classes (2.6.4), (2.6.14) and (2.6.9) nor is the
expression

y′′′ − cos(x + y + y′)

exp(y′′)
− y′

cos(x + y + y′)

exp(y′′)
− y′′

cos(x + y + y′)

exp(y′′)

a total derivative (the expression obtained by applying the Euler Operator
from Theorem 2.6 is too large to be displayed here).

Nevertheless, it is quite easy to see that the right–hand–side of the given ODE
contains a factor depending only on y′′, i.e. 1

exp(y′′)
. The remaining factor is

− cos(x + y + y′)− y′ cos(x + y + y′)− y′′ cos(x + y + y′),

which is a linear polynomial in y′′ and a total derivative, since it equals
− d

dx
sin(x+y+y′). Hence, Algorithm 2.15 determines µ = exp(y′′) as a candidate

for an integrating factor. Multiplying

y′′′ − cos(x + y + y′)

exp(y′′)
− y′

cos(x + y + y′)

exp(y′′)
− y′′

cos(x + y + y′)

exp(y′′)

by µ provides

exp(y′′) y′′′ − cos(x + y + y′)− y′ cos(x + y + y′)− y′′ cos(x + y + y′),

which is a total derivative and, hence,

µ(y′′) = exp(y′′)

an integrating factor for the given ODE. �

2.6. INTEGRATING FACTORS FOR THIRD ORDER ODES 95

We close this subsection with a remark on the necessity of checking for total
derivatives in the last step of Algorithm 2.7, Algorithm 2.9, Algorithm 2.11 and
Algorithm 2.15.

Remark 2.17. The ODE classes (2.6.4), (2.6.9), (2.6.14) and (2.6.19) and the
conditions on the algebraic structure of the ODEs established in the former
part of this section are necessary conditions for the existence of integrating
factors of the form µ = µ(x, y), µ = µ(x, y′), µ = µ(y, y′) and µ = µ(y′′),
respectively, but they are not sufficient.

In other words: It may happen that the Algorithms 2.7, 2.9, 2.11 and 2.15
compute a candidate for µ, but µ is not an integrating factor for the ODE
considered. The class (2.6.9) of ODEs considered in the case µ = µ(x, y′) was

y′′′ = −µy′

µ
(y′′)2 − µx

µ
y′′ − Gx + y′ Gy

µ
.

We found a candidate for an integrating factor of the form µ = µ(x, y′) by
noticing that each member of this class of ODEs must be a quadratic polynomial
in y′′. Then we took the coefficients of (y′′)2 and y′′ and derived a result for µ,
but without taking into account the constant term

−Gx + y′ Gy

µ

(constant with respect to y′′). By ignoring the constant term, it may of course
happen that Algorithm 2.9 computes a candidate for µ, but µ does not appear
in the denominator of the constant term of the given ODE or it appears in
the denominator, but the numerator is not the total derivative of a function
G = G(x, y).

The following example illustrates a case, where Algorithm 2.9 finds a candidate
for an integrating factor, which is in fact not an integrating factor.

Example 2.18. The ODE

y′′′ = −(y′′)2 − y′′ − y

exp(x + y′)
− y y′

exp(x + y′)

is not exact, since application of the Euler operator (Theorem 2.6) to the ex-
pression

y′′′ + (y′′)2 + y′′ +
y

exp(x + y′)
+

y y′

exp(x + y′)

96 CHAPTER 2. INTEGRATING FACTORS

provides

y y′′ − y y′ + (y′)2 + y′ − y y′ y′′ + 2 exp(x + y′) y′′′′ + 1

exp(x + y′)
,

i.e. the expression is not a total derivative. The functions a(x, y′) and b(x, y′)
determined in step 4 of Algorithm 2.9 are

a(x, y′) = −1, b(x, y′) = −1.

Hence, a candidate for an integrating factor of the given ODE is computed in
step 5 of Algorithm 2.9 to be

µ = exp
(
−
∫

a(x, y′) dy′ + b(x, y′) dx
)

= exp(x + y′).

Multiplying

y′′′ + (y′′)2 + y′′ +
y

exp(x + y′)
+

y y′

exp(x + y′)

by µ and afterwards applying of the Euler Operator (see Theorem 2.6) to the
resulting expression provides the result 1. Hence, multiplication of the given
ODE with µ does not lead to a first integral and thus Algorithm 2.9 fails. �

This shows that the test for exactness in the last step of each of the Algorithms
2.7, 2.9, 2.11 and 2.15 cannot be removed. The same holds for the algorithms
presented in the next subsection, where we consider a more special form of
integrating factors.

2.6.5 Integrating factors f(x, y, y′)(y′′)m.

Recall that in general for a third order ODE an integrating factor admitted
by the ODE can involve x, y, y′ and y′′. In the former part of this chapter,
we investigated integrating factors only depending on at most two of the
“variables” x, y, y′ and y′′. In this section we present algorithms to find
integrating factors depending on x, y, y′ and y′′. Furthermore, in the previous
part, we always made simplifying assumptions concerning the “constant of
integration” G appearing in class of ODEs (2.6.2) under consideration. In the
following, we also allow the case G = G(x, y, y′) instead of G = G(x, y), but we
have to assume that d

dx
G(x, y, y′) 6= 0, i.e. G must not be a constant16.

16The reason for the assumption will become clear in the following.

2.6. INTEGRATING FACTORS FOR THIRD ORDER ODES 97

We consider the more concrete ansatz µ = f(x, y, y′)(y′′)m, m ∈ Z \ {−2, 0},
f(x, y, y′) an arbitrary function in its arguments, concerning the form of the
integrating factor17. As in the former part of this chapter, we first compute the
most general class of third order ODEs admitting an integrating factor of the
form µ = f(x, y, y′)(y′′)m and afterwards give an algorithm how to compute
a candidate for an integrating factor from an ODE belonging to the class of
ODEs under consideration.

In the following we treat the three cases

• µ = f(x, y, y′)(y′′)m, m ∈ N,

• µ = f(x, y, y′) 1
(y′′)m , m ∈ N, m ≥ 3,

• µ = f(x, y, y′) 1
y′′

,

separately.

The case µ = f(x, y, y′)(y′′)m, m ∈ N. If we take into account the prescribed
form of integrating factors, the partial integrals appearing in (2.6.2) are given
by ∫

µ dy′′ =
1

m + 1
f(y′′)m+1,

(∫
µ dy′′

)
x

=
1

m + 1
fx(y

′′)m+1,(∫
µ dy′′

)
y

=
1

m + 1
fy(y

′′)m+1,
(∫

µ dy′′
)

y′
=

1

m + 1
fy′(y

′′)m+1.

Consequently, the most general class of third order ODEs admitting an inte-
grating factor of the prescribed form reads

y′′′ = −Gx + y′Gy

f(y′′)m
− Gy′

f(y′′)m−1
− 1

m + 1

(fx

f
y′′ +

fy

f
y′y′′ +

fy′

f
(y′′)2

)
. (2.6.22)

Note that f(y′′)m and f(y′′)m−1 denote the multiplication of f by (y′′)m and
(y′′)m−1, respectively, and not the application of f to (y′′)m and (y′′)m−1.

The right–hand–side of (2.6.22) is a rational expression in y′′, since neither
f = f(x, y, y′) nor G = G(x, y, y′) do contain y′′. Assume we are given an ODE

17The case m = 0 is excluded, since for m = 0 the integrating factors considered would not
depend on y′′ at all. The case m = −2 is excluded for a technical reason, which will become
obvious soon.

98 CHAPTER 2. INTEGRATING FACTORS

of this form, i.e. neither Gx + y′Gy nor Gy′ vanish. Then we can read–off the
highest power of y′′ appearing in a denominator of the expressions forming the
right–hand–side of the given ODE. This gives a candidate for the power m of
y′′ appearing in the searched for integrating factor. Furthermore, (2.6.22) has a
polynomial part in y′′, i.e. the expression

− 1

m + 1

(fx

f
+

fy

f
y′
)
y′′ − 1

m + 1

fy′

f
(y′′)2.

Hence, we can read–off the quantities18

T1 = − 1

m + 1

(fx

f
+

fy

f
y′
)
, T2 = − 1

m + 1

fy′

f
,

i.e. T1 is the coefficient of y′′ and T2 is the coefficient of (y′′)2 in the polynomial
part of (2.6.22)19. Under the assumptions concerning the form of the integrating
factor, −(m + 1)(T1 + y′′T2) has to be the total derivative of ln(f) with respect
to x and we may apply the Euler operator (see Theorem 2.6) to this expression
to check, whether this is indeed the case. If −(m + 1)(T1 + y′′T2) is a total
derivative, we have found a candidate for an integrating factor to be

µ = µ(x, y, y′, y′′) = exp
(
−(m + 1) D−1(T1 + y′′T2)

)
(y′′)m, (2.6.23)

where by D−1(T1 + y′′T2) we denote a function F (x, y, y′) uniquely determined
up to the addition of a constant of integration, such that its total derivative
with respect to x equals T1 + y′′T2, i.e.

d

dx
D−1(T1 + y′′T2) =

d

dx
F (x, y, y′) = T1 + y′′T2. (2.6.24)

If either Gx + y′Gy = 0 or Gy′ = 0, then (2.6.22) is an ODE of the form

y′′′ =
H(x, y, y′)

f(y′′)l
− 1

m + 1

(fx

f
y′′ +

fy

f
y′y′′ +

fy′

f
(y′′)2

)
(2.6.25)

18Note that also in the case m = 1, these coefficients can be determined. If m = 1, then
the expression − Gy′

f(y′′)m−1 in the right–hand–side of (2.6.22) contributes a constant term with
respect to y′′, but the quadratic polynomial T1y

′′ + T2(y′′)2 by assumption does not have a
term constant with respect to y′′.

19 We do not have to make further case differentiations, whether T1 = 0 or T2 = 0. Even
if both expressions vanish, i.e. the polynomial part of (2.6.22) is the zero polynomial, the
definition of the candidate for the integrating factor (2.6.23) still makes sense. If T1 = 0 and
T2 = 0, the integrating factor is — up to a multiplicative constant — a pure power of y′′ and
the factor given in terms of the exponential function in (2.6.23) also reduces to a constant
(see also Example 2.25 for the application of Algorithm 2.22).

2.6. INTEGRATING FACTORS FOR THIRD ORDER ODES 99

for some function H(x, y, y′) in its arguments and l ∈ N, i.e. it is still a rational
expression in y′′, but we cannot read–off the candidate for the power m of y′′ in
the searched for integrating factor directly, since in the case Gx + y′Gy = 0 we
have l = m− 1, whereas in the case Gy′ = 0 we have l = m. Hence, if the given
ODE is of the form (2.6.25), we have two candidates for m. Consequently, we
obtain two candidates for an integrating factor, namely

µ1 = µ1(x, y, y′, y′′) = exp
(
−(l + 2) D−1(T1 + y′′T2)

)
(y′′)l+1 (2.6.26)

and

µ2 = µ2(x, y, y′, y′′) = exp
(
−(l + 1) D−1(T1 + y′′T2)

)
(y′′)l. (2.6.27)

Since the integrand in the formulas for both candidates is the same, it is easy
to compute both candidates in practice without significant loss of efficiency.

In the case Gx + y′Gy = 0 = Gy′ , i.e. d
dx

G(x, y, y′) = 0, the ODE (2.6.22) is a
quadratic polynomial in y′′. This case is excluded in the following algorithm,
since there seems to be no easy way to find a candidate for the power m without
solving any auxiliary ODEs or partial differential equations20.

Algorithm 2.19. (Computing integrating factors of the form µ =
f(x, y, y′)(y′′)m, m ≥ 1, of third order ODEs) Given a third order ODE
y′′′ = Φ(x, y, y′, y′′) proceed as follows:

1. Check the ODE for exactness, i.e. set

Ψ(x, y, y′, y′′, y′′′) := y′′′ − Φ(x, y, y′, y′′)

and compute

A := Ψy −
d

dx
Ψy′ +

d2

dx2
Ψy′′ −

d3

dx3
Ψy′′′ .

If A = 0 the input ODE is already exact and can be integrated directly.
Stop the algorithm.

2. Check, whether Φ(x, y, y′, y′′) is a rational expression in y′′ of the form

H1(x, y, y′)

(y′′)m
+

H2(x, y, y′)

(y′′)m−1
+ T1(x, y, y′)y′′ + T2(x, y, y′)(y′′)2,

20Note that fx

f ,
fy

f ,
fy′

f may have a common constant factor, which in general makes it
impossible to simply find a candidate for m by factoring out the constants.

100 CHAPTER 2. INTEGRATING FACTORS

where H1 6= 0, H2 6= 0, T1 and T2 can be arbitrary functions in their
arguments. If this is the case and

(T1 +T2y
′′)y−

d

dx
(T1 +T2y

′′)y′ +
d2

dx2
(T1 +T2y

′′)y′′ −
d3

dx3
(T1 +T2y

′′)y′′′ = 0

i.e. T1(x, y, y′) + T2(x, y, y′)y′′ is a total derivative, go to step 4.

3. Check, whether Φ(x, y, y′, y′′) is a rational expression in y′′ of the form

H(x, y, y′)

(y′′)l
+ T1(x, y, y′)y′′ + T2(x, y, y′)(y′′)2,

where H 6= 0, T1 and T2 can be arbitrary functions of their arguments. If
this is the case and

(T1 +T2y
′′)y−

d

dx
(T1 +T2y

′′)y′ +
d2

dx2
(T1 +T2y

′′)y′′ −
d3

dx3
(T1 +T2y

′′)y′′′ = 0

i.e. T1(x, y, y′) + T2(x, y, y′)y′′ is a total derivative, go to step 5. If this is
not the case, stop the algorithm.

4. Compute (2.6.23) as a candidate for µ and go to step 6.

5. Compute (2.6.26) and (2.6.27) as candidates for µ and go to step 6.

6. Compute

A := (µ Ψ)y −
d

dx
(µ Ψ)y′ +

d2

dx2
(µ Ψ)y′′ −

d3

dx3
(µ Ψ)y′′′

for each candidate for µ found in the previous steps. If A = 0 for such µ,
µ is an integrating factor of the ODE. Return the result for µ. Otherwise
stop the algorithm. M

Proof. The correctness of the algorithm follows from the preceding discussion.

We consider an example, where we can apply Algorithm 2.19 to find an inte-
grating factor.

Example 2.20. The third order ODE

y′′′ =− 12 y2 (y′)2 y′′ + 4 y2 y′ (y′′)4 + y2 (y′′)5 + 8 x y2 (y′′)4 + 20 y (y′)4 y′′

16 y3 (y′′)3 + 16 x2 y2 (y′′)3 + 4 y2 y′ (y′′)3
+

4 y (y′)3 + 12 x y (y′)2 y′′ − 4 (y′)6 − 4 x (y′)4

16 y3 (y′′)3 + 16 x2 y2 (y′′)3 + 4 y2 y′ (y′′)3

2.6. INTEGRATING FACTORS FOR THIRD ORDER ODES 101

can be written in the form

y′′′ =−
y′ ((y′)3

y
− (y′)3 ((y′)2+x+y)

y2) + (y′)3

y

(y′′)3 (4 x2 + 4 y + y′)
−

2 (y′)4

y
+ 3 (y′)2 ((y′)2+x+y)

y

(y′′)2 (4 x2 + 4 y + y′)
−

2 x y′′

4 x2 + 4 y + y′
− y′ y′′

4 x2 + 4 y + y′
− (y′′)2

4 (4 x2 + 4 y + y′)
,

i.e. the right–hand–side is a rational expression in y′′. The ODE is not exact,
which is proved by Algorithm 2.19 in step 1 using the Euler operator. In step 2,
m = 3 is determined as the highest power of y′′ appearing in the denominator
of the right–hand–side of the given ODE. The expressions

T1 = − 2 x + y′

4 x2 + 4 y + y′
, T2 = − 1

4 (4 x2 + 4 y + y′)

are determined and, again using the Euler operator, it is verified that T1 + y′′T2

is a total derivative. Hence, the candidate

µ(x, y, y′, y′′) = exp
(
−4 D−1(T1 + y′′T2)

)
(y′′)3

= (4y + y′ + 4x2)(y′′)3,

is computed in step 4 of Algorithm 2.19 (constants of integration can be ignored).
Finally, in step 6 it is proved that this is indeed an integrating factor for the
ODE we started with. �

Again, as in the case of the algorithms of the preceding part of this chapter for
finding integrating factors of third order ODEs, the test for exactness in the last
step of Algorithm 2.19 is essential. This is demonstrated by the next example.

Example 2.21. The ODE

y′′′ =− y2 y′ (y′′)3 + y2 (y′′)4 + y2 (y′′)3 + 3 y (y′)5 + 15 y (y′)4 y′′

3 y3 (y′′)2 + 3 x y2 (y′′)2 + 3 y2 y′ (y′′)2
+

3 x y (y′)3 + 9 x y (y′)2 y′′ − 3 (y′)6 − 3 x (y′)4

3 y3 (y′′)2 + 3 x y2 (y′′)2 + 3 y2 y′ (y′′)2

can be written as

y′′′ =−
(y′)3 ((y′)2+x)

y
− (y′)4 ((y′)2+x)

y2

(y′′)2 (x + y + y′)
−

2 (y′)4

y
+ 3 (y′)2 ((y′)2+x)

y

y′′ (x + y + y′)
−

y′′

3 (x + y + y′)
− y′ y′′

3 (x + y + y′)
− (y′′)2

3 (x + y + y′)
.

102 CHAPTER 2. INTEGRATING FACTORS

Using Algorithm 2.19, in step 1 it finds that the ODE is not exact. In step 2 the
algorithm recognizes that the right–hand–side of the given ODE is a rational
expression and computes m = 2. Furthermore, T1 + y′′T2 is a total derivative,
where

T1 = − 1 + y′

3 (x + y + y′)
, T2 = − 1

3 (x + y + y′)
.

Hence, a candidate for an integrating factor is computed in step 4 providing

µ(x, y, y′, y′′) = exp
(
−3 D−1(T1 + y′′T2)

)
(y′′)2

= (y + y′ + x)(y′′)2,

but in step 6 it turns out that multiplication of the given ODE with µ does not
provide an exact equation (constants of integration can be ignored). Hence,
Algorithm 2.19 fails to compute an integrating factor.

The reason, why the algorithm fails, is in principle the same, which makes
Algorithms 2.7, 2.9, 2.11 and 2.15 fail (see also Remark 2.17 and Example
2.18): the “constant” of integration G = G(x, y, y′) appearing in the class of
ODEs (2.6.22) treated above must contribute a total derivative. The concrete
ODE considered here is a rational expression in y′′, but the expressions, where
y′′ appears in the denominator, are not of the form

− Gx + y′Gy

(y′′)2 (x + y + y′)
− Gy′

y′′ (x + y + y′)

for some function G = G(x, y, y′). �

The case µ = f(x, y, y′) 1
(y′′)m , m ∈ N, m ≥ 3. The partial integrals appearing

in (2.6.2) are now given by∫
µ dy′′ =

1

1−m
f

1

(y′′)m−1
,

(∫
µ dy′′

)
x

=
1

1−m
fx

1

(y′′)m−1
,(∫

µ dy′′
)

y
=

1

1−m
fy

1

(y′′)m−1
,

(∫
µ dy′′

)
y′

=
1

1−m
fy′

1

(y′′)m−1
.

According to (2.6.2), the most general class of third order ODEs admitting an
integrating factor of the considered form reads

y′′′ = −Gy′

f
(y′′)m+1 − Gx + y′Gy

f
(y′′)m − 1

1−m

(fx

f
y′′ +

fy

f
y′y′′ +

fy′

f
(y′′)2

)
,

(2.6.28)

2.6. INTEGRATING FACTORS FOR THIRD ORDER ODES 103

where we first assume Gy′ 6= 0 and Gx + y′Gy 6= 0. The right–hand–side of
(2.6.28) is a polynomial expression in y′′. Its degree in y′′ provides a candidate
for m + 1, i.e. we take the degree with respect to y′′ and subtract 1 to obtain a
candidate for m. In the next step, we define T1 as the coefficient of y′′. Finally,
we define T2 as the coefficient of (y′′)2. This provides

T1 = − 1

1−m

(fx

f
+

fy

f
y′
)
, T2 = − 1

1−m

fy′

f
.

If T1 + y′′T2 is a total derivative21, then

µ = µ(x, y, y′, y′′) = exp
(
(m− 1) D−1(T1 + y′′T2)

) 1

(y′′)m
(2.6.29)

is a candidate for an integrating factor, where the definition for D−1(T1 + y′′T2)
is given in (2.6.24).

If either Gy′ = 0 or Gx + y′Gy = 0, then (2.6.28) reads

y′′′ =
H(x, y, y′)

f
(y′′)l − 1

1−m

(fx

f
y′′ +

fy

f
y′y′′ +

fy′

f
(y′′)2

)
(2.6.30)

for some function H in its arguments and some l ∈ N, l ≥ 3. From (2.6.30) we
obtain two candidates for m, since we could have l = m + 1 or l = m. This
gives the two candidates for an integrating factor

µ1 = µ1(x, y, y′, y′′) = exp
(
(l − 2) D−1(T1 + y′′T2)

) 1

(y′′)l−1
, (2.6.31)

and

µ2 = µ2(x, y, y′, y′′) = exp
(
(l − 1) D−1(T1 + y′′T2)

) 1

(y′′)l
. (2.6.32)

Summing up these results, we obtain:

Algorithm 2.22. (Computing integrating factors of the form µ =
f(x, y, y′) 1

(y′′)m , m ≥ 3, of third order ODEs) Given a third order ODE

y′′′ = Φ(x, y, y′, y′′) proceed as follows:

21As in the discussion of the former case µ = f(x, y, y′) (y′′)m, these definitions still make
sense, if T1 = 0 or T2 = 0. See also the remark in footnote 19 and Example 2.25 below.

104 CHAPTER 2. INTEGRATING FACTORS

1. Check the ODE for exactness, i.e. set

Ψ(x, y, y′, y′′, y′′′) := y′′′ − Φ(x, y, y′, y′′)

and compute

A := Ψy −
d

dx
Ψy′ +

d2

dx2
Ψy′′ −

d3

dx3
Ψy′′′ .

If A = 0 the input ODE is already exact and can be integrated directly.
Stop the algorithm.

2. Check, whether Φ(x, y, y′, y′′) is a polynomial expression in y′′ of the form

H1(x, y, y′)(y′′)m+1 + H2(x, y, y′)(y′′)m + T1(x, y, y′)y′′ + T2(x, y, y′)(y′′)2,

where H1 6= 0, H2 6= 0, T1 and T2 can be arbitrary functions in their
arguments. If this is the case and

(T1 +T2y
′′)y−

d

dx
(T1 +T2y

′′)y′ +
d2

dx2
(T1 +T2y

′′)y′′−
d3

dx3
(T1 +T2y

′′)y′′′ = 0,

i.e. T1(x, y, y′) + T2(x, y, y′)y′′ is a total derivative, go to step 4.

3. Check, whether Φ(x, y, y′, y′′) is a polynomial expression in y′′ of the form

H(x, y, y′)(y′′)l + T1(x, y, y′)y′′ + T2(x, y, y′)(y′′)2,

where H 6= 0, T1 and T2 can be arbitrary functions of their arguments. If
this is the case and

(T1 +T2y
′′)y−

d

dx
(T1 +T2y

′′)y′ +
d2

dx2
(T1 +T2y

′′)y′′−
d3

dx3
(T1 +T2y

′′)y′′′ = 0,

i.e. T1(x, y, y′) + T2(x, y, y′)y′′ is a total derivative, go to step 5.

4. Compute (2.6.29) as a candidate for µ and go to step 6.

5. Compute (2.6.31) and (2.6.32) as candidates for µ and go to step 6.

6. Compute

A := (µ Ψ)y −
d

dx
(µ Ψ)y′ +

d2

dx2
(µ Ψ)y′′ −

d3

dx3
(µ Ψ)y′′′

for each candidate for µ found in the previous steps. If A = 0 for such µ,
µ is an integrating factor of the ODE. Return the result for µ. Otherwise
stop the algorithm. M

2.6. INTEGRATING FACTORS FOR THIRD ORDER ODES 105

Proof. The correctness of the algorithm follows from the preceding discussion.

Note that we assumed m ≥ 3, since in the case m = 2, the general class of
ODEs (2.6.28) reads

y′′′ = −Gy′

f
(y′′)3 − Gx + y′Gy

f
(y′′)2 − 1

1−m

(fx

f
y′′ +

fy

f
y′y′′ +

fy′

f
(y′′)2

)
and, hence, the definition of T2 as the coefficient of (y′′)2 would also involve
Gx+y′Gy

f
, which makes the situation more complicated to find out the function

f by means of pattern matching methods as used in Algorithm 2.22. The case
µ = f(x, y, y′) 1

y′′
is treated separately below. Before we come to treat that case,

we first consider two examples.

Example 2.23. In step 1 Algorithm 2.22 recognizes that the ODE

y′′′ =
3 x2 y2 y′′ − 9 x y (y′)2 (y′′)5 + 3 x (y′)4 (y′′)4 − 9 y2 (y′)2 (y′′)5

9 y2 y′ + 3 x3 y2 + 3 y3
+

y2 y′ y′′ + 3 y2 (y′′)2 − 15 y (y′)4 (y′′)5 − 3 y (y′)3 (y′′)4 + 3 (y′)6 (y′′)4

9 y2 y′ + 3 x3 y2 + 3 y3

is not exact. Writing the ODE in the form

y′′′ =−
2 (y′)4

y
+ 3 (y′)2 ((y′)2+x+y)

y

x3 + y + 3 y′
(y′′)5 −

y′ ((y′)3

y
− (y′)3 ((y′)2+x+y)

y2) + (y′)3

y

x3 + y + 3 y′
(y′′)4+

x2 + y′

x3 + y + 3 y′
y′′ +

1

x3 + y + 3 y′
(y′′)2,

it follows that the right–hand–side is a polynomial expression in y′′. The algo-
rithm computes m = 4 and proves that T1 + y′′T2 is a total derivative, where

T1 =
x2 + y′

x3 + y + 3 y′
, T2 =

1

x3 + y + 3 y′
.

Hence, in step 4 a candidate for an integrating follows to be

µ(x, y, y′, y′′) = exp
(
3 D−1(T1 + y′′T2)

) 1

(y′′)4

= (x3 + y + 3 y′)
1

(y′′)4
,

for which it is proved in the framework of step 6 that it is indeed an integrat-
ing factor for the given ODE (constants of integration in the computation of
µ(x, y′, y′′) can be ignored). �

106 CHAPTER 2. INTEGRATING FACTORS

As for Algorithm 2.19 we note that the test for exactness in the last step of
the algorithm is essential, since multiplication of the ODE with the candidate
computed may not always provide a total derivative.

Example 2.24. The ODE

y′′′ =
3 x2 y2 y′′ − 6 x y (y′)2 (y′′)4 + 2 x (y′)4 (y′′)3 + 2 y3 y′ y′′

2 x3 y2 + 2 y4 + 2 y2 (y′)4
+

4 y2 (y′)3 (y′′)2 − 6 y2 (y′)2 (y′′)4 − 10 y (y′)4 (y′′)4 + 2 (y′)6 (y′′)3

2 x3 y2 + 2 y4 + 2 y2 (y′)4

can be written in the form

y′′′ =−
2 (y′)4

y
+ 3 (y′)2 ((y′)2+x+y)

y

x3 + y2 + (y′)4
(y′′)4 −

y′ ((y′)3

y
− (y′)3 ((y′)2+x+y)

y2)

x3 + y2 + (y′)4
(y′′)3+

3 x2 + y y′

2 (x3 + y2 + (y′)4)
y′′ +

2 (y′)3

x3 + y2 + (y′)4
(y′′)2.

It is not exact and the right–hand–side is a polynomial expression in y′′. In
step 2, Algorithm 2.22 computes m = 3 and verifies that T1 + y′′T2 is a total
derivative, where

T1 =
3 x2 + y y′

2 (x3 + y2 + (y′)4)
, T2 =

2 (y′)3

x3 + y2 + (y′)4
.

Step 4 then provides the candidate

µ(x, y, y′, y′′) = exp
(
2 D−1(T1 + y′′T2)

) 1

(y′′)3

= (x3 + y2 + (y′)4)
1

(y′′)3
,

(constants of integration in the computation of µ(x, y′, y′′) can be ignored), but
again, as in Example 2.21, multiplication of the given ODE with this candidate
does not provide an exact ODE22. �

The following example demonstrates on the one hand that Algorithm 2.22 also
works in the case that the expressions T1 and T2 introduced above are equal to
zero. On the other hand it gives a hint that also complete classes of (i.e. ODEs
involving further symbolic arguments than only the independent variable x, the
dependent variable y(x) and its derivatives with respect to x) can be treated.

22See the last part of Example 2.21 for remarks on the reason for this failure.

2.6. INTEGRATING FACTORS FOR THIRD ORDER ODES 107

Example 2.25. Consider the class of ODEs of the form

y′′′ =
3y′ + a

(y′)2 + 1
(y′′)k,

where a ∈ R and k ∈ N, k ≥ 4. This class of ODEs is a generalized version of
ODE 7.12 in [45] on page 603. Applying Algorithm 2.22 to this ODE, we find
m = k or m = k−1 and T1 = T2 = 0. Hence, step 4 provides the two candidates

µ1(x, y, y′, y′′) = exp
(
(k − 2) D−1(T1 + y′′T2)

) 1

(y′′)k−1

=
1

(y′′)k−1

and

µ2(x, y, y′, y′′) = exp
(
(k − 1) D−1(T1 + y′′T2)

) 1

(y′′)k

=
1

(y′′)k
,

where we evaluated D−1(T1+y′′T2) to 0 to avoid constants of integration. Indeed,
multiplication of the ODE by µ1 provides an exact equation, i.e. Algorithm 2.22
succeeds in finding an integrating factor for this class of ODEs. The candidate
µ2 is not an integrating, as one can easily verify by using the Euler operator as
done in the last step of Algorithm 2.22. �

The case µ = f(x, y, y′) 1
y′′

. The case µ = f(x, y, y′) 1
(y′′)m , m ∈ N, m ≥ 3.

Under the assumption on the form of the integrating factor, the partial integrals
appearing in (2.6.2) are given by∫

µ dy′′ = f ln(y′′),
(∫

µ dy′′
)

x
= fx ln(y′′),(∫

µ dy′′
)

y
= fy ln(y′′),

(∫
µ dy′′

)
y′

= fy′ ln(y′′).

The most general class of third order ODEs (2.6.2) reduces to

y′′′ = −Gx + y′Gy

f
y′′ − Gy′

f
(y′′)2 −

(fx

f
+

fy

f
y′ +

fy′

f
y′′
)
y′′ ln(y′′). (2.6.33)

108 CHAPTER 2. INTEGRATING FACTORS

The right–hand–side is a linear polynomial in ln(y′′), where we assume for the
further discussion that d

dx
f 6= 0, since otherwise (2.6.33) reduces to the class of

ODEs

y′′′ = −Gx + y′Gy

f
y′′ − Gy′

f
(y′′)2,

for which one can easily check using the Euler operator, whether 1
y′′

is an

integrating factor23.

Taking the coefficients of ln(y′′) in the right–hand-side of (2.6.33) provides

−fx

f
y′′ − fy

f
y′y′′ − fy′

f
(y′′)2,

i.e. the resulting coefficients must be a quadratic polynomial in y′′. Define T1 as
the negative coefficient of y′′ and T2 as the negative coefficient of (y′′)2, i.e.

T1 =
fx

f
+

fy

f
y′, T2 =

fy′

f
.

Since T1 + y′′T2 is the total derivative of ln(f) with respect to x, a candidate for
an integrating factor is found to be

µ = µ(x, y, y′, y′′) =
1

y′′
exp

(
D−1(T1 + y′′T2)

)
, (2.6.34)

where the definition for D−1(T1 + y′′T2) is given in (2.6.24).

We obtain:

Algorithm 2.26. (Computing integrating factors of the form µ =
f(x, y, y′) 1

y′′
) Given a third order ODE y′′′ = Φ(x, y, y′, y′′) proceed as follows:

1. Check the ODE for exactness, i.e. set

Ψ(x, y, y′, y′′, y′′′) := y′′′ − Φ(x, y, y′, y′′)

and compute

A := Ψy −
d

dx
Ψy′ +

d2

dx2
Ψy′′ −

d3

dx3
Ψy′′′ .

If A = 0 the input ODE is already exact and can be integrated directly.
Stop the algorithm.

23Note that in this situation f is a constant. Hence, one can check, whether the ODE is a
quadratic polynomial in y′′ and whether −Gx+y′Gy+Gy′y

′′

f is a total derivative using the Euler
operator. If this is the case, 1

y′′ is indeed an integrating factor.

2.6. INTEGRATING FACTORS FOR THIRD ORDER ODES 109

2. Check, whether Φ(x, y, y′, y′′) is a linear polynomial expression in ln(y′′)
of the form

H1(x, y, y′, y′′) + H2(x, y, y′, y′′) ln(y′′),

where H1 and H2 6= 0 can be arbitrary functions in their arguments. If
this is not the case, stop the algorithm.

3. Check, whether H2(x, y, y′, y′′) is a quadratic polynomial in y′′ of the form

S1(x, y, y′)y′′ + S2(x, y, y′)(y′′)2,

where S1 and S2 are arbitrary functions of their arguments, and

(S1 +y′′S2)y−
d

dx
(S1 +y′′S2)y′ +

d2

dx2
(S1 +y′′S2)y′′−

d3

dx3
(S1 +y′′S2)y′′′ = 0,

i.e. if S1 + y′′S2 is a total derivative. If this is not the case, then stop the
algorithm.

4. Define T1 = −S1 and T2 = −S2 and compute (2.6.34) as a candidate for
µ.

5. Compute

A := (µ Ψ)y −
d

dx
(µ Ψ)y′ +

d2

dx2
(µ Ψ)y′′ −

d3

dx3
(µ Ψ)y′′′ .

If A = 0, µ is an integrating factor of the ODE. Return the result for µ.
Otherwise stop the algorithm. M

Proof. The correctness of the algorithm follows from the preceding discussion.

We apply Algorithm 2.26 in two concrete examples:

Example 2.27. The ODE

y′′′ =− 3 x4 y (y′)2 (y′′)2 − x4 (y′)4 y′′ − x3 (y′)6 y′′ − 2 y2 y′′ ln(y′′)

x3 y4 (y′)3 + x y2
+

5 x3 y (y′)4 (y′′)2 + 3 x3 y2 (y′)2 (y′′)2 + x3 y (y′)3 y′′

x3 y4 (y′)3 + x y2
+

2 x3 y3 (y′)4 y′′ ln(y′′) + 3 x3 y4 (y′)2 (y′′)2 ln(y′′)

x3 y4 (y′)3 + x y2

110 CHAPTER 2. INTEGRATING FACTORS

is not exact. Writing the ODE in the form

y′′ =−
y′
(

(y′)3

y
− (y′)3 ((y′)2+x+y)

y2

)
+ (y′)3

y

y2 (y′)3 + 1
x2

y′′ −
2 (y′)4

y
+

3 (y′)2 ((y′)2+x+y)
y

y2 (y′)3 + 1
x2

(y′′)2−(
2 y (y′)4 y′′

y2 (y′)3 + 1
x2

− 2 y′′

x3 y2 (y′)3 + x
+

3 y2 (y′)2 (y′′)2

y2 (y′)3 + 1
x2

)
ln (y′′) ,

we note that the right–hand–side is a linear polynomial in ln(y′′). After recog-
nizing that the given ODE is not exact, Algorithm 2.26 determines

H2 = − 2 y (y′)4 y′′

y2 (y′)3 + 1
x2

+
2 y′′

x3 y2 (y′)3 + x
− 3 y2 (y′)2 (y′′)2

y2 (y′)3 + 1
x2

as the coefficient of ln(y′′). Since H2 is a quadratic polynomial in y′′, the algo-
rithm computes

S1 = − 2 y (y′)4

y2 (y′)3 + 1
x2

+
2

x3 y2 (y′)3 + x
, S2 = − 3 y2 (y′)2

y2 (y′)3 + 1
x2

in step 3 and verifies that S1 +y′′S2 is a total derivative. Finally, step 5 provides
the candidate

µ(x, y, y′, y′′) =
1

y′′
exp

(
D−1(T1 + y′′T2)

)
=

1

y′′

(
y2 (y′)3 +

1

x2

)
where T1 = −S1 and T2 = −S2. In step 6 it is verified that this is indeed an
integrating factor for the ODE under consideration. �

As in the case of Algorithms 2.19 and 2.22, the test for exactness in step 6 of
2.26 is essential:

Example 2.28. The ODE

y′′′ =

y′′
(

y′
(

(y′)3

y3 +
(y′)3 (x3+ 1

y
+(y′)3)

y2

)
− (y′)3 (x3+ 1

y
+(y′)3)

y

)
x + y + y′

−

(y′)3 (y′′)2
(
x3 + 1

y
+ (y′)3

)
y (x + y + y′)

−
(

y′′ + y′y′′ + (y′′)2

x + y + y′

)
ln (y′′)

2.7. GENERALIZATIONS TO HIGHER ORDER ODES 111

is not exact and its right–hand–side is a linear polynomial in ln(y′′). The ex-
pression

H2 =
y′′ + y′y′′ + (y′′)2

x + y + y′

determined in step 2 of the algorithm is a quadratic polynomial in y′′ and in
step 3 it is verified that S1 + y′′S2 is a total derivative, where

S1 =
1 + y′

x + y + y′
, S2 =

1

x + y + y′
.

The candidate obtained in step 4 is computed to be

µ(x, y, y′, y′′) = (x + y + y′)
1

y′′
,

but this is not an integrating factor for the ODE under consideration24. �

In the next section we generalize the algorithms presented in this section to be
able to treat n-th order ODEs, n ≥ 3.

2.7 Generalizations to higher order ODEs

In this section we present possible generalizations of the results described in
Section 2.6 for classes of higher order ODEs.

Consider a general n-th order ODE of the form

y(n) = Φ(x, y, y′, . . . , y(n− 1)), n ≥ 3. (2.7.1)

By Theorem 2.5, the most general class of n-th order ODEs of the form (2.7.1)
having an integrating factor µ = µ(x, y, y′, . . . , y(n−1)) is

y(n) =− 1

µ

[(
G +

∫
µ dy(n−1)

)
x

+ y′
(
G +

∫
µ dy(n−1)

)
y
+

y′′
(
G +

∫
µ dy(n−1)

)
y′

+ . . . + y(n−1)
(
G +

∫
µ dy(n−1)

)
y(n−2)

]
for an arbitrary function G = G(x, y, y′, . . . , y(n−1)) in its argument. In the
following we consider the integrating factors:

24See the last part of Example 2.21 for remarks on the reason for this failure.

112 CHAPTER 2. INTEGRATING FACTORS

• µ = µ(y(i), y(n−2)), 0 ≤ i ≤ n− 3,

• µ = µ(x, y(n−2)),

• µ = µ(y(i), y(j)), 0 ≤ i < j ≤ n− 3,

• µ = f(x, y, y′, . . . , y(n−2))(y(n−1))m, m ∈ Z \ {−2, 0}.

We do not present further examples of concrete ODEs, where the algorithms
stated in this section are applied. We refer to the examples in the preceding
section, where the corresponding algorithms for third order ODEs have been
applied, instead.

2.7.1 Integrating factors µ(y(i), y(n−2)), 0 ≤ i ≤ n− 3.

As in the preceding sections we first compute the most general class of n-th
order ODEs admitting an integrating factor of the prescribed form. This class
is

y(n) =−
µy(n−2)

µ
(y(n−1))2 −

µy(i) y(i+1) + Gy(n−2)

µ
y(n−1)

−
Gx + y′ Gy + y′′ Gy′ + . . . + y(n−2) Gy(n−3)

µ
.

Since µ and G do not depend on y(n−1), this ODE is a quadratic polynomial in
y(n−1). Similar to the way of proceeding in the former section, we assume that
G = G(x, y, y′, . . . , y(n−2)) does not depend on y(n−2). This provides

y(n) =−
µy(n−2)

µ
(y(n−1))2 −

µy(i) y(i+1)

µ
y(n−1)

−
Gx + y′ Gy + y′′ Gy′ + . . . + y(n−2) Gy(n−3)

µ
.

We define

a(y(i), y(n−2)) := −
µy(n−2)

µ
, b(y(i), y(i+1), y(n−2)) := −

µy(i) y(i+1)

µ
, (2.7.2)

i.e. the coefficients of (y(n−1))2 and y(n−1) of the right–hand–side of the ODE
viewed as a polynomial in y(n−1). Note that b(y(i), y(i+1), y(n−2)) itself can
be viewed as linear polynomial in y(i+1) without constant term with respect

2.7. GENERALIZATIONS TO HIGHER ORDER ODES 113

to y(i+1), since µ does not depend on y(i+1) by assumption. The expressions
a(y(i), y(n−2)) and b(y(i), y(i+1), y(n−2)) must satisfy

ay(i)(y(i), y(n−2)) =
(b(y(i), y(i+1), y(n−2))

y(i+1)

)
y(n−2)

. (2.7.3)

We choose ∫
a(y(i), y(n−2)) dy(n−2) +

b(y(i), y(i+1), y(n−2))

y(i+1)
dy(i)

to denote the function in y(i) and y(n−2) (note, that in fact b(y(i),y(i+1),y(n−2))

y(i+1)

does not depend on y(i+1), since b(y(i), y(i+1), y(n−2)) is a linear polynomial in
y(i+1) without constant term with respect to y(i+1) by assumption) uniquely
determined up to the addition of a constant, such that its partial derivatives
with respect to y(n−2) and y(i+1) fulfill(∫

a(y(i), y(n−2)) dy(n−2) +
b(y(i), y(i+1), y(n−2))

y(i+1)
dy(i)

)
y(n−2)

= a(y(i), y(n−2))

and(∫
a(y(i), y(n−2)) dy(n−2) +

b(y(i), y(i+1), y(n−2))

y(i+1)
dy(i)

)
y(i)

=
b(y(i), y(i+1), y(n−2))

y(i)
.

Then a candidate for an integrating factor can be written in the form

µ(y(i), y(n−2)) = exp
(
−
∫

a(y(i), y(n−2)) dy(n−2) +
b(y(i), y(i+1), y(n−2))

y(i+1)
dy(i)

)
.

(2.7.4)

As a generalization of Algorithm 2.11 we obtain:

Algorithm 2.29. (Computing integrating factors of the form µ =
µ(y(i), y(n−2)), 0 ≤ i ≤ n − 3, of n-th order ODEs) Given an n-th order
ODE y(n) = Φ(x, y, y′, . . . , y(n−1)) proceed as follows:

1. Check the ODE for exactness, i.e. set

Ψ(x, y, y′, . . . , y(n)) := y(n) − Φ(x, y, y′, . . . , y(n−1))

and compute

A :=
n∑

i=0

(−1)i di

dxi

(∂Ψ(x, y, y′, . . . , y(n))

∂y(i)

)
.

If A = 0 the input ODE is already exact and can be integrated directly.
Stop the algorithm.

114 CHAPTER 2. INTEGRATING FACTORS

2. Check, whether Φ(x, y, y′, . . . , y(n−1)) is a quadratic polynomial in y(n−1).
If not, stop the algorithm.

3. Check, whether the coefficients of (y(n−1))2 and y(n−1) in
Φ(x, y, y′, . . . , y(n−1)) viewed as a polynomial in y(n−1) only depend
in y(i), y(i+1) and y(n−2). If not, stop the algorithm.

4. Determine the functions a(y(i), y(n−2)) and b(y(i), y(i+1), y(n−2)) as in (2.7.2)
and check if b(y(i), y(i+1), y(n−2)) is a linear polynomial in y(i+1) with con-
stant term 0 (constant with respect to y(i+1)). If not, stop the algorithm.

5. Check, if (2.7.3) is fulfilled. If not, stop the algorithm.

6. Compute (2.7.4) as a candidate for µ.

7. Compute

A :=
n∑

i=0

(−1)i di

dxi

(∂
(
µ Ψ(x, y, y′, . . . , y(n))

)
∂y(i)

)
.

If A = 0, µ is an integrating factor of the ODE. Return the result for µ.
Otherwise stop the algorithm. M

Proof. The correctness of the algorithm follows from the preceding discussion.

2.7.2 Integrating factors µ(x, y(n−2)).

By Theorem 2.5 the most general class of n-th order ODEs admitting an inte-
grating of the form µ = µ(x, y(n−2)) is

y(n) =−
µy(n−2)

µ
(y(n−1))2 −

µx + Gy(n−2)

µ
y(n−1)

−
Gx + y′ Gy + y′′ Gy′ + . . . + y(n−2) Gy(n−3)

µ
.

The assumption that G = G(x, y, y′, . . . , y(n−2)) does not depend on y(n−2) pro-
vides the general class of ODEs

y(n) =−
µy(n−2)

µ
(y(n−1))2 − µx

µ
y(n−1)

−
Gx + y′ Gy + y′′ Gy′ + . . . + y(n−2) Gy(n−3)

µ
.

2.7. GENERALIZATIONS TO HIGHER ORDER ODES 115

Since µ and G do not depend on y(n−1), this ODE can be viewed as a quadratic
polynomial in y(n−1). We read–off the coefficients

a(x, y(n−2)) := −
µy(n−2)

µ
, b(x, y(n−2)) := −µx

µ
. (2.7.5)

For a(x, y(n−2)) and b(x, y(n−2)) the symmetry of second derivatives must hold,
i.e. we have

ax(x, y(n−2)) = by(n−2)(x, y(n−2)). (2.7.6)

If we denote by ∫
a(x, y(n−2)) dy(n−2) + b(x, y(n−2)) dx

the function in x and y(n−2) uniquely determined up to the addition of a constant
of integration, whose partial derivatives with respect to y(n−2) and x satisfy(∫

a(x, y(n−2)) dy(n−2) + b(x, y(n−2)) dx
)

y(n−2)
= a(x, y(n−2))

and (∫
a(x, y(n−2)) dy(n−2) + b(x, y(n−2)) dx

)
x

= b(x, y(n−2)),

a candidate for an integrating factor is obtained to be

µ(x, y(n−2)) = exp
(
−
∫

a(x, y(n−2)) dy(n−2) + b(x, y(n−2)) dx
)
. (2.7.7)

We summarize our results in the following algorithm, which is a generalization
of Algorithm 2.9.

Algorithm 2.30. (Computing integrating factors of the form µ =
µ(x, y(n−2)) of n-th order ODEs) Given an n-th order ODE y(n) =
Φ(x, y, y′, . . . , y(n−1)) proceed as follows:

1. Check the ODE for exactness, i.e. set

Ψ(x, y, y′, . . . , y(n)) := y(n) − Φ(x, y, y′, . . . , y(n−1))

and compute

A :=
n∑

i=0

(−1)i di

dxi

(∂Ψ(x, y, y′, . . . , y(n))

∂y(i)

)
.

If A = 0 the input ODE is already exact and can be integrated directly.
Stop the algorithm.

116 CHAPTER 2. INTEGRATING FACTORS

2. Check, whether Φ(x, y, y′, . . . , y(n−1)) is a quadratic polynomial in y(n−1).
If not, stop the algorithm.

3. Check, whether the coefficients of (y(n−1))2 and y(n−1) in
Φ(x, y, y′, . . . , y(n−1)) viewed as a polynomial in y(n−1) only depend
on x and y(n−2). If not, stop the algorithm.

4. Determine the functions a(x, y(n−2)) and b(x, y(n−2)) as in (2.7.5) and check
if (2.7.6) is fulfilled. If not, stop the algorithm.

5. Compute (2.7.7) as a candidate for µ.

6. Compute

A :=
n∑

i=0

(−1)i di

dxi

(∂
(
µ Ψ(x, y, y′, . . . , y(n))

)
∂y(i)

)
.

If A = 0, µ is an integrating factor of the ODE. Return the result for µ.
Otherwise stop the algorithm. M

Proof. The correctness of the algorithm follows from the preceding discussion.

2.7.3 Integrating factors µ(y(i), y(j)), 0 ≤ i < j ≤ n− 3.

By Theorem 2.5, the most general class of n-th order ODEs admitting an inte-
grating of the form µ = µ(y(i), y(j)) is

y(n) =−
µy(i) y(i+1) + µy(j) y(j+1) + Gy(n−2)

µ
y(n−1)

−
Gx + y′ Gy + y′′ Gy′ + . . . + y(n−2) Gy(n−3)

µ
.

Assuming that G = G(x, y, y′, . . . , y(n−2)) does not depend on y(n−2) provides
the general class of ODEs

y(n) =−
µy(i) y(i+1) + µy(j) y(j+1)

µ
y(n−1)

−
Gx + y′ Gy + y′′ Gy′ + . . . + y(n−2) Gy(n−3)

µ
.

2.7. GENERALIZATIONS TO HIGHER ORDER ODES 117

This ODE can be viewed as a linear polynomial in y(n−1), since µ and G do
not depend on y(n−1). Note that the case µ = µ(y(i), y(n−2)) has already been
discussed in the previous Section 2.7.2. We have to find a way to compute a
candidate for an integrating factor from the coefficient

−
µy(i) y(i+1) + µy(j) y(j+1)

µ
(2.7.8)

of y(n−1). Our idea to find a representation for µ is based on the fact that
we can determine the coefficients of y(i+1) and y(j+1) in the above expression.
This is only possible in general and by simple means, if i + 1 < j. In the
case i + 1 = j, the above expression contains in fact the linear polynomial

−
µ

y(j)

µ
y(j+1), but the term −

µ
y(i)

µ
y(i+1) may not be a linear polynomial in y(i+1),

since the logarithmic derivative
µ

y(i)

µ
in general depends on y(i+1) = y(j), too.

Hence, we assume i + 1 < j in the following.

In this case, (2.7.8) is the sum of the two linear polynomials −
µ

y(j)

µ
y(j+1) and

−
µ

y(i)

µ
y(i+1). We define

a(y(i), y(j)) := −
µy(i)

µ
, b(y(i), y(j)) := −

µy(j)

µ
. (2.7.9)

Then the symmetry condition for second derivatives provides the usual condition
for a(y(i), y(j)) and b(y(i), y(j)), which reads

ay(j)(y(i), y(j)) = by(i)(y
(i), y(j)). (2.7.10)

Again, proceeding as in the treatment of the former cases, we denote by∫
a(y(i), y(j)) dy(i) + b(y(i), y(j)) dy(j)

the function in y(i) and y(j) uniquely determined up to the addition of a constant
of integration, such that its partial derivatives with respect to y(i) and y(j) are
given by (∫

a(y(i), y(j)) dy(i) + b(y(i), y(j)) dy(j)
)

y(i)
= a(y(i), y(j))

and (∫
a(y(i), y(j)) dy(i) + b(y(i), y(j)) dy(j)

)
y(j)

= b(y(i), y(j)).

118 CHAPTER 2. INTEGRATING FACTORS

Hence, a candidate for an integrating factor is obtained to be

µ(y(i), y(j)) = exp
(
−
∫

a(y(i), y(j)) dy(i) + b(y(i), y(j)) dy(j)
)
. (2.7.11)

We summarize our results in the following algorithm, which is a more general
version of Algorithm 2.7:

Algorithm 2.31. (Computing integrating factors of the form µ =
µ(y(i), y(j)), 0 ≤ i < j ≤ n − 3, i + 1 < j, of n-th order ODEs) Given
an n-th order ODE y(n) = Φ(x, y, y′, . . . , y(n−1)) proceed as follows:

1. Check the ODE for exactness, i.e. set

Ψ(x, y, y′, . . . , y(n)) := y(n) − Φ(x, y, y′, . . . , y(n−1))

and compute

A :=
n∑

i=0

(−1)i di

dxi

(∂Ψ(x, y, y′, . . . , y(n))

∂y(i)

)
.

If A = 0 the input ODE is already exact and can be integrated directly.
Stop the algorithm.

2. Check, whether Φ(x, y, y′, . . . , y(n−1)) is a linear polynomial in y(n−1). If
not, stop the algorithm.

3. Check, whether the coefficient of y(n−1) in Φ(x, y, y′, . . . , y(n−1)) viewed as
a linear polynomial in y(n−1) is itself the sum of two linear polynomials
in y(i+1) and y(j+1), i + 1 < j, with constant terms 0. If not, stop the
algorithm.

4. Determine the functions a(y(i), y(j)) and b(y(i), y(j)) as in (2.7.9) and check,
if (2.7.10) is fulfilled. If not, stop the algorithm.

5. Compute (2.7.11) as a candidate for µ.

6. Compute

A :=
n∑

i=0

(−1)i di

dxi

(∂
(
µ Ψ(x, y, y′, . . . , y(n))

)
∂y(i)

)
.

If A = 0, µ is an integrating factor of the ODE. Return the result for µ.
Otherwise stop the algorithm. M

Proof. The correctness of the algorithm follows from the preceding discussion.

2.7. GENERALIZATIONS TO HIGHER ORDER ODES 119

2.7.4 Integrating factors µ(y(n−1)).

This paragraph is dedicated to present a heuristic for the case of integrating
factors of the form µ = µ(y(n−1)) for n-th order ODEs. The heuristic is an
analogon to Algorithm 2.15 for finding integrating factors of the form µ = µ(y′′)
of third order ODEs. By Theorem 2.5, the most general class of n-th order
ODEs admitting an integrating factor µ = µ(y(n−1)) is

y(n) = −
Gy(n−2)

µ
y(n−1) −

Gx + y′ Gy + y′′ Gy′ + . . . + y(n−2) Gy(n−3)

µ
. (2.7.12)

As in the case of integrating factors µ = µ(y′′) for third order ODEs, we assume
that µ(0) 6= 0. If this is the case we can conclude that 1

µ
is a proper factor

of the right–hand–side of (2.7.12), since G = G(x, y, y′, . . . , y(n−2)) does not
depend on y(n−1). Thus, if µ(0) 6= 0, we can try to factor the right–hand–side
of (2.7.12) and check, if there is a factor g(y(n−1)). If this is the case, we check,
whether the right–hand–side divided by g(y(n−1)) is a linear polynomial in
y(n−1) and a total derivative. In this situation 1

g(y(n−1))
is a candidate for an

integrating factor of (2.7.12).

Of course, one should first try to find an integrating factor of a given n-th order
ODE by using Algorithms 2.29, 2.30 and 2.31, since the following algorithm
is more a heuristic because of the factorization of an arbitrary expression in
step 2 (as mentioned in the context of Algorithm 2.15 for third order ODEs,
the factorization of arbitrary expressions requires special heuristics, which are
offered by most of the current general purpose computer algebra systems such
as Maple or MuPAD).

Algorithm 2.32. (Computing integrating factors of the form µ =
µ(y(n−1)) of n-th order ODEs) Given an n-th order ODE y(n) =
Φ(x, y, y′, . . . , y(n−1)) proceed as follows.

1. Check the ODE for exactness, i.e. set

Ψ(x, y, y′, . . . , y(n)) := y(n) − Φ(x, y, y′, . . . , y(n−1))

and compute

A :=
n∑

i=0

(−1)i di

dxi

(∂Ψ(x, y, y′, . . . , y(n))

∂y(i)

)
.

If A = 0 the input ODE is already exact and can be integrated directly.
Stop the algorithm.

120 CHAPTER 2. INTEGRATING FACTORS

2. Try to find out, if Φ(x, y, y′, . . . , y(n−1)) contains a factor g(y(n−1)) depend-
ing only on y(n−1). If this is not the case, stop the algorithm.

3. Let Φ(x, y, y′, . . . , y(n−1)) = g(y(n−1)) h(x, y, y′, . . . , y(n−1)). Check if
h(x, y, y′, . . . , y(n−1)) is a linear polynomial in y(n−1) and if

n∑
i=0

(−1)i di

dxi

(∂h(x, y, y′, . . . , y(n−1))

∂y(i)

)
= 0,

i.e. if h(x, y, y′, . . . , y(n−1)) is a total derivative. If this is not the case, stop
the algorithm.

4. Choose µ = 1
g(y(n−1))

as a candidate for an integrating factor of the given

ODE.

5. Compute

A :=
n∑

i=0

(−1)i di

dxi

(∂
(
µ Ψ(x, y, y′, . . . , y(n))

)
∂y(i)

)
.

If A = 0, then µ is an integrating factor of the ODE. Return the result for
µ. Otherwise stop the algorithm. M

Proof. The correctness of the algorithm follows from the preceding discussion.

2.7.5 Integrating factors f(x, y, y′, . . . , y(n−2))(y(n−1))m.

We close this section with the generalization of Algorithms 2.19, 2.22 and 2.26.
As in Section 2.6.5, we first treat the case of integrating factors of the form
µ = f(x, y, y′, . . . , y(n−2))(y(n−1))m, m ∈ N, where f can be an arbitrary function
in its arguments.

The case µ = f(x, y, y′, . . . , y(n−2))(y(n−1))m, m ∈ N. By Theorem 2.5, the
most general class of n-th order ODEs admitting an integrating factor of the
prescribed form reads

y(n) = −
Gx + y′Gy + . . . + y(n−2)Gy(n−3)

f(y(n−1))m
−

Gy(n−2)

f(y(n−1))m−1

− 1

m + 1

(fx

f
+

fy

f
y′ + . . . +

fy(n−3)

f
y(n−2) +

fy(n−2)

f
y(n−1)

)
y(n−1).

(2.7.13)

2.7. GENERALIZATIONS TO HIGHER ORDER ODES 121

Note that f(y(n−1))m and f(y(n−1))m−1 denotes the multiplication of f by
(y(n−1))m and (y(n−1))m−1, respectively, and not the application of the function
f to (y(n−1))m and (y(n−1))m−1.

If Gx + y′Gy + . . . + y(n−2) 6= 0 and Gy(n−2) 6= 0, then (2.7.13) is a rational

expression in y(n−1). The highest power of y(n−1) appearing in a denominator
of the right–hand–side of (2.7.13) gives a candidate for the power of y(n−1)

appearing in the integrating factor to be found. The expression

− 1

m + 1

(fx

f
+

fy

f
y′ + . . . +

fy(n−3)

f
y(n−2) +

fy(n−2)

f
y(n−1)

)
y(n−1)

is a quadratic polynomial in y(n−1), i.e. we can read–off the two quantities

T1 = − 1

m + 1

(fx

f
+

fy

f
y′ + . . . +

fy(n−3)

f
y(n−2)

)
, T2 = − 1

m + 1

fy(n−2)

f
,

i.e. T1 is the coefficient of y(n−1) and T2 is the coefficient of (y(n−1))2 in the
polynomial part of the right–hand–side of (2.7.13)25.

Since T1 + y(n−1)T2 is the total derivative of − 1
m+1

ln(f), a candidate for an
integrating factor is given by

µ = exp
(
−(m + 1) D−1(T1 + y(n−1)T2)

)
(y(n−1))m, (2.7.14)

where by D−1(T1+y(n−1)T2) we denote a function F (x, y, y′, . . . , y(n−2)) uniquely
determined up to the addition of a constant of integration, such that its total
derivative with respect to x equals T1 + y(n−1)T2, i.e.

d

dx
D−1(T1 + y(n−1)T2) =

d

dx
F (x, y, y′, . . . , y(n−2)) = T1 + y(n−1)T2. (2.7.15)

If either Gx + y′Gy + . . . + y(n−2)Gy(n−3) = 0 or Gy(n−2) = 0, (2.7.13) reduces to
the form

y(n) =
H(x, y, y′, . . . , y(n−2))

f(y(n−1))l
−

1

m + 1

(fx

f
+

fy

f
y′ + . . . +

fy(n−3)

f
y(n−2) +

fy(n−2)

f
y(n−1)

)
y(n−1) (2.7.16)

25Note that also in the case m = 1, these coefficients can be determined. If m = 1, then the
expression −

G
y(n−2)

f(y(n−1))m−1 in the right–hand–side of (2.7.13) contributes a constant term with

respect to y(n−1), but the quadratic polynomial T1y
(n−1) + T2(y(n−1))2 by assumption does

not have a term constant with respect to y(n−1).

122 CHAPTER 2. INTEGRATING FACTORS

for some non–zero function H in its arguments. From (2.7.16) we find l = m−1
in the case Gx + y′Gy + . . .+ y(n−2) = 0 and l = m in the case Gy(n−2) = 0. Since
we cannot know a priori with which case we are faced with, we obtain the two
candidates

µ1 = exp
(
−(l + 2) D−1(T1 + y(n−1)T2)

)
(y(n−1))l+1 (2.7.17)

and

µ2 = exp
(
−(l + 1) D−1(T1 + y(n−1)T2)

)
(y(n−1))l (2.7.18)

as possible integrating factors. As in the case of third order ODEs discussed
in Section 2.6.5, we exclude the case that Gx + y′Gy + . . . + y(n−2)Gy(n−3) =

0 = Gy(n−2) , since then (2.7.13) reduces to a quadratic polynomial in y(n−1) and
the computation of a candidate for an integrating factor does not seem to be
possible without solving any auxiliary ODEs or partial differential equations.
Our results are summarized in the following algorithm.

Algorithm 2.33. (Computing integrating factors of the form µ =
f(x, y, y′, . . . , y(n−2))(y(n−1))m, m ∈ N) of n-th order ODEs) Given an n-th
order ODE y(n) = Φ(x, y, y′, . . . , y(n−1)) proceed as follows:

1. Check the ODE for exactness, i.e. set

Ψ(x, y, y′, . . . , y(n)) := y(n) − Φ(x, y, y′, . . . , y(n−1))

and compute

A :=
n∑

i=0

(−1)i di

dxi

(∂Ψ(x, y, y′, . . . , y(n))

∂y(i)

)
.

If A = 0 the input ODE is already exact and can be integrated directly.
Stop the algorithm.

2. Check, whether Φ(x, y, y′, . . . , y(n−1)) is a rational expression in y(n−1) of
the form

H1(x, y, y′, . . . , y(n−2))

(y(n−1))m
+

H2(x, y, y′, . . . , y(n−2))

(y(n−1))m−1
+

T1(x, y, y′, . . . , y(n−2))y(n−1) + T2(x, y, y′, . . . , y(n−2))(y(n−1))2,

2.7. GENERALIZATIONS TO HIGHER ORDER ODES 123

where H1 6= 0, H2 6= 0, T1 and T2 can be arbitrary functions in their
arguments. If this is the case and

n∑
i=0

(−1)i di

dxi

(∂(T1 + T2y
(n−1))

∂y(i)

)
= 0,

i.e. T1 + T2y
(n−1) is a total derivative, go to step 4.

3. Check, whether Φ(x, y, y′, . . . , y(n−1)) is a rational expression in y(n−1) of
the form

H(x, y, y′, . . . , y(n−2))

(y(n−1))l
+

T1(x, y, y′, . . . , y(n−2))y(n−1) + T2(x, y, y′, . . . , y(n−2))(y(n−1))2,

where H 6= 0, T1 and T2 can be arbitrary functions in their arguments and
l ∈ N. If this is the case and

n∑
i=0

(−1)i di

dxi

(∂(T1 + T2y
(n−1))

∂y(i)

)
= 0,

i.e. T1 + T2y
(n−1) is a total derivative, go to step 5. If this is not the case,

stop the algorithm.

4. Compute (2.7.14) as a candidate for µ and go to step 6.

5. Compute (2.7.17) and (2.7.18) as candidates for µ and go to step 6.

6. Compute

A :=
n∑

i=0

(−1)i di

dxi

(∂
(
µ Ψ(x, y, y′, . . . , y(n))

)
∂y(i)

)
for each candidate for µ found in the previous steps. If A = 0 for such a µ,
µ is an integrating factor of the ODE. Return the result for µ. Otherwise
stop the algorithm. M

Proof. The correctness of the algorithm follows from the preceding discussion.

Next we generalize Algorithm 2.22.

124 CHAPTER 2. INTEGRATING FACTORS

The case µ = f(x, y, y′, . . . , y(n−2)) 1
(y(n−1))m , m ∈ N, m ≥ 3. The general class

of ODEs admitting such an integrating factor is derived from Theorem 2.5 to
be

y(n) = −
Gy(n−2)

f
(y(n−1))m+1 −

Gx + y′Gy + . . . + y(n−2)Gy(n−3)

f
(y(n−1))m

− 1

1−m

(fx

f
+

fy

f
y′ + . . . +

fy(n−3)

f
y(n−2) +

fy(n−2)

f
y(n−1)

)
y(n−1).

(2.7.19)

The right–hand–side of (2.7.19) is a polynomial expression in y(n−1). If Gy(n−2) 6=
0 and Gx + y′Gy + . . . + y(n−2)Gy(n−3) 6= 0, then a candidate for the power of

y(n−1) appearing in the integrating factor to be computed is obtained from the
highest power of y(n−1) minus 1. As in the discussion of the former case,

− 1

1−m

(fx

f
+

fy

f
y′ + . . . +

fy(n−3)

f
y(n−2) +

fy(n−2)

f
y(n−1)

)
y(n−1)

is a quadratic polynomial in y(n−1) and we can read–off

T1 = − 1

1−m

(fx

f
+

fy

f
y′ + . . . +

fy(n−3)

f
y(n−2)

)
, T2 = − 1

1−m

fy(n−2)

f
,

i.e. T1 is the coefficient of y(n−1) and T2 is the coefficient of (y(n−1))2. Then T1 +
y(n−1)T2 is the total derivative of − 1

1−m
ln(f) and a candidate for an integrating

factor is

µ = exp
(
(m− 1) D−1(T1 + y(n−1)T2)

) 1

(y(n−1))m
, (2.7.20)

where the definition of D−1(T1 + y(n−1)T2) is given in (2.7.15).

If either Gx +y′Gy + . . .+y(n−2)Gy(n−3) = 0 or Gy(n−2) = 0, then (2.7.19) reduces
to the class of ODEs

y(n) =
H(x, y, y′, . . . , y(n−2))

f
(y(n−1))l

− 1

1−m

(fx

f
+

fy

f
y′ + . . . +

fy(n−3)

f
y(n−2) +

fy(n−2)

f
y(n−1)

)
y(n−1),

(2.7.21)

2.7. GENERALIZATIONS TO HIGHER ORDER ODES 125

where H 6= 0 is an arbitrary function in its arguments. From the right–hand–
side of (2.7.21) we again find two candidates for m, namely l itself and l − 1.
This provides the two candidates

µ1 = exp
(
(l − 2) D−1(T1 + y(n−1)T2)

) 1

(y(n−1))l−1
(2.7.22)

and

µ2 = exp
(
(l − 1) D−1(T1 + y(n−1)T2)

) 1

(y(n−1))l
(2.7.23)

for integrating factors. Summing up the results, we can state:

Algorithm 2.34. (Computing integrating factors of the form µ =
f(x, y, y′, . . . , y(n−2)) 1

(y(n−1))m , m ∈ N, m ≥ 3) of n-th order ODEs) Given

an n-th order ODE y(n) = Φ(x, y, y′, . . . , y(n−1)) proceed as follows:

1. Check the ODE for exactness, i.e. set

Ψ(x, y, y′, . . . , y(n)) := y(n) − Φ(x, y, y′, . . . , y(n−1))

and compute

A :=
n∑

i=0

(−1)i di

dxi

(∂Ψ(x, y, y′, . . . , y(n))

∂y(i)

)
.

If A = 0 the input ODE is already exact and can be integrated directly.
Stop the algorithm.

2. Check, whether Φ(x, y, y′, . . . , y(n−1)) is a polynomial expression in y(n−1)

of the form

H1(x, y, y′, . . . , y(n−2))(y(n−1))m+1 + H2(x, y, y′, . . . , y(n−2))(y(n−1))m+

T1(x, y, y′, . . . , y(n−2))y(n−1) + T2(x, y, y′, . . . , y(n−2))(y(n−1))2,

where H1 6= 0, H2 6= 0, T1 and T2 can be arbitrary functions in their
arguments. If this is the case and

n∑
i=0

(−1)i di

dxi

(∂(T1 + T2y
(n−1))

∂y(i)

)
= 0,

i.e. T1 + T2y
(n−1) is a total derivative, go to step 4.

126 CHAPTER 2. INTEGRATING FACTORS

3. Check, whether Φ(x, y, y′, . . . , y(n−1)) is a polynomial expression in y(n−1)

of the form

H(x, y, y′, . . . , y(n−2))(y(n−1))l+

T1(x, y, y′, . . . , y(n−2))y(n−1) + T2(x, y, y′, . . . , y(n−2))(y(n−1))2,

where H 6= 0, T1 and T2 can be arbitrary functions in their arguments and
l ∈ N, l ≥ 3. If this is the case and

n∑
i=0

(−1)i di

dxi

(∂(T1 + T2y
(n−1))

∂y(i)

)
= 0,

i.e. T1 + T2y
(n−1) is a total derivative, go to step 5. If this is not the case,

stop the algorithm.

4. Compute (2.7.20) as a candidate for µ and go to step 6.

5. Compute (2.7.22) and (2.7.23) as candidates for µ and go to step 6.

6. Compute

A :=
n∑

i=0

(−1)i di

dxi

(∂
(
µ Ψ(x, y, y′, . . . , y(n))

)
∂y(i)

)
for each candidate for µ found in the previous steps. If A = 0 for such a µ,
µ is an integrating factor of the ODE. Return the result for µ. Otherwise
stop the algorithm. M

Proof. The correctness of the algorithm follows from the preceding discussion.

The case µ = f(x, y, y′, . . . , y(n−2)) 1
y(n−1) . We generalize Algorithm 2.26. Un-

der the assumption that µ is of the prescribed form, the most general class of
ODEs admitting such an integrating factors is obtained by Theorem 2.5 to be

y(n) = −
Gy(n−2)

f
(y(n−1))2 −

Gx + y′Gy + . . . + y(n−2)Gy(n−3)

f
y(n−1)

−
(fx

f
+

fy

f
y′ + . . . +

fy(n−2)

f
y(n−1)

)
y(n−1) ln(y(n−1)). (2.7.24)

As in the discussion of the situation for third order ODEs in the framework of
Algorithm 2.26, the right–hand–side of (2.7.24) is a linear polynomial in ln(y′′),

2.7. GENERALIZATIONS TO HIGHER ORDER ODES 127

where we assume for the further discussion that d
dx

f 6= 0, since otherwise (2.7.24)
reduces to the class of ODEs

y(n) = −
Gy(n−2)

f
(y(n−1))2 −

Gx + y′Gy + . . . + y(n−2)Gy(n−3)

f
y(n−1),

for which one can easily check using the Euler operator, whether 1
y(n−1) is an

integrating factor26. If d
dx

f 6= 0, the right–hand–side of (2.7.24) is a linear
polynomial in ln(y(n−1)) and we can read–off

T1 =
fx

f
+

fy

f
y′ + . . . +

fy(n−3)

f
y(n−2), T2 =

fy(n−2)

f
,

since T1y
(n−1) +T2(y

(n−1))2 can be found as the negative of the formal coefficient
of ln(y(n−1)). Furthermore T1y

(n−1) + T2(y
(n−1))2 is a quadratic polynomial in

y(n−1) and, hence, T1 and T2 can be read–off as the coefficients of y(n−1) and
(y(n−1))2, respectively. Since T1 + T2y

(n−1) is the total derivative of ln(f), a
candidate for an integrating factor is found to be

µ = exp
(
D−1(T1 + y(n−1)T2)

) 1

y(n−1)
, (2.7.25)

where the definition of D−1(T1 + y(n−1)T2) is provided by (2.7.15).

Finally, we obtain:

Algorithm 2.35. (Computing integrating factors of the form µ =
f(x, y, y′, . . . , y(n−2)) 1

y(n−1)) of n-th order ODEs) Given an n-th order ODE

y(n) = Φ(x, y, y′, . . . , y(n−1)) proceed as follows:

1. Check the ODE for exactness, i.e. set

Ψ(x, y, y′, . . . , y(n)) := y(n) − Φ(x, y, y′, . . . , y(n−1))

and compute

A :=
n∑

i=0

(−1)i di

dxi

(∂Ψ(x, y, y′, . . . , y(n))

∂y(i)

)
.

If A = 0 the input ODE is already exact and can be integrated directly.
Stop the algorithm.

26Note that in this situation f is a constant. Hence, one can check, whether the ODE is

a quadratic polynomial in y(n−1) and whether −
Gx+y′Gy+...+y(n−2)G

y(n−3)+G
y(n−2)y(n−1)

f is a
total derivative using the Euler operator. If this is the case, 1

y(n−1) is indeed an integrating
factor.

128 CHAPTER 2. INTEGRATING FACTORS

2. Check, whether Φ(x, y, y′, . . . , y(n−1)) is a linear polynomial in ln(y(n−1))
of the form

H1(x, y, y′, . . . , y(n−1)) + H2(x, y, y′, . . . , y(n−1)) ln(y(n−1)),

where H1 and H2 6= 0 can be arbitrary functions in their arguments. If
this is not the case, stop the algorithm.

3. Check, whether H2(x, y, y′, . . . , y(n−1)) is a polynomial expression in y(n−1)

of the form

S1(x, y, y′, . . . , y(n−2))y(n−1) + S2(x, y, y′, . . . , y(n−2))(y(n−1))2,

where S1 and S2 are arbitrary functions in their arguments, and if

n∑
i=0

(−1)i di

dxi

(∂(S1 + S2y
(n−1))

∂y(i)

)
= 0,

i.e. if S1 + S2y
(n−1) is a total derivative. If this is not the case, stop the

algorithm.

4. Define T1 = −S1 and T2 = −S2 and compute (2.7.25) as a candidate for
µ.

5. Compute

A :=
n∑

i=0

(−1)i di

dxi

(∂
(
µ Ψ(x, y, y′, . . . , y(n))

)
∂y(i)

)
.

If A = 0, µ is an integrating factor of the ODE. Return the result for µ.
Otherwise stop the algorithm. M

Proof. The correctness of the algorithm follows from the preceding discussion.

2.8 Conclusions

2.8.1 Resumé

Of course, all algorithms and heuristics presented in this chapter treat very
special classes of ODEs. It is not difficult to find examples, where none of the

2.8. CONCLUSIONS 129

algorithms stated will return a satisfying result. Nevertheless, we think that
the simplicity and efficiency of the Algorithms 2.7, 2.9, 2.11, 2.26, 2.19 and
2.22 for third order ODEs and the Algorithms 2.29, 2.30, 2.31, 2.33, 2.34 and
2.35 for n-th order ODEs stated above are good reasons for taking them into
account in a symbolic ODE solving environment.

First of all the algorithms are easy to implement. The Euler operator (see
Theorem 2.6) as a computational tool to check for the exactness of an ODE can
be implemented efficiently in any computer algebra system (see also Section
3.6.3 and Section 3.6.4 of [3] for details on an implementation in the computer
algebra system Mathematica).

There are not many further requirements of the algorithms. In most cases it
suffices to be able to recognize polynomial structures or rational expressions in
a certain derivative of the dependent variable of a given ODE — a feature also
available in most computer algebra systems. The candidates for the integrating
factors can be computed directly without solving any additional ODEs or
systems of linear partial differential equations. One even does not have to solve
symbolic algebraic equations. This means that the above presented heuristics
are completely independent of a computer algebra system’s symbolic solver for
such equations.

The only exceptions are Algorithms 2.15 and 2.32, which require a factoring
routine for arbitrary expressions. From a truly mathematical standpoint these
two algorithms are not of that interest. Nevertheless, we did a rough–and–
ready implementation of these algorithms in the computer algebra system
MuPAD27, which worked fine and efficient in the case of simple examples.
In the case of ODEs involving large and complex expressions we cannot
expect satisfying results. Hence, an implementation of these two algorithms
should always try to find integrating factors of the other types discussed
with the help of the more systematic heuristics presented in the framework
of Algorithms 2.7, 2.9, 2.11, 2.26, 2.19, 2.22, 2.29, 2.30, 2.31, 2.33, 2.34 and 2.35.

In practice, for general non–linear ODEs of order at least 2, algorithms for
computing integrating factors (or at least candidates for integrating factors as
presented in this chapter) seem to be of more relevance (in the context of ODE
solvers of computer algebra systems) than Lie point symmetry methods as intro-

27The computer algebra system MuPAD by the company SciFace Software in Paderborn,
Germany.

130 CHAPTER 2. INTEGRATING FACTORS

duced by Cheb-Terrab et. al. in [7], [9], [10], [12] and [13]. Indeed, according to
our knowledge, Cheb-Terrab et. al. did not publish any algorithms for solving
ODEs of order higher than 2 using Lie point symmetry methods. For ODEs
of order at least 2, integrating factor methods are preferred. In fact, even the
Lie point symmetry methods discussed in Section 1.2 can be seen as methods
indirectly using integrating factors to reduce the order of the ODE under con-
sideration. The reason is that given the infinitesimal generator

ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y

of a Lie point symmetry of a first order ODE y′ = Φ(x, y), then

1

η(x, y)− ξ(x, y) Φ(x, y)

is an integrating factor for y′ = Φ(x, y). This connection between Lie point
symmetries of first order ODEs and integrating factors is discussed in detail by
H. Stephani in [64], Chapter I, Section 5.1 and by P. J. Olver in [51], Chapter
2, Theorem 2.48. See also Chapter 1 and Chapter 2 of [19].

2.8.2 Open problems and perspectives

1. The main theoretical question remaining open is the question, if it is pos-
sible to modify the algorithms for third and higher order non–linear ODEs
discussed in this chapter, such that the test for exactness in the last step of
the algorithms can be removed. In other words: is it possible not only to
find necessary, but also sufficient conditions for the existence of integrating
factors of the special forms considered? The main problem is that we do
not want to use any rather theoretical sufficient conditions, but sufficient
conditions, which can be verified without solving any auxiliary ODEs or
even partial differential equations. At the current state of our research
we do not see an alternative to the application of the Euler operator to
establish sufficient conditions.

2. Another point remaining open is the question, whether even in the case
an integrating factor is found, the integrator of a general purpose com-
puter algebra system is able to compute the desired reduction of order.
Of course, it is still a step forward to know that the integral of a cer-
tain differential expression corresponding to an ODE exists and thereby a

2.8. CONCLUSIONS 131

reduction of order can be achieved. Nevertheless, if the integration can-
not be performed, because the integrator of a computer algebra system is
not powerful enough or the expression to be integrated is very complex,
such that it is hard to find a suitable integration strategy, a reduced or-
der ODE cannot be computed in closed form. Hence, further reductions
of order using the algorithms discussed in this chapter or the symmetry
methods presented in Chapter 1, cannot be applied.

In this chapter, the focus of attention was put on special classes of third and
n-th order ODEs. In the next chapter we present new methods for finding
integrating factors of other classes of ODEs, which arise from the application
of skew symmetric differential operators. For such classes we give algorithms to
determine integrating factors, which can also be computed without solving any
additional auxiliary ODEs or partial differential equations. Furthermore, we can
state explicit recursion formulas for the symbolic computation of integrals arising
from the ODEs under consideration multiplied by their integrating factors: The
reduction of order and the computation of the integrating factors can be achieved
independent of the power of the integrator available in the computer algebra
system, where the methods are to be implemented. This is a clear advantage
to the methods presented in this chapter, where we always stated that the
computation of the integrating factors considered involves an integration, but
we did not state in detail, how to compute the integration efficiently in practice.
However, for such methods as discussed in the following chapter, a new and
extensive algebraic setup has to be developed.

Chapter 3

Skew symmetric hierarchies

In this chapter we discuss the computation of integrating factors for classes
of ODEs obtained by the application of certain skew symmetric operators.
The first part of this chapter serves to fix the notation and to introduce the
underlying algebraic structure. Afterwards we introduce the classes of ODEs,
on which we put the focus of our attention. A theoretical characterization
on how to obtain integrating factors for these ODEs is established. Then we
introduce the notion of the fundamental form of a skew symmetric operator,
which serves to establish closed formulas for the efficient computation of the
desired integrating factors. The last part of the chapter is dedicated to present
closed formulas for the efficient integration of the total derivatives obtained by
multiplication of the members of the class of ODEs under consideration with a
suitable integrating factor.

In the preceding chapter we used the Euler operator (see Theorem 2.6) to
check, whether a given differential expression is a total derivative or not. This
was an essential aspect of all algorithms to find integrating factors of third and
higher order ODEs without solving any auxiliary partial differential equations
or additional ODEs. The methods of the last chapter mainly based on skillful
observation of the “form” of a third or higher order ODE and the afterwards
“extraction” of the integrating factor from the ODE under consideration.

The approaches presented within this chapter will not use pattern matching
methods to determine integrating factors in the sense of Cheb-Terrab et. al. (see
[11]). Moreover we will not have to make use of the Euler operator (see Theorem
2.6) to prove the exactness of a differential expression. We will arrange the
underlying algebraic structure in such a way that we do no longer compute

133

134 CHAPTER 3. SKEW SYMMETRIC HIERARCHIES

only “candidates” for integrating factors. In other words: in contrast to the
last chapter, where we mainly considered necessary conditions for the existence
of integrating factors, we now give necessary and sufficient conditions for the
existence of integrating factors of the class of ODEs under consideration and
directly compute them.

3.1 Basic terminology and general definitions

In the following, x denotes the independent variable and u = u(x) the depen-
dent variable. By D = d

dx
we denote the total differentiation with respect to x.

All differentiations performed within this chapter will be total differentiations
with respect to x so that no ambiguity in the notation will arise from simply
writing D instead of d

dx
.

We consider the smallest algebra A = A(x, u, D) over some suitable number
field (e.g. the real numbers R or the complex numbers C) containing x, u = u(x)
and a fixed set F of infinitely often differentiable functions f : R → R in
the variable x. The algebra A is assumed to be closed with respect to the
application of the differential operator D to its elements, i.e. D : A → A. The
subalgebra F is assumed to be closed against taking integrals.

We use the abbreviations ux = Du, uxx = Dux, uxxx = Duxx etc. for the formal
derivatives of the dependent variable u = u(x) with respect to x. For n ∈ N we
also denote the n-th derivative dn

dxn u = Dnu by u(n). A is assumed to bear the
algebra structure of pointwise multiplication.

To our mind, the choice of the structure of an algebra of functions and variables
in the above sense seemed to fit best into the framework of a computer algebra
system. Again, as in the preceding part of this thesis, we put particular
emphasis on the fact that the methods for the computation of integrating
factors presented in this chapter are formulated as close as possible to a final
implementation in a computer algebra system. The computer algebra system
MuPAD with its object oriented domains concept provides the necessary
prerequisites for the implementation of the underlying mathematical structures
in this chapter1.

1The MuPAD Tutorial [18] gives detailed information on data structures and the Mu-
PAD programming language. Especially, the object oriented concept of “domains” offers an
essential basis for practical implementations of the algorithms presented in the framework of

3.1. BASIC TERMINOLOGY AND GENERAL DEFINITIONS 135

As an example for such an algebra, consider the algebra containing all polyno-
mials with real coefficients in x, u and the derivatives of u with respect to x.

As we know, F denotes the subset of all elements of A, which do neither
contain the dependent variable u nor any derivatives of u with respect to x. In
other words: if we view u, ux, uxx, etc. as formal variables, then A ∈ A is an
element of F if and only if the formal partial derivatives of A with respect to
u, ux, uxx, etc. vanish. Additionally, the number field (the set of constants),
over which the algebra A is to be considered, is interpreted as a subset of F .

For an element A ∈ A\F by ordu(A) we denote the order of the highest deriva-
tive of u with respect to x contained in A. We use the convention ordu(A) = 0,
if A does not contain any derivative of u with respect to x, but only u itself. For
arbitrary elements B ∈ F \ {0} we define ordu(B) = −∞ (B does not depend
on u or any of the derivatives of u with respect to x). For technical reasons,
which will become clear in the next section, we say that the zero element 0 has
every order. It follows that

ordu : A \ {0} → N0 ∪ {−∞}

is a sub–additive and sub–multiplicative map, i.e.

ordu(A + B) ≤ max{ordu(A), ordu(B)}

and
ordu(AB) ≤ max{ordu(A), ordu(B)}

for all A, B ∈ A \ {0}.

By N we denote the set of all total derivatives in A, i.e.

N = {Q | there is a P ∈ A, such that Q = DP}.

By definition N ⊃ F . The set N is a linear space, since differentiation is a
linear operation, but in general the product of two elements of N is not again
contained in N . Take for example the first derivative ux of the dependent
variable. Then clearly ux ∈ N , since u ∈ A and ux = Du, but u2

x /∈ N , since
u2

x cannot be integrated formally.

this chapter (see also Appendix D of [50] and [37] as well as chapters 3 and 5 of [49]).

136 CHAPTER 3. SKEW SYMMETRIC HIERARCHIES

For the course of this chapter we will use the abbreviation D−1 for the symbolic
integral of an element of N with respect to x, i.e.

D−1A =

∫
A dx

for all A ∈ N . In the framework of our setting, D−1 is viewed as a linear
operator N → A. Whenever it is necessary to specify lower and upper bound
for the integration, we use the standard notation for integrals, so that no ambi-
guity in the notation will arise. In most situations D−1 is treated as the formal
inverse of the differential operator D, i.e. constants of integration will be ignored.

For each element K ∈ A \ F , ordu(K) > 0, the equation K = 0 is a differential
equation in the variable u = u(x). If K already is an element of N , then this
means that K can be integrated and the order of the ODE K = 0 can be reduced
by 1. Note that integration of elements of N provides again an element of A,
i.e. no symbolic integrals will remain, which cannot be computed explicitly. In
the terminology of the preceding chapter, N is exactly the subset of all elements
in A, which vanish when applying the Euler operator (see Theorem 2.6) to them.

On the algebra A we define the relation ∼N as follows: A ∼N B holds for
A, B ∈ A if and only if A−B ∈ N . This relation clearly defines an equivalence
relation on A. For A ∈ A we denote by [A]N the equivalence class of A with
respect to ∼N , i.e.

[A]N = {B ∈ A | B ∼N A}.

The set of all such equivalence classes is denoted by A/N , i.e.

A/N = {[A]N | A ∈ A}.

The question, if for two given elements A, B ∈ A their equivalence classes
coincide, i.e. [A]N = [B]N , is reduced to the question, whether A− B ∈ N . To
decide this, we can apply the Euler operator presented in Theorem 2.6 to the
differential expression A−B and see, if the result vanishes.

Of course, applying the Euler operator is an efficient method for testing, if a
differential expression is a total derivative. Nevertheless, it does not help to
compute the integral D−1(A − B), if A − B is contained in N — something
we are of course interested in when trying to reduce the order of an ODE after
multiplication by a suitable integrating factor. Hence, an alternative way to
decide, whether A−B ∈ N and, if this is the case, to compute D−1(A−B), is

3.1. BASIC TERMINOLOGY AND GENERAL DEFINITIONS 137

presented in Section 3.2 of this chapter when we discuss the so–called canonical
form of such differential expressions.

With the help of the equivalence classes [A]N , A ∈ A, we define the bilinear
form

〈 · , · 〉 : A×A → A/N , 〈A, B〉 := [AB]N .

The map 〈 · , · 〉 : A × A → A/N maps two elements of A to the equivalence
class of their product in A. Since we assume the multiplication in A to be
commutative, it follows

〈A, B〉 = 〈B, A〉

for all A, B ∈ A, i.e. 〈 · , · 〉 : A × A → A/N is a symmetric bilinear form. It
will be referred to as density valued scalar product and we will also call the
equivalence classes from A/N densities.

This density valued scalar product can be used to give an alternative character-
ization of total derivatives in A:

Lemma 3.1. Let A ∈ A. Then A ∈ N if and only if 〈1, A〉 = 0.

Proof. We have A ∈ N if and only if [A]N = 0 if and only if 〈1, A〉 = 0. This
proves the assertion of the lemma.

The notion of an integrating factor for elements of A can now be formulated as
follows:

Definition 3.2. Let K ∈ A \ F , G ∈ A and ordu(K) > ordu(G). Then G is
called an integrating factor for K = 0, if the density valued scalar product of G
and K vanishes, i.e.

〈G, K〉 = 0.

If G is an integrating factor for K = 0, the product GK is an element of N and
the integral D−1(GK) is an element of A. In the situation of Definition 3.2,
D−1(GK) = c, c some constant, will be referred to as a conserved quantity for
K = 0 (note that ordu(D

−1(GK)) < ordu(K)).

Example 3.3. Consider the elements u, ux ∈ A. Then u is an integrating factor
for ux = 0, since D(1

2
u2) = uux and, hence, 〈u, ux〉 = 0. �

We also introduce the more general notion of extended integrating factors, to
which we will come back in the later course of this chapter:

138 CHAPTER 3. SKEW SYMMETRIC HIERARCHIES

Definition 3.4. Let K ∈ A \ F , ordu(K) > 0, and G ∈ A. Then G is called
an extended integrating factor for K = 0, if the density valued scalar product of
G and K vanishes, i.e.

〈G, K〉 = 0.

The only difference between Definition 3.4 and Definition 3.2 is that the order
of an extended integrating factor may be higher than or equal to the order of
the ODE K = 0 under consideration. E.g. let K = ux and G = uxx. Then
G is an extended integrating factor of K = 0, since D−1(KG) = 1

2
u2

x. Of
course, this does not produce a reduction of the order of the ODE K = 0, since
ordu(K) = 1 = ordu(D

−1(GK)). We will come back to the notion of extended
integrating factors and their use in Section 3.3.

Finally, we need the notion of skew symmetric operators A → A:

Definition 3.5. An operator Θ : A → A is called skew symmetric with respect
to the density valued scalar product 〈·, ·〉 or for short skew symmetric, if

〈A, Θ(B)〉 = −〈Θ(A), B〉.

Example 3.6. (i) The differential operator D is a skew symmetric A → N ,
since for any A, B ∈ A we have

〈A, DB〉+ 〈DA, B〉 = [ABx + AxB]N

= [(AB)x]N ,

i.e. 〈A, DB〉+ 〈DA, B〉 = 0.

(ii) The operator Θ : A → A, Θ = D2u − uD2 is a skew symmetric operator,
since

〈A, Θ(B)〉+ 〈Θ(A), B〉 = 〈A, uxxB + 2uxBx〉+ 〈uxxA + 2uxAx, B〉
= [2uxxAB + 2ux(AB)x]N

= [(2ux(AB))x]N

and (2ux(AB))x is a total derivative, i.e. [(2ux(AB))x]N = 0.

(iii) All operators Θ : A → A of the form Θ =
∑n

k=0 D2k+1, n ∈ N, are skew
symmetric. �

3.2. CANONICAL FORM OF DIFFERENTIAL EXPRESSIONS 139

3.2 Canonical form of differential expressions

Assume, A = A(x, u, ux, uxx, . . .) ∈ A. From the definitions introduced in the
last section, we know that D−1(A) is an element of A if and only if A ∈ N .
This section is dedicated to present an algorithm to decide, whether D−1(A)
for an arbitrary element of A ∈ A is contained in A, and to determine the
representation of its integral.

In other words: we present an algorithm to decide, whether or not a given
element of A is a total derivative with respect to x. But the algorithm will
even accomplish more: If A ∈ N , then it will help to compute the element
D−1(A) ∈ A. In order to do this, we split A into a direct sum

A = N ⊕ J

and give an algorithm, which decomposes each element of A into these compo-
nents, and furthermore represents the integrals of elements from N by elements
of A. Since the sum is direct, the representations obtained by this method are
unique. The summand J we call the non–integrable part of A, and N is also
referred to as the integrable part of A.

Definition 3.7. Let n ∈ N.

(i) The set Jn ⊂ A is defined to be the set of all elements A =
A(x, u, ux, . . . , u

(n)) ∈ A, n = ordu(A), with the property that when A
is expanded in a formal Taylor series with respect to u(n) (highest deriva-
tive of u with respect to x in A), then the terms of polynomial order 0
and 1 do vanish.

(ii) By J0 we denote the set of all A = A(x, u) ∈ A, such that in the formal
Taylor series expansion of A with respect to u the term of polynomial
order 0 vanishes.

Definition 3.8. Let Jk ⊂ A, k ∈ N0, be as in Definition 3.7. Then we define:

J :=
∞⊕

k=0

Jk.

Remark 3.9. Obviously, in the intersection J∩N there can be no other element
than 0, since in any term of the form D(A), A ∈ A, which is not already
contained in F , the highest derivative of u with respect to x appears linearly.

140 CHAPTER 3. SKEW SYMMETRIC HIERARCHIES

Furthermore, any term, where there is no u contained at all, can be integrated
anyway. If in a term the highest order derivative u(n) appears linearly, then it
can be written as the sum of a derivative of a term, which contains u(n−1) as
highest order derivative, and some terms containing only derivatives u(i), where
i < n (integration by parts).

From this remark clearly follows the decomposition and the algorithm to
compute it. The rest of this section is now dedicated to present an algorithm to
compute a canonical representation of D−1(A) for an arbitrary element A ∈ A
using the ideas sketched above.

In the following we demand that any of the differential expressions treated is
given in completely expanded form, i.e. as a sum of terms, where each term is
a pure multiplicative expression. The sum of all terms in A depending on the
highest derivative of u with respect to x will be called the highest order term of
A.

Definition 3.10. For an element A = A(x, u, ux, uxx, . . . , u
(n)) ∈ A, the formal

integral D−1(A) is said to be in canonical form with respect to u(n), n ∈ N0, if
for each of its terms one of the following condition holds:

• The term does not contain any symbolic integration D−1.

• The term is of the form D−1(Q(x, u, ux, uxx, . . . , u
(n))), where Q =

Q(x, u, ux, uxx, . . . , u
(n)) is an element of Jn.

• The term is of the form D−1(R(x, u, ux, . . . , u
(n−1))) for some

R(x, u, ux, . . . , u
(n−1)) ∈ A (a situation, which can only occur in the case

n ≥ 1).

In the following we give an outline of our ideas how to compute the canon-
ical form with respect to u(n) of a general expression D−1(A) for A =
A(x, u, ux, uxx, . . . , u

(n)) ∈ A. The formal Taylor series expansion of A with
respect to u(n) provides a decomposition of A of the form

A = A0(x, u, ux, uxx, . . . , u
(k)) + A1(x, u, ux, uxx, . . . , u

(l)) u(n)+

terms of polynomial order ≥ 2 in u(n),

where k, l ∈ N with k, l < n, i.e. A0 and A1 do not depend on u(n). This
decomposition of A is a central ingredient for the computation of the canonical
form with respect to u(n).

3.2. CANONICAL FORM OF DIFFERENTIAL EXPRESSIONS 141

Lemma 3.11. Let A(x, u, ux, uxx, . . . , u
(n)) ∈ A and let u(n) be the highest order

derivative of u with respect to x appearing in A. Then the highest order term of
d
dx

∫ u(n)

0
A(x, u, ux, uxx, . . . , ξ) dξ is u(n+1)A(x, u, ux, uxx, . . . , u

(n)).

Proof. The assertion of the Lemma follows directly from the chain rule of dif-
ferential calculus. It provides:

d

dx

∫ u(n)

0

A(x, u, ux, uxx, . . . , ξ) dξ

=
(∫ u(n)

0

A(x, u, ux, uxx, . . . , ξ) dξ
)

x
+

ux

(∫ u(n)

0

A(x, u, ux, uxx, . . . , ξ) dξ
)

u
+

uxx

(∫ u(n)

0

A(x, u, ux, uxx, . . . , ξ) dξ
)

ux

+ . . . +

u(n+1)A(x, u, ux, uxx, . . . , u
(n)),

where we have used x, u, ux, etc. as indices to denote the partial derivatives
∂
∂x

, ∂
∂u

, ∂
∂ux

etc. In the above sum the only term depending on the (n + 1)-st

derivative of u is u(n+1)A(x, u, ux, uxx, . . . , u
(n)). This proves the assertion.

With the help of Lemma 3.11 we can construct the canonical form with respect
to u(n) of a given expression D−1(A(x, u, ux, uxx, . . . , u

(n))). Before we consider
the general case, we have a look at an example.

Example 3.12. Let A = A(x, u, ux, uxx) = x u ux uxx, i.e. we consider the case
n = 2. We want to compute the canonical form of D−1(A) with respect to uxx.
We proceed as follows: The formal Taylor series expansion of A with respect to
the highest order derivative provides the representation

A(x, u, ux, uxx) =A(x, u, ux, 0) + uxxAuxx(x, u, ux, 0)+(
A(x, u, ux, uxx)− uxxAuxx(x, u, x0, 0)−
A(x, u, x,0)

)
.

Application of D−1 gives

D−1
(
A(x, u, ux, uxx)

)
=D−1

(
A(x, u, ux, 0)

)
+ D−1

(
uxxAuxx(x, u, ux, 0)

)
+

D−1
(
A(x, u, ux, uxx)− uxxAuxx(x, u, ux, 0)−
A(x, u, ux, 0)

)
.

142 CHAPTER 3. SKEW SYMMETRIC HIERARCHIES

Finally we write D−1(uxxAuxx(x, u, ux, 0)) in the form

D−1
(
uxxAuxx(x, u, ux, 0)

)
=D−1

(
uxxAuxx(x, u, ux, 0)−
d

dx

∫ ux

0

Auxx(x, u, ξ, 0) dξ
)
+∫ ux

0

Auxx(x, u, ξ, 0) dξ.

This provides the canonical form of D−1(A) with respect to uxx, since by these
formulas we find

D−1(A) = D−1(x u ux uxx)

= D−1
(
uxx (x u ux)−

d

dx

(1

2
x u u2

x

))
+

1

2
x u u2

x

=
1

2
x u u2

x −
1

2
D−1(u u2

x + x u3
x).

�

We can generalize this example in the form of the following theorem:

Theorem 3.13. Let A = A(x, u, ux, uxx, . . . , u
(n−1), u(n)) ∈ A and u(n) the high-

est order derivative of u with respect to x in A. Then the right–hand–side of

D−1(A) =D−1
(
A(x, u, ux, uxx, . . . , u

(n−1), 0)
)
+

D−1
(
u(n)Au(n)(x, u, ux, uxx, . . . , u

(n−1), 0)−

d

dx

∫ u(n−1)

0

Au(n)(x, u, ux, uxx, . . . , ξ, 0) dξ
)
+

∫ u(n−1)

0

Au(n)(x, u, ux, uxx, . . . , ξ, 0) dξ+

D−1
(
A(x, u, ux, uxx, . . . , u

(n−1), u(n))−
u(n)Au(n)(x, u, ux, uxx, . . . , u

(n−1), 0)−
A(x, u, ux, uxx, . . . , u

(n−1), 0)
)

is in canonical form with respect to u(n).

3.2. CANONICAL FORM OF DIFFERENTIAL EXPRESSIONS 143

Proof. First of all, total differentiation of both sides of the above stated identity
for D−1(A) shows that the equals sign is valid. Those terms, which do not
contain u(n), are in canonical form with respect to u(n). Hence, the first term

D−1
(
A(x, u, ux, uxx, . . . , u

(n−1), 0)
)

is in canonical form with respect to u(n). The same holds for∫ u(n−1)

0

Au(n)(x, u, ux, uxx, . . . , ξ, 0) dξ.

The last term of the right–hand–side is in canonical form with respect to u(n),
since by construction the formal Taylor series expansion of the integrand with
respect to u(n) only contains terms of order ≥ 2 in u(n). Finally,

D−1
(
u(n)Au(n)(x, u, ux, uxx, . . . , u

(n−1), 0)−

d

dx

∫ u(n−1)

0

Au(n)(x, u, ux, uxx, . . . , ξ, 0) dξ
)

does not contain u(n) by Lemma 3.11.

We now generalize Definition 3.10:

Definition 3.14. For an element A = A(x, u, ux, uxx, . . . , u
(n)) ∈ A, the formal

integral D−1(A) is said to be in canonical form if

D−1(A) = Ã +
n∑

k=0

D−1(Ak),

where Ã ∈ A and Ak = Ak(x, u, ux, . . . , u
(k)) ∈ Jk, 0 ≤ k ≤ n.

An algorithm to compute the canonical form is provided by a successive appli-
cation of the formula in Theorem 3.13.

Algorithm 3.15. (Computation of the canonical form) Let A =
A(x, u, ux, uxx, . . . , u

(n)).

1. Set T := D−1(A), i := n and C := 0.

144 CHAPTER 3. SKEW SYMMETRIC HIERARCHIES

2. Use the formula in Theorem 3.13 to compute the canonical form of T with
respect to u(i). This gives a decomposition of the form

T = A0(x, u, ux, . . . , u
(i−1))+

D−1(A1(x, u, ux, . . . , u
(i−1)))+

D−1(A2(x, u, ux, . . . , u
(i))),

where A0, A1 ∈ A and A2 ∈ Ji.

3. Set C := C + A0 + D−1(A2), T := D−1(A1) and i := i− 1.

4. If i ≥ 1 and A1 6= 0, go back to step 2.

5. Set C := C + T and return C, the canonical form of D−1(A). M

Proof. (Correctness) The correctness of the algorithm follows directly from The-
orem 3.13.

Remark 3.16. For an arbitrary element A = A(x, u, ux, . . . , u
(n)) ∈ A, Algo-

rithm 3.15 finds Ã ∈ A and Ak = Ak(x, u, ux, . . . , u
(k)) ∈ Jk, 0 ≤ k ≤ n, such

that

D−1(A) = Ã +
n∑

k=0

D−1(Ak).

Application of D provides the decomposition

A = D(Ã) +
n∑

k=0

Ak,

where D(Ã) is contained in the integrable part N of A and
∑n

k=0 Ak is an
element of the non–integrable part J of A, more precisely of

⊕n
k=0 Jk.

We apply Algorithm 3.15 in the next two examples, before we return to our main
aim, the systematic computation of integrating factors, in the next section:

Example 3.17. Assume we search for integrating factors of the form η = η(x) ∈
F for the homogeneous linear ODE uxx + pu = 0 in u = u(x) and p = p(x)
some generic element of F . Application of Algorithm 3.15 to the expression
D−1(ηuxx + ηpu) to compute its canonical form provides:

D−1(ηuxx + ηpu) = ηux −D−1(uxηx) + D−1(ηpu)

= ηux − uηx + D−1(uηxx + upη),

3.2. CANONICAL FORM OF DIFFERENTIAL EXPRESSIONS 145

i.e. the canonical form of D−1(ηuxx + ηpu) is ηux − uηx + D−1(uηxx + upη).
Whenever η(x) is an integrating factor of uxx + pu = 0, the symbolic integral
D−1(uηxx + upη) must vanish, i.e. we obtain ηxx + pη = 0, and it follows that
η(x) is an integrating factor of uxx + pu = 0 if it is a solution of uxx + pu = 0.
From a practical standpoint this fact is useless for solving the homogeneous
linear ODE uxx + pu, but it mirrors the fact that one can always find another
solution, when one solution of the ODE is already known: the solution, i.e. the
integrating factor, allows a reduction of the order of the ODE by 1 resulting
in a first order ODE, which can be solved e.g. by the well–known method of
separation of variables. �

Example 3.18. Assume, we want to find integrating factors of the form µ =
µ(x, u, ux) = au + bux, a = a(x), b = b(x) ∈ F for the homogeneous linear ODE
uxx + pu = 0 in u = u(x) and p = p(x) some generic element of F . Application
of Algorithm 3.15 to the expression D−1(µuxx + µpu) to compute its canonical
form provides:

D−1(µuxx + µpu) =D−1(auuxx + apu2+

buxuxx + bpuxu)

=− 1

2
axu

2 +
1

2
bu2

x + auux +
1

2
bpu2+

D−1
(
− 1

2
bxu

2
x + apu2 − 1

2
bpxu

2−
1

2
pbxu

2 − au2
x + axxu

2
)
.

If µ = au+bux is an integrating factor for uxx+pu = 0, then the above integrand
must vanish. Considering the integrand as a polynomial in ux, we can make the
ansatz a = −1

2
bx. If we insert this into the above expression, we obtain

D−1(µuxx + µpu) =
1

2
bu2

x +
1

4
bxxu

2+

1

2
bpu2 − 1

2
bxuux+

D−1
(
− 1

4
u2(bxxx + 4pbx + 2pxb)

)
.

Hence, if µ = au + bux, a = −1
2
bx, is an integrating factor of uxx + pu = 0, we

should have

−1

4
u2(bxxx + 4pbx + 2pxb) = 0.

146 CHAPTER 3. SKEW SYMMETRIC HIERARCHIES

Again, as in the preceding example, this information does not seem to help in
finding an integrating factor for uxx + pu = 0, since computing b means solving
the homogeneous linear ODE

bxxx + 4pbx + 2pxb = 0,

which — considered as an ODE in b for given p — is of order 3. Hence, deter-
mining µ seems to be harder than directly solving the original ODE. But the
above equation gives us some more information: If u is indeed a solution of the
original ODE uxx + pu = 0, then we obtain by ignoring constants of integration

0 =
1

2
bu2

x +
1

4
bxxu

2 +
1

2
bpu2 − 1

2
bxuux + D−1

(
− 1

4
u2(bxxx + 4pbx + 2pxb)

)
.

If we write the equation as

D−1
(1

4
u2(bxxx + 4pbx + 2pxb)

)
=

1

2
bu2

x +
1

4
bxxu

2 +
1

2
bpu2 − 1

2
bxuux,

we see that u2 is an integrating factor for the third order homogeneous linear
ODE bxxx + 4pbx + 2pxb = 0. Hence, finding an integrating factor for any
third order homogeneous linear ODE of the form bxxx + 4pbx + 2pxb = 0 can
be reduced to computing powers of solutions of the corresponding second order
homogeneous linear ODE we started with. �

3.3 Integrating factors and skew symmetric op-

erators

Assume that Θ : A → A is a skew symmetric operator. Then we obtain for
K0 := Θ(1) ∈ A:

〈1, K0〉 = 〈1, Θ(1)〉 = −〈Θ(1), 1〉
= −〈K0, 1〉 = −〈1, K0〉,

i.e. 〈1, K0〉 = 0 and, hence, by Lemma 3.1 we have K0 ∈ N . Since K0 ∈ N ,
the integral D−1K0 is an element of A. We set G0 := D−1K0 and compute
K1 := Θ(G0). Then again K1 ∈ N , since

〈1, K1〉 = 〈1, Θ(G0)〉 = −〈Θ(1), G0〉
= −〈K0, G0〉 = −〈DG0, G0〉

=
[
− 1

2
(G2

0)x

]
N

= 0.

3.3. COMPUTING INTEGRATING FACTORS 147

Furthermore, G0K1 is an element of N , since

〈G0, K1〉 = 〈G0, Θ(G0)〉 = −〈Θ(G0), G0〉
= −〈K1, G0〉 = −〈G0, K1〉,

which means 〈G0, K1〉 = 0 and, henceforth, G0K1 ∈ N . By the same arguments
it follows:

〈G0, K0〉 = 〈G0, Θ(1)〉 = −〈Θ(G0), 1〉
= −〈K1, 1〉 = −〈1, K1〉
= 0,

as we have already seen above. If G0, K0, K1 ∈ A\F and ordu(G0) < ordu(K0)
as well as ordu(G0) < ordu(K1), it follows that G0 is an integrating factor for
the ODEs K0 = 0 and K1 = 0.

This exemplary computations serve as a motivation for the following more gen-
eral theorem:

Theorem 3.19. (Skew symmetric hierarchy) Let Θ be a skew symmetric
operator A → A. We define:

K0 := Θ(1), G0 := D−1K0,

Ki := Θ(Gi−1), Gi := D−1Ki,

for all i ∈ N. Then the following hold:

(i) Gi ∈ A for all i ∈ N0.

(ii) Ki ∈ N for all i ∈ N0.

(iii) GiKj ∈ N for all i, j ∈ N0.

Proof. The assertion in (i) follows, when we have proved (ii). For (ii) we have
to show that 〈1, Ki〉 = 0 for all i ∈ N0. In the motivation for this theorem (see
above), we already treated the case i = 0 and proved that K0 ∈ N under the

148 CHAPTER 3. SKEW SYMMETRIC HIERARCHIES

assumptions of the theorem. Let i ≥ 1. We have:

〈1, Ki〉 = 〈1, Θ(Gi−1)〉 = −〈Θ(1), Gi−1〉 = −〈K0, Gi−1〉
= −〈DG0, Gi−1〉 = 〈G0, DGi−1〉 = 〈G0, D(D−1Ki−1)〉
= 〈G0, Ki−1〉
= 〈G0, Θ(Gi−2)〉 = −〈Θ(G0), Gi−2〉 = −〈K1, Gi−2〉
= −〈DG1, Gi−2〉 = 〈G1, DGi−2〉 = 〈G1, D(D−1Ki−2)〉
= 〈G1, Ki−2〉
= · · ·
= 〈Gi−1, K0〉
= 〈Gi−1, Θ(1)〉 = −〈Θ(Gi−1), 1〉 = −〈Ki, 1〉
= −〈1, Ki〉,

which means that 2〈1, Ki〉 = 0 and, hence, Ki ∈ N .

For (iii) we have to prove that 〈Gi, Kj〉 = 0 for all i, j ∈ N0. We have:

〈Gi, Kj〉 = 〈Gi, Θ(Gj−1)〉 = −〈Θ(Gi), Gj−1〉 = −〈Ki+1, Gj−1〉
= −〈DGi+1, Gj−1〉 = 〈Gi+1, DGj−1〉
= 〈Gi+1, Kj−1〉
= 〈Gi+1, Θ(Gj−2)〉 = −〈Θ(Gi+1), Gj−2〉 = −〈Ki+2, Gj−2〉
= −〈DGi+2, Gj−2〉 = 〈Gi+2, DGj−2〉
= 〈Gi+2, Kj−2〉
= · · ·
= 〈Gi+j, K0〉
= 〈Gi+j, Θ(1)〉 = −〈Θ(Gi+j), 1〉 = −〈Ki+j+1, 1〉
= 0,

where in the last step we have used the identity, which we already proved for
(ii). This completes the proof of the theorem.

The elements Ki and Gj, i, j ∈ N0, will also be referred to as the members of
the skew symmetric hierarchy generated by the corresponding skew symmetric
operator Θ.

Remark 3.20. In the notation of the above theorem we assume that Ki ∈ A\F
for some i ∈ N and ordu(Ki) > 0. Then Ki = 0 is an ODE of order ordu(Ki) in u.

3.3. COMPUTING INTEGRATING FACTORS 149

Since Ki ∈ N by (ii), we can compute D−1Ki obtaining Gi and Gi = c, c some
constant of integration, which reduces the order of the ODE under consideration
by 1. Furthermore, if Kj ∈ A \ F and ordu(Kj) < ordu(Gi) for all 0 ≤ j < i,
then by (iii) each of the elements Kj is an integrating factor for the ODE Gi = c.

Here the constant of integration on the right–hand–side of the reduced ODE
is not a problem, since by the theorem KjGi ∈ N as well as Kj ∈ N , such
that multiplication of Gi = c by Kj provides KjGi = cKj and both sides can
be integrated resulting in another reduction of the order of the ODE under
consideration.

Alternatively, we can proceed with the ODE Ki = 0 as follows: if Gj ∈ A \ F
and ordu(Gj) < ordu(Ki), than by the theorem each of the Gj is an integrating
factor for the ODE Ki = 0 and we can use these to reduce the order of Ki = 0
without reducing the order by first integrating Ki.

We discuss the application of Theorem 3.19 in concrete examples.

Example 3.21. Consider the skew symmetric operator

Θ := D3 + Du3 + u3D.

Following Theorem 3.19, we define

K0 := Θ(1) = 3uxu
2,

G0 := D−1K0 = u3,

K1 := Θ(G0) = 3uxxxu
2 + 18uxxuxu + 9uxu

5 + 6u3
x,

G1 := D−1K1 = 3uxxu
2 + 6u2

xu +
3

2
u6.

We do not present the results for Ki, Gi, i ≥ 2, since the expressions arising
from the computations become so large that it does not make sense to state
them here. We will consider some more complex examples in the last part of
the chapter2. We want to consider the ODE K1 = 0, i.e.

3uxxxu
2 + 18uxxuxu + 9uxu

5 + 6u3
x = 0. (3.3.1)

As discussed above, Theorem 3.19 provides two different strategies to succes-
sively reduce the order of (3.3.1):

2The expression swell — even after applying appropriate simplification algorithms to the
arising expression — makes the use of a computer algebra system indispensable.

150 CHAPTER 3. SKEW SYMMETRIC HIERARCHIES

Strategy 1. Since K1 is an element of N , we can integrate it and obtain
the reduced second order ODE G1 = c1, c1 some constant of integration.
In the next step we use K0, which is an integrating factor for G1 = c1 and
obtain a first order ODE, which can formally be written as D−1(K0(G1 −
c1)) = c2, c2 another constant of integration.

Strategy 2. We do not integrate K1, but use the integrating factors G0

and G1 for (3.3.1) to obtain two second order ODEs D−1(G0K1) = c3 and
D−1(G1K1) = c4, where c3 and c4 are constants of integration. Then we
solve one of the equations for uxx and insert the resulting expression for
uxx into the second equation to obtain a first order ODE, which is then
again a reduced form of (3.3.1).

We start to compute a reduction of (3.3.1) using Strategy 1. Integration of
(3.3.1) provides the second order ODE

G1 = 3uxxu
2 + 6u2

xu +
3

2
u6 = c1,

where c1 is a constant of integration. Multiplication of this equation by its
integrating factor K0 and afterwards integrating the arising expression gives

1

2
u9 +

9

2
u4u2

x − c1u
3 = c2. (3.3.2)

Now using Strategy 2 we multiply both sides of (3.3.1) first by G0, integrate the
arising expression and obtain

u9 + 3uxxu
5 +

3

2
u4u2

x = c3, (3.3.3)

c3 some constant of integration. Using G1 as integrating factor for (3.3.1) and
proceeding analogously, we find

9

8
u12 +

9

2
u8uxx + 9u7u2

x +
9

2
u4u2

xx + 18u3u2
xuxx + 18u2u4

x = c4, (3.3.4)

c4 some constant of integration. From (3.3.3) we get

uxx = −2u9 + 3u4u2
x − 2c3

6u5
.

Inserting this into (3.3.4) gives

4c2
3 + 4c3u

9 + 36c3u
4u2

x + u18 + 18u13u2
x + 81u8u4

x

8u6
= c4. (3.3.5)

3.3. COMPUTING INTEGRATING FACTORS 151

In fact, both ODEs (3.3.2) and (3.3.5) are reductions of (3.3.1) giving a complete
implicit characterization of its solutions. Choosing c1 = c2 = c3 = c4 = 0 (i.e. we
only consider a special set of solutions by prescribing the values for the constants
of integrations), we find that (3.3.2) provides the special reduction

u9 + 9u4u2
x = 0

and from (3.3.5) we obtain

u12 + 18u7u2
x + 81u2u4

x = 0,

where the left–hand–side of this last reduction can be obtained as the square
of u6 + 9uu2

x, i.e. a factor of u9 + 9u4u2
x. In fact, Strategy 1 provides an easier

representation of the reduced ODE and (3.3.2) can be solved by the method of
separation of variables, for example. �

Remark 3.22. In the notation of Theorem 3.19, we consider the ODE Ki = 0,
Ki ∈ A \ F , for some fixed i > 0. Assume that ordu(Ki) = n > 1 and
Gj ∈ A \ F for all j ∈ N0. By the Theorem 3.19 we know that GjKi ∈ N for
all j ∈ N0. Whenever ordu(Gj) < n, then Gj is an integrating factor for Ki = 0
and the order of Ki = 0 can be reduced by 1.

But not only those elements Gj, such that ordu(Gj) < n, contribute a reduction
of the order of Ki = 0. Assume that GlKi ∈ N for some fixed l > i and
ordu(Gl) ≥ n, i.e. Gl is an extended integrating factor. If we can solve Ki = 0
for the highest order derivative of u with respect to x, then we can compute
D−1(GlKi) = c, c some constant of integration, and reduce D−1(GlKi) = c
modulo Ki = 0, which again gives a conserved quantity for Ki = 0, i.e. a
reduction of the order of Ki = 0 by 1.

This procedure is illustrated by the next example.

Example 3.23. Let
Θ := D3 + Du2 + u2D.

Due to Theorem 3.19, we compute K1, G1 and G2:

K1 = Θ(G0) = 2uuxxx + 6uxuxx + 6u3ux,

G1 = D−1K1 = 2uuxx + 2u2
x +

3

2
u4,

G2 = D−1K2 = 2uuxxxx + 8uxuxxx + 6u2
xx + 10u3uxx + 20u2u2

x +
5

2
u6.

152 CHAPTER 3. SKEW SYMMETRIC HIERARCHIES

We want to reduce the ODE

2uuxxx + 6uxuxx + 6u3ux = 0, (3.3.6)

i.e. K1 = 0, to a first order ODE using G1 and G2 (note that ordu(G2) = 4 > 3 =
ordu(K1), i.e. G2 is an extended integrating factor). Therefore we first integrate
K1 and obtain the reduced second order ODE G1 = c1, c1 some constant of
integration. Additionally, we use the fact that G2K1 ∈ N , i.e. we first integrate
G2K1 obtaining D−1(G2K1) = c2, c2 some constant of integration, and then
reduce D−1(G2K1) modulo K1 = 0 (since K1 is linear in uxxx, this can easily be
done). This provides another conserved quantity for (3.3.6), i.e. we obtain the
two second order ODEs:

3

2
u4 + 2uxxu + 2u2

x = c1, (3.3.7)

1

2
u3(u3 + 2uxx)(3u

4 + 4uxxu + 4u2
x) = c2, (3.3.8)

where c1 and c2 are constants of integration. Because of

3u4 + 4uxxu + 4u2
x = 2

(3

2
u4 + 2uxxu + 2u2

x

)
= 2c1,

we find

3

2
u4 + 2uxxu + 2u2

x = c1, (3.3.9)

c1u
3(u3 + 2uxx) = c2. (3.3.10)

We solve (3.3.9) for uxx and insert the result for uxx into (3.3.8) obtaining

c2
1u

2 − c1

2
u6 − 2c1u

2u2
x = c2, (3.3.11)

which is the desired reduction of (3.3.6) to a first order ODE. Equation (3.3.11)
can now be solved for ux and be treated by standard methods like, e.g., separa-
tion of variables. �

Remark 3.24. It may happen that the reductions of Ki = 0, Ki a member of a
skew symmetric hierarchy as introduced in Theorem 3.19, obtained by using the
elements Gj, are not independent, i.e. not every equation of the set of reduced
equations obtained in this way may be helpful to produce further reductions of
the order of the ODE under consideration. This may lead to the fact that the

3.3. COMPUTING INTEGRATING FACTORS 153

ODE under consideration cannot be reduced to a first order ODE or even be
integrated completely. When the elements Gj computed due to Theorem 3.19
do not produce independent conserved quantities, by which further reductions
of order can be reached, we speak of a premature recurrence. The following
examples demonstrate this effect.

Example 3.25. Consider

Θ := D3u + uD3 + Duϕ + ϕuD,

where ϕ = ϕ(x) is a generic element of F , i.e. ϕ is treated as a symbolic function
depending only on x in the following. With the help of Theorem 3.19 we obtain

K1 = Θ(G0) = uϕx + ϕux + uxxx,

G1 = D−1K1 = uϕ + uxx,

G2 = D−1K2 =
3

2
u2ϕ2 + 2ϕxxu

2 + 5uϕuxx + 5ϕxuux+

2uxxxxu + ϕu2
x + uxxxux +

3

2
u2

xx.

Consider the ODE

uϕx + ϕux + uxxx = 0, (3.3.12)

i.e. K1 = 0. Integration of this ODE provides G1 = c1, c1 some constant of
integration. Furthermore, multiplication of (3.3.12) by G2, integration of the
result and afterwards reduction modulo K1 = 0 (which is again no problem,
since K1 is linear in uxxx) provides the two conserved quantities

uϕ + uxx = c1, (3.3.13)

1

2
(uϕ + uxx)

3 = c2, (3.3.14)

for constants of integration c1 and c2. Since the left–hand–side of (3.3.14) is
up to a constant multiple a power of the left–hand–side of (3.3.13), no further
reduction of the order of (3.3.12) can be achieved. Even when computing G3,
G4 and G5 (for which, due to the large size of the expressions, we do not present
the explicit results here) and proceeding in the same manner, we only find the
trivial conserved quantities

5

8
(uϕ + uxx)

4 = c3,

7

8
(uϕ + uxx)

5 = c4,

21

16
(uϕ + uxx)

6 = c5.

154 CHAPTER 3. SKEW SYMMETRIC HIERARCHIES

These results are not unexpected, since (3.3.12) is just the differentiated general
second order homogeneous linear ODE (3.3.13), for which no general closed form
solution for a generic function ϕ exists. �

Example 3.26. A similar situation as discussed in Example 3.25 arises from
the consideration of the skew symmetric operator

Θ := D3 + 2Du + 2uD.

Constructing the skew symmetric hierarchy in the sense of Theorem 3.19 with
the help of Θ, we found no way to reduce the equation K3 = 0, which reads in
detail

140 u3 ux + 70 uxxx u2 + 280 uxx u ux + 14 uxxxxx u +

70 u3
x + 42 uxxxx ux + 70 uxx uxxx + uxxxxxxx = 0

to a first order ODE only using the integrating factors Gi of the skew symmetric
hierarchy. We conjecture that the reason lies in the fact that this ODE admits
further symmetries. For example, the member

K2 = 30 ux u2 + 10 uxxx u + 20 ux uxx + uxxxxx

of the skew symmetric hierarchy generated by Θ is the generator of a symmetry
of the equation K3 = 0. For such cases where sufficiently many symmetries
can be detected from other members of the skew symmetric hierarchy under
consideration, Theorem 1.26 by B. Fuchssteiner can be used to find an implicit
characterization of the solutions of the ODE in terms of conserved quantities. �

The characterization of those classes of skew symmetric operators, for which
such recurrence phenomena appear, is still an open problem (see also Subsection
3.6.4 on open problems and further perspectives).

Remark 3.27. Further skew symmetric hierarchies can be obtained by using
slight variations of Theorem 3.19. Assume, that Θ is a skew symmetric operator
A → A with Θ(1) = 0. Then a skew symmetric hierarchy for Θ can be obtained
by choosing an arbitrary element G0 ∈ A and defining

K0 := DG0,

Ki := Θ(Gi−1), Gi := D−1Ki,

for all i ∈ N. Then, as in Theorem 1.26, the following hold:

3.3. COMPUTING INTEGRATING FACTORS 155

(i) Gi ∈ A for all i ∈ N0.

(ii) Ki ∈ N for all i ∈ N0.

(iii) GiKj ∈ N for all i, j ∈ N0.

The proof of this statement is similar to the proof of Theorem 3.19. Assertion
(i) follows, when (ii) has been proved. To see that (ii) is correct, consider

〈1, K0〉 = 〈1, DG0〉 = −〈D1, G0〉 = 0

and for i ≥ 1

〈1, Ki〉 = 〈1, Θ(Gi−1)〉 = −〈Θ(1), Gi−1〉 = −〈0, Gi−1〉 = 0,

which proves that Ki ∈ N for all i ∈ N0. Hence, also Gi = D−1Ki, i ∈ N, are
elements of the algebra A. By the proof of (iii) in Theorem 3.19, we know that
for i, j ∈ N we have

〈Gi, Kj〉 = −〈Ki+j, G0〉.

Furthermore, we observe that

〈Gi, Kj〉 = 〈Gi, DGj〉 = −〈DGi, Gj〉 = −〈Ki, Gj〉
= −〈Θ(Gi−1), Gj〉 = 〈Gi−1, Θ(Gj)〉
= 〈Gi−1, Kj+1〉.

Proceeding in this manner, we obtain

〈Gi, Kj〉 = 〈Gi−1, Kj+1〉 = . . . = 〈G0, Ki+j〉 = 〈Ki+j, G0〉,

i.e. −〈Ki+j, G0〉 = 〈Ki+j, G0〉 and, hence, it follows 〈Gi, Kj〉 = 0. This means
GiKj ∈ N .

Example 3.28. Remark 3.27 allows to create a non–trivial skew symmetric
hierarchy using the skew symmetric operator

Θ =
n∑

k=0

D2k+1, n ∈ N,

whereas using Θ in the construction of Theorem 3.19 only produces a set of
constants. �

156 CHAPTER 3. SKEW SYMMETRIC HIERARCHIES

Remark 3.29. Whereas Example 3.28 may not have been the most meaningful
one, let us present now a related one, which is much more meaningful and which
shows that the methods developed so far open a wide avenue for generalizations3.
Consider some G0 ∈ A and two skew symmetric operators Θ0, Θ1 : A → A, such
that additionally

(1) (Θ0 −D)G0 = 0,

(2) Θ0(1) = Θ1(1) = 0.

If we consider
Θ = Θ1 + Θ0G0D

−1G0Θ0

and define D−1(0) = 0, then for all n ∈ N0 the elements

Kn = (ΘD−1)nDG0,

Gn = D−1(ΘD−1)nDG0

are well–defined elements of A, such that

(i) Ki ∈ N for all i ∈ N0,

(ii) GiKj ∈ N for all i, j ∈ N0.

Of course, the surprising fact is that, although a lot of integral operators are
involved, we never leave A. This is surprising, because by definition Θ is not
an operator in A at all.

Sketch of a proof. We define

A⊥
G0

:= {H ∈ A | 〈G0, Θ0(H)〉 = 0}.

Then Θ is a well–defined map from A⊥
G0

to A, because the integration within
the operator can always be carried out. Furthermore, with respect to A⊥

G0
, the

operator Θ is skew symmetric, i.e. for H1, H2 ∈ A⊥
G0

, we have

〈H1, Θ(H2)〉 = −〈H2, Θ(H1)〉,

which is easily proved by integration by parts.

3Which however we shall not discuss here, since this would require that we leave the
transparent and simple algebraic structure, we presented so far.

3.3. COMPUTING INTEGRATING FACTORS 157

We proceed by induction: For a fixed n ∈ N, we assume that Gi, Kj ∈ A for all
j ≤ n, i ≤ (n− 1) and that (i) and (ii) from above are valid for these.

This assumption is true for n = 1, since due to the fact that Θ0(G0) = DG0, we
have K0 = DG0 ∈ N and

K1 = Θ1(G0) +
1

2
Θ0(G

3
0),

which implies

〈1, K1〉 = 〈1, Θ1(G0)〉+
1

2
〈1, Θ0(G

3
0)〉

= −〈Θ1(1), G0〉 −
1

2
〈Θ0(1), G

3
0〉

= 0.

The last equality comes from (2) above. Hence, K0, K1 ∈ N . Because of

〈G0, K0〉 = 〈G0, DG0〉 = 0

it follows G0 K0 ∈ N . Finally,

〈G0, K1〉 = 〈G0, Θ1(G0)〉︸ ︷︷ ︸
=0

+
1

2
〈G0, Θ0(G

3
0)〉

= −1

2
〈Θ0(G0), G

3
0〉 = −1

2
〈DG0, G

3
0〉

= 0,

which proves G0 K1 ∈ N .

By assumption we have Kn ∈ N . Hence, Gn = D−1Kn is an element of A.
Furthermore,

〈G0, Θ0(Gn)〉 = −〈Gn, Θ0(G0)〉 = −〈Gn, DG0〉
= 〈G0, DGn〉 = 〈G0, Kn〉
= 0

by assumption and (1) above. Therefore, Gn ∈ A⊥
G0

and Kn+1 = Θ(Gn) is
well–defined. It follows

〈1, Kn+1〉 = 〈1, Θ(Gn)〉 = −〈Θ(1), Gn〉 = 0,

158 CHAPTER 3. SKEW SYMMETRIC HIERARCHIES

i.e. Kn+1 ∈ N as desired.

It remains to prove that

〈Gn, Kn〉 = 0, 〈Gn, Kn+1〉 = 0, 〈Gn−1, Kn+1〉 = 0 (3.3.15)

as well as

〈Gn, Kj〉 = 0, 〈Gi, Kn+1〉 = 0 (3.3.16)

for j < n, i < (n− 1). We observe that due to skew symmetry

〈Gn, Kn〉 = 〈Gn, DGn〉 = 0

and
〈Gn, Kn+1〉 = 〈Gn, Θ(Gn)〉 = 0

as well as

〈Gn−1, Kn+1〉 = 〈Gn−1, Θ(Gn)〉 = −〈Θ(Gn−1), Gn〉
= −〈Kn, Gn〉 = 0.

Hence, (3.3.15) is proved. And (3.3.16) also follows by skew symmetry and the
assumption (ii). We find:

〈Gn, Kj〉 = 〈Gn, DGj〉 = −〈Kn, Gj〉 = 0

and

〈Gi, Kn+1〉 = 〈Gi, Θ(Gn)〉 = −〈Gn, Θ(Gi)〉
= −〈Gn, Ki+1〉 = −〈Gn, DGi+1〉
= 〈Gi+1, DGn〉 = 〈Gi+1, Kn〉
= 0.

Example 3.30. One of the examples, which can be generated due to Remark
3.29, is well–known from the theory of integrable partial differential equations.
One takes G0 = ux and

Θ = D3 + DG0D
−1G0D.

Then the elements Ki, i ∈ N0, generated by that are the well–known vector fields
from the modified Korteweg–de Vries equation (see [25] and [26] for details).
This also is an example, where premature recurrence occurs, this for the reason
that we have additional symmetries. �

3.4. FUNDAMENTAL FORMS OF SKEW SYMMETRIC OPERATORS 159

The next section is dedicated to establish the notion of the fundamental form of
a skew symmetric operator Θ : A → A, which will later on serve as an essential
algorithmic tool for the efficient computation of the integrations, which have
to be performed on the one hand to compute the skew symmetric hierarchies
introduced in Theorem 3.19 and on the other hand to reduce the order of a
given ODE as discussed in Examples 3.21, 3.23 and 3.25.

3.4 Fundamental forms of skew symmetric op-

erators

From an algorithmical point of view, the computation of the Gi’s as integrals
over the Ki’s in Theorem 3.19 is the most expensive (and difficult) part of
all computations involved in building the skew symmetric hierarchies. In
the following we introduce suitable quadratic forms, which facilitate these
computations considerably, and which will lead to recursion formulas for the
Gi’s.

We start with some obvious but helpful fact:

Lemma 3.31. Let Θ : A → A be a skew symmetric differential operator and
A, B ∈ A. Then AΘ(B) + BΘ(A) ∈ N . In other words: there is a P ∈ A such
that

AΘ(B) + BΘ(A) = D(P).

Proof. We have for T := AΘ(B) + BΘ(A) that

〈1, T 〉 = 〈A, Θ(B)〉+ 〈B, Θ(A)〉,

which is zero, because Θ is skew symmetric.

Independently of what we aim at with this lemma, in the context of algorith-
mic approaches this lemma also gives us new methods of constructing skew
symmetric operators:

Remark 3.32. Let us denote by (Θ(A)) the element of A given by the applica-
tion of Θ to A. Therefore, as an operator, (Θ(A)) is a multiplication operator.
Then the operator

AΘ + (Θ(A))

maps A into N . Hence, the formal integral operator

Ψ = (ΘA− (Θ(A)))D−1(AΘ + (Θ(A)))

160 CHAPTER 3. SKEW SYMMETRIC HIERARCHIES

is a skew symmetric operator4 in A.

Proof. Since D−1 is not an operator in A, we have to give a different represen-
tation for Ψ in order to see that the operator is skew symmetric. As shown in
the Lemma above, we may find an operator Γ : A → A such that

AΘ + (Θ(A)) = DΓ.

Using this we may write Ψ as

Ψ = −(DΓ)?D−1(DΓ) = Γ?DΓ,

where Γ? denotes the transposed of Γ with respect to the given scalar product.
The right–hand–side obviously is skew symmetric.

Definition 3.33. Let Θ : A → A be a skew symmetric operator. For general
elements A, B ∈ A we define a bilinear form

FΘ : A×A → A, FΘ(A, B) := D−1(AΘ(B)) + D−1(BΘ(A)).

Furthermore we consider the quadratic form

QΘ : A → A, QΘ(A) = FΘ(A, A).

We call FΘ the fundamental form of the skew symmetric operator Θ and QΘ its
quadratic form, respectively.

Note that FΘ : A × A → A is indeed mapping elements A, B ∈ A to an
element of A, since Lemma 3.31 guarantees that the integrals involved can be
computed, such that no symbolic rest integrals remain.

Since FΘ is a symmetric bilinear form, we can, as usual (parallelogram law),
recover this from QΘ:

FΘ(A, B) =
1

2

(
QΘ(A + B)−QΘ(A)−QΘ(B)

)
(3.4.1)

for all A, B ∈ A. Therefore, for the computation of FΘ we should make use
of an algorithm for QΘ. And for this we use, after a change of algebra, the
canonical form provided in Section 3.2.

4This way of constructing new skew symmetric operators is closely related to what we did
in Remark 3.29 and Example 3.30.

3.4. FUNDAMENTAL FORMS OF SKEW SYMMETRIC OPERATORS 161

For this consider QΘ(A(x)) in the formal variable A(x). We know that this is
integrable and we take that as an element in the algebra G, which is the algebra
generated in the same way as A, but where now the role of the u(x) is taken by
A(x) instead, and where the u(x) and other functions in A are considered as
belonging to the function set. Then, since being integrable does not depend on
this change of variable, we can now apply our algorithm, which then consists of
integration by parts of the highest derivative A(n)(x) of A(x) in the considered
expression. Being integrable means that this derivative can never occur as a
quadratic term (or a term of even higher polynomial order in this derivative).

The algorithm we obtain by application of the results of Section 3.2 is:

Algorithm 3.34. (Symbolic computation of the quadratic form) Let
Θ : A → A be an operator, and let A(x) ∈ G be a variable, i.e. an arbitrary
symbolic element of G.

1. Define
T := 2 A(x) Θ(A(x))

and
Q := 0.

T will be the term still to be integrated, whereas Q will be the result of
integrations already performed. Both are elements of G.

2. Now repeat the following steps, until T = 0 or the algorithm breaks off.

• Let S be the term of T , which contains the highest order derivative
A(n)(x) of A(x) with respect to x. Then S is of the form

S = A(n)(x) A(m)(x) C(x, u, ux, uxx, . . .),

and n > m, since T is integrable. We make a case differentiation:

◦ If n > m− 1, then we put

Q : = Q + A(n−1)(x)A(m)(x) C(x, u, ux, uxx, . . .),

T : = T −D
(
A(n−1)(x) A(m)(x) C(x, u, ux, uxx, . . .)

)
.

◦ If n = m− 1, then we put

Q : = Q +
1

2
A(n−1)(x) A(n−1)(x) C(x, u, ux, uxx, . . .),

T : = T − 1

2
D
(
A(n−1)(x) A(n−1)(x) C(x, u, ux, uxx, . . .)

)
.

162 CHAPTER 3. SKEW SYMMETRIC HIERARCHIES

◦ If n = m, then we break off the algorithm.

3. Return Q as the result of the algorithm. M

The algorithm terminates and if Θ is skew symmetric, then the returned Q is

Q = D−1(2A(x)Θ(A(x)) = QΘ(A(x))).

We briefly discuss the correctness of the algorithm.

Proof. A simple observation shows that during the algorithm we have at each
step T,Q ∈ G and

D−1(2A(x)Θ(A(x))) = Q + D−1(T). (3.4.2)

Hence, when Θ is skew symmetric, then, since the left–hand–side is integrable,
T always will stay integrable. This means that T never has its highest derivative
in A(x) as a quadratic term (or a term of even higher polynomial order in this
derivative). So the algorithm only breaks off, if T = 0, but then by (3.4.2), Q
obviously returns the desired integral of

2A(x)Θ(A(x)).

The algorithm clearly terminates, because after each round of the steps of com-
putation summarized under 2, the order of the highest derivative of A(x) is
reduced by 1.

The following example demonstrates, how Algorithm 3.34 proceeds to compute
the quadratic form of a given skew symmetric operator:

Example 3.35. Assume, we want to compute the quadratic form QΘ of the
skew symmetric operator

Θ = D3 + Du2 + u2D.

Using the same notation as in Algorithm 3.34, we perform the following steps
of computation:

1. We define

T : = 2 A(x) Θ(A(x))

= 4 u ux A(x)2 + 4 u2 A(x) Ax(x) + 2 A(x) Axxx(x),

Q : = 0.

3.4. FUNDAMENTAL FORMS OF SKEW SYMMETRIC OPERATORS 163

2. Now we are at the beginning of the first round of the steps of computations
summarized under 2 of the algorithm.

• We define
S := 2 A(x) Axxx(x),

which is the term with the highest order derivative of A(x) with
respect to x in T , i.e. we are in the situation n = 3 and m = 0.

◦ We compute

Q : = Q + 2 A(x) Axx(x)

= 2 A(x) Axx(x),

T : = T −D(2 A(x) Axx(x))

= 4 u ux A(x)2 + 4 u2 A(x) Ax(x)− 2 Ax(x) Axx(x).

• Now
S := −2 Ax(x) Axx(x)

is the term with the highest order derivative of A(x) with respect to
x in T , i.e. we are in the situation n = 2 and m = 1.

◦ We compute

Q : = Q +
1

2
(−2 Ax(x) Ax(x))

= 2 A(x) Axx(x)− Ax(x)2,

T : = T − 1

2
D(−2 Ax(x)2)

= 4 u ux A(x)2 + 4 u2 A(x) Ax(x).

• At the current state of the computation,

S := 4 u2 A(x) Ax(x)

is the term with the highest order derivative of A(x) with respect to
x in T , i.e. we are in the situation n = 1 and m = 0.

◦ We compute

Q : = Q +
1

2
(4 u2A(x)2)

= 2 u2 A(x)2 + 2 A(x) Axx(x)− Ax(x)2,

T : = T − 1

2
D(4 u2 A(x)2)

= 0.

164 CHAPTER 3. SKEW SYMMETRIC HIERARCHIES

3. We finally obtain

Q = 2 u2 A(x)2 + 2 A(x) Axx(x)− Ax(x)2.

Indeed, Q gives the desired result for QΘ(A(x)). �

Algorithm 3.34 and application of (3.4.1) then directly leads to the following
algorithm for computing the fundamental form of a skew symmetric operator:

Algorithm 3.36. (Symbolic computation of the fundamental form) Let
Θ : A → A be a skew symmetric operator and A1, A2 ∈ A.

1. Compute the quadratic form QΘ(A(x)), A(x) ∈ G, with the help of Algo-
rithm 3.34.

2. Compute

FΘ(A1, A2) =
1

2

(
QΘ(A1 + A2)−QΘ(A1)−QΘ(A2)

)
by simply inserting the concrete elements A1, A2 and A1 + A2 into the
symbolic representation obtained for QΘ in step 1. M

Proof. The correctness of the algorithm follows directly from the correctness of
Algorithm 3.34 and (3.4.1).

Example 3.37. Let us again consider the skew symmetric differential operator

Θ = D3 + Du2 + u2D.

In Example 3.35, we saw that

QΘ(A(x)) = 2 u2 A(x)2 + 2 A(x) Axx(x)− Ax(x)2.

Hence, using Algorithm 3.36 to compute FΘ(A1, A2), where A1, A2 ∈ A, we find

FΘ(A1, A2) = 2 A1 A2 u2 + A1 A2xx + A1xx A2 − A1xA2x,

which is the desired result. �

3.5. RECURSION FORMULAS FOR SYMBOLIC INTEGRATION 165

3.5 Recursion formulas for symbolic integra-

tion

We now focus our attention on the computation of the elements Gi introduced
in Theorem 3.19. The fundamental form FΘ of a skew symmetric operator
Θ : A → A will help us to do so. The next example gives a motivation.

Example 3.38. We consider the situation of Theorem 3.19, i.e. Θ : A → A
denotes a skew symmetric operator and K0 := Θ(1), G0 := D−1K0, K1 = Θ(G0).
We want to compute G1 with the help of the fundamental form FΘ of the skew
symmetric operator Θ. We have:

FΘ(1, G0) = D−1(1Θ(G0)) + D−1(G0Θ(1))

= D−1(K1) + D−1(G0K0)

= G1 + D−1(G0K0)

Because of K0 = DG0, we can compute the integral D−1(G0K0) with the help
of integration by parts:

D−1(G0K0) = D−1(G0DG0)

= G2
0 −D−1(DG0G0)

= G2
0 −D−1(G0K0),

i.e. D−1(G0K0) = 1
2
G2

0. Hence, we obtain:

G1 = FΘ(1, G0)−
1

2
G2

0. (3.5.1)

Again, it is easy to compute K2 via K2 = Θ(G1), since Θ involves no integrations
to be computed when applying it to an element of A. For the computation of
G2 we proceed similarly to the way we did above:

FΘ(1, G1) = D−1(1Θ(G1)) + D−1(G1Θ(1))

= D−1(K2) + D−1(G1K0)

= G2 + D−1(G1K0).

The integral D−1(G1K0) can again be computed with the help of integration by
parts, which provides:

D−1(G1K0) = D−1(G1DG0)

= G0G1 −D−1(D(G1)G0)

= G0G1 −D−1(G0K1).

166 CHAPTER 3. SKEW SYMMETRIC HIERARCHIES

The integral D−1(G0K1) can be expressed in terms of the fundamental form FΘ

applied to the pair (G0, G0):

FΘ(G0, G0) = 2D−1(G0Θ(G0))

= 2D−1(G0K1),

hence, D−1(G0K1) = 1
2
FΘ(G0, G0) and finally we have

G2 = FΘ(1, G1) +
1

2
FΘ(G0, G0)−G0G1. (3.5.2)

Equations (3.5.1) and (3.5.2) suggest that we can compute Gi in terms of Gj,
j < i, and the fundamental form FΘ. �
Before we come to a generalization of the results presented in the preceding
example, we state the following lemma, which we will need in the proof of the
theorem on recursion formulas for the computation of the elements Gi of a skew
symmetric hierarchy:

Lemma 3.39. Let Θ : A → A be a skew symmetric operator and Ki, Gi ∈ A,
i ∈ N0, as defined in Theorem 3.19. Then for all i ∈ N0:

(i) D−1(GiKi+1) =
1

2
FΘ(Gi, Gi).

(ii) D−1(GiKi) =
1

2
G2

i .

(iii) Gi+1 = FΘ(1, Gi)−D−1(GiK0).

Proof. The assertions of the lemma follow directly from the definitions of the
Ki’s and Gi’s and from integration by parts:

FΘ(Gi, Gi) = 2D−1(GiΘ(Gi))

= 2D−1(GiKi+1),

which proves (i). Furthermore, we have:

D−1(GiKi) = D−1(GiDGi) =
1

2
G2

i .

This proves (ii). The assertion in (iii) follows directly from the definition of the
fundamental form of the skew symmetric operator Θ:

FΘ(1, Gi) = D−1(1Θ(Gi)) + D−1(GiΘ(1))

= D−1(Ki+1) + D−1(GiK0)

= Gi+1 + D−1(GiK0),

i.e. Gi+1 = FΘ(1, Gi)−D−1(GiK0). This completes the proof of the lemma.

3.5. RECURSION FORMULAS FOR SYMBOLIC INTEGRATION 167

The following theorem generalizes the results of Example 3.38 and provides the
basis for a more elegant and efficient algorithm for computing integrating factors
and reductions of ODEs arising from a skew symmetric hierarchy:

Theorem 3.40. (Recursion formula to compute the Gi’s) Let Θ : A → A
be a skew symmetric operator and Ki, Gi ∈ A, i ∈ N0 as defined in Theorem
3.19. Let FΘ : A × A → A be the fundamental form of the skew symmetric
operator Θ. Then Gi+1 can be computed with the help of FΘ and Gj, 0 ≤ j ≤ i,
for all i ∈ N0.

More precisely, if we formally put G−1 = 1, the following recursion formula
holds:

Gi+1 =
1

2

i∑
k=−1

FΘ(Gk, Gi−1−k)−
1

2

i∑
k=0

Gk Gi−k. (3.5.3)

Proof. By Lemma 3.39 (iii) we have:

Gi+1 = FΘ(1, Gi)−D−1(Gi K0),

i.e. it remains to show that

D−1(Gi K0) =
1

2

i∑
k=0

Gk Gi−k −
1

2

i−1∑
k=0

FΘ(Gk, Gi−1−k).

Integration by parts provides:

D−1(GiK0) = D−1(GiDG0)

= G0Gi −D−1(D(Gi)G0)

= G0Gi −D−1(KiG0).

Furthermore

FΘ(G0, Gi−1) = D−1(G0Θ(Gi−1)) + D−1(Θ(G0)Gi−1)

= D−1(G0Ki) + D−1(K1Gi−1),

which shows D−1(KiG0) = FΘ(G0, Gi−1) − D−1(Gi−1K1). To summarize, we
have found:

D−1(Gi K0) = G0Gi − FΘ(G0, Gi−1) + D−1(Gi−1K1).

We continue proceeding this way:

168 CHAPTER 3. SKEW SYMMETRIC HIERARCHIES

• D−1(Gj−lKl) is computed by integration by parts, first, and

• the remaining integral D−1(Kj−lGl) is expressed by FΘ(Gl, Gj−l−1) −
D−1(Gj−l−1Kl+1).

Depending on the fact, whether i is an even or an odd number, two different
cases have to be distinguished.

We first consider the case, where i is an even number. We can apply the above
procedure as long as we obtain the following representation of D−1(Gi K0):

D−1(GiK0) = G0Gi + G1Gi−1 + . . . + G i−2
2

G i+2
2
−

FΘ(G0, Gi−1)− FΘ(G1, Gi−2)− . . .− FΘ

(
G i−2

2
, G i

2

)
+

D−1
(
G i

2
K i

2

)
.

By Lemma 3.39 (ii) we have D−1(G i
2
K i

2
) = 1

2
G2

i
2

. Thus, it follows:

D−1(GiK0) = G0Gi + G1Gi−1 + . . . + G i−2
2

G i+2
2

+
1

2
G2

i
2
−

FΘ(G0, Gi−1)− FΘ(G1, Gi−2)− . . .− FΘ

(
G i−2

2
, G i

2

)
=

1

2

i∑
k=0

Gk Gi−k −
1

2

i−1∑
k=0

FΘ(Gk, Gi−1−k).

If i is an odd number, we can apply the above procedure as long as we obtain
the following representation of D−1(Gi K0):

D−1(GiK0) = G0Gi + G1Gi−1 + . . . + G i−1
2

G i+1
2
−

FΘ(G0, Gi−1)− FΘ(G1, Gi−2)− . . .− FΘ

(
G i−3

2
, G i+1

2

)
−

FΘ

(
G i−1

2
, G i−1

2

)
+ D−1

(
G i−1

2
K i+1

2

)
.

By Lemma 3.39 (i) we have D−1(G i−1
2

K i+1
2

) = 1
2
FΘ(G i−1

2
, G i−1

2
). Hence, in this

3.5. RECURSION FORMULAS FOR SYMBOLIC INTEGRATION 169

case, it follows:

D−1(GiK0) = G0Gi + G1Gi−1 + . . . + G i−1
2

G i+1
2
−

FΘ(G0, Gi−1)− FΘ(G1, Gi−2)− . . .− FΘ

(
G i−3

2
, G i+1

2

)
−

1

2
FΘ

(
G i−1

2
, G i−1

2

)
=

1

2

i∑
k=0

Gk Gi−k −
1

2

i−1∑
k=0

FΘ(Gk, Gi−1−k).

This proves (3.5.3) and we are done.

Example 3.41. Consider the skew symmetric operator Θ := D3 + u2D + Du2

and

K0 = Θ(1) = 2uux,

G0 = D−1(K0) = u2.

We now compute G1, G2, G3 and G4 with the help of the new recursion formula
(3.5.3). The fundamental form of Θ for arbitrary symbolic elements A, B ∈ A
is given by

FΘ(A, B) = 2ABu2 + ABxx + BAxx − AxBx,

which we already saw in Example 3.37. The recursion formula (3.5.3) provides:

G1 = FΘ(1, G0)−
1

2
G2

0

=
3u4

2
+ 2uxxu + 2u2

x,

G2 = FΘ(1, G1)−G0G1 +
1

2
FΘ(G0, G0)

=
5u6

2
+ 10u3uxx + 20u2u2

x + 2uxxxxu + 8uxxxux + 6x2
xx,

G3 = FΘ(1, G2)−G0G2 −
1

2
G2

1 + FΘ(G0, G1)

=
35u8

8
+ 35u5uxx + 105u4u2

x + 14uxxxxu
3 + 112u2uxuxxx+

84u2u2
xx + 252uu2

xuxx + 2uxxxxxxu + 42u4
x + 12uxxxxxux+

30uxxxxuxx + 20u2
xxx,

170 CHAPTER 3. SKEW SYMMETRIC HIERARCHIES

G4 = FΘ(1, G3)−G0G3 −G1G2 + FΘ(G0, G2) +
1

2
FΘ(G1, G1)

=
63u10

8
+ 105u7uxx + 420u6u2

x + 63u5uxxxx + 756u4uxuxxx+

567u4u2
xx + 3192u3u2

xuxx + 18uxxxxxxu
3 + 1302u2u4

x+

216uxxxxxu
2ux + 498u2uxxuxxxx + 318u2u2

xxx + 768uu2
xuxxxx+

2820uuxuxxuxxx + 684uu3
xx + 2uxxxxxxxxu + 912u3

xuxxx+

1926u2
xu

2
xx + 16uxxxxxxxux + 56uxxxxxxuxx + 112uxxxxxuxxx+

70u2
xxxx.

These results are the same as if G1, G2, G3 and G4 are computed directly via
integration of K1, K2, K3 and K4.

Alternatively and for comparison, Algorithm 3.15 can be used to perform the
necessary computations (these computations are just the determination of the
canonical forms of the expressions D−1(K1), D

−1(K2), D
−1(K3) and D−1(K4)).

�
Theorem 3.40 provides an efficient method to compute the Gi’s with the help of
a recursion formula. This formula makes use of the fundamental form FΘ of the
skew symmetric operator Θ : A → A. In the following we will see that we can
even give such recursion formulas to compute the integrals D−1(GiKj) with the
help of the fundamental form FΘ. This means that we can integrate equations
of the form GiKj = 0 — and thereby produce reductions of the ODE Kj = 0 —
as efficiently as we can compute the integrating factors Gi due to Theorem 3.40.
The recursion formulas to compute the integrals D−1(GiKj) are summarized in
the following theorem:

Theorem 3.42. (Recursion formulas for the computation of D−1(GiKj))
Let Θ : A → A be a skew symmetric operator and Ki, Gi ∈ A, i ∈ N0, as
defined in Theorem 3.19. Let FΘ : A×A → A be the fundamental form of the
skew symmetric operator Θ.

Then for i, j ∈ N0, the integrals D−1(GiKj) are given by:

(i) If j = i, then D−1(Gi Ki) is obtained due to Lemma 3.39 (ii).

(ii) If j > i, then

D−1(Gi Kj) =
1

2

∑
r+s=i+j−1

i≤r≤j−1

FΘ(Gr, Gs)−
1

2

∑
r+s=i+j

i+1≤r≤j−1

Gr Gs. (3.5.4)

3.5. RECURSION FORMULAS FOR SYMBOLIC INTEGRATION 171

(iii) If j < i, then

D−1(Gi Kj) = Gi Gj −D−1(GjKi) (3.5.5)

and D−1(GjKi) is computed due to (ii).

Proof. We only have to prove (ii) and (iii).

(ii) For j = i + 1, (3.5.4) gives 1
2
FΘ(Gi, Gi), which is the correct result due to

Lemma 3.39 (i). Let now j > i + 1. We have:

FΘ(Gi, Gj−1) = D−1(GiΘ(Gj−1)) + D−1(Θ(Gi)Gj−1)

= D−1(GiKj) + D−1(Gj−1Ki+1),

i.e. D−1(GiKj) = FΘ(Gi, Gj−1)−D−1(Gj−1, Ki+1). With the help of integration
by parts, we obtain:

D−1(Gj−1Ki+1) = D−1(Gj−1DGi+1)

= Gi+1Gj−1 −D−1(D(Gj−1)Gi+1)

= Gi+1Gj−1 −D−1(Gi+1Kj−1),

and, hence, all in all

D−1(GiKj) = FΘ(Gi, Gj−1)−Gi+1Gj−1 + D−1(Gi+1Kj−1).

The above two steps can now be applied successively again and again. In general
we have for suitable n ∈ N:

D−1(Gi+nKj−n) = FΘ(Gi+n, Gj−n−1)−D−1(Gj−n−1Ki+n+1),

as well as

D−1(Gj−n−1Ki+n+1) = Gi+n+1Gj−n−1 −D−1(Gi+n+1Kj−n−1),

from which we obtain the representation

D−1(Gi+nKj−n) = FΘ(Gi+n, Gj−n−1)−Gi+n+1Gj−n−1 + D−1(Gi+n+1Kj−n−1).

Successive application of the above formulas provides the representation

D−1(GiKj) =
m−1∑
k=0

FΘ(Gi+k, Gj−1−k)−
m−1∑
k=0

Gi+k+1Gj−k−1+

D−1(Gi+mKj−m), (3.5.6)

172 CHAPTER 3. SKEW SYMMETRIC HIERARCHIES

where m =
⌊

j−i
2

⌋
.

If j − i is an even number, it follows i + m = i+j
2

and j −m = i+j
2

and we have

D−1(Gi+mKj−m) = D−1
(
G i+j

2
K i+j

2

)
=

1

2
G2

i+j
2

(3.5.7)

by Lemma 3.39 (ii).

If j − i is an odd number, it follows i + m = i+j−1
2

and j −m = i+j+1
2

and we
have

D−1(Gi+mKj−m) = D−1
(
G i+j−1

2
K i+j+1

2

)
=

1

2
FΘ

(
G i+j−1

2
, G i+j−1

2

)
(3.5.8)

by Lemma 3.39 (i).

Summarizing the two cases (3.5.7) and (3.5.8) for the integral D−1(Gi+mKj−m)
in (3.5.6), we can rewrite (3.5.6) in the compact form

D−1(GiKj) =
1

2

∑
r+s=i+j−1

i≤r≤j−1

FΘ(Gr, Gs)−
1

2

∑
r+s=i+j

i+1≤r≤j−1

Gr Gs,

which proves (3.5.4).

(iii) Let now i > j. Integration by parts provides

D−1(GiKj) = D−1(Gi(DGj))

= GiGj −D−1(Gj(DGi))

= GiGj −D−1(GjKi),

which proves (3.5.5).

Example 3.43. We consider the same situation as in Example 3.41, i.e.

Θ := D3 + u2D + Du2

and
FΘ(A, B) = 2ABu2 + ABxx + BAxx − AxBx.

We demonstrate the results of Theorem 3.42 in order to compute D−1(G2K2),
D−1(G2K3), D−1(G4K0) and D−1(G0K4).

3.5. RECURSION FORMULAS FOR SYMBOLIC INTEGRATION 173

For the results for K0, G0, G1, G2, G3 and G4 we also refer to Example 3.41.
According to Theorem 3.19, we obtain for K1, K2, K3 and K4:

K1 = Θ(G0)

= 6 ux u3 + 2 uxxx u + 6 uxuxx,

K2 = Θ(G1)

= 15 u5 ux + 10 uxxx u3 + 70 uxx u2 ux + 40 u u3
x + 2 uxxxxx u+

10 uxxxx ux + 20 uxx uxxx,

K3 = Θ(G2)

= 35 u7 ux + 35 uxxx u5 + 385 u4 ux uxx + 420 u3 u3
x + 14 uxxxxx u3+

154 uxxxx u2 ux + 280 uxxx u2 uxx + 476 uxxx u u2
x + 672 u ux u2

xx+

2 uxxxxxxx u + 420 u3
x uxx + 14 uxxxxxx ux + 42 uxxxxx uxx + 70 uxxx uxxxx,

K4 = Θ(G3)

=
315

4
u9 ux + 105 u7 uxxx + 1575 u6 ux uxx + 2520 u5 u3

x + 63 uxxxxx u5+

1071 uxxxx u4 ux + 1890 u4 uxx uxxx + 6216 u3 u2
x uxxx + 8652 u3 ux u2

xx+

18 uxxxxxxx u3 + 14784 u2 u3
x uxx + 270 uxxxxxx u2 ux + 714 uxxxxx u2 uxx+

1134 uxxxx u2 uxxx + 2604 u u5
x + 1200 uxxxxx u u2

x + 5352 uxxxx u ux uxx+

3456 u ux u2
xxx + 4872 u u2

xx uxxx + 2 uxxxxxxxxx u + 1680 uxxxx u3
x+

9408 u2
x uxx uxxx + 4536 ux u3

xx + 18 uxxxxxxxx ux + 72 uxxxxxxx uxx+

168 uxxxxxx uxxx + 252 uxxxx uxxxxx.

Application of Theorem 3.42 provides for the case i = j = 2:

174 CHAPTER 3. SKEW SYMMETRIC HIERARCHIES

D−1(G2K2) =
1

2
G2

2

=
25

8
u12 + 25 u9 uxx + 50 u8 u2

x + 5 u7 uxxxx + 20 u6 ux uxxx+

200 u5 u2
x uxx + 200 u4 u4

x + 20 u4 uxx uxxxx + 40 u3 u2
x uxxxx+

80 u3 ux uxx uxxx + 160 u2 u3
x uxxx + 120 u2 u2

x u2
xx + 2 u2 u2

xxxx+

16 u ux uxxx uxxxx + 12 u u2
xx uxxxx + 32 u2

x u2
xxx + 48 ux u2

xx uxxx+

60 u3 u3
xx + 65 u6 u2

xx + 18 u4
xx.

Due to Theorem 3.42, we find for i = 2 and j = 3:

D−1(G2K3) =
1

2
FΘ(G2, G2)

=
25

4
u14 +

175

2
u11 uxx + 175 u10 u2

x + 35 u9 uxxxx+

140 u8 ux uxxx + 455 u8 u2
xx + 1050 u7 u2

x uxx + 5 uxxxxxx u7+

245 u6 uxx uxxxx + 280 u5 u2
x uxxxx + 280 u5 ux uxx uxxx+

910 u5 u3
xx + 2520 u4 u3

x uxxx + 2240 u4 u2
x u2

xx + 20 uxxxxxx u4 uxx−
20 u4 uxxx uxxxxx + 24 u4 u2

xxxx + 2800 u3 u4
x uxx + 40 uxxxxxx u3 u2

x−
20 u3 ux uxx uxxxxx + 212 u3 ux uxxx uxxxx + 524 u3 u2

xx uxxxx+

160 u2 u3
x uxxxxx + 420 u2 u2

x uxx uxxxx + 1264 u2 u2
x u2

xxx−
144 u2 ux u2

xx uxxx + 456 u2 u4
xx + 4 uxxxxxx u2 uxxxx − 2 u2 u2

xxxxx−
320 u u4

x uxxxx + 1280 u u3
x uxx uxxx + 1560 u u2

x u3
xx+

16 uxxxxxx u ux uxxx + 4 u ux uxxxx uxxxxx + 12 uxxxxxx u u2
xx−

40 u uxx uxxx uxxxxx + 60 u uxx u2
xxxx + 40 u u2

xxx uxxxx+

320 u5
x uxxx + 240 u4

x u2
xx + 96 u2

x uxxx uxxxxx − 50 u2
x u2

xxxx+

72 ux u2
xx uxxxxx + 40 ux uxx uxxx uxxxx + 160 ux u3

xxx+

180 u3
xx uxxxx − 80 u2

xx u2
xxx + 1400 u6 u4

x.

These are exactly those cases, which have already been discussed in (i) and (ii)
of Lemma 3.39.

Next we compute D−1(G0K4) and D−1(G4K0): Formula (3.5.4) in Theorem 3.42
(ii) provides

3.5. RECURSION FORMULAS FOR SYMBOLIC INTEGRATION 175

D−1(G0K4) = FΘ(G0, G3) + FΘ(G1, G2)−G1G3 −
1

2
G2

2

=
105

16
u12 + 105 u9 uxx + 315 u8 u2

x + 63 u7 uxxxx + 630 u6 ux uxxx+

630 u6 u2
xx + 2436 u5 u2

x uxx + 18 uxxxxxx u5 + 651 u4 u4
x+

180 uxxxxx u4 ux + 534 u4 uxx uxxxx + 300 u4 u2
xxx + 18 u4

xx+

480 u3 u2
x uxxxx + 2256 u3 ux uxx uxxx + 872 u3 u3

xx + 72 u2
x u2

xxx+

2 uxxxxxxxx u3 + 240 u2 u3
x uxxx + 960 u2 u2

x u2
xx − 72 ux u2

xx uxxx+

12 uxxxxxxx u2 ux + 60 uxxxxxx u2 uxx + 108 uxxxxx u2 uxxx+

72 u2 u2
xxxx − 480 u u4

x uxx − 24 uxxxxxx u u2
x − 72 uxxxxx u ux uxx−

144 u ux uxxx uxxxx + 72 u u2
xx uxxxx + 80 u6

x + 24 uxxxxx u3
x.

Finally, due to (iii) of Theorem 3.42, we compute

D−1(G4K0) = G4G0 + G3G1 +
1

2
G2

2 − FΘ(G3, G0)− FΘ(G2, G1)

=
21

16
u12 + 105 u8 u2

x + 126 u6 ux uxxx − 63 u6 u2
xx+

756 u5 u2
x uxx + 651 u4 u4

x + 36 uxxxxx u4 ux − 36 u4 uxx uxxxx+

18 u4 u2
xxx + 288 u3 u2

x uxxxx + 564 u3 ux uxx uxxx−
188 u3 u3

xx + 672 u2 u3
x uxxx + 966 u2 u2

x u2
xx+

4 uxxxxxxx u2 ux − 4 uxxxxxx u2 uxx + 4 uxxxxx u2 uxxx−
2 u2 u2

xxxx + 480 u u4
x uxx + 24 uxxxxxx u u2

x+

72 uxxxxx u ux uxx + 144 u ux uxxx uxxxx − 72 u u2
xx uxxxx−

80 u6
x − 24 uxxxxx u3

x − 72 u2
x u2

xxx + 72 ux u2
xx uxxx−

18 u4
xx.

Although the computations involve rather large expressions, the time needed
to compute the above results is rather short. We did a rough implementation
of the recursion formulas presented in this section in MuPAD, which uses
Algorithm 3.36 from page 164 to compute the canonical form of Θ first and,
afterwards, proceeds due to Theorem 3.42. On a usual PC5, each of the above

5 We performed our computations using MuPAD Pro 4 under Microsoft Windows XP on
a PC with a Pentium 4 CPU, 2.40 GHz, 1.0 GB RAM.

176 CHAPTER 3. SKEW SYMMETRIC HIERARCHIES

expressions is computed in less than 1 second.

The above results may also be obtained using Algorithm 3.15 on page 143
to compute the canonical form of the expressions D−1(G2K2), D−1(G2K3),
D−1(G4K0) and D−1(G0K4). The results coincide, but in the special situation
of the skew symmetric hierarchy under consideration, the recursion formulas of
Theorem 3.42 are more efficient. �

3.6 Conclusions

3.6.1 Resumé

In this chapter we discussed classes of ODEs arising from the application of
skew symmetric operators in the sense of Theorem 3.19. In contrast to the
results for computing integrating factors discussed in the framework of Chapter
2, we could present explicit symbolic recursion formulas for the computation
of the integrals of the total derivatives arising from the multiplication of an
ODE by a suitable integrating factor. These recursion formulas have been
presented in the framework of Theorem 3.42. The central point for the efficient
computation of integrating factors in such a way was the fact that we could
make use of the fundamental form of the corresponding skew symmetric
operator to avoid integrations.

Hence, once the fundamental form is computed using Algorithm 3.36, there are
no further integrations necessary to compute integrating factors of the ODEs in
the skew symmetric hierarchy generated by the corresponding skew symmetric
operator. All other integrations to be performed in the setting of ODEs and
integrating factors in this chapter could be done basically by using Algorithm
3.15 to compute canonical forms of the elements in the algebra A. Hence, the
requirement of a powerful integrator in the computer algebra system, where
the methods of this chapter are to implemented, is not as necessary as in the
case of the methods discussed in Chapter 2.

Even in the situation, when there is no elaborate algorithm for computing
integrals available at all, the methods of this chapter should still work fine.
Additionally, even if an elaborate integrator is available in practice, it may still
be desirable to avoid its use for computing integrating factors and integrals of
total derivatives as far as possible for reasons of efficiency.

3.6. CONCLUSIONS 177

What however is still missing is a link between these methods and the approach
via symmetry methods. This will be discussed — very briefly — in the next
two subsections.

3.6.2 Back to the symmetries

One might ask, if — in case there are not enough integrating factors found in
a skew symmetric hierarchy to achieve a suitable reduction of the ODE under
consideration — there are other ways for finding integrals with the help of
symmetries.

In fact there are two ways, where either symmetries may help to construct
additional integrating factors or where a direct integration is possible via a
variant of Theorem 1.25 and Theorem 1.26. In both cases, additional research
will be needed in order to make clear all structural aspects, to give rigorous
results and to explore the wide area of possible applications.

However, the first method, we shall briefly present here, and the second method
in the next subsection6.

The brevity of presentation is chosen, because — to our belief — the final form
of presentation of these results has not yet been found due to the necessary
additional investigations.

In the algebra A we introduce the basics of a tensor structure, where the
densities A/N do play the role of the scalars. However, we only introduce
those notions, which are needed to present those aspects we mentioned above.

For K ∈ A we define a map
∇K : A → A

by

∇KQ := Q′[K],

where Q′ denotes the directional derivative as introduced earlier in (1.3.2).

6These preliminary results are appended here, because we already use them in some algo-
rithmic implementations and we want to give the reader an idea on how the results of this
thesis will be extended by future research.

178 CHAPTER 3. SKEW SYMMETRIC HIERARCHIES

Remark 3.44. For any K ∈ A the operator ∇K maps N into N , i.e. if we
denote the restriction of ∇K to N by ∇K |N , then we have an operator

∇K |N : N → N .

Proof. If Q ∈ N , then Q = D(P) for some P ∈ A. Hence, ∇KQ = D(∇KP)
and ∇KQ ∈ N .

Hence, for A1, A2 ∈ A with [A1]N = [A2]N , it follows [∇KA1]N = [∇KA2]N .
Therefore, the operator ∇K may be considered as an operator mapping densities
from A/N into densities:

∇K : A/N → A/N .

Now we introduce two derivatives on A, one being the analogue of the Lie
derivative and the other one being the analogue of the exterior derivative. The
map

LK : A → A

defined by
LKQ := Q′[K]−K ′[Q],

we call the Lie derivative and the map

L?
K : A → A

defined by
L?

KQ := Q′[K] + K ′?[Q],

where K ′? is the transposed of K ′ (with respect to the density valued scalar
product), is said to be the adjoint Lie derivative.

Now, consider an equivalence class P = [Q]N and let Q1, Q2 be two elements
from this class. Then obviously for K ∈ A we have

〈1,∇KQ1〉 = 〈1,∇KQ2〉,

hence,
〈1, Q′

1[K]〉 = 〈1, Q′
2[K]〉

or
〈Q′?

1 (1), K〉 = 〈1, Q′?
2 (1), K〉.

3.6. CONCLUSIONS 179

Since this is valid for all K ∈ A and since the scalar product is non–degenerate,
we must have Q′?

1 (1) = Q′?
2 (1). We call this element the gradient of the class P

and denote it by grad(P). Hence, we have found

∇KP = 〈grad(P), K〉.

We summarize:

Remark 3.45. For each density P ∈ A/N there is a unique element grad(P) ∈
A, such that ∇KP = 〈grad(P), K〉 for all K ∈ A. This gradient is equal to
Q′?(1), where any element Q from the class P may be taken.

As an obvious consequence we obtain:

Lemma 3.46. Let P ∈ A/N be some density. Then for K ∈ A\F the following
are equivalent:

(i) ∇KP = 0.

(ii) grad(P) is an integrating factor for K = 0.

Proof. The proof follows directly from the definition of an integrating factor:
grad(P) is an integrating factor for K = 0 if and only if ∇KP = 〈grad(P), K〉 =
0.

Another consequence of our definitions is:

Lemma 3.47. For G, K, Q ∈ A we have the following product rule:

∇Q〈G, K〉 = 〈L?
Q(G), K〉+ 〈G, LQ(K)〉.

Proof. The proof is carried out by inserting the quantities as defined:

∇Q〈G, K〉 = ∇Q[GK]N

= 〈grad(GK), Q〉

= 〈(GK)′?(1), Q〉

= 〈1, (GK)′[Q]〉

= 〈1, G′[Q]K〉+ 〈1, GK ′[Q]〉

= 〈G′[Q], K〉+ 〈1, G(K ′[Q]−Q′[K])〉+ 〈G, Q′[K]〉

= 〈(G′[Q] + Q′?(G)), K〉+ 〈G, LQK〉

= 〈L?
QG, K〉+ 〈G, LQK〉.

180 CHAPTER 3. SKEW SYMMETRIC HIERARCHIES

We call some S ∈ A a genuine Lie-Bäcklund symmetry generator for K = 0, if
LSK = 0. One should observe that in case of an evolution equation this is the
same as being a generator of a Lie–Bäcklund symmetry, that, however, in the
general case this is a stronger condition as being such a generator.

Now we have the following permanence principle for integrating factors:

Theorem 3.48. (Permanence principle for integrating factors) If G is
an integrating factor for K = 0 and S is a genuine Lie–Bäcklund symmetry
generator for K = 0, then L?

SG also is an integrating factor for K = 0.

Proof. We have 〈G, K〉 = 0, since G is an integrating factor. Therefore

∇S〈G, K〉 = 0.

Hence, due to Lemma 3.47:

0 = ∇S〈G, K〉 = 〈L?
SG, K〉+ 〈G, LSK〉,

which implies
〈L?

SG, K〉 = 0,

since S is a genuine Lie-Bäcklund symmetry generator.

3.6.3 Integrating factors and symmetry generators: the
mixed case

Since we have seen that there may be skew symmetric hierarchies, where the
number of integrating factors does not suffice to integrate the equation (pre-
mature recurrence), one might ask, if in this case additional invariants, such
as symmetry generators, may help to integrate. This, theoretically, is a sim-
ple problem, as we have the following theorem, which is a generalization of the
results stated within Theorem 1.25 and Theorem 1.26:

Theorem 3.49. (B. Fuchssteiner, 2006) If for an n-dimensional manifold
a flow, n − k − 1 commuting symmetry generators and k conserved quantities
are given, such that

(i) the k conserved quantities are invariant under the symmetry generators,

(ii) the gradients of the k conserved quantities are linear independent,

3.6. CONCLUSIONS 181

(iii) at each point of the manifold the vector fields given by flow and symmetry
generators are linear independent,

then the flow is integrable.

Theoretically, a proof is not really necessary, since for a given initial condition
we may determine the values of the conserved quantity for this initial condition,
then take the submanifold of phase space having the same values for these
quantities. This submanifold is invariant under the given symmetries and there
the situation of Theorem 1.25 and Theorem 1.26, respectively, applies. However,
this application needs a suitable parametrization of the submanifold, which
according to mathematical principles is easily determined, however the formulas
coming from that may look horribly complicated. To facilitate formulas here, an
intuitively simple and transparent domain for working with implicit functions
is needed.

3.6.4 Open problems and perspectives

1. A question still unanswered is: Given an arbitrary n-th order ODE,
n ∈ N, how can one decide, whether the ODE belongs to some skew
symmetric hierarchy in the sense of Theorem 3.19. If this question can
be answered, the next problem arising, is the fact that a suitable skew
symmetric operator has to be determined, such that the given ODE is a
member of the skew symmetric hierarchy generated by this operator.

For recognizing, if an ODE is obtained by the application of a skew sym-
metric operator, pattern matching methods should be developed, i.e. meth-
ods, which allow to deduce the desired information from the algebraic
structure of the given ODE. As in the case of the algorithms introduced in
Chapter 2, it would be desirable that these methods work without solving
any auxiliary ODEs or even partial differential equations.

2. The cases, when premature recurrence phenomena as indicated by Exam-
ple 3.25 appear, have to be characterized. These are exactly those cases,
when the integrating factors Gi in the skew symmetric hierarchy do not
suffice to reduce the ODE under consideration to a first order ODE. In
the situation of Example 3.25, the conserved quantities computed provided
powers of the general second order homogeneous linear ODE

uϕ + uxx = 0,

182 CHAPTER 3. SKEW SYMMETRIC HIERARCHIES

which is not integrable in the sense that there is no closed solution
formula for a generic function ϕ.

There are also other choices for Θ, the skew symmetric operator for gen-
erating the skew symmetric hierarchy under consideration, which provide
recurrence phenomena. In Example 3.26 we stated that the ODE K3 = 0
generated by

Θ = D3 + 2Du + 2uD

in the sense of the skew symmetric hierarchy introduced in Theorem 3.19
cannot be reduced to a first order ODE. The reason seems to be that it
admits symmetries, which also appear as members of the skew symmetric
hierarchy.

B. Fuchssteiner7 has made the following conjecture about this phe-
nomenon: Premature recurrence occurs only in either of the following
cases:

(i) K0 cannot be integrated, or

(ii) if K0 can be integrated then there are as many additional symme-
tries for the equation under consideration, such that an integration
is possible.

The arguments for this conjecture are claimed to be simple, but they need
a completely different algebraic setup in order to be proved rigorously, an
algebraic setup, which goes beyond the scope of this work.

3. Besides the characterization of recurrence phenomena, further and more
general skew symmetric operators (e.g. operators involving the Hilbert
transform, which is structurally similar to the differential operator; see
e.g. A. S. Fokas et. al. [22]) should be considered to construct more general
classes of skew symmetric hierarchies in the sense of the results presented
in Theorem 3.19. We have examples for such hierarchies, however, they
do not fit nicely into the theory developed so far.

4. With respect to subsection 3.6.2, when looking at examples, one discovers
that application of these methods lead to essentially three cases:

7Private communication.

3.6. CONCLUSIONS 183

(i) New integrating factors are constructed by the application of the
adjoint Lie derivative.

(ii) The application of the adjoint Lie derivative leads to trivial integrat-
ing factor (factors equal to zero).

(iii) The application of the adjoint Lie derivative reproduces the given
hierarchy of integrating factors.

Cases (ii) and (iii) seem to occur only in situations, where much additional
algebraic structure is available. Therefore a complete characterization of
these cases seems desirable. Furthermore, these cases need to be con-
nected to the symmetry approach known for integrable partial differential
equations (soliton equations).

Chapter 4

Non–local symmetries: A link to
differential Galois theory

In Definition 1.8, we introduced various notions of groups leading to different
types of symmetries. In most cases, the generators for these notions or
their counterparts were already used: Lie point symmetries played a role in
Section 1.2, where Cheb-Terrab’s methods, in order to generalize these, were
described. Lie–Bäcklund symmetries where used, when Lie point symmetries
were transformed in Section 1.4 in order to present a unified view including the
special notion of Lie point symmetries and more generalized ones. Autonomous
groups and time–independent groups arose when, in order to simplify the
viewpoints. A new component was introduced to have symmetry generators
independent of the independent variable and in order to formally prevent
a change of the independent variable by the corresponding transformations.
All these notions turned out to be connected to another ingredient for
finding solutions of ODEs: conserved quantities, especially those given by
integrating factors. So these and their connection to symmetries had to be in-
troduced in this thesis aiming at a unified theory for symbolically solving ODEs.

However, it remains to show that the introduction of the notion of local groups
was reasonable: so, are there non–local groups for ODEs? I.e. we are looking
for transformation groups (group parameter t) mapping a function u(x) onto
functions u(x, t), where u(x, t) not only depends on u and its derivatives at
t = 0, but on what is given as boundary value for u at t = 0. Such a situation
typically arises when partial differential equations are solved. So, are there
partial differential equations, which serve as symmetries for ODEs? And if so,
do such symmetries make sense?

185

186 CHAPTER 4. NON–LOCAL SYMMETRIES

There is another viewpoint, which suggests that we may look out for a general-
ized notion of symmetry: why did we not present any symmetry approaches for
homogeneous linear differential equations

Lu = 0,

where L is a linear differential operator? This for the simple reason that, apart
from the generator u of homogeneity, any Lie–Bäcklund symmetry generator
for such an equation automatically already is a solution. So, looking for help
in symmetry generators for finding solutions does not seem to be very promising.

And indeed, in general, symmetry methods do not seem to be of much
importance for the development of algorithms for solving homogeneous linear
differential equations. This hypothesis is supported by the fact that Cheb-
Terrab et. al. do not seem to have been successful to carry their methods from
general non–linear ODEs to homogeneous linear ODEs1. And in their paper
[52] W. R. Oudshoorn and M. Van der Put even prove that there is no obvious
connection between the Lie symmetries of a homogeneous linear ODE and its
differential Galois group2.

Because of this situation, differential Galois theory, which has been developed
for finding solution formulas for such equations, seems to lead a life apart from
symmetry methods, a disturbing fact if one searches for unified theories for
symbolically solving ODEs. So, here the additional question arises, whether
or not these two areas need to present completely disparate approaches to the
same subject.

In this chapter we show — by example — that this need not to be so and that
a possible link between these two approaches is given by considering non–local
symmetries.

We are far away from presenting a complete theory, this for the simple reason
that the promising research in this area is just starting — and, frankly, we

1At least, we did not find any hints in the literature or the documentation of the computer
algebra system Maple, in which Cheb-Terrab implemented his algorithms, that homogeneous
linear ODEs are treated by Lie point symmetry methods.

2More precisely, the authors of [52] prove that the structure and the dimension of the Lie
algebra of Lie point symmetries of a linear differential equation in general does not help to
identify its differential Galois group. So there seems to be no obvious algebraic connection
between these objects.

4.1. NON–LOCAL SYMMETRIES FOR 2ND ORDER LINEAR ODES 187

do not know to what new horizons it will lead. However, focussing on such
research seems to be promising. Therefore we can only present some aspects
in order to show that new perspectives may be opening. Since, when going in
even the most elementary details, we need to touch rather different subjects like
differential Galois theory and nilpotent flows. We shall present for these areas
short overviews in order to facilitate orientation for the reader and to make
it easier to follow the course of this chapter without first studying standard
textbooks on these areas. Before we present these overviews, we first introduce
that kind of non–local symmetry for second order homogeneous linear ODEs,
which is of interest for us.

4.1 Non–local symmetries for linear ODEs of

second order

We now consider second order homogeneous linear differential equations,
i.e. equations of the form

y′′(x) + a(x) y′(x) + b(x) y(x) = 0, (4.1.1)

where a(x) and b(x) are arbitrary functions. It is well–known that the transfor-
mation

y(x) → z(x) exp
(
− 1

2

∫ x

a(τ) dτ
)

(4.1.2)

transforms (4.1.1) to the more special form

z′′(x) = r(x) z(x). (4.1.3)

See for example [20], page 22. Since solutions of (4.1.1) can easily be recovered
from solutions of the corresponding equation (4.1.3), we restrict our attention
to equations of the more special form (4.1.3).

For these equations we explicitly introduce a non–local symmetry by relying
on the well–known method of variation of constants. Later on, when nilpotent
flows are introduced, we shall see that this can be approached more systemati-
cally. As in Chapter 3, we use the abbreviation D−1 to denote integration with
respect to x in the following.

188 CHAPTER 4. NON–LOCAL SYMMETRIES

Let a solution w(x) of (4.1.3) be given. Then by using variation of constants for
w, a second solution w1 is found to be

w1 = wD−1
(1

w2

)
. (4.1.4)

Now consider an arbitrary solution s0 of (4.1.3) and the transformation group

s0 → s = s0 + t s0 D−1
(1

s2
0

)
. (4.1.5)

Then, by (4.1.4), it becomes clear that this transformation group maps solutions
onto solutions. Hence, its infinitesimal generator

d

dt
s = sD−1

(1

s2

)
(4.1.6)

is a symmetry group generator. Moving the s from the right–hand–side to the
left–hand–side of (4.1.6) and performing a differentiation with respect to x, we
obtain the partial differential equation

s
(d

dt

d

dx
s
)
−
(d

dt
s
)(d

dx
s
)

= 1, (4.1.7)

which obviously defines a non–local symmetry for (4.1.3), where (4.1.6) is its
evolutionary form. The fact that this is a non–local group can formally be seen
either from its form (4.1.6), because an integral operator is involved, and from
(4.1.7), because it is described by a partial differential equation (whereas local
symmetry groups for ODEs always were flows in finite dimensional phase space.)

However, there is an important structural point to be observed: if an explicit
form S(t, s) of a symmetry group is given (as in (4.1.5)), then, since the un-
derlying equation is linear, all t-derivatives of S(t, s) must be solutions of this
equation. So, the group S(t, s) defines a flow in a two dimensional space (so-
lution space of the equation (4.1.3)). Hence, the space of functions obtained
by taking subsequent t-derivatives of S(t, s) has dimension two, i.e. the third
derivative of these derivatives may be written as linear combination of the first
two derivatives or may even be equal to zero. Flows with this property are what
is introduced as nilpotent or recursive flows in the papers [27], [28] and [29] by
B. Fuchssteiner and M. Lo Schiavo. So, before going to applications of these
observations, we present our sketched overviews as announced above.

4.2. OVERVIEW: NILPOTENT AND RECURSIVE FLOWS 189

4.2 Overview: Nilpotent and recursive flows

We present a summarized version of the theory of nilpotent and recursive flows
developed by B. Fuchssteiner and M. Lo Schiavo. The notation used in this
section is chosen in the spirit of [27].

We consider a manifold given by some vector space V . The typical element of
V will be denoted by v.

Definition 4.1. A vector field G(v) on V is called nilpotent (of index N),
N ∈ N, if, whenever the equation d

dt
s = G(s) defines a flow (s, t) 7→ s(t), then

dN+1

dtN+1
s = 0 and

dk

dtk
s 6= 0

for all 0 ≤ k ≤ N .

Definition 4.2. A vector field G(v) on V is called recursive (of order N) if,
whenever d

dt
s = G(s) defines a flow (s, t) 7→ s(t), then there are constants

α0, . . . , αN , such that (identically)

dN+1

dtN+1
s =

N∑
n=0

αn
dn

dtn
s

and such a relation does not hold for any dk

dtk
s, 0 ≤ k ≤ N .

Definition 4.3. A family G(v, t) of vector fields on E is called weakly recursive
(of order N) if, whenever d

dt
s = G(s) defines a flow (s, t) 7→ s(t), there are

smooth coefficients α0(t), . . . , αN(t), such that (identically)

dN+1

dtN+1
s =

N∑
n=0

αn(t)
dn

dtn
s

and such a relation does not hold for any dk

dtk
s, 0 ≤ k ≤ N .

For examples, see [27], Examples 1.2, 1.3, 1.4, 1.6. Further applications are
discussed in [28] and [29].

Assume that the vector space V consists of smooth functions in the independent
variable x. As usual, by D we denote the differential operator with respect to
x.

190 CHAPTER 4. NON–LOCAL SYMMETRIES

Definition 4.4. Let G(s, t) be weakly recursive of order N admitting a flow
s = s(t, x). We consider coefficients an = an(t, x), 0 ≤ n ≤ N , such that the
operator

Φ =
(
DN+1 +

N∑
n=0

anD
n
)

satisfies (for each t)

Φ
(dn

dtn
s
)

= 0

for all 0 ≤ n ≤ N . The linear differential operator Φ is called the characteristic
operator for the flow s = s(t).

In the following, for reasons of abbreviation, we often write Φ dn

dtn
s instead of

Φ(dn

dtn
s).

We will mainly be interested in nilpotent flows in the framework of this chap-
ter. A useful property of nilpotent flows can be characterized as follows: Let
d
dt

s = G(s), s = s(t, x), be a nilpotent flow of index N and Φ the associated
characteristic operator of order N + 1. Assume that

s|t=0,
(d

dt
s
)
|t=0

,
(d2

dt2
s
)
|t=0

, . . . ,
(dN

dtN
s
)
|t=0

are linear independent functions contained in the kernel of Φ. Then s(t, x) is an
element of the kernel of Φ for each t ∈ R, since the Taylor series expansion at
t = 0 provides

s(t, x) =
N∑

k=0

tk

k!

(dk

dtk
s
)
|t=0

and the right–hand–side is a linear combination of elements in the kernel of Φ.

Whenever the Wronskian determinant constructed with the functions dn

dtn
s,

n = 0, . . . , N , is non–zero, then the coefficients a0(t, x), . . . , aN(t, x) in Def-
inition 4.4 uniquely exist and satisfy N + 1 independent equations. The
replacement of dn+1

dtn+1 s by dn

dtn
G(s, t) provides a representation of a0, . . . , aN as

functions of s and t, i.e. an = an(s, t), 0 ≤ n ≤ N . This representation may
also contain x-derivatives and x-integrals of s. Additionally, if G = G(s) does
not explicitly depend on t, then the an, 0 ≤ n ≤ N , are independent of t.

The following remark presents a practical approach for the computation of the
characteristic operator via Wronskian determinants.

4.2. OVERVIEW: NILPOTENT AND RECURSIVE FLOWS 191

Remark 4.5. The characteristic operator Φ may (formally) be computed as
follows: Take3

Φop (N+1) = det


s d

dt
s · · · dN

dtN
s D0

d
dx

s d
dx

d
dt

s · · · d
dx

dN

dtN
s D1

...
... · · · · · · ...

dN+1

dxN+1 s
dN+1

dxN+1
d
dt

s · · · dN+1

dxN+1
dN

dtN
s DN+1

 (4.2.1)

and

Φsub (N) = det


s d

dt
s · · · dN

dtN
s

d
dx

s d
dx

d
dt

s · · · d
dx

dN

dtN
s

...
... · · · ...

dN

dxN s dN

dxN
d
dt

s · · · dN

dxN
dN

dtN
s

 , (4.2.2)

where the determinants are formally computed using minor expansion (in the
case of Φop (N+1), minor expansion with respect to the last column is assumed
to be used). Then

Φ = Φ(N+1) := (Φsub (N))
−1Φop (N+1) (4.2.3)

and the coefficients an are given by

an(x, t) = (−1)n(Φsub (N))
−1Φsub (n), (4.2.4)

where Φsub (n) is obtained from Φop (N+1) by eliminating the last column and
the (n + 1)-st row (i.e. by simply using minor expansion to compute the
determinant).

Note that for any n ∈ {0, . . . , N} we indeed have

Φ
dn

dtn
s = (Φsub (N))

−1Φop (N+1)
dn

dtn
s

= (Φsub (N))
−1 det


s d

dt
s · · · dN

dtN
s dn

dtn
s

d
dx

s d
dx

d
dt

s · · · d
dx

dN

dtN
s d

dx
dn

dtn
s

...
... · · · · · · ...

dN+1

dxN+1 s
dN+1

dxN+1
d
dt

s · · · dN+1

dxN+1
dN

dtN
s dN+1

dxN+1
dn

dtn
s


= 0,

3We adopt the notation from [27] for the following linear differential operators

192 CHAPTER 4. NON–LOCAL SYMMETRIES

since two columns of the matrix coincide and, hence, the determinant must van-
ish. Here, Φop (N+1)

dn

dtn
s is evaluated by substituting the last column of Φop (N+1)

by
dn

dtn
s,

d

dx

dn

dtn
s, . . . ,

dN+1

dxN+1

dn

dtn
s.

The following theorem gives exactly that result from [27], which is of central
importance for us:

Theorem 4.6. (B. Fuchssteiner, M. Lo Schiavo, 1993) The following are
equivalent:

(i) G(s, t) is weakly recursive of order N − 1.

(ii) There exists a linear differential operator of order N of the form

Φ = DN +
N−1∑
n=0

an(s, t)Dn,

such that { dn

dtn
s | n ∈ N0} spans the solution space {ϕ | Φϕ = 0} of Φ.

If either of these conditions is fulfilled, then we obtain in addition: For Φ we
find the representation

Φ = w0w1 · · ·wN−1D
1

wN−1

D
1

wN−2

· · ·D 1

w0

,

where

w0 = s,

w1 = D
1

w0

d

dt
s,

...

wk = D
1

wk−1

D
1

wk−2

· · ·D 1

w1

D
1

w0

dk

dtk
s,

...

wN−1 = D
1

wN−2

D
1

wN−3

· · ·D 1

w1

D
1

w0

dN−1

dtN−1
s.

Proof. The implication (i) ⇒ (ii) follows by taking the characteristic operator.
For the implication (ii) ⇒ (i) we refer to [27], proof of Theorem 3.9, pp. 37,
38.

4.2. OVERVIEW: NILPOTENT AND RECURSIVE FLOWS 193

We apply the result of Theorem 4.6 in Section 4.4.

Finally, we adopt the notion of the lowering of a linear differential operator from
[27]. Lowerings of linear differential operators are the proper generalization of
the method of variation of constants, thus reducing the order of a differential
operator by given elements of its kernel.

Definition 4.7. Let Φ =
∑N

n=0 anD
n be a linear differential operator, an func-

tions of x and, possibly, further parameters. For w ∈ V we define the lowering
Φ(w) of Φ with respect to w by

Φ(w)α(x) :=
[
Φ,

∫ x

α(ξ) dξ
]

:= Φ
(
w

∫ x

α(ξ) dξ)
)
−
∫ x

α(ξ) dξ Φw.

Remark 4.8. In the notation of Definition 4.7 we obtain: If Φw0 = 0 for
some w0 ∈ V , then w1 ∈ V is an element of the kernel of Φ(w0) if and only if
Φw0D

−1w1 = 0. For a proof see Example 3.1 of [27].

4.2.1 Nilpotent flows for second order linear ODEs

Here we show that application of the results in the last section for homogeneous
linear ODEs of second order leads exactly to the same transformation groups
as in Section 4.1.

Let Φ = D2 + a1D + a0, where ai = ai(x), 0 ≤ i ≤ 1. Furthermore, let w0 6= 0,
w0 = w0(x) be an element of the kernel of Φ. Then the homogeneous linear
differential equation Φ(w0)w = 0 is of order 1. By Definition 4.7, where we
introduced the lowering of a linear differential operator, we get

Φ(w0) = (D2 + a1D + a0)
(w0) = w0D + 2

d

dx
w0 + a1w0,

i.e. the differential equation Φ(w0)w = 0 is of the form

w0
d

dx
w +

(
2

d

dx
w0 + a1w0

)
w = 0

194 CHAPTER 4. NON–LOCAL SYMMETRIES

and can be solved for w. A solution4 w1 is given by

w1 =
exp(−D−1a1)

w2
0

.

Let s = s(t, x) and consider the ansatz

w0 = s,

w1 = D
1

w0

d

dt
s.

We solve the last equation for d
dt

s and express w0 and w1 in terms of s. This
provides

d

dt
s = sD−1

(exp(−D−1a1)

s2

)
.

Whenever s is contained in the kernel of Φ, then the same holds for d
dt

s (see also
Remark 4.8). This flow is indeed nilpotent of index 1, since

d2

dt2
s =

(d

dt
s
)
D−1

(exp(−D−1a1)

s2

)
+ sD−1

(
−

2(d
dt

s) exp(−D−1a1)

s3

)
= s
(
D−1

(exp(−D−1a1)

s2

))2

−

2sD−1
(exp(−D−1a1)

s2
D−1

(exp(−D−1a1)

s2

))
,

and integration by parts provides

2 D−1
(exp(−D−1a1)

s2
D−1

(exp(−D−1a1)

s2

))
=
(
D−1

(exp(−D−1a1)

s2

))2

,

which means d2

dt2
s = 0.

Since any second order homogeneous linear differential equation d2

dx2 w+a1
d
dx

w+
a0w = 0 can be transformed to a second order homogeneous linear differential
equation of the form d2

dx2 w + rw = 0 for some r = r(x) (see also (4.1.2)), we may
assume without loss of generality that a1 = 0, i.e. the above equation for s is
reduced to

d

dt
s = sD−1

(1

s2

)
,

4This solution is obtained by simply using the method of variation of constants. For details
on the method of variation of constants we refer to Chapter IV, Section 7 of [42], Chapter 2
of [56] or [27]. In [27] a formulation of variation of constants in terms of lowerings of linear
differential operators is given.

4.2. OVERVIEW: NILPOTENT AND RECURSIVE FLOWS 195

and, hence, independent of any of the coefficients of the original ODE we
started with5. This is exactly the same equation we arrived at in Section 4.1.

Let us emphasize again, how the symmetry notion has been changed in this
example:

Remark 4.9. The classical view on symmetries of an evolution equation

d

dx
v = K(v),

K(v) a vector field, v = v(x), is that symmetry groups are point transformations
mapping solutions to solutions. In the case of n-dimensional phase space, the
underlying manifold M is n-dimensional, in which the orbits of d

dx
v = K(v) are

curves, the curves of solutions. That is, for each fixed x0 ∈ R, v(x0) is a point on
M . Now consider the ∞-dimensional manifold M of all possible differentiable
curves in M (not only those arising as solutions of d

dx
v = K(v)) and denote

the manifold points by s(x), where x is the parameter for the curve in M . One
should observe that M is finite dimensional, whereas M is ∞-dimensional. The
solutions of d

dx
v = K(v) form a submanifold S of M. One parameter groups

on M now have to be parameterized by a different variable than x, say t. And
generators for such groups now correspond to partial differential equations

G
(
s,

d

dt
s,

d

dx
s,

d

dt

d

dx
s,

d2

dx2
s, . . .

)
= 0,

where s = s(t, x) and G is some function in its arguments. A one–parameter
group of point transformations on M is now a non–local symmetry group for
d
dx

v = K(v), if it leaves invariant the submanifold S.

Starting with a homogeneous linear ODE, the manifold M is a finite dimen-
sional space (in principle nothing more but the phase space for the ODE) and
the manifold M is the manifold of all possible orbits on M , i.e. a manifold
of functions, and S (the set of solutions of that linear ODE) is the kernel of
the linear differential operator corresponding to the homogeneous linear ODE
under consideration. I.e. S is a finite dimensional submanifold of an infinite
dimensional manifold. For second order homogeneous linear ODEs of the form
considered above, a partial differential equation corresponding to a non–local

5Actually, exp(−D−1a1) contributes some constant of integration c for a1 = 0. For our
purposes it is sufficient to consider the case c = 1 in the spirit of [27].

196 CHAPTER 4. NON–LOCAL SYMMETRIES

symmetry group generator is just given by the above computed nilpotent flow,
which also can be written in the form

s
(d

dt

d

dx
s
)
−
(d

dt
s
)(d

dx
s
)

= 1.

4.3 Overview: Basics in differential Galois the-

ory

We give a short overview on some aspects of differential Galois theory and
concentrate on one of the important notions therein: symmetric powers of
linear differential operators. To be able to summarize some of the useful
properties of symmetric powers, we first have to state some elementary notions
from differential Galois theory and state the relevant classes of solutions of
linear ODEs. We mainly follow [48] and [53]. The reader, who is familiar with
basic notions from differential Galois theory (i.e. familiar with the notion of
differential Galois groups and classes of solutions of linear ODEs like algebraic,
exponential and Liouvillian solutions as well as with the notion of symmetric
powers), may directly switch to Section 4.4.

Let F be a field and DF a derivation, i.e. DF : F → F is an additive map,
such that DF (ab) = DF (a)b + aDF (b) for all elements a, b of the field F .
Then the pair (F, DF) is called a differential field. We simply call a field F a
differential field, if the derivation on F is clear. In this case we may also write D
for reasons of abbreviation instead of DF , if it is clear, which derivation is meant.

If (F, DF) and (G, DG) are differential fields and f : F → G is a field homo-
morphism commuting with the derivations, i.e. DG(f(r)) = f(DF (r)) for all
r ∈ F , then f is called a differential homomorphism. An invertible differential
homomorphism f : F → F is called a differential automorphism.

A differential field E with derivation DE : E → E is called a differential field
extension of F , if E ⊇ F and the restriction of DE to F equals DF .

For ai ∈ F , 0 ≤ i ≤ n− 1, n ∈ N, n ≥ 2, we denote by L the linear differential
operator

L = Dn + an−1D
n−1 + . . . + a1D + a0, (4.3.1)

4.3. OVERVIEW: BASICS IN DIFFERENTIAL GALOIS THEORY 197

i.e. Ly = y(n) + an−1y
(n−1) + . . . + a1y

(1) + a0y, where y(i) = Diy denotes the
i-th derivative of y. Given a linear differential operator L with coefficients in
the differential field F , there is always a differential field extension E ⊇ F , such
that L = 0 has n independent solutions in E. Then E is called a differential
field extension of F for L. For a proof of this statement, see [48], page ix of the
Outline of Approach. The field F plays the role of a “splitting field” for the
linear ODE: as in classic Galois theory, where one studies the set of solutions
of univariate polynomial equations, there is always a field extension containing
the roots of the equation under consideration.

An element a ∈ F with DF (a) = 0 is called a constant of F . The subfield of
constants of a differential field F will be denoted by CF or simply by C, if the
underlying differential field is clear.

E ⊇ F is called a Picard-Vessiot extension of F for L if E is generated over F
as a differential field by solutions of L = 0 in E, CE = CF and L = 0 has n
solutions in E linear independent over the constants.

Any two Picard-Vessiot extensions of the differential field F for L are isomorphic
over F . For a proof see [48], page xi of the Outline of Approach and pages 29
and 30, proof of Theorem 3.13.

Let E ⊇ F a differential field extension of F . The group (with respect to
composition) of differential automorphisms E → E, whose restriction to F is
the identity map, is denoted by G(E/F), i.e.

G(E/F) = {σ : E → E | σ is a differential automorphism, σ(a) = a∀a ∈ F}.

If E is a Picard-Vessiot extension of F for L, then G(E/F) is called the
differential Galois group of L = 0. We also use the customary notation G(L)
instead of G(E/F).

We now deal with second order homogeneous linear differential equations,
i.e. equations of the form (4.1.3). Let η(x) be a solution of (4.1.3). The fol-
lowing classes of solutions are of interest6:

• η(x) is called rational, if η(x) ∈ F .

6For more details on the classes of solutions see [53], Chapter 1, and [16], Paragraph 2.
The definitions of the classes of solutions are also valid for the case of third and higher order
homogeneous linear ODEs.

198 CHAPTER 4. NON–LOCAL SYMMETRIES

• η(x) is called algebraic, if it is the solution of a polynomial equation over
F .

• η(x) is called primitive, if its derivative η′(x) is an element of F , i.e.

η(x) =

∫ x

f(τ) dτ

for some f(x) ∈ F .

• η(x) is called exponential or exponential of a primitive solution, if η′(x)
η(x)

is
an element of F , i.e.

η(x) = exp
(∫ x

f(τ) dτ
)

for some f(x) ∈ F .

• η(x) is called Liouvillian if there is a tower of differential fields

F = E0 ⊂ E1 ⊂ E2 ⊂ . . . ⊂ Em−1 ⊂ Em = E,

such that η(x) ∈ E and for each i ∈ {1, . . . ,m} we have Ei = Ei−1(ηi(x)),
where ηi(x) is either algebraic, primitive or exponential over Ei−1 and
ηm(x) = η(x).

The computation of rational solutions is discussed e.g. in [5] by M. Bronstein
and [59] by M. F. Singer. In [24] L. Fuchs and in [58] M. F. Singer present
algorithms for the computation of algebraic solutions. Methods for finding
primitive and exponential solution are presented by M. Van der Put and
M. F. Singer in [53]. The computation of Liouvillian solutions is closely
connected to symmetric powers as we will see below.

Note that for an algebraic solution η(x) of (4.1.3) one can find a min-
imal polynomial7, i.e. a monic univariate polynomial of minimal degree
µη(X) = a0(x) + a1(x)X + a2(x)X2 + . . . + al−1(x)X l−1 + X l, ai(x) ∈ F for
0 ≤ i ≤ l, such that µη(η(x)) = 0. In [20] the author discusses ways to compute
such minimal polynomials8.

7For details, see also [39], Chapter V.
8In [20], W. Fakler gives explicit formulas for the computation of such minimal polynomials

according to a classification of the differential Galois groups appearing among homogeneous
linear ODEs of a fixed order. See section 3.1 of [20] for details.

4.3. OVERVIEW: BASICS IN DIFFERENTIAL GALOIS THEORY 199

To give a rough and compact summary of the use of symmetric powers considered
in the next section, the above stated well–known terminology from differential
Galois theory will be helpful.

4.3.1 Symmetric powers

Let F be a differential field of functions in the variable x and C its field of
constants. Let D : F → F denote the differential operator performing differ-
entiation with respect to the x. Let m ∈ N, m ≥ 2, and L =

∑m
i=0 ai(x)Di

be an m-th order linear differential operator, ai(x) ∈ F , 0 ≤ i ≤ m. Let
{w1(x), w2(x), . . . , wm(x)} be a basis over C of the solution space of L.

Definition 4.10. For n ∈ N the n-th symmetric power L⊗n of L is defined as
the monic linear differential operator of smallest degree over F , such that{

w1(x)l1 · w2(x)l2 · . . . · wm(x)lm | l1, l2, . . . , lm ∈ N,
m∑

i=0

li = n
}

is a C-basis of the solution space of L⊗n.

In other words: L⊗n is the monic linear differential operator of smallest degree
with coefficients in F , such that a C-basis for the kernel of L is given by all
monomials in w1(x), w2(x), . . . , wm(x) of degree n.

Example 4.11. Let L = D2 − u(x) for some u(x) ∈ F . Then the second
symmetric power of L is

L⊗2 = D3 − 4u(x)D − 2u′(x).

Assume that w(x) fulfills w′′(x)− u(x)w(x) = 0. Then

L⊗2(w(x)2) = 2w(x)w′′′(x) + 6w′(x)w′′(x)− 2w(x)2u′(x)− 8u(x)w(x)w′(x).

Inserting w′′(x) = u(x)w(x) and w′′′(x) = u′(x)w(x) + u(x)w′(x) provides
L⊗2(w(x)2) = 0 as desired.

The fifth symmetric power L⊗5 of L is given by:

L⊗5 =D6 − 35u(x)D4 − 70u′(x)D3 + (259u(x)2 − 63u′′(x))D2+

(518u(x)u′(x)− 28u′′′(x))D+

155u(x)u′′(x) + 130u′′(x)− 225u(x)3 − 5u′′′′(x).

As the result for L⊗5 already suggests, the computation of high symmetric
powers even in the case of second order linear differential operators may lead to
a large expression swell for the coefficients of the operator to be computed. �

200 CHAPTER 4. NON–LOCAL SYMMETRIES

Remark 4.12. The n-th symmetric power L⊗n of L, n ∈ N, n ≥ 1, is a linear
differential operator over the same coefficient field as L. To see this, we take
an element w of the kernel of L, i.e. w is a solution of the homogeneous linear
ODE associated with L. We define Y := wn and consider the equations

Y = wn,

DY = nwn−1Dw,

D2Y = n(n− 1)wn−2(Dw)2 + nwn−1D2w,

...

DkY =
k∑

k1,...,kn=0
k1+...+kn=k

(
k

k1, . . . , kn

)
(Dk1w) · · · (Dknw),

where
(

k
k1,...,kn

)
denotes the usual multinomial coefficient. On the right–hand–

side of the equations we can always express derivatives Dkw for k ≥ n in terms of
the derivatives Diw, 0 ≤ i ≤ n−1 by using the fact that Lw = 0 (i.e. we simply
reduce the right–hand–sides of the equations by the m-th order homogeneous
linear ODE associated with L). Hence, there must be a integer l, such that the
set {Y,DY, D2Y, . . . , DlY } is linear dependent over the coefficient field F of L.
Assume that

a0Y + a1DY + a2D
2Y + . . . + alD

lY = 0,

ak ∈ F , 0 ≤ k ≤ l, al 6= 0, is the first non–trivial linear dependence of
Y, DY, D2Y, . . . over F . Then

L⊗n = Dl +
l−1∑
k=0

ak

al

Dk

is the n-th symmetric power of L.

For second order linear differential operators L, i.e. in the case m = 2, the degree
of L⊗n is n + 1 (see also Example 4.11; L⊗5 has order 6). For linear differential
operators of order m ≥ 3, one can prove the upper bound

(
m+n−1

m−1

)
for the

degree of the n-th symmetric power, which may not be reached by every n-th
symmetric power of an m-th order linear differential operator, but which cannot
be improved (i.e. there are m-th order linear differential operators, m ≥ 3, such
that the n-th symmetric symmetric power has degree

(
m+n−1

m−1

)
). For details we

refer to [60].

4.3. OVERVIEW: BASICS IN DIFFERENTIAL GALOIS THEORY 201

4.3.2 Applications of symmetric powers

For second and third order linear differential operators L the symmetric powers
L⊗n, n ∈ N, as defined above are used by M. F. Singer et. al. in [60] to
characterize necessary and sufficient conditions for the existence of Liouvillian
solutions of the homogeneous linear ODE L(y) = 0. By inspecting factors of
L⊗n, M. F. Singer et. al. present results, which allow to determine the structure
of the differential Galois group of L = 0.

Let L(y(x)) = y′′(x) + r(x)y(x) = 0 be a second order homogeneous linear
ODE9 over F with unimodular differential Galois group10. Then L(y(x)) = 0
has Liouvillian solutions if and only if the sixth symmetric power L⊗6 of L is
reducible over F , i.e. L⊗6 can be written as a product11 of linear differential
operators over F . For a proof and further details we refer to [60].

Furthermore, differential Galois groups appearing among second order homo-
geneous linear ODEs can be classified by considering symmetric powers of the
associated linear differential operator. For the second order case, Proposition
4.3 in [60] gives such a classification, where the differential Galois group can
be determined explicitly with the help of properties of certain symmetric powers.

In his paper [6], M. Bronstein states that the Liouvillian solutions of second and
third order homogeneous linear ODEs are closely connected with the algebraic
solutions of symmetric powers of the linear differential operator associated
(see also [61]). Indeed, first of all, certain differential semi–invariants12 of

9Note that the special form of the homogeneous linear ODE is not a restriction of the
generality, since any homogeneous linear differential equation can be transformed to such a
form.

10The fact that the differential Galois group of L has been assumed to be unimodular can be
viewed as a technical detail not restricting the generality of the statement. By Theorem 3.2 of
[60] or Theorem 1.2 of [61] one knows that any homogeneous linear ODE can be transformed
to a homogeneous linear ODE, such that the differential Galois group of this new equation is
unimodular. The explicit transformation for a monic linear ODE in y is y = z · exp(−

R
am−1

m),
where m is the order of the linear differential operator associated with the homogeneous linear
ODE and am−1 the coefficient of the (m−1)-st power of D in the operator. In fact, if a second
order homogeneous linear ODE is of the form y′′(x)+r(x)y(x) = 0, its differential Galois group
is automatically a unimodular group.

11An introduction to the factorization of linear differential operators can be found in the
framework of chapter 4 of [53]. State of the art methods for computing factors of linear
differential operators are discussed e.g. in [40], [41] and [23]. Tests for the reducibility of
linear differential operators are presented by M. F. Singer in [62].

12For a precise definition we refer to [65], Definition 4. We do not need the details in the

202 CHAPTER 4. NON–LOCAL SYMMETRIES

homogeneous linear differential equations L(y(x)) = 0 with finite differential
Galois group can be computed as non–trivial rational solutions of symmetric
powers of L. Furthermore, the main role of the symmetric powers in the context
of the work presented in [61] is in fact that the coefficients of the minimal
polynomials of certain classes of solutions of a irreducible homogeneous linear
ODEs can be determined as solutions of symmetric powers13.

F. Ulmer et. al. note in their paper [65] that differential invariants of the
differential Galois group are rational solutions of certain symmetric pow-
ers of the linear differential operator associated. In the case of second
order homogeneous linear ODEs L(y(x)) = y′′(x) + a1(x)y′(x) + a0(x) the
authors investigate solutions of the associated Riccati equation given by
Ri(u(x)) = u′(x)− a0(x)− a1(x)u(x) + u(x)2 = 0. Although Riccati equations
cannot be solved in general in closed form, there are methods to compute
special solutions, e.g. rational solutions, of this type of ODEs (see for example
[53], Chapter 4 on Algorithmic Considerations).

Furthermore, the authors of [65] state that to compute Liouvillian solutions of
L(y(x)) = 0, one can compute the minimal polynomial P (u) of an algebraic so-
lution of Ri(u(x)) = 0. One of the main results presented in this context in [65]
is: Let L(y(x)) = y′′(x) + a1(x)y(x) + a0(x)y(x), ai(x) ∈ F , F some differential
field. Then all zeroes of the polynomial P (u(x)) = u(x)m +

∑m−1
i=0 bi(x)u(x)i

with bi(x) ∈ F are solutions of the associated Riccati equation Ri(u(x)) = 0
if and only if bm−1(x) is the logarithmic derivative of an exponential solution
(over F) of L⊗m(y(x)) = 0. This means that there is a bijection between the
set of monic polynomials of degree m over F , whose roots are solutions of the
associated Riccati equation, and exponential solutions of L⊗m(y(x)) = 0. For a
proof of this result see [65], proof of Theorem 5.

Additionally, in [65] F. Ulmer et. al. present an algorithm, which uses rational
solutions of symmetric powers of second order linear differential operators to find
Liouvillian solutions of second order homogeneous linear ODEs. This algorithm
is presented and discussed in detail in the framework of section 3 of [65].

framework of this chapter.
13Section 5 of [61] summarizes the algorithmic ideas to determine solutions out of minimal

polynomials, which themselves are computed with the help of symmetric powers.

4.3. OVERVIEW: BASICS IN DIFFERENTIAL GALOIS THEORY 203

4.3.3 Computation of symmetric powers

In Remark 4.12 on page 200, we proved the existence of symmetric powers
of linear differential operators with coefficients in some differential field. The
proof is constructive and, hence, can be used as a recipe for the computation of
symmetric powers (at least, if one knows an element of the kernel of the linear
differential operator associated). Recall that — in the terminology of Remark
4.12 — the desired symmetric power was found with the help of the first linear
dependence over the differential field under consideration among the elements
Y,DY, D2Y, The test for linear dependence can be done in principle using
Wronskian determinants. When the first linear dependence is found, the non–
trivial linear combination of the elements Y,DY, D2Y, . . . over the considered
differential field gives a representation for the symmetric power to be computed.

In their paper [6], M. Bronstein, T. Mulders and J.-A. Weil presented algorithms
for the determination of symmetric powers of linear differential operators.
M. Bronstein et. al. even treat a more general situation, where the coefficients
of the linear differential operator are elements of some differential ring R,
which is an integral domain of characteristic 0. In this situation, a special
treatment for non–monic linear differential operators becomes necessary, since
the leading coefficient might not be a unit (i.e. not invertible with respect
to the multiplication in R) of the ring R. Since we are only interested in
the case, where the underlying coefficient domain is a differential field, only
Theorem 1 of [6] is of interest for us. This theorem presents an explicit iteration
formula to compute the n-th symmetric power of a linear differential operator
L = D2 + a(x)D + b(x), where a(x), b(x) ∈ F , F some differential field. We
skip the details here, but we note that the recursion formula by M. Bronstein
et. al. provides an algorithm, which allows the direct computation of symmetric
powers without having to check for the first appearance of linear dependencies
as mentioned above. The number of steps needed to compute the desired
symmetric power is known a priori.

For third and higher order linear differential operators the algorithmic ap-
proaches for the computation of symmetric powers presented in [6] mainly base
on the idea of Remark 4.12, i.e. they base on the search for a first appearance
of a linear dependency14. The main advantage of the methods for computing
symmetric powers of operators of order higher than 2 discussed in [6] can be

14Of course, there are some more technical details involved in the algorithms presented in
[6], which we do not mention here, since this would overstep the framework of this thesis.

204 CHAPTER 4. NON–LOCAL SYMMETRIES

seen in the fact that they are fraction free methods, i.e. work in a more general
coefficient domain.

Another algorithmic approach for the computation of symmetric powers of
second order linear differential operators is sketched by W. R. Oudshoorn and
M. Van der Put in [52]. But this approach is very similar to the one proposed
by M. Bronstein et. al. in [6].

In the following we discuss an alternative approach to compute symmetric pow-
ers of second order linear differential operators based on nilpotent and recursive
flows as well as on non–local symmetries for homogeneous linear ODEs.

4.4 An alternative algorithm for computing

symmetric powers in the second order case

We now describe how to compute symmetric powers of second order linear dif-
ferential operators using non–local symmetries, i.e. using those facts, which we
know from the theory of recursive and nilpotent flows given by these non–local
symmetries. We consider only second order linear differential operators of the
form L = D2 + u, u = u(x).

Recall that any second order linear differential operator D2 + a1D + a0 can be
transformed to an operator of the form L = D2 + u. Of course, the kernels
of D2 + a1D + a0 and L = D2 + u differ, but it is easy to transform any
solution of the homogeneous linear differential equation (D2 + u)w = 0 to
a solution of (D2+a1D+a0)w = 0 (see also the footnotes 9 and 10 on page 201).

In the former part above, we saw that the flow in s = s(t, x) with characteristic
operator L = D2 + u is given by

d

dt
s = sD−1

(1

s2

)
.

Now we make use of the flow for L to compute the m-th symmetric power L⊗m

of L. Therefore we consider the ansatz

σ := σ(t, x) := s(t, x)m.

It follows:

d

dt
σ = m sm−1 d

dt
s = m sm−1 s D−1

(1

s2

)
= m σ D−1

(1

σ2/m

)
,

4.4. AN ALTERNATIVE ALGORITHM FOR SYMMETRIC POWERS 205

i.e.
d

dt
σ = m σ D−1

(1

σ2/m

)
is a nilpotent flow (as we will see below) associated with a characteristic

operator denoted by L̂, whose kernel contains the m-th powers of the elements
of the kernel of L15. In the following, we show that L̂ = L⊗m.

We claim that

dk

dtk
σ = m (m− 1) · · · (m− k + 1) σ D−1

(1

σ2/m

)k

(4.4.1)

for k = 1, . . . ,m and dm+1

dtm+1 σ = 0.

We prove the assertion by induction on k: Assume that the assertion is true for
some k ∈ {1, . . . ,m− 1}. Then

dk+1

dtk+1
σ = m · · · (m− k + 1)

(d

dt
σ
)

D−1
(1

σ2/m

)k

+

m · · · (m− k + 1) σ D−1
((d

dt
σ
)(

− 2

m

1

σ

1

σ2/m

))
k D−1

(1

σ2/m

)k−1

= m · · · (m− k + 1) m σ D−1
(1

σ2/m

)k+1

+

m · · · (m− k + 1) σ D−1
(
− 2

1

σ2/m
D−1

(1

σ2/m

))
︸ ︷︷ ︸

=−D−1(1/σ2/m)2

k D−1
(1

σ2/m

)k−1

= m · · · (m− k + 1) (m− k) σ D−1
(1

σ2/m

)k+1

.

Hence, it also follows that dm+1

dtm+1 σ = 0.

Now we assume that s(0, x) and (d
dt

s(t, x))|t=0 are linear independent elements
of the kernel of L (in fact, (d

dt
s(t, x))|t=0 is already contained in the kernel of

L if this is true for s(0, x), because the flow associated with L is nothing more
but variation of constants providing a linear independent solution to a given
solution). If s(0, x) is an element of the kernel of L, then σ(0, x) = s(0, x)m is

15One way to compute L̂ explicitly is to use the formulas presented in Remark 4.5 for com-
puting characteristic operators due to [27]. We choose an alternative way for the computation
of L̂ in the following.

206 CHAPTER 4. NON–LOCAL SYMMETRIES

an element of the kernel of L⊗m. Hence, it follows that L⊗m(dk

dtk
σ)|t=0 = 0 for

all 0 ≤ k ≤ m, since(dk

dtk
σ
)
|t=0

=
(
m · · · (m− k + 2)(m− k + 1)sm−k

(
sD−1

(1

s2

))k)
|t=0

= m · · · (m− k + 2)(m− k + 1)s(0, x)m−k
((d

dt
s(t, x)

)
|t=0

)k

.

Since the order of L⊗m is m+1 (see for example [60], Section 3.2.2 on symmetric
powers of a differential equation), L⊗m is completely determined by the m + 1

independent solutions (dk

dtk
σ)|t=0, 0 ≤ k ≤ m.

Using the formulas of Theorem 4.6 to construct the characteristic operator as-
sociated with a recursive flow, we can compute a representation for the charac-
teristic operator L̂ in terms of dk

dtk
σ, 0 ≤ k ≤ m. It follows that

L̂ = w0w1 · · ·wmD
1

wm−1

D
1

wm

· · ·D 1

w0

,

where

w0 = σ,

w1 = D
1

w0

d

dt
σ,

...

wk = D
1

wk−1

D
1

wk−2

· · ·D 1

w1

D
1

w0

dk

dtk
σ,

...

wm = D
1

wm−1

D
1

wm−2

· · ·D 1

w1

D
1

w0

dm

dtm
σ.

Now we insert the representations (4.4.1) for dk

dtk
σ, 0 ≤ k ≤ m. Using integration

by parts, we find that

w0 = σ and wk = ck(m)
1

σ2/m

for 1 ≤ k ≤ m, where the ck(m) are constants, which can be ignored, since they

4.4. AN ALTERNATIVE ALGORITHM FOR SYMMETRIC POWERS 207

cancel in the below computation. Hence, it follows that

L̂ = σ
(
c1(m)

1

σ2/m

)
· · ·
(
cm(m)

1

σ2/m

)
D
(1

cm(m)
σ2/m

)
· · ·D

(1

c1(m)
σ2/m

)
D

1

σ

=
1

σ
Dσ2/m · · ·Dσ2/m︸ ︷︷ ︸

m-times

D
1

σ

=
1

sm
Ds2 · · ·Ds2︸ ︷︷ ︸

m-times

D
1

sm
.

Thus, the “expanded form” of L̂ is given by

L̂ = Dm+1 +
m∑

k=0

ϕk

(
s,

d

dx
s, . . .

)
Dk

for some polynomial expressions ϕk(s,
d
dx

s, . . .) depending only on s and deriva-
tives of s with respect to x. Since the original linear differential operator we
started with was L = D2 +u, we may substitute all derivatives dk

dxk s, 2 ≤ k ≤ m,

by − dk−2

dxk−2 (su) successively, until only s, d
dx

s, u and derivatives of u with respect

to x are contained in the representation of L̂. Then we can write

L̂ = L̂0 +
(d

dx
s

s

)
L̂1 +

(d
dx

s

s

)2

L̂2 + . . . ,

where L̂0, L̂1, L̂2, . . . are linear differential operators, whose coefficients only
contain u and derivatives of u with respect to x and L̂0 is of order m + 1,
whereas L̂1, L̂2, . . . are of order at most m.

Note that the evolution equation d
dt

σ = mσD−1(1
σ2/m) constructed for σ is

invariant under the automorphisms of the differential Galois group G(L) of the
homogeneous linear differential equation Lw = (D2 + u)w = 0. For T ∈ G(L)
we obtain that, whenever s(0, x) is an element of the kernel of L, then the
same holds for T (s(0, x)), since any automorphism of G(L) maps solutions of
Lw = 0 to solutions16. The construction of the nilpotent flow for s and σ is
independent of the fact, which elements of the kernel of L are chosen as initial
values s(0, x).

To see this, we consider an arbitrary T ∈ G(L). Then we construct the

above operator L̂ using the flow for s and in the same manner compute the

16See also page 197 for details on the differential Galois group.

208 CHAPTER 4. NON–LOCAL SYMMETRIES

linear differential operator L̃ using the flow for T (s) instead of s. Then L̂

and L̃ are both linear differential operators of order m + 1 and the kernels
of both of them consist of all m-th powers of the elements of the kernel
of L. Hence, we can conclude L̂ = L̃ and the application of any T ∈ G(L)
to an element s of the kernel of L does not change the nilpotent flows for s and σ.

The application of T to
d

dx
s

s
, (

d
dx

s

s
)2, . . . does not change the operator L̂. In G(L)

there is at least one automorphism, for which

T
(d

dx
s

s

)
6=

d
dx

s

s
,

since otherwise
d
dx

T (s)

T (s)
=

T (d
dx

s)

T (s)
= T

(d
dx

s

s

)
=

d
dx

s

s

provides that T (s) = cs for some constant c. But there is at least one transfor-
mation (variation of constants), which provides a linear independent solution to

a given solution and which is not the case for transformations with T (
d

dx
s

s
) =

d
dx

s

s
.

Now choose an element T ∈ G(L) for which T (
d

dx
s

s
) 6=

d
dx

s

s
holds. Then T leaves

invariant the operator L̂ if and only if L̂1, L̂2, . . . are equal to zero. Thus, it
follows L̂ = L̂0. Since the kernel of L̂ is spanned by all m-th powers of the
elements of the kernel of L, it follows

L̂ = L̂0 = L⊗m

and we are done.

We sum up the results and close this section with the following algorithm to
compute symmetric powers of second order linear differential operators:

Algorithm 4.13. Let L = D2 + u(x) and m ∈ N. We compute L⊗mf(x) for
some arbitrary symbolic elements f(x) as follows:

1. Define s(x) := w(x)m and r(x) := d
dx

(f(x)
s(x)

).

2. For i from 1 to m repeat the following steps:

• Compute

r(x) :=
d

dx
(s(x)2/mr(x)).

4.5. CONCLUSIONS 209

• Substitute d2

dx2 w(x) by −u(x)w(x) in r(x), i.e. reduce r(x) by the

homogeneous linear ODE d2

dx2 w(x) = −u(x)w(x).

3. Replace d
dx

w(x) by 0 and w(x) by 1 in r(x).

4. Return r(x) = L⊗mf(x). M

Algorithm 4.13 in the above form can be used to obtain the symmetric powers
given in Example 4.11.

4.5 Conclusions

4.5.1 Resumé

We did a rough implementation of Algorithm 4.13 in the computer algebra
system MuPAD. We compared our implementation with the algorithm to
compute symmetric powers of second order linear differential operators already
implemented in MuPAD, which is based on the algorithms in [6].

In practice, even the rough implementation of Algorithm 4.13 is slightly more
efficient than the one already implemented in MuPAD. For example, the com-
putation of L⊗14, where L = D2 + u(x) for some arbitrary symbolic function
u(x), using Algorithm 4.13 takes about 4 seconds17. The same computation
using the already implemented version of the algorithm in MuPAD to compute
symmetric powers takes with about 9 seconds more than twice as long.

4.5.2 Open problems and perspectives

We applied the results from [27] for nilpotent and recursive flows to give an
alternative approach to compute symmetric powers. For third and higher
order homogeneous linear ODEs, the computation of symmetric powers is
more difficult for at least two reasons: On the one hand, the computation of
symmetric powers for higher order linear differential operators involves a large
expression swell18. On the other hand, the degree of the symmetric powers of

17We performed our computations using MuPAD Pro 4 under Microsoft Windows XP on a
PC with a Pentium 4 CPU, 2.40 GHz, 1.0 GB RAM.

18For further remarks on the problem of the expression swell involved with the computation
of symmetric powers and approaches to avoid it see [6].

210 CHAPTER 4. NON–LOCAL SYMMETRIES

linear differential operators of order at least 3 is not known a priori19.

The question arising is, whether the approach for the computation of symmetric
powers of second order linear differential operators discussed in this chapter
can be generalized to higher order linear differential operators. The central role
in our approach plays a nilpotent flow associated with a general second order
homogeneous linear ODE and which serves as a non–local symmetry for the
ODE.

In fact, in a similar way as discussed in Subsection 4.2.1 on pp. 193 one can
associate nilpotent flows with general higher order homogeneous linear ODEs.

The nilpotent flow for general third order linear homogeneous ODEs with uni-
modular differential Galois group reads20

d2

dt2
s = sD−1

((
D

ds
dt

s

)
D−1 1

s3(D
ds
dt

s
)2

)
.

The nilpotent flow for general fourth order linear homogeneous ODEs with uni-
modular differential Galois group reads

d3

dt3
s = sD−1

((
D

ds
dt

s

)
D−1

((
D

1

D
ds
dt

s

D
d2s
dt2

s

)
D−1

(1

s4(D
ds
dt

s
)3(D 1

D
ds
dt
s

D
d2s
dt2

s
)2

)))
.

As in the case of the nilpotent flow associated with a general second order ho-
mogeneous linear ODE, these nilpotent flows are independent of the coefficients
of the corresponding linear ODEs21.

The main problem one is faced with in the situation of these flows is the fact
that the right–hand–sides involve derivatives of s with respect to t. This makes
the situation more complicated and the question, whether these flows can be
used to give alternative approaches for the computation of symmetric powers of

19The degree of certain symmetric powers of linear differential operators of order at least 3
gives information concerning the existence of Liouvillian solutions of the associated homoge-
neous linear ODE (see [60] for details).

20The following two equations become nilpotent flows in the strict sense of Definition 4.1
when a suitable phase space is introduced.

21We verified this also for general n-th order homogeneous linear ODEs, n ∈ N, n ≥ 3, as
long as the ODEs under consideration have a unimodular differential Galois group.

4.5. CONCLUSIONS 211

linear differential operators of order at least 3 remains unanswered in this work,
but gives a perspective for further research in this area.

Bibliography

[1] M. Adler, P. Van Moerbeke, P. Vanhaecke: Algebraic Integrability,
Painlevé Geometry and Lie Algebras, Springer Verlag, Berlin · Heidelberg ·
New York, Ergebnisse der Mathematik und ihrer Grenzgebiete (A Series of
Modern Surveys in Mathematics), Volume 47, 2004

[2] K. E. Avrachenkov, M. Haviv, P. G. Howlett: Inversion of
analytic matrix functions that are singular at the origin, Siam J. Mmatrix
Anal. Appl., Society for Industrial and Applied Mathematics, Volume 22,
Number 4, pp. 1175-1189, 2001

[3] G. Baumann: Symmetry Analysis of Differential Equations with Mathe-
matica, Springer Verlag, New York · Berlin · Heidelberg, 2000

[4] G. W. Bluman, S. Kumei: Symmetries and Differential Equations,
Springer Verlag, New York · Berlin · Heidelberg · Tokyo · Hong Kong,
Applied Mathematical Sciences, Volume 81, 1989

[5] M. Bronstein: Solutions of linear differential equations in their coef-
ficient field, Journal of Symbolic Computation, Volume 13, pp. 413-439, 1992

[6] M. Bronstein, T. Mulders, J.-A. Weil: On Symmetric Powers of
Differential Operators, ACM Press, Proceedings of the 1997 international
symposium on Symbolic and Algebraic Computation, pp. 156-163, 1997

[7] E. S. Cheb-Terrab, L. G. S. Duarte, L. A. C. P. da Mota:
Computer Algebra Solving of First Order ODEs Using Symmetry Methods,
Computer Physics Communications, 101 (1997) 254., 1997

[8] E. S. Cheb-Terrab: Introduction to the ODEtools package version 3.91,
Documentation website for the package ODEtools included in the computer

213

214 BIBLIOGRAPHY

algebra system Maple, http://www.scg.uwaterloo.ca/~ecterrab/

help/odetools1.html, 1997

[9] E. S. Cheb-Terrab, A. D. Roche: Computer Algebra Solving of Second
Order ODEs Using Symmetry Methods, Computer Physics Communica-
tions, 108 (1998) 90, 1998

[10] E. S. Cheb-Terrab, A. D. Roche: Symmetries and First Order ODE
Patterns, Computer Physics Communications, 113 (1998) 239, 1998

[11] E. S. Cheb-Terrab, A. D. Roche: Integrating factors for second order
ODEs, Journal of Symbolic Computation, Volume 27, pp. 501-519, 1999

[12] E. S. Cheb-Terrab: ODE trends in computer algebra: four linear and
nonlinear challenges, Proceedings of the Maple Summer Workshop —
Waterloo, 2002

[13] E. S. Cheb-Terrab, T. Kolokolnikov: First order ODEs, Symmetries
and Linear Transformations, European Journal of Applied Mathematics,
Volume 14, Number 2, pp. 231-246, 2003

[14] E. S. Cheb-Terrab: The ODEtools package, Documentation website for
the package ODEtools included in the computer algebra system Maple,
http://www.scg.uwaterloo.ca/~ecterrab/odetools.html, 2005

[15] E. S. Cheb-Terrab: Homepage of E. S. Cheb-Terrab, Associate
member of the Symbolic Computation Group, University of Waterloo,
http://www.scg.uwaterloo.ca/~ecterrab, 2005

[16] R. C. Churchill: Introduction to the Galois Theory of Linear Ordi-
nary Differential Equations, Hunter College and the Graduate Center of
CUNY and the University of Calgary, Prepared for the Kolchin Seminar
on Differential Algebra, Graduate Center, City University of New York, 2005

[17] E. A. Coddington, N. Levison: Theory of Ordinary Differential
Equations, E. Krieger, Malabar, Florida, 1984

http://www.scg.uwaterloo.ca/~ecterrab/help/odetools1.html
http://www.scg.uwaterloo.ca/~ecterrab/help/odetools1.html
http://www.scg.uwaterloo.ca/~ecterrab/odetools.html
http://www.scg.uwaterloo.ca/~ecterrab

BIBLIOGRAPHY 215

[18] C. Creutzig, K. Gehrs, W. Oevel: Das MuPAD–Tutorium, Springer
Verlag, Berlin · Heidelberg · New York · Hong Kong · London · Mailand ·
Paris · Tokio, 2004

[19] L. Dresner: Applications of Lie’s Theory of Ordinary and Partial Differ-
ential Equations, Institute of Physics Publishing, Bristol · Philadelphia, 1999

[20] W. Fakler: Algebraische Algorithmen zur Lösung von linearen Differ-
entialgleichungen, B. G. Teubner, Stuttgart · Leipzig, MuPAD Reports, 1999

[21] A. S. Fokas: Invariants, Lie–Bäcklund Operators and Bäcklund Trans-
formations, PhD thesis in Applied Mathematics, California Institute of
Technology, Pasadena, California, 1979

[22] A. S. Fokas, B. Fuchssteiner: The hierarchy of the Benjamin–Ono
Equation, Physics Letters, Volume 86A, Number 6,7, 1981

[23] A. Fredet: Factorization of Linear Differential Operators in Exponential
Extensions, ISSAC’03, August 3-6, Philadelphia, Pennsylvania, USA, 2003

[24] L. Fuchs: Über die linearen Differentialgleichungen zweiter Ordnung,
welche algebraische Integrale besitzen, zweite Abhandlung, Journal für
Mathematik 85, 1878

[25] B. Fuchssteiner: Application of Hereditary Symmetries to Nonlinear
Evolution Equations, Nonlinear Analysis 3, pp. 849-862, 1979

[26] B. Fuchssteiner: The Lie Algebra Structure of Nonlinear Evolution
Equations admitting Infinite Dimensional Abelian Symmetry Groups,
Progress of Theoretical Physics 65, pp. 861-876, 1981

[27] B. Fuchssteiner, M. Lo Schiavo: Nilpotent and Recursive Flows,
Manuscripta Mathematica 79, Springer Verlag, pp. 27-48, 1993

[28] B. Fuchssteiner, M. Lo Schiavo: Nonlinear PDEs and Recursive
Flows: Theory, Applied Mathematics Letters, 6, pp. 97-100, 1993

[29] B. Fuchssteiner, M. Lo Schiavo: Nonlinear PDEs and Recursive
Flows: Applications, Applied Mathematics Letters, 6, pp. 101-104, 1993

216 BIBLIOGRAPHY

[30] B. Fuchssteiner: Symbolische Behandlung von Differentialgleichun-
gen, appeared in Computeralgebra in Deutschland — Bestandsaufnahme,
Möglichkeiten, Perspektiven, published by Fachgruppe Computeralgebra
Deutschland (of the GI, DMV and GAMM), Passau · Heidelberg, 1993

[31] B. Fuchssteiner, K. Gehrs: Neue Methoden zur algorithmischen
Lösung nicht–linearer ODEs über Symmetrien und integrierende Faktoren,
Computeralgebra–Tagung at the university of Kassel, Fachgruppe Comput-
eralgebra Deutschland (of the GI, DMV and GAMM), 2005

[32] B. Fuchssteiner: Algorithmische Behandlung von Differenzialgleichun-
gen, Lectures held at the University of Paderborn, 2005/2006

[33] B. Fuchssteiner, K. Gehrs, W. Oevel: Constellation problems and
integrability for linear ODEs with constant coefficients, Preprint, 2006

[34] F. R. Gantmacher: The Theory of Matrices, Chelsea, New York, 1959.

[35] K. Gehrs: Some practical algorithms for the solution of ODEs via
symmetry methods and integrating factors, talk at the ICMS workshop
“Algebraic Theory of Differential Equations”, Heriot-Watt University,
Edinburgh, 2006

[36] Ü. Göktas, W. Hereman: Symbolic Computation of Conserved Den-
sities for Systems of Nonlinear Evolution Equations, Journal of Symbolic
Computation, Volume 11, pp. 1-31, 2004

[37] K. Gottheil: Axioms, categories and domains, mathPAD, 4(1), pp. 24-
29, 1994

[38] W. Hackbusch, H. R. Schwarz, E. Zeidler: Teubner Taschenbuch
der Mathematik, Teil 1, B. G. Teubner, Leipzig, 1996

[39] R. Hermann: The Geometry of Non–Linear Differential Equations,
Bäcklund Transformations, and Solitons, Part A, Math Sci Press, Interdis-
ciplinary Mathematics Volume XII, 1976

[40] M. van Hoeij: Factorization of Linear Differential Operators, PhD
thesis, University of Nijmegen, 1996

BIBLIOGRAPHY 217

[41] M. van Hoeij: Factorization of Differential Operators with Rational
Functions Coefficients, Journal of Symbolic Computation, Volume 24,
pp. 537-561, 1997

[42] P.-F. Hsieh, Y. Sibuya: Basic Theory of Ordinary Differential
Equations, Springer Verlag, New York · Berlin · Heidelberg · Barcelona
· Hong Kong · London · Milan · Paris · Singapore · Tokyo, Universitext, 1999

[43] N. H. Ibragimov: Elementary Lie Group Analysis and Ordinary Differ-
ential Equations, John Wiley & Sons, Chichester · New York · Weinheim ·
Brisbane · Singapore · Toronto, Mathematical Methods in Practice, 1999

[44] E. L. Ince: Ordinary Differential Equations, Dover Publications, New-
York, 1956

[45] E. Kamke: Differentialgleichungen, Akademische Verlagsgesellschaft,
Leipzig 1959

[46] H. W. Knobloch, F. Kappel: Gewöhnliche Differentialgleichungen,
B. G. Teubner, Stuttgart, 1974

[47] J. J. Kovacic: An algorithm for solving second order linear homogeneous
differential equations, Notes on a talk at the City College of The City
University of New York, http://mysite.verizon.net/jkovacic/, 2005

[48] A. R. Magid: Lectures on Differential Galois Theory, American Mathe-
matical Society, University Lecture Series, Volume 7, 1994

[49] M. Majewski: MuPAD Pro Computing Essentials, Springer Verlag,
Berlin · Heidelberg · New York · Hong Kong · London · Milan · Paris ·
Tokyo, 2004

[50] H. Naundorf: Ein denotationelles Modell für parallele objektbasierte
Systeme, B. G. Teubner, Stuttgart · Leipzig, MuPAD Reports, 1997

[51] P. J. Olver: Applications of Lie Groups to Differential Equations,
Springer Verlag, New York · Berlin · Heidelberg · Tokyo, 1986

http://mysite.verizon.net/jkovacic/

218 BIBLIOGRAPHY

[52] W. R. Oudshoorn, M. Van der Put: Lie Symmetries And Differential
Galois Groups of Linear Equations, Mathematics of Computation, Volume
71, Number 237, pp. 349-361, 2001

[53] M. Van der Put, M. F. Singer: Galois Theory of Linear Differential
Equations, Springer Verlag, Berlin · Heidelberg · New York · Hong Kong
· London · Milan · Paris · Tokyo, Grundlehren der mathematischen Wis-
senschaften (A series of comprehensive studies in mathematics), Volume
328, 2003

[54] J. C. Robbinson: An Introduction to Ordinary Differential Equations,
Cambridge University Press, 2004

[55] T. Sasaki, H. Murao: Efficient Gaussian Elimination Method for Sym-
bolic Determinants and Linear Systems, ACM Transactions on Mathematic
Software, Volume 8, Number 3, pp. 277-289, 1982

[56] L. Schlesinger: Handbuch der Theorie der linearen Differentialgleichun-
gen, Band I, Teubner, Leipzig, 1895

[57] M. Schreiber: Differential Forms — A heuristic introduction, Springer
Verlag, New York Heidelberg Berlin, Universitext, 1977

[58] M. F. Singer: Algebraic solutions of nth order linear differential equa-
tions, Proceedings of the 1979 Queens Conference on Number Theory,
Queens Papers in Pure and Applied Mathematics 54, 1980

[59] M. F. Singer: Liouvillian solutions of linear differential equations with
Liouvillian coefficients, Journal of Symbolic Computation, Volume 11,
pp. 251-273, 1991

[60] M. F. Singer, F. Ulmer: Galois Groups for second and third order
linear differential equations, Journal of Symbolic Computation, Volume 16,
pp. 9-36, 1993

[61] M. F. Singer, F. Ulmer: Liouvillian and algebraic solutions of second
and third order linear differential equations, Journal of Symbolic Computa-
tion, Volume 16, pp. 37-73, 1993

BIBLIOGRAPHY 219

[62] M. F. Singer: Testing Reducibility of Linear Differential Operators: a
Group Theoretic Perspective, Applicable Algebra in Engineering, Commu-
nication and Computing, Volume 7, pp. 77-104, 1996

[63] M. F. Singer, F. Ulmer: Linear differential equations and products of
linear forms, Journal of Pure and Applied Algebra, 117 & 118, pp. 549-563,
1997

[64] H. Stephani: Differential Equations — Their solutions using symme-
tries, Cambridge University Press, Cambridge · New York · Port Chester ·
Melbourne · Sidney, 1989

[65] F. Ulmer, J.-A. Weil: Note on Kovacic’s algorithm, Journal of
Symbolic Computation, Volume 22, pp. 179-200, 1996

[66] W. Walter: Gewöhnliche Differentiagleichungen, Springer Verlag, New
York · Heidelberg · Berlin, 1996

[67] J. Weidmann: Lineare Operatoren in Hilberträumen, B. G. Teubner,
Stuttgart, 1976

[68] D. Zwillinger: Handbook of Differential Equations, 2nd Edition,
Academic Press, San Diego, 1992

220

LIST OF SOME NOTATION 221

List of some notation

Chapter 1

y(k)(x) k-th derivative of y(x) with respect to x

∂
∂ε |ε=0

Derivative with respect to ε at ε = 0

R A one–parameter group of transformations

η(Γ, x(t), y(t)), ξ(Γ, x(t), y(t)) Curve functions forming the infinitesimal
generator of a one–parameter group of
transformations

H(x, y, y′, . . . , y(n)) = 0 An ODE of the form
y(n) − Φ(x, y, y′, . . . , y(n−1)) = 0

η[k](Γ, x(t), y(t)) k-th prolongation of the curve function
η(Γ, x(t), y(t))

X The infinitesimal generator of a symmetry

XH = 0 mod H = 0 Way of saying that the expression XH has to
be zero on the submanifold given by H = 0

M Some C∞-manifold

u The manifold variable

K(u) Some vector field on the manifold M

JK(u), G(u)K Commutator of the vector fields K(u) and
G(u).

V A vector space

L(V) The set of all vector fields on the vector space
V

222 LIST OF SOME NOTATION

L̂(V) The set of all covector fields on the vector space V

F(V) The set of all scalar fields on the vector space V

〈Γ, K〉 Application of the covector field Γ to the vector field K

T(n,m)(V) Set of all n-times-covariant and m-times-contraviant tensors on V

d Exterior derivative

grad Gradient of a scalar field

Chapter 2

Φ(x, y, y′, . . . , y(n−1)) Right–hand–side of an n-th order ODE of the form
y(n) = Φ(x, y, y′, . . . , y(n−1))

µ An integrating factor

y(k)(x) k-th derivative of y(x) with respect to x

D−1 Integral of a function; formal integration with respect
to x

ξ(x, y), η(x, y) Infinitesimals of a Lie point symmetry generator

Chapter 3

D Differential operator; differentiation with respect to x

D−1 Integral of a function; formal integration with respect to x

A Algebra containing x, u = u(x) and a fixed set of infinitely often
differentiable functions being closed against the application of D to its
elements

F Subset of A, whose elements do not contain u or any of its formal
derivatives

ordu Order of the highest derivative of u with respect to x of an element
of A

LIST OF SOME NOTATION 223

N Set of all total derivatives in A; also referred to as the
integrable part of A

A ∼N B Equivalence relation on A; holds if A−B ∈ N

[A]N Equivalence class of A ∈ A with respect to ∼N

A/N Set of all equivalence classes of elements of A with respect to N

〈A, B〉 Density valued scalar product on A×A; the equivalence class
[AB]N

Θ Skew symmetric operator A → A

J0 Elements A = A(x, u) ∈ A with the property that in their formal
Taylor series expansion with respect to u the term of polynomial
order 0 does vanish

Jn, n ∈ N Elements A = A(x, u, ux, . . . , u
(n)) ∈ A with the property that in

their formal Taylor series expansion with respect to u(n) the
terms of polynomial order 0 and 1 do vanish

J The direct sum of all Jk, k ∈ N0; also referred to as the
non–integrable part of A

FΘ Fundamental form of the skew symmetric operator Θ; a map
A×A → A

QΘ Quadratic form of the skew symmetric operator Θ; a map
A → A

A(n) The n-th derivative of an element A ∈ A with respect to x

Chapter 4

F A differential field

DF A derivation on F

L A linear differential operator

G(E/F) Differential Galois group of the Picard-Vessiot extension E ⊇ F ; E
and F are differential fields

224 LIST OF SOME NOTATION

L⊗m m-th symmetric power of the linear differential operator L(
k

k1,...,kn

)
Multinomial coefficient Φ

A linear differential operator

Φ(N+1) The characteristic operator for a weakly recursive flow

Φ(w) Lowering of the linear differential operator Φ with respect to w

det The Determinant of a square matrix

Glossary of Algorithms

Algorithm 2.7 Computing integrating factors of the form
µ = µ(x, y) of third order ODEs, 82

Algorithm 2.9 Computing integrating factors of the form
µ = µ(x, y′) of third order ODEs, 85

Algorithm 2.11 Computing integrating factors of the form
µ = µ(y, y′) of third order ODEs, 88

Algorithm 2.15 Computing integrating factors of the form
µ = µ(y′′), µ(0) 6= 0, of third order ODEs, 93

Algorithm 2.19 Computing integrating factors of the form
µ = f(x, y, y′)(y′′)m, m ≥ 1, of third order ODEs, 99

Algorithm 2.22 Computing integrating factors of the form
µ = f(x, y, y′) 1

(y′′)m , m ≥ 3, of third order ODEs, 103

Algorithm 2.26 Computing integrating factors of the form
µ = f(x, y, y′) 1

y′′
of third order ODEs, 108

Algorithm 2.29 Computing integrating factors of the form
µ = µ(y(i), y(n−2)), 0 ≤ i ≤ n− 3, of n-th order ODEs, 113

Algorithm 2.30 Computing integrating factors of the form
µ = µ(x, y(n−2)) of n-th order ODEs, 115

Algorithm 2.31 Computing integrating factors of the form
µ = µ(y(i), y(j)), 0 ≤ i < j ≤ n− 3, i + 1 < j, of n-th
order ODEs, 118

Algorithm 2.32 Computing integrating factors of the form
µ = µ(y(n−1)) of n-th order ODEs, 119

225

226 GLOSSARY OF ALGORITHMS

Algorithm 2.33 Computing integrating factors of the form
µ = f(x, y, y′, . . . , y(n−2))(y(n−1))m, m ∈ N,
of n-th order ODEs, 122

Algorithm 2.34 Computing integrating factors of the form
µ = f(x, y, y′, . . . , y(n−2)) 1

(y(n−1))m , m ∈ N, m ≥ 3,

of n-th order ODEs, 125

Algorithm 2.35 Computing integrating factors of the form
µ = f(x, y, y′, . . . , y(n−2)) 1

y(n−1)) of n-th order ODEs, 127

Algorithm 3.15 Computation of the canonical form in the algebra A,
143

Algorithm 3.34 Computation of the quadratic form in the algebra A,
143

Algorithm 3.36 Computation of the fundamental form in the algebra
A, 164

Algorithm 4.13 Computation of symmetric powers of second order linear
differential operators, 208

Index

Adjoint Lie derivative, 178
Admissible Lie point operator, 25
Algebra, 134
Algebraic solution, 198
Autonomous group, 20

Bilinear form
Symmetric, 137

Bronstein, M., 198, 201

Canonical form, 137, 139, 143
with respect to u(n), 140

Characteristic operator, 190, 191,
204, 205

Cheb-Terrab, E. S., 15, 28, 43, 47,
57, 67, 72, 133

Closed covector field, 40
Commutator of vector fields, 33
Commuting symmetries, 8, 12, 37,

42, 43, 49, 59, 60
Complete integration, 42
Computer algebra system

Maple, 15, 30, 67, 79, 186
Mathematica, 23, 78, 129
MuPAD, 64, 134, 209

Conserved quantity, 44, 68, 137
Constant of integration, 70, 96, 149–

152
Constants, 197
Covector field, 38, 39

Closed, 40, 41
Curve function, 18

Local, 19

Densities, 137
Derivation, 196
Derivative

Directional, 33, 177
Exterior, 39, 178
Lie, 38, 44, 178
Total, 57, 64, 68, 69, 78, 133, 135

Determinant
Minor expansion, 191
Wronskian, 190, 203

Determining equations
for integrating factors, 70, 71
for symmetries, 25, 27, 28, 55, 58

Diffeomorphism, 32
Differential

Automorphism, 196
Field, 196
Field extension, 196
Galois group, 186, 197, 201, 207
Homomorphism, 196
Operator, 134

Differentiation
Total, 134

Directional derivative, 33, 177

Euler operator, 69, 70, 78, 82, 85, 98,
101, 107, 108, 127, 129, 130,
133, 136

Evolution equation, 31, 195
Exact ODE, 68

227

228 INDEX

Exactness condition, 69, 70, 78, 82,
85, 98, 101, 107, 108, 127,
129, 130, 133, 136

Exponential solution, 198, 202
Extended integrating factor, 138,

151, 152
Exterior derivative, 39, 178

Fakler, W., 198
Field of constants, 197
First integral, 68
Flow

Nilpotent, 189, 193
Recursive, 189
Weakly recursive, 189

Fokas, A. S., 25, 182
Fuchssteiner, B., 17, 37, 41, 42, 154,

180, 182, 188, 189
Fundamental form, 159, 160, 164,

167, 169, 170, 226

Galois group, 186, 207
Generalized symmetry, 17
Generic element, 49
Genuine Lie–Bäcklund Symmetry,

180
Gradient, 38, 179, 180
Group

Autonomous, 20
Differential Galois, 186, 207
Lie point, 20
Lie–Bäcklund, 20
Local, 20
Non–local, 185, 195
Time–dependent, 20
Time–independent, 20

Highest order term, 140, 141

Independent

Linear, 40, 42, 55
Infinitesimal generator

of a Lie point symmetry, 25
of a one–parameter diffeomor-

phism group, 33
of a one–parameter group, 23
of a symmetry, 27, 28

Integrable part, 139
Integral, formal, 136
Integrating factor, 69, 137

Extended, 138, 151, 152

Kamke, E., 7, 15
Kernel

Of a linear differential operator,
199, 200, 204, 205, 207

Lie derivative, 38, 44, 178
Lie point group, 20
Lie point operator

admissible, 25
Lie point symmetry, 15, 129, 130
Lie, S., 16, 25, 43
Lie–Bäcklund group, 20
Linear

Differential operator, 196
Homogeneous ODE, 53, 54, 144,

145, 154, 193
Independent, 40, 42, 55

Liouvillian solution, 198, 201, 202
Lo Schiavo, M., 188, 189
Local

Curve function, 19
Group, 20

Lowering, 193

Maple, 15, 30, 67, 79, 186
intfactor, 67
ODEtools, 15

Mathematica, 23, 78, 129

INDEX 229

Minimal polynomial, 198
Minor expansion, 191
Mulders, T., 203
MuPAD, 64, 134, 209
Murao, H., 45

Nilpotent flow, 189, 193
Non–Integrable part, 139

ODE
Exact, 68
Linear homogeneous, 53, 54,

144, 145, 154, 193
Phase space representation, 31,

34, 43, 44, 47, 54, 55, 60–62
Riccati type, 54, 57–59, 202

ODE family
associated with an integrating

factor, 72, 74, 75, 80, 83,
87, 91, 97, 98, 102, 103, 107,
111, 112, 114, 116, 119–121,
124

Olver, P. J., 31, 130
One System of ODEs, 53
One–parameter

Diffeomorphism group, 32
infinitesimal generator, 33

Group of transformations, 19
Operator

Characteristic, 190, 191, 204,
205

Euler, 69, 70, 78, 82, 85, 98, 101,
107, 108, 127, 129, 130, 133,
136

Lowering, 193
Reducible, 201
Skew symmetric, 138

Order
of an element in A, 135
of an ODE, 21

Permanence principle
for integrating factors, 180

Phase space representation, 31, 34,
43, 44, 47, 54, 55, 60–62

Picard-Vessiot extension, 197
Poincaré Lemma, 40
Potential of a covector field, 40
Premature recurrence, 153, 180, 181
Primitive solution, 198
Prolongation, 21, 23

Quadratic form, 160, 161, 226

Rational solution, 197, 202
Recurrence

Premature, 153, 180, 181
Recursion formula

for D−1(GiKj), 170, 172, 176
for Gi, 167, 169

Recursive flow, 189
Reducible operator, 201
Reduction of order, 138
Riccati equation, 54, 57–59, 202
Roche, A. D., 67, 72

Sasaki, T., 45
Scalar product, density valued, 137
Separation of variables, 46
Set of total derivatives, 135
Singer, M. F., 198
Skew symmetric

Hierarchy, 147, 148
Operator, 138

Solution
Algebraic, 198
Exponential, 198, 202
Liouvillian, 198, 201, 202
Primitive, 198
Rational, 197, 202

Stephani, H., 130

230 INDEX

Symmetric
Bilinear form, 137
Power, 199

Symmetry
Commuting, 8, 12, 37, 42, 43, 49,

59, 60
Conditions, 25, 27, 28, 55, 58
generalized, 17
Generator, 25, 33
Genuine Lie–Bäcklund, 180
Group, 31, 33
Lie point, 15, 17, 129, 130
Lie–Bäcklund, 17
Non–local, 186–188
Time–independent, 34

Systems of ODEs, 49

Taylor series expansion, 139, 140,
190

Time–dependent group, 20
Time–independent group, 20
Total

Derivative, 57, 64, 68, 69, 78,
133, 135

Differentiation, 134

Ulmer, F., 202
Unimodular, 201

Variation of constants, 194, 205
Vector field, 31, 38, 40

Weakly recursive flow, 189
Weil, J.-A., 203
Wronskian determinant, 190, 203

	Introduction
	Two examples
	This thesis
	Outline of approach
	What is new in this thesis?

	Symmetries
	Generalized symmetries and their generators
	Curve functions
	Groups of transformations and symmetry groups
	Prolongations
	Lie point symmetries and first order ODEs

	The methods of Cheb-Terrab for first order ODEs
	Symmetries of evolution equations
	Lie point symmetries in phase space
	Integration via commuting symmetries
	Tensors, Lie derivatives and exterior derivatives
	An integrability result
	Examples and applications

	Conclusions
	Resumé
	Open problems and perspectives

	Integrating factors
	Introduction
	Basic terminology
	Integrating factors and Associated ODEs
	Integrating factors for second order ODEs
	The Euler Operator: Exactness of an ODE
	Integrating factors for third order ODEs
	Integrating factors (x,y).
	Integrating factors (x,y').
	Integrating factors (y,y').
	Integrating factors (y'').
	Integrating factors f(x,y,y') (y'')m.
	The case = f(x,y,y') (y'')m, m N
	The case = f(x,y,y') 1(y'')m, m N, m 3
	The case = f(x,y,y') 1y''

	Generalizations to higher order ODEs
	Integrating factors (y(i),y(n-2)), 0 i n-3.
	Integrating factors (x,y(n-2)).
	Integrating factors (y(i),y(j)), 0 i < j n-3.
	Integrating factors (y(n-1)).
	Integrating factors f(x,y,y',…,y(n-2)) (y(n-1))m.
	The case = f(x,y,y',…,y(n-2)) (y(n-1))m, m N
	The case = f(x,y,y',…,y(n-2)) 1(y(n-1))m, m N, m 3
	The case = f(x,y,y',…,y(n-2)) 1y(n-1)

	Conclusions
	Resumé
	Open problems and perspectives

	Skew symmetric hierarchies
	Basic terminology and general definitions
	Canonical form of differential expressions
	Computing integrating factors
	Fundamental forms of skew symmetric operators
	Recursion formulas for symbolic integration
	Conclusions
	Resumé
	Back to the symmetries
	Integrating factors and symmetry generators: the mixed case
	Open problems and perspectives

	Non--local symmetries
	Non--local symmetries for 2nd order linear ODEs
	Overview: Nilpotent and recursive flows
	Nilpotent flows for second order linear ODEs

	Overview: Basics in differential Galois theory
	Symmetric powers
	Applications of symmetric powers
	Computation of symmetric powers

	An alternative algorithm for symmetric powers
	Conclusions
	Resumé
	Open problems and perspectives

	Bibliography
	List of some notation
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4

	Glossary of Algorithms
	Index

