Ein mehrbenutzerfahiges Werkzeug zur Modellierung und
richtungsoffenen Simulation von wahlweise
objekt- und funktionsorientiert gegliederten

Fertigungssystemen

Meinen Leuchtfeuern

Ein mehrbenutzerfahiges Werkzeug zur Modellierung und
richtungsoffenen Simulation von wahlweise
objekt- und funktionsorientiert gegliederten

Fertigungssystemen

Dissertation
zur Erlangung der Wirde eines
DOKTORS DER WIRTSCHAFTSWISSENSCHAFTEN
(Dr. rer. pol.)
der Universitat Paderborn

vorgelegt von
Dipl.-Wirt. Inf. Christoph Laroque
33104 Paderborn

Paderborn, den 24. Januar 2007

Dekan: Prof. Dr. Peter F. E. Sloane
Referent: Prof. Dr.-Ing. habil. Wilhelm Dangelmaier
Korreferent: Prof. Dr. Leena Suhl

Erstellt am

Heinz Nixdorf Institut

Fachgruppe Wirtschaftsinformatik, insb. CIM
Prof. Dr.-Ing. habil. Wilhelm Dangelmaier
Flrstenallee 11

33102 Paderborn

© 2003-2006 Christoph Laroque

Inhaltsverzeichnis
3 R\ o /A= | [0 1
2 Ablaufsimulation von Fertigungssystemencciiiiiii it 5
2.1 FertigUNGSSY S M it e 5
2.2 Ablaufsimulation: Modellierung, Simulation & Analyseccoceviiiiiiiiiinnnn. 10
2.3 Erweiterungen aus der Motivation.........c.oviii i 13
2.4 Anforderungsbeschreibung ... 18
A R = T Y 1] o] 0 <=1 18
2.4.2 ModellbesChreibUNg.....covieiii e 19
2.4.3 WerkzeugentWiCKIUNgoouoiuiii e 20
G I o= Lo o =T ol I =T o1 |1 P 23
3.1 SimulationsmMethodiK ..o e 23
3.2 Modellierungsmethoden ..o 26
3.2.1 Stellen/TransitioNSNelzZe. .. iiiiii i i i 26
3.2.2 Programmier- und Simulationssprachenc.ccoooiiiiiiii e 28
3.2.3 Grafische Simulationswerkzeugeoviiiiiiiii i e 29
3.3 Ausfihrung von Simulationsmodellen........cccoiiiiiiiii i 30
3.3.1 Vorwartssimulation ..o e 31
3.3.2 RUCKWAtSSIMUIAtION .uviiiiii i e e e eeaneas 33
3.4 Visualisierung von Ablaufsimulationen ..o 33
3.4.1 Menschliche Wahrnehmung in virtuellen Umgebungen..............ccooiiinenn. 34
3.4.1.1 Tauschung des SEhSINNS ..ot e 34
3.4.1.2 Tauschung des Tast- und HOrSiNNS.......ccoeiiiiiiiiii e 36
3.4.2 VR als User Interface.ccviiiiiii i i e e v n e ne e 36
3.4.3 Interaktion in virtuellen Umgebungenccoiiiiiiiiiiiiiiiiiiccc e 38
3.4.4 Virtuelle Umgebung von Fertigungssystemencocoviiiiiiiiiiiiiiniiiiinenenns 39
3.4.5 Verstandnisoptimierung durch virtuelle Umgebungenc.coooiiiininnnns 40
3.5 Software-Design von Mehrbenutzersystemen ..., 41
3.5.1 Allgemeine Paradigmen des Software-Designs.........ccvoviviiiiiiiiiiiiiiinnnns 42
3.5.2 Objektorientierte Software-Programmierung.........cccoviiiiiiiiiiiiiiiicininenns 46
3.5.2.1 GrUNAI@gen ..o e 47
3.5.2.2 Paradigmien ... 48
3.5.3 Grafisches Software-Design mittels der UMLcooiiiiiiiiiiiiiiiicciiecieen 50
3.5.3.1 Grundlagen MDSD uUnd MDA, ... it i 51
3.5.3.2 Diagrammarten der UMLcoooiiiiiiiiii e e 52
3.5.4 MehrbenUtzersysteme ...iviiiii i i e e e 58
3.5.4.1 Verteilte Systeme. ..o 59
3.5.4.2 CSCW UNA GrOUPWaAI .ttt ittt tiite sttt e tineesate st s it e eaeesaiaeeaaneeaanes 59
3.5.4.3 Kommunikation, Kooperation und Koordination................c.ccvieviennnnn. 61
3.5.4.4 FUunKEionalitaten ..cooeiiii i e 63
3.5.5 Organisationsformen des Software-Designs von Mehrbenutzersystemen 66
3.5.5.1 Funktionsbibliotheken ..o e 67
3.5.5.2 KlassenbibliotheKencciiiiiiiii i e 69
3.5.5.3 [=T a1V o] o PP 70
3.5.5.4 Toolkits und konfigurierbare Anwendungenccccviiiiiiiiiiinnnnnnn. 71

3.5.5.5 Software-EntwWUrfSmMUSEEr ... e 72

II

3.5.6 Architekturmuster von Mehrbenutzersystemen.........c.cccovviiiiiiiiiiiiiiennnns 74
3.5.7 Software-Schnittstellen.......cciiiiiiii e 77
3.6 = 7| P 78
A = £=] < | [0 T 81
4.1 Gestaltung eines BasSiSPrOZESSES ..ovuviuiiriiei i eaaeaaens 81
4.2 Anforderungen an eine Modellbeschreibung............cooiiiiiiiiiiii e 82
4.2.1 Vorwartssimulationoieiiiii i i 82
4.2.2 Ruckwartssimulation und Modelltransformationcoooviiiiiiiiieinns 83
4.3 ENtwUurf €iNes WerkZeUGES......vieiii i e nae s 84
Lo o] 4 =] o)1 o] 1S P 87
5.1 Gestaltung eiNES BasSiSPrOZESSES .uuiiiitiiiiii it i i e ri e raaeaaaaeaas 87
5.1.1 Arbeitsprozess Modellierung und Simulation..........ccccoieiiiiiiiiii e 87
5.1.2 Modulare ArChiteKtUr ..o e 88
5.1.3 Integration von Layout- und Fertigungsprozessplanungc.cccccvvivennnnn. 89
5.1.4 Programmiersprache JAVA als Simulationssprache...........cccoeviviiiiiiiinnnns 89
5.1.5 Grundlegende Merkmale der Modellierung und Simulation........................ 91
5.1.6 Konfliktvermeidung & Rechtemanagement im Mehrbenutzerbetrieb........... 93
5.2 Konzeption Modellbeschreibung.........ccoeviiiiiiii e 97
5.2.1 Vorwartsgerichtete Materialflussmodelle...........c.ooviiiiii i 97
5.2.1.1 Dynamische Detaillierung von Simulationsmodellen........................ 104
5.2.1.2 Modellierung funktionsorientierter Fertigungssysteme..................... 105
5.2.1.3 Multitasking Modellierung und Simulationccoviiiiiiiiiiinenne. 116
5.2.2 Nachrichtenbasierte Kommunikationsschnittstelleccoeviiiiin, 118
5.2.2.1 Initialisierungsnachrichtenccooiiiiiiii i s 119
5.2.2.2 Steuerungs- und Manipulationsnachrichtenoooiiiiiiiiiii 119
5.2.2.3 Nachrichtenerweiterung flr das MRS........ccoiiiiiiiiii e 121
5.2.2.4 Nachrichtenerweiterung flr das Motion Planningcc.ccveeinene. 121
5.2.3 Verwaltung der Experimentdaten ... 123
5.2.4 Ruckwartssimulation und Modelltransformationccvviviiii i, 124
5.2.4.1 RUCKWArtSSIMUIAtIoNvei i e aee s 124
5.2.4.2 Modelltransformationccoiiiiiiii 125

5.3 Konzeption Modellierungswerkzeug.......c.coooeiiiiiiiii e 125
5.3, Sy StEMEN WU i e 125
5.3.2 Entwurf der Funktionsmoduleccoiiiiiiiiiii e 125
5.3.2.1 Modul Modellierung......cciieiiii i e 125
5.3.2.2 Modul Simulatorkern....coie i e 125
5.3.2.3 Modul EXperimentmanager ..ovi i i i 125
5.3.2.4 Modul Visualisierungskomponente.........oooiiiiiiiiiiiiiic i 125
5.3.2.5 Modul Simulationsdatenbank.........ccoiiiiiiiiiiiii 125
5.3.2.6 Modul Administrationccviiiiiiii 125

ST S =T 11 1= o1 e 125
6.1 Definition des Untersuchungsgegenstandscccooiiiiiiiiiiii i 125
B.1.1 ZeNtrallager .. 125
6.1.2 TeilefertigUng ... 125
T G T o 1 = = 125
6.2 Definition des Untersuchungsziels........coiiiiiiiiii i 125
6.3 Datenermittlung und Aufbau eines logischen Modells..........ccooooiiiiiiinnn, 125

6.4 Aufbau eines SimulatioNSMOAEllS . ..viviiiii i etrerreeraanans 125

6.5 Modellverifikation und —Verbesserungccoovviiiiiiiiii e 125
6.6 SiMUIAtioNSEXPEMMENT .t 125
6.7 D)= g =0 [V L= o o U [o [P 125
7 AUSDIICK et e 125
7.1 ZUSAMMENTASSUNG « .ttt et et ettt et e e et e e e enesne e e aneaneneanneananes 125
7.2 Grenzen der Arb eIto e 125
7.3 AUSDIICK . o 125
QUEI BNV ZEICNNIS .ttt e a et 125
Anhang A - DTD zur Modellbeschreibungccooviiiiiiiii e 125

Anhang B - DTD zum Nachrichtenaustauschcoooiiiiiii e 125

Abbildungsverzeichnis

Abbildung 1:
Abbildung 2:
Abbildung 3:
Abbildung 4:
Abbildung 5:
Abbildung 6:
Abbildung 7:
Abbildung 8:
Abbildung 9:

Abbildung 10:
Abbildung 11:
Abbildung 12:
Abbildung 13:
Abbildung 14:
Abbildung 15:
Abbildung 16:
Abbildung 17:
Abbildung 18:
Abbildung 19:
Abbildung 20:
Abbildung 21:
Abbildung 22:
Abbildung 23:
Abbildung 24:
Abbildung 25:
Abbildung 26:
Abbildung 27:
Abbildung 28:
Abbildung 29:
Abbildung 30:
Abbildung 31:
Abbildung 32:
Abbildung 33:
Abbildung 34:
Abbildung 35:
Abbildung 36:
Abbildung 37:
Abbildung 38:
Abbildung 39:
Abbildung 40:
Abbildung 41:
Abbildung 42:
Abbildung 43:
Abbildung 44:
Abbildung 45:
Abbildung 46:

Funktionen der Fertigungslenkung.......cooiiiiiiiiiiii i i s 7
diskrete und kontinuierliche Simulation.........c.ccooiiiiiiiiii 12
Abhangigkeiten der Entwurfssichten ... 18
Grundstruktur der Module im BasSiSProzesscovvviiiiiiiiiiiiiiiii i eans 19
Ablauf einer Simulationsstudie nach [VDI3633].....c.ccoviiiiiiiiiiiiiiieieeens 24
Beispiel eines Petri-Netzesco.viiiiiii s 27
Petri Netz Modell eines Arbeiters, der zwei Maschinen bedient................ 28
Zeitfortschaltung mit fixen und variablen Zeitinkrementen..................... 31
Ablauf einer ereignisgesteuerten Simulationcoooiiiiiiiniie e 32
Rendering PipeliNgvoeiieiii e 35
Komplexitatsreduktion durch Strukturierung [Henk97]cccvviinnnn. 45
Ubersicht Gber die Diagrammtypen der UMLocovieniiniineiniinieniennnn, 50
Notationselemente des Klassendiagramms.......c.cooeiiiiiiiiiiiiiiic i ceaen, 53
Notationselemente des Objektdiagrammscocoiiiiiiiiiiiiiiiic i 54
Notationselemente des Verteilungsdiagramms.........ccooeviiiiiiiiiiiiiinnnnen. 54
Notationselemente des Use-Case-Diagramms........cooevieiieieineinennennnnns 55
Notationselemente des Aktivitatendiagrammsc.cooeviiiiiiiiiiiiiiecnnen, 56
Notationselemente des Zustanddiagramms.........ccoiiiiiiiiiiiiic i, 57
Notationselemente des Sequenzdiagrammsccccvvevieiiiieiieinennannanens 58
Raum/Zeit Matrix nach [Joha9l] ...cciiiiiiii e 60
Topologie prozeduraler Programmablaufe [Henk97]ccovviiiiiiiiininen. 68
Programmtopologie auf Basis einer Klassenbibliothek [nach Booc94]..... 69
Entwurfsphasen der Modellierungsmethode...........cocoviiiiiiiiiiinnnenn 84
Idealtypischer SimulationSprozesscvvvvviiiiii i e 88
schematische Darstellung der Funktionsmodule des Werkzeugs............ 88
angepasster Basisprozess flr die Modellierung und Simulation.............. 91
Sperrmechanismus im Modellbaum ... 95
Struktur eines Simulationsmodells........cocoviiiiiiiiii i 99
unerlaubter Zirkelschluss in einem Simulationsmodell 101
3D-Szene und entsprechende 2D-Projektioncooviiiiiiiiiiiiiin i, 109
Héhenabhangige Projektion in die XY-Ebene ..., 109
Interpolation von Kurven durch feingranulare Auflésung.................... 110
Graph des Motion Planningcooevieiieiii i 112
Sequenzdiagramm des Motion Planning Nachrichtenprotokolls............. 122
schematische Ubersicht Giber die Experimentdatenverwaltung............. 124

Vergleich eines Materialflusses in Vorwarts und Riickwarts Richtung.... 125

Darstellung einer einfachen Fertigungsliniec.ocoioiiiiiiiiii s 125
Schnittstellen bei Grundstrukturenccvoiiiiiiiiic e 125
Verkettungsstrukturen in Fertigungssystemen [nach FiHe0O0] 125
Anpassung der Strukturen an die gewahlte Darstellungsform 125
Vereinfachung einer Struktur... ..o e 125
Variable Anzahl Modellbausteine innerhalb Grundstrukturen............... 125
Grundstruktur ,Unverzweigte Linie™cccoiiiiiiiiiiiiiii e 125
Vereinfachung der unverzweigten Linie fihrt zum Kreis 125
Grundstruktur ,Verzweigung®ccooiiiiiiiiiii 125
Verzweigung OhNe AUSGaNG .. .coueiueiuiiiineateaeae e ae e ean e eae e rae e anens 125

VI

Abbildung 47:
Abbildung 48:
Abbildung 49:
Abbildung 50:
Abbildung 51:
Abbildung 52:
Abbildung 53:
Abbildung 54:
Abbildung 55:
Abbildung 56:
Abbildung 57:
Abbildung 58:
Abbildung 59:
Abbildung 60:
Abbildung 61:
Abbildung 62:
Abbildung 63:
Abbildung 64:
Abbildung 65:
Abbildung 66:
Abbildung 67:
Abbildung 68:
Abbildung 69:
Abbildung 70:
Abbildung 71:
Abbildung 72:
Abbildung 73:
Abbildung 74:
Abbildung 75:
Abbildung 76:
Abbildung 77:
Abbildung 78:
Abbildung 79:
Abbildung 80:
Abbildung 81:
Abbildung 82:
Abbildung 83:
Abbildung 84:
Abbildung 85:
Abbildung 86:
Abbildung 87:
Abbildung 88:
Abbildung 89:
Abbildung 90:
Abbildung 91:
Abbildung 92:
Abbildung 93:
Abbildung 94:

Grundstruktur ,Zusammenflihrung®ccoiiiiiiiiiiiiic e 125
Zusammenflihrung ohne EiNgangccoviiiiiiiiiiii e 125
Grundstruktur ,KreUuzung®ooiiiiii i e 125
Grundstruktur ,Parallele Linien™ ..o e 125
Grundstruktur ,,RUckkopplung®™o 125
Grundstruktur ,, S e i i e 125
Stern mit nur einem angehdngten Modellbaustein...............cooeeiinen. 125
Vereinfachung der Struktur ,Nebenschluss®c.cooiiiiiiiiiiiiiii e, 125
Vereinfachung der Struktur ,Schleife™ ... 125
AUSGANGSTIUSS . e 125
Erster Iterationsschritl.....cciiri i e 125
Resultat von Iterationsschritt 1cooiviiiiiiii e 125
Zweiter Tterationsschritt......ccoviiiiiiii 125
Resultat von Iterationsschritt 2ccooiiiiiiii 125
Dritter IterationssChritt......coooiiiiii e 125
Resultat von Iterationsschritt 3 ... 125
Vierter Iterationsschritt......ooeii i e 125
Resultat von Iterationsschritt 4ccooiiiiiii 125
Flnfter Iterationsschritt ... e 125
Resultat von Iterationsschritt 5....cviiiiiiii e 125
Sechster Iterationsschritt. ..o 125
Resultat von Iterationsschritt 6......ccoviiiiiiiiii 125
Ausgangsfluss des Beispiels......coouiieiiiiiiii i 125
Erster Iterationsschritl.....cciiri i e 125
Zweiter Iterationsschritt... ..o 125
Dritter IterationssChrittcoiiiiii i e 125
1 o] alo=Te [oAV o] e =] o o = 125
LI 024 A L= Lo 161 o o [P 125
Aufbau eines typischen Modellbausteinscccovvviiiiiiiiiiiiiin i, 125
Grundstruktur Parallele Linie.......ccoiviiiiiii e 125
Grundstruktur RUCKKOPPIUNG .cuiiiiii e 125
GrundstruKEUr St ..o i 125
Ubersicht des Merge-Algorithmuscuevriiniiiiniiiiiie e eeeeee e ans 125
Use-Case-Diagramm des Werkzeugs......ovvviiiiiiiiiiiiiic i i viaeaas 125
Grobstruktur der Funktionsmodule des Werkzeugs...........c.cvivvienenne. 125
3-Tier- Architektur des Modellierungsmoduls............ccooiiiiiiiiiiiinnns 125
Sequenzdiagramm des Modellierungstoolsccvvviiiiiiiiiiiiiiiccien, 125
Sperrmechanismus des Modellierungsservers.....c.oooevviiiiiiiiiiinninenn. 125
Schematische Darstellung des Modellierungsclients.............c.ccveeenenne. 125
Funktionsbereiche des Simulatorkernsccooiiiiiiiiiiiii e 125
Sequenzdiagramm einer Interaktion wahrend der Simulation 125
Erweiterung des Modellierungsmoduls um Visualisierungskomponenten 125
schematischer Aufbau der Gesamtarchitektur...........c.oooiiiiiii, 125
schematischer Aufbau des 3D-Clients.......cccocviiiiiiiiiiiici e 125
Datenbereiche der Simulationsdatenbank ..., 125
Teilmodule des Administrationsmoduls........c.ccvviiiiiiiiiiii e 125
Grobschema der Fertigung von Karts bei der PaderK GmbH................ 125
Zentrallager der PaderK in niedriger Detaillierung...........ccoovievieinnnn. 125

Abbildung 95:Zentrallager der PaderK in hoher Detaillierungcoooiiiiiiiiiiinnnns 125
Abbildung 96: Teilefertigung der PaderK in niedriger Detaillierung............c.covvivvinnnns 125
Abbildung 97: Teilefertigung der PaderK in hoher Detaillierungcccoooiiiiiiiiinnns 125
Abbildung 98: Montage der PaderK in niedriger Detaillierungcooviiiiiiiiiiinnns 125
Abbildung 99: Montage der PaderK in hoher Detaillierungcocoiiiiiiiiiiiiiiniiin 125
Abbildung 100: Mainframe der Modellierungskomponentec.coviiiiiiiiiiiiciinnens 125
Abbildung 101: DraufsiChten 2Diiiiiii i i e i e e e 125
Abbildung 102: Benutzeroberflache des Event-Editors ... 125
Abbildung 103: Modellierungsumgebung 2.5Dcouiiviiiiiiii e 125
Abbildung 104: 3D-Modellierungskomponenteooiniiniiiiii e 125
Abbildung 105: Benutzeroberflache zum Erstellen eines Modellbausteins.................. 125
Abbildung 106: Quellcode des Input-Channels im Modellbaustein Warenausgang....... 125
Abbildung 107: Modellierung des Zentrallagers mit der 2D-Ansicht...........c.coiiiinniis 125
Abbildung 108: Anmeldedialog bei vorhandenen Sessionsc.cocvviiiiiiiiiiiiciiiienns 125
Abbildung 109: Darstellung einer blockierten Bausteininstanz.............cccceviiiininnnnns 125
Abbildung 110: Darstellung der Montage der PaderK im Modellierungstool................ 125
Abbildung 111: Invertierung des detaillierten Modells der Teilefertigung................... 125
Abbildung 112: Auszug aus der Oberflache des Administrationstools........................ 125
Abbildung 113: Auszug aus dem Datenbankschemaccooiiiiiiiiiiiiiiii e 125
Abbildung 114: Benutzeroberflache des Simulators ..o 125
Abbildung 115: Animation von Token in der 2D-Ansicht ... 125
Abbildung 116: Debugging und Simulator-Steuerung der 2D-Visualisierung.............. 125
Abbildung 117: Visualisierungsumgebung 2.5D.......coiiiiiiiiii e 125
Abbildung 118: Benutzeroberflache des Reportingtoolscccoiiiiiiiiiiiiii i 125
Abbildung 119: Ansichten des EXperimentmanagers......ccovvviiiiiiiii i i i ieeaas 125
Abbildung 120: Benutzeroberflache des 3D-Clients......c.ccviiiiiiiiiiiiiiiiicici e 125
Abbildung 121: Auslastung der Teilbereiche bei der Vorwartssimulation 125

VIII

Tabellenverzeichnis

Tabelle 1:
Tabelle 2:
Tabelle 3:
Tabelle 4:
Tabelle 5:
Tabelle 6:
Tabelle 7:
Tabelle 8:
Tabelle 9:

Tabelle 10:
Tabelle 11:
Tabelle 12:
Tabelle 13:
Tabelle 14:
Tabelle 15:
Tabelle 16:
Tabelle 17:
Tabelle 18:
Tabelle 19:
Tabelle 20:
Tabelle 21:
Tabelle 22:

Anforderungen aus den neuen Einsatzfeldern der Ablaufsimulation 21
Dimensionen der Auspragung von Entwurfsmustern nach [GaHe01]............ 74
Kategorien von Architekturmustern 75
Basiselemente eines Simulationsmodells........cccoviiiiiiiiiiiic i 98
Attributliste eines Simulationsmodells........c.ooviiiiiii 100
Typen von Variablen der Modellbeschreibung.......c.ccooiiiiiiiiiiiiiiiiic i 102
Auswertemadglichkeiten der Variablen ... 103
Standardisierte EVENTS ..oovviiriiiii i i 104
Zusatzliche Attribute eines Simulationsmodells fir das MRS..................... 105

Zusatzliches Ereignis zur Abbildung von Modellen im MRS...................... 105

Zusatzliche Attribute zur Integration des Motion Planning 116

Zusatzliche Attribute fur die Mehrbenutzer-Modellierung und -Simulation. 118
Initialisierungsnachrichten. ... 119
Steuerungs- und Manipulationsnachrichten............coooiinnn 120
Erweiterung flr das MRS... ... i e 121
Nachrichtenerweiterung fiir das Motion Planning.............cooooiiiiiiiciinnens 122
BTNt o oW [e 1] g g T= o g D o 125
BewertungsmatrixX Co. i 125
BewertungsmatriX Ca. . 125
TN o] e] 0 1= Lo o G 125
Erweiterung der Modellbeschreibung durch Invertierung.................o....e. 125
Performance-Test : Ladezeiten der 2.5D-Modellierungsumgebung........... 125

IX

Definitionsapparat

DY T oY ioTo] o I A =Y o T [U T [5
Definition 2: Fertigungssy Stem ... ittt et 5
Definition 3: FertigUNgSPIOZESSuinuiieiiei ettt et et et e e e e e e e e aneneans 5
DY T oY Lo T0] S o] ol - o T P 6
Definition 5: FertigungsplanUng......coiiiiiiii i i e aas 6
Definition 6: LayOutplanUng . ..o e 6
Definition 7: Fertigungslenkung ..o e 6
Definition 8: FertigungsprogrammplanuUngcoeeiiiiiiiiiii i e aaaes 7
Definition 91 MENGENPIANUNG ..iiiiii i e i e r e aaes 8
Definition 10: TerminplanuUngo.ooeiiiiie ittt r e s e eae e eaneneanens 8
Definition 11: KapazitatsSplanUng ..o e e e e e aneaeans 8
Definition 12: OrganisationsSfOrm ...t eas 9
Definition 13: Materialfluss .. .o.vviriii i e e e e 9
Definition 14: SimUIatioN ... e 10
Definition 15: MOdell. . .uiii i 10
Definition 16: Rechnerunterstiitzte Simulation ... 11
Definition 17: SimMUIAEOr . e e 11
Definition 18: disKret ... e 11
Definition 19: KontinUierliCh. ... e 11
(D7 T o 1w Te] o WA O I = =1 o | oY= PP 11
Definition 21: SimulationsSstUdieviiri i e 12
Definition 22: Modelli@rUngc.oiiiniiiii i e 12
Definition 23: Simulationslauf ... e 12
Definition 24: SimulationseXperiment. e 13
DEfiNIiON 25 ANAIY S . ittt e 13
Definition 26: MehrbenULZErSYStaMuiiii i i e e v e e aes 14
Definition 27: MUItasSKING ..o i e e e 14
Definition 28: INteraktion ..uiiiii i e 15
[DI=] i1 aTin oY a PA N a0 0 1] 5] Lo o FA PP 15
Definition 30: Virtuelle Realita@t......coovviiiiii i e e 15
Definition 31: Vorwartsterminierung ..o i e e 16
Definition 32: RUCKWATSTErmMINIEIrUNG .. vt e e e e eaenes 16

Motivation -1 -

1 Motivation

+Wir missen das Rad
mit Miihe vorwérts drehen,
zurtick rollt es von selbst."

(Walter Ludin)

Globalisierung, Produktindividualisierung und Ausweitung der Produktpalette bis hin zu
Nischenprodukten pragen die Entwicklung der Angebotsstruktur in vielen Bereichen der
industriellen Fertigung. Verkirzte Produktlebenszyklen, kundenorientierte Produktion und
eine erhohte Variantenvielfalt sind kennzeichnend fir die Erzeugnisse heutiger
Industrieunternehmen. Um dennoch kosten- und zeiteffizient fertigen zu kénnen, wird die
Digitalisierung von Produkt- und Prozessplanung mit Nachdruck verfolgt und stetig
vorangetrieben [Brac02]. Neue Produkte werden im Idealfall vollstandig digital am
Rechner konstruiert, modelliert und optimiert. Neben Zusammenbauuntersuchungen
lassen sich mit den digitalen Modellen beispielsweise virtuelle Crashtests durchfiihren
oder verschiedene Designvarianten gegeneinander abwdagen [Brac02]. Die Vorteile dieser
Methodik liegen unter anderem in reduzierten Entwicklungskosten und —zeiten und helfen
dadurch dem jeweiligen Unternehmen, seine Wettbewerbsfahigkeit am Markt zu
verbessern [VDI4499].

Die fortschreitende Digitalisierung beschrankt sich jedoch keineswegs auf Modelle der
herzustellenden Produkte, sondern bezieht sich dariber hinaus auch auf die zur
Herstellung benétigten Prozesse. Eine Studie von Roland Berger stellt beispielhaft heraus,
dass seitens der Unternehmen hohe Erwartungen an die Digitalisierung der
Prozessplanung gestellt werden: ,Eine Zeitersparnis von bis zu 30% bei der
Produktionsplanung und dem Produktionsanlauf erhoffen sich die Automobilbauer von der
virtuellen Vorplanung bei 15% Kostenersparnis" [Baum03].

Fir die Planung, Absicherung und Verbesserung von Fertigungsprozessen ist die
Ablaufsimulation ein etabliertes Werkzeug, welches es dem Anwender ermdglicht
Struktur- bzw. Funktionsmodelle zu erzeugen und in einer Simulationsumgebung
auszufiihren [LaKe0O0]. Dadurch kénnen wahrend der Planung sowohl gegenwartige, als
auch zukinftige Situationen in ihren dynamischen Zusammenhangen berlicksichtigt
werden. Die Optimierung solch komplexer und dynamischer Szenarien kann nur noch
durch ein experimentelles Betreiben verifizierter Modelle erfolgen, also durch den Einsatz
der Ablaufsimulation (vgl. [DMDO03]).

Die Weiterentwicklung vorhandener Softwarelésungen hat in den vergangenen Jahren
mit den steigenden Anforderungen nur schwer Schritt halten kénnen. Fir den
Problembereich der Ablaufsimulation von Fertigungssystemen soll deshalb mit dieser
Arbeit ein neues Werkzeug entwickelt werden. Um Materialflussmodelle auf Basis einer
integrierten Datenhaltung effizienter, mdglichst anwenderfreundlich und in einer
kooperativen Umgebung erstellen und ausfihren zu kénnen, sollen insbesondere
folgende Aufgaben und Arbeitsweisen unterstitzt werden:

-2-

Synchronisierte, ortsunabhidngige Mehrbenutzerunterstiitzung bei der
Modellierung und Simulation von Materialflussmodellen in einer interaktiven,
immersiven und virtuellen Umgebung

Die Planung und Evaluierung eines Fertigungsprozesses kann heutzutage nicht mehr als
ein Arbeitsschritt verstanden werden, bei dem der Prozess der Modellierung, Ausfiihrung
und Analyse der Simulationsmodelle am Computer einer einzelnen Person stattfindet. Die
Komplexitat der Planungsprojekte fuhrt vielmehr dazu, dass sie zumeist von
Simulationsteams bearbeitet werden. Neben Projektmitarbeitern aus verschiedenen
Anwendungsbereichen arbeiten auch mehrere Simulationsexperten an einem einzigen
Simulationsmodell. Sie werden durch die aktuell verfligbaren Software-Produkte nur
unzureichend in ihrer Teamarbeit unterstitzt. Darliber hinaus erfordert insbesondere die
Kommunikation mit Nicht-Simulationsexperten innerhalb des Planungsteams eine
moglichst immersive Darstellung, die das Verhalten des Simulationsmodells bestmdglich
aufzeigt und erklart. Zur Visualisierung der Modelle und deren dynamischen
Verhaltensweisen soll eine virtuelle Umgebung dienen, in der das Simulationsmodell
dreidimensional dargestellt wird. Der Anwender selbst soll hier nicht mehr langer
ausschlieBlich passiver Betrachter sein, ohne interaktiv auf die aktuelle Simulation
Einfluss zu nehmen, sondern vielmehr in der virtuellen Umgebung die Simulation
beeinflussen und modifizieren kdnnen. Die Integration in das Simulationsmodell und
damit auch in das abgebildete System, erhdéht sein Prozessverstandnis und schafft eine
realistischere Planungsumgebung. Eine dreidimensionale Modellierung und Simulation als
Kombination von Layout- und Prozessplanung kann den Anwender beim Aufbau des
Fertigungsprozesses zusatzliche Planungsrestriktionen erkennen und von Beginn an
berilicksichtigen lassen. Die Qualitat der Gesamtplanung kann verbessert und weitere
Planungszeit innerhalb des Gesamtprojektes eingespart werden.

Planung, Evaluierung und fortlaufende Verbesserung der Fertigungsprozesse
liber alle Planungs- und Ausfiihrungsphasen bis zur Riickkopplung in die
Fertigungslenkung

Planung und Evaluierung der Fertigungsprozesse beschreibt den Einsatz der
Ablaufsimulation Uber alle Planungs- und operativen Phasen eines Fertigungsprozesses
hinweg. Neben dem Einsatz im Rahmen von Machbarkeitsstudien, Variantenplanungen
oder quantitativen Fragestellungen, in denen ein System meist hinsichtlich seiner
maximalen Leistungsfahigkeit oder eines optimalen Durchsatzes untersucht wird, soll die
Simulation auch Fertigungsprogramme planen oder zumindest absichern kdénnen. Das
Simulationsmodell eines Fertigungsprozesses kann somit Uber alle Phasen der Struktur-,
Mengen-, Kapazitats- und Programmplanung bis hin zur Prognose und der laufenden
Verbesserung vorhandener Fertigungsprozesse eingesetzt werden. Daten- und
Visualisierungsschnittstellen sollen Uiber anpassbare Austauschformate konzipiert werden,
um bewertete Simulationsergebnisse von Prognoseldufen zumindest als
Entscheidungshilfe in den laufenden Fertigungsprozess zurlickspielen zu kdénnen oder
Planverbesserungen innerhalb der Fertigungslenkung direkt in den operativen Betrieb zu
Ubernehmen. Um auch kundenorientierte Fertigungsprozesse madglichst homogen
innerhalb eines Werkzeugs zur Ablaufsimulation abbilden zu kénnen, soll neben einer
Vorwartssimulation auch eine Rickwartssimulation (rickwarts berechnete Ausflihrung
der Simulationsmodelle) sowie eine zeitorientierte Ausfihrung in Vor- oder
Ruckwartsrichtung unterstiitzt werden.

Motivation -3-

Kooperative Planung innerhalb von Unternehmen, Unternehmensverbiinden
oder Supply-Chain-Netzwerken

GroBunternehmen, virtuelle Unternehmen oder Supply-Chain-Netzwerke fertigen bereits
heute an unterschiedlichen Standorten mit aufeinander abgestimmten Prozessen. Um die
Lieferfahigkeit innerhalb eines Supply-Chain-Netzwerks sowie die Stabilitat aller
einzelnen Fertigungsprogramme besser gewahrleisten zu kénnen, missen die Planungen
enger aufeinander abgestimmt und lberwacht werden. Die Mehrbenutzerfahigkeit der
angestrebten Ablaufsimulation ermdglicht eine kooperative Planung mehrerer
Simulationsexperten an einem gemeinsamen, dynamisch detaillierenden Simulations-
modell des Fertigungsnetzwerks unabhdngig vom Standort der jeweiligen Experten.
Innerhalb einer Supply-Chain oder eines Unternehmensverbundes, aber auch standort-
Ubergreifend innerhalb einer Unternehmung, kdénnen so auf Basis eines
Rechtemanagements und umfangreicher Kommunikationsmechanismen Simulations-
experten aller Standorte gemeinsam Simulationsmodelle erarbeiten, verifizieren und
validieren, Simulationsexperimente kooperativ ausfihren und in einer einzigen,
gemeinsamen Umgebung auswerten. Da die verschiedenen Partner innerhalb solcher
unternehmensinternen wie -externen Fertigungsnetzwerke nach unterschiedlichen
Fertigungsablaufarten produzieren kénnen, muss neben dem Werkzeug an sich auch die
zugrunde liegende Modellbeschreibung Fertigungssysteme beherrschen, die sowohl ein
besonders hohes MaB an Komplexitdt bieten, als auch ber rein objektorientiert
gegliederte Fertigungssysteme hinausgehen und damit die Modellierung und Simulation
von funktional gegliederten Fertigungssystemen bzw. deren Mischformen erlauben. Auch
in diesem Themenbereich bietet sich der Einsatz des Werkzeugs Uber die reinen
Planungsphasen hinaus bis hin zur Umplanung und Einsteuerung in der Fertigungs-
lenkung an.

Aus obigen Themenbereichen ergeben sich Fokus und Motivation der Arbeit. ihre Struktur
orientiert sich an folgender Vorgehensweise:

Kapitel 2 grenzt den Anwendungsbereich ,Fertigung® und den Problembereich
,Ablaufsimulation™ so ein, wie er in der Arbeit betrachtet werden soll. Es beschreibt die
hier aufgezeigten Losungsideen praziser und erlautert alle zur Lésung erforderlichen
Grundlagen. AbschlieBend werden die Anforderungen an den zugrunde liegenden
Arbeitsprozess, die verwendete Modellbeschreibung sowie das Werkzeug selbst anhand
der eingefihrten Definitionen herausgearbeitet und als Anforderungsbeschreibung
zusammengefasst. Die Analyse bestehender Konzepte zur Simulationsmethodik, deren
Einzelprozesse ,Modellierung®, ,Simulation® und ,Visualisierung" und zu Verfahren des
Software-Designs und -Entwicklung findet sich in Kapitel 3. Die identifizierten Ansatze
werden jeweils in Bezug auf die gestellten Anforderungen bewertet. Die erkannten
Defizite hinsichtlich der Anforderungen werden in Kapitel 4 zusammengefasst und als
eigentliche Zielsetzung der Konzeption und Realisierung abgeleitet. Die Festlegung des
Arbeitsprozesses, die Konzeption von Modellbeschreibung und Werkzeug erfolgt in Kapitel
5. Kapitel 6 beschreibt die Phase der Realisierung des Werkzeugs. Neben der eigentlichen
Implementierung widmet es sich auch einer Beispielanwendung, die als typisch flir den
Problembereich angesehen werden kann. Die Ergebnisse zeigen, dass die entwickelte
Modellbeschreibung mit dem Werkzeug angewandt werden kann und das Erreichen der
Anforderungen erméglicht. Die Zusammenfassung bietet in Kapitel 7 einen Ausblick auf
weiterfihrende Folgearbeiten, die sich in dem gewahlten Themenbereich anbieten.

Ablaufsimulation von Fertigungssystemen -5-

2 Ablaufsimulation von Fertigungssystemen

,In allen Grenzen ist auch
etwas Positives™

(Immanuel Kant)

Ziel dieses Kapitels ist das Erstellen einer vollstandigen Anforderungsbeschreibung,
anhand derer der zur Verfligung stehende Stand der Technik erarbeitet werden kann. Die
in Kapitel 1 aufgezeigten Probleme miissen dazu prazisiert und erlautert werden. Dazu
wird die Aufgliederung in drei Teilprobleme auch in Abschnitt 2.3 Gbernommen und
fortgesetzt. Zu Beginn muss dazu in Abschnitt 2.1 zundachst der Anwendungsbereich
J~Fertigungssysteme®™ sowie unter Abschnitt 2.2 das Problemfeld der Modellierung,
Simulation und Analyse mittels der Ablaufsimulation genauer eingegrenzt werden.

2.1 Fertigungssysteme

Die bereits in Kapitel 1 angerissenen Probleme stellen sich in einem globalisierten
Wettbewerb insbesondere flr solche Unternehmen, die Gliter produzieren und diese an
einem oder verschiedenen Markten platzieren wollen. Den technisch zugrunde liegenden
Prozess der Erstellung solcher Giter bezeichnet man als Fertigung.

Definition 1: Fertigung

,Die Fertigung umfasst alle technischen MaBnahmen zur Herstellung von Material
oder Erzeugnissen. Sie ist grundsétzlich ein diskontinuierlicher Prozess" [Dang99]

In Abgrenzung zum Begriff der Produktion beschrankt sich die Fertigung auf das
Herstellen physischer Erzeugnisse mittels fortschreitender, diskontinuierlicher und
zielgerichteter Transformationen in einem abgegrenzten System. Ein Fertigungssystem
kann als solch ein operatives System zur Fertigung und damit als Objekt der jeweiligen
Planungsaufgaben verstanden werden.

Definition 2: Fertigungssystem

~Ein Fertigungssystem ist eine technisch, organisatorisch (und kostenrechnerisch)
selbststéndige Allokation von Potentialfaktoren zu Fertigungszwecken (vgl.
[Kern79]). Es besteht aus elementaren Arbeitssystemen, die die kleinste Einheit
einer Kombination der Potentialfaktoren Betriebsmittel und Arbeitskréfte
darstellen und eine oder mehrere Klassen von Transformationen durchfiihren
kénnen" (in Anlehnung an [Rose92]

Als Fertigungsprozess soll ein Fortschreiten der Fertigung oder eines Elementes des
Fertigungssystems verstanden werden.

Definition 3: Fertigungsprozess

,Ein Fertigungsprozess kennzeichnet das Fortschreiten im Durchfiihren eines
Vorgangs der Fertigung" [in Anlehnung an Dang99]

-6 -

Ein Vorgang soll in dieser Arbeit als
Definition 4: Vorgang

»Ein Vorgang ist die zielgerichtete Transformation von Elementen in einem
Einganszustand in Elemente in einem Austrittszustand mittels eines Verfahrens"
[DaWa97]

verstanden werden.

Die Fertigungsprozesse besser aufeinander abzustimmen und Ulber die verschiedenen
Planungsphasen einer Neu- oder Umplanung zu verbessern ist eine der Hauptaufgaben
fir den Einsatz der Ablaufsimulation. Oftmals sind die dynamischen Zusammenhange
zwischen den Einzelprozessen innerhalb einer Fertigung so komplex, dass sich die
Auswirkungen von Anderungen den Planern nicht sofort und in Ganze erschlieBen.
Haupteinsatzgebiet der Simulation ist deshalb heute oftmals die Absicherung von
Fertigungsprozessen und damit auch der Anordnung von Fertigungssystemen innerhalb
einer Fertigung vor deren physischer Umsetzung: die Fertigungsplanung.

Definition 5: Fertigungsplanung

,Die Planung der Fertigung umfasst alle einmalig zu treffenden MaBnahmen
beziiglich der Gestaltung eines Fertigungssystems und der darin stattfindenden
Fertigungsprozesse"[Dang99]

Innerhalb der Fertigungsplanung kann weiter zwischen der eigentlichen Entwicklung
neuer Prozesse und Verfahren und der Gestaltung der Fertigungsprozesse und ihrer
Verbindungen in einer Fertigungsprozessplanung unterschieden werden (vgl. Abbildung
1). Um bestehende oder geplante Fertigungssysteme in ihrer realen oder geplanten
Anordnung nachzubilden und die Fertigungsplanung somit zu verfeinern, wird in einem
begleitenden Planungsschritt die Layoutplanung eines Fertigungssystems durchgefihrt.

Definition 6: Layoutplanung

JAufgabe der Layoutplanung ist, flur eine vorgegebene Menge von
Organisationseinheiten, deren wechselseitige Foérdervorgdnge bekannt sind, in
einer gegebenen Planungsfliche einen Anordnungsplan mit minimalen
Férderkosten zu suchen" [Dang99, in Anlehnung an Anordnungsplanung]

Um die entstandenen Simulationsmodelle auch in spateren Planungsphasen und dem
laufenden Betrieb nutzbar zu halten, missen sie permanent gepflegt und gewartet
werden. Wie in der Motivation angerissen, kann die Ablaufsimulation zukiinftig auch neue
Anwendungsgebiete im operativen Betrieb der Fertigungssysteme erschlieBen,
beispielsweise zur Absicherung von Planzahlen oder als Prognoseinstrument in einem
Leitstand. Ihre Anwendung weitet sich in den Bereich der Fertigungslenkung aus.

Definition 7: Fertigungslenkung

,Fertigungslenkung ist die Aufgabe, fiir ein gegebenes Fertigungssystem -
ausgehend von gegebenen Daten - Solldaten, die in sich und mit den
Ausgangsdaten konsistent sind, flir einen definierten, zielgerichteten Ablauf eines

Ablaufsimulation von Fertigungssystemen -7 -

Fertigungsprozesses festzulegen, dem Fertigungsprozess vorzugeben und diesen
auf Inkonsistenzen abzupriifen" [DaWa97]

In Anlehnung an die Darstellung von Hackstein [Hack89] koénnen innerhalb der
Fertigungslenkung (bei Hackstein: Produktionssteuerung) folgende Unterfunktionen
unterschieden werden:

Prozessentwicklung

Fertigungsprozessplanung

Fertigungsprogrammplanung

Mengenplanung

Termin- & Kapazitatsplanung

Auftragsveranlassung

Auftragsiiberwachung

Abbildung 1: Funktionen der Fertigungslenkung

Die Unterfunktionen der Fertigungslenkung sollen im Folgenden kurz beschrieben
werden, um Einsatzgebiete der Ablaufsimulation in der Anforderungsbeschreibung (vgl.
Abschnitt 2.4) prazise formulieren zu kénnen.

Definition 8: Fertigungsprogrammplanung

»Die Planung des Fertigungsprogramms (Produktionsprogrammplanung) besteht
darin festzulegen, welche Erzeugnisse in welchen Mengen in einem bestimmten
Zeitabschnitt hergestellt und verkauft werden sollen." [Dang99]

Die Fertigungsprogrammplanung wird Ublicherweise in die Schritte strategische, taktische
und operative Planung unterteilt. Die strategische Planungsphase legt die wesentlichen
Geschaftsfelder des Unternehmens fest, wohingegen die taktische Planung den Fokus auf
die Entwicklung und Auswahl neuer Erzeugnisse legt. Die Ablaufsimulation zur
Absicherung von Fertigungsprogrammen kommt vermehrt in der dritten Phase, der
operativen Planung zum Einsatz, in der auf Basis vorheriger Planungsphasen die
Stlickzahlen der zu fertigenden Erzeugnisse fir einen festgelegten Zeitraum festgelegt
und beplant werden (vgl. [Dang99]). Heutzutage ist die Ablaufsimulation auf den Einsatz
als ,Frihwarnsystem™ beschrankt, liefert also nur Prognosen Uber zukilinftige
Systemzustande, um den Fertigungslenker gréBere Handlungszeitrdume zu ermdéglichen

-8-

[Klos06]. Mit dem hier zu konzipierenden Werkzeug soll die Ablaufsimulation auch die
eigentliche Planung von Fertigungsprogrammen unterstitzen.

Definition 9: Mengenplanung

,Die Mengenplanung hat die Aufgabe, Auftrdge (ber Erzeugnisse und davon
abgeleitete Materialien an die Fertigung und den Einkauf mit den erforderlichen
Zeitpunkten und Uber die erforderliche Menge zu dbermitteln, so dass das
Fertigungsprogramm erfiillt werden kann" [DaWa97]

Eine Reihenfolge der herzustellenden Erzeugnisse wird erst in den nachfolgenden Stufen
ermittelt. Teilaufgaben der Mengenplanung sind die Bestands- und Bestellrechnung, die
Bedarfsrechnung sowie die Sticklistenorganisation. Die Mengenplanung kann
verbrauchsorientiert, wie auch bedarfsorientiert erfolgen®.

Definition 10: Terminplanung

,Die Terminplanung dient dazu, Aussagen lber Termingeriste fir die Bewéltigung
einer Gesamtaufgabe zu machen. Die Terminplanung betrachtet Ablaufstrukturen,
die nur einmal instanziiert werden." [DaWa97]

Die Terminplanungsverfahren bericksichtigen nicht die Kapazitatsrestriktionen der
Fertigungselemente, sondern beachten nur Zeitabldufe innerhalb der vorgegebenen
Ablaufstrukturen. Flr jeden einzelnen Fertigungsprozess werden nur Start- und
Endtermine bericksichtigt.

Definition 11: Kapazitatsplanung

,Bei der Kapazitdtsplanung sind Beginn-Termin und Fertigstellungs-Termin eines
in der Mengenplanung festgelegten Fertigungsauftrags sowie die Zwischentermine
der einzelnen Fertigungsprozesse unter Berlcksichtigung eines begrenzten
Kapazitdtsangebots festzulegen." [in Anlehnung an DaWa97]

In der Kapazitatsterminierung wird grob geplant, ob die erforderlichen Kapazitaten fir
das Fertigungsprogramm vorhanden sind. Bei Kapazitatsengpdassen missen einzelne
Arbeitsschritte in andere Zeitrdume verschoben werden. Sobald dies geschehen ist,
kénnen grob terminierte Auftrdage an die folgenden Schritte der Fertigungslenkung
(Auftragsveranlassung und -uberwachung) libergeben werden. Innerhalb der operativen
Planungsaufgaben kommen vermehrt Methoden der Rickwartsterminierung zum Einsatz
(vgl. Abschnitt 2.3). Die Ergebnisse der Feinplanungsphasen dienen als Ausgangsbasis
fur die nachfolgenden Stufen der Auftragsveranlassung und —-iiberwachung.

Fertigungssysteme kénnen nach unterschiedlichen Merkmalen klassifiziert werden. Neben
Merkmalen, die sich auf das resultierende Erzeugnis beziehen, kdnnen Merkmale
gefunden werden, die sich auf den organisatorischen und logischen Aufbau der

' Eine genaue Beschreibung der verbrauchs-, bzw. bedarfsorientierten Mengenplanung findet sich bei

[DaWa97]

Ablaufsimulation von Fertigungssystemen -9-

Fertigungsprozesse beziehen. Neben Fertigungsart und -Struktur ist insbesondere die
Organisationsform kennzeichnend fiir den Materialfluss.

Definition 12: Organisationsform

,Die Organisationsform kennzeichnet die am Fertigungsprozess orientierte Art der
Zusammenfihrung von Betriebsmitteln zu organisatorischen Einheiten. Sie
bestimmt ganz wesentlich die Qualitdt der inter-OE-Beziehungen und die
rdumliche Anordnung der Organisationseinheiten™ [Dang99]

Neben der raumlichen Anordnung wirkt sich die gewahlte Organisationsform
entscheidend auf Beziehungen der Organisationseinheiten untereinander und damit auf
den Materialfluss der Fertigung aus. Unter einem Materialfluss in der Fertigung wird
gemaB VDI 3300 verstanden [VDI3300]:

Definition 13: Materialfluss

,Materialfluss ist die Verkettung aller Vorgdnge beim Gewinnen, Be- und
Verarbeiten, sowie bei der Verteilung von stofflichen Gltern innerhalb festgelegter
Bereiche. Zum Materialfluss gehéren alle Vorgédnge wéhrend des Durchlaufes von
Gutern (z.B. Material, Stoffmengen, Abfall, Datentrdger usw.) durch ein System,
wie Bearbeiten, Handhaben, Transportieren, Priifen, Aufenthalte und Lagerungen.
..." [VDI3300]

Die Organisationsform eines Materialfluss einer Fertigung kann gemadB [DaWa97] nach
zwei grundlegenden Prinzipien unterschieden werden: funktionsorientiert gegliederte
Fertigungssysteme und objektorientiert gegliederte Fertigungssysteme?®. Sie sollen im
Folgenden kurz charakterisiert werden.

Ein funktionsorientiert gegliedertes Fertigungssystem liegt vor, wenn sich die raumliche
Anordnung der Betriebmittel (Maschinen, etc.) an deren Fertigungsaufgabe orientiert. Ein
typisches Prinzip flr eine funktionsorientiert gegliederte Fertigung ist die
Werkstattfertigung, fur die die Zusammenfassung von Fertigungsmitteln mit gleichartigen
Fertigungsvorgangen zu Abteilungen und das Fehlen fester Transportbeziehungen
zwischen den Fertigungsmitteln typisch ist. Neben einer hohen Elastizitat kann eine
verbesserte Flexibilitat gegenuber wechselnden Anforderungen innerhalb der Fertigung
garantiert werden. Diesen Vorteilen stehen eine verringerte Ubersichtlichkeit des
Gesamtprozesses und ein erhéhtes Transportaufkommen gegentber.

Unter den objektorientiert gegliederten Fertigungssystemen werden diejenigen
Organisationsformen summiert, deren Anordnung sich an dem herzustellenden Erzeugnis
orientiert. Haufige Organisationsformen sind Gruppen-, Linien und FlieBfertigung. Bei der
Gruppenfertigung werden die zur Bearbeitung ahnlicher Fertigungselemente bendtigten
Fertigungsmittel raumlich zusammengestellt. Bei einer Linienfertigung sind die
Fertigungsmittel nach der Ablauffolge angeordnet und durch einfache
Transporteinrichtungen verknipft. Sowohl Gruppen-, als auch Linienfertigung sind

2 [Dang99] unterscheidet zwischen ortsgebundener und ortsverinderlicher Fertigung. Die wesentliche

Unterscheidung basiert aber auch hier auf der Frage, ,,wer sich bei der Zuordnung von Fertigungsobjekt und
Betriebsmittel zur Durchfiihrung einer Aufgabe bewegt: Fertigungsobjekt oder Betriebsmittel*

-10 -

gegeniiber Anderungen der Fertigungsablauffolge flexibel. Gegeniiber der Linienfertigung
zeichnet sich die FlieBfertigung durch eine feste Verkettung der einzelnen
Arbeitsstationen aus. Dadurch werden eine besonders niedrige Durchlaufzeit und eine
hohe Transparenz bezlglich des Fertigungsprozesses erreicht. Eine FlieBfertigung ist
dadurch allerdings auch weniger flexibel und reagiert empfindlicher auf Stérungen. Je
nach Auspragung des Merkmals Fertigungsart (LosgréBe, Wiederholhdufigkeit) kann die
FlieBfertigung in Serien- oder Massenfertigung differenziert werden, wobei die
Massenfertigung als Extremfall einer Serienfertigung angesehen werden kann.

Der Anwendungsbereich dieser Arbeit soll damit hinreichend genug klassifiziert sein, um
die Anforderungen an den zu entwickelnden Prozess, die Modellbeschreibung und das
eigentliche Werkzeug formulieren zu kénnen. Nachfolgend muss als nachster Schritt auch
das bisher eher vage dargestellte Problemfeld der Ablaufsimulation entsprechend
prazisiert werden.

2.2 Ablaufsimulation: Modellierung, Simulation & Analyse

Die Ablaufsimulation von Fertigungsablaufen ist ein Instrument mit dem strategische,
taktische und operative Entscheidungen abgesichert werden kénnen. Ein einmal erstelltes
Prozessmodell erlaubt eine schnelle Analyse verschiedener Varianten eines Prozesses.
Fragen wie: ,Wie viel mehr kann ich durch den Einsatz eines weiteren Flurférdergerates
produzieren?® lassen sich so schnell beantworten. Die Robustheit von
Fertigungsprozessen auf exogene und endogene Einflisse lasst sich durch
Sensitivitdatsanalysen mittels der Ablaufsimulation untersuchen.

Das zu entwickelnde Werkzeug arbeitet im Problemfeld der diskreten,
ereignisgesteuerten Ablaufsimulation, in der Fertigungssysteme hinsichtlich ihres
Materialflusses inklusive aller Einflussfaktoren abgebildet werden. Um insbesondere
diesen Typus der Simulation im Folgenden abzugrenzen, missen einige grundlegende
Begriffsdefinitionen eingefiihrt werden.

Definition 14: Simulation

~Simulation ist das Nachbilden eines Systems mit seinen dynamischen Prozessen
in einem experimentierfdhigen Modell, um zu Erkenntnissen zu gelangen, die auf
die Wirklichkeit dbertragbar sind. Im weiteren Sinne wird unter Simulation das
Vorbereiten, Durchfiihren und Auswerten gezielter Experimente mit einem
Simulationsmodell verstanden" [VDI3633]

Bezieht sich die Aufgabenstellung der Simulation insbesondere auf die dynamischen
Prozesse eines Modells, wird von der Ablaufsimulation gesprochen. Sie betrachtet
zeitliche und kapazitative Auslastungen. Simulationen stiitzen sich stets auf vom
Anwender erzeugte Modelle. Ein Modell kann nach [KIBu71] wie folgt aufgefasst werden:

Definition 15: Modell

~Ein Objekt, das auf der Grundlage eine Struktur-, Funktions- oder Verhaltens-
analogie zu einem entsprechenden Original von einem Subjekt eingesetzt und
genutzt wird, um eine bestimmte Aufgabe l6sen zu kénnen, deren Durchfiihrung
mittels direkter Operation zundchst oder lUberhaupt nicht moéglich bzw. unter
gegebenen Bedingungen zu aufwendig ist. ..." [KIBu71]

Ablaufsimulation von Fertigungssystemen -11 -

Modelle als Abbildung von Fertigungssystemen werden in der Praxis haufig so komplex,
dass eine Abbildung durch dreidimensionale Modelle oder realitétsnahe Funktionsmodelle
heute schnell an zeitliche und wirtschaftliche Grenzen stéBt. Im Kontext der
Fertigungsplanung und -lenkung werden deshalb zumeist Modelle verwendet, die mittels
einer Simulation auf einem Computer berechnet und ausgefiihrt werden kénnen.

Definition 16: Rechnerunterstiitzte Simulation

,Rechnerunterstiitzte Simulation ist das experimentelle Betreiben eines Modells
auf einer Rechneranlage"[Dang99]

Unter Einsatz der Ablaufsimulation und mit Hilfe eines Simulators kann der Anwender im
Rechner als Modell vorliegende Systemalternativen analysieren und hinsichtlich der
Zielerfullung tberprifen.

Definition 17: Simulator

,Softwareprogramm, mit dem ein Modell zur Nachbildung des dynamischen
Verhaltens eines Systems und seiner Prozesse erstellt und ausflihrbar gemacht
werden kann. Ein Simulator beinhaltet einen Simulatorkern, eine
Datenverwaltung, eine Bedienoberfliche und gegebenenfalls weitere
Schnittstellen™ [VDI3633]

Die Ablaufsimulation ist also eine Methode zur Analyse von dynamischen
Zustandsanderungen in einem System, im vorliegenden Fall von Fertigungssystemen. Sie
wird in vielen Bereichen in verschiedenen Auspragungen eingesetzt. Um das Problemfeld
weiter einzugrenzen, missen weitere Klassifikationen herangezogen werden. Als ein
wesentliches Klassifikationsmerkmal dient die Differenzierung zwischen ,diskreter" und
~kontinuierlicher® Simulation.

Definition 18: diskret

,Diskret - eigtl.: geschieden, unstetig, diskontinuierlich, auch: abgesondert,
getrennt. ..." [KIBu71]

Definition 19: Kontinuierlich

,Kontinuierlich, zusammenhéngend, liickenlos. ..."[KIBu71]

Der Zustand zu einem Simulationszeitpunkt wird durch Zustandsvariablen (z.B. der
Belegungszustand einer Maschine) beschrieben. In kontinuierlichen Simulationen kdénnen
diese Zustandsvariablen kontinuierlich Gber die Simulationszeit ihren Wert andern. So
kann z.B. die Geschwindigkeit eines beschleunigenden Fahrzeuges Uber die
Beschleunigung und die Zeit beschrieben werden. In diskreten Simulationen verandern
Zustandsvariablen ihren Wert nur an endlich vielen Zeitpunkten. So kann zum Beispiel
der Fullstand eines Lagers Uber die Anzahl der eingelagerten Elemente beschrieben
werden. Die Zeitpunke der Zustandsiibergdnge werden als Ereignis bezeichnet.

Definition 20: Ereignis

-12 -

LAtomare Begebenheit, die eine Zustandsdnderung bewirkt und keine Zeit
verbraucht" [VDI3633]

Kontinuierliche Simulation Diskrete Simulation
3 &

Zustandsvariable
Zustandsvariable

»

Zeit

; r N
I Zeit

Ereignisse
Abbildung 2: diskrete und kontinuierliche Simulation

In dieser Arbeit sollen nur diskrete Simulationen betrachtet werden. Hier kann weiter
unterschieden werden, wie die einzelnen Zustandslibergdnge zeitlich voneinander
abhdngen. Man unterscheidet zwischen fixen und variablen Zeitinkrementen. In diesem
Werkzeug sollen durch eine sinnvolle Konstruktion des Simulatorkerns und der
Modellbeschreibung grundsatzlich beide Méglichkeiten der Zeitfortscheitung unterstitzt
werden. In Abschnitt 3.3 werden deshalb beide Methoden der Zeitfortschreitung bei der
Ausfihrung von Simulationsmodellen naher betrachtet. Insbesondere wird untersucht,
wie ein Simulator strukturiert werden muss, um beide Ausfihrungsformen zu
unterstutzen.

Typischerweise wird die Methode Ablaufsimulation in jeglicher Ausfihrung in Form einer
Simulationsstudie angewandt, um Fertigungssysteme hinsichtlich eines bestimmten
Untersuchungszwecks zu analysieren.

Definition 21: Simulationsstudie

~Projekt zur simulationsgestiitzten Untersuchung eines Systems. (...) Eine
Simulationsstudie kann mehrere Simulationsexperimente umfassen, die ihrerseits
aus mehreren Simulationsldufen bestehen kénnen" [VDI3633]

Neben typischen Projektaufgaben kann eine Simulationsstudie in drei Hauptaufgaben
untergliedert werden. Zunachst den Prozess der Modellerstellung: die Modellierung.

Definition 22: Modellierung

,Modellierung ist der Prozess der Uberfiihrung eines Realitdtsausschnittes in ein
Modell."[FiHe00]

Die zweite Hauptaufgabe beschreibt das Ausfiilhren des dynamischen Modells in einem
Simulator, der eigentliche Simulationslauf bzw. das Simulationsexperiment.

Definition 23: Simulationslauf

,Nachbildung des Verhaltens eines Systems mit einem spezifizierten,
ablauffdhigen Modell iber einen bestimmten (Modell-)Zeitraum..."[VDI3633]

Ablaufsimulation von Fertigungssystemen -13 -

Definition 24: Simulationsexperiment

~Systematischer Plan zur Ausfluhrung einer Menge von Simulationsldufen mit
unterschiedlichen Anfangszustdnden und Parametereinstellungen zur effizienten
Untersuchung des Modellverhaltens" [VDI3633]

Innerhalb eines Simulationsexperimentes miussen die in den Simulationslaufen
gesammelten Daten ausgewertet werden. Diese Kombination von Simulations-
experimenten und Auswertung hinsichtlich bestimmter Untersuchungskriterien wird als
Analyse bezeichnet und beschreibt die dritte Hauptaufgabe innerhalb einer
Simulationsstudie.

Definition 25: Analyse

,Verfahren zur Untersuchung wund Erkenntnis materieller oder ideeller
Gegebenheiten, dessen Wesen in der praktischen oder gedanklichen Zerlegung
eines Ganzen in seine Teile, eines Zusammengesetzten in seine Elemente besteht.
Das Ziel der Analyse besteht darin, wesentliche Eigenschaften und Relationen von
unwesentlichen, notwendige von zufélligen, allgemeine von individuellen zu
unterscheiden und auf diesem Wege von der undifferenzierten Betrachtung der
Gesamterscheinung zur Erkenntnis ihres Wesens und der sie bestimmenden
GesetzméBigkeiten vorzudringen."[KIBu71]

Eine genaue Simulationsmethodik, wie sie in der Praxis ihre Anwendung findet, wird in
Abschnitt 3.1 beschrieben. Mittels der Ablaufsimulation werden bereits heute zahlreiche
Fragestellungen bezliglich der Abstimmung von Fertigungsprozessen erarbeitet. Dennoch
lassen sich nachfolgend einige Teilprobleme identifizieren, deren Losung die Verbreitung
und Akzeptanz der Methode Ablaufsimulation weiter férdern sollen. Sie wurden in der
Motivation aufgezeigt und sollen nun entsprechend prazisiert werden.

2.3 Erweiterungen aus der Motivation

Bereits Kapitel 1 hat verschiedene Szenarien motiviert, in denen die Ablaufsimulation
zukinftig angewendet werden kann. Nachfolgend sollen diese Szenarien naher erlautert
werden und, soweit ndétig, die daflur bendtigten Begriffe und Definitionen eingefiihrt
werden.

Synchronisierte, ortsunabhidngige Mehrbenutzerunterstiitzung bei der
Modellierung und Simulation von Materialflussmodellen in einer interaktiven,
immersiven und virtuellen Umgebung

Durch die steigende Bedeutung der Ablaufsimulation werden auch die betrachteten
Projektszenarien flr Simulationsstudien immer komplexer. Infolgedessen werden die
Projekte auch nicht mehr von einzelnen Simulationsexperten bearbeitet, sondern
mehrere Anwender, typischerweise mit verschiedenen Aufgaben, Interessen und
Erfahrungen mit der Ablaufsimulation, arbeiten innerhalb eines gemeinsamen Projektes

- 14 -

an der Losung des Untersuchungszieles. Die Planung und Evaluierung eines
Fertigungsprozesses kann also nicht als ein Arbeitsschritt verstanden werden, bei dem
der Prozess der Modellierung, Ausfihrung und Analyse der Simulationsmodelle am
Computer einer einzelnen Person stattfindet. Verschiedene Projektmitarbeiter erarbeiten
ein gemeinsames Simulationsmodell. Dieser Vorgang erfordert eine umfangreiche
Interaktion zwischen den Modellierern und die gemeinsame Nutzung von Daten und
Informationen Uber das Simulationsmodell oder dessen Bausteine. Der
Modellierungsprozess erstreckt sich typischerweise Uber einen langeren Zeitraum und
erfordert den Zugriff auf komplexe Informationsbestdnde. Das Modelliererteam kann
ebenso wie das erstellte Simulationsmodell Substrukturen beinhalten, wie z. B.
Teilprojekte und Arbeitsgruppen.

Wahrend der Durchflihrung einer Simulationsstudie sollen deshalb im angestrebten
Werkzeug mehrere Anwender sowohl gleichzeitig, als auch zeit- und ortunabhangig
gemeinsam an einem Simulationsmodell arbeiten kdénnen. Die einzelnen Phasen der
Modellierung und Simulation sind dazu in einem System zu handhaben, dass fir einen
solchen Betrieb ausgelegt ist. Ein Modellierungswerkzeug, das den skizzierten Prozess der
gemeinschaftlichen Modellierung unterstitzt, kann als kooperatives Modellierungs-
werkzeug bezeichnet werden.

Definition 26: Mehrbenutzersystem

,Ein Mehrbenutzersystem oder Multiuser-System ist eine Software, die die
Fahigkeit hat, Arbeitsumgebungen fiir verschiedene Benutzer bereitstellen und
voneinander abgrenzen zu kénnen."[TaSt03]

Definition 27: Multitasking

,Multitasking bezeichnet die Fahigkeit einer Software, mehrere Aufgaben (tasks)
scheinbar gleichzeitig auszufiihren. Dabei werden die verschiedenen Prozesse in
so kurzen Abstdnden immer abwechselnd aktiviert, dass der Eindruck der
Gleichzeitigkeit entsteht." [TaSt03]

Zur Modellierung werden verschiedene Interaktionstechniken bendétigt. Dazu werden den
benutzten Objekten Verhaltensweisen zugewiesen. Diese Parametrisierung definiert, in
welcher Weise Objekte gesetzt bzw. in die Modellierungsumgebung integriert werden
koénnen. Elementare Verhaltensweisen stellen das Erzeugen, Selektieren, Erweitern,
Parametrieren, L&schen, Bewegen und Verbinden von Objekten dar. GemaB dem
Anspruch des Werkzeugs missen diese Interaktionsmetaphern kooperativ ausgefiihrt
werden kénnen. Unter Multitasking-Modellierung soll also der synchronisierte Prozess der
Modellierung verstanden werden, der von mehreren Anwendern gleichzeitig an
demselben Modell durchgefiihrt werden kann.

Der Modellierungsphase schliet sich die Durchfiihrung von Simulationsexperimenten an.
Sie beinhaltet die Ausfiihrung selbst sowie die Analyse der Ergebnisse. Initialwerte als
Eingabeparameter eines Simulationslaufes bestimmen den mengenmaBigen und
zeitlichen Fluss der Marken im Simulationsmodell. Analyseeinstellungen bestimmen flr
jeden Simulationslauf, wo und in welcher Komplexitat die Informationen Uber die

Ablaufsimulation von Fertigungssystemen - 15 -

Simulation gesammelt werden. Wahrend der Durchfihrung steht die
Benutzerfreundlichkeit fir den Anwender im Mittelpunkt. Idealerweise kann er Parameter
wahrend der Durchfihrung &ndern und die Auswirkung seiner Anderung sofort in einer
entsprechenden Visualisierung beobachten: Er interagiert mit dem Simulationsmodell.

Definition 28: Interaktion

,Interaktion bezeichnet das wechselseitige aufeinander Einwirken von Akteuren
oder Systemen...In Bezug auf die Mensch-Maschine-Interaktion meint der Begriff
die Gestaltung einer Benutzerschnittstelle zu Programmen..." (nach [Buur05])

Genau wie bei der Modellierungsphase haben diese Interaktionen mehrerer Anwender
Einfluss auf die berechneten Ergebnisse eines Simulationslaufs. Analog zur Multitasking-
Modellierung kann unter Multitasking-Simulation also der synchronisierte Prozess der
Ausflihrung und Berechnung eines Simulationsmodells verstanden werden, der von
mehreren Anwendern gleichzeitig an demselben Modell durchgefihrt werden kann.
Zusatzlich muss hierbei unterschieden werden, ob die Anwender an einer Instanz eines
Simulationsmodells arbeiten, oder dasselbe Basismodell mehrfach instanziieren.

Darlber hinaus erfordert insbesondere die Kommunikation mit Nicht-Simulationsexperten
innerhalb des Planungsteams eine maéglichst realistische Darstellung, die das Verhalten
des Simulationsmodells bestmdglich darstellt und erklart. Der Anwender soll sich
maglichst immersiv in das Simulationsmodell hineinversetzen.

Definition 29: Immersion

L~Immersion meint das Eintauchen in eine kinstliche Welt... Durch die Immersion
erlebt der Anwender direkt die Dynamik der physikalischen Vorgdnge" [Borm94]

Zur Visualisierung der Modelle und deren dynamischen Verhaltensweisen soll eine
virtuelle Umgebung dienen, in der das Simulationsmodell dreidimensional dargestellt
wird.

Definition 30: Virtuelle Realitat

JAls Virtuelle Realitét (VR) wird die Darstellung und gleichzeitige Wahrnehmung
der Wirklichkeit und ihrer physikalischen Eigenschaften in einer in Echtzeit
computergenerierten virtuellen Umgebung bezeichnet.™ (nach [FaHa94])

Die Vorteile einer mdglichst hohen Immersion in die virtuelle Umgebung werden in
Abschnitt 3.4.3 allgemein und in Abschnitt 3.4.4 speziell fir die Anwendung im Bereich
der Ablaufsimulation naher untersucht. Insgesamt ergibt sich daraus die Anforderung,
dem Anwender eine mdglichst gute Form der Darstellung zu realisieren. Der Anwender
selbst wird nicht mehr langer ausschlieBlich passiver Betrachter, sondern kann vielmehr
in der virtuellen Umgebung die Simulation beeinflussen und modifizieren. Die Integration
in das Simulationsmodell und damit auch in das abgebildete System erhdht sein
Prozessverstandnis und schafft eine realistischere Planungsumgebung.

- 16 -

Planung, Evaluierung und fortwédhrende Verbesserung aller Fertigungsprozesse
liber alle Planungs- und Ausfiihrungsphasen bis zur Riickkopplung in die
Fertigungslenkung

Die Planung und Evaluierung der Fertigungsprozesse unter Einsatz der Ablaufsimulation
soll vermehrt ganzheitlich Uber alle Planungs- und operativen Phasen eines
Fertigungsprozesses hinweg erfolgen, weil nur so eine durchgangige Analyse und
Verbesserung des Prozesses erreicht werden kann. Eine dreidimensionale Modellierung
und Simulation als Kombination von Layout- und Prozessplanung kann den Anwender
beim Aufbau des Fertigungsprozesses zusatzliche Planungsrestriktionen erkennen und
von Beginn an bericksichtigen lassen. Die Qualitdt der Gesamtplanung kann weiter
verbessert und zusatzliche Planungszeit innerhalb des Gesamtprojektes eingespart
werden.

Neben dem Einsatz im Rahmen von Machbarkeitsstudien, Variantenplanungen oder
quantitativen Fragestellungen, in denen ein System meist hinsichtlich seiner maximalen
Leistungsfahigkeit oder eines optimalen Durchsatzes untersucht wird, muss die
Simulation nach diesem ganzheitlichen Verstandnis auch Fertigungsprogramme planen
oder zumindest absichern kénnen. Ein Simulationsmodell eines Fertigungsprozesses kann
dann Uber alle Phasen der Struktur-, Mengen-, Kapazitats- und Programmplanung bis hin
zur Prognose und der fortlaufenden Verbesserung vorhandener Fertigungsprozesse
eingesetzt werden.

Heutige Simulatoren bilden den Materialfluss ausschlieBlich vorwarts gerichtet ab.
Ausgehend von zu parametrierenden Eingangsparametern (in den Werkzeugen meist als
Quellen bezeichnet) berechnet der Simulator dann in jedem Simulationslauf den maximal
maoglichen Output zu dem gegebenen Simulationsmodell.

Definition 31: Vorwartsterminierung

LVorwértsterminierung ist die Methode, von einem Startzeitpunkt ausgehend die
friihestens mdglichen Zwischen- und Endtermine zu ermitteln.” [DaWa97]

Dieses Verfahren der Vorwartsterminierung in Bezug auf die Ausfihrung von
Simulationsmodellen durch einen Simulator wird im weiteren Verlauf als
Vorwértssimulation bezeichnet.

Im Bereich der Fertigungslenkung haben sich flir die integrierte Mengen-, Termin- und
Kapazitatsplanung alternative Verfahren etabliert, um die Planungsphasen und -ergeb-
nisse eines gegebenen Fertigungsprogramms zu optimieren. Viele dieser meist
heuristischen Eréffnungs- und/oder Verbesserungsverfahren basieren auf der Methode
der Rickwartsterminierung. Ausgehend von bestehenden Endterminen (beispielsweise
der Auslieferung eines Kundenauftrags) sollen die Fertigungsprogramme hinsichtlich
Durchlaufzeit, minimalen Kosten und Systemstabilitat optimiert werden.

Definition 32: Riickwdrtsterminierung

Ablaufsimulation von Fertigungssystemen -17 -

~Rickwértsterminierung ist die Methode, von einem vorgegebenen Liefertermin
ausgehend die spadtesten mdéglichen Zwischen- und Starttermine zu berechnen"
[DaWa97]

Viele der mittels der Ablaufsimulation abgesicherten Fertigungssysteme werden im
Bereich der Fertigungslenkung mit Verfahren zur Rickwartsterminierung beplant. Heute
werden, wenn Uberhaupt eingesetzt, erst in einem Folgeschritt die Ergebnisse dieser
Planungen durch eine Vorwartssimulation nochmals abgesichert. Eine Verbesserung
dieser Planungsschritte lieBe sich durch den Einsatz der Ablaufsimulation erreichen, wenn
die Richtung des abgebildeten Materialflusses umgekehrt wird. Ausgehend von einem
Auftragsbestand mit gegebenen Endterminen berechnet der Materialflusssimulator die
spatesten Beginn-Zeitpunkte der Auftrage, die das System durchlaufen. Dieses Verfahren
wird im Folgenden Rickwértssimulation genannt. Mittels der Rlickwartssimulation ware
ein Simulator in der Lage, Programmplanungen moderner, kundenorientierter
Fertigungsprozesse direkt zu planen oder zumindest abzusichern und in
Simulationsstudien zu optimieren. Der Mehraufwand fir den Simulationsexperten ist
maoglichst gering zu halten. Neben der Madglichkeit einer vorwarts und rickwarts
gerichteten Ausflihrung von Simulationsmodellen im Simulatorkern muss also
insbesondere ein Verfahren identifiziert werden, mit dem die Richtung der
Materialflussmodelle unter mdglichst wenigen Arbeitsschritten umgekehrt werden kann.
Neben der ereignisgesteuerten Ausfiihrung der diskreten Simulationsmodelle soll eine
zeitorientierte Ausfihrung in fixen Zeitinkrementen in Vor- oder Ruckwartsrichtung
grundsatzlich unterstitzt werden, um eine madgliche Integration in bestehende
Leitstandsysteme zu erleichtern.

Kooperative Planung innerhalb von Unternehmen, Unternehmensverbiinden
oder Supply-Chain-Netzwerken

GroBunternehmen, virtuelle Unternehmen oder Supply-Chain-Netzwerke fertigen bereits
heute an unterschiedlichen Standorten mit aufeinander abgestimmten Prozessen. Um die
Lieferfahigkeit innerhalb eines Supply-Chain-Netzwerks sowie die Stabilitat aller
einzelnen Fertigungsprogramme besser gewahrleisten zu kénnen, missen die Planungen
enger aufeinander abgestimmt und Uberwacht werden. Die Mehrbenutzerféhigkeit der
angestrebten Ablaufsimulation ermdglicht eine kooperative Planung mehrerer
Simulationsexperten an einem gemeinsamen Simulationsmodell des Fertigungsnetzwerks
unabhangig vom Standort der jeweiligen Experten. Innerhalb einer Supply-Chain oder
eines Unternehmensverbundes, aber auch standortiibergreifend innerhalb einer
Unternehmung kénnen so auf Basis eines Rechtemanagements und umfangreicher
Kommunikationsmechanismen Simulationsexperten aller Standorte gemeinsam
Simulationsmodelle erarbeiten, verifizieren und validieren, Simulationsexperimente
kooperativ ausfiihren und in einer einzigen, gemeinsamen Umgebung auswerten.

Da die verschiedenen Partner innerhalb solcher unternehmensinternen wie -externen
Fertigungsnetzwerke nach unterschiedlichen Organisationsformen fertigen kédnnen, muss
neben dem Werkzeug an sich auch die zugrunde liegende Modellbeschreibung
Fertigungssysteme beherrschen, die sowohl ein besonders hohes MaB an Komplexitdt
bieten als auch Uber rein objektorientiert gegliederte Fertigungssysteme hinausgehen
und damit die Modellierung und Simulation von funktional gegliederten

- 18 -

Fertigungssystemen bzw. deren Mischformen erlauben. Auch in diesem Themenbereich
bietet sich der Einsatz des Werkzeugs lber die reinen Planungsphasen hinaus bis hin zur
Umplanung und Einsteuerung in der Fertigungslenkung an.

Wird diese Strategie weiterverfolgt, so wird auch die Komplexitat der Simulationsmodelle
weiter steigen. Insbesondere vor dem Hintergrund einer interaktiven Ausfliihrung eines
Simulationsmodells durch mehrere Simulationsexperten in einer virtuellen Umgebung
kann dies bei beschréankten Rechenressourcen zu Problemen fuhren. Die
Modellbeschreibung und Ausfilhrung von Simulationsexperimenten muss also um eine
Funktion erweitert werden, mit der auch komplexe Simulationsexperimente in einer
virtuellen Umgebung dargestellt werden kénnen.

2.4 Anforderungsbeschreibung

Die Umsetzung der aufgezeigten Themenbereiche filhrt auf den unterschiedlichen
Betrachtungsebenen der Ablaufsimulation zu Konsequenzen. Einzelne Funktionen des
angestrebten Werkzeugs wirken sich auf die Art aus, wie Simulationsmodelle hierflr
beschrieben werden missen. Sie kdnnen aber auch dazu fiihren, den Prozess der
Modellierung, Simulation und Analyse anders abzubilden, als das mit herkdmmlichen
Software-Werkzeugen in diesem Bereich mdglich ist. Um alle in Abschnitt 2.3
aufgezeigten neuen Funktionen aufhehmen zu kénnen, beschreibt dieser Abschnitt die
Anforderungen entlang der drei Ebenen ,Basisprozess", ,Modellbeschreibung® und
~Werkzeug", wie sie in Abbildung 3 dargestellt werden. Hier ist ebenfalls ersichtlich, dass
die Entwicklung einer Modellbeschreibung auf dem Prozess der Modellierung, Simulation
und Analyse fuBt und das ein solides Werkzeug zur LOsung der aufgezeigten
Anforderungen nur entwickelt werden kann, wenn die zugrunde |liegende
Modellbeschreibung die einzelnen Funktionen Uberhaupt unterstiitzt.

Abbildung 3: Abhdngigkeiten der Entwurfssichten

2.4.1 Basisprozess

Der existierende Basisprozess von Modellierung, Simulation und Analyse muss um die
Méglichkeit zur kooperativen Arbeit erweitert werden. Dazu miuissen die einzelnen
Arbeitsschritte in den Gesamtumfang einer Simulationsstudie eingebettet und hinsichtlich
der Bearbeitung durch mehrere Anwender untersucht werden. Grundsatzlich soll die
Vorgehensweise nicht revolutioniert, sondern nur den neuen Anforderungen angepasst
werden. In einem ersten Schritt sollen die einzelnen Arbeitsschritte durch eine modulare
Struktur des Werkzeugs voneinander entkoppelt werden. Auf Basis einer konsistenten
und integrierten Datenhaltung wird damit die Arbeit mehrerer Anwender an einem

Ablaufsimulation von Fertigungssystemen - 19 -

Simulationsmodell grundsatzlich erméglicht. Die einzelnen Module des Werkzeugs, wie
sie in Abbildung 4 skizziert werden, haben dann jeweils noch die Aufgabe, die Konsistenz
innerhalb des Moduls wahrend der Bearbeitung durch mehrere Anwender sicherzustellen.

Die Anforderung nach einer interaktiven Arbeitsumgebung fihrt zu der Konsequenz einer
bidirektionalen Kopplung der Visualisierungkomponente(n) mit dem eigentlichen
Simulator, der den Simulationslauf berechnet. Die Anderungen des Anwenders kénnen so
in den Simulator eingespielt und die Anderungen in der Visualisierung sofort
nachvollzogen werden. Um Simulationsmodelle so einer interaktiven Analyse zufiihren zu
kénnen, muss auch die zugrunde liegende Modellbeschreibung verschiedene Kriterien
erflillen, die im folgenden Abschnitt zusammen getragen werden sollen. Dariber hinaus
muissen zur Kopplung der verschiedenen Funktionsmodule definierte Schnittstellen
erstellt werden, die eine solche Vorgehensweise unterstiitzen.

Visualisierung

& Analyse

- -

- ‘h"v_‘
’, -~ -
-~ e
e m—m

Abbildung 4: Grundstruktur der Module im Basisprozess

2.4.2 Modellbeschreibung

Die Art und Weise, wie Simulationsmodelle in dem zu entwickelnden Werkzeug
beschrieben werden, hat Auswirkungen auf die Uberhaupt zu ermdéglichenden
Funktionalitditen der Software. Als grundlegende Datenstruktur, auf der ein
Simulationslauf berechnet wird, liefert sie den Rahmen fiir die méglichen Aktivitaten des
Anwenders sowohl auf der Modellierungs- als auch auf der Simulationsseite. Deshalb
muss sie alle Funktionen und Mdoglichkeiten ermdglichen, die dem Anwender geboten
werden sollen.

FUr das hier zu entwickelnde Werkzeug muss die Modellbeschreibung zunachst einmal ein
Fertigungssystem und seine Elemente abbilden kénnen. Die menschliche Denkweise
orientiert sich an einer Strukturierung in verschiedene Einzelteile. Die
Modellbeschreibung soll deshalb in erster Linie Simulationsmodelle modular und im
weitesten Sinne objektorientiert formalisieren. Die Genauigkeit, mit der ein
Fertigungssystem in seine Teile zerlegt wird, soll vom Anwender frei wahlbar sein.
Prinzipiell soll also ein beliebiger Detailgrad erlaubt sein. Das ist insbesondere auch vor
dem phasenibergreifenden Einsatz der Ablaufsimulation interessant, da sich bei der
Planung von Fertigungssystemen der Detaillierungsgrad der Abbildung stetig verfeinert.

-20 -

Dadurch wachst natlrlich auch der Komplexitdtsgrad des Modells. Zur weiteren
Strukturierung sollen die Simulationsmodelle also hierarchisierbar sein. So kann eine
Hierarchieebene auch einer jeweiligen Sicht auf das abzubildende Objekt entsprechen.
Wird zu Beginn einer Planung ein Fertigungssystem beispielsweise noch als eine
Zusammensetzung von 3 Kernabldufen betrachtet, so lassen sich diese im weiteren
Projektverlauf leicht durch Hierarchieebenen erganzen, die die einzelnen Teilbereiche
genauer modellieren.

Die Simulationsmodelle sollen im Rahmen der Modellierung und Simulation von mehreren
Anwendern bearbeitet werden kdnnen. Obwohl eine Synchronisierung der einzelnen
Anwenderinteraktionen letztendlich durch die jeweiligen Module des Werkzeugs erfolgen
muss, so muss die Modellbeschreibung eine solche synchronisierte Interaktion doch
ermoglichen. Auch hier ist eine objektorientierte Darstellung im Vorteil, weil die
betroffenen Objekte einzeln vor anderen Zugriffen gesperrt werden kénnen.

Letztendlich soll mit diesem Werkzeug die Anwendung der Ablaufsimulation erweitert
werden und so ist nur realistisch anzunehmen, dass auch zusatzliche Anforderungen an
das Werkzeug und seine Modellbeschreibung gestellt werden. Die Modellbeschreibung
muss deshalb in besonderem MaBe auch flexibel erweiterbar sein. Eine der neueren
Anwendungen ist schon jetzt bekannt: Die Riuckwartssimulation. Weil diese auf rickwarts
gerichteten Simulationsmodellen arbeitet, die Zeit zur doppelten Modellierung eines
Fertigungssystem aber sicherlich nicht vorhanden ist, muss die Modellbeschreibung
daruber hinaus richtungsoffen sein, d.h. das Konvertieren von vorwarts gerichteten
Simulationsmodellen in riickwarts-gerichtete Simulationsmodelle ermdglichen.

Neben diesen Anforderungen an die Modellbeschreibung gibt es dariiber hinaus auch
Einschrankungen, die flir die zu konzipierende Modellbeschreibung nicht gelten sollen.
Wegen der zu unterstitzenden ereignis- oder zeitorientierten Ausfiihrung in Vor- und
Rickwartsrichtung soll die Modellbeschreibung keine festen Zeitangaben und/oder
Zeiteinheiten enthalten, sondern angegebene Parameter nur in relativ angegebenen
Zeitpunkten beschreiben. Die jeweilige Berechnung der Simulationszeit hangt dann nicht
zuletzt auch von dem verwendeten Verfahren im Simulatorkern ab und spielt fir das
Beschreiben der zugrunde liegenden Simulationsmodelle keine Rolle.

In Summe kann die Modellbeschreibung daraufhin die Datenstruktur der Anwendung
liefern, die mit dem Werkzeug entwickelt werden soll und in dem die eigentlichen
Funktionen implementiert werden.

2.4.3 Werkzeugentwicklung

Das Werkzeug selbst soll mit modernen Methoden des Software-Designs entwickelt
werden. Neben einer objektorientierten Programmierung ist daflir insbesondere auch die
Definition von erweiterbaren Schnittstellen und einer modularen Programmstruktur von
groBer Bedeutung. Somit kdnnen auch einzelne Funktionen des Werkzeugs spater mit
relativ geringem Aufwand durch Weiterentwicklungen ersetzt werden.

Die einzelnen Module der Gesamtanwendung strukturieren sich in Anlehnung an den zu
unterstiitzenden Arbeitsprozess des Anwenders, sind also im besten Sinne anwendungs-
und prozessorientiert. Neben einem Werkzeug zum Aufbau der Simulationsmodelle muss

Ablaufsimulation von Fertigungssystemen -21 -

das Werkzeug einen Simulatorkern oder Kernel enthalten sowie minimal eine
Visualisierungskomponente zur Analyse der modellierten Ablaufe und deren dynamischen
Verhaltensweisen in dem Simulationsmodell. Zur konsistenten Datenhaltung empfiehlt
sich daruber hinaus die Verwendung einer Datenbankstruktur. Sie erlaubt einen schnellen
Zugriff auf die anfallenden Datenmengen (Simulationsmodelle, Experimentdaten, 3D-
Modelle etc.)

Die Anforderungen an die einzelnen Module sind aus Abschnitt 2.3 bekannt und sollen
deshalb an dieser Stelle nur kurz aufgelistet werden. Sie sollen im besonderen MaB als
Anforderungen fir die Entwicklung des Werkzeugs dienen.

In Summe bilden die dargestellten Anforderungen an Basisprozess, Modellbeschreibung
und Werkzeug die Gesamtanforderungen an diese Arbeit. In einem nachsten Schritt muss
nun der Stand der Technik hinsichtlich existierender Lésungen oder Ldsungsideen

untersucht werden. Das soll im folgenden Kapitel 1 geschehen.

Modul Funktion

Modellierung = Synchronisierte Multitasking-Modellierung

= Beliebiger Detailgrad

= Hierarchische, modulare und objektorientierte Modelle

= Umkehrung von Simulationsmodellen

= Einfache Modellierung von Transportwegen fir funktional
gegliederte Fertigungssysteme

Simulation = Dynamische Detaillierung

= Interaktiv veranderbar

= Ereignis- & zeitorientierte Simulation in vorwarts und riickwarts
Richtung

Visualisierung = Interaktive 3D-Darstellung des Materialflusses aus der
Simulation

= Synchronisierte Multitasking-Simulation fir mehrbenutzerfahige
Analyse

= Immersive Visualisierung in virtueller Umgebung

Tabelle 1: Anforderungen aus den neuen Einsatzfeldern der Ablaufsimulation

Stand der Technik -23 -

3 Stand der Technik

~Zahmen sollen sich die Menschen,

die sich gedankenlos der Wunder der
Wissenschaft und Technik bedienen und
nicht mehr davon geistig erfasst haben
als die Kuh von der Botanik der Pflanzen,
die sie mit Wohlbehagen frisst.™

(Albert Einstein)

Nachdem im vorigen Kapitel die Anforderungen an diese Arbeit zusammengetragen
wurden, soll nun Stand der Technik hinsichtlich dieser Fragestellungen untersucht
werden. Welche Ldsungsansatze sind in den verschiedenen Bereichen bereits bekannt
und inwiefern kdnnen sie helfen, die gestellten Anforderungen umzusetzen?

Analog zur Strukturierung der Anforderungsbeschreibung soll auch der Stand der Technik
Schritt fur Schritt untersucht werden. In einem ersten Schritt muss zundchst untersucht
werden, welche Prozesse sich bei der Durchfiihrung einer Simulationsstudie etabliert
haben und inwiefern sich dieses Vorgehen auch in einer mehrbenutzerfahigen und
interaktiven Arbeitsumgebung realisieren lasst. Abschnitt 3.1 soll dazu die bekannte
Methodik zur Durchfiihrung einer Simulationsstudie vorstellen und bewerten.

Weil im Folgeschritt dieser Arbeit darauf aufbauend eine Modellbeschreibung konzipiert
werden soll, widmen sich die Abschnitte 3.2 und 3.3 der Bewertung von bekannten
Methoden zur Modellierung und Ausflihrung von diskreten Simulationsmodellen. Danach
wird in Abschnitt 3.4 zusatzlich untersucht, inwiefern sich speziell virtuelle Umgebungen
zur Visualisierung von Ablaufsimulationen eignen und welche Vorraussetzungen daflr
erflllt sein mussen.

Erst im Folgeschritt widmet sich der Abschnitt 3.5 den Methoden des Software-Designs
zur Entwicklung des Werkzeugs. Die Erkenntnisse aus Basisprozessgestaltung und der
Modellbeschreibung sollen hier in die Bewertung mit einflieBen. Der Abschnitt zeigt
allgemeine und objektorientierte Prinzipien des Software-Designs auf, fokussiert im
Speziellen auf Organisationsformen und Architekturmuster von Mehrbenutzersystemen
sowie Prinzipien zur Schnittstellengestaltung, jeweils vor dem Hintergrund der gestellten
Anforderungen.

AbschlieBend fasst Abschnitt 3.6 den Stand der Technik hinsichtlich der Fragestellung
zusammen, so dass im folgenden Kapitel die Zielstellung der Konzeption und
Implementierungsphase formuliert werden kann.

3.1 Simulationsmethodik

Die Simulation von Fertigungssystemen hinsichtlich einer bestimmten Aufgabenstellung
wird laut Definition 21 als Simulationsstudie bezeichnet. [VDI3633] beschreibt eine
Vorgehensweise bei der DurchfiUhrung von Simulationsstudien, die sich in diesem
Themenfeld etabliert hat. Sie soll nachfolgend naher beschrieben werden. Im

- 24 -

Wesentlichen gliedert sich die Vorgehensweise in die Schritte Vorbereitung, Modellierung,
Durchfihrung und Auswertung. Insbesondere die Modellierung und Durchfihrung von
Simulationsexperimenten missen iterativ durchgefihrt werden, um die erstellten
Simulationsmodelle zu verifizieren, zu validieren und ggf. alternative Szenarien zu
erarbeiten.

Problemstellung,
Problemanalyse

Simulations-
wiirdig ?

» Validierung & Korrektur

Aufgabe & Ziel
formulieren

}

Datenanalyse <

}

Simulationsmodell
erstellen

I :

Simulationsexperiment

}

Ergebnisanalyse

Validierung & Korrektur Alternativenentwicklung

Abgleich mi
Plan oder
Realitat

nein

nein _/@nstellun ja
v sndern?

A

Zwischen-
ergebnisse
ok?

Neue Frage-
Stellungen?

Ergebnisumsetzung

Abbildung 5: Ablauf einer Simulationsstudie nach [VDI3633]

Ausgangspunkt jeder Simulationsstudie ist demnach die exakte Festlegung eines
Untersuchungsziels, welches das grundlegende Problem inklusive einer grundsatzlichen
Beschreibung des Vorgehens und Ldsungsmdglichkeiten eingrenzt. Auf Basis des
Untersuchungsziels kann die nachfolgende Phase der Datenaufbereitung erfolgen.
Beschaffung, Aufbereitung und ggf. Anpassung der Daten ist oftmals mit hohem Aufwand
verbunden, da sie nur selten bereits in der benétigten Form vorliegen. In manchen Fallen
liegen liber das abzubildende System noch gar keine Daten vor (wenn beispielsweise das
Fertigungssystem in der Realitat noch nicht existiert). In diesem Fall miissen die
bendtigten Daten bestmdglich abgeschadtzt werden. Insbesondere rdaumliche, zeitliche
und mengenmdBige Daten sind als Eingabeparameter fir das Simulationsmodell
interessant. Wie oben bereits erwahnt, sind die vorliegenden Daten auf Plausibilitdt und

Stand der Technik - 25 -

Richtigkeit zu prifen, da nur dann auch verninftige Ergebnisse aus der Simulationsstudie
zu erwarten sind.

Im Folgeschritt wird das Fertigungssystem zundchst als logisches, spater dann als
experimentierfahiges Modell in einem Simulator abgebildet. Das Simulationsmodell muss
alle fir die Fragestellung relevanten Sachverhalte reprasentieren, wobei alle Elemente
und Strukturen, Regeln, Einfliisse und Verhaltensweisen aus dem realen System in dem
bendtigten Detaillierungsgrad abzubilden sind. Durch die ersten Simulationslaufe mit dem
experimentierfahigen Simulationsmodell wird das Simulationsmodell bezliglich der
inneren Logik hin verifiziert und im nachsten Schritt hinsichtlich des Systemverhaltens
der Realitat bestmdglich angepasst (Modellvalidierung). Das Vorgehen erfolgt hierbei
iterativ bis der gewlinschte Genauigkeitsgrad erreicht werden konnte.

Die nachste Phase beinhaltet nun verschiedene Schritte der Durchfihrung von
Simulationslaufen im experimentellen Rahmen. Zunachst werden einfache Analysen
gefahren, um erste Aussagen zur Leistungsfahigkeit und Problembereiche des
Fertigungssystems zu erhalten. AnschlieBend werden einzelne Experimentreihen
durchgefihrt, die entweder die Ausplanung des Fertigungssystems betreffen oder
Sensitivitdatsanalysen enthalten, die die Abhangigkeit des Gesamtsystems von einzelnen
Eingabefaktoren herausarbeiten. Dieser iterative Prozess wird so lange durchgefihrt, ggf.
mit Anpassungen des Simulationsmodells, bis schlieBlich fir den Anwender hinsichtlich
der Aufgabenstellung zufrieden stellende Ergebnisse vorliegen. Den Abschluss der
Simulationsstudie bildet die Dokumentation, Auswertung und Aufbereitung der
gesammelten Ergebnisse. Die Simulationsergebnisse werden hier zu aussagefdhigen
Informationen verdichtet, interpretiert und angemessen dargestellt. Hierbei muss jeweils
durch den Anwender entschieden werden, inwiefern sich ein Rickschluss von den
Simulationsergebnissen auf das reale Verhalten des abgebildeten Fertigungssystems
erlaubt.

Bei dem angestrebten Basisprozess zur Modellierung und Simulation soll sich an der fir
Simulationsstudien geltenden Vorgehensweise orientiert werden. Die Darstellung der
Vorgehensweise bei einer Simulationsstudie schrankt auch den in Abschnitt 2.4.1
anvisierten Basisprozess der Modellierung, Simulation und Analyse in einer
mehrbenutzerfahigen Umgebung nicht ein, weil keine klare Aussage darliiber getroffen
wird, wie die Modellbildung mdglichst effektiv und effizient zu gestalten ist. So bildet die
vorgeschlagene Vorgehensweise nur den inhaltlichen Rahmen, innerhalb dem der
Basisprozess umgesetzt werden soll. Der Prozess der Modellvalidierung und
Modellverifikation soll aber durch den hohen interaktiven Grad des Werkzeugs verkiirzt
werden. Weil der Anwender das Simulationsmodell wahrend der Ausfihrung manipulieren
kann, sollte schneller ein verbessertes Modell erstellt werden kénnen. Die eigentliche
Experimentphase einer Simulationsstudie muss dennoch ohne Benutzerinteraktion
durchgefiihrt werden, um eine statistisch auswertbare Datenbasis aus dem
Simulationsmodell generieren zu kdnnen. Daflir sollte jeder einzelne Simulationslauf
maoglichst schnell ausgefiihrt werden kdnnen. Bei der angestrebten Ausfihrung im
Simulator, bei der nur nach Anforderung eine Visualisierungskomponente als
eigenstandiges Modul angekoppelt wird, sollte das in der bisher geplanten, modularen
Bauweise gut unterstltzt werden.

- 26 -

3.2 Modellierungsmethoden

Simulation beschreibt immer ein Arbeiten mit und an experimentierfahigen Modellen,
meist eingebettet in die Durchflihrung einer Simulationsstudie. Damit ist die Struktur der
abzubildenden Fertigungssysteme zumindest hinsichtlich des Untersuchungszwecks
bekannt. In einem ersten Schritt muss also das abzubildende System als ein Modell
beschrieben werden. Dieses muss in dem Werkzeug gemaB einer noch festzulegenden
Modellbeschreibung erzeugt und manipuliert werden koénnen. Dieser Abschnitt zeigt
verschiedene Modellierungsmethoden und deren Anwendung auf Materialflusssimulation
und bewertet sie vor dem Hintergrund der an eine Modellbeschreibung gestellten
Anforderungen.

Die ,Kunst" innerhalb dieses Modellierungsprozesses ist es, eine befriedigende Mischung
zwischen dem Abstraktionsgrad, der Richtigkeit und der Genauigkeit eines Modells und
der Wirklichkeit zu finden. Der Zielkonflikt, der zwischen diesen drei Aspekten besteht,
soll minimiert werden. Der Abstraktionsgrad beschreibt das auBere ,Erscheinungsbild®
eines Modells. Je weiter der Abstraktionsgrad fortschreitet, desto weniger realitdatsnah
wird das Modell. Ein fortschreitender Abstraktionsgrad bedeutet aber auch einen Gewinn
an Genauigkeit, da der Fokus immer weiter auf den zu analysierenden Teil gelenkt wird.
Die Nutzbarkeit des Modells wiederum wird an der Richtigkeit gemessen.

Es existieren zahlreiche Methoden zur Modellierung von Materialflissen [ScWe00]. In
dem nachfolgenden Abschnitt sollen deshalb zunachst Stellen/Transitionsnetze als eine
Auspragung formaler Beschreibungen von Simulationsmodellen untersucht werden. In
einem weiteren Schritt sollen unter Abschnitt 3.2.2 Programmier- und
Simulationssprachen hinsichtlich ihrer Eigenschaften untersucht und bewertet werden.
AbschlieBend werden existierende Software-Lésungen in Form von grafischen
Simulationswerkzeugen und Bausteinkasten untersucht, um das Spektrum mdéglicher
Lésungsalternativen an Modellierungsmethoden madglichst gut abzudecken.

3.2.1 Stellen/Transitionsnetze

Stellen/Transitionsnetze sind als formale Beschreibungen zur Modellierung und
anschlieBender Analyse von asynchronen Prozessen weit verbreitet (vgl. [LeEg88],
[Star90]). ihre formale Basis ist auf der allgemeinen Netztheorie begriindet und es
existieren Erweiterungen zur Abbildung komplexerer Systeme, beispielsweise zur
Integration stochastischer Prozesse [LeEg88], zur Abbildung hierarchischer Strukturen
oder der Individualisierung (Farbung) der Marken [LeEg88], die durch den bipartiten
Graphen laufen. Stellen/Transitionsnetze kénnen unterschiedlich visualisiert werden.
Ublicherweise werden Stellen als Kreise, Transitionen als ein Rechteck oder als eine Linie
visualisiert, die orthogonal zu den eingehenden und ausgehenden Verbindungen steht.
Flussrelationen werden mit Pfeilen zwischen den Stellen und Transitionen dargestellt (vgl.
Abbildung 6). Mit diesen Netzen kdnnen Zustédnde von Montage-, Kommissionier- oder
Transportvorgangen modelliert werden. Insb. geteilte Ressourcen von nebenlaufigen
Prozessen kénnen durch diese Netze gut modelliert werden [Schm92]. Durch die nicht
deterministische Reihenfolge der Schaltungen bieten sich Petri-Netze zur Analyse und
Vermeidung von Verklemmungen an [Star90]. Die Planung der Schaltungen und die
damit implizite Planung von der Benutzung der geteilten Ressourcen kann fiir das reale
Problem bernommen werden.

Stand der Technik -27 -

@ L] Marke
O Stelle
1 Transition

Alternative
2 Darstellung
Transition

Abbildung 6: Beispiel eines Petri-Netzes

Stellen/Transitionsnetze sind von sich aus nicht zeitbewertet. Es existieren jedoch
erweiterte, bzw. angepasste Beschreibungen, beispielsweise MFert, in denen eine solche
Zeitbewertung verwendet wird (vgl. [Schn96]). Das MFert-Modell unterscheidet Faktoren
und Faktortransformationen. Ein Graph des Fertigungsablaufs reprasentiert die Menge
maoglicher Fertigungsprozesse. In diesem Graphen sind die Faktorknoten und die
Faktortransformationsknoten die Knoten. Die Kanten symbolisieren die madglichen
Faktorstrome.

Anwendung von Stellen/Transitionsnetzen zur Modellierung von Materialfliissen
Mit Stellen/Transitionsnetzen lassen sich Materialflussprozesse modellieren (vgl. [GiVa03]
und [Dang99]). Insb. Ressourcen, die geteilt werden miissen, lassen sich so in ein Modell
fassen. Muss z.B. ein Arbeiter zwei Maschinen bedienen, kann die Ressource Arbeiter als
eine Marke, die beiden Fertigungsprozesse als jeweils eine Transition, der Materialzugang
bzw. -abgang als jeweils eine Stelle und die Teile als Marken modelliert werden. Gibt eine
Maschine den Arbeiter frei, muss die Marke auf eine Stelle gelagert werden, auf die beide
Maschinen zugreifen kdnnen (vgl. Abbildung 7). Handelt es sich um eine zeitbewertete
Erweiterung eines Stellen/Transitionsnetzes kénnen die Zeiten den Bearbeitungsdauern
der Maschinen entsprechen. Es entsteht ein Modell, welches den beschriebenen Prozess
und den darin enthaltenen Ressourcenkonflikt abbildet.

- 28 -

\W\\&\\\\\ Materlalzugang \\§\\\\\ Materialzugang ?

d & i- @9/\

Geteilte I 1

Maschine 1
Maschine 2

Ressource 1
Werker

! Materialabgang W O Materialabgang Q

Abbildung 7: Petri Netz Modell eines Arbeiters, der zwei Maschinen bedient

Auf Basis von Stellen/Transitionsnetzen sind zahlreiche weitere formale
Modellierungsmethoden bekannt, die sich zumeist jedoch wieder auf Stellen/Transitions-
netze zuriuckfihren lassen.

Bewertung

Stellen/Transitionsnetze beschreiben Fertigungssysteme auf Basis eines bipartiten
Graphen. Es wird bei der formalen Beschreibung also explizit zwischen der Speicherung
und der Veranderung von Marken unterschieden. Diese kdnnen zwar hierarchisch
modelliert und aus verschiedenen Substrukturen zusammengesetzt werden, eine
Abbildung der in der Realitat vorhandenen Fertigungssysteme wird durch eine fehlende
systematische Gliederung und Objektorientierung jedoch unndétig erschwert. Je nach
gewahltem Detaillierungsgrad unterscheidet der Anwender beispielsweise bei einem
Lager nicht mehr zwischen den einzelnen Lagerplatzen und deren U(bergeordneten
Lagersteuerung. Eine Abbildung durch ein Stellen/Transitionsnetz ist damit nur noch
schwer madglich. Auch flir die Abbildung von komplexen Steuerungen und insbesondere
deren Umkehrung vor dem Hintergrund einer richtungsoffenen Ablaufsimulation
erscheinen Stellen/Transitionsnetze als wenig geeignet, weil die jeweilige Umkehrung von
Verteilregeln im Materialfluss durch eine implizite Modellierung die Komplexitat der
Stellen/Transitionsnetze stark ansteigen wirde. Eine Ubersichtliche layoutgetreue
Modellierung wird dadurch unnétig erschwert.

3.2.2 Programmier- und Simulationssprachen

Fir eine rechnerunterstitzte Simulation von Materialflissen existieren neben den bisher
vorgestellten formalen Beschreibungen eine Reihe spezifischer Verfahren. Zur
Modellierung und Ausfiihrung werden sowohl allgemeine Programmiersprachen als auch
spezialisierte Simulationssprachen verwendet.

Wahrend allgemeine Programmiersprachen (z.B. C++ [Brey05], Java [Ulle05]) sehr
flexibel im Einsatz zur Simulationen sind, erfordern sie einen hohen Einarbeitungs- und
Modellierungsaufwand. Sie bieten keine spezielle Unterstitzung flr Simulationen. Sollen
abstrakte Methoden zum Einsatz kommen, missen diese explizit implementiert werden.

Stand der Technik - 29 -

Der spezielle Einsatz von Java als Simulationssprache fiir ein Simulations-Framework
(vgl. 3.5.5.3) ist durch DESMO-] oder DEMOS bekannt ([PaKr05], [Birt82]). Auf Basis
einer festgelegten Modellbeschreibung kénnen Simulationsmodelle textbasiert
programmiert und ausgefihrt werden. Die Umsetzung des Frameworks erlaubt aber
keine Erweiterung der vorhandenen Simulatorfunktionen, wie sie fiir das zu entwickelnde
Werkzeug benétigt werden, denn beide Frameworks bieten keine Mehrbenutzer- oder
Multitasking-Fahigkeit. Auch sind keine Modellierungs- oder Simulationsframeworks
bekannt, mit denen Simulationsmodelle gemaB der spezifischen Beschreibung erstellt,
ausgefuhrt und visualisiert werden kénnen.

Den aus allgemeinen Programmiersprachen resultierenden hohen Aufwand bei der
Implementierung reduzieren simulationsspezifische Sprachen (z.B. MODSIM, SIMULA,
SIMSCRIPT, GPSS [Boss92], [Holm-ol], [Sims-ol], [Chis92]). Sie unterstiitzen den
Anwender mit simulationsspezifischen Konstrukten und Bibliotheken. Obwohl ihr Einsatz
einfacher als der der allgemeinen Programmiersprachen ist, erfordert ihre Anwendung im
Allgemeinen dennoch Programmierkenntnisse.

Bewertung

Ebenso wie bei den bekannten Implementierungen in Frameworks von allgemeinen
Programmiersprachen ist der Anwender beim Einsatz stets gezwungen, sich den
jeweiligen Restriktionen der Bibliotheken zu beugen. Dadurch wird die Implementierung
eines Mehrbenutzerbetriebs, einer dynamischen Detaillierung und einer
dreidimensionalen Visualisierung verhindert. Die meisten Frameworks ermdglichen trotz
modularem Aufbau und Objektorientierung auch keine interaktive Analyse, weil
Datenstruktur und Berechnung voneinander getrennt sind. Sie verfolgen dartber hinaus
jeweils nur ein Konzept der Zeitfortschaltung bei der Ausfihrung von
Simulationsmodellen (vgl. Abschnitt 3.3).

Zur Loésung der hier gestellten Anforderung erweisen sich die bekannten
Implementierungen also als nicht verwendbar. Die grundlegende Idee solcher
Frameworks sollte jedoch in der Konzeptionsphase aufgegriffen werden, da bereits
implizit durch die Gestaltung der Modellbeschreibung in einem Framework eine erste
Glltigkeitsprifung der Simulationsmodelle erfolgen kann. Dem entgegen steht der
Nachteil einer hohen Einarbeitung und geringen Benutzerunterstitzung. Fir die
Modellierung und Simulation missen grafische Benutzeroberflachen gestaltet werden, um
den oder die Anwender bei ihrer Arbeit besser zu unterstlitzen. Im folgenden Abschnitt
sollen zur Komplettierung der mdglichen Modellierungsmethoden auch existierende
grafische Werkzeuge untersucht werden.

3.2.3 Grafische Simulationswerkzeuge

Anwendungsspezifische Simulatoren geben dem Modellierer auf eine spezielle
Anwendung oder Domane zugeschnittene Werkzeuge und Bausteine an die Hand und
bieten grafische Modellierungswerkzeuge (z.B. Simul8, ED-Falcon, Quest oder Plant
Simulation [Simu03], [EDFa-ol], [Deml-ol], [UGS-ol]). Modelle kdénnen durch
Kombination, Parametrisierung und Verbindung von Bausteinen aus einer Bibliothek
erstellt werden. Diese Modelle kdnnen als neue Bausteine flir die Bibliothek dienen.

- 30 -

Durch diese Hierarchien kénnen auch groBe, komplexe Modelle erstellt und gewartet
werden. Fir eine hohe Flexibilitdt enthalten diese Simulatoren oftmals eine
Programmierschnittstelle oder/und eine eingebaute Programmiersprache. Der Einsatz
grafischer Werkzeuge vereinfacht und beschleunigt das Erstellen von
Simulationsmodellen. Die visuellen Modelle sind einfacher zu kommunizieren, ihre
Erstellung ist intuitiver und die generierten Ergebnisse kénnen Nicht-Simulationsexperten
leichter kommuniziert werden. Im Gegenzug hierfiir sind die grafischen Methoden nicht
so flexibel und vielseitig wie allgemeine Programmiersprachen. Simulationsberechnungen
bieten das Potential schneller zu sein, wenn der Ablauf direkt in einer allgemeinen
Programmiersprache speziell fir das Problem implementiert und optimiert worden ist
(vgl. [DMDO03]).

Bewertung

Mit den vorgestellten Werkzeugen ist es den Anwendern mdoglich, Modelle fir den
Fertigungsprozess in der jeweiligen Modellbeschreibung zu erzeugen und in einer
zugehodrigen Simulationsumgebung anzuwenden. Viele der kommerziellen Werkzeuge
basieren auf den bekannten formalen Beschreibungen (vgl. Abschnitt 3.2.1) und
beinhalten eine eigene, simulationsspezifische Programmiersprache, wie sie exemplarisch
in Abschnitt 3.2.2 vorgestellt wurde, um das Verhalten der vorgegebenen
Modellbausteine prazisieren zu kénnen und somit den gewahlten Detaillierungsgrad der
Bibliotheken zumindest teilweise zu umgehen. Dennoch werden die Méglichkeiten des
Anwenders hier unnétig eingeschrankt, was eine freie Wahl des gewilnschten
Detaillierungsgrades verhindert.

Der Prozess der Modellierung, Ausfihrung, Analyse und Modifikation der einzelnen
Simulationsmodelle findet am Computer einer einzelnen Person statt. Mochten mehrere
Anwender ein Modell bearbeiten, kann dies nur sequentiell durchgefiihrt werden. D.h.,
dass zu einem Zeitpunkt nur eine Person an dem Modell arbeiten kann. Die vorhandenen
Software-Lésungen ermoglichen nur in Teilen eine interaktive Beeinflussung des
Simulationslaufs.

Hinsichtlich einer Visualisierung in einer virtuellen Umgebung existieren Arbeiten, die die
vorhandenen Software-Werkzeuge anbinden kénnen. Die Werkzeuge selbst stellen hier
(noch) nur unzureichende Lésungen bereit. Keines der bekannten Werkzeuge ist in der
Lage, Simulationsmodelle zeitlich riickwarts zu berechnen, bzw. vorwarts-gerichtete
Modelle umzukehren. Spezielle Methoden zur Unterstitzung von funktional gegliederten
Fertigungssystemen sind ebenfalls nicht bekannt. In jedem Fall ist der Anwender an die
spezifische Implementierung des Simulatorkerns gebunden, womit sich beispielsweise
eine dynamische Detaillierung verbietet.

3.3 Ausfiihrung von Simulationsmodellen

Die gemaB einer glltigen Modellbeschreibung erstellten Simulationsmodelle missen zur
Durchfihrung einer Simulationsstudie schlieBlich auch im Simulatorkern ausgefiihrt
werden. Fir das hier zu entwickelnde Werkzeug wird eine Ausfuhrung in Vorwarts- und
Rluckwartsrichtung angestrebt. Die beiden folgenden Abschnitte betrachten den Stand der
Technik bei den jeweiligen Ausfihrungsformen detaillierter.

Stand der Technik -31-

3.3.1 Vorwartssimulation

Wie in Abschnitt 2.2 bereits angerissen existieren zur Zeitfortschaltung wahrend der
Simulation dazu zwei grundlegende Verfahren, die richtungsoffen ausgeflihrt werden
kdénnen: Fortschaltung nach fixen und variablen Zeitinkrementen.

Fixe Zeitinkremente

Bei fixen Zeitinkrementen wird die zu simulierende Zeitspanne in gleichférmige Intervalle
zerteilt. Fur alle Intervalle wird einheitlich ein Ereigniszeitpunkt zugeordnet (Anfang,
Mitte oder Ende des Intervalls). Fiur jedes Intervall werden die darin auftretenden
Ereignisse gespeichert, als wirden sie an dem Intervall zugeordneten Zeitpunkt
ausgefihrt werden missen. Die Berechnung versucht, beginnend beim zeitlich ersten
Intervall, alle darin enthaltenen Ereignisse abzuarbeiten. Eine implizite Diskretisierung
findet statt. Werden hierbei neue Ereignisse erzeugt, werden diese innerhalb der
Ereignisliste in das jeweilige Intervall einsortiert.

Wird die Intervalllange kurz gewahlt, missen mehr Intervalle verwaltet werden. Ist die
Anzahl der Intervalle deutlich groBer als die Anzahl der auftretenden Ereignisse, muss die
Simulation viele leere Intervalle verwalten und auch beim Voranschreiten betrachten. Die
eigentliche Berechnung der Simulation wird somit verlangsamt. Wird die Intervalllange
groB gewahlt, findet die Diskretisierung sehr grob statt. Die Differenz zwischen dem
Zeitpunkt, an dem ein Ereignis stattfinden soll, und dem Zeitpunkt, der dem zuge-
ordneten Intervall zugehért, kann groB werden. Daraus ergibt sich unter Umsténden ein
groBer Fehler in der Berechnung. Durch die GréBe der Intervalle enthalten diese im
Durchschnitt mehr Ereignisse, die innerhalb des Intervalls sequentiell oder zumindest
synchronisiert berechnet werden miissen. Verfahren zum Auflésen dieser Gleichzeitigkeit
kommen demnach vermehrt zum Einsatz und fihren ebenfalls zu einer ungenaueren
Berechnung. Abbildung 8 =zeigt im linken Teil die Zeitfortschaltung mittels fixer
Zeitinkremente. Im Gegensatz dazu zeugt der rechte Teil der Abbildung die
Zeitfortschaltung mittels variabler Zeitinkremente, die nachfolgend naher erlautert wird.

ZP1 = Zeitpunkt 1
Er 1 = Ereignis 1

Zeit im Fertigungsmodell Zeit im Fertigungsmodell Erl Er2 Er3 Erd

Simulationszeit ZpP1 ZpP2 ZpP3 ZpP4 Simulationszeit

Fixe Zeitinkremente Variable Zeitinkremente

Abbildung 8: Zeitfortschaltung mit fixen und variablen Zeitinkrementen

Variable Zeitinkremente

Methoden die mit variablen Zeitinkrementen arbeiten haben keine vorbestimmten Zeit-
inkremente, in denen sie voranschreiten. Die Systeme springen direkt zum jeweils
zeitlich nachsten Ereignis im Fertigungsmodell. Die Menge der in der Zukunft zu
berechnenden Ereignisse wird sortiert in der Ereignisliste gespeichert. Die Berechnung
muss das nachste Ereignis aus der Datenstruktur entnehmen, die eigene Uhr auf die Zeit

-32-

des Berechnungszeitpunktes des Ereignisses setzen und berechnen. Neue Ereignisse
werden wieder in die Datenstruktur eingeftigt (vgl. Abbildung 9). Im Fall einer
Ausfihrung des Simulationslaufs in Echtzeit oder einem Faktor der Echtzeit
(beispielsweise 4-mal so schnell) muss die Ausfliihrung der Ereignisse noch mit der
externen Simulationszeit des verwendeten Kalenders synchronisiert werden.

Oftmals sollen mit Simulationen Fertigungssysteme mit beschrankten Ressourcen
modelliert werden. Ereignisse kénnen nur in einzelnen Zustanden ausgefiuhrt werden. So
kann sich z.B. eine Warteschlange in einem Puffer vor einer belegten Maschine bilden.
Ein Ereignis zum Umlagern des vordersten Objekts in der Warteschlange auf die
Maschine muss warten, bis diese den Zustand frei erreicht. Fir die Berechnung der
Simulation bedeutet dies, dass nach dem Freiwerden der Maschine untersucht werden
muss, ob bisher blockierte Ereignisse nun ausgefiihrt werden kénnen®. Abbildung 9 zeigt
schematisch die Ausfihrung eines diskret ereignisorientierten Simulationsmodells in
einem Simulator [Dang03].

In diesem Werkzeug sollen durch eine sinnvolle Konstruktion des Simulatorkerns und der
Modellbeschreibung grundsatzlich beide Mdglichkeiten der Zeitfortscheitung unterstitzt
werden.

Zustand l Ereignisliste Zeit —»

+—

Abbildung 9: Ablauf einer ereignisgesteuerten Simulation

Bewertung

Beide Methoden konnen und sollen in die Implementierung des Simulatorkerns
einflieBen. Die Anforderung nach einer interaktiven Beeinflussung des Fortlaufes der
Simulation unterstreicht die Notwendigkeit einer bidirektionalen Kopplung zwischen
Simulatorkern und der entsprechenden Visualisierungskomponente (iber eine
erweiterbare Schnittstelle. Die Berechnungen des Simulators missen nicht nur angezeigt,

3 Evans [Evan88] bietet hierfiir verschiedene Losungsmethoden an.

Stand der Technik -33-

sondern aus der Visualisierung heraus auch manipuliert werden kénnen. Die direkte
Veranderung der Modellparameter fihrt dann zu einem veranderten Aufbau der
jeweiligen Ereignisliste und veranderten Simulationsergebnissen.

3.3.2 Riickwartssimulation

Im Rahmen eines erweiterten Einsatzes der Methode Ablaufsimulation soll auch eine
rickwartsgerichtete Ausfihrung von Simulationsmodellen durch das Werkzeug
unterstitzt werden. Wie Abschnitt 3.2 gezeigt hat, existieren keine Software-Lésungen
oder formale Modellierungsbeschreibungen, die eine rlickwarts berechnende Ausfliihrung
von Simulationsmodellen ermdglichen. Dennoch existieren mit [YiCI94], [JaCh97],
[WaMe97], [OhHa04] und [GrBo04] einige Arbeiten, in denen rickwarts-gerichtete
Simulationsmodelle und Experimente mit unterschiedlichem Erfolg eingesetzt wurden.
Fir die Auswertung der entsprechenden Simulationsdaten mussten in allen Fallen
umfangreiche Transformationen der generierten Datenmengen erfolgen, weil die
eingesetzten Werkzeuge dieses Vorgehen nicht implizit unterstiitzt haben. Oftmals wurde
hier mit einer Transformation und Neuberechnung aller einzelnen Ereigniszeitpunkte
gearbeitet, so dass auch wadhrend der visuellen Analyse eines Simulationslaufs keine
Erkenntnisse Uber das dynamische Verhalten des modellierten Systems gezogen werden
konnten. Des Weiteren wurden die betrachteten Simulationsmodelle speziell fiir diese
Untersuchungszwecke modelliert und die entsprechende Verhaltenssteuerung auf eine
rickwarts gerichtete Ausflihrung hin optimiert. Ein phasenlibergreifender Einsatz eines
Simulationsmodells zur richtungsoffenen Simulation eines einzigen Simulationsmodells
erfolgt in keinem der dargestellten Falle.

Bewertung

Fir die Konzeption und Implementierung des Werkzeugs sind insbesondere zwei
Fragestellungen zu I6sen: Zum einen eine zielgerichtete Transformation bestehender
Simulationsmodelle in ihr entgegengesetzt gerichtetes Pendant und eine bessere
Integration einer rickwarts gerichteten Ausfiihrung eines Simulationslaufes in den
Simulatorkern und die Visualisierungskomponenten.

3.4 Visualisierung von Ablaufsimulationen

Ein Ziel des anvisierten Werkzeugs ist es, durch die Visualisierung in einer virtuellen
Umgebung eine hdchstmdgliche Immersion des Anwenders in das zu beplanende
Fertigungssystem zu erreichen. Seine Wahrnehmung muss bis zu einem gewissen Grad
getduscht werden. Neben der Tauschung der menschlichen Wahrnehmung durch die
virtuelle Umgebung und Reprasentationsformen von Objekten in der virtuellen Realitdt
wird in diesem Abschnitt insbesondere die Eignung von VR-Systemen als
Benutzerschnittstelle untersucht.

Fir die Planung und Gestaltung eines Fertigungssystems ist eine umfangreiche,
ganzheitliche Betrachtung seiner Komponenten nétig, inklusive deren gegenseitige
Wechselwirkungen. Simulationssysteme, deren Visualisierungsmdglichkeiten sich auf eine
zweidimensionale Darstellung beschranken, sind jedoch oftmals nicht in der Lage, alle
Elemente und Strukturen so vollstédndig abzubilden und liefern somit nur ein
unvollstandiges oder verfalschtes Abbild der Realitat [Berg02].

-34 -

Betrachtet man die Entwicklung der vergangenen Jahre auch in anderen Bereichen der
IT-Industrie, so lasst sich ein Trend hin zu einer dreidimensionalen Reprasentation
einzelner Objekte erkennen. Diese Form der Darstellung eréffnet dem Anwender eine
verbesserte Mdglichkeit der Erfassung von Elementen und ihrer Anordnung in
Fertigungsstrukturen. Im Gegensatz zur zweidimensionalen Darstellung erhalt er nicht
nur quantitative Ergebnisse und statistische KenngréBen eines Simulationsmodells,
sondern in einem begrenzten Rahmen auch Informationen (ber die rdumliche und
zeitliche Anordnung und Verhaltensweisen des abgebildeten Fertigungssystems.
Simulationsmodelle, die eine dreidimensionale Darstellung offerieren, kdénnen daher
aussagefahigere und zuverlassigere Ergebnisse anbieten und den Prozess der
Modellvalidierung und —verifikation wesentlich beschleunigen [Berg02].

Die realistischere Darstellung des abgebildeten Fertigungssystems bietet darliber hinaus
wesentliche Vorteile, wenn es um die Kommunikation einzelner Planungsschritte mit
Nicht-Simulationsexperten geht. Die grundlegende Verhaltensweise eines Systems
erschlieBt sich umso leichter, je realistischer die Abbildung eines Systems in der
virtuellen Umgebung erfolgt. Ein méglichst immersiver Umgang mit dem
Simulationsmodell in einer virtuellen Umgebung kann diesen Effekt auch fiir den
Anwender selbst weiter verstarken. Das erscheint insbesondere vor dem Hintergrund
einer zunehmenden Komplexitat der Simulationsprojekte und dem Anwachsen der
Planungsteams umso mehr sinnvoll [Berg02].

3.4.1 Menschliche Wahrnehmung in virtuellen Umgebungen

Menschen kdénnen mit ihrer Umwelt in unterschiedlicher Weise interagieren.
Informationen werden aus der Umwelt aufgenommen und kénnen an die Umwelt
abgegeben werden. Die Eingangskanale eines Menschen sind Sehen, Hoéren, Riechen,
Schmecken und Flihlen. Riechen und Schmecken spielen in diesem Arbeitskontext eine
untergeordnete Rolle. Die meisten Eindriicke sammeln Menschen mit dem Auge.
Insbesondere bei dem Ausfall des Sehsinns (z.B. wegen Dunkelheit) werden H6ren und
Flhlen wichtiger.

3.4.1.1 Tauschung des Sehsinns

Fir eine Tauschung des Sehsinns missen Modelle von virtuellen 3D-Welten in Bilder fir
die Augen Ubersetzt werden. Der Prozess unterteilt sich in die Berechnung der Bilder und
das physische Erzeugen der Bilder.

Berechnung der Bilder

Um eine virtuelle Szene auf dem Bildschirm zu zeichnen (Rendering), miissen die
Geometriedaten der Szene eine Rendering-Pipeline durchlaufen. Aus dreidimensionalen
Vektordaten wird ein Bild generiert. Innerhalb der Rendering-Pipeline kann zwischen drei
Arbeitsschritten unterschieden werden:

1. Die Aufbereitung ist dafir verantwortlich, die Geometriedaten der Szene zu
reduzieren und in ein flr die weitere Verarbeitung optimiertes Format zu bringen.
Gegebenenfalls findet hier auch die Transformation bewegter Objekte an ihre Position
innerhalb der Szene statt.

Stand der Technik -35-

2. Die Schritte Projection und Clipping projizieren die transformierten Szenendaten auf
den Bildschirm und schneiden ,lberhdngende" Polygone auf die BildschirmgroBe
zurecht.

3. Der abschlieBende Schritt der Rasterung wird auf Pixel*-Basis ausgefiihrt. Hier
werden die zu zeichnenden Pixel in Abhdngigkeit von transformierten Vektoren,
Farben und Texturen eingeférbt. Die Sichtbarkeit eines Pixels wird durch Z-Buffering®
ermittelt. Die Rasterung wird seit der Einfihrung von Grafikkarten mit 3D-
Beschleunigung komplett in Hardware durchgefihrt.

GroBe Teile der Rendering-Pipeline sind mittlerweile in Software-Schnittstellen verlagert,
die aufgrund von Unterschieden in der Grafik-Hardware notwendig sind, um die
Lauffahigkeit der Anwendung auf unterschiedlichen Hardware-Plattformen zu garantieren.
Diese Grafik-APIs sollen unabhdngig von der Grafik-Hardware einen festen
Funktionsumfang bieten, so dass auch gegebenenfalls Funktionen, die in der Hardware
nicht vorhanden sind, durch die Software-Schnittstelle emuliert werden.

Aufbereitung
i Geometrie-
: bearbeitung

Rasterung

Lighting |
Projection
Clipping

Model-View
Transformation

Abbildung 10: Rendering Pipeline

Erzeugen der Bilder

Entsprechend der Erkenntnis, dass die meisten Wahrnehmungen (ber den Sehsinn
erfolgen, orientiert sich die Entwicklung von Ausgabegeraten auch auf die Tauschung der
Augen. Durch verschiedene Abstande und Winkel, die die Augen zu einem realen Objekt
haben, entstehen zwei perspektivisch verschobene Bilder. Um den Sehsinn zu tauschen,
mussen diese beiden Bilder flir das rechte und linke Auge erzeugt werden. Dies kann
durch ein am Kopf befestigtes Display (Head mounted Display (HmD)) mit getrennten
Bildern fir das rechte und linke Auge geschehen. Neben den HmDs, die das Bild direkt
am Kopf des Benutzers erzeugen, existieren Losungen, bei denen Bilder entstehen, die

* Ein Pixel bezeichnet die kleinste Einheit der Darstellung auf einem Bildschirm [Balz05].

> Das Z-Buffering wird in der Computergraphik angewendet, um die verdeckten Flichen in einer
dreidimensionalen Grafik zu ermitteln. Durch die Informationen im Z-Buffer (deutsch Z-Puffer) stellt das
Verfahren fest, welche Elemente einer Szene gezeichnet werden miissen und welche verdeckt sind [BeBr03].

- 36 -

Informationen fiir beide Augen enthalten. Zur Trennung des rechten und linken Bildes
haben sich zwei Ldsungen in Form von Shutterbrillen oder der Trennung durch
Polarisation durchgesetzt [DFAB98]. Wahrend die Shutter-Technik nur einen Projektor
bendétigt, braucht die Technik mit Hilfe einer Polarisationstechnik zwei Projektoren.
Trotzdem miussen fir beide Verfahren zwei verschiedene Bilder erzeugt werden. Um
einen moglichst weiten Bereich des Sichtfeldes des Anwenders auszufiillen, kdénnen
mehrere Projektionssysteme zu einer gréBeren Flache kombiniert werden. Diese Flache
kann planar sein, aber auch den Anwender partiell oder ganz umgeben. Eine mdgliche
Anordnung der Flachen ist ein Wirfel, in dem sich der Anwender befindet. Die Bilder
werden mit Projektoren von auBen aufgebracht (Rlckprojektion). Verschiedene
Installationen von solchen Systemen unterscheiden sich in der Anzahl der verwendeten
Flachen des Wiirfels. In der einfachsten Variante werden nur die Flachen vor und rechts
wie links neben dem Anwender verwendet [Brac02]. Verbessert werden kann dies, indem
man die Rickseite, die Decke und/oder den Boden hinzunimmt. Ist der Anwender
komplett von dem Wdirfel umschlossen, kann er in alle Richtungen blicken, ohne eine
Unterbrechung der virtuellen Umgebung zu erfahren. Neben dem Problem der
Kanaltrennung muss auch die Kopfposition des Betrachters erfasst werden, um
perspektivisch richtige Bilder zu erzeugen. Hier sind unterschiedliche Tracking-Verfahren
(Mechanische Tracker, Ultraschalltracker und/oder elektromagnetische Tracker) bekannt
[RDBO1].

3.4.1.2 Tauschung des Tast- und Horsinns

Um den Hoérsinn durch eine 3-dimensionale Tonwiedergabe zu (berlisten, existieren
einige Arbeiten. Téne aus Kopfhdérern kommen immer aus der Richtung, aus der sie
aufgenommen wurden. In der Realitat wirde ein Ton, der sich vor einer Person befindet,
nach einer Drehung hinter ihr erscheinen. Téne aus Kopfhérern drehen sich jedoch mit.
Um diesen Effekt auszuschalten, muss ein Computer Lage- und Richtungsortung
beherrschen und diese dann mathematisch umsetzen. Die Position des Anwenders und
dessen Kopflage werden geortet und die Téne an dessen Bewegung angepasst. Je nach
Anwendung werden Kopfhorer oder im Raum angebrachte Boxen benutzt [Bega94].

Weit weniger Arbeiten existieren zum Taduschen des Tastsinns. Um eine realistische
Interaktion mit der virtuellen Umgebung zu erzeugen, reicht es nicht aus, Objekte
anzustoBen und zu bewegen, es ist zusatzlich nétig eine Rickkopplung zu erlangen, die
auf den Anwender wirkt. Unterschieden wird zwischen dem taktilen Feedback, also der
Rickwirkung des Tastens in Form von Druck, Warme oder Schmerz und dem Force
Feedback, also der Rickkopplung der entstehenden Krafte durch Lenken der Finger und
Hand.

3.4.2 VR als User Interface

Im stetig harter werdenden Wettbewerb wird die Umsetzung von Softwaresystemen, die
die Virtual Reality (vgl. Definition 30) einsetzen, als eine Technologie angesehen, die es
den betroffenen Unternehmen (heutzutage aufgrund der hohen Entwicklungskosten meist
GroBunternehmen) nicht nur ermoglicht, am Markt zu bestehen, sondern
Wettbewerbsvorteile gegeniber Konkurrenten zu erarbeiten [Berg02]. Die von einem
Computer generierte und kontrollierte Umgebung fir die Mensch-Maschine-Interaktion
(hier analog zum Begriff der virtuellen Umgebung) umfasst somit alle Technologien zur

Stand der Technik - 37 -

Definition und echtzeitféhigen Aufbereitung eines rechnerinternen, dreidimensionalen
Modells fir die menschlichen Sinne, die es dem Anwender ermdglichen durch
Einbeziehung seiner Person in das Modell (vgl. Immersion) und infolge durch das Modell
initiierter Rickkopplungen direkt zu manipulieren (vgl. Interaktion) [Berg02].

Die beschriebenen Systeme sind zum Teil sehr aufwendig und kostenintensiv zu
implementierten. In vielen Anwendungsbereichen wird ein so hoher Grad der Immersion
nicht benétigt. In CAD-Systemen® beispielsweise sind die traditionellen, preiswerten
Systeme durch Formen der Animation aufgewertet worden, so dass Objekte durch vorab
definierte Bewegungsgleichungen kontrolliert werden kénnen. In der Konstruktion oder in
der Architektur z.B. reicht es oft aus, den Objekten durch Schattierungen einen
Tiefeneindruck zu verleihen oder sie durch Drehen von einer anderen Seite zu
betrachten, um dem Kunden eine Vorstellung zu vermitteln.

Die Aufgaben eines VR-Systems liegen demnach in der Modellierung der Objekte einer
virtuellen Umgebung, der Prasentation der virtuellen Umgebung sowie der Realisierung
der Interaktion mit der virtuellen Umgebung. Fir jede dieser drei Teilaufgaben sind
spezifische Hard- und Softwarekomponenten erforderlich [Berg02].

Modellierung

Inhalt der Modellierung ist im Wesentlichen die Generierung dreidimensionaler Modelle,
die in einer virtuellen Umgebung genutzt werden kénnen. Sie umfasst somit die
Erzeugung von 3D-Modellen, also die gestaltorientierte Modellierung sowie die Definition
der Funktion der Objekte, d.h. die funktionsorientierte Modellierung. Fir die
gestaltorientierte Modellierung stehen umfangreiche CAD-Werkzeuge zur Verfiigung, auf
die auch in der hier vorliegenden Arbeit zurlickgegriffen werden soll. Die Funktion der
3D-Modelle beschrankt sich hierbei auf die Reprasentation spezieller Funktionsblécke
(Modellbausteine) eines Simulationsmodells, so dass eine implizierte Modellierung des
Verhaltens durch die Modellierungskomponente des zu entwickelnden Werkzeugs erfllt
wird.

Prasentation

Im Rahmen der Prasentation der virtuellen Umgebung erfolgt die auf den zuvor
definierten 3D-Modellen basierende Erzeugung der von den menschlichen Sinnen
wahrnehmbaren Prasentationsformen. Hierflir wird neben speziellen Grafikcomputern
eine Software-Applikation notwendig, die die dreidimensionale Reprasentation erzeugt.
Darliber hinaus missen entsprechende Ausgabegerdte bereitgestellt werden. Technisch
realisierbar sind heutzutage die \visuelle, die akustische sowie mit einigen
Einschrankungen die haptische Prasentation, wobei sich die meisten VR-Systeme auf die
visuelle Prasentation beschranken. Im Rahmen des hier zu entwickelnden Werkzeugs soll
sich ebenfalls auf die visuelle Prasentation des Simulationsmodells in einer virtuellen
Umgebung beschréankt werden. Die entsprechende VR-Software soll im Rahmen der
Werkzeugentwicklung als Visualisierungskomponente erstellt und auf die speziellen
Anforderungen einer immersiven, interaktiven und dreidimensionalen Visualisierung

6 Computer-Aided-Design (CAD) ist die rechnergestiitzte Entwicklung und Konstruktion von Bauteilen,

Baugruppen, Erzeugnissen und Anlagen unter Einschluss technischer Berechnungen sowie der
Bewegungssimulation von Objekten und der Erarbeitung von Dokumentationen [FiHe00].

- 38 -

abgestimmt werden. Da die vorliegenden 3D-Daten meist zu reich an Informationen sind,
kdnnen im Rahmen der Umsetzung der 3D-Visualisierung spezielle Methoden und
Algorithmen zur Komplexitatsreduktion eingesetzt werden (vgl. [KIKr02], [WaFi01]).

Interaktion

Unter Interaktion koénnen alle Mechanismen summiert werden, welche die direkte
Einflussnahme des Anwenders auf die Objekte in der virtuellen Umgebung ermdglichen
(vgl. Definition 28). Die beiden wesentlichen Komponenten zur Interaktion sind 3D-
PositionsmeBsysteme (Trackingsysteme) und 3D-Eingabegerate (Devices). Tracking-
systeme ermoglichen die Verfolgung von Kopf- bzw. Handbewegungen des Anwenders,
indem die Position und Orientierung des Senders im Raum in den sechs madglichen
Freiheitsgraden relativ zu einem Bezugspunkt erfasst wird. Flir diese Form der
Interaktion in einer virtuellen Umgebung werden spezielle Eingabegerate bendtigt, die
eine Bewegung im Raum bestmdglich unterstitzen. Viele VR-Probleme lassen sich aber
auch mit handelsiblichen Software-Tools und Desktop-PCs und deren Ein- bzw.
Ausgabegeraten angemessen ldsen. Als Ausgabegerate kommt hierbei meist der
Bildschirm (eventuell Stereo-Lautsprecher) zum Einsatz. Fir die Eingabe werden die
Tastatur und die Maus verwendet. Fir die Implementierung des hier zu entwickelnden
Werkzeugs sollen die zuletzt genannten Methoden gentigen, wobei wahrend der
Umsetzung eine maogliche Erweiterung um spezielle Darstellungs- und
Interaktionsmadglichkeiten zu berlicksichtigen ist.

3.4.3 Interaktion in virtuellen Umgebungen

Handelt und agiert ein Anwender in einer virtuellen dreidimensionalen Umgebung, so
spricht man von 3D-Interaktion. Elementar flir eine intuitive Interaktion mit einem
System ist die so genannte Reiz-Reaktions-Korrespondenz. Diese liegt immer dann vor,
wenn z.B. auf eine Bewegung des Eingabegerdtes nach rechts, auch eine entsprechende
Bewegung des selektierten Objektes nach rechts erfolgt. Liegt diese nicht vor, muss der
Anwender ein mentales Abbild der gewlinschten Aktion in Verbindung mit der
erforderlichen Bewegung erstellen. Nach Stork [Stor00] lassen sich folgende Basis(inter-
)aktionen unterscheiden:

= Das Navigieren, verstanden als zielgerichtete Bewegung im Raum.

= Das Positionieren, verstanden als das Platzieren eines Objektes an einer definierten
Raumposition.

= Das Orientieren, verstanden als das Rotieren und Ausrichten eines Objektes im
Raum.

= Das Selektieren bzw. Deselektieren, verstanden als das Auswahlen eines Punktes
oder Objektes im Raum.

Navigation, Objekt-Selektion und -Manipulation sind die Basisoperationen, die von
jeglichen dreidimensionalen Anwendungen umgesetzt werden miussen. Hierbei ist es
Ublich, dass Positionieren und Orientieren als eine Operation zusammengefasst werden,
da ein 3D-Eingabegerdt mit sechs Freiheitsgraden, diese Operationen gleichzeitig
durchfihren kann. In der 3D-Interaktion wird unter Navigation die Bewegung des
Anwenders in der Umgebung der dreidimensionalen virtuellen Szenerie verstanden.
Haufig ist eben diese Navigation die erforderliche Grundlage zur Durchfihrung der
tatsachlichen Interaktionsaufgaben und nicht die eigentliche Aufgabe. Navigation ist also

Stand der Technik -39 -

oft ,nur Mittel zum Zweck"; sie darf den Anwender auf keinen Fall von seiner
urspriinglichen Aufgabe ablenken. Je nach Art der Umgebung, lassen sich nach Bowman
et. al. [BKLPO1] unterschiedliche Formen der Navigation unterscheiden:

= Exploration, d.h. Navigation ohne spezielles Ziel bzw. als Umgebungserkundung.

= Search, d.h. Aufsuchen des Ziels und sich dorthin bewegen.

= Maneuvering, d.h. Durchflihrung kleiner, praziser Bewegungen, um eine bessere
Position flir eine anstehende Arbeit einzunehmen.

Es existieren noch zwei weitere Arten der Navigation, bei denen gezielt die Freiheitsgrade
eines navigierenden Akteurs eingeschrankt sind:

= Walking, wobei der Anwender sich auf einem zweidimensionalen Untergrund
bewegt. Es sind lediglich die Bewegungen vor, zuriick, links und rechts méglich. Der
Akteur bewegt sich immer in die Richtung, die seiner Blickrichtungsachse
entspricht. Die Walking-Metapher erfordert eine kontinuierliche Eingabe von Seiten
des Anwenders. Erfolgt diese nicht, so bleibt er stehen. Dient diese Art der
Navigation nicht dem eigentlichen Aufgabenzweck, so kann die erforderliche
Dauereingabe als stérend empfunden werden. In weitrdumigen Szenerien, in denen
sich der Anwender via Exploration einen Uberblick verschaffen will, ist diese
Metapher aufgrund der eingeschrankten Bewegungsfreiheit ungeeignet. Vorteilhaft
ist sie in Situationen, bei denen der Anwender beengte Raume erkundet bzw.
bestimmte Zielpunkte exakt ansteuern méchte.

= Flying, ermdglicht eine kontinuierliche Bewegung entlang einer geraden Flugbahn.
Richtungsdnderungen z.B. durch einen Mausklick sowie Anderungen der
Geschwindigkeit sind moéglich. Nachteilig ist diese Navigationsart in beengten
Raumen, da man durch Begrenzungselemente wie z.B. Wande einfach hindurch
fliegt. Auch hier ldsst sich die Orientierung der Kamera nicht unabhangig von der
Bewegung des Akteurs verandern.

Um die Positionsbestimmung zu vereinfachen, kann ein Akteur sich Navigationshilfen
bedienen. Diese kdnnen fester Bestandteil der 3D-Umgebung (z.B. Hinweisschilder) bzw.
externe Objekte (z.B. Ubersichtskarte mit eingeblendeter Position und Blickrichtung,
Kompass) sein. Genau wie in der realen Welt, bieten Viewpoints einen besonderen
Uberblick {iber eine komplette Szenerie bzw. ausgewéhlte Teilbereiche einer Szenerie.
Solche Viewpoints kénnen zusatzliche Informationen, tber das, was zu sehen ist, flr den
Anwender bereithalten. Fir die Erreichung eines Viewpoints kann sich der Anwender
beispielsweise der Beam-Metapher bedienen, bei der er zu dem gewiinschten Ort
teleportiert wird. Problematisch ist hierbei, dass der Akteur schnell die Ubersicht (iber
seine derzeitige Position verliert.

3.4.4 Virtuelle Umgebung von Fertigungssystemen

Das Problemfeld, dem sich diese Arbeit widmet, liegt im Umfeld der Modellierung und
Simulation komplexer Fertigungssysteme, die hinsichtlich verschiedenster
Fertigungsprinzipien organisiert werden und in einer virtuellen Umgebung dargestellt
werden, um sie moglichst immersiv und interaktiv parallel zu ihrer Ausfihrung
analysieren und optimieren zu kénnen. Dafir ist es notwendig, alle zur Erflllung dieser

- 40 -

Aufgaben notwendigen Teilsysteme des abzubildenden Systems mit ihren technischen
Objekten (Anlagen, Maschinen, Werker, etc.) sowie die unterschiedlichen, sich
gegenseitig bedingenden Vorgange abzubilden, die das dynamische Verhalten des
Systems beeinflussen. Die modellierten Teilmodelle (Modellbausteine) sind
verschiedenartig gestaltet und Uben darliber hinaus verschiedenartige Funktionen aus.
Neben der eigentlichen Gestalt der Modellbausteine in der virtuellen Umgebung stellt
daher auch die Funktion des Modellbausteins ein wesentliches Merkmal dar.

Das Gestaltmodell als Partialmodell zur Reprasentation der Gestalt der in einer virtuellen
Umgebung prasentierten Objekte wird meist durch 3D-Modelle realisiert, die mittels
Volumen-’ oder auch Flachenmodell® erstellt werden. Die Darstellung eines
Fertigungssystems in einer virtuellen Umgebung mit ausschlieBlich statischen Objekten
hat flir technische Anwendung wie die Simulation, die insbesondere Aufgabenstellungen
hinsichtlich der Funktionalitat des abgebildeten Systems erflillen sollen, wenig
Aussagekraft und damit einen geringen Stellenwert. Die Evaluation eines
Fertigungssystems mittels der Virtual Reality erfordert daher die Simulation oder
zumindest Animation der Bewegung einzelner Modellbausteine sowie die Mdglichkeit zum
direkten Eingriff des Anwenders [Berg02]. Die verschiedenen interaktiven
Steuerungsmoglichkeiten werden dem Anwender Uber ausgewdhlte Bedienelemente zur
Verfligung gestellt und variieren in ihrer Komplexitat stark hinsichtlich des gewilinschten
Untersuchungsziels.

3.4.5 Verstandnisoptimierung durch virtuelle Umgebungen

Die Komplexitat eines Fertigungssystems erklart sich nicht nur aus der Anzahl aller
Elemente, sondern insbesondere auch aus deren gegenseitiger Vernetzung, durch die
sich die einzelnen Elemente gegenseitig mehr oder weniger stark beeinflussen. So
erzeugen also die Verbindungen zwischen den einzelnen Elementen die eigentliche
Komplexitat und bedingen die gleichzeitige Beachtung sehr vieler Merkmale. Die hohe
Komplexitat eines Fertigungssystems stellt somit hohe Anforderungen an die Fahigkeiten
des Anwenders, Informationen zu sammeln, zu integrieren und Handlungen zu planen.
Die Komplexitat an sich wird damit zur subjektiven GréBe. Fir den vereinfachten
Umgang mit komplexen Fertigungssystemen ist es also ausschlaggebend, dass es in
einer Form prasentiert wird, welche dem realen Erscheinungsbild bestmdglich entspricht,
um den Assoziationseffekt des Menschen bestmoglich auszunutzen. Die meisten
Menschen beschreiben die wirkliche, physische Welt mit Begriffen aus ihrem
Wahrnehmungsbereich, mit Objekten, die sie umgeben und die sich mdéglicherweise
bewegen. Oftmals wird diese Wahrnehmung auch rdumlich beschrieben, zum Beispiel
dadurch, wo man sich im Raum befindet und wie die umgebenden Dinge in Relation
zueinander stehen. Fir die Visualisierung eines Fertigungssystems ist es daher
erforderlich, die beiden Definitionsbereiche, also das Aussehen und die raumliche
Anordnung abzubilden, da sie flr ein reales Empfinden des Anwenders ausschlaggebend
sind (vgl. [Berg02]).

7 Volumenmodell: Bei einem Volumenmodell hat jedes raumliche Objekt ein definiertes Volumen um Raum

und geometrische Eigenschaften (Oberfldche, Volumen, Mittelpunkt) sowie physikalische Eigenschaften
[FiHe00].

Flachenmodelle beschreiben die zu modellierenden Objekte als einzelne Flichen. Sie lassen sich je nach
Komplexitit in die unterschiedlichen Typen Ebene, Quadrike und Freiformflichen unterscheiden [FiHe00].

Stand der Technik -41 -

Die Technologie der Virtual Reality erlaubt die rdumliche und realitatsnahe Darstellung
von Vorgangen und Gegenstanden der realen Umwelt oder erdachter Welten und die
Immersion des Anwenders in diese synthetische Welt. Der Anwender bekommt den
Eindruck, tatsachlich in der virtuellen Welt anwesend zu sein [Lani91] und kann sie nach
eigenen Winschen in natlrlicher Form erfahren. Durch die wirklichkeitsgetreue
Abbildung, die zumindest potentiell durch diese Technologie erreicht werden kann, erhalt
der Anwender eine verbesserte Rickmeldung der Modellbausteine seines
Simulationsmodells und kann so sein Erfahrungswissen optimaler auf das abgebildete
Problem anwenden [Berg02].

Neben der realitétsnahen Darstellung ist die Integration des Anwenders in das virtuelle
Simulationsmodell von entscheidender Bedeutung. Der Anwender wird so Teil des
Systems und kann unmittelbarer dessen Funktionsweise erleben, {berprifen und
verbessern. Neben einer monokausalen Denkweise nach dem Ursache-Wirkung-Prinzip
kann der Anwender ein multikausales Geflecht aufbauen und das System so ,von innen
heraus" verstehen. Die raumliche Darstellung und die Option der Bewegung ermdglicht
dem Anwender die dargestellte Szene aus verschiedenen Perspektiven zu erleben.
Raumlich-zeitliche Muster kénnen ergangen und durch den unmittelbaren Erlebnisbezug
kann der Aufbau und das Verhalten des abgebildeten Fertigungssystems Uberprift
werden [Lani91]. Die Effektivitat und Effizienz des Problemlésungsprozesses kann ebenso
wie die Aussagekraft der Entscheidungen erhéht werden.

Durch die Darstellung in einem dreidimensionalen Raum kann der Anwender zusatzlich
erheblich mehr Daten gleichzeitig im Blickfeld halten, aufnehmen und schneller zu
entscheidenden Erkenntnissen gelangen, weil er Strukturen besser und schneller erkennt
und so neu arrangieren kann, um das zugrunde liegende Problem zu lésen. Ein
unzusammenhdngendes Ensemble von Modellbausteinen erhdlt eine Bedeutung.
Insgesamt kann der Anwender durch den Einsatz der Technologie der Virtual Reality zu
einem besseren Verstandnis der Zusammenhdnge gelangen und dadurch ohne gréBeren
Einarbeitungsaufwand ein Fertigungssystem analysieren und optimieren.

Zusammenfassend kann man also festhalten, das bereits umfangreiche Arbeiten zur
Gestaltung von virtuellen Umgebungen existieren, deren Ergebnisse in die Konzeption
des hier zu entwickelnden Werkzeugs einflieBen kénnen. Verschiedene Kopplungen von
Simulatoren an virtuelle Umgebungen sind bereits gelungen und erfordern neben einer
Festlegung der bendétigten Schnittstellen keine besonderen Anforderungen, die Uber die
Gestaltung von echtzeitfahigen Benutzeroberflachen hinausgehen. Das Werkzeug an sich
muss aber aus mehr als nur den Visualisierungskomponenten bestehen. Im folgenden
Abschnitt sollen deswegen Methoden und Paradigmen des Software-Designs vorgestellt
werden, die in der Phase der Konzeption des Werkzeugs in seiner Gesamtheit wie der
einzelnen Module benétigt werden.

3.5 Software-Design von Mehrbenutzersystemen

Nach der fachlich orientierten Betrachtung des Stands der Technik hinsichtlich der
Anforderungen an Basisprozess, Modellierungsmethode und Simulationswerkzeug in den
vorherigen Abschnitten werden hier die informationstechnischen Grundlagen betrachtet,

- 42 -

soweit sie die Konzeption und Realisierung des Werkzeugs betreffen. Die Grundlagen des
Software Engineering® sowie Merkmale von Software-Architekturen'® werden
beschrieben. Aus der Entscheidung flr eine bestimmte Architektur innerhalb eines
vorgegebenen Design-Paradigmas resultieren Konsequenzen flir die spatere
Implementierung.

3.5.1 Allgemeine Paradigmen des Software-Designs

Zur Ausfihrung eines Software-Entwurfs werden in der Literatur allgemeine
Verhaltensregeln oder Prinzipien angegeben und diskutiert [Henk97]. In diesem
Abschnitt werden die Paradigmen Abstraktion, Hierarchisierung, Strukturierung und
Modularisierung behandelt, zwei weitere Prinzipien (Kapselung und Typisierung) werden
im Rahmen des folgenden Abschnitts Uber objektorientiertes Design betrachtet, da sie
dort besondere Bedeutung erfahren. Zwar ist eine objektorientierte Vorgehensweise nicht
unbedingte Vorraussetzung fir die Anwendung dieser Prinzipien, dennoch haben viele
objektorientierte Methoden mindestens implizit die Unterstitzung dieser Prinzipien zum
Ziel. Hieraus begriindet sich auch, wenn auch nicht ausschlieBlich, die Entwicklung des
objektorientierten Paradigmas.

Abstraktion
LAbstraktion (von lat. abstrahere: abziehen, wegziehen) bezeichnet allgemein den
Prozess rationaler Verarbeitung von konkretem Sinnesmaterial, wobei von
bestimmten duBeren, individuellen oder zufélligen Merkmalen, Eigenschaften und
Beziehungen des betreffenden Objekts abgesehen wird; andere, allgemeinglltige,
strukturelle Eigenschaften werden dagegen als wesentlich herausgehoben und
zugleich variabel betrachtet" [Balz82].

Abstraktion ist eines der wichtigsten und leistungsfahigsten softwaretechnischen
Prinzipien [Henk97]. Die Komplexitat der zu entwickelnden Programme verhindert eine
ganzheitliche Betrachtung mit allen Details, daher werden sie durch die Methode
Abstraktion auf ihre wesentlichen Charakteristika reduziert. Die Anwendung des
Paradigmas Abstraktion im Software-Design bringt zusammenfassend folgende Vorteile:

= Erkennen, Ordnen, Klassifizieren, Gewichten von wesentlichen Merkmalen
= Erkennen allgemeiner Charakteristika,
= Trennung zwischen wesentlichen und unwesentlichen Eigenschaften

Eine funktionale Abstraktion stellt eine Leistung in Form einer abstrakten Funktion,
Operation oder Prozedur zur Verfligung. Sie wird daher oft auch operationale oder

prozedurale Abstraktion genannt [Balz05].

Hierarchisierung

Das Software Engineering als Teilgebiet der Informatik beschéftigt sich mit der standardisierten,
ingenieursmafigen Herstellung von Software und den damit verbundenen Prozessen [Somm92].

Software-Architekturen beschreiben die Zerlegung einer Anwendung in Einheiten, den globalen

Kontrollfluss, die Handhabung von Randbedingungen und Kommunikationsprotokolle zwischen
Subsystemen [BrDu04].

Stand der Technik -43 -

~Eine Hierarchie bezeichnet ein System von Elementen, die einander (ber- bzw.
untergeordnet sind, so dass jedem Element nur héchstens ein anderes unmittelbar
libergeordnet ist." [nach Henk97].

Bereits die Bedeutung des Abstraktionsprinzips zeigt die menschliche Notwendigkeit, ein
gedankliches Modell eines komplexen realen Systems anzufertigen, um dieses System
verstehen zu kdnnen. Reale Systeme sind haufig gut geeignet, hierarchisch gegliedert zu
werden. Ein komplexes System enthdlt miteinander in Beziehung stehende Subsysteme,
diese setzen sich wiederum aus weiteren Subsystemen zusammen, bis schlieBlich die
Elemente eines Subsystems nicht weiter sinnvoll dekomponiert werden kénnen. Auf diese
Weise entsteht eine aus Hierarchieebenen gebildete Struktur, die das Verstehen des
Gesamtsystems wesentlich erleichtert oder sogar Voraussetzung dafir ist. Weil die
Struktur hierarchischer Systeme das menschliche Verstandnis erleichtert und
Softwaresysteme Modelle realer (hierarchisch gegliederter) Systeme voraussetzen, bietet
es sich an, auch kinstliche Systeme (z. B. Softwaresysteme) nach dem Prinzip der
Hierarchisierung zu gliedern. Hierarchisierung ist demnach ein weiteres wichtiges
Paradigma des Software Designs. Es stellt sich die Frage, nach welchen Kriterien die
Hierarchisierung vorgenommen werden soll. Zwei Arten von Hierarchien haben sich als
besonders gut zur Strukturierung von Softwaresystemen geeignet erwiesen:

Die erste Art der Hierarchie ergibt sich aus der Verallgemeinerungsbeziehung zwischen
zwei Elementen eines kinstlichen oder realen Systems. Diese Beziehung ist sehr haufig
zwischen Systemelementen anzutreffen: Ein ,Mébel® stellt beispielsweise die
Verallgemeinerung von ,Schrank®, ,Bett", ,Tisch" etc. dar. Diese Art von Hierarchie wird
deshalb haufig IS-A-Hierarchie genannt. Die zweite Art ist die Part-Of-Hierarchie, die auf
dem Kriterium des Enthaltenseins basiert. Ein Fahrradventil ist ggf. ein Teil des
Vorderrades und dieses ist Teil des Fahrrades als Ganzes. Anders herum: Ein Fahrrad hat
ein Vorderrad und ein Vorderrad hat ein Ventil.

Folgende Vorteile der Anwendung des Hierarchisierungsprinzips kénnen also festgehalten
werden:

= Strukturierung eines Softwareproduktes,

= Erhéhung der Verstandlichkeit,

= Verbesserung der Wartbarkeit,

= Reduktion der Komplexitat; Erhdhung der Einfachheit,
= Strukturierung des Entwicklungsprozesses.

Die besondere Bedeutung der Is-A- und der Part-Of-Hierarchie liegt darin begrindet,
dass bei Anwendung des objektorientierten Paradigmas der Softwareentwicklung diese
Hierarchien eine direkte Entsprechung in der Klassen- und Objekthierarchie des zu
gestaltenden Softwaresystems finden kénnen (vgl. hierzu auch 3.5.2). Wichtig neben
diesen beiden Arten sind dariber hinaus die Hierarchie der Module und die
Prozesshierarchie, also die Beziehungen zwischen dynamischen Systemkomponenten.

Strukturierung

- 44 -

,Unter Strukturierung versteht man die Tétigkeit, bei der einer homogenen oder
homogen erscheinenden Menge von Dingen eine Struktur, insbesondere im
abstrakten Sinn eine Klassifikation, aufgepragt wird." [nach Henk97]

Weil groBe und komplexe Systeme sich dem menschlichen Verstandnis entziehen, mus-
sen solche Systeme in Teile zerlegt werden, die leichter beherrschbar sind. Wenn diese
Teile unabhangig voneinander bearbeitet werden kdénnen, genligt fir das Verstandnis des
Gesamtsystems das Verstandnis der kleineren Teile und ihres Zusammenspiels. Eine
geeignete Zerlegung des Systems ist also dazu geeignet, die Komplexitat zu reduzieren.
Die Betrachtung des zerlegten Systems beinhaltet nicht mehr alle Informationen Uber die
Beziehungen zwischen Systemelementen, die im kompletten System vorhanden sind.
Deshalb kann eine ungeeignete Zerlegung zu einer Betrachtungsweise flihren, die den
Charakter des Gesamtsystems nicht offen darlegt. Die Zerlegung eines Systems muss
seiner Struktur entsprechen.

Abbildung 11 =zeigt ein willkirlich gewahltes Beispielsystem A, eine ungeeignete
Zerlegung B und eine Zerlegung, die geeignet ist, die Systemstruktur C zu
veranschaulichen. Wahrend die Darstellungen A und B dem Betrachter wegen ihrer
héheren Komplexitat kaum ermdglichen, den Aufbau des Systems mit einem Blick zu
erfassen, stellt das in C kein Problem mehr dar: Die geeignete Strukturierung des
Gesamtsystems hat dessen Komplexitat wesentlich reduziert.

Fir das Software Design hat das Prinzip der Strukturierung doppelte Bedeutung: Sowohl
flr das eigentliche Softwareprogramm, wie auch flir den Designprozess selbst muss eine
geeignete Struktur identifiziert werden. Das Paradigma der Strukturierung unterstitzt
also auch das methodische Vorgehen beim Software Design. Die explizite Strukturierung
des Systems zwingt den Softwareingenieur, sich die Vor- und Nachteile unterschiedlicher
Designalternativen vor Augen zu fihren.

Die Anwendung des Prinzips der Strukturierung bringt folgende Vorteile:

= gute Verstandlichkeit

= |eichte Einarbeitung

» Anderungsfreundlichkeit
= gute Wartbarkeit

Stand der Technik - 45 -

() O
[
O\.

ungeeignete Zerlegung

o0

Beispielsystem

. Systemelement

(_

- Elementbeziehungen
— (ungerichtet, uni-, bidirektional)

Zerlegung zeigt Struktur

Abbildung 11: Komplexitatsreduktion durch Strukturierung [Henk97]

Modularisierung
,Ein Modul ist ein Bauteil eines gréBeren Baukastensystems. Module werden
hauptsédchlich verwendet, um sie leicht gegen andere Module austauschen zu
kénnen, oder neue Module zu besagtem Ganzen hinzuzufiigen. Deshalb ist flir
Module eine Schnittstelle vonnéten, um sie mit dem Ganzen zu verbinden."
[Henk97]

In den vorherigen Abschnitten wurde gezeigt, dass die Dekomposition von Systemen in
seine Komponenten genutzt werden kann, um die Komplexitdt des Gesamtsystems zu
verringern. In einem mehr technischen Sinne bezeichnet man solche Teilsysteme als
Module, wenn sie als Softwarebausteine dienen, indem sie Daten und Algorithmen?!! zu
einer funktionalen Einheit zusammenfassen. Die Festlegung der Module eines
Softwaresystems wird entsprechend als Modularisierung bezeichnet.

Die interne Struktur jedes Moduls sollte einfach sein, so dass es leicht verstanden werden
kann. Dennoch ist es ein Ziel, die Kenntnis dieser Interna ausdricklich nicht zur Voraus-
setzung der Benutzung eines Moduls zu machen (vgl. funktionale Abstraktion).
Stattdessen definieren Module Schnittstellen fir den Zugriff auf die der Umgebung zur
Verfligung gestellten Ressourcen (Export-Schnittstellen) und die aus der Umgebung
benutzten Ressourcen (Import-Schnittstellen). Fir die Benutzung der Module ist dann
lediglich die Kenntnis der Spezifikation dieser Schnittstellen nétig. Die tatsachliche
Implementierung eines Moduls wird durch diese Schnittstellenspezifikation nicht
festgelegt und kann vor dem Modulbenutzer verborgen werden (Geheimnisprinzip).

""" Ein Algorithmus wird hier verstanden als ,, ein schematisches Verfahren zur Losung bestimmter Klassen von
Aufgaben, wobei jeder einzelne Schritt dieses Verfahrens genau definiert ist. (...) Er ist die Gesamtheit von
Grundoperationen und Priifungen bestimmter logischer Bedingungen, die in einer bestimmten Reihenfolge
angeordnet sind*“ [KIBu71]

- 46 -

Das Ziel der Modularisierung ist, Module zu finden, die unabhangig voneinander ent-
worfen und getestet werden kdénnen. Dazu soll jedes Modul von seiner Umgebung
unabhangig

= zu entwickeln,

= (bersetzbar,

= prifbar (testbar, verifizierbar),
= wartbar,

= verstandlich sein.

Wenn Module mit anderen Modulen in Beziehung stehen, kann eine vollstandige
Kontextunabhangigkeit nicht erreicht werden. Die Kommunikation zwischen verbundenen
Modulen fiihrt zu Abhangigkeiten, die als Kopplung bezeichnet werden. Diese Kopplung
auf das notwendige MaB zu beschrénken, ist eine Designvorgabe der Modularisierung®?.

Fir das Verfahren des Software-Entwurfs sind also verschiedene Prinzipien zur
Komplexitatsreduktion bekannt, die in der Praxis angewendet werden, um Software-
Produkte schneller, effektiver und vor allem weniger fehleranfallig zu erstellten. Moderne
Programmiersprachen unterliegen heutzutage dem Prinzip der Objektorientierung. Der
folgende Abschnitt soll also weitere Organisationsprinzipien vorstellen, mit denen der
Prozess der Erstellung und Wartung von Software-Produkten weiter vereinfacht werden
kann.

3.5.2 Objektorientierte Software-Programmierung

Objektorientiertes Vorgehen bei der Analyse, dem Design und der Programmierung von
Softwarewerkzeugen wird als besonders geeignet angesehen, um robuste und leicht
erweiterbare Softwareprogramme zu erzeugen [GaHeO1l]. Nach einigen grundlegenden
Ideen der objektorientierten Programmierung (OOP) werden in diesem Abschnitt spezielle
Paradigmen der objektorientierten Programmierung naher erldutert: Kapselung,
Polymorphie und Vererbung.

~Objektorientierte Programmierung (Abkirzung OOP) ist ein Verfahren zur
Strukturierung von Computerprogrammen, bei dem zusammengehérige Daten
und die darauf arbeitende Programmlogik zu Einheiten zusammengefasst werden,
den so genannten Objekten."“[nach GaHe01]

Objekte als fundamentale Bausteine der OOP werden also verwendet, um Aspekte realer
Systeme zu modellieren. In der Objektorientierung finden sich daher auch wesentliche
Begriffe aus der Systemtheorie wieder. Das eigentlich Neue an der Objektorientierung
sind also nicht die zugrunde liegenden Konzepte, sondern deren Adaption und
Anwendung auf die Softwaretechnologie. Die Komposition der Objekte entspricht der
Bildung einer Part-Of-Hierarchie. (vgl. Abschnitt 3.5.1) Objekte werden dem

2" In der Literatur wird hdufig die innere Bindung von Modulen als Kohdsion bezeichnet; Kopplung bezeichnet
entsprechend die externe Bindung von Modulen. Sowohl Kohésion, als auch Kopplung kénnen weiter nach
Typen unterschieden werden, vgl. z.B. [Henk97]. Fiir die vorliegende Arbeit sollen diese Details auBer
Betracht bleiben.

Stand der Technik -47 -

Modularisierungsgedanken gerecht, indem sie Daten und Algorithmen zu einer Einheit mit
systemweiter Identitat und aktuellem Status zusammenfassen.

Allgemeine und objektorientierte Prinzipien als solche sind nicht neu und ihre Anwendung
ist nicht auf die Programmierung beschrankt. Dennoch werden sie grade hier
synergetisch zusammengefligt, insbesondere in den objektorientierten Modellen. Die
Grundidee basiert auf der Annahme, mit ihrer Anwendung die Komplexitat von
Softwaresystemen und damit auch den Projekten zur Softwareentwicklung zu reduzieren,
indem das Gesamtsystem inkrementell aus Objekten zusammengefiigt wird, die jeweils
unabhangig voneinander entworfen und getestet werden kdénnen. Idealerweise kdnnen
einzelne Objektspezifikationen in spateren Projekten wieder verwendet werden.

3.5.2.1 Grundlagen

Die OOP unterteilt sich im Wesentlichen in die Phasen objektorientierte Analyse (OOA)
und objektorientiertes Design (OOD). Im Rahmen der OOA wird ein statisches Modell
entwickelt, das die Bausteine des Systems mit ihren Attributen und Methoden sowie
deren Beziehungen untereinander beschreibt. Insbesondere ist bereits in der OOA darauf
zu achten, das Abbild des realen Systems so zu erstellen, dass eine Implementierung in
einer Programmiersprache ermdoglicht wird. Die logischen Aspekte der Modellierung
beinhalten sowohl Objektstruktur, wie auch Modul- und Prozessstruktur. Ziel des OOD ist
darauf aufbauend die Umsetzung der Ergebnisse der Analysephase unter den
geforderten, technischen Randbedingungen. Im Idealfall werden nur die bereits
identifizierten Bausteine aus fachlicher Sicht um DV-technisch bendtige Bausteine
erganzt [nach GaHeO1l]. Durch diese Vorgehensweise wird implizit die eigentliche
Funktionslogik von der Gestaltung der Oberflaiche und der Speicherung der Daten
getrennt, was neben der Erhéhung der Flexibilitat die Wartbarkeit solcher Systeme
erheblich vereinfacht.

Zumindest konzeptionell arbeitet ein objektorientiertes Programm demzufolge nicht mehr
sequenziell einzelne Funktionsbereiche eines Algorithmus ab. Die Programmlogik entfaltet
sich vielmehr in der Kommunikation und den internen Zustandsveranderungen der
Objekte, aus denen das Programm besteht. Vorteile der objektorientierten
Programmierung liegen hierbei in der besseren Modularisierung des Codes und dadurch
bedingt in einer hdheren Wiederverwendbarkeit der Einzelmodule sowie einer
gesteigerten Flexibilitat der gesamten Software, insbesondere in Bezug auf die
Benutzerfihrung. Programme dieser Art sind weniger stark gezwungen, dem Anwender
bestimmte Bedienabldufe aufzuzwingen. Die einzelnen Bausteine, aus denen ein
objektorientiertes Programm wahrend seiner Abarbeitung besteht, werden als Objekte
bezeichnet. Die Konzeption dieser Objekte erfolgt in der Regel auf Basis der Paradigmen
Abstraktion, Kapselung, Polymorphie und Vererbung.

Zur besseren Verwaltung gleichartiger Objekte bedienen sich die meisten
Programmiersprachen des Konzeptes der Klasse. Klassen sind Vorlagen, aus denen
Objekte zur Laufzeit erzeugt werden, so genannte Instanzen einer Klasse. Im Programm
werden daher nicht einzelne Objekte, sondern eine Klasse gleichartiger Objekte definiert.
Die Klasse entspricht in etwa einem komplexen Datentyp; sie legt aber nicht nur die
Datentypen der Attribute fest, aus denen die erzeugten Objekte bestehen, sie definiert

- 48 -

dariber hinaus die Algorithmen, die auf diesen Daten operieren. Wahrend also zur
Laufzeit eines Programms einzelne Objekte miteinander interagieren, wird das
Grundmuster dieser Interaktion durch die Definition der einzelnen Klassen festgelegt.
Klassen kdnnen den Status und das Verhalten einer anderen Klasse durch Vererbung
Ubernehmen. Die so entstehende Hierarchie entspricht einer IS-A-Hierarchie. Die
erbende Klasse, auch Subklasse oder Kindklasse, ist von der Art der vererbenden Klasse,
auch als Vater- oder Superklasse bezeichnet.

Klassen werden in der Regel in Form von Klassenbibliotheken zusammengefasst, die
hdaufig thematisch organisiert sind. So kdnnen Anwender einer objektorientierten
Programmiersprache Klassenbibliotheken erwerben, die beispielsweise den Zugriff auf
Datenbanken ermdglichen.

Die einer Klasse von Objekten zugeordneten Algorithmen bezeichnet man als Methoden.
Die Gesamtheit der Methoden eines Objektes oder einer Klasse definiert das Verhalten
eines Objekts. Sie stellen definierte Schnittstellen zum Zugriff auf den Zustand des
Objektes dar. Methoden werden von anderen Objekten aufgerufen. Dieser Vorgang wird
auch als Ubergabe einer Nachricht bezeichnet. Die Parameter des Methodenaufrufs als
Inhalte der Ubergebenen Nachrichten sind wiederum Objekte. Haufig wird der Begriff
Methode synonym zu Funktion oder Prozedur gebraucht, obwohl die Funktion oder
Prozedur eher als Implementierung einer Methode zu betrachten ist. Eine besondere
Rolle spielen Methoden fir das Designparadigma der Kapselung (vgl. Abschnitt 3.5.2.2).
Spezielle Methoden zur Erzeugung bzw. "Zerstérung" von Objekten heiBen Konstruktoren
und Destruktoren.

Im folgenden Abschnitt wird speziell auf die objektorientierten Design-Paradigmen
eingegangen. Das Paradigma der Abstraktion wurde oben bereits naher beschrieben.
Jedes Objekt im System kann dementsprechend als ein abstraktes Modell eines Akteurs
betrachtet werden, der Auftrdge erledigen, seinen Zustand berichten und andern kann
und mit den anderen Objekten im System kommuniziert, ohne offen zu legen, wie diese
Fahigkeiten implementiert sind (Black-Box).

3.5.2.2 Paradigmen

Kapselung
,Als Kapselung bezeichnet man das Verbergen von Implementierungsdetails. Der
direkte Zugriff auf die interne Datenstruktur wird unterbunden und erfolgt statt-
dessen Uber definierte Schnittstellen."[nach GaHe01]

Von der internen Reprasentation eines Objektes soll der Verwender (hier sowohl die
Algorithmen, die mit den Objekten arbeiten, als auch der Programmierer, der diese
entwickelt) mdglichst wenig wissen miissen (Geheimnisprinzip). Objekte kdnnen den
internen Zustand anderer Objekte nicht in unerwarteter Weise lesen oder andern. Ein
Objekt hat eine Schnittstelle, die darliber bestimmt, auf welche Weise mit dem Objekt
interagiert werden kann. Dies verhindert das Umgehen von Invarianten®® des
Programms. Denn durch die Kapselung werden Uber die Schnittstelle nur Informationen

3 Eine Invariante ist eine Zusicherung, die ... immer giiltig ist. “ [Balz05]

Stand der Technik - 49 -

Uber den Leistungsumfang eines Objektes nach auBen sichtbar, nicht aber deren interne
Reprasentation. Dadurch wird eine Schnittstelle nach auBen definiert und zugleich
dokumentiert.

Aus dem Paradigma der Kapselung ergibt sich eine Reihe von Vorteilen. Durch die
Umsetzung des Geheimnisprinzips kann die interne Implementierung geandert werden,
ohne die Zusammenarbeit mit anderen Objekten zu beeintrachtigen, da die Schnittstelle
konstant bleibt. Fir den Verwender ergibt sich eine erhoéhte Ubersichtlichkeit und
Komplexitatsreduktion. Lediglich Informationen (ber den Gebrauch der Schnittstelle sind
fir ihn relevant. Dariiber hinaus rufen auch interne Anderungen an einem gekapselten
Objekt keine Folgefehler in anderen Programmteilen hervorrufen. Beim Zugriff Gber die
Schnittstellen spielt es fir den Verwender keine Rolle, ob diese Funktion 1:1 im Inneren
des Objekts existiert, das Ergebnis einer Berechnung ist, oder moéglicherweise aus
anderen Quellen (z.B. einer Datei oder Datenbank) stammt. Durch die separaten Objekte
erreicht der Programmierer insgesamt eine deutlich verbesserte Testbarkeit, Stabilitat
und Anderbarkeit der Software.

Polymorphie
~Polymorphie (,Vielgestaltigkeit") ist ein Konzept der Programmierung, das es
erlaubt, einem Wert oder einem Namen (z.B. einer Variablen) mehrere Typen
zuzuordnen.[nach GaHe01]

Verschiedene Objekte kénnen auf die gleiche Nachricht also unterschiedlich reagieren.
Wird die Zuordnung einer Nachricht zur Reaktion auf die Nachricht erst zur Laufzeit
aufgeldst, dann wird dies auch spate Bindung (oder dynamische Bindung) genannt. In
alteren typisierten Programmiersprachen wird jedem Namen und jedem Wert im
Quelltext eines Programms hdchstens ein Typ zugeordnet. Polymorphie kann zwischen
universeller Polymorphie und Ad-hoc Polymorphie (auch Uberladen) unterteilt werden.
Universelle Polymorphie unterscheidet sich von Ad-hoc-Polymorphie in mehreren
Aspekten. Bei Ad-hoc-Polymorphie kann ein Name oder ein Wert nur endlich viele
verschiedene Typen besitzen. Diese sind zudem zur Ubersetzungszeit bekannt.
Universelle Polymorphie dagegen erlaubt es, unendlich viele Typen zuzuordnen. Ein
weiterer Unterschied liegt darin, dass die Implementierung einer universell polymorphen
Funktion generell gleichen Code unabhangig von den Typen ihrer Argumente ausfiihrt,
wahrend ad-hoc-polymorphe (also Uberladene) Funktionen abhangig von den Typen ihrer
Argumente unterschiedlich implementiert sein kénnen.

Vererbung
,Die Definition eines neuen Objektes kann gegebenenfalls auf der Definition eines
bereits vorhandenen Objektes aufbauen, so dass das neue Objekt die Merkmale
des vorhandenen (ibernimmt und um neue Bestandteile ergénzt. Die Ubernahme
der Merkmale des vorhandenen Objektes bezeichnet man als Vererbung.“[nach
GaHe01]

Neue Klassen von Objekten kdénnen auf der Basis bereits vorhandener Objekt-Klassen
festgelegt werden. Neue Bestandteile kdnnen in der Kindklasse hinzugenommen werden.
Wird keine Vererbung zugelassen, so wird zur Unterscheidung oft von objektbasierter
Programmierung gesprochen. Die Uberdeckung eines neuen Merkmals {iber ein bei der

- 50 -

Vererbung ibernommenes Merkmal wird als Uberschreiben bezeichnet. Die Nutzung der
Vererbung bietet sich an, wenn es Objekte gibt, die konzeptionell aufeinander aufbauen.
Gegebenenfalls lassen sich Objektdefinitionen von vorneherein so aufteilen, dass
identische Merkmale in der Definition eines "vererbenden" Objektes zusammengefasst
werden. Vererbung bildet mit diesem Verfahren also eine IS-A-Hierarchie ab.
Vererbungsbeziehungen zwischen den Objekten werden in der Regel durch
Klassendefinitionen hergestellt. Die "vererbende" Klasse wird als Basisklasse oder auch
Superklasse und die "erbende" Klasse als abgeleitete Klasse bzw. Subklasse betitelt.

Objektorientierte Design-Paradigmen kdnnen den Anwender beim Software-Entwurf also
unterstitzen, in dem sie helfen, den Modellierungsprozess und das eigentliche Software-
Programm zu strukturieren und seine Komplexitat so zu reduzieren, dass ein fehlerfreies
Entwerfen deutlich erleichtert wird. Die grundlegende Denkweise ist streng
objektorientiert, orientiert sich also an der flir uns Menschen leicht nachvollziehbaren
Klassifizierung und Typisierung von Objekten zu Gruppen gleichartiger Objektklassen. In
den letzten Jahren wurden immer wieder Anstrengungen unternommen, die Modellierung
von Software unter Zuhilfenahme grafischer Werkzeuge zu unterstitzen. Mit der im
folgenden Abschnitt beschriebenen Unified Modelling Language (UML) existiert ein solcher
Standard, der wahrend der Entwurfs- und Entwicklungsphase des in dieser Arbeit
angestrebten Werkzeugs angewendet werden soll.

3.5.3 Grafisches Software-Design mittels der UML

Im folgenden Abschnitt soll einen Uberblick {iber die Unified Modelling Language (UML)
als fundamentale Beschreibungssprache fir die Modellierung von Software und anderen
Systemen und deren Einsatzmoéglichkeiten gegeben werden. Um zu verhindern, dass
wahrend des meist komplexen Softwareentwicklungsprozesses fundamentale Fehler
gemacht werden (Entwicklung des falschen Softwareproduktes bzw. falsche Entwicklung
des Softwareproduktes) ist die Intention der UML die Ausarbeitung jedes bendtigten
Bearbeitungsschrittes durch grafische Elemente. Damit auch Projektbeteiligte, die keine
Softwareentwickler sind, den Inhalt des Softwareprojektes verstehen, soll mit ihr eine
allgemein verwendete Modellierungssprache eingesetzt werden.

Strukturdiagramme Verhaltensdiagramme Interaktionsdiagramme

Klassendiagramm Anwendungsfalldiagramm Sequenzdiagramm
Objektdiagramm Aktivitatendiagramm Kommunikationsdiagramm

Kompositionsstrukturdiagramm Zustandsdiagramm Timingdiagramm
Komponentendiagramm Interaktionsiibersichtdiagramm
Verteilungsdiagramm

Paketdiagramm

Abbildung 12: Ubersicht iiber die Diagrammtypen der UML

Stand der Technik - 51 -

Durch ihre standige Weiterentwicklung ist die UML mittlerweile als Version 2.0
freigegeben und hat sich als ,Quasi-Standard® durchgesetzt. Die Diagrammtypen der
UML lassen sich auf die Klassen Struktur-, Verhaltens- und Interaktionsdiagramme
aufteilen und werden in den nachfolgenden Abschnitten teilweise vorgestellt (vgl. auch
[OOSE] und [Kech05]). Bei der Darstellung der einzelnen Diagrammtypen wird sich
nachfolgend an der Beschreibung nach [Kech05] orientiert.

3.5.3.1 Grundlagen MDSD und MDA

Modellgetriebene Entwicklung (MDSD) und Model Driven Architecture (MDA) werden flr
Unternehmen immer attraktiver. Mit Hilfe von MDSD wird Software nicht mehr
Jtraditionell* programmiert, sondern aus Modellen teilweise oder mitunter vollstandig
generiert. Diese Modelle missen jedoch zundchst erstellt werden. Dazu werden
Modellierungssprachen eingesetzt wie z.B. UML 2.0, welche sich in groBen
Softwareprojekten durchgesetzt hat, jedoch nicht ausschlieBlich auf solche beschrankt
ist. Mit der durch die UML 2.0 zur Verfigung gestellten Diagramme und
Notationselemente lassen sich statische und dynamische Aspekte verschiedenster
Anwendungsgebiete modellieren [Stah05]. UML 2.0 wird in Softwareprojekten haufig zur
Unterstitzung bei der Erstellung eines Pflichtenhefts eingesetzt. Das erspart dem
Programmierer spdter wertvolle Zeit und dem Unternehmen nicht zuletzt Ressourcen,
wenn beispielsweise vom Kunden in letzter Minute noch Anderungen an der Software
gefordert werden. Als Vorteile von MDSD ergeben sich somit unter anderem

= gréBere Entwicklungseffizienz

= bessere Integration der Fachexperten

= |eichtere Anderbarkeit von Software

= verbesserte (Umsetzung der) Softwarearchitektur

= die Mdoglichkeit, Fachlogik leichter auf andere Plattformen portieren zu kénnen

Der Ansatz der Model Driven Architecture (MDA) basiert auf der Annahme, dass fir die
Konstruktion eines Softwaresystems ein einziges Modell fir die Abbildung einer gréBeren,
komplexeren Applikation zu unscharf und Uberladen ist. Bei den meisten "klassischen"
(UML)-Modellen sind geschaftsrelevante und technische Informationen vermischt. MDA
unterteilt das Gesamtmodell in mehrere Schichten (CIM'*, PIM!*, PSM!®, ein Codemodell
und die Zielplattform). Die Trennung der Modelle stellt eine inhaltliche Erweiterung des
UML-Standards dar. Insbesondere durch das CIM und vor allem das PIM soll nicht nur
Plattformunabhangigkeit gewahrleistet werden, sondern auch die Sprach- und System-
unabhangigkeit. MDA definiert neben der inhaltlichen Trennung der Modelle auch die
Transformation der Modelle und unterscheidet zwei Typen:

= Die Modelltransformation von einem Modell in ein anderes Modell
= Die Codetransformation von einem Modell in den Code

4" CIM: hier (Computation Independent Model) als umgangssprachliche Beschreibung [Stah05]

'S PIM (plattformunabhingiges Modell, Platform Independent Model) Abbildung der Geschiftsprozesse
[Stah05]

' PSM (plattformabhingiges Modell, Platform Specific Model) fiir Architektur, Services [Stah05]

-52 -

Die Transformationen erzeugen aus den Elementen des Quellmodells die Elemente des
Zielmodells. Die Transformation geschieht Ublicherweise von der abstrakteren Ebene in
die konkretere Ebene (CIM-PIM-PSM-Code). Dadurch kann aus einfacheren
Modellelementen eine komplexere Anwendung erzeugt werden, indem erfahrene
Architekten ihre Konstruktionsregeln in solche Transformationsprozesse
einprogrammieren [Stah05].

MDA ist ein junger Standard der Object Management Group. Ein Ziel der MDA ist die
Steigerung der Entwicklungsgeschwindigkeit. Das Mittel dazu heiBt Automation durch
Formalisierung. Aus formal eindeutigen Modellen soll durch Generatoren automatisch
Code erzeugt werden. Dadurch soll auch die Softwarequalitét gesteigert werden. Fehler
in den generierten Codeanteilen kénnen an einer Stelle - in den Generatorschablonen -
beseitigt werden. Die Qualitdt des generierten Quellcodes ist gleich bleibend, was zu
einem hoéheren Grad der Wiederverwendung fliihren soll. Ein weiteres wesentliches Ziel ist
die bessere Handhabbarkeit von Komplexitat durch Abstraktion. Mit den
Modellierungssprachen soll Programmierung auf einer abstrakteren Ebene madglich
werden, die klare Trennung von fachlichen und technischen Anteilen zielt auf eine
bessere Wartbarkeit durch Trennung von Verantwortlichkeiten ab. Die abstraktere,
technologieunabhangige Beschreibung von Schlisselkonzepten mit eindeutigen
Modellierungssprachen verspricht eine verbesserte Handhabbarkeit des
Technologiewandels. Und nicht zuletzt soll eine verbesserte Interoperabilitat durch
Standardisierung erreicht werden [Volt-ol].

3.5.3.2 Diagrammarten der UML

Einzelne Diagrammtypen der UML, die in der Konzeptionsphase dieser Arbeit verwendet
werden sollen, werden nachfolgend kurz erlautert.

Strukturdiagramme

Strukturdiagramme modellieren statische, zeitunabhangige Elemente eines Systems.
Unter diese Diagrammart fallen Klassendiagramme, Objektdiagramme, Kompositions-
strukturdiagramme, Komponentendiagramme, Verteilungsdiagramme und Paket-
diagramme.

Stand der Technik - 53 -
Ga 5 Teil
anee T Sichtbarkeit
* der Rolle Leserichtung Rolle —
Baum :c-mpos'fw-" Ast i Kellner S - I*j ' Gast
| edienung padien g
2 | — e =
Assoziationsname A
Assoziation Multiplizitit
Ganzes Teil Superklasse Subklasse
Y Y
gEreg. Generalisierun
Restaurant Aggregation Stuhl Mitarbeiter ¢ Koch
Y 41 _
> 1
Attributtyp K'-‘“‘E""ﬂ’“" Multiplizitit Stereotyp abstrakte Klasse Anmerkung
N\ A
Attributname l N Koch Y -
! ¥ % - Klasse umeratior erdrbmtfr |
'_,} ezept: String [30..4] <€ Menuepunkt {abstract} a——
Sichtbarkeit Anmerkun
Lot + zubereiten(b :Bestellung) : Gericht {&— Riickgabetyp
| A A L

Name der Operation |
Name eines Parameters

Typ eines Parameters

bendtigte Schnittstelle F’arnmetm-hlarr_ﬁe?kll-ﬂ‘- 1—1»' Parameter-Typ

Schnittstelle realisierte Schnittstelle
(Ball-Symbol) (Socket-Symbol) I |
nterfac I ht | Gast Kollektion
erich Ga ¥

Nahrung | Template-Signatur
|
\

| run ahr
T Template

Abbildung 13: Notationselemente des Klassendiagramms

Ein Klassendiagramm ist eine Art ,Bauplan®, um Instanzen fir Objektdiagramme zu
erzeugen. Instanzen sind konkrete Auspragungen der jeweiligen Klasse.
Klassendiagramme legen Attribute, Operationen und ihre Beziehungen zueinander fest.
Programmiersprachlich ausgedriickt bedeutet dies, dass die Attribute einer Klasse ihre
Variablen, die Operationen ihre Methoden und Funktionen und Assoziationen die
Beziehungen zu anderen Klassen darstellen.

Wie bereits erwahnt sind Objektdiagramme eine Spezifizierung ihrer jeweiligen Klasse.
Das heiBt, Objekte nehmen konkrete Werte an (Beispiel-Bild). Ein Objekt hat einen
Objektnamen (nicht bei unbenannten Objekten) und gibt die Attributwerte zu den in der
Klasse definierten Attributen an. Zwischen Objekten kdénnen ebenfalls Beziehungen
bestehen (sog. ,Links"). Ein Link ist die konkrete Auspragung einer Assoziation mit einem
Linknamen und einer Leserichtung. Die Multiplizitat ist héchstens 1, da ein Link immer
genau zwei Objekte verbindet. Kollaborationen ,/[...] beschreiben Strukturen von
Objekten, die in ihren speziellen Rollen kollektiv gewliinschte Funktionalitdten
bereitstellen sowie die Verbindungen (Konnektoren) der Objekte untereinander.™
[KechO5].

-54 -

Linkname Leserichtung

miaren :Gast Besucht + lichlingsgrieche :
Restaurant

Link

Objektname zugehirige Klasse

maren :Gast
Objekt—»

Abbildung 14: Notationselemente des Objektdiagramms

Verteilungsdiagramme spezifizieren die physische Hardware- und Softwareumgebung und
die Verteilung der Komponenten in dieser Umgebung. Notationselemente in diesem
Diagramm sind Knoten und Kommunikationspfade. Ein Knoten besitzt einen Namen und
stellt eine Systemressource dar. Knoten kénnen weitere Knoten enthalten.

Name des Knotens
Artefakt Stereotyp

] Applikationsserver
«artifact» PP

Oracle 10g

Name des Artefakts

Knoten
Rolle Kommunikationspfad
Applikationsserver | | sarver l +Client PC
1 «internets 1.%
0 %

Kommunikationslkanal Multiplizitdt

Abbildung 15: Notationselemente des Verteilungsdiagramms

Verhaltensdiagramme

Bei Verhaltensdiagrammen liegt das Hauptaugenmerk auf den dynamischen Aspekten
eines Systems. Sie beschreiben das Verhalten. Hierunter fallen Use-Case-Diagramme,
Aktivitatendiagramme und Zustandsdiagramme.

Stand der Technik - 55 -

Akteur Stereotyp Anwendungsfall
(Mensch)

O «Actor»
Kreditkarten- Akteur

Gese”s:haft <_(System)

Assoziation

Gericht bestellen

Gast

erweiterter erweiternder
Anwendungsfall Anwendungsfall

Gast <— Name des Akteurs

Rechnung bezahlen

- ———————— «extend»
extension points: ST T3TTC Qoo Polizei rufen
Betragannahme

A
Extend-Beziehung,
- . A

Erweiterungs-

| condition: {erhaltener Betrag < Preis} — bedi
ingung

Erweiterungspunlkt —p extension point: Betragannahme

einbindender eingebundener
Anwendungsfall Anwendungsfall

Mit Kreditkarte

bezahlen /)77 T Ta T oTTTTTTTTTooIE Kreditkarte priifen

«include»
Include-Beziehung

Abbildung 16: Notationselemente des Use-Case-Diagramms

Diese Diagrammart stellt die Sicht auf das System durch externe Anwender dar. Das
heiBt es gibt Akteure, die bestimmte Rollen innehaben und mit dem System interagieren.
Ein Akteur weiB nichts von den systeminternen Abldufen. Er kennt nur die fir ihn
relevanten Abldufe. Der Akteur ,sieht” nun einen Use-Case als so genannte Black-Box.
Das heiBt, dass die Menge der Aktionen innerhalb des Use-Cases flir den Akteur
verborgen bleiben. Zwischen den Akteuren und Use-Cases kdnnen Assoziationen mit
entsprechenden Multiplizitaten modelliert werden. In Use-Case-Diagrammen kann auch
Vererbung durch Generalisierung modelliert werden. Das heiBt, ein Akteur erbt die
Rechte seiner Ubergeordneten Rolle. Eine include-Beziehung sagt aus, dass falls Use-
Case 1 ausgefiihrt wird auch Use-Case 2 ausgefiihrt werden muss. Im Gegensatz dazu
muss bei einer extend-Beziehung nicht zwingend Use-Case 2 ausgefiihrt werden. Use-
Case 1 kann aber durch Use-Case 2 erweitert werden.

Um das Verhalten eines Systems abzubilden werden Aktivitdtendiagramme eingesetzt.
Diese Diagrammart ist sehr vielseitig und es kdnnen, nicht zuletzt aufgrund der
zahlreichen Notationselemente, viele Situationen damit modelliert werden. Dazu gehéren
unter anderem alternative Ablaufe, Reihenfolgen von Aktivitdten und parallele
Aktivitaten. Aus diesem Grund wird im Folgenden nur auf die gangigsten
Notationselemente eingegangen. Eine Aktion ,[...] stellt die fundamentale Einheit
ausfiihrbarer Funktionalitédt dar, die im Modell nicht weiter zerlegt wird [...]" [Kech05].

- 56 -

Unterbrechungshereich Name der Aktivitit ~ Name der Aktion
¥
T T T T T T T T T T T N Zahlung abwickeln
f Restaurantbesuch ;
I 1
! Bestellen ! Rechnung Rechnung
! ! bringen zahlen
| i]
| 1
; Speisen i
! ; Alctivitat Aktion

Expansionsbereich

Zahlen

Kontrollfluss

Rechnung ¢ Rechnung]
T DE_‘

. Expansionsknoten
Bedingungsknoten

Schleifenknoten

o jmmmemm s e Aktivitatsbereich
Inltlallslerung—)“r for ! Test —ﬂr if ‘;
1
e e— d L 777777777 ﬂ: Kellner
Test—3t while i Korper—3- then !
I 1 1 I
FRN— : J |
Schleifenkdrper— do ! else-Bereich —3b clse i
1 I
0 | L]
’
_________ Smmmmmmme Objektknoten
Signal-Sendung Signal-Empfang Gabelung Vereinigung
Rechnung

Kellner 1 Kellner !
=
Endknoten Endknoten

Entscheidungsknoten Verbindungsknoten Startknoten (Flussende) (Aktivititsende)

! Y 4 v
E\C @ =¥ =@
Start Ende Ende

Abbildung 17: Notationselemente des Aktivitdatendiagramms

Die Ausflihrungsreihenfolge zwischen modellierten Aktionen wird durch gerichtete
Kanten, den Kontrollflissen dargestellt. Damit das Diagramm durch sehr viele
Kontrollflisse nicht unibersichtlich wird, kénnen Konnektoren mit jeweils eindeutigen
Namen und einem Kontrollfluss benutzt werden. Das Diagramm bekommt eine noch
besser lesbare Struktur, wenn Aktivitatsbereiche (sowohl horizontal als auch vertikal)
benutzt werden, die zugehdrige Aktionen zu Organisationseinheiten zusammenschlieBen.
Zur Ubergabe von Objekten zwischen Aktionen werden Objektknoten eingesetzt, die als
Speicher der zugehoérigen Klasse betrachtet werden. Weiterhin lassen sich so Streams
und Puffer realisieren. Eine Aktivitdt beschreibt eine Folge von Aktionen. Start- und
Endknoten geben die Einstiegs- und Ende-Aktion einer Aktivitdat vor. Durch
Entscheidungsknoten wird ein Kontrollfluss verzweigt. An diese Verzweigungen kdénnen
Bedingungen geknlipft sein, so dass sich alternative Wege modellieren lassen.
Verbindungsknoten flihren die verschiedenen Fliisse wieder zusammen. Parallele
Aktionen werden durch Gabelungen und Vereinigungen dargestellt. ,,Eine Gabelung teilt
einen Kontrollfluss in mehrere parallele Kontrollflisse auf*, wdhrend eine Vereinigung
diese wieder zusammenfasst.

Stand der Technik -57 -

Entscheidung I(reuzung Startzustand Endzustand Terminator

¥>§9< o o

zusammengesetzter Zustand
Zustand Name des Zustands

Restaurantbesuch
Kartenauswurf

[Geist] -«

Nameder .- _____________________| Region do / Karte auswerfen
Region Lyl [koerper] -

Event Interne Aktion
/
Transition
Betragauswahl ¢ Auszahlung
Betrag eingegeben [Betrag zulaessig] /abbuchen
Event Guard Effekt

Abbildung 18: Notationselemente des Zustanddiagramms

Mit Zustandsdiagrammen werden die Reaktionen eines Systems auf Ereignisse
dargestellt. Die wichtigsten Notationselemente sind Zustande, Transitionen, Events,
Start- und Endzustande und Terminator, Entscheidungen und Kreuzungen und Regionen.
Ein Zustand hat einen Namen und ,/[...] modelliert eine Situation, in der gewisse genau
definierte Bedingungen gelten" [Kech05]. Um von einem Zustand in einen anderen zu
gelangen ist eine Transition, das heiBt eine gerichtete Kante, zwischen Zustdnden
erforderlich, damit diese schalten kann, sobald ein entsprechendes Event ausgeldst
wurde. Es werden flnf verschiedene Eventtypen unterschieden, auf die an dieser Stelle
aber nicht weiter eingegangen werden soll. Start- und Endzustande werden dhnlich wie
bei Aktivitatendiagrammen modelliert. Sobald ein Terminator erreicht wird endet der
komplette Zustandsautomat. Ist der Endzustand erreicht wird nur die Ausfihrung einer
Ebene von Zustanden beendet. Kreuzungen arbeiten wie Verzweigungen, an die auch
Bedingungen gebunden sein kénnen und modellieren ,[...] eine Hintereinanderschaltung
von Transitionen"[Kech05]. Entscheidungen koénnen ebenfalls wie Kreuzungen an
Bedingungen gebunden sein, modellieren aber dynamische Verzweigungen. Zustdnde
kédnnen auch andere Zustande beinhalten, um somit zusammengesetzte Zustdnde zu
modellieren. Durch Regionen lassen sich Zustandsautomaten in disjunkte Bestandteile
aufteilen. Somit kann jede Region ihre eigenen Start- und Endzustande haben. Der
Zustandsautomat kann aber erst verlassen werden, wenn in allen Regionen der jeweilige
Endzustand erreicht ist.

Interaktionsdiagramme

Als eine Untergruppe der Verhaltensdiagramme konzentrieren sich die Interaktions-
diagramme auf die Interaktionen und den Nachrichtenaustausch zwischen Objekten.
Sequenzdiagramme eignen sich, um den zeitlichen Ablauf des Nachrichtenaustauschs
zwischen Objekten zu modellieren.

Die wichtigsten Notationselemente sind Interaktionsrahmen, Lebenslinien und
Nachrichten. Jedes Interaktionsdiagramm Ilasst sich in einem Interaktionsrahmen
modellieren und kapselt damit ,eine Verhaltensdefinition, deren Fokus auf der
Darstellung eines Informationsaustauschs liegt". Ein Teilnehmer einer Interaktion wird

- 58 -

durch eine Lebenslinie dargestellt. Nachrichten dienen der Kommunikation zweier
Teilnehmer und geben die Flussrichtung an.

Interaktions-Operator % %

Petra :Gast :Kellner
' ' asynchrone

Kellner rufen ¥ 1 Nachricht

synchrone
Nachricht

Interaktions-
Operand
L

Rechnung bringen

Rechnung bringen: 20 EUR

N

i
Antwort-Nachricht i

kambiniertes Fragment

Lebenslinien

%*_Lebens:} :Gericht

linie

Kiirzel des Interaktionsdiagramms

| Name des Interaktionsdiagramms

¥

sd Restaurantbesuch s Henning :Koch
O
1

|
Name Typ der
dr_‘ri Lebenslinie
linie |

Zeit

HL

1

1 Typ der
!Lebenslinie

Let

Interaktionsrahmen

Abbildung 19: Notationselemente des Sequenzdiagramms

In ihrer Gesamtheit bilden alle Diagrammtypen die UML 2.0 (vgl. Abbildung 12). Sie kann
zur Konzeption und Modellierung von Softwaresystemen verwendet werden und steht
somit in Kapitel 1 als Hilfsmittel zur Darstellung der Entwicklung des Werkzeugs zur
Verfligung.

3.5.4 Mehrbenutzersysteme

Die vorangegangenen Abschnitte 3.5.1 und 3.5.2 haben allgemeine wie objektorientierte
Prinzipien des Systementwurfs aus softwaretechnischer Sicht diskutiert und eine
Beschreibungssprache zur grafischen Modellierung und Implementierung von
Softwareprogrammen vorgestellt. Im folgenden Abschnitt wird naher auf die
Anforderungen beziglich der Funktionalitdten des Systems eingegangen. Zwischen
menschlicher und technischer Betrachtungsweise wird implizit unterschieden. Die
Abschnitte 3.5.4.1 bis 3.5.4.3 betrachten die Funktionalitdten mehr aus Anwendersicht,
bzw. der Sicht des Systementwicklers, wohingegen sich Abschnitt 3.5.4.4 auf
Funktionalitaten aus technischer Sicht fokussiert. Menschliche Anforderungen an
kooperative Modellierungswerkzeuge griinden z.B. auf der Notwendigkeit der effektiven
Zusammenarbeit bei der Benutzung eines solchen Systems. Werden diese Anforderungen
bei der Systementwicklung vernachlassigt, kann ein zwar im technischen Sinne
funktionsfahiges System herauskommen, das aber den Bediirfnissen der Anwender nicht
gerecht und daher von diesen nicht angenommen wird. Wie das System technischen
Anforderungen gerecht wird, nehmen Anwender zumeist nur dann wahr, wenn die
Realisierung Schwachen aufweist. Fir den Systementwickler ist die genaue Kenntnis der
technischen Notwendigkeiten aber von Bedeutung, weil von ihnen abhdngt, ob liberhaupt
ein funktionsfahiges System erstellt werden kann. Die Entwicklung eines funktionsfahigen
Werkzeugs mit breiter Akzeptanz erfordert daher, sowohl die technischen als auch die
anwenderabhdngigen Anforderungen an das System in der Entwurfphase genau zu
kennen und zu beachten.

Stand der Technik - 59 -

3.5.4.1 Verteilte Systeme

,Ein Verteiltes System ist ein Zusammenschluss unabhdngiger Computer, welcher
sich fir den Benutzer als ein einzelnes System prasentiert."[nach TaSt03]

Das gemeinschaftliche Zusammenwirken mehrerer Anwender am Prozess der Erstellung
eines Fabrikmodells erfordert die Nutzung verteilter (EDV-)Systeme, weil diese besser als
monolithische Systeme der gegebenen raumlichen Trennung der Angehérigen
unterschiedlicher betrieblicher Bereiche und der von ihnen genutzten und in die
Modellierung eingebrachten Daten gerecht werden. Sie erlauben die gleichzeitige
Benutzung der bendtigten materiellen (Hardware) und immateriellen (Software)
Ressourcen und gewahrleisten den heterogenen Ansprichen unterschiedlicher
menschlicher Anwender und/oder unterschiedlicher Komponenten des Programmsystems
gerecht zu werden und eine variable Anpassung der SystemgréBe an unterschiedliche
Aufgabestellungen (Skalierbarkeit) umzusetzen. Allgemeine Ziele der Nutzung verteilter
Systeme sind eine Leistungssteigerung hinsichtlich des Durchsatzes und den
Antwortzeiten des Systems durch die Bereitstellung zusatzlicher Hardware, eine bessere
Erweiterbarkeit und Anpassungsfahigkeit sowie eine erhdhte Fehlertoleranz. Die
Verbundstruktur verteilter Systeme bietet das Mittel zur Erreichung dieser Ziele
[CoDo02]. Sie umfasst die folgenden Substrukturen:

= Funktionsverbund: Die Gesamtfunktionalitat wird erbracht, indem dedizierte
Funktionen der Anwendung auf unterschiedlichen Rechnern integriert werden.

= Datenverbund: Der Zugriff auf verteilte Datenbestande von verschiedenen Rech-
nern aus ermoglicht es, Datensatze aus unterschiedlichen Dateisystemen oder
Datenbanken miteinander zu verknipfen und integriert zu verarbeiten.

= Lastverbund: Das verteilte Leistungspotential mehrerer Rechner soll so genutzt
werden, dass die durch eine Anwendung gegebene Last moglichst gleichférmig
verteilt wird.

In der Literatur wird, je nach Perspektive des Autors, haufig die Bezeichnung ,verteiltes
System"™ ohne Zusatze fir verteilte Hardwaresysteme, verteilte Betriebssysteme oder
verteilte Anwendungssysteme benutzt. Im Folgenden wird die Bezeichnung ,verteiltes
System" als Sammelbezeichnung fir diese drei Spezialisierungen benutzt, wenn nicht auf
einen bestimmten Aspekt der Verteilung (Hardware, Betriebssystem, Anwendungen)
Bezug genommen wird. Das ist sinnvoll, weil Hardware, Betriebssystem und
Anwendungen drei Ebenen der Gesamtarchitektur darstellen, zwischen denen eine enge
Abhangigkeit besteht: Die Nutzung verteilter Betriebssysteme oder verteilter
Anwendungssysteme ergibt nur auf entsprechender Hardware Sinn.

3.5.4.2 CSCW und Groupware

,Computer Supported Cooperative Work (CSCW) ist die Bezeichnung des
Forschungsgebietes, welches auf interdisziplindrer Basis untersucht, wie
Individuen in Arbeitsgruppen oder Teams zusammenarbeiten und wie sie dabei
durch Informations- und Kommunikationstechnologie unterstitzt werden kénnen."
[FiHeOO]

- 60 -

Im Forschungsgebiet des CSCW sollen, unter Verwendung aller zur Verfligung stehenden
Mittel der Informations- und Kommunikationstechnologie, Gruppenprozesse zu
untersuchen und die Effektivitdat und Effizienz der Gruppenarbeit zu erhdhen. Im
Mittelpunkt steht die Konzeption, Implementierung und Erweiterung von Werkzeugen flr
die Unterstlitzung der Teamarbeit. Die Wurzeln dieses Ansatzes sind unter anderem in
Entscheidungsunterstiitzungs- und Kommunikationssystemen zu sehen. Die Hilfsmittel
fir die Kooperation innerhalb von Gruppen und Teams werden als Groupware oder
Workflow-Management-Systeme bezeichnet; dies schlieBt sowohl Hardware
(beispielsweise Kameras) als auch Software ein [FiHe00].

Eine weit verbreitete Taxonomie fir Groupware-Systeme liefert die Raum-Zeit-Matrix
nach [Joha91], die in Abbildung 20 abgebildet ist. Die Klassifikation liefert vier
verschiedene Arten von Groupware-Systemen. Bei der face-to-face-interaction befinden
sich die Kooperationspartner zur selben Zeit am selben Ort. Als Beispiel kdnnen Group
Decision Support Systems dienen, die Entscheidungsprozesse in Gruppen durch
personliche Arbeitsplatzrechner und einen flir alle sichtbaren GroBbildschirm
unterstitzen. In die Kategorie der synchronen verteilten Interaktion fallen Mehrbenutzer-
oder auch Gruppeneditoren, also auch kooperative Modellierungswerkzeuge. Asynchrone
Interaktion findet am selben Ort, aber zu unterschiedlichen Zeiten statt und kann z. B.
als elektronische Version einer Pinnwand realisiert werden. E-Mail-Systeme sind das
klassische Beispiel fir asynchrone verteilte Interaktion.

Abbildung 20: Raum/Zeit Matrix nach [Joha91]

Problematisch ist bei dieser Einteilung jedoch die fehlende eindeutige
Zuordnungsmaglichkeit bestimmter Applikationen zu einzelnen Kategorien. Geeignet ist
eine solche Darstellung eher fiir die Klassifikation der Verwendung von Groupware-
Applikationen als fiir die Beschreibung der méglichen Groupware-Funktionalitaten.

Stand der Technik - 61 -

Zentrale Aspekte jeder Groupware sind:

= Awareness: Viele Systeme setzen eine oder mehrere Formen der Awareness um, d.
h. die Software ermittelt selbstdandig (implizit) Eingabedaten, um dem Anwender
Zeit und Arbeit abzunehmen.

= What You See Is What I See: Das Prinzip beschreibt, welche Teile einer Anwendung
bei verschiedenen Anwendern exakt gleich dargestellt werden.

= Synchronisation und Konsistenzerhaltung. Die Wahrung eines einheitlichen
Datenzustandes (Konsistenz) trotz gleichzeitiger Zugriffe auf das Datenmaterial,
bzw. die Visualisierung von Konflikten, wo dies nicht mdglich ist.

= Floor-Control: Die Verwaltung der Systemressourcen: Welcher Teilnehmer darf
gerade welche Ressource nutzen?

= Session-Control: beschreibt die Verwaltung und Administration der Teilnehmer in
Arbeitssitzungen hinsichtlich Autorisierung, Authentifizierung und Einteilung in
Rollenschemata [FiHe0O0].

3.5.4.3 Kommunikation, Kooperation und Koordination

Unabhangig von den eingesetzten Groupware-Technologien lassen sich die Applikationen
nach ihren elementaren Unterstitzungsfunktionen gliedern. Hierbei werden vor allem
Kommunikations-, Kooperations- und Koordinationsfunktionalitdten unterschieden, die
aber eng miteinander verknlpft sind. Hinsichtlich dieser Merkmale eingegrenzt,
beschreiben Ellis et al. das Ziel von Groupware-Applikationen wie folgt: ,the goal of
groupware s to assist groups in communicating, in collaborating, and in coordinating
their activities"[FiHe00].

Kommunikation
~Kommunikation bezeichnet den Austausch von Nachrichten zwischen Menschen.
Im erweiterten Rahmen der Informationstheorie versteht man darunter ... jeden
Austausch von Informationen zwischen dynamischen Systemen... , die in der Lage
sind, Informationen aufzunehmen, zu speichern, umzuformen usw."[KIBu71]

Der Kommunikation kommt insbesondere bei der Teamarbeit eine entscheidende Rolle
zu. Kommunikationsmechanismen bilden die unverzichtbare Basis aller Kooperations-
und Koordinationsbemihungen. Bei aktiv initilerter Kommunikation steht das Send-
Prinzip im Vordergrund. Kommunikation bezieht sich hier insbesondere auf Systeme, die
elektronische Objekte speichern und weiterleiten kénnen. Die in diesen Objekten
gespeicherten Informationen werden moglicherweise (ber eine Fille von
Zwischenstationen transferiert. Dieses oft auch als Push-Modell beschriebene Prinzip
erlaubt einen asynchronen Informationsfluss bei dem eine Synchronisation der
kommunizierenden Elemente nicht notwendig ist. Generell kann in diesem Bereich
zwischen synchroner und asynchroner Kommunikation differenziert werden [FiHe0O].
Unter synchroner Kommunikation wird die zeitlich unmittelbare Ubermittlung und
Sichtbarkeit beim Empfanger verstanden. Demgegeniiber gelangen die elektronischen
Objekte bei der asynchronen Kommunikation zunachst in einen virtuellen Eingangskorb,

-62 -

um zu einem spateren Zeitpunkt empfangen und ggf. verarbeitet zu werden. Dariber
hinaus kdnnen Nachrichten als eine Form der elektronischen Objekte entweder explizit
von Anwender zu Anwender Ubermittelt, oder implizit, also ohne bewusstes Wissen des
Anwenders, durch das jeweilige System verschickt werden, beispielsweise als Reaktion
auf eine Benutzereingabe [FiHe0O0].

Klassische Systeme zur Kommunikationsunterstlitzung sind beispielsweise E-Mail-
Systeme. Die Form der Kommunikation kann weiter nach Anzahl der Absender und
Anzahl der Empféanger untergliedert werden. Hierbei sind prinzipiell alle
Kommunikationsarten von der 1:1 Kommunikation Uber die 1:n Kommunikation bis hin
zur n:m Kommunikation erlaubt und finden in den entsprechenden Bereichen auch
Verwendung. Aufgrund der fehlenden Strukturierung und dem zu transportierenden
Informationsvolumen steigt die Komplexitdt dieses Modells im Rahmen der n:m
Kommunikation stark an. Eine Ldsung dieser Problematik kann durch den Einsatz des
Pull-Prinzips erreicht werden, welches insbesondere im Bereich der Kooperations-
unterstitzung besondere Bedeutung erfahrt.

Kooperation
,Die Kooperation baut auf der Kommunikation auf und stellt den Austausch von
Informationen mit einem gemeinsamen Ziel dar. Sie bedingt, dass mindestens
zwei Personen in einem gemeinsamen, zielgerichteten Kooperationsprozess
involviert sind."[FiHe0O0]

Systeme zur Kooperation unterstiitzen die gemeinsame Arbeit einer Gruppe nach dem
Share-Prinzip. Die Gruppenmitglieder haben Zugriff auf einen gemeinsamen
Datenbestand, den sie in beliebiger Reihenfolge verédndern und erweitern kénnen, ohne
ein vorgegebenes Ablaufschema und nicht notwendigerweise sequentiell. Applikationen
zur Kooperationsunterstitzung forcieren das Pull-Modell, um Informationen miteinander
zu teilen, gemeinsam zu bearbeiten, zu strukturieren und somit auch weiterzuentwickeln.
Jeder Nutzer kann in diesem Modell die fir ihn relevanten Informationen selektieren,
individuelle zusammenstellen und unabhangig von Raum und Zeit abrufen. Koordination
weist den hdchsten Komplexitatsgrad auf, da die jeweilige Konsistenz der Daten zu
jedem Zeitpunkt gewahrleistet sein muss. Kommunikationsmechanismen unterstitzen
die Anwender bei der Ausfiihrung kooperativer Tatigkeiten und kénnen Konflikte schnell
und unkompliziert 16sen [FiHe0O].

Koordination
,AIs Koordination wird diejenige Abstimmung bezeichnet, die fiir eine Arbeit der
Kooperationspartner auf ein gemeinsames Ziel hin erforderlich ist."[Henk97]

Wird im Rahmen der Kooperation kommuniziert und bezieht sich diese Kommunikation
auf die Abstimmung der aufgabenbezogenen Tatigkeiten, so wird diese Dimension der
Kommunikation als Koordination bezeichnet. Auf Basis der Kommunikationsmechanismen
ermoglicht die Koordination die notwendige Abstimmung der dezentral handelnden und
entscheidenden Anwender hinsichtlich einer optimalen Zielerreichung innerhalb der
Gesamtaufgabe. Sie baut damit sowohl auf der Kommunikation als auch auf der
Kooperation auf und erlaubt erst den aufgabengerechten Einsatz der Ressourcen und
eine effiziente Arbeit der verschiedenen Anwender in einem Team. Grade deswegen kann
hier im Allgemeinen nicht auf die Mitwirkung des Anwenders verzichtet werden. Denn

Stand der Technik -63-

zwischen den Aktivitdten der unterschiedlichen Anwender bestehen zum einen
Abhangigkeiten, die nur durch die direkte Kommunikation der betroffenen Anwender
aufgeldst werden kénnen. Zum Anderen sind die Fragestellungen hinsichtlich optimaler
Reihenfolge, Zulassigkeit und ZweckmaBigkeit der einzelnen Bearbeitungsschritte nicht
durch das Anwendungssystems selbst aufzulésen, weil es eine Bewertung der aktuellen
Situation innerhalb des Systems, beispielsweise eine Gewichtung hinsichtlich
Dringlichkeit der Aufgabe, nicht vornehmen kann. Diese muss durch den Anwender des
zu entwickelnden Werkzeugs erfolgen, dessen Arbeitsweise durch die Kommunikations-,
Kooperations- und Koordinationsmechanismen bestméglich unterstliitzt werden sollen
[FiHe0O].

3.5.4.4 Funktionalitaten

Im folgenden Abschnitt werden die Grundlagen der informationstechnischen Realisierung
kooperativer Werkzeuge diskutiert, um aus der allgemeinen Beschreibung der
wesentlichen Charakteristika einer solchen Anwendung konkrete Basisfunktionalitdten
abzuleiten. Es geht um die Funktionalitdten, die im Zusammenhang von Kommunikation,
Nebenlaufigkeit und Synchronisation in kooperativen Systemen zur Verfligung stehen.
Unterscheiden lassen sie sich in den wesentlichen Bausteinen Datenhaltung und
Datenaustausch. AbschlieBend soll kurz auf die Gestaltung einer Benutzerschnittstelle
eines kooperativen Systems eingegangen werden.

Datenhaltung

Der Prozess der Modellerstellung und die Arbeit an einem Simulationsmodell erstreckt
sich typischerweise lber einen lang andauernden Zeitraum. Wesentliche Grundfunktion
ist daher die Mdglichkeit, Daten fir diesen Zeitraum sicher aufbewahren zu kénnen.
Insbesondere ist davon auszugehen, dass die Lebensdauer der Daten Uber die Dauer der
Ausflihrung eines Prozesses hinausgeht. In objektorientierten Systemen wird diese
Eigenschaft als Persistenz von Objekten bezeichnet [Henk97].

Um ein sinnvolles Arbeiten mit dem Modellierungswerkzeug zu ermdglichen, sind
Anforderungen an die Qualitdt und die Quantitdt des Datenzugriffs zu beachten: Der
Zugriff darf nicht auf einen einzelnen Anwender bzw. Prozess beschrankt sein; dennoch
muss die Sichtbarkeit von Daten und die Zuldssigkeit von Operationen wie Lesen,
Schreiben, Erzeugen und Léschen von Daten flexibel und dynamisch geregelt werden
kénnen. Das Antwortzeitverhalten des Systems muss in akzeptablen Grenzen liegen;
gleiches gilt fiir die Ausfallsicherheit. Diese beiden Anforderungen kdénnen nicht immer
von einer zentralisierten Datenhaltungskomponente erflillt werden, so dass in diesen
Fallen eine verteilte Datenhaltung zu fordern ist.

Essentiell ist die Forderung, dass der nebenlaufige Zugriff mehrerer Anwender auf
gemeinsame Daten nicht zu einer Inkonsistenz des Datenbestandes fiihren darf. Zu den
Basisdiensten eines Datenhaltungssystems gehdren das Entgegennehmen, Abspeichern,
Andern, Léschen, Auswéahlen, Identifikation und Bereitstellen von Daten sowie Verwalten
von Datenbestanden [Lock93]. Die Menge der gespeicherten Daten wird als Datenbasis
bezeichnet, die Erfullung der genannten Funktionalitdit gewdhrleistet das
Datenverwaltungssystem. Die Anwender greifen auf das System (Uber die
Datenhaltungsschnittstelle zu.

- 64 -

Das Datenhaltungssystem hat die Aufgabe, diese Transaktionen zu synchronisieren, d. h.
sicherzustellen, dass jede Transaktion aus Anwendersicht genauso ablauft, als ware sie
die einzige zu dem jeweiligen Zeitpunkt ausgeflihrte. Das ist insbesondere dann eine
nicht-triviale Aufgabe, wenn Transaktionen als Leser oder Schreiber auf dieselben
Datenbasisausschnitte zugreifen. Sperren dienen nicht nur zur Synchronisation von
Transaktionen, sondern kénnen unabhangig davon auch verwendet werden, um den
Zugriff der Anwender auf Datenbereiche zu regeln. Das Setzen einer Sperre (Lock) fur
einen Datenbasisausschnitt bewirkt, dass die Zugriffe anderer Anwender/Prozesse/-
Transaktionen auf diesen Bereich eingeschrankt oder ausgeschlossen werden. Die
Einschrankung des Zugriffs besteht haufig darin, dass nicht jede dieser Zugriffsarten
erlaubt wird, wenn eine Sperre gesetzt ist. Beispielsweise kann das Lesen eines Datums
auch anderen Transaktionen gestattet werden, wenn der Sperrhalter selbst dieses Datum
ebenfalls lediglich zu lesen beabsichtigt. Dadurch kann der Nebenldufigkeitsgrad der
Transaktionsbehandlung wesentlich gesteigert werden.

Datenaustausch

In einem kooperativen System besteht haufig die Notwendigkeit, eine Anzahl von
Kommunikationspartnern vom Eintreten eines Systemereignisses, etwa der Anderung des
Datenbestandes durch einen Systemteilnehmer, zu informieren. Diese Art der Verteilung
von (Anderungs-)Ereignissen (-nachrichten) wird auch als data change propagation
bezeichnet.

Der Entwurf eines kooperativen Entwicklungswerkzeugs setzt eine stabile
Kommunikations-Infrastruktur voraus. Dazu gehdért mindestens die Mdéglichkeit, zwischen
zwei Prozessen Informationen auszutauschen. Die verfligbaren Dienstprimitive sollen
eine zuverlassige Informationsiibermittlung bieten und den Systementwickler soweit wie
maglich von der Fehlerbehandlung entlasten. Auch fiir den Austausch von Informationen
zwischen mehr als zwei Kommunikationspartnern sollen Dienstprimitive zur Verfligung
stehen.

Wenn das Anwendungssystem die Verwendung von Arbeitssitzungen unterstlitzen soll, ist
flr die Registrierung zugelassener Teilnehmer, den Beginn und das Beenden der Sitzung,
die Lokalisierung der laufenden Sitzungen sowie das An- und Abmelden bei einer
Arbeitssitzung die Definition entsprechender Entwurfskonstrukte (z. B. Funktionen,
Klassen, Module) wiinschenswert. Die Ubermittlung einer Nachricht erfordert
Dienstprimitive fir das Senden und Empfangen der Nachricht. Die Primitive send und
receive werden von Netzwerkbetriebssystemen, verteilten Betriebssystemen im engeren
Sinne oder Betriebssystemerweiterungen (z. B. Middleware) zur Verfligung gestellt. In
kooperativen Systemen tritt haufig der Fall auf, dass viele oder alle Anwender von einer
Anderung des Datenbestandes verstdndigt werden miissen. Daher ist die Mdéglichkeit
eines Broadcasting oder Multicast-Nachrichtenaustausches wiinschenswert.

Die Kommunikation zwischen Prozessen wird haufig nach dem Client/Server-Modell
gestaltet. Client ist ein Prozess, der bei einem Serverprozess eine bestimmte
Dienstleistung nachfragt bzw. eine Anfrage an einen Server richtet. Der Vorteil des
Client/Server-Modells besteht in der Verbindung von Einfachheit und Flexibilitdt. Der
Client sendet eine Anfragenachricht, die den gewlnschten Dienst beschreibt, an einen

Stand der Technik - 65 -

Server, der diesen Dienst erflllt, indem er die nachgefragten Daten oder eine
Fehlermeldung zurickliefert.

Es wurde bereits darauf hingewiesen, dass die Kommunikation in objektorientierten
Softwaresystemen wahlweise als Methodenaufruf oder Nachrichtenversand interpretiert
werden kann (vgl. Abschnitt 3.5.2). Die Betrachtung eines objektorientierten
Softwaresystems als Ansammlung von Objekten, die untereinander Nachrichten
austauschen, erlaubt eine nahtlose Abbildung des Client/Server-Konzeptes auf
objektorientierte Systeme. Objekte fungieren als Server, wenn sie Nachrichten ihrer
Clients entgegennehmen und beantworten; der Client ruft eine (entfernte) Methode des
Servers auf. Die Uberwindung der Grenzen von Prozessen, Rechnern, Betriebssystemen
oder Netzen leistet die sog. objektorientierte Middleware, die diese Verteilungsaspekte
fir den Systementwickler transparent macht.

Bei der Gestaltung kooperativer Werkzeuge ist darlber hinaus darauf zu achten,
Mechanismen fir Identifizierung, Adressierung angeschlossener Rechner, Objekte oder
Dienste und das Routing von Informationen durch das Netzwerk bereitzustellen.
Insbesondere fir das Verteilen von Nachrichten zur Unterstiitzung der Kommunikation ist
eine eindeutige Adressierung wichtiges Merkmal fir die angeschlossenen Clients der
Anwender. Im Rahmen dieser Adressierung und Identifikation spielen auch Sicherheits-
und Zugangsaspekte eine groBe Rolle, um die verwendeten Systeme vor unsach-
gemaBem Gebrauch Zu schitzen. Hierflr existieren leistungsfahige
Sicherheitsmechanismen wie abgestufte Zugriffskontrollen, Verschlisselungskonzepte
und Rollenprivilegien, wie sie oben dargestellt wurden (vgl. 3.5.4.3).

Benutzungsschnittstelle

In der Literatur (vgl. etwa [Rose93]) wird verschiedentlich gefordert, die
Programmierung der Benutzungsschnittstelle durch speziell fir die Erstellung von
Mehrbenutzeranwendungen angepasste Oberflachenobjekte zu unterstitzen (shared
visual objects). Dieser Auffassung steht jedoch entgegen, dass im allgemeinen eine
Trennung zwischen der internen Datenhaltung, der Zugriffsschnittstelle auf diese Daten
und ihrer visuellen Reprasentation angestrebt wird, wie dies etwa im bekannten Model-
View-Controller-Konzept geschieht (vgl. Abschnitt 3.5.5.5). Der Oberflache kommt dann
lediglich die Aufgabe zu, dem Anwender Informationen darzubieten und
Benutzeraktionen entgegenzunehmen, nicht jedoch, etwa Benutzeraktionen zu
propagieren. Dies ist Aufgabe einer tiefer liegenden Dienstebene. Auch das WYSIWYG-
Konzept (What-you-see-is-what-you-get) verlangt nicht, Informationen mit grundsatzlich
anderen Mitteln darzustellen, als dies in Einbenutzeranwendungen geschieht; die
vorhandenen Mittel (Oberflachenelemente, Mauszeiger, Textcursor) werden lediglich
anders genutzt. Aus diesem Grund beschréankt sich die Notwendigkeit, die
Oberflachengestaltung an den Mehrbenutzerbetrieb anzupassen, auf die Visualisierung
von Informationen, die in Einbenutzeranwendungen nicht vorhanden sind, etwa die
Struktur des Anwenderkreises. Dafir reichen im Allgemeinen die Ublichen
Oberflachenelemente (Schaltflachen, Listen, Zeichenflachen, grafische Symbole usw.)
aus. In dieser Arbeit wird daher nicht davon ausgegangen, dass speziell an den
Mehrbenutzerbetrieb angepasste Oberflachenobjekte flir die Erstellung eines
kooperativen Mehrbenutzerwerkzeugs benétigt werden, wohl aber, dass wahrend der
Gestaltung der Oberflachen das Augenmerk auf zusatzliche Objekte innerhalb der

- 66 -

Oberflache gelegt wird, die die Kommunikation, Kooperation und Koordination der an
einem Simulationsmodell arbeitenden Anwender abbildet.

3.5.5 Organisationsformen des Software-Designs von Mehrbenutzer-
systemen

Software an sich ist zundchst eine abstraktes Gebilde und muss fir den Umgang des
Menschen mit dieser Software handhabbar gemacht werden. Dabei sind Entscheidungen
Uber die Gestaltung des zu schaffenden Systems zu treffen: Was sind die Elemente
dieses Systems, in welchen Beziehungen stehen diese zueinander, usw. Die Gesamtheit
dieser Regelungen zur Gestaltung der Ordnung des Softwaresystems soll hier als
Organisationsform bezeichnet werden. In Anlehnung an [Woeh90] bezeichnet
Organisation hier sowohl den Prozess der Entwicklung einer Ordnung, als auch das
Ergebnis dieses gestalterischen Prozesses, d.h. die Gesamtheit aller getroffenen
Regelungen. Beispiele fir Software-Organisationsformen sind Funktionsbibliotheken,
Klassenbibliotheken, Frameworks, Software-Entwurfsmuster sowie spezielle Ldsungen
(Toolkits und konfigurierbare Anwendungen). Sie sollen in diesem Abschnitt vorgestellt
und hinsichtlich ihrer Eignung zur Realisierung des angestrebten Werkzeugs, bzw.
hinsichtlich der Verwirklichung der allgemeinen Ziele und Prinzipien des Software Designs
(vgl. 3.5.1 und 3.5.2), bewertet werden.

Die Wahl einer geeigneten Organisationsform flr Software ist abhangig von
unterschiedlichen Einflussfaktoren. Die Gewichtung dieser Faktoren wiederum ist
abhangig von der jeweiligen konkreten Aufgabenstellung. Es ist deshalb nicht mdglich,
lediglich anhand eines einzelnen softwaretechnischen Zieles allgemeinglltige Aussagen
Uber die Eignung einer bestimmten Organisationsform zu treffen. Vielmehr ist jeweils das
gesamte Zielsystem der Softwaretechnik unter den gegebenen individuellen
Randbedingungen zu berlcksichtigen. Es gibt jedoch zwei Griinde, warum dem Ziel
Wiederverwendung eine besondere Rolle bei der Beurteilung einer Software-
Organisationsform zukommt:

» Bedeutung des Zieles Wiederverwendung an sich: Bereits bei der Diskussion des
softwaretechnischen Zielsystems wurde diese herausgestellt und begrindet.
Erfolgreiche Wiederverwendung kann die Zuverlassigkeit und
Wartungsfreundlichkeit eines Softwaresystems steigern, das Risiko von
Fehlentwicklungen verringern, das Wissen von Experten und ganzen Organisationen
konservieren und transferieren und den finanziellen und zeitlichen Aufwand eines
Projektes reduzieren [Somm92].

= FEinfluss der Organisationsform auf die Wahrscheinlichkeit der Wiederverwendung:.
Software kann nur dann wieder verwendet werden, wenn eine Organisationsform
gewahlt wurde, die die Identifikation, den Zugriff und das Extrahieren der wieder zu
verwendenden Komponenten gestattet. Die unbefriedigende Situation, dass viele
Systementwickler das Geflihl haben, standig ,das Rad neu zu erfinden®, kann nur
beseitigt werden, wenn vorhandene Problemlésungen bekannt sind und zur
Verfligung stehen und wenn auBerdem eine ggf. notwendige Adaption an eine
geanderte Problemstellung méglich ist.

Stand der Technik - 67 -

Wiederverwendung von Software erfahrt aus technologischen, &konomischen,
psychologischen und organisatorische Griinden steigende Bedeutung. Der Gedanke liegt
wegen des stark wiederholenden Charakters vieler Phasen der Systementwicklung nahe.
Wiederverwendung beinhaltet die systematische Nutzung bereits existierender Modelle,
Entwirfe bzw. Entwurfsfragmente, Programmtexte und Dokumentationen. Es geht also
nicht lediglich um die Wiederverwendung von Programmcode, sondern samtlicher
(Zwischen-) Ergebnisse des Entwicklungsprozesses. In jedem Fall kann aber nur erneut
verwendet werden, was in Form eines irgendwie gearteten Dokumentes zur Verfligung
steht. In Frage kommen Quellcode, Objektcode, Personal, Dokumentationen. Diese
Dokumente koénnen sich auf Softwarekomponenten wie komplette Systeme, auf
Subsysteme, Module oder Objekte oder einzelne Funktionen beziehen. Die besondere
Eignung objektorientierter Technologien zur Unterstitzung der Wiederverwendung wird
als ein Standardargument zugunsten der Objektorientierung gebracht (vgl. Abschnitt
3.5.2.2). Einige Voraussetzungen erfolgreicher Wiederverwendung sind nach [Booc94]:

= Es muss moglich sein, die passenden Komponenten wieder zu finden.

= Die Komponenten missen vom Systementwickler verstanden und als geeignet
akzeptiert werden.

= Zu jeder Komponente miissen detaillierte Informationen dariber vorliegen, wie sie
wieder verwendet werden kann.

Wiederverwendung wird dagegen erschwert oder verhindert, wenn der Systementwickler
die Leistungsfahigkeit der angebotenen Komponenten nicht versteht oder ihre
Notwendigkeit nicht akzeptiert. Dartiber hinaus missen die Komponenten selbst auch fir
die Wiederverwendung geeignet sein, d.h., sie missen erweiterbar, bzw. anpassbar sein
und sie dirfen nicht einem zu sehr eingeschrankten Anwendungsbereich dienen und
damit die erforderliche Flexibilitdt vermissen lassen. Die Entwicklung wieder zu
verwendender Komponenten erfordert daher ein besonders hohes MaB an Erfahrung und
gestaltet sich schwieriger und aufwendiger als die Entwicklung von Software zur
einmaligen Verwendung. Die Berucksichtigung der in Kapitel 3.5.1 diskutierten Prinzipien
spielt daher hierbei eine besonders groBe Rolle.

3.5.5.1 Funktionsbibliotheken

Funktionsbibliotheken sind eine Organisationsform wieder verwendbarer Software, die
dem Paradigma der prozeduralen Programmierung entstammt. Programmiersprachen
organisieren Programme in Funktionen, Unterprogramme oder Prozeduren, die sich
gegenseitig aufrufen und ggf. Modulen angehéren kénnen. Es entsteht ein hierarchischer
Aufrufbaum, wie in Abbildung 21 gezeigt.

- 68 -

Programm

f() —— g0 Main()

FUnktionsaufruf:
f() ruft g() auf

Abbildung 21: Topologie prozeduraler Programmablidufe [Henk97]

Funktionsbibliotheken sind Sammlungen von Funktionen, die zumeist einen
gemeinsamen Anwendungsbereich (z.B. mathematische Funktionen, Stringverarbeitung,
Datenbankzugriff, grafische Ein-/Ausgabe,...) behandeln. Sie kdénnen als wieder
verwendbare Module aufgefasst werden. In Abbildung 21 kdnnte anstelle eines der
Module also auch die Bezeichnung einer Funktionsbibliothek treten. Es handelt sich daher
um eine Form der Wiederverwendung von Code, der entweder als Quelltext oder als
statisch oder dynamisch zu bindender Objektcode vorliegt. Dem prozeduralen Paradigma
entsprechend, sind Datenstrukturen nicht Gegenstand der Wiederverwendung.
Funktionsbibliotheken stellen daher einen einfachen, softwaretechnisch jedoch noch nicht
voll befriedigenden Mechanismus zur Wiederverwendung dar, der Modularisierung und
Hierarchisierung ermdglicht, dessen Mangel an Abstraktion jedoch die Wahrscheinlichkeit
einer Wiederverwendung mindert.

Fir den Entwurf und die Realisierung verteilter Systeme kommt der Einsatz von
Funktionsbibliotheken vor allem in den betriebssystemnahen Systemebenen in Frage. Ein
Beispiel im Bereich der Kommunikation zwischen Prozessen sind Sockets. Sie basieren
auf dem TCP/IP-Protokoll'” und bilden einen Puffer, (iber den Nachrichten gesendet und
empfangen werden koénnen. Die Adresse eines Socket beinhaltet die Adresse des
Rechners im Netzwerk sowie eine flr diesen Rechner eindeutige SocketID.
Funktionsbibliotheken setzen oftmals Detailkenntnisse Uber die jeweiligen Funktionen
voraus und erfordern somit einen erhdhten Einarbeitungsaufwand. Der Ansatz bietet
daher keine reibungslose Wiederverwendung von Software

""" Das TCP/IP-Protokoll ist ein Netzwerkprotokoll, das die Basis fiir die Kommunikation im Internet bildet.
Das Transmission Control Protocol (TCP) ist eine Vereinbarung dariiber, auf welche Art und Weise Daten
zwischen Computern ausgetauscht werden sollen [Balz05].

Das Internet Protokoll (IP) bildet die erste vom Ubertragungsmedium unabhiingige Schicht der Internet-
Protokoll-Familie. Das bedeutet, dass mittels IP-Adresse und Subnetzmaske (subnet mask) Computer
innerhalb eines Netzwerkes in logische Einheiten gruppiert werden konnen. Auf dieser Basis ist es moglich,
Computer in grofleren Netzwerken zu adressieren und Verbindungen zu ihnen aufzubauen [Balz05].

Stand der Technik - 69 -

3.5.5.2 Klassenbibliotheken

"Eine Klassenbibliothek besteht aus einer Menge von verwandten und wieder
verwendbaren Klassen, die entworfen wurden, um nlitzliche und allgemeine
Funktionalitdten zur Verfligung zu stellen."[GaHe01]

Die Funktionalitdten der Klassenbibliothek sind in der Regel unabhangig vom Kontext der
Anwendung. Die Wiederverwendung von Klassen innerhalb der Bibliothek kann durch
zwei Arten erfolgen: Entweder werden Klassen der Klassenbibliothek erzeugt
(instanziiert) oder neue Klassen werden durch gegebene Klassen der Bibliothek abgeleitet
(Prinzip der Vererbung, Abschnitt 3.5.2.2).

Klassenbibliotheken bilden das objektorientierte Gegenstiick zu Funktionsbibliotheken.
Typische Beispiele flir eine solche Ansammlung wieder verwendbarer Klassen sind Pakete
zur Verwaltung von Datenstrukturen, zur Realisierung von Oberflachenelementen oder
zum Aufbau von Kommunikationsschnittstellen mit Datenbanksystemen. Das
Zusammenspiel der Klassen ist vom Designer der Bibliothek nur in weiten Grenzen
vorgegeben. Es wird im Wesentlichen vom Entwickler der Anwendung bei der
Implementierung eines konkreten Programms festgelegt. Abbildung 22 zeigt die aus der
Verwendung einer Klassenbibliothek resultierende Topologie eines Programms.

D Klassenbibliothek
/4

Objekt

Methodenaufruf

¥
F 3

Abbildung 22: Programmtopologie auf Basis einer Klassenbibliothek [nach
Booc94]

=)
v

Mogliche Zugriffe auf Klassenbibliotheken sind durch das Application Programming
Interface (API) definiert. Dabei handelt es sich um eine Gesamtheit der o6ffentlich
verfugbaren Klassen und Schnittstellen in Abgrenzung zu den privaten Einheiten der
Bibliothek, die nicht zuganglich sind. Klassenbibliotheken werden deshalb auch haufig als
API bezeichnet. Durch die Einhaltung der Paradigmen des objektorientierten Entwurfs
(vgl. 3.5.2) ergeben sich fir Klassenbibliotheken einige Vorteile. Durch ihren Einsatz
kann ein hoéherer Abstraktionsgrad erreicht werden und Methodenaufrufe kdnnen
typsicher formuliert werden. Das reduziert die Fehlerwahrscheinlichkeit. Durch den
Zugriff Uber die API, bzw. die Schnittstellen wird eine saubere Trennung des Zugriffs und

-70 -

der eigentlichen Implementierung erreicht. Klassenbibliotheken lassen sich damit leichter
portieren.

Insgesamt ergibt sich aus der Beachtung allgemeiner und objektorientierter Paradigmen
des Software-Entwurfs eine hdéhere Wahrscheinlichkeit, dass ein Anwendungsentwickler
in einer Klassenbibliothek Softwarekomponenten findet, die ihm fir eine effiziente
Wiederverwendung geeignet erscheinen und zur Verfligung stehen. Eine spezielle Form
von Klassenbibliotheken bilden so genannte Frameworks, oder Rahmenwerke, die im
folgenden Abschnitt naher betrachtet werden sollen.

3.5.5.3 Frameworks

"Ein Framework besteht aus einer Menge von zusammenarbeitenden Klassen, die
einen wieder verwendbaren Entwurf fiir eine bestimmte Klasse von Applikationen
darstellen."[GaHe01]

Im Gegensatz zu Klassenbibliotheken, die eine Ansammlung nur lose verbundener
Klassen darstellen und dem Systementwickler wenig Vorgaben Uber die Verwendung der
Klassen machen, enthalten Frameworks Klassen, zwischen denen eine genau definierte
Beziehung besteht. Ein Framework gibt damit in der Regel eine Architektur der jeweiligen
Anwendung vor, wobei eine Umkehrung der Kontrolle stattfindet: der Programmierer
registriert konkrete Implementierungen, die dann durch das Framework gesteuert und
benutzt werden, statt — wie bei einer Klassenbibliothek — lediglich Klassen und
Funktionen zu benutzen. Ein Framework definiert insbesondere den Kontrollfluss der
Anwendung und die Schnittstellen fir die konkreten Klassen, die vom Programmierer
erstellt und registriert werden mussen. Frameworks werden also im Allgemeinen mit dem
Ziel einer Wiederverwendung architektonischer Muster entwickelt und genutzt. Da solche
Muster nicht ohne die Bericksichtigung einer konkreten Doméne entworfen werden
kénnen, sind Frameworks meist domanenspezifisch oder doch auf einen bestimmten
Anwendungstyp beschréankt. Frameworks sind nach dieser Definition immer
objektorientiert, obwohl sie grundsatzlich auch mit anderen Technologien erstellt werden
kénnen.

Die wesentlichen Vorteile von Frameworks gegeniber den Bibliotheken liegen in einem
reduzierten Wartungsaufwand, einer verbesserten Wiederverwendung allgemeiner
Funktionalitdten und insbesondere in der Mdéglichkeit einer zuverlassigen Erweiterung und
Spezialisierung innerhalb einer vorgegebenen Infrastruktur. Je nach der Art und Weise,
wie Frameworks vom Entwickler verwendet werden missen, unterscheidet man zwischen
White-Box- und Black-Box-Frameworks. White-Box-Frameworks bestehen aus einer
Reihe von abstrakten Klassen. Die Aufgabe des Entwicklers besteht dann darin, jene
abstrakten Methoden dieser Klassen in den abgeleiteten Unterklassen der konkreten
Applikation zu Uberschreiben. Dafiir ist eine gute Kenntnis der Framework-Klassen
erforderlich. Das Gegenstick bilden die Black-Box-Frameworks. Diese bieten bereits
fertige Klassen an, die der Entwickler instanziieren und so zu einer Applikation
zusammensetzen kann. Verfigbare Frameworks sind zumeist Mischformen zwischen
White-Box- und Black-Box-Frameworks. Mit steigendem Reifegrad tendieren Frameworks
zum Black-Box-Ansatz.

Stand der Technik -71-

Frameworks stellen also einen GroBteil des notwendigen Codes bereit und halten
Losungen flr wichtige Designentscheidungen bereit, die sich in einem Problembereich
typischerweise stellen, wahrend Funktions- und Klassenbibliotheken den
Systementwickler vor allem in der Implementierungsphase von wiederkehrenden
Aufgabe entlasten kdnnen, die Verantwortung flr wesentliche Entwurfsentscheidungen
aber beim Systemdesigner belassen. Frameworks bieten daher eine Wiederverwendung
von Designwissen, das in den implementierten Klassen enthalten ist. Diese
Wiederverwendung auf Entwurfsebene verlangt vom Entwickler des Frameworks
besonders viel Wissen und Erfahrung, wird aber dem Abstraktionsprinzip in besonderem
MaBe gerecht, weil quasi eine Referenz-Architektur zur Verfigung gestellt wird. Als
Dokument der Wiederverwendung kommt wiederum die Verwendung von Quellcode oder
Objektcode in Frage. Die Basis der Wiederverwendung ist allerdings nicht die Klasse,
sondern das Klassenteam.

Die Topologie eines mit Hilfe eines Frameworks definierten Programms unterscheidet
sich nicht von der in Abbildung 22 gezeigten Darstellung. Der Unterschied besteht
vielmehr darin, dass die im Bild als Kanten des Beziehungsgraphen dargestellten
Objektinteraktionen bereits im Framework weitgehend festgelegt sind, wahrend diese
Aufgabe bei Verwendung einer konventionellen Klassenbibliothek dem Systementwickler
zufallt.

Wie unter Abschnitt 3.2.2 aufgezeigt, existieren im Bereich der Ablaufsimulation
verschiedene Frameworks, die wegen der speziellen Anforderungen an das zu
entwickelnde Werkzeug nicht in dieser Arbeit verwendet werden kénnen.

3.5.5.4 Toolkits und konfigurierbare Anwendungen

Eine Mdglichkeit der gezielten Wiederverwendung von Komponenten (typischerweise als
Objektcode), die gegeniber dem allgemeingiltigeren Ansatz der Wiederverwendung von
Basisdienst-Komponenten einen reduzierten Overhead und auBerdem einen geringeren
Entwicklungsaufwand verwirklichen kann, ist der Rickgriff auf Gesamtlésungen. Hierbei
wird der Versuch unternommen, die angebotene Funktionalitdt gezielt auf einen
bestimmten Problem- bzw. Anwendungsbereich abzustimmen. Zwei wesentliche
Kategorien von dedizierten Gesamtlésungen werden im Folgenden unterschieden und
kurz dargestellt: Toolkits und konfigurierbare Anwendungen.

Toolkits
Toolkits gelten als Sammelbezeichnung fiir Zusammenstellungen von Hilfsmitteln wie
Funktions- oder Klassenbibliotheken, Frameworks, fertig verwendbare

Anwendungskomponenten, Dienstleistungsprogrammen (Server), Entwicklungshilfen
(CASE'®-Tools, Programmierumgebungen, Compiler!®, Programmgeneratoren,...),
Interface Builder, Datenhaltungskomponenten usw. Diese Aufzahlung macht deutlich,
dass die Abgrenzung gegen andere Software-Organisationsformen schwierig sein kann.
Wesentliche Eigenschaften von Toolkits sind allerdings die Adressierung eines
bestimmten Aufgabenbereiches sowie die Spezifikation eines Anwendungsmodells. Durch

'® CASE: Computer Aided Software Engineering

' Ein Compiler analysiert ein Programm auf fehlerfreie Syntax und iibersetzt es vollstindig in ein Zielsystem,
das ohne erneute Analyse beliebig oft hintereinander ausgefiihrt werden kann [Balz05].

-72 -

die Adressierung bestimmt sich der Umfang und Inhalt der angebotenen Funktionalitat.
Der Anwender hat zumeist nicht die Mdglichkeit zu beliebigen Erweiterungen. Der
Anwender muss darliber hinaus das Modell der Anwendungsentwicklung als gegeben
hinnehmen. Dieses Modell beinhaltet Annahmen Uber den Kenntnisstand der Anwender
des Toolkits, das zugrunde liegende softwaretechnische Paradigma, die verwendete
Programmiersprache, die Hardware- und Softwareumgebung der Anwendungs-
entwicklung und -verwendung usw.

Konfigurierbare Anwendungen

Fertige Anwendungen stellen den Extremfall dedizierter Gesamtlésungen dar und setzen
die Grundidee am konsequentesten um. Die Systementwicklung wird auf die
Wahrnehmung der vorhanden Einstellméglichkeiten reduziert, d. h. die Konfiguration
bzw. Parametrisierung z.B. durch Aufrufoptionen, statische oder dynamische
Ressourceneinstellungen, Editieren von Datendateien, -objekten oder -tabellen sowie
einfache Eingriffe in den Kontrollfluss durch Skriptdateien.

Fir den Anwendungsbereich der synchronen verteilten Interaktion sind konfigurierbare
Anwendungen, die speziell flir die Realisierung eines kooperativen Werkzeuges zur
Modellierung und Simulation von Fertigungssystemen, wie sie in dieser Arbeit angestrebt
wird, zurzeit nicht bekannt.

Das groBte Problem im Zusammenhang mit dem Einsatz von dedizierten Gesamtlésungen
resultiert gerade aus dem wichtigsten Vorteil: Die gezielte Einschrankung der
angebotenen Funktonalitét erfordert es, eine Losung zu finden, die genau auf die
gegebene Problemstellung passt oder eine ausreichende Flexibilitdt bietet, um eine
Anpassung zu ermdglichen. In diesem Fall ermdglichen Speziallésungen einen hohen
Anteil wieder verwendeter Software am Gesamtumfang eines Projekts. Praktische
Erfahrungen zeigen aber, dass gerade die Suche nach einer ideal passenden L&sung
hadufig Schwierigkeiten bereitet und insbesondere spatere Anderungen der
Anforderungsdefinition zu Problemen fiihren. Der Grund daflr liegt in der mangelnden
Bericksichtigung (bzw. dem bewussten Verzicht) des softwaretechnisches Prinzips der
Abstraktion. Wichtige softwaretechnische Ziele, wie Flexibilitat, Interoperabilitat,
Portabilitét, Erweiterbarkeit und Wartbarkeit werden deshalb von dedizierten
Gesamtlésungen nicht immer voll erflllt. Fir den Bereich der Ablaufsimulation existieren
zahlreiche Anwendungen, die jedoch kaum auf die Anforderungen der Anwender
konfiguriert werden kénnen. Flr die unter Abschnitt 2.3 aufgezeigten Anforderungen
existiert kein Toolkit.

3.5.5.5 Software-Entwurfsmuster

"Jedes Muster beschreibt ein in unserer Umwelt bestdndig wiederkehrendes
Problem und erldutert den Kern der Lésung fiir dieses Problem, so dass sie diese
Loésung beliebig oft anwenden kénnen, ohne sie jemals ein zweites Mal gleich
auszufiihren." [Alls77]

Ein Entwurfsmuster (engl. design pattern) beschreibt eine in der Praxis erfolgreiche,
generische Lésung flir ein mehr oder weniger haufig auftretendes, wiederkehrendes
Entwurfsproblem und stellt damit eine wieder verwendbare Vorlage zur Problemldsung
dar. Entstanden ist der Ausdruck in der Architektur, von wo er fur die

Stand der Technik -73 -

Softwareentwicklung Ubernommen wurde [GaHeOl]. Der primdre Nutzen eines
Entwurfsmusters liegt in der Beschreibung einer Losung flir eine bestimmte Klasse von
Entwurfsproblemen. Weiterer Nutzen ergibt sich aus der Tatsache, dass jedes Muster
einen Namen hat. Dies vereinfacht die Diskussion unter Softwareentwicklern, da man
abstrakt Uber eine Softwarestruktur sprechen kann. So sind Entwurfsmuster zunachst
einmal unabhangig von der konkreten Programmiersprache. Wenn der Einsatz von
Entwurfsmustern dokumentiert wird, ergibt sich ein weiterer Nutzen dadurch, dass durch
die Beschreibung des Musters ein Bezug zur dort vorhandenen Diskussion des
Problemkontextes und der Vor- und Nachteile der L6sung hergestellt wird.

Die Beschreibung eines Entwurfsmusters folgt nach [GaHe01] dem folgenden Schema:

= Name und Klassifikation des Musters.

= Synonyme: Andere bekannte Namen des Musters.

= Beispiel eines Musters

= Kontext: Einsatzbereiche fir das Muster.

= Problembeschreibung

= [dsungsprinzip des Musters

= Struktur: Beschreibung der allgemeinen Struktur des Musters.

= Dynamische Aspekte: Typische Szenarien zur Beschreibung des Laufzeitverhaltens

= Implementierung: Praxisrelevante Tipps, Tricks und Techniken sowie Warnung vor
Fehlern, die leicht passieren kdnnen.

= Musterlésung

= Varianten

» Praxiseinsatz: Wo wird das Muster bereits eingesetzt?

= Auswirkungen: Vor- und Nachteile der Anwendung des Musters

= Querverweise: Wie spielt das Muster mit anderen Mustern zusammen?

Generell sollte die Dokumentation eines Entwurfsmusters ausreichende Informationen
Uber das Problem, welches das Muster behandelt, Uber den Kontext der Anwendung und
Uber die vorgeschlagene Lésung bereitstellen. [GaHeO01] klassifiziert Muster nach den
beiden Kriterien des Zwecks (purpose) und des Bereichs, auf dem sie wirken (scope).
Nach dem Zweck des jeweiligen Musters unterscheidet sie drei Klassen: Die erste Gruppe
der Erzeugungsmuster bezieht sich auf die Erzeugung von Objekten. So kénnen etwa die
Anzahl von erzeugten Objekten einer Klasse kontrolliert, oder man der konkrete Typ der
erzeugten Objekte - abhangig von den jeweiligen Bedingungen - angepasst werden. Die
zweite Gruppe umfasst Strukturmuster, welche eine Vereinfachung der Struktur zwischen
Klassen ermdglichen sollen. Komplexe Beziehungsgeflechte kénnen beispielsweise Uber
vermittelnde Klassen oder Schnittstellen logisch vereinfacht werden. Die dritte Gruppe
der Verhaltensmuster betrifft das Verhalten der Klassen. Hierbei handelt es sich um die
groBte Gruppe von Mustern. Sie beziehen sich auf die Zusammenarbeit und den
Nachrichtenaustausch von Klassen. Tabelle 2 zeigt eine Ubersicht zur Kategorisierung der
in [GaHe0l1l] angegebenen Entwurfsmuster hinsichtlich ihres Zwecks und ihrer
Wirksamkeit.

Nach ihrem Wirkungsbereich lassen sich Muster in Klassen- und Objektmuster einteilen.
Klassenmuster beschreiben Beziehungen zwischen Klassen und bauen vorrangig
Vererbungsstrukturen auf. Die Strukturen sind damit zur Ubersetzungszeit festgelegt.

-74 -

Hingegen nutzen Objektmuster vorrangig Assoziationen und Aggregationen zur
Beschreibung von Beziehungen zwischen Objekten. Die durch sie beschriebenen
Strukturen zwischen Objekten sind zur Laufzeit dynamisch anderbar.

Aufgabe
Erzeugungsmuster Strukturmuster Verhaltensmuster

Giiltigkeits- Klassen- Fabrikmethode Adapter Interpreter
bereich basiert Schablonenmethode
Objekt- Abstrakte Fabrik Adapter Befehl
basiert Erbauer Briicke Beobachter
Prototyp Dekorierer Besucher
Singleton Fassade Iterator
Fliegengewicht Menento
Kompositum Strategie
Proxy Vermittler
Zustand

Zustandigkeitskette

Tabelle 2: Dimensionen der Auspragung von Entwurfsmustern nach [GaHeO01]

Nicht jedes Muster lasst sich heutzutage ohne weiteres als Entwurfsmuster klassifizieren.
Vielmehr gibt es, unter anderem, graduelle Unterschiede in der Koérnigkeit von Mustern.
So wird etwa das Model-View-Controller-Muster sowohl als Architekturmuster, als auch
als Entwurfsmuster betrachtet. Software Entwurfsmuster stellen also einen Versuch dar,
ein professionelles Medium fir den Transfer des Wissens von Software-Entwicklern Gber
die Erstellung, Pflege und Dokumentation komplexer Softwaresysteme bereitzustellen.
Sie helfen, geeignete Losungen fiur Entwurfsprobleme zu identifizieren, indem sie
vorhandenes Entwurfswissen dokumentieren. Innerhalb der Konzeptionsphase der hier
vorliegenden Arbeit sollen Entwurfmuster insbesondere in den ersten Phasen die
Designentscheidungen des Werkzeugs unterstitzen und helfen, das Gesamtprojekt
gliedern zu kdnnen.

3.5.6 Architekturmuster von Mehrbenutzersystemen

Realisierbare Software-Architekturen sind auf ein paar grundsatzlichen Strukturierungs-
prinzipien aufgebaut. Diese Prinzipien werden als Architekturmuster beschrieben.

"Architekturmuster beschreiben fundamentale, strukturelle Organisationsschemata
flir Softwaresysteme. Sie bieten eine Anordnung von Subsystemen und deren
wechselseitige Beziehungen und beinhalten Regeln und Richtlinien zur
Organisation der Beziehungen." (nach [BuMe96])

Ein Architekturmuster spiegelt also ein grundsatzliches Strukturierungsprinzip von
Software-Systemen wieder. Es beschreibt eine Menge vordefinierter Subsysteme,
spezifiziert deren jeweiligen Zustandigkeitsbereich und enthalt Regeln zur Organisation
der Beziehungen zwischen den Subsystemen. Sie kdnnen als Schablonen fir konkrete
Software-Architekturen verstanden werden. Aufgrund der impliziten Auswahl der
strukturellen Eigenschaft eines Anwendungssystems mit der Wahl eines
Architekturmusters, wird mit der Wahl eines speziellen Architekturmusters eine
Grundsatzentscheidung im Entwurf eines Softwaresystems getroffen. Architekturmuster

Stand der Technik -75 -

lassen sich nach [GaHe01] in vier verschiedene Kategorien einteilen, die in Tabelle 3 kurz
dargestellt werden.

Die Architekturmuster sollen im Folgenden nicht detailliert vorgestellt und diskutiert
werden. Erlduterungen zu Aufgaben und Wirkungsweisen finden sich unter [Design
Patterns]. Die aufgezeigten Muster sollen nachfolgend vielmehr hinsichtlich ihrer Eignung
fir die Verwendung als Software-Architektur fir das zu entwickelnde, mehrbenutzer-
fahige Werkzeug zur Ablaufsimulation untersucht werden. Die Betrachtung ausgewahlter
Architekturmuster beschrankt sich auf die ersten drei Kategorien von Architekturmustern.
Muster flr adaptierbare Systeme Ilassen sich nur schwerlich hinsichtlich der
Aufgabenstellung verwenden und werden nachfolgend nicht genauer betrachtet.

Kategorie Beschreibung ‘ Zugeordnete Muster
Mud-To-Structure Diese Architekturmuster sollen | Layers

helfen, die Unmengen von | Pipes-And-Filters
Komponenten und Objekten eines | Blackboard
Softwaresystems zu organisieren.

Die Funktionalitat des

Gesamtsystems wird hierbei in

kooperierende Subsysteme

aufgeteilt.
Verteilte Systeme Diese Kategorie unterstlitzt die | Broker

Verwendung verteilter Ressour- | Client-Server

cen und Dienste in Netzwerken. Microkernel

Pipes-And-Filters

Interaktive Systeme Pattern dieser Kategorie helfen | Model-View-Controller

Mensch-Computer-Interaktionen Presentation-Abstraction-Control
zu strukturieren.

Adaptierbare Systeme Architekturmuster dieser | Microkernel
Kategorie unterstlitzen besonders | Reflection
die Erweiterungs- und
Anpassungsfahigkeit von
Softwaresystemen.

Tabelle 3: Kategorien von Architekturmustern

Bewertung

Die Anwendung des Architekturmusters Layer bietet einige Vorteile hinsichtlich einer
ersten Strukturierung einzelner Programmteile. Fir die Umsetzung des angestrebten
Werkzeugs bietet es durch seine Ausrichtung aber allenfalls dazu an, innerhalb
bestimmter Programmmodule Basisdienste zu strukturieren und zu definieren.
Insbesondere einer Ausrichtung hinsichtlich der geforderten Interaktivitat und
Mehrbenutzerfahigkeit kann mit diesem Muster nicht entsprochen werden.

Das Pipes-and-Filters-Muster bietet sich flir die flexible Gestaltung schwieriger
Datentransformationen und -Verarbeitungen im besonderen MaBe an. Inwiefern solche
komplexen Transformationen bei der Umsetzung des zu entwickelnden Werkzeuges
berlicksichtigt werden missen, kann erst im Konzeptionskapitel entschieden werden. Fir
die Gesamtanordnung des Systems scheint das Layers-Muster als die bessere
Entwurfsalternative, da hier insbesondere die Fehlerbehandlung als wichtiger Bereich der
Software-Entwicklung besser unterstitzt wird. Das grundsatzliche Vorgehen erscheint
beim Pipes-and-Filters-Muster eher prozess- als objektorientiert. Fir komplexe
Datentransformationen kann es aber ggf. eingesetzt werden.

- 76 -

Das Blackboard-Muster eignet sich insbesondere flir neue Anwendungsbereiche, wo eine
zuverlassige Gesamtlosung nicht deterministisch generiert werden kann. Fir die
Entwicklung des angestrebten Modellierungs- und Simulationswerkzeuges gilt dieses nur
bedingt, da die prinzipielle Struktur eines Simulators ein bekanntes Arbeitsgebiet ist, in
dem ,nur" eine auf die Fragestellung angepasste Architektur entwickelt werden muss.
Der Entwurf des eigentlichen Werkzeuges trifft diese Definition somit nicht. Eine
Anwendung im Bereich der Simulation, bzw. innerhalb der Logik des eigentlichen
Simulationsmodells erscheint aber in den Bereichen mdglich, wo die Terminierung eines
Folgeereignisses als Folge einer Aktivitat aus verschiedenen Teilbereichen
zusammengesetzt werden muss. Ggf. kann das Blackboard-Muster also im Rahmen der
Modellierung spezieller Fragestellungen von funktionsorientierten Fertigungssystemen
eingesetzt werden.

Der Entwurf des Modellierungs- und Simulationswerkzeuges wird zwangslaufig auf ein
modulares, verteiltes System fokussieren. In diesem Rahmen kann wahrend der
Entwurfsphase das Broker-Muster berlicksichtigt werden, um ein abgesichertes
Objektmodell zu entwerfen, das eine robuste Kommunikation zwischen den Modulen
erlaubt. Die prinzipiell moégliche Ausrichtung des Broker-Musters auf eine Kombination
von Systemen, die in verschiedenen Programmiersprachen entwickelt werden, wird wohl
nicht verwendet werden missen, da eine einheitliche Verwendung von Java eine
Grundannahme des zu entwickelnden Werkzeuges werden soll. Dadurch wird das
beschriebene Broker-Muster aber nur vereinfacht, da die zur Kapselung eingesetzten
Stellvertreter-Objekte aus dem Grundmodell herausfallen kénnen.

Die Client-Server-Architektur ist eine der momentan am weitesten verbreiteten
Softwarearchitekturen fiir Business-Systeme. Insbesondere in den Funktionsmodulen zur
Modellierung und/oder Visualisierung der Simulationsmodelle bietet sich dieses Software-
Muster an, um den Multitasking-Betrieb an einem gemeinsamen Simulationsmodell zu
ermdglichen. Auf dem zentralen Anwendungsserver soll in diesem Fall das aktuelle
Simulationsmodell sowie die Verwaltung der angeschlossenen Anwender erfolgen. Flr
das angestrebte Werkzeug wirde sich vermutlich eine weitergehende Ldsung in Form
einer 3-Tier-Architektur anbieten, so dass alle anfallenden Simulationsdaten in einer
Simulationsdatenbank gespeichert werden kénnen.

Die Anforderungen an das zu entwickelnde Werkzeug lassen sich auf einem hohen
Abstraktionsgrad gut in verschiedene Subsysteme unterteilen, die in sich geschlossen
funktionieren. Beispielsweise lasst sich der Gesamtprozess der Anwendung in
Modellierung, Simulation und Analyse aufteilen. Fir die Gestaltung auf einer detaillierten
Ebene erscheint das Model-View-Controller-Muster besser geeignet, da hier die Aufteilung
funktionsibergreifend erfolgt. Adaptiert man das Model-View-Controller Pattern auf die
vorgestellte 3-Tier-Architektur, ergibt sich eine erste denkbare Softwarearchitektur fir
das zu entwickelnde Werkzeug. Vor allem hinsichtlich der Visualisierung der
Simulationslaufe bietet sich Trennung nach eigentlicher Funktion und deren Darstellung
an. Neben verschiedenen Darstellungsformen wird damit auch eine Simulation erlaubt,
die ohne die Anzeigemethoden eines Visualisierungsmoduls zumindest berechnet werden
kann.

Stand der Technik -77 -

Zusammenfassend kann man also sagen, dass verschiedene Architekturmuster zur
Konzeption des Werkzeugs herangezogen werden kdnnen. Je nach Anforderung der
Teilmodule sollen sie in Abschnitt 5.3 herangezogen werden.

3.5.7 Software-Schnittstellen

,Schnittstellen (interfaces) definieren Dienstleistungen flir Anwender, d.h.
aufrufende Klassen, ohne etwas Uber die Implementierung der Dienstleistung
festzulegen." [Balz05]

Eine Schnittstelle wird durch eine Menge von Regeln beschrieben, der Schnittstellen-
beschreibung. Neben der Beschreibung, welche Funktionen vorhanden sind und wie sie
benutzt werden, gehdért zu der Schnittstellenbeschreibung auch ein so genannter
Kontrakt, der die Semantik der einzelnen Funktionen beschreibt. Standardisierte
Schnittstellen bieten den Vorteil, dass Komponenten oder Module, die die gleiche
Schnittstelle unterstitzen, gegeneinander ausgetauscht werden kdénnen, das heiBt sie
sind zueinander kompatibel.

Softwareschnittstellen oder Datenschnittstellen sind dementsprechend logische
Berihrungspunkte in einem Softwaresystem: sie definieren, wie Kommandos und Daten
zwischen verschiedenen Prozessen und Komponenten ausgetauscht werden. In der
objektorientierten Programmierung (OOP) vereinbaren Schnittstellen gemeinsame
Signaturen von Klassen. Das heiBt, eine Schnittstelle vereinbart die Signatur einer
Klasse, die diese Schnittstelle implementiert. Das Implementieren einer Schnittstelle
stellt eine Art Vererbung dar. Man kann zwischen Schnittstellen zur
Interprozesskommunikation (Kommunikation zwischen verschiedenen Programmen) und
Schnittstellen fir Programmkomponenten (dienen der Modularisierung der Software-
Architektur) unterscheiden.

Die eXtensible Markup Language (XML) ist ein Standard zur Erstellung maschinen- und
menschenlesbarer Dokumente in Form einer Baumstruktur, der vom World Wide Web
Consortium (W3C) definiert wird [Rock00]. Die XML definiert Regeln fiir den Aufbau und
die Struktur solcher Dokumente. Fir einen konkreten Anwendungsfall ("XML-
Anwendung") missen die Details der jeweiligen Dokumente spezifiziert werden. Dies
betrifft insbesondere die Festlegung der Strukturelemente und ihre Anordnung innerhalb
des Dokumentenbaums. Eine Festlegung und Eingrenzung der Struktur von
Simulationsmodellen wird somit ermdglicht und kann auf einfache Weise Uberprift
werden. Bei der Verwendung von XML spricht man hier auch von der Giltigkeit und
Wohlgeformtheit von XML-Dateien hinsichtlich einer durch XML-Schemata oder Document
Type Definition (DTD) festgelegten Grammatik.

Die Namen der einzelnen Strukturelemente (XML-Elemente) flir eine XML-Anwendung
lassen sich frei wahlen. Ein XML-Element kann ganz unterschiedliche Daten enthalten und
beschreiben, als prominentestes Beispiel Text, aber auch Grafiken oder abstraktes
Wissen. Ein Grundgedanke hinter XML ist es, Daten und ihre Reprasentation zu trennen,
also beispielsweise Wetterdaten einmal als Tabelle und einmal als Grafik auszugeben,
aber fir beide Anwendungen die gleiche Datenbasis im XML-Format zu nutzen. Ein

- 78 -

weiterer Vorteil, der sich durch den Einsatz von XML ergibt, ist die leichte Erweiterbarkeit
der entsprechenden Grammatiken. Bei den meisten Erweiterungen der Grammatik
bleiben die vorher erstellen XML-Dateien, in dem hier vorliegenden Fall also
Simulationsmodelle, auch giiltig beziglich der neuen Grammatik.

In den letzten Jahren hat die XML vermehrt in die Gestaltung von Software-Schnittstellen
Einzug gehalten. Die XML wird zum einen bei der Gestaltung von Dateiaustauschformaten
eingesetzt, um Dateninhalte zwischen verschiedenen Anwendungen oder
Anwendungsmodulen auszutauschen [Rock00]. Zum anderen gewinnt sie wegen ihrer
leichten Erweiterbarkeit steigende Bedeutung bei der Gestaltung von Interprozess-
kommunikationsschnittstellen, wo Anwendungen Informationen zur Laufzeit mittels eines
festgelegten Formats austauschen [Rock00].

Bewertung

Flr das hier zu entwickelnde Werkzeug kann der Einsatz der XML in beiden Bereichen als
sinnvoll erachtet werden. Die XML kann sowohl dazu dienen, die entsprechenden
Simulationsmodelle entsprechend der Modellbeschreibung in einem festgelegten Format
abzulegen, als auch die Kommunikation zwischen den verschiedenen Werkzeugmodulen,
beispielsweise Visualisierungskomponente und Simulatorkern, auf Basis eines
Nachrichtenformates zu realisieren.

3.6 Fazit

Fir die Modellierung und Simulation von Fertigungssystemen auf der Betrachtungsebene
einer diskreten Materialflusssimulation sind zahlreiche Methoden bekannt. Als
Vorgehensmodell werden spezifische Projekte meist in Form einer Simulationsstudie
umgesetzt. Der Basisprozess der schrittweisen Modellierung, Simulation und Analyse der
abzubildenden Systeme ldsst sich potentiell durch mehrere Anwender in einer
interaktiven Umgebung erarbeiten, auch wenn dies noch in keinem bekannten Software-
Werkzeug unterstitzt wird.

Im Rahmen der Untersuchung des Standes der Technik konnten keine
Modellbeschreibungen identifiziert werden, die alle Anforderungen bereits umsetzen. Alle
vorgestellten Modellbeschreibungen haben in ihrem Bereich durchaus ihre Berechtigung,
schranken die Anwendung aber soweit ein, dass die hier gestellten Anforderungen nicht
mehr in Ganze erflllt werden kdnnen. Fir die hier vorliegende Arbeit bedeutet das, nach
der Festlegung einer Prozessstruktur eine Modellbeschreibung zu entwickeln, die durch
ein modular aufgebautes Software-Werkzeug implementiert werden kann, so dass alle
Anforderungen erfillt werden kdnnen. Die relevanten Kriterien sind aus Abschnitt 2.3
bekannt und kénnen auch nach Sichtung des Standes der Technik Gbernommen werden.
Eine Kombination aus Framework-basierter Modellierung mittels einer
Programmiersprache mit Anbindung an die wesentlich anwenderfreundlichere, grafische
Modellierung erscheint besonders vielversprechend. Die Implementierung des Werkzeugs
als dritter Schritt stitzt sich dann auf diese grundlegende Modellbeschreibung. Flr den
Simulatorkern ergibt sich die Anforderung, sowohl die zeit- wie auch die ereignisdiskrete
Zeitfortschreitung zu implementieren, um den Einsatz des Werkzeugs in den
verschiedenen Planungsphasen zu ermdglichen.

Stand der Technik -79 -

Das Problemfeld dieser Arbeit liegt im Bereich der Modellierung und Simulation
komplexer Fertigungssysteme, die in einer virtuellen Umgebung dargestellt werden
sollen, um sie mdglichst immersiv und interaktiv parallel zu ihrer Ausfiihrung analysieren
und optimieren zu kénnen. In diesem Feld sind verschiedene Implementierungen zur
Darstellung von Fertigungssystemen in einer virtuellen Umgebung bekannt, an die sich
bei der Umsetzung angelehnt werden kann. Neben einer hoch auflésenden,
dreidimensionalen Visualisierung sollen dem Anwender aber auch weitere
Darstellungsformen in dem zu entwickelnden Werkzeug angeboten werden.

Im Rahmen der Umsetzung der zu entwerfenden Modellierungsphilosophie (hier
verstanden als die Entwicklung eines Basisprozesses inklusive einer passenden
Modellbeschreibung) in ein entsprechendes Software-Werkzeug sind insbesondere fir die
objektorientierte Programmierung zahlreiche Paradigmen bekannt, die bestmdglich
berlicksichtigt werden sollen. Fir den Aufbau von modular organisierten, interaktiven
Anwendungssystemen existieren mehrere Architekturmuster, die bei dem strukturierten
Aufbau des Werkzeuges innerhalb einer festzulegenden Organisationsform angewendet
werden kénnen. Insbesondere die Unterstiitzung von Kommunikations-, Koordinations-
und Kooperationsfunktionen muss umgesetzt werden, damit das Werkzeug als
Mehrbenutzersystem angewendet werden kann. Bei der Entwicklung der eigentlichen
Software ist die hochstmdogliche Verwendung der UML zu befiirworten, um Planungsfehler
im Rahmen der Software-Entwicklung im Vorfeld vermeiden zu kénnen. Als Software-
Schnittstelle erscheint die XML sowohl als Datenaustauschformat, als auch als
Kommunikationsschnittstelle als besonders geeignet.

Das folgende Kapitel nimmt die in Kapitel 2.3 aufgezeigte Strukturierung der
Gesamtaufgabe auf und definiert die Umsetzungsschritte unter Beriicksichtigung der in
Kapitel 1 aufgezeigten Lésungsmoéglichkeiten.

Zielstellung - 81 -

4 Zielstellung

~Der Mensch ist ein zielstrebiges
Wesen, aber meistens strebt es
zu viel und zielt zu wenig."

(Glnter Radtke)

In dieser Arbeit soll ein Materialflusssimulator konzipiert und umgesetzt werden, der mit
einem diskreten, wahlweise zeit- oder ereignisorientierten Verfahren richtungsoffene
Simulationsmodelle so berechnet, dass Mehrbenutzer-Modellierung, -Simulation und -
Analyse in einer interaktiven, immersiven und virtuellen Umgebung ermdglicht wird (vgl.
Abschnitt 2.3).

Eine Analyse des Standes der Technik hat verschiedene Modellbeschreibungen
aufgezeigt, die eine Abbildung von Fertigungssystemen in einem frei wahlbaren
Abstraktionsgrad prinzipiell ermoéglichen. Keine der identifizierten Modellbeschreibungen
erlaubt jedoch die Erflllung aller aufgezeigten Anforderungen in Ganze. Nach der
Festlegung grundlegender Annahmen fiir den Prozess der Modellierung, Simulation und
Analyse, wie er durch das Werkzeug unterstitzt werden soll (siehe Abschnitt 4.1), muss
in einem zweiten Schritt eine Modellbeschreibung von ausfihrbaren Materialfluss-
modellen als Kombination und Erweiterung der vorgestellten Ldsungen konzipiert
werden, die alle aufgezeigten Anforderungen erflillen kann. Abschnitt 4.2 beschreibt die
dazu noétigen Schritte, beginnend mit der sukzessiven Entwicklung einer modularen,
objektorientierten Modellbeschreibung zur mehrbenutzerfahigen Modellierung interaktiver
Simulationsmodelle. In einem Folgeschritt wird diese Modellbeschreibung hinsichtlich
einer Transformation in ein Simulationsmodell zur Rickwartssimulation hin untersucht,
Uberprift und gegebenenfalls erweitert.

Letztendlich soll dem Anwender ein Werkzeug zur Verfligung gestellt werden, dass eine
benutzerfreundliche Bearbeitung der dargestellten Simulationsmodelle erlaubt. Abschnitt
4.3 untergliedert den Entwurfs- und Implementierungsprozess des Werkzeugs in die
Phasen Systementwurf, Systemarchitektur und Realisierung. Der erste Bereich beschreibt
die Strukturierung der Software in Module, um den ganzheitlichen Ansatz der
angestrebten Losung zu unterstreichen. In der Phase der Systemarchitektur werden die
unter Anwendung der UML (Use-Case-Diagramme) identifizierten Teilsysteme
miteinander verzahnt. Daraufhin werden die einzelnen Funktionsmodule mittels der in
Abschnitt 3.5.6 aufgezeigten Architekturmuster entworfen und uUberprift. SchlieBlich
werden im Rahmen der Realisierung die einzelnen Module innerhalb des Gesamt-
konzeptes implementiert und anhand eines Beispielmodells validiert.

4.1 Gestaltung eines Basisprozesses

Die Entwicklung des angestrebten Materialflusssimulators setzt einige Basisannahmen
Uber den Arbeitsprozess mit dem Software-Werkzeug voraus. Dessen Gestaltung muss
vor der eigentlichen Entwicklung von Modellbeschreibung und Werkzeug ebenso
festgelegt und beschrieben werden, wie alle Uberlegungen hinsichtlich aller
Ubergreifenden Entscheidungen (Programmiersprache, etc.). Die entsprechende Wahl der

-82 -

Grundentscheidungen kann wieder den eigentlichen Arbeitsprozess der Modellierung und
Simulation beeinflussen. Als Basis dient das unter Abschnitt 2.4.1 vorgestellte,
grundsatzliche Vorgehen, das nach Abschnitt 3.1 innerhalb einer Simulationsstudie
angewendet werden kann.

Mehrbenutzerbetrieb und Interaktion

Die einzelnen Bereiche innerhalb eines Simulationsmodells miissen sich so voneinander
trennen lassen, dass eine Manipulation des Gesamtmodells ermdglicht wird. Alle
wesentlichen Modelleigenschaften missen sich wahrend der Ausfihrung eines
Simulationsmodells manipulieren lassen, die entsprechenden Interaktionen miuissen
protokolliert werden. Die noch zu spezifizierenden Interaktionsmetaphern (Erzeugen,
Selektieren, Parametrieren, Erweitern, Ldschen etc.) fihren unter Umstanden zu
umfangreichen Anderungen an dem Simulationsmodell. Sie missen (ber die
entsprechenden Benutzerschnittstellen nicht nur ermdéglicht werden, sondern auch in
einem Rahmen verwendet werden, der die Konsistenz des Gesamtmodells nicht
gefahrdet. Basis der Arbeit mehrerer Anwendern an einem gemeinsamen Modell ist der
Entwurf und die Implementierung einer Benutzerverwaltung inklusive eines
Rechtemanagements. So kénnen verschiedene Benutzergruppen mit unterschiedlichen
Aufgabenbereichen voneinander unterschieden werden.

4.2 Anforderungen an eine Modellbeschreibung

Zweiter Baustein der Umsetzung vor Systementwurf und Implementierung des
Werkzeugs muss die Entwicklung einer Modellbeschreibung sein, die allen aufgezeigten
Anforderungen an die Modellierung und Simulation von Fertigungssystemen genlgt.
Dabei sind alle Anforderungen zu bericksichtigen, die aus einem Multitasking-Betrieb und
den Interaktionsmdéglichkeiten resultieren, um diese in den Einsatzfeldern Vorwarts- und
Ruckwartssimulation von komplexen Simulationsmodellen zu erlauben. Die jeweiligen
Vorteile der unter Abschnitt 3.2 aufgezeigten Lésungsalternativen sollen bestmdglich in
einem Ansatz integriert werden. Die Benutzerfreundlichkeit soll gesteigert werden, indem
zunachst eine grafische Modellierung anhand von Bausteinbibliotheken ermdglicht wird.
Zur Modellierung spezieller Algorithmen und Methoden innerhalb eines Modellbausteins
soll ein Framework-basierter Ansatz verfolgt werden, indem die Giiltigkeit des erstellten
Programmcodes direkt wahrend der Modellierung Uberprift werden kann. Die Gestaltung
soll schrittweise erfolgen, je nach Anforderung erweitert werden kénnen. Dabei soll von
einer allgemeinen Modellbeschreibung ausgegangen werden; zusatzliche Anforderungen
werden Schritt flr Schritt integriert.

4.2.1 Vorwartssimulation

Allgemeine Simulationsmodelle

Die allgemeine Modellbeschreibung der Simulationsmodelle soll sich konsequent an
Grundsatzen der objektorientierten Programmierung orientieren, um eine modulare und
objektorientierte Struktur des Simulationsmodells zu erhalten, die als Datenmodell des
Simulators verwendet werden kann. Die Simulationsmodelle sollen unter Anwendung von
Synchronisationsverfahren interaktiv verandert werden kdnnen und prinzipiell einen
beliebigen Detaillierungsgrad in hierarchischen Strukturen abbilden kénnen.

Anforderungen zur dynamischen Detaillierung

Zielstellung - 83 -

Aus den Integrationsbemihungen innerhalb einer ganzheitlichen Planung resultiert
zwangslaufig eine wachsende Komplexitat der Simulationsmodelle und ihrer 3D-
Visualisierungen. Um beispielsweise die Simulation einer kompletten Supply-Chain mit
dem zu entwickelnden Werkzeug dennoch zu erméglichen, muss im Rahmen der
Modellbeschreibung ein bekanntes Verfahren zur dynamischen Detaillierung von
Simulationsmodellen adaptiert und in die Modellbeschreibung integriert werden
[Muec05]. Darliber hinaus muss auch im Rahmen der Entwicklung des Simulatorkerns
eine entsprechende Umsetzung dieser Erweiterung der Modellbeschreibung bericksichtigt
werden.

Anforderungen funktionsorientiert gegliederter Fertigungen

Neben der Abbildung von Fertigungssystemen, deren Gliederung sich an dem zu
fertigenden Erzeugnis orientiert, soll auch die Modellierung und Simulation von funktional
gegliederten Fertigungssystemen, bzw. deren Vermischung in gemischt objekt- und
funktionsorientierten Fertigungssystemen durch das zu entwickelnde Werkzeug und
damit die dem Werkzeug zugrunde liegende Modellbeschreibung unterstitzt werden. Als
spezielle Anforderung der funktionsorientierten Fertigungsprinzipien ist insbesondere die
Moglichkeit zur leichten und flexiblen Modellierung von Transportwegen innerhalb eines
vorgegebenen Layouts zu bericksichtigen.

Mehrbenutzerfdahige Modellierung

Prinzipiell missen alle Anforderung iber entsprechende Mechanismen so ausgelegt
werden, dass eine Ausflihrung auch in einem Multitasking-System mit mehreren an
einem gemeinsamen Simulationsmodell angeschlossenen Anwendern mdglich ist. Die
entsprechenden Zugriffe missen aufgenommen, verwaltet und konsistent ausgefihrt
werden. Potentielle Konflikte zwischen Interaktionen verschiedener Anwender missen
bestmoéglich automatisiert durch das Werkzeug aufgelést oder im Vorhinein durch eine
entsprechende Gestaltung der Benutzerschnittstelle verhindert werden.

4.2.2 Riickwartssimulation und Modelltransformation

Der Einsatz der Ablaufsimulation soll sich mit diesem Werkzeug Uber die reine
Fertigungsprozessplanung hin zur Absicherung der Planungsphasen der
Fertigungslenkung und Prognose aktueller Systemzustdande aus der Fertigungssteuerung
erweitern. Darum ist die Modellbeschreibung so zu gestalten, dass der abgebildete
Materialfluss in einer Vorwarts- und Riuckwartssimulation berechnet werden kann. Um
den Modellierungsaufwand des Anwenders nicht signifikant zu erhéhen, soll eine
Méglichkeit identifiziert werden, eine (semi-)automatische Transformation zwischen den
verschieden gerichteten Modellen zu erreichen. Neben Fragestellungen bezlglich der
maximalen Leistungsfahigkeit eines Fertigungssystems kann dadurch auch die Qualitat
bestehender Fertigungsprogramme auf Basis desselben Modells Uberprift und gdf.
verbessert werden. Bestehende Fertigungsprogramme oder vorliegende Kundenauftrage
mit Auslieferungsterminen dienen hierbei als Eingabequellen flr das rickwarts gerichtete
Simulationsmodell. In einem Folgeschritt kénnen diese Verfahren eingesetzt werden, um
Fertigungsprogramme auch direkt aus der Ablaufsimulation zu erzeigen und zu
optimieren.

-84 -

Abbildung 23 zeigt schematisch die Vorgehensweise beim Entwurf der
Modellierungsmethode flir das zu entwickelnde Werkzeug. Darauf aufbauend wird im
nachfolgenden Schritt das eigentliche Werkzeug konzipiert.

Vorwaiartssimulation

Objekt- Anf. Einer Anf. an eine

orientierte dynamischen funktionsor.

Modellierung Detaillierung gegliederte
Fertigung

Mehrbenutzerfahige Modellierung

Transformation und Riickwartssimulation

Abbildung 23: Entwurfsphasen der Modellierungsmethode

4.3 Entwurf eines Werkzeuges

Dem Anwender soll im gesamten Arbeitsprozess innerhalb der jeweiligen
Visualisierungskomponenten ein hohes Mal3 an Immersion zur Verfligung stehen. Neben
einer moglichst guten Darstellungsqualitéat in der virtuellen Realitdat sind bei der
Gestaltung der Software Benutzerschnittstellen zu realisieren, die ein reales, interaktives
Verhalten bestmdglich abbilden. Die interaktive Ausfihrung setzt eine bidirektionale
Kopplung zwischen den Modulen Simulatorkern und den angeschlossenen
Visualisierungskomponenten voraus, damit die Interaktionen direkte Auswirkungen auf
Modellierung oder Ausfliihrung der Simulation haben.

Das Werkzeug selbst muss im Rahmen eines Software-Entwicklungsprozesses konzipiert,
modelliert und implementiert werden. Anhand eines Beispielmodells soll anschlieBend der
Nachweis gefiihrt werden, dass das entwickelte Werkzeug den gestellten Anforderungen
genugt und sich fur den Einsatz als integriertes Werkzeug eignet.

Systementwurf

Innerhalb der ersten Phase, dem Systementwurf, werden zundchst grundlegende
Grobgliederungen anhand darzustellender Use-Cases erstellt und modular strukturiert.
Dabei kommen erste Architekturmuster zum Einsatz, die eine trennscharfe
Strukturierung in Module erlauben und die jeweiligen Modulgrenzen aufzeigen kénnen.
Entsprechende Kommunikationsschnittstellen zwischen den Modulen werden in einem
Grobentwurf festgelegt, um die Tauglichkeit des Systementwurfs darstellen und
nachweisen zu kénnen.

Systemarchitektur

Zielstellung -85 -

In der Folgephase werden mit Hilfe weiterer Architekturmuster die einzelnen Module
detaillierter konzipiert und hinsichtlich ihrer Aufgabenstellung verbessert. Insbesondere
die Ubertragung des Datenmodells aus der Modellbeschreibung in die jeweilige
Kernfunktionalitat der einzelnen Module spielt hier eine wesentliche Rolle. In einem
weiteren Schritt werden die jeweiligen Software-Schnittstellen zwischen den einzelnen
Modulen genauer ausgearbeitet und die Kommunikation detailliert. Als Ergebnis dieser
Entwurfsphase sind die einzelnen Module sowie ihre Beziehungen untereinander definiert
und abgestimmt. In einem nachsten Schritt missen sie schlieBlich in der
Implementierung umgesetzt und die entsprechenden Benutzerschnittstellen gestaltet
werden.

Realisierung

Unter Berlicksichtigung der Zielstellung werden in der Realisierungsphase zunachst die
einzelnen Programmmodule implementiert und die definierten Kommunikations-
schnittstellen umgesetzt. Die Implementierung erfolgt auf Basis der in der vorherigen
Phase festgelegten Schematisierung und innerhalb der entsprechenden Architektur-
muster, bzw. Organisationsformen.

In der Realisierung wird die Implementierung anhand eines umfangreichen
Beispielmodells erprobt und der eigentliche Modellierungs- und Simulationsprozess
innerhalb des Werkzeuges beschrieben. Das Beispiel wird in Form einer Simulationsstudie
durchgefiihrt, dazu also zunachst der Untersuchungsgegenstand erlautert und
nachfolgend modelliert, simuliert und visualisiert.

Konzeption - 87 -

5 Konzeption

~Der Anfang ist die Hélfte
vom Ganzen."

(Aristoteles)

In dem zu entwickelnden Werkzeug sollen Simulationsmodelle erstellt und mittels eines
Simulatorkerns ausgefiihrt werden. Grundlegende Basis flir ein solches Software-Tool ist
zum Einen eine Struktur des Arbeitsprozesses, der durch das Werkzeug unterstiitzt
werden soll, zum Anderen Grundannahmen (ber die Beschaffenheit des Werkzeuges und
eine Modellbeschreibung, anhand derer glltige Simulationsmodelle definiert werden. In
Abschnitt 5.1 sollen zundchst einige Basisannahmen Uber den Arbeitsprozess beschrieben
werden. In Abschnitt 5.2 wird daraufhin eine Modellbeschreibung, bzw. ein
objektorientiertes Strukturmodell aufgebaut, mit dem Simulationsmodelle in dem zu
entwickelnden Tool beschrieben werden.

Im Abschnitt 5.3 soll das Werkzeug selbst im Rahmen eines Software-
Entwicklungsprozesses konzipiert und modelliert werden. Auf Basis der in Abschnitt 4.3
gestellten Anforderungen wird zundchst ein Systementwurf durchgefiihrt, der die
Gesamtanforderungen in Funktionsmodule strukturiert. Diese werden in den folgenden
Abschnitten ausgeplant und hoher detailliert entworfen, um sie in der
Implementierungsphase umsetzen zu kdnnen. Bei der Modellierung des Werkzeugs
werden die Ergebnisse aus der Konzeption der Modellbeschreibung und des
Nachrichtenprotokolls beriicksichtigt.

5.1 Gestaltung eines Basisprozesses

5.1.1 Arbeitsprozess Modellierung und Simulation

Der Basisprozess von Modellierung und Simulation, wie er in anwendungsorientierten
Simulatoren heute unterstitzt wird, bildet die Grundlage fir das zu entwickelnde
Werkzeug, weil dieser den Anwender von allen vorgestellten Methoden am effizientesten
bei seiner Arbeit unterstitzt. Er basiert auf Grundlage des in Abschnitt 3.1 gezeigten
Ablaufs einer Simulationsstudie. Auf Basis eines logischen Modells, das bereits in
friheren Phasen einer Simulationsstudie fiur den abzubildenden Materialfluss erstellt
wurde, wird in einem ersten Schritt das Fertigungssystem mittels einer grafischen
Oberflache aus Bausteinen zu einem Simulationsmodell zusammengesetzt, indem
einzelne Bausteine aus Bibliotheken entnommen, in ein ibergeordnetes Modell eingefiigt
und mit anderen Bausteinen Uber logische Kanten verknlpft werden. Das resultierende
Modell kann gespeichert und im Simulator ausgefiihrt werden. Je nach Anwendung wird
der logisch abgebildete Materialfluss animiert, lasst sich ggf. modifizieren und/oder
mittels Interaktion beeinflussen. Im Rahmen der Modellierung wird das entstehende
Simulationsmodell zunachst verifiziert. Komplexere Steuerungen werden Uber spezielle
Methoden in den Modellbausteinen implementiert. Im Anschluss werden
Simulationsexperimente und deren einzelne Simulationslaufe geplant. Abbildung 24 zeigt
schematisch den typischen Prozess von der Modellierung Uber die Ausfiihrung von
Simulationsexperimenten bis hin zur Auswertung der gesammelten Daten.

- 88 -

Modellierung E_oimul_ai_:ion & Auswertung
Visualisierung

Abbildung 24: Idealtypischer Simulationsprozess

Aus dieser funktionalen Unterscheidung der Aufgabe des Simulationsexperten kann direkt
eine modulare Aufteilung des Werkzeugs geschlussfolgert werden. Diese soll im
Folgenden naher beschrieben werden.

5.1.2 Modulare Architektur

Auf Basis des grundlegenden Modellierungsprozesses kdénnen verschiedene
Funktionsmodule unterschieden werden, die unter Berlicksichtigung der besonderen
Anforderung nach Interaktivitdt das zu entwickelnde Gesamtsystem bilden sollen.
Abbildung 25 greift die schematische Struktur des Gesamtsystems aus Abschnitt 2.4.1
nochmals auf und erweitert sie um administrative Funktionen.

Visualisierung

& Analyse

- ~

-7 S~
- -
- -
- -
Y o
m m

Administration | Datenbank

Modellierung

Abbildung 25: schematische Darstellung der Funktionsmodule des Werkzeugs

Nach der grafischen Modellierung der Simulationsmodelle durch den Anwender sollen
diese in einem Simulatorkern berechnet und mittels einer Visualisierungskomponente
angezeigt werden. Modellierung und Visualisierung sollen sowohl mehrbenutzerféhig in
zwei-, als auch dreidimensionaler Darstellung ermdglicht werden. Die einzelnen
Bausteine sollen gemaB Anforderung keinen Detaillierungsgrad der Modellierung
vorgeben, sondern aus Grundelementen zusammengesetzt sein. Zur Modellierung der
Verhaltenslogik soll eine integrierte Programmiersprache dienen, wie sie analog in
kommerziellen Simulatoren angewendet wird. Basis der Modellbeschreibung und
Programmierung ist aber ein einheitliches Verstandnis der Modelle und Funktionen des
Simulators, wie es aus der Verwendung von Frameworks bekannt ist (vgl. 3.2.2). Das
Simulationsmodell kann im nachsten Schritt im Simulatorkern berechnet werden; die
dynamischen Prozesse werden in den angeschlossenen Visualisierungskomponenten
animiert. Diese beinhalten auch die Mdoglichkeit zur Interaktion mit dem

Konzeption - 89 -

Simulationsmodell und zeigen durchgefiihrte Anderungen direkt an, um eine stetige,
immersive Verbesserung des Simulationsmodells zu erlauben.

Basis aller Module ist neben einer einheitlichen Beschreibung der Simulationsmodelle und
einem Nachrichtenformat fir die Kommunikationsschnittstelle auch eine integrierte
Datenhaltung Uber alle Module fir die anfallenden Simulationsdaten wahrend der
Durchfiihrung einer Simulationsstudie. Neben dem Simulationsmodell an sich und den
bendtigten Funktionsbibliotheken sind das insbesondere auch die zwei- bzw.
dreidimensionalen Reprdsentanten der Funktionsbausteine, die in den entsprechenden
Benutzeroberflachen verwendet werden. Auf Basis vorhandener dreidimensionaler
Reprasentanten fir einen bestimmten Modellbaustein soll die zweidimensionale
Darstellung automatisch abgeleitet werden, um den Aufwand der Datengenerierung zu
minimieren.

5.1.3 Integration von Layout- und Fertigungsprozessplanung

Das Erstellen und Bearbeiten des Simulationsmodells innerhalb der
Modellierungskomponente soll layoutgerechtes Anordnen der Modellbausteine erlauben.
Auf Basis eines Rasters oder durch die Einbeziehung von vorhandenen Layouts kdnnen
die Modellbausteine eines Simulationsmodells bereits in der Modellierungskomponente
layoutgerecht angezeigt werden. Neben einer realistischeren Darstellung des
Simulationsmodells kénnen somit auch direkt Entfernungen von Transportwegen oder die
Auslegung von Foérderstrecken richtig angelegt werden. Innerhalb einer ganzheitlichen
Planung koénnen somit zwei aufeinander folgende Aufgaben innerhalb des zu
entwickelnden Werkzeugs integriert werden: Die Layoutplanung und die
Fertigungsprozessplanung (vgl. hierzu auch Abschnitt 2.1).

Bei der Konzeption und Umsetzung des eigentlichen Werkzeugs ist auf die Mdglichkeit zu
achten, Modellbausteine in das Simulationsmodell zu integrieren, die keine eigentliche
Funktion im Sinne der Ablaufsimulation verfolgen. Sie dienen lediglich der realistischen
Ausgestaltung des Szenarios bzw. Layouts oder als Grundlage flr die Anordnung der
Modellbausteine (beispielsweise die Abbildung einer Fabrikhalle in Form eines
Hallenlayouts). Die integrierte Datenhaltung erlaubt darliber hinaus zumindest prinzipiell
auch eine Aufteilung der beiden Arbeitsaufgaben in verschiedene Module, solange auf das
einheitliche Datenmodell zuriickgegriffen wird.

5.1.4 Programmiersprache JAVA als Simulationssprache

Fir die Abbildung komplexer Steuerungslogiken verwenden Materialflusssimulatoren
innerhalb der Modellbausteine spezifische Modellierungssprachen, mit denen das
gewlnschte Verhalten programmiert und in dem Baustein hinterlegt werden kann.
Vorhandene Modellbausteine miissen durch speziell angepasste Methoden auf das
individuelle Verhalten eingestellt werden koénnen. Das Erlernen der dazu bendtigten
spezifischen Simulationssprachen ist ein zeitaufwendiger Prozess und wahrend der
Modellierung eine haufige Fehlerquelle. Um die Fehleranfalligkeit hier zu reduzieren und
das Erlernen der Modellierungssprache zu erleichtern, soll im Rahmen der vorliegenden
Arbeit eine ,handelslbliche™ Programmiersprache als Modellierungssprache verwendet
werden. Sie muss wegen der Objektorientierung der Simulationsmodelle eine
objektorientierte Sprache sein. Innerhalb der hier vorliegenden Arbeit wurde Java als

-90 -

Programmiersprache ausgewdhlt. Alternativ stdnden andere objektorientierte
Programmiersprachen oder simulationsspezifische Programmiersprachen zur Verfligung.
Aus den nachfolgend kurz dargestellten Grinden wurde jedoch auf Java zurickgegriffen.

Java wurde urspriinglich von Sun Microsystems entwickelt. Es ist eine objektorientierte
Programmiersprache, die sich durch einige zentrale Eigenschaften auszeichnet. Diese
machen sie universell einsetzbar und fir die Industrie als robuste Programmiersprache
interessant. Da Java objektorientiert ist, spiegelt es den Wunsch der Anwender wider,
moderne und wieder verwendbare Komponenten zu programmieren. Im Gegensatz zu
herkdmmlichen Ubersetzern einer Programmiersprache, die Maschinencode fiir eine
spezielle Plattform generieren, erzeugt der Java-Compiler Programmcode fiir eine
virtuelle Maschine, den so genannten Bytecode, der prinzipiell auf allen
Rechnerplattformen interpretiert werden kann. Java wird in allen IT-Bereichen von
Handel, Industrie und Verwaltung eingesetzt und ist flir unzahlige Betriebssysteme und
Plattformen, vom mobilen Telefon bis hin zur Echtzeit-GroBrechneranlage kostenlos
verfligbar. Neben einer hohen Anzahl von Anwendern stehen zahlreiche Bibliotheken zur
Verfligung, die bei der Modellierung verwendet werden kénnen. Beispielsweise stehen
umfangreiche Mathematik- und Statistik-Bibliotheken zur Verfligung, die in das System
integriert werden kdénnen. Die Eigenschaft als objektorientierte Sprache ermdglicht den
Einsatz von Kapselung, Vererbung und Hierarchisierung (vgl. Abschnitt 3.5.2), wie sie in
den Modellbausteinen benétigt werden. Sie erganzt damit den objektorientierten Ansatz
der Modellbeschreibung, der spater genauer beschrieben wird. Java eignet sich prinzipiell
auch fir den Einsatz von Mehrbenutzersystemen, da eine wesentliche Eigenschaft, das
parallele Ausfihren mehrerer Prozesse (Threads), unterstitzt wird. Java ist dariber
hinaus fir spatere Anwender des Systems leichter zu lernen, da aufgrund der weiten
Verbreitung zahlreiche Tutorien und Kurse zur Verfiigung stehen. Das Erlernen einer
anwendungsspezifischen Simulationssprache, die nur flr dieses spezifische
Simulationswerkzeug giltig ist, entfallt somit. Eine Einfihrung des Werkzeuges in den
laufenden Betrieb bei potentiellen Kunden wird somit erleichtert.

Aus den oben genannten Griinden soll Java auch als Implementierungssprache fiir das zu
entwickelnde Werkzeug dienen. Der dadurch resultierende, parallele Einsatz von Java als
Modellierungs- und Implementierungssprache bietet das Potential einer engeren
Abstimmung zwischen Werkzeug und Modelllogik, was durch die Transformation der
Modellbeschreibung in ein objektorientiertes, Java-basiertes Datenmodell weiter
geférdert werden kann und soll. Durch diese enge Verzahnung der Daten und der
Berechnung im Simulator soll der Geschwindigkeitsnachteil, den Java gegeniber
anderen, objektorientierten Programmiersprachen wie beispielsweise C++ noch hat,
weitestgehend kompensiert werden. Eine Verschmelzung von Simulator und
Simulationsmodell in einem einzigen, laufféahigen Java-Programm ermdglicht dariber
hinaus ein einfaches Ankoppeln unterschiedlicher Visualisierungs- und Auswertungs-
module. Die Gestaltung eines Mehrbenutzerbetriebs, bzw. die Verarbeitung eines
bestimmten Simulationsmodells mit mehreren Visualisierungsmaéglichkeiten wird dadurch
zumindest potentiell schon ermdglicht. Der Basisprozess muss fiir eine solche Ausfiihrung
marginal angepasst werden, indem die zwischenzeitliche Speicherung des
Simulationsmodells um das Ubersetzen in ein lauffdhiges Java-Programm erweitert wird.
Dadurch ergibt sich als weiterer Vorteil eine implizite Validierung der in den Methoden
hinterlegten Verhaltensbeschreibung. Durch die Integration von vorhandenen

Konzeption -91 -

Debuggern?® kann auch die Verifikation des Simulationsmodells in der
Modellierungskomponente erleichtert werden. Auch hier kénnen existierende Ldsungen
im Bereich der Programmiersprache in das entsprechende Modul integriert werden, um
die Arbeit des Anwenders zu erleichtern. Der angepasste Basisprozess gestaltet sich
demnach wie folgt:

e B
. Visualisierung
Debuggin
gging & Analyse
\. J
T = v
e A
Modellierung Preprocessing [— Simulation Auswertung
. J/

Abbildung 26: angepasster Basisprozess fiir die Modellierung und Simulation

5.1.5 Grundlegende Merkmale der Modellierung und Simulation

Vor dem eigentlichen Start eines Simulationslaufs muss eine Initialisierungsphase
ausgefihrt werden, mittels der das Simulationsmodell mit Eingabedaten aus
Simulationsdatenbank oder dem Dateisystem vorbelegt werden kann. Prozessabbilder
oder Fertigungsprogramme koénnen als Startparametrierung dienen, um die
Einschwingphase des Simulationsmodells zu minimieren oder ganz zu kompensieren. Hier
kdénnen Initialnachrichten an die angeschlossenen Visualisierungskomponenten gesendet
werden, um die entsprechende Darstellung des Simulationsmodells aufbauen zu kénnen
(vgl. hierzu auch Abschnitt 3.4.2). Danach beginnt der Simulationslauf. Ein
Experimentmanager-Modul soll mehrere Simulationslaufe verwalten kdnnen, die
hintereinander oder parallel ablaufen kdénnen, damit der Anwender in der
Experimentierphase einer Simulationsstudie die bendétigten Simulationsldufe an einer
zentralen Stelle parametrieren und ausfiihren kann.

Zur Generierung der bendtigten Simulationsdaten innerhalb eines Simulationslaufs sollen
einzelne Variablen eines Modellbausteins ,abonniert® werden kbénnen, deren
Werteveranderungen dann in dem Simulationslauf entweder vom Simulationskernel oder
dem Visualisierungsmodul protokolliert werden. Alternativ kénnen den durch das
Simulationsmodell laufenden Marken Parameter aufgepragt werden, um diese in einem
zentralen Modellbaustein auszuwerten. Die Datenmenge, die wahrend eines
Simulationslaufs anfallt, kann somit durch den Anwender spezifisch festgelegt und je
nach Zweck des Simulationslaufs angepasst werden. Wegen der
Interaktionsmdglichkeiten des Anwenders wahrend des Simulationslaufes miussen
dartber hinaus alle vorgenommenen Interaktionen protokolliert werden, denn wahrend
des Simulationslaufes kénnen Variablen von den Anwendern eingesehen und, ggf. in
vorgegebenen Grenzen, verandert werden. Die Auswertungen des
Simulationsexperimentes kdnnen nach Abschluss des Simulationslaufs individuell oder
Uber Standardauswertungen in Modellbausteinen erfolgen. Durch die Darstellung dieser

2 Ein Werkzeug zur Fehlerbereinigung von Software. Es ermdglicht in der Regel eine Ablaufverfolgung des zu
untersuchenden Programms in einzelnen Schritten oder zwischen definierten Haltepunkten (nach [Balz05]).

-92 -

Auswertungsbausteine und deren aktuellen Werte wahrend der Ausfiihrung eines
Simulationsmodells wird eine erste Analyse schon wahrend der Ausflihrung erreicht.
Dadurch wird der Anwender befdhigt, eventuelle Schwachstellen im Simulationsmodell
fruher zu erkennen und sein Simulationsmodell zu verbessern.

Simulationsmodelle sollen in der Modellbeschreibung hierarchisch abgelegt werden
kénnen. Ebenso sollen in dem zu entwickelnden Werkzeug auch die durch das
Simulationsmodell laufenden Marken hierarchisch organisiert werden kdnnen. Diese
~Token™ beschreiben die durch das abzubildende System Ilaufenden Erzeugnisse,
Informationen oder andere Material- oder Informationsflisse. Unter Anwendung des
Composite-Patterns?! soll eine Baumstruktur aus Token eingefiihrt werden, so das Token
wiederum Token enthalten koénnen, die sie mit durch das Simulationsmodell
transportieren. Dadurch wird eine tokenspezifische Auswertung des Simulationsmodells
ermoglicht. Zusatzlicher Vorteil dieser Vorgehensweise ist es, Hierarchien aus Token
innerhalb eines Simulationsmodells zu bilden und im weiteren Verlauf wieder zu
dekomponieren. Beispielsweise kénnen 10 Token eines Typs ,Messer" in ein Token vom
Typ ,Karton™ gepackt werden. 50 Kartons kénnen auf einer ,Palette" geblindelt werden
(Token vom Typ ,Palette™) und im weiteren Verlauf, beispielsweise bei einer
Kommissionierung in einem spateren Bereich des Simulationsmodells wieder einzeln
verwendet werden. In einem Auswertungsbaustein kann jedes Token seinen individuellen
Weg durch das Fertigungssystem beschreiben und ermdglicht so eine sehr genaue Form
der Datenauswertung, ohne dass die Funktion in jedem Modellbaustein des
Simulationsmodells einzeln entwickelt werden miusste. Diese Informationsspeicherung in
den Token erlaubt bei einer Integration verschiedener Simulationsmodelle eines
Unternehmensnetzwerkes auch eine einfache Form der DatenlUbertragung in andere
Simulationsmodelle oder andere Bereiche desselben, integrierten Simulationsmodells.

Das Simulationsmodell muss vor seiner Ausflihrung im Simulatorkern in ein laufféahiges
Java-Programm kompiliert werden (vgl. Abbildung 26). Fir die Speicherung des
Simulationsmodells und seiner Parametrierung in einer Datenbank oder auf der
Dateiebene des Betriebsystems bietet es sich an, ein effizienteres Format der
Datensicherung zu wéahlen und auf Basis dieses Formats das Simulationsmodell in das
zugehodrige Java-Programm zu transformieren und anschlieBend zu kompilieren. Durch
die automatisierte Verarbeitung wird wahrend der Ubersetzung nur unwesentlich Zeit
verloren, im Gegenzug kann die Speicherung aber wesentlich effizienter und vor Allem
erweiterbar gestaltet werden. Eine Versionierung sowie die Speicherung in einer
Datenbank werden damit deutlich erleichtert. Im Rahmen der Entwicklung wird als
Speicherformat auf die Extensible Markup Language (XML) zurlickgegriffen, deren
Vorteile unter Abschnitt 3.5.7 bereits aufgezeigt wurden. Alternativ bliebe nur ein
spezifisches Speicherformat. Aufgrund der hohen Verbreitung der XML-Technologien
wurde hier, ebenso wie bei der Auswahl der Programmiersprache Java auf einen offenen
und erweiterbaren Standard zurlickgegriffen. Nachfolgende Integrationen mit anderen
Datenformaten kénnen so durch relativ einfache Transformationen erreicht werden.

2 Das Composite-Pattern fiigt ,,Objekte zu Baumstrukturen zusammen, um Teil-Ganzes Hierarchien zu
reprasentieren. Es ermoglicht es, einzelne Objekte ebenso wie Kompositionen von Objekten einheitlich zu
behandeln.* [nach GaHe94]

Konzeption -93 -

Insbesondere im Rahmen der Entwicklung wund vor Allem kontinuierlichen
Weiterentwicklung der Modellbeschreibung kann eine Wiederverwendung bestehender
Simulationsmodelle problemlos erfolgen. Die leichte Erweiterbarkeit pradestiniert auch
fir den Einsatz im Rahmen der Kommunikationsschnittstellen, wo die ausgetauschten
Nachrichtenformate mittels XML definiert und dadurch leicht hinsichtlich ihrer Glltigkeit
Uberpriift werden kénnen. Durch den Einsatz der Transformationssprache XSLT?? kénnen
die im XML-Format vorliegenden Daten bzw. Nachrichten wieder in Java-Objekte
umgewandelt und im weiteren Programmverlauf verwendet werden. Die bekannten
Vorteile von XML zeigen sich auch hier: Die Kommunikationsschnittstelle, die auf Basis
eines XML-Formates Nachrichtentypen untereinander austauscht, ist flexibel gegeniiber
zuklnftigen Erweiterungen.

Wahrend der Ausfiihrung eines Simulationsexperimentes mit mehreren Simulationsldufen
sammeln sich eine Menge von Auswertedaten an, die flr eine spatere Auswertung zur
Verfligung stehen und dauerhaft gesichert werden sollen. Um die Konsistenz der
anfallenden Simulationsdaten bewaltigen zu kénnen, wird zur Datenhaltung eine zentrale
Simulationsdatenbank konzipiert (vgl. Abschnitt 3.5.4.4). Ihre genaue Struktur wird in
Abschnitt 5.3.2.5 naher erldutert. Diese Experimentdaten sollen innerhalb der Datenbank
ebenfalls in einem XML-Format gesichert werden, inklusive einer Kopie des
Nachrichtenstromes zur zeitversetzten Reproduktion der Animation des Simulationslaufs
in einer der Visualisierungskomponenten. Die flexible Struktur ermdglicht auch hier eine
konsistente Sicherung, auch wenn sich das Speicherformat der Experimentdaten
erweitern sollte.

5.1.6 Konfliktvermeidung & Rechtemanagement im Mehrbenutzerbetrieb

Wesentlich fir die Entwicklung des Materialflusssimulators ist die Absicherung eines
fehlerfreien Mehrbenutzerbetriebes. Neben der Beriicksichtigung des Multitasking-
Betriebs innerhalb der Modellierung und Visualisierung muss die Mehrbenutzerfahigkeit
auch als grundlegendes Merkmal stets mit berlcksichtigt werden. Basis flir jede
Umsetzung eines Mehrbenutzersystems ist eine Benutzerverwaltung, um die
verschiedenen Zugriffe nach Anwendern unterscheiden zu kénnen. Nicht jeder Anwender
soll in dem Werkzeug dieselben Mdglichkeiten zur Manipulation von Simulationsmodellen
und Simulationslaufen bekommen, um eine anwenderorientierte Bedienung gestalten zu
kénnen. Dazu wird nachfolgend ein Rechtemanagement entwickelt, um verschiedene
Anwenderrollen berlicksichtigen zu kénnen.

Neben der in Abschnitt 3.5.4.3 genannten Unterstitzung der Kommunikation,
Koordination und Kooperation sowie der Umsetzung der unter Abschnitt 3.4.2
aufgefihrten Interaktionsmetaphern Erzeugen, Selektieren, Ldschen, etc. miussen
insbesondere potentielle Konflikte aufgelost werden, die durch das gemeinsame
Modellieren und/oder Simulieren entstehen kénnen, da sich die verschiedenen
Interaktionen der Anwender gegenseitige beeinflussen koénnen. Bei auftretenden
Konflikten kann nach 4 Typen unterschieden werden:

22 XSL-Transformation: Transformation einer in XML vorliegenden Beschreibung in ein Zielformat mittels der
eXtensible Stylesheet Language (XSL) [W3C].

-94 -

1. Modellierung & Modellierung: Zwei oder mehr Anwender pflegen gleichzeitig
Anderungen in ein Simulationsmodell ein. Das erfordert eine Mdglichkeit zur
parallelen Modellierung. Dabei stellt z.B. der Zugriff auf dasselbe Objekt einen
Konflikt dar, der durch das entsprechende Modul aufgeldst werden muss.

2. Simulation & Simulation: Dasselbe Simulationsmodell soll zeitgleich fir zwei oder
mehr Simulationsldufe benutzt werden. Die Ldsung dieses Konflikts flhrt zur
Moglichkeit, zwei Instanzen eines Simulationsmodells mit verschiedenen
Parametereinstellungen parallel zu simulieren.

3. Modellierung & Simulation: Der dritte Typ ist die Kombination der beiden ersten
Klassen. Bei der Durchfilhrung eines Simulationslaufes, wiirden Anderungen am
gleichen Modell zu einer Verfalschung der Ergebnisse fiihren, weil die verschiedenen
Experimentldufe nicht mehr miteinander vergleichbar sind.

4. Simulationslauf mit mehreren Anwendern: Ahnlich wie beim Modellieren mit
mehreren Anwendern miussen Interaktions-Konflikte verschiedener Anwender durch
das entsprechende Modul aufgelést werden.

Zum Auflésen der moéglichen Konfliktklassen sind drei spezifische Methoden fiir verteilte
Systeme vorgesehen (vgl. Abschnitt 3.5.4.1): Locking, Cloning und Versioning. Ein
maoglicher Weg zur parallelen Arbeit an einem Objekt ist das Cloning, hier verstanden als
mehrfaches Instanzieren desselben Objekts. Zu Beginn einer Bearbeitung wird fir jeden
Anwender ein Klon als exakte Kopie des aktuellen Simulationsmodells erzeugt. Die
Schwierigkeit liegt in der Integration der verschiedenen Klone am Ende der Bearbeitung.
Cloning bietet sich insbesondere fiir die Konfliktklasse 3 an. Durch eine Kombination mit
der Versionierung kann fir jeden Klon seine Versionsnummer beim Kopieren lbergeben
werden. Bei der Ausfliihrung von Simulationslaufen kann dann jeweils immer dieselbe
Version eines Simulationsmodells geladen werden, um eine Vergleichbarkeit der
Ergebnisse zu gewahrleisten.

Fir die Modellierung (Konfliktklasse 1) oder das Simulieren eines Simulationsmodells mit
mehreren Anwendern (Konfliktklasse 4) bietet sich dieses Vorgehen nicht an, da hier
durch die umfangreichen Interaktionen des Anwenders zu viele Konflikte auftreten
koénnen, die sich nicht immer im Nachhinein auflésen lassen. Die Nutzung eines
Sperrmechanismus (Locking) umgeht dieses Problem (vgl. Abschnitt 3.5.4.1). Damit
kénnen mehrere Anwender gleichzeitig an einer gemeinsamen Modellinstanz arbeiten,
wobei das Arbeiten in unterschiedlichen Teilbereichen desselben Modells unkritisch ist.
Greifen zwei Anwender auf dasselbe Objekt innerhalb einer Modellinstanz zu, soll dieses
automatisch durch den ersten Zugriff gesperrt werden, bis der erste Anwender seine
Modifikationen durchgefiihrt hat. In den Visualisierungskomponenten muss die Sperrung
entsprechend kenntlich gemacht werden, um andere Anwender (ber das
Systemverhalten zu informieren. Durch die geplante Kommunikationsunterstiitzung (vgl.
Abschnitt 3.5.4.3) kann die Zusammenarbeit in der virtuellen Umgebung koordiniert
werden. Unabhdngig von dem realen Standort der Anwender kann so eine Form der
Kooperation erreicht werden.

Unter Bericksichtigung von Simulationsmodellen, die hierarchisch angeordnet sind oder
in verschiedenen Detaillierungsgraden vorliegen, gestaltet sich die Implementierung des
Sperrmechanismus komplexer. Die Sperrung eines spezifischen Objekts muss sich direkt
auf die anderen Detaillierungsgrade und/oder Hierarchieebenen des Simulationsmodells
auswirken. Abbildung 27 zeigt ein Beispiel fiur die anvisierte Funktionsweise des

Konzeption - 95 -

Sperrmechanismus. Zwei Anwender kénnen damit genau dann parallel an einer
Modellinstanz arbeiten, wenn die selektierten Modellbausteine nicht direkt durch ihre
hierarchische Anordnung verbunden sind. Konflikte treten genau dann auf, wenn der
Zugriff innerhalb eines Zweiges stattfindet. Das bedeutet, dass es direkten bzw.
indirekten Einfluss auf Objekte einer anderen Hierarchieebene oder Detaillierungsstufe
hat, wenn ein Untermodell im selben Teilbaum bearbeitet wird. Dieses pessimistische
Verfahren kann dazu fihren, dass mehr Instanzen von Teilmodellen gesperrt werden, als
in Realitat bendtigt werden, erlaubt aber in der Praxis eine einfach zu implementierende
Form der konfliktfreien Bearbeitung innerhalb einer Modellinstanz.

\ _\... / .1: -
‘//////pxnﬁkaﬁ\am\hﬁﬂm
. P 4———"FREIER

[\ f
‘ ZUGRIFF
. 2 L i
z —
g- "/-:' = ¥
5 .
>
= ,
w
a
=
® SELEKTIERTES

ELEMENT

BLOCKIERTE
ELEMENTE

Abbildung 27: Sperrmechanismus im Modellbaum

Zur Sicherung von Modellanderungen existieren unterschiedliche Verfahren der
Anderungskoordination. Das Erstellen einer neuen Version mittels eines
Versionierungsverfahrens ist mit geringem Aufwand mdéglich. Zu jeder Versionsnummer
muss der bearbeitende Anwender zugewiesen werden. Dadurch kann jedem Anwender
die von ihm zuletzt bearbeitete Version geladen werden. Durch Uberpriifung auf héhere
Versionsnummern kann er zusatzlich dariber informiert werden, dass aktuellere
Bearbeitungen des Simulationsmodells verfligbar sind. Jedes Simulationsmodell hat also
eine eigene Zeithistorie, um die Anderungen bzgl. der unterschiedlichen Versionen
nachvollziehen zu kénnen. Auch damit kann letztendlich die Zusammenarbeit mehrerer
Anwender in einem gemeinsamen Team verbessert werden, weil Anderungen an
Modellbausteinen fir alle anderen Teammitglieder erkennbar werden.

Sollen Experimente mit einem speziellen Simulationsmodell vorgenommen werden, bleibt
das Klonen der effizienteste Weg. Die Versionierung erlaubt das Registrieren der
Modellversion zu einem Experiment. Der Klon selbst existiert ausschlieBlich flir die Dauer
des Simulationslaufs, um die Datenmenge in der Simulationsdatenbank auf ein
notwendiges MaB beschranken zu kénnen.

- 96 -

Das Arbeiten mehrerer Anwender mit unterschiedlichen Kenntnisstanden und
Anwendungsbereichen in einer zentralen Anwendung erfordert eine Unterscheidung nach
verschiedenen Anwendergruppen. Zur Sicherstellung der Qualitat der Simulationsmodelle
muss z.B. das ungewollte Verédndern durch einen Laien verhindert werden kdnnen. Es
wird deshalb ein Rechtemanagement definiert, um nach verschiedenen Gruppen und
Bearbeitungsrechten differenzieren zu koénnen. Das anwenderspezifische Rechte-
management wird in der Modellbeschreibung des Simulationsmodells hinterlegt. Ziel ist
es, erstellte Bibliotheken und Modelle vor Schaden durch falsche Nutzung und Unwissen
zu bewahren und geistiges Eigentum schiitzen zu kénnen. Jeder Anwender soll dazu
Gruppen zugeteilt werden; die Zuteilung erfolgt anhand von Kenntnissen und Aufgaben.
Es kénnen die folgenden Gruppen unterschieden werden:

1. Programmierer (Individuum)
Der Programmierer eines Simulationsmodells kann alle Modellbausteine

administrieren, die er erstellt hat. Er hat zudem die Méglichkeit, die Zugriffsrechte fir
die Modellbausteine zu beschranken. Ein Programmierer kann verhindern, dass
Administratoren Rechte andern kénnen. Einem Objekt kdnnen mehrere Anwender als
Programmierer zugewiesen werden. Er besitzt alle Rechte fiir das erstellte
Simulationsmodell

2. Anwender(Gruppe)
Anwender haben keinen Zugriff auf die Programmierung der Methoden, sondern
kdnnen ausschlieBlich vorhandene Bausteine aus Bibliotheken instanziieren,
verkntpfen und verwenden.

3. Administratoren (Gruppe)
Die Gruppe der Administratoren sind Anwender, die Rechte fiir Simulationsmodelle
vergeben und andern kénnen. Sie kdnnen neue Untergruppen erstellen und weisen
neue Anwender bestehenden oder neuen Gruppen zu. Sie muissen nicht unbedingt
Nutzer der Simulationsanwendung (,,Simulationsexperten™) sein.

Auf Ebene des Simulationsmodells kdnnen bei der Vergabe der Rechte vier
Funktionsgruppen unterschieden werden. Dabei ist eine implizite Hierarchiebildung unter
den verschiedenen Rechten abgebildet, so dass die individuellen Rechte stets héherwertig
gegenliber den Gruppenrechten eines Anwenders sind.

= Modifizieren:
Modifizieren erlaubt das vollstdndige Verdandern des Simulationsmodells inklusive
des grundlegenden Aufbaus und der modellierten Steuerungen und Ereignisse.
Struktur und Standardwerte der Variablen kénnen verandert werden.

= Verwenden:
Verwenden erlaubt der jeweiligen Benutzergruppe das Einfligen, Benutzen und
Léschen eines Modellbausteins als Instanz in anderen Simulationsmodellen. Dabei
kann auf die 6ffentlichen Variablen des Bausteins zugegriffen werden, um diese fur
die jeweilige Instanz verandern zu konnen. Der Aufbau und die Methoden des
Bausteins kdnnen nicht verandert werden. Das Modell kann in einem
Simulationslauf gestartet werden.

= Loéschen:
Diese Funktion erlaubt das Loschen von Simulationsmodellen oder
Modellbausteinen aus Bibliotheken oder der Simulationsdatenbank

Konzeption -97 -

» Administrieren:
Diese Funktion erlaubt das Vergeben von Rechten. Ublicherweise haben das
Administrationsrecht die Programmierer und die Administratoren des
Simulationsmodells

Zusammenfassend koénnen durch die Einflhrung eines anwenderspezifischen
Rechtemanagements bereits im Vorfeld viele moégliche Konflikte aufgeldést werden, die
beim gleichzeitigen oder zeitlich unabhdangigen Bearbeiten eines Simulationsmodells
durch mehrere Anwender entstehen kdnnen. Eine der grundlegenden Voraussetzungen
fir ein Mehrbenutzersystem wurde damit geschaffen. Alle unter Abschnitt 3.4.3
aufgezeigten Interaktionsmetaphern kénnen in die obigen Gruppen einsortiert werden
und Konflikte kdnnen durch die vorgestellten Verfahren aufgelést werden.

Modellierung und Ausfliihrung eines Simulationsexperimentes bleiben die Hauptaufgaben
des Anwenders bei jeder Simulationsstudie. Es wurde beschrieben, wie der Prozess von
Modellierung und Simulation unter Anwendung von Verfahren zur Konfliktvermeidung
und eines Rechtemanagements in dem angestrebten Werkzeug umgesetzt werden soll.
Alle grundlegenden Merkmale wurden flir das zu entwickelnde Werkzeug festgelegt. Der
folgende Abschnitt widmet sich der Entwicklung einer Modellbeschreibung, auf deren
Basis Simulationsmodelle in dem zu entwickelnden Materialflusssimulator aufgebaut,
strukturiert und abgelegt werden sollen und in denen das grundlegende Verhalten des
Simulationsmodells so beschrieben wird, das eine Ausfiihrung des Modells in einem
Simulationsexperiment erlaubt wird.

5.2 Konzeption Modellbeschreibung

Ein wesentlicher Entwicklungsschritt wahrend der Entwicklung des Materialflusssimulators
ist die Formalisierung der zugrunde liegenden Modellbeschreibung. Auf Basis dieser
objektorientierten Datenstruktur wird das Werkzeug konzipiert und seine bendétigten
Funktionen umgesetzt. Durch die Modellierungs- und Visualisierungskomponenten wird
die zu entwickelnde Struktur von Simulationsmodellen umgesetzt und benutzerfreundlich
dargestellt bzw. der Manipulation durch den Anwender zugefihrt. GemaB Abschnitt 4.2
wird in einem ersten Schritt eine allgemeine Modellbeschreibung generiert, die in
weiteren Schritten auf die speziellen Anforderungen des Werkzeugs angepasst wird.
Zunachst soll aber eine Beschreibung von Simulationsmodellen zur Vorwartssimulation
erstellt werden.

5.2.1 Vorwartsgerichtete Materialflussmodelle

In Anlehnung an die in Abschnitt 3.2 beschrieben formalen Modellstrukturen wie Stellen/-
Transitionsnetze unterscheidet der hier entwickelte Materialflusssimulator zwischen zwei
Objektklassen: Modellen und Token. Modelle reprasentieren alle mdglichen Formen von
Bearbeitungs-, Lager- oder Transporteinrichtungen eines Fertigungsprozesses, Token
entsprechen den Marken, die das Simulationsmodell zur Ausfiihrungszeit dynamisch
durchlaufen. Sie reprasentieren die beweglichen Elemente der realen Welt, beispielsweise
Auftrage, die das System durchlaufen, Werker, Bauteile oder Paletten. Dadurch kann
zwischen der formalen Struktur und dem dynamischen Verhalten des Simulationsmodells
unterschieden werden. Token reprasentieren beliebige Objekte, die erst durch die
Modellierung des Anwenders eine logische Bedeutung im Simulationsmodell erhalten. Sie

- 08 -

kdnnen neben Variablen auch weitere Token enthalten. Somit kann beispielsweise ein
Gabelstapler eine Palette aufnehmen, die wieder mit Kisten beladen ist. Token bewegen
sich zur Ausfiihrungszeit des Simulationsmodells im Simulator durch das modellierte
System. Die Reduzierung auf eine Objektklasse wurde hier auch deswegen bewusst
vermieden, um die intuitive Unterscheidung zu unterstiitzen. Diese Grobklassifikation
wird im weiteren Verlauf verfeinert, indem Modellbausteine Elemente enthalten, die flr
die Token nicht benétigt werden.

Im Gegensatz zu kommerziellen Materialflusssimulatoren (vgl. Abschnitt 3.2.3) sind die
Basiselemente der hier beschriebenen Modellstruktur keine Modellbausteine im
funktionalen Sinne, sondern nur Grundelemente, aus denen ein einzelnes
Simulationsmodell zusammengesetzt werden kann. Dadurch lasst sich der
Detaillierungsgrad des abgebildeten Modellbausteins durch den Anwender beliebig
wahlen. Neben diesen Basiselementen kann ein Simulationsmodell Submodelle
(Instanzen anderer Simulationsmodelle) enthalten, um eine hierarchische Anordnung von
Simulationsmodellen zu erméglichen, die neben strukturellen Vorteilen fir die Ubersicht
komplexer Modelle auch ein Umschalten zwischen den verschiedenen
Detaillierungsgraden wahrend der Simulationszeit potentiell erlauben. Damit ist eine
wesentliche Vorraussetzung flr die Integration der dynamischen Detaillierung nach
[Muec05] geschaffen, die in Abschnitt 5.2.1.1 in die Modellbeschreibung integriert wird.

Auf der Hierarchieebene mir der hochsten modellierten Detaillierung wird ein
Simulationsmodell durch folgende Basiselemente beschrieben, die innerhalb eines
Simulationsmodells oder Modellbausteins eindeutig benannt sein muissen:

Variable Attribute eines Modells

Event Ereignisse eines Simulationsmodells, die das
spezielle Verhalten genauer beschreiben

Link logische Verknipfungen zwischen Modellbausteinen

Channel Eingangs- bzw. Ausgangskanéle als Schnittstellen
eines Modells zu seinen Vorgangern/Nachfolgern im
Modell

Submodel Kein Basiselement. Simulationsmodelle komplexerer
Bauart kdénnen ihrerseits wieder Modellbausteine als
Instanzen anderer Simulationsmodelle oder
Modellbausteine enthalten

Tabelle 4: Basiselemente eines Simulationsmodells

Channel reprasentieren die Schnittstellen eines Modells oder eines Modellbausteins zu
seinen logischen Vorgangern/Nachfolgern. Die Anzahl der Input- bzw. Output-Channel fir
ein Simulationsmodell ist durch den Modellierer wahlbar. Es existieren nur Input- und
Output-Channel. Jeder Channel, unabhangig von seiner genauen Spezifikation, kann zu
einem Zeitpunkt nur maximal ein Token beinhalten. Input-Channel werden deshalb
automatisch geschlossen, sobald ein Token den Channel erreicht und miussen fir
nachfolgende Token erst wieder geotffnet werden. Dem jeweiligen Output-Channel des
Vorgangers ist es so lange nicht moglich ein Token an seinen Nachfolger zu senden, bis
dieser wieder gedffnet wurde. Geschlossene Input-Channel kdénnen durch die
Vorgangermodelle beobachtet werden und lésen dort ein spezielles Event aus, wenn der

Konzeption - 99 -

Input-Channel wieder geo6ffnet wird. Channel bilden analog zu den Methoden
objektorientiert programmierter Klassen die Schnittstellen eines Simulationsmodells zu
seiner direkten Umwelt (vgl. Abschnitt 3.5.2.1).

Durch logische Verknipfungen, hier Links benannt, werden die Channel, und damit die
Simulationsmodelle bzw. Modellbausteine untereinander, verbunden. Token, die sich
wahrend des Simulationslaufs durch ein Simulationsmodell bewegen, werden gemaB der
Beziehungen zwischen den Modellbausteinen versendet. Ein Token verlasst die Instanz
eines Modellbausteins immer durch einen Output-Channel und tritt in dem nachfolgenden
Simulationsmodell immer Uber einen Input-Channel in den folgenden Modellbaustein ein.
Ein Output-Channel darf jeweils nur mit einem Link versehen werden. Eine Verzweigung,
beispielsweise die Weiche einer Fordertechnik, muss Uber separate Output-Channel
modelliert werden. Output-Channel kdnnen nur dann direkt miteinander verbunden
werden, wenn sie eine einfache Weiterleitung des Token an die nachst héhere
Hierarchieebene darstellen (vgl. Abbildung 28 rechts). Eintretende Token an einem
Input-Channel I6sen immer ein standardisiertes Ereignis (Input-Event) aus, in dem das
weitere Verhalten innerhalb des Modellbausteins abgebildet werden kann. Um das
Verhalten detailliert spezifizieren zu kdénnen, kann der Anwender sowohl auf von ihm
definierte Verhaltensbeschreibungen in Ereignissen als auch auf eine beliebige Anzahl von
Variablen zugreifen, die er in dem Modellbaustein anlegen und verwenden kann.
Innerhalb eines Bausteins kann auf alle Ereignisse und Variablen dieses Modellsbausteins
zugegriffen werden, da alle Basiselemente eindeutige Namen bzw. IDs besitzen. Input-
Channel kénnen genau dann direkt miteinander verbunden werden, wenn sie eine
Weiterleitung von einer hdheren Hierarchieebene zu einem Submodell darstellen (vgl.
Abbildung 28 links). Die Strukturierung des Simulationsmodells Uber das beschriebene
Konzept der Channel erlaubt eine strikte Modularisierung in einzelne Bausteine. Deren
spezifische Funktionsweise wird nach dem Black-Box-Prinzip gekapselt und kann somit
leichter adaptiert und verbessert werden, ohne die Funktionsweise der Gesamtmodelle zu
gefahrden.

r === InputChannel OutputChannel - ----

Modell \
) SubModell

>

Abbildung 28: Struktur eines Simulationsmodells

Die Modellbausteine als einzelne Funktionsmodule kdénnen Elemente einer
Bausteinbibliothek (im Folgenden: Library) sein, die zur Modellierung weiterer
Simulationsmodelle verwendet werden kdnnen. Je umfangreicher diese hinterlegten
Bibliotheken sind, umso weniger Simulationsmodelle, bzw. Modellbausteine muss der
Anwender selbst anlegen. Im Idealfall kann ein Anwender ausschlieBlich unter Nutzung in

- 100 -

Bibliotheken vorhandener Modellbausteine ein Simulationsmodell erstellen und
parametrieren. Bibliotheken koénnen strukturiert abgelegt werden, damit bendétigte
Modellbausteine schneller identifiziert werden kénnen. Die Instanz eines Modellbausteins
wird im Simulationsmodell so gekapselt, dass nur diejenigen Basiselemente parametriert
werden kdénnen, die vom Programmierer daflir vorgesehen wurden. Die Modellierung des
spezifischen Bausteinverhaltens wird somit nicht automatisch 6ffentlich. Dieses Vorgehen
entspricht der bereits unter Abschnitt 3.5.2.2 aufgezeigten Kapselungsstrategie der
objektorientierten Programmierung und wendet die Vorteile der objektorientierten
Paradigmen auf die Anwendung in der Modellierung von Simulationsmodellen an.

Modellbausteine, die innerhalb eines Simulationsmodells verwendet werden, besitzen
eine Menge von Attributen, die im Folgenden aufgefiihrt werden. Auch hier wurde darauf
geachtet, nur die Attribute in die Instanzen zu ,verschieben®", die die jeweilige
Bausteininstanz von seiner Modellbaustein-Klasse unterscheiden.

Bezeichnung ‘ Beschreibung

ID Eindeutiger Bezeichner

Name Name

Mesh Referenz auf ein 3D-Modell, das den Modellbaustein
in den Modellierungs- und

Visualisierungskomponenten darstellt

Meshscale Skalierungsfaktor des 3D-Modells
X,Y,Z Size GroBe im Modell
Color Farbe eines Modellbausteins

Zusdtzliche Attribute von Modellinstanzen
innerhalb eines Simulationsmodells

X,Y,Z Scale

X, Y, Z Rotation

Variable_value

GroBe im Modell

Rotation des Modellbausteins im Modell

Wert einer 6ffentlichen Variablen, wenn er sich vom
Standardwert unterscheidet

srcid Referenz auf eindeutigen Bezeichner des
zugehdérigen Modellbausteins (Klasse)

color Farbe der Instanz, wenn sie sich von Vorbelegung
unterscheidet

layer Darstellungsebene

Tabelle 5: Attributliste eines Simulationsmodells

Aus der bis hierhin entwickelten Modellbeschreibung, die das Einbinden von Submodellen
als Instanzen vorhandener Modellbausteine erlaubt, folgt eine Gesamtbeschreibung eines
Simulationsmodells als Liste aller im Modell verwendeten Modellbausteine. In dem
auszufiilhrenden Simulationsmodell, das im Rahmen dieser Gesamtbeschreibung als
solches bei der Speicherung gekennzeichnet werden muss, werden diese Modellbausteine
als Submodelle verwendet. Um die Konsistenz des Simulationsmodells zu erhalten,
mussen die Modellierungskomponenten eine spezielle Funktion implementieren, die das
Bilden von Zirkelschliissen innerhalb des Modellierungsprozesses erkennt und vermeidet,
damit Modellbausteine nicht rekursiv durch sich selbst beschrieben werden kdnnen.
Abbildung 29 zeigt schematisch einen solchen Zirkelschluss, der zu einer ungiltigen
Modellbeschreibung fliihren wirde.

Konzeption - 101 -

Abbildung 29 zeigt, dass der zu modellierende Modellbaustein A durch Instanzen der
Modellbausteine B und C beschrieben werden soll, so dass jeweils zwei Instanzen des
Modellbausteins B und eine Instanz des Modellbausteins C den Ablauf innerhalb des
Modellbausteins A beschreiben. Im Fall von Modellbaustein B ist das mdglich, weil sich
dieser aus Instanzen der Modellbausteine D und E zusammensetzt. Die Instanz C_1 von
Modellbaustein C flihrt jedoch zu einem unerlaubten Zirkelschluss, weil dieser durch
Instanzen der Modellbausteine F, G und dem Modellbaustein A beschrieben wird. Durch
die Instanz des Modellbausteins C wiirde fir den Modellbaustein A eine rekursive
Beschreibung existieren, die nicht erméglicht werden darf, weil das Simulationsmodell
sonst wahrend der Ausflihrung in einen nicht auflésbaren Zustand gelangt.

Modellbaustein B

e

Modellbaustein A ‘ , D1 \T
| —»
@ P S—
| B_1 e S J
| D (S A
| B_2 / . Modellbaustein C
\H - J @
| F_ 1
‘ ;J\l a1 &
Il G_1 / -
o J

Abbildung 29: unerlaubter Zirkelschluss in einem Simulationsmodell

Durch die Implementierung einer Funktion zum Uberpriifen von solchen Zirkelschliissen
kann dieses Problem bereits im Vorfeld umgangen werden, wodurch valide Modelle
geférdert werden sollen. Das Problem tritt auf, weil die Modellbeschreibung so generisch
gewahlt wurde, dass der Anwender bei der Gestaltung seiner Modellbausteine im
Gegensatz zu vorhandenen Simulationswerkzeugen den Detaillierungsgrad frei wahlen
soll. Das Erkennen von Zirkelschllissen soll bereits in der Modellierungskomponente
erfolgen, um den Anwender friihzeitig auf Modellierungsfehler hinzuweisen. Eine
Erkennung im Simulator wirde dadurch deutlich erschwert, dass objektorientierte
Programmiersprachen die Definition mittels rekursiver Methoden prinzipiell ermdglichen
und deshalb im Rahmen der Ubersetzung in Programmcode den Fehler nicht erkennen
wirden. Das Simulationsmodell kénnte zur Ausflihrungszeit somit in eine Endlosschleife
laufen, deren Grund durch den Anwender nur schwer ersichtlich ware.

Ein weiteres Basiselement zur Modellierung innerhalb eines Modellbausteins sind die
Variablen. In ihnen kdénnen Token sowie alle fir die Modellierung bendtigten Werte
zwischengespeichert werden. Beispielsweise kann die Bearbeitungszeit einer Maschine
oder die PuffergroBe innerhalb eines Modellbausteins in einer Variablen festgelegt
werden. Aus den Events kann auf die Variablen zugegriffen werden, um ihren Wert zu
verandern oder auszulesen. Jeder Variable kann der Modellierer verschiedene Attribute
zuweisen. Sie bestimmen, ob die Variable protokolliert, von anderen Modellbausteinen

- 102 -

angesehen werden kann oder versteckt wird. Alle Variablen kénnen mit Standardwerten
parametriert werden und durch obere oder untere Schranken begrenzt werden. Die
folgende Tabelle 6 zeigt alle Typen von Variablen, die in der Modellbeschreibung
verwendet werden kdnnen. Sie entsprechen im Wesentlichen den primitiven und/oder
héheren Datentypen, wie man sie aus Programmiersprachen kennt. Modellbausteine
haben zu Beginn ihrer Erstellung neben den festgelegten Attributen keine
Standardvariablen, wie es aus kommerziellen Simulatoren bekannt ist. Da der Detailgrad
vom Anwender frei zu wahlen ist, macht eine solche Vorbelegung innerhalb dieser
Modellbeschreibung keinen Sinn.

Typ Wertebereich Vorbelegungen

Integer Naturlich Zahlen Standardwert, obere und untere
Schranke, Auswertungstyp

Long Naturliche Zahlen Standardwert, obere und untere
Schranke, Auswertungstyp

Double Reelle Zahlen Standardwert, obere und untere
Schranke, Nachkommastellen,
Auswertungstyp

Float Reelle Zahlen Standardwert, obere und untere
Schranke, Nachkommastellen,
Auswertungstyp

Enum Alle Standardwert, Auswahlliste

ArrayList Alle Auswertungstyp

Token Token Keine

Boolean True, False Standardwert, , Auswertungstyp

String Zeichenfolge Standardwert, max. Lange

Time Millisekunden Standardwert

HaspMap Objekte Keine

Table Objekte Auswertungstyp

Random Zufallszahlen verschiedener Ver- | Verteilung mit jeweiligen Para-

teilungen metern, Startwert, Auswer-

tungstyp

Tabelle 6: Typen von Variablen der Modellbeschreibung

Uber ein spezielles Attribut kann durch den Anwender jeweils eingestellt werden, ob die
Variable aus der Visualisierungskomponente heraus verandert, ausschlieBlich angezeigt
oder grafisch ausgewertet wird. Alternativ kann sie in den Visualisierungskomponenten
verborgen bleiben. Durch die auf Java basierende Zugriffsverwaltung kann der Anwender
explizit die Interaktions-, Manipulations- und Auswertungsmoglichkeiten jedes
Modellbausteins beeinflussen. Zur Verbesserung der grafischen Darstellung kann der
Variablen zusatzlich ein bestimmter Auswertungstyp zugewiesen werden. Dadurch wird
es maglich wahrend eines Simulationslaufs in den verschiedenen
Visualisierungskomponenten spezielle Darstellungsformen zu implementieren, um
dynamisch die aktuellen Werte aus den Bausteininstanzen abzufragen und
anwenderfreundlich darzustellen, bzw. deren Manipulation durch den Anwender zu
erlauben. Die jeweilige Darstellungsform kann zwar typisiert werden, die eigentliche
Implementierung der spezifischen Darstellungen erfolgt jedoch erst in den einzelnen
Visualisierungs- und Auswertungsmodulen des Werkzeugs (vgl. Abschnitt 5.3.2). Fir den
Anwender ist dies eine der wesentlichen Funktionalitaten, die in den
Visualisierungskomponenten benétigt wird, da neben der Animation des Simulations-
verlaufs insbesondere die aktuellen Werte in den unterschiedlichen Bausteininstanzen fir

Konzeption - 103 -

die Modellverifikation und -validierung interessant sind. Flr die verschiedenen Typen von
Variablen sind die in Tabelle 7 aufgefiihrten Auswertungsmdglichkeiten vorgesehen. Sie
orientieren sich an den vorhanden Analysemdglichkeiten bekannter Werkzeuge zur
Datenauswertung und den Report-Darstellungen vorhandener Simulationswerkzeuge.
Speziell in dem entwickelten Werkzeug ist es mdéglich, sich diese Auswertungen
dynamisch und wahrend der Ausfihrung eines Simulationslaufs anzeigen zu lassen. Auch
dadurch soll der Validierungs- und Verifikationsprozess beschleunigt werden, weil
Auswertungen direkt zur Laufzeit und nicht erst nach einem Simulationslauf zur
Verfligung stehen.

Name Angewendeter Typ ‘ Beschreibung
Display Alle Anzeige des aktuellen Wertes der
Variablen
Signal Boolean Rot/Griin-Schalter oder &hnliche
Darstellung
Trafficlight Integer, Long, Double Float, | Aufwertung in Form einer Ampel
Random
Gauge Integer, Long, Double Float, | Auswertung in Form eines Flllstands
Random oder eines Drehzahlmessers etc.
Meanvariance Arraylist, Table Statistische Auswertung durch
Mittelwert, Minimum und Maximum
Timetable Table Auswertung in Form eines
Diagramms
Histogramm Arraylist, Table Auswertung in Form eines
Histogramms

Tabelle 7: Auswertemdglichkeiten der Variablen

Die Zeitfortschaltung wahrend der Ausflihrung eines Simulationsmodells geschieht
sowohl bei der Vorwarts- als auch bei der Rickwartssimulation standardmaBig
ereignisorientiert. Der Simulator fihrt nacheinander die zeitlich geordneten Ereignisse
aus, die in den verschiedenen Bausteininstanzen des auszufiihrenden Simulationsmodells
ausgelost werden. Das in diesen Events programmierte Verhalten ist durch den
Modellierer angelegt worden. Events kdnnen andere Events innerhalb ihres Modell-
bausteins oder sich selbst aufrufen, indem sie eine neue Instanz eines Events terminieren
und in der Ereignisliste des Simulators anmelden. Viele Events innerhalb eines
Modellbausteins kénnen einem bestimmten Channel zugewiesen werden. Darlber hinaus
existiert pro Modellbaustein genau ein Init-Event, das in einer ersten Initialisierungs-
phase vor der eigentlichen Simulation ausgefihrt wird. Es dient dazu, eine hinterlegte
Vorbelegung des Modellbausteins aus Datenbank oder Dateien auszulesen oder Start-
Events, beispielsweise bei Quellen eines Simulationsmodells, zu terminieren. Benutzer-
definierte Events (User_Defined_Event) kdénnen beliebig in Modellbausteinen hinterlegt
werden, um komplexe Verhaltensweisen funktionsorientiert zu strukturieren oder
Uberhaupt abbilden zu kdnnen. Sie werden durch sich selbst oder andere Events
aufgerufen. Analog zum Init-Event existiert ein Final-Event, das beim Beenden des
Simulationslaufs aufgerufen wird. Es dient dazu, in einem Modellbaustein gesammelte
Daten des Simulationslaufs zu sichern, um eine Analyse zu spateren Zeitpunkten zu
ermoglichen. Diese Vorgehensweise erlaubt die Beschleunigung der Berechnung des
Simulationslaufs, da Datenbank- oder Dateisystemzugriffe wahrend der Berechnung

- 104 -

gespart werden kdnnen, die eine schnelle Berechnung eventuell ausbremsen wirden. Der
Aufruf von Events in anderen Bausteininstanzen erfolgt ausschlieBlich mittels der
Versendung von Token Uber die entsprechenden Channel-Schnittstellen der Modell-
bausteine. Die folgende Tabelle gibt eine Ubersicht iiber alle standardisierten Events:

Name Beschreibung

Init Wird bei Simulationsstart ausgefiihrt

Final Wird beim Stop der Simulation ausgefiihrt

Input Bei Eintritt eines Token in zugeordneten Input-
Channel

Output Bei Eintritt eines Token in zugeordneten Output-
Channel

ReOpen Beim Offnen des nachfolgenden Input-Channel

Tabelle 8: Standardisierte Events

Spezielle Methoden kdnnen in eigene Modellbausteine ausgelagert werden (beispielsweise
fir eine aggregierte Auswertung oder Ubergeordnete Steuerungen). Die Kommunikation
erfolgt in diesem Fall {ber Token, die den Informationsfluss innerhalb des
Simulationsmodells darstellen: den InfoToken. Sie unterscheiden sich nicht von den
bisher bekannten Token, da diese ja explizit alle dynamischen Objekte reprasentieren
koénnen. Das objektorientierte Prinzip der Kapselung muss somit auch flir Gbergeordnete
Methoden nicht aufgeweicht werden.

5.2.1.1 Dynamische Detaillierung von Simulationsmodellen

Zur Realisierung einer Echtzeitanalyse groBer Fertigungssysteme in dem umzusetzenden
Werkzeug soll die Methode nach [Muec05] in das Werkzeug integriert werden. Damit soll
sich insbesondere die Simulation von komplexen Unternehmensnetzwerken oder Supply-
Chain-Netzwerken einer Echtzeitanalyse nicht mehr entziehen. Alternativen zur
Abarbeitung solch komplexer Modelle auf einem einzelnen Rechner ohne die Qualitat
beziehungsweise Granularitdt der Simulation zu verringern sind nicht bekannt.
Vorraussetzung flr die Methode ist ein Simulationsmodell in verschiedenen
Detaillierungsstufen, eine Mdéglichkeit zur Umschaltung zwischen den Detaillierungsstufen
und eine Stimulation der Umschaltvorgange zur Laufzeit eines Simulationslaufes.
Letzteres ist mit dem angestrebten System leicht zu realisieren, indem eine
entsprechende Nachricht in das Kommunikationsprotokoll zwischen Simulatorkern und
Visualisierungskomponente eingebunden wird (vgl. hierzu Abschnitt 5.2.2.3), die die
Ubergabe der aktuellen Benutzerposition aus der Visualisierung erlaubt. Je nach
Benutzerposition in der virtuellen Umgebung kann der Detaillierungsgrad in der
Simulation dann adaptiert werden.

Zur Abbildung mehrerer Detaillierungsebenen muss die Modellbeschreibung so angepasst
werden, dass jede Bausteininstanz sowohl ihr héher detailliertes als auch das grdbere
Modell bekannt ist. Dies ist durch den Anwender festzulegen und wird bei der
Umschaltung zur Laufzeit vom Simulatorkern bericksichtigt. Die Attributliste eines
Simulationsmodells muss dennoch nur um die in Tabelle 9 dargestellten Attribute
erweitert werden, weil jede Detaillierungsstufe flir sich wiederum ein ausfiihrbares
Simulationsmodell sein muss. Daridber hinaus beschréankt die Methode die
Modellbeschreibung der Simulationsmodelle nicht, sondern betrachtet diese als
gekapselte Einheit, die genannte Anforderungen erfiillen muss.

Konzeption - 105 -

Bezeichnung Beschreibung

Moredetailed Verweis auf ein Modell mit héherem
Detaillierungsgrad

Lessdetailed Verweis auf ein Modell mit niedrigerem
Detaillierungsgrad

Tabelle 9: Zusatzliche Attribute eines Simulationsmodells fiir das MRS

Da die gesamte Modellbeschreibung eines Simulationsmodells ohnehin aus einer Liste
aller verwendeten Modellbausteine besteht, ist eine Erweiterung der Modellbeschreibung
auf mehrere Detaillierungsstufen zunachst problemlos. Das als Hauptmodell
beschriebene, auszufiihrende Simulationsmodell gibt dann implizit die Startdetaillierung
des Gesamtmodells vor, die zu Beginn des Simulationslaufes vom Simulator Gberprift
und ggf. angepasst wird.

Das zeitliche Fortschreiten des Simulationslaufs basiert auf Events, die jeweils flir einen
bestimmten Zeitpunkt eingeplant werden und beim Erreichen der Simulationszeit dieses
Zeitpunkts ausgeflihrt werden (vgl. Abschnitt 2.2). Zur Integration der dynamischen
Detaillierung wird das Auslésen der Umschaltvorgéange mittels eines neu einzufiihrenden
Switch-Events umgesetzt. Es wird vom Modellierer angelegt, spezifiziert und muss den
Zustand des entsprechenden Modellbausteins auf sein hdéher bzw. weniger detailliertes
Pendant abbilden und diesen in einen Zustand versetzen, der demjenigen Zustand der
aktuellen Bausteininstanz bestmdglich entspricht. Dazu gehéren Zahl und Position der
Token, die aktuellen Werte der Variablen und die eingeplanten Events dieses Modells. Es
muss klar definiert sein, wie diese auf das Ersatzmodell Ubertragen werden. Die zu
entwickelnden Umschaltmethoden missen effizient gestaltet werden, da die Umschaltung
wahrend der Berechnung des Simulationslaufs erfolgt. Vorschlage zur Umsetzung finden
sich in [Muec05]. Die Art der Gestaltung des Switch-Events wurde nicht eingegrenzt,
sondern kann vom Modellierer der entsprechenden Modellbausteine frei gewahlt werden.

Bezeichnung | Beschreibung
Switch_event Ereignis zur Berechnung des Zustandsiibergangs im
Rahmen des MRS

Tabelle 10: Zusiatzliches Ereignis zur Abbildung von Modellen im MRS

Zur Beschreibung einer moglichen Implementierung eines Switch-Events wird auf
[Muec05] verwiesen. Es soll aber darauf hingewiesen werden, dass der Modellierer wohl
in den meisten Anwendungen zwischen den Fallen ,héhere Detaillierung™ und , niedrigere
Detaillierung" unterscheiden muss. Da aber nicht zwangslaufig davon ausgegangen
werden kann, dass sich in jeder Implementierung eine Unterscheidung zwischen den
Umschaltungen ergibt, wurde auf die Einflihrung zweier unterschiedlicher Events bewusst
verzichtet.

5.2.1.2 Modellierung funktionsorientierter Fertigungssysteme

Im Rahmen der Modellierung funktionsorientierter Fertigungssysteme lassen sich
zunachst alle Anforderungen mit der dargestellten Modellbeschreibung realisieren. Die
verbesserte Unterstlitzung der speziellen Anforderungen von funktional gegliederten
Fertigungssystemen (vgl. 4.2.1) fihrt zu der Fragestellung, wie der Anwender bei deren
Modellierung weitergehend unterstiitzt werden kann. Wegen der speziellen Ablaufe

- 106 -

innerhalb solcher Fertigungssysteme erfahrt insbesondere die Abbildung von
Transportwegen von Menschen oder Maschinen eine steigende Bedeutung. Durch die
Integration von Layout- und Fertigungsprozessplanung (vgl. 5.1.3) wird ein
layoutgerechtes Abbilden aller Transport- oder Bewegungswege durch das Werkzeug
bereits erleichtert und erlaubt dariber hinaus eine realistischere Darstellung des
gesamten Simulationsmodells. Dennoch ist die layoutgetreue Modellierung von Wegen in
heutigen Werkzeugen einer der zeitaufwendigsten Schritte, eine der Hauptquellen fir
maogliche Fehler und wird infolgedessen kaum eingesetzt. Als Konsequenz werden die
abzubildenden Transportwege meist abstrahiert und verfalschen so in den Animationen
den realitdatsnahen Eindruck in der dargestellten, virtuellen Umgebung. Die grdbere
Modellierung und Simulation fihrt dariber hinaus oft zu ungenaueren Ergebnissen.

Fir das intendierte Werkzeug soll die Wegberechnung deshalb weitestgehend
automatisch erfolgen. Auf Basis des jeweiligen Simulationsmodell-Layouts wird durch ein
spezielles Modul im Simulatorkern unter schwachen Restriktionen ein Bewegungsgraph
berechnet, auf dem sich abgebildete Transporteinheiten oder Menschen bewegen. Die
Steuerung und Verflgbarkeit dieser speziellen beweglichen Elemente (im Folgenden:
SPMs) wird in Modellbausteinen abgebildet, die in der Modellierungsoberflache in das
Simulationsmodell eingebunden werden kénnen. Mittels eines Algorithmus wird innerhalb
des Moduls der kiirzeste Weg flir den jeweiligen Auftrag auf dem Graphen berechnet und
unter Berlicksichtigung eventueller Interaktionen zur Simulationszeit ausgeftihrt. Die
Funktionsweise dieses Moduls zur Wegplanung, im Folgenden Motion Planning (MP), wird
nachfolgend naher beschrieben.

Neben dieser speziellen, automatischen Form der Wegmodellierung soll in dem Werkzeug
dennoch die explizite Modellierung von Wegen durch Modellbausteine weiterhin
ermoglicht werden. Eine Abbildung von festen Wegstrukturen, wie sie in herkdmmlichen
Werkzeugen verwendet werden muss, kann damit realisiert werden. Das konservative
Vorgehen verursacht im Vergleich jedoch einen deutlich erhéhten Modellierungsaufwand,
weil alle Wegeelemente einzeln abgebildet werden miissen. Insbesondere vor dem
Hintergrund eines effektiveren Einsatzes der Methode Ablaufsimulation ist die
automatische Wegberechnung also zu bevorzugen.

Im Rahmen aller bekannten Softwarelésungen zur Ablaufsimulation ist eine solche
Funktionalitadt der automatischen Wegfindung nicht bekannt., obwohl eine solche Aufgabe
prinzipiell gut automatisiert werden kann.

Ziel des Motion Planning

Das Motion Planning berechnet die Bewegung aller dynamischen Einheiten innerhalb
eines Simulationsmodells, die sich im abgebildeten Layout prinzipiell autark bewegen
kdénnen und die sich in der Realitéat einen mdglichst kurzen Weg durch das
Fertigungssystem suchen (sie werden im Weiteren als Shortest-Path-Mover (SPM)
bezeichnet). Im Gegensatz zu Token, die auf festgelegten Pfaden innerhalb eines
Modellbausteins animiert werden, ist die Bewegung der SPMs bidirektional an den
Simulator gekoppelt. Die Ergebnisse der Wegberechnung flieBen direkt in die Simulation
ein und dienen nicht nur der Animation.

Konzeption -107 -

Je nach Anwendung kdénnen unter SPMs beispielsweise Gabelstapler, Werker mit und
ohne Hubwagen oder Trolleyziige verstanden werden. Als Teilmodul des Simulators dient
das Motion Planning der layoutgetreuen Berechnung aller nicht vom Modellierer
festgelegten Bewegungen wahrend der Ausfihrung eines Simulationslaufs. Die
Kommunikation mit dem Simulationskern (Bewegungsanfragen) sowie den
Visualisierungskomponenten findet (Gber das in Abschnitt 5.2.2 definierte
Nachrichtenformat statt. Das Motion Planning arbeitet zweidimensional, setzt also als
erste Restriktion eine Unterscheidung verschiedener Fertigungsebenen voraus. Die
verwendeten Algorithmen funktionieren unter geringen Einschrdankungen an
Simulationsmodell und Layout, die jedoch vor dem Hintergrund der Anwendung als
akzeptabel erachtet werden kénnen. Die Anwendung und die Ergebnisse werden durch
die Restriktionen nicht so sehr verfalscht, dass der Einsatz des Motion Planning Modul
den Einsatz der Ablaufsimulation konterkariert. Folgende Restriktionen sollen deshalb
gelten:

= Komplexitatsreduktion durch Anfahrtspunkte: Es ist nicht nétig, jeden Punkt
innerhalb einer Ebene anzufahren: nur vorher festgelegte Punkte an den einzelnen
Bausteininstanzen missen erreichbar sein (im Folgenden dockingpoints). Dies
erlaubt die Berechnung der Bewegungsgraphen in der Initialisierungsphase des
Simulationslaufs und dadurch die beschleunigte Beantwortung von Anfragen zur
Laufzeit einer Simulation.

= Begrenzung der Layoutflache des Simulationsmodells: Wird ein Simulationsmodell
beispielsweise durch eine umschlieBende Halle begrenzt, muss diese
gekennzeichnet werden. Dadurch ergibt sich eine natirliche Begrenzung des
Bewegungsgraphen.

= Wege innerhalb geschlossener Formen sollen nicht auftreten koénnen,
beziehungsweise die entsprechenden Instanzen der SPMs im Simulationsmodell
kénnen diese Grenzen nicht tGiberwinden.

Ein weiterer Unterschied zwischen Animation und Motion Planning besteht darin, dass
Animationen nur der Darstellung einer Simulation in einer entsprechenden
Visualisierungskomponente dienen. Das Motion Planning trédgt demgegenliber essentiell
zur Berechnung zukinftiger Ereignisse im Simulator bei, muss also unabhangig von der
Visualisierung berechnet werden.

Zusatzlich sorgt das Motion Planning flr eine kollisionsfreie Bewegung aller SPMs durch
das Simulationsmodell wéhrend dessen Ausfiihrung im Simulatorkern. Es ist integriertes
Teilmodul des Simulatorkerns, soll aber im Rahmen der Implementierung als
abgegrenztes Modul integriert werden, um durch Weiterentwicklungen und/oder
alternative Wegberechnungen ausgetauscht werden zu kdnnen. Fir den
Simulationskernel ist die Ausfiihrung eines Simulationsmodells bisher ein rein logischer
Ablauf, in dem Token von einem Modellbaustein zu festgelegten Zeitpunkten an deren
Nachfolger im Materialfluss weitergereicht werden. Die rdaumliche Anordnung der
Modellbausteine ist deshalb zur Ausfliihrung zunachst unerheblich. Sie werden vom
Modellierer dem Simulationsmodell nur deshalb hinzugefiigt, um eine optimale
Visualisierung erreichen zu kénnen. Im Rahmen der Umsetzung des Verfahrens zur
Wegeberechnung wird das hinterlegte Layout zum Bestandteil der Simulation, da die
Fahrtzeit der SPMs auf den Wegen abhdngig von den verschiedenen Fabriklayouts ist.

- 108 -

Das Nachrichtenprotokoll zwischen dem Simulatorkern und dem Motion Planning Modul
ist also derart zu gestalten, dass ein Token erst dann durch den Simulator an den
Nachfolger innerhalb des Simulationsmodells weitergereicht wird, wenn sichergestellt ist,
dass der Transport durch ein SPM das Ziel der Bewegungsanfrage auch erreicht hat.
Mogliche Verzdgerungen kdnnen hier durch Interaktionen des Anwenders oder durch
direkte, gegenseitige Beeinflussung der SPMs entstehen. Sie werden ebenfalls erkannt
und fihren zu einer verzdégerten Ankunft eines SPMs an seinem Zielort.

Aufgabe des Motion Planning ist es also, alle Bewegungsanfragen fiir SPMs vom
Simulationskern entgegenzunehmen, deren Bewegungen auf dem zuvor berechneten
Graphen zu planen und den Simulationskern Gber die Ankunft eines SPMs am Ziel zu
informieren. Zusatzlich kann das Motion Planning auf Basis des errechneten Layouts auch
fir die Kollisionsabfrage der Avatare®®> verwendet werden. Damit diese nicht durch
Maschinen, SPMs oder weitere Avatare hindurch laufen, die sich in der Szene befinden,
mussen die Bewegungen eines Avatars regelmaBig vom Motion Planning Uberprift und
bestatigt werden. Das tragt in der Visualisierungskomponente, die eine solche Anbindung
und Uberpriifung implementiert, wesentlich zu einer immersiven Darstellung bei.

Die Animation der Token innerhalb eines Modellbausteins fallt explizit nicht in das
Aufgabengebiet des Motion Planning. Deren Bewegung, beispielsweise eine Kiste auf
einem Férderband, wird durch Animationsnachrichten entlang eines vorgegebenen Pfades
visualisiert. Im Rahmen dieser Animation wird aus Komplexitats- und damit
Effizienzgrinden keine Kollisionsabfrage durchgefihrt. Eine entsprechend realistische
Darstellung des Bausteinverhaltens muss also durch den Modellierer erfolgen, zum
Beispiel durch die Verwendung mehrerer Animationsabschnitte.

Funktionsweise des Motion Planning

Das Motion Planning arbeitet zweidimensional, d.h. die Bewegung der SPMs wird nur in
der XY-Ebene abgebildet und nur um die Z-Achse gedreht.?* Zur Berechnung des
Weggraphen und zur Vermeidung mdglicher Kollisionen mit Modellierungsbausteinen
genlgt also eine zweidimensionale Projektion der Maschinen in die XY-Ebene (entspricht
einer Draufsicht auf das Simulationsmodell). Diese Projektionen werden fir jeden 3D-
Reprasentanten eines Modellbausteins einmal generiert und als Outline in der
Simulationsdatenbank zu dem 3D-Modell gesichert. Die SPMs selbst werden ebenfalls
durch ihre spezifische Outline reprasentiert. Abbildung 30 verdeutlicht dies an einem
Ausschnitt aus einem Simulationsmodell.

' Unter einem Avatar wird hier die Reprisentation eines Anwenders im Simulationsmodell verstanden, der
sich wihrend der Ausfiihrung eines Simulationslaufs durch das Layout des Simulationsmodells bewegt und
dadurch dynamisch das Fortschreiten der Simulation unter Umstédnden beeinflusst..

* Die Ausdehnung in XY-Richtung beschreibt die Ausdehnung nach Linge und Breite. Die jeweilige Hohe
wird durch den Z-Vektor, oder die Z-Ebene bestimmt

Konzeption - 109 -

Abbildung 30: 3D-Szene und entsprechende 2D-Projektion

Obwohl das Motion Planning keine Bewegung in Z-Richtung, also in die Hdhe plant,
werden die unterschiedlichen HoOhen der fahrenden SPMs dennoch durch eine
héhenabhangige Projektion berlicksichtigt. Fir eine Kollisionsvermeidung zwischen einem
SPM und den Reprasentanten der Modellbausteine ist es unerheblich, welche Ausdehnung
die Maschinen oberhalb des SPM haben, weil er dort nicht mit ihnen kollidieren kann.
Eine Projektion des gesamten Layouts des Simulationsmodells in die XY-Ebene kann
eventuell ein falsches Abbild der Realitat erzeugen und dazu fihren, dass moégliche Wege
eines bestimmten SPM-Typs nicht als solche erkannt werden. Durch einen
Sicherheitsabstand féhrt ein SPM in der entsprechenden dreidimensionalen Visualisierung
nicht so nahe an den entsprechenden Reprasentanten des Modellbausteins heran, wie es
technisch moéglich ware. Abbildung 31 versucht dies anhand einer Seitenansicht zu
verdeutlichen.

L Sicherheits-
:)‘ Abstand
]
Hoéhengitter | : N
]
1
]
]

‘§\J—
Objekt mit
Richtung

Abbildung 31: Hohenabhdngige Projektion in die XY-Ebene

Die zu einem 3D-Reprdasentanten erzeugten Outlines bestehen deshalb aus mehreren
Schichten, wobei eine Schicht einem Schnitt auf einer bestimmten Hbhe entspricht. Der
3D-Reprasentant wird dazu entlang der Z-Achse in mehrere Schichten unterteilt, deren
einzelne wie Uberlagerte Projektionen in die XY-Ebene eine unterschiedliche Ausdehnung
besitzen. Alle einzelnen Projektionen werden zusammen mit den zugehorigen
Hohenintervallen als Layer gespeichert. Die Summe aller vorhandenen Layer eines 3D-
Reprasentanten bildet die eigentliche Outline des 3D-Modells. Die SPMs besitzen
ebenfalls jeweils eine Outline, die flir die Berechnung verwendet werden kann. Zur
Kollisionsvermeidung mit den statischen 3D-Reprasentanten der Bausteininstanzen
werden aus deren Outline nur diejenigen Layer betrachtet, die im Hohenintervall der

- 110 -

Outline des entsprechenden SPMs liegen. Nachdem die Umrisse der Schichten vereinigt
wurden, kann wieder auf eine zweidimensionale Ebene reduziert werden (vgl. Abbildung
30).

Berechnung des Wegegraphen

In der Initialisierungsphase des Motion Planning wird flr jeden unterschiedlichen SPM-
Typ jeweils ein Graph berechnet, auf dem die SPMs wahrend des Simulationslaufs bewegt
werden. Der einem SPM zugehdrige Graph enthélt alle Informationen tber Positionen und
Blickrichtungen des SPMs sowie die entsprechenden Outlines. Die Vorberechnung des
Graphen in der Initialisierungsphase soll eine effiziente Realisierung der
Kollisionserkennung zur Laufzeit ermdglichen. Die Kollisionen unter den SPMs soll die
Berechnung der Simulation mdglichst wenig ausbremsen. Fir die Initialisierungsphase
muss daftir ein héherer Aufwand in Kauf genommen werden. Auch vor dem Hintergrund
der Berechung einer Kollisionsabfrage mit mehreren Avataren erscheint eine Verlagerung
aufwendigerer Berechungen in die Initialisierungsphase sinnvoll. Neben der
Beschleunigung der Berechnung zur Ausfiihrungszeit eines Simulationslaufs unterstitzt
dieses Vorgehen die Komplexitatsreduktion der Simulationsmodelle. Durch die
Moglichkeit zur effizienten Speicherung einmal erstellter Graphen und deren
Neuberechnung nur bei verdnderten SPM-Typen oder einem veranderten Layout, kann in
der Praxis dieser Mehraufwand fast vollstdndig kompensiert werden.

Jeder Knoten des Graphen reprasentiert eine mogliche Position des SPMs im
Simulationsmodell. Dazu werden im Knoten Position und Ausrichtung des SPMs
hinterlegt. Um die Kollisionsvermeidung effizient zu ermdglichen, speichert jeder Knoten
auch die entsprechende Outline, welche Position und Ausrichtung des SPMs im
Simulationsmodell reprdsentiert. Basierend auf der Annahme, dass zwei entgegen
gesetzt fahrende SPMs sich an den meisten Stellen passieren kénnen, wird ein
Rechtsverkehr um alle Hindernisse eingefiihrt, wobei Hindernisse Maschinen oder auch
Teile von Maschinen sind. Jede Kante im Graphen wird dazu als Vorwartskante (gewichtet
mit der euklidischen Distanz der Knoten in der Ebene) und als Riickwartskante (gewichtet
mit der Distanz multipliziert mit einem konstanten Faktor) bewertet. Damit kann explizit
die Gewichtung von Vorwartsbewegung zu Rlckwdrtsbewegung fir die einzelnen SPM-
Typen festgelegt werden.

Abbildung 32: Interpolation von Kurven durch feingranulare Auflésung

Konzeption - 111 -

Es wird davon ausgegangen, dass die Interpolation der SPM-Outline entlang einer
Geraden (und dadurch ohne Anderung des Blickwinkels) wenig rechenintensiv ist.
Rechenintensivere Interpolation von Kurven zur Ausflihrungszeit eines Simulationslaufs
werden vermieden, indem vorhandene Kurven im Graphen so feingranular aufgeldst
werden, dass die gespeicherten Outlines des SPMs sowohl zur Kollisionsvermeidung als
auch zur flissigen Animation verwendet werden kénnen. Das flihrt zu einer Erhéhung der
Knoten des abgebildeten Weggraphen, wodurch die Suche nach Wegen verzdgert wird.
Diese Einschrankung kann aber an dieser Stelle in Kauf genommen werden, wenn das
entwickelte Verfahren dennoch schnell arbeitet und die Berechnung der Simulation nicht
UbermaBig bremst. Abbildung 32 verdeutlicht diese Idee. Die eigentliche Berechung des
Graphen erfolgt schrittweise:

1. Berechnung von umschlieBenden Graphen (im Folgenden: Boundaries), um die
Reprdsentanten der Bausteininstanzen im Simulationsmodell; Identifikation von
Connectionpoints als Verknlipfungspunkte zwischen existierenden Boundaries

2. Berechnung und Erstellen von Verbindungen zwischen den Connectionpoints und
damit zwischen den Boundaries, die die 3D-Reprasentanten im Simulationsmodell
umschlieBen

3. Bereinigung des Graphen durch Léschen Uberflissiger Knoten und Kanten mit dem
Ziel, die Wegberechnung zu beschleunigen

4. Zuordnung festgelegter Dockingpoints der einzelnen Bausteininstanzen zu
existierenden Knoten des Graphen, wobei der Abstand zwischen Dockingpoint und
Knoten auf dem Graphen minimiert wird.

In der ersten Berechnungsphase werden Knoten und Kanten um die 3D-Reprdsentanten
der Modellbausteine gelegt, so dass diese durch einen Graphen umhillt sind (vgl.
Abbildung 30). Dieser Rahmen wird im Folgenden als Boundary bezeichnet. Fir jeden
Graphen werden so genannte Connectionpoints identifiziert und gespeichert, die als
Eckpunkte oder Andockpunkte verstanden werden kénnen. Im folgenden
Berechnungsschritt werden Verbindungen zwischen den berechneten Connectionpoints
berechnet. Eine Auswahl der gefundenen Verbindungen wird schlieBlich im Graphen
gespeichert. Abbildung 33 zeigt einen Beispielgraph nach dem Hinzufligen dieser
Verbindungen.

-112 -

Abbildung 33: Graph des Motion Planning

Die dritte Berechnungsphase dient der Reduzierung der Komplexitdt des Graphen. Sie
Idscht nicht benétigte Knoten und Kanten, wobei der starke Zusammenhang®® des
resultierenden Graphen sichergestellt bleibt. Damit existiert mindestens eine Lésung fur
jede gliltige Wegeberechnung und es kann immer ein Weg zwischen allen vorhandenen
Dockingpoints gefunden werden. Uberfliissige Knoten und Kanten kénnen z.B. bei der
Berechnung der Boundaries entstehen, wenn Modellbausteine so nah beieinander
platziert sind, dass der SPM nicht zwischen ihnen hindurch fahren kann. In der
abschlieBenden Berechnungsphase werden Assoziationen zwischen den madglichen
Dockingpoints und den nachstliegenden Knoten des Graphen hergestellt, so dass
Anfragen der Form ,Kirzester Weg zwischen den Dockingpoints A und B" auf
Graphberechnungen der Form ,Kirzester Weg zwischen den Knoten v_A und v_B"
abgebildet werden kénnen.

Bewegungsanfragen

Die eigentliche Logik einer SPM-Steuerung wird durch einen Modellbaustein im
Simulationsmodell abgebildet. Diese Steuerungslogik schickt eine Bewegungsanfrage an
das Motion Planning Modul und wartet mit der Weiterleitung des Token an den SPM, bis
das Motion Planning die Ankunft des SPM am Startpunkt mitteilt. Es existieren zwei
verschiedene Anfragetypen, weil SPMs optional Pools zugeordnet werden kdnnen. Sie
bilden eine Gruppierung gleicher SPMs, damit auch eigentlich gleiche SPM-Typen
beispielsweise hinsichtlich eines beschrankten Einsatzortes unterschieden werden kdénnen
(etwa: Gruppe A nur Halle 1, Gruppe B nur Halle 2). Die Modellierung einer komplexen

2 Der Grad des Zusammenhangs bzw. die Konnektivitit von Graphen bedeutet, dass Wege zwischen
mindestens zwei Knoten im Graphen bestehen. Ein gerichteter Graph G=(V = Knoten, E = Kanten) heift
zusammenhingend von einem Knoten v aus, falls es zu jedem Knoten w aus V einen gerichteten Weg in G
gibt, mit v als Startknoten und w als Endknoten. G heif3t stark zusammenhingend, falls G von jedem Knoten
v aus V zusammenhéngend ist (vgl. [Corm90]).

Konzeption -113 -

Steuerung wird durch die Anwendung des Pool-Konzeptes weiter vereinfacht, weil implizit
der nachste freie SPM innerhalb des Pools vom Motion Planning beauftragt wird. Durch
die beiden Anfragemoglichkeiten kann ein bestimmter SPM sowohl anhand seiner
eindeutigen ID beauftragt werden oder aber ein beliebiger SPM eines bestimmten SPM-
Pools anhand dessen Pool-ID. Im zweiten Fall wahlt das Motion Planning automatisch den
nachsten freien SPM aus dem angeforderten Pool aus. Sobald eine Bewegungsanfrage
beim Motion Planning eintrifft, wird fir den entsprechenden SPM, bzw. alle SPMs des
Pools, der Dijkstra-Algorithmus®® auf dem zugehérigen Bewegungsgraph gestartet, um
den kirzesten Weg zu identifizieren. AnschlieBend wird die minimal benétigte Zeit bis zur
geschatzten Ankunft an die Simulation zurliickgeschickt. Diese Ankunft ist im Voraus nicht
genau bestimmbar, da durch modgliche Kollisionen mit Avataren oder SPMs
Verzégerungen auf dem Transportweg entstehen kénnen. Zu diesem friithesten méglichen
Zeitpunkt fragt der Simulator beim Motion Planning nach der Ankunft des SPM. Als
Antwort wird entweder eine neue Schatzung oder im Erfolgsfall eine Bestdtigung der
Ankunft verschickt.

Kollisionsvermeidung

Das Motion Planning ist sowohl fiir die Kollisionserkennung der Avatare untereinander,
der Avatare mit den SPMs, als auch zwischen den SPMs verantwortlich. Klammert man
eine Kollision mit den eventuell angeschlossenen Avataren zundchst aus, geschieht die
Vermeidung von Kollisionen zwischen SPMs und den Reprasentanten der Modellbausteine
bereits implizit durch die Berechnung des Bewegungsgraphen. Die wahrend der
Ausfihrung eines Simulationslaufs auf dem Graphen berechneten Pfade als Ergebnisse
der Weganfragen kdnnen also keine Kollisionen mit den Modellbausteinen erzeugen. Um
die Kollision der SPMs untereinander zu vermeiden, wird deren Bewegung in einem
Motion Schedule festgeschrieben. Dieser enthalt in fixen Zeitinkrementen die Positionen
aller SPMs inklusive der sie beschreibenden Outlines. Der Abstand der Zeitinkremente ist
so klein gewahlt (z.B. 200ms), dass der Motion Schedule zur Erkennung von Kollisionen
genutzt werden kann. Aus Effizienzgrinden wird der Motion Schedule in gréBeren
zeitlichen Intervallen vorausberechnet (z.B. alle 10s). Als Ergebnis entsteht eine Abfolge
von Zeit-Ebenen mit den Positionen der jeweiligen SPMs zu jedem berechneten
Zeitpunkt. Die Zeit-Ebenen werden aufsteigend geordnet und mit den SPM-Positionen
geflllt. Dazu werden die berechneten Pfade, auf denen sich die SPMs bewegen sollen,
Schicht flir Schicht miteinander verglichen, so dass keine Kollisionen entstehen. Mdgliche
Kollisionen werden zunachst durch Warten aufgelést. Ein SPM wartet, bis der
kollidierende SPM seine Route fortgesetzt hat, bevor es den Weg auf seinem Pfad
fortsetzt. Zur Animation werden die berechneten Roboterpositionen in regelmaBigen
Abstdanden vom Motion Planning an die angeschlossenen Visualisierungskomponenten
verschickt. Um eine flissige Animation zu erreichen werden aus den gespeicherten
Pfaden, auf denen sich die SPMs bewegen, Zwischenschritte extrahiert, da die Auflésung
des Motion Schedule fiir eine flliissige Animation nicht ausreicht. Bevor die SPM-
Positionen verschickt werden, wird zusatzlich Uberprift, ob Kollisionen mit den
Avatarpositionen existieren. Sollte eine solche Kollision auftreten, wird der entsprechende
SPM angehalten und als blockiert markiert. Der Motion Schedule muss dann neu
berechnet werden, da aus dieser Blockade neue Kollisionen entstehen kdnnen. Unter

% Eine genauere Beschreibung des Dijkstra-Algorithmus findet sich bei [SuMe01].

- 114 -

Verwendung dieses Verfahrens wird also sowohl die Kollision der SPMs untereinander,
wie auch mdgliche Kollisionen mit sich bewegenden Avataren vermieden.

Die Kollisionsvermeidung der Avatare soll auf einem leicht abgeanderten Prinzip basieren.
Basis der Wege aber vor allem der Graphberechung ist das hodhenabhangige
zweidimensionale Layout des Simulationsmodells. Um die Kollisionserkennung der
Avatare untereinander sowie der Avatare mit den 3D-Reprasentanten der
Modellbausteine realisieren zu kdénnen, muss die angeschlossene Visualisierungs-
komponente dem Motion Planning einen Wegabschnitt schicken, entlang dem sich der
jeweilige Avatar bewegen will. Das Motion Planning berechnet daraufhin die letzte
Position auf dem Ubermittelten Weg, die keine Kollision mit 3D-Reprasentanten oder
anderen Avataren ergibt. Als Konsequenz muss der Avatar eventuell durch die
Visualisierungskomponente zurlickgesetzt werden, wodurch in der Anzeige ein Ruckeln
entstehen kann. Die Auswirkungen dieses Effektes hangen aber stark von der Frequenz
der Ubermittlung des Wegabschnitts zusammen, die die Visualisierungskomponente
realisiert. Dieses Verfahren basiert auf der Annahme, dass die Bewegung eines Avatars
durch die Szene nur schwer im Vorhinein abgeschatzt werden kann. Innerhalb der
Aufgabenstellung ist dieser moglichst hohe Freiheitsgrad fiir den Anwender gewollt,
damit dieser sich méglichst realitdtsnah und immersiv durch die Szene bewegen kann.
Ist dariiber hinaus die Frequenz der Ubermittlung des Avatar-Wegs hoch genug, wird der
Avatar durch das System so rechtzeitig gebremst, dass dieser ,Ruckel-Effekt" kaum
stérend wahrgenommen wird.

Die eingesetzte Kollisionsvermeidung dient der Realisierung unterschiedlicher Direktiven.
Wahrend die Kollisionsvermeidung der SPMs untereinander hauptsachlich darauf
ausgerichtet ist, die Wegeplanung so realistisch wie mdglich abzubilden und erst als
Nebeneffekt eine saubere Visualisierung in den entsprechenden Komponenten ermdéglicht
(Gabelstapler fahren dann beispielsweise nicht durcheinander durch), ist genau diese
prazise Visualisierung ein nltzliches Instrument zur Erflllung der Anforderung nach
bestméglicher Immersion. Der Anwender wird gezwungen, auch in der virtuellen
Darstellung des Simulationsmodells und damit im abgebildeten System nur diejenigen
Wege zu benutzen, die ihm auch im realen System zur Verfiigung standen. Durch den
direkten Effekt seiner virtuellen Prasenz im Simulationsmodell (Gabelstapler halten vor
ihm an) fihrt das Motion Planning dadurch zu einer Steigerung der Immersion in der
virtuellen Umgebung. Das der Anwender als Konsequenz das Fortschreiten der Simulation
wahrend dieses spezifischen Simulationslaufs beeinflusst, ist ein auf Grund der
stochastischen Auslegung von Simulationsmodellen zu vernachlassigender Effekt, bietet
dartber hinaus sogar eine weitere unmittelbare Interaktionsmaéglichkeit in der virtuellen
Umgebung und unterstiitzt so die an das Werkzeug gestellten Anforderungen. Die
Echtzeit-Simulation wird hauptsachlich in der Phase der Modellvalidierung und
Verifikation eingesetzt. Die Berechnung statistisch signifikanter Simulationslaufe erfolgt
anschlieBend ohne Visualisierungskomponenten und in einer streng ereignisorientierten
bzw. analogen schnellstmdéglichen Berechnung. Die zur Modellvalidierung,
Modellverifikation oder Vorflihrung eingesetzte dreidimensionale Visualisierung eines
einzelnen Simulationslaufes unterliegt weiteren stochastischen Einflliissen und ist somit
nicht notwendigerweise reprasentativ fir das dynamische Verhalten des abgebildeten
Systems. Im Rahmen der Realisierung ist darauf zu achten, diese Interaktionsmdglichkeit
zumindest optional ausschalten zu kénnen, um dem Anwender optional eine bekannte

Konzeption - 115 -

Visualisierungsform anzubieten. Alternativ kénnen Verfahren implementiert werden, wie
sie unter Abschnitt 3.4.1.1 bereits aufgezeigt wurden.

Benutzerfiihrung zu signifikanten Prozesspunkten

Bewegt sich der Anwender durch die dreidimensionale Szene wird das MaB der
Immersion fir ihn fir alle diejenigen Abschnitte der Szene erhdht, die in seinem
Wahrnehmungsbereich liegen. Bei groBen Szenen steigt dem gegenilber derjenige Anteil
der Szene, der dem Anwender verborgen bleibt (beispielsweise in seinem Rlicken, hinter
einer Wand, etc.). Um dennoch eine optimale Analyse des Vvisualisierten
Simulationsmodells zu ermdglichen, muss der Anwender auf diejenigen signifikanten
Prozesse hingewiesen werden, die nicht in seinem Sichtfeld liegen, beispielsweise in Form
einer Liste aller Bausteinsinstanzen, die nach den aktuellen Signifikanzwerten sortiert ist.
Voraussetzung hierfir ist die Berechnung und Belegung jeder Bausteininstanz des
Simulationsmodells mit einem objektspezifischen Signifikanzwert und einer im Baustein
hinterlegten Methode zu dessen Berechnung wdhrend der Ausflihrung der Simulation.
Wahrend der Simulation wird der Anwender auf kritische Prozesse innerhalb der
Simulation aufmerksam und kann seine Aufmerksamkeit umlenken. Als Navigationshilfe
soll ihm der kirzeste Weg zu einem selektierten Baustein in die Szene eingeblendet
werden und der selektierte Modellbaustein entsprechend markiert werden, um ihn
innerhalb des Simulationsmodells schneller identifizieren zu kdénnen. Hier wirken die
Anforderungen nach einer hohen Immersion flir die Aufgabenerfiillung des Anwenders
eher hinderlich. Vor der Hintergrund einer realitdtsnahen Visualisierung muss das an
dieser Stelle allerdings in Kauf genommen werden. Wahrend der Implementierungsphase
sollten alternative Visualisierungen erganzend berlcksichtigt werden, um diese
Fragestellung mit einer besser angemessenen Darstellungsform zu bearbeiten.

Grundlage dieser Navigationshilfe muss ein auf dem zweidimensionalen Layout
berechneter Bewegungsgraph sein, wobei das entwickelte Verfahren erneut zum Einsatz
kommt. Der Avatar des Anwenders entspricht einem speziellen SPM. Der kiirzeste Weg
muss flr den Anwender in die virtuelle Umgebung eingeblendet werden, beispielsweise in
Form von Pfeilen, die auf dem Boden angeordnet werden. Verschiedene Realisierungen
sind an dieser Stelle vorstellbar, von der einmaligen Berechnung und Darstellung des
Weges ausgehend von der aktuellen Position des Avatars bis zur dynamischen
Nachfihrung und Adaption des Weges nach Avatarbewegungen innerhalb der Szene.
Zumindest optional soll eine Funktion vorgehalten werden, die das direkte ,Beamen™ zum
nachst moéglichen Punkt in der Umgebung des selektierten Modellbausteins erlaubt (vgl.
hierzu auch Abschnitt 3.4.2).

Erweiterung der Modellbeschreibung zur Integration des Motion Planning

Die der Integration des Motion Planning Moduls in den Simulationskernel zur
dynamischen Berechnung der Wege fiir alle Typen von SPMs erfordert eine Erweiterung
der vorhandenen Modellbeschreibung und eine Erweiterung des Nachrichtenprotokolls
(vgl. Abschnitt 5.2.2.3). Tabelle 11 listet die zusatzlich bendtigten Attribute flr einen
Modellbaustein auf, die sich aus dem Motion Planning ergeben.

Bezeichnung ‘ Beschreibung

Significance Signifikanzwert fiir jede Modellinstanz
simulationBoundary Markierung flir reine Layoutobjekte

- 116 -

Dockingpoint Relative Anfahrtspunkte der SPMs fur jeden
Modellbaustein

Tabelle 11: Zusatzliche Attribute zur Integration des Motion Planning

Durch die Erweiterung um ein spezielles Modul zur Wegplanung eignet sich das hier
entwickelte Werkzeug besser flr die Modellierung und Simulation von
funktionsorientierten Fertigungsprozessen, weil der Aufwand zur Modellierung der
benétigten Wege und deren Bearbeitungsdauer wahrend der Simulation durch
entsprechende Motion Planning Bausteine in Bibliotheken auf ein Minimum reduziert
werden kann. Darlber hinaus wird ein praziseres und durch den Anwender potentiell
manipulierbares Ergebnis erlaubt. Die Nutzung des hier entwickelten Verfahrens ist aber
nicht zwingend vorgegeben; die Modellbeschreibung erlaubt ebenso die Beschreibung
Uber genau festgelegte Wege, wie sie in vorhandenen Materialflusssimulatoren zum
Einsatz kommen. Da die Graphenberechung flir das Motion Planning ein arbeitsintensiver
Prozess ist, missen wahrend der Implementierungsphase des Werkzeuges
entsprechende Methoden zur Reduzierung des Aufwands berlicksichtigt werden.
Beispielsweise muss ein zu einem Layout gehdérender Graph mit dem Simulationsmodell
in der Simulationsdatenbank gespeichert werden kénnen, um das Laden eines
Simulationsmodelllayouts inklusive seines Bewegungsgraphen im Simulatorkern zu
beschleunigen. Voraussetzung hierfir ist, dass sich auch alle anderen fiir das Motion
Planning relevanten Informationen des Simulationsmodells nicht geandert haben. So
kdnnte der Austausch eines 3D-Reprasentanten fir einen Pool von SPMs Auswirkungen
auf die zu benutzenden Wege und damit den zugrunde liegenden Bewegungsgraphen
haben. Zur Identifikation von Anderungen am Simulationsmodell stehen neben der
Versionierung weitere Verfahren zur Verfligung. Ein vorhandener Weggraph darf in jedem
Fall nur dann aus der Simulationsdatenbank geladen werden, wenn es keine Anderungen
am Simulationsmodell gegeben hat, die fir das Motion Planning Konsequenzen haben

Neben den eingepflegten Erweiterungen der Modellbeschreibung muss im weiteren
Verlauf der Entwicklung auch das vorhandene Nachrichtenformat erweitert werden, um
eine effektive Kommunikation zwischen dem Simulatorkern und dem Motion Planning
Modul zu ermdglichen. Alle Details der bendtigten Erweiterungen sowie die Gestaltung
des Nachrichtenablaufs, kénnen aber unter Abschnitt 5.2.2.3 gefunden werden.

Ein weiterer wesentlicher Punkt der Aufgabenstellung ist die Modellierung und Simulation
in einem Multitasking-Betrieb, die das Modellieren und Simulieren mehrerer Anwender
auf Basis eines einzelnen Modells erlaubt. Der folgende Abschnitt beleuchtet dieses
Themenfeld genauer hinsichtlich zusatzlich bendétigter Erweiterungen fir die
Modellbeschreibung.

5.2.1.3 Multitasking Modellierung und Simulation

Um in dem Werkzeug den Mehrbenutzerbetrieb sowohl im Bereich der Modellierung, als
auch in der Simulation umzusetzen, wurden in 5.1.6 die Methoden Locking, Cloning und
Versionierung identifiziert. Darlber hinaus wurde dort ein Rechtemanagement entwickelt,
das ebenfalls bericksichtigt werden soll. Dieser Abschnitt beschreibt die notwendigen
Erweiterungen fir die Modellbeschreibung, um die identifizierten Methoden umsetzen zu
kénnen.

Konzeption -117 -

Um das Locking Uberhaupt zu erlauben, muss es fir jede Bausteininstanz méglich sein,
einem einzigen Anwender durch ein entsprechendes Attribut den exklusiven Zugriff auf
diese Instanz zu garantieren. Durch die Mdglichkeit zur hierarchischen Modellierung
miuissen zumindest alle untergeordneten Bausteininstanzen wahrend der Bearbeitung
gesperrt werden (vgl. Abbildung 27). Alle Modellbausteine, die dem aktuell gesperrten
Bausteinobjekt Ubergeordnet sind, sollten ebenfalls entsprechend markiert werden.
Verschiedene Zustandsauspragungen des Attributs regeln diese verschiedenartigen
Zugriffsmoglichkeiten (vgl. Abschnitt 3.5.4.1). Das Locking-Attribut muss nicht in der
Modellbeschreibung des Simulationsmodells gespeichert werden, sondern wird nur
wahrend der Bearbeitung oder Ausflihrung eines Simulationsmodells benétigt. Dennoch
soll es an dieser Stelle in die Modellbeschreibung mit aufgenommen werden, um wahrend
der Implementierungsphase des Werkzeugs nicht Gilbergangen zu werden.

Die Umsetzung des Cloning-Verfahrens selbst erfordert keine Erweiterung der
Modellbeschreibung. Durch die Implementierung einer Versionierung koénnen die
einzelnen Versionen des Simulationsmodells separat gespeichert und somit stets
reproduziert werden.

Zusatzliches Attribut fir die Anwendung der Versionierung ist minimal die Angabe einer
Versionsnummer, unter der verschiedene zusatzliche Informationen gespeichert werden
kdnnen (beispielsweise der Name des Bearbeiters und ein erlduternder Kommentar). Mit
diesem Verfahren ist ein Vergleich verschiedener Versionen méglich und eine Anderung
in einem Modellbaustein, die zu einer neueren Version flihrt, birgt nicht die Gefahr, dass
vorhandene Simulationsmodelle nicht mehr korrekt funktionieren, die eine frihere
Version des Modellbausteins verwenden. Uber spezielle Abfragen soll der Anwender in der
Visualisierung der Modellierungskomponente lber neuere Versionen der verwendeten
Modellbausteine informiert werden, die zusatzlichen Attribute einsehen und ggf. die
verwendeten Modellbausteine durch die aktuellste Versionen ersetzen kénnen. Uber die
Versionierung ist es auch moglich, dem Anwender genau den Zustand des
Simulationsmodells zu prasentieren, der seinem letzten Bearbeitungsschritt entspricht.
Theoretisch wadre es moéglich, sich das Attribut Version flir jeden Modellbaustein zu
sparen und stattdessen jeder neuen Bausteinversion auch einen neuen eindeutigen
Bezeichner aufzuprédgen. Um das oben skizzierte Verfahren der automatischen
Identifizierung von neueren Bausteinversionen anwenden zu kénnen, missten dann in
der Simulationsdatenbank zusatzliche Verweise gespeichert werden, die eine solche
Identifikation erméglichen. Im Rahmen der Implementierung soll die erste
Vorgehensweise bevorzugt werden. Die Umsetzung der zusatzlichen Funktionalitdten im
Rahmen der Versionierung soll den Anwender bei der Modellierung im Team
unterstiitzen, indem ihm die Anderungen anderer Anwender dargestellt werden. Die
Kooperation innerhalb eines Projektteams wird geférdert und doppelte Arbeiten werden
vermieden.

Zur Umsetzung des in Abschnitt 5.1.6 beschriebenen Rechtemanagements wird davon
ausgegangen, dass die spatere Implementierung eine Aggregation auf ein einziges
Attribut ermdoglicht, dass fir alle Bausteine einer Bibliothek bzw. flr jeden Modellbaustein
hinterlegt werden kann. Dies kann beispielsweise umgesetzt werden, indem jegliche
verwendete Kombination in der Datenbank abgelegt wird und somit durch einen
eindeutigen Bezeichner identifiziert werden kann. Tabelle 12 listet die fir die

- 118 -

Mehrbenutzer-Modellierung und -Simulation bendétigten zusatzlichen Attribute der
Modellbeschreibung zusammenfassend auf.

Bezeichnung | Beschreibung

version Versionsnummer des Modellbausteins

locking_status Aktueller Status (nur zur Laufzeit)

rights Eindeutiger Bezeichner zur Umsetzung des
Rechtmanagements

Tabelle 12: Zusatzliche Attribute fiir die Mehrbenutzer-Modellierung und -
Simulation

Die um die oben beschriebenen Erweiterungen erganzte Modellbeschreibung wird flr die
Mehrbenutzer-Modellierung und -Simulation eines dynamisch detaillierenden
Simulationsmodells, das sowohl einen objekt- als auch einen funktionsorientierten
Fertigungsprozess beschreiben kann, als ausreichend angesehen. Durch die Konzeption
der Rickwartssimulation und insbesondere der (semi-)automatischen Transformation von
Simulationsmodellen zwischen Vorwarts- und Rlckwartssimulation, kdnnen weitere
Erweiterungen der Modellbeschreibung nétig werden. Diese sollen in 5.2.4.1 genauer
analysiert werden. Im Folgenden wird vorher auf das XML-basierte Nachrichtenprotokoll
eingegangen werden, das die Kommunikation des Simulatorkerns mit den
angeschlossenen Visualisierungskomponenten und dem Motion Planning erlaubt, um die
Konzeption hinsichtlich einer vorwartsgerichteten Modellbeschreibung abschlieBen zu
kénnen.

5.2.2 Nachrichtenbasierte Kommunikationsschnittstelle

Durch den modularen Aufbau des Werkzeugs muss der Simulatorkern das in einem XML-
Format gespeicherte Simulationsmodell in ein Java-Programm transformieren,
kompilieren und ausfihren (vgl. Abschnitt 5.1.4). Simulationsmodell und Simulator
ergeben dadurch ein einziges, eng verzahntes Modul, an das sich zur Ausfiihrungszeit
eines Simulationsmodells verschiedene Visualisierungskomponenten anschlieBen kdénnen.
Um die Kommunikation des Simulatorkerns mit den Visualisierungen zu standardisieren,
wird im Folgenden eine Nachrichtenbasierte Kommunikationsschnittstelle konzipiert, die
alle Anforderungen strukturiert und deren Bewaltigung ermdglicht. Wie in Abschnitt 5.1.5
erlautert, wird auch diese Kommunikationsschnittstelle Uber ein erweiterbares XML-
Format spezifiziert. Die Vorteile der XML vor dem Hintergrund einer erweiterbaren
Implementierung wurden dazu unter Abschnitt 3.5.7 bereits erldutert. Fir die Gestaltung
einer Kommunikationsschnittstelle flir ein erweiterbares Werkzeug, dessen Module
eigenstéandig auf verschiedenen Computern laufen sollen, gibt es zu diesem
Nachrichtenbasierten Kommunikationsprotokoll keine sinnvollen Alternativen. Der direkte
Zugriff auf gegenseitige Methoden verbietet sich durch die moégliche Verteilung der
Anwendung und der Anwender.

Grundsatzlich sollen drei verschiedene Nachrichtentypen unterschieden werden: Normal-
Message, Request-Message und Reply-Message. Die Typisierung richtet sich nach der Art
der transportierten Information und strukturiert den Nachrichtenverkehr auf einer
logischen Ebene. Normal-Messages dienen dem einfachen Austausch von Information,
beispielsweise der Ubertragung von Steuerungsbefehlen an den Simulatorkern. Request-
Messages sind Nachrichten, die eine Anfrage an den entsprechenden
Kommunikationspartner senden und als Antwort eine Reply-Message erhalten. In den

Konzeption - 119 -

folgenden Abschnitten sollen die einzelnen Nachrichten dargestellt werden. Die
Unterteilung des folgenden Abschnitts erfolgt nach der Reihenfolge der Ausfiihrung im
Rahmen eines Simulationslaufs mit einer angeschlossenen Visualisierung. AnschlieBend
werden die bendtigten Erweiterungen fiir die speziell entworfenen Module betrachtet.

5.2.2.1 Initialisierungsnachrichten

Initialisierungsnachrichten werden zu Beginn der Kommunikation zwischen Simulatorkern
und Visualisierungskomponente verwendet. Sie dienen der Beschreibung der Szene,
Token, Grundlagen der Animation und der Einstellung von Modulparametern. Die
nachfolgende Tabelle 13 beschreibt die vorhandenen Nachrichten und ihre jeweilige
Typisierung.

Bezeichnung Typ Beschreibung

Databaseinfo Normal Ubermittelt die Datenbankinformationen zum Laden
der 3D-Reprasentanten zur Darstellung der
Modellbausteine

Buildingblock Normal Ubermittelt Position und 3D-Darstellung einer
spezifischen Bausteininstanz; Wird ggf. flr jede
Bausteininstanz des Simulationsmodells gesendet.
Tokenpath Normal Ubermittelt fir jeden Modellbaustein die bendtigten
Animationspfade der Token und ihre relative Position
zum Modellbausteine

Token Normal Ubermittelt die Position und 3D-Reprasentanten eines
Token
EndOfInitialization Normal Zeigt, dass alle Informationen der

Initialisierungsphase Ubertragen wurden

Tabelle 13: Initialisierungsnachrichten

Verbindet sich eine Visualisierungskomponente mit dem Simulatorkern, Ubermittelt
dieser alle bendtigten Informationen in einer Initialisierungsphase an die neu
angeschlossene Visualisierungskomponente. Mit der EndOfInititialization-Message wird
die Initialisierungsphase beendet; die Simulation wird fortgeflihrt oder explizit mittels
einer Steuerungsnachricht gestartet.

5.2.2.2 Steuerungs- und Manipulationsnachrichten

In der Gruppe Steuerungs- und Manipulationsnachrichten werden alle Nachrichten
zusammengefasst und beschrieben, die zur Steuerung des Simulatorkerns aus der
Visualisierungskomponente heraus zur Verfligung stehen. Dariber hinaus werden alle
Nachrichten aufgefiihrt, mit deren Hilfe der Anwender einzelne Attribute der
Modellbausteine abfragen, aktualisieren und manipulieren kann. Eine genaue
Beschreibung der zur Verfligung stehenden Nachrichten findet sich nachfolgend in Tabelle
14.

Die erste Gruppe der Nachrichten dient der Steuerung des Simulatorkerns aus der
Visualisierungskomponente. Neben den dblichen Steuerungsbefehlen kann eine
Simulation gespeichert werden. Die Modellvalidierung kann mit dieser
Zwischenspeicherung von Simulationslaufen erheblich verbessert werden, weil z.B. ein
spezieller Zustand eines Simulationslaufs rekonstruiert werden kann. Der Anwender ist
nicht gezwungen, eine Simulation stets neu zu beginnen und bis zur problematischen

- 120 -

Stelle zu simulieren.

vorgehalten.

Far

alle Nachrichten

werden madgliche Fehlernachrichten

Bezeichnung Typ Beschreibung

Steuerungsnachrichten

Start Normal Startet die Simulation im Simulator

Pause Normal Halt die Simulation an.

Stop Normal Stoppt die Simulation

SaveSimulation Normal Speichert den aktuellen Zustand der Simulation ab

Timefactor Normal Verdandert die Ausfihrungsgeschwindigkeit der
Simulation (Timefactor 100 entspricht Echtzeit)

Maxspeed Normal Streng Ereignisgesteuerte Berechnung der Simulation
ohne Verhaltnis zur Echtzeit

Normalspeed Normal Setzt von der maximal moéglichen Geschwindigkeit
auf den letzten Timefactor

Timestamp Normal Liefert die aktuelle Simulationszeit

Error Reply Fehlernachricht mit Beschreibung

No-Error Reply Bestatigung einer Nachricht, bei der kein Fehler
aufgetreten ist

Manipulationsnachrichten

SubscribeProperty Request Abonniert die Variablen einer bestimmten
Bausteininstanz, beispielsweise zur Anzeige in der
Visualisierung

UnsubscribeProperty Normal Beendet ein Abonnement

ObjectProperties Reply Enthalt eine Liste aller Variablen einer
Bausteininstanz als Antwort auf die
SubscribeProperty-Nachricht

PropertiesChanged Normal Andert die Werte einer Variablen oder teilt der
Visualisierung einen geanderten Wert einer Variablen
mit

Significance Normal Andert die Signifikanz eines Objektes.

IncludeToken Normal Dient dem Hinzufiigen eines bestimmten Token zu
einem anderen Token, beispielsweise einer Schraube
ein einer Kiste

ExcludeToken Normal Dient dem Extrahieren eines Token aus einem
bestimmten Token.

AnimateToken Normal Nachricht zur Animation eines Token in einem
Modellbaustein entlang eines vorgegebenen
Tokenpaths

RemoveToken Normal Entfernt das Token aus der Visualisierung

Tabelle 14: Steuerungs- und Manipulationsnachrichten

Die zweite Gruppe an Nachrichten dient der Abfrage und Manipulation von Attributen der

Bausteininstanzen.

Neben einer dynamischen Anzeige kdnnen die Werte aus den

Visualisierungskomponenten heraus manipuliert und zum Simulator Ubertragen werden.
Uber eine PropertyChanged-Nachricht werden andere angeschlossene Visualisierungs-
komponenten Uber die Verédnderung informiert. Die letzte Gruppe der Nachrichten dient
der Umsetzung des Token-in-Token Konzeptes in der Visualisierung, also der Tatsache,
dass Token andere Token enthalten kénnen. Damit wird es mdglich, Token in Gruppen
zusammenzufassen oder Materialfllisse genauer abbilden zu kénnen, ohne Informationen
zu verlieren (vgl. Abschnitt 5.1.4).

Konzeption -121 -

5.2.2.3 Nachrichtenerweiterung fiir das MRS

Die Integration der dynamischen Detaillierung von Simulationsmodellen erfordert eine
Erweiterung des Nachrichtenprotokolls. Tabelle 15 gibt einen Uberblick {ber die
zusatzlich benétigten Nachrichten:

Bezeichnung ‘ Typ Beschreibung

Avatar Normal Ubermittelt die aktuelle Position der angeschlossenen
Avatare

MRMQuantifier Normal Ermdglicht das Steuern des MRS aus der
Visualisierung heraus

lockMRM Normal Beendet die dynamische Detaillierung und berechnet

das Modell auf Basis der aktuellen Detaillierung der
Modellbausteine

unlockMRM Normal Schaltet die Berechnung der dynamischen
Detaillierung wieder ein

Tabelle 15: Erweiterung fiir das MRS

Damit soll zum einen aus den Visualisierungskomponenten die aktuelle Position des
Avatars des Anwenders Ubertragen werden, um eine hohe Detaillierung an den Punkten
zu ermdglichen, wo sich der Avatar bewegt. Zum Anderen wird in dieser Nachricht die
Blickrichtung des Avatars Ubertragen, um die dynamische Detaillierung auf Basis dieser
beiden, benutzerstimulierten Kriterien zu ermdglichen. Zusatzliche Nachrichten werden
bendtigt, um die dynamische Berechnung des Detaillierungsgrades ein- bzw. ausschalten
zu kénnen. Durch die Umschaltung des Detaillierungsgrades in der Simulation ergibt sich
keine neue Darstellung in der entsprechenden Visualisierungskomponente, weil deren
Darstellung immer auf dem am hoéchsten detaillierten Simulationsmodell basiert. Fir die
einzelnen 3D-Reprasentanten der Bausteininstanzen ergibt sich aber ggf. eine neue
Zugehdrigkeit zu einer anderen Bausteininstanz und damit neue oder andere Attribute.
Dieser Austausch der Attribute kann mit den bestehenden Nachrichten bereits vollstandig
abgebildet werden (bspw. Properties-Changed-Message).

5.2.2.4 Nachrichtenerweiterung fiir das Motion Planning

Auch die Kommunikation zwischen dem Motion Planning Modul und dem Simulatorkern
soll Uber das Nachrichtenprotokoll abgewickelt werden. Alternativ zum Nachrichten-
konzept bietet sich an dieser Stelle auch eine unmittelbare Anbindung des Motion
Planning an den Simulator an. Zunachst sollen jedoch die Nachrichten des
Gesamtsystems in einem gemeinsamen Protokoll integriert werden, unabhangig von der
tatsdchlichen Implementierung in einer spateren Entwicklungsphase des Werkzeugs. Da
hier ein besonders intensiver Austausch von Informationen bendtigt wird, miussen
entsprechend viele Nachrichten dem Protokoll hinzugefligt werden. Der Ablauf der
Bewegungsanfragen folgt der in Abschnitt 5.2.1.2 beschriebenen Reihenfolge.

Bezeichnung Typ Beschreibung

MPPrefs Normal Nachricht zur Festlegung von Motion Planning
Parametern. Wird in der Initialisierungsphase
gesendet

Robot Normal Legt einzelne SPMs an

Robotpool Normal Legt einen Pool von SPMs an

moveRobot Request Fordert die Bewegung eines bestimmten SPMs an.

-122 -

movePoolmember Request Fordert die Bewegung eines SPMs aus einem
bestimmten Pool an.

freeRobot Request Freisetzen eines SPMs nach Ausfihrung eines
Auftrags

removeRobot Request Entfernt einen SPMs aus der Visualisierung

StillComputingPath Reply Beinhaltet die voraussichtlich benétigte Zeit zur
Berechnung eines Wegs

ExpectedArrivalTime Reply Voraussichtlich bendtigte Zeit eines SPMs fir einen
Auftrag

CheckArrival Request Prifung auf erfolgreiche Ausfiihrung eines Auftrags

Arrival Reply Ankunft eines SPMs am Ziel seines Auftrags

Tabelle 16: Nachrichtenerweiterung fiir das Motion Planning

Abbildung 34 zeigt eine schematische Darstellung einer optimalen Fahrt eines SPM durch
ein Simulationsmodell. Ware der entsprechende SPM auf seinem Weg aufgehalten
worden, wirde die jeweilige Check-Arrival-Message mit einer neuen
ExpectedArrivalTime-Message beantwortet werden.

hlotionPlanning J
| Mode b austein Start: | | Baustein Steusmnc: | | I ati onP lanni neg | | Modelb austein Ende:

1 1 1
1 13 bestelle_spm 1 1
’ 1 1

2] novesP MToStagl i

) expededirival Time

F--]

3) .check Arhad

I

Farrival

4) moveSPMToEnd !

4.._1_

 expectedarivalTime | |
5) .check Srrival !

4.._1_

4 Sharrival

1
E).5P W arfived
1
E) auttraghone
1) auftragD - -mmm
auftragD ohe
- 2L

Abbildung 34: Sequenzdiagramm des Motion Planning Nachrichtenprotokolils

Mit dem hier dargestellten und fir dynamische Detaillierung und Motion Planning
erweiterten Nachrichtenprotokoll wird eine Kommunikation zwischen Visualisierungs-
komponenten, Motion Planning Modul und Simulatorkern ermdglicht. Durch die
EinfUhrung der Rickwartssimulation im folgenden Abschnitt muss das
Nachrichtenprotokoll wie auch die Modellbeschreibung eventuell ausgebaut werden. Fir
die hier dargestellten Aufgaben ermdglicht das Protokoll eine Manipulation der
Simulationsdaten zur Ausflihrungszeit eines Simulationsmodells und schafft damit neben
der Modellbeschreibung die Grundlagen zu einer immersiven und interaktiven
Modellierungs- und Simulationsumgebung flir den Anwender.

Konzeption -123 -

5.2.3 Verwaltung der Experimentdaten

Zur Speicherung der Datenmenge eines Simulationsexperimentes soll in diesem
Abschnitt eine Struktur vorgestellt werden, die durch eine Beschreibung im XML-Format
umgesetzt werden soll. Neben der \vollsténdigen Sicherung aller flir ein
Simulationsexperiment erforderlichen Daten sollen hier auch Szenarios definiert werden,
die bei Bedarf mit wechselnden Eingabedaten simuliert werden kénnen. Dieses Vorgehen
unterstitzt den Anwender beim erweiterten Einsatz der Ablaufsimulation, weil das
wiederholt Parametrieren des Simulationsmodells durch die Verwendung eines Szenarios
entfallt. Nur die jeweils aktuellen Prozessabbilder als Eingabedaten werden aktualisiert
und fihren zu veranderten, auf die aktuelle Situation angepassten Ergebnissen.

Aufgrund der stochastischen Einflisse zufallsverteilter Variablen innerhalb der
Modellbausteine miissen Simulationsmodelle mehrfach ausgefihrt werden, um die
statistische Schwankungsbreite der Zielkriterien einer Simulation erkennen zu kdnnen.
Deshalb bestehen Simulationsexperimente immer aus mehreren Simulationslaufen (vgl.
Abschnitt 3.1). Ein Experiment kann also in einem ersten Schritt in die einzelnen
Simulationslaufe getrennt werden. Darlber hinaus vervollstandigen Angaben zu
Simulationsmodell, inklusive Versionsnummer, Anwender Start- und Endzeit der
Simulation, Ausfihrungsdatum sowie untersuchtem Szenario etc. die Angaben des
Experimentes. Jeder Simulationslauf als Element des Experiments ist durch die Menge
der Eingabedaten, die Menge der Interaktionen, einer Protokolldatei des
Nachrichtenaustauschs und die eigentlichen Ergebnisdaten gekennzeichnet, so dass fir
jeden Lauf diese Unterteilung getroffen werden kann. Die Eingabedaten lassen sich auf
die einzelnen Modellbausteininstanzen des Simulationsmodells verteilt auflisten. Fir jedes
Attribut kann hier der Startparameter gesichert werden, so dass eine Wiederholung des
Simulationslaufs erfolgen kann. Alle Interaktionen des Anwenders werden
mitprotokolliert, so dass eine exakte Kopie des Simulationslaufes geschaffen werden
kann. Eventuell kann diese als Vorlage flr eine Wiederaufnahme in Form eines weiteren
Simulationsexperimentes dienen, indem der Anwender weitere Interaktionen vornehmen
kann. Ebenfalls protokolliert wird der Nachrichtenaustausch zwischen Simulation und
Visualisierung, damit Wiederholungen einzelner Ausschnitte des Simulationslaufs erneut
in den Visualisierungskomponenten dargestellt werden kdnnen. Dadurch wird es
ermadglicht, im Nachhinein Ursachen von Effekten zu ermitteln, die in der Simulation erst
spater auftreten. Besonderheiten eines Simulationslaufs kdénnen automatisch erneut
wiedergegeben und beispielsweise in einer Expertenrunde diskutiert werden. Die
eigentlichen Ergebnisdaten enthalten eine komplette Liste aller Attribute, die lberhaupt
in dem Simulationslauf ausgewertet werden sowie jeweils die einzelnen Datensatze in
Einzelwerten oder Listen, wiederum aufgeteilt auf diejenigen Bausteininstanzen, in denen
die Kennziffern gesammelt wurden. Flr eine Analyse auf Basis von Token, die durch das
Simulationsmodell laufen, werden spezielle Auswertungsbausteine im Simulationsmodell
hinterlegt, deren Attribute ebenfalls unter den Ergebnisdaten abgelegt werden. Abbildung
35 zeigt schematisch die Baumstruktur der Experimentdatenverwaltung.

Zusammenfassend kann festhalten werden, dass mit dieser Experimentdatenverwaltung
die einzelnen Simulationsexperimente so vollstdandig in der Simulationsdatenbank
gesichert werden, dass alle relevanten Daten in einer reproduzierbaren Form gespeichert

- 124 -

werden. Einzelne Simulationslaufe kénnen erneut visualisiert werden, ohne dass eine
Wiederholung der Simulation erfolgen muss. Eine erneute Analyse wird somit erleichtert.

Experiment A Datenbank

¥ ¥ L2 ¥ ¥ ¥
I
Simulationsmodell J Anwender Szenario Datum

¥ ¥ v v
Inputdaten || Outputdaten

v
[
Modellbausteine ‘

v ¥ v ¥
Attribut 1 Attribut 2 Attribut n

Wert Liste

Interaktionen| | Nachrichten

Abbildung 35: schematische Ubersicht iiber die Experimentdatenverwaltung

5.2.4 Riickwartssimulation und Modelltransformation

Im folgenden Abschnitt soll die Konzeption einer Rlckwartssimulation beschrieben
werden, um eine Simulation hinsichtlich spatester Beginn-Zeitpunkte eines vorgegebenen
Fertigungsprogramms mittels der Ablaufsimulation zu ermdglichen. Der Materialfluss ist
riackwarts gerichtet und berechnet auf Basis vorliegender Kundenauftrége die spatesten
Beginn-Zeitpunkt der bendtigten Erzeugnisse auf Basis des Simulationsmodells.
AnschlieBend wird ein Verfahren zur Modelltransformation entworfen, auf dessen Basis
Vorwarts gerichtete Simulationsmodelle in riickwarts gerichtete Simulationsmodelle
weitestgehend automatisch transformiert werden kdnnen. Mit dem Verfahren soll der
Modellierungsaufwand fir den Anwender flr die zwei unterschiedlichen
Anwendungsbereiche reduziert werden. Er soll jeweils nur ein Simulationsmodell
modelliert werden; die jeweils umgekehrte Richtung des Materialflusses lasst sich
daraufhin Uber das Verfahren weitestgehend automatisch generieren. Dadurch wird die
Bearbeitung der mittels Rickwartssimulation untersuchten Fragestellungen fir den
Anwender erheblich erleichtert bzw. Uberhaupt erst in einem zu vertretenden Aufwand
realisierbar.

5.2.4.1 Riickwartssimulation

Im folgenden Abschnitt sollen die einzelnen Schritte zum Aufbau eines rickwarts
gerichteten Simulationsmodells beschrieben werden, um sie hinsichtlich besonderer
Schwierigkeiten bei der Umsetzung bzw. bendtigter Adaptionen der existierenden
Modellbeschreibung zu untersuchen und bewerten zu kénnen.

Konzeption -125 -

Modellierung eines riickwarts gerichteten Simulationsmodells

Die Modellierung eines rickwarts gerichteten Simulationsmodells gestaltet sich durch die
Verwendung von Bausteinbibliotheken ahnlich einfach, bzw. ohne erhéhten Aufwand im
Vergleich zu einer herkémmlichen Modellierung eines vorwarts gerichteten
Materialflusses. Die jeweiligen Modellbausteine missen flir eine Rickwartssimulation
ausgerichtet sein. Im Vorfeld erhéht sich damit der Aufwand fir das Erstellen einer
Bausteinbibliothek deutlich. Neben der Umkehrung des Materialflussgraphen muss
insbesondere die Modellierung der Quellen auf die Denkweise der Rickwartssimulation
adaptiert werden.

Als Startzeitpunkt der Riuckwartssimulation wird eine Zeit aus der Zukunft gewahlt. Am
Ende des eigentlichen Simulationslaufes erhalt man als Simulationsergebnis die
Startzeiten der einzelnen Fertigungsprozesse, um die geplanten Erzeugnisse
termingerecht fertigen zu koénnen. Im Zuge der Rickwartssimulation missen alle
Verteilungsregeln umgekehrt werden und ggf. an anderen Stellen im Modell
implementiert werden. Abbildung 36 verdeutlicht die Unterschiede in der Steuerung des
Materialflusses zwischen Vorwarts und Rlckwarts gerichteten Materialfliissen. Dabei
missen die entsprechenden Verteilregeln zwischen Vorwarts- und Rickwartssimulation
entsprechend adaptiert werden.

Logik zur Verzweigung
A

-
I - -
—— - —— - e - - -
- -
- -
- -

3 3

Abbildung 36: Vergleich eines Materialflusses in Vorwarts und Riickwarts
Richtung

Wie obige Abbildung zeigt, liegt bei dem vorwarts gerichteten Simulationsmodell die
Steuerungslogik zur Aufteilung des Materialflusses innerhalb des Modellbausteins A. Bei
der Umkehrung des Simulationsmodells wird diese Information in Modellbaustein D
bendétigt, um das prinzipiell gleiche Flussverhalten zu erzeugen.

Durch die in Abschnitt 5.2.1 entwickelte Modellbeschreibung kénnen prinzipiell rickwarts
gerichtete Materialflisse modelliert und gespeichert werden, ohne Erweiterungen an der
Modellbeschreibung vornehmen zu missen. Lediglich der Informationsgehalt der durch
das Simulationsmodell laufenden Marken andert sich durch die rickwarts gerichtete
Ausfliihrung. Um dem Anwender die Modellierungsarbeit zu vereinfachen, kénnen auch
hier Bibliotheken von Modellbausteinen angelegt werden, die durch entsprechende Links
verbunden werden. Dabei wandeln sich in der rickwarts gerichteten Modellierung
Verzweigungen zu Zusammenfuhrungen und umgekehrt. Die Transformation des
eigentlich vorwarts laufenden Materialflusses zu einem rickwarts gerichteten

- 126 -

Simulationsmodell erfolgt hier aber implizit durch den Anwender. Fir die Quellen und
Senken eines Simulationsmodells missen dennoch neue Modellbausteine konzipiert und
in den Bibliotheken abgelegt werden. Durch die unterschiedlichen Fragestellungen bei
Vorwarts- und Rlckwartssimulation kénnen die vorhandenen Bausteine nicht weiter
verwendet werden.

Ausfiihrung eines riickwarts gerichteten Simulationsmodells

Die Ausfihrung eines rickwarts gerichteten Simulationsmodells in einem diskreten
Materialflusssimulator, wie er durch das zu entwickelnde Werkzeug realisiert werden soll,
stellt hinsichtlich des reinen Markenflusses keine besonderen Anforderungen an das
Simulationsmodell. Lediglich die Fortschreibung der externen Simulationszeit wahrend
der Berechnung des Simulationsmodells im Simulatorkern und damit die Terminierung
von Folgeereignissen eines bestimmten Zeitpunktes erfordert eine Unterscheidung
zwischen vorwarts und rickwarts gerichtetem Modell und damit fortschreitend bzw. in
der Zeit zuriick schreitendem Zeitmodell. Hier bieten sich fir die Implementierung
innerhalb des Simulatorkerns zwei Methoden an, die eine zeitlich rlickwérts gerichtete
Berechnung erlauben.

Eine strikte Umsetzung von Vorwarts- und Rickwartssimulation muisste im Simulatorkern
explizit zwischen beiden Simulationsarten unterscheiden. Dementsprechend lauft die
Simulationszeit vorwarts oder rickwarts, so dass in der Konsequenz der Scheduler des
Simulatorkerns als Verwalter geplanter Ereignisse die Liste aller geplanten Ereignisse
rickwarts durchlaufen muss, um die zeitlich am weitesten fortgeschrittenen und damit
die nachsten fiur die RUckwartssimulation zu verwendenden Ereignisse abzuarbeiten.
Insbesondere fiur die Ausfiihrungsgeschwindigkeit sind die dafir anfallenden
Fallunterscheidungen zwischen Vorwarts- und Rickwartssimulation als negativ zu
betrachten.

Die alternative Methode betrachtet den Simulator als eigenstandiges Objekt und bildet
die Vorwarts- bzw. Rickwartssimulation Uber verschiedene Abbildungen auf den jeweils
darzustellenden Kalender ab. Das entspricht zunachst auch dem Ziel der Modularisierung
der einzelnen Funktionen, wie sie durch die objektorientierte Programmierung bevorzugt
werden (vgl. 3.5.2). Zusatzlich kann im Simulatorkern dadurch eine auf der internen
Simulationszeit basierende vollstandige und eindeutige Berechnung der Ereignisse ohne
jeweilige Fallunterscheidung erfolgen. Alle verwendeten Datenstrukturen kénnen auf
diese spezielle Verwendung hin optimiert werden, was insgesamt eine beschleunigte
Berechnung erlaubt. Durch die Transformation der internen Simulationszeit auf einen
externen Kalender kann eine Parametrierung und Darstellung Uber prinzipiell beliebige
externe Kalender erfolgen. Der Simulator bleibt so ebenfalls erweiterbar fir die
Integration von weiteren Kalendern wie Werkskalendern von Fertigungsunternehmen
oder externen Kalendern mit fixen Zeitinkrementen (Schichtgenaue Betrachtung, etc.).
Dieses Vorgehen wird aus den genannten Grinden bevorzugt und soll in der
Implementierungsphase umgesetzt werden.

Auswertung eines riickwarts gerichteten Simulationsmodelils

Ebenso wie die Modellierung unterscheidet sich die Auswertung von rlckwarts
gerichteten Simulationsmodellen nicht grundlegend von der Auswertung des
entsprechenden Pendants. Aufgrund der unterschiedlichen Untersuchungszwecke bei
Vorwarts- und Rickwartssimulation unterscheiden sich die Zielkriterien und damit

Konzeption -127 -

mdgliche Auswertungen von denen eines entsprechenden vorwarts gerichteten
Simulationsmodells. Die in den Auswertungs- und Visualisierungsmodulen zur Verfligung
stehenden Auswertungsmoglichkeiten sollen aber auch flr die rickwarts gerichteten
Simulationsmodelle ausreichend sein, da sie nur eine entsprechende Darstellungsform
reprasentieren, ohne diese an eine inhaltliche Aussage zu knipfen.

5.2.4.2 Modelltransformation

Um dem Modellierer die Erstellung eines Simulationsmodells zur Rickwartssimulation zu
erleichtern, soll ein Verfahren entwickelt werden, anhand dessen Simulationsmodelle
weitgehend automatisch invertiert werden koénnen. Sie sollen in der unter 4.2.1
vorliegenden Modellbeschreibung vorliegen. Auf Basis vorliegender Materialfliisse werden
Grundstrukturen identifiziert, die in einem Folgeschritt hinsichtlich ihrer Invertierung in
ein ruckwarts gerichtetes Pendant untersucht werden. Der Vorteil dieser Zerlegung des
Materialflusses in einzelne Komponenten liegt in der Moéglichkeit zur Automatisierung der
Erkennung und Invertierung der jeweiligen Grundstrukturen. Dazu soll zuerst eine
geeignete Form der Darstellung ausgewahlt und erldutert werden. Der nachfolgende
Abschnitt befasst sich mit der Identifikation und Auflistung der Grundstrukturen. Sie
werden beziliglich ihrer Umkehrung im Sinne einer Rickwartssimulation untersucht. Die
dadurch erreichte Vereinfachung eines Simulationsmodells durch die Zerlegung in
Grundstrukturen wird anschlieBend anhand eines Beispiels gezeigt und das intendierte
Verfahren zur automatischen Modelltransformation vorgestellt.

Darstellung der Materialfliisse

Die Darstellung der Materialfliisse soll auf die spezifische Problemstellung zugeschnitten
werden. Im vorliegenden Fall kann die Darstellungsform auf das Abbilden der
Bausteininstanzen und ihrer Beziehungen simplifiziert werden. Bausteininstanzen werden
durch einfache Rechtecke dargestellt. Jeder Block verfligt tber beliebig viele Input- und
Output-Channel. Zur Vereinfachung wurde auf die Darstellung der Input- und Output-
Channel verzichtet. Bausteininstanzen werden direkt durch Pfeile verbunden. Dariber
hinaus gilt, dass entsprechend der Modellbeschreibung alle Pfeile nur verlinkenden
Charakter haben und demnach eine rein logische Abfolge darstellen. Sie enthalten
zunachst keine oder zeitliche Information. Férderstrecken oder Transportsysteme werden
demnach ebenfalls durch Modellbausteine dargestellt.

Stanz-
maschine 1
Bohr-
Quelle maschine » Senke
Stanz-
maschine 2

Abbildung 37: Darstellung einer einfachen Fertigungslinie

Identifikation der Grundstrukturen

- 128 -

Wesentlicher Aspekt bei der Suche nach Grundstrukturen innerhalb von
Materialflussstrukturen ist die Frage nach deren Anzahl und Typisierung. Viele
Strukturformen sind sich so ahnlich, dass sie problemlos in Typen zusammengefasst
werden kdénnten. Trotzdem ergeben sich auch unter Verwendung von Grundstrukturen
einige Formen, die nicht weiter zusammenzufassen sind. Das Hauptproblem stellen
hierbei die Schnittstellen zu anderen Modellbausteinen, bzw. zu anderen Grundstrukturen
dar: Wird eine bestimmte Struktur als Grundstruktur definiert, dirfen nur an festen
Modellbausteinen Ein- oder Ausgange sein, andernfalls gehen wichtige Informationen
verloren und eine Grundstruktur kann nicht mehr eindeutig beschrieben werden.
Abbildung 38 verdeutlicht dieses Problem: Ware die in a) dargestellte Struktur eine
Grundstruktur, so miisste trotz der Ahnlichkeit b) eine weitere Grundstruktur sein, da
sich an den Modellbausteinen 2 und 3 unzulassige Ein- bzw. Ausgange befinden.

i

a)—>1/2\4—>b)—>1/2\4—>
NS NGV

Abbildung 38: Schnittstellen bei Grundstrukturen

Ware aber die in b) dargestellte Struktur ebenfalls eine Grundstruktur, wirde das
Problem der Grundstrukturen nur verschoben, weil die Anzahl der Strukturen deutlich
vergroBert wirde. Alternativ dazu soll im weiteren Verlauf eine Liste von Grundstrukturen
erstellt werden, deren Umfang vertretbar ist und die alle besonders haufig auftretende
Strukturen enthalt, so dass die meisten Materialflisse dadurch zumindest deutlich zu
vereinfachen sind. Alle weiteren Strukturen, die in Materialflussmodellen zu finden sind,
sollen vom Anwender manuell auf Grundstrukturen zurtickgefiihrt oder alternativ manuell
invertiert werden.

Listen von elementaren Grundmustern in Materialfliissen finden sich in der Fachliteratur
haufig. Sie dienen in der Regel nicht dem Zweck der Vereinfachung oder Zerlegung
komplexer Strukturen, sondern geben vielmehr typische und praxisnahe Anordnungen
von Fertigungsmitteln wieder. Der Zweck solcher Listen besteht meist darin, an diesen
Beispielen typische Eigenschaften oder Probleme von Materialflissen zu verdeutlichen.
Dennoch bilden solche Listen eine solide Ausgangsposition fiir einen Katalog von
Grundstrukturen zum Vereinfachen von Materialflissen. Abbildung 39 zeigt eine solche
Liste nach [FiHeO0O]. In der dort gewahlten Darstellung sind jedoch die Kanten bzw. Pfeile
nicht ohne Bedeutung. Zunachst missen diese Verkettungsstrukturen also an die
gewahlte Darstellungsform angepasst und interpretiert werden. Dazu missen Strukturen,
die in Abbildung 39 aus Pfeilen oder ahnlichen Darstellungsformen bestehen, mit Hilfe
von Modellbausteinen dargestellt werden. Dies kann je nach Detaillierungsgrad auf
unterschiedliche Weise geschehen, weil komplexe Transport- oder Fertigungssysteme
durch einen einzigen Modellbaustein, oder auch als Struktur aus vielen Modellbausteinen
dargestellt werden koénnen. Die Struktur der Pfeile aus Abbildung 39 kann also
unterschiedlich interpretiert werden. Dies spielt jedoch solang keine Rolle, wie alle
gewahlten Strukturen als Grundstrukturen identifiziert werden kénnen.

Konzeption -129 -

N RS Unverzweigte Linie I—;-I
|‘¢__| Stern
Parallele, nicht
-»% notwendigerweise
identische Linie
. < ? /} Linie mit Bypass Schleife
. Linie mit
Ruckfuhrung

Nebenschluss-
struktur L] L]

Netz

Abbildung 39: Verkettungsstrukturen in Fertigungssystemen [nach FiHe00]

Abbildung 40 zeigt die Anpassung an die gewahlte Darstellung. Da in der bisher
gestalteten Modellbeschreibung lediglich Modellbausteine Uber Input- und Output-
Channel verfligen, milssen alle Verzweigungen und Transportstrecken durch
Modellbausteine reprasentiert sein. Exemplarisch sollen im Folgenden einige
Umformungen naher erlautert werden.

Bei den parallelen Linien missen beispielsweise bei Verzweigung und Zusammenfihrung
Modellbausteine eingefligt werden. Die Lange der Linien wird nicht weiter dargestellt, da
die einzelnen Linien ihrerseits durch unverzweigte Linien ersetzbar sind. Die Anordnung
der Modellbausteine ist davon unbetroffen. Die Nebenschlussstruktur kann auf zwei
Weisen angepasst werden. Entweder wird jede einzelne Verzweigung durch einen
Modellbaustein reprasentiert oder die Verteilung des Materialflusses durch ein einziges,
komplexeres Transportsystem interpretiert und dieses durch einen einzigen
Modellbaustein dargestellt. Das Ergebnis ware dann eine Sternstruktur. Das Netz wird
nicht Gbernommen, da es im Grunde alle Strukturen reprasentiert, die nicht durch die
anderen Strukturen darzustellen sind. Aus den Vorilberlegungen ergab sich bereits, dass
solche Strukturen zur Vereinfachung von Materialflissen nicht zweckmaBig sind und vom
Anwender manuell zu invertieren sind.

Grundsatzlich sind die Pfeilrichtungen zu beachten. Bidirektionale Pfeile, wie in den
Abbildung 39 wund Abbildung 40 verwendet werden, sind in der gewdahlten
Darstellungsform nicht vorgesehen, weil sie durch die Modellbeschreibung aktuell nicht
abgebildet werden koénnen. Sie werden an dieser Stelle nur zur besseren Ubersicht
verwendet. Ein bidirektionaler Pfeil symbolisiert zwei gegensatzlich gerichtete
Einzelpfeile.

- 130 -

Ausgangsdarstellung Angepasste Darstellung

A gl g B B B B B B g B

R
- | g
SR R e

ERIEEE
S
SR

Abbildung 40: Anpassung der Strukturen an die gewahlte Darstellungsform

In einem weiteren Schritt werden die gefundenen Ausgangsldsungen fir Grundstrukturen
durch die Anwendung von Zerlegungen an realen Materialfliissen verfeinert. In diesem
Rahmen wird festgestellt, welche Grundstrukturen such durch Kombinationen von zwei
oder mehr Grundstrukturen ausdriicken lassen. Im folgenden Abschnitt werden die
resultierenden Grundstrukturen beschrieben. Diese Form der Identifikation von
Grundstrukturen mittels empirischer Untersuchung flhrt nicht zwangslaufig zu einer
vollstéandigen Losung, bietet aber im Rahmen einer praxistauglichen Anwendung des
Werkzeugs gute Ergebnisse. Durch die flexible Erweiterung aller bendétigten Strukturen
lassen sich auch im Nachhinein weitere Strukturen der Menge der Grundstrukturen
hinzufligen.

Konzeption -131 -

Typisierung der Grundstrukturen

Bei der Zerlegung und Vereinfachung eines Materialflusses muss Uberlegt werden, wie
eine maoglichst starke Vereinfachung ohne Informationsverlust erreicht werden kann.
Jede der festzulegenden Grundstrukturen muss daher eindeutig beschreibbar sein. Ihre
Anwendung muss einheitliche Merkmale aufweisen, die nicht zusatzlich gesichert werden
mussen. Um die Zahl der Grundstrukturen jedoch auf einen sinnvollen Rahmen zu
begrenzen, sind einige wenige variable Parameter zweckmdBig. Sie sollten aber nur die
GréBe der Grundstruktur und nicht ihre Struktur bzw. ihre duBere Form betreffen. Ziel ist
es also, eine einheitliche Funktionsstruktur bei variabler GréoBe der Grundstrukturen
sicherzustellen. Es muss daher zwischen fixen und variablen Parametern bei
Grundstrukturen unterschieden werden.

Fixe Parameter umfassen bei allen Grundstrukturen die Form der Struktur und ihre
jeweiligen Schnittstellen. Das heiBt insbesondere, dass Input- und Output-Channel nur
an den daflir vorgesehenen Modellbausteinen erlaubt sind. Variable Parameter sind in der
Regel die Anzahl von Ein- und Ausgdngen sowie die Anzahl bestimmter Modellbausteine.
Die Anzahl der Ein- und Ausgange stellt kein Problem dar, weil sie durch die Anwendung
einer Vereinfachung nicht verschwinden. Verdeutlichen soll dies Abbildung 41.

a) /
TN\

Abbildung 41: Vereinfachung einer Struktur

AAJ

b)

1AA]

Abbildung 41 links (Teil a) zeigt exemplarisch die Grundstruktur ,parallele Linie", wie sie
bereits aus Abbildung 39 bekannt ist. Im dargestellten Fall verfligt sie (ber zwei Ein- und
drei Ausgange. Wird diese Struktur nun vereinfacht, also durch einen einfachen
Modellbaustein ersetzt, der die Grundstruktur ,parallele Linien™ reprasentiert, so geht die
Information der Anzahl der Ein- und Ausgange offensichtlich nicht verloren. Anders sieht
es bei der Anzahl bestimmter Modellbausteine innerhalb der Struktur aus. Dies zeigt
Abbildung 42.

2.1

2.1
a)—>1<2'2>3—>b)—>1\=‘2.2 3 B
2.3

Abbildung 42: Variable Anzahl Modellbausteine innerhalb Grundstrukturen

Der linke Teil a) von Abbildung 42 zeigt erneut die bekannte Grundstruktur. Die im
rechten Teil b) der Abbildung dargestellte Struktur kann allerdings auch unter diese
Grundstruktur fallen, da sie grundsatzlich eine gleiche Form aufweisen. Das Event, in
dem die Aufteilung des Materialflusses beschrieben wird, wird fir jede Struktur individuell
erstellt; es macht folglich keinen Unterschied, ob der Fluss auf zwei oder mehr

- 132 -

Modellbausteine aufgeteilt wird. Solche variablen Parameter treten bei vielen
Grundstrukturen auf. Sie miussen vor bzw. wahrend des Vereinfachungsprozesses
nachvollzogen und gesichert werden. Im Folgenden werden die identifizierten
Grundstrukturen beschrieben und ihre fixen und variablen Parameter erlautert.
AbschlieBend werden jeweils Sonderfalle betrachtet. Dies dient insbesondere zur
gegenseitigen Abgrenzung einzelner Strukturen untereinander. Zundachst sollen die
Grundtypen Quelle, Senke, unverzweigte Linie, Verzweigung und Zusammenschluss
erladutert werden. Im Anschluss werden Grundstrukturen einer hdheren Ordnung
vorgestellt, das heiBt, sie lassen sich aus den vorhergehenden Strukturen erzeugen,
bilden aber selbst wieder feste Strukturen, wie sie in Materialfliissen haufig vorkommen
und qualifizieren sich damit als eigener Typ einer Grundstruktur. Zu Ihnen gehéren die
Kreuzung, die parallele Linie, die Linie mit Rickfiihrung und der Stern.

Quelle und Senke

Quellen bzw. Senken bilden den Ursprung bzw. das Ende eines jeden
Materialflussmodells ab. Je nach abgebildetem Fertigungsprozess kann ein
Simulationsmodell durchaus mehrere Quellen und/oder Senken beinhalten. Quellen und
Senken sind immer einzelne Modellbausteine, die als solche leicht identifiziert werden
kdnnen. Sie erzeugen bzw. vernichten die durch den Materialfluss ,wandernden®™ Token
nach der vom Anwender implementierten Methodik. Eine Quelle zeichnet sich dadurch
aus, dass sie keinen Eingang, aber mindesten einen Ausgang besitzt. Analog zeichnen
sich Senken insbesondere dadurch aus, das sie keinen Ausgang haben, aber mindestens
einen Eingang.

Unverzweigte Linie

Abbildung 43: Grundstruktur ,Unverzweigte Linie"

Abbildung 43 zeigt eine unverzweigte Linie. Bei dieser relativ einfachen Grundstruktur
sind die Flussrichtungen der einzelnen Modellbausteine zu beachten. Die Grundstruktur
unverzweigte Linie herrscht nur dann vor, wenn alle logischen Verknlipfungen in die
gleiche Richtung zeigen. Eingange sind lediglich an Modellbaustein 1 zuldssig, Ausgange
nur an Modellbaustein n. Die Anzahl der jeweiligen Ein- und Ausgange der
Modellbausteine innerhalb der Grundstruktur ist beliebig, muss aber innerhalb der
Grundstruktur konstant sein. Dariber hinaus muss sichergestellt werden, dass innerhalb
der Grundstruktur keine Kreuzungen der Materialflisse entstehen, beispielsweise wenn
die unterschiedlichen Stréange unterschiedliche Token transportieren. Neben der Anzahl
von Ein- und Ausgéngen bildet die Anzahl der Modellbausteine zwischen 1 und n bzw. die
Gesamtanzahl der Modellbausteine in der Struktur die variablen Parameter der
Grundstruktur. Als Sonderfall dieser Struktur muss dariber hinaus erkannt werden, dass
eine Vereinfachung einer unverzweigten Linie nicht zu einem Kreis innerhalb des dann
neu entstandenen Modellbausteins fuhrt (vgl. Abbildung 44). In diesem Fall kann die
Struktur nicht zur unverzweigten Linie zusammengefasst werden.

Konzeption -133 -

Vereinfachung?

1 » 2 » 3 1_neu

Abbildung 44: Vereinfachung der unverzweigten Linie fiihrt zum Kreis

Verzweigung

Abbildung 45 zeigt die Grundstruktur ,Verzweigung". Die Pfeile, die die Richtung des
Materialflusses symbolisieren, gehen hier lediglich in eine Richtung, weg vom zentralen
Modellbaustein (in Abbildung Baustein 1) hin zu den auBeren, angehangten
Modellbausteinen. Deren Anzahl ist beliebig (variabler Parameter), aber gréBer oder
gleich eins. Somit miuissen die Modellbausteine 2.1 bis 2.n letztendlich die Form einer
Senke darstellen oder in einer Senke enden. Eine beliebige Menge von Ein- und
Ausgangen sind an Modellbausteine 1 selbst zulassig.

2.1
A

A
2.n

Abbildung 45: Grundstruktur ,Verzweigung"

Einen Sonderfall stellt die Struktur dar, wenn sie, wie in Abbildung 46, keinen Ausgang
besitzt. Diese Struktur unterliegt denselben Regeln wie eine ubliche Verzweigung. Endet
die Verzweigung ohne Ausgang nicht in jedem angeschlossenen Modellbaustein (2.1 ...
2.n) in einer Senke, kann eine Grundstruktur hoherer Ordnung vorliegen, fir die
vereinfachte Umkehrregeln erstellt werden kdénnen.

/ 2.1
» 1 \
2.n

Abbildung 46: Verzweigung ohne Ausgang

Zusammenfihrung

Abbildung 47 zeigt den analogen Fall zur vorgestellten Verzweigung: die
Zusammenfihrung. Hier ist lediglich die Flussrichtung umgedreht. Die Anzahl der
angehdngten Modellbausteine ist mindestens eins, die Anzahl der Ein- und Ausgange ist
beliebig. Ein- und Ausgédnge sind nur an Modellbaustein 1 zulassig.

- 134 -

2.1

Abbildung 47: Grundstruktur ,Zusammenfiihrung™

Die Modellbausteine 2.1 bis 2.n missen aus Quellen resultieren. Der Sonderfall ist hier
analog der Fall ohne Eingang (vgl. Abbildung 48). Die eigentliche Funktionsweise
unterscheidet sich ebenfalls nicht vom vorgestellten Typ. Dieser Sonderfall ist in der
Praxis nicht selten am Anfang von Materialflissen aufzufinden.

2.1

2.n

Abbildung 48: Zusammenfiihrung ohne Eingang

Kreuzung

21 | ... | 2n

N

> 1 b

AN

31 | ... | 3n

Abbildung 49: Grundstruktur ,,Kreuzung™

Abbildung 49 zeigt die Grundstruktur ,Kreuzung". Diese Struktur ist die erste
Grundstruktur einer hoheren Ordnung, denn sie stellt eine Kombination aus
Zusammenfihrung und Verzweigung dar. Die Anzahl der ,eingehenden® (2.1 bis 2.n) und
~ausgehenden" (3.1 bis 3.n) Modellbausteine ist jeweils mindestens eins. Ein- und
Ausgdnge sind nur am zentralen Modellbaustein (in Abbildung: Modellbaustein 1)
zulassig. Ihre Anzahl ist prinzipiell beliebig (siehe oben). Von dieser Struktur sind keine
Sonderfalle bekannt.

Parallele Linie

2.1

+1/5 3 >
N

2.n

Abbildung 50: Grundstruktur ,Parallele Linien™

Konzeption -135 -

Abbildung 50 zeigt die Grundstruktur ,Parallele Linie". Fixe Parameter sind neben der
Form der Struktur die Position der Ein- und Ausgange an den Modellbausteinen 1 bzw.
Modellbaustein 3. Die Anzahl der jeweiligen Ein- bzw. Ausgdnge zahlt zu den variablen
Parametern und ist beliebig. Die Zahl der parallelen Linien (in Abbildung: 2.1 ... 2.n) ist
ebenfalls variabel, aber gréBer eins. Sonderfalle dieser Struktur sind ebenfalls nicht
bekannt, da der Sonderfall nur einer parallelen Linie von der Grundstruktur unverzweigte
Linie (siehe oben) bereits abgebildet wird.

Riickkopplung

/ :
> 1 \ 3
4

Abbildung 51: Grundstruktur ,,Riickkopplung™

Im Gegensatz zur parallelen Linie ist die Flussrichtung bei der Grundstruktur
Rickkopplung in einem Zweig umgedreht (vgl. Abbildung 51). Dariber hinaus besteht
die Riuckkopplung nach allen méglichen Vereinfachungen innerhalb der einzelnen
Modellbausteine aus immer genau vier Modellbausteinen. Eingange sind nur an
Modellbaustein 1, Ausgange ausschlieBlich an Modellbaustein 3 zuldssig. Die Anzahl von
Ein- und Ausgangen ist beliebig und stellt den einzigen variablen Parameter dieser
Struktur dar. Sonderfalle dieser Struktur sind nicht bekannt.

Stern

2.1 22

N

> 1

N

23 ves 2.n

Abbildung 52: Grundstruktur ,Stern"

Die Grundstruktur ,Stern™ ist in Abbildung 52 dargestellt. Charakteristisch flir eine
Sternstruktur ist eine bidirektionale Verbindung einer prinzipiell beliebigen Anzahl von
Modellbausteinen mit dem zentralen Modellbaustein. Diese bidirektionalen Verbindungen
typisieren im Wesentlichen die Sternstruktur und grenzen diese von anderen
Grundstrukturen ab. Es ist daher groBer Wert auf die Flussrichtungen der Verknipfungen
zu legen. Die Anzahl der angehdngten Modellbausteine stellt neben der Anzahl der Ein-
und Ausgdnge einen variablen Parameter dar. Fixer Parameter ist dagegen die Position
der Ein- und Ausgange, die beiden lediglich an Modellbaustein 1 zuldssig sind. Einen
Sonderfall der Sternstruktur bildet die Sternstruktur mit nur einem angehdngten
Modellbaustein (vgl. Abbildung 53). Dieser Fall hat auBerlich nicht viel mit der
Vorstellung eines Sterns gemein, stellt aber dennoch im Grunde den einfachsten Fall
einer Sternstruktur dar.

- 136 -

Abbildung 53: Stern mit nur einem angehdngten Modellbaustein

AbschlieBend sollen die identifizierten Grundstrukturen auf die in Abbildung 40
dargestellten Strukturen angewendet werden, die den Ausgangspunkt flr die
Identifikation bildeten. Es fédllt zunachst auf, dass die Strukturen ,Unverzweigte Linie®,
JParallele Linie", ,Linie mit Ruckfihrung" sowie ,Stern“ unverandert U(bernommen
werden, wobei in der gewahlten Darstellungsform ,Parallele Linie™ und ,Linie mit Bypass"
aquivalent sind. Erweitert wurden diese um die Grundstrukturen ,Verzweigung",
.Zusammenfihrung® und ,Kreuzung“, da diese haufig auftreten und in ihren
Eigenschaften nicht durch andere Grundstrukturen darzustellen waren.
~Nebenschlussstruktur® und ,Schleife® kdénnen durch die Anwendung von
Grundstrukturen auf eben diese zurlickgefihrt werden. Abbildung 54 zeigt diesen
Vorgang beispielhaft fir die Nebenschlussstruktur.

a) » > o > =)]]

Abbildung 54: Vereinfachung der Struktur ,,Nebenschluss"

Teil a) der Abbildung (links) zeigt die Ausgangsstruktur. Nach dreimaliger Anwendung
der Grundstruktur ,Stern™ entsteht, wie Teil b) (in Abbildung 54 rechts) zeigt, eine
LsUnverzweigte Linie", die ihrerseits wiederum eine Grundstruktur darstellt. Ahnlich die
Verfahrensweise bei der Schleife (vgl. Abbildung 55). Hier wird unter a) zundchst
sechsmal die Grundstruktur ,Stern™ zur Vereinfachung angewendet. Das Ergebnis dieser
Vereinfachung zeigt Teil b) der Abbildung. In Teil ¢) wird nun noch zweimal die
Grundstruktur ,Unverzweigte Linie" angewendet. Das Ergebnis, dargestellt in Teil d) der
Abbildung, bildet die Grundstruktur ,Rickkopplung®. Es ist demnach nicht notwendig die
Strukturen ,Nebenschlussstruktur® und ,Schleife® in den Katalog der Grundstrukturen
aufzunehmen, da sie sich durch Kombination verschiedener anderer Grundstrukturen
bereits ausdriicken lassen. Im Gegensatz zu den festgelegten Grundstrukturen hdherer
Ordnung, die sich ja ebenfalls durch andere Grundstrukturen ausdricken lassen, treten
Nebenschlussstruktur und Schleife auch weniger haufig auf, bzw. sind innerhalb des
Materialflusses deutlich schwerer zu identifizieren. Insbesondere deshalb wurde hier auf
die Aufnahme der Strukturen in den Katalog der Grundstrukturen verzichtet.

Konzeption -137 -

CHchc i
L
c)m d)

Abbildung 55: Vereinfachung der Struktur ,,Schleife™

Explizit soll an dieser Stelle nochmals darauf hingewiesen werden, dass die identifizierten
und in den Katalog aufgenommenen Grundstrukturen keineswegs als ,vollstandig"
anzusehen sind. Wie bereits bei der Identifikation der Grundstrukturen dargelegt wurde,
kann keine reduzierte Liste existieren, mit der alle denkbaren Materialfliisse vollstandig
zerlegbar waren. Erklartes Ziel soll deshalb sein, einen Katalog an Grundstrukturen zu
entwickeln, mit dem maglichst viele in der Praxis vorkommende Materialfliisse mdglichst
weit zu vereinfachen sind. Es kann daher in speziellen Anwendungsbereichen der
Ablaufsimulation sinnvoll sein, diesen Katalog spezifisch zu erweitern.

Vereinfachung des Materialflussmodells durch Zerlegung

Nach der Identifizierung der Grundstrukturen soll an dieser Stelle auf den Vorgang der
eigentlichen Zerlegung und damit Vereinfachung von Materialflissen eingegangen
werden, die in einem Simulationsmodell beschrieben wurden. Zunachst werden dazu
Regeln erlautert, die bei jeder Zerlegung zu bertcksichtigen sind, um die Konsistenz des
Simulationsmodells zu wahren. AnschlieBend wird anhand eines Beispiels die Zerlegung
eines Materialflusses durchgefihrt.

Regeln fiir die Zerlegung

Bei der Zerlegung von Materialflissen missen neben den bereits eingeflihrten variablen
Parametern, die vor allem die Struktur der Modelle betreffen, weitere Gesichtspunkte
berlicksichtigt werden. Zum besseren Verstandnis soll zundachst das beabsichtigte
Vorgehen bei der Erstellung eines Rickwartssimulationsmodells auf Basis eines
vorliegenden Vorwartsmodells kurz erlautert werden. Es beinhaltet im Wesentlichen drei
Schritte: Die Zerlegung und Vereinfachung des vorwarts gerichteten Ausgangsmodells,
die Invertierung aller einzelnen Komponenten und abschlieBend die Zusammensetzung
der invertierten Komponenten zu einem rickwarts gerichteten Simulationsmodells. Die
Zerlegung innerhalb des ersten Schrittes soll unter Zuhilfenahme der Grundstrukturen
geschehen. Alle identifizierten Grundstrukturen kénnen im zweiten Schritt automatisch
invertiert werden. Es ist aber anzunehmen, dass in manchen Fallen ,Restmodelle™ nach
der Vereinfachung Ubrig bleiben, die nicht durch Grundstrukturen abzubilden sind. Diese
missen vom Anwender individuell interpretiert und manuell invertiert werden.
AbschlieBend werden die invertierten Modellbausteine wieder in einem Simulationsmodell
zusammengesetzt. Die Reihenfolge der Zerlegung ist exakt umzukehren. Um sowohl fir

- 138 -

die Invertierung als auch fir das Zusammensetzen der invertierten Strukturen alle
bendtigten Informationen bereitzustellen, sind bereits in der Phase der Zerlegung
bestimmte Gesichtspunkte zu beachten.

Die Modellbeschreibung des zu entwickelnden Werkzeugs wurde bewusst so angelegt,
dass einzelne Modellbausteine mit beliebigen Variablen und Events ausgestattet werden
kénnen. Diese individuellen Modellinformationen dirfen bei einer Zerlegung nicht
verloren gehen. Die Zerlegung oder Vereinfachung von Simulationsmodellen darf nicht
die eigentlichen Inhalte der Grundstrukturen reduzieren. Dies gilt insbesondere dann,
wenn eine identifizierte Grundstruktur Quellen oder Senken beinhaltet. Zur Ausfiihrung
eines Simulationslaufs wiirde das Loschen einer Quelle oder Senke den Simulationsablauf
in jedem Fall verédndern, meist unmdglich machen. Das Ausgangsmodell soll daher
durchgehend als Referenz bei der Zerlegung und auch der anschlieBenden Invertierung
und Zusammensetzung verwendet werden. Im Rahmen der Zerlegung werden
identifizierte Grundstrukturen durch Modellbausteine ersetzt, um in einem Folgeschritt
diese zusammengefassten Modellbausteine eventuell als Teilelemente weiterer
Grundstrukturen erneut zu vereinfachen (vgl. Abbildung 55). Das Konzept der
hierarchischen Modellbausteine, die weitere Bausteininstanzen beinhalten koénnen,
unterstitzt diese Vorgehensweise bereits implizit. Jede Zerlegung eines
Simulationsmodells [duft daher stufenweise in einzelnen Schritten ab: Zunachst wird das
auszufihrende Simulationsmodell auf Grundstrukturen untersucht, die sofort identifiziert
werden koénnen. Sie werden durch Ubergeordnete Modellbausteine ersetzt, deren Inhalt
zwar nicht verschwindet, aber fir den weiteren Verlauf der Zerlegung nicht weiter
betrachtet wird. Durch diese Vereinfachung kdnnen neue Grundstrukturen entstehen; das
resultierende Simulationsmodell wird iterativ in weiteren Schritten durchsucht und alle
identifizierten Grundstrukturen werden ersetzt. Die Iteration bricht ab, wenn keine
weiteren Grundstrukturen im Restfluss identifiziert werden kdnnen oder das gesamte
Simulationsmodell in einem Modellbaustein zusammengefasst ist. Die als
Grundstrukturen identifizierten Modellbausteine missen eindeutig bezeichnet und
hinsichtlich der Grundstruktur typisiert werden. Alle variablen Parameter missen zu der
identifizierten Grundstruktur protokolliert werden. AuBerdem muss die Reihenfolge der
Zerlegung festgehalten werden, da sie flr das Zusammensetzten der invertierten
Modellbausteine in der dritten Phase der Transformation von Bedeutung ist. Um die
Vorgehensweise bei der Zerlegung von Materialflissen zu veranschaulichen, wird im
Folgenden beispielhaft ein Materialfluss zerlegt.

Beispiel der Zerlegung eines Materialflusses

Abbildung 56 zeigt den Ausgangsfluss des zugrunde liegenden Simulationsmodells. Zur
besseren Ubersicht sind alle Modellbausteine gestrichelt dargestellt, die Quellen
reprasentieren. Analog sind die im Simulationsmodell vorhandenen Senken kariert
dargestellt. Jedes Auftreten einer Quelle oder Senke in einer zusammenzufassenden
Grundstruktur fihrt zur Markierung des resultierenden Modellbausteins. So ist selbst dem
vereinfachten Simulationsmodell die Grundrichtung des Materialflusses zu entnehmen
(von der Quelle zur Senke). Diese Darstellung dient im vorliegenden Fall lediglich der
Ubersichtlichkeit, kann aber fiir die zu implementierende, automatische Transformation
als Markierung Ubernommen werden. Das Zusammenfassen einer Grundstruktur, in der
Quellen und Senken auftreten, ist nach den beschriebenen Regeln abhangig von der
Grundstruktur zulassig.

Konzeption -139 -

i

Abbildung 57: Erster Iterationsschritt

In Abbildung 57 wird der erste Zerlegungsschritt durchgefiihrt, indem das
Simulationsmodell auf Grundstrukturen untersucht wird. Im Beispiel werden drei
unverzweigte Linien , drei parallele Linien und ein Stern identifiziert (in Abbildung 57
grau unterlegt). Diese werden jeweils zu einem Modellbaustein zusammengefasst. Der
daraus resultierende Materialfluss ist in Abbildung 58 dargestellt.

- 140 -

@}
“, s I,

2
i,

.

Abbildung 59: Zweiter Iterationsschritt

Im zweiten Schritt wird der Materialfluss erneut hinsichtlich neu entstandener
Grundstrukturen analysiert (Abbildung 59). Es werden drei weitere Grundstrukturen
LUnverzweigte Linie" und eine ,Parallele Linie" identifiziert. Diese werden wieder zu
Modellbausteinen zusammengefasst; das Resultat des zweiten Analyseschrittes zeigt

Abbildung 60.

Konzeption - 141 -

g

Abbildung 60: Resultat von Iterationsschritt 2

L

]
7R,

Abbildung 61: Dritter Iterationsschritt

Abbildung 61 stellt den dritten Schritt der Zerlegung dar. Es treten hier eine
~Zusammenfihrung" und zwei ,Sterne™ auf. Bei diesem Schritt ist gut zu erkennen, wie
sich aus dem Zusammenfassen von Grundstrukturen im vorherigen Schritt (den
LUnverzweigten Linien" und ,Parallelen Linien") neue Grundstrukturen (,Stern® und
,Zusammenfihrung") ergeben. Das Resultat von Schritt 3 zeigt Abbildung 62. Aufgrund
der Vereinfachungen kann zur besseren Ubersichtlichkeit der Fluss an dieser Stelle etwas
zusammengezogen dargestellt werden.

Abbildung 62: Resultat von Iterationsschritt 3

Y
VT A

Abbildung 63: Vierter Iterationsschritt

- 142 -

Den vierten Schritt zeigt Abbildung 63. An dieser Stelle werden lediglich zwei
~Unverzweigte Linien" identifiziert. Abbildung 64 zeigt bereits das Ergebnis des 4.
Analyseschrittes.

Abbildung 64: Resultat von Iterationsschritt 4

Yo,

»

Abbildung 65: Fiinfter Iterationsschritt

In den letzten zwei Schritten wird jeweils nur noch eine Grundstruktur identifiziert.
Trotzdem sind zwei weitere Schritte notwendig, da sich diese Grundstrukturen
auseinander ergeben. Im flinften Schritt wird ein ,Stern® identifiziert (vgl. Abbildung 65).
Dieser wird zusammengefasst (vgl. Abbildung 66).

Abbildung 66: Resultat von Iterationsschritt 5

Abbildung 67: Sechster Iterationsschritt

NENAN

Der sechste und letzte Iterationsschritt der Zerlegung und Vereinfachung ist in Abbildung
67 dargestellt. Erneut kann eine ,Unverzweigte Linie" festgestellt werden. Sie wird
zusammengefasst, das Resultat zeigt Abbildung 68.

-

Abbildung 68: Resultat von Iterationsschritt 6

Dieses Resultat stellt auch den Restfluss des Simulationsmodells dar, der sich nicht
weiter durch Grundstrukturen des Kataloges beschreiben lasst. Ab hier muss das
restliche Simulationsmodell vom Anwender manuell invertiert werden. Ein Vergleich des
Ausgangsmodells mit dem aus der Iteration resultierenden Restfluss zeigt aber das
Potential des angewendeten Verfahrens. Die Arbeit des Anwenders zur Invertierung des

Konzeption - 143 -

Simulationsmodells kann signifikant reduziert werden, da alle identifizierten
Grundstrukturen automatisch invertiert werden kénnen. Eine detaillierte Beschreibung
der automatischen Invertierung von Grundstrukturen als zweiter Schritt des Verfahrens
ist Gegenstand des folgenden Abschnitts.

Invertierung der einzelnen Grundstrukturen

Zur Invertierung der im Katalog festgelegten Grundstrukturen sollen zunachst einige
Vorbetrachtungen durchgefiihrt werden. Zuerst wird mittels Bewertungsmatrizen eines
Simulationsmodells ein Konzept eingeflihrt, das Informationen Uber die einzelnen
Flusstypen des vorwarts gerichteten Simulationsmodells bereitstellt. Voraussetzung fur
dieses Verfahren ist allerdings mindestens ein vorhandener Simulationslauf des
Basismodells. In einem weiteren Schritt werden verschiedene Félle von Verzweigungen
und Zusammenfihrungen betrachtet, die an Modellbausteinen auftreten kénnen. Flr
jeden dieser Fdlle wird dann eine Methode zur Invertierung in die Rickwartssimulation
entwickelt. AbschlieBend werden diese Methoden auf die einzelnen Grundstrukturen
angewendet. Dadurch wird gezeigt, dass alle Grundstrukturen mit den dargestellten
Verfahren hinsichtlich ihrer Simulationsrichtung umgekehrt werden kénnen.

Analyse von Teilfllissen mittels Bewertungsmatrizen

Um eine Rickwartssimulation durchfiihren zu kénnen, ist es in vielen Fallen nitzlich,
Informationen Uber die jeweiligen Teilflisse des Simulationsmodells zu haben, wie sie
sich aus der Vorwartssimulation ergeben. Aus diesem Grund soll an dieser Stelle als
Hilfsmittel fir die spatere Umkehrung von Strukturen ein Konzept eingeftihrt werden, das
diese Informationen durch Materialflussmatrizen bereitstellt. Dieses Konzept setzt
voraus, dass vor der ersten Rickwartssimulation das Modell mindestens einmal vorwarts
simuliert wurde.

Die Basis dieses Konzepts bilden Bewertungsmatrizen®’. Sie beschreiben Graphen, indem
alle Flisse zwischen den Knoten des betreffenden Graphen als Eintrage einer Matrix
auftauchen, und zwar sowohl in ihrer Qualitat als auch in ihrer Quantitat. Fir einen aus n
Knoten bestehenden Graphen ist die Bewertungsmatrix C eine n*n Matrix. Alle Knoten
des Graphen werden durchnummeriert. Das Matrixelement c; beschreibt dann den Fluss
vom Knoten i zum Knoten j. Da analog auch ein Matrixelement c; existiert, ist auch die
Flussrichtung berlcksichtigt. Alle Elemente c¢; mit i j, also die Elemente der
Hauptdiagonalen, sind null, da keine Schlingen existieren. Existiert keine Kante zwischen
i und j, so ist ¢; formal unendlich, in diesem Fall jedoch wird diese Stelle einfach nicht
gesetzt und damit praktisch ¢; = 0 gesetzt. Dies soll anhand eines Beispiels erldutert
werden (vgl. Abbildung 69).

" Eine genaue Beschreibung von Bewertungsmatrizen findet sich bei [Arno95].

- 144 -

L

v
I

14 - 15

Abbildung 69: Ausgangsfluss des Beispiels

Im Gegensatz zu allen bisher betrachteten Darstellungen der Materialfliisse sind hier die
Modellbausteine durchnummeriert. Eine dazu passende Bewertungsmatrix C; zeigt
Tabelle 17. Die Darstellung der Matrix in Tabellenform soll die Lesbarkeit verbessern.

In diesem Fall sind die einzelnen Elemente der Matrix lediglich Zahlenwerte, die Mengen
pro Zeiteinheit reprasentieren. Denkbar sind auch sehr viel umfangreichere
Matrixelemente. Treten in einem Simulationsmodell Token unterschiedlichen Typs auf, so
konnen die Datenstrukturen der einzelnen Token mit einer absoluten oder relativen
Mengenangabe Matrixelemente sein. Das formale Konzept der Bewertungsmatrizen wird
damit um komplexere Datenstrukturen mit eigenen Eigenschaften oder Parametern
erweitert. Relative Mengenangaben kénnen auf den Gesamtinput oder den Gesamtoutput
eines Blocks bezogen werden. So kdnnen Verzweigungen mit Prozentwerten versehen
werden.

4
5 0 100

6 0 50 100

7 50 0

8 0 100

9 0 50 50

10 0 50

11 0 25 25

12 0 25

13 0

14 0 25
15 25 0

Tabelle 17: Bewertungsmatrix C,

Die Art der Matrixelemente richtet sich nach den Vorgaben des Simulationsmodells. Flr
das vorliegende Beispiel sind jedoch absolute Mengenangaben ausreichend. Die
Zeilenwerte der Matrix reprdsentieren den Output einer Bausteininstanz, die
Spaltenwerte den Input. Da bei einer Rickwartssimulation der Input einer
Bausteininstanz zum Output und analog der Output zum Input wird, kann diese
Bewertungsmatrix C; durch Transponieren einfach zu einer Rickwartsbewertungsmatrix
C:’ umgewandelt werden. Da sich wahrend der Zerlegung eines Materialflusses stetig
neue Grundstrukturen ergeben, erscheint es sinnvoll, auch fir die jeweiligen
Zerlegungsschritte eigene Bewertungsmatrizen zu generieren, um dort die fir die
Invertierung der Grundstrukturen bendétigten Informationen zugreifen zu kénnen.

Konzeption - 145 -

Wahrend der Zerlegung von Simulationsmodellen ist aber keine Vorwartssimulation aller
einzelnen Iterationsschritte der Zerlegung vorgesehen, so dass die Matrix C; mit zerlegt
werden muss.

Den ersten Zerlegungsschritt flir obiges Beispiel zeigt Abbildung 70. Die resultierenden
Modellbausteine erhalten als neuen, eindeutigen Bezeichner hier die niedrigste Nummer
der in ihnen enthaltenden Modellbausteine. Grundsatzlich sind diese Bezeichner frei
wahlbar. Analog zum Iterationsschritt muss auch die Bewertungsmatrix wahrend dieser
Zerlegung angepasst werden. Die Modellbausteine 1 und 2 werden demzufolge zu einem
neuen Modellbaustein 1 zusammengefasst. In der resultierenden Struktur sind lediglich
der Input von Modellbaustein 1 und der Output von Modellbaustein 2 von Interesse. Da
in der Bewertungsmatrix der Input durch die Spalten und der Output durch die Zeilen
reprasentiert werden, kdnnen in C; die Zeile 1 und Spalte 2 geldscht werden. Die Ubrigen
Spalte 1 sowie Zeile 2 reprasentieren In- und Output des neuen Modellbausteins und
mussen daher dessen Bezeichner erhalten (hier: 1). Im Falle der identifizierten
Sternstruktur der Modellbausteine 6 und 7 sind In- und Output an einem Modellbaustein
(hier: 6); es kdnnen daher in Tabelle 17 Zeile 7 und Spalte 7 geléscht werden. Die
resultierende Matrix C, bildet die Bewertungsmatrix fir den aus Iterationsschritt 1
resultierenden Fluss (vgl. Tabelle 18).

8 0 100

9 0 50 50

10 0 50

11 0 25 25

12 0 25

13 0

14 0 25
15 25 0

Tabelle 18: Bewertungsmatrix C,

- 146 -

/+ 2 5 t# 6 [8 (w9 » 10
., v 4 v \

7 11 Py 12
* 7

14 [15

\- S e

e

Abbildung 70: Erster Iterationsschritt

Analog zum obigen Beispiel erfolgt anschlieBend Iterationsschritt 2 (Abbildung 71). Die
Blocke 1,3,4 und 5 werden mit der Grundstruktur ,Parallele Linie" zusammengefasst. Fir
die Matrix C, bedeutet das, dass die Zeilen 3 und 4 sowie die Spalten 3 und 4 ebenso
geldéscht werden kénnen wie Zeile 1 und Spalte 5. Zeile 5 wird anschlieBend in Zeile 1
umbenannt und, entsprechend der Ordnung, nach vorne gezogen. Die Modellbausteine 6
und 8 werden ebenfalls zusammengefasst (Zeile 6 und Spalte 8 I6schen, Zeile 8 in Zeile
6 umbenennen). Die resultierende Matrix C; zeigt Tabelle 19.

/=
/\ 5 el 6 [» 8 [9 | 10

11 - 12

\%/

14 - 15

/+6+9+10\
*7%

14 - 15

Abbildung 71: Zweiter Iterationsschritt

Konzeption - 147 -

15 25 0

Tabelle 19: Bewertungsmatrix Cs

Den letzten Zerlegungsschritt zeigt Abbildung 72. Analog der bereits beschriebenen
Vorgehensweise werden in C; Zeile 1 und Spalte 6 geldscht, Zeile 6 in Zeile 1 umbenannt
und ggf. neu sortiert. Das Resultat zeigt Tabelle 20.

/+67>9+10

14 - 15

$7%

14 - 15

Abbildung 72: Dritter Iterationsschritt

15 25 0

Tabelle 20: Bewertungsmatrix C,

Es existiert nun flir den resultierenden Restfluss eine Bewertungsmatrix, die urspringlich
mit Hilfe der Vorwartssimulation erstellt wurde. Sie kann dem Anwender, der den
Restfluss umkehren muss, wertvolle Informationen Uber Quantitdt und Qualitat der
abgebildeten Materialfllisse bereitstellen. Wichtiger ist allerdings, dass zu jedem aus
einem Iterationsschritt resultierenden Restfluss eine Bewertungsmatrix existiert, aus der

- 148 -

die flir den nachsten Zerlegungsschritt benétigten Informationen entnommen werden
kdénnen. Wie spater bei der Umkehrung einzelner Grundstrukturen gezeigt werden wird,
kédnnen aus den Bewertungsmatrizen verschiedene Informationen extrahiert werden, die
die jeweilige Umkehrung erheblich vereinfachen kénnen.

Events und deren verhaltensspezifische Umkehrung

Nachfolgend werden die unterschiedlichen Falle von Verteilungsstrukturen untersucht, die
in Modellbausteinen typischerweise auftreten. Dafiir werden jeweils Verfahren
vorgeschlagen, wie diese Fadlle in einer Riickwartssimulation behandelt werden sollen. Sie
werden auf die Grundstrukturen Ubertragen, um diese eindeutig umkehren zu kénnen.
Aus den jeweiligen Fallen werden Empfehlungen fiir die Modellbildung abgeleitet, sofern
sie die Umkehrung im Sinne der Rickwartssimulation vereinfachen und die Freiheitsgrade
des Anwenders nicht einschranken. Grundsatzlich koénnen drei unterschiedliche
Funktionen innerhalb eines Modellbausteins unterschieden werden: Das Verstreichen von
Zeit, die Veranderung (in der Anwendung Fertigung: Bearbeitung) des Token und die
logische Verteilung innerhalb des Materialflusses auf verschiedene Channel. Ferner
existieren Quellen und Senken, wobei Kombinationen dieser Falle existieren. Allein das
Verstreichen von Zeit ist den meisten Vorgangen zueigen. Innerhalb dieser drei Typen
von Verhaltensweisen sind wiederum verschiedene Aspekte zu unterscheiden.

Der erste Verhaltenstyp beschreibt das reine Verstreichen von Zeit, zum Beispiel bei
Transport- oder Forderstrecken. Dabei werden weder die Token manipuliert noch der
Materialfluss verzweigt. Die Bearbeitungszeit ist fur jede Ausfuhrung einer Simulation
essentiell. Bearbeitungs- oder Transportzeiten kénnen ihrerseits zeitabhangig sein,
beispielsweise durch die Realisierung zeitabhdngiger Kapazitdten im Modellbaustein des
Simulationsmodells. Hier ist die Bearbeitungs- oder Transportzeit eine zeitabhangige
Funktion, die eventuell auf weitere Modellbausteine oder Ereignisse (zum Beispiel
Kalender oder Zeittafeln) zugreifen muss. Es ist anzunehmen, dass bei den meisten
Ereignissen innerhalb eines Modellbausteins Bearbeitungszeiten auftreten. Deshalb sind
diese Zeiten im Idealfall innerhalb eines standardisierten Events zu realisieren, auf das
jederzeit unabhangig von anderen Events im Modellbaustein zugegriffen werden kann.
Dieses im Folgenden als Delay-Event bezeichnete Ereignis beinhaltet im einfachsten Fall
nur eine Konstante, kann aber auch jede der angesprochenen Funktionen zur
Verzdgerung eines Token wahrend eines Simulationslaufs enthalten.

Eine Verdnderung der Token als zweiter Verhaltenstypus tritt immer dann auf, wenn
Token innerhalb eines Modellbausteins in einer beliebigen Form manipuliert werden. Es
andern sich lediglich Eigenschaften oder Parameter des Token. Ein Event, das diese
Veranderung eines Token herbeiflihrt, ist nicht zwangslaufig umkehrbar. Um bei einer
Rickwartssimulation diese Veranderung automatisch riickgangig zu machen, lieBe sich
die Bewertungsmatrix verwenden. In dieser ist sowohl die Datenstruktur der
eingehenden als auch die der ausgehenden Token abgelegt. Ein einfacher Vergleich
beider liefert die bendtigte Information. Im Gegensatz dazu werden zum Beispiel bei
Montagevorgdngen mehrere unterschiedliche Token zu neuen Token umgewandelt.
zunachst irrelevant bleibt, ob die in den Modellbaustein eingehenden Token (ber einen
oder mehrere Input-Channel eintreffen. Analog kdénnen auch zwei unterschiedliche, im
Modellbaustein neu zu erzeugende Token aus den eintreffenden Token resultieren.
Verdeutlichen soll das Abbildung 73. Im linken Fall werden aus drei Token des Typs A

Konzeption - 149 -

und einem Token des Typs B ein Token C. Im rechten Fall wird aus vier Token A und
einem Token B ein Token D (zum Beispiel Tische mit drei oder vier Beinen). Hier kann
Uber die Betrachtung der Ein- und Ausgangsflisse in der Bewertungsmatrix keine
Aussage Uber die Art des Montagevorgangs getroffen werden. Es wird somit in manchen
Fallen nicht mdglich sein, das jeweilige Event automatisch umzukehren. Im Sinne der
angestrebten Rickwartssimulation sollen Montagevorgange oder andere Veranderungen
von Token separat durch ein Transform-Event realisiert werden. Dieses wiirde im Fall von
Montagevorgangen auch Definitionen der Form C=AAAB oder D=AAAAB enthalten und
wilrde damit eine Umkehrung potentiell ermdglichen.

A A -G
C=AAAB C C=AAAB
B N B D=AAAAD D
—> —» —

Abbildung 73: Montagevorgidnge

Die logische Verteilung von Materialfliissen als dritter Typus an Verhaltensweisen
beschreibt alle Vorgange, die strukturell auf den modellierten Materialflusses wirken:
Geraden, Verzweigungen und Zusammenfihrungen. Die Gerade bildet den trivialen Fall,
dass die Struktur des Materialflusses nicht beeinflusst wird.

Fur alle Verzweigungen und Zusammenfiihrungen gelten fir die Umkehrung im Grunde
die gleichen logischen Uberlegungen. Nach &quivalenten Regeln, wie sich Flisse
verzweigen, kodnnen sie auch wieder zusammengefihrt werden. Da sich die
Problemstellung der Umkehrung des Materialflusses bei Verzweigungen und
Zusammenfihrungen aber unterscheidet, werden sie nachfolgend getrennt betrachtet.

Bei den Verzweigungen kann zwischen drei Unter-Varianten differenziert werden:

= Bei der Typverzweigung teilt sich der Materialfluss in Abhangigkeit der
ankommenden Token. Dies verdeutlicht Abbildung 74. Unabhangig von der Menge
der am Modellbaustein ankommenden Token werden alle Token A auf den oberen
Output-Channel und alle Token B auf den unteren Output-Channel verteilt.
Umgekehrt wird aus der Verzweigung eine einfache Zusammenfiihrung. Die
Reihenfolge, mit der die Token A und B dann in den Output-Channel des riickwarts
gerichteten Modellbausteins gelangen, kann teilweise der Bewertungsmatrix der
Vorwartssimulation entnommen werden oder werden mit der gleichen Prioritat
abgearbeitet.

= Die Mengenverzweigung beschreibt einen Verzweigungstyp, bei dem der
Materialfluss aus identischen Token mengenmaBig verteilt wird. Dies geschieht in
irgendeinem Verhaltnis (zum Beispiel 50/50 bei zwei Output-Channeln). Wird diese
Verzweigung umgekehrt, kdénnen alle ankommenden Token mit der gleichen
Prioritat abgefertigt werden.

= Eine /ast- bzw. kapazitdtsabhdngige Verzweigung beschreibt eine Verzweigung, die
abhangig von nachgelagerten Kapazitdten des logischen Nachfolgers den
Materialfluss verteilt. Hier findet lediglich eine Verfligbarkeitsabfrage an den
einzelnen Output-Channeln bei den nachgelagerten Input-Channeln statt, ob eine
Weiterleitung an den Nachfolger im Materialfluss méglich ist. Im positiven Fall wird
das Token gesendet. Im negativen Fall wird der nachste Output-Channel probiert.
Das Vorgehen wiederholt sich analog bei den weiteren Output-Channeln des

- 150 -

Modellbausteins. Sind alle Output-Channel gesperrt, so wird Gber den ersten frei
werdenden Output-Channel gesendet. Diese Verzweigung kann durch
Abfertigungsprioritaten umgekehrt werden. Der Output-Channel, der bei der
Vorwartssimulation als erster abgefragt wird, erhdlt im Rahmen der der
Rickwartssimulation die hochste Prioritat. Die anderen Kandle erhalten
entsprechend niedrigere, abgestufte Prioritaten.

AL
AB
B
——

Abbildung 74: Typverzweigung

Betrachtet man die Gruppe der Zusammenflihrungen, gelten zunadchst analoge
Uberlegungen wie fiir Verzweigungen, da in vielen Fallen einer Zusammenfiihrung eine
Verzweigung vorangeht. Darlber hinaus existieren Zusammenfiihrungen, denen zwei
unterschiedliche Quellen vorangehen. Aus Sicht einer Zusammenfihrung lassen sich
lediglich typabhdngige und mengenmabBige Flussarten unterscheiden:

e Analog zu den Verzweigungen ist eine typabhdngige Zusammenfiihrung eine
solche, bei der aus den unterschiedlichen Input-Channeln unterschiedliche Token
eingehen. Wird eine Typzusammenfiihrung umgekehrt, so entsteht eine
Typverzweigung. Diese bendtigt Informationen lber die ausgehenden Teilfllsse,
die der Bewertungsmatrix zu entnehmen sind.

e Bei einer Mengenzusammenfiihrung gehen in die verschiedenen Input-Channel
Token des gleichen Typs in bestimmten Mengen ein. Hier muss in einem zweiten
Analyseschritt festgestellt werden, ob der Zusammenfiihrung eine Verzweigung
oder zwei Quellen vorangehen. Handelt es sich um eine Verzweigung, kann aus
Sicht der Zusammenfihrung nicht unterschieden werden, ob es sich bei dieser
Verzweigung um eine Typ-, Mengen- oder um eine last- bzw. kapazitdtsabhangige
Verzweigung handelt. Dies kann bei der Invertierung des Modellbausteins durch
Zugriff auf das Event in der Verzweigung geklart werden (Werden hier
Grundstrukturen der héheren Ordnung identifiziert, liegt diese Verzweigung direkt
im Zugriff). Geht beispielsweise eine last- bzw. kapazitdatsabhangige Verzweigung
voran, so ist das fir die Verteilung des Flusses verantwortliche Event aus der
Verzweigung fur die Umkehrung der Zusammenfihrung zu verwenden. Dieser Fall
scheidet aus, wenn der Zusammenfilhrung zwei Quellen vorausgehen. Hier kann
die Zusammenfihrung nur durch Ubernahme der Flussméchtigkeiten aus der
Bewertungsmatrix umgekehrt werden.

Um die Umkehrung von Verzweigungen oder Zusammenfihrungen zu erleichtern, sollen
sie analog zu obigem Vorgehen separat durch Control-Events realisiert werden, weil
damit die fir die logische Verteilung des Flusses verantwortlichen Events von anderen
Aktionen innerhalb des Modellbausteins abgegrenzt werden kdénnen. Fir einen
standardisierten Modellbaustein ergibt sich damit eine feste innere Grundstruktur, wie sie
in Abbildung 75 dargestellt wird. In logischer Reihenfolge des Ablaufs enthélt er Input-
Event (I), Delay-Event (D), Transform-Event (T), Control-Event (C) sowie Output-Event
(0). Alle Event-Typen kdnnen mehrfach auftreten, insbesondere Input- und Output-

Konzeption - 151 -

Events abhangig nach Anzahl der jeweiligen Input- und Output-Channel des
Modellbausteins.

S OOOO®E

Abbildung 75: Aufbau eines typischen Modellbausteins

Durch die EinfiUhrung der neuen Event-Typen soll die automatische Invertierung
geférdert werden. Dariber hinaus muss die inhaltliche Strukturierung als
Modellierungsempfehlung an die Anwender kommuniziert werden, die hinsichtlich der
Verhaltensmodellierung in erster Linie alle Freiheiten besitzen. Auch durch das
Eigeninteresse des Anwenders gefdrdert, sollte er sich aber an diese
Modellierungsempfehlung gebunden fihlen, um bei der Invertierung des
Simulationsmodells wertvolle Modellierungszeit einzusparen. Tabelle 21 fasst die
bendtigten Erweiterungen der Modellbeschreibung zur Implementierung einer
automatischen Invertierung von Modellbausteinen zusammen.

Bezeichnung Beschreibung

Delay_event Ereignis zur Berechnung der zeitlichen Verzdégerung
der Token, ggf. in Abstimmung mit einem giiltigen
externen Kalender

Transform_event Ereignis zur Manipulation des Token, bzw. zur
Komposition/Dekomposition von Token
Control_event Ereignis zur Steuerung des eigentlichen

Materialflusses zwischen den verschiedenen Input-
und Output-Channeln

Tabelle 21: Erweiterung der Modellbeschreibung durch Invertierung

Zur Vollstandigkeit soll an dieser Stelle auch auf die Umkehrung von Quellen und Senken
eingegangen werden. Bei einer Rluckwartssimulation werden Quellen zu Senken und
umgekehrt. Zu den in den Quellen erzeugten Token muissen im Rahmen der Invertierung
aber weitere Uberlegungen angestellt werden. Quellen versorgen ein Simulationsmodell
mit einem Teil der Eingangsdaten (in Form von Art, Zeit und Quantitat des erzeugten
Flusses) und Senken kénnen einen Teil der ausgegebenen Daten bereitstellen (in Form
von Art, Zeit und Quantitdt des eingehenden Flusses). Diese Tatsache gilt analog flr
Vorwarts- wie Rilckwartssimulation. Dieser Fluss wird nach MaBgabe des Entwicklers
erzeugt, muss aufgrund der unterschiedlichen Untersuchungszwecke von Vorwarts- und
Rickwartssimulation von der urspriinglichen Quelle aber soweit abweichen, dass diese
durch eine neue Quelle und entsprechend durch eine neue Senke modelliert wird, weil sie
neben den Eingabedaten auch die Auswertung vor dem Hintergrund eines
unterschiedlichen Untersuchungszweckes a@ndert.

Anwendung des Verfahrens zur Invertierung der Grundstrukturen
Nachdem im vorangegangenen Abschnitt Uberlegungen zur Typisierung mdglicher Events
und deren Umkehrung angestellt worden sind, werden die gefundenen

- 152 -

Lésungsalternativen im Folgenden auf die jeweiligen Grundstrukturen adaptiert.
Bestimmte Falle werden durch die Beschaffenheit einzelner Grundstrukturen
ausgeschlossen. Die Grundstrukturen werden im Sinne der oben aufgezeigten Punkte
untersucht, um geeignete Regeln flr die Invertierung abzuleiten. Fiar alle
Grundstrukturen gilt, dass Verzweigungen oder Zusammenfiihrungen an den Input- oder
Output-Channeln nicht betrachtet werden missen, da diese nicht mehr eigentlicher
Bestandteil der Grundstrukturen sind. Sie kdénnen somit in nachfolgenden
Iterationsschritten der Zerlegung Teil anderer Grundstruktur werden.

Grundsatzlich werden bei der Invertierung einer Grundstruktur alle Input-Channel zu
Output-Channeln und umgekehrt. Alle direkt dazu hinterlegten Events miissen angepasst
werden. Das oder die neuen Input Events missen daflir sorgen, dass der jeweilige Input-
Channel verschlossen wird, wenn ein Token den Modellbaustein erreicht. AuBerdem muss
der Aufruf eines folgenden Events sichergestellt werden. Jedes Output-Event muss das
Senden der Token an den nachfolgenden Input-Channel sicherstellen und ggf. den Aufruf
des ReOpen-Events gewahrleisten. Um die Invertierung zu ermdglichen, werden alle
Input- und Output-Events standardisiert. Diese Erganzung der Modellierungsempfehlung
ist insofern konsequent, weil das logische Verhalten des Modellbausteins in den
nachfolgenden Events innerhalb eines Bausteins (Control, Delay, Transform, etc.)
gekapselt wird. Dariber hinaus werden Quellen durch Senken ersetzt und umgekehrt. Als
nachster Schritt werden an jeder Bausteininstanz der Grundstruktur eingehende und
ausgehende Token mit Hilfe der Bewertungsmatrix verglichen. Finden in einem Block zum
Beispiel Montagevorgdange statt, so werden die jeweiligen Montageparameter aus dem
entsprechenden Transform-Event abgefragt. Veranderungen von Token missen in der
invertierten Grundstruktur implementiert werden. Delay-Events kdnnen bei der
Rickwartssimulation zur Laufzeit abgefragt werden und missen bei der Invertierung
nicht verandert werden.

Da bei einer unverzweigten Linie keine Verzweigungen oder Zusammenfihrungen
innerhalb der Struktur auftreten, reicht es, die oben beschriebene Vorgehensweise
anzuwenden. Fir Verzweigungen deckt sich die Vorgehensweise bei der Invertierung mit
den allgemeinen Uberlegungen. Typ- und Mengenverzweigungen kénnen mit Hilfe von
Bewertungsmatrizen invertiert werden, bei der Invertierung einer last- bzw.
kapazitatsabhangigen Verzweigung mussen Abfertigungsprioritaten bei der
Zusammenfiihrung eingefiihrt werden. Das gilt analog fiir die Uberlegung hinsichtlich der
Zusammenfihrung: auch hier kénnen die Vorlberlegungen Gbernommen werden. Das
bedeutet, dass zwischen Mengen- und Typzusammenflihrungen unterschieden werden
muss. Der Fall einer last- bzw. kapazitatsabhdngigen Zusammenfiihrung ist nicht
relevant, da bei der Grundstruktur ,Zusammenfiihrung" vorher keine Verzweigung des
Materialflusses stattfindet (sonst wirde es sich um eine Grundstruktur héherer Ordnung
handeln). Zur Invertierung kénnen die bendtigten Flussarten und —-machtigkeiten der
Bewertungsmatrix entnommen werden. Die Grundstruktur Kreuzung stellt die
Kombination der Strukturen Verzweigung und Zusammenflhrung dar. Daher gelten bei
der Invertierung auch die jeweiligen Regeln. Typverzweigungen und -
zusammenflihrungen werden beim bekannten Vorgehen identifiziert. Dieser Fall kann mit
Bewertungsmatrizen umgekehrt werden. Ebenfalls mit Hilfe von Bewertungsmatrizen
kédnnen Mengenverzweigungen oder —Zusammenfihrungen invertiert werden. Aus bereits
bekannten Grinden tritt der last- bzw. kapazitatsabhangige Fall bei der

Konzeption - 153 -

Zusammenflhrung nicht auf, da ihm keine Verzweigung vorangeht. Dies gilt jedoch nicht
fir die Verzweigung. Es kann also ein Mischfall auftreten, bei dem eine
Mengenzusammenfihrung mit einer last- bzw. kapazitatsabhdngigen Verzweigung
kombiniert ist. Bei der Invertierung misste dann eine Abfertigungsprioritdt fir die
Zusammenflhrung eingefihrt werden. Die Grundstruktur parallele Linie (vgl. Abbildung
76) verfligt sowohl Uber eine Verzweigung als auch lUber eine Zusammenflhrung. Bei
einer Rluckwartssimulation muss nun an Modellbaustein 3 Uber die Aufteilung des
Materialflusses entschieden werden. Legt man die Voriberlegungen zu Grunde, so muss
bei dieser Struktur nach den drei Arten der Verzweigung unterschieden werden. Vorher
kann festgestellt werden, ob es sich an Modellbaustein 1 um eine Typ- Mengen- oder
last- bzw. kapazitatsabhdangige Verzweigung handelt. Im Fall der Typverzeigung, kann
bei Modellbaustein 3 der Materialfluss analog verteilt werden. Im Falle einer
Mengenverzweigung oder einer last- bzw. kapazitatsabhangigen Verzweigung bietet es
sich ebenfalls an, das entsprechende Control-Event aus Modellbaustein 1 in
Modellbaustein 3 zu Ubertragen.

+1/2.=1\3*
NV

Abbildung 76: Grundstruktur Parallele Linie

Die Grundstruktur Rickkopplung (Abbildung 77) verbindet Verzweigung und
Zusammenfuhrung. Im Gegensatz zur parallelen Linie sind diese aber vertauscht: Die
Verzweigung befindet sich an Modellbaustein 3, die Zusammenflihrung an Modellbaustein
1. Die Invertierung dieser Struktur funktioniert analog zur parallelen Linie. Handelt es
sich bei der Verzweigung an Modellbaustein 3 um eine Typverzweigung, so kann
entsprechend der Bewertungsmatrix wahrend der Rickwartssimulation der Materialfluss
an Modellbaustein 1 verzweigt werden. Liegt an Modellbaustein 3 eine Mengen- oder last-
bzw. kapazitatsabhdngige Verzweigung vor, so muss bei der invertierten Struktur das
entsprechende Control-Event aus Modellbaustein 3 in Modellbaustein 1 Ubertragen
werden.

+1/2 3 >
\\

Abbildung 77: Grundstruktur Riickkopplung

Bei der Grundstruktur Stern (vgl. Abbildung 78) handelt es sich um eine Struktur, die
Verzweigungen und Zusammenflihrungen miteinander verbindet. Im Gegensatz zur
parallelen Linie sind alle Events, die Verzweigungen oder Zusammenfihrungen regeln in
Modellbaustein 1 enthalten. Im Fall eines einfachen Sterns (in Abbildung 78 Teil a)

- 154 -

kdénnen lediglich Typ- oder Mengenverzweigungen auftreten. Diese sind mit Hilfe von
Bewertungmatrizen umkehrbar. Komplizierter ist die Invertierung eines Sterns, wie ihn
der rechte Teil der Abbildung zeigt (Teil b). Hier kdnnen zwei zusatzliche Falle auftreten:
Erstens last- bzw. kapazitatsabhangige Verzweigungen und zweitens eine
Bearbeitungsreihenfolge. Im Fall von last- bzw. kapazitdtsabhangigen Verzweigungen
muss das Control-Event angepasst werden. Tritt eine feste Bearbeitungsreihenfolge auf,
so muss diese umgekehrt werden. Dies kdnnte beispielsweise durch Analyse der
Teilflisse geschehen. Unterscheiden sich die Token nicht voneinander wird empfohlen,
festgelegte Reihenfolgen entweder im Vorwartssimulationsmodell bekannt zu machen,
durch ein Transform-Event zu modellieren oder im Rahmen einer ersten
Vorwartssimulation aufzuzeichnen.

2.1 2.1 2.2

b " NA
N

Abbildung 78: Grundstruktur Stern

2. .n

Dieser Abschnitt hat ein Konzept entworfen, gemaB dem die zuvor identifizierten
Grundstrukturen unter schwachen Restriktionen umgekehrt werden koénnen. Durch
dessen Anwendung ergibt sich eine Modellierungsempfehlung, an die sich der Anwender
halten muss, um die automatische Transformation zu erreichen. Der folgende Abschnitt
soll darauf basierend das Transformationsmodul skizzieren, das die angesprochene
Zerlegung und Invertierung eines Simulationsmodells tatsachlich automatisch ausfihrt.

Automatische Transformation von Simulationsmodellen

Obiger Abschnitt hat eine Methode aufgezeigt, wie komplexe Materialflusssysteme in
Grundstrukturen zerlegt und hinsichtlich einer Rickwartssimulation invertiert werden
kénnen. Der folgende Abschnitt will eine automatische Modelltransformation als
Untermodul der Modellierungskomponente entwerfen, mit deren Hilfe Grundstrukturen
aus dem Simulationsmodellen extrahiert und invertiert werden kénnen, um den
Transformationsprozess eines Simulationsmodells von vorwarts in rickwarts gerichtetes
Simulationsmodell weitestgehend automatisch zu gestalten. Basis der Invertierung ist
stets ein vorliegendes Simulationsmodell, im Idealfall in Verbindung mit einem
durchgefiihrten Simulationslauf und einer zugehoérigen Bewertungsmatrix. Die
Invertierung erfolgt durch ein spezielles Modul in der Modellierungskomponente, weil dort
das geladene Simulationsmodell bereits vollstéandig vorliegt und zum Anderen aus der
Zerlegung und Vereinfachung entstehende Restflisse direkt durch den Anwender
manipuliert werden kdénnen. Das resultierende Rickwartssimulationsmodell kann aus der
Modellierungskomponente heraus in der Simulationsdatenbank oder auf dem
Dateisystem gesichert werden.

Konzeption - 155 -

Der Transformationsprozess im Server des Modellierungstool soll wie folgt gestaltet
werden: das geladene Simulationsmodell wird im Server in das Untermodul zur
Transformation geladen und zundchst auf einen gerichteten Graph reduziert, wobei die
eigentlichen Knoten des Graphen, die die Modellbausteine reprasentieren, um
Informationen angereichert werden, die auf die Modellbausteine selbst verweisen.
Zusatzlich werden, wenn vorhanden, die Ergebnisse eines Simulationslaufs mit diesem
Modell und eine zugehdrige Bewertungsmatrix in das Modul geladen. Alle weiteren
Berechnungen zur Identifikation der Grundstrukturen finden zunachst auf dem
gerichteten Graphen statt, werden an den entsprechenden Stellen durch Informationen
aus der Bewertungsmatrix erganzt. Nach dem Start des Transformationsprozesses
werden als erster Schritt die Quellen und Senken des Materialflusses identifiziert und fir
die weitere Bearbeitung markiert. In einem iterativen Prozess wird der Graph in den
Folgeschritten immer wieder auf der Suche nach Grundstrukturen durchlaufen. Zundachst
sollen die Grundstrukturen einfacher Ordnung (einfache Linie, Verzweigung, etc.) gesucht
werden. Erst im Folgeschritt werden Grundstrukturen hoéherer Ordnung erfasst.
Ausnahme ist hier die Grundstruktur ,Rickkopplung®, die als erstes erkannt werden
muss. Andernfalls wirden die Bausteine 1 und 2 zu einer einfachen Linie
zusammengefasst werden (vgl. Abbildung 51). Nach jeder Identifikation einer
Grundstruktur wird diese zusammengefasst und der resultierende Graph (vgl. bspw.
Abbildung 57) erneut hinsichtlich aller mdglichen Grundstrukturen durchlaufen, bis
entweder der gesamte Graph invertiert wurde (Das Simulationsmodell wird in einem
einzigen Modellbaustein zusammengefasst) oder ein Restfluss Ubrig bleibt. Dieser wird an
den oder die Clients Ubertragen und muss manuell invertiert werden. Hier bieten sich
dem Anwender zwei Mdglichkeiten: entweder er invertiert die verbliebenen Restflisse
manuell oder erganzt den Restfluss des Simulationsmodells so durch Dummy-Bausteine,
dass wiederum Grundstrukturen durch den Algorithmus erkannt werden kénnen.
Abbildung 79 zeigt eine kurze Ubersicht iber den Algorithmus Merge, wie er im Rahmen
der Erkennung und Zusammenfassung von Grundstrukturen verwendet werden soll.

public Map<String, Integer> merge()
{

Class[] mergers =

{

MergeRegeneration.class,
MergeLine.class,
MergeBranch.class,
Mergeloin.class,
MergeParallel.class,
MergeStar.class,
MergeCover.class };

MergeAll mergeAll = new MergeAll(mergers, this);
Map<String, Integer> counter = mergeAll.merge(model);

}
Abbildung 79: Ubersicht des Merge-Algorithmus

Nachdem so das gesamte Simulationsmodell in einem Modellbaustein vereinfacht wurde,
findet die Invertierung der identifizierten Grundstrukturen nach dem beschriebenen
Verfahren statt, wobei zur Fallunterscheidung ggf. die vorliegende Bewertungsmatrix fir
die entsprechende Grundstruktur erzeugt wird, auf deren Basis die Verzweigungen und
Zusammenfihrungen unterschieden werden kénnen. Darlber hinaus kénnen Uber die

- 156 -

Verweise in den Knoten des Graphen auch auf die Modellbausteine referenziert werden,
wenn der Zugriff auf die strukturierten Events zur Invertierung einer Grundstruktur
benétigt wird. Neben der Transformation einzelner Events in andere Modellbausteine
einer Grundstruktur muss eventuell die Adaption der implementierten Verteilregeln bei
der Aufteilung der Materialfliisse beriicksichtigt werden. Prioritatsregeln?® (z.B. First-In-
First-Out) mulssen bei der Rickwartssimulation ggf. durch ihre Pendants ersetzt werden.
In den meisten Untersuchungsfallen kdnnen die implementierten Regeln jedoch bestehen
bleiben. Fur die entsprechende Rickwartssimulation muissen sie aber als Annahmen
entsprechend berlicksichtigt werden.

In einem letzten Schritt werden die urspriinglichen Quellen und Senken des
Simulationsmodells aus dem resultierenden Simulationsmodell geléscht und durch
Platzhalter ersetzt, die im weiteren Verlauf durch den Anwender mit den neuen Quellen
und Senken ersetzt werden missen. Diese kdnnen nicht automatisch getauscht werden,
weil sich die Untersuchungszwecke von vorwarts und rlickwarts gerichteten Simulations-
modellen stark unterscheiden.

Zusammenfassend kann an dieser Stelle festgehalten werden, dass alle
Vorraussetzungen flir die Konzeption des Modellierungswerkzeugs vorliegen. Basierend
auf der Festlegung einer Vorgehensweise zur Modellierung und Simulation wurde in
diesem Abschnitt eine Modellbeschreibung entworfen, die alle an das Werkzeug gestellten
Anforderungen abbilden kann. Zusatzliche Funktionsmodule zur Unterstltzung speziell
funktionsorientiert arbeitender Fertigungssysteme und zur weitestgehend automatischen
Transformation von Simulationsmodellen in ihre entgegengesetzt gerichteten Pendants
auf Basis eines Grundstrukturenkonzeptes wurden entworfen und den entsprechenden
Teilmodulen des Werkzeugs zugeordnet. Darliber hinaus wurde die nachrichtenbasierte
Kommunikationsschnittstelle zum Datenaustausch zwischen Simulator und
Visualisierungskomponenten sowie zwischen den Teilmodulen des Simulators erstellt und
steht fir die Implementierung des Werkzeugs zur Verfigung. Als nachster Schritt sollen
nun die eigentlichen Software-Module des Werkzeugs entwickelt und entsprechend
detailliert werden.

5.3 Konzeption Modellierungswerkzeug

Im folgenden Abschnitt soll das Werkzeug im Rahmen eines Software-
Entwicklungsprozesses konzipiert und modelliert werden. In einem ersten Schritt wird
zunachst das System anhand der gestellten Anforderungen grob konzipiert, wobei ein
Hauptaugenmerk auf der Strukturierung in Teilmodule besteht. Diese Phase, im
Folgenden als Systementwurf bezeichnet, bildet die Basis fiir die Ausgestaltung der
einzelnen Teilmodule.

5.3.1 Systementwurf

Die Betrachtung der Anforderungen fiir das Werkzeug basiert auf dem in 5.1.1
entwickelten Modellierungs- und Simulationsprozess. Bei ndherer Betrachtung der

% Eine Ubersicht und Klassifikation bekannter Priorititsregeln kann beispielsweise in [FaFG94] oder [Teic98]
gefunden werden.

Konzeption - 157 -

einzelnen Anforderungen ergibt sich mittels der UML erstellte Use-Case-Diagramm, wie
es in Abbildung 80 dargestellt ist.

Aus dem in Abbildung 80 dargestellten Use-Case lasst sich ersehen, dass noch keine
explizite Unterscheidung zwischen verschiedenen Anwendergruppen gemacht wird.
Zunachst werden dem Akteur Anwender alle Funktionen der Modellierung und Simulation
ermdglicht. Beide Hauptaufgaben folgen bei der Durchfiihrung einer Simulationsstudie
hintereinander und koénnen somit auch voneinander losgelost betrachtet werden.
Prinzipiell ergeben sich damit bereits zwei Module; das erste Modul unterstlitzt speziell
den Prozess der Modellierung, das zweite Modul berechnet das Simulationsmodell auf
Basis der Eingabewerte. Optional, aber nicht verpflichtend, kann der dynamische
Markenfluss des Simulationsmodells visualisiert werden. Um die Visualisierung von der
eigentlichen Berechnung im Simulatorkern loszulésen, werden die Aufgaben gemaB dem
MVC-Pattern (vgl. Abschnitt 3.5.6) in verschiedene Module verteilt. Das bietet den
Vorteil, dass unterschiedliche Visualisierungskomponenten mit dem Simulatorkern
verbunden werden kdnnen. Neben diesen Hauptaufgaben werden Funktionen zur
Administration der Anwender, Benutzergruppen und des Datenbestandes vorgesehen, die
prinzipiell auch durch einen Akteur Administrator erledigt werden kdnnen und eine direkt
Manipulation der Daten in der Simulationsdatenbank erlauben.

—

— —
< Modellieren > Modell erstellan

—_— -
=agnthilt>> — —_—

% Administrator <aanthilts>

<<kommunizierts>

" —_— <<enth i

—
<enthi it

Modell Modell bearbeiten

— ;

T <denthdits 2 =—.

1

O W

—

s <enuzitert>> —— —
x
Modell speichem
Bibliothek <<enthilter
— -
o i

T

< »
% < Modell Isschen
<canthilt> ~ =~
A

— -
—— —
< <<kommuniziert>>
o -
-
— ——

<< anthilts3
—_—

p

.

< Modell hinzufiigen >

——

<<hommunizierts:

—— <enthdlt=>

hodelle venalten =agnthdlt=>

—

< Benutzer venalten >
— — — -
Experiments
< venualten > = B
L e D)
—

—— <<enthalts>
e
<<enthlts> Modall
transformizren
. —
<<anthilts>
— — .
< Rachte verwaltan >
— -
— —
.
Madell auamerten —

< Simulations|auf
= — < Madell simulieren > Zienthalt wisualisieren

__ -
— — —
<centhilts> Y <<anthilts>
<<anthilts>
<<anthilts>
— —
< Experimentdaten >
laden . DR
_ o —

—— Simulation
(Experimantdaten > parametiieren
—— T———

Abbildung 80: Use-Case-Diagramm des Werkzeugs

Use-Case: Modellieren

- 158 -

In der Modellierungsphase kann zwischen der Modellierung oder Bearbeitung einer
Bausteinbibliothek oder der Modellierung oder Bearbeitung eines experimentierfahigen
Simulationsmodells unterschieden werden. Da Bibliotheken auch eine geordnete
Ansammlung einzelner Simulationsmodelle darstellen, die in einem experimentierfahigen
Simulationsmodell verwendet werden koénnen, unterscheidet sich die weitergehende
Funktionalitdt nicht. Innerhalb dieses Use-Cases werden die Ublichen Hauptfunktionen
wie Erstellen, Bearbeiten, Speichern und Ldschen eines Simulationsmodells angeboten.
Daruber hinaus wird an dieser Stelle das Verfahren zur automatischen Invertierung von
Vorwdrtssimulationsmodellen in rlckwdrts gerichtete Simulationsmodelle in die
Modellierungskomponente eingebettet, wie es unter Abschnitt 5.2.4.2 konzipiert wurde.

Use-Case: Simulieren

GemaB Abschnitt 5.1.4 erfolgt vor dem Start der Berechnung des Simulationsmodells im
Simulatorkern die Transformation der im XML-Format vorliegenden Modellbeschreibung
in ein ausfuhrbares Java-Programm. AnschlieBend kann die Berechnung des
Simulationslaufs erfolgen, der optional durch verschiedene Visualisierungsmodule
dargestellt und animiert werden kann. Darlber hinaus erhdlt der Anwender die
Mdéglichkeit, wahrend der Berechnung des Simulationslaufs interaktiv in die Berechnung
einzugreifen und Parameter des Simulationsmodells zu verdndern. Gegebenfalls werden
die Manipulationsmoglichkeiten durch Voreinstellungen des Modellierers begrenzt.
Wahrend oder nach der Berechnung des Simulationsmodells kdnnen die gesammelten
Informationen des Simulationslaufes ausgewertet und flir eine weitere Verwendung
gespeichert werden. Sofern die Simulationsmodelle dies unterstitzen, fihrt die
Bewegung des Anwenders in der Visualisierungskomponente zu einer dynamischen
Detaillierung des Simulationsmodells. Verwendet das Simulationsmodell die automatische
Wegberechnung des Motion Planning Moduls, werden diese zur Ausfiihrungszeit eines
Simulationslaufs im Simulator berechnet und visualisiert.

Use-Case: Experimentieren

In der Experimentierphase einer Simulationsstudie steht dem Anwender ein weiteres
Modul des Werkzeugs zur Verfligung mit dem mehrere Simulationsldufe eines dort
anzulegenden Simulationsexperimentes mit den entsprechenden Parametern versehen
und in einem Stapelverarbeitungs- oder Parallelbetrieb ausgefiihrt werden. Neben der
Darstellung der Eingangsparameter unterstlitzen spezielle Funktionen des Moduls den
Anwender, beispielsweise bei der Variation der Startwerte der Zufallsverteilungen
innerhalb der Bausteininstanzen des Simulationsmodells {ber die verschiedenen
Simulationslaufe hinweg. Nach Durchfiihrung aller Simulationslaufe kodénnen die
generierten Experimentdaten in einer kurzen Darstellung betrachtet und als
Simulationsexperiment in der Simulationsdatenbank oder auf dem Dateisystem
gespeichert werden.

Use-Case: Administrieren

Die Administration der anfallenden Daten und deren Verwaltung soll Giber ein spezielles
Modul erfolgen. Einzelne Funktionen werden nur dann in die Modellierungs-, Simulations-
und Visualisierungsmodule integriert, wenn sie den Anwender bei seiner Arbeit direkt
unterstitzen. Damit kdnnen elementare Aufgaben wie beispielsweise die Verwaltung der
Anwender, Benutzergruppen, Rechteverwaltung und die Administration der
Simulationsdatenbank potentiell auch von Nicht-Simulationsexperten ausgefillt werden.

Konzeption - 159 -

Grobstruktur der Funktionsmodule

Aus der Darstellung und Entwicklung der Use-Cases ergibt sich das bereits bekannte
Schema von Funktionsmodulen, aus denen das Gesamtsystem bestehen soll. Die
prazisere Darstellung der Funktionen (ber die einzelnen Funktionalitdten in den Use-
Case-Diagrammen hat die geplante Modularisierung des Werkzeugs nochmals bestatigt.
Neben einer Modellierungskomponente und dem Simulatorkern beinhaltet das Werkzeug
Module zur Visualisierung von Simulationslaufen, eine Simulationsdatenbank und ein
Modul zur Administration der Daten. Abbildung 81 gibt einen Uberblick (ber die
Funktionsmodule und deren Beziehungen untereinander.

Experiment- Visualisierung
Manager & Analyse

- ~
- ~
- -~
- -~
- -~
- -
- ~
- -~
.

Modellierung

=—
Administration |[Ees——" Datenbank

Abbildung 81: Grobstruktur der Funktionsmodule des Werkzeugs

Die Darstellung der Funktionsmodule gibt noch keine Auskunft dariber, wie die einzelnen
Funktionen mit Bedienoberflachen versehen werden. Hinsichtlich der verschiedenen
Aufgabestellungen sind hier unter Umstanden alternative Visualisierungsmadglichkeiten zu
evaluieren und umzusetzen. Die Grobstrukturierung des Basisprozesses wurde durch den
Systementwurf also bestatigt und nur in Teilen erweitert. Im Folgenden sollen die
identifizierten Module praziser ausgeplant werden.

5.3.2 Entwurf der Funktionsmodule

Im folgenden Abschnitt sollen die einzelnen Funktionsmodule genauer hinsichtlich ihrer
Aufgabe und Beschaffenheit spezifiziert werden. Die Reihenfolge des Entwurfs orientiert
sich an der Vorgehensweise des Anwenders bei der Arbeit mit dem Werkzeug.

5.3.2.1 Modul Modellierung

Zur Umsetzung des Moduls zur Modellierung der Simulationsmodelle nach der in
Abschnitt 5.2 beschriebenen Modellbeschreibung wird auf das in Abschnitt 3.5.6
vorgestellte Architekturmuster Client/Server zurlickgegriffen, da es sich besonders gut
fur die Implementierung eines multitaskingfahigen Werkzeugs eignet. In Kombination mit
dem Modul Simulationsdatenbank ergibt sich eine 3-Tier-Architektur, bei der auf Seite
der Serverschicht zusatzlich der Simulatorkern platziert werden kann.

- 160 -

Die Aufgabe des Servers besteht in der Verwaltung der angeschlossenen Anwender, bzw.
Clients sowie der Wahrung der Konsistenz des oder der aktuell bearbeiteten
Simulationsmodelle. Zur besseren Kooperations- und Kollaborationsunterstiitzung kann
der Server verschiedene Kommunikationsmadglichkeiten zur Verfligung stellen, damit sich
die an der Modellierung beteiligten Anwender wahrend ihrer Arbeit abstimmen kdnnen.
Darliber hinaus muss der Server eine Mdglichkeit vorsehen, die Benutzerverwaltung zu
implementieren, so dass sich die Anwender an ihren Clients vor dem Zugriff auf die
Simulationsmodelle authentifizieren und damit auch autorisieren missen. Die Umsetzung
der Rechteverwaltung aus Abschnitt 5.1.6 wird angestrebt, so dass der Zugriff auf ein
Simulationsmodell auch gestaffelt hinterlegt werden kann. Der Server muss jeweils
entscheiden, ob die vom Client angeforderte Interaktion (beispielsweise Hinzufiigen eines
Bausteins, Loschen, Verschieben, etc.) auf Basis der zugrunde liegenden Rechte
ausgeflihrt werden darf oder nicht. Hierfir sind wahrend der Implementierung zwischen
Client und Server geeignete Schnittstellen zu entwerfen. In den Modellierungsserver soll
auch das Verfahren zur automatischen Invertierung eines Simulationsmodells integriert
werden. Weil hier die aktuell bearbeiteten Simulationsmodelle hinterlegt werden, kann
das resultierende Simulationsmodell zur weiteren Bearbeitung flir den oder die Anwender
direkt zur Verfigung stehen.

Jeder Anwender bearbeitet das Simulationsmodell (ber einen eigenen Client, der
verschiedene Visualisierungsmdglichkeiten anbietet. Neben einer zweidimensionalen
Visualisierung soll zusatzlich eine dreidimensionale Modellierungsform angeboten werden.
Idealerweise wird diese flir weniger leistungsstarke Clients um eine 2%2D-Visualisierung
erganzt, die ein realistisches Anordnen der Modellbausteine mittels einer
Parallelprojektion von schrag oben in der virtuellen Umgebung ermdglicht. Abbildung 82
zeigt die resultierende Architektur des Modellierungsmoduls.

Modellierung
2D

Modellierung Server
2.5D Modellierung

Modellierung
3D

-

Abbildung 82: 3-Tier- Architektur des Modellierungsmoduls

Abbildung 83 beschreibt in einem Sequenzdiagramm die intendierte Bearbeitungs-
reihenfolge innerhalb des Modellierungsmoduls.

Konzeption - 161 -

Mode llierungsclient J

Client:1: Client:2: Server. Datenbank:
1 1 1
1 1 1
| > L 129 Ladeh odell AusQE |

a 117 Liadeh odell &
1

12) ModellAusDE
1 ‘ﬁ <) MoaellALEL
a 117 Modelidaten

fa
z
=
=
;_
o
o
]
=
[m]
o
o
F-- -

1
K2 WJoinD ffenesr-ncuiel_l:_

Uk 2 Modelldaten

ald) .BeafbeiteBaustein
I

41 SperBaustein

[4) Bau deinGespwt

D GREEEEE LR PR T R E PP EERTEER s

Abbildung 83: Sequenzdiagramm des Modellierungstools

Der Anwender kann aus seinem Bearbeitungsclient ein in der Simulationsdatenbank
hinterlegtes Simulationsmodell zur Weiterbearbeitung 0ffnen oder legt ein neues
Simulationsmodell an (Analog kann mit der Modellierung von Bausteinbibliotheken
verfahren werden). Weitere angeschlossene Anwender kénnen diesem Simulationsmodell
beitreten, um gemeinsam an demselben Modell zu arbeiten. Alternativ kénnen sie eine
eigene Instanz dieses oder eines anderen Simulationsmodells 6ffnen. Der Server ladt das
Simulationsmodell mit allen Parametern und 2D-, 2V2D- und/oder 3D-Reprasentanten der
Modellbausteine aus der Simulationsdatenbank und stellt sie den Clients zur Darstellung
zur Verfigung. Wahrend der gleichzeitigen Bearbeitung eines Simulationsmodells durch
mehrere Anwender synchronisiert der Server die Zugriffe auf der Ebene eines
Bausteininstanz, bzw. hinsichtlich der Uber- wie untergeordneten Hierarchieebenen des
selektierten Modellbausteins. Abbildung 84 zeigt schematisch den Sperrmechanismus des
Servers.

Der Server verteilt die jeweiligen Informationen (ber Sperrzustande der einzelnen
Bausteininstanzen eines Simulationsmodells an die angeschlossenen Clients, damit diese
hier entsprechend dargestellt werden kdnnen. Der Server muss nicht zwangslaufig eine
grafische Oberflache besitzen, kénnte aber damit zusatzliche Informationen darstellen,
die eine Analyse durch die entsprechenden administrativen Stellen ermdglichen. Der
Arbeitsprozess der Anwender soll durchgehend mittels Kommunikationsmechanismen wie

- 162 -

Chat?®®, UserList®®, User-Awareness®' und E-Mail unterstiitzt werden, so dass ein
verteiltes, ortsunabhéngiges Arbeiten erlaubt wird. Jeder Client kann seine eigene
Darstellungsform aus den vorhandenen Madéglichkeiten auswahlen. Die jeweiligen
Darstellungsreprasentanten werden vom Server an den Client Ubertragen. Dank der
verwendeten Client-Server-Architektur muss diese Informationen nur einmal aus der
Simulationsdatenbank ausgelesen werden und kann danach im Server flr weitere
Anwender vorgehalten werden.

/\ T —FREIER

ZUGRIFF
L5 4 L
= g
g_ P v
o
5
o
o .
4 -
o { SELEKTIERTES
ELEMENT

BLOCKIERTE
ELEMENTE

Abbildung 84: Sperrmechanismus des Modellierungsservers

Der Anwender kann seine Bearbeitung abschlieBen, indem er das Simulationsmodell aus
seinem Client heraus sichert. Der Server hinterlegt den aktuellen Modellzustand in der
Simulationsdatenbank, wo ihm eine aufsteigende Versionsnummer zugewiesen wird. Das
Modell wird um Informationen Uber Anwender, spezielle Kommentare, etc. angereichert
und gesichert, so dass jedem Anwender die Version des Simulationsmodells
wiederhergestellt werden kann, die er gesichert hat. Die Clients missen Uber den Server
eine Mdéglichkeit bereitstellen, den Anwender auf vorhandene, neuere Versionen seines
Simulationsmodells hinzuweisen. Zum Schutz vor unbefugtem Zugriff auf die in der
Simulationsdatenbank hinterlegten Simulationsmodelle muss der Server eine
verschlisselte Kommunikation mit den angeschlossenen Clients zumindest optional
unterstitzen. Im Fall einer gemeinschaftlichen Simulationsstudie innerhalb eines

¥ Chat (von engl. to chat) ist die Bezeichnung fiir eine innerhalb des Internet weit verbreitete Art der

interaktiven Kommunikation zwischen zwei oder mehreren Personen in Echtzeit [Balz05].

% Die UserList ist meist eine Erweiterung der reinen Chat-Funktion, die es dem Anwender erlaubt, Kollegen

und Bekannte in selbst zu definierende Gruppen einzusortieren, um deren Adresse schneller wieder finden zu

konnen.

3! Chat-Programme erlauben dem Anwender die Angabe eines Anwesenheitsstatus, der allen anderen

Anwendern in deren UserList angezeigt wird, damit diese erkennen, ob der Anwender als
Kommunikationspartner zur Verfiigung steht, stehen kann oder stehen mochte.

Konzeption - 163 -

Intranets eines abgeschlossenen Unternehmensbereichs kann auf diese zusatzliche
Sicherheitsrestriktion verzichtet werden.

Unter Bertlicksichtigung des Factory-Paterns®? soll die grafische Benutzeroberfldche des
Clients alle vorhandenen Visualisierungsmaéglichkeiten in einer Oberflache bereitstellen.
Sie wird dazu zunachst in drei Bereiche aufgeteilt. Abbildung 85 zeigt eine schematische
Darstellung der indentierten Benutzeroberflaiche mit den Bereichen menu, library und
workplace.

Bibliotheken Arbeitsflache

Aktuelles Modell in 3D-Ansicht
Modell Modell in 2.5D-Ansicht
Modell in 2D-Ansicht

L/ QM‘*}

Bibliothek A

Bibliothek B

Abbildung 85: Schematische Darstellung des Modellierungsclients

Die beiden Bereiche menu und library sind unabhangig von der gewdahlten
Visualisierungsform zur Darstellung des Simulationsmodells. Lediglich der ,,workplace", in
dem die eigentliche Bearbeitung des Simulationsmodells erfolgt, unterscheidet sich je
nach gewahlter Visualisierungsform (2D-, 2'.D- oder 3D-Darstellung). Durch die
Implementierung des Listener-Konzepts®®* in Kombination mit der eigentlichen
Datenstruktur des Simulationsmodells auf dem Server kann aber jederzeit zwischen der
gewahlten Visualisierungsform gewechselt werden. Dazu missen lediglich die
entsprechenden grafischen Reprasentanten der Modellbausteine vom Server nachgeladen
werden. Die im Client hinterlegten Maus-, Tastatur- oder Menubefehle flihren unabhangig
von der Visualisierungsform zum Aufruf desselben Menlis. So kann eine einheitliche
Bearbeitung unabhangig von der gewahlten Darstellung erreicht werden (Bsp.: Ein Meni
zur Verwaltung der Variablen eines Modellbausteins erscheint immer gleich und verandert
sich nicht, wenn es aus 2D- oder 3D-workplace aufgerufen wird). In den zu
entwickelnden Menids missen minimal die Parametrierung der Variablen und der
Ereignisse des selektierten Modellbausteins erméglicht werden. Darliber hinaus muss der
workplace die Méglichkeit anbieten, die aus der Library per Drag&Drop** im Modell
instanziierten Modellbausteine durch logische Verknipfungen zwischen den Channeln zu

32 [LaRa06]

3 [LaRa06]

3 Drag & Drop (Zichen und Fallenlassen) ermdglicht das Verschieben von Daten mittels Ziehen und

Fallenlassen und erlaubt dadurch den einfachen und effizienten Datenaustausch ... zwischen verschiedenen
Anwendungen[Balz05].

- 164 -

verbinden. Die library stellt geladene Simulationsmodelle und/oder Bausteinbibliotheken
aus der Simulationsdatenbank zur Verfiigung, damit der Anwender bei der Erstellung des
Modells bereits vorhandene Modellbausteine verwenden kann. Die Verwendung dieser
Architektur bietet durch den modularen Aufbau den Vorteil, den Modellierungsclient
effizient erweitern zu kénnen. Bei Bedarf kdnnen weitere Darstellungsformen erganzt
werden, wobei Anderungen an Meniis oder Eigenschaftsfenstern immer nur an einer
zentralen Stelle eingepflegt werden missen. Fir den Anwender ergibt sich dariiber
hinaus der Vorteil einer einheitlichen Bearbeitung, unabhangig von der gewdahlten
Darstellungsform, zwischen denen flieBend gewechselt werden kann.

5.3.2.2 Modul Simulatorkern

Wie in Abschnitt 5.1.2 beschrieben, muss bei dem gewahlten Basisprozess vor
Ausflihrung eines Simulationslaufs das im XML-Format vorliegenden Simulationsmodell in
ein laufféahiges Java-Programm transformiert und kompiliert werden, um gemeinsam mit
den Funktionen des Simulatorkerns ein einziges ausfiihrbares Programm zu bilden.
Dieses Vorgehen bietet neben dem erhofften Geschwindigkeitsvorteil bei der Ausfiihrung
eines Simulationslaufes weitere Vorteile. Einerseits kann ein Simulationslauf somit ohne
Visualisierungsoberflache berechnet und ausgefihrt werden. Einzelne Simulationslaufe
kdénnen potentiell in einem Netzwerk in Form eines Simulator-Simulationsmodell-Paketes
verteilt und mit unterschiedlichen Parametersatzen von Eingabedaten gestartet werden.
Andererseits kann das Funktionsmodul Simulatorkern wesentlich schlanker und somit
effizienter implementiert werden. Die Anforderung an ein multitaskingféhiges
Mehrbenutzersystem kann im Simulatorkern leicht dadurch erfiillt werden, dass ein
Ankoppeln mehrerer Visualisierungskomponenten wahrend der Ausfiihrung erlaubt wird.
Technisch gesehen entsteht in der Verarbeitung der ankommenden Interaktions-
Nachrichten kein Unterschied, ob diese von einem Anwender oder von mehreren
Anwendern erzeugt werden. Das Teilmodul zur Nachrichtenverwaltung im Simulator muss
dann die Verwaltung der eingehenden Nachrichten nach Anwendern sortiert unterstitzen.
Kontextbezogen missen Regeln implementiert werden, die eine inhaltliche Abstimmung
der angeschlossenen Anwender unterstlitzen. Das Kommunizieren von im Simulatorkern
berechneten Anderungen am Simulationsmodell Giber ein Nachrichtenformat kann &hnlich
effizient an einen, wie auch an mehrere angeschlossene Visualisierungskomponenten
erfolgen. Abbildung 86 zeigt die einzelnen Funktionsbereiche des Simulatorkerns in
einem schematischen Diagramm.

Konzeption - 165 -

Simulations-
Message- modell
Handler

Visualisierung
3D

Datenbank [Kernel

Modell-API

MotionPlanning

MultiResolution

Abbildung 86: Funktionsbereiche des Simulatorkerns

Obige Abbildung zeigt, dass sich der Simulatorkern aus mehreren Teilmodulen
zusammensetzt, die wahrend der Ausfiihrung eines Simulationslaufs ineinander greifen.
Der wesentliche Teil des Simulators ist der Scheduler mit der zugehdrigen Ereignisliste, in
die zu berechnende Ereignisse des Simulationsmodells zur Laufzeit sortiert eingefligt
werden (vgl. Abschnitt 3.3). Die Ausfiihrung der diskreten Simulation erfolgt nach den in
Abschnitt 2.2 beschriebenen Methoden, wobei die Datenstruktur des parametrierten
Simulationsmodells ein objektorientiertes Datenmodell mit Objektklassen und -Instanzen
bildet. Diese werden auf Basis eines Interfaces erzeugt, das als eigenstandiges Paket im
Simulatorkern implementiert werden muss. Hier werden insbesondere die Attribute und
Methoden definiert, die der Simulatorkern zur Laufzeit ausfiihren kann, um die Daten des
Simulationsmodells zu manipulieren, weitere Ereignisse zu instanziieren und dem
Scheduler hinzuzufiigen. Zur Verwaltung der erzeugten Datenstrukturen des
Simulationsmodells wird im Simulator ein Datastore bendtigt, an dem sich alle
verwendeten Instanzen des Simulationsmodells wahrend ihrer Erzeugung anmelden, um
einen Zugriff auf die bendétigten Daten aus dem Simulator heraus gewahrleisten zu
kénnen. Manipulationen aus den Visualisierungskomponenten werden an der
Kommunikationsschnittstelle des Simulators, dem MessageHandler, verarbeitet. Alle
ankommenden Nachrichten werden hier gefiltert, verarbeitet und manipulieren ggf. den
Datastore oder den Scheduler. Fir die bendtigte Transformation von XML-Modell in eine
Java-Objekthierarchie wird zusatzlich ein Preprocessor benétigt, der die vorliegenden
Modellbeschreibungen in ein Java-Programm parst und das Ergebnis kompiliert.

Die Modellierung und Simulation von zeitorientierten Simulationsmodellen soll mit dem
Werkzeug prinzipiell Giber zwei verschiedene Arten ermdéglicht werden:

1. Zeitorientierte Bausteinbibliotheken
Die Modellierung zeitorientierter Simulationsmodelle erfolgt in diesem Fall Uber
Bausteinbibliotheken, die eine entsprechende Zeitfortschaltung implizit unterstitzen.
Die zu terminierenden Ereignisse werden bausteinintern auf die vorhandenen
Zeitinkremente abgebildet. Die Ausfiihrung des Simulationsmodells im Simulatorkern
kann dann ereignisorientiert erfolgen, weil die Terminierung der Ereignisse im

- 166 -

Scheduler bereits zeitorientiert erfolgt. Jeder Bausteininstanz kann wahrend der
Modellierung ein eigener Kalender zugewiesen werden (beispielsweise ein
Schichtkalender), wodurch im abgebildeten System die einzelnen Elemente zwar
zeitorientiert, aber nach jeweils variablen Intervallen simuliert werden kdénnen.
Dieses Vorgehen entspricht am ehesten den Sichten in Fertigungsleitstanden und
kann auf Basis der abstrakteren Simulationsmodelle zur Integration innerhalb der
Fertigungslenkung verwendet werden.
2. Zeitorientierte Berechnung im Simulatorkern

Hier kann die zeitorientierte Ausfilhrung des Simulationsmodells auf Basis eines
ereignisdiskreten Simulationsmodells erfolgen. Der Simulator Uberstitzt dies Uber
einen speziellen ,Modus Zeitorientierung", bei dem alle auftretenden Ereignisse
kernelintern auf fixe Zeitinkremente abgebildet werden. Dieses Vorgehen entspricht
der unter Abbildung 8 gezeigten Vorgehensweise der Zeitfortschaltung mit fixen
Zeitinkrementen. Am Anfang der Simulation kann vom Anwender der Abstand der
Zeitinkremente parametriert werden. Vorteil dieser Methode st die
Wiederverwendung der ereignisorientierten Simulationsmodelle, allerdings hangt die
Genauigkeit der Simulation stark von den gewéahlten Zeitinkrementen ab.

Darliber hinaus ergeben sich aus der Aufgabenstellung weitere Teilfunktionen, die als
zusatzliche Funktionen in dem Simulator eingebettet werden missen. Hier sind
insbesondere das Motion Planning Modul (vgl. Abschnitt 5.2.1.2) und das Modul zur
dynamischen Adaption des Detaillierungsgrades des Simulationsmodells (vgl. Abschnitt
5.2.1.1) zu erwdhnen, die jedoch nur dann aktiv dem Simulatorkern hinzugefligt werden
sollen, wenn sie in dem zu bearbeiteten Simulationsmodell benétigt werden. Fir das
Laden und Speichern von Simulationsmodell und Simulationsexperimenten existiert mit
dem Experiment-Manager ein separates Modul, das nachfolgend genauer entworfen wird.

5.3.2.3 Modul Experimentmanager

Das Modul Experimentmanager soll den Anwender in Form eines durch die Anwendung
leitenden Wizards bei der Durchfiihrung einer Simulationsstudie unterstiitzen, indem an
einer zentralen Stelle alle zur Durchfiihrung eines Simulationsexperimentes benétigten
Simulationslaufe parametriert und entweder in einem Stapelverarbeitungs- oder in einem
Parallelbetrieb abgearbeitet werden kdnnen. Zu Beginn jeder Bearbeitung soll der
Anwender ein Simulationsexperiment komplett neu anlegen, auf Basis eines Szenarios
neu anlegen oder aus der Simulationsdatenbank laden. Daraufhin sollen die
Grundeinstellungen hinsichtlich Simulationszeit- und Dauer, Anzahl der Simulationslaufe,
etc. angegeben werden. Fir die eigentliche Parametrierung sollen zahlreiche
Unterstitzungsfunktionen implementiert werden, die beispielsweise die automatische
Parametrierung und Verwirbelung der Startparameter aller Zufallszahlen eines
Simulationsmodells erledigen. Einzelne oder mehrere Parameter der Bausteininstanzen
sollen in einer zentralen Ubersicht eingestellt werden, wobei die Ansicht (ber
entsprechende Masken oder Filter auf die relevanten Bereiche eines Simulationsmodells
eingegrenzt werden soll. Nach der Einstellung der Ausfliihrungsparameter der einzelnen
Simulationslaufe (hintereinander oder parallel auf Rechner 1 bis Rechner N) kann der
Anwender das Experiment starten und erhalt nach dessen Berechnung eine tabellarische
Ubersicht (iber die generierten Ergebnisse. Das Simulationsexperiment inklusive der
Ergebnisse kann dann in der Simulationsdatenbank oder auf dem Dateisystem
gespeichert werden. Das Protokoll der einzelnen Simulationslaufe kann verwendet

Konzeption - 167 -

werden, um sich im Nachhinein einzelne Ausschnitte aus den Simulationslaufen
visualisieren zu lassen.

5.3.2.4 Modul Visualisierungskomponente

Bei der Konzeption des Visualisierungsmoduls wird auf das bereits im Modellierungsmodul
erfolgreich angewendete Architekturpattern Client-Server zuriickgegriffen (vgl. Abschnitt
3.5.6). Der Simulatorkern Ubernimmt die eigentliche Serverfunktion. Neben bereits
angesprochenen Darstellungsformen (2D-, 2%2D- und 3D-Darstellung) soll als weitere
Visualisierungsmadglichkeit eine Report-Oberflache angeboten werden. Unabh&ngig von
der layoutgetreuen Darstellung des Simulationsmodell in den verschiedenen
Darstellungsformen soll mit dieser Visualisierungsmdglichkeit eine Analysefunktion
bereitgestellt werden, die eine aggregierte Sicht auf die aktuellen Kennzahlen der
einzelnen Modellbausteine des simulierten Modells ermdéglicht. Es erlaubt eine schnelle
Ubersicht und damit Einschidtzung des aktuellen Modellverhaltens wéhrend des
Simulationslaufs und soll hauptsachlich im Rahmen der Modellvalidierung und -
Verifikation eingesetzt werden. Die Report-Oberflache ist in der Lage den gesamten
Simulationslauf in einem RecordSet zu sichern und jederzeit wieder abspielen zu kénnen.
Damit wird eine weitere Form der Analyse von Simulationsmodellen ermdglicht, indem
verschiedene Anwender ein RecordSet gemeinsam analysieren und damit die Entwicklung
des Simulationsmodells oder sogar des abgebildeten Fertigungssystems voranzutreiben.

Report-Oberflache, 2D- und 2':D-Oberflache kénnen mit wenigen Anpassungen und
Erweiterungen in den Client des Modellierungsmoduls integriert werden, so dass eine
einheitliche Werkzeugoberflache zur Modellierung und Simulation zur Verfigung steht.
Der Server muss zusatzlich um eine bidirektionale Schnittstelle (MessageCenter) zur
Verarbeitung der Animationsnachrichten, Kommunikation der Anderungen von
Parameterwerten und Interaktionen erweitert werden, um die Animation wahrend der
Ausfiihrung eines Simulationsmodells in den Visualisierungskomponenten zu ermdglichen
und die Interaktion mit dem Simulatorkern zu unterstiitzen. Dabei wird das in Abschnitt
5.2.2 entwickelte Nachrichtenformat umgesetzt. Weil der Server bereits die Multitasking-
Bearbeitung von Simulationsmodellen unterstitzt, muss in diesem Bereich keine weitere
Anpassung vorgenommen werden. In den hier abgebildeten Visualisierungsformen nimmt
der Anwender keine immersive Rolle ein, sondern betrachtet das abgebildete
Fertigungssystem, ahnlich wie in kommerziellen Lésungen, als externer Betrachter.
Speziell diese Darstellungsformen kdénnen eine gute Immersion nur schwer erzeugen.
Deswegen koénnen die Anforderungen hier auf den interaktiven Anteil beschrankt werden.
Durch die Unterstitzung des Nachrichtenformats in den entsprechenden Erweiterungen
ist der Anwender in der Lage, Interaktionen auszufiihren, die an den Simulatorkern
Ubertragen und dort verarbeitet werden (vgl. Abbildung 87).

- 168 -

Interaktion J

Client: Server: Sitmulatar:

1 1.Eigenschafte nEIaustW

|
1 p
o

1 .EigenzschatenBau in:

1
1
1
: ‘2_) AtributeBaustein
17 AttributeBaustein

H ______ L

31 .Datenlpdate

4 UpdateB austein

4)_N eyDatenb

+ ittt

131 Datenl pdateBaustein
L

Abbildung 87: Sequenzdiagramm einer Interaktion wahrend der Simulation

Hier greift, wie schon bei der Modellierung, die implementierte Benutzerverwaltung, so
dass eine Abstufung innerhalb der Interaktionsmdglichkeiten gemaB der assoziierten
Rechte umgesetzt werden kann (damit wird auch die Mdglichkeit eines reinen Viewers
erlaubt, bei dem der Anwender reiner Betrachter ist). Abbildung 88 zeigt die
resultierende Architektur nach Erweiterung des Modellierungsmoduls um die
beschriebenen Visualisierungsformen.

i I |

Modellierung s
2.5D — erver —
—
Modellierung
3D Datenbank

Abbildung 88: Erweiterung des Modellierungsmoduls um
Visualisierungskomponenten

Der dreidimensionalen Visualisierung kommt wahrend der Implementierung eine spezielle
Bedeutung zu, um die realitatsnahe Immersion des Anwenders in die virtuelle Szene des
Simulationsmodells zu realisieren. Neben der Anbindung an den Simulatorkern und der
Animation des dynamischen Verhaltens des Simulationsmodels ist in einem ersten Schritt
die flissige Visualisierung komplexer 3D-Szenen zu realisieren. Um die Navigation des
Anwenders in der virtuellen Umgebung zu unterstitzen, sollen fir den Simulationsverlauf

Konzeption - 169 -

besonders relevante Prozesspunkte speziell hervorgehoben werden und die Bewegung zu
diesen Punkten unterstitzt werden. Neben Integration von Motion Planning zur
Wegeplanung und Kollisionsvermeidung der SPMs und Avatar des Anwenders, sollen
klirzeste Wege zu diesen signifikanten Prozesspunkten in die virtuelle Umgebung
eingeblendet werden. Ebenso wie in anderen Visualisierungsformen muss dem Anwender
ein HéchstmaB an Interaktion aus der Darstellung des Simulationslaufs ermdglicht
werden. Die 3D-Visualisierung ist ebenfalls als Client umzusetzen, der das gleichzeitige
Navigieren mehrerer Anwender (ber den ,Server® Simulatorkern unterstitzt. Der
MessageHandler im Simulator muss um die Verwaltung und Bereitstellung von
Anwenderinformationen, Avataren und ihren jeweiligen Positionen erweitert werden. Der
Bereich des Moduls zur 3D-Visualisierung wird als Client realisiert werden, der mit dem
Simulatorkern bidirektional kommuniziert, gemaB dem unter 5.2.2 entwickelten
Nachrichtenprotokoll, um die Interaktion des Anwenders mit dem Simulationslauf zu
ermdglichen. Aus Effizienzgrinden erhalt der 3D-Client eine direkte Schnittstelle zur
Simulationsdatenbank, um die teilweise umfangreichen 3D-Reprdsentanten einer
Bausteininstanz direkt aus der Datenbank laden zu kénnen. Die Informationen, welche
3D-Reprasentanten im Simulationslauf benétigt werden, erhalt der Client Uber den
Simulatorkern. Abbildung 89 zeigt den schematischen Aufbau der Gesamtarchitektur
unter Berlicksichtigung der 3D-Visualisierungskomponente.

Modellierung Visualisierung l Visualisierung l Reporting I
2D 2D 2.5D

Modellierung
2.5D
Iy
e —
Modellierung «
3D Datenbank

Abbildung 89: schematischer Aufbau der Gesamtarchitektur

Der Client der 3D-Visualisierung dient der Darstellung der gerenderten 3D-Szene filir den
jeweiligen Anwender. Die Navigation wird Uber das Motion Planning Modul so gestaltet,
dass der Anwender in der virtuellen Umgebung nur Wege nehmen kann, die ihm in der
realen Umwelt auch zur Verfiigung standen. Neben der Darstellung der virtuellen
Umgebung werden dem Anwender in weiteren Fenstern zusatzliche Informationen Uber
einen selektierten Modellbaustein, eine Liste aller im Simulationsmodell vorhandenen
Modellbausteine, eine Minimap>® zur Verbesserung seiner Orientierung und Methoden zur
Kommunikationsunterstiitzung angeordnet werden. Abbildung 90 zeigt den
schematischen Aufbau der 3D-Client-Oberflache.

% Unter einer Minimap soll hier eine verkleinerte, maBstabsgetreue Draufsicht auf die Szene verstanden
werden, die dem Anwender zusétzlich in den Client eingeblendet wird, um ihm seine Orientierung in der
virtuellen Umgebung zu erleichtern.

- 170 -

Rendering der 3D-Szene Liste
Signifikanter
Bausteininstanzen

Kommunikation

Abbildung 90: schematischer Aufbau des 3D-Clients

5.3.2.5 Modul Simulationsdatenbank

Als gemeinsame Datenbasis aller mit der Modellierung und Simulation in Zusammenhang
stehenden Daten und Informationen soll eine Simulationsdatenbank dienen. Die
anfallenden Daten im Rahmen der Simulation kdnnen nach Abschnitt 5.2.3 grob in die
Bereiche Eingabedaten, Modelldaten und Ergebnisdaten unterteilt werden. Zusatzlich
werden Verwaltungsdaten bendétigt, um die Eingangs- und Parametrierdaten sowie die
Ergebnisdaten einem Simulationsexperiment und auch einem Anwender zuordnen zu
kénnen. Aus den Modelldaten ergibt sich die Struktur der Ablédufe und des
Materialflusses. Durch die Integration von Layout und Prozessplanung werden auch
Anderungen am Layout direkt in das Simulationsmodell tbertragen. Diese Aktualitat ist
wichtig, weil sonst Simulationsergebnisse verfdlscht werden kdénnen. Die
Modellbeschreibung selbst gibt nur die logische Ablaufstruktur vor. Alle Eigenschaften der
Modellbausteine (Kapazitat, Taktzeit, etc.) kdnnen im Bereich der Eingabedaten zu einem
Simulationsmodell in der Datenbank gespeichert werden. Die Eingangsdaten der
Simulationsmodelle kdnnen hinsichtlich ihrer Art weiter unterschieden werden:

= Statische Parameter beschreiben die Eigenschaften der Modellbausteine (GroBe der
Speicher, Zahlpunkte, etc.), die zur Eingangsparametrierung (Initialisierung) des
Modells dienen. Hier kdnnen sowohl konstante Modelldaten als auch Verweise auf
Produktivdatenbanken der zu simulierenden Systeme stehen. Letztere Alternative
hat den Vorteil, dass Verdanderungen am modellierten System automatisch in das
Simulationsmodell (bertragen werden. Die meisten Eigenschaften &ndern sich
jedoch selten, sind also Uber einen langeren Zeitraum konstant. Logischerweise
bieten sich diese Parameterverweise nur dann an, wenn die zu modellierenden
Systeme bereits in der Realitat existieren.

= Dynamische Parameter sind Daten eines zugrunde liegenden Produktivsystems, die
aktuell fur jedes Simulationsexperiment aus den Produktivdatenbanken ausgelesen
werden missen, evtl. aufbereitet fiir das jeweilige Simulationsmodell. Insbesondere
sind dies Daten und Informationen, die den aktuellen Stand der Fertigung
wiedergeben (Prozessabbild) und die Bedingungen fir den Simulationshorizont
darstellen (z.B. geplante Tagesproduktion, Arbeitszeitmodelle, etc.). So kann das

Konzeption -171 -

Verhalten des Simulationsmodells dem realen Prozess weitestgehend angepasst
werden und damit als Prognoseinstrument fiir eine laufende Fertigung eingesetzt
werden.

Alle genannten Datenbereiche sollen nachfolgend detailliert werden. Daraus ergeben sich
die einzelnen Datenbereiche, wie sie in Abbildung 91 skizziert werden und innerhalb der
zu entwickelnden Simulationsdatenbank umgesetzt werden miissen.

Eingabe Modelle Ausgabe Verwaltung

Fertigungsdaten Simulationsmodelle Experiment- Benutzerdaten
verwaltung

Prozessabbilder Grafische Bausteine Ergebnisse Rechteverwaltung
(2D-3D)
Steuerungsdaten Szenarioverwaltung

Abbildung 91: Datenbereiche der Simulationsdatenbank

Die einzelnen Datenbereiche Gbernehmen die Sicherung der ihnen zugeordneten Daten
in logisch abgetrennten Bereichen der Simulationsdatenbank.

Fertigungsdaten

Unter Fertigungsdaten werden die Parametrierungen der einzelnen
Bausteininstanzen abgelegt, mit denen die einzelnen Modelle zu Beginn eines
Simulationslaufes initialisiert werden. Dabei werden durch die dynamischen
Detaillierung unter Umstanden einzelne Fertigungsbereiche mehrfach, aber in
unterschiedlichen Detaillierungsgraden abgelegt. Abgeleitet aus der abgelegten
Hierarchie der Modellbausteine im Simulationsmodell kdénnen die einzelnen
Fertigungseinheiten in einer Baumstruktur (Top-Down-Hierarchie) abgelegt werden.
Prozessabbild

Das Prozessabbild liefert zu einem fest definierten Zeitpunkt (statisch) den
Betriebszustand aller im Simulationsmodell abgebildeten Anlagen (Maschinen,
Lager, Fordertechnik, etc.) und die Lokalisierung aller Produktionsgliter (innerhalb
der Anlage, im Lager, auf Fordertechnik). Jeweils zum gewahlten Detaillierungsgrad
werden die Fertigungseinheiten und damit die Modellbausteine des
Simulationsmodells mit den Produktivdatensatzen initialisiert. Da ein Prozessabbild
umfangreiche Datensatze beinhalten kann und zusatzlich fiir eine Online-Simulation
nur einmal bendtigt wird, werden nur wesentliche Kennzahlen daraus in der
Simulationsdatenbank langfristig abgespeichert, um die wichtigsten
Eingangsparameter reproduzieren zu kdnnen (Ausnahme: Detailsimulationen, fir
die ein komplettes Prozessabbild bendétigt wird). Die restlichen Daten werden nur
temporar in der Simulationsdatenbank gespeichert und nach dem
Simulationsexperiment geléscht. Flr Planungssimulationen muss eine Mdéglichkeit
vorgehalten werden, um einzelne Prozessabbilder abzuspeichern und damit eine
Simulation mehrerer Experimente auf Basis gleicher Eingangsvoraussetzungen zu
starten.

-172 -

= Steuerungsdaten
Hier finden sich alle Steuerparameter und Planungsdaten der Simulation und
definieren die Rahmenbedingungen fir das Prognoseverhalten des
Simulationsmodells. Anhand dieser Daten wird das Verhalten der Bausteine des
Simulationsmodells Uber den Zeitraum der Simulation bestimmt. Dies sind
beispielsweise Arbeitszeitmodelle und geplante Lose sowie die Histogramme, die
Durchlaufzeiten oder Verwirbelungen innerhalb der Modellbausteine anhand von
Wahrscheinlichkeitswerten definieren.

»= Simulationsmodelle
In diesem Datenbankbereich werden die Modellbausteine, Bibliotheken und
Simulationsmodelle in den verschieden vorliegenden Versionen hinterlegt,
angereichert um Meta-Informationen bzgl. des Anwenders und Kommentare zur
Identifikation der Unterschiede in den Versionen. Alle Modellbausteine sind mit
Standardwerten vorbelegt, soweit diese durch den Modellierer hinterlegt wurden.
Die experimentspezifischen Parameter der Modellbausteine hinsichtlich eines
Szenarios oder eines Simulationslaufes werden im Bereich Fertigungsdaten
hinterlegt und Uberschreiben ggf. die Standardwerte. Zusatzlich kénnen spezielle
Parameter aus den Szenario- und/oder Experimentdaten die Standardwerte der
Bausteine Uberschreiben. Ein Modellbaustein kann auch einen Verweis auf den
Bereich der 3D-Daten beinhalten.

= Szenarioverwaltung
Die Szenarioverwaltung umfasst Einstellparameter fir Stér- und Anderungs-
szenarien sowie die Zuweisungen zu entsprechenden Simulationsexperimenten
(siehe Experimentverwaltung). Die manuell eingestellten Parameter und Stérungen
des Simulationslaufes oder —Experiments werden in diesem Bereich abgespeichert.
Dies kbdnnen Dbeispielsweise Veranderungen einer Tagesproduktion, des
Arbeitszeitmodells oder Stérungen im Fertigungsablauf sein.

= 3D-Daten
Im Bereich der 3D-Daten werden alle anfallenden Informationen und Datenmengen
gesichert, die flr die grafische Darstellung der Modellbausteine in den
Modellierungs- oder Visualisierungskomponenten benétigt werden. Neben 3D-
Reprasentanten und hoéhenabhdngigen Draufsichten sind das die relativ
angeordnete Anfahrpunkte flir das Motion Planning, eventuell vorhandene 2,5D-
Darstellungen, Outlines und Informationen Gber Animationspfade etc.

= Experimentverwaltung
Hier werden die durchgefiihrten oder geplanten Experimente mit allen bendtigten
Daten und Verweisen abgespeichert. Neben dem ausflihrenden Anwender sind das
insbesondere Informationen wie Datum, Beschreibung, Sollzahlen, hauptsachlich
Verweise auf eingestellte Veranderungen und Stérungen aus der
Szenarioverwaltung. Abgespeicherte Experimente kdnnen als Vorlage fir
weiterflihrende Simulationsexperimente dienen.

= Ergebnisverwaltung
Zu den durchgefiihrten Simulationsexperimenten werden in diesem Bereich der
Simulationsdatenbank die Ergebnisse der einzelnen Simulationsldufe gespeichert..
Die Ergebnisse spiegeln sich u.a. in einer Reihe von Ergebniskennzahlen wieder, die
als Statistiken aufbereitet werden und in Auswertungsmodulen in verschiedenen
Darstellungsformen angezeigt werden kénnen. Flr das Protokollieren und Sichern

Konzeption -173 -

von Experimentdaten eines Simulationslaufs wurde in Abschnitt 5.2.3 eine
Beschreibung erstellt, die in diesem Bereich gesichert werden soll.
= Benutzerverwaltung

Die Benutzerverwaltung enthdlt alle Benutzerdaten und die Gruppenzugehérigkeit
mit den entsprechenden Rechten. Anhand der Benutzergruppe, personifizierten
Rechten und den Einstellungen in den einzelnen Modellbausteinen ergeben sich die
Rechte fir den Zugriff auf die Simulationsmodelle und deren einzelne
Modellbausteine. Hier wird zuséatzlich das entwickelte Rechtemanagement abgelegt
und verwaltet (vgl Abschnitt 5.1.6.).

Flir die manuelle Bearbeitung der Daten in der Simulationsdatenbank soll ein einfaches
Fron-End entwickelt und benutzt werden, um auBerhalb der Modellierungs-, Simulations
und Visualisierungskomponenten die Datenbank warten zu kénnen. Wie oben bereits
angedeutet, kénnen diese Wartungsaufgaben zumeist auch von Nicht-
Simulationsexperten durchgefiihrt werden.

5.3.2.6 Modul Administration

Das Funktionsmodul Administration dient der wartungsfreundlichen Manipulation
vorhandener Datensdtze in und aus der Simulationsdatenbank. Wesentliche
Anforderungen ergeben sich aus der Pflege der Simulationsmodelle, Experiment- und
Szenariodaten sowie der komfortablen Bearbeitung und Pflege aller benétigten 2D, 2.5D
oder 3D-Reprasentanten der logischen Modellbausteine. Dariber hinaus wird eine
grafische Oberflache zur Pflege der Benutzerdaten und der vorhandenen
Rechteverwaltung benétigt. Abbildung 92 zeigt eine nach Funktionsgruppen sortierte
Ubersicht aller anfallenden administrativen Aufgaben.

Simulation Grafische Modelle

Simulationsdaten 2D-Daten

Verwaltung
Benutzerverwaltung

Rechverwaltung

Manuelle Abfragen

Experimentdaten 3D-Daten

Animationsdaten

Konsistenzpflege

Abbildung 92: Teilmodule des Administrationsmoduls

Die einzelnen Anforderungen lassen sich auch durch spezifische, ggf. bereits vorhandene
Werkzeuge implementieren und abarbeiten. Im Rahmen der Konzeption eines
Gesamtwerkzeugs soll hier aber ein einheitliches Administrationsmodul umgesetzt
werden, dass alle erforderlichen administrativen Aufgaben abzuarbeiten erméglicht. Dazu
miuissen in den einzelnen Modulteilen entsprechende Funktionen implementiert werden,
die eine Umsetzung der dargestellten Use-Cases erlauben.

Auf Basis der in diesem Kapitel getroffenen Design-Entscheidungen hinsichtlich der
Modellbeschreibung und der Modularisierung des zu entwickelnden Werkzeuges sollen im
folgenden Kapitel die einzelnen Bausteine des Werkzeugs in der Programmiersprache

- 174 -

Java umgesetzt werden. AnschlieBend wird anhand eines Beispielmodells nachgewiesen,
dass das Werkzeug den unter Kapitel 1 gestellten Anforderungen gentigt.

Realisierung - 175 -

6 Realisierung
,Leben heiBt Handeln."

(Albert Camus)

Nach der Konzeptionsphase missen die entwickelten Funktionsmodule der
Gesamtanwendung implementiert und in einer Gesamtanwendung zusammengefihrt
werden. Dieses Kapitel will das Ergebnis der Implementierungsphase beschreiben, indem
es anhand eines spezifischen Beispiels den Nachweis flihrt, dass alle in Abschnitt 2.4
gestellten Anforderungen an Basisprozess, Modellbeschreibung und Werkzeug erflllt
werden kénnen.

Das Kapitel ist nach der Vorgehensweise bei der Durchfiihrung einer Simulationsstudie
strukturiert. In den ersten Abschnitten wird daher zunachst Untersuchungsgegenstand
und Untersuchungsziel definiert. Die Problemstellung ist so gewahlt, dass alle in der
Anforderungsbeschreibung aufgenommenen Funktionalitdten ihre Anwendung finden. Sie
werden an geeigneter Stelle abgearbeitet, um sowohl Machtigkeit der
Modellbeschreibung als auch Funktion des Werkzeugs zu illustrieren. Auf den Nachweis
der Simulationswirdigkeit, der Ublicherweise an erster Stelle einer Simulationsstudie
steht, wird an dieser Stelle verzichtet.

6.1 Definition des Untersuchungsgegenstands

Zu Beginn der Simulationsstudie soll der Untersuchungsgegenstand beschrieben werden,
wie er im Folgenden abgebildet wird. Fokus der Untersuchung ist die fiktive Fabrik der
PaderKarts GmbH (PaderK), die auf Basis von Rohstoffen und Teilerzeugnissen
kundenindividuelle Karts herstellt. Der Leistungserstellungsprozess kann grob in zwei
Prozessschritte unterteilt werden: Die Teilefertigung von Zwischenerzeugnissen auf Basis
von Rohmaterialien und die kundenindividuelle Montage auf Basis der Zwischen-
erzeugnisse. Beide Prozesse werden durch ein zentrales Lager entzerrt, bzw. aus diesem
Zentrallager mit Faktoren versorgt. Abbildung 93 zeigt das Grobschema der Fertigung
der PaderKarts GmbH.

P

-176 -

Abbildung 93: Grobschema der Fertigung von Karts bei der PaderK GmbH

Alle Teilmodelle der PaderKarts GmbH sollen auf zwei unterschiedlichen
Detaillierungsebenen betrachtet werden: Zum Einen eine weniger detaillierte Ebene, in
der die drei Teilbereiche der PaderK zeitorientiert und ohne Transportwege modelliert und
simuliert werden kénnen; Zum Anderen eine hoher detaillierte Betrachtungsebene, die
zusatzlich die Transportbeziehungen innerhalb der Teilbereiche abbildet. Nachfolgend
sollen die einzelnen Teilbereiche in den jeweiligen Detaillierungen naher beschrieben
werden.

6.1.1 Zentrallager

Das Lager der PaderK ist zentraler Anlaufpunkt aller Warenflisse. Wie in Abbildung 93
gezeigt, werden die fremdbeschafften Rohstoffe, alle eingekauften Halbfabrikate, die
Teilerzeugnisse der Teilefertigung und kundenindividuellen Erzeugnisse der Montage in
einem gemeinsamen Lager verwaltet. Die jeweils ankommenden Waren werden an einem
gemeinsamen Wareneingang zwischengelagert und durch Gabelstapler auf die einzelnen
Lagerplatze in vier Lagergassen verteilt. Eine weitere Gruppe von Gabelstaplern
Ubernimmt den unternehmensinternen wie -externen Versand der Erzeugnisse, indem
sie die Waren aus den Lagerplatzen entnehmen, an einem zentralen Warenausgang
kommissionieren und verschicken. Abbildung 94 zeigt die schematische Struktur des
Zentrallagers ohne Bertlicksichtigung der Staplersteuerung und Gabelstapler, also auf der
weniger detaillierten Betrachtungsebene. Die Auftragssteuerung generiert die Auftrage
fir den Warenausgang. Sie werden durch den Wareneingang durchgeschleust und
veranlassen die Auslagerung in der jeweiligen Lagergasse, so dass die Erzeugnisse im
Warenausgang ankommen. Hier werden sie anschlieBend versendet.

)
»@ Lagergasse 1 —
\ @ Lagergasse 2 - \
oL)
—

Wareneingang - Warenausgang

b il @ Lagergasse 3 -

Auftrags- ‘ I iy] _
steuerung | b. Lagergasse 4 I

0

Abbildung 94: Zentrallager der PaderK in niedriger Detaillierung

Die detaillierte Betrachtung unter Einbeziehung der beiden Gabelstaplergruppen erweitert
das Lager nur leicht. Wie Abbildung 95 zu entnehmen ist, schleust der Wareneingang die
ankommenden Einlagerungsauftrage und Waren an die Staplersteuerung weiter, die den
Transport mittels der Gabelstapler bis zu den eigentlichen Lagerplétzen in den
Lagergassen unter Einbeziehung der kiirzesten Wege Gbernimmt. Die Auftragssteuerung
zur Auslagerung ist an die Steuerung der Gabelstapler-Gruppe ,Warenausgang"
angebunden. Ubergebene Auslagerungsauftrdge werden mittels der Gabelstapler an den

Realisierung -177 -

Warenausgang (bergeben, wobei die Transportwege ebenfalls unter Anwendung des
Motion Planning berechnet werden sollen. Der Warenausgang (bernimmt die
Kommissionierung der einzelnen Auslagerauftrage zu Versandauftragen und transportiert
die entsprechenden Erzeugnisse anschlieBend, je nach Bestimmungsort, an die
entsprechenden Output-Channel des Uibergeordneten Modellbausteins Zentrallager.

- ‘ Auftrags-
Steuerung i steuerung ‘ Steuerung
Gabelstapler b < Gabelstapler
Gruppe_WE T Gruppe_WA

Lagergasse 1

N

~ /—‘—\
— . -
B

.—b Wareneingang
- Lagergasse 2 -
3
4 Lagergasse 3 -

|
>+ Lagergasse 4 p-

Abbildung 95:Zentrallager der PaderK in hoher Detaillierung

Die einzelnen Output-Channel des Modellbausteins Zentrallager sind mit den anderen
Bereichen des Gesamtmodells verbunden, also dem Eingang des Modellbausteins
Teilefertigung, dem Eingang des Modellbausteins Montage oder dem Output-Channel des
Gesamtmodells der PaderK. Da die entsprechenden Verknipfungen jeweils nur logischen
Vorganger/Nachfolger-Beziehungen entsprechen, muss bereits im Modellbaustein
Warenausgang des Zentrallagers sowohl auf niedriger wie hoher Betrachtungsebene
entschieden werden, Uber welchen Output-Channel des Bausteins der jeweilige Auftrag
versandt wird.

6.1.2 Teilefertigung

Die von der PaderK eingekauften Rohstoffe und Halberzeugnisse werden in der
Teilefertigung verarbeitet. Zwei grundlegende Bearbeitungen kénnen unterschieden
werden, die durch eine Gruppenfertigung abgebildet werden: Zum Einen die Bearbeitung
von Metallteilen durch Umform-, Biege- und Flgetechniken. Die erstellten und
behandelten Metallteile werden in einem Folgeschritt zu Karosseriestrukturen des Karts
verschweiBt. Zum Anderen die Herstellung von Kunststoffteilen mittels eines
Spritzgussverfahrens, das eine umfangreiche Nacharbeit (Entgraten, Schleifen, etc)
erfordert. Alle Zwischenerzeugnisse werden in einem Teilelager innerhalb der
Teilefertigung zwischengepuffert, anschlieBend entweder an die Lackierung Ubergeben
oder gehen direkt ins Zentrallager der PaderK. Auf der groberen Betrachtungsebene, wie
sie in Abbildung 96 dargestellt wird, werden die Transporte zwischen den einzelnen
Stufen nicht betrachtet.

-178 -

Eingang

Teilefertigung

Spritzguss —
)

Nachbearbeitung | —

p
)

Teilelager
VorLack

“

Lackierung

.)

Abbildung 96: Teilefertigung der PaderK in niedriger Detaillierung

v v v
3
J
r

SchweiBen

- ~
L Metall- ‘
‘ verarbeitung] —|

Der Transport innerhalb der Teilefertigung wird bei der PaderK mittels fahrerloser
Transportfahrzeuge (FTF) gewahrleistet, die auf festen Wegen die Teilefertigung
durchqueren und die Zwischenerzeugnisse zwischen den einzelnen Fertigungsstufen
transportieren. Abgebildet wird das fahrerlose Transportsystem (FTS) Uber eine feste
Wegestruktur in Form von Bausteinen, die Wege oder Bahnhofe reprasentieren, wobei
nur an den Bahnhof-Bausteinen Teile aufgenommen und abgeladen werden kdénnen. Die
Steuerung des FTS erfolgt Uber einen speziellen Steuerungsbaustein, der alle FTF, ihre
Routenplane und aktuelle Routen verwaltet. Der Weiterversand der bearbeiteten
Erzeugnisse ins Zentrallager erfolgt direkt aus der Lackierung oder dem Teilelager
VorLack. Die Abbildung erfolgt im Modell der detaillierten Betrachtungsebene durch ein
Durchschleifen der Erzeugnisse durch den entsprechenden Bahnhof des Teilelagers.

T * Nachbearbeitung _M'_EI:a!I
Steuerun 1 | [verarbeitung
g 7 ____ _____ =

— 7 w
I Eingang] * Spritzguss ' SchweibBen J
I Teilefertigung 7 R \—I

Bahnhof Bahnhof @
Eingang Kunststoff
J < J
Y
Weg

J

Bahnhof
Metall

Weg
La-Ei

Teilelager | Bahnhof g
VorlLack ‘ TLager :
J . D, ‘\ A

3
_r‘ Bahnhof Weg

-] ——
() Dms /

Abbildung 97: Teilefertigung der PaderK in hoher Detaillierung

Weitere bendtigte Einzelteile zur Herstellung eines kundenindividuellen Karts werden
durch die PaderK fremdbeschafft, beispielsweise die verwendeten Motoren und die

Realisierung -179 -

Rad/Reifen-Kombinationen. Die Fertigung der Teilefertigung erfolgt auf Basis einer
Abschatzung vorhandener und zuklnftiger Auftrage und ist weitgehend kundenanonym.

6.1.3 Montage

Die einzelnen Karts werden kundenauftragsbezogen in der Montage zusammengebaut.
Chassis und Motoren werden am Anfang der Montage sequenzgenau bereitgestellt und
als erste Montagestufe verheiratet. AnschlieBend erfolgt die mehrstufige Montage der
Anbauteile und Sonderausstattungen. Die fertig zusammengebauten Karts werden auf
zwei parallel betriebenen Linien auf Verarbeitungsqualitdt und Funktion Uberprift und
anschlieBend im Zentrallager bis zur Auslieferung zwischengelagert. Werden im Rahmen
der Qualitatsuntersuchungen Mangel an einem Kart festgestellt, so wird das
entsprechende Kart aus der FlieBfertigung ausgeschleust und der Nacharbeit zugefihrt.
Nachdem der identifizierte Fehler behoben ist, erfolgt eine erneute Qualitétsprifung und
die Weiterleitung des Karts an das Zentrallager. Auch bei der Abbildung der Montage
werden die Transportwege zwischen den einzelnen Montagevorgangen im niedrig
detaillierten Modell noch nicht betrachtet.

/ Qualitat —
Eingang ‘ Linie 1)
Montage

.

]

)
]
)

A

Nacharbeit
Hochzeit

|

- 3
g Anbauteile 1
)
= “ S —— IJ ’T N
. | g dang
\H Anbauteile 2 J —->. Puffer 2 . L Montage

Qualitat
Linie 2

Puffer_1

Abbildung 98: Montage der PaderK in niedriger Detaillierung

Aus dem hoher detaillierten Modell der Montage der PaderK (vgl. Abbildung 99) wird
ersichtlich, dass die einzelnen Montagestufen mittels fester Férdertechnik untereinander
verbunden sind. Die feste Verkettung der FlieBmontage wird nur dadurch teilweise
entzerrt, dass einzelne Forderstrecken als Puffer ausgelegt sind. So kann die
Forderstrecke 3 einerseits als Ausfallstrecke dienen, wenn Forderstrecke 2 ausfallt oder
gewartet werden muss, andererseits kénnen hier Karts zwischengespeichert werden,
wenn Qualitat oder Nacharbeit die anfallende Arbeit nicht bewaltigen kénnen. Zusatzlich
ist vor dem Eingang in den Qualitdtsbereichen eine Staustrecke installiert worden, auf
der weitere Karts zwischengespeichert werden kdénnen.

- 180 -

/

FT '
Staustrecke)

b‘ Qualitat) \

Linie 1
A
FT p- . Qualitst : 1 y
.) zwei a Linie 2 —L. FT
Eingang | Verzweigung | | Zusammen
Montage ‘, A J’. /
-| .k Nacharbeit !
Hochzeit
'
—_— Férder-
q R Férder- 1 —~® Strecke 4
Fiérderstrecke 1 ~
\. (FT) ' | [HwEsnE - Strecke 3)
- N L Forder- Férder-) ~ '—l
Anbauteile 1 L Strecke 2) Ausgang
,| ? Montage

7

Die in den Abbildungen darstellten Bausteine der einzelnen Bereiche der PaderK kdénnen
ahnlich wie auch die Bereiche Zentrallager, Teilefertigung und Montage an den
geeigneten Stellen weiter detailliert werden. So bestehen beispielsweise die
Forderstrecken jeweils aus einzelnen Elmenten einer Férdertechnik, oder die Lagergassen
des Zentrallagers aus einer Fordertechnik mit den entsprechenden Lagerplatzen. Die
dargestellten Detaillierungen sollen aber flir die Untersuchungsziele dieser
Simulationsstudie gentigen.

. | f FT :
\g Anbauteile 2 —s® Verzweigung

Abbildung 99: Montage der PaderK in hoher Detaillierung

Aussagefdhigkeit der PaderK hinsichtlich der Aufgabenstellung

Die Struktur der fiktiven PaderKarts GmbH kann exemplarisch fir Fertigungssysteme
angesehen werden, die im Rahmen verschiedener Untersuchungen mittels einer
Ablaufsimulation betrachtet werden. Die einzelnen Bereiche entsprechenden
unterschiedlichen Organisationsformen, die mit den bekanntesten Varianten von
Transportsteuerungen verbunden sind. Durch die Modellierung und Simulation der
PaderK mit dem hier entwickelten Werkzeug kann somit der Nachweis gefihrt werden,
dass verschiedenartige Fertigungssysteme mit dem Werkzeug abgebildet und analysiert
werden kénnen. Im Einzelnen erfillen die Teilbereiche der PaderK folgenden Zweck
hinsichtlich der Aufgabenstellung:

= Zentrallager: Die wesentliche Aufgabe des Zentrallagers vor dem Hintergrund der
Anforderungen ist die Implementierung einer Transportsteuerung unter der
Verwendung des implementierten Motion Planning Verfahrens auf der hdher
detaillierten Betrachtungsebene des Modells. Dadurch wird die Funktionsweise des
entwickelten Verfahrens zur verbesserten Abbildung funktionsorientiert
gegliederter Fertigungssysteme nachgewiesen. Im Rahmen der
Simulationsstudie hat das Zentrallager die Aufgabe die unterschiedlich arbeitenden
Teilbereiche Teilefertigung und Montage zu entzerren, um den Aufbau des
Simulationsmodells nicht unnétig zu verkomplizieren. Es erlaubt die Abkopplung der
beiden Teilbereiche untereinander, so dass die jeweiligen Simulationsmodelle in den

Realisierung - 181 -

entsprechenden Szenarien getrennt betrachtet werden kdnnen. Als einzige
Restriktion, die sich bei diesem Vorgehen ergibt, muss festgehalten werden, dass
sich ein Riickstau aus dem Lager nicht auf die einzelnen Teilbereiche auswirkt. Fir
den Nachweis der Anforderungen, zu dem diese Simulationsstudie dienen soll, kann
dies aber in Kauf genommen werden.

= Teilefertigung: Aufgabe der Teilefertigung ist die Abbildung einer funktionsorientiert
gegliederten Fertigung. Weil die Suche nach kilirzesten Wegen schon durch das
Zentrallager abgebildet wird, bietet sich die Teilefertigung als hoher detailliertes
Simulationsmodell zur Modellierung und Simulation von fixen Transportwegen unter
Verwendung von Modellbausteinen an. Durch die Gestaltung der Gruppenfertigung
und ihrer Transportwege mittels eines fahrerlosen Transportsystems ist dem bei der
Gestaltung des Untersuchungsgegenstandes Rechnung getragen worden.

= Montage: Die Montage dient als Anwendungsbeispiel einer klassischen Flie3- bzw.
Serienfertigung von kundenindividuellen Erzeugnissen, wie sie beispielsweise in der
Automobilindustrie sehr verbreitet ist. Heutzutage wird die Ablaufsimulation meist
vor dem Hintergrund solcher Fragestellungen von objektorientierten
Organisationsformen eingesetzt. Die Transportwege sind, in der Realitdt wie
auch im gewahlten Beispiel, durch eine starke Verkettung (Férdertechnik, Band-
oder Kettenforderer) gekennzeichnet, erganzen und komplettieren dadurch die
Abbildung von Transportstrukturen in dem gewahlten Beispiel.

Hinsichtlich der Modellbeschreibung kann die Modellierung der PaderK in der oben
dargestellten Form, bzw. deren analoge Umsetzung in dem implementieren Werkzeug,
zeigen, dass eine modulare, hierarchische und objektorientierte Abbildung durch
das Werkzeug ermdglicht wird. Die einzelnen Bausteine werden jeweils mittels der fiir die
Modellbeschreibung geltenden Regeln erzeugt und flihren damit auch den Nachweis, dass
die Modellierung beliebiger Detaillierungsgrade mit dem Werkzeug erfolgen kann.

Der Untersuchungsgegenstand der PaderK soll damit flr die Aufgabenstellung
hinreichend genau beschrieben sein. Die einzelnen Ziele und Untersuchungsszenarien
sollen im folgenden Abschnitt dargestellt und hinsichtlich der Aufgabenstellung begriindet
werden.

6.2 Definition des Untersuchungsziels

Es wird angenommen, dass die PaderKarts GmbH setzt die Methode Ablaufsimulation
bisher nicht einsetzt. Im Rahmen der Simulationsstudie sollen daher verschiedene
Szenarien durchgefiihrt werden, die mdgliche Einsatzfelder bei der PaderK aufzeigen und
evaluieren. Die Szenarien zeichnen sich auch dadurch aus, dass mit ihnen ein
planugsphasentlibergreifender Einsatz der Ablaufsimulation erméglicht wird.

Szenario 1: Zeitorientierte Riickwartssimulation zur Terminierung von
Fertigungspldnen

Auf Basis der erstellen Fertigungs- und Montageabldufe der Paderk soll durch eine
zeitorientierte Rlckwartssimulation des Gesamtmodells eine Grobplanung der
Kundenauftrage fir Teilefertigung und Endmontage durchgefiihrt werden. Terminiert
durch verfliigbare und geplante Kundenauftréage soll als Simulationsergebnis ein initialer
Fertigungsplan erstellt werden, der eine Zeit- und Personalplanung fiir die einzelnen

- 182 -

Teilbereiche ermdglicht, gleichzeitig eine rechtzeitige Bereitstellung der in spateren
Fertigungsstufen bendétigten Teilerzeugnisse und Zwischenprodukte garantiert. Die
einzelnen intralogistischen Transporte sollen in dieser Untersuchung nicht bericksichtigt
werden, weshalb an dieser Stelle die Abbildung der einzelnen Teilbereiche auf der
niedrigeren Betrachtungsebene ausreicht.

Aussagefahigkeit des Szenarios hinsichtlich der Aufgabenstellung

Die Umsetzung des ersten Szenarios durch die Modellierung und Simulation mit dem
implementierten Werkzeug dient in erster Linie dem Nachweis einer zeitorientierten
Modellierung und Simulation. Die gewahlte Fragestellung unterstitzt den Ansatz eines
phasenibergreifenden Einsatzes der Ablaufsimulation durch die Anwendung im Rahmen
einer Fertigungslenkungsaufgabe. Darlber hinaus erbringt die rickwarts gerichtete
Ausfliihrung der Simulation den Nachweis der bendétigten Kernelfunktionalitaten zur
Rickwartssimulation. Die erstellten Modelle dienen als Ausgangsbasis flir nachfolgende
Szenarien, indem sie durch die implementierte Transformation in vorwarts gerichtete
Simulationsmodelle umgewandelt werden kdnnen. Die Modellbeschreibung kann unter
Verwendung dieses Verfahrens als richtungsoffen bezeichnet werden und erflllt so eine
Anforderung der Arbeit. Die daraus resultierenden Simulationsmodelle der weniger
detaillierten Betrachtungsebene werden flir das zweite Szenario entsprechend erweitert
und erflillen somit die Anforderung nach einem modularen, erweiterbaren Aufbau der
Simulationsmodelle auf Basis der entwickelten Modellbeschreibung.

Szenario 2: Ereignisdiskrete Vorwaértssimulation zur Engpass- und
Sensitivitatsanalyse der Fertigungsabladufe

Alle Teilbereiche der PaderK sollen durch eine ereignisdiskrete Vorwartssimulation einer
Engpassanalyse als klassisches Einsatzfeld der Ablaufsimulation unterzogen werden.
Aussagen hinsichtlich der maximalen Leistungsféhigkeit der installierten Anlagen unter
den gegebenen Randbedingungen (Arbeitszeitmodelle, Materialverfligbarkeiten, etc.)
dienen als Ausgangsbasis fliir eine maogliche Sensitivitdtsanalyse, die Abhangigkeiten der
jeweiligen Teilsysteme von einzelnen Parametern identifizieren kann. Durch interaktive
Analysen des Simulationsmodells soll der Erkenntnisgewinn (ber die Teilbereiche der
PaderK vorangetrieben werden. Um reprasentative Aussagen hinsichtlich des
Systemverhaltens der einzelnen Fertigungs- und Montageprozesse zu erlauben, muss
diese Simulation im Wesentlichen auf den hdher detaillierten Betrachtungsebenen der
einzelnen Teilbereiche basieren. Damit kann dann auch gezeigt werden, dass die im
ersten Szenario erstellten Fertigungsplane auch unter Beriicksichtigung der
verschiedenen Transporte eingehalten werden kénnen. Die in diesem Schritt bereits
existierenden zeitorientierten Modelle missen deshalb in ereignisorientierte Modelle
umgewandelt und um eine weitere Detaillierungsebene erganzt werden.

Aussagefahigkeit des Szenarios hinsichtlich der Aufgabenstellung

Das zweite Szenario dient in erster Linie dem Nachweis einer ereignisgesteuerten,
diskreten Materialflusssimulation mit dem entwickelten Werkzeug. Speziell die Analysen
in der dreidimensionalen Darstellung sollen dariiber hinaus zeigen, dass eine interaktive
und bestmoéglich immersive Betrachtung der dynamischen Verhaltensweisen der
Simulationsmodelle mit dem Werkzeug mdglich ist. Ein Experimentieren durch mehrere
Anwender soll dariber hinaus vorstellen, dass der geforderte Mehrbenutzer-, bzw.
Multitaskingbetrieb in der Visualisierung ermdglicht werden kann. Der analoge

Realisierung - 183 -

Nachweis einer Modellierung durch mehrere Anwender soll wahrend der Implementierung
des Simulationsmodells in der Modellierungskomponente erfolgen. Durch die Gestaltung
des Simulationsmodells mit verschiedenen Detaillierungsgraden kann an dieser Stelle
auch gezeigt werden, dass das Verfahren von Mueck (dynamische Detaillierung zur
Laufzeit) in dieser Werkzeugimplementierung integriert wurde.

Szenario 3: Ereignisdirekte Riickwartssimulation zur Feinplanung der
Teilefertigung

Unter der an dieser Stelle vorweggenommenen Annahme des Gesamtprozess-Engpasses
innerhalb der Montage der PaderK, bietet eine zusatzliche Untersuchung in diesem
Bereich nur wenig Potential. Als drittes Szenario soll deshalb eine Feinplanung der
Auftréage in der weniger ausgelasteten Teilefertigung durch eine ereignisdiskrete
Rickwartssimulation erfolgen. Ziel ist die verbesserte Termin-, Mengen- und Schicht-
bzw. Personalplanung in der Teilefertigung hinsichtlich spatester Beginnzeitpunkte, um
die Lagerbestande innerhalb des Zentrallagers auf ein Minimum beschranken und
dadurch gebundenes Kapitel freisetzen zu kénnen.

Aussagefahigkeit des Szenarios hinsichtlich der Aufgabenstellung

Weil die kundenindividuelle Montage der Engpass der PaderK ist, reichen die im zweiten
Szenario generierten Ergebnisse nach friihesten mdglichen Einplanungen fir eine Analyse
des Systemverhaltens in der Montage aus. Eine Betrachtung der Teilefertigung unter
Verwendung der ereignisdiskreten Riickwartssimulation soll erneut das Potential
eines planungsphasenibergreifenden Einsatzes der Ablaufsimulation aufzeigen. Die
Planung von Fertigungsplanen kann mittels der Rickwartssimulation direkt aus dem
bestehenden Simulationsmodell erfolgen, wenn Kernel und Modellbeschreibung die
anwenderfreundliche Richtungstransformation unterstitzen.

In Summe ergibt sich aus der Gestaltung des Untersuchungsgegenstandes und der
abgeleiteten Untersuchungsziele eine breite Ubersicht tber die in dem Werkzeug zur
Verfligung gestellten Funktionalitaten. Alle aus Kapitel 2.4 aufgenommenen
Anforderungen hinsichtlich Modellbeschreibung und Werkzeug werden durch die oben
definierten Szenarien Uberprift. Wird die Simulationsstudie im Folgenden erfolgreich
durchgefiihrt, kann daraus geschlussfolgert werden, dass alle an diese Arbeit gestellten
Anforderungen auch erflllt werden kénnen.

6.3 Datenermittiung und Aufbau eines logischen Modells

Der Bereich der Datenanalyse, -vorbereitung, -sammlung und -bearbeitung ist eine der
entscheidenden Teilaufgaben im Rahmen einer Simulationsstudie. Typischerweise
ergeben sich hier zeitaufwandige Fragestellungen hinsichtlich Datengenauigkeit,
Granularitat, Verfligbarkeit und Aktualitat, die im Rahmen der Entwicklung eines ersten
logischen Modells des abzubildenden Systems erértert und geklart werden missen. Flr
die hier behandelte Simulationsstudie ist dieser aufwendige Prozess insofern unkritisch,
als das durch den Untersuchungsgegenstand einer fiktiven Fabrik alle bendétigten Daten
in der gewilnschten Form generiert und bereitgestellt werden kénnen. Die eigentliche
Aufgabe in diesem Abschnitt beschrankt sich also auf die Erstellung eines logischen
Modells.

- 184 -

Zur Erstellung dieses logischen Ablaufs aller relevanten Prozesse innerhalb der PaderK
kann auf die Definition des Untersuchungsgegenstands aus Abschnitt 6.1 zurlickgegriffen
werden. Die entsprechende Liste der Abbildung 93 bis Abbildung 99 vermitteln einen
hinreichend genauen Eindruck Uber die bendtigten Bausteine des Simulationsmodells,
ihre Hierarchisierung und gegenseitigen Abhdngigkeiten. Wie im obigen Abschnitt
angerissen, kdnnen einzelne Modellbausteine fir die Umsetzung innerhalb des Werkzeugs
weiter detailliert werden, beispielsweise die Abbildung einzelner Lagerpldtze und eines
Regalfahrzeugs innerhalb der Lagergassen 1 bis 4 im Zentrallager. Je nach Szenario
miissen in den einzelnen Teilmodellen weitere Quellen, Senken und
Auswertungsbausteine hinzugefliigt werden, die eine zeit- oder ereignisdiskrete
Ablaufsimulation in Vorwarts- oder Rickwartsrichtung abhdngig vom jeweiligen
Untersuchungszweck ermdglichen. Die Darstellung der einzelnen Prozessablaufe soll aber
mit den oben angegebenen Abbildungen als hinreichend betrachtet werden und erst im
Rahmen der eigentlichen Modellierung in dem entwickelten Werkzeug bei Bedarf
erweitert werden.

6.4 Aufbau eines Simulationsmodells

Im folgenden Abschnitt soll die Modellierung der Simulationsmodelle mittels der
Modellierungskomponente des Werkzeugs vorgestellt werden. Fir jedes der unter
Abschnitt 6.2 vorgestellten Szenarien sollen einige Bausteine der Teilmodelle
exemplarisch herausgegriffen und ihre Bearbeitung mit dem Werkzeug detaillierter
erlautert werden. Die Vorgehensweise orientiert sich an der Reihenfolge der
durchzufiihrenden Szenarien. Vorab sollen einige Bemerkungen zur Implementierung der
Modellbeschreibung und Modellierungskomponente gemacht werden.

Modellbeschreibung

Im Rahmen der Implementierung wurden in einem ersten Schritt die Modellbeschreibung
und das nachrichtenbasierte Kommunikationsprotokoll in Document Type Definitions
(DTD) der XML umgesetzt, die eine formale Struktur der erstellten XML-Dokumente
vorgeben. Deren genaue Auflistung finden sich in Anhang A flir die Beschreibung der
Simulationsmodelle und in Anhang B fir die Nachrichtenkommunikation zwischen den
Teilmodulen. Die administrativen Arbeiten, die zur Bearbeitung der Szenarien erforderlich
sind, sollen erst am Ende dieses Unterabschnittes naher betrachtet werden, auch wenn
die Verwendung der Modellierungskomponente das Existieren von Benutzerrechten sowie
die Existenz einiger dreidimensionaler Reprasentanten in einer Simulationsdatenbank
voraussetzt.

Modul Modellierung

Die Modellierungskomponente wurde entsprechend der Entwurfsphase als Client-Server-
Architektur umgesetzt. Der Server der Modellierungskomponente Ubernimmt hierbei die
Kommunikation mit den anderen Funktionsmodulen wie Simulatorkern und
Simulationsdatenbank und beinhaltet als Teilmodul die Transformation eines
Simulationsmodells. Die Simulationsmodelle werden als XML-Datei eingelesen und in die
Java-Objektklassenhierarchie geparst, so dass sie durch die Clients manipuliert werden
kdénnen. Der Client der Modellierung ist die Bearbeitungsoberflache des Anwenders, in der
Simulationsmodelle geladen, bearbeitet, oder transformiert werden kénnen. Uber den
Server kdnnen mehrere Clients an einem gemeinsamen Simulationsmodell arbeiten.

Realisierung - 185 -

Modellierungsserver

Der Server ist zur Speicherung und Datenaufbereitung der Simulationsmodelle
notwendig. Er kommuniziert tber eine RMI-Socketverbindung mit den angeschlossenen
Mainframe-Komponenten. Bei der Datenbankspeicherung werden die einzelnen
Modellbausteine als Zeichenfolgen abgelegt. Durch die Einzelspeicherung kénnen einzelne
Bausteine in anderen Simulationsmodellen weiter verwendet werden. Damit die
Zuordnung der Bausteininstanzen zu ihren Modellbausteinen nicht verloren geht, missen
eindeutige IDs gesetzt werden. Diese IDs werden bei der ersten Speicherung von der
Datenbank vergeben und den entsprechenden Modellbausteinen hinzugefligt.

Beim Ladevorgang werden die gespeicherten Zeichenfolgen aus der Datenbank wieder zu
einem XML-Dokument zusammengesetzt. Danach wird dieses XML-Dokument von einem
Parser durchlaufen, der die Informationen in die Java-Objektklassenhierarchie der
Modellbeschreibung Uberfihrt. AnschlieBend sendet der Server das erstellte
Simulationsmodell Uber die Socketverbindung an die angeschlossenen Mainframe-
Komponenten.

Angesteuert aus dem Mainframe der Clients, kdénnen Simulationsmodelle an das
Transformationsmodul Ubergeben werden und werden dort nach dem beschriebenen
Verfahren invertiert. Das Verfahren wurde durch einen Algorithmus implementiert, der
auf Basis einer festzulegenden Reihenfolge Grundstrukturen in dem Simulationsmodell
identifiziert und das Simulationsmodell vereinfacht. Aus Grinden der Performanz sollten
haufig auftretende Grundstrukturen, wie zum Beispiel die unverzweigte Linie mdglichst
frih erkannt und zusammengefasst werden. Wichtig ist jedoch, dass die Grundstruktur
Riickkopplung vor der Grundstruktur unverzweigte Linie gesucht und zusammengefasst
wird, da ansonsten deren Knoten 2 und 3 (vgl. Abbildung 51) als unverzeigte Linie
erkannt und zusammengefasst werden, wodurch die Grundstruktur der Rickkopplung
zerstort und nicht mehr korrekt erkannt werden kann. Die eigentliche Invertierung wird
in speziellen Klassen fir jede Grundstrukturen einzeln implementiert.

Modellierung - Mainframe

Die Mainframe-Komponente stellt den Rahmen flr die verschiedenen Modellierungs- und
Visualisierungskomponenten dar und besteht aus einem Applikationsfenster, welches ein
Menl im oberen und eine Statusleiste im unteren Bereich beinhaltet. In die Komponente
eingebettet befindet sich im linken Teil ein internes Fenster, das die Struktur eines
geodffneten Simulationsmodells und eventuell gedffneter Bibliotheken objektorientiert in
Form eines Baums darstellt. Im rechten Bereich des Hauptfensters werden die
Visualisierungs- und Modellierungskomponenten zur Darstellung des aktuell bearbeiteten
Simulationsmodells eingebettet. Die Mainframe-Komponente bietet unter anderem
Funktionen zum Laden und Speichern von Modellen, wobei in beiden Fallen zwischen
Dateisystem- oder Datenbankebene ausgewadhlt werden kann. Weitere Funktionen sind
z.B. die Neuerstellung eines Simulationsmodells oder aber das Hinzufligen eines
Modellbausteins zu einer Bilbiothek, die Rechteverwaltung flr das bearbeitete
Simulationsmodell und Kommunikationsmaoglichkeiten mit den anderen angeschlossenen
Anwendern.

- 186 -

Das Simulationsmodell wird im linken Fenster als Baum dargestellt. Der Anwender 6ffnet
ein Modell Gber das Kontextmenl, wobei standardmaBig die 2D-Modellierungsansicht
ausgewahlt wird. Verfligbar sind dariber hinaus die 2.5D- und 3D-Modellierung. Die
gewahlte Komponente wird im rechten Bereich des Clients als Fenster geéffnet. Die
Baumdarstellung ermdglicht es, einzelne Bausteine einer Bibliothek direkt per Drag&Drop
in das Simulationsmodell zu Ubertragen. Es besteht die Mdéglichkeit, ein bestimmtes
Modell gleichzeitig in mehreren Ansichten zu 6ffnen. Um die Konsistenz zwischen diesen
einzelnen Ansichten zu wahren, wird das Listener-Konzept verwendet. Hierbei
registrieren sich die beteiligten Darstellungskomponenten auf den Modellelementen. Alle
Darstellungskomponenten werden dann Uber Anderungen benachrichtigt, die in einer
Ansicht vorgenommen wurden. Jede Darstellungsform passt daraufhin ihre Darstellung
an. AuBerdem bietet die Mainframe-Komponente die Mdéglichkeit, mehrere Fenster
nebeneinander zu 6ffnen, um beispielsweise verschiedene Komponenten der Modellierung
parallel zu betrachten. Abbildung 100 zeigt die laufende Applikation mit zwei in der 2D-
Modellierungskomponente gedffneten Simulationsmodellen und veranschaulicht die
Baumdarstellung sowie die angesprochenen Bedienelemente.

2n0m: 1 ¢: 40pxl posiion: %:20,48 112,65 (m)

< Rahmen

L= .

&0 >
Rokate
200m; 1m 1; 40px] arid: off pastion: % 10,60 vi2,68 (m)
o w0 100 210 50
—
. FACT mmmre | Refmen Untited111 i @ - || oot

Abbildung 100: Mainframe der Modellierungskomponente

Modellierungsumgebung 2D

Die 2D-Modellierungskomponente ermdglicht die Erstellung neuer und das Modifizieren
bereits vorhandener Simulationsmodelle. Hierbei werden flir die einzelnen
Bausteininstanzen die in der zentralen Datenbank enthaltenen Polygonziige ihrer
dreidimensionalen Reprasentanten angezeigt, um eine Draufsicht auf das Modell zu
erhalten. Abbildung 101 =zeigt beispielhaft die Darstellung zweier vorhandener
Grafikmodelle.

Realisierung - 187 -

Abbildung 101: Draufsichten 2D

Sofern das angezeigte Modell einen Verweis auf einen in der Datenbank gespeicherten
grafischen Reprdasentanten hat, wird dieser angezeigt. Andernfalls wird ein Rechteck als
visuelle Reprasentation einer Bausteininstanz verwendet. Die 2D-Modellierungs-
komponente ermdéglicht das Setzen von Links zwischen den Bausteininstanzen bzw.
zwischen den jeweiligen Channeln, um den Materialfluss abzubilden. Uber ein Popup-
Menl hat der Modellierer die Mdglichkeit, das Modell zu rotieren, zu skalieren, zu I6schen
oder aber dessen Eigenschaften zu verdndern. Die Maske zur Modifikation der
Eigenschaften des gedffneten Simulationsmodells ldsst sich Uber eine Funktionsleiste
erreichen. In dieser befindet sich ebenfalls die Mdglichkeit, den Sichtbereich schrittweise
per Maus-Klick zu vergréBern bzw. zu verkleinern. Zur genaueren Ausrichtung der
Modellbausteine besteht die Mdglichkeit, ein Gitternetz einzublenden, das ebenfalls
unterschiedlich skaliert werden kann.

Event-Editor

Um dem Anwender die Programmierung der einzelnen Events zu erleichtern, wurde der
Event-Editor als Submodul des Mainframes konzipiert, mit dem auf alle einzelnen
Ereignisse eines Simulationsmodells in der Modellierungsphase zugegriffen werden kann.
Mit diesem Modul kann innerhalb einer Event-Programmierung auf eine klassische
Programmieroberflache zurlickgegriffen werden, die anwenderfreundliche Funktionen wie
die automatische Vervollstandigung, Textbausteine, Online-Syntaxkontrolle, Syntax-
Highlighting, etc. unterstiitzt. Einfache Programmierfehler kénnen damit bereits frihzeitig
erkannt werden. Bei der Speicherung des modellierten Ereignisses werden die
verwendeten Befehle Uberpriift und ggf. Fehlermeldungen ausgegeben.

- 188 -

£y Event Editor
File Edit Insert Help
[ERESNRL

s (3) & *bearbeitung (Tnsel2) wm —d

input [input_esverk]
€ bearbeitung [user_defined_es
¢ try {
(€ wiedereroeffrung [reopen_es
w0 Insell (3) wyEntity.getol () .add (myEntity.getkisce ()]
w0 Insel3 (3) J/wyEntity.getil() .openi);
% (RolBahnGerade (3) myEntity.setkiste (null) ;
- RolBahnGeradeSpezial (3) } eatch (ClesedException e} | JUndo Typing 4z
= Rampe (3)
- RolBahnkurvesthoch (3) ¥
w0 Bindemaschine (3) ¥
_ Roboter (0)
(. Regal (0)
{ RegalGross (0)
(. DurchschigbeRegalz (0}
{ DurchschishsRegal1 (D) Shift Right
(. Tisch (o) Shift Left
{_ Robostern (0)
. Treppe (D) Preferences
 Absperrung (0) Content Assist Ctr+Space
(. Absperrungs (0} Define Folding Region
@ Bohmaschine (3}
- uelle (3)
#{_ RobatPool (1)
(. StaplerAnschluss (10}
m - Senke (1)
@ Abzweig (4)
 Boden (0}
. Hubwagen (0}
. weibchen (0)
 Maennchen (0)
{ Boxl (0)
{ Box2 (0)
(. Haupthalle (0

if (myEnvicy.getkiste() != null) {

Revert File
Save

Paste: Chrky

Farmat
1} Go To Matching Bracket

I
[a

wiritable: Insert 5:33

Abbildung 102: Benutzeroberflache des Event-Editors

Modellierungsumgebung 2.5D

Erganzend zur zweidimensionalen Draufsicht wurde in der Implementierungsphase eine
2.5D-Darstellung entwickelt, die das Simulationsmodell in der in Abbildung 103
dargestellten Form abbildet. Aus 8 verschiedenen Projektionsseiten kann das
Simulationsmodell von schrdag oben betrachtet werden, wobei die grafischen
Reprasentanten der Bausteininstanzen Bildern des 3D-Reprdasentanten entsprechen. Im
Gegensatz zur zwei und dreidimensionalen Darstellung des Simulationsmodells in den
entsprechenden anderen Modellierungsumgebungen wird hier der Navigationsbereich des
Anwenders eingeschrankt. Im Gegenzug bildet die 2.5D-Darstellung eine schnelle und
sehr intuitive Darstellungsform des Simulationsmodells, die zur Kommunikation mit
Nicht-Simulationsexperten bereits verwendet werden kann.

& d3fact ModelingComponent webbased o
Model Library User Management Window
9 # RefTest B[EX]
eftest) |1_tenente | poperes | —tiksema @snp Opee O Lo [w]e B[@ e
S otarss | v | i
de_iT o L—- . y J E
2 } v
=]
/‘ Nyl
.] BN
.
.
-
. - . v
. settings
=\ v e y L
. w)
N—— . y L/,
' y *
.
% s" Inading behs
V \jw P9 | Qi
'ﬁv / O e
T3 ¢ ke
L A ®
"
=
< 3>
i zoom; 36 pxl = 1m arid: off position; xi17,55 i11,92 (m)|
Y. FACT o RefTest @ stefon| || | logout

Abbildung 103: Modellierungsumgebung 2.5D

Realisierung - 189 -

Um die Effizienz der 2.5D-Darstellung mittels der Ladezeiten zu untersuchen, wurden
Performance-Tests mit verschiedenen Verbindungsarten durchgefiihrt. Die nachfolgende
Tabelle zeigt die Ergebnisse der Testdurchlaufe.

Ladezeit Ladezeit Ladezeit
2D-Outlines 2.5D-Images 3D-Objekte
LAN (1) <2s <2s 4s
WLAN A (2) 16 s <2s,4s,10s 120 s
WLAN B (3) 5s <2s,2s,6s 64 s
DSL (4) 23s <2s,6s,31s 365 s

Tabelle 22: Performance-Test : Ladezeiten der 2.5D-Modellierungsumgebung

Bei dem Vergleich der Werte zeigt sich, dass eine bis zu 60-fach héhere Geschwindigkeit
im Vergleich zur 3D-Komponente erzielt werden konnte. Wenn man berlcksichtigt, dass
bereits Bilddateien im Cache-Ordner vorhanden sein kénnen, fallt dieser Wert noch
einmal deutlich héher aus. Die Ladezeiten in 2.5D sind geringer als die der 2D-
Komponente.

Modellierungsumgebung 3D

Die 3D-Modellierungskomponente erméglicht das Modellieren von Simulationsmodellen in
einer realitatsnahen, dreidimensionalen Umgebung, in der sich der Anwender frei
bewegen kann. Samtliche Bausteininstanzen werden durch ihre 3D- Reprasentanten
dargestellt. Uber die Buttons ,clone" und ,remove" kénnen bestimmte Kamerapositionen
in der 3D-Szene gespeichert bzw. wieder entfernt werden, um dem Anwender eine
zeitaufwendige Navigation zwischen verschiedenen Standardansichten im
Simulationsmodell zu ersparen. Zwischen den verfigbaren Ansichten kann hin und her
geschaltet werden. Abbildung 104 zeigt einen Screenshot der 3D-
Modellierungskomponente und ihrer Bedienelemente.

< Rahmen

Pasition Rotation ‘ v;

Cx-achse: 8175 /31 2 3 4 5 5 ? 8 3 10

V-Achse: 36253 07

o o

" remove [+12,3] +11,3] +4,0] v

: Z-Achse:

mave mosue upjdown for zooming

Abbildung 104: 3D-Modellierungskomponente

Wie oben aufgezeigt, sind die Ladezeiten der 3D-Modellierungskomponente deutlich
héher als beispielsweise die der ahnlich intuitiven Darstellung in 2.5D. Diese

- 190 -

Darstellungsform bietet sich also insbesondere im Rahmen der exakten
Layoutausrichtung an und weniger in der alltaglichen Modellierung.

Die vorgestellten Komponenten des Modellierungstools sollen nachfolgend dazu
verwendet werden, die einzelnen Simulationsmodelle fir die unter Abschnitt 6.2
definierten Szenarien zu erstellen. Dabei wird sich in den einzelnen Szenarien jeweils auf
einen reprasentativen Ausschnitt des Simulationsmodells im gewahlten
Detaillierungsgrad beschrankt. Die Modellierung anderer Teilbereiche erfolgt analog zu
der dargestellten Vorgehensweise. In den Szenarien wird sich auf Grund der
Vergleichbarkeit auf die zweidimensionale Darstellungsform des Simulationsmodells im
Modellierungstool beschrankt.

Modellierung von Szenario 1:

In diesem Abschnitt soll der Aufbau eines zeitorientierten Simulationsmodells am Beispiel
des Zentrallagers mit der Modellierungskomponente dargestellt werden. Zu Beginn der
Modellierung ist keine Bausteinbibliothek vorhanden. Die entsprechenden
Modellbausteine des Zentrallagers missen also in einem ersten Schritt mit dem
Modellierungstool erstellt und in der Simulationsdatenbank gesichert werden.
Vorraussetzung fir eine erfolgreiche Arbeit mit dem Client der Modellierungskomponente
ist ein entsprechender Server, der die Verbindung zur Datenbank und die
Mehrbenutzerfahigkeit des Werkzeugs herstellt.

Nach dem Start des Client muss sich der Anwender zunachst anmelden, damit seine
personlichen Daten, Einstellungen und Rechte aus der Simulationsdatenbank geladen
werden kénnen. Zu Beginn der Bearbeitung wird eine neue Bibliothek Zentrallager-
zeitorientiert angelegt und in der Simulationsdatenbank gesichert. Ihr werden
nachfolgend die einzelnen Modellbausteine hinzugefiigt, die fir den Aufbau des
Simulationsmodells bendétigt werden. Fir jeden Modellbaustein kénnen seine Attribute
durch den Anwender belegt werden. Dariber hinaus kdnnen Input- und Output-Channel
angelegt und ein 3D-Reprasentant aus der Datenbank zugewiesen werden. Abbildung
105 zeigt die Benutzeroberflache zum Anlegen eines neuen Modelbausteins in einer
Bibliothek.

Realisierung - 191 -

Model Library User Management Window

S
entraller_]
o collapse | 4] expand
[Zentraller_zeitorientiert
9 [Zentrallager_Ebene_1
1Y zomratazer toene. 11 02w Element R
[zentrallager_Ebene_1_Al [General options |
[y zentrallager_Ehene_1_L:
[zentrallager_Ebene_1_L: Name: neverBaustein |
[Zentrallager_Ebene_1 L
[zentrallager_Ebene_1_L: x-Size: P m
[zentrallager_Enene_1_|
[} wareneingang y-Size: b Jm
[} suttragssteuerung
[) Lagergasse z-Size: o Im w
[} warenausaang
Mesh ID: Bandkuy [~]
Mesh scale: 1 |

Simulation Bo... ||

Number of predefined Input- and Output-Channels

inputChannet: 1 [~
OutputChannek

0K Cancel |

Abbildung 105: Benutzeroberfliche zum Erstellen eines Modellbausteins

Der Modellbaustein muss anschlieBend mit seiner Verhaltenslogik versehen werden. Dazu
kdnnen in seinen Eigenschaften die entsprechenden Ereignisse angelegt, ggf. einzelnen
Channeln zugewiesen und unter Zuhilfenahme des Event-Editors mit dem Programmcode
versehen werden (vgl. Abbildung 102). Die inhaltliche Aufteilung der implementierten
Verhaltenslogik muss sich an der unter Abschnitt 5.2.4.2 aufgezeigten Form orientieren,
um eine spatere Transformation des Simulationsmodells gewahrleisten zu kénnen. So
darf in den jeweiligen Input-Events eines Modellbausteins nur der Eingang der Token und
die Weiterleitung an nachfolgendes Folge-Event erfolgen. Unter Umstanden kénnen hier
noch Eingangszeiten mitprotokolliert werden, die eine spatere Auswertung hinsichtlich
Bearbeitungszeiten etc. erlauben. Abbildung 106 zeigt exemplarisch den Programmcode
eines Input-Events im Modellbaustein Warenausgang (wegen der Rickwartssimulation
entspricht der Input-Channel hier dem Output-Channel des vorwarts gerichteten
Modellbausteins, nimmt also die ausgehenden Kundenauftrdage als Input in den
Warenausgang auf, um deren Rickwartsterminierung durch das Zentrallager zu
ermdoglichen.

<ichannel name="inchannel">
<position y="20" x="312"/>
</ichannel>

<event>
<input_event inchannel="inchannel_one"/>
<code>
logger.debug("incoming token in wa");
Token t = myEntity.getinchannel(“inchannel_one”).removeToken();
myEntity.getVariable(“space”).set(t);
myEntity.getinchannel().open();
OutputEvent e = new OutputEvent(myEntity);
Kernel.schedule (e, 1000);
</code>
</event>

Abbildung 106: Quellcode des Input-Channels im Modellbaustein Warenausgang

- 192 -

Die Zeitorientierung soll mittels des bausteininternen Verfahrens zur Modellierung
erfolgen, also explizit durch den Baustein festgelegt werden. Dazu muss der Bibliothek
neben den eigentlichen Modellbausteinen ein Schichtkalender hinzugefligt werden, der
dem Modellbaustein zugewiesen werden kann. In dem Schichtkalender kénnen flr die
abgebildeten Tage entsprechende Schicht- und Pausenzeiten hinterlegt werden. Die
Schichten werden wochenweise durchgefiihrt, flr spezielle Datumsangaben kdénnen freie
Tage und zusatzliche Pausenzeiten hinterlegt werden. Das Zentrallager der PaderK soll
nach einem einheitlichen Schichtmodell arbeiten. Allen Modellbausteinen kann also
derselbe Schichtkalender zugewiesen werden. Darlber hinaus kénnen in den einzelnen
Modellbausteinen alle bendtigten Variablen angelegt werden, wobei flir die einzelnen
Variablentypen umfangreiche Zusatzattribute ausgewahlt werden kénnen. Fir alle
numerischen Datentypen kann beispielsweise eine obere und untere Schranke und ihre
spaterer Darstellung in den entsprechenden Visualisierungsmodulen angegeben werden

Jeder Baustein beinhaltet eine Listenvariable nextShifts, die initial durch die Zeiten der
Schichtwechsel aus dem zugewiesenen Schichtkalender befillt wird. Die Terminierung
der einzelnen Ereignisse innerhalb des Modellbausteins kann daraufhin durch eine
Zuordnung der Schedulingzeit des Folgeereignisses zum zeitlich ndchsten folgenden
Schichtwechsel erfolgen, indem direkt auf diesen Schichtwechsel gescheduled wird. Die
wahrend der Ausfiihrung einer Simulation auftretenden Ereignisse werden dadurch immer
auf die Schichtwechsel terminiert und ermdéglichen damit eine zeitorientierte Ausflihrung
des Simulationsmodells. Innerhalb des Programmcodes eines Events wird die
Bearbeitungszeit berechnet oder auf Basis einer Variablen des Bausteins belegt und der
Bearbeitung folgende Schichtwechsel aus der Liste nextShifts ausgewahlt. Das
Folgeevent wird daraufhin mit diesem Wert im Simulatorkern gescheduled.

Wenn alle bendtigten Modellbausteine der Bibliothek mit den bendtigten Variablen,
Channeln und Ereignissen formalisiert wurden, kann die Bibliothek in der
Simulationsdatenbank gesichert werden. Dabei werden alle Modellbausteine hinsichtlich
ihrer Vernetzung (Modellbausteine kénnen weitere Modellbausteininstanzen enthalten)
und der Syntax der in den Ereignissen beschriebenen Verhaltenslogik Uberprift. Nur
fehlerfreie Bibliotheken kénnen gesichert werden. Syntax und Modellierungsfehler werden
bereits in einer frithen Phase der Modellierung erkannt und erhéhen somit die Qualitat
der in der Simulationsdatenbank gespeicherten Daten. Der Anwender erstellt daraufhin
ein neues Simulationsmodell Zentrallager Ebene 1, zu dessen Modellierung die
Bibliothek geladen werden kann. Per Drag & Drop kdénnen nun die einzelnen
Modellbausteine im Simulationsmodell instanziiert und durch Links verkniipft werden. Die
Variablen der Bausteininstanzen kénnen durch den Anwender angepasst werden, wenn
sie wahrend der Modellierung der Bibliothek als public deklariert wurden und sich ihr
Wert von der Standardparametrierung unterscheiden soll. Wenn beispielsweise die
Lagergasse 1 des Zentrallagers 40 Lagerfacher mehr Kapazitat als die Ubrigen Gassen
hat, kann der Variablenwert capacity entsprechend um 40 erhdht werden. Die Instanz
lagergassel des Modellbausteins Lagergasse kann damit 40 Token mehr aufnehmen,
wenn die entsprechende Verwaltung in dem Programmcode des entsprechenden Events
die Kapazitat aus dieser Variablen ausliest und daraufhin entscheidet, ob und wie viele
Folgetoken im Materialfluss aufgenommen werden koénnen. Abbildung 107 zeigt die
Modellierung des Simulationsmodells Zentrallager_Ebene 1 mittels der Bibliothek
Zentrallager-zeitorientiert.

Realisierung - 193 -

Model Library User Management Window.

|

N B zenvaiager evene 1 . Sy

Til»

[autragssteuerun 0

eee

(I D]
Rotate selected

“zoom: 1m:: 40px| griczort |/ position: x13,62 y:4,68 (my
0 90 180 270 360

Abbildung 107: Modellierung des Zentrallagers mit der 2D-Ansicht

Das Simulationsmodell kann anschlieBend in der Simulationsdatenbank oder auf dem
Dateisystem gesichert werden. Wahrend des Speicherungsprozesses werden die Snytax
des Simulationsmodells und die Giltigkeitsbereiche der Parameterwerte der
Bausteininstanzen Uberprift, sofern das durch das Werkzeug nicht bereits erfolgt ist. Die
nachfolgende Phase der Modellverifikation und Verbesserung erfolgt durch erste Testldufe
des Simulationsmodells im Simulatorkern. Sie wird in Abschnitt 6.5 beschrieben.

Modellierung von Szenario 2:

Im Unterschied zur zeitorientierten Modellierung des ersten Szenarios soll nachfolgend
die Modellierung eines ereignisorientierten Simulationsmodells am Beispiel der Montage
der PaderK erfolgen. Da sich die grundlegenden Prozesse bei der Modellierung nur
unwesentlich unterscheiden, soll sich im Folgenden auf die Darstellung der Unterschiede
bei der Modellierung beschrankt werden. Zum Nachweis der Multitasking,
beziehungsweise Mehrbenutzerfahigkeit soll die Modellierung der Montage durch zwei
Anwender erfolgen.

Die Anmeldung des zweiten Anwenders an der Modellierungskomponente gestaltet sich
geringfligig anders, als in obigem Abschnitt beschrieben, weil er wahrend der
Autenthifizierung auf bereits existierende Sessions hingewiesen wird, denen er beitreten
kann. Abbildung 108 zeigt den Anmeldedialog bei existierenden Sessions.

- 194 -

Active sessions

stark time model active user

17:53:23 Foerdertechnik, xml 1

Session user
picture nickname realname

] reddy rederik Humme
[es

[][e]

Abbildung 108: Anmeldedialog bei vorhandenen Sessions

Die Implementierung der unter Abschnitt 5.1.6 konzipierten Sperrmechanismen erfolgt in
der Modellierungskomponente nach dem Relaxed WYSIWYG-Prinzip, bei dem das
bearbeitete Simulationsmodell oder die Bibliothek auf dem Modellierungsserver verwaltet
wird und mittels RMI an die angeschlossenen Clients verteilt wird. Relaxed WYSIWYG
meint, dass nicht alle Anderungen sofort an die anderen angeschlossenen Clients
Ubertragen werden, sondern erst, wenn der sperrende, also der aktuelle bearbeitende
Anwender seine Aktion beendet hat. Dadurch wird der Nachrichtenaufwand zwischen dem
Modellierungsserver und den angeschlossenen Clients erheblich reduziert. Die einzelnen
Bausteine, die durch andere Anwender grade bearbeitet werden, werden in dem Client
des Anwenders blockiert und farblich hervorgehoben. Abbildung 109 zeigt die Darstellung
einer blockierten Bausteinstanz (rechts) im Vergleich zu einer selektierten Darstellung

(links).
& Imne 4 mn®

Abbildung 109: Darstellung einer blockierten Bausteininstanz

Das gleichzeitige Arbeiten mehrerer Anwender an einem Modell wird durch mehrere
Kommunikationsmdoglichkeiten erleichtert. Neben der implementierten Chat-
Funktionalitat steht die Mdéglichkeit zur Verfliigung, einzelne Bausteininstanzen mit
Notizen zu versehen, um anderen Anwendern auch asynchron Informationen zu
kommunizieren, beispielsweise tber identifizierte Fehler oder durchgefiihrte Anderungen.
Daruber hinaus besteht die Madglichkeit, sich einzelne Dateien direkt Uber die
Modellierungskomponente zuzusenden.

Die Modellierung der einzelnen Modellbausteine fir die entsprechende Bibliothek
Montage Ebene_2 unterscheidet sich nur unwesentlich von der in Szenario 1
beschriebenen Vorgehensweise. Sie ist flr dieses Szenario ein wenig leichter, weil die
aufwandigere Transformation der Folgeeventterminierung entfallt. Die einzelnen
Folgeevents eines Ereignisses konnen direkt Gber fixe, variable oder zu berechnende

Realisierung - 195 -

Variablen festgelegt und anschlieBend im Kernel gescheduled werden. Da fir dieses
Szenario die hoher detaillierte Betrachtungsebene entscheidend ist, erhéht sich aber die
Anzahl der benétigten Bausteine und ihrer Variablen. Abbildung 110 zeigt eine
Darstellung des ereignisdiskreten Simulationsmodells der Montage im Modellierungstool.

Model Library User Management Window

] Montage_Ebene_2 ‘e [
4% Properties ~— Link-Setting =85 S Grid

@

Montage_Ebene 2.2 (%] |

T
[Montage_Ebene_2_2
[Eingang
[Hachzait
[Foerderstrecke
[} Anbauteile
(Bvami
[verzw
[zusammen3 1
[quatitaet
[natharbei
¢] Montage_Ebene 2
[Montage_Ebene_2_Eing
[y Montage_Ebene_2_Hoch:
[Montage_Ebene_2_Anbal
[Montage_Ebene_2_Anbal
[Montage_Ebene_2 verz:
[y Montage_Ebene_2_Faer
[y Montage_Ebene_2_Foer
R bR ey as
[Montage_Ebene_2_Foer
[Montage_Ebene_2_quali
[Montage_Ebene_z_quali
[y Montage Enene_2_nach
Montage_Ebene_2_zusar
[Montage_Enene_2_Foer
[Montage_Ebene_2_Ausa:
[Ausgang

@
5}
@)
@)

Name: Montage_Ebene_2_Anbauteile_1
ModelType: Anbauteile

Position ¢/y): 9,562m/16,469m

Rotation: -2700

Incoming Conrections

Outgaing Connections

T D]
Rotate selected

zoom: 1m : 34px gicorr | position: x13,06 13,76 (m)
0 90 180 270 360

Abbildung 110: Darstellung der Montage der PaderK im Modellierungstool

Das analog erstellte, ereignisdiskrete Simulationsmodell der Teilefertigung soll im
folgenden Szenario in ein rickwarts gerichtetes Simulationsmodell transformiert werden.

Modellierung von Szenario 3:

Weil die Montage der PaderK als Engpass des Gesamtmodells angenommen werden
kann, soll die Feinplanung der Teilefertigung in engerer Abstimmung mit der Montage
erfolgen. Dazu soll eine ereignisorientierte Rickwartssimulation der Teilefertigung
erfolgen, die als Eingabedaten die Abrufe der Montage zuzlglich der bendétigten
Verarbeitung im Zentrallager erhdlt. Das aus Szenario 2 bestehende Simulationsmodell
der Teilefertigung mit Betrachtung der héheren Detaillierung soll deshalb mit dem in dem
Werkzeug implementierten Mechanismus in ein rickwarts gerichtetes Simulationsmodell
transformiert werden (aufgrund der hohen Detaillierung der Betrachtung an dieser Stelle
kann nicht auf das Simulationsmodell aus dem ersten Szenario zurlickgegriffen werden).
Die hohe Detaillierung unter Bericksichtigung der Transporte ist flr dieses
Untersuchungsszenario wichtig, weil die Einplanung der Fertigungsplane in der
Teilefertigung moglichst spat erfolgen soll, um die Kapitalbindung der PaderK durch zu
hohe Sicherheitsbestdnde reduzieren zu kénnen. Eine Betrachtung ohne die bendtigten
Transportzeiten wiirde das Ergebnis des Simulationsexperimentes zu sehr verfalschen.

- 196 -

Zur Umkehrung des Simulationsmodells der Teilefertigung muss das Ursprungsmodell
zunachst durch den Anwender aus der Simulationsdatenbank in das Modellierungstool
geladen werden. AnschlieBend muss das zu invertierende Simulationsmodell aus der
Bibliothek selektiert werden und Uber das Kontextmenl SimBack die automatische
Vereinfachung und Invertierung aufgerufen werden. Im Fall der Teilefertigung kann durch
die relativ einfache Fertigungsstruktur auf Anhieb das gesamte Modell invertiert werden.
Uber die Baumansicht kann die Zerlegungsstruktur des Simulationsmodells der
Teilefertigung betrachtet werden. Abbildung 111 zeigt die entstehende
Vereinfachungsstruktur der Teilefertigung (ber die Baumvisualisierung des
Intervierungsmoduls.

£ Simback Model Visualisation of node: Rollband_2-2_2 STAR 1_STAR 1

Start:Rollband_2-2_2

Sink 1:5enke_1-0_3 | ‘ Sink 2:5enke_t -0_2 | | Start:Rollband_1-32 ‘

| Node2 Rnllhand_l—l_z‘ | Naded:Rpoand,l—lj‘ ‘ End. Rouband,lrz,zl |stan Rollband_2-1_2

v
< >

Abbildung 111: Invertierung des detaillierten Modells der Teilefertigung

Bevor das Resultat des Invertierungsprozesses als Ruckwartssimulationsmodell der
Teilefertigung verwendet werden kann, missen die Quellen und Senken des
Ursprungsmodells durch ihre Pendants zur Rickwartssimulation ausgetauscht und mit
dem Simulationsmodell verknlipft werden. Das daraus resultierende Simulationsmodell
kann anschlieBend in der Simulationsdatenbank gesichert werden. Im Rahmen der
Modellverifikation ist aber insbesondere darauf zu achten, die Umkehrung der
Verteilregeln zu Gberprifen und ggf. anzupassen. Das soll bei der Betrachtung des dritten
Szenarios in Abschnitt 6.5 geschehen.

Administration

Die Anmeldung eines Anwenders am Modellierungstool, die Modellierung der
Bibliotheken, die Verknipfung der 3D-Reprasentanten mit den neu erstellten
Modellbausteinen setzt einen initialen Datenbestand in der Simulationsdatenbank voraus.
Um eine Bearbeitung des Datenbestandes in der Simulationsdatenbank unabhangig von
den Simulationsexperten ermdglichen zu kénnen, wurde in der Implementierungsphase
ein separates Administrationstool erstellt, das den direkten Zugriff auf Datenbereiche der
Simulationsdatenbank ohne die Verwendung einer Modellierungs- oder Visualisierungs-
umgebung erlaubt. Insbesondere zur Wartung der Daten, zum Einpflegen neuer 3D-
Modelle, zur Generierung der Outlines und 2.5D-Darstellungen der einzelnen Modelle,
zum Loschen von alten oder inkonsistenten Datensdtzen und zur Administration der
Benutzer und Benutzergruppen kann dieses Tool herangezogen werden.

Realisierung

- 197 -

Abbildung 112: Auszug aus der Oberfliache des Administrationstools

> db-tool for graphical ebjects g@
Models | Mesh | S-point | D-point | T-path | Outlines | Images |
id description
1 Awatar-h220.0hj -
2 Ahsperr.ohj =
3 Abspertang.obj
4 Abzweigung.ohj
) Bandkuredtelhoch.obj
4 Eehaelterd.ohj
7 Eindemasch1b_opti.ohbj —
o o artan Dia abi il
Emesh tgrisa_g_nn o2 ‘ [E file to database H & show file H remove mesh

Das Administrationstool kann unabhdngig von den anderen Programmmodulen des
entwickelten Werkzeugs arbeiten und erlaubt so die Ubernahme von administrativen
Funktionen durch Nicht-Simulationsexperten, beispielsweise der IT-Abteilung.

public.simdb_modelroot

, modelid int8
name varchar (255)
creationdate timestamp
isexecutable bool

buildingblockcomment text (-1)

public.simdb_objectlevel

level varchar (8)
+ groupid int8
.+ modeluid int8

public.simdb_group

public.simdb_group_objectlevel

level varchar (8)

 groupid int8

name varchar (255)

L

groupid int8

» modeluid int8

public.simdb_ismember

. userid int8

.+ groupid int8

public.simdb_activeuser

public.simdb_user

. userid int8
ip varchar (24)
servername varchar (255)

password varchar (16)

status varchar (9)

., userid int8

username varchar (20)
realname varchar (50)

roles int2

N

public.simdb_user_objectlevel

level varchar (8)

» modeluid int8

. userid int8

public.simdb_owner

, userid int8

- modeluid int8

public.simdb_modelversions

-+ modeluid

mainversion

subversion

Y

comment
content
modelid
creationdate

authorname

int8

. public.simdb_locking
int4

. userid int8
int4
> int8
text (-1) -
text (-1)
int8
timestamp public.simdb_references
varchar (50) g » parentmodeluid int8
+ childmodeluid int8
insertorder int4

Abbildung 113: Auszug aus dem Datenbankschema

- 198 -

Die Simulationsdatenbank selbst wurde entsprechend der Festlegungen der
Konzeptionsphase auf Basis eines PostgresSQL-Datenbanksystems implementiert.
Abbildung 113 zeigt einen Teilbereich der Benutzerverwaltung als Auszug aus dem
Datenbankschema der Simulationsdatenbank, in dem alle bendtigten Tabellen, Primar
und Fremdschlisselbeziehungen hinterlegt sind. Durch die Implementierung des
Rechtemanagements wird zwischen Gruppen und Personen, bzw. Gruppen- und
Personenrechten unterschieden. Uber die Zuordnungstabelle public_simdb.ismember
werden beispielsweise einzelne Anwender bestimmten Gruppen zugewiesen. Die anderen
Bereiche der Konzeption wurden entsprechend umgesetzt und bieten somit die
Méglichkeit, Simulationsmodelle, ihre Eingabe- und Ausgabedaten, Experimente und
grafische Reprasentanten in einer gemeinsamen Datenbank zu hinterlegen.

Die fUr die definierten Untersuchungsziele bendtigten Simulationsmodelle konnten mit
der Modellierungskomponente erstellt werden. Als wesentlicher, folgender Schritt
innerhalb der Simulationsstudie missen die einzelnen Simulationsmodelle im Folgenden
verifiziert und verbessert werden. Gegebenfalls mussen fur einzelne
Untersuchungszwecke dartber hinaus Modellalternativen generiert werden, um Aussagen
hinsichtlich spezieller Fragestellungen zu ermdglichen.

6.5 Modellverifikation und -Verbesserung

Die Verifikation der erstellten Simulationsmodelle kann in dem implementierten
Werkzeug Uber verschiedene Module erfolgen, die sich gegenseitig erganzen.
Wesentliches Element ist aber der Simulatorkern, durch den die Ausflihrung des
kompilierten Simulationsmodells gewahrleistet wird. Darliber hinaus kénnen in dieser
Phase die zweidimensionale Visualisierung, das Reportingtool und die Debugging-
Funktionalitat der Modellierungskomponente eingesetzt werden. Die nachfolgenden
Abschnitte sollen diese Module kurz darstellen, ehe die einzelnen Szenarien damit
bearbeitet werden sollen. In jedem Szenario soll jeweils eine der drei aufgezeigten
Méglichkeiten zum Einsatz kommen.

Modul Simulatorkern

Bei der Implementierung des Simulatorkerns wurde darauf geachtet, dass das Modul
sowohl als eigenstandige Applikation, als auch als integrierter Teil einer Applikation
gestartet werden kann, jeweils mit oder ohne eigene grafische Benutzeroberflache. In
jedem Fall startet der Simulatorkern mit einem Preprocessing-Prozess, in der das
Ubergebene Simulationsmodell vom XML-Format in ein lauffahiges Java-Programm
geparst wird. Werden in dieser Phase keine Fehler gefunden, steht der Simulatorkern fir
die Ausfihrung des Simulationslaufs zur Verfigung. Im Fall der grafischen Oberflache
kann die Simulation nun einfach mit einem Maus-Klick gestartet werden (vgl. Abbildung
114). Im Fall einer Einbettung des Simulators kann die Simulation Uber eine Nachricht an
den Simulator gestartet werden.

Realisierung - 199 -

¥ Simulation Kemel > foerderstrecke_daten_b_0_dxm| _Time Scale: 10:1 _SimTime: Wed Nov 01 20:35:57 CET 2006 _Run Length: 0s -ox

Abbildung 114: Benutzeroberflache des Simulators

Je nach Modellierung der einzelnen Modellbausteine des Simulationsmodells werden die
entsprechenden Module zum Motion Planning und zur dynamischen Detaillierung von
Simulationsmodellen mit in das laufende Gesamtpaket integriert. Beim Aufbau der
objektorientierten Klassenhierarchie der einzelnen Modellobjekte wird erkannt, welche
Kernelfunktionen von den Bausteinen aufgerufen werden. Beziehen sich diese zumindest
teilweise auf Funktionen aus den beiden genannten Teilmodulen, so werden diese dem
Gesamtpaket hinzugefiigt. Dadurch wird die Instanz des Simulatorkerns so schlank wie
moglich gehalten, was in verschiedener Hinsicht von Vorteil ist. Zum Einen wird der
Speicherbedarf des Simulators reduziert, zum Anderen sollen solche ,Simulatorpakete®
auf mehrere Rechner verteilt werden, um eine parallele Abarbeitung eines Simulations-
experimentes mit mehreren Simulationslaufen zu ermdglichen. Diese Verteilung kann
umso schneller erfolgen, je kleiner das zur Verteilung bestimmt Paket ist.

Modul Visualisierungskomponente

Im Rahmen der Entwicklung von Simulationsmodellen spielt vor der eigentlichen
Experimentierphase die Modellvalidierung und Verifikation eine groBe Rolle. AuBer den
generierten Daten ist in dieser Phase insbesondere die Visualisierung der dynamischen
Ablaufe von groBer Bedeutung. Vor diesem Hintergrund wurden in der
Implementierungsphase verschiedene Visualisierungsformen umgesetzt, die im
Folgenden kurz erlautert werden.

Visualisierungsumgebung 2D

Die Darstellung der 2D-Visualisierungsumgebung erfolgt analog der Darstellung der 2D-
Modellierung, jedoch angereichert um das dynamische Verhalten des Simulationsmodells.
Wahrend der Modellierung kann der Anwender das erstellte Modell mit einem integrierten
Kernel Ubersetzen und sich das Verhalten in der bekannten Draufsicht animieren lassen.
Die einzelnen Token werden durch Pakete visualisiert (vgl. Abbildung 115), wenn sie
keine eigene 3D-Darstellung besitzen. Ansonsten werden die Draufsichten ihrer 3D-
Reprasentanten verwendet.

- 200 -

Abbildung 115: Animation von Token in der 2D-Ansicht

Im Rahmen der Modellerstellung kommt es immer wieder zu logischen Fehlern bei der
Modellierung der einzelnen Bausteine oder zu Programmierfehlern bei der Spezifikation
der Verhaltenslogik innerhalb eines Modellbausteins oder einer (ibergeordneten
Steuerung. Das visualisierte Modell verhadlt sich in diesem Fall nicht wie vom Anwender
vorgesehen. Zur besseren Unterstitzung des Anwenders bei der Fehlersuche wurde in
den Mainframe des Modellierungs- und Visualisierungstools eine Funktionalitat zum
Debuggen der Simulationsmodelle integriert. Nach der Ubersetzung des
Simulationsmodells in ein lauffahiges Programm durch den Simulator wird das erzeugte
Programmpaket mit der Debugging-Oberflache verknlpft, aus der die weitere Steuerung
erfolgt. Sowohl der Aufruf einzelner Funktionen, wie auch die Veranderung der
Parameterwerte kénnen jetzt erfolgen, indem in der Oberflache an den relevanten Stellen
entsprechende Haltepunkte gesetzt werden. Beispielsweise wird die Simulation beim
Aufruf eines speziellen Input-Events einer Bausteininstanz angehalten, bei der der
Anwender einen Fehler in der Programmierung vermutet. Abbildung 116 zeigt links die
Oberflache des Debugging-Tools und im rechten Bereich die entsprechende Steuerung
des Simulators aus der 2D-Visualisierungsoberflaiche heraus. Neben der
Ausfliihrungsgeschwindigkeit werden die wichtigsten Steuerungsbefehle implementiert,
um eine Simulation zu pausieren oder zu beenden. Uber spezielle Funktionen kann der
Nachrichtenfluss zwischen Simulator und Visualisierungskomponente nachvollzogen
werden. Fehlermeldungen werden identifiziert und aktuelle Wertebelegungen von
Variablen betrachtet. Alternativ zur Durchfiihrung eines Simulationsexperiments kénnen
somit auch die Ergebnisse eines einzelnen Simulationslaufs zur Weiterverarbeitung zur

Verfligung gestellt werden

(rtime rmanagement:

Change timefactar
¢ debugging; de.upb.hni.d3fact.simulationkernel.generated.Main [v,

step next stepup ()] interrupt OB cont Up down | locals watch

actual timefactor: 100

Source -
ouree | Qosses | Tveads e Slacuont Yarioblos) MENEY Current simulation time: 1 Jan 1970 00:00:00 GMT
=) channel el 111 de.. I~ | |[1(apvalue: instance of de.upb.hni d3fact.
i # alocatorDown_ADICL.java 2(AMalue: instance of de.upb.hni.d3fact. simulationkerl
i @ AlocstorDown_ADOCL java [31 de.upb. hni. d3fact. rkernel.generated.cha S(AValue: instance of de.upb.hni.d3Fact. simulationker| rkernel controk
| @ AlocatorDown_ADOCE java [4] de.upb. i d3Fact. hannel. Out 4{AJ¥alue: instance of de.upb.hni.d3fact
i e AlocatorUp_ALICH java [5] de.upb. . d3fact. ted, DB Start
AlocatorUp_AUOCL.java [6] de.upb. hni d3fact.simulationkernel uti. Event Task,
Alocatorlp_pUOCz java [7] de.uph. hni d3fact. il Scheduler.c
Conveyer_COIC jova [5] de.upb i d3act. il Scheduier.t [T Step l [=l End
. va [3] de.uph b d3fact. util Scheduler.:
i ® Dummy.java PR < .
s Machine MICLiava i | 153 2] X el s ey

arc| fields

[statistic:

o>) R
o kernel (Kernel) from class: [Conveyer_COOCL] L el
ohserve models
o chserves (Araylist) from class: [GutputChannel]

o rescheduleReapentvent (boslean) - fram class: [OutputChannel]

@ in (InputChannel) from dass: [OutputChannel] —}
o reopervert (Evert) from class: [OutputChannel]

@ kernel (Kernel) from class: [OutputChannel]

[Messag

@ Ingger (Logger) from class: [Channel]

. PO ST i
[Bire || Goers |
console | cmd =
TNFO [OutputEvent_Quelle QOCI]: OUTPUT of ICGuelle_1 &t SINTINE O a :
= = = &7/ logmsgs ot sig msgs
INFO [InputEvent_Conveyer COIC1i]: INPUT of IConveyer_1 at SIMTINE O
INFO [OutputEvent Conveyer_COOC1]: OUTPUT of IConveyer_ 1 at SINTIME 2500
INFO [ReopenEvent Quelle QOC1]: REOPEN of IQuelle 1 at SINTIME 2500
INFO [InputEvent_Conveysr_COIC1]: INPUT of IConveyer_1 at SINTIME 2500
INFO [InputEvent_AllocatorUp_AUIC1] : INPUT of IhllosatorUp_1 at SINTINE 2500

INFO [UserDefinedEvent AllocatorUp aufteilung] : USER DEFINED IAllocatorlUp 1 at SINTINE 2500 L)

Abbildung 116: Debugging und Simulator-Steuerung der 2D-Visualisierung

Durch die Implementierung innerhalb des Mainframes stehen den Anwendern auch bei
der Visualisierung von Simulationslaufen in der 2D, bzw. 2.5D-Darstellung die gleichen
Kommunikationsméglichkeiten zur Verfligung, wie sie aus dem Modellierungsbereich
bekannt sind. Dariber hinaus kénnen einzelne Daten zwischen den Anwendern Uber

Realisierung - 201 -
einen direkten Dateiversand verschickt werden, um maodglichst unkompliziert
Arbeitsinhalte austauschen zu kénnen.

Visualisierungsumgebung 2.5D

Die Visualisierungskomponente in 2.5D st das Pendant zur entsprechenden

Modellierungskomponente. Dadurch ergeben sich bei der Verwendung dieselben Vor- und
Nachteile, die aus der Modellierung bekannt sind. Einer intuitiveren Betrachtung des
Simulationsmodells steht eine Einschrankung des Anwenders in Bezug auf die
Freiheitsgrade der Navigation gegenliber. Die Funktionsweise ist analog der 2D-
Visualisierungskomponente.

& d3fact ModelingComponent webbased [m=x]
Model Library User Management Window
@ # RefTest E]@
RefTest E‘Ti‘e"‘e”le | 403 Properties =—+ Link-Setting QSN GBEE () CsTM Es [v]@, n v ¥ ravigation
= collapse T expand B i = -
= . E CIL
=h =
. ¢
| | S P =
: R
; e dan, T
3 & i =T

L Y)
FPIONErYEESSIEIEEEERER

N .

>
position: ;42,50 y:36,86 (m)

lssessssssssssssse

<
200m: 20 pxl = 1m

RefTest

-]

ucker

aidi im

8. FACT im=mre @ stefon | logout

Abbildung 117: Visualisierungsumgebung 2.5D

Wie Abbildung 117 zeigt, ist die Darstellung des Simulationsablaufes in der 2.5D-
Umgebung wenig immersiv, wenn auch das grobe Verhalten des Simulationsmodells
dargestellt wird. Vor diesem Hintergrund erfahrt die dreidimensionale
Visualisierungskomponente hinsichtlich der Anforderungserfiillung eine steigende
Bedeutung. Grundlegende Interaktionen werden aber auch aus den bereits dargestellten
Visualisierungsumgebungen ermdglicht. So ist es mdéglich, die Steuerung des
Simulationsmodells zu handhaben und einzelne Parameter wahrend der
Simulationsdurchfiihrung interaktiv zu verandern.

Reporting

In Anlehnung an die Darstellung von Leitstdnden zur Fertigungsplanung und -Steuerung
wurde zusatzlich eine Reporting-Oberflache geschaffen, die sowohl als integrierte
Applikation in den Mainframe des Modellierungs- und Visualisierungsclients, als auch als
eigenstandige Applikation verwendet werden kann. Sie bietet eine alternative Sicht auf
das dynamische Verhalten eines Simulationsmodells, indem verschiedene Attribute der
Bausteininstanzen durch einfache Symbole dargestellt werden. Je nach festgelegtem
Auswertungstyp der Variablen in den Modellbausteinen kann somit automatisch eine
Visualisierung generiert werden, wie sie Abbildung 118 zeigt. Darlber hinaus kdénnen
einzelne Kennzahlen der Simulation dynamisch visualisiert werden, beispielsweise die

- 202 -

Ablaufstruktur aller zur Laufzeit existierenden Token, die Simulationszeit, der
Nachrichtenverkehr des Simulators mit den Visualisierungskomponenten, etc.
Auswertungsbausteine und ihre generierten Datentabellen werden dynamisch angezeigt
und bieten so vorab eine gute Einschatzung der Qualitdt des Simulationslaufs. Fur
verschiedene Kennziffern, die in eingegrenzten Bereichen streuen, kénnen dynamisch
statistische Auswertungen visualisiert werden. Zum Start eines Simulationslaufs genlgt
die Auswahl eines Simulationsmodells. Die Ubersetzung und Ausfiihrung erfolgt danach
durch einen integrierten Simulatorkern. Die Reporting-Oberflache ist in der Lage, bereits
vorhandene Simulationslaufe auf Basis des Simulationsmodells und dem gespeicherten
Nachrichtenstrom erneut zu visualisieren, ohne sie erneut simulieren zu miissen.
Dadurch wird eine nachgelagerte Analyse eines Simulationslaufs ermdéglicht, wenn aus
einer Reihe von Simulationsldufen beispielsweise die Extremata hinsichtlich ihrer
Ursachen nachtraglich untersucht werden sollen. Dadurch kann der Anwender
abschatzen, ob der betrachtete Simulationslauf spezielle Bedingungen erflillt hat, die bei
der bisherigen Planung nicht berlicksichtigt oder erkannt wurden.

@ 0 in AWGO1 Waschmaschinenprod... o* & B [[G 0 in AWGOL Waschmaschinenprod... o* & B3
v

| go——,

3 7

' %
') |

factor:1.0

o
1 Waschmaschinenproduktion_02_-_AP1_-_APK1 8e:

=
= o 1

O Graph &' @ | B clock G2770) ‘e {
tecord 0.(19.10.06 13:29)

Token Ever
¢ O Iocalhost 24321
@

L [Rweo1
Record 0 (26 Builngblocks, Tin

02— Spritzgussh|
1,000000 +- 0,816497

K1 —— — | MCrLIT) 50750

———
O Graph e O Log o e K 01 xmiLog e
‘ecord 0 (19,10.06 13:29) connected to localhost:24321

" aeated.

i | &)

Get 26 Buildis
set firstTimestamp t0 1161257386740

p

674999 ypos="12.450002" 2p|
*0.0" yangle="0.0" zangle="0.0f

ol 12494 50730

T

Abbildung 118: Benutzeroberflache des Reportingtools

Die mittels dem Reporting-Modul erstellen Simulationslaufe kénnen als Experiment in der
Simulationsdatenbank gesichert werden.

Szenario 1: Modellverifikation des riickwarts gerichteten, zeitorientierten
Simulationsmodells des Zentrallagers mit der Debuggingfunktionalitat

Die Funktionsweise des rlickwarts gerichteten, zeitorientierten Simulationsmodells des
Zentrallagers soll mittels der Debugging-Funktionalitdt der Modellierungskomponente
Uberprift werden. Dabei wird flir das aktuell geladene Simulationsmodell direkt der
Preprocessor des Simulators aufgerufen, der das Simulationsmodell kompiliert und in
einer Debugging-Oberflache startet, wie sie aus Entwicklungsumgebungen bei der
Programmierung von Softwaresystemen bekannt ist (vgl. Abbildung 116). Die
entsprechenden Einstellungen zum Starten des Preprocessors werden dabei soweit wie

Realisierung - 203 -

madglich automatisch generiert. Alle anwenderabhangigen Startparameter (Start- und
Endzeit der Simulation, Ausflihrungsgeschwindigkeit, Speicherort der tempordren
Dateien, etc.) kénnen Uber ein Untermenld der Modellierungskomponente parametriert
werden. Die gestartete Debugging-Oberflaiche bietet verschiedene Funktionen zur
Kernelsteuerung an und erlaubt dariber hinaus die Ansicht aller aktuell laufenden
Prozesse, Variablenwerte, Bausteininstanzen usw. Der Programmcode der (bersetzen
Ereignisse kann eingesehen werden; durch das Setzen von Breakpoints kann die
Simulation durch den Debugger beim Erreichen der Codestellen angehalten werden.
Zusatzlich kénnen an alle Objekte und deren Variablen Watchpoints gesetzt werden, die
die Ausfihrung der Simulation im Simulator genau dann pausieren, wenn auf die
markierten Objektinstanzen zugegriffen wird.

Fir den Anwender ergibt sich damit die Mdglichkeit einer einfachen und individuellen
Modellanalyse und Uberpriifung der verschiedenen Objektzustdnde zu ausgewdhlten
Zeitpunkten der Simulation. Einzelne Objekte koénnen in ihrer Bewegung durch das
Simulationsmodell nachverfolgt und damit der Ablauf der Simulation Uberprift werden.
Die einzelnen Ereignisse und Funktionsmethoden kdnnen hinsichtlich ihrer Korrektheit
Uberprift werden, weil nach Erreichen eines Break- oder Watchpoints der Debugger das
Voranschreiten der Simulation nicht nur ,Ereignis fur Ereignis®, sondern ,Codezeile fir
Codezeile™ ermoglicht. Dadurch kann eine sehr detaillierte Fehlersuche erfolgen, die den
Gesamtprozess der Modellverifikation beschleunigt. Fir fehlerfrei ausfihrbare
Simulationsmodelle bietet sich die Reporting-Oberflache zur Modellanalyse an, mit der
eine anwenderspezifische Ubersicht (iber einzelne Werteverldufe und Variablenzusténde
wahrend der Simulation realisiert wird.

Flr das zeitorientiert simulierte Simulationsmodell des Zentrallagers der PaderK kann mit
dieser Methode effektiv Uberprift werden, wie sich die einzelnen Parameter wahrend
eines Schichtwechsels schrittweise verandern und ob die Ablaufe richtig in den
entsprechenden Events formalisiert wurden. Darliber hinaus kann der Scheduler des
Simulatorkerns selbst eingesehen werden, um zu uberpriifen, ob die Ereignisse in der
korrekten Reihenfolge eingepflegt beziehungsweise aufgerufen werden. Darliber hinaus
kann beispielsweise wahrend der Initialisierung des Simulationsmodells {berprift
werden, ob die zugewiesenen Schichtwechsel des Kalenders korrekt in die vorgesehenen
Listen eingetragen werden, damit die Folgereignisse entsprechend korrekt terminiert
werden kénnen.

Szenario 2: Modellverifikation des ereignisorientierten Simulationsmodells der
Montage mit dem Reportingtool

Nachdem die grundlegende Funktionsweise eines Simulationsmodells durch den
Anwender Uberpriift wurde, beispielsweise durch die Uberprifung mittels der
beschriebenen Debugging-Funktionalitat, missen in einem Folgeschritt die einzelnen
Parameter der Bausteininstanzen Uberprift und mit der Realitat oder den Plandaten
verglichen werden. Daraufhin kann in einem weiteren Schritt ein erster Simulationslauf
durchgefihrt werden, an dem das grundlegende, dynamische Verhalten des
Simulationsmodells Uberprift werden soll. Neben der spater verwendeten 2D-
Visualisierung kann hierzu das Reporting-Modul des implementierten Werkzeugs
verwendet werden.

- 204 -

Das ereignisorientierte Simulationsmodell der Montage aus dem Szenario 2 kann in der
Applikation Reporting aus der Simulationsdatenbank geladen und an einen eingebetteten
Simulator Ubergeben werden. Es wird daraufhin Ubersetzt, kompiliert und initialisiert,
wobei Uber das Kommunikationsprotokoll alle Parameter und Initialwerte der
Bausteininstanzen an das Reportingtool Ubertragen werden. Es erlaubt eine komfortable
Steuerung des Simulators und bietet die Mdoglichkeit, sich individuell die einzelnen
Variablen der Bausteininstanzen der Montage grafisch auswerten zu lassen. Darlber
hinaus kann der Fluss aller durch das Simulationsmodell laufenden Token, der
Nachrichtenverkehr zwischen Simulator und Visualisierungskomponente, die
Simulationszeit und weitere Eigenschaften der Simulation angezeigt werden. Die
Bedienoberflache kann dabei durch den Anwender frei mit den einzelnen
Auswertungsfenstern belegt werden, so dass eine modular aufgebaute ,Leitstand"-
ahnliche Sicht auf das Simulationsmodell erlaubt wird.

Flir das ereignisdiskrete Simulationsmodell der Montage der PaderK kann unter
Verwendung des Reportingtools die Auslastung aller Fordertechnik-Puffer gleichzeitig
beobachtet und in Abhangigkeit vom Simulationsverlauf analysiert werden. Dariber
hinaus kénnen die kundenindividuellen Auftrage, die als Token die Montage durchlaufen,
nachverfolgt und ihr spezifischer Weg durch die Montage verfolgt werden. Als zusatzliche
intuitive Darstellung des Flusses der Token durch das Simulationsmodell wahrend der
Simulation kann die 2D-Visualisierung.

Szenario 3: Modellverifikation des riickwarts gerichteten, ereignisorientierten
Simulationsmodells mit der 2D-Visualisierung der Modellierungskomponente.
Die anwenderfreundlichste Darstellung des simulierten Materialflusses kann innerhalb der
Modellverifikationsphase durch die 2D-Visualisierungskomponente erfolgen. Zwar ist die
Darstellung in der 3D-Visualisierungskomponente generell auch mdglich, die
zweidimensionale Darstellung ist jedoch direkt in die Modellierungskomponente
integriert. Analog zum Starten, Ubersetzen und Kompilieren eines Simulationsmodells
Uber die Debugging-Funktionalitdt wird das geladene Simulationsmodell durch einen
internen Simulatorkern Ubersetzt und die Kommunikationsnachrichten durch die 2D-
Visualisierung entsprechend interpretiert. Der Fluss der Token durch das
Simulationsmodell kann dadurch auf Basis des zweidimensionalen Layouts nachvollzogen
werden (vgl. Abbildung 115) und erlaubt somit eine schnelle Analyse der modellierten
Verkettungen und Verteilregeln in den einzelnen Bausteininstanzen. Die einzelnen Token
werden dabei durch Marken dargestellt, kénnen aber nicht individuell parametriert
werden. Zusatzlich erméglicht die 2D-Visualisierungskomponente aber bereits eine
einfache Manipulation der Bausteinparameter, um identifizierte Schwachstellen und deren
Behebung direkt in der Simulation Uberprifen zu kénnen.

Zur Modellverifikation des riickwarts gerichteten Simulationsmodells der Teilefertigung im
Szenario 3 bietet sich diese Darstellungsform insbesondere an, um eine schnelle
Uberpriifung der Invertierung des Simulationsmodells realisieren zu kénnen.
Fragestellungen wie ,Wurden alle Verteilregeln entsprechend in die richtigen
Bausteininstanzen transformiert?", ,Wurden alle Prioritdtsregeln korrekt durch ihr
jeweiliges Pendant ersetzt?" kdnnen schnell beantwortet werden, weil die Dynamik des
Simulationsmodells in einer intuitiven Form dargestellt wird.

Realisierung - 205 -

Auf die Entwicklung von alternativen Simulationsmodellen fir weitergehende
Fragestellungen soll an dieser Stelle verzichtet werden, weil sie flir den Nachweis der
Funktionalitditen des implementierten Werkzeugs nicht erforderlich sind. Im
nachfolgenden Abschnitt sollen die einzelnen Untersuchungsszenarien durch die
entsprechenden Module des Werkzeugs simuliert werden, indem zum Einen einzelne
Experimentreihen mit dem Experimentmanager definiert und ausgefihrt werden und zum
Anderen Simulationslaufe einer interaktiven Analyse mit der dreidimensionalen
Visualisierungskomponente zugefiihrt werden.

6.6 Simulationsexperiment

Die im vorigen Abschnitt verifizierten Simulationsmodelle stehen nun fir die
Experimentierphase der Simulationsstudie zur Verfigung. Die Simulationsexperimente
kdénnen hinsichtlich zweier unterschiedliche Strategien durchgefihrt werden. Zum Einen
kénnen Simulationslaufe ohne angeschlossene Visualisierungskomponenten mdéglichst
schnell berechnet werden, um die Experimentdaten zu generieren; zum Anderen kann
das dynamische Verhalten des abgebildeten Systems interaktiv mit einer
Visualisierungskomponente analysiert werden. In dem implementierten Werkzeug stehen
flir beide Aufgaben jeweils ein Modul zur Verfligung, die nachfolgend kurz beschrieben
werden sollen.

Modul Experimentmanager

Fir die Parametrierung eines kompletten Simulationsexperimentes wurde der
Experimentmanager implementiert. In Anlehnung an einen Wizard kann Anwender hier
schrittweise ein Simulationsexperiment anlegen oder laden, konfigurieren, durchflihren
und eine Ubersicht lber die Ergebnisse erhalten. Der Simulatorkern ist in den
Experimentmanager eingebettet, so dass aus einer einheitlichen Oberflache die
entsprechenden Versuchsreihen parametriert, durchgeftihrt und in der
Simulationsdatenbank gespeichert werden kénnen. Nach dem Start legt der Anwender
dazu ein neues Simulationsexperiment an oder ladt ein vorab definiertes Szenario aus
der Simulationsdatenbank. Danach kann er Start- und Endzeit der Simulation und Anzahl
der benoétigten Simulationslaufe festlegen (vgl. Abbildung 119 links). Auf diesen Angaben
basierend erhalt der Anwender eine Liste aller zu parametrierender Variablen, die nach
der Struktur des Simulationsmodells in einer Baumstruktur geordnet sind und durch
verschiedene Filter nach Datentypen oder Bausteinen eingegrenzt werden kénnen (vgl.
Abbildung 119 rechts). Flr alle Startwerte der Zufallszahlen dieses Experimentes steht
eine Funktion zur Verfigung, um die entsprechenden Werte zu Beginn jedes
Simulationslaufs zu verwirbeln (Beispielsweise in der Form: Lauf 1: 1-2-3, Lauf 2: 2-3-1,
Lauf 3: 3-1-2, etc.).

Abbildung 119: Ansichten des Experimentmanagers

Zusatzlich zur Parametrierung der einzelnen Attribute der Modellbausteine kann der
Anwender diejenigen Attribute auswahlen, deren Werteveranderungen Uber einen
Simulationslauf protokolliert werden sollen. Neben Auswertungsbausteinen etc, kénnen
so auch weitere interessante Attribute einzelner Bausteine verfolgt werden. Nach der
vollstandigen Parametrierung kdnnen die einzelnen Simulationsléufe als
Stapelverarbeitung gestartet werden. Alternativ bietet sich die Verteilung auf einem
Rechencluster an, flr die entsprechende zusatzliche Attribute angegeben werden
mussen. Die Parallelisierung bezieht sich ausschlieBlich auf die Verteilung der einzelnen
Simulationslaufe, das heiBt, ein einzelner Lauf kann nicht auf mehreren Rechnern verteilt
werden. Nach dem Durchlauf aller Simulationslaufe werden die entsprechend
ausgewerteten Kennziffern dargestellt. Sie dienen einer ersten Ubersicht der generierten
Datenmenge und lassen sich zwischen den verschiedenen Simulationslaufen vergleichen.
Das Simulationsexperiment kann wieder in der Simulationsdatenbank gespeichert werden
und steht flr spatere, umfangreichere Analysemethoden zur Verfligung.

Visualisierungskomponente

Visualisierungsumgebung 3D

Die dreidimensionale Visualisierungskomponente wurde als umfangreichstes
Analysemodul in Form einer eigenstandigen Applikation implementiert, die sich direkt an
einen Simulatorkern ankoppelt. Zur Darstellung besonders groBer und damit auch
komplexer Szenen wurden spezielle Grafikalgorithmen implementiert, die eine
echtzeitfahige Analyse groBer Simulationsmodelle ermdéglichen. Zur Implementierung
konnte hier auf umfangreiche Arbeiten der Fachgruppe ,Algorithmen und Komplexitat"
des Heinz Nixdorf Instituts zurlickgegriffen werden. Neben der dynamischen
Visualisierung der simulierten Ablaufe kann diese mehrbenutzerfahige Visualisierungs-
komponente den Anwender zu ausgewdhlten Prozesspunkten flihren und bietet neben
Mini-Map und dreidimensionaler Darstellung weitere Unterstlitzungsfunktionalitdten flr
den Anwender an. Analog zur Modellierungskomponente wurden auch hier Kommunika-
tionsmechanismen wie eine Chatfunktion implementiert, um eine gemeinsame Analyse
von Simulationsmodellen auch dann zu erlauben, wenn die beteiligten Anwender nicht an
einem Ort sind.

Die dreidimensionale Visualisierungskomponente erlaubt eine interaktive Manipulation
des berechneten Simulationslaufs, indem einzelne Parameter der Bausteininstanzen
ausgewahlt und innerhalb der vom Modellierer festgelegten Grenzen manipuliert werden
kénnen. Dem Anwender wird zusatzlich auch dadurch eine moéglichst immersive

Realisierung - 207 -

Umgebung prasentiert, dass sein ,virtuelles Ich®, der Avatar, sich nur auf denjenigen
Wegen durch die virtuelle Fertigung bewegen kann, wie es dem Anwender auch in der
Realitat mdglich ware. Unter Verwendung des Motion Planning Moduls im Simulatorkern,
werden Kollisionen mit vorhandenen SPMs und Avataren verhindert.

Abbildung 120 zeigt einen Screenshot der Benutzeroberflache des 3D-Clients, in der die
einzelnen Funktionsfenster gut zu erkennen sind. Mit den hier vorgestellten
Werkzeugmodulen sollen die Untersuchungsziele mittels verschiedener
Simulationsexperimente erarbeitet werden. Die folgenden Abschnitte beschreiben dazu
jeweils die Vorgehensweise.

& viper - simulation Time: 0 -1of x|
Simulation View Options Help

SUODET=) £
Signification 3D Ohjects

RE Gerade 13 w5

RB Hochkurie 45 Gr.

Eohrmaschine 1

Bo ine 2

»

Bohrmaschine 3
Bohrmaschine 4
RE Rampe 5 y-Richt.

line 3
Bindemaschine 4
Rohater 1
Roboter 2
RoboStern 1 = |

CECEEECEEEEERER

Alap |

Hiunariizs x| [t
Mr. Itzwitz Hi Mr. Cool

bearbeitungszeit 2000
Mr. Cool Hello ItzWitz

Edit Mr. Cool In leaving again, see you
Note: "My, Cool" has leaved.

Input here please ...

Abbildung 120: Benutzeroberfliche des 3D-Clients

Szenario 1: Zeitorientierte Riickwartssimulation zur Terminierung von
Fertigungspldnen

Die Parametrierung der Experimentreihe zur zeitorientierten Rickwartssimulation erfolgt
mit Hilfe des Experimentmanagers. Auf der hier abgebildeten, weniger detaillierten
Betrachtungsebene sind nur wenige Variablen zufallsverteilt, so dass nach dem Laden
des entsprechenden Simulationsmodells nur die Anzahl der Simulationslaufe, Start- und
Endzeiten der Simulation und zusdtzliche Kommentare durch den Anwender angegeben
werden missen. Die jeweiligen Parameterwerte der Bausteininstanzen kdénnen in der
Ubersicht schnell Giberpriift werden. AnschlieBend werden die einzelnen Simulationsldufe
als Stapelverarbeitung gestartet und die Simulationsdaten generiert.

Nach der Simulation bietet der Experimentmanager eine Ubersicht der in den
Simulationslaufen generierten Daten, so dass der Anwender eine erste Analyse
durchfihren kann. Die Ergebnisse des Simulationsexperimentes kénnen dann in der
Simulationsdatenbank gesichert werden und stehen flir eine spatere grafische
Auswertung zur Verfligung.

- 208 -

Szenario 2: Ereignisdiskrete Vorwartssimulation zur Engpass- und
Sensitivitiatsanalyse der Fertigungsabldufe

Neben der Durchfihrung von Experimentreihen, in denen die Simulationsdaten so schnell
wie moglich berechnet werden sollen, soll im zweiten Szenario eine interaktive
Sensitivitatsanalyse mit dem implementierten Werkzeug durchgefiihrt werden. Dazu wird
das entsprechende Simulationsmodell, hier der Montage der PaderK, in den Simulator
geladen und die dreidimensionale Visualisierungskomponente gestartet. Die
dreidimensionale Visualisierung der Montagehalle wird geladen, ihre dynamische
Verhaltensweise wird animiert und kann durch den Anwender manipuliert werden.

Zur Sensitivitatsanalyse kann der Anwender nun durch die virtuelle Montage navigieren
und die Dynamik des abgebildeten Systems verstehen. Dafir ist es wichtig, dass der
Faktor der Ausfiihrungsgeschwindigkeit der Simulation nahe der Echtzeit liegt, um die
realistische Darstellung der Fertigungsablaufe darstellen zu kdénnen. Einzelne Parameter
einer Bausteininstanz kdnnen jetzt durch den Anwender manipuliert und die
Auswirkungen in der Simulation direkt beobachtet werden. Lést der Anwender in der
virtuellen Umgebung beispielsweise in der Bausteininstanz Férderstrecke 2 eine Stérung
aus, so kann beobachtet werden, wie der Transport in den Qualitatsbereich ausschlieBlich
Uber die Forderstrecke 3 erfolgt. Wird analog dazu durch den Anwender beispielsweise
der Status vieler durch das System laufender Karts (abgebildet durch die Token) auf
fehlerhaft gesetzt, so werden diese Karts in den Nacharbeitsbereich ausgeschleust. Der
daraus resultierende Rilickstau kann direkt in der Visualisierungskomponente beobachtet
werden. Unter Umstanden kdnnen weitere MaBnahmen in das Simulationsmodell
eingepflegt werden, die eine realistische Reaktion auf diesen Fertigungsablauf darstellen.

Neben der Sensitivitdtsanalyse muss eine ereignisorientierte Vorwartssimulation des
Gesamtmodells erfolgen, die Uber den Experimentmanager eingestellt werden kann. Weil
in der detaillierten Betrachtungsweise viele Parameter einer Zufallsverteilung unterliegen,
kann hier die Unterfunktion des Experimentmanagers angewendet werden, die eine
Umverteilung der Startwerte aller Zufallsverteilungen flir jeden Simulationslauf
automatisch durchfihrt. Nach dem Simulationsexperiment zeigt die Analyse im
Experimentmanager, dass die Auslastung der einzelnen Fertigungsstufen der Montage
durchgehend hoch ist (vgl. Abbildung 121), wohingegen Zentrallager und insbesondere
die personalintensive Teilefertigung eine geringere Auslastung zeigen. Zur verbesserten
Fertigungsplanung soll im dritten Szenario eine ereignisorientierte Rickwartssimulation
durchgefiihrt werden, um die spatesten Beginn-Zeitpunkte der Fertigungsauftrage zu
bestimmen und daraus eine verbesserte Planung der Teilefertigung zu ermdglichen.

Realisierung - 209 -

Auslastung der PaderK in Prozentanagben - Szenario 2

0%

a0%]

70%

B0%

a0%

40% =

30%

20%

10%

0% &

Wareneingang
Lagergasse 1
Lagergasse 2
Lagergasse 3
Lagergasse 4

WWarenausgang

Eingang
Kunststoff
Metall
Teilelager
Lackierung
Ausgang
Eingang
Hochzeit
Anbauteile
Fardertechnik
Qualitat
MNacharbeit
Fardertechnik
Ausgang

Abbildung 121: Auslastung der Teilbereiche bei der Vorwartssimulation

Auch die Ergebnisdaten der Engpassanalyse konnen als Experiment in der
Simulationsdatenbank gesichert werden und stehen fiir eine weitere Datenauswertung
zur Verfligung (vgl. Abschnitt 6.7).

Szenario 3: Ereignisdirekte Riickwartssimulation zur Feinplanung der
Teilefertigung

Die Parametrierung des Experimentmanagers fir das dritte Szenario gestaltet sich analog
zu der oben dargestellten Vorgehensweise. Auch hier wird das Simulationsmodell auf der
hohen Detaillierungsstufe betrachtet, wodurch sich eine hohe Anzahl an zufallsverteilten
Bausteinparametern ergibt, die wiederum zu einer héheren Anzahl an Simulationslaufen
fihren. Alle wesentlichen Unterschiede zum vorwarts gerichteten Simulationsmodell sind
in der Modellierungsphase beriicksichtigt und in der Modellverifikation Gberprift worden.
Die generierten Simulationsdaten werden ebenfalls in der Simulationsdatenbank
gesichert und stehen zur Datenauswertung zur Verfiigung.

6.7 Datenauswertung

Die Aufbereitung und Interpretation der generierten Simulationsdaten durch
verschiedene Methoden der Datenauswertung erfolgt als letzter Schritt einer
Simulationsstudie. Das implementierte Werkzeug bietet in den verschiedenen
Teilmodulen jeweils unterschiedliche Mdéglichkeiten, Simulationsdaten nicht nur in der
Simulationsdatenbank zu sichern, sondern auch in das Dateisystem zu exportieren.
AuBerdem koénnen durch die Mdglichkeiten von Java auch wahrend der Simulation aus
den Modellbausteinen Simulationsdaten direkt ins Dateisystem geschrieben werden,
beispielsweise in Form von kommagetrennten Wertelisten (CSV-Dateien), die in
kommerziellen Tabellenkalkulationen wieder importiert und aufbereitet werden kénnen.

- 210 -

Die Modellierungskomponente erlaubt aus der zweidimensionalen Visualisierung das
+~Abonnement® von einzelnen Parametern Uber den Simulationslauf und deren
anschlieBenden Export in eine solche Excel-Schnittstelle. Dariiber hinaus kénnen einzelne
Zustande der Simulation von der Oberflache abfotografiert und als Bilddateien im
Dateisystem gesichert werden. Zur Kommunikation von Modellfehlern bietet sich dieses
Vorgehen insbesondere dann an, wenn die Generierung des fehlerhaften Zustandes eine
lange Simulationszeit erfordert. Die Zustande kédnnen so unabhangig vom Simulationslauf
gesichert und spater durch die beteiligten Anwender besprochen werden.

Die Reporting-Oberflache erlaubt neben der Speicherung des Simulationsexperimentes
auch die Sicherung des auftretenden Nachrichtenverkehrs, so dass der Simulationslauf
im weiteren Verlauf auch ohne erneute Simulation nachvollzogen werden kann. Alle
Zwischenzustande eines Simulationslaufs kénnen damit wieder generiert werden und
erlauben eine individuelle Nachbetrachtung durch den Anwender. Die aus der Simulation
entstehenden grafischen Auswertungen der einzelnen Parameter eines Modellbausteins
kdénnen als einzelne Bilder auch direkt ins Dateisystem exportiert werden.

Die abgesicherten Experimentdaten kdnnen durch den Experimentmanager wieder
eingelesen und dargestellt werden. Hier bietet sich die Mdglichkeit, die entsprechenden
Simulationsdaten, bzw. einzelne Wertereihen wieder ins Dateisystem zu exportieren. Die
Generierung weiterer grafischer Auswertungen, die beispielsweise eine Nachbearbeitung
der Auswertedaten bendtigen, kann dadurch entweder in kommerziellen Tabellen-
kalkulationen (MS Excel, OpenOffice, etc) oder durch Anwendung individueller
Bibliotheken (GNUPIlot, etc.) erfolgen.

Zusammenfassend kann an dieser Stelle festgehalten werden, dass alle Fragestellungen
der PaderK mit dem implementierten Werkzeug beantwortet werden konnten. Durch die
Abbildung der verschiedenen Fertigungsarten innerhalb der PaderK und durch die Wahl
der entsprechenden Szenarien ergibt sich daraus, dass die in Abschnitt 2.4 gestellten
Anforderungen an das zu entwickelnde Werkzeug mit der implementierten Losung gelést
wurden. Anforderungen und LOsung sollen dazu nachfolgend noch einmal
zusammengefasst werden und mogliche weitere Schritte aus der existierenden Lésung
abgeleitet werden.

Ausblick - 211 -

7 Ausblick

,Das Bessere ist
der Feind des Guten"

(Voltaire)

7.1 Zusammenfassung

Aufgabe der hier vorliegenden Arbeit war die Konzeption und Implementierung einer
Modellierung und Ablaufsimulation von Fertigungssystemen hinsichtlich eines erweiterten
Einsatzgebietes. Basis der Entwicklung war die Festlegung eines entsprechenden
Arbeitsprozesses und einer Modellbeschreibung, auf deren Basis die eigentlichen
Simulationsmodelle mit dem Werkzeug erstellt und ausgeflihrt werden kénnen.

Inhaltlicher Schwerpunkt war die Erfullung folgender neuer Szenarien zum Einsatz der
Ablaufsimulation:

Synchronisierte, ortsunabhidngige Mehrbenutzerunterstiitzung bei der
Modellierung und Simulation von Materialflussmodellen in einer interaktiven,
immersiven und virtuellen Umgebung

Der steigenden Komplexitat von Planungsprojekten im Bereich der Ablaufsimulation sollte
dadurch Rechnung getragen werden, dass in dem entwickelten Werkzeug mehrere
Anwender in einer gemeinsamen Umgebung Simulationsmodelle erstellen und ausfiihren
kdénnen. Insbesondere die Kommunikation mit Nicht-Simulationsexperten innerhalb des
Planungsteams erfordert dazu eine mdoglichst immersive Darstellung, die das Verhalten
des Simulationsmodells bestmdglich darstellt und erklart. Zur Visualisierung der Modelle
und deren dynamischen Verhaltensweisen dient eine virtuelle Umgebung, in der das
Simulationsmodell dreidimensional dargestellt wird. Der Anwender selbst ist mehr als ein
passiver Betrachter, sondern nimmt auf den Fortlauf eines Simulationslaufes interaktiv
Einfluss. Die Qualitat der Gesamtplanung soll dadurch verbessert werden, dass die
entsprechende Modellierung der Fertigungssysteme layoutgerecht ausgefihrt wird.

Planung, Evaluierung und fortlaufende Verbesserung der Fertigungsprozesse
liber alle Planungs- und Ausfiihrungsphasen bis zur Riickkopplung in die
Fertigungslenkung

Der Einsatz der Ablaufsimulation soll Gber alle Planungs- und operativen Phasen eines
Fertigungsprozesses hinweg erfolgen. Neben Machbarkeitsstudien, Variantenplanungen
oder quantitativen Fragestellungen dient die Simulation auch der Planung von
Fertigungsprogrammen. Ein bestehendes Simulationsmodell kann (ber alle Phasen der
Strukturplanung, Mengen-, Kapazitats- und Programmplanung bis hin zur Prognose und
der laufenden Verbesserung vorhandener Fertigungsprozesse eingesetzt werden. Durch
eine richtungsoffene Simulation kdénnen auch kundenorientierte Fertigungsprozesse
abgebildet werden. Darliber hinaus wird eine zeitorientierte Ausfiihrung in Vor- oder
Rickwartsrichtung unterstitzt, um die Integration in bestehende Leitstandsysteme zu
erleichtern.

-212 -

Kooperative Planung innerhalb von Unternehmen, Unternehmensverbiinden
oder Supply-Chain-Netzwerken

GroBunternehmen, virtuelle Unternehmen oder Supply-Chain-Netzwerke fertigen an
unterschiedlichen Standorten. Der Lieferfahigkeit kommt innerhalb einer Supply-Chain
steigende Bedeutung zu. Mit dem implementierten Werkzeug kdénnen die Planungen der
Supply-Chain Partner enger aufeinander abgestimmt und {berwacht werden. Die
Mehrbenutzerfahigkeit der angestrebten Ablaufsimulation ermdglicht eine kooperative
Planung mehrerer Simulationsexperten an einem gemeinsamen, dynamisch
detaillierenden Simulationsmodell des Fertigungsnetzwerks unabhangig vom Standort der
jeweiligen Experten. Da die verschiedenen Partner innerhalb solcher unternehmens-
internen wie -externen Fertigungsnetzwerke nach unterschiedlichen Fertigungs-
ablaufarten produzieren kénnen, wurde mit der automatischen Wegberechnung ein
spezielles Verfahren entwickelt, welches die Modellierung und Simulation von funktional
gegliederten Fertigungssystemen bzw. deren Mischformen erlaubt.

7.2 Grenzen der Arbeit

Diese Arbeit beschrankt sich auf den erweiterten Einsatz der Methode Ablaufsimulation
und versucht, Schnittstellen zu angrenzenden Planungsschritten mdglichst konstruktiv
und praxistauglich zu gestalten. In der Praxis der Unternehmenslandschaften existieren
zahlreiche Bestrebungen hin zu der Vision einer ,Digitalen Fabrik". Dieser Ansatz ist von
seiner Grundidee sicherlich ganzheitlicher, wird aber von den jeweiligen Unternehmen
oftmals nur hinsichtlich der jeweils eingesetzten Technologien verfolgt. Ziel ist ebenso
wie bei der hier vorliegenden Arbeit eine ganzheitliche Gestaltung der Produkt- und
Prozessplanung einer Unternehmung. Die wesentliche Herausforderung in der Praxis ist
hierbei jedoch zumeist die Integration der existierenden Datenformate und fokussiert
nicht so sehr auf eine ganzheitliche Betrachtung der Methoden und Ziele. Insofern passen
die hier genannten Bestrebungen in den Kontext der Digitalen Fabrik; die Digitale Fabrik
fordert aber noch mehr auch die Integration von Produkt- und Prozessplanung, als das in
dieser Arbeit der Fall ist.

Die Summe der Einzelziele zur Erweiterung des Einsatzgebietes der Ablaufsimulation
erhebt keinen Anspruch auf Vollstandigkeit, sondern will vielmehr mdgliche nachste
Schritte aufzeigen, die vor dem Hintergrund bereits heute existierender Projekte
auftreten. Dennoch scheint eine engere Anbindung von Fertigungsplanung und -Lenkung,
die Kopplung der Methode Ablaufsimulation mit den Planungsszenarien einer PPS-
Steuerung als sinnvoll und wurde in Ansatzen heute bereits realisiert.

Des Weiteren ergeben sich auch aus den Ergebnissen der hier vorliegenden Arbeit
weitere Erkenntnisse flir mdogliche, zukilinftige Schritte, die den Themenbereich der
Ablaufsimulation vorantreiben kdnnen, ggf. eingebettet in den Kontext der Digitalen
Fabrik. Der nachfolgende Absatz will einige Ideen hierzu liefern.

7.3 Ausblick

Die ersten Arbeiten mit dem entwickelten Werkzeug zeigen erfolgreiche Durchfiihrungen
und Ergebnisse hinsichtlich einer Kopplung der Methode Ablaufsimulation mit den
Planungs- und Steuerungsalgorithmen der Fertigungslenkung. Die Arbeit kdnnte an
dieser Stelle vorangetrieben werden, indem weitere Losungsmdglichkeiten in diesem

Ausblick -213 -

Problembereich einer mdglichst optimalen Einsteuerung der Fertigungsauftrage in das
Fertigungssystem, beispielsweise durch Ankopplung von Optimierungsalgorithmen,
Neuronalen Netzen oder Genetischen Algorithmen entwickelt werden. Erste Aussagen
Uber das Verhalten eines dynamischen Fertigungssystems kénnten schneller generiert
werden und die eigentlichen Simulationslaufe miissten erst spater und mit optimierten
Parametern gestartet werden.

Ein weiteres sinnvolles Arbeitsgebiet ist eine erweiterte Unterstlitzung der Anwender bei
der Modellierung von Simulationsmodellen. Vielfach sind einzelne Maschinendaten,
Fertigungsablaufe, etc. schon in den entsprechenden ERP-Systemen vorhanden. Der
Anwender kdonnte durch spezielle Methoden zur (semi-)automatischen Modellgenerierung
auf Basis dieser ERP-Daten bei der Erstellung der Simulationsmodelle deutlich besser
unterstitzt werden. Insbesondere der Prozess der Modellgenerierung zu einer
Ausgangsldsung, die durch erste Simulationslaufe validiert werden kann, wirde dadurch
erheblich beschleunigt. AusschlieBlich die speziellen Steuerstrategien und Soll-Konzepte
mussten manuell in das Simulationsmodell nachgepflegt werden.

Die Visualisierung einzelner Simulationslaufe ist immer nur eine mdgliche Auspragung
des dynamischen Verhaltens des modellierten Fertigungssystems und basiert in groBen
Teilen auch auf den entsprechenden Starparametern der stochastisch verteilten
Modellvariablen. Inwiefern der entsprechende Simulationslauf und seine Visualisierung
also typisch fir das modellierte System sind, kann zunachst nicht vom Anwender
beantwortet werden. Klassischerweise wird das Problem in der Experimentierphase
dadurch umgangen, dass mehrere Simulationslaufe mit unterschiedlichen Startwerten
der stochastisch verteilten Modellvariablen simuliert werden. Um dieses Problem bereits
wahrend der Modellierungsphase zu bewaltigen, kdnnte man den Versuch aus den
entsprechenden Simulationslaufen parallel simulieren und in einer
Visualisierungskomponente darstellen. Fir jeden einzelnen Parameter einer
Bausteininstanz wirde in dieser Visualisierungsform eine Streubreite angezeigt, die den
Anwender einschatzen ldsst, wie typisch die angezeigte Visualisierung flr das
dynamische Verhalten des Systems ist. Wird die Visualisierung um eine Mdglichkeit
angereichert, zwischen der Visualisierung der einzelnen Simulationslaufe zu wechseln,
kdnnte der Anwender gleichzeitig auch zu typischeren oder extremeren Simulationslaufen
wechseln. Dariber hinaus kénnten in diesem Kontext Visualisierungsmaéglichkeiten
konzipiert werden, die dem Anwender mehrere Simulationen in einer Oberflache
darstellen und analysieren lassen.

Quellenverzeichnis

- 215 -

Quellenverzeichnis

[Alls77]

[Arno95]

[Balz05]

[Balz82]

[BaumO03]

[BeBr03]

[Bega94]

[Berg02]

[Birt82]

[BKLPO1]

[Booc94]

[Borm94]

[Boss92]

[Brac02]

Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I.,
Angel, S.: A pattern language, Oxford University Press, New York, 1977

Arnold, D.: Materialflusslehre. Vierweg Verlag, Braunschweig, Wiesbaden,
1995.

Balzert, H.: Lehrbuch Grundlagen der Informatik, Spektrum Akademischer
Verlag; Auflage: 2., Aufl.,2005

Balzert, H.: Die Entwicklung von Software-Systemen: Prinzipien, Methoden,
Sprachen Werkzeuge, Bibliographisches Institut, 1982

Baumgartner, T.: Wenn die Computer die Fabrik von morgen testen,
Industrieanzeiger 51-52, 2003

Bender, M., Brill, M.: Computergrafik — Ein anwendungsorientiertes
Lehrbuch, Hanser Verlag, Minchen [u.a.], 2003

Begault, Durand R.: 3-D sound for virtual reality and multimedia, Academic
Press, Boston [u.a.], 1994

Bergbauer, J.: Entwicklung eines Systems zur interaktiven Simulation von
Produktionssystemen in einer Virtuellen Umgebung, Shaker Verlag,
Aachen, 2002

Birtwistle, G. M., Luker, P.: Discrete event simulation with Demos, in:
Proceedings of the 14th conference on Winter Simulation, San Diego,
California, 1982

Bowman, D.; Kruijff, E.; LaViola, J. J. Jr. und Poupyrev, I.: An Introduction
to 3-D User Interface Design, In: Durlach, N. I. und Slate, M. (Hrsg.),
Presence, Volume 10, Number 1, S. 96-108, MIT-Press, 2001

Booch, G.: Objekorintierte Analyse und Design: Mit praktischen
Anwendungsbeispielen, Addison-Westley, 1994

Bormann, S.: Virtuelle Realitédt - Genese und Evaluation, Addison Westley
Publishing Company, Bonn [u.a.], 1994

Bossel, Hartmut: Modellbildung und Simulation, Vieweg-Verlag, 1992
Bracht, U.: Ansatze und Methoden der Digitalen Fabrik, In: Schulze, T.;

Schlechtweg, S. und Hinz, V. (Hrsg.): Simulation und Visualisierung 2002,
S. 1-11, SCS-Europe BVBA, Gent, Belgien, 2002

- 216 -

[BrDu04]

[Brey05]

[BrFa01]

[BuMe96]

[Buur05]

[Chis92]

[CoDo02]

[Corm90]

[Dang03]

[Dang99]

[DaWa97]

[Delm-ol]

[DFAB98]

[DMDO03]

[EDFa-ol]

Briigge, B., Dutoit, A.H.: Objektorientierte Softwaretechnik — mit UML,
Entwurfsmustern und Java, Pearson Education Deutschland, 2004

Breymann, U.: C++ , Hanser Fachbuchverlag; Auflage: 8., Aufl., 2005

Bracht, U. / Fahlbusch, M. W.: Einsatz von Virtual Reality - Systemen in
der Fabrik- und Anlagenplanung, Zeitschrift flr wirtschaftliche Fachbetriebe
(ZWF), 2001

BUschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-
oriented Software Architecture — A System of Patterns, John Wiley & Sons,
Chichester [u.a.], 1996

Buurman, Gerhard M. (Hrsg.): Total Interaction. Theory and practice of a
new paradigm for the design disciplines. Birkhduser. Basel, Wien, New
York, 2005

Chisman, J.A.: Introduction to Simulation Modeling Using GPSS/PC,
Prentice Hall, Englewood Cliffs, N.J., 1992

Coulouris G. F., Dollimore J., Kindeberg T.: Verteilte Systeme: Konzepte
und Design; Minchen u. a. 2002; Pearson Studium

Cormen, Thomas H.: Introduction to algorithms, Cambridge, MIT Press,
1990

Dangelmaier W.: Skript zur Vorlesung: Grundlagen der Informationstechnik
von Produktions- und Logistiksystemen; Universitat Paderborn 2003

Dangelmaier, W.: Fertigungsplanung: Planung von Aufbau und Ablauf der
Fertigung, Springer, Berlin, 1999

Dangelmaier W., Warnecke H.: Fertigungslenkung: Planung und Steuerung
des Ablaufs der diskreten Fertigung; Berlin u. a. 1997; Springer

Delmia Quest,
http://www.delmia.com/gallery/pdf/DELMIA_QUEST.pdf (zuletzt abgefragt:
November 2006

Dix, A.; Finlay, J.; Abowd, G. und Beale, R.: Human-Computer Interaction,
2. Auflage, Prentice Hall Europe, London u.a., 1998

Dangelmaier W. (Hrsg.), Dittmann N., Mueck B.: Marktanalyse:
Materialfluss-Simulatoren; Paderborn 2003; ALB-HNI-Verlagsschriftenreihe

ED-Falcon, Incontrol Enterprise Dynamics,
http://www.taylorii.com (zuletzt abgefragt: November 2006)

Quellenverzeichnis -217 -

[Evan88]

[FaFG94]

[FaHa94]

[FiHe0O0]

[GaHe01]

[GiVa03]

[GrBo04]

[Hack89]

[Henk97]

[Holm-ol]

[JaCh97]

[Joha91]

[Kech05]

[Kern79]

Evans, J. B.: Structures of discrete event simulation: an introduction to
engagement strategy, Ellis Horwood Limited, Chichester, England, 1988

Fandel, G., Francois, P., Gubitz, K.-M.: PPS-Systeme, Grundlagen,
Methoden, Software, Martkanalysen, Springer Verlag, Berlin [u.a.], 1994

FaBler, M., Halbach, W. (Hrsg.): Cyberspace. Gemeinschaften, Virtuelle
Kolonien, Offentlichkeiten. Fink Verlag, Miinchen, 1994

Fischer, J., Herold, W., Dangelmaier, W., Nastansky, L., Suhl, L.: Bausteine
der Wirtschaftsinformatik, 2. Gberarbeitete und erweiterte Auflage, Erich
Schmidt Verlag, Berlin, 2000

Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Entwurfsmuster- Elemente
wiederverwendbarer objektorientierter Software, Addison-Wesley, Miinchen
[u.a.], 2001

Girault, C. und Valk, R.: Petri Nets for Systems Engineering — A Guide to
Modeling, Verification, and Applications, Springer Verlag, Berlin u.a., 2003

Graupner, T.; Bornhduser, M.; Sihn, W.: Backward Simulation In Food
Industry For Facility Planning And Daily Scheduling; Proceedings 16th
European Simulation Symposium, 2004

Hackstein, R.: Produktionsplanung und -Steuerung, 2.Auflage, VDI-Verlag,
Disseldorf, 1989

Henkel, S.: Ein System von Software-Entwurfsmustern flir die Propagation
von Ereignissen in Werkzeugen zur kooperativen Fabrikmodellierung, HNI-
Verlagsschriftenreihe, Paderborn, 1997

Holmevik, J.R.: Compiling Simula,
http://heim.ifi.uio.no/~cim/sim_history.html (zuletzt abgefragt November
2006)

Jain, S., Chan, S.: Experiences with Backward Simulation Based Approach
for Lot Release Planning, Winter Simulation Conference, 773-780, 1997

Johansen, R., " Teams for tomorrow”. In Proc. 24th IEEE Hawaii Intl Conf.
On System Science, S. 520-534. IEEE Comp. Soc. Press, Los Alamitos,
1991 ASIM

Kecher,Christian: UML2.0, GallileoComputing, 2005

Kern, W.: Handworterbuch der Produktionswirtschaft. Sp. 1481, Poeschel,
Stuttgart, 1979

- 218 -

[KIBu71]

[KIKr02]

[Klos06]

[LaKeO0O]

[Lani91]

[LaRa06]

[LeEg88]

[Lock93]

[Muec05]

[OhHa04]

[OOSE]

[PaKr05]

[RDBa01]

Klaus, G. und Buhr, M.: Philosophisches Wérterbuch, VEB Verlag Enzyklo-
padie Leipzig, 8. Auflage, 1971

Klein, J.; Krokowski, J.; Fischer, M.; Wand, M.; Wanka, R.; Meyer auf der
Heide, F.: The Randomized Sample Tree: A Data Structure for Interactive
Walkthroughs in Externally Stored Virtual Environments; In: ACM
Symposium on Virtual Reality Software and Technology (VRST '2002);
2002; S. 137 - 146

Klose, M.: Betreibersimulation Werk Leipzig - Ein webbasiertes und online
gekoppeltes Prognosetool zur Unterstiitzung der Produktionssteuerung, In:
Dangelmaier, Wilhelm; Laroque, Christoph; Déring, Andre (Hrsg.) Die
Supply-Chain von morgen - Lieferfahigkeit im globalen Unternehmen, ALB-
HNI-Verlagsschriftenreihe, Band 14, Paderborn, 2006

Law A. M., Kelton W. D.: Simulation Modeling and Analysis; Boston 2000;
Third Edition; McGRAW-Hill International Series

Lanier, J.: Was heiBt ,virtuelle Realitat", In: Cyberspace. Ausfliige in
virtuelle Wirklichkeiten, Rowohlt Verlag, Reinbeck, 1991

Lahres, B., Rayman, G.: Praxisbuch Objektorientierung, Galileo Computing,
2006

Leszak, M. und Eggert, H.: Petri-Netz-Methoden und -Werkzeuge - Hilfs-
mittel zur Entwurfsspezifikation und —validation von Rechensystemen,
Springer-Verlag, Berlin u.a., 1988

Lockemann, P.C., Kriger, G., Krumm, H.: Telekommunikation und
Datenhaltung, Hanser, 1993

Mueck, B.: Eine Methode zur benutzerstimulierten detaillierungsvarianten
Berechnung von diskreten Simulationen von Materialflissen, HNI-
Verlagsschriftenreihe, Paderborn, 2005

Ohkawa, T.; Hata, S.; Komoda, N.: Backward Qualitative Simulation Of
Structural Model; Japan, 1996

OOSE - innovative Informatik,
http://www.oose.de (zuletzt abgefragt: November 2006)

Page, B., Kreutzer, W.: The Java Simulation Handbook - Simulating
Discrete Event Systems, Shaker Verlag, Aachen, 2005

Rolland, J. P.; Davis, L. D.; Baillot, Y.: A Survey of Tracking Technologies
for Virtual Environments. In: In: Barfield, W.; Caudell, T. (Hrsg.):
Fundamentals of wearable Computers and Augmented Reality. Lawrence
Erlbaum Associates, Publishers, Mahwah, London, 2001. TRACKING

Quellenverzeichnis

- 219 -

[Rock00]

[Rose92]

[Rose93]

[Schm92]

[Schn96]

[ScWe00]

[Sims-ol]

[Simu03]

[Somm92]

[Star90]

[Stor00]

[StV605]

[SuMeO1]

[Tane03]

[TaSt03]

[Teic9o8]

Rockwell, W.: XML, XSLT, Java und JSP - Professionelle Web-Applikationen
entwickeln, Galileo Press GmbH, Bonn, 2000

Rosenberg, O.: Potentialfaktorwirtschaft. Vorlesungsumdruck. UNI-GH
Paderborn, 1992

Rosemann, M.: Design of a Real-Time Groupware-Toolkit, University of
Calgary, 1993

Schmidt, C.: Petri-Netze: Ein Instrument zur Lésung logistischer Probleme
im CIM-Bereich, In: Wirtschaftsinformatik, 34, S. 66-75, 1992

Schneider, U.: Ein formales Modell und eine Klassifikation fur die
Fertigungssteuerung, Band 16, HNI-Verlagsschriftenreihe, Paderborn, 1996

Schumacher, R. und Wenzel, S.: Der ModellbildungsprozeB in der
Simulation, In: Wenzel, S. (Hrsg.): Referenzmodelle fir die Simulation in

Produktion und Logistik, S.5-11, SCS-Europe BVBA, Gent, Belgien, 2000

CACI Process Company
http://www.simprocess.com (zuletzt abgefragt: November 2006)

Programminternes Handbuch: Simul8 Manual and Simulation Guide, Simul8
Corporation, 2003

Sommerville, I.: Software Engineering, Addison-Westley, 1992

Starke, P. H.: Analyse von Petri-Netz-Modellen, Teubner, Stuttgart, 1990
Storck, A.: Effiziente 3D-Interaktions und Visualisierungstechniken fur
benutzerzentrierte Modellierungssysteme, Dissertation, Technische

Universitat Darmstadt, 2000

Stahl, T. & Vélter,M.:Modellgetriebene Softwareentwicklung, dpunkt,1.
Auflage,2005.

Suhl, L., Mellouli, T.: Optimierungssysteme, Skript zur Vorlesung, uni
Paderborn, 2001

Tanenbaum A. S.: Computerarchitektur: Strukturen, Konzepte,
Grundlagen; Minchen 2003; Pearson Studium

Tanenbaum, A. S., Steen M.: Verteilte Systeme: Grundlagen und
Paradigmen; Minchen u. a. 2003; Pearson Studium

Teich, T.: Optimierung von Maschienenbelegungspldanen unter Benutzung
heuristischer Verfahren, Josef Eul Verlag, Lohmar, 1998

- 220 -

[UGS-ol]

[Ulle05]

[VDI3300]

[VDI3633]

[VDI4499]

[Vélt-ol]

[W3C]

[WaFi01]

[WaMe97]

[Woeh90]

[YiCl94]

UGS TEcnomatix Plant Simulation,
http://em-plant.de (zuletzt abgefragt: November 2006)

Ullenboom, C.: Java ist auch eine Insel. Programmieren mit der Java
Standard Edition Version 5, Galileo Press; Auflage: 5., 2005

VDI-Richtlinie 3300: MaterialfluB-Untersuchungen, Beuth Verlag, Berlin,

VDI-Richtlinie 3633: Simulation von Logistik-, Materialfluss- und
Produktionssystemen - Grundlagen; Disseldorf 1993; VDI Verlag
Dusseldorf

VDI-Richtlinie 4499: Digitale Fabrik - Grundlagen; Disseldorf 2006; VDI
Verlag Dusseldorf

Voélter,Markus: ModellgetriebeneSoftwareentwicklung, 2004,
http://www.voelter.de (zuletzt abgefragt: November 2006)

World Wide Web Consortium,
http://w3c.org (zuletzt abgefragt: November 2006)

Wand, M.; Fischer, M.; Peter, I.; Meyer auf der Heide, F.; Strasser, W.:
The Randomized z-Buffer Algorithm: Interactive Rendering of Highly
Complex Scenes; In: Computer Graphics (SIGGRAPH 01 Conference
Proceedings); 2001; S. 361 - 370

Watson, E. F., Medeiros, D. J., Sadowski, R. P.: A simulation-based
backward planning approach for order-release, Proceedings of the 29th
Conference on Winter Simulation, Atlanta, Georgia, ACM Press, New York,
NY, 765-772. 1997

Wohe, G.: Einfihrung in die Allgemein Betriebwirtschaftsaftslehre, Vahlen,
17. tUberarb. Auflage, 1990

Ying, C. C., Clark, G. M.: Order release planning in a job shop using a bi-
directional simulation algorithm, Proceedings of the 26th Conference on
Winter Simulation, Orlando, Florida, Society for Computer Simulation
International, 1008-1012, 1994

1973

Anhang A - DTD zur Modellbeschreibung

- 221 -

Anhang A - DTD zur Modellbeschreibung

<?xml version="1.0" encoding="is0-8859-1"?>

<l--

Fixe DTD fuer Modellbeschreibung

Koordinatensystem: Linkshaendig, Daumen: x, Zeige: y, Mittel: z, z auf den Betrachter zu
-—->

<!ELEMENT model (library, main, database, comment?)>

<IELEMENT database EMPTY>
<IATTLIST database
dburl CDATA #REQUIRED
username CDATA #REQUIRED
password CDATA #REQUIRED

<!ELEMENT library (buildingblock*, comment?)>

<IELEMENT buildingblock (dockingpoints*, tokenpath*, subblock*, ichannel*, ochannel*, variable*,
event*, link*, moredetailed?, lessdetailed?, comment?, calendarRowShifts*, calendarRowFreeDays*

breakdown*)>
<IATTLIST buildingblock

id CDATA #REQUIRED

name CDATA #REQUIRED

id_mesh CDATA #IMPLIED

meshscale CDATA "1"

significance CDATA "0"

x-size CDATA #IMPLIED

y-size CDATA #IMPLIED

z-size CDATA #IMPLIED

color CDATA #IMPLIED

simulationBoundary (true|false) "false"

sortOfModel CDATA "normal”

calendar CDATA #IMPLIED

shiftTableActive (true|false) "true"

freeDaysTableActive (true|false) "true"

simStartTime CDATA #IMPLIED

simEndTime CDATA #IMPLIED

<IELEMENT calendarRowShifts EMPTY>
<IATTLIST calendarRowShifts
name CDATA #REQUIRED
type CDATA "regular"
from CDATA #REQUIRED
to CDATA #REQUIRED
breaks CDATA #IMPLIED
mo (true|false) "false"
di (true|false) "false"
mi (true|false) "false"
do (truelfalse) "false"
fr (true|false) "false"
sa (true|false) "false"
so (truelfalse) "false"
dates CDATA #IMPLIED

I

- 222 -

<IELEMENT calendarRowFreeDays EMPTY>
<!ATTLIST calendarRowFreeDays
date CDATA #REQUIRED
reason CDATA #IMPLIED
reduceTo CDATA #IMPLIED
>

<!ELEMENT breakdown (mttfdist?, mttrdist?, firstTTFdist?, breakdownstart_event?, breakdownend_event?)>
<IATTLIST breakdown

name CDATA #REQUIRED

hasMTTFandMTTR (true|false) "false"

availability CDATA #IMPLIED

mttrAvailability CDATA #IMPLIED

generateStartEvents (true|false) "true"

generateEndEvents (true|false) "true"

firstTTFAutomatically (true|false) "true"

<!ELEMENT firstTTFdist EMPTY>
<IATTLIST firstTTFdist
type CDATA #REQUIRED
stream CDATA #IMPLIED
lowerbound CDATA #IMPLIED
upperbound CDATA #IMPLIED
haslowerbound CDATA #IMPLIED
hasupperbound CDATA #IMPLIED
alpha CDATA #IMPLIED
beta CDATA #IMPLIED
mean CDATA #IMPLIED
variance CDATA #IMPLIED
leftpoint CDATA #IMPLIED
midpoint CDATA #IMPLIED
rightpoint CDATA #IMPLIED
constvalue CDATA #IMPLIED

<!ELEMENT mttfdist EMPTY>

<IATTLIST mttfdist
type CDATA #REQUIRED
stream CDATA #IMPLIED
lowerbound CDATA #IMPLIED
upperbound CDATA #IMPLIED
haslowerbound CDATA #IMPLIED
hasupperbound CDATA #IMPLIED
alpha CDATA #IMPLIED
beta CDATA #IMPLIED
mean CDATA #IMPLIED
variance CDATA #IMPLIED
leftpoint CDATA #IMPLIED
midpoint CDATA #IMPLIED
rightpoint CDATA #IMPLIED
constvalue CDATA #IMPLIED

<IELEMENT mttrdist EMPTY>
<IATTLIST mttrdist
type CDATA #REQUIRED
stream CDATA #IMPLIED
lowerbound CDATA #IMPLIED
upperbound CDATA #IMPLIED

Anhang A - DTD zur Modellbeschreibung

- 223 -

haslowerbound CDATA #IMPLIED
hasupperbound CDATA #IMPLIED
alpha CDATA #IMPLIED

beta CDATA #IMPLIED

mean CDATA #IMPLIED

variance CDATA #IMPLIED
leftpoint CDATA #IMPLIED
midpoint CDATA #IMPLIED
rightpoint CDATA #IMPLIED
constvalue CDATA #IMPLIED

<!ELEMENT breakdownstart_event (codeBS)>
<!ELEMENT codeBS (#PCDATA)>

<!ELEMENT breakdownend_event (codeBE)>
<!ELEMENT codeBE (#PCDATA)>

<!ELEMENT tokenpath EMPTY>

<IATTLIST tokenpath
iddatabase CDATA #REQUIRED
name CDATA #IMPLIED

<!ELEMENT dockingpoints (dockingpointfromdb)+>

<!ELEMENT dockingpointfromdb EMPTY>
<IATTLIST dockingpointfromdb

id CDATA #REQUIRED

name CDATA #IMPLIED>

<!ELEMENT subblock (dockingpoints*, tokenpath*, position, relativePosition?, variable_value*,
calendarRowShifts*, calendarRowFreeDays*, breakdown*, subblock*, comment?)>
<IATTLIST subblock
type CDATA #REQUIRED
name CDATA #REQUIRED
meshScale CDATA #IMPLIED
id_mesh CDATA #IMPLIED
srcid CDATA #REQUIRED
color CDATA #IMPLIED
layer CDATA "0Q"
significance CDATA "0"
sortOfModel CDATA "normal”
calendar CDATA #IMPLIED
shiftTableActive (true|false) "true"
freeDaysTableActive (true|false) "true"

<!ELEMENT position EMPTY>
<!ATTLIST position
x CDATA #REQUIRED
y CDATA #REQUIRED
z CDATA "0"
rotx CDATA "0"
roty CDATA "0"
rotz CDATA "0">

<!ELEMENT relativePosition EMPTY>

- 224 -

<!ATTLIST relativePosition
x CDATA #REQUIRED
y CDATA #REQUIRED>

<!ELEMENT variable_value EMPTY>
<!ATTLIST variable_value
name CDATA #REQUIRED
value CDATA #IMPLIED
meanvalue CDATA #IMPLIED
variance CDATA #IMPLIED
lowerbound CDATA #IMPLIED
upperbound CDATA #IMPLIED
streamNumber CDATA #IMPLIED

<IELEMENT ichannel (position?, comment?)>
<IATTLIST ichannel
name CDATA #REQUIRED

<IELEMENT ochannel (position?, comment?)>
<IATTLIST ochannel
name CDATA #REQUIRED

<IELEMENT link (comment?)>

<IATTLIST link
from CDATA #REQUIRED
from_channel CDATA #REQUIRED
to CDATA #REQUIRED
to_channel CDATA #REQUIRED

<!ELEMENT moredetailed (comment?)>
<IATTLIST moredetailed type CDATA #REQUIRED>

<IELEMENT lessdetailed (comment?)>
<IATTLIST lessdetailed type CDATA #REQUIRED>

<IELEMENT variable ((int | long | double | float | time | arraylist | string | boolean | enum | token | hashmap |
table | random), comment?)>
<!ATTLIST variable

public (yes | no) #REQUIRED

vrvisibility (none | readable | writeable) #REQUIRED

name CDATA #REQUIRED
<IELEMENT long (standardvalue, lowerbound?, upperbound?, evaluationtypeno?)>
<!ELEMENT int (standardvalue, lowerbound?, upperbound?, evaluationtypeno?)>
<!ELEMENT lowerbound (#PCDATA)>
<!ELEMENT upperbound (#PCDATA)>
<IELEMENT standardvalue (#PCDATA)>

<!ELEMENT double (standardvalue, lowerbound?, upperbound?, precision?, evaluationtypeno?)>

<IELEMENT float (standardvalue, lowerbound?, upperbound?, precision?, evaluationtypeno?)>

Anhang A - DTD zur Modellbeschreibung - 225 -

<IELEMENT precision (#PCDATA)>
<!ELEMENT arraylist (variable*, evaluationtypelist?)>
<!ELEMENT string (standardvalue, length, evaluationtypestring?)>
<!ELEMENT length (#PCDATA)>
<!ELEMENT boolean (standardvalue, evaluationtypebool?)>
<IELEMENT time (#PCDATA)>
<!ELEMENT enum (standardvalue, enummember+)>
<IELEMENT enummember (#PCDATA)>
<IATTLIST enummember
description CDATA #IMPLIED
<!ELEMENT token EMPTY>
<IELEMENT hashmap EMPTY>
<IELEMENT table (evaluationtypetable?)>
<IATTLIST table
columns CDATA #REQUIRED
<IELEMENT random ((uniform | normal | triangular | exponential), streamNumber, evaluationtypeno?)>
<!ELEMENT uniform (lowerbound, upperbound)>
<!ELEMENT normal (meanvalue, variance)>
<IELEMENT triangular (meanvalue, lowerbound, upperbound)>
<IELEMENT exponential (meanvalue)>
<IELEMENT meanvalue (#PCDATA) >
<IELEMENT variance (#PCDATA) >
<IELEMENT streamNumber (#PCDATA)>
<IELEMENT evaluationtypeno (trafficlight | gauge | display)>
<IATTLIST evaluationtypeno
evaluationprio (high | medium | low) #REQUIRED
>
<IELEMENT evaluationtypebool (signal | display)>
<IATTLIST evaluationtypebool
evaluationprio (high | medium | low) #REQUIRED
>
<!ELEMENT evaluationtypelist (meanvariance | histogram | display)>
<!IATTLIST evaluationtypelist

evaluationprio (high | medium | low) #REQUIRED
>

- 226 -

<IELEMENT evaluationtypestring (display)>
<IATTLIST evaluationtypestring

evaluationprio (high | medium | low) #REQUIRED
>

<!ELEMENT evaluationtypetable (meanvariance | timetable | histogram | display)>
<IATTLIST evaluationtypetable
evaluationprio (high | medium | low) #REQUIRED
>
<!ELEMENT meanvariance (valuecolumn?)>
<!ELEMENT valuecolumn (#PCDATA)>
<!ELEMENT timetable (yline*, timecolumn, valuecolumn)>
<IATTLIST timetable
dots (yes | no) #REQUIRED
color CDATA #IMPLIED
<IELEMENT vyline (#PCDATA)>
<!ELEMENT timecolumn (#PCDATA)>
<IELEMENT display (#PCDATA)>
<IELEMENT trafficlight (thresholdyellow, thresholdred)>
<IELEMENT gauge (thresholdyellow?, thresholdred?)>
<IELEMENT thresholdyellow (#PCDATA)>
<!ELEMENT thresholdred (#PCDATA)>
<IELEMENT threshold (#PCDATA)>
<IELEMENT histogram (threshold*, valuecolumn?)>
<IELEMENT signal (greentrue | greenfalse)>
<IELEMENT greentrue (#PCDATA)>
<IELEMENT greenfalse (#PCDATA)>
<!ELEMENT event
((input_event|output_event|reopen_event|sub_output_event|sub_input_event|sub_reopen_event|init_event|u
ser_defined_event|switch_event|final_event), code, comment?)>

<!ATTLIST event
name CDATA #IMPLIED

<IELEMENT input_event EMPTY>
<!ATTLIST input_event

inchannel CDATA #REQUIRED
>

<!ELEMENT output_event EMPTY>
<!ATTLIST output_event

outchannel CDATA #REQUIRED
>

Anhang A - DTD zur Modellbeschreibung

- 227 -

<!ELEMENT reopen_event EMPTY >
<!ATTLIST reopen_event

channel CDATA #REQUIRED
>

<!ELEMENT sub_output_event EMPTY>
<!ATTLIST subout_event
outchannel CDATA #REQUIRED

<!ELEMENT sub_input_event EMPTY>
<!IATTLIST sub_input_event

inchannel CDATA #REQUIRED
>

<!ELEMENT sub_reopen_event EMPTY>
<!IATTLIST sub_reopen_event

inchannel CDATA #REQUIRED
>

<!ELEMENT init_event EMPTY>

<!ELEMENT user_defined_event EMPTY>

<!ATTLIST user_defined_event name CDATA #REQUIRED>

<!ELEMENT switch_event EMPTY>

<!ATTLIST switch_event name CDATA #REQUIRED>

<!ELEMENT final_event EMPTY>
<!ELEMENT code (#PCDATA)>
<!ELEMENT comment (#PCDATA)>
<!ELEMENT main EMPTY>

<!ATTLIST main
modeltorun CDATA #IMPLIED

Anhang B - DTD zum Nachrichtenaustausch

- 229 -

Anhang B - DTD zum Nachrichtenaustausch

<I--
5T for YoLcommateaton bemseen amtation s vosmtontion
$Id: messages.dtd,v 1.44 2006/02/20 16:03:00 shampoo Exp $
-->
<I--
Entites
——> TR

<!ENTITY % ID "CDATA">
<IENTITY % Int "CDATA">
<!ENTITY % Long "CDATA">
<!ENTITY % Float "CDATA">
<!ENTITY % Double "CDATA">
<!ENTITY % String "CDATA">
<IENTITY % Boolean "CDATA">

<!ENTITY % Timestamp "
timestamp %Long; #REQUIRED
"

<IENTITY % Messagel "(normal-message | request-message | reply-message)">
<IENTITY % Message2 "(start | pause | stop| save | timefactor | databaseinfo |
dockingpoint | tokenpath | buildingblock | robot | token |

robotpool | subscribe-properties | unsubscribe-properties |

object-properties | properties-changed | significance |

include-token | exclude-token | animate-token | remove-token |
remove-robot | move-robot | move-poolmember | check-arrival |

free-robot |endOflnitialization | mp-prefs | timestamp

| avatar | mrm-quantifier | unlockMRM | lockMRM | maxspeed | normalspeed)">
<IENTITY % Message3 "(error | no-error | expected-arrival-time | arrival | still-computing-path | object-

properties)">

<!--

A Message can be of three types:
- normal message
- request message
- reply message
-->

- 230 -

<IELEMENT normal-message %Message2; >

<!ELEMENT request-message %Message2;>
<!ATTLIST request-message

cbid %]ID; #REQUIRED
>

<IELEMENT reply-message %Message3; >
<IATTLIST reply-message
cbid %]ID; #REQUIRED

>

<I--
Avatar-Message needed for switch procedure
Consits of "Front-Vector" and Avatar-Vector
At this stage of development just 2-D

-->

<!ELEMENT avatar EMPTY>

<!ATTLIST avatar
xfront %Float; #REQUIRED
yfront %Float; #REQUIRED
zfront %Float; #IMPLIED
xavatar %Float; #REQUIRED
yavatar %Float; #REQUIRED
zavatar %Float; #IMPLIED

<l--

Message for adjusting the weighting of the mrm indicators.
The sum of distance and lineOfSight must be 1.

->
<!ELEMENT mrm-quantifier EMPTY>
<IATTLIST mrm-quantifier
distance %Float; #REQUIRED
lineOfSight %Float; #REQUIRED
relations (0 | 1 | 2) #REQUIRED

<!ELEMENT lockMRM EMPTY>
<!ELEMENT unlockMRM EMPTY >

<I--

<l--

This message can be sent in initialisation phase. The computationtime is the time a path computation will take.
Simulation will send a move-robot message and, after waiting for computationtime simulation time, send a
check-arrival message. As simulation time is ahead of server time, timeprecision limits this inaccuracy by
blocking simulation until the difference between simulation and server time is less then timeprecision. Note:
The worst thing which can happen is that simulation gets to know timperecision later that a robot arrived.
Setting timeprecision to a reasonable value (e.g. 100) makes it easier for visualisation to produce smooth
pictures. On the other hand, setting both values to 0 guarantees accurate simulation results.

Anhang B - DTD zum Nachrichtenaustausch - 231 -

-->
<!ELEMENT mp-prefs EMPTY>
<IATTLIST mp-prefs
computationtime %Int; #REQUIRED
timeprecision %]Int; #REQUIRED

<!ELEMENT start EMPTY>
<!ELEMENT pause EMPTY>
<!ELEMENT stop EMPTY>
<!ELEMENT save EMPTY>
<!ATTLIST save
pathname %S5tring; #REQUIRED

<!ELEMENT maxspeed EMPTY>
<!ELEMENT normalspeed EMPTY>

<!ELEMENT timestamp EMPTY>

<!ATTLIST timestamp
%Timestamp;

>

<!ELEMENT timefactor EMPTY>
<IATTLIST timefactor

%Timestamp;

value %Int; #REQUIRED

<I--

<l--

If a visualisation server connects to the simulation, the simulation needs switch to pause state. Afterwards, all
information about the current simulation status is transferred to the server using the messages in this section.
Note: Some messages have to be sent in a special order. If all messages are sent, simulation sends a message
of this type to the server. After processing the input, the server will send a start message to start the
simulation.

->

<!ELEMENT endOfInitialization EMPTY>

<I--
Simulation specifies the database location etc. Encryption needed!
-—->
<!ELEMENT databaseinfo EMPTY>
<!IATTLIST databaseinfo

url %String; #REQUIRED
username %String; #REQUIRED
password %String; #REQUIRED
>
<l--

Dockingpoints belong to a Buildingblock. A Buildingblock can have Dockingpoints. Robots can be sent by
specifying id of Buildingblock and id of Dockingpoint, or by just specifying the Buildingblock (in this case
Motionplanning chooses a Dockingpoint). Usually Dockingpoints are saved in the db together with the 3D model

- 232 -

they belong to, but they can also be added by specifying the Buildingblock and a position relative to the
position of the Buildingblock
-->
<IELEMENT dockingpoint (databaseid | (description?, location))>
<IATTLIST dockingpoint
id %]Int; #REQUIRED
idbb %]Int; #REQUIRED

<l--

Tokens can be moved automatically along a specified path. (e.g. a box moved along a production line). A Token
path describes such a path. A movement of a token can be moved by sending an AnimateToken message.

-->

<!ELEMENT tokenpath (databaseid | (description?, location, location+))>
<IATTLIST tokenpath

id %Int; #REQUIRED

idbb %]Int; #REQUIRED

<l--

Buildingblocks represent static objects, e.g. machines. They must have an associated mesh which is saved in
the db. Visualisation will get the Dockingpoints and Tokenpathes out of the database, but additional ones can
be specified. If the bulding block mesh contains other building block meshes (e.g. if it is a hall),

the optional simulationBoundary flag has to be set.

-->

<!ELEMENT buildingblock (description?, mesh, location, significancepoint?)>
<IATTLIST buildingblock
id %Int; #REQUIRED
simulationBoundary %Boolean; "false"

<I--

A Robot is an object for which movements can be ordered with a MoveRobot or a MovePoolMember message.
Initial position, maxSpeed and radius must be specified. NOTE: All Dockingpoints, Tokenpathes and
Buildingblocks have to be transmitted before the first Robot!

-—->

<IELEMENT robot (description?, mesh, location)>
<IATTLIST robot
type (portal2d | portal3d | forklifter | worker) #REQUIRED

id %]Int; #REQUIRED
idpool %Int; #IMPLIED

speed %Float; #REQUIRED
radius %Float; #REQUIRED
accel %Float; #IMPLIED
decel %Float; #IMPLIED

<l--
A Token is an object which can be displayed at a fixed position
or moved along a Buildingblock via a Tokenpath.
->
<!ELEMENT token (description?, mesh)>
<!ATTLIST token
id %]Int; #REQUIRED
>

Anhang B - DTD zum Nachrichtenaustausch - 233 -

<l--

Robots don't have to, but should belong to Pools, which are introduced with messages of this type. Movements
of Robots should be ordered by using a MovePoolMember message (Simulation can't know how long it takes a
special Robot to go from A to B!)

-—->

<!ELEMENT robotpool (description?)>
<!ATTLIST robotpool

id %]Int; #REQUIRED
>
<I--
properties
> T
<I--

If the Visualisation is interested in the properties of a special Buldingblock, it sends a message of this type to
the Simulation. Simulation answers with a PropertyMessage immediately, and sends a
PropertyChangedMessage as soon as one or more properties have changed, but no more often than every
interval milliseconds. A subscription can be cancelled by Visualisation with an UnsubscribeObjectProperties
message.

-—>

<IELEMENT subscribe-properties EMPTY >
<IATTLIST subscribe-properties
idbb %]Int; #REQUIRED
interval %]Int; #REQUIRED

<l--
Cancels a subscription of properties of the given object.
->
<!ELEMENT unsubscribe-properties EMPTY >
<IATTLIST unsubscribe-properties
idbb %Int; #REQUIRED
>

<!--

Contains a list of all properties of an object, including the current values of those properties.
-->
<IELEMENT object-properties (property*)>
<!ATTLIST object-properties
%Timestamp;
idbb %Int; #REQUIRED

<!ELEMENT property (description?, (simple-type | enum-type | list| table | random), evaluationtype?)>
<!ATTLIST property

name %String; #REQUIRED

readonly(yes|no) "yes

<!ELEMENT simple-type EMPTY>
<!ATTLIST simple-type
type (long|double|bool|string|time) #REQUIRED

- 234 -

value %String; #REQUIRED
lowerbound %String; #IMPLIED
upperbound %String; #IMPLIED

<!ELEMENT enum-type (item+)>

<!ELEMENT item EMPTY>
<IATTLIST item

value %String; #REQUIRED
>
<I--
a list can have serveral items
->

<!ELEMENT list (simple-type*)>

<l--

erlaubt nur gleichmaessige tabellen

-->

<!ELEMENT table (content*)>

<IATTLIST table
rowsize %Int; #REQUIRED
columnsize %]Int; #REQUIRED

<IELEMENT content (simple-type)>
<!ATTLIST content
row %Int; #REQUIRED
column %Int; #REQUIRED

<!ELEMENT random EMPTY>
<!ATTLIST random

type (exponential | normal | triangular | uniform)

value %String; #REQUIRED
streamnumber %]Int; #REQUIRED
meanvalue %Float; #IMPLIED
variance %Float; #IMPLIED
lowerbound %Float; #IMPLIED
upperbound %Float; #IMPLIED

>

<l--

#REQUIRED

Contains a list of all properties which have changed since the last object-properties or properties-changed
message has been sent. If sent by Visualisation, then a user wants to adjust a setting. It's up to the simulation
to decide if it allows that. If it decides to change the property, a properties-changed message has to be sent as
usual. The timestamp is only needed if the message is sent from Simulation to Visualisation.

-->

<!ELEMENT properties-changed (simple-update*|enum-update* |list-update*|table-update*|random-

update*)>
<!IATTLIST properties-changed
%Timestamp;

Anhang B - DTD zum Nachrichtenaustausch

- 235 -

>

idbb %]Int; #REQUIRED

<!ELEMENT list-update (remove-first?,add-last?)>
<!IATTLIST list-update

>

name %String; #REQUIRED

<!ELEMENT remove-first EMPTY>
<!ATTLIST remove-first

quantity %lInt; #REQUIRED

<!ELEMENT add-last (simple-type+)>

<!ELEMENT table-update (content+)>
<!IATTLIST table-update

>

name %String; #REQUIRED

<!ELEMENT random-update EMPTY>
<IATTLIST random-update

name %String; #REQUIRED

type (exponential | normal | triangular | uniform)
value %String; #IMPLIED
streamnumber %Int; #IMPLIED
meanvalue %Float; #IMPLIED
variance %Float; #IMPLIED
lowerbound %Float; #IMPLIED
upperbound %Float; #IMPLIED

<!ELEMENT simple-update EMPTY>
<!ATTLIST simple-update

name %String;
type (long|double|bool|string|time) #IMPLIED
value %String;

<!ELEMENT enum-update (item+)>
<!ATTLIST enum-update

>

<I--

name %String; #REQUIRED

#IMPLIED

#REQUIRED

#REQUIRED

<IELEMENT evaluationtype (meanvariance | timetable | display | trafficlight | gauge | histogram | signal)>
<!ATTLIST evaluationtype

>
<I--

priority (high | medium | low) #REQUIRED

Mittelwert und Standartabweichung (z.B. 5 +- 2)

-->

<!ELEMENT meanvariance (valuecolumn?)>

- 236 -

<I--

Bei Tabellen: Aus welcher Spalte sollen die Daten genommen werden
-->

<IELEMENT valuecolumn (#PCDATA)>

<l--

Diagramm mit f(timecolumn(i)) = valuecolumn(i) Es kann angegeben werden, ob Datenpunkte als dicke Punkte
dargestellt werden sollen und welche Farbe der Graph haben soll

->

<IELEMENT timetable (yline*, timecolumn, valuecolumn)>
<IATTLIST timetable
dots (true | false) #REQUIRED
color CDATA #IMPLIED
>
<l--
Reele Zahl. f(x)=yline. Waagerechte Linie im Diagramm.
-->
<IELEMENT vyline (#PCDATA)>

<I--

Wert 1..N Nummer der Spalte, in der die Zeitwerte stehen (x-Achse)
-—->

<!ELEMENT timecolumn (#PCDATA)>

<I--

Einfache Anzeige eines Wertes.
-->

<!ELEMENT display (#PCDATA)>

<I--

Eine Ampel. thresholdyellow gibt den Anfangswert fir den gelben Bereich, thresholdred den fiir den roten
Bereich an.

-->

<IELEMENT trafficlight (thresholdyellow, thresholdred)>

<I--

Ein Drehzahlmesser. thresholdyellow gibt den Anfangswert fiir den gelben Bereich, thresholdred den fir den
roten Bereich an. Anordnung(im Uhrzeigersinn): gruen, gelb, rot

->

<!ELEMENT gauge (thresholdyellow?, thresholdred?)>

<!--

Ein Wert aus der Menge der reellen Zahlen
-->

<!ELEMENT thresholdyellow (#PCDATA)>

<!--

Ein Wert aus der Menge der reellen Zahlen
-->

<!ELEMENT thresholdred (#PCDATA)>

<!--

Ein Wert aus der Menge der reellen Zahlen
-->

<!ELEMENT threshold (#PCDATA)>

<I--

Anhang B - DTD zum Nachrichtenaustausch - 237 -

Ein Histogramm ist ein Balkendiagramm, bei dem jeder Balken einen Wertebereich darstellt. Es werden nur die
Ereignisse gezahlt, wenn ein Wert in ein Intervall passt. Diese Intervalle werden durch die threshold-Wert
angegeben (z.B. 5,10,20,30 -> Werte <= 5 in der ersten, Werte >5 und <= 10 in der zweiten, etc.)

-->

<IELEMENT histogram (threshold*, valuecolumn?)>

<l--
Einfache Darstellung eines griinen oder roten Kreises. Es kann ausgewahlt werden,
ob true gut(gruen) oder schlecht(rot) ist.
-->
<!ELEMENT signal EMPTY>
<IATTLIST signal
truegreen (true|false) #REQUIRED
>

<I--

<l--

Changes the significance of the given object. This causes the object to be displayed in a more detailed way. If
the significance of an object gets higher then a threshold which can be chosen by each visualisation user, a
marker will be displayed at the position of the object.

-->

<IELEMENT significance EMPTY >
<IATTLIST significance
%Timestamp;

idbb %Int; #REQUIRED
value %Float; #REQUIRED
message %String; #IMPLIED
>
<!--
Tokens
-->
<l--

This message can be used to put Tokens into other Tokens (e.g. shoes in a box). It can also be used to put a
Token onto a Robot. Each Token must have a location which is relative to the reference point of the Token
which it is put into.

-->

<IELEMENT include-token (include+)>
<IATTLIST include-token
%Timestamp;
idparent %Int; #REQUIRED

<!ELEMENT include (location)>
<IATTLIST include

- 238 -

idchild %Int; #REQUIRED

<l--
To remove Tokens from a Token or a Robot
-->
<IELEMENT exclude-token (exclude+)>
<!ATTLIST exclude-token

%Timestamp;

idparent %Int; #REQUIRED

<!ELEMENT exclude EMPTY>
<!ATTLIST exclude
idchild %!Int; #REQUIRED

<I--

This message is used to animate a Token. The Token will start a the first node of the path and will move along
all the path nodes. The movement will take the specified time. At the end, the token will be displayed at the
location of the last node of the path, or hidden if the hide flag is set to true.

->

<!ELEMENT animate-token EMPTY>
<IATTLIST animate-token
%Timestamp;

idtoken %Int; #REQUIRED
idpath %]Int; #REQUIRED
starttime %Long; #REQUIRED
endtime %Long; #REQUIRED
startpos %Float; "0"
endpos %Float; "1"
hide %Boolean; "true"
bbName %String; #IMPLIED
ichannel %String; #IMPLIED
ochannel %String; #IMPLIED

>

<l--

To remove a token from the visualisation.

-—->

<!ELEMENT remove-token EMPTY>
<IATTLIST remove-token
%Timestamp;
idtoken %]Int; #REQUIRED

bbName %String; #IMPLIED
ichannel %String; #IMPLIED
ochannel %String; #IMPLIED

>

<!--
Robots

-->

<!--

Removes a robot from the Visualisation

Anhang B - DTD zum Nachrichtenaustausch - 239 -

<!ELEMENT remove-robot EMPTY>
<!ATTLIST remove-robot
%Timestamp;
idrobot %Int; #REQUIRED
>

<I--
Used to order a movement of a Robot. See move-poolmember message.
-->

<!ELEMENT move-robot EMPTY>
<!ATTLIST move-robot
%Timestamp;

idrobot %]Int; #REQUIRED
iddestination %]Int; #REQUIRED
idorder %]Int; #IMPLIED

>

<!--

Used to order a movement of a Robot. Motion planning will choose the Robot which is nearest to the target
Buldingblock and member of the specified pool. If the given targetid identifies a building block, motion planning
will choose a dockingpoint. If the id identifies a docking point, that point will be the destination. Motion planning
needs some time to compute the path. To avoid blocking the simulation kernel for the whole time, motion
planning will send an still-computing-path immediately. After waiting for the specified period of time, simulation
kernel uses a check-arrival message. The answer will be a still-computing-path message (if motion planning is
still computing) or an expected-arrival-time message (if motion planning has finished the computation. The
expected-arrival-time message will contain the robot and dockingpoint chosen. Simulation will ask at the
expected time if the robot has reached its destination. If this is the case, motion planning will send an Arrival
message, else an ExpectedArrivalTime message containing the new expected arrival time. If the ordered Robot
movement is not possible, an error message will be sent.

-->

<!ELEMENT move-poolmember EMPTY >
<!ATTLIST move-poolmember
%Timestamp;

idpool %]Int; #REQUIRED
iddestination %Int; #REQUIRED
>
<!--
See move-poolmember message.
-->

<!ELEMENT still-computing-path EMPTY>
<IATTLIST still-computing-path
idorder %]Int; #REQUIRED
waitFor %]Int; #REQUIRED

<!--
Sent to check if the given Robot has reached its destination.
->

<!ELEMENT check-arrival EMPTY>
<IATTLIST check-arrival
%Timestamp;
idorder %]Int; #REQUIRED

- 240 -

<!--
Contains the expected arrival time of the order with the given id.
-->

<IELEMENT expected-arrival-time EMPTY>
<IATTLIST expected-arrival-time

idorder %Int; #IMPLIED
idrobot %]Int; #IMPLIED
arrivaltime %Long; #REQUIRED
>
<I--
Sent if the robot has reached its destination.
-—->

<!ELEMENT arrival EMPTY>

<I--

Sent if the robot isn't needed any more. Note that a robot is reserved by motion planning. Simulation must free
it if it's no longer needed. See move-poolmember message.

->

<!ELEMENT free-robot EMPTY>

<IATTLIST free-robot
%Timestamp;
idorder %]Int; #REQUIRED
idrobot %]Int; #REQUIRED

<!ELEMENT no-error (description?)>
<!ELEMENT error (description?)>
<l--

Multi resolution support
-->
<!ELEMENT buildingblocks-in-view (objectid+)>
<IELEMENT buildingblocks-out-of-view (objectid+)>
<I--

Some misc. stuff.
-—->
<IELEMENT description (#PCDATA)>
<!ELEMENT databaseid EMPTY>

<!ATTLIST databaseid
value %]Int; #REQUIRED

<!ELEMENT objectid EMPTY>
<!ATTLIST objectid

value %Int; #REQUIRED
>

<!ELEMENT position EMPTY>

Anhang B - DTD zum Nachrichtenaustausch - 241 -

<!ATTLIST position
Xpos %Float; #REQUIRED
ypos %Float; #REQUIRED
zZpos %Float; #REQUIRED

<l--
NOTE: x- and y-angle are not supported yet, they're just ignored.
-->
<!ELEMENT rotation EMPTY>
<!ATTLIST rotation
xangle %Float; "0"
yangle %Float; "0"
zangle %Float; "0"

<!ELEMENT mesh (databaseid)>
<IATTLIST mesh

scale %Float; "1"
<!ELEMENT significancepoint (position)>

<!ELEMENT location (position, rotation?)>

<Il--
EOF

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

