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1 Motivation 
„Wir müssen das Rad  

mit Mühe vorwärts drehen,  
zurück rollt es von selbst.“ 

 
(Walter Ludin) 

 
Globalisierung, Produktindividualisierung und Ausweitung der Produktpalette bis hin zu 
Nischenprodukten prägen die Entwicklung der Angebotsstruktur in vielen Bereichen der 
industriellen Fertigung. Verkürzte Produktlebenszyklen, kundenorientierte Produktion und 
eine erhöhte Variantenvielfalt sind kennzeichnend für die Erzeugnisse heutiger 
Industrieunternehmen. Um dennoch kosten- und zeiteffizient fertigen zu können, wird die 
Digitalisierung von Produkt- und Prozessplanung mit Nachdruck verfolgt und stetig 
vorangetrieben [Brac02]. Neue Produkte werden im Idealfall vollständig digital am 
Rechner konstruiert, modelliert und optimiert. Neben Zusammenbauuntersuchungen 
lassen sich mit den digitalen Modellen beispielsweise virtuelle Crashtests durchführen 
oder verschiedene Designvarianten gegeneinander abwägen [Brac02]. Die Vorteile dieser 
Methodik liegen unter anderem in reduzierten Entwicklungskosten und –zeiten und helfen 
dadurch dem jeweiligen Unternehmen, seine Wettbewerbsfähigkeit am Markt zu 
verbessern [VDI4499]. 
 
Die fortschreitende Digitalisierung beschränkt sich jedoch keineswegs auf Modelle der 
herzustellenden Produkte, sondern bezieht sich darüber hinaus auch auf die zur 
Herstellung benötigten Prozesse. Eine Studie von Roland Berger stellt beispielhaft heraus, 
dass seitens der Unternehmen hohe Erwartungen an die Digitalisierung der 
Prozessplanung gestellt werden: „Eine Zeitersparnis von bis zu 30% bei der 
Produktionsplanung und dem Produktionsanlauf erhoffen sich die Automobilbauer von der 
virtuellen Vorplanung bei 15% Kostenersparnis“ [Baum03]. 
 
Für die Planung, Absicherung und Verbesserung von Fertigungsprozessen ist die 
Ablaufsimulation ein etabliertes Werkzeug, welches es dem Anwender ermöglicht 
Struktur- bzw. Funktionsmodelle zu erzeugen und in einer Simulationsumgebung 
auszuführen [LaKe00]. Dadurch können während der Planung sowohl gegenwärtige, als 
auch zukünftige Situationen in ihren dynamischen Zusammenhängen berücksichtigt 
werden. Die Optimierung solch komplexer und dynamischer Szenarien kann nur noch 
durch ein experimentelles Betreiben verifizierter Modelle erfolgen, also durch den Einsatz 
der Ablaufsimulation (vgl. [DMD03]). 
 
Die Weiterentwicklung vorhandener Softwarelösungen hat in den vergangenen Jahren 
mit den steigenden Anforderungen nur schwer Schritt halten können. Für den 
Problembereich der Ablaufsimulation von Fertigungssystemen soll deshalb mit dieser 
Arbeit ein neues Werkzeug entwickelt werden. Um Materialflussmodelle auf Basis einer 
integrierten Datenhaltung effizienter, möglichst anwenderfreundlich und in einer 
kooperativen Umgebung erstellen und ausführen zu können, sollen insbesondere 
folgende Aufgaben und Arbeitsweisen unterstützt werden: 
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Synchronisierte, ortsunabhängige Mehrbenutzerunterstützung bei der 
Modellierung und Simulation von Materialflussmodellen in einer interaktiven, 
immersiven und virtuellen Umgebung 
Die Planung und Evaluierung eines Fertigungsprozesses kann heutzutage nicht mehr als 
ein Arbeitsschritt verstanden werden, bei dem der Prozess der Modellierung, Ausführung 
und Analyse der Simulationsmodelle am Computer einer einzelnen Person stattfindet. Die 
Komplexität der Planungsprojekte führt vielmehr dazu, dass sie zumeist von 
Simulationsteams bearbeitet werden. Neben Projektmitarbeitern aus verschiedenen 
Anwendungsbereichen arbeiten auch mehrere Simulationsexperten an einem einzigen 
Simulationsmodell. Sie werden durch die aktuell verfügbaren Software-Produkte nur 
unzureichend in ihrer Teamarbeit unterstützt. Darüber hinaus erfordert insbesondere die 
Kommunikation mit Nicht-Simulationsexperten innerhalb des Planungsteams eine 
möglichst immersive Darstellung, die das Verhalten des Simulationsmodells bestmöglich 
aufzeigt und erklärt. Zur Visualisierung der Modelle und deren dynamischen 
Verhaltensweisen soll eine virtuelle Umgebung dienen, in der das Simulationsmodell 
dreidimensional dargestellt wird. Der Anwender selbst soll hier nicht mehr länger 
ausschließlich passiver Betrachter sein, ohne interaktiv auf die aktuelle Simulation 
Einfluss zu nehmen, sondern vielmehr in der virtuellen Umgebung die Simulation 
beeinflussen und modifizieren können. Die Integration in das Simulationsmodell und 
damit auch in das abgebildete System, erhöht sein Prozessverständnis und schafft eine 
realistischere Planungsumgebung. Eine dreidimensionale Modellierung und Simulation als 
Kombination von Layout- und Prozessplanung kann den Anwender beim Aufbau des 
Fertigungsprozesses zusätzliche Planungsrestriktionen erkennen und von Beginn an 
berücksichtigen lassen. Die Qualität der Gesamtplanung kann verbessert und weitere 
Planungszeit innerhalb des Gesamtprojektes eingespart werden. 
 
Planung, Evaluierung und fortlaufende Verbesserung der Fertigungsprozesse 
über alle Planungs- und Ausführungsphasen bis zur Rückkopplung in die 
Fertigungslenkung 
Planung und Evaluierung der Fertigungsprozesse beschreibt den Einsatz der 
Ablaufsimulation über alle Planungs- und operativen Phasen eines Fertigungsprozesses 
hinweg. Neben dem Einsatz im Rahmen von Machbarkeitsstudien, Variantenplanungen 
oder quantitativen Fragestellungen, in denen ein System meist hinsichtlich seiner 
maximalen Leistungsfähigkeit oder eines optimalen Durchsatzes untersucht wird, soll die 
Simulation auch Fertigungsprogramme planen oder zumindest absichern können. Das 
Simulationsmodell eines Fertigungsprozesses kann somit über alle Phasen der Struktur-, 
Mengen-, Kapazitäts- und Programmplanung bis hin zur Prognose und der laufenden 
Verbesserung vorhandener Fertigungsprozesse eingesetzt werden. Daten- und 
Visualisierungsschnittstellen sollen über anpassbare Austauschformate konzipiert werden, 
um bewertete Simulationsergebnisse von Prognoseläufen zumindest als 
Entscheidungshilfe in den laufenden Fertigungsprozess zurückspielen zu können oder 
Planverbesserungen innerhalb der Fertigungslenkung direkt in den operativen Betrieb zu 
übernehmen. Um auch kundenorientierte Fertigungsprozesse möglichst homogen 
innerhalb eines Werkzeugs zur Ablaufsimulation abbilden zu können, soll neben einer 
Vorwärtssimulation auch eine Rückwärtssimulation (rückwärts berechnete Ausführung 
der Simulationsmodelle) sowie eine zeitorientierte Ausführung in Vor- oder 
Rückwärtsrichtung unterstützt werden. 
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Kooperative Planung innerhalb von Unternehmen, Unternehmensverbünden 
oder Supply-Chain-Netzwerken 
Großunternehmen, virtuelle Unternehmen oder Supply-Chain-Netzwerke fertigen bereits 
heute an unterschiedlichen Standorten mit aufeinander abgestimmten Prozessen. Um die 
Lieferfähigkeit innerhalb eines Supply-Chain-Netzwerks sowie die Stabilität aller 
einzelnen Fertigungsprogramme besser gewährleisten zu können, müssen die Planungen 
enger aufeinander abgestimmt und überwacht werden. Die Mehrbenutzerfähigkeit der 
angestrebten Ablaufsimulation ermöglicht eine kooperative Planung mehrerer 
Simulationsexperten an einem gemeinsamen, dynamisch detaillierenden Simulations-
modell des Fertigungsnetzwerks unabhängig vom Standort der jeweiligen Experten. 
Innerhalb einer Supply-Chain oder eines Unternehmensverbundes, aber auch standort-
übergreifend innerhalb einer Unternehmung, können so auf Basis eines 
Rechtemanagements und umfangreicher Kommunikationsmechanismen Simulations-
experten aller Standorte gemeinsam Simulationsmodelle erarbeiten, verifizieren und 
validieren, Simulationsexperimente kooperativ ausführen und in einer einzigen, 
gemeinsamen Umgebung auswerten. Da die verschiedenen Partner innerhalb solcher 
unternehmensinternen wie –externen Fertigungsnetzwerke nach unterschiedlichen 
Fertigungsablaufarten produzieren können, muss neben dem Werkzeug an sich auch die 
zugrunde liegende Modellbeschreibung Fertigungssysteme beherrschen, die sowohl ein 
besonders hohes Maß an Komplexität bieten, als auch über rein objektorientiert 
gegliederte Fertigungssysteme hinausgehen und damit die Modellierung und Simulation 
von funktional gegliederten Fertigungssystemen bzw. deren Mischformen erlauben. Auch 
in diesem Themenbereich bietet sich der Einsatz des Werkzeugs über die reinen 
Planungsphasen hinaus bis hin zur Umplanung und Einsteuerung in der Fertigungs-
lenkung an. 
 
Aus obigen Themenbereichen ergeben sich Fokus und Motivation der Arbeit. ihre Struktur 
orientiert sich an folgender Vorgehensweise: 
Kapitel 2 grenzt den Anwendungsbereich „Fertigung“ und den Problembereich 
„Ablaufsimulation“ so ein, wie er in der Arbeit betrachtet werden soll. Es beschreibt die 
hier aufgezeigten Lösungsideen präziser und erläutert alle zur Lösung erforderlichen 
Grundlagen. Abschließend werden die Anforderungen an den zugrunde liegenden 
Arbeitsprozess, die verwendete Modellbeschreibung sowie das Werkzeug selbst anhand 
der eingeführten Definitionen herausgearbeitet und als Anforderungsbeschreibung 
zusammengefasst. Die Analyse bestehender Konzepte zur Simulationsmethodik, deren 
Einzelprozesse „Modellierung“, „Simulation“ und „Visualisierung“ und zu Verfahren des 
Software-Designs und -Entwicklung findet sich in Kapitel 3. Die identifizierten Ansätze 
werden jeweils in Bezug auf die gestellten Anforderungen bewertet. Die erkannten 
Defizite hinsichtlich der Anforderungen werden in Kapitel 4 zusammengefasst und als 
eigentliche Zielsetzung der Konzeption und Realisierung abgeleitet. Die Festlegung des 
Arbeitsprozesses, die Konzeption von Modellbeschreibung und Werkzeug erfolgt in Kapitel 
5. Kapitel 6 beschreibt die Phase der Realisierung des Werkzeugs. Neben der eigentlichen 
Implementierung widmet es sich auch einer Beispielanwendung, die als typisch für den 
Problembereich angesehen werden kann. Die Ergebnisse zeigen, dass die entwickelte 
Modellbeschreibung mit dem Werkzeug angewandt werden kann und das Erreichen der 
Anforderungen ermöglicht. Die Zusammenfassung bietet in Kapitel 7 einen Ausblick auf 
weiterführende Folgearbeiten, die sich in dem gewählten Themenbereich anbieten. 
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2 Ablaufsimulation von Fertigungssystemen 
„In allen Grenzen ist auch 

etwas Positives“ 
 

(Immanuel Kant) 
 
Ziel dieses Kapitels ist das Erstellen einer vollständigen Anforderungsbeschreibung, 
anhand derer der zur Verfügung stehende Stand der Technik erarbeitet werden kann. Die 
in Kapitel 1 aufgezeigten Probleme müssen dazu präzisiert und erläutert werden. Dazu 
wird die Aufgliederung in drei Teilprobleme auch in Abschnitt 2.3 übernommen und 
fortgesetzt. Zu Beginn muss dazu in Abschnitt 2.1 zunächst der Anwendungsbereich 
„Fertigungssysteme“ sowie unter Abschnitt 2.2 das Problemfeld der Modellierung, 
Simulation und Analyse mittels der Ablaufsimulation genauer eingegrenzt werden. 

2.1 Fertigungssysteme 

Die bereits in Kapitel 1 angerissenen Probleme stellen sich in einem globalisierten 
Wettbewerb insbesondere für solche Unternehmen, die Güter produzieren und diese an 
einem oder verschiedenen Märkten platzieren wollen. Den technisch zugrunde liegenden 
Prozess der Erstellung solcher Güter bezeichnet man als Fertigung. 
 

Definition 1: Fertigung 

„Die Fertigung umfasst alle technischen Maßnahmen zur Herstellung von Material 
oder Erzeugnissen. Sie ist grundsätzlich ein diskontinuierlicher Prozess“ [Dang99] 

 
In Abgrenzung zum Begriff der Produktion beschränkt sich die Fertigung auf das 
Herstellen physischer Erzeugnisse mittels fortschreitender, diskontinuierlicher und 
zielgerichteter Transformationen in einem abgegrenzten System. Ein Fertigungssystem 
kann als solch ein operatives System zur Fertigung und damit als Objekt der jeweiligen 
Planungsaufgaben verstanden werden. 

Definition 2: Fertigungssystem 

„Ein Fertigungssystem ist eine technisch, organisatorisch (und kostenrechnerisch) 
selbstständige Allokation von Potentialfaktoren zu Fertigungszwecken (vgl. 
[Kern79]). Es besteht aus elementaren Arbeitssystemen, die die kleinste Einheit 
einer Kombination der Potentialfaktoren Betriebsmittel und Arbeitskräfte 
darstellen und eine oder mehrere Klassen von Transformationen durchführen 
können“ (in Anlehnung an [Rose92] 

 
Als Fertigungsprozess soll ein Fortschreiten der Fertigung oder eines Elementes des 
Fertigungssystems verstanden werden. 

Definition 3: Fertigungsprozess 

„Ein Fertigungsprozess kennzeichnet das Fortschreiten im Durchführen eines 
Vorgangs der Fertigung“ [in Anlehnung an Dang99] 
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Ein Vorgang soll in dieser Arbeit als 

Definition 4: Vorgang 

„Ein Vorgang ist die zielgerichtete Transformation von Elementen in einem 
Einganszustand in Elemente in einem Austrittszustand mittels eines Verfahrens“ 
[DaWa97] 

 
verstanden werden. 
 
Die Fertigungsprozesse besser aufeinander abzustimmen und über die verschiedenen 
Planungsphasen einer Neu- oder Umplanung zu verbessern ist eine der Hauptaufgaben 
für den Einsatz der Ablaufsimulation. Oftmals sind die dynamischen Zusammenhänge 
zwischen den Einzelprozessen innerhalb einer Fertigung so komplex, dass sich die 
Auswirkungen von Änderungen den Planern nicht sofort und in Gänze erschließen. 
Haupteinsatzgebiet der Simulation ist deshalb heute oftmals die Absicherung von 
Fertigungsprozessen und damit auch der Anordnung von Fertigungssystemen innerhalb 
einer Fertigung vor deren physischer Umsetzung: die Fertigungsplanung. 
 

Definition 5: Fertigungsplanung 

„Die Planung der Fertigung umfasst alle einmalig zu treffenden Maßnahmen 
bezüglich der Gestaltung eines Fertigungssystems und der darin stattfindenden 
Fertigungsprozesse“[Dang99] 

 
Innerhalb der Fertigungsplanung kann weiter zwischen der eigentlichen Entwicklung 
neuer Prozesse und Verfahren und der Gestaltung der Fertigungsprozesse und ihrer 
Verbindungen in einer Fertigungsprozessplanung unterschieden werden (vgl. Abbildung 
1). Um bestehende oder geplante Fertigungssysteme in ihrer realen oder geplanten 
Anordnung nachzubilden und die Fertigungsplanung somit zu verfeinern, wird in einem 
begleitenden Planungsschritt die Layoutplanung eines Fertigungssystems durchgeführt. 

Definition 6: Layoutplanung 

„Aufgabe der Layoutplanung ist, für eine vorgegebene Menge von 
Organisationseinheiten, deren wechselseitige Fördervorgänge bekannt sind, in 
einer gegebenen Planungsfläche einen Anordnungsplan mit minimalen 
Förderkosten zu suchen“ [Dang99, in Anlehnung an Anordnungsplanung] 

 
Um die entstandenen Simulationsmodelle auch in späteren Planungsphasen und dem 
laufenden Betrieb nutzbar zu halten, müssen sie permanent gepflegt und gewartet 
werden. Wie in der Motivation angerissen, kann die Ablaufsimulation zukünftig auch neue 
Anwendungsgebiete im operativen Betrieb der Fertigungssysteme erschließen, 
beispielsweise zur Absicherung von Planzahlen oder als Prognoseinstrument in einem 
Leitstand. Ihre Anwendung weitet sich in den Bereich der Fertigungslenkung aus. 

Definition 7: Fertigungslenkung 

„Fertigungslenkung ist die Aufgabe, für ein gegebenes Fertigungssystem – 
ausgehend von gegebenen Daten – Solldaten, die in sich und mit den 
Ausgangsdaten konsistent sind, für einen definierten, zielgerichteten Ablauf eines 
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Fertigungsprozesses festzulegen, dem Fertigungsprozess vorzugeben und diesen 
auf Inkonsistenzen abzuprüfen“ [DaWa97] 

 
In Anlehnung an die Darstellung von Hackstein [Hack89] können innerhalb der 
Fertigungslenkung (bei Hackstein: Produktionssteuerung) folgende Unterfunktionen 
unterschieden werden: 

 

 

Abbildung 1: Funktionen der Fertigungslenkung 

Die Unterfunktionen der Fertigungslenkung sollen im Folgenden kurz beschrieben 
werden, um Einsatzgebiete der Ablaufsimulation in der Anforderungsbeschreibung (vgl. 
Abschnitt 2.4) präzise formulieren zu können. 

Definition 8: Fertigungsprogrammplanung 

„Die Planung des Fertigungsprogramms (Produktionsprogrammplanung) besteht 
darin festzulegen, welche Erzeugnisse in welchen Mengen in einem bestimmten 
Zeitabschnitt hergestellt und verkauft werden sollen.“ [Dang99] 

 
Die Fertigungsprogrammplanung wird üblicherweise in die Schritte strategische, taktische 
und operative Planung unterteilt. Die strategische Planungsphase legt die wesentlichen 
Geschäftsfelder des Unternehmens fest, wohingegen die taktische Planung den Fokus auf 
die Entwicklung und Auswahl neuer Erzeugnisse legt. Die Ablaufsimulation zur 
Absicherung von Fertigungsprogrammen kommt vermehrt in der dritten Phase, der 
operativen Planung zum Einsatz, in der auf Basis vorheriger Planungsphasen die 
Stückzahlen der zu fertigenden Erzeugnisse für einen festgelegten Zeitraum festgelegt 
und beplant werden (vgl. [Dang99]). Heutzutage ist die Ablaufsimulation auf den Einsatz 
als „Frühwarnsystem“ beschränkt, liefert also nur Prognosen über zukünftige 
Systemzustände, um den Fertigungslenker größere Handlungszeiträume zu ermöglichen 
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[Klos06]. Mit dem hier zu konzipierenden Werkzeug soll die Ablaufsimulation auch die 
eigentliche Planung von Fertigungsprogrammen unterstützen. 

 

 

Definition 9: Mengenplanung 

„Die Mengenplanung hat die Aufgabe, Aufträge über Erzeugnisse und davon 
abgeleitete Materialien an die Fertigung und den Einkauf mit den erforderlichen 
Zeitpunkten und über die erforderliche Menge zu übermitteln, so dass das 
Fertigungsprogramm erfüllt werden kann“ [DaWa97] 

 
Eine Reihenfolge der herzustellenden Erzeugnisse wird erst in den nachfolgenden Stufen 
ermittelt. Teilaufgaben der Mengenplanung sind die Bestands- und Bestellrechnung, die 
Bedarfsrechnung sowie die Stücklistenorganisation. Die Mengenplanung kann 
verbrauchsorientiert, wie auch bedarfsorientiert erfolgen1. 

Definition 10: Terminplanung 

„Die Terminplanung dient dazu, Aussagen über Termingerüste für die Bewältigung 
einer Gesamtaufgabe zu machen. Die Terminplanung betrachtet Ablaufstrukturen, 
die nur einmal instanziiert werden.“ [DaWa97] 

 
Die Terminplanungsverfahren berücksichtigen nicht die Kapazitätsrestriktionen der 
Fertigungselemente, sondern beachten nur Zeitabläufe innerhalb der vorgegebenen 
Ablaufstrukturen. Für jeden einzelnen Fertigungsprozess werden nur Start- und 
Endtermine berücksichtigt. 

Definition 11: Kapazitätsplanung 

„Bei der Kapazitätsplanung sind Beginn-Termin und Fertigstellungs-Termin eines 
in der Mengenplanung festgelegten Fertigungsauftrags sowie die Zwischentermine 
der einzelnen Fertigungsprozesse unter Berücksichtigung eines begrenzten 
Kapazitätsangebots festzulegen.“ [in Anlehnung an DaWa97] 

 
In der Kapazitätsterminierung wird grob geplant, ob die erforderlichen Kapazitäten für 
das Fertigungsprogramm vorhanden sind. Bei Kapazitätsengpässen müssen einzelne 
Arbeitsschritte in andere Zeiträume verschoben werden. Sobald dies geschehen ist, 
können grob terminierte Aufträge an die folgenden Schritte der Fertigungslenkung 
(Auftragsveranlassung und –überwachung) übergeben werden. Innerhalb der operativen 
Planungsaufgaben kommen vermehrt Methoden der Rückwärtsterminierung zum Einsatz 
(vgl. Abschnitt 2.3). Die Ergebnisse der Feinplanungsphasen dienen als Ausgangsbasis 
für die nachfolgenden Stufen der Auftragsveranlassung und –überwachung. 
 
Fertigungssysteme können nach unterschiedlichen Merkmalen klassifiziert werden. Neben 
Merkmalen, die sich auf das resultierende Erzeugnis beziehen, können Merkmale 
gefunden werden, die sich auf den organisatorischen und logischen Aufbau der 

                                          
1  Eine genaue Beschreibung der verbrauchs-, bzw. bedarfsorientierten Mengenplanung findet sich bei 

[DaWa97] 
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Fertigungsprozesse beziehen. Neben Fertigungsart und –Struktur ist insbesondere die 
Organisationsform kennzeichnend für den Materialfluss. 

Definition 12: Organisationsform 

„Die Organisationsform kennzeichnet die am Fertigungsprozess orientierte Art der 
Zusammenführung von Betriebsmitteln zu organisatorischen Einheiten. Sie 
bestimmt ganz wesentlich die Qualität der inter-OE-Beziehungen und die 
räumliche Anordnung der Organisationseinheiten“ [Dang99] 

 
Neben der räumlichen Anordnung wirkt sich die gewählte Organisationsform 
entscheidend auf Beziehungen der Organisationseinheiten untereinander und damit auf 
den Materialfluss der Fertigung aus. Unter einem Materialfluss in der Fertigung wird 
gemäß VDI 3300 verstanden [VDI3300]: 

Definition 13: Materialfluss 

„Materialfluss ist die Verkettung aller Vorgänge beim Gewinnen, Be- und 
Verarbeiten, sowie bei der Verteilung von stofflichen Gütern innerhalb festgelegter 
Bereiche. Zum Materialfluss gehören alle Vorgänge während des Durchlaufes von 
Gütern (z.B. Material, Stoffmengen, Abfall, Datenträger usw.) durch ein System, 
wie Bearbeiten, Handhaben, Transportieren, Prüfen, Aufenthalte und Lagerungen. 
...“ [VDI3300] 

 
Die Organisationsform eines Materialfluss einer Fertigung kann gemäß [DaWa97] nach 
zwei grundlegenden Prinzipien unterschieden werden: funktionsorientiert gegliederte 
Fertigungssysteme und objektorientiert gegliederte Fertigungssysteme2. Sie sollen im 
Folgenden kurz charakterisiert werden. 
 
Ein funktionsorientiert gegliedertes Fertigungssystem liegt vor, wenn sich die räumliche 
Anordnung der Betriebmittel (Maschinen, etc.) an deren Fertigungsaufgabe orientiert. Ein 
typisches Prinzip für eine funktionsorientiert gegliederte Fertigung ist die 
Werkstattfertigung, für die die Zusammenfassung von Fertigungsmitteln mit gleichartigen 
Fertigungsvorgängen zu Abteilungen und das Fehlen fester Transportbeziehungen 
zwischen den Fertigungsmitteln typisch ist. Neben einer hohen Elastizität kann eine 
verbesserte Flexibilität gegenüber wechselnden Anforderungen innerhalb der Fertigung 
garantiert werden. Diesen Vorteilen stehen eine verringerte Übersichtlichkeit des 
Gesamtprozesses und ein erhöhtes Transportaufkommen gegenüber. 
 
Unter den objektorientiert gegliederten Fertigungssystemen werden diejenigen 
Organisationsformen summiert, deren Anordnung sich an dem herzustellenden Erzeugnis 
orientiert. Häufige Organisationsformen sind Gruppen-, Linien und Fließfertigung. Bei der 
Gruppenfertigung werden die zur Bearbeitung ähnlicher Fertigungselemente benötigten 
Fertigungsmittel räumlich zusammengestellt. Bei einer Linienfertigung sind die 
Fertigungsmittel nach der Ablauffolge angeordnet und durch einfache 
Transporteinrichtungen verknüpft. Sowohl Gruppen-, als auch Linienfertigung sind 

                                          
2  [Dang99] unterscheidet zwischen ortsgebundener und ortsveränderlicher Fertigung. Die wesentliche 

Unterscheidung basiert aber auch hier auf der Frage, „wer sich bei der Zuordnung von Fertigungsobjekt und 
Betriebsmittel zur Durchführung einer Aufgabe bewegt: Fertigungsobjekt oder Betriebsmittel“ 
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gegenüber Änderungen der Fertigungsablauffolge flexibel. Gegenüber der Linienfertigung 
zeichnet sich die Fließfertigung durch eine feste Verkettung der einzelnen 
Arbeitsstationen aus. Dadurch werden eine besonders niedrige Durchlaufzeit und eine 
hohe Transparenz bezüglich des Fertigungsprozesses erreicht. Eine Fließfertigung ist 
dadurch allerdings auch weniger flexibel und reagiert empfindlicher auf Störungen. Je 
nach Ausprägung des Merkmals Fertigungsart (Losgröße, Wiederholhäufigkeit) kann die 
Fließfertigung in Serien- oder Massenfertigung differenziert werden, wobei die 
Massenfertigung als Extremfall einer Serienfertigung angesehen werden kann. 
 
Der Anwendungsbereich dieser Arbeit soll damit hinreichend genug klassifiziert sein, um 
die Anforderungen an den zu entwickelnden Prozess, die Modellbeschreibung und das 
eigentliche Werkzeug formulieren zu können. Nachfolgend muss als nächster Schritt auch 
das bisher eher vage dargestellte Problemfeld der Ablaufsimulation entsprechend 
präzisiert werden. 

2.2 Ablaufsimulation: Modellierung, Simulation & Analyse 

Die Ablaufsimulation von Fertigungsabläufen ist ein Instrument mit dem strategische, 
taktische und operative Entscheidungen abgesichert werden können. Ein einmal erstelltes 
Prozessmodell erlaubt eine schnelle Analyse verschiedener Varianten eines Prozesses. 
Fragen wie: „Wie viel mehr kann ich durch den Einsatz eines weiteren Flurfördergerätes 
produzieren?“ lassen sich so schnell beantworten. Die Robustheit von 
Fertigungsprozessen auf exogene und endogene Einflüsse lässt sich durch 
Sensitivitätsanalysen mittels der Ablaufsimulation untersuchen. 
 
Das zu entwickelnde Werkzeug arbeitet im Problemfeld der diskreten, 
ereignisgesteuerten Ablaufsimulation, in der Fertigungssysteme hinsichtlich ihres 
Materialflusses inklusive aller Einflussfaktoren abgebildet werden. Um insbesondere 
diesen Typus der Simulation im Folgenden abzugrenzen, müssen einige grundlegende 
Begriffsdefinitionen eingeführt werden. 

Definition 14: Simulation 

„Simulation ist das Nachbilden eines Systems mit seinen dynamischen Prozessen 
in einem experimentierfähigen Modell, um zu Erkenntnissen zu gelangen, die auf 
die Wirklichkeit übertragbar sind. Im weiteren Sinne wird unter Simulation das 
Vorbereiten, Durchführen und Auswerten gezielter Experimente mit einem 
Simulationsmodell verstanden“ [VDI3633] 

 
Bezieht sich die Aufgabenstellung der Simulation insbesondere auf die dynamischen 
Prozesse eines Modells, wird von der Ablaufsimulation gesprochen. Sie betrachtet 
zeitliche und kapazitative Auslastungen. Simulationen stützen sich stets auf vom 
Anwender erzeugte Modelle. Ein Modell kann nach [KlBu71] wie folgt aufgefasst werden: 

Definition 15: Modell 

„Ein Objekt, das auf der Grundlage eine Struktur-, Funktions- oder Verhaltens-
analogie zu einem entsprechenden Original von einem Subjekt eingesetzt und 
genutzt wird, um eine bestimmte Aufgabe lösen zu können, deren Durchführung 
mittels direkter Operation zunächst oder überhaupt nicht möglich bzw. unter 
gegebenen Bedingungen zu aufwendig ist. …“ [KlBu71] 
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Modelle als Abbildung von Fertigungssystemen werden in der Praxis häufig so komplex, 
dass eine Abbildung durch dreidimensionale Modelle oder realitätsnahe Funktionsmodelle 
heute schnell an zeitliche und wirtschaftliche Grenzen stößt. Im Kontext der 
Fertigungsplanung und –lenkung werden deshalb zumeist Modelle verwendet, die mittels 
einer Simulation auf einem Computer berechnet und ausgeführt werden können. 

Definition 16: Rechnerunterstützte Simulation 

„Rechnerunterstützte Simulation ist das experimentelle Betreiben eines Modells 
auf einer Rechneranlage“[Dang99] 

 
Unter Einsatz der Ablaufsimulation und mit Hilfe eines Simulators kann der Anwender im 
Rechner als Modell vorliegende Systemalternativen analysieren und hinsichtlich der 
Zielerfüllung überprüfen. 

Definition 17: Simulator 

„Softwareprogramm, mit dem ein Modell zur Nachbildung des dynamischen 
Verhaltens eines Systems und seiner Prozesse erstellt und ausführbar gemacht 
werden kann. Ein Simulator beinhaltet einen Simulatorkern, eine 
Datenverwaltung, eine Bedienoberfläche und gegebenenfalls weitere 
Schnittstellen“ [VDI3633] 

 
Die Ablaufsimulation ist also eine Methode zur Analyse von dynamischen 
Zustandsänderungen in einem System, im vorliegenden Fall von Fertigungssystemen. Sie 
wird in vielen Bereichen in verschiedenen Ausprägungen eingesetzt. Um das Problemfeld 
weiter einzugrenzen, müssen weitere Klassifikationen herangezogen werden. Als ein 
wesentliches Klassifikationsmerkmal dient die Differenzierung zwischen „diskreter“ und 
„kontinuierlicher“ Simulation. 

Definition 18: diskret 

„Diskret – eigtl.: geschieden, unstetig, diskontinuierlich, auch: abgesondert, 
getrennt. …“ [KlBu71] 

 

Definition 19: Kontinuierlich 

„Kontinuierlich, zusammenhängend, lückenlos. …“[KlBu71] 
 
Der Zustand zu einem Simulationszeitpunkt wird durch Zustandsvariablen (z.B. der 
Belegungszustand einer Maschine) beschrieben. In kontinuierlichen Simulationen können 
diese Zustandsvariablen kontinuierlich über die Simulationszeit ihren Wert ändern. So 
kann z.B. die Geschwindigkeit eines beschleunigenden Fahrzeuges über die 
Beschleunigung und die Zeit beschrieben werden. In diskreten Simulationen verändern 
Zustandsvariablen ihren Wert nur an endlich vielen Zeitpunkten. So kann zum Beispiel 
der Füllstand eines Lagers über die Anzahl der eingelagerten Elemente beschrieben 
werden. Die Zeitpunke der Zustandsübergänge werden als Ereignis bezeichnet.  

Definition 20: Ereignis 
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„Atomare Begebenheit, die eine Zustandsänderung bewirkt und keine Zeit 
verbraucht“ [VDI3633] 

 

 

Abbildung 2: diskrete und kontinuierliche Simulation 

In dieser Arbeit sollen nur diskrete Simulationen betrachtet werden. Hier kann weiter 
unterschieden werden, wie die einzelnen Zustandsübergänge zeitlich voneinander 
abhängen. Man unterscheidet zwischen fixen und variablen Zeitinkrementen. In diesem 
Werkzeug sollen durch eine sinnvolle Konstruktion des Simulatorkerns und der 
Modellbeschreibung grundsätzlich beide Möglichkeiten der Zeitfortscheitung unterstützt 
werden. In Abschnitt 3.3 werden deshalb beide Methoden der Zeitfortschreitung bei der 
Ausführung von Simulationsmodellen näher betrachtet. Insbesondere wird untersucht, 
wie ein Simulator strukturiert werden muss, um beide Ausführungsformen zu 
unterstützen. 
 
Typischerweise wird die Methode Ablaufsimulation in jeglicher Ausführung in Form einer 
Simulationsstudie angewandt, um Fertigungssysteme hinsichtlich eines bestimmten 
Untersuchungszwecks zu analysieren. 

Definition 21: Simulationsstudie 

„Projekt zur simulationsgestützten Untersuchung eines Systems. (...) Eine 
Simulationsstudie kann mehrere Simulationsexperimente umfassen, die ihrerseits 
aus mehreren Simulationsläufen bestehen können“ [VDI3633] 

 
Neben typischen Projektaufgaben kann eine Simulationsstudie in drei Hauptaufgaben 
untergliedert werden. Zunächst den Prozess der Modellerstellung: die Modellierung. 

Definition 22: Modellierung 

„Modellierung ist der Prozess der Überführung eines Realitätsausschnittes in ein 
Modell.“[ FiHe00] 

 
Die zweite Hauptaufgabe beschreibt das Ausführen des dynamischen Modells in einem 
Simulator, der eigentliche Simulationslauf bzw. das Simulationsexperiment. 

Definition 23: Simulationslauf 

„Nachbildung des Verhaltens eines Systems mit einem spezifizierten, 
ablauffähigen Modell über einen bestimmten (Modell-)Zeitraum…“[VDI3633] 
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Definition 24: Simulationsexperiment 

„Systematischer Plan zur Ausführung einer Menge von Simulationsläufen mit 
unterschiedlichen Anfangszuständen und Parametereinstellungen zur effizienten 
Untersuchung des Modellverhaltens“ [VDI3633] 

 
Innerhalb eines Simulationsexperimentes müssen die in den Simulationsläufen 
gesammelten Daten ausgewertet werden. Diese Kombination von Simulations-
experimenten und Auswertung hinsichtlich bestimmter Untersuchungskriterien wird als 
Analyse bezeichnet und beschreibt die dritte Hauptaufgabe innerhalb einer 
Simulationsstudie. 

Definition 25: Analyse 

„Verfahren zur Untersuchung und Erkenntnis materieller oder ideeller 
Gegebenheiten, dessen Wesen in der praktischen oder gedanklichen Zerlegung 
eines Ganzen in seine Teile, eines Zusammengesetzten in seine Elemente besteht. 
Das Ziel der Analyse besteht darin, wesentliche Eigenschaften und Relationen von 
unwesentlichen, notwendige von zufälligen, allgemeine von individuellen zu 
unterscheiden und auf diesem Wege von der undifferenzierten Betrachtung der 
Gesamterscheinung zur Erkenntnis ihres Wesens und der sie bestimmenden 
Gesetzmäßigkeiten vorzudringen.“[KlBu71] 

 
Eine genaue Simulationsmethodik, wie sie in der Praxis ihre Anwendung findet, wird in 
Abschnitt 3.1 beschrieben. Mittels der Ablaufsimulation werden bereits heute zahlreiche 
Fragestellungen bezüglich der Abstimmung von Fertigungsprozessen erarbeitet. Dennoch 
lassen sich nachfolgend einige Teilprobleme identifizieren, deren Lösung die Verbreitung 
und Akzeptanz der Methode Ablaufsimulation weiter fördern sollen. Sie wurden in der 
Motivation aufgezeigt und sollen nun entsprechend präzisiert werden. 

2.3  Erweiterungen aus der Motivation 

Bereits Kapitel 1 hat verschiedene Szenarien motiviert, in denen die Ablaufsimulation 
zukünftig angewendet werden kann. Nachfolgend sollen diese Szenarien näher erläutert 
werden und, soweit nötig, die dafür benötigten Begriffe und Definitionen eingeführt 
werden. 
 
Synchronisierte, ortsunabhängige Mehrbenutzerunterstützung bei der 
Modellierung und Simulation von Materialflussmodellen in einer interaktiven, 
immersiven und virtuellen Umgebung 
 
Durch die steigende Bedeutung der Ablaufsimulation werden auch die betrachteten 
Projektszenarien für Simulationsstudien immer komplexer. Infolgedessen werden die 
Projekte auch nicht mehr von einzelnen Simulationsexperten bearbeitet, sondern 
mehrere Anwender, typischerweise mit verschiedenen Aufgaben, Interessen und 
Erfahrungen mit der Ablaufsimulation, arbeiten innerhalb eines gemeinsamen Projektes 
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an der Lösung des Untersuchungszieles. Die Planung und Evaluierung eines 
Fertigungsprozesses kann also nicht als ein Arbeitsschritt verstanden werden, bei dem 
der Prozess der Modellierung, Ausführung und Analyse der Simulationsmodelle am 
Computer einer einzelnen Person stattfindet. Verschiedene Projektmitarbeiter erarbeiten 
ein gemeinsames Simulationsmodell. Dieser Vorgang erfordert eine umfangreiche 
Interaktion zwischen den Modellierern und die gemeinsame Nutzung von Daten und 
Informationen über das Simulationsmodell oder dessen Bausteine. Der 
Modellierungsprozess erstreckt sich typischerweise über einen längeren Zeitraum und 
erfordert den Zugriff auf komplexe Informationsbestände. Das Modelliererteam kann 
ebenso wie das erstellte Simulationsmodell Substrukturen beinhalten, wie z. B. 
Teilprojekte und Arbeitsgruppen. 
 
Während der Durchführung einer Simulationsstudie sollen deshalb im angestrebten 
Werkzeug mehrere Anwender sowohl gleichzeitig, als auch zeit- und ortunabhängig 
gemeinsam an einem Simulationsmodell arbeiten können. Die einzelnen Phasen der 
Modellierung und Simulation sind dazu in einem System zu handhaben, dass für einen 
solchen Betrieb ausgelegt ist. Ein Modellierungswerkzeug, das den skizzierten Prozess der 
gemeinschaftlichen Modellierung unterstützt, kann als kooperatives Modellierungs-
werkzeug bezeichnet werden. 
 

Definition 26: Mehrbenutzersystem 

„Ein Mehrbenutzersystem oder Multiuser-System ist eine Software, die die 
Fähigkeit hat, Arbeitsumgebungen für verschiedene Benutzer bereitstellen und 
voneinander abgrenzen zu können.“[TaSt03] 

 

Definition 27: Multitasking 

„Multitasking bezeichnet die Fähigkeit einer Software, mehrere Aufgaben (tasks) 
scheinbar gleichzeitig auszuführen. Dabei werden die verschiedenen Prozesse in 
so kurzen Abständen immer abwechselnd aktiviert, dass der Eindruck der 
Gleichzeitigkeit entsteht.“ [TaSt03] 

 
Zur Modellierung werden verschiedene Interaktionstechniken benötigt. Dazu werden den 
benutzten Objekten Verhaltensweisen zugewiesen. Diese Parametrisierung definiert, in 
welcher Weise Objekte gesetzt bzw. in die Modellierungsumgebung integriert werden 
können. Elementare Verhaltensweisen stellen das Erzeugen, Selektieren, Erweitern, 
Parametrieren, Löschen, Bewegen und Verbinden von Objekten dar. Gemäß dem 
Anspruch des Werkzeugs müssen diese Interaktionsmetaphern kooperativ ausgeführt 
werden können. Unter Multitasking-Modellierung soll also der synchronisierte Prozess der 
Modellierung verstanden werden, der von mehreren Anwendern gleichzeitig an 
demselben Modell durchgeführt werden kann. 
 
Der Modellierungsphase schließt sich die Durchführung von Simulationsexperimenten an. 
Sie beinhaltet die Ausführung selbst sowie die Analyse der Ergebnisse. Initialwerte als 
Eingabeparameter eines Simulationslaufes bestimmen den mengenmäßigen und 
zeitlichen Fluss der Marken im Simulationsmodell. Analyseeinstellungen bestimmen für 
jeden Simulationslauf, wo und in welcher Komplexität die Informationen über die 



Ablaufsimulation von Fertigungssystemen  - 15 - 
 

 

Simulation gesammelt werden. Während der Durchführung steht die 
Benutzerfreundlichkeit für den Anwender im Mittelpunkt. Idealerweise kann er Parameter 
während der Durchführung ändern und die Auswirkung seiner Änderung sofort in einer 
entsprechenden Visualisierung beobachten: Er interagiert mit dem Simulationsmodell. 
 
 

Definition 28: Interaktion 

„Interaktion bezeichnet das wechselseitige aufeinander Einwirken von Akteuren 
oder Systemen…In Bezug auf die Mensch-Maschine-Interaktion meint der Begriff 
die Gestaltung einer Benutzerschnittstelle zu Programmen…“ (nach [Buur05]) 

 
Genau wie bei der Modellierungsphase haben diese Interaktionen mehrerer Anwender 
Einfluss auf die berechneten Ergebnisse eines Simulationslaufs. Analog zur Multitasking-
Modellierung kann unter Multitasking-Simulation also der synchronisierte Prozess der 
Ausführung und Berechnung eines Simulationsmodells verstanden werden, der von 
mehreren Anwendern gleichzeitig an demselben Modell durchgeführt werden kann. 
Zusätzlich muss hierbei unterschieden werden, ob die Anwender an einer Instanz eines 
Simulationsmodells arbeiten, oder dasselbe Basismodell mehrfach instanziieren. 
 
Darüber hinaus erfordert insbesondere die Kommunikation mit Nicht-Simulationsexperten 
innerhalb des Planungsteams eine möglichst realistische Darstellung, die das Verhalten 
des Simulationsmodells bestmöglich darstellt und erklärt. Der Anwender soll sich 
möglichst immersiv in das Simulationsmodell hineinversetzen. 
 

Definition 29: Immersion 

„Immersion meint das Eintauchen in eine künstliche Welt... Durch die Immersion 
erlebt der Anwender direkt die Dynamik der physikalischen Vorgänge“ [Borm94] 

 
Zur Visualisierung der Modelle und deren dynamischen Verhaltensweisen soll eine 
virtuelle Umgebung dienen, in der das Simulationsmodell dreidimensional dargestellt 
wird. 
 

Definition 30: Virtuelle Realität 

„Als Virtuelle Realität (VR) wird die Darstellung und gleichzeitige Wahrnehmung 
der Wirklichkeit und ihrer physikalischen Eigenschaften in einer in Echtzeit 
computergenerierten virtuellen Umgebung bezeichnet.“ (nach [FaHa94]) 

 
Die Vorteile einer möglichst hohen Immersion in die virtuelle Umgebung werden in 
Abschnitt 3.4.3 allgemein und in Abschnitt 3.4.4 speziell für die Anwendung im Bereich 
der Ablaufsimulation näher untersucht. Insgesamt ergibt sich daraus die Anforderung, 
dem Anwender eine möglichst gute Form der Darstellung zu realisieren. Der Anwender 
selbst wird nicht mehr länger ausschließlich passiver Betrachter, sondern kann vielmehr 
in der virtuellen Umgebung die Simulation beeinflussen und modifizieren. Die Integration 
in das Simulationsmodell und damit auch in das abgebildete System erhöht sein 
Prozessverständnis und schafft eine realistischere Planungsumgebung.  
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Planung, Evaluierung und fortwährende Verbesserung aller Fertigungsprozesse 
über alle Planungs- und Ausführungsphasen bis zur Rückkopplung in die 
Fertigungslenkung 
 
Die Planung und Evaluierung der Fertigungsprozesse unter Einsatz der Ablaufsimulation 
soll vermehrt ganzheitlich über alle Planungs- und operativen Phasen eines 
Fertigungsprozesses hinweg erfolgen, weil nur so eine durchgängige Analyse und 
Verbesserung des Prozesses erreicht werden kann. Eine dreidimensionale Modellierung 
und Simulation als Kombination von Layout- und Prozessplanung kann den Anwender 
beim Aufbau des Fertigungsprozesses zusätzliche Planungsrestriktionen erkennen und 
von Beginn an berücksichtigen lassen. Die Qualität der Gesamtplanung kann weiter 
verbessert und zusätzliche Planungszeit innerhalb des Gesamtprojektes eingespart 
werden.  
 
Neben dem Einsatz im Rahmen von Machbarkeitsstudien, Variantenplanungen oder 
quantitativen Fragestellungen, in denen ein System meist hinsichtlich seiner maximalen 
Leistungsfähigkeit oder eines optimalen Durchsatzes untersucht wird, muss die 
Simulation nach diesem ganzheitlichen Verständnis auch Fertigungsprogramme planen 
oder zumindest absichern können. Ein Simulationsmodell eines Fertigungsprozesses kann 
dann über alle Phasen der Struktur-, Mengen-, Kapazitäts- und Programmplanung bis hin 
zur Prognose und der fortlaufenden Verbesserung vorhandener Fertigungsprozesse 
eingesetzt werden.  
 
Heutige Simulatoren bilden den Materialfluss ausschließlich vorwärts gerichtet ab. 
Ausgehend von zu parametrierenden Eingangsparametern (in den Werkzeugen meist als 
Quellen bezeichnet) berechnet der Simulator dann in jedem Simulationslauf den maximal 
möglichen Output zu dem gegebenen Simulationsmodell.  

Definition 31: Vorwärtsterminierung 

„Vorwärtsterminierung ist die Methode, von einem Startzeitpunkt ausgehend die 
frühestens möglichen Zwischen- und Endtermine zu ermitteln.“ [DaWa97] 

 
Dieses Verfahren der Vorwärtsterminierung in Bezug auf die Ausführung von 
Simulationsmodellen durch einen Simulator wird im weiteren Verlauf als 
Vorwärtssimulation bezeichnet. 
 
Im Bereich der Fertigungslenkung haben sich für die integrierte Mengen-, Termin- und 
Kapazitätsplanung alternative Verfahren etabliert, um die Planungsphasen und –ergeb-
nisse eines gegebenen Fertigungsprogramms zu optimieren. Viele dieser meist 
heuristischen Eröffnungs- und/oder Verbesserungsverfahren basieren auf der Methode 
der Rückwärtsterminierung. Ausgehend von bestehenden Endterminen (beispielsweise 
der Auslieferung eines Kundenauftrags) sollen die Fertigungsprogramme hinsichtlich 
Durchlaufzeit, minimalen Kosten und Systemstabilität optimiert werden. 
 

Definition 32: Rückwärtsterminierung 
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„Rückwärtsterminierung ist die Methode, von einem vorgegebenen Liefertermin 
ausgehend die spätesten möglichen Zwischen- und Starttermine zu berechnen“ 
[DaWa97] 

 
Viele der mittels der Ablaufsimulation abgesicherten Fertigungssysteme werden im 
Bereich der Fertigungslenkung mit Verfahren zur Rückwärtsterminierung beplant. Heute 
werden, wenn überhaupt eingesetzt, erst in einem Folgeschritt die Ergebnisse dieser 
Planungen durch eine Vorwärtssimulation nochmals abgesichert. Eine Verbesserung 
dieser Planungsschritte ließe sich durch den Einsatz der Ablaufsimulation erreichen, wenn 
die Richtung des abgebildeten Materialflusses umgekehrt wird. Ausgehend von einem 
Auftragsbestand mit gegebenen Endterminen berechnet der Materialflusssimulator die 
spätesten Beginn-Zeitpunkte der Aufträge, die das System durchlaufen. Dieses Verfahren 
wird im Folgenden Rückwärtssimulation genannt. Mittels der Rückwärtssimulation wäre 
ein Simulator in der Lage, Programmplanungen moderner, kundenorientierter 
Fertigungsprozesse direkt zu planen oder zumindest abzusichern und in 
Simulationsstudien zu optimieren. Der Mehraufwand für den Simulationsexperten ist 
möglichst gering zu halten. Neben der Möglichkeit einer vorwärts und rückwärts 
gerichteten Ausführung von Simulationsmodellen im Simulatorkern muss also 
insbesondere ein Verfahren identifiziert werden, mit dem die Richtung der 
Materialflussmodelle unter möglichst wenigen Arbeitsschritten umgekehrt werden kann. 
Neben der ereignisgesteuerten Ausführung der diskreten Simulationsmodelle soll eine 
zeitorientierte Ausführung in fixen Zeitinkrementen in Vor- oder Rückwärtsrichtung 
grundsätzlich unterstützt werden, um eine mögliche Integration in bestehende 
Leitstandsysteme zu erleichtern. 
 
Kooperative Planung innerhalb von Unternehmen, Unternehmensverbünden 
oder Supply-Chain-Netzwerken 
 
Großunternehmen, virtuelle Unternehmen oder Supply-Chain-Netzwerke fertigen bereits 
heute an unterschiedlichen Standorten mit aufeinander abgestimmten Prozessen. Um die 
Lieferfähigkeit innerhalb eines Supply-Chain-Netzwerks sowie die Stabilität aller 
einzelnen Fertigungsprogramme besser gewährleisten zu können, müssen die Planungen 
enger aufeinander abgestimmt und überwacht werden. Die Mehrbenutzerfähigkeit der 
angestrebten Ablaufsimulation ermöglicht eine kooperative Planung mehrerer 
Simulationsexperten an einem gemeinsamen Simulationsmodell des Fertigungsnetzwerks 
unabhängig vom Standort der jeweiligen Experten. Innerhalb einer Supply-Chain oder 
eines Unternehmensverbundes, aber auch standortübergreifend innerhalb einer 
Unternehmung können so auf Basis eines Rechtemanagements und umfangreicher 
Kommunikationsmechanismen Simulationsexperten aller Standorte gemeinsam 
Simulationsmodelle erarbeiten, verifizieren und validieren, Simulationsexperimente 
kooperativ ausführen und in einer einzigen, gemeinsamen Umgebung auswerten.  
 
Da die verschiedenen Partner innerhalb solcher unternehmensinternen wie –externen 
Fertigungsnetzwerke nach unterschiedlichen Organisationsformen fertigen können, muss 
neben dem Werkzeug an sich auch die zugrunde liegende Modellbeschreibung 
Fertigungssysteme beherrschen, die sowohl ein besonders hohes Maß an Komplexität 
bieten als auch über rein objektorientiert gegliederte Fertigungssysteme hinausgehen 
und damit die Modellierung und Simulation von funktional gegliederten 
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Fertigungssystemen bzw. deren Mischformen erlauben. Auch in diesem Themenbereich 
bietet sich der Einsatz des Werkzeugs über die reinen Planungsphasen hinaus bis hin zur 
Umplanung und Einsteuerung in der Fertigungslenkung an. 
 
Wird diese Strategie weiterverfolgt, so wird auch die Komplexität der Simulationsmodelle 
weiter steigen. Insbesondere vor dem Hintergrund einer interaktiven Ausführung eines 
Simulationsmodells durch mehrere Simulationsexperten in einer virtuellen Umgebung 
kann dies bei beschränkten Rechenressourcen zu Problemen führen. Die 
Modellbeschreibung und Ausführung von Simulationsexperimenten muss also um eine 
Funktion erweitert werden, mit der auch komplexe Simulationsexperimente in einer 
virtuellen Umgebung dargestellt werden können. 

2.4 Anforderungsbeschreibung 

Die Umsetzung der aufgezeigten Themenbereiche führt auf den unterschiedlichen 
Betrachtungsebenen der Ablaufsimulation zu Konsequenzen. Einzelne Funktionen des 
angestrebten Werkzeugs wirken sich auf die Art aus, wie Simulationsmodelle hierfür 
beschrieben werden müssen. Sie können aber auch dazu führen, den Prozess der 
Modellierung, Simulation und Analyse anders abzubilden, als das mit herkömmlichen 
Software-Werkzeugen in diesem Bereich möglich ist. Um alle in Abschnitt 2.3 
aufgezeigten neuen Funktionen aufnehmen zu können, beschreibt dieser Abschnitt die 
Anforderungen entlang der drei Ebenen „Basisprozess“, „Modellbeschreibung“ und 
„Werkzeug“, wie sie in Abbildung 3 dargestellt werden. Hier ist ebenfalls ersichtlich, dass 
die Entwicklung einer Modellbeschreibung auf dem Prozess der Modellierung, Simulation 
und Analyse fußt und das ein solides Werkzeug zur Lösung der aufgezeigten 
Anforderungen nur entwickelt werden kann, wenn die zugrunde liegende 
Modellbeschreibung die einzelnen Funktionen überhaupt unterstützt. 
 

 

Abbildung 3: Abhängigkeiten der Entwurfssichten 

2.4.1 Basisprozess 

Der existierende Basisprozess von Modellierung, Simulation und Analyse muss um die 
Möglichkeit zur kooperativen Arbeit erweitert werden. Dazu müssen die einzelnen 
Arbeitsschritte in den Gesamtumfang einer Simulationsstudie eingebettet und hinsichtlich 
der Bearbeitung durch mehrere Anwender untersucht werden. Grundsätzlich soll die 
Vorgehensweise nicht revolutioniert, sondern nur den neuen Anforderungen angepasst 
werden. In einem ersten Schritt sollen die einzelnen Arbeitsschritte durch eine modulare 
Struktur des Werkzeugs voneinander entkoppelt werden. Auf Basis einer konsistenten 
und integrierten Datenhaltung wird damit die Arbeit mehrerer Anwender an einem 
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Simulationsmodell grundsätzlich ermöglicht. Die einzelnen Module des Werkzeugs, wie 
sie in Abbildung 4 skizziert werden, haben dann jeweils noch die Aufgabe, die Konsistenz 
innerhalb des Moduls während der Bearbeitung durch mehrere Anwender sicherzustellen. 
 
Die Anforderung nach einer interaktiven Arbeitsumgebung führt zu der Konsequenz einer 
bidirektionalen Kopplung der Visualisierungkomponente(n) mit dem eigentlichen 
Simulator, der den Simulationslauf berechnet. Die Änderungen des Anwenders können so 
in den Simulator eingespielt und die Änderungen in der Visualisierung sofort 
nachvollzogen werden. Um Simulationsmodelle so einer interaktiven Analyse zuführen zu 
können, muss auch die zugrunde liegende Modellbeschreibung verschiedene Kriterien 
erfüllen, die im folgenden Abschnitt zusammen getragen werden sollen. Darüber hinaus 
müssen zur Kopplung der verschiedenen Funktionsmodule definierte Schnittstellen 
erstellt werden, die eine solche Vorgehensweise unterstützen. 

 

Abbildung 4: Grundstruktur der Module im Basisprozess 

2.4.2 Modellbeschreibung 

Die Art und Weise, wie Simulationsmodelle in dem zu entwickelnden Werkzeug 
beschrieben werden, hat Auswirkungen auf die überhaupt zu ermöglichenden 
Funktionalitäten der Software. Als grundlegende Datenstruktur, auf der ein 
Simulationslauf berechnet wird, liefert sie den Rahmen für die möglichen Aktivitäten des 
Anwenders sowohl auf der Modellierungs- als auch auf der Simulationsseite. Deshalb 
muss sie alle Funktionen und Möglichkeiten ermöglichen, die dem Anwender geboten 
werden sollen. 
 
Für das hier zu entwickelnde Werkzeug muss die Modellbeschreibung zunächst einmal ein 
Fertigungssystem und seine Elemente abbilden können. Die menschliche Denkweise 
orientiert sich an einer Strukturierung in verschiedene Einzelteile. Die 
Modellbeschreibung soll deshalb in erster Linie Simulationsmodelle modular und im 
weitesten Sinne objektorientiert formalisieren. Die Genauigkeit, mit der ein 
Fertigungssystem in seine Teile zerlegt wird, soll vom Anwender frei wählbar sein. 
Prinzipiell soll also ein beliebiger Detailgrad erlaubt sein. Das ist insbesondere auch vor 
dem phasenübergreifenden Einsatz der Ablaufsimulation interessant, da sich bei der 
Planung von Fertigungssystemen der Detaillierungsgrad der Abbildung stetig verfeinert. 
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Dadurch wächst natürlich auch der Komplexitätsgrad des Modells. Zur weiteren 
Strukturierung sollen die Simulationsmodelle also hierarchisierbar sein. So kann eine 
Hierarchieebene auch einer jeweiligen Sicht auf das abzubildende Objekt entsprechen. 
Wird zu Beginn einer Planung ein Fertigungssystem beispielsweise noch als eine 
Zusammensetzung von 3 Kernabläufen betrachtet, so lassen sich diese im weiteren 
Projektverlauf leicht durch Hierarchieebenen ergänzen, die die einzelnen Teilbereiche 
genauer modellieren. 
 
Die Simulationsmodelle sollen im Rahmen der Modellierung und Simulation von mehreren 
Anwendern bearbeitet werden können. Obwohl eine Synchronisierung der einzelnen 
Anwenderinteraktionen letztendlich durch die jeweiligen Module des Werkzeugs erfolgen 
muss, so muss die Modellbeschreibung eine solche synchronisierte Interaktion doch 
ermöglichen. Auch hier ist eine objektorientierte Darstellung im Vorteil, weil die 
betroffenen Objekte einzeln vor anderen Zugriffen gesperrt werden können.  
 
Letztendlich soll mit diesem Werkzeug die Anwendung der Ablaufsimulation erweitert 
werden und so ist nur realistisch anzunehmen, dass auch zusätzliche Anforderungen an 
das Werkzeug und seine Modellbeschreibung gestellt werden. Die Modellbeschreibung 
muss deshalb in besonderem Maße auch flexibel erweiterbar sein. Eine der neueren 
Anwendungen ist schon jetzt bekannt: Die Rückwärtssimulation. Weil diese auf rückwärts 
gerichteten Simulationsmodellen arbeitet, die Zeit zur doppelten Modellierung eines 
Fertigungssystem aber sicherlich nicht vorhanden ist, muss die Modellbeschreibung 
darüber hinaus richtungsoffen sein, d.h. das Konvertieren von vorwärts gerichteten 
Simulationsmodellen in rückwärts-gerichtete Simulationsmodelle ermöglichen. 
 
Neben diesen Anforderungen an die Modellbeschreibung gibt es darüber hinaus auch 
Einschränkungen, die für die zu konzipierende Modellbeschreibung nicht gelten sollen. 
Wegen der zu unterstützenden ereignis- oder zeitorientierten Ausführung in Vor- und 
Rückwärtsrichtung soll die Modellbeschreibung keine festen Zeitangaben und/oder 
Zeiteinheiten enthalten, sondern angegebene Parameter nur in relativ angegebenen 
Zeitpunkten beschreiben. Die jeweilige Berechnung der Simulationszeit hängt dann nicht 
zuletzt auch von dem verwendeten Verfahren im Simulatorkern ab und spielt für das 
Beschreiben der zugrunde liegenden Simulationsmodelle keine Rolle. 
 
In Summe kann die Modellbeschreibung daraufhin die Datenstruktur der Anwendung 
liefern, die mit dem Werkzeug entwickelt werden soll und in dem die eigentlichen 
Funktionen implementiert werden. 

2.4.3 Werkzeugentwicklung 

Das Werkzeug selbst soll mit modernen Methoden des Software-Designs entwickelt 
werden. Neben einer objektorientierten Programmierung ist dafür insbesondere auch die 
Definition von erweiterbaren Schnittstellen und einer modularen Programmstruktur von 
großer Bedeutung. Somit können auch einzelne Funktionen des Werkzeugs später mit 
relativ geringem Aufwand durch Weiterentwicklungen ersetzt werden. 
 
Die einzelnen Module der Gesamtanwendung strukturieren sich in Anlehnung an den zu 
unterstützenden Arbeitsprozess des Anwenders, sind also im besten Sinne anwendungs- 
und prozessorientiert. Neben einem Werkzeug zum Aufbau der Simulationsmodelle muss 



Ablaufsimulation von Fertigungssystemen  - 21 - 
 

 

das Werkzeug einen Simulatorkern oder Kernel enthalten sowie minimal eine 
Visualisierungskomponente zur Analyse der modellierten Abläufe und deren dynamischen 
Verhaltensweisen in dem Simulationsmodell. Zur konsistenten Datenhaltung empfiehlt 
sich darüber hinaus die Verwendung einer Datenbankstruktur. Sie erlaubt einen schnellen 
Zugriff auf die anfallenden Datenmengen (Simulationsmodelle, Experimentdaten, 3D-
Modelle etc.) 
 
Die Anforderungen an die einzelnen Module sind aus Abschnitt 2.3 bekannt und sollen 
deshalb an dieser Stelle nur kurz aufgelistet werden. Sie sollen im besonderen Maß als 
Anforderungen für die Entwicklung des Werkzeugs dienen. 
 
In Summe bilden die dargestellten Anforderungen an Basisprozess, Modellbeschreibung 
und Werkzeug die Gesamtanforderungen an diese Arbeit. In einem nächsten Schritt muss 
nun der Stand der Technik hinsichtlich existierender Lösungen oder Lösungsideen 
untersucht werden. Das soll im folgenden Kapitel 1 geschehen. 

Modul Funktion 

Modellierung  Synchronisierte Multitasking-Modellierung 
 Beliebiger Detailgrad 
 Hierarchische, modulare und objektorientierte Modelle 
 Umkehrung von Simulationsmodellen 
 Einfache Modellierung von Transportwegen für funktional 
gegliederte Fertigungssysteme 

Simulation  Dynamische Detaillierung 
 Interaktiv veränderbar 
 Ereignis- & zeitorientierte Simulation in vorwärts und rückwärts 
Richtung 

Visualisierung  Interaktive 3D-Darstellung des Materialflusses aus der 
Simulation 

 Synchronisierte Multitasking-Simulation für mehrbenutzerfähige 
Analyse 

 Immersive Visualisierung in virtueller Umgebung 

Tabelle 1: Anforderungen aus den neuen Einsatzfeldern der Ablaufsimulation 
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3 Stand der Technik 
„Zähmen sollen sich die Menschen, 

die sich gedankenlos der Wunder der 
Wissenschaft und Technik bedienen und 
nicht mehr davon geistig erfasst haben 

als die Kuh von der Botanik der Pflanzen, 
die sie mit Wohlbehagen frisst.“ 

 
(Albert Einstein) 

 
Nachdem im vorigen Kapitel die Anforderungen an diese Arbeit zusammengetragen 
wurden, soll nun Stand der Technik hinsichtlich dieser Fragestellungen untersucht 
werden. Welche Lösungsansätze sind in den verschiedenen Bereichen bereits bekannt 
und inwiefern können sie helfen, die gestellten Anforderungen umzusetzen? 
 
Analog zur Strukturierung der Anforderungsbeschreibung soll auch der Stand der Technik 
Schritt für Schritt untersucht werden. In einem ersten Schritt muss zunächst untersucht 
werden, welche Prozesse sich bei der Durchführung einer Simulationsstudie etabliert 
haben und inwiefern sich dieses Vorgehen auch in einer mehrbenutzerfähigen und 
interaktiven Arbeitsumgebung realisieren lässt. Abschnitt 3.1 soll dazu die bekannte 
Methodik zur Durchführung einer Simulationsstudie vorstellen und bewerten. 
 
Weil im Folgeschritt dieser Arbeit darauf aufbauend eine Modellbeschreibung konzipiert 
werden soll, widmen sich die Abschnitte 3.2 und 3.3 der Bewertung von bekannten 
Methoden zur Modellierung und Ausführung von diskreten Simulationsmodellen. Danach 
wird in Abschnitt 3.4 zusätzlich untersucht, inwiefern sich speziell virtuelle Umgebungen 
zur Visualisierung von Ablaufsimulationen eignen und welche Vorraussetzungen dafür 
erfüllt sein müssen. 
 
Erst im Folgeschritt widmet sich der Abschnitt 3.5 den Methoden des Software-Designs 
zur Entwicklung des Werkzeugs. Die Erkenntnisse aus Basisprozessgestaltung und der 
Modellbeschreibung sollen hier in die Bewertung mit einfließen. Der Abschnitt zeigt 
allgemeine und objektorientierte Prinzipien des Software-Designs auf, fokussiert im 
Speziellen auf Organisationsformen und Architekturmuster von Mehrbenutzersystemen 
sowie Prinzipien zur Schnittstellengestaltung, jeweils vor dem Hintergrund der gestellten 
Anforderungen. 
 
Abschließend fasst Abschnitt 3.6 den Stand der Technik hinsichtlich der Fragestellung 
zusammen, so dass im folgenden Kapitel die Zielstellung der Konzeption und 
Implementierungsphase formuliert werden kann. 

3.1 Simulationsmethodik 

Die Simulation von Fertigungssystemen hinsichtlich einer bestimmten Aufgabenstellung 
wird laut Definition 21 als Simulationsstudie bezeichnet. [VDI3633] beschreibt eine 
Vorgehensweise bei der Durchführung von Simulationsstudien, die sich in diesem 
Themenfeld etabliert hat. Sie soll nachfolgend näher beschrieben werden. Im 
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Wesentlichen gliedert sich die Vorgehensweise in die Schritte Vorbereitung, Modellierung, 
Durchführung und Auswertung. Insbesondere die Modellierung und Durchführung von 
Simulationsexperimenten müssen iterativ durchgeführt werden, um die erstellten 
Simulationsmodelle zu verifizieren, zu validieren und ggf. alternative Szenarien zu 
erarbeiten. 
 

 

Abbildung 5: Ablauf einer Simulationsstudie nach [VDI3633] 

Ausgangspunkt jeder Simulationsstudie ist demnach die exakte Festlegung eines 
Untersuchungsziels, welches das grundlegende Problem inklusive einer grundsätzlichen 
Beschreibung des Vorgehens und Lösungsmöglichkeiten eingrenzt. Auf Basis des 
Untersuchungsziels kann die nachfolgende Phase der Datenaufbereitung erfolgen. 
Beschaffung, Aufbereitung und ggf. Anpassung der Daten ist oftmals mit hohem Aufwand 
verbunden, da sie nur selten bereits in der benötigten Form vorliegen. In manchen Fällen 
liegen über das abzubildende System noch gar keine Daten vor (wenn beispielsweise das 
Fertigungssystem in der Realität noch nicht existiert). In diesem Fall müssen die 
benötigten Daten bestmöglich abgeschätzt werden. Insbesondere räumliche, zeitliche 
und mengenmäßige Daten sind als Eingabeparameter für das Simulationsmodell 
interessant. Wie oben bereits erwähnt, sind die vorliegenden Daten auf Plausibilität und 
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Richtigkeit zu prüfen, da nur dann auch vernünftige Ergebnisse aus der Simulationsstudie 
zu erwarten sind. 
 
Im Folgeschritt wird das Fertigungssystem zunächst als logisches, später dann als 
experimentierfähiges Modell in einem Simulator abgebildet. Das Simulationsmodell muss 
alle für die Fragestellung relevanten Sachverhalte repräsentieren, wobei alle Elemente 
und Strukturen, Regeln, Einflüsse und Verhaltensweisen aus dem realen System in dem 
benötigten Detaillierungsgrad abzubilden sind. Durch die ersten Simulationsläufe mit dem 
experimentierfähigen Simulationsmodell wird das Simulationsmodell bezüglich der 
inneren Logik hin verifiziert und im nächsten Schritt hinsichtlich des Systemverhaltens 
der Realität bestmöglich angepasst (Modellvalidierung). Das Vorgehen erfolgt hierbei 
iterativ bis der gewünschte Genauigkeitsgrad erreicht werden konnte. 
 
Die nächste Phase beinhaltet nun verschiedene Schritte der Durchführung von 
Simulationsläufen im experimentellen Rahmen. Zunächst werden einfache Analysen 
gefahren, um erste Aussagen zur Leistungsfähigkeit und Problembereiche des 
Fertigungssystems zu erhalten. Anschließend werden einzelne Experimentreihen 
durchgeführt, die entweder die Ausplanung des Fertigungssystems betreffen oder 
Sensitivitätsanalysen enthalten, die die Abhängigkeit des Gesamtsystems von einzelnen 
Eingabefaktoren herausarbeiten. Dieser iterative Prozess wird so lange durchgeführt, ggf. 
mit Anpassungen des Simulationsmodells, bis schließlich für den Anwender hinsichtlich 
der Aufgabenstellung zufrieden stellende Ergebnisse vorliegen. Den Abschluss der 
Simulationsstudie bildet die Dokumentation, Auswertung und Aufbereitung der 
gesammelten Ergebnisse. Die Simulationsergebnisse werden hier zu aussagefähigen 
Informationen verdichtet, interpretiert und angemessen dargestellt. Hierbei muss jeweils 
durch den Anwender entschieden werden, inwiefern sich ein Rückschluss von den 
Simulationsergebnissen auf das reale Verhalten des abgebildeten Fertigungssystems 
erlaubt.  
 
Bei dem angestrebten Basisprozess zur Modellierung und Simulation soll sich an der für 
Simulationsstudien geltenden Vorgehensweise orientiert werden. Die Darstellung der 
Vorgehensweise bei einer Simulationsstudie schränkt auch den in Abschnitt 2.4.1 
anvisierten Basisprozess der Modellierung, Simulation und Analyse in einer 
mehrbenutzerfähigen Umgebung nicht ein, weil keine klare Aussage darüber getroffen 
wird, wie die Modellbildung möglichst effektiv und effizient zu gestalten ist. So bildet die 
vorgeschlagene Vorgehensweise nur den inhaltlichen Rahmen, innerhalb dem der 
Basisprozess umgesetzt werden soll. Der Prozess der Modellvalidierung und 
Modellverifikation soll aber durch den hohen interaktiven Grad des Werkzeugs verkürzt 
werden. Weil der Anwender das Simulationsmodell während der Ausführung manipulieren 
kann, sollte schneller ein verbessertes Modell erstellt werden können. Die eigentliche 
Experimentphase einer Simulationsstudie muss dennoch ohne Benutzerinteraktion 
durchgeführt werden, um eine statistisch auswertbare Datenbasis aus dem 
Simulationsmodell generieren zu können. Dafür sollte jeder einzelne Simulationslauf 
möglichst schnell ausgeführt werden können. Bei der angestrebten Ausführung im 
Simulator, bei der nur nach Anforderung eine Visualisierungskomponente als 
eigenständiges Modul angekoppelt wird, sollte das in der bisher geplanten, modularen 
Bauweise gut unterstützt werden. 
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3.2 Modellierungsmethoden 

Simulation beschreibt immer ein Arbeiten mit und an experimentierfähigen Modellen, 
meist eingebettet in die Durchführung einer Simulationsstudie. Damit ist die Struktur der 
abzubildenden Fertigungssysteme zumindest hinsichtlich des Untersuchungszwecks 
bekannt. In einem ersten Schritt muss also das abzubildende System als ein Modell 
beschrieben werden. Dieses muss in dem Werkzeug gemäß einer noch festzulegenden 
Modellbeschreibung erzeugt und manipuliert werden können. Dieser Abschnitt zeigt 
verschiedene Modellierungsmethoden und deren Anwendung auf Materialflusssimulation 
und bewertet sie vor dem Hintergrund der an eine Modellbeschreibung gestellten 
Anforderungen. 
 
Die „Kunst“ innerhalb dieses Modellierungsprozesses ist es, eine befriedigende Mischung 
zwischen dem Abstraktionsgrad, der Richtigkeit und der Genauigkeit eines Modells und 
der Wirklichkeit zu finden. Der Zielkonflikt, der zwischen diesen drei Aspekten besteht, 
soll minimiert werden. Der Abstraktionsgrad beschreibt das äußere „Erscheinungsbild“ 
eines Modells. Je weiter der Abstraktionsgrad fortschreitet, desto weniger realitätsnah 
wird das Modell. Ein fortschreitender Abstraktionsgrad bedeutet aber auch einen Gewinn 
an Genauigkeit, da der Fokus immer weiter auf den zu analysierenden Teil gelenkt wird. 
Die Nutzbarkeit des Modells wiederum wird an der Richtigkeit gemessen. 
 
Es existieren zahlreiche Methoden zur Modellierung von Materialflüssen [ScWe00]. In 
dem nachfolgenden Abschnitt sollen deshalb zunächst Stellen/Transitionsnetze als eine 
Ausprägung formaler Beschreibungen von Simulationsmodellen untersucht werden. In 
einem weiteren Schritt sollen unter Abschnitt 3.2.2 Programmier- und 
Simulationssprachen hinsichtlich ihrer Eigenschaften untersucht und bewertet werden. 
Abschließend werden existierende Software-Lösungen in Form von grafischen 
Simulationswerkzeugen und Bausteinkästen untersucht, um das Spektrum möglicher 
Lösungsalternativen an Modellierungsmethoden möglichst gut abzudecken. 

3.2.1 Stellen/Transitionsnetze 

Stellen/Transitionsnetze sind als formale Beschreibungen zur Modellierung und 
anschließender Analyse von asynchronen Prozessen weit verbreitet (vgl. [LeEg88], 
[Star90]). ihre formale Basis ist auf der allgemeinen Netztheorie begründet und es 
existieren Erweiterungen zur Abbildung komplexerer Systeme, beispielsweise zur 
Integration stochastischer Prozesse [LeEg88], zur Abbildung hierarchischer Strukturen 
oder der Individualisierung (Färbung) der Marken [LeEg88], die durch den bipartiten 
Graphen laufen. Stellen/Transitionsnetze können unterschiedlich visualisiert werden. 
Üblicherweise werden Stellen als Kreise, Transitionen als ein Rechteck oder als eine Linie 
visualisiert, die orthogonal zu den eingehenden und ausgehenden Verbindungen steht. 
Flussrelationen werden mit Pfeilen zwischen den Stellen und Transitionen dargestellt (vgl. 
Abbildung 6). Mit diesen Netzen können Zustände von Montage-, Kommissionier- oder 
Transportvorgängen modelliert werden. Insb. geteilte Ressourcen von nebenläufigen 
Prozessen können durch diese Netze gut modelliert werden [Schm92]. Durch die nicht 
deterministische Reihenfolge der Schaltungen bieten sich Petri-Netze zur Analyse und 
Vermeidung von Verklemmungen an [Star90]. Die Planung der Schaltungen und die 
damit implizite Planung von der Benutzung der geteilten Ressourcen kann für das reale 
Problem übernommen werden. 
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Abbildung 6: Beispiel eines Petri-Netzes 

Stellen/Transitionsnetze sind von sich aus nicht zeitbewertet. Es existieren jedoch 
erweiterte, bzw. angepasste Beschreibungen, beispielsweise MFert, in denen eine solche 
Zeitbewertung verwendet wird (vgl. [Schn96]). Das MFert-Modell unterscheidet Faktoren 
und Faktortransformationen. Ein Graph des Fertigungsablaufs repräsentiert die Menge 
möglicher Fertigungsprozesse. In diesem Graphen sind die Faktorknoten und die 
Faktortransformationsknoten die Knoten. Die Kanten symbolisieren die möglichen 
Faktorströme. 
 
Anwendung von Stellen/Transitionsnetzen zur Modellierung von Materialflüssen 
Mit Stellen/Transitionsnetzen lassen sich Materialflussprozesse modellieren (vgl. [GiVa03] 
und [Dang99]). Insb. Ressourcen, die geteilt werden müssen, lassen sich so in ein Modell 
fassen. Muss z.B. ein Arbeiter zwei Maschinen bedienen, kann die Ressource Arbeiter als 
eine Marke, die beiden Fertigungsprozesse als jeweils eine Transition, der Materialzugang 
bzw. -abgang als jeweils eine Stelle und die Teile als Marken modelliert werden. Gibt eine 
Maschine den Arbeiter frei, muss die Marke auf eine Stelle gelagert werden, auf die beide 
Maschinen zugreifen können (vgl. Abbildung 7). Handelt es sich um eine zeitbewertete 
Erweiterung eines Stellen/Transitionsnetzes können die Zeiten den Bearbeitungsdauern 
der Maschinen entsprechen. Es entsteht ein Modell, welches den beschriebenen Prozess 
und den darin enthaltenen Ressourcenkonflikt abbildet. 
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Abbildung 7: Petri Netz Modell eines Arbeiters, der zwei Maschinen bedient 

Auf Basis von Stellen/Transitionsnetzen sind zahlreiche weitere formale 
Modellierungsmethoden bekannt, die sich zumeist jedoch wieder auf Stellen/Transitions-
netze zurückführen lassen. 
 
Bewertung 
Stellen/Transitionsnetze beschreiben Fertigungssysteme auf Basis eines bipartiten 
Graphen. Es wird bei der formalen Beschreibung also explizit zwischen der Speicherung 
und der Veränderung von Marken unterschieden. Diese können zwar hierarchisch 
modelliert und aus verschiedenen Substrukturen zusammengesetzt werden, eine 
Abbildung der in der Realität vorhandenen Fertigungssysteme wird durch eine fehlende 
systematische Gliederung und Objektorientierung jedoch unnötig erschwert. Je nach 
gewähltem Detaillierungsgrad unterscheidet der Anwender beispielsweise bei einem 
Lager nicht mehr zwischen den einzelnen Lagerplätzen und deren übergeordneten 
Lagersteuerung. Eine Abbildung durch ein Stellen/Transitionsnetz ist damit nur noch 
schwer möglich. Auch für die Abbildung von komplexen Steuerungen und insbesondere 
deren Umkehrung vor dem Hintergrund einer richtungsoffenen Ablaufsimulation 
erscheinen Stellen/Transitionsnetze als wenig geeignet, weil die jeweilige Umkehrung von 
Verteilregeln im Materialfluss durch eine implizite Modellierung die Komplexität der 
Stellen/Transitionsnetze stark ansteigen würde. Eine übersichtliche layoutgetreue 
Modellierung wird dadurch unnötig erschwert. 

3.2.2 Programmier- und Simulationssprachen 

Für eine rechnerunterstützte Simulation von Materialflüssen existieren neben den bisher 
vorgestellten formalen Beschreibungen eine Reihe spezifischer Verfahren. Zur 
Modellierung und Ausführung werden sowohl allgemeine Programmiersprachen als auch 
spezialisierte Simulationssprachen verwendet. 
 
Während allgemeine Programmiersprachen (z.B. C++ [Brey05], Java [Ulle05]) sehr 
flexibel im Einsatz zur Simulationen sind, erfordern sie einen hohen Einarbeitungs- und 
Modellierungsaufwand. Sie bieten keine spezielle Unterstützung für Simulationen. Sollen 
abstrakte Methoden zum Einsatz kommen, müssen diese explizit implementiert werden. 
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Der spezielle Einsatz von Java als Simulationssprache für ein Simulations-Framework 
(vgl. 3.5.5.3) ist durch DESMO-J oder DEMOS bekannt ([PaKr05], [Birt82]). Auf Basis 
einer festgelegten Modellbeschreibung können Simulationsmodelle textbasiert 
programmiert und ausgeführt werden. Die Umsetzung des Frameworks erlaubt aber 
keine Erweiterung der vorhandenen Simulatorfunktionen, wie sie für das zu entwickelnde 
Werkzeug benötigt werden, denn beide Frameworks bieten keine Mehrbenutzer- oder 
Multitasking-Fähigkeit. Auch sind keine Modellierungs- oder Simulationsframeworks 
bekannt, mit denen Simulationsmodelle gemäß der spezifischen Beschreibung erstellt, 
ausgeführt und visualisiert werden können. 
 
Den aus allgemeinen Programmiersprachen resultierenden hohen Aufwand bei der 
Implementierung reduzieren simulationsspezifische Sprachen (z.B. MODSIM, SIMULA, 
SIMSCRIPT, GPSS [Boss92], [Holm-ol], [Sims-ol], [Chis92]). Sie unterstützen den 
Anwender mit simulationsspezifischen Konstrukten und Bibliotheken. Obwohl ihr Einsatz 
einfacher als der der allgemeinen Programmiersprachen ist, erfordert ihre Anwendung im 
Allgemeinen dennoch Programmierkenntnisse.  
 
 
Bewertung 
Ebenso wie bei den bekannten Implementierungen in Frameworks von allgemeinen 
Programmiersprachen ist der Anwender beim Einsatz stets gezwungen, sich den 
jeweiligen Restriktionen der Bibliotheken zu beugen. Dadurch wird die Implementierung 
eines Mehrbenutzerbetriebs, einer dynamischen Detaillierung und einer 
dreidimensionalen Visualisierung verhindert. Die meisten Frameworks ermöglichen trotz 
modularem Aufbau und Objektorientierung auch keine interaktive Analyse, weil 
Datenstruktur und Berechnung voneinander getrennt sind. Sie verfolgen darüber hinaus 
jeweils nur ein Konzept der Zeitfortschaltung bei der Ausführung von 
Simulationsmodellen (vgl. Abschnitt 3.3). 
 
Zur Lösung der hier gestellten Anforderung erweisen sich die bekannten 
Implementierungen also als nicht verwendbar. Die grundlegende Idee solcher 
Frameworks sollte jedoch in der Konzeptionsphase aufgegriffen werden, da bereits 
implizit durch die Gestaltung der Modellbeschreibung in einem Framework eine erste 
Gültigkeitsprüfung der Simulationsmodelle erfolgen kann. Dem entgegen steht der 
Nachteil einer hohen Einarbeitung und geringen Benutzerunterstützung. Für die 
Modellierung und Simulation müssen grafische Benutzeroberflächen gestaltet werden, um 
den oder die Anwender bei ihrer Arbeit besser zu unterstützen. Im folgenden Abschnitt 
sollen zur Komplettierung der möglichen Modellierungsmethoden auch existierende 
grafische Werkzeuge untersucht werden. 

3.2.3 Grafische Simulationswerkzeuge 

Anwendungsspezifische Simulatoren geben dem Modellierer auf eine spezielle 
Anwendung oder Domäne zugeschnittene Werkzeuge und Bausteine an die Hand und 
bieten grafische Modellierungswerkzeuge (z.B. Simul8, ED-Falcon, Quest oder Plant 
Simulation [Simu03], [EDFa-ol], [Deml-ol], [UGS-ol]). Modelle können durch 
Kombination, Parametrisierung und Verbindung von Bausteinen aus einer Bibliothek 
erstellt werden. Diese Modelle können als neue Bausteine für die Bibliothek dienen. 
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Durch diese Hierarchien können auch große, komplexe Modelle erstellt und gewartet 
werden. Für eine hohe Flexibilität enthalten diese Simulatoren oftmals eine 
Programmierschnittstelle oder/und eine eingebaute Programmiersprache. Der Einsatz 
grafischer Werkzeuge vereinfacht und beschleunigt das Erstellen von 
Simulationsmodellen. Die visuellen Modelle sind einfacher zu kommunizieren, ihre 
Erstellung ist intuitiver und die generierten Ergebnisse können Nicht-Simulationsexperten 
leichter kommuniziert werden. Im Gegenzug hierfür sind die grafischen Methoden nicht 
so flexibel und vielseitig wie allgemeine Programmiersprachen. Simulationsberechnungen 
bieten das Potential schneller zu sein, wenn der Ablauf direkt in einer allgemeinen 
Programmiersprache speziell für das Problem implementiert und optimiert worden ist 
(vgl. [DMD03]). 
 
Bewertung 
Mit den vorgestellten Werkzeugen ist es den Anwendern möglich, Modelle für den 
Fertigungsprozess in der jeweiligen Modellbeschreibung zu erzeugen und in einer 
zugehörigen Simulationsumgebung anzuwenden. Viele der kommerziellen Werkzeuge 
basieren auf den bekannten formalen Beschreibungen (vgl. Abschnitt 3.2.1) und 
beinhalten eine eigene, simulationsspezifische Programmiersprache, wie sie exemplarisch 
in Abschnitt 3.2.2 vorgestellt wurde, um das Verhalten der vorgegebenen 
Modellbausteine präzisieren zu können und somit den gewählten Detaillierungsgrad der 
Bibliotheken zumindest teilweise zu umgehen. Dennoch werden die Möglichkeiten des 
Anwenders hier unnötig eingeschränkt, was eine freie Wahl des gewünschten 
Detaillierungsgrades verhindert. 
 
Der Prozess der Modellierung, Ausführung, Analyse und Modifikation der einzelnen 
Simulationsmodelle findet am Computer einer einzelnen Person statt. Möchten mehrere 
Anwender ein Modell bearbeiten, kann dies nur sequentiell durchgeführt werden. D.h., 
dass zu einem Zeitpunkt nur eine Person an dem Modell arbeiten kann. Die vorhandenen 
Software-Lösungen ermöglichen nur in Teilen eine interaktive Beeinflussung des 
Simulationslaufs. 
 
Hinsichtlich einer Visualisierung in einer virtuellen Umgebung existieren Arbeiten, die die 
vorhandenen Software-Werkzeuge anbinden können. Die Werkzeuge selbst stellen hier 
(noch) nur unzureichende Lösungen bereit. Keines der bekannten Werkzeuge ist in der 
Lage, Simulationsmodelle zeitlich rückwärts zu berechnen, bzw. vorwärts-gerichtete 
Modelle umzukehren. Spezielle Methoden zur Unterstützung von funktional gegliederten 
Fertigungssystemen sind ebenfalls nicht bekannt. In jedem Fall ist der Anwender an die 
spezifische Implementierung des Simulatorkerns gebunden, womit sich beispielsweise 
eine dynamische Detaillierung verbietet. 

3.3 Ausführung von Simulationsmodellen 

Die gemäß einer gültigen Modellbeschreibung erstellten Simulationsmodelle müssen zur 
Durchführung einer Simulationsstudie schließlich auch im Simulatorkern ausgeführt 
werden. Für das hier zu entwickelnde Werkzeug wird eine Ausführung in Vorwärts- und 
Rückwärtsrichtung angestrebt. Die beiden folgenden Abschnitte betrachten den Stand der 
Technik bei den jeweiligen Ausführungsformen detaillierter. 
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3.3.1 Vorwärtssimulation 

Wie in Abschnitt 2.2 bereits angerissen existieren zur Zeitfortschaltung während der 
Simulation dazu zwei grundlegende Verfahren, die richtungsoffen ausgeführt werden 
können: Fortschaltung nach fixen und variablen Zeitinkrementen. 
 
Fixe Zeitinkremente 
Bei fixen Zeitinkrementen wird die zu simulierende Zeitspanne in gleichförmige Intervalle 
zerteilt. Für alle Intervalle wird einheitlich ein Ereigniszeitpunkt zugeordnet (Anfang, 
Mitte oder Ende des Intervalls). Für jedes Intervall werden die darin auftretenden 
Ereignisse gespeichert, als würden sie an dem Intervall zugeordneten Zeitpunkt 
ausgeführt werden müssen. Die Berechnung versucht, beginnend beim zeitlich ersten 
Intervall, alle darin enthaltenen Ereignisse abzuarbeiten. Eine implizite Diskretisierung 
findet statt. Werden hierbei neue Ereignisse erzeugt, werden diese innerhalb der 
Ereignisliste in das jeweilige Intervall einsortiert. 
Wird die Intervalllänge kurz gewählt, müssen mehr Intervalle verwaltet werden. Ist die 
Anzahl der Intervalle deutlich größer als die Anzahl der auftretenden Ereignisse, muss die 
Simulation viele leere Intervalle verwalten und auch beim Voranschreiten betrachten. Die 
eigentliche Berechnung der Simulation wird somit verlangsamt. Wird die Intervalllänge 
groß gewählt, findet die Diskretisierung sehr grob statt. Die Differenz zwischen dem 
Zeitpunkt, an dem ein Ereignis stattfinden soll, und dem Zeitpunkt, der dem zuge-
ordneten Intervall zugehört, kann groß werden. Daraus ergibt sich unter Umständen ein 
großer Fehler in der Berechnung. Durch die Größe der Intervalle enthalten diese im 
Durchschnitt mehr Ereignisse, die innerhalb des Intervalls sequentiell oder zumindest 
synchronisiert berechnet werden müssen. Verfahren zum Auflösen dieser Gleichzeitigkeit 
kommen demnach vermehrt zum Einsatz und führen ebenfalls zu einer ungenaueren 
Berechnung. Abbildung 8 zeigt im linken Teil die Zeitfortschaltung mittels fixer 
Zeitinkremente. Im Gegensatz dazu zeugt der rechte Teil der Abbildung die 
Zeitfortschaltung mittels variabler Zeitinkremente, die nachfolgend näher erläutert wird. 
 

 

Abbildung 8: Zeitfortschaltung mit fixen und variablen Zeitinkrementen 

Variable Zeitinkremente 
Methoden die mit variablen Zeitinkrementen arbeiten haben keine vorbestimmten Zeit-
inkremente, in denen sie voranschreiten. Die Systeme springen direkt zum jeweils 
zeitlich nächsten Ereignis im Fertigungsmodell. Die Menge der in der Zukunft zu 
berechnenden Ereignisse wird sortiert in der Ereignisliste gespeichert. Die Berechnung 
muss das nächste Ereignis aus der Datenstruktur entnehmen, die eigene Uhr auf die Zeit 
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des Berechnungszeitpunktes des Ereignisses setzen und berechnen. Neue Ereignisse 
werden wieder in die Datenstruktur eingefügt (vgl. Abbildung 9). Im Fall einer 
Ausführung des Simulationslaufs in Echtzeit oder einem Faktor der Echtzeit 
(beispielsweise 4-mal so schnell) muss die Ausführung der Ereignisse noch mit der 
externen Simulationszeit des verwendeten Kalenders synchronisiert werden. 
 
Oftmals sollen mit Simulationen Fertigungssysteme mit beschränkten Ressourcen 
modelliert werden. Ereignisse können nur in einzelnen Zuständen ausgeführt werden. So 
kann sich z.B. eine Warteschlange in einem Puffer vor einer belegten Maschine bilden. 
Ein Ereignis zum Umlagern des vordersten Objekts in der Warteschlange auf die 
Maschine muss warten, bis diese den Zustand frei erreicht. Für die Berechnung der 
Simulation bedeutet dies, dass nach dem Freiwerden der Maschine untersucht werden 
muss, ob bisher blockierte Ereignisse nun ausgeführt werden können3. Abbildung 9 zeigt 
schematisch die Ausführung eines diskret ereignisorientierten Simulationsmodells in 
einem Simulator [Dang03]. 

In diesem Werkzeug sollen durch eine sinnvolle Konstruktion des Simulatorkerns und der 

Modellbeschreibung grundsätzlich beide Möglichkeiten der Zeitfortscheitung unterstützt 

werden. 

 

Abbildung 9: Ablauf einer ereignisgesteuerten Simulation 

 
Bewertung 
Beide Methoden können und sollen in die Implementierung des Simulatorkerns 
einfließen. Die Anforderung nach einer interaktiven Beeinflussung des Fortlaufes der 
Simulation unterstreicht die Notwendigkeit einer bidirektionalen Kopplung zwischen 
Simulatorkern und der entsprechenden Visualisierungskomponente über eine 
erweiterbare Schnittstelle. Die Berechnungen des Simulators müssen nicht nur angezeigt, 

                                          
3  Evans [Evan88] bietet hierfür verschiedene Lösungsmethoden an. 
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sondern aus der Visualisierung heraus auch manipuliert werden können. Die direkte 
Veränderung der Modellparameter führt dann zu einem veränderten Aufbau der 
jeweiligen Ereignisliste und veränderten Simulationsergebnissen. 

3.3.2 Rückwärtssimulation 

Im Rahmen eines erweiterten Einsatzes der Methode Ablaufsimulation soll auch eine 
rückwärtsgerichtete Ausführung von Simulationsmodellen durch das Werkzeug 
unterstützt werden. Wie Abschnitt 3.2 gezeigt hat, existieren keine Software-Lösungen 
oder formale Modellierungsbeschreibungen, die eine rückwärts berechnende Ausführung 
von Simulationsmodellen ermöglichen. Dennoch existieren mit [YiCl94], [JaCh97], 
[WaMe97], [OhHa04] und [GrBo04] einige Arbeiten, in denen rückwärts-gerichtete 
Simulationsmodelle und Experimente mit unterschiedlichem Erfolg eingesetzt wurden. 
Für die Auswertung der entsprechenden Simulationsdaten mussten in allen Fällen 
umfangreiche Transformationen der generierten Datenmengen erfolgen, weil die 
eingesetzten Werkzeuge dieses Vorgehen nicht implizit unterstützt haben. Oftmals wurde 
hier mit einer Transformation und Neuberechnung aller einzelnen Ereigniszeitpunkte 
gearbeitet, so dass auch während der visuellen Analyse eines Simulationslaufs keine 
Erkenntnisse über das dynamische Verhalten des modellierten Systems gezogen werden 
konnten. Des Weiteren wurden die betrachteten Simulationsmodelle speziell für diese 
Untersuchungszwecke modelliert und die entsprechende Verhaltenssteuerung auf eine 
rückwärts gerichtete Ausführung hin optimiert. Ein phasenübergreifender Einsatz eines 
Simulationsmodells zur richtungsoffenen Simulation eines einzigen Simulationsmodells 
erfolgt in keinem der dargestellten Fälle. 
 
Bewertung 
Für die Konzeption und Implementierung des Werkzeugs sind insbesondere zwei 
Fragestellungen zu lösen: Zum einen eine zielgerichtete Transformation bestehender 
Simulationsmodelle in ihr entgegengesetzt gerichtetes Pendant und eine bessere 
Integration einer rückwärts gerichteten Ausführung eines Simulationslaufes in den 
Simulatorkern und die Visualisierungskomponenten. 

3.4 Visualisierung von Ablaufsimulationen 

Ein Ziel des anvisierten Werkzeugs ist es, durch die Visualisierung in einer virtuellen 
Umgebung eine höchstmögliche Immersion des Anwenders in das zu beplanende 
Fertigungssystem zu erreichen. Seine Wahrnehmung muss bis zu einem gewissen Grad 
getäuscht werden. Neben der Täuschung der menschlichen Wahrnehmung durch die 
virtuelle Umgebung und Repräsentationsformen von Objekten in der virtuellen Realität 
wird in diesem Abschnitt insbesondere die Eignung von VR-Systemen als 
Benutzerschnittstelle untersucht. 
 
Für die Planung und Gestaltung eines Fertigungssystems ist eine umfangreiche, 
ganzheitliche Betrachtung seiner Komponenten nötig, inklusive deren gegenseitige 
Wechselwirkungen. Simulationssysteme, deren Visualisierungsmöglichkeiten sich auf eine 
zweidimensionale Darstellung beschränken, sind jedoch oftmals nicht in der Lage, alle 
Elemente und Strukturen so vollständig abzubilden und liefern somit nur ein 
unvollständiges oder verfälschtes Abbild der Realität [Berg02]. 
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Betrachtet man die Entwicklung der vergangenen Jahre auch in anderen Bereichen der 
IT-Industrie, so lässt sich ein Trend hin zu einer dreidimensionalen Repräsentation 
einzelner Objekte erkennen. Diese Form der Darstellung eröffnet dem Anwender eine 
verbesserte Möglichkeit der Erfassung von Elementen und ihrer Anordnung in 
Fertigungsstrukturen. Im Gegensatz zur zweidimensionalen Darstellung erhält er nicht 
nur quantitative Ergebnisse und statistische Kenngrößen eines Simulationsmodells, 
sondern in einem begrenzten Rahmen auch Informationen über die räumliche und 
zeitliche Anordnung und Verhaltensweisen des abgebildeten Fertigungssystems. 
Simulationsmodelle, die eine dreidimensionale Darstellung offerieren, können daher 
aussagefähigere und zuverlässigere Ergebnisse anbieten und den Prozess der 
Modellvalidierung und –verifikation wesentlich beschleunigen [Berg02]. 
 
Die realistischere Darstellung des abgebildeten Fertigungssystems bietet darüber hinaus 
wesentliche Vorteile, wenn es um die Kommunikation einzelner Planungsschritte mit 
Nicht-Simulationsexperten geht. Die grundlegende Verhaltensweise eines Systems 
erschließt sich umso leichter, je realistischer die Abbildung eines Systems in der 
virtuellen Umgebung erfolgt. Ein möglichst immersiver Umgang mit dem 
Simulationsmodell in einer virtuellen Umgebung kann diesen Effekt auch für den 
Anwender selbst weiter verstärken. Das erscheint insbesondere vor dem Hintergrund 
einer zunehmenden Komplexität der Simulationsprojekte und dem Anwachsen der 
Planungsteams umso mehr sinnvoll [Berg02]. 

3.4.1 Menschliche Wahrnehmung in virtuellen Umgebungen 

Menschen können mit ihrer Umwelt in unterschiedlicher Weise interagieren. 
Informationen werden aus der Umwelt aufgenommen und können an die Umwelt 
abgegeben werden. Die Eingangskanäle eines Menschen sind Sehen, Hören, Riechen, 
Schmecken und Fühlen. Riechen und Schmecken spielen in diesem Arbeitskontext eine 
untergeordnete Rolle. Die meisten Eindrücke sammeln Menschen mit dem Auge. 
Insbesondere bei dem Ausfall des Sehsinns (z.B. wegen Dunkelheit) werden Hören und 
Fühlen wichtiger. 

3.4.1.1 Täuschung des Sehsinns 

Für eine Täuschung des Sehsinns müssen Modelle von virtuellen 3D-Welten in Bilder für 
die Augen übersetzt werden. Der Prozess unterteilt sich in die Berechnung der Bilder und 
das physische Erzeugen der Bilder. 
 
Berechnung der Bilder 
Um eine virtuelle Szene auf dem Bildschirm zu zeichnen (Rendering), müssen die 
Geometriedaten der Szene eine Rendering-Pipeline durchlaufen. Aus dreidimensionalen 
Vektordaten wird ein Bild generiert. Innerhalb der Rendering-Pipeline kann zwischen drei 
Arbeitsschritten unterschieden werden: 
 
1. Die Aufbereitung ist dafür verantwortlich, die Geometriedaten der Szene zu 

reduzieren und in ein für die weitere Verarbeitung optimiertes Format zu bringen. 
Gegebenenfalls findet hier auch die Transformation bewegter Objekte an ihre Position 
innerhalb der Szene statt. 
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2. Die Schritte Projection und Clipping projizieren die transformierten Szenendaten auf 
den Bildschirm und schneiden „überhängende“ Polygone auf die Bildschirmgröße 
zurecht. 

3. Der abschließende Schritt der Rasterung wird auf Pixel4-Basis ausgeführt. Hier 
werden die zu zeichnenden Pixel in Abhängigkeit von transformierten Vektoren, 
Farben und Texturen eingefärbt. Die Sichtbarkeit eines Pixels wird durch Z-Buffering5 
ermittelt. Die Rasterung wird seit der Einführung von Grafikkarten mit 3D-
Beschleunigung komplett in Hardware durchgeführt. 

 
Große Teile der Rendering-Pipeline sind mittlerweile in Software-Schnittstellen verlagert, 
die aufgrund von Unterschieden in der Grafik-Hardware notwendig sind, um die 
Lauffähigkeit der Anwendung auf unterschiedlichen Hardware-Plattformen zu garantieren. 
Diese Grafik-APIs sollen unabhängig von der Grafik-Hardware einen festen 
Funktionsumfang bieten, so dass auch gegebenenfalls Funktionen, die in der Hardware 
nicht vorhanden sind, durch die Software-Schnittstelle emuliert werden. 
 

 

Abbildung 10: Rendering Pipeline 

Erzeugen der Bilder 
Entsprechend der Erkenntnis, dass die meisten Wahrnehmungen über den Sehsinn 
erfolgen, orientiert sich die Entwicklung von Ausgabegeräten auch auf die Täuschung der 
Augen. Durch verschiedene Abstände und Winkel, die die Augen zu einem realen Objekt 
haben, entstehen zwei perspektivisch verschobene Bilder. Um den Sehsinn zu täuschen, 
müssen diese beiden Bilder für das rechte und linke Auge erzeugt werden. Dies kann 
durch ein am Kopf befestigtes Display (Head mounted Display (HmD)) mit getrennten 
Bildern für das rechte und linke Auge geschehen. Neben den HmDs, die das Bild direkt 
am Kopf des Benutzers erzeugen, existieren Lösungen, bei denen Bilder entstehen, die 

                                          
4  Ein Pixel bezeichnet die kleinste Einheit der Darstellung auf einem Bildschirm [Balz05]. 
5  Das Z-Buffering wird in der Computergraphik angewendet, um die verdeckten Flächen in einer 

dreidimensionalen Grafik zu ermitteln. Durch die Informationen im Z-Buffer (deutsch Z-Puffer) stellt das 
Verfahren fest, welche Elemente einer Szene gezeichnet werden müssen und welche verdeckt sind [BeBr03]. 
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Informationen für beide Augen enthalten. Zur Trennung des rechten und linken Bildes 
haben sich zwei Lösungen in Form von Shutterbrillen oder der Trennung durch 
Polarisation durchgesetzt [DFAB98]. Während die Shutter-Technik nur einen Projektor 
benötigt, braucht die Technik mit Hilfe einer Polarisationstechnik zwei Projektoren. 
Trotzdem müssen für beide Verfahren zwei verschiedene Bilder erzeugt werden. Um 
einen möglichst weiten Bereich des Sichtfeldes des Anwenders auszufüllen, können 
mehrere Projektionssysteme zu einer größeren Fläche kombiniert werden. Diese Fläche 
kann planar sein, aber auch den Anwender partiell oder ganz umgeben. Eine mögliche 
Anordnung der Flächen ist ein Würfel, in dem sich der Anwender befindet. Die Bilder 
werden mit Projektoren von außen aufgebracht (Rückprojektion). Verschiedene 
Installationen von solchen Systemen unterscheiden sich in der Anzahl der verwendeten 
Flächen des Würfels. In der einfachsten Variante werden nur die Flächen vor und rechts 
wie links neben dem Anwender verwendet [Brac02]. Verbessert werden kann dies, indem 
man die Rückseite, die Decke und/oder den Boden hinzunimmt. Ist der Anwender 
komplett von dem Würfel umschlossen, kann er in alle Richtungen blicken, ohne eine 
Unterbrechung der virtuellen Umgebung zu erfahren. Neben dem Problem der 
Kanaltrennung muss auch die Kopfposition des Betrachters erfasst werden, um 
perspektivisch richtige Bilder zu erzeugen. Hier sind unterschiedliche Tracking-Verfahren 
(Mechanische Tracker, Ultraschalltracker und/oder elektromagnetische Tracker) bekannt 
[RDB01]. 

3.4.1.2 Täuschung des Tast- und Hörsinns 

Um den Hörsinn durch eine 3-dimensionale Tonwiedergabe zu überlisten, existieren 
einige Arbeiten. Töne aus Kopfhörern kommen immer aus der Richtung, aus der sie 
aufgenommen wurden. In der Realität würde ein Ton, der sich vor einer Person befindet, 
nach einer Drehung hinter ihr erscheinen. Töne aus Kopfhörern drehen sich jedoch mit. 
Um diesen Effekt auszuschalten, muss ein Computer Lage- und Richtungsortung 
beherrschen und diese dann mathematisch umsetzen. Die Position des Anwenders und 
dessen Kopflage werden geortet und die Töne an dessen Bewegung angepasst. Je nach 
Anwendung werden Kopfhörer oder im Raum angebrachte Boxen benutzt [Bega94]. 
 
Weit weniger Arbeiten existieren zum Täuschen des Tastsinns. Um eine realistische 
Interaktion mit der virtuellen Umgebung zu erzeugen, reicht es nicht aus, Objekte 
anzustoßen und zu bewegen, es ist zusätzlich nötig eine Rückkopplung zu erlangen, die 
auf den Anwender wirkt. Unterschieden wird zwischen dem taktilen Feedback, also der 
Rückwirkung des Tastens in Form von Druck, Wärme oder Schmerz und dem Force 
Feedback, also der Rückkopplung der entstehenden Kräfte durch Lenken der Finger und 
Hand. 

3.4.2 VR als User Interface 

Im stetig härter werdenden Wettbewerb wird die Umsetzung von Softwaresystemen, die 
die Virtual Reality (vgl. Definition 30) einsetzen, als eine Technologie angesehen, die es 
den betroffenen Unternehmen (heutzutage aufgrund der hohen Entwicklungskosten meist 
Großunternehmen) nicht nur ermöglicht, am Markt zu bestehen, sondern 
Wettbewerbsvorteile gegenüber Konkurrenten zu erarbeiten [Berg02]. Die von einem 
Computer generierte und kontrollierte Umgebung für die Mensch-Maschine-Interaktion 
(hier analog zum Begriff der virtuellen Umgebung) umfasst somit alle Technologien zur 
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Definition und echtzeitfähigen Aufbereitung eines rechnerinternen, dreidimensionalen 
Modells für die menschlichen Sinne, die es dem Anwender ermöglichen durch 
Einbeziehung seiner Person in das Modell (vgl. Immersion) und infolge durch das Modell 
initiierter Rückkopplungen direkt zu manipulieren (vgl. Interaktion) [Berg02]. 
 
Die beschriebenen Systeme sind zum Teil sehr aufwendig und kostenintensiv zu 
implementierten. In vielen Anwendungsbereichen wird ein so hoher Grad der Immersion 
nicht benötigt. In CAD-Systemen6 beispielsweise sind die traditionellen, preiswerten 
Systeme durch Formen der Animation aufgewertet worden, so dass Objekte durch vorab 
definierte Bewegungsgleichungen kontrolliert werden können. In der Konstruktion oder in 
der Architektur z.B. reicht es oft aus, den Objekten durch Schattierungen einen 
Tiefeneindruck zu verleihen oder sie durch Drehen von einer anderen Seite zu 
betrachten, um dem Kunden eine Vorstellung zu vermitteln. 
 
Die Aufgaben eines VR-Systems liegen demnach in der Modellierung der Objekte einer 
virtuellen Umgebung, der Präsentation der virtuellen Umgebung sowie der Realisierung 
der Interaktion mit der virtuellen Umgebung. Für jede dieser drei Teilaufgaben sind 
spezifische Hard- und Softwarekomponenten erforderlich [Berg02]. 
 
Modellierung 
Inhalt der Modellierung ist im Wesentlichen die Generierung dreidimensionaler Modelle, 
die in einer virtuellen Umgebung genutzt werden können. Sie umfasst somit die 
Erzeugung von 3D-Modellen, also die gestaltorientierte Modellierung sowie die Definition 
der Funktion der Objekte, d.h. die funktionsorientierte Modellierung. Für die 
gestaltorientierte Modellierung stehen umfangreiche CAD-Werkzeuge zur Verfügung, auf 
die auch in der hier vorliegenden Arbeit zurückgegriffen werden soll. Die Funktion der 
3D-Modelle beschränkt sich hierbei auf die Repräsentation spezieller Funktionsblöcke 
(Modellbausteine) eines Simulationsmodells, so dass eine implizierte Modellierung des 
Verhaltens durch die Modellierungskomponente des zu entwickelnden Werkzeugs erfüllt 
wird. 
 
Präsentation 
Im Rahmen der Präsentation der virtuellen Umgebung erfolgt die auf den zuvor 
definierten 3D-Modellen basierende Erzeugung der von den menschlichen Sinnen 
wahrnehmbaren Präsentationsformen. Hierfür wird neben speziellen Grafikcomputern 
eine Software-Applikation notwendig, die die dreidimensionale Repräsentation erzeugt. 
Darüber hinaus müssen entsprechende Ausgabegeräte bereitgestellt werden. Technisch 
realisierbar sind heutzutage die visuelle, die akustische sowie mit einigen 
Einschränkungen die haptische Präsentation, wobei sich die meisten VR-Systeme auf die 
visuelle Präsentation beschränken. Im Rahmen des hier zu entwickelnden Werkzeugs soll 
sich ebenfalls auf die visuelle Präsentation des Simulationsmodells in einer virtuellen 
Umgebung beschränkt werden. Die entsprechende VR-Software soll im Rahmen der 
Werkzeugentwicklung als Visualisierungskomponente erstellt und auf die speziellen 
Anforderungen einer immersiven, interaktiven und dreidimensionalen Visualisierung 

                                          
6  Computer-Aided-Design (CAD) ist die rechnergestützte Entwicklung und Konstruktion von Bauteilen, 

Baugruppen, Erzeugnissen und Anlagen unter Einschluss technischer Berechnungen sowie der 
Bewegungssimulation von Objekten und der Erarbeitung von Dokumentationen [FiHe00]. 
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abgestimmt werden. Da die vorliegenden 3D-Daten meist zu reich an Informationen sind, 
können im Rahmen der Umsetzung der 3D-Visualisierung spezielle Methoden und 
Algorithmen zur Komplexitätsreduktion eingesetzt werden (vgl. [KlKr02], [WaFi01]). 
 
Interaktion 
Unter Interaktion können alle Mechanismen summiert werden, welche die direkte 
Einflussnahme des Anwenders auf die Objekte in der virtuellen Umgebung ermöglichen 
(vgl. Definition 28). Die beiden wesentlichen Komponenten zur Interaktion sind 3D-
Positionsmeßsysteme (Trackingsysteme) und 3D-Eingabegeräte (Devices). Tracking-
systeme ermöglichen die Verfolgung von Kopf- bzw. Handbewegungen des Anwenders, 
indem die Position und Orientierung des Senders im Raum in den sechs möglichen 
Freiheitsgraden relativ zu einem Bezugspunkt erfasst wird. Für diese Form der 
Interaktion in einer virtuellen Umgebung werden spezielle Eingabegeräte benötigt, die 
eine Bewegung im Raum bestmöglich unterstützen. Viele VR-Probleme lassen sich aber 
auch mit handelsüblichen Software-Tools und Desktop-PCs und deren Ein- bzw. 
Ausgabegeräten angemessen lösen. Als Ausgabegeräte kommt hierbei meist der 
Bildschirm (eventuell Stereo-Lautsprecher) zum Einsatz. Für die Eingabe werden die 
Tastatur und die Maus verwendet. Für die Implementierung des hier zu entwickelnden 
Werkzeugs sollen die zuletzt genannten Methoden genügen, wobei während der 
Umsetzung eine mögliche Erweiterung um spezielle Darstellungs- und 
Interaktionsmöglichkeiten zu berücksichtigen ist. 

3.4.3 Interaktion in virtuellen Umgebungen 

Handelt und agiert ein Anwender in einer virtuellen dreidimensionalen Umgebung, so 
spricht man von 3D-Interaktion. Elementar für eine intuitive Interaktion mit einem 
System ist die so genannte Reiz-Reaktions-Korrespondenz. Diese liegt immer dann vor, 
wenn z.B. auf eine Bewegung des Eingabegerätes nach rechts, auch eine entsprechende 
Bewegung des selektierten Objektes nach rechts erfolgt. Liegt diese nicht vor, muss der 
Anwender ein mentales Abbild der gewünschten Aktion in Verbindung mit der 
erforderlichen Bewegung erstellen. Nach Stork [Stor00] lassen sich folgende Basis(inter-
)aktionen unterscheiden: 
 

 Das Navigieren, verstanden als zielgerichtete Bewegung im Raum. 
 Das Positionieren, verstanden als das Platzieren eines Objektes an einer definierten 

Raumposition. 
 Das Orientieren, verstanden als das Rotieren und Ausrichten eines Objektes im 

Raum. 
 Das Selektieren bzw. Deselektieren, verstanden als das Auswählen eines Punktes 

oder Objektes im Raum. 
 
Navigation, Objekt-Selektion und -Manipulation sind die Basisoperationen, die von 
jeglichen dreidimensionalen Anwendungen umgesetzt werden müssen. Hierbei ist es 
üblich, dass Positionieren und Orientieren als eine Operation zusammengefasst werden, 
da ein 3D-Eingabegerät mit sechs Freiheitsgraden, diese Operationen gleichzeitig 
durchführen kann. In der 3D-Interaktion wird unter Navigation die Bewegung des 
Anwenders in der Umgebung der dreidimensionalen virtuellen Szenerie verstanden. 
Häufig ist eben diese Navigation die erforderliche Grundlage zur Durchführung der 
tatsächlichen Interaktionsaufgaben und nicht die eigentliche Aufgabe. Navigation ist also 
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oft „nur Mittel zum Zweck“; sie darf den Anwender auf keinen Fall von seiner 
ursprünglichen Aufgabe ablenken. Je nach Art der Umgebung, lassen sich nach Bowman 
et. al. [BKLP01] unterschiedliche Formen der Navigation unterscheiden: 
 

 Exploration, d.h. Navigation ohne spezielles Ziel bzw. als Umgebungserkundung. 
 Search, d.h. Aufsuchen des Ziels und sich dorthin bewegen. 
 Maneuvering, d.h. Durchführung kleiner, präziser Bewegungen, um eine bessere 

Position für eine anstehende Arbeit einzunehmen. 
 
Es existieren noch zwei weitere Arten der Navigation, bei denen gezielt die Freiheitsgrade 
eines navigierenden Akteurs eingeschränkt sind: 
 

 Walking, wobei der Anwender sich auf einem zweidimensionalen Untergrund 
bewegt. Es sind lediglich die Bewegungen vor, zurück, links und rechts möglich. Der 
Akteur bewegt sich immer in die Richtung, die seiner Blickrichtungsachse 
entspricht. Die Walking-Metapher erfordert eine kontinuierliche Eingabe von Seiten 
des Anwenders. Erfolgt diese nicht, so bleibt er stehen. Dient diese Art der 
Navigation nicht dem eigentlichen Aufgabenzweck, so kann die erforderliche 
Dauereingabe als störend empfunden werden. In weiträumigen Szenerien, in denen 
sich der Anwender via Exploration einen Überblick verschaffen will, ist diese 
Metapher aufgrund der eingeschränkten Bewegungsfreiheit ungeeignet. Vorteilhaft 
ist sie in Situationen, bei denen der Anwender beengte Räume erkundet bzw. 
bestimmte Zielpunkte exakt ansteuern möchte. 

 Flying, ermöglicht eine kontinuierliche Bewegung entlang einer geraden Flugbahn. 
Richtungsänderungen z.B. durch einen Mausklick sowie Änderungen der 
Geschwindigkeit sind möglich. Nachteilig ist diese Navigationsart in beengten 
Räumen, da man durch Begrenzungselemente wie z.B. Wände einfach hindurch 
fliegt. Auch hier lässt sich die Orientierung der Kamera nicht unabhängig von der 
Bewegung des Akteurs verändern. 

 
Um die Positionsbestimmung zu vereinfachen, kann ein Akteur sich Navigationshilfen 
bedienen. Diese können fester Bestandteil der 3D-Umgebung (z.B. Hinweisschilder) bzw. 
externe Objekte (z.B. Übersichtskarte mit eingeblendeter Position und Blickrichtung, 
Kompass) sein. Genau wie in der realen Welt, bieten Viewpoints einen besonderen 
Überblick über eine komplette Szenerie bzw. ausgewählte Teilbereiche einer Szenerie. 
Solche Viewpoints können zusätzliche Informationen, über das, was zu sehen ist, für den 
Anwender bereithalten. Für die Erreichung eines Viewpoints kann sich der Anwender 
beispielsweise der Beam-Metapher bedienen, bei der er zu dem gewünschten Ort 
teleportiert wird. Problematisch ist hierbei, dass der Akteur schnell die Übersicht über 
seine derzeitige Position verliert. 

3.4.4 Virtuelle Umgebung von Fertigungssystemen 

Das Problemfeld, dem sich diese Arbeit widmet, liegt im Umfeld der Modellierung und 
Simulation komplexer Fertigungssysteme, die hinsichtlich verschiedenster 
Fertigungsprinzipien organisiert werden und in einer virtuellen Umgebung dargestellt 
werden, um sie möglichst immersiv und interaktiv parallel zu ihrer Ausführung 
analysieren und optimieren zu können. Dafür ist es notwendig, alle zur Erfüllung dieser 
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Aufgaben notwendigen Teilsysteme des abzubildenden Systems mit ihren technischen 
Objekten (Anlagen, Maschinen, Werker, etc.) sowie die unterschiedlichen, sich 
gegenseitig bedingenden Vorgänge abzubilden, die das dynamische Verhalten des 
Systems beeinflussen. Die modellierten Teilmodelle (Modellbausteine) sind 
verschiedenartig gestaltet und üben darüber hinaus verschiedenartige Funktionen aus. 
Neben der eigentlichen Gestalt der Modellbausteine in der virtuellen Umgebung stellt 
daher auch die Funktion des Modellbausteins ein wesentliches Merkmal dar. 
 
Das Gestaltmodell als Partialmodell zur Repräsentation der Gestalt der in einer virtuellen 
Umgebung präsentierten Objekte wird meist durch 3D-Modelle realisiert, die mittels 
Volumen-7 oder auch Flächenmodell8 erstellt werden. Die Darstellung eines 
Fertigungssystems in einer virtuellen Umgebung mit ausschließlich statischen Objekten 
hat für technische Anwendung wie die Simulation, die insbesondere Aufgabenstellungen 
hinsichtlich der Funktionalität des abgebildeten Systems erfüllen sollen, wenig 
Aussagekraft und damit einen geringen Stellenwert. Die Evaluation eines 
Fertigungssystems mittels der Virtual Reality erfordert daher die Simulation oder 
zumindest Animation der Bewegung einzelner Modellbausteine sowie die Möglichkeit zum 
direkten Eingriff des Anwenders [Berg02]. Die verschiedenen interaktiven 
Steuerungsmöglichkeiten werden dem Anwender über ausgewählte Bedienelemente zur 
Verfügung gestellt und variieren in ihrer Komplexität stark hinsichtlich des gewünschten 
Untersuchungsziels. 

3.4.5 Verständnisoptimierung durch virtuelle Umgebungen 

Die Komplexität eines Fertigungssystems erklärt sich nicht nur aus der Anzahl aller 
Elemente, sondern insbesondere auch aus deren gegenseitiger Vernetzung, durch die 
sich die einzelnen Elemente gegenseitig mehr oder weniger stark beeinflussen. So 
erzeugen also die Verbindungen zwischen den einzelnen Elementen die eigentliche 
Komplexität und bedingen die gleichzeitige Beachtung sehr vieler Merkmale. Die hohe 
Komplexität eines Fertigungssystems stellt somit hohe Anforderungen an die Fähigkeiten 
des Anwenders, Informationen zu sammeln, zu integrieren und Handlungen zu planen. 
Die Komplexität an sich wird damit zur subjektiven Größe. Für den vereinfachten 
Umgang mit komplexen Fertigungssystemen ist es also ausschlaggebend, dass es in 
einer Form präsentiert wird, welche dem realen Erscheinungsbild bestmöglich entspricht, 
um den Assoziationseffekt des Menschen bestmöglich auszunutzen. Die meisten 
Menschen beschreiben die wirkliche, physische Welt mit Begriffen aus ihrem 
Wahrnehmungsbereich, mit Objekten, die sie umgeben und die sich möglicherweise 
bewegen. Oftmals wird diese Wahrnehmung auch räumlich beschrieben, zum Beispiel 
dadurch, wo man sich im Raum befindet und wie die umgebenden Dinge in Relation 
zueinander stehen. Für die Visualisierung eines Fertigungssystems ist es daher 
erforderlich, die beiden Definitionsbereiche, also das Aussehen und die räumliche 
Anordnung abzubilden, da sie für ein reales Empfinden des Anwenders ausschlaggebend 
sind (vgl. [Berg02]). 

                                          
7  Volumenmodell: Bei einem Volumenmodell hat jedes räumliche Objekt ein definiertes Volumen um Raum 

und geometrische Eigenschaften (Oberfläche, Volumen, Mittelpunkt) sowie physikalische Eigenschaften 
[FiHe00].  

8  Flächenmodelle beschreiben die zu modellierenden Objekte als einzelne Flächen. Sie lassen sich je nach 
Komplexität in die unterschiedlichen Typen Ebene, Quadrike und Freiformflächen unterscheiden [FiHe00]. 
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Die Technologie der Virtual Reality erlaubt die räumliche und realitätsnahe Darstellung 
von Vorgängen und Gegenständen der realen Umwelt oder erdachter Welten und die 
Immersion des Anwenders in diese synthetische Welt. Der Anwender bekommt den 
Eindruck, tatsächlich in der virtuellen Welt anwesend zu sein [Lani91] und kann sie nach 
eigenen Wünschen in natürlicher Form erfahren. Durch die wirklichkeitsgetreue 
Abbildung, die zumindest potentiell durch diese Technologie erreicht werden kann, erhält 
der Anwender eine verbesserte Rückmeldung der Modellbausteine seines 
Simulationsmodells und kann so sein Erfahrungswissen optimaler auf das abgebildete 
Problem anwenden [Berg02]. 
 
Neben der realitätsnahen Darstellung ist die Integration des Anwenders in das virtuelle 
Simulationsmodell von entscheidender Bedeutung. Der Anwender wird so Teil des 
Systems und kann unmittelbarer dessen Funktionsweise erleben, überprüfen und 
verbessern. Neben einer monokausalen Denkweise nach dem Ursache-Wirkung-Prinzip 
kann der Anwender ein multikausales Geflecht aufbauen und das System so „von innen 
heraus“ verstehen. Die räumliche Darstellung und die Option der Bewegung ermöglicht 
dem Anwender die dargestellte Szene aus verschiedenen Perspektiven zu erleben. 
Räumlich-zeitliche Muster können ergangen und durch den unmittelbaren Erlebnisbezug 
kann der Aufbau und das Verhalten des abgebildeten Fertigungssystems überprüft 
werden [Lani91]. Die Effektivität und Effizienz des Problemlösungsprozesses kann ebenso 
wie die Aussagekraft der Entscheidungen erhöht werden. 
 
Durch die Darstellung in einem dreidimensionalen Raum kann der Anwender zusätzlich 
erheblich mehr Daten gleichzeitig im Blickfeld halten, aufnehmen und schneller zu 
entscheidenden Erkenntnissen gelangen, weil er Strukturen besser und schneller erkennt 
und so neu arrangieren kann, um das zugrunde liegende Problem zu lösen. Ein 
unzusammenhängendes Ensemble von Modellbausteinen erhält eine Bedeutung. 
Insgesamt kann der Anwender durch den Einsatz der Technologie der Virtual Reality zu 
einem besseren Verständnis der Zusammenhänge gelangen und dadurch ohne größeren 
Einarbeitungsaufwand ein Fertigungssystem analysieren und optimieren. 
 
Zusammenfassend kann man also festhalten, das bereits umfangreiche Arbeiten zur 
Gestaltung von virtuellen Umgebungen existieren, deren Ergebnisse in die Konzeption 
des hier zu entwickelnden Werkzeugs einfließen können. Verschiedene Kopplungen von 
Simulatoren an virtuelle Umgebungen sind bereits gelungen und erfordern neben einer 
Festlegung der benötigten Schnittstellen keine besonderen Anforderungen, die über die 
Gestaltung von echtzeitfähigen Benutzeroberflächen hinausgehen. Das Werkzeug an sich 
muss aber aus mehr als nur den Visualisierungskomponenten bestehen. Im folgenden 
Abschnitt sollen deswegen Methoden und Paradigmen des Software-Designs vorgestellt 
werden, die in der Phase der Konzeption des Werkzeugs in seiner Gesamtheit wie der 
einzelnen Module benötigt werden. 

3.5 Software-Design von Mehrbenutzersystemen 

Nach der fachlich orientierten Betrachtung des Stands der Technik hinsichtlich der 
Anforderungen an Basisprozess, Modellierungsmethode und Simulationswerkzeug in den 
vorherigen Abschnitten werden hier die informationstechnischen Grundlagen betrachtet, 
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soweit sie die Konzeption und Realisierung des Werkzeugs betreffen. Die Grundlagen des 
Software Engineering9 sowie Merkmale von Software-Architekturen10 werden 
beschrieben. Aus der Entscheidung für eine bestimmte Architektur innerhalb eines 
vorgegebenen Design-Paradigmas resultieren Konsequenzen für die spätere 
Implementierung. 

3.5.1 Allgemeine Paradigmen des Software-Designs 

Zur Ausführung eines Software-Entwurfs werden in der Literatur allgemeine 
Verhaltensregeln oder Prinzipien angegeben und diskutiert [Henk97]. In diesem 
Abschnitt werden die Paradigmen Abstraktion, Hierarchisierung, Strukturierung und 
Modularisierung behandelt, zwei weitere Prinzipien (Kapselung und Typisierung) werden 
im Rahmen des folgenden Abschnitts über objektorientiertes Design betrachtet, da sie 
dort besondere Bedeutung erfahren. Zwar ist eine objektorientierte Vorgehensweise nicht 
unbedingte Vorraussetzung für die Anwendung dieser Prinzipien, dennoch haben viele 
objektorientierte Methoden mindestens implizit die Unterstützung dieser Prinzipien zum 
Ziel. Hieraus begründet sich auch, wenn auch nicht ausschließlich, die Entwicklung des 
objektorientierten Paradigmas. 
 
 
Abstraktion 

„Abstraktion (von lat. abstrahere: abziehen, wegziehen) bezeichnet allgemein den 
Prozess rationaler Verarbeitung von konkretem Sinnesmaterial, wobei von 
bestimmten äußeren, individuellen oder zufälligen Merkmalen, Eigenschaften und 
Beziehungen des betreffenden Objekts abgesehen wird; andere, allgemeingültige, 
strukturelle Eigenschaften werden dagegen als wesentlich herausgehoben und 
zugleich variabel betrachtet“ [Balz82]. 

 
Abstraktion ist eines der wichtigsten und leistungsfähigsten softwaretechnischen 
Prinzipien [Henk97]. Die Komplexität der zu entwickelnden Programme verhindert eine 
ganzheitliche Betrachtung mit allen Details, daher werden sie durch die Methode 
Abstraktion auf ihre wesentlichen Charakteristika reduziert. Die Anwendung des 
Paradigmas Abstraktion im Software-Design bringt zusammenfassend folgende Vorteile: 
 

 Erkennen, Ordnen, Klassifizieren, Gewichten von wesentlichen Merkmalen 
 Erkennen allgemeiner Charakteristika, 
 Trennung zwischen wesentlichen und unwesentlichen Eigenschaften 

 
Eine funktionale Abstraktion stellt eine Leistung in Form einer abstrakten Funktion, 
Operation oder Prozedur zur Verfügung. Sie wird daher oft auch operationale oder 
prozedurale Abstraktion genannt [Balz05]. 
 
Hierarchisierung 

                                          
9  Das Software Engineering als Teilgebiet der Informatik beschäftigt sich mit der standardisierten, 

ingenieursmäßigen Herstellung von Software und den damit verbundenen Prozessen [Somm92]. 
10  Software-Architekturen beschreiben die Zerlegung einer Anwendung in Einheiten, den globalen 

Kontrollfluss, die Handhabung von Randbedingungen und Kommunikationsprotokolle zwischen 
Subsystemen [BrDu04]. 
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„Eine Hierarchie bezeichnet ein System von Elementen, die einander über- bzw. 
untergeordnet sind, so dass jedem Element nur höchstens ein anderes unmittelbar 
übergeordnet ist.“ [nach Henk97]. 

 
Bereits die Bedeutung des Abstraktionsprinzips zeigt die menschliche Notwendigkeit, ein 
gedankliches Modell eines komplexen realen Systems anzufertigen, um dieses System 
verstehen zu können. Reale Systeme sind häufig gut geeignet, hierarchisch gegliedert zu 
werden. Ein komplexes System enthält miteinander in Beziehung stehende Subsysteme, 
diese setzen sich wiederum aus weiteren Subsystemen zusammen, bis schließlich die 
Elemente eines Subsystems nicht weiter sinnvoll dekomponiert werden können. Auf diese 
Weise entsteht eine aus Hierarchieebenen gebildete Struktur, die das Verstehen des 
Gesamtsystems wesentlich erleichtert oder sogar Voraussetzung dafür ist. Weil die 
Struktur hierarchischer Systeme das menschliche Verständnis erleichtert und 
Softwaresysteme Modelle realer (hierarchisch gegliederter) Systeme voraussetzen, bietet 
es sich an, auch künstliche Systeme (z. B. Softwaresysteme) nach dem Prinzip der 
Hierarchisierung zu gliedern. Hierarchisierung ist demnach ein weiteres wichtiges 
Paradigma des Software Designs. Es stellt sich die Frage, nach welchen Kriterien die 
Hierarchisierung vorgenommen werden soll. Zwei Arten von Hierarchien haben sich als 
besonders gut zur Strukturierung von Softwaresystemen geeignet erwiesen: 
 
Die erste Art der Hierarchie ergibt sich aus der Verallgemeinerungsbeziehung zwischen 
zwei Elementen eines künstlichen oder realen Systems. Diese Beziehung ist sehr häufig 
zwischen Systemelementen anzutreffen: Ein „Möbel“ stellt beispielsweise die 
Verallgemeinerung von „Schrank“, „Bett“, „Tisch“ etc. dar. Diese Art von Hierarchie wird 
deshalb häufig IS-A-Hierarchie genannt. Die zweite Art ist die Part-Of-Hierarchie, die auf 
dem Kriterium des Enthaltenseins basiert. Ein Fahrradventil ist ggf. ein Teil des 
Vorderrades und dieses ist Teil des Fahrrades als Ganzes. Anders herum: Ein Fahrrad hat 
ein Vorderrad und ein Vorderrad hat ein Ventil. 
 
Folgende Vorteile der Anwendung des Hierarchisierungsprinzips können also festgehalten 
werden: 
 

 Strukturierung eines Softwareproduktes, 
 Erhöhung der Verständlichkeit, 
 Verbesserung der Wartbarkeit, 
 Reduktion der Komplexität; Erhöhung der Einfachheit, 
 Strukturierung des Entwicklungsprozesses. 

 
Die besondere Bedeutung der Is-A- und der Part-Of-Hierarchie liegt darin begründet, 
dass bei Anwendung des objektorientierten Paradigmas der Softwareentwicklung diese 
Hierarchien eine direkte Entsprechung in der Klassen- und Objekthierarchie des zu 
gestaltenden Softwaresystems finden können (vgl. hierzu auch 3.5.2). Wichtig neben 
diesen beiden Arten sind darüber hinaus die Hierarchie der Module und die 
Prozesshierarchie, also die Beziehungen zwischen dynamischen Systemkomponenten. 
 
Strukturierung 
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„Unter Strukturierung versteht man die Tätigkeit, bei der einer homogenen oder 
homogen erscheinenden Menge von Dingen eine Struktur, insbesondere im 
abstrakten Sinn eine Klassifikation, aufgeprägt wird.“ [nach Henk97] 

 
Weil große und komplexe Systeme sich dem menschlichen Verständnis entziehen, müs-
sen solche Systeme in Teile zerlegt werden, die leichter beherrschbar sind. Wenn diese 
Teile unabhängig voneinander bearbeitet werden können, genügt für das Verständnis des 
Gesamtsystems das Verständnis der kleineren Teile und ihres Zusammenspiels. Eine 
geeignete Zerlegung des Systems ist also dazu geeignet, die Komplexität zu reduzieren. 
Die Betrachtung des zerlegten Systems beinhaltet nicht mehr alle Informationen über die 
Beziehungen zwischen Systemelementen, die im kompletten System vorhanden sind. 
Deshalb kann eine ungeeignete Zerlegung zu einer Betrachtungsweise führen, die den 
Charakter des Gesamtsystems nicht offen darlegt. Die Zerlegung eines Systems muss 
seiner Struktur entsprechen. 
 
Abbildung 11 zeigt ein willkürlich gewähltes Beispielsystem A, eine ungeeignete 
Zerlegung B und eine Zerlegung, die geeignet ist, die Systemstruktur C zu 
veranschaulichen. Während die Darstellungen A und B dem Betrachter wegen ihrer 
höheren Komplexität kaum ermöglichen, den Aufbau des Systems mit einem Blick zu 
erfassen, stellt das in C kein Problem mehr dar: Die geeignete Strukturierung des 
Gesamtsystems hat dessen Komplexität wesentlich reduziert. 
 
Für das Software Design hat das Prinzip der Strukturierung doppelte Bedeutung: Sowohl 
für das eigentliche Softwareprogramm, wie auch für den Designprozess selbst muss eine 
geeignete Struktur identifiziert werden. Das Paradigma der Strukturierung unterstützt 
also auch das methodische Vorgehen beim Software Design. Die explizite Strukturierung 
des Systems zwingt den Softwareingenieur, sich die Vor- und Nachteile unterschiedlicher 
Designalternativen vor Augen zu führen.  
 
Die Anwendung des Prinzips der Strukturierung bringt folgende Vorteile: 
 

 gute Verständlichkeit 
 leichte Einarbeitung 
 Änderungsfreundlichkeit 
 gute Wartbarkeit 
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Abbildung 11: Komplexitätsreduktion durch Strukturierung [Henk97] 

Modularisierung 
„Ein Modul ist ein Bauteil eines größeren Baukastensystems. Module werden 
hauptsächlich verwendet, um sie leicht gegen andere Module austauschen zu 
können, oder neue Module zu besagtem Ganzen hinzuzufügen. Deshalb ist für 
Module eine Schnittstelle vonnöten, um sie mit dem Ganzen zu verbinden.“ 
[Henk97] 

 
In den vorherigen Abschnitten wurde gezeigt, dass die Dekomposition von Systemen in 
seine Komponenten genutzt werden kann, um die Komplexität des Gesamtsystems zu 
verringern. In einem mehr technischen Sinne bezeichnet man solche Teilsysteme als 
Module, wenn sie als Softwarebausteine dienen, indem sie Daten und Algorithmen11 zu 
einer funktionalen Einheit zusammenfassen. Die Festlegung der Module eines 
Softwaresystems wird entsprechend als Modularisierung bezeichnet. 
 
Die interne Struktur jedes Moduls sollte einfach sein, so dass es leicht verstanden werden 
kann. Dennoch ist es ein Ziel, die Kenntnis dieser Interna ausdrücklich nicht zur Voraus-
setzung der Benutzung eines Moduls zu machen (vgl. funktionale Abstraktion). 
Stattdessen definieren Module Schnittstellen für den Zugriff auf die der Umgebung zur 
Verfügung gestellten Ressourcen (Export-Schnittstellen) und die aus der Umgebung 
benutzten Ressourcen (Import-Schnittstellen). Für die Benutzung der Module ist dann 
lediglich die Kenntnis der Spezifikation dieser Schnittstellen nötig. Die tatsächliche 
Implementierung eines Moduls wird durch diese Schnittstellenspezifikation nicht 
festgelegt und kann vor dem Modulbenutzer verborgen werden (Geheimnisprinzip). 
 

                                          
11  Ein Algorithmus wird hier verstanden als „ein schematisches Verfahren zur Lösung bestimmter Klassen von 

Aufgaben, wobei jeder einzelne Schritt dieses Verfahrens genau definiert ist. (…) Er ist die Gesamtheit von 
Grundoperationen und Prüfungen bestimmter logischer Bedingungen, die in einer bestimmten Reihenfolge 
angeordnet sind“ [KlBu71] 



- 46 - 

 

Das Ziel der Modularisierung ist, Module zu finden, die unabhängig voneinander ent-
worfen und getestet werden können. Dazu soll jedes Modul von seiner Umgebung 
unabhängig 
 

 zu entwickeln, 
 übersetzbar, 
 prüfbar (testbar, verifizierbar), 
 wartbar, 
 verständlich sein. 

 
Wenn Module mit anderen Modulen in Beziehung stehen, kann eine vollständige 
Kontextunabhängigkeit nicht erreicht werden. Die Kommunikation zwischen verbundenen 
Modulen führt zu Abhängigkeiten, die als Kopplung bezeichnet werden. Diese Kopplung 
auf das notwendige Maß zu beschränken, ist eine Designvorgabe der Modularisierung12. 
 
Für das Verfahren des Software-Entwurfs sind also verschiedene Prinzipien zur 
Komplexitätsreduktion bekannt, die in der Praxis angewendet werden, um Software-
Produkte schneller, effektiver und vor allem weniger fehleranfällig zu erstellten. Moderne 
Programmiersprachen unterliegen heutzutage dem Prinzip der Objektorientierung. Der 
folgende Abschnitt soll also weitere Organisationsprinzipien vorstellen, mit denen der 
Prozess der Erstellung und Wartung von Software-Produkten weiter vereinfacht werden 
kann. 

3.5.2 Objektorientierte Software-Programmierung 

Objektorientiertes Vorgehen bei der Analyse, dem Design und der Programmierung von 
Softwarewerkzeugen wird als besonders geeignet angesehen, um robuste und leicht 
erweiterbare Softwareprogramme zu erzeugen [GaHe01]. Nach einigen grundlegenden 
Ideen der objektorientierten Programmierung (OOP) werden in diesem Abschnitt spezielle 
Paradigmen der objektorientierten Programmierung näher erläutert: Kapselung, 
Polymorphie und Vererbung. 
 

„Objektorientierte Programmierung (Abkürzung OOP) ist ein Verfahren zur 
Strukturierung von Computerprogrammen, bei dem zusammengehörige Daten 
und die darauf arbeitende Programmlogik zu Einheiten zusammengefasst werden, 
den so genannten Objekten.“[nach GaHe01] 

 
Objekte als fundamentale Bausteine der OOP werden also verwendet, um Aspekte realer 
Systeme zu modellieren. In der Objektorientierung finden sich daher auch wesentliche 
Begriffe aus der Systemtheorie wieder. Das eigentlich Neue an der Objektorientierung 
sind also nicht die zugrunde liegenden Konzepte, sondern deren Adaption und 
Anwendung auf die Softwaretechnologie. Die Komposition der Objekte entspricht der 
Bildung einer Part-Of-Hierarchie. (vgl. Abschnitt 3.5.1) Objekte werden dem 

                                          
12  In der Literatur wird häufig die innere Bindung von Modulen als Kohäsion bezeichnet; Kopplung bezeichnet 

entsprechend die externe Bindung von Modulen. Sowohl Kohäsion, als auch Kopplung können weiter nach 
Typen unterschieden werden, vgl. z.B. [Henk97]. Für die vorliegende Arbeit sollen diese Details außer 
Betracht bleiben. 
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Modularisierungsgedanken gerecht, indem sie Daten und Algorithmen zu einer Einheit mit 
systemweiter Identität und aktuellem Status zusammenfassen.  
 
Allgemeine und objektorientierte Prinzipien als solche sind nicht neu und ihre Anwendung 
ist nicht auf die Programmierung beschränkt. Dennoch werden sie grade hier 
synergetisch zusammengefügt, insbesondere in den objektorientierten Modellen. Die 
Grundidee basiert auf der Annahme, mit ihrer Anwendung die Komplexität von 
Softwaresystemen und damit auch den Projekten zur Softwareentwicklung zu reduzieren, 
indem das Gesamtsystem inkrementell aus Objekten zusammengefügt wird, die jeweils 
unabhängig voneinander entworfen und getestet werden können. Idealerweise können 
einzelne Objektspezifikationen in späteren Projekten wieder verwendet werden. 

3.5.2.1 Grundlagen 

Die OOP unterteilt sich im Wesentlichen in die Phasen objektorientierte Analyse (OOA) 
und objektorientiertes Design (OOD). Im Rahmen der OOA wird ein statisches Modell 
entwickelt, das die Bausteine des Systems mit ihren Attributen und Methoden sowie 
deren Beziehungen untereinander beschreibt. Insbesondere ist bereits in der OOA darauf 
zu achten, das Abbild des realen Systems so zu erstellen, dass eine Implementierung in 
einer Programmiersprache ermöglicht wird. Die logischen Aspekte der Modellierung 
beinhalten sowohl Objektstruktur, wie auch Modul- und Prozessstruktur. Ziel des OOD ist 
darauf aufbauend die Umsetzung der Ergebnisse der Analysephase unter den 
geforderten, technischen Randbedingungen. Im Idealfall werden nur die bereits 
identifizierten Bausteine aus fachlicher Sicht um DV-technisch benötige Bausteine 
ergänzt [nach GaHe01]. Durch diese Vorgehensweise wird implizit die eigentliche 
Funktionslogik von der Gestaltung der Oberfläche und der Speicherung der Daten 
getrennt, was neben der Erhöhung der Flexibilität die Wartbarkeit solcher Systeme 
erheblich vereinfacht. 
 
Zumindest konzeptionell arbeitet ein objektorientiertes Programm demzufolge nicht mehr 
sequenziell einzelne Funktionsbereiche eines Algorithmus ab. Die Programmlogik entfaltet 
sich vielmehr in der Kommunikation und den internen Zustandsveränderungen der 
Objekte, aus denen das Programm besteht. Vorteile der objektorientierten 
Programmierung liegen hierbei in der besseren Modularisierung des Codes und dadurch 
bedingt in einer höheren Wiederverwendbarkeit der Einzelmodule sowie einer 
gesteigerten Flexibilität der gesamten Software, insbesondere in Bezug auf die 
Benutzerführung. Programme dieser Art sind weniger stark gezwungen, dem Anwender 
bestimmte Bedienabläufe aufzuzwingen. Die einzelnen Bausteine, aus denen ein 
objektorientiertes Programm während seiner Abarbeitung besteht, werden als Objekte 
bezeichnet. Die Konzeption dieser Objekte erfolgt in der Regel auf Basis der Paradigmen 
Abstraktion, Kapselung, Polymorphie und Vererbung. 
 
Zur besseren Verwaltung gleichartiger Objekte bedienen sich die meisten 
Programmiersprachen des Konzeptes der Klasse. Klassen sind Vorlagen, aus denen 
Objekte zur Laufzeit erzeugt werden, so genannte Instanzen einer Klasse. Im Programm 
werden daher nicht einzelne Objekte, sondern eine Klasse gleichartiger Objekte definiert. 
Die Klasse entspricht in etwa einem komplexen Datentyp; sie legt aber nicht nur die 
Datentypen der Attribute fest, aus denen die erzeugten Objekte bestehen, sie definiert 
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darüber hinaus die Algorithmen, die auf diesen Daten operieren. Während also zur 
Laufzeit eines Programms einzelne Objekte miteinander interagieren, wird das 
Grundmuster dieser Interaktion durch die Definition der einzelnen Klassen festgelegt. 
Klassen können den Status und das Verhalten einer anderen Klasse durch Vererbung 
übernehmen. Die so entstehende Hierarchie entspricht einer IS-A-Hierarchie. Die 
erbende Klasse, auch Subklasse oder Kindklasse, ist von der Art der vererbenden Klasse, 
auch als Vater- oder Superklasse bezeichnet.  
 
Klassen werden in der Regel in Form von Klassenbibliotheken zusammengefasst, die 
häufig thematisch organisiert sind. So können Anwender einer objektorientierten 
Programmiersprache Klassenbibliotheken erwerben, die beispielsweise den Zugriff auf 
Datenbanken ermöglichen. 
 
Die einer Klasse von Objekten zugeordneten Algorithmen bezeichnet man als Methoden. 
Die Gesamtheit der Methoden eines Objektes oder einer Klasse definiert das Verhalten 
eines Objekts. Sie stellen definierte Schnittstellen zum Zugriff auf den Zustand des 
Objektes dar. Methoden werden von anderen Objekten aufgerufen. Dieser Vorgang wird 
auch als Übergabe einer Nachricht bezeichnet. Die Parameter des Methodenaufrufs als 
Inhalte der übergebenen Nachrichten sind wiederum Objekte. Häufig wird der Begriff 
Methode synonym zu Funktion oder Prozedur gebraucht, obwohl die Funktion oder 
Prozedur eher als Implementierung einer Methode zu betrachten ist. Eine besondere 
Rolle spielen Methoden für das Designparadigma der Kapselung (vgl. Abschnitt 3.5.2.2). 
Spezielle Methoden zur Erzeugung bzw. "Zerstörung" von Objekten heißen Konstruktoren 
und Destruktoren. 
 
Im folgenden Abschnitt wird speziell auf die objektorientierten Design-Paradigmen 
eingegangen. Das Paradigma der Abstraktion wurde oben bereits näher beschrieben. 
Jedes Objekt im System kann dementsprechend als ein abstraktes Modell eines Akteurs 
betrachtet werden, der Aufträge erledigen, seinen Zustand berichten und ändern kann 
und mit den anderen Objekten im System kommuniziert, ohne offen zu legen, wie diese 
Fähigkeiten implementiert sind (Black-Box). 

3.5.2.2 Paradigmen 

Kapselung 
„Als Kapselung bezeichnet man das Verbergen von Implementierungsdetails. Der 
direkte Zugriff auf die interne Datenstruktur wird unterbunden und erfolgt statt-
dessen über definierte Schnittstellen.“[nach GaHe01] 

 
Von der internen Repräsentation eines Objektes soll der Verwender (hier sowohl die 
Algorithmen, die mit den Objekten arbeiten, als auch der Programmierer, der diese 
entwickelt) möglichst wenig wissen müssen (Geheimnisprinzip). Objekte können den 
internen Zustand anderer Objekte nicht in unerwarteter Weise lesen oder ändern. Ein 
Objekt hat eine Schnittstelle, die darüber bestimmt, auf welche Weise mit dem Objekt 
interagiert werden kann. Dies verhindert das Umgehen von Invarianten13 des 
Programms. Denn durch die Kapselung werden über die Schnittstelle nur Informationen 

                                          
13  „Eine Invariante ist eine Zusicherung, die … immer gültig ist.“ [Balz05] 
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über den Leistungsumfang eines Objektes nach außen sichtbar, nicht aber deren interne 
Repräsentation. Dadurch wird eine Schnittstelle nach außen definiert und zugleich 
dokumentiert. 
 
Aus dem Paradigma der Kapselung ergibt sich eine Reihe von Vorteilen. Durch die 
Umsetzung des Geheimnisprinzips kann die interne Implementierung geändert werden, 
ohne die Zusammenarbeit mit anderen Objekten zu beeinträchtigen, da die Schnittstelle 
konstant bleibt. Für den Verwender ergibt sich eine erhöhte Übersichtlichkeit und 
Komplexitätsreduktion. Lediglich Informationen über den Gebrauch der Schnittstelle sind 
für ihn relevant. Darüber hinaus rufen auch interne Änderungen an einem gekapselten 
Objekt keine Folgefehler in anderen Programmteilen hervorrufen. Beim Zugriff über die 
Schnittstellen spielt es für den Verwender keine Rolle, ob diese Funktion 1:1 im Inneren 
des Objekts existiert, das Ergebnis einer Berechnung ist, oder möglicherweise aus 
anderen Quellen (z.B. einer Datei oder Datenbank) stammt. Durch die separaten Objekte 
erreicht der Programmierer insgesamt eine deutlich verbesserte Testbarkeit, Stabilität 
und Änderbarkeit der Software. 
 
Polymorphie 

„Polymorphie („Vielgestaltigkeit“) ist ein Konzept der Programmierung, das es 
erlaubt, einem Wert oder einem Namen (z.B. einer Variablen) mehrere Typen 
zuzuordnen.“[nach GaHe01] 

 
Verschiedene Objekte können auf die gleiche Nachricht also unterschiedlich reagieren. 
Wird die Zuordnung einer Nachricht zur Reaktion auf die Nachricht erst zur Laufzeit 
aufgelöst, dann wird dies auch späte Bindung (oder dynamische Bindung) genannt. In 
älteren typisierten Programmiersprachen wird jedem Namen und jedem Wert im 
Quelltext eines Programms höchstens ein Typ zugeordnet. Polymorphie kann zwischen 
universeller Polymorphie und Ad-hoc Polymorphie (auch Überladen) unterteilt werden. 
Universelle Polymorphie unterscheidet sich von Ad-hoc-Polymorphie in mehreren 
Aspekten. Bei Ad-hoc-Polymorphie kann ein Name oder ein Wert nur endlich viele 
verschiedene Typen besitzen. Diese sind zudem zur Übersetzungszeit bekannt. 
Universelle Polymorphie dagegen erlaubt es, unendlich viele Typen zuzuordnen. Ein 
weiterer Unterschied liegt darin, dass die Implementierung einer universell polymorphen 
Funktion generell gleichen Code unabhängig von den Typen ihrer Argumente ausführt, 
während ad-hoc-polymorphe (also überladene) Funktionen abhängig von den Typen ihrer 
Argumente unterschiedlich implementiert sein können. 
 
Vererbung  

„Die Definition eines neuen Objektes kann gegebenenfalls auf der Definition eines 
bereits vorhandenen Objektes aufbauen, so dass das neue Objekt die Merkmale 
des vorhandenen übernimmt und um neue Bestandteile ergänzt. Die Übernahme 
der Merkmale des vorhandenen Objektes bezeichnet man als Vererbung.“[ nach 
GaHe01] 

 
Neue Klassen von Objekten können auf der Basis bereits vorhandener Objekt-Klassen 
festgelegt werden. Neue Bestandteile können in der Kindklasse hinzugenommen werden. 
Wird keine Vererbung zugelassen, so wird zur Unterscheidung oft von objektbasierter 
Programmierung gesprochen. Die Überdeckung eines neuen Merkmals über ein bei der 
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Vererbung übernommenes Merkmal wird als Überschreiben bezeichnet. Die Nutzung der 
Vererbung bietet sich an, wenn es Objekte gibt, die konzeptionell aufeinander aufbauen. 
Gegebenenfalls lassen sich Objektdefinitionen von vorneherein so aufteilen, dass 
identische Merkmale in der Definition eines "vererbenden" Objektes zusammengefasst 
werden. Vererbung bildet mit diesem Verfahren also eine IS-A-Hierarchie ab. 
Vererbungsbeziehungen zwischen den Objekten werden in der Regel durch 
Klassendefinitionen hergestellt. Die "vererbende" Klasse wird als Basisklasse oder auch 
Superklasse und die "erbende" Klasse als abgeleitete Klasse bzw. Subklasse betitelt. 
 
Objektorientierte Design-Paradigmen können den Anwender beim Software-Entwurf also 
unterstützen, in dem sie helfen, den Modellierungsprozess und das eigentliche Software-
Programm zu strukturieren und seine Komplexität so zu reduzieren, dass ein fehlerfreies 
Entwerfen deutlich erleichtert wird. Die grundlegende Denkweise ist streng 
objektorientiert, orientiert sich also an der für uns Menschen leicht nachvollziehbaren 
Klassifizierung und Typisierung von Objekten zu Gruppen gleichartiger Objektklassen. In 
den letzten Jahren wurden immer wieder Anstrengungen unternommen, die Modellierung 
von Software unter Zuhilfenahme grafischer Werkzeuge zu unterstützen. Mit der im 
folgenden Abschnitt beschriebenen Unified Modelling Language (UML) existiert ein solcher 
Standard, der während der Entwurfs- und Entwicklungsphase des in dieser Arbeit 
angestrebten Werkzeugs angewendet werden soll. 

3.5.3 Grafisches Software-Design mittels der UML 

Im folgenden Abschnitt soll einen Überblick über die Unified Modelling Language (UML) 
als fundamentale Beschreibungssprache für die Modellierung von Software und anderen 
Systemen und deren Einsatzmöglichkeiten gegeben werden. Um zu verhindern, dass 
während des meist komplexen Softwareentwicklungsprozesses fundamentale Fehler 
gemacht werden (Entwicklung des falschen Softwareproduktes bzw. falsche Entwicklung 
des Softwareproduktes) ist die Intention der UML die Ausarbeitung jedes benötigten 
Bearbeitungsschrittes durch grafische Elemente. Damit auch Projektbeteiligte, die keine 
Softwareentwickler sind, den Inhalt des Softwareprojektes verstehen, soll mit ihr eine 
allgemein verwendete Modellierungssprache eingesetzt werden.  
 

 

Abbildung 12: Übersicht über die Diagrammtypen der UML 
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Durch ihre ständige Weiterentwicklung ist die UML mittlerweile als Version 2.0 
freigegeben und hat sich als „Quasi-Standard“ durchgesetzt. Die Diagrammtypen der 
UML lassen sich auf die Klassen Struktur-, Verhaltens- und Interaktionsdiagramme 
aufteilen und werden in den nachfolgenden Abschnitten teilweise vorgestellt (vgl. auch 
[OOSE] und [Kech05]). Bei der Darstellung der einzelnen Diagrammtypen wird sich 
nachfolgend an der Beschreibung nach [Kech05] orientiert. 

3.5.3.1 Grundlagen MDSD und MDA 

Modellgetriebene Entwicklung (MDSD) und Model Driven Architecture (MDA) werden für 
Unternehmen immer attraktiver. Mit Hilfe von MDSD wird Software nicht mehr 
„traditionell“ programmiert, sondern aus Modellen teilweise oder mitunter vollständig 
generiert. Diese Modelle müssen jedoch zunächst erstellt werden. Dazu werden 
Modellierungssprachen eingesetzt wie z.B. UML 2.0, welche sich in großen 
Softwareprojekten durchgesetzt hat, jedoch nicht ausschließlich auf solche beschränkt 
ist. Mit der durch die UML 2.0 zur Verfügung gestellten Diagramme und 
Notationselemente lassen sich statische und dynamische Aspekte verschiedenster 
Anwendungsgebiete modellieren [Stah05]. UML 2.0 wird in Softwareprojekten häufig zur 
Unterstützung bei der Erstellung eines Pflichtenhefts eingesetzt. Das erspart dem 
Programmierer später wertvolle Zeit und dem Unternehmen nicht zuletzt Ressourcen, 
wenn beispielsweise vom Kunden in letzter Minute noch Änderungen an der Software 
gefordert werden. Als Vorteile von MDSD ergeben sich somit unter anderem 
 

 größere Entwicklungseffizienz 
 bessere Integration der Fachexperten 
 leichtere Änderbarkeit von Software 
 verbesserte (Umsetzung der) Softwarearchitektur 
 die Möglichkeit, Fachlogik leichter auf andere Plattformen portieren zu können 

 
Der Ansatz der Model Driven Architecture (MDA) basiert auf der Annahme, dass für die 
Konstruktion eines Softwaresystems ein einziges Modell für die Abbildung einer größeren, 
komplexeren Applikation zu unscharf und überladen ist. Bei den meisten "klassischen" 
(UML)-Modellen sind geschäftsrelevante und technische Informationen vermischt. MDA 
unterteilt das Gesamtmodell in mehrere Schichten (CIM14, PIM15, PSM16, ein Codemodell 
und die Zielplattform). Die Trennung der Modelle stellt eine inhaltliche Erweiterung des 
UML-Standards dar. Insbesondere durch das CIM und vor allem das PIM soll nicht nur 
Plattformunabhängigkeit gewährleistet werden, sondern auch die Sprach- und System-
unabhängigkeit. MDA definiert neben der inhaltlichen Trennung der Modelle auch die 
Transformation der Modelle und unterscheidet zwei Typen: 
 

 Die Modelltransformation von einem Modell in ein anderes Modell 
 Die Codetransformation von einem Modell in den Code 

 

                                          
14  CIM: hier (Computation Independent Model) als umgangssprachliche Beschreibung [Stah05] 
15  PIM (plattformunabhängiges Modell, Platform Independent Model) Abbildung der Geschäftsprozesse 

[Stah05] 
16  PSM (plattformabhängiges Modell, Platform Specific Model) für Architektur, Services [Stah05] 



- 52 - 

 

Die Transformationen erzeugen aus den Elementen des Quellmodells die Elemente des 
Zielmodells. Die Transformation geschieht üblicherweise von der abstrakteren Ebene in 
die konkretere Ebene (CIM-PIM-PSM-Code). Dadurch kann aus einfacheren 
Modellelementen eine komplexere Anwendung erzeugt werden, indem erfahrene 
Architekten ihre Konstruktionsregeln in solche Transformationsprozesse 
einprogrammieren [Stah05]. 
 
MDA ist ein junger Standard der Object Management Group. Ein Ziel der MDA ist die 
Steigerung der Entwicklungsgeschwindigkeit. Das Mittel dazu heißt Automation durch 
Formalisierung. Aus formal eindeutigen Modellen soll durch Generatoren automatisch 
Code erzeugt werden. Dadurch soll auch die Softwarequalität gesteigert werden. Fehler 
in den generierten Codeanteilen können an einer Stelle - in den Generatorschablonen - 
beseitigt werden. Die Qualität des generierten Quellcodes ist gleich bleibend, was zu 
einem höheren Grad der Wiederverwendung führen soll. Ein weiteres wesentliches Ziel ist 
die bessere Handhabbarkeit von Komplexität durch Abstraktion. Mit den 
Modellierungssprachen soll Programmierung auf einer abstrakteren Ebene möglich 
werden, die klare Trennung von fachlichen und technischen Anteilen zielt auf eine 
bessere Wartbarkeit durch Trennung von Verantwortlichkeiten ab. Die abstraktere, 
technologieunabhängige Beschreibung von Schlüsselkonzepten mit eindeutigen 
Modellierungssprachen verspricht eine verbesserte Handhabbarkeit des 
Technologiewandels. Und nicht zuletzt soll eine verbesserte Interoperabilität durch 
Standardisierung erreicht werden [Völt-ol]. 

3.5.3.2 Diagrammarten der UML 

Einzelne Diagrammtypen der UML, die in der Konzeptionsphase dieser Arbeit verwendet 
werden sollen, werden nachfolgend kurz erläutert. 
 
Strukturdiagramme 
Strukturdiagramme modellieren statische, zeitunabhängige Elemente eines Systems. 
Unter diese Diagrammart fallen Klassendiagramme, Objektdiagramme, Kompositions-
strukturdiagramme, Komponentendiagramme, Verteilungsdiagramme und Paket-
diagramme. 
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Abbildung 13: Notationselemente des Klassendiagramms 

Ein Klassendiagramm ist eine Art „Bauplan“, um Instanzen für Objektdiagramme zu 
erzeugen. Instanzen sind konkrete Ausprägungen der jeweiligen Klasse. 
Klassendiagramme legen Attribute, Operationen und ihre Beziehungen zueinander fest. 
Programmiersprachlich ausgedrückt bedeutet dies, dass die Attribute einer Klasse ihre 
Variablen, die Operationen ihre Methoden und Funktionen und Assoziationen die 
Beziehungen zu anderen Klassen darstellen.  
 
Wie bereits erwähnt sind Objektdiagramme eine Spezifizierung ihrer jeweiligen Klasse. 
Das heißt, Objekte nehmen konkrete Werte an (Beispiel-Bild). Ein Objekt hat einen 
Objektnamen (nicht bei unbenannten Objekten) und gibt die Attributwerte zu den in der 
Klasse definierten Attributen an. Zwischen Objekten können ebenfalls Beziehungen 
bestehen (sog. „Links“). Ein Link ist die konkrete Ausprägung einer Assoziation mit einem 
Linknamen und einer Leserichtung. Die Multiplizität ist höchstens 1, da ein Link immer 
genau zwei Objekte verbindet. Kollaborationen „[...] beschreiben Strukturen von 
Objekten, die in ihren speziellen Rollen kollektiv gewünschte Funktionalitäten 
bereitstellen sowie die Verbindungen (Konnektoren) der Objekte untereinander.“ 
[Kech05]. 
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Abbildung 14: Notationselemente des Objektdiagramms 

Verteilungsdiagramme spezifizieren die physische Hardware- und Softwareumgebung und 
die Verteilung der Komponenten in dieser Umgebung. Notationselemente in diesem 
Diagramm sind Knoten und Kommunikationspfade. Ein Knoten besitzt einen Namen und 
stellt eine Systemressource dar. Knoten können weitere Knoten enthalten. 

 

Abbildung 15: Notationselemente des Verteilungsdiagramms 

Verhaltensdiagramme 
Bei Verhaltensdiagrammen liegt das Hauptaugenmerk auf den dynamischen Aspekten 
eines Systems. Sie beschreiben das Verhalten. Hierunter fallen Use-Case-Diagramme, 
Aktivitätendiagramme und Zustandsdiagramme. 
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Abbildung 16: Notationselemente des Use-Case-Diagramms 

Diese Diagrammart stellt die Sicht auf das System durch externe Anwender dar. Das 
heißt es gibt Akteure, die bestimmte Rollen innehaben und mit dem System interagieren. 
Ein Akteur weiß nichts von den systeminternen Abläufen. Er kennt nur die für ihn 
relevanten Abläufe. Der Akteur „sieht“ nun einen Use-Case als so genannte Black-Box. 
Das heißt, dass die Menge der Aktionen innerhalb des Use-Cases für den Akteur 
verborgen bleiben. Zwischen den Akteuren und Use-Cases können Assoziationen mit 
entsprechenden Multiplizitäten modelliert werden. In Use-Case-Diagrammen kann auch 
Vererbung durch Generalisierung modelliert werden. Das heißt, ein Akteur erbt die 
Rechte seiner übergeordneten Rolle. Eine include-Beziehung sagt aus, dass falls Use-
Case 1 ausgeführt wird auch Use-Case 2 ausgeführt werden muss. Im Gegensatz dazu 
muss bei einer extend-Beziehung nicht zwingend Use-Case 2 ausgeführt werden. Use-
Case 1 kann aber durch Use-Case 2 erweitert werden. 
 
Um das Verhalten eines Systems abzubilden werden Aktivitätendiagramme eingesetzt. 
Diese Diagrammart ist sehr vielseitig und es können, nicht zuletzt aufgrund der 
zahlreichen Notationselemente, viele Situationen damit modelliert werden. Dazu gehören 
unter anderem alternative Abläufe, Reihenfolgen von Aktivitäten und parallele 
Aktivitäten. Aus diesem Grund wird im Folgenden nur auf die gängigsten 
Notationselemente eingegangen. Eine Aktion „[...] stellt die fundamentale Einheit 
ausführbarer Funktionalität dar, die im Modell nicht weiter zerlegt wird [...]“ [Kech05].  
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Abbildung 17: Notationselemente des Aktivitätendiagramms 

Die Ausführungsreihenfolge zwischen modellierten Aktionen wird durch gerichtete 
Kanten, den Kontrollflüssen dargestellt. Damit das Diagramm durch sehr viele 
Kontrollflüsse nicht unübersichtlich wird, können Konnektoren mit jeweils eindeutigen 
Namen und einem Kontrollfluss benutzt werden. Das Diagramm bekommt eine noch 
besser lesbare Struktur, wenn Aktivitätsbereiche (sowohl horizontal als auch vertikal) 
benutzt werden, die zugehörige Aktionen zu Organisationseinheiten zusammenschließen. 
Zur Übergabe von Objekten zwischen Aktionen werden Objektknoten eingesetzt, die als 
Speicher der zugehörigen Klasse betrachtet werden. Weiterhin lassen sich so Streams 
und Puffer realisieren. Eine Aktivität beschreibt eine Folge von Aktionen. Start- und 
Endknoten geben die Einstiegs- und Ende-Aktion einer Aktivität vor. Durch 
Entscheidungsknoten wird ein Kontrollfluss verzweigt. An diese Verzweigungen können 
Bedingungen geknüpft sein, so dass sich alternative Wege modellieren lassen. 
Verbindungsknoten führen die verschiedenen Flüsse wieder zusammen. Parallele 
Aktionen werden durch Gabelungen und Vereinigungen dargestellt. „Eine Gabelung teilt 
einen Kontrollfluss in mehrere parallele Kontrollflüsse auf“, während eine Vereinigung 
diese wieder zusammenfasst. 
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Abbildung 18: Notationselemente des Zustanddiagramms 

Mit Zustandsdiagrammen werden die Reaktionen eines Systems auf Ereignisse 
dargestellt. Die wichtigsten Notationselemente sind Zustände, Transitionen, Events, 
Start- und Endzustände und Terminator, Entscheidungen und Kreuzungen und Regionen. 
Ein Zustand hat einen Namen und „[...] modelliert eine Situation, in der gewisse genau 
definierte Bedingungen gelten“ [Kech05]. Um von einem Zustand in einen anderen zu 
gelangen ist eine Transition, das heißt eine gerichtete Kante, zwischen Zuständen 
erforderlich, damit diese schalten kann, sobald ein entsprechendes Event ausgelöst 
wurde. Es werden fünf verschiedene Eventtypen unterschieden, auf die an dieser Stelle 
aber nicht weiter eingegangen werden soll. Start- und Endzustände werden ähnlich wie 
bei Aktivitätendiagrammen modelliert. Sobald ein Terminator erreicht wird endet der 
komplette Zustandsautomat. Ist der Endzustand erreicht wird nur die Ausführung einer 
Ebene von Zuständen beendet. Kreuzungen arbeiten wie Verzweigungen, an die auch 
Bedingungen gebunden sein können und modellieren „[...] eine Hintereinanderschaltung 
von Transitionen“[Kech05]. Entscheidungen können ebenfalls wie Kreuzungen an 
Bedingungen gebunden sein, modellieren aber dynamische Verzweigungen. Zustände 
können auch andere Zustände beinhalten, um somit zusammengesetzte Zustände zu 
modellieren. Durch Regionen lassen sich Zustandsautomaten in disjunkte Bestandteile 
aufteilen. Somit kann jede Region ihre eigenen Start- und Endzustände haben. Der 
Zustandsautomat kann aber erst verlassen werden, wenn in allen Regionen der jeweilige 
Endzustand erreicht ist. 
 
Interaktionsdiagramme 
Als eine Untergruppe der Verhaltensdiagramme konzentrieren sich die Interaktions-
diagramme auf die Interaktionen und den Nachrichtenaustausch zwischen Objekten. 
Sequenzdiagramme eignen sich, um den zeitlichen Ablauf des Nachrichtenaustauschs 
zwischen Objekten zu modellieren.  
 
Die wichtigsten Notationselemente sind Interaktionsrahmen, Lebenslinien und 
Nachrichten. Jedes Interaktionsdiagramm lässt sich in einem Interaktionsrahmen 
modellieren und kapselt damit „eine Verhaltensdefinition, deren Fokus auf der 
Darstellung eines Informationsaustauschs liegt“. Ein Teilnehmer einer Interaktion wird 
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durch eine Lebenslinie dargestellt. Nachrichten dienen der Kommunikation zweier 
Teilnehmer und geben die Flussrichtung an. 

 

Abbildung 19: Notationselemente des Sequenzdiagramms 

 
In ihrer Gesamtheit bilden alle Diagrammtypen die UML 2.0 (vgl. Abbildung 12). Sie kann 
zur Konzeption und Modellierung von Softwaresystemen verwendet werden und steht 
somit in Kapitel 1 als Hilfsmittel zur Darstellung der Entwicklung des Werkzeugs zur 
Verfügung. 

3.5.4 Mehrbenutzersysteme 

Die vorangegangenen Abschnitte 3.5.1 und 3.5.2 haben allgemeine wie objektorientierte 
Prinzipien des Systementwurfs aus softwaretechnischer Sicht diskutiert und eine 
Beschreibungssprache zur grafischen Modellierung und Implementierung von 
Softwareprogrammen vorgestellt. Im folgenden Abschnitt wird näher auf die 
Anforderungen bezüglich der Funktionalitäten des Systems eingegangen. Zwischen 
menschlicher und technischer Betrachtungsweise wird implizit unterschieden. Die 
Abschnitte 3.5.4.1 bis 3.5.4.3 betrachten die Funktionalitäten mehr aus Anwendersicht, 
bzw. der Sicht des Systementwicklers, wohingegen sich Abschnitt 3.5.4.4 auf 
Funktionalitäten aus technischer Sicht fokussiert. Menschliche Anforderungen an 
kooperative Modellierungswerkzeuge gründen z.B. auf der Notwendigkeit der effektiven 
Zusammenarbeit bei der Benutzung eines solchen Systems. Werden diese Anforderungen 
bei der Systementwicklung vernachlässigt, kann ein zwar im technischen Sinne 
funktionsfähiges System herauskommen, das aber den Bedürfnissen der Anwender nicht 
gerecht und daher von diesen nicht angenommen wird. Wie das System technischen 
Anforderungen gerecht wird, nehmen Anwender zumeist nur dann wahr, wenn die 
Realisierung Schwächen aufweist. Für den Systementwickler ist die genaue Kenntnis der 
technischen Notwendigkeiten aber von Bedeutung, weil von ihnen abhängt, ob überhaupt 
ein funktionsfähiges System erstellt werden kann. Die Entwicklung eines funktionsfähigen 
Werkzeugs mit breiter Akzeptanz erfordert daher, sowohl die technischen als auch die 
anwenderabhängigen Anforderungen an das System in der Entwurfphase genau zu 
kennen und zu beachten. 
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3.5.4.1 Verteilte Systeme 

„Ein Verteiltes System ist ein Zusammenschluss unabhängiger Computer, welcher 
sich für den Benutzer als ein einzelnes System präsentiert.“[nach TaSt03] 

 
Das gemeinschaftliche Zusammenwirken mehrerer Anwender am Prozess der Erstellung 
eines Fabrikmodells erfordert die Nutzung verteilter (EDV-)Systeme, weil diese besser als 
monolithische Systeme der gegebenen räumlichen Trennung der Angehörigen 
unterschiedlicher betrieblicher Bereiche und der von ihnen genutzten und in die 
Modellierung eingebrachten Daten gerecht werden. Sie erlauben die gleichzeitige 
Benutzung der benötigten materiellen (Hardware) und immateriellen (Software) 
Ressourcen und gewährleisten den heterogenen Ansprüchen unterschiedlicher 
menschlicher Anwender und/oder unterschiedlicher Komponenten des Programmsystems 
gerecht zu werden und eine variable Anpassung der Systemgröße an unterschiedliche 
Aufgabestellungen (Skalierbarkeit) umzusetzen. Allgemeine Ziele der Nutzung verteilter 
Systeme sind eine Leistungssteigerung hinsichtlich des Durchsatzes und den 
Antwortzeiten des Systems durch die Bereitstellung zusätzlicher Hardware, eine bessere 
Erweiterbarkeit und Anpassungsfähigkeit sowie eine erhöhte Fehlertoleranz. Die 
Verbundstruktur verteilter Systeme bietet das Mittel zur Erreichung dieser Ziele 
[CoDo02]. Sie umfasst die folgenden Substrukturen: 
 

 Funktionsverbund: Die Gesamtfunktionalität wird erbracht, indem dedizierte 
Funktionen der Anwendung auf unterschiedlichen Rechnern integriert werden. 

 Datenverbund: Der Zugriff auf verteilte Datenbestände von verschiedenen Rech-
nern aus ermöglicht es, Datensätze aus unterschiedlichen Dateisystemen oder 
Datenbanken miteinander zu verknüpfen und integriert zu verarbeiten. 

 Lastverbund: Das verteilte Leistungspotential mehrerer Rechner soll so genutzt 
werden, dass die durch eine Anwendung gegebene Last möglichst gleichförmig 
verteilt wird. 

 
In der Literatur wird, je nach Perspektive des Autors, häufig die Bezeichnung „verteiltes 
System“ ohne Zusätze für verteilte Hardwaresysteme, verteilte Betriebssysteme oder 
verteilte Anwendungssysteme benutzt. Im Folgenden wird die Bezeichnung „verteiltes 
System“ als Sammelbezeichnung für diese drei Spezialisierungen benutzt, wenn nicht auf 
einen bestimmten Aspekt der Verteilung (Hardware, Betriebssystem, Anwendungen) 
Bezug genommen wird. Das ist sinnvoll, weil Hardware, Betriebssystem und 
Anwendungen drei Ebenen der Gesamtarchitektur darstellen, zwischen denen eine enge 
Abhängigkeit besteht: Die Nutzung verteilter Betriebssysteme oder verteilter 
Anwendungssysteme ergibt nur auf entsprechender Hardware Sinn. 

3.5.4.2 CSCW und Groupware 

„Computer Supported Cooperative Work (CSCW) ist die Bezeichnung des 
Forschungsgebietes, welches auf interdisziplinärer Basis untersucht, wie 
Individuen in Arbeitsgruppen oder Teams zusammenarbeiten und wie sie dabei 
durch Informations- und Kommunikationstechnologie unterstützt werden können.“ 
[FiHe00] 
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Im Forschungsgebiet des CSCW sollen, unter Verwendung aller zur Verfügung stehenden 
Mittel der Informations- und Kommunikationstechnologie, Gruppenprozesse zu 
untersuchen und die Effektivität und Effizienz der Gruppenarbeit zu erhöhen. Im 
Mittelpunkt steht die Konzeption, Implementierung und Erweiterung von Werkzeugen für 
die Unterstützung der Teamarbeit. Die Wurzeln dieses Ansatzes sind unter anderem in 
Entscheidungsunterstützungs- und Kommunikationssystemen zu sehen. Die Hilfsmittel 
für die Kooperation innerhalb von Gruppen und Teams werden als Groupware oder 
Workflow-Management-Systeme bezeichnet; dies schließt sowohl Hardware 
(beispielsweise Kameras) als auch Software ein [FiHe00]. 
 
Eine weit verbreitete Taxonomie für Groupware-Systeme liefert die Raum-Zeit-Matrix 
nach [Joha91], die in Abbildung 20 abgebildet ist. Die Klassifikation liefert vier 
verschiedene Arten von Groupware-Systemen. Bei der face-to-face-interaction befinden 
sich die Kooperationspartner zur selben Zeit am selben Ort. Als Beispiel können Group 
Decision Support Systems dienen, die Entscheidungsprozesse in Gruppen durch 
persönliche Arbeitsplatzrechner und einen für alle sichtbaren Großbildschirm 
unterstützen. In die Kategorie der synchronen verteilten Interaktion fallen Mehrbenutzer- 
oder auch Gruppeneditoren, also auch kooperative Modellierungswerkzeuge. Asynchrone 
Interaktion findet am selben Ort, aber zu unterschiedlichen Zeiten statt und kann z. B. 
als elektronische Version einer Pinnwand realisiert werden. E-Mail-Systeme sind das 
klassische Beispiel für asynchrone verteilte Interaktion. 

 

Abbildung 20: Raum/Zeit Matrix nach [Joha91] 

Problematisch ist bei dieser Einteilung jedoch die fehlende eindeutige 
Zuordnungsmöglichkeit bestimmter Applikationen zu einzelnen Kategorien. Geeignet ist 
eine solche Darstellung eher für die Klassifikation der Verwendung von Groupware-
Applikationen als für die Beschreibung der möglichen Groupware-Funktionalitäten. 
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Zentrale Aspekte jeder Groupware sind: 
 

 Awareness: Viele Systeme setzen eine oder mehrere Formen der Awareness um, d. 
h. die Software ermittelt selbständig (implizit) Eingabedaten, um dem Anwender 
Zeit und Arbeit abzunehmen.  

 What You See Is What I See: Das Prinzip beschreibt, welche Teile einer Anwendung 
bei verschiedenen Anwendern exakt gleich dargestellt werden.  

 Synchronisation und Konsistenzerhaltung. Die Wahrung eines einheitlichen 
Datenzustandes (Konsistenz) trotz gleichzeitiger Zugriffe auf das Datenmaterial, 
bzw. die Visualisierung von Konflikten, wo dies nicht möglich ist.  

 Floor-Control: Die Verwaltung der Systemressourcen: Welcher Teilnehmer darf 
gerade welche Ressource nutzen?  

 Session-Control: beschreibt die Verwaltung und Administration der Teilnehmer in 
Arbeitssitzungen hinsichtlich Autorisierung, Authentifizierung und Einteilung in 
Rollenschemata [FiHe00]. 

3.5.4.3 Kommunikation, Kooperation und Koordination 

Unabhängig von den eingesetzten Groupware-Technologien lassen sich die Applikationen 
nach ihren elementaren Unterstützungsfunktionen gliedern. Hierbei werden vor allem 
Kommunikations-, Kooperations- und Koordinationsfunktionalitäten unterschieden, die 
aber eng miteinander verknüpft sind. Hinsichtlich dieser Merkmale eingegrenzt, 
beschreiben Ellis et al. das Ziel von Groupware-Applikationen wie folgt: „the goal of 
groupware is to assist groups in communicating, in collaborating, and in coordinating 
their activities“[ FiHe00]. 
 
Kommunikation 

„Kommunikation bezeichnet den Austausch von Nachrichten zwischen Menschen. 
Im erweiterten Rahmen der Informationstheorie versteht man darunter … jeden 
Austausch von Informationen zwischen dynamischen Systemen… , die in der Lage 
sind, Informationen aufzunehmen, zu speichern, umzuformen usw.“[KlBu71] 

 
Der Kommunikation kommt insbesondere bei der Teamarbeit eine entscheidende Rolle 
zu. Kommunikationsmechanismen bilden die unverzichtbare Basis aller Kooperations- 
und Koordinationsbemühungen. Bei aktiv initiierter Kommunikation steht das Send-
Prinzip im Vordergrund. Kommunikation bezieht sich hier insbesondere auf Systeme, die 
elektronische Objekte speichern und weiterleiten können. Die in diesen Objekten 
gespeicherten Informationen werden möglicherweise über eine Fülle von 
Zwischenstationen transferiert. Dieses oft auch als Push-Modell beschriebene Prinzip 
erlaubt einen asynchronen Informationsfluss bei dem eine Synchronisation der 
kommunizierenden Elemente nicht notwendig ist. Generell kann in diesem Bereich 
zwischen synchroner und asynchroner Kommunikation differenziert werden [FiHe00]. 
Unter synchroner Kommunikation wird die zeitlich unmittelbare Übermittlung und 
Sichtbarkeit beim Empfänger verstanden. Demgegenüber gelangen die elektronischen 
Objekte bei der asynchronen Kommunikation zunächst in einen virtuellen Eingangskorb, 
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um zu einem späteren Zeitpunkt empfangen und ggf. verarbeitet zu werden. Darüber 
hinaus können Nachrichten als eine Form der elektronischen Objekte entweder explizit 
von Anwender zu Anwender übermittelt, oder implizit, also ohne bewusstes Wissen des 
Anwenders, durch das jeweilige System verschickt werden, beispielsweise als Reaktion 
auf eine Benutzereingabe [FiHe00]. 
Klassische Systeme zur Kommunikationsunterstützung sind beispielsweise E-Mail-
Systeme. Die Form der Kommunikation kann weiter nach Anzahl der Absender und 
Anzahl der Empfänger untergliedert werden. Hierbei sind prinzipiell alle 
Kommunikationsarten von der 1:1 Kommunikation über die 1:n Kommunikation bis hin 
zur n:m Kommunikation erlaubt und finden in den entsprechenden Bereichen auch 
Verwendung. Aufgrund der fehlenden Strukturierung und dem zu transportierenden 
Informationsvolumen steigt die Komplexität dieses Modells im Rahmen der n:m 
Kommunikation stark an. Eine Lösung dieser Problematik kann durch den Einsatz des 
Pull-Prinzips erreicht werden, welches insbesondere im Bereich der Kooperations-
unterstützung besondere Bedeutung erfährt. 
 
Kooperation 

„Die Kooperation baut auf der Kommunikation auf und stellt den Austausch von 
Informationen mit einem gemeinsamen Ziel dar. Sie bedingt, dass mindestens 
zwei Personen in einem gemeinsamen, zielgerichteten Kooperationsprozess 
involviert sind.“[FiHe00] 

 
Systeme zur Kooperation unterstützen die gemeinsame Arbeit einer Gruppe nach dem 
Share-Prinzip. Die Gruppenmitglieder haben Zugriff auf einen gemeinsamen 
Datenbestand, den sie in beliebiger Reihenfolge verändern und erweitern können, ohne 
ein vorgegebenes Ablaufschema und nicht notwendigerweise sequentiell. Applikationen 
zur Kooperationsunterstützung forcieren das Pull-Modell, um Informationen miteinander 
zu teilen, gemeinsam zu bearbeiten, zu strukturieren und somit auch weiterzuentwickeln. 
Jeder Nutzer kann in diesem Modell die für ihn relevanten Informationen selektieren, 
individuelle zusammenstellen und unabhängig von Raum und Zeit abrufen. Koordination 
weist den höchsten Komplexitätsgrad auf, da die jeweilige Konsistenz der Daten zu 
jedem Zeitpunkt gewährleistet sein muss. Kommunikationsmechanismen unterstützen 
die Anwender bei der Ausführung kooperativer Tätigkeiten und können Konflikte schnell 
und unkompliziert lösen [FiHe00]. 
 
Koordination 

„Als Koordination wird diejenige Abstimmung bezeichnet, die für eine Arbeit der 
Kooperationspartner auf ein gemeinsames Ziel hin erforderlich ist.“[Henk97] 

 
Wird im Rahmen der Kooperation kommuniziert und bezieht sich diese Kommunikation 
auf die Abstimmung der aufgabenbezogenen Tätigkeiten, so wird diese Dimension der 
Kommunikation als Koordination bezeichnet. Auf Basis der Kommunikationsmechanismen 
ermöglicht die Koordination die notwendige Abstimmung der dezentral handelnden und 
entscheidenden Anwender hinsichtlich einer optimalen Zielerreichung innerhalb der 
Gesamtaufgabe. Sie baut damit sowohl auf der Kommunikation als auch auf der 
Kooperation auf und erlaubt erst den aufgabengerechten Einsatz der Ressourcen und 
eine effiziente Arbeit der verschiedenen Anwender in einem Team. Grade deswegen kann 
hier im Allgemeinen nicht auf die Mitwirkung des Anwenders verzichtet werden. Denn 
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zwischen den Aktivitäten der unterschiedlichen Anwender bestehen zum einen 
Abhängigkeiten, die nur durch die direkte Kommunikation der betroffenen Anwender 
aufgelöst werden können. Zum Anderen sind die Fragestellungen hinsichtlich optimaler 
Reihenfolge, Zulässigkeit und Zweckmäßigkeit der einzelnen Bearbeitungsschritte nicht 
durch das Anwendungssystems selbst aufzulösen, weil es eine Bewertung der aktuellen 
Situation innerhalb des Systems, beispielsweise eine Gewichtung hinsichtlich 
Dringlichkeit der Aufgabe, nicht vornehmen kann. Diese muss durch den Anwender des 
zu entwickelnden Werkzeugs erfolgen, dessen Arbeitsweise durch die Kommunikations-, 
Kooperations- und Koordinationsmechanismen bestmöglich unterstützt werden sollen 
[FiHe00]. 

3.5.4.4 Funktionalitäten 

Im folgenden Abschnitt werden die Grundlagen der informationstechnischen Realisierung 
kooperativer Werkzeuge diskutiert, um aus der allgemeinen Beschreibung der 
wesentlichen Charakteristika einer solchen Anwendung konkrete Basisfunktionalitäten 
abzuleiten. Es geht um die Funktionalitäten, die im Zusammenhang von Kommunikation, 
Nebenläufigkeit und Synchronisation in kooperativen Systemen zur Verfügung stehen. 
Unterscheiden lassen sie sich in den wesentlichen Bausteinen Datenhaltung und 
Datenaustausch. Abschließend soll kurz auf die Gestaltung einer Benutzerschnittstelle 
eines kooperativen Systems eingegangen werden. 
 
Datenhaltung 
Der Prozess der Modellerstellung und die Arbeit an einem Simulationsmodell erstreckt 
sich typischerweise über einen lang andauernden Zeitraum. Wesentliche Grundfunktion 
ist daher die Möglichkeit, Daten für diesen Zeitraum sicher aufbewahren zu können. 
Insbesondere ist davon auszugehen, dass die Lebensdauer der Daten über die Dauer der 
Ausführung eines Prozesses hinausgeht. In objektorientierten Systemen wird diese 
Eigenschaft als Persistenz von Objekten bezeichnet [Henk97]. 
 
Um ein sinnvolles Arbeiten mit dem Modellierungswerkzeug zu ermöglichen, sind 
Anforderungen an die Qualität und die Quantität des Datenzugriffs zu beachten: Der 
Zugriff darf nicht auf einen einzelnen Anwender bzw. Prozess beschränkt sein; dennoch 
muss die Sichtbarkeit von Daten und die Zulässigkeit von Operationen wie Lesen, 
Schreiben, Erzeugen und Löschen von Daten flexibel und dynamisch geregelt werden 
können. Das Antwortzeitverhalten des Systems muss in akzeptablen Grenzen liegen; 
gleiches gilt für die Ausfallsicherheit. Diese beiden Anforderungen können nicht immer 
von einer zentralisierten Datenhaltungskomponente erfüllt werden, so dass in diesen 
Fällen eine verteilte Datenhaltung zu fordern ist. 
 
Essentiell ist die Forderung, dass der nebenläufige Zugriff mehrerer Anwender auf 
gemeinsame Daten nicht zu einer Inkonsistenz des Datenbestandes führen darf. Zu den 
Basisdiensten eines Datenhaltungssystems gehören das Entgegennehmen, Abspeichern, 
Ändern, Löschen, Auswählen, Identifikation und Bereitstellen von Daten sowie Verwalten 
von Datenbeständen [Lock93]. Die Menge der gespeicherten Daten wird als Datenbasis 
bezeichnet, die Erfüllung der genannten Funktionalität gewährleistet das 
Datenverwaltungssystem. Die Anwender greifen auf das System über die 
Datenhaltungsschnittstelle zu. 
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Das Datenhaltungssystem hat die Aufgabe, diese Transaktionen zu synchronisieren, d. h. 
sicherzustellen, dass jede Transaktion aus Anwendersicht genauso abläuft, als wäre sie 
die einzige zu dem jeweiligen Zeitpunkt ausgeführte. Das ist insbesondere dann eine 
nicht-triviale Aufgabe, wenn Transaktionen als Leser oder Schreiber auf dieselben 
Datenbasisausschnitte zugreifen. Sperren dienen nicht nur zur Synchronisation von 
Transaktionen, sondern können unabhängig davon auch verwendet werden, um den 
Zugriff der Anwender auf Datenbereiche zu regeln. Das Setzen einer Sperre (Lock) für 
einen Datenbasisausschnitt bewirkt, dass die Zugriffe anderer Anwender/Prozesse/-
Transaktionen auf diesen Bereich eingeschränkt oder ausgeschlossen werden. Die 
Einschränkung des Zugriffs besteht häufig darin, dass nicht jede dieser Zugriffsarten 
erlaubt wird, wenn eine Sperre gesetzt ist. Beispielsweise kann das Lesen eines Datums 
auch anderen Transaktionen gestattet werden, wenn der Sperrhalter selbst dieses Datum 
ebenfalls lediglich zu lesen beabsichtigt. Dadurch kann der Nebenläufigkeitsgrad der 
Transaktionsbehandlung wesentlich gesteigert werden. 
 
Datenaustausch 
In einem kooperativen System besteht häufig die Notwendigkeit, eine Anzahl von 
Kommunikationspartnern vom Eintreten eines Systemereignisses, etwa der Änderung des 
Datenbestandes durch einen Systemteilnehmer, zu informieren. Diese Art der Verteilung 
von (Änderungs-)Ereignissen (-nachrichten) wird auch als data change propagation 
bezeichnet. 
 
Der Entwurf eines kooperativen Entwicklungswerkzeugs setzt eine stabile 
Kommunikations-Infrastruktur voraus. Dazu gehört mindestens die Möglichkeit, zwischen 
zwei Prozessen Informationen auszutauschen. Die verfügbaren Dienstprimitive sollen 
eine zuverlässige Informationsübermittlung bieten und den Systementwickler soweit wie 
möglich von der Fehlerbehandlung entlasten. Auch für den Austausch von Informationen 
zwischen mehr als zwei Kommunikationspartnern sollen Dienstprimitive zur Verfügung 
stehen. 
 
Wenn das Anwendungssystem die Verwendung von Arbeitssitzungen unterstützen soll, ist 
für die Registrierung zugelassener Teilnehmer, den Beginn und das Beenden der Sitzung, 
die Lokalisierung der laufenden Sitzungen sowie das An- und Abmelden bei einer 
Arbeitssitzung die Definition entsprechender Entwurfskonstrukte (z. B. Funktionen, 
Klassen, Module) wünschenswert. Die Übermittlung einer Nachricht erfordert 
Dienstprimitive für das Senden und Empfangen der Nachricht. Die Primitive send und 
receive werden von Netzwerkbetriebssystemen, verteilten Betriebssystemen im engeren 
Sinne oder Betriebssystemerweiterungen (z. B. Middleware) zur Verfügung gestellt. In 
kooperativen Systemen tritt häufig der Fall auf, dass viele oder alle Anwender von einer 
Änderung des Datenbestandes verständigt werden müssen. Daher ist die Möglichkeit 
eines Broadcasting oder Multicast-Nachrichtenaustausches wünschenswert. 
 
Die Kommunikation zwischen Prozessen wird häufig nach dem Client/Server-Modell 
gestaltet. Client ist ein Prozess, der bei einem Serverprozess eine bestimmte 
Dienstleistung nachfragt bzw. eine Anfrage an einen Server richtet. Der Vorteil des 
Client/Server-Modells besteht in der Verbindung von Einfachheit und Flexibilität. Der 
Client sendet eine Anfragenachricht, die den gewünschten Dienst beschreibt, an einen 
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Server, der diesen Dienst erfüllt, indem er die nachgefragten Daten oder eine 
Fehlermeldung zurückliefert.  
 
Es wurde bereits darauf hingewiesen, dass die Kommunikation in objektorientierten 
Softwaresystemen wahlweise als Methodenaufruf oder Nachrichtenversand interpretiert 
werden kann (vgl. Abschnitt 3.5.2). Die Betrachtung eines objektorientierten 
Softwaresystems als Ansammlung von Objekten, die untereinander Nachrichten 
austauschen, erlaubt eine nahtlose Abbildung des Client/Server-Konzeptes auf 
objektorientierte Systeme. Objekte fungieren als Server, wenn sie Nachrichten ihrer 
Clients entgegennehmen und beantworten; der Client ruft eine (entfernte) Methode des 
Servers auf. Die Überwindung der Grenzen von Prozessen, Rechnern, Betriebssystemen 
oder Netzen leistet die sog. objektorientierte Middleware, die diese Verteilungsaspekte 
für den Systementwickler transparent macht. 
 
Bei der Gestaltung kooperativer Werkzeuge ist darüber hinaus darauf zu achten, 
Mechanismen für Identifizierung, Adressierung angeschlossener Rechner, Objekte oder 
Dienste und das Routing von Informationen durch das Netzwerk bereitzustellen. 
Insbesondere für das Verteilen von Nachrichten zur Unterstützung der Kommunikation ist 
eine eindeutige Adressierung wichtiges Merkmal für die angeschlossenen Clients der 
Anwender. Im Rahmen dieser Adressierung und Identifikation spielen auch Sicherheits- 
und Zugangsaspekte eine große Rolle, um die verwendeten Systeme vor unsach-
gemäßem Gebrauch zu schützen. Hierfür existieren leistungsfähige 
Sicherheitsmechanismen wie abgestufte Zugriffskontrollen, Verschlüsselungskonzepte 
und Rollenprivilegien, wie sie oben dargestellt wurden (vgl. 3.5.4.3).  
 
Benutzungsschnittstelle 
In der Literatur (vgl. etwa [Rose93]) wird verschiedentlich gefordert, die 
Programmierung der Benutzungsschnittstelle durch speziell für die Erstellung von 
Mehrbenutzeranwendungen angepasste Oberflächenobjekte zu unterstützen (shared 
visual objects). Dieser Auffassung steht jedoch entgegen, dass im allgemeinen eine 
Trennung zwischen der internen Datenhaltung, der Zugriffsschnittstelle auf diese Daten 
und ihrer visuellen Repräsentation angestrebt wird, wie dies etwa im bekannten Model-
View-Controller-Konzept geschieht (vgl. Abschnitt 3.5.5.5). Der Oberfläche kommt dann 
lediglich die Aufgabe zu, dem Anwender Informationen darzubieten und 
Benutzeraktionen entgegenzunehmen, nicht jedoch, etwa Benutzeraktionen zu 
propagieren. Dies ist Aufgabe einer tiefer liegenden Dienstebene. Auch das WYSIWYG-
Konzept (What-you-see-is-what-you-get) verlangt nicht, Informationen mit grundsätzlich 
anderen Mitteln darzustellen, als dies in Einbenutzeranwendungen geschieht; die 
vorhandenen Mittel (Oberflächenelemente, Mauszeiger, Textcursor) werden lediglich 
anders genutzt. Aus diesem Grund beschränkt sich die Notwendigkeit, die 
Oberflächengestaltung an den Mehrbenutzerbetrieb anzupassen, auf die Visualisierung 
von Informationen, die in Einbenutzeranwendungen nicht vorhanden sind, etwa die 
Struktur des Anwenderkreises. Dafür reichen im Allgemeinen die üblichen 
Oberflächenelemente (Schaltflächen, Listen, Zeichenflächen, grafische Symbole usw.) 
aus. In dieser Arbeit wird daher nicht davon ausgegangen, dass speziell an den 
Mehrbenutzerbetrieb angepasste Oberflächenobjekte für die Erstellung eines 
kooperativen Mehrbenutzerwerkzeugs benötigt werden, wohl aber, dass während der 
Gestaltung der Oberflächen das Augenmerk auf zusätzliche Objekte innerhalb der 
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Oberfläche gelegt wird, die die Kommunikation, Kooperation und Koordination der an 
einem Simulationsmodell arbeitenden Anwender abbildet. 

3.5.5 Organisationsformen des Software-Designs von Mehrbenutzer-
systemen 

Software an sich ist zunächst eine abstraktes Gebilde und muss für den Umgang des 
Menschen mit dieser Software handhabbar gemacht werden. Dabei sind Entscheidungen 
über die Gestaltung des zu schaffenden Systems zu treffen: Was sind die Elemente 
dieses Systems, in welchen Beziehungen stehen diese zueinander, usw. Die Gesamtheit 
dieser Regelungen zur Gestaltung der Ordnung des Softwaresystems soll hier als 
Organisationsform bezeichnet werden. In Anlehnung an [Woeh90] bezeichnet 
Organisation hier sowohl den Prozess der Entwicklung einer Ordnung, als auch das 
Ergebnis dieses gestalterischen Prozesses, d.h. die Gesamtheit aller getroffenen 
Regelungen. Beispiele für Software-Organisationsformen sind Funktionsbibliotheken, 
Klassenbibliotheken, Frameworks, Software-Entwurfsmuster sowie spezielle Lösungen 
(Toolkits und konfigurierbare Anwendungen). Sie sollen in diesem Abschnitt vorgestellt 
und hinsichtlich ihrer Eignung zur Realisierung des angestrebten Werkzeugs, bzw. 
hinsichtlich der Verwirklichung der allgemeinen Ziele und Prinzipien des Software Designs 
(vgl. 3.5.1 und 3.5.2), bewertet werden. 
 
Die Wahl einer geeigneten Organisationsform für Software ist abhängig von 
unterschiedlichen Einflussfaktoren. Die Gewichtung dieser Faktoren wiederum ist 
abhängig von der jeweiligen konkreten Aufgabenstellung. Es ist deshalb nicht möglich, 
lediglich anhand eines einzelnen softwaretechnischen Zieles allgemeingültige Aussagen 
über die Eignung einer bestimmten Organisationsform zu treffen. Vielmehr ist jeweils das 
gesamte Zielsystem der Softwaretechnik unter den gegebenen individuellen 
Randbedingungen zu berücksichtigen. Es gibt jedoch zwei Gründe, warum dem Ziel 
Wiederverwendung eine besondere Rolle bei der Beurteilung einer Software-
Organisationsform zukommt: 
 

 Bedeutung des Zieles Wiederverwendung an sich: Bereits bei der Diskussion des 
softwaretechnischen Zielsystems wurde diese herausgestellt und begründet. 
Erfolgreiche Wiederverwendung kann die Zuverlässigkeit und 
Wartungsfreundlichkeit eines Softwaresystems steigern, das Risiko von 
Fehlentwicklungen verringern, das Wissen von Experten und ganzen Organisationen 
konservieren und transferieren und den finanziellen und zeitlichen Aufwand eines 
Projektes reduzieren [Somm92]. 

 
 Einfluss der Organisationsform auf die Wahrscheinlichkeit der Wiederverwendung:. 

Software kann nur dann wieder verwendet werden, wenn eine Organisationsform 
gewählt wurde, die die Identifikation, den Zugriff und das Extrahieren der wieder zu 
verwendenden Komponenten gestattet. Die unbefriedigende Situation, dass viele 
Systementwickler das Gefühl haben, ständig „das Rad neu zu erfinden“, kann nur 
beseitigt werden, wenn vorhandene Problemlösungen bekannt sind und zur 
Verfügung stehen und wenn außerdem eine ggf. notwendige Adaption an eine 
geänderte Problemstellung möglich ist. 
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Wiederverwendung von Software erfährt aus technologischen, ökonomischen, 
psychologischen und organisatorische Gründen steigende Bedeutung. Der Gedanke liegt 
wegen des stark wiederholenden Charakters vieler Phasen der Systementwicklung nahe. 
Wiederverwendung beinhaltet die systematische Nutzung bereits existierender Modelle, 
Entwürfe bzw. Entwurfsfragmente, Programmtexte und Dokumentationen. Es geht also 
nicht lediglich um die Wiederverwendung von Programmcode, sondern sämtlicher 
(Zwischen-) Ergebnisse des Entwicklungsprozesses. In jedem Fall kann aber nur erneut 
verwendet werden, was in Form eines irgendwie gearteten Dokumentes zur Verfügung 
steht. In Frage kommen Quellcode, Objektcode, Personal, Dokumentationen. Diese 
Dokumente können sich auf Softwarekomponenten wie komplette Systeme, auf 
Subsysteme, Module oder Objekte oder einzelne Funktionen beziehen. Die besondere 
Eignung objektorientierter Technologien zur Unterstützung der Wiederverwendung wird 
als ein Standardargument zugunsten der Objektorientierung gebracht (vgl. Abschnitt 
3.5.2.2). Einige Voraussetzungen erfolgreicher Wiederverwendung sind nach [Booc94]: 
 

 Es muss möglich sein, die passenden Komponenten wieder zu finden. 
 Die Komponenten müssen vom Systementwickler verstanden und als geeignet 

akzeptiert werden. 
 Zu jeder Komponente müssen detaillierte Informationen darüber vorliegen, wie sie 

wieder verwendet werden kann. 
 
Wiederverwendung wird dagegen erschwert oder verhindert, wenn der Systementwickler 
die Leistungsfähigkeit der angebotenen Komponenten nicht versteht oder ihre 
Notwendigkeit nicht akzeptiert. Darüber hinaus müssen die Komponenten selbst auch für 
die Wiederverwendung geeignet sein, d.h., sie müssen erweiterbar, bzw. anpassbar sein 
und sie dürfen nicht einem zu sehr eingeschränkten Anwendungsbereich dienen und 
damit die erforderliche Flexibilität vermissen lassen. Die Entwicklung wieder zu 
verwendender Komponenten erfordert daher ein besonders hohes Maß an Erfahrung und 
gestaltet sich schwieriger und aufwendiger als die Entwicklung von Software zur 
einmaligen Verwendung. Die Berücksichtigung der in Kapitel 3.5.1 diskutierten Prinzipien 
spielt daher hierbei eine besonders große Rolle. 

3.5.5.1 Funktionsbibliotheken 

Funktionsbibliotheken sind eine Organisationsform wieder verwendbarer Software, die 
dem Paradigma der prozeduralen Programmierung entstammt. Programmiersprachen 
organisieren Programme in Funktionen, Unterprogramme oder Prozeduren, die sich 
gegenseitig aufrufen und ggf. Modulen angehören können. Es entsteht ein hierarchischer 
Aufrufbaum, wie in Abbildung 21 gezeigt. 
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Abbildung 21: Topologie prozeduraler Programmabläufe [Henk97] 

Funktionsbibliotheken sind Sammlungen von Funktionen, die zumeist einen 
gemeinsamen Anwendungsbereich (z.B. mathematische Funktionen, Stringverarbeitung, 
Datenbankzugriff, grafische Ein-/Ausgabe,...) behandeln. Sie können als wieder 
verwendbare Module aufgefasst werden. In Abbildung 21 könnte anstelle eines der 
Module also auch die Bezeichnung einer Funktionsbibliothek treten. Es handelt sich daher 
um eine Form der Wiederverwendung von Code, der entweder als Quelltext oder als 
statisch oder dynamisch zu bindender Objektcode vorliegt. Dem prozeduralen Paradigma 
entsprechend, sind Datenstrukturen nicht Gegenstand der Wiederverwendung. 
Funktionsbibliotheken stellen daher einen einfachen, softwaretechnisch jedoch noch nicht 
voll befriedigenden Mechanismus zur Wiederverwendung dar, der Modularisierung und 
Hierarchisierung ermöglicht, dessen Mangel an Abstraktion jedoch die Wahrscheinlichkeit 
einer Wiederverwendung mindert. 
 
Für den Entwurf und die Realisierung verteilter Systeme kommt der Einsatz von 
Funktionsbibliotheken vor allem in den betriebssystemnahen Systemebenen in Frage. Ein 
Beispiel im Bereich der Kommunikation zwischen Prozessen sind Sockets. Sie basieren 
auf dem TCP/IP-Protokoll17 und bilden einen Puffer, über den Nachrichten gesendet und 
empfangen werden können. Die Adresse eines Socket beinhaltet die Adresse des 
Rechners im Netzwerk sowie eine für diesen Rechner eindeutige SocketID. 
Funktionsbibliotheken setzen oftmals Detailkenntnisse über die jeweiligen Funktionen 
voraus und erfordern somit einen erhöhten Einarbeitungsaufwand. Der Ansatz bietet 
daher keine reibungslose Wiederverwendung von Software 

                                          
17  Das TCP/IP-Protokoll ist ein Netzwerkprotokoll, das die Basis für die Kommunikation im Internet bildet. 

Das Transmission Control Protocol (TCP) ist eine Vereinbarung darüber, auf welche Art und Weise Daten 
zwischen Computern ausgetauscht werden sollen [Balz05]. 

 Das Internet Protokoll (IP) bildet die erste vom Übertragungsmedium unabhängige Schicht der Internet-
Protokoll-Familie. Das bedeutet, dass mittels IP-Adresse und Subnetzmaske (subnet mask) Computer 
innerhalb eines Netzwerkes in logische Einheiten gruppiert werden können. Auf dieser Basis ist es möglich, 
Computer in größeren Netzwerken zu adressieren und Verbindungen zu ihnen aufzubauen [Balz05]. 
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3.5.5.2 Klassenbibliotheken 

"Eine Klassenbibliothek besteht aus einer Menge von verwandten und wieder 
verwendbaren Klassen, die entworfen wurden, um nützliche und allgemeine 
Funktionalitäten zur Verfügung zu stellen."[GaHe01] 

 
Die Funktionalitäten der Klassenbibliothek sind in der Regel unabhängig vom Kontext der 
Anwendung. Die Wiederverwendung von Klassen innerhalb der Bibliothek kann durch 
zwei Arten erfolgen: Entweder werden Klassen der Klassenbibliothek erzeugt 
(instanziiert) oder neue Klassen werden durch gegebene Klassen der Bibliothek abgeleitet 
(Prinzip der Vererbung, Abschnitt 3.5.2.2). 
 
Klassenbibliotheken bilden das objektorientierte Gegenstück zu Funktionsbibliotheken. 
Typische Beispiele für eine solche Ansammlung wieder verwendbarer Klassen sind Pakete 
zur Verwaltung von Datenstrukturen, zur Realisierung von Oberflächenelementen oder 
zum Aufbau von Kommunikationsschnittstellen mit Datenbanksystemen. Das 
Zusammenspiel der Klassen ist vom Designer der Bibliothek nur in weiten Grenzen 
vorgegeben. Es wird im Wesentlichen vom Entwickler der Anwendung bei der 
Implementierung eines konkreten Programms festgelegt. Abbildung 22 zeigt die aus der 
Verwendung einer Klassenbibliothek resultierende Topologie eines Programms. 
 

 

Abbildung 22: Programmtopologie auf Basis einer Klassenbibliothek [nach 
Booc94] 

Mögliche Zugriffe auf Klassenbibliotheken sind durch das Application Programming 
Interface (API) definiert. Dabei handelt es sich um eine Gesamtheit der öffentlich 
verfügbaren Klassen und Schnittstellen in Abgrenzung zu den privaten Einheiten der 
Bibliothek, die nicht zugänglich sind. Klassenbibliotheken werden deshalb auch häufig als 
API bezeichnet. Durch die Einhaltung der Paradigmen des objektorientierten Entwurfs 
(vgl. 3.5.2) ergeben sich für Klassenbibliotheken einige Vorteile. Durch ihren Einsatz 
kann ein höherer Abstraktionsgrad erreicht werden und Methodenaufrufe können 
typsicher formuliert werden. Das reduziert die Fehlerwahrscheinlichkeit. Durch den 
Zugriff über die API, bzw. die Schnittstellen wird eine saubere Trennung des Zugriffs und 
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der eigentlichen Implementierung erreicht. Klassenbibliotheken lassen sich damit leichter 
portieren. 
 
Insgesamt ergibt sich aus der Beachtung allgemeiner und objektorientierter Paradigmen 
des Software-Entwurfs eine höhere Wahrscheinlichkeit, dass ein Anwendungsentwickler 
in einer Klassenbibliothek Softwarekomponenten findet, die ihm für eine effiziente 
Wiederverwendung geeignet erscheinen und zur Verfügung stehen. Eine spezielle Form 
von Klassenbibliotheken bilden so genannte Frameworks, oder Rahmenwerke, die im 
folgenden Abschnitt näher betrachtet werden sollen. 

3.5.5.3 Frameworks 

"Ein Framework besteht aus einer Menge von zusammenarbeitenden Klassen, die 
einen wieder verwendbaren Entwurf für eine bestimmte Klasse von Applikationen 
darstellen."[GaHe01] 

 
Im Gegensatz zu Klassenbibliotheken, die eine Ansammlung nur lose verbundener 
Klassen darstellen und dem Systementwickler wenig Vorgaben über die Verwendung der 
Klassen machen, enthalten Frameworks Klassen, zwischen denen eine genau definierte 
Beziehung besteht. Ein Framework gibt damit in der Regel eine Architektur der jeweiligen 
Anwendung vor, wobei eine Umkehrung der Kontrolle stattfindet: der Programmierer 
registriert konkrete Implementierungen, die dann durch das Framework gesteuert und 
benutzt werden, statt — wie bei einer Klassenbibliothek — lediglich Klassen und 
Funktionen zu benutzen. Ein Framework definiert insbesondere den Kontrollfluss der 
Anwendung und die Schnittstellen für die konkreten Klassen, die vom Programmierer 
erstellt und registriert werden müssen. Frameworks werden also im Allgemeinen mit dem 
Ziel einer Wiederverwendung architektonischer Muster entwickelt und genutzt. Da solche 
Muster nicht ohne die Berücksichtigung einer konkreten Domäne entworfen werden 
können, sind Frameworks meist domänenspezifisch oder doch auf einen bestimmten 
Anwendungstyp beschränkt. Frameworks sind nach dieser Definition immer 
objektorientiert, obwohl sie grundsätzlich auch mit anderen Technologien erstellt werden 
können. 
 
Die wesentlichen Vorteile von Frameworks gegenüber den Bibliotheken liegen in einem 
reduzierten Wartungsaufwand, einer verbesserten Wiederverwendung allgemeiner 
Funktionalitäten und insbesondere in der Möglichkeit einer zuverlässigen Erweiterung und 
Spezialisierung innerhalb einer vorgegebenen Infrastruktur. Je nach der Art und Weise, 
wie Frameworks vom Entwickler verwendet werden müssen, unterscheidet man zwischen 
White-Box- und Black-Box-Frameworks. White-Box-Frameworks bestehen aus einer 
Reihe von abstrakten Klassen. Die Aufgabe des Entwicklers besteht dann darin, jene 
abstrakten Methoden dieser Klassen in den abgeleiteten Unterklassen der konkreten 
Applikation zu überschreiben. Dafür ist eine gute Kenntnis der Framework-Klassen 
erforderlich. Das Gegenstück bilden die Black-Box-Frameworks. Diese bieten bereits 
fertige Klassen an, die der Entwickler instanziieren und so zu einer Applikation 
zusammensetzen kann. Verfügbare Frameworks sind zumeist Mischformen zwischen 
White-Box- und Black-Box-Frameworks. Mit steigendem Reifegrad tendieren Frameworks 
zum Black-Box-Ansatz. 
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Frameworks stellen also einen Großteil des notwendigen Codes bereit und halten 
Lösungen für wichtige Designentscheidungen bereit, die sich in einem Problembereich 
typischerweise stellen, während Funktions- und Klassenbibliotheken den 
Systementwickler vor allem in der Implementierungsphase von wiederkehrenden 
Aufgabe entlasten können, die Verantwortung für wesentliche Entwurfsentscheidungen 
aber beim Systemdesigner belassen. Frameworks bieten daher eine Wiederverwendung 
von Designwissen, das in den implementierten Klassen enthalten ist. Diese 
Wiederverwendung auf Entwurfsebene verlangt vom Entwickler des Frameworks 
besonders viel Wissen und Erfahrung, wird aber dem Abstraktionsprinzip in besonderem 
Maße gerecht, weil quasi eine Referenz-Architektur zur Verfügung gestellt wird. Als 
Dokument der Wiederverwendung kommt wiederum die Verwendung von Quellcode oder 
Objektcode in Frage. Die Basis der Wiederverwendung ist allerdings nicht die Klasse, 
sondern das Klassenteam. 
 
Die Topologie eines mit Hilfe eines Frameworks definierten Programms unterscheidet 
sich nicht von der in Abbildung 22 gezeigten Darstellung. Der Unterschied besteht 
vielmehr darin, dass die im Bild als Kanten des Beziehungsgraphen dargestellten 
Objektinteraktionen bereits im Framework weitgehend festgelegt sind, während diese 
Aufgabe bei Verwendung einer konventionellen Klassenbibliothek dem Systementwickler 
zufällt. 
 
Wie unter Abschnitt 3.2.2 aufgezeigt, existieren im Bereich der Ablaufsimulation 
verschiedene Frameworks, die wegen der speziellen Anforderungen an das zu 
entwickelnde Werkzeug nicht in dieser Arbeit verwendet werden können. 

3.5.5.4 Toolkits und konfigurierbare Anwendungen 

Eine Möglichkeit der gezielten Wiederverwendung von Komponenten (typischerweise als 
Objektcode), die gegenüber dem allgemeingültigeren Ansatz der Wiederverwendung von 
Basisdienst-Komponenten einen reduzierten Overhead und außerdem einen geringeren 
Entwicklungsaufwand verwirklichen kann, ist der Rückgriff auf Gesamtlösungen. Hierbei 
wird der Versuch unternommen, die angebotene Funktionalität gezielt auf einen 
bestimmten Problem- bzw. Anwendungsbereich abzustimmen. Zwei wesentliche 
Kategorien von dedizierten Gesamtlösungen werden im Folgenden unterschieden und 
kurz dargestellt: Toolkits und konfigurierbare Anwendungen. 
 
Toolkits 
Toolkits gelten als Sammelbezeichnung für Zusammenstellungen von Hilfsmitteln wie 
Funktions- oder Klassenbibliotheken, Frameworks, fertig verwendbare 
Anwendungskomponenten, Dienstleistungsprogrammen (Server), Entwicklungshilfen 
(CASE18-Tools, Programmierumgebungen, Compiler19, Programmgeneratoren,...), 
Interface Builder, Datenhaltungskomponenten usw. Diese Aufzählung macht deutlich, 
dass die Abgrenzung gegen andere Software-Organisationsformen schwierig sein kann. 
Wesentliche Eigenschaften von Toolkits sind allerdings die Adressierung eines 
bestimmten Aufgabenbereiches sowie die Spezifikation eines Anwendungsmodells. Durch 
                                          
18  CASE: Computer Aided Software Engineering 
19  Ein Compiler analysiert ein Programm auf fehlerfreie Syntax und übersetzt es vollständig in ein Zielsystem, 

das ohne erneute Analyse beliebig oft hintereinander ausgeführt werden kann [Balz05]. 
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die Adressierung bestimmt sich der Umfang und Inhalt der angebotenen Funktionalität. 
Der Anwender hat zumeist nicht die Möglichkeit zu beliebigen Erweiterungen. Der 
Anwender muss darüber hinaus das Modell der Anwendungsentwicklung als gegeben 
hinnehmen. Dieses Modell beinhaltet Annahmen über den Kenntnisstand der Anwender 
des Toolkits, das zugrunde liegende softwaretechnische Paradigma, die verwendete 
Programmiersprache, die Hardware- und Softwareumgebung der Anwendungs-
entwicklung und -verwendung usw. 
 
Konfigurierbare Anwendungen 
Fertige Anwendungen stellen den Extremfall dedizierter Gesamtlösungen dar und setzen 
die Grundidee am konsequentesten um. Die Systementwicklung wird auf die 
Wahrnehmung der vorhanden Einstellmöglichkeiten reduziert, d. h. die Konfiguration 
bzw. Parametrisierung z.B. durch Aufrufoptionen, statische oder dynamische 
Ressourceneinstellungen, Editieren von Datendateien, -objekten oder -tabellen sowie 
einfache Eingriffe in den Kontrollfluss durch Skriptdateien.  
 
Für den Anwendungsbereich der synchronen verteilten Interaktion sind konfigurierbare 
Anwendungen, die speziell für die Realisierung eines kooperativen Werkzeuges zur 
Modellierung und Simulation von Fertigungssystemen, wie sie in dieser Arbeit angestrebt 
wird, zurzeit nicht bekannt. 
 
Das größte Problem im Zusammenhang mit dem Einsatz von dedizierten Gesamtlösungen 
resultiert gerade aus dem wichtigsten Vorteil: Die gezielte Einschränkung der 
angebotenen Funktonalität erfordert es, eine Lösung zu finden, die genau auf die 
gegebene Problemstellung passt oder eine ausreichende Flexibilität bietet, um eine 
Anpassung zu ermöglichen. In diesem Fall ermöglichen Speziallösungen einen hohen 
Anteil wieder verwendeter Software am Gesamtumfang eines Projekts. Praktische 
Erfahrungen zeigen aber, dass gerade die Suche nach einer ideal passenden Lösung 
häufig Schwierigkeiten bereitet und insbesondere spätere Änderungen der 
Anforderungsdefinition zu Problemen führen. Der Grund dafür liegt in der mangelnden 
Berücksichtigung (bzw. dem bewussten Verzicht) des softwaretechnisches Prinzips der 
Abstraktion. Wichtige softwaretechnische Ziele, wie Flexibilität, Interoperabilität, 
Portabilität, Erweiterbarkeit und Wartbarkeit werden deshalb von dedizierten 
Gesamtlösungen nicht immer voll erfüllt. Für den Bereich der Ablaufsimulation existieren 
zahlreiche Anwendungen, die jedoch kaum auf die Anforderungen der Anwender 
konfiguriert werden können. Für die unter Abschnitt 2.3 aufgezeigten Anforderungen 
existiert kein Toolkit. 

3.5.5.5 Software-Entwurfsmuster 

"Jedes Muster beschreibt ein in unserer Umwelt beständig wiederkehrendes 
Problem und erläutert den Kern der Lösung für dieses Problem, so dass sie diese 
Lösung beliebig oft anwenden können, ohne sie jemals ein zweites Mal gleich 
auszuführen." [AlIs77] 

 
Ein Entwurfsmuster (engl. design pattern) beschreibt eine in der Praxis erfolgreiche, 
generische Lösung für ein mehr oder weniger häufig auftretendes, wiederkehrendes 
Entwurfsproblem und stellt damit eine wieder verwendbare Vorlage zur Problemlösung 
dar. Entstanden ist der Ausdruck in der Architektur, von wo er für die 
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Softwareentwicklung übernommen wurde [GaHe01]. Der primäre Nutzen eines 
Entwurfsmusters liegt in der Beschreibung einer Lösung für eine bestimmte Klasse von 
Entwurfsproblemen. Weiterer Nutzen ergibt sich aus der Tatsache, dass jedes Muster 
einen Namen hat. Dies vereinfacht die Diskussion unter Softwareentwicklern, da man 
abstrakt über eine Softwarestruktur sprechen kann. So sind Entwurfsmuster zunächst 
einmal unabhängig von der konkreten Programmiersprache. Wenn der Einsatz von 
Entwurfsmustern dokumentiert wird, ergibt sich ein weiterer Nutzen dadurch, dass durch 
die Beschreibung des Musters ein Bezug zur dort vorhandenen Diskussion des 
Problemkontextes und der Vor- und Nachteile der Lösung hergestellt wird. 
 
Die Beschreibung eines Entwurfsmusters folgt nach [GaHe01] dem folgenden Schema: 
 

 Name und Klassifikation des Musters. 
 Synonyme: Andere bekannte Namen des Musters.  
 Beispiel eines Musters 
 Kontext: Einsatzbereiche für das Muster. 
 Problembeschreibung 
 Lösungsprinzip des Musters 
 Struktur: Beschreibung der allgemeinen Struktur des Musters.  
 Dynamische Aspekte: Typische Szenarien zur Beschreibung des Laufzeitverhaltens 
 Implementierung: Praxisrelevante Tipps, Tricks und Techniken sowie Warnung vor 

Fehlern, die leicht passieren können.  
 Musterlösung 
 Varianten 
 Praxiseinsatz: Wo wird das Muster bereits eingesetzt?  
 Auswirkungen: Vor- und Nachteile der Anwendung des Musters 
 Querverweise: Wie spielt das Muster mit anderen Mustern zusammen?  

 
Generell sollte die Dokumentation eines Entwurfsmusters ausreichende Informationen 
über das Problem, welches das Muster behandelt, über den Kontext der Anwendung und 
über die vorgeschlagene Lösung bereitstellen. [GaHe01] klassifiziert Muster nach den 
beiden Kriterien des Zwecks (purpose) und des Bereichs, auf dem sie wirken (scope). 
Nach dem Zweck des jeweiligen Musters unterscheidet sie drei Klassen: Die erste Gruppe 
der Erzeugungsmuster bezieht sich auf die Erzeugung von Objekten. So können etwa die 
Anzahl von erzeugten Objekten einer Klasse kontrolliert, oder man der konkrete Typ der 
erzeugten Objekte - abhängig von den jeweiligen Bedingungen – angepasst werden. Die 
zweite Gruppe umfasst Strukturmuster, welche eine Vereinfachung der Struktur zwischen 
Klassen ermöglichen sollen. Komplexe Beziehungsgeflechte können beispielsweise über 
vermittelnde Klassen oder Schnittstellen logisch vereinfacht werden. Die dritte Gruppe 
der Verhaltensmuster betrifft das Verhalten der Klassen. Hierbei handelt es sich um die 
größte Gruppe von Mustern. Sie beziehen sich auf die Zusammenarbeit und den 
Nachrichtenaustausch von Klassen. Tabelle 2 zeigt eine Übersicht zur Kategorisierung der 
in [GaHe01] angegebenen Entwurfsmuster hinsichtlich ihres Zwecks und ihrer 
Wirksamkeit. 
 
Nach ihrem Wirkungsbereich lassen sich Muster in Klassen- und Objektmuster einteilen. 
Klassenmuster beschreiben Beziehungen zwischen Klassen und bauen vorrangig 
Vererbungsstrukturen auf. Die Strukturen sind damit zur Übersetzungszeit festgelegt. 
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Hingegen nutzen Objektmuster vorrangig Assoziationen und Aggregationen zur 
Beschreibung von Beziehungen zwischen Objekten. Die durch sie beschriebenen 
Strukturen zwischen Objekten sind zur Laufzeit dynamisch änderbar. 
 
 

  Aufgabe 

  Erzeugungsmuster Strukturmuster Verhaltensmuster 

Klassen-
basiert 

Fabrikmethode Adapter Interpreter 
Schablonenmethode 

Gültigkeits-
bereich 

Objekt- 
basiert 

Abstrakte Fabrik 
Erbauer 
Prototyp 
Singleton 

Adapter 
Brücke 
Dekorierer 
Fassade 
Fliegengewicht 
Kompositum 
Proxy 

Befehl 
Beobachter 
Besucher 
Iterator 
Menento 
Strategie 
Vermittler 
Zustand 
Zuständigkeitskette 

Tabelle 2: Dimensionen der Ausprägung von Entwurfsmustern nach [GaHe01] 

Nicht jedes Muster lässt sich heutzutage ohne weiteres als Entwurfsmuster klassifizieren. 
Vielmehr gibt es, unter anderem, graduelle Unterschiede in der Körnigkeit von Mustern. 
So wird etwa das Model-View-Controller-Muster sowohl als Architekturmuster, als auch 
als Entwurfsmuster betrachtet. Software Entwurfsmuster stellen also einen Versuch dar, 
ein professionelles Medium für den Transfer des Wissens von Software-Entwicklern über 
die Erstellung, Pflege und Dokumentation komplexer Softwaresysteme bereitzustellen. 
Sie helfen, geeignete Lösungen für Entwurfsprobleme zu identifizieren, indem sie 
vorhandenes Entwurfswissen dokumentieren. Innerhalb der Konzeptionsphase der hier 
vorliegenden Arbeit sollen Entwurfmuster insbesondere in den ersten Phasen die 
Designentscheidungen des Werkzeugs unterstützen und helfen, das Gesamtprojekt 
gliedern zu können. 

3.5.6 Architekturmuster von Mehrbenutzersystemen 

Realisierbare Software-Architekturen sind auf ein paar grundsätzlichen Strukturierungs-
prinzipien aufgebaut. Diese Prinzipien werden als Architekturmuster beschrieben. 
 

"Architekturmuster beschreiben fundamentale, strukturelle Organisationsschemata 
für Softwaresysteme. Sie bieten eine Anordnung von Subsystemen und deren 
wechselseitige Beziehungen und beinhalten Regeln und Richtlinien zur 
Organisation der Beziehungen." (nach [BuMe96]) 

 
Ein Architekturmuster spiegelt also ein grundsätzliches Strukturierungsprinzip von 
Software-Systemen wieder. Es beschreibt eine Menge vordefinierter Subsysteme, 
spezifiziert deren jeweiligen Zuständigkeitsbereich und enthält Regeln zur Organisation 
der Beziehungen zwischen den Subsystemen. Sie können als Schablonen für konkrete 
Software-Architekturen verstanden werden. Aufgrund der impliziten Auswahl der 
strukturellen Eigenschaft eines Anwendungssystems mit der Wahl eines 
Architekturmusters, wird mit der Wahl eines speziellen Architekturmusters eine 
Grundsatzentscheidung im Entwurf eines Softwaresystems getroffen. Architekturmuster 
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lassen sich nach [GaHe01] in vier verschiedene Kategorien einteilen, die in Tabelle 3 kurz 
dargestellt werden. 
 
Die Architekturmuster sollen im Folgenden nicht detailliert vorgestellt und diskutiert 
werden. Erläuterungen zu Aufgaben und Wirkungsweisen finden sich unter [Design 
Patterns]. Die aufgezeigten Muster sollen nachfolgend vielmehr hinsichtlich ihrer Eignung 
für die Verwendung als Software-Architektur für das zu entwickelnde, mehrbenutzer-
fähige Werkzeug zur Ablaufsimulation untersucht werden. Die Betrachtung ausgewählter 
Architekturmuster beschränkt sich auf die ersten drei Kategorien von Architekturmustern. 
Muster für adaptierbare Systeme lassen sich nur schwerlich hinsichtlich der 
Aufgabenstellung verwenden und werden nachfolgend nicht genauer betrachtet. 
 

Kategorie Beschreibung Zugeordnete Muster 

Mud-To-Structure Diese Architekturmuster sollen 
helfen, die Unmengen von 
Komponenten und Objekten eines 
Softwaresystems zu organisieren. 
Die Funktionalität des 
Gesamtsystems wird hierbei in 
kooperierende Subsysteme 
aufgeteilt. 

Layers 
Pipes-And-Filters 
Blackboard 

Verteilte Systeme Diese Kategorie unterstützt die 
Verwendung verteilter Ressour-
cen und Dienste in Netzwerken. 

Broker 
Client-Server 
Microkernel 
Pipes-And-Filters 

Interaktive Systeme Pattern dieser Kategorie helfen 
Mensch-Computer-Interaktionen 
zu strukturieren. 

Model-View-Controller 
Presentation-Abstraction-Control 

Adaptierbare Systeme Architekturmuster dieser 
Kategorie unterstützen besonders 
die Erweiterungs- und 
Anpassungsfähigkeit von 
Softwaresystemen. 

Microkernel 
Reflection 

Tabelle 3: Kategorien von Architekturmustern 

Bewertung 
Die Anwendung des Architekturmusters Layer bietet einige Vorteile hinsichtlich einer 
ersten Strukturierung einzelner Programmteile. Für die Umsetzung des angestrebten 
Werkzeugs bietet es durch seine Ausrichtung aber allenfalls dazu an, innerhalb 
bestimmter Programmmodule Basisdienste zu strukturieren und zu definieren. 
Insbesondere einer Ausrichtung hinsichtlich der geforderten Interaktivität und 
Mehrbenutzerfähigkeit kann mit diesem Muster nicht entsprochen werden. 
 
Das Pipes-and-Filters-Muster bietet sich für die flexible Gestaltung schwieriger 
Datentransformationen und -Verarbeitungen im besonderen Maße an. Inwiefern solche 
komplexen Transformationen bei der Umsetzung des zu entwickelnden Werkzeuges 
berücksichtigt werden müssen, kann erst im Konzeptionskapitel entschieden werden. Für 
die Gesamtanordnung des Systems scheint das Layers-Muster als die bessere 
Entwurfsalternative, da hier insbesondere die Fehlerbehandlung als wichtiger Bereich der 
Software-Entwicklung besser unterstützt wird. Das grundsätzliche Vorgehen erscheint 
beim Pipes-and-Filters-Muster eher prozess- als objektorientiert. Für komplexe 
Datentransformationen kann es aber ggf. eingesetzt werden. 
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Das Blackboard-Muster eignet sich insbesondere für neue Anwendungsbereiche, wo eine 
zuverlässige Gesamtlösung nicht deterministisch generiert werden kann. Für die 
Entwicklung des angestrebten Modellierungs- und Simulationswerkzeuges gilt dieses nur 
bedingt, da die prinzipielle Struktur eines Simulators ein bekanntes Arbeitsgebiet ist, in 
dem „nur“ eine auf die Fragestellung angepasste Architektur entwickelt werden muss. 
Der Entwurf des eigentlichen Werkzeuges trifft diese Definition somit nicht. Eine 
Anwendung im Bereich der Simulation, bzw. innerhalb der Logik des eigentlichen 
Simulationsmodells erscheint aber in den Bereichen möglich, wo die Terminierung eines 
Folgeereignisses als Folge einer Aktivität aus verschiedenen Teilbereichen 
zusammengesetzt werden muss. Ggf. kann das Blackboard-Muster also im Rahmen der 
Modellierung spezieller Fragestellungen von funktionsorientierten Fertigungssystemen 
eingesetzt werden. 
 
Der Entwurf des Modellierungs- und Simulationswerkzeuges wird zwangsläufig auf ein 
modulares, verteiltes System fokussieren. In diesem Rahmen kann während der 
Entwurfsphase das Broker-Muster berücksichtigt werden, um ein abgesichertes 
Objektmodell zu entwerfen, das eine robuste Kommunikation zwischen den Modulen 
erlaubt. Die prinzipiell mögliche Ausrichtung des Broker-Musters auf eine Kombination 
von Systemen, die in verschiedenen Programmiersprachen entwickelt werden, wird wohl 
nicht verwendet werden müssen, da eine einheitliche Verwendung von Java eine 
Grundannahme des zu entwickelnden Werkzeuges werden soll. Dadurch wird das 
beschriebene Broker-Muster aber nur vereinfacht, da die zur Kapselung eingesetzten 
Stellvertreter-Objekte aus dem Grundmodell herausfallen können. 
 
Die Client-Server-Architektur ist eine der momentan am weitesten verbreiteten 
Softwarearchitekturen für Business-Systeme. Insbesondere in den Funktionsmodulen zur 
Modellierung und/oder Visualisierung der Simulationsmodelle bietet sich dieses Software-
Muster an, um den Multitasking-Betrieb an einem gemeinsamen Simulationsmodell zu 
ermöglichen. Auf dem zentralen Anwendungsserver soll in diesem Fall das aktuelle 
Simulationsmodell sowie die Verwaltung der angeschlossenen Anwender erfolgen. Für 
das angestrebte Werkzeug würde sich vermutlich eine weitergehende Lösung in Form 
einer 3-Tier-Architektur anbieten, so dass alle anfallenden Simulationsdaten in einer 
Simulationsdatenbank gespeichert werden können. 
 
Die Anforderungen an das zu entwickelnde Werkzeug lassen sich auf einem hohen 
Abstraktionsgrad gut in verschiedene Subsysteme unterteilen, die in sich geschlossen 
funktionieren. Beispielsweise lässt sich der Gesamtprozess der Anwendung in 
Modellierung, Simulation und Analyse aufteilen. Für die Gestaltung auf einer detaillierten 
Ebene erscheint das Model-View-Controller-Muster besser geeignet, da hier die Aufteilung 
funktionsübergreifend erfolgt. Adaptiert man das Model-View-Controller Pattern auf die 
vorgestellte 3-Tier-Architektur, ergibt sich eine erste denkbare Softwarearchitektur für 
das zu entwickelnde Werkzeug. Vor allem hinsichtlich der Visualisierung der 
Simulationsläufe bietet sich Trennung nach eigentlicher Funktion und deren Darstellung 
an. Neben verschiedenen Darstellungsformen wird damit auch eine Simulation erlaubt, 
die ohne die Anzeigemethoden eines Visualisierungsmoduls zumindest berechnet werden 
kann. 
 



Stand der Technik  - 77 - 
 

 

Zusammenfassend kann man also sagen, dass verschiedene Architekturmuster zur 
Konzeption des Werkzeugs herangezogen werden können. Je nach Anforderung der 
Teilmodule sollen sie in Abschnitt 5.3 herangezogen werden. 

3.5.7 Software-Schnittstellen 

 
„Schnittstellen (interfaces) definieren Dienstleistungen für Anwender, d.h. 
aufrufende Klassen, ohne etwas über die Implementierung der Dienstleistung 
festzulegen.“ [Balz05] 

 
Eine Schnittstelle wird durch eine Menge von Regeln beschrieben, der Schnittstellen-
beschreibung. Neben der Beschreibung, welche Funktionen vorhanden sind und wie sie 
benutzt werden, gehört zu der Schnittstellenbeschreibung auch ein so genannter 
Kontrakt, der die Semantik der einzelnen Funktionen beschreibt. Standardisierte 
Schnittstellen bieten den Vorteil, dass Komponenten oder Module, die die gleiche 
Schnittstelle unterstützen, gegeneinander ausgetauscht werden können, das heißt sie 
sind zueinander kompatibel. 
 
Softwareschnittstellen oder Datenschnittstellen sind dementsprechend logische 
Berührungspunkte in einem Softwaresystem: sie definieren, wie Kommandos und Daten 
zwischen verschiedenen Prozessen und Komponenten ausgetauscht werden. In der 
objektorientierten Programmierung (OOP) vereinbaren Schnittstellen gemeinsame 
Signaturen von Klassen. Das heißt, eine Schnittstelle vereinbart die Signatur einer 
Klasse, die diese Schnittstelle implementiert. Das Implementieren einer Schnittstelle 
stellt eine Art Vererbung dar. Man kann zwischen Schnittstellen zur 
Interprozesskommunikation (Kommunikation zwischen verschiedenen Programmen) und 
Schnittstellen für Programmkomponenten (dienen der Modularisierung der Software-
Architektur) unterscheiden.  
 
Die eXtensible Markup Language (XML) ist ein Standard zur Erstellung maschinen- und 
menschenlesbarer Dokumente in Form einer Baumstruktur, der vom World Wide Web 
Consortium (W3C) definiert wird [Rock00]. Die XML definiert Regeln für den Aufbau und 
die Struktur solcher Dokumente. Für einen konkreten Anwendungsfall ("XML-
Anwendung") müssen die Details der jeweiligen Dokumente spezifiziert werden. Dies 
betrifft insbesondere die Festlegung der Strukturelemente und ihre Anordnung innerhalb 
des Dokumentenbaums. Eine Festlegung und Eingrenzung der Struktur von 
Simulationsmodellen wird somit ermöglicht und kann auf einfache Weise überprüft 
werden. Bei der Verwendung von XML spricht man hier auch von der Gültigkeit und 
Wohlgeformtheit von XML-Dateien hinsichtlich einer durch XML-Schemata oder Document 
Type Definition (DTD) festgelegten Grammatik. 
 
Die Namen der einzelnen Strukturelemente (XML-Elemente) für eine XML-Anwendung 
lassen sich frei wählen. Ein XML-Element kann ganz unterschiedliche Daten enthalten und 
beschreiben, als prominentestes Beispiel Text, aber auch Grafiken oder abstraktes 
Wissen. Ein Grundgedanke hinter XML ist es, Daten und ihre Repräsentation zu trennen, 
also beispielsweise Wetterdaten einmal als Tabelle und einmal als Grafik auszugeben, 
aber für beide Anwendungen die gleiche Datenbasis im XML-Format zu nutzen. Ein 
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weiterer Vorteil, der sich durch den Einsatz von XML ergibt, ist die leichte Erweiterbarkeit 
der entsprechenden Grammatiken. Bei den meisten Erweiterungen der Grammatik 
bleiben die vorher erstellen XML-Dateien, in dem hier vorliegenden Fall also 
Simulationsmodelle, auch gültig bezüglich der neuen Grammatik. 
 
In den letzten Jahren hat die XML vermehrt in die Gestaltung von Software-Schnittstellen 
Einzug gehalten. Die XML wird zum einen bei der Gestaltung von Dateiaustauschformaten 
eingesetzt, um Dateninhalte zwischen verschiedenen Anwendungen oder 
Anwendungsmodulen auszutauschen [Rock00]. Zum anderen gewinnt sie wegen ihrer 
leichten Erweiterbarkeit steigende Bedeutung bei der Gestaltung von Interprozess-
kommunikationsschnittstellen, wo Anwendungen Informationen zur Laufzeit mittels eines 
festgelegten Formats austauschen [Rock00]. 
 
Bewertung 
Für das hier zu entwickelnde Werkzeug kann der Einsatz der XML in beiden Bereichen als 
sinnvoll erachtet werden. Die XML kann sowohl dazu dienen, die entsprechenden 
Simulationsmodelle entsprechend der Modellbeschreibung in einem festgelegten Format 
abzulegen, als auch die Kommunikation zwischen den verschiedenen Werkzeugmodulen, 
beispielsweise Visualisierungskomponente und Simulatorkern, auf Basis eines 
Nachrichtenformates zu realisieren. 

3.6 Fazit 

Für die Modellierung und Simulation von Fertigungssystemen auf der Betrachtungsebene 
einer diskreten Materialflusssimulation sind zahlreiche Methoden bekannt. Als 
Vorgehensmodell werden spezifische Projekte meist in Form einer Simulationsstudie 
umgesetzt. Der Basisprozess der schrittweisen Modellierung, Simulation und Analyse der 
abzubildenden Systeme lässt sich potentiell durch mehrere Anwender in einer 
interaktiven Umgebung erarbeiten, auch wenn dies noch in keinem bekannten Software-
Werkzeug unterstützt wird. 
 
Im Rahmen der Untersuchung des Standes der Technik konnten keine 
Modellbeschreibungen identifiziert werden, die alle Anforderungen bereits umsetzen. Alle 
vorgestellten Modellbeschreibungen haben in ihrem Bereich durchaus ihre Berechtigung, 
schränken die Anwendung aber soweit ein, dass die hier gestellten Anforderungen nicht 
mehr in Gänze erfüllt werden können. Für die hier vorliegende Arbeit bedeutet das, nach 
der Festlegung einer Prozessstruktur eine Modellbeschreibung zu entwickeln, die durch 
ein modular aufgebautes Software-Werkzeug implementiert werden kann, so dass alle 
Anforderungen erfüllt werden können. Die relevanten Kriterien sind aus Abschnitt 2.3 
bekannt und können auch nach Sichtung des Standes der Technik übernommen werden. 
Eine Kombination aus Framework-basierter Modellierung mittels einer 
Programmiersprache mit Anbindung an die wesentlich anwenderfreundlichere, grafische 
Modellierung erscheint besonders vielversprechend. Die Implementierung des Werkzeugs 
als dritter Schritt stützt sich dann auf diese grundlegende Modellbeschreibung. Für den 
Simulatorkern ergibt sich die Anforderung, sowohl die zeit- wie auch die ereignisdiskrete 
Zeitfortschreitung zu implementieren, um den Einsatz des Werkzeugs in den 
verschiedenen Planungsphasen zu ermöglichen. 
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Das Problemfeld dieser Arbeit liegt im Bereich der Modellierung und Simulation 
komplexer Fertigungssysteme, die in einer virtuellen Umgebung dargestellt werden 
sollen, um sie möglichst immersiv und interaktiv parallel zu ihrer Ausführung analysieren 
und optimieren zu können. In diesem Feld sind verschiedene Implementierungen zur 
Darstellung von Fertigungssystemen in einer virtuellen Umgebung bekannt, an die sich 
bei der Umsetzung angelehnt werden kann. Neben einer hoch auflösenden, 
dreidimensionalen Visualisierung sollen dem Anwender aber auch weitere 
Darstellungsformen in dem zu entwickelnden Werkzeug angeboten werden. 
 
Im Rahmen der Umsetzung der zu entwerfenden Modellierungsphilosophie (hier 
verstanden als die Entwicklung eines Basisprozesses inklusive einer passenden 
Modellbeschreibung) in ein entsprechendes Software-Werkzeug sind insbesondere für die 
objektorientierte Programmierung zahlreiche Paradigmen bekannt, die bestmöglich 
berücksichtigt werden sollen. Für den Aufbau von modular organisierten, interaktiven 
Anwendungssystemen existieren mehrere Architekturmuster, die bei dem strukturierten 
Aufbau des Werkzeuges innerhalb einer festzulegenden Organisationsform angewendet 
werden können. Insbesondere die Unterstützung von Kommunikations-, Koordinations- 
und Kooperationsfunktionen muss umgesetzt werden, damit das Werkzeug als 
Mehrbenutzersystem angewendet werden kann. Bei der Entwicklung der eigentlichen 
Software ist die höchstmögliche Verwendung der UML zu befürworten, um Planungsfehler 
im Rahmen der Software-Entwicklung im Vorfeld vermeiden zu können. Als Software-
Schnittstelle erscheint die XML sowohl als Datenaustauschformat, als auch als 
Kommunikationsschnittstelle als besonders geeignet. 
 
Das folgende Kapitel nimmt die in Kapitel 2.3 aufgezeigte Strukturierung der 
Gesamtaufgabe auf und definiert die Umsetzungsschritte unter Berücksichtigung der in 
Kapitel 1 aufgezeigten Lösungsmöglichkeiten. 





Zielstellung  - 81 - 
 

 

4 Zielstellung 
„Der Mensch ist ein zielstrebiges  
Wesen, aber meistens strebt es  

zu viel und zielt zu wenig.“ 
 

(Günter Radtke) 
 
In dieser Arbeit soll ein Materialflusssimulator konzipiert und umgesetzt werden, der mit 
einem diskreten, wahlweise zeit- oder ereignisorientierten Verfahren richtungsoffene 
Simulationsmodelle so berechnet, dass Mehrbenutzer-Modellierung, -Simulation und -
Analyse in einer interaktiven, immersiven und virtuellen Umgebung ermöglicht wird (vgl. 
Abschnitt 2.3).  
 
Eine Analyse des Standes der Technik hat verschiedene Modellbeschreibungen 
aufgezeigt, die eine Abbildung von Fertigungssystemen in einem frei wählbaren 
Abstraktionsgrad prinzipiell ermöglichen. Keine der identifizierten Modellbeschreibungen 
erlaubt jedoch die Erfüllung aller aufgezeigten Anforderungen in Gänze. Nach der 
Festlegung grundlegender Annahmen für den Prozess der Modellierung, Simulation und 
Analyse, wie er durch das Werkzeug unterstützt werden soll (siehe Abschnitt 4.1), muss 
in einem zweiten Schritt eine Modellbeschreibung von ausführbaren Materialfluss-
modellen als Kombination und Erweiterung der vorgestellten Lösungen konzipiert 
werden, die alle aufgezeigten Anforderungen erfüllen kann. Abschnitt 4.2 beschreibt die 
dazu nötigen Schritte, beginnend mit der sukzessiven Entwicklung einer modularen, 
objektorientierten Modellbeschreibung zur mehrbenutzerfähigen Modellierung interaktiver 
Simulationsmodelle. In einem Folgeschritt wird diese Modellbeschreibung hinsichtlich 
einer Transformation in ein Simulationsmodell zur Rückwärtssimulation hin untersucht, 
überprüft und gegebenenfalls erweitert. 
 
Letztendlich soll dem Anwender ein Werkzeug zur Verfügung gestellt werden, dass eine 
benutzerfreundliche Bearbeitung der dargestellten Simulationsmodelle erlaubt. Abschnitt 
4.3 untergliedert den Entwurfs- und Implementierungsprozess des Werkzeugs in die 
Phasen Systementwurf, Systemarchitektur und Realisierung. Der erste Bereich beschreibt 
die Strukturierung der Software in Module, um den ganzheitlichen Ansatz der 
angestrebten Lösung zu unterstreichen. In der Phase der Systemarchitektur werden die 
unter Anwendung der UML (Use-Case-Diagramme) identifizierten Teilsysteme 
miteinander verzahnt. Daraufhin werden die einzelnen Funktionsmodule mittels der in 
Abschnitt 3.5.6 aufgezeigten Architekturmuster entworfen und überprüft. Schließlich 
werden im Rahmen der Realisierung die einzelnen Module innerhalb des Gesamt-
konzeptes implementiert und anhand eines Beispielmodells validiert. 

4.1 Gestaltung eines Basisprozesses 

Die Entwicklung des angestrebten Materialflusssimulators setzt einige Basisannahmen 
über den Arbeitsprozess mit dem Software-Werkzeug voraus. Dessen Gestaltung muss 
vor der eigentlichen Entwicklung von Modellbeschreibung und Werkzeug ebenso 
festgelegt und beschrieben werden, wie alle Überlegungen hinsichtlich aller 
übergreifenden Entscheidungen (Programmiersprache, etc.). Die entsprechende Wahl der 
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Grundentscheidungen kann wieder den eigentlichen Arbeitsprozess der Modellierung und 
Simulation beeinflussen. Als Basis dient das unter Abschnitt 2.4.1 vorgestellte, 
grundsätzliche Vorgehen, das nach Abschnitt 3.1 innerhalb einer Simulationsstudie 
angewendet werden kann. 
 
Mehrbenutzerbetrieb und Interaktion 
Die einzelnen Bereiche innerhalb eines Simulationsmodells müssen sich so voneinander 
trennen lassen, dass eine Manipulation des Gesamtmodells ermöglicht wird. Alle 
wesentlichen Modelleigenschaften müssen sich während der Ausführung eines 
Simulationsmodells manipulieren lassen, die entsprechenden Interaktionen müssen 
protokolliert werden. Die noch zu spezifizierenden Interaktionsmetaphern (Erzeugen, 
Selektieren, Parametrieren, Erweitern, Löschen etc.) führen unter Umständen zu 
umfangreichen Änderungen an dem Simulationsmodell. Sie müssen über die 
entsprechenden Benutzerschnittstellen nicht nur ermöglicht werden, sondern auch in 
einem Rahmen verwendet werden, der die Konsistenz des Gesamtmodells nicht 
gefährdet. Basis der Arbeit mehrerer Anwendern an einem gemeinsamen Modell ist der 
Entwurf und die Implementierung einer Benutzerverwaltung inklusive eines 
Rechtemanagements. So können verschiedene Benutzergruppen mit unterschiedlichen 
Aufgabenbereichen voneinander unterschieden werden. 

4.2 Anforderungen an eine Modellbeschreibung 

Zweiter Baustein der Umsetzung vor Systementwurf und Implementierung des 
Werkzeugs muss die Entwicklung einer Modellbeschreibung sein, die allen aufgezeigten 
Anforderungen an die Modellierung und Simulation von Fertigungssystemen genügt. 
Dabei sind alle Anforderungen zu berücksichtigen, die aus einem Multitasking-Betrieb und 
den Interaktionsmöglichkeiten resultieren, um diese in den Einsatzfeldern Vorwärts- und 
Rückwärtssimulation von komplexen Simulationsmodellen zu erlauben. Die jeweiligen 
Vorteile der unter Abschnitt 3.2 aufgezeigten Lösungsalternativen sollen bestmöglich in 
einem Ansatz integriert werden. Die Benutzerfreundlichkeit soll gesteigert werden, indem 
zunächst eine grafische Modellierung anhand von Bausteinbibliotheken ermöglicht wird. 
Zur Modellierung spezieller Algorithmen und Methoden innerhalb eines Modellbausteins 
soll ein Framework-basierter Ansatz verfolgt werden, indem die Gültigkeit des erstellten 
Programmcodes direkt während der Modellierung überprüft werden kann. Die Gestaltung 
soll schrittweise erfolgen, je nach Anforderung erweitert werden können. Dabei soll von 
einer allgemeinen Modellbeschreibung ausgegangen werden; zusätzliche Anforderungen 
werden Schritt für Schritt integriert. 

4.2.1 Vorwärtssimulation 

Allgemeine Simulationsmodelle 
Die allgemeine Modellbeschreibung der Simulationsmodelle soll sich konsequent an 
Grundsätzen der objektorientierten Programmierung orientieren, um eine modulare und 
objektorientierte Struktur des Simulationsmodells zu erhalten, die als Datenmodell des 
Simulators verwendet werden kann. Die Simulationsmodelle sollen unter Anwendung von 
Synchronisationsverfahren interaktiv verändert werden können und prinzipiell einen 
beliebigen Detaillierungsgrad in hierarchischen Strukturen abbilden können. 
 
Anforderungen zur dynamischen Detaillierung 
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Aus den Integrationsbemühungen innerhalb einer ganzheitlichen Planung resultiert 
zwangsläufig eine wachsende Komplexität der Simulationsmodelle und ihrer 3D-
Visualisierungen. Um beispielsweise die Simulation einer kompletten Supply-Chain mit 
dem zu entwickelnden Werkzeug dennoch zu ermöglichen, muss im Rahmen der 
Modellbeschreibung ein bekanntes Verfahren zur dynamischen Detaillierung von 
Simulationsmodellen adaptiert und in die Modellbeschreibung integriert werden 
[Muec05]. Darüber hinaus muss auch im Rahmen der Entwicklung des Simulatorkerns 
eine entsprechende Umsetzung dieser Erweiterung der Modellbeschreibung berücksichtigt 
werden. 
 
Anforderungen funktionsorientiert gegliederter Fertigungen 
Neben der Abbildung von Fertigungssystemen, deren Gliederung sich an dem zu 
fertigenden Erzeugnis orientiert, soll auch die Modellierung und Simulation von funktional 
gegliederten Fertigungssystemen, bzw. deren Vermischung in gemischt objekt- und 
funktionsorientierten Fertigungssystemen durch das zu entwickelnde Werkzeug und 
damit die dem Werkzeug zugrunde liegende Modellbeschreibung unterstützt werden. Als 
spezielle Anforderung der funktionsorientierten Fertigungsprinzipien ist insbesondere die 
Möglichkeit zur leichten und flexiblen Modellierung von Transportwegen innerhalb eines 
vorgegebenen Layouts zu berücksichtigen. 
 
Mehrbenutzerfähige Modellierung 
Prinzipiell müssen alle Anforderung über entsprechende Mechanismen so ausgelegt 
werden, dass eine Ausführung auch in einem Multitasking-System mit mehreren an 
einem gemeinsamen Simulationsmodell angeschlossenen Anwendern möglich ist. Die 
entsprechenden Zugriffe müssen aufgenommen, verwaltet und konsistent ausgeführt 
werden. Potentielle Konflikte zwischen Interaktionen verschiedener Anwender müssen 
bestmöglich automatisiert durch das Werkzeug aufgelöst oder im Vorhinein durch eine 
entsprechende Gestaltung der Benutzerschnittstelle verhindert werden. 

4.2.2 Rückwärtssimulation und Modelltransformation 

Der Einsatz der Ablaufsimulation soll sich mit diesem Werkzeug über die reine 
Fertigungsprozessplanung hin zur Absicherung der Planungsphasen der 
Fertigungslenkung und Prognose aktueller Systemzustände aus der Fertigungssteuerung 
erweitern. Darum ist die Modellbeschreibung so zu gestalten, dass der abgebildete 
Materialfluss in einer Vorwärts- und Rückwärtssimulation berechnet werden kann. Um 
den Modellierungsaufwand des Anwenders nicht signifikant zu erhöhen, soll eine 
Möglichkeit identifiziert werden, eine (semi-)automatische Transformation zwischen den 
verschieden gerichteten Modellen zu erreichen. Neben Fragestellungen bezüglich der 
maximalen Leistungsfähigkeit eines Fertigungssystems kann dadurch auch die Qualität 
bestehender Fertigungsprogramme auf Basis desselben Modells überprüft und ggf. 
verbessert werden. Bestehende Fertigungsprogramme oder vorliegende Kundenaufträge 
mit Auslieferungsterminen dienen hierbei als Eingabequellen für das rückwärts gerichtete 
Simulationsmodell. In einem Folgeschritt können diese Verfahren eingesetzt werden, um 
Fertigungsprogramme auch direkt aus der Ablaufsimulation zu erzeigen und zu 
optimieren.  
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Abbildung 23 zeigt schematisch die Vorgehensweise beim Entwurf der 
Modellierungsmethode für das zu entwickelnde Werkzeug. Darauf aufbauend wird im 
nachfolgenden Schritt das eigentliche Werkzeug konzipiert. 

 

Abbildung 23: Entwurfsphasen der Modellierungsmethode 

4.3 Entwurf eines Werkzeuges 

Dem Anwender soll im gesamten Arbeitsprozess innerhalb der jeweiligen 
Visualisierungskomponenten ein hohes Maß an Immersion zur Verfügung stehen. Neben 
einer möglichst guten Darstellungsqualität in der virtuellen Realität sind bei der 
Gestaltung der Software Benutzerschnittstellen zu realisieren, die ein reales, interaktives 
Verhalten bestmöglich abbilden. Die interaktive Ausführung setzt eine bidirektionale 
Kopplung zwischen den Modulen Simulatorkern und den angeschlossenen 
Visualisierungskomponenten voraus, damit die Interaktionen direkte Auswirkungen auf 
Modellierung oder Ausführung der Simulation haben. 
 
Das Werkzeug selbst muss im Rahmen eines Software-Entwicklungsprozesses konzipiert, 
modelliert und implementiert werden. Anhand eines Beispielmodells soll anschließend der 
Nachweis geführt werden, dass das entwickelte Werkzeug den gestellten Anforderungen 
genügt und sich für den Einsatz als integriertes Werkzeug eignet. 
 
Systementwurf 
Innerhalb der ersten Phase, dem Systementwurf, werden zunächst grundlegende 
Grobgliederungen anhand darzustellender Use-Cases erstellt und modular strukturiert. 
Dabei kommen erste Architekturmuster zum Einsatz, die eine trennscharfe 
Strukturierung in Module erlauben und die jeweiligen Modulgrenzen aufzeigen können. 
Entsprechende Kommunikationsschnittstellen zwischen den Modulen werden in einem 
Grobentwurf festgelegt, um die Tauglichkeit des Systementwurfs darstellen und 
nachweisen zu können. 
 
Systemarchitektur 
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In der Folgephase werden mit Hilfe weiterer Architekturmuster die einzelnen Module 
detaillierter konzipiert und hinsichtlich ihrer Aufgabenstellung verbessert. Insbesondere 
die Übertragung des Datenmodells aus der Modellbeschreibung in die jeweilige 
Kernfunktionalität der einzelnen Module spielt hier eine wesentliche Rolle. In einem 
weiteren Schritt werden die jeweiligen Software-Schnittstellen zwischen den einzelnen 
Modulen genauer ausgearbeitet und die Kommunikation detailliert. Als Ergebnis dieser 
Entwurfsphase sind die einzelnen Module sowie ihre Beziehungen untereinander definiert 
und abgestimmt. In einem nächsten Schritt müssen sie schließlich in der 
Implementierung umgesetzt und die entsprechenden Benutzerschnittstellen gestaltet 
werden. 
 
Realisierung 
Unter Berücksichtigung der Zielstellung werden in der Realisierungsphase zunächst die 
einzelnen Programmmodule implementiert und die definierten Kommunikations-
schnittstellen umgesetzt. Die Implementierung erfolgt auf Basis der in der vorherigen 
Phase festgelegten Schematisierung und innerhalb der entsprechenden Architektur-
muster, bzw. Organisationsformen. 
 
In der Realisierung wird die Implementierung anhand eines umfangreichen 
Beispielmodells erprobt und der eigentliche Modellierungs- und Simulationsprozess 
innerhalb des Werkzeuges beschrieben. Das Beispiel wird in Form einer Simulationsstudie 
durchgeführt, dazu also zunächst der Untersuchungsgegenstand erläutert und 
nachfolgend modelliert, simuliert und visualisiert. 
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5 Konzeption 
„Der Anfang ist die Hälfte 

vom Ganzen.“ 
 

(Aristoteles) 
 
In dem zu entwickelnden Werkzeug sollen Simulationsmodelle erstellt und mittels eines 
Simulatorkerns ausgeführt werden. Grundlegende Basis für ein solches Software-Tool ist 
zum Einen eine Struktur des Arbeitsprozesses, der durch das Werkzeug unterstützt 
werden soll, zum Anderen Grundannahmen über die Beschaffenheit des Werkzeuges und 
eine Modellbeschreibung, anhand derer gültige Simulationsmodelle definiert werden. In 
Abschnitt 5.1 sollen zunächst einige Basisannahmen über den Arbeitsprozess beschrieben 
werden. In Abschnitt 5.2 wird daraufhin eine Modellbeschreibung, bzw. ein 
objektorientiertes Strukturmodell aufgebaut, mit dem Simulationsmodelle in dem zu 
entwickelnden Tool beschrieben werden. 
 
Im Abschnitt 5.3 soll das Werkzeug selbst im Rahmen eines Software-
Entwicklungsprozesses konzipiert und modelliert werden. Auf Basis der in Abschnitt 4.3 
gestellten Anforderungen wird zunächst ein Systementwurf durchgeführt, der die 
Gesamtanforderungen in Funktionsmodule strukturiert. Diese werden in den folgenden 
Abschnitten ausgeplant und höher detailliert entworfen, um sie in der 
Implementierungsphase umsetzen zu können. Bei der Modellierung des Werkzeugs 
werden die Ergebnisse aus der Konzeption der Modellbeschreibung und des 
Nachrichtenprotokolls berücksichtigt. 

5.1 Gestaltung eines Basisprozesses 

5.1.1 Arbeitsprozess Modellierung und Simulation 

Der Basisprozess von Modellierung und Simulation, wie er in anwendungsorientierten 
Simulatoren heute unterstützt wird, bildet die Grundlage für das zu entwickelnde 
Werkzeug, weil dieser den Anwender von allen vorgestellten Methoden am effizientesten 
bei seiner Arbeit unterstützt. Er basiert auf Grundlage des in Abschnitt 3.1 gezeigten 
Ablaufs einer Simulationsstudie. Auf Basis eines logischen Modells, das bereits in 
früheren Phasen einer Simulationsstudie für den abzubildenden Materialfluss erstellt 
wurde, wird in einem ersten Schritt das Fertigungssystem mittels einer grafischen 
Oberfläche aus Bausteinen zu einem Simulationsmodell zusammengesetzt, indem 
einzelne Bausteine aus Bibliotheken entnommen, in ein übergeordnetes Modell eingefügt 
und mit anderen Bausteinen über logische Kanten verknüpft werden. Das resultierende 
Modell kann gespeichert und im Simulator ausgeführt werden. Je nach Anwendung wird 
der logisch abgebildete Materialfluss animiert, lässt sich ggf. modifizieren und/oder 
mittels Interaktion beeinflussen. Im Rahmen der Modellierung wird das entstehende 
Simulationsmodell zunächst verifiziert. Komplexere Steuerungen werden über spezielle 
Methoden in den Modellbausteinen implementiert. Im Anschluss werden 
Simulationsexperimente und deren einzelne Simulationsläufe geplant. Abbildung 24 zeigt 
schematisch den typischen Prozess von der Modellierung über die Ausführung von 
Simulationsexperimenten bis hin zur Auswertung der gesammelten Daten. 
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Abbildung 24: Idealtypischer Simulationsprozess 

Aus dieser funktionalen Unterscheidung der Aufgabe des Simulationsexperten kann direkt 
eine modulare Aufteilung des Werkzeugs geschlussfolgert werden. Diese soll im 
Folgenden näher beschrieben werden. 

5.1.2 Modulare Architektur 

Auf Basis des grundlegenden Modellierungsprozesses können verschiedene 
Funktionsmodule unterschieden werden, die unter Berücksichtigung der besonderen 
Anforderung nach Interaktivität das zu entwickelnde Gesamtsystem bilden sollen. 
Abbildung 25 greift die schematische Struktur des Gesamtsystems aus Abschnitt 2.4.1 
nochmals auf und erweitert sie um administrative Funktionen. 
 

 

Abbildung 25: schematische Darstellung der Funktionsmodule des Werkzeugs 

Nach der grafischen Modellierung der Simulationsmodelle durch den Anwender sollen 
diese in einem Simulatorkern berechnet und mittels einer Visualisierungskomponente 
angezeigt werden. Modellierung und Visualisierung sollen sowohl mehrbenutzerfähig in 
zwei-, als auch dreidimensionaler Darstellung ermöglicht werden. Die einzelnen 
Bausteine sollen gemäß Anforderung keinen Detaillierungsgrad der Modellierung 
vorgeben, sondern aus Grundelementen zusammengesetzt sein. Zur Modellierung der 
Verhaltenslogik soll eine integrierte Programmiersprache dienen, wie sie analog in 
kommerziellen Simulatoren angewendet wird. Basis der Modellbeschreibung und 
Programmierung ist aber ein einheitliches Verständnis der Modelle und Funktionen des 
Simulators, wie es aus der Verwendung von Frameworks bekannt ist (vgl. 3.2.2). Das 
Simulationsmodell kann im nächsten Schritt im Simulatorkern berechnet werden; die 
dynamischen Prozesse werden in den angeschlossenen Visualisierungskomponenten 
animiert. Diese beinhalten auch die Möglichkeit zur Interaktion mit dem 
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Simulationsmodell und zeigen durchgeführte Änderungen direkt an, um eine stetige, 
immersive Verbesserung des Simulationsmodells zu erlauben. 
 
Basis aller Module ist neben einer einheitlichen Beschreibung der Simulationsmodelle und 
einem Nachrichtenformat für die Kommunikationsschnittstelle auch eine integrierte 
Datenhaltung über alle Module für die anfallenden Simulationsdaten während der 
Durchführung einer Simulationsstudie. Neben dem Simulationsmodell an sich und den 
benötigten Funktionsbibliotheken sind das insbesondere auch die zwei- bzw. 
dreidimensionalen Repräsentanten der Funktionsbausteine, die in den entsprechenden 
Benutzeroberflächen verwendet werden. Auf Basis vorhandener dreidimensionaler 
Repräsentanten für einen bestimmten Modellbaustein soll die zweidimensionale 
Darstellung automatisch abgeleitet werden, um den Aufwand der Datengenerierung zu 
minimieren. 

5.1.3 Integration von Layout- und Fertigungsprozessplanung 

Das Erstellen und Bearbeiten des Simulationsmodells innerhalb der 
Modellierungskomponente soll layoutgerechtes Anordnen der Modellbausteine erlauben. 
Auf Basis eines Rasters oder durch die Einbeziehung von vorhandenen Layouts können 
die Modellbausteine eines Simulationsmodells bereits in der Modellierungskomponente 
layoutgerecht angezeigt werden. Neben einer realistischeren Darstellung des 
Simulationsmodells können somit auch direkt Entfernungen von Transportwegen oder die 
Auslegung von Förderstrecken richtig angelegt werden. Innerhalb einer ganzheitlichen 
Planung können somit zwei aufeinander folgende Aufgaben innerhalb des zu 
entwickelnden Werkzeugs integriert werden: Die Layoutplanung und die 
Fertigungsprozessplanung (vgl. hierzu auch Abschnitt 2.1). 
 
Bei der Konzeption und Umsetzung des eigentlichen Werkzeugs ist auf die Möglichkeit zu 
achten, Modellbausteine in das Simulationsmodell zu integrieren, die keine eigentliche 
Funktion im Sinne der Ablaufsimulation verfolgen. Sie dienen lediglich der realistischen 
Ausgestaltung des Szenarios bzw. Layouts oder als Grundlage für die Anordnung der 
Modellbausteine (beispielsweise die Abbildung einer Fabrikhalle in Form eines 
Hallenlayouts). Die integrierte Datenhaltung erlaubt darüber hinaus zumindest prinzipiell 
auch eine Aufteilung der beiden Arbeitsaufgaben in verschiedene Module, solange auf das 
einheitliche Datenmodell zurückgegriffen wird. 

5.1.4 Programmiersprache JAVA als Simulationssprache 

Für die Abbildung komplexer Steuerungslogiken verwenden Materialflusssimulatoren 
innerhalb der Modellbausteine spezifische Modellierungssprachen, mit denen das 
gewünschte Verhalten programmiert und in dem Baustein hinterlegt werden kann. 
Vorhandene Modellbausteine müssen durch speziell angepasste Methoden auf das 
individuelle Verhalten eingestellt werden können. Das Erlernen der dazu benötigten 
spezifischen Simulationssprachen ist ein zeitaufwendiger Prozess und während der 
Modellierung eine häufige Fehlerquelle. Um die Fehleranfälligkeit hier zu reduzieren und 
das Erlernen der Modellierungssprache zu erleichtern, soll im Rahmen der vorliegenden 
Arbeit eine „handelsübliche“ Programmiersprache als Modellierungssprache verwendet 
werden. Sie muss wegen der Objektorientierung der Simulationsmodelle eine 
objektorientierte Sprache sein. Innerhalb der hier vorliegenden Arbeit wurde Java als 



- 90 - 

 

Programmiersprache ausgewählt. Alternativ ständen andere objektorientierte 
Programmiersprachen oder simulationsspezifische Programmiersprachen zur Verfügung. 
Aus den nachfolgend kurz dargestellten Gründen wurde jedoch auf Java zurückgegriffen. 
 
Java wurde ursprünglich von Sun Microsystems entwickelt. Es ist eine objektorientierte 
Programmiersprache, die sich durch einige zentrale Eigenschaften auszeichnet. Diese 
machen sie universell einsetzbar und für die Industrie als robuste Programmiersprache 
interessant. Da Java objektorientiert ist, spiegelt es den Wunsch der Anwender wider, 
moderne und wieder verwendbare Komponenten zu programmieren. Im Gegensatz zu 
herkömmlichen Übersetzern einer Programmiersprache, die Maschinencode für eine 
spezielle Plattform generieren, erzeugt der Java-Compiler Programmcode für eine 
virtuelle Maschine, den so genannten Bytecode, der prinzipiell auf allen 
Rechnerplattformen interpretiert werden kann. Java wird in allen IT-Bereichen von 
Handel, Industrie und Verwaltung eingesetzt und ist für unzählige Betriebssysteme und 
Plattformen, vom mobilen Telefon bis hin zur Echtzeit-Großrechneranlage kostenlos 
verfügbar. Neben einer hohen Anzahl von Anwendern stehen zahlreiche Bibliotheken zur 
Verfügung, die bei der Modellierung verwendet werden können. Beispielsweise stehen 
umfangreiche Mathematik- und Statistik-Bibliotheken zur Verfügung, die in das System 
integriert werden können. Die Eigenschaft als objektorientierte Sprache ermöglicht den 
Einsatz von Kapselung, Vererbung und Hierarchisierung (vgl. Abschnitt 3.5.2), wie sie in 
den Modellbausteinen benötigt werden. Sie ergänzt damit den objektorientierten Ansatz 
der Modellbeschreibung, der später genauer beschrieben wird. Java eignet sich prinzipiell 
auch für den Einsatz von Mehrbenutzersystemen, da eine wesentliche Eigenschaft, das 
parallele Ausführen mehrerer Prozesse (Threads), unterstützt wird. Java ist darüber 
hinaus für spätere Anwender des Systems leichter zu lernen, da aufgrund der weiten 
Verbreitung zahlreiche Tutorien und Kurse zur Verfügung stehen. Das Erlernen einer 
anwendungsspezifischen Simulationssprache, die nur für dieses spezifische 
Simulationswerkzeug gültig ist, entfällt somit. Eine Einführung des Werkzeuges in den 
laufenden Betrieb bei potentiellen Kunden wird somit erleichtert. 
 
Aus den oben genannten Gründen soll Java auch als Implementierungssprache für das zu 
entwickelnde Werkzeug dienen. Der dadurch resultierende, parallele Einsatz von Java als 
Modellierungs- und Implementierungssprache bietet das Potential einer engeren 
Abstimmung zwischen Werkzeug und Modelllogik, was durch die Transformation der 
Modellbeschreibung in ein objektorientiertes, Java-basiertes Datenmodell weiter 
gefördert werden kann und soll. Durch diese enge Verzahnung der Daten und der 
Berechnung im Simulator soll der Geschwindigkeitsnachteil, den Java gegenüber 
anderen, objektorientierten Programmiersprachen wie beispielsweise C++ noch hat, 
weitestgehend kompensiert werden. Eine Verschmelzung von Simulator und 
Simulationsmodell in einem einzigen, lauffähigen Java-Programm ermöglicht darüber 
hinaus ein einfaches Ankoppeln unterschiedlicher Visualisierungs- und Auswertungs-
module. Die Gestaltung eines Mehrbenutzerbetriebs, bzw. die Verarbeitung eines 
bestimmten Simulationsmodells mit mehreren Visualisierungsmöglichkeiten wird dadurch 
zumindest potentiell schon ermöglicht. Der Basisprozess muss für eine solche Ausführung 
marginal angepasst werden, indem die zwischenzeitliche Speicherung des 
Simulationsmodells um das Übersetzen in ein lauffähiges Java-Programm erweitert wird. 
Dadurch ergibt sich als weiterer Vorteil eine implizite Validierung der in den Methoden 
hinterlegten Verhaltensbeschreibung. Durch die Integration von vorhandenen 
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Debuggern20 kann auch die Verifikation des Simulationsmodells in der 
Modellierungskomponente erleichtert werden. Auch hier können existierende Lösungen 
im Bereich der Programmiersprache in das entsprechende Modul integriert werden, um 
die Arbeit des Anwenders zu erleichtern. Der angepasste Basisprozess gestaltet sich 
demnach wie folgt: 
 

 

Abbildung 26: angepasster Basisprozess für die Modellierung und Simulation 

5.1.5 Grundlegende Merkmale der Modellierung und Simulation 

Vor dem eigentlichen Start eines Simulationslaufs muss eine Initialisierungsphase 
ausgeführt werden, mittels der das Simulationsmodell mit Eingabedaten aus 
Simulationsdatenbank oder dem Dateisystem vorbelegt werden kann. Prozessabbilder 
oder Fertigungsprogramme können als Startparametrierung dienen, um die 
Einschwingphase des Simulationsmodells zu minimieren oder ganz zu kompensieren. Hier 
können Initialnachrichten an die angeschlossenen Visualisierungskomponenten gesendet 
werden, um die entsprechende Darstellung des Simulationsmodells aufbauen zu können 
(vgl. hierzu auch Abschnitt 3.4.2). Danach beginnt der Simulationslauf. Ein 
Experimentmanager-Modul soll mehrere Simulationsläufe verwalten können, die 
hintereinander oder parallel ablaufen können, damit der Anwender in der 
Experimentierphase einer Simulationsstudie die benötigten Simulationsläufe an einer 
zentralen Stelle parametrieren und ausführen kann.  
 
Zur Generierung der benötigten Simulationsdaten innerhalb eines Simulationslaufs sollen 
einzelne Variablen eines Modellbausteins „abonniert“ werden können, deren 
Werteveränderungen dann in dem Simulationslauf entweder vom Simulationskernel oder 
dem Visualisierungsmodul protokolliert werden. Alternativ können den durch das 
Simulationsmodell laufenden Marken Parameter aufgeprägt werden, um diese in einem 
zentralen Modellbaustein auszuwerten. Die Datenmenge, die während eines 
Simulationslaufs anfällt, kann somit durch den Anwender spezifisch festgelegt und je 
nach Zweck des Simulationslaufs angepasst werden. Wegen der 
Interaktionsmöglichkeiten des Anwenders während des Simulationslaufes müssen 
darüber hinaus alle vorgenommenen Interaktionen protokolliert werden, denn während 
des Simulationslaufes können Variablen von den Anwendern eingesehen und, ggf. in 
vorgegebenen Grenzen, verändert werden. Die Auswertungen des 
Simulationsexperimentes können nach Abschluss des Simulationslaufs individuell oder 
über Standardauswertungen in Modellbausteinen erfolgen. Durch die Darstellung dieser 

                                          
20  Ein Werkzeug zur Fehlerbereinigung von Software. Es ermöglicht in der Regel eine Ablaufverfolgung des zu 

untersuchenden Programms in einzelnen Schritten oder zwischen definierten Haltepunkten (nach [Balz05]). 
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Auswertungsbausteine und deren aktuellen Werte während der Ausführung eines 
Simulationsmodells wird eine erste Analyse schon während der Ausführung erreicht. 
Dadurch wird der Anwender befähigt, eventuelle Schwachstellen im Simulationsmodell 
früher zu erkennen und sein Simulationsmodell zu verbessern. 
 
Simulationsmodelle sollen in der Modellbeschreibung hierarchisch abgelegt werden 
können. Ebenso sollen in dem zu entwickelnden Werkzeug auch die durch das 
Simulationsmodell laufenden Marken hierarchisch organisiert werden können. Diese 
„Token“ beschreiben die durch das abzubildende System laufenden Erzeugnisse, 
Informationen oder andere Material- oder Informationsflüsse. Unter Anwendung des 
Composite-Patterns21 soll eine Baumstruktur aus Token eingeführt werden, so das Token 
wiederum Token enthalten können, die sie mit durch das Simulationsmodell 
transportieren. Dadurch wird eine tokenspezifische Auswertung des Simulationsmodells 
ermöglicht. Zusätzlicher Vorteil dieser Vorgehensweise ist es, Hierarchien aus Token 
innerhalb eines Simulationsmodells zu bilden und im weiteren Verlauf wieder zu 
dekomponieren. Beispielsweise können 10 Token eines Typs „Messer“ in ein Token vom 
Typ „Karton“ gepackt werden. 50 Kartons können auf einer „Palette“ gebündelt werden 
(Token vom Typ „Palette“) und im weiteren Verlauf, beispielsweise bei einer 
Kommissionierung in einem späteren Bereich des Simulationsmodells wieder einzeln 
verwendet werden. In einem Auswertungsbaustein kann jedes Token seinen individuellen 
Weg durch das Fertigungssystem beschreiben und ermöglicht so eine sehr genaue Form 
der Datenauswertung, ohne dass die Funktion in jedem Modellbaustein des 
Simulationsmodells einzeln entwickelt werden müsste. Diese Informationsspeicherung in 
den Token erlaubt bei einer Integration verschiedener Simulationsmodelle eines 
Unternehmensnetzwerkes auch eine einfache Form der Datenübertragung in andere 
Simulationsmodelle oder andere Bereiche desselben, integrierten Simulationsmodells. 
 
Das Simulationsmodell muss vor seiner Ausführung im Simulatorkern in ein lauffähiges 
Java-Programm kompiliert werden (vgl. Abbildung 26). Für die Speicherung des 
Simulationsmodells und seiner Parametrierung in einer Datenbank oder auf der 
Dateiebene des Betriebsystems bietet es sich an, ein effizienteres Format der 
Datensicherung zu wählen und auf Basis dieses Formats das Simulationsmodell in das 
zugehörige Java-Programm zu transformieren und anschließend zu kompilieren. Durch 
die automatisierte Verarbeitung wird während der Übersetzung nur unwesentlich Zeit 
verloren, im Gegenzug kann die Speicherung aber wesentlich effizienter und vor Allem 
erweiterbar gestaltet werden. Eine Versionierung sowie die Speicherung in einer 
Datenbank werden damit deutlich erleichtert. Im Rahmen der Entwicklung wird als 
Speicherformat auf die Extensible Markup Language (XML) zurückgegriffen, deren 
Vorteile unter Abschnitt 3.5.7 bereits aufgezeigt wurden. Alternativ bliebe nur ein 
spezifisches Speicherformat. Aufgrund der hohen Verbreitung der XML-Technologien 
wurde hier, ebenso wie bei der Auswahl der Programmiersprache Java auf einen offenen 
und erweiterbaren Standard zurückgegriffen. Nachfolgende Integrationen mit anderen 
Datenformaten können so durch relativ einfache Transformationen erreicht werden. 
 

                                          
21  Das Composite-Pattern fügt „Objekte zu Baumstrukturen zusammen, um Teil-Ganzes Hierarchien zu 

repräsentieren. Es ermöglicht es, einzelne Objekte ebenso wie Kompositionen von Objekten einheitlich zu 
behandeln.“ [nach GaHe94] 
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Insbesondere im Rahmen der Entwicklung und vor Allem kontinuierlichen 
Weiterentwicklung der Modellbeschreibung kann eine Wiederverwendung bestehender 
Simulationsmodelle problemlos erfolgen. Die leichte Erweiterbarkeit prädestiniert auch 
für den Einsatz im Rahmen der Kommunikationsschnittstellen, wo die ausgetauschten 
Nachrichtenformate mittels XML definiert und dadurch leicht hinsichtlich ihrer Gültigkeit 
überprüft werden können. Durch den Einsatz der Transformationssprache XSLT22 können 
die im XML-Format vorliegenden Daten bzw. Nachrichten wieder in Java-Objekte 
umgewandelt und im weiteren Programmverlauf verwendet werden. Die bekannten 
Vorteile von XML zeigen sich auch hier: Die Kommunikationsschnittstelle, die auf Basis 
eines XML-Formates Nachrichtentypen untereinander austauscht, ist flexibel gegenüber 
zukünftigen Erweiterungen.  
 
Während der Ausführung eines Simulationsexperimentes mit mehreren Simulationsläufen 
sammeln sich eine Menge von Auswertedaten an, die für eine spätere Auswertung zur 
Verfügung stehen und dauerhaft gesichert werden sollen. Um die Konsistenz der 
anfallenden Simulationsdaten bewältigen zu können, wird zur Datenhaltung eine zentrale 
Simulationsdatenbank konzipiert (vgl. Abschnitt 3.5.4.4). Ihre genaue Struktur wird in 
Abschnitt 5.3.2.5 näher erläutert. Diese Experimentdaten sollen innerhalb der Datenbank 
ebenfalls in einem XML-Format gesichert werden, inklusive einer Kopie des 
Nachrichtenstromes zur zeitversetzten Reproduktion der Animation des Simulationslaufs 
in einer der Visualisierungskomponenten. Die flexible Struktur ermöglicht auch hier eine 
konsistente Sicherung, auch wenn sich das Speicherformat der Experimentdaten 
erweitern sollte. 

5.1.6 Konfliktvermeidung & Rechtemanagement im Mehrbenutzerbetrieb 

Wesentlich für die Entwicklung des Materialflusssimulators ist die Absicherung eines 
fehlerfreien Mehrbenutzerbetriebes. Neben der Berücksichtigung des Multitasking-
Betriebs innerhalb der Modellierung und Visualisierung muss die Mehrbenutzerfähigkeit 
auch als grundlegendes Merkmal stets mit berücksichtigt werden. Basis für jede 
Umsetzung eines Mehrbenutzersystems ist eine Benutzerverwaltung, um die 
verschiedenen Zugriffe nach Anwendern unterscheiden zu können. Nicht jeder Anwender 
soll in dem Werkzeug dieselben Möglichkeiten zur Manipulation von Simulationsmodellen 
und Simulationsläufen bekommen, um eine anwenderorientierte Bedienung gestalten zu 
können. Dazu wird nachfolgend ein Rechtemanagement entwickelt, um verschiedene 
Anwenderrollen berücksichtigen zu können. 
 
Neben der in Abschnitt 3.5.4.3 genannten Unterstützung der Kommunikation, 
Koordination und Kooperation sowie der Umsetzung der unter Abschnitt 3.4.2 
aufgeführten Interaktionsmetaphern Erzeugen, Selektieren, Löschen, etc. müssen 
insbesondere potentielle Konflikte aufgelöst werden, die durch das gemeinsame 
Modellieren und/oder Simulieren entstehen können, da sich die verschiedenen 
Interaktionen der Anwender gegenseitige beeinflussen können. Bei auftretenden 
Konflikten kann nach 4 Typen unterschieden werden: 
 

                                          
22  XSL-Transformation: Transformation einer in XML vorliegenden Beschreibung in ein Zielformat mittels der 

eXtensible Stylesheet Language (XSL) [W3C]. 
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1. Modellierung & Modellierung: Zwei oder mehr Anwender pflegen gleichzeitig 
Änderungen in ein Simulationsmodell ein. Das erfordert eine Möglichkeit zur 
parallelen Modellierung. Dabei stellt z.B. der Zugriff auf dasselbe Objekt einen 
Konflikt dar, der durch das entsprechende Modul aufgelöst werden muss. 

2. Simulation & Simulation: Dasselbe Simulationsmodell soll zeitgleich für zwei oder 
mehr Simulationsläufe benutzt werden. Die Lösung dieses Konflikts führt zur 
Möglichkeit, zwei Instanzen eines Simulationsmodells mit verschiedenen 
Parametereinstellungen parallel zu simulieren. 

3. Modellierung & Simulation: Der dritte Typ ist die Kombination der beiden ersten 
Klassen. Bei der Durchführung eines Simulationslaufes, würden Änderungen am 
gleichen Modell zu einer Verfälschung der Ergebnisse führen, weil die verschiedenen 
Experimentläufe nicht mehr miteinander vergleichbar sind. 

4. Simulationslauf mit mehreren Anwendern: Ähnlich wie beim Modellieren mit 
mehreren Anwendern müssen Interaktions-Konflikte verschiedener Anwender durch 
das entsprechende Modul aufgelöst werden. 

 
Zum Auflösen der möglichen Konfliktklassen sind drei spezifische Methoden für verteilte 
Systeme vorgesehen (vgl. Abschnitt 3.5.4.1): Locking, Cloning und Versioning. Ein 
möglicher Weg zur parallelen Arbeit an einem Objekt ist das Cloning, hier verstanden als 
mehrfaches Instanzieren desselben Objekts. Zu Beginn einer Bearbeitung wird für jeden 
Anwender ein Klon als exakte Kopie des aktuellen Simulationsmodells erzeugt. Die 
Schwierigkeit liegt in der Integration der verschiedenen Klone am Ende der Bearbeitung. 
Cloning bietet sich insbesondere für die Konfliktklasse 3 an. Durch eine Kombination mit 
der Versionierung kann für jeden Klon seine Versionsnummer beim Kopieren übergeben 
werden. Bei der Ausführung von Simulationsläufen kann dann jeweils immer dieselbe 
Version eines Simulationsmodells geladen werden, um eine Vergleichbarkeit der 
Ergebnisse zu gewährleisten. 
Für die Modellierung (Konfliktklasse 1) oder das Simulieren eines Simulationsmodells mit 
mehreren Anwendern (Konfliktklasse 4) bietet sich dieses Vorgehen nicht an, da hier 
durch die umfangreichen Interaktionen des Anwenders zu viele Konflikte auftreten 
können, die sich nicht immer im Nachhinein auflösen lassen. Die Nutzung eines 
Sperrmechanismus (Locking) umgeht dieses Problem (vgl. Abschnitt 3.5.4.1). Damit 
können mehrere Anwender gleichzeitig an einer gemeinsamen Modellinstanz arbeiten, 
wobei das Arbeiten in unterschiedlichen Teilbereichen desselben Modells unkritisch ist. 
Greifen zwei Anwender auf dasselbe Objekt innerhalb einer Modellinstanz zu, soll dieses 
automatisch durch den ersten Zugriff gesperrt werden, bis der erste Anwender seine 
Modifikationen durchgeführt hat. In den Visualisierungskomponenten muss die Sperrung 
entsprechend kenntlich gemacht werden, um andere Anwender über das 
Systemverhalten zu informieren. Durch die geplante Kommunikationsunterstützung (vgl. 
Abschnitt 3.5.4.3) kann die Zusammenarbeit in der virtuellen Umgebung koordiniert 
werden. Unabhängig von dem realen Standort der Anwender kann so eine Form der 
Kooperation erreicht werden.  
 
Unter Berücksichtigung von Simulationsmodellen, die hierarchisch angeordnet sind oder 
in verschiedenen Detaillierungsgraden vorliegen, gestaltet sich die Implementierung des 
Sperrmechanismus komplexer. Die Sperrung eines spezifischen Objekts muss sich direkt 
auf die anderen Detaillierungsgrade und/oder Hierarchieebenen des Simulationsmodells 
auswirken. Abbildung 27 zeigt ein Beispiel für die anvisierte Funktionsweise des 
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Sperrmechanismus. Zwei Anwender können damit genau dann parallel an einer 
Modellinstanz arbeiten, wenn die selektierten Modellbausteine nicht direkt durch ihre 
hierarchische Anordnung verbunden sind. Konflikte treten genau dann auf, wenn der 
Zugriff innerhalb eines Zweiges stattfindet. Das bedeutet, dass es direkten bzw. 
indirekten Einfluss auf Objekte einer anderen Hierarchieebene oder Detaillierungsstufe 
hat, wenn ein Untermodell im selben Teilbaum bearbeitet wird. Dieses pessimistische 
Verfahren kann dazu führen, dass mehr Instanzen von Teilmodellen gesperrt werden, als 
in Realität benötigt werden, erlaubt aber in der Praxis eine einfach zu implementierende 
Form der konfliktfreien Bearbeitung innerhalb einer Modellinstanz. 
 

 

Abbildung 27: Sperrmechanismus im Modellbaum 

Zur Sicherung von Modelländerungen existieren unterschiedliche Verfahren der 
Änderungskoordination. Das Erstellen einer neuen Version mittels eines 
Versionierungsverfahrens ist mit geringem Aufwand möglich. Zu jeder Versionsnummer 
muss der bearbeitende Anwender zugewiesen werden. Dadurch kann jedem Anwender 
die von ihm zuletzt bearbeitete Version geladen werden. Durch Überprüfung auf höhere 
Versionsnummern kann er zusätzlich darüber informiert werden, dass aktuellere 
Bearbeitungen des Simulationsmodells verfügbar sind. Jedes Simulationsmodell hat also 
eine eigene Zeithistorie, um die Änderungen bzgl. der unterschiedlichen Versionen 
nachvollziehen zu können. Auch damit kann letztendlich die Zusammenarbeit mehrerer 
Anwender in einem gemeinsamen Team verbessert werden, weil Änderungen an 
Modellbausteinen für alle anderen Teammitglieder erkennbar werden. 
 
Sollen Experimente mit einem speziellen Simulationsmodell vorgenommen werden, bleibt 
das Klonen der effizienteste Weg. Die Versionierung erlaubt das Registrieren der 
Modellversion zu einem Experiment. Der Klon selbst existiert ausschließlich für die Dauer 
des Simulationslaufs, um die Datenmenge in der Simulationsdatenbank auf ein 
notwendiges Maß beschränken zu können.  
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Das Arbeiten mehrerer Anwender mit unterschiedlichen Kenntnisständen und 
Anwendungsbereichen in einer zentralen Anwendung erfordert eine Unterscheidung nach 
verschiedenen Anwendergruppen. Zur Sicherstellung der Qualität der Simulationsmodelle 
muss z.B. das ungewollte Verändern durch einen Laien verhindert werden können. Es 
wird deshalb ein Rechtemanagement definiert, um nach verschiedenen Gruppen und 
Bearbeitungsrechten differenzieren zu können. Das anwenderspezifische Rechte-
management wird in der Modellbeschreibung des Simulationsmodells hinterlegt. Ziel ist 
es, erstellte Bibliotheken und Modelle vor Schaden durch falsche Nutzung und Unwissen 
zu bewahren und geistiges Eigentum schützen zu können. Jeder Anwender soll dazu 
Gruppen zugeteilt werden; die Zuteilung erfolgt anhand von Kenntnissen und Aufgaben. 
Es können die folgenden Gruppen unterschieden werden: 
 
1. Programmierer (Individuum) 

Der Programmierer eines Simulationsmodells kann alle Modellbausteine 
administrieren, die er erstellt hat. Er hat zudem die Möglichkeit, die Zugriffsrechte für 
die Modellbausteine zu beschränken. Ein Programmierer kann verhindern, dass 
Administratoren Rechte ändern können. Einem Objekt können mehrere Anwender als 
Programmierer zugewiesen werden. Er besitzt alle Rechte für das erstellte 
Simulationsmodell 

2. Anwender(Gruppe) 
Anwender haben keinen Zugriff auf die Programmierung der Methoden, sondern 
können ausschließlich vorhandene Bausteine aus Bibliotheken instanziieren, 
verknüpfen und verwenden. 

3. Administratoren (Gruppe) 
Die Gruppe der Administratoren sind Anwender, die Rechte für Simulationsmodelle 
vergeben und ändern können. Sie können neue Untergruppen erstellen und weisen 
neue Anwender bestehenden oder neuen Gruppen zu. Sie müssen nicht unbedingt 
Nutzer der Simulationsanwendung („Simulationsexperten“) sein. 

 
Auf Ebene des Simulationsmodells können bei der Vergabe der Rechte vier 
Funktionsgruppen unterschieden werden. Dabei ist eine implizite Hierarchiebildung unter 
den verschiedenen Rechten abgebildet, so dass die individuellen Rechte stets höherwertig 
gegenüber den Gruppenrechten eines Anwenders sind. 
 

 Modifizieren: 
Modifizieren erlaubt das vollständige Verändern des Simulationsmodells inklusive 
des grundlegenden Aufbaus und der modellierten Steuerungen und Ereignisse. 
Struktur und Standardwerte der Variablen können verändert werden. 

 Verwenden: 
Verwenden erlaubt der jeweiligen Benutzergruppe das Einfügen, Benutzen und 
Löschen eines Modellbausteins als Instanz in anderen Simulationsmodellen. Dabei 
kann auf die öffentlichen Variablen des Bausteins zugegriffen werden, um diese für 
die jeweilige Instanz verändern zu können. Der Aufbau und die Methoden des 
Bausteins können nicht verändert werden. Das Modell kann in einem 
Simulationslauf gestartet werden. 

 Löschen: 
Diese Funktion erlaubt das Löschen von Simulationsmodellen oder 
Modellbausteinen aus Bibliotheken oder der Simulationsdatenbank 
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 Administrieren: 
Diese Funktion erlaubt das Vergeben von Rechten. Üblicherweise haben das 
Administrationsrecht die Programmierer und die Administratoren des 
Simulationsmodells 

 
Zusammenfassend können durch die Einführung eines anwenderspezifischen 
Rechtemanagements bereits im Vorfeld viele mögliche Konflikte aufgelöst werden, die 
beim gleichzeitigen oder zeitlich unabhängigen Bearbeiten eines Simulationsmodells 
durch mehrere Anwender entstehen können. Eine der grundlegenden Voraussetzungen 
für ein Mehrbenutzersystem wurde damit geschaffen. Alle unter Abschnitt 3.4.3 
aufgezeigten Interaktionsmetaphern können in die obigen Gruppen einsortiert werden 
und Konflikte können durch die vorgestellten Verfahren aufgelöst werden. 
 
Modellierung und Ausführung eines Simulationsexperimentes bleiben die Hauptaufgaben 
des Anwenders bei jeder Simulationsstudie. Es wurde beschrieben, wie der Prozess von 
Modellierung und Simulation unter Anwendung von Verfahren zur Konfliktvermeidung 
und eines Rechtemanagements in dem angestrebten Werkzeug umgesetzt werden soll. 
Alle grundlegenden Merkmale wurden für das zu entwickelnde Werkzeug festgelegt. Der 
folgende Abschnitt widmet sich der Entwicklung einer Modellbeschreibung, auf deren 
Basis Simulationsmodelle in dem zu entwickelnden Materialflusssimulator aufgebaut, 
strukturiert und abgelegt werden sollen und in denen das grundlegende Verhalten des 
Simulationsmodells so beschrieben wird, das eine Ausführung des Modells in einem 
Simulationsexperiment erlaubt wird. 

5.2 Konzeption Modellbeschreibung 

Ein wesentlicher Entwicklungsschritt während der Entwicklung des Materialflusssimulators 
ist die Formalisierung der zugrunde liegenden Modellbeschreibung. Auf Basis dieser 
objektorientierten Datenstruktur wird das Werkzeug konzipiert und seine benötigten 
Funktionen umgesetzt. Durch die Modellierungs- und Visualisierungskomponenten wird 
die zu entwickelnde Struktur von Simulationsmodellen umgesetzt und benutzerfreundlich 
dargestellt bzw. der Manipulation durch den Anwender zugeführt. Gemäß Abschnitt 4.2 
wird in einem ersten Schritt eine allgemeine Modellbeschreibung generiert, die in 
weiteren Schritten auf die speziellen Anforderungen des Werkzeugs angepasst wird. 
Zunächst soll aber eine Beschreibung von Simulationsmodellen zur Vorwärtssimulation 
erstellt werden. 

5.2.1 Vorwärtsgerichtete Materialflussmodelle 

In Anlehnung an die in Abschnitt 3.2 beschrieben formalen Modellstrukturen wie Stellen/-
Transitionsnetze unterscheidet der hier entwickelte Materialflusssimulator zwischen zwei 
Objektklassen: Modellen und Token. Modelle repräsentieren alle möglichen Formen von 
Bearbeitungs-, Lager- oder Transporteinrichtungen eines Fertigungsprozesses, Token 
entsprechen den Marken, die das Simulationsmodell zur Ausführungszeit dynamisch 
durchlaufen. Sie repräsentieren die beweglichen Elemente der realen Welt, beispielsweise 
Aufträge, die das System durchlaufen, Werker, Bauteile oder Paletten. Dadurch kann 
zwischen der formalen Struktur und dem dynamischen Verhalten des Simulationsmodells 
unterschieden werden. Token repräsentieren beliebige Objekte, die erst durch die 
Modellierung des Anwenders eine logische Bedeutung im Simulationsmodell erhalten. Sie 
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können neben Variablen auch weitere Token enthalten. Somit kann beispielsweise ein 
Gabelstapler eine Palette aufnehmen, die wieder mit Kisten beladen ist. Token bewegen 
sich zur Ausführungszeit des Simulationsmodells im Simulator durch das modellierte 
System. Die Reduzierung auf eine Objektklasse wurde hier auch deswegen bewusst 
vermieden, um die intuitive Unterscheidung zu unterstützen. Diese Grobklassifikation 
wird im weiteren Verlauf verfeinert, indem Modellbausteine Elemente enthalten, die für 
die Token nicht benötigt werden. 
 
Im Gegensatz zu kommerziellen Materialflusssimulatoren (vgl. Abschnitt 3.2.3) sind die 
Basiselemente der hier beschriebenen Modellstruktur keine Modellbausteine im 
funktionalen Sinne, sondern nur Grundelemente, aus denen ein einzelnes 
Simulationsmodell zusammengesetzt werden kann. Dadurch lässt sich der 
Detaillierungsgrad des abgebildeten Modellbausteins durch den Anwender beliebig 
wählen. Neben diesen Basiselementen kann ein Simulationsmodell Submodelle 
(Instanzen anderer Simulationsmodelle) enthalten, um eine hierarchische Anordnung von 
Simulationsmodellen zu ermöglichen, die neben strukturellen Vorteilen für die Übersicht 
komplexer Modelle auch ein Umschalten zwischen den verschiedenen 
Detaillierungsgraden während der Simulationszeit potentiell erlauben. Damit ist eine 
wesentliche Vorraussetzung für die Integration der dynamischen Detaillierung nach 
[Muec05] geschaffen, die in Abschnitt 5.2.1.1 in die Modellbeschreibung integriert wird. 
 
Auf der Hierarchieebene mir der höchsten modellierten Detaillierung wird ein 
Simulationsmodell durch folgende Basiselemente beschrieben, die innerhalb eines 
Simulationsmodells oder Modellbausteins eindeutig benannt sein müssen: 
 

Bezeichnung Beschreibung 

Variable Attribute eines Modells 

Event Ereignisse eines Simulationsmodells, die das 
spezielle Verhalten genauer beschreiben 

Link logische Verknüpfungen zwischen Modellbausteinen 

Channel Eingangs- bzw. Ausgangskanäle als Schnittstellen 
eines Modells zu seinen Vorgängern/Nachfolgern im 
Modell 

  

Submodel Kein Basiselement. Simulationsmodelle komplexerer 
Bauart können ihrerseits wieder Modellbausteine als 
Instanzen anderer Simulationsmodelle oder 
Modellbausteine enthalten  

Tabelle 4: Basiselemente eines Simulationsmodells 

Channel repräsentieren die Schnittstellen eines Modells oder eines Modellbausteins zu 
seinen logischen Vorgängern/Nachfolgern. Die Anzahl der Input- bzw. Output-Channel für 
ein Simulationsmodell ist durch den Modellierer wählbar. Es existieren nur Input- und 
Output-Channel. Jeder Channel, unabhängig von seiner genauen Spezifikation, kann zu 
einem Zeitpunkt nur maximal ein Token beinhalten. Input-Channel werden deshalb 
automatisch geschlossen, sobald ein Token den Channel erreicht und müssen für 
nachfolgende Token erst wieder geöffnet werden. Dem jeweiligen Output-Channel des 
Vorgängers ist es so lange nicht möglich ein Token an seinen Nachfolger zu senden, bis 
dieser wieder geöffnet wurde. Geschlossene Input-Channel können durch die 
Vorgängermodelle beobachtet werden und lösen dort ein spezielles Event aus, wenn der 
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Input-Channel wieder geöffnet wird. Channel bilden analog zu den Methoden 
objektorientiert programmierter Klassen die Schnittstellen eines Simulationsmodells zu 
seiner direkten Umwelt (vgl. Abschnitt 3.5.2.1).  
 
Durch logische Verknüpfungen, hier Links benannt, werden die Channel, und damit die 
Simulationsmodelle bzw. Modellbausteine untereinander, verbunden. Token, die sich 
während des Simulationslaufs durch ein Simulationsmodell bewegen, werden gemäß der 
Beziehungen zwischen den Modellbausteinen versendet. Ein Token verlässt die Instanz 
eines Modellbausteins immer durch einen Output-Channel und tritt in dem nachfolgenden 
Simulationsmodell immer über einen Input-Channel in den folgenden Modellbaustein ein. 
Ein Output-Channel darf jeweils nur mit einem Link versehen werden. Eine Verzweigung, 
beispielsweise die Weiche einer Fördertechnik, muss über separate Output-Channel 
modelliert werden. Output-Channel können nur dann direkt miteinander verbunden 
werden, wenn sie eine einfache Weiterleitung des Token an die nächst höhere 
Hierarchieebene darstellen (vgl. Abbildung 28 rechts). Eintretende Token an einem 
Input-Channel lösen immer ein standardisiertes Ereignis (Input-Event) aus, in dem das 
weitere Verhalten innerhalb des Modellbausteins abgebildet werden kann. Um das 
Verhalten detailliert spezifizieren zu können, kann der Anwender sowohl auf von ihm 
definierte Verhaltensbeschreibungen in Ereignissen als auch auf eine beliebige Anzahl von 
Variablen zugreifen, die er in dem Modellbaustein anlegen und verwenden kann. 
Innerhalb eines Bausteins kann auf alle Ereignisse und Variablen dieses Modellsbausteins 
zugegriffen werden, da alle Basiselemente eindeutige Namen bzw. IDs besitzen. Input-
Channel können genau dann direkt miteinander verbunden werden, wenn sie eine 
Weiterleitung von einer höheren Hierarchieebene zu einem Submodell darstellen (vgl. 
Abbildung 28 links). Die Strukturierung des Simulationsmodells über das beschriebene 
Konzept der Channel erlaubt eine strikte Modularisierung in einzelne Bausteine. Deren 
spezifische Funktionsweise wird nach dem Black-Box-Prinzip gekapselt und kann somit 
leichter adaptiert und verbessert werden, ohne die Funktionsweise der Gesamtmodelle zu 
gefährden. 

 

Abbildung 28: Struktur eines Simulationsmodells 

Die Modellbausteine als einzelne Funktionsmodule können Elemente einer 
Bausteinbibliothek (im Folgenden: Library) sein, die zur Modellierung weiterer 
Simulationsmodelle verwendet werden können. Je umfangreicher diese hinterlegten 
Bibliotheken sind, umso weniger Simulationsmodelle, bzw. Modellbausteine muss der 
Anwender selbst anlegen. Im Idealfall kann ein Anwender ausschließlich unter Nutzung in 
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Bibliotheken vorhandener Modellbausteine ein Simulationsmodell erstellen und 
parametrieren. Bibliotheken können strukturiert abgelegt werden, damit benötigte 
Modellbausteine schneller identifiziert werden können. Die Instanz eines Modellbausteins 
wird im Simulationsmodell so gekapselt, dass nur diejenigen Basiselemente parametriert 
werden können, die vom Programmierer dafür vorgesehen wurden. Die Modellierung des 
spezifischen Bausteinverhaltens wird somit nicht automatisch öffentlich. Dieses Vorgehen 
entspricht der bereits unter Abschnitt 3.5.2.2 aufgezeigten Kapselungsstrategie der 
objektorientierten Programmierung und wendet die Vorteile der objektorientierten 
Paradigmen auf die Anwendung in der Modellierung von Simulationsmodellen an. 
 
Modellbausteine, die innerhalb eines Simulationsmodells verwendet werden, besitzen 
eine Menge von Attributen, die im Folgenden aufgeführt werden. Auch hier wurde darauf 
geachtet, nur die Attribute in die Instanzen zu „verschieben“, die die jeweilige 
Bausteininstanz von seiner Modellbaustein-Klasse unterscheiden. 
 

Bezeichnung Beschreibung 

ID Eindeutiger Bezeichner 

Name Name 

Mesh Referenz auf ein 3D-Modell, das den Modellbaustein 
in den Modellierungs- und 
Visualisierungskomponenten darstellt 

Meshscale Skalierungsfaktor des 3D-Modells 

X,Y,Z Size Größe im Modell 

Color Farbe eines Modellbausteins 

  

Zusätzliche Attribute von Modellinstanzen 
innerhalb eines Simulationsmodells 

 

X,Y,Z Scale Größe im Modell 

X, Y, Z Rotation Rotation des Modellbausteins im Modell 

Variable_value Wert einer öffentlichen Variablen, wenn er sich vom 
Standardwert unterscheidet 

srcid Referenz auf eindeutigen Bezeichner des 
zugehörigen Modellbausteins (Klasse) 

color Farbe der Instanz, wenn sie sich von Vorbelegung 
unterscheidet 

layer Darstellungsebene 

Tabelle 5: Attributliste eines Simulationsmodells 

Aus der bis hierhin entwickelten Modellbeschreibung, die das Einbinden von Submodellen 
als Instanzen vorhandener Modellbausteine erlaubt, folgt eine Gesamtbeschreibung eines 
Simulationsmodells als Liste aller im Modell verwendeten Modellbausteine. In dem 
auszuführenden Simulationsmodell, das im Rahmen dieser Gesamtbeschreibung als 
solches bei der Speicherung gekennzeichnet werden muss, werden diese Modellbausteine 
als Submodelle verwendet. Um die Konsistenz des Simulationsmodells zu erhalten, 
müssen die Modellierungskomponenten eine spezielle Funktion implementieren, die das 
Bilden von Zirkelschlüssen innerhalb des Modellierungsprozesses erkennt und vermeidet, 
damit Modellbausteine nicht rekursiv durch sich selbst beschrieben werden können. 
Abbildung 29 zeigt schematisch einen solchen Zirkelschluss, der zu einer ungültigen 
Modellbeschreibung führen würde. 
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Abbildung 29 zeigt, dass der zu modellierende Modellbaustein A durch Instanzen der 
Modellbausteine B und C beschrieben werden soll, so dass jeweils zwei Instanzen des 
Modellbausteins B und eine Instanz des Modellbausteins C den Ablauf innerhalb des 
Modellbausteins A beschreiben. Im Fall von Modellbaustein B ist das möglich, weil sich 
dieser aus Instanzen der Modellbausteine D und E zusammensetzt. Die Instanz C_1 von 
Modellbaustein C führt jedoch zu einem unerlaubten Zirkelschluss, weil dieser durch 
Instanzen der Modellbausteine F, G und dem Modellbaustein A beschrieben wird. Durch 
die Instanz des Modellbausteins C würde für den Modellbaustein A eine rekursive 
Beschreibung existieren, die nicht ermöglicht werden darf, weil das Simulationsmodell 
sonst während der Ausführung in einen nicht auflösbaren Zustand gelangt. 

 

Abbildung 29: unerlaubter Zirkelschluss in einem Simulationsmodell 

Durch die Implementierung einer Funktion zum Überprüfen von solchen Zirkelschlüssen 
kann dieses Problem bereits im Vorfeld umgangen werden, wodurch valide Modelle 
gefördert werden sollen. Das Problem tritt auf, weil die Modellbeschreibung so generisch 
gewählt wurde, dass der Anwender bei der Gestaltung seiner Modellbausteine im 
Gegensatz zu vorhandenen Simulationswerkzeugen den Detaillierungsgrad frei wählen 
soll. Das Erkennen von Zirkelschlüssen soll bereits in der Modellierungskomponente 
erfolgen, um den Anwender frühzeitig auf Modellierungsfehler hinzuweisen. Eine 
Erkennung im Simulator würde dadurch deutlich erschwert, dass objektorientierte 
Programmiersprachen die Definition mittels rekursiver Methoden prinzipiell ermöglichen 
und deshalb im Rahmen der Übersetzung in Programmcode den Fehler nicht erkennen 
würden. Das Simulationsmodell könnte zur Ausführungszeit somit in eine Endlosschleife 
laufen, deren Grund durch den Anwender nur schwer ersichtlich wäre. 
 
Ein weiteres Basiselement zur Modellierung innerhalb eines Modellbausteins sind die 
Variablen. In ihnen können Token sowie alle für die Modellierung benötigten Werte 
zwischengespeichert werden. Beispielsweise kann die Bearbeitungszeit einer Maschine 
oder die Puffergröße innerhalb eines Modellbausteins in einer Variablen festgelegt 
werden. Aus den Events kann auf die Variablen zugegriffen werden, um ihren Wert zu 
verändern oder auszulesen. Jeder Variable kann der Modellierer verschiedene Attribute 
zuweisen. Sie bestimmen, ob die Variable protokolliert, von anderen Modellbausteinen 
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angesehen werden kann oder versteckt wird. Alle Variablen können mit Standardwerten 
parametriert werden und durch obere oder untere Schranken begrenzt werden. Die 
folgende Tabelle 6 zeigt alle Typen von Variablen, die in der Modellbeschreibung 
verwendet werden können. Sie entsprechen im Wesentlichen den primitiven und/oder 
höheren Datentypen, wie man sie aus Programmiersprachen kennt. Modellbausteine 
haben zu Beginn ihrer Erstellung neben den festgelegten Attributen keine 
Standardvariablen, wie es aus kommerziellen Simulatoren bekannt ist. Da der Detailgrad 
vom Anwender frei zu wählen ist, macht eine solche Vorbelegung innerhalb dieser 
Modellbeschreibung keinen Sinn. 
 
 

Typ Wertebereich Vorbelegungen 

Integer Natürlich Zahlen Standardwert, obere und untere 
Schranke, Auswertungstyp 

Long Natürliche Zahlen Standardwert, obere und untere 
Schranke, Auswertungstyp 

Double Reelle Zahlen Standardwert, obere und untere 
Schranke, Nachkommastellen, 
Auswertungstyp 

Float Reelle Zahlen Standardwert, obere und untere 
Schranke, Nachkommastellen, 
Auswertungstyp 

Enum Alle Standardwert, Auswahlliste 

ArrayList Alle Auswertungstyp 

Token Token Keine 

Boolean True, False Standardwert, , Auswertungstyp 

String Zeichenfolge Standardwert, max. Länge 

Time Millisekunden Standardwert 

HaspMap Objekte Keine 

Table Objekte Auswertungstyp 

Random Zufallszahlen verschiedener Ver-
teilungen 

Verteilung mit jeweiligen Para-
metern, Startwert, Auswer-
tungstyp 

Tabelle 6: Typen von Variablen der Modellbeschreibung 

Über ein spezielles Attribut kann durch den Anwender jeweils eingestellt werden, ob die 
Variable aus der Visualisierungskomponente heraus verändert, ausschließlich angezeigt 
oder grafisch ausgewertet wird. Alternativ kann sie in den Visualisierungskomponenten 
verborgen bleiben. Durch die auf Java basierende Zugriffsverwaltung kann der Anwender 
explizit die Interaktions-, Manipulations- und Auswertungsmöglichkeiten jedes 
Modellbausteins beeinflussen. Zur Verbesserung der grafischen Darstellung kann der 
Variablen zusätzlich ein bestimmter Auswertungstyp zugewiesen werden. Dadurch wird 
es möglich während eines Simulationslaufs in den verschiedenen 
Visualisierungskomponenten spezielle Darstellungsformen zu implementieren, um 
dynamisch die aktuellen Werte aus den Bausteininstanzen abzufragen und 
anwenderfreundlich darzustellen, bzw. deren Manipulation durch den Anwender zu 
erlauben. Die jeweilige Darstellungsform kann zwar typisiert werden, die eigentliche 
Implementierung der spezifischen Darstellungen erfolgt jedoch erst in den einzelnen 
Visualisierungs- und Auswertungsmodulen des Werkzeugs (vgl. Abschnitt 5.3.2). Für den 
Anwender ist dies eine der wesentlichen Funktionalitäten, die in den 
Visualisierungskomponenten benötigt wird, da neben der Animation des Simulations-
verlaufs insbesondere die aktuellen Werte in den unterschiedlichen Bausteininstanzen für 
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die Modellverifikation und –validierung interessant sind. Für die verschiedenen Typen von 
Variablen sind die in Tabelle 7 aufgeführten Auswertungsmöglichkeiten vorgesehen. Sie 
orientieren sich an den vorhanden Analysemöglichkeiten bekannter Werkzeuge zur 
Datenauswertung und den Report-Darstellungen vorhandener Simulationswerkzeuge. 
Speziell in dem entwickelten Werkzeug ist es möglich, sich diese Auswertungen 
dynamisch und während der Ausführung eines Simulationslaufs anzeigen zu lassen. Auch 
dadurch soll der Validierungs- und Verifikationsprozess beschleunigt werden, weil 
Auswertungen direkt zur Laufzeit und nicht erst nach einem Simulationslauf zur 
Verfügung stehen. 
 
 
 

Name Angewendeter Typ Beschreibung 

Display Alle Anzeige des aktuellen Wertes der 
Variablen 

Signal Boolean Rot/Grün-Schalter oder ähnliche 
Darstellung 

Trafficlight Integer, Long, Double Float, 
Random 

Aufwertung in Form einer Ampel 

Gauge Integer, Long, Double Float, 
Random 

Auswertung in Form eines Füllstands 
oder eines Drehzahlmessers etc. 

Meanvariance Arraylist, Table Statistische Auswertung durch 
Mittelwert, Minimum und Maximum 

Timetable Table Auswertung in Form eines 
Diagramms 

Histogramm Arraylist, Table Auswertung in Form eines 
Histogramms 

Tabelle 7: Auswertemöglichkeiten der Variablen 

Die Zeitfortschaltung während der Ausführung eines Simulationsmodells geschieht 
sowohl bei der Vorwärts- als auch bei der Rückwärtssimulation standardmäßig 
ereignisorientiert. Der Simulator führt nacheinander die zeitlich geordneten Ereignisse 
aus, die in den verschiedenen Bausteininstanzen des auszuführenden Simulationsmodells 
ausgelöst werden. Das in diesen Events programmierte Verhalten ist durch den 
Modellierer angelegt worden. Events können andere Events innerhalb ihres Modell-
bausteins oder sich selbst aufrufen, indem sie eine neue Instanz eines Events terminieren 
und in der Ereignisliste des Simulators anmelden. Viele Events innerhalb eines 
Modellbausteins können einem bestimmten Channel zugewiesen werden. Darüber hinaus 
existiert pro Modellbaustein genau ein Init-Event, das in einer ersten Initialisierungs-
phase vor der eigentlichen Simulation ausgeführt wird. Es dient dazu, eine hinterlegte 
Vorbelegung des Modellbausteins aus Datenbank oder Dateien auszulesen oder Start-
Events, beispielsweise bei Quellen eines Simulationsmodells, zu terminieren. Benutzer-
definierte Events (User_Defined_Event) können beliebig in Modellbausteinen hinterlegt 
werden, um komplexe Verhaltensweisen funktionsorientiert zu strukturieren oder 
überhaupt abbilden zu können. Sie werden durch sich selbst oder andere Events 
aufgerufen. Analog zum Init-Event existiert ein Final-Event, das beim Beenden des 
Simulationslaufs aufgerufen wird. Es dient dazu, in einem Modellbaustein gesammelte 
Daten des Simulationslaufs zu sichern, um eine Analyse zu späteren Zeitpunkten zu 
ermöglichen. Diese Vorgehensweise erlaubt die Beschleunigung der Berechnung des 
Simulationslaufs, da Datenbank- oder Dateisystemzugriffe während der Berechnung 
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gespart werden können, die eine schnelle Berechnung eventuell ausbremsen würden. Der 
Aufruf von Events in anderen Bausteininstanzen erfolgt ausschließlich mittels der 
Versendung von Token über die entsprechenden Channel-Schnittstellen der Modell-
bausteine. Die folgende Tabelle gibt eine Übersicht über alle standardisierten Events: 
 

Name Beschreibung 

Init Wird bei Simulationsstart ausgeführt 

Final Wird beim Stop der Simulation ausgeführt 

Input Bei Eintritt eines Token in zugeordneten Input-
Channel 

Output Bei Eintritt eines Token in zugeordneten Output-
Channel 

ReOpen Beim Öffnen des nachfolgenden Input-Channel 

Tabelle 8: Standardisierte Events 

Spezielle Methoden können in eigene Modellbausteine ausgelagert werden (beispielsweise 
für eine aggregierte Auswertung oder übergeordnete Steuerungen). Die Kommunikation 
erfolgt in diesem Fall über Token, die den Informationsfluss innerhalb des 
Simulationsmodells darstellen: den InfoToken. Sie unterscheiden sich nicht von den 
bisher bekannten Token, da diese ja explizit alle dynamischen Objekte repräsentieren 
können. Das objektorientierte Prinzip der Kapselung muss somit auch für übergeordnete 
Methoden nicht aufgeweicht werden. 

5.2.1.1 Dynamische Detaillierung von Simulationsmodellen 

Zur Realisierung einer Echtzeitanalyse großer Fertigungssysteme in dem umzusetzenden 
Werkzeug soll die Methode nach [Muec05] in das Werkzeug integriert werden. Damit soll 
sich insbesondere die Simulation von komplexen Unternehmensnetzwerken oder Supply-
Chain-Netzwerken einer Echtzeitanalyse nicht mehr entziehen. Alternativen zur 
Abarbeitung solch komplexer Modelle auf einem einzelnen Rechner ohne die Qualität 
beziehungsweise Granularität der Simulation zu verringern sind nicht bekannt. 
Vorraussetzung für die Methode ist ein Simulationsmodell in verschiedenen 
Detaillierungsstufen, eine Möglichkeit zur Umschaltung zwischen den Detaillierungsstufen 
und eine Stimulation der Umschaltvorgänge zur Laufzeit eines Simulationslaufes. 
Letzteres ist mit dem angestrebten System leicht zu realisieren, indem eine 
entsprechende Nachricht in das Kommunikationsprotokoll zwischen Simulatorkern und 
Visualisierungskomponente eingebunden wird (vgl. hierzu Abschnitt 5.2.2.3), die die 
Übergabe der aktuellen Benutzerposition aus der Visualisierung erlaubt. Je nach 
Benutzerposition in der virtuellen Umgebung kann der Detaillierungsgrad in der 
Simulation dann adaptiert werden. 
 
Zur Abbildung mehrerer Detaillierungsebenen muss die Modellbeschreibung so angepasst 
werden, dass jede Bausteininstanz sowohl ihr höher detailliertes als auch das gröbere 
Modell bekannt ist. Dies ist durch den Anwender festzulegen und wird bei der 
Umschaltung zur Laufzeit vom Simulatorkern berücksichtigt. Die Attributliste eines 
Simulationsmodells muss dennoch nur um die in Tabelle 9 dargestellten Attribute 
erweitert werden, weil jede Detaillierungsstufe für sich wiederum ein ausführbares 
Simulationsmodell sein muss. Darüber hinaus beschränkt die Methode die 
Modellbeschreibung der Simulationsmodelle nicht, sondern betrachtet diese als 
gekapselte Einheit, die genannte Anforderungen erfüllen muss. 
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Bezeichnung Beschreibung 

Moredetailed Verweis auf ein Modell mit höherem 
Detaillierungsgrad 

Lessdetailed Verweis auf ein Modell mit niedrigerem 
Detaillierungsgrad 

Tabelle 9: Zusätzliche Attribute eines Simulationsmodells für das MRS 

Da die gesamte Modellbeschreibung eines Simulationsmodells ohnehin aus einer Liste 
aller verwendeten Modellbausteine besteht, ist eine Erweiterung der Modellbeschreibung 
auf mehrere Detaillierungsstufen zunächst problemlos. Das als Hauptmodell 
beschriebene, auszuführende Simulationsmodell gibt dann implizit die Startdetaillierung 
des Gesamtmodells vor, die zu Beginn des Simulationslaufes vom Simulator überprüft 
und ggf. angepasst wird.  
 
Das zeitliche Fortschreiten des Simulationslaufs basiert auf Events, die jeweils für einen 
bestimmten Zeitpunkt eingeplant werden und beim Erreichen der Simulationszeit dieses 
Zeitpunkts ausgeführt werden (vgl. Abschnitt 2.2). Zur Integration der dynamischen 
Detaillierung wird das Auslösen der Umschaltvorgänge mittels eines neu einzuführenden 
Switch-Events umgesetzt. Es wird vom Modellierer angelegt, spezifiziert und muss den 
Zustand des entsprechenden Modellbausteins auf sein höher bzw. weniger detailliertes 
Pendant abbilden und diesen in einen Zustand versetzen, der demjenigen Zustand der 
aktuellen Bausteininstanz bestmöglich entspricht. Dazu gehören Zahl und Position der 
Token, die aktuellen Werte der Variablen und die eingeplanten Events dieses Modells. Es 
muss klar definiert sein, wie diese auf das Ersatzmodell übertragen werden. Die zu 
entwickelnden Umschaltmethoden müssen effizient gestaltet werden, da die Umschaltung 
während der Berechnung des Simulationslaufs erfolgt. Vorschläge zur Umsetzung finden 
sich in [Muec05]. Die Art der Gestaltung des Switch-Events wurde nicht eingegrenzt, 
sondern kann vom Modellierer der entsprechenden Modellbausteine frei gewählt werden. 
 

Bezeichnung Beschreibung 

Switch_event Ereignis zur Berechnung des Zustandsübergangs im 
Rahmen des MRS 

Tabelle 10: Zusätzliches Ereignis zur Abbildung von Modellen im MRS 

Zur Beschreibung einer möglichen Implementierung eines Switch-Events wird auf 
[Muec05] verwiesen. Es soll aber darauf hingewiesen werden, dass der Modellierer wohl 
in den meisten Anwendungen zwischen den Fällen „höhere Detaillierung“ und „niedrigere 
Detaillierung“ unterscheiden muss. Da aber nicht zwangsläufig davon ausgegangen 
werden kann, dass sich in jeder Implementierung eine Unterscheidung zwischen den 
Umschaltungen ergibt, wurde auf die Einführung zweier unterschiedlicher Events bewusst 
verzichtet. 

5.2.1.2 Modellierung funktionsorientierter Fertigungssysteme 

Im Rahmen der Modellierung funktionsorientierter Fertigungssysteme lassen sich 
zunächst alle Anforderungen mit der dargestellten Modellbeschreibung realisieren. Die 
verbesserte Unterstützung der speziellen Anforderungen von funktional gegliederten 
Fertigungssystemen (vgl. 4.2.1) führt zu der Fragestellung, wie der Anwender bei deren 
Modellierung weitergehend unterstützt werden kann. Wegen der speziellen Abläufe 
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innerhalb solcher Fertigungssysteme erfährt insbesondere die Abbildung von 
Transportwegen von Menschen oder Maschinen eine steigende Bedeutung. Durch die 
Integration von Layout- und Fertigungsprozessplanung (vgl. 5.1.3) wird ein 
layoutgerechtes Abbilden aller Transport- oder Bewegungswege durch das Werkzeug 
bereits erleichtert und erlaubt darüber hinaus eine realistischere Darstellung des 
gesamten Simulationsmodells. Dennoch ist die layoutgetreue Modellierung von Wegen in 
heutigen Werkzeugen einer der zeitaufwendigsten Schritte, eine der Hauptquellen für 
mögliche Fehler und wird infolgedessen kaum eingesetzt. Als Konsequenz werden die 
abzubildenden Transportwege meist abstrahiert und verfälschen so in den Animationen 
den realitätsnahen Eindruck in der dargestellten, virtuellen Umgebung. Die gröbere 
Modellierung und Simulation führt darüber hinaus oft zu ungenaueren Ergebnissen. 
 
Für das intendierte Werkzeug soll die Wegberechnung deshalb weitestgehend 
automatisch erfolgen. Auf Basis des jeweiligen Simulationsmodell-Layouts wird durch ein 
spezielles Modul im Simulatorkern unter schwachen Restriktionen ein Bewegungsgraph 
berechnet, auf dem sich abgebildete Transporteinheiten oder Menschen bewegen. Die 
Steuerung und Verfügbarkeit dieser speziellen beweglichen Elemente (im Folgenden: 
SPMs) wird in Modellbausteinen abgebildet, die in der Modellierungsoberfläche in das 
Simulationsmodell eingebunden werden können. Mittels eines Algorithmus wird innerhalb 
des Moduls der kürzeste Weg für den jeweiligen Auftrag auf dem Graphen berechnet und 
unter Berücksichtigung eventueller Interaktionen zur Simulationszeit ausgeführt. Die 
Funktionsweise dieses Moduls zur Wegplanung, im Folgenden Motion Planning (MP), wird 
nachfolgend näher beschrieben.  
 
Neben dieser speziellen, automatischen Form der Wegmodellierung soll in dem Werkzeug 
dennoch die explizite Modellierung von Wegen durch Modellbausteine weiterhin 
ermöglicht werden. Eine Abbildung von festen Wegstrukturen, wie sie in herkömmlichen 
Werkzeugen verwendet werden muss, kann damit realisiert werden. Das konservative 
Vorgehen verursacht im Vergleich jedoch einen deutlich erhöhten Modellierungsaufwand, 
weil alle Wegeelemente einzeln abgebildet werden müssen. Insbesondere vor dem 
Hintergrund eines effektiveren Einsatzes der Methode Ablaufsimulation ist die 
automatische Wegberechnung also zu bevorzugen.  
 
Im Rahmen aller bekannten Softwarelösungen zur Ablaufsimulation ist eine solche 
Funktionalität der automatischen Wegfindung nicht bekannt., obwohl eine solche Aufgabe 
prinzipiell gut automatisiert werden kann. 
 
Ziel des Motion Planning 
Das Motion Planning berechnet die Bewegung aller dynamischen Einheiten innerhalb 
eines Simulationsmodells, die sich im abgebildeten Layout prinzipiell autark bewegen 
können  und die sich in der Realität einen möglichst kurzen Weg durch das 
Fertigungssystem suchen (sie werden im Weiteren als Shortest-Path-Mover (SPM) 
bezeichnet). Im Gegensatz zu Token, die auf festgelegten Pfaden innerhalb eines 
Modellbausteins animiert werden, ist die Bewegung der SPMs bidirektional an den 
Simulator gekoppelt. Die Ergebnisse der Wegberechnung fließen direkt in die Simulation 
ein und dienen nicht nur der Animation.  
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Je nach Anwendung können unter SPMs beispielsweise Gabelstapler, Werker mit und 
ohne Hubwagen oder Trolleyzüge verstanden werden. Als Teilmodul des Simulators dient 
das Motion Planning der layoutgetreuen Berechnung aller nicht vom Modellierer 
festgelegten Bewegungen während der Ausführung eines Simulationslaufs. Die 
Kommunikation mit dem Simulationskern (Bewegungsanfragen) sowie den 
Visualisierungskomponenten findet über das in Abschnitt 5.2.2 definierte 
Nachrichtenformat statt. Das Motion Planning arbeitet zweidimensional, setzt also als 
erste Restriktion eine Unterscheidung verschiedener Fertigungsebenen voraus. Die 
verwendeten Algorithmen funktionieren unter geringen Einschränkungen an 
Simulationsmodell und Layout, die jedoch vor dem Hintergrund der Anwendung als 
akzeptabel erachtet werden können. Die Anwendung und die Ergebnisse werden durch 
die Restriktionen nicht so sehr verfälscht, dass der Einsatz des Motion Planning Modul 
den Einsatz der Ablaufsimulation konterkariert. Folgende Restriktionen sollen deshalb 
gelten: 
 

 Komplexitätsreduktion durch Anfahrtspunkte: Es ist nicht nötig, jeden Punkt 
innerhalb einer Ebene anzufahren: nur vorher festgelegte Punkte an den einzelnen 
Bausteininstanzen müssen erreichbar sein (im Folgenden dockingpoints). Dies 
erlaubt die Berechnung der Bewegungsgraphen in der Initialisierungsphase des 
Simulationslaufs und dadurch die beschleunigte Beantwortung von Anfragen zur 
Laufzeit einer Simulation. 

 Begrenzung der Layoutfläche des Simulationsmodells: Wird ein Simulationsmodell 
beispielsweise durch eine umschließende Halle begrenzt, muss diese 
gekennzeichnet werden. Dadurch ergibt sich eine natürliche Begrenzung des 
Bewegungsgraphen. 

 Wege innerhalb geschlossener Formen sollen nicht auftreten können, 
beziehungsweise die entsprechenden Instanzen der SPMs im Simulationsmodell 
können diese Grenzen nicht überwinden. 

 
Ein weiterer Unterschied zwischen Animation und Motion Planning besteht darin, dass 
Animationen nur der Darstellung einer Simulation in einer entsprechenden 
Visualisierungskomponente dienen. Das Motion Planning trägt demgegenüber essentiell 
zur Berechnung zukünftiger Ereignisse im Simulator bei, muss also unabhängig von der 
Visualisierung berechnet werden. 
 
Zusätzlich sorgt das Motion Planning für eine kollisionsfreie Bewegung aller SPMs durch 
das Simulationsmodell während dessen Ausführung im Simulatorkern. Es ist integriertes 
Teilmodul des Simulatorkerns, soll aber im Rahmen der Implementierung als 
abgegrenztes Modul integriert werden, um durch Weiterentwicklungen und/oder 
alternative Wegberechnungen ausgetauscht werden zu können. Für den 
Simulationskernel ist die Ausführung eines Simulationsmodells bisher ein rein logischer 
Ablauf, in dem Token von einem Modellbaustein zu festgelegten Zeitpunkten an deren 
Nachfolger im Materialfluss weitergereicht werden. Die räumliche Anordnung der 
Modellbausteine ist deshalb zur Ausführung zunächst unerheblich. Sie werden vom 
Modellierer dem Simulationsmodell nur deshalb hinzugefügt, um eine optimale 
Visualisierung erreichen zu können. Im Rahmen der Umsetzung des Verfahrens zur 
Wegeberechnung wird das hinterlegte Layout zum Bestandteil der Simulation, da die 
Fahrtzeit der SPMs auf den Wegen abhängig von den verschiedenen Fabriklayouts ist. 
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Das Nachrichtenprotokoll zwischen dem Simulatorkern und dem Motion Planning Modul 
ist also derart zu gestalten, dass ein Token erst dann durch den Simulator an den 
Nachfolger innerhalb des Simulationsmodells weitergereicht wird, wenn sichergestellt ist, 
dass der Transport durch ein SPM das Ziel der Bewegungsanfrage auch erreicht hat. 
Mögliche Verzögerungen können hier durch Interaktionen des Anwenders oder durch 
direkte, gegenseitige Beeinflussung der SPMs entstehen. Sie werden ebenfalls erkannt 
und führen zu einer verzögerten Ankunft eines SPMs an seinem Zielort. 
 
Aufgabe des Motion Planning ist es also, alle Bewegungsanfragen für SPMs vom 
Simulationskern entgegenzunehmen, deren Bewegungen auf dem zuvor berechneten 
Graphen zu planen und den Simulationskern über die Ankunft eines SPMs am Ziel zu 
informieren. Zusätzlich kann das Motion Planning auf Basis des errechneten Layouts auch 
für die Kollisionsabfrage der Avatare23 verwendet werden. Damit diese nicht durch 
Maschinen, SPMs oder weitere Avatare hindurch laufen, die sich in der Szene befinden, 
müssen die Bewegungen eines Avatars regelmäßig vom Motion Planning überprüft und 
bestätigt werden. Das trägt in der Visualisierungskomponente, die eine solche Anbindung 
und Überprüfung implementiert, wesentlich zu einer immersiven Darstellung bei.  
 
Die Animation der Token innerhalb eines Modellbausteins fällt explizit nicht in das 
Aufgabengebiet des Motion Planning. Deren Bewegung, beispielsweise eine Kiste auf 
einem Förderband, wird durch Animationsnachrichten entlang eines vorgegebenen Pfades 
visualisiert. Im Rahmen dieser  Animation wird aus Komplexitäts- und damit 
Effizienzgründen keine Kollisionsabfrage durchgeführt. Eine entsprechend realistische 
Darstellung des Bausteinverhaltens muss also durch den Modellierer erfolgen, zum 
Beispiel durch die Verwendung mehrerer Animationsabschnitte. 
 
Funktionsweise des Motion Planning 
Das Motion Planning arbeitet zweidimensional, d.h. die Bewegung der SPMs wird nur in 
der XY-Ebene abgebildet und nur um die Z-Achse gedreht.24 Zur Berechnung des 
Weggraphen und zur Vermeidung möglicher Kollisionen mit Modellierungsbausteinen 
genügt also eine zweidimensionale Projektion der Maschinen in die XY-Ebene (entspricht 
einer Draufsicht auf das Simulationsmodell). Diese Projektionen werden für jeden 3D-
Repräsentanten eines Modellbausteins einmal generiert und als Outline in der 
Simulationsdatenbank zu dem 3D-Modell gesichert. Die SPMs selbst werden ebenfalls 
durch ihre spezifische Outline repräsentiert. Abbildung 30 verdeutlicht dies an einem 
Ausschnitt aus einem Simulationsmodell. 
 

                                          
23  Unter einem Avatar wird hier die Repräsentation eines Anwenders im Simulationsmodell verstanden, der 

sich während der Ausführung eines Simulationslaufs durch das Layout des Simulationsmodells bewegt und 
dadurch dynamisch das Fortschreiten der Simulation unter Umständen beeinflusst.. 

24  Die Ausdehnung in XY-Richtung beschreibt die Ausdehnung nach Länge und Breite. Die jeweilige Höhe 
wird durch den Z-Vektor, oder die Z-Ebene bestimmt 
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Abbildung 30: 3D-Szene und entsprechende 2D-Projektion 

Obwohl das Motion Planning keine Bewegung in Z-Richtung, also in die Höhe plant, 
werden die unterschiedlichen Höhen der fahrenden SPMs dennoch durch eine 
höhenabhängige Projektion berücksichtigt. Für eine Kollisionsvermeidung zwischen einem 
SPM und den Repräsentanten der Modellbausteine ist es unerheblich, welche Ausdehnung 
die Maschinen oberhalb des SPM haben, weil er dort nicht mit ihnen kollidieren kann. 
Eine Projektion des gesamten Layouts des Simulationsmodells in die XY-Ebene kann 
eventuell ein falsches Abbild der Realität erzeugen und dazu führen, dass mögliche Wege 
eines bestimmten SPM-Typs nicht als solche erkannt werden. Durch einen 
Sicherheitsabstand fährt ein SPM in der entsprechenden dreidimensionalen Visualisierung 
nicht so nahe an den entsprechenden Repräsentanten des Modellbausteins heran, wie es 
technisch möglich wäre. Abbildung 31 versucht dies anhand einer Seitenansicht zu 
verdeutlichen. 
 

 

Abbildung 31: Höhenabhängige Projektion in die XY-Ebene 

Die zu einem 3D-Repräsentanten erzeugten Outlines bestehen deshalb aus mehreren 
Schichten, wobei eine Schicht einem Schnitt auf einer bestimmten Höhe entspricht. Der 
3D-Repräsentant wird dazu entlang der Z-Achse in mehrere Schichten unterteilt, deren 
einzelne wie überlagerte Projektionen in die XY-Ebene eine unterschiedliche Ausdehnung 
besitzen. Alle einzelnen Projektionen werden zusammen mit den zugehörigen 
Höhenintervallen als Layer gespeichert. Die Summe aller vorhandenen Layer eines 3D-
Repräsentanten bildet die eigentliche Outline des 3D-Modells. Die SPMs besitzen 
ebenfalls jeweils eine Outline, die für die Berechnung verwendet werden kann. Zur 
Kollisionsvermeidung mit den statischen 3D-Repräsentanten der Bausteininstanzen 
werden aus deren Outline nur diejenigen Layer betrachtet, die im Höhenintervall der 
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Outline des entsprechenden SPMs liegen. Nachdem die Umrisse der Schichten vereinigt 
wurden, kann wieder auf eine zweidimensionale Ebene reduziert werden (vgl. Abbildung 
30). 
 
Berechnung des Wegegraphen 
In der Initialisierungsphase des Motion Planning wird für jeden unterschiedlichen SPM-
Typ jeweils ein Graph berechnet, auf dem die SPMs während des Simulationslaufs bewegt 
werden. Der einem SPM zugehörige Graph enthält alle Informationen über Positionen und 
Blickrichtungen des SPMs sowie die entsprechenden Outlines. Die Vorberechnung des 
Graphen in der Initialisierungsphase soll eine effiziente Realisierung der 
Kollisionserkennung zur Laufzeit ermöglichen. Die Kollisionen unter den SPMs soll die 
Berechnung der Simulation möglichst wenig ausbremsen. Für die Initialisierungsphase 
muss dafür ein höherer Aufwand in Kauf genommen werden. Auch vor dem Hintergrund 
der Berechung einer Kollisionsabfrage mit mehreren Avataren erscheint eine Verlagerung 
aufwendigerer Berechungen in die Initialisierungsphase sinnvoll. Neben der 
Beschleunigung der Berechnung zur Ausführungszeit eines Simulationslaufs unterstützt 
dieses Vorgehen die Komplexitätsreduktion der Simulationsmodelle. Durch die 
Möglichkeit zur effizienten Speicherung einmal erstellter Graphen und deren 
Neuberechnung nur bei veränderten SPM-Typen oder einem veränderten Layout, kann in 
der Praxis dieser Mehraufwand fast vollständig kompensiert werden. 
 
Jeder Knoten des Graphen repräsentiert eine mögliche Position des SPMs im 
Simulationsmodell. Dazu werden im Knoten Position und Ausrichtung des SPMs 
hinterlegt. Um die Kollisionsvermeidung effizient zu ermöglichen, speichert jeder Knoten 
auch die entsprechende Outline, welche Position und Ausrichtung des SPMs im 
Simulationsmodell repräsentiert. Basierend auf der Annahme, dass zwei entgegen 
gesetzt fahrende SPMs sich an den meisten Stellen passieren können, wird ein 
Rechtsverkehr um alle Hindernisse eingeführt, wobei Hindernisse Maschinen oder auch 
Teile von Maschinen sind. Jede Kante im Graphen wird dazu als Vorwärtskante (gewichtet 
mit der euklidischen Distanz der Knoten in der Ebene) und als Rückwärtskante (gewichtet 
mit der Distanz multipliziert mit einem konstanten Faktor) bewertet. Damit kann explizit 
die Gewichtung von Vorwärtsbewegung zu Rückwärtsbewegung für die einzelnen SPM-
Typen festgelegt werden. 
 

 

Abbildung 32: Interpolation von Kurven durch feingranulare Auflösung 
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Es wird davon ausgegangen, dass die Interpolation der SPM-Outline entlang einer 
Geraden (und dadurch ohne Änderung des Blickwinkels) wenig rechenintensiv ist. 
Rechenintensivere Interpolation von Kurven zur Ausführungszeit eines Simulationslaufs 
werden vermieden, indem vorhandene Kurven im Graphen so feingranular aufgelöst 
werden, dass die gespeicherten Outlines des SPMs sowohl zur Kollisionsvermeidung als 
auch zur flüssigen Animation verwendet werden können. Das führt zu einer Erhöhung der 
Knoten des abgebildeten Weggraphen, wodurch die Suche nach Wegen verzögert wird. 
Diese Einschränkung kann aber an dieser Stelle in Kauf genommen werden, wenn das 
entwickelte Verfahren dennoch schnell arbeitet und die Berechnung der Simulation nicht 
übermäßig bremst. Abbildung 32 verdeutlicht diese Idee. Die eigentliche Berechung des 
Graphen erfolgt schrittweise: 
 
1. Berechnung von umschließenden Graphen (im Folgenden: Boundaries), um die 

Repräsentanten der Bausteininstanzen im Simulationsmodell; Identifikation von 
Connectionpoints als Verknüpfungspunkte zwischen existierenden Boundaries 

2. Berechnung und Erstellen von Verbindungen zwischen den Connectionpoints und 
damit zwischen den Boundaries, die die 3D-Repräsentanten im Simulationsmodell 
umschließen 

3. Bereinigung des Graphen durch Löschen überflüssiger Knoten und Kanten mit dem 
Ziel, die Wegberechnung zu beschleunigen 

4. Zuordnung festgelegter Dockingpoints der einzelnen Bausteininstanzen zu 
existierenden Knoten des Graphen, wobei der Abstand zwischen Dockingpoint und 
Knoten auf dem Graphen minimiert wird. 

 
In der ersten Berechnungsphase werden Knoten und Kanten um die 3D-Repräsentanten 
der Modellbausteine gelegt, so dass diese durch einen Graphen umhüllt sind (vgl. 
Abbildung 30). Dieser Rahmen wird im Folgenden als Boundary bezeichnet. Für jeden 
Graphen werden so genannte Connectionpoints identifiziert und gespeichert, die als 
Eckpunkte oder Andockpunkte verstanden werden können. Im folgenden 
Berechnungsschritt werden Verbindungen zwischen den berechneten Connectionpoints 
berechnet. Eine Auswahl der gefundenen Verbindungen wird schließlich im Graphen 
gespeichert. Abbildung 33 zeigt einen Beispielgraph nach dem Hinzufügen dieser 
Verbindungen.  
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Abbildung 33: Graph des Motion Planning 

Die dritte Berechnungsphase dient der Reduzierung der Komplexität des Graphen. Sie 
löscht nicht benötigte Knoten und Kanten, wobei der starke Zusammenhang25 des 
resultierenden Graphen sichergestellt bleibt. Damit existiert mindestens eine Lösung für 
jede gültige Wegeberechnung und es kann immer ein Weg zwischen allen vorhandenen 
Dockingpoints gefunden werden. Überflüssige Knoten und Kanten können z.B. bei der 
Berechnung der Boundaries entstehen, wenn Modellbausteine so nah beieinander 
platziert sind, dass der SPM nicht zwischen ihnen hindurch fahren kann. In der 
abschließenden Berechnungsphase werden Assoziationen zwischen den möglichen 
Dockingpoints und den nächstliegenden Knoten des Graphen hergestellt, so dass 
Anfragen der Form „Kürzester Weg zwischen den Dockingpoints A und B“ auf 
Graphberechnungen der Form „Kürzester Weg zwischen den Knoten v_A und v_B“ 
abgebildet werden können. 
 
 
 
Bewegungsanfragen 
Die eigentliche Logik einer SPM-Steuerung wird durch einen Modellbaustein im 
Simulationsmodell abgebildet. Diese Steuerungslogik schickt eine Bewegungsanfrage an 
das Motion Planning Modul und wartet mit der Weiterleitung des Token an den SPM, bis 
das Motion Planning die Ankunft des SPM am Startpunkt mitteilt. Es existieren zwei 
verschiedene Anfragetypen, weil SPMs optional Pools zugeordnet werden können. Sie 
bilden eine Gruppierung gleicher SPMs, damit auch eigentlich gleiche SPM-Typen 
beispielsweise hinsichtlich eines beschränkten Einsatzortes unterschieden werden können 
(etwa: Gruppe A nur Halle 1, Gruppe B nur Halle 2). Die Modellierung einer komplexen 

                                          
25  Der Grad des Zusammenhangs bzw. die Konnektivität von Graphen bedeutet, dass Wege zwischen 

mindestens zwei Knoten im Graphen bestehen. Ein gerichteter Graph G=(V = Knoten, E = Kanten) heißt 
zusammenhängend von einem Knoten v aus, falls es zu jedem Knoten w aus V einen gerichteten Weg in G 
gibt, mit v als Startknoten und w als Endknoten. G heißt stark zusammenhängend, falls G von jedem Knoten 
v aus V zusammenhängend ist (vgl. [Corm90]). 
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Steuerung wird durch die Anwendung des Pool-Konzeptes weiter vereinfacht, weil implizit 
der nächste freie SPM innerhalb des Pools vom Motion Planning beauftragt wird. Durch 
die beiden Anfragemöglichkeiten kann ein bestimmter SPM sowohl anhand seiner 
eindeutigen ID beauftragt werden oder aber ein beliebiger SPM eines bestimmten SPM-
Pools anhand dessen Pool-ID. Im zweiten Fall wählt das Motion Planning automatisch den 
nächsten freien SPM aus dem angeforderten Pool aus. Sobald eine Bewegungsanfrage 
beim Motion Planning eintrifft, wird für den entsprechenden SPM, bzw. alle SPMs des 
Pools, der Dijkstra-Algorithmus26 auf dem zugehörigen Bewegungsgraph gestartet, um 
den kürzesten Weg zu identifizieren. Anschließend wird die minimal benötigte Zeit bis zur 
geschätzten Ankunft an die Simulation zurückgeschickt. Diese Ankunft ist im Voraus nicht 
genau bestimmbar, da durch mögliche Kollisionen mit Avataren oder SPMs 
Verzögerungen auf dem Transportweg entstehen können. Zu diesem frühesten möglichen 
Zeitpunkt fragt der Simulator beim Motion Planning nach der Ankunft des SPM. Als 
Antwort wird entweder eine neue Schätzung oder im Erfolgsfall eine Bestätigung der 
Ankunft verschickt. 
 
Kollisionsvermeidung 
Das Motion Planning ist sowohl für die Kollisionserkennung der Avatare untereinander, 
der Avatare mit den SPMs, als auch zwischen den SPMs verantwortlich. Klammert man 
eine Kollision mit den eventuell angeschlossenen Avataren zunächst aus, geschieht die 
Vermeidung von Kollisionen zwischen SPMs und den Repräsentanten der Modellbausteine 
bereits implizit durch die Berechnung des Bewegungsgraphen. Die während der 
Ausführung eines Simulationslaufs auf dem Graphen berechneten Pfade als Ergebnisse 
der Weganfragen können also keine Kollisionen mit den Modellbausteinen erzeugen. Um 
die Kollision der SPMs untereinander zu vermeiden, wird deren Bewegung in einem 
Motion Schedule festgeschrieben. Dieser enthält in fixen Zeitinkrementen die Positionen 
aller SPMs inklusive der sie beschreibenden Outlines. Der Abstand der Zeitinkremente ist 
so klein gewählt (z.B. 200ms), dass der Motion Schedule zur Erkennung von Kollisionen 
genutzt werden kann. Aus Effizienzgründen wird der Motion Schedule in größeren 
zeitlichen Intervallen vorausberechnet (z.B. alle 10s). Als Ergebnis entsteht eine Abfolge 
von Zeit-Ebenen mit den Positionen der jeweiligen SPMs zu jedem berechneten 
Zeitpunkt. Die Zeit-Ebenen werden aufsteigend geordnet und mit den SPM-Positionen 
gefüllt. Dazu werden die berechneten Pfade, auf denen sich die SPMs bewegen sollen, 
Schicht für Schicht miteinander verglichen, so dass keine Kollisionen entstehen. Mögliche 
Kollisionen werden zunächst durch Warten aufgelöst. Ein SPM wartet, bis der 
kollidierende SPM seine Route fortgesetzt hat, bevor es den Weg auf seinem Pfad 
fortsetzt. Zur Animation werden die berechneten Roboterpositionen in regelmäßigen 
Abständen vom Motion Planning an die angeschlossenen Visualisierungskomponenten 
verschickt. Um eine flüssige Animation zu erreichen werden aus den gespeicherten 
Pfaden, auf denen sich die SPMs bewegen, Zwischenschritte extrahiert, da die Auflösung 
des Motion Schedule für eine flüssige Animation nicht ausreicht. Bevor die SPM-
Positionen verschickt werden, wird zusätzlich überprüft, ob Kollisionen mit den 
Avatarpositionen existieren. Sollte eine solche Kollision auftreten, wird der entsprechende 
SPM angehalten und als blockiert markiert. Der Motion Schedule muss dann neu 
berechnet werden, da aus dieser Blockade neue Kollisionen entstehen können. Unter 

                                          
26  Eine genauere Beschreibung des Dijkstra-Algorithmus findet sich bei [SuMe01]. 
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Verwendung dieses Verfahrens wird also sowohl die Kollision der SPMs untereinander, 
wie auch mögliche Kollisionen mit sich bewegenden Avataren vermieden. 
 
Die Kollisionsvermeidung der Avatare soll auf einem leicht abgeänderten Prinzip basieren. 
Basis der Wege aber vor allem der Graphberechung ist das höhenabhängige 
zweidimensionale Layout des Simulationsmodells. Um die Kollisionserkennung der 
Avatare untereinander sowie der Avatare mit den 3D-Repräsentanten der 
Modellbausteine realisieren zu können, muss die angeschlossene Visualisierungs-
komponente dem Motion Planning einen Wegabschnitt schicken, entlang dem sich der 
jeweilige Avatar bewegen will. Das Motion Planning berechnet daraufhin die letzte 
Position auf dem übermittelten Weg, die keine Kollision mit 3D-Repräsentanten oder 
anderen Avataren ergibt. Als Konsequenz muss der Avatar eventuell durch die 
Visualisierungskomponente zurückgesetzt werden, wodurch in der Anzeige ein Ruckeln 
entstehen kann. Die Auswirkungen dieses Effektes hängen aber stark von der Frequenz 
der Übermittlung des Wegabschnitts zusammen, die die Visualisierungskomponente 
realisiert. Dieses Verfahren basiert auf der Annahme, dass die Bewegung eines Avatars 
durch die Szene nur schwer im Vorhinein abgeschätzt werden kann. Innerhalb der 
Aufgabenstellung ist dieser möglichst hohe Freiheitsgrad für den Anwender gewollt, 
damit dieser sich möglichst realitätsnah und immersiv durch die Szene bewegen kann. 
Ist darüber hinaus die Frequenz der Übermittlung des Avatar-Wegs hoch genug, wird der 
Avatar durch das System so rechtzeitig gebremst, dass dieser „Ruckel-Effekt“ kaum 
störend wahrgenommen wird. 
 
Die eingesetzte Kollisionsvermeidung dient der Realisierung unterschiedlicher Direktiven. 
Während die Kollisionsvermeidung der SPMs untereinander hauptsächlich darauf 
ausgerichtet ist, die Wegeplanung so realistisch wie möglich abzubilden und erst als 
Nebeneffekt eine saubere Visualisierung in den entsprechenden Komponenten ermöglicht 
(Gabelstapler fahren dann beispielsweise nicht durcheinander durch), ist genau diese 
präzise Visualisierung ein nützliches Instrument zur Erfüllung der Anforderung nach 
bestmöglicher Immersion. Der Anwender wird gezwungen, auch in der virtuellen 
Darstellung des Simulationsmodells und damit im abgebildeten System nur diejenigen 
Wege zu benutzen, die ihm auch im realen System zur Verfügung ständen. Durch den 
direkten Effekt seiner virtuellen Präsenz im Simulationsmodell (Gabelstapler halten vor 
ihm an) führt das Motion Planning dadurch zu einer Steigerung der Immersion in der 
virtuellen Umgebung. Das der Anwender als Konsequenz das Fortschreiten der Simulation 
während dieses spezifischen Simulationslaufs beeinflusst, ist ein auf Grund der 
stochastischen Auslegung von Simulationsmodellen zu vernachlässigender Effekt, bietet 
darüber hinaus sogar eine weitere unmittelbare Interaktionsmöglichkeit in der virtuellen 
Umgebung und unterstützt so die an das Werkzeug gestellten Anforderungen. Die 
Echtzeit-Simulation wird hauptsächlich in der Phase der Modellvalidierung und 
Verifikation eingesetzt. Die Berechnung statistisch signifikanter Simulationsläufe erfolgt 
anschließend ohne Visualisierungskomponenten und in einer streng ereignisorientierten 
bzw. analogen schnellstmöglichen Berechnung. Die zur Modellvalidierung, 
Modellverifikation oder Vorführung eingesetzte dreidimensionale Visualisierung eines 
einzelnen Simulationslaufes unterliegt weiteren stochastischen Einflüssen und ist somit 
nicht notwendigerweise repräsentativ für das dynamische Verhalten des abgebildeten 
Systems. Im Rahmen der Realisierung ist darauf zu achten, diese Interaktionsmöglichkeit 
zumindest optional ausschalten zu können, um dem Anwender optional eine bekannte 
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Visualisierungsform anzubieten. Alternativ können Verfahren implementiert werden, wie 
sie unter Abschnitt 3.4.1.1 bereits aufgezeigt wurden. 
 
Benutzerführung zu signifikanten Prozesspunkten 
Bewegt sich der Anwender durch die dreidimensionale Szene wird das Maß der 
Immersion für ihn für alle diejenigen Abschnitte der Szene erhöht, die in seinem 
Wahrnehmungsbereich liegen. Bei großen Szenen steigt dem gegenüber derjenige Anteil 
der Szene, der dem Anwender verborgen bleibt (beispielsweise in seinem Rücken, hinter 
einer Wand, etc.). Um dennoch eine optimale Analyse des visualisierten 
Simulationsmodells zu ermöglichen, muss der Anwender auf diejenigen signifikanten 
Prozesse hingewiesen werden, die nicht in seinem Sichtfeld liegen, beispielsweise in Form 
einer Liste aller Bausteinsinstanzen, die nach den aktuellen Signifikanzwerten sortiert ist. 
Voraussetzung hierfür ist die Berechnung und Belegung jeder Bausteininstanz des 
Simulationsmodells mit einem objektspezifischen Signifikanzwert und einer im Baustein 
hinterlegten Methode zu dessen Berechnung während der Ausführung der Simulation. 
Während der Simulation wird der Anwender auf kritische Prozesse innerhalb der 
Simulation aufmerksam und kann seine Aufmerksamkeit umlenken. Als Navigationshilfe 
soll ihm der kürzeste Weg zu einem selektierten Baustein in die Szene eingeblendet 
werden und der selektierte Modellbaustein entsprechend markiert werden, um ihn 
innerhalb des Simulationsmodells schneller identifizieren zu können. Hier wirken die 
Anforderungen nach einer hohen Immersion für die Aufgabenerfüllung des Anwenders 
eher hinderlich. Vor der Hintergrund einer realitätsnahen Visualisierung muss das an 
dieser Stelle allerdings in Kauf genommen werden. Während der Implementierungsphase 
sollten alternative Visualisierungen ergänzend berücksichtigt werden, um diese 
Fragestellung mit einer besser angemessenen Darstellungsform zu bearbeiten. 
 
Grundlage dieser Navigationshilfe muss ein auf dem zweidimensionalen Layout 
berechneter Bewegungsgraph sein, wobei das entwickelte Verfahren erneut zum Einsatz 
kommt. Der Avatar des Anwenders entspricht einem speziellen SPM. Der kürzeste Weg 
muss für den Anwender in die virtuelle Umgebung eingeblendet werden, beispielsweise in 
Form von Pfeilen, die auf dem Boden angeordnet werden. Verschiedene Realisierungen 
sind an dieser Stelle vorstellbar, von der einmaligen Berechnung und Darstellung des 
Weges ausgehend von der aktuellen Position des Avatars bis zur dynamischen 
Nachführung und Adaption des Weges nach Avatarbewegungen innerhalb der Szene. 
Zumindest optional soll eine Funktion vorgehalten werden, die das direkte „Beamen“ zum 
nächst möglichen Punkt in der Umgebung des selektierten Modellbausteins erlaubt (vgl. 
hierzu auch Abschnitt 3.4.2). 
 
Erweiterung der Modellbeschreibung zur Integration des Motion Planning 
Die der Integration des Motion Planning Moduls in den Simulationskernel zur 
dynamischen Berechnung der Wege für alle Typen von SPMs erfordert eine Erweiterung 
der vorhandenen Modellbeschreibung und eine Erweiterung des Nachrichtenprotokolls 
(vgl. Abschnitt 5.2.2.3). Tabelle 11 listet die zusätzlich benötigten Attribute für einen 
Modellbaustein auf, die sich aus dem Motion Planning ergeben. 
 

Bezeichnung Beschreibung 

Significance Signifikanzwert für jede Modellinstanz 

simulationBoundary Markierung für reine Layoutobjekte 
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Dockingpoint Relative Anfahrtspunkte der SPMs für jeden 
Modellbaustein 

Tabelle 11: Zusätzliche Attribute zur Integration des Motion Planning 

Durch die Erweiterung um ein spezielles Modul zur Wegplanung eignet sich das hier 
entwickelte Werkzeug besser für die Modellierung und Simulation von 
funktionsorientierten Fertigungsprozessen, weil der Aufwand zur Modellierung der 
benötigten Wege und deren Bearbeitungsdauer während der Simulation durch 
entsprechende Motion Planning Bausteine in Bibliotheken auf ein Minimum reduziert 
werden kann. Darüber hinaus wird ein präziseres und durch den Anwender potentiell 
manipulierbares Ergebnis erlaubt. Die Nutzung des hier entwickelten Verfahrens ist aber 
nicht zwingend vorgegeben; die Modellbeschreibung erlaubt ebenso die Beschreibung 
über genau festgelegte Wege, wie sie in vorhandenen Materialflusssimulatoren zum 
Einsatz kommen. Da die Graphenberechung für das Motion Planning ein arbeitsintensiver 
Prozess ist, müssen während der Implementierungsphase des Werkzeuges 
entsprechende Methoden zur Reduzierung des Aufwands berücksichtigt werden. 
Beispielsweise muss ein zu einem Layout gehörender Graph mit dem Simulationsmodell 
in der Simulationsdatenbank gespeichert werden können, um das Laden eines 
Simulationsmodelllayouts inklusive seines Bewegungsgraphen im Simulatorkern zu 
beschleunigen. Voraussetzung hierfür ist, dass sich auch alle anderen für das Motion 
Planning relevanten Informationen des Simulationsmodells nicht geändert haben. So 
könnte der Austausch eines 3D-Repräsentanten für einen Pool von SPMs Auswirkungen 
auf die zu benutzenden Wege und damit den zugrunde liegenden Bewegungsgraphen 
haben. Zur Identifikation von Änderungen am Simulationsmodell stehen neben der 
Versionierung weitere Verfahren zur Verfügung. Ein vorhandener Weggraph darf in jedem 
Fall nur dann aus der Simulationsdatenbank geladen werden, wenn es keine Änderungen 
am Simulationsmodell gegeben hat, die für das Motion Planning Konsequenzen haben 
 
Neben den eingepflegten Erweiterungen der Modellbeschreibung muss im weiteren 
Verlauf der Entwicklung auch das vorhandene Nachrichtenformat erweitert werden, um 
eine effektive Kommunikation zwischen dem Simulatorkern und dem Motion Planning 
Modul zu ermöglichen. Alle Details der benötigten Erweiterungen sowie die Gestaltung 
des Nachrichtenablaufs, können aber unter Abschnitt 5.2.2.3 gefunden werden. 
 
Ein weiterer wesentlicher Punkt der Aufgabenstellung ist die Modellierung und Simulation 
in einem Multitasking-Betrieb, die das Modellieren und Simulieren mehrerer Anwender 
auf Basis eines einzelnen Modells erlaubt. Der folgende Abschnitt beleuchtet dieses 
Themenfeld genauer hinsichtlich zusätzlich benötigter Erweiterungen für die 
Modellbeschreibung. 

5.2.1.3 Multitasking Modellierung und Simulation 

Um in dem Werkzeug den Mehrbenutzerbetrieb sowohl im Bereich der Modellierung, als 
auch in der Simulation umzusetzen, wurden in 5.1.6 die Methoden Locking, Cloning und 
Versionierung identifiziert. Darüber hinaus wurde dort ein Rechtemanagement entwickelt, 
das ebenfalls berücksichtigt werden soll. Dieser Abschnitt beschreibt die notwendigen 
Erweiterungen für die Modellbeschreibung, um die identifizierten Methoden umsetzen zu 
können. 
 



Konzeption  - 117 - 
 

 

Um das Locking überhaupt zu erlauben, muss es für jede Bausteininstanz möglich sein, 
einem einzigen Anwender durch ein entsprechendes Attribut den exklusiven Zugriff auf 
diese Instanz zu garantieren. Durch die Möglichkeit zur hierarchischen Modellierung 
müssen zumindest alle untergeordneten Bausteininstanzen während der Bearbeitung 
gesperrt werden (vgl. Abbildung 27). Alle Modellbausteine, die dem aktuell gesperrten 
Bausteinobjekt übergeordnet sind, sollten ebenfalls entsprechend markiert werden. 
Verschiedene Zustandsausprägungen des Attributs regeln diese verschiedenartigen 
Zugriffsmöglichkeiten (vgl. Abschnitt 3.5.4.1). Das Locking-Attribut muss nicht in der 
Modellbeschreibung des Simulationsmodells gespeichert werden, sondern wird nur 
während der Bearbeitung oder Ausführung eines Simulationsmodells benötigt. Dennoch 
soll es an dieser Stelle in die Modellbeschreibung mit aufgenommen werden, um während 
der Implementierungsphase des Werkzeugs nicht übergangen zu werden. 
 
Die Umsetzung des Cloning-Verfahrens selbst erfordert keine Erweiterung der 
Modellbeschreibung. Durch die Implementierung einer Versionierung können die 
einzelnen Versionen des Simulationsmodells separat gespeichert und somit stets 
reproduziert werden. 
 
Zusätzliches Attribut für die Anwendung der Versionierung ist minimal die Angabe einer 
Versionsnummer, unter der verschiedene zusätzliche Informationen gespeichert werden 
können (beispielsweise der Name des Bearbeiters und ein erläuternder Kommentar). Mit 
diesem Verfahren ist ein Vergleich verschiedener Versionen möglich und eine Änderung 
in einem Modellbaustein, die zu einer neueren Version führt, birgt nicht die Gefahr, dass 
vorhandene Simulationsmodelle nicht mehr korrekt funktionieren, die eine frühere 
Version des Modellbausteins verwenden. Über spezielle Abfragen soll der Anwender in der 
Visualisierung der Modellierungskomponente über neuere Versionen der verwendeten 
Modellbausteine informiert werden, die zusätzlichen Attribute einsehen und ggf. die 
verwendeten Modellbausteine durch die aktuellste Versionen ersetzen können. Über die 
Versionierung ist es auch möglich, dem Anwender genau den Zustand des 
Simulationsmodells zu präsentieren, der seinem letzten Bearbeitungsschritt entspricht. 
Theoretisch wäre es möglich, sich das Attribut Version für jeden Modellbaustein zu 
sparen und stattdessen jeder neuen Bausteinversion auch einen neuen eindeutigen 
Bezeichner aufzuprägen. Um das oben skizzierte Verfahren der automatischen 
Identifizierung von neueren Bausteinversionen anwenden zu können, müssten dann in 
der Simulationsdatenbank zusätzliche Verweise gespeichert werden, die eine solche 
Identifikation ermöglichen. Im Rahmen der Implementierung soll die erste 
Vorgehensweise bevorzugt werden. Die Umsetzung der zusätzlichen Funktionalitäten im 
Rahmen der Versionierung soll den Anwender bei der Modellierung im Team 
unterstützen, indem ihm die Änderungen anderer Anwender dargestellt werden. Die 
Kooperation innerhalb eines Projektteams wird gefördert und doppelte Arbeiten werden 
vermieden. 
 
Zur Umsetzung des in Abschnitt 5.1.6 beschriebenen Rechtemanagements wird davon 
ausgegangen, dass die spätere Implementierung eine Aggregation auf ein einziges 
Attribut ermöglicht, dass für alle Bausteine einer Bibliothek bzw. für jeden Modellbaustein 
hinterlegt werden kann. Dies kann beispielsweise umgesetzt werden, indem jegliche 
verwendete Kombination in der Datenbank abgelegt wird und somit durch einen 
eindeutigen Bezeichner identifiziert werden kann. Tabelle 12 listet die für die 
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Mehrbenutzer-Modellierung und –Simulation benötigten zusätzlichen Attribute der 
Modellbeschreibung zusammenfassend auf. 
 

Bezeichnung Beschreibung 

version Versionsnummer des Modellbausteins 

locking_status Aktueller Status (nur zur Laufzeit) 

rights Eindeutiger Bezeichner zur Umsetzung des 
Rechtmanagements 

Tabelle 12: Zusätzliche Attribute für die Mehrbenutzer-Modellierung und -
Simulation 

Die um die oben beschriebenen Erweiterungen ergänzte Modellbeschreibung wird für die 
Mehrbenutzer-Modellierung und -Simulation eines dynamisch detaillierenden 
Simulationsmodells, das sowohl einen objekt- als auch einen funktionsorientierten 
Fertigungsprozess beschreiben kann, als ausreichend angesehen. Durch die Konzeption 
der Rückwärtssimulation und insbesondere der (semi-)automatischen Transformation von 
Simulationsmodellen zwischen Vorwärts- und Rückwärtssimulation, können weitere 
Erweiterungen der Modellbeschreibung nötig werden. Diese sollen in 5.2.4.1 genauer 
analysiert werden. Im Folgenden wird vorher auf das XML-basierte Nachrichtenprotokoll 
eingegangen werden, das die Kommunikation des Simulatorkerns mit den 
angeschlossenen Visualisierungskomponenten und dem Motion Planning erlaubt, um die 
Konzeption hinsichtlich einer vorwärtsgerichteten Modellbeschreibung abschließen zu 
können. 

5.2.2 Nachrichtenbasierte Kommunikationsschnittstelle 

Durch den modularen Aufbau des Werkzeugs muss der Simulatorkern das in einem XML-
Format gespeicherte Simulationsmodell in ein Java-Programm transformieren, 
kompilieren und ausführen (vgl. Abschnitt 5.1.4). Simulationsmodell und Simulator 
ergeben dadurch ein einziges, eng verzahntes Modul, an das sich zur Ausführungszeit 
eines Simulationsmodells verschiedene Visualisierungskomponenten anschließen können. 
Um die Kommunikation des Simulatorkerns mit den Visualisierungen zu standardisieren, 
wird im Folgenden eine Nachrichtenbasierte Kommunikationsschnittstelle konzipiert, die 
alle Anforderungen strukturiert und deren Bewältigung ermöglicht. Wie in Abschnitt 5.1.5 
erläutert, wird auch diese Kommunikationsschnittstelle über ein erweiterbares XML-
Format spezifiziert. Die Vorteile der XML vor dem Hintergrund einer erweiterbaren 
Implementierung wurden dazu unter Abschnitt 3.5.7  bereits erläutert. Für die Gestaltung 
einer Kommunikationsschnittstelle für ein erweiterbares Werkzeug, dessen Module 
eigenständig auf verschiedenen Computern laufen sollen, gibt es zu diesem 
Nachrichtenbasierten Kommunikationsprotokoll keine sinnvollen Alternativen. Der direkte 
Zugriff auf gegenseitige Methoden verbietet sich durch die mögliche Verteilung der 
Anwendung und der Anwender. 
 
Grundsätzlich sollen drei verschiedene Nachrichtentypen unterschieden werden: Normal-
Message, Request-Message und Reply-Message. Die Typisierung richtet sich nach der Art 
der transportierten Information und strukturiert den Nachrichtenverkehr auf einer 
logischen Ebene. Normal-Messages dienen dem einfachen Austausch von Information, 
beispielsweise der Übertragung von Steuerungsbefehlen an den Simulatorkern. Request-
Messages sind Nachrichten, die eine Anfrage an den entsprechenden 
Kommunikationspartner senden und als Antwort eine Reply-Message erhalten. In den 
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folgenden Abschnitten sollen die einzelnen Nachrichten dargestellt werden. Die 
Unterteilung des folgenden Abschnitts erfolgt nach der Reihenfolge der Ausführung im 
Rahmen eines Simulationslaufs mit einer angeschlossenen Visualisierung. Anschließend 
werden die benötigten Erweiterungen für die speziell entworfenen Module betrachtet. 

5.2.2.1 Initialisierungsnachrichten 

Initialisierungsnachrichten werden zu Beginn der Kommunikation zwischen Simulatorkern 
und Visualisierungskomponente verwendet. Sie dienen der Beschreibung der Szene, 
Token, Grundlagen der Animation und der Einstellung von Modulparametern. Die 
nachfolgende Tabelle 13 beschreibt die vorhandenen Nachrichten und ihre jeweilige 
Typisierung. 
 

Bezeichnung Typ Beschreibung 

Databaseinfo Normal Übermittelt die Datenbankinformationen zum Laden 
der 3D-Repräsentanten zur Darstellung der 
Modellbausteine 

Buildingblock Normal Übermittelt Position und 3D-Darstellung einer 
spezifischen Bausteininstanz; Wird ggf. für jede 
Bausteininstanz des Simulationsmodells gesendet. 

Tokenpath Normal Übermittelt für jeden Modellbaustein die benötigten 
Animationspfade der Token und ihre relative Position 
zum Modellbausteine 

Token Normal Übermittelt die Position und 3D-Repräsentanten eines 
Token 

EndOfInitialization Normal Zeigt, dass alle Informationen der 
Initialisierungsphase übertragen wurden 

Tabelle 13: Initialisierungsnachrichten 

Verbindet sich eine Visualisierungskomponente mit dem Simulatorkern, übermittelt 
dieser alle benötigten Informationen in einer Initialisierungsphase an die neu 
angeschlossene Visualisierungskomponente. Mit der EndOfInititialization-Message wird 
die Initialisierungsphase beendet; die Simulation wird fortgeführt oder explizit mittels 
einer Steuerungsnachricht gestartet. 

5.2.2.2 Steuerungs- und Manipulationsnachrichten 

In der Gruppe Steuerungs- und Manipulationsnachrichten werden alle Nachrichten 
zusammengefasst und beschrieben, die zur Steuerung des Simulatorkerns aus der 
Visualisierungskomponente heraus zur Verfügung stehen. Darüber hinaus werden alle 
Nachrichten aufgeführt, mit deren Hilfe der Anwender einzelne Attribute der 
Modellbausteine abfragen, aktualisieren und manipulieren kann. Eine genaue 
Beschreibung der zur Verfügung stehenden Nachrichten findet sich nachfolgend in Tabelle 
14. 
 
Die erste Gruppe der Nachrichten dient der Steuerung des Simulatorkerns aus der 
Visualisierungskomponente. Neben den üblichen Steuerungsbefehlen kann eine 
Simulation gespeichert werden. Die Modellvalidierung kann mit dieser 
Zwischenspeicherung von Simulationsläufen erheblich verbessert werden, weil z.B. ein 
spezieller Zustand eines Simulationslaufs rekonstruiert werden kann. Der Anwender ist 
nicht gezwungen, eine Simulation stets neu zu beginnen und bis zur problematischen 
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Stelle zu simulieren. Für alle Nachrichten werden mögliche Fehlernachrichten 
vorgehalten. 
 

Bezeichnung Typ Beschreibung 

Steuerungsnachrichten   

Start Normal Startet die Simulation im Simulator 

Pause Normal Hält die Simulation an. 

Stop Normal Stoppt die Simulation 

SaveSimulation Normal Speichert den aktuellen Zustand der Simulation ab 

Timefactor Normal Verändert die Ausführungsgeschwindigkeit der 
Simulation (Timefactor 100 entspricht Echtzeit) 

Maxspeed Normal Streng Ereignisgesteuerte Berechnung der Simulation 
ohne Verhältnis zur Echtzeit 

Normalspeed Normal Setzt von der maximal möglichen Geschwindigkeit 
auf den letzten Timefactor 

Timestamp Normal Liefert die aktuelle Simulationszeit 

Error Reply Fehlernachricht mit Beschreibung 

No-Error Reply Bestätigung einer Nachricht, bei der kein Fehler 
aufgetreten ist 

Manipulationsnachrichten   

SubscribeProperty Request Abonniert die Variablen einer bestimmten 
Bausteininstanz, beispielsweise zur Anzeige in der 
Visualisierung 

UnsubscribeProperty Normal Beendet ein Abonnement 

ObjectProperties Reply Enthält eine Liste aller Variablen einer 
Bausteininstanz als Antwort auf die 
SubscribeProperty-Nachricht 

PropertiesChanged Normal Ändert die Werte einer Variablen oder teilt der 
Visualisierung einen geänderten Wert einer Variablen 
mit 

Significance Normal Ändert die Signifikanz eines Objektes. 

   

IncludeToken Normal Dient dem Hinzufügen eines bestimmten Token zu 
einem anderen Token, beispielsweise einer Schraube 
ein einer Kiste 

ExcludeToken Normal Dient dem Extrahieren eines Token aus einem 
bestimmten Token. 

AnimateToken Normal Nachricht zur Animation eines Token in einem 
Modellbaustein entlang eines vorgegebenen 
Tokenpaths 

RemoveToken Normal Entfernt das Token aus der Visualisierung 

Tabelle 14: Steuerungs- und Manipulationsnachrichten 

Die zweite Gruppe an Nachrichten dient der Abfrage und Manipulation von Attributen der 
Bausteininstanzen. Neben einer dynamischen Anzeige können die Werte aus den 
Visualisierungskomponenten heraus manipuliert und zum Simulator übertragen werden. 
Über eine PropertyChanged-Nachricht werden andere angeschlossene Visualisierungs-
komponenten über die Veränderung informiert. Die letzte Gruppe der Nachrichten dient 
der Umsetzung des Token-in-Token Konzeptes in der Visualisierung, also der Tatsache, 
dass Token andere Token enthalten können. Damit wird es möglich, Token in Gruppen 
zusammenzufassen oder Materialflüsse genauer abbilden zu können, ohne Informationen 
zu verlieren (vgl. Abschnitt 5.1.4). 



Konzeption  - 121 - 
 

 

5.2.2.3 Nachrichtenerweiterung für das MRS 

Die Integration der dynamischen Detaillierung von Simulationsmodellen erfordert eine 
Erweiterung des Nachrichtenprotokolls. Tabelle 15 gibt einen Überblick über die 
zusätzlich benötigten Nachrichten: 
 

Bezeichnung Typ Beschreibung 

Avatar Normal Übermittelt die aktuelle Position der angeschlossenen 
Avatare 

MRMQuantifier Normal Ermöglicht das Steuern des MRS aus der 
Visualisierung heraus 

lockMRM Normal Beendet die dynamische Detaillierung und berechnet 
das Modell auf Basis der aktuellen Detaillierung der 
Modellbausteine 

unlockMRM Normal Schaltet die Berechnung der dynamischen 
Detaillierung wieder ein 

Tabelle 15: Erweiterung für das MRS 

Damit soll zum einen aus den Visualisierungskomponenten die aktuelle Position des 
Avatars des Anwenders übertragen werden, um eine hohe Detaillierung an den Punkten 
zu ermöglichen, wo sich der Avatar bewegt. Zum Anderen wird in dieser Nachricht die 
Blickrichtung des Avatars übertragen, um die dynamische Detaillierung auf Basis dieser 
beiden, benutzerstimulierten Kriterien zu ermöglichen. Zusätzliche Nachrichten werden 
benötigt, um die dynamische Berechnung des Detaillierungsgrades ein- bzw. ausschalten 
zu können. Durch die Umschaltung des Detaillierungsgrades in der Simulation ergibt sich 
keine neue Darstellung in der entsprechenden Visualisierungskomponente, weil deren 
Darstellung immer auf dem am höchsten detaillierten Simulationsmodell basiert. Für die 
einzelnen 3D-Repräsentanten der Bausteininstanzen ergibt sich aber ggf. eine neue 
Zugehörigkeit zu einer anderen Bausteininstanz und damit neue oder andere Attribute. 
Dieser Austausch der Attribute kann mit den bestehenden Nachrichten bereits vollständig 
abgebildet werden (bspw. Properties-Changed-Message). 

5.2.2.4 Nachrichtenerweiterung für das Motion Planning 

Auch die Kommunikation zwischen dem Motion Planning Modul und dem Simulatorkern 
soll über das Nachrichtenprotokoll abgewickelt werden. Alternativ zum Nachrichten-
konzept bietet sich an dieser Stelle auch eine unmittelbare Anbindung des Motion 
Planning an den Simulator an. Zunächst sollen jedoch die Nachrichten des 
Gesamtsystems in einem gemeinsamen Protokoll integriert werden, unabhängig von der 
tatsächlichen Implementierung in einer späteren Entwicklungsphase des Werkzeugs. Da 
hier ein besonders intensiver Austausch von Informationen benötigt wird, müssen 
entsprechend viele Nachrichten dem Protokoll hinzugefügt werden. Der Ablauf der 
Bewegungsanfragen folgt der in Abschnitt 5.2.1.2 beschriebenen Reihenfolge. 
 

Bezeichnung Typ Beschreibung 

MPPrefs Normal Nachricht zur Festlegung von Motion Planning 
Parametern. Wird in der Initialisierungsphase 
gesendet 

Robot Normal Legt einzelne SPMs an 

Robotpool Normal Legt einen Pool von SPMs an 

   

moveRobot Request Fordert die Bewegung eines bestimmten SPMs an. 
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movePoolmember Request Fordert die Bewegung eines SPMs aus einem 
bestimmten Pool an. 

freeRobot Request Freisetzen eines SPMs nach Ausführung eines 
Auftrags 

removeRobot Request Entfernt einen SPMs aus der Visualisierung 

   

StillComputingPath Reply Beinhaltet die voraussichtlich benötigte Zeit zur 
Berechnung eines Wegs 

ExpectedArrivalTime Reply Voraussichtlich benötigte Zeit eines SPMs für einen 
Auftrag 

CheckArrival Request Prüfung auf erfolgreiche Ausführung eines Auftrags 

Arrival Reply Ankunft eines SPMs am Ziel seines Auftrags 

Tabelle 16: Nachrichtenerweiterung für das Motion Planning 

Abbildung 34 zeigt eine schematische Darstellung einer optimalen Fahrt eines SPM durch 
ein Simulationsmodell. Wäre der entsprechende SPM auf seinem Weg aufgehalten 
worden, würde die jeweilige Check-Arrival-Message mit einer neuen 
ExpectedArrivalTime-Message beantwortet werden. 
 

 

Abbildung 34: Sequenzdiagramm des Motion Planning Nachrichtenprotokolls 

Mit dem hier dargestellten und für dynamische Detaillierung und Motion Planning 
erweiterten Nachrichtenprotokoll wird eine Kommunikation zwischen Visualisierungs-
komponenten, Motion Planning Modul und Simulatorkern ermöglicht. Durch die 
Einführung der Rückwärtssimulation im folgenden Abschnitt muss das 
Nachrichtenprotokoll wie auch die Modellbeschreibung eventuell ausgebaut werden. Für 
die hier dargestellten Aufgaben ermöglicht das Protokoll eine Manipulation der 
Simulationsdaten zur Ausführungszeit eines Simulationsmodells und schafft damit neben 
der Modellbeschreibung die Grundlagen zu einer immersiven und interaktiven 
Modellierungs- und Simulationsumgebung für den Anwender. 
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5.2.3 Verwaltung der Experimentdaten 

Zur Speicherung der Datenmenge eines Simulationsexperimentes soll in diesem 
Abschnitt eine Struktur vorgestellt werden, die durch eine Beschreibung im XML-Format 
umgesetzt werden soll. Neben der vollständigen Sicherung aller für ein 
Simulationsexperiment erforderlichen Daten sollen hier auch Szenarios definiert werden, 
die bei Bedarf mit wechselnden Eingabedaten simuliert werden können. Dieses Vorgehen 
unterstützt den Anwender beim erweiterten Einsatz der Ablaufsimulation, weil das 
wiederholt Parametrieren des Simulationsmodells durch die Verwendung eines Szenarios 
entfällt. Nur die jeweils aktuellen Prozessabbilder als Eingabedaten werden aktualisiert 
und führen zu veränderten, auf die aktuelle Situation angepassten Ergebnissen. 
 
Aufgrund der stochastischen Einflüsse zufallsverteilter Variablen innerhalb der 
Modellbausteine müssen Simulationsmodelle mehrfach ausgeführt werden, um die 
statistische Schwankungsbreite der Zielkriterien einer Simulation erkennen zu können. 
Deshalb bestehen Simulationsexperimente immer aus mehreren Simulationsläufen (vgl. 
Abschnitt 3.1). Ein Experiment kann also in einem ersten Schritt in die einzelnen 
Simulationsläufe getrennt werden. Darüber hinaus vervollständigen Angaben zu 
Simulationsmodell, inklusive Versionsnummer, Anwender Start- und Endzeit der 
Simulation, Ausführungsdatum sowie untersuchtem Szenario etc. die Angaben des 
Experimentes. Jeder Simulationslauf als Element des Experiments ist durch die Menge 
der Eingabedaten, die Menge der Interaktionen, einer Protokolldatei des 
Nachrichtenaustauschs und die eigentlichen Ergebnisdaten gekennzeichnet, so dass für 
jeden Lauf diese Unterteilung getroffen werden kann. Die Eingabedaten lassen sich auf 
die einzelnen Modellbausteininstanzen des Simulationsmodells verteilt auflisten. Für jedes 
Attribut kann hier der Startparameter gesichert werden, so dass eine Wiederholung des 
Simulationslaufs erfolgen kann. Alle Interaktionen des Anwenders werden 
mitprotokolliert, so dass eine exakte Kopie des Simulationslaufes geschaffen werden 
kann. Eventuell kann diese als Vorlage für eine Wiederaufnahme in Form eines weiteren 
Simulationsexperimentes dienen, indem der Anwender weitere Interaktionen vornehmen 
kann. Ebenfalls protokolliert wird der Nachrichtenaustausch zwischen Simulation und 
Visualisierung, damit Wiederholungen einzelner Ausschnitte des Simulationslaufs erneut 
in den Visualisierungskomponenten dargestellt werden können. Dadurch wird es 
ermöglicht, im Nachhinein Ursachen von Effekten zu ermitteln, die in der Simulation erst 
später auftreten. Besonderheiten eines Simulationslaufs können automatisch erneut 
wiedergegeben und beispielsweise in einer Expertenrunde diskutiert werden. Die 
eigentlichen Ergebnisdaten enthalten eine komplette Liste aller Attribute, die überhaupt 
in dem Simulationslauf ausgewertet werden sowie jeweils die einzelnen Datensätze in 
Einzelwerten oder Listen, wiederum aufgeteilt auf diejenigen Bausteininstanzen, in denen 
die Kennziffern gesammelt wurden. Für eine Analyse auf Basis von Token, die durch das 
Simulationsmodell laufen, werden spezielle Auswertungsbausteine im Simulationsmodell 
hinterlegt, deren Attribute ebenfalls unter den Ergebnisdaten abgelegt werden. Abbildung 
35 zeigt schematisch die Baumstruktur der Experimentdatenverwaltung. 
 
Zusammenfassend kann festhalten werden, dass mit dieser Experimentdatenverwaltung 
die einzelnen Simulationsexperimente so vollständig in der Simulationsdatenbank 
gesichert werden, dass alle relevanten Daten in einer reproduzierbaren Form gespeichert 



- 124 - 

 

werden. Einzelne Simulationsläufe können erneut visualisiert werden, ohne dass eine 
Wiederholung der Simulation erfolgen muss. Eine erneute Analyse wird somit erleichtert. 
 

 

Abbildung 35: schematische Übersicht über die Experimentdatenverwaltung 

5.2.4 Rückwärtssimulation und Modelltransformation 

Im folgenden Abschnitt soll die Konzeption einer Rückwärtssimulation beschrieben 
werden, um eine Simulation hinsichtlich spätester Beginn-Zeitpunkte eines vorgegebenen 
Fertigungsprogramms mittels der Ablaufsimulation zu ermöglichen. Der Materialfluss ist 
rückwärts gerichtet und berechnet auf Basis vorliegender Kundenaufträge die spätesten 
Beginn-Zeitpunkt der benötigten Erzeugnisse auf Basis des Simulationsmodells. 
Anschließend wird ein Verfahren zur Modelltransformation entworfen, auf dessen Basis 
Vorwärts gerichtete Simulationsmodelle in rückwärts gerichtete Simulationsmodelle 
weitestgehend automatisch transformiert werden können. Mit dem Verfahren soll der 
Modellierungsaufwand für den Anwender für die zwei unterschiedlichen 
Anwendungsbereiche reduziert werden. Er soll jeweils nur ein Simulationsmodell 
modelliert werden; die jeweils umgekehrte Richtung des Materialflusses lässt sich 
daraufhin über das Verfahren weitestgehend automatisch generieren. Dadurch wird die 
Bearbeitung der mittels Rückwärtssimulation untersuchten Fragestellungen für den 
Anwender erheblich erleichtert bzw. überhaupt erst in einem zu vertretenden Aufwand 
realisierbar. 

5.2.4.1 Rückwärtssimulation 

Im folgenden Abschnitt sollen die einzelnen Schritte zum Aufbau eines rückwärts 
gerichteten Simulationsmodells beschrieben werden, um sie hinsichtlich besonderer 
Schwierigkeiten bei der Umsetzung bzw. benötigter Adaptionen der existierenden 
Modellbeschreibung zu untersuchen und bewerten zu können. 
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Modellierung eines rückwärts gerichteten Simulationsmodells 
Die Modellierung eines rückwärts gerichteten Simulationsmodells gestaltet sich durch die 
Verwendung von Bausteinbibliotheken ähnlich einfach, bzw. ohne erhöhten Aufwand im 
Vergleich zu einer herkömmlichen Modellierung eines vorwärts gerichteten 
Materialflusses. Die jeweiligen Modellbausteine müssen für eine Rückwärtssimulation 
ausgerichtet sein. Im Vorfeld erhöht sich damit der Aufwand für das Erstellen einer 
Bausteinbibliothek deutlich. Neben der Umkehrung des Materialflussgraphen muss 
insbesondere die Modellierung der Quellen auf die Denkweise der Rückwärtssimulation 
adaptiert werden. 
 
Als Startzeitpunkt der Rückwärtssimulation wird eine Zeit aus der Zukunft gewählt. Am 
Ende des eigentlichen Simulationslaufes erhält man als Simulationsergebnis die 
Startzeiten der einzelnen Fertigungsprozesse, um die geplanten Erzeugnisse 
termingerecht fertigen zu können. Im Zuge der Rückwärtssimulation müssen alle 
Verteilungsregeln umgekehrt werden und ggf. an anderen Stellen im Modell 
implementiert werden. Abbildung 36 verdeutlicht die Unterschiede in der Steuerung des 
Materialflusses zwischen Vorwärts und Rückwärts gerichteten Materialflüssen. Dabei 
müssen die entsprechenden Verteilregeln zwischen Vorwärts- und Rückwärtssimulation 
entsprechend adaptiert werden. 
 

 

Abbildung 36: Vergleich eines Materialflusses in Vorwärts und Rückwärts 
Richtung 

Wie obige Abbildung zeigt, liegt bei dem vorwärts gerichteten Simulationsmodell die 
Steuerungslogik zur Aufteilung des Materialflusses innerhalb des Modellbausteins A. Bei 
der Umkehrung des Simulationsmodells wird diese Information in Modellbaustein D 
benötigt, um das prinzipiell gleiche Flussverhalten zu erzeugen. 
 
Durch die in Abschnitt 5.2.1 entwickelte Modellbeschreibung können prinzipiell rückwärts 
gerichtete Materialflüsse modelliert und gespeichert werden, ohne Erweiterungen an der 
Modellbeschreibung vornehmen zu müssen. Lediglich der Informationsgehalt der durch 
das Simulationsmodell laufenden Marken ändert sich durch die rückwärts gerichtete 
Ausführung. Um dem Anwender die Modellierungsarbeit zu vereinfachen, können auch 
hier Bibliotheken von Modellbausteinen angelegt werden, die durch entsprechende Links 
verbunden werden. Dabei wandeln sich in der rückwärts gerichteten Modellierung 
Verzweigungen zu Zusammenführungen und umgekehrt. Die Transformation des 
eigentlich vorwärts laufenden Materialflusses zu einem rückwärts gerichteten 
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Simulationsmodell erfolgt hier aber implizit durch den Anwender. Für die Quellen und 
Senken eines Simulationsmodells müssen dennoch neue Modellbausteine konzipiert und 
in den Bibliotheken abgelegt werden. Durch die unterschiedlichen Fragestellungen bei 
Vorwärts- und Rückwärtssimulation können die vorhandenen Bausteine nicht weiter 
verwendet werden. 
Ausführung eines rückwärts gerichteten Simulationsmodells 
Die Ausführung eines rückwärts gerichteten Simulationsmodells in einem diskreten 
Materialflusssimulator, wie er durch das zu entwickelnde Werkzeug realisiert werden soll, 
stellt hinsichtlich des reinen Markenflusses keine besonderen Anforderungen an das 
Simulationsmodell. Lediglich die Fortschreibung der externen Simulationszeit während 
der Berechnung des Simulationsmodells im Simulatorkern und damit die Terminierung 
von Folgeereignissen eines bestimmten Zeitpunktes erfordert eine Unterscheidung 
zwischen vorwärts und rückwärts gerichtetem Modell und damit fortschreitend bzw. in 
der Zeit zurück schreitendem Zeitmodell. Hier bieten sich für die Implementierung 
innerhalb des Simulatorkerns zwei Methoden an, die eine zeitlich rückwärts gerichtete 
Berechnung erlauben. 
 
Eine strikte Umsetzung von Vorwärts- und Rückwärtssimulation müsste im Simulatorkern 
explizit zwischen beiden Simulationsarten unterscheiden. Dementsprechend läuft die 
Simulationszeit vorwärts oder rückwärts, so dass in der Konsequenz der Scheduler des 
Simulatorkerns als Verwalter geplanter Ereignisse die Liste aller geplanten Ereignisse 
rückwärts durchlaufen muss, um die zeitlich am weitesten fortgeschrittenen und damit 
die nächsten für die Rückwärtssimulation zu verwendenden Ereignisse abzuarbeiten. 
Insbesondere für die Ausführungsgeschwindigkeit sind die dafür anfallenden 
Fallunterscheidungen zwischen Vorwärts- und Rückwärtssimulation als negativ zu 
betrachten. 
 
Die alternative Methode betrachtet den Simulator als eigenständiges Objekt und bildet 
die Vorwärts- bzw. Rückwärtssimulation über verschiedene Abbildungen auf den jeweils 
darzustellenden Kalender ab. Das entspricht zunächst auch dem Ziel der Modularisierung 
der einzelnen Funktionen, wie sie durch die objektorientierte Programmierung bevorzugt 
werden (vgl. 3.5.2). Zusätzlich kann im Simulatorkern dadurch eine auf der internen 
Simulationszeit basierende vollständige und eindeutige Berechnung der Ereignisse ohne 
jeweilige Fallunterscheidung erfolgen. Alle verwendeten Datenstrukturen können auf 
diese spezielle Verwendung hin optimiert werden, was insgesamt eine beschleunigte 
Berechnung erlaubt. Durch die Transformation der internen Simulationszeit auf einen 
externen Kalender kann eine Parametrierung und Darstellung über prinzipiell beliebige 
externe Kalender erfolgen. Der Simulator bleibt so ebenfalls erweiterbar für die 
Integration von weiteren Kalendern wie Werkskalendern von Fertigungsunternehmen 
oder externen Kalendern mit fixen Zeitinkrementen (Schichtgenaue Betrachtung, etc.). 
Dieses Vorgehen wird aus den genannten Gründen bevorzugt und soll in der 
Implementierungsphase umgesetzt werden. 
 
Auswertung eines rückwärts gerichteten Simulationsmodells 
Ebenso wie die Modellierung unterscheidet sich die Auswertung von rückwärts 
gerichteten Simulationsmodellen nicht grundlegend von der Auswertung des 
entsprechenden Pendants. Aufgrund der unterschiedlichen Untersuchungszwecke bei 
Vorwärts- und Rückwärtssimulation unterscheiden sich die Zielkriterien und damit 
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mögliche Auswertungen von denen eines entsprechenden vorwärts gerichteten 
Simulationsmodells. Die in den Auswertungs- und Visualisierungsmodulen zur Verfügung 
stehenden Auswertungsmöglichkeiten sollen aber auch für die rückwärts gerichteten 
Simulationsmodelle ausreichend sein, da sie nur eine entsprechende Darstellungsform 
repräsentieren, ohne diese an eine inhaltliche Aussage zu knüpfen. 

5.2.4.2 Modelltransformation 

Um dem Modellierer die Erstellung eines Simulationsmodells zur Rückwärtssimulation zu 
erleichtern, soll ein Verfahren entwickelt werden, anhand dessen Simulationsmodelle 
weitgehend automatisch invertiert werden können. Sie sollen in der unter 4.2.1 
vorliegenden Modellbeschreibung vorliegen. Auf Basis vorliegender Materialflüsse werden 
Grundstrukturen identifiziert, die in einem Folgeschritt hinsichtlich ihrer Invertierung in 
ein rückwärts gerichtetes Pendant untersucht werden. Der Vorteil dieser Zerlegung des 
Materialflusses in einzelne Komponenten liegt in der Möglichkeit zur Automatisierung der 
Erkennung und Invertierung der jeweiligen Grundstrukturen. Dazu soll zuerst eine 
geeignete Form der Darstellung ausgewählt und erläutert werden. Der nachfolgende 
Abschnitt befasst sich mit der Identifikation und Auflistung der Grundstrukturen. Sie 
werden bezüglich ihrer Umkehrung im Sinne einer Rückwärtssimulation untersucht. Die 
dadurch erreichte Vereinfachung eines Simulationsmodells durch die Zerlegung in 
Grundstrukturen wird anschließend anhand eines Beispiels gezeigt und das intendierte 
Verfahren zur automatischen Modelltransformation vorgestellt.  
 
Darstellung der Materialflüsse 
Die Darstellung der Materialflüsse soll auf die spezifische Problemstellung zugeschnitten 
werden. Im vorliegenden Fall kann die Darstellungsform auf das Abbilden der 
Bausteininstanzen und ihrer Beziehungen simplifiziert werden. Bausteininstanzen werden 
durch einfache Rechtecke dargestellt. Jeder Block verfügt über beliebig viele Input- und 
Output-Channel. Zur Vereinfachung wurde auf die Darstellung der Input- und Output-
Channel verzichtet. Bausteininstanzen werden direkt durch Pfeile verbunden. Darüber 
hinaus gilt, dass entsprechend der Modellbeschreibung alle Pfeile nur verlinkenden 
Charakter haben und demnach eine rein logische Abfolge darstellen. Sie enthalten 
zunächst keine oder zeitliche Information. Förderstrecken oder Transportsysteme werden 
demnach ebenfalls durch Modellbausteine dargestellt. 
 

 

Abbildung 37: Darstellung einer einfachen Fertigungslinie 

Identifikation der Grundstrukturen 
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Wesentlicher Aspekt bei der Suche nach Grundstrukturen innerhalb von 
Materialflussstrukturen ist die Frage nach deren Anzahl und Typisierung. Viele 
Strukturformen sind sich so ähnlich, dass sie problemlos in Typen zusammengefasst 
werden könnten. Trotzdem ergeben sich auch unter Verwendung von Grundstrukturen 
einige Formen, die nicht weiter zusammenzufassen sind. Das Hauptproblem stellen 
hierbei die Schnittstellen zu anderen Modellbausteinen, bzw. zu anderen Grundstrukturen 
dar: Wird eine bestimmte Struktur als Grundstruktur definiert, dürfen nur an festen 
Modellbausteinen Ein- oder Ausgänge sein, andernfalls gehen wichtige Informationen 
verloren und eine Grundstruktur kann nicht mehr eindeutig beschrieben werden. 
Abbildung 38 verdeutlicht dieses Problem: Wäre die in a) dargestellte Struktur eine 
Grundstruktur, so müsste trotz der Ähnlichkeit b) eine weitere Grundstruktur sein, da 
sich an den Modellbausteinen 2 und 3 unzulässige Ein- bzw. Ausgänge befinden. 

1

2

3

4 1

2

3

4a) b)

 

Abbildung 38: Schnittstellen bei Grundstrukturen 

Wäre aber die in b) dargestellte Struktur ebenfalls eine Grundstruktur, würde das 
Problem der Grundstrukturen nur verschoben, weil die Anzahl der Strukturen deutlich 
vergrößert würde. Alternativ dazu soll im weiteren Verlauf eine Liste von Grundstrukturen 
erstellt werden, deren Umfang vertretbar ist und die alle besonders häufig auftretende 
Strukturen enthält, so dass die meisten Materialflüsse dadurch zumindest deutlich zu 
vereinfachen sind. Alle weiteren Strukturen, die in Materialflussmodellen zu finden sind, 
sollen vom Anwender manuell auf Grundstrukturen zurückgeführt oder alternativ manuell 
invertiert werden. 
 
Listen von elementaren Grundmustern in Materialflüssen finden sich in der Fachliteratur 
häufig. Sie dienen in der Regel nicht dem Zweck der Vereinfachung oder Zerlegung 
komplexer Strukturen, sondern geben vielmehr typische und praxisnahe Anordnungen 
von Fertigungsmitteln wieder. Der Zweck solcher Listen besteht meist darin, an diesen 
Beispielen typische Eigenschaften oder Probleme von Materialflüssen zu verdeutlichen. 
Dennoch bilden solche Listen eine solide Ausgangsposition für einen Katalog von 
Grundstrukturen zum Vereinfachen von Materialflüssen. Abbildung 39 zeigt eine solche 
Liste nach [FiHe00]. In der dort gewählten Darstellung sind jedoch die Kanten bzw. Pfeile 
nicht ohne Bedeutung. Zunächst müssen diese Verkettungsstrukturen also an die 
gewählte Darstellungsform angepasst und interpretiert werden. Dazu müssen Strukturen, 
die in Abbildung 39 aus Pfeilen oder ähnlichen Darstellungsformen bestehen, mit Hilfe 
von Modellbausteinen dargestellt werden. Dies kann je nach Detaillierungsgrad auf 
unterschiedliche Weise geschehen, weil komplexe Transport- oder Fertigungssysteme 
durch einen einzigen Modellbaustein, oder auch als Struktur aus vielen Modellbausteinen 
dargestellt werden können. Die Struktur der Pfeile aus Abbildung 39 kann also 
unterschiedlich interpretiert werden. Dies spielt jedoch solang keine Rolle, wie alle 
gewählten Strukturen als Grundstrukturen identifiziert werden können. 
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Abbildung 39: Verkettungsstrukturen in Fertigungssystemen [nach FiHe00] 

Abbildung 40 zeigt die Anpassung an die gewählte Darstellung. Da in der bisher 
gestalteten Modellbeschreibung lediglich Modellbausteine über Input- und Output-
Channel verfügen, müssen alle Verzweigungen und Transportstrecken durch 
Modellbausteine repräsentiert sein. Exemplarisch sollen im Folgenden einige 
Umformungen näher erläutert werden. 
 
Bei den parallelen Linien müssen beispielsweise bei Verzweigung und Zusammenführung 
Modellbausteine eingefügt werden. Die Länge der Linien wird nicht weiter dargestellt, da 
die einzelnen Linien ihrerseits durch unverzweigte Linien ersetzbar sind. Die Anordnung 
der Modellbausteine ist davon unbetroffen. Die Nebenschlussstruktur kann auf zwei 
Weisen angepasst werden. Entweder wird jede einzelne Verzweigung durch einen 
Modellbaustein repräsentiert oder die Verteilung des Materialflusses durch ein einziges, 
komplexeres Transportsystem interpretiert und dieses durch einen einzigen 
Modellbaustein dargestellt. Das Ergebnis wäre dann eine Sternstruktur. Das Netz wird 
nicht übernommen, da es im Grunde alle Strukturen repräsentiert, die nicht durch die 
anderen Strukturen darzustellen sind. Aus den Vorüberlegungen ergab sich bereits, dass 
solche Strukturen zur Vereinfachung von Materialflüssen nicht zweckmäßig sind und vom 
Anwender manuell zu invertieren sind. 
 
Grundsätzlich sind die Pfeilrichtungen zu beachten. Bidirektionale Pfeile, wie in den 
Abbildung 39 und Abbildung 40 verwendet werden, sind in der gewählten 
Darstellungsform nicht vorgesehen, weil sie durch die Modellbeschreibung aktuell nicht 
abgebildet werden können. Sie werden an dieser Stelle nur zur besseren Übersicht 
verwendet. Ein bidirektionaler Pfeil symbolisiert zwei gegensätzlich gerichtete 
Einzelpfeile. 
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Abbildung 40: Anpassung der Strukturen an die gewählte Darstellungsform 

In einem weiteren Schritt werden die gefundenen Ausgangslösungen für Grundstrukturen 
durch die Anwendung von Zerlegungen an realen Materialflüssen verfeinert. In diesem 
Rahmen wird festgestellt, welche Grundstrukturen such durch Kombinationen von zwei 
oder mehr Grundstrukturen ausdrücken lassen. Im folgenden Abschnitt werden die 
resultierenden Grundstrukturen beschrieben. Diese Form der Identifikation von 
Grundstrukturen mittels empirischer Untersuchung führt nicht zwangsläufig zu einer 
vollständigen Lösung, bietet aber im Rahmen einer praxistauglichen Anwendung des 
Werkzeugs gute Ergebnisse. Durch die flexible Erweiterung aller benötigten Strukturen 
lassen sich auch im Nachhinein weitere Strukturen der Menge der Grundstrukturen 
hinzufügen. 
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Typisierung der Grundstrukturen 
Bei der Zerlegung und Vereinfachung eines Materialflusses muss überlegt werden, wie 
eine möglichst starke Vereinfachung ohne Informationsverlust erreicht werden kann. 
Jede der festzulegenden Grundstrukturen muss daher eindeutig beschreibbar sein. Ihre 
Anwendung muss einheitliche Merkmale aufweisen, die nicht zusätzlich gesichert werden 
müssen. Um die Zahl der Grundstrukturen jedoch auf einen sinnvollen Rahmen zu 
begrenzen, sind einige wenige variable Parameter zweckmäßig. Sie sollten aber nur die 
Größe der Grundstruktur und nicht ihre Struktur bzw. ihre äußere Form betreffen. Ziel ist 
es also, eine einheitliche Funktionsstruktur bei variabler Größe der Grundstrukturen 
sicherzustellen. Es muss daher zwischen fixen und variablen Parametern bei 
Grundstrukturen unterschieden werden. 
 
Fixe Parameter umfassen bei allen Grundstrukturen die Form der Struktur und ihre 
jeweiligen Schnittstellen. Das heißt insbesondere, dass Input- und Output-Channel nur 
an den dafür vorgesehenen Modellbausteinen erlaubt sind. Variable Parameter sind in der 
Regel die Anzahl von Ein- und Ausgängen sowie die Anzahl bestimmter Modellbausteine. 
Die Anzahl der Ein- und Ausgänge stellt kein Problem dar, weil sie durch die Anwendung 
einer Vereinfachung nicht verschwinden. Verdeutlichen soll dies Abbildung 41. 
 

 

Abbildung 41: Vereinfachung einer Struktur 

Abbildung 41 links (Teil a) zeigt exemplarisch die Grundstruktur „parallele Linie“, wie sie 
bereits aus Abbildung 39 bekannt ist. Im dargestellten Fall verfügt sie über zwei Ein- und 
drei Ausgänge. Wird diese Struktur nun vereinfacht, also durch einen einfachen 
Modellbaustein ersetzt, der die Grundstruktur „parallele Linien“ repräsentiert, so geht die 
Information der Anzahl der Ein- und Ausgänge offensichtlich nicht verloren. Anders sieht 
es bei der Anzahl bestimmter Modellbausteine innerhalb der Struktur aus. Dies zeigt 
Abbildung 42. 
 

 

Abbildung 42: Variable Anzahl Modellbausteine innerhalb Grundstrukturen 

Der linke Teil a) von Abbildung 42 zeigt erneut die bekannte Grundstruktur. Die im 
rechten Teil b) der Abbildung dargestellte Struktur kann allerdings auch unter diese 
Grundstruktur fallen, da sie grundsätzlich eine gleiche Form aufweisen. Das Event, in 
dem die Aufteilung des Materialflusses beschrieben wird, wird für jede Struktur individuell 
erstellt; es macht folglich keinen Unterschied, ob der Fluss auf zwei oder mehr 
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Modellbausteine aufgeteilt wird. Solche variablen Parameter treten bei vielen 
Grundstrukturen auf. Sie müssen vor bzw. während des Vereinfachungsprozesses 
nachvollzogen und gesichert werden. Im Folgenden werden die identifizierten 
Grundstrukturen beschrieben und ihre fixen und variablen Parameter erläutert. 
Abschließend werden jeweils Sonderfälle betrachtet. Dies dient insbesondere zur 
gegenseitigen Abgrenzung einzelner Strukturen untereinander. Zunächst sollen die 
Grundtypen Quelle, Senke, unverzweigte Linie, Verzweigung und Zusammenschluss 
erläutert werden. Im Anschluss werden Grundstrukturen einer höheren Ordnung 
vorgestellt, das heißt, sie lassen sich aus den vorhergehenden Strukturen erzeugen, 
bilden aber selbst wieder feste Strukturen, wie sie in Materialflüssen häufig vorkommen 
und qualifizieren sich damit als eigener Typ einer Grundstruktur. Zu Ihnen gehören die 
Kreuzung, die parallele Linie, die Linie mit Rückführung und der Stern. 
 
Quelle und Senke 
Quellen bzw. Senken bilden den Ursprung bzw. das Ende eines jeden 
Materialflussmodells ab. Je nach abgebildetem Fertigungsprozess kann ein 
Simulationsmodell durchaus mehrere Quellen und/oder Senken beinhalten. Quellen und 
Senken sind immer einzelne Modellbausteine, die als solche leicht identifiziert werden 
können. Sie erzeugen bzw. vernichten die durch den Materialfluss „wandernden“ Token 
nach der vom Anwender implementierten Methodik. Eine Quelle zeichnet sich dadurch 
aus, dass sie keinen Eingang, aber mindesten einen Ausgang besitzt. Analog zeichnen 
sich Senken insbesondere dadurch aus, das sie keinen Ausgang haben, aber mindestens 
einen Eingang. 
 
Unverzweigte Linie 

 

Abbildung 43: Grundstruktur „Unverzweigte Linie“ 

Abbildung 43 zeigt eine unverzweigte Linie. Bei dieser relativ einfachen Grundstruktur 
sind die Flussrichtungen der einzelnen Modellbausteine zu beachten. Die Grundstruktur 
unverzweigte Linie herrscht nur dann vor, wenn alle logischen Verknüpfungen in die 
gleiche Richtung zeigen. Eingänge sind lediglich an Modellbaustein 1 zulässig, Ausgänge 
nur an Modellbaustein n. Die Anzahl der jeweiligen Ein- und Ausgänge der 
Modellbausteine innerhalb der Grundstruktur ist beliebig, muss aber innerhalb der 
Grundstruktur konstant sein. Darüber hinaus muss sichergestellt werden, dass innerhalb 
der Grundstruktur keine Kreuzungen der Materialflüsse entstehen, beispielsweise wenn 
die unterschiedlichen Stränge unterschiedliche Token transportieren. Neben der Anzahl 
von Ein- und Ausgängen bildet die Anzahl der Modellbausteine zwischen 1 und n bzw. die 
Gesamtanzahl der Modellbausteine in der Struktur die variablen Parameter der 
Grundstruktur. Als Sonderfall dieser Struktur muss darüber hinaus erkannt werden, dass 
eine Vereinfachung einer unverzweigten Linie nicht zu einem Kreis innerhalb des dann 
neu entstandenen Modellbausteins führt (vgl. Abbildung 44). In diesem Fall kann die 
Struktur nicht zur unverzweigten Linie zusammengefasst werden. 
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Abbildung 44: Vereinfachung der unverzweigten Linie führt zum Kreis 

 
Verzweigung 
Abbildung 45 zeigt die Grundstruktur „Verzweigung“. Die Pfeile, die die Richtung des 
Materialflusses symbolisieren, gehen hier lediglich in eine Richtung, weg vom zentralen 
Modellbaustein (in Abbildung Baustein 1) hin zu den äußeren, angehängten 
Modellbausteinen. Deren Anzahl ist beliebig (variabler Parameter), aber größer oder 
gleich eins. Somit müssen die Modellbausteine 2.1 bis 2.n letztendlich die Form einer 
Senke darstellen oder in einer Senke enden. Eine beliebige Menge von Ein- und 
Ausgängen sind an Modellbausteine 1 selbst zulässig. 

 

Abbildung 45: Grundstruktur „Verzweigung“ 

Einen Sonderfall stellt die Struktur dar, wenn sie, wie in Abbildung 46, keinen Ausgang 
besitzt. Diese Struktur unterliegt denselben Regeln wie eine übliche Verzweigung. Endet 
die Verzweigung ohne Ausgang nicht in jedem angeschlossenen Modellbaustein (2.1 … 
2.n) in einer Senke, kann eine Grundstruktur höherer Ordnung vorliegen, für die 
vereinfachte Umkehrregeln erstellt werden können. 
 

 

Abbildung 46: Verzweigung ohne Ausgang 

Zusammenführung 
Abbildung 47 zeigt den analogen Fall zur vorgestellten Verzweigung: die 
Zusammenführung. Hier ist lediglich die Flussrichtung umgedreht. Die Anzahl der 
angehängten Modellbausteine ist mindestens eins, die Anzahl der Ein- und Ausgänge ist 
beliebig. Ein- und Ausgänge sind nur an Modellbaustein 1 zulässig. 
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Abbildung 47: Grundstruktur „Zusammenführung“ 

Die Modellbausteine 2.1 bis 2.n müssen aus Quellen resultieren. Der Sonderfall ist hier 
analog der Fall ohne Eingang (vgl. Abbildung 48). Die eigentliche Funktionsweise 
unterscheidet sich ebenfalls nicht vom vorgestellten Typ. Dieser Sonderfall ist in der 
Praxis nicht selten am Anfang von Materialflüssen aufzufinden. 
 

 

Abbildung 48: Zusammenführung ohne Eingang 

Kreuzung 

 

Abbildung 49: Grundstruktur „Kreuzung“ 

Abbildung 49 zeigt die Grundstruktur „Kreuzung“. Diese Struktur ist die erste 
Grundstruktur einer höheren Ordnung, denn sie stellt eine Kombination aus 
Zusammenführung und Verzweigung dar. Die Anzahl der „eingehenden“ (2.1 bis 2.n) und 
„ausgehenden“ (3.1 bis 3.n) Modellbausteine ist jeweils mindestens eins. Ein- und 
Ausgänge sind nur am zentralen Modellbaustein (in Abbildung: Modellbaustein 1) 
zulässig. Ihre Anzahl ist prinzipiell beliebig (siehe oben). Von dieser Struktur sind keine 
Sonderfälle bekannt. 
 
Parallele Linie 

 

Abbildung 50: Grundstruktur „Parallele Linien“ 
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Abbildung 50 zeigt die Grundstruktur „Parallele Linie“. Fixe Parameter sind neben der 
Form der Struktur die Position der Ein- und Ausgänge an den Modellbausteinen 1 bzw. 
Modellbaustein 3. Die Anzahl der jeweiligen Ein- bzw. Ausgänge zählt zu den variablen 
Parametern und ist beliebig. Die Zahl der parallelen Linien (in Abbildung: 2.1 … 2.n) ist 
ebenfalls variabel, aber größer eins. Sonderfälle dieser Struktur sind ebenfalls nicht 
bekannt, da der Sonderfall nur einer parallelen Linie von der Grundstruktur unverzweigte 
Linie (siehe oben) bereits abgebildet wird. 
 
Rückkopplung 

 

Abbildung 51: Grundstruktur „Rückkopplung“ 

Im Gegensatz zur parallelen Linie ist die Flussrichtung bei der Grundstruktur 
Rückkopplung in einem Zweig umgedreht (vgl. Abbildung 51). Darüber hinaus besteht 
die Rückkopplung nach allen möglichen Vereinfachungen innerhalb der einzelnen 
Modellbausteine aus immer genau vier Modellbausteinen. Eingänge sind nur an 
Modellbaustein 1, Ausgänge ausschließlich an Modellbaustein 3 zulässig. Die Anzahl von 
Ein- und Ausgängen ist beliebig und stellt den einzigen variablen Parameter dieser 
Struktur dar. Sonderfälle dieser Struktur sind nicht bekannt. 
 
Stern 

 

Abbildung 52: Grundstruktur „Stern“ 

Die Grundstruktur „Stern“ ist in Abbildung 52 dargestellt. Charakteristisch für eine 
Sternstruktur ist eine bidirektionale Verbindung einer prinzipiell beliebigen Anzahl von 
Modellbausteinen mit dem zentralen Modellbaustein. Diese bidirektionalen Verbindungen 
typisieren im Wesentlichen die Sternstruktur und grenzen diese von anderen 
Grundstrukturen ab. Es ist daher großer Wert auf die Flussrichtungen der Verknüpfungen 
zu legen. Die Anzahl der angehängten Modellbausteine stellt neben der Anzahl der Ein- 
und Ausgänge einen variablen Parameter dar. Fixer Parameter ist dagegen die Position 
der Ein- und Ausgänge, die beiden lediglich an Modellbaustein 1 zulässig sind. Einen 
Sonderfall der Sternstruktur bildet die Sternstruktur mit nur einem angehängten 
Modellbaustein (vgl. Abbildung 53). Dieser Fall hat äußerlich nicht viel mit der 
Vorstellung eines Sterns gemein, stellt aber dennoch im Grunde den einfachsten Fall 
einer Sternstruktur dar. 
 



- 136 - 

 

 

Abbildung 53: Stern mit nur einem angehängten Modellbaustein 

Abschließend sollen die identifizierten Grundstrukturen auf die in Abbildung 40 
dargestellten Strukturen angewendet werden, die den Ausgangspunkt für die 
Identifikation bildeten. Es fällt zunächst auf, dass die Strukturen „Unverzweigte Linie“, 
„Parallele Linie“, „Linie mit Rückführung“ sowie „Stern“ unverändert übernommen 
werden, wobei in der gewählten Darstellungsform „Parallele Linie“ und „Linie mit Bypass“ 
äquivalent sind. Erweitert wurden diese um die Grundstrukturen „Verzweigung“, 
„Zusammenführung“ und „Kreuzung“, da diese häufig auftreten und in ihren 
Eigenschaften nicht durch andere Grundstrukturen darzustellen wären. 
„Nebenschlussstruktur“ und „Schleife“ können durch die Anwendung von 
Grundstrukturen auf eben diese zurückgeführt werden. Abbildung 54 zeigt diesen 
Vorgang beispielhaft für die Nebenschlussstruktur. 
 

⇒a) b)

 

Abbildung 54: Vereinfachung der Struktur „Nebenschluss“ 

Teil a) der Abbildung (links) zeigt die Ausgangsstruktur. Nach dreimaliger Anwendung 
der Grundstruktur „Stern“ entsteht, wie Teil b) (in Abbildung 54 rechts) zeigt, eine 
„Unverzweigte Linie“, die ihrerseits wiederum eine Grundstruktur darstellt. Ähnlich die 
Verfahrensweise bei der Schleife (vgl. Abbildung 55). Hier wird unter a) zunächst 
sechsmal die Grundstruktur „Stern“ zur Vereinfachung angewendet. Das Ergebnis dieser 
Vereinfachung zeigt Teil b) der Abbildung. In Teil c) wird nun noch zweimal die 
Grundstruktur „Unverzweigte Linie“ angewendet. Das Ergebnis, dargestellt in Teil d) der 
Abbildung, bildet die Grundstruktur „Rückkopplung“. Es ist demnach nicht notwendig die 
Strukturen „Nebenschlussstruktur“ und „Schleife“ in den Katalog der Grundstrukturen 
aufzunehmen, da sie sich durch Kombination verschiedener anderer Grundstrukturen 
bereits ausdrücken lassen. Im Gegensatz zu den festgelegten Grundstrukturen höherer 
Ordnung, die sich ja ebenfalls durch andere Grundstrukturen ausdrücken lassen, treten 
Nebenschlussstruktur und Schleife auch weniger häufig auf, bzw. sind innerhalb des 
Materialflusses deutlich schwerer zu identifizieren. Insbesondere deshalb wurde hier auf 
die Aufnahme der Strukturen in den Katalog der Grundstrukturen verzichtet. 
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Abbildung 55: Vereinfachung der Struktur „Schleife“ 

Explizit soll an dieser Stelle nochmals darauf hingewiesen werden, dass die identifizierten 
und in den Katalog aufgenommenen Grundstrukturen keineswegs als „vollständig“ 
anzusehen sind. Wie bereits bei der Identifikation der Grundstrukturen dargelegt wurde, 
kann keine reduzierte Liste existieren, mit der alle denkbaren Materialflüsse vollständig 
zerlegbar wären. Erklärtes Ziel soll deshalb sein, einen Katalog an Grundstrukturen zu 
entwickeln, mit dem möglichst viele in der Praxis vorkommende Materialflüsse möglichst 
weit zu vereinfachen sind. Es kann daher in speziellen Anwendungsbereichen der 
Ablaufsimulation sinnvoll sein, diesen Katalog spezifisch zu erweitern. 
 
Vereinfachung des Materialflussmodells durch Zerlegung 
Nach der Identifizierung der Grundstrukturen soll an dieser Stelle auf den Vorgang der 
eigentlichen Zerlegung und damit Vereinfachung von Materialflüssen eingegangen 
werden, die in einem Simulationsmodell beschrieben wurden. Zunächst werden dazu 
Regeln erläutert, die bei jeder Zerlegung zu berücksichtigen sind, um die Konsistenz des 
Simulationsmodells zu wahren. Anschließend wird anhand eines Beispiels die Zerlegung 
eines Materialflusses durchgeführt. 
 
Regeln für die Zerlegung 
Bei der Zerlegung von Materialflüssen müssen neben den bereits eingeführten variablen 
Parametern, die vor allem die Struktur der Modelle betreffen, weitere Gesichtspunkte 
berücksichtigt werden. Zum besseren Verständnis soll zunächst das beabsichtigte 
Vorgehen bei der Erstellung eines Rückwärtssimulationsmodells auf Basis eines 
vorliegenden Vorwärtsmodells kurz erläutert werden. Es beinhaltet im Wesentlichen drei 
Schritte: Die Zerlegung und Vereinfachung des vorwärts gerichteten Ausgangsmodells, 
die Invertierung aller einzelnen Komponenten und abschließend die Zusammensetzung 
der invertierten Komponenten zu einem rückwärts gerichteten Simulationsmodells. Die 
Zerlegung innerhalb des ersten Schrittes soll unter Zuhilfenahme der Grundstrukturen 
geschehen. Alle identifizierten Grundstrukturen können im zweiten Schritt automatisch 
invertiert werden. Es ist aber anzunehmen, dass in manchen Fällen „Restmodelle“ nach 
der Vereinfachung übrig bleiben, die nicht durch Grundstrukturen abzubilden sind. Diese 
müssen vom Anwender individuell interpretiert und manuell invertiert werden. 
Abschließend werden die invertierten Modellbausteine wieder in einem Simulationsmodell 
zusammengesetzt. Die Reihenfolge der Zerlegung ist exakt umzukehren. Um sowohl für 
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die Invertierung als auch für das Zusammensetzen der invertierten Strukturen alle 
benötigten Informationen bereitzustellen, sind bereits in der Phase der Zerlegung 
bestimmte Gesichtspunkte zu beachten. 
 
Die Modellbeschreibung des zu entwickelnden Werkzeugs wurde bewusst so angelegt, 
dass einzelne Modellbausteine mit beliebigen Variablen und Events ausgestattet werden 
können. Diese individuellen Modellinformationen dürfen bei einer Zerlegung nicht 
verloren gehen. Die Zerlegung oder Vereinfachung von Simulationsmodellen darf nicht 
die eigentlichen Inhalte der Grundstrukturen reduzieren. Dies gilt insbesondere dann, 
wenn eine identifizierte Grundstruktur Quellen oder Senken beinhaltet. Zur Ausführung 
eines Simulationslaufs würde das Löschen einer Quelle oder Senke den Simulationsablauf 
in jedem Fall verändern, meist unmöglich machen. Das Ausgangsmodell soll daher 
durchgehend als Referenz bei der Zerlegung und auch der anschließenden Invertierung 
und Zusammensetzung verwendet werden. Im Rahmen der Zerlegung werden 
identifizierte Grundstrukturen durch Modellbausteine ersetzt, um in einem Folgeschritt 
diese zusammengefassten Modellbausteine eventuell als Teilelemente weiterer 
Grundstrukturen erneut zu vereinfachen (vgl. Abbildung 55). Das Konzept der 
hierarchischen Modellbausteine, die weitere Bausteininstanzen beinhalten können, 
unterstützt diese Vorgehensweise bereits implizit. Jede Zerlegung eines 
Simulationsmodells läuft daher stufenweise in einzelnen Schritten ab: Zunächst wird das 
auszuführende Simulationsmodell auf Grundstrukturen untersucht, die sofort identifiziert 
werden können. Sie werden durch übergeordnete Modellbausteine ersetzt, deren Inhalt 
zwar nicht verschwindet, aber für den weiteren Verlauf der Zerlegung nicht weiter 
betrachtet wird. Durch diese Vereinfachung können neue Grundstrukturen entstehen; das 
resultierende Simulationsmodell wird iterativ in weiteren Schritten durchsucht und alle 
identifizierten Grundstrukturen werden ersetzt. Die Iteration bricht ab, wenn keine 
weiteren Grundstrukturen im Restfluss identifiziert werden können oder das gesamte 
Simulationsmodell in einem Modellbaustein zusammengefasst ist. Die als 
Grundstrukturen identifizierten Modellbausteine müssen eindeutig bezeichnet und 
hinsichtlich der Grundstruktur typisiert werden. Alle variablen Parameter müssen zu der 
identifizierten Grundstruktur protokolliert werden. Außerdem muss die Reihenfolge der 
Zerlegung festgehalten werden, da sie für das Zusammensetzten der invertierten 
Modellbausteine in der dritten Phase der Transformation von Bedeutung ist. Um die 
Vorgehensweise bei der Zerlegung von Materialflüssen zu veranschaulichen, wird im 
Folgenden beispielhaft ein Materialfluss zerlegt.  
 
Beispiel der Zerlegung eines Materialflusses 
Abbildung 56 zeigt den Ausgangsfluss des zugrunde liegenden Simulationsmodells. Zur 
besseren Übersicht sind alle Modellbausteine gestrichelt dargestellt, die Quellen 
repräsentieren. Analog sind die im Simulationsmodell vorhandenen Senken kariert 
dargestellt. Jedes Auftreten einer Quelle oder Senke in einer zusammenzufassenden 
Grundstruktur führt zur Markierung des resultierenden Modellbausteins. So ist selbst dem 
vereinfachten Simulationsmodell die Grundrichtung des Materialflusses zu entnehmen 
(von der Quelle zur Senke). Diese Darstellung dient im vorliegenden Fall lediglich der 
Übersichtlichkeit, kann aber für die zu implementierende, automatische Transformation 
als Markierung übernommen werden. Das Zusammenfassen einer Grundstruktur, in der 
Quellen und Senken auftreten, ist nach den beschriebenen Regeln abhängig von der 
Grundstruktur zulässig. 
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Abbildung 56: Ausgangsfluss 

 

Abbildung 57: Erster Iterationsschritt 

In Abbildung 57 wird der erste Zerlegungsschritt durchgeführt, indem das 
Simulationsmodell auf Grundstrukturen untersucht wird. Im Beispiel werden drei 
unverzweigte Linien , drei parallele Linien und ein Stern identifiziert (in Abbildung 57 
grau unterlegt). Diese werden jeweils zu einem Modellbaustein zusammengefasst. Der 
daraus resultierende Materialfluss ist in Abbildung 58 dargestellt. 
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Abbildung 58: Resultat von Iterationsschritt 1 

 

Abbildung 59: Zweiter Iterationsschritt 

Im zweiten Schritt wird der Materialfluss erneut hinsichtlich neu entstandener 
Grundstrukturen analysiert (Abbildung 59). Es werden drei weitere Grundstrukturen 
„Unverzweigte Linie“ und eine „Parallele Linie“ identifiziert. Diese werden wieder zu 
Modellbausteinen zusammengefasst; das Resultat des zweiten Analyseschrittes zeigt 
Abbildung 60. 
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Abbildung 60: Resultat von Iterationsschritt 2 

 

Abbildung 61: Dritter Iterationsschritt 

Abbildung 61 stellt den dritten Schritt der Zerlegung dar. Es treten hier eine 
„Zusammenführung“ und zwei „Sterne“ auf. Bei diesem Schritt ist gut zu erkennen, wie 
sich aus dem Zusammenfassen von Grundstrukturen im vorherigen Schritt (den 
„Unverzweigten Linien“ und „Parallelen Linien“) neue Grundstrukturen („Stern“ und 
„Zusammenführung“) ergeben. Das Resultat von Schritt 3 zeigt Abbildung 62. Aufgrund 
der Vereinfachungen kann zur besseren Übersichtlichkeit der Fluss an dieser Stelle etwas 
zusammengezogen dargestellt werden. 

 

Abbildung 62: Resultat von Iterationsschritt 3 

 

Abbildung 63: Vierter Iterationsschritt 
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Den vierten Schritt zeigt Abbildung 63. An dieser Stelle werden lediglich zwei 
„Unverzweigte Linien“ identifiziert. Abbildung 64 zeigt bereits das Ergebnis des 4. 
Analyseschrittes. 

 

Abbildung 64: Resultat von Iterationsschritt 4 

 

Abbildung 65: Fünfter Iterationsschritt 

In den letzten zwei Schritten wird jeweils nur noch eine Grundstruktur identifiziert. 
Trotzdem sind zwei weitere Schritte notwendig, da sich diese Grundstrukturen 
auseinander ergeben. Im fünften Schritt wird ein „Stern“ identifiziert (vgl. Abbildung 65). 
Dieser wird zusammengefasst (vgl. Abbildung 66). 
 

 

Abbildung 66: Resultat von Iterationsschritt 5 

 

Abbildung 67: Sechster Iterationsschritt 

Der sechste und letzte Iterationsschritt der Zerlegung und Vereinfachung ist in Abbildung 
67 dargestellt. Erneut kann eine „Unverzweigte Linie“ festgestellt werden. Sie wird 
zusammengefasst, das Resultat zeigt Abbildung 68. 
 

 

Abbildung 68: Resultat von Iterationsschritt 6 

Dieses Resultat stellt auch den Restfluss des Simulationsmodells dar, der sich nicht 
weiter durch Grundstrukturen des Kataloges beschreiben lässt. Ab hier muss das 
restliche Simulationsmodell vom Anwender manuell invertiert werden. Ein Vergleich des 
Ausgangsmodells mit dem aus der Iteration resultierenden Restfluss zeigt aber das 
Potential des angewendeten Verfahrens. Die Arbeit des Anwenders zur Invertierung des 
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Simulationsmodells kann signifikant reduziert werden, da alle identifizierten 
Grundstrukturen automatisch invertiert werden können. Eine detaillierte Beschreibung 
der automatischen Invertierung von Grundstrukturen als zweiter Schritt des Verfahrens 
ist Gegenstand des folgenden Abschnitts. 
 
Invertierung der einzelnen Grundstrukturen 
Zur Invertierung der im Katalog festgelegten Grundstrukturen sollen zunächst einige 
Vorbetrachtungen durchgeführt werden. Zuerst wird mittels Bewertungsmatrizen eines 
Simulationsmodells ein Konzept eingeführt, das Informationen über die einzelnen 
Flusstypen des vorwärts gerichteten Simulationsmodells bereitstellt. Voraussetzung für 
dieses Verfahren ist allerdings mindestens ein vorhandener Simulationslauf des 
Basismodells. In einem weiteren Schritt werden verschiedene Fälle von Verzweigungen 
und Zusammenführungen betrachtet, die an Modellbausteinen auftreten können. Für 
jeden dieser Fälle wird dann eine Methode zur Invertierung in die Rückwärtssimulation 
entwickelt. Abschließend werden diese Methoden auf die einzelnen Grundstrukturen 
angewendet. Dadurch wird gezeigt, dass alle Grundstrukturen mit den dargestellten 
Verfahren hinsichtlich ihrer Simulationsrichtung umgekehrt werden können. 
 
Analyse von Teilflüssen mittels Bewertungsmatrizen 
Um eine Rückwärtssimulation durchführen zu können, ist es in vielen Fällen nützlich, 
Informationen über die jeweiligen Teilflüsse des Simulationsmodells zu haben, wie sie 
sich aus der Vorwärtssimulation ergeben. Aus diesem Grund soll an dieser Stelle als 
Hilfsmittel für die spätere Umkehrung von Strukturen ein Konzept eingeführt werden, das 
diese Informationen durch Materialflussmatrizen bereitstellt. Dieses Konzept setzt 
voraus, dass vor der ersten Rückwärtssimulation das Modell mindestens einmal vorwärts 
simuliert wurde. 
 
Die Basis dieses Konzepts bilden Bewertungsmatrizen27. Sie beschreiben Graphen, indem 
alle Flüsse zwischen den Knoten des betreffenden Graphen als Einträge einer Matrix 
auftauchen, und zwar sowohl in ihrer Qualität als auch in ihrer Quantität. Für einen aus n 
Knoten bestehenden Graphen ist die Bewertungsmatrix C eine n*n Matrix. Alle Knoten 
des Graphen werden durchnummeriert. Das Matrixelement cij beschreibt dann den Fluss 
vom Knoten i zum Knoten j. Da analog auch ein Matrixelement cji existiert, ist auch die 
Flussrichtung berücksichtigt. Alle Elemente cij mit i = j, also die Elemente der 
Hauptdiagonalen, sind null, da keine Schlingen existieren. Existiert keine Kante zwischen 
i und j, so ist cij formal unendlich, in diesem Fall jedoch wird diese Stelle einfach nicht 
gesetzt und damit praktisch cij = 0 gesetzt. Dies soll anhand eines Beispiels erläutert 
werden (vgl. Abbildung 69). 
 

                                          
27  Eine genaue Beschreibung von Bewertungsmatrizen findet sich bei [Arno95]. 
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Abbildung 69: Ausgangsfluss des Beispiels 

Im Gegensatz zu allen bisher betrachteten Darstellungen der Materialflüsse sind hier die 
Modellbausteine durchnummeriert. Eine dazu passende Bewertungsmatrix C1 zeigt 
Tabelle 17. Die Darstellung der Matrix in Tabellenform soll die Lesbarkeit verbessern. 
 
In diesem Fall sind die einzelnen Elemente der Matrix lediglich Zahlenwerte, die Mengen 
pro Zeiteinheit repräsentieren. Denkbar sind auch sehr viel umfangreichere 
Matrixelemente. Treten in einem Simulationsmodell Token unterschiedlichen Typs auf, so 
können die Datenstrukturen der einzelnen Token mit einer absoluten oder relativen 
Mengenangabe Matrixelemente sein. Das formale Konzept der Bewertungsmatrizen wird 
damit um komplexere Datenstrukturen mit eigenen Eigenschaften oder Parametern 
erweitert. Relative Mengenangaben können auf den Gesamtinput oder den Gesamtoutput 
eines Blocks bezogen werden. So können Verzweigungen mit Prozentwerten versehen 
werden. 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 0 100              

2  0 30 70            

3   0  30           

4    0 70           

5     0 100          

6      0 50 100        

7      50 0         

8        0 100       

9         0 50 50     

10          0   50   

11           0 25  25  

12            0 25   

13             0   

14              0 25 

15             25  0 

Tabelle 17: Bewertungsmatrix C1 

Die Art der Matrixelemente richtet sich nach den Vorgaben des Simulationsmodells. Für 
das vorliegende Beispiel sind jedoch absolute Mengenangaben ausreichend. Die 
Zeilenwerte der Matrix repräsentieren den Output einer Bausteininstanz, die 
Spaltenwerte den Input. Da bei einer Rückwärtssimulation der Input einer 
Bausteininstanz zum Output und analog der Output zum Input wird, kann diese 
Bewertungsmatrix C1 durch Transponieren einfach zu einer Rückwärtsbewertungsmatrix 
C1´ umgewandelt werden. Da sich während der Zerlegung eines Materialflusses stetig 
neue Grundstrukturen ergeben, erscheint es sinnvoll, auch für die jeweiligen 
Zerlegungsschritte eigene Bewertungsmatrizen zu generieren, um dort die für die 
Invertierung der Grundstrukturen benötigten Informationen zugreifen zu können. 
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Während der Zerlegung von Simulationsmodellen ist aber keine Vorwärtssimulation aller 
einzelnen Iterationsschritte der Zerlegung vorgesehen, so dass die Matrix C1 mit zerlegt 
werden muss. 
 
Den ersten Zerlegungsschritt für obiges Beispiel zeigt Abbildung 70. Die resultierenden 
Modellbausteine erhalten als neuen, eindeutigen Bezeichner hier die niedrigste Nummer 
der in ihnen enthaltenden Modellbausteine. Grundsätzlich sind diese Bezeichner frei 
wählbar. Analog zum Iterationsschritt muss auch die Bewertungsmatrix während dieser 
Zerlegung angepasst werden. Die Modellbausteine 1 und 2 werden demzufolge zu einem 
neuen Modellbaustein 1 zusammengefasst. In der resultierenden Struktur sind lediglich 
der Input von Modellbaustein 1 und der Output von Modellbaustein 2 von Interesse. Da 
in der Bewertungsmatrix der Input durch die Spalten und der Output durch die Zeilen 
repräsentiert werden, können in C1 die Zeile 1 und Spalte 2 gelöscht werden. Die übrigen 
Spalte 1 sowie Zeile 2 repräsentieren In- und Output des neuen Modellbausteins und 
müssen daher dessen Bezeichner erhalten (hier: 1). Im Falle der identifizierten 
Sternstruktur der Modellbausteine 6 und 7 sind In- und Output an einem Modellbaustein 
(hier: 6); es können daher in Tabelle 17 Zeile 7 und Spalte 7 gelöscht werden. Die 
resultierende Matrix C2 bildet die Bewertungsmatrix für den aus Iterationsschritt 1 
resultierenden Fluss (vgl. Tabelle 18). 
 
 
 
 

 1 3 4 5 6 8 9 10 11 12 13 14 15 

1 0 30 70           

3  0  30          

4   0 70          

5    0 100         

6     0 100        

8      0 100       

9       0 50 50     

10        0   50   

11         0 25  25  

12          0 25   

13           0   

14            0 25 

15           25  0 

Tabelle 18: Bewertungsmatrix C2 
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Abbildung 70: Erster Iterationsschritt 

Analog zum obigen Beispiel erfolgt anschließend Iterationsschritt 2 (Abbildung 71). Die 
Blöcke 1,3,4 und 5 werden mit der Grundstruktur „Parallele Linie“ zusammengefasst. Für 
die Matrix C2 bedeutet das, dass die Zeilen 3 und 4 sowie die Spalten 3 und 4 ebenso 
gelöscht werden können wie Zeile 1 und Spalte 5. Zeile 5 wird anschließend in Zeile 1 
umbenannt und, entsprechend der Ordnung, nach vorne gezogen. Die Modellbausteine 6 
und 8 werden ebenfalls zusammengefasst (Zeile 6 und Spalte 8 löschen, Zeile 8 in Zeile 
6 umbenennen). Die resultierende Matrix C3 zeigt Tabelle 19. 
 

6 8

3

4

51 9

11

14

10

12

15

13

61 9

11

14

10

12

15

13

 

Abbildung 71: Zweiter Iterationsschritt 
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 1 6 9 10 11 12 13 14 15 

1 0 100        

6  0 100       

9   0 50 50     

10    0   50   

11     0 25  25  

12      0 25   

13       0   

14        0 25 

15       25  0 

Tabelle 19: Bewertungsmatrix C3 

Den letzten Zerlegungsschritt zeigt Abbildung 72. Analog der bereits beschriebenen 
Vorgehensweise werden in C3 Zeile 1 und Spalte 6 gelöscht, Zeile 6 in Zeile 1 umbenannt 
und ggf. neu sortiert. Das Resultat zeigt Tabelle 20. 
 

 

Abbildung 72: Dritter Iterationsschritt 

 1 9 10 11 12 13 14 15 

1 0 100       

9  0 50 50     

10   0   50   

11    0 25  25  

12     0 25   

13      0   

14       0 25 

15      25  0 

Tabelle 20: Bewertungsmatrix C4 

Es existiert nun für den resultierenden Restfluss eine Bewertungsmatrix, die ursprünglich 
mit Hilfe der Vorwärtssimulation erstellt wurde. Sie kann dem Anwender, der den 
Restfluss umkehren muss, wertvolle Informationen über Quantität und Qualität der 
abgebildeten Materialflüsse bereitstellen. Wichtiger ist allerdings, dass zu jedem aus 
einem Iterationsschritt resultierenden Restfluss eine Bewertungsmatrix existiert, aus der 
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die für den nächsten Zerlegungsschritt benötigten Informationen entnommen werden 
können. Wie später bei der Umkehrung einzelner Grundstrukturen gezeigt werden wird, 
können aus den Bewertungsmatrizen verschiedene Informationen extrahiert werden, die 
die jeweilige Umkehrung erheblich vereinfachen können. 
 
Events und deren verhaltensspezifische Umkehrung 
Nachfolgend werden die unterschiedlichen Fälle von Verteilungsstrukturen untersucht, die 
in Modellbausteinen typischerweise auftreten. Dafür werden jeweils Verfahren 
vorgeschlagen, wie diese Fälle in einer Rückwärtssimulation behandelt werden sollen. Sie 
werden auf die Grundstrukturen übertragen, um diese eindeutig umkehren zu können. 
Aus den jeweiligen Fällen werden Empfehlungen für die Modellbildung abgeleitet, sofern 
sie die Umkehrung im Sinne der Rückwärtssimulation vereinfachen und die Freiheitsgrade 
des Anwenders nicht einschränken. Grundsätzlich können drei unterschiedliche 
Funktionen innerhalb eines Modellbausteins unterschieden werden: Das Verstreichen von 
Zeit, die Veränderung (in der Anwendung Fertigung: Bearbeitung) des Token und die 
logische Verteilung innerhalb des Materialflusses auf verschiedene Channel. Ferner 
existieren Quellen und Senken, wobei Kombinationen dieser Fälle existieren. Allein das 
Verstreichen von Zeit ist den meisten Vorgängen zueigen. Innerhalb dieser drei Typen 
von Verhaltensweisen sind wiederum verschiedene Aspekte zu unterscheiden.  
 
Der erste Verhaltenstyp beschreibt das reine Verstreichen von Zeit, zum Beispiel bei 
Transport- oder Förderstrecken. Dabei werden weder die Token manipuliert noch der 
Materialfluss verzweigt. Die Bearbeitungszeit ist für jede Ausführung einer Simulation 
essentiell. Bearbeitungs- oder Transportzeiten können ihrerseits zeitabhängig sein, 
beispielsweise durch die Realisierung zeitabhängiger Kapazitäten im Modellbaustein des 
Simulationsmodells. Hier ist die Bearbeitungs- oder Transportzeit eine zeitabhängige 
Funktion, die eventuell auf weitere Modellbausteine oder Ereignisse (zum Beispiel 
Kalender oder Zeittafeln) zugreifen muss. Es ist anzunehmen, dass bei den meisten 
Ereignissen innerhalb eines Modellbausteins Bearbeitungszeiten auftreten. Deshalb sind 
diese Zeiten im Idealfall innerhalb eines standardisierten Events zu realisieren, auf das 
jederzeit unabhängig von anderen Events im Modellbaustein zugegriffen werden kann. 
Dieses im Folgenden als Delay-Event bezeichnete Ereignis beinhaltet im einfachsten Fall 
nur eine Konstante, kann aber auch jede der angesprochenen Funktionen zur 
Verzögerung eines Token während eines Simulationslaufs enthalten. 
 
Eine Veränderung der Token als zweiter Verhaltenstypus tritt immer dann auf, wenn 
Token innerhalb eines Modellbausteins in einer beliebigen Form manipuliert werden. Es 
ändern sich lediglich Eigenschaften oder Parameter des Token. Ein Event, das diese 
Veränderung eines Token herbeiführt, ist nicht zwangsläufig umkehrbar. Um bei einer 
Rückwärtssimulation diese Veränderung automatisch rückgängig zu machen, ließe sich 
die Bewertungsmatrix verwenden. In dieser ist sowohl die Datenstruktur der 
eingehenden als auch die der ausgehenden Token abgelegt. Ein einfacher Vergleich 
beider liefert die benötigte Information. Im Gegensatz dazu werden zum Beispiel bei 
Montagevorgängen mehrere unterschiedliche Token zu neuen Token umgewandelt. 
zunächst irrelevant bleibt, ob die in den Modellbaustein eingehenden Token über einen 
oder mehrere Input-Channel eintreffen. Analog können auch zwei unterschiedliche, im 
Modellbaustein neu zu erzeugende Token aus den eintreffenden Token resultieren. 
Verdeutlichen soll das Abbildung 73. Im linken Fall werden aus drei Token des Typs A 
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und einem Token des Typs B ein Token C. Im rechten Fall wird aus vier Token A und 
einem Token B ein Token D (zum Beispiel Tische mit drei oder vier Beinen). Hier kann 
über die Betrachtung der Ein- und Ausgangsflüsse in der Bewertungsmatrix keine 
Aussage über die Art des Montagevorgangs getroffen werden. Es wird somit in manchen 
Fällen nicht möglich sein, das jeweilige Event automatisch umzukehren. Im Sinne der 
angestrebten Rückwärtssimulation sollen Montagevorgänge oder andere Veränderungen 
von Token separat durch ein Transform-Event realisiert werden. Dieses würde im Fall von 
Montagevorgängen auch Definitionen der Form C=AAAB oder D=AAAAB enthalten und 
würde damit eine Umkehrung potentiell ermöglichen. 
 

 

Abbildung 73: Montagevorgänge 

Die logische Verteilung von Materialflüssen als dritter Typus an Verhaltensweisen 
beschreibt alle Vorgänge, die strukturell auf den modellierten Materialflusses wirken: 
Geraden, Verzweigungen und Zusammenführungen. Die Gerade bildet den trivialen Fall, 
dass die Struktur des Materialflusses nicht beeinflusst wird.  
Für alle Verzweigungen und Zusammenführungen gelten für die Umkehrung im Grunde 
die gleichen logischen Überlegungen. Nach äquivalenten Regeln, wie sich Flüsse 
verzweigen, können sie auch wieder zusammengeführt werden. Da sich die 
Problemstellung der Umkehrung des Materialflusses bei Verzweigungen und 
Zusammenführungen aber unterscheidet, werden sie nachfolgend getrennt betrachtet.  
 
Bei den Verzweigungen kann zwischen drei Unter-Varianten differenziert werden: 

 Bei der Typverzweigung teilt sich der Materialfluss in Abhängigkeit der 
ankommenden Token. Dies verdeutlicht Abbildung 74. Unabhängig von der Menge 
der am Modellbaustein ankommenden Token werden alle Token A auf den oberen 
Output-Channel und alle Token B auf den unteren Output-Channel verteilt. 
Umgekehrt wird aus der Verzweigung eine einfache Zusammenführung. Die 
Reihenfolge, mit der die Token A und B dann in den Output-Channel des rückwärts 
gerichteten Modellbausteins gelangen, kann teilweise der Bewertungsmatrix der 
Vorwärtssimulation entnommen werden oder werden mit der gleichen Priorität 
abgearbeitet. 

 Die Mengenverzweigung beschreibt einen Verzweigungstyp, bei dem der 
Materialfluss aus identischen Token mengenmäßig verteilt wird. Dies geschieht in 
irgendeinem Verhältnis (zum Beispiel 50/50 bei zwei Output-Channeln). Wird diese 
Verzweigung umgekehrt, können alle ankommenden Token mit der gleichen 
Priorität abgefertigt werden. 

 Eine last- bzw. kapazitätsabhängige Verzweigung beschreibt eine Verzweigung, die 
abhängig von nachgelagerten Kapazitäten des logischen Nachfolgers den 
Materialfluss verteilt. Hier findet lediglich eine Verfügbarkeitsabfrage an den 
einzelnen Output-Channeln bei den nachgelagerten Input-Channeln statt, ob eine 
Weiterleitung an den Nachfolger im Materialfluss möglich ist. Im positiven Fall wird 
das Token gesendet. Im negativen Fall wird der nächste Output-Channel probiert. 
Das Vorgehen wiederholt sich analog bei den weiteren Output-Channeln des 
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Modellbausteins. Sind alle Output-Channel gesperrt, so wird über den ersten frei 
werdenden Output-Channel gesendet. Diese Verzweigung kann durch 
Abfertigungsprioritäten umgekehrt werden. Der Output-Channel, der bei der 
Vorwärtssimulation als erster abgefragt wird, erhält im Rahmen der der 
Rückwärtssimulation die höchste Priorität. Die anderen Kanäle erhalten 
entsprechend niedrigere, abgestufte Prioritäten. 

 

 

Abbildung 74: Typverzweigung 

Betrachtet man die Gruppe der Zusammenführungen, gelten zunächst analoge 
Überlegungen wie für Verzweigungen, da in vielen Fällen einer Zusammenführung eine 
Verzweigung vorangeht. Darüber hinaus existieren Zusammenführungen, denen zwei 
unterschiedliche Quellen vorangehen. Aus Sicht einer Zusammenführung lassen sich 
lediglich typabhängige und mengenmäßige Flussarten unterscheiden: 
 

• Analog zu den Verzweigungen ist eine typabhängige Zusammenführung eine 
solche, bei der aus den unterschiedlichen Input-Channeln unterschiedliche Token 
eingehen. Wird eine Typzusammenführung umgekehrt, so entsteht eine 
Typverzweigung. Diese benötigt Informationen über die ausgehenden Teilflüsse, 
die der Bewertungsmatrix zu entnehmen sind. 

• Bei einer Mengenzusammenführung gehen in die verschiedenen Input-Channel 
Token des gleichen Typs in bestimmten Mengen ein. Hier muss in einem zweiten 
Analyseschritt festgestellt werden, ob der Zusammenführung eine Verzweigung 
oder zwei Quellen vorangehen. Handelt es sich um eine Verzweigung, kann aus 
Sicht der Zusammenführung nicht unterschieden werden, ob es sich bei dieser 
Verzweigung um eine Typ-, Mengen- oder um eine last- bzw. kapazitätsabhängige 
Verzweigung handelt. Dies kann bei der Invertierung des Modellbausteins durch 
Zugriff auf das Event in der Verzweigung geklärt werden (Werden hier 
Grundstrukturen der höheren Ordnung identifiziert, liegt diese Verzweigung direkt 
im Zugriff). Geht beispielsweise eine last- bzw. kapazitätsabhängige Verzweigung 
voran, so ist das für die Verteilung des Flusses verantwortliche Event aus der 
Verzweigung für die Umkehrung der Zusammenführung zu verwenden. Dieser Fall 
scheidet aus, wenn der Zusammenführung zwei Quellen vorausgehen. Hier kann 
die Zusammenführung nur durch Übernahme der Flussmächtigkeiten aus der 
Bewertungsmatrix umgekehrt werden. 

 
Um die Umkehrung von Verzweigungen oder Zusammenführungen zu erleichtern, sollen 
sie analog zu obigem Vorgehen separat durch Control-Events realisiert werden, weil 
damit die für die logische Verteilung des Flusses verantwortlichen Events von anderen 
Aktionen innerhalb des Modellbausteins abgegrenzt werden können. Für einen 
standardisierten Modellbaustein ergibt sich damit eine feste innere Grundstruktur, wie sie 
in Abbildung 75 dargestellt wird. In logischer Reihenfolge des Ablaufs enthält er Input-
Event (I), Delay-Event (D), Transform-Event (T), Control-Event (C) sowie Output-Event 
(O). Alle Event-Typen können mehrfach auftreten, insbesondere Input- und Output-
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Events abhängig nach Anzahl der jeweiligen Input- und Output-Channel des 
Modellbausteins. 
 

 

Abbildung 75: Aufbau eines typischen Modellbausteins 

Durch die Einführung der neuen Event-Typen soll die automatische Invertierung 
gefördert werden. Darüber hinaus muss die inhaltliche Strukturierung als 
Modellierungsempfehlung an die Anwender kommuniziert werden, die hinsichtlich der 
Verhaltensmodellierung in erster Linie alle Freiheiten besitzen. Auch durch das 
Eigeninteresse des Anwenders gefördert, sollte er sich aber an diese 
Modellierungsempfehlung gebunden fühlen, um bei der Invertierung des 
Simulationsmodells wertvolle Modellierungszeit einzusparen. Tabelle 21 fasst die 
benötigten Erweiterungen der Modellbeschreibung zur Implementierung einer 
automatischen Invertierung von Modellbausteinen zusammen. 
 

Bezeichnung Beschreibung 

Delay_event Ereignis zur Berechnung der zeitlichen Verzögerung 
der Token, ggf. in Abstimmung mit einem gültigen 
externen Kalender 

Transform_event Ereignis zur Manipulation des Token, bzw. zur 
Komposition/Dekomposition von Token 

Control_event Ereignis zur Steuerung des eigentlichen 
Materialflusses zwischen den verschiedenen Input- 
und Output-Channeln 

Tabelle 21: Erweiterung der Modellbeschreibung durch Invertierung 

Zur Vollständigkeit soll an dieser Stelle auch auf die Umkehrung von Quellen und Senken 
eingegangen werden. Bei einer Rückwärtssimulation werden Quellen zu Senken und 
umgekehrt. Zu den in den Quellen erzeugten Token müssen im Rahmen der Invertierung 
aber weitere Überlegungen angestellt werden. Quellen versorgen ein Simulationsmodell 
mit einem Teil der Eingangsdaten (in Form von Art, Zeit und Quantität des erzeugten 
Flusses) und Senken können einen Teil der ausgegebenen Daten bereitstellen (in Form 
von Art, Zeit und Quantität des eingehenden Flusses). Diese Tatsache gilt analog für 
Vorwärts- wie Rückwärtssimulation. Dieser Fluss wird nach Maßgabe des Entwicklers 
erzeugt, muss aufgrund der unterschiedlichen Untersuchungszwecke von Vorwärts- und 
Rückwärtssimulation von der ursprünglichen Quelle aber soweit abweichen, dass diese 
durch eine neue Quelle und entsprechend durch eine neue Senke modelliert wird, weil sie 
neben den Eingabedaten auch die Auswertung vor dem Hintergrund eines 
unterschiedlichen Untersuchungszweckes ändert. 
 
Anwendung des Verfahrens zur Invertierung der Grundstrukturen 
Nachdem im vorangegangenen Abschnitt Überlegungen zur Typisierung möglicher Events 
und deren Umkehrung angestellt worden sind, werden die gefundenen 
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Lösungsalternativen im Folgenden auf die jeweiligen Grundstrukturen adaptiert. 
Bestimmte Fälle werden durch die Beschaffenheit einzelner Grundstrukturen 
ausgeschlossen. Die Grundstrukturen werden im Sinne der oben aufgezeigten Punkte 
untersucht, um geeignete Regeln für die Invertierung abzuleiten. Für alle 
Grundstrukturen gilt, dass Verzweigungen oder Zusammenführungen an den Input- oder 
Output-Channeln nicht betrachtet werden müssen, da diese nicht mehr eigentlicher 
Bestandteil der Grundstrukturen sind. Sie können somit in nachfolgenden 
Iterationsschritten der Zerlegung Teil anderer Grundstruktur werden.  
 
Grundsätzlich werden bei der Invertierung einer Grundstruktur alle Input-Channel zu 
Output-Channeln und umgekehrt. Alle direkt dazu hinterlegten Events müssen angepasst 
werden. Das oder die neuen Input Events müssen dafür sorgen, dass der jeweilige Input-
Channel verschlossen wird, wenn ein Token den Modellbaustein erreicht. Außerdem muss 
der Aufruf eines folgenden Events sichergestellt werden. Jedes Output-Event muss das 
Senden der Token an den nachfolgenden Input-Channel sicherstellen und ggf. den Aufruf 
des ReOpen-Events gewährleisten. Um die Invertierung zu ermöglichen, werden alle 
Input- und Output-Events standardisiert. Diese Ergänzung der Modellierungsempfehlung 
ist insofern konsequent, weil das logische Verhalten des Modellbausteins in den 
nachfolgenden Events innerhalb eines Bausteins (Control, Delay, Transform, etc.) 
gekapselt wird. Darüber hinaus werden Quellen durch Senken ersetzt und umgekehrt. Als 
nächster Schritt werden an jeder Bausteininstanz der Grundstruktur eingehende und 
ausgehende Token mit Hilfe der Bewertungsmatrix verglichen. Finden in einem Block zum 
Beispiel Montagevorgänge statt, so werden die jeweiligen Montageparameter aus dem 
entsprechenden Transform-Event abgefragt. Veränderungen von Token müssen in der 
invertierten Grundstruktur implementiert werden. Delay-Events können bei der 
Rückwärtssimulation zur Laufzeit abgefragt werden und müssen bei der Invertierung 
nicht verändert werden. 
 
Da bei einer unverzweigten Linie keine Verzweigungen oder Zusammenführungen 
innerhalb der Struktur auftreten, reicht es, die oben beschriebene Vorgehensweise 
anzuwenden. Für Verzweigungen deckt sich die Vorgehensweise bei der Invertierung mit 
den allgemeinen Überlegungen. Typ- und Mengenverzweigungen können mit Hilfe von 
Bewertungsmatrizen invertiert werden, bei der Invertierung einer last- bzw. 
kapazitätsabhängigen Verzweigung müssen Abfertigungsprioritäten bei der 
Zusammenführung eingeführt werden. Das gilt analog für die Überlegung hinsichtlich der 
Zusammenführung: auch hier können die Vorüberlegungen übernommen werden. Das 
bedeutet, dass zwischen Mengen- und Typzusammenführungen unterschieden werden 
muss. Der Fall einer last- bzw. kapazitätsabhängigen Zusammenführung ist nicht 
relevant, da bei der Grundstruktur „Zusammenführung“ vorher keine Verzweigung des 
Materialflusses stattfindet (sonst würde es sich um eine Grundstruktur höherer Ordnung 
handeln). Zur Invertierung können die benötigten Flussarten und –mächtigkeiten der 
Bewertungsmatrix entnommen werden. Die Grundstruktur Kreuzung stellt die 
Kombination der Strukturen Verzweigung und Zusammenführung dar. Daher gelten bei 
der Invertierung auch die jeweiligen Regeln. Typverzweigungen und -
zusammenführungen werden beim bekannten Vorgehen identifiziert. Dieser Fall kann mit 
Bewertungsmatrizen umgekehrt werden. Ebenfalls mit Hilfe von Bewertungsmatrizen 
können Mengenverzweigungen oder –Zusammenführungen invertiert werden. Aus bereits 
bekannten Gründen tritt der last- bzw. kapazitätsabhängige Fall bei der 
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Zusammenführung nicht auf, da ihm keine Verzweigung vorangeht. Dies gilt jedoch nicht 
für die Verzweigung. Es kann also ein Mischfall auftreten, bei dem eine 
Mengenzusammenführung mit einer last- bzw. kapazitätsabhängigen Verzweigung 
kombiniert ist. Bei der Invertierung müsste dann eine Abfertigungspriorität für die 
Zusammenführung eingeführt werden. Die Grundstruktur parallele Linie (vgl. Abbildung 
76) verfügt sowohl über eine Verzweigung als auch über eine Zusammenführung. Bei 
einer Rückwärtssimulation muss nun an Modellbaustein 3 über die Aufteilung des 
Materialflusses entschieden werden. Legt man die Vorüberlegungen zu Grunde, so muss 
bei dieser Struktur nach den drei Arten der Verzweigung unterschieden werden. Vorher  
kann festgestellt werden, ob es sich an Modellbaustein 1 um eine Typ- Mengen- oder 
last- bzw. kapazitätsabhängige Verzweigung handelt. Im Fall der Typverzeigung, kann 
bei Modellbaustein 3 der Materialfluss analog verteilt werden. Im Falle einer 
Mengenverzweigung oder einer last- bzw. kapazitätsabhängigen Verzweigung bietet es 
sich ebenfalls an, das entsprechende Control-Event aus Modellbaustein 1 in 
Modellbaustein 3 zu übertragen. 
 

 

Abbildung 76: Grundstruktur Parallele Linie 

Die Grundstruktur Rückkopplung (Abbildung 77) verbindet Verzweigung und 
Zusammenführung. Im Gegensatz zur parallelen Linie sind diese aber vertauscht: Die 
Verzweigung befindet sich an Modellbaustein 3, die Zusammenführung an Modellbaustein 
1. Die Invertierung dieser Struktur funktioniert analog zur parallelen Linie. Handelt es 
sich bei der Verzweigung an Modellbaustein 3 um eine Typverzweigung, so kann 
entsprechend der Bewertungsmatrix während der Rückwärtssimulation der Materialfluss 
an Modellbaustein 1 verzweigt werden. Liegt an Modellbaustein 3 eine Mengen- oder last- 
bzw. kapazitätsabhängige Verzweigung vor, so muss bei der invertierten Struktur das 
entsprechende Control-Event aus Modellbaustein 3 in Modellbaustein 1 übertragen 
werden. 
 

 

Abbildung 77: Grundstruktur Rückkopplung 

Bei der Grundstruktur Stern (vgl. Abbildung 78) handelt es sich um eine Struktur, die 
Verzweigungen und Zusammenführungen miteinander verbindet. Im Gegensatz zur 
parallelen Linie sind alle Events, die Verzweigungen oder Zusammenführungen regeln in 
Modellbaustein 1 enthalten. Im Fall eines einfachen Sterns (in Abbildung 78 Teil a) 
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können lediglich Typ- oder Mengenverzweigungen auftreten. Diese sind mit Hilfe von 
Bewertungmatrizen umkehrbar. Komplizierter ist die Invertierung eines Sterns, wie ihn 
der rechte Teil der Abbildung zeigt (Teil b). Hier können zwei zusätzliche Fälle auftreten: 
Erstens last- bzw. kapazitätsabhängige Verzweigungen und zweitens eine 
Bearbeitungsreihenfolge. Im Fall von last- bzw. kapazitätsabhängigen Verzweigungen 
muss das Control-Event angepasst werden. Tritt eine feste Bearbeitungsreihenfolge auf, 
so muss diese umgekehrt werden. Dies könnte beispielsweise durch Analyse der 
Teilflüsse geschehen. Unterscheiden sich die Token nicht voneinander wird empfohlen, 
festgelegte Reihenfolgen entweder im Vorwärtssimulationsmodell bekannt zu machen, 
durch ein Transform-Event zu modellieren oder im Rahmen einer ersten 
Vorwärtssimulation aufzuzeichnen. 
 

 

Abbildung 78: Grundstruktur Stern 

Dieser Abschnitt hat ein Konzept entworfen, gemäß dem die zuvor identifizierten 
Grundstrukturen unter schwachen Restriktionen umgekehrt werden können. Durch 
dessen Anwendung ergibt sich eine Modellierungsempfehlung, an die sich der Anwender 
halten muss, um die automatische Transformation zu erreichen. Der folgende Abschnitt 
soll darauf basierend das Transformationsmodul skizzieren, das die angesprochene 
Zerlegung und Invertierung eines Simulationsmodells tatsächlich automatisch ausführt. 
 
Automatische Transformation von Simulationsmodellen 
Obiger Abschnitt hat eine Methode aufgezeigt, wie komplexe Materialflusssysteme in 
Grundstrukturen zerlegt und hinsichtlich einer Rückwärtssimulation invertiert werden 
können. Der folgende Abschnitt will eine automatische Modelltransformation als 
Untermodul der Modellierungskomponente entwerfen, mit deren Hilfe Grundstrukturen 
aus dem Simulationsmodellen extrahiert und invertiert werden können, um den 
Transformationsprozess eines Simulationsmodells von vorwärts in rückwärts gerichtetes 
Simulationsmodell weitestgehend automatisch zu gestalten. Basis der Invertierung ist 
stets ein vorliegendes Simulationsmodell, im Idealfall in Verbindung mit einem 
durchgeführten Simulationslauf und einer zugehörigen Bewertungsmatrix. Die 
Invertierung erfolgt durch ein spezielles Modul in der Modellierungskomponente, weil dort 
das geladene Simulationsmodell bereits vollständig vorliegt und zum Anderen aus der 
Zerlegung und Vereinfachung entstehende Restflüsse direkt durch den Anwender 
manipuliert werden können. Das resultierende Rückwärtssimulationsmodell kann aus der 
Modellierungskomponente heraus in der Simulationsdatenbank oder auf dem 
Dateisystem gesichert werden. 
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Der Transformationsprozess im Server des Modellierungstool soll wie folgt gestaltet 
werden: das geladene Simulationsmodell wird im Server in das Untermodul zur 
Transformation geladen und zunächst auf einen gerichteten Graph reduziert, wobei die 
eigentlichen Knoten des Graphen, die die Modellbausteine repräsentieren, um 
Informationen angereichert werden, die auf die Modellbausteine selbst verweisen. 
Zusätzlich werden, wenn vorhanden, die Ergebnisse eines Simulationslaufs mit diesem 
Modell und eine zugehörige Bewertungsmatrix in das Modul geladen. Alle weiteren 
Berechnungen zur Identifikation der Grundstrukturen finden zunächst auf dem 
gerichteten Graphen statt, werden an den entsprechenden Stellen durch Informationen 
aus der Bewertungsmatrix ergänzt. Nach dem Start des Transformationsprozesses 
werden als erster Schritt die Quellen und Senken des Materialflusses identifiziert und für 
die weitere Bearbeitung markiert. In einem iterativen Prozess wird der Graph in den 
Folgeschritten immer wieder auf der Suche nach Grundstrukturen durchlaufen. Zunächst 
sollen die Grundstrukturen einfacher Ordnung (einfache Linie, Verzweigung, etc.) gesucht 
werden. Erst im Folgeschritt werden Grundstrukturen höherer Ordnung erfasst. 
Ausnahme ist hier die Grundstruktur  „Rückkopplung“, die als erstes erkannt werden 
muss. Andernfalls würden die Bausteine 1 und 2 zu einer einfachen Linie 
zusammengefasst werden (vgl. Abbildung 51). Nach jeder Identifikation einer 
Grundstruktur wird diese zusammengefasst und der resultierende Graph (vgl. bspw. 
Abbildung 57) erneut hinsichtlich aller möglichen Grundstrukturen durchlaufen, bis 
entweder der gesamte Graph invertiert wurde (Das Simulationsmodell wird in einem 
einzigen Modellbaustein zusammengefasst) oder ein Restfluss übrig bleibt. Dieser wird an 
den oder die Clients übertragen und muss manuell invertiert werden. Hier bieten sich 
dem Anwender zwei Möglichkeiten: entweder er invertiert die verbliebenen Restflüsse 
manuell oder ergänzt den Restfluss des Simulationsmodells so durch Dummy-Bausteine, 
dass wiederum Grundstrukturen durch den Algorithmus erkannt werden können. 
Abbildung 79 zeigt eine kurze Übersicht über den Algorithmus Merge, wie er im Rahmen 
der Erkennung und Zusammenfassung von Grundstrukturen verwendet werden soll. 
 

public Map<String, Integer> merge() 
{ 

Class[] mergers =  
{ 
MergeRegeneration.class, 
MergeLine.class, 
MergeBranch.class, 
MergeJoin.class, 
MergeParallel.class, 
MergeStar.class, 
MergeCover.class }; 
 
MergeAll mergeAll = new MergeAll(mergers, this); 
Map<String, Integer> counter = mergeAll.merge(model); 

} 

Abbildung 79: Übersicht des Merge-Algorithmus 

Nachdem so das gesamte Simulationsmodell in einem Modellbaustein vereinfacht wurde, 
findet die Invertierung der identifizierten Grundstrukturen nach dem beschriebenen 
Verfahren statt, wobei zur Fallunterscheidung ggf. die vorliegende Bewertungsmatrix für 
die entsprechende Grundstruktur erzeugt wird, auf deren Basis die Verzweigungen und 
Zusammenführungen unterschieden werden können. Darüber hinaus können über die 
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Verweise in den Knoten des Graphen auch auf die Modellbausteine referenziert werden, 
wenn der Zugriff auf die strukturierten Events zur Invertierung einer Grundstruktur 
benötigt wird. Neben der Transformation einzelner Events in andere Modellbausteine 
einer Grundstruktur muss eventuell die Adaption der implementierten Verteilregeln bei 
der Aufteilung der Materialflüsse berücksichtigt werden. Prioritätsregeln28 (z.B. First-In-
First-Out) müssen bei der Rückwärtssimulation ggf. durch ihre Pendants ersetzt werden. 
In den meisten Untersuchungsfällen können die implementierten Regeln jedoch bestehen 
bleiben. Für die entsprechende Rückwärtssimulation müssen sie aber als Annahmen 
entsprechend berücksichtigt werden. 
 
In einem letzten Schritt werden die ursprünglichen Quellen und Senken des 
Simulationsmodells aus dem resultierenden Simulationsmodell gelöscht und durch 
Platzhalter ersetzt, die im weiteren Verlauf durch den Anwender mit den neuen Quellen 
und Senken ersetzt werden müssen. Diese können nicht automatisch getauscht werden, 
weil sich die Untersuchungszwecke von vorwärts und rückwärts gerichteten Simulations-
modellen stark unterscheiden. 
 
Zusammenfassend kann an dieser Stelle festgehalten werden, dass alle 
Vorraussetzungen für die Konzeption des Modellierungswerkzeugs vorliegen. Basierend 
auf der Festlegung einer Vorgehensweise zur Modellierung und Simulation wurde in 
diesem Abschnitt eine Modellbeschreibung entworfen, die alle an das Werkzeug gestellten 
Anforderungen abbilden kann. Zusätzliche Funktionsmodule zur Unterstützung speziell 
funktionsorientiert arbeitender Fertigungssysteme und zur weitestgehend automatischen 
Transformation von Simulationsmodellen in ihre entgegengesetzt gerichteten Pendants 
auf Basis eines Grundstrukturenkonzeptes wurden entworfen und den entsprechenden 
Teilmodulen des Werkzeugs zugeordnet. Darüber hinaus wurde die nachrichtenbasierte 
Kommunikationsschnittstelle zum Datenaustausch zwischen Simulator und 
Visualisierungskomponenten sowie zwischen den Teilmodulen des Simulators erstellt und 
steht für die Implementierung des Werkzeugs zur Verfügung. Als nächster Schritt sollen 
nun die eigentlichen Software-Module des Werkzeugs entwickelt und entsprechend 
detailliert werden. 

5.3 Konzeption Modellierungswerkzeug 

Im folgenden Abschnitt soll das Werkzeug im Rahmen eines Software-
Entwicklungsprozesses konzipiert und modelliert werden. In einem ersten Schritt wird 
zunächst das System anhand der gestellten Anforderungen grob konzipiert, wobei ein 
Hauptaugenmerk auf der Strukturierung in Teilmodule besteht. Diese Phase, im 
Folgenden als Systementwurf bezeichnet, bildet die Basis für die Ausgestaltung der 
einzelnen Teilmodule. 

5.3.1 Systementwurf 

Die Betrachtung der Anforderungen für das Werkzeug basiert auf dem in 5.1.1 
entwickelten Modellierungs- und Simulationsprozess. Bei näherer Betrachtung der 

                                          
28  Eine Übersicht und Klassifikation bekannter Prioritätsregeln kann beispielsweise in [FaFG94] oder [Teic98] 

gefunden werden. 
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einzelnen Anforderungen ergibt sich mittels der UML erstellte Use-Case-Diagramm, wie 
es in Abbildung 80 dargestellt ist. 
 
Aus dem in Abbildung 80 dargestellten Use-Case lässt sich ersehen, dass noch keine 
explizite Unterscheidung zwischen verschiedenen Anwendergruppen gemacht wird. 
Zunächst werden dem Akteur Anwender alle Funktionen der Modellierung und Simulation 
ermöglicht. Beide Hauptaufgaben folgen bei der Durchführung einer Simulationsstudie 
hintereinander und können somit auch voneinander losgelöst betrachtet werden. 
Prinzipiell ergeben sich damit bereits zwei Module; das erste Modul unterstützt speziell 
den Prozess der Modellierung, das zweite Modul berechnet das Simulationsmodell auf 
Basis der Eingabewerte. Optional, aber nicht verpflichtend, kann der dynamische 
Markenfluss des Simulationsmodells visualisiert werden. Um die Visualisierung von der 
eigentlichen Berechnung im Simulatorkern loszulösen, werden die Aufgaben gemäß dem 
MVC-Pattern (vgl. Abschnitt 3.5.6) in verschiedene Module verteilt. Das bietet den 
Vorteil, dass unterschiedliche Visualisierungskomponenten mit dem Simulatorkern 
verbunden werden können. Neben diesen Hauptaufgaben werden Funktionen zur 
Administration der Anwender, Benutzergruppen und des Datenbestandes vorgesehen, die 
prinzipiell auch durch einen Akteur Administrator erledigt werden können und eine direkt 
Manipulation der Daten in der Simulationsdatenbank erlauben. 
 

 

Abbildung 80: Use-Case-Diagramm des Werkzeugs 

Use-Case: Modellieren 
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In der Modellierungsphase kann zwischen der Modellierung oder Bearbeitung einer 
Bausteinbibliothek oder der Modellierung oder Bearbeitung eines experimentierfähigen 
Simulationsmodells unterschieden werden. Da Bibliotheken auch eine geordnete 
Ansammlung einzelner Simulationsmodelle darstellen, die in einem experimentierfähigen 
Simulationsmodell verwendet werden können, unterscheidet sich die weitergehende 
Funktionalität nicht. Innerhalb dieses Use-Cases werden die üblichen Hauptfunktionen 
wie Erstellen, Bearbeiten, Speichern und Löschen eines Simulationsmodells angeboten. 
Darüber hinaus wird an dieser Stelle das Verfahren zur automatischen Invertierung von 
Vorwärtssimulationsmodellen in rückwärts gerichtete Simulationsmodelle in die 
Modellierungskomponente eingebettet, wie es unter Abschnitt 5.2.4.2 konzipiert wurde. 
 
Use-Case: Simulieren 
Gemäß Abschnitt 5.1.4 erfolgt vor dem Start der Berechnung des Simulationsmodells im 
Simulatorkern die Transformation der im XML-Format vorliegenden Modellbeschreibung 
in ein ausführbares Java-Programm. Anschließend kann die Berechnung des 
Simulationslaufs erfolgen, der optional durch verschiedene Visualisierungsmodule 
dargestellt und animiert werden kann. Darüber hinaus erhält der Anwender die 
Möglichkeit, während der Berechnung des Simulationslaufs interaktiv in die Berechnung 
einzugreifen und Parameter des Simulationsmodells zu verändern. Gegebenfalls werden 
die Manipulationsmöglichkeiten durch Voreinstellungen des Modellierers begrenzt. 
Während oder nach der Berechnung des Simulationsmodells können die gesammelten 
Informationen des Simulationslaufes ausgewertet und für eine weitere Verwendung 
gespeichert werden. Sofern die Simulationsmodelle dies unterstützen, führt die 
Bewegung des Anwenders in der Visualisierungskomponente zu einer dynamischen 
Detaillierung des Simulationsmodells. Verwendet das Simulationsmodell die automatische 
Wegberechnung des Motion Planning Moduls, werden diese zur Ausführungszeit eines 
Simulationslaufs im Simulator berechnet und visualisiert. 
 
Use-Case: Experimentieren 
In der Experimentierphase einer Simulationsstudie steht dem Anwender ein weiteres 
Modul des Werkzeugs zur Verfügung mit dem mehrere Simulationsläufe eines dort 
anzulegenden Simulationsexperimentes mit den entsprechenden Parametern versehen 
und in einem Stapelverarbeitungs- oder Parallelbetrieb ausgeführt werden. Neben der 
Darstellung der Eingangsparameter unterstützen spezielle Funktionen des Moduls den 
Anwender, beispielsweise bei der Variation der Startwerte der Zufallsverteilungen 
innerhalb der Bausteininstanzen des Simulationsmodells über die verschiedenen 
Simulationsläufe hinweg. Nach Durchführung aller Simulationsläufe können die 
generierten Experimentdaten in einer kurzen Darstellung betrachtet und als 
Simulationsexperiment in der Simulationsdatenbank oder auf dem Dateisystem 
gespeichert werden. 
 
Use-Case: Administrieren 
Die Administration der anfallenden Daten und deren Verwaltung soll über ein spezielles 
Modul erfolgen. Einzelne Funktionen werden nur dann in die Modellierungs-, Simulations- 
und Visualisierungsmodule integriert, wenn sie den Anwender bei seiner Arbeit direkt 
unterstützen. Damit können elementare Aufgaben wie beispielsweise die Verwaltung der 
Anwender, Benutzergruppen, Rechteverwaltung und die Administration der 
Simulationsdatenbank potentiell auch von Nicht-Simulationsexperten ausgefüllt werden. 
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Grobstruktur der Funktionsmodule 
Aus der Darstellung und Entwicklung der Use-Cases ergibt sich das bereits bekannte 
Schema von Funktionsmodulen, aus denen das Gesamtsystem bestehen soll. Die 
präzisere Darstellung der Funktionen über die einzelnen Funktionalitäten in den Use-
Case-Diagrammen hat die geplante Modularisierung des Werkzeugs nochmals bestätigt. 
Neben einer Modellierungskomponente und dem Simulatorkern beinhaltet das Werkzeug 
Module zur Visualisierung von Simulationsläufen, eine Simulationsdatenbank und ein 
Modul zur Administration der Daten. Abbildung 81 gibt einen Überblick über die 
Funktionsmodule und deren Beziehungen untereinander. 
 

 

Abbildung 81: Grobstruktur der Funktionsmodule des Werkzeugs 

Die Darstellung der Funktionsmodule gibt noch keine Auskunft darüber, wie die einzelnen 
Funktionen mit Bedienoberflächen versehen werden. Hinsichtlich der verschiedenen 
Aufgabestellungen sind hier unter Umständen alternative Visualisierungsmöglichkeiten zu 
evaluieren und umzusetzen. Die Grobstrukturierung des Basisprozesses wurde durch den 
Systementwurf also bestätigt und nur in Teilen erweitert. Im Folgenden sollen die 
identifizierten Module präziser ausgeplant werden. 

5.3.2 Entwurf der Funktionsmodule 

Im folgenden Abschnitt sollen die einzelnen Funktionsmodule genauer hinsichtlich ihrer 
Aufgabe und Beschaffenheit spezifiziert werden. Die Reihenfolge des Entwurfs orientiert 
sich an der Vorgehensweise des Anwenders bei der Arbeit mit dem Werkzeug. 

5.3.2.1 Modul Modellierung 

Zur Umsetzung des Moduls zur Modellierung der Simulationsmodelle nach der in 
Abschnitt 5.2 beschriebenen Modellbeschreibung wird auf das in Abschnitt 3.5.6 
vorgestellte Architekturmuster Client/Server zurückgegriffen, da es sich besonders gut 
für die Implementierung eines multitaskingfähigen Werkzeugs eignet. In Kombination mit 
dem Modul Simulationsdatenbank ergibt sich eine 3-Tier-Architektur, bei der auf Seite 
der Serverschicht zusätzlich der Simulatorkern platziert werden kann.  
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Die Aufgabe des Servers besteht in der Verwaltung der angeschlossenen Anwender, bzw. 
Clients sowie der Wahrung der Konsistenz des oder der aktuell bearbeiteten 
Simulationsmodelle. Zur besseren Kooperations- und Kollaborationsunterstützung kann 
der Server verschiedene Kommunikationsmöglichkeiten zur Verfügung stellen, damit sich 
die an der Modellierung beteiligten Anwender während ihrer Arbeit abstimmen können. 
Darüber hinaus muss der Server eine Möglichkeit vorsehen, die Benutzerverwaltung zu 
implementieren, so dass sich die Anwender an ihren Clients vor dem Zugriff auf die 
Simulationsmodelle authentifizieren und damit auch autorisieren müssen. Die Umsetzung 
der Rechteverwaltung aus Abschnitt 5.1.6 wird angestrebt, so dass der Zugriff auf ein 
Simulationsmodell auch gestaffelt hinterlegt werden kann. Der Server muss jeweils 
entscheiden, ob die vom Client angeforderte Interaktion (beispielsweise Hinzufügen eines 
Bausteins, Löschen, Verschieben, etc.) auf Basis der zugrunde liegenden Rechte 
ausgeführt werden darf oder nicht. Hierfür sind während der Implementierung zwischen 
Client und Server geeignete Schnittstellen zu entwerfen. In den Modellierungsserver soll 
auch das Verfahren zur automatischen Invertierung eines Simulationsmodells integriert 
werden. Weil hier die aktuell bearbeiteten Simulationsmodelle hinterlegt werden, kann 
das resultierende Simulationsmodell zur weiteren Bearbeitung für den oder die Anwender 
direkt zur Verfügung stehen. 
 
Jeder Anwender bearbeitet das Simulationsmodell über einen eigenen Client, der 
verschiedene Visualisierungsmöglichkeiten anbietet. Neben einer zweidimensionalen 
Visualisierung soll zusätzlich eine dreidimensionale Modellierungsform angeboten werden. 
Idealerweise wird diese für weniger leistungsstarke Clients um eine 2½D-Visualisierung 
ergänzt, die ein realistisches Anordnen der Modellbausteine mittels einer 
Parallelprojektion von schräg oben in der virtuellen Umgebung ermöglicht. Abbildung 82 
zeigt die resultierende Architektur des Modellierungsmoduls. 
 

 

Abbildung 82: 3-Tier- Architektur des Modellierungsmoduls 

Abbildung 83 beschreibt in einem Sequenzdiagramm die intendierte Bearbeitungs-
reihenfolge innerhalb des Modellierungsmoduls. 
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Abbildung 83: Sequenzdiagramm des Modellierungstools 

Der Anwender kann aus seinem Bearbeitungsclient ein in der Simulationsdatenbank 
hinterlegtes Simulationsmodell zur Weiterbearbeitung öffnen oder legt ein neues 
Simulationsmodell an (Analog kann mit der Modellierung von Bausteinbibliotheken 
verfahren werden). Weitere angeschlossene Anwender können diesem Simulationsmodell 
beitreten, um gemeinsam an demselben Modell zu arbeiten. Alternativ können sie eine 
eigene Instanz dieses oder eines anderen Simulationsmodells öffnen. Der Server lädt das 
Simulationsmodell mit allen Parametern und 2D-, 2½D- und/oder 3D-Repräsentanten der 
Modellbausteine aus der Simulationsdatenbank und stellt sie den Clients zur Darstellung 
zur Verfügung. Während der gleichzeitigen Bearbeitung eines Simulationsmodells durch 
mehrere Anwender synchronisiert der Server die Zugriffe auf der Ebene eines 
Bausteininstanz, bzw. hinsichtlich der über- wie untergeordneten Hierarchieebenen des 
selektierten Modellbausteins. Abbildung 84 zeigt schematisch den Sperrmechanismus des 
Servers.  
 
Der Server verteilt die jeweiligen Informationen über Sperrzustände der einzelnen 
Bausteininstanzen eines Simulationsmodells an die angeschlossenen Clients, damit diese 
hier entsprechend dargestellt werden können. Der Server muss nicht zwangsläufig eine 
grafische Oberfläche besitzen, könnte aber damit zusätzliche Informationen darstellen, 
die eine Analyse durch die entsprechenden administrativen Stellen ermöglichen. Der 
Arbeitsprozess der Anwender soll durchgehend mittels Kommunikationsmechanismen wie 
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Chat29, UserList30, User-Awareness31 und E-Mail unterstützt werden, so dass ein 
verteiltes, ortsunabhängiges Arbeiten erlaubt wird. Jeder Client kann seine eigene 
Darstellungsform aus den vorhandenen Möglichkeiten auswählen. Die jeweiligen 
Darstellungsrepräsentanten werden vom Server an den Client übertragen. Dank der 
verwendeten Client-Server-Architektur muss diese Informationen nur einmal aus der 
Simulationsdatenbank ausgelesen werden und kann danach im Server für weitere 
Anwender vorgehalten werden. 

 

Abbildung 84: Sperrmechanismus des Modellierungsservers 

 
Der Anwender kann seine Bearbeitung abschließen, indem er das Simulationsmodell aus 
seinem Client heraus sichert. Der Server hinterlegt den aktuellen Modellzustand in der 
Simulationsdatenbank, wo ihm eine aufsteigende Versionsnummer zugewiesen wird. Das 
Modell wird um Informationen über Anwender, spezielle Kommentare, etc. angereichert 
und gesichert, so dass jedem Anwender die Version des Simulationsmodells 
wiederhergestellt werden kann, die er gesichert hat. Die Clients müssen über den Server 
eine Möglichkeit bereitstellen, den Anwender auf vorhandene, neuere Versionen seines 
Simulationsmodells hinzuweisen. Zum Schutz vor unbefugtem Zugriff auf die in der 
Simulationsdatenbank hinterlegten Simulationsmodelle muss der Server eine 
verschlüsselte Kommunikation mit den angeschlossenen Clients zumindest optional 
unterstützen. Im Fall einer gemeinschaftlichen Simulationsstudie innerhalb eines 

                                          
29  Chat (von engl. to chat) ist die Bezeichnung für eine innerhalb des Internet weit verbreitete Art der 

interaktiven Kommunikation zwischen zwei oder mehreren Personen in Echtzeit [Balz05]. 
30  Die UserList ist meist eine Erweiterung der reinen Chat-Funktion, die es dem Anwender erlaubt, Kollegen 

und Bekannte in selbst zu definierende Gruppen einzusortieren, um deren Adresse schneller wieder finden zu 
können. 

31  Chat-Programme erlauben dem Anwender die Angabe eines Anwesenheitsstatus, der allen anderen 
Anwendern in deren UserList angezeigt wird, damit diese erkennen, ob der Anwender als 
Kommunikationspartner zur Verfügung steht, stehen kann oder stehen möchte. 
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Intranets eines abgeschlossenen Unternehmensbereichs kann auf diese zusätzliche 
Sicherheitsrestriktion verzichtet werden. 
 
Unter Berücksichtigung des Factory-Paterns32 soll die grafische Benutzeroberfläche des 
Clients alle vorhandenen Visualisierungsmöglichkeiten in einer Oberfläche bereitstellen. 
Sie wird dazu zunächst in drei Bereiche aufgeteilt. Abbildung 85 zeigt eine schematische 
Darstellung der indentierten Benutzeroberfläche mit den Bereichen menu, library und 
workplace. 
 

 

Abbildung 85: Schematische Darstellung des Modellierungsclients 

Die beiden Bereiche menu und library sind unabhängig von der gewählten 
Visualisierungsform zur Darstellung des Simulationsmodells. Lediglich der „workplace“, in 
dem die eigentliche Bearbeitung des Simulationsmodells erfolgt, unterscheidet sich je 
nach gewählter Visualisierungsform (2D-, 2½D- oder 3D-Darstellung). Durch die 
Implementierung des Listener-Konzepts33 in Kombination mit der eigentlichen 
Datenstruktur des Simulationsmodells auf dem Server kann aber jederzeit zwischen der 
gewählten Visualisierungsform gewechselt werden. Dazu müssen lediglich die 
entsprechenden grafischen Repräsentanten der Modellbausteine vom Server nachgeladen 
werden. Die im Client hinterlegten Maus-, Tastatur- oder Menübefehle führen unabhängig 
von der Visualisierungsform zum Aufruf desselben Menüs. So kann eine einheitliche 
Bearbeitung unabhängig von der gewählten Darstellung erreicht werden (Bsp.: Ein Menü 
zur Verwaltung der Variablen eines Modellbausteins erscheint immer gleich und verändert 
sich nicht, wenn es aus 2D- oder 3D-workplace aufgerufen wird). In den zu 
entwickelnden Menüs müssen minimal die Parametrierung der Variablen und der 
Ereignisse des selektierten Modellbausteins ermöglicht werden. Darüber hinaus muss der 
workplace die Möglichkeit anbieten, die aus der Library per Drag&Drop34 im Modell 
instanziierten Modellbausteine durch logische Verknüpfungen zwischen den Channeln zu 

                                          
32  [LaRa06] 
33  [LaRa06] 
34  Drag & Drop (Ziehen und Fallenlassen) ermöglicht das Verschieben von Daten mittels Ziehen und 

Fallenlassen und erlaubt dadurch den einfachen und effizienten Datenaustausch … zwischen verschiedenen 
Anwendungen[Balz05]. 
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verbinden. Die library stellt geladene Simulationsmodelle und/oder Bausteinbibliotheken 
aus der Simulationsdatenbank zur Verfügung, damit der Anwender bei der Erstellung des 
Modells bereits vorhandene Modellbausteine verwenden kann. Die Verwendung dieser 
Architektur bietet durch den modularen Aufbau den Vorteil, den Modellierungsclient 
effizient erweitern zu können. Bei Bedarf können weitere Darstellungsformen ergänzt 
werden, wobei Änderungen an Menüs oder Eigenschaftsfenstern immer nur an einer 
zentralen Stelle eingepflegt werden müssen. Für den Anwender ergibt sich darüber 
hinaus der Vorteil einer einheitlichen Bearbeitung, unabhängig von der gewählten 
Darstellungsform, zwischen denen fließend gewechselt werden kann. 

5.3.2.2 Modul Simulatorkern 

Wie in Abschnitt 5.1.2 beschrieben, muss bei dem gewählten Basisprozess vor 
Ausführung eines Simulationslaufs das im XML-Format vorliegenden Simulationsmodell in 
ein lauffähiges Java-Programm transformiert und kompiliert werden, um gemeinsam mit 
den Funktionen des Simulatorkerns ein einziges ausführbares Programm zu bilden. 
Dieses Vorgehen bietet neben dem erhofften Geschwindigkeitsvorteil bei der Ausführung 
eines Simulationslaufes weitere Vorteile. Einerseits kann ein Simulationslauf somit ohne 
Visualisierungsoberfläche berechnet und ausgeführt werden. Einzelne Simulationsläufe 
können potentiell in einem Netzwerk in Form eines Simulator-Simulationsmodell-Paketes 
verteilt und mit unterschiedlichen Parametersätzen von Eingabedaten gestartet werden. 
Andererseits kann das Funktionsmodul Simulatorkern wesentlich schlanker und somit 
effizienter implementiert werden. Die Anforderung an ein multitaskingfähiges 
Mehrbenutzersystem kann im Simulatorkern leicht dadurch erfüllt werden, dass ein 
Ankoppeln mehrerer Visualisierungskomponenten während der Ausführung erlaubt wird. 
Technisch gesehen entsteht in der Verarbeitung der ankommenden Interaktions-
Nachrichten kein Unterschied, ob diese von einem Anwender oder von mehreren 
Anwendern erzeugt werden. Das Teilmodul zur Nachrichtenverwaltung im Simulator muss 
dann die Verwaltung der eingehenden Nachrichten nach Anwendern sortiert unterstützen. 
Kontextbezogen müssen Regeln implementiert werden, die eine inhaltliche Abstimmung 
der angeschlossenen Anwender unterstützen. Das Kommunizieren von im Simulatorkern 
berechneten Änderungen am Simulationsmodell über ein Nachrichtenformat kann ähnlich 
effizient an einen, wie auch an mehrere angeschlossene Visualisierungskomponenten 
erfolgen. Abbildung 86 zeigt die einzelnen Funktionsbereiche des Simulatorkerns in 
einem schematischen Diagramm. 
 



Konzeption  - 165 - 
 

 

 

Abbildung 86: Funktionsbereiche des Simulatorkerns 

Obige Abbildung zeigt, dass sich der  Simulatorkern aus mehreren Teilmodulen 
zusammensetzt, die während der Ausführung eines Simulationslaufs ineinander greifen. 
Der wesentliche Teil des Simulators ist der Scheduler mit der zugehörigen Ereignisliste, in 
die zu berechnende Ereignisse des Simulationsmodells zur Laufzeit sortiert eingefügt 
werden (vgl. Abschnitt 3.3). Die Ausführung der diskreten Simulation erfolgt nach den in 
Abschnitt 2.2 beschriebenen Methoden, wobei die Datenstruktur des parametrierten 
Simulationsmodells ein objektorientiertes Datenmodell mit Objektklassen und –Instanzen 
bildet. Diese werden auf Basis eines Interfaces erzeugt, das als eigenständiges Paket im 
Simulatorkern implementiert werden muss. Hier werden insbesondere die Attribute und 
Methoden definiert, die der Simulatorkern zur Laufzeit ausführen kann, um die Daten des 
Simulationsmodells zu manipulieren, weitere Ereignisse zu instanziieren und dem 
Scheduler hinzuzufügen. Zur Verwaltung der erzeugten Datenstrukturen des 
Simulationsmodells wird im Simulator ein Datastore benötigt, an dem sich alle 
verwendeten Instanzen des Simulationsmodells während ihrer Erzeugung anmelden, um 
einen Zugriff auf die benötigten Daten aus dem Simulator heraus gewährleisten zu 
können. Manipulationen aus den Visualisierungskomponenten werden an der 
Kommunikationsschnittstelle des Simulators, dem MessageHandler, verarbeitet. Alle 
ankommenden Nachrichten werden hier gefiltert, verarbeitet und manipulieren ggf. den 
Datastore oder den Scheduler. Für die benötigte Transformation von XML-Modell in eine 
Java-Objekthierarchie wird zusätzlich ein Preprocessor benötigt, der die vorliegenden 
Modellbeschreibungen in ein Java-Programm parst und das Ergebnis kompiliert. 
 
Die Modellierung und Simulation von zeitorientierten Simulationsmodellen soll mit dem 
Werkzeug prinzipiell über zwei verschiedene Arten ermöglicht werden: 
 
1. Zeitorientierte Bausteinbibliotheken 

Die Modellierung zeitorientierter Simulationsmodelle erfolgt in diesem Fall über 
Bausteinbibliotheken, die eine entsprechende Zeitfortschaltung implizit unterstützen. 
Die zu terminierenden Ereignisse werden bausteinintern auf die vorhandenen 
Zeitinkremente abgebildet. Die Ausführung des Simulationsmodells im Simulatorkern 
kann dann ereignisorientiert erfolgen, weil die Terminierung der Ereignisse im 
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Scheduler bereits zeitorientiert erfolgt. Jeder Bausteininstanz kann während der 
Modellierung ein eigener Kalender zugewiesen werden (beispielsweise ein 
Schichtkalender), wodurch im abgebildeten System die einzelnen Elemente zwar 
zeitorientiert, aber nach jeweils variablen Intervallen simuliert werden können. 
Dieses Vorgehen entspricht am ehesten den Sichten in Fertigungsleitständen und 
kann auf Basis der abstrakteren Simulationsmodelle zur Integration innerhalb der 
Fertigungslenkung verwendet werden. 

2. Zeitorientierte Berechnung im Simulatorkern 
Hier kann die zeitorientierte Ausführung des Simulationsmodells auf Basis eines 
ereignisdiskreten Simulationsmodells erfolgen. Der Simulator überstützt dies über 
einen speziellen „Modus Zeitorientierung“, bei dem alle auftretenden Ereignisse 
kernelintern auf fixe Zeitinkremente abgebildet werden. Dieses Vorgehen entspricht 
der unter Abbildung 8 gezeigten Vorgehensweise der Zeitfortschaltung mit fixen 
Zeitinkrementen. Am Anfang der Simulation kann vom Anwender der Abstand der 
Zeitinkremente parametriert werden. Vorteil dieser Methode ist die 
Wiederverwendung der ereignisorientierten Simulationsmodelle, allerdings hängt die 
Genauigkeit der Simulation stark von den gewählten Zeitinkrementen ab. 

 
Darüber hinaus ergeben sich aus der Aufgabenstellung weitere Teilfunktionen, die als 
zusätzliche Funktionen in dem Simulator eingebettet werden müssen. Hier sind 
insbesondere das Motion Planning Modul (vgl. Abschnitt 5.2.1.2) und das Modul zur 
dynamischen Adaption des Detaillierungsgrades des Simulationsmodells (vgl. Abschnitt 
5.2.1.1) zu erwähnen, die jedoch nur dann aktiv dem Simulatorkern hinzugefügt werden 
sollen, wenn sie in dem zu bearbeiteten Simulationsmodell benötigt werden. Für das 
Laden und Speichern von Simulationsmodell und Simulationsexperimenten existiert mit 
dem Experiment-Manager ein separates Modul, das nachfolgend genauer entworfen wird. 

5.3.2.3 Modul Experimentmanager 

Das Modul Experimentmanager soll den Anwender in Form eines durch die Anwendung 
leitenden Wizards bei der Durchführung einer Simulationsstudie unterstützen, indem an 
einer zentralen Stelle alle zur Durchführung eines Simulationsexperimentes benötigten 
Simulationsläufe parametriert und entweder in einem Stapelverarbeitungs- oder in einem 
Parallelbetrieb abgearbeitet werden können. Zu Beginn jeder Bearbeitung soll der 
Anwender ein Simulationsexperiment komplett neu anlegen, auf Basis eines Szenarios 
neu anlegen oder aus der Simulationsdatenbank laden. Daraufhin sollen die 
Grundeinstellungen hinsichtlich Simulationszeit- und Dauer, Anzahl der Simulationsläufe, 
etc. angegeben werden. Für die eigentliche Parametrierung sollen zahlreiche 
Unterstützungsfunktionen implementiert werden, die beispielsweise die automatische 
Parametrierung und Verwirbelung der Startparameter aller Zufallszahlen eines 
Simulationsmodells erledigen. Einzelne oder mehrere Parameter der Bausteininstanzen 
sollen in einer zentralen Übersicht eingestellt werden, wobei die Ansicht über 
entsprechende Masken oder Filter auf die relevanten Bereiche eines Simulationsmodells 
eingegrenzt werden soll. Nach der Einstellung der Ausführungsparameter der einzelnen 
Simulationsläufe (hintereinander oder parallel auf Rechner 1 bis Rechner N) kann der 
Anwender das Experiment starten und erhält nach dessen Berechnung eine tabellarische 
Übersicht über die generierten Ergebnisse. Das Simulationsexperiment inklusive der 
Ergebnisse kann dann in der Simulationsdatenbank oder auf dem Dateisystem 
gespeichert werden. Das Protokoll der einzelnen Simulationsläufe kann verwendet 
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werden, um sich im Nachhinein einzelne Ausschnitte aus den Simulationsläufen 
visualisieren zu lassen. 

5.3.2.4 Modul Visualisierungskomponente 

Bei der Konzeption des Visualisierungsmoduls wird auf das bereits im Modellierungsmodul 
erfolgreich angewendete Architekturpattern Client-Server zurückgegriffen (vgl. Abschnitt 
3.5.6 ). Der Simulatorkern übernimmt die eigentliche Serverfunktion. Neben bereits 
angesprochenen Darstellungsformen (2D-, 2½D- und 3D-Darstellung) soll als weitere 
Visualisierungsmöglichkeit eine Report-Oberfläche angeboten werden. Unabhängig von 
der layoutgetreuen Darstellung des Simulationsmodell in den verschiedenen 
Darstellungsformen soll mit dieser Visualisierungsmöglichkeit eine Analysefunktion 
bereitgestellt werden, die eine aggregierte Sicht auf die aktuellen Kennzahlen der 
einzelnen Modellbausteine des simulierten Modells ermöglicht. Es erlaubt eine schnelle 
Übersicht und damit Einschätzung des aktuellen Modellverhaltens während des 
Simulationslaufs und soll hauptsächlich im Rahmen der Modellvalidierung und –
Verifikation eingesetzt werden. Die Report-Oberfläche ist in der Lage den gesamten 
Simulationslauf in einem RecordSet zu sichern und jederzeit wieder abspielen zu können. 
Damit wird eine weitere Form der Analyse von Simulationsmodellen ermöglicht, indem 
verschiedene Anwender ein RecordSet gemeinsam analysieren und damit die Entwicklung 
des Simulationsmodells oder sogar des abgebildeten Fertigungssystems voranzutreiben. 
 
Report-Oberfläche, 2D- und 2½D-Oberfläche können mit wenigen Anpassungen und 
Erweiterungen in den Client des Modellierungsmoduls integriert werden, so dass eine 
einheitliche Werkzeugoberfläche zur Modellierung und Simulation zur Verfügung steht. 
Der Server muss zusätzlich um eine bidirektionale Schnittstelle (MessageCenter) zur 
Verarbeitung der Animationsnachrichten, Kommunikation der Änderungen von 
Parameterwerten und Interaktionen erweitert werden, um die Animation während der 
Ausführung eines Simulationsmodells in den Visualisierungskomponenten zu ermöglichen 
und die Interaktion mit dem Simulatorkern zu unterstützen. Dabei wird das in Abschnitt 
5.2.2 entwickelte Nachrichtenformat umgesetzt. Weil der Server bereits die Multitasking-
Bearbeitung von Simulationsmodellen unterstützt, muss in diesem Bereich keine weitere 
Anpassung vorgenommen werden. In den hier abgebildeten Visualisierungsformen nimmt 
der Anwender keine immersive Rolle ein, sondern betrachtet das abgebildete 
Fertigungssystem, ähnlich wie in kommerziellen Lösungen, als externer Betrachter. 
Speziell diese Darstellungsformen können eine gute Immersion nur schwer erzeugen. 
Deswegen können die Anforderungen hier auf den interaktiven Anteil beschränkt werden. 
Durch die Unterstützung des Nachrichtenformats in den entsprechenden Erweiterungen 
ist der Anwender in der Lage, Interaktionen auszuführen, die an den Simulatorkern 
übertragen und dort verarbeitet werden (vgl. Abbildung 87). 
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Abbildung 87: Sequenzdiagramm einer Interaktion während der Simulation 

Hier greift, wie schon bei der Modellierung, die implementierte Benutzerverwaltung, so 
dass eine Abstufung innerhalb der Interaktionsmöglichkeiten gemäß der assoziierten 
Rechte umgesetzt werden kann (damit wird auch die Möglichkeit eines reinen Viewers 
erlaubt, bei dem der Anwender reiner Betrachter ist). Abbildung 88 zeigt die 
resultierende Architektur nach Erweiterung des Modellierungsmoduls um die 
beschriebenen Visualisierungsformen. 
 

 

Abbildung 88: Erweiterung des Modellierungsmoduls um 
Visualisierungskomponenten 

Der dreidimensionalen Visualisierung kommt während der Implementierung eine spezielle 
Bedeutung zu, um die realitätsnahe Immersion des Anwenders in die virtuelle Szene des 
Simulationsmodells zu realisieren. Neben der Anbindung an den Simulatorkern und der 
Animation des dynamischen Verhaltens des Simulationsmodels ist in einem ersten Schritt 
die flüssige Visualisierung komplexer 3D-Szenen zu realisieren. Um die Navigation des 
Anwenders in der virtuellen Umgebung zu unterstützen, sollen für den Simulationsverlauf 
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besonders relevante Prozesspunkte speziell hervorgehoben werden und die Bewegung zu 
diesen Punkten unterstützt werden. Neben Integration von Motion Planning zur 
Wegeplanung und Kollisionsvermeidung der SPMs und Avatar des Anwenders, sollen 
kürzeste Wege zu diesen signifikanten Prozesspunkten in die virtuelle Umgebung 
eingeblendet werden. Ebenso wie in anderen Visualisierungsformen muss dem Anwender 
ein Höchstmaß an Interaktion aus der Darstellung des Simulationslaufs ermöglicht 
werden. Die 3D-Visualisierung ist ebenfalls als Client umzusetzen, der das gleichzeitige 
Navigieren mehrerer Anwender über den „Server“ Simulatorkern unterstützt. Der 
MessageHandler im Simulator muss um die Verwaltung und Bereitstellung von 
Anwenderinformationen, Avataren und ihren jeweiligen Positionen erweitert werden. Der 
Bereich des Moduls zur 3D-Visualisierung wird als Client realisiert werden, der mit dem 
Simulatorkern bidirektional kommuniziert, gemäß dem unter 5.2.2 entwickelten 
Nachrichtenprotokoll, um die Interaktion des Anwenders mit dem Simulationslauf zu 
ermöglichen. Aus Effizienzgründen erhält der 3D-Client eine direkte Schnittstelle zur 
Simulationsdatenbank, um die teilweise umfangreichen 3D-Repräsentanten einer 
Bausteininstanz direkt aus der Datenbank laden zu können. Die Informationen, welche 
3D-Repräsentanten im Simulationslauf benötigt werden, erhält der Client über den 
Simulatorkern. Abbildung 89 zeigt den schematischen Aufbau der Gesamtarchitektur 
unter Berücksichtigung der 3D-Visualisierungskomponente. 
 

 

Abbildung 89: schematischer Aufbau der Gesamtarchitektur 

Der Client der 3D-Visualisierung dient der Darstellung der gerenderten 3D-Szene für den 
jeweiligen Anwender. Die Navigation wird über das Motion Planning Modul so gestaltet, 
dass der Anwender in der virtuellen Umgebung nur Wege nehmen kann, die ihm in der 
realen Umwelt auch zur Verfügung ständen. Neben der Darstellung der virtuellen 
Umgebung werden dem Anwender in weiteren Fenstern zusätzliche Informationen über 
einen selektierten Modellbaustein, eine Liste aller im Simulationsmodell vorhandenen 
Modellbausteine, eine Minimap35 zur Verbesserung seiner Orientierung und Methoden zur 
Kommunikationsunterstützung angeordnet werden. Abbildung 90 zeigt den 
schematischen Aufbau der 3D-Client-Oberfläche. 
 

                                          
35  Unter einer Minimap soll hier eine verkleinerte, maßstabsgetreue Draufsicht auf die Szene verstanden 

werden, die dem Anwender zusätzlich in den Client eingeblendet wird, um ihm seine Orientierung in der 
virtuellen Umgebung zu erleichtern. 
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Abbildung 90: schematischer Aufbau des 3D-Clients 

5.3.2.5 Modul Simulationsdatenbank 

Als gemeinsame Datenbasis aller mit der Modellierung und Simulation in Zusammenhang 
stehenden Daten und Informationen soll eine Simulationsdatenbank dienen. Die 
anfallenden Daten im Rahmen der Simulation können nach Abschnitt 5.2.3 grob in die 
Bereiche Eingabedaten, Modelldaten und Ergebnisdaten unterteilt werden. Zusätzlich 
werden Verwaltungsdaten benötigt, um die Eingangs- und Parametrierdaten sowie die 
Ergebnisdaten einem Simulationsexperiment und auch einem Anwender zuordnen zu 
können. Aus den Modelldaten ergibt sich die Struktur der Abläufe und des 
Materialflusses. Durch die Integration von Layout und Prozessplanung werden auch 
Änderungen am Layout direkt in das Simulationsmodell übertragen. Diese Aktualität ist 
wichtig, weil sonst Simulationsergebnisse verfälscht werden können. Die 
Modellbeschreibung selbst gibt nur die logische Ablaufstruktur vor. Alle Eigenschaften der 
Modellbausteine (Kapazität, Taktzeit, etc.) können im Bereich der Eingabedaten zu einem 
Simulationsmodell in der Datenbank gespeichert werden. Die Eingangsdaten der 
Simulationsmodelle können hinsichtlich ihrer Art weiter unterschieden werden: 
 

 Statische Parameter beschreiben die Eigenschaften der Modellbausteine (Größe der 
Speicher, Zählpunkte, etc.), die zur Eingangsparametrierung (Initialisierung) des 
Modells dienen. Hier können sowohl konstante Modelldaten als auch Verweise auf 
Produktivdatenbanken der zu simulierenden Systeme stehen. Letztere Alternative 
hat den Vorteil, dass Veränderungen am modellierten System automatisch in das 
Simulationsmodell übertragen werden. Die meisten Eigenschaften ändern sich 
jedoch selten, sind also über einen längeren Zeitraum konstant. Logischerweise 
bieten sich diese Parameterverweise nur dann an, wenn die zu modellierenden 
Systeme bereits in der Realität existieren. 

 Dynamische Parameter sind Daten eines zugrunde liegenden Produktivsystems, die 
aktuell für jedes Simulationsexperiment aus den Produktivdatenbanken ausgelesen 
werden müssen, evtl. aufbereitet für das jeweilige Simulationsmodell. Insbesondere 
sind dies Daten und Informationen, die den aktuellen Stand der Fertigung 
wiedergeben (Prozessabbild) und die Bedingungen für den Simulationshorizont 
darstellen (z.B. geplante Tagesproduktion, Arbeitszeitmodelle, etc.). So kann das 
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Verhalten des Simulationsmodells dem realen Prozess weitestgehend angepasst 
werden und damit als Prognoseinstrument für eine laufende Fertigung eingesetzt 
werden. 

 
Alle genannten Datenbereiche sollen nachfolgend detailliert werden. Daraus ergeben sich 
die einzelnen Datenbereiche, wie sie in Abbildung 91 skizziert werden und innerhalb der 
zu entwickelnden Simulationsdatenbank umgesetzt werden müssen. 
 

 

Abbildung 91: Datenbereiche der Simulationsdatenbank 

Die einzelnen Datenbereiche übernehmen die Sicherung der ihnen zugeordneten Daten 
in logisch abgetrennten Bereichen der Simulationsdatenbank. 
 

 Fertigungsdaten 
Unter Fertigungsdaten werden die Parametrierungen der einzelnen 
Bausteininstanzen abgelegt, mit denen die einzelnen Modelle zu Beginn eines 
Simulationslaufes initialisiert werden. Dabei werden durch die dynamischen 
Detaillierung unter Umständen einzelne Fertigungsbereiche mehrfach, aber in 
unterschiedlichen Detaillierungsgraden abgelegt. Abgeleitet aus der abgelegten 
Hierarchie der Modellbausteine im Simulationsmodell können die einzelnen 
Fertigungseinheiten in einer Baumstruktur (Top-Down-Hierarchie) abgelegt werden. 

 Prozessabbild 
Das Prozessabbild liefert zu einem fest definierten Zeitpunkt (statisch) den 
Betriebszustand aller im Simulationsmodell abgebildeten Anlagen (Maschinen, 
Lager, Fördertechnik, etc.) und die Lokalisierung aller Produktionsgüter (innerhalb 
der Anlage, im Lager, auf Fördertechnik). Jeweils zum gewählten Detaillierungsgrad 
werden die Fertigungseinheiten und damit die Modellbausteine des 
Simulationsmodells mit den Produktivdatensätzen initialisiert. Da ein Prozessabbild 
umfangreiche Datensätze beinhalten kann und zusätzlich für eine Online-Simulation 
nur einmal benötigt wird, werden nur wesentliche Kennzahlen daraus in der 
Simulationsdatenbank langfristig abgespeichert, um die wichtigsten 
Eingangsparameter reproduzieren zu können (Ausnahme: Detailsimulationen, für 
die ein komplettes Prozessabbild benötigt wird). Die restlichen Daten werden nur 
temporär in der Simulationsdatenbank gespeichert und nach dem 
Simulationsexperiment gelöscht. Für Planungssimulationen muss eine Möglichkeit 
vorgehalten werden, um einzelne Prozessabbilder abzuspeichern und damit eine 
Simulation mehrerer Experimente auf Basis gleicher Eingangsvoraussetzungen zu 
starten. 
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 Steuerungsdaten 
Hier finden sich alle Steuerparameter und Planungsdaten der Simulation und 
definieren die Rahmenbedingungen für das Prognoseverhalten des 
Simulationsmodells. Anhand dieser Daten wird das Verhalten der Bausteine des 
Simulationsmodells über den Zeitraum der Simulation bestimmt. Dies sind 
beispielsweise Arbeitszeitmodelle und geplante Lose sowie die Histogramme, die 
Durchlaufzeiten oder Verwirbelungen innerhalb der Modellbausteine anhand von 
Wahrscheinlichkeitswerten definieren. 

 Simulationsmodelle 
In diesem Datenbankbereich werden die Modellbausteine, Bibliotheken und 
Simulationsmodelle in den verschieden vorliegenden Versionen hinterlegt, 
angereichert um Meta-Informationen bzgl. des Anwenders und Kommentare zur 
Identifikation der Unterschiede in den Versionen. Alle Modellbausteine sind mit 
Standardwerten vorbelegt, soweit diese durch den Modellierer hinterlegt wurden. 
Die experimentspezifischen Parameter der Modellbausteine hinsichtlich eines 
Szenarios oder eines Simulationslaufes werden im Bereich Fertigungsdaten 
hinterlegt und überschreiben ggf. die Standardwerte. Zusätzlich können spezielle 
Parameter aus den Szenario- und/oder Experimentdaten die Standardwerte der 
Bausteine überschreiben. Ein Modellbaustein kann auch einen Verweis auf den 
Bereich der 3D-Daten beinhalten. 

 Szenarioverwaltung 
Die Szenarioverwaltung umfasst Einstellparameter für Stör- und Änderungs-
szenarien sowie die Zuweisungen zu entsprechenden Simulationsexperimenten 
(siehe Experimentverwaltung). Die manuell eingestellten Parameter und Störungen 
des Simulationslaufes oder –Experiments werden in diesem Bereich abgespeichert. 
Dies können beispielsweise Veränderungen einer Tagesproduktion, des 
Arbeitszeitmodells oder Störungen im Fertigungsablauf sein. 

 3D-Daten 
Im Bereich der 3D-Daten werden alle anfallenden Informationen und Datenmengen 
gesichert, die für die grafische Darstellung der Modellbausteine in den 
Modellierungs- oder Visualisierungskomponenten benötigt werden. Neben 3D-
Repräsentanten und höhenabhängigen Draufsichten sind das die relativ 
angeordnete Anfahrpunkte für das Motion Planning, eventuell vorhandene 2,5D-
Darstellungen, Outlines und Informationen über Animationspfade etc. 

 Experimentverwaltung 
Hier werden die durchgeführten oder geplanten Experimente mit allen benötigten 
Daten und Verweisen abgespeichert. Neben dem ausführenden Anwender sind das 
insbesondere Informationen wie Datum, Beschreibung, Sollzahlen, hauptsächlich 
Verweise auf eingestellte Veränderungen und Störungen aus der 
Szenarioverwaltung. Abgespeicherte Experimente können als Vorlage für 
weiterführende Simulationsexperimente dienen. 

 Ergebnisverwaltung 
Zu den durchgeführten Simulationsexperimenten werden in diesem Bereich der 
Simulationsdatenbank die Ergebnisse der einzelnen Simulationsläufe gespeichert.. 
Die Ergebnisse spiegeln sich u.a. in einer Reihe von Ergebniskennzahlen wieder, die 
als Statistiken aufbereitet werden und in Auswertungsmodulen in verschiedenen 
Darstellungsformen angezeigt werden können. Für das Protokollieren und Sichern 
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von Experimentdaten eines Simulationslaufs wurde in Abschnitt 5.2.3 eine 
Beschreibung erstellt, die in diesem Bereich gesichert werden soll. 

 Benutzerverwaltung 
Die Benutzerverwaltung enthält alle Benutzerdaten und die Gruppenzugehörigkeit 
mit den entsprechenden Rechten. Anhand der Benutzergruppe, personifizierten 
Rechten und den Einstellungen in den einzelnen Modellbausteinen ergeben sich die 
Rechte für den Zugriff auf die Simulationsmodelle und deren einzelne 
Modellbausteine. Hier wird zusätzlich das entwickelte Rechtemanagement abgelegt 
und verwaltet (vgl Abschnitt 5.1.6.). 

 
Für die manuelle Bearbeitung der Daten in der Simulationsdatenbank soll ein einfaches 
Fron-End entwickelt und benutzt werden, um außerhalb der Modellierungs-, Simulations 
und Visualisierungskomponenten die Datenbank warten zu können. Wie oben bereits 
angedeutet, können diese Wartungsaufgaben zumeist auch von Nicht-
Simulationsexperten durchgeführt werden. 

5.3.2.6 Modul Administration 

Das Funktionsmodul Administration dient der wartungsfreundlichen Manipulation 
vorhandener Datensätze in und aus der Simulationsdatenbank. Wesentliche 
Anforderungen ergeben sich aus der Pflege der Simulationsmodelle, Experiment- und 
Szenariodaten sowie der komfortablen Bearbeitung und Pflege aller benötigten 2D, 2.5D 
oder 3D-Repräsentanten der logischen Modellbausteine. Darüber hinaus wird eine 
grafische Oberfläche zur Pflege der Benutzerdaten und der vorhandenen 
Rechteverwaltung benötigt. Abbildung 92 zeigt eine nach Funktionsgruppen sortierte 
Übersicht aller anfallenden administrativen Aufgaben. 
 

 

Abbildung 92: Teilmodule des Administrationsmoduls 

Die einzelnen Anforderungen lassen sich auch durch spezifische, ggf. bereits vorhandene 
Werkzeuge implementieren und abarbeiten. Im Rahmen der Konzeption eines 
Gesamtwerkzeugs soll hier aber ein einheitliches Administrationsmodul umgesetzt 
werden, dass alle erforderlichen administrativen Aufgaben abzuarbeiten ermöglicht. Dazu 
müssen in den einzelnen Modulteilen entsprechende Funktionen implementiert werden, 
die eine Umsetzung der dargestellten Use-Cases erlauben. 
 
Auf Basis der in diesem Kapitel getroffenen Design-Entscheidungen hinsichtlich der 
Modellbeschreibung und der Modularisierung des zu entwickelnden Werkzeuges sollen im 
folgenden Kapitel die einzelnen Bausteine des Werkzeugs in der Programmiersprache 
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Java umgesetzt werden. Anschließend wird anhand eines Beispielmodells nachgewiesen, 
dass das Werkzeug den unter Kapitel 1 gestellten Anforderungen genügt.  
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6 Realisierung 
„Leben heißt Handeln.“ 

 
(Albert Camus) 

 
Nach der Konzeptionsphase müssen die entwickelten Funktionsmodule der 
Gesamtanwendung implementiert und in einer Gesamtanwendung zusammengeführt 
werden. Dieses Kapitel will das Ergebnis der Implementierungsphase beschreiben, indem 
es anhand eines spezifischen Beispiels den Nachweis führt, dass alle in Abschnitt 2.4 
gestellten Anforderungen an Basisprozess, Modellbeschreibung und Werkzeug erfüllt 
werden können. 
 
Das Kapitel ist nach der Vorgehensweise bei der Durchführung einer Simulationsstudie 
strukturiert. In den ersten Abschnitten wird daher zunächst Untersuchungsgegenstand 
und Untersuchungsziel definiert. Die Problemstellung ist so gewählt, dass alle in der 
Anforderungsbeschreibung aufgenommenen Funktionalitäten ihre Anwendung finden. Sie 
werden an geeigneter Stelle abgearbeitet, um sowohl Mächtigkeit der 
Modellbeschreibung als auch Funktion des Werkzeugs zu illustrieren. Auf den Nachweis 
der Simulationswürdigkeit, der üblicherweise an erster Stelle einer Simulationsstudie 
steht, wird an dieser Stelle verzichtet. 

6.1 Definition des Untersuchungsgegenstands 

Zu Beginn der Simulationsstudie soll der Untersuchungsgegenstand beschrieben werden, 
wie er im Folgenden abgebildet wird. Fokus der Untersuchung ist die fiktive Fabrik der 
PaderKarts GmbH (PaderK), die auf Basis von Rohstoffen und Teilerzeugnissen 
kundenindividuelle Karts herstellt. Der Leistungserstellungsprozess kann grob in zwei 
Prozessschritte unterteilt werden: Die Teilefertigung von Zwischenerzeugnissen auf Basis 
von Rohmaterialien und die kundenindividuelle Montage auf Basis der Zwischen-
erzeugnisse. Beide Prozesse werden durch ein zentrales Lager entzerrt, bzw. aus diesem 
Zentrallager mit Faktoren versorgt. Abbildung 93 zeigt das Grobschema der Fertigung 
der PaderKarts GmbH. 
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Abbildung 93: Grobschema der Fertigung von Karts bei der PaderK GmbH 

Alle Teilmodelle der PaderKarts GmbH sollen auf zwei unterschiedlichen 
Detaillierungsebenen betrachtet werden: Zum Einen eine weniger detaillierte Ebene, in 
der die drei Teilbereiche der PaderK zeitorientiert und ohne Transportwege modelliert und 
simuliert werden können; Zum Anderen eine höher detaillierte Betrachtungsebene, die 
zusätzlich die Transportbeziehungen innerhalb der Teilbereiche abbildet. Nachfolgend 
sollen die einzelnen Teilbereiche in den jeweiligen Detaillierungen näher beschrieben 
werden. 

6.1.1 Zentrallager 

Das Lager der PaderK ist zentraler Anlaufpunkt aller Warenflüsse. Wie in Abbildung 93 
gezeigt, werden die fremdbeschafften Rohstoffe, alle eingekauften Halbfabrikate, die 
Teilerzeugnisse der Teilefertigung und kundenindividuellen Erzeugnisse der Montage in 
einem gemeinsamen Lager verwaltet. Die jeweils ankommenden Waren werden an einem 
gemeinsamen Wareneingang zwischengelagert und durch Gabelstapler auf die einzelnen 
Lagerplätze in vier Lagergassen verteilt. Eine weitere Gruppe von Gabelstaplern 
übernimmt den unternehmensinternen wie  -externen Versand der Erzeugnisse, indem 
sie die Waren aus den Lagerplätzen entnehmen, an einem zentralen Warenausgang 
kommissionieren und verschicken. Abbildung 94 zeigt die schematische Struktur des 
Zentrallagers ohne Berücksichtigung der Staplersteuerung und Gabelstapler, also auf der 
weniger detaillierten Betrachtungsebene. Die Auftragssteuerung generiert die Aufträge 
für den Warenausgang. Sie werden durch den Wareneingang durchgeschleust und 
veranlassen die Auslagerung in der jeweiligen Lagergasse, so dass die Erzeugnisse im 
Warenausgang ankommen. Hier werden sie anschließend versendet. 

 

Abbildung 94: Zentrallager der PaderK in niedriger Detaillierung 

Die detaillierte Betrachtung unter Einbeziehung der beiden Gabelstaplergruppen erweitert 
das Lager nur leicht. Wie Abbildung 95 zu entnehmen ist, schleust der Wareneingang die 
ankommenden Einlagerungsaufträge und Waren an die Staplersteuerung weiter, die den 
Transport mittels der Gabelstapler bis zu den eigentlichen Lagerplätzen in den 
Lagergassen unter Einbeziehung der kürzesten Wege übernimmt. Die Auftragssteuerung 
zur Auslagerung ist an die Steuerung der Gabelstapler-Gruppe „Warenausgang“ 
angebunden. Übergebene Auslagerungsaufträge werden mittels der Gabelstapler an den 
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Warenausgang übergeben, wobei die Transportwege ebenfalls unter Anwendung des 
Motion Planning berechnet werden sollen. Der Warenausgang übernimmt die 
Kommissionierung der einzelnen Auslageraufträge zu Versandaufträgen und transportiert 
die entsprechenden Erzeugnisse anschließend, je nach Bestimmungsort, an die 
entsprechenden Output-Channel des übergeordneten Modellbausteins Zentrallager.  

 

Abbildung 95:Zentrallager der PaderK in hoher Detaillierung 

Die einzelnen Output-Channel des Modellbausteins Zentrallager sind mit den anderen 
Bereichen des Gesamtmodells verbunden, also dem Eingang des Modellbausteins 
Teilefertigung, dem Eingang des Modellbausteins Montage oder dem Output-Channel des 
Gesamtmodells der PaderK. Da die entsprechenden Verknüpfungen jeweils nur logischen 
Vorgänger/Nachfolger-Beziehungen entsprechen, muss bereits im Modellbaustein 
Warenausgang des Zentrallagers sowohl auf niedriger wie hoher Betrachtungsebene 
entschieden werden, über welchen Output-Channel des Bausteins der jeweilige Auftrag 
versandt wird.  

6.1.2 Teilefertigung 

Die von der PaderK eingekauften Rohstoffe und Halberzeugnisse werden in der 
Teilefertigung verarbeitet. Zwei grundlegende Bearbeitungen können unterschieden 
werden, die durch eine Gruppenfertigung abgebildet werden: Zum Einen die Bearbeitung 
von Metallteilen durch Umform-, Biege- und Fügetechniken. Die erstellten und 
behandelten Metallteile werden in einem Folgeschritt zu Karosseriestrukturen des Karts 
verschweißt. Zum Anderen die Herstellung von Kunststoffteilen mittels eines 
Spritzgussverfahrens, das eine umfangreiche Nacharbeit (Entgraten, Schleifen, etc) 
erfordert. Alle Zwischenerzeugnisse werden in einem Teilelager innerhalb der 
Teilefertigung zwischengepuffert, anschließend entweder an die Lackierung übergeben 
oder gehen direkt ins Zentrallager der PaderK. Auf der gröberen Betrachtungsebene, wie 
sie in Abbildung 96 dargestellt wird, werden die Transporte zwischen den einzelnen 
Stufen nicht betrachtet.  
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Abbildung 96: Teilefertigung der PaderK in niedriger Detaillierung 

Der Transport innerhalb der Teilefertigung wird bei der PaderK mittels fahrerloser 
Transportfahrzeuge (FTF) gewährleistet, die auf festen Wegen die Teilefertigung 
durchqueren und die Zwischenerzeugnisse zwischen den einzelnen Fertigungsstufen 
transportieren. Abgebildet wird das fahrerlose Transportsystem (FTS) über eine feste 
Wegestruktur in Form von Bausteinen, die Wege oder Bahnhöfe repräsentieren, wobei 
nur an den Bahnhof-Bausteinen Teile aufgenommen und abgeladen werden können. Die 
Steuerung des FTS erfolgt über einen speziellen Steuerungsbaustein, der alle FTF, ihre 
Routenpläne und aktuelle Routen verwaltet. Der Weiterversand der bearbeiteten 
Erzeugnisse ins Zentrallager erfolgt direkt aus der Lackierung oder dem Teilelager 
VorLack. Die Abbildung erfolgt im Modell der detaillierten Betrachtungsebene durch ein 
Durchschleifen der Erzeugnisse durch den entsprechenden Bahnhof des Teilelagers. 

 

Abbildung 97: Teilefertigung der PaderK in hoher Detaillierung 

Weitere benötigte Einzelteile zur Herstellung eines kundenindividuellen Karts werden 
durch die PaderK fremdbeschafft, beispielsweise die verwendeten Motoren und die 
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Rad/Reifen-Kombinationen. Die Fertigung der Teilefertigung erfolgt auf Basis einer 
Abschätzung vorhandener und zukünftiger Aufträge und ist weitgehend kundenanonym. 

6.1.3 Montage 

Die einzelnen Karts werden kundenauftragsbezogen in der Montage zusammengebaut. 
Chassis und Motoren werden am Anfang der Montage sequenzgenau bereitgestellt und 
als erste Montagestufe verheiratet. Anschließend erfolgt die mehrstufige Montage der 
Anbauteile und Sonderausstattungen. Die fertig zusammengebauten Karts werden auf 
zwei parallel betriebenen Linien auf Verarbeitungsqualität und Funktion überprüft und 
anschließend im Zentrallager bis zur Auslieferung zwischengelagert. Werden im Rahmen 
der Qualitätsuntersuchungen Mängel an einem Kart festgestellt, so wird das 
entsprechende Kart aus der Fließfertigung ausgeschleust und der Nacharbeit zugeführt. 
Nachdem der identifizierte Fehler behoben ist, erfolgt eine erneute Qualitätsprüfung und 
die Weiterleitung des Karts an das Zentrallager. Auch bei der Abbildung der Montage 
werden die Transportwege zwischen den einzelnen Montagevorgängen im niedrig 
detaillierten Modell noch nicht betrachtet. 

 

Abbildung 98: Montage der PaderK in niedriger Detaillierung 

Aus dem höher detaillierten Modell der Montage der PaderK (vgl. Abbildung 99) wird 
ersichtlich, dass die einzelnen Montagestufen mittels fester Fördertechnik untereinander 
verbunden sind. Die feste Verkettung der Fließmontage wird nur dadurch teilweise 
entzerrt, dass einzelne Förderstrecken als Puffer ausgelegt sind. So kann die 
Förderstrecke 3 einerseits als Ausfallstrecke dienen, wenn Förderstrecke 2 ausfällt oder 
gewartet werden muss, andererseits können hier Karts zwischengespeichert werden, 
wenn Qualität oder Nacharbeit die anfallende Arbeit nicht bewältigen können. Zusätzlich 
ist vor dem Eingang in den Qualitätsbereichen eine Staustrecke installiert worden, auf 
der weitere Karts zwischengespeichert werden können. 
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Abbildung 99: Montage der PaderK in hoher Detaillierung 

Die in den Abbildungen darstellten Bausteine der einzelnen Bereiche der PaderK können 
ähnlich wie auch die Bereiche Zentrallager, Teilefertigung und Montage an den 
geeigneten Stellen weiter detailliert werden. So bestehen beispielsweise die 
Förderstrecken jeweils aus einzelnen Elmenten einer Fördertechnik, oder die Lagergassen 
des Zentrallagers aus einer Fördertechnik mit den entsprechenden Lagerplätzen. Die 
dargestellten Detaillierungen sollen aber für die Untersuchungsziele dieser 
Simulationsstudie genügen. 
 
Aussagefähigkeit der PaderK hinsichtlich der Aufgabenstellung 
Die Struktur der fiktiven PaderKarts GmbH kann exemplarisch für Fertigungssysteme 
angesehen werden, die im Rahmen verschiedener Untersuchungen mittels einer 
Ablaufsimulation betrachtet werden. Die einzelnen Bereiche entsprechenden 
unterschiedlichen Organisationsformen, die mit den bekanntesten Varianten von 
Transportsteuerungen verbunden sind. Durch die Modellierung und Simulation der 
PaderK mit dem hier entwickelten Werkzeug kann somit der Nachweis geführt werden, 
dass verschiedenartige Fertigungssysteme mit dem Werkzeug abgebildet und analysiert 
werden können. Im Einzelnen erfüllen die Teilbereiche der PaderK folgenden Zweck 
hinsichtlich der Aufgabenstellung: 
 

 Zentrallager: Die wesentliche Aufgabe des Zentrallagers vor dem Hintergrund der 
Anforderungen ist die Implementierung einer Transportsteuerung unter der 
Verwendung des implementierten Motion Planning Verfahrens auf der höher 
detaillierten Betrachtungsebene des Modells. Dadurch wird die Funktionsweise des 
entwickelten Verfahrens zur verbesserten Abbildung funktionsorientiert 
gegliederter Fertigungssysteme nachgewiesen. Im Rahmen der 
Simulationsstudie hat das Zentrallager die Aufgabe die unterschiedlich arbeitenden 
Teilbereiche Teilefertigung und Montage zu entzerren, um den Aufbau des 
Simulationsmodells nicht unnötig zu verkomplizieren. Es erlaubt die Abkopplung der 
beiden Teilbereiche untereinander, so dass die jeweiligen Simulationsmodelle in den 
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entsprechenden Szenarien getrennt betrachtet werden können. Als einzige 
Restriktion, die sich bei diesem Vorgehen ergibt, muss festgehalten werden, dass 
sich ein Rückstau aus dem Lager nicht auf die einzelnen Teilbereiche auswirkt. Für 
den Nachweis der Anforderungen, zu dem diese Simulationsstudie dienen soll, kann 
dies aber in Kauf genommen werden. 

 Teilefertigung: Aufgabe der Teilefertigung ist die Abbildung einer funktionsorientiert 
gegliederten Fertigung. Weil die Suche nach kürzesten Wegen schon durch das 
Zentrallager abgebildet wird, bietet sich die Teilefertigung als höher detailliertes 
Simulationsmodell zur Modellierung und Simulation von fixen Transportwegen unter 
Verwendung von Modellbausteinen an. Durch die Gestaltung der Gruppenfertigung 
und ihrer Transportwege mittels eines fahrerlosen Transportsystems ist dem bei der 
Gestaltung des Untersuchungsgegenstandes Rechnung getragen worden. 

 Montage: Die Montage dient als Anwendungsbeispiel einer klassischen Fließ- bzw. 
Serienfertigung von kundenindividuellen Erzeugnissen, wie sie beispielsweise in der 
Automobilindustrie sehr verbreitet ist. Heutzutage wird die Ablaufsimulation meist 
vor dem Hintergrund solcher Fragestellungen von objektorientierten 
Organisationsformen eingesetzt. Die Transportwege sind, in der Realität wie 
auch im gewählten Beispiel, durch eine starke Verkettung (Fördertechnik, Band- 
oder Kettenförderer) gekennzeichnet, ergänzen und komplettieren dadurch die 
Abbildung von Transportstrukturen in dem gewählten Beispiel. 

 
Hinsichtlich der Modellbeschreibung kann die Modellierung der PaderK in der oben 
dargestellten Form, bzw. deren analoge Umsetzung in dem implementieren Werkzeug, 
zeigen, dass eine modulare, hierarchische und objektorientierte Abbildung durch 
das Werkzeug ermöglicht wird. Die einzelnen Bausteine werden jeweils mittels der für die 
Modellbeschreibung geltenden Regeln erzeugt und führen damit auch den Nachweis, dass 
die Modellierung beliebiger Detaillierungsgrade mit dem Werkzeug erfolgen kann. 
 
Der Untersuchungsgegenstand der PaderK soll damit für die Aufgabenstellung 
hinreichend genau beschrieben sein. Die einzelnen Ziele und Untersuchungsszenarien 
sollen im folgenden Abschnitt dargestellt und hinsichtlich der Aufgabenstellung begründet 
werden. 

6.2 Definition des Untersuchungsziels 

Es wird angenommen, dass die PaderKarts GmbH setzt die Methode Ablaufsimulation 
bisher nicht einsetzt. Im Rahmen der Simulationsstudie sollen daher verschiedene 
Szenarien durchgeführt werden, die mögliche Einsatzfelder bei der PaderK aufzeigen und 
evaluieren. Die Szenarien zeichnen sich auch dadurch aus, dass mit ihnen ein 
planugsphasenübergreifender Einsatz der Ablaufsimulation ermöglicht wird. 
 
Szenario 1: Zeitorientierte Rückwärtssimulation zur Terminierung von 
Fertigungsplänen 
Auf Basis der erstellen Fertigungs- und Montageabläufe der Paderk soll durch eine 
zeitorientierte Rückwärtssimulation des Gesamtmodells eine Grobplanung der 
Kundenaufträge für Teilefertigung und Endmontage durchgeführt werden. Terminiert 
durch verfügbare und geplante Kundenaufträge soll als Simulationsergebnis ein initialer 
Fertigungsplan erstellt werden, der eine Zeit- und Personalplanung für die einzelnen 
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Teilbereiche ermöglicht, gleichzeitig eine rechtzeitige Bereitstellung der in späteren 
Fertigungsstufen benötigten Teilerzeugnisse und Zwischenprodukte garantiert. Die 
einzelnen intralogistischen Transporte sollen in dieser Untersuchung nicht berücksichtigt 
werden, weshalb an dieser Stelle die Abbildung der einzelnen Teilbereiche auf der 
niedrigeren Betrachtungsebene ausreicht. 
 
Aussagefähigkeit des Szenarios hinsichtlich der Aufgabenstellung 
Die Umsetzung des ersten Szenarios durch die Modellierung und Simulation mit dem 
implementierten Werkzeug dient in erster Linie dem Nachweis einer zeitorientierten 
Modellierung und Simulation. Die gewählte Fragestellung unterstützt den Ansatz eines 
phasenübergreifenden Einsatzes der Ablaufsimulation durch die Anwendung im Rahmen 
einer Fertigungslenkungsaufgabe. Darüber hinaus erbringt die rückwärts gerichtete 
Ausführung der Simulation den Nachweis der benötigten Kernelfunktionalitäten zur 
Rückwärtssimulation. Die erstellten Modelle dienen als Ausgangsbasis für nachfolgende 
Szenarien, indem sie durch die implementierte Transformation in vorwärts gerichtete 
Simulationsmodelle umgewandelt werden können. Die Modellbeschreibung kann unter 
Verwendung dieses Verfahrens als richtungsoffen bezeichnet werden und erfüllt so eine 
Anforderung der Arbeit. Die daraus resultierenden Simulationsmodelle der weniger 
detaillierten Betrachtungsebene werden für das zweite Szenario entsprechend erweitert 
und erfüllen somit die Anforderung nach einem modularen, erweiterbaren Aufbau der 
Simulationsmodelle auf Basis der entwickelten Modellbeschreibung. 
 
Szenario 2: Ereignisdiskrete Vorwärtssimulation zur Engpass- und 
Sensitivitätsanalyse der Fertigungsabläufe 
Alle Teilbereiche der PaderK sollen durch eine ereignisdiskrete Vorwärtssimulation einer 
Engpassanalyse als klassisches Einsatzfeld der Ablaufsimulation unterzogen werden. 
Aussagen hinsichtlich der maximalen Leistungsfähigkeit der installierten Anlagen unter 
den gegebenen Randbedingungen (Arbeitszeitmodelle, Materialverfügbarkeiten, etc.) 
dienen als Ausgangsbasis für eine mögliche Sensitivitätsanalyse, die Abhängigkeiten der 
jeweiligen Teilsysteme von einzelnen Parametern identifizieren kann. Durch interaktive 
Analysen des Simulationsmodells soll der Erkenntnisgewinn über die Teilbereiche der 
PaderK vorangetrieben werden. Um repräsentative Aussagen hinsichtlich des 
Systemverhaltens der einzelnen Fertigungs- und Montageprozesse zu erlauben, muss 
diese Simulation im Wesentlichen auf den höher detaillierten Betrachtungsebenen der 
einzelnen Teilbereiche basieren. Damit kann dann auch gezeigt werden, dass die im 
ersten Szenario erstellten Fertigungspläne auch unter Berücksichtigung der 
verschiedenen Transporte eingehalten werden können. Die in diesem Schritt bereits 
existierenden zeitorientierten Modelle müssen deshalb in ereignisorientierte Modelle 
umgewandelt und um eine weitere Detaillierungsebene ergänzt werden. 
 
Aussagefähigkeit des Szenarios hinsichtlich der Aufgabenstellung 
Das zweite Szenario dient in erster Linie dem Nachweis einer ereignisgesteuerten, 
diskreten Materialflusssimulation mit dem entwickelten Werkzeug. Speziell die Analysen 
in der dreidimensionalen Darstellung sollen darüber hinaus zeigen, dass eine interaktive 
und bestmöglich immersive Betrachtung der dynamischen Verhaltensweisen der 
Simulationsmodelle mit dem Werkzeug möglich ist. Ein Experimentieren durch mehrere 
Anwender soll darüber hinaus vorstellen, dass der geforderte Mehrbenutzer-, bzw. 
Multitaskingbetrieb in der Visualisierung ermöglicht werden kann. Der analoge 
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Nachweis einer Modellierung durch mehrere Anwender soll während der Implementierung 
des Simulationsmodells in der Modellierungskomponente erfolgen. Durch die Gestaltung 
des Simulationsmodells mit verschiedenen Detaillierungsgraden kann an dieser Stelle 
auch gezeigt werden, dass das Verfahren von Mueck (dynamische Detaillierung zur 
Laufzeit) in dieser Werkzeugimplementierung integriert wurde. 
 
Szenario 3: Ereignisdirekte Rückwärtssimulation zur Feinplanung der 
Teilefertigung 
Unter der an dieser Stelle vorweggenommenen Annahme des Gesamtprozess-Engpasses 
innerhalb der Montage der PaderK, bietet eine zusätzliche Untersuchung in diesem 
Bereich nur wenig Potential. Als drittes Szenario soll deshalb eine Feinplanung der 
Aufträge in der weniger ausgelasteten Teilefertigung durch eine ereignisdiskrete 
Rückwärtssimulation erfolgen. Ziel ist die verbesserte Termin-, Mengen- und Schicht- 
bzw. Personalplanung in der Teilefertigung hinsichtlich spätester Beginnzeitpunkte, um 
die Lagerbestände innerhalb des Zentrallagers auf ein Minimum beschränken und 
dadurch gebundenes Kapitel freisetzen zu können. 
 
Aussagefähigkeit des Szenarios hinsichtlich der Aufgabenstellung 
Weil die kundenindividuelle Montage der Engpass der PaderK ist, reichen die im zweiten 
Szenario generierten Ergebnisse nach frühesten möglichen Einplanungen für eine Analyse 
des Systemverhaltens in der Montage aus. Eine Betrachtung der Teilefertigung unter 
Verwendung der ereignisdiskreten Rückwärtssimulation soll erneut das Potential 
eines planungsphasenübergreifenden Einsatzes der Ablaufsimulation aufzeigen. Die 
Planung von Fertigungsplänen kann mittels der Rückwärtssimulation direkt aus dem 
bestehenden Simulationsmodell erfolgen, wenn Kernel und Modellbeschreibung die 
anwenderfreundliche Richtungstransformation unterstützen. 
 
In Summe ergibt sich aus der Gestaltung des Untersuchungsgegenstandes und der 
abgeleiteten Untersuchungsziele eine breite Übersicht über die in dem Werkzeug zur 
Verfügung gestellten Funktionalitäten. Alle aus Kapitel 2.4 aufgenommenen 
Anforderungen hinsichtlich Modellbeschreibung und Werkzeug werden durch die oben 
definierten Szenarien überprüft. Wird die Simulationsstudie im Folgenden erfolgreich 
durchgeführt, kann daraus geschlussfolgert werden, dass alle an diese Arbeit gestellten 
Anforderungen auch erfüllt werden können. 

6.3 Datenermittlung und Aufbau eines logischen Modells 

Der Bereich der Datenanalyse, -vorbereitung, -sammlung und -bearbeitung ist eine der 
entscheidenden Teilaufgaben im Rahmen einer Simulationsstudie. Typischerweise 
ergeben sich hier zeitaufwändige Fragestellungen hinsichtlich Datengenauigkeit, 
Granularität, Verfügbarkeit und Aktualität, die im Rahmen der Entwicklung eines ersten 
logischen Modells des abzubildenden Systems erörtert und geklärt werden müssen. Für 
die hier behandelte Simulationsstudie ist dieser aufwendige Prozess insofern unkritisch, 
als das durch den Untersuchungsgegenstand einer fiktiven Fabrik alle benötigten Daten 
in der gewünschten Form generiert und bereitgestellt werden können. Die eigentliche 
Aufgabe in diesem Abschnitt beschränkt sich also auf die Erstellung eines logischen 
Modells. 
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Zur Erstellung dieses logischen Ablaufs aller relevanten Prozesse innerhalb der PaderK 
kann auf die Definition des Untersuchungsgegenstands aus Abschnitt 6.1 zurückgegriffen 
werden. Die entsprechende Liste der Abbildung 93 bis Abbildung 99 vermitteln einen 
hinreichend genauen Eindruck über die benötigten Bausteine des Simulationsmodells, 
ihre Hierarchisierung und gegenseitigen Abhängigkeiten. Wie im obigen Abschnitt 
angerissen, können einzelne Modellbausteine für die Umsetzung innerhalb des Werkzeugs 
weiter detailliert werden, beispielsweise die Abbildung einzelner Lagerplätze und eines 
Regalfahrzeugs innerhalb der Lagergassen 1 bis 4 im Zentrallager. Je nach Szenario 
müssen in den einzelnen Teilmodellen weitere Quellen, Senken und 
Auswertungsbausteine hinzugefügt werden, die eine zeit- oder ereignisdiskrete 
Ablaufsimulation in Vorwärts- oder Rückwärtsrichtung abhängig vom jeweiligen 
Untersuchungszweck ermöglichen. Die Darstellung der einzelnen Prozessabläufe soll aber 
mit den oben angegebenen Abbildungen als hinreichend betrachtet werden und erst im 
Rahmen der eigentlichen Modellierung in dem entwickelten Werkzeug bei Bedarf 
erweitert werden. 

6.4 Aufbau eines Simulationsmodells 

Im folgenden Abschnitt soll die Modellierung der Simulationsmodelle mittels der 
Modellierungskomponente des Werkzeugs vorgestellt werden. Für jedes der unter 
Abschnitt 6.2 vorgestellten Szenarien sollen einige Bausteine der Teilmodelle 
exemplarisch herausgegriffen und ihre Bearbeitung mit dem Werkzeug detaillierter 
erläutert werden. Die Vorgehensweise orientiert sich an der Reihenfolge der 
durchzuführenden Szenarien. Vorab sollen einige Bemerkungen zur Implementierung der 
Modellbeschreibung und Modellierungskomponente gemacht werden. 
 
Modellbeschreibung 
Im Rahmen der Implementierung wurden in einem ersten Schritt die Modellbeschreibung 
und das nachrichtenbasierte Kommunikationsprotokoll in Document Type Definitions 
(DTD) der XML umgesetzt, die eine formale Struktur der erstellten XML-Dokumente 
vorgeben. Deren genaue Auflistung finden sich in Anhang A für die Beschreibung der 
Simulationsmodelle und in Anhang B für die Nachrichtenkommunikation zwischen den 
Teilmodulen. Die administrativen Arbeiten, die zur Bearbeitung der Szenarien erforderlich 
sind, sollen erst am Ende dieses Unterabschnittes näher betrachtet werden, auch wenn 
die Verwendung der Modellierungskomponente das Existieren von Benutzerrechten sowie 
die Existenz einiger dreidimensionaler Repräsentanten in einer Simulationsdatenbank 
voraussetzt. 
 
Modul Modellierung 
Die Modellierungskomponente wurde entsprechend der Entwurfsphase als Client-Server-
Architektur umgesetzt. Der Server der Modellierungskomponente übernimmt hierbei die 
Kommunikation mit den anderen Funktionsmodulen wie Simulatorkern und 
Simulationsdatenbank und beinhaltet als Teilmodul die Transformation eines 
Simulationsmodells. Die Simulationsmodelle werden als XML-Datei eingelesen und in die 
Java-Objektklassenhierarchie geparst, so dass sie durch die Clients manipuliert werden 
können. Der Client der Modellierung ist die Bearbeitungsoberfläche des Anwenders, in der 
Simulationsmodelle geladen, bearbeitet, oder transformiert werden können. Über den 
Server können mehrere Clients an einem gemeinsamen Simulationsmodell arbeiten. 
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Modellierungsserver 
Der Server ist zur Speicherung und Datenaufbereitung der Simulationsmodelle 
notwendig. Er kommuniziert über eine RMI-Socketverbindung mit den angeschlossenen 
Mainframe-Komponenten. Bei der Datenbankspeicherung werden die einzelnen 
Modellbausteine als Zeichenfolgen abgelegt. Durch die Einzelspeicherung können einzelne 
Bausteine in anderen Simulationsmodellen weiter verwendet werden. Damit die 
Zuordnung der Bausteininstanzen zu ihren Modellbausteinen nicht verloren geht, müssen 
eindeutige IDs gesetzt werden. Diese IDs werden bei der ersten Speicherung von der 
Datenbank vergeben und den entsprechenden Modellbausteinen hinzugefügt.  
 
Beim Ladevorgang werden die gespeicherten Zeichenfolgen aus der Datenbank wieder zu 
einem XML-Dokument zusammengesetzt. Danach wird dieses XML-Dokument von einem 
Parser durchlaufen, der die Informationen in die Java-Objektklassenhierarchie der 
Modellbeschreibung überführt. Anschließend sendet der Server das erstellte 
Simulationsmodell über die Socketverbindung an die angeschlossenen Mainframe-
Komponenten. 
 
Angesteuert aus dem Mainframe der Clients, können Simulationsmodelle an das 
Transformationsmodul übergeben werden und werden dort nach dem beschriebenen 
Verfahren invertiert. Das Verfahren wurde durch einen Algorithmus implementiert, der 
auf Basis einer festzulegenden Reihenfolge Grundstrukturen in dem Simulationsmodell 
identifiziert und das Simulationsmodell vereinfacht. Aus Gründen der Performanz sollten 
häufig auftretende Grundstrukturen, wie zum Beispiel die unverzweigte Linie möglichst 
früh erkannt und zusammengefasst werden. Wichtig ist jedoch, dass die Grundstruktur 
Rückkopplung vor der Grundstruktur unverzweigte Linie gesucht und zusammengefasst 
wird, da ansonsten deren Knoten 2 und 3 (vgl. Abbildung 51) als unverzeigte Linie 
erkannt und zusammengefasst werden, wodurch die Grundstruktur der Rückkopplung 
zerstört und nicht mehr korrekt erkannt werden kann. Die eigentliche Invertierung wird 
in speziellen Klassen für jede Grundstrukturen einzeln implementiert. 
 
Modellierung - Mainframe 
Die Mainframe-Komponente stellt den Rahmen für die verschiedenen Modellierungs- und 
Visualisierungskomponenten dar und besteht aus einem Applikationsfenster, welches ein 
Menü im oberen und eine Statusleiste im unteren Bereich beinhaltet. In die Komponente 
eingebettet befindet sich im linken Teil ein internes Fenster, das die Struktur eines 
geöffneten Simulationsmodells und eventuell geöffneter Bibliotheken objektorientiert in 
Form eines Baums darstellt. Im rechten Bereich des Hauptfensters werden die 
Visualisierungs- und Modellierungskomponenten zur Darstellung des aktuell bearbeiteten 
Simulationsmodells eingebettet. Die Mainframe-Komponente bietet unter anderem 
Funktionen zum Laden und Speichern von Modellen, wobei in beiden Fällen zwischen 
Dateisystem- oder Datenbankebene ausgewählt werden kann. Weitere Funktionen sind 
z.B. die Neuerstellung eines Simulationsmodells oder aber das Hinzufügen eines 
Modellbausteins zu einer Bilbiothek, die Rechteverwaltung für das bearbeitete 
Simulationsmodell und Kommunikationsmöglichkeiten mit den anderen angeschlossenen 
Anwendern. 
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Das Simulationsmodell wird im linken Fenster als Baum dargestellt. Der Anwender öffnet 
ein Modell über das Kontextmenü, wobei standardmäßig die 2D-Modellierungsansicht 
ausgewählt wird. Verfügbar sind darüber hinaus die 2.5D- und 3D-Modellierung. Die 
gewählte Komponente wird im rechten Bereich des Clients als Fenster geöffnet. Die 
Baumdarstellung ermöglicht es, einzelne Bausteine einer Bibliothek direkt per Drag&Drop 
in das Simulationsmodell zu übertragen. Es besteht die Möglichkeit, ein bestimmtes 
Modell gleichzeitig in mehreren Ansichten zu öffnen. Um die Konsistenz zwischen diesen 
einzelnen Ansichten zu wahren, wird das Listener-Konzept verwendet. Hierbei 
registrieren sich die beteiligten Darstellungskomponenten auf den Modellelementen. Alle 
Darstellungskomponenten werden dann über Änderungen benachrichtigt, die in einer 
Ansicht vorgenommen wurden. Jede Darstellungsform passt daraufhin ihre Darstellung 
an. Außerdem bietet die Mainframe-Komponente die Möglichkeit, mehrere Fenster 
nebeneinander zu öffnen, um beispielsweise verschiedene Komponenten der Modellierung 
parallel zu betrachten. Abbildung 100 zeigt die laufende Applikation mit zwei in der 2D-
Modellierungskomponente geöffneten Simulationsmodellen und veranschaulicht die 
Baumdarstellung sowie die angesprochenen Bedienelemente. 
 

 

Abbildung 100: Mainframe der Modellierungskomponente 

Modellierungsumgebung 2D 
Die 2D-Modellierungskomponente ermöglicht die Erstellung neuer und das Modifizieren 
bereits vorhandener Simulationsmodelle. Hierbei werden für die einzelnen 
Bausteininstanzen die in der zentralen Datenbank enthaltenen Polygonzüge ihrer 
dreidimensionalen Repräsentanten angezeigt, um eine Draufsicht auf das Modell zu 
erhalten. Abbildung 101 zeigt beispielhaft die Darstellung zweier vorhandener 
Grafikmodelle. 
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Abbildung 101: Draufsichten 2D 

Sofern das angezeigte Modell einen Verweis auf einen in der Datenbank gespeicherten 
grafischen Repräsentanten hat, wird dieser angezeigt. Andernfalls wird ein Rechteck als 
visuelle Repräsentation einer Bausteininstanz verwendet. Die 2D-Modellierungs-
komponente ermöglicht das Setzen von Links zwischen den Bausteininstanzen bzw. 
zwischen den jeweiligen Channeln, um den Materialfluss abzubilden. Über ein Popup-
Menü hat der Modellierer die Möglichkeit, das Modell zu rotieren, zu skalieren, zu löschen 
oder aber dessen Eigenschaften zu verändern. Die Maske zur Modifikation der 
Eigenschaften des geöffneten Simulationsmodells lässt sich über eine Funktionsleiste 
erreichen. In dieser befindet sich ebenfalls die Möglichkeit, den Sichtbereich schrittweise 
per Maus-Klick zu vergrößern bzw. zu verkleinern. Zur genaueren Ausrichtung der 
Modellbausteine besteht die Möglichkeit, ein Gitternetz einzublenden, das ebenfalls 
unterschiedlich skaliert werden kann. 
 
Event-Editor 
Um dem Anwender die Programmierung der einzelnen Events zu erleichtern, wurde der 
Event-Editor als Submodul des Mainframes konzipiert, mit dem auf alle einzelnen 
Ereignisse eines Simulationsmodells in der Modellierungsphase zugegriffen werden kann. 
Mit diesem Modul kann innerhalb einer Event-Programmierung auf eine klassische 
Programmieroberfläche zurückgegriffen werden, die anwenderfreundliche Funktionen wie 
die automatische Vervollständigung, Textbausteine, Online-Syntaxkontrolle, Syntax-
Highlighting, etc. unterstützt. Einfache Programmierfehler können damit bereits frühzeitig 
erkannt werden. Bei der Speicherung des modellierten Ereignisses werden die 
verwendeten Befehle überprüft und ggf. Fehlermeldungen ausgegeben. 
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Abbildung 102: Benutzeroberfläche des Event-Editors 

Modellierungsumgebung 2.5D 
Ergänzend zur zweidimensionalen Draufsicht wurde in der Implementierungsphase eine 
2.5D-Darstellung entwickelt, die das Simulationsmodell in der in Abbildung 103 
dargestellten Form abbildet. Aus 8 verschiedenen Projektionsseiten kann das 
Simulationsmodell von schräg oben betrachtet werden, wobei die grafischen 
Repräsentanten der Bausteininstanzen Bildern des 3D-Repräsentanten entsprechen. Im 
Gegensatz zur zwei und dreidimensionalen Darstellung des Simulationsmodells in den 
entsprechenden anderen Modellierungsumgebungen wird hier der Navigationsbereich des 
Anwenders eingeschränkt. Im Gegenzug bildet die 2.5D-Darstellung eine schnelle und 
sehr intuitive Darstellungsform des Simulationsmodells, die zur Kommunikation mit 
Nicht-Simulationsexperten bereits verwendet werden kann. 
 

 

Abbildung 103: Modellierungsumgebung 2.5D 
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Um die Effizienz der 2.5D-Darstellung mittels der Ladezeiten zu untersuchen, wurden 
Performance-Tests mit verschiedenen Verbindungsarten durchgeführt. Die nachfolgende 
Tabelle zeigt die Ergebnisse der Testdurchläufe. 
 

 
Ladezeit 
2D-Outlines 

Ladezeit 
2.5D-Images 

Ladezeit 
3D-Objekte 

LAN (1) <2 s <2 s 4 s 

WLAN A (2) 16 s <2 s, 4 s, 10 s 120 s 

WLAN B (3) 5 s <2 s, 2 s , 6 s 64 s 

DSL (4) 23 s <2 s, 6 s , 31 s 365 s 

Tabelle 22: Performance-Test : Ladezeiten der 2.5D-Modellierungsumgebung 

Bei dem Vergleich der Werte zeigt sich, dass eine bis zu 60-fach höhere Geschwindigkeit 
im Vergleich zur 3D-Komponente erzielt werden konnte. Wenn man berücksichtigt, dass 
bereits Bilddateien im Cache-Ordner vorhanden sein können, fällt dieser Wert noch 
einmal deutlich höher aus. Die Ladezeiten in 2.5D sind geringer als die der 2D-
Komponente. 
 
Modellierungsumgebung 3D 
Die 3D-Modellierungskomponente ermöglicht das Modellieren von Simulationsmodellen in 
einer realitätsnahen, dreidimensionalen Umgebung, in der sich der Anwender frei 
bewegen kann. Sämtliche Bausteininstanzen werden durch ihre 3D- Repräsentanten 
dargestellt. Über die Buttons „clone“ und „remove“ können bestimmte Kamerapositionen 
in der 3D-Szene gespeichert bzw. wieder entfernt werden, um dem Anwender eine 
zeitaufwendige Navigation zwischen verschiedenen Standardansichten im 
Simulationsmodell zu ersparen. Zwischen den verfügbaren Ansichten kann hin und her 
geschaltet werden. Abbildung 104 zeigt einen Screenshot der 3D-
Modellierungskomponente und ihrer Bedienelemente. 

 

Abbildung 104: 3D-Modellierungskomponente 

Wie oben aufgezeigt, sind die Ladezeiten der 3D-Modellierungskomponente deutlich 
höher als beispielsweise die der ähnlich intuitiven Darstellung in 2.5D. Diese 
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Darstellungsform bietet sich also insbesondere im Rahmen der exakten 
Layoutausrichtung an und weniger in der alltäglichen Modellierung. 
 
Die vorgestellten Komponenten des Modellierungstools sollen nachfolgend dazu 
verwendet werden, die einzelnen Simulationsmodelle für die unter Abschnitt 6.2 
definierten Szenarien zu erstellen. Dabei wird sich in den einzelnen Szenarien jeweils auf 
einen repräsentativen Ausschnitt des Simulationsmodells im gewählten 
Detaillierungsgrad beschränkt. Die Modellierung anderer Teilbereiche erfolgt analog zu 
der dargestellten Vorgehensweise. In den Szenarien wird sich auf Grund der 
Vergleichbarkeit auf die zweidimensionale Darstellungsform des Simulationsmodells im 
Modellierungstool beschränkt. 
 
Modellierung von Szenario 1: 
In diesem Abschnitt soll der Aufbau eines zeitorientierten Simulationsmodells am Beispiel 
des Zentrallagers mit der Modellierungskomponente dargestellt werden. Zu Beginn der 
Modellierung ist keine Bausteinbibliothek vorhanden. Die entsprechenden 
Modellbausteine des Zentrallagers müssen also in einem ersten Schritt mit dem 
Modellierungstool erstellt und in der Simulationsdatenbank gesichert werden. 
Vorraussetzung für eine erfolgreiche Arbeit mit dem Client der Modellierungskomponente 
ist ein entsprechender Server, der die Verbindung zur Datenbank und die 
Mehrbenutzerfähigkeit des Werkzeugs herstellt. 
 
Nach dem Start des Client muss sich der Anwender zunächst anmelden, damit seine 
persönlichen Daten, Einstellungen und Rechte aus der Simulationsdatenbank geladen 
werden können. Zu Beginn der Bearbeitung wird eine neue Bibliothek Zentrallager-
zeitorientiert angelegt und in der Simulationsdatenbank gesichert. Ihr werden 
nachfolgend die einzelnen Modellbausteine hinzugefügt, die für den Aufbau des 
Simulationsmodells benötigt werden. Für jeden Modellbaustein können seine Attribute 
durch den Anwender belegt werden. Darüber hinaus können Input- und Output-Channel 
angelegt und ein 3D-Repräsentant aus der Datenbank zugewiesen werden. Abbildung 
105 zeigt die Benutzeroberfläche zum Anlegen eines neuen Modelbausteins in einer 
Bibliothek. 
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Abbildung 105: Benutzeroberfläche zum Erstellen eines Modellbausteins 

Der Modellbaustein muss anschließend mit seiner Verhaltenslogik versehen werden. Dazu 
können in seinen Eigenschaften die entsprechenden Ereignisse angelegt, ggf. einzelnen 
Channeln zugewiesen und unter Zuhilfenahme des Event-Editors mit dem Programmcode 
versehen werden (vgl. Abbildung 102). Die inhaltliche Aufteilung der implementierten 
Verhaltenslogik muss sich an der unter Abschnitt 5.2.4.2 aufgezeigten Form orientieren, 
um eine spätere Transformation des Simulationsmodells gewährleisten zu können. So 
darf in den jeweiligen Input-Events eines Modellbausteins nur der Eingang der Token und 
die Weiterleitung an nachfolgendes Folge-Event erfolgen. Unter Umständen können hier 
noch Eingangszeiten mitprotokolliert werden, die eine spätere Auswertung hinsichtlich 
Bearbeitungszeiten etc. erlauben. Abbildung 106 zeigt exemplarisch den Programmcode 
eines Input-Events im Modellbaustein Warenausgang ( wegen der Rückwärtssimulation 
entspricht der Input-Channel hier dem Output-Channel des vorwärts gerichteten 
Modellbausteins, nimmt also die ausgehenden Kundenaufträge als Input in den 
Warenausgang auf, um deren Rückwärtsterminierung durch das Zentrallager zu 
ermöglichen. 
 

<ichannel name="inchannel"> 
<position y="20" x="312"/> 

</ichannel> 
<event> 

<input_event inchannel="inchannel_one"/> 
<code> 

logger.debug("incoming token in wa"); 
Token t = myEntity.getinchannel(“inchannel_one”).removeToken(); 
myEntity.getVariable(“space”).set(t); 
myEntity.getinchannel().open(); 
 
OutputEvent e = new OutputEvent(myEntity); 
Kernel.schedule (e, 1000); 

</code> 
</event> 

Abbildung 106: Quellcode des Input-Channels im Modellbaustein Warenausgang 
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Die Zeitorientierung soll mittels des bausteininternen Verfahrens zur Modellierung 
erfolgen, also explizit durch den Baustein festgelegt werden. Dazu muss der Bibliothek 
neben den eigentlichen Modellbausteinen ein Schichtkalender hinzugefügt werden, der 
dem Modellbaustein zugewiesen werden kann. In dem Schichtkalender können für die 
abgebildeten Tage entsprechende Schicht- und Pausenzeiten hinterlegt werden. Die 
Schichten werden wochenweise durchgeführt, für spezielle Datumsangaben können freie 
Tage und zusätzliche Pausenzeiten hinterlegt werden. Das Zentrallager der PaderK soll 
nach einem einheitlichen Schichtmodell arbeiten. Allen Modellbausteinen kann also 
derselbe Schichtkalender zugewiesen werden. Darüber hinaus können in den einzelnen 
Modellbausteinen alle benötigten Variablen angelegt werden, wobei für die einzelnen 
Variablentypen umfangreiche Zusatzattribute ausgewählt werden können. Für alle 
numerischen Datentypen kann beispielsweise eine obere und untere Schranke und ihre 
späterer Darstellung in den entsprechenden Visualisierungsmodulen angegeben werden 
 
Jeder Baustein beinhaltet eine Listenvariable nextShifts, die initial durch die Zeiten der 
Schichtwechsel aus dem zugewiesenen Schichtkalender befüllt wird. Die Terminierung 
der einzelnen Ereignisse innerhalb des Modellbausteins kann daraufhin durch eine 
Zuordnung der Schedulingzeit des Folgeereignisses zum zeitlich nächsten folgenden 
Schichtwechsel erfolgen, indem direkt auf diesen Schichtwechsel gescheduled wird. Die 
während der Ausführung einer Simulation auftretenden Ereignisse werden dadurch immer 
auf die Schichtwechsel terminiert und ermöglichen damit eine zeitorientierte Ausführung 
des Simulationsmodells. Innerhalb des Programmcodes eines Events wird die 
Bearbeitungszeit berechnet oder auf Basis einer Variablen des Bausteins belegt und der 
Bearbeitung folgende Schichtwechsel aus der Liste nextShifts ausgewählt. Das 
Folgeevent wird daraufhin mit diesem Wert im Simulatorkern gescheduled. 
 
Wenn alle benötigten Modellbausteine der Bibliothek mit den benötigten Variablen, 
Channeln und Ereignissen formalisiert wurden, kann die Bibliothek in der 
Simulationsdatenbank gesichert werden. Dabei werden alle Modellbausteine hinsichtlich 
ihrer Vernetzung (Modellbausteine können weitere Modellbausteininstanzen enthalten) 
und der Syntax der in den Ereignissen beschriebenen Verhaltenslogik überprüft. Nur 
fehlerfreie Bibliotheken können gesichert werden. Syntax und Modellierungsfehler werden 
bereits in einer frühen Phase der Modellierung erkannt und erhöhen somit die Qualität 
der in der Simulationsdatenbank gespeicherten Daten. Der Anwender erstellt daraufhin 
ein neues Simulationsmodell Zentrallager_Ebene_1, zu dessen Modellierung die 
Bibliothek geladen werden kann. Per Drag & Drop können nun die einzelnen 
Modellbausteine im Simulationsmodell instanziiert und durch Links verknüpft werden. Die 
Variablen der Bausteininstanzen können durch den Anwender angepasst werden, wenn 
sie während der Modellierung der Bibliothek als public deklariert wurden und sich ihr 
Wert von der Standardparametrierung unterscheiden soll. Wenn beispielsweise die 
Lagergasse 1 des Zentrallagers 40 Lagerfächer mehr Kapazität als die übrigen Gassen 
hat, kann der Variablenwert capacity entsprechend um 40 erhöht werden. Die Instanz 
lagergasse1 des Modellbausteins Lagergasse kann damit 40 Token mehr aufnehmen, 
wenn die entsprechende Verwaltung in dem Programmcode des entsprechenden Events 
die Kapazität aus dieser Variablen ausliest und daraufhin entscheidet, ob und wie viele 
Folgetoken im Materialfluss aufgenommen werden können. Abbildung 107 zeigt die 
Modellierung des Simulationsmodells Zentrallager_Ebene_1 mittels der Bibliothek 
Zentrallager-zeitorientiert. 
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Abbildung 107: Modellierung des Zentrallagers mit der 2D-Ansicht 

Das Simulationsmodell kann anschließend in der Simulationsdatenbank oder auf dem 
Dateisystem gesichert werden. Während des Speicherungsprozesses werden die Snytax 
des Simulationsmodells und die Gültigkeitsbereiche der Parameterwerte der 
Bausteininstanzen überprüft, sofern das durch das Werkzeug nicht bereits erfolgt ist. Die 
nachfolgende Phase der Modellverifikation und Verbesserung erfolgt durch erste Testläufe 
des Simulationsmodells im Simulatorkern. Sie wird in Abschnitt 6.5 beschrieben. 
 
Modellierung von Szenario 2: 
Im Unterschied zur zeitorientierten Modellierung des ersten Szenarios soll nachfolgend 
die Modellierung eines ereignisorientierten Simulationsmodells am Beispiel der Montage 
der PaderK erfolgen. Da sich die grundlegenden Prozesse bei der Modellierung nur 
unwesentlich unterscheiden, soll sich im Folgenden auf die Darstellung der Unterschiede 
bei der Modellierung beschränkt werden. Zum Nachweis der Multitasking, 
beziehungsweise Mehrbenutzerfähigkeit soll die Modellierung der Montage durch zwei 
Anwender erfolgen. 
Die Anmeldung des zweiten Anwenders an der Modellierungskomponente gestaltet sich 
geringfügig anders, als in obigem Abschnitt beschrieben, weil er während der 
Autenthifizierung auf bereits existierende Sessions hingewiesen wird, denen er beitreten 
kann. Abbildung 108 zeigt den Anmeldedialog bei existierenden Sessions. 
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Abbildung 108: Anmeldedialog bei vorhandenen Sessions 

Die Implementierung der unter Abschnitt 5.1.6 konzipierten Sperrmechanismen erfolgt in 
der Modellierungskomponente nach dem Relaxed WYSIWYG-Prinzip, bei dem das 
bearbeitete Simulationsmodell oder die Bibliothek auf dem Modellierungsserver verwaltet 
wird und mittels RMI an die angeschlossenen Clients verteilt wird. Relaxed WYSIWYG 
meint, dass nicht alle Änderungen sofort an die anderen angeschlossenen Clients 
übertragen werden, sondern erst, wenn der sperrende, also der aktuelle bearbeitende 
Anwender seine Aktion beendet hat. Dadurch wird der Nachrichtenaufwand zwischen dem 
Modellierungsserver und den angeschlossenen Clients erheblich reduziert. Die einzelnen 
Bausteine, die durch andere Anwender grade bearbeitet werden, werden in dem Client 
des Anwenders blockiert und farblich hervorgehoben. Abbildung 109 zeigt die Darstellung 
einer blockierten Bausteinstanz (rechts) im Vergleich zu einer selektierten Darstellung 
(links). 

 

Abbildung 109: Darstellung einer blockierten Bausteininstanz 

Das gleichzeitige Arbeiten mehrerer Anwender an einem Modell wird durch mehrere 
Kommunikationsmöglichkeiten erleichtert. Neben der implementierten Chat-
Funktionalität steht die Möglichkeit zur Verfügung, einzelne Bausteininstanzen mit 
Notizen zu versehen, um anderen Anwendern auch asynchron Informationen zu 
kommunizieren, beispielsweise über identifizierte Fehler oder durchgeführte Änderungen. 
Darüber hinaus besteht die Möglichkeit, sich einzelne Dateien direkt über die 
Modellierungskomponente zuzusenden. 
 
Die Modellierung der einzelnen Modellbausteine für die entsprechende Bibliothek 
Montage_Ebene_2 unterscheidet sich nur unwesentlich von der in Szenario 1 
beschriebenen Vorgehensweise. Sie ist für dieses Szenario ein wenig leichter, weil die 
aufwändigere Transformation der Folgeeventterminierung entfällt. Die einzelnen 
Folgeevents eines Ereignisses können direkt über fixe, variable oder zu berechnende 
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Variablen festgelegt und anschließend im Kernel gescheduled werden. Da für dieses 
Szenario die höher detaillierte Betrachtungsebene entscheidend ist, erhöht sich aber die 
Anzahl der benötigten Bausteine und ihrer Variablen. Abbildung 110 zeigt eine  
Darstellung des ereignisdiskreten Simulationsmodells der Montage im Modellierungstool. 
 

 

Abbildung 110: Darstellung der Montage der PaderK im Modellierungstool 

Das analog erstellte, ereignisdiskrete Simulationsmodell der Teilefertigung soll im 
folgenden Szenario in ein rückwärts gerichtetes Simulationsmodell transformiert werden. 
 
Modellierung von Szenario 3: 
Weil die Montage der PaderK als Engpass des Gesamtmodells angenommen werden 
kann, soll die Feinplanung der Teilefertigung in engerer Abstimmung mit der Montage 
erfolgen. Dazu soll eine ereignisorientierte Rückwärtssimulation der Teilefertigung 
erfolgen, die als Eingabedaten die Abrufe der Montage zuzüglich der benötigten 
Verarbeitung im Zentrallager erhält. Das aus Szenario 2 bestehende Simulationsmodell 
der Teilefertigung mit Betrachtung der höheren Detaillierung soll deshalb mit dem in dem 
Werkzeug implementierten Mechanismus in ein rückwärts gerichtetes Simulationsmodell 
transformiert werden (aufgrund der hohen Detaillierung der Betrachtung an dieser Stelle 
kann nicht auf das Simulationsmodell aus dem ersten Szenario zurückgegriffen werden). 
Die hohe Detaillierung unter Berücksichtigung der Transporte ist für dieses 
Untersuchungsszenario wichtig, weil die Einplanung der Fertigungspläne in der 
Teilefertigung möglichst spät erfolgen soll, um die Kapitalbindung der PaderK durch zu 
hohe Sicherheitsbestände reduzieren zu können. Eine Betrachtung ohne die benötigten 
Transportzeiten würde das Ergebnis des Simulationsexperimentes zu sehr verfälschen. 
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Zur Umkehrung des Simulationsmodells der Teilefertigung muss das Ursprungsmodell 
zunächst durch den Anwender aus der Simulationsdatenbank in das Modellierungstool 
geladen werden. Anschließend muss das zu invertierende Simulationsmodell aus der 
Bibliothek selektiert werden und über das Kontextmenü SimBack die automatische 
Vereinfachung und Invertierung aufgerufen werden. Im Fall der Teilefertigung kann durch 
die relativ einfache Fertigungsstruktur auf Anhieb das gesamte Modell invertiert werden. 
Über die Baumansicht kann die Zerlegungsstruktur des Simulationsmodells der 
Teilefertigung betrachtet werden. Abbildung 111 zeigt die entstehende 
Vereinfachungsstruktur der Teilefertigung über die Baumvisualisierung des 
Intervierungsmoduls. 

 

Abbildung 111: Invertierung des detaillierten Modells der Teilefertigung 

Bevor das Resultat des Invertierungsprozesses als Rückwärtssimulationsmodell der 
Teilefertigung verwendet werden kann, müssen die Quellen und Senken des 
Ursprungsmodells durch ihre Pendants zur Rückwärtssimulation ausgetauscht und mit 
dem Simulationsmodell verknüpft werden. Das daraus resultierende Simulationsmodell 
kann anschließend in der Simulationsdatenbank gesichert werden. Im Rahmen der 
Modellverifikation ist aber insbesondere darauf zu achten, die Umkehrung der 
Verteilregeln zu überprüfen und ggf. anzupassen. Das soll bei der Betrachtung des dritten 
Szenarios in Abschnitt 6.5 geschehen. 
 
Administration 
Die Anmeldung eines Anwenders am Modellierungstool, die Modellierung der 
Bibliotheken, die Verknüpfung der 3D-Repräsentanten mit den neu erstellten 
Modellbausteinen setzt einen initialen Datenbestand in der Simulationsdatenbank voraus. 
Um eine Bearbeitung des Datenbestandes in der Simulationsdatenbank unabhängig von 
den Simulationsexperten ermöglichen zu können, wurde in der Implementierungsphase 
ein separates Administrationstool erstellt, das den direkten Zugriff auf Datenbereiche der 
Simulationsdatenbank ohne die Verwendung einer Modellierungs- oder Visualisierungs-
umgebung erlaubt. Insbesondere zur Wartung der Daten, zum Einpflegen neuer 3D-
Modelle, zur Generierung der Outlines und 2.5D-Darstellungen der einzelnen Modelle, 
zum Löschen von alten oder inkonsistenten Datensätzen und zur Administration der 
Benutzer und Benutzergruppen kann dieses Tool herangezogen werden. 
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Abbildung 112: Auszug aus der Oberfläche des Administrationstools 

Das Administrationstool kann unabhängig von den anderen Programmmodulen des 
entwickelten Werkzeugs arbeiten und erlaubt so die Übernahme von administrativen 
Funktionen durch Nicht-Simulationsexperten, beispielsweise der IT-Abteilung. 

 

Abbildung 113: Auszug aus dem Datenbankschema 
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Die Simulationsdatenbank selbst wurde entsprechend der Festlegungen der 
Konzeptionsphase auf Basis eines PostgresSQL-Datenbanksystems implementiert. 
Abbildung 113 zeigt einen Teilbereich der Benutzerverwaltung als Auszug aus dem 
Datenbankschema der Simulationsdatenbank, in dem alle benötigten Tabellen, Primär 
und Fremdschlüsselbeziehungen hinterlegt sind. Durch die Implementierung des 
Rechtemanagements wird zwischen Gruppen und Personen, bzw. Gruppen- und 
Personenrechten unterschieden. Über die Zuordnungstabelle public_simdb.ismember 
werden beispielsweise einzelne Anwender bestimmten Gruppen zugewiesen. Die anderen 
Bereiche der Konzeption wurden entsprechend umgesetzt und bieten somit die 
Möglichkeit, Simulationsmodelle, ihre Eingabe- und Ausgabedaten, Experimente und 
grafische Repräsentanten in einer gemeinsamen Datenbank zu hinterlegen. 
 
Die für die definierten Untersuchungsziele benötigten Simulationsmodelle konnten mit 
der Modellierungskomponente erstellt werden. Als wesentlicher, folgender Schritt 
innerhalb der Simulationsstudie müssen die einzelnen Simulationsmodelle im Folgenden 
verifiziert und verbessert werden. Gegebenfalls müssen für einzelne 
Untersuchungszwecke darüber hinaus Modellalternativen generiert werden, um Aussagen 
hinsichtlich spezieller Fragestellungen zu ermöglichen. 

6.5 Modellverifikation und –Verbesserung 

Die Verifikation der erstellten Simulationsmodelle kann in dem implementierten 
Werkzeug über verschiedene Module erfolgen, die sich gegenseitig ergänzen. 
Wesentliches Element ist aber der Simulatorkern, durch den die Ausführung des 
kompilierten Simulationsmodells gewährleistet wird. Darüber hinaus können in dieser 
Phase die zweidimensionale Visualisierung, das Reportingtool und die Debugging-
Funktionalität der Modellierungskomponente eingesetzt werden. Die nachfolgenden 
Abschnitte sollen diese Module kurz darstellen, ehe die einzelnen Szenarien damit 
bearbeitet werden sollen. In jedem Szenario soll jeweils eine der drei aufgezeigten 
Möglichkeiten zum Einsatz kommen. 
 
Modul Simulatorkern 
Bei der Implementierung des Simulatorkerns wurde darauf geachtet, dass das Modul 
sowohl als eigenständige Applikation, als auch als integrierter Teil einer Applikation 
gestartet werden kann, jeweils mit oder ohne eigene grafische Benutzeroberfläche. In 
jedem Fall startet der Simulatorkern mit einem Preprocessing-Prozess, in der das 
übergebene Simulationsmodell vom XML-Format in ein lauffähiges Java-Programm 
geparst wird. Werden in dieser Phase keine Fehler gefunden, steht der Simulatorkern für 
die Ausführung des Simulationslaufs zur Verfügung. Im Fall der grafischen Oberfläche 
kann die Simulation nun einfach mit einem Maus-Klick gestartet werden (vgl. Abbildung 
114). Im Fall einer Einbettung des Simulators kann die Simulation über eine Nachricht an 
den Simulator gestartet werden. 
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Abbildung 114: Benutzeroberfläche des Simulators 

Je nach Modellierung der einzelnen Modellbausteine des Simulationsmodells werden die 
entsprechenden Module zum Motion Planning und zur dynamischen Detaillierung von 
Simulationsmodellen mit in das laufende Gesamtpaket integriert. Beim Aufbau der 
objektorientierten Klassenhierarchie der einzelnen Modellobjekte wird erkannt, welche 
Kernelfunktionen von den Bausteinen aufgerufen werden. Beziehen sich diese zumindest 
teilweise auf Funktionen aus den beiden genannten Teilmodulen, so werden diese dem 
Gesamtpaket hinzugefügt. Dadurch wird die Instanz des Simulatorkerns so schlank wie 
möglich gehalten, was in verschiedener Hinsicht von Vorteil ist. Zum Einen wird der 
Speicherbedarf des Simulators reduziert, zum Anderen sollen solche „Simulatorpakete“ 
auf mehrere Rechner verteilt werden, um eine parallele Abarbeitung eines Simulations-
experimentes mit mehreren Simulationsläufen zu ermöglichen. Diese Verteilung kann 
umso schneller erfolgen, je kleiner das zur Verteilung bestimmt Paket ist. 
 
Modul Visualisierungskomponente 
Im Rahmen der Entwicklung von Simulationsmodellen spielt vor der eigentlichen 
Experimentierphase die Modellvalidierung und Verifikation eine große Rolle. Außer den 
generierten Daten ist in dieser Phase insbesondere die Visualisierung der dynamischen 
Abläufe von großer Bedeutung. Vor diesem Hintergrund wurden in der 
Implementierungsphase verschiedene Visualisierungsformen umgesetzt, die im 
Folgenden kurz erläutert werden. 
 
Visualisierungsumgebung 2D 
Die Darstellung der 2D-Visualisierungsumgebung erfolgt analog der Darstellung der 2D-
Modellierung, jedoch angereichert um das dynamische Verhalten des Simulationsmodells. 
Während der Modellierung kann der Anwender das erstellte Modell mit einem integrierten 
Kernel übersetzen und sich das Verhalten in der bekannten Draufsicht animieren lassen. 
Die einzelnen Token werden durch Pakete visualisiert (vgl. Abbildung 115), wenn sie 
keine eigene 3D-Darstellung besitzen. Ansonsten werden die Draufsichten ihrer 3D-
Repräsentanten verwendet. 
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Abbildung 115: Animation von Token in der 2D-Ansicht 

Im Rahmen der Modellerstellung kommt es immer wieder zu logischen Fehlern bei der 
Modellierung der einzelnen Bausteine oder zu Programmierfehlern bei der Spezifikation 
der Verhaltenslogik innerhalb eines Modellbausteins oder einer übergeordneten 
Steuerung. Das visualisierte Modell verhält sich in diesem Fall nicht wie vom Anwender 
vorgesehen. Zur besseren Unterstützung des Anwenders bei der Fehlersuche wurde in 
den Mainframe des Modellierungs- und Visualisierungstools eine Funktionalität zum 
Debuggen der Simulationsmodelle integriert. Nach der Übersetzung des 
Simulationsmodells in ein lauffähiges Programm durch den Simulator wird das erzeugte 
Programmpaket mit der Debugging-Oberfläche verknüpft, aus der die weitere Steuerung 
erfolgt. Sowohl der Aufruf einzelner Funktionen, wie auch die Veränderung der 
Parameterwerte können jetzt erfolgen, indem in der Oberfläche an den relevanten Stellen 
entsprechende Haltepunkte gesetzt werden. Beispielsweise wird die Simulation beim 
Aufruf eines speziellen Input-Events einer Bausteininstanz angehalten, bei der der 
Anwender einen Fehler in der Programmierung vermutet. Abbildung 116 zeigt links die 
Oberfläche des Debugging-Tools und im rechten Bereich die entsprechende Steuerung 
des Simulators aus der 2D-Visualisierungsoberfläche heraus. Neben der 
Ausführungsgeschwindigkeit werden die wichtigsten Steuerungsbefehle implementiert, 
um eine Simulation zu pausieren oder zu beenden. Über spezielle Funktionen kann der 
Nachrichtenfluss zwischen Simulator und Visualisierungskomponente nachvollzogen 
werden. Fehlermeldungen werden identifiziert und aktuelle Wertebelegungen von 
Variablen betrachtet. Alternativ zur Durchführung eines Simulationsexperiments können 
somit auch die Ergebnisse eines einzelnen Simulationslaufs zur Weiterverarbeitung zur 
Verfügung gestellt werden 

    

Abbildung 116: Debugging und Simulator-Steuerung der 2D-Visualisierung 

Durch die Implementierung innerhalb des Mainframes stehen den Anwendern auch bei 
der Visualisierung von Simulationsläufen in der 2D, bzw. 2.5D-Darstellung die gleichen 
Kommunikationsmöglichkeiten zur Verfügung, wie sie aus dem Modellierungsbereich 
bekannt sind. Darüber hinaus können einzelne Daten zwischen den Anwendern über 
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einen direkten Dateiversand verschickt werden, um möglichst unkompliziert 
Arbeitsinhalte austauschen zu können. 
 
 
 
Visualisierungsumgebung 2.5D 
Die Visualisierungskomponente in 2.5D ist das Pendant zur entsprechenden 
Modellierungskomponente. Dadurch ergeben sich bei der Verwendung dieselben Vor- und 
Nachteile, die aus der Modellierung bekannt sind. Einer intuitiveren Betrachtung des 
Simulationsmodells steht eine Einschränkung des Anwenders in Bezug auf die 
Freiheitsgrade der Navigation gegenüber. Die Funktionsweise ist analog der 2D-
Visualisierungskomponente. 
 

 

Abbildung 117: Visualisierungsumgebung 2.5D 

Wie Abbildung 117 zeigt, ist die Darstellung des Simulationsablaufes in der 2.5D-
Umgebung wenig immersiv, wenn auch das grobe Verhalten des Simulationsmodells 
dargestellt wird. Vor diesem Hintergrund erfährt die dreidimensionale 
Visualisierungskomponente hinsichtlich der Anforderungserfüllung eine steigende 
Bedeutung. Grundlegende Interaktionen werden aber auch aus den bereits dargestellten 
Visualisierungsumgebungen ermöglicht. So ist es möglich, die Steuerung des 
Simulationsmodells zu handhaben und einzelne Parameter während der 
Simulationsdurchführung interaktiv zu verändern. 
 
Reporting 
In Anlehnung an die Darstellung von Leitständen zur Fertigungsplanung und –Steuerung 
wurde zusätzlich eine Reporting-Oberfläche geschaffen, die sowohl als integrierte 
Applikation in den Mainframe des Modellierungs- und Visualisierungsclients, als auch als 
eigenständige Applikation verwendet werden kann. Sie bietet eine alternative Sicht auf 
das dynamische Verhalten eines Simulationsmodells, indem verschiedene Attribute der 
Bausteininstanzen durch einfache Symbole dargestellt werden. Je nach festgelegtem 
Auswertungstyp der Variablen in den Modellbausteinen kann somit automatisch eine 
Visualisierung generiert werden, wie sie Abbildung 118 zeigt. Darüber hinaus können 
einzelne Kennzahlen der Simulation dynamisch visualisiert werden, beispielsweise die 
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Ablaufstruktur aller zur Laufzeit existierenden Token, die Simulationszeit, der 
Nachrichtenverkehr des Simulators mit den Visualisierungskomponenten, etc. 
Auswertungsbausteine und ihre generierten Datentabellen werden dynamisch angezeigt 
und bieten so vorab eine gute Einschätzung der Qualität des Simulationslaufs. Für 
verschiedene Kennziffern, die in eingegrenzten Bereichen streuen, können dynamisch 
statistische Auswertungen visualisiert werden. Zum Start eines Simulationslaufs genügt 
die Auswahl eines Simulationsmodells. Die Übersetzung und Ausführung erfolgt danach 
durch einen integrierten Simulatorkern. Die Reporting-Oberfläche ist in der Lage, bereits 
vorhandene Simulationsläufe auf Basis des Simulationsmodells und dem gespeicherten 
Nachrichtenstrom erneut zu visualisieren, ohne sie erneut simulieren zu müssen. 
Dadurch wird eine nachgelagerte Analyse eines Simulationslaufs ermöglicht, wenn aus 
einer Reihe von Simulationsläufen beispielsweise die Extremata hinsichtlich ihrer 
Ursachen nachträglich untersucht werden sollen. Dadurch kann der Anwender 
abschätzen, ob der betrachtete Simulationslauf spezielle Bedingungen erfüllt hat, die bei 
der bisherigen Planung nicht berücksichtigt oder erkannt wurden. 
 

 

Abbildung 118: Benutzeroberfläche des Reportingtools 

Die mittels dem Reporting-Modul erstellen Simulationsläufe können als Experiment in der 
Simulationsdatenbank gesichert werden. 
 
Szenario 1: Modellverifikation des rückwärts gerichteten, zeitorientierten 
Simulationsmodells des Zentrallagers mit der Debuggingfunktionalität 
Die Funktionsweise des rückwärts gerichteten, zeitorientierten Simulationsmodells des 
Zentrallagers soll mittels der Debugging-Funktionalität der Modellierungskomponente 
überprüft werden. Dabei wird für das aktuell geladene Simulationsmodell direkt der 
Preprocessor des Simulators aufgerufen, der das Simulationsmodell kompiliert und in 
einer Debugging-Oberfläche startet, wie sie aus Entwicklungsumgebungen bei der 
Programmierung von Softwaresystemen bekannt ist (vgl. Abbildung 116). Die 
entsprechenden Einstellungen zum Starten des Preprocessors werden dabei soweit wie 
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möglich automatisch generiert. Alle anwenderabhängigen Startparameter (Start- und 
Endzeit der Simulation, Ausführungsgeschwindigkeit, Speicherort der temporären 
Dateien, etc.) können über ein Untermenü der Modellierungskomponente parametriert 
werden. Die gestartete Debugging-Oberfläche bietet verschiedene Funktionen zur 
Kernelsteuerung an und erlaubt darüber hinaus die Ansicht aller aktuell laufenden 
Prozesse, Variablenwerte, Bausteininstanzen usw. Der Programmcode der übersetzen 
Ereignisse kann eingesehen werden; durch das Setzen von Breakpoints kann die 
Simulation durch den Debugger beim Erreichen der Codestellen angehalten werden. 
Zusätzlich können an alle Objekte und deren Variablen Watchpoints gesetzt werden, die 
die Ausführung der Simulation im Simulator genau dann pausieren, wenn auf die 
markierten Objektinstanzen zugegriffen wird. 
 
Für den Anwender ergibt sich damit die Möglichkeit einer einfachen und individuellen 
Modellanalyse und Überprüfung der verschiedenen Objektzustände zu ausgewählten 
Zeitpunkten der Simulation. Einzelne Objekte können in ihrer Bewegung durch das 
Simulationsmodell nachverfolgt und damit der Ablauf der Simulation überprüft werden. 
Die einzelnen Ereignisse und Funktionsmethoden können hinsichtlich ihrer Korrektheit 
überprüft werden, weil nach Erreichen eines Break- oder Watchpoints der Debugger das 
Voranschreiten der Simulation nicht nur „Ereignis für Ereignis“, sondern „Codezeile für 
Codezeile“ ermöglicht. Dadurch kann eine sehr detaillierte Fehlersuche erfolgen, die den 
Gesamtprozess der Modellverifikation beschleunigt. Für fehlerfrei ausführbare 
Simulationsmodelle bietet sich die Reporting-Oberfläche zur Modellanalyse an, mit der 
eine anwenderspezifische Übersicht über einzelne Werteverläufe und Variablenzustände 
während der Simulation realisiert wird. 
 
Für das zeitorientiert simulierte Simulationsmodell des Zentrallagers der PaderK kann mit 
dieser Methode effektiv überprüft werden, wie sich die einzelnen Parameter während 
eines Schichtwechsels schrittweise verändern und ob die Abläufe richtig in den 
entsprechenden Events formalisiert wurden. Darüber hinaus kann der Scheduler des 
Simulatorkerns selbst eingesehen werden, um zu überprüfen, ob die Ereignisse in der 
korrekten Reihenfolge eingepflegt beziehungsweise aufgerufen werden. Darüber hinaus 
kann beispielsweise während der Initialisierung des Simulationsmodells überprüft 
werden, ob die zugewiesenen Schichtwechsel des Kalenders korrekt in die vorgesehenen 
Listen eingetragen werden, damit die Folgereignisse entsprechend korrekt terminiert 
werden können. 
 
Szenario 2: Modellverifikation des ereignisorientierten Simulationsmodells der 
Montage mit dem Reportingtool 
Nachdem die grundlegende Funktionsweise eines Simulationsmodells durch den 
Anwender überprüft wurde, beispielsweise durch die Überprüfung mittels der 
beschriebenen Debugging-Funktionalität, müssen in einem Folgeschritt die einzelnen 
Parameter der Bausteininstanzen überprüft und mit der Realität oder den Plandaten 
verglichen werden. Daraufhin kann in einem weiteren Schritt ein erster Simulationslauf 
durchgeführt werden, an dem das grundlegende, dynamische Verhalten des 
Simulationsmodells überprüft werden soll. Neben der später verwendeten 2D-
Visualisierung kann hierzu das Reporting-Modul des implementierten Werkzeugs 
verwendet werden. 
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Das ereignisorientierte Simulationsmodell der Montage aus dem Szenario 2 kann in der 
Applikation Reporting aus der Simulationsdatenbank geladen und an einen eingebetteten 
Simulator übergeben werden. Es wird daraufhin übersetzt, kompiliert und initialisiert, 
wobei über das Kommunikationsprotokoll alle Parameter und Initialwerte der 
Bausteininstanzen an das Reportingtool übertragen werden. Es erlaubt eine komfortable 
Steuerung des Simulators und bietet die Möglichkeit, sich individuell die einzelnen 
Variablen der Bausteininstanzen der Montage grafisch auswerten zu lassen. Darüber 
hinaus kann der Fluss aller durch das Simulationsmodell laufenden Token, der 
Nachrichtenverkehr zwischen Simulator und Visualisierungskomponente, die 
Simulationszeit und weitere Eigenschaften der Simulation angezeigt werden. Die 
Bedienoberfläche kann dabei durch den Anwender frei mit den einzelnen 
Auswertungsfenstern belegt werden, so dass eine modular aufgebaute „Leitstand“-
ähnliche Sicht auf das Simulationsmodell erlaubt wird. 
 
Für das ereignisdiskrete Simulationsmodell der Montage der PaderK kann unter 
Verwendung des Reportingtools die Auslastung aller Fördertechnik-Puffer gleichzeitig 
beobachtet und in Abhängigkeit vom Simulationsverlauf analysiert werden.  Darüber 
hinaus können die kundenindividuellen Aufträge, die als Token die Montage durchlaufen, 
nachverfolgt und ihr spezifischer Weg durch die Montage verfolgt werden. Als zusätzliche 
intuitive Darstellung des Flusses der Token durch das Simulationsmodell während der 
Simulation kann die 2D-Visualisierung. 
 
Szenario 3: Modellverifikation des rückwärts gerichteten, ereignisorientierten 
Simulationsmodells mit der 2D-Visualisierung der Modellierungskomponente. 
Die anwenderfreundlichste Darstellung des simulierten Materialflusses kann innerhalb der 
Modellverifikationsphase durch die 2D-Visualisierungskomponente erfolgen. Zwar ist die 
Darstellung in der 3D-Visualisierungskomponente generell auch möglich, die 
zweidimensionale Darstellung ist jedoch direkt in die Modellierungskomponente 
integriert. Analog zum Starten, Übersetzen und Kompilieren eines Simulationsmodells 
über die Debugging-Funktionalität wird das geladene Simulationsmodell durch einen 
internen Simulatorkern übersetzt und die Kommunikationsnachrichten durch die 2D-
Visualisierung entsprechend interpretiert. Der Fluss der Token durch das 
Simulationsmodell kann dadurch auf Basis des zweidimensionalen Layouts nachvollzogen 
werden (vgl. Abbildung 115) und erlaubt somit eine schnelle Analyse der modellierten 
Verkettungen und Verteilregeln in den einzelnen Bausteininstanzen. Die einzelnen Token 
werden dabei durch Marken dargestellt, können aber nicht individuell parametriert 
werden. Zusätzlich ermöglicht die 2D-Visualisierungskomponente aber bereits eine 
einfache Manipulation der Bausteinparameter, um identifizierte Schwachstellen und deren 
Behebung direkt in der Simulation überprüfen zu können. 
 
Zur Modellverifikation des rückwärts gerichteten Simulationsmodells der Teilefertigung im 
Szenario 3 bietet sich diese Darstellungsform insbesondere an, um eine schnelle 
Überprüfung der Invertierung des Simulationsmodells realisieren zu können. 
Fragestellungen wie „Wurden alle Verteilregeln entsprechend in die richtigen 
Bausteininstanzen transformiert?“, „Wurden alle  Prioritätsregeln korrekt durch ihr 
jeweiliges Pendant ersetzt?“ können schnell beantwortet werden, weil die Dynamik des 
Simulationsmodells in einer intuitiven Form dargestellt wird.  
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Auf die Entwicklung von alternativen Simulationsmodellen für weitergehende 
Fragestellungen soll an dieser Stelle verzichtet werden, weil sie für den Nachweis der 
Funktionalitäten des implementierten Werkzeugs nicht erforderlich sind. Im 
nachfolgenden Abschnitt sollen die einzelnen Untersuchungsszenarien durch die 
entsprechenden Module des Werkzeugs simuliert werden, indem zum Einen einzelne 
Experimentreihen mit dem Experimentmanager definiert und ausgeführt werden und zum 
Anderen Simulationsläufe einer interaktiven Analyse mit der dreidimensionalen 
Visualisierungskomponente zugeführt werden. 

6.6 Simulationsexperiment 

Die im vorigen Abschnitt verifizierten Simulationsmodelle stehen nun für die 
Experimentierphase der Simulationsstudie zur Verfügung. Die Simulationsexperimente 
können hinsichtlich zweier unterschiedliche Strategien durchgeführt werden. Zum Einen 
können Simulationsläufe ohne angeschlossene Visualisierungskomponenten möglichst 
schnell berechnet werden, um die Experimentdaten zu generieren; zum Anderen kann 
das dynamische Verhalten des abgebildeten Systems interaktiv mit einer 
Visualisierungskomponente analysiert werden. In dem implementierten Werkzeug stehen 
für beide Aufgaben jeweils ein Modul zur Verfügung, die nachfolgend kurz beschrieben 
werden sollen. 
 
Modul Experimentmanager 
Für die Parametrierung eines kompletten Simulationsexperimentes wurde der 
Experimentmanager implementiert. In Anlehnung an einen Wizard kann Anwender hier 
schrittweise ein Simulationsexperiment anlegen oder laden, konfigurieren, durchführen 
und eine Übersicht über die Ergebnisse erhalten. Der Simulatorkern ist in den 
Experimentmanager eingebettet, so dass aus einer einheitlichen Oberfläche die 
entsprechenden Versuchsreihen parametriert, durchgeführt und in der 
Simulationsdatenbank gespeichert werden können. Nach dem Start legt der Anwender 
dazu ein neues Simulationsexperiment an oder lädt ein vorab definiertes Szenario aus 
der Simulationsdatenbank. Danach kann er Start- und Endzeit der Simulation und Anzahl 
der benötigten Simulationsläufe festlegen (vgl. Abbildung 119 links). Auf diesen Angaben 
basierend erhält der Anwender eine Liste aller zu parametrierender Variablen, die nach 
der Struktur des Simulationsmodells in einer Baumstruktur geordnet sind und durch 
verschiedene Filter nach Datentypen oder Bausteinen eingegrenzt werden können (vgl. 
Abbildung 119 rechts). Für alle Startwerte der Zufallszahlen dieses Experimentes steht 
eine Funktion zur Verfügung, um die entsprechenden Werte zu Beginn jedes 
Simulationslaufs zu verwirbeln (Beispielsweise in der Form: Lauf 1: 1-2-3, Lauf 2: 2-3-1, 
Lauf 3: 3-1-2, etc.). 
 



- 206 - 

 

    

Abbildung 119: Ansichten des Experimentmanagers 

Zusätzlich zur Parametrierung der einzelnen Attribute der Modellbausteine kann der 
Anwender diejenigen Attribute auswählen, deren Werteveränderungen über einen 
Simulationslauf protokolliert werden sollen. Neben Auswertungsbausteinen etc, können 
so auch weitere interessante Attribute einzelner Bausteine verfolgt werden. Nach der 
vollständigen Parametrierung können die einzelnen Simulationsläufe als 
Stapelverarbeitung gestartet werden. Alternativ bietet sich die Verteilung auf einem 
Rechencluster an, für die entsprechende zusätzliche Attribute angegeben werden 
müssen. Die Parallelisierung bezieht sich ausschließlich auf die Verteilung der einzelnen 
Simulationsläufe, das heißt, ein einzelner Lauf kann nicht auf mehreren Rechnern verteilt 
werden. Nach dem Durchlauf aller Simulationsläufe werden die entsprechend 
ausgewerteten Kennziffern dargestellt. Sie dienen einer ersten Übersicht der generierten 
Datenmenge und lassen sich zwischen den verschiedenen Simulationsläufen vergleichen. 
Das Simulationsexperiment kann wieder in der Simulationsdatenbank gespeichert werden 
und steht für spätere, umfangreichere Analysemethoden zur Verfügung. 
 
Visualisierungskomponente 
Visualisierungsumgebung 3D 
Die dreidimensionale Visualisierungskomponente wurde als umfangreichstes 
Analysemodul in Form einer eigenständigen Applikation implementiert, die sich direkt an 
einen Simulatorkern ankoppelt. Zur Darstellung besonders großer und damit auch 
komplexer Szenen wurden spezielle Grafikalgorithmen implementiert, die eine 
echtzeitfähige Analyse großer Simulationsmodelle ermöglichen. Zur Implementierung 
konnte hier auf umfangreiche Arbeiten der Fachgruppe „Algorithmen und Komplexität“ 
des Heinz Nixdorf Instituts zurückgegriffen werden. Neben der dynamischen 
Visualisierung der simulierten Abläufe kann diese mehrbenutzerfähige Visualisierungs-
komponente den Anwender zu ausgewählten Prozesspunkten führen und bietet neben 
Mini-Map und dreidimensionaler Darstellung weitere Unterstützungsfunktionalitäten für 
den Anwender an. Analog zur Modellierungskomponente wurden auch hier Kommunika-
tionsmechanismen wie eine Chatfunktion implementiert, um eine gemeinsame Analyse 
von Simulationsmodellen auch dann zu erlauben, wenn die beteiligten Anwender nicht an 
einem Ort sind.  
 
Die dreidimensionale Visualisierungskomponente erlaubt eine interaktive Manipulation 
des berechneten Simulationslaufs, indem einzelne Parameter der Bausteininstanzen 
ausgewählt und innerhalb der vom Modellierer festgelegten Grenzen manipuliert werden 
können. Dem Anwender wird zusätzlich auch dadurch eine möglichst immersive 
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Umgebung präsentiert, dass sein „virtuelles Ich“, der Avatar, sich nur auf denjenigen 
Wegen durch die virtuelle Fertigung bewegen kann, wie es dem Anwender auch in der 
Realität möglich wäre. Unter Verwendung des Motion Planning Moduls im Simulatorkern, 
werden Kollisionen mit vorhandenen SPMs und Avataren verhindert. 
 
Abbildung 120 zeigt einen Screenshot der Benutzeroberfläche des 3D-Clients, in der die 
einzelnen Funktionsfenster gut zu erkennen sind. Mit den hier vorgestellten 
Werkzeugmodulen sollen die Untersuchungsziele mittels verschiedener 
Simulationsexperimente erarbeitet werden. Die folgenden Abschnitte beschreiben dazu 
jeweils die Vorgehensweise. 

 

Abbildung 120: Benutzeroberfläche des 3D-Clients 

Szenario 1: Zeitorientierte Rückwärtssimulation zur Terminierung von 
Fertigungsplänen 
Die Parametrierung der Experimentreihe zur zeitorientierten Rückwärtssimulation erfolgt 
mit Hilfe des Experimentmanagers. Auf der hier abgebildeten, weniger detaillierten 
Betrachtungsebene sind nur wenige Variablen zufallsverteilt, so dass nach dem Laden 
des entsprechenden Simulationsmodells nur die Anzahl der Simulationsläufe, Start- und 
Endzeiten der Simulation und zusätzliche Kommentare durch den Anwender angegeben 
werden müssen. Die jeweiligen Parameterwerte der Bausteininstanzen können in der 
Übersicht schnell überprüft werden. Anschließend werden die einzelnen Simulationsläufe 
als Stapelverarbeitung gestartet und die Simulationsdaten generiert. 
 
Nach der Simulation bietet der Experimentmanager eine Übersicht der in den 
Simulationsläufen generierten Daten, so dass der Anwender eine erste Analyse 
durchführen kann. Die Ergebnisse des Simulationsexperimentes können dann in der 
Simulationsdatenbank gesichert werden und stehen für eine spätere grafische 
Auswertung zur Verfügung. 
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Szenario 2: Ereignisdiskrete Vorwärtssimulation zur Engpass- und 
Sensitivitätsanalyse der Fertigungsabläufe 
Neben der Durchführung von Experimentreihen, in denen die Simulationsdaten so schnell 
wie möglich berechnet werden sollen, soll im zweiten Szenario eine interaktive 
Sensitivitätsanalyse mit dem implementierten Werkzeug durchgeführt werden. Dazu wird 
das entsprechende Simulationsmodell, hier der Montage der PaderK, in den Simulator 
geladen und die dreidimensionale Visualisierungskomponente gestartet. Die 
dreidimensionale Visualisierung der Montagehalle wird geladen, ihre dynamische 
Verhaltensweise wird animiert und kann durch den Anwender manipuliert werden. 
 
Zur Sensitivitätsanalyse kann der Anwender nun durch die virtuelle Montage navigieren 
und die Dynamik des abgebildeten Systems verstehen. Dafür ist es wichtig, dass der 
Faktor der Ausführungsgeschwindigkeit der Simulation nahe der Echtzeit liegt, um die 
realistische Darstellung der Fertigungsabläufe darstellen zu können. Einzelne Parameter 
einer Bausteininstanz können jetzt durch den Anwender manipuliert und die 
Auswirkungen in der Simulation direkt beobachtet werden. Löst der Anwender in der 
virtuellen Umgebung beispielsweise in der Bausteininstanz Förderstrecke 2 eine Störung 
aus, so kann beobachtet werden, wie der Transport in den Qualitätsbereich ausschließlich 
über die Förderstrecke 3 erfolgt. Wird analog dazu durch den Anwender beispielsweise 
der Status vieler durch das System laufender Karts (abgebildet durch die Token) auf 
fehlerhaft gesetzt, so werden diese Karts in den Nacharbeitsbereich ausgeschleust. Der 
daraus resultierende Rückstau kann direkt in der Visualisierungskomponente beobachtet 
werden. Unter Umständen können weitere Maßnahmen in das Simulationsmodell 
eingepflegt werden, die eine realistische Reaktion auf diesen Fertigungsablauf darstellen. 
 
Neben der Sensitivitätsanalyse muss eine ereignisorientierte Vorwärtssimulation des 
Gesamtmodells erfolgen, die über den Experimentmanager eingestellt werden kann. Weil 
in der detaillierten Betrachtungsweise viele Parameter einer Zufallsverteilung unterliegen, 
kann hier die Unterfunktion des Experimentmanagers angewendet werden, die eine 
Umverteilung der Startwerte aller Zufallsverteilungen für jeden Simulationslauf 
automatisch durchführt.  Nach dem Simulationsexperiment zeigt die Analyse im 
Experimentmanager, dass die Auslastung der einzelnen Fertigungsstufen der Montage 
durchgehend hoch ist (vgl. Abbildung 121), wohingegen Zentrallager und insbesondere 
die personalintensive Teilefertigung eine geringere Auslastung zeigen. Zur verbesserten 
Fertigungsplanung soll im dritten Szenario eine ereignisorientierte Rückwärtssimulation 
durchgeführt werden, um die spätesten Beginn-Zeitpunkte der Fertigungsaufträge zu 
bestimmen und daraus eine verbesserte Planung der Teilefertigung zu ermöglichen. 
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Abbildung 121: Auslastung der Teilbereiche bei der Vorwärtssimulation 

Auch die Ergebnisdaten der Engpassanalyse können als Experiment in der 
Simulationsdatenbank gesichert werden und stehen für eine weitere Datenauswertung 
zur Verfügung (vgl. Abschnitt 6.7). 
 
Szenario 3: Ereignisdirekte Rückwärtssimulation zur Feinplanung der 
Teilefertigung 
Die Parametrierung des Experimentmanagers für das dritte Szenario gestaltet sich analog 
zu der oben dargestellten Vorgehensweise. Auch hier wird das Simulationsmodell auf der 
hohen Detaillierungsstufe betrachtet, wodurch sich eine hohe Anzahl an zufallsverteilten 
Bausteinparametern ergibt, die wiederum zu einer höheren Anzahl an Simulationsläufen 
führen. Alle wesentlichen Unterschiede zum vorwärts gerichteten Simulationsmodell sind 
in der Modellierungsphase berücksichtigt und in der Modellverifikation überprüft worden. 
Die generierten Simulationsdaten werden ebenfalls in der Simulationsdatenbank 
gesichert und stehen zur Datenauswertung zur Verfügung. 

6.7 Datenauswertung 

Die Aufbereitung und Interpretation der generierten Simulationsdaten durch 
verschiedene Methoden der Datenauswertung erfolgt als letzter Schritt einer 
Simulationsstudie. Das implementierte Werkzeug bietet in den verschiedenen 
Teilmodulen jeweils unterschiedliche Möglichkeiten, Simulationsdaten nicht nur in der 
Simulationsdatenbank zu sichern, sondern auch in das Dateisystem zu exportieren. 
Außerdem können durch die Möglichkeiten von Java auch während der Simulation aus 
den Modellbausteinen Simulationsdaten direkt ins Dateisystem geschrieben werden, 
beispielsweise in Form von kommagetrennten Wertelisten (CSV-Dateien), die in 
kommerziellen Tabellenkalkulationen wieder importiert und aufbereitet werden können. 
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Die Modellierungskomponente erlaubt aus der zweidimensionalen Visualisierung das 
„Abonnement“ von einzelnen Parametern über den Simulationslauf und deren 
anschließenden Export in eine solche Excel-Schnittstelle. Darüber hinaus können einzelne 
Zustände der Simulation von der Oberfläche abfotografiert und als Bilddateien im 
Dateisystem gesichert werden. Zur Kommunikation von Modellfehlern bietet sich dieses 
Vorgehen insbesondere dann an, wenn die Generierung des fehlerhaften Zustandes eine 
lange Simulationszeit erfordert. Die Zustände können so unabhängig vom Simulationslauf 
gesichert und später durch die beteiligten Anwender besprochen werden. 
 
Die Reporting-Oberfläche erlaubt neben der Speicherung des Simulationsexperimentes 
auch die Sicherung des auftretenden Nachrichtenverkehrs, so dass der Simulationslauf 
im weiteren Verlauf auch ohne erneute Simulation nachvollzogen werden kann. Alle 
Zwischenzustände eines Simulationslaufs können damit wieder generiert werden und 
erlauben eine individuelle Nachbetrachtung durch den Anwender. Die aus der Simulation 
entstehenden grafischen Auswertungen der einzelnen Parameter eines Modellbausteins 
können als einzelne Bilder auch direkt ins Dateisystem exportiert werden. 
 
Die abgesicherten Experimentdaten können durch den Experimentmanager wieder 
eingelesen und dargestellt werden. Hier bietet sich die Möglichkeit, die entsprechenden 
Simulationsdaten, bzw. einzelne Wertereihen wieder ins Dateisystem zu exportieren. Die 
Generierung weiterer grafischer Auswertungen, die beispielsweise eine Nachbearbeitung 
der Auswertedaten benötigen, kann dadurch entweder in kommerziellen Tabellen-
kalkulationen (MS Excel, OpenOffice, etc) oder durch Anwendung individueller 
Bibliotheken (GNUPlot, etc.) erfolgen. 
 
Zusammenfassend kann an dieser Stelle festgehalten werden, dass alle Fragestellungen 
der PaderK mit dem implementierten Werkzeug beantwortet werden konnten. Durch die 
Abbildung der verschiedenen Fertigungsarten innerhalb der PaderK und durch die Wahl 
der entsprechenden Szenarien ergibt sich daraus, dass die in Abschnitt 2.4 gestellten 
Anforderungen an das zu entwickelnde Werkzeug mit der implementierten Lösung gelöst 
wurden. Anforderungen und Lösung sollen dazu nachfolgend noch einmal 
zusammengefasst werden und mögliche weitere Schritte aus der existierenden Lösung 
abgeleitet werden. 
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7 Ausblick 
„Das Bessere ist  

der Feind des Guten“ 
 

(Voltaire) 
 

7.1 Zusammenfassung 

Aufgabe der hier vorliegenden Arbeit war die Konzeption und Implementierung einer 
Modellierung und Ablaufsimulation von Fertigungssystemen hinsichtlich eines erweiterten 
Einsatzgebietes. Basis der Entwicklung war die Festlegung eines entsprechenden 
Arbeitsprozesses und einer Modellbeschreibung, auf deren Basis die eigentlichen 
Simulationsmodelle mit dem Werkzeug erstellt und ausgeführt werden können. 
 
Inhaltlicher Schwerpunkt war die Erfüllung folgender neuer Szenarien zum Einsatz der 
Ablaufsimulation: 
Synchronisierte, ortsunabhängige Mehrbenutzerunterstützung bei der 
Modellierung und Simulation von Materialflussmodellen in einer interaktiven, 
immersiven und virtuellen Umgebung 
Der steigenden Komplexität von Planungsprojekten im Bereich der Ablaufsimulation sollte 
dadurch Rechnung getragen werden, dass in dem entwickelten Werkzeug mehrere 
Anwender in einer gemeinsamen Umgebung Simulationsmodelle erstellen und ausführen 
können. Insbesondere die Kommunikation mit Nicht-Simulationsexperten innerhalb des 
Planungsteams erfordert dazu eine möglichst immersive Darstellung, die das Verhalten 
des Simulationsmodells bestmöglich darstellt und erklärt. Zur Visualisierung der Modelle 
und deren dynamischen Verhaltensweisen dient eine virtuelle Umgebung, in der das 
Simulationsmodell dreidimensional dargestellt wird. Der Anwender selbst ist mehr als ein 
passiver Betrachter, sondern nimmt auf den Fortlauf eines Simulationslaufes interaktiv 
Einfluss. Die Qualität der Gesamtplanung soll dadurch verbessert werden, dass die 
entsprechende Modellierung der Fertigungssysteme layoutgerecht ausgeführt wird. 
 
Planung, Evaluierung und fortlaufende Verbesserung der Fertigungsprozesse 
über alle Planungs- und Ausführungsphasen bis zur Rückkopplung in die 
Fertigungslenkung 
Der Einsatz der Ablaufsimulation soll über alle Planungs- und operativen Phasen eines 
Fertigungsprozesses hinweg erfolgen. Neben Machbarkeitsstudien, Variantenplanungen 
oder quantitativen Fragestellungen dient die Simulation auch der Planung von 
Fertigungsprogrammen. Ein bestehendes Simulationsmodell kann über alle Phasen der 
Strukturplanung, Mengen-, Kapazitäts- und Programmplanung bis hin zur Prognose und 
der laufenden Verbesserung vorhandener Fertigungsprozesse eingesetzt werden. Durch 
eine richtungsoffene Simulation können auch kundenorientierte Fertigungsprozesse 
abgebildet werden. Darüber hinaus wird eine zeitorientierte Ausführung in Vor- oder 
Rückwärtsrichtung unterstützt, um die Integration in bestehende Leitstandsysteme zu 
erleichtern. 
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Kooperative Planung innerhalb von Unternehmen, Unternehmensverbünden 
oder Supply-Chain-Netzwerken 
Großunternehmen, virtuelle Unternehmen oder Supply-Chain-Netzwerke fertigen an 
unterschiedlichen Standorten. Der Lieferfähigkeit kommt innerhalb einer Supply-Chain 
steigende Bedeutung zu. Mit dem implementierten Werkzeug können die Planungen der 
Supply-Chain Partner enger aufeinander abgestimmt und überwacht werden. Die 
Mehrbenutzerfähigkeit der angestrebten Ablaufsimulation ermöglicht eine kooperative 
Planung mehrerer Simulationsexperten an einem gemeinsamen, dynamisch 
detaillierenden Simulationsmodell des Fertigungsnetzwerks unabhängig vom Standort der 
jeweiligen Experten. Da die verschiedenen Partner innerhalb solcher unternehmens-
internen wie –externen Fertigungsnetzwerke nach unterschiedlichen Fertigungs-
ablaufarten produzieren können, wurde mit der automatischen Wegberechnung ein 
spezielles Verfahren entwickelt, welches die Modellierung und Simulation von funktional 
gegliederten Fertigungssystemen bzw. deren Mischformen erlaubt. 

7.2 Grenzen der Arbeit 

Diese Arbeit beschränkt sich auf den erweiterten Einsatz der Methode Ablaufsimulation 
und versucht, Schnittstellen zu angrenzenden Planungsschritten möglichst konstruktiv 
und praxistauglich zu gestalten. In der Praxis der Unternehmenslandschaften existieren 
zahlreiche Bestrebungen hin zu der Vision einer „Digitalen Fabrik“. Dieser Ansatz ist von 
seiner Grundidee sicherlich ganzheitlicher, wird aber von den jeweiligen Unternehmen 
oftmals nur hinsichtlich der jeweils eingesetzten Technologien verfolgt. Ziel ist ebenso 
wie bei der hier vorliegenden Arbeit eine ganzheitliche Gestaltung der Produkt- und 
Prozessplanung einer Unternehmung. Die wesentliche Herausforderung in der Praxis ist 
hierbei jedoch zumeist die Integration der existierenden Datenformate und fokussiert 
nicht so sehr auf eine ganzheitliche Betrachtung der Methoden und Ziele. Insofern passen 
die hier genannten Bestrebungen in den Kontext der Digitalen Fabrik; die Digitale Fabrik 
fördert aber noch mehr auch die Integration von Produkt- und Prozessplanung, als das in 
dieser Arbeit der Fall ist. 
 
Die Summe der Einzelziele zur Erweiterung des Einsatzgebietes der Ablaufsimulation 
erhebt keinen Anspruch auf Vollständigkeit, sondern will vielmehr mögliche nächste 
Schritte aufzeigen, die vor dem Hintergrund bereits heute existierender Projekte 
auftreten. Dennoch scheint eine engere Anbindung von Fertigungsplanung und –Lenkung, 
die Kopplung der Methode Ablaufsimulation mit den Planungsszenarien einer PPS-
Steuerung als sinnvoll und wurde in Ansätzen heute bereits realisiert. 
 
Des Weiteren ergeben sich auch aus den Ergebnissen der hier vorliegenden Arbeit 
weitere Erkenntnisse für mögliche, zukünftige Schritte, die den Themenbereich der 
Ablaufsimulation vorantreiben können, ggf. eingebettet in den Kontext der Digitalen 
Fabrik. Der nachfolgende Absatz will einige Ideen hierzu liefern. 

7.3 Ausblick 

Die ersten Arbeiten mit dem entwickelten Werkzeug zeigen erfolgreiche Durchführungen 
und Ergebnisse hinsichtlich einer Kopplung der Methode Ablaufsimulation mit den 
Planungs- und Steuerungsalgorithmen der Fertigungslenkung. Die Arbeit könnte an 
dieser Stelle vorangetrieben werden, indem weitere Lösungsmöglichkeiten in diesem 
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Problembereich einer möglichst optimalen Einsteuerung der Fertigungsaufträge in das 
Fertigungssystem, beispielsweise durch Ankopplung von Optimierungsalgorithmen, 
Neuronalen Netzen oder Genetischen Algorithmen entwickelt werden. Erste Aussagen 
über das Verhalten eines dynamischen Fertigungssystems könnten schneller generiert 
werden und die eigentlichen Simulationsläufe müssten erst später und mit optimierten 
Parametern gestartet werden. 
 
Ein weiteres sinnvolles Arbeitsgebiet ist eine erweiterte Unterstützung der Anwender bei 
der Modellierung von Simulationsmodellen. Vielfach sind einzelne Maschinendaten, 
Fertigungsabläufe, etc. schon in den entsprechenden ERP-Systemen vorhanden. Der 
Anwender könnte durch spezielle Methoden zur (semi-)automatischen Modellgenerierung 
auf Basis dieser ERP-Daten bei der Erstellung der Simulationsmodelle deutlich besser 
unterstützt werden. Insbesondere der Prozess der Modellgenerierung zu einer 
Ausgangslösung, die durch erste Simulationsläufe validiert werden kann, würde dadurch 
erheblich beschleunigt. Ausschließlich die speziellen Steuerstrategien und Soll-Konzepte 
müssten manuell in das Simulationsmodell nachgepflegt werden. 
 
Die Visualisierung einzelner Simulationsläufe ist immer nur eine mögliche Ausprägung 
des dynamischen Verhaltens des modellierten Fertigungssystems und basiert in großen 
Teilen auch auf den entsprechenden Starparametern der stochastisch verteilten 
Modellvariablen. Inwiefern der entsprechende Simulationslauf und seine Visualisierung 
also typisch für das modellierte System sind, kann zunächst nicht vom Anwender 
beantwortet werden. Klassischerweise wird das Problem in der Experimentierphase 
dadurch umgangen, dass mehrere Simulationsläufe mit unterschiedlichen Startwerten 
der stochastisch verteilten Modellvariablen simuliert werden. Um dieses Problem bereits 
während der Modellierungsphase zu bewältigen, könnte man den Versuch aus den 
entsprechenden Simulationsläufen parallel simulieren und in einer 
Visualisierungskomponente darstellen. Für jeden einzelnen Parameter einer 
Bausteininstanz würde in dieser Visualisierungsform eine Streubreite angezeigt, die den 
Anwender einschätzen lässt, wie typisch die angezeigte Visualisierung für das 
dynamische Verhalten des Systems ist. Wird die Visualisierung um eine Möglichkeit 
angereichert, zwischen der Visualisierung der einzelnen Simulationsläufe zu wechseln, 
könnte der Anwender gleichzeitig auch zu typischeren oder extremeren Simulationsläufen 
wechseln. Darüber hinaus könnten in diesem Kontext Visualisierungsmöglichkeiten 
konzipiert werden, die dem Anwender mehrere Simulationen in einer Oberfläche 
darstellen und analysieren lassen. 





Quellenverzeichnis  - 215 - 
 

 

Quellenverzeichnis 
[AlIs77] Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I., 

Angel, S.: A pattern language, Oxford University Press, New York, 1977 
 
[Arno95] Arnold, D.: Materialflusslehre. Vierweg Verlag, Braunschweig, Wiesbaden, 

1995. 
 
[Balz05] Balzert, H.: Lehrbuch Grundlagen der Informatik, Spektrum Akademischer 

Verlag; Auflage: 2., Aufl.,2005 
 
[Balz82] Balzert, H.: Die Entwicklung von Software-Systemen: Prinzipien, Methoden, 

Sprachen Werkzeuge, Bibliographisches Institut, 1982 
 
[Baum03] Baumgärtner, T.: Wenn die Computer die Fabrik von morgen testen, 

Industrieanzeiger 51-52, 2003 
 
[BeBr03] Bender, M., Brill, M.: Computergrafik – Ein anwendungsorientiertes 

Lehrbuch, Hanser Verlag, München [u.a.], 2003 
 
[Bega94] Begault, Durand R.: 3-D sound for virtual reality and multimedia, Academic 

Press, Boston [u.a.], 1994 
 
[Berg02] Bergbauer, J.: Entwicklung eines Systems zur interaktiven Simulation von 

Produktionssystemen in einer Virtuellen Umgebung, Shaker Verlag, 
Aachen, 2002 

 
[Birt82] Birtwistle, G. M., Luker, P.: Discrete event simulation with Demos, in: 

Proceedings of the 14th conference on Winter Simulation, San Diego, 
California, 1982 

 
[BKLP01]  Bowman, D.; Kruijff, E.; LaViola, J. J. Jr. und Poupyrev, I.: An Introduction 

to 3-D User Interface Design, In: Durlach, N. I. und Slate, M. (Hrsg.), 
Presence, Volume 10, Number 1, S. 96-108, MIT-Press, 2001 

 
[Booc94] Booch, G.: Objekorintierte Analyse und Design: Mit praktischen 

Anwendungsbeispielen, Addison-Westley, 1994 
 
[Borm94] Bormann, S.: Virtuelle Realität – Genese und Evaluation, Addison Westley 

Publishing Company, Bonn [u.a.], 1994 
 
[Boss92] Bossel, Hartmut: Modellbildung und Simulation, Vieweg-Verlag, 1992 
 
[Brac02] Bracht, U.: Ansätze und Methoden der Digitalen Fabrik, In: Schulze, T.; 

Schlechtweg, S. und Hinz, V. (Hrsg.): Simulation und Visualisierung 2002, 
S. 1-11, SCS-Europe BVBA, Gent, Belgien, 2002 

 



- 216 - 

 

[BrDu04] Brügge, B., Dutoit, A.H.: Objektorientierte Softwaretechnik – mit UML, 
Entwurfsmustern und Java, Pearson Education Deutschland, 2004 

 
[Brey05] Breymann, U.: C++ , Hanser Fachbuchverlag; Auflage: 8., Aufl., 2005 
 
[BrFa01]  Bracht, U. / Fahlbusch, M. W.: Einsatz von Virtual Reality – Systemen in 

der Fabrik- und Anlagenplanung, Zeitschrift für wirtschaftliche Fachbetriebe 
(ZWF), 2001 

 
[BuMe96] BUschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-

oriented Software Architecture – A System of Patterns, John Wiley & Sons, 
Chichester [u.a.], 1996 

 
[Buur05] Buurman, Gerhard M. (Hrsg.): Total Interaction. Theory and practice of a 

new paradigm for the design disciplines. Birkhäuser. Basel, Wien, New 
York, 2005 

 
[Chis92] Chisman, J.A.: Introduction to Simulation Modeling Using GPSS/PC, 

Prentice Hall, Englewood Cliffs, N.J., 1992 
 
[CoDo02] Coulouris G. F., Dollimore J., Kindeberg T.: Verteilte Systeme: Konzepte 

und Design; München u. a. 2002; Pearson Studium 
 
[Corm90] Cormen, Thomas H.: Introduction to algorithms, Cambridge, MIT Press, 

1990 
 
[Dang03] Dangelmaier W.: Skript zur Vorlesung: Grundlagen der Informationstechnik 

von Produktions- und Logistiksystemen; Universität Paderborn 2003  
 
[Dang99] Dangelmaier, W.: Fertigungsplanung: Planung von Aufbau und Ablauf der 

Fertigung, Springer, Berlin, 1999 
 
[DaWa97] Dangelmaier W., Warnecke H.: Fertigungslenkung: Planung und Steuerung 

des Ablaufs der diskreten Fertigung; Berlin u. a. 1997; Springer 
 
[Delm-ol] Delmia Quest,  

http://www.delmia.com/gallery/pdf/DELMIA_QUEST.pdf (zuletzt abgefragt: 
November 2006 

 
[DFAB98] Dix, A.; Finlay, J.; Abowd, G. und Beale, R.: Human-Computer Interaction, 

2. Auflage, Prentice Hall Europe, London u.a., 1998 
 
[DMD03] Dangelmaier W. (Hrsg.), Dittmann N., Mueck B.: Marktanalyse: 

Materialfluss–Simulatoren; Paderborn 2003; ALB-HNI-Verlagsschriftenreihe 
 
[EDFa-ol] ED-Falcon, Incontrol Enterprise Dynamics,  

http://www.taylorii.com (zuletzt abgefragt: November 2006) 
 



Quellenverzeichnis  - 217 - 
 

 

[Evan88] Evans, J. B.: Structures of discrete event simulation: an introduction to 
engagement strategy, Ellis Horwood Limited, Chichester, England, 1988 

 
[FaFG94] Fandel, G., Francois, P., Gubitz, K.-M.: PPS-Systeme, Grundlagen, 

Methoden, Software, Martkanalysen, Springer Verlag, Berlin [u.a.], 1994 
 
[FaHa94] Faßler, M., Halbach, W. (Hrsg.): Cyberspace. Gemeinschaften, Virtuelle 

Kolonien, Öffentlichkeiten. Fink Verlag, München, 1994 
 
[FiHe00] Fischer, J., Herold, W., Dangelmaier, W., Nastansky, L., Suhl, L.: Bausteine 

der Wirtschaftsinformatik, 2. überarbeitete und erweiterte Auflage, Erich 
Schmidt Verlag, Berlin, 2000 

 
[GaHe01] Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Entwurfsmuster– Elemente 

wiederverwendbarer objektorientierter Software, Addison-Wesley, München 
[u.a.], 2001 

 
[GiVa03] Girault, C. und Valk, R.: Petri Nets for Systems Engineering – A Guide to 

Modeling, Verification, and Applications, Springer Verlag, Berlin u.a., 2003 
 
[GrBo04] Graupner, T.; Bornhäuser, M.; Sihn, W.: Backward Simulation In Food 

Industry For Facility Planning And Daily Scheduling; Proceedings 16th 
European Simulation Symposium, 2004 

 
[Hack89] Hackstein, R.: Produktionsplanung und –Steuerung, 2.Auflage, VDI-Verlag, 

Düsseldorf, 1989  
 
[Henk97] Henkel, S.: Ein System von Software-Entwurfsmustern für die Propagation 

von Ereignissen in Werkzeugen zur kooperativen Fabrikmodellierung, HNI-
Verlagsschriftenreihe, Paderborn, 1997 

 
[Holm-ol] Holmevik, J.R.: Compiling Simula,  

http://heim.ifi.uio.no/~cim/sim_history.html (zuletzt abgefragt November 
2006) 

 
[JaCh97] Jain, S., Chan, S.: Experiences with Backward Simulation Based Approach 

for Lot Release Planning, Winter Simulation Conference, 773-780, 1997 
 
[Joha91] Johansen, R., “ Teams for tomorrow”. In Proc. 24th IEEE Hawaii Intl Conf. 

On System Science, S. 520-534. IEEE Comp. Soc. Press, Los Alamitos, 
1991 ASIM 

 
[Kech05] Kecher,Christian: UML2.0, GallileoComputing, 2005 
 
[Kern79] Kern, W.: Handwörterbuch der Produktionswirtschaft. Sp. 1481, Poeschel, 

Stuttgart, 1979 
 



- 218 - 

 

[KlBu71] Klaus, G. und Buhr, M.: Philosophisches Wörterbuch, VEB Verlag Enzyklo-
pädie Leipzig, 8. Auflage, 1971 

 
[KlKr02] Klein, J.; Krokowski, J.; Fischer, M.; Wand, M.; Wanka, R.; Meyer auf der 

Heide, F.: The Randomized Sample Tree: A Data Structure for Interactive 
Walkthroughs in Externally Stored Virtual Environments; In: ACM 
Symposium on Virtual Reality Software and Technology (VRST '2002); 
2002; S. 137 – 146 

 
[Klos06]  Klose, M.: Betreibersimulation Werk Leipzig - Ein webbasiertes und online 

gekoppeltes Prognosetool zur Unterstützung der Produktionssteuerung, In: 
Dangelmaier, Wilhelm; Laroque, Christoph; Döring, Andre (Hrsg.) Die 
Supply-Chain von morgen – Lieferfähigkeit im globalen Unternehmen, ALB-
HNI-Verlagsschriftenreihe, Band 14, Paderborn, 2006 

 
[LaKe00] Law A. M., Kelton W. D.: Simulation Modeling and Analysis; Boston 2000; 

Third Edition; McGRAW-Hill International Series 
 
[Lani91] Lanier, J.: Was heißt „virtuelle Realität“, In: Cyberspace. Ausflüge in 

virtuelle Wirklichkeiten, Rowohlt Verlag, Reinbeck, 1991 
 
[LaRa06] Lahres, B., Raýman, G.: Praxisbuch Objektorientierung, Galileo Computing, 

2006 
 
[LeEg88] Leszak, M. und Eggert, H.: Petri-Netz-Methoden und –Werkzeuge – Hilfs-

mittel zur Entwurfsspezifikation und –validation von Rechensystemen, 
Springer-Verlag, Berlin u.a., 1988 

 
[Lock93] Lockemann, P.C., Krüger, G., Krumm, H.: Telekommunikation und 

Datenhaltung, Hanser, 1993 
 
[Muec05] Mueck, B.: Eine Methode zur benutzerstimulierten detaillierungsvarianten 

Berechnung von diskreten Simulationen von Materialflüssen, HNI-
Verlagsschriftenreihe, Paderborn, 2005 

 
[OhHa04] Ohkawa, T.; Hata, S.; Komoda, N.: Backward Qualitative Simulation Of 

Structural Model; Japan, 1996 
 
[OOSE] OOSE – innovative Informatik,  

http://www.oose.de (zuletzt abgefragt: November 2006) 
 
[PaKr05] Page, B., Kreutzer, W.: The Java Simulation Handbook – Simulating 

Discrete Event Systems, Shaker Verlag, Aachen, 2005 
 
[RDBa01] Rolland, J. P.; Davis, L. D.; Baillot, Y.: A Survey of Tracking Technologies 

for Virtual Environments. In: In: Barfield, W.; Caudell, T. (Hrsg.): 
Fundamentals of wearable Computers and Augmented Reality. Lawrence 
Erlbaum Associates, Publishers, Mahwah, London, 2001. TRACKING 



Quellenverzeichnis  - 219 - 
 

 

 
[Rock00] Rockwell, W.: XML, XSLT, Java und JSP – Professionelle Web-Applikationen 

entwickeln, Galileo Press GmbH, Bonn, 2000 
 
[Rose92] Rosenberg, O.: Potentialfaktorwirtschaft. Vorlesungsumdruck. UNI-GH 

Paderborn, 1992 
 
[Rose93] Rosemann, M.: Design of a Real-Time Groupware-Toolkit, University of 

Calgary, 1993 
 
[Schm92] Schmidt, C.: Petri-Netze: Ein Instrument zur Lösung logistischer Probleme 

im CIM-Bereich, In: Wirtschaftsinformatik, 34, S. 66-75, 1992 
 
[Schn96] Schneider, U.: Ein formales Modell und eine Klassifikation für die 

Fertigungssteuerung, Band 16, HNI-Verlagsschriftenreihe, Paderborn, 1996 
 
[ScWe00] Schumacher, R. und Wenzel, S.: Der Modellbildungsprozeß in der 

Simulation, In: Wenzel, S. (Hrsg.): Referenzmodelle für die Simulation in 
Produktion und Logistik, S.5-11, SCS-Europe BVBA, Gent, Belgien, 2000 

 
[Sims-ol] CACI Process Company 

http://www.simprocess.com (zuletzt abgefragt: November 2006) 
 
[Simu03] Programminternes Handbuch: Simul8 Manual and Simulation Guide, Simul8 

Corporation, 2003 
 
[Somm92] Sommerville, I.: Software Engineering, Addison-Westley, 1992 
 
[Star90] Starke, P. H.: Analyse von Petri-Netz-Modellen, Teubner, Stuttgart, 1990 
 
[Stor00] Storck, A.: Effiziente 3D-Interaktions und Visualisierungstechniken für 

benutzerzentrierte Modellierungssysteme, Dissertation, Technische 
Universität Darmstadt, 2000 

 
[StVö05] Stahl,T. & Völter,M.:Modellgetriebene Softwareentwicklung, dpunkt,1. 

Auflage,2005. 
 
[SuMe01] Suhl, L., Mellouli, T.: Optimierungssysteme, Skript zur Vorlesung, uni 

Paderborn, 2001 
 
[Tane03] Tanenbaum A. S.: Computerarchitektur: Strukturen, Konzepte, 

Grundlagen; München 2003; Pearson Studium   
 
[TaSt03]  Tanenbaum, A. S., Steen M.: Verteilte Systeme: Grundlagen und 

Paradigmen; München u. a. 2003; Pearson Studium 
 
[Teic98] Teich, T.: Optimierung von Maschienenbelegungsplänen unter Benutzung 

heuristischer Verfahren, Josef Eul Verlag, Lohmar, 1998 



- 220 - 

 

 
[UGS-ol] UGS TEcnomatix Plant Simulation,  
  http://em-plant.de (zuletzt abgefragt: November 2006) 
 
[Ulle05] Ullenboom, C.: Java ist auch eine Insel. Programmieren mit der Java 

Standard Edition Version 5, Galileo Press; Auflage: 5., 2005 
 
[VDI3300] VDI-Richtlinie 3300: Materialfluß-Untersuchungen, Beuth Verlag, Berlin,  
 
[VDI3633] VDI-Richtlinie 3633: Simulation von Logistik-, Materialfluss- und 

Produktionssystemen - Grundlagen; Düsseldorf 1993; VDI Verlag 
Düsseldorf 

 
[VDI4499] VDI-Richtlinie 4499: Digitale Fabrik - Grundlagen; Düsseldorf 2006; VDI 

Verlag Düsseldorf 
 
[Völt-ol]  Völter,Markus: ModellgetriebeneSoftwareentwicklung, 2004,  

http://www.voelter.de (zuletzt abgefragt: November 2006) 
 
[W3C]  World Wide Web Consortium,  

http://w3c.org (zuletzt abgefragt: November 2006) 
 
[WaFi01]  Wand, M.; Fischer, M.; Peter, I.; Meyer auf der Heide, F.; Strasser, W.: 

The Randomized z-Buffer Algorithm: Interactive Rendering of Highly 
Complex Scenes; In: Computer Graphics (SIGGRAPH 01 Conference 
Proceedings); 2001; S. 361 – 370 

 
[WaMe97]  Watson, E. F., Medeiros, D. J., Sadowski, R. P.: A simulation-based 

backward planning approach for order-release, Proceedings of the 29th 
Conference on Winter Simulation, Atlanta, Georgia, ACM Press, New York, 
NY, 765-772. 1997 

 
[Woeh90] Wöhe, G.: Einführung in die Allgemein Betriebwirtschaftsaftslehre, Vahlen, 

17. überarb. Auflage, 1990 
 
[YiCl94] Ying, C. C., Clark, G. M.: Order release planning in a job shop using a bi-

directional simulation algorithm, Proceedings of the 26th Conference on 
Winter Simulation, Orlando, Florida, Society for Computer Simulation 
International, 1008-1012, 1994 
1973  



Anhang A - DTD zur Modellbeschreibung  - 221 - 
 

 

Anhang A - DTD zur Modellbeschreibung 
<?xml version="1.0" encoding="iso-8859-1"?> 
 
<!-- 
Fixe DTD fuer Modellbeschreibung 
Koordinatensystem: Linkshaendig, Daumen: x, Zeige: y, Mittel: z, z auf den Betrachter zu 
--> 
 
<!ELEMENT model (library, main, database, comment?)> 
 
<!ELEMENT database EMPTY> 
<!ATTLIST database 
 dburl CDATA #REQUIRED 
 username CDATA #REQUIRED 
 password CDATA #REQUIRED 
> 
 
<!ELEMENT library (buildingblock*, comment?)> 
 
<!ELEMENT buildingblock ( dockingpoints*, tokenpath*, subblock*, ichannel*, ochannel*, variable*,  
    event*, link*, moredetailed?, lessdetailed?, comment?, calendarRowShifts*, calendarRowFreeDays*, 
breakdown*)> 
<!ATTLIST buildingblock 
 id CDATA #REQUIRED 
 name CDATA #REQUIRED 
 id_mesh CDATA #IMPLIED 
 meshscale CDATA "1" 
 significance CDATA "0" 
 x-size CDATA #IMPLIED 
 y-size CDATA #IMPLIED 
 z-size CDATA #IMPLIED 
 color CDATA #IMPLIED 
 simulationBoundary (true|false) "false" 
 sortOfModel CDATA "normal" 
 calendar CDATA #IMPLIED 
 shiftTableActive (true|false) "true" 
 freeDaysTableActive (true|false) "true" 
 simStartTime CDATA #IMPLIED 
 simEndTime CDATA #IMPLIED 
> 
 
<!ELEMENT calendarRowShifts EMPTY> 
<!ATTLIST calendarRowShifts 
 name CDATA #REQUIRED 
 type CDATA "regular" 
 from CDATA #REQUIRED 
 to CDATA #REQUIRED 
 breaks CDATA #IMPLIED 
 mo (true|false) "false" 
 di (true|false) "false" 
 mi (true|false) "false" 
 do (true|false) "false" 
 fr (true|false) "false" 
 sa (true|false) "false" 
 so (true|false) "false" 
 dates CDATA #IMPLIED 
> 
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<!ELEMENT calendarRowFreeDays EMPTY> 
<!ATTLIST calendarRowFreeDays 
 date CDATA #REQUIRED 
 reason CDATA #IMPLIED 
 reduceTo CDATA #IMPLIED 
> 
 
<!ELEMENT breakdown ( mttfdist?, mttrdist?, firstTTFdist?, breakdownstart_event?, breakdownend_event?)> 
<!ATTLIST breakdown 
 name CDATA #REQUIRED 
 hasMTTFandMTTR (true|false) "false" 
 availability CDATA #IMPLIED 
 mttrAvailability CDATA #IMPLIED 
 generateStartEvents (true|false) "true" 
 generateEndEvents (true|false) "true" 
 firstTTFAutomatically (true|false) "true" 
>  
 
<!ELEMENT firstTTFdist EMPTY> 
<!ATTLIST firstTTFdist 
 type CDATA #REQUIRED 
 stream CDATA #IMPLIED 
 lowerbound CDATA #IMPLIED 
 upperbound CDATA #IMPLIED 
 haslowerbound CDATA #IMPLIED 
 hasupperbound CDATA #IMPLIED 
 alpha CDATA #IMPLIED 
 beta CDATA #IMPLIED 
 mean CDATA #IMPLIED 
 variance CDATA #IMPLIED 
 leftpoint CDATA #IMPLIED 
 midpoint CDATA #IMPLIED 
 rightpoint CDATA #IMPLIED 
 constvalue CDATA #IMPLIED 
> 
 
<!ELEMENT mttfdist EMPTY> 
<!ATTLIST mttfdist 
 type CDATA #REQUIRED 
 stream CDATA #IMPLIED 
 lowerbound CDATA #IMPLIED 
 upperbound CDATA #IMPLIED 
 haslowerbound CDATA #IMPLIED 
 hasupperbound CDATA #IMPLIED 
 alpha CDATA #IMPLIED 
 beta CDATA #IMPLIED 
 mean CDATA #IMPLIED 
 variance CDATA #IMPLIED 
 leftpoint CDATA #IMPLIED 
 midpoint CDATA #IMPLIED 
 rightpoint CDATA #IMPLIED 
 constvalue CDATA #IMPLIED 
> 
 
<!ELEMENT mttrdist EMPTY> 
<!ATTLIST mttrdist 
 type CDATA #REQUIRED 
 stream CDATA #IMPLIED 
 lowerbound CDATA #IMPLIED 
 upperbound CDATA #IMPLIED 
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 haslowerbound CDATA #IMPLIED 
 hasupperbound CDATA #IMPLIED 
 alpha CDATA #IMPLIED 
 beta CDATA #IMPLIED 
 mean CDATA #IMPLIED 
 variance CDATA #IMPLIED 
 leftpoint CDATA #IMPLIED 
 midpoint CDATA #IMPLIED 
 rightpoint CDATA #IMPLIED 
 constvalue CDATA #IMPLIED 
> 
 
<!ELEMENT breakdownstart_event ( codeBS)> 
 
<!ELEMENT codeBS (#PCDATA)> 
 
<!ELEMENT breakdownend_event ( codeBE)> 
 
<!ELEMENT codeBE (#PCDATA)> 
 
<!ELEMENT tokenpath EMPTY> 
<!ATTLIST tokenpath 
 iddatabase CDATA #REQUIRED 
 name CDATA #IMPLIED 
> 
 
<!ELEMENT dockingpoints (dockingpointfromdb)+> 
 
<!ELEMENT dockingpointfromdb EMPTY> 
<!ATTLIST dockingpointfromdb   
 id CDATA #REQUIRED 
 name CDATA #IMPLIED> 
 
<!ELEMENT subblock (dockingpoints*, tokenpath*, position, relativePosition?, variable_value*, 
calendarRowShifts*, calendarRowFreeDays*, breakdown*, subblock*, comment?)> 
<!ATTLIST subblock 
 type CDATA #REQUIRED 
 name CDATA #REQUIRED 
 meshScale CDATA #IMPLIED 
 id_mesh CDATA #IMPLIED 
 srcid CDATA #REQUIRED 
 color CDATA #IMPLIED 
 layer CDATA "0" 
 significance CDATA "0" 
 sortOfModel CDATA "normal" 
 calendar CDATA #IMPLIED 
 shiftTableActive (true|false) "true" 
 freeDaysTableActive (true|false) "true" 
> 
 
<!ELEMENT position EMPTY> 
<!ATTLIST position 
 x CDATA #REQUIRED 
 y CDATA #REQUIRED 
    z CDATA "0" 
    rotx CDATA "0" 
    roty CDATA "0" 
    rotz CDATA "0"> 
 
<!ELEMENT relativePosition EMPTY> 
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<!ATTLIST relativePosition 
 x CDATA #REQUIRED 
 y CDATA #REQUIRED> 
 
<!ELEMENT variable_value EMPTY> 
<!ATTLIST variable_value 
 name CDATA #REQUIRED 
 value CDATA #IMPLIED 
 meanvalue CDATA #IMPLIED 
 variance CDATA #IMPLIED 
 lowerbound CDATA #IMPLIED 
 upperbound CDATA #IMPLIED 
 streamNumber CDATA #IMPLIED 
> 
 
<!ELEMENT ichannel (position?, comment?)> 
<!ATTLIST ichannel 
 name CDATA #REQUIRED 
> 
 
<!ELEMENT ochannel (position?, comment?)> 
<!ATTLIST ochannel 
 name CDATA #REQUIRED 
> 
 
<!ELEMENT link (comment?)> 
<!ATTLIST link 
 from CDATA #REQUIRED 
 from_channel CDATA #REQUIRED 
 to CDATA #REQUIRED 
 to_channel CDATA #REQUIRED 
> 
 
<!ELEMENT moredetailed (comment?)> 
<!ATTLIST moredetailed type CDATA #REQUIRED>  
 
<!ELEMENT lessdetailed (comment?)> 
<!ATTLIST lessdetailed type CDATA #REQUIRED> 
 
<!ELEMENT variable ((int | long | double | float | time | arraylist | string | boolean | enum | token | hashmap | 
table | random ), comment?)> 
<!ATTLIST variable 
 public (yes | no) #REQUIRED 
 vrvisibility (none | readable | writeable) #REQUIRED 
 name CDATA #REQUIRED 
> 
 
<!ELEMENT long (standardvalue, lowerbound?, upperbound?, evaluationtypeno?)> 
 
<!ELEMENT int (standardvalue, lowerbound?, upperbound?, evaluationtypeno?)> 
 
<!ELEMENT lowerbound (#PCDATA)> 
 
<!ELEMENT upperbound (#PCDATA)> 
 
<!ELEMENT standardvalue (#PCDATA)> 
 
<!ELEMENT double (standardvalue, lowerbound?, upperbound?, precision?, evaluationtypeno?)> 
 
<!ELEMENT float (standardvalue, lowerbound?, upperbound?, precision?, evaluationtypeno?)> 
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<!ELEMENT precision (#PCDATA)> 
 
<!ELEMENT arraylist (variable*, evaluationtypelist?)>  
 
<!ELEMENT string (standardvalue, length, evaluationtypestring?)> 
 
<!ELEMENT length (#PCDATA)> 
 
<!ELEMENT boolean (standardvalue, evaluationtypebool?)> 
 
<!ELEMENT time (#PCDATA)> 
 
<!ELEMENT enum (standardvalue, enummember+)> 
 
<!ELEMENT enummember (#PCDATA)> 
<!ATTLIST enummember 
 description CDATA #IMPLIED 
> 
 
<!ELEMENT token EMPTY> 
 
<!ELEMENT hashmap EMPTY> 
 
<!ELEMENT table (evaluationtypetable?)> 
<!ATTLIST table  
 columns CDATA #REQUIRED 
> 
 
<!ELEMENT random ((uniform | normal | triangular | exponential), streamNumber, evaluationtypeno?)> 
 
<!ELEMENT uniform (lowerbound, upperbound)> 
 
<!ELEMENT normal (meanvalue, variance)> 
 
<!ELEMENT triangular (meanvalue, lowerbound, upperbound)> 
 
<!ELEMENT exponential (meanvalue)> 
 
<!ELEMENT meanvalue (#PCDATA) > 
 
<!ELEMENT variance (#PCDATA) > 
 
<!ELEMENT streamNumber (#PCDATA)> 
 
<!ELEMENT evaluationtypeno (trafficlight | gauge | display)> 
<!ATTLIST evaluationtypeno 
 evaluationprio (high | medium | low)  #REQUIRED 
> 
 
<!ELEMENT evaluationtypebool (signal | display)> 
<!ATTLIST evaluationtypebool 
 evaluationprio (high | medium | low)  #REQUIRED 
> 
 
<!ELEMENT evaluationtypelist (meanvariance | histogram | display)> 
<!ATTLIST evaluationtypelist 
 evaluationprio (high | medium | low)  #REQUIRED 
> 
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<!ELEMENT evaluationtypestring (display)> 
<!ATTLIST evaluationtypestring 
 evaluationprio (high | medium | low)  #REQUIRED 
> 
 
<!ELEMENT evaluationtypetable (meanvariance | timetable | histogram | display)> 
<!ATTLIST evaluationtypetable 
 evaluationprio (high | medium | low)  #REQUIRED 
> 
 
<!ELEMENT meanvariance (valuecolumn?)> 
 
<!ELEMENT valuecolumn (#PCDATA)> 
 
<!ELEMENT timetable (yline*, timecolumn, valuecolumn)> 
<!ATTLIST timetable 
 dots (yes | no) #REQUIRED 
 color CDATA #IMPLIED 
> 
 
<!ELEMENT yline (#PCDATA)> 
 
<!ELEMENT timecolumn (#PCDATA)> 
 
<!ELEMENT display (#PCDATA)> 
 
<!ELEMENT trafficlight (thresholdyellow, thresholdred)> 
 
<!ELEMENT gauge (thresholdyellow?, thresholdred?)> 
 
<!ELEMENT thresholdyellow (#PCDATA)> 
 
<!ELEMENT thresholdred (#PCDATA)> 
 
<!ELEMENT threshold (#PCDATA)> 
 
<!ELEMENT histogram (threshold*, valuecolumn?)> 
 
<!ELEMENT signal (greentrue | greenfalse)> 
 
<!ELEMENT greentrue (#PCDATA)> 
 
<!ELEMENT greenfalse (#PCDATA)> 
 
<!ELEMENT event 
((input_event|output_event|reopen_event|sub_output_event|sub_input_event|sub_reopen_event|init_event|u
ser_defined_event|switch_event|final_event), code, comment?)> 
<!ATTLIST event  
 name CDATA #IMPLIED 
> 
 
<!ELEMENT input_event EMPTY> 
<!ATTLIST input_event 
 inchannel CDATA #REQUIRED 
> 
 
<!ELEMENT output_event EMPTY> 
<!ATTLIST output_event 
 outchannel CDATA #REQUIRED 
> 
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<!ELEMENT reopen_event EMPTY> 
<!ATTLIST reopen_event 
 channel CDATA #REQUIRED 
> 
 
<!ELEMENT sub_output_event EMPTY> 
<!ATTLIST subout_event 
 outchannel CDATA #REQUIRED 
> 
 
<!ELEMENT sub_input_event EMPTY> 
<!ATTLIST sub_input_event 
 inchannel CDATA #REQUIRED 
> 
 
<!ELEMENT sub_reopen_event EMPTY> 
<!ATTLIST sub_reopen_event 
 inchannel CDATA #REQUIRED 
> 
 
<!ELEMENT init_event EMPTY> 
 
<!ELEMENT user_defined_event EMPTY> 
<!ATTLIST user_defined_event name CDATA #REQUIRED> 
 
<!ELEMENT switch_event EMPTY> 
<!ATTLIST switch_event name CDATA #REQUIRED> 
 
<!ELEMENT final_event EMPTY> 
 
<!ELEMENT code (#PCDATA)> 
 
<!ELEMENT comment (#PCDATA)> 
 
<!ELEMENT main EMPTY> 
<!ATTLIST main 
 modeltorun CDATA #IMPLIED 
> 
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Anhang B - DTD zum Nachrichtenaustausch 
<!-- 
 ============================================================== 
    DTD for XML-communication between simulation and visualisation 
 ============================================================== 
  
 $Id: messages.dtd,v 1.44 2006/02/20 16:03:00 shampoo Exp $ 
--> 
 
<!-- 
 ======== 
 Entities 
 ======== 
--> 
 
<!ENTITY % ID "CDATA"> 
<!ENTITY % Int "CDATA"> 
<!ENTITY % Long "CDATA"> 
<!ENTITY % Float "CDATA"> 
<!ENTITY % Double "CDATA"> 
<!ENTITY % String "CDATA"> 
<!ENTITY % Boolean "CDATA"> 
 
<!ENTITY % Timestamp " 
 timestamp %Long; #REQUIRED  
"> 
 
<!ENTITY % Message1 "(normal-message | request-message | reply-message)"> 
<!ENTITY % Message2 "(start | pause | stop| save | timefactor | databaseinfo |  
   dockingpoint | tokenpath | buildingblock | robot | token |  
   robotpool | subscribe-properties | unsubscribe-properties |  
   object-properties | properties-changed | significance |  
   include-token | exclude-token | animate-token | remove-token | 
   remove-robot | move-robot | move-poolmember | check-arrival |  
   free-robot |endOfInitialization | mp-prefs | timestamp  
   | avatar | mrm-quantifier | unlockMRM | lockMRM | maxspeed | normalspeed)"> 
<!ENTITY % Message3 "(error | no-error | expected-arrival-time | arrival | still-computing-path | object-
properties)"> 
 
<!-- 
    ==== 
 ROOT 
 ==== 
--> 
 
<!ELEMENT root (%Message1;)*> 
 
<!-- 
 ============== 
 Callback-Layer 
 ============== 
 
    A Message can be of three types: 
      - normal message 
      - request message 
      - reply message 
--> 
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<!ELEMENT normal-message %Message2;> 
 
<!ELEMENT request-message %Message2;> 
<!ATTLIST request-message 
 cbid %ID; #REQUIRED 
> 
 
<!ELEMENT reply-message %Message3;> 
<!ATTLIST reply-message 
 cbid %ID; #REQUIRED 
> 
 
<!-- 
 ============== 
 Avatar-Message needed for switch procedure 
 Consits of "Front-Vector" and Avatar-Vector 
 At this stage of development just 2-D 
 ============== 
--> 
<!ELEMENT avatar EMPTY> 
<!ATTLIST avatar 
 xfront  %Float; #REQUIRED 
 yfront %Float; #REQUIRED 
 zfront %Float; #IMPLIED 
 xavatar %Float; #REQUIRED 
 yavatar %Float; #REQUIRED 
 zavatar %Float; #IMPLIED 
> 
 
<!-- 
 ============== 
 Message for adjusting the weighting of the mrm indicators. 
 The sum of distance and lineOfSight must be 1. 
 ============== 
--> 
<!ELEMENT mrm-quantifier EMPTY> 
<!ATTLIST mrm-quantifier 
 distance %Float; #REQUIRED 
 lineOfSight %Float; #REQUIRED 
 relations (0 | 1 | 2) #REQUIRED 
> 
 
<!ELEMENT lockMRM EMPTY> 
 
<!ELEMENT unlockMRM EMPTY> 
 
<!-- 
 ============== 
 Administration 
 ============== 
--> 
 
<!-- 
This message can be sent in initialisation phase. The computationtime is the time a path computation will take. 
Simulation will send a move-robot message and, after waiting for computationtime simulation time, send a 
check-arrival message. As simulation time is ahead of server time, timeprecision limits this inaccuracy by 
blocking simulation until the difference between simulation and server time is less then timeprecision. Note: 
The worst thing which can happen is that simulation gets to know timperecision later that a robot arrived. 
Setting timeprecision to a reasonable value (e.g. 100) makes it easier for visualisation to produce smooth 
pictures. On the other hand,  setting both values to 0 guarantees accurate simulation results. 
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--> 
<!ELEMENT mp-prefs EMPTY> 
<!ATTLIST mp-prefs 
 computationtime %Int; #REQUIRED 
 timeprecision %Int; #REQUIRED 
> 
 
<!ELEMENT start EMPTY> 
<!ELEMENT pause EMPTY> 
<!ELEMENT stop  EMPTY> 
<!ELEMENT save EMPTY> 
<!ATTLIST save 
 pathname   %String; #REQUIRED 
> 
 
<!ELEMENT maxspeed  EMPTY> 
 
<!ELEMENT normalspeed  EMPTY> 
 
<!ELEMENT timestamp EMPTY> 
<!ATTLIST timestamp 
 %Timestamp;  
> 
 
<!ELEMENT timefactor EMPTY> 
<!ATTLIST timefactor 
 %Timestamp;  
 value %Int; #REQUIRED 
> 
 
 
<!-- 
 ============== 
 Initialization 
 ============== 
--> 
 
<!-- 
If a visualisation server connects to the simulation, the simulation needs switch to pause state. Afterwards, all 
information about the current simulation status is transferred to the server using the messages in this section. 
Note: Some messages have to be sent in a special order. If all messages are sent, simulation sends a message 
of this type to the server. After processing the input, the server will send a start message to start the 
simulation. 
--> 
<!ELEMENT endOfInitialization EMPTY> 
 
<!-- 
 Simulation specifies the database location etc. Encryption needed! 
--> 
<!ELEMENT databaseinfo EMPTY> 
<!ATTLIST databaseinfo 
 url  %String; #REQUIRED 
 username %String; #REQUIRED 
 password %String; #REQUIRED 
> 
 
<!-- 
Dockingpoints belong to a Buildingblock. A Buildingblock can have Dockingpoints. Robots can be sent by 
specifying id of Buildingblock and id of Dockingpoint, or by just specifying the Buildingblock (in this case 
Motionplanning chooses a Dockingpoint). Usually Dockingpoints are saved in the db together with the 3D model 
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they belong to, but they can also be added by specifying the Buildingblock and a position relative to the 
position of the Buildingblock 
--> 
<!ELEMENT dockingpoint (databaseid | (description?, location))> 
<!ATTLIST dockingpoint 
 id  %Int; #REQUIRED 
 idbb  %Int; #REQUIRED 
> 
 
<!-- 
Tokens can be moved automatically along a specified path. (e.g. a box moved along a production line). A Token 
path describes such a path. A movement of a token can be moved by sending an AnimateToken message. 
--> 
 
<!ELEMENT tokenpath (databaseid | (description?, location, location+))> 
<!ATTLIST tokenpath 
 id  %Int; #REQUIRED 
 idbb  %Int; #REQUIRED 
> 
 
<!-- 
Buildingblocks represent static objects, e.g. machines. They must have an associated mesh which is saved in 
the db. Visualisation will get the Dockingpoints and Tokenpathes out of the database, but additional ones can 
be specified. If the bulding block mesh contains other building block meshes (e.g. if it is a hall), 
the optional simulationBoundary flag has to be set.  
--> 
 
<!ELEMENT buildingblock (description?, mesh, location, significancepoint?)> 
<!ATTLIST buildingblock 
 id          %Int;  #REQUIRED  
 simulationBoundary   %Boolean;   "false" 
> 
 
<!-- 
A Robot is an object for which movements can be ordered with a MoveRobot or a MovePoolMember message. 
Initial position, maxSpeed and radius must be specified. NOTE: All Dockingpoints, Tokenpathes and 
Buildingblocks have to be transmitted before the first Robot! 
--> 
 
<!ELEMENT robot (description?, mesh, location)> 
<!ATTLIST robot 
 type (portal2d | portal3d | forklifter | worker) #REQUIRED 
  
 id  %Int; #REQUIRED  
 idpool %Int; #IMPLIED  
 
 speed  %Float; #REQUIRED 
 radius %Float; #REQUIRED 
 accel %Float; #IMPLIED 
 decel %Float; #IMPLIED 
> 
 
<!-- 
A Token is an object which can be displayed at a fixed position 
or moved along a Buildingblock via a Tokenpath. 
--> 
<!ELEMENT token (description?, mesh)> 
<!ATTLIST token 
 id  %Int; #REQUIRED  
> 
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<!-- 
Robots don't have to, but should belong to Pools, which are introduced with messages of this type. Movements 
of Robots should be ordered by using a MovePoolMember message (Simulation can't know how long it takes a 
special Robot to go from A to B!) 
--> 
 
<!ELEMENT robotpool (description?)> 
<!ATTLIST robotpool 
 id  %Int; #REQUIRED  
> 
 
 
<!-- 
 ========== 
 Properties 
 ========== 
--> 
 
<!-- 
If the Visualisation is interested in the properties of a special Buldingblock, it sends a message of this type to 
the Simulation. Simulation answers with a PropertyMessage immediately, and sends a 
PropertyChangedMessage as soon as one or more properties have changed, but no more often than every 
interval milliseconds. A subscription can be cancelled by Visualisation with an UnsubscribeObjectProperties 
message. 
--> 
 
<!ELEMENT subscribe-properties EMPTY> 
<!ATTLIST subscribe-properties 
 idbb  %Int; #REQUIRED 
 interval %Int; #REQUIRED 
> 
 
<!-- 
Cancels a subscription of properties of the given object. 
--> 
<!ELEMENT unsubscribe-properties EMPTY> 
<!ATTLIST unsubscribe-properties 
 idbb  %Int; #REQUIRED 
> 
 
<!-- 
 
Contains a list of all properties of an object, including the current values of those properties. 
--> 
<!ELEMENT object-properties (property*)> 
<!ATTLIST object-properties 
 %Timestamp; 
 idbb %Int; #REQUIRED 
> 
 
<!ELEMENT property (description?, (simple-type | enum-type | list| table | random), evaluationtype?)> 
<!ATTLIST property 
 name     %String;  #REQUIRED 
 readonly (yes|no)    "yes" 
> 
 
<!ELEMENT simple-type EMPTY> 
<!ATTLIST simple-type 
 type (long|double|bool|string|time) #REQUIRED 
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 value     %String;    #REQUIRED 
 lowerbound %String;  #IMPLIED 
 upperbound  %String;  #IMPLIED 
 
> 
 
<!ELEMENT enum-type (item+)> 
 
<!ELEMENT item EMPTY> 
<!ATTLIST item 
 value %String; #REQUIRED 
> 
 
<!-- 
a list can have serveral items   
--> 
 
<!ELEMENT list (simple-type*)> 
 
 
<!--  
erlaubt nur gleichmaessige tabellen 
--> 
<!ELEMENT table  (content*)> 
<!ATTLIST table 
  rowsize  %Int; #REQUIRED 
  columnsize      %Int; #REQUIRED 
> 
 
<!ELEMENT content  (simple-type)> 
<!ATTLIST content 
  row  %Int; #REQUIRED 
  column  %Int; #REQUIRED 
> 
 
 
 
<!ELEMENT random EMPTY> 
<!ATTLIST random 
 type (exponential | normal | triangular | uniform) #REQUIRED 
 value      %String;   #REQUIRED    
 streamnumber  %Int;  #REQUIRED 
 meanvalue  %Float;  #IMPLIED 
 variance  %Float;  #IMPLIED 
 lowerbound  %Float;  #IMPLIED 
 upperbound  %Float;  #IMPLIED 
> 
 
 
<!-- 
Contains a list of all properties which have changed since the last object-properties or properties-changed 
message has been sent. If sent by Visualisation, then a user wants to adjust a setting. It's up to the simulation 
to decide if it allows that. If it decides to change the property, a properties-changed message has to be sent as 
usual. The timestamp is only needed if the message is sent from Simulation to Visualisation. 
--> 
 
<!ELEMENT properties-changed (simple-update*|enum-update* |list-update*|table-update*|random-
update*)> 
<!ATTLIST properties-changed 
 %Timestamp;      
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 idbb %Int; #REQUIRED 
>  
 
<!ELEMENT list-update (remove-first?,add-last?)> 
<!ATTLIST list-update 
 name     %String;  #REQUIRED 
> 
 
<!ELEMENT remove-first EMPTY> 
<!ATTLIST remove-first 
 quantity     %Int;  #REQUIRED 
> 
 
<!ELEMENT add-last (simple-type+)> 
 
<!ELEMENT table-update (content+)> 
<!ATTLIST table-update 
 name %String;  #REQUIRED 
> 
 
<!ELEMENT random-update EMPTY> 
<!ATTLIST random-update 
 name %String;  #REQUIRED 
 type (exponential | normal | triangular | uniform) #IMPLIED 
 value      %String;   #IMPLIED    
 streamnumber  %Int;  #IMPLIED 
 meanvalue  %Float;  #IMPLIED 
 variance  %Float;  #IMPLIED 
 lowerbound  %Float;  #IMPLIED 
 upperbound  %Float;  #IMPLIED 
> 
 
<!ELEMENT simple-update EMPTY> 
<!ATTLIST simple-update 
 name %String;       #REQUIRED 
 type (long|double|bool|string|time) #IMPLIED 
 value %String;         #REQUIRED    
> 
 
<!ELEMENT enum-update (item+)> 
<!ATTLIST enum-update 
 name %String;  #REQUIRED 
> 
 
 
<!-- 
 =============== 
 Evaluationtypes 
 =============== 
--> 
 
<!ELEMENT evaluationtype (meanvariance | timetable | display | trafficlight | gauge | histogram | signal)> 
<!ATTLIST evaluationtype 
 priority  (high | medium | low)  #REQUIRED 
> 
<!-- 
Mittelwert und Standartabweichung (z.B. 5 +- 2) 
--> 
<!ELEMENT meanvariance (valuecolumn?)> 
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<!-- 
Bei Tabellen: Aus welcher Spalte sollen die Daten genommen werden 
--> 
<!ELEMENT valuecolumn (#PCDATA)> 
 
<!-- 
Diagramm mit f(timecolumn(i)) = valuecolumn(i) Es kann angegeben werden, ob Datenpunkte als dicke Punkte 
dargestellt werden sollen und welche Farbe der Graph haben soll 
--> 
 
<!ELEMENT timetable (yline*, timecolumn, valuecolumn)> 
<!ATTLIST timetable 
 dots (true | false) #REQUIRED 
 color CDATA #IMPLIED 
> 
<!--  
Reele Zahl. f(x)=yline. Waagerechte Linie im Diagramm. 
--> 
<!ELEMENT yline (#PCDATA)> 
 
<!--  
Wert 1..N Nummer der Spalte, in der die Zeitwerte stehen (x-Achse) 
--> 
<!ELEMENT timecolumn (#PCDATA)> 
 
<!-- 
Einfache Anzeige eines Wertes. 
--> 
<!ELEMENT display (#PCDATA)> 
 
<!-- 
Eine Ampel. thresholdyellow gibt den Anfangswert für den gelben Bereich, thresholdred den für den roten 
Bereich an. 
--> 
<!ELEMENT trafficlight (thresholdyellow, thresholdred)> 
 
<!-- 
Ein Drehzahlmesser. thresholdyellow gibt den Anfangswert für den gelben Bereich, thresholdred den für den 
roten Bereich an. Anordnung(im Uhrzeigersinn): gruen, gelb, rot 
--> 
<!ELEMENT gauge (thresholdyellow?, thresholdred?)> 
 
<!-- 
Ein Wert aus der Menge der reellen Zahlen 
--> 
<!ELEMENT thresholdyellow (#PCDATA)> 
 
<!-- 
Ein Wert aus der Menge der reellen Zahlen 
--> 
<!ELEMENT thresholdred (#PCDATA)> 
 
<!-- 
Ein Wert aus der Menge der reellen Zahlen 
--> 
<!ELEMENT threshold (#PCDATA)> 
 
<!-- 
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Ein Histogramm ist ein Balkendiagramm, bei dem jeder Balken einen Wertebereich darstellt. Es werden nur die 
Ereignisse gezählt, wenn ein Wert in ein Intervall passt. Diese Intervalle werden durch die threshold-Wert 
angegeben (z.B. 5,10,20,30 -> Werte <= 5 in der ersten, Werte >5 und <= 10 in der zweiten, etc.) 
--> 
 
<!ELEMENT histogram (threshold*, valuecolumn?)> 
 
<!--  
Einfache Darstellung eines grünen oder roten Kreises. Es kann ausgewählt werden, 
 ob true gut(gruen) oder schlecht(rot) ist. 
--> 
<!ELEMENT signal EMPTY> 
<!ATTLIST signal 
      truegreen    (true|false)    #REQUIRED 
>  
 
 
 
 
<!-- 
 ============ 
 Significance 
 ============ 
--> 
 
<!-- 
Changes the significance of the given object. This causes the object to be displayed in a more detailed way. If 
the significance of an object gets higher then a threshold which can be chosen by each visualisation user, a 
marker will be displayed at the position of the object. 
--> 
 
<!ELEMENT significance EMPTY>  
<!ATTLIST significance 
 %Timestamp; 
 idbb %Int;  #REQUIRED 
 value %Float;  #REQUIRED 
 message %String; #IMPLIED 
> 
 
 
<!-- 
 ====== 
 Tokens 
 ====== 
--> 
 
<!-- 
This message can be used to put Tokens into other Tokens (e.g. shoes in a box). It can also be used to put a 
Token onto a Robot. Each Token must have a location which is relative to the reference point of the Token 
which it is put into. 
--> 
 
<!ELEMENT include-token (include+)> 
<!ATTLIST include-token 
 %Timestamp; 
 idparent %Int; #REQUIRED 
> 
 
<!ELEMENT include (location)> 
<!ATTLIST include 
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 idchild %Int; #REQUIRED 
> 
 
<!-- 
To remove Tokens from a Token or a Robot 
--> 
<!ELEMENT exclude-token (exclude+)> 
<!ATTLIST exclude-token 
 %Timestamp; 
 idparent %Int; #REQUIRED 
> 
 
<!ELEMENT exclude EMPTY> 
<!ATTLIST exclude 
 idchild %Int; #REQUIRED 
> 
 
<!-- 
This message is used to animate a Token. The Token will start a the first node of the path and will move along 
all the path nodes. The movement will take the specified time. At the end, the token will be displayed at the 
location of the last node of the path, or hidden if the hide flag is set to true. 
--> 
 
<!ELEMENT animate-token EMPTY> 
<!ATTLIST animate-token 
 %Timestamp; 
 idtoken  %Int;   #REQUIRED 
 idpath  %Int;     #REQUIRED 
 starttime %Long;    #REQUIRED 
 endtime     %Long;    #REQUIRED 
 startpos %Float;   "0" 
 endpos     %Float;   "1" 
 hide  %Boolean; "true" 
 bbName   %String;  #IMPLIED 
  ichannel  %String;  #IMPLIED 
  ochannel     %String;  #IMPLIED 
> 
 
<!-- 
To remove a token from the visualisation. 
--> 
 
<!ELEMENT remove-token EMPTY> 
<!ATTLIST remove-token 
 %Timestamp; 
 idtoken %Int; #REQUIRED 
 bbName   %String;  #IMPLIED 
  ichannel  %String;  #IMPLIED 
  ochannel     %String;  #IMPLIED 
> 
 
 
<!-- 
 ====== 
 Robots 
 ====== 
--> 
 
<!-- 
Removes a robot from the Visualisation 
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--> 
 
<!ELEMENT remove-robot EMPTY> 
<!ATTLIST remove-robot 
 %Timestamp; 
 idrobot %Int; #REQUIRED 
> 
 
<!-- 
Used to order a movement of a Robot. See move-poolmember message. 
--> 
 
<!ELEMENT move-robot EMPTY> 
<!ATTLIST move-robot 
    %Timestamp; 
 idrobot   %Int; #REQUIRED 
 iddestination  %Int; #REQUIRED 
 idorder   %Int; #IMPLIED 
> 
 
<!-- 
Used to order a movement of a Robot. Motion planning will choose the Robot which is nearest to the target 
Buldingblock and member of the specified pool. If the given targetid identifies a building block, motion planning 
will choose a dockingpoint. If the id identifies a docking point, that point will be the destination. Motion planning 
needs some time to compute the path. To avoid blocking the simulation kernel for the whole time, motion 
planning will send an still-computing-path immediately. After waiting for the specified period of time, simulation 
kernel uses a check-arrival message. The answer will be a still-computing-path message (if motion planning is 
still computing) or an expected-arrival-time message (if motion planning has finished the computation. The 
expected-arrival-time message will contain the robot and dockingpoint chosen. Simulation will ask  at the 
expected time if the robot has reached its destination. If this is the case, motion planning will send an Arrival 
message, else an ExpectedArrivalTime message containing the new expected arrival time. If the ordered Robot 
movement is not possible, an error message will be sent. 
--> 
 
<!ELEMENT move-poolmember EMPTY> 
<!ATTLIST move-poolmember 
    %Timestamp; 
 idpool   %Int; #REQUIRED 
 iddestination  %Int; #REQUIRED 
> 
 
<!-- 
See move-poolmember message. 
--> 
 
<!ELEMENT still-computing-path EMPTY> 
<!ATTLIST still-computing-path 
 idorder %Int; #REQUIRED 
 waitFor %Int; #REQUIRED 
> 
 
<!-- 
Sent to check if the given Robot has reached its destination. 
--> 
 
<!ELEMENT check-arrival EMPTY> 
<!ATTLIST check-arrival 
 %Timestamp; 
 idorder %Int; #REQUIRED 
> 
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<!-- 
Contains the expected arrival time of the order with the given id.  
--> 
 
<!ELEMENT expected-arrival-time EMPTY> 
<!ATTLIST expected-arrival-time 
 idorder  %Int; #IMPLIED 
 idrobot  %Int; #IMPLIED 
 arrivaltime %Long; #REQUIRED 
> 
 
<!-- 
 Sent if the robot has reached its destination. 
--> 
 
<!ELEMENT arrival EMPTY> 
 
<!-- 
Sent if the robot isn't needed any more. Note that a robot is reserved by motion planning. Simulation must free 
it if it's no longer needed. See move-poolmember message. 
--> 
 
<!ELEMENT free-robot EMPTY> 
<!ATTLIST free-robot 
 %Timestamp; 
 idorder  %Int; #REQUIRED 
 idrobot  %Int; #REQUIRED 
> 
 
<!ELEMENT no-error (description?)> 
 
<!ELEMENT error (description?)> 
 
<!-- 
    Multi resolution support 
--> 
 
<!ELEMENT buildingblocks-in-view (objectid+)> 
 
<!ELEMENT buildingblocks-out-of-view (objectid+)> 
 
 
<!-- 
    Some misc. stuff. 
--> 
 
<!ELEMENT description (#PCDATA)> 
 
<!ELEMENT databaseid EMPTY> 
<!ATTLIST databaseid 
 value %Int; #REQUIRED 
> 
 
<!ELEMENT objectid EMPTY> 
<!ATTLIST objectid 
 value  %Int;    #REQUIRED 
> 
 
<!ELEMENT position EMPTY> 
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<!ATTLIST position 
 xpos %Float; #REQUIRED 
 ypos %Float; #REQUIRED 
 zpos %Float; #REQUIRED 
> 
 
<!-- 
NOTE: x- and y-angle are not supported yet, they're just ignored. 
--> 
<!ELEMENT rotation EMPTY> 
<!ATTLIST rotation 
 xangle  %Float; "0" 
 yangle %Float; "0" 
 zangle %Float; "0" 
> 
 
<!ELEMENT mesh (databaseid)> 
<!ATTLIST mesh 
 scale %Float; "1" 
> 
 
<!ELEMENT significancepoint (position)> 
 
<!ELEMENT location (position, rotation?)> 
 
<!-- 
 EOF 
--> 
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