

Ein mehrbenutzerfähiges Werkzeug zur Modellierung und
richtungsoffenen Simulation von wahlweise
objekt- und funktionsorientiert gegliederten

Fertigungssystemen

Meinen Leuchtfeuern

Ein mehrbenutzerfähiges Werkzeug zur Modellierung und
richtungsoffenen Simulation von wahlweise
 objekt- und funktionsorientiert gegliederten

Fertigungssystemen

Dissertation
zur Erlangung der Würde eines

DOKTORS DER WIRTSCHAFTSWISSENSCHAFTEN
(Dr. rer. pol.)

der Universität Paderborn

vorgelegt von
Dipl.-Wirt. Inf. Christoph Laroque

33104 Paderborn

Paderborn, den 24. Januar 2007

Dekan: Prof. Dr. Peter F. E. Sloane
Referent: Prof. Dr.-Ing. habil. Wilhelm Dangelmaier
Korreferent: Prof. Dr. Leena Suhl

Erstellt am

Heinz Nixdorf Institut
Fachgruppe Wirtschaftsinformatik, insb. CIM
Prof. Dr.-Ing. habil. Wilhelm Dangelmaier
Fürstenallee 11
33102 Paderborn

© 2003-2006 Christoph Laroque

I

Inhaltsverzeichnis

1 Motivation ... 1
2 Ablaufsimulation von Fertigungssystemen .. 5

2.1 Fertigungssysteme .. 5
2.2 Ablaufsimulation: Modellierung, Simulation & Analyse 10
2.3 Erweiterungen aus der Motivation.. 13
2.4 Anforderungsbeschreibung ... 18

2.4.1 Basisprozess ... 18
2.4.2 Modellbeschreibung.. 19
2.4.3 Werkzeugentwicklung... 20

3 Stand der Technik... 23
3.1 Simulationsmethodik ... 23
3.2 Modellierungsmethoden ... 26

3.2.1 Stellen/Transitionsnetze.. 26
3.2.2 Programmier- und Simulationssprachen .. 28
3.2.3 Grafische Simulationswerkzeuge .. 29

3.3 Ausführung von Simulationsmodellen... 30
3.3.1 Vorwärtssimulation .. 31
3.3.2 Rückwärtssimulation .. 33

3.4 Visualisierung von Ablaufsimulationen.. 33
3.4.1 Menschliche Wahrnehmung in virtuellen Umgebungen............................. 34

3.4.1.1 Täuschung des Sehsinns .. 34
3.4.1.2 Täuschung des Tast- und Hörsinns... 36

3.4.2 VR als User Interface.. 36
3.4.3 Interaktion in virtuellen Umgebungen ... 38
3.4.4 Virtuelle Umgebung von Fertigungssystemen ... 39
3.4.5 Verständnisoptimierung durch virtuelle Umgebungen 40

3.5 Software-Design von Mehrbenutzersystemen .. 41
3.5.1 Allgemeine Paradigmen des Software-Designs.. 42
3.5.2 Objektorientierte Software-Programmierung .. 46

3.5.2.1 Grundlagen .. 47
3.5.2.2 Paradigmen.. 48

3.5.3 Grafisches Software-Design mittels der UML .. 50
3.5.3.1 Grundlagen MDSD und MDA.. 51
3.5.3.2 Diagrammarten der UML .. 52

3.5.4 Mehrbenutzersysteme .. 58
3.5.4.1 Verteilte Systeme.. 59
3.5.4.2 CSCW und Groupware.. 59
3.5.4.3 Kommunikation, Kooperation und Koordination................................ 61
3.5.4.4 Funktionalitäten .. 63

3.5.5 Organisationsformen des Software-Designs von Mehrbenutzersystemen 66
3.5.5.1 Funktionsbibliotheken .. 67
3.5.5.2 Klassenbibliotheken ... 69
3.5.5.3 Frameworks ... 70
3.5.5.4 Toolkits und konfigurierbare Anwendungen 71
3.5.5.5 Software-Entwurfsmuster ... 72

II

3.5.6 Architekturmuster von Mehrbenutzersystemen....................................... 74
3.5.7 Software-Schnittstellen... 77

3.6 Fazit.. 78
4 Zielstellung.. 81

4.1 Gestaltung eines Basisprozesses ... 81
4.2 Anforderungen an eine Modellbeschreibung... 82

4.2.1 Vorwärtssimulation .. 82
4.2.2 Rückwärtssimulation und Modelltransformation 83

4.3 Entwurf eines Werkzeuges.. 84
5 Konzeption .. 87

5.1 Gestaltung eines Basisprozesses ... 87
5.1.1 Arbeitsprozess Modellierung und Simulation... 87
5.1.2 Modulare Architektur .. 88
5.1.3 Integration von Layout- und Fertigungsprozessplanung 89
5.1.4 Programmiersprache JAVA als Simulationssprache.................................. 89
5.1.5 Grundlegende Merkmale der Modellierung und Simulation........................ 91
5.1.6 Konfliktvermeidung & Rechtemanagement im Mehrbenutzerbetrieb........... 93

5.2 Konzeption Modellbeschreibung... 97
5.2.1 Vorwärtsgerichtete Materialflussmodelle.. 97

5.2.1.1 Dynamische Detaillierung von Simulationsmodellen........................ 104
5.2.1.2 Modellierung funktionsorientierter Fertigungssysteme..................... 105
5.2.1.3 Multitasking Modellierung und Simulation 116

5.2.2 Nachrichtenbasierte Kommunikationsschnittstelle 118
5.2.2.1 Initialisierungsnachrichten .. 119
5.2.2.2 Steuerungs- und Manipulationsnachrichten 119
5.2.2.3 Nachrichtenerweiterung für das MRS.. 121
5.2.2.4 Nachrichtenerweiterung für das Motion Planning 121

5.2.3 Verwaltung der Experimentdaten ... 123
5.2.4 Rückwärtssimulation und Modelltransformation 124

5.2.4.1 Rückwärtssimulation.. 124
5.2.4.2 Modelltransformation ... 125

5.3 Konzeption Modellierungswerkzeug.. 125
5.3.1 Systementwurf .. 125
5.3.2 Entwurf der Funktionsmodule .. 125

5.3.2.1 Modul Modellierung.. 125
5.3.2.2 Modul Simulatorkern.. 125
5.3.2.3 Modul Experimentmanager ... 125
5.3.2.4 Modul Visualisierungskomponente.. 125
5.3.2.5 Modul Simulationsdatenbank... 125
5.3.2.6 Modul Administration ... 125

6 Realisierung... 125
6.1 Definition des Untersuchungsgegenstands .. 125

6.1.1 Zentrallager .. 125
6.1.2 Teilefertigung.. 125
6.1.3 Montage ... 125

6.2 Definition des Untersuchungsziels.. 125
6.3 Datenermittlung und Aufbau eines logischen Modells................................ 125
6.4 Aufbau eines Simulationsmodells... 125

III

6.5 Modellverifikation und –Verbesserung .. 125
6.6 Simulationsexperiment .. 125
6.7 Datenauswertung.. 125

7 Ausblick .. 125
7.1 Zusammenfassung .. 125
7.2 Grenzen der Arbeit .. 125
7.3 Ausblick... 125

Quellenverzeichnis ... 125
Anhang A - DTD zur Modellbeschreibung ... 125
Anhang B - DTD zum Nachrichtenaustausch ... 125

V

Abbildungsverzeichnis

Abbildung 1: Funktionen der Fertigungslenkung.. 7
Abbildung 2: diskrete und kontinuierliche Simulation... 12
Abbildung 3: Abhängigkeiten der Entwurfssichten ... 18
Abbildung 4: Grundstruktur der Module im Basisprozess .. 19
Abbildung 5: Ablauf einer Simulationsstudie nach [VDI3633].................................... 24
Abbildung 6: Beispiel eines Petri-Netzes .. 27
Abbildung 7: Petri Netz Modell eines Arbeiters, der zwei Maschinen bedient 28
Abbildung 8: Zeitfortschaltung mit fixen und variablen Zeitinkrementen..................... 31
Abbildung 9: Ablauf einer ereignisgesteuerten Simulation .. 32
Abbildung 10: Rendering Pipeline ... 35
Abbildung 11: Komplexitätsreduktion durch Strukturierung [Henk97] 45
Abbildung 12: Übersicht über die Diagrammtypen der UML 50
Abbildung 13: Notationselemente des Klassendiagramms... 53
Abbildung 14: Notationselemente des Objektdiagramms .. 54
Abbildung 15: Notationselemente des Verteilungsdiagramms.................................... 54
Abbildung 16: Notationselemente des Use-Case-Diagramms..................................... 55
Abbildung 17: Notationselemente des Aktivitätendiagramms 56
Abbildung 18: Notationselemente des Zustanddiagramms.. 57
Abbildung 19: Notationselemente des Sequenzdiagramms 58
Abbildung 20: Raum/Zeit Matrix nach [Joha91] .. 60
Abbildung 21: Topologie prozeduraler Programmabläufe [Henk97] 68
Abbildung 22: Programmtopologie auf Basis einer Klassenbibliothek [nach Booc94] 69
Abbildung 23: Entwurfsphasen der Modellierungsmethode.. 84
Abbildung 24: Idealtypischer Simulationsprozess .. 88
Abbildung 25: schematische Darstellung der Funktionsmodule des Werkzeugs 88
Abbildung 26: angepasster Basisprozess für die Modellierung und Simulation.............. 91
Abbildung 27: Sperrmechanismus im Modellbaum... 95
Abbildung 28: Struktur eines Simulationsmodells.. 99
Abbildung 29: unerlaubter Zirkelschluss in einem Simulationsmodell 101
Abbildung 30: 3D-Szene und entsprechende 2D-Projektion 109
Abbildung 31: Höhenabhängige Projektion in die XY-Ebene 109
Abbildung 32: Interpolation von Kurven durch feingranulare Auflösung 110
Abbildung 33: Graph des Motion Planning .. 112
Abbildung 34: Sequenzdiagramm des Motion Planning Nachrichtenprotokolls 122
Abbildung 35: schematische Übersicht über die Experimentdatenverwaltung............. 124
Abbildung 36: Vergleich eines Materialflusses in Vorwärts und Rückwärts Richtung.... 125
Abbildung 37: Darstellung einer einfachen Fertigungslinie 125
Abbildung 38: Schnittstellen bei Grundstrukturen ... 125
Abbildung 39: Verkettungsstrukturen in Fertigungssystemen [nach FiHe00] 125
Abbildung 40: Anpassung der Strukturen an die gewählte Darstellungsform 125
Abbildung 41: Vereinfachung einer Struktur ... 125
Abbildung 42: Variable Anzahl Modellbausteine innerhalb Grundstrukturen 125
Abbildung 43: Grundstruktur „Unverzweigte Linie“ .. 125
Abbildung 44: Vereinfachung der unverzweigten Linie führt zum Kreis 125
Abbildung 45: Grundstruktur „Verzweigung“ .. 125
Abbildung 46: Verzweigung ohne Ausgang... 125

VI

Abbildung 47: Grundstruktur „Zusammenführung“.. 125
Abbildung 48: Zusammenführung ohne Eingang ... 125
Abbildung 49: Grundstruktur „Kreuzung“ ... 125
Abbildung 50: Grundstruktur „Parallele Linien“ ... 125
Abbildung 51: Grundstruktur „Rückkopplung“... 125
Abbildung 52: Grundstruktur „Stern“... 125
Abbildung 53: Stern mit nur einem angehängten Modellbaustein............................. 125
Abbildung 54: Vereinfachung der Struktur „Nebenschluss“ 125
Abbildung 55: Vereinfachung der Struktur „Schleife“ ... 125
Abbildung 56: Ausgangsfluss ... 125
Abbildung 57: Erster Iterationsschritt.. 125
Abbildung 58: Resultat von Iterationsschritt 1 .. 125
Abbildung 59: Zweiter Iterationsschritt.. 125
Abbildung 60: Resultat von Iterationsschritt 2 .. 125
Abbildung 61: Dritter Iterationsschritt ... 125
Abbildung 62: Resultat von Iterationsschritt 3 .. 125
Abbildung 63: Vierter Iterationsschritt... 125
Abbildung 64: Resultat von Iterationsschritt 4 .. 125
Abbildung 65: Fünfter Iterationsschritt .. 125
Abbildung 66: Resultat von Iterationsschritt 5 .. 125
Abbildung 67: Sechster Iterationsschritt .. 125
Abbildung 68: Resultat von Iterationsschritt 6 .. 125
Abbildung 69: Ausgangsfluss des Beispiels... 125
Abbildung 70: Erster Iterationsschritt.. 125
Abbildung 71: Zweiter Iterationsschritt.. 125
Abbildung 72: Dritter Iterationsschritt ... 125
Abbildung 73: Montagevorgänge .. 125
Abbildung 74: Typverzweigung... 125
Abbildung 75: Aufbau eines typischen Modellbausteins .. 125
Abbildung 76: Grundstruktur Parallele Linie.. 125
Abbildung 77: Grundstruktur Rückkopplung ... 125
Abbildung 78: Grundstruktur Stern ... 125
Abbildung 79: Übersicht des Merge-Algorithmus ... 125
Abbildung 80: Use-Case-Diagramm des Werkzeugs... 125
Abbildung 81: Grobstruktur der Funktionsmodule des Werkzeugs............................ 125
Abbildung 82: 3-Tier- Architektur des Modellierungsmoduls.................................... 125
Abbildung 83: Sequenzdiagramm des Modellierungstools 125
Abbildung 84: Sperrmechanismus des Modellierungsservers 125
Abbildung 85: Schematische Darstellung des Modellierungsclients 125
Abbildung 86: Funktionsbereiche des Simulatorkerns .. 125
Abbildung 87: Sequenzdiagramm einer Interaktion während der Simulation 125
Abbildung 88: Erweiterung des Modellierungsmoduls um Visualisierungskomponenten 125
Abbildung 89: schematischer Aufbau der Gesamtarchitektur................................... 125
Abbildung 90: schematischer Aufbau des 3D-Clients.. 125
Abbildung 91: Datenbereiche der Simulationsdatenbank .. 125
Abbildung 92: Teilmodule des Administrationsmoduls .. 125
Abbildung 93: Grobschema der Fertigung von Karts bei der PaderK GmbH................ 125
Abbildung 94: Zentrallager der PaderK in niedriger Detaillierung 125

VII

Abbildung 95:Zentrallager der PaderK in hoher Detaillierung 125
Abbildung 96: Teilefertigung der PaderK in niedriger Detaillierung 125
Abbildung 97: Teilefertigung der PaderK in hoher Detaillierung 125
Abbildung 98: Montage der PaderK in niedriger Detaillierung 125
Abbildung 99: Montage der PaderK in hoher Detaillierung 125
Abbildung 100: Mainframe der Modellierungskomponente 125
Abbildung 101: Draufsichten 2D ... 125
Abbildung 102: Benutzeroberfläche des Event-Editors ... 125
Abbildung 103: Modellierungsumgebung 2.5D .. 125
Abbildung 104: 3D-Modellierungskomponente .. 125
Abbildung 105: Benutzeroberfläche zum Erstellen eines Modellbausteins 125
Abbildung 106: Quellcode des Input-Channels im Modellbaustein Warenausgang....... 125
Abbildung 107: Modellierung des Zentrallagers mit der 2D-Ansicht.......................... 125
Abbildung 108: Anmeldedialog bei vorhandenen Sessions 125
Abbildung 109: Darstellung einer blockierten Bausteininstanz 125
Abbildung 110: Darstellung der Montage der PaderK im Modellierungstool................ 125
Abbildung 111: Invertierung des detaillierten Modells der Teilefertigung................... 125
Abbildung 112: Auszug aus der Oberfläche des Administrationstools........................ 125
Abbildung 113: Auszug aus dem Datenbankschema .. 125
Abbildung 114: Benutzeroberfläche des Simulators ... 125
Abbildung 115: Animation von Token in der 2D-Ansicht ... 125
Abbildung 116: Debugging und Simulator-Steuerung der 2D-Visualisierung 125
Abbildung 117: Visualisierungsumgebung 2.5D... 125
Abbildung 118: Benutzeroberfläche des Reportingtools .. 125
Abbildung 119: Ansichten des Experimentmanagers.. 125
Abbildung 120: Benutzeroberfläche des 3D-Clients.. 125
Abbildung 121: Auslastung der Teilbereiche bei der Vorwärtssimulation 125

VIII

Tabellenverzeichnis

Tabelle 1: Anforderungen aus den neuen Einsatzfeldern der Ablaufsimulation 21
Tabelle 2: Dimensionen der Ausprägung von Entwurfsmustern nach [GaHe01]............ 74
Tabelle 3: Kategorien von Architekturmustern .. 75
Tabelle 4: Basiselemente eines Simulationsmodells ... 98
Tabelle 5: Attributliste eines Simulationsmodells... 100
Tabelle 6: Typen von Variablen der Modellbeschreibung... 102
Tabelle 7: Auswertemöglichkeiten der Variablen ... 103
Tabelle 8: Standardisierte Events ... 104
Tabelle 9: Zusätzliche Attribute eines Simulationsmodells für das MRS..................... 105
Tabelle 10: Zusätzliches Ereignis zur Abbildung von Modellen im MRS...................... 105
Tabelle 11: Zusätzliche Attribute zur Integration des Motion Planning 116
Tabelle 12: Zusätzliche Attribute für die Mehrbenutzer-Modellierung und -Simulation. 118
Tabelle 13: Initialisierungsnachrichten... 119
Tabelle 14: Steuerungs- und Manipulationsnachrichten.. 120
Tabelle 15: Erweiterung für das MRS... 121
Tabelle 16: Nachrichtenerweiterung für das Motion Planning................................... 122
Tabelle 17: Bewertungsmatrix C1.. 125
Tabelle 18: Bewertungsmatrix C2.. 125
Tabelle 19: Bewertungsmatrix C3.. 125
Tabelle 20: Bewertungsmatrix C4.. 125
Tabelle 21: Erweiterung der Modellbeschreibung durch Invertierung 125
Tabelle 22: Performance-Test : Ladezeiten der 2.5D-Modellierungsumgebung........... 125

IX

Definitionsapparat

Definition 1: Fertigung .. 5
Definition 2: Fertigungssystem... 5
Definition 3: Fertigungsprozess .. 5
Definition 4: Vorgang.. 6
Definition 5: Fertigungsplanung.. 6
Definition 6: Layoutplanung... 6
Definition 7: Fertigungslenkung.. 6
Definition 8: Fertigungsprogrammplanung ... 7
Definition 9: Mengenplanung ... 8
Definition 10: Terminplanung... 8
Definition 11: Kapazitätsplanung .. 8
Definition 12: Organisationsform .. 9
Definition 13: Materialfluss .. 9
Definition 14: Simulation... 10
Definition 15: Modell... 10
Definition 16: Rechnerunterstützte Simulation.. 11
Definition 17: Simulator .. 11
Definition 18: diskret .. 11
Definition 19: Kontinuierlich... 11
Definition 20: Ereignis .. 11
Definition 21: Simulationsstudie ... 12
Definition 22: Modellierung.. 12
Definition 23: Simulationslauf .. 12
Definition 24: Simulationsexperiment.. 13
Definition 25: Analyse... 13
Definition 26: Mehrbenutzersystem... 14
Definition 27: Multitasking... 14
Definition 28: Interaktion .. 15
Definition 29: Immersion... 15
Definition 30: Virtuelle Realität... 15
Definition 31: Vorwärtsterminierung ... 16
Definition 32: Rückwärtsterminierung ... 16

Motivation - 1 -

1 Motivation
„Wir müssen das Rad

mit Mühe vorwärts drehen,
zurück rollt es von selbst.“

(Walter Ludin)

Globalisierung, Produktindividualisierung und Ausweitung der Produktpalette bis hin zu
Nischenprodukten prägen die Entwicklung der Angebotsstruktur in vielen Bereichen der
industriellen Fertigung. Verkürzte Produktlebenszyklen, kundenorientierte Produktion und
eine erhöhte Variantenvielfalt sind kennzeichnend für die Erzeugnisse heutiger
Industrieunternehmen. Um dennoch kosten- und zeiteffizient fertigen zu können, wird die
Digitalisierung von Produkt- und Prozessplanung mit Nachdruck verfolgt und stetig
vorangetrieben [Brac02]. Neue Produkte werden im Idealfall vollständig digital am
Rechner konstruiert, modelliert und optimiert. Neben Zusammenbauuntersuchungen
lassen sich mit den digitalen Modellen beispielsweise virtuelle Crashtests durchführen
oder verschiedene Designvarianten gegeneinander abwägen [Brac02]. Die Vorteile dieser
Methodik liegen unter anderem in reduzierten Entwicklungskosten und –zeiten und helfen
dadurch dem jeweiligen Unternehmen, seine Wettbewerbsfähigkeit am Markt zu
verbessern [VDI4499].

Die fortschreitende Digitalisierung beschränkt sich jedoch keineswegs auf Modelle der
herzustellenden Produkte, sondern bezieht sich darüber hinaus auch auf die zur
Herstellung benötigten Prozesse. Eine Studie von Roland Berger stellt beispielhaft heraus,
dass seitens der Unternehmen hohe Erwartungen an die Digitalisierung der
Prozessplanung gestellt werden: „Eine Zeitersparnis von bis zu 30% bei der
Produktionsplanung und dem Produktionsanlauf erhoffen sich die Automobilbauer von der
virtuellen Vorplanung bei 15% Kostenersparnis“ [Baum03].

Für die Planung, Absicherung und Verbesserung von Fertigungsprozessen ist die
Ablaufsimulation ein etabliertes Werkzeug, welches es dem Anwender ermöglicht
Struktur- bzw. Funktionsmodelle zu erzeugen und in einer Simulationsumgebung
auszuführen [LaKe00]. Dadurch können während der Planung sowohl gegenwärtige, als
auch zukünftige Situationen in ihren dynamischen Zusammenhängen berücksichtigt
werden. Die Optimierung solch komplexer und dynamischer Szenarien kann nur noch
durch ein experimentelles Betreiben verifizierter Modelle erfolgen, also durch den Einsatz
der Ablaufsimulation (vgl. [DMD03]).

Die Weiterentwicklung vorhandener Softwarelösungen hat in den vergangenen Jahren
mit den steigenden Anforderungen nur schwer Schritt halten können. Für den
Problembereich der Ablaufsimulation von Fertigungssystemen soll deshalb mit dieser
Arbeit ein neues Werkzeug entwickelt werden. Um Materialflussmodelle auf Basis einer
integrierten Datenhaltung effizienter, möglichst anwenderfreundlich und in einer
kooperativen Umgebung erstellen und ausführen zu können, sollen insbesondere
folgende Aufgaben und Arbeitsweisen unterstützt werden:

- 2 -

Synchronisierte, ortsunabhängige Mehrbenutzerunterstützung bei der
Modellierung und Simulation von Materialflussmodellen in einer interaktiven,
immersiven und virtuellen Umgebung
Die Planung und Evaluierung eines Fertigungsprozesses kann heutzutage nicht mehr als
ein Arbeitsschritt verstanden werden, bei dem der Prozess der Modellierung, Ausführung
und Analyse der Simulationsmodelle am Computer einer einzelnen Person stattfindet. Die
Komplexität der Planungsprojekte führt vielmehr dazu, dass sie zumeist von
Simulationsteams bearbeitet werden. Neben Projektmitarbeitern aus verschiedenen
Anwendungsbereichen arbeiten auch mehrere Simulationsexperten an einem einzigen
Simulationsmodell. Sie werden durch die aktuell verfügbaren Software-Produkte nur
unzureichend in ihrer Teamarbeit unterstützt. Darüber hinaus erfordert insbesondere die
Kommunikation mit Nicht-Simulationsexperten innerhalb des Planungsteams eine
möglichst immersive Darstellung, die das Verhalten des Simulationsmodells bestmöglich
aufzeigt und erklärt. Zur Visualisierung der Modelle und deren dynamischen
Verhaltensweisen soll eine virtuelle Umgebung dienen, in der das Simulationsmodell
dreidimensional dargestellt wird. Der Anwender selbst soll hier nicht mehr länger
ausschließlich passiver Betrachter sein, ohne interaktiv auf die aktuelle Simulation
Einfluss zu nehmen, sondern vielmehr in der virtuellen Umgebung die Simulation
beeinflussen und modifizieren können. Die Integration in das Simulationsmodell und
damit auch in das abgebildete System, erhöht sein Prozessverständnis und schafft eine
realistischere Planungsumgebung. Eine dreidimensionale Modellierung und Simulation als
Kombination von Layout- und Prozessplanung kann den Anwender beim Aufbau des
Fertigungsprozesses zusätzliche Planungsrestriktionen erkennen und von Beginn an
berücksichtigen lassen. Die Qualität der Gesamtplanung kann verbessert und weitere
Planungszeit innerhalb des Gesamtprojektes eingespart werden.

Planung, Evaluierung und fortlaufende Verbesserung der Fertigungsprozesse
über alle Planungs- und Ausführungsphasen bis zur Rückkopplung in die
Fertigungslenkung
Planung und Evaluierung der Fertigungsprozesse beschreibt den Einsatz der
Ablaufsimulation über alle Planungs- und operativen Phasen eines Fertigungsprozesses
hinweg. Neben dem Einsatz im Rahmen von Machbarkeitsstudien, Variantenplanungen
oder quantitativen Fragestellungen, in denen ein System meist hinsichtlich seiner
maximalen Leistungsfähigkeit oder eines optimalen Durchsatzes untersucht wird, soll die
Simulation auch Fertigungsprogramme planen oder zumindest absichern können. Das
Simulationsmodell eines Fertigungsprozesses kann somit über alle Phasen der Struktur-,
Mengen-, Kapazitäts- und Programmplanung bis hin zur Prognose und der laufenden
Verbesserung vorhandener Fertigungsprozesse eingesetzt werden. Daten- und
Visualisierungsschnittstellen sollen über anpassbare Austauschformate konzipiert werden,
um bewertete Simulationsergebnisse von Prognoseläufen zumindest als
Entscheidungshilfe in den laufenden Fertigungsprozess zurückspielen zu können oder
Planverbesserungen innerhalb der Fertigungslenkung direkt in den operativen Betrieb zu
übernehmen. Um auch kundenorientierte Fertigungsprozesse möglichst homogen
innerhalb eines Werkzeugs zur Ablaufsimulation abbilden zu können, soll neben einer
Vorwärtssimulation auch eine Rückwärtssimulation (rückwärts berechnete Ausführung
der Simulationsmodelle) sowie eine zeitorientierte Ausführung in Vor- oder
Rückwärtsrichtung unterstützt werden.

Motivation - 3 -

Kooperative Planung innerhalb von Unternehmen, Unternehmensverbünden
oder Supply-Chain-Netzwerken
Großunternehmen, virtuelle Unternehmen oder Supply-Chain-Netzwerke fertigen bereits
heute an unterschiedlichen Standorten mit aufeinander abgestimmten Prozessen. Um die
Lieferfähigkeit innerhalb eines Supply-Chain-Netzwerks sowie die Stabilität aller
einzelnen Fertigungsprogramme besser gewährleisten zu können, müssen die Planungen
enger aufeinander abgestimmt und überwacht werden. Die Mehrbenutzerfähigkeit der
angestrebten Ablaufsimulation ermöglicht eine kooperative Planung mehrerer
Simulationsexperten an einem gemeinsamen, dynamisch detaillierenden Simulations-
modell des Fertigungsnetzwerks unabhängig vom Standort der jeweiligen Experten.
Innerhalb einer Supply-Chain oder eines Unternehmensverbundes, aber auch standort-
übergreifend innerhalb einer Unternehmung, können so auf Basis eines
Rechtemanagements und umfangreicher Kommunikationsmechanismen Simulations-
experten aller Standorte gemeinsam Simulationsmodelle erarbeiten, verifizieren und
validieren, Simulationsexperimente kooperativ ausführen und in einer einzigen,
gemeinsamen Umgebung auswerten. Da die verschiedenen Partner innerhalb solcher
unternehmensinternen wie –externen Fertigungsnetzwerke nach unterschiedlichen
Fertigungsablaufarten produzieren können, muss neben dem Werkzeug an sich auch die
zugrunde liegende Modellbeschreibung Fertigungssysteme beherrschen, die sowohl ein
besonders hohes Maß an Komplexität bieten, als auch über rein objektorientiert
gegliederte Fertigungssysteme hinausgehen und damit die Modellierung und Simulation
von funktional gegliederten Fertigungssystemen bzw. deren Mischformen erlauben. Auch
in diesem Themenbereich bietet sich der Einsatz des Werkzeugs über die reinen
Planungsphasen hinaus bis hin zur Umplanung und Einsteuerung in der Fertigungs-
lenkung an.

Aus obigen Themenbereichen ergeben sich Fokus und Motivation der Arbeit. ihre Struktur
orientiert sich an folgender Vorgehensweise:
Kapitel 2 grenzt den Anwendungsbereich „Fertigung“ und den Problembereich
„Ablaufsimulation“ so ein, wie er in der Arbeit betrachtet werden soll. Es beschreibt die
hier aufgezeigten Lösungsideen präziser und erläutert alle zur Lösung erforderlichen
Grundlagen. Abschließend werden die Anforderungen an den zugrunde liegenden
Arbeitsprozess, die verwendete Modellbeschreibung sowie das Werkzeug selbst anhand
der eingeführten Definitionen herausgearbeitet und als Anforderungsbeschreibung
zusammengefasst. Die Analyse bestehender Konzepte zur Simulationsmethodik, deren
Einzelprozesse „Modellierung“, „Simulation“ und „Visualisierung“ und zu Verfahren des
Software-Designs und -Entwicklung findet sich in Kapitel 3. Die identifizierten Ansätze
werden jeweils in Bezug auf die gestellten Anforderungen bewertet. Die erkannten
Defizite hinsichtlich der Anforderungen werden in Kapitel 4 zusammengefasst und als
eigentliche Zielsetzung der Konzeption und Realisierung abgeleitet. Die Festlegung des
Arbeitsprozesses, die Konzeption von Modellbeschreibung und Werkzeug erfolgt in Kapitel
5. Kapitel 6 beschreibt die Phase der Realisierung des Werkzeugs. Neben der eigentlichen
Implementierung widmet es sich auch einer Beispielanwendung, die als typisch für den
Problembereich angesehen werden kann. Die Ergebnisse zeigen, dass die entwickelte
Modellbeschreibung mit dem Werkzeug angewandt werden kann und das Erreichen der
Anforderungen ermöglicht. Die Zusammenfassung bietet in Kapitel 7 einen Ausblick auf
weiterführende Folgearbeiten, die sich in dem gewählten Themenbereich anbieten.

Ablaufsimulation von Fertigungssystemen - 5 -

2 Ablaufsimulation von Fertigungssystemen
„In allen Grenzen ist auch

etwas Positives“

(Immanuel Kant)

Ziel dieses Kapitels ist das Erstellen einer vollständigen Anforderungsbeschreibung,
anhand derer der zur Verfügung stehende Stand der Technik erarbeitet werden kann. Die
in Kapitel 1 aufgezeigten Probleme müssen dazu präzisiert und erläutert werden. Dazu
wird die Aufgliederung in drei Teilprobleme auch in Abschnitt 2.3 übernommen und
fortgesetzt. Zu Beginn muss dazu in Abschnitt 2.1 zunächst der Anwendungsbereich
„Fertigungssysteme“ sowie unter Abschnitt 2.2 das Problemfeld der Modellierung,
Simulation und Analyse mittels der Ablaufsimulation genauer eingegrenzt werden.

2.1 Fertigungssysteme

Die bereits in Kapitel 1 angerissenen Probleme stellen sich in einem globalisierten
Wettbewerb insbesondere für solche Unternehmen, die Güter produzieren und diese an
einem oder verschiedenen Märkten platzieren wollen. Den technisch zugrunde liegenden
Prozess der Erstellung solcher Güter bezeichnet man als Fertigung.

Definition 1: Fertigung

„Die Fertigung umfasst alle technischen Maßnahmen zur Herstellung von Material
oder Erzeugnissen. Sie ist grundsätzlich ein diskontinuierlicher Prozess“ [Dang99]

In Abgrenzung zum Begriff der Produktion beschränkt sich die Fertigung auf das
Herstellen physischer Erzeugnisse mittels fortschreitender, diskontinuierlicher und
zielgerichteter Transformationen in einem abgegrenzten System. Ein Fertigungssystem
kann als solch ein operatives System zur Fertigung und damit als Objekt der jeweiligen
Planungsaufgaben verstanden werden.

Definition 2: Fertigungssystem

„Ein Fertigungssystem ist eine technisch, organisatorisch (und kostenrechnerisch)
selbstständige Allokation von Potentialfaktoren zu Fertigungszwecken (vgl.
[Kern79]). Es besteht aus elementaren Arbeitssystemen, die die kleinste Einheit
einer Kombination der Potentialfaktoren Betriebsmittel und Arbeitskräfte
darstellen und eine oder mehrere Klassen von Transformationen durchführen
können“ (in Anlehnung an [Rose92]

Als Fertigungsprozess soll ein Fortschreiten der Fertigung oder eines Elementes des
Fertigungssystems verstanden werden.

Definition 3: Fertigungsprozess

„Ein Fertigungsprozess kennzeichnet das Fortschreiten im Durchführen eines
Vorgangs der Fertigung“ [in Anlehnung an Dang99]

- 6 -

Ein Vorgang soll in dieser Arbeit als

Definition 4: Vorgang

„Ein Vorgang ist die zielgerichtete Transformation von Elementen in einem
Einganszustand in Elemente in einem Austrittszustand mittels eines Verfahrens“
[DaWa97]

verstanden werden.

Die Fertigungsprozesse besser aufeinander abzustimmen und über die verschiedenen
Planungsphasen einer Neu- oder Umplanung zu verbessern ist eine der Hauptaufgaben
für den Einsatz der Ablaufsimulation. Oftmals sind die dynamischen Zusammenhänge
zwischen den Einzelprozessen innerhalb einer Fertigung so komplex, dass sich die
Auswirkungen von Änderungen den Planern nicht sofort und in Gänze erschließen.
Haupteinsatzgebiet der Simulation ist deshalb heute oftmals die Absicherung von
Fertigungsprozessen und damit auch der Anordnung von Fertigungssystemen innerhalb
einer Fertigung vor deren physischer Umsetzung: die Fertigungsplanung.

Definition 5: Fertigungsplanung

„Die Planung der Fertigung umfasst alle einmalig zu treffenden Maßnahmen
bezüglich der Gestaltung eines Fertigungssystems und der darin stattfindenden
Fertigungsprozesse“[Dang99]

Innerhalb der Fertigungsplanung kann weiter zwischen der eigentlichen Entwicklung
neuer Prozesse und Verfahren und der Gestaltung der Fertigungsprozesse und ihrer
Verbindungen in einer Fertigungsprozessplanung unterschieden werden (vgl. Abbildung
1). Um bestehende oder geplante Fertigungssysteme in ihrer realen oder geplanten
Anordnung nachzubilden und die Fertigungsplanung somit zu verfeinern, wird in einem
begleitenden Planungsschritt die Layoutplanung eines Fertigungssystems durchgeführt.

Definition 6: Layoutplanung

„Aufgabe der Layoutplanung ist, für eine vorgegebene Menge von
Organisationseinheiten, deren wechselseitige Fördervorgänge bekannt sind, in
einer gegebenen Planungsfläche einen Anordnungsplan mit minimalen
Förderkosten zu suchen“ [Dang99, in Anlehnung an Anordnungsplanung]

Um die entstandenen Simulationsmodelle auch in späteren Planungsphasen und dem
laufenden Betrieb nutzbar zu halten, müssen sie permanent gepflegt und gewartet
werden. Wie in der Motivation angerissen, kann die Ablaufsimulation zukünftig auch neue
Anwendungsgebiete im operativen Betrieb der Fertigungssysteme erschließen,
beispielsweise zur Absicherung von Planzahlen oder als Prognoseinstrument in einem
Leitstand. Ihre Anwendung weitet sich in den Bereich der Fertigungslenkung aus.

Definition 7: Fertigungslenkung

„Fertigungslenkung ist die Aufgabe, für ein gegebenes Fertigungssystem –
ausgehend von gegebenen Daten – Solldaten, die in sich und mit den
Ausgangsdaten konsistent sind, für einen definierten, zielgerichteten Ablauf eines

Ablaufsimulation von Fertigungssystemen - 7 -

Fertigungsprozesses festzulegen, dem Fertigungsprozess vorzugeben und diesen
auf Inkonsistenzen abzuprüfen“ [DaWa97]

In Anlehnung an die Darstellung von Hackstein [Hack89] können innerhalb der
Fertigungslenkung (bei Hackstein: Produktionssteuerung) folgende Unterfunktionen
unterschieden werden:

Abbildung 1: Funktionen der Fertigungslenkung

Die Unterfunktionen der Fertigungslenkung sollen im Folgenden kurz beschrieben
werden, um Einsatzgebiete der Ablaufsimulation in der Anforderungsbeschreibung (vgl.
Abschnitt 2.4) präzise formulieren zu können.

Definition 8: Fertigungsprogrammplanung

„Die Planung des Fertigungsprogramms (Produktionsprogrammplanung) besteht
darin festzulegen, welche Erzeugnisse in welchen Mengen in einem bestimmten
Zeitabschnitt hergestellt und verkauft werden sollen.“ [Dang99]

Die Fertigungsprogrammplanung wird üblicherweise in die Schritte strategische, taktische
und operative Planung unterteilt. Die strategische Planungsphase legt die wesentlichen
Geschäftsfelder des Unternehmens fest, wohingegen die taktische Planung den Fokus auf
die Entwicklung und Auswahl neuer Erzeugnisse legt. Die Ablaufsimulation zur
Absicherung von Fertigungsprogrammen kommt vermehrt in der dritten Phase, der
operativen Planung zum Einsatz, in der auf Basis vorheriger Planungsphasen die
Stückzahlen der zu fertigenden Erzeugnisse für einen festgelegten Zeitraum festgelegt
und beplant werden (vgl. [Dang99]). Heutzutage ist die Ablaufsimulation auf den Einsatz
als „Frühwarnsystem“ beschränkt, liefert also nur Prognosen über zukünftige
Systemzustände, um den Fertigungslenker größere Handlungszeiträume zu ermöglichen

- 8 -

[Klos06]. Mit dem hier zu konzipierenden Werkzeug soll die Ablaufsimulation auch die
eigentliche Planung von Fertigungsprogrammen unterstützen.

Definition 9: Mengenplanung

„Die Mengenplanung hat die Aufgabe, Aufträge über Erzeugnisse und davon
abgeleitete Materialien an die Fertigung und den Einkauf mit den erforderlichen
Zeitpunkten und über die erforderliche Menge zu übermitteln, so dass das
Fertigungsprogramm erfüllt werden kann“ [DaWa97]

Eine Reihenfolge der herzustellenden Erzeugnisse wird erst in den nachfolgenden Stufen
ermittelt. Teilaufgaben der Mengenplanung sind die Bestands- und Bestellrechnung, die
Bedarfsrechnung sowie die Stücklistenorganisation. Die Mengenplanung kann
verbrauchsorientiert, wie auch bedarfsorientiert erfolgen1.

Definition 10: Terminplanung

„Die Terminplanung dient dazu, Aussagen über Termingerüste für die Bewältigung
einer Gesamtaufgabe zu machen. Die Terminplanung betrachtet Ablaufstrukturen,
die nur einmal instanziiert werden.“ [DaWa97]

Die Terminplanungsverfahren berücksichtigen nicht die Kapazitätsrestriktionen der
Fertigungselemente, sondern beachten nur Zeitabläufe innerhalb der vorgegebenen
Ablaufstrukturen. Für jeden einzelnen Fertigungsprozess werden nur Start- und
Endtermine berücksichtigt.

Definition 11: Kapazitätsplanung

„Bei der Kapazitätsplanung sind Beginn-Termin und Fertigstellungs-Termin eines
in der Mengenplanung festgelegten Fertigungsauftrags sowie die Zwischentermine
der einzelnen Fertigungsprozesse unter Berücksichtigung eines begrenzten
Kapazitätsangebots festzulegen.“ [in Anlehnung an DaWa97]

In der Kapazitätsterminierung wird grob geplant, ob die erforderlichen Kapazitäten für
das Fertigungsprogramm vorhanden sind. Bei Kapazitätsengpässen müssen einzelne
Arbeitsschritte in andere Zeiträume verschoben werden. Sobald dies geschehen ist,
können grob terminierte Aufträge an die folgenden Schritte der Fertigungslenkung
(Auftragsveranlassung und –überwachung) übergeben werden. Innerhalb der operativen
Planungsaufgaben kommen vermehrt Methoden der Rückwärtsterminierung zum Einsatz
(vgl. Abschnitt 2.3). Die Ergebnisse der Feinplanungsphasen dienen als Ausgangsbasis
für die nachfolgenden Stufen der Auftragsveranlassung und –überwachung.

Fertigungssysteme können nach unterschiedlichen Merkmalen klassifiziert werden. Neben
Merkmalen, die sich auf das resultierende Erzeugnis beziehen, können Merkmale
gefunden werden, die sich auf den organisatorischen und logischen Aufbau der

1 Eine genaue Beschreibung der verbrauchs-, bzw. bedarfsorientierten Mengenplanung findet sich bei

[DaWa97]

Ablaufsimulation von Fertigungssystemen - 9 -

Fertigungsprozesse beziehen. Neben Fertigungsart und –Struktur ist insbesondere die
Organisationsform kennzeichnend für den Materialfluss.

Definition 12: Organisationsform

„Die Organisationsform kennzeichnet die am Fertigungsprozess orientierte Art der
Zusammenführung von Betriebsmitteln zu organisatorischen Einheiten. Sie
bestimmt ganz wesentlich die Qualität der inter-OE-Beziehungen und die
räumliche Anordnung der Organisationseinheiten“ [Dang99]

Neben der räumlichen Anordnung wirkt sich die gewählte Organisationsform
entscheidend auf Beziehungen der Organisationseinheiten untereinander und damit auf
den Materialfluss der Fertigung aus. Unter einem Materialfluss in der Fertigung wird
gemäß VDI 3300 verstanden [VDI3300]:

Definition 13: Materialfluss

„Materialfluss ist die Verkettung aller Vorgänge beim Gewinnen, Be- und
Verarbeiten, sowie bei der Verteilung von stofflichen Gütern innerhalb festgelegter
Bereiche. Zum Materialfluss gehören alle Vorgänge während des Durchlaufes von
Gütern (z.B. Material, Stoffmengen, Abfall, Datenträger usw.) durch ein System,
wie Bearbeiten, Handhaben, Transportieren, Prüfen, Aufenthalte und Lagerungen.
...“ [VDI3300]

Die Organisationsform eines Materialfluss einer Fertigung kann gemäß [DaWa97] nach
zwei grundlegenden Prinzipien unterschieden werden: funktionsorientiert gegliederte
Fertigungssysteme und objektorientiert gegliederte Fertigungssysteme2. Sie sollen im
Folgenden kurz charakterisiert werden.

Ein funktionsorientiert gegliedertes Fertigungssystem liegt vor, wenn sich die räumliche
Anordnung der Betriebmittel (Maschinen, etc.) an deren Fertigungsaufgabe orientiert. Ein
typisches Prinzip für eine funktionsorientiert gegliederte Fertigung ist die
Werkstattfertigung, für die die Zusammenfassung von Fertigungsmitteln mit gleichartigen
Fertigungsvorgängen zu Abteilungen und das Fehlen fester Transportbeziehungen
zwischen den Fertigungsmitteln typisch ist. Neben einer hohen Elastizität kann eine
verbesserte Flexibilität gegenüber wechselnden Anforderungen innerhalb der Fertigung
garantiert werden. Diesen Vorteilen stehen eine verringerte Übersichtlichkeit des
Gesamtprozesses und ein erhöhtes Transportaufkommen gegenüber.

Unter den objektorientiert gegliederten Fertigungssystemen werden diejenigen
Organisationsformen summiert, deren Anordnung sich an dem herzustellenden Erzeugnis
orientiert. Häufige Organisationsformen sind Gruppen-, Linien und Fließfertigung. Bei der
Gruppenfertigung werden die zur Bearbeitung ähnlicher Fertigungselemente benötigten
Fertigungsmittel räumlich zusammengestellt. Bei einer Linienfertigung sind die
Fertigungsmittel nach der Ablauffolge angeordnet und durch einfache
Transporteinrichtungen verknüpft. Sowohl Gruppen-, als auch Linienfertigung sind

2 [Dang99] unterscheidet zwischen ortsgebundener und ortsveränderlicher Fertigung. Die wesentliche

Unterscheidung basiert aber auch hier auf der Frage, „wer sich bei der Zuordnung von Fertigungsobjekt und
Betriebsmittel zur Durchführung einer Aufgabe bewegt: Fertigungsobjekt oder Betriebsmittel“

- 10 -

gegenüber Änderungen der Fertigungsablauffolge flexibel. Gegenüber der Linienfertigung
zeichnet sich die Fließfertigung durch eine feste Verkettung der einzelnen
Arbeitsstationen aus. Dadurch werden eine besonders niedrige Durchlaufzeit und eine
hohe Transparenz bezüglich des Fertigungsprozesses erreicht. Eine Fließfertigung ist
dadurch allerdings auch weniger flexibel und reagiert empfindlicher auf Störungen. Je
nach Ausprägung des Merkmals Fertigungsart (Losgröße, Wiederholhäufigkeit) kann die
Fließfertigung in Serien- oder Massenfertigung differenziert werden, wobei die
Massenfertigung als Extremfall einer Serienfertigung angesehen werden kann.

Der Anwendungsbereich dieser Arbeit soll damit hinreichend genug klassifiziert sein, um
die Anforderungen an den zu entwickelnden Prozess, die Modellbeschreibung und das
eigentliche Werkzeug formulieren zu können. Nachfolgend muss als nächster Schritt auch
das bisher eher vage dargestellte Problemfeld der Ablaufsimulation entsprechend
präzisiert werden.

2.2 Ablaufsimulation: Modellierung, Simulation & Analyse

Die Ablaufsimulation von Fertigungsabläufen ist ein Instrument mit dem strategische,
taktische und operative Entscheidungen abgesichert werden können. Ein einmal erstelltes
Prozessmodell erlaubt eine schnelle Analyse verschiedener Varianten eines Prozesses.
Fragen wie: „Wie viel mehr kann ich durch den Einsatz eines weiteren Flurfördergerätes
produzieren?“ lassen sich so schnell beantworten. Die Robustheit von
Fertigungsprozessen auf exogene und endogene Einflüsse lässt sich durch
Sensitivitätsanalysen mittels der Ablaufsimulation untersuchen.

Das zu entwickelnde Werkzeug arbeitet im Problemfeld der diskreten,
ereignisgesteuerten Ablaufsimulation, in der Fertigungssysteme hinsichtlich ihres
Materialflusses inklusive aller Einflussfaktoren abgebildet werden. Um insbesondere
diesen Typus der Simulation im Folgenden abzugrenzen, müssen einige grundlegende
Begriffsdefinitionen eingeführt werden.

Definition 14: Simulation

„Simulation ist das Nachbilden eines Systems mit seinen dynamischen Prozessen
in einem experimentierfähigen Modell, um zu Erkenntnissen zu gelangen, die auf
die Wirklichkeit übertragbar sind. Im weiteren Sinne wird unter Simulation das
Vorbereiten, Durchführen und Auswerten gezielter Experimente mit einem
Simulationsmodell verstanden“ [VDI3633]

Bezieht sich die Aufgabenstellung der Simulation insbesondere auf die dynamischen
Prozesse eines Modells, wird von der Ablaufsimulation gesprochen. Sie betrachtet
zeitliche und kapazitative Auslastungen. Simulationen stützen sich stets auf vom
Anwender erzeugte Modelle. Ein Modell kann nach [KlBu71] wie folgt aufgefasst werden:

Definition 15: Modell

„Ein Objekt, das auf der Grundlage eine Struktur-, Funktions- oder Verhaltens-
analogie zu einem entsprechenden Original von einem Subjekt eingesetzt und
genutzt wird, um eine bestimmte Aufgabe lösen zu können, deren Durchführung
mittels direkter Operation zunächst oder überhaupt nicht möglich bzw. unter
gegebenen Bedingungen zu aufwendig ist. …“ [KlBu71]

Ablaufsimulation von Fertigungssystemen - 11 -

Modelle als Abbildung von Fertigungssystemen werden in der Praxis häufig so komplex,
dass eine Abbildung durch dreidimensionale Modelle oder realitätsnahe Funktionsmodelle
heute schnell an zeitliche und wirtschaftliche Grenzen stößt. Im Kontext der
Fertigungsplanung und –lenkung werden deshalb zumeist Modelle verwendet, die mittels
einer Simulation auf einem Computer berechnet und ausgeführt werden können.

Definition 16: Rechnerunterstützte Simulation

„Rechnerunterstützte Simulation ist das experimentelle Betreiben eines Modells
auf einer Rechneranlage“[Dang99]

Unter Einsatz der Ablaufsimulation und mit Hilfe eines Simulators kann der Anwender im
Rechner als Modell vorliegende Systemalternativen analysieren und hinsichtlich der
Zielerfüllung überprüfen.

Definition 17: Simulator

„Softwareprogramm, mit dem ein Modell zur Nachbildung des dynamischen
Verhaltens eines Systems und seiner Prozesse erstellt und ausführbar gemacht
werden kann. Ein Simulator beinhaltet einen Simulatorkern, eine
Datenverwaltung, eine Bedienoberfläche und gegebenenfalls weitere
Schnittstellen“ [VDI3633]

Die Ablaufsimulation ist also eine Methode zur Analyse von dynamischen
Zustandsänderungen in einem System, im vorliegenden Fall von Fertigungssystemen. Sie
wird in vielen Bereichen in verschiedenen Ausprägungen eingesetzt. Um das Problemfeld
weiter einzugrenzen, müssen weitere Klassifikationen herangezogen werden. Als ein
wesentliches Klassifikationsmerkmal dient die Differenzierung zwischen „diskreter“ und
„kontinuierlicher“ Simulation.

Definition 18: diskret

„Diskret – eigtl.: geschieden, unstetig, diskontinuierlich, auch: abgesondert,
getrennt. …“ [KlBu71]

Definition 19: Kontinuierlich

„Kontinuierlich, zusammenhängend, lückenlos. …“[KlBu71]

Der Zustand zu einem Simulationszeitpunkt wird durch Zustandsvariablen (z.B. der
Belegungszustand einer Maschine) beschrieben. In kontinuierlichen Simulationen können
diese Zustandsvariablen kontinuierlich über die Simulationszeit ihren Wert ändern. So
kann z.B. die Geschwindigkeit eines beschleunigenden Fahrzeuges über die
Beschleunigung und die Zeit beschrieben werden. In diskreten Simulationen verändern
Zustandsvariablen ihren Wert nur an endlich vielen Zeitpunkten. So kann zum Beispiel
der Füllstand eines Lagers über die Anzahl der eingelagerten Elemente beschrieben
werden. Die Zeitpunke der Zustandsübergänge werden als Ereignis bezeichnet.

Definition 20: Ereignis

- 12 -

„Atomare Begebenheit, die eine Zustandsänderung bewirkt und keine Zeit
verbraucht“ [VDI3633]

Abbildung 2: diskrete und kontinuierliche Simulation

In dieser Arbeit sollen nur diskrete Simulationen betrachtet werden. Hier kann weiter
unterschieden werden, wie die einzelnen Zustandsübergänge zeitlich voneinander
abhängen. Man unterscheidet zwischen fixen und variablen Zeitinkrementen. In diesem
Werkzeug sollen durch eine sinnvolle Konstruktion des Simulatorkerns und der
Modellbeschreibung grundsätzlich beide Möglichkeiten der Zeitfortscheitung unterstützt
werden. In Abschnitt 3.3 werden deshalb beide Methoden der Zeitfortschreitung bei der
Ausführung von Simulationsmodellen näher betrachtet. Insbesondere wird untersucht,
wie ein Simulator strukturiert werden muss, um beide Ausführungsformen zu
unterstützen.

Typischerweise wird die Methode Ablaufsimulation in jeglicher Ausführung in Form einer
Simulationsstudie angewandt, um Fertigungssysteme hinsichtlich eines bestimmten
Untersuchungszwecks zu analysieren.

Definition 21: Simulationsstudie

„Projekt zur simulationsgestützten Untersuchung eines Systems. (...) Eine
Simulationsstudie kann mehrere Simulationsexperimente umfassen, die ihrerseits
aus mehreren Simulationsläufen bestehen können“ [VDI3633]

Neben typischen Projektaufgaben kann eine Simulationsstudie in drei Hauptaufgaben
untergliedert werden. Zunächst den Prozess der Modellerstellung: die Modellierung.

Definition 22: Modellierung

„Modellierung ist der Prozess der Überführung eines Realitätsausschnittes in ein
Modell.“[FiHe00]

Die zweite Hauptaufgabe beschreibt das Ausführen des dynamischen Modells in einem
Simulator, der eigentliche Simulationslauf bzw. das Simulationsexperiment.

Definition 23: Simulationslauf

„Nachbildung des Verhaltens eines Systems mit einem spezifizierten,
ablauffähigen Modell über einen bestimmten (Modell-)Zeitraum…“[VDI3633]

Ablaufsimulation von Fertigungssystemen - 13 -

Definition 24: Simulationsexperiment

„Systematischer Plan zur Ausführung einer Menge von Simulationsläufen mit
unterschiedlichen Anfangszuständen und Parametereinstellungen zur effizienten
Untersuchung des Modellverhaltens“ [VDI3633]

Innerhalb eines Simulationsexperimentes müssen die in den Simulationsläufen
gesammelten Daten ausgewertet werden. Diese Kombination von Simulations-
experimenten und Auswertung hinsichtlich bestimmter Untersuchungskriterien wird als
Analyse bezeichnet und beschreibt die dritte Hauptaufgabe innerhalb einer
Simulationsstudie.

Definition 25: Analyse

„Verfahren zur Untersuchung und Erkenntnis materieller oder ideeller
Gegebenheiten, dessen Wesen in der praktischen oder gedanklichen Zerlegung
eines Ganzen in seine Teile, eines Zusammengesetzten in seine Elemente besteht.
Das Ziel der Analyse besteht darin, wesentliche Eigenschaften und Relationen von
unwesentlichen, notwendige von zufälligen, allgemeine von individuellen zu
unterscheiden und auf diesem Wege von der undifferenzierten Betrachtung der
Gesamterscheinung zur Erkenntnis ihres Wesens und der sie bestimmenden
Gesetzmäßigkeiten vorzudringen.“[KlBu71]

Eine genaue Simulationsmethodik, wie sie in der Praxis ihre Anwendung findet, wird in
Abschnitt 3.1 beschrieben. Mittels der Ablaufsimulation werden bereits heute zahlreiche
Fragestellungen bezüglich der Abstimmung von Fertigungsprozessen erarbeitet. Dennoch
lassen sich nachfolgend einige Teilprobleme identifizieren, deren Lösung die Verbreitung
und Akzeptanz der Methode Ablaufsimulation weiter fördern sollen. Sie wurden in der
Motivation aufgezeigt und sollen nun entsprechend präzisiert werden.

2.3 Erweiterungen aus der Motivation

Bereits Kapitel 1 hat verschiedene Szenarien motiviert, in denen die Ablaufsimulation
zukünftig angewendet werden kann. Nachfolgend sollen diese Szenarien näher erläutert
werden und, soweit nötig, die dafür benötigten Begriffe und Definitionen eingeführt
werden.

Synchronisierte, ortsunabhängige Mehrbenutzerunterstützung bei der
Modellierung und Simulation von Materialflussmodellen in einer interaktiven,
immersiven und virtuellen Umgebung

Durch die steigende Bedeutung der Ablaufsimulation werden auch die betrachteten
Projektszenarien für Simulationsstudien immer komplexer. Infolgedessen werden die
Projekte auch nicht mehr von einzelnen Simulationsexperten bearbeitet, sondern
mehrere Anwender, typischerweise mit verschiedenen Aufgaben, Interessen und
Erfahrungen mit der Ablaufsimulation, arbeiten innerhalb eines gemeinsamen Projektes

- 14 -

an der Lösung des Untersuchungszieles. Die Planung und Evaluierung eines
Fertigungsprozesses kann also nicht als ein Arbeitsschritt verstanden werden, bei dem
der Prozess der Modellierung, Ausführung und Analyse der Simulationsmodelle am
Computer einer einzelnen Person stattfindet. Verschiedene Projektmitarbeiter erarbeiten
ein gemeinsames Simulationsmodell. Dieser Vorgang erfordert eine umfangreiche
Interaktion zwischen den Modellierern und die gemeinsame Nutzung von Daten und
Informationen über das Simulationsmodell oder dessen Bausteine. Der
Modellierungsprozess erstreckt sich typischerweise über einen längeren Zeitraum und
erfordert den Zugriff auf komplexe Informationsbestände. Das Modelliererteam kann
ebenso wie das erstellte Simulationsmodell Substrukturen beinhalten, wie z. B.
Teilprojekte und Arbeitsgruppen.

Während der Durchführung einer Simulationsstudie sollen deshalb im angestrebten
Werkzeug mehrere Anwender sowohl gleichzeitig, als auch zeit- und ortunabhängig
gemeinsam an einem Simulationsmodell arbeiten können. Die einzelnen Phasen der
Modellierung und Simulation sind dazu in einem System zu handhaben, dass für einen
solchen Betrieb ausgelegt ist. Ein Modellierungswerkzeug, das den skizzierten Prozess der
gemeinschaftlichen Modellierung unterstützt, kann als kooperatives Modellierungs-
werkzeug bezeichnet werden.

Definition 26: Mehrbenutzersystem

„Ein Mehrbenutzersystem oder Multiuser-System ist eine Software, die die
Fähigkeit hat, Arbeitsumgebungen für verschiedene Benutzer bereitstellen und
voneinander abgrenzen zu können.“[TaSt03]

Definition 27: Multitasking

„Multitasking bezeichnet die Fähigkeit einer Software, mehrere Aufgaben (tasks)
scheinbar gleichzeitig auszuführen. Dabei werden die verschiedenen Prozesse in
so kurzen Abständen immer abwechselnd aktiviert, dass der Eindruck der
Gleichzeitigkeit entsteht.“ [TaSt03]

Zur Modellierung werden verschiedene Interaktionstechniken benötigt. Dazu werden den
benutzten Objekten Verhaltensweisen zugewiesen. Diese Parametrisierung definiert, in
welcher Weise Objekte gesetzt bzw. in die Modellierungsumgebung integriert werden
können. Elementare Verhaltensweisen stellen das Erzeugen, Selektieren, Erweitern,
Parametrieren, Löschen, Bewegen und Verbinden von Objekten dar. Gemäß dem
Anspruch des Werkzeugs müssen diese Interaktionsmetaphern kooperativ ausgeführt
werden können. Unter Multitasking-Modellierung soll also der synchronisierte Prozess der
Modellierung verstanden werden, der von mehreren Anwendern gleichzeitig an
demselben Modell durchgeführt werden kann.

Der Modellierungsphase schließt sich die Durchführung von Simulationsexperimenten an.
Sie beinhaltet die Ausführung selbst sowie die Analyse der Ergebnisse. Initialwerte als
Eingabeparameter eines Simulationslaufes bestimmen den mengenmäßigen und
zeitlichen Fluss der Marken im Simulationsmodell. Analyseeinstellungen bestimmen für
jeden Simulationslauf, wo und in welcher Komplexität die Informationen über die

Ablaufsimulation von Fertigungssystemen - 15 -

Simulation gesammelt werden. Während der Durchführung steht die
Benutzerfreundlichkeit für den Anwender im Mittelpunkt. Idealerweise kann er Parameter
während der Durchführung ändern und die Auswirkung seiner Änderung sofort in einer
entsprechenden Visualisierung beobachten: Er interagiert mit dem Simulationsmodell.

Definition 28: Interaktion

„Interaktion bezeichnet das wechselseitige aufeinander Einwirken von Akteuren
oder Systemen…In Bezug auf die Mensch-Maschine-Interaktion meint der Begriff
die Gestaltung einer Benutzerschnittstelle zu Programmen…“ (nach [Buur05])

Genau wie bei der Modellierungsphase haben diese Interaktionen mehrerer Anwender
Einfluss auf die berechneten Ergebnisse eines Simulationslaufs. Analog zur Multitasking-
Modellierung kann unter Multitasking-Simulation also der synchronisierte Prozess der
Ausführung und Berechnung eines Simulationsmodells verstanden werden, der von
mehreren Anwendern gleichzeitig an demselben Modell durchgeführt werden kann.
Zusätzlich muss hierbei unterschieden werden, ob die Anwender an einer Instanz eines
Simulationsmodells arbeiten, oder dasselbe Basismodell mehrfach instanziieren.

Darüber hinaus erfordert insbesondere die Kommunikation mit Nicht-Simulationsexperten
innerhalb des Planungsteams eine möglichst realistische Darstellung, die das Verhalten
des Simulationsmodells bestmöglich darstellt und erklärt. Der Anwender soll sich
möglichst immersiv in das Simulationsmodell hineinversetzen.

Definition 29: Immersion

„Immersion meint das Eintauchen in eine künstliche Welt... Durch die Immersion
erlebt der Anwender direkt die Dynamik der physikalischen Vorgänge“ [Borm94]

Zur Visualisierung der Modelle und deren dynamischen Verhaltensweisen soll eine
virtuelle Umgebung dienen, in der das Simulationsmodell dreidimensional dargestellt
wird.

Definition 30: Virtuelle Realität

„Als Virtuelle Realität (VR) wird die Darstellung und gleichzeitige Wahrnehmung
der Wirklichkeit und ihrer physikalischen Eigenschaften in einer in Echtzeit
computergenerierten virtuellen Umgebung bezeichnet.“ (nach [FaHa94])

Die Vorteile einer möglichst hohen Immersion in die virtuelle Umgebung werden in
Abschnitt 3.4.3 allgemein und in Abschnitt 3.4.4 speziell für die Anwendung im Bereich
der Ablaufsimulation näher untersucht. Insgesamt ergibt sich daraus die Anforderung,
dem Anwender eine möglichst gute Form der Darstellung zu realisieren. Der Anwender
selbst wird nicht mehr länger ausschließlich passiver Betrachter, sondern kann vielmehr
in der virtuellen Umgebung die Simulation beeinflussen und modifizieren. Die Integration
in das Simulationsmodell und damit auch in das abgebildete System erhöht sein
Prozessverständnis und schafft eine realistischere Planungsumgebung.

- 16 -

Planung, Evaluierung und fortwährende Verbesserung aller Fertigungsprozesse
über alle Planungs- und Ausführungsphasen bis zur Rückkopplung in die
Fertigungslenkung

Die Planung und Evaluierung der Fertigungsprozesse unter Einsatz der Ablaufsimulation
soll vermehrt ganzheitlich über alle Planungs- und operativen Phasen eines
Fertigungsprozesses hinweg erfolgen, weil nur so eine durchgängige Analyse und
Verbesserung des Prozesses erreicht werden kann. Eine dreidimensionale Modellierung
und Simulation als Kombination von Layout- und Prozessplanung kann den Anwender
beim Aufbau des Fertigungsprozesses zusätzliche Planungsrestriktionen erkennen und
von Beginn an berücksichtigen lassen. Die Qualität der Gesamtplanung kann weiter
verbessert und zusätzliche Planungszeit innerhalb des Gesamtprojektes eingespart
werden.

Neben dem Einsatz im Rahmen von Machbarkeitsstudien, Variantenplanungen oder
quantitativen Fragestellungen, in denen ein System meist hinsichtlich seiner maximalen
Leistungsfähigkeit oder eines optimalen Durchsatzes untersucht wird, muss die
Simulation nach diesem ganzheitlichen Verständnis auch Fertigungsprogramme planen
oder zumindest absichern können. Ein Simulationsmodell eines Fertigungsprozesses kann
dann über alle Phasen der Struktur-, Mengen-, Kapazitäts- und Programmplanung bis hin
zur Prognose und der fortlaufenden Verbesserung vorhandener Fertigungsprozesse
eingesetzt werden.

Heutige Simulatoren bilden den Materialfluss ausschließlich vorwärts gerichtet ab.
Ausgehend von zu parametrierenden Eingangsparametern (in den Werkzeugen meist als
Quellen bezeichnet) berechnet der Simulator dann in jedem Simulationslauf den maximal
möglichen Output zu dem gegebenen Simulationsmodell.

Definition 31: Vorwärtsterminierung

„Vorwärtsterminierung ist die Methode, von einem Startzeitpunkt ausgehend die
frühestens möglichen Zwischen- und Endtermine zu ermitteln.“ [DaWa97]

Dieses Verfahren der Vorwärtsterminierung in Bezug auf die Ausführung von
Simulationsmodellen durch einen Simulator wird im weiteren Verlauf als
Vorwärtssimulation bezeichnet.

Im Bereich der Fertigungslenkung haben sich für die integrierte Mengen-, Termin- und
Kapazitätsplanung alternative Verfahren etabliert, um die Planungsphasen und –ergeb-
nisse eines gegebenen Fertigungsprogramms zu optimieren. Viele dieser meist
heuristischen Eröffnungs- und/oder Verbesserungsverfahren basieren auf der Methode
der Rückwärtsterminierung. Ausgehend von bestehenden Endterminen (beispielsweise
der Auslieferung eines Kundenauftrags) sollen die Fertigungsprogramme hinsichtlich
Durchlaufzeit, minimalen Kosten und Systemstabilität optimiert werden.

Definition 32: Rückwärtsterminierung

Ablaufsimulation von Fertigungssystemen - 17 -

„Rückwärtsterminierung ist die Methode, von einem vorgegebenen Liefertermin
ausgehend die spätesten möglichen Zwischen- und Starttermine zu berechnen“
[DaWa97]

Viele der mittels der Ablaufsimulation abgesicherten Fertigungssysteme werden im
Bereich der Fertigungslenkung mit Verfahren zur Rückwärtsterminierung beplant. Heute
werden, wenn überhaupt eingesetzt, erst in einem Folgeschritt die Ergebnisse dieser
Planungen durch eine Vorwärtssimulation nochmals abgesichert. Eine Verbesserung
dieser Planungsschritte ließe sich durch den Einsatz der Ablaufsimulation erreichen, wenn
die Richtung des abgebildeten Materialflusses umgekehrt wird. Ausgehend von einem
Auftragsbestand mit gegebenen Endterminen berechnet der Materialflusssimulator die
spätesten Beginn-Zeitpunkte der Aufträge, die das System durchlaufen. Dieses Verfahren
wird im Folgenden Rückwärtssimulation genannt. Mittels der Rückwärtssimulation wäre
ein Simulator in der Lage, Programmplanungen moderner, kundenorientierter
Fertigungsprozesse direkt zu planen oder zumindest abzusichern und in
Simulationsstudien zu optimieren. Der Mehraufwand für den Simulationsexperten ist
möglichst gering zu halten. Neben der Möglichkeit einer vorwärts und rückwärts
gerichteten Ausführung von Simulationsmodellen im Simulatorkern muss also
insbesondere ein Verfahren identifiziert werden, mit dem die Richtung der
Materialflussmodelle unter möglichst wenigen Arbeitsschritten umgekehrt werden kann.
Neben der ereignisgesteuerten Ausführung der diskreten Simulationsmodelle soll eine
zeitorientierte Ausführung in fixen Zeitinkrementen in Vor- oder Rückwärtsrichtung
grundsätzlich unterstützt werden, um eine mögliche Integration in bestehende
Leitstandsysteme zu erleichtern.

Kooperative Planung innerhalb von Unternehmen, Unternehmensverbünden
oder Supply-Chain-Netzwerken

Großunternehmen, virtuelle Unternehmen oder Supply-Chain-Netzwerke fertigen bereits
heute an unterschiedlichen Standorten mit aufeinander abgestimmten Prozessen. Um die
Lieferfähigkeit innerhalb eines Supply-Chain-Netzwerks sowie die Stabilität aller
einzelnen Fertigungsprogramme besser gewährleisten zu können, müssen die Planungen
enger aufeinander abgestimmt und überwacht werden. Die Mehrbenutzerfähigkeit der
angestrebten Ablaufsimulation ermöglicht eine kooperative Planung mehrerer
Simulationsexperten an einem gemeinsamen Simulationsmodell des Fertigungsnetzwerks
unabhängig vom Standort der jeweiligen Experten. Innerhalb einer Supply-Chain oder
eines Unternehmensverbundes, aber auch standortübergreifend innerhalb einer
Unternehmung können so auf Basis eines Rechtemanagements und umfangreicher
Kommunikationsmechanismen Simulationsexperten aller Standorte gemeinsam
Simulationsmodelle erarbeiten, verifizieren und validieren, Simulationsexperimente
kooperativ ausführen und in einer einzigen, gemeinsamen Umgebung auswerten.

Da die verschiedenen Partner innerhalb solcher unternehmensinternen wie –externen
Fertigungsnetzwerke nach unterschiedlichen Organisationsformen fertigen können, muss
neben dem Werkzeug an sich auch die zugrunde liegende Modellbeschreibung
Fertigungssysteme beherrschen, die sowohl ein besonders hohes Maß an Komplexität
bieten als auch über rein objektorientiert gegliederte Fertigungssysteme hinausgehen
und damit die Modellierung und Simulation von funktional gegliederten

- 18 -

Fertigungssystemen bzw. deren Mischformen erlauben. Auch in diesem Themenbereich
bietet sich der Einsatz des Werkzeugs über die reinen Planungsphasen hinaus bis hin zur
Umplanung und Einsteuerung in der Fertigungslenkung an.

Wird diese Strategie weiterverfolgt, so wird auch die Komplexität der Simulationsmodelle
weiter steigen. Insbesondere vor dem Hintergrund einer interaktiven Ausführung eines
Simulationsmodells durch mehrere Simulationsexperten in einer virtuellen Umgebung
kann dies bei beschränkten Rechenressourcen zu Problemen führen. Die
Modellbeschreibung und Ausführung von Simulationsexperimenten muss also um eine
Funktion erweitert werden, mit der auch komplexe Simulationsexperimente in einer
virtuellen Umgebung dargestellt werden können.

2.4 Anforderungsbeschreibung

Die Umsetzung der aufgezeigten Themenbereiche führt auf den unterschiedlichen
Betrachtungsebenen der Ablaufsimulation zu Konsequenzen. Einzelne Funktionen des
angestrebten Werkzeugs wirken sich auf die Art aus, wie Simulationsmodelle hierfür
beschrieben werden müssen. Sie können aber auch dazu führen, den Prozess der
Modellierung, Simulation und Analyse anders abzubilden, als das mit herkömmlichen
Software-Werkzeugen in diesem Bereich möglich ist. Um alle in Abschnitt 2.3
aufgezeigten neuen Funktionen aufnehmen zu können, beschreibt dieser Abschnitt die
Anforderungen entlang der drei Ebenen „Basisprozess“, „Modellbeschreibung“ und
„Werkzeug“, wie sie in Abbildung 3 dargestellt werden. Hier ist ebenfalls ersichtlich, dass
die Entwicklung einer Modellbeschreibung auf dem Prozess der Modellierung, Simulation
und Analyse fußt und das ein solides Werkzeug zur Lösung der aufgezeigten
Anforderungen nur entwickelt werden kann, wenn die zugrunde liegende
Modellbeschreibung die einzelnen Funktionen überhaupt unterstützt.

Abbildung 3: Abhängigkeiten der Entwurfssichten

2.4.1 Basisprozess

Der existierende Basisprozess von Modellierung, Simulation und Analyse muss um die
Möglichkeit zur kooperativen Arbeit erweitert werden. Dazu müssen die einzelnen
Arbeitsschritte in den Gesamtumfang einer Simulationsstudie eingebettet und hinsichtlich
der Bearbeitung durch mehrere Anwender untersucht werden. Grundsätzlich soll die
Vorgehensweise nicht revolutioniert, sondern nur den neuen Anforderungen angepasst
werden. In einem ersten Schritt sollen die einzelnen Arbeitsschritte durch eine modulare
Struktur des Werkzeugs voneinander entkoppelt werden. Auf Basis einer konsistenten
und integrierten Datenhaltung wird damit die Arbeit mehrerer Anwender an einem

Ablaufsimulation von Fertigungssystemen - 19 -

Simulationsmodell grundsätzlich ermöglicht. Die einzelnen Module des Werkzeugs, wie
sie in Abbildung 4 skizziert werden, haben dann jeweils noch die Aufgabe, die Konsistenz
innerhalb des Moduls während der Bearbeitung durch mehrere Anwender sicherzustellen.

Die Anforderung nach einer interaktiven Arbeitsumgebung führt zu der Konsequenz einer
bidirektionalen Kopplung der Visualisierungkomponente(n) mit dem eigentlichen
Simulator, der den Simulationslauf berechnet. Die Änderungen des Anwenders können so
in den Simulator eingespielt und die Änderungen in der Visualisierung sofort
nachvollzogen werden. Um Simulationsmodelle so einer interaktiven Analyse zuführen zu
können, muss auch die zugrunde liegende Modellbeschreibung verschiedene Kriterien
erfüllen, die im folgenden Abschnitt zusammen getragen werden sollen. Darüber hinaus
müssen zur Kopplung der verschiedenen Funktionsmodule definierte Schnittstellen
erstellt werden, die eine solche Vorgehensweise unterstützen.

Abbildung 4: Grundstruktur der Module im Basisprozess

2.4.2 Modellbeschreibung

Die Art und Weise, wie Simulationsmodelle in dem zu entwickelnden Werkzeug
beschrieben werden, hat Auswirkungen auf die überhaupt zu ermöglichenden
Funktionalitäten der Software. Als grundlegende Datenstruktur, auf der ein
Simulationslauf berechnet wird, liefert sie den Rahmen für die möglichen Aktivitäten des
Anwenders sowohl auf der Modellierungs- als auch auf der Simulationsseite. Deshalb
muss sie alle Funktionen und Möglichkeiten ermöglichen, die dem Anwender geboten
werden sollen.

Für das hier zu entwickelnde Werkzeug muss die Modellbeschreibung zunächst einmal ein
Fertigungssystem und seine Elemente abbilden können. Die menschliche Denkweise
orientiert sich an einer Strukturierung in verschiedene Einzelteile. Die
Modellbeschreibung soll deshalb in erster Linie Simulationsmodelle modular und im
weitesten Sinne objektorientiert formalisieren. Die Genauigkeit, mit der ein
Fertigungssystem in seine Teile zerlegt wird, soll vom Anwender frei wählbar sein.
Prinzipiell soll also ein beliebiger Detailgrad erlaubt sein. Das ist insbesondere auch vor
dem phasenübergreifenden Einsatz der Ablaufsimulation interessant, da sich bei der
Planung von Fertigungssystemen der Detaillierungsgrad der Abbildung stetig verfeinert.

- 20 -

Dadurch wächst natürlich auch der Komplexitätsgrad des Modells. Zur weiteren
Strukturierung sollen die Simulationsmodelle also hierarchisierbar sein. So kann eine
Hierarchieebene auch einer jeweiligen Sicht auf das abzubildende Objekt entsprechen.
Wird zu Beginn einer Planung ein Fertigungssystem beispielsweise noch als eine
Zusammensetzung von 3 Kernabläufen betrachtet, so lassen sich diese im weiteren
Projektverlauf leicht durch Hierarchieebenen ergänzen, die die einzelnen Teilbereiche
genauer modellieren.

Die Simulationsmodelle sollen im Rahmen der Modellierung und Simulation von mehreren
Anwendern bearbeitet werden können. Obwohl eine Synchronisierung der einzelnen
Anwenderinteraktionen letztendlich durch die jeweiligen Module des Werkzeugs erfolgen
muss, so muss die Modellbeschreibung eine solche synchronisierte Interaktion doch
ermöglichen. Auch hier ist eine objektorientierte Darstellung im Vorteil, weil die
betroffenen Objekte einzeln vor anderen Zugriffen gesperrt werden können.

Letztendlich soll mit diesem Werkzeug die Anwendung der Ablaufsimulation erweitert
werden und so ist nur realistisch anzunehmen, dass auch zusätzliche Anforderungen an
das Werkzeug und seine Modellbeschreibung gestellt werden. Die Modellbeschreibung
muss deshalb in besonderem Maße auch flexibel erweiterbar sein. Eine der neueren
Anwendungen ist schon jetzt bekannt: Die Rückwärtssimulation. Weil diese auf rückwärts
gerichteten Simulationsmodellen arbeitet, die Zeit zur doppelten Modellierung eines
Fertigungssystem aber sicherlich nicht vorhanden ist, muss die Modellbeschreibung
darüber hinaus richtungsoffen sein, d.h. das Konvertieren von vorwärts gerichteten
Simulationsmodellen in rückwärts-gerichtete Simulationsmodelle ermöglichen.

Neben diesen Anforderungen an die Modellbeschreibung gibt es darüber hinaus auch
Einschränkungen, die für die zu konzipierende Modellbeschreibung nicht gelten sollen.
Wegen der zu unterstützenden ereignis- oder zeitorientierten Ausführung in Vor- und
Rückwärtsrichtung soll die Modellbeschreibung keine festen Zeitangaben und/oder
Zeiteinheiten enthalten, sondern angegebene Parameter nur in relativ angegebenen
Zeitpunkten beschreiben. Die jeweilige Berechnung der Simulationszeit hängt dann nicht
zuletzt auch von dem verwendeten Verfahren im Simulatorkern ab und spielt für das
Beschreiben der zugrunde liegenden Simulationsmodelle keine Rolle.

In Summe kann die Modellbeschreibung daraufhin die Datenstruktur der Anwendung
liefern, die mit dem Werkzeug entwickelt werden soll und in dem die eigentlichen
Funktionen implementiert werden.

2.4.3 Werkzeugentwicklung

Das Werkzeug selbst soll mit modernen Methoden des Software-Designs entwickelt
werden. Neben einer objektorientierten Programmierung ist dafür insbesondere auch die
Definition von erweiterbaren Schnittstellen und einer modularen Programmstruktur von
großer Bedeutung. Somit können auch einzelne Funktionen des Werkzeugs später mit
relativ geringem Aufwand durch Weiterentwicklungen ersetzt werden.

Die einzelnen Module der Gesamtanwendung strukturieren sich in Anlehnung an den zu
unterstützenden Arbeitsprozess des Anwenders, sind also im besten Sinne anwendungs-
und prozessorientiert. Neben einem Werkzeug zum Aufbau der Simulationsmodelle muss

Ablaufsimulation von Fertigungssystemen - 21 -

das Werkzeug einen Simulatorkern oder Kernel enthalten sowie minimal eine
Visualisierungskomponente zur Analyse der modellierten Abläufe und deren dynamischen
Verhaltensweisen in dem Simulationsmodell. Zur konsistenten Datenhaltung empfiehlt
sich darüber hinaus die Verwendung einer Datenbankstruktur. Sie erlaubt einen schnellen
Zugriff auf die anfallenden Datenmengen (Simulationsmodelle, Experimentdaten, 3D-
Modelle etc.)

Die Anforderungen an die einzelnen Module sind aus Abschnitt 2.3 bekannt und sollen
deshalb an dieser Stelle nur kurz aufgelistet werden. Sie sollen im besonderen Maß als
Anforderungen für die Entwicklung des Werkzeugs dienen.

In Summe bilden die dargestellten Anforderungen an Basisprozess, Modellbeschreibung
und Werkzeug die Gesamtanforderungen an diese Arbeit. In einem nächsten Schritt muss
nun der Stand der Technik hinsichtlich existierender Lösungen oder Lösungsideen
untersucht werden. Das soll im folgenden Kapitel 1 geschehen.

Modul Funktion

Modellierung Synchronisierte Multitasking-Modellierung
 Beliebiger Detailgrad
 Hierarchische, modulare und objektorientierte Modelle
 Umkehrung von Simulationsmodellen
 Einfache Modellierung von Transportwegen für funktional
gegliederte Fertigungssysteme

Simulation Dynamische Detaillierung
 Interaktiv veränderbar
 Ereignis- & zeitorientierte Simulation in vorwärts und rückwärts
Richtung

Visualisierung Interaktive 3D-Darstellung des Materialflusses aus der
Simulation

 Synchronisierte Multitasking-Simulation für mehrbenutzerfähige
Analyse

 Immersive Visualisierung in virtueller Umgebung

Tabelle 1: Anforderungen aus den neuen Einsatzfeldern der Ablaufsimulation

Stand der Technik - 23 -

3 Stand der Technik
„Zähmen sollen sich die Menschen,

die sich gedankenlos der Wunder der
Wissenschaft und Technik bedienen und
nicht mehr davon geistig erfasst haben

als die Kuh von der Botanik der Pflanzen,
die sie mit Wohlbehagen frisst.“

(Albert Einstein)

Nachdem im vorigen Kapitel die Anforderungen an diese Arbeit zusammengetragen
wurden, soll nun Stand der Technik hinsichtlich dieser Fragestellungen untersucht
werden. Welche Lösungsansätze sind in den verschiedenen Bereichen bereits bekannt
und inwiefern können sie helfen, die gestellten Anforderungen umzusetzen?

Analog zur Strukturierung der Anforderungsbeschreibung soll auch der Stand der Technik
Schritt für Schritt untersucht werden. In einem ersten Schritt muss zunächst untersucht
werden, welche Prozesse sich bei der Durchführung einer Simulationsstudie etabliert
haben und inwiefern sich dieses Vorgehen auch in einer mehrbenutzerfähigen und
interaktiven Arbeitsumgebung realisieren lässt. Abschnitt 3.1 soll dazu die bekannte
Methodik zur Durchführung einer Simulationsstudie vorstellen und bewerten.

Weil im Folgeschritt dieser Arbeit darauf aufbauend eine Modellbeschreibung konzipiert
werden soll, widmen sich die Abschnitte 3.2 und 3.3 der Bewertung von bekannten
Methoden zur Modellierung und Ausführung von diskreten Simulationsmodellen. Danach
wird in Abschnitt 3.4 zusätzlich untersucht, inwiefern sich speziell virtuelle Umgebungen
zur Visualisierung von Ablaufsimulationen eignen und welche Vorraussetzungen dafür
erfüllt sein müssen.

Erst im Folgeschritt widmet sich der Abschnitt 3.5 den Methoden des Software-Designs
zur Entwicklung des Werkzeugs. Die Erkenntnisse aus Basisprozessgestaltung und der
Modellbeschreibung sollen hier in die Bewertung mit einfließen. Der Abschnitt zeigt
allgemeine und objektorientierte Prinzipien des Software-Designs auf, fokussiert im
Speziellen auf Organisationsformen und Architekturmuster von Mehrbenutzersystemen
sowie Prinzipien zur Schnittstellengestaltung, jeweils vor dem Hintergrund der gestellten
Anforderungen.

Abschließend fasst Abschnitt 3.6 den Stand der Technik hinsichtlich der Fragestellung
zusammen, so dass im folgenden Kapitel die Zielstellung der Konzeption und
Implementierungsphase formuliert werden kann.

3.1 Simulationsmethodik

Die Simulation von Fertigungssystemen hinsichtlich einer bestimmten Aufgabenstellung
wird laut Definition 21 als Simulationsstudie bezeichnet. [VDI3633] beschreibt eine
Vorgehensweise bei der Durchführung von Simulationsstudien, die sich in diesem
Themenfeld etabliert hat. Sie soll nachfolgend näher beschrieben werden. Im

- 24 -

Wesentlichen gliedert sich die Vorgehensweise in die Schritte Vorbereitung, Modellierung,
Durchführung und Auswertung. Insbesondere die Modellierung und Durchführung von
Simulationsexperimenten müssen iterativ durchgeführt werden, um die erstellten
Simulationsmodelle zu verifizieren, zu validieren und ggf. alternative Szenarien zu
erarbeiten.

Abbildung 5: Ablauf einer Simulationsstudie nach [VDI3633]

Ausgangspunkt jeder Simulationsstudie ist demnach die exakte Festlegung eines
Untersuchungsziels, welches das grundlegende Problem inklusive einer grundsätzlichen
Beschreibung des Vorgehens und Lösungsmöglichkeiten eingrenzt. Auf Basis des
Untersuchungsziels kann die nachfolgende Phase der Datenaufbereitung erfolgen.
Beschaffung, Aufbereitung und ggf. Anpassung der Daten ist oftmals mit hohem Aufwand
verbunden, da sie nur selten bereits in der benötigten Form vorliegen. In manchen Fällen
liegen über das abzubildende System noch gar keine Daten vor (wenn beispielsweise das
Fertigungssystem in der Realität noch nicht existiert). In diesem Fall müssen die
benötigten Daten bestmöglich abgeschätzt werden. Insbesondere räumliche, zeitliche
und mengenmäßige Daten sind als Eingabeparameter für das Simulationsmodell
interessant. Wie oben bereits erwähnt, sind die vorliegenden Daten auf Plausibilität und

Stand der Technik - 25 -

Richtigkeit zu prüfen, da nur dann auch vernünftige Ergebnisse aus der Simulationsstudie
zu erwarten sind.

Im Folgeschritt wird das Fertigungssystem zunächst als logisches, später dann als
experimentierfähiges Modell in einem Simulator abgebildet. Das Simulationsmodell muss
alle für die Fragestellung relevanten Sachverhalte repräsentieren, wobei alle Elemente
und Strukturen, Regeln, Einflüsse und Verhaltensweisen aus dem realen System in dem
benötigten Detaillierungsgrad abzubilden sind. Durch die ersten Simulationsläufe mit dem
experimentierfähigen Simulationsmodell wird das Simulationsmodell bezüglich der
inneren Logik hin verifiziert und im nächsten Schritt hinsichtlich des Systemverhaltens
der Realität bestmöglich angepasst (Modellvalidierung). Das Vorgehen erfolgt hierbei
iterativ bis der gewünschte Genauigkeitsgrad erreicht werden konnte.

Die nächste Phase beinhaltet nun verschiedene Schritte der Durchführung von
Simulationsläufen im experimentellen Rahmen. Zunächst werden einfache Analysen
gefahren, um erste Aussagen zur Leistungsfähigkeit und Problembereiche des
Fertigungssystems zu erhalten. Anschließend werden einzelne Experimentreihen
durchgeführt, die entweder die Ausplanung des Fertigungssystems betreffen oder
Sensitivitätsanalysen enthalten, die die Abhängigkeit des Gesamtsystems von einzelnen
Eingabefaktoren herausarbeiten. Dieser iterative Prozess wird so lange durchgeführt, ggf.
mit Anpassungen des Simulationsmodells, bis schließlich für den Anwender hinsichtlich
der Aufgabenstellung zufrieden stellende Ergebnisse vorliegen. Den Abschluss der
Simulationsstudie bildet die Dokumentation, Auswertung und Aufbereitung der
gesammelten Ergebnisse. Die Simulationsergebnisse werden hier zu aussagefähigen
Informationen verdichtet, interpretiert und angemessen dargestellt. Hierbei muss jeweils
durch den Anwender entschieden werden, inwiefern sich ein Rückschluss von den
Simulationsergebnissen auf das reale Verhalten des abgebildeten Fertigungssystems
erlaubt.

Bei dem angestrebten Basisprozess zur Modellierung und Simulation soll sich an der für
Simulationsstudien geltenden Vorgehensweise orientiert werden. Die Darstellung der
Vorgehensweise bei einer Simulationsstudie schränkt auch den in Abschnitt 2.4.1
anvisierten Basisprozess der Modellierung, Simulation und Analyse in einer
mehrbenutzerfähigen Umgebung nicht ein, weil keine klare Aussage darüber getroffen
wird, wie die Modellbildung möglichst effektiv und effizient zu gestalten ist. So bildet die
vorgeschlagene Vorgehensweise nur den inhaltlichen Rahmen, innerhalb dem der
Basisprozess umgesetzt werden soll. Der Prozess der Modellvalidierung und
Modellverifikation soll aber durch den hohen interaktiven Grad des Werkzeugs verkürzt
werden. Weil der Anwender das Simulationsmodell während der Ausführung manipulieren
kann, sollte schneller ein verbessertes Modell erstellt werden können. Die eigentliche
Experimentphase einer Simulationsstudie muss dennoch ohne Benutzerinteraktion
durchgeführt werden, um eine statistisch auswertbare Datenbasis aus dem
Simulationsmodell generieren zu können. Dafür sollte jeder einzelne Simulationslauf
möglichst schnell ausgeführt werden können. Bei der angestrebten Ausführung im
Simulator, bei der nur nach Anforderung eine Visualisierungskomponente als
eigenständiges Modul angekoppelt wird, sollte das in der bisher geplanten, modularen
Bauweise gut unterstützt werden.

- 26 -

3.2 Modellierungsmethoden

Simulation beschreibt immer ein Arbeiten mit und an experimentierfähigen Modellen,
meist eingebettet in die Durchführung einer Simulationsstudie. Damit ist die Struktur der
abzubildenden Fertigungssysteme zumindest hinsichtlich des Untersuchungszwecks
bekannt. In einem ersten Schritt muss also das abzubildende System als ein Modell
beschrieben werden. Dieses muss in dem Werkzeug gemäß einer noch festzulegenden
Modellbeschreibung erzeugt und manipuliert werden können. Dieser Abschnitt zeigt
verschiedene Modellierungsmethoden und deren Anwendung auf Materialflusssimulation
und bewertet sie vor dem Hintergrund der an eine Modellbeschreibung gestellten
Anforderungen.

Die „Kunst“ innerhalb dieses Modellierungsprozesses ist es, eine befriedigende Mischung
zwischen dem Abstraktionsgrad, der Richtigkeit und der Genauigkeit eines Modells und
der Wirklichkeit zu finden. Der Zielkonflikt, der zwischen diesen drei Aspekten besteht,
soll minimiert werden. Der Abstraktionsgrad beschreibt das äußere „Erscheinungsbild“
eines Modells. Je weiter der Abstraktionsgrad fortschreitet, desto weniger realitätsnah
wird das Modell. Ein fortschreitender Abstraktionsgrad bedeutet aber auch einen Gewinn
an Genauigkeit, da der Fokus immer weiter auf den zu analysierenden Teil gelenkt wird.
Die Nutzbarkeit des Modells wiederum wird an der Richtigkeit gemessen.

Es existieren zahlreiche Methoden zur Modellierung von Materialflüssen [ScWe00]. In
dem nachfolgenden Abschnitt sollen deshalb zunächst Stellen/Transitionsnetze als eine
Ausprägung formaler Beschreibungen von Simulationsmodellen untersucht werden. In
einem weiteren Schritt sollen unter Abschnitt 3.2.2 Programmier- und
Simulationssprachen hinsichtlich ihrer Eigenschaften untersucht und bewertet werden.
Abschließend werden existierende Software-Lösungen in Form von grafischen
Simulationswerkzeugen und Bausteinkästen untersucht, um das Spektrum möglicher
Lösungsalternativen an Modellierungsmethoden möglichst gut abzudecken.

3.2.1 Stellen/Transitionsnetze

Stellen/Transitionsnetze sind als formale Beschreibungen zur Modellierung und
anschließender Analyse von asynchronen Prozessen weit verbreitet (vgl. [LeEg88],
[Star90]). ihre formale Basis ist auf der allgemeinen Netztheorie begründet und es
existieren Erweiterungen zur Abbildung komplexerer Systeme, beispielsweise zur
Integration stochastischer Prozesse [LeEg88], zur Abbildung hierarchischer Strukturen
oder der Individualisierung (Färbung) der Marken [LeEg88], die durch den bipartiten
Graphen laufen. Stellen/Transitionsnetze können unterschiedlich visualisiert werden.
Üblicherweise werden Stellen als Kreise, Transitionen als ein Rechteck oder als eine Linie
visualisiert, die orthogonal zu den eingehenden und ausgehenden Verbindungen steht.
Flussrelationen werden mit Pfeilen zwischen den Stellen und Transitionen dargestellt (vgl.
Abbildung 6). Mit diesen Netzen können Zustände von Montage-, Kommissionier- oder
Transportvorgängen modelliert werden. Insb. geteilte Ressourcen von nebenläufigen
Prozessen können durch diese Netze gut modelliert werden [Schm92]. Durch die nicht
deterministische Reihenfolge der Schaltungen bieten sich Petri-Netze zur Analyse und
Vermeidung von Verklemmungen an [Star90]. Die Planung der Schaltungen und die
damit implizite Planung von der Benutzung der geteilten Ressourcen kann für das reale
Problem übernommen werden.

Stand der Technik - 27 -

Abbildung 6: Beispiel eines Petri-Netzes

Stellen/Transitionsnetze sind von sich aus nicht zeitbewertet. Es existieren jedoch
erweiterte, bzw. angepasste Beschreibungen, beispielsweise MFert, in denen eine solche
Zeitbewertung verwendet wird (vgl. [Schn96]). Das MFert-Modell unterscheidet Faktoren
und Faktortransformationen. Ein Graph des Fertigungsablaufs repräsentiert die Menge
möglicher Fertigungsprozesse. In diesem Graphen sind die Faktorknoten und die
Faktortransformationsknoten die Knoten. Die Kanten symbolisieren die möglichen
Faktorströme.

Anwendung von Stellen/Transitionsnetzen zur Modellierung von Materialflüssen
Mit Stellen/Transitionsnetzen lassen sich Materialflussprozesse modellieren (vgl. [GiVa03]
und [Dang99]). Insb. Ressourcen, die geteilt werden müssen, lassen sich so in ein Modell
fassen. Muss z.B. ein Arbeiter zwei Maschinen bedienen, kann die Ressource Arbeiter als
eine Marke, die beiden Fertigungsprozesse als jeweils eine Transition, der Materialzugang
bzw. -abgang als jeweils eine Stelle und die Teile als Marken modelliert werden. Gibt eine
Maschine den Arbeiter frei, muss die Marke auf eine Stelle gelagert werden, auf die beide
Maschinen zugreifen können (vgl. Abbildung 7). Handelt es sich um eine zeitbewertete
Erweiterung eines Stellen/Transitionsnetzes können die Zeiten den Bearbeitungsdauern
der Maschinen entsprechen. Es entsteht ein Modell, welches den beschriebenen Prozess
und den darin enthaltenen Ressourcenkonflikt abbildet.

- 28 -

Abbildung 7: Petri Netz Modell eines Arbeiters, der zwei Maschinen bedient

Auf Basis von Stellen/Transitionsnetzen sind zahlreiche weitere formale
Modellierungsmethoden bekannt, die sich zumeist jedoch wieder auf Stellen/Transitions-
netze zurückführen lassen.

Bewertung
Stellen/Transitionsnetze beschreiben Fertigungssysteme auf Basis eines bipartiten
Graphen. Es wird bei der formalen Beschreibung also explizit zwischen der Speicherung
und der Veränderung von Marken unterschieden. Diese können zwar hierarchisch
modelliert und aus verschiedenen Substrukturen zusammengesetzt werden, eine
Abbildung der in der Realität vorhandenen Fertigungssysteme wird durch eine fehlende
systematische Gliederung und Objektorientierung jedoch unnötig erschwert. Je nach
gewähltem Detaillierungsgrad unterscheidet der Anwender beispielsweise bei einem
Lager nicht mehr zwischen den einzelnen Lagerplätzen und deren übergeordneten
Lagersteuerung. Eine Abbildung durch ein Stellen/Transitionsnetz ist damit nur noch
schwer möglich. Auch für die Abbildung von komplexen Steuerungen und insbesondere
deren Umkehrung vor dem Hintergrund einer richtungsoffenen Ablaufsimulation
erscheinen Stellen/Transitionsnetze als wenig geeignet, weil die jeweilige Umkehrung von
Verteilregeln im Materialfluss durch eine implizite Modellierung die Komplexität der
Stellen/Transitionsnetze stark ansteigen würde. Eine übersichtliche layoutgetreue
Modellierung wird dadurch unnötig erschwert.

3.2.2 Programmier- und Simulationssprachen

Für eine rechnerunterstützte Simulation von Materialflüssen existieren neben den bisher
vorgestellten formalen Beschreibungen eine Reihe spezifischer Verfahren. Zur
Modellierung und Ausführung werden sowohl allgemeine Programmiersprachen als auch
spezialisierte Simulationssprachen verwendet.

Während allgemeine Programmiersprachen (z.B. C++ [Brey05], Java [Ulle05]) sehr
flexibel im Einsatz zur Simulationen sind, erfordern sie einen hohen Einarbeitungs- und
Modellierungsaufwand. Sie bieten keine spezielle Unterstützung für Simulationen. Sollen
abstrakte Methoden zum Einsatz kommen, müssen diese explizit implementiert werden.

Stand der Technik - 29 -

Der spezielle Einsatz von Java als Simulationssprache für ein Simulations-Framework
(vgl. 3.5.5.3) ist durch DESMO-J oder DEMOS bekannt ([PaKr05], [Birt82]). Auf Basis
einer festgelegten Modellbeschreibung können Simulationsmodelle textbasiert
programmiert und ausgeführt werden. Die Umsetzung des Frameworks erlaubt aber
keine Erweiterung der vorhandenen Simulatorfunktionen, wie sie für das zu entwickelnde
Werkzeug benötigt werden, denn beide Frameworks bieten keine Mehrbenutzer- oder
Multitasking-Fähigkeit. Auch sind keine Modellierungs- oder Simulationsframeworks
bekannt, mit denen Simulationsmodelle gemäß der spezifischen Beschreibung erstellt,
ausgeführt und visualisiert werden können.

Den aus allgemeinen Programmiersprachen resultierenden hohen Aufwand bei der
Implementierung reduzieren simulationsspezifische Sprachen (z.B. MODSIM, SIMULA,
SIMSCRIPT, GPSS [Boss92], [Holm-ol], [Sims-ol], [Chis92]). Sie unterstützen den
Anwender mit simulationsspezifischen Konstrukten und Bibliotheken. Obwohl ihr Einsatz
einfacher als der der allgemeinen Programmiersprachen ist, erfordert ihre Anwendung im
Allgemeinen dennoch Programmierkenntnisse.

Bewertung
Ebenso wie bei den bekannten Implementierungen in Frameworks von allgemeinen
Programmiersprachen ist der Anwender beim Einsatz stets gezwungen, sich den
jeweiligen Restriktionen der Bibliotheken zu beugen. Dadurch wird die Implementierung
eines Mehrbenutzerbetriebs, einer dynamischen Detaillierung und einer
dreidimensionalen Visualisierung verhindert. Die meisten Frameworks ermöglichen trotz
modularem Aufbau und Objektorientierung auch keine interaktive Analyse, weil
Datenstruktur und Berechnung voneinander getrennt sind. Sie verfolgen darüber hinaus
jeweils nur ein Konzept der Zeitfortschaltung bei der Ausführung von
Simulationsmodellen (vgl. Abschnitt 3.3).

Zur Lösung der hier gestellten Anforderung erweisen sich die bekannten
Implementierungen also als nicht verwendbar. Die grundlegende Idee solcher
Frameworks sollte jedoch in der Konzeptionsphase aufgegriffen werden, da bereits
implizit durch die Gestaltung der Modellbeschreibung in einem Framework eine erste
Gültigkeitsprüfung der Simulationsmodelle erfolgen kann. Dem entgegen steht der
Nachteil einer hohen Einarbeitung und geringen Benutzerunterstützung. Für die
Modellierung und Simulation müssen grafische Benutzeroberflächen gestaltet werden, um
den oder die Anwender bei ihrer Arbeit besser zu unterstützen. Im folgenden Abschnitt
sollen zur Komplettierung der möglichen Modellierungsmethoden auch existierende
grafische Werkzeuge untersucht werden.

3.2.3 Grafische Simulationswerkzeuge

Anwendungsspezifische Simulatoren geben dem Modellierer auf eine spezielle
Anwendung oder Domäne zugeschnittene Werkzeuge und Bausteine an die Hand und
bieten grafische Modellierungswerkzeuge (z.B. Simul8, ED-Falcon, Quest oder Plant
Simulation [Simu03], [EDFa-ol], [Deml-ol], [UGS-ol]). Modelle können durch
Kombination, Parametrisierung und Verbindung von Bausteinen aus einer Bibliothek
erstellt werden. Diese Modelle können als neue Bausteine für die Bibliothek dienen.

- 30 -

Durch diese Hierarchien können auch große, komplexe Modelle erstellt und gewartet
werden. Für eine hohe Flexibilität enthalten diese Simulatoren oftmals eine
Programmierschnittstelle oder/und eine eingebaute Programmiersprache. Der Einsatz
grafischer Werkzeuge vereinfacht und beschleunigt das Erstellen von
Simulationsmodellen. Die visuellen Modelle sind einfacher zu kommunizieren, ihre
Erstellung ist intuitiver und die generierten Ergebnisse können Nicht-Simulationsexperten
leichter kommuniziert werden. Im Gegenzug hierfür sind die grafischen Methoden nicht
so flexibel und vielseitig wie allgemeine Programmiersprachen. Simulationsberechnungen
bieten das Potential schneller zu sein, wenn der Ablauf direkt in einer allgemeinen
Programmiersprache speziell für das Problem implementiert und optimiert worden ist
(vgl. [DMD03]).

Bewertung
Mit den vorgestellten Werkzeugen ist es den Anwendern möglich, Modelle für den
Fertigungsprozess in der jeweiligen Modellbeschreibung zu erzeugen und in einer
zugehörigen Simulationsumgebung anzuwenden. Viele der kommerziellen Werkzeuge
basieren auf den bekannten formalen Beschreibungen (vgl. Abschnitt 3.2.1) und
beinhalten eine eigene, simulationsspezifische Programmiersprache, wie sie exemplarisch
in Abschnitt 3.2.2 vorgestellt wurde, um das Verhalten der vorgegebenen
Modellbausteine präzisieren zu können und somit den gewählten Detaillierungsgrad der
Bibliotheken zumindest teilweise zu umgehen. Dennoch werden die Möglichkeiten des
Anwenders hier unnötig eingeschränkt, was eine freie Wahl des gewünschten
Detaillierungsgrades verhindert.

Der Prozess der Modellierung, Ausführung, Analyse und Modifikation der einzelnen
Simulationsmodelle findet am Computer einer einzelnen Person statt. Möchten mehrere
Anwender ein Modell bearbeiten, kann dies nur sequentiell durchgeführt werden. D.h.,
dass zu einem Zeitpunkt nur eine Person an dem Modell arbeiten kann. Die vorhandenen
Software-Lösungen ermöglichen nur in Teilen eine interaktive Beeinflussung des
Simulationslaufs.

Hinsichtlich einer Visualisierung in einer virtuellen Umgebung existieren Arbeiten, die die
vorhandenen Software-Werkzeuge anbinden können. Die Werkzeuge selbst stellen hier
(noch) nur unzureichende Lösungen bereit. Keines der bekannten Werkzeuge ist in der
Lage, Simulationsmodelle zeitlich rückwärts zu berechnen, bzw. vorwärts-gerichtete
Modelle umzukehren. Spezielle Methoden zur Unterstützung von funktional gegliederten
Fertigungssystemen sind ebenfalls nicht bekannt. In jedem Fall ist der Anwender an die
spezifische Implementierung des Simulatorkerns gebunden, womit sich beispielsweise
eine dynamische Detaillierung verbietet.

3.3 Ausführung von Simulationsmodellen

Die gemäß einer gültigen Modellbeschreibung erstellten Simulationsmodelle müssen zur
Durchführung einer Simulationsstudie schließlich auch im Simulatorkern ausgeführt
werden. Für das hier zu entwickelnde Werkzeug wird eine Ausführung in Vorwärts- und
Rückwärtsrichtung angestrebt. Die beiden folgenden Abschnitte betrachten den Stand der
Technik bei den jeweiligen Ausführungsformen detaillierter.

Stand der Technik - 31 -

3.3.1 Vorwärtssimulation

Wie in Abschnitt 2.2 bereits angerissen existieren zur Zeitfortschaltung während der
Simulation dazu zwei grundlegende Verfahren, die richtungsoffen ausgeführt werden
können: Fortschaltung nach fixen und variablen Zeitinkrementen.

Fixe Zeitinkremente
Bei fixen Zeitinkrementen wird die zu simulierende Zeitspanne in gleichförmige Intervalle
zerteilt. Für alle Intervalle wird einheitlich ein Ereigniszeitpunkt zugeordnet (Anfang,
Mitte oder Ende des Intervalls). Für jedes Intervall werden die darin auftretenden
Ereignisse gespeichert, als würden sie an dem Intervall zugeordneten Zeitpunkt
ausgeführt werden müssen. Die Berechnung versucht, beginnend beim zeitlich ersten
Intervall, alle darin enthaltenen Ereignisse abzuarbeiten. Eine implizite Diskretisierung
findet statt. Werden hierbei neue Ereignisse erzeugt, werden diese innerhalb der
Ereignisliste in das jeweilige Intervall einsortiert.
Wird die Intervalllänge kurz gewählt, müssen mehr Intervalle verwaltet werden. Ist die
Anzahl der Intervalle deutlich größer als die Anzahl der auftretenden Ereignisse, muss die
Simulation viele leere Intervalle verwalten und auch beim Voranschreiten betrachten. Die
eigentliche Berechnung der Simulation wird somit verlangsamt. Wird die Intervalllänge
groß gewählt, findet die Diskretisierung sehr grob statt. Die Differenz zwischen dem
Zeitpunkt, an dem ein Ereignis stattfinden soll, und dem Zeitpunkt, der dem zuge-
ordneten Intervall zugehört, kann groß werden. Daraus ergibt sich unter Umständen ein
großer Fehler in der Berechnung. Durch die Größe der Intervalle enthalten diese im
Durchschnitt mehr Ereignisse, die innerhalb des Intervalls sequentiell oder zumindest
synchronisiert berechnet werden müssen. Verfahren zum Auflösen dieser Gleichzeitigkeit
kommen demnach vermehrt zum Einsatz und führen ebenfalls zu einer ungenaueren
Berechnung. Abbildung 8 zeigt im linken Teil die Zeitfortschaltung mittels fixer
Zeitinkremente. Im Gegensatz dazu zeugt der rechte Teil der Abbildung die
Zeitfortschaltung mittels variabler Zeitinkremente, die nachfolgend näher erläutert wird.

Abbildung 8: Zeitfortschaltung mit fixen und variablen Zeitinkrementen

Variable Zeitinkremente
Methoden die mit variablen Zeitinkrementen arbeiten haben keine vorbestimmten Zeit-
inkremente, in denen sie voranschreiten. Die Systeme springen direkt zum jeweils
zeitlich nächsten Ereignis im Fertigungsmodell. Die Menge der in der Zukunft zu
berechnenden Ereignisse wird sortiert in der Ereignisliste gespeichert. Die Berechnung
muss das nächste Ereignis aus der Datenstruktur entnehmen, die eigene Uhr auf die Zeit

- 32 -

des Berechnungszeitpunktes des Ereignisses setzen und berechnen. Neue Ereignisse
werden wieder in die Datenstruktur eingefügt (vgl. Abbildung 9). Im Fall einer
Ausführung des Simulationslaufs in Echtzeit oder einem Faktor der Echtzeit
(beispielsweise 4-mal so schnell) muss die Ausführung der Ereignisse noch mit der
externen Simulationszeit des verwendeten Kalenders synchronisiert werden.

Oftmals sollen mit Simulationen Fertigungssysteme mit beschränkten Ressourcen
modelliert werden. Ereignisse können nur in einzelnen Zuständen ausgeführt werden. So
kann sich z.B. eine Warteschlange in einem Puffer vor einer belegten Maschine bilden.
Ein Ereignis zum Umlagern des vordersten Objekts in der Warteschlange auf die
Maschine muss warten, bis diese den Zustand frei erreicht. Für die Berechnung der
Simulation bedeutet dies, dass nach dem Freiwerden der Maschine untersucht werden
muss, ob bisher blockierte Ereignisse nun ausgeführt werden können3. Abbildung 9 zeigt
schematisch die Ausführung eines diskret ereignisorientierten Simulationsmodells in
einem Simulator [Dang03].

In diesem Werkzeug sollen durch eine sinnvolle Konstruktion des Simulatorkerns und der

Modellbeschreibung grundsätzlich beide Möglichkeiten der Zeitfortscheitung unterstützt

werden.

Abbildung 9: Ablauf einer ereignisgesteuerten Simulation

Bewertung
Beide Methoden können und sollen in die Implementierung des Simulatorkerns
einfließen. Die Anforderung nach einer interaktiven Beeinflussung des Fortlaufes der
Simulation unterstreicht die Notwendigkeit einer bidirektionalen Kopplung zwischen
Simulatorkern und der entsprechenden Visualisierungskomponente über eine
erweiterbare Schnittstelle. Die Berechnungen des Simulators müssen nicht nur angezeigt,

3 Evans [Evan88] bietet hierfür verschiedene Lösungsmethoden an.

Stand der Technik - 33 -

sondern aus der Visualisierung heraus auch manipuliert werden können. Die direkte
Veränderung der Modellparameter führt dann zu einem veränderten Aufbau der
jeweiligen Ereignisliste und veränderten Simulationsergebnissen.

3.3.2 Rückwärtssimulation

Im Rahmen eines erweiterten Einsatzes der Methode Ablaufsimulation soll auch eine
rückwärtsgerichtete Ausführung von Simulationsmodellen durch das Werkzeug
unterstützt werden. Wie Abschnitt 3.2 gezeigt hat, existieren keine Software-Lösungen
oder formale Modellierungsbeschreibungen, die eine rückwärts berechnende Ausführung
von Simulationsmodellen ermöglichen. Dennoch existieren mit [YiCl94], [JaCh97],
[WaMe97], [OhHa04] und [GrBo04] einige Arbeiten, in denen rückwärts-gerichtete
Simulationsmodelle und Experimente mit unterschiedlichem Erfolg eingesetzt wurden.
Für die Auswertung der entsprechenden Simulationsdaten mussten in allen Fällen
umfangreiche Transformationen der generierten Datenmengen erfolgen, weil die
eingesetzten Werkzeuge dieses Vorgehen nicht implizit unterstützt haben. Oftmals wurde
hier mit einer Transformation und Neuberechnung aller einzelnen Ereigniszeitpunkte
gearbeitet, so dass auch während der visuellen Analyse eines Simulationslaufs keine
Erkenntnisse über das dynamische Verhalten des modellierten Systems gezogen werden
konnten. Des Weiteren wurden die betrachteten Simulationsmodelle speziell für diese
Untersuchungszwecke modelliert und die entsprechende Verhaltenssteuerung auf eine
rückwärts gerichtete Ausführung hin optimiert. Ein phasenübergreifender Einsatz eines
Simulationsmodells zur richtungsoffenen Simulation eines einzigen Simulationsmodells
erfolgt in keinem der dargestellten Fälle.

Bewertung
Für die Konzeption und Implementierung des Werkzeugs sind insbesondere zwei
Fragestellungen zu lösen: Zum einen eine zielgerichtete Transformation bestehender
Simulationsmodelle in ihr entgegengesetzt gerichtetes Pendant und eine bessere
Integration einer rückwärts gerichteten Ausführung eines Simulationslaufes in den
Simulatorkern und die Visualisierungskomponenten.

3.4 Visualisierung von Ablaufsimulationen

Ein Ziel des anvisierten Werkzeugs ist es, durch die Visualisierung in einer virtuellen
Umgebung eine höchstmögliche Immersion des Anwenders in das zu beplanende
Fertigungssystem zu erreichen. Seine Wahrnehmung muss bis zu einem gewissen Grad
getäuscht werden. Neben der Täuschung der menschlichen Wahrnehmung durch die
virtuelle Umgebung und Repräsentationsformen von Objekten in der virtuellen Realität
wird in diesem Abschnitt insbesondere die Eignung von VR-Systemen als
Benutzerschnittstelle untersucht.

Für die Planung und Gestaltung eines Fertigungssystems ist eine umfangreiche,
ganzheitliche Betrachtung seiner Komponenten nötig, inklusive deren gegenseitige
Wechselwirkungen. Simulationssysteme, deren Visualisierungsmöglichkeiten sich auf eine
zweidimensionale Darstellung beschränken, sind jedoch oftmals nicht in der Lage, alle
Elemente und Strukturen so vollständig abzubilden und liefern somit nur ein
unvollständiges oder verfälschtes Abbild der Realität [Berg02].

- 34 -

Betrachtet man die Entwicklung der vergangenen Jahre auch in anderen Bereichen der
IT-Industrie, so lässt sich ein Trend hin zu einer dreidimensionalen Repräsentation
einzelner Objekte erkennen. Diese Form der Darstellung eröffnet dem Anwender eine
verbesserte Möglichkeit der Erfassung von Elementen und ihrer Anordnung in
Fertigungsstrukturen. Im Gegensatz zur zweidimensionalen Darstellung erhält er nicht
nur quantitative Ergebnisse und statistische Kenngrößen eines Simulationsmodells,
sondern in einem begrenzten Rahmen auch Informationen über die räumliche und
zeitliche Anordnung und Verhaltensweisen des abgebildeten Fertigungssystems.
Simulationsmodelle, die eine dreidimensionale Darstellung offerieren, können daher
aussagefähigere und zuverlässigere Ergebnisse anbieten und den Prozess der
Modellvalidierung und –verifikation wesentlich beschleunigen [Berg02].

Die realistischere Darstellung des abgebildeten Fertigungssystems bietet darüber hinaus
wesentliche Vorteile, wenn es um die Kommunikation einzelner Planungsschritte mit
Nicht-Simulationsexperten geht. Die grundlegende Verhaltensweise eines Systems
erschließt sich umso leichter, je realistischer die Abbildung eines Systems in der
virtuellen Umgebung erfolgt. Ein möglichst immersiver Umgang mit dem
Simulationsmodell in einer virtuellen Umgebung kann diesen Effekt auch für den
Anwender selbst weiter verstärken. Das erscheint insbesondere vor dem Hintergrund
einer zunehmenden Komplexität der Simulationsprojekte und dem Anwachsen der
Planungsteams umso mehr sinnvoll [Berg02].

3.4.1 Menschliche Wahrnehmung in virtuellen Umgebungen

Menschen können mit ihrer Umwelt in unterschiedlicher Weise interagieren.
Informationen werden aus der Umwelt aufgenommen und können an die Umwelt
abgegeben werden. Die Eingangskanäle eines Menschen sind Sehen, Hören, Riechen,
Schmecken und Fühlen. Riechen und Schmecken spielen in diesem Arbeitskontext eine
untergeordnete Rolle. Die meisten Eindrücke sammeln Menschen mit dem Auge.
Insbesondere bei dem Ausfall des Sehsinns (z.B. wegen Dunkelheit) werden Hören und
Fühlen wichtiger.

3.4.1.1 Täuschung des Sehsinns

Für eine Täuschung des Sehsinns müssen Modelle von virtuellen 3D-Welten in Bilder für
die Augen übersetzt werden. Der Prozess unterteilt sich in die Berechnung der Bilder und
das physische Erzeugen der Bilder.

Berechnung der Bilder
Um eine virtuelle Szene auf dem Bildschirm zu zeichnen (Rendering), müssen die
Geometriedaten der Szene eine Rendering-Pipeline durchlaufen. Aus dreidimensionalen
Vektordaten wird ein Bild generiert. Innerhalb der Rendering-Pipeline kann zwischen drei
Arbeitsschritten unterschieden werden:

1. Die Aufbereitung ist dafür verantwortlich, die Geometriedaten der Szene zu

reduzieren und in ein für die weitere Verarbeitung optimiertes Format zu bringen.
Gegebenenfalls findet hier auch die Transformation bewegter Objekte an ihre Position
innerhalb der Szene statt.

Stand der Technik - 35 -

2. Die Schritte Projection und Clipping projizieren die transformierten Szenendaten auf
den Bildschirm und schneiden „überhängende“ Polygone auf die Bildschirmgröße
zurecht.

3. Der abschließende Schritt der Rasterung wird auf Pixel4-Basis ausgeführt. Hier
werden die zu zeichnenden Pixel in Abhängigkeit von transformierten Vektoren,
Farben und Texturen eingefärbt. Die Sichtbarkeit eines Pixels wird durch Z-Buffering5
ermittelt. Die Rasterung wird seit der Einführung von Grafikkarten mit 3D-
Beschleunigung komplett in Hardware durchgeführt.

Große Teile der Rendering-Pipeline sind mittlerweile in Software-Schnittstellen verlagert,
die aufgrund von Unterschieden in der Grafik-Hardware notwendig sind, um die
Lauffähigkeit der Anwendung auf unterschiedlichen Hardware-Plattformen zu garantieren.
Diese Grafik-APIs sollen unabhängig von der Grafik-Hardware einen festen
Funktionsumfang bieten, so dass auch gegebenenfalls Funktionen, die in der Hardware
nicht vorhanden sind, durch die Software-Schnittstelle emuliert werden.

Abbildung 10: Rendering Pipeline

Erzeugen der Bilder
Entsprechend der Erkenntnis, dass die meisten Wahrnehmungen über den Sehsinn
erfolgen, orientiert sich die Entwicklung von Ausgabegeräten auch auf die Täuschung der
Augen. Durch verschiedene Abstände und Winkel, die die Augen zu einem realen Objekt
haben, entstehen zwei perspektivisch verschobene Bilder. Um den Sehsinn zu täuschen,
müssen diese beiden Bilder für das rechte und linke Auge erzeugt werden. Dies kann
durch ein am Kopf befestigtes Display (Head mounted Display (HmD)) mit getrennten
Bildern für das rechte und linke Auge geschehen. Neben den HmDs, die das Bild direkt
am Kopf des Benutzers erzeugen, existieren Lösungen, bei denen Bilder entstehen, die

4 Ein Pixel bezeichnet die kleinste Einheit der Darstellung auf einem Bildschirm [Balz05].
5 Das Z-Buffering wird in der Computergraphik angewendet, um die verdeckten Flächen in einer

dreidimensionalen Grafik zu ermitteln. Durch die Informationen im Z-Buffer (deutsch Z-Puffer) stellt das
Verfahren fest, welche Elemente einer Szene gezeichnet werden müssen und welche verdeckt sind [BeBr03].

- 36 -

Informationen für beide Augen enthalten. Zur Trennung des rechten und linken Bildes
haben sich zwei Lösungen in Form von Shutterbrillen oder der Trennung durch
Polarisation durchgesetzt [DFAB98]. Während die Shutter-Technik nur einen Projektor
benötigt, braucht die Technik mit Hilfe einer Polarisationstechnik zwei Projektoren.
Trotzdem müssen für beide Verfahren zwei verschiedene Bilder erzeugt werden. Um
einen möglichst weiten Bereich des Sichtfeldes des Anwenders auszufüllen, können
mehrere Projektionssysteme zu einer größeren Fläche kombiniert werden. Diese Fläche
kann planar sein, aber auch den Anwender partiell oder ganz umgeben. Eine mögliche
Anordnung der Flächen ist ein Würfel, in dem sich der Anwender befindet. Die Bilder
werden mit Projektoren von außen aufgebracht (Rückprojektion). Verschiedene
Installationen von solchen Systemen unterscheiden sich in der Anzahl der verwendeten
Flächen des Würfels. In der einfachsten Variante werden nur die Flächen vor und rechts
wie links neben dem Anwender verwendet [Brac02]. Verbessert werden kann dies, indem
man die Rückseite, die Decke und/oder den Boden hinzunimmt. Ist der Anwender
komplett von dem Würfel umschlossen, kann er in alle Richtungen blicken, ohne eine
Unterbrechung der virtuellen Umgebung zu erfahren. Neben dem Problem der
Kanaltrennung muss auch die Kopfposition des Betrachters erfasst werden, um
perspektivisch richtige Bilder zu erzeugen. Hier sind unterschiedliche Tracking-Verfahren
(Mechanische Tracker, Ultraschalltracker und/oder elektromagnetische Tracker) bekannt
[RDB01].

3.4.1.2 Täuschung des Tast- und Hörsinns

Um den Hörsinn durch eine 3-dimensionale Tonwiedergabe zu überlisten, existieren
einige Arbeiten. Töne aus Kopfhörern kommen immer aus der Richtung, aus der sie
aufgenommen wurden. In der Realität würde ein Ton, der sich vor einer Person befindet,
nach einer Drehung hinter ihr erscheinen. Töne aus Kopfhörern drehen sich jedoch mit.
Um diesen Effekt auszuschalten, muss ein Computer Lage- und Richtungsortung
beherrschen und diese dann mathematisch umsetzen. Die Position des Anwenders und
dessen Kopflage werden geortet und die Töne an dessen Bewegung angepasst. Je nach
Anwendung werden Kopfhörer oder im Raum angebrachte Boxen benutzt [Bega94].

Weit weniger Arbeiten existieren zum Täuschen des Tastsinns. Um eine realistische
Interaktion mit der virtuellen Umgebung zu erzeugen, reicht es nicht aus, Objekte
anzustoßen und zu bewegen, es ist zusätzlich nötig eine Rückkopplung zu erlangen, die
auf den Anwender wirkt. Unterschieden wird zwischen dem taktilen Feedback, also der
Rückwirkung des Tastens in Form von Druck, Wärme oder Schmerz und dem Force
Feedback, also der Rückkopplung der entstehenden Kräfte durch Lenken der Finger und
Hand.

3.4.2 VR als User Interface

Im stetig härter werdenden Wettbewerb wird die Umsetzung von Softwaresystemen, die
die Virtual Reality (vgl. Definition 30) einsetzen, als eine Technologie angesehen, die es
den betroffenen Unternehmen (heutzutage aufgrund der hohen Entwicklungskosten meist
Großunternehmen) nicht nur ermöglicht, am Markt zu bestehen, sondern
Wettbewerbsvorteile gegenüber Konkurrenten zu erarbeiten [Berg02]. Die von einem
Computer generierte und kontrollierte Umgebung für die Mensch-Maschine-Interaktion
(hier analog zum Begriff der virtuellen Umgebung) umfasst somit alle Technologien zur

Stand der Technik - 37 -

Definition und echtzeitfähigen Aufbereitung eines rechnerinternen, dreidimensionalen
Modells für die menschlichen Sinne, die es dem Anwender ermöglichen durch
Einbeziehung seiner Person in das Modell (vgl. Immersion) und infolge durch das Modell
initiierter Rückkopplungen direkt zu manipulieren (vgl. Interaktion) [Berg02].

Die beschriebenen Systeme sind zum Teil sehr aufwendig und kostenintensiv zu
implementierten. In vielen Anwendungsbereichen wird ein so hoher Grad der Immersion
nicht benötigt. In CAD-Systemen6 beispielsweise sind die traditionellen, preiswerten
Systeme durch Formen der Animation aufgewertet worden, so dass Objekte durch vorab
definierte Bewegungsgleichungen kontrolliert werden können. In der Konstruktion oder in
der Architektur z.B. reicht es oft aus, den Objekten durch Schattierungen einen
Tiefeneindruck zu verleihen oder sie durch Drehen von einer anderen Seite zu
betrachten, um dem Kunden eine Vorstellung zu vermitteln.

Die Aufgaben eines VR-Systems liegen demnach in der Modellierung der Objekte einer
virtuellen Umgebung, der Präsentation der virtuellen Umgebung sowie der Realisierung
der Interaktion mit der virtuellen Umgebung. Für jede dieser drei Teilaufgaben sind
spezifische Hard- und Softwarekomponenten erforderlich [Berg02].

Modellierung
Inhalt der Modellierung ist im Wesentlichen die Generierung dreidimensionaler Modelle,
die in einer virtuellen Umgebung genutzt werden können. Sie umfasst somit die
Erzeugung von 3D-Modellen, also die gestaltorientierte Modellierung sowie die Definition
der Funktion der Objekte, d.h. die funktionsorientierte Modellierung. Für die
gestaltorientierte Modellierung stehen umfangreiche CAD-Werkzeuge zur Verfügung, auf
die auch in der hier vorliegenden Arbeit zurückgegriffen werden soll. Die Funktion der
3D-Modelle beschränkt sich hierbei auf die Repräsentation spezieller Funktionsblöcke
(Modellbausteine) eines Simulationsmodells, so dass eine implizierte Modellierung des
Verhaltens durch die Modellierungskomponente des zu entwickelnden Werkzeugs erfüllt
wird.

Präsentation
Im Rahmen der Präsentation der virtuellen Umgebung erfolgt die auf den zuvor
definierten 3D-Modellen basierende Erzeugung der von den menschlichen Sinnen
wahrnehmbaren Präsentationsformen. Hierfür wird neben speziellen Grafikcomputern
eine Software-Applikation notwendig, die die dreidimensionale Repräsentation erzeugt.
Darüber hinaus müssen entsprechende Ausgabegeräte bereitgestellt werden. Technisch
realisierbar sind heutzutage die visuelle, die akustische sowie mit einigen
Einschränkungen die haptische Präsentation, wobei sich die meisten VR-Systeme auf die
visuelle Präsentation beschränken. Im Rahmen des hier zu entwickelnden Werkzeugs soll
sich ebenfalls auf die visuelle Präsentation des Simulationsmodells in einer virtuellen
Umgebung beschränkt werden. Die entsprechende VR-Software soll im Rahmen der
Werkzeugentwicklung als Visualisierungskomponente erstellt und auf die speziellen
Anforderungen einer immersiven, interaktiven und dreidimensionalen Visualisierung

6 Computer-Aided-Design (CAD) ist die rechnergestützte Entwicklung und Konstruktion von Bauteilen,

Baugruppen, Erzeugnissen und Anlagen unter Einschluss technischer Berechnungen sowie der
Bewegungssimulation von Objekten und der Erarbeitung von Dokumentationen [FiHe00].

- 38 -

abgestimmt werden. Da die vorliegenden 3D-Daten meist zu reich an Informationen sind,
können im Rahmen der Umsetzung der 3D-Visualisierung spezielle Methoden und
Algorithmen zur Komplexitätsreduktion eingesetzt werden (vgl. [KlKr02], [WaFi01]).

Interaktion
Unter Interaktion können alle Mechanismen summiert werden, welche die direkte
Einflussnahme des Anwenders auf die Objekte in der virtuellen Umgebung ermöglichen
(vgl. Definition 28). Die beiden wesentlichen Komponenten zur Interaktion sind 3D-
Positionsmeßsysteme (Trackingsysteme) und 3D-Eingabegeräte (Devices). Tracking-
systeme ermöglichen die Verfolgung von Kopf- bzw. Handbewegungen des Anwenders,
indem die Position und Orientierung des Senders im Raum in den sechs möglichen
Freiheitsgraden relativ zu einem Bezugspunkt erfasst wird. Für diese Form der
Interaktion in einer virtuellen Umgebung werden spezielle Eingabegeräte benötigt, die
eine Bewegung im Raum bestmöglich unterstützen. Viele VR-Probleme lassen sich aber
auch mit handelsüblichen Software-Tools und Desktop-PCs und deren Ein- bzw.
Ausgabegeräten angemessen lösen. Als Ausgabegeräte kommt hierbei meist der
Bildschirm (eventuell Stereo-Lautsprecher) zum Einsatz. Für die Eingabe werden die
Tastatur und die Maus verwendet. Für die Implementierung des hier zu entwickelnden
Werkzeugs sollen die zuletzt genannten Methoden genügen, wobei während der
Umsetzung eine mögliche Erweiterung um spezielle Darstellungs- und
Interaktionsmöglichkeiten zu berücksichtigen ist.

3.4.3 Interaktion in virtuellen Umgebungen

Handelt und agiert ein Anwender in einer virtuellen dreidimensionalen Umgebung, so
spricht man von 3D-Interaktion. Elementar für eine intuitive Interaktion mit einem
System ist die so genannte Reiz-Reaktions-Korrespondenz. Diese liegt immer dann vor,
wenn z.B. auf eine Bewegung des Eingabegerätes nach rechts, auch eine entsprechende
Bewegung des selektierten Objektes nach rechts erfolgt. Liegt diese nicht vor, muss der
Anwender ein mentales Abbild der gewünschten Aktion in Verbindung mit der
erforderlichen Bewegung erstellen. Nach Stork [Stor00] lassen sich folgende Basis(inter-
)aktionen unterscheiden:

 Das Navigieren, verstanden als zielgerichtete Bewegung im Raum.
 Das Positionieren, verstanden als das Platzieren eines Objektes an einer definierten

Raumposition.
 Das Orientieren, verstanden als das Rotieren und Ausrichten eines Objektes im

Raum.
 Das Selektieren bzw. Deselektieren, verstanden als das Auswählen eines Punktes

oder Objektes im Raum.

Navigation, Objekt-Selektion und -Manipulation sind die Basisoperationen, die von
jeglichen dreidimensionalen Anwendungen umgesetzt werden müssen. Hierbei ist es
üblich, dass Positionieren und Orientieren als eine Operation zusammengefasst werden,
da ein 3D-Eingabegerät mit sechs Freiheitsgraden, diese Operationen gleichzeitig
durchführen kann. In der 3D-Interaktion wird unter Navigation die Bewegung des
Anwenders in der Umgebung der dreidimensionalen virtuellen Szenerie verstanden.
Häufig ist eben diese Navigation die erforderliche Grundlage zur Durchführung der
tatsächlichen Interaktionsaufgaben und nicht die eigentliche Aufgabe. Navigation ist also

Stand der Technik - 39 -

oft „nur Mittel zum Zweck“; sie darf den Anwender auf keinen Fall von seiner
ursprünglichen Aufgabe ablenken. Je nach Art der Umgebung, lassen sich nach Bowman
et. al. [BKLP01] unterschiedliche Formen der Navigation unterscheiden:

 Exploration, d.h. Navigation ohne spezielles Ziel bzw. als Umgebungserkundung.
 Search, d.h. Aufsuchen des Ziels und sich dorthin bewegen.
 Maneuvering, d.h. Durchführung kleiner, präziser Bewegungen, um eine bessere

Position für eine anstehende Arbeit einzunehmen.

Es existieren noch zwei weitere Arten der Navigation, bei denen gezielt die Freiheitsgrade
eines navigierenden Akteurs eingeschränkt sind:

 Walking, wobei der Anwender sich auf einem zweidimensionalen Untergrund
bewegt. Es sind lediglich die Bewegungen vor, zurück, links und rechts möglich. Der
Akteur bewegt sich immer in die Richtung, die seiner Blickrichtungsachse
entspricht. Die Walking-Metapher erfordert eine kontinuierliche Eingabe von Seiten
des Anwenders. Erfolgt diese nicht, so bleibt er stehen. Dient diese Art der
Navigation nicht dem eigentlichen Aufgabenzweck, so kann die erforderliche
Dauereingabe als störend empfunden werden. In weiträumigen Szenerien, in denen
sich der Anwender via Exploration einen Überblick verschaffen will, ist diese
Metapher aufgrund der eingeschränkten Bewegungsfreiheit ungeeignet. Vorteilhaft
ist sie in Situationen, bei denen der Anwender beengte Räume erkundet bzw.
bestimmte Zielpunkte exakt ansteuern möchte.

 Flying, ermöglicht eine kontinuierliche Bewegung entlang einer geraden Flugbahn.
Richtungsänderungen z.B. durch einen Mausklick sowie Änderungen der
Geschwindigkeit sind möglich. Nachteilig ist diese Navigationsart in beengten
Räumen, da man durch Begrenzungselemente wie z.B. Wände einfach hindurch
fliegt. Auch hier lässt sich die Orientierung der Kamera nicht unabhängig von der
Bewegung des Akteurs verändern.

Um die Positionsbestimmung zu vereinfachen, kann ein Akteur sich Navigationshilfen
bedienen. Diese können fester Bestandteil der 3D-Umgebung (z.B. Hinweisschilder) bzw.
externe Objekte (z.B. Übersichtskarte mit eingeblendeter Position und Blickrichtung,
Kompass) sein. Genau wie in der realen Welt, bieten Viewpoints einen besonderen
Überblick über eine komplette Szenerie bzw. ausgewählte Teilbereiche einer Szenerie.
Solche Viewpoints können zusätzliche Informationen, über das, was zu sehen ist, für den
Anwender bereithalten. Für die Erreichung eines Viewpoints kann sich der Anwender
beispielsweise der Beam-Metapher bedienen, bei der er zu dem gewünschten Ort
teleportiert wird. Problematisch ist hierbei, dass der Akteur schnell die Übersicht über
seine derzeitige Position verliert.

3.4.4 Virtuelle Umgebung von Fertigungssystemen

Das Problemfeld, dem sich diese Arbeit widmet, liegt im Umfeld der Modellierung und
Simulation komplexer Fertigungssysteme, die hinsichtlich verschiedenster
Fertigungsprinzipien organisiert werden und in einer virtuellen Umgebung dargestellt
werden, um sie möglichst immersiv und interaktiv parallel zu ihrer Ausführung
analysieren und optimieren zu können. Dafür ist es notwendig, alle zur Erfüllung dieser

- 40 -

Aufgaben notwendigen Teilsysteme des abzubildenden Systems mit ihren technischen
Objekten (Anlagen, Maschinen, Werker, etc.) sowie die unterschiedlichen, sich
gegenseitig bedingenden Vorgänge abzubilden, die das dynamische Verhalten des
Systems beeinflussen. Die modellierten Teilmodelle (Modellbausteine) sind
verschiedenartig gestaltet und üben darüber hinaus verschiedenartige Funktionen aus.
Neben der eigentlichen Gestalt der Modellbausteine in der virtuellen Umgebung stellt
daher auch die Funktion des Modellbausteins ein wesentliches Merkmal dar.

Das Gestaltmodell als Partialmodell zur Repräsentation der Gestalt der in einer virtuellen
Umgebung präsentierten Objekte wird meist durch 3D-Modelle realisiert, die mittels
Volumen-7 oder auch Flächenmodell8 erstellt werden. Die Darstellung eines
Fertigungssystems in einer virtuellen Umgebung mit ausschließlich statischen Objekten
hat für technische Anwendung wie die Simulation, die insbesondere Aufgabenstellungen
hinsichtlich der Funktionalität des abgebildeten Systems erfüllen sollen, wenig
Aussagekraft und damit einen geringen Stellenwert. Die Evaluation eines
Fertigungssystems mittels der Virtual Reality erfordert daher die Simulation oder
zumindest Animation der Bewegung einzelner Modellbausteine sowie die Möglichkeit zum
direkten Eingriff des Anwenders [Berg02]. Die verschiedenen interaktiven
Steuerungsmöglichkeiten werden dem Anwender über ausgewählte Bedienelemente zur
Verfügung gestellt und variieren in ihrer Komplexität stark hinsichtlich des gewünschten
Untersuchungsziels.

3.4.5 Verständnisoptimierung durch virtuelle Umgebungen

Die Komplexität eines Fertigungssystems erklärt sich nicht nur aus der Anzahl aller
Elemente, sondern insbesondere auch aus deren gegenseitiger Vernetzung, durch die
sich die einzelnen Elemente gegenseitig mehr oder weniger stark beeinflussen. So
erzeugen also die Verbindungen zwischen den einzelnen Elementen die eigentliche
Komplexität und bedingen die gleichzeitige Beachtung sehr vieler Merkmale. Die hohe
Komplexität eines Fertigungssystems stellt somit hohe Anforderungen an die Fähigkeiten
des Anwenders, Informationen zu sammeln, zu integrieren und Handlungen zu planen.
Die Komplexität an sich wird damit zur subjektiven Größe. Für den vereinfachten
Umgang mit komplexen Fertigungssystemen ist es also ausschlaggebend, dass es in
einer Form präsentiert wird, welche dem realen Erscheinungsbild bestmöglich entspricht,
um den Assoziationseffekt des Menschen bestmöglich auszunutzen. Die meisten
Menschen beschreiben die wirkliche, physische Welt mit Begriffen aus ihrem
Wahrnehmungsbereich, mit Objekten, die sie umgeben und die sich möglicherweise
bewegen. Oftmals wird diese Wahrnehmung auch räumlich beschrieben, zum Beispiel
dadurch, wo man sich im Raum befindet und wie die umgebenden Dinge in Relation
zueinander stehen. Für die Visualisierung eines Fertigungssystems ist es daher
erforderlich, die beiden Definitionsbereiche, also das Aussehen und die räumliche
Anordnung abzubilden, da sie für ein reales Empfinden des Anwenders ausschlaggebend
sind (vgl. [Berg02]).

7 Volumenmodell: Bei einem Volumenmodell hat jedes räumliche Objekt ein definiertes Volumen um Raum

und geometrische Eigenschaften (Oberfläche, Volumen, Mittelpunkt) sowie physikalische Eigenschaften
[FiHe00].

8 Flächenmodelle beschreiben die zu modellierenden Objekte als einzelne Flächen. Sie lassen sich je nach
Komplexität in die unterschiedlichen Typen Ebene, Quadrike und Freiformflächen unterscheiden [FiHe00].

Stand der Technik - 41 -

Die Technologie der Virtual Reality erlaubt die räumliche und realitätsnahe Darstellung
von Vorgängen und Gegenständen der realen Umwelt oder erdachter Welten und die
Immersion des Anwenders in diese synthetische Welt. Der Anwender bekommt den
Eindruck, tatsächlich in der virtuellen Welt anwesend zu sein [Lani91] und kann sie nach
eigenen Wünschen in natürlicher Form erfahren. Durch die wirklichkeitsgetreue
Abbildung, die zumindest potentiell durch diese Technologie erreicht werden kann, erhält
der Anwender eine verbesserte Rückmeldung der Modellbausteine seines
Simulationsmodells und kann so sein Erfahrungswissen optimaler auf das abgebildete
Problem anwenden [Berg02].

Neben der realitätsnahen Darstellung ist die Integration des Anwenders in das virtuelle
Simulationsmodell von entscheidender Bedeutung. Der Anwender wird so Teil des
Systems und kann unmittelbarer dessen Funktionsweise erleben, überprüfen und
verbessern. Neben einer monokausalen Denkweise nach dem Ursache-Wirkung-Prinzip
kann der Anwender ein multikausales Geflecht aufbauen und das System so „von innen
heraus“ verstehen. Die räumliche Darstellung und die Option der Bewegung ermöglicht
dem Anwender die dargestellte Szene aus verschiedenen Perspektiven zu erleben.
Räumlich-zeitliche Muster können ergangen und durch den unmittelbaren Erlebnisbezug
kann der Aufbau und das Verhalten des abgebildeten Fertigungssystems überprüft
werden [Lani91]. Die Effektivität und Effizienz des Problemlösungsprozesses kann ebenso
wie die Aussagekraft der Entscheidungen erhöht werden.

Durch die Darstellung in einem dreidimensionalen Raum kann der Anwender zusätzlich
erheblich mehr Daten gleichzeitig im Blickfeld halten, aufnehmen und schneller zu
entscheidenden Erkenntnissen gelangen, weil er Strukturen besser und schneller erkennt
und so neu arrangieren kann, um das zugrunde liegende Problem zu lösen. Ein
unzusammenhängendes Ensemble von Modellbausteinen erhält eine Bedeutung.
Insgesamt kann der Anwender durch den Einsatz der Technologie der Virtual Reality zu
einem besseren Verständnis der Zusammenhänge gelangen und dadurch ohne größeren
Einarbeitungsaufwand ein Fertigungssystem analysieren und optimieren.

Zusammenfassend kann man also festhalten, das bereits umfangreiche Arbeiten zur
Gestaltung von virtuellen Umgebungen existieren, deren Ergebnisse in die Konzeption
des hier zu entwickelnden Werkzeugs einfließen können. Verschiedene Kopplungen von
Simulatoren an virtuelle Umgebungen sind bereits gelungen und erfordern neben einer
Festlegung der benötigten Schnittstellen keine besonderen Anforderungen, die über die
Gestaltung von echtzeitfähigen Benutzeroberflächen hinausgehen. Das Werkzeug an sich
muss aber aus mehr als nur den Visualisierungskomponenten bestehen. Im folgenden
Abschnitt sollen deswegen Methoden und Paradigmen des Software-Designs vorgestellt
werden, die in der Phase der Konzeption des Werkzeugs in seiner Gesamtheit wie der
einzelnen Module benötigt werden.

3.5 Software-Design von Mehrbenutzersystemen

Nach der fachlich orientierten Betrachtung des Stands der Technik hinsichtlich der
Anforderungen an Basisprozess, Modellierungsmethode und Simulationswerkzeug in den
vorherigen Abschnitten werden hier die informationstechnischen Grundlagen betrachtet,

- 42 -

soweit sie die Konzeption und Realisierung des Werkzeugs betreffen. Die Grundlagen des
Software Engineering9 sowie Merkmale von Software-Architekturen10 werden
beschrieben. Aus der Entscheidung für eine bestimmte Architektur innerhalb eines
vorgegebenen Design-Paradigmas resultieren Konsequenzen für die spätere
Implementierung.

3.5.1 Allgemeine Paradigmen des Software-Designs

Zur Ausführung eines Software-Entwurfs werden in der Literatur allgemeine
Verhaltensregeln oder Prinzipien angegeben und diskutiert [Henk97]. In diesem
Abschnitt werden die Paradigmen Abstraktion, Hierarchisierung, Strukturierung und
Modularisierung behandelt, zwei weitere Prinzipien (Kapselung und Typisierung) werden
im Rahmen des folgenden Abschnitts über objektorientiertes Design betrachtet, da sie
dort besondere Bedeutung erfahren. Zwar ist eine objektorientierte Vorgehensweise nicht
unbedingte Vorraussetzung für die Anwendung dieser Prinzipien, dennoch haben viele
objektorientierte Methoden mindestens implizit die Unterstützung dieser Prinzipien zum
Ziel. Hieraus begründet sich auch, wenn auch nicht ausschließlich, die Entwicklung des
objektorientierten Paradigmas.

Abstraktion

„Abstraktion (von lat. abstrahere: abziehen, wegziehen) bezeichnet allgemein den
Prozess rationaler Verarbeitung von konkretem Sinnesmaterial, wobei von
bestimmten äußeren, individuellen oder zufälligen Merkmalen, Eigenschaften und
Beziehungen des betreffenden Objekts abgesehen wird; andere, allgemeingültige,
strukturelle Eigenschaften werden dagegen als wesentlich herausgehoben und
zugleich variabel betrachtet“ [Balz82].

Abstraktion ist eines der wichtigsten und leistungsfähigsten softwaretechnischen
Prinzipien [Henk97]. Die Komplexität der zu entwickelnden Programme verhindert eine
ganzheitliche Betrachtung mit allen Details, daher werden sie durch die Methode
Abstraktion auf ihre wesentlichen Charakteristika reduziert. Die Anwendung des
Paradigmas Abstraktion im Software-Design bringt zusammenfassend folgende Vorteile:

 Erkennen, Ordnen, Klassifizieren, Gewichten von wesentlichen Merkmalen
 Erkennen allgemeiner Charakteristika,
 Trennung zwischen wesentlichen und unwesentlichen Eigenschaften

Eine funktionale Abstraktion stellt eine Leistung in Form einer abstrakten Funktion,
Operation oder Prozedur zur Verfügung. Sie wird daher oft auch operationale oder
prozedurale Abstraktion genannt [Balz05].

Hierarchisierung

9 Das Software Engineering als Teilgebiet der Informatik beschäftigt sich mit der standardisierten,

ingenieursmäßigen Herstellung von Software und den damit verbundenen Prozessen [Somm92].
10 Software-Architekturen beschreiben die Zerlegung einer Anwendung in Einheiten, den globalen

Kontrollfluss, die Handhabung von Randbedingungen und Kommunikationsprotokolle zwischen
Subsystemen [BrDu04].

Stand der Technik - 43 -

„Eine Hierarchie bezeichnet ein System von Elementen, die einander über- bzw.
untergeordnet sind, so dass jedem Element nur höchstens ein anderes unmittelbar
übergeordnet ist.“ [nach Henk97].

Bereits die Bedeutung des Abstraktionsprinzips zeigt die menschliche Notwendigkeit, ein
gedankliches Modell eines komplexen realen Systems anzufertigen, um dieses System
verstehen zu können. Reale Systeme sind häufig gut geeignet, hierarchisch gegliedert zu
werden. Ein komplexes System enthält miteinander in Beziehung stehende Subsysteme,
diese setzen sich wiederum aus weiteren Subsystemen zusammen, bis schließlich die
Elemente eines Subsystems nicht weiter sinnvoll dekomponiert werden können. Auf diese
Weise entsteht eine aus Hierarchieebenen gebildete Struktur, die das Verstehen des
Gesamtsystems wesentlich erleichtert oder sogar Voraussetzung dafür ist. Weil die
Struktur hierarchischer Systeme das menschliche Verständnis erleichtert und
Softwaresysteme Modelle realer (hierarchisch gegliederter) Systeme voraussetzen, bietet
es sich an, auch künstliche Systeme (z. B. Softwaresysteme) nach dem Prinzip der
Hierarchisierung zu gliedern. Hierarchisierung ist demnach ein weiteres wichtiges
Paradigma des Software Designs. Es stellt sich die Frage, nach welchen Kriterien die
Hierarchisierung vorgenommen werden soll. Zwei Arten von Hierarchien haben sich als
besonders gut zur Strukturierung von Softwaresystemen geeignet erwiesen:

Die erste Art der Hierarchie ergibt sich aus der Verallgemeinerungsbeziehung zwischen
zwei Elementen eines künstlichen oder realen Systems. Diese Beziehung ist sehr häufig
zwischen Systemelementen anzutreffen: Ein „Möbel“ stellt beispielsweise die
Verallgemeinerung von „Schrank“, „Bett“, „Tisch“ etc. dar. Diese Art von Hierarchie wird
deshalb häufig IS-A-Hierarchie genannt. Die zweite Art ist die Part-Of-Hierarchie, die auf
dem Kriterium des Enthaltenseins basiert. Ein Fahrradventil ist ggf. ein Teil des
Vorderrades und dieses ist Teil des Fahrrades als Ganzes. Anders herum: Ein Fahrrad hat
ein Vorderrad und ein Vorderrad hat ein Ventil.

Folgende Vorteile der Anwendung des Hierarchisierungsprinzips können also festgehalten
werden:

 Strukturierung eines Softwareproduktes,
 Erhöhung der Verständlichkeit,
 Verbesserung der Wartbarkeit,
 Reduktion der Komplexität; Erhöhung der Einfachheit,
 Strukturierung des Entwicklungsprozesses.

Die besondere Bedeutung der Is-A- und der Part-Of-Hierarchie liegt darin begründet,
dass bei Anwendung des objektorientierten Paradigmas der Softwareentwicklung diese
Hierarchien eine direkte Entsprechung in der Klassen- und Objekthierarchie des zu
gestaltenden Softwaresystems finden können (vgl. hierzu auch 3.5.2). Wichtig neben
diesen beiden Arten sind darüber hinaus die Hierarchie der Module und die
Prozesshierarchie, also die Beziehungen zwischen dynamischen Systemkomponenten.

Strukturierung

- 44 -

„Unter Strukturierung versteht man die Tätigkeit, bei der einer homogenen oder
homogen erscheinenden Menge von Dingen eine Struktur, insbesondere im
abstrakten Sinn eine Klassifikation, aufgeprägt wird.“ [nach Henk97]

Weil große und komplexe Systeme sich dem menschlichen Verständnis entziehen, müs-
sen solche Systeme in Teile zerlegt werden, die leichter beherrschbar sind. Wenn diese
Teile unabhängig voneinander bearbeitet werden können, genügt für das Verständnis des
Gesamtsystems das Verständnis der kleineren Teile und ihres Zusammenspiels. Eine
geeignete Zerlegung des Systems ist also dazu geeignet, die Komplexität zu reduzieren.
Die Betrachtung des zerlegten Systems beinhaltet nicht mehr alle Informationen über die
Beziehungen zwischen Systemelementen, die im kompletten System vorhanden sind.
Deshalb kann eine ungeeignete Zerlegung zu einer Betrachtungsweise führen, die den
Charakter des Gesamtsystems nicht offen darlegt. Die Zerlegung eines Systems muss
seiner Struktur entsprechen.

Abbildung 11 zeigt ein willkürlich gewähltes Beispielsystem A, eine ungeeignete
Zerlegung B und eine Zerlegung, die geeignet ist, die Systemstruktur C zu
veranschaulichen. Während die Darstellungen A und B dem Betrachter wegen ihrer
höheren Komplexität kaum ermöglichen, den Aufbau des Systems mit einem Blick zu
erfassen, stellt das in C kein Problem mehr dar: Die geeignete Strukturierung des
Gesamtsystems hat dessen Komplexität wesentlich reduziert.

Für das Software Design hat das Prinzip der Strukturierung doppelte Bedeutung: Sowohl
für das eigentliche Softwareprogramm, wie auch für den Designprozess selbst muss eine
geeignete Struktur identifiziert werden. Das Paradigma der Strukturierung unterstützt
also auch das methodische Vorgehen beim Software Design. Die explizite Strukturierung
des Systems zwingt den Softwareingenieur, sich die Vor- und Nachteile unterschiedlicher
Designalternativen vor Augen zu führen.

Die Anwendung des Prinzips der Strukturierung bringt folgende Vorteile:

 gute Verständlichkeit
 leichte Einarbeitung
 Änderungsfreundlichkeit
 gute Wartbarkeit

Stand der Technik - 45 -

Abbildung 11: Komplexitätsreduktion durch Strukturierung [Henk97]

Modularisierung
„Ein Modul ist ein Bauteil eines größeren Baukastensystems. Module werden
hauptsächlich verwendet, um sie leicht gegen andere Module austauschen zu
können, oder neue Module zu besagtem Ganzen hinzuzufügen. Deshalb ist für
Module eine Schnittstelle vonnöten, um sie mit dem Ganzen zu verbinden.“
[Henk97]

In den vorherigen Abschnitten wurde gezeigt, dass die Dekomposition von Systemen in
seine Komponenten genutzt werden kann, um die Komplexität des Gesamtsystems zu
verringern. In einem mehr technischen Sinne bezeichnet man solche Teilsysteme als
Module, wenn sie als Softwarebausteine dienen, indem sie Daten und Algorithmen11 zu
einer funktionalen Einheit zusammenfassen. Die Festlegung der Module eines
Softwaresystems wird entsprechend als Modularisierung bezeichnet.

Die interne Struktur jedes Moduls sollte einfach sein, so dass es leicht verstanden werden
kann. Dennoch ist es ein Ziel, die Kenntnis dieser Interna ausdrücklich nicht zur Voraus-
setzung der Benutzung eines Moduls zu machen (vgl. funktionale Abstraktion).
Stattdessen definieren Module Schnittstellen für den Zugriff auf die der Umgebung zur
Verfügung gestellten Ressourcen (Export-Schnittstellen) und die aus der Umgebung
benutzten Ressourcen (Import-Schnittstellen). Für die Benutzung der Module ist dann
lediglich die Kenntnis der Spezifikation dieser Schnittstellen nötig. Die tatsächliche
Implementierung eines Moduls wird durch diese Schnittstellenspezifikation nicht
festgelegt und kann vor dem Modulbenutzer verborgen werden (Geheimnisprinzip).

11 Ein Algorithmus wird hier verstanden als „ein schematisches Verfahren zur Lösung bestimmter Klassen von

Aufgaben, wobei jeder einzelne Schritt dieses Verfahrens genau definiert ist. (…) Er ist die Gesamtheit von
Grundoperationen und Prüfungen bestimmter logischer Bedingungen, die in einer bestimmten Reihenfolge
angeordnet sind“ [KlBu71]

- 46 -

Das Ziel der Modularisierung ist, Module zu finden, die unabhängig voneinander ent-
worfen und getestet werden können. Dazu soll jedes Modul von seiner Umgebung
unabhängig

 zu entwickeln,
 übersetzbar,
 prüfbar (testbar, verifizierbar),
 wartbar,
 verständlich sein.

Wenn Module mit anderen Modulen in Beziehung stehen, kann eine vollständige
Kontextunabhängigkeit nicht erreicht werden. Die Kommunikation zwischen verbundenen
Modulen führt zu Abhängigkeiten, die als Kopplung bezeichnet werden. Diese Kopplung
auf das notwendige Maß zu beschränken, ist eine Designvorgabe der Modularisierung12.

Für das Verfahren des Software-Entwurfs sind also verschiedene Prinzipien zur
Komplexitätsreduktion bekannt, die in der Praxis angewendet werden, um Software-
Produkte schneller, effektiver und vor allem weniger fehleranfällig zu erstellten. Moderne
Programmiersprachen unterliegen heutzutage dem Prinzip der Objektorientierung. Der
folgende Abschnitt soll also weitere Organisationsprinzipien vorstellen, mit denen der
Prozess der Erstellung und Wartung von Software-Produkten weiter vereinfacht werden
kann.

3.5.2 Objektorientierte Software-Programmierung

Objektorientiertes Vorgehen bei der Analyse, dem Design und der Programmierung von
Softwarewerkzeugen wird als besonders geeignet angesehen, um robuste und leicht
erweiterbare Softwareprogramme zu erzeugen [GaHe01]. Nach einigen grundlegenden
Ideen der objektorientierten Programmierung (OOP) werden in diesem Abschnitt spezielle
Paradigmen der objektorientierten Programmierung näher erläutert: Kapselung,
Polymorphie und Vererbung.

„Objektorientierte Programmierung (Abkürzung OOP) ist ein Verfahren zur
Strukturierung von Computerprogrammen, bei dem zusammengehörige Daten
und die darauf arbeitende Programmlogik zu Einheiten zusammengefasst werden,
den so genannten Objekten.“[nach GaHe01]

Objekte als fundamentale Bausteine der OOP werden also verwendet, um Aspekte realer
Systeme zu modellieren. In der Objektorientierung finden sich daher auch wesentliche
Begriffe aus der Systemtheorie wieder. Das eigentlich Neue an der Objektorientierung
sind also nicht die zugrunde liegenden Konzepte, sondern deren Adaption und
Anwendung auf die Softwaretechnologie. Die Komposition der Objekte entspricht der
Bildung einer Part-Of-Hierarchie. (vgl. Abschnitt 3.5.1) Objekte werden dem

12 In der Literatur wird häufig die innere Bindung von Modulen als Kohäsion bezeichnet; Kopplung bezeichnet

entsprechend die externe Bindung von Modulen. Sowohl Kohäsion, als auch Kopplung können weiter nach
Typen unterschieden werden, vgl. z.B. [Henk97]. Für die vorliegende Arbeit sollen diese Details außer
Betracht bleiben.

Stand der Technik - 47 -

Modularisierungsgedanken gerecht, indem sie Daten und Algorithmen zu einer Einheit mit
systemweiter Identität und aktuellem Status zusammenfassen.

Allgemeine und objektorientierte Prinzipien als solche sind nicht neu und ihre Anwendung
ist nicht auf die Programmierung beschränkt. Dennoch werden sie grade hier
synergetisch zusammengefügt, insbesondere in den objektorientierten Modellen. Die
Grundidee basiert auf der Annahme, mit ihrer Anwendung die Komplexität von
Softwaresystemen und damit auch den Projekten zur Softwareentwicklung zu reduzieren,
indem das Gesamtsystem inkrementell aus Objekten zusammengefügt wird, die jeweils
unabhängig voneinander entworfen und getestet werden können. Idealerweise können
einzelne Objektspezifikationen in späteren Projekten wieder verwendet werden.

3.5.2.1 Grundlagen

Die OOP unterteilt sich im Wesentlichen in die Phasen objektorientierte Analyse (OOA)
und objektorientiertes Design (OOD). Im Rahmen der OOA wird ein statisches Modell
entwickelt, das die Bausteine des Systems mit ihren Attributen und Methoden sowie
deren Beziehungen untereinander beschreibt. Insbesondere ist bereits in der OOA darauf
zu achten, das Abbild des realen Systems so zu erstellen, dass eine Implementierung in
einer Programmiersprache ermöglicht wird. Die logischen Aspekte der Modellierung
beinhalten sowohl Objektstruktur, wie auch Modul- und Prozessstruktur. Ziel des OOD ist
darauf aufbauend die Umsetzung der Ergebnisse der Analysephase unter den
geforderten, technischen Randbedingungen. Im Idealfall werden nur die bereits
identifizierten Bausteine aus fachlicher Sicht um DV-technisch benötige Bausteine
ergänzt [nach GaHe01]. Durch diese Vorgehensweise wird implizit die eigentliche
Funktionslogik von der Gestaltung der Oberfläche und der Speicherung der Daten
getrennt, was neben der Erhöhung der Flexibilität die Wartbarkeit solcher Systeme
erheblich vereinfacht.

Zumindest konzeptionell arbeitet ein objektorientiertes Programm demzufolge nicht mehr
sequenziell einzelne Funktionsbereiche eines Algorithmus ab. Die Programmlogik entfaltet
sich vielmehr in der Kommunikation und den internen Zustandsveränderungen der
Objekte, aus denen das Programm besteht. Vorteile der objektorientierten
Programmierung liegen hierbei in der besseren Modularisierung des Codes und dadurch
bedingt in einer höheren Wiederverwendbarkeit der Einzelmodule sowie einer
gesteigerten Flexibilität der gesamten Software, insbesondere in Bezug auf die
Benutzerführung. Programme dieser Art sind weniger stark gezwungen, dem Anwender
bestimmte Bedienabläufe aufzuzwingen. Die einzelnen Bausteine, aus denen ein
objektorientiertes Programm während seiner Abarbeitung besteht, werden als Objekte
bezeichnet. Die Konzeption dieser Objekte erfolgt in der Regel auf Basis der Paradigmen
Abstraktion, Kapselung, Polymorphie und Vererbung.

Zur besseren Verwaltung gleichartiger Objekte bedienen sich die meisten
Programmiersprachen des Konzeptes der Klasse. Klassen sind Vorlagen, aus denen
Objekte zur Laufzeit erzeugt werden, so genannte Instanzen einer Klasse. Im Programm
werden daher nicht einzelne Objekte, sondern eine Klasse gleichartiger Objekte definiert.
Die Klasse entspricht in etwa einem komplexen Datentyp; sie legt aber nicht nur die
Datentypen der Attribute fest, aus denen die erzeugten Objekte bestehen, sie definiert

- 48 -

darüber hinaus die Algorithmen, die auf diesen Daten operieren. Während also zur
Laufzeit eines Programms einzelne Objekte miteinander interagieren, wird das
Grundmuster dieser Interaktion durch die Definition der einzelnen Klassen festgelegt.
Klassen können den Status und das Verhalten einer anderen Klasse durch Vererbung
übernehmen. Die so entstehende Hierarchie entspricht einer IS-A-Hierarchie. Die
erbende Klasse, auch Subklasse oder Kindklasse, ist von der Art der vererbenden Klasse,
auch als Vater- oder Superklasse bezeichnet.

Klassen werden in der Regel in Form von Klassenbibliotheken zusammengefasst, die
häufig thematisch organisiert sind. So können Anwender einer objektorientierten
Programmiersprache Klassenbibliotheken erwerben, die beispielsweise den Zugriff auf
Datenbanken ermöglichen.

Die einer Klasse von Objekten zugeordneten Algorithmen bezeichnet man als Methoden.
Die Gesamtheit der Methoden eines Objektes oder einer Klasse definiert das Verhalten
eines Objekts. Sie stellen definierte Schnittstellen zum Zugriff auf den Zustand des
Objektes dar. Methoden werden von anderen Objekten aufgerufen. Dieser Vorgang wird
auch als Übergabe einer Nachricht bezeichnet. Die Parameter des Methodenaufrufs als
Inhalte der übergebenen Nachrichten sind wiederum Objekte. Häufig wird der Begriff
Methode synonym zu Funktion oder Prozedur gebraucht, obwohl die Funktion oder
Prozedur eher als Implementierung einer Methode zu betrachten ist. Eine besondere
Rolle spielen Methoden für das Designparadigma der Kapselung (vgl. Abschnitt 3.5.2.2).
Spezielle Methoden zur Erzeugung bzw. "Zerstörung" von Objekten heißen Konstruktoren
und Destruktoren.

Im folgenden Abschnitt wird speziell auf die objektorientierten Design-Paradigmen
eingegangen. Das Paradigma der Abstraktion wurde oben bereits näher beschrieben.
Jedes Objekt im System kann dementsprechend als ein abstraktes Modell eines Akteurs
betrachtet werden, der Aufträge erledigen, seinen Zustand berichten und ändern kann
und mit den anderen Objekten im System kommuniziert, ohne offen zu legen, wie diese
Fähigkeiten implementiert sind (Black-Box).

3.5.2.2 Paradigmen

Kapselung
„Als Kapselung bezeichnet man das Verbergen von Implementierungsdetails. Der
direkte Zugriff auf die interne Datenstruktur wird unterbunden und erfolgt statt-
dessen über definierte Schnittstellen.“[nach GaHe01]

Von der internen Repräsentation eines Objektes soll der Verwender (hier sowohl die
Algorithmen, die mit den Objekten arbeiten, als auch der Programmierer, der diese
entwickelt) möglichst wenig wissen müssen (Geheimnisprinzip). Objekte können den
internen Zustand anderer Objekte nicht in unerwarteter Weise lesen oder ändern. Ein
Objekt hat eine Schnittstelle, die darüber bestimmt, auf welche Weise mit dem Objekt
interagiert werden kann. Dies verhindert das Umgehen von Invarianten13 des
Programms. Denn durch die Kapselung werden über die Schnittstelle nur Informationen

13 „Eine Invariante ist eine Zusicherung, die … immer gültig ist.“ [Balz05]

Stand der Technik - 49 -

über den Leistungsumfang eines Objektes nach außen sichtbar, nicht aber deren interne
Repräsentation. Dadurch wird eine Schnittstelle nach außen definiert und zugleich
dokumentiert.

Aus dem Paradigma der Kapselung ergibt sich eine Reihe von Vorteilen. Durch die
Umsetzung des Geheimnisprinzips kann die interne Implementierung geändert werden,
ohne die Zusammenarbeit mit anderen Objekten zu beeinträchtigen, da die Schnittstelle
konstant bleibt. Für den Verwender ergibt sich eine erhöhte Übersichtlichkeit und
Komplexitätsreduktion. Lediglich Informationen über den Gebrauch der Schnittstelle sind
für ihn relevant. Darüber hinaus rufen auch interne Änderungen an einem gekapselten
Objekt keine Folgefehler in anderen Programmteilen hervorrufen. Beim Zugriff über die
Schnittstellen spielt es für den Verwender keine Rolle, ob diese Funktion 1:1 im Inneren
des Objekts existiert, das Ergebnis einer Berechnung ist, oder möglicherweise aus
anderen Quellen (z.B. einer Datei oder Datenbank) stammt. Durch die separaten Objekte
erreicht der Programmierer insgesamt eine deutlich verbesserte Testbarkeit, Stabilität
und Änderbarkeit der Software.

Polymorphie

„Polymorphie („Vielgestaltigkeit“) ist ein Konzept der Programmierung, das es
erlaubt, einem Wert oder einem Namen (z.B. einer Variablen) mehrere Typen
zuzuordnen.“[nach GaHe01]

Verschiedene Objekte können auf die gleiche Nachricht also unterschiedlich reagieren.
Wird die Zuordnung einer Nachricht zur Reaktion auf die Nachricht erst zur Laufzeit
aufgelöst, dann wird dies auch späte Bindung (oder dynamische Bindung) genannt. In
älteren typisierten Programmiersprachen wird jedem Namen und jedem Wert im
Quelltext eines Programms höchstens ein Typ zugeordnet. Polymorphie kann zwischen
universeller Polymorphie und Ad-hoc Polymorphie (auch Überladen) unterteilt werden.
Universelle Polymorphie unterscheidet sich von Ad-hoc-Polymorphie in mehreren
Aspekten. Bei Ad-hoc-Polymorphie kann ein Name oder ein Wert nur endlich viele
verschiedene Typen besitzen. Diese sind zudem zur Übersetzungszeit bekannt.
Universelle Polymorphie dagegen erlaubt es, unendlich viele Typen zuzuordnen. Ein
weiterer Unterschied liegt darin, dass die Implementierung einer universell polymorphen
Funktion generell gleichen Code unabhängig von den Typen ihrer Argumente ausführt,
während ad-hoc-polymorphe (also überladene) Funktionen abhängig von den Typen ihrer
Argumente unterschiedlich implementiert sein können.

Vererbung

„Die Definition eines neuen Objektes kann gegebenenfalls auf der Definition eines
bereits vorhandenen Objektes aufbauen, so dass das neue Objekt die Merkmale
des vorhandenen übernimmt und um neue Bestandteile ergänzt. Die Übernahme
der Merkmale des vorhandenen Objektes bezeichnet man als Vererbung.“[nach
GaHe01]

Neue Klassen von Objekten können auf der Basis bereits vorhandener Objekt-Klassen
festgelegt werden. Neue Bestandteile können in der Kindklasse hinzugenommen werden.
Wird keine Vererbung zugelassen, so wird zur Unterscheidung oft von objektbasierter
Programmierung gesprochen. Die Überdeckung eines neuen Merkmals über ein bei der

- 50 -

Vererbung übernommenes Merkmal wird als Überschreiben bezeichnet. Die Nutzung der
Vererbung bietet sich an, wenn es Objekte gibt, die konzeptionell aufeinander aufbauen.
Gegebenenfalls lassen sich Objektdefinitionen von vorneherein so aufteilen, dass
identische Merkmale in der Definition eines "vererbenden" Objektes zusammengefasst
werden. Vererbung bildet mit diesem Verfahren also eine IS-A-Hierarchie ab.
Vererbungsbeziehungen zwischen den Objekten werden in der Regel durch
Klassendefinitionen hergestellt. Die "vererbende" Klasse wird als Basisklasse oder auch
Superklasse und die "erbende" Klasse als abgeleitete Klasse bzw. Subklasse betitelt.

Objektorientierte Design-Paradigmen können den Anwender beim Software-Entwurf also
unterstützen, in dem sie helfen, den Modellierungsprozess und das eigentliche Software-
Programm zu strukturieren und seine Komplexität so zu reduzieren, dass ein fehlerfreies
Entwerfen deutlich erleichtert wird. Die grundlegende Denkweise ist streng
objektorientiert, orientiert sich also an der für uns Menschen leicht nachvollziehbaren
Klassifizierung und Typisierung von Objekten zu Gruppen gleichartiger Objektklassen. In
den letzten Jahren wurden immer wieder Anstrengungen unternommen, die Modellierung
von Software unter Zuhilfenahme grafischer Werkzeuge zu unterstützen. Mit der im
folgenden Abschnitt beschriebenen Unified Modelling Language (UML) existiert ein solcher
Standard, der während der Entwurfs- und Entwicklungsphase des in dieser Arbeit
angestrebten Werkzeugs angewendet werden soll.

3.5.3 Grafisches Software-Design mittels der UML

Im folgenden Abschnitt soll einen Überblick über die Unified Modelling Language (UML)
als fundamentale Beschreibungssprache für die Modellierung von Software und anderen
Systemen und deren Einsatzmöglichkeiten gegeben werden. Um zu verhindern, dass
während des meist komplexen Softwareentwicklungsprozesses fundamentale Fehler
gemacht werden (Entwicklung des falschen Softwareproduktes bzw. falsche Entwicklung
des Softwareproduktes) ist die Intention der UML die Ausarbeitung jedes benötigten
Bearbeitungsschrittes durch grafische Elemente. Damit auch Projektbeteiligte, die keine
Softwareentwickler sind, den Inhalt des Softwareprojektes verstehen, soll mit ihr eine
allgemein verwendete Modellierungssprache eingesetzt werden.

Abbildung 12: Übersicht über die Diagrammtypen der UML

Stand der Technik - 51 -

Durch ihre ständige Weiterentwicklung ist die UML mittlerweile als Version 2.0
freigegeben und hat sich als „Quasi-Standard“ durchgesetzt. Die Diagrammtypen der
UML lassen sich auf die Klassen Struktur-, Verhaltens- und Interaktionsdiagramme
aufteilen und werden in den nachfolgenden Abschnitten teilweise vorgestellt (vgl. auch
[OOSE] und [Kech05]). Bei der Darstellung der einzelnen Diagrammtypen wird sich
nachfolgend an der Beschreibung nach [Kech05] orientiert.

3.5.3.1 Grundlagen MDSD und MDA

Modellgetriebene Entwicklung (MDSD) und Model Driven Architecture (MDA) werden für
Unternehmen immer attraktiver. Mit Hilfe von MDSD wird Software nicht mehr
„traditionell“ programmiert, sondern aus Modellen teilweise oder mitunter vollständig
generiert. Diese Modelle müssen jedoch zunächst erstellt werden. Dazu werden
Modellierungssprachen eingesetzt wie z.B. UML 2.0, welche sich in großen
Softwareprojekten durchgesetzt hat, jedoch nicht ausschließlich auf solche beschränkt
ist. Mit der durch die UML 2.0 zur Verfügung gestellten Diagramme und
Notationselemente lassen sich statische und dynamische Aspekte verschiedenster
Anwendungsgebiete modellieren [Stah05]. UML 2.0 wird in Softwareprojekten häufig zur
Unterstützung bei der Erstellung eines Pflichtenhefts eingesetzt. Das erspart dem
Programmierer später wertvolle Zeit und dem Unternehmen nicht zuletzt Ressourcen,
wenn beispielsweise vom Kunden in letzter Minute noch Änderungen an der Software
gefordert werden. Als Vorteile von MDSD ergeben sich somit unter anderem

 größere Entwicklungseffizienz
 bessere Integration der Fachexperten
 leichtere Änderbarkeit von Software
 verbesserte (Umsetzung der) Softwarearchitektur
 die Möglichkeit, Fachlogik leichter auf andere Plattformen portieren zu können

Der Ansatz der Model Driven Architecture (MDA) basiert auf der Annahme, dass für die
Konstruktion eines Softwaresystems ein einziges Modell für die Abbildung einer größeren,
komplexeren Applikation zu unscharf und überladen ist. Bei den meisten "klassischen"
(UML)-Modellen sind geschäftsrelevante und technische Informationen vermischt. MDA
unterteilt das Gesamtmodell in mehrere Schichten (CIM14, PIM15, PSM16, ein Codemodell
und die Zielplattform). Die Trennung der Modelle stellt eine inhaltliche Erweiterung des
UML-Standards dar. Insbesondere durch das CIM und vor allem das PIM soll nicht nur
Plattformunabhängigkeit gewährleistet werden, sondern auch die Sprach- und System-
unabhängigkeit. MDA definiert neben der inhaltlichen Trennung der Modelle auch die
Transformation der Modelle und unterscheidet zwei Typen:

 Die Modelltransformation von einem Modell in ein anderes Modell
 Die Codetransformation von einem Modell in den Code

14 CIM: hier (Computation Independent Model) als umgangssprachliche Beschreibung [Stah05]
15 PIM (plattformunabhängiges Modell, Platform Independent Model) Abbildung der Geschäftsprozesse

[Stah05]
16 PSM (plattformabhängiges Modell, Platform Specific Model) für Architektur, Services [Stah05]

- 52 -

Die Transformationen erzeugen aus den Elementen des Quellmodells die Elemente des
Zielmodells. Die Transformation geschieht üblicherweise von der abstrakteren Ebene in
die konkretere Ebene (CIM-PIM-PSM-Code). Dadurch kann aus einfacheren
Modellelementen eine komplexere Anwendung erzeugt werden, indem erfahrene
Architekten ihre Konstruktionsregeln in solche Transformationsprozesse
einprogrammieren [Stah05].

MDA ist ein junger Standard der Object Management Group. Ein Ziel der MDA ist die
Steigerung der Entwicklungsgeschwindigkeit. Das Mittel dazu heißt Automation durch
Formalisierung. Aus formal eindeutigen Modellen soll durch Generatoren automatisch
Code erzeugt werden. Dadurch soll auch die Softwarequalität gesteigert werden. Fehler
in den generierten Codeanteilen können an einer Stelle - in den Generatorschablonen -
beseitigt werden. Die Qualität des generierten Quellcodes ist gleich bleibend, was zu
einem höheren Grad der Wiederverwendung führen soll. Ein weiteres wesentliches Ziel ist
die bessere Handhabbarkeit von Komplexität durch Abstraktion. Mit den
Modellierungssprachen soll Programmierung auf einer abstrakteren Ebene möglich
werden, die klare Trennung von fachlichen und technischen Anteilen zielt auf eine
bessere Wartbarkeit durch Trennung von Verantwortlichkeiten ab. Die abstraktere,
technologieunabhängige Beschreibung von Schlüsselkonzepten mit eindeutigen
Modellierungssprachen verspricht eine verbesserte Handhabbarkeit des
Technologiewandels. Und nicht zuletzt soll eine verbesserte Interoperabilität durch
Standardisierung erreicht werden [Völt-ol].

3.5.3.2 Diagrammarten der UML

Einzelne Diagrammtypen der UML, die in der Konzeptionsphase dieser Arbeit verwendet
werden sollen, werden nachfolgend kurz erläutert.

Strukturdiagramme
Strukturdiagramme modellieren statische, zeitunabhängige Elemente eines Systems.
Unter diese Diagrammart fallen Klassendiagramme, Objektdiagramme, Kompositions-
strukturdiagramme, Komponentendiagramme, Verteilungsdiagramme und Paket-
diagramme.

Stand der Technik - 53 -

Abbildung 13: Notationselemente des Klassendiagramms

Ein Klassendiagramm ist eine Art „Bauplan“, um Instanzen für Objektdiagramme zu
erzeugen. Instanzen sind konkrete Ausprägungen der jeweiligen Klasse.
Klassendiagramme legen Attribute, Operationen und ihre Beziehungen zueinander fest.
Programmiersprachlich ausgedrückt bedeutet dies, dass die Attribute einer Klasse ihre
Variablen, die Operationen ihre Methoden und Funktionen und Assoziationen die
Beziehungen zu anderen Klassen darstellen.

Wie bereits erwähnt sind Objektdiagramme eine Spezifizierung ihrer jeweiligen Klasse.
Das heißt, Objekte nehmen konkrete Werte an (Beispiel-Bild). Ein Objekt hat einen
Objektnamen (nicht bei unbenannten Objekten) und gibt die Attributwerte zu den in der
Klasse definierten Attributen an. Zwischen Objekten können ebenfalls Beziehungen
bestehen (sog. „Links“). Ein Link ist die konkrete Ausprägung einer Assoziation mit einem
Linknamen und einer Leserichtung. Die Multiplizität ist höchstens 1, da ein Link immer
genau zwei Objekte verbindet. Kollaborationen „[...] beschreiben Strukturen von
Objekten, die in ihren speziellen Rollen kollektiv gewünschte Funktionalitäten
bereitstellen sowie die Verbindungen (Konnektoren) der Objekte untereinander.“
[Kech05].

- 54 -

Abbildung 14: Notationselemente des Objektdiagramms

Verteilungsdiagramme spezifizieren die physische Hardware- und Softwareumgebung und
die Verteilung der Komponenten in dieser Umgebung. Notationselemente in diesem
Diagramm sind Knoten und Kommunikationspfade. Ein Knoten besitzt einen Namen und
stellt eine Systemressource dar. Knoten können weitere Knoten enthalten.

Abbildung 15: Notationselemente des Verteilungsdiagramms

Verhaltensdiagramme
Bei Verhaltensdiagrammen liegt das Hauptaugenmerk auf den dynamischen Aspekten
eines Systems. Sie beschreiben das Verhalten. Hierunter fallen Use-Case-Diagramme,
Aktivitätendiagramme und Zustandsdiagramme.

Stand der Technik - 55 -

Abbildung 16: Notationselemente des Use-Case-Diagramms

Diese Diagrammart stellt die Sicht auf das System durch externe Anwender dar. Das
heißt es gibt Akteure, die bestimmte Rollen innehaben und mit dem System interagieren.
Ein Akteur weiß nichts von den systeminternen Abläufen. Er kennt nur die für ihn
relevanten Abläufe. Der Akteur „sieht“ nun einen Use-Case als so genannte Black-Box.
Das heißt, dass die Menge der Aktionen innerhalb des Use-Cases für den Akteur
verborgen bleiben. Zwischen den Akteuren und Use-Cases können Assoziationen mit
entsprechenden Multiplizitäten modelliert werden. In Use-Case-Diagrammen kann auch
Vererbung durch Generalisierung modelliert werden. Das heißt, ein Akteur erbt die
Rechte seiner übergeordneten Rolle. Eine include-Beziehung sagt aus, dass falls Use-
Case 1 ausgeführt wird auch Use-Case 2 ausgeführt werden muss. Im Gegensatz dazu
muss bei einer extend-Beziehung nicht zwingend Use-Case 2 ausgeführt werden. Use-
Case 1 kann aber durch Use-Case 2 erweitert werden.

Um das Verhalten eines Systems abzubilden werden Aktivitätendiagramme eingesetzt.
Diese Diagrammart ist sehr vielseitig und es können, nicht zuletzt aufgrund der
zahlreichen Notationselemente, viele Situationen damit modelliert werden. Dazu gehören
unter anderem alternative Abläufe, Reihenfolgen von Aktivitäten und parallele
Aktivitäten. Aus diesem Grund wird im Folgenden nur auf die gängigsten
Notationselemente eingegangen. Eine Aktion „[...] stellt die fundamentale Einheit
ausführbarer Funktionalität dar, die im Modell nicht weiter zerlegt wird [...]“ [Kech05].

- 56 -

Abbildung 17: Notationselemente des Aktivitätendiagramms

Die Ausführungsreihenfolge zwischen modellierten Aktionen wird durch gerichtete
Kanten, den Kontrollflüssen dargestellt. Damit das Diagramm durch sehr viele
Kontrollflüsse nicht unübersichtlich wird, können Konnektoren mit jeweils eindeutigen
Namen und einem Kontrollfluss benutzt werden. Das Diagramm bekommt eine noch
besser lesbare Struktur, wenn Aktivitätsbereiche (sowohl horizontal als auch vertikal)
benutzt werden, die zugehörige Aktionen zu Organisationseinheiten zusammenschließen.
Zur Übergabe von Objekten zwischen Aktionen werden Objektknoten eingesetzt, die als
Speicher der zugehörigen Klasse betrachtet werden. Weiterhin lassen sich so Streams
und Puffer realisieren. Eine Aktivität beschreibt eine Folge von Aktionen. Start- und
Endknoten geben die Einstiegs- und Ende-Aktion einer Aktivität vor. Durch
Entscheidungsknoten wird ein Kontrollfluss verzweigt. An diese Verzweigungen können
Bedingungen geknüpft sein, so dass sich alternative Wege modellieren lassen.
Verbindungsknoten führen die verschiedenen Flüsse wieder zusammen. Parallele
Aktionen werden durch Gabelungen und Vereinigungen dargestellt. „Eine Gabelung teilt
einen Kontrollfluss in mehrere parallele Kontrollflüsse auf“, während eine Vereinigung
diese wieder zusammenfasst.

Stand der Technik - 57 -

Abbildung 18: Notationselemente des Zustanddiagramms

Mit Zustandsdiagrammen werden die Reaktionen eines Systems auf Ereignisse
dargestellt. Die wichtigsten Notationselemente sind Zustände, Transitionen, Events,
Start- und Endzustände und Terminator, Entscheidungen und Kreuzungen und Regionen.
Ein Zustand hat einen Namen und „[...] modelliert eine Situation, in der gewisse genau
definierte Bedingungen gelten“ [Kech05]. Um von einem Zustand in einen anderen zu
gelangen ist eine Transition, das heißt eine gerichtete Kante, zwischen Zuständen
erforderlich, damit diese schalten kann, sobald ein entsprechendes Event ausgelöst
wurde. Es werden fünf verschiedene Eventtypen unterschieden, auf die an dieser Stelle
aber nicht weiter eingegangen werden soll. Start- und Endzustände werden ähnlich wie
bei Aktivitätendiagrammen modelliert. Sobald ein Terminator erreicht wird endet der
komplette Zustandsautomat. Ist der Endzustand erreicht wird nur die Ausführung einer
Ebene von Zuständen beendet. Kreuzungen arbeiten wie Verzweigungen, an die auch
Bedingungen gebunden sein können und modellieren „[...] eine Hintereinanderschaltung
von Transitionen“[Kech05]. Entscheidungen können ebenfalls wie Kreuzungen an
Bedingungen gebunden sein, modellieren aber dynamische Verzweigungen. Zustände
können auch andere Zustände beinhalten, um somit zusammengesetzte Zustände zu
modellieren. Durch Regionen lassen sich Zustandsautomaten in disjunkte Bestandteile
aufteilen. Somit kann jede Region ihre eigenen Start- und Endzustände haben. Der
Zustandsautomat kann aber erst verlassen werden, wenn in allen Regionen der jeweilige
Endzustand erreicht ist.

Interaktionsdiagramme
Als eine Untergruppe der Verhaltensdiagramme konzentrieren sich die Interaktions-
diagramme auf die Interaktionen und den Nachrichtenaustausch zwischen Objekten.
Sequenzdiagramme eignen sich, um den zeitlichen Ablauf des Nachrichtenaustauschs
zwischen Objekten zu modellieren.

Die wichtigsten Notationselemente sind Interaktionsrahmen, Lebenslinien und
Nachrichten. Jedes Interaktionsdiagramm lässt sich in einem Interaktionsrahmen
modellieren und kapselt damit „eine Verhaltensdefinition, deren Fokus auf der
Darstellung eines Informationsaustauschs liegt“. Ein Teilnehmer einer Interaktion wird

- 58 -

durch eine Lebenslinie dargestellt. Nachrichten dienen der Kommunikation zweier
Teilnehmer und geben die Flussrichtung an.

Abbildung 19: Notationselemente des Sequenzdiagramms

In ihrer Gesamtheit bilden alle Diagrammtypen die UML 2.0 (vgl. Abbildung 12). Sie kann
zur Konzeption und Modellierung von Softwaresystemen verwendet werden und steht
somit in Kapitel 1 als Hilfsmittel zur Darstellung der Entwicklung des Werkzeugs zur
Verfügung.

3.5.4 Mehrbenutzersysteme

Die vorangegangenen Abschnitte 3.5.1 und 3.5.2 haben allgemeine wie objektorientierte
Prinzipien des Systementwurfs aus softwaretechnischer Sicht diskutiert und eine
Beschreibungssprache zur grafischen Modellierung und Implementierung von
Softwareprogrammen vorgestellt. Im folgenden Abschnitt wird näher auf die
Anforderungen bezüglich der Funktionalitäten des Systems eingegangen. Zwischen
menschlicher und technischer Betrachtungsweise wird implizit unterschieden. Die
Abschnitte 3.5.4.1 bis 3.5.4.3 betrachten die Funktionalitäten mehr aus Anwendersicht,
bzw. der Sicht des Systementwicklers, wohingegen sich Abschnitt 3.5.4.4 auf
Funktionalitäten aus technischer Sicht fokussiert. Menschliche Anforderungen an
kooperative Modellierungswerkzeuge gründen z.B. auf der Notwendigkeit der effektiven
Zusammenarbeit bei der Benutzung eines solchen Systems. Werden diese Anforderungen
bei der Systementwicklung vernachlässigt, kann ein zwar im technischen Sinne
funktionsfähiges System herauskommen, das aber den Bedürfnissen der Anwender nicht
gerecht und daher von diesen nicht angenommen wird. Wie das System technischen
Anforderungen gerecht wird, nehmen Anwender zumeist nur dann wahr, wenn die
Realisierung Schwächen aufweist. Für den Systementwickler ist die genaue Kenntnis der
technischen Notwendigkeiten aber von Bedeutung, weil von ihnen abhängt, ob überhaupt
ein funktionsfähiges System erstellt werden kann. Die Entwicklung eines funktionsfähigen
Werkzeugs mit breiter Akzeptanz erfordert daher, sowohl die technischen als auch die
anwenderabhängigen Anforderungen an das System in der Entwurfphase genau zu
kennen und zu beachten.

Stand der Technik - 59 -

3.5.4.1 Verteilte Systeme

„Ein Verteiltes System ist ein Zusammenschluss unabhängiger Computer, welcher
sich für den Benutzer als ein einzelnes System präsentiert.“[nach TaSt03]

Das gemeinschaftliche Zusammenwirken mehrerer Anwender am Prozess der Erstellung
eines Fabrikmodells erfordert die Nutzung verteilter (EDV-)Systeme, weil diese besser als
monolithische Systeme der gegebenen räumlichen Trennung der Angehörigen
unterschiedlicher betrieblicher Bereiche und der von ihnen genutzten und in die
Modellierung eingebrachten Daten gerecht werden. Sie erlauben die gleichzeitige
Benutzung der benötigten materiellen (Hardware) und immateriellen (Software)
Ressourcen und gewährleisten den heterogenen Ansprüchen unterschiedlicher
menschlicher Anwender und/oder unterschiedlicher Komponenten des Programmsystems
gerecht zu werden und eine variable Anpassung der Systemgröße an unterschiedliche
Aufgabestellungen (Skalierbarkeit) umzusetzen. Allgemeine Ziele der Nutzung verteilter
Systeme sind eine Leistungssteigerung hinsichtlich des Durchsatzes und den
Antwortzeiten des Systems durch die Bereitstellung zusätzlicher Hardware, eine bessere
Erweiterbarkeit und Anpassungsfähigkeit sowie eine erhöhte Fehlertoleranz. Die
Verbundstruktur verteilter Systeme bietet das Mittel zur Erreichung dieser Ziele
[CoDo02]. Sie umfasst die folgenden Substrukturen:

 Funktionsverbund: Die Gesamtfunktionalität wird erbracht, indem dedizierte
Funktionen der Anwendung auf unterschiedlichen Rechnern integriert werden.

 Datenverbund: Der Zugriff auf verteilte Datenbestände von verschiedenen Rech-
nern aus ermöglicht es, Datensätze aus unterschiedlichen Dateisystemen oder
Datenbanken miteinander zu verknüpfen und integriert zu verarbeiten.

 Lastverbund: Das verteilte Leistungspotential mehrerer Rechner soll so genutzt
werden, dass die durch eine Anwendung gegebene Last möglichst gleichförmig
verteilt wird.

In der Literatur wird, je nach Perspektive des Autors, häufig die Bezeichnung „verteiltes
System“ ohne Zusätze für verteilte Hardwaresysteme, verteilte Betriebssysteme oder
verteilte Anwendungssysteme benutzt. Im Folgenden wird die Bezeichnung „verteiltes
System“ als Sammelbezeichnung für diese drei Spezialisierungen benutzt, wenn nicht auf
einen bestimmten Aspekt der Verteilung (Hardware, Betriebssystem, Anwendungen)
Bezug genommen wird. Das ist sinnvoll, weil Hardware, Betriebssystem und
Anwendungen drei Ebenen der Gesamtarchitektur darstellen, zwischen denen eine enge
Abhängigkeit besteht: Die Nutzung verteilter Betriebssysteme oder verteilter
Anwendungssysteme ergibt nur auf entsprechender Hardware Sinn.

3.5.4.2 CSCW und Groupware

„Computer Supported Cooperative Work (CSCW) ist die Bezeichnung des
Forschungsgebietes, welches auf interdisziplinärer Basis untersucht, wie
Individuen in Arbeitsgruppen oder Teams zusammenarbeiten und wie sie dabei
durch Informations- und Kommunikationstechnologie unterstützt werden können.“
[FiHe00]

- 60 -

Im Forschungsgebiet des CSCW sollen, unter Verwendung aller zur Verfügung stehenden
Mittel der Informations- und Kommunikationstechnologie, Gruppenprozesse zu
untersuchen und die Effektivität und Effizienz der Gruppenarbeit zu erhöhen. Im
Mittelpunkt steht die Konzeption, Implementierung und Erweiterung von Werkzeugen für
die Unterstützung der Teamarbeit. Die Wurzeln dieses Ansatzes sind unter anderem in
Entscheidungsunterstützungs- und Kommunikationssystemen zu sehen. Die Hilfsmittel
für die Kooperation innerhalb von Gruppen und Teams werden als Groupware oder
Workflow-Management-Systeme bezeichnet; dies schließt sowohl Hardware
(beispielsweise Kameras) als auch Software ein [FiHe00].

Eine weit verbreitete Taxonomie für Groupware-Systeme liefert die Raum-Zeit-Matrix
nach [Joha91], die in Abbildung 20 abgebildet ist. Die Klassifikation liefert vier
verschiedene Arten von Groupware-Systemen. Bei der face-to-face-interaction befinden
sich die Kooperationspartner zur selben Zeit am selben Ort. Als Beispiel können Group
Decision Support Systems dienen, die Entscheidungsprozesse in Gruppen durch
persönliche Arbeitsplatzrechner und einen für alle sichtbaren Großbildschirm
unterstützen. In die Kategorie der synchronen verteilten Interaktion fallen Mehrbenutzer-
oder auch Gruppeneditoren, also auch kooperative Modellierungswerkzeuge. Asynchrone
Interaktion findet am selben Ort, aber zu unterschiedlichen Zeiten statt und kann z. B.
als elektronische Version einer Pinnwand realisiert werden. E-Mail-Systeme sind das
klassische Beispiel für asynchrone verteilte Interaktion.

Abbildung 20: Raum/Zeit Matrix nach [Joha91]

Problematisch ist bei dieser Einteilung jedoch die fehlende eindeutige
Zuordnungsmöglichkeit bestimmter Applikationen zu einzelnen Kategorien. Geeignet ist
eine solche Darstellung eher für die Klassifikation der Verwendung von Groupware-
Applikationen als für die Beschreibung der möglichen Groupware-Funktionalitäten.

Stand der Technik - 61 -

Zentrale Aspekte jeder Groupware sind:

 Awareness: Viele Systeme setzen eine oder mehrere Formen der Awareness um, d.
h. die Software ermittelt selbständig (implizit) Eingabedaten, um dem Anwender
Zeit und Arbeit abzunehmen.

 What You See Is What I See: Das Prinzip beschreibt, welche Teile einer Anwendung
bei verschiedenen Anwendern exakt gleich dargestellt werden.

 Synchronisation und Konsistenzerhaltung. Die Wahrung eines einheitlichen
Datenzustandes (Konsistenz) trotz gleichzeitiger Zugriffe auf das Datenmaterial,
bzw. die Visualisierung von Konflikten, wo dies nicht möglich ist.

 Floor-Control: Die Verwaltung der Systemressourcen: Welcher Teilnehmer darf
gerade welche Ressource nutzen?

 Session-Control: beschreibt die Verwaltung und Administration der Teilnehmer in
Arbeitssitzungen hinsichtlich Autorisierung, Authentifizierung und Einteilung in
Rollenschemata [FiHe00].

3.5.4.3 Kommunikation, Kooperation und Koordination

Unabhängig von den eingesetzten Groupware-Technologien lassen sich die Applikationen
nach ihren elementaren Unterstützungsfunktionen gliedern. Hierbei werden vor allem
Kommunikations-, Kooperations- und Koordinationsfunktionalitäten unterschieden, die
aber eng miteinander verknüpft sind. Hinsichtlich dieser Merkmale eingegrenzt,
beschreiben Ellis et al. das Ziel von Groupware-Applikationen wie folgt: „the goal of
groupware is to assist groups in communicating, in collaborating, and in coordinating
their activities“[FiHe00].

Kommunikation

„Kommunikation bezeichnet den Austausch von Nachrichten zwischen Menschen.
Im erweiterten Rahmen der Informationstheorie versteht man darunter … jeden
Austausch von Informationen zwischen dynamischen Systemen… , die in der Lage
sind, Informationen aufzunehmen, zu speichern, umzuformen usw.“[KlBu71]

Der Kommunikation kommt insbesondere bei der Teamarbeit eine entscheidende Rolle
zu. Kommunikationsmechanismen bilden die unverzichtbare Basis aller Kooperations-
und Koordinationsbemühungen. Bei aktiv initiierter Kommunikation steht das Send-
Prinzip im Vordergrund. Kommunikation bezieht sich hier insbesondere auf Systeme, die
elektronische Objekte speichern und weiterleiten können. Die in diesen Objekten
gespeicherten Informationen werden möglicherweise über eine Fülle von
Zwischenstationen transferiert. Dieses oft auch als Push-Modell beschriebene Prinzip
erlaubt einen asynchronen Informationsfluss bei dem eine Synchronisation der
kommunizierenden Elemente nicht notwendig ist. Generell kann in diesem Bereich
zwischen synchroner und asynchroner Kommunikation differenziert werden [FiHe00].
Unter synchroner Kommunikation wird die zeitlich unmittelbare Übermittlung und
Sichtbarkeit beim Empfänger verstanden. Demgegenüber gelangen die elektronischen
Objekte bei der asynchronen Kommunikation zunächst in einen virtuellen Eingangskorb,

- 62 -

um zu einem späteren Zeitpunkt empfangen und ggf. verarbeitet zu werden. Darüber
hinaus können Nachrichten als eine Form der elektronischen Objekte entweder explizit
von Anwender zu Anwender übermittelt, oder implizit, also ohne bewusstes Wissen des
Anwenders, durch das jeweilige System verschickt werden, beispielsweise als Reaktion
auf eine Benutzereingabe [FiHe00].
Klassische Systeme zur Kommunikationsunterstützung sind beispielsweise E-Mail-
Systeme. Die Form der Kommunikation kann weiter nach Anzahl der Absender und
Anzahl der Empfänger untergliedert werden. Hierbei sind prinzipiell alle
Kommunikationsarten von der 1:1 Kommunikation über die 1:n Kommunikation bis hin
zur n:m Kommunikation erlaubt und finden in den entsprechenden Bereichen auch
Verwendung. Aufgrund der fehlenden Strukturierung und dem zu transportierenden
Informationsvolumen steigt die Komplexität dieses Modells im Rahmen der n:m
Kommunikation stark an. Eine Lösung dieser Problematik kann durch den Einsatz des
Pull-Prinzips erreicht werden, welches insbesondere im Bereich der Kooperations-
unterstützung besondere Bedeutung erfährt.

Kooperation

„Die Kooperation baut auf der Kommunikation auf und stellt den Austausch von
Informationen mit einem gemeinsamen Ziel dar. Sie bedingt, dass mindestens
zwei Personen in einem gemeinsamen, zielgerichteten Kooperationsprozess
involviert sind.“[FiHe00]

Systeme zur Kooperation unterstützen die gemeinsame Arbeit einer Gruppe nach dem
Share-Prinzip. Die Gruppenmitglieder haben Zugriff auf einen gemeinsamen
Datenbestand, den sie in beliebiger Reihenfolge verändern und erweitern können, ohne
ein vorgegebenes Ablaufschema und nicht notwendigerweise sequentiell. Applikationen
zur Kooperationsunterstützung forcieren das Pull-Modell, um Informationen miteinander
zu teilen, gemeinsam zu bearbeiten, zu strukturieren und somit auch weiterzuentwickeln.
Jeder Nutzer kann in diesem Modell die für ihn relevanten Informationen selektieren,
individuelle zusammenstellen und unabhängig von Raum und Zeit abrufen. Koordination
weist den höchsten Komplexitätsgrad auf, da die jeweilige Konsistenz der Daten zu
jedem Zeitpunkt gewährleistet sein muss. Kommunikationsmechanismen unterstützen
die Anwender bei der Ausführung kooperativer Tätigkeiten und können Konflikte schnell
und unkompliziert lösen [FiHe00].

Koordination

„Als Koordination wird diejenige Abstimmung bezeichnet, die für eine Arbeit der
Kooperationspartner auf ein gemeinsames Ziel hin erforderlich ist.“[Henk97]

Wird im Rahmen der Kooperation kommuniziert und bezieht sich diese Kommunikation
auf die Abstimmung der aufgabenbezogenen Tätigkeiten, so wird diese Dimension der
Kommunikation als Koordination bezeichnet. Auf Basis der Kommunikationsmechanismen
ermöglicht die Koordination die notwendige Abstimmung der dezentral handelnden und
entscheidenden Anwender hinsichtlich einer optimalen Zielerreichung innerhalb der
Gesamtaufgabe. Sie baut damit sowohl auf der Kommunikation als auch auf der
Kooperation auf und erlaubt erst den aufgabengerechten Einsatz der Ressourcen und
eine effiziente Arbeit der verschiedenen Anwender in einem Team. Grade deswegen kann
hier im Allgemeinen nicht auf die Mitwirkung des Anwenders verzichtet werden. Denn

Stand der Technik - 63 -

zwischen den Aktivitäten der unterschiedlichen Anwender bestehen zum einen
Abhängigkeiten, die nur durch die direkte Kommunikation der betroffenen Anwender
aufgelöst werden können. Zum Anderen sind die Fragestellungen hinsichtlich optimaler
Reihenfolge, Zulässigkeit und Zweckmäßigkeit der einzelnen Bearbeitungsschritte nicht
durch das Anwendungssystems selbst aufzulösen, weil es eine Bewertung der aktuellen
Situation innerhalb des Systems, beispielsweise eine Gewichtung hinsichtlich
Dringlichkeit der Aufgabe, nicht vornehmen kann. Diese muss durch den Anwender des
zu entwickelnden Werkzeugs erfolgen, dessen Arbeitsweise durch die Kommunikations-,
Kooperations- und Koordinationsmechanismen bestmöglich unterstützt werden sollen
[FiHe00].

3.5.4.4 Funktionalitäten

Im folgenden Abschnitt werden die Grundlagen der informationstechnischen Realisierung
kooperativer Werkzeuge diskutiert, um aus der allgemeinen Beschreibung der
wesentlichen Charakteristika einer solchen Anwendung konkrete Basisfunktionalitäten
abzuleiten. Es geht um die Funktionalitäten, die im Zusammenhang von Kommunikation,
Nebenläufigkeit und Synchronisation in kooperativen Systemen zur Verfügung stehen.
Unterscheiden lassen sie sich in den wesentlichen Bausteinen Datenhaltung und
Datenaustausch. Abschließend soll kurz auf die Gestaltung einer Benutzerschnittstelle
eines kooperativen Systems eingegangen werden.

Datenhaltung
Der Prozess der Modellerstellung und die Arbeit an einem Simulationsmodell erstreckt
sich typischerweise über einen lang andauernden Zeitraum. Wesentliche Grundfunktion
ist daher die Möglichkeit, Daten für diesen Zeitraum sicher aufbewahren zu können.
Insbesondere ist davon auszugehen, dass die Lebensdauer der Daten über die Dauer der
Ausführung eines Prozesses hinausgeht. In objektorientierten Systemen wird diese
Eigenschaft als Persistenz von Objekten bezeichnet [Henk97].

Um ein sinnvolles Arbeiten mit dem Modellierungswerkzeug zu ermöglichen, sind
Anforderungen an die Qualität und die Quantität des Datenzugriffs zu beachten: Der
Zugriff darf nicht auf einen einzelnen Anwender bzw. Prozess beschränkt sein; dennoch
muss die Sichtbarkeit von Daten und die Zulässigkeit von Operationen wie Lesen,
Schreiben, Erzeugen und Löschen von Daten flexibel und dynamisch geregelt werden
können. Das Antwortzeitverhalten des Systems muss in akzeptablen Grenzen liegen;
gleiches gilt für die Ausfallsicherheit. Diese beiden Anforderungen können nicht immer
von einer zentralisierten Datenhaltungskomponente erfüllt werden, so dass in diesen
Fällen eine verteilte Datenhaltung zu fordern ist.

Essentiell ist die Forderung, dass der nebenläufige Zugriff mehrerer Anwender auf
gemeinsame Daten nicht zu einer Inkonsistenz des Datenbestandes führen darf. Zu den
Basisdiensten eines Datenhaltungssystems gehören das Entgegennehmen, Abspeichern,
Ändern, Löschen, Auswählen, Identifikation und Bereitstellen von Daten sowie Verwalten
von Datenbeständen [Lock93]. Die Menge der gespeicherten Daten wird als Datenbasis
bezeichnet, die Erfüllung der genannten Funktionalität gewährleistet das
Datenverwaltungssystem. Die Anwender greifen auf das System über die
Datenhaltungsschnittstelle zu.

- 64 -

Das Datenhaltungssystem hat die Aufgabe, diese Transaktionen zu synchronisieren, d. h.
sicherzustellen, dass jede Transaktion aus Anwendersicht genauso abläuft, als wäre sie
die einzige zu dem jeweiligen Zeitpunkt ausgeführte. Das ist insbesondere dann eine
nicht-triviale Aufgabe, wenn Transaktionen als Leser oder Schreiber auf dieselben
Datenbasisausschnitte zugreifen. Sperren dienen nicht nur zur Synchronisation von
Transaktionen, sondern können unabhängig davon auch verwendet werden, um den
Zugriff der Anwender auf Datenbereiche zu regeln. Das Setzen einer Sperre (Lock) für
einen Datenbasisausschnitt bewirkt, dass die Zugriffe anderer Anwender/Prozesse/-
Transaktionen auf diesen Bereich eingeschränkt oder ausgeschlossen werden. Die
Einschränkung des Zugriffs besteht häufig darin, dass nicht jede dieser Zugriffsarten
erlaubt wird, wenn eine Sperre gesetzt ist. Beispielsweise kann das Lesen eines Datums
auch anderen Transaktionen gestattet werden, wenn der Sperrhalter selbst dieses Datum
ebenfalls lediglich zu lesen beabsichtigt. Dadurch kann der Nebenläufigkeitsgrad der
Transaktionsbehandlung wesentlich gesteigert werden.

Datenaustausch
In einem kooperativen System besteht häufig die Notwendigkeit, eine Anzahl von
Kommunikationspartnern vom Eintreten eines Systemereignisses, etwa der Änderung des
Datenbestandes durch einen Systemteilnehmer, zu informieren. Diese Art der Verteilung
von (Änderungs-)Ereignissen (-nachrichten) wird auch als data change propagation
bezeichnet.

Der Entwurf eines kooperativen Entwicklungswerkzeugs setzt eine stabile
Kommunikations-Infrastruktur voraus. Dazu gehört mindestens die Möglichkeit, zwischen
zwei Prozessen Informationen auszutauschen. Die verfügbaren Dienstprimitive sollen
eine zuverlässige Informationsübermittlung bieten und den Systementwickler soweit wie
möglich von der Fehlerbehandlung entlasten. Auch für den Austausch von Informationen
zwischen mehr als zwei Kommunikationspartnern sollen Dienstprimitive zur Verfügung
stehen.

Wenn das Anwendungssystem die Verwendung von Arbeitssitzungen unterstützen soll, ist
für die Registrierung zugelassener Teilnehmer, den Beginn und das Beenden der Sitzung,
die Lokalisierung der laufenden Sitzungen sowie das An- und Abmelden bei einer
Arbeitssitzung die Definition entsprechender Entwurfskonstrukte (z. B. Funktionen,
Klassen, Module) wünschenswert. Die Übermittlung einer Nachricht erfordert
Dienstprimitive für das Senden und Empfangen der Nachricht. Die Primitive send und
receive werden von Netzwerkbetriebssystemen, verteilten Betriebssystemen im engeren
Sinne oder Betriebssystemerweiterungen (z. B. Middleware) zur Verfügung gestellt. In
kooperativen Systemen tritt häufig der Fall auf, dass viele oder alle Anwender von einer
Änderung des Datenbestandes verständigt werden müssen. Daher ist die Möglichkeit
eines Broadcasting oder Multicast-Nachrichtenaustausches wünschenswert.

Die Kommunikation zwischen Prozessen wird häufig nach dem Client/Server-Modell
gestaltet. Client ist ein Prozess, der bei einem Serverprozess eine bestimmte
Dienstleistung nachfragt bzw. eine Anfrage an einen Server richtet. Der Vorteil des
Client/Server-Modells besteht in der Verbindung von Einfachheit und Flexibilität. Der
Client sendet eine Anfragenachricht, die den gewünschten Dienst beschreibt, an einen

Stand der Technik - 65 -

Server, der diesen Dienst erfüllt, indem er die nachgefragten Daten oder eine
Fehlermeldung zurückliefert.

Es wurde bereits darauf hingewiesen, dass die Kommunikation in objektorientierten
Softwaresystemen wahlweise als Methodenaufruf oder Nachrichtenversand interpretiert
werden kann (vgl. Abschnitt 3.5.2). Die Betrachtung eines objektorientierten
Softwaresystems als Ansammlung von Objekten, die untereinander Nachrichten
austauschen, erlaubt eine nahtlose Abbildung des Client/Server-Konzeptes auf
objektorientierte Systeme. Objekte fungieren als Server, wenn sie Nachrichten ihrer
Clients entgegennehmen und beantworten; der Client ruft eine (entfernte) Methode des
Servers auf. Die Überwindung der Grenzen von Prozessen, Rechnern, Betriebssystemen
oder Netzen leistet die sog. objektorientierte Middleware, die diese Verteilungsaspekte
für den Systementwickler transparent macht.

Bei der Gestaltung kooperativer Werkzeuge ist darüber hinaus darauf zu achten,
Mechanismen für Identifizierung, Adressierung angeschlossener Rechner, Objekte oder
Dienste und das Routing von Informationen durch das Netzwerk bereitzustellen.
Insbesondere für das Verteilen von Nachrichten zur Unterstützung der Kommunikation ist
eine eindeutige Adressierung wichtiges Merkmal für die angeschlossenen Clients der
Anwender. Im Rahmen dieser Adressierung und Identifikation spielen auch Sicherheits-
und Zugangsaspekte eine große Rolle, um die verwendeten Systeme vor unsach-
gemäßem Gebrauch zu schützen. Hierfür existieren leistungsfähige
Sicherheitsmechanismen wie abgestufte Zugriffskontrollen, Verschlüsselungskonzepte
und Rollenprivilegien, wie sie oben dargestellt wurden (vgl. 3.5.4.3).

Benutzungsschnittstelle
In der Literatur (vgl. etwa [Rose93]) wird verschiedentlich gefordert, die
Programmierung der Benutzungsschnittstelle durch speziell für die Erstellung von
Mehrbenutzeranwendungen angepasste Oberflächenobjekte zu unterstützen (shared
visual objects). Dieser Auffassung steht jedoch entgegen, dass im allgemeinen eine
Trennung zwischen der internen Datenhaltung, der Zugriffsschnittstelle auf diese Daten
und ihrer visuellen Repräsentation angestrebt wird, wie dies etwa im bekannten Model-
View-Controller-Konzept geschieht (vgl. Abschnitt 3.5.5.5). Der Oberfläche kommt dann
lediglich die Aufgabe zu, dem Anwender Informationen darzubieten und
Benutzeraktionen entgegenzunehmen, nicht jedoch, etwa Benutzeraktionen zu
propagieren. Dies ist Aufgabe einer tiefer liegenden Dienstebene. Auch das WYSIWYG-
Konzept (What-you-see-is-what-you-get) verlangt nicht, Informationen mit grundsätzlich
anderen Mitteln darzustellen, als dies in Einbenutzeranwendungen geschieht; die
vorhandenen Mittel (Oberflächenelemente, Mauszeiger, Textcursor) werden lediglich
anders genutzt. Aus diesem Grund beschränkt sich die Notwendigkeit, die
Oberflächengestaltung an den Mehrbenutzerbetrieb anzupassen, auf die Visualisierung
von Informationen, die in Einbenutzeranwendungen nicht vorhanden sind, etwa die
Struktur des Anwenderkreises. Dafür reichen im Allgemeinen die üblichen
Oberflächenelemente (Schaltflächen, Listen, Zeichenflächen, grafische Symbole usw.)
aus. In dieser Arbeit wird daher nicht davon ausgegangen, dass speziell an den
Mehrbenutzerbetrieb angepasste Oberflächenobjekte für die Erstellung eines
kooperativen Mehrbenutzerwerkzeugs benötigt werden, wohl aber, dass während der
Gestaltung der Oberflächen das Augenmerk auf zusätzliche Objekte innerhalb der

- 66 -

Oberfläche gelegt wird, die die Kommunikation, Kooperation und Koordination der an
einem Simulationsmodell arbeitenden Anwender abbildet.

3.5.5 Organisationsformen des Software-Designs von Mehrbenutzer-
systemen

Software an sich ist zunächst eine abstraktes Gebilde und muss für den Umgang des
Menschen mit dieser Software handhabbar gemacht werden. Dabei sind Entscheidungen
über die Gestaltung des zu schaffenden Systems zu treffen: Was sind die Elemente
dieses Systems, in welchen Beziehungen stehen diese zueinander, usw. Die Gesamtheit
dieser Regelungen zur Gestaltung der Ordnung des Softwaresystems soll hier als
Organisationsform bezeichnet werden. In Anlehnung an [Woeh90] bezeichnet
Organisation hier sowohl den Prozess der Entwicklung einer Ordnung, als auch das
Ergebnis dieses gestalterischen Prozesses, d.h. die Gesamtheit aller getroffenen
Regelungen. Beispiele für Software-Organisationsformen sind Funktionsbibliotheken,
Klassenbibliotheken, Frameworks, Software-Entwurfsmuster sowie spezielle Lösungen
(Toolkits und konfigurierbare Anwendungen). Sie sollen in diesem Abschnitt vorgestellt
und hinsichtlich ihrer Eignung zur Realisierung des angestrebten Werkzeugs, bzw.
hinsichtlich der Verwirklichung der allgemeinen Ziele und Prinzipien des Software Designs
(vgl. 3.5.1 und 3.5.2), bewertet werden.

Die Wahl einer geeigneten Organisationsform für Software ist abhängig von
unterschiedlichen Einflussfaktoren. Die Gewichtung dieser Faktoren wiederum ist
abhängig von der jeweiligen konkreten Aufgabenstellung. Es ist deshalb nicht möglich,
lediglich anhand eines einzelnen softwaretechnischen Zieles allgemeingültige Aussagen
über die Eignung einer bestimmten Organisationsform zu treffen. Vielmehr ist jeweils das
gesamte Zielsystem der Softwaretechnik unter den gegebenen individuellen
Randbedingungen zu berücksichtigen. Es gibt jedoch zwei Gründe, warum dem Ziel
Wiederverwendung eine besondere Rolle bei der Beurteilung einer Software-
Organisationsform zukommt:

 Bedeutung des Zieles Wiederverwendung an sich: Bereits bei der Diskussion des
softwaretechnischen Zielsystems wurde diese herausgestellt und begründet.
Erfolgreiche Wiederverwendung kann die Zuverlässigkeit und
Wartungsfreundlichkeit eines Softwaresystems steigern, das Risiko von
Fehlentwicklungen verringern, das Wissen von Experten und ganzen Organisationen
konservieren und transferieren und den finanziellen und zeitlichen Aufwand eines
Projektes reduzieren [Somm92].

 Einfluss der Organisationsform auf die Wahrscheinlichkeit der Wiederverwendung:.

Software kann nur dann wieder verwendet werden, wenn eine Organisationsform
gewählt wurde, die die Identifikation, den Zugriff und das Extrahieren der wieder zu
verwendenden Komponenten gestattet. Die unbefriedigende Situation, dass viele
Systementwickler das Gefühl haben, ständig „das Rad neu zu erfinden“, kann nur
beseitigt werden, wenn vorhandene Problemlösungen bekannt sind und zur
Verfügung stehen und wenn außerdem eine ggf. notwendige Adaption an eine
geänderte Problemstellung möglich ist.

Stand der Technik - 67 -

Wiederverwendung von Software erfährt aus technologischen, ökonomischen,
psychologischen und organisatorische Gründen steigende Bedeutung. Der Gedanke liegt
wegen des stark wiederholenden Charakters vieler Phasen der Systementwicklung nahe.
Wiederverwendung beinhaltet die systematische Nutzung bereits existierender Modelle,
Entwürfe bzw. Entwurfsfragmente, Programmtexte und Dokumentationen. Es geht also
nicht lediglich um die Wiederverwendung von Programmcode, sondern sämtlicher
(Zwischen-) Ergebnisse des Entwicklungsprozesses. In jedem Fall kann aber nur erneut
verwendet werden, was in Form eines irgendwie gearteten Dokumentes zur Verfügung
steht. In Frage kommen Quellcode, Objektcode, Personal, Dokumentationen. Diese
Dokumente können sich auf Softwarekomponenten wie komplette Systeme, auf
Subsysteme, Module oder Objekte oder einzelne Funktionen beziehen. Die besondere
Eignung objektorientierter Technologien zur Unterstützung der Wiederverwendung wird
als ein Standardargument zugunsten der Objektorientierung gebracht (vgl. Abschnitt
3.5.2.2). Einige Voraussetzungen erfolgreicher Wiederverwendung sind nach [Booc94]:

 Es muss möglich sein, die passenden Komponenten wieder zu finden.
 Die Komponenten müssen vom Systementwickler verstanden und als geeignet

akzeptiert werden.
 Zu jeder Komponente müssen detaillierte Informationen darüber vorliegen, wie sie

wieder verwendet werden kann.

Wiederverwendung wird dagegen erschwert oder verhindert, wenn der Systementwickler
die Leistungsfähigkeit der angebotenen Komponenten nicht versteht oder ihre
Notwendigkeit nicht akzeptiert. Darüber hinaus müssen die Komponenten selbst auch für
die Wiederverwendung geeignet sein, d.h., sie müssen erweiterbar, bzw. anpassbar sein
und sie dürfen nicht einem zu sehr eingeschränkten Anwendungsbereich dienen und
damit die erforderliche Flexibilität vermissen lassen. Die Entwicklung wieder zu
verwendender Komponenten erfordert daher ein besonders hohes Maß an Erfahrung und
gestaltet sich schwieriger und aufwendiger als die Entwicklung von Software zur
einmaligen Verwendung. Die Berücksichtigung der in Kapitel 3.5.1 diskutierten Prinzipien
spielt daher hierbei eine besonders große Rolle.

3.5.5.1 Funktionsbibliotheken

Funktionsbibliotheken sind eine Organisationsform wieder verwendbarer Software, die
dem Paradigma der prozeduralen Programmierung entstammt. Programmiersprachen
organisieren Programme in Funktionen, Unterprogramme oder Prozeduren, die sich
gegenseitig aufrufen und ggf. Modulen angehören können. Es entsteht ein hierarchischer
Aufrufbaum, wie in Abbildung 21 gezeigt.

- 68 -

Abbildung 21: Topologie prozeduraler Programmabläufe [Henk97]

Funktionsbibliotheken sind Sammlungen von Funktionen, die zumeist einen
gemeinsamen Anwendungsbereich (z.B. mathematische Funktionen, Stringverarbeitung,
Datenbankzugriff, grafische Ein-/Ausgabe,...) behandeln. Sie können als wieder
verwendbare Module aufgefasst werden. In Abbildung 21 könnte anstelle eines der
Module also auch die Bezeichnung einer Funktionsbibliothek treten. Es handelt sich daher
um eine Form der Wiederverwendung von Code, der entweder als Quelltext oder als
statisch oder dynamisch zu bindender Objektcode vorliegt. Dem prozeduralen Paradigma
entsprechend, sind Datenstrukturen nicht Gegenstand der Wiederverwendung.
Funktionsbibliotheken stellen daher einen einfachen, softwaretechnisch jedoch noch nicht
voll befriedigenden Mechanismus zur Wiederverwendung dar, der Modularisierung und
Hierarchisierung ermöglicht, dessen Mangel an Abstraktion jedoch die Wahrscheinlichkeit
einer Wiederverwendung mindert.

Für den Entwurf und die Realisierung verteilter Systeme kommt der Einsatz von
Funktionsbibliotheken vor allem in den betriebssystemnahen Systemebenen in Frage. Ein
Beispiel im Bereich der Kommunikation zwischen Prozessen sind Sockets. Sie basieren
auf dem TCP/IP-Protokoll17 und bilden einen Puffer, über den Nachrichten gesendet und
empfangen werden können. Die Adresse eines Socket beinhaltet die Adresse des
Rechners im Netzwerk sowie eine für diesen Rechner eindeutige SocketID.
Funktionsbibliotheken setzen oftmals Detailkenntnisse über die jeweiligen Funktionen
voraus und erfordern somit einen erhöhten Einarbeitungsaufwand. Der Ansatz bietet
daher keine reibungslose Wiederverwendung von Software

17 Das TCP/IP-Protokoll ist ein Netzwerkprotokoll, das die Basis für die Kommunikation im Internet bildet.

Das Transmission Control Protocol (TCP) ist eine Vereinbarung darüber, auf welche Art und Weise Daten
zwischen Computern ausgetauscht werden sollen [Balz05].

 Das Internet Protokoll (IP) bildet die erste vom Übertragungsmedium unabhängige Schicht der Internet-
Protokoll-Familie. Das bedeutet, dass mittels IP-Adresse und Subnetzmaske (subnet mask) Computer
innerhalb eines Netzwerkes in logische Einheiten gruppiert werden können. Auf dieser Basis ist es möglich,
Computer in größeren Netzwerken zu adressieren und Verbindungen zu ihnen aufzubauen [Balz05].

Stand der Technik - 69 -

3.5.5.2 Klassenbibliotheken

"Eine Klassenbibliothek besteht aus einer Menge von verwandten und wieder
verwendbaren Klassen, die entworfen wurden, um nützliche und allgemeine
Funktionalitäten zur Verfügung zu stellen."[GaHe01]

Die Funktionalitäten der Klassenbibliothek sind in der Regel unabhängig vom Kontext der
Anwendung. Die Wiederverwendung von Klassen innerhalb der Bibliothek kann durch
zwei Arten erfolgen: Entweder werden Klassen der Klassenbibliothek erzeugt
(instanziiert) oder neue Klassen werden durch gegebene Klassen der Bibliothek abgeleitet
(Prinzip der Vererbung, Abschnitt 3.5.2.2).

Klassenbibliotheken bilden das objektorientierte Gegenstück zu Funktionsbibliotheken.
Typische Beispiele für eine solche Ansammlung wieder verwendbarer Klassen sind Pakete
zur Verwaltung von Datenstrukturen, zur Realisierung von Oberflächenelementen oder
zum Aufbau von Kommunikationsschnittstellen mit Datenbanksystemen. Das
Zusammenspiel der Klassen ist vom Designer der Bibliothek nur in weiten Grenzen
vorgegeben. Es wird im Wesentlichen vom Entwickler der Anwendung bei der
Implementierung eines konkreten Programms festgelegt. Abbildung 22 zeigt die aus der
Verwendung einer Klassenbibliothek resultierende Topologie eines Programms.

Abbildung 22: Programmtopologie auf Basis einer Klassenbibliothek [nach
Booc94]

Mögliche Zugriffe auf Klassenbibliotheken sind durch das Application Programming
Interface (API) definiert. Dabei handelt es sich um eine Gesamtheit der öffentlich
verfügbaren Klassen und Schnittstellen in Abgrenzung zu den privaten Einheiten der
Bibliothek, die nicht zugänglich sind. Klassenbibliotheken werden deshalb auch häufig als
API bezeichnet. Durch die Einhaltung der Paradigmen des objektorientierten Entwurfs
(vgl. 3.5.2) ergeben sich für Klassenbibliotheken einige Vorteile. Durch ihren Einsatz
kann ein höherer Abstraktionsgrad erreicht werden und Methodenaufrufe können
typsicher formuliert werden. Das reduziert die Fehlerwahrscheinlichkeit. Durch den
Zugriff über die API, bzw. die Schnittstellen wird eine saubere Trennung des Zugriffs und

- 70 -

der eigentlichen Implementierung erreicht. Klassenbibliotheken lassen sich damit leichter
portieren.

Insgesamt ergibt sich aus der Beachtung allgemeiner und objektorientierter Paradigmen
des Software-Entwurfs eine höhere Wahrscheinlichkeit, dass ein Anwendungsentwickler
in einer Klassenbibliothek Softwarekomponenten findet, die ihm für eine effiziente
Wiederverwendung geeignet erscheinen und zur Verfügung stehen. Eine spezielle Form
von Klassenbibliotheken bilden so genannte Frameworks, oder Rahmenwerke, die im
folgenden Abschnitt näher betrachtet werden sollen.

3.5.5.3 Frameworks

"Ein Framework besteht aus einer Menge von zusammenarbeitenden Klassen, die
einen wieder verwendbaren Entwurf für eine bestimmte Klasse von Applikationen
darstellen."[GaHe01]

Im Gegensatz zu Klassenbibliotheken, die eine Ansammlung nur lose verbundener
Klassen darstellen und dem Systementwickler wenig Vorgaben über die Verwendung der
Klassen machen, enthalten Frameworks Klassen, zwischen denen eine genau definierte
Beziehung besteht. Ein Framework gibt damit in der Regel eine Architektur der jeweiligen
Anwendung vor, wobei eine Umkehrung der Kontrolle stattfindet: der Programmierer
registriert konkrete Implementierungen, die dann durch das Framework gesteuert und
benutzt werden, statt — wie bei einer Klassenbibliothek — lediglich Klassen und
Funktionen zu benutzen. Ein Framework definiert insbesondere den Kontrollfluss der
Anwendung und die Schnittstellen für die konkreten Klassen, die vom Programmierer
erstellt und registriert werden müssen. Frameworks werden also im Allgemeinen mit dem
Ziel einer Wiederverwendung architektonischer Muster entwickelt und genutzt. Da solche
Muster nicht ohne die Berücksichtigung einer konkreten Domäne entworfen werden
können, sind Frameworks meist domänenspezifisch oder doch auf einen bestimmten
Anwendungstyp beschränkt. Frameworks sind nach dieser Definition immer
objektorientiert, obwohl sie grundsätzlich auch mit anderen Technologien erstellt werden
können.

Die wesentlichen Vorteile von Frameworks gegenüber den Bibliotheken liegen in einem
reduzierten Wartungsaufwand, einer verbesserten Wiederverwendung allgemeiner
Funktionalitäten und insbesondere in der Möglichkeit einer zuverlässigen Erweiterung und
Spezialisierung innerhalb einer vorgegebenen Infrastruktur. Je nach der Art und Weise,
wie Frameworks vom Entwickler verwendet werden müssen, unterscheidet man zwischen
White-Box- und Black-Box-Frameworks. White-Box-Frameworks bestehen aus einer
Reihe von abstrakten Klassen. Die Aufgabe des Entwicklers besteht dann darin, jene
abstrakten Methoden dieser Klassen in den abgeleiteten Unterklassen der konkreten
Applikation zu überschreiben. Dafür ist eine gute Kenntnis der Framework-Klassen
erforderlich. Das Gegenstück bilden die Black-Box-Frameworks. Diese bieten bereits
fertige Klassen an, die der Entwickler instanziieren und so zu einer Applikation
zusammensetzen kann. Verfügbare Frameworks sind zumeist Mischformen zwischen
White-Box- und Black-Box-Frameworks. Mit steigendem Reifegrad tendieren Frameworks
zum Black-Box-Ansatz.

Stand der Technik - 71 -

Frameworks stellen also einen Großteil des notwendigen Codes bereit und halten
Lösungen für wichtige Designentscheidungen bereit, die sich in einem Problembereich
typischerweise stellen, während Funktions- und Klassenbibliotheken den
Systementwickler vor allem in der Implementierungsphase von wiederkehrenden
Aufgabe entlasten können, die Verantwortung für wesentliche Entwurfsentscheidungen
aber beim Systemdesigner belassen. Frameworks bieten daher eine Wiederverwendung
von Designwissen, das in den implementierten Klassen enthalten ist. Diese
Wiederverwendung auf Entwurfsebene verlangt vom Entwickler des Frameworks
besonders viel Wissen und Erfahrung, wird aber dem Abstraktionsprinzip in besonderem
Maße gerecht, weil quasi eine Referenz-Architektur zur Verfügung gestellt wird. Als
Dokument der Wiederverwendung kommt wiederum die Verwendung von Quellcode oder
Objektcode in Frage. Die Basis der Wiederverwendung ist allerdings nicht die Klasse,
sondern das Klassenteam.

Die Topologie eines mit Hilfe eines Frameworks definierten Programms unterscheidet
sich nicht von der in Abbildung 22 gezeigten Darstellung. Der Unterschied besteht
vielmehr darin, dass die im Bild als Kanten des Beziehungsgraphen dargestellten
Objektinteraktionen bereits im Framework weitgehend festgelegt sind, während diese
Aufgabe bei Verwendung einer konventionellen Klassenbibliothek dem Systementwickler
zufällt.

Wie unter Abschnitt 3.2.2 aufgezeigt, existieren im Bereich der Ablaufsimulation
verschiedene Frameworks, die wegen der speziellen Anforderungen an das zu
entwickelnde Werkzeug nicht in dieser Arbeit verwendet werden können.

3.5.5.4 Toolkits und konfigurierbare Anwendungen

Eine Möglichkeit der gezielten Wiederverwendung von Komponenten (typischerweise als
Objektcode), die gegenüber dem allgemeingültigeren Ansatz der Wiederverwendung von
Basisdienst-Komponenten einen reduzierten Overhead und außerdem einen geringeren
Entwicklungsaufwand verwirklichen kann, ist der Rückgriff auf Gesamtlösungen. Hierbei
wird der Versuch unternommen, die angebotene Funktionalität gezielt auf einen
bestimmten Problem- bzw. Anwendungsbereich abzustimmen. Zwei wesentliche
Kategorien von dedizierten Gesamtlösungen werden im Folgenden unterschieden und
kurz dargestellt: Toolkits und konfigurierbare Anwendungen.

Toolkits
Toolkits gelten als Sammelbezeichnung für Zusammenstellungen von Hilfsmitteln wie
Funktions- oder Klassenbibliotheken, Frameworks, fertig verwendbare
Anwendungskomponenten, Dienstleistungsprogrammen (Server), Entwicklungshilfen
(CASE18-Tools, Programmierumgebungen, Compiler19, Programmgeneratoren,...),
Interface Builder, Datenhaltungskomponenten usw. Diese Aufzählung macht deutlich,
dass die Abgrenzung gegen andere Software-Organisationsformen schwierig sein kann.
Wesentliche Eigenschaften von Toolkits sind allerdings die Adressierung eines
bestimmten Aufgabenbereiches sowie die Spezifikation eines Anwendungsmodells. Durch

18 CASE: Computer Aided Software Engineering
19 Ein Compiler analysiert ein Programm auf fehlerfreie Syntax und übersetzt es vollständig in ein Zielsystem,

das ohne erneute Analyse beliebig oft hintereinander ausgeführt werden kann [Balz05].

- 72 -

die Adressierung bestimmt sich der Umfang und Inhalt der angebotenen Funktionalität.
Der Anwender hat zumeist nicht die Möglichkeit zu beliebigen Erweiterungen. Der
Anwender muss darüber hinaus das Modell der Anwendungsentwicklung als gegeben
hinnehmen. Dieses Modell beinhaltet Annahmen über den Kenntnisstand der Anwender
des Toolkits, das zugrunde liegende softwaretechnische Paradigma, die verwendete
Programmiersprache, die Hardware- und Softwareumgebung der Anwendungs-
entwicklung und -verwendung usw.

Konfigurierbare Anwendungen
Fertige Anwendungen stellen den Extremfall dedizierter Gesamtlösungen dar und setzen
die Grundidee am konsequentesten um. Die Systementwicklung wird auf die
Wahrnehmung der vorhanden Einstellmöglichkeiten reduziert, d. h. die Konfiguration
bzw. Parametrisierung z.B. durch Aufrufoptionen, statische oder dynamische
Ressourceneinstellungen, Editieren von Datendateien, -objekten oder -tabellen sowie
einfache Eingriffe in den Kontrollfluss durch Skriptdateien.

Für den Anwendungsbereich der synchronen verteilten Interaktion sind konfigurierbare
Anwendungen, die speziell für die Realisierung eines kooperativen Werkzeuges zur
Modellierung und Simulation von Fertigungssystemen, wie sie in dieser Arbeit angestrebt
wird, zurzeit nicht bekannt.

Das größte Problem im Zusammenhang mit dem Einsatz von dedizierten Gesamtlösungen
resultiert gerade aus dem wichtigsten Vorteil: Die gezielte Einschränkung der
angebotenen Funktonalität erfordert es, eine Lösung zu finden, die genau auf die
gegebene Problemstellung passt oder eine ausreichende Flexibilität bietet, um eine
Anpassung zu ermöglichen. In diesem Fall ermöglichen Speziallösungen einen hohen
Anteil wieder verwendeter Software am Gesamtumfang eines Projekts. Praktische
Erfahrungen zeigen aber, dass gerade die Suche nach einer ideal passenden Lösung
häufig Schwierigkeiten bereitet und insbesondere spätere Änderungen der
Anforderungsdefinition zu Problemen führen. Der Grund dafür liegt in der mangelnden
Berücksichtigung (bzw. dem bewussten Verzicht) des softwaretechnisches Prinzips der
Abstraktion. Wichtige softwaretechnische Ziele, wie Flexibilität, Interoperabilität,
Portabilität, Erweiterbarkeit und Wartbarkeit werden deshalb von dedizierten
Gesamtlösungen nicht immer voll erfüllt. Für den Bereich der Ablaufsimulation existieren
zahlreiche Anwendungen, die jedoch kaum auf die Anforderungen der Anwender
konfiguriert werden können. Für die unter Abschnitt 2.3 aufgezeigten Anforderungen
existiert kein Toolkit.

3.5.5.5 Software-Entwurfsmuster

"Jedes Muster beschreibt ein in unserer Umwelt beständig wiederkehrendes
Problem und erläutert den Kern der Lösung für dieses Problem, so dass sie diese
Lösung beliebig oft anwenden können, ohne sie jemals ein zweites Mal gleich
auszuführen." [AlIs77]

Ein Entwurfsmuster (engl. design pattern) beschreibt eine in der Praxis erfolgreiche,
generische Lösung für ein mehr oder weniger häufig auftretendes, wiederkehrendes
Entwurfsproblem und stellt damit eine wieder verwendbare Vorlage zur Problemlösung
dar. Entstanden ist der Ausdruck in der Architektur, von wo er für die

Stand der Technik - 73 -

Softwareentwicklung übernommen wurde [GaHe01]. Der primäre Nutzen eines
Entwurfsmusters liegt in der Beschreibung einer Lösung für eine bestimmte Klasse von
Entwurfsproblemen. Weiterer Nutzen ergibt sich aus der Tatsache, dass jedes Muster
einen Namen hat. Dies vereinfacht die Diskussion unter Softwareentwicklern, da man
abstrakt über eine Softwarestruktur sprechen kann. So sind Entwurfsmuster zunächst
einmal unabhängig von der konkreten Programmiersprache. Wenn der Einsatz von
Entwurfsmustern dokumentiert wird, ergibt sich ein weiterer Nutzen dadurch, dass durch
die Beschreibung des Musters ein Bezug zur dort vorhandenen Diskussion des
Problemkontextes und der Vor- und Nachteile der Lösung hergestellt wird.

Die Beschreibung eines Entwurfsmusters folgt nach [GaHe01] dem folgenden Schema:

 Name und Klassifikation des Musters.
 Synonyme: Andere bekannte Namen des Musters.
 Beispiel eines Musters
 Kontext: Einsatzbereiche für das Muster.
 Problembeschreibung
 Lösungsprinzip des Musters
 Struktur: Beschreibung der allgemeinen Struktur des Musters.
 Dynamische Aspekte: Typische Szenarien zur Beschreibung des Laufzeitverhaltens
 Implementierung: Praxisrelevante Tipps, Tricks und Techniken sowie Warnung vor

Fehlern, die leicht passieren können.
 Musterlösung
 Varianten
 Praxiseinsatz: Wo wird das Muster bereits eingesetzt?
 Auswirkungen: Vor- und Nachteile der Anwendung des Musters
 Querverweise: Wie spielt das Muster mit anderen Mustern zusammen?

Generell sollte die Dokumentation eines Entwurfsmusters ausreichende Informationen
über das Problem, welches das Muster behandelt, über den Kontext der Anwendung und
über die vorgeschlagene Lösung bereitstellen. [GaHe01] klassifiziert Muster nach den
beiden Kriterien des Zwecks (purpose) und des Bereichs, auf dem sie wirken (scope).
Nach dem Zweck des jeweiligen Musters unterscheidet sie drei Klassen: Die erste Gruppe
der Erzeugungsmuster bezieht sich auf die Erzeugung von Objekten. So können etwa die
Anzahl von erzeugten Objekten einer Klasse kontrolliert, oder man der konkrete Typ der
erzeugten Objekte - abhängig von den jeweiligen Bedingungen – angepasst werden. Die
zweite Gruppe umfasst Strukturmuster, welche eine Vereinfachung der Struktur zwischen
Klassen ermöglichen sollen. Komplexe Beziehungsgeflechte können beispielsweise über
vermittelnde Klassen oder Schnittstellen logisch vereinfacht werden. Die dritte Gruppe
der Verhaltensmuster betrifft das Verhalten der Klassen. Hierbei handelt es sich um die
größte Gruppe von Mustern. Sie beziehen sich auf die Zusammenarbeit und den
Nachrichtenaustausch von Klassen. Tabelle 2 zeigt eine Übersicht zur Kategorisierung der
in [GaHe01] angegebenen Entwurfsmuster hinsichtlich ihres Zwecks und ihrer
Wirksamkeit.

Nach ihrem Wirkungsbereich lassen sich Muster in Klassen- und Objektmuster einteilen.
Klassenmuster beschreiben Beziehungen zwischen Klassen und bauen vorrangig
Vererbungsstrukturen auf. Die Strukturen sind damit zur Übersetzungszeit festgelegt.

- 74 -

Hingegen nutzen Objektmuster vorrangig Assoziationen und Aggregationen zur
Beschreibung von Beziehungen zwischen Objekten. Die durch sie beschriebenen
Strukturen zwischen Objekten sind zur Laufzeit dynamisch änderbar.

 Aufgabe

 Erzeugungsmuster Strukturmuster Verhaltensmuster

Klassen-
basiert

Fabrikmethode Adapter Interpreter
Schablonenmethode

Gültigkeits-
bereich

Objekt-
basiert

Abstrakte Fabrik
Erbauer
Prototyp
Singleton

Adapter
Brücke
Dekorierer
Fassade
Fliegengewicht
Kompositum
Proxy

Befehl
Beobachter
Besucher
Iterator
Menento
Strategie
Vermittler
Zustand
Zuständigkeitskette

Tabelle 2: Dimensionen der Ausprägung von Entwurfsmustern nach [GaHe01]

Nicht jedes Muster lässt sich heutzutage ohne weiteres als Entwurfsmuster klassifizieren.
Vielmehr gibt es, unter anderem, graduelle Unterschiede in der Körnigkeit von Mustern.
So wird etwa das Model-View-Controller-Muster sowohl als Architekturmuster, als auch
als Entwurfsmuster betrachtet. Software Entwurfsmuster stellen also einen Versuch dar,
ein professionelles Medium für den Transfer des Wissens von Software-Entwicklern über
die Erstellung, Pflege und Dokumentation komplexer Softwaresysteme bereitzustellen.
Sie helfen, geeignete Lösungen für Entwurfsprobleme zu identifizieren, indem sie
vorhandenes Entwurfswissen dokumentieren. Innerhalb der Konzeptionsphase der hier
vorliegenden Arbeit sollen Entwurfmuster insbesondere in den ersten Phasen die
Designentscheidungen des Werkzeugs unterstützen und helfen, das Gesamtprojekt
gliedern zu können.

3.5.6 Architekturmuster von Mehrbenutzersystemen

Realisierbare Software-Architekturen sind auf ein paar grundsätzlichen Strukturierungs-
prinzipien aufgebaut. Diese Prinzipien werden als Architekturmuster beschrieben.

"Architekturmuster beschreiben fundamentale, strukturelle Organisationsschemata
für Softwaresysteme. Sie bieten eine Anordnung von Subsystemen und deren
wechselseitige Beziehungen und beinhalten Regeln und Richtlinien zur
Organisation der Beziehungen." (nach [BuMe96])

Ein Architekturmuster spiegelt also ein grundsätzliches Strukturierungsprinzip von
Software-Systemen wieder. Es beschreibt eine Menge vordefinierter Subsysteme,
spezifiziert deren jeweiligen Zuständigkeitsbereich und enthält Regeln zur Organisation
der Beziehungen zwischen den Subsystemen. Sie können als Schablonen für konkrete
Software-Architekturen verstanden werden. Aufgrund der impliziten Auswahl der
strukturellen Eigenschaft eines Anwendungssystems mit der Wahl eines
Architekturmusters, wird mit der Wahl eines speziellen Architekturmusters eine
Grundsatzentscheidung im Entwurf eines Softwaresystems getroffen. Architekturmuster

Stand der Technik - 75 -

lassen sich nach [GaHe01] in vier verschiedene Kategorien einteilen, die in Tabelle 3 kurz
dargestellt werden.

Die Architekturmuster sollen im Folgenden nicht detailliert vorgestellt und diskutiert
werden. Erläuterungen zu Aufgaben und Wirkungsweisen finden sich unter [Design
Patterns]. Die aufgezeigten Muster sollen nachfolgend vielmehr hinsichtlich ihrer Eignung
für die Verwendung als Software-Architektur für das zu entwickelnde, mehrbenutzer-
fähige Werkzeug zur Ablaufsimulation untersucht werden. Die Betrachtung ausgewählter
Architekturmuster beschränkt sich auf die ersten drei Kategorien von Architekturmustern.
Muster für adaptierbare Systeme lassen sich nur schwerlich hinsichtlich der
Aufgabenstellung verwenden und werden nachfolgend nicht genauer betrachtet.

Kategorie Beschreibung Zugeordnete Muster

Mud-To-Structure Diese Architekturmuster sollen
helfen, die Unmengen von
Komponenten und Objekten eines
Softwaresystems zu organisieren.
Die Funktionalität des
Gesamtsystems wird hierbei in
kooperierende Subsysteme
aufgeteilt.

Layers
Pipes-And-Filters
Blackboard

Verteilte Systeme Diese Kategorie unterstützt die
Verwendung verteilter Ressour-
cen und Dienste in Netzwerken.

Broker
Client-Server
Microkernel
Pipes-And-Filters

Interaktive Systeme Pattern dieser Kategorie helfen
Mensch-Computer-Interaktionen
zu strukturieren.

Model-View-Controller
Presentation-Abstraction-Control

Adaptierbare Systeme Architekturmuster dieser
Kategorie unterstützen besonders
die Erweiterungs- und
Anpassungsfähigkeit von
Softwaresystemen.

Microkernel
Reflection

Tabelle 3: Kategorien von Architekturmustern

Bewertung
Die Anwendung des Architekturmusters Layer bietet einige Vorteile hinsichtlich einer
ersten Strukturierung einzelner Programmteile. Für die Umsetzung des angestrebten
Werkzeugs bietet es durch seine Ausrichtung aber allenfalls dazu an, innerhalb
bestimmter Programmmodule Basisdienste zu strukturieren und zu definieren.
Insbesondere einer Ausrichtung hinsichtlich der geforderten Interaktivität und
Mehrbenutzerfähigkeit kann mit diesem Muster nicht entsprochen werden.

Das Pipes-and-Filters-Muster bietet sich für die flexible Gestaltung schwieriger
Datentransformationen und -Verarbeitungen im besonderen Maße an. Inwiefern solche
komplexen Transformationen bei der Umsetzung des zu entwickelnden Werkzeuges
berücksichtigt werden müssen, kann erst im Konzeptionskapitel entschieden werden. Für
die Gesamtanordnung des Systems scheint das Layers-Muster als die bessere
Entwurfsalternative, da hier insbesondere die Fehlerbehandlung als wichtiger Bereich der
Software-Entwicklung besser unterstützt wird. Das grundsätzliche Vorgehen erscheint
beim Pipes-and-Filters-Muster eher prozess- als objektorientiert. Für komplexe
Datentransformationen kann es aber ggf. eingesetzt werden.

- 76 -

Das Blackboard-Muster eignet sich insbesondere für neue Anwendungsbereiche, wo eine
zuverlässige Gesamtlösung nicht deterministisch generiert werden kann. Für die
Entwicklung des angestrebten Modellierungs- und Simulationswerkzeuges gilt dieses nur
bedingt, da die prinzipielle Struktur eines Simulators ein bekanntes Arbeitsgebiet ist, in
dem „nur“ eine auf die Fragestellung angepasste Architektur entwickelt werden muss.
Der Entwurf des eigentlichen Werkzeuges trifft diese Definition somit nicht. Eine
Anwendung im Bereich der Simulation, bzw. innerhalb der Logik des eigentlichen
Simulationsmodells erscheint aber in den Bereichen möglich, wo die Terminierung eines
Folgeereignisses als Folge einer Aktivität aus verschiedenen Teilbereichen
zusammengesetzt werden muss. Ggf. kann das Blackboard-Muster also im Rahmen der
Modellierung spezieller Fragestellungen von funktionsorientierten Fertigungssystemen
eingesetzt werden.

Der Entwurf des Modellierungs- und Simulationswerkzeuges wird zwangsläufig auf ein
modulares, verteiltes System fokussieren. In diesem Rahmen kann während der
Entwurfsphase das Broker-Muster berücksichtigt werden, um ein abgesichertes
Objektmodell zu entwerfen, das eine robuste Kommunikation zwischen den Modulen
erlaubt. Die prinzipiell mögliche Ausrichtung des Broker-Musters auf eine Kombination
von Systemen, die in verschiedenen Programmiersprachen entwickelt werden, wird wohl
nicht verwendet werden müssen, da eine einheitliche Verwendung von Java eine
Grundannahme des zu entwickelnden Werkzeuges werden soll. Dadurch wird das
beschriebene Broker-Muster aber nur vereinfacht, da die zur Kapselung eingesetzten
Stellvertreter-Objekte aus dem Grundmodell herausfallen können.

Die Client-Server-Architektur ist eine der momentan am weitesten verbreiteten
Softwarearchitekturen für Business-Systeme. Insbesondere in den Funktionsmodulen zur
Modellierung und/oder Visualisierung der Simulationsmodelle bietet sich dieses Software-
Muster an, um den Multitasking-Betrieb an einem gemeinsamen Simulationsmodell zu
ermöglichen. Auf dem zentralen Anwendungsserver soll in diesem Fall das aktuelle
Simulationsmodell sowie die Verwaltung der angeschlossenen Anwender erfolgen. Für
das angestrebte Werkzeug würde sich vermutlich eine weitergehende Lösung in Form
einer 3-Tier-Architektur anbieten, so dass alle anfallenden Simulationsdaten in einer
Simulationsdatenbank gespeichert werden können.

Die Anforderungen an das zu entwickelnde Werkzeug lassen sich auf einem hohen
Abstraktionsgrad gut in verschiedene Subsysteme unterteilen, die in sich geschlossen
funktionieren. Beispielsweise lässt sich der Gesamtprozess der Anwendung in
Modellierung, Simulation und Analyse aufteilen. Für die Gestaltung auf einer detaillierten
Ebene erscheint das Model-View-Controller-Muster besser geeignet, da hier die Aufteilung
funktionsübergreifend erfolgt. Adaptiert man das Model-View-Controller Pattern auf die
vorgestellte 3-Tier-Architektur, ergibt sich eine erste denkbare Softwarearchitektur für
das zu entwickelnde Werkzeug. Vor allem hinsichtlich der Visualisierung der
Simulationsläufe bietet sich Trennung nach eigentlicher Funktion und deren Darstellung
an. Neben verschiedenen Darstellungsformen wird damit auch eine Simulation erlaubt,
die ohne die Anzeigemethoden eines Visualisierungsmoduls zumindest berechnet werden
kann.

Stand der Technik - 77 -

Zusammenfassend kann man also sagen, dass verschiedene Architekturmuster zur
Konzeption des Werkzeugs herangezogen werden können. Je nach Anforderung der
Teilmodule sollen sie in Abschnitt 5.3 herangezogen werden.

3.5.7 Software-Schnittstellen

„Schnittstellen (interfaces) definieren Dienstleistungen für Anwender, d.h.
aufrufende Klassen, ohne etwas über die Implementierung der Dienstleistung
festzulegen.“ [Balz05]

Eine Schnittstelle wird durch eine Menge von Regeln beschrieben, der Schnittstellen-
beschreibung. Neben der Beschreibung, welche Funktionen vorhanden sind und wie sie
benutzt werden, gehört zu der Schnittstellenbeschreibung auch ein so genannter
Kontrakt, der die Semantik der einzelnen Funktionen beschreibt. Standardisierte
Schnittstellen bieten den Vorteil, dass Komponenten oder Module, die die gleiche
Schnittstelle unterstützen, gegeneinander ausgetauscht werden können, das heißt sie
sind zueinander kompatibel.

Softwareschnittstellen oder Datenschnittstellen sind dementsprechend logische
Berührungspunkte in einem Softwaresystem: sie definieren, wie Kommandos und Daten
zwischen verschiedenen Prozessen und Komponenten ausgetauscht werden. In der
objektorientierten Programmierung (OOP) vereinbaren Schnittstellen gemeinsame
Signaturen von Klassen. Das heißt, eine Schnittstelle vereinbart die Signatur einer
Klasse, die diese Schnittstelle implementiert. Das Implementieren einer Schnittstelle
stellt eine Art Vererbung dar. Man kann zwischen Schnittstellen zur
Interprozesskommunikation (Kommunikation zwischen verschiedenen Programmen) und
Schnittstellen für Programmkomponenten (dienen der Modularisierung der Software-
Architektur) unterscheiden.

Die eXtensible Markup Language (XML) ist ein Standard zur Erstellung maschinen- und
menschenlesbarer Dokumente in Form einer Baumstruktur, der vom World Wide Web
Consortium (W3C) definiert wird [Rock00]. Die XML definiert Regeln für den Aufbau und
die Struktur solcher Dokumente. Für einen konkreten Anwendungsfall ("XML-
Anwendung") müssen die Details der jeweiligen Dokumente spezifiziert werden. Dies
betrifft insbesondere die Festlegung der Strukturelemente und ihre Anordnung innerhalb
des Dokumentenbaums. Eine Festlegung und Eingrenzung der Struktur von
Simulationsmodellen wird somit ermöglicht und kann auf einfache Weise überprüft
werden. Bei der Verwendung von XML spricht man hier auch von der Gültigkeit und
Wohlgeformtheit von XML-Dateien hinsichtlich einer durch XML-Schemata oder Document
Type Definition (DTD) festgelegten Grammatik.

Die Namen der einzelnen Strukturelemente (XML-Elemente) für eine XML-Anwendung
lassen sich frei wählen. Ein XML-Element kann ganz unterschiedliche Daten enthalten und
beschreiben, als prominentestes Beispiel Text, aber auch Grafiken oder abstraktes
Wissen. Ein Grundgedanke hinter XML ist es, Daten und ihre Repräsentation zu trennen,
also beispielsweise Wetterdaten einmal als Tabelle und einmal als Grafik auszugeben,
aber für beide Anwendungen die gleiche Datenbasis im XML-Format zu nutzen. Ein

- 78 -

weiterer Vorteil, der sich durch den Einsatz von XML ergibt, ist die leichte Erweiterbarkeit
der entsprechenden Grammatiken. Bei den meisten Erweiterungen der Grammatik
bleiben die vorher erstellen XML-Dateien, in dem hier vorliegenden Fall also
Simulationsmodelle, auch gültig bezüglich der neuen Grammatik.

In den letzten Jahren hat die XML vermehrt in die Gestaltung von Software-Schnittstellen
Einzug gehalten. Die XML wird zum einen bei der Gestaltung von Dateiaustauschformaten
eingesetzt, um Dateninhalte zwischen verschiedenen Anwendungen oder
Anwendungsmodulen auszutauschen [Rock00]. Zum anderen gewinnt sie wegen ihrer
leichten Erweiterbarkeit steigende Bedeutung bei der Gestaltung von Interprozess-
kommunikationsschnittstellen, wo Anwendungen Informationen zur Laufzeit mittels eines
festgelegten Formats austauschen [Rock00].

Bewertung
Für das hier zu entwickelnde Werkzeug kann der Einsatz der XML in beiden Bereichen als
sinnvoll erachtet werden. Die XML kann sowohl dazu dienen, die entsprechenden
Simulationsmodelle entsprechend der Modellbeschreibung in einem festgelegten Format
abzulegen, als auch die Kommunikation zwischen den verschiedenen Werkzeugmodulen,
beispielsweise Visualisierungskomponente und Simulatorkern, auf Basis eines
Nachrichtenformates zu realisieren.

3.6 Fazit

Für die Modellierung und Simulation von Fertigungssystemen auf der Betrachtungsebene
einer diskreten Materialflusssimulation sind zahlreiche Methoden bekannt. Als
Vorgehensmodell werden spezifische Projekte meist in Form einer Simulationsstudie
umgesetzt. Der Basisprozess der schrittweisen Modellierung, Simulation und Analyse der
abzubildenden Systeme lässt sich potentiell durch mehrere Anwender in einer
interaktiven Umgebung erarbeiten, auch wenn dies noch in keinem bekannten Software-
Werkzeug unterstützt wird.

Im Rahmen der Untersuchung des Standes der Technik konnten keine
Modellbeschreibungen identifiziert werden, die alle Anforderungen bereits umsetzen. Alle
vorgestellten Modellbeschreibungen haben in ihrem Bereich durchaus ihre Berechtigung,
schränken die Anwendung aber soweit ein, dass die hier gestellten Anforderungen nicht
mehr in Gänze erfüllt werden können. Für die hier vorliegende Arbeit bedeutet das, nach
der Festlegung einer Prozessstruktur eine Modellbeschreibung zu entwickeln, die durch
ein modular aufgebautes Software-Werkzeug implementiert werden kann, so dass alle
Anforderungen erfüllt werden können. Die relevanten Kriterien sind aus Abschnitt 2.3
bekannt und können auch nach Sichtung des Standes der Technik übernommen werden.
Eine Kombination aus Framework-basierter Modellierung mittels einer
Programmiersprache mit Anbindung an die wesentlich anwenderfreundlichere, grafische
Modellierung erscheint besonders vielversprechend. Die Implementierung des Werkzeugs
als dritter Schritt stützt sich dann auf diese grundlegende Modellbeschreibung. Für den
Simulatorkern ergibt sich die Anforderung, sowohl die zeit- wie auch die ereignisdiskrete
Zeitfortschreitung zu implementieren, um den Einsatz des Werkzeugs in den
verschiedenen Planungsphasen zu ermöglichen.

Stand der Technik - 79 -

Das Problemfeld dieser Arbeit liegt im Bereich der Modellierung und Simulation
komplexer Fertigungssysteme, die in einer virtuellen Umgebung dargestellt werden
sollen, um sie möglichst immersiv und interaktiv parallel zu ihrer Ausführung analysieren
und optimieren zu können. In diesem Feld sind verschiedene Implementierungen zur
Darstellung von Fertigungssystemen in einer virtuellen Umgebung bekannt, an die sich
bei der Umsetzung angelehnt werden kann. Neben einer hoch auflösenden,
dreidimensionalen Visualisierung sollen dem Anwender aber auch weitere
Darstellungsformen in dem zu entwickelnden Werkzeug angeboten werden.

Im Rahmen der Umsetzung der zu entwerfenden Modellierungsphilosophie (hier
verstanden als die Entwicklung eines Basisprozesses inklusive einer passenden
Modellbeschreibung) in ein entsprechendes Software-Werkzeug sind insbesondere für die
objektorientierte Programmierung zahlreiche Paradigmen bekannt, die bestmöglich
berücksichtigt werden sollen. Für den Aufbau von modular organisierten, interaktiven
Anwendungssystemen existieren mehrere Architekturmuster, die bei dem strukturierten
Aufbau des Werkzeuges innerhalb einer festzulegenden Organisationsform angewendet
werden können. Insbesondere die Unterstützung von Kommunikations-, Koordinations-
und Kooperationsfunktionen muss umgesetzt werden, damit das Werkzeug als
Mehrbenutzersystem angewendet werden kann. Bei der Entwicklung der eigentlichen
Software ist die höchstmögliche Verwendung der UML zu befürworten, um Planungsfehler
im Rahmen der Software-Entwicklung im Vorfeld vermeiden zu können. Als Software-
Schnittstelle erscheint die XML sowohl als Datenaustauschformat, als auch als
Kommunikationsschnittstelle als besonders geeignet.

Das folgende Kapitel nimmt die in Kapitel 2.3 aufgezeigte Strukturierung der
Gesamtaufgabe auf und definiert die Umsetzungsschritte unter Berücksichtigung der in
Kapitel 1 aufgezeigten Lösungsmöglichkeiten.

Zielstellung - 81 -

4 Zielstellung
„Der Mensch ist ein zielstrebiges
Wesen, aber meistens strebt es

zu viel und zielt zu wenig.“

(Günter Radtke)

In dieser Arbeit soll ein Materialflusssimulator konzipiert und umgesetzt werden, der mit
einem diskreten, wahlweise zeit- oder ereignisorientierten Verfahren richtungsoffene
Simulationsmodelle so berechnet, dass Mehrbenutzer-Modellierung, -Simulation und -
Analyse in einer interaktiven, immersiven und virtuellen Umgebung ermöglicht wird (vgl.
Abschnitt 2.3).

Eine Analyse des Standes der Technik hat verschiedene Modellbeschreibungen
aufgezeigt, die eine Abbildung von Fertigungssystemen in einem frei wählbaren
Abstraktionsgrad prinzipiell ermöglichen. Keine der identifizierten Modellbeschreibungen
erlaubt jedoch die Erfüllung aller aufgezeigten Anforderungen in Gänze. Nach der
Festlegung grundlegender Annahmen für den Prozess der Modellierung, Simulation und
Analyse, wie er durch das Werkzeug unterstützt werden soll (siehe Abschnitt 4.1), muss
in einem zweiten Schritt eine Modellbeschreibung von ausführbaren Materialfluss-
modellen als Kombination und Erweiterung der vorgestellten Lösungen konzipiert
werden, die alle aufgezeigten Anforderungen erfüllen kann. Abschnitt 4.2 beschreibt die
dazu nötigen Schritte, beginnend mit der sukzessiven Entwicklung einer modularen,
objektorientierten Modellbeschreibung zur mehrbenutzerfähigen Modellierung interaktiver
Simulationsmodelle. In einem Folgeschritt wird diese Modellbeschreibung hinsichtlich
einer Transformation in ein Simulationsmodell zur Rückwärtssimulation hin untersucht,
überprüft und gegebenenfalls erweitert.

Letztendlich soll dem Anwender ein Werkzeug zur Verfügung gestellt werden, dass eine
benutzerfreundliche Bearbeitung der dargestellten Simulationsmodelle erlaubt. Abschnitt
4.3 untergliedert den Entwurfs- und Implementierungsprozess des Werkzeugs in die
Phasen Systementwurf, Systemarchitektur und Realisierung. Der erste Bereich beschreibt
die Strukturierung der Software in Module, um den ganzheitlichen Ansatz der
angestrebten Lösung zu unterstreichen. In der Phase der Systemarchitektur werden die
unter Anwendung der UML (Use-Case-Diagramme) identifizierten Teilsysteme
miteinander verzahnt. Daraufhin werden die einzelnen Funktionsmodule mittels der in
Abschnitt 3.5.6 aufgezeigten Architekturmuster entworfen und überprüft. Schließlich
werden im Rahmen der Realisierung die einzelnen Module innerhalb des Gesamt-
konzeptes implementiert und anhand eines Beispielmodells validiert.

4.1 Gestaltung eines Basisprozesses

Die Entwicklung des angestrebten Materialflusssimulators setzt einige Basisannahmen
über den Arbeitsprozess mit dem Software-Werkzeug voraus. Dessen Gestaltung muss
vor der eigentlichen Entwicklung von Modellbeschreibung und Werkzeug ebenso
festgelegt und beschrieben werden, wie alle Überlegungen hinsichtlich aller
übergreifenden Entscheidungen (Programmiersprache, etc.). Die entsprechende Wahl der

- 82 -

Grundentscheidungen kann wieder den eigentlichen Arbeitsprozess der Modellierung und
Simulation beeinflussen. Als Basis dient das unter Abschnitt 2.4.1 vorgestellte,
grundsätzliche Vorgehen, das nach Abschnitt 3.1 innerhalb einer Simulationsstudie
angewendet werden kann.

Mehrbenutzerbetrieb und Interaktion
Die einzelnen Bereiche innerhalb eines Simulationsmodells müssen sich so voneinander
trennen lassen, dass eine Manipulation des Gesamtmodells ermöglicht wird. Alle
wesentlichen Modelleigenschaften müssen sich während der Ausführung eines
Simulationsmodells manipulieren lassen, die entsprechenden Interaktionen müssen
protokolliert werden. Die noch zu spezifizierenden Interaktionsmetaphern (Erzeugen,
Selektieren, Parametrieren, Erweitern, Löschen etc.) führen unter Umständen zu
umfangreichen Änderungen an dem Simulationsmodell. Sie müssen über die
entsprechenden Benutzerschnittstellen nicht nur ermöglicht werden, sondern auch in
einem Rahmen verwendet werden, der die Konsistenz des Gesamtmodells nicht
gefährdet. Basis der Arbeit mehrerer Anwendern an einem gemeinsamen Modell ist der
Entwurf und die Implementierung einer Benutzerverwaltung inklusive eines
Rechtemanagements. So können verschiedene Benutzergruppen mit unterschiedlichen
Aufgabenbereichen voneinander unterschieden werden.

4.2 Anforderungen an eine Modellbeschreibung

Zweiter Baustein der Umsetzung vor Systementwurf und Implementierung des
Werkzeugs muss die Entwicklung einer Modellbeschreibung sein, die allen aufgezeigten
Anforderungen an die Modellierung und Simulation von Fertigungssystemen genügt.
Dabei sind alle Anforderungen zu berücksichtigen, die aus einem Multitasking-Betrieb und
den Interaktionsmöglichkeiten resultieren, um diese in den Einsatzfeldern Vorwärts- und
Rückwärtssimulation von komplexen Simulationsmodellen zu erlauben. Die jeweiligen
Vorteile der unter Abschnitt 3.2 aufgezeigten Lösungsalternativen sollen bestmöglich in
einem Ansatz integriert werden. Die Benutzerfreundlichkeit soll gesteigert werden, indem
zunächst eine grafische Modellierung anhand von Bausteinbibliotheken ermöglicht wird.
Zur Modellierung spezieller Algorithmen und Methoden innerhalb eines Modellbausteins
soll ein Framework-basierter Ansatz verfolgt werden, indem die Gültigkeit des erstellten
Programmcodes direkt während der Modellierung überprüft werden kann. Die Gestaltung
soll schrittweise erfolgen, je nach Anforderung erweitert werden können. Dabei soll von
einer allgemeinen Modellbeschreibung ausgegangen werden; zusätzliche Anforderungen
werden Schritt für Schritt integriert.

4.2.1 Vorwärtssimulation

Allgemeine Simulationsmodelle
Die allgemeine Modellbeschreibung der Simulationsmodelle soll sich konsequent an
Grundsätzen der objektorientierten Programmierung orientieren, um eine modulare und
objektorientierte Struktur des Simulationsmodells zu erhalten, die als Datenmodell des
Simulators verwendet werden kann. Die Simulationsmodelle sollen unter Anwendung von
Synchronisationsverfahren interaktiv verändert werden können und prinzipiell einen
beliebigen Detaillierungsgrad in hierarchischen Strukturen abbilden können.

Anforderungen zur dynamischen Detaillierung

Zielstellung - 83 -

Aus den Integrationsbemühungen innerhalb einer ganzheitlichen Planung resultiert
zwangsläufig eine wachsende Komplexität der Simulationsmodelle und ihrer 3D-
Visualisierungen. Um beispielsweise die Simulation einer kompletten Supply-Chain mit
dem zu entwickelnden Werkzeug dennoch zu ermöglichen, muss im Rahmen der
Modellbeschreibung ein bekanntes Verfahren zur dynamischen Detaillierung von
Simulationsmodellen adaptiert und in die Modellbeschreibung integriert werden
[Muec05]. Darüber hinaus muss auch im Rahmen der Entwicklung des Simulatorkerns
eine entsprechende Umsetzung dieser Erweiterung der Modellbeschreibung berücksichtigt
werden.

Anforderungen funktionsorientiert gegliederter Fertigungen
Neben der Abbildung von Fertigungssystemen, deren Gliederung sich an dem zu
fertigenden Erzeugnis orientiert, soll auch die Modellierung und Simulation von funktional
gegliederten Fertigungssystemen, bzw. deren Vermischung in gemischt objekt- und
funktionsorientierten Fertigungssystemen durch das zu entwickelnde Werkzeug und
damit die dem Werkzeug zugrunde liegende Modellbeschreibung unterstützt werden. Als
spezielle Anforderung der funktionsorientierten Fertigungsprinzipien ist insbesondere die
Möglichkeit zur leichten und flexiblen Modellierung von Transportwegen innerhalb eines
vorgegebenen Layouts zu berücksichtigen.

Mehrbenutzerfähige Modellierung
Prinzipiell müssen alle Anforderung über entsprechende Mechanismen so ausgelegt
werden, dass eine Ausführung auch in einem Multitasking-System mit mehreren an
einem gemeinsamen Simulationsmodell angeschlossenen Anwendern möglich ist. Die
entsprechenden Zugriffe müssen aufgenommen, verwaltet und konsistent ausgeführt
werden. Potentielle Konflikte zwischen Interaktionen verschiedener Anwender müssen
bestmöglich automatisiert durch das Werkzeug aufgelöst oder im Vorhinein durch eine
entsprechende Gestaltung der Benutzerschnittstelle verhindert werden.

4.2.2 Rückwärtssimulation und Modelltransformation

Der Einsatz der Ablaufsimulation soll sich mit diesem Werkzeug über die reine
Fertigungsprozessplanung hin zur Absicherung der Planungsphasen der
Fertigungslenkung und Prognose aktueller Systemzustände aus der Fertigungssteuerung
erweitern. Darum ist die Modellbeschreibung so zu gestalten, dass der abgebildete
Materialfluss in einer Vorwärts- und Rückwärtssimulation berechnet werden kann. Um
den Modellierungsaufwand des Anwenders nicht signifikant zu erhöhen, soll eine
Möglichkeit identifiziert werden, eine (semi-)automatische Transformation zwischen den
verschieden gerichteten Modellen zu erreichen. Neben Fragestellungen bezüglich der
maximalen Leistungsfähigkeit eines Fertigungssystems kann dadurch auch die Qualität
bestehender Fertigungsprogramme auf Basis desselben Modells überprüft und ggf.
verbessert werden. Bestehende Fertigungsprogramme oder vorliegende Kundenaufträge
mit Auslieferungsterminen dienen hierbei als Eingabequellen für das rückwärts gerichtete
Simulationsmodell. In einem Folgeschritt können diese Verfahren eingesetzt werden, um
Fertigungsprogramme auch direkt aus der Ablaufsimulation zu erzeigen und zu
optimieren.

- 84 -

Abbildung 23 zeigt schematisch die Vorgehensweise beim Entwurf der
Modellierungsmethode für das zu entwickelnde Werkzeug. Darauf aufbauend wird im
nachfolgenden Schritt das eigentliche Werkzeug konzipiert.

Abbildung 23: Entwurfsphasen der Modellierungsmethode

4.3 Entwurf eines Werkzeuges

Dem Anwender soll im gesamten Arbeitsprozess innerhalb der jeweiligen
Visualisierungskomponenten ein hohes Maß an Immersion zur Verfügung stehen. Neben
einer möglichst guten Darstellungsqualität in der virtuellen Realität sind bei der
Gestaltung der Software Benutzerschnittstellen zu realisieren, die ein reales, interaktives
Verhalten bestmöglich abbilden. Die interaktive Ausführung setzt eine bidirektionale
Kopplung zwischen den Modulen Simulatorkern und den angeschlossenen
Visualisierungskomponenten voraus, damit die Interaktionen direkte Auswirkungen auf
Modellierung oder Ausführung der Simulation haben.

Das Werkzeug selbst muss im Rahmen eines Software-Entwicklungsprozesses konzipiert,
modelliert und implementiert werden. Anhand eines Beispielmodells soll anschließend der
Nachweis geführt werden, dass das entwickelte Werkzeug den gestellten Anforderungen
genügt und sich für den Einsatz als integriertes Werkzeug eignet.

Systementwurf
Innerhalb der ersten Phase, dem Systementwurf, werden zunächst grundlegende
Grobgliederungen anhand darzustellender Use-Cases erstellt und modular strukturiert.
Dabei kommen erste Architekturmuster zum Einsatz, die eine trennscharfe
Strukturierung in Module erlauben und die jeweiligen Modulgrenzen aufzeigen können.
Entsprechende Kommunikationsschnittstellen zwischen den Modulen werden in einem
Grobentwurf festgelegt, um die Tauglichkeit des Systementwurfs darstellen und
nachweisen zu können.

Systemarchitektur

Zielstellung - 85 -

In der Folgephase werden mit Hilfe weiterer Architekturmuster die einzelnen Module
detaillierter konzipiert und hinsichtlich ihrer Aufgabenstellung verbessert. Insbesondere
die Übertragung des Datenmodells aus der Modellbeschreibung in die jeweilige
Kernfunktionalität der einzelnen Module spielt hier eine wesentliche Rolle. In einem
weiteren Schritt werden die jeweiligen Software-Schnittstellen zwischen den einzelnen
Modulen genauer ausgearbeitet und die Kommunikation detailliert. Als Ergebnis dieser
Entwurfsphase sind die einzelnen Module sowie ihre Beziehungen untereinander definiert
und abgestimmt. In einem nächsten Schritt müssen sie schließlich in der
Implementierung umgesetzt und die entsprechenden Benutzerschnittstellen gestaltet
werden.

Realisierung
Unter Berücksichtigung der Zielstellung werden in der Realisierungsphase zunächst die
einzelnen Programmmodule implementiert und die definierten Kommunikations-
schnittstellen umgesetzt. Die Implementierung erfolgt auf Basis der in der vorherigen
Phase festgelegten Schematisierung und innerhalb der entsprechenden Architektur-
muster, bzw. Organisationsformen.

In der Realisierung wird die Implementierung anhand eines umfangreichen
Beispielmodells erprobt und der eigentliche Modellierungs- und Simulationsprozess
innerhalb des Werkzeuges beschrieben. Das Beispiel wird in Form einer Simulationsstudie
durchgeführt, dazu also zunächst der Untersuchungsgegenstand erläutert und
nachfolgend modelliert, simuliert und visualisiert.

Konzeption - 87 -

5 Konzeption
„Der Anfang ist die Hälfte

vom Ganzen.“

(Aristoteles)

In dem zu entwickelnden Werkzeug sollen Simulationsmodelle erstellt und mittels eines
Simulatorkerns ausgeführt werden. Grundlegende Basis für ein solches Software-Tool ist
zum Einen eine Struktur des Arbeitsprozesses, der durch das Werkzeug unterstützt
werden soll, zum Anderen Grundannahmen über die Beschaffenheit des Werkzeuges und
eine Modellbeschreibung, anhand derer gültige Simulationsmodelle definiert werden. In
Abschnitt 5.1 sollen zunächst einige Basisannahmen über den Arbeitsprozess beschrieben
werden. In Abschnitt 5.2 wird daraufhin eine Modellbeschreibung, bzw. ein
objektorientiertes Strukturmodell aufgebaut, mit dem Simulationsmodelle in dem zu
entwickelnden Tool beschrieben werden.

Im Abschnitt 5.3 soll das Werkzeug selbst im Rahmen eines Software-
Entwicklungsprozesses konzipiert und modelliert werden. Auf Basis der in Abschnitt 4.3
gestellten Anforderungen wird zunächst ein Systementwurf durchgeführt, der die
Gesamtanforderungen in Funktionsmodule strukturiert. Diese werden in den folgenden
Abschnitten ausgeplant und höher detailliert entworfen, um sie in der
Implementierungsphase umsetzen zu können. Bei der Modellierung des Werkzeugs
werden die Ergebnisse aus der Konzeption der Modellbeschreibung und des
Nachrichtenprotokolls berücksichtigt.

5.1 Gestaltung eines Basisprozesses

5.1.1 Arbeitsprozess Modellierung und Simulation

Der Basisprozess von Modellierung und Simulation, wie er in anwendungsorientierten
Simulatoren heute unterstützt wird, bildet die Grundlage für das zu entwickelnde
Werkzeug, weil dieser den Anwender von allen vorgestellten Methoden am effizientesten
bei seiner Arbeit unterstützt. Er basiert auf Grundlage des in Abschnitt 3.1 gezeigten
Ablaufs einer Simulationsstudie. Auf Basis eines logischen Modells, das bereits in
früheren Phasen einer Simulationsstudie für den abzubildenden Materialfluss erstellt
wurde, wird in einem ersten Schritt das Fertigungssystem mittels einer grafischen
Oberfläche aus Bausteinen zu einem Simulationsmodell zusammengesetzt, indem
einzelne Bausteine aus Bibliotheken entnommen, in ein übergeordnetes Modell eingefügt
und mit anderen Bausteinen über logische Kanten verknüpft werden. Das resultierende
Modell kann gespeichert und im Simulator ausgeführt werden. Je nach Anwendung wird
der logisch abgebildete Materialfluss animiert, lässt sich ggf. modifizieren und/oder
mittels Interaktion beeinflussen. Im Rahmen der Modellierung wird das entstehende
Simulationsmodell zunächst verifiziert. Komplexere Steuerungen werden über spezielle
Methoden in den Modellbausteinen implementiert. Im Anschluss werden
Simulationsexperimente und deren einzelne Simulationsläufe geplant. Abbildung 24 zeigt
schematisch den typischen Prozess von der Modellierung über die Ausführung von
Simulationsexperimenten bis hin zur Auswertung der gesammelten Daten.

- 88 -

Abbildung 24: Idealtypischer Simulationsprozess

Aus dieser funktionalen Unterscheidung der Aufgabe des Simulationsexperten kann direkt
eine modulare Aufteilung des Werkzeugs geschlussfolgert werden. Diese soll im
Folgenden näher beschrieben werden.

5.1.2 Modulare Architektur

Auf Basis des grundlegenden Modellierungsprozesses können verschiedene
Funktionsmodule unterschieden werden, die unter Berücksichtigung der besonderen
Anforderung nach Interaktivität das zu entwickelnde Gesamtsystem bilden sollen.
Abbildung 25 greift die schematische Struktur des Gesamtsystems aus Abschnitt 2.4.1
nochmals auf und erweitert sie um administrative Funktionen.

Abbildung 25: schematische Darstellung der Funktionsmodule des Werkzeugs

Nach der grafischen Modellierung der Simulationsmodelle durch den Anwender sollen
diese in einem Simulatorkern berechnet und mittels einer Visualisierungskomponente
angezeigt werden. Modellierung und Visualisierung sollen sowohl mehrbenutzerfähig in
zwei-, als auch dreidimensionaler Darstellung ermöglicht werden. Die einzelnen
Bausteine sollen gemäß Anforderung keinen Detaillierungsgrad der Modellierung
vorgeben, sondern aus Grundelementen zusammengesetzt sein. Zur Modellierung der
Verhaltenslogik soll eine integrierte Programmiersprache dienen, wie sie analog in
kommerziellen Simulatoren angewendet wird. Basis der Modellbeschreibung und
Programmierung ist aber ein einheitliches Verständnis der Modelle und Funktionen des
Simulators, wie es aus der Verwendung von Frameworks bekannt ist (vgl. 3.2.2). Das
Simulationsmodell kann im nächsten Schritt im Simulatorkern berechnet werden; die
dynamischen Prozesse werden in den angeschlossenen Visualisierungskomponenten
animiert. Diese beinhalten auch die Möglichkeit zur Interaktion mit dem

Konzeption - 89 -

Simulationsmodell und zeigen durchgeführte Änderungen direkt an, um eine stetige,
immersive Verbesserung des Simulationsmodells zu erlauben.

Basis aller Module ist neben einer einheitlichen Beschreibung der Simulationsmodelle und
einem Nachrichtenformat für die Kommunikationsschnittstelle auch eine integrierte
Datenhaltung über alle Module für die anfallenden Simulationsdaten während der
Durchführung einer Simulationsstudie. Neben dem Simulationsmodell an sich und den
benötigten Funktionsbibliotheken sind das insbesondere auch die zwei- bzw.
dreidimensionalen Repräsentanten der Funktionsbausteine, die in den entsprechenden
Benutzeroberflächen verwendet werden. Auf Basis vorhandener dreidimensionaler
Repräsentanten für einen bestimmten Modellbaustein soll die zweidimensionale
Darstellung automatisch abgeleitet werden, um den Aufwand der Datengenerierung zu
minimieren.

5.1.3 Integration von Layout- und Fertigungsprozessplanung

Das Erstellen und Bearbeiten des Simulationsmodells innerhalb der
Modellierungskomponente soll layoutgerechtes Anordnen der Modellbausteine erlauben.
Auf Basis eines Rasters oder durch die Einbeziehung von vorhandenen Layouts können
die Modellbausteine eines Simulationsmodells bereits in der Modellierungskomponente
layoutgerecht angezeigt werden. Neben einer realistischeren Darstellung des
Simulationsmodells können somit auch direkt Entfernungen von Transportwegen oder die
Auslegung von Förderstrecken richtig angelegt werden. Innerhalb einer ganzheitlichen
Planung können somit zwei aufeinander folgende Aufgaben innerhalb des zu
entwickelnden Werkzeugs integriert werden: Die Layoutplanung und die
Fertigungsprozessplanung (vgl. hierzu auch Abschnitt 2.1).

Bei der Konzeption und Umsetzung des eigentlichen Werkzeugs ist auf die Möglichkeit zu
achten, Modellbausteine in das Simulationsmodell zu integrieren, die keine eigentliche
Funktion im Sinne der Ablaufsimulation verfolgen. Sie dienen lediglich der realistischen
Ausgestaltung des Szenarios bzw. Layouts oder als Grundlage für die Anordnung der
Modellbausteine (beispielsweise die Abbildung einer Fabrikhalle in Form eines
Hallenlayouts). Die integrierte Datenhaltung erlaubt darüber hinaus zumindest prinzipiell
auch eine Aufteilung der beiden Arbeitsaufgaben in verschiedene Module, solange auf das
einheitliche Datenmodell zurückgegriffen wird.

5.1.4 Programmiersprache JAVA als Simulationssprache

Für die Abbildung komplexer Steuerungslogiken verwenden Materialflusssimulatoren
innerhalb der Modellbausteine spezifische Modellierungssprachen, mit denen das
gewünschte Verhalten programmiert und in dem Baustein hinterlegt werden kann.
Vorhandene Modellbausteine müssen durch speziell angepasste Methoden auf das
individuelle Verhalten eingestellt werden können. Das Erlernen der dazu benötigten
spezifischen Simulationssprachen ist ein zeitaufwendiger Prozess und während der
Modellierung eine häufige Fehlerquelle. Um die Fehleranfälligkeit hier zu reduzieren und
das Erlernen der Modellierungssprache zu erleichtern, soll im Rahmen der vorliegenden
Arbeit eine „handelsübliche“ Programmiersprache als Modellierungssprache verwendet
werden. Sie muss wegen der Objektorientierung der Simulationsmodelle eine
objektorientierte Sprache sein. Innerhalb der hier vorliegenden Arbeit wurde Java als

- 90 -

Programmiersprache ausgewählt. Alternativ ständen andere objektorientierte
Programmiersprachen oder simulationsspezifische Programmiersprachen zur Verfügung.
Aus den nachfolgend kurz dargestellten Gründen wurde jedoch auf Java zurückgegriffen.

Java wurde ursprünglich von Sun Microsystems entwickelt. Es ist eine objektorientierte
Programmiersprache, die sich durch einige zentrale Eigenschaften auszeichnet. Diese
machen sie universell einsetzbar und für die Industrie als robuste Programmiersprache
interessant. Da Java objektorientiert ist, spiegelt es den Wunsch der Anwender wider,
moderne und wieder verwendbare Komponenten zu programmieren. Im Gegensatz zu
herkömmlichen Übersetzern einer Programmiersprache, die Maschinencode für eine
spezielle Plattform generieren, erzeugt der Java-Compiler Programmcode für eine
virtuelle Maschine, den so genannten Bytecode, der prinzipiell auf allen
Rechnerplattformen interpretiert werden kann. Java wird in allen IT-Bereichen von
Handel, Industrie und Verwaltung eingesetzt und ist für unzählige Betriebssysteme und
Plattformen, vom mobilen Telefon bis hin zur Echtzeit-Großrechneranlage kostenlos
verfügbar. Neben einer hohen Anzahl von Anwendern stehen zahlreiche Bibliotheken zur
Verfügung, die bei der Modellierung verwendet werden können. Beispielsweise stehen
umfangreiche Mathematik- und Statistik-Bibliotheken zur Verfügung, die in das System
integriert werden können. Die Eigenschaft als objektorientierte Sprache ermöglicht den
Einsatz von Kapselung, Vererbung und Hierarchisierung (vgl. Abschnitt 3.5.2), wie sie in
den Modellbausteinen benötigt werden. Sie ergänzt damit den objektorientierten Ansatz
der Modellbeschreibung, der später genauer beschrieben wird. Java eignet sich prinzipiell
auch für den Einsatz von Mehrbenutzersystemen, da eine wesentliche Eigenschaft, das
parallele Ausführen mehrerer Prozesse (Threads), unterstützt wird. Java ist darüber
hinaus für spätere Anwender des Systems leichter zu lernen, da aufgrund der weiten
Verbreitung zahlreiche Tutorien und Kurse zur Verfügung stehen. Das Erlernen einer
anwendungsspezifischen Simulationssprache, die nur für dieses spezifische
Simulationswerkzeug gültig ist, entfällt somit. Eine Einführung des Werkzeuges in den
laufenden Betrieb bei potentiellen Kunden wird somit erleichtert.

Aus den oben genannten Gründen soll Java auch als Implementierungssprache für das zu
entwickelnde Werkzeug dienen. Der dadurch resultierende, parallele Einsatz von Java als
Modellierungs- und Implementierungssprache bietet das Potential einer engeren
Abstimmung zwischen Werkzeug und Modelllogik, was durch die Transformation der
Modellbeschreibung in ein objektorientiertes, Java-basiertes Datenmodell weiter
gefördert werden kann und soll. Durch diese enge Verzahnung der Daten und der
Berechnung im Simulator soll der Geschwindigkeitsnachteil, den Java gegenüber
anderen, objektorientierten Programmiersprachen wie beispielsweise C++ noch hat,
weitestgehend kompensiert werden. Eine Verschmelzung von Simulator und
Simulationsmodell in einem einzigen, lauffähigen Java-Programm ermöglicht darüber
hinaus ein einfaches Ankoppeln unterschiedlicher Visualisierungs- und Auswertungs-
module. Die Gestaltung eines Mehrbenutzerbetriebs, bzw. die Verarbeitung eines
bestimmten Simulationsmodells mit mehreren Visualisierungsmöglichkeiten wird dadurch
zumindest potentiell schon ermöglicht. Der Basisprozess muss für eine solche Ausführung
marginal angepasst werden, indem die zwischenzeitliche Speicherung des
Simulationsmodells um das Übersetzen in ein lauffähiges Java-Programm erweitert wird.
Dadurch ergibt sich als weiterer Vorteil eine implizite Validierung der in den Methoden
hinterlegten Verhaltensbeschreibung. Durch die Integration von vorhandenen

Konzeption - 91 -

Debuggern20 kann auch die Verifikation des Simulationsmodells in der
Modellierungskomponente erleichtert werden. Auch hier können existierende Lösungen
im Bereich der Programmiersprache in das entsprechende Modul integriert werden, um
die Arbeit des Anwenders zu erleichtern. Der angepasste Basisprozess gestaltet sich
demnach wie folgt:

Abbildung 26: angepasster Basisprozess für die Modellierung und Simulation

5.1.5 Grundlegende Merkmale der Modellierung und Simulation

Vor dem eigentlichen Start eines Simulationslaufs muss eine Initialisierungsphase
ausgeführt werden, mittels der das Simulationsmodell mit Eingabedaten aus
Simulationsdatenbank oder dem Dateisystem vorbelegt werden kann. Prozessabbilder
oder Fertigungsprogramme können als Startparametrierung dienen, um die
Einschwingphase des Simulationsmodells zu minimieren oder ganz zu kompensieren. Hier
können Initialnachrichten an die angeschlossenen Visualisierungskomponenten gesendet
werden, um die entsprechende Darstellung des Simulationsmodells aufbauen zu können
(vgl. hierzu auch Abschnitt 3.4.2). Danach beginnt der Simulationslauf. Ein
Experimentmanager-Modul soll mehrere Simulationsläufe verwalten können, die
hintereinander oder parallel ablaufen können, damit der Anwender in der
Experimentierphase einer Simulationsstudie die benötigten Simulationsläufe an einer
zentralen Stelle parametrieren und ausführen kann.

Zur Generierung der benötigten Simulationsdaten innerhalb eines Simulationslaufs sollen
einzelne Variablen eines Modellbausteins „abonniert“ werden können, deren
Werteveränderungen dann in dem Simulationslauf entweder vom Simulationskernel oder
dem Visualisierungsmodul protokolliert werden. Alternativ können den durch das
Simulationsmodell laufenden Marken Parameter aufgeprägt werden, um diese in einem
zentralen Modellbaustein auszuwerten. Die Datenmenge, die während eines
Simulationslaufs anfällt, kann somit durch den Anwender spezifisch festgelegt und je
nach Zweck des Simulationslaufs angepasst werden. Wegen der
Interaktionsmöglichkeiten des Anwenders während des Simulationslaufes müssen
darüber hinaus alle vorgenommenen Interaktionen protokolliert werden, denn während
des Simulationslaufes können Variablen von den Anwendern eingesehen und, ggf. in
vorgegebenen Grenzen, verändert werden. Die Auswertungen des
Simulationsexperimentes können nach Abschluss des Simulationslaufs individuell oder
über Standardauswertungen in Modellbausteinen erfolgen. Durch die Darstellung dieser

20 Ein Werkzeug zur Fehlerbereinigung von Software. Es ermöglicht in der Regel eine Ablaufverfolgung des zu

untersuchenden Programms in einzelnen Schritten oder zwischen definierten Haltepunkten (nach [Balz05]).

- 92 -

Auswertungsbausteine und deren aktuellen Werte während der Ausführung eines
Simulationsmodells wird eine erste Analyse schon während der Ausführung erreicht.
Dadurch wird der Anwender befähigt, eventuelle Schwachstellen im Simulationsmodell
früher zu erkennen und sein Simulationsmodell zu verbessern.

Simulationsmodelle sollen in der Modellbeschreibung hierarchisch abgelegt werden
können. Ebenso sollen in dem zu entwickelnden Werkzeug auch die durch das
Simulationsmodell laufenden Marken hierarchisch organisiert werden können. Diese
„Token“ beschreiben die durch das abzubildende System laufenden Erzeugnisse,
Informationen oder andere Material- oder Informationsflüsse. Unter Anwendung des
Composite-Patterns21 soll eine Baumstruktur aus Token eingeführt werden, so das Token
wiederum Token enthalten können, die sie mit durch das Simulationsmodell
transportieren. Dadurch wird eine tokenspezifische Auswertung des Simulationsmodells
ermöglicht. Zusätzlicher Vorteil dieser Vorgehensweise ist es, Hierarchien aus Token
innerhalb eines Simulationsmodells zu bilden und im weiteren Verlauf wieder zu
dekomponieren. Beispielsweise können 10 Token eines Typs „Messer“ in ein Token vom
Typ „Karton“ gepackt werden. 50 Kartons können auf einer „Palette“ gebündelt werden
(Token vom Typ „Palette“) und im weiteren Verlauf, beispielsweise bei einer
Kommissionierung in einem späteren Bereich des Simulationsmodells wieder einzeln
verwendet werden. In einem Auswertungsbaustein kann jedes Token seinen individuellen
Weg durch das Fertigungssystem beschreiben und ermöglicht so eine sehr genaue Form
der Datenauswertung, ohne dass die Funktion in jedem Modellbaustein des
Simulationsmodells einzeln entwickelt werden müsste. Diese Informationsspeicherung in
den Token erlaubt bei einer Integration verschiedener Simulationsmodelle eines
Unternehmensnetzwerkes auch eine einfache Form der Datenübertragung in andere
Simulationsmodelle oder andere Bereiche desselben, integrierten Simulationsmodells.

Das Simulationsmodell muss vor seiner Ausführung im Simulatorkern in ein lauffähiges
Java-Programm kompiliert werden (vgl. Abbildung 26). Für die Speicherung des
Simulationsmodells und seiner Parametrierung in einer Datenbank oder auf der
Dateiebene des Betriebsystems bietet es sich an, ein effizienteres Format der
Datensicherung zu wählen und auf Basis dieses Formats das Simulationsmodell in das
zugehörige Java-Programm zu transformieren und anschließend zu kompilieren. Durch
die automatisierte Verarbeitung wird während der Übersetzung nur unwesentlich Zeit
verloren, im Gegenzug kann die Speicherung aber wesentlich effizienter und vor Allem
erweiterbar gestaltet werden. Eine Versionierung sowie die Speicherung in einer
Datenbank werden damit deutlich erleichtert. Im Rahmen der Entwicklung wird als
Speicherformat auf die Extensible Markup Language (XML) zurückgegriffen, deren
Vorteile unter Abschnitt 3.5.7 bereits aufgezeigt wurden. Alternativ bliebe nur ein
spezifisches Speicherformat. Aufgrund der hohen Verbreitung der XML-Technologien
wurde hier, ebenso wie bei der Auswahl der Programmiersprache Java auf einen offenen
und erweiterbaren Standard zurückgegriffen. Nachfolgende Integrationen mit anderen
Datenformaten können so durch relativ einfache Transformationen erreicht werden.

21 Das Composite-Pattern fügt „Objekte zu Baumstrukturen zusammen, um Teil-Ganzes Hierarchien zu

repräsentieren. Es ermöglicht es, einzelne Objekte ebenso wie Kompositionen von Objekten einheitlich zu
behandeln.“ [nach GaHe94]

Konzeption - 93 -

Insbesondere im Rahmen der Entwicklung und vor Allem kontinuierlichen
Weiterentwicklung der Modellbeschreibung kann eine Wiederverwendung bestehender
Simulationsmodelle problemlos erfolgen. Die leichte Erweiterbarkeit prädestiniert auch
für den Einsatz im Rahmen der Kommunikationsschnittstellen, wo die ausgetauschten
Nachrichtenformate mittels XML definiert und dadurch leicht hinsichtlich ihrer Gültigkeit
überprüft werden können. Durch den Einsatz der Transformationssprache XSLT22 können
die im XML-Format vorliegenden Daten bzw. Nachrichten wieder in Java-Objekte
umgewandelt und im weiteren Programmverlauf verwendet werden. Die bekannten
Vorteile von XML zeigen sich auch hier: Die Kommunikationsschnittstelle, die auf Basis
eines XML-Formates Nachrichtentypen untereinander austauscht, ist flexibel gegenüber
zukünftigen Erweiterungen.

Während der Ausführung eines Simulationsexperimentes mit mehreren Simulationsläufen
sammeln sich eine Menge von Auswertedaten an, die für eine spätere Auswertung zur
Verfügung stehen und dauerhaft gesichert werden sollen. Um die Konsistenz der
anfallenden Simulationsdaten bewältigen zu können, wird zur Datenhaltung eine zentrale
Simulationsdatenbank konzipiert (vgl. Abschnitt 3.5.4.4). Ihre genaue Struktur wird in
Abschnitt 5.3.2.5 näher erläutert. Diese Experimentdaten sollen innerhalb der Datenbank
ebenfalls in einem XML-Format gesichert werden, inklusive einer Kopie des
Nachrichtenstromes zur zeitversetzten Reproduktion der Animation des Simulationslaufs
in einer der Visualisierungskomponenten. Die flexible Struktur ermöglicht auch hier eine
konsistente Sicherung, auch wenn sich das Speicherformat der Experimentdaten
erweitern sollte.

5.1.6 Konfliktvermeidung & Rechtemanagement im Mehrbenutzerbetrieb

Wesentlich für die Entwicklung des Materialflusssimulators ist die Absicherung eines
fehlerfreien Mehrbenutzerbetriebes. Neben der Berücksichtigung des Multitasking-
Betriebs innerhalb der Modellierung und Visualisierung muss die Mehrbenutzerfähigkeit
auch als grundlegendes Merkmal stets mit berücksichtigt werden. Basis für jede
Umsetzung eines Mehrbenutzersystems ist eine Benutzerverwaltung, um die
verschiedenen Zugriffe nach Anwendern unterscheiden zu können. Nicht jeder Anwender
soll in dem Werkzeug dieselben Möglichkeiten zur Manipulation von Simulationsmodellen
und Simulationsläufen bekommen, um eine anwenderorientierte Bedienung gestalten zu
können. Dazu wird nachfolgend ein Rechtemanagement entwickelt, um verschiedene
Anwenderrollen berücksichtigen zu können.

Neben der in Abschnitt 3.5.4.3 genannten Unterstützung der Kommunikation,
Koordination und Kooperation sowie der Umsetzung der unter Abschnitt 3.4.2
aufgeführten Interaktionsmetaphern Erzeugen, Selektieren, Löschen, etc. müssen
insbesondere potentielle Konflikte aufgelöst werden, die durch das gemeinsame
Modellieren und/oder Simulieren entstehen können, da sich die verschiedenen
Interaktionen der Anwender gegenseitige beeinflussen können. Bei auftretenden
Konflikten kann nach 4 Typen unterschieden werden:

22 XSL-Transformation: Transformation einer in XML vorliegenden Beschreibung in ein Zielformat mittels der

eXtensible Stylesheet Language (XSL) [W3C].

- 94 -

1. Modellierung & Modellierung: Zwei oder mehr Anwender pflegen gleichzeitig
Änderungen in ein Simulationsmodell ein. Das erfordert eine Möglichkeit zur
parallelen Modellierung. Dabei stellt z.B. der Zugriff auf dasselbe Objekt einen
Konflikt dar, der durch das entsprechende Modul aufgelöst werden muss.

2. Simulation & Simulation: Dasselbe Simulationsmodell soll zeitgleich für zwei oder
mehr Simulationsläufe benutzt werden. Die Lösung dieses Konflikts führt zur
Möglichkeit, zwei Instanzen eines Simulationsmodells mit verschiedenen
Parametereinstellungen parallel zu simulieren.

3. Modellierung & Simulation: Der dritte Typ ist die Kombination der beiden ersten
Klassen. Bei der Durchführung eines Simulationslaufes, würden Änderungen am
gleichen Modell zu einer Verfälschung der Ergebnisse führen, weil die verschiedenen
Experimentläufe nicht mehr miteinander vergleichbar sind.

4. Simulationslauf mit mehreren Anwendern: Ähnlich wie beim Modellieren mit
mehreren Anwendern müssen Interaktions-Konflikte verschiedener Anwender durch
das entsprechende Modul aufgelöst werden.

Zum Auflösen der möglichen Konfliktklassen sind drei spezifische Methoden für verteilte
Systeme vorgesehen (vgl. Abschnitt 3.5.4.1): Locking, Cloning und Versioning. Ein
möglicher Weg zur parallelen Arbeit an einem Objekt ist das Cloning, hier verstanden als
mehrfaches Instanzieren desselben Objekts. Zu Beginn einer Bearbeitung wird für jeden
Anwender ein Klon als exakte Kopie des aktuellen Simulationsmodells erzeugt. Die
Schwierigkeit liegt in der Integration der verschiedenen Klone am Ende der Bearbeitung.
Cloning bietet sich insbesondere für die Konfliktklasse 3 an. Durch eine Kombination mit
der Versionierung kann für jeden Klon seine Versionsnummer beim Kopieren übergeben
werden. Bei der Ausführung von Simulationsläufen kann dann jeweils immer dieselbe
Version eines Simulationsmodells geladen werden, um eine Vergleichbarkeit der
Ergebnisse zu gewährleisten.
Für die Modellierung (Konfliktklasse 1) oder das Simulieren eines Simulationsmodells mit
mehreren Anwendern (Konfliktklasse 4) bietet sich dieses Vorgehen nicht an, da hier
durch die umfangreichen Interaktionen des Anwenders zu viele Konflikte auftreten
können, die sich nicht immer im Nachhinein auflösen lassen. Die Nutzung eines
Sperrmechanismus (Locking) umgeht dieses Problem (vgl. Abschnitt 3.5.4.1). Damit
können mehrere Anwender gleichzeitig an einer gemeinsamen Modellinstanz arbeiten,
wobei das Arbeiten in unterschiedlichen Teilbereichen desselben Modells unkritisch ist.
Greifen zwei Anwender auf dasselbe Objekt innerhalb einer Modellinstanz zu, soll dieses
automatisch durch den ersten Zugriff gesperrt werden, bis der erste Anwender seine
Modifikationen durchgeführt hat. In den Visualisierungskomponenten muss die Sperrung
entsprechend kenntlich gemacht werden, um andere Anwender über das
Systemverhalten zu informieren. Durch die geplante Kommunikationsunterstützung (vgl.
Abschnitt 3.5.4.3) kann die Zusammenarbeit in der virtuellen Umgebung koordiniert
werden. Unabhängig von dem realen Standort der Anwender kann so eine Form der
Kooperation erreicht werden.

Unter Berücksichtigung von Simulationsmodellen, die hierarchisch angeordnet sind oder
in verschiedenen Detaillierungsgraden vorliegen, gestaltet sich die Implementierung des
Sperrmechanismus komplexer. Die Sperrung eines spezifischen Objekts muss sich direkt
auf die anderen Detaillierungsgrade und/oder Hierarchieebenen des Simulationsmodells
auswirken. Abbildung 27 zeigt ein Beispiel für die anvisierte Funktionsweise des

Konzeption - 95 -

Sperrmechanismus. Zwei Anwender können damit genau dann parallel an einer
Modellinstanz arbeiten, wenn die selektierten Modellbausteine nicht direkt durch ihre
hierarchische Anordnung verbunden sind. Konflikte treten genau dann auf, wenn der
Zugriff innerhalb eines Zweiges stattfindet. Das bedeutet, dass es direkten bzw.
indirekten Einfluss auf Objekte einer anderen Hierarchieebene oder Detaillierungsstufe
hat, wenn ein Untermodell im selben Teilbaum bearbeitet wird. Dieses pessimistische
Verfahren kann dazu führen, dass mehr Instanzen von Teilmodellen gesperrt werden, als
in Realität benötigt werden, erlaubt aber in der Praxis eine einfach zu implementierende
Form der konfliktfreien Bearbeitung innerhalb einer Modellinstanz.

Abbildung 27: Sperrmechanismus im Modellbaum

Zur Sicherung von Modelländerungen existieren unterschiedliche Verfahren der
Änderungskoordination. Das Erstellen einer neuen Version mittels eines
Versionierungsverfahrens ist mit geringem Aufwand möglich. Zu jeder Versionsnummer
muss der bearbeitende Anwender zugewiesen werden. Dadurch kann jedem Anwender
die von ihm zuletzt bearbeitete Version geladen werden. Durch Überprüfung auf höhere
Versionsnummern kann er zusätzlich darüber informiert werden, dass aktuellere
Bearbeitungen des Simulationsmodells verfügbar sind. Jedes Simulationsmodell hat also
eine eigene Zeithistorie, um die Änderungen bzgl. der unterschiedlichen Versionen
nachvollziehen zu können. Auch damit kann letztendlich die Zusammenarbeit mehrerer
Anwender in einem gemeinsamen Team verbessert werden, weil Änderungen an
Modellbausteinen für alle anderen Teammitglieder erkennbar werden.

Sollen Experimente mit einem speziellen Simulationsmodell vorgenommen werden, bleibt
das Klonen der effizienteste Weg. Die Versionierung erlaubt das Registrieren der
Modellversion zu einem Experiment. Der Klon selbst existiert ausschließlich für die Dauer
des Simulationslaufs, um die Datenmenge in der Simulationsdatenbank auf ein
notwendiges Maß beschränken zu können.

- 96 -

Das Arbeiten mehrerer Anwender mit unterschiedlichen Kenntnisständen und
Anwendungsbereichen in einer zentralen Anwendung erfordert eine Unterscheidung nach
verschiedenen Anwendergruppen. Zur Sicherstellung der Qualität der Simulationsmodelle
muss z.B. das ungewollte Verändern durch einen Laien verhindert werden können. Es
wird deshalb ein Rechtemanagement definiert, um nach verschiedenen Gruppen und
Bearbeitungsrechten differenzieren zu können. Das anwenderspezifische Rechte-
management wird in der Modellbeschreibung des Simulationsmodells hinterlegt. Ziel ist
es, erstellte Bibliotheken und Modelle vor Schaden durch falsche Nutzung und Unwissen
zu bewahren und geistiges Eigentum schützen zu können. Jeder Anwender soll dazu
Gruppen zugeteilt werden; die Zuteilung erfolgt anhand von Kenntnissen und Aufgaben.
Es können die folgenden Gruppen unterschieden werden:

1. Programmierer (Individuum)

Der Programmierer eines Simulationsmodells kann alle Modellbausteine
administrieren, die er erstellt hat. Er hat zudem die Möglichkeit, die Zugriffsrechte für
die Modellbausteine zu beschränken. Ein Programmierer kann verhindern, dass
Administratoren Rechte ändern können. Einem Objekt können mehrere Anwender als
Programmierer zugewiesen werden. Er besitzt alle Rechte für das erstellte
Simulationsmodell

2. Anwender(Gruppe)
Anwender haben keinen Zugriff auf die Programmierung der Methoden, sondern
können ausschließlich vorhandene Bausteine aus Bibliotheken instanziieren,
verknüpfen und verwenden.

3. Administratoren (Gruppe)
Die Gruppe der Administratoren sind Anwender, die Rechte für Simulationsmodelle
vergeben und ändern können. Sie können neue Untergruppen erstellen und weisen
neue Anwender bestehenden oder neuen Gruppen zu. Sie müssen nicht unbedingt
Nutzer der Simulationsanwendung („Simulationsexperten“) sein.

Auf Ebene des Simulationsmodells können bei der Vergabe der Rechte vier
Funktionsgruppen unterschieden werden. Dabei ist eine implizite Hierarchiebildung unter
den verschiedenen Rechten abgebildet, so dass die individuellen Rechte stets höherwertig
gegenüber den Gruppenrechten eines Anwenders sind.

 Modifizieren:
Modifizieren erlaubt das vollständige Verändern des Simulationsmodells inklusive
des grundlegenden Aufbaus und der modellierten Steuerungen und Ereignisse.
Struktur und Standardwerte der Variablen können verändert werden.

 Verwenden:
Verwenden erlaubt der jeweiligen Benutzergruppe das Einfügen, Benutzen und
Löschen eines Modellbausteins als Instanz in anderen Simulationsmodellen. Dabei
kann auf die öffentlichen Variablen des Bausteins zugegriffen werden, um diese für
die jeweilige Instanz verändern zu können. Der Aufbau und die Methoden des
Bausteins können nicht verändert werden. Das Modell kann in einem
Simulationslauf gestartet werden.

 Löschen:
Diese Funktion erlaubt das Löschen von Simulationsmodellen oder
Modellbausteinen aus Bibliotheken oder der Simulationsdatenbank

Konzeption - 97 -

 Administrieren:
Diese Funktion erlaubt das Vergeben von Rechten. Üblicherweise haben das
Administrationsrecht die Programmierer und die Administratoren des
Simulationsmodells

Zusammenfassend können durch die Einführung eines anwenderspezifischen
Rechtemanagements bereits im Vorfeld viele mögliche Konflikte aufgelöst werden, die
beim gleichzeitigen oder zeitlich unabhängigen Bearbeiten eines Simulationsmodells
durch mehrere Anwender entstehen können. Eine der grundlegenden Voraussetzungen
für ein Mehrbenutzersystem wurde damit geschaffen. Alle unter Abschnitt 3.4.3
aufgezeigten Interaktionsmetaphern können in die obigen Gruppen einsortiert werden
und Konflikte können durch die vorgestellten Verfahren aufgelöst werden.

Modellierung und Ausführung eines Simulationsexperimentes bleiben die Hauptaufgaben
des Anwenders bei jeder Simulationsstudie. Es wurde beschrieben, wie der Prozess von
Modellierung und Simulation unter Anwendung von Verfahren zur Konfliktvermeidung
und eines Rechtemanagements in dem angestrebten Werkzeug umgesetzt werden soll.
Alle grundlegenden Merkmale wurden für das zu entwickelnde Werkzeug festgelegt. Der
folgende Abschnitt widmet sich der Entwicklung einer Modellbeschreibung, auf deren
Basis Simulationsmodelle in dem zu entwickelnden Materialflusssimulator aufgebaut,
strukturiert und abgelegt werden sollen und in denen das grundlegende Verhalten des
Simulationsmodells so beschrieben wird, das eine Ausführung des Modells in einem
Simulationsexperiment erlaubt wird.

5.2 Konzeption Modellbeschreibung

Ein wesentlicher Entwicklungsschritt während der Entwicklung des Materialflusssimulators
ist die Formalisierung der zugrunde liegenden Modellbeschreibung. Auf Basis dieser
objektorientierten Datenstruktur wird das Werkzeug konzipiert und seine benötigten
Funktionen umgesetzt. Durch die Modellierungs- und Visualisierungskomponenten wird
die zu entwickelnde Struktur von Simulationsmodellen umgesetzt und benutzerfreundlich
dargestellt bzw. der Manipulation durch den Anwender zugeführt. Gemäß Abschnitt 4.2
wird in einem ersten Schritt eine allgemeine Modellbeschreibung generiert, die in
weiteren Schritten auf die speziellen Anforderungen des Werkzeugs angepasst wird.
Zunächst soll aber eine Beschreibung von Simulationsmodellen zur Vorwärtssimulation
erstellt werden.

5.2.1 Vorwärtsgerichtete Materialflussmodelle

In Anlehnung an die in Abschnitt 3.2 beschrieben formalen Modellstrukturen wie Stellen/-
Transitionsnetze unterscheidet der hier entwickelte Materialflusssimulator zwischen zwei
Objektklassen: Modellen und Token. Modelle repräsentieren alle möglichen Formen von
Bearbeitungs-, Lager- oder Transporteinrichtungen eines Fertigungsprozesses, Token
entsprechen den Marken, die das Simulationsmodell zur Ausführungszeit dynamisch
durchlaufen. Sie repräsentieren die beweglichen Elemente der realen Welt, beispielsweise
Aufträge, die das System durchlaufen, Werker, Bauteile oder Paletten. Dadurch kann
zwischen der formalen Struktur und dem dynamischen Verhalten des Simulationsmodells
unterschieden werden. Token repräsentieren beliebige Objekte, die erst durch die
Modellierung des Anwenders eine logische Bedeutung im Simulationsmodell erhalten. Sie

- 98 -

können neben Variablen auch weitere Token enthalten. Somit kann beispielsweise ein
Gabelstapler eine Palette aufnehmen, die wieder mit Kisten beladen ist. Token bewegen
sich zur Ausführungszeit des Simulationsmodells im Simulator durch das modellierte
System. Die Reduzierung auf eine Objektklasse wurde hier auch deswegen bewusst
vermieden, um die intuitive Unterscheidung zu unterstützen. Diese Grobklassifikation
wird im weiteren Verlauf verfeinert, indem Modellbausteine Elemente enthalten, die für
die Token nicht benötigt werden.

Im Gegensatz zu kommerziellen Materialflusssimulatoren (vgl. Abschnitt 3.2.3) sind die
Basiselemente der hier beschriebenen Modellstruktur keine Modellbausteine im
funktionalen Sinne, sondern nur Grundelemente, aus denen ein einzelnes
Simulationsmodell zusammengesetzt werden kann. Dadurch lässt sich der
Detaillierungsgrad des abgebildeten Modellbausteins durch den Anwender beliebig
wählen. Neben diesen Basiselementen kann ein Simulationsmodell Submodelle
(Instanzen anderer Simulationsmodelle) enthalten, um eine hierarchische Anordnung von
Simulationsmodellen zu ermöglichen, die neben strukturellen Vorteilen für die Übersicht
komplexer Modelle auch ein Umschalten zwischen den verschiedenen
Detaillierungsgraden während der Simulationszeit potentiell erlauben. Damit ist eine
wesentliche Vorraussetzung für die Integration der dynamischen Detaillierung nach
[Muec05] geschaffen, die in Abschnitt 5.2.1.1 in die Modellbeschreibung integriert wird.

Auf der Hierarchieebene mir der höchsten modellierten Detaillierung wird ein
Simulationsmodell durch folgende Basiselemente beschrieben, die innerhalb eines
Simulationsmodells oder Modellbausteins eindeutig benannt sein müssen:

Bezeichnung Beschreibung

Variable Attribute eines Modells

Event Ereignisse eines Simulationsmodells, die das
spezielle Verhalten genauer beschreiben

Link logische Verknüpfungen zwischen Modellbausteinen

Channel Eingangs- bzw. Ausgangskanäle als Schnittstellen
eines Modells zu seinen Vorgängern/Nachfolgern im
Modell

Submodel Kein Basiselement. Simulationsmodelle komplexerer
Bauart können ihrerseits wieder Modellbausteine als
Instanzen anderer Simulationsmodelle oder
Modellbausteine enthalten

Tabelle 4: Basiselemente eines Simulationsmodells

Channel repräsentieren die Schnittstellen eines Modells oder eines Modellbausteins zu
seinen logischen Vorgängern/Nachfolgern. Die Anzahl der Input- bzw. Output-Channel für
ein Simulationsmodell ist durch den Modellierer wählbar. Es existieren nur Input- und
Output-Channel. Jeder Channel, unabhängig von seiner genauen Spezifikation, kann zu
einem Zeitpunkt nur maximal ein Token beinhalten. Input-Channel werden deshalb
automatisch geschlossen, sobald ein Token den Channel erreicht und müssen für
nachfolgende Token erst wieder geöffnet werden. Dem jeweiligen Output-Channel des
Vorgängers ist es so lange nicht möglich ein Token an seinen Nachfolger zu senden, bis
dieser wieder geöffnet wurde. Geschlossene Input-Channel können durch die
Vorgängermodelle beobachtet werden und lösen dort ein spezielles Event aus, wenn der

Konzeption - 99 -

Input-Channel wieder geöffnet wird. Channel bilden analog zu den Methoden
objektorientiert programmierter Klassen die Schnittstellen eines Simulationsmodells zu
seiner direkten Umwelt (vgl. Abschnitt 3.5.2.1).

Durch logische Verknüpfungen, hier Links benannt, werden die Channel, und damit die
Simulationsmodelle bzw. Modellbausteine untereinander, verbunden. Token, die sich
während des Simulationslaufs durch ein Simulationsmodell bewegen, werden gemäß der
Beziehungen zwischen den Modellbausteinen versendet. Ein Token verlässt die Instanz
eines Modellbausteins immer durch einen Output-Channel und tritt in dem nachfolgenden
Simulationsmodell immer über einen Input-Channel in den folgenden Modellbaustein ein.
Ein Output-Channel darf jeweils nur mit einem Link versehen werden. Eine Verzweigung,
beispielsweise die Weiche einer Fördertechnik, muss über separate Output-Channel
modelliert werden. Output-Channel können nur dann direkt miteinander verbunden
werden, wenn sie eine einfache Weiterleitung des Token an die nächst höhere
Hierarchieebene darstellen (vgl. Abbildung 28 rechts). Eintretende Token an einem
Input-Channel lösen immer ein standardisiertes Ereignis (Input-Event) aus, in dem das
weitere Verhalten innerhalb des Modellbausteins abgebildet werden kann. Um das
Verhalten detailliert spezifizieren zu können, kann der Anwender sowohl auf von ihm
definierte Verhaltensbeschreibungen in Ereignissen als auch auf eine beliebige Anzahl von
Variablen zugreifen, die er in dem Modellbaustein anlegen und verwenden kann.
Innerhalb eines Bausteins kann auf alle Ereignisse und Variablen dieses Modellsbausteins
zugegriffen werden, da alle Basiselemente eindeutige Namen bzw. IDs besitzen. Input-
Channel können genau dann direkt miteinander verbunden werden, wenn sie eine
Weiterleitung von einer höheren Hierarchieebene zu einem Submodell darstellen (vgl.
Abbildung 28 links). Die Strukturierung des Simulationsmodells über das beschriebene
Konzept der Channel erlaubt eine strikte Modularisierung in einzelne Bausteine. Deren
spezifische Funktionsweise wird nach dem Black-Box-Prinzip gekapselt und kann somit
leichter adaptiert und verbessert werden, ohne die Funktionsweise der Gesamtmodelle zu
gefährden.

Abbildung 28: Struktur eines Simulationsmodells

Die Modellbausteine als einzelne Funktionsmodule können Elemente einer
Bausteinbibliothek (im Folgenden: Library) sein, die zur Modellierung weiterer
Simulationsmodelle verwendet werden können. Je umfangreicher diese hinterlegten
Bibliotheken sind, umso weniger Simulationsmodelle, bzw. Modellbausteine muss der
Anwender selbst anlegen. Im Idealfall kann ein Anwender ausschließlich unter Nutzung in

- 100 -

Bibliotheken vorhandener Modellbausteine ein Simulationsmodell erstellen und
parametrieren. Bibliotheken können strukturiert abgelegt werden, damit benötigte
Modellbausteine schneller identifiziert werden können. Die Instanz eines Modellbausteins
wird im Simulationsmodell so gekapselt, dass nur diejenigen Basiselemente parametriert
werden können, die vom Programmierer dafür vorgesehen wurden. Die Modellierung des
spezifischen Bausteinverhaltens wird somit nicht automatisch öffentlich. Dieses Vorgehen
entspricht der bereits unter Abschnitt 3.5.2.2 aufgezeigten Kapselungsstrategie der
objektorientierten Programmierung und wendet die Vorteile der objektorientierten
Paradigmen auf die Anwendung in der Modellierung von Simulationsmodellen an.

Modellbausteine, die innerhalb eines Simulationsmodells verwendet werden, besitzen
eine Menge von Attributen, die im Folgenden aufgeführt werden. Auch hier wurde darauf
geachtet, nur die Attribute in die Instanzen zu „verschieben“, die die jeweilige
Bausteininstanz von seiner Modellbaustein-Klasse unterscheiden.

Bezeichnung Beschreibung

ID Eindeutiger Bezeichner

Name Name

Mesh Referenz auf ein 3D-Modell, das den Modellbaustein
in den Modellierungs- und
Visualisierungskomponenten darstellt

Meshscale Skalierungsfaktor des 3D-Modells

X,Y,Z Size Größe im Modell

Color Farbe eines Modellbausteins

Zusätzliche Attribute von Modellinstanzen
innerhalb eines Simulationsmodells

X,Y,Z Scale Größe im Modell

X, Y, Z Rotation Rotation des Modellbausteins im Modell

Variable_value Wert einer öffentlichen Variablen, wenn er sich vom
Standardwert unterscheidet

srcid Referenz auf eindeutigen Bezeichner des
zugehörigen Modellbausteins (Klasse)

color Farbe der Instanz, wenn sie sich von Vorbelegung
unterscheidet

layer Darstellungsebene

Tabelle 5: Attributliste eines Simulationsmodells

Aus der bis hierhin entwickelten Modellbeschreibung, die das Einbinden von Submodellen
als Instanzen vorhandener Modellbausteine erlaubt, folgt eine Gesamtbeschreibung eines
Simulationsmodells als Liste aller im Modell verwendeten Modellbausteine. In dem
auszuführenden Simulationsmodell, das im Rahmen dieser Gesamtbeschreibung als
solches bei der Speicherung gekennzeichnet werden muss, werden diese Modellbausteine
als Submodelle verwendet. Um die Konsistenz des Simulationsmodells zu erhalten,
müssen die Modellierungskomponenten eine spezielle Funktion implementieren, die das
Bilden von Zirkelschlüssen innerhalb des Modellierungsprozesses erkennt und vermeidet,
damit Modellbausteine nicht rekursiv durch sich selbst beschrieben werden können.
Abbildung 29 zeigt schematisch einen solchen Zirkelschluss, der zu einer ungültigen
Modellbeschreibung führen würde.

Konzeption - 101 -

Abbildung 29 zeigt, dass der zu modellierende Modellbaustein A durch Instanzen der
Modellbausteine B und C beschrieben werden soll, so dass jeweils zwei Instanzen des
Modellbausteins B und eine Instanz des Modellbausteins C den Ablauf innerhalb des
Modellbausteins A beschreiben. Im Fall von Modellbaustein B ist das möglich, weil sich
dieser aus Instanzen der Modellbausteine D und E zusammensetzt. Die Instanz C_1 von
Modellbaustein C führt jedoch zu einem unerlaubten Zirkelschluss, weil dieser durch
Instanzen der Modellbausteine F, G und dem Modellbaustein A beschrieben wird. Durch
die Instanz des Modellbausteins C würde für den Modellbaustein A eine rekursive
Beschreibung existieren, die nicht ermöglicht werden darf, weil das Simulationsmodell
sonst während der Ausführung in einen nicht auflösbaren Zustand gelangt.

Abbildung 29: unerlaubter Zirkelschluss in einem Simulationsmodell

Durch die Implementierung einer Funktion zum Überprüfen von solchen Zirkelschlüssen
kann dieses Problem bereits im Vorfeld umgangen werden, wodurch valide Modelle
gefördert werden sollen. Das Problem tritt auf, weil die Modellbeschreibung so generisch
gewählt wurde, dass der Anwender bei der Gestaltung seiner Modellbausteine im
Gegensatz zu vorhandenen Simulationswerkzeugen den Detaillierungsgrad frei wählen
soll. Das Erkennen von Zirkelschlüssen soll bereits in der Modellierungskomponente
erfolgen, um den Anwender frühzeitig auf Modellierungsfehler hinzuweisen. Eine
Erkennung im Simulator würde dadurch deutlich erschwert, dass objektorientierte
Programmiersprachen die Definition mittels rekursiver Methoden prinzipiell ermöglichen
und deshalb im Rahmen der Übersetzung in Programmcode den Fehler nicht erkennen
würden. Das Simulationsmodell könnte zur Ausführungszeit somit in eine Endlosschleife
laufen, deren Grund durch den Anwender nur schwer ersichtlich wäre.

Ein weiteres Basiselement zur Modellierung innerhalb eines Modellbausteins sind die
Variablen. In ihnen können Token sowie alle für die Modellierung benötigten Werte
zwischengespeichert werden. Beispielsweise kann die Bearbeitungszeit einer Maschine
oder die Puffergröße innerhalb eines Modellbausteins in einer Variablen festgelegt
werden. Aus den Events kann auf die Variablen zugegriffen werden, um ihren Wert zu
verändern oder auszulesen. Jeder Variable kann der Modellierer verschiedene Attribute
zuweisen. Sie bestimmen, ob die Variable protokolliert, von anderen Modellbausteinen

- 102 -

angesehen werden kann oder versteckt wird. Alle Variablen können mit Standardwerten
parametriert werden und durch obere oder untere Schranken begrenzt werden. Die
folgende Tabelle 6 zeigt alle Typen von Variablen, die in der Modellbeschreibung
verwendet werden können. Sie entsprechen im Wesentlichen den primitiven und/oder
höheren Datentypen, wie man sie aus Programmiersprachen kennt. Modellbausteine
haben zu Beginn ihrer Erstellung neben den festgelegten Attributen keine
Standardvariablen, wie es aus kommerziellen Simulatoren bekannt ist. Da der Detailgrad
vom Anwender frei zu wählen ist, macht eine solche Vorbelegung innerhalb dieser
Modellbeschreibung keinen Sinn.

Typ Wertebereich Vorbelegungen

Integer Natürlich Zahlen Standardwert, obere und untere
Schranke, Auswertungstyp

Long Natürliche Zahlen Standardwert, obere und untere
Schranke, Auswertungstyp

Double Reelle Zahlen Standardwert, obere und untere
Schranke, Nachkommastellen,
Auswertungstyp

Float Reelle Zahlen Standardwert, obere und untere
Schranke, Nachkommastellen,
Auswertungstyp

Enum Alle Standardwert, Auswahlliste

ArrayList Alle Auswertungstyp

Token Token Keine

Boolean True, False Standardwert, , Auswertungstyp

String Zeichenfolge Standardwert, max. Länge

Time Millisekunden Standardwert

HaspMap Objekte Keine

Table Objekte Auswertungstyp

Random Zufallszahlen verschiedener Ver-
teilungen

Verteilung mit jeweiligen Para-
metern, Startwert, Auswer-
tungstyp

Tabelle 6: Typen von Variablen der Modellbeschreibung

Über ein spezielles Attribut kann durch den Anwender jeweils eingestellt werden, ob die
Variable aus der Visualisierungskomponente heraus verändert, ausschließlich angezeigt
oder grafisch ausgewertet wird. Alternativ kann sie in den Visualisierungskomponenten
verborgen bleiben. Durch die auf Java basierende Zugriffsverwaltung kann der Anwender
explizit die Interaktions-, Manipulations- und Auswertungsmöglichkeiten jedes
Modellbausteins beeinflussen. Zur Verbesserung der grafischen Darstellung kann der
Variablen zusätzlich ein bestimmter Auswertungstyp zugewiesen werden. Dadurch wird
es möglich während eines Simulationslaufs in den verschiedenen
Visualisierungskomponenten spezielle Darstellungsformen zu implementieren, um
dynamisch die aktuellen Werte aus den Bausteininstanzen abzufragen und
anwenderfreundlich darzustellen, bzw. deren Manipulation durch den Anwender zu
erlauben. Die jeweilige Darstellungsform kann zwar typisiert werden, die eigentliche
Implementierung der spezifischen Darstellungen erfolgt jedoch erst in den einzelnen
Visualisierungs- und Auswertungsmodulen des Werkzeugs (vgl. Abschnitt 5.3.2). Für den
Anwender ist dies eine der wesentlichen Funktionalitäten, die in den
Visualisierungskomponenten benötigt wird, da neben der Animation des Simulations-
verlaufs insbesondere die aktuellen Werte in den unterschiedlichen Bausteininstanzen für

Konzeption - 103 -

die Modellverifikation und –validierung interessant sind. Für die verschiedenen Typen von
Variablen sind die in Tabelle 7 aufgeführten Auswertungsmöglichkeiten vorgesehen. Sie
orientieren sich an den vorhanden Analysemöglichkeiten bekannter Werkzeuge zur
Datenauswertung und den Report-Darstellungen vorhandener Simulationswerkzeuge.
Speziell in dem entwickelten Werkzeug ist es möglich, sich diese Auswertungen
dynamisch und während der Ausführung eines Simulationslaufs anzeigen zu lassen. Auch
dadurch soll der Validierungs- und Verifikationsprozess beschleunigt werden, weil
Auswertungen direkt zur Laufzeit und nicht erst nach einem Simulationslauf zur
Verfügung stehen.

Name Angewendeter Typ Beschreibung

Display Alle Anzeige des aktuellen Wertes der
Variablen

Signal Boolean Rot/Grün-Schalter oder ähnliche
Darstellung

Trafficlight Integer, Long, Double Float,
Random

Aufwertung in Form einer Ampel

Gauge Integer, Long, Double Float,
Random

Auswertung in Form eines Füllstands
oder eines Drehzahlmessers etc.

Meanvariance Arraylist, Table Statistische Auswertung durch
Mittelwert, Minimum und Maximum

Timetable Table Auswertung in Form eines
Diagramms

Histogramm Arraylist, Table Auswertung in Form eines
Histogramms

Tabelle 7: Auswertemöglichkeiten der Variablen

Die Zeitfortschaltung während der Ausführung eines Simulationsmodells geschieht
sowohl bei der Vorwärts- als auch bei der Rückwärtssimulation standardmäßig
ereignisorientiert. Der Simulator führt nacheinander die zeitlich geordneten Ereignisse
aus, die in den verschiedenen Bausteininstanzen des auszuführenden Simulationsmodells
ausgelöst werden. Das in diesen Events programmierte Verhalten ist durch den
Modellierer angelegt worden. Events können andere Events innerhalb ihres Modell-
bausteins oder sich selbst aufrufen, indem sie eine neue Instanz eines Events terminieren
und in der Ereignisliste des Simulators anmelden. Viele Events innerhalb eines
Modellbausteins können einem bestimmten Channel zugewiesen werden. Darüber hinaus
existiert pro Modellbaustein genau ein Init-Event, das in einer ersten Initialisierungs-
phase vor der eigentlichen Simulation ausgeführt wird. Es dient dazu, eine hinterlegte
Vorbelegung des Modellbausteins aus Datenbank oder Dateien auszulesen oder Start-
Events, beispielsweise bei Quellen eines Simulationsmodells, zu terminieren. Benutzer-
definierte Events (User_Defined_Event) können beliebig in Modellbausteinen hinterlegt
werden, um komplexe Verhaltensweisen funktionsorientiert zu strukturieren oder
überhaupt abbilden zu können. Sie werden durch sich selbst oder andere Events
aufgerufen. Analog zum Init-Event existiert ein Final-Event, das beim Beenden des
Simulationslaufs aufgerufen wird. Es dient dazu, in einem Modellbaustein gesammelte
Daten des Simulationslaufs zu sichern, um eine Analyse zu späteren Zeitpunkten zu
ermöglichen. Diese Vorgehensweise erlaubt die Beschleunigung der Berechnung des
Simulationslaufs, da Datenbank- oder Dateisystemzugriffe während der Berechnung

- 104 -

gespart werden können, die eine schnelle Berechnung eventuell ausbremsen würden. Der
Aufruf von Events in anderen Bausteininstanzen erfolgt ausschließlich mittels der
Versendung von Token über die entsprechenden Channel-Schnittstellen der Modell-
bausteine. Die folgende Tabelle gibt eine Übersicht über alle standardisierten Events:

Name Beschreibung

Init Wird bei Simulationsstart ausgeführt

Final Wird beim Stop der Simulation ausgeführt

Input Bei Eintritt eines Token in zugeordneten Input-
Channel

Output Bei Eintritt eines Token in zugeordneten Output-
Channel

ReOpen Beim Öffnen des nachfolgenden Input-Channel

Tabelle 8: Standardisierte Events

Spezielle Methoden können in eigene Modellbausteine ausgelagert werden (beispielsweise
für eine aggregierte Auswertung oder übergeordnete Steuerungen). Die Kommunikation
erfolgt in diesem Fall über Token, die den Informationsfluss innerhalb des
Simulationsmodells darstellen: den InfoToken. Sie unterscheiden sich nicht von den
bisher bekannten Token, da diese ja explizit alle dynamischen Objekte repräsentieren
können. Das objektorientierte Prinzip der Kapselung muss somit auch für übergeordnete
Methoden nicht aufgeweicht werden.

5.2.1.1 Dynamische Detaillierung von Simulationsmodellen

Zur Realisierung einer Echtzeitanalyse großer Fertigungssysteme in dem umzusetzenden
Werkzeug soll die Methode nach [Muec05] in das Werkzeug integriert werden. Damit soll
sich insbesondere die Simulation von komplexen Unternehmensnetzwerken oder Supply-
Chain-Netzwerken einer Echtzeitanalyse nicht mehr entziehen. Alternativen zur
Abarbeitung solch komplexer Modelle auf einem einzelnen Rechner ohne die Qualität
beziehungsweise Granularität der Simulation zu verringern sind nicht bekannt.
Vorraussetzung für die Methode ist ein Simulationsmodell in verschiedenen
Detaillierungsstufen, eine Möglichkeit zur Umschaltung zwischen den Detaillierungsstufen
und eine Stimulation der Umschaltvorgänge zur Laufzeit eines Simulationslaufes.
Letzteres ist mit dem angestrebten System leicht zu realisieren, indem eine
entsprechende Nachricht in das Kommunikationsprotokoll zwischen Simulatorkern und
Visualisierungskomponente eingebunden wird (vgl. hierzu Abschnitt 5.2.2.3), die die
Übergabe der aktuellen Benutzerposition aus der Visualisierung erlaubt. Je nach
Benutzerposition in der virtuellen Umgebung kann der Detaillierungsgrad in der
Simulation dann adaptiert werden.

Zur Abbildung mehrerer Detaillierungsebenen muss die Modellbeschreibung so angepasst
werden, dass jede Bausteininstanz sowohl ihr höher detailliertes als auch das gröbere
Modell bekannt ist. Dies ist durch den Anwender festzulegen und wird bei der
Umschaltung zur Laufzeit vom Simulatorkern berücksichtigt. Die Attributliste eines
Simulationsmodells muss dennoch nur um die in Tabelle 9 dargestellten Attribute
erweitert werden, weil jede Detaillierungsstufe für sich wiederum ein ausführbares
Simulationsmodell sein muss. Darüber hinaus beschränkt die Methode die
Modellbeschreibung der Simulationsmodelle nicht, sondern betrachtet diese als
gekapselte Einheit, die genannte Anforderungen erfüllen muss.

Konzeption - 105 -

Bezeichnung Beschreibung

Moredetailed Verweis auf ein Modell mit höherem
Detaillierungsgrad

Lessdetailed Verweis auf ein Modell mit niedrigerem
Detaillierungsgrad

Tabelle 9: Zusätzliche Attribute eines Simulationsmodells für das MRS

Da die gesamte Modellbeschreibung eines Simulationsmodells ohnehin aus einer Liste
aller verwendeten Modellbausteine besteht, ist eine Erweiterung der Modellbeschreibung
auf mehrere Detaillierungsstufen zunächst problemlos. Das als Hauptmodell
beschriebene, auszuführende Simulationsmodell gibt dann implizit die Startdetaillierung
des Gesamtmodells vor, die zu Beginn des Simulationslaufes vom Simulator überprüft
und ggf. angepasst wird.

Das zeitliche Fortschreiten des Simulationslaufs basiert auf Events, die jeweils für einen
bestimmten Zeitpunkt eingeplant werden und beim Erreichen der Simulationszeit dieses
Zeitpunkts ausgeführt werden (vgl. Abschnitt 2.2). Zur Integration der dynamischen
Detaillierung wird das Auslösen der Umschaltvorgänge mittels eines neu einzuführenden
Switch-Events umgesetzt. Es wird vom Modellierer angelegt, spezifiziert und muss den
Zustand des entsprechenden Modellbausteins auf sein höher bzw. weniger detailliertes
Pendant abbilden und diesen in einen Zustand versetzen, der demjenigen Zustand der
aktuellen Bausteininstanz bestmöglich entspricht. Dazu gehören Zahl und Position der
Token, die aktuellen Werte der Variablen und die eingeplanten Events dieses Modells. Es
muss klar definiert sein, wie diese auf das Ersatzmodell übertragen werden. Die zu
entwickelnden Umschaltmethoden müssen effizient gestaltet werden, da die Umschaltung
während der Berechnung des Simulationslaufs erfolgt. Vorschläge zur Umsetzung finden
sich in [Muec05]. Die Art der Gestaltung des Switch-Events wurde nicht eingegrenzt,
sondern kann vom Modellierer der entsprechenden Modellbausteine frei gewählt werden.

Bezeichnung Beschreibung

Switch_event Ereignis zur Berechnung des Zustandsübergangs im
Rahmen des MRS

Tabelle 10: Zusätzliches Ereignis zur Abbildung von Modellen im MRS

Zur Beschreibung einer möglichen Implementierung eines Switch-Events wird auf
[Muec05] verwiesen. Es soll aber darauf hingewiesen werden, dass der Modellierer wohl
in den meisten Anwendungen zwischen den Fällen „höhere Detaillierung“ und „niedrigere
Detaillierung“ unterscheiden muss. Da aber nicht zwangsläufig davon ausgegangen
werden kann, dass sich in jeder Implementierung eine Unterscheidung zwischen den
Umschaltungen ergibt, wurde auf die Einführung zweier unterschiedlicher Events bewusst
verzichtet.

5.2.1.2 Modellierung funktionsorientierter Fertigungssysteme

Im Rahmen der Modellierung funktionsorientierter Fertigungssysteme lassen sich
zunächst alle Anforderungen mit der dargestellten Modellbeschreibung realisieren. Die
verbesserte Unterstützung der speziellen Anforderungen von funktional gegliederten
Fertigungssystemen (vgl. 4.2.1) führt zu der Fragestellung, wie der Anwender bei deren
Modellierung weitergehend unterstützt werden kann. Wegen der speziellen Abläufe

- 106 -

innerhalb solcher Fertigungssysteme erfährt insbesondere die Abbildung von
Transportwegen von Menschen oder Maschinen eine steigende Bedeutung. Durch die
Integration von Layout- und Fertigungsprozessplanung (vgl. 5.1.3) wird ein
layoutgerechtes Abbilden aller Transport- oder Bewegungswege durch das Werkzeug
bereits erleichtert und erlaubt darüber hinaus eine realistischere Darstellung des
gesamten Simulationsmodells. Dennoch ist die layoutgetreue Modellierung von Wegen in
heutigen Werkzeugen einer der zeitaufwendigsten Schritte, eine der Hauptquellen für
mögliche Fehler und wird infolgedessen kaum eingesetzt. Als Konsequenz werden die
abzubildenden Transportwege meist abstrahiert und verfälschen so in den Animationen
den realitätsnahen Eindruck in der dargestellten, virtuellen Umgebung. Die gröbere
Modellierung und Simulation führt darüber hinaus oft zu ungenaueren Ergebnissen.

Für das intendierte Werkzeug soll die Wegberechnung deshalb weitestgehend
automatisch erfolgen. Auf Basis des jeweiligen Simulationsmodell-Layouts wird durch ein
spezielles Modul im Simulatorkern unter schwachen Restriktionen ein Bewegungsgraph
berechnet, auf dem sich abgebildete Transporteinheiten oder Menschen bewegen. Die
Steuerung und Verfügbarkeit dieser speziellen beweglichen Elemente (im Folgenden:
SPMs) wird in Modellbausteinen abgebildet, die in der Modellierungsoberfläche in das
Simulationsmodell eingebunden werden können. Mittels eines Algorithmus wird innerhalb
des Moduls der kürzeste Weg für den jeweiligen Auftrag auf dem Graphen berechnet und
unter Berücksichtigung eventueller Interaktionen zur Simulationszeit ausgeführt. Die
Funktionsweise dieses Moduls zur Wegplanung, im Folgenden Motion Planning (MP), wird
nachfolgend näher beschrieben.

Neben dieser speziellen, automatischen Form der Wegmodellierung soll in dem Werkzeug
dennoch die explizite Modellierung von Wegen durch Modellbausteine weiterhin
ermöglicht werden. Eine Abbildung von festen Wegstrukturen, wie sie in herkömmlichen
Werkzeugen verwendet werden muss, kann damit realisiert werden. Das konservative
Vorgehen verursacht im Vergleich jedoch einen deutlich erhöhten Modellierungsaufwand,
weil alle Wegeelemente einzeln abgebildet werden müssen. Insbesondere vor dem
Hintergrund eines effektiveren Einsatzes der Methode Ablaufsimulation ist die
automatische Wegberechnung also zu bevorzugen.

Im Rahmen aller bekannten Softwarelösungen zur Ablaufsimulation ist eine solche
Funktionalität der automatischen Wegfindung nicht bekannt., obwohl eine solche Aufgabe
prinzipiell gut automatisiert werden kann.

Ziel des Motion Planning
Das Motion Planning berechnet die Bewegung aller dynamischen Einheiten innerhalb
eines Simulationsmodells, die sich im abgebildeten Layout prinzipiell autark bewegen
können und die sich in der Realität einen möglichst kurzen Weg durch das
Fertigungssystem suchen (sie werden im Weiteren als Shortest-Path-Mover (SPM)
bezeichnet). Im Gegensatz zu Token, die auf festgelegten Pfaden innerhalb eines
Modellbausteins animiert werden, ist die Bewegung der SPMs bidirektional an den
Simulator gekoppelt. Die Ergebnisse der Wegberechnung fließen direkt in die Simulation
ein und dienen nicht nur der Animation.

Konzeption - 107 -

Je nach Anwendung können unter SPMs beispielsweise Gabelstapler, Werker mit und
ohne Hubwagen oder Trolleyzüge verstanden werden. Als Teilmodul des Simulators dient
das Motion Planning der layoutgetreuen Berechnung aller nicht vom Modellierer
festgelegten Bewegungen während der Ausführung eines Simulationslaufs. Die
Kommunikation mit dem Simulationskern (Bewegungsanfragen) sowie den
Visualisierungskomponenten findet über das in Abschnitt 5.2.2 definierte
Nachrichtenformat statt. Das Motion Planning arbeitet zweidimensional, setzt also als
erste Restriktion eine Unterscheidung verschiedener Fertigungsebenen voraus. Die
verwendeten Algorithmen funktionieren unter geringen Einschränkungen an
Simulationsmodell und Layout, die jedoch vor dem Hintergrund der Anwendung als
akzeptabel erachtet werden können. Die Anwendung und die Ergebnisse werden durch
die Restriktionen nicht so sehr verfälscht, dass der Einsatz des Motion Planning Modul
den Einsatz der Ablaufsimulation konterkariert. Folgende Restriktionen sollen deshalb
gelten:

 Komplexitätsreduktion durch Anfahrtspunkte: Es ist nicht nötig, jeden Punkt
innerhalb einer Ebene anzufahren: nur vorher festgelegte Punkte an den einzelnen
Bausteininstanzen müssen erreichbar sein (im Folgenden dockingpoints). Dies
erlaubt die Berechnung der Bewegungsgraphen in der Initialisierungsphase des
Simulationslaufs und dadurch die beschleunigte Beantwortung von Anfragen zur
Laufzeit einer Simulation.

 Begrenzung der Layoutfläche des Simulationsmodells: Wird ein Simulationsmodell
beispielsweise durch eine umschließende Halle begrenzt, muss diese
gekennzeichnet werden. Dadurch ergibt sich eine natürliche Begrenzung des
Bewegungsgraphen.

 Wege innerhalb geschlossener Formen sollen nicht auftreten können,
beziehungsweise die entsprechenden Instanzen der SPMs im Simulationsmodell
können diese Grenzen nicht überwinden.

Ein weiterer Unterschied zwischen Animation und Motion Planning besteht darin, dass
Animationen nur der Darstellung einer Simulation in einer entsprechenden
Visualisierungskomponente dienen. Das Motion Planning trägt demgegenüber essentiell
zur Berechnung zukünftiger Ereignisse im Simulator bei, muss also unabhängig von der
Visualisierung berechnet werden.

Zusätzlich sorgt das Motion Planning für eine kollisionsfreie Bewegung aller SPMs durch
das Simulationsmodell während dessen Ausführung im Simulatorkern. Es ist integriertes
Teilmodul des Simulatorkerns, soll aber im Rahmen der Implementierung als
abgegrenztes Modul integriert werden, um durch Weiterentwicklungen und/oder
alternative Wegberechnungen ausgetauscht werden zu können. Für den
Simulationskernel ist die Ausführung eines Simulationsmodells bisher ein rein logischer
Ablauf, in dem Token von einem Modellbaustein zu festgelegten Zeitpunkten an deren
Nachfolger im Materialfluss weitergereicht werden. Die räumliche Anordnung der
Modellbausteine ist deshalb zur Ausführung zunächst unerheblich. Sie werden vom
Modellierer dem Simulationsmodell nur deshalb hinzugefügt, um eine optimale
Visualisierung erreichen zu können. Im Rahmen der Umsetzung des Verfahrens zur
Wegeberechnung wird das hinterlegte Layout zum Bestandteil der Simulation, da die
Fahrtzeit der SPMs auf den Wegen abhängig von den verschiedenen Fabriklayouts ist.

- 108 -

Das Nachrichtenprotokoll zwischen dem Simulatorkern und dem Motion Planning Modul
ist also derart zu gestalten, dass ein Token erst dann durch den Simulator an den
Nachfolger innerhalb des Simulationsmodells weitergereicht wird, wenn sichergestellt ist,
dass der Transport durch ein SPM das Ziel der Bewegungsanfrage auch erreicht hat.
Mögliche Verzögerungen können hier durch Interaktionen des Anwenders oder durch
direkte, gegenseitige Beeinflussung der SPMs entstehen. Sie werden ebenfalls erkannt
und führen zu einer verzögerten Ankunft eines SPMs an seinem Zielort.

Aufgabe des Motion Planning ist es also, alle Bewegungsanfragen für SPMs vom
Simulationskern entgegenzunehmen, deren Bewegungen auf dem zuvor berechneten
Graphen zu planen und den Simulationskern über die Ankunft eines SPMs am Ziel zu
informieren. Zusätzlich kann das Motion Planning auf Basis des errechneten Layouts auch
für die Kollisionsabfrage der Avatare23 verwendet werden. Damit diese nicht durch
Maschinen, SPMs oder weitere Avatare hindurch laufen, die sich in der Szene befinden,
müssen die Bewegungen eines Avatars regelmäßig vom Motion Planning überprüft und
bestätigt werden. Das trägt in der Visualisierungskomponente, die eine solche Anbindung
und Überprüfung implementiert, wesentlich zu einer immersiven Darstellung bei.

Die Animation der Token innerhalb eines Modellbausteins fällt explizit nicht in das
Aufgabengebiet des Motion Planning. Deren Bewegung, beispielsweise eine Kiste auf
einem Förderband, wird durch Animationsnachrichten entlang eines vorgegebenen Pfades
visualisiert. Im Rahmen dieser Animation wird aus Komplexitäts- und damit
Effizienzgründen keine Kollisionsabfrage durchgeführt. Eine entsprechend realistische
Darstellung des Bausteinverhaltens muss also durch den Modellierer erfolgen, zum
Beispiel durch die Verwendung mehrerer Animationsabschnitte.

Funktionsweise des Motion Planning
Das Motion Planning arbeitet zweidimensional, d.h. die Bewegung der SPMs wird nur in
der XY-Ebene abgebildet und nur um die Z-Achse gedreht.24 Zur Berechnung des
Weggraphen und zur Vermeidung möglicher Kollisionen mit Modellierungsbausteinen
genügt also eine zweidimensionale Projektion der Maschinen in die XY-Ebene (entspricht
einer Draufsicht auf das Simulationsmodell). Diese Projektionen werden für jeden 3D-
Repräsentanten eines Modellbausteins einmal generiert und als Outline in der
Simulationsdatenbank zu dem 3D-Modell gesichert. Die SPMs selbst werden ebenfalls
durch ihre spezifische Outline repräsentiert. Abbildung 30 verdeutlicht dies an einem
Ausschnitt aus einem Simulationsmodell.

23 Unter einem Avatar wird hier die Repräsentation eines Anwenders im Simulationsmodell verstanden, der

sich während der Ausführung eines Simulationslaufs durch das Layout des Simulationsmodells bewegt und
dadurch dynamisch das Fortschreiten der Simulation unter Umständen beeinflusst..

24 Die Ausdehnung in XY-Richtung beschreibt die Ausdehnung nach Länge und Breite. Die jeweilige Höhe
wird durch den Z-Vektor, oder die Z-Ebene bestimmt

Konzeption - 109 -

Abbildung 30: 3D-Szene und entsprechende 2D-Projektion

Obwohl das Motion Planning keine Bewegung in Z-Richtung, also in die Höhe plant,
werden die unterschiedlichen Höhen der fahrenden SPMs dennoch durch eine
höhenabhängige Projektion berücksichtigt. Für eine Kollisionsvermeidung zwischen einem
SPM und den Repräsentanten der Modellbausteine ist es unerheblich, welche Ausdehnung
die Maschinen oberhalb des SPM haben, weil er dort nicht mit ihnen kollidieren kann.
Eine Projektion des gesamten Layouts des Simulationsmodells in die XY-Ebene kann
eventuell ein falsches Abbild der Realität erzeugen und dazu führen, dass mögliche Wege
eines bestimmten SPM-Typs nicht als solche erkannt werden. Durch einen
Sicherheitsabstand fährt ein SPM in der entsprechenden dreidimensionalen Visualisierung
nicht so nahe an den entsprechenden Repräsentanten des Modellbausteins heran, wie es
technisch möglich wäre. Abbildung 31 versucht dies anhand einer Seitenansicht zu
verdeutlichen.

Abbildung 31: Höhenabhängige Projektion in die XY-Ebene

Die zu einem 3D-Repräsentanten erzeugten Outlines bestehen deshalb aus mehreren
Schichten, wobei eine Schicht einem Schnitt auf einer bestimmten Höhe entspricht. Der
3D-Repräsentant wird dazu entlang der Z-Achse in mehrere Schichten unterteilt, deren
einzelne wie überlagerte Projektionen in die XY-Ebene eine unterschiedliche Ausdehnung
besitzen. Alle einzelnen Projektionen werden zusammen mit den zugehörigen
Höhenintervallen als Layer gespeichert. Die Summe aller vorhandenen Layer eines 3D-
Repräsentanten bildet die eigentliche Outline des 3D-Modells. Die SPMs besitzen
ebenfalls jeweils eine Outline, die für die Berechnung verwendet werden kann. Zur
Kollisionsvermeidung mit den statischen 3D-Repräsentanten der Bausteininstanzen
werden aus deren Outline nur diejenigen Layer betrachtet, die im Höhenintervall der

Objekt mit
Richtung

D
raufsicht

Höhengitter

Sicherheits-
Abstand

- 110 -

Outline des entsprechenden SPMs liegen. Nachdem die Umrisse der Schichten vereinigt
wurden, kann wieder auf eine zweidimensionale Ebene reduziert werden (vgl. Abbildung
30).

Berechnung des Wegegraphen
In der Initialisierungsphase des Motion Planning wird für jeden unterschiedlichen SPM-
Typ jeweils ein Graph berechnet, auf dem die SPMs während des Simulationslaufs bewegt
werden. Der einem SPM zugehörige Graph enthält alle Informationen über Positionen und
Blickrichtungen des SPMs sowie die entsprechenden Outlines. Die Vorberechnung des
Graphen in der Initialisierungsphase soll eine effiziente Realisierung der
Kollisionserkennung zur Laufzeit ermöglichen. Die Kollisionen unter den SPMs soll die
Berechnung der Simulation möglichst wenig ausbremsen. Für die Initialisierungsphase
muss dafür ein höherer Aufwand in Kauf genommen werden. Auch vor dem Hintergrund
der Berechung einer Kollisionsabfrage mit mehreren Avataren erscheint eine Verlagerung
aufwendigerer Berechungen in die Initialisierungsphase sinnvoll. Neben der
Beschleunigung der Berechnung zur Ausführungszeit eines Simulationslaufs unterstützt
dieses Vorgehen die Komplexitätsreduktion der Simulationsmodelle. Durch die
Möglichkeit zur effizienten Speicherung einmal erstellter Graphen und deren
Neuberechnung nur bei veränderten SPM-Typen oder einem veränderten Layout, kann in
der Praxis dieser Mehraufwand fast vollständig kompensiert werden.

Jeder Knoten des Graphen repräsentiert eine mögliche Position des SPMs im
Simulationsmodell. Dazu werden im Knoten Position und Ausrichtung des SPMs
hinterlegt. Um die Kollisionsvermeidung effizient zu ermöglichen, speichert jeder Knoten
auch die entsprechende Outline, welche Position und Ausrichtung des SPMs im
Simulationsmodell repräsentiert. Basierend auf der Annahme, dass zwei entgegen
gesetzt fahrende SPMs sich an den meisten Stellen passieren können, wird ein
Rechtsverkehr um alle Hindernisse eingeführt, wobei Hindernisse Maschinen oder auch
Teile von Maschinen sind. Jede Kante im Graphen wird dazu als Vorwärtskante (gewichtet
mit der euklidischen Distanz der Knoten in der Ebene) und als Rückwärtskante (gewichtet
mit der Distanz multipliziert mit einem konstanten Faktor) bewertet. Damit kann explizit
die Gewichtung von Vorwärtsbewegung zu Rückwärtsbewegung für die einzelnen SPM-
Typen festgelegt werden.

Abbildung 32: Interpolation von Kurven durch feingranulare Auflösung

Konzeption - 111 -

Es wird davon ausgegangen, dass die Interpolation der SPM-Outline entlang einer
Geraden (und dadurch ohne Änderung des Blickwinkels) wenig rechenintensiv ist.
Rechenintensivere Interpolation von Kurven zur Ausführungszeit eines Simulationslaufs
werden vermieden, indem vorhandene Kurven im Graphen so feingranular aufgelöst
werden, dass die gespeicherten Outlines des SPMs sowohl zur Kollisionsvermeidung als
auch zur flüssigen Animation verwendet werden können. Das führt zu einer Erhöhung der
Knoten des abgebildeten Weggraphen, wodurch die Suche nach Wegen verzögert wird.
Diese Einschränkung kann aber an dieser Stelle in Kauf genommen werden, wenn das
entwickelte Verfahren dennoch schnell arbeitet und die Berechnung der Simulation nicht
übermäßig bremst. Abbildung 32 verdeutlicht diese Idee. Die eigentliche Berechung des
Graphen erfolgt schrittweise:

1. Berechnung von umschließenden Graphen (im Folgenden: Boundaries), um die

Repräsentanten der Bausteininstanzen im Simulationsmodell; Identifikation von
Connectionpoints als Verknüpfungspunkte zwischen existierenden Boundaries

2. Berechnung und Erstellen von Verbindungen zwischen den Connectionpoints und
damit zwischen den Boundaries, die die 3D-Repräsentanten im Simulationsmodell
umschließen

3. Bereinigung des Graphen durch Löschen überflüssiger Knoten und Kanten mit dem
Ziel, die Wegberechnung zu beschleunigen

4. Zuordnung festgelegter Dockingpoints der einzelnen Bausteininstanzen zu
existierenden Knoten des Graphen, wobei der Abstand zwischen Dockingpoint und
Knoten auf dem Graphen minimiert wird.

In der ersten Berechnungsphase werden Knoten und Kanten um die 3D-Repräsentanten
der Modellbausteine gelegt, so dass diese durch einen Graphen umhüllt sind (vgl.
Abbildung 30). Dieser Rahmen wird im Folgenden als Boundary bezeichnet. Für jeden
Graphen werden so genannte Connectionpoints identifiziert und gespeichert, die als
Eckpunkte oder Andockpunkte verstanden werden können. Im folgenden
Berechnungsschritt werden Verbindungen zwischen den berechneten Connectionpoints
berechnet. Eine Auswahl der gefundenen Verbindungen wird schließlich im Graphen
gespeichert. Abbildung 33 zeigt einen Beispielgraph nach dem Hinzufügen dieser
Verbindungen.

- 112 -

Abbildung 33: Graph des Motion Planning

Die dritte Berechnungsphase dient der Reduzierung der Komplexität des Graphen. Sie
löscht nicht benötigte Knoten und Kanten, wobei der starke Zusammenhang25 des
resultierenden Graphen sichergestellt bleibt. Damit existiert mindestens eine Lösung für
jede gültige Wegeberechnung und es kann immer ein Weg zwischen allen vorhandenen
Dockingpoints gefunden werden. Überflüssige Knoten und Kanten können z.B. bei der
Berechnung der Boundaries entstehen, wenn Modellbausteine so nah beieinander
platziert sind, dass der SPM nicht zwischen ihnen hindurch fahren kann. In der
abschließenden Berechnungsphase werden Assoziationen zwischen den möglichen
Dockingpoints und den nächstliegenden Knoten des Graphen hergestellt, so dass
Anfragen der Form „Kürzester Weg zwischen den Dockingpoints A und B“ auf
Graphberechnungen der Form „Kürzester Weg zwischen den Knoten v_A und v_B“
abgebildet werden können.

Bewegungsanfragen
Die eigentliche Logik einer SPM-Steuerung wird durch einen Modellbaustein im
Simulationsmodell abgebildet. Diese Steuerungslogik schickt eine Bewegungsanfrage an
das Motion Planning Modul und wartet mit der Weiterleitung des Token an den SPM, bis
das Motion Planning die Ankunft des SPM am Startpunkt mitteilt. Es existieren zwei
verschiedene Anfragetypen, weil SPMs optional Pools zugeordnet werden können. Sie
bilden eine Gruppierung gleicher SPMs, damit auch eigentlich gleiche SPM-Typen
beispielsweise hinsichtlich eines beschränkten Einsatzortes unterschieden werden können
(etwa: Gruppe A nur Halle 1, Gruppe B nur Halle 2). Die Modellierung einer komplexen

25 Der Grad des Zusammenhangs bzw. die Konnektivität von Graphen bedeutet, dass Wege zwischen

mindestens zwei Knoten im Graphen bestehen. Ein gerichteter Graph G=(V = Knoten, E = Kanten) heißt
zusammenhängend von einem Knoten v aus, falls es zu jedem Knoten w aus V einen gerichteten Weg in G
gibt, mit v als Startknoten und w als Endknoten. G heißt stark zusammenhängend, falls G von jedem Knoten
v aus V zusammenhängend ist (vgl. [Corm90]).

Konzeption - 113 -

Steuerung wird durch die Anwendung des Pool-Konzeptes weiter vereinfacht, weil implizit
der nächste freie SPM innerhalb des Pools vom Motion Planning beauftragt wird. Durch
die beiden Anfragemöglichkeiten kann ein bestimmter SPM sowohl anhand seiner
eindeutigen ID beauftragt werden oder aber ein beliebiger SPM eines bestimmten SPM-
Pools anhand dessen Pool-ID. Im zweiten Fall wählt das Motion Planning automatisch den
nächsten freien SPM aus dem angeforderten Pool aus. Sobald eine Bewegungsanfrage
beim Motion Planning eintrifft, wird für den entsprechenden SPM, bzw. alle SPMs des
Pools, der Dijkstra-Algorithmus26 auf dem zugehörigen Bewegungsgraph gestartet, um
den kürzesten Weg zu identifizieren. Anschließend wird die minimal benötigte Zeit bis zur
geschätzten Ankunft an die Simulation zurückgeschickt. Diese Ankunft ist im Voraus nicht
genau bestimmbar, da durch mögliche Kollisionen mit Avataren oder SPMs
Verzögerungen auf dem Transportweg entstehen können. Zu diesem frühesten möglichen
Zeitpunkt fragt der Simulator beim Motion Planning nach der Ankunft des SPM. Als
Antwort wird entweder eine neue Schätzung oder im Erfolgsfall eine Bestätigung der
Ankunft verschickt.

Kollisionsvermeidung
Das Motion Planning ist sowohl für die Kollisionserkennung der Avatare untereinander,
der Avatare mit den SPMs, als auch zwischen den SPMs verantwortlich. Klammert man
eine Kollision mit den eventuell angeschlossenen Avataren zunächst aus, geschieht die
Vermeidung von Kollisionen zwischen SPMs und den Repräsentanten der Modellbausteine
bereits implizit durch die Berechnung des Bewegungsgraphen. Die während der
Ausführung eines Simulationslaufs auf dem Graphen berechneten Pfade als Ergebnisse
der Weganfragen können also keine Kollisionen mit den Modellbausteinen erzeugen. Um
die Kollision der SPMs untereinander zu vermeiden, wird deren Bewegung in einem
Motion Schedule festgeschrieben. Dieser enthält in fixen Zeitinkrementen die Positionen
aller SPMs inklusive der sie beschreibenden Outlines. Der Abstand der Zeitinkremente ist
so klein gewählt (z.B. 200ms), dass der Motion Schedule zur Erkennung von Kollisionen
genutzt werden kann. Aus Effizienzgründen wird der Motion Schedule in größeren
zeitlichen Intervallen vorausberechnet (z.B. alle 10s). Als Ergebnis entsteht eine Abfolge
von Zeit-Ebenen mit den Positionen der jeweiligen SPMs zu jedem berechneten
Zeitpunkt. Die Zeit-Ebenen werden aufsteigend geordnet und mit den SPM-Positionen
gefüllt. Dazu werden die berechneten Pfade, auf denen sich die SPMs bewegen sollen,
Schicht für Schicht miteinander verglichen, so dass keine Kollisionen entstehen. Mögliche
Kollisionen werden zunächst durch Warten aufgelöst. Ein SPM wartet, bis der
kollidierende SPM seine Route fortgesetzt hat, bevor es den Weg auf seinem Pfad
fortsetzt. Zur Animation werden die berechneten Roboterpositionen in regelmäßigen
Abständen vom Motion Planning an die angeschlossenen Visualisierungskomponenten
verschickt. Um eine flüssige Animation zu erreichen werden aus den gespeicherten
Pfaden, auf denen sich die SPMs bewegen, Zwischenschritte extrahiert, da die Auflösung
des Motion Schedule für eine flüssige Animation nicht ausreicht. Bevor die SPM-
Positionen verschickt werden, wird zusätzlich überprüft, ob Kollisionen mit den
Avatarpositionen existieren. Sollte eine solche Kollision auftreten, wird der entsprechende
SPM angehalten und als blockiert markiert. Der Motion Schedule muss dann neu
berechnet werden, da aus dieser Blockade neue Kollisionen entstehen können. Unter

26 Eine genauere Beschreibung des Dijkstra-Algorithmus findet sich bei [SuMe01].

- 114 -

Verwendung dieses Verfahrens wird also sowohl die Kollision der SPMs untereinander,
wie auch mögliche Kollisionen mit sich bewegenden Avataren vermieden.

Die Kollisionsvermeidung der Avatare soll auf einem leicht abgeänderten Prinzip basieren.
Basis der Wege aber vor allem der Graphberechung ist das höhenabhängige
zweidimensionale Layout des Simulationsmodells. Um die Kollisionserkennung der
Avatare untereinander sowie der Avatare mit den 3D-Repräsentanten der
Modellbausteine realisieren zu können, muss die angeschlossene Visualisierungs-
komponente dem Motion Planning einen Wegabschnitt schicken, entlang dem sich der
jeweilige Avatar bewegen will. Das Motion Planning berechnet daraufhin die letzte
Position auf dem übermittelten Weg, die keine Kollision mit 3D-Repräsentanten oder
anderen Avataren ergibt. Als Konsequenz muss der Avatar eventuell durch die
Visualisierungskomponente zurückgesetzt werden, wodurch in der Anzeige ein Ruckeln
entstehen kann. Die Auswirkungen dieses Effektes hängen aber stark von der Frequenz
der Übermittlung des Wegabschnitts zusammen, die die Visualisierungskomponente
realisiert. Dieses Verfahren basiert auf der Annahme, dass die Bewegung eines Avatars
durch die Szene nur schwer im Vorhinein abgeschätzt werden kann. Innerhalb der
Aufgabenstellung ist dieser möglichst hohe Freiheitsgrad für den Anwender gewollt,
damit dieser sich möglichst realitätsnah und immersiv durch die Szene bewegen kann.
Ist darüber hinaus die Frequenz der Übermittlung des Avatar-Wegs hoch genug, wird der
Avatar durch das System so rechtzeitig gebremst, dass dieser „Ruckel-Effekt“ kaum
störend wahrgenommen wird.

Die eingesetzte Kollisionsvermeidung dient der Realisierung unterschiedlicher Direktiven.
Während die Kollisionsvermeidung der SPMs untereinander hauptsächlich darauf
ausgerichtet ist, die Wegeplanung so realistisch wie möglich abzubilden und erst als
Nebeneffekt eine saubere Visualisierung in den entsprechenden Komponenten ermöglicht
(Gabelstapler fahren dann beispielsweise nicht durcheinander durch), ist genau diese
präzise Visualisierung ein nützliches Instrument zur Erfüllung der Anforderung nach
bestmöglicher Immersion. Der Anwender wird gezwungen, auch in der virtuellen
Darstellung des Simulationsmodells und damit im abgebildeten System nur diejenigen
Wege zu benutzen, die ihm auch im realen System zur Verfügung ständen. Durch den
direkten Effekt seiner virtuellen Präsenz im Simulationsmodell (Gabelstapler halten vor
ihm an) führt das Motion Planning dadurch zu einer Steigerung der Immersion in der
virtuellen Umgebung. Das der Anwender als Konsequenz das Fortschreiten der Simulation
während dieses spezifischen Simulationslaufs beeinflusst, ist ein auf Grund der
stochastischen Auslegung von Simulationsmodellen zu vernachlässigender Effekt, bietet
darüber hinaus sogar eine weitere unmittelbare Interaktionsmöglichkeit in der virtuellen
Umgebung und unterstützt so die an das Werkzeug gestellten Anforderungen. Die
Echtzeit-Simulation wird hauptsächlich in der Phase der Modellvalidierung und
Verifikation eingesetzt. Die Berechnung statistisch signifikanter Simulationsläufe erfolgt
anschließend ohne Visualisierungskomponenten und in einer streng ereignisorientierten
bzw. analogen schnellstmöglichen Berechnung. Die zur Modellvalidierung,
Modellverifikation oder Vorführung eingesetzte dreidimensionale Visualisierung eines
einzelnen Simulationslaufes unterliegt weiteren stochastischen Einflüssen und ist somit
nicht notwendigerweise repräsentativ für das dynamische Verhalten des abgebildeten
Systems. Im Rahmen der Realisierung ist darauf zu achten, diese Interaktionsmöglichkeit
zumindest optional ausschalten zu können, um dem Anwender optional eine bekannte

Konzeption - 115 -

Visualisierungsform anzubieten. Alternativ können Verfahren implementiert werden, wie
sie unter Abschnitt 3.4.1.1 bereits aufgezeigt wurden.

Benutzerführung zu signifikanten Prozesspunkten
Bewegt sich der Anwender durch die dreidimensionale Szene wird das Maß der
Immersion für ihn für alle diejenigen Abschnitte der Szene erhöht, die in seinem
Wahrnehmungsbereich liegen. Bei großen Szenen steigt dem gegenüber derjenige Anteil
der Szene, der dem Anwender verborgen bleibt (beispielsweise in seinem Rücken, hinter
einer Wand, etc.). Um dennoch eine optimale Analyse des visualisierten
Simulationsmodells zu ermöglichen, muss der Anwender auf diejenigen signifikanten
Prozesse hingewiesen werden, die nicht in seinem Sichtfeld liegen, beispielsweise in Form
einer Liste aller Bausteinsinstanzen, die nach den aktuellen Signifikanzwerten sortiert ist.
Voraussetzung hierfür ist die Berechnung und Belegung jeder Bausteininstanz des
Simulationsmodells mit einem objektspezifischen Signifikanzwert und einer im Baustein
hinterlegten Methode zu dessen Berechnung während der Ausführung der Simulation.
Während der Simulation wird der Anwender auf kritische Prozesse innerhalb der
Simulation aufmerksam und kann seine Aufmerksamkeit umlenken. Als Navigationshilfe
soll ihm der kürzeste Weg zu einem selektierten Baustein in die Szene eingeblendet
werden und der selektierte Modellbaustein entsprechend markiert werden, um ihn
innerhalb des Simulationsmodells schneller identifizieren zu können. Hier wirken die
Anforderungen nach einer hohen Immersion für die Aufgabenerfüllung des Anwenders
eher hinderlich. Vor der Hintergrund einer realitätsnahen Visualisierung muss das an
dieser Stelle allerdings in Kauf genommen werden. Während der Implementierungsphase
sollten alternative Visualisierungen ergänzend berücksichtigt werden, um diese
Fragestellung mit einer besser angemessenen Darstellungsform zu bearbeiten.

Grundlage dieser Navigationshilfe muss ein auf dem zweidimensionalen Layout
berechneter Bewegungsgraph sein, wobei das entwickelte Verfahren erneut zum Einsatz
kommt. Der Avatar des Anwenders entspricht einem speziellen SPM. Der kürzeste Weg
muss für den Anwender in die virtuelle Umgebung eingeblendet werden, beispielsweise in
Form von Pfeilen, die auf dem Boden angeordnet werden. Verschiedene Realisierungen
sind an dieser Stelle vorstellbar, von der einmaligen Berechnung und Darstellung des
Weges ausgehend von der aktuellen Position des Avatars bis zur dynamischen
Nachführung und Adaption des Weges nach Avatarbewegungen innerhalb der Szene.
Zumindest optional soll eine Funktion vorgehalten werden, die das direkte „Beamen“ zum
nächst möglichen Punkt in der Umgebung des selektierten Modellbausteins erlaubt (vgl.
hierzu auch Abschnitt 3.4.2).

Erweiterung der Modellbeschreibung zur Integration des Motion Planning
Die der Integration des Motion Planning Moduls in den Simulationskernel zur
dynamischen Berechnung der Wege für alle Typen von SPMs erfordert eine Erweiterung
der vorhandenen Modellbeschreibung und eine Erweiterung des Nachrichtenprotokolls
(vgl. Abschnitt 5.2.2.3). Tabelle 11 listet die zusätzlich benötigten Attribute für einen
Modellbaustein auf, die sich aus dem Motion Planning ergeben.

Bezeichnung Beschreibung

Significance Signifikanzwert für jede Modellinstanz

simulationBoundary Markierung für reine Layoutobjekte

- 116 -

Dockingpoint Relative Anfahrtspunkte der SPMs für jeden
Modellbaustein

Tabelle 11: Zusätzliche Attribute zur Integration des Motion Planning

Durch die Erweiterung um ein spezielles Modul zur Wegplanung eignet sich das hier
entwickelte Werkzeug besser für die Modellierung und Simulation von
funktionsorientierten Fertigungsprozessen, weil der Aufwand zur Modellierung der
benötigten Wege und deren Bearbeitungsdauer während der Simulation durch
entsprechende Motion Planning Bausteine in Bibliotheken auf ein Minimum reduziert
werden kann. Darüber hinaus wird ein präziseres und durch den Anwender potentiell
manipulierbares Ergebnis erlaubt. Die Nutzung des hier entwickelten Verfahrens ist aber
nicht zwingend vorgegeben; die Modellbeschreibung erlaubt ebenso die Beschreibung
über genau festgelegte Wege, wie sie in vorhandenen Materialflusssimulatoren zum
Einsatz kommen. Da die Graphenberechung für das Motion Planning ein arbeitsintensiver
Prozess ist, müssen während der Implementierungsphase des Werkzeuges
entsprechende Methoden zur Reduzierung des Aufwands berücksichtigt werden.
Beispielsweise muss ein zu einem Layout gehörender Graph mit dem Simulationsmodell
in der Simulationsdatenbank gespeichert werden können, um das Laden eines
Simulationsmodelllayouts inklusive seines Bewegungsgraphen im Simulatorkern zu
beschleunigen. Voraussetzung hierfür ist, dass sich auch alle anderen für das Motion
Planning relevanten Informationen des Simulationsmodells nicht geändert haben. So
könnte der Austausch eines 3D-Repräsentanten für einen Pool von SPMs Auswirkungen
auf die zu benutzenden Wege und damit den zugrunde liegenden Bewegungsgraphen
haben. Zur Identifikation von Änderungen am Simulationsmodell stehen neben der
Versionierung weitere Verfahren zur Verfügung. Ein vorhandener Weggraph darf in jedem
Fall nur dann aus der Simulationsdatenbank geladen werden, wenn es keine Änderungen
am Simulationsmodell gegeben hat, die für das Motion Planning Konsequenzen haben

Neben den eingepflegten Erweiterungen der Modellbeschreibung muss im weiteren
Verlauf der Entwicklung auch das vorhandene Nachrichtenformat erweitert werden, um
eine effektive Kommunikation zwischen dem Simulatorkern und dem Motion Planning
Modul zu ermöglichen. Alle Details der benötigten Erweiterungen sowie die Gestaltung
des Nachrichtenablaufs, können aber unter Abschnitt 5.2.2.3 gefunden werden.

Ein weiterer wesentlicher Punkt der Aufgabenstellung ist die Modellierung und Simulation
in einem Multitasking-Betrieb, die das Modellieren und Simulieren mehrerer Anwender
auf Basis eines einzelnen Modells erlaubt. Der folgende Abschnitt beleuchtet dieses
Themenfeld genauer hinsichtlich zusätzlich benötigter Erweiterungen für die
Modellbeschreibung.

5.2.1.3 Multitasking Modellierung und Simulation

Um in dem Werkzeug den Mehrbenutzerbetrieb sowohl im Bereich der Modellierung, als
auch in der Simulation umzusetzen, wurden in 5.1.6 die Methoden Locking, Cloning und
Versionierung identifiziert. Darüber hinaus wurde dort ein Rechtemanagement entwickelt,
das ebenfalls berücksichtigt werden soll. Dieser Abschnitt beschreibt die notwendigen
Erweiterungen für die Modellbeschreibung, um die identifizierten Methoden umsetzen zu
können.

Konzeption - 117 -

Um das Locking überhaupt zu erlauben, muss es für jede Bausteininstanz möglich sein,
einem einzigen Anwender durch ein entsprechendes Attribut den exklusiven Zugriff auf
diese Instanz zu garantieren. Durch die Möglichkeit zur hierarchischen Modellierung
müssen zumindest alle untergeordneten Bausteininstanzen während der Bearbeitung
gesperrt werden (vgl. Abbildung 27). Alle Modellbausteine, die dem aktuell gesperrten
Bausteinobjekt übergeordnet sind, sollten ebenfalls entsprechend markiert werden.
Verschiedene Zustandsausprägungen des Attributs regeln diese verschiedenartigen
Zugriffsmöglichkeiten (vgl. Abschnitt 3.5.4.1). Das Locking-Attribut muss nicht in der
Modellbeschreibung des Simulationsmodells gespeichert werden, sondern wird nur
während der Bearbeitung oder Ausführung eines Simulationsmodells benötigt. Dennoch
soll es an dieser Stelle in die Modellbeschreibung mit aufgenommen werden, um während
der Implementierungsphase des Werkzeugs nicht übergangen zu werden.

Die Umsetzung des Cloning-Verfahrens selbst erfordert keine Erweiterung der
Modellbeschreibung. Durch die Implementierung einer Versionierung können die
einzelnen Versionen des Simulationsmodells separat gespeichert und somit stets
reproduziert werden.

Zusätzliches Attribut für die Anwendung der Versionierung ist minimal die Angabe einer
Versionsnummer, unter der verschiedene zusätzliche Informationen gespeichert werden
können (beispielsweise der Name des Bearbeiters und ein erläuternder Kommentar). Mit
diesem Verfahren ist ein Vergleich verschiedener Versionen möglich und eine Änderung
in einem Modellbaustein, die zu einer neueren Version führt, birgt nicht die Gefahr, dass
vorhandene Simulationsmodelle nicht mehr korrekt funktionieren, die eine frühere
Version des Modellbausteins verwenden. Über spezielle Abfragen soll der Anwender in der
Visualisierung der Modellierungskomponente über neuere Versionen der verwendeten
Modellbausteine informiert werden, die zusätzlichen Attribute einsehen und ggf. die
verwendeten Modellbausteine durch die aktuellste Versionen ersetzen können. Über die
Versionierung ist es auch möglich, dem Anwender genau den Zustand des
Simulationsmodells zu präsentieren, der seinem letzten Bearbeitungsschritt entspricht.
Theoretisch wäre es möglich, sich das Attribut Version für jeden Modellbaustein zu
sparen und stattdessen jeder neuen Bausteinversion auch einen neuen eindeutigen
Bezeichner aufzuprägen. Um das oben skizzierte Verfahren der automatischen
Identifizierung von neueren Bausteinversionen anwenden zu können, müssten dann in
der Simulationsdatenbank zusätzliche Verweise gespeichert werden, die eine solche
Identifikation ermöglichen. Im Rahmen der Implementierung soll die erste
Vorgehensweise bevorzugt werden. Die Umsetzung der zusätzlichen Funktionalitäten im
Rahmen der Versionierung soll den Anwender bei der Modellierung im Team
unterstützen, indem ihm die Änderungen anderer Anwender dargestellt werden. Die
Kooperation innerhalb eines Projektteams wird gefördert und doppelte Arbeiten werden
vermieden.

Zur Umsetzung des in Abschnitt 5.1.6 beschriebenen Rechtemanagements wird davon
ausgegangen, dass die spätere Implementierung eine Aggregation auf ein einziges
Attribut ermöglicht, dass für alle Bausteine einer Bibliothek bzw. für jeden Modellbaustein
hinterlegt werden kann. Dies kann beispielsweise umgesetzt werden, indem jegliche
verwendete Kombination in der Datenbank abgelegt wird und somit durch einen
eindeutigen Bezeichner identifiziert werden kann. Tabelle 12 listet die für die

- 118 -

Mehrbenutzer-Modellierung und –Simulation benötigten zusätzlichen Attribute der
Modellbeschreibung zusammenfassend auf.

Bezeichnung Beschreibung

version Versionsnummer des Modellbausteins

locking_status Aktueller Status (nur zur Laufzeit)

rights Eindeutiger Bezeichner zur Umsetzung des
Rechtmanagements

Tabelle 12: Zusätzliche Attribute für die Mehrbenutzer-Modellierung und -
Simulation

Die um die oben beschriebenen Erweiterungen ergänzte Modellbeschreibung wird für die
Mehrbenutzer-Modellierung und -Simulation eines dynamisch detaillierenden
Simulationsmodells, das sowohl einen objekt- als auch einen funktionsorientierten
Fertigungsprozess beschreiben kann, als ausreichend angesehen. Durch die Konzeption
der Rückwärtssimulation und insbesondere der (semi-)automatischen Transformation von
Simulationsmodellen zwischen Vorwärts- und Rückwärtssimulation, können weitere
Erweiterungen der Modellbeschreibung nötig werden. Diese sollen in 5.2.4.1 genauer
analysiert werden. Im Folgenden wird vorher auf das XML-basierte Nachrichtenprotokoll
eingegangen werden, das die Kommunikation des Simulatorkerns mit den
angeschlossenen Visualisierungskomponenten und dem Motion Planning erlaubt, um die
Konzeption hinsichtlich einer vorwärtsgerichteten Modellbeschreibung abschließen zu
können.

5.2.2 Nachrichtenbasierte Kommunikationsschnittstelle

Durch den modularen Aufbau des Werkzeugs muss der Simulatorkern das in einem XML-
Format gespeicherte Simulationsmodell in ein Java-Programm transformieren,
kompilieren und ausführen (vgl. Abschnitt 5.1.4). Simulationsmodell und Simulator
ergeben dadurch ein einziges, eng verzahntes Modul, an das sich zur Ausführungszeit
eines Simulationsmodells verschiedene Visualisierungskomponenten anschließen können.
Um die Kommunikation des Simulatorkerns mit den Visualisierungen zu standardisieren,
wird im Folgenden eine Nachrichtenbasierte Kommunikationsschnittstelle konzipiert, die
alle Anforderungen strukturiert und deren Bewältigung ermöglicht. Wie in Abschnitt 5.1.5
erläutert, wird auch diese Kommunikationsschnittstelle über ein erweiterbares XML-
Format spezifiziert. Die Vorteile der XML vor dem Hintergrund einer erweiterbaren
Implementierung wurden dazu unter Abschnitt 3.5.7 bereits erläutert. Für die Gestaltung
einer Kommunikationsschnittstelle für ein erweiterbares Werkzeug, dessen Module
eigenständig auf verschiedenen Computern laufen sollen, gibt es zu diesem
Nachrichtenbasierten Kommunikationsprotokoll keine sinnvollen Alternativen. Der direkte
Zugriff auf gegenseitige Methoden verbietet sich durch die mögliche Verteilung der
Anwendung und der Anwender.

Grundsätzlich sollen drei verschiedene Nachrichtentypen unterschieden werden: Normal-
Message, Request-Message und Reply-Message. Die Typisierung richtet sich nach der Art
der transportierten Information und strukturiert den Nachrichtenverkehr auf einer
logischen Ebene. Normal-Messages dienen dem einfachen Austausch von Information,
beispielsweise der Übertragung von Steuerungsbefehlen an den Simulatorkern. Request-
Messages sind Nachrichten, die eine Anfrage an den entsprechenden
Kommunikationspartner senden und als Antwort eine Reply-Message erhalten. In den

Konzeption - 119 -

folgenden Abschnitten sollen die einzelnen Nachrichten dargestellt werden. Die
Unterteilung des folgenden Abschnitts erfolgt nach der Reihenfolge der Ausführung im
Rahmen eines Simulationslaufs mit einer angeschlossenen Visualisierung. Anschließend
werden die benötigten Erweiterungen für die speziell entworfenen Module betrachtet.

5.2.2.1 Initialisierungsnachrichten

Initialisierungsnachrichten werden zu Beginn der Kommunikation zwischen Simulatorkern
und Visualisierungskomponente verwendet. Sie dienen der Beschreibung der Szene,
Token, Grundlagen der Animation und der Einstellung von Modulparametern. Die
nachfolgende Tabelle 13 beschreibt die vorhandenen Nachrichten und ihre jeweilige
Typisierung.

Bezeichnung Typ Beschreibung

Databaseinfo Normal Übermittelt die Datenbankinformationen zum Laden
der 3D-Repräsentanten zur Darstellung der
Modellbausteine

Buildingblock Normal Übermittelt Position und 3D-Darstellung einer
spezifischen Bausteininstanz; Wird ggf. für jede
Bausteininstanz des Simulationsmodells gesendet.

Tokenpath Normal Übermittelt für jeden Modellbaustein die benötigten
Animationspfade der Token und ihre relative Position
zum Modellbausteine

Token Normal Übermittelt die Position und 3D-Repräsentanten eines
Token

EndOfInitialization Normal Zeigt, dass alle Informationen der
Initialisierungsphase übertragen wurden

Tabelle 13: Initialisierungsnachrichten

Verbindet sich eine Visualisierungskomponente mit dem Simulatorkern, übermittelt
dieser alle benötigten Informationen in einer Initialisierungsphase an die neu
angeschlossene Visualisierungskomponente. Mit der EndOfInititialization-Message wird
die Initialisierungsphase beendet; die Simulation wird fortgeführt oder explizit mittels
einer Steuerungsnachricht gestartet.

5.2.2.2 Steuerungs- und Manipulationsnachrichten

In der Gruppe Steuerungs- und Manipulationsnachrichten werden alle Nachrichten
zusammengefasst und beschrieben, die zur Steuerung des Simulatorkerns aus der
Visualisierungskomponente heraus zur Verfügung stehen. Darüber hinaus werden alle
Nachrichten aufgeführt, mit deren Hilfe der Anwender einzelne Attribute der
Modellbausteine abfragen, aktualisieren und manipulieren kann. Eine genaue
Beschreibung der zur Verfügung stehenden Nachrichten findet sich nachfolgend in Tabelle
14.

Die erste Gruppe der Nachrichten dient der Steuerung des Simulatorkerns aus der
Visualisierungskomponente. Neben den üblichen Steuerungsbefehlen kann eine
Simulation gespeichert werden. Die Modellvalidierung kann mit dieser
Zwischenspeicherung von Simulationsläufen erheblich verbessert werden, weil z.B. ein
spezieller Zustand eines Simulationslaufs rekonstruiert werden kann. Der Anwender ist
nicht gezwungen, eine Simulation stets neu zu beginnen und bis zur problematischen

- 120 -

Stelle zu simulieren. Für alle Nachrichten werden mögliche Fehlernachrichten
vorgehalten.

Bezeichnung Typ Beschreibung

Steuerungsnachrichten

Start Normal Startet die Simulation im Simulator

Pause Normal Hält die Simulation an.

Stop Normal Stoppt die Simulation

SaveSimulation Normal Speichert den aktuellen Zustand der Simulation ab

Timefactor Normal Verändert die Ausführungsgeschwindigkeit der
Simulation (Timefactor 100 entspricht Echtzeit)

Maxspeed Normal Streng Ereignisgesteuerte Berechnung der Simulation
ohne Verhältnis zur Echtzeit

Normalspeed Normal Setzt von der maximal möglichen Geschwindigkeit
auf den letzten Timefactor

Timestamp Normal Liefert die aktuelle Simulationszeit

Error Reply Fehlernachricht mit Beschreibung

No-Error Reply Bestätigung einer Nachricht, bei der kein Fehler
aufgetreten ist

Manipulationsnachrichten

SubscribeProperty Request Abonniert die Variablen einer bestimmten
Bausteininstanz, beispielsweise zur Anzeige in der
Visualisierung

UnsubscribeProperty Normal Beendet ein Abonnement

ObjectProperties Reply Enthält eine Liste aller Variablen einer
Bausteininstanz als Antwort auf die
SubscribeProperty-Nachricht

PropertiesChanged Normal Ändert die Werte einer Variablen oder teilt der
Visualisierung einen geänderten Wert einer Variablen
mit

Significance Normal Ändert die Signifikanz eines Objektes.

IncludeToken Normal Dient dem Hinzufügen eines bestimmten Token zu
einem anderen Token, beispielsweise einer Schraube
ein einer Kiste

ExcludeToken Normal Dient dem Extrahieren eines Token aus einem
bestimmten Token.

AnimateToken Normal Nachricht zur Animation eines Token in einem
Modellbaustein entlang eines vorgegebenen
Tokenpaths

RemoveToken Normal Entfernt das Token aus der Visualisierung

Tabelle 14: Steuerungs- und Manipulationsnachrichten

Die zweite Gruppe an Nachrichten dient der Abfrage und Manipulation von Attributen der
Bausteininstanzen. Neben einer dynamischen Anzeige können die Werte aus den
Visualisierungskomponenten heraus manipuliert und zum Simulator übertragen werden.
Über eine PropertyChanged-Nachricht werden andere angeschlossene Visualisierungs-
komponenten über die Veränderung informiert. Die letzte Gruppe der Nachrichten dient
der Umsetzung des Token-in-Token Konzeptes in der Visualisierung, also der Tatsache,
dass Token andere Token enthalten können. Damit wird es möglich, Token in Gruppen
zusammenzufassen oder Materialflüsse genauer abbilden zu können, ohne Informationen
zu verlieren (vgl. Abschnitt 5.1.4).

Konzeption - 121 -

5.2.2.3 Nachrichtenerweiterung für das MRS

Die Integration der dynamischen Detaillierung von Simulationsmodellen erfordert eine
Erweiterung des Nachrichtenprotokolls. Tabelle 15 gibt einen Überblick über die
zusätzlich benötigten Nachrichten:

Bezeichnung Typ Beschreibung

Avatar Normal Übermittelt die aktuelle Position der angeschlossenen
Avatare

MRMQuantifier Normal Ermöglicht das Steuern des MRS aus der
Visualisierung heraus

lockMRM Normal Beendet die dynamische Detaillierung und berechnet
das Modell auf Basis der aktuellen Detaillierung der
Modellbausteine

unlockMRM Normal Schaltet die Berechnung der dynamischen
Detaillierung wieder ein

Tabelle 15: Erweiterung für das MRS

Damit soll zum einen aus den Visualisierungskomponenten die aktuelle Position des
Avatars des Anwenders übertragen werden, um eine hohe Detaillierung an den Punkten
zu ermöglichen, wo sich der Avatar bewegt. Zum Anderen wird in dieser Nachricht die
Blickrichtung des Avatars übertragen, um die dynamische Detaillierung auf Basis dieser
beiden, benutzerstimulierten Kriterien zu ermöglichen. Zusätzliche Nachrichten werden
benötigt, um die dynamische Berechnung des Detaillierungsgrades ein- bzw. ausschalten
zu können. Durch die Umschaltung des Detaillierungsgrades in der Simulation ergibt sich
keine neue Darstellung in der entsprechenden Visualisierungskomponente, weil deren
Darstellung immer auf dem am höchsten detaillierten Simulationsmodell basiert. Für die
einzelnen 3D-Repräsentanten der Bausteininstanzen ergibt sich aber ggf. eine neue
Zugehörigkeit zu einer anderen Bausteininstanz und damit neue oder andere Attribute.
Dieser Austausch der Attribute kann mit den bestehenden Nachrichten bereits vollständig
abgebildet werden (bspw. Properties-Changed-Message).

5.2.2.4 Nachrichtenerweiterung für das Motion Planning

Auch die Kommunikation zwischen dem Motion Planning Modul und dem Simulatorkern
soll über das Nachrichtenprotokoll abgewickelt werden. Alternativ zum Nachrichten-
konzept bietet sich an dieser Stelle auch eine unmittelbare Anbindung des Motion
Planning an den Simulator an. Zunächst sollen jedoch die Nachrichten des
Gesamtsystems in einem gemeinsamen Protokoll integriert werden, unabhängig von der
tatsächlichen Implementierung in einer späteren Entwicklungsphase des Werkzeugs. Da
hier ein besonders intensiver Austausch von Informationen benötigt wird, müssen
entsprechend viele Nachrichten dem Protokoll hinzugefügt werden. Der Ablauf der
Bewegungsanfragen folgt der in Abschnitt 5.2.1.2 beschriebenen Reihenfolge.

Bezeichnung Typ Beschreibung

MPPrefs Normal Nachricht zur Festlegung von Motion Planning
Parametern. Wird in der Initialisierungsphase
gesendet

Robot Normal Legt einzelne SPMs an

Robotpool Normal Legt einen Pool von SPMs an

moveRobot Request Fordert die Bewegung eines bestimmten SPMs an.

- 122 -

movePoolmember Request Fordert die Bewegung eines SPMs aus einem
bestimmten Pool an.

freeRobot Request Freisetzen eines SPMs nach Ausführung eines
Auftrags

removeRobot Request Entfernt einen SPMs aus der Visualisierung

StillComputingPath Reply Beinhaltet die voraussichtlich benötigte Zeit zur
Berechnung eines Wegs

ExpectedArrivalTime Reply Voraussichtlich benötigte Zeit eines SPMs für einen
Auftrag

CheckArrival Request Prüfung auf erfolgreiche Ausführung eines Auftrags

Arrival Reply Ankunft eines SPMs am Ziel seines Auftrags

Tabelle 16: Nachrichtenerweiterung für das Motion Planning

Abbildung 34 zeigt eine schematische Darstellung einer optimalen Fahrt eines SPM durch
ein Simulationsmodell. Wäre der entsprechende SPM auf seinem Weg aufgehalten
worden, würde die jeweilige Check-Arrival-Message mit einer neuen
ExpectedArrivalTime-Message beantwortet werden.

Abbildung 34: Sequenzdiagramm des Motion Planning Nachrichtenprotokolls

Mit dem hier dargestellten und für dynamische Detaillierung und Motion Planning
erweiterten Nachrichtenprotokoll wird eine Kommunikation zwischen Visualisierungs-
komponenten, Motion Planning Modul und Simulatorkern ermöglicht. Durch die
Einführung der Rückwärtssimulation im folgenden Abschnitt muss das
Nachrichtenprotokoll wie auch die Modellbeschreibung eventuell ausgebaut werden. Für
die hier dargestellten Aufgaben ermöglicht das Protokoll eine Manipulation der
Simulationsdaten zur Ausführungszeit eines Simulationsmodells und schafft damit neben
der Modellbeschreibung die Grundlagen zu einer immersiven und interaktiven
Modellierungs- und Simulationsumgebung für den Anwender.

Konzeption - 123 -

5.2.3 Verwaltung der Experimentdaten

Zur Speicherung der Datenmenge eines Simulationsexperimentes soll in diesem
Abschnitt eine Struktur vorgestellt werden, die durch eine Beschreibung im XML-Format
umgesetzt werden soll. Neben der vollständigen Sicherung aller für ein
Simulationsexperiment erforderlichen Daten sollen hier auch Szenarios definiert werden,
die bei Bedarf mit wechselnden Eingabedaten simuliert werden können. Dieses Vorgehen
unterstützt den Anwender beim erweiterten Einsatz der Ablaufsimulation, weil das
wiederholt Parametrieren des Simulationsmodells durch die Verwendung eines Szenarios
entfällt. Nur die jeweils aktuellen Prozessabbilder als Eingabedaten werden aktualisiert
und führen zu veränderten, auf die aktuelle Situation angepassten Ergebnissen.

Aufgrund der stochastischen Einflüsse zufallsverteilter Variablen innerhalb der
Modellbausteine müssen Simulationsmodelle mehrfach ausgeführt werden, um die
statistische Schwankungsbreite der Zielkriterien einer Simulation erkennen zu können.
Deshalb bestehen Simulationsexperimente immer aus mehreren Simulationsläufen (vgl.
Abschnitt 3.1). Ein Experiment kann also in einem ersten Schritt in die einzelnen
Simulationsläufe getrennt werden. Darüber hinaus vervollständigen Angaben zu
Simulationsmodell, inklusive Versionsnummer, Anwender Start- und Endzeit der
Simulation, Ausführungsdatum sowie untersuchtem Szenario etc. die Angaben des
Experimentes. Jeder Simulationslauf als Element des Experiments ist durch die Menge
der Eingabedaten, die Menge der Interaktionen, einer Protokolldatei des
Nachrichtenaustauschs und die eigentlichen Ergebnisdaten gekennzeichnet, so dass für
jeden Lauf diese Unterteilung getroffen werden kann. Die Eingabedaten lassen sich auf
die einzelnen Modellbausteininstanzen des Simulationsmodells verteilt auflisten. Für jedes
Attribut kann hier der Startparameter gesichert werden, so dass eine Wiederholung des
Simulationslaufs erfolgen kann. Alle Interaktionen des Anwenders werden
mitprotokolliert, so dass eine exakte Kopie des Simulationslaufes geschaffen werden
kann. Eventuell kann diese als Vorlage für eine Wiederaufnahme in Form eines weiteren
Simulationsexperimentes dienen, indem der Anwender weitere Interaktionen vornehmen
kann. Ebenfalls protokolliert wird der Nachrichtenaustausch zwischen Simulation und
Visualisierung, damit Wiederholungen einzelner Ausschnitte des Simulationslaufs erneut
in den Visualisierungskomponenten dargestellt werden können. Dadurch wird es
ermöglicht, im Nachhinein Ursachen von Effekten zu ermitteln, die in der Simulation erst
später auftreten. Besonderheiten eines Simulationslaufs können automatisch erneut
wiedergegeben und beispielsweise in einer Expertenrunde diskutiert werden. Die
eigentlichen Ergebnisdaten enthalten eine komplette Liste aller Attribute, die überhaupt
in dem Simulationslauf ausgewertet werden sowie jeweils die einzelnen Datensätze in
Einzelwerten oder Listen, wiederum aufgeteilt auf diejenigen Bausteininstanzen, in denen
die Kennziffern gesammelt wurden. Für eine Analyse auf Basis von Token, die durch das
Simulationsmodell laufen, werden spezielle Auswertungsbausteine im Simulationsmodell
hinterlegt, deren Attribute ebenfalls unter den Ergebnisdaten abgelegt werden. Abbildung
35 zeigt schematisch die Baumstruktur der Experimentdatenverwaltung.

Zusammenfassend kann festhalten werden, dass mit dieser Experimentdatenverwaltung
die einzelnen Simulationsexperimente so vollständig in der Simulationsdatenbank
gesichert werden, dass alle relevanten Daten in einer reproduzierbaren Form gespeichert

- 124 -

werden. Einzelne Simulationsläufe können erneut visualisiert werden, ohne dass eine
Wiederholung der Simulation erfolgen muss. Eine erneute Analyse wird somit erleichtert.

Abbildung 35: schematische Übersicht über die Experimentdatenverwaltung

5.2.4 Rückwärtssimulation und Modelltransformation

Im folgenden Abschnitt soll die Konzeption einer Rückwärtssimulation beschrieben
werden, um eine Simulation hinsichtlich spätester Beginn-Zeitpunkte eines vorgegebenen
Fertigungsprogramms mittels der Ablaufsimulation zu ermöglichen. Der Materialfluss ist
rückwärts gerichtet und berechnet auf Basis vorliegender Kundenaufträge die spätesten
Beginn-Zeitpunkt der benötigten Erzeugnisse auf Basis des Simulationsmodells.
Anschließend wird ein Verfahren zur Modelltransformation entworfen, auf dessen Basis
Vorwärts gerichtete Simulationsmodelle in rückwärts gerichtete Simulationsmodelle
weitestgehend automatisch transformiert werden können. Mit dem Verfahren soll der
Modellierungsaufwand für den Anwender für die zwei unterschiedlichen
Anwendungsbereiche reduziert werden. Er soll jeweils nur ein Simulationsmodell
modelliert werden; die jeweils umgekehrte Richtung des Materialflusses lässt sich
daraufhin über das Verfahren weitestgehend automatisch generieren. Dadurch wird die
Bearbeitung der mittels Rückwärtssimulation untersuchten Fragestellungen für den
Anwender erheblich erleichtert bzw. überhaupt erst in einem zu vertretenden Aufwand
realisierbar.

5.2.4.1 Rückwärtssimulation

Im folgenden Abschnitt sollen die einzelnen Schritte zum Aufbau eines rückwärts
gerichteten Simulationsmodells beschrieben werden, um sie hinsichtlich besonderer
Schwierigkeiten bei der Umsetzung bzw. benötigter Adaptionen der existierenden
Modellbeschreibung zu untersuchen und bewerten zu können.

Konzeption - 125 -

Modellierung eines rückwärts gerichteten Simulationsmodells
Die Modellierung eines rückwärts gerichteten Simulationsmodells gestaltet sich durch die
Verwendung von Bausteinbibliotheken ähnlich einfach, bzw. ohne erhöhten Aufwand im
Vergleich zu einer herkömmlichen Modellierung eines vorwärts gerichteten
Materialflusses. Die jeweiligen Modellbausteine müssen für eine Rückwärtssimulation
ausgerichtet sein. Im Vorfeld erhöht sich damit der Aufwand für das Erstellen einer
Bausteinbibliothek deutlich. Neben der Umkehrung des Materialflussgraphen muss
insbesondere die Modellierung der Quellen auf die Denkweise der Rückwärtssimulation
adaptiert werden.

Als Startzeitpunkt der Rückwärtssimulation wird eine Zeit aus der Zukunft gewählt. Am
Ende des eigentlichen Simulationslaufes erhält man als Simulationsergebnis die
Startzeiten der einzelnen Fertigungsprozesse, um die geplanten Erzeugnisse
termingerecht fertigen zu können. Im Zuge der Rückwärtssimulation müssen alle
Verteilungsregeln umgekehrt werden und ggf. an anderen Stellen im Modell
implementiert werden. Abbildung 36 verdeutlicht die Unterschiede in der Steuerung des
Materialflusses zwischen Vorwärts und Rückwärts gerichteten Materialflüssen. Dabei
müssen die entsprechenden Verteilregeln zwischen Vorwärts- und Rückwärtssimulation
entsprechend adaptiert werden.

Abbildung 36: Vergleich eines Materialflusses in Vorwärts und Rückwärts
Richtung

Wie obige Abbildung zeigt, liegt bei dem vorwärts gerichteten Simulationsmodell die
Steuerungslogik zur Aufteilung des Materialflusses innerhalb des Modellbausteins A. Bei
der Umkehrung des Simulationsmodells wird diese Information in Modellbaustein D
benötigt, um das prinzipiell gleiche Flussverhalten zu erzeugen.

Durch die in Abschnitt 5.2.1 entwickelte Modellbeschreibung können prinzipiell rückwärts
gerichtete Materialflüsse modelliert und gespeichert werden, ohne Erweiterungen an der
Modellbeschreibung vornehmen zu müssen. Lediglich der Informationsgehalt der durch
das Simulationsmodell laufenden Marken ändert sich durch die rückwärts gerichtete
Ausführung. Um dem Anwender die Modellierungsarbeit zu vereinfachen, können auch
hier Bibliotheken von Modellbausteinen angelegt werden, die durch entsprechende Links
verbunden werden. Dabei wandeln sich in der rückwärts gerichteten Modellierung
Verzweigungen zu Zusammenführungen und umgekehrt. Die Transformation des
eigentlich vorwärts laufenden Materialflusses zu einem rückwärts gerichteten

- 126 -

Simulationsmodell erfolgt hier aber implizit durch den Anwender. Für die Quellen und
Senken eines Simulationsmodells müssen dennoch neue Modellbausteine konzipiert und
in den Bibliotheken abgelegt werden. Durch die unterschiedlichen Fragestellungen bei
Vorwärts- und Rückwärtssimulation können die vorhandenen Bausteine nicht weiter
verwendet werden.
Ausführung eines rückwärts gerichteten Simulationsmodells
Die Ausführung eines rückwärts gerichteten Simulationsmodells in einem diskreten
Materialflusssimulator, wie er durch das zu entwickelnde Werkzeug realisiert werden soll,
stellt hinsichtlich des reinen Markenflusses keine besonderen Anforderungen an das
Simulationsmodell. Lediglich die Fortschreibung der externen Simulationszeit während
der Berechnung des Simulationsmodells im Simulatorkern und damit die Terminierung
von Folgeereignissen eines bestimmten Zeitpunktes erfordert eine Unterscheidung
zwischen vorwärts und rückwärts gerichtetem Modell und damit fortschreitend bzw. in
der Zeit zurück schreitendem Zeitmodell. Hier bieten sich für die Implementierung
innerhalb des Simulatorkerns zwei Methoden an, die eine zeitlich rückwärts gerichtete
Berechnung erlauben.

Eine strikte Umsetzung von Vorwärts- und Rückwärtssimulation müsste im Simulatorkern
explizit zwischen beiden Simulationsarten unterscheiden. Dementsprechend läuft die
Simulationszeit vorwärts oder rückwärts, so dass in der Konsequenz der Scheduler des
Simulatorkerns als Verwalter geplanter Ereignisse die Liste aller geplanten Ereignisse
rückwärts durchlaufen muss, um die zeitlich am weitesten fortgeschrittenen und damit
die nächsten für die Rückwärtssimulation zu verwendenden Ereignisse abzuarbeiten.
Insbesondere für die Ausführungsgeschwindigkeit sind die dafür anfallenden
Fallunterscheidungen zwischen Vorwärts- und Rückwärtssimulation als negativ zu
betrachten.

Die alternative Methode betrachtet den Simulator als eigenständiges Objekt und bildet
die Vorwärts- bzw. Rückwärtssimulation über verschiedene Abbildungen auf den jeweils
darzustellenden Kalender ab. Das entspricht zunächst auch dem Ziel der Modularisierung
der einzelnen Funktionen, wie sie durch die objektorientierte Programmierung bevorzugt
werden (vgl. 3.5.2). Zusätzlich kann im Simulatorkern dadurch eine auf der internen
Simulationszeit basierende vollständige und eindeutige Berechnung der Ereignisse ohne
jeweilige Fallunterscheidung erfolgen. Alle verwendeten Datenstrukturen können auf
diese spezielle Verwendung hin optimiert werden, was insgesamt eine beschleunigte
Berechnung erlaubt. Durch die Transformation der internen Simulationszeit auf einen
externen Kalender kann eine Parametrierung und Darstellung über prinzipiell beliebige
externe Kalender erfolgen. Der Simulator bleibt so ebenfalls erweiterbar für die
Integration von weiteren Kalendern wie Werkskalendern von Fertigungsunternehmen
oder externen Kalendern mit fixen Zeitinkrementen (Schichtgenaue Betrachtung, etc.).
Dieses Vorgehen wird aus den genannten Gründen bevorzugt und soll in der
Implementierungsphase umgesetzt werden.

Auswertung eines rückwärts gerichteten Simulationsmodells
Ebenso wie die Modellierung unterscheidet sich die Auswertung von rückwärts
gerichteten Simulationsmodellen nicht grundlegend von der Auswertung des
entsprechenden Pendants. Aufgrund der unterschiedlichen Untersuchungszwecke bei
Vorwärts- und Rückwärtssimulation unterscheiden sich die Zielkriterien und damit

Konzeption - 127 -

mögliche Auswertungen von denen eines entsprechenden vorwärts gerichteten
Simulationsmodells. Die in den Auswertungs- und Visualisierungsmodulen zur Verfügung
stehenden Auswertungsmöglichkeiten sollen aber auch für die rückwärts gerichteten
Simulationsmodelle ausreichend sein, da sie nur eine entsprechende Darstellungsform
repräsentieren, ohne diese an eine inhaltliche Aussage zu knüpfen.

5.2.4.2 Modelltransformation

Um dem Modellierer die Erstellung eines Simulationsmodells zur Rückwärtssimulation zu
erleichtern, soll ein Verfahren entwickelt werden, anhand dessen Simulationsmodelle
weitgehend automatisch invertiert werden können. Sie sollen in der unter 4.2.1
vorliegenden Modellbeschreibung vorliegen. Auf Basis vorliegender Materialflüsse werden
Grundstrukturen identifiziert, die in einem Folgeschritt hinsichtlich ihrer Invertierung in
ein rückwärts gerichtetes Pendant untersucht werden. Der Vorteil dieser Zerlegung des
Materialflusses in einzelne Komponenten liegt in der Möglichkeit zur Automatisierung der
Erkennung und Invertierung der jeweiligen Grundstrukturen. Dazu soll zuerst eine
geeignete Form der Darstellung ausgewählt und erläutert werden. Der nachfolgende
Abschnitt befasst sich mit der Identifikation und Auflistung der Grundstrukturen. Sie
werden bezüglich ihrer Umkehrung im Sinne einer Rückwärtssimulation untersucht. Die
dadurch erreichte Vereinfachung eines Simulationsmodells durch die Zerlegung in
Grundstrukturen wird anschließend anhand eines Beispiels gezeigt und das intendierte
Verfahren zur automatischen Modelltransformation vorgestellt.

Darstellung der Materialflüsse
Die Darstellung der Materialflüsse soll auf die spezifische Problemstellung zugeschnitten
werden. Im vorliegenden Fall kann die Darstellungsform auf das Abbilden der
Bausteininstanzen und ihrer Beziehungen simplifiziert werden. Bausteininstanzen werden
durch einfache Rechtecke dargestellt. Jeder Block verfügt über beliebig viele Input- und
Output-Channel. Zur Vereinfachung wurde auf die Darstellung der Input- und Output-
Channel verzichtet. Bausteininstanzen werden direkt durch Pfeile verbunden. Darüber
hinaus gilt, dass entsprechend der Modellbeschreibung alle Pfeile nur verlinkenden
Charakter haben und demnach eine rein logische Abfolge darstellen. Sie enthalten
zunächst keine oder zeitliche Information. Förderstrecken oder Transportsysteme werden
demnach ebenfalls durch Modellbausteine dargestellt.

Abbildung 37: Darstellung einer einfachen Fertigungslinie

Identifikation der Grundstrukturen

- 128 -

Wesentlicher Aspekt bei der Suche nach Grundstrukturen innerhalb von
Materialflussstrukturen ist die Frage nach deren Anzahl und Typisierung. Viele
Strukturformen sind sich so ähnlich, dass sie problemlos in Typen zusammengefasst
werden könnten. Trotzdem ergeben sich auch unter Verwendung von Grundstrukturen
einige Formen, die nicht weiter zusammenzufassen sind. Das Hauptproblem stellen
hierbei die Schnittstellen zu anderen Modellbausteinen, bzw. zu anderen Grundstrukturen
dar: Wird eine bestimmte Struktur als Grundstruktur definiert, dürfen nur an festen
Modellbausteinen Ein- oder Ausgänge sein, andernfalls gehen wichtige Informationen
verloren und eine Grundstruktur kann nicht mehr eindeutig beschrieben werden.
Abbildung 38 verdeutlicht dieses Problem: Wäre die in a) dargestellte Struktur eine
Grundstruktur, so müsste trotz der Ähnlichkeit b) eine weitere Grundstruktur sein, da
sich an den Modellbausteinen 2 und 3 unzulässige Ein- bzw. Ausgänge befinden.

1

2

3

4 1

2

3

4a) b)

Abbildung 38: Schnittstellen bei Grundstrukturen

Wäre aber die in b) dargestellte Struktur ebenfalls eine Grundstruktur, würde das
Problem der Grundstrukturen nur verschoben, weil die Anzahl der Strukturen deutlich
vergrößert würde. Alternativ dazu soll im weiteren Verlauf eine Liste von Grundstrukturen
erstellt werden, deren Umfang vertretbar ist und die alle besonders häufig auftretende
Strukturen enthält, so dass die meisten Materialflüsse dadurch zumindest deutlich zu
vereinfachen sind. Alle weiteren Strukturen, die in Materialflussmodellen zu finden sind,
sollen vom Anwender manuell auf Grundstrukturen zurückgeführt oder alternativ manuell
invertiert werden.

Listen von elementaren Grundmustern in Materialflüssen finden sich in der Fachliteratur
häufig. Sie dienen in der Regel nicht dem Zweck der Vereinfachung oder Zerlegung
komplexer Strukturen, sondern geben vielmehr typische und praxisnahe Anordnungen
von Fertigungsmitteln wieder. Der Zweck solcher Listen besteht meist darin, an diesen
Beispielen typische Eigenschaften oder Probleme von Materialflüssen zu verdeutlichen.
Dennoch bilden solche Listen eine solide Ausgangsposition für einen Katalog von
Grundstrukturen zum Vereinfachen von Materialflüssen. Abbildung 39 zeigt eine solche
Liste nach [FiHe00]. In der dort gewählten Darstellung sind jedoch die Kanten bzw. Pfeile
nicht ohne Bedeutung. Zunächst müssen diese Verkettungsstrukturen also an die
gewählte Darstellungsform angepasst und interpretiert werden. Dazu müssen Strukturen,
die in Abbildung 39 aus Pfeilen oder ähnlichen Darstellungsformen bestehen, mit Hilfe
von Modellbausteinen dargestellt werden. Dies kann je nach Detaillierungsgrad auf
unterschiedliche Weise geschehen, weil komplexe Transport- oder Fertigungssysteme
durch einen einzigen Modellbaustein, oder auch als Struktur aus vielen Modellbausteinen
dargestellt werden können. Die Struktur der Pfeile aus Abbildung 39 kann also
unterschiedlich interpretiert werden. Dies spielt jedoch solang keine Rolle, wie alle
gewählten Strukturen als Grundstrukturen identifiziert werden können.

Konzeption - 129 -

Abbildung 39: Verkettungsstrukturen in Fertigungssystemen [nach FiHe00]

Abbildung 40 zeigt die Anpassung an die gewählte Darstellung. Da in der bisher
gestalteten Modellbeschreibung lediglich Modellbausteine über Input- und Output-
Channel verfügen, müssen alle Verzweigungen und Transportstrecken durch
Modellbausteine repräsentiert sein. Exemplarisch sollen im Folgenden einige
Umformungen näher erläutert werden.

Bei den parallelen Linien müssen beispielsweise bei Verzweigung und Zusammenführung
Modellbausteine eingefügt werden. Die Länge der Linien wird nicht weiter dargestellt, da
die einzelnen Linien ihrerseits durch unverzweigte Linien ersetzbar sind. Die Anordnung
der Modellbausteine ist davon unbetroffen. Die Nebenschlussstruktur kann auf zwei
Weisen angepasst werden. Entweder wird jede einzelne Verzweigung durch einen
Modellbaustein repräsentiert oder die Verteilung des Materialflusses durch ein einziges,
komplexeres Transportsystem interpretiert und dieses durch einen einzigen
Modellbaustein dargestellt. Das Ergebnis wäre dann eine Sternstruktur. Das Netz wird
nicht übernommen, da es im Grunde alle Strukturen repräsentiert, die nicht durch die
anderen Strukturen darzustellen sind. Aus den Vorüberlegungen ergab sich bereits, dass
solche Strukturen zur Vereinfachung von Materialflüssen nicht zweckmäßig sind und vom
Anwender manuell zu invertieren sind.

Grundsätzlich sind die Pfeilrichtungen zu beachten. Bidirektionale Pfeile, wie in den
Abbildung 39 und Abbildung 40 verwendet werden, sind in der gewählten
Darstellungsform nicht vorgesehen, weil sie durch die Modellbeschreibung aktuell nicht
abgebildet werden können. Sie werden an dieser Stelle nur zur besseren Übersicht
verwendet. Ein bidirektionaler Pfeil symbolisiert zwei gegensätzlich gerichtete
Einzelpfeile.

- 130 -

Abbildung 40: Anpassung der Strukturen an die gewählte Darstellungsform

In einem weiteren Schritt werden die gefundenen Ausgangslösungen für Grundstrukturen
durch die Anwendung von Zerlegungen an realen Materialflüssen verfeinert. In diesem
Rahmen wird festgestellt, welche Grundstrukturen such durch Kombinationen von zwei
oder mehr Grundstrukturen ausdrücken lassen. Im folgenden Abschnitt werden die
resultierenden Grundstrukturen beschrieben. Diese Form der Identifikation von
Grundstrukturen mittels empirischer Untersuchung führt nicht zwangsläufig zu einer
vollständigen Lösung, bietet aber im Rahmen einer praxistauglichen Anwendung des
Werkzeugs gute Ergebnisse. Durch die flexible Erweiterung aller benötigten Strukturen
lassen sich auch im Nachhinein weitere Strukturen der Menge der Grundstrukturen
hinzufügen.

Konzeption - 131 -

Typisierung der Grundstrukturen
Bei der Zerlegung und Vereinfachung eines Materialflusses muss überlegt werden, wie
eine möglichst starke Vereinfachung ohne Informationsverlust erreicht werden kann.
Jede der festzulegenden Grundstrukturen muss daher eindeutig beschreibbar sein. Ihre
Anwendung muss einheitliche Merkmale aufweisen, die nicht zusätzlich gesichert werden
müssen. Um die Zahl der Grundstrukturen jedoch auf einen sinnvollen Rahmen zu
begrenzen, sind einige wenige variable Parameter zweckmäßig. Sie sollten aber nur die
Größe der Grundstruktur und nicht ihre Struktur bzw. ihre äußere Form betreffen. Ziel ist
es also, eine einheitliche Funktionsstruktur bei variabler Größe der Grundstrukturen
sicherzustellen. Es muss daher zwischen fixen und variablen Parametern bei
Grundstrukturen unterschieden werden.

Fixe Parameter umfassen bei allen Grundstrukturen die Form der Struktur und ihre
jeweiligen Schnittstellen. Das heißt insbesondere, dass Input- und Output-Channel nur
an den dafür vorgesehenen Modellbausteinen erlaubt sind. Variable Parameter sind in der
Regel die Anzahl von Ein- und Ausgängen sowie die Anzahl bestimmter Modellbausteine.
Die Anzahl der Ein- und Ausgänge stellt kein Problem dar, weil sie durch die Anwendung
einer Vereinfachung nicht verschwinden. Verdeutlichen soll dies Abbildung 41.

Abbildung 41: Vereinfachung einer Struktur

Abbildung 41 links (Teil a) zeigt exemplarisch die Grundstruktur „parallele Linie“, wie sie
bereits aus Abbildung 39 bekannt ist. Im dargestellten Fall verfügt sie über zwei Ein- und
drei Ausgänge. Wird diese Struktur nun vereinfacht, also durch einen einfachen
Modellbaustein ersetzt, der die Grundstruktur „parallele Linien“ repräsentiert, so geht die
Information der Anzahl der Ein- und Ausgänge offensichtlich nicht verloren. Anders sieht
es bei der Anzahl bestimmter Modellbausteine innerhalb der Struktur aus. Dies zeigt
Abbildung 42.

Abbildung 42: Variable Anzahl Modellbausteine innerhalb Grundstrukturen

Der linke Teil a) von Abbildung 42 zeigt erneut die bekannte Grundstruktur. Die im
rechten Teil b) der Abbildung dargestellte Struktur kann allerdings auch unter diese
Grundstruktur fallen, da sie grundsätzlich eine gleiche Form aufweisen. Das Event, in
dem die Aufteilung des Materialflusses beschrieben wird, wird für jede Struktur individuell
erstellt; es macht folglich keinen Unterschied, ob der Fluss auf zwei oder mehr

- 132 -

Modellbausteine aufgeteilt wird. Solche variablen Parameter treten bei vielen
Grundstrukturen auf. Sie müssen vor bzw. während des Vereinfachungsprozesses
nachvollzogen und gesichert werden. Im Folgenden werden die identifizierten
Grundstrukturen beschrieben und ihre fixen und variablen Parameter erläutert.
Abschließend werden jeweils Sonderfälle betrachtet. Dies dient insbesondere zur
gegenseitigen Abgrenzung einzelner Strukturen untereinander. Zunächst sollen die
Grundtypen Quelle, Senke, unverzweigte Linie, Verzweigung und Zusammenschluss
erläutert werden. Im Anschluss werden Grundstrukturen einer höheren Ordnung
vorgestellt, das heißt, sie lassen sich aus den vorhergehenden Strukturen erzeugen,
bilden aber selbst wieder feste Strukturen, wie sie in Materialflüssen häufig vorkommen
und qualifizieren sich damit als eigener Typ einer Grundstruktur. Zu Ihnen gehören die
Kreuzung, die parallele Linie, die Linie mit Rückführung und der Stern.

Quelle und Senke
Quellen bzw. Senken bilden den Ursprung bzw. das Ende eines jeden
Materialflussmodells ab. Je nach abgebildetem Fertigungsprozess kann ein
Simulationsmodell durchaus mehrere Quellen und/oder Senken beinhalten. Quellen und
Senken sind immer einzelne Modellbausteine, die als solche leicht identifiziert werden
können. Sie erzeugen bzw. vernichten die durch den Materialfluss „wandernden“ Token
nach der vom Anwender implementierten Methodik. Eine Quelle zeichnet sich dadurch
aus, dass sie keinen Eingang, aber mindesten einen Ausgang besitzt. Analog zeichnen
sich Senken insbesondere dadurch aus, das sie keinen Ausgang haben, aber mindestens
einen Eingang.

Unverzweigte Linie

Abbildung 43: Grundstruktur „Unverzweigte Linie“

Abbildung 43 zeigt eine unverzweigte Linie. Bei dieser relativ einfachen Grundstruktur
sind die Flussrichtungen der einzelnen Modellbausteine zu beachten. Die Grundstruktur
unverzweigte Linie herrscht nur dann vor, wenn alle logischen Verknüpfungen in die
gleiche Richtung zeigen. Eingänge sind lediglich an Modellbaustein 1 zulässig, Ausgänge
nur an Modellbaustein n. Die Anzahl der jeweiligen Ein- und Ausgänge der
Modellbausteine innerhalb der Grundstruktur ist beliebig, muss aber innerhalb der
Grundstruktur konstant sein. Darüber hinaus muss sichergestellt werden, dass innerhalb
der Grundstruktur keine Kreuzungen der Materialflüsse entstehen, beispielsweise wenn
die unterschiedlichen Stränge unterschiedliche Token transportieren. Neben der Anzahl
von Ein- und Ausgängen bildet die Anzahl der Modellbausteine zwischen 1 und n bzw. die
Gesamtanzahl der Modellbausteine in der Struktur die variablen Parameter der
Grundstruktur. Als Sonderfall dieser Struktur muss darüber hinaus erkannt werden, dass
eine Vereinfachung einer unverzweigten Linie nicht zu einem Kreis innerhalb des dann
neu entstandenen Modellbausteins führt (vgl. Abbildung 44). In diesem Fall kann die
Struktur nicht zur unverzweigten Linie zusammengefasst werden.

Konzeption - 133 -

Abbildung 44: Vereinfachung der unverzweigten Linie führt zum Kreis

Verzweigung
Abbildung 45 zeigt die Grundstruktur „Verzweigung“. Die Pfeile, die die Richtung des
Materialflusses symbolisieren, gehen hier lediglich in eine Richtung, weg vom zentralen
Modellbaustein (in Abbildung Baustein 1) hin zu den äußeren, angehängten
Modellbausteinen. Deren Anzahl ist beliebig (variabler Parameter), aber größer oder
gleich eins. Somit müssen die Modellbausteine 2.1 bis 2.n letztendlich die Form einer
Senke darstellen oder in einer Senke enden. Eine beliebige Menge von Ein- und
Ausgängen sind an Modellbausteine 1 selbst zulässig.

Abbildung 45: Grundstruktur „Verzweigung“

Einen Sonderfall stellt die Struktur dar, wenn sie, wie in Abbildung 46, keinen Ausgang
besitzt. Diese Struktur unterliegt denselben Regeln wie eine übliche Verzweigung. Endet
die Verzweigung ohne Ausgang nicht in jedem angeschlossenen Modellbaustein (2.1 …
2.n) in einer Senke, kann eine Grundstruktur höherer Ordnung vorliegen, für die
vereinfachte Umkehrregeln erstellt werden können.

Abbildung 46: Verzweigung ohne Ausgang

Zusammenführung
Abbildung 47 zeigt den analogen Fall zur vorgestellten Verzweigung: die
Zusammenführung. Hier ist lediglich die Flussrichtung umgedreht. Die Anzahl der
angehängten Modellbausteine ist mindestens eins, die Anzahl der Ein- und Ausgänge ist
beliebig. Ein- und Ausgänge sind nur an Modellbaustein 1 zulässig.

- 134 -

Abbildung 47: Grundstruktur „Zusammenführung“

Die Modellbausteine 2.1 bis 2.n müssen aus Quellen resultieren. Der Sonderfall ist hier
analog der Fall ohne Eingang (vgl. Abbildung 48). Die eigentliche Funktionsweise
unterscheidet sich ebenfalls nicht vom vorgestellten Typ. Dieser Sonderfall ist in der
Praxis nicht selten am Anfang von Materialflüssen aufzufinden.

Abbildung 48: Zusammenführung ohne Eingang

Kreuzung

Abbildung 49: Grundstruktur „Kreuzung“

Abbildung 49 zeigt die Grundstruktur „Kreuzung“. Diese Struktur ist die erste
Grundstruktur einer höheren Ordnung, denn sie stellt eine Kombination aus
Zusammenführung und Verzweigung dar. Die Anzahl der „eingehenden“ (2.1 bis 2.n) und
„ausgehenden“ (3.1 bis 3.n) Modellbausteine ist jeweils mindestens eins. Ein- und
Ausgänge sind nur am zentralen Modellbaustein (in Abbildung: Modellbaustein 1)
zulässig. Ihre Anzahl ist prinzipiell beliebig (siehe oben). Von dieser Struktur sind keine
Sonderfälle bekannt.

Parallele Linie

Abbildung 50: Grundstruktur „Parallele Linien“

Konzeption - 135 -

Abbildung 50 zeigt die Grundstruktur „Parallele Linie“. Fixe Parameter sind neben der
Form der Struktur die Position der Ein- und Ausgänge an den Modellbausteinen 1 bzw.
Modellbaustein 3. Die Anzahl der jeweiligen Ein- bzw. Ausgänge zählt zu den variablen
Parametern und ist beliebig. Die Zahl der parallelen Linien (in Abbildung: 2.1 … 2.n) ist
ebenfalls variabel, aber größer eins. Sonderfälle dieser Struktur sind ebenfalls nicht
bekannt, da der Sonderfall nur einer parallelen Linie von der Grundstruktur unverzweigte
Linie (siehe oben) bereits abgebildet wird.

Rückkopplung

Abbildung 51: Grundstruktur „Rückkopplung“

Im Gegensatz zur parallelen Linie ist die Flussrichtung bei der Grundstruktur
Rückkopplung in einem Zweig umgedreht (vgl. Abbildung 51). Darüber hinaus besteht
die Rückkopplung nach allen möglichen Vereinfachungen innerhalb der einzelnen
Modellbausteine aus immer genau vier Modellbausteinen. Eingänge sind nur an
Modellbaustein 1, Ausgänge ausschließlich an Modellbaustein 3 zulässig. Die Anzahl von
Ein- und Ausgängen ist beliebig und stellt den einzigen variablen Parameter dieser
Struktur dar. Sonderfälle dieser Struktur sind nicht bekannt.

Stern

Abbildung 52: Grundstruktur „Stern“

Die Grundstruktur „Stern“ ist in Abbildung 52 dargestellt. Charakteristisch für eine
Sternstruktur ist eine bidirektionale Verbindung einer prinzipiell beliebigen Anzahl von
Modellbausteinen mit dem zentralen Modellbaustein. Diese bidirektionalen Verbindungen
typisieren im Wesentlichen die Sternstruktur und grenzen diese von anderen
Grundstrukturen ab. Es ist daher großer Wert auf die Flussrichtungen der Verknüpfungen
zu legen. Die Anzahl der angehängten Modellbausteine stellt neben der Anzahl der Ein-
und Ausgänge einen variablen Parameter dar. Fixer Parameter ist dagegen die Position
der Ein- und Ausgänge, die beiden lediglich an Modellbaustein 1 zulässig sind. Einen
Sonderfall der Sternstruktur bildet die Sternstruktur mit nur einem angehängten
Modellbaustein (vgl. Abbildung 53). Dieser Fall hat äußerlich nicht viel mit der
Vorstellung eines Sterns gemein, stellt aber dennoch im Grunde den einfachsten Fall
einer Sternstruktur dar.

- 136 -

Abbildung 53: Stern mit nur einem angehängten Modellbaustein

Abschließend sollen die identifizierten Grundstrukturen auf die in Abbildung 40
dargestellten Strukturen angewendet werden, die den Ausgangspunkt für die
Identifikation bildeten. Es fällt zunächst auf, dass die Strukturen „Unverzweigte Linie“,
„Parallele Linie“, „Linie mit Rückführung“ sowie „Stern“ unverändert übernommen
werden, wobei in der gewählten Darstellungsform „Parallele Linie“ und „Linie mit Bypass“
äquivalent sind. Erweitert wurden diese um die Grundstrukturen „Verzweigung“,
„Zusammenführung“ und „Kreuzung“, da diese häufig auftreten und in ihren
Eigenschaften nicht durch andere Grundstrukturen darzustellen wären.
„Nebenschlussstruktur“ und „Schleife“ können durch die Anwendung von
Grundstrukturen auf eben diese zurückgeführt werden. Abbildung 54 zeigt diesen
Vorgang beispielhaft für die Nebenschlussstruktur.

⇒a) b)

Abbildung 54: Vereinfachung der Struktur „Nebenschluss“

Teil a) der Abbildung (links) zeigt die Ausgangsstruktur. Nach dreimaliger Anwendung
der Grundstruktur „Stern“ entsteht, wie Teil b) (in Abbildung 54 rechts) zeigt, eine
„Unverzweigte Linie“, die ihrerseits wiederum eine Grundstruktur darstellt. Ähnlich die
Verfahrensweise bei der Schleife (vgl. Abbildung 55). Hier wird unter a) zunächst
sechsmal die Grundstruktur „Stern“ zur Vereinfachung angewendet. Das Ergebnis dieser
Vereinfachung zeigt Teil b) der Abbildung. In Teil c) wird nun noch zweimal die
Grundstruktur „Unverzweigte Linie“ angewendet. Das Ergebnis, dargestellt in Teil d) der
Abbildung, bildet die Grundstruktur „Rückkopplung“. Es ist demnach nicht notwendig die
Strukturen „Nebenschlussstruktur“ und „Schleife“ in den Katalog der Grundstrukturen
aufzunehmen, da sie sich durch Kombination verschiedener anderer Grundstrukturen
bereits ausdrücken lassen. Im Gegensatz zu den festgelegten Grundstrukturen höherer
Ordnung, die sich ja ebenfalls durch andere Grundstrukturen ausdrücken lassen, treten
Nebenschlussstruktur und Schleife auch weniger häufig auf, bzw. sind innerhalb des
Materialflusses deutlich schwerer zu identifizieren. Insbesondere deshalb wurde hier auf
die Aufnahme der Strukturen in den Katalog der Grundstrukturen verzichtet.

Konzeption - 137 -

⇒
a)

b)

c) d)

Abbildung 55: Vereinfachung der Struktur „Schleife“

Explizit soll an dieser Stelle nochmals darauf hingewiesen werden, dass die identifizierten
und in den Katalog aufgenommenen Grundstrukturen keineswegs als „vollständig“
anzusehen sind. Wie bereits bei der Identifikation der Grundstrukturen dargelegt wurde,
kann keine reduzierte Liste existieren, mit der alle denkbaren Materialflüsse vollständig
zerlegbar wären. Erklärtes Ziel soll deshalb sein, einen Katalog an Grundstrukturen zu
entwickeln, mit dem möglichst viele in der Praxis vorkommende Materialflüsse möglichst
weit zu vereinfachen sind. Es kann daher in speziellen Anwendungsbereichen der
Ablaufsimulation sinnvoll sein, diesen Katalog spezifisch zu erweitern.

Vereinfachung des Materialflussmodells durch Zerlegung
Nach der Identifizierung der Grundstrukturen soll an dieser Stelle auf den Vorgang der
eigentlichen Zerlegung und damit Vereinfachung von Materialflüssen eingegangen
werden, die in einem Simulationsmodell beschrieben wurden. Zunächst werden dazu
Regeln erläutert, die bei jeder Zerlegung zu berücksichtigen sind, um die Konsistenz des
Simulationsmodells zu wahren. Anschließend wird anhand eines Beispiels die Zerlegung
eines Materialflusses durchgeführt.

Regeln für die Zerlegung
Bei der Zerlegung von Materialflüssen müssen neben den bereits eingeführten variablen
Parametern, die vor allem die Struktur der Modelle betreffen, weitere Gesichtspunkte
berücksichtigt werden. Zum besseren Verständnis soll zunächst das beabsichtigte
Vorgehen bei der Erstellung eines Rückwärtssimulationsmodells auf Basis eines
vorliegenden Vorwärtsmodells kurz erläutert werden. Es beinhaltet im Wesentlichen drei
Schritte: Die Zerlegung und Vereinfachung des vorwärts gerichteten Ausgangsmodells,
die Invertierung aller einzelnen Komponenten und abschließend die Zusammensetzung
der invertierten Komponenten zu einem rückwärts gerichteten Simulationsmodells. Die
Zerlegung innerhalb des ersten Schrittes soll unter Zuhilfenahme der Grundstrukturen
geschehen. Alle identifizierten Grundstrukturen können im zweiten Schritt automatisch
invertiert werden. Es ist aber anzunehmen, dass in manchen Fällen „Restmodelle“ nach
der Vereinfachung übrig bleiben, die nicht durch Grundstrukturen abzubilden sind. Diese
müssen vom Anwender individuell interpretiert und manuell invertiert werden.
Abschließend werden die invertierten Modellbausteine wieder in einem Simulationsmodell
zusammengesetzt. Die Reihenfolge der Zerlegung ist exakt umzukehren. Um sowohl für

- 138 -

die Invertierung als auch für das Zusammensetzen der invertierten Strukturen alle
benötigten Informationen bereitzustellen, sind bereits in der Phase der Zerlegung
bestimmte Gesichtspunkte zu beachten.

Die Modellbeschreibung des zu entwickelnden Werkzeugs wurde bewusst so angelegt,
dass einzelne Modellbausteine mit beliebigen Variablen und Events ausgestattet werden
können. Diese individuellen Modellinformationen dürfen bei einer Zerlegung nicht
verloren gehen. Die Zerlegung oder Vereinfachung von Simulationsmodellen darf nicht
die eigentlichen Inhalte der Grundstrukturen reduzieren. Dies gilt insbesondere dann,
wenn eine identifizierte Grundstruktur Quellen oder Senken beinhaltet. Zur Ausführung
eines Simulationslaufs würde das Löschen einer Quelle oder Senke den Simulationsablauf
in jedem Fall verändern, meist unmöglich machen. Das Ausgangsmodell soll daher
durchgehend als Referenz bei der Zerlegung und auch der anschließenden Invertierung
und Zusammensetzung verwendet werden. Im Rahmen der Zerlegung werden
identifizierte Grundstrukturen durch Modellbausteine ersetzt, um in einem Folgeschritt
diese zusammengefassten Modellbausteine eventuell als Teilelemente weiterer
Grundstrukturen erneut zu vereinfachen (vgl. Abbildung 55). Das Konzept der
hierarchischen Modellbausteine, die weitere Bausteininstanzen beinhalten können,
unterstützt diese Vorgehensweise bereits implizit. Jede Zerlegung eines
Simulationsmodells läuft daher stufenweise in einzelnen Schritten ab: Zunächst wird das
auszuführende Simulationsmodell auf Grundstrukturen untersucht, die sofort identifiziert
werden können. Sie werden durch übergeordnete Modellbausteine ersetzt, deren Inhalt
zwar nicht verschwindet, aber für den weiteren Verlauf der Zerlegung nicht weiter
betrachtet wird. Durch diese Vereinfachung können neue Grundstrukturen entstehen; das
resultierende Simulationsmodell wird iterativ in weiteren Schritten durchsucht und alle
identifizierten Grundstrukturen werden ersetzt. Die Iteration bricht ab, wenn keine
weiteren Grundstrukturen im Restfluss identifiziert werden können oder das gesamte
Simulationsmodell in einem Modellbaustein zusammengefasst ist. Die als
Grundstrukturen identifizierten Modellbausteine müssen eindeutig bezeichnet und
hinsichtlich der Grundstruktur typisiert werden. Alle variablen Parameter müssen zu der
identifizierten Grundstruktur protokolliert werden. Außerdem muss die Reihenfolge der
Zerlegung festgehalten werden, da sie für das Zusammensetzten der invertierten
Modellbausteine in der dritten Phase der Transformation von Bedeutung ist. Um die
Vorgehensweise bei der Zerlegung von Materialflüssen zu veranschaulichen, wird im
Folgenden beispielhaft ein Materialfluss zerlegt.

Beispiel der Zerlegung eines Materialflusses
Abbildung 56 zeigt den Ausgangsfluss des zugrunde liegenden Simulationsmodells. Zur
besseren Übersicht sind alle Modellbausteine gestrichelt dargestellt, die Quellen
repräsentieren. Analog sind die im Simulationsmodell vorhandenen Senken kariert
dargestellt. Jedes Auftreten einer Quelle oder Senke in einer zusammenzufassenden
Grundstruktur führt zur Markierung des resultierenden Modellbausteins. So ist selbst dem
vereinfachten Simulationsmodell die Grundrichtung des Materialflusses zu entnehmen
(von der Quelle zur Senke). Diese Darstellung dient im vorliegenden Fall lediglich der
Übersichtlichkeit, kann aber für die zu implementierende, automatische Transformation
als Markierung übernommen werden. Das Zusammenfassen einer Grundstruktur, in der
Quellen und Senken auftreten, ist nach den beschriebenen Regeln abhängig von der
Grundstruktur zulässig.

Konzeption - 139 -

Abbildung 56: Ausgangsfluss

Abbildung 57: Erster Iterationsschritt

In Abbildung 57 wird der erste Zerlegungsschritt durchgeführt, indem das
Simulationsmodell auf Grundstrukturen untersucht wird. Im Beispiel werden drei
unverzweigte Linien , drei parallele Linien und ein Stern identifiziert (in Abbildung 57
grau unterlegt). Diese werden jeweils zu einem Modellbaustein zusammengefasst. Der
daraus resultierende Materialfluss ist in Abbildung 58 dargestellt.

- 140 -

Abbildung 58: Resultat von Iterationsschritt 1

Abbildung 59: Zweiter Iterationsschritt

Im zweiten Schritt wird der Materialfluss erneut hinsichtlich neu entstandener
Grundstrukturen analysiert (Abbildung 59). Es werden drei weitere Grundstrukturen
„Unverzweigte Linie“ und eine „Parallele Linie“ identifiziert. Diese werden wieder zu
Modellbausteinen zusammengefasst; das Resultat des zweiten Analyseschrittes zeigt
Abbildung 60.

Konzeption - 141 -

Abbildung 60: Resultat von Iterationsschritt 2

Abbildung 61: Dritter Iterationsschritt

Abbildung 61 stellt den dritten Schritt der Zerlegung dar. Es treten hier eine
„Zusammenführung“ und zwei „Sterne“ auf. Bei diesem Schritt ist gut zu erkennen, wie
sich aus dem Zusammenfassen von Grundstrukturen im vorherigen Schritt (den
„Unverzweigten Linien“ und „Parallelen Linien“) neue Grundstrukturen („Stern“ und
„Zusammenführung“) ergeben. Das Resultat von Schritt 3 zeigt Abbildung 62. Aufgrund
der Vereinfachungen kann zur besseren Übersichtlichkeit der Fluss an dieser Stelle etwas
zusammengezogen dargestellt werden.

Abbildung 62: Resultat von Iterationsschritt 3

Abbildung 63: Vierter Iterationsschritt

- 142 -

Den vierten Schritt zeigt Abbildung 63. An dieser Stelle werden lediglich zwei
„Unverzweigte Linien“ identifiziert. Abbildung 64 zeigt bereits das Ergebnis des 4.
Analyseschrittes.

Abbildung 64: Resultat von Iterationsschritt 4

Abbildung 65: Fünfter Iterationsschritt

In den letzten zwei Schritten wird jeweils nur noch eine Grundstruktur identifiziert.
Trotzdem sind zwei weitere Schritte notwendig, da sich diese Grundstrukturen
auseinander ergeben. Im fünften Schritt wird ein „Stern“ identifiziert (vgl. Abbildung 65).
Dieser wird zusammengefasst (vgl. Abbildung 66).

Abbildung 66: Resultat von Iterationsschritt 5

Abbildung 67: Sechster Iterationsschritt

Der sechste und letzte Iterationsschritt der Zerlegung und Vereinfachung ist in Abbildung
67 dargestellt. Erneut kann eine „Unverzweigte Linie“ festgestellt werden. Sie wird
zusammengefasst, das Resultat zeigt Abbildung 68.

Abbildung 68: Resultat von Iterationsschritt 6

Dieses Resultat stellt auch den Restfluss des Simulationsmodells dar, der sich nicht
weiter durch Grundstrukturen des Kataloges beschreiben lässt. Ab hier muss das
restliche Simulationsmodell vom Anwender manuell invertiert werden. Ein Vergleich des
Ausgangsmodells mit dem aus der Iteration resultierenden Restfluss zeigt aber das
Potential des angewendeten Verfahrens. Die Arbeit des Anwenders zur Invertierung des

Konzeption - 143 -

Simulationsmodells kann signifikant reduziert werden, da alle identifizierten
Grundstrukturen automatisch invertiert werden können. Eine detaillierte Beschreibung
der automatischen Invertierung von Grundstrukturen als zweiter Schritt des Verfahrens
ist Gegenstand des folgenden Abschnitts.

Invertierung der einzelnen Grundstrukturen
Zur Invertierung der im Katalog festgelegten Grundstrukturen sollen zunächst einige
Vorbetrachtungen durchgeführt werden. Zuerst wird mittels Bewertungsmatrizen eines
Simulationsmodells ein Konzept eingeführt, das Informationen über die einzelnen
Flusstypen des vorwärts gerichteten Simulationsmodells bereitstellt. Voraussetzung für
dieses Verfahren ist allerdings mindestens ein vorhandener Simulationslauf des
Basismodells. In einem weiteren Schritt werden verschiedene Fälle von Verzweigungen
und Zusammenführungen betrachtet, die an Modellbausteinen auftreten können. Für
jeden dieser Fälle wird dann eine Methode zur Invertierung in die Rückwärtssimulation
entwickelt. Abschließend werden diese Methoden auf die einzelnen Grundstrukturen
angewendet. Dadurch wird gezeigt, dass alle Grundstrukturen mit den dargestellten
Verfahren hinsichtlich ihrer Simulationsrichtung umgekehrt werden können.

Analyse von Teilflüssen mittels Bewertungsmatrizen
Um eine Rückwärtssimulation durchführen zu können, ist es in vielen Fällen nützlich,
Informationen über die jeweiligen Teilflüsse des Simulationsmodells zu haben, wie sie
sich aus der Vorwärtssimulation ergeben. Aus diesem Grund soll an dieser Stelle als
Hilfsmittel für die spätere Umkehrung von Strukturen ein Konzept eingeführt werden, das
diese Informationen durch Materialflussmatrizen bereitstellt. Dieses Konzept setzt
voraus, dass vor der ersten Rückwärtssimulation das Modell mindestens einmal vorwärts
simuliert wurde.

Die Basis dieses Konzepts bilden Bewertungsmatrizen27. Sie beschreiben Graphen, indem
alle Flüsse zwischen den Knoten des betreffenden Graphen als Einträge einer Matrix
auftauchen, und zwar sowohl in ihrer Qualität als auch in ihrer Quantität. Für einen aus n
Knoten bestehenden Graphen ist die Bewertungsmatrix C eine n*n Matrix. Alle Knoten
des Graphen werden durchnummeriert. Das Matrixelement cij beschreibt dann den Fluss
vom Knoten i zum Knoten j. Da analog auch ein Matrixelement cji existiert, ist auch die
Flussrichtung berücksichtigt. Alle Elemente cij mit i = j, also die Elemente der
Hauptdiagonalen, sind null, da keine Schlingen existieren. Existiert keine Kante zwischen
i und j, so ist cij formal unendlich, in diesem Fall jedoch wird diese Stelle einfach nicht
gesetzt und damit praktisch cij = 0 gesetzt. Dies soll anhand eines Beispiels erläutert
werden (vgl. Abbildung 69).

27 Eine genaue Beschreibung von Bewertungsmatrizen findet sich bei [Arno95].

- 144 -

Abbildung 69: Ausgangsfluss des Beispiels

Im Gegensatz zu allen bisher betrachteten Darstellungen der Materialflüsse sind hier die
Modellbausteine durchnummeriert. Eine dazu passende Bewertungsmatrix C1 zeigt
Tabelle 17. Die Darstellung der Matrix in Tabellenform soll die Lesbarkeit verbessern.

In diesem Fall sind die einzelnen Elemente der Matrix lediglich Zahlenwerte, die Mengen
pro Zeiteinheit repräsentieren. Denkbar sind auch sehr viel umfangreichere
Matrixelemente. Treten in einem Simulationsmodell Token unterschiedlichen Typs auf, so
können die Datenstrukturen der einzelnen Token mit einer absoluten oder relativen
Mengenangabe Matrixelemente sein. Das formale Konzept der Bewertungsmatrizen wird
damit um komplexere Datenstrukturen mit eigenen Eigenschaften oder Parametern
erweitert. Relative Mengenangaben können auf den Gesamtinput oder den Gesamtoutput
eines Blocks bezogen werden. So können Verzweigungen mit Prozentwerten versehen
werden.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0 100

2 0 30 70

3 0 30

4 0 70

5 0 100

6 0 50 100

7 50 0

8 0 100

9 0 50 50

10 0 50

11 0 25 25

12 0 25

13 0

14 0 25

15 25 0

Tabelle 17: Bewertungsmatrix C1

Die Art der Matrixelemente richtet sich nach den Vorgaben des Simulationsmodells. Für
das vorliegende Beispiel sind jedoch absolute Mengenangaben ausreichend. Die
Zeilenwerte der Matrix repräsentieren den Output einer Bausteininstanz, die
Spaltenwerte den Input. Da bei einer Rückwärtssimulation der Input einer
Bausteininstanz zum Output und analog der Output zum Input wird, kann diese
Bewertungsmatrix C1 durch Transponieren einfach zu einer Rückwärtsbewertungsmatrix
C1´ umgewandelt werden. Da sich während der Zerlegung eines Materialflusses stetig
neue Grundstrukturen ergeben, erscheint es sinnvoll, auch für die jeweiligen
Zerlegungsschritte eigene Bewertungsmatrizen zu generieren, um dort die für die
Invertierung der Grundstrukturen benötigten Informationen zugreifen zu können.

Konzeption - 145 -

Während der Zerlegung von Simulationsmodellen ist aber keine Vorwärtssimulation aller
einzelnen Iterationsschritte der Zerlegung vorgesehen, so dass die Matrix C1 mit zerlegt
werden muss.

Den ersten Zerlegungsschritt für obiges Beispiel zeigt Abbildung 70. Die resultierenden
Modellbausteine erhalten als neuen, eindeutigen Bezeichner hier die niedrigste Nummer
der in ihnen enthaltenden Modellbausteine. Grundsätzlich sind diese Bezeichner frei
wählbar. Analog zum Iterationsschritt muss auch die Bewertungsmatrix während dieser
Zerlegung angepasst werden. Die Modellbausteine 1 und 2 werden demzufolge zu einem
neuen Modellbaustein 1 zusammengefasst. In der resultierenden Struktur sind lediglich
der Input von Modellbaustein 1 und der Output von Modellbaustein 2 von Interesse. Da
in der Bewertungsmatrix der Input durch die Spalten und der Output durch die Zeilen
repräsentiert werden, können in C1 die Zeile 1 und Spalte 2 gelöscht werden. Die übrigen
Spalte 1 sowie Zeile 2 repräsentieren In- und Output des neuen Modellbausteins und
müssen daher dessen Bezeichner erhalten (hier: 1). Im Falle der identifizierten
Sternstruktur der Modellbausteine 6 und 7 sind In- und Output an einem Modellbaustein
(hier: 6); es können daher in Tabelle 17 Zeile 7 und Spalte 7 gelöscht werden. Die
resultierende Matrix C2 bildet die Bewertungsmatrix für den aus Iterationsschritt 1
resultierenden Fluss (vgl. Tabelle 18).

 1 3 4 5 6 8 9 10 11 12 13 14 15

1 0 30 70

3 0 30

4 0 70

5 0 100

6 0 100

8 0 100

9 0 50 50

10 0 50

11 0 25 25

12 0 25

13 0

14 0 25

15 25 0

Tabelle 18: Bewertungsmatrix C2

- 146 -

Abbildung 70: Erster Iterationsschritt

Analog zum obigen Beispiel erfolgt anschließend Iterationsschritt 2 (Abbildung 71). Die
Blöcke 1,3,4 und 5 werden mit der Grundstruktur „Parallele Linie“ zusammengefasst. Für
die Matrix C2 bedeutet das, dass die Zeilen 3 und 4 sowie die Spalten 3 und 4 ebenso
gelöscht werden können wie Zeile 1 und Spalte 5. Zeile 5 wird anschließend in Zeile 1
umbenannt und, entsprechend der Ordnung, nach vorne gezogen. Die Modellbausteine 6
und 8 werden ebenfalls zusammengefasst (Zeile 6 und Spalte 8 löschen, Zeile 8 in Zeile
6 umbenennen). Die resultierende Matrix C3 zeigt Tabelle 19.

6 8

3

4

51 9

11

14

10

12

15

13

61 9

11

14

10

12

15

13

Abbildung 71: Zweiter Iterationsschritt

Konzeption - 147 -

 1 6 9 10 11 12 13 14 15

1 0 100

6 0 100

9 0 50 50

10 0 50

11 0 25 25

12 0 25

13 0

14 0 25

15 25 0

Tabelle 19: Bewertungsmatrix C3

Den letzten Zerlegungsschritt zeigt Abbildung 72. Analog der bereits beschriebenen
Vorgehensweise werden in C3 Zeile 1 und Spalte 6 gelöscht, Zeile 6 in Zeile 1 umbenannt
und ggf. neu sortiert. Das Resultat zeigt Tabelle 20.

Abbildung 72: Dritter Iterationsschritt

 1 9 10 11 12 13 14 15

1 0 100

9 0 50 50

10 0 50

11 0 25 25

12 0 25

13 0

14 0 25

15 25 0

Tabelle 20: Bewertungsmatrix C4

Es existiert nun für den resultierenden Restfluss eine Bewertungsmatrix, die ursprünglich
mit Hilfe der Vorwärtssimulation erstellt wurde. Sie kann dem Anwender, der den
Restfluss umkehren muss, wertvolle Informationen über Quantität und Qualität der
abgebildeten Materialflüsse bereitstellen. Wichtiger ist allerdings, dass zu jedem aus
einem Iterationsschritt resultierenden Restfluss eine Bewertungsmatrix existiert, aus der

- 148 -

die für den nächsten Zerlegungsschritt benötigten Informationen entnommen werden
können. Wie später bei der Umkehrung einzelner Grundstrukturen gezeigt werden wird,
können aus den Bewertungsmatrizen verschiedene Informationen extrahiert werden, die
die jeweilige Umkehrung erheblich vereinfachen können.

Events und deren verhaltensspezifische Umkehrung
Nachfolgend werden die unterschiedlichen Fälle von Verteilungsstrukturen untersucht, die
in Modellbausteinen typischerweise auftreten. Dafür werden jeweils Verfahren
vorgeschlagen, wie diese Fälle in einer Rückwärtssimulation behandelt werden sollen. Sie
werden auf die Grundstrukturen übertragen, um diese eindeutig umkehren zu können.
Aus den jeweiligen Fällen werden Empfehlungen für die Modellbildung abgeleitet, sofern
sie die Umkehrung im Sinne der Rückwärtssimulation vereinfachen und die Freiheitsgrade
des Anwenders nicht einschränken. Grundsätzlich können drei unterschiedliche
Funktionen innerhalb eines Modellbausteins unterschieden werden: Das Verstreichen von
Zeit, die Veränderung (in der Anwendung Fertigung: Bearbeitung) des Token und die
logische Verteilung innerhalb des Materialflusses auf verschiedene Channel. Ferner
existieren Quellen und Senken, wobei Kombinationen dieser Fälle existieren. Allein das
Verstreichen von Zeit ist den meisten Vorgängen zueigen. Innerhalb dieser drei Typen
von Verhaltensweisen sind wiederum verschiedene Aspekte zu unterscheiden.

Der erste Verhaltenstyp beschreibt das reine Verstreichen von Zeit, zum Beispiel bei
Transport- oder Förderstrecken. Dabei werden weder die Token manipuliert noch der
Materialfluss verzweigt. Die Bearbeitungszeit ist für jede Ausführung einer Simulation
essentiell. Bearbeitungs- oder Transportzeiten können ihrerseits zeitabhängig sein,
beispielsweise durch die Realisierung zeitabhängiger Kapazitäten im Modellbaustein des
Simulationsmodells. Hier ist die Bearbeitungs- oder Transportzeit eine zeitabhängige
Funktion, die eventuell auf weitere Modellbausteine oder Ereignisse (zum Beispiel
Kalender oder Zeittafeln) zugreifen muss. Es ist anzunehmen, dass bei den meisten
Ereignissen innerhalb eines Modellbausteins Bearbeitungszeiten auftreten. Deshalb sind
diese Zeiten im Idealfall innerhalb eines standardisierten Events zu realisieren, auf das
jederzeit unabhängig von anderen Events im Modellbaustein zugegriffen werden kann.
Dieses im Folgenden als Delay-Event bezeichnete Ereignis beinhaltet im einfachsten Fall
nur eine Konstante, kann aber auch jede der angesprochenen Funktionen zur
Verzögerung eines Token während eines Simulationslaufs enthalten.

Eine Veränderung der Token als zweiter Verhaltenstypus tritt immer dann auf, wenn
Token innerhalb eines Modellbausteins in einer beliebigen Form manipuliert werden. Es
ändern sich lediglich Eigenschaften oder Parameter des Token. Ein Event, das diese
Veränderung eines Token herbeiführt, ist nicht zwangsläufig umkehrbar. Um bei einer
Rückwärtssimulation diese Veränderung automatisch rückgängig zu machen, ließe sich
die Bewertungsmatrix verwenden. In dieser ist sowohl die Datenstruktur der
eingehenden als auch die der ausgehenden Token abgelegt. Ein einfacher Vergleich
beider liefert die benötigte Information. Im Gegensatz dazu werden zum Beispiel bei
Montagevorgängen mehrere unterschiedliche Token zu neuen Token umgewandelt.
zunächst irrelevant bleibt, ob die in den Modellbaustein eingehenden Token über einen
oder mehrere Input-Channel eintreffen. Analog können auch zwei unterschiedliche, im
Modellbaustein neu zu erzeugende Token aus den eintreffenden Token resultieren.
Verdeutlichen soll das Abbildung 73. Im linken Fall werden aus drei Token des Typs A

Konzeption - 149 -

und einem Token des Typs B ein Token C. Im rechten Fall wird aus vier Token A und
einem Token B ein Token D (zum Beispiel Tische mit drei oder vier Beinen). Hier kann
über die Betrachtung der Ein- und Ausgangsflüsse in der Bewertungsmatrix keine
Aussage über die Art des Montagevorgangs getroffen werden. Es wird somit in manchen
Fällen nicht möglich sein, das jeweilige Event automatisch umzukehren. Im Sinne der
angestrebten Rückwärtssimulation sollen Montagevorgänge oder andere Veränderungen
von Token separat durch ein Transform-Event realisiert werden. Dieses würde im Fall von
Montagevorgängen auch Definitionen der Form C=AAAB oder D=AAAAB enthalten und
würde damit eine Umkehrung potentiell ermöglichen.

Abbildung 73: Montagevorgänge

Die logische Verteilung von Materialflüssen als dritter Typus an Verhaltensweisen
beschreibt alle Vorgänge, die strukturell auf den modellierten Materialflusses wirken:
Geraden, Verzweigungen und Zusammenführungen. Die Gerade bildet den trivialen Fall,
dass die Struktur des Materialflusses nicht beeinflusst wird.
Für alle Verzweigungen und Zusammenführungen gelten für die Umkehrung im Grunde
die gleichen logischen Überlegungen. Nach äquivalenten Regeln, wie sich Flüsse
verzweigen, können sie auch wieder zusammengeführt werden. Da sich die
Problemstellung der Umkehrung des Materialflusses bei Verzweigungen und
Zusammenführungen aber unterscheidet, werden sie nachfolgend getrennt betrachtet.

Bei den Verzweigungen kann zwischen drei Unter-Varianten differenziert werden:

 Bei der Typverzweigung teilt sich der Materialfluss in Abhängigkeit der
ankommenden Token. Dies verdeutlicht Abbildung 74. Unabhängig von der Menge
der am Modellbaustein ankommenden Token werden alle Token A auf den oberen
Output-Channel und alle Token B auf den unteren Output-Channel verteilt.
Umgekehrt wird aus der Verzweigung eine einfache Zusammenführung. Die
Reihenfolge, mit der die Token A und B dann in den Output-Channel des rückwärts
gerichteten Modellbausteins gelangen, kann teilweise der Bewertungsmatrix der
Vorwärtssimulation entnommen werden oder werden mit der gleichen Priorität
abgearbeitet.

 Die Mengenverzweigung beschreibt einen Verzweigungstyp, bei dem der
Materialfluss aus identischen Token mengenmäßig verteilt wird. Dies geschieht in
irgendeinem Verhältnis (zum Beispiel 50/50 bei zwei Output-Channeln). Wird diese
Verzweigung umgekehrt, können alle ankommenden Token mit der gleichen
Priorität abgefertigt werden.

 Eine last- bzw. kapazitätsabhängige Verzweigung beschreibt eine Verzweigung, die
abhängig von nachgelagerten Kapazitäten des logischen Nachfolgers den
Materialfluss verteilt. Hier findet lediglich eine Verfügbarkeitsabfrage an den
einzelnen Output-Channeln bei den nachgelagerten Input-Channeln statt, ob eine
Weiterleitung an den Nachfolger im Materialfluss möglich ist. Im positiven Fall wird
das Token gesendet. Im negativen Fall wird der nächste Output-Channel probiert.
Das Vorgehen wiederholt sich analog bei den weiteren Output-Channeln des

- 150 -

Modellbausteins. Sind alle Output-Channel gesperrt, so wird über den ersten frei
werdenden Output-Channel gesendet. Diese Verzweigung kann durch
Abfertigungsprioritäten umgekehrt werden. Der Output-Channel, der bei der
Vorwärtssimulation als erster abgefragt wird, erhält im Rahmen der der
Rückwärtssimulation die höchste Priorität. Die anderen Kanäle erhalten
entsprechend niedrigere, abgestufte Prioritäten.

Abbildung 74: Typverzweigung

Betrachtet man die Gruppe der Zusammenführungen, gelten zunächst analoge
Überlegungen wie für Verzweigungen, da in vielen Fällen einer Zusammenführung eine
Verzweigung vorangeht. Darüber hinaus existieren Zusammenführungen, denen zwei
unterschiedliche Quellen vorangehen. Aus Sicht einer Zusammenführung lassen sich
lediglich typabhängige und mengenmäßige Flussarten unterscheiden:

• Analog zu den Verzweigungen ist eine typabhängige Zusammenführung eine
solche, bei der aus den unterschiedlichen Input-Channeln unterschiedliche Token
eingehen. Wird eine Typzusammenführung umgekehrt, so entsteht eine
Typverzweigung. Diese benötigt Informationen über die ausgehenden Teilflüsse,
die der Bewertungsmatrix zu entnehmen sind.

• Bei einer Mengenzusammenführung gehen in die verschiedenen Input-Channel
Token des gleichen Typs in bestimmten Mengen ein. Hier muss in einem zweiten
Analyseschritt festgestellt werden, ob der Zusammenführung eine Verzweigung
oder zwei Quellen vorangehen. Handelt es sich um eine Verzweigung, kann aus
Sicht der Zusammenführung nicht unterschieden werden, ob es sich bei dieser
Verzweigung um eine Typ-, Mengen- oder um eine last- bzw. kapazitätsabhängige
Verzweigung handelt. Dies kann bei der Invertierung des Modellbausteins durch
Zugriff auf das Event in der Verzweigung geklärt werden (Werden hier
Grundstrukturen der höheren Ordnung identifiziert, liegt diese Verzweigung direkt
im Zugriff). Geht beispielsweise eine last- bzw. kapazitätsabhängige Verzweigung
voran, so ist das für die Verteilung des Flusses verantwortliche Event aus der
Verzweigung für die Umkehrung der Zusammenführung zu verwenden. Dieser Fall
scheidet aus, wenn der Zusammenführung zwei Quellen vorausgehen. Hier kann
die Zusammenführung nur durch Übernahme der Flussmächtigkeiten aus der
Bewertungsmatrix umgekehrt werden.

Um die Umkehrung von Verzweigungen oder Zusammenführungen zu erleichtern, sollen
sie analog zu obigem Vorgehen separat durch Control-Events realisiert werden, weil
damit die für die logische Verteilung des Flusses verantwortlichen Events von anderen
Aktionen innerhalb des Modellbausteins abgegrenzt werden können. Für einen
standardisierten Modellbaustein ergibt sich damit eine feste innere Grundstruktur, wie sie
in Abbildung 75 dargestellt wird. In logischer Reihenfolge des Ablaufs enthält er Input-
Event (I), Delay-Event (D), Transform-Event (T), Control-Event (C) sowie Output-Event
(O). Alle Event-Typen können mehrfach auftreten, insbesondere Input- und Output-

Konzeption - 151 -

Events abhängig nach Anzahl der jeweiligen Input- und Output-Channel des
Modellbausteins.

Abbildung 75: Aufbau eines typischen Modellbausteins

Durch die Einführung der neuen Event-Typen soll die automatische Invertierung
gefördert werden. Darüber hinaus muss die inhaltliche Strukturierung als
Modellierungsempfehlung an die Anwender kommuniziert werden, die hinsichtlich der
Verhaltensmodellierung in erster Linie alle Freiheiten besitzen. Auch durch das
Eigeninteresse des Anwenders gefördert, sollte er sich aber an diese
Modellierungsempfehlung gebunden fühlen, um bei der Invertierung des
Simulationsmodells wertvolle Modellierungszeit einzusparen. Tabelle 21 fasst die
benötigten Erweiterungen der Modellbeschreibung zur Implementierung einer
automatischen Invertierung von Modellbausteinen zusammen.

Bezeichnung Beschreibung

Delay_event Ereignis zur Berechnung der zeitlichen Verzögerung
der Token, ggf. in Abstimmung mit einem gültigen
externen Kalender

Transform_event Ereignis zur Manipulation des Token, bzw. zur
Komposition/Dekomposition von Token

Control_event Ereignis zur Steuerung des eigentlichen
Materialflusses zwischen den verschiedenen Input-
und Output-Channeln

Tabelle 21: Erweiterung der Modellbeschreibung durch Invertierung

Zur Vollständigkeit soll an dieser Stelle auch auf die Umkehrung von Quellen und Senken
eingegangen werden. Bei einer Rückwärtssimulation werden Quellen zu Senken und
umgekehrt. Zu den in den Quellen erzeugten Token müssen im Rahmen der Invertierung
aber weitere Überlegungen angestellt werden. Quellen versorgen ein Simulationsmodell
mit einem Teil der Eingangsdaten (in Form von Art, Zeit und Quantität des erzeugten
Flusses) und Senken können einen Teil der ausgegebenen Daten bereitstellen (in Form
von Art, Zeit und Quantität des eingehenden Flusses). Diese Tatsache gilt analog für
Vorwärts- wie Rückwärtssimulation. Dieser Fluss wird nach Maßgabe des Entwicklers
erzeugt, muss aufgrund der unterschiedlichen Untersuchungszwecke von Vorwärts- und
Rückwärtssimulation von der ursprünglichen Quelle aber soweit abweichen, dass diese
durch eine neue Quelle und entsprechend durch eine neue Senke modelliert wird, weil sie
neben den Eingabedaten auch die Auswertung vor dem Hintergrund eines
unterschiedlichen Untersuchungszweckes ändert.

Anwendung des Verfahrens zur Invertierung der Grundstrukturen
Nachdem im vorangegangenen Abschnitt Überlegungen zur Typisierung möglicher Events
und deren Umkehrung angestellt worden sind, werden die gefundenen

- 152 -

Lösungsalternativen im Folgenden auf die jeweiligen Grundstrukturen adaptiert.
Bestimmte Fälle werden durch die Beschaffenheit einzelner Grundstrukturen
ausgeschlossen. Die Grundstrukturen werden im Sinne der oben aufgezeigten Punkte
untersucht, um geeignete Regeln für die Invertierung abzuleiten. Für alle
Grundstrukturen gilt, dass Verzweigungen oder Zusammenführungen an den Input- oder
Output-Channeln nicht betrachtet werden müssen, da diese nicht mehr eigentlicher
Bestandteil der Grundstrukturen sind. Sie können somit in nachfolgenden
Iterationsschritten der Zerlegung Teil anderer Grundstruktur werden.

Grundsätzlich werden bei der Invertierung einer Grundstruktur alle Input-Channel zu
Output-Channeln und umgekehrt. Alle direkt dazu hinterlegten Events müssen angepasst
werden. Das oder die neuen Input Events müssen dafür sorgen, dass der jeweilige Input-
Channel verschlossen wird, wenn ein Token den Modellbaustein erreicht. Außerdem muss
der Aufruf eines folgenden Events sichergestellt werden. Jedes Output-Event muss das
Senden der Token an den nachfolgenden Input-Channel sicherstellen und ggf. den Aufruf
des ReOpen-Events gewährleisten. Um die Invertierung zu ermöglichen, werden alle
Input- und Output-Events standardisiert. Diese Ergänzung der Modellierungsempfehlung
ist insofern konsequent, weil das logische Verhalten des Modellbausteins in den
nachfolgenden Events innerhalb eines Bausteins (Control, Delay, Transform, etc.)
gekapselt wird. Darüber hinaus werden Quellen durch Senken ersetzt und umgekehrt. Als
nächster Schritt werden an jeder Bausteininstanz der Grundstruktur eingehende und
ausgehende Token mit Hilfe der Bewertungsmatrix verglichen. Finden in einem Block zum
Beispiel Montagevorgänge statt, so werden die jeweiligen Montageparameter aus dem
entsprechenden Transform-Event abgefragt. Veränderungen von Token müssen in der
invertierten Grundstruktur implementiert werden. Delay-Events können bei der
Rückwärtssimulation zur Laufzeit abgefragt werden und müssen bei der Invertierung
nicht verändert werden.

Da bei einer unverzweigten Linie keine Verzweigungen oder Zusammenführungen
innerhalb der Struktur auftreten, reicht es, die oben beschriebene Vorgehensweise
anzuwenden. Für Verzweigungen deckt sich die Vorgehensweise bei der Invertierung mit
den allgemeinen Überlegungen. Typ- und Mengenverzweigungen können mit Hilfe von
Bewertungsmatrizen invertiert werden, bei der Invertierung einer last- bzw.
kapazitätsabhängigen Verzweigung müssen Abfertigungsprioritäten bei der
Zusammenführung eingeführt werden. Das gilt analog für die Überlegung hinsichtlich der
Zusammenführung: auch hier können die Vorüberlegungen übernommen werden. Das
bedeutet, dass zwischen Mengen- und Typzusammenführungen unterschieden werden
muss. Der Fall einer last- bzw. kapazitätsabhängigen Zusammenführung ist nicht
relevant, da bei der Grundstruktur „Zusammenführung“ vorher keine Verzweigung des
Materialflusses stattfindet (sonst würde es sich um eine Grundstruktur höherer Ordnung
handeln). Zur Invertierung können die benötigten Flussarten und –mächtigkeiten der
Bewertungsmatrix entnommen werden. Die Grundstruktur Kreuzung stellt die
Kombination der Strukturen Verzweigung und Zusammenführung dar. Daher gelten bei
der Invertierung auch die jeweiligen Regeln. Typverzweigungen und -
zusammenführungen werden beim bekannten Vorgehen identifiziert. Dieser Fall kann mit
Bewertungsmatrizen umgekehrt werden. Ebenfalls mit Hilfe von Bewertungsmatrizen
können Mengenverzweigungen oder –Zusammenführungen invertiert werden. Aus bereits
bekannten Gründen tritt der last- bzw. kapazitätsabhängige Fall bei der

Konzeption - 153 -

Zusammenführung nicht auf, da ihm keine Verzweigung vorangeht. Dies gilt jedoch nicht
für die Verzweigung. Es kann also ein Mischfall auftreten, bei dem eine
Mengenzusammenführung mit einer last- bzw. kapazitätsabhängigen Verzweigung
kombiniert ist. Bei der Invertierung müsste dann eine Abfertigungspriorität für die
Zusammenführung eingeführt werden. Die Grundstruktur parallele Linie (vgl. Abbildung
76) verfügt sowohl über eine Verzweigung als auch über eine Zusammenführung. Bei
einer Rückwärtssimulation muss nun an Modellbaustein 3 über die Aufteilung des
Materialflusses entschieden werden. Legt man die Vorüberlegungen zu Grunde, so muss
bei dieser Struktur nach den drei Arten der Verzweigung unterschieden werden. Vorher
kann festgestellt werden, ob es sich an Modellbaustein 1 um eine Typ- Mengen- oder
last- bzw. kapazitätsabhängige Verzweigung handelt. Im Fall der Typverzeigung, kann
bei Modellbaustein 3 der Materialfluss analog verteilt werden. Im Falle einer
Mengenverzweigung oder einer last- bzw. kapazitätsabhängigen Verzweigung bietet es
sich ebenfalls an, das entsprechende Control-Event aus Modellbaustein 1 in
Modellbaustein 3 zu übertragen.

Abbildung 76: Grundstruktur Parallele Linie

Die Grundstruktur Rückkopplung (Abbildung 77) verbindet Verzweigung und
Zusammenführung. Im Gegensatz zur parallelen Linie sind diese aber vertauscht: Die
Verzweigung befindet sich an Modellbaustein 3, die Zusammenführung an Modellbaustein
1. Die Invertierung dieser Struktur funktioniert analog zur parallelen Linie. Handelt es
sich bei der Verzweigung an Modellbaustein 3 um eine Typverzweigung, so kann
entsprechend der Bewertungsmatrix während der Rückwärtssimulation der Materialfluss
an Modellbaustein 1 verzweigt werden. Liegt an Modellbaustein 3 eine Mengen- oder last-
bzw. kapazitätsabhängige Verzweigung vor, so muss bei der invertierten Struktur das
entsprechende Control-Event aus Modellbaustein 3 in Modellbaustein 1 übertragen
werden.

Abbildung 77: Grundstruktur Rückkopplung

Bei der Grundstruktur Stern (vgl. Abbildung 78) handelt es sich um eine Struktur, die
Verzweigungen und Zusammenführungen miteinander verbindet. Im Gegensatz zur
parallelen Linie sind alle Events, die Verzweigungen oder Zusammenführungen regeln in
Modellbaustein 1 enthalten. Im Fall eines einfachen Sterns (in Abbildung 78 Teil a)

- 154 -

können lediglich Typ- oder Mengenverzweigungen auftreten. Diese sind mit Hilfe von
Bewertungmatrizen umkehrbar. Komplizierter ist die Invertierung eines Sterns, wie ihn
der rechte Teil der Abbildung zeigt (Teil b). Hier können zwei zusätzliche Fälle auftreten:
Erstens last- bzw. kapazitätsabhängige Verzweigungen und zweitens eine
Bearbeitungsreihenfolge. Im Fall von last- bzw. kapazitätsabhängigen Verzweigungen
muss das Control-Event angepasst werden. Tritt eine feste Bearbeitungsreihenfolge auf,
so muss diese umgekehrt werden. Dies könnte beispielsweise durch Analyse der
Teilflüsse geschehen. Unterscheiden sich die Token nicht voneinander wird empfohlen,
festgelegte Reihenfolgen entweder im Vorwärtssimulationsmodell bekannt zu machen,
durch ein Transform-Event zu modellieren oder im Rahmen einer ersten
Vorwärtssimulation aufzuzeichnen.

Abbildung 78: Grundstruktur Stern

Dieser Abschnitt hat ein Konzept entworfen, gemäß dem die zuvor identifizierten
Grundstrukturen unter schwachen Restriktionen umgekehrt werden können. Durch
dessen Anwendung ergibt sich eine Modellierungsempfehlung, an die sich der Anwender
halten muss, um die automatische Transformation zu erreichen. Der folgende Abschnitt
soll darauf basierend das Transformationsmodul skizzieren, das die angesprochene
Zerlegung und Invertierung eines Simulationsmodells tatsächlich automatisch ausführt.

Automatische Transformation von Simulationsmodellen
Obiger Abschnitt hat eine Methode aufgezeigt, wie komplexe Materialflusssysteme in
Grundstrukturen zerlegt und hinsichtlich einer Rückwärtssimulation invertiert werden
können. Der folgende Abschnitt will eine automatische Modelltransformation als
Untermodul der Modellierungskomponente entwerfen, mit deren Hilfe Grundstrukturen
aus dem Simulationsmodellen extrahiert und invertiert werden können, um den
Transformationsprozess eines Simulationsmodells von vorwärts in rückwärts gerichtetes
Simulationsmodell weitestgehend automatisch zu gestalten. Basis der Invertierung ist
stets ein vorliegendes Simulationsmodell, im Idealfall in Verbindung mit einem
durchgeführten Simulationslauf und einer zugehörigen Bewertungsmatrix. Die
Invertierung erfolgt durch ein spezielles Modul in der Modellierungskomponente, weil dort
das geladene Simulationsmodell bereits vollständig vorliegt und zum Anderen aus der
Zerlegung und Vereinfachung entstehende Restflüsse direkt durch den Anwender
manipuliert werden können. Das resultierende Rückwärtssimulationsmodell kann aus der
Modellierungskomponente heraus in der Simulationsdatenbank oder auf dem
Dateisystem gesichert werden.

Konzeption - 155 -

Der Transformationsprozess im Server des Modellierungstool soll wie folgt gestaltet
werden: das geladene Simulationsmodell wird im Server in das Untermodul zur
Transformation geladen und zunächst auf einen gerichteten Graph reduziert, wobei die
eigentlichen Knoten des Graphen, die die Modellbausteine repräsentieren, um
Informationen angereichert werden, die auf die Modellbausteine selbst verweisen.
Zusätzlich werden, wenn vorhanden, die Ergebnisse eines Simulationslaufs mit diesem
Modell und eine zugehörige Bewertungsmatrix in das Modul geladen. Alle weiteren
Berechnungen zur Identifikation der Grundstrukturen finden zunächst auf dem
gerichteten Graphen statt, werden an den entsprechenden Stellen durch Informationen
aus der Bewertungsmatrix ergänzt. Nach dem Start des Transformationsprozesses
werden als erster Schritt die Quellen und Senken des Materialflusses identifiziert und für
die weitere Bearbeitung markiert. In einem iterativen Prozess wird der Graph in den
Folgeschritten immer wieder auf der Suche nach Grundstrukturen durchlaufen. Zunächst
sollen die Grundstrukturen einfacher Ordnung (einfache Linie, Verzweigung, etc.) gesucht
werden. Erst im Folgeschritt werden Grundstrukturen höherer Ordnung erfasst.
Ausnahme ist hier die Grundstruktur „Rückkopplung“, die als erstes erkannt werden
muss. Andernfalls würden die Bausteine 1 und 2 zu einer einfachen Linie
zusammengefasst werden (vgl. Abbildung 51). Nach jeder Identifikation einer
Grundstruktur wird diese zusammengefasst und der resultierende Graph (vgl. bspw.
Abbildung 57) erneut hinsichtlich aller möglichen Grundstrukturen durchlaufen, bis
entweder der gesamte Graph invertiert wurde (Das Simulationsmodell wird in einem
einzigen Modellbaustein zusammengefasst) oder ein Restfluss übrig bleibt. Dieser wird an
den oder die Clients übertragen und muss manuell invertiert werden. Hier bieten sich
dem Anwender zwei Möglichkeiten: entweder er invertiert die verbliebenen Restflüsse
manuell oder ergänzt den Restfluss des Simulationsmodells so durch Dummy-Bausteine,
dass wiederum Grundstrukturen durch den Algorithmus erkannt werden können.
Abbildung 79 zeigt eine kurze Übersicht über den Algorithmus Merge, wie er im Rahmen
der Erkennung und Zusammenfassung von Grundstrukturen verwendet werden soll.

public Map<String, Integer> merge()
{

Class[] mergers =
{
MergeRegeneration.class,
MergeLine.class,
MergeBranch.class,
MergeJoin.class,
MergeParallel.class,
MergeStar.class,
MergeCover.class };

MergeAll mergeAll = new MergeAll(mergers, this);
Map<String, Integer> counter = mergeAll.merge(model);

}

Abbildung 79: Übersicht des Merge-Algorithmus

Nachdem so das gesamte Simulationsmodell in einem Modellbaustein vereinfacht wurde,
findet die Invertierung der identifizierten Grundstrukturen nach dem beschriebenen
Verfahren statt, wobei zur Fallunterscheidung ggf. die vorliegende Bewertungsmatrix für
die entsprechende Grundstruktur erzeugt wird, auf deren Basis die Verzweigungen und
Zusammenführungen unterschieden werden können. Darüber hinaus können über die

- 156 -

Verweise in den Knoten des Graphen auch auf die Modellbausteine referenziert werden,
wenn der Zugriff auf die strukturierten Events zur Invertierung einer Grundstruktur
benötigt wird. Neben der Transformation einzelner Events in andere Modellbausteine
einer Grundstruktur muss eventuell die Adaption der implementierten Verteilregeln bei
der Aufteilung der Materialflüsse berücksichtigt werden. Prioritätsregeln28 (z.B. First-In-
First-Out) müssen bei der Rückwärtssimulation ggf. durch ihre Pendants ersetzt werden.
In den meisten Untersuchungsfällen können die implementierten Regeln jedoch bestehen
bleiben. Für die entsprechende Rückwärtssimulation müssen sie aber als Annahmen
entsprechend berücksichtigt werden.

In einem letzten Schritt werden die ursprünglichen Quellen und Senken des
Simulationsmodells aus dem resultierenden Simulationsmodell gelöscht und durch
Platzhalter ersetzt, die im weiteren Verlauf durch den Anwender mit den neuen Quellen
und Senken ersetzt werden müssen. Diese können nicht automatisch getauscht werden,
weil sich die Untersuchungszwecke von vorwärts und rückwärts gerichteten Simulations-
modellen stark unterscheiden.

Zusammenfassend kann an dieser Stelle festgehalten werden, dass alle
Vorraussetzungen für die Konzeption des Modellierungswerkzeugs vorliegen. Basierend
auf der Festlegung einer Vorgehensweise zur Modellierung und Simulation wurde in
diesem Abschnitt eine Modellbeschreibung entworfen, die alle an das Werkzeug gestellten
Anforderungen abbilden kann. Zusätzliche Funktionsmodule zur Unterstützung speziell
funktionsorientiert arbeitender Fertigungssysteme und zur weitestgehend automatischen
Transformation von Simulationsmodellen in ihre entgegengesetzt gerichteten Pendants
auf Basis eines Grundstrukturenkonzeptes wurden entworfen und den entsprechenden
Teilmodulen des Werkzeugs zugeordnet. Darüber hinaus wurde die nachrichtenbasierte
Kommunikationsschnittstelle zum Datenaustausch zwischen Simulator und
Visualisierungskomponenten sowie zwischen den Teilmodulen des Simulators erstellt und
steht für die Implementierung des Werkzeugs zur Verfügung. Als nächster Schritt sollen
nun die eigentlichen Software-Module des Werkzeugs entwickelt und entsprechend
detailliert werden.

5.3 Konzeption Modellierungswerkzeug

Im folgenden Abschnitt soll das Werkzeug im Rahmen eines Software-
Entwicklungsprozesses konzipiert und modelliert werden. In einem ersten Schritt wird
zunächst das System anhand der gestellten Anforderungen grob konzipiert, wobei ein
Hauptaugenmerk auf der Strukturierung in Teilmodule besteht. Diese Phase, im
Folgenden als Systementwurf bezeichnet, bildet die Basis für die Ausgestaltung der
einzelnen Teilmodule.

5.3.1 Systementwurf

Die Betrachtung der Anforderungen für das Werkzeug basiert auf dem in 5.1.1
entwickelten Modellierungs- und Simulationsprozess. Bei näherer Betrachtung der

28 Eine Übersicht und Klassifikation bekannter Prioritätsregeln kann beispielsweise in [FaFG94] oder [Teic98]

gefunden werden.

Konzeption - 157 -

einzelnen Anforderungen ergibt sich mittels der UML erstellte Use-Case-Diagramm, wie
es in Abbildung 80 dargestellt ist.

Aus dem in Abbildung 80 dargestellten Use-Case lässt sich ersehen, dass noch keine
explizite Unterscheidung zwischen verschiedenen Anwendergruppen gemacht wird.
Zunächst werden dem Akteur Anwender alle Funktionen der Modellierung und Simulation
ermöglicht. Beide Hauptaufgaben folgen bei der Durchführung einer Simulationsstudie
hintereinander und können somit auch voneinander losgelöst betrachtet werden.
Prinzipiell ergeben sich damit bereits zwei Module; das erste Modul unterstützt speziell
den Prozess der Modellierung, das zweite Modul berechnet das Simulationsmodell auf
Basis der Eingabewerte. Optional, aber nicht verpflichtend, kann der dynamische
Markenfluss des Simulationsmodells visualisiert werden. Um die Visualisierung von der
eigentlichen Berechnung im Simulatorkern loszulösen, werden die Aufgaben gemäß dem
MVC-Pattern (vgl. Abschnitt 3.5.6) in verschiedene Module verteilt. Das bietet den
Vorteil, dass unterschiedliche Visualisierungskomponenten mit dem Simulatorkern
verbunden werden können. Neben diesen Hauptaufgaben werden Funktionen zur
Administration der Anwender, Benutzergruppen und des Datenbestandes vorgesehen, die
prinzipiell auch durch einen Akteur Administrator erledigt werden können und eine direkt
Manipulation der Daten in der Simulationsdatenbank erlauben.

Abbildung 80: Use-Case-Diagramm des Werkzeugs

Use-Case: Modellieren

- 158 -

In der Modellierungsphase kann zwischen der Modellierung oder Bearbeitung einer
Bausteinbibliothek oder der Modellierung oder Bearbeitung eines experimentierfähigen
Simulationsmodells unterschieden werden. Da Bibliotheken auch eine geordnete
Ansammlung einzelner Simulationsmodelle darstellen, die in einem experimentierfähigen
Simulationsmodell verwendet werden können, unterscheidet sich die weitergehende
Funktionalität nicht. Innerhalb dieses Use-Cases werden die üblichen Hauptfunktionen
wie Erstellen, Bearbeiten, Speichern und Löschen eines Simulationsmodells angeboten.
Darüber hinaus wird an dieser Stelle das Verfahren zur automatischen Invertierung von
Vorwärtssimulationsmodellen in rückwärts gerichtete Simulationsmodelle in die
Modellierungskomponente eingebettet, wie es unter Abschnitt 5.2.4.2 konzipiert wurde.

Use-Case: Simulieren
Gemäß Abschnitt 5.1.4 erfolgt vor dem Start der Berechnung des Simulationsmodells im
Simulatorkern die Transformation der im XML-Format vorliegenden Modellbeschreibung
in ein ausführbares Java-Programm. Anschließend kann die Berechnung des
Simulationslaufs erfolgen, der optional durch verschiedene Visualisierungsmodule
dargestellt und animiert werden kann. Darüber hinaus erhält der Anwender die
Möglichkeit, während der Berechnung des Simulationslaufs interaktiv in die Berechnung
einzugreifen und Parameter des Simulationsmodells zu verändern. Gegebenfalls werden
die Manipulationsmöglichkeiten durch Voreinstellungen des Modellierers begrenzt.
Während oder nach der Berechnung des Simulationsmodells können die gesammelten
Informationen des Simulationslaufes ausgewertet und für eine weitere Verwendung
gespeichert werden. Sofern die Simulationsmodelle dies unterstützen, führt die
Bewegung des Anwenders in der Visualisierungskomponente zu einer dynamischen
Detaillierung des Simulationsmodells. Verwendet das Simulationsmodell die automatische
Wegberechnung des Motion Planning Moduls, werden diese zur Ausführungszeit eines
Simulationslaufs im Simulator berechnet und visualisiert.

Use-Case: Experimentieren
In der Experimentierphase einer Simulationsstudie steht dem Anwender ein weiteres
Modul des Werkzeugs zur Verfügung mit dem mehrere Simulationsläufe eines dort
anzulegenden Simulationsexperimentes mit den entsprechenden Parametern versehen
und in einem Stapelverarbeitungs- oder Parallelbetrieb ausgeführt werden. Neben der
Darstellung der Eingangsparameter unterstützen spezielle Funktionen des Moduls den
Anwender, beispielsweise bei der Variation der Startwerte der Zufallsverteilungen
innerhalb der Bausteininstanzen des Simulationsmodells über die verschiedenen
Simulationsläufe hinweg. Nach Durchführung aller Simulationsläufe können die
generierten Experimentdaten in einer kurzen Darstellung betrachtet und als
Simulationsexperiment in der Simulationsdatenbank oder auf dem Dateisystem
gespeichert werden.

Use-Case: Administrieren
Die Administration der anfallenden Daten und deren Verwaltung soll über ein spezielles
Modul erfolgen. Einzelne Funktionen werden nur dann in die Modellierungs-, Simulations-
und Visualisierungsmodule integriert, wenn sie den Anwender bei seiner Arbeit direkt
unterstützen. Damit können elementare Aufgaben wie beispielsweise die Verwaltung der
Anwender, Benutzergruppen, Rechteverwaltung und die Administration der
Simulationsdatenbank potentiell auch von Nicht-Simulationsexperten ausgefüllt werden.

Konzeption - 159 -

Grobstruktur der Funktionsmodule
Aus der Darstellung und Entwicklung der Use-Cases ergibt sich das bereits bekannte
Schema von Funktionsmodulen, aus denen das Gesamtsystem bestehen soll. Die
präzisere Darstellung der Funktionen über die einzelnen Funktionalitäten in den Use-
Case-Diagrammen hat die geplante Modularisierung des Werkzeugs nochmals bestätigt.
Neben einer Modellierungskomponente und dem Simulatorkern beinhaltet das Werkzeug
Module zur Visualisierung von Simulationsläufen, eine Simulationsdatenbank und ein
Modul zur Administration der Daten. Abbildung 81 gibt einen Überblick über die
Funktionsmodule und deren Beziehungen untereinander.

Abbildung 81: Grobstruktur der Funktionsmodule des Werkzeugs

Die Darstellung der Funktionsmodule gibt noch keine Auskunft darüber, wie die einzelnen
Funktionen mit Bedienoberflächen versehen werden. Hinsichtlich der verschiedenen
Aufgabestellungen sind hier unter Umständen alternative Visualisierungsmöglichkeiten zu
evaluieren und umzusetzen. Die Grobstrukturierung des Basisprozesses wurde durch den
Systementwurf also bestätigt und nur in Teilen erweitert. Im Folgenden sollen die
identifizierten Module präziser ausgeplant werden.

5.3.2 Entwurf der Funktionsmodule

Im folgenden Abschnitt sollen die einzelnen Funktionsmodule genauer hinsichtlich ihrer
Aufgabe und Beschaffenheit spezifiziert werden. Die Reihenfolge des Entwurfs orientiert
sich an der Vorgehensweise des Anwenders bei der Arbeit mit dem Werkzeug.

5.3.2.1 Modul Modellierung

Zur Umsetzung des Moduls zur Modellierung der Simulationsmodelle nach der in
Abschnitt 5.2 beschriebenen Modellbeschreibung wird auf das in Abschnitt 3.5.6
vorgestellte Architekturmuster Client/Server zurückgegriffen, da es sich besonders gut
für die Implementierung eines multitaskingfähigen Werkzeugs eignet. In Kombination mit
dem Modul Simulationsdatenbank ergibt sich eine 3-Tier-Architektur, bei der auf Seite
der Serverschicht zusätzlich der Simulatorkern platziert werden kann.

- 160 -

Die Aufgabe des Servers besteht in der Verwaltung der angeschlossenen Anwender, bzw.
Clients sowie der Wahrung der Konsistenz des oder der aktuell bearbeiteten
Simulationsmodelle. Zur besseren Kooperations- und Kollaborationsunterstützung kann
der Server verschiedene Kommunikationsmöglichkeiten zur Verfügung stellen, damit sich
die an der Modellierung beteiligten Anwender während ihrer Arbeit abstimmen können.
Darüber hinaus muss der Server eine Möglichkeit vorsehen, die Benutzerverwaltung zu
implementieren, so dass sich die Anwender an ihren Clients vor dem Zugriff auf die
Simulationsmodelle authentifizieren und damit auch autorisieren müssen. Die Umsetzung
der Rechteverwaltung aus Abschnitt 5.1.6 wird angestrebt, so dass der Zugriff auf ein
Simulationsmodell auch gestaffelt hinterlegt werden kann. Der Server muss jeweils
entscheiden, ob die vom Client angeforderte Interaktion (beispielsweise Hinzufügen eines
Bausteins, Löschen, Verschieben, etc.) auf Basis der zugrunde liegenden Rechte
ausgeführt werden darf oder nicht. Hierfür sind während der Implementierung zwischen
Client und Server geeignete Schnittstellen zu entwerfen. In den Modellierungsserver soll
auch das Verfahren zur automatischen Invertierung eines Simulationsmodells integriert
werden. Weil hier die aktuell bearbeiteten Simulationsmodelle hinterlegt werden, kann
das resultierende Simulationsmodell zur weiteren Bearbeitung für den oder die Anwender
direkt zur Verfügung stehen.

Jeder Anwender bearbeitet das Simulationsmodell über einen eigenen Client, der
verschiedene Visualisierungsmöglichkeiten anbietet. Neben einer zweidimensionalen
Visualisierung soll zusätzlich eine dreidimensionale Modellierungsform angeboten werden.
Idealerweise wird diese für weniger leistungsstarke Clients um eine 2½D-Visualisierung
ergänzt, die ein realistisches Anordnen der Modellbausteine mittels einer
Parallelprojektion von schräg oben in der virtuellen Umgebung ermöglicht. Abbildung 82
zeigt die resultierende Architektur des Modellierungsmoduls.

Abbildung 82: 3-Tier- Architektur des Modellierungsmoduls

Abbildung 83 beschreibt in einem Sequenzdiagramm die intendierte Bearbeitungs-
reihenfolge innerhalb des Modellierungsmoduls.

Konzeption - 161 -

Abbildung 83: Sequenzdiagramm des Modellierungstools

Der Anwender kann aus seinem Bearbeitungsclient ein in der Simulationsdatenbank
hinterlegtes Simulationsmodell zur Weiterbearbeitung öffnen oder legt ein neues
Simulationsmodell an (Analog kann mit der Modellierung von Bausteinbibliotheken
verfahren werden). Weitere angeschlossene Anwender können diesem Simulationsmodell
beitreten, um gemeinsam an demselben Modell zu arbeiten. Alternativ können sie eine
eigene Instanz dieses oder eines anderen Simulationsmodells öffnen. Der Server lädt das
Simulationsmodell mit allen Parametern und 2D-, 2½D- und/oder 3D-Repräsentanten der
Modellbausteine aus der Simulationsdatenbank und stellt sie den Clients zur Darstellung
zur Verfügung. Während der gleichzeitigen Bearbeitung eines Simulationsmodells durch
mehrere Anwender synchronisiert der Server die Zugriffe auf der Ebene eines
Bausteininstanz, bzw. hinsichtlich der über- wie untergeordneten Hierarchieebenen des
selektierten Modellbausteins. Abbildung 84 zeigt schematisch den Sperrmechanismus des
Servers.

Der Server verteilt die jeweiligen Informationen über Sperrzustände der einzelnen
Bausteininstanzen eines Simulationsmodells an die angeschlossenen Clients, damit diese
hier entsprechend dargestellt werden können. Der Server muss nicht zwangsläufig eine
grafische Oberfläche besitzen, könnte aber damit zusätzliche Informationen darstellen,
die eine Analyse durch die entsprechenden administrativen Stellen ermöglichen. Der
Arbeitsprozess der Anwender soll durchgehend mittels Kommunikationsmechanismen wie

- 162 -

Chat29, UserList30, User-Awareness31 und E-Mail unterstützt werden, so dass ein
verteiltes, ortsunabhängiges Arbeiten erlaubt wird. Jeder Client kann seine eigene
Darstellungsform aus den vorhandenen Möglichkeiten auswählen. Die jeweiligen
Darstellungsrepräsentanten werden vom Server an den Client übertragen. Dank der
verwendeten Client-Server-Architektur muss diese Informationen nur einmal aus der
Simulationsdatenbank ausgelesen werden und kann danach im Server für weitere
Anwender vorgehalten werden.

Abbildung 84: Sperrmechanismus des Modellierungsservers

Der Anwender kann seine Bearbeitung abschließen, indem er das Simulationsmodell aus
seinem Client heraus sichert. Der Server hinterlegt den aktuellen Modellzustand in der
Simulationsdatenbank, wo ihm eine aufsteigende Versionsnummer zugewiesen wird. Das
Modell wird um Informationen über Anwender, spezielle Kommentare, etc. angereichert
und gesichert, so dass jedem Anwender die Version des Simulationsmodells
wiederhergestellt werden kann, die er gesichert hat. Die Clients müssen über den Server
eine Möglichkeit bereitstellen, den Anwender auf vorhandene, neuere Versionen seines
Simulationsmodells hinzuweisen. Zum Schutz vor unbefugtem Zugriff auf die in der
Simulationsdatenbank hinterlegten Simulationsmodelle muss der Server eine
verschlüsselte Kommunikation mit den angeschlossenen Clients zumindest optional
unterstützen. Im Fall einer gemeinschaftlichen Simulationsstudie innerhalb eines

29 Chat (von engl. to chat) ist die Bezeichnung für eine innerhalb des Internet weit verbreitete Art der

interaktiven Kommunikation zwischen zwei oder mehreren Personen in Echtzeit [Balz05].
30 Die UserList ist meist eine Erweiterung der reinen Chat-Funktion, die es dem Anwender erlaubt, Kollegen

und Bekannte in selbst zu definierende Gruppen einzusortieren, um deren Adresse schneller wieder finden zu
können.

31 Chat-Programme erlauben dem Anwender die Angabe eines Anwesenheitsstatus, der allen anderen
Anwendern in deren UserList angezeigt wird, damit diese erkennen, ob der Anwender als
Kommunikationspartner zur Verfügung steht, stehen kann oder stehen möchte.

Konzeption - 163 -

Intranets eines abgeschlossenen Unternehmensbereichs kann auf diese zusätzliche
Sicherheitsrestriktion verzichtet werden.

Unter Berücksichtigung des Factory-Paterns32 soll die grafische Benutzeroberfläche des
Clients alle vorhandenen Visualisierungsmöglichkeiten in einer Oberfläche bereitstellen.
Sie wird dazu zunächst in drei Bereiche aufgeteilt. Abbildung 85 zeigt eine schematische
Darstellung der indentierten Benutzeroberfläche mit den Bereichen menu, library und
workplace.

Abbildung 85: Schematische Darstellung des Modellierungsclients

Die beiden Bereiche menu und library sind unabhängig von der gewählten
Visualisierungsform zur Darstellung des Simulationsmodells. Lediglich der „workplace“, in
dem die eigentliche Bearbeitung des Simulationsmodells erfolgt, unterscheidet sich je
nach gewählter Visualisierungsform (2D-, 2½D- oder 3D-Darstellung). Durch die
Implementierung des Listener-Konzepts33 in Kombination mit der eigentlichen
Datenstruktur des Simulationsmodells auf dem Server kann aber jederzeit zwischen der
gewählten Visualisierungsform gewechselt werden. Dazu müssen lediglich die
entsprechenden grafischen Repräsentanten der Modellbausteine vom Server nachgeladen
werden. Die im Client hinterlegten Maus-, Tastatur- oder Menübefehle führen unabhängig
von der Visualisierungsform zum Aufruf desselben Menüs. So kann eine einheitliche
Bearbeitung unabhängig von der gewählten Darstellung erreicht werden (Bsp.: Ein Menü
zur Verwaltung der Variablen eines Modellbausteins erscheint immer gleich und verändert
sich nicht, wenn es aus 2D- oder 3D-workplace aufgerufen wird). In den zu
entwickelnden Menüs müssen minimal die Parametrierung der Variablen und der
Ereignisse des selektierten Modellbausteins ermöglicht werden. Darüber hinaus muss der
workplace die Möglichkeit anbieten, die aus der Library per Drag&Drop34 im Modell
instanziierten Modellbausteine durch logische Verknüpfungen zwischen den Channeln zu

32 [LaRa06]
33 [LaRa06]
34 Drag & Drop (Ziehen und Fallenlassen) ermöglicht das Verschieben von Daten mittels Ziehen und

Fallenlassen und erlaubt dadurch den einfachen und effizienten Datenaustausch … zwischen verschiedenen
Anwendungen[Balz05].

- 164 -

verbinden. Die library stellt geladene Simulationsmodelle und/oder Bausteinbibliotheken
aus der Simulationsdatenbank zur Verfügung, damit der Anwender bei der Erstellung des
Modells bereits vorhandene Modellbausteine verwenden kann. Die Verwendung dieser
Architektur bietet durch den modularen Aufbau den Vorteil, den Modellierungsclient
effizient erweitern zu können. Bei Bedarf können weitere Darstellungsformen ergänzt
werden, wobei Änderungen an Menüs oder Eigenschaftsfenstern immer nur an einer
zentralen Stelle eingepflegt werden müssen. Für den Anwender ergibt sich darüber
hinaus der Vorteil einer einheitlichen Bearbeitung, unabhängig von der gewählten
Darstellungsform, zwischen denen fließend gewechselt werden kann.

5.3.2.2 Modul Simulatorkern

Wie in Abschnitt 5.1.2 beschrieben, muss bei dem gewählten Basisprozess vor
Ausführung eines Simulationslaufs das im XML-Format vorliegenden Simulationsmodell in
ein lauffähiges Java-Programm transformiert und kompiliert werden, um gemeinsam mit
den Funktionen des Simulatorkerns ein einziges ausführbares Programm zu bilden.
Dieses Vorgehen bietet neben dem erhofften Geschwindigkeitsvorteil bei der Ausführung
eines Simulationslaufes weitere Vorteile. Einerseits kann ein Simulationslauf somit ohne
Visualisierungsoberfläche berechnet und ausgeführt werden. Einzelne Simulationsläufe
können potentiell in einem Netzwerk in Form eines Simulator-Simulationsmodell-Paketes
verteilt und mit unterschiedlichen Parametersätzen von Eingabedaten gestartet werden.
Andererseits kann das Funktionsmodul Simulatorkern wesentlich schlanker und somit
effizienter implementiert werden. Die Anforderung an ein multitaskingfähiges
Mehrbenutzersystem kann im Simulatorkern leicht dadurch erfüllt werden, dass ein
Ankoppeln mehrerer Visualisierungskomponenten während der Ausführung erlaubt wird.
Technisch gesehen entsteht in der Verarbeitung der ankommenden Interaktions-
Nachrichten kein Unterschied, ob diese von einem Anwender oder von mehreren
Anwendern erzeugt werden. Das Teilmodul zur Nachrichtenverwaltung im Simulator muss
dann die Verwaltung der eingehenden Nachrichten nach Anwendern sortiert unterstützen.
Kontextbezogen müssen Regeln implementiert werden, die eine inhaltliche Abstimmung
der angeschlossenen Anwender unterstützen. Das Kommunizieren von im Simulatorkern
berechneten Änderungen am Simulationsmodell über ein Nachrichtenformat kann ähnlich
effizient an einen, wie auch an mehrere angeschlossene Visualisierungskomponenten
erfolgen. Abbildung 86 zeigt die einzelnen Funktionsbereiche des Simulatorkerns in
einem schematischen Diagramm.

Konzeption - 165 -

Abbildung 86: Funktionsbereiche des Simulatorkerns

Obige Abbildung zeigt, dass sich der Simulatorkern aus mehreren Teilmodulen
zusammensetzt, die während der Ausführung eines Simulationslaufs ineinander greifen.
Der wesentliche Teil des Simulators ist der Scheduler mit der zugehörigen Ereignisliste, in
die zu berechnende Ereignisse des Simulationsmodells zur Laufzeit sortiert eingefügt
werden (vgl. Abschnitt 3.3). Die Ausführung der diskreten Simulation erfolgt nach den in
Abschnitt 2.2 beschriebenen Methoden, wobei die Datenstruktur des parametrierten
Simulationsmodells ein objektorientiertes Datenmodell mit Objektklassen und –Instanzen
bildet. Diese werden auf Basis eines Interfaces erzeugt, das als eigenständiges Paket im
Simulatorkern implementiert werden muss. Hier werden insbesondere die Attribute und
Methoden definiert, die der Simulatorkern zur Laufzeit ausführen kann, um die Daten des
Simulationsmodells zu manipulieren, weitere Ereignisse zu instanziieren und dem
Scheduler hinzuzufügen. Zur Verwaltung der erzeugten Datenstrukturen des
Simulationsmodells wird im Simulator ein Datastore benötigt, an dem sich alle
verwendeten Instanzen des Simulationsmodells während ihrer Erzeugung anmelden, um
einen Zugriff auf die benötigten Daten aus dem Simulator heraus gewährleisten zu
können. Manipulationen aus den Visualisierungskomponenten werden an der
Kommunikationsschnittstelle des Simulators, dem MessageHandler, verarbeitet. Alle
ankommenden Nachrichten werden hier gefiltert, verarbeitet und manipulieren ggf. den
Datastore oder den Scheduler. Für die benötigte Transformation von XML-Modell in eine
Java-Objekthierarchie wird zusätzlich ein Preprocessor benötigt, der die vorliegenden
Modellbeschreibungen in ein Java-Programm parst und das Ergebnis kompiliert.

Die Modellierung und Simulation von zeitorientierten Simulationsmodellen soll mit dem
Werkzeug prinzipiell über zwei verschiedene Arten ermöglicht werden:

1. Zeitorientierte Bausteinbibliotheken

Die Modellierung zeitorientierter Simulationsmodelle erfolgt in diesem Fall über
Bausteinbibliotheken, die eine entsprechende Zeitfortschaltung implizit unterstützen.
Die zu terminierenden Ereignisse werden bausteinintern auf die vorhandenen
Zeitinkremente abgebildet. Die Ausführung des Simulationsmodells im Simulatorkern
kann dann ereignisorientiert erfolgen, weil die Terminierung der Ereignisse im

- 166 -

Scheduler bereits zeitorientiert erfolgt. Jeder Bausteininstanz kann während der
Modellierung ein eigener Kalender zugewiesen werden (beispielsweise ein
Schichtkalender), wodurch im abgebildeten System die einzelnen Elemente zwar
zeitorientiert, aber nach jeweils variablen Intervallen simuliert werden können.
Dieses Vorgehen entspricht am ehesten den Sichten in Fertigungsleitständen und
kann auf Basis der abstrakteren Simulationsmodelle zur Integration innerhalb der
Fertigungslenkung verwendet werden.

2. Zeitorientierte Berechnung im Simulatorkern
Hier kann die zeitorientierte Ausführung des Simulationsmodells auf Basis eines
ereignisdiskreten Simulationsmodells erfolgen. Der Simulator überstützt dies über
einen speziellen „Modus Zeitorientierung“, bei dem alle auftretenden Ereignisse
kernelintern auf fixe Zeitinkremente abgebildet werden. Dieses Vorgehen entspricht
der unter Abbildung 8 gezeigten Vorgehensweise der Zeitfortschaltung mit fixen
Zeitinkrementen. Am Anfang der Simulation kann vom Anwender der Abstand der
Zeitinkremente parametriert werden. Vorteil dieser Methode ist die
Wiederverwendung der ereignisorientierten Simulationsmodelle, allerdings hängt die
Genauigkeit der Simulation stark von den gewählten Zeitinkrementen ab.

Darüber hinaus ergeben sich aus der Aufgabenstellung weitere Teilfunktionen, die als
zusätzliche Funktionen in dem Simulator eingebettet werden müssen. Hier sind
insbesondere das Motion Planning Modul (vgl. Abschnitt 5.2.1.2) und das Modul zur
dynamischen Adaption des Detaillierungsgrades des Simulationsmodells (vgl. Abschnitt
5.2.1.1) zu erwähnen, die jedoch nur dann aktiv dem Simulatorkern hinzugefügt werden
sollen, wenn sie in dem zu bearbeiteten Simulationsmodell benötigt werden. Für das
Laden und Speichern von Simulationsmodell und Simulationsexperimenten existiert mit
dem Experiment-Manager ein separates Modul, das nachfolgend genauer entworfen wird.

5.3.2.3 Modul Experimentmanager

Das Modul Experimentmanager soll den Anwender in Form eines durch die Anwendung
leitenden Wizards bei der Durchführung einer Simulationsstudie unterstützen, indem an
einer zentralen Stelle alle zur Durchführung eines Simulationsexperimentes benötigten
Simulationsläufe parametriert und entweder in einem Stapelverarbeitungs- oder in einem
Parallelbetrieb abgearbeitet werden können. Zu Beginn jeder Bearbeitung soll der
Anwender ein Simulationsexperiment komplett neu anlegen, auf Basis eines Szenarios
neu anlegen oder aus der Simulationsdatenbank laden. Daraufhin sollen die
Grundeinstellungen hinsichtlich Simulationszeit- und Dauer, Anzahl der Simulationsläufe,
etc. angegeben werden. Für die eigentliche Parametrierung sollen zahlreiche
Unterstützungsfunktionen implementiert werden, die beispielsweise die automatische
Parametrierung und Verwirbelung der Startparameter aller Zufallszahlen eines
Simulationsmodells erledigen. Einzelne oder mehrere Parameter der Bausteininstanzen
sollen in einer zentralen Übersicht eingestellt werden, wobei die Ansicht über
entsprechende Masken oder Filter auf die relevanten Bereiche eines Simulationsmodells
eingegrenzt werden soll. Nach der Einstellung der Ausführungsparameter der einzelnen
Simulationsläufe (hintereinander oder parallel auf Rechner 1 bis Rechner N) kann der
Anwender das Experiment starten und erhält nach dessen Berechnung eine tabellarische
Übersicht über die generierten Ergebnisse. Das Simulationsexperiment inklusive der
Ergebnisse kann dann in der Simulationsdatenbank oder auf dem Dateisystem
gespeichert werden. Das Protokoll der einzelnen Simulationsläufe kann verwendet

Konzeption - 167 -

werden, um sich im Nachhinein einzelne Ausschnitte aus den Simulationsläufen
visualisieren zu lassen.

5.3.2.4 Modul Visualisierungskomponente

Bei der Konzeption des Visualisierungsmoduls wird auf das bereits im Modellierungsmodul
erfolgreich angewendete Architekturpattern Client-Server zurückgegriffen (vgl. Abschnitt
3.5.6). Der Simulatorkern übernimmt die eigentliche Serverfunktion. Neben bereits
angesprochenen Darstellungsformen (2D-, 2½D- und 3D-Darstellung) soll als weitere
Visualisierungsmöglichkeit eine Report-Oberfläche angeboten werden. Unabhängig von
der layoutgetreuen Darstellung des Simulationsmodell in den verschiedenen
Darstellungsformen soll mit dieser Visualisierungsmöglichkeit eine Analysefunktion
bereitgestellt werden, die eine aggregierte Sicht auf die aktuellen Kennzahlen der
einzelnen Modellbausteine des simulierten Modells ermöglicht. Es erlaubt eine schnelle
Übersicht und damit Einschätzung des aktuellen Modellverhaltens während des
Simulationslaufs und soll hauptsächlich im Rahmen der Modellvalidierung und –
Verifikation eingesetzt werden. Die Report-Oberfläche ist in der Lage den gesamten
Simulationslauf in einem RecordSet zu sichern und jederzeit wieder abspielen zu können.
Damit wird eine weitere Form der Analyse von Simulationsmodellen ermöglicht, indem
verschiedene Anwender ein RecordSet gemeinsam analysieren und damit die Entwicklung
des Simulationsmodells oder sogar des abgebildeten Fertigungssystems voranzutreiben.

Report-Oberfläche, 2D- und 2½D-Oberfläche können mit wenigen Anpassungen und
Erweiterungen in den Client des Modellierungsmoduls integriert werden, so dass eine
einheitliche Werkzeugoberfläche zur Modellierung und Simulation zur Verfügung steht.
Der Server muss zusätzlich um eine bidirektionale Schnittstelle (MessageCenter) zur
Verarbeitung der Animationsnachrichten, Kommunikation der Änderungen von
Parameterwerten und Interaktionen erweitert werden, um die Animation während der
Ausführung eines Simulationsmodells in den Visualisierungskomponenten zu ermöglichen
und die Interaktion mit dem Simulatorkern zu unterstützen. Dabei wird das in Abschnitt
5.2.2 entwickelte Nachrichtenformat umgesetzt. Weil der Server bereits die Multitasking-
Bearbeitung von Simulationsmodellen unterstützt, muss in diesem Bereich keine weitere
Anpassung vorgenommen werden. In den hier abgebildeten Visualisierungsformen nimmt
der Anwender keine immersive Rolle ein, sondern betrachtet das abgebildete
Fertigungssystem, ähnlich wie in kommerziellen Lösungen, als externer Betrachter.
Speziell diese Darstellungsformen können eine gute Immersion nur schwer erzeugen.
Deswegen können die Anforderungen hier auf den interaktiven Anteil beschränkt werden.
Durch die Unterstützung des Nachrichtenformats in den entsprechenden Erweiterungen
ist der Anwender in der Lage, Interaktionen auszuführen, die an den Simulatorkern
übertragen und dort verarbeitet werden (vgl. Abbildung 87).

- 168 -

Abbildung 87: Sequenzdiagramm einer Interaktion während der Simulation

Hier greift, wie schon bei der Modellierung, die implementierte Benutzerverwaltung, so
dass eine Abstufung innerhalb der Interaktionsmöglichkeiten gemäß der assoziierten
Rechte umgesetzt werden kann (damit wird auch die Möglichkeit eines reinen Viewers
erlaubt, bei dem der Anwender reiner Betrachter ist). Abbildung 88 zeigt die
resultierende Architektur nach Erweiterung des Modellierungsmoduls um die
beschriebenen Visualisierungsformen.

Abbildung 88: Erweiterung des Modellierungsmoduls um
Visualisierungskomponenten

Der dreidimensionalen Visualisierung kommt während der Implementierung eine spezielle
Bedeutung zu, um die realitätsnahe Immersion des Anwenders in die virtuelle Szene des
Simulationsmodells zu realisieren. Neben der Anbindung an den Simulatorkern und der
Animation des dynamischen Verhaltens des Simulationsmodels ist in einem ersten Schritt
die flüssige Visualisierung komplexer 3D-Szenen zu realisieren. Um die Navigation des
Anwenders in der virtuellen Umgebung zu unterstützen, sollen für den Simulationsverlauf

Konzeption - 169 -

besonders relevante Prozesspunkte speziell hervorgehoben werden und die Bewegung zu
diesen Punkten unterstützt werden. Neben Integration von Motion Planning zur
Wegeplanung und Kollisionsvermeidung der SPMs und Avatar des Anwenders, sollen
kürzeste Wege zu diesen signifikanten Prozesspunkten in die virtuelle Umgebung
eingeblendet werden. Ebenso wie in anderen Visualisierungsformen muss dem Anwender
ein Höchstmaß an Interaktion aus der Darstellung des Simulationslaufs ermöglicht
werden. Die 3D-Visualisierung ist ebenfalls als Client umzusetzen, der das gleichzeitige
Navigieren mehrerer Anwender über den „Server“ Simulatorkern unterstützt. Der
MessageHandler im Simulator muss um die Verwaltung und Bereitstellung von
Anwenderinformationen, Avataren und ihren jeweiligen Positionen erweitert werden. Der
Bereich des Moduls zur 3D-Visualisierung wird als Client realisiert werden, der mit dem
Simulatorkern bidirektional kommuniziert, gemäß dem unter 5.2.2 entwickelten
Nachrichtenprotokoll, um die Interaktion des Anwenders mit dem Simulationslauf zu
ermöglichen. Aus Effizienzgründen erhält der 3D-Client eine direkte Schnittstelle zur
Simulationsdatenbank, um die teilweise umfangreichen 3D-Repräsentanten einer
Bausteininstanz direkt aus der Datenbank laden zu können. Die Informationen, welche
3D-Repräsentanten im Simulationslauf benötigt werden, erhält der Client über den
Simulatorkern. Abbildung 89 zeigt den schematischen Aufbau der Gesamtarchitektur
unter Berücksichtigung der 3D-Visualisierungskomponente.

Abbildung 89: schematischer Aufbau der Gesamtarchitektur

Der Client der 3D-Visualisierung dient der Darstellung der gerenderten 3D-Szene für den
jeweiligen Anwender. Die Navigation wird über das Motion Planning Modul so gestaltet,
dass der Anwender in der virtuellen Umgebung nur Wege nehmen kann, die ihm in der
realen Umwelt auch zur Verfügung ständen. Neben der Darstellung der virtuellen
Umgebung werden dem Anwender in weiteren Fenstern zusätzliche Informationen über
einen selektierten Modellbaustein, eine Liste aller im Simulationsmodell vorhandenen
Modellbausteine, eine Minimap35 zur Verbesserung seiner Orientierung und Methoden zur
Kommunikationsunterstützung angeordnet werden. Abbildung 90 zeigt den
schematischen Aufbau der 3D-Client-Oberfläche.

35 Unter einer Minimap soll hier eine verkleinerte, maßstabsgetreue Draufsicht auf die Szene verstanden

werden, die dem Anwender zusätzlich in den Client eingeblendet wird, um ihm seine Orientierung in der
virtuellen Umgebung zu erleichtern.

- 170 -

Abbildung 90: schematischer Aufbau des 3D-Clients

5.3.2.5 Modul Simulationsdatenbank

Als gemeinsame Datenbasis aller mit der Modellierung und Simulation in Zusammenhang
stehenden Daten und Informationen soll eine Simulationsdatenbank dienen. Die
anfallenden Daten im Rahmen der Simulation können nach Abschnitt 5.2.3 grob in die
Bereiche Eingabedaten, Modelldaten und Ergebnisdaten unterteilt werden. Zusätzlich
werden Verwaltungsdaten benötigt, um die Eingangs- und Parametrierdaten sowie die
Ergebnisdaten einem Simulationsexperiment und auch einem Anwender zuordnen zu
können. Aus den Modelldaten ergibt sich die Struktur der Abläufe und des
Materialflusses. Durch die Integration von Layout und Prozessplanung werden auch
Änderungen am Layout direkt in das Simulationsmodell übertragen. Diese Aktualität ist
wichtig, weil sonst Simulationsergebnisse verfälscht werden können. Die
Modellbeschreibung selbst gibt nur die logische Ablaufstruktur vor. Alle Eigenschaften der
Modellbausteine (Kapazität, Taktzeit, etc.) können im Bereich der Eingabedaten zu einem
Simulationsmodell in der Datenbank gespeichert werden. Die Eingangsdaten der
Simulationsmodelle können hinsichtlich ihrer Art weiter unterschieden werden:

 Statische Parameter beschreiben die Eigenschaften der Modellbausteine (Größe der
Speicher, Zählpunkte, etc.), die zur Eingangsparametrierung (Initialisierung) des
Modells dienen. Hier können sowohl konstante Modelldaten als auch Verweise auf
Produktivdatenbanken der zu simulierenden Systeme stehen. Letztere Alternative
hat den Vorteil, dass Veränderungen am modellierten System automatisch in das
Simulationsmodell übertragen werden. Die meisten Eigenschaften ändern sich
jedoch selten, sind also über einen längeren Zeitraum konstant. Logischerweise
bieten sich diese Parameterverweise nur dann an, wenn die zu modellierenden
Systeme bereits in der Realität existieren.

 Dynamische Parameter sind Daten eines zugrunde liegenden Produktivsystems, die
aktuell für jedes Simulationsexperiment aus den Produktivdatenbanken ausgelesen
werden müssen, evtl. aufbereitet für das jeweilige Simulationsmodell. Insbesondere
sind dies Daten und Informationen, die den aktuellen Stand der Fertigung
wiedergeben (Prozessabbild) und die Bedingungen für den Simulationshorizont
darstellen (z.B. geplante Tagesproduktion, Arbeitszeitmodelle, etc.). So kann das

Konzeption - 171 -

Verhalten des Simulationsmodells dem realen Prozess weitestgehend angepasst
werden und damit als Prognoseinstrument für eine laufende Fertigung eingesetzt
werden.

Alle genannten Datenbereiche sollen nachfolgend detailliert werden. Daraus ergeben sich
die einzelnen Datenbereiche, wie sie in Abbildung 91 skizziert werden und innerhalb der
zu entwickelnden Simulationsdatenbank umgesetzt werden müssen.

Abbildung 91: Datenbereiche der Simulationsdatenbank

Die einzelnen Datenbereiche übernehmen die Sicherung der ihnen zugeordneten Daten
in logisch abgetrennten Bereichen der Simulationsdatenbank.

 Fertigungsdaten
Unter Fertigungsdaten werden die Parametrierungen der einzelnen
Bausteininstanzen abgelegt, mit denen die einzelnen Modelle zu Beginn eines
Simulationslaufes initialisiert werden. Dabei werden durch die dynamischen
Detaillierung unter Umständen einzelne Fertigungsbereiche mehrfach, aber in
unterschiedlichen Detaillierungsgraden abgelegt. Abgeleitet aus der abgelegten
Hierarchie der Modellbausteine im Simulationsmodell können die einzelnen
Fertigungseinheiten in einer Baumstruktur (Top-Down-Hierarchie) abgelegt werden.

 Prozessabbild
Das Prozessabbild liefert zu einem fest definierten Zeitpunkt (statisch) den
Betriebszustand aller im Simulationsmodell abgebildeten Anlagen (Maschinen,
Lager, Fördertechnik, etc.) und die Lokalisierung aller Produktionsgüter (innerhalb
der Anlage, im Lager, auf Fördertechnik). Jeweils zum gewählten Detaillierungsgrad
werden die Fertigungseinheiten und damit die Modellbausteine des
Simulationsmodells mit den Produktivdatensätzen initialisiert. Da ein Prozessabbild
umfangreiche Datensätze beinhalten kann und zusätzlich für eine Online-Simulation
nur einmal benötigt wird, werden nur wesentliche Kennzahlen daraus in der
Simulationsdatenbank langfristig abgespeichert, um die wichtigsten
Eingangsparameter reproduzieren zu können (Ausnahme: Detailsimulationen, für
die ein komplettes Prozessabbild benötigt wird). Die restlichen Daten werden nur
temporär in der Simulationsdatenbank gespeichert und nach dem
Simulationsexperiment gelöscht. Für Planungssimulationen muss eine Möglichkeit
vorgehalten werden, um einzelne Prozessabbilder abzuspeichern und damit eine
Simulation mehrerer Experimente auf Basis gleicher Eingangsvoraussetzungen zu
starten.

- 172 -

 Steuerungsdaten
Hier finden sich alle Steuerparameter und Planungsdaten der Simulation und
definieren die Rahmenbedingungen für das Prognoseverhalten des
Simulationsmodells. Anhand dieser Daten wird das Verhalten der Bausteine des
Simulationsmodells über den Zeitraum der Simulation bestimmt. Dies sind
beispielsweise Arbeitszeitmodelle und geplante Lose sowie die Histogramme, die
Durchlaufzeiten oder Verwirbelungen innerhalb der Modellbausteine anhand von
Wahrscheinlichkeitswerten definieren.

 Simulationsmodelle
In diesem Datenbankbereich werden die Modellbausteine, Bibliotheken und
Simulationsmodelle in den verschieden vorliegenden Versionen hinterlegt,
angereichert um Meta-Informationen bzgl. des Anwenders und Kommentare zur
Identifikation der Unterschiede in den Versionen. Alle Modellbausteine sind mit
Standardwerten vorbelegt, soweit diese durch den Modellierer hinterlegt wurden.
Die experimentspezifischen Parameter der Modellbausteine hinsichtlich eines
Szenarios oder eines Simulationslaufes werden im Bereich Fertigungsdaten
hinterlegt und überschreiben ggf. die Standardwerte. Zusätzlich können spezielle
Parameter aus den Szenario- und/oder Experimentdaten die Standardwerte der
Bausteine überschreiben. Ein Modellbaustein kann auch einen Verweis auf den
Bereich der 3D-Daten beinhalten.

 Szenarioverwaltung
Die Szenarioverwaltung umfasst Einstellparameter für Stör- und Änderungs-
szenarien sowie die Zuweisungen zu entsprechenden Simulationsexperimenten
(siehe Experimentverwaltung). Die manuell eingestellten Parameter und Störungen
des Simulationslaufes oder –Experiments werden in diesem Bereich abgespeichert.
Dies können beispielsweise Veränderungen einer Tagesproduktion, des
Arbeitszeitmodells oder Störungen im Fertigungsablauf sein.

 3D-Daten
Im Bereich der 3D-Daten werden alle anfallenden Informationen und Datenmengen
gesichert, die für die grafische Darstellung der Modellbausteine in den
Modellierungs- oder Visualisierungskomponenten benötigt werden. Neben 3D-
Repräsentanten und höhenabhängigen Draufsichten sind das die relativ
angeordnete Anfahrpunkte für das Motion Planning, eventuell vorhandene 2,5D-
Darstellungen, Outlines und Informationen über Animationspfade etc.

 Experimentverwaltung
Hier werden die durchgeführten oder geplanten Experimente mit allen benötigten
Daten und Verweisen abgespeichert. Neben dem ausführenden Anwender sind das
insbesondere Informationen wie Datum, Beschreibung, Sollzahlen, hauptsächlich
Verweise auf eingestellte Veränderungen und Störungen aus der
Szenarioverwaltung. Abgespeicherte Experimente können als Vorlage für
weiterführende Simulationsexperimente dienen.

 Ergebnisverwaltung
Zu den durchgeführten Simulationsexperimenten werden in diesem Bereich der
Simulationsdatenbank die Ergebnisse der einzelnen Simulationsläufe gespeichert..
Die Ergebnisse spiegeln sich u.a. in einer Reihe von Ergebniskennzahlen wieder, die
als Statistiken aufbereitet werden und in Auswertungsmodulen in verschiedenen
Darstellungsformen angezeigt werden können. Für das Protokollieren und Sichern

Konzeption - 173 -

von Experimentdaten eines Simulationslaufs wurde in Abschnitt 5.2.3 eine
Beschreibung erstellt, die in diesem Bereich gesichert werden soll.

 Benutzerverwaltung
Die Benutzerverwaltung enthält alle Benutzerdaten und die Gruppenzugehörigkeit
mit den entsprechenden Rechten. Anhand der Benutzergruppe, personifizierten
Rechten und den Einstellungen in den einzelnen Modellbausteinen ergeben sich die
Rechte für den Zugriff auf die Simulationsmodelle und deren einzelne
Modellbausteine. Hier wird zusätzlich das entwickelte Rechtemanagement abgelegt
und verwaltet (vgl Abschnitt 5.1.6.).

Für die manuelle Bearbeitung der Daten in der Simulationsdatenbank soll ein einfaches
Fron-End entwickelt und benutzt werden, um außerhalb der Modellierungs-, Simulations
und Visualisierungskomponenten die Datenbank warten zu können. Wie oben bereits
angedeutet, können diese Wartungsaufgaben zumeist auch von Nicht-
Simulationsexperten durchgeführt werden.

5.3.2.6 Modul Administration

Das Funktionsmodul Administration dient der wartungsfreundlichen Manipulation
vorhandener Datensätze in und aus der Simulationsdatenbank. Wesentliche
Anforderungen ergeben sich aus der Pflege der Simulationsmodelle, Experiment- und
Szenariodaten sowie der komfortablen Bearbeitung und Pflege aller benötigten 2D, 2.5D
oder 3D-Repräsentanten der logischen Modellbausteine. Darüber hinaus wird eine
grafische Oberfläche zur Pflege der Benutzerdaten und der vorhandenen
Rechteverwaltung benötigt. Abbildung 92 zeigt eine nach Funktionsgruppen sortierte
Übersicht aller anfallenden administrativen Aufgaben.

Abbildung 92: Teilmodule des Administrationsmoduls

Die einzelnen Anforderungen lassen sich auch durch spezifische, ggf. bereits vorhandene
Werkzeuge implementieren und abarbeiten. Im Rahmen der Konzeption eines
Gesamtwerkzeugs soll hier aber ein einheitliches Administrationsmodul umgesetzt
werden, dass alle erforderlichen administrativen Aufgaben abzuarbeiten ermöglicht. Dazu
müssen in den einzelnen Modulteilen entsprechende Funktionen implementiert werden,
die eine Umsetzung der dargestellten Use-Cases erlauben.

Auf Basis der in diesem Kapitel getroffenen Design-Entscheidungen hinsichtlich der
Modellbeschreibung und der Modularisierung des zu entwickelnden Werkzeuges sollen im
folgenden Kapitel die einzelnen Bausteine des Werkzeugs in der Programmiersprache

- 174 -

Java umgesetzt werden. Anschließend wird anhand eines Beispielmodells nachgewiesen,
dass das Werkzeug den unter Kapitel 1 gestellten Anforderungen genügt.

Realisierung - 175 -

6 Realisierung
„Leben heißt Handeln.“

(Albert Camus)

Nach der Konzeptionsphase müssen die entwickelten Funktionsmodule der
Gesamtanwendung implementiert und in einer Gesamtanwendung zusammengeführt
werden. Dieses Kapitel will das Ergebnis der Implementierungsphase beschreiben, indem
es anhand eines spezifischen Beispiels den Nachweis führt, dass alle in Abschnitt 2.4
gestellten Anforderungen an Basisprozess, Modellbeschreibung und Werkzeug erfüllt
werden können.

Das Kapitel ist nach der Vorgehensweise bei der Durchführung einer Simulationsstudie
strukturiert. In den ersten Abschnitten wird daher zunächst Untersuchungsgegenstand
und Untersuchungsziel definiert. Die Problemstellung ist so gewählt, dass alle in der
Anforderungsbeschreibung aufgenommenen Funktionalitäten ihre Anwendung finden. Sie
werden an geeigneter Stelle abgearbeitet, um sowohl Mächtigkeit der
Modellbeschreibung als auch Funktion des Werkzeugs zu illustrieren. Auf den Nachweis
der Simulationswürdigkeit, der üblicherweise an erster Stelle einer Simulationsstudie
steht, wird an dieser Stelle verzichtet.

6.1 Definition des Untersuchungsgegenstands

Zu Beginn der Simulationsstudie soll der Untersuchungsgegenstand beschrieben werden,
wie er im Folgenden abgebildet wird. Fokus der Untersuchung ist die fiktive Fabrik der
PaderKarts GmbH (PaderK), die auf Basis von Rohstoffen und Teilerzeugnissen
kundenindividuelle Karts herstellt. Der Leistungserstellungsprozess kann grob in zwei
Prozessschritte unterteilt werden: Die Teilefertigung von Zwischenerzeugnissen auf Basis
von Rohmaterialien und die kundenindividuelle Montage auf Basis der Zwischen-
erzeugnisse. Beide Prozesse werden durch ein zentrales Lager entzerrt, bzw. aus diesem
Zentrallager mit Faktoren versorgt. Abbildung 93 zeigt das Grobschema der Fertigung
der PaderKarts GmbH.

- 176 -

Abbildung 93: Grobschema der Fertigung von Karts bei der PaderK GmbH

Alle Teilmodelle der PaderKarts GmbH sollen auf zwei unterschiedlichen
Detaillierungsebenen betrachtet werden: Zum Einen eine weniger detaillierte Ebene, in
der die drei Teilbereiche der PaderK zeitorientiert und ohne Transportwege modelliert und
simuliert werden können; Zum Anderen eine höher detaillierte Betrachtungsebene, die
zusätzlich die Transportbeziehungen innerhalb der Teilbereiche abbildet. Nachfolgend
sollen die einzelnen Teilbereiche in den jeweiligen Detaillierungen näher beschrieben
werden.

6.1.1 Zentrallager

Das Lager der PaderK ist zentraler Anlaufpunkt aller Warenflüsse. Wie in Abbildung 93
gezeigt, werden die fremdbeschafften Rohstoffe, alle eingekauften Halbfabrikate, die
Teilerzeugnisse der Teilefertigung und kundenindividuellen Erzeugnisse der Montage in
einem gemeinsamen Lager verwaltet. Die jeweils ankommenden Waren werden an einem
gemeinsamen Wareneingang zwischengelagert und durch Gabelstapler auf die einzelnen
Lagerplätze in vier Lagergassen verteilt. Eine weitere Gruppe von Gabelstaplern
übernimmt den unternehmensinternen wie -externen Versand der Erzeugnisse, indem
sie die Waren aus den Lagerplätzen entnehmen, an einem zentralen Warenausgang
kommissionieren und verschicken. Abbildung 94 zeigt die schematische Struktur des
Zentrallagers ohne Berücksichtigung der Staplersteuerung und Gabelstapler, also auf der
weniger detaillierten Betrachtungsebene. Die Auftragssteuerung generiert die Aufträge
für den Warenausgang. Sie werden durch den Wareneingang durchgeschleust und
veranlassen die Auslagerung in der jeweiligen Lagergasse, so dass die Erzeugnisse im
Warenausgang ankommen. Hier werden sie anschließend versendet.

Abbildung 94: Zentrallager der PaderK in niedriger Detaillierung

Die detaillierte Betrachtung unter Einbeziehung der beiden Gabelstaplergruppen erweitert
das Lager nur leicht. Wie Abbildung 95 zu entnehmen ist, schleust der Wareneingang die
ankommenden Einlagerungsaufträge und Waren an die Staplersteuerung weiter, die den
Transport mittels der Gabelstapler bis zu den eigentlichen Lagerplätzen in den
Lagergassen unter Einbeziehung der kürzesten Wege übernimmt. Die Auftragssteuerung
zur Auslagerung ist an die Steuerung der Gabelstapler-Gruppe „Warenausgang“
angebunden. Übergebene Auslagerungsaufträge werden mittels der Gabelstapler an den

Realisierung - 177 -

Warenausgang übergeben, wobei die Transportwege ebenfalls unter Anwendung des
Motion Planning berechnet werden sollen. Der Warenausgang übernimmt die
Kommissionierung der einzelnen Auslageraufträge zu Versandaufträgen und transportiert
die entsprechenden Erzeugnisse anschließend, je nach Bestimmungsort, an die
entsprechenden Output-Channel des übergeordneten Modellbausteins Zentrallager.

Abbildung 95:Zentrallager der PaderK in hoher Detaillierung

Die einzelnen Output-Channel des Modellbausteins Zentrallager sind mit den anderen
Bereichen des Gesamtmodells verbunden, also dem Eingang des Modellbausteins
Teilefertigung, dem Eingang des Modellbausteins Montage oder dem Output-Channel des
Gesamtmodells der PaderK. Da die entsprechenden Verknüpfungen jeweils nur logischen
Vorgänger/Nachfolger-Beziehungen entsprechen, muss bereits im Modellbaustein
Warenausgang des Zentrallagers sowohl auf niedriger wie hoher Betrachtungsebene
entschieden werden, über welchen Output-Channel des Bausteins der jeweilige Auftrag
versandt wird.

6.1.2 Teilefertigung

Die von der PaderK eingekauften Rohstoffe und Halberzeugnisse werden in der
Teilefertigung verarbeitet. Zwei grundlegende Bearbeitungen können unterschieden
werden, die durch eine Gruppenfertigung abgebildet werden: Zum Einen die Bearbeitung
von Metallteilen durch Umform-, Biege- und Fügetechniken. Die erstellten und
behandelten Metallteile werden in einem Folgeschritt zu Karosseriestrukturen des Karts
verschweißt. Zum Anderen die Herstellung von Kunststoffteilen mittels eines
Spritzgussverfahrens, das eine umfangreiche Nacharbeit (Entgraten, Schleifen, etc)
erfordert. Alle Zwischenerzeugnisse werden in einem Teilelager innerhalb der
Teilefertigung zwischengepuffert, anschließend entweder an die Lackierung übergeben
oder gehen direkt ins Zentrallager der PaderK. Auf der gröberen Betrachtungsebene, wie
sie in Abbildung 96 dargestellt wird, werden die Transporte zwischen den einzelnen
Stufen nicht betrachtet.

- 178 -

Abbildung 96: Teilefertigung der PaderK in niedriger Detaillierung

Der Transport innerhalb der Teilefertigung wird bei der PaderK mittels fahrerloser
Transportfahrzeuge (FTF) gewährleistet, die auf festen Wegen die Teilefertigung
durchqueren und die Zwischenerzeugnisse zwischen den einzelnen Fertigungsstufen
transportieren. Abgebildet wird das fahrerlose Transportsystem (FTS) über eine feste
Wegestruktur in Form von Bausteinen, die Wege oder Bahnhöfe repräsentieren, wobei
nur an den Bahnhof-Bausteinen Teile aufgenommen und abgeladen werden können. Die
Steuerung des FTS erfolgt über einen speziellen Steuerungsbaustein, der alle FTF, ihre
Routenpläne und aktuelle Routen verwaltet. Der Weiterversand der bearbeiteten
Erzeugnisse ins Zentrallager erfolgt direkt aus der Lackierung oder dem Teilelager
VorLack. Die Abbildung erfolgt im Modell der detaillierten Betrachtungsebene durch ein
Durchschleifen der Erzeugnisse durch den entsprechenden Bahnhof des Teilelagers.

Abbildung 97: Teilefertigung der PaderK in hoher Detaillierung

Weitere benötigte Einzelteile zur Herstellung eines kundenindividuellen Karts werden
durch die PaderK fremdbeschafft, beispielsweise die verwendeten Motoren und die

Realisierung - 179 -

Rad/Reifen-Kombinationen. Die Fertigung der Teilefertigung erfolgt auf Basis einer
Abschätzung vorhandener und zukünftiger Aufträge und ist weitgehend kundenanonym.

6.1.3 Montage

Die einzelnen Karts werden kundenauftragsbezogen in der Montage zusammengebaut.
Chassis und Motoren werden am Anfang der Montage sequenzgenau bereitgestellt und
als erste Montagestufe verheiratet. Anschließend erfolgt die mehrstufige Montage der
Anbauteile und Sonderausstattungen. Die fertig zusammengebauten Karts werden auf
zwei parallel betriebenen Linien auf Verarbeitungsqualität und Funktion überprüft und
anschließend im Zentrallager bis zur Auslieferung zwischengelagert. Werden im Rahmen
der Qualitätsuntersuchungen Mängel an einem Kart festgestellt, so wird das
entsprechende Kart aus der Fließfertigung ausgeschleust und der Nacharbeit zugeführt.
Nachdem der identifizierte Fehler behoben ist, erfolgt eine erneute Qualitätsprüfung und
die Weiterleitung des Karts an das Zentrallager. Auch bei der Abbildung der Montage
werden die Transportwege zwischen den einzelnen Montagevorgängen im niedrig
detaillierten Modell noch nicht betrachtet.

Abbildung 98: Montage der PaderK in niedriger Detaillierung

Aus dem höher detaillierten Modell der Montage der PaderK (vgl. Abbildung 99) wird
ersichtlich, dass die einzelnen Montagestufen mittels fester Fördertechnik untereinander
verbunden sind. Die feste Verkettung der Fließmontage wird nur dadurch teilweise
entzerrt, dass einzelne Förderstrecken als Puffer ausgelegt sind. So kann die
Förderstrecke 3 einerseits als Ausfallstrecke dienen, wenn Förderstrecke 2 ausfällt oder
gewartet werden muss, andererseits können hier Karts zwischengespeichert werden,
wenn Qualität oder Nacharbeit die anfallende Arbeit nicht bewältigen können. Zusätzlich
ist vor dem Eingang in den Qualitätsbereichen eine Staustrecke installiert worden, auf
der weitere Karts zwischengespeichert werden können.

- 180 -

Abbildung 99: Montage der PaderK in hoher Detaillierung

Die in den Abbildungen darstellten Bausteine der einzelnen Bereiche der PaderK können
ähnlich wie auch die Bereiche Zentrallager, Teilefertigung und Montage an den
geeigneten Stellen weiter detailliert werden. So bestehen beispielsweise die
Förderstrecken jeweils aus einzelnen Elmenten einer Fördertechnik, oder die Lagergassen
des Zentrallagers aus einer Fördertechnik mit den entsprechenden Lagerplätzen. Die
dargestellten Detaillierungen sollen aber für die Untersuchungsziele dieser
Simulationsstudie genügen.

Aussagefähigkeit der PaderK hinsichtlich der Aufgabenstellung
Die Struktur der fiktiven PaderKarts GmbH kann exemplarisch für Fertigungssysteme
angesehen werden, die im Rahmen verschiedener Untersuchungen mittels einer
Ablaufsimulation betrachtet werden. Die einzelnen Bereiche entsprechenden
unterschiedlichen Organisationsformen, die mit den bekanntesten Varianten von
Transportsteuerungen verbunden sind. Durch die Modellierung und Simulation der
PaderK mit dem hier entwickelten Werkzeug kann somit der Nachweis geführt werden,
dass verschiedenartige Fertigungssysteme mit dem Werkzeug abgebildet und analysiert
werden können. Im Einzelnen erfüllen die Teilbereiche der PaderK folgenden Zweck
hinsichtlich der Aufgabenstellung:

 Zentrallager: Die wesentliche Aufgabe des Zentrallagers vor dem Hintergrund der
Anforderungen ist die Implementierung einer Transportsteuerung unter der
Verwendung des implementierten Motion Planning Verfahrens auf der höher
detaillierten Betrachtungsebene des Modells. Dadurch wird die Funktionsweise des
entwickelten Verfahrens zur verbesserten Abbildung funktionsorientiert
gegliederter Fertigungssysteme nachgewiesen. Im Rahmen der
Simulationsstudie hat das Zentrallager die Aufgabe die unterschiedlich arbeitenden
Teilbereiche Teilefertigung und Montage zu entzerren, um den Aufbau des
Simulationsmodells nicht unnötig zu verkomplizieren. Es erlaubt die Abkopplung der
beiden Teilbereiche untereinander, so dass die jeweiligen Simulationsmodelle in den

Realisierung - 181 -

entsprechenden Szenarien getrennt betrachtet werden können. Als einzige
Restriktion, die sich bei diesem Vorgehen ergibt, muss festgehalten werden, dass
sich ein Rückstau aus dem Lager nicht auf die einzelnen Teilbereiche auswirkt. Für
den Nachweis der Anforderungen, zu dem diese Simulationsstudie dienen soll, kann
dies aber in Kauf genommen werden.

 Teilefertigung: Aufgabe der Teilefertigung ist die Abbildung einer funktionsorientiert
gegliederten Fertigung. Weil die Suche nach kürzesten Wegen schon durch das
Zentrallager abgebildet wird, bietet sich die Teilefertigung als höher detailliertes
Simulationsmodell zur Modellierung und Simulation von fixen Transportwegen unter
Verwendung von Modellbausteinen an. Durch die Gestaltung der Gruppenfertigung
und ihrer Transportwege mittels eines fahrerlosen Transportsystems ist dem bei der
Gestaltung des Untersuchungsgegenstandes Rechnung getragen worden.

 Montage: Die Montage dient als Anwendungsbeispiel einer klassischen Fließ- bzw.
Serienfertigung von kundenindividuellen Erzeugnissen, wie sie beispielsweise in der
Automobilindustrie sehr verbreitet ist. Heutzutage wird die Ablaufsimulation meist
vor dem Hintergrund solcher Fragestellungen von objektorientierten
Organisationsformen eingesetzt. Die Transportwege sind, in der Realität wie
auch im gewählten Beispiel, durch eine starke Verkettung (Fördertechnik, Band-
oder Kettenförderer) gekennzeichnet, ergänzen und komplettieren dadurch die
Abbildung von Transportstrukturen in dem gewählten Beispiel.

Hinsichtlich der Modellbeschreibung kann die Modellierung der PaderK in der oben
dargestellten Form, bzw. deren analoge Umsetzung in dem implementieren Werkzeug,
zeigen, dass eine modulare, hierarchische und objektorientierte Abbildung durch
das Werkzeug ermöglicht wird. Die einzelnen Bausteine werden jeweils mittels der für die
Modellbeschreibung geltenden Regeln erzeugt und führen damit auch den Nachweis, dass
die Modellierung beliebiger Detaillierungsgrade mit dem Werkzeug erfolgen kann.

Der Untersuchungsgegenstand der PaderK soll damit für die Aufgabenstellung
hinreichend genau beschrieben sein. Die einzelnen Ziele und Untersuchungsszenarien
sollen im folgenden Abschnitt dargestellt und hinsichtlich der Aufgabenstellung begründet
werden.

6.2 Definition des Untersuchungsziels

Es wird angenommen, dass die PaderKarts GmbH setzt die Methode Ablaufsimulation
bisher nicht einsetzt. Im Rahmen der Simulationsstudie sollen daher verschiedene
Szenarien durchgeführt werden, die mögliche Einsatzfelder bei der PaderK aufzeigen und
evaluieren. Die Szenarien zeichnen sich auch dadurch aus, dass mit ihnen ein
planugsphasenübergreifender Einsatz der Ablaufsimulation ermöglicht wird.

Szenario 1: Zeitorientierte Rückwärtssimulation zur Terminierung von
Fertigungsplänen
Auf Basis der erstellen Fertigungs- und Montageabläufe der Paderk soll durch eine
zeitorientierte Rückwärtssimulation des Gesamtmodells eine Grobplanung der
Kundenaufträge für Teilefertigung und Endmontage durchgeführt werden. Terminiert
durch verfügbare und geplante Kundenaufträge soll als Simulationsergebnis ein initialer
Fertigungsplan erstellt werden, der eine Zeit- und Personalplanung für die einzelnen

- 182 -

Teilbereiche ermöglicht, gleichzeitig eine rechtzeitige Bereitstellung der in späteren
Fertigungsstufen benötigten Teilerzeugnisse und Zwischenprodukte garantiert. Die
einzelnen intralogistischen Transporte sollen in dieser Untersuchung nicht berücksichtigt
werden, weshalb an dieser Stelle die Abbildung der einzelnen Teilbereiche auf der
niedrigeren Betrachtungsebene ausreicht.

Aussagefähigkeit des Szenarios hinsichtlich der Aufgabenstellung
Die Umsetzung des ersten Szenarios durch die Modellierung und Simulation mit dem
implementierten Werkzeug dient in erster Linie dem Nachweis einer zeitorientierten
Modellierung und Simulation. Die gewählte Fragestellung unterstützt den Ansatz eines
phasenübergreifenden Einsatzes der Ablaufsimulation durch die Anwendung im Rahmen
einer Fertigungslenkungsaufgabe. Darüber hinaus erbringt die rückwärts gerichtete
Ausführung der Simulation den Nachweis der benötigten Kernelfunktionalitäten zur
Rückwärtssimulation. Die erstellten Modelle dienen als Ausgangsbasis für nachfolgende
Szenarien, indem sie durch die implementierte Transformation in vorwärts gerichtete
Simulationsmodelle umgewandelt werden können. Die Modellbeschreibung kann unter
Verwendung dieses Verfahrens als richtungsoffen bezeichnet werden und erfüllt so eine
Anforderung der Arbeit. Die daraus resultierenden Simulationsmodelle der weniger
detaillierten Betrachtungsebene werden für das zweite Szenario entsprechend erweitert
und erfüllen somit die Anforderung nach einem modularen, erweiterbaren Aufbau der
Simulationsmodelle auf Basis der entwickelten Modellbeschreibung.

Szenario 2: Ereignisdiskrete Vorwärtssimulation zur Engpass- und
Sensitivitätsanalyse der Fertigungsabläufe
Alle Teilbereiche der PaderK sollen durch eine ereignisdiskrete Vorwärtssimulation einer
Engpassanalyse als klassisches Einsatzfeld der Ablaufsimulation unterzogen werden.
Aussagen hinsichtlich der maximalen Leistungsfähigkeit der installierten Anlagen unter
den gegebenen Randbedingungen (Arbeitszeitmodelle, Materialverfügbarkeiten, etc.)
dienen als Ausgangsbasis für eine mögliche Sensitivitätsanalyse, die Abhängigkeiten der
jeweiligen Teilsysteme von einzelnen Parametern identifizieren kann. Durch interaktive
Analysen des Simulationsmodells soll der Erkenntnisgewinn über die Teilbereiche der
PaderK vorangetrieben werden. Um repräsentative Aussagen hinsichtlich des
Systemverhaltens der einzelnen Fertigungs- und Montageprozesse zu erlauben, muss
diese Simulation im Wesentlichen auf den höher detaillierten Betrachtungsebenen der
einzelnen Teilbereiche basieren. Damit kann dann auch gezeigt werden, dass die im
ersten Szenario erstellten Fertigungspläne auch unter Berücksichtigung der
verschiedenen Transporte eingehalten werden können. Die in diesem Schritt bereits
existierenden zeitorientierten Modelle müssen deshalb in ereignisorientierte Modelle
umgewandelt und um eine weitere Detaillierungsebene ergänzt werden.

Aussagefähigkeit des Szenarios hinsichtlich der Aufgabenstellung
Das zweite Szenario dient in erster Linie dem Nachweis einer ereignisgesteuerten,
diskreten Materialflusssimulation mit dem entwickelten Werkzeug. Speziell die Analysen
in der dreidimensionalen Darstellung sollen darüber hinaus zeigen, dass eine interaktive
und bestmöglich immersive Betrachtung der dynamischen Verhaltensweisen der
Simulationsmodelle mit dem Werkzeug möglich ist. Ein Experimentieren durch mehrere
Anwender soll darüber hinaus vorstellen, dass der geforderte Mehrbenutzer-, bzw.
Multitaskingbetrieb in der Visualisierung ermöglicht werden kann. Der analoge

Realisierung - 183 -

Nachweis einer Modellierung durch mehrere Anwender soll während der Implementierung
des Simulationsmodells in der Modellierungskomponente erfolgen. Durch die Gestaltung
des Simulationsmodells mit verschiedenen Detaillierungsgraden kann an dieser Stelle
auch gezeigt werden, dass das Verfahren von Mueck (dynamische Detaillierung zur
Laufzeit) in dieser Werkzeugimplementierung integriert wurde.

Szenario 3: Ereignisdirekte Rückwärtssimulation zur Feinplanung der
Teilefertigung
Unter der an dieser Stelle vorweggenommenen Annahme des Gesamtprozess-Engpasses
innerhalb der Montage der PaderK, bietet eine zusätzliche Untersuchung in diesem
Bereich nur wenig Potential. Als drittes Szenario soll deshalb eine Feinplanung der
Aufträge in der weniger ausgelasteten Teilefertigung durch eine ereignisdiskrete
Rückwärtssimulation erfolgen. Ziel ist die verbesserte Termin-, Mengen- und Schicht-
bzw. Personalplanung in der Teilefertigung hinsichtlich spätester Beginnzeitpunkte, um
die Lagerbestände innerhalb des Zentrallagers auf ein Minimum beschränken und
dadurch gebundenes Kapitel freisetzen zu können.

Aussagefähigkeit des Szenarios hinsichtlich der Aufgabenstellung
Weil die kundenindividuelle Montage der Engpass der PaderK ist, reichen die im zweiten
Szenario generierten Ergebnisse nach frühesten möglichen Einplanungen für eine Analyse
des Systemverhaltens in der Montage aus. Eine Betrachtung der Teilefertigung unter
Verwendung der ereignisdiskreten Rückwärtssimulation soll erneut das Potential
eines planungsphasenübergreifenden Einsatzes der Ablaufsimulation aufzeigen. Die
Planung von Fertigungsplänen kann mittels der Rückwärtssimulation direkt aus dem
bestehenden Simulationsmodell erfolgen, wenn Kernel und Modellbeschreibung die
anwenderfreundliche Richtungstransformation unterstützen.

In Summe ergibt sich aus der Gestaltung des Untersuchungsgegenstandes und der
abgeleiteten Untersuchungsziele eine breite Übersicht über die in dem Werkzeug zur
Verfügung gestellten Funktionalitäten. Alle aus Kapitel 2.4 aufgenommenen
Anforderungen hinsichtlich Modellbeschreibung und Werkzeug werden durch die oben
definierten Szenarien überprüft. Wird die Simulationsstudie im Folgenden erfolgreich
durchgeführt, kann daraus geschlussfolgert werden, dass alle an diese Arbeit gestellten
Anforderungen auch erfüllt werden können.

6.3 Datenermittlung und Aufbau eines logischen Modells

Der Bereich der Datenanalyse, -vorbereitung, -sammlung und -bearbeitung ist eine der
entscheidenden Teilaufgaben im Rahmen einer Simulationsstudie. Typischerweise
ergeben sich hier zeitaufwändige Fragestellungen hinsichtlich Datengenauigkeit,
Granularität, Verfügbarkeit und Aktualität, die im Rahmen der Entwicklung eines ersten
logischen Modells des abzubildenden Systems erörtert und geklärt werden müssen. Für
die hier behandelte Simulationsstudie ist dieser aufwendige Prozess insofern unkritisch,
als das durch den Untersuchungsgegenstand einer fiktiven Fabrik alle benötigten Daten
in der gewünschten Form generiert und bereitgestellt werden können. Die eigentliche
Aufgabe in diesem Abschnitt beschränkt sich also auf die Erstellung eines logischen
Modells.

- 184 -

Zur Erstellung dieses logischen Ablaufs aller relevanten Prozesse innerhalb der PaderK
kann auf die Definition des Untersuchungsgegenstands aus Abschnitt 6.1 zurückgegriffen
werden. Die entsprechende Liste der Abbildung 93 bis Abbildung 99 vermitteln einen
hinreichend genauen Eindruck über die benötigten Bausteine des Simulationsmodells,
ihre Hierarchisierung und gegenseitigen Abhängigkeiten. Wie im obigen Abschnitt
angerissen, können einzelne Modellbausteine für die Umsetzung innerhalb des Werkzeugs
weiter detailliert werden, beispielsweise die Abbildung einzelner Lagerplätze und eines
Regalfahrzeugs innerhalb der Lagergassen 1 bis 4 im Zentrallager. Je nach Szenario
müssen in den einzelnen Teilmodellen weitere Quellen, Senken und
Auswertungsbausteine hinzugefügt werden, die eine zeit- oder ereignisdiskrete
Ablaufsimulation in Vorwärts- oder Rückwärtsrichtung abhängig vom jeweiligen
Untersuchungszweck ermöglichen. Die Darstellung der einzelnen Prozessabläufe soll aber
mit den oben angegebenen Abbildungen als hinreichend betrachtet werden und erst im
Rahmen der eigentlichen Modellierung in dem entwickelten Werkzeug bei Bedarf
erweitert werden.

6.4 Aufbau eines Simulationsmodells

Im folgenden Abschnitt soll die Modellierung der Simulationsmodelle mittels der
Modellierungskomponente des Werkzeugs vorgestellt werden. Für jedes der unter
Abschnitt 6.2 vorgestellten Szenarien sollen einige Bausteine der Teilmodelle
exemplarisch herausgegriffen und ihre Bearbeitung mit dem Werkzeug detaillierter
erläutert werden. Die Vorgehensweise orientiert sich an der Reihenfolge der
durchzuführenden Szenarien. Vorab sollen einige Bemerkungen zur Implementierung der
Modellbeschreibung und Modellierungskomponente gemacht werden.

Modellbeschreibung
Im Rahmen der Implementierung wurden in einem ersten Schritt die Modellbeschreibung
und das nachrichtenbasierte Kommunikationsprotokoll in Document Type Definitions
(DTD) der XML umgesetzt, die eine formale Struktur der erstellten XML-Dokumente
vorgeben. Deren genaue Auflistung finden sich in Anhang A für die Beschreibung der
Simulationsmodelle und in Anhang B für die Nachrichtenkommunikation zwischen den
Teilmodulen. Die administrativen Arbeiten, die zur Bearbeitung der Szenarien erforderlich
sind, sollen erst am Ende dieses Unterabschnittes näher betrachtet werden, auch wenn
die Verwendung der Modellierungskomponente das Existieren von Benutzerrechten sowie
die Existenz einiger dreidimensionaler Repräsentanten in einer Simulationsdatenbank
voraussetzt.

Modul Modellierung
Die Modellierungskomponente wurde entsprechend der Entwurfsphase als Client-Server-
Architektur umgesetzt. Der Server der Modellierungskomponente übernimmt hierbei die
Kommunikation mit den anderen Funktionsmodulen wie Simulatorkern und
Simulationsdatenbank und beinhaltet als Teilmodul die Transformation eines
Simulationsmodells. Die Simulationsmodelle werden als XML-Datei eingelesen und in die
Java-Objektklassenhierarchie geparst, so dass sie durch die Clients manipuliert werden
können. Der Client der Modellierung ist die Bearbeitungsoberfläche des Anwenders, in der
Simulationsmodelle geladen, bearbeitet, oder transformiert werden können. Über den
Server können mehrere Clients an einem gemeinsamen Simulationsmodell arbeiten.

Realisierung - 185 -

Modellierungsserver
Der Server ist zur Speicherung und Datenaufbereitung der Simulationsmodelle
notwendig. Er kommuniziert über eine RMI-Socketverbindung mit den angeschlossenen
Mainframe-Komponenten. Bei der Datenbankspeicherung werden die einzelnen
Modellbausteine als Zeichenfolgen abgelegt. Durch die Einzelspeicherung können einzelne
Bausteine in anderen Simulationsmodellen weiter verwendet werden. Damit die
Zuordnung der Bausteininstanzen zu ihren Modellbausteinen nicht verloren geht, müssen
eindeutige IDs gesetzt werden. Diese IDs werden bei der ersten Speicherung von der
Datenbank vergeben und den entsprechenden Modellbausteinen hinzugefügt.

Beim Ladevorgang werden die gespeicherten Zeichenfolgen aus der Datenbank wieder zu
einem XML-Dokument zusammengesetzt. Danach wird dieses XML-Dokument von einem
Parser durchlaufen, der die Informationen in die Java-Objektklassenhierarchie der
Modellbeschreibung überführt. Anschließend sendet der Server das erstellte
Simulationsmodell über die Socketverbindung an die angeschlossenen Mainframe-
Komponenten.

Angesteuert aus dem Mainframe der Clients, können Simulationsmodelle an das
Transformationsmodul übergeben werden und werden dort nach dem beschriebenen
Verfahren invertiert. Das Verfahren wurde durch einen Algorithmus implementiert, der
auf Basis einer festzulegenden Reihenfolge Grundstrukturen in dem Simulationsmodell
identifiziert und das Simulationsmodell vereinfacht. Aus Gründen der Performanz sollten
häufig auftretende Grundstrukturen, wie zum Beispiel die unverzweigte Linie möglichst
früh erkannt und zusammengefasst werden. Wichtig ist jedoch, dass die Grundstruktur
Rückkopplung vor der Grundstruktur unverzweigte Linie gesucht und zusammengefasst
wird, da ansonsten deren Knoten 2 und 3 (vgl. Abbildung 51) als unverzeigte Linie
erkannt und zusammengefasst werden, wodurch die Grundstruktur der Rückkopplung
zerstört und nicht mehr korrekt erkannt werden kann. Die eigentliche Invertierung wird
in speziellen Klassen für jede Grundstrukturen einzeln implementiert.

Modellierung - Mainframe
Die Mainframe-Komponente stellt den Rahmen für die verschiedenen Modellierungs- und
Visualisierungskomponenten dar und besteht aus einem Applikationsfenster, welches ein
Menü im oberen und eine Statusleiste im unteren Bereich beinhaltet. In die Komponente
eingebettet befindet sich im linken Teil ein internes Fenster, das die Struktur eines
geöffneten Simulationsmodells und eventuell geöffneter Bibliotheken objektorientiert in
Form eines Baums darstellt. Im rechten Bereich des Hauptfensters werden die
Visualisierungs- und Modellierungskomponenten zur Darstellung des aktuell bearbeiteten
Simulationsmodells eingebettet. Die Mainframe-Komponente bietet unter anderem
Funktionen zum Laden und Speichern von Modellen, wobei in beiden Fällen zwischen
Dateisystem- oder Datenbankebene ausgewählt werden kann. Weitere Funktionen sind
z.B. die Neuerstellung eines Simulationsmodells oder aber das Hinzufügen eines
Modellbausteins zu einer Bilbiothek, die Rechteverwaltung für das bearbeitete
Simulationsmodell und Kommunikationsmöglichkeiten mit den anderen angeschlossenen
Anwendern.

- 186 -

Das Simulationsmodell wird im linken Fenster als Baum dargestellt. Der Anwender öffnet
ein Modell über das Kontextmenü, wobei standardmäßig die 2D-Modellierungsansicht
ausgewählt wird. Verfügbar sind darüber hinaus die 2.5D- und 3D-Modellierung. Die
gewählte Komponente wird im rechten Bereich des Clients als Fenster geöffnet. Die
Baumdarstellung ermöglicht es, einzelne Bausteine einer Bibliothek direkt per Drag&Drop
in das Simulationsmodell zu übertragen. Es besteht die Möglichkeit, ein bestimmtes
Modell gleichzeitig in mehreren Ansichten zu öffnen. Um die Konsistenz zwischen diesen
einzelnen Ansichten zu wahren, wird das Listener-Konzept verwendet. Hierbei
registrieren sich die beteiligten Darstellungskomponenten auf den Modellelementen. Alle
Darstellungskomponenten werden dann über Änderungen benachrichtigt, die in einer
Ansicht vorgenommen wurden. Jede Darstellungsform passt daraufhin ihre Darstellung
an. Außerdem bietet die Mainframe-Komponente die Möglichkeit, mehrere Fenster
nebeneinander zu öffnen, um beispielsweise verschiedene Komponenten der Modellierung
parallel zu betrachten. Abbildung 100 zeigt die laufende Applikation mit zwei in der 2D-
Modellierungskomponente geöffneten Simulationsmodellen und veranschaulicht die
Baumdarstellung sowie die angesprochenen Bedienelemente.

Abbildung 100: Mainframe der Modellierungskomponente

Modellierungsumgebung 2D
Die 2D-Modellierungskomponente ermöglicht die Erstellung neuer und das Modifizieren
bereits vorhandener Simulationsmodelle. Hierbei werden für die einzelnen
Bausteininstanzen die in der zentralen Datenbank enthaltenen Polygonzüge ihrer
dreidimensionalen Repräsentanten angezeigt, um eine Draufsicht auf das Modell zu
erhalten. Abbildung 101 zeigt beispielhaft die Darstellung zweier vorhandener
Grafikmodelle.

Realisierung - 187 -

Abbildung 101: Draufsichten 2D

Sofern das angezeigte Modell einen Verweis auf einen in der Datenbank gespeicherten
grafischen Repräsentanten hat, wird dieser angezeigt. Andernfalls wird ein Rechteck als
visuelle Repräsentation einer Bausteininstanz verwendet. Die 2D-Modellierungs-
komponente ermöglicht das Setzen von Links zwischen den Bausteininstanzen bzw.
zwischen den jeweiligen Channeln, um den Materialfluss abzubilden. Über ein Popup-
Menü hat der Modellierer die Möglichkeit, das Modell zu rotieren, zu skalieren, zu löschen
oder aber dessen Eigenschaften zu verändern. Die Maske zur Modifikation der
Eigenschaften des geöffneten Simulationsmodells lässt sich über eine Funktionsleiste
erreichen. In dieser befindet sich ebenfalls die Möglichkeit, den Sichtbereich schrittweise
per Maus-Klick zu vergrößern bzw. zu verkleinern. Zur genaueren Ausrichtung der
Modellbausteine besteht die Möglichkeit, ein Gitternetz einzublenden, das ebenfalls
unterschiedlich skaliert werden kann.

Event-Editor
Um dem Anwender die Programmierung der einzelnen Events zu erleichtern, wurde der
Event-Editor als Submodul des Mainframes konzipiert, mit dem auf alle einzelnen
Ereignisse eines Simulationsmodells in der Modellierungsphase zugegriffen werden kann.
Mit diesem Modul kann innerhalb einer Event-Programmierung auf eine klassische
Programmieroberfläche zurückgegriffen werden, die anwenderfreundliche Funktionen wie
die automatische Vervollständigung, Textbausteine, Online-Syntaxkontrolle, Syntax-
Highlighting, etc. unterstützt. Einfache Programmierfehler können damit bereits frühzeitig
erkannt werden. Bei der Speicherung des modellierten Ereignisses werden die
verwendeten Befehle überprüft und ggf. Fehlermeldungen ausgegeben.

- 188 -

Abbildung 102: Benutzeroberfläche des Event-Editors

Modellierungsumgebung 2.5D
Ergänzend zur zweidimensionalen Draufsicht wurde in der Implementierungsphase eine
2.5D-Darstellung entwickelt, die das Simulationsmodell in der in Abbildung 103
dargestellten Form abbildet. Aus 8 verschiedenen Projektionsseiten kann das
Simulationsmodell von schräg oben betrachtet werden, wobei die grafischen
Repräsentanten der Bausteininstanzen Bildern des 3D-Repräsentanten entsprechen. Im
Gegensatz zur zwei und dreidimensionalen Darstellung des Simulationsmodells in den
entsprechenden anderen Modellierungsumgebungen wird hier der Navigationsbereich des
Anwenders eingeschränkt. Im Gegenzug bildet die 2.5D-Darstellung eine schnelle und
sehr intuitive Darstellungsform des Simulationsmodells, die zur Kommunikation mit
Nicht-Simulationsexperten bereits verwendet werden kann.

Abbildung 103: Modellierungsumgebung 2.5D

Realisierung - 189 -

Um die Effizienz der 2.5D-Darstellung mittels der Ladezeiten zu untersuchen, wurden
Performance-Tests mit verschiedenen Verbindungsarten durchgeführt. Die nachfolgende
Tabelle zeigt die Ergebnisse der Testdurchläufe.

Ladezeit
2D-Outlines

Ladezeit
2.5D-Images

Ladezeit
3D-Objekte

LAN (1) <2 s <2 s 4 s

WLAN A (2) 16 s <2 s, 4 s, 10 s 120 s

WLAN B (3) 5 s <2 s, 2 s , 6 s 64 s

DSL (4) 23 s <2 s, 6 s , 31 s 365 s

Tabelle 22: Performance-Test : Ladezeiten der 2.5D-Modellierungsumgebung

Bei dem Vergleich der Werte zeigt sich, dass eine bis zu 60-fach höhere Geschwindigkeit
im Vergleich zur 3D-Komponente erzielt werden konnte. Wenn man berücksichtigt, dass
bereits Bilddateien im Cache-Ordner vorhanden sein können, fällt dieser Wert noch
einmal deutlich höher aus. Die Ladezeiten in 2.5D sind geringer als die der 2D-
Komponente.

Modellierungsumgebung 3D
Die 3D-Modellierungskomponente ermöglicht das Modellieren von Simulationsmodellen in
einer realitätsnahen, dreidimensionalen Umgebung, in der sich der Anwender frei
bewegen kann. Sämtliche Bausteininstanzen werden durch ihre 3D- Repräsentanten
dargestellt. Über die Buttons „clone“ und „remove“ können bestimmte Kamerapositionen
in der 3D-Szene gespeichert bzw. wieder entfernt werden, um dem Anwender eine
zeitaufwendige Navigation zwischen verschiedenen Standardansichten im
Simulationsmodell zu ersparen. Zwischen den verfügbaren Ansichten kann hin und her
geschaltet werden. Abbildung 104 zeigt einen Screenshot der 3D-
Modellierungskomponente und ihrer Bedienelemente.

Abbildung 104: 3D-Modellierungskomponente

Wie oben aufgezeigt, sind die Ladezeiten der 3D-Modellierungskomponente deutlich
höher als beispielsweise die der ähnlich intuitiven Darstellung in 2.5D. Diese

- 190 -

Darstellungsform bietet sich also insbesondere im Rahmen der exakten
Layoutausrichtung an und weniger in der alltäglichen Modellierung.

Die vorgestellten Komponenten des Modellierungstools sollen nachfolgend dazu
verwendet werden, die einzelnen Simulationsmodelle für die unter Abschnitt 6.2
definierten Szenarien zu erstellen. Dabei wird sich in den einzelnen Szenarien jeweils auf
einen repräsentativen Ausschnitt des Simulationsmodells im gewählten
Detaillierungsgrad beschränkt. Die Modellierung anderer Teilbereiche erfolgt analog zu
der dargestellten Vorgehensweise. In den Szenarien wird sich auf Grund der
Vergleichbarkeit auf die zweidimensionale Darstellungsform des Simulationsmodells im
Modellierungstool beschränkt.

Modellierung von Szenario 1:
In diesem Abschnitt soll der Aufbau eines zeitorientierten Simulationsmodells am Beispiel
des Zentrallagers mit der Modellierungskomponente dargestellt werden. Zu Beginn der
Modellierung ist keine Bausteinbibliothek vorhanden. Die entsprechenden
Modellbausteine des Zentrallagers müssen also in einem ersten Schritt mit dem
Modellierungstool erstellt und in der Simulationsdatenbank gesichert werden.
Vorraussetzung für eine erfolgreiche Arbeit mit dem Client der Modellierungskomponente
ist ein entsprechender Server, der die Verbindung zur Datenbank und die
Mehrbenutzerfähigkeit des Werkzeugs herstellt.

Nach dem Start des Client muss sich der Anwender zunächst anmelden, damit seine
persönlichen Daten, Einstellungen und Rechte aus der Simulationsdatenbank geladen
werden können. Zu Beginn der Bearbeitung wird eine neue Bibliothek Zentrallager-
zeitorientiert angelegt und in der Simulationsdatenbank gesichert. Ihr werden
nachfolgend die einzelnen Modellbausteine hinzugefügt, die für den Aufbau des
Simulationsmodells benötigt werden. Für jeden Modellbaustein können seine Attribute
durch den Anwender belegt werden. Darüber hinaus können Input- und Output-Channel
angelegt und ein 3D-Repräsentant aus der Datenbank zugewiesen werden. Abbildung
105 zeigt die Benutzeroberfläche zum Anlegen eines neuen Modelbausteins in einer
Bibliothek.

Realisierung - 191 -

Abbildung 105: Benutzeroberfläche zum Erstellen eines Modellbausteins

Der Modellbaustein muss anschließend mit seiner Verhaltenslogik versehen werden. Dazu
können in seinen Eigenschaften die entsprechenden Ereignisse angelegt, ggf. einzelnen
Channeln zugewiesen und unter Zuhilfenahme des Event-Editors mit dem Programmcode
versehen werden (vgl. Abbildung 102). Die inhaltliche Aufteilung der implementierten
Verhaltenslogik muss sich an der unter Abschnitt 5.2.4.2 aufgezeigten Form orientieren,
um eine spätere Transformation des Simulationsmodells gewährleisten zu können. So
darf in den jeweiligen Input-Events eines Modellbausteins nur der Eingang der Token und
die Weiterleitung an nachfolgendes Folge-Event erfolgen. Unter Umständen können hier
noch Eingangszeiten mitprotokolliert werden, die eine spätere Auswertung hinsichtlich
Bearbeitungszeiten etc. erlauben. Abbildung 106 zeigt exemplarisch den Programmcode
eines Input-Events im Modellbaustein Warenausgang (wegen der Rückwärtssimulation
entspricht der Input-Channel hier dem Output-Channel des vorwärts gerichteten
Modellbausteins, nimmt also die ausgehenden Kundenaufträge als Input in den
Warenausgang auf, um deren Rückwärtsterminierung durch das Zentrallager zu
ermöglichen.

<ichannel name="inchannel">
<position y="20" x="312"/>

</ichannel>
<event>

<input_event inchannel="inchannel_one"/>
<code>

logger.debug("incoming token in wa");
Token t = myEntity.getinchannel(“inchannel_one”).removeToken();
myEntity.getVariable(“space”).set(t);
myEntity.getinchannel().open();

OutputEvent e = new OutputEvent(myEntity);
Kernel.schedule (e, 1000);

</code>
</event>

Abbildung 106: Quellcode des Input-Channels im Modellbaustein Warenausgang

- 192 -

Die Zeitorientierung soll mittels des bausteininternen Verfahrens zur Modellierung
erfolgen, also explizit durch den Baustein festgelegt werden. Dazu muss der Bibliothek
neben den eigentlichen Modellbausteinen ein Schichtkalender hinzugefügt werden, der
dem Modellbaustein zugewiesen werden kann. In dem Schichtkalender können für die
abgebildeten Tage entsprechende Schicht- und Pausenzeiten hinterlegt werden. Die
Schichten werden wochenweise durchgeführt, für spezielle Datumsangaben können freie
Tage und zusätzliche Pausenzeiten hinterlegt werden. Das Zentrallager der PaderK soll
nach einem einheitlichen Schichtmodell arbeiten. Allen Modellbausteinen kann also
derselbe Schichtkalender zugewiesen werden. Darüber hinaus können in den einzelnen
Modellbausteinen alle benötigten Variablen angelegt werden, wobei für die einzelnen
Variablentypen umfangreiche Zusatzattribute ausgewählt werden können. Für alle
numerischen Datentypen kann beispielsweise eine obere und untere Schranke und ihre
späterer Darstellung in den entsprechenden Visualisierungsmodulen angegeben werden

Jeder Baustein beinhaltet eine Listenvariable nextShifts, die initial durch die Zeiten der
Schichtwechsel aus dem zugewiesenen Schichtkalender befüllt wird. Die Terminierung
der einzelnen Ereignisse innerhalb des Modellbausteins kann daraufhin durch eine
Zuordnung der Schedulingzeit des Folgeereignisses zum zeitlich nächsten folgenden
Schichtwechsel erfolgen, indem direkt auf diesen Schichtwechsel gescheduled wird. Die
während der Ausführung einer Simulation auftretenden Ereignisse werden dadurch immer
auf die Schichtwechsel terminiert und ermöglichen damit eine zeitorientierte Ausführung
des Simulationsmodells. Innerhalb des Programmcodes eines Events wird die
Bearbeitungszeit berechnet oder auf Basis einer Variablen des Bausteins belegt und der
Bearbeitung folgende Schichtwechsel aus der Liste nextShifts ausgewählt. Das
Folgeevent wird daraufhin mit diesem Wert im Simulatorkern gescheduled.

Wenn alle benötigten Modellbausteine der Bibliothek mit den benötigten Variablen,
Channeln und Ereignissen formalisiert wurden, kann die Bibliothek in der
Simulationsdatenbank gesichert werden. Dabei werden alle Modellbausteine hinsichtlich
ihrer Vernetzung (Modellbausteine können weitere Modellbausteininstanzen enthalten)
und der Syntax der in den Ereignissen beschriebenen Verhaltenslogik überprüft. Nur
fehlerfreie Bibliotheken können gesichert werden. Syntax und Modellierungsfehler werden
bereits in einer frühen Phase der Modellierung erkannt und erhöhen somit die Qualität
der in der Simulationsdatenbank gespeicherten Daten. Der Anwender erstellt daraufhin
ein neues Simulationsmodell Zentrallager_Ebene_1, zu dessen Modellierung die
Bibliothek geladen werden kann. Per Drag & Drop können nun die einzelnen
Modellbausteine im Simulationsmodell instanziiert und durch Links verknüpft werden. Die
Variablen der Bausteininstanzen können durch den Anwender angepasst werden, wenn
sie während der Modellierung der Bibliothek als public deklariert wurden und sich ihr
Wert von der Standardparametrierung unterscheiden soll. Wenn beispielsweise die
Lagergasse 1 des Zentrallagers 40 Lagerfächer mehr Kapazität als die übrigen Gassen
hat, kann der Variablenwert capacity entsprechend um 40 erhöht werden. Die Instanz
lagergasse1 des Modellbausteins Lagergasse kann damit 40 Token mehr aufnehmen,
wenn die entsprechende Verwaltung in dem Programmcode des entsprechenden Events
die Kapazität aus dieser Variablen ausliest und daraufhin entscheidet, ob und wie viele
Folgetoken im Materialfluss aufgenommen werden können. Abbildung 107 zeigt die
Modellierung des Simulationsmodells Zentrallager_Ebene_1 mittels der Bibliothek
Zentrallager-zeitorientiert.

Realisierung - 193 -

Abbildung 107: Modellierung des Zentrallagers mit der 2D-Ansicht

Das Simulationsmodell kann anschließend in der Simulationsdatenbank oder auf dem
Dateisystem gesichert werden. Während des Speicherungsprozesses werden die Snytax
des Simulationsmodells und die Gültigkeitsbereiche der Parameterwerte der
Bausteininstanzen überprüft, sofern das durch das Werkzeug nicht bereits erfolgt ist. Die
nachfolgende Phase der Modellverifikation und Verbesserung erfolgt durch erste Testläufe
des Simulationsmodells im Simulatorkern. Sie wird in Abschnitt 6.5 beschrieben.

Modellierung von Szenario 2:
Im Unterschied zur zeitorientierten Modellierung des ersten Szenarios soll nachfolgend
die Modellierung eines ereignisorientierten Simulationsmodells am Beispiel der Montage
der PaderK erfolgen. Da sich die grundlegenden Prozesse bei der Modellierung nur
unwesentlich unterscheiden, soll sich im Folgenden auf die Darstellung der Unterschiede
bei der Modellierung beschränkt werden. Zum Nachweis der Multitasking,
beziehungsweise Mehrbenutzerfähigkeit soll die Modellierung der Montage durch zwei
Anwender erfolgen.
Die Anmeldung des zweiten Anwenders an der Modellierungskomponente gestaltet sich
geringfügig anders, als in obigem Abschnitt beschrieben, weil er während der
Autenthifizierung auf bereits existierende Sessions hingewiesen wird, denen er beitreten
kann. Abbildung 108 zeigt den Anmeldedialog bei existierenden Sessions.

- 194 -

Abbildung 108: Anmeldedialog bei vorhandenen Sessions

Die Implementierung der unter Abschnitt 5.1.6 konzipierten Sperrmechanismen erfolgt in
der Modellierungskomponente nach dem Relaxed WYSIWYG-Prinzip, bei dem das
bearbeitete Simulationsmodell oder die Bibliothek auf dem Modellierungsserver verwaltet
wird und mittels RMI an die angeschlossenen Clients verteilt wird. Relaxed WYSIWYG
meint, dass nicht alle Änderungen sofort an die anderen angeschlossenen Clients
übertragen werden, sondern erst, wenn der sperrende, also der aktuelle bearbeitende
Anwender seine Aktion beendet hat. Dadurch wird der Nachrichtenaufwand zwischen dem
Modellierungsserver und den angeschlossenen Clients erheblich reduziert. Die einzelnen
Bausteine, die durch andere Anwender grade bearbeitet werden, werden in dem Client
des Anwenders blockiert und farblich hervorgehoben. Abbildung 109 zeigt die Darstellung
einer blockierten Bausteinstanz (rechts) im Vergleich zu einer selektierten Darstellung
(links).

Abbildung 109: Darstellung einer blockierten Bausteininstanz

Das gleichzeitige Arbeiten mehrerer Anwender an einem Modell wird durch mehrere
Kommunikationsmöglichkeiten erleichtert. Neben der implementierten Chat-
Funktionalität steht die Möglichkeit zur Verfügung, einzelne Bausteininstanzen mit
Notizen zu versehen, um anderen Anwendern auch asynchron Informationen zu
kommunizieren, beispielsweise über identifizierte Fehler oder durchgeführte Änderungen.
Darüber hinaus besteht die Möglichkeit, sich einzelne Dateien direkt über die
Modellierungskomponente zuzusenden.

Die Modellierung der einzelnen Modellbausteine für die entsprechende Bibliothek
Montage_Ebene_2 unterscheidet sich nur unwesentlich von der in Szenario 1
beschriebenen Vorgehensweise. Sie ist für dieses Szenario ein wenig leichter, weil die
aufwändigere Transformation der Folgeeventterminierung entfällt. Die einzelnen
Folgeevents eines Ereignisses können direkt über fixe, variable oder zu berechnende

Realisierung - 195 -

Variablen festgelegt und anschließend im Kernel gescheduled werden. Da für dieses
Szenario die höher detaillierte Betrachtungsebene entscheidend ist, erhöht sich aber die
Anzahl der benötigten Bausteine und ihrer Variablen. Abbildung 110 zeigt eine
Darstellung des ereignisdiskreten Simulationsmodells der Montage im Modellierungstool.

Abbildung 110: Darstellung der Montage der PaderK im Modellierungstool

Das analog erstellte, ereignisdiskrete Simulationsmodell der Teilefertigung soll im
folgenden Szenario in ein rückwärts gerichtetes Simulationsmodell transformiert werden.

Modellierung von Szenario 3:
Weil die Montage der PaderK als Engpass des Gesamtmodells angenommen werden
kann, soll die Feinplanung der Teilefertigung in engerer Abstimmung mit der Montage
erfolgen. Dazu soll eine ereignisorientierte Rückwärtssimulation der Teilefertigung
erfolgen, die als Eingabedaten die Abrufe der Montage zuzüglich der benötigten
Verarbeitung im Zentrallager erhält. Das aus Szenario 2 bestehende Simulationsmodell
der Teilefertigung mit Betrachtung der höheren Detaillierung soll deshalb mit dem in dem
Werkzeug implementierten Mechanismus in ein rückwärts gerichtetes Simulationsmodell
transformiert werden (aufgrund der hohen Detaillierung der Betrachtung an dieser Stelle
kann nicht auf das Simulationsmodell aus dem ersten Szenario zurückgegriffen werden).
Die hohe Detaillierung unter Berücksichtigung der Transporte ist für dieses
Untersuchungsszenario wichtig, weil die Einplanung der Fertigungspläne in der
Teilefertigung möglichst spät erfolgen soll, um die Kapitalbindung der PaderK durch zu
hohe Sicherheitsbestände reduzieren zu können. Eine Betrachtung ohne die benötigten
Transportzeiten würde das Ergebnis des Simulationsexperimentes zu sehr verfälschen.

- 196 -

Zur Umkehrung des Simulationsmodells der Teilefertigung muss das Ursprungsmodell
zunächst durch den Anwender aus der Simulationsdatenbank in das Modellierungstool
geladen werden. Anschließend muss das zu invertierende Simulationsmodell aus der
Bibliothek selektiert werden und über das Kontextmenü SimBack die automatische
Vereinfachung und Invertierung aufgerufen werden. Im Fall der Teilefertigung kann durch
die relativ einfache Fertigungsstruktur auf Anhieb das gesamte Modell invertiert werden.
Über die Baumansicht kann die Zerlegungsstruktur des Simulationsmodells der
Teilefertigung betrachtet werden. Abbildung 111 zeigt die entstehende
Vereinfachungsstruktur der Teilefertigung über die Baumvisualisierung des
Intervierungsmoduls.

Abbildung 111: Invertierung des detaillierten Modells der Teilefertigung

Bevor das Resultat des Invertierungsprozesses als Rückwärtssimulationsmodell der
Teilefertigung verwendet werden kann, müssen die Quellen und Senken des
Ursprungsmodells durch ihre Pendants zur Rückwärtssimulation ausgetauscht und mit
dem Simulationsmodell verknüpft werden. Das daraus resultierende Simulationsmodell
kann anschließend in der Simulationsdatenbank gesichert werden. Im Rahmen der
Modellverifikation ist aber insbesondere darauf zu achten, die Umkehrung der
Verteilregeln zu überprüfen und ggf. anzupassen. Das soll bei der Betrachtung des dritten
Szenarios in Abschnitt 6.5 geschehen.

Administration
Die Anmeldung eines Anwenders am Modellierungstool, die Modellierung der
Bibliotheken, die Verknüpfung der 3D-Repräsentanten mit den neu erstellten
Modellbausteinen setzt einen initialen Datenbestand in der Simulationsdatenbank voraus.
Um eine Bearbeitung des Datenbestandes in der Simulationsdatenbank unabhängig von
den Simulationsexperten ermöglichen zu können, wurde in der Implementierungsphase
ein separates Administrationstool erstellt, das den direkten Zugriff auf Datenbereiche der
Simulationsdatenbank ohne die Verwendung einer Modellierungs- oder Visualisierungs-
umgebung erlaubt. Insbesondere zur Wartung der Daten, zum Einpflegen neuer 3D-
Modelle, zur Generierung der Outlines und 2.5D-Darstellungen der einzelnen Modelle,
zum Löschen von alten oder inkonsistenten Datensätzen und zur Administration der
Benutzer und Benutzergruppen kann dieses Tool herangezogen werden.

Realisierung - 197 -

Abbildung 112: Auszug aus der Oberfläche des Administrationstools

Das Administrationstool kann unabhängig von den anderen Programmmodulen des
entwickelten Werkzeugs arbeiten und erlaubt so die Übernahme von administrativen
Funktionen durch Nicht-Simulationsexperten, beispielsweise der IT-Abteilung.

Abbildung 113: Auszug aus dem Datenbankschema

- 198 -

Die Simulationsdatenbank selbst wurde entsprechend der Festlegungen der
Konzeptionsphase auf Basis eines PostgresSQL-Datenbanksystems implementiert.
Abbildung 113 zeigt einen Teilbereich der Benutzerverwaltung als Auszug aus dem
Datenbankschema der Simulationsdatenbank, in dem alle benötigten Tabellen, Primär
und Fremdschlüsselbeziehungen hinterlegt sind. Durch die Implementierung des
Rechtemanagements wird zwischen Gruppen und Personen, bzw. Gruppen- und
Personenrechten unterschieden. Über die Zuordnungstabelle public_simdb.ismember
werden beispielsweise einzelne Anwender bestimmten Gruppen zugewiesen. Die anderen
Bereiche der Konzeption wurden entsprechend umgesetzt und bieten somit die
Möglichkeit, Simulationsmodelle, ihre Eingabe- und Ausgabedaten, Experimente und
grafische Repräsentanten in einer gemeinsamen Datenbank zu hinterlegen.

Die für die definierten Untersuchungsziele benötigten Simulationsmodelle konnten mit
der Modellierungskomponente erstellt werden. Als wesentlicher, folgender Schritt
innerhalb der Simulationsstudie müssen die einzelnen Simulationsmodelle im Folgenden
verifiziert und verbessert werden. Gegebenfalls müssen für einzelne
Untersuchungszwecke darüber hinaus Modellalternativen generiert werden, um Aussagen
hinsichtlich spezieller Fragestellungen zu ermöglichen.

6.5 Modellverifikation und –Verbesserung

Die Verifikation der erstellten Simulationsmodelle kann in dem implementierten
Werkzeug über verschiedene Module erfolgen, die sich gegenseitig ergänzen.
Wesentliches Element ist aber der Simulatorkern, durch den die Ausführung des
kompilierten Simulationsmodells gewährleistet wird. Darüber hinaus können in dieser
Phase die zweidimensionale Visualisierung, das Reportingtool und die Debugging-
Funktionalität der Modellierungskomponente eingesetzt werden. Die nachfolgenden
Abschnitte sollen diese Module kurz darstellen, ehe die einzelnen Szenarien damit
bearbeitet werden sollen. In jedem Szenario soll jeweils eine der drei aufgezeigten
Möglichkeiten zum Einsatz kommen.

Modul Simulatorkern
Bei der Implementierung des Simulatorkerns wurde darauf geachtet, dass das Modul
sowohl als eigenständige Applikation, als auch als integrierter Teil einer Applikation
gestartet werden kann, jeweils mit oder ohne eigene grafische Benutzeroberfläche. In
jedem Fall startet der Simulatorkern mit einem Preprocessing-Prozess, in der das
übergebene Simulationsmodell vom XML-Format in ein lauffähiges Java-Programm
geparst wird. Werden in dieser Phase keine Fehler gefunden, steht der Simulatorkern für
die Ausführung des Simulationslaufs zur Verfügung. Im Fall der grafischen Oberfläche
kann die Simulation nun einfach mit einem Maus-Klick gestartet werden (vgl. Abbildung
114). Im Fall einer Einbettung des Simulators kann die Simulation über eine Nachricht an
den Simulator gestartet werden.

Realisierung - 199 -

Abbildung 114: Benutzeroberfläche des Simulators

Je nach Modellierung der einzelnen Modellbausteine des Simulationsmodells werden die
entsprechenden Module zum Motion Planning und zur dynamischen Detaillierung von
Simulationsmodellen mit in das laufende Gesamtpaket integriert. Beim Aufbau der
objektorientierten Klassenhierarchie der einzelnen Modellobjekte wird erkannt, welche
Kernelfunktionen von den Bausteinen aufgerufen werden. Beziehen sich diese zumindest
teilweise auf Funktionen aus den beiden genannten Teilmodulen, so werden diese dem
Gesamtpaket hinzugefügt. Dadurch wird die Instanz des Simulatorkerns so schlank wie
möglich gehalten, was in verschiedener Hinsicht von Vorteil ist. Zum Einen wird der
Speicherbedarf des Simulators reduziert, zum Anderen sollen solche „Simulatorpakete“
auf mehrere Rechner verteilt werden, um eine parallele Abarbeitung eines Simulations-
experimentes mit mehreren Simulationsläufen zu ermöglichen. Diese Verteilung kann
umso schneller erfolgen, je kleiner das zur Verteilung bestimmt Paket ist.

Modul Visualisierungskomponente
Im Rahmen der Entwicklung von Simulationsmodellen spielt vor der eigentlichen
Experimentierphase die Modellvalidierung und Verifikation eine große Rolle. Außer den
generierten Daten ist in dieser Phase insbesondere die Visualisierung der dynamischen
Abläufe von großer Bedeutung. Vor diesem Hintergrund wurden in der
Implementierungsphase verschiedene Visualisierungsformen umgesetzt, die im
Folgenden kurz erläutert werden.

Visualisierungsumgebung 2D
Die Darstellung der 2D-Visualisierungsumgebung erfolgt analog der Darstellung der 2D-
Modellierung, jedoch angereichert um das dynamische Verhalten des Simulationsmodells.
Während der Modellierung kann der Anwender das erstellte Modell mit einem integrierten
Kernel übersetzen und sich das Verhalten in der bekannten Draufsicht animieren lassen.
Die einzelnen Token werden durch Pakete visualisiert (vgl. Abbildung 115), wenn sie
keine eigene 3D-Darstellung besitzen. Ansonsten werden die Draufsichten ihrer 3D-
Repräsentanten verwendet.

- 200 -

Abbildung 115: Animation von Token in der 2D-Ansicht

Im Rahmen der Modellerstellung kommt es immer wieder zu logischen Fehlern bei der
Modellierung der einzelnen Bausteine oder zu Programmierfehlern bei der Spezifikation
der Verhaltenslogik innerhalb eines Modellbausteins oder einer übergeordneten
Steuerung. Das visualisierte Modell verhält sich in diesem Fall nicht wie vom Anwender
vorgesehen. Zur besseren Unterstützung des Anwenders bei der Fehlersuche wurde in
den Mainframe des Modellierungs- und Visualisierungstools eine Funktionalität zum
Debuggen der Simulationsmodelle integriert. Nach der Übersetzung des
Simulationsmodells in ein lauffähiges Programm durch den Simulator wird das erzeugte
Programmpaket mit der Debugging-Oberfläche verknüpft, aus der die weitere Steuerung
erfolgt. Sowohl der Aufruf einzelner Funktionen, wie auch die Veränderung der
Parameterwerte können jetzt erfolgen, indem in der Oberfläche an den relevanten Stellen
entsprechende Haltepunkte gesetzt werden. Beispielsweise wird die Simulation beim
Aufruf eines speziellen Input-Events einer Bausteininstanz angehalten, bei der der
Anwender einen Fehler in der Programmierung vermutet. Abbildung 116 zeigt links die
Oberfläche des Debugging-Tools und im rechten Bereich die entsprechende Steuerung
des Simulators aus der 2D-Visualisierungsoberfläche heraus. Neben der
Ausführungsgeschwindigkeit werden die wichtigsten Steuerungsbefehle implementiert,
um eine Simulation zu pausieren oder zu beenden. Über spezielle Funktionen kann der
Nachrichtenfluss zwischen Simulator und Visualisierungskomponente nachvollzogen
werden. Fehlermeldungen werden identifiziert und aktuelle Wertebelegungen von
Variablen betrachtet. Alternativ zur Durchführung eines Simulationsexperiments können
somit auch die Ergebnisse eines einzelnen Simulationslaufs zur Weiterverarbeitung zur
Verfügung gestellt werden

Abbildung 116: Debugging und Simulator-Steuerung der 2D-Visualisierung

Durch die Implementierung innerhalb des Mainframes stehen den Anwendern auch bei
der Visualisierung von Simulationsläufen in der 2D, bzw. 2.5D-Darstellung die gleichen
Kommunikationsmöglichkeiten zur Verfügung, wie sie aus dem Modellierungsbereich
bekannt sind. Darüber hinaus können einzelne Daten zwischen den Anwendern über

Realisierung - 201 -

einen direkten Dateiversand verschickt werden, um möglichst unkompliziert
Arbeitsinhalte austauschen zu können.

Visualisierungsumgebung 2.5D
Die Visualisierungskomponente in 2.5D ist das Pendant zur entsprechenden
Modellierungskomponente. Dadurch ergeben sich bei der Verwendung dieselben Vor- und
Nachteile, die aus der Modellierung bekannt sind. Einer intuitiveren Betrachtung des
Simulationsmodells steht eine Einschränkung des Anwenders in Bezug auf die
Freiheitsgrade der Navigation gegenüber. Die Funktionsweise ist analog der 2D-
Visualisierungskomponente.

Abbildung 117: Visualisierungsumgebung 2.5D

Wie Abbildung 117 zeigt, ist die Darstellung des Simulationsablaufes in der 2.5D-
Umgebung wenig immersiv, wenn auch das grobe Verhalten des Simulationsmodells
dargestellt wird. Vor diesem Hintergrund erfährt die dreidimensionale
Visualisierungskomponente hinsichtlich der Anforderungserfüllung eine steigende
Bedeutung. Grundlegende Interaktionen werden aber auch aus den bereits dargestellten
Visualisierungsumgebungen ermöglicht. So ist es möglich, die Steuerung des
Simulationsmodells zu handhaben und einzelne Parameter während der
Simulationsdurchführung interaktiv zu verändern.

Reporting
In Anlehnung an die Darstellung von Leitständen zur Fertigungsplanung und –Steuerung
wurde zusätzlich eine Reporting-Oberfläche geschaffen, die sowohl als integrierte
Applikation in den Mainframe des Modellierungs- und Visualisierungsclients, als auch als
eigenständige Applikation verwendet werden kann. Sie bietet eine alternative Sicht auf
das dynamische Verhalten eines Simulationsmodells, indem verschiedene Attribute der
Bausteininstanzen durch einfache Symbole dargestellt werden. Je nach festgelegtem
Auswertungstyp der Variablen in den Modellbausteinen kann somit automatisch eine
Visualisierung generiert werden, wie sie Abbildung 118 zeigt. Darüber hinaus können
einzelne Kennzahlen der Simulation dynamisch visualisiert werden, beispielsweise die

- 202 -

Ablaufstruktur aller zur Laufzeit existierenden Token, die Simulationszeit, der
Nachrichtenverkehr des Simulators mit den Visualisierungskomponenten, etc.
Auswertungsbausteine und ihre generierten Datentabellen werden dynamisch angezeigt
und bieten so vorab eine gute Einschätzung der Qualität des Simulationslaufs. Für
verschiedene Kennziffern, die in eingegrenzten Bereichen streuen, können dynamisch
statistische Auswertungen visualisiert werden. Zum Start eines Simulationslaufs genügt
die Auswahl eines Simulationsmodells. Die Übersetzung und Ausführung erfolgt danach
durch einen integrierten Simulatorkern. Die Reporting-Oberfläche ist in der Lage, bereits
vorhandene Simulationsläufe auf Basis des Simulationsmodells und dem gespeicherten
Nachrichtenstrom erneut zu visualisieren, ohne sie erneut simulieren zu müssen.
Dadurch wird eine nachgelagerte Analyse eines Simulationslaufs ermöglicht, wenn aus
einer Reihe von Simulationsläufen beispielsweise die Extremata hinsichtlich ihrer
Ursachen nachträglich untersucht werden sollen. Dadurch kann der Anwender
abschätzen, ob der betrachtete Simulationslauf spezielle Bedingungen erfüllt hat, die bei
der bisherigen Planung nicht berücksichtigt oder erkannt wurden.

Abbildung 118: Benutzeroberfläche des Reportingtools

Die mittels dem Reporting-Modul erstellen Simulationsläufe können als Experiment in der
Simulationsdatenbank gesichert werden.

Szenario 1: Modellverifikation des rückwärts gerichteten, zeitorientierten
Simulationsmodells des Zentrallagers mit der Debuggingfunktionalität
Die Funktionsweise des rückwärts gerichteten, zeitorientierten Simulationsmodells des
Zentrallagers soll mittels der Debugging-Funktionalität der Modellierungskomponente
überprüft werden. Dabei wird für das aktuell geladene Simulationsmodell direkt der
Preprocessor des Simulators aufgerufen, der das Simulationsmodell kompiliert und in
einer Debugging-Oberfläche startet, wie sie aus Entwicklungsumgebungen bei der
Programmierung von Softwaresystemen bekannt ist (vgl. Abbildung 116). Die
entsprechenden Einstellungen zum Starten des Preprocessors werden dabei soweit wie

Realisierung - 203 -

möglich automatisch generiert. Alle anwenderabhängigen Startparameter (Start- und
Endzeit der Simulation, Ausführungsgeschwindigkeit, Speicherort der temporären
Dateien, etc.) können über ein Untermenü der Modellierungskomponente parametriert
werden. Die gestartete Debugging-Oberfläche bietet verschiedene Funktionen zur
Kernelsteuerung an und erlaubt darüber hinaus die Ansicht aller aktuell laufenden
Prozesse, Variablenwerte, Bausteininstanzen usw. Der Programmcode der übersetzen
Ereignisse kann eingesehen werden; durch das Setzen von Breakpoints kann die
Simulation durch den Debugger beim Erreichen der Codestellen angehalten werden.
Zusätzlich können an alle Objekte und deren Variablen Watchpoints gesetzt werden, die
die Ausführung der Simulation im Simulator genau dann pausieren, wenn auf die
markierten Objektinstanzen zugegriffen wird.

Für den Anwender ergibt sich damit die Möglichkeit einer einfachen und individuellen
Modellanalyse und Überprüfung der verschiedenen Objektzustände zu ausgewählten
Zeitpunkten der Simulation. Einzelne Objekte können in ihrer Bewegung durch das
Simulationsmodell nachverfolgt und damit der Ablauf der Simulation überprüft werden.
Die einzelnen Ereignisse und Funktionsmethoden können hinsichtlich ihrer Korrektheit
überprüft werden, weil nach Erreichen eines Break- oder Watchpoints der Debugger das
Voranschreiten der Simulation nicht nur „Ereignis für Ereignis“, sondern „Codezeile für
Codezeile“ ermöglicht. Dadurch kann eine sehr detaillierte Fehlersuche erfolgen, die den
Gesamtprozess der Modellverifikation beschleunigt. Für fehlerfrei ausführbare
Simulationsmodelle bietet sich die Reporting-Oberfläche zur Modellanalyse an, mit der
eine anwenderspezifische Übersicht über einzelne Werteverläufe und Variablenzustände
während der Simulation realisiert wird.

Für das zeitorientiert simulierte Simulationsmodell des Zentrallagers der PaderK kann mit
dieser Methode effektiv überprüft werden, wie sich die einzelnen Parameter während
eines Schichtwechsels schrittweise verändern und ob die Abläufe richtig in den
entsprechenden Events formalisiert wurden. Darüber hinaus kann der Scheduler des
Simulatorkerns selbst eingesehen werden, um zu überprüfen, ob die Ereignisse in der
korrekten Reihenfolge eingepflegt beziehungsweise aufgerufen werden. Darüber hinaus
kann beispielsweise während der Initialisierung des Simulationsmodells überprüft
werden, ob die zugewiesenen Schichtwechsel des Kalenders korrekt in die vorgesehenen
Listen eingetragen werden, damit die Folgereignisse entsprechend korrekt terminiert
werden können.

Szenario 2: Modellverifikation des ereignisorientierten Simulationsmodells der
Montage mit dem Reportingtool
Nachdem die grundlegende Funktionsweise eines Simulationsmodells durch den
Anwender überprüft wurde, beispielsweise durch die Überprüfung mittels der
beschriebenen Debugging-Funktionalität, müssen in einem Folgeschritt die einzelnen
Parameter der Bausteininstanzen überprüft und mit der Realität oder den Plandaten
verglichen werden. Daraufhin kann in einem weiteren Schritt ein erster Simulationslauf
durchgeführt werden, an dem das grundlegende, dynamische Verhalten des
Simulationsmodells überprüft werden soll. Neben der später verwendeten 2D-
Visualisierung kann hierzu das Reporting-Modul des implementierten Werkzeugs
verwendet werden.

- 204 -

Das ereignisorientierte Simulationsmodell der Montage aus dem Szenario 2 kann in der
Applikation Reporting aus der Simulationsdatenbank geladen und an einen eingebetteten
Simulator übergeben werden. Es wird daraufhin übersetzt, kompiliert und initialisiert,
wobei über das Kommunikationsprotokoll alle Parameter und Initialwerte der
Bausteininstanzen an das Reportingtool übertragen werden. Es erlaubt eine komfortable
Steuerung des Simulators und bietet die Möglichkeit, sich individuell die einzelnen
Variablen der Bausteininstanzen der Montage grafisch auswerten zu lassen. Darüber
hinaus kann der Fluss aller durch das Simulationsmodell laufenden Token, der
Nachrichtenverkehr zwischen Simulator und Visualisierungskomponente, die
Simulationszeit und weitere Eigenschaften der Simulation angezeigt werden. Die
Bedienoberfläche kann dabei durch den Anwender frei mit den einzelnen
Auswertungsfenstern belegt werden, so dass eine modular aufgebaute „Leitstand“-
ähnliche Sicht auf das Simulationsmodell erlaubt wird.

Für das ereignisdiskrete Simulationsmodell der Montage der PaderK kann unter
Verwendung des Reportingtools die Auslastung aller Fördertechnik-Puffer gleichzeitig
beobachtet und in Abhängigkeit vom Simulationsverlauf analysiert werden. Darüber
hinaus können die kundenindividuellen Aufträge, die als Token die Montage durchlaufen,
nachverfolgt und ihr spezifischer Weg durch die Montage verfolgt werden. Als zusätzliche
intuitive Darstellung des Flusses der Token durch das Simulationsmodell während der
Simulation kann die 2D-Visualisierung.

Szenario 3: Modellverifikation des rückwärts gerichteten, ereignisorientierten
Simulationsmodells mit der 2D-Visualisierung der Modellierungskomponente.
Die anwenderfreundlichste Darstellung des simulierten Materialflusses kann innerhalb der
Modellverifikationsphase durch die 2D-Visualisierungskomponente erfolgen. Zwar ist die
Darstellung in der 3D-Visualisierungskomponente generell auch möglich, die
zweidimensionale Darstellung ist jedoch direkt in die Modellierungskomponente
integriert. Analog zum Starten, Übersetzen und Kompilieren eines Simulationsmodells
über die Debugging-Funktionalität wird das geladene Simulationsmodell durch einen
internen Simulatorkern übersetzt und die Kommunikationsnachrichten durch die 2D-
Visualisierung entsprechend interpretiert. Der Fluss der Token durch das
Simulationsmodell kann dadurch auf Basis des zweidimensionalen Layouts nachvollzogen
werden (vgl. Abbildung 115) und erlaubt somit eine schnelle Analyse der modellierten
Verkettungen und Verteilregeln in den einzelnen Bausteininstanzen. Die einzelnen Token
werden dabei durch Marken dargestellt, können aber nicht individuell parametriert
werden. Zusätzlich ermöglicht die 2D-Visualisierungskomponente aber bereits eine
einfache Manipulation der Bausteinparameter, um identifizierte Schwachstellen und deren
Behebung direkt in der Simulation überprüfen zu können.

Zur Modellverifikation des rückwärts gerichteten Simulationsmodells der Teilefertigung im
Szenario 3 bietet sich diese Darstellungsform insbesondere an, um eine schnelle
Überprüfung der Invertierung des Simulationsmodells realisieren zu können.
Fragestellungen wie „Wurden alle Verteilregeln entsprechend in die richtigen
Bausteininstanzen transformiert?“, „Wurden alle Prioritätsregeln korrekt durch ihr
jeweiliges Pendant ersetzt?“ können schnell beantwortet werden, weil die Dynamik des
Simulationsmodells in einer intuitiven Form dargestellt wird.

Realisierung - 205 -

Auf die Entwicklung von alternativen Simulationsmodellen für weitergehende
Fragestellungen soll an dieser Stelle verzichtet werden, weil sie für den Nachweis der
Funktionalitäten des implementierten Werkzeugs nicht erforderlich sind. Im
nachfolgenden Abschnitt sollen die einzelnen Untersuchungsszenarien durch die
entsprechenden Module des Werkzeugs simuliert werden, indem zum Einen einzelne
Experimentreihen mit dem Experimentmanager definiert und ausgeführt werden und zum
Anderen Simulationsläufe einer interaktiven Analyse mit der dreidimensionalen
Visualisierungskomponente zugeführt werden.

6.6 Simulationsexperiment

Die im vorigen Abschnitt verifizierten Simulationsmodelle stehen nun für die
Experimentierphase der Simulationsstudie zur Verfügung. Die Simulationsexperimente
können hinsichtlich zweier unterschiedliche Strategien durchgeführt werden. Zum Einen
können Simulationsläufe ohne angeschlossene Visualisierungskomponenten möglichst
schnell berechnet werden, um die Experimentdaten zu generieren; zum Anderen kann
das dynamische Verhalten des abgebildeten Systems interaktiv mit einer
Visualisierungskomponente analysiert werden. In dem implementierten Werkzeug stehen
für beide Aufgaben jeweils ein Modul zur Verfügung, die nachfolgend kurz beschrieben
werden sollen.

Modul Experimentmanager
Für die Parametrierung eines kompletten Simulationsexperimentes wurde der
Experimentmanager implementiert. In Anlehnung an einen Wizard kann Anwender hier
schrittweise ein Simulationsexperiment anlegen oder laden, konfigurieren, durchführen
und eine Übersicht über die Ergebnisse erhalten. Der Simulatorkern ist in den
Experimentmanager eingebettet, so dass aus einer einheitlichen Oberfläche die
entsprechenden Versuchsreihen parametriert, durchgeführt und in der
Simulationsdatenbank gespeichert werden können. Nach dem Start legt der Anwender
dazu ein neues Simulationsexperiment an oder lädt ein vorab definiertes Szenario aus
der Simulationsdatenbank. Danach kann er Start- und Endzeit der Simulation und Anzahl
der benötigten Simulationsläufe festlegen (vgl. Abbildung 119 links). Auf diesen Angaben
basierend erhält der Anwender eine Liste aller zu parametrierender Variablen, die nach
der Struktur des Simulationsmodells in einer Baumstruktur geordnet sind und durch
verschiedene Filter nach Datentypen oder Bausteinen eingegrenzt werden können (vgl.
Abbildung 119 rechts). Für alle Startwerte der Zufallszahlen dieses Experimentes steht
eine Funktion zur Verfügung, um die entsprechenden Werte zu Beginn jedes
Simulationslaufs zu verwirbeln (Beispielsweise in der Form: Lauf 1: 1-2-3, Lauf 2: 2-3-1,
Lauf 3: 3-1-2, etc.).

- 206 -

Abbildung 119: Ansichten des Experimentmanagers

Zusätzlich zur Parametrierung der einzelnen Attribute der Modellbausteine kann der
Anwender diejenigen Attribute auswählen, deren Werteveränderungen über einen
Simulationslauf protokolliert werden sollen. Neben Auswertungsbausteinen etc, können
so auch weitere interessante Attribute einzelner Bausteine verfolgt werden. Nach der
vollständigen Parametrierung können die einzelnen Simulationsläufe als
Stapelverarbeitung gestartet werden. Alternativ bietet sich die Verteilung auf einem
Rechencluster an, für die entsprechende zusätzliche Attribute angegeben werden
müssen. Die Parallelisierung bezieht sich ausschließlich auf die Verteilung der einzelnen
Simulationsläufe, das heißt, ein einzelner Lauf kann nicht auf mehreren Rechnern verteilt
werden. Nach dem Durchlauf aller Simulationsläufe werden die entsprechend
ausgewerteten Kennziffern dargestellt. Sie dienen einer ersten Übersicht der generierten
Datenmenge und lassen sich zwischen den verschiedenen Simulationsläufen vergleichen.
Das Simulationsexperiment kann wieder in der Simulationsdatenbank gespeichert werden
und steht für spätere, umfangreichere Analysemethoden zur Verfügung.

Visualisierungskomponente
Visualisierungsumgebung 3D
Die dreidimensionale Visualisierungskomponente wurde als umfangreichstes
Analysemodul in Form einer eigenständigen Applikation implementiert, die sich direkt an
einen Simulatorkern ankoppelt. Zur Darstellung besonders großer und damit auch
komplexer Szenen wurden spezielle Grafikalgorithmen implementiert, die eine
echtzeitfähige Analyse großer Simulationsmodelle ermöglichen. Zur Implementierung
konnte hier auf umfangreiche Arbeiten der Fachgruppe „Algorithmen und Komplexität“
des Heinz Nixdorf Instituts zurückgegriffen werden. Neben der dynamischen
Visualisierung der simulierten Abläufe kann diese mehrbenutzerfähige Visualisierungs-
komponente den Anwender zu ausgewählten Prozesspunkten führen und bietet neben
Mini-Map und dreidimensionaler Darstellung weitere Unterstützungsfunktionalitäten für
den Anwender an. Analog zur Modellierungskomponente wurden auch hier Kommunika-
tionsmechanismen wie eine Chatfunktion implementiert, um eine gemeinsame Analyse
von Simulationsmodellen auch dann zu erlauben, wenn die beteiligten Anwender nicht an
einem Ort sind.

Die dreidimensionale Visualisierungskomponente erlaubt eine interaktive Manipulation
des berechneten Simulationslaufs, indem einzelne Parameter der Bausteininstanzen
ausgewählt und innerhalb der vom Modellierer festgelegten Grenzen manipuliert werden
können. Dem Anwender wird zusätzlich auch dadurch eine möglichst immersive

Realisierung - 207 -

Umgebung präsentiert, dass sein „virtuelles Ich“, der Avatar, sich nur auf denjenigen
Wegen durch die virtuelle Fertigung bewegen kann, wie es dem Anwender auch in der
Realität möglich wäre. Unter Verwendung des Motion Planning Moduls im Simulatorkern,
werden Kollisionen mit vorhandenen SPMs und Avataren verhindert.

Abbildung 120 zeigt einen Screenshot der Benutzeroberfläche des 3D-Clients, in der die
einzelnen Funktionsfenster gut zu erkennen sind. Mit den hier vorgestellten
Werkzeugmodulen sollen die Untersuchungsziele mittels verschiedener
Simulationsexperimente erarbeitet werden. Die folgenden Abschnitte beschreiben dazu
jeweils die Vorgehensweise.

Abbildung 120: Benutzeroberfläche des 3D-Clients

Szenario 1: Zeitorientierte Rückwärtssimulation zur Terminierung von
Fertigungsplänen
Die Parametrierung der Experimentreihe zur zeitorientierten Rückwärtssimulation erfolgt
mit Hilfe des Experimentmanagers. Auf der hier abgebildeten, weniger detaillierten
Betrachtungsebene sind nur wenige Variablen zufallsverteilt, so dass nach dem Laden
des entsprechenden Simulationsmodells nur die Anzahl der Simulationsläufe, Start- und
Endzeiten der Simulation und zusätzliche Kommentare durch den Anwender angegeben
werden müssen. Die jeweiligen Parameterwerte der Bausteininstanzen können in der
Übersicht schnell überprüft werden. Anschließend werden die einzelnen Simulationsläufe
als Stapelverarbeitung gestartet und die Simulationsdaten generiert.

Nach der Simulation bietet der Experimentmanager eine Übersicht der in den
Simulationsläufen generierten Daten, so dass der Anwender eine erste Analyse
durchführen kann. Die Ergebnisse des Simulationsexperimentes können dann in der
Simulationsdatenbank gesichert werden und stehen für eine spätere grafische
Auswertung zur Verfügung.

- 208 -

Szenario 2: Ereignisdiskrete Vorwärtssimulation zur Engpass- und
Sensitivitätsanalyse der Fertigungsabläufe
Neben der Durchführung von Experimentreihen, in denen die Simulationsdaten so schnell
wie möglich berechnet werden sollen, soll im zweiten Szenario eine interaktive
Sensitivitätsanalyse mit dem implementierten Werkzeug durchgeführt werden. Dazu wird
das entsprechende Simulationsmodell, hier der Montage der PaderK, in den Simulator
geladen und die dreidimensionale Visualisierungskomponente gestartet. Die
dreidimensionale Visualisierung der Montagehalle wird geladen, ihre dynamische
Verhaltensweise wird animiert und kann durch den Anwender manipuliert werden.

Zur Sensitivitätsanalyse kann der Anwender nun durch die virtuelle Montage navigieren
und die Dynamik des abgebildeten Systems verstehen. Dafür ist es wichtig, dass der
Faktor der Ausführungsgeschwindigkeit der Simulation nahe der Echtzeit liegt, um die
realistische Darstellung der Fertigungsabläufe darstellen zu können. Einzelne Parameter
einer Bausteininstanz können jetzt durch den Anwender manipuliert und die
Auswirkungen in der Simulation direkt beobachtet werden. Löst der Anwender in der
virtuellen Umgebung beispielsweise in der Bausteininstanz Förderstrecke 2 eine Störung
aus, so kann beobachtet werden, wie der Transport in den Qualitätsbereich ausschließlich
über die Förderstrecke 3 erfolgt. Wird analog dazu durch den Anwender beispielsweise
der Status vieler durch das System laufender Karts (abgebildet durch die Token) auf
fehlerhaft gesetzt, so werden diese Karts in den Nacharbeitsbereich ausgeschleust. Der
daraus resultierende Rückstau kann direkt in der Visualisierungskomponente beobachtet
werden. Unter Umständen können weitere Maßnahmen in das Simulationsmodell
eingepflegt werden, die eine realistische Reaktion auf diesen Fertigungsablauf darstellen.

Neben der Sensitivitätsanalyse muss eine ereignisorientierte Vorwärtssimulation des
Gesamtmodells erfolgen, die über den Experimentmanager eingestellt werden kann. Weil
in der detaillierten Betrachtungsweise viele Parameter einer Zufallsverteilung unterliegen,
kann hier die Unterfunktion des Experimentmanagers angewendet werden, die eine
Umverteilung der Startwerte aller Zufallsverteilungen für jeden Simulationslauf
automatisch durchführt. Nach dem Simulationsexperiment zeigt die Analyse im
Experimentmanager, dass die Auslastung der einzelnen Fertigungsstufen der Montage
durchgehend hoch ist (vgl. Abbildung 121), wohingegen Zentrallager und insbesondere
die personalintensive Teilefertigung eine geringere Auslastung zeigen. Zur verbesserten
Fertigungsplanung soll im dritten Szenario eine ereignisorientierte Rückwärtssimulation
durchgeführt werden, um die spätesten Beginn-Zeitpunkte der Fertigungsaufträge zu
bestimmen und daraus eine verbesserte Planung der Teilefertigung zu ermöglichen.

Realisierung - 209 -

Abbildung 121: Auslastung der Teilbereiche bei der Vorwärtssimulation

Auch die Ergebnisdaten der Engpassanalyse können als Experiment in der
Simulationsdatenbank gesichert werden und stehen für eine weitere Datenauswertung
zur Verfügung (vgl. Abschnitt 6.7).

Szenario 3: Ereignisdirekte Rückwärtssimulation zur Feinplanung der
Teilefertigung
Die Parametrierung des Experimentmanagers für das dritte Szenario gestaltet sich analog
zu der oben dargestellten Vorgehensweise. Auch hier wird das Simulationsmodell auf der
hohen Detaillierungsstufe betrachtet, wodurch sich eine hohe Anzahl an zufallsverteilten
Bausteinparametern ergibt, die wiederum zu einer höheren Anzahl an Simulationsläufen
führen. Alle wesentlichen Unterschiede zum vorwärts gerichteten Simulationsmodell sind
in der Modellierungsphase berücksichtigt und in der Modellverifikation überprüft worden.
Die generierten Simulationsdaten werden ebenfalls in der Simulationsdatenbank
gesichert und stehen zur Datenauswertung zur Verfügung.

6.7 Datenauswertung

Die Aufbereitung und Interpretation der generierten Simulationsdaten durch
verschiedene Methoden der Datenauswertung erfolgt als letzter Schritt einer
Simulationsstudie. Das implementierte Werkzeug bietet in den verschiedenen
Teilmodulen jeweils unterschiedliche Möglichkeiten, Simulationsdaten nicht nur in der
Simulationsdatenbank zu sichern, sondern auch in das Dateisystem zu exportieren.
Außerdem können durch die Möglichkeiten von Java auch während der Simulation aus
den Modellbausteinen Simulationsdaten direkt ins Dateisystem geschrieben werden,
beispielsweise in Form von kommagetrennten Wertelisten (CSV-Dateien), die in
kommerziellen Tabellenkalkulationen wieder importiert und aufbereitet werden können.

- 210 -

Die Modellierungskomponente erlaubt aus der zweidimensionalen Visualisierung das
„Abonnement“ von einzelnen Parametern über den Simulationslauf und deren
anschließenden Export in eine solche Excel-Schnittstelle. Darüber hinaus können einzelne
Zustände der Simulation von der Oberfläche abfotografiert und als Bilddateien im
Dateisystem gesichert werden. Zur Kommunikation von Modellfehlern bietet sich dieses
Vorgehen insbesondere dann an, wenn die Generierung des fehlerhaften Zustandes eine
lange Simulationszeit erfordert. Die Zustände können so unabhängig vom Simulationslauf
gesichert und später durch die beteiligten Anwender besprochen werden.

Die Reporting-Oberfläche erlaubt neben der Speicherung des Simulationsexperimentes
auch die Sicherung des auftretenden Nachrichtenverkehrs, so dass der Simulationslauf
im weiteren Verlauf auch ohne erneute Simulation nachvollzogen werden kann. Alle
Zwischenzustände eines Simulationslaufs können damit wieder generiert werden und
erlauben eine individuelle Nachbetrachtung durch den Anwender. Die aus der Simulation
entstehenden grafischen Auswertungen der einzelnen Parameter eines Modellbausteins
können als einzelne Bilder auch direkt ins Dateisystem exportiert werden.

Die abgesicherten Experimentdaten können durch den Experimentmanager wieder
eingelesen und dargestellt werden. Hier bietet sich die Möglichkeit, die entsprechenden
Simulationsdaten, bzw. einzelne Wertereihen wieder ins Dateisystem zu exportieren. Die
Generierung weiterer grafischer Auswertungen, die beispielsweise eine Nachbearbeitung
der Auswertedaten benötigen, kann dadurch entweder in kommerziellen Tabellen-
kalkulationen (MS Excel, OpenOffice, etc) oder durch Anwendung individueller
Bibliotheken (GNUPlot, etc.) erfolgen.

Zusammenfassend kann an dieser Stelle festgehalten werden, dass alle Fragestellungen
der PaderK mit dem implementierten Werkzeug beantwortet werden konnten. Durch die
Abbildung der verschiedenen Fertigungsarten innerhalb der PaderK und durch die Wahl
der entsprechenden Szenarien ergibt sich daraus, dass die in Abschnitt 2.4 gestellten
Anforderungen an das zu entwickelnde Werkzeug mit der implementierten Lösung gelöst
wurden. Anforderungen und Lösung sollen dazu nachfolgend noch einmal
zusammengefasst werden und mögliche weitere Schritte aus der existierenden Lösung
abgeleitet werden.

Ausblick - 211 -

7 Ausblick
„Das Bessere ist

der Feind des Guten“

(Voltaire)

7.1 Zusammenfassung

Aufgabe der hier vorliegenden Arbeit war die Konzeption und Implementierung einer
Modellierung und Ablaufsimulation von Fertigungssystemen hinsichtlich eines erweiterten
Einsatzgebietes. Basis der Entwicklung war die Festlegung eines entsprechenden
Arbeitsprozesses und einer Modellbeschreibung, auf deren Basis die eigentlichen
Simulationsmodelle mit dem Werkzeug erstellt und ausgeführt werden können.

Inhaltlicher Schwerpunkt war die Erfüllung folgender neuer Szenarien zum Einsatz der
Ablaufsimulation:
Synchronisierte, ortsunabhängige Mehrbenutzerunterstützung bei der
Modellierung und Simulation von Materialflussmodellen in einer interaktiven,
immersiven und virtuellen Umgebung
Der steigenden Komplexität von Planungsprojekten im Bereich der Ablaufsimulation sollte
dadurch Rechnung getragen werden, dass in dem entwickelten Werkzeug mehrere
Anwender in einer gemeinsamen Umgebung Simulationsmodelle erstellen und ausführen
können. Insbesondere die Kommunikation mit Nicht-Simulationsexperten innerhalb des
Planungsteams erfordert dazu eine möglichst immersive Darstellung, die das Verhalten
des Simulationsmodells bestmöglich darstellt und erklärt. Zur Visualisierung der Modelle
und deren dynamischen Verhaltensweisen dient eine virtuelle Umgebung, in der das
Simulationsmodell dreidimensional dargestellt wird. Der Anwender selbst ist mehr als ein
passiver Betrachter, sondern nimmt auf den Fortlauf eines Simulationslaufes interaktiv
Einfluss. Die Qualität der Gesamtplanung soll dadurch verbessert werden, dass die
entsprechende Modellierung der Fertigungssysteme layoutgerecht ausgeführt wird.

Planung, Evaluierung und fortlaufende Verbesserung der Fertigungsprozesse
über alle Planungs- und Ausführungsphasen bis zur Rückkopplung in die
Fertigungslenkung
Der Einsatz der Ablaufsimulation soll über alle Planungs- und operativen Phasen eines
Fertigungsprozesses hinweg erfolgen. Neben Machbarkeitsstudien, Variantenplanungen
oder quantitativen Fragestellungen dient die Simulation auch der Planung von
Fertigungsprogrammen. Ein bestehendes Simulationsmodell kann über alle Phasen der
Strukturplanung, Mengen-, Kapazitäts- und Programmplanung bis hin zur Prognose und
der laufenden Verbesserung vorhandener Fertigungsprozesse eingesetzt werden. Durch
eine richtungsoffene Simulation können auch kundenorientierte Fertigungsprozesse
abgebildet werden. Darüber hinaus wird eine zeitorientierte Ausführung in Vor- oder
Rückwärtsrichtung unterstützt, um die Integration in bestehende Leitstandsysteme zu
erleichtern.

- 212 -

Kooperative Planung innerhalb von Unternehmen, Unternehmensverbünden
oder Supply-Chain-Netzwerken
Großunternehmen, virtuelle Unternehmen oder Supply-Chain-Netzwerke fertigen an
unterschiedlichen Standorten. Der Lieferfähigkeit kommt innerhalb einer Supply-Chain
steigende Bedeutung zu. Mit dem implementierten Werkzeug können die Planungen der
Supply-Chain Partner enger aufeinander abgestimmt und überwacht werden. Die
Mehrbenutzerfähigkeit der angestrebten Ablaufsimulation ermöglicht eine kooperative
Planung mehrerer Simulationsexperten an einem gemeinsamen, dynamisch
detaillierenden Simulationsmodell des Fertigungsnetzwerks unabhängig vom Standort der
jeweiligen Experten. Da die verschiedenen Partner innerhalb solcher unternehmens-
internen wie –externen Fertigungsnetzwerke nach unterschiedlichen Fertigungs-
ablaufarten produzieren können, wurde mit der automatischen Wegberechnung ein
spezielles Verfahren entwickelt, welches die Modellierung und Simulation von funktional
gegliederten Fertigungssystemen bzw. deren Mischformen erlaubt.

7.2 Grenzen der Arbeit

Diese Arbeit beschränkt sich auf den erweiterten Einsatz der Methode Ablaufsimulation
und versucht, Schnittstellen zu angrenzenden Planungsschritten möglichst konstruktiv
und praxistauglich zu gestalten. In der Praxis der Unternehmenslandschaften existieren
zahlreiche Bestrebungen hin zu der Vision einer „Digitalen Fabrik“. Dieser Ansatz ist von
seiner Grundidee sicherlich ganzheitlicher, wird aber von den jeweiligen Unternehmen
oftmals nur hinsichtlich der jeweils eingesetzten Technologien verfolgt. Ziel ist ebenso
wie bei der hier vorliegenden Arbeit eine ganzheitliche Gestaltung der Produkt- und
Prozessplanung einer Unternehmung. Die wesentliche Herausforderung in der Praxis ist
hierbei jedoch zumeist die Integration der existierenden Datenformate und fokussiert
nicht so sehr auf eine ganzheitliche Betrachtung der Methoden und Ziele. Insofern passen
die hier genannten Bestrebungen in den Kontext der Digitalen Fabrik; die Digitale Fabrik
fördert aber noch mehr auch die Integration von Produkt- und Prozessplanung, als das in
dieser Arbeit der Fall ist.

Die Summe der Einzelziele zur Erweiterung des Einsatzgebietes der Ablaufsimulation
erhebt keinen Anspruch auf Vollständigkeit, sondern will vielmehr mögliche nächste
Schritte aufzeigen, die vor dem Hintergrund bereits heute existierender Projekte
auftreten. Dennoch scheint eine engere Anbindung von Fertigungsplanung und –Lenkung,
die Kopplung der Methode Ablaufsimulation mit den Planungsszenarien einer PPS-
Steuerung als sinnvoll und wurde in Ansätzen heute bereits realisiert.

Des Weiteren ergeben sich auch aus den Ergebnissen der hier vorliegenden Arbeit
weitere Erkenntnisse für mögliche, zukünftige Schritte, die den Themenbereich der
Ablaufsimulation vorantreiben können, ggf. eingebettet in den Kontext der Digitalen
Fabrik. Der nachfolgende Absatz will einige Ideen hierzu liefern.

7.3 Ausblick

Die ersten Arbeiten mit dem entwickelten Werkzeug zeigen erfolgreiche Durchführungen
und Ergebnisse hinsichtlich einer Kopplung der Methode Ablaufsimulation mit den
Planungs- und Steuerungsalgorithmen der Fertigungslenkung. Die Arbeit könnte an
dieser Stelle vorangetrieben werden, indem weitere Lösungsmöglichkeiten in diesem

Ausblick - 213 -

Problembereich einer möglichst optimalen Einsteuerung der Fertigungsaufträge in das
Fertigungssystem, beispielsweise durch Ankopplung von Optimierungsalgorithmen,
Neuronalen Netzen oder Genetischen Algorithmen entwickelt werden. Erste Aussagen
über das Verhalten eines dynamischen Fertigungssystems könnten schneller generiert
werden und die eigentlichen Simulationsläufe müssten erst später und mit optimierten
Parametern gestartet werden.

Ein weiteres sinnvolles Arbeitsgebiet ist eine erweiterte Unterstützung der Anwender bei
der Modellierung von Simulationsmodellen. Vielfach sind einzelne Maschinendaten,
Fertigungsabläufe, etc. schon in den entsprechenden ERP-Systemen vorhanden. Der
Anwender könnte durch spezielle Methoden zur (semi-)automatischen Modellgenerierung
auf Basis dieser ERP-Daten bei der Erstellung der Simulationsmodelle deutlich besser
unterstützt werden. Insbesondere der Prozess der Modellgenerierung zu einer
Ausgangslösung, die durch erste Simulationsläufe validiert werden kann, würde dadurch
erheblich beschleunigt. Ausschließlich die speziellen Steuerstrategien und Soll-Konzepte
müssten manuell in das Simulationsmodell nachgepflegt werden.

Die Visualisierung einzelner Simulationsläufe ist immer nur eine mögliche Ausprägung
des dynamischen Verhaltens des modellierten Fertigungssystems und basiert in großen
Teilen auch auf den entsprechenden Starparametern der stochastisch verteilten
Modellvariablen. Inwiefern der entsprechende Simulationslauf und seine Visualisierung
also typisch für das modellierte System sind, kann zunächst nicht vom Anwender
beantwortet werden. Klassischerweise wird das Problem in der Experimentierphase
dadurch umgangen, dass mehrere Simulationsläufe mit unterschiedlichen Startwerten
der stochastisch verteilten Modellvariablen simuliert werden. Um dieses Problem bereits
während der Modellierungsphase zu bewältigen, könnte man den Versuch aus den
entsprechenden Simulationsläufen parallel simulieren und in einer
Visualisierungskomponente darstellen. Für jeden einzelnen Parameter einer
Bausteininstanz würde in dieser Visualisierungsform eine Streubreite angezeigt, die den
Anwender einschätzen lässt, wie typisch die angezeigte Visualisierung für das
dynamische Verhalten des Systems ist. Wird die Visualisierung um eine Möglichkeit
angereichert, zwischen der Visualisierung der einzelnen Simulationsläufe zu wechseln,
könnte der Anwender gleichzeitig auch zu typischeren oder extremeren Simulationsläufen
wechseln. Darüber hinaus könnten in diesem Kontext Visualisierungsmöglichkeiten
konzipiert werden, die dem Anwender mehrere Simulationen in einer Oberfläche
darstellen und analysieren lassen.

Quellenverzeichnis - 215 -

Quellenverzeichnis
[AlIs77] Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I.,

Angel, S.: A pattern language, Oxford University Press, New York, 1977

[Arno95] Arnold, D.: Materialflusslehre. Vierweg Verlag, Braunschweig, Wiesbaden,

1995.

[Balz05] Balzert, H.: Lehrbuch Grundlagen der Informatik, Spektrum Akademischer

Verlag; Auflage: 2., Aufl.,2005

[Balz82] Balzert, H.: Die Entwicklung von Software-Systemen: Prinzipien, Methoden,

Sprachen Werkzeuge, Bibliographisches Institut, 1982

[Baum03] Baumgärtner, T.: Wenn die Computer die Fabrik von morgen testen,

Industrieanzeiger 51-52, 2003

[BeBr03] Bender, M., Brill, M.: Computergrafik – Ein anwendungsorientiertes

Lehrbuch, Hanser Verlag, München [u.a.], 2003

[Bega94] Begault, Durand R.: 3-D sound for virtual reality and multimedia, Academic

Press, Boston [u.a.], 1994

[Berg02] Bergbauer, J.: Entwicklung eines Systems zur interaktiven Simulation von

Produktionssystemen in einer Virtuellen Umgebung, Shaker Verlag,
Aachen, 2002

[Birt82] Birtwistle, G. M., Luker, P.: Discrete event simulation with Demos, in:

Proceedings of the 14th conference on Winter Simulation, San Diego,
California, 1982

[BKLP01] Bowman, D.; Kruijff, E.; LaViola, J. J. Jr. und Poupyrev, I.: An Introduction

to 3-D User Interface Design, In: Durlach, N. I. und Slate, M. (Hrsg.),
Presence, Volume 10, Number 1, S. 96-108, MIT-Press, 2001

[Booc94] Booch, G.: Objekorintierte Analyse und Design: Mit praktischen

Anwendungsbeispielen, Addison-Westley, 1994

[Borm94] Bormann, S.: Virtuelle Realität – Genese und Evaluation, Addison Westley

Publishing Company, Bonn [u.a.], 1994

[Boss92] Bossel, Hartmut: Modellbildung und Simulation, Vieweg-Verlag, 1992

[Brac02] Bracht, U.: Ansätze und Methoden der Digitalen Fabrik, In: Schulze, T.;

Schlechtweg, S. und Hinz, V. (Hrsg.): Simulation und Visualisierung 2002,
S. 1-11, SCS-Europe BVBA, Gent, Belgien, 2002

- 216 -

[BrDu04] Brügge, B., Dutoit, A.H.: Objektorientierte Softwaretechnik – mit UML,
Entwurfsmustern und Java, Pearson Education Deutschland, 2004

[Brey05] Breymann, U.: C++ , Hanser Fachbuchverlag; Auflage: 8., Aufl., 2005

[BrFa01] Bracht, U. / Fahlbusch, M. W.: Einsatz von Virtual Reality – Systemen in

der Fabrik- und Anlagenplanung, Zeitschrift für wirtschaftliche Fachbetriebe
(ZWF), 2001

[BuMe96] BUschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-

oriented Software Architecture – A System of Patterns, John Wiley & Sons,
Chichester [u.a.], 1996

[Buur05] Buurman, Gerhard M. (Hrsg.): Total Interaction. Theory and practice of a

new paradigm for the design disciplines. Birkhäuser. Basel, Wien, New
York, 2005

[Chis92] Chisman, J.A.: Introduction to Simulation Modeling Using GPSS/PC,

Prentice Hall, Englewood Cliffs, N.J., 1992

[CoDo02] Coulouris G. F., Dollimore J., Kindeberg T.: Verteilte Systeme: Konzepte

und Design; München u. a. 2002; Pearson Studium

[Corm90] Cormen, Thomas H.: Introduction to algorithms, Cambridge, MIT Press,

1990

[Dang03] Dangelmaier W.: Skript zur Vorlesung: Grundlagen der Informationstechnik

von Produktions- und Logistiksystemen; Universität Paderborn 2003

[Dang99] Dangelmaier, W.: Fertigungsplanung: Planung von Aufbau und Ablauf der

Fertigung, Springer, Berlin, 1999

[DaWa97] Dangelmaier W., Warnecke H.: Fertigungslenkung: Planung und Steuerung

des Ablaufs der diskreten Fertigung; Berlin u. a. 1997; Springer

[Delm-ol] Delmia Quest,

http://www.delmia.com/gallery/pdf/DELMIA_QUEST.pdf (zuletzt abgefragt:
November 2006

[DFAB98] Dix, A.; Finlay, J.; Abowd, G. und Beale, R.: Human-Computer Interaction,

2. Auflage, Prentice Hall Europe, London u.a., 1998

[DMD03] Dangelmaier W. (Hrsg.), Dittmann N., Mueck B.: Marktanalyse:

Materialfluss–Simulatoren; Paderborn 2003; ALB-HNI-Verlagsschriftenreihe

[EDFa-ol] ED-Falcon, Incontrol Enterprise Dynamics,

http://www.taylorii.com (zuletzt abgefragt: November 2006)

Quellenverzeichnis - 217 -

[Evan88] Evans, J. B.: Structures of discrete event simulation: an introduction to
engagement strategy, Ellis Horwood Limited, Chichester, England, 1988

[FaFG94] Fandel, G., Francois, P., Gubitz, K.-M.: PPS-Systeme, Grundlagen,

Methoden, Software, Martkanalysen, Springer Verlag, Berlin [u.a.], 1994

[FaHa94] Faßler, M., Halbach, W. (Hrsg.): Cyberspace. Gemeinschaften, Virtuelle

Kolonien, Öffentlichkeiten. Fink Verlag, München, 1994

[FiHe00] Fischer, J., Herold, W., Dangelmaier, W., Nastansky, L., Suhl, L.: Bausteine

der Wirtschaftsinformatik, 2. überarbeitete und erweiterte Auflage, Erich
Schmidt Verlag, Berlin, 2000

[GaHe01] Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Entwurfsmuster– Elemente

wiederverwendbarer objektorientierter Software, Addison-Wesley, München
[u.a.], 2001

[GiVa03] Girault, C. und Valk, R.: Petri Nets for Systems Engineering – A Guide to

Modeling, Verification, and Applications, Springer Verlag, Berlin u.a., 2003

[GrBo04] Graupner, T.; Bornhäuser, M.; Sihn, W.: Backward Simulation In Food

Industry For Facility Planning And Daily Scheduling; Proceedings 16th
European Simulation Symposium, 2004

[Hack89] Hackstein, R.: Produktionsplanung und –Steuerung, 2.Auflage, VDI-Verlag,

Düsseldorf, 1989

[Henk97] Henkel, S.: Ein System von Software-Entwurfsmustern für die Propagation

von Ereignissen in Werkzeugen zur kooperativen Fabrikmodellierung, HNI-
Verlagsschriftenreihe, Paderborn, 1997

[Holm-ol] Holmevik, J.R.: Compiling Simula,

http://heim.ifi.uio.no/~cim/sim_history.html (zuletzt abgefragt November
2006)

[JaCh97] Jain, S., Chan, S.: Experiences with Backward Simulation Based Approach

for Lot Release Planning, Winter Simulation Conference, 773-780, 1997

[Joha91] Johansen, R., “ Teams for tomorrow”. In Proc. 24th IEEE Hawaii Intl Conf.

On System Science, S. 520-534. IEEE Comp. Soc. Press, Los Alamitos,
1991 ASIM

[Kech05] Kecher,Christian: UML2.0, GallileoComputing, 2005

[Kern79] Kern, W.: Handwörterbuch der Produktionswirtschaft. Sp. 1481, Poeschel,

Stuttgart, 1979

- 218 -

[KlBu71] Klaus, G. und Buhr, M.: Philosophisches Wörterbuch, VEB Verlag Enzyklo-
pädie Leipzig, 8. Auflage, 1971

[KlKr02] Klein, J.; Krokowski, J.; Fischer, M.; Wand, M.; Wanka, R.; Meyer auf der

Heide, F.: The Randomized Sample Tree: A Data Structure for Interactive
Walkthroughs in Externally Stored Virtual Environments; In: ACM
Symposium on Virtual Reality Software and Technology (VRST '2002);
2002; S. 137 – 146

[Klos06] Klose, M.: Betreibersimulation Werk Leipzig - Ein webbasiertes und online

gekoppeltes Prognosetool zur Unterstützung der Produktionssteuerung, In:
Dangelmaier, Wilhelm; Laroque, Christoph; Döring, Andre (Hrsg.) Die
Supply-Chain von morgen – Lieferfähigkeit im globalen Unternehmen, ALB-
HNI-Verlagsschriftenreihe, Band 14, Paderborn, 2006

[LaKe00] Law A. M., Kelton W. D.: Simulation Modeling and Analysis; Boston 2000;

Third Edition; McGRAW-Hill International Series

[Lani91] Lanier, J.: Was heißt „virtuelle Realität“, In: Cyberspace. Ausflüge in

virtuelle Wirklichkeiten, Rowohlt Verlag, Reinbeck, 1991

[LaRa06] Lahres, B., Raýman, G.: Praxisbuch Objektorientierung, Galileo Computing,

2006

[LeEg88] Leszak, M. und Eggert, H.: Petri-Netz-Methoden und –Werkzeuge – Hilfs-

mittel zur Entwurfsspezifikation und –validation von Rechensystemen,
Springer-Verlag, Berlin u.a., 1988

[Lock93] Lockemann, P.C., Krüger, G., Krumm, H.: Telekommunikation und

Datenhaltung, Hanser, 1993

[Muec05] Mueck, B.: Eine Methode zur benutzerstimulierten detaillierungsvarianten

Berechnung von diskreten Simulationen von Materialflüssen, HNI-
Verlagsschriftenreihe, Paderborn, 2005

[OhHa04] Ohkawa, T.; Hata, S.; Komoda, N.: Backward Qualitative Simulation Of

Structural Model; Japan, 1996

[OOSE] OOSE – innovative Informatik,

http://www.oose.de (zuletzt abgefragt: November 2006)

[PaKr05] Page, B., Kreutzer, W.: The Java Simulation Handbook – Simulating

Discrete Event Systems, Shaker Verlag, Aachen, 2005

[RDBa01] Rolland, J. P.; Davis, L. D.; Baillot, Y.: A Survey of Tracking Technologies

for Virtual Environments. In: In: Barfield, W.; Caudell, T. (Hrsg.):
Fundamentals of wearable Computers and Augmented Reality. Lawrence
Erlbaum Associates, Publishers, Mahwah, London, 2001. TRACKING

Quellenverzeichnis - 219 -

[Rock00] Rockwell, W.: XML, XSLT, Java und JSP – Professionelle Web-Applikationen

entwickeln, Galileo Press GmbH, Bonn, 2000

[Rose92] Rosenberg, O.: Potentialfaktorwirtschaft. Vorlesungsumdruck. UNI-GH

Paderborn, 1992

[Rose93] Rosemann, M.: Design of a Real-Time Groupware-Toolkit, University of

Calgary, 1993

[Schm92] Schmidt, C.: Petri-Netze: Ein Instrument zur Lösung logistischer Probleme

im CIM-Bereich, In: Wirtschaftsinformatik, 34, S. 66-75, 1992

[Schn96] Schneider, U.: Ein formales Modell und eine Klassifikation für die

Fertigungssteuerung, Band 16, HNI-Verlagsschriftenreihe, Paderborn, 1996

[ScWe00] Schumacher, R. und Wenzel, S.: Der Modellbildungsprozeß in der

Simulation, In: Wenzel, S. (Hrsg.): Referenzmodelle für die Simulation in
Produktion und Logistik, S.5-11, SCS-Europe BVBA, Gent, Belgien, 2000

[Sims-ol] CACI Process Company

http://www.simprocess.com (zuletzt abgefragt: November 2006)

[Simu03] Programminternes Handbuch: Simul8 Manual and Simulation Guide, Simul8

Corporation, 2003

[Somm92] Sommerville, I.: Software Engineering, Addison-Westley, 1992

[Star90] Starke, P. H.: Analyse von Petri-Netz-Modellen, Teubner, Stuttgart, 1990

[Stor00] Storck, A.: Effiziente 3D-Interaktions und Visualisierungstechniken für

benutzerzentrierte Modellierungssysteme, Dissertation, Technische
Universität Darmstadt, 2000

[StVö05] Stahl,T. & Völter,M.:Modellgetriebene Softwareentwicklung, dpunkt,1.

Auflage,2005.

[SuMe01] Suhl, L., Mellouli, T.: Optimierungssysteme, Skript zur Vorlesung, uni

Paderborn, 2001

[Tane03] Tanenbaum A. S.: Computerarchitektur: Strukturen, Konzepte,

Grundlagen; München 2003; Pearson Studium

[TaSt03] Tanenbaum, A. S., Steen M.: Verteilte Systeme: Grundlagen und

Paradigmen; München u. a. 2003; Pearson Studium

[Teic98] Teich, T.: Optimierung von Maschienenbelegungsplänen unter Benutzung

heuristischer Verfahren, Josef Eul Verlag, Lohmar, 1998

- 220 -

[UGS-ol] UGS TEcnomatix Plant Simulation,
 http://em-plant.de (zuletzt abgefragt: November 2006)

[Ulle05] Ullenboom, C.: Java ist auch eine Insel. Programmieren mit der Java

Standard Edition Version 5, Galileo Press; Auflage: 5., 2005

[VDI3300] VDI-Richtlinie 3300: Materialfluß-Untersuchungen, Beuth Verlag, Berlin,

[VDI3633] VDI-Richtlinie 3633: Simulation von Logistik-, Materialfluss- und

Produktionssystemen - Grundlagen; Düsseldorf 1993; VDI Verlag
Düsseldorf

[VDI4499] VDI-Richtlinie 4499: Digitale Fabrik - Grundlagen; Düsseldorf 2006; VDI

Verlag Düsseldorf

[Völt-ol] Völter,Markus: ModellgetriebeneSoftwareentwicklung, 2004,

http://www.voelter.de (zuletzt abgefragt: November 2006)

[W3C] World Wide Web Consortium,

http://w3c.org (zuletzt abgefragt: November 2006)

[WaFi01] Wand, M.; Fischer, M.; Peter, I.; Meyer auf der Heide, F.; Strasser, W.:

The Randomized z-Buffer Algorithm: Interactive Rendering of Highly
Complex Scenes; In: Computer Graphics (SIGGRAPH 01 Conference
Proceedings); 2001; S. 361 – 370

[WaMe97] Watson, E. F., Medeiros, D. J., Sadowski, R. P.: A simulation-based

backward planning approach for order-release, Proceedings of the 29th
Conference on Winter Simulation, Atlanta, Georgia, ACM Press, New York,
NY, 765-772. 1997

[Woeh90] Wöhe, G.: Einführung in die Allgemein Betriebwirtschaftsaftslehre, Vahlen,

17. überarb. Auflage, 1990

[YiCl94] Ying, C. C., Clark, G. M.: Order release planning in a job shop using a bi-

directional simulation algorithm, Proceedings of the 26th Conference on
Winter Simulation, Orlando, Florida, Society for Computer Simulation
International, 1008-1012, 1994
1973

Anhang A - DTD zur Modellbeschreibung - 221 -

Anhang A - DTD zur Modellbeschreibung
<?xml version="1.0" encoding="iso-8859-1"?>

<!--
Fixe DTD fuer Modellbeschreibung
Koordinatensystem: Linkshaendig, Daumen: x, Zeige: y, Mittel: z, z auf den Betrachter zu
-->

<!ELEMENT model (library, main, database, comment?)>

<!ELEMENT database EMPTY>
<!ATTLIST database
 dburl CDATA #REQUIRED
 username CDATA #REQUIRED
 password CDATA #REQUIRED
>

<!ELEMENT library (buildingblock*, comment?)>

<!ELEMENT buildingblock (dockingpoints*, tokenpath*, subblock*, ichannel*, ochannel*, variable*,
 event*, link*, moredetailed?, lessdetailed?, comment?, calendarRowShifts*, calendarRowFreeDays*,
breakdown*)>
<!ATTLIST buildingblock
 id CDATA #REQUIRED
 name CDATA #REQUIRED
 id_mesh CDATA #IMPLIED
 meshscale CDATA "1"
 significance CDATA "0"
 x-size CDATA #IMPLIED
 y-size CDATA #IMPLIED
 z-size CDATA #IMPLIED
 color CDATA #IMPLIED
 simulationBoundary (true|false) "false"
 sortOfModel CDATA "normal"
 calendar CDATA #IMPLIED
 shiftTableActive (true|false) "true"
 freeDaysTableActive (true|false) "true"
 simStartTime CDATA #IMPLIED
 simEndTime CDATA #IMPLIED
>

<!ELEMENT calendarRowShifts EMPTY>
<!ATTLIST calendarRowShifts
 name CDATA #REQUIRED
 type CDATA "regular"
 from CDATA #REQUIRED
 to CDATA #REQUIRED
 breaks CDATA #IMPLIED
 mo (true|false) "false"
 di (true|false) "false"
 mi (true|false) "false"
 do (true|false) "false"
 fr (true|false) "false"
 sa (true|false) "false"
 so (true|false) "false"
 dates CDATA #IMPLIED
>

- 222 -

<!ELEMENT calendarRowFreeDays EMPTY>
<!ATTLIST calendarRowFreeDays
 date CDATA #REQUIRED
 reason CDATA #IMPLIED
 reduceTo CDATA #IMPLIED
>

<!ELEMENT breakdown (mttfdist?, mttrdist?, firstTTFdist?, breakdownstart_event?, breakdownend_event?)>
<!ATTLIST breakdown
 name CDATA #REQUIRED
 hasMTTFandMTTR (true|false) "false"
 availability CDATA #IMPLIED
 mttrAvailability CDATA #IMPLIED
 generateStartEvents (true|false) "true"
 generateEndEvents (true|false) "true"
 firstTTFAutomatically (true|false) "true"
>

<!ELEMENT firstTTFdist EMPTY>
<!ATTLIST firstTTFdist
 type CDATA #REQUIRED
 stream CDATA #IMPLIED
 lowerbound CDATA #IMPLIED
 upperbound CDATA #IMPLIED
 haslowerbound CDATA #IMPLIED
 hasupperbound CDATA #IMPLIED
 alpha CDATA #IMPLIED
 beta CDATA #IMPLIED
 mean CDATA #IMPLIED
 variance CDATA #IMPLIED
 leftpoint CDATA #IMPLIED
 midpoint CDATA #IMPLIED
 rightpoint CDATA #IMPLIED
 constvalue CDATA #IMPLIED
>

<!ELEMENT mttfdist EMPTY>
<!ATTLIST mttfdist
 type CDATA #REQUIRED
 stream CDATA #IMPLIED
 lowerbound CDATA #IMPLIED
 upperbound CDATA #IMPLIED
 haslowerbound CDATA #IMPLIED
 hasupperbound CDATA #IMPLIED
 alpha CDATA #IMPLIED
 beta CDATA #IMPLIED
 mean CDATA #IMPLIED
 variance CDATA #IMPLIED
 leftpoint CDATA #IMPLIED
 midpoint CDATA #IMPLIED
 rightpoint CDATA #IMPLIED
 constvalue CDATA #IMPLIED
>

<!ELEMENT mttrdist EMPTY>
<!ATTLIST mttrdist
 type CDATA #REQUIRED
 stream CDATA #IMPLIED
 lowerbound CDATA #IMPLIED
 upperbound CDATA #IMPLIED

Anhang A - DTD zur Modellbeschreibung - 223 -

 haslowerbound CDATA #IMPLIED
 hasupperbound CDATA #IMPLIED
 alpha CDATA #IMPLIED
 beta CDATA #IMPLIED
 mean CDATA #IMPLIED
 variance CDATA #IMPLIED
 leftpoint CDATA #IMPLIED
 midpoint CDATA #IMPLIED
 rightpoint CDATA #IMPLIED
 constvalue CDATA #IMPLIED
>

<!ELEMENT breakdownstart_event (codeBS)>

<!ELEMENT codeBS (#PCDATA)>

<!ELEMENT breakdownend_event (codeBE)>

<!ELEMENT codeBE (#PCDATA)>

<!ELEMENT tokenpath EMPTY>
<!ATTLIST tokenpath
 iddatabase CDATA #REQUIRED
 name CDATA #IMPLIED
>

<!ELEMENT dockingpoints (dockingpointfromdb)+>

<!ELEMENT dockingpointfromdb EMPTY>
<!ATTLIST dockingpointfromdb
 id CDATA #REQUIRED
 name CDATA #IMPLIED>

<!ELEMENT subblock (dockingpoints*, tokenpath*, position, relativePosition?, variable_value*,
calendarRowShifts*, calendarRowFreeDays*, breakdown*, subblock*, comment?)>
<!ATTLIST subblock
 type CDATA #REQUIRED
 name CDATA #REQUIRED
 meshScale CDATA #IMPLIED
 id_mesh CDATA #IMPLIED
 srcid CDATA #REQUIRED
 color CDATA #IMPLIED
 layer CDATA "0"
 significance CDATA "0"
 sortOfModel CDATA "normal"
 calendar CDATA #IMPLIED
 shiftTableActive (true|false) "true"
 freeDaysTableActive (true|false) "true"
>

<!ELEMENT position EMPTY>
<!ATTLIST position
 x CDATA #REQUIRED
 y CDATA #REQUIRED
 z CDATA "0"
 rotx CDATA "0"
 roty CDATA "0"
 rotz CDATA "0">

<!ELEMENT relativePosition EMPTY>

- 224 -

<!ATTLIST relativePosition
 x CDATA #REQUIRED
 y CDATA #REQUIRED>

<!ELEMENT variable_value EMPTY>
<!ATTLIST variable_value
 name CDATA #REQUIRED
 value CDATA #IMPLIED
 meanvalue CDATA #IMPLIED
 variance CDATA #IMPLIED
 lowerbound CDATA #IMPLIED
 upperbound CDATA #IMPLIED
 streamNumber CDATA #IMPLIED
>

<!ELEMENT ichannel (position?, comment?)>
<!ATTLIST ichannel
 name CDATA #REQUIRED
>

<!ELEMENT ochannel (position?, comment?)>
<!ATTLIST ochannel
 name CDATA #REQUIRED
>

<!ELEMENT link (comment?)>
<!ATTLIST link
 from CDATA #REQUIRED
 from_channel CDATA #REQUIRED
 to CDATA #REQUIRED
 to_channel CDATA #REQUIRED
>

<!ELEMENT moredetailed (comment?)>
<!ATTLIST moredetailed type CDATA #REQUIRED>

<!ELEMENT lessdetailed (comment?)>
<!ATTLIST lessdetailed type CDATA #REQUIRED>

<!ELEMENT variable ((int | long | double | float | time | arraylist | string | boolean | enum | token | hashmap |
table | random), comment?)>
<!ATTLIST variable
 public (yes | no) #REQUIRED
 vrvisibility (none | readable | writeable) #REQUIRED
 name CDATA #REQUIRED
>

<!ELEMENT long (standardvalue, lowerbound?, upperbound?, evaluationtypeno?)>

<!ELEMENT int (standardvalue, lowerbound?, upperbound?, evaluationtypeno?)>

<!ELEMENT lowerbound (#PCDATA)>

<!ELEMENT upperbound (#PCDATA)>

<!ELEMENT standardvalue (#PCDATA)>

<!ELEMENT double (standardvalue, lowerbound?, upperbound?, precision?, evaluationtypeno?)>

<!ELEMENT float (standardvalue, lowerbound?, upperbound?, precision?, evaluationtypeno?)>

Anhang A - DTD zur Modellbeschreibung - 225 -

<!ELEMENT precision (#PCDATA)>

<!ELEMENT arraylist (variable*, evaluationtypelist?)>

<!ELEMENT string (standardvalue, length, evaluationtypestring?)>

<!ELEMENT length (#PCDATA)>

<!ELEMENT boolean (standardvalue, evaluationtypebool?)>

<!ELEMENT time (#PCDATA)>

<!ELEMENT enum (standardvalue, enummember+)>

<!ELEMENT enummember (#PCDATA)>
<!ATTLIST enummember
 description CDATA #IMPLIED
>

<!ELEMENT token EMPTY>

<!ELEMENT hashmap EMPTY>

<!ELEMENT table (evaluationtypetable?)>
<!ATTLIST table
 columns CDATA #REQUIRED
>

<!ELEMENT random ((uniform | normal | triangular | exponential), streamNumber, evaluationtypeno?)>

<!ELEMENT uniform (lowerbound, upperbound)>

<!ELEMENT normal (meanvalue, variance)>

<!ELEMENT triangular (meanvalue, lowerbound, upperbound)>

<!ELEMENT exponential (meanvalue)>

<!ELEMENT meanvalue (#PCDATA) >

<!ELEMENT variance (#PCDATA) >

<!ELEMENT streamNumber (#PCDATA)>

<!ELEMENT evaluationtypeno (trafficlight | gauge | display)>
<!ATTLIST evaluationtypeno
 evaluationprio (high | medium | low) #REQUIRED
>

<!ELEMENT evaluationtypebool (signal | display)>
<!ATTLIST evaluationtypebool
 evaluationprio (high | medium | low) #REQUIRED
>

<!ELEMENT evaluationtypelist (meanvariance | histogram | display)>
<!ATTLIST evaluationtypelist
 evaluationprio (high | medium | low) #REQUIRED
>

- 226 -

<!ELEMENT evaluationtypestring (display)>
<!ATTLIST evaluationtypestring
 evaluationprio (high | medium | low) #REQUIRED
>

<!ELEMENT evaluationtypetable (meanvariance | timetable | histogram | display)>
<!ATTLIST evaluationtypetable
 evaluationprio (high | medium | low) #REQUIRED
>

<!ELEMENT meanvariance (valuecolumn?)>

<!ELEMENT valuecolumn (#PCDATA)>

<!ELEMENT timetable (yline*, timecolumn, valuecolumn)>
<!ATTLIST timetable
 dots (yes | no) #REQUIRED
 color CDATA #IMPLIED
>

<!ELEMENT yline (#PCDATA)>

<!ELEMENT timecolumn (#PCDATA)>

<!ELEMENT display (#PCDATA)>

<!ELEMENT trafficlight (thresholdyellow, thresholdred)>

<!ELEMENT gauge (thresholdyellow?, thresholdred?)>

<!ELEMENT thresholdyellow (#PCDATA)>

<!ELEMENT thresholdred (#PCDATA)>

<!ELEMENT threshold (#PCDATA)>

<!ELEMENT histogram (threshold*, valuecolumn?)>

<!ELEMENT signal (greentrue | greenfalse)>

<!ELEMENT greentrue (#PCDATA)>

<!ELEMENT greenfalse (#PCDATA)>

<!ELEMENT event
((input_event|output_event|reopen_event|sub_output_event|sub_input_event|sub_reopen_event|init_event|u
ser_defined_event|switch_event|final_event), code, comment?)>
<!ATTLIST event
 name CDATA #IMPLIED
>

<!ELEMENT input_event EMPTY>
<!ATTLIST input_event
 inchannel CDATA #REQUIRED
>

<!ELEMENT output_event EMPTY>
<!ATTLIST output_event
 outchannel CDATA #REQUIRED
>

Anhang A - DTD zur Modellbeschreibung - 227 -

<!ELEMENT reopen_event EMPTY>
<!ATTLIST reopen_event
 channel CDATA #REQUIRED
>

<!ELEMENT sub_output_event EMPTY>
<!ATTLIST subout_event
 outchannel CDATA #REQUIRED
>

<!ELEMENT sub_input_event EMPTY>
<!ATTLIST sub_input_event
 inchannel CDATA #REQUIRED
>

<!ELEMENT sub_reopen_event EMPTY>
<!ATTLIST sub_reopen_event
 inchannel CDATA #REQUIRED
>

<!ELEMENT init_event EMPTY>

<!ELEMENT user_defined_event EMPTY>
<!ATTLIST user_defined_event name CDATA #REQUIRED>

<!ELEMENT switch_event EMPTY>
<!ATTLIST switch_event name CDATA #REQUIRED>

<!ELEMENT final_event EMPTY>

<!ELEMENT code (#PCDATA)>

<!ELEMENT comment (#PCDATA)>

<!ELEMENT main EMPTY>
<!ATTLIST main
 modeltorun CDATA #IMPLIED
>

Anhang B - DTD zum Nachrichtenaustausch - 229 -

Anhang B - DTD zum Nachrichtenaustausch
<!--
 ==
 DTD for XML-communication between simulation and visualisation
 ==

 $Id: messages.dtd,v 1.44 2006/02/20 16:03:00 shampoo Exp $
-->

<!--
 ========
 Entities
 ========
-->

<!ENTITY % ID "CDATA">
<!ENTITY % Int "CDATA">
<!ENTITY % Long "CDATA">
<!ENTITY % Float "CDATA">
<!ENTITY % Double "CDATA">
<!ENTITY % String "CDATA">
<!ENTITY % Boolean "CDATA">

<!ENTITY % Timestamp "
 timestamp %Long; #REQUIRED
">

<!ENTITY % Message1 "(normal-message | request-message | reply-message)">
<!ENTITY % Message2 "(start | pause | stop| save | timefactor | databaseinfo |
 dockingpoint | tokenpath | buildingblock | robot | token |
 robotpool | subscribe-properties | unsubscribe-properties |
 object-properties | properties-changed | significance |
 include-token | exclude-token | animate-token | remove-token |
 remove-robot | move-robot | move-poolmember | check-arrival |
 free-robot |endOfInitialization | mp-prefs | timestamp
 | avatar | mrm-quantifier | unlockMRM | lockMRM | maxspeed | normalspeed)">
<!ENTITY % Message3 "(error | no-error | expected-arrival-time | arrival | still-computing-path | object-
properties)">

<!--
 ====
 ROOT
 ====
-->

<!ELEMENT root (%Message1;)*>

<!--
 ==============
 Callback-Layer
 ==============

 A Message can be of three types:
 - normal message
 - request message
 - reply message
-->

- 230 -

<!ELEMENT normal-message %Message2;>

<!ELEMENT request-message %Message2;>
<!ATTLIST request-message
 cbid %ID; #REQUIRED
>

<!ELEMENT reply-message %Message3;>
<!ATTLIST reply-message
 cbid %ID; #REQUIRED
>

<!--
 ==============
 Avatar-Message needed for switch procedure
 Consits of "Front-Vector" and Avatar-Vector
 At this stage of development just 2-D
 ==============
-->
<!ELEMENT avatar EMPTY>
<!ATTLIST avatar
 xfront %Float; #REQUIRED
 yfront %Float; #REQUIRED
 zfront %Float; #IMPLIED
 xavatar %Float; #REQUIRED
 yavatar %Float; #REQUIRED
 zavatar %Float; #IMPLIED
>

<!--
 ==============
 Message for adjusting the weighting of the mrm indicators.
 The sum of distance and lineOfSight must be 1.
 ==============
-->
<!ELEMENT mrm-quantifier EMPTY>
<!ATTLIST mrm-quantifier
 distance %Float; #REQUIRED
 lineOfSight %Float; #REQUIRED
 relations (0 | 1 | 2) #REQUIRED
>

<!ELEMENT lockMRM EMPTY>

<!ELEMENT unlockMRM EMPTY>

<!--
 ==============
 Administration
 ==============
-->

<!--
This message can be sent in initialisation phase. The computationtime is the time a path computation will take.
Simulation will send a move-robot message and, after waiting for computationtime simulation time, send a
check-arrival message. As simulation time is ahead of server time, timeprecision limits this inaccuracy by
blocking simulation until the difference between simulation and server time is less then timeprecision. Note:
The worst thing which can happen is that simulation gets to know timperecision later that a robot arrived.
Setting timeprecision to a reasonable value (e.g. 100) makes it easier for visualisation to produce smooth
pictures. On the other hand, setting both values to 0 guarantees accurate simulation results.

Anhang B - DTD zum Nachrichtenaustausch - 231 -

-->
<!ELEMENT mp-prefs EMPTY>
<!ATTLIST mp-prefs
 computationtime %Int; #REQUIRED
 timeprecision %Int; #REQUIRED
>

<!ELEMENT start EMPTY>
<!ELEMENT pause EMPTY>
<!ELEMENT stop EMPTY>
<!ELEMENT save EMPTY>
<!ATTLIST save
 pathname %String; #REQUIRED
>

<!ELEMENT maxspeed EMPTY>

<!ELEMENT normalspeed EMPTY>

<!ELEMENT timestamp EMPTY>
<!ATTLIST timestamp
 %Timestamp;
>

<!ELEMENT timefactor EMPTY>
<!ATTLIST timefactor
 %Timestamp;
 value %Int; #REQUIRED
>

<!--
 ==============
 Initialization
 ==============
-->

<!--
If a visualisation server connects to the simulation, the simulation needs switch to pause state. Afterwards, all
information about the current simulation status is transferred to the server using the messages in this section.
Note: Some messages have to be sent in a special order. If all messages are sent, simulation sends a message
of this type to the server. After processing the input, the server will send a start message to start the
simulation.
-->
<!ELEMENT endOfInitialization EMPTY>

<!--
 Simulation specifies the database location etc. Encryption needed!
-->
<!ELEMENT databaseinfo EMPTY>
<!ATTLIST databaseinfo
 url %String; #REQUIRED
 username %String; #REQUIRED
 password %String; #REQUIRED
>

<!--
Dockingpoints belong to a Buildingblock. A Buildingblock can have Dockingpoints. Robots can be sent by
specifying id of Buildingblock and id of Dockingpoint, or by just specifying the Buildingblock (in this case
Motionplanning chooses a Dockingpoint). Usually Dockingpoints are saved in the db together with the 3D model

- 232 -

they belong to, but they can also be added by specifying the Buildingblock and a position relative to the
position of the Buildingblock
-->
<!ELEMENT dockingpoint (databaseid | (description?, location))>
<!ATTLIST dockingpoint
 id %Int; #REQUIRED
 idbb %Int; #REQUIRED
>

<!--
Tokens can be moved automatically along a specified path. (e.g. a box moved along a production line). A Token
path describes such a path. A movement of a token can be moved by sending an AnimateToken message.
-->

<!ELEMENT tokenpath (databaseid | (description?, location, location+))>
<!ATTLIST tokenpath
 id %Int; #REQUIRED
 idbb %Int; #REQUIRED
>

<!--
Buildingblocks represent static objects, e.g. machines. They must have an associated mesh which is saved in
the db. Visualisation will get the Dockingpoints and Tokenpathes out of the database, but additional ones can
be specified. If the bulding block mesh contains other building block meshes (e.g. if it is a hall),
the optional simulationBoundary flag has to be set.
-->

<!ELEMENT buildingblock (description?, mesh, location, significancepoint?)>
<!ATTLIST buildingblock
 id %Int; #REQUIRED
 simulationBoundary %Boolean; "false"
>

<!--
A Robot is an object for which movements can be ordered with a MoveRobot or a MovePoolMember message.
Initial position, maxSpeed and radius must be specified. NOTE: All Dockingpoints, Tokenpathes and
Buildingblocks have to be transmitted before the first Robot!
-->

<!ELEMENT robot (description?, mesh, location)>
<!ATTLIST robot
 type (portal2d | portal3d | forklifter | worker) #REQUIRED

 id %Int; #REQUIRED
 idpool %Int; #IMPLIED

 speed %Float; #REQUIRED
 radius %Float; #REQUIRED
 accel %Float; #IMPLIED
 decel %Float; #IMPLIED
>

<!--
A Token is an object which can be displayed at a fixed position
or moved along a Buildingblock via a Tokenpath.
-->
<!ELEMENT token (description?, mesh)>
<!ATTLIST token
 id %Int; #REQUIRED
>

Anhang B - DTD zum Nachrichtenaustausch - 233 -

<!--
Robots don't have to, but should belong to Pools, which are introduced with messages of this type. Movements
of Robots should be ordered by using a MovePoolMember message (Simulation can't know how long it takes a
special Robot to go from A to B!)
-->

<!ELEMENT robotpool (description?)>
<!ATTLIST robotpool
 id %Int; #REQUIRED
>

<!--
 ==========
 Properties
 ==========
-->

<!--
If the Visualisation is interested in the properties of a special Buldingblock, it sends a message of this type to
the Simulation. Simulation answers with a PropertyMessage immediately, and sends a
PropertyChangedMessage as soon as one or more properties have changed, but no more often than every
interval milliseconds. A subscription can be cancelled by Visualisation with an UnsubscribeObjectProperties
message.
-->

<!ELEMENT subscribe-properties EMPTY>
<!ATTLIST subscribe-properties
 idbb %Int; #REQUIRED
 interval %Int; #REQUIRED
>

<!--
Cancels a subscription of properties of the given object.
-->
<!ELEMENT unsubscribe-properties EMPTY>
<!ATTLIST unsubscribe-properties
 idbb %Int; #REQUIRED
>

<!--

Contains a list of all properties of an object, including the current values of those properties.
-->
<!ELEMENT object-properties (property*)>
<!ATTLIST object-properties
 %Timestamp;
 idbb %Int; #REQUIRED
>

<!ELEMENT property (description?, (simple-type | enum-type | list| table | random), evaluationtype?)>
<!ATTLIST property
 name %String; #REQUIRED
 readonly (yes|no) "yes"
>

<!ELEMENT simple-type EMPTY>
<!ATTLIST simple-type
 type (long|double|bool|string|time) #REQUIRED

- 234 -

 value %String; #REQUIRED
 lowerbound %String; #IMPLIED
 upperbound %String; #IMPLIED

>

<!ELEMENT enum-type (item+)>

<!ELEMENT item EMPTY>
<!ATTLIST item
 value %String; #REQUIRED
>

<!--
a list can have serveral items
-->

<!ELEMENT list (simple-type*)>

<!--
erlaubt nur gleichmaessige tabellen
-->
<!ELEMENT table (content*)>
<!ATTLIST table
 rowsize %Int; #REQUIRED
 columnsize %Int; #REQUIRED
>

<!ELEMENT content (simple-type)>
<!ATTLIST content
 row %Int; #REQUIRED
 column %Int; #REQUIRED
>

<!ELEMENT random EMPTY>
<!ATTLIST random
 type (exponential | normal | triangular | uniform) #REQUIRED
 value %String; #REQUIRED
 streamnumber %Int; #REQUIRED
 meanvalue %Float; #IMPLIED
 variance %Float; #IMPLIED
 lowerbound %Float; #IMPLIED
 upperbound %Float; #IMPLIED
>

<!--
Contains a list of all properties which have changed since the last object-properties or properties-changed
message has been sent. If sent by Visualisation, then a user wants to adjust a setting. It's up to the simulation
to decide if it allows that. If it decides to change the property, a properties-changed message has to be sent as
usual. The timestamp is only needed if the message is sent from Simulation to Visualisation.
-->

<!ELEMENT properties-changed (simple-update*|enum-update* |list-update*|table-update*|random-
update*)>
<!ATTLIST properties-changed
 %Timestamp;

Anhang B - DTD zum Nachrichtenaustausch - 235 -

 idbb %Int; #REQUIRED
>

<!ELEMENT list-update (remove-first?,add-last?)>
<!ATTLIST list-update
 name %String; #REQUIRED
>

<!ELEMENT remove-first EMPTY>
<!ATTLIST remove-first
 quantity %Int; #REQUIRED
>

<!ELEMENT add-last (simple-type+)>

<!ELEMENT table-update (content+)>
<!ATTLIST table-update
 name %String; #REQUIRED
>

<!ELEMENT random-update EMPTY>
<!ATTLIST random-update
 name %String; #REQUIRED
 type (exponential | normal | triangular | uniform) #IMPLIED
 value %String; #IMPLIED
 streamnumber %Int; #IMPLIED
 meanvalue %Float; #IMPLIED
 variance %Float; #IMPLIED
 lowerbound %Float; #IMPLIED
 upperbound %Float; #IMPLIED
>

<!ELEMENT simple-update EMPTY>
<!ATTLIST simple-update
 name %String; #REQUIRED
 type (long|double|bool|string|time) #IMPLIED
 value %String; #REQUIRED
>

<!ELEMENT enum-update (item+)>
<!ATTLIST enum-update
 name %String; #REQUIRED
>

<!--
 ===============
 Evaluationtypes
 ===============
-->

<!ELEMENT evaluationtype (meanvariance | timetable | display | trafficlight | gauge | histogram | signal)>
<!ATTLIST evaluationtype
 priority (high | medium | low) #REQUIRED
>
<!--
Mittelwert und Standartabweichung (z.B. 5 +- 2)
-->
<!ELEMENT meanvariance (valuecolumn?)>

- 236 -

<!--
Bei Tabellen: Aus welcher Spalte sollen die Daten genommen werden
-->
<!ELEMENT valuecolumn (#PCDATA)>

<!--
Diagramm mit f(timecolumn(i)) = valuecolumn(i) Es kann angegeben werden, ob Datenpunkte als dicke Punkte
dargestellt werden sollen und welche Farbe der Graph haben soll
-->

<!ELEMENT timetable (yline*, timecolumn, valuecolumn)>
<!ATTLIST timetable
 dots (true | false) #REQUIRED
 color CDATA #IMPLIED
>
<!--
Reele Zahl. f(x)=yline. Waagerechte Linie im Diagramm.
-->
<!ELEMENT yline (#PCDATA)>

<!--
Wert 1..N Nummer der Spalte, in der die Zeitwerte stehen (x-Achse)
-->
<!ELEMENT timecolumn (#PCDATA)>

<!--
Einfache Anzeige eines Wertes.
-->
<!ELEMENT display (#PCDATA)>

<!--
Eine Ampel. thresholdyellow gibt den Anfangswert für den gelben Bereich, thresholdred den für den roten
Bereich an.
-->
<!ELEMENT trafficlight (thresholdyellow, thresholdred)>

<!--
Ein Drehzahlmesser. thresholdyellow gibt den Anfangswert für den gelben Bereich, thresholdred den für den
roten Bereich an. Anordnung(im Uhrzeigersinn): gruen, gelb, rot
-->
<!ELEMENT gauge (thresholdyellow?, thresholdred?)>

<!--
Ein Wert aus der Menge der reellen Zahlen
-->
<!ELEMENT thresholdyellow (#PCDATA)>

<!--
Ein Wert aus der Menge der reellen Zahlen
-->
<!ELEMENT thresholdred (#PCDATA)>

<!--
Ein Wert aus der Menge der reellen Zahlen
-->
<!ELEMENT threshold (#PCDATA)>

<!--

Anhang B - DTD zum Nachrichtenaustausch - 237 -

Ein Histogramm ist ein Balkendiagramm, bei dem jeder Balken einen Wertebereich darstellt. Es werden nur die
Ereignisse gezählt, wenn ein Wert in ein Intervall passt. Diese Intervalle werden durch die threshold-Wert
angegeben (z.B. 5,10,20,30 -> Werte <= 5 in der ersten, Werte >5 und <= 10 in der zweiten, etc.)
-->

<!ELEMENT histogram (threshold*, valuecolumn?)>

<!--
Einfache Darstellung eines grünen oder roten Kreises. Es kann ausgewählt werden,
 ob true gut(gruen) oder schlecht(rot) ist.
-->
<!ELEMENT signal EMPTY>
<!ATTLIST signal
 truegreen (true|false) #REQUIRED
>

<!--
 ============
 Significance
 ============
-->

<!--
Changes the significance of the given object. This causes the object to be displayed in a more detailed way. If
the significance of an object gets higher then a threshold which can be chosen by each visualisation user, a
marker will be displayed at the position of the object.
-->

<!ELEMENT significance EMPTY>
<!ATTLIST significance
 %Timestamp;
 idbb %Int; #REQUIRED
 value %Float; #REQUIRED
 message %String; #IMPLIED
>

<!--
 ======
 Tokens
 ======
-->

<!--
This message can be used to put Tokens into other Tokens (e.g. shoes in a box). It can also be used to put a
Token onto a Robot. Each Token must have a location which is relative to the reference point of the Token
which it is put into.
-->

<!ELEMENT include-token (include+)>
<!ATTLIST include-token
 %Timestamp;
 idparent %Int; #REQUIRED
>

<!ELEMENT include (location)>
<!ATTLIST include

- 238 -

 idchild %Int; #REQUIRED
>

<!--
To remove Tokens from a Token or a Robot
-->
<!ELEMENT exclude-token (exclude+)>
<!ATTLIST exclude-token
 %Timestamp;
 idparent %Int; #REQUIRED
>

<!ELEMENT exclude EMPTY>
<!ATTLIST exclude
 idchild %Int; #REQUIRED
>

<!--
This message is used to animate a Token. The Token will start a the first node of the path and will move along
all the path nodes. The movement will take the specified time. At the end, the token will be displayed at the
location of the last node of the path, or hidden if the hide flag is set to true.
-->

<!ELEMENT animate-token EMPTY>
<!ATTLIST animate-token
 %Timestamp;
 idtoken %Int; #REQUIRED
 idpath %Int; #REQUIRED
 starttime %Long; #REQUIRED
 endtime %Long; #REQUIRED
 startpos %Float; "0"
 endpos %Float; "1"
 hide %Boolean; "true"
 bbName %String; #IMPLIED
 ichannel %String; #IMPLIED
 ochannel %String; #IMPLIED
>

<!--
To remove a token from the visualisation.
-->

<!ELEMENT remove-token EMPTY>
<!ATTLIST remove-token
 %Timestamp;
 idtoken %Int; #REQUIRED
 bbName %String; #IMPLIED
 ichannel %String; #IMPLIED
 ochannel %String; #IMPLIED
>

<!--
 ======
 Robots
 ======
-->

<!--
Removes a robot from the Visualisation

Anhang B - DTD zum Nachrichtenaustausch - 239 -

-->

<!ELEMENT remove-robot EMPTY>
<!ATTLIST remove-robot
 %Timestamp;
 idrobot %Int; #REQUIRED
>

<!--
Used to order a movement of a Robot. See move-poolmember message.
-->

<!ELEMENT move-robot EMPTY>
<!ATTLIST move-robot
 %Timestamp;
 idrobot %Int; #REQUIRED
 iddestination %Int; #REQUIRED
 idorder %Int; #IMPLIED
>

<!--
Used to order a movement of a Robot. Motion planning will choose the Robot which is nearest to the target
Buldingblock and member of the specified pool. If the given targetid identifies a building block, motion planning
will choose a dockingpoint. If the id identifies a docking point, that point will be the destination. Motion planning
needs some time to compute the path. To avoid blocking the simulation kernel for the whole time, motion
planning will send an still-computing-path immediately. After waiting for the specified period of time, simulation
kernel uses a check-arrival message. The answer will be a still-computing-path message (if motion planning is
still computing) or an expected-arrival-time message (if motion planning has finished the computation. The
expected-arrival-time message will contain the robot and dockingpoint chosen. Simulation will ask at the
expected time if the robot has reached its destination. If this is the case, motion planning will send an Arrival
message, else an ExpectedArrivalTime message containing the new expected arrival time. If the ordered Robot
movement is not possible, an error message will be sent.
-->

<!ELEMENT move-poolmember EMPTY>
<!ATTLIST move-poolmember
 %Timestamp;
 idpool %Int; #REQUIRED
 iddestination %Int; #REQUIRED
>

<!--
See move-poolmember message.
-->

<!ELEMENT still-computing-path EMPTY>
<!ATTLIST still-computing-path
 idorder %Int; #REQUIRED
 waitFor %Int; #REQUIRED
>

<!--
Sent to check if the given Robot has reached its destination.
-->

<!ELEMENT check-arrival EMPTY>
<!ATTLIST check-arrival
 %Timestamp;
 idorder %Int; #REQUIRED
>

- 240 -

<!--
Contains the expected arrival time of the order with the given id.
-->

<!ELEMENT expected-arrival-time EMPTY>
<!ATTLIST expected-arrival-time
 idorder %Int; #IMPLIED
 idrobot %Int; #IMPLIED
 arrivaltime %Long; #REQUIRED
>

<!--
 Sent if the robot has reached its destination.
-->

<!ELEMENT arrival EMPTY>

<!--
Sent if the robot isn't needed any more. Note that a robot is reserved by motion planning. Simulation must free
it if it's no longer needed. See move-poolmember message.
-->

<!ELEMENT free-robot EMPTY>
<!ATTLIST free-robot
 %Timestamp;
 idorder %Int; #REQUIRED
 idrobot %Int; #REQUIRED
>

<!ELEMENT no-error (description?)>

<!ELEMENT error (description?)>

<!--
 Multi resolution support
-->

<!ELEMENT buildingblocks-in-view (objectid+)>

<!ELEMENT buildingblocks-out-of-view (objectid+)>

<!--
 Some misc. stuff.
-->

<!ELEMENT description (#PCDATA)>

<!ELEMENT databaseid EMPTY>
<!ATTLIST databaseid
 value %Int; #REQUIRED
>

<!ELEMENT objectid EMPTY>
<!ATTLIST objectid
 value %Int; #REQUIRED
>

<!ELEMENT position EMPTY>

Anhang B - DTD zum Nachrichtenaustausch - 241 -

<!ATTLIST position
 xpos %Float; #REQUIRED
 ypos %Float; #REQUIRED
 zpos %Float; #REQUIRED
>

<!--
NOTE: x- and y-angle are not supported yet, they're just ignored.
-->
<!ELEMENT rotation EMPTY>
<!ATTLIST rotation
 xangle %Float; "0"
 yangle %Float; "0"
 zangle %Float; "0"
>

<!ELEMENT mesh (databaseid)>
<!ATTLIST mesh
 scale %Float; "1"
>

<!ELEMENT significancepoint (position)>

<!ELEMENT location (position, rotation?)>

<!--
 EOF
-->

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

