
Verteilte Online-Mehrziel-Parameter-

Optimierung in mechatronischen Systemen

zur Erlangung des akademischen Grades eines
DOKTORS DER INGENIEURWISSENSCHAFTEN (Dr.-Ing.)

der Fakultät für Maschinenbau
der Universität Paderborn

genehmigte

Dissertation

von

Dipl.-Ing. Markus Deppe
aus Paderborn

Tag des Kolloquiums: 17. November 2006

Referent: Prof. Dr.-Ing. Joachim Lückel

Korreferent: Prof. Dr.-Ing. Ansgar Trächtler

Vorwort

Die vorliegende Arbeit entstand während meiner Tätigkeit als wissenschaftlicher Mitarbeiter am
Mechatronik Laboratorium Paderborn (MLaP) der Universität Paderborn.

Dem Leiter des Fachgebiets, Herrn Prof. Dr.-Ing. Joachim Lückel, gilt mein besonderer Dank. Er
gab mir die Gelegenheit, diese Arbeit durchzuführen und hat sie durch sein stetiges Interesse und
seine wertvollen Anregungen maßgeblich begleitet und gefördert. Seinem Nachfolger Herrn
Prof. Dr.-Ing. Ansgar Trächtler danke ich für die Übernahme des Korreferats.

Allen Mitarbeitern und Kollegen am MLaP danke ich für die kooperative und angenehme
Arbeitsatmosphäre und die intensiven und anregenden Diskussionen. Mein besonderer Dank gilt
Herrn Dr.-Ing. Rolf Naumann, Herrn Dr.-Ing. Rainer Rasche, Herrn Dipl.-Ing. Oliver Oberschelp
und Herrn Dipl.-Ing. Norbert Neuendorf für die intensive Zusammenarbeit im SFB 376. Herrn
MSc. Mauro Zanella, Herrn Dipl.-Ing. Michael Robrecht und Herrn Dr.-Ing. Ralf Stolpe danke
ich für die gemeinsamen Arbeiten im Rahmen des SPP 1020. Darüber hinaus dürfen die ver-
schiedenen Studien- und Diplomarbeiter sowie studentischen Hilfskräfte nicht unerwähnt blei-
ben, die mich mit ihren Arbeiten unterstützt haben.

Frau Annette Bökamp-Gros danke ich für die sorgfältige Durchsicht des Manuskripts.

Dank ganz anderer, aber nicht geringerer Art gilt meiner Frau Claudia, die mich über die Jahre
unterstüzt und begleitet hat, und meinen Eltern, die mir diese Entwicklung erst ermöglichten.

Bad Lippspringe, im Januar 2007 Markus Deppe

 i

Inhaltsverzeichnis
1 Einleitung..1

1.1 Motivation ... 2

1.2 Zielsetzung ..3

1.3 Gliederung und Aufbau der Arbeit..4

2 Mechatronik ..5
2.1 Anbindung an die Konstruktionstechnik ... 6

2.2 Rechnerabbildung mechatronischer Systeme.. 7

2.3 Hardware-in-the-Loop-Simulation .. 10

2.4 Laufzeitplattform IPANEMA.. 11

3 Strukturierung mechatronischer Systeme ...12
3.1 Modular-Hierarchische Strukturierung.. 12

3.2 Operator-Controller-Modul ... 14

3.3 Erweitertes Streckenmodell... 15
3.3.1 Anregungsmodell.. 15
3.3.2 Bewertungsmodell .. 16

3.4 Verallgemeinerte Kaskade ... 17

4 Grundlagen der Mehrziel-Parameter-Optimierung...19
4.1 Problemdefinition .. 19

4.2 Pareto-Optimalität ... 20

4.3 Karush-Kuhn-Tucker-Bedingung .. 20

4.4 Klassifizierung von Optimierungsaufgaben .. 21

4.5 Numerische Lösungsverfahren zur Minimierung von skalaren Funktionalen 22

4.6 Lösungsverfahren für Mehrziel-Optimierung ... 23
4.6.1 Gewichtete Summe... 23
4.6.2 Gewichtungsverfahren mit Lp-Metrik.. 23
4.6.3 ’Epsilon-constraint’-Methode... 24
4.6.4 Multilevel Programming... 24
4.6.5 Normal-Boundary Intersection ... 24
4.6.6 Gütevektoroptimierung... 25
4.6.7 Homotopie-Verfahren ... 26
4.6.8 Stochastische Verfahren.. 26
4.6.9 Heuristische Verfahren.. 27

4.7 MLaP-Optimierungsverfahren MOPO.. 27
4.7.1 Eigenschaften von Zielfunktionen.. 28
4.7.2 Skalierung... 28
4.7.3 Erfüllungsgrad von Zielgrößen... 29
4.7.4 Begrenzung von Parametern... 29

4.8 MOPO-Gradientenverfahren ... 30
4.8.1 Numerische Gradientenberechnung.. 31
4.8.2 Lokales Problem ... 31
4.8.3 Globales Problem.. 33
4.8.4 Aktive und passive Zielgrößen ... 34

4.9 MOPO Quasi-Newton-Verfahren .. 34
4.9.1 Quadratisches Ersatzproblem ... 35
4.9.2 Definition des Optimierungsziels ... 37
4.9.3 Aktive und passive Zielgrößen für das Quasi-Newton-Verfahren...................... 37
4.9.4 Lösen des quadratischen Ersatzproblems ...38
4.9.5 Konjugiertes Gradientenverfahren.. 39
4.9.6 Zusammenfassung .. 39

ii

5 Verteilte Echtzeitsimulation..41
5.1 Differentialgleichungen zur Regler- und Modellbeschreibung ...41

5.1.1 Echtzeitfähige Verfahren zur numerischen Simulation 41
5.1.2 Datenflussgraph zur Nichtlinearen Simulation... 43
5.1.3 Verteilte Nichtlineare Simulation ... 44

5.2 Laufzeitplattform zur modularen Echtzeit-Simulation.. 46
5.2.1 Verwendete Laufzeitplattform IPANEMA ... 46
5.2.2 Abbildung der IPANEMA-Objekte auf Multitasking... 47
5.2.3 Scheduling .. 49
5.2.4 IPANEMA-Task-Matrix ... 50

5.3 Parallelverarbeitung auf AMS-/MFM-Ebene.. 52
5.3.1 Parallelisierung von Systemmodellen zur schnellen Simulation........................ 52
5.3.2 Analyse von Systemmodellen und Lastverteilung ... 53
5.3.3 Zusammenfassung .. 57

6 Konzept zur verteilten Online-Mehrziel-Optimierung ...59
6.1 Einleitung .. 59

6.2 Modularität .. 59

6.3 Hierarchie .. 61
6.3.1 Besonderheiten auf VMS1-Ebene .. 62

6.4 Parallelität.. 63
6.4.1 Optimierungsebene... 63
6.4.2 VMS1-Ebene .. 64

6.5 Echtzeitverarbeitung.. 65
6.5.1 Klassen von Echtzeit-Tasks .. 65
6.5.2 Echtzeitfähigkeit für die Mehrziel-Optimierung.. 66
6.5.3 Laufzeitverhalten des MOPO-Gradientenverfahrens ... 67
6.5.4 Prinzip der Vorausschau ... 70
6.5.5 Verschiedene Taktraten... 71

6.6 Parallelisierung des MOPO-Verfahrens .. 71
6.6.1 Performance Kriterien .. 72
6.6.2 MOPO-Gradientenverfahren .. 72
6.6.3 MOPO-Quasi-Newton-Verfahren... 75

7 Anwendungsbeispiele ...77
7.1 Kriterien zur Auswahl der Anwendungsbeispiele ... 77

7.2 Regleroptimierung der aktiven Federung an einem Einspurmodell.................................. 78
7.2.1 Fahrzeugmodell .. 78
7.2.2 Softwarearchitektur... 80
7.2.3 Optimierungsexperiment .. 82
7.2.4 Optimierungsergebnis... 85

7.3 Online-Nachoptimierung von Reglerparametern am HIL-Prüfstand 88
7.3.1 Operator-Controller-Modul auf MFM-Ebene... 89
7.3.2 Implementierung... 91
7.3.3 Parameter und Zielgrößen... 92
7.3.4 Optimierungsexperiment .. 93
7.3.5 Zusammenfassung .. 95

7.4 Selbstorganisierendes Kreuzungsmanagement ... 97
7.4.1 Neues Kreuzungsmanagement.. 98
7.4.2 Einteilung der Kreuzung in Zonen ... 99
7.4.3 Algorithmus zur Vorfahrtsbestimmung .. 100
7.4.4 Fahrzeugmodelle und Umgebungsmodelle .. 107
7.4.5 Lineares Einspurmodell für die Vorausschau ... 108
7.4.6 Simulator für die VMS0-Ebene.. 112
7.4.7 Evaluator für die Handlungszone ... 113
7.4.8 Fahrzeugprioritäten bei der Vorfahrtsreihenfolge... 115

 iii

7.4.9 Parallelverarbeitung für die Bewertung der Handlungszone............................ 117
7.4.10 Modellbasierte Online-Optimierung auf VMS1-Ebene.................................... 119
7.4.11 Optimierungsergebnisse ... 120
7.4.12 Zusammenfassung .. 122

8 Zusammenfassung und Ausblick ..125

9 Anhang A: Grundlagen zur Systembewertung ...127
9.1 Wichtige Analyseverfahren für lineare Systeme ... 127

9.2 Wichtige Analyseverfahren für nichtlineare Systeme ... 130

9.3 Berechnung von Fehlerflächen.. 131

10 Anhang B: Verwendung von Scilab..131
10.1 Bewertung von Eigenwertlagen .. 131

10.2 Berechnung von Varianzen.. 134

10.3 Lineare Simulation (Einspurmodell) ... 135

11 Literaturverzeichnis ..139

iv

 v

Notation

Abkürzungen

ABC Active Body Control

ABS Anti-Blockier-System

ACC Adaptive Cruise Control

ACO Ant Colony Optimization

AICC Autonomous Intelligent Cruise Control

AMS Autonomes Mechatronisches System

ANSI American National Standards Institute

ASR Antriebsschlupfregelung
CAMeL Computer-Aided Mechatronics Laboratory

CAMeL-View CAMeL-Virtual Engineering Workbench

CICC Communicative Intelligent Cruise Control

DFG Dataflow Graph und Deutsche Forschungsgemeinschaft

DFT Diskrete Fourier-Transformation

DGL Differentialgleichung

DOF Degrees of Freedom

DSC Dynamic System Code

ESP Elektronisches Stabilitätsprogramm

FFT Fast Fourier-Transformation

FPGA Field Programmable Gate Array

FT Fourier-Transformation

GPS Global Positioning System

HILS Hardware-in-the-Loop-Simulation

IAE Integral Absolute Error

IEEE Institute of Electrical and Electronics Engineers

INRIA Institut National de Recherche en Informatique et Automatique

IPANEMA Integration Platform for Networked Mechatronic Systems

IPI Inter-Processor Interrupt

ISE Integral Squared Error

iSIM Intersection Simulator

ISR Interrupt Service Routine

ITAE Integral Time-weighted Absolute Error

ITSE Integral Time-weighted Squared Error

KKT Karush-Kuhn-Tucker

LIDAR Light Detection and Ranging

vi

LZI Linear zeitinvariant

MFG Mechatronische Funktionsgruppe

MFM Mechatronisches Funktionsmodul

MLaP Mechatronik Laboratorium Paderborn

MOPO Multi-Objective Parameter Optimization

NBI Normal Boundary Intersection

NBP Neue Bahntechnik Paderborn

NOW Networked Workstations

OCM Operator-Controller-Modul

ODE Ordinary Differential Equation

ODSL Objective-Dynamic System Language

ODSS Objective-Dynamic System Structure

OES Optimierer-Evaluator-Simulator

OMM Object-Oriented Mechatronic Model

PSO Particle Swarm Optimization

RADAR Radio Detection and Ranging

RMS Rate Monotonic Scheduling

RTOS Real-Time Operating System

SILS Software-in-the-Loop-Simulation

TCP/IP Transmission Control Protocol / Internet Protocol

VMS Vernetztes Mechatronisches System

WCET Worst-Case Execution Time

 vii

Formelzeichen

Dynamikmatrix der linearen Zustandsraumdarstellung

Kolbenfläche für Hydraulikzylinder

Gewichtungsvektor

Angeströmte Fahrzeugstirnfläche

Eingangsmatrix der linearen Zustandsraumdarstellung

Schwimmwinkel

Ausgangsmatrix der linearen Zustandsraumdarstellung

Federsteifigkeit

Luftwiderstandsbeiwert

Durchgriffsmatrix der linearen Zustandsraumdarstellung

Geschwindigkeitsproportionale Reibung

Lenkwinkel

Impulsfunktion

Zeitintervall

Suchrichtung

Abweichung

Fundamentalmatrix

Gradientenvektor

Skalares Funktional

Erfüllungsgrad einer Zielgröße

Hesse-Matrix, genäherte Hesse-Matrix

Integrationsschrittweite

Einheitsmatrix

Imaginäre Einheit

Zielgrößenlimit

Eigenwerte

Schrittweite für die eindimensionale Minimumsuche

Masse

A

Ak

α

Aw

B

β

C

c

cw

D

d

δ

δ x()

∆T

dk

ε

Φ

g

gα

η

H H̃,

h

I

j

L

λ1 … λn, ,

λk

m

viii

Mittelwert

Ganzzahliger Wert

Anzahl Parameter, Anzahl Zielgrößen

Kreisfrequenz

Parametervektor, Pareto-optimaler Punkt im Parameterraum

Dynamischer bzw. statischer Hydraulikdruck

Hydraulische Leistung

Hydraulischer Volumenstrom

Quadratische Ersatzzielfunktion

Luftdichte

Empfindlichkeitsmatrix

Weg, Geschwindigkeit, Beschleunigung, Ruck

Zeit

Echtzeitfaktor für die Online-Optimierung

Periodendauer (Zykluszeit)

Eingangsvektor

Gewichtung der voherigen Suchrichtung im konj. Gradientenverfahren

Prozessorauslastung, theoretische maximale Prozessorauslastung

Geschwindigkeit

Zustandsvektor, erste zeitliche Ableitung des Zustandsvektors

Ausgangsvektor

Gierwinkel, Gierwinkelgeschwindigkeit (Gierrate)

Menge der aktiven Zielgrößen

Zielgrößenvektor, effizienter Punkt im Zielgrößenraum

M

n

np nz,

ω

p p
*,

pdyn pstat,

PH

qH

qi k,

ρ

S

s s· s·· s···, , ,

t

τRT

TS

u

ϒk

UP UP max,,

v

x x·,

y

ψ ψ·,

ℑ

z z
*,

 Einleitung 1

1 Einleitung

Die Mechatronik ist aus heutigen Kraftfahrzeugen nicht mehr wegzudenken. Längst sind Kom-
ponenten wie ABS (Anti-Blockier-System), ASR (Antriebsschlupfregelung), ESP (Elektroni-
sches Stabilitätsprogramm) oder ABC (Active Body Control) serienmäßig verfügbar. Durch sie
sind in den letzten Jahren große Fortschritte im Bereich der Fahrsicherheit und des Fahrkomforts
erzielt worden.

Für den Straßenverkehr der Zukunft wird weltweit intensiv an der Entwicklung leistungsfähiger
und intelligenter Verfahren zur gleichzeitigen Erhöhung der Kapazität des Straßennetzes sowie
der Sicherheit gearbeitet. Zielsetzung ist die Ausschöpfung bzw. Erhöhung der Effizienz der vor-
handenen Straßenkapazität ohne die Durchführung straßenbaulicher Maßnahmen. Dabei wird
zwischen fest installierten infrastrukturellen Einrichtungen (z. B. Verkehrsleitsystemen) und im
Fahrzeug integrierter Mechatronik unterschieden. Eine wichtige Anwendung ist das automati-
sierte Kolonnenfahren von Fahrzeugen, die dazu mit Abstandsregelsystemen ausgerüstet werden.
Rein sensorgeführte Systeme werden mit AICC (Autonomous Intelligent Cruise Control [Dori-
ßen, Höver 1996]) oder auch ACC (Adaptive Cruise Control) bezeichnet. Demgegenüber stehen
CICC-Systeme (Communicative Intelligent Cruise Control [Mayr 2001]), bei denen zusätzlich
zur Sensorinformation auch Datenkommunikation zwischen den Fahrzeugen stattfindet.

Durch Bildverarbeitung, RADAR- (Radio Detection and Ranging), LIDAR-Sensoren (Light
Detection and Ranging), GPS (Global Positioning System) und Funknetzwerke etc. wird im
Fahrzeug zukünftig eine Fülle von Informationen über die nähere und weitere Fahrumgebung
vorliegen. Diese Informationen müssen intelligent verknüpft werden und dienen dann zur Unter-
stützung des Fahrers (komplexe Fahrerassistenzsysteme). Ein visionäres Fernziel ist das vollstän-
dig autonome mechatronische Fahren ohne menschlichen Fahrer. Abbildung 1-1 zeigt eine Pro-
gnose für die Entwicklung von Anwendungen in Straßenfahrzeugen von Fahrerassistenz-
Systemen bis hin zu autonomen Fahrzeugen:

Abbildung 1-1: Fahrerassistenzsysteme in Straßenfahrzeugen [Vehicle Autonomous Systems 2002]

2 Einleitung

Als Vision für ein zukünftiges CICC-System ist die Idee für ein selbstorganisierendes Kreu-
zungsmanagement entstanden, das im DFG-Sonderforschungsbereich 376 "Massive Parallelität -
Algorithmen, Methoden, Anwendungen" im Teilprojekt C1 ([Deppe, Rasche 2000/1], [Deppe,
Rasche 2000/2], [Deppe at al. 2003/1], [Deppe at al. 2003/2]) als Anwendungsbeispiel dient. Ziel
des Kreuzungsmanagements ist das vollständig dezentral organisierte Überqueren einer Straßen-
kreuzung. Dabei sind alle Fahrzeuge autonom gesteuert und sollen untereinander einen still-
stands- und kollisionsfreien Ablauf selbstständig organisieren, indem wesentliche Anteile der
verkehrsbegleitenden Informationsverarbeitung den zentralen Instanzen entzogen und in lokale,
fahrzeugeigene Bereiche verlagert werden. Die dafür erforderliche lokale Rechenleistung stellen
die beteiligten Kraftfahrzeuge selbst zur Verfügung, so dass ein massiv paralleles Rechnernetz-
werk entsteht. Neben der Grundforderung nach Kollisionsfreiheit muß für die entstehenden Ziel-
konflikte bezüglich Mindestgeschwindigkeit, Durchsatz, Fahrkomfort und Energieverbrauch ein
möglichst guter Kompromiss innerhalb harter Zeitschranken gefunden werden:

Abbildung 1-2: Selbstorganisierendes dezentrales Kreuzungsmanagement

Angestrebt ist nicht eine reale Umsetzung des Kreuzungsmanagements, so dass die Fragen bzgl.
geeigneter Sensorik und Sicherheitstechnik auch nicht im Fokus stehen. Vielmehr wird nach
Methoden gesucht, um das Problem von der konzeptionellen und algorithmischen Seite her zu
lösen. Die wichtigste Methode für das Kreuzungsmanagement ist die Anwendung von online-
fähigen Mehrziel-Optimierungsverfahren auf der Basis von Modellen:

Mit Hilfe von Online-Mehrziel-Optimierungsverfahren lässt sich das Grundproblem der automa-
tisierten Entscheidungsfindung in autonomen Systemen lösen. Neben physikalischen Zielkon-
flikten (z. B. schnelles Abbiegen und hoher Fahrkomfort) können auch die verschiedenen "Wün-
sche" der Einzelfahrzeuge (z. B. Zeit- oder Energieeffizienz) berücksichtigt werden. Dazu
verfügt jedes Fahrzeug über Modelle von sich, von anderen Fahrzeugen und von der Kreuzung
(vgl. Abbildung 1-2). Auf der Grundlage modellbasierter Vorhersagen ist dann eine Vorabopti-
mierung der Überquerung möglich.

1.1 Motivation

Am selbstorganisierenden dezentralen Kreuzungsmanagement wird am MLaP (Mechatronik
Laboratorium Paderborn) bereits seit einigen Jahren intensiv geforscht. Neben den Fahrzeugmo-

 Einleitung 3

dellen, den Regelungssystemen zum Kolonnenfahren und den Verfahren zur Kollisionsvermei-
dung entstand dabei eine Umgebung für die Modellierung und Offline-Simulation von intelligen-
ten mechatronischen Systemen mit hybrider (gemischt diskret-kontinuierlicher)
Informationsverarbeitung [Naumann 2000]. Auch der systematische Entwurf von vernetzten
mechatronischen Systemen unter dem Aspekt der Selbstoptimierung wurde untersucht [Rasche
2004].

Damit ergibt sich eine Anknüpfung an den DFG-Sonderforschungsbereich 614 "Selbstoptimie-
rende Systeme des Maschinenbaus" [DFG-Antrag zum SFB 614 2001], der jedoch im Gegensatz
zum Kreuzungsmanagement eine sehr weitreichende strukturelle Selbstoptimierung von Mecha-
nik, Aktorik, Sensorik, Software und Hardware zur Laufzeit anstrebt. Insbesondere muss für die
Selbstoptimierung ein vollständig automatisierter Ablauf erreicht werden, der mindestens ein-
schließt: Erkennen der Notwendigkeit zur Optimierung, Identifikation von aktuellen Strecken-
modellen, Definition von Optimierungszielen, Auswahl eines Optimierungsverfahrens, Konfigu-
ration und Definition eines modellbasierten Optimierungsexperiments, Durchführung und
Steuerung des Online-Optimierungsexperiments, Prüfen der Ergebnisse und Umsetzung auf das
reale System. Damit wird deutlich, dass die in dieser Arbeit behandelte Online-Mehrziel-Opti-
mierung nur als ein Teilproblem der Selbstoptimierung anzusehen ist.

Im Kreuzungsmanagement werden Strukturen (Vernetzung von Fahrzeugen zu Kolonnen) heuri-
stisch gebildet, und die Optimierung modifiziert Parameter des vernetzten Systems. Die Gemein-
samkeiten bestehen in der konsequenten Hierarchisierung und Modularisierung der mechatroni-
schen Systeme und der Nutzung von Online-Mehrziel-Optimierungsverfahren zur Laufzeit.

Als Anwendungsbeispiel im DFG-Sonderforschungsbereich 614 dient das Projekt NBP (Neue
Bahntechnik Paderborn [Lückel 2000]). Hier wird das herkömmliche mechanische Tragen und
Führen von Schienenfahrzeugen auf dem bestehenden Schienennetz mit dem fortschrittlichen
verschleißfreien Linearantrieb kombiniert. Zusätzlich soll durch intelligente aktive Fahrwerk-
stechnik ein höherer Fahrkomfort erzielt werden. Wesentliches Element des neuen Verkehrssys-
tems sind kleine, autonome Fahrzeuge, sogenannte Shuttles (Railcabs). Auch hier ergeben sich
klare Parallelen zum Kreuzungsmanagement im Hinblick auf das autonome Fahren und die Kol-
onnenbildung von Shuttles durch Ein-/Ausfädeln an Weichen. Da eine vollständige Umsetzung
des Kreuzungsmanagements in die Realität von vornherein nicht angedacht war, bietet die Neue
Bahntechnik Paderborn die Plattform, um die Ergebnisse des Kreuzungsmanagements zukünftig
praktisch anzuwenden.

1.2 Zielsetzung

Das originäre Anwendungsgebiet für Mehrziel-Optimierungsverfahren liegt im Bereich der Ent-
wurfs- und Entwicklungsphasen für Systeme bzw. Produkte. Überträgt man nun die Anwendung
der Verfahren auf die gesamte Lebensdauer von (vernetzten autonomen mechatronischen) Syste-
men, z. B. um die Fähigkeiten für ein selbstorganisierendes Kreuzungsmanagement in Fahrzeu-
gen zu implementieren, so erwachsen ganz neue Randbedingungen. Diese ergeben sich auf ganz
natürliche Art und Weise: Zum Einen gelten harte Echtzeitbedingungen aufgrund der Verknüp-
fung mit realen physikalischen Systemen, zum Anderen besitzt die Informationsverarbeitung
aufgrund der Verknüpfung von Einzelfahrzeugen hochgradig verteilten Charakter.

4 Einleitung

Die Ziele der Arbeit gliedern sich im Einzelnen wie folgt auf:

1. Entwicklung eines Konzepts für die verteilte und echtzeitfähige Mehrziel-Optimierung, das

sich konsequent an der modular-hierarchischen Struktur mechatronischer Systeme orientiert.

2. Weiterentwicklung der Laufzeitplattform IPANEMA zur Multitask-Realisierung von Online-

Mehrziel-Optimierung auf Echtzeitsystemen.

3. Erweiterung der vorhandenen Mehrziel-Optimierungsalgorithmen von MOPO hinsichtlich

Parallel- und Echtzeitverarbeitung.

4. Verfeinerung und Weiterentwicklung des vorhandenen Kreuzungsmanagements in Bezug auf

Modelle, Verfahren zur Vorfahrtsbestimmung und Optimierungsexperimente.

5. Überprüfung der Ergebnisse an Anwendungsbeispielen.

1.3 Gliederung und Aufbau der Arbeit

Kapitel 2 skizziert die Grundlagen zu Entwurf, Rechnerabbildung und Hardware-in-the-Loop-
Simulation für mechatronische Systeme. Ergänzend stellt Kapitel 3 die am MLaP entwickelten
Konzepte zur modular-hierarchischen Strukturierung mechatronischer Systeme vor.

Danach geht Kapitel 4 speziell auf die Grundlagen für das Kernthema Mehrziel-Optimierung ein.
Nach der Vorstellung von wichtigen Verfahren zur Mehrziel-Optimierung wird die MLaP-eigene
Optimierungssoftware MOPO (Multi-Objective Parameter Optimization) beschrieben.

Aufbauend auf den Überblick zur Mechatronik und Mehrziel-Optimierung befassen sich die
nachfolgenden Kapitel mit den eigenen Arbeitsergebnissen. Eine wichtige Basis für die Online-
Optimierung ist die verteilte Echtzeitsimulation. Kapitel 5 beschreibt deren Konzept, die Erwei-
terung von IPANEMA um Möglichkeiten zur Multitask-Simulation und die Ergebnisse der Paral-
lelisierung von Systemmodellen.

Das Konzept zur verteilten Online-Mehrziel-Optimierung wird in Kapitel 6 definiert. Dieses
Konzept erlaubt es, vollständige Optimierungsanwendung inkl. Optimierer, Systembewertung,
Reglern, Systemmodellen flexibel in eine verteilte Applikation zu integrieren. Es werden ver-
schiedene Ebenen der Parallelität vorgeschlagen, die zu modular-hierarchisch verteilten Struktu-
ren führen.

Kapitel 7 stellt drei Anwendungsbeispiele unterschiedlicher Komplexität vor. Durch die Bei-
spiele werden die Einsatzmöglichkeiten der verteilten Online-Mehrziel-Optimierung für den
Systementwurf, für Echtzeitanwendungen am Hardware-in-the-Loop-Prüfstand bis hin zu ver-
netzten mechatronischen Systemen beschrieben. Insbesondere der neueste Stand des Kreuzungs-
managements wird ausführlich dargestellt, bevor ein Beispiel für ein Mehrziel-Optimierungsex-
periment der Kreuzung mit paralleler Verarbeitung gegeben wird.

Eine kurze Zusammenfassung und ein Ausblick auf mögliche weiterführende Arbeiten beschlie-
ßen diese Arbeit in Kapitel 8.

Im Anhang finden sich weitergehende Detailinformationen zu den Verfahren zur Systembewer-
tung, zu den Anwendungsbeispielen sowie das Literaturverzeichnis.

 Mechatronik 5

2 Mechatronik
Mit dem Ziel der Verbesserung mechanischer Systeme durch die Verwendung der Rechentechnik
entstand eine neue Disziplin der Ingenieurwissenschaften, die Mechatronik. Der Begriff ist ein
Kunstwort aus den beiden Anteilen Mechanik und Elektronik [Schweitzer 1989].

In der Mechatronik wird die Integration mechanischer Baugruppen und leistungsfähiger, digi-
taler Informationsverarbeitung auf besonders konsequente Weise von Beginn der Entwicklung
bis zum Abschluss des Projekts durchgeführt. Dabei dienen als Verknüpfungselemente mit defi-
nierten Schnittstellen elektromagnetische, elektromechanische und elektrohydraulische Wandler-
systeme für Sensorik (Ermittlung von Prozessinformationen) und Aktorik (Ansteuerung des tech-
nischen Prozesses).

Ein Ziel der Mechatronik ist es, das dynamische Verhalten eines technischen Systems zu verbes-
sern. Dazu werden die Sensorinformationen durch Prozessoren verarbeitet, um eine für den
jeweiligen Kontext "optimale" dynamische Reaktion mit Hilfe der Aktoren auszulösen. Am
MLaP (Mechatronik Laboratorium Paderborn) wurde dazu folgende Definition formuliert:

Mechatronik ist die Wissenschaft von den kontrollierten Bewegungsvorgängen mechanischer

Systeme mit Hilfe von Mikrorechnern.

Die Zusammensetzung mechatronischer Systeme aus Komponenten der unterschiedlichen tech-
nischen Disziplinen Informationstechnik, Maschinenbau und Elektrotechnik führt in den meisten
Fällen zu einem hohen Komplexitätsgrad des Systems und damit zu einem komplizierten und
aufwendigen Entwurfsprozess.

Die Forschungsaktivitäten des MLaP konzentrieren sich auf die Entwicklungssystematik modu-
larer und hochleistungsfähiger mechatronischer Systeme. Hier wird am Konzept der "Mechatro-
nischen Komposition" geforscht ([Lückel et al. 2000], [Lückel et al. 2002/2], [Hahn et al. 1997],
[Toepper 2002],). Die "Mechatronische Komposition" berücksichtigt zusammengefasst folgende
Gesichtspunkte:

1. Konsequente wechselseitige Berücksichtigung von Konstruktionstechnik (Gestaltorientie-

rung) und Mechatronik (Funktionsorientierung) von Anfang an (vgl. Kap. 2.1).

2. Vollständige Abbildung und Bearbeitung des zu entwickelnden Systems im Rechner als virtu-

eller Prototyp (vgl. Kap. 2.2).

3. Ermöglichung der schrittweisen Realisierung von Prototypen durch Hardware-in-the-Loop-

Techniken (vgl. Kap. 3) und ein Konzept zur modular-hierarchischen Strukturierung von

mechatronischen Systemen (vgl. Kap. 3)

4. Bereitstellung einer umfangreichen Softwareunterstützung durch CAMeL (Computer-Aided

Mechatronics Laboratory) mit einzelnen Werkzeugen zu Modellbildung, Simulation, Regler-

entwurf, Mehrziel-Optimierung und Echtzeit-Simulation.

Der "Mechatronischen Komposition" kommt daher eine zentrale Bedeutung beim Entwurf
mechatronischer Systeme zu. Abbildung 2-1 zeigt das Zusammenspiel der notwendigen Schritte

6 Mechatronik

von der textuellen Aufgabenbeschreibung bis zum ersten Prototypen eines Systems:

Abbildung 2-1: Entwurf mechatronischer Systeme

2.1 Anbindung an die Konstruktionstechnik

Wichtigste Grundforderung ist die frühzeitige Einbeziehung der Informations-/Regelungstechnik
in die Produktentstehung. Oft wird die Mechatronik als Reparaturmöglichkeit eines bereits kon-
struierten und gebauten Prototypen "missbraucht". Der Gegensatz der gestaltorientierten Sicht-
weise der Konstruktionstechnik zu der funktionsorientierten Sichtweise (Bewegungsfunktionen)
der Mechatronik erfordert ein geeignetes Konzept zur Einbindung der Konstruktionstechnik in
den Mechatronikentwurf. Optimalerweise wird von Beginn des Entwurfs an eine wechselseitige
Betrachtung von Bewegungsfunktionen und CAD-Lösungselementen zu deren Umsetzung erfol-
gen ([Lückel et al. 2002/2], [Wittler 2003]).

Für die softwareunterstützte Verknüpfung der Konstruktion mit der mechatronischen Komposi-
tion werden in [Koch 2005] die konzeptionellen Ansätze der Entwurfssystematik aufgegriffen
und detailliert. Das Ziel ist hier die teilautomatisierte Integration mit Hilfe des Modellaustau-

 Mechatronik 7

sches. Neben der Unterteilung der Haupt- und der Teilbewegungsfunktionen in die Bereiche
Kinematik, Dynamik und Mechatronik erfolgt von Anfang an eine hierarchische Strukturierung
des Systems (vgl. Kap. 3), die als Bindeglied zwischen den Domänen dient.

Die Mechanik der CAD-Lösungselemente wird zunächst schematisch unter den Aspekten Funk-
tion und Struktur ausgearbeitet. Mit Hilfe von reduzierten Modellen der CAD-Lösungselemente
in Form von Starrkörper-Modellen mit reduzierter Anzahl von Freiheitsgraden kann deren Bewe-
gungsverhalten analysiert werden. Die Analyseergebnisse fließen zurück in die schematische
Ausarbeitung der Mechanik:

Abbildung 2-2: Anbindung an die Konstruktionstechnik

2.2 Rechnerabbildung mechatronischer Systeme

Die Komplexität mechatronischer Systeme kann durch die Verwendung verschiedener System-
beschreibungssprachen besser beherrscht werden. Die einzelnen Beschreibungssprachen befas-
sen sich mit der Festlegung der Struktur und der Topologie des Systems, der mathematischen Be-
schreibung und schließlich der Festlegung verarbeitungsnaher Zusammenhänge.

Die Aufteilung in mehrere Ebenen schafft ein hierarchisches Systembeschreibungskonzept. Der
Vorteil dieser Vorgehensweise liegt in der Reduktion der Information auf die in der jeweiligen
Ebene beschriebenen Systemeigenschaften, was letztlich zu mehr Übersicht im Verlauf des
mechatronischen Entwurfs führt.

Aufgrund der Erfahrungen im Bereich der Konzeption mechatronischer Systeme erfolgt die
Systembeschreibung am MLaP auf drei Ebenen. Die drei Beschreibungsebenen werden im Rech-
ner teilautomatisch erzeugt und synchronisiert. Diese Rechnerabbildung wird als Objektmodell
der Mechatronik (OMM, vgl. Abbildung 2-3) bezeichnet [Hahn 1999]. Das OMM erlaubt eine
ganzheitliche Abbildung verschiedenster Fachdisziplinen zur optimalen dynamischen Auslegung

8 Mechatronik

des gesamten mechatronischen Systems im MLaP-Modellierungstool CAMeL-View ([iXtronics
2001/1], [iXtronics 2001/2]). Die drei Ebenen entsprechen den Gesichtspunkten Struktur, Verhal-
ten und Verarbeitung:

1. Struktur :

Die oberste Ebene beschreibt die topologische Struktur des mechatronischen Systems unter

Verwendung der disziplinspezifischen Beschreibungsformen der einzelnen Komponenten

sowie ihrer ungerichteten Verknüpfungen untereinander, durch die das mechatronische

Gesamtsystem entsteht. Die einzelnen disziplinspezifischen Beschreibungsformen werden

durch Verwendung objektorientierter Methoden zueinander kompatibel. Zur Beschreibung

mechatronischer Systeme wurde eine erweiterbare, textuelle Systembeschreibungssprache

entwickelt, die im Folgenden als ODSS (Objective-Dynamic System Structure) bezeichnet

wird. Die Sprache wurde zur Beschreibung des topologischen Aufbaus von Systemen auf der

physikalischen Ebene entwickelt und ermöglicht die Modellierung von Teilen und Aggregaten

unterschiedlicher Disziplinen und deren Verbindungen.

2. Verhalten:

Die mittlere, normierende Ebene vereinigt die Beschreibung des Systems zu einem mathe-

matisch orientierten Formalismus auf der Basis von Differentialgleichungen in Zustands-

raumdarstellung [Ludyk 1990]. Durch explizite Eingangs-/Ausgangsformulierung in Form

sogenannter Blöcke lässt sich auch auf dieser Ebene der modulare und hierarchische Charak-

ter des modellierten Systems nachvollziehen. Außerdem wird durch die modulare und hierar-

chische Modellbeschreibung der Aufbau selbst großer Systeme (in der Größenordnung von

einigen hundert Differentialgleichungen) möglich. Der Name der dieser Ebene entsprechen-

den Beschreibungssprache lautet Objective-Dynamic System Language (ODSL). Diese Ebene

kann mit Hilfe von Ableitungsformalismen automatisch aus ODSS erzeugt werden.

3. Verarbeitung:

Die Orientierung der untersten Ebene ist bereits sehr stark auf die Verarbeitung im Digital-

rechner ausgerichtet, ohne sich in die Abhängigkeit zu einer bestimmten Hardwarearchitektur

zu begeben. Die Beschreibung des Systems auf dieser Ebene ist durch die Angabe der explizi-

ten Auswertereihenfolge der Systemgleichungen gekennzeichnet. Entsprechend dem verarbei-

tungsnahen Charakter dieser Ebene heißt die verwendete Beschreibungssprache Dynamic

System Code (DSC). Diese Beschreibungsebene wird automatisch aus ODSL erzeugt. Für die

Ausführung von Simulationen erzeugt ein Codegenerator aus DSC effizienten plattformunab-

hängigen C-Code:

 Mechatronik 9

Abbildung 2-3: Objektmodell der Mechatronik zur Rechnerabbildung von mechatronischen Systemen

Verwendung von Graphen

Zur Beschreibung und Verarbeitung von mechatronischen Systemen werden am MLaP graphen-
basierte Repräsentationen eingesetzt. Die Graphentheorie vereint die Vorteile der guten Umsetz-
barkeit im Digitalrechner mit hoher Anschaulichkeit. Für jede der drei Ebenen des OMM existie-
ren weitreichende Anwendungen der Graphentheorie [Hahn 1999]:

OMM Topologie-Ebene: Systemgraph

Knoten: Basiselemente und Hierarchieelemente

Kanten: Kopplung von Bauteil-Bauteil, System-Subsystem, Eltern-Kind

OMM Verhaltens-Ebene: Systemgraph

Knoten: Basiselemente und Hierarchieelemente

Kanten: Kopplung von System-System, System-Subsystem, Eltern-Kind

OMM Verarbeitungs-Ebene: Berechnungsgraph

Knoten: mathematische Funktionen

Kanten: Datenfluss, Reihenfolge von Funktionsaufrufen

Graphen bestehen aus einer Menge von Knoten und einer Menge von Kanten. Die Knoten reprä-
sentieren diskrete Objekte und die Kanten die Beziehungen zwischen den Knoten. Zur graphi-
schen Darstellung werden üblicherweise Knoten als Kreise und Kanten als Linien dargestellt.
Wenn die Kanten Richtungsinformationen beinhalten werden sie als Pfeile dargestellt, man
spricht dann von gerichteten Graphen im Gegensatz zu ungerichteten Graphen ([Walther 1984],
[Nägler, Walter 1987]). Isolierte Teilgraphen innerhalb eines Graphen werden auch als Kompo-

10 Mechatronik

nenten bezeichnet (siehe Abbildung 2-4). Extremer Sonderfall ist ein Graph ohne Kanten, in dem
dann jeder Knoten eine Komponente darstellt. Um den Vernetzungsgrad in einem Graphen zu
charakterisieren wird zwischen lichten und dichten Graphen unterschieden. In lichten Graphen
ist die Kantenanzahl kleiner als die Knotenanzahl, in dichten Graphen ist dies genau umgekehrt.

Für gerichtete Graphen unterscheidet man zwischen Knoten mit ausschliesslich ausgehenden
Kanten (Quellen) und ausschliesslich eingehenden Kanten (Senken). Das wichtigste Kriterium
für einen gerichteten Graphen ist die Aussage, ob er kreisfrei ist oder nicht. Ein Graph ist dann
kreisfrei, wenn es für keinen Knoten im Graphen einen Pfad gibt, der wieder zu ihm zurückführt.
Auf kreisfreie gerichtete Graphen lässt sich die sog. topologische Sortierung anwenden. Sie hat
zum Ziel eine Liste (sequentielle Reihenfolge) von Knoten so zu ermitteln, dass die Richtung
aller Kanten auf den letzten Knoten der Liste weist. Ein weiterer wichtiger Algorithmus für kreis-
freie gerichtete Graphen ist die Ermittlung der längsten oder kürzesten Pfade von einer Quelle zu
einer Senke:

Abbildung 2-4: Gerichtete und ungerichtete Graphen

2.3 Hardware-in-the-Loop-Simulation

Besonderes Gewicht bei der Entwicklung mechatronischer Systeme haben die Modellierung, die
Simulation und die Optimierung des zu entwickelnden Systems. Mit Hilfe dieser Techniken ist es
möglich, zeitaufwendige Abläufe von der Werkshalle oder dem Versuchsfeld in den Rechner zu
verlagern. Erklärtes Ziel dieser Vorgehensweise ist die Reduzierung der Durchlaufzeiten sowie
eine bessere Reproduzierbarkeit der Ergebnisse.

Der Übergang vom rein simulierten zum vollständig physikalisch realisierten mechatronischen
System ist, ingenieurtechnisch gesehen, ein sehr anspruchsvoller und fehlerträchtiger Schritt.
Daher wird in zunehmendem Maße die Technik der sogenannten Hardware-in-the-Loop-Simula-
tion (HILS) ([Castiglioni et al. 1992], [Wältermann 2000]) angewendet. Dieses Verfahren erlaubt
einen schrittweisen Übergang vom rein simulierten zum vollständig realisierten mechatronischen
System. Die Grundidee besteht in der Kopplung einer virtuellen, in Echtzeit simulierten Umge-
bung mit einem physikalisch aufgebauten Teilmodul als ein Aggregat des Gesamtsystems. Kräfte
und Bewegungen an der mechanischen Schnittstelle des Gesamtsystems mit dem Teilmodul wer-
den durch geregelte Aktoren nachgebildet. Die Reaktion des Teilmoduls wird über Sensoren

 Mechatronik 11

ermittelt und in den simulierten Teil zurückgeführt (Closed-Loop HILS).

In der Automobilindustrie ist die HILS inzwischen eine eingeführte und bewährte Vorgehens-
weise. Auch der Test von Steuergeräten mit Hilfe der HILS ist weit verbreitet [Hanselmann
1993]. Das zu testende Teilmodul des Gesamtsystems ist dann die Hard- und Software des Steu-
ergerätes. In diesem Falle existieren eine Datenschnittstelle und eine elektrische Anbindung an
die Umgebung.

2.4 Laufzeitplattform IPANEMA

Die Simulationsplattform IPANEMA (Integration Platform for Networked Mechatronic Systems)
wurde zur Durchführung von verteilten HIL-Simulationen am MLaP entwickelt ([Honekamp
1998], [Stolpe 2004]). IPANEMA bietet Dienste in Form eines Software-Baukastensystems an,
das unterschiedliche Klassen von informationstechnischen Prozessen enthält. Dabei existiert eine
strikte Trennung zwischen weichen und harten Echtzeit-Bedingungen. Mit IPANEMA ist eine
Abbildung der modular hierarchischen Modellstruktur auf eine ebenfalls modular-hierarchische
Prozess- oder Taskstruktur möglich. Diese erleichtert den geforderten schrittweisen, d. h. modul-
weisen Übergang vom virtuellen Prototypen zum ersten Gesamtprototypen. IPANEMA bildet
das Bindeglied zwischen der modular-hierarchischen Modellstruktur, die aus dem Strukturie-
rungskonzept (siehe Kapitel 3.1) resultiert, und einer verteilten (modularen) Echtzeit-Simulation
für HIL-Anwendungen:

Abbildung 2-5: IPANEMA zur modularen Simulation des OMMs

IPANEMA wird darüber hinaus auch für verteile Offline-Simulationen auf vernetzten Worksta-
tions verwendet [Deppe 1997]. Die Architektur von IPANEMA basiert auf den folgenden Klas-
sen:

12 Strukturierung mechatronischer Systeme

1. Moderator :

Implementiert das Anwenderprotokoll unter Herstellung von Netztransparenz, d. h. der

Anwender braucht keine Kenntnis über den Aufenthaltsort von Variablen der verteilten Appli-

kation zu haben.

2. Assistant:
Trennt die Ebene der weichen Echtzeit (Anwenderseite, Moderator) von der harten Echtzeit

über die Bereitstellung von Ringpuffern. Jeder Assistant ist mit dem Moderator verbunden.

3. Calculator:
Beinhaltet die eigentliche periodisch bearbeitete, echtzeitkritische Anwendung. Jedem Calcu-

lator ist ein eigener Assistant zugeordnet.

4. Adaptor :

Bildet die Daten-Schnittstelle zu Aktorik und Sensorik mit entsprechender Signalvorverarbei-

tung (Skalierung, Filterung etc.).

3 Strukturierung mechatronischer Systeme

3.1 Modular-Hierarchische Strukturierung

Die Aufteilung eines mechatronischen Systems in mechatronische Funktionsmodule (MFM) ist
eine Form der Strukturierung des Systems, die sich am Aggregat-Gedanken des Maschinenbaus
orientiert ([Lückel 1992], [Honekamp et al. 1997], [DFG-Antrag zum SFB 614 2001]). Hierbei
findet eine Zuordnung von Bewegungsfunktionen des mechatronischen Systems zu Aktoren,
Sensoren, Tragstrukturen und Informationsverarbeitung statt. Die Grundidee für die Strukturie-
rung ist die Abbildung des Gesamtsystems im Rechner nach physikalischen Gesichtspunkten.
Die Motivation für diese Strukturierung ist die Vereinfachung des Austausches von MFMs gegen
andere mit gleicher oder ähnlicher Funktion, aber möglicherweise vollständig unterschiedlicher
technischer Ausprägung.

Zur Strukturierung mechatronischer Systeme wurden neben der untersten Strukturebene der
Mechatronischen Funktionsmodule (MFM) die drei höheren Ebenen Mechatronische Funktions-
gruppe (MFG), Autonome Mechatronische Systeme (AMS) und Vernetzte Mechatronische
Systeme (VMS) eingeführt. Ein Vorteil der Strukturierung in MFM, MFG, AMS und VMS liegt
in der klaren Abgrenzung der einzelnen Funktionsmodule gegeneinander und der daraus resultie-
renden Schnittstellendefinition. Die einzelnen Funktionen können weitgehend unabhängig von-
einander realisiert werden. Damit ist eine leichte Austauschbarkeit einzelner Bausteine möglich:

MFM : Ein mechatronisches Funktionsmodul ist eine lokale, austauschbare Kombination von
Aktorik, Sensorik und Tragstrukturen mit digitaler Informationsverarbeitung. Ein MFM
bekommt eine bestimmte Aufgabe innerhalb eines mechatronischen Gesamtsystems, insbeson-
dere die Herstellung einer Solldynamik. Ein MFM verfügt über physikalische und informations-
technische Schnittstellen. MFMs können hierarchisch zu übergeordneten MFMs kombiniert wer-
den.

 Strukturierung mechatronischer Systeme 13

MFG: Eine mechatronische Funktionsgruppe (MFG) ist einem oder mehreren MFMs oder
MFGs ausschließlich informationstechnisch übergeordnet. Das MFG besitzt selbst keine Trag-
struktur und keine Aktorik, dafür Informationsverarbeitung und ggf. Sensorik. Die Aufgabe eines
MFG ist die Strukturierung der Informationsverarbeitung in MFM, AMS oder VMS. Beispiele
sind aktive Fahrwerks-Systeme (z. B. Active Body Control), ESP-Systeme (Elektronisches Sta-
bilitäts-Programm) etc.

AMS: Ein oder mehrere MFGs und MFMs bilden ein Autonomes Mechatronisches System
(AMS). Dem AMS ist die zentrale mechanische Tragstruktur eines mechatronischen Systems
zugeordnet. Die Informationsverarbeitung des AMS ist in Form von MFGs organisiert. Ein wei-
teres wichtiges Merkmal eines AMS ist das Vorhandensein einer eigenen Energiequelle. Diese
stellt die Energie für die zugeordneten MFMs und damit für die Aktoren sowie die Sensoren zur
Verfügung.

VMS: Durch die Kombination mehrerer AMSs kann die höchste Abstraktionsstufe durch die Bil-
dung eines Vernetzten Mechatronischen Systems (VMS, engl. CMS: Cross-Linked Mechatronic
System) erreicht werden. Ein VMS bietet ausschließlich eine Schnittstelle zur informationstech-
nischen Kopplung von AMSs. Weiterhin hat die Informationsverarbeitung im VMS hauptsäch-
lich diskreten Charakter. VMS können in sich weiter hierarchisiert werden. Eine Fahrzeugko-
lonne wird z. B. als VMS0-Ebene bezeichnet, falls eine weitere übergeordnete Ebene, wie z. B.
ein Kreuzungsmanagement (VMS1), existiert.

Wesentliches Kriterium für die Zuordnung der Teilsysteme eines mechatronischen Systems zu
einer der vier Ebenen sind die in dem System enthaltenen Komponenten:

TABELLE 1. Zuordnung von Grundbausteinen zu Hierarchien mechatronischer Systeme

Am Beispiel des am MLaP entwickelten Fahrzeugmodells X-Mobile [Zanella et al. 2001] lässt
sich das Strukturierungskonzept sehr anschaulich nachvollziehen (vgl. Abbildung 3-1). Beim X-
Mobile handelt es sich um ein voll mechatronisches Fahrzeugmodell im Maßstab 1:8. Hier wur-
den Konzepte für ein aktives Fahrwerk, Einzelradantrieb und Einzelradlenkung umgesetzt. Jedes
der vier Radmodule des X-Mobile besteht aus drei MFMs mit je einem Elektromotor als Aktor:
Lenkung, Federung, Antrieb. Diese drei MFMs sind mechanisch gekoppelt und bilden das über-
geordnete MFM Radmodul. Die Führungsgrößen der MFMs auf der untersten Ebene werden
durch die Mechatronische Funktionsgruppe (MFG) auf der Basis der aktuellen Fahrsituation
ermittelt. Die MFG-Ebene implementiert damit eine rein informationstechnische Kopplung der
Lenkung, des Antriebs und des aktiven Fahrwerks. Die vier Radmodule werden durch den Fahr-
zeugaufbau auf der AMS-Ebene mechanisch gekoppelt. Hier findet sich auch die Informations-
verarbeitung, die entweder autonom oder ferngesteuert über Wunsch-Fahrtrichtung und -Fahrbe-
schleunigung entscheidet. Verknüpft man mehrere Fahrzeuge z. B. mit Hilfe einer

Hierarchie Tragstruktur Sensorik Aktorik Informations-
verarbeitung

VMS X X

AMS X X X

MFG X X

MFM X X X X

14 Strukturierung mechatronischer Systeme

Abstandssensorik zu einer Fahrzeugkolonne, so entsteht ein vernetztes mechatronisches System
(VMS):

Abbildung 3-1: Strukturierungsebenen am Beispiel des X-Mobile

3.2 Operator-Controller-Modul

Für den Entwurf von übergeordneten Kontroll- und Optimierungsfunktionen des dynamischen
Verhaltens mechatronischer Systeme wurde am MLaP das sogenannte Operator-Controller-
Modul (OCM) konzipiert und weiterentwickelt [DFG-Antrag zum SFB 614 2001]. Das OCM
lässt sich prinzipiell in zwei Bereiche einteilen: den ''Operator'' und den ''Controller''. Der Opera-
tor beinhaltet die diskreten Elemente der Informationsverarbeitung, wie Notfall-Routinen, Reg-
ler-Überwachung und die Optimierung. Der Controller umfasst die kontinuierlichen, regelnden
Teile der Informationsverarbeitung. Während der Controller im Wesentlichen auf der ''quasi-kon-
tinuierlichen'' digitalen Regelungstheorie basiert, fußt der Operator auf diskreter Logik. Imple-
mentierungstechniken umfassen z. B. Zustandsmaschinen und prozessbasierte Systeme wie z. B.
Work-Flow-Diagramme.

Die Funktionen ''Überwachung'' und ''Übertragung'' verbinden Operator und Controller und for-
men mittels spezieller Routinen kontinuierliche Signale in diskrete Signale um und umgekehrt.
Die Überwachung von Zustandsvariablen des zeitkontinuierlichen Reglers und der physikali-
schen Strecke ist eine weitere wichtige Aufgabe, welche die Stabilität des Gesamtsystems bei
Parameterwechseln in den Reglern oder beim Austausch ganzer Reglerstrukturen sichert.

 Strukturierung mechatronischer Systeme 15

3.3 Erweitertes Streckenmodell

Grundlage für die modellbasierte Optimierung im OCM ist das sogenannte erweiterte Strecken-
modell [Kasper 1985], das zusätzlich zum Modell der geregelten Strecke (Regelstrecke mit Con-
troller) auch Modelle zur Anregung und zur Bewertung enthält. Damit liefert das erweiterte
Streckenmodell Modelle der Realität für alle Elemente, die zur modellbasierten Optimierung her-
angezogen werden. Für jedes Element eines mechatronischen Systems (MFM, AMS, VMS) kann
ein eigenes erweitertes Streckenmodell verwendet werden. Die nachfolgende Abbildung zeigt
das zugehörige schematische Blockdiagramm für ein Element:

Abbildung 3-2: Erweitertes Streckenmodell mit Anregungs- und Bewertungsmodell

3.3.1 Anregungsmodell

Das Anregungsmodell dient als Bindeglied zwischen mathematisch formulierten Anregungs-
funktionen und den physikalischen Eingängen des Streckenmodells. Es modelliert alle äusseren
Eingänge in das System. Es wird zwischen Führungseingängen (Sollwertvorgaben) und Störein-
gängen (nicht beeinflussbaren Eingängen) unterschieden.

Nachfolgende Abbildung zeigt ein Beispiel für die mögliche Modellierung von Strassenprofil-
Unebenheiten zur Anregung von (Vertikaldynamik-)Streckenmodellen. Am Anregungs-Eingang
ue wird weisses Rauschen eingespeist und durch das Anregungsmodell "Tiefpassfilter" in band-
begrenztes Rauschen mit angepasster Amplitude überführt. Der Ausgang zs entspricht der model-
lierten vertikalen Strassenprofil-Auslenkung und wird als physikalisch interpretierbare Größe in

16 Strukturierung mechatronischer Systeme

das Streckenmodell eingespeist. Je nach Anwendungsfall werden auf den Anregungsmodell-Ein-
gang ue Testfunktionen (Impuls, Sprung, Rampe, Sinus etc.), Messdaten oder stochastische
Signale gegeben:

Abbildung 3-3: Beispiel für ein Anregungsmodell: Unebenheit eines Fahrbahnprofils

3.3.2 Bewertungsmodell

Die Aufgabe des Bewertungsmodells ist die Berechnung des Zielgrößenvektors z. Die einzelnen
Zielgrößen sollten Masszahlen zur Bewertung der folgenden wichtigen Eigenschaften mechatro-
nischer Systeme sein:

• Stabilität

• Einschwingverhalten (Zeitkonstanten, Dämpfungen, Eigenfrequenzen)

• Führungs- und Störverhalten

• Robustheit gegen Parameteränderungen

Berechnung von Zielgrößen durch Zielfunktionen

Jede Zielgröße wird durch eine zugehörige Zielfunktion zi berechnet. Für den hier betrachteten
Fall der Parameter-Optimierung/-Variation ist jede Zielfunktion abhängig vom Strecken- und
Controller-Parametervektor p:

(3.1)

Durch direkte Zielfunktionen werden Systemeigenschaften inhärent bewertet und durch verglei-
chende Zielfunktionen Aussagen anhand von modelliertem Wunschverhalten abgeleitet.

Die für die direkten Zielfunktionen verwendeten Analyseverfahren unterscheiden sich für lineare
und nichtlineare Systeme.

Vergleichende Zielfunktionen werden durch Integralfunktionen zur Berechnung von Fehlerflä-
chen formuliert. Dabei wird der Fehler zwischen Soll- und Istkurven im Zeit- oder im Frequenz-
bereich integriert und gewichtet (vgl. Anhang Kap. 9.3).

Nachfolgend eine Übersicht über die prinzipielle Bildung von Zielfunktionen:

z p() z1 p() … znz
p()

T
=

 Strukturierung mechatronischer Systeme 17

TABELLE 2. Möglichkeiten zur Bildung von Zielfunkti onen

3.4 Verallgemeinerte Kaskade

Für den Entwurf von hierarchischen Regelsystemen gemäß dem VMS-/AMS-/MFG-/MFM-
Strukturierungskonzept wird am MLaP das Prinzip der „verallgemeinerten Kaskade" ([Lückel et
al. 2001], [Lückel et al. 2002/1]) vorgeschlagen. Die „verallgemeinerte Kaskade" kombiniert
Elemente der dezentralen Regelung und der Kaskadenregelung.

Jedes mechatronische Element (MFM, MFG, AMS oderVMS) enthält eine separate Informati-
onsverarbeitung. Dabei kann eine höhere Ebene mehrere Teilregler ansteuern, aber nicht mehrere
höhere Ebenen dieselbe Subebene. Die Kommunikation zwischen den Ebenen erfolgt von oben
nach unten.

Wie bei einer klassischen Kaskade [Föllinger 1994] nehmen die Zeitkonstanten der Regelkreise
mit abnehmender Hierarchiestufe in der Struktur ab. Zudem verschiebt sich die Problematik in
der Reglerauslegung von der Mannigfaltigkeit der Regelgrößen und Zustände hin zu Nichtlinea-
ritäten im System. Entsprechend kommen auf hohen Ebenen Verfahren der Mehrgrößenregelung
im Zeitbereich zum Einsatz, während auf den unteren Ebenen Techniken des Frequenzbereichs
für Eingrößensysteme verwendet werden sollen. Da die so entstehende Struktur insbesondere
durch ihre Hierarchie gekennzeichnet wird, bezeichnet man sie als „verallgemeinerte Kaskade“.

Für lineare Systeme Für nichtlineare Systeme

Direkte
Zielfunktionen
ohne Vergleichs-
modelle

- Einhaltung von Begrenzungen
- Kovarianzanalyse zur Bestimmung
 von mittleren Leistungen
- Lage der Eigenwerte (Stabilität,
 Dämpfung, Eigenfrequenzen)

- Einhaltung von Begrenzungen
- Stochastische Berechnungen
 (Mittelwerte, Varianzen etc.)

Vergleichende
Zielfunktionen
mit modelliertem
Wunschverhalten

- Berechnung von zeitgewichteten Fehlerflächen oder Maximalabweichungen
 zwischen Ist- und Wunschverhalten auf der Basis von Zeitsignalen
- Berechnung von frequenzgewichteten Fehlerflächen zwischen
 Ist- und Wunschverhalten auf der Basis von Spektren oder Frequenzkennlinien

18 Strukturierung mechatronischer Systeme

 Grundlagen der Mehrziel-Parameter-Optimierung 19

4 Grundlagen der Mehrziel-Parameter-Optimierung

Viele reale Optimierungsaufgaben erfordern es, mehrere Zielgrößen gleichzeitig zu minimieren
bzw. zu maximieren. Dabei widerstreben üblicherweise die Zielgrößen einander, so dass niemals
alle Zielgrößen mit einem Parametervektor gleich gut verbessert werden können. Daher kann die
Lösung des Mehrziel-Optimierungsproblems nur ein möglichst guter Kompromiss sein. Die
Mehrziel-Optimierung hat ihre Wurzeln im späten 19. Jahrhundert im Bereich der Wirtschafts-
wissenschaften durch die Arbeiten von Edgeworth1 und Pareto2.

4.1 Problemdefinition

Im Folgenden wird davon ausgegangen, dass Zielgrößen stets minimiert werden, da sich eine
Maximierung durch Umkehrung des Vorzeichens als Minimierung beschreiben lässt. Sämtliche
Forderungen und Wünsche, die vom Anwender an das Verhalten des zu optimierenden Systems
zu richten sind, werden in dem nz-dimensionalen Vektor der Zielfunktionen z zusammengefasst.
Die zur Verfügung stehenden Entwurfsfreiheitsgrade legen den Raum der freien Parameter fest,
zusammengefasst im Parametervektor p mit der Dimension np:

(4.1)

Die Optimierungsaufgabe besteht nun darin, die Komponenten von p über den gesamten Verlauf
der Optimierung so anzupassen, dass jede einzelne Komponente des Zielvektors z(p) am Ende
der Optimierung möglichst minimale Werte mit einem Parametersatz p* erreicht:

(4.2)

Dabei sind für praktische Anwendungen Randbedingungen in Form von Ungleichungen und
expliziten Variablengrenzen für p einzuhalten:

(4.3)

(4.4)

Die skalare Definition von Optimalität greift bei Mehrziel-Problemen nicht mehr. Stattdessen
wird üblicherweise die sogenannte Pareto-Optimalität herangezogen.

1. Francis Edgeworth - Irischer Wirtschaftswissenschaftler 1845-1926

2. Vilfredo Pareto - Italienischer Wirtschaftswissenschaftler 1848-1923

p p1 p2 … pnp

T
=

min z p()()

z1 p
*()

z2 p
*()

…

znz
p

*()

=

p C∈

C p : h p() 0 ≤ a p b≤ ≤{ , }=

20 Grundlagen der Mehrziel-Parameter-Optimierung

4.2 Pareto-Optimalität

Ein Punkt wird Pareto-optimal [Pareto 1971] genannt, wenn es keinen anderen Punkt
 gibt, der die Bedingung für alle erfüllt. Pareto-optimale

Punkte werden auch als nicht-dominierte Punkte bezeichnet. Die zu einem Pareto-optimalen
Punkt im Parameterraum gehörenden Punkte des Zielgrößenraumes werden effiziente
Punkte genannt.

Das Abweichen von einem Pareto-optimalen bzw. effizienten Punkt hat also immer eine Ver-
schlechterung mindestens einer Zielgröße zur Folge. Da Punkte, die keine weitere Verbesserung
zulassen, immer Elemente der Pareto-Menge sind, ist es das Ziel einer Optimierung von mehre-
ren Zielgrößen, als Ergebnis stets einen Pareto-optimalen Punkt zu liefern. Typischerweise for-
men die Pareto-Punkte Linien bzw. Flächen im Parameter- bzw. Zielgrößenraum. Ganz allgemein
spricht man von einer Pareto-Menge oder einem Pareto-Set:

Abbildung 4-1: Höhenlinien zweier Zielgrößen im zweidimensionalen Parameterraum

Abbildung 4-1 zeigt den Verlauf der Höhenlinien zweier kontinuierlicher Zielfunktionen
z1(p1, p2) und z2(p1, p2) in einem zweidimensionalen Parameterraum. Die Gradienten der Ziel-
funktionen stehen senkrecht auf den Höhenlinien. Die gestrichelte Linie beschreibt nun all die
Punkte, bei denen die Gradienten der beiden Zielgrößen einen Winkel von 180° zueinander bil-
den. Diese entgegengesetzte Richtung der Gradienten hat zur Folge, dass man nicht beide Ziel-
größen gleichzeitig weiter minimieren kann.

4.3 Karush-Kuhn-Tucker-Bedingung

Die notwendige Bedingung für Pareto-Optimalität von Kuhn und Tucker [Kuhn, Tucker 1951]
bildet eine Verbindung zwischen skalarer und vektorieller Optimierung. Dazu wird zunächst die
skalare Funktion definiert:

(4.5)

(4.6)

p
*

C∈
p C∈ zi p() zi p

*()≤ i 1 2 … nz, ,{ , }∈

zi p
*()

gα

gα p() αi zi p()⋅
i 1=

nz∑=

αi
i 1=

nz∑ 1=

 Grundlagen der Mehrziel-Parameter-Optimierung 21

Die Karush-Kuhn-Tucker-Bedingung erster Ordnung eines unbeschränkten Optimierungspro-
blems (keine Randbedingungen) für die Pareto-Optimalität eines Punkts p* lautet:

(4.7)

In gewisser Weise basiert das Verfahren der gewichteten Summe (vgl. Kap. 4.6.1) auf diesen
Ergebnissen von Kuhn und Tucker. Der Gewichtungsvektor kann dabei geometrisch als Koor-
dinatensystem für die Suchrichtung interpretiert werden. Gleiche Werte für bei konstantem
Gewichtungsvektor liegen auf einer Geraden, die orthogonal zum Gewichtungsvektor verläuft
[Hillermeier 2001] (vgl. Abbildung 4-2).

Allerdings erhält man durch die Suche der Minima von nicht alle Pareto-Punkte des Mehr-
ziel-Optimierungsproblems. Neben den Minima von können auch dessen Sattelpunkte Par-
eto-optimale Punkte sein. Hierin liegt ein wesentlicher Unterschied zwischen der vektoriellen
und der skalaren Optimierung [Hillermeier 2001].

Abbildung 4-2: Geometrische Interpretation des Gewichtungsvektors

4.4 Klassifizierung von Optimierungsaufgaben

Sowohl Ein- als auch Mehrziel-Optimierungsverfahren lassen sich hinsichtlich Zielsetzung, Ziel-
funktionseigenschaften und Algorithmik klassifizieren. Je nachdem, ob alle oder einige Pareto-
optimale Punkte eines Problems ermittelt werden sollen, werden globale und lokale Verfahren
unterschieden. Im Bereich der Algorithmik unterscheidet man zwischen deterministischen und
heuristischen Verfahren. Die Einbeziehung von Nebenbedingungen in das Optimierungsproblem

∇gα p
*() αi ∇zi p

*()⋅
i 1=

nz∑ 0= =

α
gα

α

gα
gα

α

22 Grundlagen der Mehrziel-Parameter-Optimierung

kann implizit oder explizit erfolgen:

Abbildung 4-3: Verknüpfung verschiedener Eigenschaften von Optimierungsverfahren

4.5 Numerische Lösungsverfahren zur Minimierung von skalaren
Funktionalen

Numerische Verfahren zur Minimumsuche haben daher für praktische Anwendungen eine hohe
Relevanz. Die Minimierung von skalaren Funktionalen der Form z(p) bildet für die Mehrziel-
Optimierung eine wichtige Grundlage, da sie in Zwischenschritten auf die skalaren Elemente des
Zielgrößenvektors z(p) angewendet werden.

Sehr häufig verwendet werden die folgenden fünf Verfahren, die in der Literatur ausführlich
beschrieben sind [Entenmann 1976]:

1. Eindimensionale Minimumsuche für Funktionen z(p) mit einem skalaren Parameter:

Iteration von p so lange sich z(p) in jedem Schritt verkleinert; die Zielfunktion wird nicht dif-

ferenziert; Sonderfall des Koordinatensuchverfahrens.

2. Koordinatensuchverfahren:

Jede Komponente von p wird als Koordinate aufgefasst und einzeln ausgelenkt; die Zielfunk-

tion wird nicht differenziert. Die Konvergenz ist ungünstig und der Aufwand ist hoch, da in

der Nähe des Optimums viele Zielfunktionsauswertungen notwendig sind.

3. Gradientenverfahren:

Suche in Richtung des steilsten Abstiegs auf der Basis der ersten Ableitung der Zielfunktion.

Das Verfahren hat lineare Konvergenz und ähnlich hohen Aufwand in der Nähe des Optimums

wie das Koordinatensuchverfahren. Zusätzlicher Aufwand entsteht durch die Gradientenbe-

rechnung.

 Grundlagen der Mehrziel-Parameter-Optimierung 23

4. Gradientenverfahren mit konjugierten Richtungen:

Gradientenverfahren mit Abfolgen von Suchrichtungen, die jeweils konjugiert zueinander

sind (d. h. neue und alte Suchrichtung sind orthogonal bezüglich einer Matrix). Die Konver-

genz ist quadratisch in der Nähe der Lösung. Der Aufwand ist mittel, da die Hesse-Matrix

nicht bestimmt werden muß.

5. Newton-Verfahren:

Bei diesem Verfahren wird neben der ersten Ableitung auch die zweite Ableitung der Ziel-

funktion herangezogen. Die Konvergenz ist quadratisch in der Nähe der Lösung. Der Auf-

wand ist hoch da Gradienten und die Hesse-Matrix numerisch ermittelt werden müssen.

4.6 Lösungsverfahren für Mehrziel-Optimierung

Nachfolgend werden zunächst deterministische Verfahren zur Mehrziel-Optimierung beschrie-
ben (vgl. Abbildung 4-4):

4.6.1 Gewichtete Summe

Eine Standardtechnik zur Lösung von Mehrziel-Optimierungsproblemen ist die Reduktion auf
eine einzelne Zielgröße durch Bildung einer positiv gewichteten Summe aus allen Zielfunktionen
(vgl. Kap. 4.3). Neuere Verfahren verwenden dazu mehrere Sätze von Gewichtungsfaktoren
[Das, Dennis 1996/2]. Es ist zwar leicht nachweisbar, dass die Minimierung der gewichteten
Summe Pareto-optimale Punkte liefert, aber bei der Anwendung des Verfahrens gibt es große
Nachteile:

1. Die Minimierung der gewichteten Summe liefert eine Hyperebene, von der i. A. nur ein Punkt

zur Pareto-Menge gehört, den man aber zunächst nicht kennt. Erst durch die Verwendung

mehrerer Sätze von Gewichtungsfaktoren und Bildung der Einhüllenden erhält man die Par-

eto-Menge.

2. Die Gewichtungsfaktoren sind für Anwendungen der Mechatronik physikalisch nicht interpre-

tierbar und daher schwer beherrschbar.

3. Auch Sattelpunkte der gewichteten Summe können Pareto-optimale Punkte sein. Diese

Punkte werden vom Verfahren nicht berücksichtigt.

4.6.2 Gewichtungsverfahren mit Lp-Metrik

Eine Variante der Gewichtungsverfahren ist die Verwendung einer gewichteten Vektornorm. Bei
diesem Verfahren wird ein effizienter Punkt ausgewählt, an den man sich so gut wie mög-
lich annähern möchte. Den Abstand zu diesem Punkt gewichtet man mit einer Vektornorm. Man
erhält wiederum ein skalares Funktional mit Gewichtungsfaktoren. Der gewünschte effiziente
Punkt, der Gewichtungsvektor und die Ordnung der verwendeten Vektornorm bilden die Parame-
ter dieses Verfahrens. Leider kann keine universelle Aussage über die Bedingungen zur Variation
der Verfahrensparameter zur Erzeugung effizienter Lösungen getroffen werden [Göpfert, Nehse
1990].

zi p
*()

24 Grundlagen der Mehrziel-Parameter-Optimierung

4.6.3 ’Epsilon-constraint’-Methode

Diese Methode geht ursprünglich auf Marglin [Marglin 1967] und Haimes [Haimes 1973]
zurück. Die Grundidee besteht in der Auswahl der wichtigsten Zielgröße, die minimiert werden
soll. Für alle anderen Zielgrößen müssen nur obere Schranken als Vorgaben eingehalten werden.
Diese Methode ist daher nur sinnvoll, wenn beim Optimierungsproblem eine Zielgröße klar im
Vordergrund steht. Das Bestimmen von Schranken kann Schwierigkeiten bereiten. Bei mehr als
zwei Zielgrößen kann die Pareto-Menge nicht mehr effizient bestimmt werden.

4.6.4 Multilevel Programming

Beim Multilevel Programming wird nur ein Punkt der Pareto-Fläche gesucht. Grundidee ist die
Sortierung der Zielgrößen nach Prioritäten. Anschließend wird ein Satz von Parametervektoren
gesucht, der die erste Zielgröße minimiert. Aus diesem Satz werden die Parametervektoren aus-
gewählt, die auch die zweite Zielgröße minimieren. Dieses Schema wird rekursiv bis zur letzten
Zielgröße angewandt. Multilevel Programming ist nur dann sinnvoll anwendbar, wenn die Mini-
mierung der wichtigsten Zielfunktionen im Vordergrund steht und kein Kompromiss für alle
Zielfunktionen gefunden werden muss. Oft sind die Randbedingungen für die nachrangigen Ziele
so eingeschränkt, dass sie gar nicht berücksichtigt werden können.

4.6.5 Normal-Boundary Intersection

Normal-Boundary Intersection (NBI) ist ein weiterer Vertreter der deterministischen Verfahren.
NBI fasst die Zielfunktionen zu gewichteten Summen zusammen, deren Gewichtungen mit Hilfe
einer geometrisch motivierten Methode ausgewählt werden [Das, Dennis 1996/1]. Durch Lösen
dieser Gewichtungen mit Hilfe eines herkömmlichen Eingrößenverfahrens werden verschiedene
Punkte der Paretomenge berechnet. Dabei wird eine gleichmäßige Verteilung der Punkte auf der
Pareto-Fläche erreicht. NBI ist in der Lage, auch Probleme mit verrauschten oder diskontinuierli-
chen Pareto-Flächen zu lösen. Für mehr als zwei Zielfunktionen und nicht-konvexe Zielfunkti-

 Grundlagen der Mehrziel-Parameter-Optimierung 25

onsgebiete liefert das Verfahren jedoch nicht zwangsläufig Pareto-optimale Punkte als Ergebnis:

Abbildung 4-4: Geometrische Interpretation einiger Mehrziel-Optimierungsverfahren

4.6.6 Gütevektoroptimierung

Das Verfahren der Gütevektoroptimierung [Kreisselmeier, Steinhauser 1979] ist ein numerisches
Verfahren zur simultanen Verkleinerung mehrerer Gütemaße (Zielfunktionen). Die Bezeichnung
rührt daher, dass man mehrere skalare Gütemaße zu einem Vektor zusammenfassen kann, den
man dann komponentenweise verkleinert (siehe auch [Föllinger 1994]).

Ausgehend von einem beliebigen Parametervektor r0 als Startpunkt wählt man die Vorgabewerte
Ci

(0) mit Ci
(0) > zi(r0) (vgl. Abbildung 4-5). Durch Minimierung der nachfolgenden Maximum-

funktion können sämtliche Gütemaße in neue engere Schranken Ci
(1) eingeschlossen werden:

(4.8)

Durch Iteration dieses Vorgehens mit zi(r1) < Ci
(1) < Ci

(0) wird der Algorithmus weitergeführt,
bis die Zielfunktionen hinreichend klein sind oder eine Verringerung der Ci

(k) nicht mehr erreicht
werden kann.

Für die praktische Durchführbarkeit wird die nicht differenzierbare Maximumfunktion (Gl. 4.8)
durch eine analytische Funktion approximiert, so dass die Minimumsuche mit einem Gradienten-

α 0()
r() max

z1 r()

C1
0()

------------ …
znz

r()

Cnz

0()
-------------=

26 Grundlagen der Mehrziel-Parameter-Optimierung

verfahren ermöglicht wird:

(4.9)

Abbildung 4-5: Geometrische Deutung der Gütevektoroptimierung

4.6.7 Homotopie-Verfahren

Das ursprüngliche Verfahren wird von Rakowska [Rakowska et al. 1991] beschrieben. Das klas-
sische Homotopie-Verfahren ist eigentlich zur Lösung nichtlinearer Gleichungen gedacht [Allgo-
wer, Georg 1990]. Es basiert auf der Idee, eine Verbindung zwischen zwei Gleichungssystemen
zu finden. Die Lösung des Gleichungssystems H0(y) = 0 ist dabei bekannt, während die Lösung
von G(y) = 0 gesucht wird. Eine Verbindung zwischen beiden kann z. B. durch H(y,t) = 0
geschaffen werden (Homotopie-Parameter t):

(4.10)

Im Zusammenhang mit der Mehrziel-Optimierung wird dieses Verfahren zur Erzeugung von
Nachbarschaften, ausgehend von Kandidaten für Pareto-Punkte, verwendet. Das ursprüngliche
Verfahren ist auf zwei Zielfunktionen beschränkt und liefert nur diejenigen Pareto-optimalen
Punkte, die Minima der konvexen Kombination der Zielfunktionen sind. Eine Erweiterung des
Verfahrens [Hillermeier 2001] berücksichtigt eine beliebige Anzahl von Zielfunktionen. Es han-
delt sich um ein globales Verfahren, für das die Zielfunktionen zweimal stetig differenzierbar
sein müssen.

4.6.8 Stochastische Verfahren

Mit Hilfe stochastischer Verfahren wird nach den globalen effizienten Lösungen eines Mehrziel-
Optimierungsproblems gesucht. Die Anwendung dieser Verfahren ist nur dann sinnvoll, wenn die
Dauer der Berechnungen nicht kritisch ist, da im Allgemeinen die Anzahl der Zielfunktionsaus-
wertungen sehr hoch ist. Die Verfahren arbeiten mit iterativ veränderten Suchbereichen, in denen

α̂ r() 1
ρ
--- e

ρ
zi r()
Ci

-----------⋅

i 1=

nz∑ln⋅=

H y t,() t G y() 1 t–() H0 y()⋅+⋅=

 Grundlagen der Mehrziel-Parameter-Optimierung 27

die Zielfunktionen für stochastisch erzeugte Parametervektoren ausgewertet werden. Stochasti-
sche Verfahren sind für nicht differenzierbare Zielfunktionen geeignet; es gibt aber auch Varian-
ten, die Gradienteninformationen einbeziehen [Timmel 1980].

4.6.9 Heuristische Verfahren

Heuristische Verfahren basieren oft auf Strategien, die in der Natur beobachtet werden. Hierbei
sind insbesondere die auf genetischen Algorithmen basierenden Verfahren zu nennen. Auf eine
"Population" werden genetische Operationen, etwa Rekombination, Mutation oder Selektion,
angewendet. Es existieren eine Vielzahl von Verfahren, die nach diesem Prinzip aufgebaut sind
[Fonseca, Fleming 1995].

Die beiden Verfahren Ant Colony Optimization (ACO) für diskrete Probleme [Dorigo, Gambar-
della 1997] und Particle Swarm Optimization (PSO) für kontinuierliche bzw. gemischt diskret-
kontinuierliche Probleme [Coello, Lechunga 2002] gehören zu einer neuen Klasse von heuristi-
schen Optimierungsverfahren, die auf dem kollektiven Verhalten von Schwärmen beruhen.

4.7 MLaP-Optimierungsverfahren MOPO

Am MLaP wird seit vielen Jahren an der Optimierungssoftware MOPO (Multi-Objective Para-
meter Optimization) gearbeitet ([Kasper 1985], [Lückel et al. 1985], [Kasper et al. 1990], [Jäker
1991]). Das Besondere an MOPO ist die konsequente Erhaltung der physikalisch interpretierba-
ren Einzelkriterien. Dieses Vorgehen wird z. B. auch im Verfahren der Gütevektoroptimierung
([Föllinger 1994], [Kreisselmeier, Steinhauser 1979]) angewandt. Zwischen MOPO und diesem
Verfahren bestehen einige Ähnlichkeiten, jedoch ist MOPO für die praktische Anwendbarkeit
besser geeignet (Verfahrenssteuerung/Konfiguration).

MOPO wird als instrumentelles Verfahren bezeichnet, bestehend aus kombinierten Optimie-
rungsalgorithmen (Gradientenverfahren, eindimensionale Minimumsuche etc.), und wurde bis-
lang für eine Vielzahl von Anwendungen im mechatronischen Umfeld erfolgreich eingesetzt. Bei
MOPO handelt es sich um ein lokales, deterministisches Verfahren, das prinzipiell für eine
Online-Verarbeitung geeignet ist.

Das MOPO-Verfahren wurde am MLaP im Rahmen des DFG-Sonderforschungsbereich 376
"Massive Parallelität - Algorithmen, Methoden, Anwendungen" im Team des Teilprojekts C1
beständig weiterentwickelt. Wichtiger Meilenstein ist hier die Überarbeitung des Gradientenver-
fahrens (Formulierung des lokalen Problems als quadratisches Optimierungsproblem) und die
gleichzeitige Umsetzung des MOPO-Quelltextes von ADA nach ANSI-C ([Münch 2001],
[Rasche 2004]). Weitere bedeutende Verbesserungen waren die Implementierung eines Quasi-
Newton Verfahrens, die Eliminierung von Startwertabhängigkeiten und die Definition von sog.
Erfüllungsgraden [Münch 2003].

Gleichzeitig wurde an der Untersuchung des MOPO-Laufzeitverhaltens im Hinblick auf Echt-
zeitverarbeitung [Deppe et al. 2001/2] und an der Unterstützung der parallelen Systembewertung
durch MOPO gearbeitet [Deppe et al. 2003/1].

In den folgenden Kapiteln wird zunächst die bestehende MOPO-Implementierung nach [Münch

28 Grundlagen der Mehrziel-Parameter-Optimierung

2003] im Hinblick auf die Eigenschaften von Zielfunktionen (Zielgrößen, Erfüllungsgrade), die
Anwendung von Parameterschranken und die mathematischen Grundlagen von Gradienten- und
Quasi-Newton-Verfahren dargelegt. Verknüpft mit diesen Grundlagen können dann darauf auf-
bauend die im Rahmen dieser Arbeit sehr wichtigen Aspekte des MOPO-Laufzeitverhaltens und
der MOPO-Parallelisierung erklärt werden.

4.7.1 Eigenschaften von Zielfunktionen

Die Zielfunktionen sollten für lokale Optimierungsverfahren günstigerweise als glatte und kon-
vexe Funktionen formuliert werden, da prinzipbedingt nicht zwischen lokalen und globalen
Minima unterschieden werden kann. Bei nicht konvexen Optimierungs-Problemen kann MOPO
in einem lokalen Minimum oder am Parameterrand hängen bleiben. D.h. je nach Wahl des Opti-
mierungs-Startpunktes werden verschiedene lokale oder globale Minima als Lösung gefunden,
da das Verfahren im ersten gefundenen Optimum endet.

Grundsätzlich wird davon ausgegangen, dass eine Verkleinerung einer Zielfunktion einer Verbes-
serung entspricht. Dabei kann bei der Formulierung einer Zielfunktion ein Maximierungspro-
blem durch Vorzeichenumkehr in ein Minimierungsproblem umgewandelt werden. Damit eine
Zielfunktion nur ein Minimum besitzt, muss sie konvex sein:

Eine in (a,b) differenzierbare Funktion f heißt in (a,b) konvex von unten, wenn für alle x1, x2

aus (a,b) mit x1 ungleich x2 gilt [Bronstein, Semendjajew 1989]:

(4.11)

4.7.2 Skalierung

Für Zielgrößen und Parameter werden vom Anwender obere und untere Schranken für deren
Wertebereich vorgegeben. Diese Schranken (Limits) müssen für Parameter strikt eingehalten
werden. Diese Forderung geht als Nebenbedingung in das Optimierungsverfahren mit ein. Für
Zielgrößen sind das untere Limit als die bestmögliche und das obere Limit als mindeste Erfüllung
des Optimierungsziels anzusehen.

Intern werden sämtliche Berechnungen auf der Basis von skalierten Größen durchgeführt. Diese
Skalierung hat einen erheblichen Einfluss auf die Genauigkeit der numerischen Berechnungen
und somit auf das Konvergenzverhalten bzw. das Ergebnis der Optimierung [Münch 2003]:

• Parameter werden intern linear auf das Intervall [-1...+1] skaliert, wobei -1 der unteren Para-

meterschranke und +1 der oberen Parameterschranke entsprechen.

• Für Zielgrößen hat es sich als sinnvoll herausgestellt, das Intervall [0...+1] zur skalierten

Abbildung der unteren und der oberen Zielgrößenschranken (Limits) zu verwenden. Für Ziel-

größenwerte oberhalb des oberen Limits treten hier Werte größer als +1 auf. Unterhalb des

unteren Limits sind die Werte negativ.

f x2() f x1() f x1()' x2 x1–()⋅+≥

 Grundlagen der Mehrziel-Parameter-Optimierung 29

4.7.3 Erfüllungsgrad von Zielgrößen

Für jede Zielgröße lässt sich bei bekannten oberen und unteren Limits der Erfüllungsgrad der
Zielgröße definieren; er entspricht dem intern verwendeten skalierten Wert einer Zielgröße
[Münch 2003]:

(4.12)

Durch die Skalierung werden die Zielgrößen in ihrem Erfüllungsgrad direkt untereinander ver-
gleichbar, so dass eine gemeinsame Darstellung, z. B. in Form eines Kreisdiagramms ("Radar-
Plot"), eine Übersicht über den Erfüllungsgrad aller Zielgrößen erlaubt:

Abbildung 4-6: Kreisdiagramm zur Darstellung der Erfüllungsgrade

4.7.4 Begrenzung von Parametern

Die vorgegebenen Parametergrenzen sind im Zuge der Optimierung unbedingt einzuhalten, da in
ihnen Wissen über physikalisch unrealistische Werte oder über instabile Systemzustände etc. ent-
halten ist. Die Parametergrenzen können prinzipiell explizit im Optimierungsalgorithmus oder
implizit in Form von zusätzlichen Zielfunktionen sichergestellt werden.

Für das Gradientenverfahren werden die Parametergrenzen implizit berücksichtigt. Sobald ein
Parameter seinen Wertebereich verlassen hat, wird eine zusätzliche Zielfunktion hinzugefügt.
Deren Gradient wird so konstruiert, dass die gewünschte Verkleinerung/Vergrößerung des Para-
meters durch die Minimierung der Parameter-Zielfunktion im Laufe der nächsten Optimierungs-
schritte erfolgt.

Auch für das Quasi-Newton-Verfahren werden die Parametergrenzen implizit berücksichtigt. Für
jeden Parameter existiert eine skalare quadratische Zielfunktion qp,i [Münch 2003]:

(4.13)

ηi

zi p
k

() Li Lower,–

Li Upper, Li Lower,–
---=

qp i, si() gp i, si
1
2
--- hp i, si

2⋅ ⋅+⋅=

30 Grundlagen der Mehrziel-Parameter-Optimierung

Für diese Zielfunktion werden als obere und untere Zielgrößen-Limits (Li,Lower , Li,Upper) die
Parametergrenzen gewählt. Die Parameter gp,i und hp,i werden so bestimmt, dass beim Einsetzen
der Parametergrenzen für si genau diese Schranken erreicht werden. Solange sich die Zielfunkti-
onswerte innerhalb der Schranken befinden, wird die zugehörige Zielfunktion in der Optimie-
rung nicht berücksichtigt, sie ist passiv. Sobald die Parametergrenzen über- oder unterschritten
werden, wird die Zielfunktion aktiv einbezogen. Das Optimierungsverfahren wird dann versu-
chen, diese Zielfunktion zu minimieren, so dass der zugehörige Parameter wieder in seine vorge-
gebenen Grenzen verschoben wird.

4.8 MOPO-Gradientenverfahren

In Anlehnung an bewährte skalare Optimierungsmethoden arbeitet auch das MOPO-Gradienten-
verfahren in zwei Schritten [Münch 2003]:

1. Lösen eines lokalen Problems durch Berechnung einer Suchrichtung dk, ausgehend von einem

Startparametervektor p0 oder dem letzten Optimierungsschritt pk

2. Lösen eines globalen Problems durch Berechnung eines neuen Parametervektors:

Dies kann man sich anhand der bereits bekannten Skizzen von zwei Zielgrößen im zweidimen-
sionalen Parameterraum folgendermaßen vorstellen:

Abbildung 4-7: Lokales und globales Teilproblem beim Gradientenverfahren

Ausgehend vom Startparametervektor p01, wird zunächst die Suchrichtung dk bestimmt, die eine
größtmögliche Verbesserung beider Zielgrößen verspricht (lokales Problem). In dieser Suchrich-
tung dk wird nun das gesucht, das die maximale Verbesserung beider Zielgrößen bewirkt.

Man stelle sich vor, dass ausgehend von p01 in Richtung dk, der Weg für z1 und z2 zunächst ins
Tal führt. Es gibt jedoch einen Punkt, an dem der Weg (immer in Richtung dk) zumindest für eine
Zielgröße wieder ansteigt, wenn unterstellt wird, dass die Minima der Zielfunktionen nicht im
Unendlichen liegen. Dieser Punkt wird genau durch das Ende des Differenzvektors ∆pk gekenn-
zeichnet. An dieser Stelle ist der k-te Optimierungsschritt beendet. Es ist nun ein neues lokales
Teilproblem zu lösen, d. h. eine Bestimmung einer neuen Suchrichtung dk+1, woran sich wieder
das globale Teilproblem zur Bestimmung von anschließt etc., bis ein Pareto-optimaler

p
k 1+

p
k

λk dk⋅+=

λk

λk 1+

 Grundlagen der Mehrziel-Parameter-Optimierung 31

Punkt erreicht ist.

4.8.1 Numerische Gradientenberechnung

Da die Zielfunktionen im Allgemeinen nicht analytisch vorliegen, werden die benötigten partiel-
len Ableitungen numerisch berechnet. Dazu müssen die Zielfunktionen glatt, d. h. einmal stetig
differenzierbar sein. Für die Berechnung der partiellen Ableitung wird der rechtsseitige (Vor-
wärts-) Differenzenquotient jeder Zielgröße für jeden Parameter gebildet:

(4.14)

Diese Berechnung wird für alle Zielgrößen und Parameter durchgeführt. Da die Parameter ska-

liert sind und somit den gleichen Wertebereich haben, können alle Parameter mit demselben ∆p

ausgelenkt werden.

Um die Genauigkeit zu steigern, kann auch eine Differentiation 2. Ordnung verwendet werden.

Allerdings ist hierfür die doppelte Anzahl an Zielfunktionsauswertungen notwendig. Für die

Berechnung der partiellen Ableitung wird vom Parameterwert pk nach rechts und links um ∆p

ausgelenkt. Es ergibt sich der sogenannte zentrale Differenzenquotient:

(4.15)

Mittels dieser Ableitungen kann für jede Zielgröße zi der Gradientenvektor gi(p) gebildet werden:

(4.16)

Die Gradientenvektoren aller Zielfunktionen werden in der sogenannten Empfindlichkeitsmatrix

S spaltenweise angeordnet:

(4.17)

4.8.2 Lokales Problem

Das sogenannte lokale Problem besteht aus der Bestimmung einer Suchrichtung dk, die es erlaubt
eine möglichste steile Abstiegsrichtung für jede einzelne aktive Zielgröße (vgl. Kap. 4.8.4) zu
gewährleisten (zum Vergleich: Für skalare Optimierungsprobleme wählt man im Gradientenver-

zi∂
pk∂

zi pk p∆+() zi pk()–

p∆
---≈

zi∂
pk∂

zi pk p∆+() zi– pk p∆–()

2 p∆⋅
---≈

g
i

p() zi p()∇
zi∂
p1∂

zi∂
p2∂

-------- …
zi∂

pnp
∂

T

= =

S g
1

g
2

… g
nz

, , ,[]

z1∂
p1∂

z2∂
p1∂

-------- …
znz

∂
p1∂

… … … …
z1∂
pnp

∂

z2∂
pnp

∂
---------- …

znz
∂
pnp

∂

= =

32 Grundlagen der Mehrziel-Parameter-Optimierung

fahren dk = -g(p)). Die Bestimmung einer Suchrichtung dk für die Mehrziel-Optimierung soll im
folgenden als ein skalares quadratisches Minimierungsproblem formuliert werden. Dazu betrach-
tet man zunächst die Winkel zwischen der Suchrichtung dk und den einzelnen (aktiven) Gradi-
enten gi(p) über ihr Skalarprodukt:

(4.18)

Wenn es gelingt den maximalen Winkel möglichst klein zu halten, so hat man eine gut
balancierte Suchrichtung dk gefunden. Als Rand- und Abbruchbedingung gilt, dass die im
Intervall [0° ... 90°[liegen müssen. Die Suche nach einem möglichst kleinen maximalen Winkel
lässt sich dann als skalares quadratisches Minimierungsproblem formulieren:

(4.19)

Der Ansatz zur Bestimmung der Suchrichtung dk ist im dreidimensionalen Parameterraum sehr
anschaulich zu beschreiben [Münch 2001]: Gesucht ist der Kegel, der den kleinsten Winkel

 zwischen der Mantelfläche und -dk aufweist, wobei alle Gradienten im Inneren des Kegels
oder auf seiner Oberfläche liegen sollten. Ist ein solcher Kegel gefunden, gewährleistet dies, dass
alle Gradienten maximal im Winkel zu -dk liegen. Der Gradient g4 sei für das Beispiel
passiv und muß nicht einbezogen werden:

Abbildung 4-8: Gradienten im 3D-Parameterraum und Suchrichtung dk

Da lediglich die Richtung von dk gesucht ist, wird der Betrag von dk festgelegt zu:

(4.20)

Dann gilt auch:

γi

γicos
d–

k
g

i
p()⋅

dk g
i

p()⋅
----------------------------=

γi max,
γi

Min
1

γi max,cos()2
------------------------------   

γi max,

γi max,

dk
1
γi max,cos

-----------------------=

 Grundlagen der Mehrziel-Parameter-Optimierung 33

(4.21)

Jetzt kann das Minimierungsproblem aus Gl. 4.19 auch folgendermaßen notiert werden:

(4.22)

Dabei muss die Nebenbedingung gelten, dass alle Winkel kleiner oder gleich sind.

Quadratische Probleme mit Nebenbedingungen in dieser Form lassen sich durch das Standard-
verfahren Active-Set-Methode [Gill, Murray 1978] lösen. In diesem Verfahren wird die Lösung
des Optimierungsproblems auf das iterative Lösen von Gleichungssystemen variabler Ordnung
zurückgeführt. Dieses Verfahren eignet sich für eine echtzeitfähige Implementierung.

4.8.3 Globales Problem

Bei bekannter Suchrichtung muss das sog. globale, nichtlineare Problem gelöst werden. Hier soll
die optimale Schrittweite für das Fortschreiten in die Richtung dk ermittelt werden, so dass sich
eine möglichst große Verbesserung aller Zielgrößen ergibt:

(4.23)

Dazu wird eine iterative eindimensionale Minimumsuche (Liniensuche) verwendet [Münch
2003]. Es wird solange iteriert, bis sich eine Zielgröße verschlechtert. Tritt bereits beim ersten
Schritt der Minimumsuche eine Verschlechterung einer Zielgröße auf, so wird die Iteration von
dort aus rückwärts weitergeführt. Beim Vorwärtsschreiten wird die Schrittweite in jedem Schritt
verdoppelt, beim Rückwärtsschreiten in jedem Schritt halbiert. Mit Hilfe der letzten zulässigen
Zielfunktionswerte wird abschließend für jede Zielgröße eine quadratische Interpolation (vgl.
Abbildung 4-9) durchgeführt. Als Ergebnis erhält man eine Schrittweite für jede einzelne
Zielgröße, die anhand der Lage des Minimums der interpolierten Zielfunktion ausgewählt wird.
Als globale Schrittweite wird der kleinste -Wert ausgewählt:

(4.24)

1

γi max,cos()2
------------------------------ dk

2
=

Min dk
2{ }

γi γi max,

p
k 1+

p
k

λk dk⋅+=

λ i

λi

λk min λi()=

34 Grundlagen der Mehrziel-Parameter-Optimierung

Abbildung 4-9: Minimumsuche und quadratische Interpolation für eine Zielfunktion

4.8.4 Aktive und passive Zielgrößen

Im MOPO-Gradientenverfahren wird zwischen aktiven und passiven Zielgrößen unterschieden.
Durch diese Einteilung wird das Verfahren derart gesteuert, dass Zielgrößen unterhalb ihres unte-
ren Limits (passive Zielgrößen) sich verschlechtern dürfen. Dagegen müssen sich die Zielgrößen
oberhalb ihres unteren Limits (aktive Zielgrößen) in jedem Optimierungsschritt verbessern. Die
Einteilung in aktiv und passiv erfolgt nach jedem Optimierungsschritt neu. Die Einteilung der
Zielgrößen hat für den Optimierungsalgorithmus folgende Auswirkungen:

• Nur aktive Zielgrößen werden im lokalen Problem zur Suchrichtungsbestimmung verwendet.

• Aktive Zielgrößen dürfen sich im globalen Problem nicht verschlechtern.

• Passive Zielgrößen dürfen im globalen Problem ihr unteres Limit nicht überschreiten.

4.9 MOPO Quasi-Newton-Verfahren

Zur Verbesserung des bisher verwendeten Gradientenverfahrens wird ein Quasi-Newton-Verfah-
ren [Broyden 1967] herangezogen. Die Vorteile des Verfahrens liegen in der geringeren Anzahl
von Zielfunktionsauswertungen, da durch die quadratische Approximation große Schrittweiten
zur Minimumsuche entstehen. Das macht das Verfahren auch robuster gegen numerische Unge-
nauigkeiten oder verrauschte Zielgrößen. Ein Nachteil ist im erhöhten Rechenaufwand pro Opti-
mierungsschritt zu sehen. Üblicherweise ist jedoch der Rechenaufwand des Verfahrens im Ver-
gleich zu dem der Zielfunktions-Auswertung vernachlässigbar.

Beim Quasi-Newton-Verfahren wird jede einzelne Zielfunktion zi an den Stellen pk durch eine
eigene quadratische Ersatzzielfunktion approximiert, indem neben dem Gradientenvektor
auch die geschätzte Hesse-Matrix genutzt wird:

(4.25)

q̃i k,

q̃i k, sk() zi p
k

() g
i

p
k

()T
sk

1
2
--- sk

T
Hi p

k
() sk⋅ ⋅ ⋅+⋅+=

 Grundlagen der Mehrziel-Parameter-Optimierung 35

Dabei ist allerdings die Bestimmung der Hesse-Matrix Hi(pk) mit größerem Aufwand verbunden
als nur die beschriebene numerische Bestimmung des Gradientenvektors gi(pk). Daher wird die
Hesse-Matrix mit Hilfe eines Schätzverfahrens durch die Matrix angenähert [Münch 2003].
Dazu wird ein iteratives Aufdatierungsverfahren nach Broyden-Fletcher-Goldfarb-Shannon
([Fletcher 1980], [Bronstein, Semendjajew 1989]) verwendet:

(4.26)

(4.27)

(4.28)

Als Bedingung muss positiv definit sein, so dass nur konvexe und glatte Zielfunktionen auf-
treten. Gestartet werden kann mit einer beliebigen positiv definiten Matrix, z. B. der Einheitsma-
trix. Damit positiv definit bleibt, muss erfüllt sein:

(4.29)

Falls diese Bedingung nicht zutrifft, wird der zugehörige Aufdatierungsschritt übersprungen.

4.9.1 Quadratisches Ersatzproblem

Mit der Kenntnis des Gradienten und der Näherung der Hesse-Matrix lässt sich ein quadratisches
Ersatzproblem formulieren [Münch 2003]:

(4.30)

(4.31)

Dieses Ersatzproblem hat die Eigenschaft, dass die realen Zielfunktionen in der Umgebung von
pk quadratisch approximiert werden. Durch Lösen dieses Ersatzproblems erhält man eine
Abschätzung für die Lage des Optimums des realen Optimierungsproblems.

Als Lösungsverfahren für das Ersatzproblem kann das oben beschriebene Gradientenverfahren
genutzt werden, das nun die Ersatzzielfunktionen verwendet, um über den lokalen und den globa-
len Schritt den nächsten Parametervektor (s. Gl. 4.23) zu bestimmen. Günstiger ist aber ein Ver-
fahren, das die Vorteile der symbolisch beschriebenen Ersatzzielfunktionen ausnutzen kann.

Unter der Annahme, dass die Nebenbedingungen erfüllt sind, kann ein Pareto-optimaler Punkt
sk* des Ersatzproblems durch das skalare Funktional folgendermaßen beschrieben wer-
den:

H̃i k,

H̃i k 1+, H̃i k,
H̃i k, p∆

k
H̃i k, p∆

k
⋅()

T
⋅ ⋅

p∆ T
k H̃i k, p∆

k
⋅ ⋅

---–
g∆

i k, g∆ T
i k,⋅

g∆ T
i k, p∆

k
⋅

--------------------------------+=

p∆
k

p
k 1+

p
k

–=

g∆
i k, g

i
p

k 1+
() g

i
p

k
()–=

H̃i k,

H̃i k 1+,

g∆ T
i k, p∆

k
0>⋅

qi k, sk() zi p
k

() g
i

p
k

()T
sk

1
2
--- sk

T
H̃i p

k
() sk⋅ ⋅ ⋅+⋅+=

Min q
k

sk(){ }

gα sk()

36 Grundlagen der Mehrziel-Parameter-Optimierung

(4.32)

(4.33)

sk* ist dann ein sog. Karush-Kuhn-Tucker (KKT-) Punkt des skalaren Funktionals . Die
KKT-Bedingung 1. Ordnung (ohne Nebenbedingungen) als Notwendigkeit für einen Pareto-opti-
malen Punkt des quadratischen Optimierungs-Ersatzproblems lautet:

(4.34)

Die Variablen geben hier an, welcher Punkt der Paretomenge berechnet wird. Sie spannen
auf der Paretomenge ein Koordinatensystem auf (vgl. Kap. 4.3). Gl. 4.34 soll nun nach sk aufge-
löst werden. Zunächst wird daher Gl. 4.32 nach sk differenziert:

(4.35)

Mit Gl. 4.34 ergibt sich daraus als Notwendigkeit für einen Pareto-optimalen Punkt:

(4.36)

Diese Gleichung wird nach sk* aufgelöst:

(4.37)

(4.38)

Diese Ausdrücke beschreiben die Lage eines Paretopunktes sk* in Abhängigkeit der Faktoren
 für das quadratische Ersatzproblem in der Umgebung des Parametervektors pk. Bei Gl. 4.37

zusammen mit Gl. 4.38 handelt es sich um ein lineares Gleichungssystem, das mit Standardver-
fahren gelöst werden kann.

Zur Invertierung von wird in MOPO die Cholesky-Zerlegung angewandt, die nur für
symmetrische, positiv definite Matrizen durchführbar ist. Die Matrix ist dann positiv
definit, wenn alle positiv definit sind und alle größer oder gleich Null sind. Die
Bedingung, dass positiv definit ist, wird bereits für das BFGS-Verfahren vorausgesetzt
(vgl. Kap. 4.9, Gl. 4.29) und wird dadurch erzwungen, dass notfalls der BFGS Aufdatierungs-
schritt übersprungen wird.

gα sk() αi k, qi k, sk()⋅
i 1=

nz∑=

αi k,
i 1=

nz∑ 1=

gα sk()

∇gα sk
*() αi k, ∇qi k, sk

*()⋅
i 1=

nz∑ 0= =

αi k,

∇sk
gα sk()() αi k, g

i
p

k
()T

H̃i p
k

() sk⋅+()⋅
i 1=

nz∑=

αi k, g
i

p
k

()T αi k, H̃i p
k

() sk
*⋅ ⋅

i 1=

nz∑+⋅
i 1=

nz∑ 0=

sk α()*
mk α() 1– αi k, g

i
p

k
()T⋅

i 1=

nz∑⋅–=

mk α() αi k, H̃i p
k

()⋅
i 1=

nz∑  =

αi k,

mk α()
mk α()

H̃i p
k

() αi k,
H̃i p

k
()

 Grundlagen der Mehrziel-Parameter-Optimierung 37

4.9.2 Definition des Optimierungsziels

Zur Ermittlung eines geeigneten Optimums werden zwei Forderungen gestellt [Münch 2003]:

1. Das Optimierungsergebnis soll ein Pareto-Optimum sein.

2. Die Erfüllungsgrade aller Zielgrößen sollen den selben Wert anstreben.

Insbesondere die zweite Forderung hat einen sehr großen Einfluss auf die resultierenden Opti-
mierungsergebnisse und die implementierte Algorithmik des Verfahrens. Insgesamt ergibt sich
eine Balancierung der Zielgrößen, die sich in der Praxis bewährt hat:

Abbildung 4-10: Verwendung der Zielgrößenlimits zur Ermittlung von Durchstoßpunkten

Beide Forderungen lassen sich graphisch sehr gut veranschaulichen (vgl. Abbildung 4-10).
Durch die Konstruktion einer Geraden durch die Schnittpunkte der Begrenzungsgeraden der obe-
ren und der unteren Limits wird ein effizienter Punkt im Zielgrößenraum (Durchstoßpunkt) aus-
gewählt.

Falls ein solcher Durchstoßpunkt nicht existiert (vgl. Abbildung 4-10 rechter Teil), wird die im
gesamten Bereich schlechtere Zielgröße (hier Zielgröße z1) allein berücksichtigt und die bessere
Zielgröße (hier Zielgröße z2) als passiv gesetzt.

Die praktische Umsetzung zur Balancierung der Zielgrößen im allgemeinen Mehrgrößenfall
erfolgt durch die Unterscheidung von sogenannten aktiven und passiven Zielgrößen.

4.9.3 Aktive und passive Zielgrößen für das Quasi-Newton-Verfahren

Eine Pareto-Optimalität wird durch Gl. 4.37 sichergestellt. Die Forderung nach gleich guter
Erfüllung aller Zielgrößen bedingt eine Unterscheidung zwischen aktiven und passiven Zielgrö-
ßen. Die Definition für aktive und passive Zielgrößen entspricht nicht der Definition, wie sie für
das Gradientenverfahren verwendet wird.

Damit eine Zielgröße passiv ist, müssen zwei Bedingungen erfüllt sein: Der zugehörige Faktor
 muss gleich 0 und der zugehörige Erfüllungsgrad besser als der Durchschnitt sein. Damit

ergibt sich die Menge der aktiven Zielgrößen zu:

(4.39)

αi k,

ℑ i αi k, 0>〈 | 〉 i ηi α
k

() η α
k

()>〈 | 〉∪=

38 Grundlagen der Mehrziel-Parameter-Optimierung

Der durchschnittliche Erfüllungsgrad aller Zielgrößen lautet:

(4.40)

Aufgrund der gegenseitigen Abhängigkeit beider Gleichungen wird ein Iterationsverfahren zur
Lösung verwendet [Münch 2003]. Nach der Lösung beider Gleichungen stehen die aktiven und
die passiven Zielgrößen fest, und es lässt sich für jede Zielgröße mit Hilfe von Gl. 4.12 und Gl.
4.40 ein aktuelles Optimierungsziel abschätzen:

(4.41)

4.9.4 Lösen des quadratischen Ersatzproblems

Um die optimalen Faktoren zu finden, wird die folgende skalare quadratische Funktion mit
Hilfe eines konjugierten Gradientenverfahrens (Eingrößenfall) minimiert:

(4.42)

Für das konjugierte Gradientenverfahren wird die partielle Ableitung von rk nach benötigt.
Diese kann vorab symbolisch bestimmt werden und lässt sich in zwei Teilableitungen aufteilen:

(4.43)

Durch Ableiten von Gl. 4.42 nach sk ergibt sich:

(4.44)

Die partielle Ableitung der Zielfunktion qi,k nach sk ergibt sich durch Differentation von Gl. 4.30:

(4.45)

Die partielle Ableitung des Optimierungsziels nach sk ergibt sich durch Differenzieren und
Einsetzen aus Gl. 4.12, Gl. 4.40 und Gl. 4.41:

(4.46)

Die fehlende partielle Ableitung von sk nach zur Vervollständigung von Gl. 4.43 ist recht auf-
wendig herzuleiten. Eine Beschreibung findet sich in [Münch 2003]. Hier sei nur das Ergebnis
dargestellt:

η α
k

() 1
ℑ
------- ηi α

k
()

i ℑ∈
∑⋅=

qi k, α
k

() η α
k

() Li Upper, Li Lower,–() Li Lower,+⋅=

αi k,

rk α
k

() qi k, α
k

() qi k, α
k

()–()2

i ℑ∈
∑=

α
k

rk∂
α

k
∂

rk∂
sk∂

sk∂
α

k
∂
--------⋅=

rk∂
sk∂

------- 2 qi k, qi k,–()
qi k,∂
sk∂

qi k,∂
sk∂

-----------–  ⋅ ⋅
i ℑ∈

∑=

qi k,∂
sk∂

----------- g
i

p
k

()T
H̃i p

k
() sk⋅+=

qi k,

qi k,∂
sk∂

Li Upper, Li Lower,–

ℑ
--- 1

Lj Upper, Lj Lower,–

qj k,∂
sk∂

-----------⋅
j ℑ∈

∑⋅=

α
k

 Grundlagen der Mehrziel-Parameter-Optimierung 39

(4.47)

4.9.5 Konjugiertes Gradientenverfahren

Zur Minimierung von Gl. 4.42 wird ein konjugiertes Gradientenverfahren verwendet. Es basiert
ebenso wie das reine Gradientenverfahren auf einem lokalen und einem globalen Schritt:

1. Lösen eines lokalen Problems, d. h. Berechnung einer Suchrichtung dk+1 anhand des Parame-

tervektors :

(4.48)

2. Lösung eines globalen Problems, d. h. Berechnung eines neuen Parametervektors aus

der Schrittweite durch eindimensionale Minimumsuche (Liniensuche):

(4.49)

Für die Bestimmung der Suchrichtung dk+1 und der Gewichtung der vorherigen Suchrichtung
wird die oben hergeleitete partielle Ableitung von rk nach verwendet (s. Gl. 4.43). Die
Gewichtung der vorherigen Suchrichtung wird nach der Polak-Ribiere Variante [Papageorgiou
1996] des konjugierten Gradientenverfahrens berechnet:

(4.50)

4.9.6 Zusammenfassung

Das MOPO-Quasi-Newton-Verfahren ist in zwei Varianten verfügbar [Münch 2003]. Die Unter-
schiede liegen in der Art der Lösung des quadratischen Ersatzproblems (s. Gl. 4.30). Dieses Pro-
blem kann entweder mit dem beschriebenen MOPO-Gradientenverfahren gelöst werden oder mit
dem erläuterten Ansatz. Dieser nutzt die Tatsache aus, dass die quadratischen Ersatzzielfunktio-
nen in symbolischer Form vorliegen. An dieser Stelle soll nun kurz zusammengefasst werden,
warum dieser Ansatz trotz der Verwendung der KKT-Bedingung 1. Ordnung für Pareto-Optima-
lität (s. Gl. 4.34) nichts mit dem Optimierungsverfahren der "gewichteten Summe" gemeinsam
hat. Das Verfahren der "gewichteten Summe" steht im Widerspruch zum obersten Grundsatz für
die Mehrziel-Optimierung mit MOPO, nämlich der Erhaltung von physikalisch interpretierbaren
Einzelkriterien auch in allen internen Abläufen. Diesem Grundsatz wird durch die folgenden
Aspekte Rechnung getragen:

• Pro Zielgröße wird in jedem Optimierungsschritt eine eigene neue quadratische Ersatzziel-

funktion ermittelt.

• Die Variablen (Gewichtungen) werden zunächst nur genutzt, um auf der Paretomenge ein

Koordinatensystem zu definieren; es wird nicht versucht zu minimieren.

sk∂
α

k
∂
-------- αi k, H̃i p

k
()⋅

i 1=

nz∑   1–
g

i
p

k
()T

H̃i p
k

() sk⋅+()⋅–=

α
k 1+

dk 1+ r α
k 1+

()∇– ϒk dk⋅+=

α
k 1+

λk

α
k 1+

α
k

λk dk⋅+=

ϒk

α
k

ϒk

r α
k 1+

() r α
k

()∇–∇]T
r α

k 1+
()∇⋅[

r α
k

()T
r α

k
()∇⋅∇

--=

αi k,
gα sk()

40 Grundlagen der Mehrziel-Parameter-Optimierung

• In jedem Optimierungsschritt werden aktive und passive Zielgrößen ermittelt.

• Für jede einzelne Zielgröße wird ein eigenes Optimierungsziel (Erfüllungsgrad) abgeschätzt.

• Zur optimalen Balancierung der Zielgrößen (Sub-Optimierungsproblem) werden die Varia-

blen mit Hilfe eines konjugierten Gradientenverfahrens bestimmt.αi k,

 Verteilte Echtzeitsimulation 41

5 Verteilte Echtzeitsimulation

5.1 Differentialgleichungen zur Regler- und Modellbeschreibung

In der Regelungstechnik wird als grundlegende mathematische Beschreibung die Zustands-
raumdarstellung mit den Eingängen u(t), den Ausgängen y(t), den Zuständen x(t) und den zeitin-
varianten Parametern p verwendet. Bei der Zustandsraumdarstellung handelt es sich um zeitinva-
riante, explizite, nichtlineare Differentialgleichungen 1. Ordnung mit Anfangsbedingungen:

(5.1)

(5.2)

Eine besonders wichtige Stellung nehmen die zeitinvarianten linearen Systeme (LZI) in
Zustandsraumdarstellung ein, da für sie eine umfassende und geschlossene Systematik zur linea-
ren Analyse und zum Reglerentwurf existiert ([Föllinger 1994], [Ludyk 1990], [Kwakernaak,
Sivan 1972]):

(5.3)

(5.4)

Die Zustandsraumdarstellung ist die Grundlage der mittleren, normierenden Verhaltensebene des
am MLaP entwickelten Objektmodells der Mechatronik (OMM), da sie zahlreiche Vorteile für
die Analyse, den Reglerentwurf, die Modell-Strukturierung und die numerische Echtzeitverarbei-
tung bietet.

Andere Ansätze (z. B. in DIVA, SPICE, ADAMS und SIMPACK) benutzen Differential-Alge-
braische Gleichungen (DAEs) zur Beschreibung von physikalischen Systemen. Die Modellbil-
dung führt normalerweise auf diese Form, wenn man die Modellgleichungen in ihrer ursprüngli-
chen, den Prozess beschreibenden Form belässt. Daher werden diese DAE-Systeme auch als
Deskriptorsysteme (describere (lat.) = beschreiben) bezeichnet. Hier als Besipiel eine semi-expli-
zite Darstellung. Man bezeichnet J als Deskriptormatrix und a als algebraischen Zustandsvektor:

(5.5)

(5.6)

5.1.1 Echtzeitfähige Verfahren zur numerischen Simulation

Nachfolgend werden die Grundlagen für die numerische Echtzeitsimulation von Modellen in
linearer und nichtlinearer Zustandsraumdarstellung skizziert.

Lineare numerische Simulation

Die lineare Simulation basiert auf der numerischen oder symbolischen Lösung der Zustandsglei-
chung (Gl. 5.3, Gl. 5.4) des zugehörigen linearen Systems. Die Lösung der Zustandsgleichung im

x· t() f x t() u t() p, ,() mit x0 x t0()= =

y t() g x t() u t() p, ,()=

x· t() A p() x t() B p() u t()⋅+⋅=

y t() C p() x t() D p() u t()⋅+⋅=

J x a u t, , ,() x·⋅ f x a u t, , ,()=

0 g x a u t, , ,()=

42 Verteilte Echtzeitsimulation

Zeitbereich hat allgemein folgende Form [Ludyk 1990]:

(5.7)

Dabei existieren effiziente numerische Verfahren, um die sogenannte Fundamentalmatrix des
Systems zu bestimmen:

(5.8)

Nähert man die Lösung x(t) für diskrete Zeitpunkte kT (k=0,1,2,3...) mit konstanten Werten u(k),
y(k) und x(k) während des Abtastintervalls T für die Verarbeitung im Digitalrechner, so lässt sich
schreiben:

(5.9)

Dies bildet die Basis zur digitalen, linearen, numerischen Simulation mit Hilfe der Fundamental-
matrix [Ludyk 1990] und kann folgendermaßen umgeformt werden:

(5.10)

Dieses rekursive, zeitinvariante Differenzengleichungssystem kann sehr effizient und mit kon-
stanter Laufzeit digital gelöst werden und ist daher sehr gut für eine Echtzeitverarbeitung geeig-
net.

Nichtlineare numerische Simulation

Bei hoher Komplexität von Modellen in nichtlinearer Zustandsraumdarstellung ist eine analyti-
sche Lösung der Differentialgleichungen nicht möglich. Hier bietet sich eine numerische Lösung
des in Gl. 5.1 beschriebenen Anfangswertproblems auf Basis der Integration der Gleichung an:

(5.11)

Nähert man die Lösung x(t) für diskrete Zeitpunkte kT (k=0,1,2,3...) mit konstanten Werten u(k),
y(k) und x(k) im Abtastintervall T=tk+1 - tk , so lässt sich schreiben:

(5.12)

Zur Lösung dieser Gleichung existieren diverse Verfahren zur numerischen Integration

x t() e
A t⋅

x0 e
A t τ–()⋅

B u τ()⋅ ⋅ τd

0

t∫+⋅=

Φ t() e
A t⋅

=

x k 1+() e
A T⋅

x k() e
A T τ–()⋅ τ B u k()⋅ ⋅d

0

T∫+⋅=

x k 1+() Φ T() x k() Φ T() I–() A
1–

B u k()⋅ ⋅ ⋅+⋅=

x t1() x0 f

t0

t1∫+ x t() u t() p, ,() td=

x k 1+() x k() f

tk

tk 1+∫+ x k() u k() p, ,() td=

 Verteilte Echtzeitsimulation 43

([Schwarz 1993]).

Die einfachste Möglichkeit ist das Euler Einschrittverfahren [Bronstein, Semendjajew 1989].
Hierbei wird der Integralausdruck aus Gl. 5.12 als Rechteckfläche der Höhe f(x(k), u(k),p) und
der Breite h (mit h=tk+1 - tk) interpretiert. Man erhält eine nichtlineare Differenzengleichung
erster Ordnung (Anfangswerte x(0) und u(0) sind bekannt):

(5.13)

Das Euler-Verfahren hat prinzipbedingt einen grossen Verfahrensfehler, so dass mit sehr kleinen
Schrittweiten h gerechnet werden muss. Daraus resultieren zusätzlich grosse akkumulierte Run-
dungsfehler.

Bessere numerische Genauigkeit liefern Einschrittverfahren höherer Ordnung, wie das Heun-
Verfahren (2 Auswertungen von f(x,u,p) im Intervall tk+1 - tk) und das Runge-Kutta-Verfahren 4.
Ordnung (4 Auswertungen von f(x,u,p) im Intervall tk+1 - tk) [Föllinger 1994]. Diese Verfahren
erlauben aufgrund der Zwischenauswertungen eine größere Integrationsschrittweite mit besserer
numerischer Genauigkeit, verursachen aber auch erhöhten Rechenaufwand (für verteilte Simula-
tion auch erhöhten Kommunikationsaufwand) als die Verfahren 1. Ordnung.

Die genannten Integrationsverfahren sind im Bereich der Echtzeitsimulation häufig angewendet.
Sie erlauben eine effiziente und deterministische Verabeitung mit in jedem Rechenzyklus glei-
chem Verarbeitungsaufwand. Von der numerischen Genauigkeit her sind sie allerdings ausgeklü-
gelten Verfahren mit variabler Schrittweite und Unstetigkeitsdetektion ([Oberschelp 1998],
[Stumpe 1996]) deutlich unterlegen, so dass ihre Anwendung für die Echtzeitsimulation immer
nur ein Kompromiss zwischen Genauigkeit und Echtzeitfähigkeit sein kann.

5.1.2 Datenflussgraph zur Nichtlinearen Simulation

Die Betrachtung des Datenflusses eines Systems auf Verarbeitungsebene ist ein wichtiges Hilfs-
mittel um das System zu analysieren und das Potential für Parallelisierung und Verteilbarkeit zu
bestimmen. Der Berechnungsgraph zur Systemrepräsentation auf der Verarbeitungsebene des
OMM (vgl. Gl. 5.1 bis Gl. 5.4) kann als Datenflussgraph (DFG) aufgefasst werden. Nach [Teich
1997] sind Datenflussgraphen gerichtete Graphen in denen Knoten Aktivitäten und Kanten
gerichteten Datenfluss repräsentieren. In einem Datenfluss werden die Aktivitäten (Berechnun-
gen) allein durch die Verfügbarkeit der Daten gesteuert.

Entscheidender Punkt ist die Auswahl einer geeigneten Granularität zur Defintion der Knoten
von Datenflussgraphen. Im Hinblick auf eine verteilte Simulation besteht ein Knoten des DFG
für die NL-Simulation aus Gl. 5.1 und Gl. 5.2, wobei Gl. 5.2 noch einmal aufgeteilt wird
([Deppe, Homburg 1998], [Stolpe 2004]):

1) Nicht-Durchgriffs-Knoten des DFG (ND-Knoten): Berechnung aller Ausgänge yND, die sich
aufgrund der aktuellen Zeit, der inneren Zustände oder deren Anfangsbedingungen und der Para-
meter berechnen lassen. Dieser Knoten hat die Eigenschaft, dass er immer sofort ausgeführt wer-
den kann, da keine Eingänge abgefragt werden müssen:

x k 1+() x k() h f⋅+ x k() u k() p, ,()=

44 Verteilte Echtzeitsimulation

(5.14)

2) Durchgriffs-Knoten des DFG (D-Knoten): Berechnung aller restlichen Ausgänge yD, die
direkt von Eingängen uD abhängen. Durch die direkte Verknüpfung von Ein- und Ausgängen bil-
den die Durchgriffs-Schritte sequentielle Abhängigkeiten zwischen Knoten:

(5.15)

3) Zustands-(State-)Knoten des DFG (S-Knoten): Berechnung der neuen inneren Zustände des
DGL-Systems. Die Berechnung kann auch von Eingängen uS abhängen, Ausgänge werden nicht
berechnet. Die Änderungen der Zustände wirken sich beim nächsten Durchlaufen des ND-
Schritts aus. Für die NL-Simulation besteht der Zustands-Schritt in der Berechnung der
Zustandsableitungen und der Berechnung der neuen Zustände mit Hilfe von numerischer Integra-
tion:

(5.16)

Die Anwendung der oben beschriebenen Regeln zur Definition von Knoten und Kanten für den
Datenflussgraphen der NL-Simulation führt unmittelbar auf folgende graphische Darstellung, die
eine Mischung aus Blockdiagramm und Graphendarstellung ist:

Abbildung 5-1: Datenflussgraph für die NL-Simulation

5.1.3 Verteilte Nichtlineare Simulation

Zur durchgängigen Erhaltung der modular-hierarchischen Systemstruktur (VMS, AMS, MFM)
des OMM bis auf die Verarbeitungsebene muss die Simulation auf modularen Datenflussgraphen
basieren. Dabei hat jeder einzelne DFG die Struktur und die Schnittstelle gemäß Abbildung 5-1.
Jeder Teil-DFG kann dann in einem Rechnernetzwerk platziert werden und kommuniziert seine
Ein-/Ausgänge über Nachrichtenkopplung.

Die nachfolgende Abbildung zeigt links modular-hierarchisch organisierte Systemelemente

y
ND

t() g
ND

x t() p,()=

y
D

t() g
D

x t() uD t() p, ,()=

x t1() x0 f

t0

t1∫+ x t() uS t() p, ,() td=

 Verteilte Echtzeitsimulation 45

(z. B. MFMs) mit deren Ein-/Ausgangsbeziehungen. Auf der rechten Seite sind die zugehörigen
gekoppelten Datenflüsse nebeneinander dargestellt, so dass die vorhandene Parallelität bei der
NL-Simulation erkennbar wird:

Abbildung 5-2: Beispiel für eine modulare NL-Simulation mit gekoppelten DFGs

Diese Art der modularen Simulation auf Basis gekoppelter DFGs bietet viele Vorteile:

1. Die physikalische Systemstruktur kann erhalten bleiben und dient als Vorgabe zur Verteilung.

2. Simulierte Module sind für die HIL-Simulation einzeln gegen reale Module austauschbar.

3. Test und Inbetriebnahme können schrittweise erfolgen.

4. Mit verteilter Hardware lässt sich ggf. die Parallelität im DFG in Rechenzeitgewinn umsetzen.

5. Teile können für sicherheitskritische Anwendungen dupliziert werden (Redundanz).

Randbedingungen und Einschränkungen

Grundvoraussetzung für die verklemmungsfreie Ausführbarkeit der modularen Simulation ist die
Kreisfreiheit des gekoppelten DFGs. Ist dies nicht der Fall, so muss eine andere Aufteilung des
Gesamtsystems in Teil-DFGs vorgenommen werden.

Die gewählte Schnittstelle (Ausgänge yD, yND und Eingänge uD, uS) für jeden Teil-DFG dient zur
Blackbox-Kopplung der Module. D. h. es werden keine weiteren Daten aus Zwischenberechnun-
gen in den ND-, D-, S-Knoten benötigt, so dass der mathematische Inhalt der Knoten nach aussen
nicht bekannt ist. Trotzdem reicht eine Schnittstellen-Kompatibilität zur Kopplung nicht aus, um
das gleiche Ergebnis wie bei einer zentralen Lösung des ursprünglichen Gesamtsystems zu erzie-
len. Es sind folgende Randbedingungen zwingend einzuhalten:

• gleiche Simulationsschrittweite

• gleiches numerisches Integrationsverfahren

• Datenaustausch in den Haupt- und Nebenschritten des Integrationsverfahrens [Eppinger 1994]

• gleiche numerische Zahlengenauigkeit

Werden diese Randbedingungen verletzt, so entstehen zusätzliche numerische Fehler, die das
Ergebnis der Simulation völlig unbrauchbar machen können. Will man zur Rechenzeitersparnis
dennoch verschiedene Simulationsschrittweiten nutzen, so ist eine Fehlerschätzung notwendig

46 Verteilte Echtzeitsimulation

[Rükgauer 1996].

5.2 Laufzeitplattform zur modularen Echtzeit-Simulation

Für die modulare Echtzeit-Simulation wird IPANEMA (vgl. Kapitel 2.4) als Laufzeitplattform
verwendet, da IPANEMA nach einem offenen einfach zu erweiternden Baukastenprinzip aufge-
baut ist. D. h. es liegen modulare SW-Bausteine als Quelltext in ANSI-C vor, die weitest möglich
Hardware-unabhängig weiterverwendet werden können. Der Vollständigkeit halber seien auch
zwei weitverbreitete industrielle Lösungen zur modularen Echtzeit-Simulation im HIL-Umfeld
erwähnt, die allerdings nicht vollständig offen und erweiterbar sind:

Kiffmeier [Kiffmeier 1995] realisiert modulare Echtzeit-Implementierungen von regelungstech-
nischen Anwendungen durch automatische Code-Generierung auf der Basis von Blockdiagram-
men. Dabei wird in einem SIMULINK-Blockdiagramm [MathWorks 1992] nicht nur die eigent-
liche Modelldynamik, sondern auch die Struktur des Netzwerkes inklusive der
Kommunikationsverbindungen zwischen den Prozessoren festgelegt. Dieser grafische Ansatz
wird bei dem von der Firma dSPACE angebotenen Real-Time-Interface zu SIMULINK für Mul-
tiprozessorsysteme (RTI-MP) verfolgt [dSPACE 1995].

Die Firma ETAS bietet mit ihrer Entwicklungsungebung ASCET-SD [ETAS 1996] ein ähnliches
Konzept an. Auf der Ebene von Blockdiagrammen und Statecharts können Systeme modelliert
werden. Die Codegeneriung für die Zielplattformen INTEL-Pentium (Offline Simulation), Trans-
puter und Power-PC (Echtzeitsimulation) erfolgt automatisch. Multiprozessorsysteme werden
prinzipiell unterstützt. Die Zuordnung von Berechnungsmodulen zu Prozessoren erfolgt wie bei
RTI-MP von dSPACE manuell.

5.2.1 Verwendete Laufzeitplattform IPANEMA

Aufgrund neuer Anforderungen durch leistungsfähigere Echtzeit-Hardware und durch die Not-
wendigkeit zur Umsetzung von verschiedenen Taktraten (Multirate) sind komplexe Erweiterun-
gen der ursprünglichen IPANEMA Variante vorgenommen worden.

In den ersten IPANEMA-Anwendungen auf Transputer-Systemen wurde eine sehr feingranulare
Struktur der Anwendung angestrebt, da die einzelnen Rechenknoten des verteilten Systems nur
sehr wenig Rechenleistung und Hauptspeicher zur Verfügung stellen konnten [Honekamp 1998].
Jedes IPANEMA-Objekt wurde auf genau einem Prozessor abgebildet. Für leistungsstarke Echt-
zeit-Hardware (z. B. MPC555, MPC750, etc.) ist es problemlos möglich, mehrere IPANEMA-
Objekte pro Prozessor zu verarbeiten. Es muss daher möglich sein, mehrere IPANEMA-Objekte
pro Prozessor/Prozess in Form von Tasks zu implementieren. Die datengetriebene Ausführung
von verteilten Applikationen durch blockierendes Empfangen ist bei der Verwendung von Tasks
nicht mehr möglich. Hier wird eine zeitgesteuerte Ausführung auf der Basis eines Master-Timers
vorgeschlagen.

Für das Konzept der Calculator-Auswertung in drei Schritten (ND-, D-, S-Schritt) sind weitere
Änderungen des internen Kontrollflusses der Calculatoren notwendig. Dies geht einher mit der
Realisierung verschiedener Taktraten auf der Basis von präemptivem Multitasking für die Calcu-
latoren. Bisher waren nur Singlerate-Anwendungen möglich.

 Verteilte Echtzeitsimulation 47

5.2.2 Abbildung der IPANEMA-Objekte auf Multitasking

Um die IPANEMA-Objekte auf ein Echtzeitsystem abzubilden, gibt es grundsätzlich die Mög-
lichkeit, Single- oder Multitasking zu verwenden. Dabei wird von folgenden Begriffen ausgegan-
gen [Ungerer 1993]:

1. Programmebene:

Mehrere untereinander kommunizierende Prozesse auf einem oder mehreren Prozessoren lau-

fen (quasi) gleichzeitig ab und benötigen keinen Datenaustausch untereinander.

2. Prozessebene:

Auf dieser Ebene werden innerhalb eines Programms konkurrierende Tasks (Prozess) reali-

siert. Jeder Task (Prozess) wird sequentiell abgearbeitet und besitzt einen eigenen Daten- und

Programmbereich (Multitasking).

3. Blockebene:

Leichtgewichtige Prozesse (auch Threads genannt) ohne eigenen Daten- und Programmbe-

reich kommunizieren auf der Basis von gemeinsamen Daten.

4. Anweisungsebene (oder Befehlsebene):

Elementare Anweisungen (in der Sprache nicht weiter zerlegbare Datenoperationen) werden

nebenläufig ausgeführt.

5. Suboperationsebene:

Eine elementare Anweisung wird durch den Compiler oder in der Maschine in Suboperatio-

nen aufgebrochen, die parallel ausgeführt werden. Beispiel: Vektoroperationen.

Für Echtzeitsysteme unterscheidet man sinnvollerweise zusätzlich zwischen verschiedenen Task-
Typen:

• Echtzeit-Task:

Echtzeit-Tasks sind Tasks mit harten Zeitschranken, die an periodische Echtzeit-Timer gekop-

pelt sind.

• Hintergrund-Task :

Hintergrund-Tasks sind Tasks mit weichen Zeitschranken, die an asynchrone Anwenderzu-

griffe gekoppelt sind.

Für die Einbeziehung von Multitasking zur Umsetzung wird die folgende Erweiterung vorge-
nommen: Es gibt genau einen sogenannten IPANEMA-Master, der mindestens den Moderator

und ein Calculator-Assistant- oder Adaptor-Assistant-Paar enthält. Die einzelnen IPANEMA-
Objekte werden im Master als Echtzeit- und Hintergrund-Tasks implementiert. Der Master läuft
auf genau einem Rechenknoten ab. Für verteilte Anwendungen wird pro externem Rechenknoten
ein sogenannter Servant implementiert. Ein Servant enthält keinen Moderator, aber mindestens

48 Verteilte Echtzeitsimulation

ein Calculator-Assistant- oder Adaptor-Assistant-Paar:

Abbildung 5-3: Master und Servant in IPANEMA

Die nachfolgende Abbildung verdeutlicht die Kombinationsmöglichkeiten für Programme, Tasks
und Calculatoren. Sie zeigt drei CPUs mit je einem Programm und drei Timer-Tasks, an die vier
Calculatoren gekoppelt sind. Die Timer sind lokal auf der Master-CPU angeordnet und lösen
lokale Interrupts und Inter-Prozessor-Interrupts (IPI) auf den Slave-CPUs aus. Schreiben und
Lesen von Daten (nicht abgebildet) erfolgen vor bzw. nach den Berechnungen im Calculator:

Abbildung 5-4: Organisation der Programme, Calculatoren und Taktraten

Der Anwender ordnet jedem Calculator eine Taktrate, eine Programm-ID und die zugehörige
CPU zu. Damit steht die Anwendungstopologie der Software fest. Es lässt sich jede beliebige
(sinnvolle) Topologie konfigurieren. Die einfachste Anwendung besteht aus einem Programm,
einer Task und einem Calculator. Komplexe Anwendungen bestehen aus mehreren Programmen
mit jeweils mehreren eigenen Tasks. Die Organisation für alle Calculatoren, Tasks und Pro-
gramme erfolgt nach bestimmten Regeln:

 Verteilte Echtzeitsimulation 49

• Ein Calculator ist genau einer CPU zugeordnet.

• Ein Adaptor wird genauso wie ein Calculator behandelt. Bei Adaptoren ist die jitterfreie Ein-/

Ausgabe der Mess- und Stellgrößen zu beachten; die Messgrößen werden innerhalb des ND-

Teils gelesen (Datenquelle), die Stellgrößen im S-Teil ausgegeben.

• Tasks können CPU-übergreifend organisiert sein.

• Die Zykluszeit einer Tasks (Task-Periodendauer) muss immer ein ganzzahliges Vielfaches der

kleinsten vorkommenden Zykluszeit betragen.

• Die Pufferung von Daten im Assistant erfolgt entsprechend der lokalen Abtastrate des zugehö-

rigen Calculators. Für die langsameren Abtastungen werden die letzten Werte mehrfach einge-

tragen (Data-Hold), so dass die Ringpuffer aller Assistants von der Datengröße her synchroni-

siert sind.

Für die CPUs, Programme, Calculatoren und Taktraten werden Identifier (IDs) nach den folgen-
den Regeln vergeben:

• Die Takt-Prioritäten werden nach Taktrate vergeben, der schnellste Takt hat die ID null.

• Der Master besitzt immer die Programm-ID null.

• Der schnellste Calculator (Adaptor) hat die Calculator-ID null und gehört damit zu Takt-ID

null.

• Der langsamste Calculator (Adaptor) hat die höchste Calculator-ID.

• Calculatoren und Adaptoren werden nicht getrennt numeriert.

5.2.3 Scheduling

Der Scheduler hat die Aufgabe, den Ausführungszeitpunkt einer Tasks zu bestimmen. IPANEMA
nutzt einen zentralen Scheduler, der im Master untergebracht ist. Für Echtzeitanwendungen ist
dies eine einfache und robuste Lösung, die ein besser überschaubares Zeitverhalten auch für ver-
teilte Anwendungen ermöglicht. Das Grundproblem der präzisen Timer-Synchronisation (glo-
bale Zeit) in verteilten Echtzeitanwendungen wird somit entschärft.

Die IPANEMA-Schicht zur Task-Verwaltung wird vom Betriebssystem-Scheduler aufgerufen.
IPANEMA unterstützt dabei das Konzept des präemptiven Multitasking, d.h. aktive Tasks kön-
nen durch neue Tasks unterbrochen (verdrängt) werden. Voraussetzung ist, dass der Betriebssy-
stem-Scheduler diese Funktionalität bietet. Für Offline-Simulationen ohne Echtzeitbedingungen
wird kein präemptives Multitasking verwendet. Die Tasks werden rein sequentiell abgearbeitet,
so dass eine sehr hohe Effizienz bei der Verarbeitung aufgrund wegfallender Zeiten für den Task-
wechsel und das Scheduling etc. gewährleistet ist.

Die nachfolgende Abbildung verdeutlicht den Vorgang von der Auslösung eines Timer-Interrupts
durch die RT-Hardware bis zur Aktivierung eines Calculator-Blocks (ND, D, S). IPANEMA kon-
figuriert für jede Taktrate einen Timer des RTOS (Real-Time Operating System) und registriert
eine zugehörige Interrupt-Service-Routine (ISR) als Einsprungfunktion beim RTOS-Scheduler.
Wird eine ISR aufgerufen, so kann IPANEMA auf der Basis einer vorab bestimmten Task-Matrix
die zugehörige Calculator-Funktion aufrufen, gerade aktive Berechnungen werden unterbrochen

50 Verteilte Echtzeitsimulation

und später fortgeführt. Die Task-Verwaltung von IPANEMA enthält dabei selbst keinen hard-
wareabhängigen Code:

Abbildung 5-5: Task-Verwaltung von IPANEMA

Für die Echtzeitverarbeitung eignet sich als Scheduling-Verfahren das Rate-Monotonic-Schedu-
ling (RMS) besonders. Es beruht auf dem Prinzip, dass eine Task um so wichtiger ist, je höher
ihre Taktrate ist [Buttazzo 1997]. Damit verdrängt eine schnellere Task immer eine langsamere.
Dieses Verfahren wird z. B. für das DS1005-System durch den dSPACE-Echtzeit-Kern [Otter-
bach, Leinfellner 1999] bereitgestellt. Es gilt zu beachten, dass die Anzahl der Tasks möglichst
niedrig gewählt wird. Dadurch werden die Zeiten für das Scheduling und den Task-Wechsel
minimiert. So wird die Prozessorauslastung UP verbessert:

(5.17)

TABELLE 3. Formelzeichen zu Gl. 5.17

Die theoretische Obergrenze der Prozessorauslastung für das Rate-Monotonic-Scheduling UP,max
lautet [Liu, Layland 1973]:

(5.18)

Die Prozessorauslastung für zwei Tasks kann damit einen Wert von 82,8 % und für drei Tasks
einen von 78,0 % nicht übersteigen. Für UP,max() ergibt sich ein Wert von 69,3 %.

5.2.4 IPANEMA-Task-Matrix

In der IPANEMA-Task-Matrix werden die Informationen über die Auswertereihenfolge der Cal-

Prozessorauslastung Anzahl von Tasks Ausführungszeita

a. Eigene Ausführungszeit ohne Unterbrechungen durch andere Tasks (Task-Execution-Time)

Task-Periodendauer

UP nT TET,i Ts,i

UP n()
TET i,
Ts i,

i 1=

nT∑=

UP max, nT() nT 2nT 1–()⋅=

∞

 Verteilte Echtzeitsimulation 51

culator-Blöcke (ND, D, S) zeilenweise und deren Zuordnungen zu Tasks spaltenweise gespei-

chert. Die Anzahl der Spalten ist größer als die Anzahl der Tasks, da zu einem Zeitpunkt mehrere

Tasks gleichzeitig aktiviert werden können. Vor dem Start einer IPANEMA-Echtzeitapplikation

wird die Task-Matrix nach folgendem Verfahren im Moderator automatisch erzeugt und geprüft:

1. Durch eine topologische Sortierung (vgl. Kap. 2.2) des Datenflussgraphen (drei Knoten pro

Calculator) wird die sequentielle Reihenfolge für eine vollständige Auswertung bestimmt

(sortierte Liste als Ergebnis). Dies ist nur für einen kreisfreien DFG möglich. Die vollständige

Auswertung wird für den Zeitpunkt t = 0 und für alle Zeitpunkte, in denen alle Tasks aktiv

sind, benötigt. Diese vollständige Auswertung entspricht dem Singlerate-Anwendungsfall.

2. Für jede Kombination aktiver Tasks wird eine Submatrix folgendermaßen ermittelt:

2a) Das Ergebnis aus 1) wird in die erste Spalte der Submatrizen kopiert, und alle Einträge, die

nicht zum zugehörigen Zeitpunkt aktiviert werden sollen, werden gelöscht.

2b) Die Spalten werden auf die Spalte der jeweils langsamsten Tasks, für die Einträge existie-

ren, verschoben.

Das Verfahren bedeutet eine Zeitersparnis zur Laufzeit, da die Prüfung auf Ausführung nicht

notwendig ist. Die Multirate-Ausführung erfolgt vorgeplant. Zur Verdeutlichung wird exempla-

risch die Task-Matrix für die nachfolgende Multirate-Anwendung ermittelt:

Abbildung 5-6: Beispiel für eine Multirate-Anwendung

Abbildung 5-7 zeigt die zugehörige Task-Matrix für das obige Beispiel. Sie besteht aus neun Zei-

len und zwölf Spalten, die auf vier Submatrizen verteilt sind.

Für die frei gewählten Abtastraten werden drei zugehörige Timer konfiguriert. Für den Zeitpunkt

t = 0 werden alle Timer einen Interrupt in der Reihenfolge 0, 1, 2 auslösen. Bei Aktivierung von

Task 2 erfolgt die sequentielle Berechnung aller Blöcke. Durch diese Zuordnung kann die

Berechnung aufgrund des RMS-Verfahrens nach einer Millisekunde durch Task 0, nach zwei

Millisekunden durch Task 1 und nach drei Millisekunden erneut durch Task 0 unterbrochen wer-

den. Die Echtzeitbedingungen sind dann eingehalten, wenn kein Calculator-/Adaptor-Block eine

erneute Berechnung beginnt, bevor eine vorangegangene beendet ist. Diese Bedingungen werden

zur Laufzeit überprüft. Die Sende-/Empfangs-Vorgänge finden am Anfang/Ende der Calculator-/

Adaptor-Blöcke statt. Durch die vorsortierte (kreisfreie) Ausführung ist die korrekte Sende-/

52 Verteilte Echtzeitsimulation

Empfangsreihenfolge sichergestellt:

Abbildung 5-7: IPANEMA-Task-Matrix

5.3 Parallelverarbeitung auf AMS-/MFM-Ebene

Die Streckenmodelle mechatronischer Systeme (Systemmodelle) besitzen aufgrund ihrer modu-
lar-hierarchischen Struktur eine natürliche inhärente Parallelität. Im Folgenden soll das Potential
der Parallelisierung von Systemmodellen zur schnellen Simulation erörtert werden.

5.3.1 Parallelisierung von Systemmodellen zur schnellen Simulation

Das Systemmodell als Teil des erweiterten Streckenmodells beschreibt die mechanischen, die
elektrischen und die hydraulischen Bestandteile der Aktorik, der Sensorik und der Tragstrukturen
eines mechatronischen Systems auf den AMS-/MFM-Ebenen. Mit Hilfe des OMM lassen sich
die Beschreibungsebenen Topologie, Verhalten und Verarbeitung erzeugen und verwalten. Die
topologische Struktur eines Systemmodells orientiert sich an der Aggregat-Struktur des mecha-
tronischen Systems und ist daher konsequent modular-hierarchisch aufgebaut (siehe Kap. 3).

Es soll im Folgenden aufgezeigt werden, welche Erfahrungen mit dem Laufzeitverhalten bei der
nichtlinearen Simulation von parallelisierten Systemmodellen auf der Basis von Datenflussgra-
phen auf Blockebene gemacht wurden.

Für eine Parallelverarbeitung mit dem Ziel, die Simulationszeit gegenüber einem sequentiellen

 Verteilte Echtzeitsimulation 53

Ablauf zu minimieren (d. h. einen Speedup zu erzielen), ist das Verhältnis zwischen der sequenti-
ellen und der parallelen Rechenzeit inkl. dem Zeitverlust durch die Kommunikation von ent-
scheidender Bedeutung. Zur Beurteilung des Potentials für eine Rechenzeitersparnis müssen die
sequentielle Rechenzeit, der längste sequentielle Berechnungspfad (Critical Path) im Datenfluss-
graph und die Zeitverluste durch Kommunikation entlang des kritischen Pfades geschätzt wer-
den.

Die sequentielle Rechenzeit wird dabei für einen Simulationsschritt betrachtet. Ein sequentieller
Simulationsschritt bedeutet die Berechnung der ND-, D- und S-Knoten durch eine Task. Die
Rechenzeit für einen Simulationsschritt einer modular verteilten Simulation (vgl. Abbildung 5-2)
ergibt sich aus der einmaligen Auswertung aller verteilten ND-, D- und S-Knoten inkl. Kommu-
nikationszeiten. In beiden Fällen ist im S-Knoten die Rechenzeit für einen Einschritt DGL-Löser
(z. B. Euler) enthalten, die aber vernachlässigbar gering ist (Bei DGL-System-Ordnung N: N
Multiplikationen und N Additionen, vgl. Gl. 5.13).

Die maximale Simulationsgeschwindigkeit eines parallelisierten Systemmodells hängt demnach
von der Struktur des Datenflussgraphen und der Rechen- und Kommunikationsleistung der ver-
wendeten Hardware ab.

5.3.2 Analyse von Systemmodellen und Lastverteilung

Zur Analyse der Systemmodelle im Hinblick auf parallele Strukturen auf der Verarbeitungsebene
werden Datenflussgraphen verwendet. Knoten in diesem gerichteten Graph sind die ND-, D- und
S-Bestandteile der Basissysteme (Koppelsysteme sind auf der Verarbeitungsebene nicht mehr
vorhanden). Kanten werden zwischen den zusammengehörigen ND-, D- und S-Knoten aufgrund
der inneren Datenabhängigkeiten (z. B. Systemzustände) und zwischen Knoten mit Ein-/Aus-
gangsabhängigkeiten eingefügt. Die Knoten werden mit den Rechenzeiten (für eine spezifische
Hardware) und die Kanten mit den Kommunikationszeiten (ebenfalls spezifisch) gewichtet. Die
nachfolgende Abbildung zeigt exemplarisch einen Datenflussgraphen für das Modell einer aktiv

54 Verteilte Echtzeitsimulation

gefederten Achse eines Fahrzeugs (ohne Gewichtungen):

Abbildung 5-8: Beispiel für einen Datenflussgraph (aus [Deppe, Homburg 1998])

Vor einer Analyse des DFG ist es sinnvoll, zunächst die sequentielle Laufzeit für ein Modell zu
bestimmen. Nachfolgend sind dann eine Vorauswahl der parallelen Hardware und die sinnvolle
Aufteilung (Lastverteilung) des DFG möglich. Im Folgenden wird als Beispiel das Modell eines
Waldnutzfahrzeuges auf sein Laufzeitverhalten hin untersucht.

Sequentielle Laufzeit für das Modell eines Waldnutzfahrzeugs

Das Modell beschreibt das passive Fahrwerk eines dreiachsigen Waldnutzfahrzeuges mit zwei
gelenkig verbundenen Chassisteilen. Der vordere Aufbau besitzt dabei zwei, der hintere vier
Räder. Es ist lediglich die Funktion "Federung" modelliert, die Funktionen "Lenkung" und
"Antrieb" werden nicht berücksichtigt:

Abbildung 5-9: Waldnutzfahrzeug: Starrkörpermodell

Die sechs Räder und zwei Aufbauteile sind durch acht kraftgekoppelte Starrkörper modelliert.
Die Räder sind durch je ein Gelenk, das nur eine vertikale Translation zuläßt, an den Aufbau
gekoppelt. Die beiden Aufbauteile sind durch ein Gelenk verbunden. Hier ist nur eine Rotation
um die vertikale Gelenkachse möglich. Ein weiteres Gelenk dient zur Anbindung des vorderen
Aufbaus an ein Umgebungsmodell (Terrain- bzw. Straßenmodell). Es ergeben sich insgesamt

 Verteilte Echtzeitsimulation 55

dreizehn Freiheitsgrade aus den sechs Freiheitsgraden der Räder, aus einem Freiheitsgrad des
Aufbaugelenks und aus sechs Freiheitsgraden der Ankopplung des vorderen Aufbaus an die
Umgebung.

Das Modell wurde in CAMeL-View ([iXtronics 2001/1], [iXtronics 2001/2]) erstellt. Es ergibt
sich ein eng gekoppeltes ODE-System mit der Ordnung 104 (d. h. es existieren 104 skalare
Systemzustandsvariablen). Insgesamt sind 20.911 mathematische Funktionen für einen Auswer-
teschritt der Modellgleichungen auf Verarbeitungsebene des OMM notwendig:

TABELLE 4. Funktionsaufschlüsselung für das Waldnutzfahrzeug-Modell

Es entsteht kein reiner Datenfluss: Es existieren 51 IF-Abfragen und nochmal 67 IF-Abfragen
ohne ELSE-Zweig. Die in Relation zu den anderen Funktionen geringe Anzahl der IF-Abfragen
und die Tatsache, daß die TRUE- und FALSE-Zweige jeweils wenige Anweisungen enthalten,
bewirken daher nur eine geringe Schwankungsbreite der Ausführungszeit. Die IF-Abfragen ent-
stehen z. B. durch notwendige Fallunterscheidungen zur numerischen Berechnung von Koordi-
natentransformationen etc. in den Bewegungsgleichungen des Systems.

Stellt man die Durchgriffe (Datenabhängigkeiten innerhalb eines Zeitschrittes) des Modells auf
Blockebene (siehe [Stolpe et al. 1997], S. 19 ff.) dar, so erhält man einen gerichteten azyklischen
Graphen mit 180 Knoten (Basissystemen) und 165 Kanten. Bei zusätzlicher Aufteilung der
Basissysteme in ihre ND-, D- und S-Teile ergeben sich 549 Knoten und mehr als 525 Kanten.

TABELLE 5. Laufzeitmessung für das Waldnutzfahrzeug-Modell

Aus der Funktionsaufschlüsselung und der Leistungs-Angabe einer CPU lässt sich natürlich nicht
ohne weiteres auf die Ausführungszeit der Evaluierung der Modellgleichungen schließen, da
komplexere Funktionen in Software abgebildet sind und Caching- und Pipelining-Effekte
berücksichtigt werden müssen [Puschner 2002]. Auch haben Compiler, Mainboard, Speicher,
Betriebssystem etc. Einfluss auf die Ausführungszeit. Bei datenflussorientierten Anwendungen

Funktion Anzahl im Modell Funktion Anzahl im Modell

Multiplikation 9.345 Sinus 81

Addition 5.384 IF-Abfrage (ohne ELSE) 67

Zuweisung 3.699 IF-Abfrage 51

Subtraktion 939 Arcus Sinus 48

Vorzeichenwechsel 842 Betrag 32

Division 233 weitere Funktionen 85

Cosinus 105

Gesamt: 20.911

Betriebs-
system

CPU Compiler Programm-
größe

Rechen-
schritte

Mittlere Realzeit

pro Schritt a

a. Nur Modellgleichungen ohne DGL-Löser, aus Gesamtlaufzeit durch Anzahl Rechenschritte bestimmt

Windows
 2000

Athlon MP
 1800+

Watcom

10.6b

b. Höchste Optimierungsstufe eingeschaltet

869 KB 10.000 58 µs

56 Verteilte Echtzeitsimulation

ist eine Messung eine effiziente Methode zur Laufzeitbestimmung (vgl. Tabelle 5).

Aufgrund des geringen Laufzeitwertes von 58 µs (vgl. Tabelle 5) zur einmaligen sequentiellen
Auswertung des DFG und der hohen Dichte des DFG und dem damit verbundenen Kommunika-
tionsaufwand lässt sich auf einem PC keine effiziente parallele Simulation des Modells erwarten.

Lastverteilung

Die Lastverteilung von Datenflussgraphen, d. h. die Partitionierung und die Zuordnung zu Pro-
zessoren, wurde ursprünglich auf der Ebene von skalaren Gleichungen betrachtet und als heuri-
stisches Optimierungsproblem behandelt ([Naumann, Homburg 1996], [Deppe 1995]). Wegen
der großen Anzahl von Auswertungen für das heuristische Verfahren (z. B. Simulated Annealing)
und die sehr komplexen Datenflussgraphen ergaben sich sehr schnell lange Optimierungszeiten
im Bereich von Stunden.

Im Rahmen einer Diplomarbeit [Hees 1999] wurden verschiedene algorithmische Methoden zu
Clustering (Zusammenfassen von Knoten), Mapping (Zuordnung von Prozessoren zu Clustern)
und Kommunikationszusammenfassung für Systemmodelle untersucht. Der Datenflussgraph des
Systemmodells wurde auf Basissystemebene durch Aufteilung der mathematischen Blöcke in
ND-, D- und S-Anteile erstellt.

Die Ergebnisse der Untersuchungen basieren auf den Daten von Transputer-Hardware (T800).
Diese Technologie ist inzwischen veraltet, bot aber eine hervorragende Plattform für verteilte
Anwendungen. Dies basierte vor allem auf dem günstigen Verhältnis zwischen Rechen- und
Kommunikationsleistung der Transputer. Dieses Verhältnis bestimmt aber gerade die hier interes-
sierende relative Performance-Verbesserung einer verteilten Anwendung im Vergleich zu einer
sequentiellen Lösung.

Die Kommunikationszeiten wurden mit Hilfe des sog. LogP-Modells [Culler et al. 1993] model-
liert, das Latenz- und Overheadzeiten berücksichtigt. Für die untersuchten Fahrzeugmodelle
ergaben sich sog. dichte Graphen mit größerer Kanten- als Knotenanzahl. Die Ergebnisse lauten,
tabellarisch zusammengefasst:

TABELLE 6. Ergebnisse für die untersuchten Systemmodelle

Modellname Ordnung Anzahl
Starrkörper

DFG-Größe Seq. Zykluszeit
T800, 20 MHz

Theoretischer
 max. Speedup

Aktive

Achsea

a. vgl. Abbildung 5-8

17 1 39 Knoten
57 Kanten

1,34 ms 1,59b (drei T800)

b. Dieser Wert ergibt sich durch Zeitmessung (gemessene parallele Rechenzeit = 0,84 ms)

Zweispurc

c. handcodiertes 3D-Fahrzeugmodell mit Aufbaumasse und 4 Radmassen ohne Antriebsstrang, siehe
[Stolpe et al. 1997]

 32 5 153 Knoten
 212 Kanten

51,3 ms 2,81 (vier T800)

EduTruckd

d. steht für Educational-Truck. Das Modell wird in [Hahn 1999] beschrieben

173 13 891 Knoten
 1.204 Kanten

91,4 ms 3,66 (vier T800)

 Verteilte Echtzeitsimulation 57

5.3.3 Zusammenfassung

Die untersuchten Systemmodelle besitzen feingranulare, dichte Datenflussgraphen mit inhärenter
Parallelität. Ein Speedup für die Simulation auf Transputer-Hardware war bereits recht begrenzt
(<4). Für moderne Plattformen lassen sich aufgrund eines ungünstigeren Verhältnisses zwischen
Rechen- und Kommunikationsgeschwindigkeit eher noch geringere Speedups erwarten. Will
man die topologische Aggregat-Struktur miteinbeziehen, verschärft sich die Situation weiter, da
zusätzlich einschränkende Randbedingungen erwachsen. Die rasante Prozessorentwicklung läuft
dieser feingranularen Art von Anwendungen gewissermaßen davon, da die Taktfrequenzen auf
lokal begrenzten, immer kleineren Prozessorkernen sehr viel schneller steigen als die mögliche
Kommunikationsgeschwindigkeit zum Systembus bzw. Netzwerk.

Dieses Ergebnis scheint zunächst gegen eine Parallelverarbeitung zu sprechen. Hier gilt es zu
bedenken, dass nur der Aspekt der Laufzeiteffizienz im Kontext einer schnellen Simulation von
Streckenmodellen betrachtet wurde. Diese Modelle bestehen aus den systembeschreibenden
Gleichungen zu Mechanik, Hydraulik und Elektrik der Strecke, die offensichtlich sehr feingranu-
lar verwoben sind (dichte Datenflussgraphen, d. h. mehr Kanten als Knoten). Im Fall der Modelle
"Aktive Achse" und "EduTruck" sind zwar noch die Controller auf AMS- und MFM-Ebene ent-
halten, sie machen aber nur einen sehr geringen Teil der Gleichungen aus.

Was spricht dennoch für eine Parallelverarbeitung auf AMS-/MFM-Ebene?

1. Die schrittweise Entwicklung komplexer mechatronischer Systeme funktioniert nur mit Hilfe

der HILS und erfordert die Verwendung von modularer Echtzeitsimulation ([Gambuzza

2002], [Gambuzza et al. 2003]) zur Nachbildung der Aggregat-Struktur des mechatronischen

Systems [Stolpe 2004].

2. Zum Rapid Prototyping der Informationsverarbeitung mechatronischer Systeme ([Stolpe et al.

2000], [Deppe at al. 2001/1], [Deppe at al. 2003/3], [Deppe, Zanella 2002]) während der HILS

und für den ersten Gesamtsystem-Prototypen ist eine Verteilung von Reglern/OCMs auf ver-

teilte Steuergeräte erforderlich.

3. Für sicherheitskritische Systeme ist die Vorhaltung von Redundanzen unverzichtbar.

Zusammenfassend lässt sich somit feststellen, daß eine Parallelverarbeitung auf AMS-/MFM-
Ebene unabdingbar ist, aber bei Schnitten durch Systemmodelle schnell zu einem Laufzeitanstieg
führen kann.

58 Verteilte Echtzeitsimulation

 Konzept zur verteilten Online-Mehrziel-Optimierung 59

6 Konzept zur verteilten Online-Mehrziel-Optimierung

6.1 Einleitung

Die Anwendungen der Online-Optimierung lassen sich nach [DFG-Antrag zum SFB 614 2001]
grob in zwei Klassen einteilen, die hier "modellbasierte Optimierung" und "Nachoptimierung
am realen System" genannt werden (vgl. auch Abbildung 6-2 und Abbildung 6-3):

Der Begriff "modellbasierte Optimierung" wird hier so verstanden, dass neue optimierte System-
parameter anhand eines Optimierungslaufs auf der Basis des erweiterten Streckenmodells (vgl.
Kap. 3.3) ermittelt und erst anschließend in geeigneter Weise (Übertragungs- und Überblend-
funktionen) auf die reale Strecke bzw. den realen Controller übertragen werden. Die Vorteile der
modellbasierten Optimierung sind:

• Keine Gefahr bei instabilem System-Verhalten während der Optimierung

• Optimierungen schneller als Echtzeit sind möglich (Vorhersagen)

• Anregungsart und -energie können frei gewählt werden

Die direkte Kopplung eines Optimierungslaufs mit einer realen Strecke ist nur für HILS-Anwen-
dungen geeignet. Eine Nachoptimierung am realen System benötigt eine Rückfallebene für den
Fall von instabilen Reglern und eine verstärkte Systemüberwachung. Bedingt durch den Opti-
mierungs-Algorithmus, kann es zur Auswahl von instabilen Parameter-Sätzen kommen. Für die
Nachoptimierung am HILS-Prüfstand dürfen Instabilitäten nur über wenige Abtastschritte auftre-
ten, bevor auf eine stabile Regelung zurückgeschaltet wird.

6.2 Modularität

Für die Implementierung von Online-Optimierung wurde am MLaP das sogenannte Operator-
Controller-Modul (OCM) konzipiert und weiterentwickelt [DFG-Antrag zum SFB 614 2001].
Das OCM lässt sich prinzipiell in zwei Bereiche einteilen: den ''Operator'' und den ''Controller''.
Der Operator beinhaltet die diskreten Elemente der Informationsverarbeitung, wie Notfall-Routi-
nen, Regler-Überwachung und die Optimierung. Der Controller umfasst die kontinuierlichen,
regelnden Teile der Informationsverarbeitung. Während der Controller im Wesentlichen auf der
''quasi-kontinuierlichen'' digitalen Regelungstheorie basiert, fußt der Operator auf diskreter
Logik. Implementierungstechniken umfassen z. B. Zustandsmaschinen und prozessbasierte
Systeme wie z. B. Work-Flow-Diagramme.

Die Funktionen ''Überwachung'' und ''Übertragung'' formen mittels spezieller Routinen kontinu-
ierliche Signale in diskrete Signale um und umgekehrt. Die Überwachung von Zustandsvariablen
des zeitkontinuierlichen Reglers und der physikalischen Strecke ist eine weitere wichtige Auf-
gabe, welche die Stabilität des Gesamtsystems bei Parameterwechseln in den Reglern sichert.

Zur Realisierung von hierarchischen und verteilten Optimierungsanwendungen auf Basis des
OCM ist ein entsprechendes Modularisierungskonzept erforderlich. Hier wird eine Einteilung in
drei Arten von Modulen vorgeschlagen, mit der auch komplexe OCMs verteilt und hierarchisch
umsetzbar sind (siehe auch Abbildung 6-1):

60 Konzept zur verteilten Online-Mehrziel-Optimierung

1. Optimierer :

Implementiert den eigentlichen Optimierungsalgorithmus und die Leitwarte zur Steuerung des

gesamten Ablaufs. In jeder Anwendung existiert nur genau ein Optimierer.

2. Evaluator (Bewerter):

Ist mit dem Optimierer verbunden und hat zwei Aufgaben: die Weitergabe von Parameterän-

derungen vom Optimierer zum Simulator und die Berechnung von Zielgrößen. Pro Anwen-

dung existieren beliebig viele Evaluatoren.

3. Simulator:
Simuliert die ODE-basierten Modelle der Anregung, des Controllers und der Strecke (System)

numerisch und implementiert Parameter-Übertragung, System-Überwachung und Controller-

Rückfallebene.

Durch diese Einteilung in die Optimierer-Evaluator-Simulator Struktur (OES) ergibt sich auch
der OES-Datenflussgraph, der als Basis für die verteilte Realisierung von OCMs verwendet wird:

Abbildung 6-1: Modularisierung und Datenfluss für ein OCM

Die Ankopplung eines realen, online zu optimierenden Systems mit Hilfe der Konzepte "modell-
basierte Optimierung" und "Nachoptimierung am realen System" ist kompatibel zum OES-
Modularisierungskonzept. Dies ist möglich, da sich Struktur und Schnittstelle des Simulator-
Moduls an der Umsetzung eines realen Systems orientieren. Für die "modellbasierte Optimie-
rung" wird nach dem erfolgreichen Optimierungslauf der OES-Module ein neuer Parametervek-

 Konzept zur verteilten Online-Mehrziel-Optimierung 61

tor auf das reale System aufgeschaltet:

Abbildung 6-2: Modellbasierte Optimierung mit Optimierer, Evaluator und Simulator

Für die "Nachoptimierung am realen System" entfällt das Simulator-Modul und wird durch das
reale System ersetzt:

Abbildung 6-3: Online-Nachoptimierung am realen System mit Optimierer und Evaluator

6.3 Hierarchie

Das MLaP-Konzept zur modular-hierarchischen Strukturierung mechatronischer Systeme (vgl.
Kap. 3.1) zeichnet sich dadurch aus, dass innerhalb eines Systems eine klare ebenenweise Hierar-
chisierung der OCMs existiert. Dabei hat jedes OCM die Fähigkeit zur modellbasierten Mehr-
ziel-Optimierung. Dazu wird ein mathematisches Modell der eigenen Ebene und der unterlager-
ten Ebenen (in geeigneter Modellierungstiefe) verwendet: Ein OCM auf MFM-Ebene beschreibt
das eigene MFM mit großer Modellierungstiefe, ein OCM auf AMS-Ebene beschreibt dasselbe
MFM mit geringerer Tiefe.

Modelliert wird sinnvollerweise das dynamische Verhalten der geregelten physikalischen Aggre-
gate der unterlagerten Ebenen. Eine Modellierung der gesamten Ebenen inklusive der Vorgänge
in den Operator-Teilen der unterlagerten OCMs ist nicht zielführend bzw. zu komplex.

62 Konzept zur verteilten Online-Mehrziel-Optimierung

Durch die enthaltenen erweiterten Systemmodelle zur modellbasierten Optimierung ist in einem
mechatronischen System quasi Wissen über die eigenen physikalischen Zusammenhänge und
Funktionsanforderungen abgelegt. Es ist dadurch möglich, modellbasierte Vorhersagen zu Reak-
tionen auf bestimmte Systemveränderungen (z. B. Parameteränderungen) zu treffen. Dieses Prin-
zip wird im Rahmen des Sonderforschungsbereichs 376 „Massive Parallelität - Algorithmen,
Entwurfsmethoden, Anwendungen“ als "Imagination", also als Vorstellung des Systems von sich
selbst, bezeichnet.

Abbildung 6-4 zeigt die ebenenweise Hierarchie der OCMs am Beispiel "Selbstorganisierendes
Kreuzungsmanagement" des SFB 376 (vgl. Kap. 7.4):

Abbildung 6-4: Ebenen AMS, VMS0, VMS1 und VMS2

Die VMS-Ebene ist in sich weiter hierarchisiert, so dass zwischen Fahrzeugkolonne (VMS0),
Kreuzungsmanagement (VMS1) und Verkehrsmanagement (VMS2) unterschieden wird. Die
VMS2-Ebene ist eine Betrachtung der Logistik (Verkehrsmanagement/Routenplanung) mit spe-
ziellen Modellen und Verfahren ausserhalb der Mechatronik.

6.3.1 Besonderheiten auf VMS1-Ebene

Zur Implementierung von Funktionen auf VMS1-Ebene, wie etwa ein selbstorganisierendes
Kreuzungsmanagement, ist die Verwendung von Inter-Fahrzeug Kommunikation (z.B. durch ein
Funknetzwerk) erforderlich, da sich die beteiligten Fahrzeuge ausserhalb des Bereiches von
KFZ-Umfeld-Sensorik befinden. Dies bedeutet, dass die OCMs auf VMS1-Ebene aller Fahr-

 Konzept zur verteilten Online-Mehrziel-Optimierung 63

zeuge gekoppelt sind und gemeinsam eine verteilte Online-Mehrziel-Optimierung durchführen
müssen. Innerhalb der Hierarchieebene VMS1 ist also die Kooperation der beteiligten OCMs
erforderlich.

Die nachfolgende Abbildung zeigt zwei denkbare Varianten zur Realisierung dieser Kooperation
von OCMs verschiedener Fahrzeuge auf Basis von OES-Datenflussgraphen:

Abbildung 6-5: Varianten von verteilten OES-Strukturen auf VMS1-Ebene

6.4 Parallelität

Ein wichtiges Hilfsmittel zur Umsetzung in eine ausreichend schnelle Online-Optimierung ist die
Parallelverarbeitung. Es lassen sich folgende Ebenen mit hohem Parallelisierungspotential iden-
tifizieren:

1. Optimierungsebene:
 Parallele Auswertung von unterschiedlich parametrierten Kopien der

 Systembewertung (Zielgrößenauswertung) durch mehrere Evaluatoren

2. VMS1-Ebene (vgl. Abbildung 6-5, Variante 1):
 Strukturbedingt vorhandene Parallelität durch die Vernetzung (einer zeitlich

 veränderlichen Anzahl) kooperierender OCMs

Auch die Kombination beider Ebenen ist möglich, so dass eine OES-Struktur mit mehreren Eva-
luatoren entsteht, die dann jeweils mehrere Simulatoren verwenden (vgl. Abbildung 6-5, Variante
2).

6.4.1 Optimierungsebene

Auf der Optimierungsebene wird davon ausgegangen, dass immer nur ein Optimierer während

64 Konzept zur verteilten Online-Mehrziel-Optimierung

eines Optimierungslaufs aktiv ist. Die Verkopplung von mehreren gleichzeitig aktiven Optimie-
rern führt zu großen Problemen und ist als zukünftiger Forschungsgegenstand anzusehen. Für
diese Anwendungsklasse ist das vorliegende OES-Konzept prinzipiell auch geeignet, löst aber
natürlich nicht deren mathematische und algorithmische Probleme. Eine Möglichkeit, ein Opti-
mierungsproblem in Teiloptimierungen zu zerlegen und diese wiederum so aufeinander abzu-
stimmen, dass ihre Lösung auch die Gesamtlösung der ursprünglichen Aufgabe darstellt, ist z. B.
durch theoretische Methoden der Optimierung dynamischer Systeme gegeben, die unter dem
Begriff "Dynamic Decomposition Principle" in der Literatur zu finden sind ([Wismer 1971],
[Lasdon 1970]).

Die verteilte Verarbeitung auf der Optimierungsebene beruht auf der nebenläufigen Auswertung
von Zielfunktionen. Deren Auswertung ist erfahrungsgemäß der bei weitem rechenintensivste
Teil eines Optimierungslaufs. Das Optimierungsverfahren an sich, d.h. der Algorithmus zur
Minimumsuche, soll nicht verteilt werden. Nach dem Fork-Join-Prinzip [Towsley et al. 1990]
erzeugt der Optimierungsalgorithmus unabhängige Parametervektoren, startet dann nebenläufige
Bewertungsprozesse (Fork) und wartet, bis die Ergebnisse aller Prozesse vorliegen (Join):

Abbildung 6-6: Paralleler Ablauf für die Mehrziel-Optimierung

6.4.2 VMS1-Ebene

Auf der Ebene der Vernetzten Mechatronischen Systeme (VMS1) führen die kooperierenden
OCMs der Einzelsysteme die Online-Optimierung gemeinsam durch. Da hier keine verteilten
Optimierungsalgorithmen betrachtet werden, existiert nur eine zentrale Instanz eines Optimierers
und des Evaluators.

Für die zentrale Optimierer-Instanz muss ein Einzelsystem ausgewählt werden (Leader-Elec-
tion). Die Evaluatoren und Simulatoren dagegen sind auf alle OCMs verteilt. Eine besondere
Eigenschaft von VMS1 in speziellen Anwendungen kann die zeitlich veränderliche Anzahl der
beteiligten Einzelsysteme sein. Für die Optimierung auf VMS1-Ebene ist eine dynamische Ver-
waltung der Simulatoren vorzusehen (da z. B. zeitlich veränderliche Anzahl von Fahrzeugen im

 Konzept zur verteilten Online-Mehrziel-Optimierung 65

Kreuzungsbereich).

6.5 Echtzeitverarbeitung

Nachfolgend werden die Maßnahmen zur Sicherstellung der Online-Fähigkeit eines Optimie-
rungslaufs beschrieben. Die Echtzeitfähigkeit der Informationsverarbeitung in mechatronischen
Systemen wird hier folgendermaßen definiert:

Eine Informationsverarbeitung ist echtzeitfähig, wenn das Maximum und die Schwankungs-

breite ihrer Reaktionszeit garantiert unterhalb der für ihre physikalische Umgebung als not-

wendig spezifizierten Schranken bleiben.

Als Reaktionszeit (Deadline) wird dabei die Zeit zwischen dem Einlesen von Messgrößen und
dem Aufschalten von Stellgrößen oder Parameteränderungen verstanden. Ein Überschreiten der
Reaktionszeit ist also unter allen Umständen zu vermeiden. Eine Maximierung der Unterschrei-
tung der Reaktionszeit bringt auf der anderen Seite aber auch keine Vorteile mit sich. Die Reakti-
onszeit wird insbesondere bei einer digitalen Realisierung immer einer gewissen Schwankungs-
breite (Jitter) unterliegen. Je nach Anwendungsfall darf eine bestimmte Schwankungsbreite nicht
überschritten werden. Die maximale Schwankungsbreite und die obere Zeitschranke für die
Reaktionszeit sind in der Entwurfsphase der Informationsverarbeitung festzulegen. Nachfolgend
wird eine Klassifizierung von Reaktionszeiten (Deadlines) vorgestellt, die zur Einteilung der
OES-Funktionen in Echtzeitklassen verwendet wird.

6.5.1 Klassen von Echtzeit-Tasks

Bei der Definition geeigneter Systemarchitekturen für Realzeitsysteme entsteht ein Konflikt zwi-
schen garantierbaren, deterministischen Ausführungszeiten und der nutzbaren Rechenleistung.
Bei einer ungünstigen Kombination von rechenintensiven Tasks und solchen mit kurzer Deadline
kann beispielsweise bei modernen Prozessoren mit Pipelines und Caches nur noch ein Bruchteil
der Rechenleistung genutzt werden. Die größte Rolle spielen hierbei die Kriterien "maximale
Reaktionszeit" und "rechnerische Komplexität". Bei Tasks mit sehr kurzer Deadline ist daher oft
eine Realisierung mit Hilfe von rekonfigurierbarer Hardware sinnvoller als eine Software-
Lösung [Bednara et al. 2003]. In [Färber et al. 1997] wird ein Modell zur Einteilung verschiede-
ner Tasks eines Realzeitsystems in Klassen vorgeschlagen:

• Klasse 0:
Tasks mit einer Deadline kürzer als 1 µs führen Funktionen sehr geringer Komplexität aus.

• Klasse 1:
Interrupthandler oder primäre Antworttasks mit sehr kurzen Antwortzeiten (einige µs) und

geringer Codegröße (weniger als 10.000 dynamische Instruktionen)

• Klasse 2:
Die Standard-Realzeittasks sind durch Deadlines ab 1 ms und Codegrößen im 5 bis 50-kByte-

Bereich charakterisiert.

66 Konzept zur verteilten Online-Mehrziel-Optimierung

• Klasse 3:
Sehr rechenintensive Tasks, z. B. Optimierungsaufgaben mit mehreren Millionen Instruktio-

nen, meist mit Antwortzeiten von 20 ms und mehr.

• Klasse 4:
Spezialisierte Aufgaben, z. B. Bildverarbeitung, die am besten von Spezialprozessoren ausge-

führt werden. Üblicherweise eine begrenzte Zahl wohldefinierter Algorithmen mit typischen

Antwortzeiten zwischen 20 ms und 400 ms.

6.5.2 Echtzeitfähigkeit für die Mehrziel-Optimierung

Zunächst wird der Begriff Online-Optimierung, wie er für diese Arbeit zugrunde gelegt wird
definiert. Diese Definition schließt ganz bewusst Aussagen über die Konvergenzgeschwindigkeit
von Optimierungsläufen aus, da es extrem schwierig ist, Konvergenzaussagen für komplexe
Mehrziel-Probleme zu treffen. Es wird mit der nachfolgenden eigenen Definition nur eine kon-
stante Anzahl von Optimierungsschritten pro Zeiteinheit gefordert:

Für eine Online-Optimierung muss sichergestellt sein, dass in einem bestimmten Zeitintervall

eine Mindestanzahl von Optimierungsschritten erfolgt. Das zeitliche Verhalten des Optimie-

rungsverfahrens und der Zielgrößenberechnung muss dazu echtzeitfähig sein. Das Finden

einer lokalen oder globalen Pareto-optimalen Lösung des Optimierungsproblems muss dabei

nicht garantiert sein.

Für eine Echtzeit-Informationsverarbeitung kann eine grobe empirische Zuordnung von Task-
klassen zu OES-Funktionen folgendermaßen lauten: Simulationen sind typischerweise im
Bereich Klasse 2, Bewertungen (Evaluatoren) im Bereich Klasse 2/3 und Optimierer im Bereich
Klasse 2 angesiedelt (frü MOPO vgl. Kap. 6.5.3). Damit ergibt sich für einen gesamten OES-
Ablauf der Bereich Klasse 3/4 (vgl. Abbildung 6-7).

Um diesen Anforderungen gerecht zu werden, ist eine effiziente Implementierung in Form von
kompilierbarem Code (z. B. ANSI-C Code) eine wichtige Voraussetzung. Für die Auswahl eines
geeigneten Optimierungsverfahrens sollte man sich auf lokale Verfahren (zur Berechnung einer

 Konzept zur verteilten Online-Mehrziel-Optimierung 67

Lösung) beschränken:

Abbildung 6-7: Taskklassen für die Online-Optimierung

6.5.3 Laufzeitverhalten des MOPO-Gradientenverfahrens

Für die Echtzeitfähigkeit des Optimierungslaufs ist die Dauer des längsten Berechnungspfades
(WCET) von entscheidender Bedeutung. Aufgrund der Komplexität der Algorithmen wird vor-
geschlagen, das Laufzeitverhalten der Optimierungsalgorithmen über eine Messung auf der
jeweiligen Zielhardware zu bestimmen. Hier gibt es zwei Möglichkeiten, um die Ausführungs-
zeit für den längsten Berechnungspfad zu messen:

1. Messung des Laufzeitverhaltens für ein bekanntes Optimierungsproblem und ggf. Hochrech-

nung auf den längsten Berechnungspfad, falls dieser nicht oder selten durchlaufen wird.

2. Implementierung eines Messlaufes in der Software, der garantiert den längsten Pfad durch-

läuft, dabei aber keine sinnvolle Lösung eines Optimierungsproblems liefert.

Im Folgenden wird exemplarisch eine Messung auf einer LINUX-Workstation beschrieben.
Beim hier vorgestellten Gradientenverfahren ergibt sich der längste Pfad aus zwei dominierenden
Anteilen. Dies sind die Bestimmung der Suchrichtung dk (lokales Problem) im Parameterraum
und die Ermittlung der optimalen Schrittweite für das Fortschreiten in die gefundene Rich-
tung (globales Problem). Pro Optimierungsschritt wird entweder die Suchrichtungsbestimmung
oder die Bestimmung der Schrittweite notwendig. Es werden daher beide Algorithmen getrennt
betrachtet.

Lokales Problem

Die Bestimmung der Suchrichtung -dk wird als quadratisches Optimierungsproblem formuliert
[Münch 2001]. Dieses Problem wird in der beschriebenen Implementierung mit Hilfe der Active-

λk

68 Konzept zur verteilten Online-Mehrziel-Optimierung

Set-Methode [Gill, Murray 1978] gelöst. Bei nz Zielgrößen müssen im Zuge dieses Verfahrens
lineare Gleichungssysteme mit variablen Ordnungen zwischen zwei und nz gelöst werden. Eine
Messung auf einer LINUX-Workstation (siehe Tabelle 7) ergab das Zeitverhalten für das Lösen
von linearen Gleichungssystemen. Die Kurven "Minimale Zeit für ein Gleichungssystem" und
"Maximale Zeit für ein Gleichungssystem" in Abbildung 6-8 zeigen das Zeitverhalten, aufgetra-
gen über die Ordnung des Gleichungssystems. Man bleibt bis zur Ordnung 10 unterhalb von
0,5Millisekunden (0,416 ms).

TABELLE 7. Randbedingungen für die durchgeführte Messung

Für die Active-Set-Methode sind die Laufzeiten im Diagramm unter "minimale gemessene
Gesamtzeit", "mittlere gemessene Gesamtzeit" und "maximale gemessene Gesamtzeit" ablesbar.
Für die Ordnung 10 ergibt sich eine maximale Laufzeit von 2,12Millisekunden. Die starke Streu-
ung begründet sich in der variablen Ordnung der bei der Active-Set-Methode zu lösenden Glei-
chungssysteme, die problemabhängig variiert. Daher wird für die Abschätzung einer Obergrenze
die Annahme getroffen, dass alle zu lösenden Gleichungssysteme immer die maximal mögliche
Ordnung nz besitzen. Dazu wird die maximale Zeit zur Lösung eines Gleichungssystems mit nz
multipliziert. Den entsprechenden Kurvenverlauf findet man als "geschätzte maximale Gesamt-
zeit", der sich durch ein Polynom 4. Ordnung approximieren läßt. Man erkennt eine pessimisti-
sche Abschätzung, die immer über den gemessenen maximalen Werten liegen wird. Bei nz=10
schätzt man 4,16Millisekunden im Vergleich zu maximal gemessenen 2,12Millisekunden:

Abbildung 6-8: Zeitaufwand für die Suchrichtungsbestimmung

Kategorie Randbedingungen

Hardware PentiumII-400, 384 MB RAM

Betriebssystem SuSE-Linux 7.0, glibc-2.1.3, SuSE-Kernel 2.2.16 (Pentium optimiert)

Compiler gcc-2.95.2, keine Optimierungen

 Konzept zur verteilten Online-Mehrziel-Optimierung 69

Globales Problem

Bei bekannter Suchrichtung muß das sog. globale, nichtlineare Problem gelöst werden. Hier soll
die optimale Schrittweite für das Fortschreiten in die Richtung dk ermittelt werden, so dass sich
eine möglichst große Verbesserung aller Zielgrößen ergibt. Dazu wird eine iterative eindimensio-
nale Minimumsuche (Liniensuche) verwendet. Es wird solange iteriert, bis sich eine Zielgröße
verschlechtert. Tritt bereits beim ersten Schritt der Minimumsuche eine Verschlechterung einer
Zielgröße auf, so wird die Iteration von dort aus rückwärts weitergeführt. Beim Vorwärtsschrei-
ten wird die Schrittweite in jedem Schritt verdoppelt, beim Rückwärtsschreiten in jedem Schritt
halbiert. Mit Hilfe der letzten zulässigen Zielfunktionswerte wird abschließend für jede Ziel-
größe eine quadratische Interpolation durchgeführt. Als Ergebnis erhält man eine Schrittweite
für jede einzelne Zielgröße, die anhand der Lage des Minimums der interpolierten Zielfunktion
ausgewählt wird. Als globale Schrittweite wird der kleinste -Wert ausgewählt.

Abbildung 6-9 verdeutlicht den Zusammenhang zwischen der Dauer der Interpolationen und der
Anzahl der Zielgrößen. Der Zusammenhang ist, wie erwartet, quasi-linear. Die Rechenzeiten sind
um zwei Größenordnungen geringer als die Zeiten zur Suchrichtungsbestimmung:

Abbildung 6-9: Zeitaufwand für die Interpolation beim globalen Problem

Ergebnis

Es zeigt sich, dass die Bestimmung der Suchrichtung dk den größten Rechenaufwand verursacht
und damit den längsten Berechnungspfad bestimmt (vgl. Tabelle 8). Für die beschriebene Rech-
nerkonfiguration konnte exemplarisch eine Obergrenze ermittelt werden, welche die maximale
Rechenzeit durch ein Polynom 4. Ordnung in Abhängigkeit der Zielgrößenanzahl beschreibt. Für
andere Rechnersysteme bzw. Echtzeitsysteme ist eine ähnliche Charakteristik zu erwarten, die
jedoch individuell durch Messung der Zeiten ermittelt werden muss.

Die maximale Berechnungsdauer ist im Wesentlichen von der Anzahl der Zielgrößen abhängig.

λi

λi

70 Konzept zur verteilten Online-Mehrziel-Optimierung

Die Anzahl np der Parameter hat weniger Bedeutung (hier wird eine Parameteranzahl von 10 ver-
wendet). Allerdings gilt es zu berücksichtigen, dass sich durch die implizite Berücksichtigung
von Parameterschranken die Zahl der Zielfunktionen dynamisch ändern kann. Während weniger
Optimierungsschritte müssen evtl. Parameter durch künstliche Zielfunktionen beschränkt wer-
den, d. h. für eine sichere Abschätzung bzw. Messung muss von einer maximalen Zielgrößenan-
zahl nz + np ausgegangen werden.

TABELLE 8. Maximal zu erwartende Rechenzeiten für die beschriebene Rechnerkonfiguration

6.5.4 Prinzip der Vorausschau

Setzt man die Echtzeitbedingungen für einen Optimierungslauf fest, so ist dies von der spezifi-
schen Anwendungssituation abhängig. Ist man aufgrund ausreichender Rechenleistung dazu in
der Lage, die Bewertung (Evaluation) schneller als in Echtzeit auszuführen, dann ist eine modell-
basierte zeitliche Vorhersage der unmittelbaren Zukunft möglich.

Bildet man den Quotienten aus der im Modell fortschreitenden Zeit ("Modellzeit") und der tat-
sächlich verstreichenden physikalischen Rechenzeit ("Realzeit") pro Evaluierung, so ergibt sich
der hier eingeführte Echtzeitfaktor . Wenn dieser größer als 1 ist, so sind zeitliche Vorhersa-
gen für die Bewertung möglich:

(6.1)

Wählt man die vorgegebene Maximalanzahl nopt,max von Optimierungsschritten kleiner als den
Echtzeitfaktor, so ist eine Vorab-Optimierung von Situationen der unmittelbaren Zukunft mög-
lich. Die Zeit für den gesamten Optimierungslauf ist dann kleiner als das zugrundeliegende
Modellzeitintervall (vgl. Tabelle 9). Diese Technik der Vorab-Optimierung wird z. B. für das
Kreuzungsmanagement verwendet, um in ausreichender Entfernung vor der Kreuzung bereits
deren Überquerung zu optimieren:

(6.2)

Anzahl Zielgrößen 2 3 4 5 6 7 8 9 10

TMax für [ms] 0,028 0,096 0,232 0,500 0,804 1,302 1,986 2,880 4,160

TMax für [ms]a

a. Die Tabellenwerte für 7, 8, 9 und 10 Zielgrößen sind linear extrapoliert

0,005 0,007 0,0088 0,011 0,013 0,014 0,016 0,018 0,019

dk

λk

τRT

τRT

TModell

TRealzeit

-------------------=

TOptimierung nopt max, TRealzeit⋅ nopt max,
TModell

τRT

-----------------⋅= =

 Konzept zur verteilten Online-Mehrziel-Optimierung 71

TABELLE 9. Beispiel-Parameter für eine Vorab-Optimierung

6.5.5 Verschiedene Taktraten

Bildet man die OES-Funktionen im Rechner ab, so müssen die verschiedenen Taktraten des Opti-
mierungslaufs berücksichtigt werden. Da die Systembewertung sich üblicherweise auf ein vorge-
gebenes Modellzeitintervall bezieht, werden Simulator und Evaluator zwangsläufig häufiger aus-
gewertet als der Optimierer. Simulator und Evaluator müssen nicht mit identischer Taktrate
ausgewertet werden. Es entsteht ein Multirate-System mit bis zu drei Taktraten (Optimierungs-,
Evaluator-, Simulator-Taktrate).

Dieses Multirate-System lässt sich nicht vergleichen mit Multirate-Simulationen von Systemmo-
dellen, die numerisch sehr schwierig zu handhaben sind, da im Regelfall Rückkopplungen über
Taktgrenzen hinweg bestehen [Rükgauer 1996]. Die Rückkopplung zwischen Evaluator und
Optimierer und zwischen Evaluator und Simulator ist ablaufgeprägt, d. h. Daten werden zu ande-
ren Teilen erst dann zurückgegeben, wenn der eigene Durchlauf (eine ganze Simulation oder eine
ganze Bewertung) vollständig ist. Hier gibt es also keine Notwendigkeit zur Interpolation oder
Extrapolation von Daten zwischen OES-Funktionen.

Für eine echtzeitfähige Single-Prozessor-Anwendung sollen die OES-Funktionen auf präemptive
Tasks abgebildet werden. Die präemptiven Tasks ermöglichen eine ungestörte Verarbeitung des
reinen Reglercodes (Controller) als hochpriorisierte Task, die mit möglichst geringer und kon-
stanter Totzeit ausgeführt werden muss. Besonders im Hinblick auf die hohen Rechenzeitanfor-
derungen durch Bewertungs- und Optimierungsalgorithmen sind diese besonderen Vorkehrungen
unbedingt zu treffen.

6.6 Parallelisierung des MOPO-Verfahrens

Die Idee der Parallelverarbeitung in MOPO (Multi-Objective Parameter Optimization) beruht auf
der Nutzung von unterschiedlich parametrierten, parallel rechnenden Kopien der Systembewer-
tung. Dieses Konzept [Deppe et al. 2003/1] ist sehr erfolgversprechend, da die Erfahrung zeigt,
dass in praktischen Anwendungen der Mechatronik die Rechenlast der eigentlichen Optimie-
rungsalgorithmen gegenüber den Zielfunktionsauswertungen vernachlässigbar klein ist. Ent-
scheidend für eine effiziente Parallelverarbeitung ist daher die Fähigkeit eines Optimierungsver-
fahrens, möglichst viele Systembewertungs-Instanzen gleichzeitig nutzen zu können.
Nachfolgend werden die dazu implementierten Möglichkeiten für das MOPO-Gradienten- und -
Quasi-Newton-Verfahren vorgestellt.

Modellzeit [s] Echzeitfaktor Vorgegebene Anzahl
von Optimierungs-
schritten

Benötigte
Optimierungszeit [s]

100 20.000 nopt,max=100 0,5

100 20.000 nopt,max=200 1,0

TModell τRT

72 Konzept zur verteilten Online-Mehrziel-Optimierung

6.6.1 Performance Kriterien

Nach [Lootsma 1985] sind die wichtigsten "Performance"-Kriterien für die Mehrziel-Optimie-

rung auf Parallelrechnern Robustheit (d. h. Eignung der Optimierungsmethode das spezifische

Problem hinreichend genau zu lösen), Kapazität (d. h. Maximale Problemgröße, die gelöst wer-

den kann) und Effizienz. Dabei ist für das letztere Kriterium völlig offen, wie es bestimmt wer-

den kann. Folgende Vergleiche zur Bestimmung von Effizienz wären z. B. denkbar:

• Vergleich eines parallelen Algorithmus und des entsprechenden sequentiellen auf einem Paral-

lelrechner

• Vergleich verschiedener paralleler Algorithmen auf einer identischen parallelen Hardware

• Vergleich verschiedener Parallelrechner-Architekturen für einen identischen parallelen Algo-

rithmus

Hier wird für die Mehrziel-Optimierung das MOPO-Verfahren vorgeschlagen, da es im Laufe der

Jahre speziell an die Problemstellungen der Mechatronik angepasst wurde und daher Robustheit

bieten kann. Die Kapazität des Gradienten- und Quasi-Newton-Verfahrens ist für kleine (bis 30

Zielgrößen/Parameter) und mittlere (bis 100 Zielgrößen/Parameter) Probleme geeignet [Lootsma

1985].

6.6.2 MOPO-Gradientenverfahren

Das Gradientenverfahren besteht aus dem lokalen und dem globalen Schritt (vgl. Kap. 4.8).

Beide Schritte bieten unterschiedlich gute Möglichkeiten zur parallelen Implementierung.

Lokales Problem

Für den lokalen Schritt werden die Zielgrößen zur Ermittlung der Empfindlichkeitsmatrix S

benötigt (vgl. Kap. 4.8.1). Diese hat die Dimension np x nz (mit np Parameteranzahl und nz als

Zielgrößenanzahl). Zur Berechnung der Empfindlichkeitsmatrix werden ausgehend vom aktuel-

len Parametervektor p alle skalaren Elemente pi einzeln um ∆p ausgelenkt. Die resultierende

Parametermatrix P hat folgende Form:

(6.3)

Verwendet man eine Differentiation 1. Ordnung zur Gradientenberechnung, so müssen pro Zeile

der Empfindlichkeitsmatrix S alle Zielgrößendifferenzen zwischen Parametervektor p und zuge-

hörigem Zeilenvektor der Parametermatrix P bestimmt werden:

P ∆p I⋅
p

…
p

+

∆p p1+() … pnz

… … …
p1 … ∆p pnz

+()

= =

 Konzept zur verteilten Online-Mehrziel-Optimierung 73

 (6.4)

Die Berechnung der Gradienten in der Empfindlichkeitsmatrix erfolgt im Optimierer, dazu muss
der Evaluator alle Zielfunktionen der Matrix Z berechnen und an den Optimierer zurücksenden:

(6.5)

Differentiation 2. Ordnung

Verwendet man eine Differentiation 2. Ordnung zur Gradientenberechnung, so werden für die
partiellen Ableitungen der Zielfunktionen ein vorangegangener Parameter-Stützpunkt pk und
zwei neue Parameter-Stützpunkte (pk+∆p und pk-∆p) benötigt. Damit verdoppelt sich die Zei-
lenanzahl von Z, d. h. der Evaluator muss doppelt so viele Zielgrößen berechnen:

(6.6)

Die MOPO-Algorithmen sind so realisiert, dass sie unabhängige Parametervektoren erzeugen,
die zu einer parallelen Zielfunktionsauswertung genutzt werden. Die nachfolgende Abbildung
zeigt ein gedachtes Szenario mit 4 Zielfunktionen und 4 Parametern und Differentation
1. Ordnung. Die 16 skalaren Elemente der Matrix Z werden 8 Evaluatoren zugeordnet, die dann
in einem Prozessornetzwerk verteilt werden können. Die Zuordnung zu Evaluatoren richtet sich
nach praktischen Gesichtspunkten der jeweiligen Anwendung: Etwa falls Zielfunktionen von
verschiedenen Arten von (Evaluator-)Software-Werkzeugen berechnet werden müssen, da sie
spezifisch Zeit- oder Frequenzbereich oder der linearen- oder der nichtlineare-Analyse zugeord-
net sind. Speziell wenn ein Evaluator die Ergebnisse eines Simulators für die Berechnung mehre-
rer Zielfunktionen einer Zeile von Z verwenden kann ist es sinnvoll mehrerer Zielfunktionen in

S1

z1 ∆p p1+() … pnz   z1 p()–

p∆
--- …

znz
∆p p1+() … pnz   znz

p()–

p∆
--

… … …

z1 p1 … ∆p pnz
+()   z1 p()–

p∆
--- …

znz
p1 … ∆p pnz

+()   znz
p()–

p∆
--

=

Z1

z1 ∆p p1+() … pnz   … znz
∆p p1+() … pnz  

… … …

z1 p1 … ∆p pnz
+()   … znz

p1 … ∆p pnz
+()  =

Z2

z1 p1 p∆+() z2 p1 p∆+() … znz
p1 p∆+()

z1 p1 p∆–() z2 p1 p∆–() … znz
p1 p∆–()

… … … …
z1 pnp

p∆+() z2 pnp
p∆+() … znz

pnp
p∆+()

z1 pnp
p∆–() z2 pnp

p∆–() … znz
pnp

p∆–()

=

74 Konzept zur verteilten Online-Mehrziel-Optimierung

einer Evaluator-Instanz zu berechnen:

Abbildung 6-10: Beispiel für die parallele Auswertung einer Matrix Z

Sind alle Elemente von Z sinnvoll unabhängig auswertbar, so ergibt sich die theoretisch maximal
verwendbare Prozessoranzahl NP für eine Parallelverarbeitung des lokalen Problems zu (nD ist
die Ordnung des verwendeten numerischen Differentationsverfahrens):

(6.7)

Globales Problem

Bei bekannter Suchrichtung muss noch das globale Problem gelöst werden. Hier soll die opti-
male Schrittweite für das Fortschreiten in die im lokalen Schritt gefundene Richtung dk ermit-
telt werden, so dass sich eine möglichst große Verbesserung der Zielgrößen ergibt. Dazu wird
eine iterative eindimensionale Minimumsuche pro Zielfunktion verwendet:

Die Strategie für die Parallelisierung dieses iterativen Suchvorgangs ist die spekulative Vorabaus-
wertung mehrerer Stützstellen. Dazu wird in einem Raster mit Schrittweitenverdopplung ein
Parametervektor bestimmt, für den die Zielgrößen parallel ermittelt werden können. Abbildung
6-11 zeigt hierfür ein Beispiel: In zwei parallelen Schritten wird die Zielfunktion für je drei
Stützstellen gleichzeitig ausgewertet. Das Minimum der Zielfunktion wird zwischen und
lokalisiert, die spekulative Berechnung von war eigentlich unnötig.

Die Umsetzung ist aufgrund einer Vielzahl von zu beachtenden Sonderfällen mit erheblichem

NP nD np nz⋅ ⋅=

λk

p
k 1+

p
k

λk dk⋅+=

λ4 λ5

λ6

 Konzept zur verteilten Online-Mehrziel-Optimierung 75

Programmieraufwand verbunden:

Abbildung 6-11: Parallele Auswertung bei der eindimensionalen Minimumsuche

Zusammenfassung

Durch diese Strategie zur Parallelisierung des globalen Schritts eignet sich das Gradientenverfah-
ren sehr gut für die Parallelverarbeitung. Nachfolgend ist der Programmablauf für das Gradien-
tenverfahren inkl. paralleler Zielgrößenauswertung dargestellt:

Abbildung 6-12: Flussdiagramm für das Gradientenverfahren

6.6.3 MOPO-Quasi-Newton-Verfahren

Beim Quasi-Newton Verfahren wird die Auswertung der Zielfunktionen zur Gradientenberech-

76 Konzept zur verteilten Online-Mehrziel-Optimierung

nung benötigt. Die weitere Auswertung von Zielfunktionen stützt sich anschließend rein auf die
gefundenen analytischen Ersatz-Zielfunktionen 2. Ordnung. Das Quasi-Newton-Verfahren hat
also für die Gradientenberechnung das gleiche Parallelisierungspotential in der Zielfunktionsaus-
wertung wie der lokale Schritt des Gradientenverfahrens. Dagegen steht ein insgesamt höherer
Rechenaufwand für die sequentiell implementierten internen Berechnungen durch Schätzung der
Hesse-Matrix und Lösung des Ersatzproblems. Diese sequentiellen Berechnungen haben aller-
dings nur eine geringe Auswirkung auf die erzielbare Leistungssteigerung durch die parallele
Zielgrößenberechnung:

Abbildung 6-13: Flussdiagramm für das Quasi-Newton-Verfahren

 Anwendungsbeispiele 77

7 Anwendungsbeispiele
Nachfolgend werden drei Anwendungsbeispiele mit jeweils unterschiedlichen Schwerpunkten in
Bezug auf den Anwendungsfall für die Online-Mehrziel-Optimierung vorgestellt:

Die Regleroptimierung auf AMS-Ebene für ein aktiv gefedertes Fahrzeug (als Einspurmodell mit
Knickfreiheitsgrad modelliert) entspricht einem "Standard-Anwendungsfall" zur Reglersynthese
während des Systementwurfs, daher wird er hier aufgenommen. Eine verteilte Verarbeitung ist
dabei zur Zeitersparnis bei der Behandlung sehr komplexer Systeme von großer Bedeutung.
Aspekte wie Echtzeit und Multitasking sind nicht relevant.

Für das Feder-/Neigemodul der NBP-Shuttles (Railcabs) steht ein HILS-Prüfstand zur Verfü-
gung, der sehr gut für die Überprüfung der Ergebnisse im Bereich der Online-Fähigkeit der
Mehrziel-Optimierung geeignet ist. Hier wird auf einem multitaskingfähigen Echtzeitsystem eine
Regler-Nachoptimierung auf MFM-Ebene unter Echtzeitbedingungen implementiert.

Die komplexeste Anwendung ist das selbstorganisierende Kreuzungsmanagement. Prinzipbe-
dingt unterliegt es harten Echtzeitbedingungen. Zum jetzigen Zeitpunkt ist allerdings nur eine
Offline-Variante implementiert, wobei konzeptionell eine spätere Echtzeitverarbeitung stets mit-
bedacht wird. Das Kreuzungsmanagement zeichnet sich durch eine hochgradig verteilte Verar-
beitung mit gleichzeitiger dynamischer Anzahl von beteiligten Fahrzeugen aus. Das Anwen-
dungsbeispiel Kreuzungsmanagement zeigt die grundlegenden Verfahren zur
Kollisionsvermeidung und eine exemplarische, modellbasierte Mehrziel-Optimierung auf VMS-
Ebene auf.

7.1 Kriterien zur Auswahl der Anwendungsbeispiele

Insgesamt wird nach den folgenden vier Kriterien unterschieden, um die Beispiele zu charakteri-
sieren:

1. Hierarchieebene:
Auf welcher Hierarchieebene ist das Optimierungsexperiment angesiedelt?

2. Echtzeit:
Unterliegt die Anwendung inkl. der Mehrziel-Optimierung harten Echtzeitbedingungen?

3. Multitasking :

Muss ein präemptives Multitasking verwendet werden, um mehrere Taktraten abzubilden?

4. Verteilt :

Ist eine verteilte Verarbeitung sinnvoll bzw. inhärent durch die Anwendung vorgezeichnet?

78 Anwendungsbeispiele

Tabelle 10 gibt den entsprechenden Überblick über die Eigenschaften der Anwendungsbeispiele:

TABELLE 10. Eigenschaften der Anwendungsbeispiele

7.2 Regleroptimierung der aktiven Federung an einem Einspurmodell

Für die Anwendung der Mehrziel-Optimierung in den frühen Phasen der Entwicklung eines
mechatronischen Systems beginnt man sinnvollerweise mit linearen Modellen und greift auf PC-
basierte Hard- und Software zurück. Der Aspekt der Online-Fähigkeit steht damit zunächst nicht
im Vordergrund. Allerdings kann die Einbeziehung der Parallelverarbeitung für die Optimierung
sehr komplexer Systemmodelle von Anfang an nützlich oder sogar notwendig sein. Am Beispiel
einer Regleroptimierung für das aktive Fahrwerk eines Einspurmodells auf AMS-Ebene (vgl.
Abbildung 7-2) wird das typische Vorgehen für eine Mehrziel-Optimierung in frühen Entwick-
lungsphasen erläutert. Insbesondere das Instrumentarium zur Systembewertung mit Hilfe der
Theorie linearer Systeme (Varianzen, Pollagen etc.) spielt dabei eine große Rolle.

7.2.1 Fahrzeugmodell

Zugrundegelegt wird ein aktiv gefedertes Einspurmodell mit hydraulischen ABC-Federbeinen
(Active Body Control [Hestermeyer et al. 2001]) auf MFM-Ebene. Der Fahrzeugaufbau des phy-
sikalischen Ersatzmodells besteht aus zwei Starrkörpern, die sich gegeneinander verdrehen las-
sen (Knickfreiheitsgrad mit Drehsteifigkeit). Mit diesem Freiheitsgrad lässt sich in erster Nähe-

Optimierungs-
Anwendung

Hierarchie-
ebene

Echtzeit Multi-
tasking

Verteilt Gewählte
Rechnerplattform

Aktiv gefedertes
Einspurmodell

AMS X Workstation-Cluster
(Linux/Windows)

Bahntechnik
Feder-/Neige-Modul

MFM X X (X)a

a. War aufgrund der Leistungsfähigkeit der gewählten Rechnerplattform nicht notwendig

Power PC 750
(dSPACE RTK)

Selbstorganisierendes
Kreuzungsmanage-
ment

VMS (X)b

b. Fernziel für eine spätere reale Umsetzung

(X) X Workstation-Cluster
(Linux/Windows)

 Anwendungsbeispiele 79

rung die Karosseriedurchbiegung eines Fahrzeugs modellieren:

Abbildung 7-1: CAMeL-View-Modell des aktiv gefederten Einspurmodells

Die Räder sind auch Starrkörper modelliert. Die Radmassen sind über die Reifensteifigkeit
(lineares Feder-/Dämpfergesetz) mit der Straße verbunden. Die Hydraulik der ABC-Federbeine
wird vereinfacht als idealer Kraftsteller modelliert. Es ergeben sich somit fünf mechanische Frei-
heitsgrade für die Vertikaldynamik des Modells. Insgesamt ergibt sich ein System 10. Ordnung.
Dieses Fahrzeugmodell wird mit Hilfe von CAMeL-View (vgl. Abbildung 7-1) auf der Basis von
Minimalkoordinaten [Hahn 1999] modelliert:

Abbildung 7-2: Controller auf AMS-Ebene und physikalisches Ersatzmodell

Die Vertikaldynamik des Modells ist überwiegend linear modelliert allerdings ergibt sich durch
die Kinematik des Knickens eine Nichtlinearität, die jedoch für kleine Auslenkungen als quasi

80 Anwendungsbeispiele

linear angesehen werden kann. Der zu optimierende Regler ist ebenfalls linear.

Das Fahrzeugmodell ist so modelliert, dass auch die Bewegung in Quer- und Längsrichtung mög-
lich ist (Antrieb und Lenken). Dadurch enthält die Verhaltensebene des Modells (Zustands-
raumdarstellung in ODSL, [Hahn 1999]) eine Vielzahl von Nichtlinearitäten zur Koordinaten-
transformation vom Fahrzeug-Koordinatensystem in das inertiale Koordinatensystem (Quer- und
Längsrichtung).

Die Aufgabenstellung für die Regelung auf AMS-Ebene besteht darin, die optimalen Sollwerte
(Vertikalkräfte) für die ABC-Federbeine auf MFM-Ebene vorzugeben. Als Messgrößen stehen
die Radlagen (zrH, zrV), die Aufbaulagen (zaH, zaV), der Knickwinkel und alle zugehörigen
Geschwindigkeiten zur Verfügung (vgl. Abbildung 7-2).

7.2.2 Softwarearchitektur

Bevor das eigentliche Optimierungsexperiment im nächsten Abschnitt beschrieben wird, soll auf
die verwendete Software und deren Architektur eingegangen werden. Ein wichtiger Bestandteil
ist das Werkzeug Scilab, das sehr gut für die Implementierung eines Evaluators zur Offline-
Systembewertung geeignet ist.

Scilab

Scilab, entwickelt seit 1989 durch INRIA (Institut National de Recherche en Informatique et
Automatique), ist eine offene Software-Umgebung für numerische Berechnungen im Bereich
wissenschaftlicher Anwendungen. Die Software ist seit 1994 im Internet frei verfügbar (Scilab
Homepage: http://www-rocq.inria.fr/scilab) und wird einschließlich Quellcode ausgeliefert. Seit
2003 existiert auch ein Scilab-Konsortium (Homepage: http://www.scilab.org).

Scilab enthält eine Vielzahl von hochwertigen mathematischen Funktionen aus folgenden Berei-
chen:

• Lösungen linearer Gleichungssysteme (auch dünn besetzter)

• Berechnung von Eigenwerten und Eigenvektoren

• Singulärwertzerlegung und Pseudo-Inverse

• schnelle Fourier-Transformation

• mehrere Methoden zur Lösung von (auch steifen) Differentialgleichungen

• mehrere Optimierungsverfahren

• Lösung nichtlinearer Gleichungssysteme

• mehrere Methoden der linearen Algebra für optimale Steuerungen

Scilab bietet auch die Möglichkeit, eigene Erweiterungen in Form von C- oder FORTRAN 77-
Funktionen hinzuzufügen. Das Werkzeug verfügt über einen Interpreter und eine eigene Pro-
grammiersprache, die Matrizen als integralen Bestandteil hat. Aus eigenen C- oder
FORTRAN 77-Hauptprogrammen heraus kann man Scilab auch als Bibliothek einbinden. Dazu
wird die Software als "Engine" ohne eigene Oberfläche zum eigenen Programm hinzugelinkt.

Ab Version 2.7 verwendet Scilab die FORTRAN 77 LAPACK-Programmbibliotheken (http://

ϕ

 Anwendungsbeispiele 81

www.netlib.org/lapack/). Sie enthalten Unterprogramme zur numerischen Lösung der häufigsten
Aufgaben aus den Gebieten lineare Algebra, lineare Gleichungssysteme, Methode der kleinsten
Quadrate und Eigenwerte von Matrizen. LAPACK stützt sich wiederum auf die BLAS Level 3
(Basic Linear Algebra Subprograms, http://www.netlib.org/blas/) Programmbibliotheken, die
jeweils spezifisch pro Rechnerplattform implementiert und optimiert sind.

Scilab läuft auf den meisten Unix-Systemen einschließlich Linux und auf Windows 9X/NT/
2000/XP und vereint insgesamt folgende Vorteile in sich:

• Moderne, leistungsfähige Numerik, die schnelle und genaue Ergebnisse liefert

• Offenheit

• Freie Verfügbarkeit

• Plattformunabhängigkeit

• Interpretierte oder kompilierte Verarbeitung nach Bedarf

• Einfach Integrierbarkeit in eigene Anwendungen

Optimierer-Evaluator-Simulator-Struktur

Zur Umsetzung der Anwendung wird die einfachste OES-Struktur in Form eines Optimierers,
eines Evaluators und eines Simulators verwendet. Der Optimierer wird durch MOPO bereitge-
stellt und über eine TCP/IP-Schnittstelle mit dem Evaluator verbunden. Dieser besteht aus einer
Scilab-Engine (extern gesteuerte Scilab-Anwendung ohne Anwenderoberfläche). Der Evaluator
ist wiederum über eine TCP/IP-Schnittstelle (Sci-Server genannt) mit dem Simulator verbunden.
Der Simulator wird durch die Simulationsplattform IPANEMA implementiert.

Die Offline-IPANEMA-Anwendung mit je einem Moderator, Assistant und Calculator kann
automatisch aus CAMeL-View generiert werden. Der Calculator enthält das Fahrzeugmodell in
Form von kompiliertem C-Code. Für den Evaluator stellt IPANEMA die Dienste Simulation und

82 Anwendungsbeispiele

numerische Linearisierung zur Verfügung:

Abbildung 7-3: OES-Struktur für die Optimierung des Einspurmodells

7.2.3 Optimierungsexperiment

Die Aufgabenstellung für die Optimierung besteht darin, die Reglerparameter der AMS-Ebene
zur Berechnung der Sollvertikalkräfte für die ABC-Federbeine auf MFM-Ebene anzupassen.
Ausgangspunkt ist das passive System, d. h. der Kraftsteller ist starr und die Reglerparameter
(vgl. Tabelle 12) sind Null. Zielsetzung für die Optimierung ist es, die Aufbaubeschleunigung
weiter zu vermindern, die dynamische Radlastschwankung weiter zu minimieren und gleichzei-
tig das Knicken erheblich besser zu dämpfen. Dabei ist das passive System bereits gut abge-
stimmt, hat allerdings eine geringe Knickdämpfung. Diese Forderungen werden mit Hilfe von
sechs Zielgrößen (vgl. Tabelle 11) mathematisch formuliert. Als Modelleingänge dienen stocha-
stische Anregungen aus dem Straßenprofil (zsH, zsV).

Die Zielgrößen werden auf der Basis des numerisch linearisierten Systemmodells ermittelt. Wird
ein Reglerparameter durch den Optimierer modifiziert, wird zunächst das nichtlineare System
ansimuliert (vier Sekunden Modellzeit), damit sich die neue statische Ruhelage einstellen kann.
In diesem Betriebspunkt wird dann die numerische Linearisierung durch IPANEMA vorgenom-
men. Die ermittelten ABCD-Matrizen werden an Scilab gesendet. Dort finden alle weiteren
Berechnungen zur Systembewertung statt (vgl. Kap. 10). Für dieses Experiment werden Varian-
zen/Streuungen und Pollagen zur Bewertung herangezogen:

TABELLE 11. Erläuterung der Zielgrößen des Optimierungsexperiments

Name Beschreibung

rms_zapp Summe der Streuungen der Vertikalbeschleunigung der beiden Aufbaumassena

rms_rlast Summe der Streuungen der dynamischen Radlastschwankungen beider Räder

rms_phipp Streuung der Knickwinkelbeschleunigung

 Anwendungsbeispiele 83

Über die nachfolgend beschriebenen Parameter lassen sich die oben genannten Zielgrößen beein-
flussen:

TABELLE 12. Erläuterung der Parameter des Optimierungsexperiments

Abbildung 7-4 zeigt einen Teil der MOPO-Anwenderoberfläche. Hier ist die Konfiguration der
Parameter und Zielgrößen ersichtlich. Diese Konfiguration kann interaktiv während des Optimie-
rungslaufs modifiziert werden, um das Experiment zu steuern.

Zur Laufzeit lassen sich zusätzliche Plots der Parameter- und Zielgrößenverläufe anzeigen. Dar-
gestellt ist nur der sog. "Radar-Plot" (vgl. Kap. 4.7.3), der die Erfüllungsgrade aller Zielgrößen in
einem Kreisdiagramm darstellt. Die Zielgrößen sind dort aus Platzgründen über Indizes referen-
ziert, die der Reihenfolge in der Tabelle der Zielgrößen-Konfigurations-Tabelle entsprechen. Ein
Erfüllungsgrad von 100 entspricht dem oberen Limit, ein Erfüllungsgrad von 0 dem unteren

dist_r Lage der Radeigenwerte im Kreisringsektor
(10,55 Hz bis 15,82 Hz und 47 ° bis 65 °)

dist_a Lage der Eigenwerte für die Aufbautranslation im Kreisringsektor
(1,08 Hz bis 1,63 Hz und 52 ° bis 72 °)

dist_rot Lage der Eigenwerte für die Biege-(Knick-)Schwingung im Kreisringsektor
(3,41 Hz bis 5,12 Hz und 5 ° bis 68 °)

a. Das Modell ist so parametriert, dass symmetrische Verhältnisse bzgl. Vorder- und Hinterwagen herrschen

Name Beschreibung

KA Parameter für die Aufbau-Federkonstante

KPA Parameter für die Aufbau-Dämpferkonstante

KR Parameter für die Rad-Federkonstante

KPR Parameter für die Rad-Dämpferkonstante

KOMEGA Rückführverstärkung für die Winkelgeschwindigkeit im Knickgelenk

Name Beschreibung

84 Anwendungsbeispiele

Limit:

Abbildung 7-4: MOPO-Anwenderoberfläche: "Radar-Plot", Parameter- und Zielgrößen-Konfiguration

Unter dem Punkt "Main Config" des Hauptfensters lässt sich die Konfigurationsmaske für die
Auswahl des Optimierungsverfahrens und dessen Grundeinstellungen öffnen. Für diese Anwen-
dung wird das Quasi-Newton-Verfahren verwendet. In Tabelle 13 werden die Bedeutungen der
einzelnen Konfigurationsparameter näher erläutert:

Abbildung 7-5: Eingabe der Optimierer-Konfiguration in der MOPO-Anwenderoberfläche

TABELLE 13. Bedeutung der MOPO-Konfigurationsparameter für das Quasi-Newton Verfahren

MOPO-Parameter Bedeutung

Number of CPUs Begrenzt die Anzahl der Parametervektoren, die pro Optimierungsschritt
gleichzeitig bewertet werden sollen.

Parameter Precision Liegt die Änderung der skalierten Parameter-Werte unter diese Schranke
wird die Optimierung beendet.

 Anwendungsbeispiele 85

7.2.4 Optimierungsergebnis

Die untenstehende Abbildung zeigt die Verläufe der optimierten Parameter, aufgetragen über die
Optimierungsschritte. Dabei zeigen die gestrichelten Linien zusätzlich die Parametergrenzen:

Abbildung 7-6: Parameterverläufe während der Optimierung

Die Polverläufe im Optimierungsverlauf zeigen, dass sich im wesentlichen die Pole des Rades
geändert haben. Sie bleiben dabei überwiegend im Bereich der Vorgaben des Kreisringsektors.
Die Pole von Translation und Knicken des Aufbaus haben sich nicht signifikant verändert, wobei
für das Knicken die Vorgaben des Kreisringsektors nie erfüllt werden. Abbildung 7-7 zeigt die
zugehörigen Polverläufe in der oberen linken, komplexen Halbebene (positive Imaginärteile,

Objective Precision Liegt die Änderung der skalierten Zielgrößen-Werte unter diese Schranke
wird die Optimierung beendet.

Max. Calculation Steps Nach dieser Anzahl von Schritten wird die Optimierung beendet.

Globales Problem: Min Kleinste Schrittweite für die Liniensuche.
Wird dieser Wert erreicht erfolgt ein neuer lokaler Schritt.

Globales Problem: Max Obergrenze für die Schrittweite der Liniensuche.

Lokales Problem: Initial Startwert für die erste Parameter-Auslenkung zur Gradientenberechnung.

Lokales Problem: Min Kleinste Parameter-Auslenkung zur Gradientenberechnung.

Lokales Problem: Max Größte Parameter-Auslenkung zur Gradientenberechnung.

MOPO-Parameter Bedeutung

86 Anwendungsbeispiele

negative Realteile) als Scilab-Plot:

Abbildung 7-7: Polverläufe in der komplexen Ebene (nur positive Imaginärteile)

Betrachtet man die Zielgrößenverläufe in Abbildung 7-8, so zeigt sich, dass die Streuung für die
Radlast vermindert wird, während die Streuungen für Aufbaubeschleunigung und Knick-Winkel-
beschleunigung vergrößert werden. Insgesamt können alle drei Streuungen nicht unterhalb der
oberen Limits (gestrichelte Linien in Abbildung 7-8) gebracht werden. Die unteren Limits für die
Pollagen von Aufbau und Rad werden nahezu eingehalten:

Abbildung 7-8: Zielgrößenverläufe während der Optimierung

 Anwendungsbeispiele 87

Vergleichende Simulation

Durch die Wahl der Reglerparameter und die entsprechende Kraftüberlagerung des Kraftstellers
können gezielt die Feder-/Dämpfereigenschaften des aktiv gefederten Modells beeinflusst wer-
den. Durch Addition der passiven Feder-/Dämpferparameter mit den optimierten Reglerparame-
tern können die Parameter des aktiven Systems beschrieben werden:

TABELLE 14. Ausgewählte Parameter des passiven & aktiven Systems

Zum Vergleich des dynamischen Verhaltens des passiven und aktiven Systems wird das Ein-
schwingen und eine nachfolgende Sprungantwort (5 cm Strassenanregung xsv, vorne bei 3.5 s,
hinten bei 3.8 s) für vorderen Aufbauhub, Knickwinkel, vordere Radlast und vordere Aufbaube-
schleunigung dargestellt. Im Falle des Einschwingens zeigen sich im aktiven Fall Verbesserun-
gen (kleinere Amplituden) für alle dargestellten Größen. Bei der Sprungantwort fällt insbeson-

Name Beschreibung Parameterwerte Passiv
(Reglerparameter Null)

Parameterwerte Aktiv

ma Einzelne Aufbaumasse 430 kg 430 kg

mr Einzelne Radmasse 30 kg 30 kg

ca+KA Federbein Steifigkeit 20000 N/m 17349 N/m

da+KPA Federbein Dämpfung 2000 Ns/m 2000 Ns/m

cr+KR Reifen Steifigkeit 200000 N/m 199782 N/m

dr+KPR Reifen Dämpfung 500 Ns/m 0 Ns/m

crot Knicksteifigkeit 50000 N/rad 50000 N/rad

drot+KOMEGA Knickdämpfung 50 Ns/rad 1865 Ns/rad

88 Anwendungsbeispiele

dere die stark verbesserte Dämpfung des Knickwinkels auf:

Abbildung 7-9: Vergleich des dynamischen Verhaltens vor und nach der Optimierung

7.3 Online-Nachoptimierung von Reglerparametern am HIL-Prüfstand

Im Projekt „Neue Bahntechnik Paderborn“ wird derzeit ein modulares Bahnkonzept entwickelt,
das moderne Fahrwerkstechnologie mit den Vorteilen des Transrapid und der Nutzung der beste-
henden Bahntrassen vereint. Am Beispiel des aktiv geregelten Feder-/Neige-Moduls als Teil des
Federungskonzepts für den Wagenkasten der Bahn-Shuttles werden Echtzeit-Optimierung und -
Überwachung vorgestellt. Die Anwendung erfolgt an einem vorhandenen HILS-Prüfstand, der
zum Test des aktiven Fahrwerks und der Neigetechnik dient:

Abbildung 7-10: Feder-/Neigemodul als CAD-Modell und auf dem HILS-Prüfstand

Abbildung 7-10 zeigt den Aufbau des Feder-/Neigemoduls als CAD-Modell und einen ersten
Prototypen im Maßstab 1:2,5 auf dem HILS-Prüfstand. Der Fahrzeugaufbau (hier Stahlplatten)

 Anwendungsbeispiele 89

ist ausschließlich über Luftfedern mit dem Fahrwerksträger verbunden. Die Aktorik des Feder-/

Neigemoduls besteht aus drei Hydraulikzylindern, die in der Bildmitte zu erkennen sind. Durch

die Luftfedern ist eine optimale schwingungstechnische Entkopplung zwischen Aufbau und

Rädern gegeben. Allerdings erzeugen die Luftfedern prinzipbedingt eine geringe Dämpfung der

Aufbaubewegung. Den Aufbau optimal zu dämpfen ist daher die Aufgabe der Hydraulikaktoren,

die dazu über ein geeignetes Regelgesetz (auf AMS-Ebene) angesteuert werden.

Vor dem Bau des Prüfstands erfolgten umfangreiche Arbeiten im Bereich Modellbildung und

Reglerentwurf ([Liu-Henke et al. 2000/1], [Liu-Henke et al. 2000/2], [Henke et al. 2000]).

Anhand des Prüfstands kann die Übereinstimmung zwischen Modell und Realität überprüft wer-

den. Wendet man eine Online-Nachoptimierung auf das reale System an, die der vorher verwen-

deten modellbasierten Optimierung entspricht, so kann anhand der Unterschiede der Optimie-

rungsergebnisse auf die Modell-/Reglergüte geschlossen werden. Durch Reglernachoptimierung

am realen System können auch die durch Herstellungstoleranzen hervorgerufenen Unterschiede

von Komponenten (Aktoren, Sensoren etc.), die aufwendig zu modellieren sind, berücksichtigt

werden. Insgesamt ist aufgrund von Parameter-Unsicherheiten, Nichtlinearitäten, Effekten aus

der Messtechnik und der digitalen Reglerrealisierung etc. davon auszugehen, dass es generell

kaum möglich ist, ein völlig exaktes Modell eines mechatronischen Systems zu erstellen.

Die Online-Optimierung an sich ist keine neue Technik, komplette Fahrwerke von Fahrzeugen

auf Hydro-Pulser-Prüfständen zu optimieren ist beispielsweise eine eingeführte Methode [Rutz,

Winkler 1994]. In der vorliegenden Anwendung wird jedoch noch einen Schritt weitergegangen:

Motiviert durch die Idee der Optimierung im Betrieb über die gesamte Lebensdauer eines mecha-

tronischen Systems, werden die Systembewertung und der Optimierungsalgorithmus (MOPO-

Gradientenverfahren) mit in die harte Echtzeitschleife des Regelsystems des Feder-/Neigemoduls

integriert ([Deppe, Oberschelp 2000], [Deppe at al. 2001/2]).

7.3.1 Operator-Controller-Modul auf MFM-Ebene

Im Zuge der Online-Mehrziel-Optimierung sollen die Reglerparameter auf MFM-Ebene für die

Hydraulikventile und die Differentialzylinder modifiziert werden. Dies soll allerdings nicht für

alle Komponenten gleichzeitig geschehen, sondern für jede Aktor-Ventil-Kombination einzeln.

Dabei wird die Anwendung auf die Optimierung der Parameter für die vertikal angeordneten

Aktoren I und III (vgl. Abbildung 7-11) beschränkt. Pro Aktor-Ventil-Gruppe gilt es drei Parame-

ter zu optimieren. Dies sind die beiden Parameter des unterlagerten PD-Reglers für die Ventil-

schieberposition und die Verstärkung des Lagereglers für den Differentialzylinder.

Für diese Anwendung ist ein Operator-Controller-Modul (OCM) umzusetzen, das durch

Umschalten für beide Aktoren sequentiell genutzt werden kann. Aus der Echtzeit-Implementie-

rung von Evaluator und Optimierer erwachsen zwei wichtige Forderungen an die Realisierung

dieses OCMs:

90 Anwendungsbeispiele

1. Da der Optimierer die Reglerparameter zur Laufzeit aktiv verändert, ist es aus Sicherheits-

gründen notwendig, eine modellbasierte Online-Überwachung im Zeit- und im Frequenzbe-

reich zu implementieren. Sie muss in der Lage sein, ein Fehlverhalten (Instabilität, große

Regelabweichung etc.) zu erkennen und durch Einschalten einer Rückfallregelung das System

innerhalb weniger Millisekunden wieder zu stabilisieren.

2. Aufgrund der unterschiedlichen Taktraten für Bewertung und Optimierung und zur unbeding-

ten Sicherstellung der Echtzeitfähigkeit des OCMs ist eine Multirate-Realisierung auf der

Basis von präemptivem Multitasking erforderlich. Die Regler-/Überwachungsroutinen werden

dabei der Task mit der höchsten Priorität zugeordnet, die von keiner anderen Task unterbro-

chen werden kann.

Abbildung 7-11 zeigt die OE(S)-Struktur der Controller-Nachoptimierung für das reale System
"Feder-Neige Prüfstand". Ein eigenes Simulator Modul ist nicht erforderlich, da direkt an das
reale System angekoppelt wird. Ausgänge des Evaluators an das reale System sind die aktuellen
Reglerparameter sowie Daten aus dem Zeit- und Frequenzbereich, die zur Systemüberwachung
herangezogen werden. In diesem Fall werden die Lageabweichung des Aktors und die Abwei-
chung des Autoleistungsdichtespektrums des Ventilschieberwegs zwischen der Messung und
einem Referenzmodell zur Überwachung verwendet.

Die Aufgabe der "Parameter-Übertragung" besteht darin, die jeweiligen neuen Reglerparameter
auf den Controller zu übertragen. Diese Übertragung ist in diesem Fall nicht aufwändig, da keine
internen Reglerzustände neu initialisiert werden müssen (P-PD-Kaskade). Die Reglerverstärkun-
gen können "hart" umgeschaltet werden, sobald der Rückfall-Controller aktiv ist. Die Umschal-
tung zwischen Controller und Rückfall-Controller erfolgt durch Überblenden der Stellgröße.

Die "Überwachung" prüft, ob die Zeit- und Frequenzdaten aus dem Vergleich von Messung und
Referenzmodell innerhalb vorgegebener Grenzen (Limits) liegen. Werden Grenzwerte über-
schritten schaltet die "Überwachung" auf einen Rückfall-Controller um. Dessen Reglerparameter

 Anwendungsbeispiele 91

sind zur Laufzeit konstant und wurden vorab ausgelegt:

Abbildung 7-11: OES-Struktur der Nachoptimierung am realen System "Feder-Neige Prüfstand"

7.3.2 Implementierung

Zur echtzeitfähigen Implementierung wird zunächst eine Zuordnung der verschiedenen OES-
Komponenten zu IPANEMA-Objekten vorgenommen. Zur Anbindung an die Mess- und Stellsi-
gnale des HILS-Prüfstands besitzt der Simulator neben einem IPANEMA-Calculator auch einen
IPANEMA-Adaptor. Softwaretechnisch existieren somit drei Calculatoren und ein Adaptor,
wobei die OES-Funktionen der gedanklichen Strukturierung der Anwendung dienen.

Für die Anwendung werden zwei Echtzeit-Tasks konfiguriert. Der Optimierer-Calculator wird
dabei einer niederpriorisierten Task mit einer Zykluszeit von zwei Millisekunden zugeordnet. Die
Calculatoren und der Adaptor für den Simulator und den Evaluator laufen in einer hochpriorisier-
ten Task mit einer Zykluszeit von einer Millisekunde und können damit nie von der Optimie-
rungs-Task unterbrochen werden.

Als Rechen-Hardware wird eine PPC750-Prozessorkarte mit entsprechenden I/O-Karten
(Fa. dSPACE) verwendet. IPANEMA setzt dabei auf den mitgelieferten multitaskingfähigen
Real-Time-Kernel (RTK) von dSPACE auf. Der RTK stellt im Wesentlichen Dienste zum Zugriff
auf die I/O-Karten und zur Organisation des Multitasking zur Verfügung. Als Scheduling-Verfah-

92 Anwendungsbeispiele

ren wird das enthaltene Rate-Monotonic-Scheduling (RMS) genutzt (vgl. Kap. 5.2):

Abbildung 7-12: Mit IPANEMA realisierte echtzeitfähige OES-Struktur

7.3.3 Parameter und Zielgrößen

Die zu optimierenden Parameter sind die Verstärkungen für die Lagerückführung KVentil, die
Geschwindigkeitsrückführung KPVentil des Ventilschiebers und die Verstärkung des Lagereglers
KAktor für den Differentialzylinder. Bewertet werden Stellgenauigkeit und hydraulische Leistung
des Aktors. Es ergibt sich insgesamt eine Optimierung mit zwei Zielgrößen und drei Parametern.

Zur Bewertung der Aktor-Positionsgenauigkeit wird das Systemverhalten mit einem ideal
gedämpften System 2. Ordnung verglichen (Dämpfungsmaß 0,7 und Eigenfrequenz20 Hz). Die-
ses findet auch Verwendung für der Überwachung des Systems. Die quadratische Fehlerfläche
ISE (Integral Squared Error) zwischen der Aktorposition und der Position des Referenzsystems
wird als Maß für die Güte der Regelung verwendet.

Die hydraulische Leistung PH eines Aktors wird als direkte Zielgröße verwendet. Zur Schätzung
der hydraulischen Leistung dient eine Druck- und Volumenstrom-Betrachtung für den Differenti-
alzylinder. Vereinfachend wird eine mittlere Kolbenfläche für beide Kammern angenommen, da
hier weniger der absolute Wert der hydraulischen Leistung als vielmehr ihre relative Änderung
wichtig ist. Der dynamische Druck in der belasteten Zylinder-Kammer wird über die Relativge-
schwindigkeit und die Relativbeschleunigung der Kolbenstange, die aus der Messung der Aktor-
auslenkung durch Differentiationen gewonnen werden können, bestimmt. Die Kompressibilität
des Hydrauliköls wird vernachlässigt:

 Anwendungsbeispiele 93

TABELLE 15. Erläuterungen zur Schätzung der hydraulischen Leistung

7.3.4 Optimierungsexperiment

Für die Optimierung wird das echtzeitfähige MOPO-Gradientenverfahren genutzt. Bei der Kon-
figuration der Schrittweiten für die Paramtersuche gilt es zu beachten, dass die minimale Auslen-
kung eines Parameters eine deterministische Veränderung der Zielgrößen bewirken muss, die
größer als ihr Rauschpegel ist. Dies ist ein signifikanter Unterschied zu Offline-Optimierungen,
bei denen keine Beachtung von Messrauschen o. ä. notwendig ist. Die optimale Schrittweiten-
Konfiguration muss ggf. mit Hilfe mehrerer Testläufe bestimmt werden. Um eine möglichst gute
Mittelung der Zielgrößen zu erreichen, wird ein Parametervektor über zwei Sekunden (entspricht
2.000 Simulationsschritten) konstant gehalten und bewertet, bevor eine neuer Parametervektor
aufgeschaltet wird. Jeweils 200 Messwerte werden für eine Zielfunktionsauswertung herangezo-

Name Formelzeichen Einheit Wert/Berechnung Typ

Bewegte Masse m [kg] 52,5a

a. Hälfte der Aufbaumasse (ca. 105 kg)

Parameter

Kolbenfläche AK [m2] 1,2566e-3 Parameter

Viskose Reibung d [Ns/m] 100b

b. Geschätzter Wert

Parameter

Statischer Druck pstat [N/m2] 41e5c

c. Entspricht dem Hydraulikdruck im Aktor bei 52,5 kg Gewichtsbelastung

Parameter

Aktor Auslenkung s [m] aus Messung Eingang

Aktor Relativ-
geschwindigkeit

[m/s] s einmal differenzieren Eingang

Aktor Relativ-
beschleunigung

[m/s2] s zweimal differenzieren Eingang

Volumenstrom qH [m3/s] Ausgang

Dynamischer Druck pdyn [N/m2] Ausgang

Hydraulische
Leistung

PH [W] Ausgang

s·

s··

qH AK s·⋅=

pdyn pstat
m s·· d s·⋅+⋅

AK

---------------------------+=

PH qH pdyn⋅=

94 Anwendungsbeispiele

gen:

Abbildung 7-13: Parameteränderung von Aktor I während der Optimierung

Der HILS-Prüfstand bietet die Möglichkeit, über Hydraulikaktoren eine vertikale Gleisanregung
auf den Unterträger (vgl. Abbildung 7-11) zu erzeugen. Für das Experiment hat sich eine Recht-
eckanregung mit einer Frequenz von 2 Hz und einer Amplitude von 1 mm als ausreichend heraus-
gestellt, wobei diese auch im Bereich von realistischen Gleisanregungen liegt.

Die nachfolgende Abbildung zeigt die Änderung der Zielgrößen für Aktor I. Hier ist zu sehen,
dass sowohl Lageabweichung als auch Leistung gleichzeitig innerhalb von 20 Sekunden mini-
miert werden können:

Abbildung 7-14: Zielgrößenänderung von Aktor I während der Optimierung

 Anwendungsbeispiele 95

7.3.5 Zusammenfassung

Die Einbindung des Optimierers in die Echtzeitschleife hat sich als sehr effizient und robust her-
ausgestellt. Mit Hilfe der Überwachungsfunktionen ist ein zuverlässiger Betrieb möglich. Die
unterschiedlichen Optimierungsergebnisse für die baugleichen und symmetrisch angeordneten
Aktoren I und III zeigen, dass beide Komponenten nicht als identisch angesehen werden können.
Sämtliche akkumulierten Abweichungen der verwendeten Regelkreisglieder (Sensoren, Aktoren,
Messtechnik etc.) werden somit durch die Online-Optimierung aufgedeckt. Diese Ergebnisse
sind für eine Modellverbesserung und somit für eine weitere, modellbasierte Optimierung sehr
wertvoll:

TABELLE 16. Start- und Endparameter für Aktor I und Aktor III

Parameter K Aktor [V/m] K Ventil [V/m] KP Ventil [Vs/m]

Startwerte 1.000,0 1,5 5,0

Ergebnis Aktor I 980,0 2,6 6,3

Ergebnis Aktor III 784,0 2,2 6,2

96 Anwendungsbeispiele

 97

7.4 Selbstorganisierendes Kreuzungsmanagement

Betrachtet man die kritische Zunahme der Verkehrsdichte, so ist die massive Vernetzung von
Fahrzeugen zur Vermeidung des Verkehrsinfarkts unumgänglich. Am Beispiel einer Straßenkreu-
zung wird aufgezeigt, wie durch die Vernetzung von autonomen Einzelfahrzeugen ein selbstorga-
nisierendes Kreuzungsmanagement zur kollisionsfreien Überquerung einer Straßenkreuzung ent-
steht. Ziel ist es, durch die Kooperation der Einzelfahrzeuge eine online-optimierte Überquerung
ohne Stillstand der Fahrzeuge umzusetzen.

Die Ergebnisse wurden im Rahmen des Sonderforschungsbereichs 376 „Massive Parallelität -
Algorithmen, Entwurfsmethoden, Anwendungen“ erarbeitet.

Im Laufe der Zeit hat das Kreuzungsmanagement verschiedene Entwicklungsstufen durchlaufen.
Anfänglich wurden potentielle Kollisionspunkte mit Hilfe eines kombinierten Semaphoren-/
Token-Verfahrens ([Naumann, Rasche 1997], [Rasche et al. 1997], [Rasche 2004]) verwaltet
(vgl. Abbildung 7-15). Später wurde die zeitliche Überlappung des Aufenthalts in kritischen
Zonen der Kreuzung mit Hilfe des MOPO-Gradientenverfahrens im Zuge einer Online-Optimie-
rung überschneidungsfrei eingestellt ([Lückel et al. 1999], [Rasche 2004]):

Abbildung 7-15: Entwicklungsstufen des Kreuzungsmanagements

Das nachfolgend vorgestellte neue Kreuzungsmanagement ist in wesentlichen Punkten erweitert
worden, um eine größere Realitätsnähe zu erzielen.

„Dass intelligente Verkehrstechnologie allein die Probleme des
wachsenden Verkehrsaufkommens bewältigen würde, hat nie
jemand behauptet. Aber umgekehrt wird ein Schuh daraus. Zu
glauben, man könne auf intelligente Verkehrslenkung verzich-
ten, obwohl einem die Probleme über den Kopf wachsen, das ist
eine Illusion.“

Der Münchner Oberbürgermeister Christian Ude zur Vertrags-
unterzeichnung MOBINET (www.mobinet.de)

98

7.4.1 Neues Kreuzungsmanagement

Die Erweiterungen des Kreuzungsmanagements umfassen weite Bereiche der zugehörigen
Modelle, Simulations- und Optimierungsansätze [Neuendorf, Deppe 2003]. Eine echtzeitfähige
Umsetzung war dabei nicht im Fokus; als Hardware-Plattform sind daher vernetzte Workstations
(NOW) vorgesehen.

Die wichtigsten Veränderungen gegenüber den bisherigen Verfahren lassen sich folgendermaßen
zusammenfassen:

1. Erweiterung auf zwei Einfahrtsspuren (Linksabbieger- und Rechts-/Geradeausspur)

2. Ebenenweise Online-Optimierung mit neuem Quasi-Newton-Verfahren

3. Einbeziehung der Fahrzeugabmaße und variabler Abbiegetrajektorien

4. Dynamische Fahrzeuganzahl (An-/Abmelden eines Fahrzeuges entspricht der Lebensdauer

eines zugehörigen Simulators)

5. Variable Modellierungstiefe auf AMS-Ebene

6. Graphenbasierte Vorfahrtsbestimmung

7. Parallelverarbeitung auf Basis der OES-Struktur (zunächst offline)

Das Kreuzungsmanagement kann zur Leistungssteigerung des Verfahrens in eine zweistufige
Optimierung aufgeteilt werden. Es findet eine lokale Optimierung der Quer- und der Längsdyna-
mik auf Fahrzeugebene (AMS) statt. Auf Kreuzungsebene (VMS1) wird das dynamische Netz
der Fahrzeugabhängigkeiten gebildet („virtuelle Kolonnen“) und optimiert. Die Abstands-/
Kolonnenregler (VMS0) setzen die Vorgaben der Kreuzungsebene um:

Abbildung 7-16: Vorgehensweise für die mehrstufige Optimierung

Die Aufgaben der einzelnen Ebenen sind:

 99

• Fahrzeugintern (AMS-Ebene):

Anpassung der Abbiegetrajektorie und des Geschwindigkeitsprofils an dynamisch veränderli-

che Randbedingungen: Fahrerwünsche (sportlich/komfortorientiert → maximale Beschleuni-

gungen), Straßenverhältnisse, Abbiege-Korridor (Platzbedarf) u. ä. Diese Optimierungsstufe

ist als Ersatz oder Assistent für den menschlichen Fahrer interpretierbar.

• Kreuzung (VMS1-Ebene):

Bestimmung der Vorfahrt und Optimierung der virtuellen Kolonnen. Ergebnis sind die

Geschwindigkeitsprofile als Führungsgrößen für jedes beteiligte Fahrzeug (initiale modell-

hafte Lösung für das geregelte Kolonnenfahren) und die Fahrzeugpaarungen für das Kolon-

nenfahren. Berücksichtigt werden die Vorgaben aus der Logistik-/Routenplanungsebene

(VMS2), die Optimierungsergebnisse aus der AMS-Ebene (minimale Abweichung hiervon),

der Durchsatz, der Energieverbrauch u. ä. Zielgrößen. Auf dieser planenden Ebene ist hohes

Optimierungspotential vorhanden.

• Kolonne (VMS0-Ebene):

Der Abstands-/Kolonnenregler führt die Vorgaben der VMS1-Ebene aus. Bei Abweichung

von den errechneten Geschwindigkeitsprofilen werden die Profile aller relevanten nachfolgen-

den Fahrzeuge entsprechend korrigiert, um Kollisionen zu vermeiden. Da es sich um virtuelle

Kolonnen handelt, d. h. um Fahrzeugkombinationen aus unterschiedlichen Richtungen der

Kreuzung, muss mit entsprechender Technik (z. B. Funk) eine Kommunikation der Fahrzeuge

untereinander sichergestellt sein.

7.4.2 Einteilung der Kreuzung in Zonen

Die Fahrt durch die Kreuzung wird in folgende Phasen bzw. Zonen eingeteilt:

• In der Kontaktphase/-zone wird dem Fahrer die Kontrolle entzogen und das Fahrzeug auf eine

vordefinierte konstante Geschwindigkeit gebracht. In dieser Zeit kann der Fahrer auch seinen

Richtungswunsch angeben. Das Fahrzeug wird in das Kommunikationsnetzwerk der Kreu-

zung eingebunden. Es werden Informationen über die Kreuzungsgeometrie und die anderen

Verkehrsteilnehmer, mit denen es zu einer Kollision kommen könnte, ausgetauscht.

• In der Strategiephase/-zone wird schnell eine sichere suboptimale Lösung gesucht. Die Fahr-

zeuge werden in den Kollisionsgraphen eingebunden, und ihnen wird ein Geschwindigkeits-

profil zugewiesen, mit dem sie unter allen Umständen die Kreuzung sicher überqueren kön-

nen.

• Diese in der Strategiephase ermittelte Lösung dient als Startwert für die Optimierung in der

Optimierungsphase/-zone. In dieser Phase wird ein Modell der nachfolgenden Handlungs-

phase genutzt, mit dem vorausschauend die Kollisionsfreiheit überprüft und die optimalen

Fahrzeugabstände und -geschwindigkeiten ermittelt werden können. Dazu wird das eigene

MOPO-Verfahren zur kontinuierlichen Mehrziel-Parameter-Optimierung verwendet. Die

Optimierung muss bei Eintritt in die Handlungsphase/-zone beendet sein.

100

Abbildung 7-17: Zoneneinteilung der Kreuzung

• Die Handlungsphase/-zone ist diejenige Zone, die in der Strategie- und der Optimierungs-

phase betrachtet wird. Die Handlungszone ihrerseits ist unterteilt in

• die Verzögerungszone (1): Zone, in der die in der Strategie- und der Optimierungszone
ermittelten Geschwindigkeitsprofile umgesetzt werden,

• die Durchfahrtszone (2): Zentraler Kreuzungsbereich, der die potentiellen Kollisionsorte
enthält; hier findet auch das Abbiegen der Fahrzeuge statt,

• die Beschleunigungszone (3): Ausfahren und ggf. Beschleunigen der Fahrzeuge auf ein
höheres Geschwindigkeitsniveau.

Optimiert wird das Verhalten der Fahrzeuge in der Handlungszone. Daher wird auch nur diese in
den Optimierungsexperimenten berücksichtigt.

7.4.3 Algorithmus zur Vorfahrtsbestimmung

Bei der Handlungszone der Kreuzung steht die Vorfahrtsbestimmung zu ihrer kollisionsfreien
Überquerung im Mittelpunkt. Zum Einen wird die Handlungszone für die Vorhersage-Simulatio-
nen in den Strategie- und den Optimierungszonen simuliert, zum Anderen findet in der realen
Handlungszone die vorgeplante Überquerung durch die Fahrzeuge statt.

Durch spezielle Abstandsvorgaben und Auswahl der „logischen“ Kolonnenvorgänger wird das
Problem der kollisionsfreien Kreuzungsüberquerung auf eine Abstands-/Kolonnenregelung
zurückgeführt. Eine vereinfachte Modellierung besteht in der Vorgabe von statisch vorab berech-
neten Geschwindigkeitsprofilen zur Einhaltung des Abstands. Hierbei erfolgt der Übergang zu
einer „echten“ Abstands-/Kolonnenregelung dann, wenn das Geschwindigkeitsprofil des Nach-
folgenden permanent durch das des Vorherfahrenden verändert wird.

Das Modell der Handlungszone soll dazu dienen, eine wenig rechenintensive, aber gute globale

 101

Überquerung als Startpunkt für eine nachfolgende Optimierung zu bestimmen. Zur Bestimmung
der globalen Überquerung werden folgende vereinfachende Annahmen für das Modell der Hand-
lungszone getroffen:

1. Eine echte Abstands-/Kolonnenregelung ist aufgrund der idealisierten Annahme von fehlen-

den Störgrößen nicht notwendig. Stattdessen wird die Fahrzeuglängsbewegung durch

Geschwindigkeits-Zeit- und Geschwindigkeits-Weg-Profile gesteuert. Dabei werden sinnvolle

Begrenzungen für die Beschleunigung bei der Berechnung der Geschwindigkeits-Profile mit-

berücksichtigt.

2. Die Fahrzeugkontur wird zur effizienten Kollisions-/Abstandsprüfung durch zwei Kreise

beschrieben (reine 2D-Betrachtung).

3. Jedes Fahrzeug kennt die Kreuzungsgeometrie.

4. Jedes Fahrzeug hat eine vorgeplante Bahn und nur der Geschwindigkeitsverlauf kann variiert

werden.

5. Fahrzeuge können aus Ihren Bahnvorgaben gegenseitig ihre potentiellen Kollisionsorte in der

Kreuzung berechnen (Schnittpunkte von bikubischen 2D-Spline-Kurven).

6. Die Fahrzeuge können in einem Funknetzwerk kommunizieren.

Zur Modellierung der Fahrzeugabhängigkeiten bei der Überquerung wird im neuen Kreuzungs-
management ein gerichteter Graph verwendet. Die Fahrzeuge sind die Knoten des Graphen,
wobei jedes Fahrzeug mit seinem Nachfolger in der Einfahrtsspur und allen potentiellen Kollisi-
onspartnern (potentiell heisst: es existiert ein Bahnschnittpunkt im Kreuzungsbereich) über
gerichtete Kanten verbunden wird. Es entsteht jeweils ein azyklischer gerichteter Graph (vgl.
Kap. 2.2) mit einer Ausrichtung von der Kreuzungsmitte nach außen. Dieser Graph wird Kollisi-
onsgraph genannt und kann maximal vier Komponenten enthalten (so ergeben vier Rechtsabbie-
ger einen Graphen mit vier Knoten ohne Kanten, da die Fahrzeuge völlig unabhängig voneinan-
der die Kreuzung überqueren können). Eine von einem Fahrzeug (Knoten) ausgehende Kante
bedeutet Vorgänger gegenüber dem Ziel-Fahrzeug der Kante zu sein, d. h. in einer Fahrzeugko-
lonne zeigen die Kanten des Kollisionsgraphen entgegen der Fahrtrichtung.

Im gezeigten Beispiel (vgl. Abbildung 7-18) existiert nur eine Graphen-Komponente. Dies ist für
eine hohe Verkehrsdichte allerdings auch der wahrscheinlichste Fall. Ziel ist es nun, eine Reihen-
folge zu finden, in der die Zuteilung der Durchfahrt erfolgen kann. Der Lösungsalgorithmus
arbeitet nach dem First-In-First-Get-Prinzip, d. h. je eher ein Fahrzeug eingebunden wird, desto
weniger Einschränkungen aufgrund anderer Fahrzeuge (in Form von auf das Fahrzeug gerichtete
Kanten des Kollisionsgraphen) sind zu erwarten.

Der Kollisionsgraph ist kein statisches Gebilde, sondern ständigen Veränderungen unterworfen
(dynamisches Netz), da ständig neue Fahrzeuge hinzukommen und auch andere den Kreuzungs-
bereich verlassen. Für das Beispiel werden die Prioritäten willkürlich gemäß den Himmelsrich-
tungen in der Reihenfolge {North, East, West, South} gewählt. Als Randbedingung gilt: „Innere

102

haben Vorrang vor Äußeren“. Nach dieser Regel ergeben sich die Kanten des Kollisionsgraphen:

Abbildung 7-18: Kollisionsgraph und Vorfahrtsgraph

Für die Überquerung werden nun Fahrzeugkolonnen gebildet. Dabei wählt jedes Fahrzeug den
Vorgänger aus, für den es am meisten verzögern muss. Somit ist gewährleistet, dass allen potenti-
ellen Kollisionspartnern ausgewichen wird. Nach dieser Regel bildet sich eine neue Graph-Struk-
tur (Vorfahrtsgraph) für die Vorfahrt aus dem Kollisionsgraphen heraus. Die Reihenfolge der
Vorfahrt kann aus den möglichen topologischen Sortierungen (vgl. Kap. 2.2) des Vorfahrtsgra-
phen ausgewählt werden. Letztlich wird eine eindeutige Reihenfolge erzeugt, indem frühe Fahr-
zeuge mit geringerem Abstand zur Kreuzung bevorzugt werden (vgl. Kap. 7.4.8).

Der Kollisionsgraph wird in der Kontaktzone aufgebaut, der Vorfahrtsgraph in der Strategiezone
bestimmt. Liegt die Vorfahrtsreihenfolge der Fahrzeuge fest, so werden für jedes Fahrzeug zwei
Fälle unterschieden:

• Freies Fahrzeug: Es braucht keine Rücksicht auf andere Fahrzeuge genommen zu werden; die

Geschwindigkeit kann vor der Absenkung auf die Durchfahrtsgeschwindigkeit zur Rückstau-

Minimierung sogar kurzzeitig erhöht werden (Beispiel WR, NLund ER).

• Abhängiges Fahrzeug: Es gibt genau einen Vorausfahrenden, anhand von dessen Durchfahrts-

daten (Bahn- und Geschwindigkeits-Trajektorie) die notwendige eigene relative Verschiebung

berechnet wird. Dabei müssen potentielle Kollisionen in der gesamten Handlungszone (Verzö-

gerungs-/Durchfahrts-/Beschleunigungszone) vermieden werden.

Die notwendige Verschiebung zum Vorausfahrenden wird durch den Vergleich der Weg-Zeit-Pro-
file ermittelt. Dazu wird zunächst der potentielle erste Kollisionspunkt als Spline-Schnittpunkt
der XY-Trajektorien der Fahrschläuche beider Fahrzeuge bestimmt. Anhand der beiden Weg-

 103

Zeit-Profile, der unterschiedlichen Bahnlängen zum potentiellen Kollisionspunkt und eines vor-
gebbaren Sicherheitsabstands ergibt sich dann eine positive oder negative Verschiebung zum
Vorausfahrenden.

Für das Kreuzungsmanagement erfolgt die Darstellung der Geschwindigkeitsverläufe mit Hilfe
von kubischen 1D-Splines ([Späth 1973], [Schwarz 1993]). Diese Splines werden über Stützstel-
lenwertepaare sowie die Anfangssteigung und die Endsteigung der Spline-Kurve konfiguriert.Zu
einem Eingangswert werden der interpolierte Ausgangswert und dessen erste und zweite Ablei-
tung ausgegeben.

Mit Hilfe der 2D-Splines lassen sich beliebige 2D-Trajektorien abbilden, die keine Funktionen
sein müssen. Die 2D-Splines werden zur Definition der Abbiegespuren im Kreuzungsmanage-
ment verwendet. Die Parametrisierung der Splines erfolgt über die Bogenlänge, wie auch in der
Robotersteuerung üblich [Olomski 1989]. Die Definition erfolgt über Stützpunkte in der xy-
Ebene (xi,yi) und einen Anfangs- und Endbahnwinkel. In Abhängigkeit der Bahnlänge werden
die interpolierten Punkte, der Bahnwinkel und die Bahnkrümmung ausgegeben.

Zur Berechnung des zugehörigen Geschwindigkeitsverlaufs werden dreiecksförmige Beschleuni-
gungsprofile vorgegeben, um den Ruck klein und abschnittsweise konstant zu halten. Das
Abbremsen von der Einfahrts- auf die Durchfahrtsgeschwindigkeit wird in gleich große Zeitin-
tervalle mit jeweils konstantem Ruck eingeteilt. Das Beschleunigen auf die Ausfahrtsgeschwin-
digkeit erfolgt nach dem gleichen Prinzip. Das nachfolgende Diagramm zeigt ein Beispiel für die
Abstimmung eines Linksabbiegers aus Süden (Follower-SL) auf einen Rechtsabbieger aus Nor-
den (Leader-NR), die gleichzeitig und mit gleicher Geschwindigkeit in die Handlungszone ein-
treten. Die Fahrzeuge können in der Durchfahrtszone kollidieren und bilden in der Ausfahrtszone
eine Kolonne. Daher muss der Nachfolgende in der Einfahrtszone einen Sicherheitsabstand (hier

104

z. B. 20 m) aufbauen, der in Durchfahrt und Ausfahrt bestehen bleibt:

Abbildung 7-19: Verschiebung zweier Fahrzeuge zur Kollisionsvermeidung

Zur Berechnung werden zunächst vier gleich große Zeitintervalle gebildet, in denen jeweils kon-
stanter Ruck herrschen soll. Diese Vorgaben werden gewählt, da die menschliche Wahrnehmung
der Beschleunigungsänderung (durch die Fahrzeuginsassen) auf lineares Verhalten beschränkt
ist. Für das erste Zeitintervall bedeutet dies einen zeitlichen Wegverlauf s1(t) gemäß:

(7.1)

mit Anfangsgeschwindigkeit v1, Zeit t und max. Ruck . Die zugehörigen Geschwindig-
keits- und Beschleunigungsverläufe lauten:

(7.2)

(7.3)

Die restlichen drei Zeitintervalle werden entsprechend ähnlich berechnet. Gibt man Anfangsge-
schwindigkeit v1, Endgeschwindigkeit v2, Zeit T und Weglänge L insgesamt über alle vier Zeitin-
tervalle vor, so ergibt sich der maximale Ruck für die Abschnitte 1 und 2 zu:

s1 t() v1 t
1
6
--- s···1 Max, t

3⋅ ⋅+⋅=

s···1 Max,

s·1 t() v1
1
2
--- s···1 Max, t

2⋅ ⋅+=

s1
··

t() s···1 Max, t⋅=

 105

(7.4)

Für die Abschnitte 3 und 4 lautet er:

(7.5)

Soll ein Fahrzeug lediglich von v1 auf v2 verzögert werden, so wird die Normalzeit TN zugrunde-
gelegt. Die Zeitvorgabe TN für konstante Geschwindigkeit in den Abschnitten 1 und 2 und
Abbremsen von v1 auf v2 in den Abschnitten 3 und 4 bei gegebener Weglänge LN berechnet sich
mit nach:

(7.6)

Eine Umstellung nach LN ergibt:

(7.7)

Will man ein Fahrzeug zur Kollisionsvermeidung um den Weg relativ verschieben, so setzt
man für Gl. 7.4 und Gl. 7.5:

(7.8)

(7.9)

Ein positiver Wert bewirkt so, dass ein Fahrzeug im gegebenen Zeitintervall eine höhere
Durchschnittsgeschwindigkeit als die „Norm-Durchschnittsgeschwindigkeit“, die durch die Nor-
malzeit TN und die Weglänge LN definiert ist, haben wird.

Das nachfolgende Diagramm zeigt ein Beispiel für zwei im Abstand von 2 s hintereinander fah-
renden Rechtsabbiegern (aus Norden). Für den Vorgänger (Leader-NR) ist ein negativer Wert
von -60 m angenommen. Um einen Abstand zum Vorausfahrenden von z. B. 23 m zu halten, wird
hier ein negativer Wert von -70 m für den Nachfolgenden (Follower-NR) gewählt. Zu beach-
ten ist, dass der Nachfolgende den Beschleunigungsvorgang aufgrund des Kolonnenfahrens mit
einer niedrigeren Startgeschwindigkeit v1 (ca. 14,5 m/s) beginnt als der Vorausfahrende (15,0 m/
s). Für die gegebene Weglänge LN = 250 m und v2 = 5 m/s ändert sich daher auch der Wert der

s···1 2 Max, , L T v1 v2, ,,() 8–
v2 T 3 v1 T 4 L⋅–⋅ ⋅+⋅

T
3

--⋅=

s···3 4 Max, , L T v1 v2, ,,() 8
3 v⋅ 2 T v1 T 4 L⋅–⋅+⋅

T
3

--⋅=

s···1 Max, 0=

TN

4 L⋅ N

v2 3 v1⋅+
------------------------=

LN
1
4
--- TN v2 3 v1⋅+()⋅ ⋅=

∆s

T TN=

L LN ∆s+
1
4
--- TN v2 3 v1⋅+() ∆s+⋅ ⋅= =

∆s

∆s

∆s

106

Normalzeit TN für den Nachfolgenden von 20,0 s auf ca. 20,587 s:

Abbildung 7-20: Fahrzeugkolonne in derselben Einfahrtsspur

Für die Berechnung der maximalen Längsbeschleunigung wird der maximale Ruck in Abhängig-
keit von benötigt. Einsetzen von Gl. 7.8 und Gl. 7.9 in Gl. 7.4 liefert:

(7.10)

Einsetzen von Gl. 7.8 und Gl. 7.9 in Gl. 7.5 liefert:

(7.11)

Betrachtet man den Beschleunigungsverlauf innerhalb jedes der 4 äquidistanten Zeitintervalle, so
tritt die maximale Längsbeschleunigung aufgrund des intervallweise konstanten Rucks am Ende
des 1. und des 3. Intervalls nach der Zeit 0,25 TN auf:

(7.12)

∆s

s···1 2 Max, , ∆s TN,() 32 ∆s⋅
TN

3
----------------=

s···3 4 Max, , ∆s TN v1 v2, , ,()
16 TN v2 v1–() 32 ∆s⋅–⋅ ⋅

TN
3

---=

s··Max ∆s TN v1 v2, , ,() max s···1 2 Max, , ∆s TN,() s···3 4 Max, , ∆s TN v1 v2, , ,(),〈 〉 TN

4
------⋅=

 107

7.4.4 Fahrzeugmodelle und Umgebungsmodelle

Die Bahnen, auf denen sich Fahrzeuge bewegen können, sind fest vorgegeben. Für die notwen-
dige geometrische Kollisionsprüfung werden den Fahrzeugen jeweils bei Einfahrt in den Kreu-
zungsbereich alle Bahnen bekannt gemacht. Die Bahnen sind dabei bezüglich eines Koordinaten-
systems in der Kreuzungsmitte definiert. Um den Rechenaufwand für die Kollisionsprüfung
während der Optimierung auf VMS1-Ebene gering zu halten, werden die Fahrzeuggeometrien
durch Kreise approximiert (Abbildung 7-21). Diese Ersatzgeometrien werden den anderen Ver-
kehrsteilnehmern bei Einfahrt in den Kreuzungsbereich ebenfalls mitgeteilt. Die modelltechni-
sche Realisierung der Bahndefinition für die Fahrzeuge erfolgt mit Hilfe von bikubischen Spli-

nes:

Abbildung 7-21: Effiziente Bestimmung des minimalen Fahrzeugabstands durch Kreisgeometrien

Beim Problem des Kreuzungsmanagements ist zu beachten, dass im Rahmen der Optimierung
sehr viele Vorabsimulationen der Handlungszone notwendig sind (s. u.) und dass die Simulation
der Fahrzeuge in der Kreuzung der entscheidende Faktor für die Simulationskosten ist. Daher ist

es sinnvoll, die Modellierungstiefe der verwendeten Fahrzeugmodelle an die jeweilige Aufgabe
anzupassen. Für das Kreuzungsmanagement sind daher insgesamt drei Fahrzeugmodelle unter-
schiedlicher Komplexität entstanden. Alle Fahrzeugmodelle werden dem Verhalten eines BMW
325i, Baujahr 1988, angepasst, dessen Parameter bekannt waren. Bei den drei dynamischen
Modellen handelt es sich um:

• Lineares Einspurmodell: Dieses Modell entspricht weitgehend den aus der Literatur bekann-

ten linearen Einspurmodellen. In das Modell integriert sind lineare Regler für die Fahrzeugge-

schwindigkeit und die Orientierung des Geschwindigkeitsvektors (Summe von Gierwinkel

 und Schwimmwinkel).

Kenngrößen des Modells: 3 Freiheitsgrade und Systemordnung7.

• Nichtlineares Zweispurmodell: Es besteht aus einer Aufbaumasse und vier Radmassen.

Dazwischen wirken nichtlineare Feder/Dämpfer-Gesetze. Die Vorderräder sind lenkbar, wobei

die Lenkkinematik realer Fahrzeuge berücksichtigt wird. Das Fahrzeugmodell wird durch

Reifenmodelle (erweitertes EZ2Use) und einen Antriebsstrang in Form elektrischer Antriebs-

maschinen vervollständigt. Bei der Modellbildung wird auf eine geeignete Strukturierung und

x·

ψ β

108

Modularisierung des Modells (s. o.) geachtet. Dadurch werden die Identifikation und die Veri-

fikation der Systemparameter vereinfacht.

Kenngrößen des Modells: 12Freiheitsgrade und Systemordnung83.

• Nichtlineares Einspurmodell: Dieses Modell enthält alle Komponenten des nichtlinearen

Zweispurmodells (s. u.). Jedoch wird die mechanische Struktur vereinfacht. Dieser Schritt

führt zu einer ca. dreimal schnelleren Simulation auf einem Einzelprozessorsystem, vergli-

chen mit dem Zweispurmodell.

Kenngrößen des Modells: 8 Freiheitsgrade und Systemordnung63.

Eine vollständige Simulationsumgebung für das Kreuzungsmanagement erfordert weitere Kom-
ponenten. Dazu zählen beispielsweise die Fahrdynamikregler (Geschwindigkeits-, Spurfolge-
und Abstands-/Kolonnenregler), Fahrermodelle für die Bereiche außerhalb der Handlungszone
(inkl. Fahrertypklassifizierung für die AMS-Optimierung), die realistische Definition einer Kreu-
zungsgeometrie und deren Umsetzung in Form von Bahndefinitionen und 3D-Ansichten sowie
die Verknüpfung von Fahrzeugposition und -lage mit den Bahndaten.

7.4.5 Lineares Einspurmodell für die Vorausschau

Das lineare Einspurmodell stellt die niedrigste Modellierungstiefe von Fahrzeugen im Kreu-
zungsmanagement dar. Es wird auf der Basis des klassischen Einspurmodells [Rickert, Schunck
1940] an die eigenen Erfordernisse angepasst. Das Modell ist deshalb sehr wichtig, da es gleich-
zeitig physikalisch anschaulich und schnell simulierbar ist. Gerade für Simulationen zur Voraus-
schau auf VMS-Ebene, die schneller als Echtzeit sein müssen, ist das Modell sehr gut geeignet.
Durch die Annahme einer linearen Schräglaufsteifigkeit der Reifen wird das reale Fahrverhalten
nur bis zu einer Querbeschleunigung von ca.4 m/s2 hinreichend genau approximiert [Mitschke
1990]. Im Kreuzungsmanagement wird diese Querbeschleunigungsgrenze aber nicht erreicht.
Zur Linearisierung des Modells sind weitere Einschränkungen zu beachten. Zum Einen können
nur kleine Lenkwinkel betrachtet werden, so dass gilt: , und

. Zum Anderen existiert in den Bewegungsgleichungen eine einseitige Verkopplung
zwischen der Fahrzeuglängsgeschwindigkeit und dem Schwimmwinkel (s. Gl. 7.18). Da
jedoch für das Kreuzungsmanagement in der Verzögerungszone nur die Längsdynamik und in
der Durchfahrtszone (Abbiegen mit v = const) nur die Querdynamik eine Rolle spielt, kann die
Fahrzeuggeschwindigkeit im Querdynamikteil des Modells ohne Probleme als Parameter einge-
setzt werden. Der Parameter v beschreibt damit einen Betriebspunkt zur Betrachtung der Querdy-
namik.

Bild 7-22 verdeutlicht die Größen zur Beschreibung des Einspurmodells. Dargestellt sind der
Momentanpol der Geschwindigkeit, die Antriebskraft Fa, die Reifenquerkräfte Fqh und Fqv, die

δ δ()sin 0= δ()cos 1=
δ()tan 0=

x· β

 109

Geschwindigkeit v, der Lenkwinkel , der Schwimmwinkel und der Gierwinkel :

Abbildung 7-22: Einspurmodell

Zur Integration des Modells in das Kreuzungsmanagement müssen entsprechende Regelsysteme
für das Fahrzeug verwendet werden. Zum Einen muss der Geschwindigkeitsbetrag in Fahr-
zeuglängsrichtung eingeregelt werden, zum anderen muss der Richtung der Geschwindigkeit im
ortsfesten 2D-Kreuzungskoordinatensystem (x’,y’) gefolgt werden. Dazu wird der Winkel des
Geschwindigkeitsvektors um die Hochachse als Führungsgröße verwendet (Kurswinkel). Für das
lineare Einspurmodell ergibt sich der Kurswinkel zu:

(7.13)

Als Stellgröße dient der Lenkwinkel , für den folgendes Regelgesetz aufgestellt wird:

(7.14)

Dieser PI-Regler wird für eine Geschwindigkeit v0 = 5,0 m/s ausgelegt und wird automatisch
über den Parameter KLB =KL*(v/v0) an den jeweiligen Geschwindigkeitsbetriebspunkt (Parame-
ter v) angepasst. D. h. die Reglereigenschaften im Bezug auf den Schwimmwinkel bleiben auch
bei Änderung des Parameters v durch Kompensation in der ersten Zeile der A- (s. Gl. 7.18) und
B-Matrix (s. Gl. 7.17) gleich. Über den Integralanteil des PI-Reglers kann der sog. Geschwindig-
keitsstellfehler bei rampenförmigem Führungsgrößenverlauf zu Null gemacht werden.

Um den Geschwindigkeitsbetrag zu regeln, wird als Führungsgröße die Antriebskraft Fa am Hin-
terrad verwendet. Dafür wird folgendes PI-Regelgesetz formuliert:

(7.15)

δ β ψ

γ β ψ+=

δ

δ KL γsoll
KLB
KL

----------- β⋅– ψ–   KL
TLI
--------- γsoll β– ψ–() τd

0

t∫⋅+⋅=

Fa KV vsoll x·–() KV
TVI
--------- vsoll x·–() τd

0

t∫⋅+⋅=

110

Die Führungsgrößen der Regler werden zu Eingängen in das geregelte lineare Einspurmodell:

TABELLE 17. Eingänge des geregelten linearen Einspurmodells

Zusätzlich zu fünf Zustandsgrößen zur Beschreibung der Strecke kommen zwei weitere Zustände
aus den Integralanteilen der beiden PI-Regler hinzu:

TABELLE 18. Zustände des geregelten linearen Einspurmodells

Das Fahrzeugmodell wird dem Verhalten eines BMW 325i, Baujahr 1988, angepasst, dessen
Parameter bekannt waren. Die Reglerparameter werden in Scilab mit Hilfe des Frequenzkennli-
nienverfahrens ermittelt und anhand von Eigenwertanalysen und linearer Simulation überprüft.

Die Bandbreiten des geregelten Systems liegen für den Betriebspunkt v0 = 5,0 m/s oberhalb von
1 Hz.

TABELLE 19. Parameter des geregelten linearen Einspurmodells

Name Einheit Beschreibung

[rad] Geschwindigkeitssollwinkel um die Hochachse

[m/s] Geschwindigkeitssollbetrag des Fahrzeugs

Name Einheit Beschreibung

[rad] Schwimmwinkel

[rad] Gierwinkel

[rad/s] Gierrate

[m] Weg

[m/s] Geschwindigkeit

[m] Integral über den Geschwindigkeitsfehler:

[rad s] Integral über den Winkelfehler:

Name Wert Einheit Beschreibung

v variabel [m/s] Geschwindigkeit im zu wählenden Betriebspunkt

v0 5,00 [m/s] Geschwindigkeit für die Reglerauslegung

m 1.296,00 [kg] Fahrzeugersatzmasse (alle Trägheiten)

Iz 1.750,00 [kg m2] Fahrzeugträgheitsmoment um die Hochachse

lv 1,25 [m] Abstand der Vorderachse vom Schwerpunkt

lh 1,32 [m] Abstand der Hinterachse vom Schwerpunkt

cv 70.000,00 [N/rad] Gesamtfederkonstante für den vorderen Schräglauf

ch 70.000,00 [N/rad] Gesamtfederkonstante für den hinteren Schräglauf

1,20 [kg/m3] Luftdichte

Aw 2,00 [m2] Stirnfläche des Fahrzeugs

cw 0,40 [-] Luftwiderstandsbeiwert

γSoll

vSoll

β

ψ

ψ·

x

x·

εv ε·v vsoll x·–=

εψ ε·ψ γsoll β– ψ–=

ρ

 111

Für die Herleitung der Bewegungsgleichungen für die Querdynamik des Einspurmodells sei auf
die Literatur verwiesen [Mitschke 1990]. Im Längsdynamikteil ist neben der Massenträgheit des
Fahrzeugs der Luftwiderstand FL in linearisierter Form berücksichtigt:

(7.16)

Die Bewegungs- und Reglergleichungen des gesamten Modells in Zustandsraumdarstellung lau-
ten somit:

(7.17)

(7.18)

Da für die Optimierung im Kreuzungsmanagement auf VMS-Ebene die Durchfahrtsgeschwin-
digkeit (Abbiegegeschwindigkeit) ein variabler Parameter ist, werden die Zustandsgleichungen
zur Simulation nicht diskretisiert, sondern in symbolischer Form als C-Code formuliert und mit
Hilfe eines Heun-Verfahrens online gelöst. Aufgrund der analysierten Eigenfrequenzen ist dabei
eine Integrationsschrittweite von h = 0,01 s ausreichend. Die gemessenen Rechenzeiten pro
Simulationsschritt gemäß Tabelle 20 haben gezeigt, dass eine verteilte Simulation des linearen

KV 8.242,00 [kg/s] Reglerverstärkung für den Geschwindigkeitsregler

TVI 0,18 [s] Zeitkonstante für Geschwindigkeits-PI-Regler

KL 6,03 [rad] Reglerverstärkung für den Lenkregler

KLB KL*(v/v 0) [rad] Reglerverstärkung für den Lenkregler mit v-Kompensation
(Reglerkoeffizienten abhängig vom Betriebspunkt v)

TLI 0,36 [s] Zeitkonstante für Gierwinkel-PI-Regler

Name Wert Einheit Beschreibung

FL Lin, x·() 1
2
--- ρ cw Aw v⋅ ⋅ ⋅ ⋅ x·⋅=

β
ψ

ψ·

x

x·

εv

εψ

·

A

β
ψ

ψ·

x

x·

εv

εψ

KLB cv⋅
m v⋅

--------------------- 0

0 0

KL cv lv⋅ ⋅
Iz

------------------------- 0

0 0

0
KV
m

0 1

1 0

γSoll

vSol l

⋅+⋅=

A

ch KLB 1+()– cv⋅–

m v⋅

KLB– cv⋅
m v⋅

m v cv

lv
v
--- ch

lh
v
----⋅+⋅–⋅–

m v⋅
--- 0 0 0

KLB cv⋅
TLI m v⋅ ⋅

0 0 1 0 0 0 0

KL 1+() cv lv ch lh⋅+⋅ ⋅–

Iz

K– L cv lv⋅ ⋅
Iz

cv–

lv
2

v
------ ch

lh
2

v
------⋅–⋅

Iz
-- 0 0 0

KL cv lv⋅ ⋅
TLI Iz⋅

0 0 0 0 1 0 0

0 0 0 0
K– V

ρ cw Aw v⋅ ⋅ ⋅
2

--------------------------------–

m
-- KV

TVI m⋅
------------------ 0

0 0 0 0 1– 0 0

1– 1– 0 0 0 0 0

=

112

Einspurmodells ineffizient wäre. Daher sind die Simulationen des linearen Einspurmodells direkt
in Form von C-Code in einen Evaluator integrierbar. Mit einem Athlon-1800MP-System kann
man das Verhalten des linearen Einspurmodells für eine gedankliche Vorausschau von z. B. 100 s
innerhalb von 100 s/25.000 = 4 ms voraussimulieren:

TABELLE 20. Rechenzeiten für einen Simulationsschritt des geregelten linearen Einspurmodells

7.4.6 Simulator für die VMS0-Ebene

Um die Einzelfahrzeuge simulieren zu können, wird auf die bewährte Simulationsplattform IPA-
NEMA zurückgegriffen. Pro Fahrzeug existiert eine vollständige IPANEMA-Applikation. Die
Verwendung von IPANEMA bietet folgende Vorteile:

1. Echtzeitfähigkeit (wird hier nicht ausgenutzt, ist aber eine wichtige Option)

2. Verteilbarkeit durch definierte netzwerkfähige Objektkommunikation

3. Plattformunabhängigkeit

4. Adaptor-Konzept zur Kommunikation mit der Umgebung

5. Anbindung an das Modellbildungswerkzeug CAMeL-View

Innerhalb einer IPANEMA-Applikation kann bei Bedarf mit Hilfe der Calculatoren/Adaptoren
auf den MFG-/MFM-Ebenen weiter modularisiert werden. Mit Hilfe der Adaptor-Objekte findet
die Vernetzung der Fahrzeuge statt (Modellkopplung). Dazu besitzt der Adaptor ein auf TCP/IP
[Stevens 1992] basierendes Kommunikationsmodul zum Senden und Empfangen von Daten:

Abbildung 7-23: IPANEMA als Simulator für die VMS0-, AMS- und MFM-Ebenen

Rechenzeit T Faktor h/T Hardware Numerische Lösung

1,30 [µs] 7.692 Intel PIII 500 Heun-Löser, h = 0,01 s, 64 bit double

0,40 [µs] 25.000 Athlon 1800 MP Heun-Löser, h = 0,01 s, 64 bit double

 113

7.4.7 Evaluator für die Handlungszone

Zur Bewertung der Vorgänge in der Handlungszone wird ein Evaluator benötigt, der die folgen-
den Aufgaben erfüllt:

1. Umsetzung des beschriebenen graphenbasierten Verfahrens zur Vorfahrtsbestimmung

2. Anbindung von geeigneten Simulatoren (IPANEMA) zur Darstellung der VMS0-Ebene

(dynamische Fahrzeuganzahl)

3. Realisierung von Zielfunktionen zu den Vorgängen in der Handlungszone (Durchsatz, max.

Quer-/Längsbeschleunigung, min. Fahrzeugabstand, Energieverbrauch etc.)

4. Bereitstellung einer Schnittstelle zum Optimierer

Ein solcher Evaluator für die Handlungszone lässt sich nicht mit Hilfe von ODSS modellieren;
auch das Werkzeug Scilab bietet hier keine Unterstützung an. Daher wird der Evaluator in Form
eines handcodierten C-Programms umgesetzt. Da der Evaluator ursprünglich als reiner Simulator
für die Handlungszone entstanden ist und erst später erweitert wurde, heißt er iSIM (Intersection
Simulator):

Abbildung 7-24: Evaluator iSIM

Alternativ zur Anbindung von Einzelfahrzeugen über IPANEMA kann auch das beschriebene
lineare Einspurmodell zur Simulation verwendet werden. Das lineare Einspurmodell wird dazu
direkt in iSIM integriert, da eine Verteilung zu einer zu feingranularen Parallelität führen würde.

Optional können die 3D-Koordinaten (x-, y-, z-Position und Kardanwinkel) aller Fahrzeugkaros-
serien und Räder über eine TCP/IP-Schnittstelle zyklisch zu einem 3D-Animator gesendet wer-
den. Die Schnittstelle zum Optimierer (MOPO) erfolgt ebenfalls über ein TCP/IP-Protokoll. Die-
ses Protokoll ist identisch mit dem MOPO-Scilab-Protokoll (siehe Anhang).

114

iSIM-Simulationsergebnisse

Der iSIM-Kern ist plattformunabhängig; nur die 2D-Visualisierung benötigt eine Windows-Platt-
form. Unter Linux werden für eine maximale Anzahl von gleichzeitig 25 Fahrzeugen (lineares
Einspurmodell) ca. 7 MBRAM benötigt. Die Simulation der Handlungszone ist bei Verwendung
einer AMD-Athlon 1800-MP-CPU ca. 6-fach schneller als Echtzeit:

TABELLE 21. Gemessene Simulationszeiten der Handlungszone (lin. Einspurmodell auf AMS-Ebene)

Die nachfolgende Tabelle zeigt Randbedingungen und Ergebnisse für eine Kreuzungssimulation.
Dabei treten immer maximal 8 Fahrzeuge am Rand der Handlungszone (im 10-Sekunden-
Abstand) in den Kollisionsgraphen und den Vorfahrtsgraphen nach einem festen Ablaufschema
ein. Auf diese Weise können Simulationen der Handlungszone mit verschiedenen Fahrzeugmo-
dellen verglichen werden.

TABELLE 22. Randbedingungen und Ergebnisse der Simulation

Abbildung 7-25 zeigt die Daten der ersten 16 Fahrzeuge für eine Simulation der Handlungszone

Anzahl der CPUs Modellzeit [s] Realzeit [s] Modellzeit/Realzeit

1 100 16 6,25

Mittlere Kurvenradien 13,0 m links; 9,0 m rechts

Sicherheitsabstand 3 Fahrzeuglängen

Maximale Verschiebung der Fahrzeuge [+150 m ; -15 m]

Durchfahrtlänge durch Verzögerungszone 230 m

Zeitlücke (Time Headway [Mayr 2001]) bei der Einfahrt
(d. h. bei 8 Einfahrtsspuren ergibt sich ein maximal möglicher
Eingangsdurchsatz von 48 Fzg./Min. = 8 Fzg./10 s)

10 s (= 150 m bei 15,0 m/s)

Einfahrts-/Ausfahrtsgeschwindigkeit 15,0 m/s

Durchfahrtsgeschwindigkeit 5,0 m/s

Simulationsdauer (Modellzeit) 100,0 s

Schrittweite der Kreuzungs-Simulation 0,01 s

Kommunikationsschrittweite 0,01 s

Schrittweite Fahrzeugmodelle 0,001 s

Simulator für Fahrzeugmodelle IPANEMA mit Runge-Kutta4-Löser

Ausgabeschrittweite (2D-Animation) 1,0 s

Fahrzeugmodelle BMW 325i (1988):
 Lineares Einspurmodell
 Einspurmodell aus CAMeL-View
 Zweispurmodell aus CAMeL-View

Ordnung = 7; DOF = 3
Ordnung = 63; DOF = 8
Ordnung = 83; DOF = 12

Lastverteilung Gleiche Fahrzeuganzahl pro Prozessor

Simulationsergebnisse

Maximale Fahrzeuganzahl gleichzeitig simuliert
Summe simulierter Fahrzeuge

27
60

Betrag maximale Quer- und Längsbeschleunigung ca. 3 m/s2

Durchschnittlicher Durchsatz am Ausgang bei Simulationsende
(Simulationsbeginn mit leerer Kreuzung,
 25 Fahrzeuge bleiben am Ende der Simulation in der Kreuzung)
Durchschnittlicher Durchsatz am Eingang bei Simulationsende

21 Fahrzeuge/Min.((60-25) Fzg./100 s)
36 Fahrzeuge/Min. (60 Fzg./100 s)

 115

auf der Basis des linearen Einspurmodells. Die Zeitdaten zeigen, dass bei den angegebenen
Randbedingungen die Werte der Längs- und der Querbeschleunigungen in physikalisch realisti-
schen Bereichen liegen. Die Abbiegevorgänge finden auf Kreisbahnen statt, was sich anhand der
rechteckförmigen Querbeschleunigungsverläufe erkennen lässt. Intern werden jedoch kubische
2D-Splines zur Bahndefinition verwendet, so dass Bahnen sehr flexibel definiert werden können.
Die Rechtsabbieger unterliegen wegen der geringen Kurvenradien den höchsten Querbeschleuni-
gungen beim Abbiegen (bei vergleichbaren Geschwindigkeiten). Die drei ersten Fahrzeuge erhö-
hen ihre Geschwindigkeit vor der Kreuzung kurzfristig, um den Nachfolgenden Platz zu machen;
ansonsten vermindern alle Fahrzeuge ihre Geschwindigkeit je nach berechneter Verschiebung
zum Kollisionspartner mehr oder weniger schnell auf die Durchfahrtsgeschwindigkeit. Deutlich
sind die dreiecksförmigen Beschleunigungsprofile zu erkennen:

Abbildung 7-25: Simulationsdaten für 16 Fahrzeuge

7.4.8 Fahrzeugprioritäten bei der Vorfahrtsreihenfolge

Die Strukturen des Kollisionsgraphen und des daraus entstehenden Vorfahrtsgraphen hängen von
der Reihenfolge der Knoten- bzw. Fahrzeug-Einbindung ab. Für jede Reihenfolge des Einbindens
ist zwar eine kollisionsfreie Überquerung der Kreuzung garantiert, jedoch ist die Größe des
Rückstaus in den Einfahrtsspuren der Kreuzung vom längsten Pfad im Vorfahrtsgraphen abhän-
gig.

Falls die Reihenfolge des Einbindens in den Kollisionsgraphen völlig frei wählbar wäre, würden

116

bei N Fahrzeugen theoretisch N! Möglichkeiten der Vorfahrtsvergabe entstehen, wobei Möglich-
keiten durch unabhängige Fahrzeuge und Symmetrie ausscheiden. Für acht Fahrzeuge (SL, NL,
WR, ES, SS, WL, NR, EL) und eine leere Kreuzung wird exemplarisch eine Eingrößen-Optimie-
rung zur Rückstau-Minimierung mit Hilfe von Simulated Annealing [Van Laarhoven 1987]
durchgeführt. Dazu wird eine entsprechende Optimierungsfunktion temporär in iSIM integriert.
Eine Verwendung der eigenen MOPO-Optimierungsalgorithmen war nicht möglich, da die Ziel-
funktion diskontinuierlichen Charakter hat. Die Randbedingungen für die Simulationen entspre-
chen den bereits beschriebenen, nur dass die Fahrzeuganzahl auf acht Fahrzeuge mit spezieller
Eintrittsreihenfolge begrenzt wurde.

Die Optimierung kann in 30Schritten die maximale Verschiebung (s. Gl. 7.9) zwischen den
Fahrzeugen von 54.2 m auf 20.9 m minimieren (positive Verschiebung bedeutet verringerte
Durchschnittsgeschwindigkeit). Bild 7-26 zeigt die zugehörige Abkühlkurve (Temperatur des
Simulated Annealing in Grad Kelvin), den Kostenverlauf (maximale Verschiebung in Meter)
und den resultierenden besten Vorfahrtsgraphen. Für die maximale Verschiebung wird für jeden
Optimierungsschritt der beste und der aktuelle Wert verglichen. Schon nach 8 Schritten wird die
beste Reihenfolge gefunden (und gespeichert). Alle nachfolgenden zufällig gewählten Reihenfol-
gen erzeugte eine größere maximale Verschiebung. Eine Erhöhung der Durchschnittsgeschwin-
digkeit (negative maximale Verschiebung) konnte für die gegebene Konfiguration nicht gefunden
werden.

Es zeigt sich zunächst ein recht großes Optimierungspotential. Für realistische Simulationsszena-
rien mit einer vollen Kreuzung (>30 Fahrzeuge), in die am Rand auf den Einfahrtsspuren Fahr-
zeuge einfahren, zeigt sich jedoch nur ein sehr geringes Optimierungspotential. Es ist daher am
sinnvollsten die Fahrzeuge nach Reihenfolge des Eintretens/Anmeldens in den Vorfahrtsgraphen
einzubinden (First-In-First-Get-Strategie). Dies wurde durch umfangreiche Simulationsläufe mit
kontinuierlich einfahrenden Fahrzeugen geprüft (Simulationskonfiguration wie Kap. 7.4.7) und
hat zwei Gründe:

1. Will man eine optimale Vorfahrtsreihenfolge für neu in eine Kreuzung einfahrende Fahrzeuge

bei hoher Verkehrsdichte ermitteln, so schränkt ein schon bestehender Rückstau in den Ein-

fahrtsspuren das Optimierungspotential drastisch ein, falls er durch die Limitierung der

Abbiegegeschwindigkeit (Querbeschleunigungsgrenze) dominiert wird.

∆s

∆s

 117

2. Die Anzahl der "neuen" Fahrzeuge mit noch unbestimmter Vorfahrtsreihenfolge ist klein im

Vergleich mit den vorhandenen Fahrzeugen im Inneren der Kreuzung mit schon festgelegter

Vorfahrtsreihenfolge.

Abbildung 7-26: Minimierung des Rückstaus für 8 Fahrzeuge

7.4.9 Parallelverarbeitung für die Bewertung der Handlungszone

Will man detailliertere Bewertungen zur Längs-, Quer- und Vertikaldynamik der Einzelfahrzeuge
bei der Überquerung der Kreuzung vornehmen, so ist die Verwendung der komplexeren nichtli-
nearen Fahrzeugmodelle notwendig. Diese Modelle benötigen ein Vielfaches des Rechenaufwan-
des für die Simulation im Vergleich zum linearen Einspurmodell. Da die Evaluierung der Hand-
lungszone während eines Optimierungslaufs sehr häufig vorgenommen wird, ist es sinnvoll, eine
parallele Simulation der Einzelfahrzeuge zu realisieren. Im Folgenden werden die Laufzeiten für
die nichtlinearen Modelle auf einem Workstation-Cluster mit zehn CPUs dargestellt.

Der Workstation-Cluster besteht aus fünf Dualprozessor-Systemen mit AMD-Athlon 1800-MP-
CPUs. Die Vernetzung erfolgt über einen Gigabit-Switch. Ein System (zwei CPUs, 2 GB RAM)
läuft unter Windows 2000 und dient als Leitwarte (2D-/3D-Animation etc.). Die vier Rechner-
knoten (8 CPUs, je 1 GB RAM) laufen unter Suse-Linux 8.0. Der Evaluator-Prozess iSIM läuft
auf dem Windows-Knoten und startet von dort aus die Simulatoren auf den Linux-Knoten über
RSH-Kommandos (Remote Shell); die Interprozess-Kommunikation erfolgt durch TCP/IP-Sok-
kets.

Die Lastverteilung folgt einem sehr einfachen Schema, da die Lasten sowie die Rechnerknoten
homogen sind. Zudem stehen die Rechnerknoten exklusiv für diese Anwendung zur Verfügung,
so dass keine externen Lasten zu erwarten sind. Zur Lastverteilung sorgt iSIM daher lediglich
dafür, dass die Anzahl der Simulatoren auf jedem Rechnerknoten möglichst gleich ist. Beim Start
eines neuen Simulators wird dazu aus einer Liste der Rechnerknoten der Knoten mit der momen-
tan geringsten Simulator-Anzahl ausgewählt. Bei gleichen Simulator-Anzahlen auf mehreren
oder allen Rechnerknoten erfolgt eine Zufallsentscheidung.

Die Anwendungstopologie wird durch einen hierarchischen Evaluator-Simulator-Graph
beschrieben. Dieser Graph hat eine dynamische Struktur, da die Anzahl der Simulatoren der aktu-
ellen Fahrzeuganzahl in der Handlungszone entspricht und deshalb zeitlich veränderlich ist. Für
die oben beschriebene Simulation (Tabelle 22) treten minimal 8 und maximal 27 Fahrzeuge

118

gleichzeitig auf:

Abbildung 7-27: Dynamischer Evaluator-Simulator-Graph

Die Bewertung der Handlungszone wird für das nichtlineare Einspur- und Zweispurmodell in
verschiedenen CPU-Konfigurationen der Linux-Rechenknoten durchgeführt. Zur Referenzsimu-
lation für die nachfolgende Ermittlung eines Speedup-Faktors wird zunächst ein Linux-Rechen-
knoten in Single-CPU-Konfiguration zusammen mit dem Leitwartenrechner verwendet.
Anschließend erfolgen die Simulationen der beiden Fahrzeugmodelle für 2, 4, 5 und 8 CPUs. Das
nachfolgende Diagramm zeigt die zugehörigen Rechenzeiten und den Speedup für die jeweilige
CPU-Anzahl:

Abbildung 7-28: Laufzeitergebnisse für die parallele Simulation von Fahrzeugen

Die Ergebnisse zeigen die gute Skalierbarkeit der Anwendung. Trotz verbleibender sequentieller
Abläufe im Evaluator (Bahnberechnung, Kollisionsprüfung, Vorfahrtsbestimmung etc.) können
die Laufzeiten durch eine Parallelverarbeitung drastisch gesenkt werden. Auch die Zeitverluste
durch Kommunikation und das dynamische Starten und Beenden der IPANEMA-Anwendungen

 119

haben geringen Einfluss auf die parallele Performance.

Nach dem Gesetz von Amdahl [Amdahl 1967] ergibt sich für den gemessenen Speedup von 6,8
bei 8 Prozessoren der parallele Anteil am Gesamtcode zu 0,97. Extrapoliert man mit diesen Wer-
ten auf eine Anwendung mit 27 Prozessoren (ein Prozessor pro Fahrzeug), so ließe sich theore-
tisch ein Speedup von 15,1 erzielen. Angesichts dieser Schätzung wäre die Verwendung von
noch mehr Rechenknoten sehr sinnvoll.

7.4.10 Modellbasierte Online-Optimierung auf VMS1-Ebene

In den vorangegangenen Abschnitten wurden die Verfahren zur effizienten Simulation und
Bewertung der Vorgänge in der Handlungszone beschrieben. Auf dieser Grundlage bauen die
Optimierungsexperimente auf VMS1-Ebene auf. Die Optimierung basiert auf dem MOPO-Ver-
fahren. Die nachfolgende Abbildung zeigt die Optimierer-Evaluator-Simulator-Topologie für das
Kreuzungsmanagement. Die Parallelität auf VMS1-Ebene (dynamische Simulatoranzahl) und
diejenige auf Optimierungsebene (mehrere Evaluator-Instanzen) sind bereits mitdargestellt. Ein
Fahrzeug übernimmt die Optimierung, da von diesem immer nur eine Instanz zu einem Zeitpunkt
aktiv ist. Ein Verteilungsvorschlag für die Evaluator-Simulator-Funktionen ist ebenfalls skizziert.
Die parallele OES-Struktur zur modellbasierten Online-Optimierung findet sich innerhalb der
gekoppelten Operator-Controller-Module auf VMS1-Ebene der Einzelfahrzeuge. Die weiteren
OCMs auf VMS0-, AMS- und MFM-Ebene sind ebenfalls angedeutet:

Abbildung 7-29: OES-Struktur mit Parallelität auf Optimierungs- und VMS1-Ebene

Ein sehr wichtiges kontinuierliches Mehrziel-Problem in der Optimierungszone auf VMS1-
Ebene besteht im Auffinden der besten Parameter für die zeitlichen Abstände (Time Headway
[Mayr 2001]) und die Geschwindigkeiten für die Verzögerungs- und die Durchfahrtszone: vEin-

120

fahrt, vDurchfahrt, thEinfahrt, thDurchfahrt. Durch diese Größen kann der Durchsatz in der Durch-
fahrtszone optimiert und gleichzeitig der dazu passende optimale Eingangsdurchsatz in die Ver-
zögerungszone gefunden werden. Für die Mehrziel-Optimierung dieses Problems werden sechs
Zielfunktionen verwendet:

TABELLE 23. Ziele für die Mehrziel-Optimierung auf VMS1-Ebene

Die Minimierung der maximalen Fahrzeugverschiebung als Maß für den Rückstau ist eine
sehr wichtige Größe für das Kreuzungsmanagement. Anhand dieser Größe kann beobachtet wer-
den, ob eine stillstandsfreie Überquerung der Kreuzung möglich ist. Ist der Eingangsdurchsatz
höher als der Durchfahrtsdurchsatz, so wird im Laufe der Evaluierungszeit monoton steigen,
ansonsten stellt sich ein oberer Grenzwert ein. Sobald die minimale Geschwindigkeit in der Ver-
zögerungszone einen konfigurierbaren Grenzwert (Voreinstellung: 1 % von vEinfahrt) unterschrit-
ten hat, wird die Evaluierung der Handlungszone beendet. Als Zielfunktionswerte werden die um
100 % verschlechterten Werte des vorherigen Optimierungsschrittes zurückgegeben.

Gemäß der Grundidee des Kreuzungsmanagements, dass die beteiligten Kraftfahrzeuge selbst
die erforderliche Rechenleistung in Form eines Prozessornetzwerkes bereitstellen, ist die Opti-
mierung als verteilte Anwendung umgesetzt. Verwendet wird das beschriebene Quasi-Newton-
Verfahren. Es können bei den vier beschriebenen Optimierungsparametern die vier Zeilen der
Empfindlichkeitsmatrix S (vgl. Kap. 6.6) parallel durch vier Evaluator-Instanzen berechnet wer-
den. Es ergibt sich eine Topologie für die verteilte Anwendung mit bis zu 177 ()
Prozessen für die oben beschriebenen Simulationsrandbedingungen (für iSim): Ein Optimierer
(MOPO), vier Evaluatoren (iSIM) und bis zu 43 Simulatoren (IPANEMA) pro Evaluator. Die
hohe Anzahl von Fahrzeugen (vormals 27) ist durch die Vergrößerung der Durchfahrtslänge
durch die Verzögerungszone von 230 m auf 350 m bedingt (bewirkt geringere Längsbeschleuni-
gungen).

7.4.11 Optimierungsergebnisse

Die Optimierung wird sowohl mit dem nichtlinearen Einspur- als auch mit dem Zweispurmodell
durchgeführt, um die Ergebnisse abzusichern und das Laufzeitverhalten zu vergleichen. Mit
Hilfe des Quasi-Newton-Verfahrens ergeben sich identische Optimierungsergebnisse nach 137

Ziel Beschreibung

Maximierung der minimalen
Geschwindigkeit

Die minimale Geschwindigkeit in der Verzögerungszone sollte nicht
unter der Abbiegegeschwindigkeit (vDurchfahrt) liegen

Maximierung des Gesamtdurchsatzes Die Fahrzeugfrequenz auf allen vier Ausfahrtsspuren der Handlungs-
zone zusammen (Eingangsdurchsatz bezieht sich auf acht Spuren)

Minimierung der Energie Kinetische Energieänderung aller Fahrzeuge zum Bremsen und zum
Beschleunigen

Minimierung der maximalen Ver-

schiebung

Größe der Verschiebung zur Kollisionsvermeidung;
geringe Verschiebung bedeutet wenig Rückstau

Minimierung der maximalen Querbe-
schleunigung

Tritt beim Rechtsabbiegen auf

Minimierung der maximalen Längs-
beschleunigung

Tritt bei Verschiebung der Fahrzeuge in der Verzögerungszone auf

∆s

∆s

∆s

1 4 4 43⋅+ +

 121

Schritten für beide Modellierungstiefen. Die nachfolgenden Diagramme zeigen den zugehörigen
Optimierungsverlauf für die Zielgrößen und die Parameter:

Abbildung 7-30: Zielgrößen-Verläufe während der Optimierung

Abbildung 7-31: Parameter-Verläufe während der Optimierung

Relevante Verbesserungen können für die maximale Querbeschleunigung, die maximale Längs-
beschleunigung und die maximale Fahrzeugverschiebung erreicht werden. Das Optimierungser-
gebnis ist speziell auf die jeweilige Vorfahrts-/Abbiegesituation zugeschnitten; neue Situationen

122

erfordern eine erneute Optimierung. Insbesondere der Kolonnenabstand in der Durchfahrtszone
und die Abbiege-/Durchfahrtsgeschwindigkeit haben sehr großen Einfluss auf alle Zielgrößen.
Im Optimierungsverlauf erreichen daher beide Parameter ihre unteren Grenzen.

Für die Optimierung wird der bereits beschriebene Workstation-Cluster verwendet. Zwei Prozes-
soren werden für den MOPO-Prozess und für Visualisierungen genutzt, auf die restlichen acht
Prozessoren werden die iSIM- und die IPANEMA-Prozesse gleichmäßig verteilt. Die Laufzeiten
und Speedups ergeben sich wie folgt:

TABELLE 24. Rechenzeiten und Speedups für die parallele Optimierung

Der Speedup für die Verwendung von 8 CPUs entspricht demjenigen, der für die reine Simula-
tion (ein Bewertungslauf) beobachtet wird. Dies ist nicht überraschend, da die Bewertung der
Handlungszone den dominierenden Rechenanteil bildet. Die Übereinstimmung im Speedup zeigt
dabei die Effizienz der Implementierung auf. Trotz der hohen Prozessanzahl und den daraus
resultierenden Startup- und Kommunikationszeiten können die 8 CPUs sehr gut ausgenutzt wer-
den. Die hohe Anzahl der verteilten Prozesse lässt vermuten, dass auch wesentlich größere
Rechencluster (>100 CPUs) effizient genutzt werden können.

7.4.12 Zusammenfassung

Anhand der hierarchischen Struktur, der Zoneneinteilung, der Fahrzeug- und Umgebungsmodelle
und der Algorithmen zur Kollisionsvermeidung/Vorfahrtsbestimmung des Kreuzungsmanage-
ments wurde zunächst die Bewertung der Handlungszone vorgestellt. Die Ergebnisse unter Ver-
wendung der komplexen Modelle haben gezeigt, dass die Verwendung des linearen Einspurmo-
dells bereits Ergebnisse mit guter Genauigkeit liefert. Weitergehende Aussagen zu Quer-, Längs-
und Vertikaldynamik der Fahrzeuge während der Überquerung sind jedoch nur mit den komple-
xeren Modellen zu erzielen. Für verschiedene Modellierungstiefen wurden zusätzlich die Lauf-
zeitergebnisse für eine parallele Simulation der Fahrzeuge verglichen.

Für die Bestimmung einer Vorfahrtsreihenfolge hat sich gezeigt, dass für realistische Szenarien,
bei denen einzelne Fahrzeuge zeitverschoben in eine bereits "volle" Kreuzung einfahren, die
First-In-First-Get-Strategie gut geeignet ist.

Für die verteilte Optimierung auf VMS1-Ebene wurde die zugehörige Optimierer-Evaluator-
Simulator-Struktur vorgestellt. Exemplarisch wurde ein Optimierungsexperiment zur Abstim-
mung der Fahrzeugabstände und -geschwindigkeiten für die Handlungszone beschrieben.

Für das Kreuzungsmanagement hat sich gezeigt, dass nur bei ausreichend großen Zonen und
geeigneten Fahrzeugabständen überhaupt genügend Flexibilität für die Optimierung des Ver-
kehrsflusses vorhanden ist. Der Verkehrsablauf enthält eine Neigung zur Selbsthemmung, wenn

Modell Rechenzeit 1 CPU [min] Rechenzeit 8 CPUs [min] Speedup

NL-Einspur 6.099 890 6,8

NL-Zweispur (> 35.000)a

a. Hochgerechnet auf Basis des angenommenen Speedups

5.356 (6,8)b

b. Annahme des Speedups des NL-Einspurmodells zur Schätzung der sequentiellen Rechenzeit

 123

die Zahl der in die Kreuzung einfahrenden Fahrzeuge größer ist als die Zahl der Fahrzeuge, die
die Kreuzung verlassen [Cremer 1979]. Dies ist ein entscheidendes Charakteristikum, das den
Verkehrsfluss von anderen Verteilprozessen mit beschränkter Transportkapazität unterscheidet:
Wenn einmal ein gewisser Grenzwert der Verkehrsdichte überschritten wird, kommt es zum
Zusammenbruch des Prozesses, wobei die sich dann einstellende Verkehrsstärke weit unter der
maximal möglichen liegen wird.

124

 Zusammenfassung und Ausblick 125

8 Zusammenfassung und Ausblick

Entstanden ist die Arbeit im Rahmen des DFG-Sonderforschungsbereichs 376 "Massive Paralle-
lität - Algorithmen, Methoden, Anwendungen" im Teilprojekt C1. Hier wird mit dem selbstorga-
nisierenden Kreuzungsmanagement ein hochkomplexes Anwendungsbeispiel bearbeitet, das die
Bereiche Online-(Echtzeit-) und Mehrziel-Optimierung mit dem Kontext massiver Parallelität
und dem autonomen mechatronischen Fahren verbindet.

In der vorliegenden Arbeit wurde ein Konzept für die verteilte und echtzeitfähige Mehrziel-Opti-
mierung in mechatronischen Systemen vorgestellt. Mit Hilfe der neuen Definition von Optimie-
rer-, Evaluator- (Bewerter-) und Simulator-Funktionen (OES-Struktur genannt) lassen sich hier-
archisch organisierte Anwendungen der Mehrziel-Optimierung realisieren, die mit der modular-
hierarchischen Struktur mechatronischer Systeme kompatibel sind. Das Konzept umfasst die
Definition des notwendigen Echtzeitverhaltens und von zwei Ebenen für die Parallelverarbei-
tung. Aufgrund der Erfahrungen mit der verteilten Echtzeitsimulation von eng verwobenen
Systemmodellen basiert die Verteilung auf der grob granularen OES-Struktur, von der gezeigt
werden konnte (Beispiel Kreuzungsmanagement), dass eine effiziente Parallelverarbeitung dar-
aus resultiert.

Zur Umsetzung der in der Arbeit beschriebenen Anwendungsbeispiele, die zur Überprüfung des
Konzepts für die verteilte und echtzeitfähige Mehrziel-Optimierung dienen, mussten die MOPO-
Gradienten- und Quasi-Newton-Verfahren erweitert werden: Für das Gradientenverfahren ist
eine Echtzeit-Variante realisiert worden. Für Gradienten- und Quasi-Newton-Verfahren ist nun
die vollständig parallele Auswertung der Zielfunktionen möglich.

Ein Anwendungsbeispiel ist die echtzeitfähige Implementierung einer optimierenden Regelung
am HILS-Prüfstand für ein aktives Feder-Neige-Fahrwerksmodul für ein Bahnshuttle (Neue
Bahntechnik Paderborn). Es ist dort gelungen, eine modellgestützte Überwachung und Bewer-
tung im Zeit- und im Frequenzbereich zusammen mit dem MOPO-Gradientenverfahren zur
Mehrziel-Optimierung in die Echtzeitschleife der Prüfstandsinformationsverarbeitung zu inte-
grieren. Dafür wurde die verteilte Simulationsplattform IPANEMA um Multitasking-Verarbei-
tung erweitert.

Am Anwendungsbeispiel Kreuzungsmanagement wurde die Verfeinerung und Weiterentwick-
lung des vorherigen Standes in Bezug auf Modelle, Verfahren zur Vorfahrtsbestimmung und ver-
teilte Mehrziel-Optimierung aufgezeigt. Wichtige Veränderungen gegenüber dem bisherigen Ver-
fahren sind die Erweiterung auf zwei Einfahrtsspuren (Linksabbieger und Rechts-/
Geradeausspur), eine graphenbasierte Vorfahrtsbestimmung und die Nutzung von Parallelverar-
beitung. Für die Optimierung wurde eine parallele Offline-Verarbeitung auf vernetzten Worksta-
tions mit Hilfe der OES-Struktur (Optimierer-Evaluator-Simulator) umgesetzt. Das Besondere
hierbei ist die dynamische Struktur der Anwendung, die sich in einer zeitlich veränderlichen
Anzahl von Simulatoren äußert. Die verwendeten 8 Prozessoren konnten sehr gut ausgenutzt
werden (Speedup 6,8) und auch wesentlich größere Rechencluster (>100 Prozessoren) könnten
effizient genutzt werden.

126 Zusammenfassung und Ausblick

Im Bereich der Echtzeitverarbeitung ist es sinnvoll, zukünftig auch eine echtzeitfähige Variante
des vorgestellten Quasi-Newton-Verfahrens zu entwickeln. Dies kann in Anlehnung an das Vor-
gehen zur Realisierung des echtzeitfähigen Gradientenverfahrens erfolgen. Als wesentlich auf-
wendiger einzuschätzen ist jedoch die zukünftige Umsetzung einer Mehrziel-Optimierung (z. B.
im Rahmen der Neuen Bahntechnik Paderborn), die gleichzeitig massiv-parallel und echtzeitfä-
hig ist.

Für die Implementierung von Optimierungsverfahren, die aus mehreren gleichzeitig aktiven
Optimierern bestehen, ist weitere Forschungsarbeit notwendig. Dies betrifft die Bereiche der
hierarchischen Verknüpfung von Optimierungsexperimenten auf den AMS-/MFM-Ebenen und
der kooperativ organisierten Optimierung auf der VMS-Ebene. Die gleichzeitige Aktivierung
von mehreren lose verknüpften Optimierungsexperimenten führt dann zukünftig zu Anwendun-
gen, die noch hochgradiger verteilt und parallel sein werden, als es bisher schon der Fall ist.

 Anhang A: Grundlagen zur Systembewertung 127

9 Anhang A: Grundlagen zur Systembewertung

9.1 Wichtige Analyseverfahren für lineare Systeme

Ausgangspunkt sind die zeitinvarianten linearen Systeme (LZI) in Zustandsraumdarstellung
[Ludyk 1990] mit den Eingängen u(t), den Ausgängen y(t) und den Zuständen x(t):

(9.1)

(9.2)

Bestimmung der Eigenwerte

Jeder quadratischen Matrix A ist ein charakteristisches Polynom P(s) zugeordnet:

(9.3)

Die Nullstellen dieses Polynoms bezeichnet man als Eigenwerte von A. Sie liefern
wichtige Aussagen zu Stabilität, Dämpfung und Zeitkonstanten des Schwingungsverhaltens des
linearen Systems.

Eigenwertbereiche

Erfahrungsgemäß ist es besser, Eigenwerte nicht in feste Lagen zu zwingen, sondern ihnen ledig-
lich gewisse Bereiche der komplexen Ebene vorzuschreiben. So wird die Gefahr verringert, die
Strecke zu einem ihrer Natur stark widersprechenden Verhalten zu zwingen, was sich durch hohe
Stellbeträge, starke Anfangspendelungen und dergleichen rächen wird [Föllinger 1994].

Ein konjugiert komplexes Eigenwertpaar sollte in einem symmetrischen Paar von Kreis-
ringsektoren liegen, wodurch Dämpfung und Abklingzeit der zugehörigen Schwingung innerhalb
vorgegebener Schranken liegen:

Abbildung 9-1: Eigenwertbereiche

x· t() A x t() B u t()⋅+⋅=

y t() C x t() D u t()⋅+⋅=

P s() det s I A–⋅()=

λ1 … λn, ,

λ λ',

128 Anhang A: Grundlagen zur Systembewertung

Frequenzgangsrechnung

Für stabile eingeschwungene Systeme (abgeklungenes Eigenverhalten) lässt sich das Störverhal-
ten xp(t) mit Hilfe der Frequenzgangsmatrix beschreiben:

(9.4)

Aus der partikulären Lösung der Zustandsgleichung ergibt sich die Frequenzgangsmatrix (siehe
auch [Kwakernaak, Sivan 1972]) zu:

(9.5)

Damit lässt sich der Zusammenhang zwischen u(t) und y(t) darstellen:

(9.6)

Kovarianzanalyse

Die Varianzen der Ausgangsgrößen eines linearen Systems (Diagonalelemente der Kovarianzma-
trix) sind ein Maß für die Leistungsübertragung eines Systems. Es kann z. B. ermittelt werden,
wie stark ein Ausgang oder Zustand auf einen Eingangspegel reagiert. Mit Hilfe der Streuungen
sind Aussagen über die maximal auftretenden Amplituden möglich. Die Bestimmung der Kova-
rianzmatrix kann im Zeit- oder im Frequenzbereich erfolgen. Bei einer Betrachtung im Modal-
raum können sogar mittlere Leistungen modalen Eigenwerten zugeordnet werden [Lückel, Kas-
per 1981]. Hier wird von einem allgemeinen LZI-System ausgegangen, dessen Eingänge durch
einen stochastischen Vektorprozess w(t) definiert sind:

(9.7)

(9.8)

Dabei besteht w(t) aus skalaren stochastischen Prozessen, die mittelwertfrei sind:

(9.9)

(9.10)

Die Kovarianzmatrix wird aus dem Erwartungswert des Produkts der beiden gegeneinander zeit-
verschobenen stochastischen Vektorprozesse w(t1) und w(t2) mit positiv definiter Intensität V
gebildet [Kwakernaak, Sivan 1972]:

(9.11)

Die Varianzmatrix Q ergibt sich aus der Kovarianzmatrix für die Zeitverschiebung 0 zwischen
w(t1) und w(t2):

xp t() Fx jω() u t()⋅ Fx jω() uf e
jωt⋅ ⋅= =

Fx jω() jω I A–⋅() 1–
B⋅=

Fy jω() C Fx jω() D+⋅=

x· t() A x t() B w t()⋅+⋅=

x t0() x0=

w t() w1 t() w2 t() … wn t()
T

=

E w t(){ } 0=

Ru t1 t2,() E w t1() w t2()T⋅{ } V δ t1 t2–()⋅= =

 Anhang A: Grundlagen zur Systembewertung 129

(9.12)

Die Varianzen der Systemzustände im Zeitbereich lauten definitionsgemäß:

(9.13)

Nach Gl. 5.7 und Gl. 9.13 ergibt sich folgende Darstellung:

(9.14)

Wenn A asymptotisch stabil ist, ergibt sich folgender Grenzwert für die Varianzmatrix für belie-
bige Qx0:

(9.15)

Die Varianzen der Ausgänge können über die Ausgangsgleichung der Zustandsraumdarstellung
mit Hilfe der C-Matrix sofort abgeleitet werden zu:

(9.16)

Die Darstellung im Frequenzbereich wird mit Hilfe der Frequenzgangsmatrizen formuliert:

(9.17)

(9.18)

Die Lösung dieser Integralgleichungen führt auf eine Gleichung in der sogenannten Lyapunov-
Form, für die in der Literatur zahlreiche Lösungsverfahren beschrieben werden [Kwakernaak,
Sivan 1972] :

(9.19)

Q
u

t() Ru t t,()=

Q
x

t() E x t() x t()T⋅{ }=

Q
x

t() e
A t⋅

Q
x0

e
AT t⋅⋅ e

A t τ–()⋅
B V B

T
e

AT t⋅⋅ ⋅ ⋅ ⋅ τd

0

t∫+⋅=

Q
x

t()
t ∞→
lim Q

x
e

A t⋅
B V B

T
e

AT t⋅⋅ ⋅ ⋅ ⋅ τd

0

∞∫= =

Q
y

C e⋅ A t⋅
B V C

T
B⋅

T
e

AT t⋅⋅ ⋅ ⋅ ⋅ τd

0

∞∫=

Q
x

1
π
--- Fx jω() V Fx

T
j– ω()⋅ ⋅ ωd

0

∞∫⋅=

Q
y

1
π
--- Fy jω() V Fy

T
j– ω()⋅ ⋅ ωd

0

∞∫⋅=

0 A Q Q A
T

B V B
T⋅ ⋅+⋅+⋅=

130 Anhang A: Grundlagen zur Systembewertung

9.2 Wichtige Analyseverfahren für nichtlineare Systeme

Fourier-Transformation

Die Fourier-Transformation (FT) ist ein wichtiges Werkzeug zur Berechnung des Spektrums
eines Signals im Frequenzbereich. Die Formel zur kontinuierlichen Fourier-Transformation
([Johnson 1991], [Babovsky et al. 1987]) eines Signals u(t) lautet:

(9.20)

Um die Diskrete Fourier-Transformation (DFT) zu berechnen, wird das Integral durch die
Summe von N Rechtecken der Höhe u(nT) angenähert. Dabei entspricht T der Abtastzeit, F = 1/T
der Abtastfrequenz und N der Anzahl der Messwerte:

(9.21)

Die Spektren aus der Fourier-Transformation kennzeichnen, vereinfacht ausgedrückt, den
Schwingungsanteil aller harmonischen Schwingungen im gesamten Frequenzbereich

. Möchte man die Leistung eines Signals pro jeweiliger Frequenz ermitteln, so ver-
wendet man das Autoleistungsdichtespektrum SUU:

(9.22)

Das Autoleistungsdichtespektrum ist ein Maß dafür, wie sich der quadratische Mittelwert über
die Frequenzen verteilt. Für mittelwertfreie Signale mit entspricht der quadratische
Mittelwert auch der Varianz:

(9.23)

Frequenzgang

Für nichtlineare Systeme kann kein Frequenzgang im Sinne der linearen Systemtheorie berechnet
werden. Mit Hilfe der Fourier-Analyse kann jedoch der Frequenzgang in einem stabilen Betriebs-
punkt messtechnisch bestimmt werden. Hier gilt es zu beachten, dass die resultierenden Fre-
quenzkennlinien mit dem Betriebspunkt und der Anregungsamplitude variieren. Für die Messung
des Frequenzgangs zwischen dem Eingang u(t) und dem Ausgang y(t) eines Systems wird
zunächst das Kreuzleistungsdichtespektrum SYU benötigt:

U jω() u t() e
jωt–⋅ τd

∞–

∞∫=

Ud ωk() u nT() e
jωknT–

⋅

n 0=

N 1–∑=

∞– ω ∞< <

SUU ω() U jω() U' jω()⋅
T

T ∞→
lim U jω() 2

T

T ∞→
lim Ruu τ() e

jωτ–⋅ τd

∞–

∞∫= = =

E u{ } 0=

qu
2

u ω1 ω2, ,() SUU ω() ωd⋅
ω1

ω2∫=

 Anhang B: Verwendung von Scilab 131

(9.24)

Der Frequenzgang eines Systems lässt sich mit Hilfe von Autoleistungsdichte- und Kreuzlei-
stungsdichtespektrum folgendermaßen ermitteln:

(9.25)

9.3 Berechnung von Fehlerflächen

Die Berechnung von Fehlerflächen kann durch Integralfunktionen formuliert werden. Dabei wird
der Fehler zwischen Soll- und Istkurven im Zeit- oder im Frequenzbereich integriert und
gewichtet. Tabelle 25 listet einige Integralfunktionen im Zeitbereich auf. Integralfunktionen für
Fehlerflächen im Frequenzbereich lassen sich analog konstruieren:

TABELLE 25. Integralfunktionen zur Berechnung von Fehlerflächen im Zeitbereich

10 Anhang B: Verwendung von Scilab
Im Folgenden werden wichtige Scilab-Funktionalitäten skizziert, die bei einer Verwendung von
Scilab als Evaluator für lineare Systeme zum Tragen kommen. Die dargestellten Scilab-Skripte
entstammen den Anwendungsbeispielen aus Kap. 7. Zusätzlich wird die Anbindung von Scilab
bzw. des Scilab-Servers an MOPO und IPANEMA beschrieben.

10.1 Bewertung von Eigenwertlagen

Ein konjugiert komplexes Eigenwertpaar sollte in einem symmetrischen Paar von Kreisringsek-

Abkürzung Bezeichnung Integralfunktion

IAE Betragslineare Fehlerfläche
(Integral Absolute Error)

ISE Quadratische Fehlerfläche
(Integral Squared Error)

ITAE Zeitgewichtete betragslineare Fehlerfläche
(Integral Time-Weighted Absolute Error)

ITSE Zeitgewichtete quadratische Fehlerfläche
(Integral Time-Weighted Squared Error)

SYU ω() Y jω() U' jω()⋅
T

T ∞→
lim Ruy τ() e

jωτ–⋅ τd

∞–

∞∫= =

F jω()
SYU ω()
SUU ω()
-------------------=

ε∞

ε t() τd

0

∞∫
ε2

t() τd

0

∞∫
t ε t()⋅ τd

0

∞∫
t ε⋅ 2

t() τd

0

∞∫

132 Anhang B: Verwendung von Scilab

toren liegen, wodurch Dämpfung und Abklingzeit der zugehörigen Schwingung innerhalb vorge-
gebener Schranken liegen. Mit Hilfe der Funktion calcpoly() werden zunächst geeignete Poly-
gone über die Vorgabe von Start-/Endwinkeln (zur imaginären Achse) und Start-/Endradien
(Abstand zum Ursprung der komplexen Halbebene) definiert. Die Funktion poleMaxDistance()
errechnet den maximalen Abstand eines Eigenwertes zu einem gegebenen Polygon. Liegt der
Eigenwert innerhalb des Polygons oder auf seinem Rand, wird als Abstandswert 0 zurückgege-
ben:

// Beispiel für die Bewertung von Eigenwerten in Sc ilab
// Autor: M.Deppe

// eigene Funktionen definieren
exec("calcpoly.sci");
exec("poleMaxDistance.sci");
...
// Polygone erzeugen
// Parameter:
// Anfangs-,Endradius,Anfangs-,Endwinkel der Kreisr ingsektoren und
// Anzahl der Stützstellen
polygon_a = calcpoly(3*2*pi, 6*2*pi, 30, 70, 20) ;
polygon_r = calcpoly(8*2*pi, 15*2*pi, 30, 70, 20) ;
polygon_k = calcpoly(1*2*pi, 5*2*pi, 30, 70, 20) ;
...
// Eigenwerte der A-Matrix berechnen
s=spec(A);

// Auswahl bestimmter Eigenwerte
posspecmat = [];
n = size(s);
j = 1;
for i=1:n(1)
 if imag(s(i)) > 0.0 then
 posspecmat(j,1) = real(s(i));
 posspecmat(j,2) = imag(s(i));
 j = j+1;
 end
end

// Abstand der Eigenwerte vom vorgegebenen Polygon berechnen
distance = [];
// <eigene externe C-Routine: poleMaxDistance>
distance(1) = poleMaxDistance((posspecmat(1,:)), po lygon_r);
distance(3) = poleMaxDistance((posspecmat(3,:)), po lygon_k);
distance(5) = poleMaxDistance((posspecmat(5,:)), po lygon_a);
...
return;

Listing 10-1: Bewertung von Eigenwerten in Scilab

Mit Hilfe der Scilab-Funktionen link() und fort() wird die in C-Code implementierte Funktion
poleMaxDistance() folgendermaßen auf die gleichnamige Scilab-Funktion gemappt:

// Einbinden der externen C-Funktion poleMaxDistanc e
x = link('polemaxdistance.dll", 'poleMaxDistance', 'c');

 Anhang B: Verwendung von Scilab 133

function maxDist = poleMaxDistance(cur, ref)
 maxDist = -1.0; // Rückgabewert, index 1, double*
 curLen = size(cur, 1); // Anzahl Eigenwerte, index 2, integer*
 curX = cur(:,1); // Realteile, index 3, double*
 curY = cur(:,2); // Imaginärteile, index 4, double*
 refLen = size(ref, 1); // Anzahl Polygonpunkte, index 5, integer*
 refX = ref(:,1); // Realteile, index 6, double*
 refY = ref(:,2); // Imaginärteile, index 7, double*
 maxDist = fort('poleMaxDistance',maxDist,1,'d', c urLen, 2, 'i',...
 curX, 3, 'd', curY, 4, 'd', ...
 refLen, 5, 'i', refX, 6, 'd', ref Y, 7, 'd', ...
 'out', size(0), 1, 'd'); // Rückg abewert ist index 1
endfunction

Listing 10-2: Definition der Funktion poleMaxDistance()

Nachfolgend ist der zugehörige C-Code der Funktion poleMaxDistance() gelistet. Als Besonder-
heit ist zu nennen, dass Scilab Funktionen mit dem Rückgabetyp void und mit den Adresszeigern
der Ein- und Ausgangsgrößen als Funktions-Parametern erwartet:

/* Datei: <poly.c> */
/* Autor: E. Münch */
#include <math.h>

void poleMaxDistance(double *MaxDist, int *curLen, double *curX, double *curY,
 int *refLen, double *refX, doub le *refY) {
 int i;
 int Result=0;
 double d;

 *MaxDist = 0.0;
 for(i = 0; i < *curLen; i++) {
 Result = PtInPoly(curX[i], curY[i], *refLen, re fX, refY);
 if(!Result) {
 double dmin = HUGE_VAL;
 int j0, j1;
 for(j0 = 0; j0 < *refLen; j0++) {
 j1 = (j0+1) % *refLen;
 d = distance(curX[i], curY[i], refX[j0], re fY[j0], refX[j1], refY[j1]);
 sciprint("%s: distance from Pole %d to
 line %d = %g\r\n", "poleMaxDistanc e", i, j0, d);
 if(d < dmin) dmin = d;
 }
 if(dmin > *MaxDist) *MaxDist = dmin;
 }
 }
 return;
}

int PtInPoly(double pX, double pY, int refLen, cons t double *refX,
 const double *refY) {
 int i, j, Count = 0;
 for(i = 0; i < refLen; i++) {
 double dr, xr;
 j = (i+1) % refLen;
 if((refY[i] > pY ? 1 : 0) == (refY[j] > pY ? 1 : 0)) continue;
 if(refX[i] <= pX && refX[j] <= pX) continue;

134 Anhang B: Verwendung von Scilab

 if(refX[i] > pX && refX[j] > pX) { Count++; c ontinue; }
 dr = (refY[j] - refY[i]) / (refX[j] - refX[i]);
 if(pX < refX[i] + (pY - refY[i]) / dr) Count++;
 }
 return Count & 1;
}

double distance(double pX, double pY, double refX0, double refY0,
 double refX1, double refY1) {
 double t, dx, dy, dpx, dpy, dq;
 dx = refX1 - refX0;
 dy = refY1 - refY0;
 dpx = pX - refX0;
 dpy = pY - refY0;
 dq = dx*dx + dy*dy;
 if(dq == 0.0)
 t = -1.0;
 else
 t = (dpx*dx + dpy*dy) / dq;
 if(t < 0.0) {
 double x, y;
 x = pX - refX0;
 y = pY - refY0;
 return sqrt(x*x + y*y);
 }
 else if(t > 1.0) {
 double x, y;
 x = pX - refX1;
 y = pY - refY1;
 return sqrt(x*x + y*y);
 }
 return fabs((dpx*dy - dpy*dx) / sqrt(dq));
}

Listing 10-3: Externe C-Routine poleMaxDistance

10.2 Berechnung von Varianzen

Wie in Kap. 9 gezeigt, lässt sich die Berechnung von Varianzen für die Zustände/Ausgänge linea-
rer Systeme auf das Lösen einer Lyapunovgleichung zurückführen. Hierfür ist in Scilab die
Funktion lyap() vorgesehen. Nachfolgendes Skript verdeutlicht den prinzipiellen Ablauf zur
Berechnung von Varianzen in Scilab:

// Beispiel für die Berechnung von Varianzen/Streuu ngen in Scilab
// Autor: M.Deppe
...
// A,B,C,D zu einem kontinuierlichen linearen Syste m umformen
S1=syslin('c',A,B,C,D);

// Kovarianzmatrix der Zustände für die Eingänge 1 und 2
// über die Lyapunovgleichung
V=eye(2,2);
Q=lyap(S1.A', -S1.B*V*S1.B', 'c');

// RMS-Werte (Streuungen) der Zustände
rmsx=sqrt(diag(Q));

 Anhang B: Verwendung von Scilab 135

// RMS-Werte (Streuungen) der Ausgänge
// S1.C*Q*S1.C' liefert nicht den Durchgriffs-Einfl uß!
rmsy = sqrt(abs(diag(S1.C*Q*S1.C')));

return;

Listing 10-4: Scilab-Beispiel zur Berechnung von Varianzen bzw. Streuungen von linearen Systemen

10.3 Lineare Simulation (Einspurmodell)

Die lineare Simulation ist ein wichtiges Hilfsmittel zur Bewertung linearer Systeme. Die
Beschreibung des linearen Systems in Zustandsraumdarstellung kann dabei rein numerisch oder
auch symbolisch vorliegen. Das untenstehende Skript zeigt die lineare Simulation in Scilab auf
der Basis des in Kap. 7.4.5 beschriebenen linearen Einspurmodells. Zusätzlich ist die MLaP-
Funktion lsim() dokumentiert.

// Lineares Einspurmodell mit Geschwindigkeits- und "Lenkregler"
// Symbolische Bewegungsgleichungen und lineare Sim ulation
// Autor: M.Deppe

exec("deffunc.sci"); // Definition der eigenen Funk tion lsim() und damp()
// Alle Werte in SI-Einheiten!
vlin = 5.00; // Geschwindigkeit im Betrieb spunkt
m = 1296.00; // Fahrzeugmasse
Iz = 1750.00; // Trägheitsmoment um die Hoc hachse
lv = 1.25; // Abstand Schwerpunkt Vorder achse
lh = 1.32; // Abstand Schwerpunkt Hinter achse
cv = 70000.00; // Gesamtfederkonstante vorde rer Schräglauf
ch = 70000.00; // Gesamtfederkonstante hinte rer Schräglauf
Aw = 2.00; // Stirnfläche des Fahrzeugs
cw = 0.40; // Luftwiderstandsbeiwert
rho = 1.20; // Luftdichte
KV = 8242.00; // P-Verstärkung V-Regler
TVI = 0.18; // Zeitkonstante PI-Regler
KL = 6.03; // Verstärkung Lenkregler
KLB = KL*(vlin/5.0); // Verstärkung Lenkregler mit v-Kompensation
TLI = 0.36; // Zeitkonstante PI-Regler
// Koeffizienten A-Matrix (NUR STRECKE)
 a11 = -1.0*(cv+ch)/(m*vlin);
 a13 = -1.0/(m*vlin)*(m*vlin+cv*lv/vlin-ch*lh/vlin);
 a23 = 1.0;
 a31 = -1.0/Iz*(cv*lv-ch*lh);
 a33 = -1.0/Iz*(cv*lv*lv/vlin+ch*lh*lh/vlin);
 a45 = 1.0;
 a55 = (-KV-0.5*rho*cw*Aw*vlin) / m;
// Koeffizienten B-Matrix (NUR STRECKE)
 b11 = cv/(m*vlin);
 b31 = cv*lv/Iz;
 b52 = 1.0/m;
// Systemmatrizen des geregelten Systems
A = [a11-b11*KLB -b11*KLB a13 0 0 0 b11*KLB/TLI;...
 0 0 1 0 0 0 0; ...
 a31-b31*KL -b31*KL a33 0 0 0 b31*KL/TLI; ...
 0 0 0 0 1 0 0; ...

136 Anhang B: Verwendung von Scilab

 0 0 0 0 a55 b52*KV/T VI 0; ...
 0 0 0 0 -1 0 0; ...
 -1 -1 0 0 0 0 0; ...
];
B = [b11*KLB 0; ...
 0 0; ...
 b31*KL 0; ...
 0 0; ...
 0 b52*KV; ...
 0 1; ...
 1 0; ...
];
C = diag([1 1 1 1 1 1 1]);
D = zeros(7,2);
Sg = syslin('c',A,B,C,D);
Sg.X0=[0.0 0.0 0.0 0.0 0.0 0.0 0.0]';
d = damp(Sg.A); // Eigenwerte mit Freq und Dämpfung
len = 1500;
// Zeitvektor
t=linspace(0,15,len);
// Sprunganregung
s_upsi=10*1.57*[zeros(1,250) ones(1,500) +1.0*ones(1,500) ones(1,250)];
s_uv=5.0*[zeros(1,250) ones(1,500) ones(1,750)];
// Lineare Simulation mit der eigenen Funktion lsim ()
s_data=lsim(Sg,[s_upsi; s_uv;],0.01);
return;

Listing 10-5: Lineare Simulation des linearen Einspurmodells als Scilab-Skript

Für die lineare Simulation wird die eigene Scilab-Funktion lsim() verwendet:

// Simulation fuer ein zeitkontinuierliches lineare s System
// Autor: U. Dierkes
function [y] = lsim(S,u,dt)
 n=size(S.A);
 // Fundamentalmatrix berechnen
 Phi=expm(S.A*dt); // phi(T)=e^AT
 // Theta = (phi(T)-I)*inv(A)
 F=eye(S.A)*dt;
 E=zeros(S.A);
 k=2;
 while norm(E+F-E,1)>0
 E=E+F;
 F=S.A*F*dt/k;
 k=k+1;
 end
 Theta=E;
 // Simulation
 x=S.x0;
 n=size(u);
 m=size(S.C);
 y=zeros(m(1),n(2));
 for i = 1 : n(2)
 // Zustaende
 x=Phi*x + Theta*S.B*u(:,i);
 // Ausgaenge
 y(:,i)=S.C*x+S.D*u(:,i);

 Anhang B: Verwendung von Scilab 137

 end
endfunction

Listing 10-6: Funktion lsim() zur linearen Simulation

138 Anhang B: Verwendung von Scilab

 Literaturverzeichnis 139

11 Literaturverzeichnis
[Allgower, Georg 1990] Allgower, E.; Georg, K. (1990). Numerical Continuation Methods.
Springer-Verlag, Berlin, Heidelberg, New York.

[Amdahl 1967] Amdahl, G. M. (1967). Validity of single-processor approach to achieving large-
scale computing capability. Proceedings of AFIPS Conference, Reston, VA, pp. 483-485.

[Babovsky et al. 1987] Babovsky, H.; Beth, T.; Neunzert, H.; Schulz-Reese, M. (1987). Mathe-
matische Methoden in der Systemtheorie: Fourieranalysis. Teubner-Verlag, Stuttgart.

[Bednara et al. 2003] Bednara, M.; Danne, K.; Deppe, M.; Oberschelp, O.; Slomka, F.; Teich, J.
(2003). Design and Implementation of Digital Linear Control Systems on Reconfigurable Hard-
ware. EURASIP Journal on Applied Signal Processing, Volume 2003, No. 6, pp. 594-602.

[Buttazzo 1997] Buttazzo, G. C. (1997). Hard Real-Time Computing Systems. Kluwer Academic
Publishers.

[Bronstein, Semendjajew 1989] Bronstein, I. N.; Semendjajew, K. A. (1989). Taschenbuch der
Mathematik. Verlag Harri Deutsch, Thun, Frankfurt/Main.

[Broyden 1967] Broyden, C. G. (1967). Quasi-Newton Methods and their Applications to
Function Minimization. Mathematics of Computation 21, pp. 368-381.

[Castiglioni et al. 1992] Castiglioni, G.; Jäker, K.-P.; Lückel, J.; Rutz, R. (1992). Active Vehicle
Suspension with an Active Vibration Absorber. Proceedings of the International Symposium on
Advanced Vehicle Control AVEC '92, Society of Automotive Engineers of Japan, Inc., Yoko-
hama, pp. 148-153.

[Coello, Lechunga 2002] Coello, C. A. C.; Lechunga, M. S. (2002). MOPSO: A Proposal for
Multiple Objective Particle Swarm Optimization. Proceedings of the IEEE World Congress on
Computational Intelligence, Hawaii.

[Cremer 1979] Cremer, M. (1979). Der Verkehrsfluß auf Schnellstraßen. Springer-Verlag, Berlin,
Heidelberg, New York.

[Culler et al. 1993] Culler, D.; Karp, D.; Patterson, D.; Sahay, A.; Schauser, K. E.; Santos, E.;
Subramanian, R.; von Eicken, T. (1993). Logp: Towards a realistic model of parallel computa-
tion. 4th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming.

[Das, Dennis 1996/1] Das, I.; Dennis, J.E. (1996). Normal-Boundary Intersection: An Alternate
Approach for Generating Pareto-optimal Points in Multicriteria Optimization Problems. ICASE-
NASA Tech. Report 96-62. SIAM J. on Optimization.

[Das, Dennis 1996/2] Das, I.; Dennis, J.E. (1996). A Closer Look at Drawbacks of Minimizing
Weighted Sums of Objectives for Pareto Set Generation in Multicriteria Optimization Problems.
Dept. of CAAM Tech. Report 96-36, Rice University, Houston, TX.

[Deppe 1995] Deppe, M. (1995). Programmierung des Lastverteilungstools LODIT (Load Distri-
bution Tool). Studienarbeit im Fachbereich Maschinentechnik, Universität Paderborn.

[Deppe 1997] Deppe, M. (1997). Parallele Simulation in heterogenen Rechnernetzen - Erweite-

140 Literaturverzeichnis

rung und Test der verteilten Simulationsplattform IPANEMA. Diplomarbeit im Fachbereich
Maschinentechnik, Universität Paderborn.

[Deppe, Homburg 1998] Deppe, M.; Homburg, C. (1998). Rapid Prototyping of Distributed
Mechatronic Applications. DIPES ´98, Schloss Eringerfeld.

[Deppe, Oberschelp 2000] Deppe, M.; Oberschelp, O. (2000). Real-time Support for Online Con-
troller Supervision and Optimization. International IFIP Workshop on Distributed and Parallel
Embedded Systems, Paderborn University, Schloß Eringerfeld.

[Deppe, Rasche 2000/1] Deppe, M.; Rasche, R. (2000). Sonderforschungsbereich 376: Massive
Parallelität - Algorithmen, Entwurfsmethoden, Anwendungen - Arbeits- und Ergebnisbericht Juli
1998 - Dezember 2000. Teilprojekt C1, Universität Paderborn.

[Deppe, Rasche 2000/2] Deppe, M.; Rasche, R. (2000). Sonderforschungsbereich 376: Massive
Parallelität - Algorithmen, Entwurfsmethoden, Anwendungen - Finanzierungsantrag Januar
2001 - Dezember 2003. Teilprojekt C1, Universität Paderborn.

[Deppe et al. 2001/1] Deppe, M.; Robrecht, M.; Zanella, M.; Hardt, W. (2001). Rapid Prototy-
ping of Real-Time Control Laws for Complex Mechatronic Systems. 12th IEEE International
Workshop on Rapid System Prototyping, Monterey, CA.

[Deppe et al. 2001/2] Deppe, M.; Oberschelp, O.; Münch, E. (2001). Echtzeit-Parameter-Opti-
mierung und Überwachung in mechatronischen Systemen. In: 5. Magdeburger Maschinenbau-
tage, Otto-von-Guericke-Universität, Entwicklungsmethoden und Entwicklungsprozese im
Maschinenbau, Logos Verlag, Berlin.

[Deppe, Zanella 2002] Deppe, M.; Zanella, M. (2002). Design and Realization of Distributed
Real-Time Controllers for Mechatronic Systems. World Computer Congress, Stream 7, DIPES,
Montreal, Quebec, Canada; Kluwer Academic Publishers, Norwell, MA.

[Deppe et al. 2003/1] Deppe, M.; Neuendorf, N.; Scharfeld, F. (2003). Sonderforschungsbereich
376: Massive Parallelität - Algorithmen, Entwurfsmethoden, Anwendungen - Arbeits- und
Ergebnisbericht Januar 2000 - Juli 2003. Teilprojekt C1, Universität Paderborn.

[Deppe et al. 2003/2] Deppe, M.; Neuendorf, N.; Scharfeld, F. (2003). Sonderforschungsbereich
376: Massive Parallelität - Algorithmen, Entwurfsmethoden, Anwendungen - Finanzierungsan-
trag Januar 2003 - Dezember 2005. Teilprojekt C1, Universität Paderborn.

[Deppe et al. 2003/3] Deppe, M.; Robrecht, M.; Zanella, M.; Hardt, W. (2003). Rapid Prototy-
ping of Real-Time Control Laws for Complex Mechatronic Systems: A Case Study. The Journal of
Systems and Software, No. 70/3, pp. 263-274.

[DFG-Antrag zum SFB 614 2001] DFG-Antrag zum SFB 614 (SFB-Antragsnummer 1799)
(2001). "Selbstoptimierende Systeme des Maschinenbaus", Universität Paderborn.

[Dorigo, Gambardella 1997] Dorigo, M.; Gambardella, L. M. (1997). Ant Colonies for the Trave-
ling Salesman Problem. J. Biosystems, Vol. 43.

[Dorißen, Höver 1996] Dorißen, H. T.; Höver, N. (1996). Autonome Intelligente Geschwindig-
keitsregelung (AICC) - Ein Beitrag zur Steigerung des Komforts und der aktiven Fahrsicherheit.

 Literaturverzeichnis 141

Automobiltechnische Zeitschrift (ATZ) 98, 7/8, pp. 396-405.

[dSPACE 1995] dSPACE GmbH. (1995). Real-Time Interface to SIMULINK, User's Guide.
dSPACE GmbH, Paderborn.

[Entenmann 1976] Entenmann, W. (1976). Optimierungsverfahren. Hüthig-Verlag, Heidelberg.

[Eppinger 1994] Eppinger, A. (1994). Rechnerintegrierte Systemtechnik - objektorientiertes Kon-
zept und Realisierung mit Parallelrechnern. Dissertation am Fachbereich Maschinentechnik,
Universität Paderborn.

[ETAS 1996] ETAS GmbH&Co.KG. (1996). ASCETS-SD: User Guide Version 1.0. ETAS
GmbH&Co.KG, Schwieberdingen.

[Färber et al. 1997] Färber, G.; Fischer, F.; Kolloch, T.; Muth, A. (1997). Improving Processor
Utilization with a Task Classification Model based Application Specific Hard Real-Time Archi-
tecture. Proceedings of the 6th International Workshop on Real-Time Computing Systems and
Applications (RT-CSA ’97), Academia Sinica, Taipei, Taiwan.

[Fletcher 1980] Fletcher, R. (1980). Practical Methods of Optimization. Volume 1: Unconstrai-
ned Optimization. Wiley, New York.

[Föllinger 1994] Föllinger, O. (1994). Regelungstechnik: Einführung in die Methoden und ihre
Anwendung. 8. überarb. Aufl., Hüthig, Heidelberg.

[Fonseca, Fleming 1995] Fonseca, C.; Fleming, P. (1995). An overview of evolutionary algo-
rithms in multiobjective optimization. Evolutionary Computation, 3 (1), pp. 1-16.

[Gambuzza 2002] Gambuzza, A. (2002). Konzept zur verteilten modularen Simulation mechatro-
nischer Systeme. Diplomarbeit im Fachbereich Mathematik/Informatik, Universität Paderborn.

[Gambuzza et al. 2003] Gambuzza, A.; Deppe, M.; Oberschelp, O. (2003). Verteilte modulare
Simulation mechatronischer Systeme. 5. Mechatroniktagung des VDI, Fulda.

[Gill, Murray 1978] Gill, P. E.; Murray, W. (1978). Numerically Stable Methods for Quadratic
Programming. Mathematical Programming, 14, pp. 349–372.

[Göpfert, Nehse 1990] Göpfert, A.; Nehse, R. (1990). Vektoroptimierung. BSB Teubner Verlags-
gesellschaft, Leipzig.

[Hahn et al. 1997] Hahn, M.; Lückel, J.; Wittler, G. (1997). Eine Entwurfsmethodik für mechatro-
nische Systeme. Magdeburger Maschinenbau-Tage: Entwicklungsmethoden u. Entwicklungspro-
zesse im Maschinenbau, Magdeburg.

[Hahn 1999] Hahn, M. (1999). OMD - Ein Objektmodell für den Mechatronikentwurf. Anwen-
dung in der objektorientierten Modellbildung mechatronischer Systeme unter Verwendung von
Mehrkörpersystemformalismen. Dissertation am Fachbereich Maschinentechnik, Universität
Paderborn, VDI-Verlag, Düsseldorf.

[Haimes 1973] Haimes, Y. (1973). Integrated system identification and optimization. Control and
Dynamic Systems: Advances in Theory and Applications 10, pp. 435-518.

[Hanselmann 1993] Hanselmann, H. (1993). Hardware-in-the-Loop Simulation as Standard

142 Literaturverzeichnis

Approach for Development, Customization, and Production Test of ECU's. Seventh International
Pacific Conference and Exposition on Automotive Engineering, Phoenix, AZ.

[Hees 1999] Hees, K. (1999). Kommunikationseffiziente Lastverteilungsverfahren zur Simulation
mechatronischer Systeme. Diplomarbeit im Fachbereich Mathematik/Informatik, Universität
Paderborn.

[Henke et al. 2000] Henke, M.; Liu-Henke, X.; Lückel, J.; Grotstollen, H.; Jäker, K.-P. (2000).
Design of a Railway Carriage, driven by a linear Motor with Active Suspension/Tilt Module. 9th
IFAC Symposium on Control in Transportation Systems, Braunschweig.

[Hestermeyer et al. 2001] Hestermeyer, T.; Becker, M.; Neuendorf, N. (2001). Nichtlineare ABC-
Regelungen mit Operator-Controller-Struktur, abgestimmt auf Führung und Störung der Straße.
Haus der Technik: Driveability, Essen.

[Hillermeier 2001] Hillermeier, C. (2001). Nonlinear multiobjective optimization: a generalized
homotopy approach. Birkhäuser-Verlag, Basel, Boston, Berlin.

[Honekamp et al. 1997] Honekamp, U.; Stolpe, R.; Naumann, R.; Lückel, J. (1997). Structuring
Approach for Complex Mechatronic Systems. ISATA’97, Florence.

[Honekamp 1998] Honekamp, U. (1998). IPANEMA - Verteilte Echtzeit-Informationsverarbei-
tung in mechatronischen Systemen. Dissertation am Fachbereich Maschinentechnik, Universität
Paderborn, VDI-Verlag, Düsseldorf.

[iXtronics 2001/1] iXtronics GmbH. (2001). CAMeL-View Reference Guide, Paderborn.

[iXtronics 2001/2] iXtronics GmbH. (2001). CAMeL-View User Guide, Paderborn.

[Jäker 1991] Jäker, K.-P. (1991). Entwicklung realisierbarer hierarchischer Kompensatorstruktu-
ren für lineare Mehrgrößensysteme mittels CAD. Dissertation am Fachbereich Maschinentech-
nik, Universität Paderborn, VDI-Verlag, Düsseldorf.

[Johnson 1991] Johnson, J. R. (1991). Digitale Signalverarbeitung. Hanser, München, Wien;
Prentice-Hall, London.

[Kasper 1985] Kasper, R. (1985). Entwicklung und Erprobung eines instrumentellen Verfahrens
zum Entwurf von Mehrgrößenregelungen. Dissertation am Fachbereich Maschinentechnik, Uni-
versität Paderborn, VDI-Verlag, Düsseldorf.

[Kasper et al. 1990] Kasper, R.; Lückel, J.; Jäker, K.-P.; Schröer, J. (1990). CACE tool for multi-
input, multi-output systems using a new vector optimization method. International Journal of
Control, Vol. 51, No. 5, pp. 963-993.

[Kiffmeier 1995] Kiffmeier, U. (1995). Multi-DSP-Power auf Knopfdruck. Elektronik, Ausg. 12,
Franzis Verlag, München.

[Koch 2005] Koch, T. (2005). Integration von Konstruktion und mechatronischer Komposition
während des Entwurfs mechatronischer Systeme am Beispiel eines integrierten Radmoduls. Dis-
sertation am Fachbereich Maschinentechnik, Universität Paderborn, VDI-Verlag, Düsseldorf.

[Kreisselmeier, Steinhauser 1979] Kreisselmeier, R.; Steinhauser, R. (1979). Control Design by
Optimizing a Vector Performance Index. IFAC Symposium on CADCS, Zürich, pp. 113-117.

 Literaturverzeichnis 143

[Kuhn, Tucker 1951] Kuhn, H.; Tucker, A. (1951). Nonlinear programming. Proceedings of the
Second Berkeley Symposium on Mathematical Statistics and Probability, (ed. J. Neymann), Uni-
versity of California Press, Berkeley, CA, pp. 481-492.

[Kwakernaak, Sivan 1972] Kwakernaak, H.; Sivan, R. (1972). Linear Optimal Control Systems.
Wiley-Interscience, New York, London, Sydney.

[Lasdon 1970] Lasdon, L. S. (1970). Optimization Theory for Large Systems. McMillan, New
York.

[Liu, Layland 1973] Liu, C. L.; Layland, J. W. (1973). Scheduling algorithm for multipro-
gramming in a hard real time environment. Journal of ACM, vol. 20, pp. 46-61.

[Liu-Henke et al. 2000/1] Liu-Henke, X.; Lückel, J.; Jäker, K.-P. (2000). Development of an
Active Suspension/Tilt System for a Mechatronic Railway Carriage. 1st IFAC-Conference on
Mechatronics Systems (Mechatronics 2000), Darmstadt.

[Liu-Henke et al. 2000/2] Liu-Henke, X.; Lückel, J.; Jäker, K.-P. (2000). Ganzheitlicher mecha-
tronischer Entwurf eines aktiven Feder-/Neigemoduls. VDI-Tagung: Mechatronik - Mechanisch/
Elektrische Antriebstechnik, Wiesloch.

[Ludyk 1990] Ludyk, G. (1990). CAE von Dynamischen Systemen. Springer-Verlag, Berlin, Hei-
delberg, New York.

[Lückel, Kasper 1981] Lückel, J.; Kasper, R. (1981). Strukturkriterien für die Steuer-, Stör- und
Beobachtbarkeit linearer, zeitinvarianter, dynamischer Systeme. Regelungstechnik, 29. Jahr-
gang, Heft 10.

[Lückel et al. 1985] Lückel, J.; Kasper, R.; Jäker, K.-P. (1985). Interactive Optimization of Con-
troller and Plant Parameters in the Case of Multiple Design Objectives. Hansen, N. E.; Larsen, P.
M. (Hrsg.): Preprints of the 3rd IFAC/IFIP International Symposium CADCE´85: Computer
Aided Design in Control and Engineering Systems. Advanced Tools for Modern Technology;
Lyngby, Danmark.

[Lückel 1992] Lückel, J. (1992). The Concept of Mechatronic Function Modules applied to Com-
pound Active Suspension Systems. Symposium: Research Issues in Automotive Integrated Chas-
sis Control Systems, International Association for Vehicle System Dynamics, Herbertov.

[Lückel et al. 1999] Lückel, J.; Naumann, R.; Rasche, R. (1999). Systematic Design of Crosslin-
ked Mechatronic Systems, Exemplified by a Decentralized Intersection Management. European
Control Conference 1999, Karlsruhe.

[Lückel et al. 2000] Lückel, J.; Schmitz, J.; Koch, T. (2000). Systematische Entwicklung mecha-
tronischer Produkte am Beispiel eines hybrid angetriebenen Verteilerfahrzeugs. VDI-Tagung:
Mechatronik - Mechanisch/Elektrische Antriebstechnik, Wiesloch.

[Lückel 2000] Lückel, J. (2000). Systemkonzept Neue Bahntechnik Paderborn. 4. Internationales
HNI-Symposium, Paderborn.

[Lückel et al. 2001] Lückel, J.; Hestermeyer, T.; Liu-Henke, X. (2001). Generalization of the
Cascade Principle in View of a Structured Form of Mechatronic Systems. 2001 IEEE/ASME

144 Literaturverzeichnis

International Conference on Advanced Intelligent Mechatronics (AIM 2001), Villa Olmo, Como.

[Lückel et al. 2002/1] Lückel, J.; Ettingshausen, C.; Hestermeyer, T.; Schlautmann, P. (2002).
Neue Bahntechnik Paderborn - Eine Anwendung der verallgemeinerten Kaskade. Innovative
Antriebssysteme, Erstes Internationales Symposium für Mechatronik (ISOM´02), Chemnitz.

[Lückel et al. 2002/2] Lückel, J.; Biber, H.; Koch, T.; Schlautmann, P. (2002). Das Wechselspiel
zwischen Konstruktion und Auslegung der Dynamik während des Entwurfs mechatronischer
Systeme. Festschrift zum 90. Geburtstag von Herrn Prof. Dr. rer. nat. Dr.-Ing.E. h. Kurt Magnus,
München, pp. 195-209.

[Lootsma 1985] Lootsma, F.A. (1985). Comparative performance evaluation, experimental
design, and generation of test problems in nonlinear Optimization. In: K. Schittkowski, ed.,
Computational Mathematical Programming, Springer-Verlag, Berlin, pp. 249-260.

[Marglin 1967] Marglin, S. (1967). Public Investment Criteria. MIT Press, Cambridge, MA.

[MathWorks 1992] MathWorks, Inc. (1992). SIMULINK Dynamic System Simulation Software.
MathWorks, Inc., Natick, Mass.

[Mayr 2001] Mayr, R. (2001). Regelungsstrategien für die automatische Fahrzeugführung:
Längs- und Querregelung, Spurwechsel- und Überholmanöver. Springer-Verlag, Berlin, Heidel-
berg, New York.

[Mitschke 1990] Mitschke, M. (1990). Dynamik der Kraftfahrzeuge. Band C: Fahrverhalten. 2.
Aufl., Springer-Verlag, Berlin, Heidelberg, New York.

[Münch 2001] Münch, E. (2001). Fortentwicklung und Realisierung eines Verfahrens zur gleich-
zeitigen Optimierung mehrerer Zielgrößen. Studienarbeit im Fachbereich Maschinentechnik,
Universität Paderborn.

[Münch 2003] Münch, E. (2003). Mehrgrößenoptimierung - Algorithmusentwicklung und
Anwendung an der Spurführung der NBP (Neue Bahntechnik Paderborn). Diplomarbeit im
Fachbereich Maschinentechnik, MLaP, Universität Paderborn.

[Nägler, Walter 1987] Nägler, G.; Walter, H. (1987). Graphen, Algorithmen, Programme. Sprin-
ger-Verlag, Wien, New York.

[Naumann, Homburg 1996] Naumann, R.; Homburg, C. (1996). LoDiT - Automatisches Partitio-
nieren von mechatronischen Systemen für die verteilte Simulation. Proceedings of the ASIM’96,
Dresden.

[Naumann, Rasche 1997] Naumann, R.; Rasche, R. (1997). Intersection Collision Avoidance by
Means of Decentralized Security and Communication Management of Autonomous Vehicles. Pro-
ceedings of the 30th ISATA Conference on ATT/ITS, Florence.

[Naumann 2000] Naumann, R. (2000). Modellierung und Verarbeitung vernetzter intelligenter
mechatronischer Systeme. Dissertation am Fachbereich Maschinentechnik, Universität Pader-
born, VDI-Verlag, Düsseldorf.

[Neuendorf, Deppe 2003] Neuendorf, N.; Deppe, M. (2003). Vernetzte mechatronische Systeme
am Beispiel eines dezentralen Kreuzungsmanagements für Kfz. 5. Mechatroniktagung des VDI,

 Literaturverzeichnis 145

Fulda.

[Oberschelp 1998] Oberschelp, O. (1998). Multirate-Integrationsverfahren zur Lösung von Dif-
ferentialgleichungen bei der Simulation mechatronischer Systeme. Studienarbeit im Fachbereich
Maschinentechnik, Universität Paderborn.

[Olomski 1989] Olomski, J. (1989). Bahnplanung und Bahnführung von Industrierobotern. Fort-
schritte der Robotik, Band 4, Vieweg-Verlag, Braunschweig, Wiesbaden.

[Otterbach, Leinfellner 1999] Otterbach, R.; Leinfellner, R. (1999). Virtuelles Ausprobieren -
Vom Entwurf zur Simulation in Echtzeit - Stand der Technik bei Rapid Prototyping. Zeitschrift
Elektronik, Nr. 8.

[Papageorgiou 1996] Papageorgiou, M. (1996). Optimierung: Statische, dynamische, stochasti-
sche Verfahren für die Anwendung. Oldenbourg Verlag, München, Wien.

[Pareto 1971] Pareto, V. (1971). Manual of Political Economy (English translation of ’Manuale
di Economica Politica’). MacMillan Company, New York.

[Puschner 2002] Puschner, P. (2002). Transforming Execution-Time Boundable Code into Tempo-
rally Predictable Code. World Computer Congress, Stream 7, DIPES, Montreal, Quebec,
Canada; Kluwer Academic Publishers, Norwell, MA.

[Rakowska et al. 1991] Rakowska, J.; Haftka, R,; Watson, L. (1991). Tracing the efficient curve
for multiobjective control-structure optimization. Computing Systems in Engineering, 2 (6), pp.
461-471.

[Rasche et al. 1997] Rasche, R.; Naumann, R.; Tacken, J.; Tahedl, C. (1997). Validation and
Simulation of a Decentralized Intersection Collision Avoidance Algorithm. Proceedings of the
IEEE Conference on Intelligent Transportation Systems (ITSC’97), Boston, MA.

[Rasche 2004] Rasche. R. (2004). Kreuzungsmanagement - informationstechnische Vernetzung
autonomer Fahrzeuge als Beispiel für Selbstoptimierung im Maschinenbau. Dissertation am
Fachbereich Maschinentechnik, Universität Paderborn.

[Rickert, Schunck 1940] Rickert, P.; Schunck, T. (1940). Zur Fahrmechanik des gummibereiften
Kraftfahrzeugs. Ingenieur-Archiv 11, pp. 210-224.

[Rükgauer 1996] Rükgauer, A. (1996). Modulare Simulation mechatronischer Systeme mit
Anwendung in der Fahrzeugdynamik. Dissertation am Institut B für Mechanik, Universität Stutt-
gart.

[Rutz, Winkler 1994] Rutz, R.; Winkler, M. (1994). Mechatronic Suspension Design using On-
line Optimization. International Symposium on Advanced Transportation Applications (ISATA),
Aachen.

[Schwarz 1993] Schwarz, H. R. (1993). Numerische Mathematik. 3. Aufl., Teubner-Verlag, Stutt-
gart.

[Schweitzer 1989] Schweitzer, G. (1989). Mechatronik - Aufgaben und Lösungen. VDI-Tagung
"Kontrollierte Bewegungen im Maschinen- und Fahrzeugbau", Bad Homburg.

[Späth 1973] Späth, H. (1973). Spline-Algorithmen zur Konstruktion glatter Kurven und Flä-

146 Literaturverzeichnis

chen. Oldenbourg Verlag, München, Wien.

[Stevens 1992] Stevens, W.R. (1992). Programmieren von UNIX - Netzen, Grundlagen, Pro-
grammierung, Anwendung. Hanser-Verlag, München, Wien; Prentice-Hall, London.

[Stolpe et al. 1997] Stolpe, R.; Homburg, C.; Deppe, M. (1997). Finanzierungsantrag und Ergeb-
nisbericht zum DFG-Schwerpunktprogramm Integrierte Steuerungssysteme mit harten Zeitbe-
dingungen. Teilprojekt: Unterstützung des Entwurfs mechatronischer Systeme von der funktio-
nellen Modularisierung bis zur Hardware-in-the-Loop-Simulation. Universität Paderborn.

[Stolpe et al. 2000] Stolpe, R.; Deppe, M.; Zanella, M. (2000). Rapid-Prototyping von verteilten,
hierarchischen Regelungen am Beispiel eines Fahrzeugs mit hybridem Antriebsstrang. Zeit-
schrift it&ti, 42. Jahrgang, Heft 2, pp. 54-58.

[Stolpe 2004] Stolpe, R. (2004). Verteilte kommunizierende mechatronische Funktionsmodule -
Von der mechatronisch funktionalen Modularisierung bis zur verteilten HIL-Realisierung. Dis-
sertation am Fachbereich Maschinentechnik, Universität Paderborn.

[Stumpe 1996] Stumpe, M. (1996). Vergleichende Untersuchung von Integrationsverfahren zur
numerischen Lösung von gewöhnlichen nichtlinearen Differentialgleichungen. Diplomarbeit im
Fachbereich Maschinentechnik, Universität Paderborn.

[Teich 1997] Teich, J. (1997). Digitale Hardware / Software Systeme, Synthese und Optimierung.
Springer Verlag, Berlin/Heidelberg.

[Timmel 1980] Timmel, G. (1980). Ein stochastisches Suchverfahren zur Bestimmung der opti-
malen Kompromißlösungen bei statischen polykriteriellen Optimierungsaufgaben. Wiss. Zeitung
TH Ilmenau, 6, pp. 159-174.

[Toepper 2002] Toepper, S. (2002). Die mechatronische Entwicklung des Parallelroboters TRI-
PLANAR. Dissertation am Fachbereich Maschinentechnik, Universität Paderborn, VDI-Verlag,
Düsseldorf.

[Towsley et al. 1990] Towsley, D.; Rommel, G.; Stankovic, J.A. (1990). Analysis of Fork-Join
Program Response Times on Multiprocessors. IEEE Trans. on Parallel and Distributed Systems
1, 3.

[Ungerer 1993] Ungerer, T. (1993). Datenflussrechner. Teubner-Verlag, Stuttgart.

[Van Laarhoven 1987] Van Laarhoven, P. J. M. (1987). Simulated Annealing: Theory and Appli-
cations. D. Reidel, Dordrecht.

[Vehicle Autonomous Systems 2002] International Journal of Vehicle Autonomous Systems.
(2002), Volume 1, No. 1, The Open University, Milton Keynes, UK.

[Walther 1984] Walther, H. (1984). Ten applications to graph theory. D. Reidel, Dordrecht.

[Wältermann 2000] Wältermann, P. (2000). Der serielle Hybridantrieb - Vom rechnergestützten
Entwurf bis zur Hardware-in-the-Loop-Realisierung. Dissertation am Fachbereich Maschinen-
technik, Universität Paderborn, VDI-Verlag, Düsseldorf.

[Wismer 1971] Wismer, D. A. (1971). Optimization Methods for Large Scale Systems - with
Applications. McGraw Hill, New York, London.

 Literaturverzeichnis 147

[Wittler 2003] Wittler, G. (2003). Integrative Modellierung von Gestalt und dynamischem Verhal-
ten beim Entwurf mechatronischer Systeme. Dissertation am Fachbereich Maschinentechnik,
Universität Paderborn, VDI-Verlag, Düsseldorf.

[Zanella et al. 2001] Zanella, M.; Koch, T.; Scharfeld, F. (2001). Development and Structuring of
Mechatronic Systems, Exemplified by the Modular Vehicle X-mobile. 2001 IEEE/ASME Interna-
tional Conference on Advanced Intelligent Mechatronics (AIM 2001), Villa Olmo, Como.

148 Literaturverzeichnis

