
PROACTIVE AD HOC DEVICES FOR RELAYING
REAL-TIME VIDEO PACKETS

by

Tien Pham Van

Dissertation submitted to the Faculty of
Computer Science, Electrical Engineering and Mathematics,

the University of Paderborn
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
2007

Advisory Committee:
Prof. Dr. rer. nat. Franz Josef Rammig, Chair/Advisor
Prof. Dr. math. Friedhelm Meyer auf der Heide, Co-Advisor
Prof. Dr.-Ing. Ulrich Rückert, Co-Advisor

c© Copyright by
Tien Pham Van

2007

ABSTRACT

Title of dissertation: PROACTIVE AD HOC DEVICES FOR
RELAYING REAL-TIME VIDEO PACKETS

Tien Pham Van, MSc.

Dissertation directed by: Professor Franz J. Rammig
Faculty of Computer Science,
Electrical Engineering and Mathematics

Being a set of mobile computing devices connected over wireless links, an ad

hoc wireless network is characterized by dynamic changes that affect the commu-

nication. Real-time video communication over wireless multi-hop ad hoc networks

remains challenging, as video traffic is bursty and highly time-sensitive while net-

work resources are limited and time-varying. This dissertation introduces a novel

architecture for intermediate ad hoc nodes in which they are not just passive for-

warders, but are aware of video packet semantics and hence actively get involved in

the communication. Each node is proposed to reserve a small memory space for tran-

siently caching video packets, so that it can responsively process ARQ requests on

behalf of the sender. This will obviously shorten the length of retransmission round,

and therefore enhance communication reliability and reduce power consumption as

a whole.

As retaining packets, the node is also able to select the most appropriate

packets to relay first when channel conditions are unfavorable, aiming at minimiz-

ing the playback distortion. In particular, we propose a novel discarding mechanism

in which useless packets can be detected and destroyed to save energy and band-

width. Both theoretical analysis and experimental results collected from a real-life

testbed of heterogeneous platforms support our proposed framework, with respect

to feasibility and efficiency.

Acknowledgments

This dissertation has been completed as a result of my work in Research Group

“Design of Distributed Embedded Systems”, Department of Computer Science, Elec-

trical Engineering and Mathematics, University of Paderborn, under the direction of

Professor Franz Josef Rammig. Without his encouragement, suggestion, and guid-

ance, the study would never been accomplished. We have gone through countless

meetings and discussions that were indispensable in constructing the trajectory of

the study. In addition, professionally valuable comments from him on the occasions

of “AG Workshops” and other seminars did impulse the development of my work. I

am profoundly indebted to Professor Rammig for his tireless supports in all aspects.

Acting as my second and third Supervisors, Professor Friedhelm Meyer auf

der Heide and Professor Ulrich Rückert have given me numerous instructive recom-

mendations for which I am deeply grateful to them. I believe that their comments

through “Doktorandenkolloquiums” held by the International Graduate School of

Dynamic Intelligent Systems did make the mainstream of the study more systematic.

During my time in such a creative and dynamic scientific team as Research

Group “Design of Distributed Embedded Systems”, I have also received extensive

supports from the colleagues. In particular, I would like to express my sincere

thanks to Marcelo Götz and Florian Dittmann for their helpful comments, to Gunnar

Steinert for sharing his experience concerning Linux kernel, to Johannes for his

assistance on the abstract written in the German language, to Vera Kühne for her

management work, and to Bodo Blume for his technical assistance.

It goes without saying that I was fortunate to be admitted to the International

Graduate School of Dynamic Intelligent Systems, an innovative interdisciplinary

institution of the University of Paderborn. For its generous supports, I am deeply

thankful to the school, especially the “Graduate School Team”.

Last but not least, my love and gratitude at heart go to my wife Bui for

whatever she has done and experienced. It was too much for her to suffer during

my study away from home.

ii

Dedication

To my wife, Thanh Bui Thi.

iii

Table of Contents

List of Figures viii

List of Tables x

List of Abbreviations xi

1 INTRODUCTION 1

1.1 Motivation . 1

1.2 Focused issues . 4

1.3 Contributions . 6

1.3.1 Proactive node architecture 6

1.3.2 Packet selection algorithm . 6

1.3.3 Joint discarding . 7

1.3.4 Implementation of a real-life testbed 7

1.4 Outlines of the thesis . 8

2 VIDEO COMMUNICATION OVER AD HOC NETWORKS 10

2.1 Overview . 10

2.2 Characteristics of real-time video traffic 12

2.2.1 Data-dependency . 12

2.2.2 Bandwidth greediness . 15

2.2.3 Variable bit rate . 16

2.2.4 Time-sensitiveness . 17

2.3 Ad hoc wireless networking . 18

2.4 Real-time video over ad hoc wireless networks 19

2.4.1 Capacity scantiness . 19

2.4.2 Energy constraint . 20

2.4.3 Instability . 20

2.4.4 Error-proneness . 22

2.4.5 Fairness for sender . 23

2.5 Related work . 23

2.5.1 QoS-supporting in lower layers 23

2.5.1.1 MAC protocols with resource reservation 24

iv

2.5.1.2 QoS routing . 25

2.5.2 Distortion minimized schedule 25

2.5.3 Source coding control . 26

2.5.3.1 Cross layer feedback 27

2.5.3.2 Multistream coding 27

2.5.4 Error protection for video packets 28

2.6 Chapter review . 29

3 PROACTIVE FRAMEWORK 31

3.1 Overview . 31

3.2 Retransmission from intermediate nodes 35

3.2.1 Communication reliability . 36

3.2.2 Energy saving . 38

3.3 Features of proactiveness . 39

3.4 Applicability range . 42

3.5 Chapter review . 44

4 DESIGN OF REAL-TIME MEDIA ENGINE 45

4.1 Overview . 45

4.2 Acceptance of incoming video packets 46

4.2.1 Processing proactive header 47

4.2.2 Dispatch to cache . 48

4.2.3 Queuing packets . 49

4.3 Caching video packets . 50

4.4 Processing NACK message . 52

4.5 Relaying mechanism . 55

4.5.1 Packet selection . 56

4.5.2 Decision on forwarding . 58

4.6 Feasibility analysis . 59

4.6.1 Memory space . 60

4.6.2 Complexity . 61

4.7 Chapter review . 62

v

5 DISCARDING USELESS PACKETS 63

5.1 Overview . 64

5.2 Detecting useless packets . 64

5.3 Local discarding . 68

5.3.1 Rejection upon arrival . 70

5.3.2 Rejection upon forwarding . 71

5.4 Joint discarding mechanism . 73

5.4.1 Notifications on discarding important packets 73

5.4.2 Joint operations . 75

5.5 Efficiency analysis . 77

5.5.1 Energy saving . 77

5.5.2 Bandwidth saving . 80

5.6 Chapter review . 80

6 IMPLEMENTATION 82

6.1 Overview . 82

6.2 Data organization . 84

6.3 Proactive encapsulation for video packets 86

6.4 Processing packet arrivals . 86

6.5 Processing NACK messages . 94

6.6 Selection and transmission . 100

6.7 Chapter review . 102

7 EXPERIMENTAL RESULTS 104

7.1 Testbed overview . 104

7.2 Setup of the testbed . 105

7.3 Deployment of experiments . 107

7.4 Distortion evaluation . 109

7.5 Power consumption . 109

7.6 CPU usage . 115

7.7 Cache space . 116

7.8 Sender response . 116

7.9 Traffic load . 121

7.10 Chapter review . 123

vi

Chapter 8 CONCLUSION AND OUTLOOK 124

8.1 Conclusion . 124

8.2 Outlook . 125

Bibliography 126

Bibliography 134

A BIT ERROR RATE OVER WIRELESS MULTIHOP CONNECTIONS 135

B GENERATING NACK MESSAGES AT RECEIVER 138

vii

List of Figures

1.1 Sample picture from Akiyo video sequence 2

2.1 Frame dependency in MPEG-4 . 13

2.2 RED: discarding packets based on buffer level 14

2.3 Traffic sample of Akiyo sequence . 17

3.1 Proactive forwarding . 32

3.2 Retransmission from intermediate node 34

3.3 Wrong selection due to unexpected loss of the P frame upstream . . . 41

4.1 Construction of Real-time Media Engine 46

4.2 Proactive header . 47

4.3 Warehouse maintenance . 51

4.4 Format of NACK message . 53

4.5 System monitoring screen . 62

5.1 Autonomous estimation of time points at relaying nodes 66

5.2 Local dropping cases . 69

5.3 Discarding packet at forwarding time 72

5.4 Joint discarding mechanism . 75

5.5 Processing notification attached to NACK message 76

6.1 Abstract coding digram . 83

viii

6.2 Relation among data items . 85

6.3 Hierarchical architecture of video packet management 89

6.4 Operation of Rx in RtME . 91

6.5 Operation of NACK Handler . 95

6.6 Operation of entity Tx . 101

7.1 Layout of testbed. 105

7.2 Frame sizes of different video sequence 107

7.3 Sample pictures from three experiments. 108

7.4 All-frame PSNR of 30 episodes: passive forwarding 110

7.5 All-frame PSNR of 30 episodes: active processing 111

7.6 All-frame PSNR of 30 episodes: RtME is fully activated 112

7.7 Episode-averaged PSNR . 113

7.8 PSNR: min/average values and worst-episode values 113

7.9 Power consumption . 114

7.10 CPU usage when RtME is activated 115

7.11 Cache occupancy: primary path . 117

7.12 Cache occupancy: secondary path . 117

7.13 Retransmission load from the sender: count of replies 118

7.14 Retransmission load from the sender: load of data 119

7.15 Received packet counts . 120

7.16 Useless packets received in all the experiments 122

ix

A.1 Multi-hop transmission path of n nodes. 135

List of Tables

2.1 Data speed of different video coding schemes 16

3.1 Parameter definition . 37

5.1 Parameter definition . 78

7.1 Hardware configuration of relaying nodes 106

7.2 Parameters of wireless settings . 106

7.3 Video sequence transmitted . 108

x

List of Abbreviations

ACK Acknowledgment

AODV Ad hoc On-Demand Distance Vector Routing

ARQ Automatic Repeat-reQuest

B Bidirectionally-predictive-coded (video frame)

BL Base Layer

CoDiO Congestion-Distortion Optimised

CTS Clear To Send

EL Enhanced Layer

FEC Forward Error Correction

GoP Group of Picture

HDTV High Definition TV

I Intra coded (video frame)

IP Internet Protocol

IPTV Internet Protocol TV

LC Layered Coding

MAC Medium Access Control

MCP Motion Compensated Prediction

MDMC Multiple Description Motion Compensation

MPEG Motion Picture Expert Group

MPT Multi Path Transport

NACK Negative Acknowledgment

OLSR Optimized Link State Routing

P Predictive-coded (video frame)

PSNR Peak Signal to Noise Ratio

QoS Quality of Service

RaDiO Rate-Distortion Optimised

RED Random Early Detection

RtME Real-time Media Engine

RTP Real Time Protocol

RTS Request To Send

TCP Transmission Control Protocol

UDP User Datagram Protocol

xi

Chapter 1

INTRODUCTION

Communicating solely over wireless channels, ad hoc networks are character-

ized by restricted and fluctuant resources. Real-time video communication over such

networks can be expected in various scenarios, such as disaster rescues, inter-vehicle

information exchanges, and military operations. To realize the applications, we need

to address numerous problems arising from the nature of wireless multihop connec-

tions as well as the dependence on battery power. In this chapter, we first take a

glance at real-time video communication over ad hoc networks and its issues. Then,

what this study aims at is clarified, considering the gap between QoS (Quality of

Service) requirements and the features of ad hoc wireless networks. The chapter

ends up with a short summary of the rest of this dissertation.

1.1 Motivation

Real-time video communication has been accounting for major part of traf-

fic flowing over the Internet [1]. Advances in network infrastructure and computer

technology nowadays allow people to visually communicate worldwide. Distributed

video applications can be found in a wide range, from video-on-demand to live video

conference, from video phone to large broadcasting systems, e.g. IPTV [2]. While

the applications have been prevailing over the Internet, they still draw attention

of the research community. As users are more and more demanding, the main is-

sue is how to efficiently transmit a large volume of time-sensitive data given that

packets are discarded from time to time due to lacking of network resources. In real-

ity, transmission of video packets faces numerous issues as it requires stringent QoS

specifications on bandwidth and delay. Though various compression techniques have

been introduced and developed, networks cannot fully accommodate traffic gener-

ated by distributed streaming applications [3][4][5][6][7]. Naturally, video traffic is

bursty and bandwidth-greedy, whereas most of multimedia systems rely on connec-

tionless transport protocols, such as RTP/UDP [1][8][9]. As a result, they tend to

overwhelm other adaptive traffic classes, such as HTTP. During congestion periods,

1

discarding packets is therefore inevitable.

Loss or corruption of packets does induce additional distortion to the play-

back video at the receiver node. While error concealment techniques [10][11] help

harmonize the impact, their effect is not unlimited. Loss of some important data

segments, such as synchronization data, may seriously disrupt a long sequence of

frames [12][13]. Additionally, to maintain an acceptable playback quality, excessive

communication delay is not tolerated. For instance, in real-time video, end-to-end

delay should not be higher than 500 milliseconds [1][14]. This makes long-distance

multihop communications difficult and hinders retransmission of lost packets.

Figure 1.1: Conventional transmission protocol (UDP/IP/IEEE802.11b) gives an

unacceptable quality. Sample pictures are taken from MPEG4 CIF sequence Akiyo

that was transmitted over four IEEE802.11b hops.

2

An ad hoc network is a collection of autonomous computing devices that com-

municate with each other over wireless links, such as IEEE 802.11b interface [15].

The key feature of this type of networking is the absence of any permanent infras-

tructure; a network is able to operate immediately after deployment and is highly

flexible. Perspective video communication over such networks can be expected in

various scenarios, both in civil and in military activities. However, hard communi-

cation conditions due to node movements, interferences, and environmental changes

do intensify challenges against delivery of video packets. If hosts employed conven-

tional networking protocols, the perception quality would be unacceptable. Figure

1.1 shows an example video received after traversing a four hop connection.

While video applications generate a huge data volume that is time-sensitive,

network resources are not only limited but also unstable due to the nature of wireless

and mobile communication. In IP-based infrastructure networks, packet loss occurs

mainly in congestion periods during which routers run out of buffer space [4][7]. On

the other hand, there are numerous causes of loss in wireless ad hoc networks, e.g.

collisions, erroneous channels, and interferences [16][17]. Obstacles in such condi-

tions are highly unpredictable and are hard to deal with, especially when packets

traverse multiple hops. Consequently, conventional networking models would not

work efficiently if applied into ad hoc wireless communication systems.

As ad hoc networks are mostly deployed for field applications, design of any

communication protocol must carefully take into account constraints on energy,

memory, and computing resource. This is especially true in the case of streamed

video, given that video sources usually generate huge amount of data in a rather long

time [1][18]. Practically, compression techniques exploit temporal redundancy, loss

of some important packets makes their dependent ones meaningless (see Chapter 2).

Transmission of those packets is not only useless to the decoding process, but also

induces waste of energy and bandwidth [19][20]. In a resource-limited network, this

also potentially leads to rejection of later important packets, and hence magnifies

distortion of the received video.

Investigating video-specialized studies on higher layers of the communication

protocol stack, we have learnt the following:

• First, all the proposals so far have been focused on ending hosts only, let-

3

ting intermediate nodes1 be simple passive forwarders. Proposed strategies,

such as retransmission [8][21], cross-layer design [22][23][24], rate adaption

[25][26], etc, are essentially sender- and/or receiver-driven. Available results

have mainly been reported from simulations in which error rate and delay are

largely assumed to comply with conventional distribution laws. Note however

that highly dynamic factors in reality might make things considerably differ-

ent from what they should be [27]. According to [28], given the same network

scenario, well-known network simulators: NS2 [29], OPNET Modeler [30], and

GloMoSim [31]) output amazingly discrepant results.

• Secondly, while concentrating on perception quality of video, they did not ad-

dress the issue of fairness among nodes involved in communication. Note that

both senders and receivers consume considerable amount of computational

resource and energy for video coding and playback [32][33].

• Thirdly, the matter of energy efficiency has never been taken into account in

parallel with relieving distortion and impact of packet loss. Known algorithms

are solely to reinforce the transmission policy at the sender and/or the feed-

back strategy at the receiver; power consumption of forwarders is basically

not considered [8][17][21][23][25][34]. As said before, detecting and dropping

useless packets are worth-doing as we consider saving energy. Intermediate

ad hoc nodes in any known proposals are however unable to do this; every

incoming packet is forwarded at best-effort, even it has become stale.

To fill the gaps above, it is both demanding and worth to looking into in-

termediate nodes, making them proactive in the process of relaying video packets.

Our study has followed this philosophy, taking the nature of video compression

techniques into account.

1.2 Focused issues

Designing a complete model for transmission of real-time video over wireless

ad hoc devices is a large problem. It covers a great number of issues, from channel

1Throughout this dissertation, phrases “intermediate node”, “relaying node”, “forwarding

node”, “forwarder”, and sometimes “ad hoc router” can be used interchangeably.

4

allocation to route selection, from scheduling packets to source coding control, etc.

It goes without saying that, from any point of view, the most problematic obstacle

is that video traffic is heavy and time-sensitive while effective bandwidth is narrow

and changing. Toward realizing the applications, this study concentrates on the

packet forwarding strategy at intermediate nodes, rather than ending hosts. What

we have attempted to solve includes the following:

• Minimization of distortion . As modern video coding techniques take ad-

vantage of correlation among video frames to reduce the data volume, encoded

frames are not independent of each other. Packets do not equally contribute to

the playback at the receiver. Some packets are more important than the others

in the sense that loss of the former voids the latter and hence induces signifi-

cant distortion. For instance, in MPEG compression standards [12], frames are

grouped into units of group of picture (GoP). Corruption of the unique intra-

coded frame of a GoP means that all its subsequent frames are un-decodable,

even they arrived correctly at the receiver. We tried to minimize distortion by

introducing a smart packet selection tactic. Namely, once congestion occurs,

intermediate nodes are given chances to select the most appropriate packets to

forward, based on their importance and remaining time-to-live. The selection

algorithm has a low complexity compared to other known algorithms proposed

for the sending node, e.g. CoDiO [17][23][24]. This is noticeable since reinforc-

ing complicated algorithms in every intermediate node will create considerable

delay and cumulative power consumption.

• Reduction of energy consumption . In ad hoc wireless communication,

collision may accidentally occur at a receiver node because two transmitting

hosts are not mutually visible. This phenomenon is called hidden terminal.

In another case, called exposed node, a node may be unnecessarily prevented

from sending packets due to a neighboring transmitter. To overcome these

problems, CTS/RTS handshake can be used in the link layer. This mecha-

nism requires a plenty number of messages to exchange upon each video packet

[35]. The number of messages is even larger if the acknowledgment mechanism

[36][37] in the link layer is employed. In a wireless multi-hop network, once

a node send a packet, it may be received at more than one node. Note that

both transmit and receive do consume energy [37][38]. Thus, removing useless

5

transmits is worth-doing. We also save energy in retransmission of lost pack-

ets by reducing the number of traversed hops thanks to the proactiveness of

relaying devices.

• Lightening of load imposed on the sender . We know that video pro-

cessing at the sender is heavy in term of computation and energy consumption

[32][33]. In this study, we tried to distribute communication tasks over inter-

mediate nodes. They share the responsibility of retransmission and packet

selection as well as enhancing channel adaptability with the sender.

1.3 Contributions

Toward development of real-time video applications over ad hoc wireless net-

work, our study aims at designing a novel architecture for forwarding video packets.

Intermediate nodes are able to identify semantics of video packets and hence treat

them appropriately, taking both distortion and power consumption into account.

This section summarizes contributions of this study in brief.

1.3.1 Proactive node architecture

For the first time, we propose to make relaying devices proactive and video-

cooperative. Namely, they are actively getting involved in processing video packets,

rather than passively forwarding every incoming packet as conventional routers.

Specifically, proactive nodes know which packets should be given higher priority

if the communication path cannot accommodate all the traffic; they can also de-

tect and block packets that are known to be useless. To realize the proactiveness,

we implemented a middleware called Real-time Media Engine that maintains tran-

siently cached packets, selects most appropriate packets to forward, and possibly

retransmits lost packets on behalf of the sender.

1.3.2 Packet selection algorithm

As video packets have different roles to the decoding process, selective trans-

mission to minimize distortion has been proposed to ending nodes [13][23][39][40]

and infrastructure-based active networks [7][41][42][43]. In ad hoc communication

6

devices, due to resource limitation and highly dynamic factors, all known selec-

tion strategies above cannot be applied. Distortion optimization algorithms such as

RaDiO (Rate-Distortion Optimisation) [3][6][40] and CoDiO (Congestion-Distortion

Optimisation) [17][23][24] are promising for reducing distortion, but they pose heavy

computation load; if reinforced in all intermediate nodes they would excessively con-

sume memory and computation resources and enlarge end-to-end delay. Further-

more, unpredictability of channel conditions potentially undermine the expected

optimality.

Instead, we design a low-complexity algorithm for selecting packets. In this

algorithm, packets are served according to their priority and their remaining time-to-

live. The algorithm is flexible in the sense that interoperability of proactive devices

and conventional ad hoc machines is guaranteed; its simplicity and variability make

forwarding nodes quickly react to channel changes.

1.3.3 Joint discarding

Introduction of the proactive design creates the ability to detect stale packets.

Within the framework, intermediate nodes possibly go dropping useless packets

once an important packet is rejected. Particularly, in such a case, it also attempts

to inform other upstream nodes so that they jointly discard its dependent packets.

These behaviors obviously help save bandwidth and energy.

To avoid generating overhead, we do not force intermediate nodes to transmit

a separate packet each time an important packet is dropped. Instead, notification

information is conveyed over NACK (negative acknowledgment) messages that are

created and transferred upstream upon occurrences of packet loss.

1.3.4 Implementation of a real-life testbed

Unlike the majority of reported studies on ad hoc networks, we verify our

framework via a real-life testbed, rather than simulations. As stated in [27][28], as-

sumption in simulations might not coincide to what happens in reality due to highly

dynamic and unpredictable features of wireless ad hoc communications. The authors

of [28] recommended that studies investigating higher layers like video streaming

should implement testbeds to verify their proposals.

7

The testbed was deployed in the building of the Heinz Nixdorf Institute, where

it suffered interference and noise from the WLAN Access Points, other ad hoc net-

works, and laptop computers of students. The deployed network was composed of

up to 8 nodes, running under heterogeneous platforms.

1.4 Outlines of the thesis

The rest of this dissertation includes seven chapters. This section summarizes

what will be presented in each of them. At first, Chapter 2 introduces video commu-

nication over ad hoc networks. It brings up an overview of distributed multimedia

applications under networking scenarios. The chapter particularly highlights char-

acteristics of video traffic that challenge the deployment of networking applications.

Ad hoc networks emerge as a prominent solution for ubiquitous connectivity; mul-

timedia applications over such networks will be prevailing in the next few years.

Yet resource limitation in multihop wireless connections is a major obstacle against

their development. The chapter insightfully analyzes the issues that the research

community must address to realize this promising communication service. Addition-

ally, the chapter also investigates state-of-the-art studies on video communication

over ad hoc wireless networks. We extensively survey related works and point out

the gaps in fulfilling the research needs regarding realization of the communication

service. Main threads to go through include distortion-minimized scheduling, video

source code control, error protection strategies, and multipath transport.

Toward filling the gaps above, Chapter 3 proposes a proactive framework tar-

geting at ad hoc devices that relay video packets. After briefly showing what the

framework means, we analyse the benefits of shortening communication paths, par-

ticularly while retransmitting lost packets. Concepts related to caching video pack-

ets and the discarding mechanism will also be defined in this chapter. In addition,

we discuss both advantageous and open features and the applicable range of the

framework from the network development perspective.

Next comes Chapter 4 that presents the design of a middleware that realizes

the proactiveness for ad hoc forwarders. We specifically describe how video packets

are processed thereat. In particular, the chapter shows how packets are transiently

cached, freed up, queued, and forwarded. Furthermore, the mechanism of handling

8

retransmission requests will also be discussed. Video transmission essentially re-

quires broad bandwidth since the traffic is heavy and bursty. As a result, relaying

nodes frequently lack time slots for fresh packets and retransmitted ones. This

chapter hence addresses the issue of how to select packets in the most appropriate

manner so that distortion of the received video is minimized. In the chapter, we also

concretely discuss a packet verification mechanism to rule out duplicate transmis-

sion as well as to enhance the per-hop based adaptability. Last but not least, the

feasibility of the framework is evaluated regarding memory usage and computation

load, which supposedly confirms its applicability into today’s mobile computers and

most of embedded devices.

As resources of ad hoc networks are restricted while video traffic is inherently

heavy, avoidance of useless packet transmission is always encouraged. Chapter 5

presents a comprehensive discarding strategy in which relaying nodes can detect

and drop meaningless packets. The remarkable feature of the design is that relaying

nodes do remove useless packets, not only locally but also jointly. Indeed, thanks

to notifications associated with retransmission requests, relaying nodes “tell” each

other removals of important video frames so that they may drop useless dependent

packets more thoroughly.

Adding the proactiveness to relaying nodes does bring up benefits with re-

gards to quality of the received video and energy consumption, but it also poses

extra processing load and memory usage. Chapter 6 specifically describes how the

framework is implemented from the coding point of view, but not in a statement-by-

statement fashion. We define and implement system functions respecting the node

performance in relaying packets. The middleware is expected to fulfill the enhanced

forwarding functions while does not induce excessive processing load.

Before concluding the dissertation in Chapter 8, we report experimental re-

sults in Chapter 7. Experiments are made with a well-known video sequence on

a real-life testbed rather than via simulations. We extensively consider both the

quality of video and the performance of relaying nodes. In addition to evaluation of

computation load and memory usage, we also analyse the traffic load.

9

Chapter 2

VIDEO COMMUNICATION OVER AD HOC NETWORKS

Ad hoc wireless networking emerges as an eminent solution for ubiquitous

computing mainly because of their flexibility in deployment. This feature makes the

networks especially suitable to field applications, among which is distributed real-

time video. The needs of developing this communication can be found in a variety of

military and civil scenarios, as stated in Section 1.1. Once being deployed, a video ad

hoc network can either assist the operators in their commission or comfort them and

their work. A large number of examples of the former are in battlefield operations,

disaster rescues, and vehicle-safety assurances, while the latter perspective may be

expected in less critical cases such as entertaining car drivers.

Unfortunately, while mobility and wireless connections bring up a lot of advan-

tages that promise to fill the gap between the needs in practice and the conventional

networking technologies, they also create numerous challenges against the realiza-

tion of any communication service, not to mention resource-greedy video. In reality,

any wireless multihop network can offer only limited bandwidth whereas video traf-

fic is naturally heavy. Movement of nodes, fading, etc... substantially affect the

communication performance, making it very uncertain. Meanwhile, video sources

usually offer a contiguous load that is intolerant of delay.

This chapter is expected to give an overview of ad hoc wireless communication

under the prospect of deployment of real-time video applications. Features of video

streaming and ad hoc networking that hinders the development of the applications

will then be analysed. In this regard, we will insightfully look into the unfavorable

characteristics that challenge against their realization. Finally, we investigate related

studies on issues of communications over ad hoc wireless networks and point out

the gap that our study attempts to fill up.

2.1 Overview

In spite of fast progress in networking technologies and video compression

standards, streaming real-time video still draws attention from the research com-

10

munity. In the conventional Internet and heterogeneous networks, the main problem

is how to maintain an acceptable perception quality while keeping consumption of

resources moderate. Considering ending nodes, most of studies are focused on higher

layers, trying to build a suitable transmission policy for video packets [13][23][39][40].

These studies basically propose to adjust the generated traffic so that the transmis-

sion performance is optimized, given a network with certain QoS specifications. On

the other hand, research efforts on intermediate network nodes in general attempt

to treat video packets in a different way so that their QoS requirements are satisfied

at most. For instance in DiffServ [44], packets of interactive multimedia are given

“fast track” when the router serves multiple service classes. This means that they

suffer less latency than packets of other best-effort traffic, e.g. FTP, HTTP. Once

congestion occurs, video packets are nevertheless subjected to dropping before the

others. Another approach is to integrate a multimedia-specific forwarding function-

ality into active routers [4][7][42], where video packets are treated discriminatively

according to their contribution to the decoding process. Namely, packets, whose

loss causes serious degradation of the received video, will be given higher priority.

Nowadays, advanced wired access networks allow data speed up to hundred

Mbps (such as ADSL, LAN), eliminating most of issues concerning bandwidth at the

last hop. However, multimedia networking applications that span over the global

Internet still face the problem of resource shortage, despite network infrastructures

uninterruptedly expand. The main reason is that the number of users rapidly in-

creases and that they are more and more demanding. At the same time, introduction

of broadband services such as IPTV adds more challenges to network designers.

In ad hoc wireless networks, realizing real-time video applications faces even

more problems, since communications are made under more unfavorable conditions.

Because nodes are mobile, communication links are not robust with respect to band-

width and error rate. Fading and other environmental impacts further destabilize

the communication. Meanwhile, video traffic is inherently contiguous and heavy;

packets are highly sensible to delay. These make the development of video commu-

nication a challenging task.

11

2.2 Characteristics of real-time video traffic

Distributed multimedia applications over the network mainly fall into two

categories:

• Streaming of pre-encoded video. Video contents are created, encoded, and

stored into a central server for later playing back. Network users wishing to

access the contents first set up connections to the server and then ask for the

desired archives. Video packets are delivered to the users in parallel with the

playback. A typical service of this form is video-on-demand, which has been

prevailing in the Internet.

• Real-time video. In this type of communication, video packets, after being

encoded, are transmitted instantly to the receiver side. Only transient delay

(usually less than a second [14]) is allowed; packets suffering excessive delay

would be considered lost as the communication is in real-time. Consequently,

requirements on QoS is even more stringent. Typical examples of these ap-

plications are broadcasting and interactive video (e.g. video conference). Our

study has concentrated on this category of communication.

The major challenge in designing the network system is how to stream packets

smoothly so that the playback does not suffer interrupt and loss of too many video

frames. As previously stated, packet loss is unavoidable since the traffic is heavy and

intolerant of delay whereas any practical network is not always available to serve

any packet. In reality, the best-effort nature of the network does not guarantee that

any packet correctly arrives at the destination. To relieve the effect of packet loss,

we need to understand the nature of video packetization.

2.2.1 Data-dependency

Most of modern video compression techniques exploit both temporal and spa-

tial redundancy to greatly reduce data volume. As a result, frames are not equally

important with respect to the reconstruction process at receiver side [12]. Namely,

in the encoding process at the sender, a dependent video frame is predicted from

a previous frame, and then the prediction error is actually coded. This well-known

technique is called motion compensated prediction (MCP), which is employed in

12

Figure 2.1: Frame dependency in MPEG-4. Arrow curves originated from a frame

point to its dependent ones.

most of modern video compression standards, particularly in the well-known stan-

dards MPEG. Obviously, it helps decrease the data volume since visual contents of

adjacent video frames are highly correlated [12]. However, MCP also creates inter-

frame dependency. For example in MPEG4 - a very popular video coding standard

series, each frame can be encoded according to one of three modes: intra-coded (I-

frame), predictive-coded (P-frame), or bidirectionally-predictive-coded (B-frame).

In essence, a B frame cannot be decoded without its adjacent P frames, likewise a

P frame must refer to the previous one, and all subsequent frames of a GoP (Group

of Picture) are considered useless if its I frame is lost, as illustrated in Figure 2.1.

Occurrence of error or loss of a packet may result in error propagation to other

frames, even they are correctly received [10][11][45]. As a result, video packets are

substantially different in their contribution to the reconstruction of the received

video.

When the encoded video is packetized for delivering over the network, the

application layer may add additional header to each packet to indicate how signif-

icant the data are, before the packet is sent down to the underlying layers (e.g.

RTP/UDP). In conventional networking devices (e.g. IP-based ones), however, net-

work routers do not understand this information. As a packet arrives at a router,

it simply finds the destination network address and then consults a routing table to

decide which hop to forward. In other words, routers are blind to frame semantics

of packets. Namely, they do not know that packets of I frames contribute more than

the other with regard to the playback process. Should congestion occur at some

node, incoming packets may be rejected in accordance with a probabilistic rule, for

example, RED (Random Early Detection) algorithm [46][47]. In this algorithm and

its modified versions [48][49], acceptance of arriving packets is basically controlled

by observing the buffer level at the router, as shown in Figure 2.2. Packets may

13

Figure 2.2: RED: discarding packets based on buffer levels. Three regions separated

by Bmin and Bmax determine the admission of arriving packets.

be partially or entirely rejected if the the average queue length [47] exceeds the

predefined levels, regardless of how important they are. There are three regions of

treating packets divided by two thresholds Bmin and Bmax: acceptance, congestion

avoidance, and congestion control. In the first region, all packets are admitted as

long as the average queue length is below Bmin. Should the average queue length get

higher, they are probabilistically discarded until the critical level Bmax. Above this

level, all incoming packets will be rejected. As being unaware of frame semantics,

packets are dropped without taking care of frame semantics, degradation during

congestion is therefore more significant.

Obviously, distortion during playback does not linearly depend on communi-

cation loss rate. To relieve distortion caused by packet loss, video frames should be

treated in a discriminative fashion according to their contribution to the decoding

process. Specifically, packets of I frames should have the highest priority, then come

those of P frames, with regard to admission control. This strategy has been pro-

posed to active network nodes [4][7][42] as previously stated in Section 2.1, where

more functions can be flexibly added and programmed. In the meantime, existing

programmable networking devices such as wireless base stations, proxies, etc, may

also employ a semantics-oriented scheduling policy [4][50].

It goes without saying that inter-frame dependency adds more difficulty to

any optimization aiming at enhancing the perception quality. Once being unable

14

to accommodate all the incoming packets, the node must selectively discard some

of them; selection must be made so that no useless packet is chosen while keep-

ing bandwidth fully utilized. Algorithms such as RaDiO [51] propose to choose

packets/frames for transmitting so that the rate-distortion lagrangian function is

minimized. These algorithms, however, basically have a complexity that is expo-

nentially proportional to the number of packets under consideration, which is not

bearable to such limited resource as ad hoc nodes. In fact, related studies consider

using them at ending nodes only [17][23].

Under the impact of changing factors, quality of wireless channels fluctuates

drastically over time, from good to bad and vice versa [27][52]. In multi-hop wireless

connections, the propagation is even more random, making end-to-end conditions

very unpredictable and time-varying. On the other hand, selection of a pattern of

packets is made on the time base of group of picture [4][50]. Within the time of

a group of picture, if one important packet that has been selected to forward is

suddenly lost, the expected optimality may seriously be damaged.

2.2.2 Bandwidth greediness

Communication of raw video is unaffordable because of its huge data vol-

ume. Numerous compression standards have been developed for networking needs,

of which MPEG4 and its subset H.264/AVC are the most remarkable. These codecs

lower a video possibly down to less than a hundred Kbps [12][18] while allowing

users to manipulate individual objects (see Table 2.1). Even data speed is drasti-

cally reduced, it is still unrealistic for the network to convey every packet successfully

[1].

Unlike other data applications, during a session, multimedia traffic is generated

continuously. Huge traffic volume usually encourages system designers to prefer

connectionless transport protocols like UDP and its variants. In this manner, video

packets are sent out without any flow controlling mechanism. This helps cut off

communication overhead and potentially reduces end-to-end latency thanks to the

simplicity of the protocols. Note that no retransmission is executed. However, the

strategy also makes the traffic non-adaptive to the network.

Practically, multimedia applications accept loss of packets to some extent. As

such, it is admissible that they rely on UDP-based transport protocols. The ap-

15

Table 2.1: Data speed of different video coding schemes. Most of the data can be

found in [18]

Standard Data speed Possible application

MPEG2 1.5 to 15 Mbps DVD systems, video on demand, IPTV

MPEG4 64 Kbps to 300 Mbps graphic with object oriented interactivity

and multimedia networking

H.263 20 to 500 Kbps multimedia networking

H.264 20 Kbps˜ mainly multimedia networking

plication of these protocols helps avoid excessive delay and overhead, but it also

creates obstacles in making the traffic adaptable to the channel instability. Without

appropriate control measures, a video tends to grab the available bandwidth; once

the network lacks resource, important packets may be rejected while useless packets

are served. This would result in severe distortion at playback. Consequently, vari-

ous schemes for tailoring its traffic, including source coding control [21][22][25][26]

and adaptive packet scheduling [53][54], have been studied. In conventional wired

networks or single-hop wireless communications, video packets should be selectively

discarded depending on their semantics if congestion occurs [14][55][56].

In ad hoc networks, channel capacity is substantially limited, making the issue

more significant. According to [25][26], as the number of hops increases, the effective

bandwidth quickly gets smaller. The need of introducing the above controls is

therefore magnified.

2.2.3 Variable bit rate

Unlike channel capacity of conventional switching networks, video data speed

is highly time-varying. This is mainly due to the application of compression to re-

duce bit rate. Frames with more motion of objects will create more data than static

scenes. Rate variation is also caused by coding configuration. In channel-adaptive

streaming, source coding is controlled to reduce unexpected loss during communica-

tion. As previously stated in Section 2.2.1, compression techniques exploit temporal

redundancy, intra coded frames usually induce more data than predicted frames.

16

Figure 2.3: Traffic sample of Akiyo sequence. The size of I frames (ones that regu-

larly emerge) is by far larger than that of frames of other types.

Figure 2.3 shows an example of the traffic pattern of MPEG4 encoded Akiyo video,

where an I frame may be as large as several Kbytes while a B frame can be as small

as some ten bytes.

To utilize bandwidth efficiently, an adaptive rate control is mandatory at the

sender. This can be assisted by cooperations of the network and the receiver. In

[17][23], the authors propose an adaptive packet scheduling in which the sender

selects packets to send by considering end-to-end delay. Another way is to control

video coding parameters so that the compressed rate is adjusted [25][26]. In this

study, we also propose the use of sending buffer as a supplemental way to smooth

the transmission of video packets.

2.2.4 Time-sensitiveness

Video applications, to some extent, accept loss rate of packets, while the re-

quirement on delay is strict. Packets need to arrive at the receiver punctually or they

would be considered lost. In multi-hop connections, communication delay should

not be larger than a threshold, typically of 500 milliseconds [1][14]. If communi-

cation delay approaches to the threshold, delay variance (jitter) also affects the

perception quality. To comfort the perception, jitter can somewhat be absorbed by

17

using buffers at the receiver [57].

Once congestion occurs, packets suffer more latency, and the receiver likely

detects more lost packets. This would restrict the retransmission process as an

effective remedy to loss. Specifically, because the network resources (e.g. bandwidth,

buffer, etc) are not enough to convey the video traffic, more packets are dropped,

raising the number of ARQ requests. Lack of the communication resources will in

turn limit the ability to response to these requests. At the same time, the average

round trip time gets increased, reducing the number of possible retransmission times

for each particular packet. Consequently, retransmission in resource-limited wireless

networks should carefully be designed to avoid the deadlock.

2.3 Ad hoc wireless networking

An ad hoc network is formed from a set of nodes communicating usually with-

out assistance of any fixed coordinating infrastructure (e.g. base stations in wireless

cellular networks, digital exchanges in public telephone networks). All nodes oper-

ate essentially under the same hierarchical level. They can be either homogeneous

or heterogeneous in hardware and/or software configurations, and be mobile in most

of cases. A node can be a portable device such as PDA, a laptop computer, or an

embedded control unit attached to a vehicle, helicopter, etc. Being considered as

the base for “anywhere” and “anytime” connectivity and applications, it is a hot

topic of interdisciplinary research, from low power design to signal processing, from

mobility modeling and management to deployment of real-time applications. As the

communication environment is highly dynamic and unpredictable, designs targeting

at conventional wired networks basically do not work efficiently. Furthermore, com-

munication links in those networks are reliable, higher layer functionalities, such as

routing protocols, can be studied independently of physical behaviors. On the other

hand, unstable wireless connections desire considerations of cross-layer interactivity

for resilience. Layers may share instant information about capacity, error, delay,

energy, etc., to decide their most suitable behaviors [21][23][25].

Wherever the network is deployed and no matter how powerful the nodes are,

it has common disadvantageous features. As communication links are solely wire-

less (e.g. 802.11b, Bluetooth), the network performance is essentially affected by

18

environmental factors, e.g. noise, fading, etc. Furthermore, node mobility and inter-

ference are also major obstacles to deployment of any service that desires reliability

and/or instantness in communication.

2.4 Real-time video over ad hoc wireless networks

As wireless links are inherently unreliable, guaranteeing hard QoS specifica-

tions for video is unrealistic. For real-time traffic that accepts loss to some extent,

the network should deliver packets in best-effort fashion. This section discusses

obstacles in transmission of video packets over such resource-limited networks.

2.4.1 Capacity scantiness

In modern wired media such as optic fiber, 100BaseT cable, the link error

rate is extremely low and effective bandwidth is predeterministic according to phys-

ical specifications and signal modulation methods employed. In contrast, capacity

of wireless channels is tightly dependent on distance between nodes, fading, inter-

ference, etc. These factors adversely affect the signal-to-noise ratio (SNR) at the

receiver node, which in turn curtails the actual bandwidth.

When the communication path consists of multiple hops, the issue is even

more serious. As mentioned previously, the end-to-end capacity gets decreased if

packets traverse more hops. In [25] for instance, as the number of hops (2Mbps

802.11b WLAN) increases from one to six, the throughput consistently decreases

from around 1000Kbps down to 200Kbps. If the nodes are far away from each

other, the effective bandwidth is even narrower since the propagated signal is more

attenuated.

While end-to-end bandwidth is limited, a video source usually generates high

data speed, regardless of compression. Compared to other popular applications

such as HTTP, each session of real-time video is usually longer [1]. Consequently,

rejection of video packets, particularly during bad periods, is inevitable. To our best

knowledge, so far, no investigation on how to effectively control packet admission

at ad hoc relaying nodes is reported. In this study, we fill the gap by proposing

a low-complexity algorithm to selectively drop packets in case of congestion (see

Chapter 4).

19

2.4.2 Energy constraint

In ad hoc wireless networks, power is a serious factor to consider as design of

mobile devices must respect requirements on portability, weight, and size. Deployed

for field applications, machines mostly run on battery power, how to save energy is

therefore not a negligible question. Unfortunately, the issue of energy in relaying

nodes has never been addressed specifically for video taking frame semantics into

account, though studies target at generic communication services can be found in

most of layers, particularly in the MAC protocol [38][58].

Exhaustion of battery in any node may cause a failure of an active route,

or even a disconnection of the network. To insure the network connectivity, each

node must transmit (or relay) the signal at a strong-enough level so that the adjacent

nodes can receive packets correctly. On the other hand, the signal level should be also

as low as possible to save energy for the node itself, and to reduce interference. As

designed in the MAC protocol, multiple nodes may share the same channel, limiting

the transmitting power helps raise the number of transmission simultaneously. The

stronger the signal, the more likely collisions take place, which results in more

retransmissions and extra energy consumed [59][60].

In any ad hoc node, power consumers are CPU, HDD, wireless network cards,

etc. Consumption can be bound to either computation or communication tasks.

High-complexity algorithms do not only occupy more computation resource, but

also incur more energy. Additionally, video packets are time-sensitive, complicated

algorithms reinforced at multiple intermediate nodes potentially do harm to the

video. According to [37][38], both transmitting and receiving packets do consume

much more power than idle states. Consequently, dropping useless packets as soon

as possible is always worth-doing.

2.4.3 Instability

Wireless link performance tightly depends on the distance between the nodes.

We know that SNR determines the error rate; when the nodes are too far away

from each other, the error rate may be unacceptable. In reality, ad hoc nodes

are not bound to fixed positions, the channel quality is consequently unstable and

time-varying. Some application fields such as military battles may contain very

20

fast-moving vehicles (e.g. tanks, helicopters), the network topology accordingly

changes frequently. Topology changes may also happen when new nodes are added

or existing nodes are disconnected. Fast movement of nodes also forces the design

of physical transceivers to consider the Doppler shift carefully [61].

Besides common types of interference in wireless communication (adjacent

channel interference and co-channel interference), an ad hoc network also suffer

interference due to sharing medium among multiple nodes. The denser the network,

the clearer the impact of the interference [62]. When multiple nodes sharing the same

channel transmit at the same time without power control, the consequence will be

significant if nodes are close to each other. The interference obviously reduces SNR

and therefore decreases the effective bandwidth. As video flows are inherently bursty

and heavy, the effect of interference is potentially amplified, intensifying error rate

and delay to packets.

Another major obstacle coming from the transmission medium is fading, which

is highly random and environment-dependent. Fast fading (caused by the interfer-

ence of multiple versions of the same signal [63]), following either Rayleigh or Ricean

distribution [64], may sometimes deteriorate the channel performance. Operating

in areas with complicated terrain, ad hoc nodes also cope with slow fading, which

is attributed to objects lying between the sender and the receiver, such as walls of

building, vehicles, etc. The effect of this fading usually lasts multiple seconds and

may interrupt the playback at the receiver.

The aforementioned factors, whether individually or jointly, result in fluc-

tuation of communication reliability, delay, and bandwidth, both on per-hop and

end-to-end bases. This adversely affects real-time traffic and desires a highly dy-

namic design for each forwarding node, not only the sender and the receiver. So

far, related studies aiming at adaptability merely consider ending nodes, treating

relaying nodes along the path as a “black” cluster. Should one or multiple links

significantly degrade or completely fail, the routing protocol re-routes video traffic

over another path, partially or completely different from the previous one. Such

re-routing discontinues the communication in a considerable time [65], which does

matter in real-time video. This issue will be further mentioned in Chapter 3.

21

2.4.4 Error-proneness

Communicating solely over wireless channels, ad hoc nodes suffer high loss rate

compared to wireline transmission systems. Moreover, the error rate is time-varying

and unpredictable due to changing factors stated previously. Practically, the video

playback accepts erroneous and lost packets, especially when error concealment

techniques is exploited. However, severe loss rate will dissatisfy the user. Note that,

loss of important packets causes error propagation to many frames, or even disrupts

the media synchronization [45].

As massive erroneousness characterizes wireless communication, various error-

resilience techniques have been proposed, throughout the protocol stack from the

bitstream level to the application layer. Most remarkable video-specific proposals

relate to forward error correction (FEC) [21][25][66], retransmission of lost data units

in the link level, or packet-level redundancy [8]. Introduction of FEC means that

more data are added to packets, which helps the receiver node detect and correct

errors. In the second strategy, retransmission resolves errors at link level, rather than

end-to-end. Differently, the last technique proposes to transmit multiple instances

of a packet to enhance the chance of success. Actually, these techniques have been

seen more or less in conventional communication systems. They are tailored to lossy

and dynamic channels that features mobile ad hoc networks. While these tactics

supposedly combat with communication errors, they also induce more overhead and

are possibly computationally expensive. Careful consideration should be taken into

account since video traffic is inherently heavy, otherwise adverse consequences may

be observed. The next section further analyses these schemes.

Under adverse impact of fading, node mobility, etc., video communication may

suffer burst errors/loss which severely damage video frames continuously in a con-

siderably long period. During our experiments, we observed from time to time that

a large number of packets pertaining to some episodes of Akiyo were missing, which

lasted several seconds (see Chapter 7). Should techniques of transmission diversity

(e.g. frequency, time, polarization) be exploited, the effect can be relieved. Note

however that in ad hoc wireless networks where a large number of nodes communi-

cate, these resources are also scanty. Once traffic is distributed over multiple disjoint

paths concurrently, the probability that burst errors occur in all the paths at the

same time will be obviously lessened. Fortunately, most ad hoc routing protocols

22

inherently bring multiple routes to each pair of nodes [8][67].

2.4.5 Fairness for sender

Reported research works in the field of video over ad hoc networks largely rely

on simulations to evaluate their proposals, letting alone the issue of heavy workload

imposed on the sender. In reality, as this node takes over the encoding of the

video, it consumes much computation resource and energy [25][32][33]. Particularly,

complicated algorithms aiming at optimizing the transmission policy under network

resource constraints do not only produce extra computation load but also desire more

memory [68]. Unfortunately, all the proposals specifically to temporal-dependency

video solely aim at this already-busy node.

Furthermore, techniques to combat end-to-end errors, such as video-specific

FEC and retransmission as mentioned previously, are usually reinforced at the sender

with or without the cooperation of the receiver. This obviously adds further work

to the node, especially during bad communication periods.

2.5 Related work

As soon as ad hoc wireless networks emerged as a hot solution for ubiquitous

computing, transmission of real-time video over such networks has been attracting

much attention from the research community. This section makes a survey on related

studies on the topic.

2.5.1 QoS-supporting in lower layers

Each class of traffic over the network has specific QoS requirements. Non-real-

time applications, for example, HTTP, FTTP, and distributed database, usually

require a hard assurance on data integrity but tolerate delay. These applications

solely rely on reliable transport protocols (e.g. TCP) for delivering packets. To deal

with packet loss and errors, the underlying transport protocol employs retransmis-

sion. On the other hand, real-time applications like video accept errors and loss to

some extent, but are sensible to latency. As stated in various studies (e.g. [14][21]),

allowable end-to-end delay is only a few hundred milliseconds. At conventional ad-

vanced routers, for instance in DifferServ, packets may be classified according to

23

their time-sensitiveness. Interactive multimedia packets should be scheduled for

transmitting ahead of other non real-time ones. Another way is to use a signal-

ing mechanism to reserve bandwidth before the communication session starts, an

example of this approach is RSVP (Resource Reservation Protocol) [69].

Ad hoc networks are composed of autonomous computers that are “loosely”

connected together over wireless connections that are inherently unreliable and fluc-

tuated, firm assurance of QoS specifications is therefore unrealistic. Routing pro-

tocols, while determining routes for hosts, are subjected to various constraints, e.g.

energy, can only provide routes that are good to some metrics but not the oth-

ers. Note that requirements on QoS are different from application to application.

For instance, in military operations, security and reliability of hosts are the prime

parameters [16]. In sensor networks, energy conservation is the most important.

2.5.1.1 MAC protocols with resource reservation

In ad hoc communication, multiple nodes share a common broadcast radio

channel with a limited spectrum. Protocols controlling access to the shared medium

(i.e. MAC) need to insure fair share among communication nodes. They should

also maximize bandwidth efficiency together with addressing specific issues such as

hidden and exposed terminal problems [35][70]. Node mobility, interference, and

fading usually adversely affect the communication performance, and make available

resources unpredictable. It is generally difficult for MAC protocols to guarantee QoS

requirements in an ad hoc wireless network, given that resources are so constrained.

On supporting real-time applications, including distributed multimedia, sev-

eral protocols have been proposed [71][72]. In these protocols, after the bandwidth

reservation phase, the nodes get exclusive access to the bandwidth [16]. Note how-

ever that, reservation does not mean that each node will be allocated a satisfactory

bandwidth. Unfavorable factors associated with wireless mobile communications

may alter the effective bandwidth that a specific node gains. For example, when

the channel is erroneous, massive retransmission per hop-basis in the link level defi-

nitely lowers the actual throughput [27]. Furthermore, contention may occur during

the reservation phase itself, making the bandwidth assignment indefinite. Lack of

centralized coordinators adds further difficulty to the QoS provisioning task.

24

2.5.1.2 QoS routing

From the network point of view, the goal of routing protocols is to find out

the route(s) to forward packets. Guaranteeing hard QoS specifications is basically

unrealistic in ad hoc multihop networks, since wireless links are highly unstable and

unreliably. Furthermore, available state information is inherently imprecise [73].

Instead, routing protocols can only search for temporarily good paths with respect

to some aspects, e.g. reliability, delay, bandwidth, etc. Routes recommended by

different routing protocols are not the same, since they consider QoS parameters

differently [74]. In case of distributed multimedia applications, the key parameters

are bandwidth and delay. QoS routing protocols supporting video transmission

should accordingly provide routes with largest end-to-end bandwidth and least delay.

In practice, ad hoc routing protocols are classified into proactive, reactive, and

hybrid [16]. As inter-arrival between two consecutive packets is rather short while

they are time-sensitive, ad hoc nodes that relay video packet should prefer proactive

routing protocols to maintain routes. This is to insure that packets do not have to

wait for route discovery when they arrive at a node.

2.5.2 Distortion minimized schedule

On minimizing distortion, several scheduling schemes at the sender have been

proposed. For instance, the authors of [17][23] introduced CoDiO (Congestion Dis-

tortion Optimization), which is a variant of RaDiO. This cross-layer approach at-

tempts to prescribe a transmission schedule so that a lagrangian function of distor-

tion and end-to-end delay is minimized. Namely:

minimize : D + λ∆ (2.1)

subject to : R < bmax (2.2)

where D denotes the distortion of the received video stream; ∆ is the end-to-end

delay which serves as the congestion metric; λ is a factor; R is the rate of the video

stream that is limited to the channel rate bmax. Distortion D is formulated as a

sum of encoding loss and transmission loss. The former is modeled according to

the rate-distortion relation of the video. In essence, this term is independent of

the network status. On the other hand, the latter is assumed to perfectly match a

25

well-known distribution, and is dependent on the network delay and the available

bandwidth. Link delay, according to [17], is also assumed to comply with the ex-

ponential distributions. While simplifying the model, these assumptions may raise

a question on accuracy, since behaviors of multihop wireless connections are very

unpredictable [27]. Estimation of end-to-end delay ∆ is made by considering only

the bottleneck point, ignoring the queuing time in other nodes. The path capacity is

predicted based on a TCP-friendly rate control mechanism, which allows to collect

statistics from observing acknowledgments.

With the above assumptions, simulation results shows a clear improvement

with respect to PSNR (Peak Signal to Noise Ratio) [23]. So far, no experimental

result on a real-life ad hoc network testbed realizing this approach has ever been re-

ported. In wireless multihop ad hoc connections, as behavior of each hop is affected

by numerous dynamic factors such as fading and movement of nodes, end-to-end

metrics are notoriously uncertain [16]. Unplanned dropping of an important packet

due to some instant channel degradation may be harmful to the optimality that the

prescribed schedule expects, since transmission of the dependent packets is no longer

necessary. Though not explicitly analysed, the CoDiO algorithm has a complexity

comparable to RaDiO, which was proved to be heavy [3][4]. Furthermore, deter-

mination of distortion resulting from frame substitution is also rather complicated,

since it is related to the estimation of the delay distribution function [24]. Conse-

quently, while this scheduling approach promises a high performance on perception

quality if applied to the ending hosts, it is not efficient to introduce to multiple

relaying nodes. Augmentation of high-complexity algorithms in forwarding nodes

will add considerable delay and power consumption. This should be avoided since

real-time video packets are time-sensitive [7].

2.5.3 Source coding control

As ad hoc network communication conditions are time-varying, video traf-

fic flowing over the network should be tailored to the channel conditions so that

resources are used up. The issue of rate adaptation has been extensively studied

[21][25][53].

26

2.5.3.1 Cross layer feedback

This approach basically relies on a cross-layer design where the video source

coding exploits information from the routing layer to control the rate. In [25][26],

the authors proposed a feedback mechanism in which the application layer adjusts

the video rate in accordance with the path status. On implementation, the feed-

back information from the underlying protocol (e.g. AODV or OLSR) is simply to

indicate the hop count of the route that conveys video packets. Based on this infor-

mation, the sender tunes the quantization parameter (QP) on the source coding to

adapt the traffic rate to the path. Obviously, predicting bandwidth simply from the

hop count may not be accurate, since channel performance is also affected by other

factors such as distance between nodes. Inaccuracy may result in underutilization

of channel resource or bursts of packet dropping.

In those studies, error combating techniques were combined with the rate

control so that effect of loss of important packets is lightened. For instance in [25],

experiments on RTP/UDP/IP streaming were deployed, testing the efficiency of

FEC and packet redundancy strategies. The measured statistics show that when

the hop-count increases, redundant transmission of P frames outperforms FEC.

Additionally, with this cross-layer control, not only packet loss rate is decreased,

but it also remains unaffected by change of hop-count, as reported in [26].

2.5.3.2 Multistream coding

As presented in [21][34], a video flow can be encoded into multiple substreams.

These substreams are then transmitted over multiple paths that the routing pro-

tocol brings up. The authors examined two ways to decompose the video flow: a

layered coding (LC) with selective ARQ scheme and multiple description motion

compensation coding scheme (MDMC). The former technique naturally generates

multiple streams according to packet semantics, whereas the latter employs multiple

description coding (MDC) to create equally important substreams.

In the LC coding, video packets are typically divided into base layer (BL)

and enhancement layer (EL). Basically, BL contains the crucial part of video frames

(e.g. I, P frames) while EL is composed of less important packets (e.g. of B frames).

Successfully receiving packets of BL layer guarantees a minimum playback quality

27

that is improved if the receiver additionally gets packets over EL. Such a decompo-

sition gives scalability with respect to variable bandwidth. In multipath transport

(MPT) mode, those streams are separately transmitted to different paths. To decode

packets of EL successfully, BL stream must be correctly received.

Differently, MDMC generates multiple substreams that are relatively indepen-

dent. Loss in one substream does not affect the others. Perception quality of the

received video is improved in accordance with the number of correctly received sub-

streams. To insure the independence, the sender must insert sufficient overhead to

each substream so that it is decodable without referring to any other substream.

This obviously reduces the overall coding efficiency [8]. Additionally, the applica-

bility is bound to the coding method. In [34], the authors propose to use genetic

algorithms (GA) for solving complex cross-layer optimisation problems of routing.

Simulation results show that the GA solutions do improve PSNR compared to tra-

jectory and network-centric methods.

2.5.4 Error protection for video packets

As wireless channels are lossy, several error protection schemes applied specif-

ically to video applications have been studied. Basically, they fall into two cate-

gories: redundant transmission and forward error protection (FEC). While these

techniques lighten the effect of errors, they also introduce considerable overhead.

Thus, the tradeoff between the ability of loss recovery and channel efficiency should

be carefully considered; otherwise, its effect might be opposite to what we expect

[8].

Conventional coding schemes that support FEC have been extensively stud-

ied. Nevertheless, most of them aim at lower layers, dealing with universal traffic,

rather than being video-specific. Well-known error protection techniques include

convolutional code [75] and CRC (Cyclic Redundancy Code)[76]. Since error rate

over a wireless channel changes continuously, the coding scheme should be adaptive.

For instance, in [66], the authors proposed a technique called AFECCC (Adaptive

FEC Code Control) in which the amount of FEC code per packet is tuned based

on acknowledgment packets. Here the channel status is implicitly indicated by ar-

rivals of the acknowledgment packets rather than specific information such as SNR

or BER (bit error rate) from the receiver.

28

At the application layer, video-specific error protection coding schemes are de-

signed in [22] and in [25]. The authors of [25] investigated the effect of FEC under

the throughput context. Namely, the overhead amount for error recovery is intro-

duced by considering the channel capacity, which is implicitly expressed as the hop

count. The study also proposes to use a combination of FEC and packet redundant

strategy to combat with errors. On the other hand, the former study introduces a

systematic lossy error protection (SLEP) scheme in which the transmitted video sig-

nal goes with error protection information that contains a bitstream derived from

the Wyner-Ziv encoding. The Wyner-Ziv description can be optimized based on

an end-to-end video distortion model and channel information, which brings up a

graceful degradation over a wide range of packet loss.

In parallel to FEC, enhancing the quality of video by applying the ARQ tech-

nique has also been considered. Generally, the network should retransmit lost frames

that are important since they strongly influence the playback process [21][34]. As

described in Section 2.2.1, loss of these frames makes receipt of many others mean-

ingless. In [8][21], retransmission of I/P frames are made over multiple paths to

increase the reliability. The efficiency is clear when the end-to-end loss is severe. In

discriminating video frames according to their types, the authors of [77] introduced

an error control scheme called Differentiated Automatic Repeat reQuest (DARQ).

The maximum number of retransmission attempts assigned to a frame is calculated

taking into account both the attribute of the frame and its location in the group of

picture.

2.6 Chapter review

Heavy and contiguous traffic creates difficulties in deploying any networking

video application, despite compression techniques such as MPEG standards greatly

reduce its data volume. Exploitation of temporal redundancy in video compression

techniques induces video data dependence, which is another challenge to any trans-

mission policy. Being time-sensitive, video packets cannot be conveyed over heavy

overheaded transport protocol such as the conventional TCP. Deployment of real-

time video over ad hoc wireless networks is even harder, since they are not only lim-

ited in resources, but are also highly unstable. Before proposing our own framework

29

in the next chapter, we have insightfully investigated related studies, highlighting

the need to enhance the forwarding functionality of intermediate nodes.

30

Chapter 3

PROACTIVE FRAMEWORK

Unlike other proposed strategies that solely focus on ending hosts, this study

considers the ability to enhance the functionality of intermediate nodes so that they

efficiently relay video packets. This chapter considers the motivation to introduce

proactiveness to the nodes. The expected benefits will be analysed from the system

point of view. Additionally, the limitation of the framework is also clarified.

3.1 Overview

Let’s consider an instant transmission path for real-time video from the sender

to the receiver, as depicted in Figure 3.1. The video sequence is encoded, and then

packetized before being sent over the intermediate nodes toward the receiver. At

the receiver side, the packets are reordered, and eventually decoded into the orig-

inal frames for playing back. Any loss of packets implicates additional distortion

caused to the playback process; if there are dependent frames of the frame with

lost packet(s), error propagation to these frames will occur as stated in the previous

chapter (see Section 2.2.1). All the known proposals from the research community

so far have been focused on ending nodes only, letting intermediate nodes be simple

passive forwarders. Investigated transmission strategies aiming at video are essen-

tially sender- and/or receiver-driven [17][21][23]. We observe the following at any

relaying node.

• Every packet is instantly routed to the next hop based on its destination

address. The hop is determined by consulting the routing table maintained at

the node.

• Packets of different frame types are treated equally with respect to dropping

in case of shortage of resources.

• Each intermediate node passively receives packets and then forwards them at

best effort. It cannot know whether the packets are “fresh” or already miss

deadline.

31

Figure 3.1: Proactive forwarding. An intermediate node h transiently “caches”

video packets so that it can respond to later possible ARQ requests carried by

NACK messages. Caching packets also allows to smartly forward when the channel

is not good enough.

• Furthermore, it always redirects toward the sender any ARQ (Automatic

Repeat-reQuest) request, which asks for retransmission of a lost packet. Even

the request is for the packet that has just arrived at the node right before, it

is not handled.

In brief, intermediate nodes are blind to any strategy for loss relief. Each

intermediate node simply acts as a passive forwarder in which they cannot make

any cooperation with the video-specific relaying process. There is no way to give

higher priority to packets of important frames since relaying nodes are unaware of

video frame types. Particularly, as forwarding packets at best effort, they do not

care about any timing information concerning the playback deadline. Consequently,

packets that are already stale may also be unawarely processed and forwarded.

Namely, no admission control mechanism is forced to filter out those useless packets.

In other words, intermediate nodes stay away from any strategy dealing with packet

loss.

As presented in Section 2.4, any ad hoc network has rather limited and unre-

liable computation and communication resources while video traffic is bursty. This

results in unavoidable packet loss that occurs frequently. To lighten the effect of

error and loss, retransmission needs to be reinforced. At the receiving side, loss of

packets can be detected from the gap of sequence numbers. Should the receiver wish

32

to (re-)obtain lost packets, it issues a NACK (Negative Acknowledgment) message

to carry ARQ requests for those packets. Then, the node attempts to communicate

this message to the sending side. Because all the forwarders are not cooperative,

the NACK messages has to reach the very sender (node 0) to be processed. This

mechanism is called passive retransmission, as seen in Figure 3.2.

Intuitively, there exists a link between packet semantics-unawareness and pas-

siveness of the forwarders and the degradation of the whole performance. If, ob-

viously, a forwarder understood packet-semantics, it would give higher priority to

packets of I frames than to those of B frames. It would be even better if a packet

could be retained at the node in a very short while so that it was able to actively re-

spond, on behalf on the sender, to later possible ARQ requests. This would greatly

shorten the retransmission trip and hence save energy considerably [19][78][79]. Fig-

ure 3.1 illustrates how such a forwarder (node h) in our proposed proactive frame-

work deals with video packets. When a NACK message carrying ARQ arrives, some

requested packets might be found “cache-hit” at this node; if the channel cannot

accommodate all the traffic, a smart selection on arrival packets and cache-hit ones

can be realized. Arrival packets can be either truly fresh (being sent for the first

time from the sender) or a retransmitted one if it is allowed to be re-sent multiple

times.

To realize the idea, we design a middleware module called RtME (Real-time

Media Engine), which makes the forwarders more intelligent and cooperative

to the relaying process. Loosely speaking, it may be considered as a plugin-like

module that tops the routing layer. The introduction of RtME is supported by the

following observations. Firstly, in real-time video, life-time of packets is very short

(only in order of hundred milliseconds [14]). Packets suffered excessive delay should

be dropped if they could be detected. Secondly, the evolution of video compression

techniques (e.g. MPEG, H.264) allows a bandwidth as narrow as a hundred Kbps

to accommodate a multimedia flow. Thirdly, unlike the global Internet, an ad hoc

network is deployed to facilitate field operations, with limited number of users over a

relatively small area only. As a result, each node serves very few, if not single, users

at a time. Regarding multimedia applications, the most popular scenario is that each

relaying node works with no more than one single video stream. In reality, a single

video is mostly delivered concurrently over multiple paths [8][17][21][23][24][34], so

33

Figure 3.2: Retransmission from intermediate node. The retransmission round of the

NACK message and the retransmitted packet is considerably reduced in comparison

to the passive case.

34

the workload imposed on each relaying node is even more lightened. These facts

make the following demands bearable to almost every ad hoc device nowadays:

• a small cache of a few hundred Kbits, and;

• a light computation load on packet selection for an appropriate transmission

policy.

The introduction of RtME will bring benefits for both user side and network

side, since it makes ad hoc forwarders smart at processing video packets. Firstly, it

shortens the retransmission distance for lost packets. Note that retransmission takes

place very frequently as stated in Chapter 2. Obviously, such a processing strat-

egy does improve the success of retransmission and reduce cumulative energy con-

sumption pertaining to the route. Secondly, caching video packets allows RtME to

schedule transmission of video packets appropriately for the best quality of received

video. Specifically, relaying nodes, by being aware of packet semantics, always try

to keep packets of important frames (e.g. I frames) away from loss. Finally, RtME

also helps the nodes detect and drop useless packets, including obsolete packets and

those dependent on a corrupted frame.

3.2 Retransmission from intermediate nodes

In dealing with end-to-end loss at the packet level, conventional networking

protocol stacks (e.g. TCP/IP, IPX, etc) usually rely on retransmission at the trans-

port layer. This protocol augments a mechanism to detect packet loss at the receiver

and instructs the sender how to react to ARQ requests. Only the very sender can

regenerate and re-send a packet to the receiver. Should the route remain unchanged,

every node along the route receives and then forwards the packet as it did in the first

instance of transmission. So each time the packet is retransmitted, the cumulative

load induced to the path is duplicated. In multihop wireless communication, as

bandwidth is limited and unstable, careful considerations need to be taken. While

retransmission helps recovery of lost packets, it also generates more overhead. Ad

hoc networking devices normally run on battery power, so excessive overhead is

even more unacceptable [8][21]. With the proactive relaying nodes, the distance

that NACK messages and retransmitted packets travel is potentially reduced, en-

35

abling retransmission even in case the number of hops from the sender to the receiver

is large.

Video traffic is inherently bursty, therefore retransmission of all lost packets

is unrealistic, particularly during bad communication periods. In ad hoc networks,

due to their lossy channels, this is even clearer. Instead, packets are selectively

retransmitted, depending on their importance and timing status as well as on the

network condition. Note that every packet is associated with a predefined deadline,

the number of retransmission times is therefore not unlimited. The longer the dis-

tance (in term of hops) between the sender and the receiver, the fewer retransmission

rounds are permitted.

3.2.1 Communication reliability

Suppose that video packets travel through n hops toward the receiver as seen

in Figure 3.2, passing across nodes 1, 2, 3... and n-1. We first consider the case in

which all the intermediate nodes are passive forwarders. Once the receiver sends an

ARQ, the retransmitted packet must traverse every node on the same path as it did

in the first transmission instance. To simplify the problem, we assume that the back-

route for the packet carrying ARQ requests is the same as the forth-route. In each

round of retransmission, node i receives the request from the adjacent downstream

node i+1 and then transmits it to the adjacent upstream node i−1; later when the

requested packet arrives, node i receives it from node i − 1, and then transmits it

down stream. So any intermediate node receives and transmits twice each for every

retransmission.

On the other hand, with our video-cooperative framework, once an intermedi-

ate node h caches video packets for a while, it is able to reply to a NACK message

requested for a unsuccessfully received packet that is retained at the node (called

“cache-hit”). In such a case, nodes from 0 to h− 1 are absolutely free from the re-

transmission process. The total length of the round trip is therefore only 2× (n−h)

hops, rather than n as in the passive case, given that the back-route conveying the

NACK message is the same as the forth-route. This obviously reduces the cost of

retransmission in term of energy and bandwidth. If cache-hit occurs at node h then

we observe the following benefits on the whole path.

Firstly, as fewer nodes get involved in the communication of the retransmitted

36

Table 3.1: Parameter definition

BERf
i bit error rate on the forth direction

BERb
i bit error rate on the back direction

Ei
tx(p) energy consumed on transmitting packet p at node i

Erx(p) energy consumed on receiving packet p

Ei
nack−tx energy consumed on transmitting the NACK message at node i

Enack−rx energy consumed on receiving the NACK message

Lp packet length

Lr NACK message length

df
i delay of hop i on the forth direction

db
i delay of hop i on the back direction

h node that cache-hit occurs

i, j generic indices

ki the number of nodes under the coverage of node i

n the number of nodes along the transmission path

p packet under consideration

∆Ntx reduction of transmits on proactive framework

∆Nrx reduction of receives on proactive framework

∆Ere reduction of energy on proactive framework

∆P re
success gain factor on transmission from an intermediate node

∆Psuccess cumulative gain factor on transmission from an intermediate node

37

packet and the NACK message, the round-trip-time (rtt) is reduced by:

∆rtt =
h∑

i=1

(df
i + db

i) (3.1)

where df
i , d

b
i are forth- and back-delay of hop i (connecting node i -1 to node i),

respectively (refer to Table 3.1 for denotation of the symbols). Roughly speaking,

these delay values adhere to queuing and transmitting the packet. As the distance

between ad hoc nodes is practically short, the radio propagation delay is negligible.

The reduction of round-trip-time consequently depends on the number of nodes

that stay away from the retransmission, not on the length of each individual hop.

The shortening of the round does not only decrease latency, but also enables more

feasible retransmissions before the packet misses deadline.

As traversing fewer hops the packet gains higher success rate. Let’s denote bit

error rate (BER) in forth- and back-direction as BERf
i , BERb

i , and Lp, Lr as the

length of the video packet and of the NACK, respectively, then the success rate per

retransmission is multiplied by:

∆P re
success =

1∏h
i=1(1−BERf

i)Lp × (1−BERb
i)

Lr
(3.2)

Reduction of the round-trip-time also creates more feasible retransmissions before

the packet misses deadline. This results in an increased probability that the packet

is successfully received. As long as the packet has not been stale yet, it can be re-

peatedly retransmitted until arriving correctly at the receiver. Therefore, compared

to the passive case, the cumulative gain factor regarding success rate is even higher:

∆Psuccess = ∆P re
success ×

∑n
i=1(d

f
i + db

i)∑n
i=h+1(d

f
i + db

i)
(3.3)

Appendix Chapter A presents the estimation of success rates of the proactive re-

transmission in further detail.

3.2.2 Energy saving

Shortening the retransmission distance does not only raise the success rate

of communication but also reduces the cumulative energy consumption. Note that,

both receive and transmit consume considerably more power than idle status [37][38].

38

As already studied, both receive and transmit activities do consume additional en-

ergy; in [37] for instance, standby:receive:transmit consumption ratio is 1:1.2:1.7. It

is therefore worth lowering the number of transmits and receives. Compared to the

passive relaying scheme where every retransmission is made by the sender, fewer

nodes join the relaying of retransmitted packets. Consequently, cumulative energy

consumption is reduced. With cache-hit at node h, the numbers of transmit and of

receive along the transmission path are reduced each by:

∆Ntx = ∆Nrx = 2× h (3.4)

In fact, each time a packet is sent out from a certain node, not only the

destination node but also other nodes nearby get involved in the communication

[16]. Thus, the actual energy-saving is potentially more noticeable.

When retransmission can be made from an intermediate node, the benefit

regarding energy efficiency can be evaluated as follows. Assume that “cache-hit”

takes place at node h, all its upstream nodes including the sender do not have to

get involved in the retransmission of the requested packet. This saves the following

cumulative power consumption amount:

∆Ere =
h−1∑
i=0

(Ei
tx + ki × Erx) +

h∑
i=1

(Ei
nack−tx + ki × Enack−rx) (3.5)

where Ei
tx, Erx, E

i
nack−tx, Enack−rx are respectively the consumption for transmitting

(from node i) and receiving the packet by its ki neighboring nodes, and those values

associated with the NACK.

Introduction of proactiveness to relaying nodes also make them able to detect

useless packets. For instance, once an I frame is corrupted, all the subsequent frames

within the group of picture should be removed from the network. Dropping those

packets will further save bandwidth and energy for the transmission path. This will

be presented insightfully in Chapter 5.

3.3 Features of proactiveness

Our proactive framework for wireless ad hoc communication is motivated by

the emergence of the active network approach [4][7][41][43], where networking de-

vices are programmable elements, such as proxies, wireless base stations, gateways,

39

and active routers in conventional wired networks. As a results, the framework

does incorporate advantageous features of this approach. This section analyses the

bases supporting the augmentation of proactiveness from the perspective of next-

generation networking design.

1. Video packets are smartly processed. As stated previously, video packets

do not contribute equally to the decoding process. Some packets are partic-

ularly important in the sense that their loss will significantly degrade the

perception quality, such as those of I frames. Additionally, loss of such a

frame makes transmission of numerous packets useless. On the other hand,

loss of packets pertaining to B frames affects the playback almost transiently.

The effect sometimes may be invisible to human eyes. This motivates findings

of smart mechanisms for processing video packets appropriately according to

their semantics. The issue has been extensively investigated in conventional

wired networks [4][7][41][50]. However, no study on ad hoc wireless forwarders

have been conducted so far. Our proposed framework is to realize such a

smart processing to ad hoc wireless forwarders, keeping in mind that commu-

nications are forced under various constraints concerning bandwidth, energy,

CPU power, etc.

2. Enforcing hop-by-hop functionality is easier. Development of commu-

nication systems requires more and more flexibility of the network node archi-

tecture so that diverse needs can be fulfilled. Once the proactive framework is

reinforced, it is simple to augment more functionalities at intermediate nodes.

This is similar to the active network architecture that CISCO and other well-

known manufacturers pursuit [80]. Enhanced functions at intermediate nodes

can be found in data processing for security, multicast exchange of control

packets and delivery of lost packets, and adaptive rate control at per-hop

basis as previously described in Section 2.5.3.1.

3. Simplicity is highly respected. Ad hoc nodes are essentially restricted in

computational power, enforcing complicated tasks for processing video packets

would not be encouraged. As packets arrive at a high rate, high-complexity

algorithms do not only induce unbearable load to the forwarding nodes, but

they also add considerable delay to packets themselves [7]. Furthermore,

40

Figure 3.3: Wrong selection due to unexpected loss of the P frame upstream. At time

t1 the P frame is rejected at the upstream node. Later at time t2 the downstream

node must make some selection decision; it does not know that a cluster of frames

never arrive.

heavy computation does raise the power consumption at the nodes. While

optimality-oriented algorithms such as RaDiO/CoDiO reduce the distortion

of the received video, we do not introduce them to intermediate nodes. The

algorithms are proved to have high complexity (which is exponentially pro-

portional to the number of packets under consideration [6]). Consequently,

applying them to all forwarding nodes is not efficient. Another reason to avoid

complicated optimal algorithms at relaying nodes hinges on the predictability

of packet arrivals. Optimality can only be reached when all expected packets

successfully arrive or are available as assumed; this is nevertheless true only at

the sending node where no link loss is suffered. In ad hoc wireless communica-

tion, packet loss is caused not only by nodes (e.g. due to buffer overflow), but

also by lossy links, which adds more uncertainty to any packet arrival at inter-

mediate nodes. As illustrated in Figure 3.3, if a frame P (that is expected to

arrive at the node) is lost somewhere upstream, optimality-oriented selection

may be far worse than no selection at all.

4. Relaying strategy should converge to the conventional passive for-

warding when the channel is ideal. To gain the benefits above, relaying

nodes must be added more packet processing load to realize the proactiveness.

When the transmission suffers loss and lack of resource (which is true most

41

of the time in ad hoc wireless networks), the benefits that the proactiveness

brings up outweigh its cost. Nonetheless, to make the framework realistic, any

forwarding strategy should guarantee that, if the network is in a good commu-

nication status, it behaves close to the conventional forwarding mechanism.

This also means that there should be no major difference between the two

with regard to the communication performance.

In the next chapter, we will see how these criteria are respected when realizing

the proactiveness for relaying nodes. While making nodes able to respond to re-

transmission requests, the design keeps the cache as small and as simple as possible.

Packet selection is simplified while packet queues purely follow FIFO, which leans

toward best-effort nature.

3.4 Applicability range

Adding more caching and processing load to ad hoc forwarders, we expect

that the efficiency of the framework is maximized regarding both communication

and computation. It is obvious that the benefits of the proactive framework will

be highest if the routes conveying video packets and NACK messages are identi-

cal. Namely, on the way to the sender node, NACK messages traverse proactive

forwarders that potentially cache video packets. In a typical ad hoc network, as

wireless links are symmetrical, the above assumption is basically correct. On the

other hand, should the network contain some asymmetric links, the forth- and the

back-routes might not be the same. However, retransmission from an intermedi-

ate node is usually still cheaper than from the sender itself. To take up advantage

of the proactive nodes on the forth-route, the ad hoc routing protocol should give

higher priority to those back-routes that cover more nodes of the forth-route, when

transferring ARQ requests, even they may be longer. If no back-route consists of

any proactive node, then of course there is no benefit concerning retransmission at

all. Such a situation may occur when all the nodes involved have their antenna

perfectly directed. Another example is a sparse network where the nodes have en-

tirely diverse transmission power levels. In those cases, the network topology must

be overwhelmed with asymmetric links to devaluate the framework. Even so move-

ment of nodes, interference, and environment changes potentially make the scenario

42

transient.

Intuitively, the introduction of the enhanced forwarding functions does not

pose any issue of backward compatibility. Namely, video-cooperative hosts can

co-exist and efficiently inter-operate with conventional passive nodes. Arriving at

proactive forwarders, only video packets are treated in a different manner while

other traffic classes are relayed as over passive ad hoc routers. The next chapter

will detail this behavior.

Practically, it is unlikely that a particular node joins a video session, relays

only a single packet, and then goes away from the route. Note that in ad hoc routing

protocols, route update cannot be made too frequently. The route update period

is normally in order of seconds [65]. In addition, video traffic is bursty as stated

in Section 2.2; so once a node is present at the route, the number of packets going

through should be large enough for the proactiveness to take effect. Typically, a

video flow has its frame rate no less than 10 fps, so the average packet inter-arrival

is shorter than 100 ms. Consequently, caching and computing for a smart packet

selection is always worth-doing at forwarders.

It is obvious that cache-hit rate at relaying nodes is influenced by congestion

over the links. The closer to the receiving side the bottleneck link is, the higher

the efficiency of the proactive framework. Specifically, on the way down to the

receiver, packets tend to reach relaying nodes as far as the traversed links are in

good conditions. Should retransmission requests be sent back to the sending side,

cache-hits potentially occur at nodes that are close to the receiver. As a result,

the more upper links are good, the shorter the retransmission distance. In this

sense, retransmission from intermediate nodes potentially helps reduce traffic load

over upstream links. This contributes to decrease the possibility of congestion at

links close to the sending side, which in turn raises the benefits of caching video

packets at relaying nodes. The worst case happens when the very first link gets

jammed seriously, which blocks video packets right at the sender. In such a case,

retransmission can be made only from the sender itself. Note however that, unlike

wired networks, ad hoc nodes are mobile and the wireless channel is changing, that

a particular link is persistently in a good or bad status is unlikely. Furthermore,

QoS routing protocols naturally tend to bypass those links that are poor over a long

period [73][74][81].

43

3.5 Chapter review

Differently from other proposals for video transmission over ad hoc networks,

we consider the perspective to enhance the functionality of relaying nodes instead

of ending hosts. This chapter has presented the motivation of making those nodes

more cooperative to the forwarding process. The benefits regarding communication

reliability and energy has been analysed. In the next chapter, we will show how to

realize the proactiveness on the nodes.

44

Chapter 4

DESIGN OF REAL-TIME MEDIA ENGINE

As stated in Section 3.1 of the previous chapter, to realize the proactiveness of

ad hoc relaying nodes, we introduced a plugin-like module called Real-time Media

Engine (RtME). Basically, this module is only activated at an intermediate node if

it has video packets to forward. This chapter presents the design of the module,

showing how packets are accepted, cached, enqueued, and forwarded at the node.

We also analyse the feasibility of the framework with respect to memory usage and

computation load.

4.1 Overview

Proactive functionality of ad hoc nodes that relay video packets lies at RtME.

It includes controlling the packet acceptance, storing packets to the cache, smartly

dequeuing them, and cooperatively handling retransmission requests. This module

filters in video packets for further processing before transmitting them downstream.

It also handles incoming NACK (Negative Acknowledgment) messages that carry

ARQ requests. As illustrated in Figure 4.1, RtME includes several entities below:

1. The Rx is responsible for filtering in video packets, and discarding obsolete

packets. At the sender node, it simply accepts datagram from the upper layer,

whereas at the receiver node, it reorders packets if necessary;

2. The Warehouse accommodates and maintains video packets as described ear-

lier. At the receiver node, this should be replaced by a buffer supporting the

decoding process;

3. The NACK Handler processes ARQ requests, and forwards them upstream if

necessary. At the receiver node, this entity is to generate and to send NACK

messages instead;

4. The Tx works with packets in two separate queues (“fresh queue” for packets

from upstream, and “response queue” for the packets that are cache-hit in

45

Figure 4.1: Construction of Real-time Media Engine. The middleware tops the

routing layer and includes four submodules (entities).

this node); it selects the appropriate packet to transmit when the channel is

available. The receiver node, of course, does not have this entity.

From the programming point of view, all the entities except the warehouse

are implemented as parallel threads, synchronized by a semaphore. Theoretically,

other implementation architectures such as inter-process communication (IPC) or

signaling mechanism can also be employed. In this study, we choose the approach

since the aforementioned entities have a strong need to share global variables defin-

ing the cache and the queues. Practically, multithreading is supported widely in

modern OSs (e.g. POSIX pthread library in Unix-like OSs, and process library in

MS Windows).

4.2 Acceptance of incoming video packets

In the conventional wired networks, each relaying node admits every packet

and instantly forwards it to the next hop in a best-effort fashion. Which hop is

46

Figure 4.2: Proactive header. Four bytes are added to indicate the complete identi-

fication, the type of the packet, and the number of packets within the encompassing

frame.

selected depends on its destination network address. Should the communication

channel be not available, the packet is decisively destroyed without caching for any

while. Namely, no packet admission control is reinforced. On the other hand,

proactive relaying nodes allow to filter out useless packets thanks to the fact that

packets are transiently retained in their cache.

At each intermediate node, video packets arriving from upstream are loosely

called “fresh packets”. Actually, a “fresh packet” may be either a packet sent for the

first time from the sender or a retransmitted one that has been generated somewhere

upstream. Note that a fresh packet may also be obsolete (generated earlier than

the obsolete bound). Entity Rx performs the following functions upon a packet

arrival: extracting header and recording packet information, sending the packet to

the warehouse, and logically queuing the packet.

4.2.1 Processing proactive header

To process video packets in a way we expect, each packet must contain enough

overhead information so that RtME can recognize its identity. At the sending side,

the application layer adds 4 bytes to each packet so that proactive nodes can identify

and process appropriately. Figure 4.2 shows the structure of this proactive header.

The data include the identification of video packet, the number of packets derived

from the encompassing frame, and the frame semantics. Each video packet is iden-

tified by the group of picture it belongs to, the encompassing frame position in the

47

group of picture, and the segment number. These are respectively represented by

fields “group of picture”, “frame position”, and “segm identification”.

Since packets are physically stored to the cache in a non-contiguous manner,

these pieces of information is needed for later regeneration of each packet. Upon

receiving a packet, RtME extracts this information and stores to internal variables

for further computation. Namely, the identification numbers are used as an index

anytime the associated packet is retrieved. Why do we use up to three identification

numbers to identify a single video packet ? The answer is related to the scalability

and the need for multiple level access: group of picture, frame, and packet. Each

video sequence may generate a vast number of packets that are not independent

of each other, so using a unique number to sufficiently identify a packet is tedious.

Specifically, actions such as removing a packet from the warehouse, selecting a packet

to forward, etc, need to know not only the packet identification number, but also

the frame that it belongs to.

When receiving a particular packet p for the first time, RtME at a node records

the arrival time (denoted as tarrival
p) so that the residing time of the packet at the

node can be estimated when needed. Later on, if this packet, due to some reason,

does not correctly reach the destination node, it may be retransmitted and hence

arrive again at the current node. At this retransmission and the later if any, the

node estimates the elapse time since the arrival time. Note that the sender must

have generated the packet earlier than its arrival time at any relaying node. As a

result, if this time duration is greater than the maximum allowable delay of video

packets, the packet definitely misses its deadline, and hence should be dropped by

entity Rx.

4.2.2 Dispatch to cache

Since a particular packet can be retransmitted multiple times, it is likely that

a node receives a packet repeatedly. In such a case, the stored header information

on its first arrival helps the node identify the duplication of receipt and hence drop

it. In other words, before caching any packet, the RtME checks whether it is already

present in the warehouse. Once the packet is accepted, the state information of the

associated frame at the node, such as total size of frame and the number of available

packets must be updated.

48

With the assistance of multiple level accessing mechanism stated in the pre-

vious section, storing a packet to the warehouse is just a matter of dynamically

allocating a memory equal to its size. The reason of using this dynamic allocation

is that we do not know in advance how many packets of a frame will really arrive

at the nodes, as well as how large they are. Consequently, static allocation at peak

level would cost much more memory than actually needed, given that video packets

are so varying in their size, as mentioned in Section 2.2.3. Chapter 6 will describe

this function in detail.

Practically, the life-time of video packet in real-time applications is very short,

as said previously. Obsolete packets should be removed from the warehouse as soon

as they are detected. Nevertheless, to simplify the removal and hence reduce the

workload, RtME does not retrieve each stale packet individually upon every packet

arrival. Instead, it only locates obsolete packets to destroy if a fresh packet of a new

video frame arrives. At such a time, the video frame is added to the warehouse, and

entity Rx completely removes all packets of the obsolete frames.

4.2.3 Queuing packets

Once a packet is admitted by the Rx, it should be enqueued for relaying

downstream whenever the channel is available. For fast processing, the RtME does

not physically dispatch packets to the queues. Instead, valid arrival packets are

logically pushed to a designated queue called “fresh queue”. Namely, only extracted

header information, which is collectively stored in a structure variable, is added to

the queue, while the physical data remain untouched in the warehouse without any

copying or moving.

Upon queuing each incoming packet, the semaphore controlling entity Tx has

its value increased one unit, telling the Tx thread that there is one additional packet

ready for transmitting. This mechanism is to minimize the CPU usage, as the

thread is only awaken when there is a packet ready to transmit. Once successfully

forwarding the packet downstream, entity Tx subtracts one unit from the semaphore

value. Should the value become zero, the Tx goes sleeping again. Chapter 6 will

describe this operation in detail.

To facilitate the warehouse maintenance, such as seeking a particular packet,

deleting a frame, the warehouse is organized as follows. Each video frame, including

49

its data, header, and recorded information (e.g. arrival time), is associated with

a pointer called frame pointer. We define a map container to hold frame pointers

of all currently cached frames. As a packet arrives, its header is extracted first to

identify its encompassing frame. If the packet is of a frame that is not currently

available, a new frame pointer is initiated to hold the packet; otherwise, the record

pointed by its encompassing frame pointer is updated with the additional packet.

Accordingly, maintenance of the warehouse is actually done on the map container

of the frame pointers only, rather than the physical frames.

In an ideal transmission status, the channel is always ready for every arriving

packet. If this occurs, packets are forwarded downstream immediately as soon as

they approach the designated queue. The proactive framework therefore converges

to the conventional forwarding scheme. However, in ad hoc wireless communication,

such a good situation is very rare.

4.3 Caching video packets

Unlike conventional video caching systems where packets are stored in sec-

ondary memory (e.g. HDD), the cache here should be allocated on electronic mem-

ory (e.g. DRAM), since real-time video traffic is so time-sensitive and bursty. As

analysed later in this chapter, video frame’s life-time is very short, while ad hoc

nodes with limited communication bandwidth can normally serve only one video

flow at a time, making the demand for space not prohibitive.

After extracting packet header and assigning the obtained values to internal

variables, entity Rx considers allocating memory for the physical body of the arrival

packet. For simplicity, the warehouse is maintained as shown in Figure 4.3. Let’s

assume that the maximum allowable number of frames residing in cache is Nc.

Whenever a packet (or a fragment) of a new frame f (not a retransmitted frame)

arrives, all the frames before frame f −Nc + 1 should be freed from the warehouse,

since they have definitely missed deadline (obsolete). The latest frame to be deleted

is f − Nc, which is called obsolete bound, whereas f is called fresh bound. Since

there may be gaps in frame numbering due to packet loss, potentially fewer than Nc

frames are in the warehouse. Upon the arrival of a packet, Rx extracts its header to

identify which video frame it belongs to. If the encompassing frame was generated

50

Figure 4.3: Warehouse maintenance. RtME at each node maintains two bounds:

fresh bound f and obsolete bound m. Packets generated earlier than the second

bound should be discarded without any processing.

51

earlier than the obsolete bound, it will decisively be dropped.

4.4 Processing NACK message

To avoid excessive overhead, successfully received packets are not acknowl-

edged. NACK messages indicate only the lost packets that are not obsolete yet.

Format of a NACK message is shown in Figure 4.4. Each requested packet is repre-

sented by a single byte, identifying the encompassing frame and its fragment number.

The total length of the message equals to the number of requested packets plus two

bytes describing the just successfully received packet. There are cases in which the

receiver node does not receive any packet for a long time. In such cases, it would

be meaningless to indicate the just successfully received packet in the NACK mes-

sage. Instead, the two bytes should represent the identification of the frame that

was expected to arrive at the receiver node at the time when the NACK message

was generated. It is possible for the receiver node to predict the identification since

video frames are numbered in an iterative natural order. In addition, from over-

head information of the video or by observing arrivals of frames, the node can also

estimate the frame rate.

Upon receiving, the ad hoc node checks if the encompassing video frame is still

in the warehouse. If so, it attempts to update the round-trip-time to the receiver

node that is calculated simply as:

rtt = tnow
p − tltxp (4.1)

where p is the packet that has just been successfully received (right before this NACK

message was generated at the receiver node); tnow
p is the current time; and tltxp is the

time when packet p was last sent from this node. The updated rtt will be referred to

each time entity Tx decides whether to transmit a packet downstream. This will be

presented specifically in Section 4.5. In a cross-layer information sharing, proactive

routing protocols can also provide statistics (from routing messages) that support

the estimation of rtt.

Before interpreting the list of requested packets, the handler evaluates the

elapsing time since packet p arrived at this node:

telapse
p = tnow

p − tarrival
p (4.2)

52

Figure 4.4: Format of NACK message. Each message contains two header bytes

that indicates the just successfully received packet and the body that lists requested

packets.

where tarrival
p is the arrival time of packet p that was recorded by entity Rx. If the

time elapse is greater than delay threshold Dthres , then all the requested packets

have certainly missed deadline, and this NACK message is obsolete and should be

dropped.

Once the node determines that the NACK message is not obsolete, a list of

requested packets is interpreted. Each byte carries the data indicating frame and

fragment identification offsets of a requested packet. When a whole frame completely

gets lost, the receiver can only tell that the whole frame needs to be retransmitted,

but it does not know how many packets the frame contains. Thus, a single byte

of the NACK may correspond to multiple packets. After the translation of all the

bytes, a list of requested packets is completed. The node then locates those packets

that are currently in its warehouse. These packets are considered “cache-hit”, and

are queued into the designated queue (called “response queue”). If there is any

requested packet that is “cache-miss” here, the node forwards the NACK message

upstream; otherwise, the message is suppressed. Before forwarding, the node cuts

off all the bytes corresponding to the requested packets that are cache-hit. This cut-

off will save bandwidth on the back-route. The operations above can be formally

53

represented in the abstract pseudo-code of List 1 below. The primary variables are

cache_miss_count that counts the number of cache-miss packets, and formal array

byte[] that holds the body of the NACK message.

List 1 - Processing a NACK message

1: cache_miss_count = 0;

2: this_NACK_suppressed = true;

3: /* scan content of NACK message */

4: for (i=2 ; i < NACK_message_length; i++)

5: {

6: Translate byte[i] into the requested frame (called fr_ptr);

7: if (fr_ptr is found in the warehouse)

8: {

9: Determine the set of requested packets (called req_ids) from

10: byte[i];

11: Determine the set of cache-hit packets (called cache_hit_ids)

12: among req_ids;

13: Push cache-hit ids to response queue;

14: Increase tx semaphore value;

15: if (all req_ids are cache hit)

16: {

17: Cut off byte[i] from NACK message;

18: }

19: else

20: {

21: this_NACK_suppressed = false;

22: Increase cache_miss_count;

23: Modify NACK message;

24: }

25: }

26: else

27: {

28: /*the whole requested frame is not found*/

29: this_NACK_suppressed = false;

54

30: Increase cache_miss_count;

31: }

32:}

33:if (cache_miss_count > 0)

34:{

35: Forward the modified NACK message upstream;

36:}

37:/*end of pseudo-code*/

As shown in the list above, for each byte of NACK_message, the NACK handler

needs to identify the encompassing frame fr_ptr before determining the set of cache-

hit packets (cache_hit_ids). Upon queuing each cache-hit packet, the semaphore

controlling entity Tx also adds one unit to its value (tx_semaphore_value), simi-

larly to the acceptance of a fresh packet described earlier in Section 4.2.

4.5 Relaying mechanism

In each node, there are two logical queues, one for incoming packets (fresh

queue) and the other for cache-hit packets (response queue), as presented previously.

Each time the channel resource is ready, entity Tx dequeues a packet from one of the

queues if available. To save computation resource, the Tx thread is only activated

when the semaphore value becomes positive. Once awoked, the entity first looks

for the most appropriate packet from one of the queues, and then checks if it is

really meaningful before sending it downstream. Obviously, in a good propagation

status, the response queue should be empty, and packet selection is just a matter

of taking the only packet from the fresh queue. In other words, every incoming

packet is sent virtually immediately, making both queues empty most of the time.

This behavior demonstrates the convergence nature of RtME that was mentioned in

Section 3.3. Namely, the operation of the proactive strategy is virtually the same as

the conventional forwarding scheme. Note however that, in wireless communication,

video packets usually face shortage of resource; such an ideal moment, if any, is

transient.

55

4.5.1 Packet selection

When the resource is not always enough to instantly forward every incoming

packet, we need to select packets to relay taking minimization of distortion into ac-

count. Algorithms for selection should be straightforward to avoid excessive process-

ing delay and to save computation resource. Here we introduce a frame-semantics

based algorithm as follows. At first, the Tx reads the head-of-queue packets from

each queue if available. Then, which packet is selected for relaying depends on (i) the

semantics of the frames the packets belong to, and on (ii) their remaining life-time.

Specifically, packets with more dependent ones, such as those of I frames, should

be given higher priority. Among packets of equal importance, the earlier generated

one should be served first. List 2 represents a cycle of packet selection in form of

pseudo-code. The goal here is to return a pointer packet_to_send_ptr identifying

the packet to forward. Note that besides I, P, and B frames, each GoP contains a

“header” frame, denoted as “H”.

List 2 - A cycle of packet selection

1: packet_to_send_ptr = NULL;

2: /*read out the head_of_queue packets from the queues*/

3: fh_pk_ptr = head_packet(fresh_queue);

4: ch_pk_ptr = head_packet(response_queue);

5: /*decide which packet is selected for transmission*/

6: if (both queues are not empty)

7: {

8: if (ch_pk_ptr->frame_type == B)

9: {

10: if (fh_pk_ptr->frame_type == B)

11: {

12: packet_to_send_ptr = ch_pk_ptr;

13: Delete ch_pk_ptr from response queue;

14: }

15: else // fresh packet is of H, I, or P

16: {

17: packet_to_send_ptr = fr_pk_ptr;

56

18: Delete ch_pk_ptr from fresh queue;

19: }

20: }

21: else // cache-hit packet is of H, I, or P

22: {

23: if (fh_pk_ptr->GoP_id == ch_pk_ptr->GoP_id)

24: {

25: /* Both packets are of the same GoP */

26: packet_to_send_ptr = ch_pk_ptr;

27: Delete ch_pk_ptr from response queue;

28: }

29: else // cache-hit packet is of the previous GoP

30: {

31: if (fh_fr_ptr->frame_type != B)

32: {

33: packet_to_send_ptr = fh_pk_ptr;

34: Delete ch_pk_ptr from fresh queue;

35: }

36: else

37: {

38: packet_to_send_ptr = ch_pk_ptr;

39: Delete ch_pk_ptr from response queue;

40: }

41: }

42: }

43: }

44: else //at least one of the queues is empty

45: {

46: if (only fresh queue is not empty)

47: {

48: packet_to_send_ptr = fh_pk_ptr;

49: Delete ch_pk_ptr from fresh queue;

50: }

57

51: else

52: {

53: if (only response queue is not empty)

54: {

55: packet_to_send_ptr = ch_pk_ptr;

56: Delete ch_pk_ptr from response queue;

57: }

58: }

59: } /*end of pseudo-code*/

As shown in List 2, the Tx first reads the head-of-queue packets out to point-

ers fh_pk_ptr (pointing to “fresh packet”) and ch_pk_ptr (pointing to “cache-hit

packet”), using function head_packet. Information about frame type and group of

picture is subsequently extracted, which helps the Tx decide which one to return

(as pointer packet_to_send_ptr). In short, if both packets are of B, the cache-hit

one should be served since it has shorter remaining life-time; otherwise, if only one

is of B, then the other should be of course selected. If the cache-hit packet is of H,

I, or P, it will also be served unless it is of the earlier group of picture while the

fresh packet is also of H, I, or P. If one queue is empty, the other should be served

if not empty, else the Tx thread goes sleeping.

4.5.2 Decision on forwarding

After being selected, the packet is checked whether it is still early enough to

reach the receiver node. The check is done by comparing the expected time-to-

destination and the remaining life-time of the packet. The former is optimistically

set to rtt/2, where rtt is updated according to (4.1). Since a packet can be requested

many times for retransmission, the selected packet should be additionally checked

whether it has been forwarded within last rtt time units. In short, the selected

packet is relayed downstream only if the following inequalities hold:

Dthres − (tnow − tarrival) > rtt/2 (4.3)

tnow − tltx > rtt (4.4)

where tnow, tarrival, and tltx stand for the current time, the arrival time, and the

time of the last forwarding, respectively. If one or both of the inequalities are not

58

true, the selected packet should be completely dropped, and another cycle of packet

selection should immediately be initiated, and so forth. Each time a packet has

been sent out, the semaphore decreases one unit.

Obviously, if the path goes worse, rtt gets increased, breaking (4.3) more

frequently, and hence more packets are dropped. So, the per-hop adaptiveness to

the channel condition is enhanced. Such an exploitation of NACK messages solicits

a cross-layer design.

While the RtME exploits the information concerning round-trip-time, it does

not tightly depend on any other node to make forwarding decisions. If rtt is not

updated in a long period, the node simply sets its value to the minimum value (e.g.

zero) to guarantee that no packet is unnecessarily discarded. To keep the value

up-to-date, the receiver node may regularly generate and send heartbeat packets [8].

However, this method creates more communication overhead. The algorithm is open

in the sense that it can be modified more or less for different targets; it can also

be combined with other strategies. The openness of the architecture guarantees

interoperability of diversified nodes. Namely, proactive nodes of different relaying

algorithms can work well together and with conventional passive nodes, without

deterioration of the efficiency, since they make forwarding decisions autonomously.

4.6 Feasibility analysis

In exchange for the benefits regarding energy, bandwidth, and fairness at the

sending side, the introduction of Real-time Media Engine (RtME) to ad hoc relaying

nodes also requires memory space and poses some computation load. Each relaying

node needs to reserve main memory for caching video packet transiently, as stated

before. However, because the life-time of video packets is very short, the node does

not have to reserve a large space. The relaying strategy, as presented in the previous

section, is fairly simple, so computation load is not prohibitive to today’s ad hoc

devices. In this section, we consider the feasibility of the framework with respect to

memory and computation resources, both analytically and practically.

59

4.6.1 Memory space

Upon a packet arrives at a relaying node, the RtME processes its proactive

header before sending its physical body to the warehouse. In reality, caching the

packet is just a matter of allocating memory equal to its size. To avoid excessively

claiming memory space, packets are allocated memory on-the-fly. Namely, the RtME

at each intermediate node does not reserve any space dedicated for the warehouse,

but it allocates memory dynamically upon packet arrivals. Obviously, how much

memory is needed to accommodate video packets depend on the following factors:

• How long each packet is allowed to remains in the warehouse. The longer each

packet stays in cache, the larger space is required to accommodate all valid

packets. Fortunately, in real-time video applications, the whole end-to-end

delay does not exceed some hundred milliseconds [1][14].

• Inter-arrival time between adjacent packets (or arrival rate). If packets arrive

sparsely one after another, then the maximum number of packets simultane-

ously lying in cache will be small. Video packets generally come at a rate

higher than other data applications. However, limited bandwidth in multihop

wireless communication does not allow to transmit at excessive frame rate,

e.g. larger than 30 fps.

Life-time of real-time video packets in any node should not be longer than

a predefined threshold Dthres. The maximum required capacity of the cache is

therefore calculated as follows:

C = B ×Dthres (4.5)

where B is the bit rate of the video flow. Following [11], Dthres hereafter is set to 0.5

seconds, and C is accordingly just a half of B. In reality, no one would expect a bit

rate of encoded video exceeding 1 Mbps in a ad hoc wireless network, the required

capacity is consequently less than 62.5Kbytes. Additionally, as video compression

techniques evolve, the bit rate gets decreased. If path diversity [8][21] is exploited,

the required cache is even smaller. In the experiments presented in Chapter 7, the

peak value is just around 24 KB. Practically, allocation of such a limited RAM space

is not unrealistic in today’s mobile computers or any embedded devices.

60

If the frame rate is R, the maximum number of frames residing in the ware-

house is as follows:

Nc = Dthres ×R (4.6)

Likewise, over such a resource-limited environment as ad hoc wireless networks,

transmission of video with frame rate greater than 30 fps is almost unlikely, so the

maximum number of frames retained in the warehouse, as calculated in (4.6), is less

than 15.

4.6.2 Complexity

The complexity of our framework is mainly derived from handling NACK mes-

sages and the packet selection process, as presented the previous section. Regarding

the former, it can be inferred that the complexity of the translation of the NACK

content is O(Nnack) , where Nnack is the number of requested packets, and:

Nnack < Dthres ×R× k (4.7)

where k is the maximum number of packets (fragments) of a video frame. This value

pertains normally to I frames. As far as we have experienced, it is not greater than

10. In the experiments with Akiyo [82] presented in Chapter 7, this value is only 5.

In a typical case, the packet selection algorithm only considers two head-of-

queue packets, its complexity is therefore inconsiderable. In a worse case, it may

pass several cycles to successfully select a packet for transmitting. The maximum

cycles, nevertheless, cannot exceed the total number of packets in the two queues

which is also less than Nc × k . Figure 4.5 shows a snapshot of system monitoring

screen. As indicated, the increment of memory usage and CPU occupancy when

RtME was activated is virtually inconsiderable, even the machine ran under the

graphic mode.

So, the requirements on memory and computation resource are not prohibitive.

In reality, ad hoc networks are normally deployed in limited areas, and each node

serves very few, if not single, users at a time. This makes the framework even more

practical.

61

Figure 4.5: System monitoring: single path transmission of Akiyo sequence. Even

the machine ran under the graphic mode, the increased CPU usage and memory

occupation are not much considerable.

4.7 Chapter review

On realizing the proactive framework, this chapter has described the construc-

tion of Real-time Media Engine - a middleware that is responsible for caching video

packets and controlling the relaying process. We have shown how video packets are

accepted and forwarded as well as how the caching mechanism works. The applica-

bility of the framework has also been evaluated through considering memory usage

and complexity in the worst-case scenario.

62

Chapter 5

DISCARDING USELESS PACKETS

In the previous chapter, we have presented the design of Real-time Media En-

gine. This plugin-like module is responsible for processing video packets as well as

negative acknowledgment (NACK) messages. In this chapter, we describe a mech-

anism to detect and to drop down useless packets. As stated before in Chapter

3, avoidance of forwarding useless packets does not only save bandwidth, but also

reserves energy budget for other useful packets. Discarding useless video packets

at wired networking devices have been investigated in several studies [1][4][7][41].

In [1], the author recommended to reinforce a packet loss observation mechanism

at routers. Should the loss rate exceed a predefined threshold, the routers stop

forwarding subsequent packets, since even these packets were forwarded, the per-

ception quality would be still unacceptable. Application of this mechanism requires

flow-state information and cannot detect useless packets that are dependent on a

lost frame.

As the active networking technology [43] emerges, the video packet semantics-

aware approach has extensively been studied. Strategies proposed in [4][50] specifi-

cally address the issue of video packet dependence, where they prescribe the optimal

policy on selecting patterns of packets to forward. These proposals help minimize

distortion but also impose heavy computation on the forwarders. Furthermore, they

assumed that communication links are reliable, which is not true in ad hoc wire-

less networks. In reality, loss of packets attributed to link failures is significant

[17][23][78], in addition to buffer overflow that is the common cause of packet loss

at conventional routers. Considering lossy wireless multihop networks, the authors

of [20] propose an application-aware link layer in which hosts stop forwarding in-

complete frames. A node does not forward any packet until the whole frame is

available. The study does not address the useless packets that are dependent on

other lost frames. Obviously, this approach introduces significant delay, especially

when the frame is fragmented into many packets. If the network topology or routes

change, forwarding nodes potentially make incorrect discarding decisions. From the

implementation point of view, it is hard to design such a link layer protocol, which

63

must also guarantee the backward compatibility (the strategy was evaluated via

simulations). Remarkably, in all the strategies above, forwarding nodes locate and

drop useless packets separately and independently. Furthermore, they cannot de-

tect packets that do not have enough time-to-live to reach the receiver node. This

chapter shows how RtME addresses those issues.

5.1 Overview

As stated in Section 2.2.1, video packets have different roles in the decod-

ing process. Specifically, employment of MCP (Motion Compensated Prediction)

in video coding techniques at the application layer creates inter-frame dependency

among video frames as well as data units of lower representation levels (i.e mac-

robloc, slice [12]). This on one hand lowers the data volume to transmit, but com-

plicates any packet selection on the other hand. Loss of an I frame voids all the

frames of the same GoP while corruption of a P frame makes all subsequent frames

within the GoP useless. This raises the issue of transmitting useless packets.

In fact, useless packets can be either ones that have been stale or those that

cannot be decoded since they depend on another missing packet. As ad hoc re-

laying nodes record packet arrival time, they allow to determine stale ones at any

time. Note that a particular packet may be transmitted multiple times. The arrival

time of a packet is defined as the time when the packet first arrives at the node.

Upon dropping an important packet (e.g. of I or P frame), the node memorises its

identification to help detect and destroy its dependent packets in the future.

Beyond the local rejection of useless packets, we have realized a joint discard-

ing mechanism in which relaying nodes can inform each other of dropping important

packets. This would further raise transmission efficiency of the whole path. Basi-

cally, the mechanism relies on transferring NACK messages to carry notifications

on discarding those packets.

5.2 Detecting useless packets

In order to avoid relaying useless packets, each forwarder needs to perform

an observation mechanism in which it autonomously detects useless video pack-

ets. Studies investigating conventional active/programmable networking devices

64

propose to identify useless video packets/frames basically by means of locating de-

pendent packets upon discarding I or P frames. In this approach, active routers

or programmable store-and-forward devices (e.g. proxies, wireless base stations,

etc), which understand packet semantics, mark the discarding of an important

packet/frame and watch for any dependent packets. In [4][50], the authors propose

to selectively relay a pattern of packets in accordance with the residual bandwidth

of the outlink. Among selected video frames is no frame that is dependent on an

excluded frame. In addition to such a semantics-based observation, we implement a

temporal marking scheme which helps the intermediate node autonomously identify

stale packets.

• Definition 1 : An orphan packet is the one that depends on a lost frame

within the same group of picture. Orphan packets are either of dependent

frames, i.e. P or B.

• Definition 2 : A packet arriving or residing at a certain node is called stale if

it would not arrive at the receiver node in time once forwarded. Practically,

such a packet might have been generated earlier than the obsolete bound (see

Section 4.5.2) or it resides too long at the node.

Similarly to the selective discarding model in wired active networks, orphan

packets are easily located at any node. Given the side information adhered to video

packets, a relaying node can keep track of GoP identification of the video packet

flow. Any time an important frame is discarded, it records the identification number

so that later dependent packets can be determined. Nevertheless, to know if a packet

is really stale is not trivial. Theoretically, if all the ad hoc nodes including the sender

are synchronized to the same clock, the sender, upon generating every packet, can

add the time stamp which later helps relaying nodes autonomously determine when

it is stale. In reality, however, asking for clock synchronization among different

ad hoc nodes is unrealistic in most of cases, particularly with an accuracy that

the processing of short life-time video packets expects. Nonetheless, given that

video packets may be retransmitted repeatedly when the receiver requests and that

congestion takes place frequently, it is still worth enough for a relaying node to

know how much time more, optimistically, a packet remains unexpired (optimistic

time-to-live dttl). In principle, should the node find that a packet has an optimistic

65

Figure 5.1: Autonomous estimation of time points at relaying nodes. Upon a packet

arrives, the RtME can determine the dropping domain, starting from time point

tdrop.

time-to-live no greater than zero, it can discard the packet without any concern,

since it must certainly have been obsolete. As introduced in Chapter 4, we realize

a simple packet timing watch at intermediate nodes as follows. Each intermediate

node records the time when a video packet arrives for the first time; this time is

called “arrival time” (tarrival). Since then, any time the node wants to know the

residing time of the packet, it simply subtracts the arrival time from the current

time. Actually, there is a possibility that a node wrongly translates a subsequent

arrival of a well stale packet as its arrival time. This happens when the true arrival

time of this packet at the node is so long time ago that it has completely been

destroyed from the warehouse. Namely, information about the first arrival of the

packet is no longer kept at the node. Occurrence of this phenomenon, nevertheless

can be diminished by an appropriate control in issuing ARQ requests at the receiver

node. Appendix Chapter B details this mechanism.

Figure 5.1 illustrates the packet timing watch that relaying nodes perform.

Right after the packet is accepted, the RtME can autonomously estimate critical

time points, including the time from which on the packet should be dropped (drop-

66

ping time tdrop) and the time that the packet surely becomes expired (texp):

texp = tarrival + Dthres (5.1)

tdrop = texp − rtt/2 (5.2)

Theoretically, if the node knows the round-trip-time toward the sender node,

it can also infer the time that the packet was generated (tgen). However, we do not

consider applying such a mechanism to estimate that round-trip-time at the current

study. Assume that at time tnow, the RtME refers to the packet, the optimistic

time-to-live is determined as dttl = texp − tnow. If this time duration is no greater

than rtt/2, the packet now falls in the dropping domain (the red area in Figure 5.1)

and hence is classified as useless. As implemented in the current RtME design, the

time when the node refers to the packet timing information can be at its acceptance

or at dequeuing. The former case occurs when the packet arrives at the node again

as a retransmitted version. Should it come at the dropping domain, it is considered

useless. Actually, the latter case has been presented in Section 4.5.2, which is the

very function that checks if a selected packet has enough remaining time-to-live

(4.3).

Briefly speaking, in the following cases, packets will be classified as useless

ones:

1. Packets that become orphan when an important frame is dropped. Previous

studies on active network devices solely took this type of packets into con-

siderations. Note however that dropping decisions are made at each node in

a solitary manner. Beyond that, we propose a joint discarding mechanism

in which orphan packets are resolved more thoroughly thanks to notifications

among relaying nodes.

2. Packets that remain too long in the cache of a particular node. Upon a first

packet of a frame arrives, the node marks the arrival time of the frame. Later

on, the RtME at this node can estimate the residing time of packets of this

frame at any time. Once the node refers to the packets and realizes that the

dropping time tdrop has passed, they will be considered stale. Chapter 6 will

discuss this in detail.

67

3. Packets that have the identification number no greater than the obsolete

bound. As presented in Chapter 4, each relaying node maintains this bound

to filter out obsolete packets. Note that the node usually does not store any

information about these packets any more; they have been removed from the

warehouse. It is the obsolete bound, rather than the recorded arrival time,

that helps the RtME recognize their staleness.

4. Packets that are received again. If some packet has been available at the

warehouse and another instance arrives, the packet is classified as useless.

However, it may be logically enqueued to the fresh queue. The next section

will explain this behavior in detail.

When a packet arrives at a node for the first time, the RtME checks its identification

numbers. Should it be neither obsolete nor orphan, the packet will be admitted.

This means that useful packets are not filtered out. Otherwise, they are considered

meaningless. In the following sections, we will specifically analyse situations in

which packets are discarded. Basically, packets that have been classified as useless

will be subject to rejection. However, what the RtME does after discarding is not

identical from packet to packet.

5.3 Local discarding

Activation of the RtME module allows to autonomously check the validity of

arriving packets. In general, packets that are found to be useless will be prevented

from being forwarded. Local dropping is executed in the cooperation of entity Rx

and Tx and happens either when a packet arrives or when it is dequeued from one

of the two queues (fresh queue and response queue). A packet that is accepted upon

its arrival is not necessarily forwarded when the channel is available. Specifically,

during congestion periods, packets are not instantly forwarded after their arrival.

Even being enqueued, a packet may be discarded at the dequeuing time if it is

detected as useless.

68

Figure 5.2: Local dropping cases. Packets might be discarded since they are obsolete,

orphan, or arrive again.

69

5.3.1 Rejection upon arrival

Upon arriving at the node, a packet may be rejected by entity Rx for several

reasons. Figure 5.2 shows the cases in which packets are to be discarded. In the first

case, a packet is found useless since it belongs to a frame with the identification less

than the obsolete bound. The packet itself (and its encompassing frame) should be

destroyed from the cache if any. Basically, the RtME in this case does not proceed

to any further processing. This case occurs when upstream links get worse. The

second case of dropping happens when a packet is orphan. Namely, it depends on

some other packet that this node has already dropped. After dropping the packet,

the RtME does not proceed to any further processing, too. In essence, this case

is similar to the dropping mechanisms that have been proposed to active networks

[7][41][43].

The last case of dropping takes place if the packet arrives again while it is

already in the warehouse. Obviously, only retransmitted packets fall in this case.

The packet in this case is physically dropped while its previous version in the cache

and the queues if any remains untouched. Nonetheless, the packet might be logically

enqueued to the fresh queue if it has enough optimistic time-to-live (dttl). This case

happens when the packet was lost somewhere downstream. While this dropping

case is possible, it rarely occurs. The reason is that the request for retransmission of

this packet would have likely been processed at this node (cache-hit); in the NACK

message, the byte corresponding to this packet should have accordingly been cut off,

i.e. the request would not go upstream. Furthermore, recall that packets are only

forwarded from a node if it has not been sent within a period of round-trip-time to

the receiver node (see Section 4.5.2). A possible situation of this dropping case is

when the upstream link suddenly deteriorates, resulting in massive retransmission

in the link layer. Imagine, a NACK message carrying a request for some lost packet

arrives at the node right before the arrival of the packet. The request cannot be

processed at the node since the delivery of the packet is still underway. Later, on

handling the request, the upstream host resends the packet. The packet arrives at

the node while its previous instance might also be successfully obtained.

In the last dropping case, if the packet does not have enough time-to-live, the

RtME remembers to block subsequent packets of the same frame. These packets

should be classified as useless if they arrive, since their arrival definitely falls in the

70

dropping domain. Remarkably, if this is a packet of an important frame, entity Rx

is signaled to watch for future dependent packets.

5.3.2 Rejection upon forwarding

As stated before, being accepted at Rx does not mean that a packet will be

forwarded. At the dequeuing time, Tx may decide not to forward the packet due to

numerous reasons. Figure 5.3 shows how entity Tx discards a video packet. Firstly,

when the downstream link gets worse, packets may experience a long waiting time.

This may happen when nodes are moving far away from each other, raising the path

loss, or when the channel is lossy due to some reason (e.g. fading), which increases

the retransmission frequency in the link layer, the effective bandwidth is therefore

reduced [27][63]. After waiting too long in the queue, the packet may not have

enough time-to-live any more, or even get expired.

Secondly, because a particular packet can be requested repeatedly, especially

when severe congestion occurs, it might logically be enqueued multiple times within

a short moment. If all these instances are processed equally, the packet may be for-

warded more times than actually needed; namely, multiple copies of the same packet

uselessly reach the receiver node. This does not only waste energy and bandwidth,

but also intensifies congestion. Therefore, any selected packet is additionally checked

if it has just been forwarded recently before being forwarded. After forwarding the

packet, it takes at least one round-trip-time (to the receiver node) for this relaying

node to receive another legitimate request. Therefore, we set the time window to

a period of round-trip-time, i.e., the node refrains from relaying the packet again if

it has been sent out within last rtt time units. This has been stated in Chapter 4,

where how a relaying node makes forwarding decisions is described.

In a very rare case, the downstream link is severely bad, making one or both

queues excessively long, and some enqueued packets may get obsolete before being

read out. The packet selection function, as presented in Chapter 4, should drop

out such packets. Note that those packets should have been removed from the

warehouse anyway. Any attempt to re-forward a non-cached packet will break down

the operation of RtME.

As described previously in Section 4.5, entity Tx is only activated when there

are packets to forward downstream, which is controlled by the semaphore. Specifi-

71

Figure 5.3: Discarding packet at forwarding time. Packets are discarded if they fall

in the dropping domain or have just been sent out.

72

cally, whenever a packet is logically inserted to one of the queues, the value of the

semaphore is added one unit. In parallel, any time a packet is dequeued, Tx sub-

tracts one unit from the semaphore. This is done even when the packet is discarded,

as shown in Figure 5.3. Otherwise, Tx might be uselessly awoked, even there is no

waiting packet to relay.

5.4 Joint discarding mechanism

Imagine, an I frame has arrived at some relaying node. Later on, before it

leaves, the node realizes that packets of the frame do not have enough optimistic

time-to-live anymore. As stated in the previous section, they will not be forwarded.

At this time, it is likely that many packets of subsequent frames have also been sent

out from the sender, but due to congestion, they are still somewhere upstream. As

the node decides to drop out the I frame, those dependent frames automatically

become useless. Obviously, should this node actively notify other upstream nodes

where those frames are still in cache, the benefit will be considerable. There are of

course other cases that notifying may also help nodes jointly detect useless packets,

for instance, when the very entity Rx drops an I or P frame.

5.4.1 Notifications on discarding important packets

When an important packet is intentionally discarded at a node, other relaying

nodes should be notified as soon as possible. This would help stop forwarding use-

less packets immediately, and potentially more useless packets would be identified.

To do so, the node should generate and distribute an instant message. Note how-

ever that communication cost in term of energy and bandwidth for every message

is considerable as stated in Chapter 4. Fortunately, dropping of important packets

practically coincides with burst of lost packets, which in turn leads to the commu-

nication of NACK message(s). To avoid overhead, we propose to take up advantage

of NACK messages themselves to carry notifications on suppression of important

packets.

Basically, along the communication path between the sender and the receiver,

the forth direction is more busy than the opposite, unless the video session is bidi-

rectional and the two video flows are conveyed over the same physical path. The

73

load of transmitting NACK messages over the back direction is normally not high

compared to that of video packets, since NACK messages themselves are not heavy

and the receiver node does not acknowledge successfully arriving packets. Conse-

quently, notifications can be relayed among intermediate nodes easier than video

packets. However, we do not propose to generate messages that are exclusively used

for notifying upstream nodes. Instead, RtME at relaying nodes adds notifications

to NACK messages upon dropping important frames, due to three reasons below.

1. Firstly, there is a trade-off between the efficiency of notifications and the over-

head derived if they are carried over exclusive messages. Note that while a

notification potentially helps upstream nodes stop forwarding more useless

packets, its effect is not certain, due to the unpredictability in the nature of

the ad hoc wireless network. Using exclusive messages may detect more use-

less packets, but there exists a risk if the load of those notifications outweighs

that of would-be identified packets.

2. Secondly, once relaying nodes decide to discard important packets, it is much

likely that congestion over the path is major. In such a case, NACK messages

will be generated quickly. This means that exploiting NACK messages to

notify upstream nodes is not a tardy solution.

3. Thirdly, unlike incoming and cache-hit video packets, any NACK message

arriving at a forwarding node is processed and forwarded upstream instantly

if necessary, rather than being enqueued.

Figure 5.4 illustrates the overview of the joint discarding mechanism. In the

current implementation of the mechanism, we add two bytes to NACK messages for

carrying any notification on dropping of important frame. They are to indicate the

identification number of the rejected frame. Upon receiving a NACK message, the

relaying node extracts its header to obtain the identification number of the packet

that the receiver node has just successfully received. Then, rejection of important

frame if any is identified based on these identification numbers.

74

Figure 5.4: Operation of the joint discarding mechanism. Notifications on discarding

important packets are carried over NACK messages.

5.4.2 Joint operations

To mark the event of dropping important frames, each relaying node maintains

a so-called signal record. This record simply holds the identification of the discarded

frames, including the group of picture they belong to. Updating the record might be

made either when the node decides to drop an important frame, or when it receives

a notification from downstream node. Note that the content of this record also in-

fluences the locally dropping function presented in the previous section. Specifically,

both entities Rx and Tx refer to the record to detect orphan packets at their arrival

and when they are about to be forwarded, respectively.

An important frame (either I or P) is called more critical than another if the

former has more dependent packets than the other. Obviously, the closer to the I

frame within the same group of picture, the more critical an important frame is.

In reality, updating the signal record is only carried out if the node drops out a

more critical frame, or it receives a notification indicating that a more critical frame

has been discarded somewhere downstream. In an unpopular case, the node may

observe a discard of two or more important frames that are not of the same group

75

Figure 5.5: Processing notification attached to NACK message. There may be an

information exchange between the signal record and the notification.

76

of picture. If so, the record retains identification of them all until they get obsolete.

Figure 5.5 illustrates the operation of the joint discarding mechanism when a

NACK message is received. As presented in Section 4.4, if the just received packet

(or the expected packet to be received) is determined to be obsolete, the NACK

message will be discarded without any further processing. Otherwise, after extract-

ing the notification and interpreting the list of requested packets (see Chapter 4),

the RtME at this node decides to update either the signal record or the notifica-

tion attached to the NACK message. The former case occurs when the notification

indicates a more critical frame. Meanwhile, the latter happens when this node has

discarded a more critical frame. In a rare case, dropping of a frame of another group

of picture may be marked, and hence is additionally written to the record.

The presence of the signal record at each relaying node results in the fact that

how orphan packets are detected is transparent to dropping decisions. Dropping

of important frames at either this node or some other node downstream causes the

same effect: the signal record is updated. Decisions to discard associated orphan

packets are made based on referring to the content of the record, regardless of how

it is created (locally or jointly).

5.5 Efficiency analysis

Detecting and dropping useless packets does release intermediate nodes from

relaying packets that do not contribute to the decoding process at the receiver node.

This brings up not only energy saving but also bandwidth for other useful packets.

In Chapter 4, we already know the benefits regarding success rate and energy from

the retransmission point of view. Now that the comprehensive dropping mechanism

has been presented, let’s consider its effect concerning energy consumption and

bandwidth.

5.5.1 Energy saving

Once detecting that a packet p is not meaningful to transmit anymore, the

node will discard it decisively. This brings up an energy saving for itself and for

the downstream nodes, since they do not have to relay the packet. The cumulative

amount can accordingly be calculated as follows (refer to Table 5.1 for denotation

77

Table 5.1: Parameter definition

Ei
tx(p) energy consumed on transmitting packet p at node i

Erx(p) energy consumed on receiving packet p

Ei
rts−tx energy consumed on transmitting RTS from node i

Erts−rx energy consumed on receiving RTS

Ei+1
cts−tx energy consumed on transmitting CTS from node i + 1

Ects−rx energy consumed on receiving CTS

Ei+1
ack−tx energy consumed on transmitting an acknowledgment from node i + 1

Eack−rx energy consumed on receiving an acknowledgment

h node that cache-hit occurs

i, j generic indices

ki the number of nodes under the coverage of node i

kb
i n the number of nodes along the transmission path

p packet under consideration

Ω set of dependent packets of p

∆Edis cumulative amount saved when a single packet is dropped

∆EΩ cumulative amount saved when a cluster of packets are dropped

of the symbols).

∆Edis =
n−1∑
i=h

[Ei
tx(p) + ki × Erx(p)] (5.3)

Let’s assume that, as soon as packet p is determined to be stale, the whole

encompassing frame should be dropped. Detection of stale packets have been ex-

plained in Section 5.2. After discarding the frame, the node keeps watching for

future dependent packets if packet p is of an important frame (e.g. I or P). Those

useless packets should immediately be rejected upon their arrival. Once the frame

is followed by subsequent dependent ones (denoted as set Ω), the node notifies up-

stream devices of the discard. After being notified, these nodes may jointly drop

useless packets if any. This would save another amount of energy:

78

∆EΩ =
∑
j∈Ω

n−1∑
i=hj

[Ei
tx(j) + ki × Erx(j)] (5.4)

where hj is the node that detects and drops dependent packet j.

Should RTS/CTS and/or acknowledgment be adopted in the link layer, the

values estimated in (5.3) and (5.4) are even higher since more control packets are

exchanged upon transmission of each video packet [37]. Note that transmitting these

overhead packets does not only consume more power, but also lowers the effective

bandwidth. This is particularly clear if nodes are densely distributed. As the four-

way handshake RTS-CTS-DATA-ACK [37] is used, in a network of k nodes where

transmission range of each node covers all the other nodes, relaying a packet from

a node to another consumes the following amount [37]:

Erts−tx + (k − 1)× Erts−rx + Ects−tx + (k − 1)× Ects−rx

+ Etx(p) + (k − 1)× Erx(p) + Eack−tx + (k − 1)× Eack−rx

where Erts−tx and Erts−rx are the energy consumption respectively for transmitting

and receiving a request-to-send message; Ects−tx and Ects−rx are those values asso-

ciated with a clear-to-send message; Eack−tx and Eack−rx represent those values for

sending and receiving an acknowledgment message.

In such a case, when a packet p is discarded, the reduction of cumulative

consumption of the path can be estimated as follows.

∆Edis
four−way =

n−1∑
i=h

[Ei
rts−tx + ki × Erts−rx

+ Ei+1
cts−tx + ki+1 × Ects−rx + Ei

tx(p) + ki × Erx(p)

+ Ei+1
ack−tx + ki+1 × Eack−rx] (5.5)

In (5.5), i - subscripted parameters are associated with hop i that connects

node i− 1 to node i; subscripts rts− tx and rts− rx refer to transmit and receive

of a request-to-send message; subscripts cts− tx and cts− rx refer to transmit and

receive of a clear-to-send message; subscripts ack− tx and ack−rx refer to transmit

and receive of a acknowledgment message.

Similarly, the energy saving when the joint discarding mechanism removes

orphan packets from the transmission path is approximately calculated below.

∆EΩ
four−way =

∑
j∈Ω

n−1∑
i=hj

[Ei
rts−tx + ki × Erts−rx + Ei+1

cts−tx

79

+ ki+1 × Ects−rx + Ei
tx(j) + ki × Erx(j)

+ Ei+1
ack−tx + ki+1 × Eack−rx] (5.6)

5.5.2 Bandwidth saving

Basically, bandwidth saving can be estimated similarly to what we have done

with energy consumption. Should a node h detect and stop forwarding a useless

packet p, the path observes a saving of Lp in bandwidth of all the (n − h) hops

down to the receiver from this relaying node. In case the four-way handshake is

applied into the link layer, the number of RTS, CTS, and acknowledgment messages

is reduced each by (n− h).

When all the video packets of set Ω are detected and removed, the saving

amount on the forth direction can be expressed as follows. For each packet j ∈ Ω

detected at node hj, all the (n − hj) downstream hops are free from the relaying.

At the same time, the the number of RTS, CTS, and acknowledgment messages is

reduced each by:

∆MΩ =
∑
j∈Ω

(n− hj) (5.7)

Additionally, avoiding forwarding a packet/message from a particular node may

release resources of its multiple neighborhoods. Therefore, the actual efficiency is

even more considerable.

Note that the above calculations are to clarify the benefits of the discarding

mechanism, not to find a mandatory solution for identifying packets. In reality,

relaying nodes do not estimate any saving amount on making forwarding decisions.

To locate and drop useless packets, each intermediate host just needs to check their

timing information and some identification numbers. The complexity of the pre-

sented approach is therefore inconsiderable compared to other strategies, e.g. the

RaDiO-oriented selection algorithm in [4].

5.6 Chapter review

Retaining video packets at relaying nodes does not only allow them to smartly

select best packets, but also creates a chance to detect useless packets. We have

presented a comprehensive discarding strategy that helps intermediate nodes thor-

80

oughly stop forwarding packets. NACK messages are exploited to carry dropping

notifications among relaying nodes so that they jointly detect orphan packets. The

introduction of the signal record does make dropping decisions more simple.

81

Chapter 6

IMPLEMENTATION

Up to now the architecture of the proactive framework has been presented. In

this chapter, we report the realization of RtME (Real-time Media Engine) that can

be seen as a plugin-like module dealing with video packets. As stated in previous

chapters, this module includes several entities: Rx, Tx, NACK Handler, and Ware-

house. Except the warehouse, all the entities are implemented as parallel threads

synchronized using a special semaphore. This chapter presents key functions of the

entities from the code designing point of view. Within the scope of this dissertation,

we do not intend to go through all the source code in a statement-by-statement man-

ner. Instead, only system design-related aspects are analysed at an abstract coding

level.

6.1 Overview

Basically, the realization of the framework lies in RtME (Real-time Media

Engine) as stated in Chapter 4. From the programming point of view, among

four aforementioned entities that make up RtME three are functional threads. The

remainder is a “static submodule” that is responsible for maintaining the transient

cache. The reason behind this parallel fashion is that the functions of receiving

video packets, forwarding them, and processing NACK messages are independent

of each other; note that arrivals of video packets and NACK messages are highly

unpredictable. Furthermore, as already explained in Section 4.1, the adoption of the

multithreading architecture is to satisfy the need of sharing data among the functions

of RtME. Figure 6.1 depicts the coding design of RtME, including units of the

functional threads and their interactivity. These threads implement the operations

of entities Tx, Rx, and NACK Handler.

• Thread Rx is composed of Validation and Caching & Queuing units. The

former is to control admission of video packets arriving at this node while the

latter, as it is named, performs the caching and queuing functions on accepted

packets. When no packet arrives, this thread is blocked by a function call that

82

Figure 6.1: Abstract coding digram. Three threads are implemented to process

video packets and NACK messages.

is responsible for capturing packets.

• Thread NACK Handler awaits NACK messages that carry retransmission

requests. As a valid NACK message arrives, unit Update rtt extracts the

header to identify the just successfully received packet and then calculates

the current round-trip-time to the receiver if applicable. Subsequently, a list

of requested packets is interpreted by unit Process ARQ; cache-hit packets

derived form a pseudo packet flow to one of the two queues. As explained

in Section 4.4, those packets are not physically originating from the NACK

Handler. Indeed, the formation of the flow stems from re-inserting the header

of the packets into the response queue. Finally, unit Prepare to forward decides

whether to forward a NACK message upstream; it cuts off the processed bytes

(see Chapter 4) and integrates discarding notifications into the NACK message

before relaying (see Chapter 5). At idle time, this thread is blocked by another

function call waiting for NACK messages.

• Thread Tx consisting of units Select & validate and Forward, once activated

83

by the semaphore, selects the most suitable packet from the waiting packets in

the queues for considering transmission downstream. If not signaled by unit

Discard watchdog, the packet is sent out.

The discarding mechanism as presented in Chapter 5 is executed with the

assistance of a discard watchdog that holds the signal record. This abstract unit

interacts with all the above threads, taking care of detecting and dropping useless

packets. To the side of the NACK Handler thread, it cooperates to add discarding

notifications on important packets.

6.2 Data organization

The core object that RtME processes is video packets. They are both the

input and the output of the module. In the conventional passive forwarding frame-

work, packets are treated independently of each other. They are simply forwarded

at a pure best-effort. Differently, the proactive strategy keeps in mind the data

dependency among video frames and the tightly coupled relations among packets

of the same frame. In addition to data objects, we need functional items (cache

and queue) to store and maintain packets, either physically or logically. Basic data

items that RtME employs include video frame, video packet, logic queues, and frame

warehouse. Figure 6.2 illustrates the relations among these items.

• Video frame. Most studies on minimizing distortion [4][6][23] consider frames

as elementary objects of the optimization problem. In video data representa-

tion, a frame is the middle point between the truly independent data unit -

group of picture - and the “networked” unit - packet. As shown in Figure 6.2,

a video frame is defined in data type struct MPEGFrame, containing pointer

segments_ptr that points to the array of its packets.

• Video packet. Each video frame may be composed of multiple packets that

are actually transmitted over the network each time the channel is avail-

able. In our implementation, packets are declared as elements of data type

struct Segment as seen in Figure 6.2. They do not exist as stand-alone items.

Upon acceptance, each packet is logically integrated into its frame.

84

Figure 6.2: Relation among data items. Besides items for storing video data units,

the cache and the queues are defined as collective data types.

• Queue and queue element. The fresh queue and the response queue are de-

fined as list items, indicated in Figure 6.2 as list<Segm_ID>packetIndexList

and list<Segm_ID>retranIndexList, respectively. Each queue element is an

item of data type struct Segm_ID that is composed of a set of identification

numbers of the packet, the encompassing frame, and the group of picture.

These numbers help entity Tx to later fetch the packet. We choose data type

list for the queues because of its simplicity; it does not require packets to be

stored contiguously. Note that video packets are not physically enqueued, but

only their header information that is defined by data type struct Segm_ID.

This is to eliminate any packet replication inside the node and to fasten packet

searching. The queues simply employ the FIFO fashion, which further lowers

the complexity of processing video packets as well as NACK messages.

• Frame warehouse. Video frames are stored collectively inside the warehouse.

They are logically bundled up into a map that is shown in Figure 6.2 as

85

map<short, MPEGFrame*>frameWh. The first pointer of each map element is

actually the identification number of the frame (frame_id) while the second

pointer refers to the video frame. Under this relation, video frames can be

quickly searched from the warehouse, decreasing the computation load each

time a packet is selected.

There exists a hard tie between a frame and their packets. Within the frame,

packets share numerous items of header information, such as identification number

of the frame, the group of picture, timing data, etc. As indicated in Figure 6.2,

struct Segm_ID partially defines these very items. Subsequent sections will detail

the role of each item and further clarify their tie.

6.3 Proactive encapsulation for video packets

At the sending side, a header has to be added to each video packet to identify

itself within the video sequence. Main data are frame sequence number, frame type,

packet count, and the segment number. Figure 4.2 lists these fields and their size.

When a video packet is encapsulated for sending down to the transport layer, the

fields are constructed as in the code below.

1: header[0] = (unsigned char) frame_distortion; //currently not used

2: header[1] = (unsigned char)((episode << 3) | (7 & frame_type));

3: header[2] = (unsigned char) ((frame_pos << 3) | (segm_num & 7));

4: header[3] = (unsigned char) (frame_gop << 4); //4 LSB bits is

5: // for segm_id later

To flexibly identify a packet from a video frame, we segment the frame sequence

number into the identifier of group of picture, denoted as gop_num, the frame position

identifier frame_pos, and the segment identification number of the packet segm_num.

The next section will further detail this hierarchical identifying mechanism.

6.4 Processing packet arrivals

Upon arriving from upstream nodes, video packets are handled by thread

Rx. Its main task is to extract the packet header, control packet admission, update

obsolete/fresh bounds, and order to store the packet data to the warehouse if needed.

86

Memory for packets is allocated dynamically upon their arrivals. This does

save storage space but complicates handling each packet individually. To sim-

plify the process, we follow a frame-oriented fashion to maintain video packets.

Namely, packets of the same frame are grouped into a single element of data type

struct MPEGFrame. Note that their physical data might not be stored contiguously,

since memory allocation is made dynamically on-the-fly. The list below shows the

structure of a MPEGFrame element.

1: struct MPEGFrame

2: {

3: char *frame_data; /* only used for frames

4: containing one packet */

5: Segment *segments_ptr;

6: char segm_num;

7: char header;

8: char frame_type; // 0.5 byte

9: char frame_gop; // 1 byte

10: short frame_id;

11: short episode; // 0.5 byte

12: unsigned int frame_distortion; // for future use

13: unsigned int frame_size;

14: unsigned int time_stamp; // millisecond

15: unsigned int last_tx_stamp;

16: char packetState;

17: /* 0-initial (when new episode starts); 1-packet received;

18: * 2-packet forwarded; 3-NACK received; 4-retransmitted;

19: 5-obsolete (deleted) */

20: unsigned short rtt;

21: };

The total number of packets of a frame is represented in the definition as

field segm_num. Upon receiving any packet of the frame, the relaying node gets to

know how many packets were generated from this frame. However, the number of

packets that actually arrive successfully at this node may be smaller because of loss

87

or route changes. To save memory, the RtME declares a pointer (*segments_ptr)

to hold packets on-the-fly instead of initiating all segm_num packets and reserving

frame_size bytes for the whole frame. When receiving the first packet of the frame,

the time is recorded in field time_stamp and is translated as the arrival time of the

frame. Later on, estimation of residing time of this frame will refer to this value.

Video packets are data items of data type struct Segment that looks as

follows:

1: struct Segment

2: {

3: char *segm_data; /* hold packet physical data */

4: short segm_size; /* indicate the size of this packet */

5: unsigned int last_tx_stamp; /* recording the last time stamp

6: this packet was sent*/

7: char segm_state; /* indicate if this packet is sent

8: out or NACKed */

9: };

The first char pointer is to hold the physical body of the packet when it is eli-

gible for dispatching to the warehouse. Once packet loss is detected, the receiver

node may generate NACK messages where a particular packet might be requested

repeatedly. As explained in Section 4.5, before sending out any packet, entity Tx

should check if the packet has just been sent within rtt time units. This check is to

reduce the possibility of receiving multiple copies of the same packet. In this need,

last_tx_stamp helps control the time stamp of last transmit of the packet. The

last field (segm_state) is used to indicate the status of the packet such as being

sent out, being successfully received (indicated in the header of NACK message),

etc.

As explained in the previous section, to ease the maintenance of the warehouse,

we choose to use a map container, which is a collective data type that accelerates ac-

cessing any element. The container, declared as map<short, MPEGFrame*>frameWh,

flexibly holds elements whose members include the frame sequence number and a

pointer to the associated frame. The main maintenance tasks are adding, either

partially or entirely, video frames to, and removing them completely from the ware-

88

Figure 6.3: Hierarchical architecture of video packet management. Logically, the

cache is realized as a map container that holds video frames. Each video frame is

in turn a collection of packets.

89

house. Figure 6.3 illustrates the hierarchical management for video packets inside

RtME.

At the sending side, the function of Rx is simplified; what it does is just

receiving packets from the application layer and then adding header. For the RtME

in relaying nodes to fully understand video packets, this entity must encapsulate

them with a valid header. At the receiver node, the function is even more simple:

admitting packets to the playback buffer and reordering them if necessary.

The structure of packet header has already been illustrated in Chapter 4 (Fig-

ure 4.2). It contains a handful of bytes added to indicate the identification of the

packet, the video frame semantics and others. When receiving a packet, the RtME

extracts the proactive header by simply calling the following function:

1: void header_trans(unsigned short *dist, short *type, short *epi,

2: short *pos, short *gop, short bytes)

3: {

4: /* Distortion reduction associated with the encompassing frame

5: - this will be used in future studies */

6: *dist = (unsigned short) RecvBuf[bytes-4];

7: /* Video frame semantics : I, P, or B */

8: *type = (short)(RecvBuf[bytes-3] & 7);

9: /* Episode - this field is currently used for identifying the

10: cycle of the video sequence transmitted. In the real

11: application, it can be used for other identifications,

12: e.g. stream */

13: *epi = (short)(RecvBuf[bytes-3] >> 3);

14: /* Position of the frame within the GoP */

15: *pos = (short) RecvBuf[bytes-2];

16: /* Identification of the GoP */

17: *gop = (short) RecvBuf[bytes-1];

18: }

In reality, calling the function above will store the extracted header of the

packet to internal local variables. From now on, any attempt to retrieve the packet

will rely on these pieces of information. As explained later, queuing the packet is

done over these values, rather than the physical body of the packet. An actual call

90

Figure 6.4: Operation of Rx in RtME. A packet can be of either a new frame or

already initiated one.

91

of the function looks as follows:

header_trans(&distortion, &fr_type, &episode_num, &fr_pos, &fr_gop,

&segm_id, &segm_num);

where the most remarkable items are fr_type that indicates the packet semantics;

fr_gop that identifies the group of picture; fr_pos that positions the frame within

the group of picture; and segm_id that shows the packet identification within the

frame.

The operation of Rx is summarized in the flowchart of Figure 6.4. When a

packet arrives, the header is first extracted and the packet is checked if it is valid.

Should the packet belong to a frame generated earlier than the current obsolete

bound, it will not be admitted. Basically, there are two possible situations once the

packet is accepted. In the first case, the packet belongs to a completely new frame

that is not available in the warehouse. The RtME needs to initiate a frame pointer

(*fr_ptr) for this frame. The pointer for this packet is then created to hold the

header information and the body of the packet as the list below:

1: /* Initiate frame pointer */

2: fr_ptr = (MPEGFrame*) malloc(sizeof(MPEGFrame));

3: /* Store header information of the frame to the pointer*/

4: fr_ptr->frame_type = fr_type;

5: fr_ptr->frame_gop = fr_gop;

6: fr_ptr->segm_num = segm_num;

7: fr_ptr->frame_distortion = distortion;

8: fr_ptr->time_stamp = TIME_NOW;

9: /* Allocate memory for the packet body */

10: if (is_frame) // a single-packet frame

11: {

12: fr_ptr->frame_size = bytesRecved;

13: fr_ptr->frame_data = (char*)malloc(bytesRecved);

14: memcpy(fr_ptr->frame_data, RecvBuf, bytesRecved);

15: }

16: else //a segment

17: {

92

18: segms = (Segment*) malloc(segm_num * sizeof(Segment));

19: segms[segm_id].segm_size = bytesRecved;

20: segms[segm_id].segm_state = 1;

21: memcpy(segms[segm_id].segm_data, RecvBuf, bytesRecved);

22: fr_ptr->segments = segms;

23: }

As stated above, video frames are collectively stored into a map. This new

frame is added to the map accordingly. Before the addition, all the packets of

obsolete frames should be cleared away from the cache. To lower the computation

load, we just keep the number of frames fixed (equal to Nc); the clearance is done

at pessimistic assumption by removing the oldest frame of the map each time a new

one is pushed. This is executed simply as follows:

1: if (frameWh.size() > N_C)

2: {

3: free(frameWh.begin()->second);

4: frameWh.erase(frameWh.begin());

5: }

6: frameWh.insert(make_pair(frame_id, fr_ptr));

In the second case, the arriving packet is of some frame element that has

already been initiated. The frame pointer is sought from the map rather than

being created newly. Subsequently, what the RtME does is fairly similar. However,

instead of removing obsolete frames, it updates relevant fields of the frame element

indicating that another packet of the frame has been accepted.

Once the packet has allocated memory, it is logically enqueued to the fresh

queue that is dedicated to packets incoming from upstream nodes (the fresh queue).

Namely, the packet is not wholly added to the queue, but only some of its header

information. The data to be enqueued is defined by the following structure:

1: struct Segm_ID

2: {

3: short frame_id;

4: char segm_id;

93

5: char frame_type;

6: char frame_gop;

7: char frame_pos;

8: };

Actually, we do not need so many pieces of information for dequeuing the

packet later. However, to quickly access the map when the packet is sent out,

two fields frame_gop and frame_pos are added. In order to speed up the packet

selection by entity Tx (previously presented in Section 4.5.1), the frame semantics

(frame_type) is also needed. Recall that which packet is selected depends on their

frame semantics. In fact, enqueuing a packet is just a matter of adding the Segm_ID

item to list packetIndexList that defines the fresh queue. Before dispatching the

element to the queue, the RtME assigns the extracted header information to the

fields of the item:

1: segm_str.frame_id = frame_id;

2: segm_str.segm_id = is_frame ? 7 : segm_id;

3: /* segment_id is carried over 3 bits */

4: segm_str.frame_type = fr_type;

5: segm_str.frame_gop = gopIdGet(frame_id);

6: segm_str.frame_pos = fr_pos;

7: packetIndexList.push_back(segm_str);

8: sem_post(&pk_sem);

After pushing the item into the queue, the last statement adds one unit to the

semaphore value (line 8).

6.5 Processing NACK messages

In parallel to Rx, another thread (NACK Handler) is created to take responsi-

bility of the NACK Handler. Once receiving a NACK message, the NACK Handler

first extracts its header to identify the packet that the receiver node has just success-

fully obtained (or the packet that was expected to reach the receiver by the time

this NACK message was created). Similarly to video packets, the identification

94

Figure 6.5: Operation of NACK Handler. A NACK message can be dropped, pro-

cessed and/or forwarded upstream.

95

encapsulated in the header of NACK messages is also represented by three num-

bers: gop_num, pos_num, and seg_num. The extraction of these numbers is executed

simply as follows:

1: /* Extract packet ID number */

2: seg_num = (unsigned char) NackBuf[0] & 7;

3: pos_num = (unsigned char) NackBuf[0] >> 3;

4: gop_num = (unsigned char) (NackBuf[1] & 15); /* use only 4

5: LSB bits */

The operation of the NACK Handler is visually illustrated in the flowchart

of Figure 6.5. Shortly speaking, once receiving a NACK message, it extracts the

header to identify the just received packet (or the expected packet to arrive). The

identification number of this packet is needed to update the round-trip-time to the

receiver node and to interpret the list of requested packets (if the NACK message

is fresh). After obtaining the list, the RtME locates and enqueues (logically) cache-

hit packets. If any cache-miss occurs, the NACK message is forwarded upstream

with the hope that upstream nodes will handle the request; otherwise, it will be

suppressed.

As presented in Chapter 3 and Chapter 5, notifications on dropping of im-

portant frames are conveyed by NACK messages. As part of the joint discarding

mechanism, the NACK Handler checks the received NACK message to see if there

is any such a notification from downstream nodes. If so, it records the information

to global variables gop_to_drop and pos_to_drop as seen in the code below. These

values will be referred to when entity Tx selects a packet to transmit or when a new

packet arrives at the node.

1: if ((NackBuf[bytes-2] != 124) && (gop_to_drop

2: != NackBuf[bytes-2]))

3: {

4: gop_to_drop = NackBuf[bytes-2];

5: pos_to_drop = NackBuf[bytes-1];

6: nack_notification_is_valuable = true;

7: }

96

Recall from Section 4.4 that, the RtME takes advantage of arrival of NACK

messages to update the round-trip-time to the receiver from this relaying node. The

new round-trip-time is calculated by referring to the arrival time of the just received

packet. Note however that there are chances that update should not take place.

For instance, when the receiver node does not receive any packet for a very long

time, the last received packet is now well obsolete. In such a case, it is useless to

encapsulate the identification number of the last received packet into the NACK

message. The receiver node instead adds the identification number of the frame

that is expected to arrive. Should relaying nodes receive such a NACK message,

they do not go updating the round-trip-time. One bit in the second byte of the

NACK header is used for the receiver to signal “please do not update rtt !”. The

following code illustrates the behavior.

1: /*Ask the system for the current time */

2: ftime(&tm);

4: time_now = TIME_NOW;

5: /* Update the current round-trip-time if possible */

6: if (frameWh.count(frame_id))

7: {

8: fr_ptr = frameWh[frame_id];

9: if (fr_ptr->segm_num == 1) /* the frame contains only

10: one packet */

11: {

12: /* Before updating, make sure that the receiver node does

13: not signal anything */

14: if (!(NackBuf[1] & 64))

15: {

16: current_rtt = time_now - fr_ptr->last_tx_stamp;

17: last_rtt_time = time_now;

18: }

19: }

20: else /* the just successfully received packet is of a

21: multi-packet frame */

22: {

97

23: /* Make sure that this packet has ever arrived at this node,

24: or null pointer exception may occur before going updating */

25: if (fr_ptr->segments[seg_num].segm_state)

26: {

27: /* Before updating, make sure that the receiver node

28: does not signal anything */

29: if (!(NackBuf[1] & 64))

30: {

31: current_rtt = time_now -

32: fr_ptr->segments[seg_num].last_tx_stamp;

33: last_rtt_time = time_now;

34: }

35: }

36: }

If this NACK message is fresh, the subsequent step of the NACK Handler

is to interpret the list of requested packets from which cache-hit packets are iden-

tified. Those packets then are enqueued to the response queue (implemented as

list<Segm_ID>retranIndexList). These behaviors are shown in the abstract code

below.

1: /* NackBuf[]: array to hold data of the NACK message

2: bytes: the length of NACK content

3: is_any_cache_miss: count cache-miss packets

5: bs: temporary variable that hold queue elements

6: nack_fr_ptr: pointer to the requested frame

7: suppressed: indicated if this NACK is to suppress

8: retransIndexList: response queue

9: MAX_NACK_FRAMES: maximum frames within one NACK

10: */

11: is_any_cache_miss = 0;

12: suppressed = true; //by default, suppress this nack

13: //scanning bytes of nack

14: for (i=2 /*first two bytes are for seg, pos, gop*/;

98

15: i<MAX_NACK_FRAMES; i++)

16: {

17: if (i == bytes-2) break; /* last two by carry dropping

18: notification */

19: bs.segm_id = NackBuf[i] & 7; // 3 LSB bits hold segm id

20: //4 MSB bits hold lost frame distance

21: bs.frame_id = frame_id - 1 - ((NackBuf[i] >> 4) & 15);

22: if (frameWh.count(bs.frame_id)) /* found pointer in

23: the warehouse */

24: {

25: nack_fr_ptr = frameWh[bs.frame_id];

26: bs.frame_type = nack_fr_ptr->frame_type;

27: bs.frame_gop = nack_fr_ptr->frame_gop;

28: //cache really hit

29: retranIndexList.push_back(bs);

30: Cut off NackBuf[i] from the NACK message;

31: //update semaphore

32: sem_post(&pk_sem);

33: }

34: else

35: {

36: is_any_cache_miss++;

37: }

38: }

39: /* Only forward this NACK message upstream if there

40: is still any cache-miss */

41: if (is_any_cache_miss>0)

42: {

43: if (this_node_wants_to_notify)

44: {

45: NackBufSent[last_byte-2] = gop_to_drop;

46: NackBufSent[last_byte-1] = pos_to_drop;

47: }

99

48: Forward the modified NACK message upstream;

49: }

On realizing the joint discarding mechanism, before forwarding the NACK

message upstream, the RtME checks if there is a need to update the content of

the notification. This is done via statements from line 41 to line 49 in the above

abstract code. Additionally, should any cache-hit take place, the processed bytes

will be removed from the NACK message before it is sent out. Suppression and

partial cut-off of NACK messages are to lower the processing load at upstream load,

and to reduce communication overhead.

6.6 Selection and transmission

Now that two queues are containing packets added by entity Rx (incoming

packets) and the NACK Handler (retransmitted packets), entity Tx needs to de-

queue the most appropriate packet to send downstream. As presented in Section

4.5.1, Tx first attempts to select one of head-of-queue packets from the queues. Se-

lection is made considering packet semantics and their age. Basically, the selection

occurs as illustrated in List 2 of Chapter 4. Subsequently, the selected packet is

checked whether it is worth transmitting. As presented in Chapter 5, Tx refers to

the signal record at this node to see if this packet is orphan before sending out.

Figure 6.6 visually illustrates the operation of Tx.

If there is no enqueued packet to transmit, Tx is blocked on the calling of func-

tion sem_wait(&pk_sem). Once activated by the positive value of the semaphore,

Tx first calls function indexToTransmit(Segm_ID& sgm_id, bool& retrans) to

obtain the appropriate packet from one of the queues. The first variable is to hold

the returned reference to the selected packet.

In the next step, the selected packet is checked whether it should be relayed

downstream or not. As described in Section 4.5.2, the check is carried out by com-

paring its remaining time-to-live and the expected time-to-destination. Additionally,

entity Tx needs to make sure that the selected packet has not been transmitted any

time within the last round-trip-time period (rtt). To realize this check, the entity

records the time when the packet leaves the node. The packet is really sent out

only if inequalities (4.3) and (4.4) hold. The code segment in the following text

100

Figure 6.6: Operation of entity Tx. Basic functions are selecting, validating, for-

warding, and dropping packets.

101

illustrates the behavior.

1: if ((time_now - fr_ptr->time_stamp < DELAY_THRES -

2: (unsigned short)(current_rtt/2)) && (time_now -

3: fr_ptr->segments[segm_str.segm_id].last_tx_stamp

4: > current_rtt))

5: {

6: bytes_to_tran = fr_ptr->segments[segm_str.segm_id].segm_size;

7: Send the packet downstream;

8: fr_ptr->segments[segm_str.segm_id].last_tx_stamp = time_now;

9: }

Note that the expected time-to-destination has already been estimated opti-

mistically (DELAY_THRES - (unsigned short)(current_rtt/2)), since the back-

route conveying NACK messages is practically more idle than the forth-route that

carries video packets. This is attributed to the fact that the load of video traffic is

heavier than that of NACK messages. Theoretically, we can estimate the one-way

delay (OWD) more precisely by some compensation strategy [8]. However, as in-

troducing considerable overhead, it is not employed. Once the selected packet does

not have enough optimistic time-to-live, it means that all other enqueued packets, if

any, of the same frame also face the same situation; namely, they fall in the dropping

domain (see Chapter 5). Entity Tx then signals the node to watch for future orphan

packets as follows.

1: if ((fr_ptr->frame_type != 3) && (fr_ptr->frame_gop !=

2: gop_to_drop) && (segm_str.segm_id == 0))

3: {

4: gop_to_drop = segm_str.frame_gop;

5: pos_to_drop = segm_str.frame_pos;

6: }

6.7 Chapter review

Receiving video packets, processing NACK messages, and relaying packets

downstream are implemented as parallel threads that are synchronized by a semaphore.

102

Due to data dependency of video packets, Real-time Media Engine organizes data

representation into different levels to ease accessing and maintenance. The design

of data types, including frame warehouse and queue, does take the matter of per-

formance into account. In this chapter, we have concretely described how proactive

functions are realized.

103

Chapter 7

EXPERIMENTAL RESULTS

To evaluate how sound the proactive framework practically is, we have de-

ployed experiments with a testbed. Differently from the majority of related studies

on video streaming over ad hoc networks, we do not rely on simulations to verify our

proposed framework. Instead, a real-life testbed has been implemented on mobile

computers. As stated in Section 1.3.4, unpredictability of wireless communication

links in multihop connections potentially alters simulation results [27][28]. It was

already recommended that studies on higher layers should base on testbeds for ver-

ifying the network performance. This chapter extensively reports results collected

from different experiments.

7.1 Testbed overview

Physically, the testbed was composed of up to 8 ad hoc nodes of which 7 were

mobile machines (laptop computers). Note that the study does not aim at testing

behaviors of any routing algorithm, so there is no strong need to build a topology of

vast number of nodes. Testing behaviors of the application layer in fact emphasizes

the operation of each individual node. Compared to other known video testbeds

[21][25], ours has a pretty-large scale.

To prove that the proactive framework works efficiently and is robust, the

testbed devices should not be powerful. Indeed, the laptops were mostly Intel Pen-

tium III-based platform. Except only one Pentium IV laptop was equipped with

the built-in wireless network interface, all the machines employed merely remov-

able wireless network cards for ad hoc communications, including PCMCIA and

USB cards. Successfully deploying a testbed of such performance-moderate devices

means that the strategy will operate well in most of systems, nowadays as well as

tomorrow.

104

Figure 7.1: Layout of testbed.

7.2 Setup of the testbed

Geographically, the testbed was deployed in the building of the Heinz Nixdorf

Institute, the University of Paderborn. In the place, it suffered interference and

noise from the WLAN Access Points, other ad hoc networks, and laptop computers

of students.

The deployed network was composed of up to 8 nodes as laid out in Figure

7.1. The sender machine was a Desktop PC running WindowsXP, and was equipped

with Netgear MA111 USB card. All the other nodes were laptop computers running

either RedHat Linux 9 or Fedora Core 4, and used Lucent Technologies PCMCIA

cards for wireless video communication. Details on the machines are indicated in

Table 7.1. The wireless network cards, which adopt IEEE802.11b standard, have

settings shown in Table 7.2. Basically, we accepted the values that the operating

systems WindowsXP and Linux suggest.

To demonstrate that the framework is open to other proposals, the approach

105

Table 7.1: Hardware configuration of relaying nodes

CPU Main memory (MB) Wireless NIC

node 0 Pentium IV 512 built-in 3Com 3C920(*)/

PCMCIA WaveLAN LC

node 1 Pentium III 256 PCMCIA orinoco LC

node 2 Pentium III 256 PCMCIA orinoco LC

node 3 Pentium III 256 PCMCIA orinoco LC

node 4 Pentium III 256 PCMCIA WaveLAN LC

node 5 Pentium III 256 PCMCIA orinoco LC

(*) The built-in card was used for network maintenance tasks,

not for video communication.

Table 7.2: Parameters of wireless settings

parameter value

Bit rate 2Mb/s

Frequency 2.4GHz

Tx-Power 15dBm

Sensitivity 1/3

Retry limit 7

Fragment threshold 2347 bytes

106

Figure 7.2: Frame sizes of different video sequences. Akiyo has a medium volume,

smaller than Container and Hall, but larger than Foreman and Tempete.

of Multiple Path Transport (MPT) [8][21][83][84] was also integrated. Namely, video

packets were delivered over two disjoint paths toward the receiver.

7.3 Deployment of experiments

For comparison, three experiments were implemented; one was on MPT with

conventional passive nodes, another was on RtME-enabled nodes but without the

joint discarding mechanism (hereafter referred to as “active processing”), and the

last was on full-featured RtME. All the experiments were made on MPEG4 CIF

video sequence Akiyo [82] that has 300 video frames and a nominal rate of 200

Kbps. The sequence was selected considering its popularity and its traffic. As

shown in Figure 7.2, while I frames of Akiyo are not so large as Container or Hall,

they are greater than those of Tempete and Foreman [82]. Remarkably, relative

107

Table 7.3: Video sequence transmitted

parameter value

Nominal bit rate 200 Kb/s

Frame rate 30 fps

Frame count 300 video frames

Format CIF

Codec MPEG4

passive forwarding

active processing

joint discarding

Figure 7.3: Sample pictures from three experiments.

difference among Akiyo video frames in their size is much considerable compared

to the others. This is important since we wished to see how our framework reacts

to instability of the traffic. Further details about the sequence are listed in Table

108

7.3. In each experiment, 30 episodes of the sequence were transmitted repeatedly, so

that up to 9000 video frames in total were sent out. The experiments had identical

settings and each node followed the same movement profile.

7.4 Distortion evaluation

The received video sequences in the three experiments were measured distor-

tion after error concealment. Figure 7.3 shows sample pictures in the three received

video of the experiments. All-frame PSNR (Peak Signal to Noise Ratio) statistics of

the three transmission schemes are plotted in Figure 7.4, 7.5, and 7.6, respectively.

In all the experiments, the perception quality was highly unstable. However, it is

pretty clear that, for the majority of 30 episodes, RtME did improve PSNR. The

quality difference between the active processing strategy and the passive forward-

ing case was significant. Compared to the active processing case, introduction of

the joint discarding mechanism did not improve much; the benefit with respect to

energy consumption, however, was clear (presented later in Section 7.5). Indeed,

the all-frame average PSNR values in the three experiments were 32.67dB, 34.94dB,

and 36.18 dB, respectively. So, in long term, the full-featured RtME brought up an

improvement of up to 3.51 dB. The all-frame statistics also show that our framework

stabilized the perception quality. Namely, it reduced the number of periods as well

as the total time of severely bad perception quality.

The soundness of our framework is more visible in Figure 7.7. In this figure,

each point represents the episode-averaged PSNR value measured for an episode.

One can realize that the number of episodes with better PSNR in our strategy

is higher, and that the proactive forwarders bring up generally better perception

quality.

As depicted in Figure 7.8, the minimum PSNR values in the RtME-enabled

experiments are higher than in the passive case, and so are those values in worst

episodes.

7.5 Power consumption

We evaluate the power consumption of each laptop computer by monitoring

its battery status. To make the comparison more accurate, we ran OSs of all the

109

Figure 7.4: All-frame PSNR of 30 episodes: passive forwarding. In general, the

playback quality was substantially fluctuated from frame to frame. In most of the

video episodes, we observe severely bad frames.

110

Figure 7.5: All-frame PSNR of 30 episodes: active processing without joint dis-

carding. Activation of Real-time Media Engine has clearly improved the playback

quality. It does not only stabilize distortion, but also reduces the number of severely

bad frames and episodes.

111

Figure 7.6: All-frame PSNR of 30 episodes: Real-time Media Engine was fully

activated. Compared to the second experiment with active processing, the joint

discarding mechanism did not substantially improve the average distortion, though

the number of bad frames was decreased. However, the benefit regarding energy

was more recognizable.

112

Figure 7.7: Episode-averaged PSNR. When Real-time Media Engine was activated,

whether partially or fully, the average frame quality got improved in a considerable

number of episodes.

Figure 7.8: PSNR: min/average values and worst-episode values. It is clear that

activation of Real-time Media Engine raises the quality overall as well as during

adverse communication periods.

113

Figure 7.9: Power consumption. The lower part represents consumption in the

experiments of 30 episodes. Lengthening the communication time (90 episode), the

reduction when Real-time Media Engine was activated was more visible (the upper

part).

intermediate nodes in the text mode, killing all irrelevant services/processes, except

daemon olsrd [65], which is a proactive routing protocol. Figure 7.9 charts the

power consumption of all the intermediate nodes. Note that since the goodness of

the batteries in different computers is not identical, it should not be inferred that

the difference of percentages between any two nodes truly reflects the difference of

energy amounts they consumed. As indicated in the chart (the lower part), without

the joint discarding, we see that only one node (node 1) consumed more power in our

framework than in the passive case, even though the difference is not major; node

3 observed the same usage. All the other relaying nodes consumed less power in

the proactive strategy. When the intermediate nodes activated the joint discarding

mechanism, the reduction was clearer. Noticeably, though we could not measure the

power consumption of the Windows-based sender machine, we realized that, with

proactive intermediate nodes, the sender machine must respond to ARQ requests

much less than the passive case. Section 7.8 will show the retransmission load that

the machine dealt with.

114

Figure 7.10: CPU usage when RtME was activated partially and fully. The usage

was less than 0.09%; the difference between the two cases was basically not clear.

Extending the number of episodes experimented to 90, we observed that the

soundness of our framework was more considerable, as seen in the upper part of

Figure 7.9. Compared to the passive forwarding case, the proactive framework

without the joint discarding mechanism did reduce the battery usage at nodes 0, 2,

3 and 4 while nodes 1 and 5 did not observe any reduction at all. When RtME was

fully activated at all the forwarding nodes, the energy saving was clearer; each node

consumed from 1% to 3% less than the passive forwarding strategy.

7.6 CPU usage

Even RtME was forced to collect heavy statistics, the CPU usage in our frame-

work was extremely low, no greater than 0.09%. This further demonstrates the fea-

sibility of the framework. Figure 7.10 plots the CPU usages of all the intermediate

nodes, which had either Intel Pentium III or IV platform. Basically, reinforcement

of the joint discarding mechanism does not clearly add more computation load. The

reason is likely that dropping useless packets induces extra header processing, but

it also decreases the number of packets to relay. In the future, upon completion of

the middleware, removal of statistics collection, and code optimization, we expect

even lower CPU usage.

Again, since the laptops are not identical in hardware and OS configurations,

difference between any two nodes does not reflect the difference of their real com-

115

putation load.

7.7 Cache space

As RtME was activated, the maximum cache levels measured in the primary

and the secondary paths were respectively 24646 bytes and 10294 bytes (corre-

sponding to the second experiment). Obviously, these values are not prohibitive to

today’s computers or embedded devices. The episode-averaged caching statistics

estimated on each path are respectively plotted in Figure 7.11 and Figure 7.12, fur-

ther demonstrating that the memory allocation for caching video packets is highly

feasible. From the figures we learn that the joint discarding mechanism slightly

reduces the cache occupancy.

As the charts show, it can be inferred that the average values are considerably

smaller than the peak values mentioned above. Over the primary path, no episode

observed an average cache level higher than 17,500 bytes. The difference in the

secondary path is even more recognizable; all the episodes had their average cache

level less than 2,500 bytes. As seen in the charts, the joint discarding mechanism

lessened the average data volume in the warehouse, though not significantly. The

average level was lower in most of 30 episodes compared to the active processing

case. This can be explained that the application of the mechanism has taken effect.

It did help the ad hoc forwarders detect and drop out useless packets right at their

arrival.

7.8 Sender response

As the intermediate nodes are responsive, the sender does not have to process

all ARQ requests from the receiver node. This reduces the usage of both computa-

tion resource and energy in the sender, which is busy enough with processing video.

Figure 7.13 shows that, the activations of RtME at the forwarding nodes signifi-

cantly reduced the number of ARQ requests that the sender machine must respond

to. Specifically, in the passive forwarding case, up to 53 NACK messages were han-

dled at the worst episode (number 11) while this number was only 14 (at episode

number 18) when RtME was active. Should RtME be fully activated, the reduction

was even clearer; no episode had to handle more than one reply. Note however that

116

Figure 7.11: Cache occupancy: primary path. No node observed an average level

greater than 17,500 bytes.

Figure 7.12: Cache occupancy: secondary path. No node observed an average level

greater than 2,500 bytes.

117

Figure 7.13: Retransmission load from the sender: count of replies. Activations of

Real-time Media Engine significantly reduced the number of times that the sender

responded to NACK messages.

the number of NACK messages arriving at the sender might be higher than actually

being processed. The relaying nodes with the joint discarding function did suppress

the NACK messages that requested stale packets.

The above reduction results in decreasing the retransmitted data load from

the sender node. As seen in Figure 7.14, the load in the worst episode of the passive

case was 72,385 bytes, corresponding to episode number 10; at the active processing

experiment, the value was 13,038 bytes, while only 63 bytes were retransmitted from

the sender in a couple of bad episodes when RtME ran the joint discarding function.

118

Figure 7.14: Retransmission load from the sender: load of data. The data volume

for retransmission also got decreased when Real-time Media Engine was activated.

119

Figure 7.15: Received packet counts. It is recognizable that introduction of Real-

time Media Engine did decrease the number of packets received.

120

7.9 Traffic load

As presented in Section 2.2.1, video packets are not independent of each other.

Loss of packets pertaining to an I or P frame may devalue transmission of many

others, even they arrive correctly at the receiver node. This means that the quality

of the received video is not linearly proportional to the number of packets reaching

the receiver node. In fact, what really matters is the number of useful packets

received and how much they contribute to the decoding process. Chapter 4 already

shows that RtME allows intermediate nodes to smartly select packets based on

their semantics and remaining time-to-live. Additionally, we also know in Chapter

5 that RtME helps block useless or stale packets that conventional forwarders would

continue to process. So the proactiveness introduced to the forwarding nodes does

potentially decrease the traffic load coming to the receiver node.

Let’s look at Figure 7.15 that plots the received packet counts in each exper-

iment. Generally, RtME lowered the count in most of episodes. The influence of

the joint discarding mechanism was considerable, especially when the propagation

seriously degraded, e.g. during episode 21. Over all the experiments, it remark-

ably reduced the counts in the majority of 30 episodes. This partially explains why

energy consumption in our framework was reduced. Note that cumulative consump-

tion also depends on other factors such as expected transmission count (ETX) [65],

load of NACK messages, and how many hops retransmission packets traverse.

It is clear that while receiving more packets in comparison to our proposed

approach, the passive forwarding strategy did not obtain a better performance.

One of the main reason is that conventional node architecture could not eliminate

useless packets. Figure 7.16 shows how many packets that arrived at the receiver

node were unworthy. These include late packets - ones that arrived after their

deadline, and redundant packets - ones that were received multiple times. Note

however that orphan packets were not counted. As seen in the figure, the proactive

framework consistently and clearly decreased the number of useless arrivals. In

the first experiment, up to 115 packets were useless at episode 21, which was the

worst case. This count in the second experiment was 19, observed at episode 13.

Meanwhile, the joint discarding mechanism lowered the value down to only 2 useless

packets.

121

Figure 7.16: Useless packets received in all the experiments. As stale and redun-

dant packets were detected, the activations of Real-time Media Engine lowered the

number of useless packets that arrived at the receiver node.

122

7.10 Chapter review

The efficiency of the proactive framework has practically been demonstrated.

The experimental results shows that the quality of the received video is improved

while the cumulative energy consumption of the relaying hosts is reduced. The

testbed with inexpensive devices also proves the feasibility regarding memory usage

and computation load.

123

Chapter 8 CONCLUSION AND OUTLOOK

8.1 Conclusion

Realizing real-time video communication over ad hoc wireless networks is not

a trivial task. As wireless channels in ad hoc networks are capacity-limited, de-

ployment of video applications is problematic. Differently from related works, this

study has investigated intermediate nodes on relaying real-time video packets. In

the proposed proactive framework, we have designed a node architecture in which

each relaying node transiently retains packets so that they can be appropriately se-

lected to forward when congestion occurs. Particularly, retransmission can be made

from intermediate nodes instead of the very sender. The shortening of retransmis-

sion rounds does result in higher end-to-end success rate of delivery and lower the

cumulative power consumption.

Proactive nodes can also detect and drop packets that are useless for the

decoding process. Once rejecting important frames, a video-cooperative node may

also notify other nodes to jointly destroy their dependent packets (that are definitely

useless). This mechanism does save both bandwidth and energy for useful packets.

To avoid generating communication overhead, NACK messages themselves are used

to carry notifications on discarding such important frames.

The framework has been implemented via the introduction of Real-time Me-

dia Engine (RtME) that makes relaying nodes more intelligent and responsive. Our

lightweight framework is open to other strategies, and does guarantee the inter-

operability of heterogeneous network nodes, including conventional video-passive

forwarders.

The deployment of the experiments helped us understand how the framework

behaves in reality. Extensive results collected from the testbed do demonstrate the

soundness and the applicability of the proposed relaying strategy.

124

8.2 Outlook

Advances in hardware technology make embedded devices and mobile com-

puters more and more powerful. However, as ad hoc nodes mainly operate on their

battery power, memory usage and computation load should be lowered as much as

possible. In the future work, we will look into the implementation to optimize the

coding design.

Secondly, as needs of users may be diverse, we consider developing more al-

gorithms for packet selection to satisfy different goals. For instance, QoS definition

might be different from user to user; some operations such as military communica-

tion may be strict on delay whereas professional applications, e.g. surveillance and

monitoring, are sensible to packet loss.

Finally, like what currently takes place over the Internet, video communication

in ad hoc networks will likely accommodate multipoint-to-multipoint calls in a lot of

cases. Extension of the framework for multicasting will hence be considered. With

the proactive functionality, it is not hard to develop flexible strategies for efficiently

delivering packets to multiple nodes.

125

Bibliography

[1] J. Wu, Techniques to Avoid Useless Packet Transmission in Multimedia over
Best-effort Networks, Dr. Dissertation, University of New South Wales, 2003.

[2] IPTV Focus Group, http://www.itu.int/ITU-T/IPTV/.

[3] J. Chakareski, P. Chou, and B. Girod, RaDiO Edge: Rate-Distortion Optimized
Proxy-driven Streaming from the Network Edge, IEEE/ACM Transactions on
Networking, vol. 14, no. 6, pp. 1302-1312, 2006.

[4] T. Wei, C. Jacob, S. Eckehard, Rate-Distortion Optimized Frame Dropping
and Scheduling for Multi-user Conversational and Streaming Video, Journal of
Zhejiang University SCIENCE A, vol. 7, no. 5, pp. 864-872, 2006.

[5] Y. Lu, K.J. Christensen, Using Selective Discard to Improve Real-time Video
Quality on an Ethernet Local Area Network, International Journal of Network
Management, 9(2), pp. 106-117, 1999.

[6] P. A. Chou and Z. Miao, Rate-Distortion Optimized Streaming of Packetized
Media, IEEE Transactions on Multimedia, vol. 8, no. 2, pp. 390-304, 2006.

[7] T. Pham Van, Real-time Video over Programmable Networked Devices, Pro-
ceedings of the IFIP International Conference on Network and Parallel Com-
puting (NPC’05), LNCS 3779, pp. 409 416, Beijing, China, Nov. 30 - Dec. 3,
2005.

[8] A. A. E. Al, T. Saadawi, M. Lee, Improving Interactive Video in Ad-hoc Net-
works Using Path Diversity, Proc. IEEE International Conference on Mobile
Ad-hoc and Sensor Systems, October 2004.

[9] H. Shojania, B. Li, Experiences with MPEG-4 Multimedia Streaming, in Pro-
ceedings of the 9th ACM Multimedia Conference (ACM Multimedia 2001), pp.
492-494, Ottawa, Canada, September 30 - October 5, 2001.

[10] S. Kaiser and K. Fazel, Comparison of Error Concealment Techniques for an
MPEG-2 Video Decoder in Terrestrial TV-broadcasting, in Special Issue on
Error Resilient Video of Signal Processing: Image Communication journal, vol.
14, no. 6-8, pp. 655-676, May 1999.

126

[11] C. Huang and P. Salama, Error Concealment for Shape in MPEG-4 Object-
Based Video Coding, IEEE Transactions on Image Processing, vol. 14, no. 4,
pp. 389-396, 2005.

[12] MPEG Pointers and Resources, http://www.mpeg.org/MPEG/index.html.

[13] D. Wu, T. Hou, W. Zhu, H.-J. Lee, T. Chiang, Y.-Q. Zhang, and H. J. Chao, On
End-to-End Architecture for Transporting MPEG-4 Video Over the Internet,
IEEE Transactions on Circuits and Systems for Video Technology, 10(6), pp.
923-941, 2000.

[14] X. Meng, H. Yang, S. Lu, Application-oriented Multimedia Scheduling over
Lossy Wireless Networks, Proc. IEEE International Conference on Computer
Communications and Networks, October 2002.

[15] IEEE 802.11, The Working Group Setting the Standards for Wireless LANs,
www.ieee802.org/11/.

[16] C. S. R. Murthy and B. S. Manoj, Ad Hoc Wireless Networks Architectures and
Protocols, Prentice Hall, 2004.

[17] X. Zhu, E. Setton and B. Girod, Congestion-Distortion Optimized Video Trans-
mission over Ad Hoc Networks, Journal of Signal Processing: Image Commu-
nications, vol. 20, pp. 773-783, September, 2005.

[18] N. Blundell, Overlays for Live Internet Multimedia Streaming Systems, 1st year
PhD student report, Lancaster University, November, 2002.

[19] T. Pham Van, Video-Cooperative Design for Ad hoc Networks, IEEE Wireless
Communications and Networking Conference (IEEE WCNC’07), Hong Kong,
China, March 11-15, 2007 (to be presented).

[20] A. Harris, C. Sengul, R. Kravets, P. Ratanchandani, Energy-Efficient Multi-
media Communications in Lossy Multi-Hop Wireless Networks, IFIP TC6 /
WG6.8 Conference on Mobile and Wireless Communication Networks (MWCN
2004), Paris, France pp. 461-472, October 25-27, 2004.

[21] S. Mao, S. Lin, S. S. Panwar, Y. Wang, EmbreCelebi, Video Transport over Ad
hoc Networks: Multistream Coding with Multipath Transport, IEEE Journal On
Selected Areas In Communications, vol. 21, no. 10, pp. 1721-1737, 2003.

[22] X. Zhu, S. Rane and B. Girod, Systematic Lossy Error Protection for Video
Transmission over Wireless Ad Hoc Networks, SPIE Visual Communications

127

and Image Processing (VCIP-05), vol. 5960, pp. 1849-1860, Beijing, China, July
2005.

[23] E. Setton, T. Yoo, X. Zhu, A. Goldsmith, B. Girod, Cross-layer Design of Ad
hoc Networks for Real-time Video Streaming, IEEE Wireless Communications
Magazine, vol. 12, no. 4, pp. 59-65, 2005.

[24] E. Setton, X. Zhu and B. Girod, Congestion-Optimized Scheduling of Video over
Wireless Ad Hoc Networks, IEEE 2005 International Symposium on Circuits
and Systems, vol. 4, pp. 3531-3534, Kobe, Japan, May 2005.

[25] H. Gharavi, K. Ban, Cross-layer Feedback Control for Video Communications
via Mobile Ad-hoc Networks, Proc. IEEE Vehicular Technology Conference, vol.
5, pp. 2941-2945, October 2003.

[26] H. Gharavi, K. Ban, Rate Adaptive Video Transmission over Ad-hoc Networks,
Electronics Letters, vol. 40, no. 19, pp. 1177-1178, 2004.

[27] J. Kuruvila, A. Nayak, and I. Stojmenovic, Hop Count Optimal Position-based
Packet Routing Algorithms for Ad hoc Wireless Networks with a Realistic Phys-
ical Layer, IEEE Journal On Selected Areas In Communications, vol. 23, no.
6, pp. 1267-1275, June 2005.

[28] D. Cavin, Y. Sasson, and A. Schiper, On the Accuracy of Manet Simula-
tors, Proceedings of the ACM Principles of Mobile Computing (POMC 2002),
Toulouse, France, October 30-31, 2002.

[29] NS-2, The Network Simulator, http://www.isi.edu/nsnam/ns.

[30] OPNET Modeler, http://www.opnet.com/products/modeler/home.html.

[31] R. Bagrodia, and M. Gerla, Glomosim: A Scalable Network Simulation Envi-
ronment, Technical Report 990027, UCLA Computer Science Department, May
1999.

[32] Z. He, Y. Liang, L. Chen, I. Ahmad, and D. Wu, Power-Rate-Distortion Analy-
sis for Wireless Video Communication under Energy Constraints, IEEE Trans-
actions on Circuits and Systems for Video Technology, Special Issue on Inte-
grated Multimedia Platforms, vol. 15, no. 5, pp. 645-658, May 2005.

[33] S. Chakraborty and D. K. Y. Yau, Predicting Energy Consumption of MPEG
Video Playback on Handhelds, Proc. IEEE International Conference on Multi-
media and Expo, pp. 317-320, 2002.

128

[34] S. Mao, Y. T. Hou, X. Cheng, H. Sherali, S. Midkiff, and Y. Zhang, On Routing
for Multiple Description Video over Wireless Ad hoc Networks, IEEE Transac-
tions on Multimedia, vol. 8, no. 5, pp. 1063-1074, 2006.

[35] C. Wu, T. Hou, The Impact of RTS/CTS on Performance of Wireless Multihop
Ad Hoc Networks Using IEEE 802.11 Protocol, IEEE SMC, 2005.

[36] K. Langendoen and G. Halkes, Energy-efficient Medium Access Control, Book
chapter in the Embedded Systems Handbook, R. Zurawski (editor), CRC press,
August 2005.

[37] Ahmed Safwat et al, Power-Aware Wireless Mobile Ad hoc Networks, Handbook
of Ad hoc Wireless Networks, CRC Press, December 2002.

[38] S. Singh, CS Raghavendra, Power efficient MAC protocol for multihop radio
networks, Proc. IEEE International Personal, Indoor and Mobile Radio Com-
munications Conference, pp. 153-157, 1998.

[39] I. Bouazizi, Size-Distortion Optimized Proxy Caching for Robust Transmission
of MPEG-4 Video, In LNCS 2899, Proc. International Workshop on Multimedia
Interactive Protocols and Systems, November 18-21, 2003.

[40] E. Masala, H. Yang, K. Rose and J. C. De Martin, Rate-Distortion Opti-
mized Slicing, Packetization and Coding for Error Resilient Video Transmis-
sion, Proc. IEEE Data Compression Conference, 2004.

[41] T. Pham Van, Proactive Optimization of Real-time Video, Proc. International
Conference on Wireless Communications, Networking and Mobile Computing
2005, IEEE Press, Wuhan, China, September 23-26, 2005.

[42] T. Pham Van, A Practical Approach for Real-time Video Streaming, Proc. 13th
International Conference on Software, Telecommunications and Computer Net-
works, (SoftCOM’05), Split, Croatia, September 15-17, 2005.

[43] Y. Bai and M. Robert Ito, QoS Control for Video and Audio Communication in
Conventional and Active Networks: Approaches and Comparison, IEEE Com-
munications Surveys & Tutorials, vol. 6, no. 1, 2004.

[44] RFC 2475, An Architecture for Differentiated Services,
http://rfc.net/rfc2475.html.

[45] Y. C. Chang, C. C. Huang, H. C. Chang, H. C. Fang, L. G. Chen, Error-
Propagation Analysis and Concealment Strategy for MPEG-4 Video Bitstream

129

with Data Partitioning, IEEE International Conference on Multimedia and
Expo (ICME 2001), Tokyo, Japan, August 2001.

[46] M. Christiansen, K. Jeffay, D. Ott, and F.D. Smith, Tuning RED for Web
Traffic, IEEE/ACM Transactions on Networking, vol. 9, no. 3, pp. 249-264,
2001.

[47] M. A. Labrador and S. Banerjee, Packet Dropping Policies for ATM and IP
Network, IEEE Communications Surveys, vol. 2, no. 3, Third Quarter 1999.

[48] W. Feng, D. Kandlur, D. Saha, K. Shin, A Self-Configuring RED Gateway,
IEEE INFOCOM ’99, March 1999.

[49] David D. Clark and Wenjia Fang, Explicit Allocation of Best Effort Packet
Delivery Service, ACM Transactions on Networking, vol. 6, no. 4, 1998.

[50] J. Chakareski and P. Frossard, Rate-Distortion Optimized Distributed Packet
Scheduling of Multiple Video Streams Over Shared Communication Resources,
IEEE Transactions on Multimedia, Special Issue on Distributed Media Tech-
nologies and Applications, vol. 8, No 2, pp. 207-218, April 2006.

[51] Z. He and S. K. Mitra, A Unified Rate-Distortion Analysis Framework for
Transform Coding, IEEE Transactions on Circuits and Systems for Video Tech-
nology, vol. 11, no. 12, December 2001.

[52] N. Itaya and S. Kasahara, Dynamic Parameter Adjustment for Available-
Bandwidth Estimation of TCP in Wired-Wireless Networks, Computer Com-
munications, vol. 27, pp. 976-988, 2004.

[53] A. Balk, M. Gerla, M. Sanadidi, D. Maggiorini, Adaptive Video Streaming:
Pre-encoded MPEG-4 with Bandwidth Scaling, Computer Networks: The In-
ternational Journal of Computer and Telecommunications Networking archive
Volume 44 , Issue 4, 2004.

[54] A. Aguiar, C. Hoene, J. Klaue, H. Karl, H. Miesmer, and A. Wolisz, Channel-
aware Schedulers for VoIP and MPEG4 based on Channel Prediction, Proc. 8th
International Workshop on Mobile Multimedia Communications (MoMuC’03),
October 2003.

[55] J. Klaue, J. Gross, H. Karl, and A. Wolisz, Semantic-Aware Link Layer Schedul-
ing of MPEG-4 Video Streams in Wireless Systems, Proc. 3rd Workshop on
Applications and Services in Wireless Networks (ASWN), Bern, Switzerland,
July 2003.

130

[56] G. B. Akar, N. Akar, E. Gurses, Selective Frame Discarding for Video Streaming
in TCP/IP Networks, Packet Video, 2003.

[57] N. Laoutarisa, B. Houdt, and I. Stavrakakis, Optimization of a Packet Video
Receiver under Different Levels of Delay Jitter: an Analytical Approach, Else-
vier Performance Evaluation, vol. 55, issues 3-4, pp. 251-275, 2004.

[58] A. M. Safwat, H. S. Hassanein, H. T. Mouftah, Energy-aware Routing in
MANETs: Analysis and Enhancements, Proc. 5th ACM International Work-
shop on Modeling, Analysis and Simulation of Wireless and Mobile Systems,
pp. 46-53, September 2002.

[59] M. Krunz, A. Muqattash, and S. Lee, Transmission Power Control in Wireless
Ad Hoc Networks: Challenges, Solutions, and Open Issues, IEEE Network,
September/October 2004.

[60] J. Gomez and A.T. Campbell, A Case for Variable-range Transmission Power
Control in Wireless Multihop Networks, Proc. IEEE INFOCOM, vol. 2, pp.
1425-1436, December 2004.

[61] G. Gaertner and V. Cahill, Understanding Link Quality in 802.11 Mobile Ad
Hoc Networks, IEEE. Internet Computing, vol. 8, pp. 55-60, 2004.

[62] J. Li, C. Blake, D. De Couto, H. Lee, and R. Morris Capacity of Ad Hoc Wireless
Networks, Proc. 7th ACM International Conference on Mobile Computing and
Networking, Rome, Italy, pp. 61-69, July 2001.

[63] X. Chen, D. Jayalath and H. M. Jones, A Cross-Layer Design for mobile AD
HOC Networking in Fast Fading Channels, in Proc. of WITSP05, pp. 159164,
December 2005.

[64] B. Sklar, Rayleigh Fading Channels in Mobile Digital Communication Systems
Part 1: Characterization, IEEE Communication Magazine, July 1997.

[65] A. Tonnesen, Olsr Daemon, http://www.olsr.org/.

[66] Jong-Suk Ahn, Seung-Wook Hong, and John Heidemann, An Adaptive FEC
Code Control Algorithm for Mobile Wireless Sensor Networks, Journal of Com-
munications and Networks, 7 (4), pp. 489-499, 2005 (to appear).

[67] M. Jiang, R. Jan, C. Wang An Efficient Multiple-path Routing Protocol for Ad
hoc Networks, Computer Communications, 25(5), pp. 478-484, 2002.

131

[68] J. Liu, F. Sailhan, D. Sacchetti, and V. Issarny, Group Management for Mobile
Ad hoc Networks: Design, Implementation and Experiment, Proc. 6th IEEE
International Conference on Mobile Data Management (MDM’2005), May 2005.

[69] RFC 2205, Resource Reservation Protocol, www.ietf.org/rfc/rfc2205.txt.

[70] Q. Ren, W. Guo, A Novel Medium Access Control (MAC) Protocol for Ad
Hoc Network, Proc. 17th International Conference on Advanced Information
Networking and Applications (AINA’03), 2003.

[71] J. Sheu, C. Liu, S. Wu, Y. Tseng, A Priority MAC Protocol to Support Real-
Time Traffic in Ad Hoc Networks, Wireless Networks, 10(1), pp. 61-69, 2004.

[72] T. Hui, Y. Yang, H. J. Dong, Z. Ping, A MAC Protocol Supporting Multiple
Traffic over Mobile Ad Hoc Networks, IEEE VTC Spring, 2003.

[73] Chen, S., and K. Nahrstedt, Distributed Quality-of-Service Routing in Ad-hoc
Networks, IEEE Journal on Selected Areas in Communications, vol. 17, no. 8,
pp. 1488-1505, 1999.

[74] H. Badis, I. Gawedzki and K. Al Agha QoS Routing in Ad hoc Networks Us-
ing QOLSR with no Need of Explicit Reservation, IEEE Vehicular Technology
Conference, Los Angeles, USA, September 2004.

[75] E. Visotsky, Y. Sun, V. Tripathi, M. L. Honig, and R. Peterson, Reliability-
Based Incremental Redundancy with Convolutional Codes, IEEE Transactions
on Communications, vol. 53, no. 6, pp. 987-997, 2005.

[76] R. Kays, K. Jostschulte, W. Endemann, Wireless Ad-Hoc Networks with High
Node Density for Home AV Transmission, IEEE Trans. on Consumer Electron-
ics, vol. 50, no. 2, pp. 463-471, 2004.

[77] F. Hou, Pin-Han Ho, Xuemin, and Y. Zhang, Performance Analysis of Differ-
entiated ARQ Scheme for Video Transmission over Wireless Networks, Proc.
1st ACM workshop on Wireless Multimedia Networking and Performance Mod-
eling, 2005.

[78] T. Pham Van, Efficient Relaying of Video Packets over Wireless Ad hoc De-
vices, Proc. 8th annual IEEE Wireless and Microwave Technology Conference
(IEEE WAMICON’06), Clearwater, Florida, USA, Dec 4-5, 2006.

[79] T. Pham Van, Proactive Ad hoc Nodes for Real-time Video, Proc. 10th IEEE
International Conference on Communications Systems (IEEE ICCS’06), Singa-
pore, Oct 30 - Nov 1, 2006.

132

[80] Cisco Active Network Abstraction,

http://www.cisco.com/en/US/products/ps6776/index.html.

[81] C. R. Lin, J. S. Liu, QoS Routing in Ad hoc Wireless Networks, IEEE Journal
on Selected Areas in Communications, vol. 17, no. 8, pp. 1426-1438, August
1999.

[82] J. Klau, YUV CIF Video Sequences, http://www.tkn.tu-berlin.de/research/-
evalvid/.

[83] J. Chen, S.-H. G. Chan, V. O. K. Li, Multipath Routing for Video Delivery over
Bandwidth-limited Networks, IEEE Journal on Selected Areas in Communica-
tions, vol. 22, no. 10, pp. 1920-1932, 2004.

[84] Y.S.Liaw, A.Dadej, A.Jayasuriya, Throughput Performance of Multiple Inde-
pendent Paths in Wireless Multihop Network, Proc. IEEE International Con-
ference on Communications, pp. 4157-4161, June 2004.

133

List of own publications related to this dissertation

[1] Tien Pham Van, Video-Cooperative Design for Ad hoc Networks, IEEE Wireless
Communications and Networking Conference (IEEE WCNC’07), Hong Kong,
China, March 11-15, 2007.

[2] Tien Pham Van, Efficient Relaying of Video Packets over Wireless Ad hoc De-
vices, Proceedings of the 8th annual IEEE Wireless and Microwave Technology
Conference (IEEE WAMICON’06), Clearwater, Florida, USA, Dec 4-5, 2006.

[3] Tien Pham Van, Proactive Ad hoc Nodes for Real-time Video, Proceedings of
the 10th IEEE International Conference on Communications Systems (IEEE
ICCS’06), Singapore, Oct 30 - Nov 1, 2006.

[4] Tien Pham Van, Proactive Optimization of Real-time Video, Proceedings of
International Conference on Wireless Communications, Networking and Mobile
Computing 2005 (WCNM’05), IEEE Press, Wuhan, China, September 23-26,
2005.

[5] Tien Pham Van, Real-time Video over Programmable Networked Devices, Pro-
ceedings of the IFIP International Conference on Network and Parallel Com-
puting (NPC’05), LNCS 3779, pp. 409-416, Beijing, China, Nov. 30-Dec. 3,
2005.

[6] Tien Pham Van, A Practical Approach for Real-time Video Streaming, Proceed-
ings of the 13th International Conference on Software, Telecommunications and
Computer Networks, (SoftCOM’05), Split, Croatia, September 15-17, 2005.

134

Chapter A
BIT ERROR RATE OVER WIRELESS MULTIHOP
CONNECTIONS

Given a multi-hop connection consisting of n hops as shown in Figure A.1
below. Video packets travel along the forth direction all the way from the sender
(node 1) to the receiver (node n) while NACK messages are sent from the receiver
toward the sender over the back direction. Denote the bit error rate at a generic hop
i that connects node i− 1 to node i as BERf

i and BERb
i respectively for the forth

and back direction. In case the MAC layer adopts multiple retransmission, these
values are understood as the cumulated rate that is estimated for all retransmissions.
Over the path, each video packet has its length fixed, denoted as Lp. In reality,
NACK messages may be cut off partially as they are forwarded toward the sender,
depending on how many cache-hits are found at each intermediate node (see Chapter
5). However, for simplicity, we assume that the length of a NACK message under
consideration is Lr.

The probability that a packet of length Lp successfully passes hop i is calcu-
lated as:

P p
i = (1−BERf

i)Lp (A.1)

while the probability for a NACK message of length Lr to successfully traverse the
hop is:

P n
i = (1−BERb

i)
Lr (A.2)

In case of passive retransmission, only the sender node can regenerate the
lost packet(s). The end-to-end successful rate for the video packet and the NACK
message accordingly are as follows:

Figure A.1: Multi-hop transmission path of n nodes.

135

P p =
n∏

i=1

(1−BERf
i)Lp (A.3)

P n =
n∏

i=1

(1−BERb
i)

Lr (A.4)

A retransmission round is successful when the NACK message is correctly received
by the sender node and the packet successful arrives at the receiver node. So, the
success rate of the retransmission round is calculated as:

P re
success =

n∏
i=1

(1−BERf
i)Lp ×

n∏
i=1

(1−BERb
i)

Lr (A.5)

In the proactive framework, when cache-hit occurs at a node h, all the hops
from 1 to h do not get involved in transmission of both the packet and the NACK
message. The success rates for the packet and the NACK message are determined
as:

P p =
n∏

i=h+1

(1−BERf
i)Lp (A.6)

P n =
n∏

i=h+1

(1−BERb
i)

Lr (A.7)

The success rate for the retransmission is accordingly expressed as:

P re
success =

n∏
i=h+1

(1−BERf
i)Lp ×

n∏
i=h+1

(1−BERb
i)

Lr (A.8)

This means that the success rate is multiplied by:

∆P re
success =

1∏h
i=1(1−BERf

i)Lp × (1−BERb
i)

Lr
(A.9)

compared to the passive retransmission.
For the packet to correctly arrived at the receiver node after a retransmission

round, both the NACK message and the packet must successfully pass all the hops.
The success is therefore approximately estimated as:

∆P re
success =

1∏h
i=1(1−BERf

i)Lp × (1−BERb
i)

Lr
(A.10)

As long as a particular packet does not get stale, it can be retransmitted again
and again until it correctly reaches the receiver node. The maximum allowable
number of retransmissions is determined by how long does a retransmission take.
In the passive retransmission case, the number is calculated as:

κpassive =
Dthres∑n

i=1(d
f
i + db

i)
(A.11)

136

where Dthres is the maximum allowed delay of video packets, df
i and db

i respectively
denote the delay values on hop i for the packet and for the NACK message, in forth
and back direction.

Now consider the proactive case in which cumulated delay is reduced since both
the packet and the NACK messages traverse fewer hops. Actually, as retransmission
of a given packet happens again and again, cache-hit may take place at some node
closer and closer to the receiver in subsequent times; however, we pessimistically
assume that only node h holds the packet to response to the retransmission requests.
In this worst case, the maximum allowable retransmission times is calculated as:

κproactive =
Dthres∑n

i=h+1(d
f
i + db

i)
(A.12)

As a result, the overall gain factor regarding success rate can be estimated as:

∆Psuccess =
1∏h

i=1(1−BERf
i)Lp × (1−BERb

i)
Lr
×

∑n
i=1(d

f
i + db

i)∑n
i=h+1(d

f
i + db

i)
(A.13)

137

Chapter B

GENERATING NACK MESSAGES AT RECEIVER
As stated in Chapter 4, NACK messages are only generated when the receiver

node detects loss of packet(s). To avoid excessive overhead, successfully received
packets are not acknowledged. The source code file that generates NACK messages
is shown below.

/**

NackHandler.cpp - description

begin : Thu Jan 26 2006

copyright : (C) 2006 by Tien Pham van

email : tienpv@nb-ram25

**/

#include <NackHandler.h>

using std::list;

using std::map;

/* functions prototypes */

void predict_frame_type(short& id, char& t);

char predict_gop(short& fr_id);

char predict_pos(short& fr_id);

/* global variable */

extern map<short, MPEGFrame*> frameArray;

extern Frame_str mpegPacketArray[];

extern int s, ns;

extern sockaddr_in sa, nsa;

extern char up_host_pri[], up_host_sec[], last_segm_id;

extern short curr_id_conv, last_id_conv, expected_id;

extern pthread_mutex_t a_mutex;

extern pthread_cond_t got_request;

extern sem_t pk_sem;

short last_nacked_frame_offset;

unsigned int last_nacked_time;

extern bool too_many_forward_frames_not_arrive;

void* nh_process(void* data)

{

short i, res;

short frame_offset;

char segm_offset, pre_fr_type; // 1: BL, 2: EL, 3: both

bool to_bl, to_el, stalled;

138

char nack_data[MAX_NACK_FRAMES+2];

unsigned int time_now;

timeb tm;

char *NackBuf;

NackBuf = (char*)malloc(NACK_SIZE * sizeof(char));

nsa.sin_addr.s_addr = inet_addr(up_host_pri);

#ifdef DEBUG

printf("Nack Thread started. Uphost: %s\n", up_host_pri);

#endif

//initialization before processing NACK

last_nacked_frame_offset = -1;

while(1)

{

pthread_cond_wait(&got_request, &a_mutex); // from frame_timer

segm_offset = last_segm_id;

stalled = too_many_forward_frames_not_arrive;

frame_offset = stalled ? expected_id % TRACE_SIZE :

last_id_conv % TRACE_SIZE;

pthread_cond_signal(&got_request);

ftime(&tm);

time_now = TIME_NOW;

if (stalled)

{

printf("stalled\n");

nack_data[0] = (predict_pos(frame_offset) << 3) | 7;

nack_data[1] = (predict_gop(frame_offset) & 15);

}

else

{

if (frameArray[frame_offset]->segm_num == 1)

nack_data[0] = (frameArray[frame_offset]->frame_pos << 3)

| 7;

else

nack_data[0] = (frameArray[frame_offset]->frame_pos << 3)

| (7 & segm_offset);

//actually, gop need only 4 bits for coding

nack_data[1] = (frameArray[frame_offset]->frame_gop & 15);

}

if ((frame_offset <= last_nacked_frame_offset) || stalled)

{

//routers should not update RTT with this nack

nack_data[1] = 64 | nack_data[1];

}

res = 1; // count lost frames/segments #

to_bl = false; to_el = false;

139

//start to scan for lost frame

for (i = frame_offset - MAX_NACK_FRAMES; i < frame_offset-3;

i++)

{

if (i < 0) continue;

if (!frameArray.count(i)) //frame definitely lost

{

//predict the frame type;

predict_frame_type(i, pre_fr_type);

//decide if nack is sent over bl, el, or both

switch(pre_fr_type)

{

case 0: //fail to predict

case 1: //type I

case 2: //type P

case 4: //type H

to_bl = true;

to_el = true;

break;

case 3:

to_el = true;

break;

default:

printf("predict_frame_type() return weird value\n");

break;

}

//only request for retrans if the frame still not

missing deadline

if ((time_now < mpegPacketArray[i].deadline -

FRAME_PERIOD) && (time_now - mpegPacketArray[i].

last_request_stamp >= NACK_PERIOD))

{

res++;

nack_data[res] = (char)(((frame_offset-i-1) << 4)

| 7);

mpegPacketArray[i].last_request_stamp = time_now;

}

}

else // found the pointer of the frame

{

//found, but segments may be lost

if (frameArray[i]->segm_num > 1)

{

for (int j = 0; j < frameArray[i]->segm_num; j++)

{

140

if (frameArray[i]->segments[j] != NULL)

if (frameArray[i]->segments[j]->segm_state == 0)

{

//this segment is really lost

predict_frame_type(i, pre_fr_type);

//decide if nack is sent over bl, el, or both

switch(pre_fr_type)

{

case 0: //fail to predict

case 1: //type I

case 2: //type P

case 4: //type B

to_bl = true;

to_el = true;

break;

case 3:

to_el = true;

break;

default:

printf("predict_frame_type() return weird

value\n");

break;

}

//only request for retrans if still not deadline

if ((time_now < mpegPacketArray[i].deadline -

FRAME_PERIOD)

&& (time_now - mpegPacketArray[i].segments[j].

last_request_stamp

>= NACK_PERIOD))

{

res++;

nack_data[res] = (char)(((frame_offset-i-1) <<

4) | (j & 7));

mpegPacketArray[i].segments[j].last_request_stamp

= time_now;

}

}

}

}

}

}

#ifndef MULTIPATH

to_bl = true;

to_el = false;

#endif

141

if ((res > 1) && (time_now - last_nacked_time >= NACK_PERIOD))

{

//nsa.sin_family = AF_INET;

nsa.sin_port = htons(nack_port);

if (to_bl)

{

//add information to indicate that this nack sent over

//bl path

nack_data[1] = (32 | nack_data[1]);

nack_data[res+1] = 124;

nack_data[res+2] = 124;

nsa.sin_addr.s_addr = inet_addr(up_host_pri);

i = sendto(ns, nack_data, res + 3, 0,

(struct sockaddr *) &nsa, sizeof(nsa));

if (i < 0) printf("nack sent over BL fail\n");

if (last_nacked_frame_offset != frame_offset)

last_nacked_frame_offset = frame_offset;

}

#ifdef MULTIPATH

if (to_el)

{

nsa.sin_addr.s_addr = inet_addr(up_host_sec);

nack_data[res+1] = 124;

nack_data[res+2] = 124;

i = sendto(ns, nack_data, res + 3, 0,

(struct sockaddr *) &nsa, sizeof(nsa));

if (i < 0) printf("nack sent over EL fail\n");

if (last_nacked_frame_offset != frame_offset)

last_nacked_frame_offset = frame_offset;

}

#endif

last_nacked_frame_offset = frame_offset;

}

// if it is HEART_BEAT, then send anyway

if ((frame_offset % HEART_BEAT == 0) && (res == 1)

&&(last_nacked_frame_offset != frame_offset))

{

nack_data[1] = (32 | nack_data[1]);

nsa.sin_port = htons(nack_port);

nsa.sin_addr.s_addr = inet_addr(up_host_pri);

i = sendto(ns, nack_data, 2, 0,

(struct sockaddr *) &nsa, sizeof(nsa));

if (i < 0) printf("nack sent over BL fail\n");

if (last_nacked_frame_offset != frame_offset)

last_nacked_frame_offset = frame_offset;

142

#ifdef MULTIPATH

nsa.sin_addr.s_addr = inet_addr(up_host_sec);

i = sendto(ns, nack_data, 2, 0,

(struct sockaddr *) &nsa, sizeof(nsa));

if (i < 0) printf("nack sent over EL fail\n");

#endif

}

last_nacked_time = time_now;

} // of while (1)

}

/* End of code */

143

