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REALISABILITY AND LOCALISATION

BIRGIT HUBER

ABSTRACT. Let A be a differential graded algebra with cohomology ring H*A. A gra-
ded module over H* A is called realisable if it is (up to direct summands) of the form
H*M for some differential graded A-module M. Benson, Krause and Schwede have
stated a local and a global obstruction for realisability. The global obstruction is given
by the Hochschild class determined by the secondary multiplication of the A-c-algebra
structure of H* A.

In this thesis we mainly consider differential graded algebras A with graded-com-
mutative cohomology ring. We show that a finitely presented graded H* A-module X
is realisable if and only if its p-localisation X, is realisable for all graded prime ideals
pof H*A.

In order to obtain such a local-global principle also for the global obstruction, we
define the localisation of a differential graded algebra A at a graded prime p of H* A,
denoted by A,, and show the existence of a morphism of differential graded algebras
inducing the canonical map H*A — (H* A), in cohomology. The latter result actually
holds in a much more general setting: we prove that every smashing localisation on
the derived category of a differential graded algebra is induced by a morphism of
differential graded algebras.

Finally we discuss the relation between realisability of modules over the group
cohomology ring and the Tate cohomology ring.

ZUSAMMENFASSUNG. Sei A eine differenziell graduierte Algebra mit Kohomologiering
H*A. Ein graduierter H* A-Modul heif3t realisierbar, falls man ihn (bis auf direkte
Summanden) mit einem H*A-Modul von der Form H*M identifizieren kann, wobei
M ein differenziell graduierter A-Modul ist. Benson, Krause und Schwede haben ein lo-
kales und ein globales Hindernis fiir Realisierbarkeit angegeben. Das globale Hindernis
ist durch eine Hochschild Klasse gegeben, welche durch die sekundére Mulitplikation
der Aoo-Algebra-Struktur von H* A bestimmt ist.

In dieser Doktorarbeit betrachten wir hauptséchlich differenziell graduierte Alge-
bren A mit graduiert-kommutativen Kohomologieringen. Wir zeigen, dass ein endlich
prisentierter graduierter H* A-Modul X genau dann realisierbar ist, wenn dessen p-
Lokalisierung X, fiir alle graduierten Primideale p von H™* A realisierbar ist.

Um ein solches Lokal-Global Prinzip auch fiir globale Realisierbarkeit zu formu-
lieren, definieren wir die Lokalisierung einer differenziell graduierten Algebra A an
einem Primideal p von H*A und bezeichnen sie mit A,. Wir zeigen die Existenz ei-
nes Morphismus von differenziell graduierten Algebren, der in der Kohomologie die
kanonische Abbildung H*A — (H*A), induziert. Letzteres Resultat beweisen wir in
einem wesentlich allgemeineren Kontext: Wir zeigen, dass jede mit direkten Summen
kommutierende Lokalisierung der derivierten Kategorie einer differenziell graduierten
Algebra von einem Morphismus von differenziell graduierten Algebren induziert ist.

Abschliefilend diskutieren wir den Zusammenhang von Realisierbarkeit von Moduln
iiber dem Gruppen-Kohomologiering und dem Tate-Kohomologiering.
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1. INTRODUCTION

In this thesis we connect two algebraic concepts which seem unrelated at first sight:
realisability and localisation. Using some advanced methods from Homological Algebra,
we establish a local-global principle for realisability. Before we discuss our main results
in detail, let us first explain the concepts we deal with.

The starting point is a cohomology theory which assigns to a mathematical object X
its cohomology group H*X. Such cohomology theories arise for example in Algebraic
Topology, Algebraic Geometry, or in Representation Theory. Usually there exists some
commutative cohomology ring F such that H*X is naturally an E-module. Then an
E-module is realisable if it is up to isomorphism of the form H*X for some object X.

The assignment described above can be expressed in the language of categories and
functors: If H*: C — D is a functor between categories C and D, then realisability is
concerned with deciding whether an object D € D is isomorphic to an object in the
image of the functor H*.

In some specific representation theoretic context, Benson, Krause, and Schwede [5]
established a criterion for realisability. They investigated for a finite group G and a
field k£ the Tate cohomology functor

H*(G,—): Mod kG — Modg, H*(G, k)

from the stable module category Mod kG into the category of Z-graded modules over
the Tate cohomology ring H *(G, k). In this setting, realisability deals with deciding
whether a graded H*(G, k)-module X can be written as H*(G, M) for some module M
over the group algebra kG.

The stable module category Mod kG has some additional structure: it is a triangulated
category. The functor H *(G,—) commutes both with arbitrary direct sums and with
arbitrary products.

More generally, Benson, Krause and Schwede [5] consider a compactly generated
triangulated category 7 admitting arbitrary direct sums, and a cohomological functor

H*: T — Modg E

into the category of Z-graded modules over a cohomology ring E which preserves arbi-
trary direct sums and products.
For an arbitrary Z-graded E-module X, they have given a local obstruction

k(X) € Exty (X, X)

which is trivial if and only if X is a direct summand of H*M for some object M € 7.
Moreover, Benson, Krause and Schwede [5] show that if there exists an infinite se-
quence of obstructions

kn(X) € Ext? (X, X), n > 3,

where the class £, (X) is defined provided that the previous one k,_1(X) vanishes,
then it even holds X = H*M. In this sequence of obstructions all but the first one
depend on choices. Only k3(X) is uniquely determined and actually, it equals the local
obstruction x(X). It is remarkable that, despite of the necessity of an infinite sequence
of obstructions to decide if X =2 H*M, the first obstruction already tells whether X is
a direct summand of H*M.
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Since we mainly deal with the latter question, we call a Z-graded E-module X reali-
sable if it is a direct summand of H*M for some M € 7. If X = H*M, then we refer
to a strictly realisable module.

The triangulated categories for which realisability is particularly interesting arise as
derived categories of differential graded algebras, or shortly, dg algebras. Such algebras
are complexes with an additional multiplicative structure. They have their origin in
Algebraic Topology [14] and encode topological invariants. Derived categories of dg
algebras were first studied systematically by Bernhard Keller [27].

If A is a dg algebra, then realisability is concerned with deciding whether a graded
module over the cohomology ring H*A is (up to direct summands) isomorphic to a
cohomology module H*M, where M is a dg A-module. The functor in question is

H*: D(A) — Modg, H* A,

where D(A) denotes the derived category of the dg algebra A. Benson, Krause and
Schwede [5] show that this setting even admits a global obstruction for realisability. For
this purpose, they use a result of Kadeishvili [26] saying that H* A admits an A.-algebra
structure. The global obstruction arises as the Hochschild class uq € HH>~1(H*A)
determined by the secondary multiplication m? "A of H*A: if the canonical class p 4 is
trivial, then all Z-graded H*A-modules are realisable [5].

The other main concept we consider is localisation. This is an algebraic concept which
has its origin in Geometry. In Commutative Algebra, the localisation of a commutative
ring R by a multiplicatively closed subset S of R is a uniquely determined ring of
fractions S~'R with the property that each s € S is made invertible in S™'R. Similarly,
one defines a module S~'M which is a module over ST'R. One considers in particular
multiplicatively closed subsets S C R which are the complement of a prime ideal p of
R. The ring of fractions is then denoted by R, and the module S~'M by M,. The
ring of fractions Ry is a local ring, and many results on commutative rings or modules
over commutative rings can be proven more easily under the assumption that the ring
in question is local. The local-global principle says that an assertion holds if and only
it holds in localisation at every prime ideal. It is a classical principle of Commutative
Algebra.

Many rings which arise in Representation Theory of Groups or Algebraic Topology are
not commutative, but still, their elements commute up to a sign which depends on the
degree of the elements. Therefore these rings are called graded-commutative. Examples
are the group and Tate cohomology ring of a group or the singular cohomology ring
H*X of a topological space X. These examples arise as cohomology of a dg algebra.
Also many other dg algebras do not have a commutative, but still a graded-commutative
cohomology ring.

Although these rings are not strictly commutative, still many results from Commuta-
tive Algebra can also be proven in this more general setting. In particular, localisation
at prime ideals can be done similarly as in classical Commutative Algebra. This is
folklore knowledge for some experts, but there seems to be no published account. For
this reason, we provide some material on rings of fractions in the graded-commutative
setting in Section 3.1.

We will also consider localisation of triangulated categories. In the 1960s, Gabriel and
Zisman [20] introduced the Calculus of Fractions for arbitrary categories, generalising
the classical localisation of modules. This was used by Verdier in his these [54] to
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study localisation of triangulated categories and in particular, to construct the Verdier
quotient.

In this thesis we show that there is a strong relation between realisability and locali-
sation. We prove relations in several settings.

In Chapter 11 we consider differential graded algebras A having a graded-commutative
cohomology ring H*A. We show that if a graded H*A-module X is realisable, then so
is X}, for every graded prime ideal of H*A. Our main result of Chapter 11 is

Theorem 1.1 (Local-global principle). Let A be a dg algebra over a commutative ring
such that H*A is graded-commutative and coherent. The following conditions are equi-
valent for a finitely presented, graded H* A-module X :

(1) X is realisable.
(2) Xy is realisable for all graded prime ideals p of H*A.
(3) X is realisable for all graded mazimal ideals m of H* A.

We will prove such a local-global principle also for global realisability in Chapter 12.
Before we give a precise formulation of this result, let us first explain the contents of
Chapter 9.

The results stated in Chapter 9 are joint work with K. Briining [8] and also deal with
a realisability problem, however in a different setting. We consider smashing localisation
functors on derived categories of dg algebras, that is, localisation functors of triangulated
categories which commute with arbitrary direct sums. We show that every smashing
localisation on the derived category of a dg algebra can be realised by a morphism of
dg algebras. More precisely, we will prove

Theorem 1.2 (joint work with K. Briining). Let A be a dg algebra over a commutative
ring and L: D(A) — D(A) a smashing localisation. Then there exists a dg algebra Ap,
with the property that D(Ar) ~ D(A)/ Ker L, and the map

D(A)(A, A)" — D(A)(LA,LA)*, [~ L(f),
is induced by a zigzag of dg algebra maps
AZ A S A

That is, there exists a dg algebra A’ quasi-isomorphic to A and a morphism of dg algebras
p: A" — Ap such that in cohomology, we have the commutative diagram

H*A

|~

D(A)(A, A)* —L D(A)(LA, LA)*.

Moreover, if A is a coftibrant dg algebra, then there exists a morphism A — Ap which

induces the algebra map D(A)(A, A)* — D(A)(LA, LA)* in cohomology.

We focus in particular on the following special case: Let A be a dg algebra with graded-
commutative cohomology ring, p a graded prime ideal of H*A and L,: D(A) — D(A)
the smashing localisation with the Ly-acyclic objects being those X € D(A) such that
(H*X)p = 0. Then we denote

Ap - ALP
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and call the dg algebra Ay localisation of A at a prime p in cohomology. The cohomology
of A, satisfies H*(Ap) = (H*A), as graded rings, and with this identification, the
canonical map H*A — (H*A), is the cohomology of a zigzag of dg algebras

A AL A,

In Chapter 12 we consider dg algebras A with graded-commutative cohomology ring.
Our main result in this chapter is a local-global principle for global realisability. For this
purpose, we state a global obstruction for the p-local modules, i.e. those graded H*A-
modules with the property that X = X,. Here we use the dg algebra A, constructed
in Chapter 9: this obstruction arises from the A.-structure of (H*A), = H*(A).
Actually, we show that the canonical Hochschild class pa, € HH*1(H*(4,)), which
is a global obstruction for the graded H*(A,)-modules due to Benson, Krause and
Schwede [5], is also a global obstruction for the p-local H* A-modules.

In order to relate the global obstruction ps € HH*~1(H*A) for the H* A-modules and
the global obstruction pa, € HH3’_1(H*AP) for the p-local H* A-modules, we construct
a map of Hochschild cohomology rings

I': HH*(H*A) — HH™*(H* A,)

which has the property I'(ua) = pa,. This is the key to prove that also the global
obstruction behaves well under p-localisation:

Theorem 1.3 (Local-global principle). Let A be a differential graded algebra over a
field k such that H*A is graded-commutative. Assume that the algebra H* A°P @y (H* A)
is Noetherian. Then the following conditions are equivalent:

(1) pa € HA>~Y(H*A) is trivial.

(2) pa, € HH3~Y(H*Ay) is trivial for all graded prime ideals p of H*A.

(3) pa, € HA> Y (H*Ay,) is trivial for all graded mazimal ideals m of H*A.

In the last chapter of this thesis, we focus on realisability in the context of group
representation theory. We study the relation between realisability over the group coho-
mology ring H*(G, k) and the Tate cohomology ring H “(G, k), where k is a field and G
a finite group. Note that H*(G, k) can be viewed as a subalgebra of H*(G, k).

For the group cohomology ring, the appropriate realisability setting is given by the
functor

K (Inj kG) (ik,—)*
_

K (Inj kG) Modg, H*(G, k),

where K(Inj £G) is the homotopy category of injective kG-modules.

The group cohomology ring H*(G, k) has better properties than the Tate cohomology
ring H *(G, k) which, for instance, is not Noetherian in general. However, when it comes
to the source categories of realisability, the stable module category Mod kG is more
“handsome” than the homotopy category K(InjkG). This is the reason why we are
interested in studying the relation of realisability over group and Tate cohomology.

The triangulated categories K(Inj kG) and Mod kG are related by a smashing locali-
sation

R
K (Inj kG) < Mod kG
Q
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and we are now concerned with finding a relation between realisability and this locali-
sation of triangulated categories.

We study realisability of fixed modules as well as global realisability. Note for the lat-
ter that both H*(G, k) and ﬁ*(G, k) are the cohomology of a dg algebra and thus, they
admit an A,-structure yielding global obstructions denoted by ug € HH>~1(H*(G, k))
and fig € HH> 7Y (H*(G, k)).

The canonical class fi¢ has been computed for some groups GG by Benson, Krause and
Schwede [5], and by Langer [37]. We consider the same groups and compute the global
obstructions for the group cohomology rings. In many cases, the Hochschild classes
pe € HH> Y (H*(G, k) and fig € HH> ' (H*(G, k)) turn out to behave surprisingly
similar. As a first explanation, we show that the algebra morphism H*(G, k) — H* (G, k)
is the cohomology of a zigzag of dg algebra morphisms. Then we are ready to prove the
main result of this chapter, which is, in some parts, also an application of our results on
Hochschild cohomology from Chapter 12:

Theorem 1.4. Let G be finite group, k a field of characteristic p > 0 and assume that
p divides the order of G. If the Hochschild class i € HH> Y (H*(G, k)) is trivial, then
50 is the Hochschild class ug € HH>“L(H*(G,k)). If the p-rank of the group G equals
one, then i is trivial if and only if pg is trivial.

In general, the last statement is not true for groups with p-rank at least two, as we
show by giving a counter-example.

Organisation. Our main results, as stated above, can be found in the Chapters 9, 11,
12 and 13. At the end of each of these chapters, we point out related open questions.

In the second chapter we recall facts about triangulated categories and introduce
briefly those triangulated categories that we deal with in this thesis.

A short review on graded rings and modules can be found in the third chapter. We
focus on localisation of graded-commutative rings in Section 3.1.

In Chapter 4 we introduce group and Tate cohomology rings and state their basic
properties.

Hochschild cohomology of graded rings is discussed in Chapter 5. In particular, we
study the multiplicative structure of the Hochschild cohomology ring HH**(A) of a
graded algebra A. We show that for elements ¢ € HH™*(A) and € HH™/(A), we have
the commutativity relation ¢ - n = (—1)™*(—1)¥5 - ¢, where the multiplication is given
by the Yoneda or the cup product. Hochschild cohomology rings of non-graded rings
are well-known to be graded-commutative, but we do not know of a published source of
this more general result. We will apply it to prove some of our results in Chapter 12.

In Chapter 6 we introduce differential graded algebras and discuss properties of their
derived categories.

A short introduction to As.-algebas is given in Chapter 7. In particular, for a dg
algebra A, we present Kadeishvili’s construction [26] of the secondary multiplication
mi" A H*A®3 — H*A of the An-algebra H*A.

Chapter 8 is about localisation in triangulated categories and contains important re-
quisites for our main results. After a short discussion of the Calculus of Fractions for
arbitrary categories due to Gabriel and Zisman [20] we focus on triangulated categories.
In particular, we introduce the Verdier quotient [54] and consider localisation sequences
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of triangulated categories. In Section 8.6 we state a theorem of Krause [36] on cohomo-
logical localisation and prove some results together with K. Briining [8] which apply in
particular to cohomological p-localisation.

In Chapter 10 we give a short review of the results of Benson, Krause and Schwede [5]
and introduce their local and global obstruction for realisability, as discussed above. We
focus especially on realisability in the setting of dg algebras.

Notations and conventions. Unless otherwise stated, modules are always considered
to be right modules. In particular, we denote by Mod R the category of right R-modules
and by mod R the category of finitely generated right R-modules over a ring R. If R
is self-injective, then Mod R resp. mod R denote the stable module categories of Mod R
resp. mod R.

When we talk about graded rings and modules, we always mean Z-graded rings and
modules. If R is a graded ring and it is clear from the context that we mean graded R-
modules, then we sometimes speak of R-modules. We denote by Modg, R the category
of graded right R-modules, where the morphisms are the homogeneous graded R-linear
maps of degree zero. By Hom’é(M ,N) we denote the homogeneous graded R-linear
maps M — N rising the degree by i € Z, and we write Homp (M, N) for Hom%(M, N).
Moreover, we set Hom (M, N) = [],, ., Homz (M, N).

Cohomology of graded modules over a graded ring R is bigraded; the first index gives
the cohomological degree and the second, internal degree arises from the grading of R.
For example, for ¢ > 0 and j € Z we have

Ext?/ (M, N) = Exty (M, N[j)),

where [j] denotes the j-fold shift on Modg, R.

In particular, Hochschild cohomology of a graded algebra A, denoted by HH**(A), is
bigraded. Note that only the first grading is changed by the differential.

For the homotopy category of complexes in an additive category A we write K(A),
and the derived category of an abelian category A is denoted by D(.A). For the derived
category D(Mod R) of a ring R we write shortly D(R).

All dg algebras considered in this thesis are supposed to have a differential of de-
gree +1. So the homology of these dg algebras is, in fact, cohomology, and throughout
this thesis, we speak of cohomology. If A is a dg algebra, then we denote its cohomology
ring by H*A, and the homotopy resp. derived category of A will be denoted by K(A)
resp. D(A).

The symbol ~ indicates a quasi-isomorphism and the symbol 2 is used for isomor-
phisms of objects in categories. Equivalences of categories are indicated by ~.

The set of morphisms X — Y in a category C is denoted by C(X,Y") or Hom¢(X,Y).
If 7 is a triangulated category, then we denote its suspension functor by ¥ or [1]. For
i € Z, we write T(X,Y)? for 7(X,%X'Y) and we denote

T(X, V) =][T(x,Y)"
1EZ

The composition of maps f: A — B and g: B — C is denoted by go f or gf; similarly
for functors.
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2. TRIANGULATED CATEGORIES

Triangulated categories were introduced independently by Verdier in his these [54],
and in Algebraic Topology by Puppe [44].

The purpose of this chapter is to state results on triangulated categories which we
will use later on. In particular, we recall examples of triangulated categories and fix
notation. For the definition of a triangulated category we refer to the book of Neeman
[43] or Krause’s notes [34].

Let 7 be a triangulated category. We denote the suspension functor by [1]: 7 — T
or X.: 7 — 7. A non-empty full subcategory S is a triangulated subcategory if

(i) S is closed under shifts, i.e. X € S if and only if X[1] € S.
(ii) S is closed under triangles, i.e. if in the exact triangle X — Y — Z — X[1] two
objects from {X,Y, Z} belong to S, then also the third.

A triangulated subcategory S is called thick if it is closed under direct factors, that is,
a decomposition X = X’ IT X" for X € S implies X’ € S.

A triangulated subcategory S admitting arbitrary direct sums is called localising. If
S is localising, then it is already a thick subcategory ([43, Rem. 3.2.7]).

Let NV be a class of objects in 7. The triangulated subcategory generated by N is
the smallest full triangulated subcategory which contains A/. We refer to [34, Ch. 2.8]
for an explicit construction.

If 7 admits arbitrary direct sums, then the triangulated subcategory generated by
N is the smallest full triangulated subcategory which contains N and is closed under
taking arbitrary direct sums. We denote this category Loc(N) since it is the smallest
localising subcategory that contains N.

An object X € 7 is called compact if the covariant Hom functor

T7(X,—): 7T — Ab
into the category Ab of abelian groups commutes with arbitrary direct sums.

We provide a useful criterion to prove that a category is generated by compact objects.

Lemma 2.1. [50, Lemma 2.2.1] Let 7 be a triangulated category with arbitrary direct
sums and M a set of compact objects. The following conditions are equivalent:
(1) T is generated by M, i.e. T = Loc(M).
(2) An object X € T is trivial if and only if there are no graded maps from M to
X, i.e. T(M,X[n]) =0 for all M € M and n € Z.

An exact functor T — S between triangulated categories is a functor preserving exact
triangles and shifts. More precisely, it is a pair (F,n), consisting of a functor F': 7 — S
and a natural isomorphism 7: F o [1]7 — [1]s o F such that for every exact triangle

x Ly % 7z 5 x[1), the triangle
rx Hopy B9 py 0P (pxn

is exact in §. The following proposition is useful to check whether an exact functor is
an equivalence. It is a version of ‘Beilinson’s Lemma’ [1].

Proposition 2.2. [48, Prop. 3.10] Let 7, S be triangulated categories admitting arbitrary
direct sums and F': T — § an exact functor preserving arbitrary direct sums. Suppose
that T has a compact generator C such that
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(1) FC is a compact generator of S, and
(2) the map
F:7(C,Cln]) — S(FC, FCIn])
is bijective for alln € Z.

Then F is an equivalence of triangulated categories.

Let 7 be a triangulated and A an abelian category. A functor F': 7 — A is called co-
homological if it sends each exact triangle in 7 to an exact sequence in A. In particular, if
X —-Y — Z — X]|1] is an exact triangle in 7, then F' gives rise to an infinite exact
sequence

-— F(Y[-1]) - F(Z]-1]) - FX - FY - FZ —- F(X[1]) - F(Y[1]) — ---

For a proof of the following well-known lemma, we refer to [34, Ch. 2.3].

Lemma 2.3. Let 7 be triangulated and X in T. The representable functors
T(X,—): T —Ab and T(—,X): T — Ab
are cohomological.

The following result is due to Neeman. It is a consequence of the Brown Repre-
sentability Theorem (see for example [34, Ch. 4.5]).

Proposition 2.4. [35, Prop. 3.3] Let F: S — T be a an exact functor between triangu-
lated categories, and suppose that S is compactly generated.
(1) There is a right adjoint T — S if and only if F' preserves arbitrary direct sums.
(2) There is a left adjoint T — S if and only if F' preserves arbitrary products.

Example 2.5. We introduce briefly the triangulated categories which are considered in
this thesis, in particular to fix notation. For detailed definitions, we refer to [34].

(1) Let A be an additive category and denote by C(A) the category of complexes in
A. The null-homotopic maps form an ideal in C(A) and the homotopy category K(.A)
is the quotient of C(A) with respect to this ideal. Denote by ¥: K(A) — K(A) the
equivalence which takes a complex X to its shifted complex ¥ X, defined by

(EX)" = X" and diy = —d¥.
Given a map a: X — Y of complexes, the mapping cone Cone(«) is the complex defined
_gn+1
in degree n by X" II Y™, and endowed with the differential dgone(a) = [ Ofiﬁl d%} It
fits into a mapping cone sequence
x4y 2 Cone(a) L ©X,
given in degree n by
v L) |
X" Oc—> yn L Xn—l—l Iy" ﬂ) Xn+1.

K(A) is triangulated, with the exact triangles being those isomorphic to a mapping cone
sequence as defined above.

(2) The derived category D(A) of an abelian category A is obtained from K(A) by
formally inverting all quasi-isomorphisms. D(A) is a triangulated category, where the

triangulated structure is induced by the one of K(A). More precisely, D(.A) carries a
unique triangulated structure such that the canonical functor K(A) — D(A) is exact.



14 BIRGIT HUBER

(3) In Chapter 6 we introduce differential graded algebras. If A is a differential
graded algebra, then the homotopy category K(A) and the derived category D(A) are
triangulated categories. This generalises the homotopy resp. derived category of a non-
graded algebra, viewed as differential graded algebra concentrated in degree zero.

(4) Let A be an exact category in the sense of Quillen [45]. Thus A is an additive
category with a distinguished class of sequences

o-x5v 2 z0

which are called exact. The exact sequences satisfy a number of axioms. In particular,
the maps « and 3 in each exact sequence as above form a kernel-cokernel pair. That
is, « is a kernel of 8 and [ is a cokernel of . A map in A arising as the kernel in
some exact sequence is called admissible mono, and a map arising as a cokernel is called
admissible epi. A full subcategory B of A is extension-closed if every exact sequence in
A belongs to B, provided that its end terms belong to 5.

Let A be an exact category. An object P € A is called projective if the induced
map Homy(P,Y) — Homy(P, Z) is surjective for every admissible epi Y — Z. Dually,
an object I is injective if the induced map Hom 4 (Y, I) — Homy (X, I) is surjective for
every admissible mono X — Y. The category A has enough projectives if every object
Z admits an admissible epi Y — Z with Y projective, and it has enough injectives
if every object X admits an admissible mono X — Y with Y injective. Finally, A is
called a Frobenius category if A has enough projectives and enough injectives and if both
coincide.

The stable category of a Frobenius category A is denoted by S(.A) and defined to be
the quotient of A with respect to the ideal Z of morphisms factoring through an injective
object. Thus

Homg4)(X,Y) = Homa(X,Y)/Z(X,Y)

for all X,Y in A.
We choose for each X € A an exact sequence

0-X—->IX)-XX -0

such that I(X) is injective. The morphism X — I(X) is called injective hull. One
easily checks that the assignment X +— X defines an equivalence on S(A). Every
exact sequence 0 — X — Y — Z — 0 fits into a commutative diagram

a B

0 > X *Y > Z 0
Lo
0 > X I(X) » XX >0

such that I(X) is injective. The category S(A) carries a triangulated structure, with
the exact triangles being those isomorphic to a sequence of maps

xXov 8l 70wy

as in the diagram above.

(4)(a) If A is a finite dimensional self-injective algebra, then Mod A is a Frobenius
category and obviously, ¥ equals the first cosyzygy ©2~!. We denote the stable category
S(Mod A) by Mod A and conclude that it has a triangulated structure.



REALISABILITY AND LOCALISATION 15

(4)(b) The homotopy category K(A) of an additive category A identifies with the
stable category of C(A), where the exact structure is induced by the degree-wise split
short exact sequences of complexes, see [34, Ch. 7.2].

(4)(c) Similarly, if A is a differential graded algebra, then the homotopy category K(A)
is the stable category of a Frobenius category. We provide more details in Section 6.2.

3. GRADED RINGS AND MODULES

In this section we introduce graded rings and modules, and state some properties of
the category of graded modules. In particular, we fix the sign convention we will use
throughout this paper. Unless otherwise stated, we mean graded right modules when
we speak of graded modules.

A Z-graded ring is a ring R together with a decomposition of abelian groups

R=]]R
SY/
such that RiRj g Ri+j.
A Z-graded module over a Z-graded ring R is an R-module M together with a de-
composition of abelian groups
M = ]_[ M;

1EZ
Satisfying MZRJ g Mi—i—j-

A Z-graded algebra over some commutative ring k is a graded ring A which also has
a graded k-module structure that makes A into a k-algebra. Note that the operation of
k on A has degree zero.

Throughout this thesis, we will talk about graded rings, graded algebras and graded
modules and always refer to Z-graded rings, algebras and modules.

Let M be a graded module over a graded ring R. The elements m € M; are called
homogeneous elements of degree i, and we denote the degree of m by |m|. For n € Z,
the n-fold shifted graded module M |n] is given by M[n]’ = M"*¢. We use the notation
Y"m when we view m € M™% as an element in M|n]".

If M, N are graded R-modules and n € Z, then an R-linear map f: M — N is called
homogeneous graded map or shortly, graded map of degree n if f(M;) C Ny, for all
Jj € Z. Note that f can also be considered as a graded map M — N|n| of degree zero.
We denote by Hom’; (M, N) the set of all graded maps M — N of degree n, and we
define

Homp(M, N) = [ [ Hom}(M, N).
neZ

The graded R-modules form a category denoted by Modg, R. The morphisms are the
graded maps of degree zero and we denote

Homp(M, N) = Hom% (M, N).

A graded R-module B C M is a graded submodule of M if the inclusion map is a
morphism in Modg, R. In this case, the quotient M /B also carries a natural grading. If
f+ M — N is a morphism in Modg, R, then Ker f, Im f and Coker f are graded modules.
Moreover, one can show that Mod, R is a Grothendieck category [40, Ch. 2.2].

The graded submodules of R are called graded right ideals. An arbitrary right ideal
I of R is graded if and only if it is generated by homogeneous elements.



16 BIRGIT HUBER

A graded R-module is graded free if it is a direct sum of shifted copies of R, or
equivalently, if it has an R-basis consisting of homogeneous elements. Note that it is not
enough to assume that the module is graded and free as non-graded module: Considering
R = 7Z x 7Z as graded ring concentrated in degree 0, the module F' = Z x Z endowed
with the grading Fy =7Z x 0, F1; = 0 x Z, and F; = 0 otherwise, is not graded free since
it cannot have an R-basis consisting of homogeneous elements.

A graded R-module is called graded projective if it is a projective object in the category
Modg, R, or equivalently, if it is a direct summand of a graded free R-module. Since
Modg, R is a Grothendieck category, it has enough injective objects. Those are the
graded injective modules.

Every graded R-module M admits a graded free presentation F; — Fy — M — 0,
i.e. Fy and F) are graded free modules. If both Fy and F; can be chosen to be finitely
generated, then M is called finitely presented.

A graded ring is right Noetherian if it is right Noetherian as a ring, i.e. every (not
necessarily graded) ideal is finitely generated. In this case, every finitely generated
graded R-module is already finitely presented.

If N is a graded R-module and ¢ > 0, j € Z, then one defines

Exty/ (M, N) = Ext’ (M, N[j)).

An element of Extléj(M ,N) can be represented by an exact sequence of graded R-
modules

0—N}j|l—-X;—--— X1 —>M-—0.

Assume now that R is a graded algebra over some commutative ring k. For graded
modules M and N the tensor product M ®; N is a graded module, where the degree i
component is given by

(M @ N); = H M, @, N,.
p+q=i
Let f: M — M’ and g: N — N’ be graded maps. Note that due to the Koszul sign
rule, in the tensor product f ® g there appears a sign:
(3.1) (f@g)man) = (=1)m f(m) @ g(n),

where m € M is homogeneous and n € N.
One also needs to involve signs to define the opposite algebra: R°P is again a graded
algebra, with multiplication

(3.2) o’ = (=)l
A graded right R-module can be viewed as graded left R°P-module by setting
rem = (=1)rmliyy,
If S is a graded k-algebra, then R ®j, S is a graded k-algebra with multiplication
(3.3) (r@s)(r' @s) = ()"l @ ss).

A graded (R, S)-bimodule M is simultaneously a graded left R-module and a graded
right S-module such that (rm)s = r(ms). The graded (R, S)-bimodules correspond to
the graded right modules over R°P ®, S.
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If M is a graded (R, S)-bimodule, then M[t] is a graded (R, S)-bimodule by setting
(3.4) re(Stm) - s = (=) St (rms).

Note that the shift functor M +— M][1] for graded right modules does not involve
any extra sign: we have (¥m) - r = X(mr). However, the sign in (3.4) appears when
translating graded right R-modules into graded left modules over R°P.

The graded rings we are particularly interested in arise as graded endomorphism rings
of objects of triangulated categories.

Example 3.1. Let 7 be a triangulated category with arbitrary direct sums and sus-
pension functor ¥. For objects M, N € T we write 7 (N, M)" =T (N,X'M). Then

T(N,N)*=[[T(N,N)
1€Z
is a graded ring, called the graded endomorphism ring of N, and T (N, M)* is a graded
7 (N, N)*-module by composition of graded maps.

3.1. Graded-commutative rings. A graded ring R is called graded-commutative if

rs = (—1)""”S|sr for all homogeneous elements r,s € R. Although such a ring is not

strictly commutative, many results about graded and commutative rings (which are

studied for example in [10]) can still be carried over. However, “Commutative Algebra

over graded-commutative rings” is rarely treated in literature. We provide definitions

and results about localisation of graded-commutative rings that we will need later on.
We like to thank Dave Benson for pointing out Remark 3.3 and Lemma 3.5.

3.1.1. Prime and maximal ideals. A graded right ideal m of a graded ring R is called
graded mazimal right ideal if m # R and moreover, for any graded right ideal a such
that m Ca C R, it holdsa=mor a= R. If b # R is a graded right ideal of R, then
there exists a maximal right ideal m containing b. If R is graded-commutative, a graded
(maximal) right ideal is a graded (maximal) ideal.

For an arbitrary ring R, a prime ideal p & R is an ideal such that for a,b € R, it
holds a € p or b € p whenever aRb C p. If R is graded-commutative, then this definition
simplifies as in the case of strictly commutative rings:

Definition 3.2. Let R be a graded-commutative ring. An ideal p & R is a prime ideal
if ab € p implies that a € p or b € p. The set of graded prime ideals p C R is called the
graded spectrum of R and denoted by Specg(R).

Actually, the prime spectrum of a graded-commutative ring can be identified with the
prime spectrum of a graded, strictly commutative ring:

Remark 3.3. Let R be a graded-commutative ring, and denote by n the ideal generated
by the homogeneous nilpotent elements. If x is a homogeneous element of odd degree, it
holds 222 = 0, and thus, 2z is nilpotent. Hence # = —z modn, and the factor ring R/n
is a graded, strictly commutative ring. Since n is contained in all graded prime ideals,
it follows that

Specgr(R) = Specg:(R/n).

Lemma 3.4. Let R be a graded-commutative ring and a C R a graded ideal.
(1) a is prime if and only if R/a is a domain.
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(2) a is a graded mazximal ideal if and only if every non-zero homogeneous element
of R/a is invertible.

Proof. (1) is trivial. For (2) note that all non-zero homogeneous elements of a graded-
commutative ring T are invertible if and only if the only graded ideals contained in T'
are (0) and 7. O

If R is graded commutative, then all non-zero homogeneous elements being invertible
implies that R is a domain. Thus every graded maximal ideal is prime.

3.1.2. Rings and modules of fractions. Let R be a (not necessarily graded) ring and S a
multiplicative subset with 1 € S. We define the right ring of fractions of R with respect
to S as a ring R[S™!] together with a ring homomorphism p: R — R[S™!] satisfying

(F1) p(s) is invertible for each s € S.

(F2) Every element in R[S™!] has the form p(r)p(s)~! with s € S.

(F3) p(r) = 0 if and only if there exists an element s € S such that rs = 0.

It is not immediately clear from these axioms that R[S™1!] is uniquely determined, but
it is, in fact, the case. We refer to [52, Ch. II].

Let S be a multiplicatively closed subset of R. The ring R[S™!] exists if and only if
the following conditions, called right Ore conditions, are satisfied:

(O1) If s € S and r € R, then there exist s’ € S and 7’ € R such that sr’ = rs’
(02) If r € R and s € S with sr = 0, then there exists s’ € S such that rs’ = 0.

If (O1) and (O2) are satisfied, then
R[S =Rx S/ ~,

where the equivalence relation ~ is given by

ror

s s
if and only if there exist u,v € R such that ru = r'v and su = s'v.

If the analogous left Ore conditions are satisfied, then there exists the left ring of
fractions [ST!]R. Furthermore, if both R[S™!] and [S™!|R exist, then they are isomor-
phic [52, II, Cor. 1.3].

If we now assume that R is graded and S a multiplicative subset of homogeneous
elements with 1 € S, then it suffices to check the Ore conditions on homogeneous
elements. Moreover, if R[S™!] exists, then it is a graded ring, where

deg (g) = deg(r) — deg(s)

for any homogeneous element r € R and s € S. [40, Ch. 8.1]

If R is graded-commutative, then the Ore conditions are trivially satisfied and the
right ring of fractions R[S™1] exists. One might want to define the equivalence relation
as for strictly commutative rings, but the transitivity fails for elements s € S of odd
degree. However, one easily checks

Lemma 3.5. Let R be a graded-commutative ring and S is a multiplicative closed subset
of homogeneous elements of R. Let Se, C S the subset of even-degree elements of S.
Then R[S™1] = R[S.,!] as graded rings and the equivalence relation simplifies into S g—;
with r,7" € R, s, € Sey, if and only if there exists t € Se, such that rs't = r'st. O
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Consequently, we may define the localisation of a graded-commutative ring R with
respect to a multiplicative subset S of homogeneous elements to be the ring

R[SY

ev

with the equivalence relation used in the strictly commutative case. Then addition and
multiplication are also defined as in that well-known case. We write S~!R for R[S_,}].
If M is a graded R-module, we define Mg, the localisation of M with respect to S as

S™TIM = R x S¢,/ ~,

with @ ~ Z‘—,/ if and only if ms't = m’st for some t € S,,. Obviously, S~!M is a graded
S~!R-module with the canonical structure and grading

deg (™) = deg(m) — deg(s),

where m € M is homogeneous and s € Se,.

Note that S~'R is flat as both left and right R-module, and that M@z S~ 'R = S~'M
as graded S~ R-modules.

Let a be a graded ideal of R and let S be the subset of homogeneous elements of R\ a.
Then we set M, = S~'M. Similarly as in classical Commutative Algebra, we have

Proposition 3.6 (Local-global principle). Let M be a graded R-module. The following
conditions are equivalent:

(1) M = 0.
(2) My =0 for all graded prime ideals p.
(3) My =0 for all graded mazimal ideals m.

Proof. We only need to show that (3) implies (1). Let x € M be any element. We
consider Ann(z)*, the largest graded ideal contained in Ann(z) = {r € R | ro = 0}.
Assuming that Ann(x)* is a proper graded ideal of R, we obtain a graded maximal
ideal m which contains Ann(z)*. Since My, = 0, there exists a homogeneous element
s in R\ m such that sx = 0. So s is contained in Ann(x)* and thus in m, which is a
contradiction. g

4. GROUP AND TATE COHOMOLOGY RINGS

Homology and Cohomology of groups has been considered since the 1940s. Inspired
by a work of Hopf [23] from 1941 in which he considers what today is called the second
homology group Hs2(G,Z) of a group G, Eilenberg and Mac Lane [18] started to study
systematically homology and cohomology of groups.

The Tate cohomology ring was invented by Tate, but these results were never pub-
lished by himself; the first published account is contained in the book of Cartan and
Eilenberg [15].

In the first section of this chapter we study group cohomology rings, and in the second
Tate cohomology rings.

We thank Dave Benson for many useful comments and pointing out references to the
author.
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4.1. Group cohomology rings. Let k be a commutative ring and G a finite group.
The ring k becomes a kG-module by trivial action of G. This module is called the trivial
module and also denoted by k.
If M is a kG-module and n > 0, then the n-th cohomology of G with coefficients in
M is defined to be
H"(G, M) = Extpq(k,M).
The Yoneda splice multiplication yields a k-bilinear, associative map (see [13, Sect. 6])
H"(G, M) x H(G, k) — H" (G, M),
defined as follows: If ( € H"(G, M) is represented by
EC:OHMHXOH--~HXnLk‘HO
and n € H'(G,k) by
En:0—>kL>Yb—>---—>Yl—>k—>0,

then the Yoneda splice product of ¢ and 7 is the class which is represented by the exact
sequence obtained by splicing together E; and Ey:

0—M—>Xo—— X, —)Yb‘) c— Y —k—0

We denote by K(Inj kG) the homotopy category of Inj kG, which is the full subcate-
gory Mod kG formed of the injective kG-modules. The category Inj kG is additive, and
it is closed under arbitrary direct sums, provided that kG is noetherian.

Write iM € K(InjkG) for an injective resolution of a kG-module M. With the
well-known identification

Extiq(k, X) = K(Inj kG)(ik, X" (i X))
for any X € Mod kG and m > 0, one can also form a k-bilinear, associative product by
composition of chain maps of injective resolutions:

H"(G, M) x H'(G,k) — H"" (G, M), (f,9)— X' (g)o f.
This product coincides with the Yoneda splice product (see [13, Sect. 6]).
With any of the two multiplications,
H*(G,k) = [[ H"(G, k)

n>0

is a graded ring (concentrated in non-negative degrees) and
H(G, M) =[] H"(G, M)

n>0

is a graded module over H*(G, k).

Note also that H*(G, k) is a graded-commutative ring [13, Cor. 6.9]. Due to Evens
and Venkov, it is Noetherian whenever k is.

Theorem 4.1 (Evens, Venkov). If k is Noetherian, then H*(G, k) is a finitely generated
k-algebra.
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4.2. Tate cohomology rings. Let k be a field of characteristic p > 0 and G be a finite
group such that p divides the order of G. We denote by Mod kG the stable module
category of kG. The objects are the same as in the module category Mod kG, but the
morphisms are given by

Hom, (M, N) = Homyg(M,N)/Z(M,N),

where Z(M, N) denotes the morphisms factoring through an injective object. The cat-
egory Mod kG is triangulated with shift functor Q~!, the first cosyzygy, see Exam-
ple 2.5(4)(a). An elementary proof for the fact that Mod kG is triangulated can be
found in Carlson’s book [13, Thms. 5.6, 11.4].

A Tate resolution or complete resolution of a kG-module X is an exact sequence of
projectives

tX: o s Py P PSP Py
with Imd = X. It can be constructed by splicing together a projective and an injective
resolution of X.

If M denotes a kG-module and n € Z, then the n-th Tate cohomology group of G with
coefficients in M is defined to be the n-th cohomology of the complex Homyq(tk, M)
and denoted by

H™(G, M) = Extyq(k, M).
The Tate cohomology groups identify with morphism groups in the stable module
category of kG: it holds

H™(G, M) = Hom, (k, Q" M),

see [13, Ch. 6]. Thus H*(G, k) = ez H™(G, k) becomes a graded ring with multipli-
cation
H™(G, k) x H™(G. k) — H"™™(G. k), (f,9) =~ Q"(f) oy,
and H*(G, M ) is a graded module over H*(G, k), also by composition of graded maps.
Since the non-negative part of the Tate resolution tk is a projective resolution of k,
we have H"(G, M) = H"(G, M) for n > 0, and we obtain an exact sequence

0— Z(k,M)— H*(G,M) — H*(G,M) — H (G, M) — 0,

where H~ (G, M) denotes the negatively graded part of Tate cohomology. In particular,
since Z(k, M) = 0 whenever M has no projective direct summands, we can view the
group cohomology ring as subring of the Tate cohomology ring. In fact, for the positively
graded part of H *(G, k), Yoneda splice multiplication and composition of graded maps
in the stable module category coincide [13, Sect. 6].

Proposition 4.2 (Tate duality). [15, XII, Cor. 6.5], [4, Sect. 2] Let D = Homy(—, k).
For any kG-module M, it holds

H""Y(G,DM) = DH™(G, M).

The Tate cohomology ring is graded-commutative [15, XII, Prop. 5.2]. In general, it
is not Noetherian. However, this is true in the so-called periodic case that we discuss
below. We omit the proof of the following well-known characterisation.

Lemma 4.3. The following are equivalent:

(1) The trivial module k admits a periodic projective resolution.
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(2) There exists n > 0 and an element = € H*(G, k) such that the map
H™G k) — H™ (G k), 7 —7-a,
s an isomorphism for all m € Z.

We call an element z € H™(G,k) satisfying (2) a periodicity generator, and from
Lemma 4.3, we infer

Lemma 4.4. In the periodic case, the Tate cohomology ring is a localisation of the group
cohomology ring:

H*(G,k) = STYH*(G, k),
where S is the multiplicative subset generated by the periodicity generator of lowest
degree. In particular, fI*(G, k) is Noetherian whenever it is periodic. O

Whether Tate cohomology is periodic or not depends on the p-rank of G, which is
the maximal rank of an elementary abelian p-subgroup of G and denoted by r,(G).

Theorem 4.5. [15, XII, Prop. 11.1] Let k a be field of characteristic p and G a group
with order divisible by p. Then the trivial module k admits a periodic resolution if and
only if rp(G) = 1.

The p-groups of p-rank one are characterised as follows:

Theorem 4.6. [21, Chapter 5, Theorem 4.10] Let G be a p-group. Then rp(G) =1 if
and only if G is cyclic or p =2 and G is a generalised quaternion group.

The generalised quaternion group QQon is given by the defining relations
Qo = (hg|h*" =g =bb* =1,9 " hg=h"")

and has order 2”1 see [21, Ch. 2.6]. In the special case n = 2, the group is called
quaternion group.

Remark 4.7. The Tate cohomology ring comes in three different types: It is periodic
if and only if the p-rank of the group G equals one. Whenever the depth of the group
cohomology ring H*(G, k) is at least two, then H*(G, k) is a trivial extension of H*(G, k)
by the negatively graded part H= (G, k) of H*(G, k) [3, Thm. 3.3]. That is in particular
the case if the p-rank of the centre of a p-Sylow subgroup of G is at least two ([17],
see also [3, Thm. 3.2]). But there are also cases where the Tate cohomology ring is
neither periodic nor a trivial extension: The smallest example is the semidihedral group
of order 16
SDig = (g,h|g® =1,h? =1,h tgh = ¢3).
The 2-rank of SDig is two and the depth of H*(SDj¢, k) equals one (see [3]).

5. THE HOCHSCHILD COHOMOLOGY OF A GRADED RING

Hochschild cohomology HH*(R) of an algebra R over some commutative ring k was
first defined by Hochschild in 1945 using the Bar resolution [22]. Cartan and Eilenberg
showed that HH*(R) is isomorphic to Exty. (R, R) whenever R is projective over k [15,
Ch. TX.6].

Hochschild cohomology of a graded algebra A is bigraded; it is denoted by HH**(A),
where the first index is the cohomological degree which is changed by the differential
and the second, internal one, arises from the grading of A. The difference between
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“usual” Hochschild cohomology and Hochschild cohomology of a graded algebras consists
basically in the occurrence of additional signs. However, sometimes it can be tedious to
figure them out.

In this chapter we introduce Hochschild cohomology of a graded algebra A with the
sign conventions as in [5]. In addition, we study in Section 5.3 the ring structure of
HH**(A). Hochschild cohomology HH*(R) of a non-graded algebra R is well-known to
be a graded-commutative ring (in the sense of Section 3.1) with multiplication given by
cup or Yoneda product. We show that for bigraded Hochschild cohomology HH**(A),
one additionally needs to take into account the internal degree: for ¢ € HH™(A) and
n € HH™ (M), we prove that ¢n = (—1)™"(—1)%n(.

Throughout this chapter let A be a graded algebra over a field k. We write A®™ for
the n-fold tensor product over k and denote a tuple A ®---®@\,, € A®" by (A, , \n).

For any graded (A, A)-bimodule M, the Hochschild cohomology of A with coefficients
in M is the cohomology of the bigraded complex C**(A, M) given by

(5.1) C™™(A, M) = Homj"(A®", M),

where n > 0 and m € Z. Note that the differential 6: C™™(A, M) — C"TL™ (A, M)
changes only the first grading. It is given by

BL) (A1, Ang1) = (D)™ N p(Ag, o M) +
> (=D (M- At Angn) + (D) oA An) Anga
=1

This construction obviously generalises the Hochschild complex in the non-graded case.

The Hochschild cohomology groups HH**(A, M) are the cohomology groups of the
complex C**(A, M),

HH*'(A, M) = H5(C*'(A, M) .

HH®*!(A, A) is abbreviated by HH%*(A).

Using the bimodule structure of M][t] given in (3.4), there is a natural isomorphism
of chain complexes

C*™(A, M) = C*O(A, M),

which induces a natural isomorphism of Hochschild cohomology groups

HH*'(A, M) = HH*°(A, M]t]).

5.1. Functoriality. The complex C**(A, M) and its cohomology groups HH**(A, M)
are covariant functors in the (A, A)-bimodule M: If f: M — N is a morphism of (A, A)-
bimodules, then we have a cochain homomorphism
CH(A, M) — C*(AN), ¢ fogp,
which induces the map
HH' (A, M) — HH* (A, N),  [¢] = [fo¢].

Furthermore, the Hochschild groups are contravariant functors in the graded algebra.
Let o : ' — A be a map of graded k-algebras. Then a (A, A)-bimodule M carries a
(T, T')-bimodule structure through the morphism . We obtain a cochain homomorphism

C’s’t(A, M) — C’S’t(F,M), 0 poa®s
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inducing the map
HH* (A, M) — HH*Y(T, M), [¢p] = [p o a®].

In general, we cannot expect o : I' — A to give rise to a map HH**(A) — HH**(T").
However, in the case that « is a flat epimorphism of rings, we will construct an al-
gebra homomorphism HH*'(A) — HH*!(T") induced by « in Chapter 12.1. For this
construction, we need the graded Bar resolution.

5.2. The graded Bar resolution. Let A® = A°? ® A. With the necessary precaution
on the signs (see (3.2) and (3.3)), this algebra is graded and we may identify graded
(A, A)-bimodules with graded right A-modules.

The graded bar resolution B = B(A) is a A°-projective resolution of A defined as
B, = B, = A®("t2) with A®-module structure given by

(A07 R )‘7’L+1)(M7 ,U,/) = <_1)WH)\OM)\”+II (M)‘07 )\17 s 7)‘717 An-}—lul)a
and with differential

(X0 Ani1) = D (=1 Aoy Midig 1,y Angr).
i=0
For the fact that B(A) is indeed a graded projective A¢-resolution of A, we refer to [5,
Sect. 4] and [15, Ch. IX.6].

Lemma 5.1. The map
(5.2) Hom},(A®*, M) — Hom}. (A®C+2) M), f s f,

where

FQo 5 Aei) = (DG F (A, A Asi,
is an isomorphism and extends to an isomorphism of chain complexes

(5.3) C*'(A, M) — Hom (B, M).
Consequently, we have
HH*Y(A, M) = H*(C*'(A, M)) = H*(Hom,.(B, M)),
and thus, it holds
HH*!(A, M) = Ext{ (A, M).
Of course, the Hochschild cohomology groups can also be computed with an arbitrary
graded A¢-projective resolution of A.

5.3. Ring structure. G. Hochschild [22] proved that Hochschild cohomology HH*(R)
of an algebra R admits a ring structure, with multiplication given by the cup product.
It is well-known that the cup product coincides with the Yoneda product (see [12, Prop.
1.1]) and makes HH*(R) into a graded-commutative ring (see for example [51]). In this
section we study the ring structure of bigraded Hochschild cohomology HH**(A) of a
graded algebra A.

There is a degree zero chain map A: B — B ®, B lifting the identity map of A, given
by

n
A()‘Oa to 7)‘7L+1) = Z()‘0> T )‘iv 1) A (L )‘i+17 te 7)\n+1)'
i=0
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For the non-graded case, this can be found for example in [51]. It carries over to our
case without any additional sign adjustment.

Let ¢ € HH™(A) be represented by a cocycle B™ — A of degree i, and represent
n € HH™ (A) by a (n, j)-cocycle B® — A. Then the cup product of ¢ and 7 is given by
the composition of graded maps

E—A—JB%@AB%A®AALA,

where v: A®@p A — A is the multiplication map. In order to write the cup product (Un
explicitly as a (m+mn,i+j)-cocycle B™™ — A, we need to take into account the Koszul
sign rule (3.1) and obtain

(5-4) (C U 77)()\0, T ’)‘m+n+1) = (_1)(‘)\0"” ’)\ml)'jg()\Oa < Amy 1)77(17 )‘m+1a e )‘m+n+1)-
The cup product makes HH**(A) into a bigraded ring, that is, a Z x Z-graded ring.

The Yoneda product ¢ = n is given through a graded lifting of n, i.e. a graded chain
map B — £"B which lifts . Here "B denotes the n-fold shift to the left of the complex
B without changing the signs in the differential. Note that the ‘internal’ degree of this
chain map is the degree of 7.

Now we adapt the proof for the non-graded case (see [12, Prop. 1.1]) to our setting
and show that cup product and Yoneda product coincide:

Proposition 5.2. Let ¢ € HH"™(A) and n € HH™(A) be represented by the (m,i)-
cocycle ¢: B™ — A and the (n,j)-cocycle n: B™ — A, respectively. Then it holds
CUn=Cxn.
Proof. In [12, Prop. 1.1], it is shown that 7j: B — £"B, defined by
B2 BoyB 22 Be, S"A L SMB,
is a lifting of . Actually, this is a graded lifting of internal degree j. Hence we may set
Cxn=¢n=CBanA.
The Koszul sign rule (3.1) permits the equations
(v=v((@X"A) and ((@T"N)B@n) =@
But then
Cxn=CrBnA

=v((@Y"AN)(B®n)A

=v((®@n)A

=qun. O

Now we are ready to prove

Theorem 5.3. HH**(A) is a bigraded-commutative ring: For ¢ € HH™(A) and n €
HH™I(A), we have

¢n = (=1)""(=1)"n¢,
where the multiplication is given by the cup or Yoneda product. *

lWith another sign convention one obtains a different result: (Un = (—1)(’"“)("“)770{ for ¢ €
HH™*(A) and n € HH™7 (A). Here the multiplication U arises by taking into account also the external
degree of the bigraded elements in the Koszul sign rule (3.1) and thus in the cup product (5.4). However,
starting with our sign convention, one can define a new multiplication by the rule n*¢ = (—1)n¢. This
new multiplication is then still associative, as is easily checked, and satisfies { xn = (71)(’"”)("“)77 * (.



26 BIRGIT HUBER

Proof. Let ¢ € HH™(A) and n € HH™(A) be represented by the (m,i)-cocycle
¢: B™ — A and the (n,j)-cocycle n: B™ — A, respectively. We carry over the proof of
[51, Thm. 2.1] to our bigraded case. There it is shown that the chain map ¢’: B — X"B
given by

¢: B"P — BP
()\07"‘ a)\p-‘rm-i-].) [ — (_1)mp(<()\07 7)\m7]-)7Am+17"' >)\p+m+1)

is a lifting of {. Since all C;? are homogeneous maps of degree i, we conclude that (' is
actually a graded lifting. Moreover, we have that

Uka C(on e 7)\m+n+1) = nCn()‘Oa e 7)‘m+n+1)
= (_1)mn77(<()\07 7)\m71>7)‘m+1a"' 7)\n+m+1)
= (_1)77171(_1)‘(()\0, ,>\m,1)\-j<()\07 Ty )‘mv 1)77(17 )\n+17 T 7)\n+m+1)
= (7]‘) (71)(%’»‘()\0’)\7”)‘)]4.()\07 a)‘m.al)n(17)\m+17"' 7)‘n+m+l)
On the other hand, it holds
(CUNNos s Amgngr) = (=D AIIIE(g Ay, DL, A1, -+ Amn1)-
We infer

mn

(= (=1)"(=1)CUn,
and the claim follows since cup and Yoneda product coincide by Proposition 5.2. O
Remark 5.4. We may identify the graded ring HH%*(A) with the graded centre of A,
Zgr(A) = {z € Ao\ = (=1)IM Xz for all X € A}, by the evaluation map
HHY(A) = Zgp (M), f = f(1),
which is easily checked to be well-defined and bijective.
5.4. The cup product pairing. Let ¢ € Hompe(Bs, A) be a (s,t)-Hochschild cocycle

B: \BS /Bs—l \BO \A 50

jij’

Tensoring ¢ over A with a homomorphism of graded right A-modules f: X — Y yields
the map

fOAp: X®pABs—Y
which is homogeneous of degree t. The complex B @, X is a projective resolution of
X in Modg, A, and since this construction commutes with the differential, f ®@x ¢ is a
(s,t)-cocycle:

B®pX: ot~ BOAX —Bs 1 A X — - —Byopa X —X—0

J{f®/\$0

Y

The cohomology class f U ¢ of f ®5 ¢ only depends on the cohomology class of the
cocycle ¢ and hence, we obtain a well-defined map

(5.5) U: Homp(X,Y)®p HH®(A) — Ext}(X,Y),
called the cup product pairing.
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6. DIFFERENTIAL GRADED ALGEBRAS AND THEIR DERIVED CATEGORIES

Differential graded algebras, or shortly, dg algebras were introduced by Cartan [14]
in 1956. They arise as complexes with an additional multiplicative structure. For
example, the endomorphism complex End(C') of a complex C' carries a natural dg algebra
structure. Derived categories of dg algebras or more generally, of dg categories, were
first studied systematically by Bernhard Keller in ‘Deriving DG Categories’ [27].

6.1. Differential graded algebras and modules. A graded algebra over a commu-

tative ring
A=]Ja"
neZ
is called a differential graded algebra or dg algebra if it carries a differential d: A — A,
i.e. a graded k-linear map of degree +1 with the property d? = 0, which is required to
satisfy the Leibniz rule

d(zy) =d(z)y + (—=1)"xd(y) forall ze€ A" and ye€ A.

The cohomology of A is a graded associative algebra over k and denoted by H*A.
A dg A-module is a graded (right) A-module X endowed with a differential d: X — X
satisfying the Leibniz rule

d(zy) =d(z)y + (—1)"zd(y) forall z€ X" and ye€ A

A morphism of dg A-modules is an A-linear map which is homogeneous of degree
zero and commutes with the differential. We denote the category of dg A-modules by
N[Oddg A.

A map f: X — Y of dg A-modules is null-homotopic if there is a graded A-linear
map p: X — Y of degree —1 such that f = dy cp + podx. The null-homotopic maps
form an ideal and the homotopy category KC(A) is the quotient of Modge, A with respect
to this ideal. The homotopy category carries a triangulated structure which is defined
in the same way as for the homotopy category K(C) of an additive category C.

A map X — Y of dg A-modules is a quasi-isomorphism if it induces an isomorphism
H"X — H™Y in each degree n € Z. The derived category of the dg algebra A is the
localisation of KC(A) with respect to the class S of all quasi-isomorphisms,

D(A) = K(A)[S71].

Note that S is a multiplicative system and compatible with the triangulation. Therefore
D(A) is triangulated and the localisation functor C(A) — D(A) is exact.

Remark 6.1. (1) Any graded algebra is a dg algebra A with differential zero. A non-
graded algebra R can be viewed as a dg algebra A with A = R and A" = 0, otherwise.
In this case, Modgs A can be identified with the category of complexes of R-modules
C(Mod R). Furthermore, C(A) identifies with K(Mod R), the homotopy category of
C(Mod R), and D(A) with D(Mod R), the derived category of complexes of R-modules.
In particular, the results we state in the following sections carry over to the derived
category of a module category over a non-graded algebra.

(2) Let X, Y be complexes in some additive category C. Then the complex Hom¢(X,Y)

is given by
[T T Home(xr, y7n),
ne€Z peEl
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with differential
d"(¢) =dyop—(—1)"pedx
for ¢ = (¢*)pez € Home(XP,YPT™). Note that
H" Home(X,Y) = Homg ) (X, X"Y)

because Kerd" identifies with Homgey(X,X"Y) and Imd"~! with the ideal of null-
homotopic maps X — X"Y. The composition of graded maps yields a dg algebra
structure for
Ende(X) = Home (X, X),
and Hom¢(X,Y) is a dg module over Ende(X).
(3) If A is a dg algebra and X,Y dg A-modules, then the homomorphism complex
Hom4(X,Y) is defined in an analogous way:

Homa(X,Y) = [ Hom} (X,Y),
nel

where Hom’j(X,Y") denotes the homogeneous graded A-linear maps X — Y rising the
degree by n € Z. The differential d": Hom’}(X,Y) — Hom’;™!(X,Y) is defined to be

d"(f) =dy o f—(=1)"fodx.
Also in this case, we have an isomorphism
H" Hom (X, Y) = Homy ) (X, Z"Y).
The endomorphism ring End(X) = Homa(X, X) is a dg algebra and Homa(X,Y) a
dg module over End 4(X) by composition of graded maps.

The following well-known lemma shows that the functor

D(A)(A,-)" = [[Pa)4,-)
1€EZ

is naturally isomorphic to the cohomology functor H*.

Lemma 6.2. Let A be a dg algebra and H* A its cohomology algebra. For any X € D(A),
the evaluation map

DA)(A, X)) — H*'X, [ f(1),
is a natural isomorphism of graded H* A-modules, where D(A)(A, X)* becomes a graded
H* A-module via the isomorphism D(A)(A, A)* = H*A.

It follows in particular that D(A) is compactly generated by A, the free dg A-module
of rank one.

J. Rickard [46] proved that the compact objects of D(Mod R), where R is a ring, are
the perfect complexes. A complex of R-modules is called perfect if it is quasi-isomorphic
to a bounded complex of finitely generated projective R-modules. The full subcategory
of perfect complexes of D(Mod R) is denoted by DP®"(Mod R).

This characterisation of the compact objects was extended to the derived category
D(A) of a dg algebra A by Neeman [41]. Here DP'(A) denotes the smallest thick
subcategory of D(A) containing A.

Proposition 6.3. [41], [34, Ch. 5.5]. A dg module is compact in D(A) if and only if it
is contained in DP"(A).
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6.2. K(A) as stable category of a Frobenius category. Let A be a dg algebra over
a commutative ring k. Then Modgs A is an exact category with respect to the exact
sequences of dg A-modules

0O X—-Y—-272—-0

which are split considered as sequences of graded A-module maps. Furthermore, Modggs A
is a Frobenius category (see Example 2.5(4) for a definition). The projective-injective
objects are the dg A-modules M & M|[1] with differential [§id], where M € Modgg A.
Since the maps factoring through an injective object are precisely the nullhomotopic
maps, the associated stable category coincides with the homotopy category K(A). We
refer to [28, Sect. 8.2.3] and [27, Sect. 2.2] for more details.

Lemma 6.4. Let ¢: X — Y be any morphism in C(A). Then ¢ can be represented
by a morphism X — 'Y in Modgs A which is a split monomorphism in the category of
graded A-modules.

Proof. Since KC(A) = S(Modgg A), we can choose a map of dg A-modules f: X — Y
that induces ¢ in the stable category. Let i: X — I(X) be the injective hull and
s: I(X) — X the graded A-linear map satisfying s oi = idxy. We set ¥ =Y @ I(X).
Then the map

(7] X > YalIX)
is clearly a monomorphism of dg A-modules that induces ¢ in the homotopy category,
and the graded A-module map

[os]: Y®I(X)— X

satisfies [0s] o [/] =idx. O
6.3. Homotopically projective and homotopically injective dg modules. We
use the terminology of Bernhard Keller, as presented in [28]. Throughout this section
let A be a dg algebra over some commutative ring k. We say that a dg A-module X is
homotopically projective if

K(X,Y)=0
for all acyclic dg A-modules Y.

Dually, X is called homotopically injective if
KY,X)=0

for all acyclic dg A-modules Y.
We denote by Kp(A) (resp. Ki(A)) the full subcategory of homotopically projective
(resp. homotopically injective) dg A-modules of K(A).

Theorem 6.5. [28, Sect. 8.1.6]
(1) For any dg A module X, there is a triangle
pX — X — aX — YXpX

in IC(A), where pX is homotopically projective and aX is acyclic. Any triangle
Z — X =Y — XZ with homotopically projective Z and acyclicY is isomorphic
to (pX, X,aX), and there is a unique such isomorphism extending the identity
of X.
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(2) For any dg A module X, there is a triangle
aX - X —iX —¥aX

in K(A), where iX is homotopically injective and a'X is acyclic. Any triangle
Z — X =Y — X7 with acyclic Z and homotopically injective Y is isomorphic
to (a'X, X,iX), and there is a unique such isomorphism extending the identity
of X.

In particular, each dg A module X is quasi-isomorphic to a homotopically projective
(resp. homotopically injective) dg A-module and we call

(6.1) pX — X resp. X —iX

an homotopically projective resp. homotopically injective resolution. In particular, the
assignments p and i can be shown to be functorial. Since they vanish on acyclic com-
plexes, they extend to functors D(A) — K(A). In fact, we have

Theorem 6.6. [28, Sect. 8.2.6]
(1) The composition
Kp(A) — K(A) 2 D(A)
s an equivalence of triangulated categories with quasi-inverse given by
p: D(A) — Kp(A).

More precisely, p induces a fully faithful left adjoint to the quotient functor
can: K(A) — D(A).
(2) The composition

Ki(A) — K(A4) == D(4)
s an equivalence of triangulated categories with quasi-inverse given by
i: D(A) — Ki(A).
More precisely, i induces a fully faithful right adjoint to the quotient functor
can: K(A) — D(A).
Corollary 6.7. For all dg A-modules X and Y, we have
K(A)(X,iY) =2 D(A)(X,iY) =ZD(A)(X,Y) =2 D(A)(pX,Y) = K(A)(pX.Y).

Remark 6.8. A dg A-module is homotopically projective if and only if it is chain
homotopy equivalent to a cofibrant dg module (see [48, Rem. 3.17]). A dg A-module X
is cofibrant if there exists an exhaustive increasing filtration by dg A-submodules

0=XoC X1 C---C X, C---

such that each subquotient X,,11/X,, is a direct summand of shifted copies of A. The
derived category D(A) can also be defined in the following way: The objects are the
cofibrant modules, and the morphisms are chain homotopy classes of dg A-module mor-
phisms.
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6.4. Derived functors. Let A and B be two dg algebras over a commutative ring k.
A dg (A, B)-bimodule is a graded (A, B)-bimodule which carries in addition a k-linear
differential d of degree +1 satisfying

d(axb) = (da)xb + (—1)Pa(dx)b + (—1)"T9ax(db)

foralla € AP, x € X9,b € B.

Let M be any dg A-module. To define the tensor product M ® 4 X of dg modules,
we first observe that the tensor product M ®j X is a dg B-module. As for graded rings,
the degree n component is defined to be

(MepX)"= J[ MPox9.
ptg=n

Additionally, we now have the differential
dim® z) = (dm) @ z 4 (=1)™m © dz.

Since the k-submodule generated by all differences ma ® x — m ® ax is stable under
both d and multiplication with elements of B, the quotient modulo this submodule is a
well-defined dg B-module which we denote by M ®4 X. Moreover, this construction is
functorial in M and X.

Let N be a dg B-module. Then Homp(X, N), as defined in Remark 6.1, is a right dg
A-module by setting

(fa)(z) = f(az).
Observe that — ® 4 X and Homp(X,—) induce functors between K(A) and K(B)

which form an adjoint pair

Homp(X,—)
K(A) — K(B)
—®A

We define the total left derived functor — ®ﬁ X as the composition

D(A) B K(4) =245 K(B) <2 D(B),
and the total right derived functor R Homp(X,—) as

Homp(X,—)
—_—

D(B) - K(B) K(A) 22 D(A).

Then the total derived functors also form an adjoint pair

R Homp(X,—)
%

D(A) D(B) .

—_—>
_®5X

In particular, we deduce from Proposition 2.4 that — ®£4‘ X preserves arbitrary direct
sums and R Homp(X, —) preserves arbitrary direct products.
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6.5. Cofibrant differential graded algebras. The category of dg algebras dga/k over
a commutative ring k admits a model category structure [49]. A model category is a
category with three distinguished classes of morphisms, the fibrations, cofibrations and
weak equivalences. These are required to satisfy certain axioms. An object C' in a model
category is called cofibrant if the morphism 0 — C is a cofibration. We refer to [24, Ch.
1.1] for details.

In the category dga/k, the fibrations are the degree-wise surjective dg algebra mor-
phisms and the weak equivalences equal the quasi-isomorphisms. A dg algebra is called
cofibrant if it is a cofibrant object in the model category dga/k, that is:

Definition 6.9. A dgalgebra A is cofibrant if for any morphism of dg algebras f: A — C
and every surjective quasi-isomorphism of dg algebras g: B — (', there exists a lift
h: A — B. That is, we have a commutative diagram

B

h jl
T~
o f

A C
A direct consequence of the model category axioms for dga/k is

Lemma 6.10. [24, Ch. 1.1] If A is any dg algebra over a commutative ring k, then there
exists a cofibrant dg algebra A and a quasi-isomorphism

Acof AN A.

We remark that from the model theory axioms, it follows moreover that the quasi-
isomorphism A®f =5 A above is a surjective map [24, Ch. 1.1].

Examples for cofibrant dg algebras are the Sullivan algebras [19, Ch. 12] which we
define in the following. From now on we assume that k is a field of characteristic zero.
We recall the definition of the free graded-commutative algebra:

Let V be a graded vector space over k. The elements v ® w — (—1)I"II*lyw ® v generate
an ideal I in the tensor algebra T'V. The free graded-commutative algebra AV is quotient
of the Tensor algebra T'V by the ideal I,

AV =TV/I.
If v1,- -+ , v, is a k-basis of V, one also writes A(vy,--- ,v,) for AV.

Definition 6.11. A Sullivan algebra is a dg algebra of the form (AV,d), where

(1) V= szl V), is a positively graded vector space
(2) V =U;»oV (), where V(0) € V(1) C --- is an increasing sequence of graded
subspaces such that

d=0 on V(0) and d(V(l)) CAV(I—1) foralll>1.
Lemma 6.12. [19, Lemma 12.4] Every Sullivan algebra (AV,d) is a cofibrant dg algebra.

For an arbitrary dg algebra A, the quasi-isomorphism A°f = A which exists by
Lemma 6.10 is not easy to compute. However, for a certain class of dg algebras, one can
construct explicitly quasi-isomorphic Sullivan algebras:
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Proposition 6.13. [19, Prop. 12.1] Assume that A is a graded-commutative dg algebra
concentrated in non-negative degrees which satisfies HO(A) = k. Then there exists a
Sullivan algebra (AV,d) and a quasi-isomorphism

(AV,d) —— A.

Example 6.14. [19, Ch. 12, Exm. 4] Not every dg algebra of the form (AV,d) is a
Sullivan algebra: Consider (A(vy,ve,v3),d), where |v;| = 1, and the differential is given
by dvi = vevs, dve = wsvy, and dvs = v1vs. This dg algebra is not a Sullivan algebra.
However, we can state a Sullivan algebra which is quasi-isomorphic to (A(v1,v2,v3),d):
there is a quasi-isomorphism

~

o: (A(w),0) — (A(v1,v2,v3),d),

where w is of degree 3; the map o is given by o(w) = vjvavs.

7. Aso-ALGEBRAS

Ao-algebras are generalisations of dg algebras. They were invented by J. Stasheff at
the beginning of the 1960s as a tool in the study of ‘group-like’ topological spaces. In
the 1990s, the relevance of A.-algebras in algebra became more and more apparent.
We focus on a result of Kadeishvili stating that the cohomology of a dg algebra is an
Axc-algebra. Instead of Kadeishvili’s Russian original paper [26] we refer the reader to
the articles [29] and [30] by Bernhard Keller.

Throughout this chapter let k be a field and write shortly ® for ®y.

Definition 7.1. An A..-algebra is a Z-graded vector space
A=TJ4,
PEZL
together with a family of homogeneous k-linear maps
mp: A" — A, n>1,
of degree 2 — n satisfying the relations
(i) mymy = 0.
(il) mymg = ma(m1 @ 1+ 1 ® my).
(iii) More generally, for all n > 1,
D (1) my, (1T @m, @ 1d®F) = 0,
where the sum runs over all decompositions n = r+s+t, and we set u = r+1+t.

Note that (A, mq) is a differential complex due to (i). Condition (ii) means that m; is
a graded derivation with respect to the multiplication mg, and equation (iii) with n = 3
shows that the multiplication msy is associative only up to homotopy. The map ms is
called the secondary multiplication.

Remark 7.2. (1) In general, an A-algebra is not associative. However, its cohomology
H*A with respect to the differential m; is an associative Z-graded algebra with the
multiplication induced by mo.
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(2) If A is concentrated in degree zero, then A = Ay is just an associative algebra.
That is because m,, is of degree 2 — n and consequently, all m,, other than mo have to
vanish.

(3) If m,, is trivial for all n > 3, then A is a dg algebra. Conversely, each dg algebra
carries an Aso-structure with m; the differential, msy the multiplication, and all other
m,, trivial.

A morphism between two A.-algebras A and B is in general not just a map A — B,
but something quite more complicated:

Definition 7.3. A morphism of A,.-algebras f: A — B is a family of graded maps
fn: A®" — B
of degree 1 — n such that
(i) fim1 =mqfi,ie. fi: A— B is a chain map.

(i) fima =ma(f1 ® f1) +mifa+ fo(my @id+id @my).
(iii) More generally, for n > 1, we have

Z(_l)rJrstfu(id@r Qms @ id®t _ Z(_l)smr(fh ® fi2 K- fir)7

where the first sum runs over all decompositions n = r + s + ¢, and we set
u =71+ 1+t The second sum runs over 1 < r < n and all decompositions
n =141 + - - - + i,. Furthermore, the sign on the right hand side is given by

s = (T’—l)(il —1)+(T—2)(i2—1)+"‘+2(ir_2—1)+(ir_1—1).

Note that equation (ii) means that f; commutes with the multiplication mg up to a
homotopy given by fo.
An A, -morphism f: A — B is
e a quasi-isomorphism if the chain map fi is a quasi-isomorphism,
o strict if f; =0 for all ¢ # 1,
e the identity morphism if f: A — A is strict with f; =ida.
The composition of two As-morphisms g: A — B and h: B — C is defined as

(hoghn =Y (=1)°hyo (g5 ® -+ @ gs),
where the sum and the sign are as in Definition 7.3 (iii).

Theorem 7.4 (Kadeishvili [26], see also [30]). Let A be an Ax-algebra. Then the
cohomology H*A has an Aso-algebra structure such that
1) mi™A =0 and m&™4 is induced by m4', and
2) there is a quasi-isomorphism of Ax-algebras f: H*A — A lifting the identity in
cohomology, i.e. H*fi =idg+4.

Moreover, this structure is unique up to (non unique) isomorphism of Aso-algebras.

In particular, the cohomology H* A of a dg algebra A is an A-algebra. We now show
how to construct the secondary multiplication mZ! “A of H*A and at the same time, the
first three terms of the quasi-isomorphism f: H*A — A lifting the identity of H* A:

Construction 7.1. Let A be a dg algebra with differential mf and multiplication m‘24.

We view H*A as a complex with zero differential. Since we are working over a field,
we can choose a quasi-isomorphism f1: H*A — A inducing the identity in cohomology.
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This amounts to choosing a representative cocycle for each cohomology class, in a linear
way. Note that fi cannot be chosen to be multiplicative, but it does commute with
multiplication up to coboundaries. So we can choose a k-linear map of degree —1,

for HHAQ H*A — A,

satisfying

(7.2) mi fa(z,y) = fi(zy) — fi(2)f(Y).
So it holds indeed

(7.3) frmg™ A =ma(fr® fr) +mi fa.

Now we look for f3 and mg such that
fromi™ + fy o (MM @id —id @mil™4)
+ fzo (M ©1d®? +id omT™ @ id +id®? @mi™4)
=mio(i®h®f)+mio(h®fr—f®h)+mifs

Since m{{*A =0, this simplifies into
(74) from ™ =mil o (fr@ fo—fo@ fi) = foo (M A @id —id@my ) + mi o fa.
Now one checks that the map

(7.5) 3 =mj o (i@ fa— fo® f1) = fro (my " @id —id@ms" )
has its image in the cycles Z*A of A. So we define
(7.6) mil™ A = 1o @3,

where m denotes the quotient map Z*A — H*A. Then
fromil™ — @3 = (fi o —id)®s
has its image in the coboundaries and thus we can indeed choose a k-linear map
fa: H*A®3 — A
of degree —2 such that
flomg*A—tI)g :m‘flofg

as desired.

This construction depends on some choices and the secondary multiplication is not
uniquely determined. However, it determines a Hochschild class which is independent
of all choices:

Proposition 7.5. [5, Prop. 5.4] Let A be a dg algebra over a field k. Then the secondary
multiplication mf*A of the Axo-algebra H* A is a (3,—1)-Hochschild cocycle. Moreover,
its Hochschild class is independent of all choices in defining the maps f1 and fs.

The Hochschild class of any choice of mi"4 is denoted by ua € HH* 1 (H*A). We are
particularly interested in this Hochschild class since it determines a global obstruction
for realisability ([5], see Section 10.3). Because of this special property it is also referred
to as canonical class. In Chapter 13.2 we will compute the secondary multiplication and
its Hochschild class in some examples.
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The following proposition has applications in the Chapters 12 and 13.

Proposition 7.6. [5, Cor. 5.7] Let a: A — B be a morphism of dg algebras and
H*a: H*A — H*B the induced morphism in cohomology.

(1) In the Hochschild group HH>~1(H* A, H*B), it holds
Heao = s o (H*0),
where H*B is a (H*A, H* A)-bimodule through H*«.

(2) If « is a quasi-isomorphism, then the class 4 is mapped to pp under the induced
isomorphism between the Hochschild cohomology of H*A and H*B.

Hence for any choice of secondary multiplications mgl){ "4 and mf "B the difference
H*a oml A —m? B (H*a)®3

is a (3,—1)-Hochschild coboundary. If we assume in addition that the algebra map

H*a: H*A — H*B is a monomorphism, we can obtain equality of H*« o mgl*A and

mi" B o (H*a)®3 not only on the level of Hochschild classes, but even on the level of

k-linear maps:

Proposition 7.7. Let a: A — B be a morphism of dg algebras and assume that

H*«a: H*A — H*B is a monomorphism. Given the choices in defining mg*A, we

can define mi" B such that

Haomi™ = mi"Bo(H*)®® in Hom'(H*A®® H*B).
Proof. Let f{*: H*A — A and fo: H*A® H*A — A be any choices of the first two
components of a quasi-isomorphism f: H*A — A lifting the identity. We define a
graded degree zero map f: H*B — B by

fl =ao ffto(H )™

on the image of the monomorphism H*« and extend this map k-linearly to a graded map
inducing the identity in cohomology. This is indeed possible because we are working
over a field and since

H*fB(H*a(z)) = H*a o fi{(z) = H*a(x).
Now we define f2. On the image of H*a ® H*a we set
fB=aofyo(Ha® H*a)™ "
We then extend f# k-linearly to a degree —1 map satisfying
dfy (z,y) = 12 (@) [2 (y) = f3 (xy)
for all z,y € H*B. Our choices for f£ and fP then automatically yield
H*aomil™ =mil"B o (H*a)®3. O

Remark 7.8. [5, Exm. 7.7] Let A and B dg algebras over a field k and m& 4 resp. m& "B
secondary multiplications of their cohomology. Then under the Kiinneth isomorphism
H*(A®y B) = H*A ®y, H*B, the canonical class pagp is represented by the cocycle

m(r1 @Y1, T2 @ Y2, 23 D Y3) =

(_1)|333Hy1|+\$3H92|+|:02||y1|m§I*A<m17 T, 1'3) ® Y1y2y3 + T1T2T3 @ Tn?{{*B(y17 Yo, yg)-
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8. LOCALISATION IN TRIANGULATED CATEGORIES

The classical localisation S™!'R of a commutative ring R with respect to a multiplica-
tively closed subset S C R gives rise to the functor — ®p S™'R: Mod R — Mod S™'R.
It assigns to an R-module M the S~!R-module S~'M, whose elements are fractions
=,m € M,s € 5. The tensor functor —®p SR is right adjoint to Homg-15(S7'R, —),
and it is well-known that the latter functor is fully faithful.

This calculus of fractions has been generalised by Gabriel and Zisman [20] to arbitrary
categories. In his these [54], Verdier applied this to introduce localisation of triangulated
categories. In particular, he invented the Verdier quotient which is a quotient category
7T /B of a triangulated category 7 by a triangulated subcategory B.

In the first two sections we recall categories of fractions and localisation functors for
arbitrary categories. Localisation of triangulated categories, in particular the Verdier
quotient, will be introduced in Section 8.3. Localisation functors of triangulated cate-
gories give rise to localisation sequences, which we define in Section 8.4, and those
localisation sequences which are at the same time co-localisation sequences, the re-
collements, are considered in Section 8.5. In the last section of this chapter we study
cohomological localisations. These localisations are a key tool to prove our results stated
in the Chapters 9 and 11.

8.1. Categories of fractions. A functor F': C — D is said to tnvert a morphism o of
C if Fo is invertible. For a category C and any class of morphisms . of C there exists
(after taking the necessary set-theoretic precautions) the category of fractions C[X 1],
together with a canonical functor

Qs:C—C[Z™

having the following properties:

(Q1) @x makes the morphisms in ¥ invertible.
(Q2) If a functor F': C — D makes all morphisms in ¥ invertible, then there is a
unique functor G': C[£71] — D such that F = G o Qy.

An explicit construction of the category C[X7!] can be found in the book of Gabriel
and Zisman [20].
Let C,D be categories and
C D

—
F

an adjoint pair of functors, that is, F': C — D and G: D — C are a pair of functors
such that G is right adjoint to F'. By 7n: ide — G o F' we denote the unit, and by
e: F oG — idp the counit of the adjunction.

Lemma 8.1. [20, Ch. I, Prop. 1.3] Let ¥ be the set of morphisms o of C such that Fo
is invertible. The following are equivalent:

(1) The functor G is fully faithful.
(2) The counit of the adjunction e: F o G — idp is invertible.
(3) The functor F: C[S™] — D satisfying F = F o Qyx, is an equivalence.
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8.2. Localisation functors. Let F': C — D and G: D — C be an adjoint pair of
functors satisfying the equivalent conditions of Lemma 8.1, and set L = G o F. The
following well-known lemma shows that the pair (F, G) can be reconstructed from L and
the adjunction unit ¥: ide¢ — L.

Lemma 8.2. Let L: C — C be a functor and V: id¢ — L a natural transformation.
The following are equivalent:

(1) The map LY: L — L? is invertible and LV = VL.

(2) There ezists a pair of functors F': C — D and G: D — C such that F is left
adjoint to G, G s fully faithful, L= Go F, and ¥: id¢ — G o F s the unit of
the adjunction.

For a proof we refer to [36]. However, we sketch how the pair (F, G) can be constructed
from the functor L: Given L: C — C, we define D to be the full subcategory of C formed
by those objects X such that YX: X — LX is invertible. The functor F' is given by
F:C—D, FX =LX, and G: D — C is defined to be the inclusion. Note also that ¥
equals the adjunction unit n: id¢ — G o F.

Definition 8.3. Let C be an additive category.
(1) We call a pair (L: C — C,V: id¢ — L) a localisation functor if it satisfies the
conditions of Lemma 8.2.
(2) An object X € C is called L-acyclic if L(X) = 0, and the full subcategory of
L-acyclic objects is denoted by Ker L.
(3) An object X € C is called L-local if X = LX' for some X' € C. The full
subcategory of L-local objects is denoted by Cy..

Remark that an object X € C is L-local if and only if ¥X is invertible, see [36, Lemma
1.5]. Thus the category D constructed in Lemma 8.2 equals Cy.

Justified by Lemma 8.2, a functor F': C — D admitting a fully faithful right adjoint
G is also called localisation functor.

8.3. Quotient categories. If the category C admits an abelian (resp. triangulated)
structure and B is a Serre (resp. triangulated) subcategory, then we can form a quotient
category by inverting a special class of morphisms. We present this construction for
triangulated categories.

Let C be triangulated and B a triangulated subcategory. We define >3 to be the class
of all morphisms ¢ € C such that there exists an exact triangle

X-Y %7 X[,

with X € B.
The category of fractions C[S'] is called the Verdier Quotient and denoted by C/B.
The following properties of the Verdier Quotient are well-known.

Lemma 8.4. Let Qp denote the canonical functor Qs,: C — C/B.

(1) C/B carries a unique triangulated structure such that the functor Qg: C — C/B
18 exact.

(2) The kernel of Qp consists of the thick closure of B, i.e. those objects X € C
such that there exists Y € C with X I1Y € B.

(3) For any exact functor F: C — D satisfying F(B) = 0, there exists a unique
functor F: C/B — D such that F = F o Qp.
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A pair (L: T — 7,V: id¢ — L) is a localisation functor of triangulated categories if
L is an exact localisation functor and ¥ commutes with the suspension functor in the
sense that W o [l]¢ = [1]¢ o V.

Then Ker L and 77 are triangulated subcategories of 7. Moreover, the functor
T — 15, X — LX, is exact and induces an equivalence

T/Ker L = Tp.

It follows from Lemma 8.2 that we have a bijection between localisation functors
(L: T — 7T,¥: idy — L) and quotient functors Q: 7 — 7 /B having a fully faithful
right adjoint R (which are also called localisation functors). Observe that the adjunction
unit n: idy — RQ satisfies n o [1]7 = [1]7 o n because R is fully faithful.

Definition 8.5. A localisation functor (L: 7 — 7,V: id¢ — L) is called smashing if
L commutes with arbitrary direct sums.

A localising subcategory B of T is called smashing if Q: T — 7 /B admits a fully
faithful right adjoint R which commutes with arbitrary direct sums. Then the quotient
functor Q: 7 — T /B is also called smashing localisation.

Note that the composition R o ) commutes with arbitrary direct sums if and only if
R does. Hence we have a bijection between the smashing localisation functors in the
two different senses.

8.4. Localisation sequences. A sequence of exact functors
AL BS ¢
between triangulated categories is called localisation sequence if the following conditions
hold:
(L1) The functor F' has a right adjoint F,: B — A satisfying F, o F' = id 4.
(L2) The functor G has a right adjoint G)p: C — B satisfying G o G, = idc, i.e. G is
a localisation functor.
(L3) Let X be an object in B. Then GX = 0 if and only if X = FX’ for some
X' eA.
The sequence (F,G) is called colocalisation sequence if the sequence (F°P,GP) of op-

posite functors is a localisation sequence.
We recall the basic properties of a localisation sequence

Lemma 8.6 (Verdier [54], see also [35]). Let A £ B 5 C be a localisation sequence.
Identify A=ImF and C =ImG,.
(1) The functors F' and G, are fully faithful.
(2) For given objects X,Y € B, we have
X € A<~ Homp(X,C) =0,
Y € C <= Hompg(A,Y) =0.

(3) The functor G induces an equivalence B/ A ~ C. Hence every triangulated func-
tor G': B — C' satisfying G' o F = 0 factors over G.
(4) For each X € T there is an exact triangle
(FoFp)(X) =X = (Gyo0G)X — I((FoFy)X)

which is functorial in X.
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(5) The sequence
¢Sl
s a colocalisation sequence.
8.5. Recollements. We say that a sequence
AL BS

of exact functors between triangulated categories induces a recollement

if it is at the same time a localisation and a colocalisation sequence.
This means that the functors F' and G admit left adjoints F) and G as well as right
adjoints F), and G, such that the adjunction morphisms

o)

F/\oFiidAinoF and GoGpiidBHGoG,\

are isomorphisms.
Let A be a Noetherian ring. We denote by

I: Ko(InjA) — K(Inj A)
the inclusion functor, and by @ the canonical functor given by the composition
K(InjA) 2% K(Mod A) 2% D(Mod A).
Theorem 8.7. [35, Cor. 4.3] The sequence
Koo(InjA) & K(InjA) < D(Mod A)

mduces a recollement

I, Qp
(8.1) Ki.(InjA) — K(InjA) 77— D(Mod A).
I Qx

Remark 8.8. [6, Sect. 5] The recollement (8.1) provides two embeddings of D(Mod A)
into K(Inj kG): The fully faithful functor @, assigns to X € D(Mod A) its homotopically
injective resolution X introduced in Chapter 6.3. The other embedding is given by the
functor @y, which identifies D(Mod A) with the localising subcategory of K(InjkG)
generated by iA.

Assume now that A is self-injective. Then @) maps a complex X of A-modules to
its homotopically projective resolution pX. Furthermore, for every A-module M, the
canonical triangle

(8.2) pM — iM — tM — X(pM)

is isomorphic to the triangle

(83) (QroQ)(M) = M — (IoI\)M — %(Qx 0 Q)M,
where M = Q,M.
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Krause proved Theorem 8.7 more generally for a locally Noetherian Grothendieck
category A such that D(A) is compactly generated. In order to prove that (I,Q)
induces a localisation sequence, the essential point is the following proposition which is
also stated more generally in [35].

Proposition 8.9. [35, Prop. 2.3] The triangulated category K(InjA) is compactly gen-
erated by the injective resolutions iM of the Noetherian modules M. Moreover, the
canonical functor K(Mod A) — D(Mod A) induces an equivalence

K¢(InjA) = D°(mod A),
where K¢(Inj A) denotes the full subcategory of compact objects in K(InjA).
The following lemma is well-known and easy to check.
Lemma 8.10. Let A be a Noetherian self-injective ring. The functor
Z°: Koe(Inj A) — Mod A

is an equivalence with quasi-inverse M +— tM , where tM denotes a Tate resolution of
any representative of M € Mod A.

Over a finite dimensional cocommutative Hopf algebra, the adjoints in the recollement
can be written down explicitly:

Proposition 8.11. [6] Let H be a finite dimensional cocommutative Hopf algebra. Then
the adjoints in the recollement (8.1) take the form

Homy (tk,—) Homy (pk,—)
Mod H ~ Kao(Inj H) S5 K(Inj H) &——— D(Mod H).
—Q®tk —®xpk

In this case, the triangles (8.2) and (8.3) are isomorphic to

8.6. Cohomological localisation. Cohomological localisations were first studied by
Bousfield [7]. Hovey, Palmieri and Strickland [25, Thm. 3.3.7] applied them in the
context of axiomatic stable homotopy theory. We refer to a paper of Krause [36] for a
more algebraic and detailed approach.

Throughout this section let 7 be a triangulated category which admits arbitrary
direct sums and is generated by a set of compact elements. We fix a compact object
A €T and write H* for the functor 7 (A, —)*.

Theorem 8.12. [36] Every exact localisation functor (L, V) on Modg, I' extends to an
exact localisation functor (ﬁ, \i’) on T such that the diagram

7— s Modg, T

A I

7 —2 s Mod,, T

commutes up to a natural isomorphism. More precisely, it holds
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(1) The morphisms LH*U, WH*L and

. LH*¥ L (vH L) R
LH* —— LH*L —— " H*L

are invertible. R
(2) An object X in T is L-acyclic if and only if H*X is L-acyclic.
(3) If X € T is L-local, then H*X is L-local.

If A is a generator of T and L preserves arbitrary direct sums, then L preserves arbitrary
direct sums.

Remark 8.13. [36, Rem. 2.4] Let L: Mody I' — Mod,, I' be an exact localisation
functor and denote by L: 7 — 7 the exact localisation functor which exists by Theo-
rem 8.12. Write C for the f/—acyclic objects. By Lemma 8.2, Land L give rise to adjoint
pairs of functors

R G
T T T/C and Modg I' € (Mod, T,
F

satisfying L =Ro Q and L = G o F'. The diagram below commutes up to natural
isomorphism.

T % Modgr IR

y |
T7/C(QA,—-)"

T/C _ (Modgr F)L

Rl lG
T(Av_)*

T ——— " Mod

Now assume that I' is graded-commutative and consider the localisation functor
L: Modg I' — Modg, I' given by localisation with respect to a multiplicatively closed
subset S of I'. See Chapter 3.1.2 for localisation of graded-commutative rings. The
following results in this section are joint work with K. Briining [8].

Proposition 8.14. Suppose that the ring T (A, A)* is graded-commutative and let
L: Modg, T(A, A)* — Modg, T (A, A)* be localisation with respect to a multiplicatively
closed subset of homogeneous elements S C T (A, A)*. Denoting C = Ker L, the diagram

7 — T4 Mod,, T(A, A)*

Ql lcan
T/C(QA )"

T/C —20 5 Mody, STIT(A, A)*

commutes up to natural isomorphism. Furthermore, T /C(QA, QA)* and S~ T (A, A)*
are isomorphic not only as graded T (A, A)*-modules, but also as graded rings.
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Proof. The diagram commutes by Remark 8.13. Writing again H* for 7 (A, —)*, the
naturality of H*W yields a commutative square

H*@Al EJLH*\PA
A TH*LA .
H*LA——= *LH*LA
in which the lower and the right hand side morphism are bijective by Theorem 8.12.
Now note that H*W A is up to isomorphism given by the canonical map

Q: T(AA)" = T/C(QA,QA)", [~ Qf,
and that WH* A equals up to isomorphism the canonical ring homomorphism
can: T(A, A" — STI1T(A, A)*.

Since Q: T/(A,A)* — T/C(QA,QA)* is a multiplicative map inverting all elements in
S, we obtain a ring homomorphism r: S~17 (A4, A)* — T /C(QA, QA)* which makes the
upper triangle in the modified diagram

T(A, A — 0 §-17(4, A)*

Ql T glg—lQ
e

T/CQA.QAY L 71T /C(QA. QAY

commute. We now show that r is bijective by proving the commutativity of the lower
triangle.
Since both the maps vor and S~1Q make the following diagram of 7 (A, A)*-modules

T(A, A — 5 8-17(A, A)*

J vor
voQ
S—1Q

STIT/C(QA, QA)*

commute, the universal property of localisation of modules yields v o r = S71Q and
hence the claim. O

Proposition 8.15. Suppose that the ring T (A, A)* is graded-commutative and let
L: Modg, T (A, A)* — Modg, 7*(A, A)* be localisation with respect to a multiplicatively
closed subset of homogeneous elements S C T (A, A)*. If the compact object A € T is a
generator, then the category C = Ker L is generated by compact objects of T .

Proof. We show that C is generated by {Cone(c)|o: A — A[n] € S}. Let M be any
object of C. Using Lemma 2.1, it is enough to show that 7 (Cone(c), M)* = 0 for all
o € S implies M = 0. By Lemma 2.3, every triangle

A% A[n] — Cone(o) — A[l]
gives rise to an exact sequence

« T(o,M)"
——

7 (Cone(o), M)* — T(Aln|, M) T(A,M)* — T (Cone(o)[—1], M)*.
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By assumption, we have 7 (Cone(o)[—1], M)* = 0 = 7 (Cone(c), M )*. Hence the map

7T (o
T(A), M) 2O T4, M)

is an isomorphism for all o € S and thus, 7 (A, M)* is S-local. On the other hand,
T(A,M)* is S-acylic and so we conclude that 7 (A, M)* = 0. It follows that M = 0
because A is a compact generator. O

8.6.1. Cohomological p-Localisation. Let A be a dg algebra such that H*A is graded-
commutative and let p be a graded prime ideal of H*A. Denote by C, the full subcategory
of objects X in D(A) such that (H*X), = 0. In other words, C; is the kernel of the
cohomological functor

(= ®u-a (H"A)p) o D(A)(A, )"

From the previous discussion we obtain

Corollary 8.16. The localisation

D(4) % D(A)/C,

is smashing, and there is an isomorphism r: D(A)(A, A); = D(A)/Co(QA,QA)* of

graded rings making the diagram

D(A)(A, A)* —— D(A)(4, A);

QJ /
D(A)/Cp(QA, QA)"
commutative. Furthermore, the squares

D(A)(A,—)” D(A)(A,—)”

D(A) > Modg, H*A D(A) Modg, H*A

Qi J@H*A(H*A)p R incT

p(A)/c, PO N oq,, 1 A, D(A)/c, DA O N o, 17 A,
commute up to natural isomorphism. O

9. REALISING SMASHING LOCALISATIONS BY MORPHISMS OF DG ALGEBRAS

The results in this chapter are joint work with K. Briining [8], with substantial con-
tributions of Bernhard Keller. We show that every smashing localisation on a derived
category of a dg algebra can be realised by a morphism of dg algebras. More precisely,
if Ais a dg algebra and L: D(A) — D(A) a smashing localisation, we prove the exis-
tence of a dg algebra Ay with the property D(A)/Ker L ~ D(AL), a dg algebra A’
quasi-isomorphic to A and a zigzag of dg algebra morphisms

A A — A

which identifies in cohomology with the algebra map L: D(A)(A, A)* — D(A)(LA, LA)*.
If the dg algebra A is cofibrant, then the algebra map L identifies with the cohomology
of a morphism A — Ay, and the quotient functor is naturally isomorphic to the left
derived functor — ®ﬁ Ap.
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As an application, we consider in Section 9.2 dg algebras with graded-commutative
cohomology ring. For such a dg algebra A, we introduce the localisation of A at a prime p
in cohomology and denote this dg algebra by A,. It has the property H*(Ap) = (H*A),.
Moreover, we show that with this identification of graded algebras, the canonical mor-
phism H*A — (H*A), is induced by a zigzag of dg algebra morphisms.

9.1. Construction of a dg algebra morphism. Let A be a differential graded algebra
over some commutative ring k£ and let

L: D(A) — D(A)

be a smashing localisation. Denoting by C the category of L-acyclic objects, we have an
adjoint pair of functors
R
%
D(A) T D(A)/C

satisfying Ro @ = L. The right adjoint R is fully faithful and commutes with arbitrary
direct sums.

Our first aim is to write the quotient category D(A)/C as derived category of a
differential graded algebra A;. Then we construct a zigzag of dg algebra morphisms
A& A’ — Ap which induces the algebra morphism

D(A)(A, A)" — D(A)(LA,LA)*, [~ Lf,
in cohomology. For this purpose, we identify throughout this chapter the functors
H*: D(A) — Modg; H*A and D(A)(A, —)*: D(A) — Modg H*A (see Lemma 6.2).
The following lemma which we learned from Dave Benson is the key to our construc-
tion.

Lemma 9.1. Let A, B dg algebras and M a dg (B, A)-bimodule. Let o: A — M and
B: B — M be maps of dg modules which satisfy (1) = B3(1). Then

X = {(a,b) € A x B | ala) = B(b)}

is a dg algebra with differential dx = (da,dp) and the projections p1,p2 in the pullback
diagram

x-25B
Pll B
AT>M

are dg algebra morphisms. If B is a surjective quasi-isomorphism, then the diagram
induces a pullback diagram in cohomology.

Proof. The first assertions are immediately checked. For the last one we show that
H*X = {(a,b) € H*Ax H*B | H*a(a) = H*3(b)}.

A pair (@,b) € H*X trivially satisfies the property H*a(a) = H*3(b) and conse-
quently, the inclusion C is always fulfilled.

For the other inclusion we need to assume that [ is a surjective quasi-isomorphism.
Let (@,b) € H*A x H*B such that H*a(a) = H*3(b). We choose representing cocycles
a of @ and b of b. Then a(a) — B(b) = m for some coboundary m € M. Since 3 is a
surjective quasi-isomorphism, there is a coboundary ¥ € B such that 5(b') = m. Hence
the tuple (a,b+ ') satisfies a(a) = B(b+ b') and thus (a,b) = (a,b+ V) € H*X. O
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The following lemma ensures that the cohomology of the dg algebra Ay which we
construct below is independent of all choices that we will make.

Lemma 9.2. Let X,Y be dg A-modules and let v: X — 'Y be an isomorphism in IC(A).

(1) Denote by X — I(X) the injective hull of X in the Frobenius category Modgg A.
There exists a dg algebra S and a zigzag of quasi-isomorphisms of dg algebras

Enda(X) < 8 S Enda(Y @ I(X)).

(2) Let I be any injective module in the Frobenius category Modqg A. There is a dg
algebra T and a zigzag of quasi-isomorphisms of dg algebras

Enda(Y) =T = Enda(Y @ I).

(3) There exists a zigzag of quasi-isomorphisms of dg algebras from Enda(X) to
Enda(Y).

Proof. (1) By Lemma 6.4, we can choose a representing dg A-module map
v: X - YaelI(X)
of v € K(A)(X,Y) which is split as map of graded A-modules. Hence the map
v Enda(Y @ I(X)) — Homa(X,Y @ I(X)), fw fop,
is surjective. Applying Lemma 9.1, the pullback

§—2 s endu(Y & I(X))
pll u*iN
Enda(X) —2 Homa(X,Y & I(X))

gives rise to a pullback diagram in cohomology, and the object S is actually a dg algebra.
In particular, we obtain quasi-isomorphisms of dg algebras

EndA(X) <p% S TZ)SndA(Y @ I(X)).
[id 0]

(2) The dg A-module map ¢: Y ——= Y @ I is obviously a split monomorphism
inducing idy in the homotopy category. Hence we obtain a pullback diagram

T—2 s EndaY @)
Pll"‘ L*i"’
Enda(Y) —— Homa(Y,Y &I

yielding the claim.
(3) is a trivial consequence of (1) and (2). O

The proof of the following lemma is immediate.
Lemma 9.3. The object QA is a compact generator of D(A)/C. O

Fix a homotopically projective replacement of RQA € D(A). By abuse of notation
we denote the replacement also by RQA.
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Proposition 9.4. The functor R Hom(RQA, R—): D(A)/C — D(End4(RQA)) is an
equivalence of triangulated categories.

Proof. We use Proposition 2.2 and first note that R Hom(RQA, R—) preserves arbitrary
direct sums because for any family (X;);er in D(A)/C, the map

[[R Hom(RQA, RX;) — R Hom(RQA, R[] X:)
i€l i€l
identifies in cohomology with the isomorphism

[IP(A)(RQA, RX;) = [ D(A)/C(QA, Xi) = D(A)/C(QA, ] Xi) = D(A)(RQA, R ] Xi).

i€l iel iel icl

Moreover, the functor R Hom(RQA, R—) maps the compact generator QA of D(A)/C
to End A(RQA) which compactly generates D(End 4(RQA)). Finally, the map

D(A)/C(QA, QA[n]) 2T ML, 1 (end 4 (RQA))(End a(RQA), End (RQA)[n))

is an isomorphism for all n € Z since RQ A being homotopically projective implies that
the diagram

R Hom(RQA,R—)

D(A)/C(QA, QA[n]) > D(EndA(RQA))(End A(RQA), End a(RQA)[n])

ng 4

D(A)(RQA, RQA[n]) » H"(End 4 (RQA))

1R

is commutative. O

Hence we have shown that the quotient category D(A)/C is equivalent to the de-
rived category of the dg algebra End 4(LA), where LA was chosen to be homotopically
projective. Note that Lemma 9.2 provides a zigzag of quasi-isomorphisms between the
endomorphism dg algebras of two different homotopically projective replacements of an
object in D(A).

In order to construct a zigzag A <— A’ — End 4(LA) of dg algebra morphisms inducing

D(A)(A,A)* — D(A)(LA, LA)*

in cohomology, we need to make another choice on the dg A-module representing LA.
Let n: id — RQ be the unit and €: QR — id the counit of the adjunction

D(A) :Z D(A)/C.

Since A is homotopically projective, we have
na € D(A)(4, RQA) = K(A)(A, RQA).

Lemma 9.5. For any map 74 in Modgg A that represents na € K(A)(A, RQA) and any
dg A-module M, the map

N4: Homa(RQA, RQM) — Homa(A, RQM), [ fofa,

s a quasi-isomorphism.
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Proof. Since R is fully faithful, the usual adjunction isomorphism (see [38, Ch. IV.1])
gives rise to the mutually inverse maps

H"(74): D(A)(RQA, RQM|[n]) — D(A)(A, RQM]In]), [+ fona,
and
D(A)(A, RQM([n]) — D(A)(RQA, RQM(n]), g+ R(eqa) o RQ(g). O

Remark 9.6. By Lemma 6.4, we may represent n4: A — LA by a monomorphism of
dg A-modules

a: A— I//Z,
which is a split as map of graded A-modules. Remember that LA=LA®I (A), where
A — I(A) is the injective hull of A in the Frobenius category Modgs A, and LA was

already chosen to be homotopically projective. By Lemma 9.2, we have a zigzag of
quasi-isomorphisms

Enda(LA) & T =5 Enda(LA).

We define the dg algebra Ay to be SndA(I//;l). By abuse of notation we write Ay =
End A(LA). Note that from Lemma 9.2 and Proposition 9.4, it follows that

D(AL) ~D(A)/C.
Theorem 9.7. The algebra map
D(A)(A, A)" — D(A)(LA, LAY, f = L(J),
s induced by a zigzag of dg algebra maps
A AL A

That s, there exists a dg algebra A’ quasi-isomorphic to A, a morphism of dg algebras
p: A" — A and in cohomology, we have the commutative diagram

H*A

|

D(A)(A, A)* — D(A)(LA, LA)*

Proof. We identify the dg algebras End 4(A) and A through the isomorphism given by
evaluation at 1. Let

A/LAL

le/N Nlnz

End4(A) 225 Hom (A, LA)

be a pullback diagram.

The map 7744 is a quasi-isomorphism (Lemma 9.5), and surjective since 74 is a split
monomorphism of graded A-modules (Remark 9.6). We infer from Lemma 9.1 that A’
is a dg algebra quasi-isomorphic to A, and we set ¢ = po.



REALISABILITY AND LOCALISATION 49

In cohomology, we obtain the commutative diagram

e — P e end(L4)

1 (”1)% %H*m,z)
1 Enda(A) Y 1 (Hom A (A, LA))

and thus it remains to show that the composition
H*(73) ™" o H*(7]ax)
identifies with the map
D(A)(A, A" — D(A)(LA,LA)*, fw L(f).
In fact, for f € D(A)(A, A)* we have

(H*(12)"" o H*(71ax)) (f) = R(eqa) © RQ(114) © RQ(f) € D(A)(RQA, RQA).
But it is well-known that ega 0 Q(14) = idga (see [38, Ch. IV.1]) and hence the claim
follows. O

Observe that the map ¢: A’ — Ay is a monomorphism: Since 774 is split as map of
graded A-modules, 74, is injective and so is ¢ = ps.

If we assume in addition that A is a cofibrant dg algebra (see Section 6.5), then the
algebra map L: D(A)(A, A)* — D(A)(LA,LA)* is not only induced by a zigzag of dg
algebra maps, but by a morphism A — Ay.

Corollary 9.8. Let A be a cofibrant dg algebra. The algebra morphism
D(A)(A, A" — D(A)(LA, LAY, f L(f),

lifts to a dg algebra morphism ¢¥: A — Ap.

Proof. Since A is cofibrant, the map p;: A’ — A in the pullback diagram

A/L)AL

A%

A —— Homa(A,LA)

splits: There is a morphism of dg algebras s: A — A’ such that p; o s = id4. We define
1) to be the composition
ppos: A— Ap.
Then H*v identifies with the canonical map L: D(A)(A, A)* — D(A)(LA, LA)*. O
Now our aim is to show that if A is cofibrant, then we can identify the functors
Q: D(A) —» D(A)/C ~ D(AL) and —®Y AL: D(A) — D(AL), where Ay, is a dg (A4, Ar)-
bimodule through the morphism ¢: A — Ajp.

Lemma 9.9. There exists a natural transformation
A RHomy(A,—) - RHomy (LA, L—)

in D(A) which commutes with the suspension functor. For every M € D(A), Ay induces
the map

D(A)(A,M) — D(A)(LA,LM), fw~ Lf,
in cohomology.
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Proof. By Lemma 9.5, the adjunction unit n4: A — LA induces a natural isomorphism
R Hom (na, LM). Therefore we can define the morphism Aj; to be the composition

R Hom(A,nar) R Hom(na,LM)™!
EE—

R Hom s(A, M) R Hom (A, LM)

R Hom (LA, LM),

which obviously induces L: D(A)(A, M)* — D(A)(LA, LM) in cohomology. The natu-
rality of A\js follows from the naturality of R Hom (A, ny) and R Hom(na, LM).

The unit 7 of the adjoint pair (@, R) commutes with the suspension functor [1], hence
so does R Hom(A,nyr). Since RHom(na, LM) commutes with [1], we conclude that
Ao[1] = [1]o A O

Note that if A is cofibrant, then A4 equals the dg algebra morphism ¢: A — Ap
constructed in Corollary 9.8. In addition, R Hom (LA, LM) becomes an object in
D(A) through the dg algebra morphism .

Proposition 9.10. Suppose that A is a cofibrant dg algebra. Then the diagram

ok
%D AL

J A(RQA R—

commutes up to natural isomorphism.

Proof. We show that the functors R Hom (LA, L—) and —®% Ay, are naturally isomor-
phic. A natural transformation

7 — %A, — RHomy (LA, L—)

is given as composition of the three natural maps in the diagram

M@YAy Moy RHoma (LA, LM)

canys ®kALJE’ TV]M
AL AL

R Homa(A, M) @% A, ————— RHoma (LA, LM) ®@% A,
where canj; is the canonical identification and vy is defined by
var: RHoma(LA, LM) @Y% Enda(LA) — R Homa(LA, LM).
f®g — foyg

Note that 7 commutes with the suspension functor since this holds for A by Lemma 9.9,
and obviously for can and v. In order to prove that 7 is an isomorphism, it suffices to
show that the full subcategory A = {M € D(A) |7 is an isomorphism} of D(A) is a
localising subcategory containing A.

First we point out that A is closed under triangles by the Five-Lemma for triangulated
categories, and that it is easy to check that A € A.

Furthermore, A is closed under taking shifts because 7 commutes with the suspension
functor.
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Finally, we show that A is closed under taking arbitrary direct sums. To that end,
recall that the functor R Hom (LA, R—) commutes with arbitrary direct sums (Propo-
sition 9.4) and hence, so does R'Hom (LA, L—). Since — ®@% A, obviously commutes
with arbitrary direct sums, the claim follows. O

Remark 9.11. Let 7 be an algebraic triangulated category in the sense of Keller. We
refer to [34, Sect. 6.5] for a definition. If 7 is generated by a single compact object, then
there is a dg algebra A such that 7 ~ D(A), see [34, Sect. 6.5]. Since we can choose the
dg algebra A to be cofibrant (see Lemma 6.10), every smashing localisation L: 7 — 7T
is induced by a morphism of dg algebras A — Ap.

9.2. The p-localisation of a dg algebra. Let A be a dg algebra over a commutative
ring k£ and assume throughout this section that the cohomology algebra H* A is graded-
commutative. We fix a graded prime ideal p of H*A. By C, we denote the full subcate-
gory of objects M in D(A) such that (H*M), = 0. The localisation L,: D(A) — D(A),
given by the adjoint pair
R
D(4) % D(A)/Cy,

is smashing by Corollary 8.16. Now we apply the results of Section 9.1 to this special
case. We define

Ap — ALP’
and we call A, localisation of A at a prime p in cohomology.

From Lemma 9.2 and Proposition 9.4, we infer that D(A)/C, ~ D(A,). For this
special smashing localisation, we have

Theorem 9.12. Let A be a dg algebra over a commutative ring k such that H*A is
graded-commutative and let p be a graded prime ideal of H*A. The dg algebra A, has
the property H*(Ay) = (H*A)y. Moreover, with this identification of graded algebras,
the canonical map

can: H*A — (H*A),
s induced by a zigzag of dg algebra maps
A AL A,
That is, we have a commutative diagram

H*A

H*A can (H*A)p o~ H*(Ap)

Proof. Since D(A)(A, A), = D(A)(LpA, LyA) by Corollary 8.16, the dg algebra A, satis-
fies H*(Ap) = (H*A),. Theorem 9.7 shows that the zigzag A <~ A’ % A, induces the
map

Lp: D(A)(A, A)" — D(A)(LpA, LyA)*, [ = Ly(f)
in cohomology. But we may identify the algebra maps can and L, by Corollary 8.16. [

The following result is an immediate consequence of Corollary 9.8 and Theorem 9.12.



52 BIRGIT HUBER

Corollary 9.13. Let A be a cofibrant dg algebra such that H* A is graded-commutative
and let p be a graded prime ideal of H*A. Then the canonical algebra morphism
can: H*A — (H*A), lifts to a dg algebra morphism

A class of cofibrant dg algebras with graded-commutative cohomology are the Sullivan
algebras (AV,d) introduced Section 6.5.

Remark 9.14. The smashing localisation L,: D(A) — D(A) can be interpreted as
p-localisation on the derived category. It satisfies a local-global principle:
For M € D(A) and a graded prime p of H*A, we define

and call M, localisation of M at a graded prime ideal p of H*A. If A is a cofibrant dg
algebra, then we have M, = M ®% A, by Proposition 9.10. Since (H*M), = H*(M,),
the following conditions are equivalent for M € D(A):

(1) M =0.

(2) M, =0 for all graded prime ideals p.

(3) My, =0 for all graded maximal ideals m.

9.2.1. A wuniversal property of Ap. Let A be a dg algebra over a commutative ring k
such that H*A is graded-commutative and p € Specg (H*A).

The cohomology of the dg algebra A, satisfies a universal property since H*(Ap)
is isomorphic to the ring of fractions ST!(H*A) = (H*A),, where S is the subset of
homogeneous elements in H*A \ p. If 3: A — B is a morphism of dg algebras such
that H*( makes S invertible, then H*3 factors uniquely over the canonical morphism
can: H*A — (H*A)y.

Without loss of generality, we assume from now on that A is cofibrant. Then can is
induced by a morphism of dg algebras 1: A — A, and the universal property yields a
unique algebra morphism ¢: H*(A,) — H*B making the following diagram commute:

H*p
H*"A—— H*B

~
g
H*(Ap)
The dg algebra morphisms 3: A — B and 9: A — A, give rise to functors

L
®AB

Fz: D(A) —2= D(B) and Fy: D(A) D(Ay).

Now we prove a universal property on the level of derived categories.

—®% Ap
—r

Proposition 9.15. There is a unique functor G: D(Ap) — D(B) making the following
diagram commute:

D(A) —2— D(B)
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Proof. We first note that by Proposition 9.10, the functor F; is nothing but the quotient
functor Q: D(A) — D(A)/C, composed with the equivalence D(A)/Cp, ~ D(Ay). Thus
we can use the universal property of @) and only need to show that Fj(C,) = 0.

In Proposition 8.15 we have shown that

M = {Cone(c)|c: A — A[n] € S}

is a set of compact generators of Cp, and thus it suffices to check that Fjg vanishes on M.
Any element of M fits into an exact triangle

AL Aln) — Cone(z-) — A[l]

in D(A), where x- denotes multiplication with an element x € A whose cohomology H*x
belongs to S. Applying the functor Fj to this triangle, we obtain a triangle in D(B)
naturally isomorphic to

B(z)-
s

B B[n] — Fg(Cone(z-)) — BI1].

Since H*((z) is invertible, we infer that F3(Cone(z-)) is contractible and consequently,
the object Fjg(Cone(z-)) is zero in D(B). O

Since Cy, is generated by compact elements, the quotient functor Q: D(A) — D(A)/C,
gives rise to a quotient functor DP(A) — DP(A)/Cp*", where C;*" = C, N DP*'(A).
Furthermore, this quotient functor identifies with the functor

—®% 4,
—_—

DPer(A) DPer(A,).

This proves

Corollary 9.16. There is a unique functor G: DP*'(A,) — DP"(B) which makes the
following diagram commute:

Fg
Drer(A) —— DP'(B)

Bt
wl G

DPer(Ay) O

Remark. The discussion above raises the question whether the functor G: D(4,) —
D(B) and with it the algebra map g: H*(Ay) — H*B can be lifted to a zigzag of dg
algebra morphisms. Our construction in Section 9.1 does not apply since in general,
we cannot expect that G is a smashing localisation. It remains to enlighten the rela-
tion of our construction with DG quotients, which have a universal property and were
introduced by Drinfeld [16].

There is also a construction by Toén [53] (see also in [31]) which seems to be related:
Let dgcat; be the category of small dg categories over a commutative ring k. The
localisation of dgcat, with respect to the quasi-equivalences is denoted by Hqe. If A is
a small dg category and S a set of morphisms in H°(A), then a morphism F: A — B
in Hqe is said to make S invertible if the induced functor H°(A) — H°(B) takes each
s € S to an isomorphism. Toén constructs a morphism Q: A — A[S™!] in Hqe which
makes S invertible. This morphism has a universal property: Each morphism in Hqe
making S invertible factors uniquely through Q.
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However, if A is a dg algebra, viewed as dg category with a single object, then the
object A[S™!] is in general not a dg algebra, but a dg category with more than one
object.

10. REALISABILITY

In this chapter we introduce the concept of realisability as considered in a paper of
Benson, Krause and Schwede [5]. They are concerned with deciding whether a graded
module over the Tate cohomology ring H *(G, k), where G is a finite group and k a field,
is isomorphic to I:I*(G, M) for some kG-module M.

More generally, they consider a triangulated category 7 admitting arbitrary direct
sums and a cohomological functor H*: 7 — Modg, ' into the category of graded mod-
ules over a graded ring E. The functor H* is required to preserve arbitrary direct sums
and products. Then realisability deals with deciding whether a graded E-module is
isomorphic to a module in the image of this cohomological functor.

Benson, Krause and Schwede [5] have stated a local obstruction for realisability up to
direct summands, and a criterion for realisability which is given by an infinite sequence
of obstructions.

If A is a dg algebra over a field k, then the functor in question is the cohomology
functor H*: D(A) — Modg H*A. In this setting, Benson, Krause and Schwede also
prove the existence of a global obstruction for realisability up to direct summands.

In the first section we introduce the general setup of Benson, Krause and Schwede [5]
and recall the construction of the local obstruction. After focusing on realisability in
the setting of dg algebras in the second section, we study the global obstruction and its
basic properties in Section 10.3.

10.1. A local obstruction for realisability. Let 7 be a triangulated category ad-
mitting arbitrary direct sums. We denote the suspension functor by . Let N be a
compact object in 7 and E = T (N,N)* =[[,., 7T(N,%'N) the graded endomorphism
ring of N (see Example 3.1). If X is a graded E-module, then we denote by X|[n] the
n-fold shifted module.

If M is an object in 7, then we obtain a graded E-module 7 (N, M )* by composition of
graded maps. On the other hand, given any graded E-module X, when is X isomorphic
to T(N,M)* for some M € T7

We will mainly consider this question only up to direct summands. Therefore, from
now on, we use the following terminology for realisability?:

Definition 10.1. Let X be a graded E-module. We call X realisable if there exists
an object M € 7 such that X is isomorphic to a direct summand of 7 (N, M)*. If
X = T(N,M)* for some M € T, then we call X strictly realisable.

Remark 10.2. Note that the functor 7 (NN, —)* occurs in a very natural way: For every
graded ring A and every cohomological functor H*: 7 — Modg A which preserves
arbitrary direct sums and products, there exists a compact object C' € T such that H*
is naturally isomorphic to 7 (C, —)* [36, Lemma 3.2].

Benson, Krause and Schwede [5] have constructed a local obstruction for realisability:

20ur terminology is different from the one in [5]. Benson, Krause and Schwede call an E-module
realisable if X = T (N, M)* for some M € 7.
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Theorem 10.3. [5, Thm. 3.7] Let 7 be a triangulated category with arbitrary direct
sums, N € T a compact object and E =T (N, N)* the graded endomorphism algebra of
N. For each graded E-module X, there exists an element

K(X) € Exty (X, X)
determining the realisability: X is realisable if and only if k(X) is trivial.

For the proof of Theorem 10.3 and more details we refer to [5]. However, for our
purposes we sketch the construction of the local obstruction x(X):

Construction 10.1. A 7-presentation of a graded E-module X consists of a distin-
guished triangle

(10.2) S 'BL R SRS B
in T together with an epimorphism of graded E-modules €: T (N, Ry)* — X such that
the sequence
T(N,R))* %% T(N,Ry)* =X —0
is exact. If the objects Ry and Ry are assumed to be N-free, that is, isomorphic to a

direct sum of shifted copies of N, then we refer to an N-special T -presentation.
Given an N -special T -presentation

(E'BL R S Ry S B, e: T(N,Ry)* — X),

we obtain an exact sequence of graded E-modules

(10.3) 0 X[-1] Z=h T(N, By (1] &5 T(N, Ra)* 25 T(N, Ro)* & X = 0

by applying the functor T (N, —)* to the triangle. The monomorphismn: X — T (N, B)*
s determined by noe = T,.
This sequence is called associated extension of the N-special 7 -presentation.

In [5, Prop. 3.4] it is shown that there exists an N-special 7-presentation for each
graded F-module X, and that the Yoneda-class of the associated extension, denoted by
k(X) € Ext%’_l(X , X), is independent of the choice of the N-special 7-presentation.

Since T (N, Rp)* and 7 (N, R;)* are free, the extension x(X) is trivial if and only if
the monomorphism

X[-1] = TV, B -1
is split. Thus x(X) determines, in fact, the realisability of X.

Remark 10.4. Let 7 be a triangulated category admitting direct sums and N € 7
a compact object. Denote by E = 7T (N, N)* the graded endomorphism algebra of N.
Benson, Krause and Schwede extend their theory by an infinite sequence of obstructions
which decides whether a graded E-module X is strictly realisable.

They show that if there exists an infinite sequence of obstructions

kn(X) € Ext® (X, X), n >3,

where the class k,,(X) is defined provided that the previous one k,_1(X) vanishes, then
it even holds X = 7(N,M)*. In this sequence of obstructions all but the first one
depend on choices. Only x3(X) is uniquely determined and equals the local obstruction
K(X).
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In view of the need for an infinite sequence of obstructions to decide whether
X = T(N,M)* for some M € 7T, it is remarkable that the first obstruction of this
sequence already tells whether X is a direct summand of 7 (N, M)*.

In our results we will only consider this first obstruction.

10.2. Realisability and dg algebras. Let A be a dg algebra over some commuta-
tive ring k. Remember that the functor D(A)(A, —)* is naturally isomorphic to the
cohomology functor H* (Lemma 6.2). Hence a graded H*A-module is realisable if and
only if it is a direct summand of H*M, where M € D(A) is a dg A-module. Moreover,
A is a compact object in D(A). Hence Theorem 10.3 applies, and we can decide whether
X is a direct summand of H*M for some dg A-module M € D(A).

Example 10.5. (1) Let k£ be a Noetherian ring and G a finite group. Remember that
the group cohomology ring H*(G, k) is actually a graded endomorphism ring of an object
in a triangulated category: We have H*(G, k) = K(Inj kG)(ik, k)", where ik denotes
an injective resolution of k. Moreover, K(InjkG) admits arbitrary direct sums since
Inj kG does. Since ik is compact in K(InjkG) by Proposition 8.9, the assumptions of
Theorem 10.3 are satisfied.

On the other hand, we know from Remark 6.1(2) that K(Inj kG)(ik, ik)* is the coho-
mology of the endomorphism dg algebra End(ik) of the complex ik,

H* End(ik) = H*(G, k),

and we can also consider realisability in the setting of dg algebras. Now note that we
have a commutative square

K (Inj kG) (ik,—)*

K (Inj kG) Mody, H*(G, k)
'Hom(ik,)l l%
D(End(ik)) L s Mody, H* End(ik)

Since the exact functor Hom(ik, —): K(InjkG) — D(End(ik)) commutes with arbitrary
direct sums and is dense (see for example [6, Prop. 3.1]), a graded H*(G, k)-module is
realisable by a complex C' € K(InjkG) if and only if it is realisable by a dg End(ik)-
module M.

Observe that H*(G,k) is also isomorphic to the graded endomorphism ring
D(kG)(k,k)*. However, except in trivial cases, the stalk complex k is not a compact
object in D(kG) and so the assumptions for Theorem 10.3 are not fulfilled.

(2) Let k be a field and G be a finite group. The Tate cohomology ring H*(G7 k) is
the graded endomorphism ring Homy (%, k)* and k is compact in Mod kG. With the
equivalence Z°: Kao(Inj kG) = Mod kG (Lemma 8.10), we can write H*(G, k) also as
graded endomorphism ring K,.(Inj kG)(tk,tk)* and conclude that

H* End(tk) = H*(G, k).
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Similarly as in (1), we have a commutative square

Ko (Inj kG) (th,—)*

Koc(Inj kG) Mod,, H*(G, k)
Hom(tk,—)l l%
D(End (tk)) " » Modg, H* End(tk)

and Hom(tk, —) is exact, dense and preserves arbitrary direct sums. Hence a graded

H*(G, k)-module is realisable by an acyclic complex (or equivalently, by an object of
Mod kG) if and only if it is realisable by an object of D(End(tk)).

Note that if &k is a field of characteristic p > 0 and G a p-group, then the functors
Hom(ik,—) and Hom(tk,—) are even equivalences [6].

Considering realisability in the setting of dg algebras has a striking advantage, as the
following section indicates.

10.3. A global obstruction for realisability. Let A be a dg algebra over a field k.
We have seen in Chapter 7 that H* A is an A,.-algebra whose secondary multiplication
determines a Hochschild class s € HH*1(H*A), called the canonical class. Now the
importance of this result for the realisability theory becomes evident:

Theorem 10.6. [5, Thm. 6.2] Let X be a graded H*A-module. The realisability ob-
struction

K(X) € Ext¥ L (X, X)
s given by the cup product pairing
idx Upa.

In particular, if the class pa € HHAS“Y(H*A) is trivial, then all graded H* A-modules
are realisable.

Because of the last property the class u4 is referred to as global obstruction.

Remark. The converse of the last statement in Theorem 10.6 is not true in general:
Benson, Krause and Schwede provide an example of a dg algebra A with the property
that all H*A-modules are realisable, but with non-trivial canonical class pa [5, Exm.
5.15].

11. REALISABILITY AND p-LOCALISATION

In this chapter we study the relation between realisability of modules over graded-
commutative cohomology rings and p-localisation.

A first motivation for our use of p-localisation is the problem when a module over the
graded-commutative ring H*(G, k) is isomorphic to H*(G, M) for some kG-module M.
This is discussed in Section 11.1.

More generally, we consider dg algebras with graded-commutative cohomology rings
in Section 11.2. In our main result of this chapter we prove that the classical local-global
principle of Commutative Algebra applies for realisability.
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11.1. A motivation for p-localisation. Let G be a finite group and k a field such that
Char(k) divides the order of G. Let X be a graded module over the group cohomology
ring H*(G, k). With Theorem 10.3 we can determine whether X is realisable by a
complex in the homotopy category K(Inj kG). However, we rather want to know when
X is realisable by a module, i.e. X is a direct summand of H*(G, M) with M € Mod kG,
or even X = H*(G, M).

The category Mod kG is embedded in K(Inj kG), but with Theorem 10.3 we cannot
decide whether an arbitrary realisable H*(G, k)-module can actually be realised by a
module. Now we show that one can say more about realisability of p-local modules,
where p is a non-maximal prime.

Throughout this section we denote by H*(G) the group cohomology ring of G. Re-
member that H*(G) is graded-commutative (Section 4.1).

Let p be a graded prime ideal of H*(G) and denote by C, the kernel of the cohomo-
logical functor

Homg (ik, —)p = K(Inj kG) (ik, —)* @) H*(G)p: K(Inj kG) — Modg, H*(G)p.
From Theorem 8.12 we obtain a smashing localisation

Ry
K(Inj kG) K(Inj kG)/C,.

Qp

On the other hand, we have a smashing localisation

R
K(InjkG) < Mod kG,
Q

where Q(C) = Z°(C @, tk) and R(M) = tM, see Chapter 8.5.

Lemma 11.1. If p is non-mazimal, then Qy factors over Q, i.e. there is a functor
Q: Mod kG — K(Inj kG)/Cy

such that Qp = Qo Q Moreover, Q has a right adjoint R satisfying RQ = id and it
holds Ry = RR.

Proof. By Proposition 8.11, we have a localisation sequence

D(Mod kG) =275, K (Inj k@) L=, \1od ke
Consequently, in order to obtain the functor Q, it suffices to show that the composition
Qp o (— ®y, pk) is zero (see Lemma 8.6(3)).

Now observe that Homy (ik, kG)* = Homyg(H'(ik),kG) = k. Since p is non-
maximal, it holds k, = 0 and hence kG is contained in C,. We infer that the composition
Qp o (— ®y, pk) vanishes on kG, and by dévissage on all objects of D(Mod kG).

The functor Q: Mod kG — K(InjkG), we have obtained that way commutes with
arbitrary direct sums since this holds for Q and @Qp, and because Q is dense. Further-
more, the category Mod kG is compactly generated by the finite dimensional modules
(see [47]), thus @ has a right adjoint R by Proposition 2.4. Obviously it holds R, = RR
and we conclude that RQ = id. O

Remember that a H*(G)-module X is p-local if X = X, as H*(G)-modules.
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Proposition 11.2. Let p be a non-mazimal prime and assume that X € Modg H* (G, k)
s a p-local module. If X is realisable, then it can be realised by a Tate resolution tM of
some kG-module M. Furthermore, Xy is isomorphic to a direct summand of H*(G, M ).

Proof. From Theorem 8.12 and Remark 8.13 we obtain diagrams

K (Inj £G) —2"% " NMody, H () K (Inj k@) — ) N od,, HH(G)
Qpl l®H*(G)p TRP mCT
K (Inj £G) /Cp =P ™ M od, HY(G), K (Inj £G) /Cp =P ™ M od,, H(G),

which commute up to isomorphism. Let X be a graded p-local module over H*(G).
If X is realisable by some complex C' € K(InjkG), then X, is realisable by an object
Qp(C) € K(InjkG)/Cy. Hence X = inc(Xy) is realisable by R,Q,(C). We infer from
Lemma 11.1 that X can be realised by R(M), where M denotes RQ,(C) € Mod kG.
But the functor R assigns to M its Tate resolution tM.

For the second claim, we show that Homx (ik,tM); = H*(G,M),. Applying the
cohomological functor Homg (ik, —), to the canonical triangle

pM — iM — tM — pM[1]
yields an exact sequence
Homy (ik, pM [~1]);, — Homx (ik, M), — Homk (ik,t M), — Homg (ik, pM),
of graded H*(G)-modules. In the proof of Lemma 11.1 we have shown that pM and

pM[—1] lie in the kernel of Homg (ik, —)p. Thus H*(G, M), and Homk (ik,tM); are,
in fact, isomorphic. O

Observe that the proof also shows that for a strictly realisable, graded H*(G,k)-
module X which is moreover p-local, there exists a module M € Mod kG such that
X = Homk (ik,tM) and X, = H*(G, M),.

Remark. If the module H*(G, M) in Proposition 11.2 is p-local, then X is realisable by
the kG-module M. However, in general we cannot expect H*(G, M) to be p-local.

11.2. Realisability is a local property. In this section we show that the classical
local-global principle applies for realisability. Let A be a differential graded algebra
over a commutative ring k, and assume that the cohomology ring H*A is graded-
commutative. Under some finiteness assumptions we prove that a graded H* A-module
is realisable if and only if X, is realisable for all graded prime ideals p of H*A.

Lemma 11.3. Let A be a dg algebra with graded-commutative cohomology ring H*A
and fix a graded prime ideal p of H*A. If a graded H* A-module X is (strictly) realisable,
then X, is (strictly) realisable.

Proof. We use the commutative diagrams

D(A) — 2D Mod,, H* A D(A) — 2D Nod,, HE A

Q l@H*A(H*A)p R mCT
D(4)/Cy(QA)!
p——————————

D(A) /¢y PG QAT N od,, HY A, D(A)/C Mody, H* A,
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from Corollary 8.16. If X is realisable, then the H*Ap-module X, is realisable by an
object of D(A)/Cp. But then the H* A-module X, is realisable by an object of D(A), by
the right hand diagram. O

Now our aim is to show that X being realisable for all graded primes p of H* A implies

that X is reahsable On that purpose, we study the behaviour of the local obstruction

K(X) € Ext? e A (X X) under p-localisation. The following lemma is stated in a more
generally setting, but applies to this situation.

Lemma 11.4. Let 7, U be triangulated categories with arbitrary direct sums and let
N €T be a compact object. Assume that

F:T-U
is an exact functor such that FN is compact in U, and that
F: Modg T(N, N)* — Modg, U(FN, FN)*
s an exact functor such that the diagram below commutes up to natural isomorphism.

7T Mody T(N, N)*

| I
U—

Modg, U(FN, FN)*
Then we have for every graded T (N, N)*—module X

F(k(X)) = k(FX) in Ext); (FX,FX).

(FN FN)*

Proof. Let (X~'B SRS Ro = B, e: ’T(N Rp)* — X) be an N-special 7-presenta-

tion with associated extension k(X) € ExtT( ]\1, ) (X X). Since F is exact and preserves

direct sums, we obtain a triangle X~'FB ELNy 2 Ry fo g Ry 7 FBin U, where F Ry
and F'Ry are FN-free. The exactness of F and the commutativity of the diagram yield
an epimorphism ¢: U (F N, FRy)* — FX. Consequently

(X7 1Fp 22, FR1 ELR FRy EAN FB, (:U(FN,FRy)" — ﬁ’X)
is an F'N-special U-presentation and the commutativity of the diagram

— (FX)|-1] — U(FN,S " FB)* E (PN, PR E S U(PN, FRy) — Fx — 0

.

R

0x) ~ Q) ~ ~
0 — F(X[-1]) — P(T(N,S-1B)") 3 F(T(N, R1)*) —=3 F(T(N, Ro)*) — FX — 0
shows that r(FX) = F(k(X)) in Exty y oy (FX, FX). O

The next lemma is well-known for strictly commutative Noetherian rings (see for
example [9]), and it is easy to check that it also holds true for graded-commutative
coherent rings. Remember that a graded ring R is called coherent if finitely generated
graded submodules of finitely presented graded R-modules are assumed to be finitely
presented.
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Lemma 11.5. Let R be a graded-commutative and coherent ring, and let p be a graded
prime ideal of R. Let M, N be graded R-modules and assume that M is finitely presented.
Then there is a natural isomorphism

Extyy’ (M, N)p = Extly (My, Ny)
for all i > 0. O

Theorem 11.6 (Local-global principle). Let A be a dg algebra such that H* A is graded-
commutative and coherent. The following conditions are equivalent for a finitely pre-
sented graded H* A-module X :

(1) X is realisable.
(2) X, is realisable for all graded prime ideals p of H*A.
(3) X is realisable for all graded mazimal ideals m of H* A.

Proof. By Lemma 11.3, it suffices to show that X is realisable if Xy, is realisable by an
object in D(A)/Cy, for all graded maximal ideals m of H*A.

The H*A-module X is realisable if and only if the class x(X) € Exti’,:fll(X, X) is
trivial (Theorem 10.3). By Proposition 3.6, the latter holds true if and only if the
fraction @ in Exti}:i‘(X , X)m equals zero for all graded maximal ideals m of H*A.
But since X is finitely presented and H*A is assumed to be graded-commutative and
coherent, we may apply the natural isomorphism

(EXti}tA(X, X))m & Ext®

(H*A)m (XITU Xm)

from Lemma 11.5, which maps the fraction @ to the extension k(X)) ®p+q (H*A)m.
The object QA € D(A)/Cy, is compact (Lemma 9.3), hence we can apply Lemma 11.4
to the commutative diagram

D(A)(A,—)"

D(A) s Modg, H*A

Ql l—@mmwm)m
D(A)/Con D CAT N oy H* Ay

and obtain
K(X) @pra (H*A)m = k(X @p+a (H A)m).
Altogether we infer that X is realisable if and only if the class k(Xy) is trivial for all

m, or equivalently, if Xy, is realisable by an object in D(A)/Cy, for all graded maximal
ideals m of H*A. O

A graded H* A-module is realisable if and only if all its direct summands are realisable.
Since p-localisation commutes with direct sums, this shows

Corollary 11.7. Let A be a dg algebra such that H*A is graded-commutative and co-
herent. Let X € Modg H*A be an arbitrary direct sum of finitely presented graded
H*A-modules. Then the following are equivalent:

(1) X is realisable.
(2) X, is realisable for all graded prime ideals p of H*A.
(3) X is realisable for all graded mazimal ideals m of H*A. O
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Theorem 11.6 and Corollary 11.7 apply in particular for realisability over the group
cohomology ring H*(G, k), where G is a finite group and k is a noetherian ring (see
Example 10.5). The finiteness of the group is not necessary as long as H*(G, k) is still
coherent and kG is noetherian. The latter is to ensure that the category K(InjkG) is
closed under taking arbitrary direct sums.

We also remark that in all results in this section, the realisability setting

D(A) 25 Mod,, H* A

can be replaced by the more general setting

T(N,—)"
_

T Mody, T (N, N)*,

where 7 is a triangulated category which admits arbitrary direct sums and is generated
by compact objects, and N € 7T is a compact object such that 7 (N, N)* is graded-
commutative and coherent.

Remark. (1) One might want to have this local-global principle for arbitrary graded
H*A-modules. It is well-known that every graded module is a direct limit of finitely
presented graded modules, but it is open whether a realisable finitely presented module
can be written as direct limit of realisable finitely presented modules. It is not known
either whether an arbitrary direct limit of realisable modules is realisable.

(2) It would be nice to have a local-global principle also for strict realisability (see
Remark 10.4). Let X be a graded H*A-module, where A is a dg algebra with graded-
commutative cohomology ring. If X is strictly realisable, then so is X, (Lemma 11.3).
If X is finitely presented and H*A coherent, does X, being strictly realisable for all
primes p imply that X is strictly realisable?

The infinite sequence of obstructions deciding on strict realisability

kn(X) € Ext2 (X, X), n > 3,

where r,(X) is defined provided that the previous one k,_1(X) vanishes, arises from an
A-exact oo-Postnikov-System which in cohomology gives rise to a map having cokernel X
(see [5, App. A] for details). More precisely, an A-exact [-Postnikov system gives rise to
the obstructions k,(X),3 < n <, and can be extended to an A-exact (I + 1)-Postnikov
system provided that the class k;(X) is trivial. If an A-exact oco-Postnikov system exists,
then X is strictly realisable [5, Prop. A.19].

Now one might want to prove iteratively r;(X,) = ri(X), for all [ > 3 and use
the same methods as in the proof of Theorem 11.6. The problem is that all but the
first obstruction are not uniquely determined and consequently, the compatibility of the
obstructions for the realisability of X and the realisability of X}, cannot be expected in
general.

12. LOCALISING THE GLOBAL OBSTRUCTION

Let A be a dg algebra over a field k and assume that H* A is graded-commutative. We
have shown in Section 11.2 that realisability is a local property. The local-global principle
we have shown applies for finitely presented modules but does not yield information
on global realisability. In this chapter we develop a local-global principle for global
realisability.
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Applying our results from Chapter 9, we can state a global obstruction for the p-
local H* A-modules: Let A, the localisation of A at a prime p in cohomology, defined in
Section 9.2. From Corollary 8.16, Proposition 9.4 and Theorem 9.12 we conclude that
the diagram

D(4) D(A)(A,—)* Modg, H*A
l l®H*A(H*A)p
D(Ay) D—>(Ap)(Ap’7)* Modg, H*(Ap)

commutes up to isomorphism. Since in particular H*(Ap) = (H*A)p, we infer that the
canonical class pa, € HH> Y H *Ap) is a global obstruction for the p-local modules.

At first sight, it is not clear whether the Hochschild classes ps € HH> 1 (H*A) and
pa, € HH*1(H*Ap) are associated in some way. In order to relate them, we show in
Section 12.1 the existence of a map of Hochschild cohomology rings

I': HH**(H*A) — HH"*(H* A,)

which has the property I'(pa) = pa,.

After discussing localisation of Hochschild cohomology groups of graded-commutative
algebras in Section 12.2, we are ready to prove a local-global principle for global reali-
sability.

12.1. A map of Hochschild cohomology rings. In general, a morphism of graded
algebras ¢: R — T does not induce a homomorphism HH**(R) — HH**(T). We show
in this section that such a map does exist whenever T and gT are flat and p: R — T is
an epimorphism in the category of rings, i.e. for any ring 7" and morphisms o, 3: T' — T"
with ap = By, it follows a = 3. Such a map can be characterised in the following way:

Lemma 12.1. [52, Ch. XI, Prop. 1.2] The following conditions are equivalent for a
morphism of graded rings p: R — T':

(1) ¢ is an epimorphism in the category of rings.

(2) The map R@7r R — R, r @1 — rr', is an isomorphism.

(3) The restriction functor Modg R — Modg, T' is full.

We call a map of graded algebras ¢: R — T a flat epimorphism if ¢ is an epimorphism

in the category of rings and furthermore, the modules Tr and g1 are flat.
Example 12.2. If R is a graded-commutative ring and S C R a multiplicative subset
of homogeneous elements, then R — S™'R is a flat epimorphism: S™'R is flat as both

left and right R-module, and it is an epimorphism of rings by the universal property of
the ring of fractions.

By B(A) we denote the graded Bar resolution of a graded algebra A as introduced in
Chapter 5.2.

Lemma 12.3. Let ¢: R — T be a map of graded algebras which is a flat epimorphism
of rings. Then the complex T @r B(R) ®r T is a T°-projective resolution of T and a
chain map n: T @r B(R) @r T — B(T) is given by

M: T RrB(R), @rT — B(T),
(ta Toy 5y Tn+1, t/) — (t(p(r())a 90(7"1)7 e 7¢(rn)7 @(Tn-i-l)t/)'
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Proof. We first remark that T"®@pr B(R) ®g T is exact because T'®p — and — @p T
are exact. Since gTr and TR are projective as T-modules and B(R),, is a projective
R®module for all n > 0, we get indeed a T*-projective resolution of T ®p R®pr T. But
since ¢: R — T is an epimorphism of rings, the map

T@r RIRT — T, (ta T, t/) = t(p(’l")t/,
is an isomorphism of T¢-modules. U
As a consequence we obtain

Proposition 12.4. The maps
Hombe (B(R),, R) — Homke(T @ B(R), @r T,T),
( — TRr(RRT
where | € 7 and n > 0, induce a homomorphism of bigraded algebras
I': HH**(R) — HH™*(T).

Proof. T is obviously a morphism of graded vector spaces, and it is easy to check that
it commutes with Yoneda multiplication. O

Theorem 12.5. Let A, B dg algebras over a field k and suppose that ¢: A — B is a
morphism of dg algebras inducing a flat epimorphism ¥*: H*A — H*B in cohomology.
Then the map

I': HH**(H*A) — HH"*(H"B)
satisfies T'(pa) = up.
Proof. We choose representing cocycles my4 € Hom(}}* A)E(H *A® H*A) of pa and
mpg € Hom(_I}*B)e(H*B%, H*B) of up and show that the diagram

H*BemsH*B

H*B Qp+g H*A®® Q4 H*B H*BQu-as H'AQpy+4 H*B

n{ %m

H*B®? > H*B

commutes up to coboundaries.
An element (s, 2, 1, T2, 23, 74,t) € H*B ® H*A®5 @ H*B is sent by mp o3 to

(12.1) (—D)llsmp (" (w0), " (1), ¥* (w2), 0" (w3), ¥ (wa) 1.
On the other hand, under 1y o (H*B ® m4 ® H*B) our element maps to
(12.2) (=D)lsep* (moa(zo, m1, 29, 23, 24))1.

By Lemma 7.6, we have a (2, —1)-Hochschild cocycle u € Hom(_hl,*A)e (H*A®* H*B) such
that

mpo (P*)*° —¢* oma = uods,
where dsg: H*A®5 — H*A®?* is the differential of the Bar resolution of H*A. Hence the
difference of (12.2) and (12.1) equals

(H*B ® (’LL o d3) & H*B)(S7I0)x17$27 x3, 1)4,t).
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But now we are done since H*B ® (u o d3) ® H*B is a coboundary in the complex

Hom(}}*B)e(H*B Qp-a B(H*A) @p+4 H*B, H*B)

which computes the Hochschild cohomology HH* ! (H*B). O

12.2. Local-global principle for the global obstruction. Throughout this section
let A be a dg algebra over a field k£ and suppose that H* A is graded-commutative. Fix
a graded prime ideal p of H*A. In Theorem 9.12 we have shown the existence of a dg
algebra A’ quasi-isomorphic to A and a zigzag of dg algebra maps

A AL A,

which induces the canonical map can: H*A — (H*A), in cohomology. Now we use this
result to obtain more information about the global obstruction for the p-local modules.

Proposition 12.6. The map
I': HH**(H*A") — HH**(H* A,)

satisfies I'(pnar) = pa, . Moreover, the composition
HH**(H* A) —— HH**(H* A') —— HH"*(H" Ay)

maps pA 1o LA, .

Proof. The dg algebra morphism ¢: A" — A, induces in cohomology the flat epimor-
phism of rings H*A — (H*A),. The first claim then follows from Theorem 12.5. For

the second just note that by Lemma 7.6, the isomorphism HH**(H*A) = HH**(H*A’)
induced by the quasi-isomorphism A’ — A maps pa to par. O

Proposition 12.6 implies that if j14 is trivial, then so is 4, for all graded primes p
of H*A. Observe that this was not clear before: if all H* A-modules are realisable, then
so are in particular all p-local modules. But this does not imply that p4, is trivial, see
Remark 10.3.

Under an additional assumption for H*A we now show that if pa, is trivial for all
prime ideals p of H*A, then 4 is trivial.

Lemma 12.7. Let R be a graded-commutative algebra over a commutative ring k. As-
sume that M is a graded R®-module which admits a resolution of finitely generated
projective graded R°-modules. Let N be any graded R°-module. Then for alli > 0, there
18 a natural isomorphism

Extye (M, N) ©pe (Rp)® = Ext(p 1. (M ®pe (Rp), N @pe (Rp)°).

Proof. Note first that R® is graded-commutative and consequently, Extz’{; (M, N) is in-
deed a graded R®-module.

The claim is immediately checked if M is a finitely generated graded free R°-module
and ¢ = 0.

Now assume that M admits a resolution of finitely generated projective graded R®-
modules. Then M is in particular finitely presented and there exists an exact sequence

LR — Moo,
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where Fy and F) are finitely generated graded free R®-modules. The commutative dia-
gram

Home (Fo, N) ®pge (Rp)© o) > Homp. (F1, N) ®ge (Rp)°

- !

Hom’(kRp)e(FU R Re (RP)67N®R€ (Rp)e) — Homsz)e(Fl R Re (Rp)€7N®Re (Rp)e)
(f®re (Rp)°)

and the exactness of — @pge (Ry)® = Ry, ®r — ®r Ry give the isomorphism
Homp. (M, N) @ge (Ry)® = Hom(p \o (M ®ge (Rp)*, N @pe (Rp)©).
The claim for the Ext-groups follows from the condition that M admits a resolution

of finitely generated projective R°-modules. 0

Remark 12.8. The assumptions of Lemma 12.7 are satisfied if R¢ is Noetherian and
M a finitely generated R®-module. Note that it is not enough to assume that R is
Noetherian. In general, we cannot expect a tensor product of two Noetherian algebras
to be Noetherian: If F' is a perfect field of characteristic p > 0 and k is an imperfect
subfield of F', then the tensor product F' ®; F is not Noetherian, see [39, Sect. 1].

Before we prove the local-global principle, we establish a nice relation between the
Hochschild groups of R and Ry.

Proposition 12.9. Let R be a graded-commutative algebra over a field k. Suppose that
the enveloping algebra R® is Noetherian, and let p be a graded prime ideal of R. For all
n > 0, we have

HH™"(R,) = HH""(R),

as graded R-modules. In particular, a Hochschild group HH™*(R) is trivial if and only
if HH™*(Ry,) is trivial for all graded prime ideals p of R.

Proof. We first point out that

by Lemma 12.7. In order to show that R, ® g HH™*(R) ®r Ry is, in fact, just lo-
calisation of HH™*(R) at p, we apply our results from Chapter 5.3. The Hochschild
cohomology ring HH**(R) is bigraded-commutative by Theorem 5.3 and since R is
graded-commutative, Remark 5.4 implies that

HH"*(R) = R.
Hence we have a well-defined R-linear map
v: Ry ®op HH"*(R) @ R, — HH"™"(R)y,
/ /
“ocel — (cpride. D
s s ss
and it is easy to check that v is bijective by stating the obvious inverse map. O

Note that the denominators s, s’ do not need sign adjustment because we have chosen
them to have even degree (see Section 3.1.2).
Now we are ready to prove
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Theorem 12.10 (Local-global principle). Let A be a differential graded algebra over
a field k such that H*A is graded commutative. Assume that the enveloping algebra
(H*A)¢ is Noetherian. Then the following conditions are equivalent:

(1) pa € HA>"Y(H*A) is trivial.

(2) pa, € HH*~Y(H*Ay) is trivial for all graded prime ideals p of H*A.

(3) pa,, € HH>Y(H*Ay) is trivial for all graded mazimal ideals m of H*A.

In particular, all graded H* A-modules are realisable if the Hochschild class pa, is trivial
for all graded prime ideals p of H*A.

Proof. Fix a graded prime p of H*A. We prove that under the isomorphism
HH>*(H* Ap) = HH>* (H* A),
of Proposition 12.9, the class p4, is mapped to the fraction “TA. This shows the claim.

Let A& A2 A, be a zigzag of dg algebra maps which induces the canonical map
H*A — (H*A)p in cohomology. Corollary 12.6 implies that in the Hochschild group
HH*!(H*Ay), we have

pa, = [H* Ay @p=ar mar Qpear H* Apl,
where m s is a representing cocycle for puy € HH>L(H*A'). We conclude from
Lemma 12.7 and Proposition 7.6 that under the composition of isomorphisms
HE**(H*A,) = HE**(H*Ay @pea H*A' @pe a0 H* Ay)
> H*Ay @ps a4 HA**(H*A') @prear H* Ay
H*Ap @ppea HE (H*A) @4 H* Ay,
the Hochschild class p4, maps to % R pa R % But now we can apply the isomorphism
v: H*Ap @ g HH (H* A) @ e g H* Ay — HH>*(H*A),,

from the proof of Proposition 12.9. Since 1/(% @ A ® %) = A we have proved the
claim. O

12

Remark 12.11. The reader might have noticed that the dg algebra A, was not shown
to be uniquely determined up to quasi-isomorphism. The universal property we have
proved in Section 9.2.1 only holds on the level of derived categories. Hence for another
dg algebra Aj satisfying H*(A}) = (H*A)y, we obtain a canonical class Ay which could
behave differently.

However, what we have actually shown in Theorem 12.10 is that for every dg al-
gebra A}, admitting a zigzag of dg algebra morphisms A AL Aj, which induces
can: H*A — (H*A), in cohomology, the canonical class p Ay is the image of y14 under

HH* ' (H*A) — HH> "' (H*A),, (+— %

the map

So the choice of the dg algebra inducing (H*A), in cohomology is not relevant, as long
as it admits such a zigzag.

Remark. One might want to have Proposition 12.9 and with it Theorem 12.10 under
weaker assumptions. In Proposition 12.9 we have assumed that R® is Noetherian to
ensure that R admits a resolution of finitely generated R°-projective modules. We do
not know whether there is a way to avoid the latter condition.



68 BIRGIT HUBER

13. COMPARING REALISABILITY OVER GROUP AND TATE COHOMOLOGY

Now we focus on realisability in group representation theory and compare realisability
over the group cohomology ring and the Tate cohomology ring.

The group cohomology ring H*(G, k) has better properties than the Tate cohomology
ring H *(G, k) which, for instance, is not Noetherian in general. However, when it comes
to the source categories of realisability, the stable module category Mod kG is more
“handsome” than the homotopy category K(InjkG). This is the reason why we are
interested in studying the relation of realisability over group and Tate cohomology.

The triangulated categories K(Inj kG) and Mod kG are related by a smashing locali-
sation

R
K (InjkG) < Mod kG
Q.

(see Proposition 8.11) and we are now concerned with finding a relation between realis-
ability and this localisation of triangulated categories.

Remember that both H*(G, k) and H*(G, k) are the cohomology of a dg algebra (Ex-
ample 10.5) and thus, they admit an A.-algebra structure yielding global obstructions
which we now denote by pug € HH>~1(H*(G, k)) and i € HH> ' (H*(G, k)).

In the first section we study realisability of fixed modules. Then we focus on global
realisability. The canonical class fig has been computed for some groups G by Benson,
Krause and Schwede [5], and by Langer [37]. We consider the same groups and compute
the global obstructions for the group cohomology rings. We will see in Section 13.2 that
in all but one case, the Hochschild classes ug and fig turn out to behave surprisingly
similar. As a first explication for this similarity we show in Section 13.3 that the algebra
morphism H*(G, k) — H *(G, k) is induced by a zigzag of dg algebra morphisms. The
main result of this chapter is stated in the last section and gives a complete explanation
for the relation between ug and fig we observed before in examples.

We like to thank Dave Benson for discussions that helped to improve this chapter and
in particular, for a contribution to the proof of Theorem 13.21.

13.1. Local realisability. Let k be a field of characteristic p > 0 and G be a finite

group such that p divides the order of G. In this section we discuss ways to construct a

realisable H*(G, k)-module from a realisable module over H*(G, k), and vice versa.
The following proposition will play an important role in the next section.

Proposition 13.1. Assume that the p-rank of G equals one.

(1) If X € Modg H*(G, k) is realisable, then X ®p+(q k) H*(G,k) is a realisable
H*(G, k)-module.

(2) A graded H*(G, k)-module Y is realisable if and only if its restriction to H*(G, k)
is a realisable H*(G, k)-module.

Proof. By Lemma 4.4 and Theorem 4.5, there exists a multiplicative subset S C H*(G, k)
such that H*(G,k) = S~'H*(G,k). Hence we may apply Theorem 8.12 and Remark
8.13 and obtain commutative diagrams
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mg (ik,—)* my (ik,—)*
K (Inj kG) 220N fody HH(G, k) K (Inj £G) 5 Mody, H (G, k)
Ql l_‘@H*(G,k)ﬁ*(Gvk) TR reST
Hom,, . (k,—)* M Hom, . (k,—)* N
Mod kG ——— Mody, H*(G, k) Mod kG ——————— Modg; H*(G, k)
which yield the claim. O

If the p-rank of GG is at least two, then we cannot expect to obtain realisable modules
from realisable modules by induction or restriction as above. The reason for this is that
in general, the induction functor — @ g« 1) H*(G, k) is not given by localisation with
respect to a multiplicatively closed subset.

However, there is another possibility to obtain a realisable H*(G, k)-module from a
realisable H *(G, k)-module. This construction also works in the general case.

Lemma 13.2. Let X € Mody, H*(G, k) realisable. Then its truncation to non-negative
degrees X2° is a realisable H*(G, k)-module.

Proof. Let X be a direct summand of H *(G, M), where M is a kG-module. Without
loss of generality, we may assume that M does not have any projective direct summands.
Then HO(G, M) = H(G, M) and consequently, H*(G, M)>° = H*(G, M). Tt follows
that X20 is a direct summand of H*(G, M). O

13.2. Examples for the global obstruction. Let k£ be a field of characteristic p > 0.
We study the group and Tate cohomology rings of cyclic p-groups and the Quaternion
group, and focus on the global obstructions pg and fig.

Theorem 13.3. [5, Thm. 7.1] Let G be a cyclic group of order p", where n > 1. If
p" = 2, then the Tate cohomology ring is a Laurent polynomial ring k[X, X '] on a
1-dimensional class X. If p™ > 3, then the Tate cohomology ring is a truncated Laurent
polynomaial Ting in two variables,

H*(G, k) = k[X,Y,Y 1] /(X?),

with deg(X) = 1 and deg(Y') = 2. The secondary multiplication ms of the A -algebra
H*(G, k) and thus i € HA>~Y(H*(G, k)) is trivial except when p =3 and n = 1. In
this case, the secondary multiplication is given by

ma(XY' XYI XYyl =yt i lez,

and vanishes on all other tensor products of monomials. Furthermore, its Hochschild
class fiz(3) is non-trivial.

Note that strictly speaking, one can make choices to obtain mgs in the shape as stated
above. With other choices of f; and fo in Construction 7.1 we could obtain a different
map. However, the Hochschild class [ic of mg is independent of all choices.

Now we consider the group cohomology ring H*(G, k) of a cyclic group G as above. It
identifies with the subring of non-negative degrees of H *(G, k). The global obstruction
pe € HH> Y (H*(G, k)) turns out to behave very similarly:
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Proposition 13.4. Let G be a cyclic group of order p"™, where n > 1. If p™ = 2, then
the group cohomology ring is a polynomial ring k[X], where X has degree 1. If p™ > 3,
then H*(G, k) is a truncated polynomial ring in two variables,

H*(G,k) = kX, Y]/(X?),

with deg(X) = 1 and deg(Y') = 2. The secondary multiplication ms of the A -algebra
H*(G, k) and thus pg € HH>"Y(H*(G, k)) is trivial except when p =3 and n = 1. In
this case, it satisfies

ma(XY XY7 XYl =yt 51 >0,

and vanishes on all other tensor products of monomials. Its Hochschild class iz, is
non-trivial.

Proof. Since the characteristic of k is positive, we may identify kG with the truncated
polynomial ring K [T']/(T"), where r = p™. An injective resolution of k& which is moreover
2-periodic is given by

_Tr—l _Tr—l
ik s >0 0 IO T > Il IQ T I3 >
Let x: ik — ik be the degree-one chain map
_Trfl _Trfl
Zk s 0 0 \IO T Il ,1'2 r \Ig
| I S
Yk >0 > Ip 7T/11 p——’ I —T\I3 - 1rI4 —
and y: ik — X%ik the degree-two chain map
7TT71
ik . 0 0 rIO T Il \IQ T NP
| I N
222143 e IO - N Il o I2 - 1'3 _TT?l, 1'4 - [N

One easily checks that xy = yx. If r > 3, then 22 is nullhomotopic by the homotopy
g, given by multiplication with 7772 in odd degrees, and the zero map in even degrees.
If = 2, then obviously #? = y. We infer that 2 and y are cycles of End(ik) representing
the classes X € HY(G,k) and Y € H%(G, k), respectively.

In order to compute the secondary multiplication, we define a cycle selection homo-
morphism

fi: H* End(ik) — End(ik)
on the k-basis { XY |e € {0,1},i > 0} of H*(G, k), given by
fl(XeYz) _ I‘eyi.

If » = 2, then this map is multiplicative and it follows that fo and with it mg can be
chosen to be trivial. If r > 3, then f; is multiplicative except on two odd dimensional
classes. The product f1(XY?)f1(XY7) = 22y**7 is only nullhomotopic, by the homotopy

qu_j‘
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We define
for H* End(ik) @ H* End(ik) — End(ik)
to be trivial except on two odd dimensional classes: In this case, we set
fA(XY?, XY7) = gy
Since mg maps (A, B, () to the cohomology class of the expression
(13.1) (D 1(A) f2(B,C) = f2(A, B)[1(C) — f2(AB, C) + f2(A, BC)

(see (7.6)), we infer that mg vanishes on all tensor product of monomials with at least
one monomial having even degree. Using the fact that the homotopy ¢ commutes with
y, one checks that the tensor product of three odd degree monomials (XY?, XY7, XY?)
is mapped under (13.1) to

(qz + wq)y 7.

The chain map qz + zq: ik — X2k is given by multiplication with 772 in each
degree. Now if r > 3, then gz + xq is nullhomotopic via the homotopy given by the zero
map in even degrees, and by multiplication with 774 in odd degrees. Thus m3 = 0.
But if » = 3, then gx + zq¢ = y and we conclude

m3(XY!, XY7, Xyl) = yititi+L
It remains to show that also the Hochschild class pz, is non-trivial. But this is is a

consequence of the following remark. O

IA{emark 13.5. Using Massey P}"oducts, Benson, Krause and Schwede proved that
H*(Zs,k)/(X) is a non-realisable H*(Zs, k)-module [5, Exm. 7.6]. From Proposition 13.1
we conclude that H*(Zs, k)/(X), viewed as H*(Zs, k)-module, is not realisable either.

Theorem 13.6. [37, Satz 2.10] Denote by Qs be the quaternion group and let k be a
field of characteristic two. Then the Tate cohomology ring H*(Qs, k) is given by

kXY, ST/(X2+Y2=XY, X3 =Y?=0,X% = XY?),
with | X| = |Y|=1,|S| =4. The canonical class [iQq is non-trivial.

Furthermore, Langer shows the existence of a non-realisable module [37, Lemma 2.23]:
Write H for H*(Qs, k). The cokernel of the map

N L
g: H[-1] & H[-1] HeH
is not a realisable module.

Since r9(Qg) = 1 (see Theorem 4.6), it follows from Proposition 13.1 that Coker g,

viewed as module over H*(Qs, k), is not realisable. We obtain
Corollary 13.7. Denote by Qg be the quaternion group and let k be a field of charac-
teristic two. Then
H*(Qs, k) = k[X,Y,S]/(X*+Y? =XV, X3 =Y3=0,X%Y = XY?),
with | X| = Y| =1,|S| =4. The canonical class j1Qq is non-trivial. O
One might wonder whether it always holds true that ug is trivial if and only if jig
is trivial. But in general, this is not the case. For any finite abelian 2-group G, the

class pg is trivial by Proposition 13.4 and Remark 7.8. However, the situation for Tate
cohomology is entirely different when it comes to the Klein four group:
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Theorem 13.8. [5, Exm. 7.7] [37, Thm. 3.1] Let G = Zy x Za and k be a field with
Char(k) = 2. Then fiz, is non-trivial. For any other finite abelian 2-group, the canonical
class is trivial.

13.2.1. Reduction to Sylow subgroups. Let k be a field of characteristic p > 0 and G be a
finite group such that p divides the order of G. Let P a p-Sylow subgroup of G. Benson,
Krause and Schwede [5] have shown that the canonical class fig is already determined
by fip. In order to compare ug and [ig in more cases, we now briefly explain why the
same holds true for ug and pup.

Let P be a subgroup of G. If M, N are kG-modules, we define the transfer or trace
map

tr: Homgp(M, N) — Homgg(M, N)
as follows:
trpa(®)(m) = > g:®(g; 'm),
el

where {g; | i € I} is any choice of left coset representatives of P in G. See [2, Ch. 3.6]
for details. The transfer tr induces a well-defined map

tr: H"(P, k) — H™(G, k)

for n € Z, independent on the choice of the resolution [2, Lemma 3.6.16].
By considering a kG-Tate resolution of the trivial module as kP-Tate resolution of k&
regarded as kP-module, we obtain for n € Z a restriction map

res: H"(G, k) — H"(P, k).

Lemma 13.9. [2, Ch. 3.6] The composition trores: ﬁ"(G, k) — ﬁ”(G, k) is given by
multiplication with [G : P].

Note that the restriction map induces morphisms of graded algebras res: H*(G, k) —
H*(P, k) and res: H*(G,k) — H*(P, k). Moreover, if P is a p-Sylow subgroup of G,
then these algebra morphisms are split monomorphisms by Lemma 13.9.

Theorem 13.10. [5, Thm. 8.3] Let k be a field of characteristic p > 0, G a finite group
and P a p-Sylow subgroup of G. Then the canonical class i € HH> Y (H*(G,k)) is
determined by the canonical class jip € HH3’_1(1€I*(P, k)) of the Sylow subgroup, and is
given by the formula
trofip o res®3
G : P]

The key point of the proof is that the restriction map in Tate cohomology is induced
by a morphism of dg algebras. Since similarly, res: H*(G, k) — H*(P, k) is induced by
the inclusion dg algebras

A~

e =

5ndkg(2k) — Endkp(zk)
given by viewing the kG-injective resolution ik as injective resolution over kP, we obtain

Lemma 13.11. Let k be a field of characteristic p > 0, G a finite group and P a
p-Sylow subgroup of G. Then for the canonical classes ng € HH>~Y(H*(G,k)) and
pp € HH>~Y(H*(P,k)), it holds

tropup o res®?

He = G : P] =



REALISABILITY AND LOCALISATION 73

Benson, Krause and Schwede concluded in particular that if G is a group whose p-
Sylow group is cyclic with order different from 3, then jig is trivial [5, Cor. 8.4]. We
infer from Lemma 13.11 and Proposition 13.4 that the same holds true for ug.

Corollary 13.12. Let k be a field of characteristic p > 0 and G be a group whose
p-Sylow subgroup is cyclic of order p™,n > 1. Suppose that n > 2 if p = 3. Then both
the Hochschild classes ug and fig are trivial.

In order to investigate the case P = Z/(3), one needs to distinguish whether G is
3-nilpotent or not:

Definition 13.13. Let G be a finite group and let P be a p-Sylow subgroup. G is called
p-nilpotent if there exists a normal subgroup U < G such that the composite

p L g P gy
is an isomorphism.

Proposition 13.14. [5, Prop. 8.5] Let k be a field of characteristic p > 0 and G be a
finite group with p-Sylow subgroup P. The following conditions are equivalent:

(1) res: H*(G, k) — H*(P,k) is an isomorphism.

(2) res: H*(G,k) — H*(P, k) is an isomorphism.

(3) res: HY(G, k) — HY(P, k) is an isomorphism.

(4) The group G is p-nilpotent.

Since both the restriction maps H*(G, k) — H*(P,k) and H*(G,k) — H*(P,k) are
induced by a morphism of dg algebras, we obtain as a consequence of Proposition 7.6

Corollary 13.15. Let k be a field of characteristic 3 and G a finite, 3-nilpotent group
whose 3-Sylow group is cyclic of order 3. Then both the Hochschild classes pug and jig
are non-trivial.

For [ig, the result above is stated in [5, Sect. 8|.

Theorem 13.16. [5, Thm. 8.6] Let k be a field of characteristic 3 and G a finite group
whose 3-Sylow group is cyclic of order 3. Assume that G is not 3-nilpotent. Then

H*(G, k) = K[V, W, W]/ (V?),

where V' is of degree 3 and W of degree 4. The canonical class g is represented by the
(3, —1)-cocycle m given by

m(VW VW VW = witith2 4 i1 e 7,

and vanishes on all other tensor products of monomials in V and W. The Hochschild
class fig is non-trivial.

In [5], it is further shown that H*(G,k)/(V) is not realisable. We conclude from
Proposition 13.1 that V viewed as module over H*(G, k) is not realisable either. In
particular, the canonical class pug must be non-trivial. Using Lemma 13.11, we can

compute a representing cocycle for the canonical class, using the same methods as in [5,
Thm. 8.6].
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Proposition 13.17. Let k be a field of characteristic 3 and G a finite group whose
3-Sylow group is cyclic of order 3. Assume that G is not 3-nilpotent. Then

H*(G, k) = k[V,W]/(V?)

where V' is of degree 3 and W of degree 4. A representing (3,—1)-cocycle m for the
canonical class pg is given by

m(VW! , VWI VW) = W2 >0,

and vanishes on all other tensor products of monomials in V and W. Its Hochschild
class fig is non-trivial. 0

13.3. Lifting H*(G, k) — I:I*(G, k) to a morphism of dg algebras. Let G be a finite
group and k a field. In the examples we have considered in the last section, the class ug
always arises as restriction of jig to non-negative degrees. Now we give a explanation
for this fact: We show that the canonical inclusion

v H*(G, k) — H*(G, k)

is induced by a zigzag of dg algebra morphisms. The construction is analogous to the
one in Section 9. However, for the convenience of the reader we sketch it briefly. Let
n: id — RQ be the unit and €: QR — id the counit of the adjunction

R
K(Inj kG) <, Kae(Inj kG),

—
Q
where () = — ® tk and R is the inclusion. This is a smashing localisation by Proposi-
tion 8.11.
The map

m: ik — RQ(ik)

is up to natural isomorphism just the canonical inclusion ¢k — tk, see Proposition 8.11.
Therefore the map

K(Inj kG)(ik, ik)" — K(Inj kG)(RQ(ik), RQ(ik))", [ — RQ(f)
is up to isomorphism the canonical inclusion
v H*(G, k) — H*(G, k).

We have K (Inj kG) (ik, RQ(ik)) = H°(Hom(ik, RQ(ik)). For any representing cocycle
Mk € Z°(Hom(ik, RQ(ik)) of n; we obtain as in Lemma 9.5 a quasi-isomorphism

i End(RQ(ik)) — Hom(ik, RQ(ik)), f— f o

We choose for 7;; the inclusion of complexes ik — tk which is a degree-wise split
monomorphism of complexes. Thus 7}, is surjective.

Theorem 13.18. There exists a dg algebra End(ik)" quasi-isomorphic to End(ik) and
a zigzag of dg algebra morphisms

End(ik) «—=— End(ik) —— End(tk)
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inducing the canonical inclusion v: H*(G, k) — H*(G,k) in cohomology. That is, we
have diagrams

End(ik)’
RN J \
End(ik) End(tk) H*(G, k) —— H*(G, k)

where right hand diagram is commutative and identifies with the cohomology of the left
hand diagram.

Proof. We form the pullback diagram
End(ik) —2— End(RQ(ik))
|
End(ik) 225 Hom(ik, RQ(ik))

Since 75, is a surjective quasi-isomorphism, it follows from Lemma 9.1 that End(ik)’ is
a dg algebra quasi-isomorphic to End(ik).
In cohomology, we obtain a commutative diagram

H* End(ik) ——2 i end(RQ(ik))

Hr (pl)l% %JH* (M%)
17 End(ik) — 11 (Hom (ik, RQ(ik))
where the composition
H*(ij,) " H (1) - K (Inj kG) (ik, ik)* — K(Inj kG)(RQ(ik), RQ(ik))"

is given by applying the functor RQ to a map f € K(Inj kG)(ik,ik)*. But this is up to
isomorphism just the inclusion ¢: H*(G, k) — H*(G, k). O

Observe that the map ¢: End(ik)’ — End(tk) is a monomorphism which moreover
induces a monomorphism in cohomology.

Now we show that the relation between ug and jig which we have observed in the
examples is true in general.

Proposition 13.19. In the Hochschild group HH> ' (H*(G, k), H*(G, k)), it holds
Lo g = g o 1%%,
where 1: H*(G, k) — H*(G, k) is the canonical inclusion.
Proof. We use the zigzag
End(ik) «—=— End(ik) —— End(tk)

of Theorem 13.18. By Proposition 7.6, we have

(13.2)  H*po pignagiry = tenagiry © (H*p)®> in HH>“'(H* End(ik)', H* End(ik))
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and
(133) H*QO (¢] Mgnd(ik)’ = :ugnd(tk) (e] (H*(p)®3 n HHS’_I(H* 57’Ld(lk‘),, H* End(tk:))
Hence in the Hochschild group HH*~1(H*(G, k), H*(G, k)), it holds

L O Wend(ik) = Mend(tk) © 127 U

Remark 13.20. Even more is true: Since both p and ¢ induce monomorphisms in
cohomology, there exist choices in defining the secondary multiplications of H* End(ik)
and H* End(tk) to obtain the equations (13.2) and (13.3) even on the level of k-linear
maps, see Proposition 7.7. With these choices, we have

Lomll @R HNGR) 0 93 3 Hom ! (H(G, k)®3, H*(G, k).

The secondary multiplication mf*(zg”k) we computed in Proposition 13.4 and mf*(zg”k)

of Theorem 13.3 satisfy this equation. However, we cannot just restrict a fixzed mf*(G’k)

to non-negative degrees to obtain mf*(G’k).

13.4. Relating the global obstructions of H*(G,k) and H*(G,k). In all but one
example we have considered in the first section, the Hochschild classes ug and fig were
either both trivial or both non-trivial. Now we are ready to give a general explanation
for this fact. The main result of this chapter is

Theorem 13.21. Let G be finite group, k a field of characteristic p > 0 and assume
that p divides the order of G. If the Hochschild class fic € HH3’71(fAI*(G, k)) is trivial,
then so is the Hochschild class ug € HH>~Y(H*(G,k)). If the p-rank of G equals one,
then i s trivial if and only if pug s trivial.

Proof. Let m: H*(G,k)®3 — H*(G, k) be any (3, —1)-cocycle representing pg. In the
Hochschild group HH>~Y(H*(G, k), H*(G, k)), we have the equation

Lo pg = fig o 1%

by Proposition 13.19. Hence if the Hochschild class fig is trivial, then the k-linear map
tom is a (3,—1)-Hochschild coboundary, say

tom = dg,
where g € Homj, ' (H*(G, k)&%, H*(G, k).
If g(1,1) = 0, then we actually have that g € Hom, '(H*(G,k)®?, H*(G,k)) and
m = dg.
Thus pug is trivial in this case. R
If g(1,1) # 0, then we choose any map u € Hom, '(H*(G,k), H*(G,k)) satisfying

u(1) # 0. Since H~(G, k) is one-dimensional by Tate duality (see Proposition 4.2),
there exists an element s € k such that g(1,1) = k- u(1). Setting

g =g—r-ou,

we obtain
tom = dg,

and since ¢'(1,1) = 0, we conclude that u¢ is trivial.
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If the p-rank of G equals one, then the inclusion ¢: H*(G,k) — H*(G, k) is a flat
epimorphism of rings by Lemma 4.4. Moreover, it is induced by a zigzag of dg algebra
morphisms by Theorem 13.18. Thus we can apply Theorem 12.5 and conclude that the
map I': HH**(H*(G, k)) — HH**(H*(G, k)) satisfies T'(ug) = fig. In particular, ug
being trivial implies that fi is trivial. (|

Note that the second statement of the theorem is not true if r,(G) > 2: If G is the
Klein four group, then ug is trivial but g is not, see Section 13.2.

Remark. In order to prove that ug is non-trivial in Proposition 13.4, Corollary 13.7
and Proposition 13.17, we have shown the existence of a non-realisable module over
H*(G, k). But in general, one cannot expect to have a non-realisable module whenever
the global obstruction is non-trivial: Benson, Krause and Schwede provide an example
of a dg algebra A such that the canonical class py € HH>~Y(H*A) is non-trivial, but
such that all H*A-modules are realisable [5, Prop. 5.16].

However, in all known examples of non-trivial global obstructions for group or Tate
cohomology, the existence of a non-realisable module could always be shown. Benson,
Krause and Schwede use Massey products to show the existence of a non-realisable
module over H*(Zs, k) and H*(Zy x Zy,k) [5, Exm. 6.7, Exm. 7.7]. Langer has used
Matrix Massey products [37, Lemma 2.23] to construct a non-realisable module over
H*(Qs, k).

It is an open question whether for group and Tate cohomology, one can expect to
have a non-realisable module whenever the global obstruction is non-trivial.
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