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Abstract

Piezoelectric actuators are being used increasingly in various novel applications. One of
piezoelectric actuator design goals is to improve its performance for a certain mass of
piezoelectric materials. Shape optimization is one important way to improve the perfor-
mance of a piezo by changing its geometry. However, academic and industrial research
of shape optimization is still developing, especially with several objectives considered
simultaneously. This dissertation focuses on numerical modeling and multi-objective op-
timization of the shape of piezoceramics.

This work first explores the development of mathematical models and their related mod-
eling procedure in detail. A mathematical model is introduced to describe the property
of a piezo excited in resonance under weak electric fields. General eigenfunctions for
piezoceramics with different shapes are derived. The description and numerical computa-
tion of a boundary value problem and the nonlinear dynamical behavior analysis are also
presented. Both usual shapes (e.g. a rectangular shape) and (compared to the rectangular
shape) unusual ones (e.g. a shape with curved sides) are considered, and the results show
that some curved side piezoceramics perform better than those with a rectangular shape
using both linear and nonlinear models for the dynamics.

In the next step a multi-objective shape optimization problem for the design of piezoelec-
tric actuators is introduced. Two objectives, maximum amplitude (better performance)
and minimum curvature (simple manufacturing), need to be optimized at the same time.
The optimization is conducted with a subdivision algorithm based on the software pack-
age GAIO and the corresponding Pareto-optimal solutions are obtained both for linear
and nonlinear models. The results show that there is indeed an advantage in using more
complex shapes, as the Pareto set obtained using two design variables ( in this case pa-
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rameterizing a cubic B-spline) has substantially better objective function values than one
with one design variable (in this case a quadratic curve).

Key words

Piezoceramics; Shape optimization, Eigenfunction; Boundary value problem; Bifurca-
tion; Piezoelectric actuator; Multi-objective optimization; Subdivision algorithm



Zusammenfassung

Piezoelektrische Aktuatoren finden immer haufiger in neuartigen Produkten verschieden-
ster Art Anwendung. Eines der Ziele bei der Entwicklung piezoelektrischer Aktuatoren
ist die Optimierung der Leistung fiir eine bestimmte Menge piezoelektrischen Materials.
Die Formoptimierung stellt eine wichtige Moglichkeit zur Verbesserung der Leistung ei-
nes Piezobauteils durch Anderung seiner geometrischen Eigenschaften dar. Sowohl die
akademische wie auch die industrielle Untersuchung der Formoptimierung befinden sich
jedoch noch in der Entwicklung, insbesondere fiir den Fall mehrerer, gleichzeitig betrach-
teter Zielfunktionen. Diese Dissertation beschéaftigt sich mit der numerischen Modellie-
rung und Mehrzieloptimierung der Form piezokeramischer Bauteile.

In dieser Arbeit werden zunéchst die Entwicklung mathematischer Modelle und der da-
zugehorigen Modellierungsverfahren detailliert betrachtet. Es wird ein mathematisches
Modell eingefiihrt, das die Eigenschaften eines piezoelektrischen Bauteils in Resonanz
mit einem schwachen elektrischen Wechselfeld beschreibt. Fir dieses Modell werden Ei-
genfunktionen in Abhangigkeit von der Form des Bauteils hergeleitet. Weiterhin wer-
den die numerische Behandlung des sich ergebenden Randwertproblems und die Analyse
des nichtlinearen dynamischen Verhaltens vorgestellt. Dazu werden sowohl gewohnliche
Formen (wie zum Beispiel Quader) als auch (im Vergleich dazu) ungewdhnliche For-
men (z. B. mit gekrimmten Seitenfldchen) betrachtet. Die Ergebnisse zeigen, dass einige
gekrimmte Bauteile eine bessere Leistung als vergleichbare quaderférmige Teile zeigen,
sowohl unter Verwendung des linearen wie auch unter Verwendung des nichtlinearen Mo-
dells.

Im néchsten Schritt wird das Mehrziel-Form-Optimierungsproblem fir die Gestaltung
piezoelektrischer Aktuatoren eingefiihrt. Zwei Zielfunktionen, die zu maximierende Am-
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plitude (hdhere Leistung) und die zu minimierende Kriimmung (einfachere Herstellung)
sollen dabei gleichzeitig optimiert werden. Die Optimierung wird mit einem im Soft-
warepaket GAIO implementierten Unterteilungsalgorithmus durchgefiihrt, wobei Pareto-
optimale Ldsungen sowohl fiir das lineare wie auch fiir das nichtlineare Modell bestimmt
werden. Den Ergebnissen entnimmt man, dass komplexere Formen vorteilhaft sind, da
die Paretomenge fiir den Fall zweier Design-Variablen (die hier von der Parametrisierung
eines kubischen B-Splines herriihren) auf deutlich bessere Zielfunktionswerte fiihrt als
fur den Fall einer Variablen (die eine parabolische Form parametrisiert).

xii



Chapter 1
| ntroduction

This chapter consists of four sections. In the first section the definition and classification
of shape optimization are presented briefly. The state of the art in shape optimization of
piezoelectric actuator based on the shape optimization classification is presented in the
second section. The motivation of this work is proposed and its feasibility is analyzed in
the third section. The fourth section presents the organization of this dissertation.

1.1 Shape Optimization

Former research into the optimization of structures has been attempted since antiquity;
the designer would choose the shape and materials for the construction using intuition
and experience. Since ancient times this technique has proved effective, and for centuries
engineering landmarks such as castles, cathedrals, and ships were all built without mathe-
matical or mechanical theories. However, from the time of Galileo and Hooke, engineers
and mathematicians have developed theories to determine stress, deflections, currents and
temperature inside structures. Evidence of structural optimization in the modern era was
first documented in the 17th century by Galileo in his treatise, where the optimal shape of
beams was investigated.

Structural optimization is a major concern in the design of mechanical systems in the
industry (civil engineering, auto manufacturing, aeronautics, aerospace). In the past few
decades, it has become possible to turn the design process into algorithms thanks to ad-
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1 Introduction

vances in computer technology. The incresing modern trend is to use numerical software
which is used to analyze and optimize many possible designs simultaneously, making op-
timal design an automatic process. By applying different computer-oriented methods, the
topology and shape of structures can be optimized and hence designs are systematically
improved. These possibilities have stimulated an interest in the mathematical foundations
of structural optimization [Che00].

Definition.  Shape optimization  usually has a very broad meaning. It can be viewed as
a part of the important branch of computational mechanics called structural optimization.
In structural optimization problems one tries to set some data of the mathematical model
that describe the behavior of a structure, therefore one can find a situation in which the
structure exhibits a priori of given properties. In shape optimization, as the term indicates,
optimization of the geometry is of primary interest.

Classification. From our daily experience we know that the efficiency and reliability of
manufactured products depend on geometrical aspects, among others. Therefore, it is not
surprising that optimal shape design problems have attracted the interest of many applied
mathematicians and engineers.

Nowadays shape optimization represents a vast scientific discipline involving all problems
in which the geometry (in a broad sense) is subject to optimization. It is indispensable in
the design and construction of industrial structures. For example, aircraft and spacecraft
have to satisfy, at the same time, very strict criteria on mechanical performance while
weighing as little as possible. The shape optimization problem for such a structure con-
sists in finding a geometry of the structure which minimizes a given function (e.g. such
as the weight of the structure) and yet simultaneously satisfies specific constraints (like
thickness, strain energy, or displacement bounds).

In some publications the term shape optimization? is used in a comparatively restrict
sense. As it is also called geometric optimization, its emphasis is not on changing size or
topology but geometry. Haslinger considered shape optimization in a restricted sense as

L Shape optimization (italic) will be used to represent the term in a broad sense.
2Shape optimization (roman) will be used to represent the term in a more restricted sense.



1.2 An Overview of Shape Optimization in Piezoelectric Actuator Design

a branch of shape optimization in a broad sense. For a finer classification, three branches
of shape optimization are distinguished as follows [HMO3]:

1. size optimization: a typical size of a structure, such as the thickness of a shell or
the radius of a circular stress element, is optimized. This class of problems has been
under modern investigation for decades.

2. shape optimization (also called geometric optimization): the shape of a structure
is optimized without changing the topology. Shape optimization is a classical field
of the calculus of variations, optimal control theory and structural optimization.
Due to its increased difficulty relative to size optimization, the geometrical changes
have historically been limited; however, it has gained importance in the aircraft and
automotive industries, as well as others, providing improvements to turbines, airfoil
shapes and connecting arms. Size optimization is a subset of shape optimization.

3. topology optimization: the topology of a structure, as well as the shape is opti-
mized by, for example, creating holes.

In this work we only focus on (2). One important feature of shape optimization is its
interdisciplinary character. First, the problem has to be posed from a mechanical point
of view. Then one has to find an appropriate mathematical model that can be used for the
numerical realization. In this stage no less than three mathematical disciplines interfere:
the theory of partial differential equations (PDEs), approximation of PDEs (usually by
finite element methods), and the theory of nonlinear mathematical programming.

1.2 An Overview of Shape Optimization in Piezoelectric

Actuator Design

Piezoelectric actuators are being increasingly used in various novel applications. A piezo-
electric actuator usually consists of two main components: an electric part, which is the
piezoelectric material block, can convert electrical energy into mechanical energy, and
a mechanical part, which is a flexible structure, can convert and amplify the output dis-
placement in the desired direction and magnitude [LXKSO01]. One of the important issues
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1 Introduction

of using piezoelectric actuators is to improve their performance for a certain mass of
piezoelectric material, which is the goal of piezoelectric actuator design.

Design of piezoelectric actuators has been greatly advanced during the past ten years.
Usually the performance of a piezoelectric actuator can be improved by optimizing the
mechanical part, the electric part, or both. In the previous work, the topology and shape
of the mechanical part were designed, however, the location and the shape of the piezo-
electric material were fixed.

The design of the electric part has also been developed in recent years. In this section,
the state of the art of shape optimization of piezoelectric materials is reviewed according
to the classification in Section 1.1, together with the methods applied for solving the
different optimization problems.

Sizing optimization. Sizing optimization, also called cross-sectional optimization, has
already been thoroughly studied. Main et al. [MGH94] optimized both the placement
and size of the piezoceramics (PZT) in beams and plates. Jiang et al. [JNLOO] stud-
ied the physical parameters of the PZT plates and found that large areas of PZT plates
with a small width are conducive to attaining higher velocities of actuators. Von Wagner
([vWHO02], [vVWHO03]) discussed the influence of the radius of a piezo rod on the vibra-
tion amplitude and analyzed the nonlinear property under weak electricity. Fu [Fu05]
solved a constrained two-objective optimization problem involving continuous (dimen-
sions of a piezoelectric transducer) and discrete design variables (material types) by using
an elitist non-dominated sorting genetic algorithm (NSGA-II). The two objectives are the
maximum vibration amplitude and the minimum electrical input power. Heikkola et al.
[HMNO5] optimized three objectives by considering the length of the head mass and the
radius of the tip of an ultrasonic transducer with NIMBUS (Nondifferentiable Interactive
Multiobjective BUndle-based optimization System).

Shape optimization. Shape optimization is a new topic in this area. Several publi-
cations are recommended for obtaining a general comprehension of shape optimization
(IHMO3], [SZ92], [Pra74], [Ric95]). Haslinger and Makinen [HMO3] treated sizing and
shape optimization in a comprehensive way, covering everything from mathematical the-

4



1.2 An Overview of Shape Optimization in Piezoelectric Actuator Design

ory (existence analysis, discretizations, and convergence analysis for discretized prob-
lems) through computational aspects (sensitivity analysis, numerical minimization meth-
ods) to industrial applications. Some of the applications included are contact stress mini-
mization for elasto-plastic bodies, multidisciplinary optimization of an airfoil, and shape
optimization of a dividing tube. By presenting sizing and shape optimization in an ab-
stract way, the authors are able to use a unified approach in the mathematical analysis
for a large class of optimization problems in various fields of physics. Sokolowski and
Zolesio [SZ92] discussed the shape calculus introduced by J. Hadamard and extended it
to a broad class of free boundary value problems. The approach is functional analytic
throughout and will serve as a basis for the development of numerical algorithms to the
solution of shape optimization problems. They dealt solely with sensitivity analysis but
omitting approximation and computational aspects.

In the research area of shape optimization for piezoceramics, so far, no literature referred
to in this dissertation concerns multi-objective optimization problems for piezecreamics.

Topology optimization. A large number of studies have been carried out in this subject.
Topology optimization uses finite element methods to generate optimal design concepts.
Topology optimization is comprised of five steps. First, the geometry of the design do-
main, boundary conditions and loading are prescribed. Second, the design domain is
discretized by finite elements, and each element is assigned a design variable. Third,
the finite element analysis and sensitivity analysis are used to give the function value
and the first-order sensitivity of the objective and constraint. After that, the optimiza-
tion algorithm is used to solve the optimization problem. Finally, the optimal topology is
interpreted and refined.

Topology optimization with a homogenization method was proposed by Bensdge and
Kikuchi [BK88] to design a very stiff structure, and this method was then applied to de-
sign compliant mechanism and composite materials. Li et al. [LXKS01] developed a
two layered optimization procedure (Topology Optimization and Genetic Algorithm Op-
timization) to solve a mixed optimization problem which designed both mechanical and
electrical parts of a piezoelectric actuator. A topology optimization method is used to ob-
tain the initial topology of the compliant mechanism, followed by detailed finite element

5



1 Introduction

analysis [BF04]. The effect of geometry parameters, material selection, and epoxy bond-
ing layers in the piezoelectric actuator are also studied. Blrmann et al. [BRGO03] opti-
mized a piezoelectric fan with two symmetrically placed piezoelectric patches through an
analytical Bernoulli-Euler model as well as a finite element (FE) model of the composite
piezo-beam. Canfield and Frecker [CFOO0] designed the displacement amplifying com-
pliant mechanisms for piezoelectric actuators by using a topology optimization approach.
Two different solution methods, Sequential Linear Programming and an Optimality Crite-
ria method, are used to optimize a two-objective problem. Allaire et al. [AJT02] studied
a level-set method for numerical shape optimization of elastic structures. It combines
the level-set algorithm with the classical shape gradient. This method can easily handle
topology changes for a very large class of objective functions.

Although a great many studies have been reported, there is still more work worth to do,
especially in the new research area of shape optimization for piezoceramics.

As a developing area, there are several interesting questions which need to be considered,
e.g. how a shape of a piezo influences its (nonlinear) behavior? Does an unusual shape
play an important role in improving its performance? Can these information be used in
multi-objective optimization problems? With regard to these questions, the motivation of
this work follows in Section 1.3.

1.3 Motivation of thisWork

Considering the questions listed at the end of Section 1.2, the motivation of this work is
proposed as follows: to investigate the influence of the shape of a piezo on its (nonlin-
ear) dynamical behavior and use thisinformation for the shape optimization of the
piezocer amics with respect to several objectives.

Generally speaking, an optimization problem consists of two main major parts: a problem
formulation, which includes the definition of design variables, objective function and
constraints, and an optimization algorithm, which defines the numerical procedure with
which the optimal solution is pursued. As mentioned in Section 1.2, shape optimization

6



1.3 Motivation of this Work

is still a new topic in the area of optimization problems for piezoelectric actuators. Since
there is no established literature, shape optimization for piezoceramics is a challenging

task for both mathematicians and engineers.

Project feasibility analysis To ensure an effective result, the feasibility of improving
the response amplitude by changing the shape of a piezo with a computer software pack-
age Comsol Multiphsics (former FEMLAB, see Appendix A) was analyzed.

>
. Beam: AL 5X10X100 mm3
Aluminium _ |
Piezoceramics: PZT-5H V=300 mm3
E
70
S

Figure 1.1: Example: bending of a beam

Figure 1.1 shows an example of a static analysis using piezoelectric volume elements.
The use of a mode of piezoelectric materials has been investigated by Benjeddou et al.

([BTO97], [BTO99)).
The bender of a piezo-beam in Figure 1.1 is considered; it consists of an aluminium

7



1 Introduction

cantilever beam (5 x 10 x 100 mm?), which is fixed at the surface at z = 0, and a PZT-
5H (Lead Zirconate Titanate) (Vol.= 300 mm?, contact area: 10 x 10 mm?) adjoined to
the cantilever beam at a distance 15 mm from the clamp. A 20 V potential difference is
applied between the top and the bottom surfaces of the piezo. The material properties are
summarized in Table 1.1.

Table 1.1: Material properties

Aluminium
p 2690 (kg/m?)
Y 703 (GPa)
v 0345
PZT-5H
p 7730 (kg/m?)
126 795 841 0 0 0 |
795 126 841 0 0 0
s 841 8.1 126 0 0 0 ra)
0 0 0 233 0 0
0 0 0 0 230 0
0 0 0 0 0 230
1503 0 0
[e] 0 1503 0 |10°® (F/m)
0 0 1.3
o o 0 0 0 17]
[e] 0O 0 0 017 0 (Cb/m)
—65 —6.5 233 0 0 0

Figure 1.2 shows the application of Comsol Multiphsics for modeling piezoelectric ef-
fects in a static linear analysis using the 3D Electrostatics application mode and the 3D

8
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Figure 1.2: A static 3D example with Comsol Multiphsics (FEMLAB): bending of a beam
(with a cuboid piezo)

Structural Mechanics Module Solid application mode. The mode of the piezoelectric
material is used to accomplish a deflection of the tip. Table 1.2 shows the tip deflections
for five different shapes of piezoceramics. The second column *Shape of a piezo (S)’
shows the shapes in two dimensionally as S in Figure 1.1.

In the first case, the piezo in Figure 1.2 is a cuboid (3 x 10 x 10 mm?, 8 = 3 x 10 mm?).
The corresponding tip deflection of the beam is 1.1814 - 107 m.

Then we change the shapes of the piezo to polygons. For some polygons, e.g. shapes
No. 2 and 3 in Table 1.2, the results are decreased by around 1.5% when compared to
the rectangular shape (No.1 in Tablel.2). But in some cases, e.g. shape No.4, the tip
deflection of the beam is 1.1952 - 10~7 m, an improvement of 1.1%.



1 Introduction

Table 1.2: Beam’s tip deflections for example shapes of piezoceramics

No. | Shape of a piezo (S) | Beam’s tip deflection (10~7 m)

1 1.1814

2 : 1.1678

3 I: 1.1601
\/

4 1.1952
\/

5 1.2085

As a third example, a shape similar to the No.4 but with a curved side (No.5 in Table 1.2)
is introduced and the result is shown in Figure 1.3.

From the above results, we find that better performance can be obtained by changing the
shape (e.g. a curved side instead of a rectangular shape) of a fixed-volume piezo-beam.
Therefore, in this work we will focus on shapes like No.5 in Table 1.2.

According to the motivation above, the primary goals of this work are:

e finding a mathematical model to describe the problem and configure the design
variables;

e deriving a general expression of the eigenfunctions for a piezo that can be used to
describe the properties of piezoceramics for different shapes;

e choosing appropriate objective functions and constraints for the multi-objective
shape optimization problem;

e solving the multi-objective optimization problem with an effective optimization
method.
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Figure 1.3: A static 3D example with Comsol Multiphsics (FEMLAB): bending of a beam
(with a curved surface piezo)

In this dissertation, first we will introduce a mathematical model to describe a nonlinear
phenomenon of piezoceramics observed in experiments; second, the general forms of the
eigenfunctions for piezoceramics with different shapes will derived via a Hamilton’s prin-
ciple; then two objective functions and constraints are given; and at the end a numerical
subdivision technique will be introduced to solve the multi-objective optimization prob-
lem. The compromised solutions for the multi-objective optimization problem are then
obtained.
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1 Introduction

1.4 Organization of this Dissertation

The organization of this dissertation is as follows:

Background. Background information for this dissertation shape optimization for piezoe-
cramicsis introduced in the first two chapters.

In Chapter 1, the term shape optimization and its three classifications (size optimization,
shape optimization and topology optimization) are introduced. Following the classifica-
tion, the state of the art in shape optimization of piezoelectric actuators is presented. As

a summary to the state of the art analysis, the motivation of this work is proposed and the
feasibility of this work is analyzed.

Chapter 2 contains the basic knowledge of piezoelectric effects, piezoelectric materials
and their properties, and piezoelectric actuators and their applications.

Preliminary work. As the preliminary work for the optimization problem, Chapters
3 and 4 play a very important role as they present the theoretical background and the
essential computation for the further shape optimization problem.

In Chapter 3 we derived the general eigenfunctions of piezoceramics for different ge-
ometries of piezoelectric materials which describe how the shape (geometry) of a piezo
influences its properties. Unusual shapes (compared to the rectangular shape) are consid-
ered in this chapter. A corresponding boundary value problem is solved numerically and
the computation results are used to compute the coefficients of the equation of motion.
Hamilton’s principle is used to derive the linear and nonlinear equations of motion for a
general shape. A Galerkin method is used to simplify the linear problem for a rectangular
shape, and we assume this simplification can also be applied to a nonlinear model as well
as a general shape (e.g a curved side shape).

In Chapter 4 equations of motion for both linear and nonlinear cases are solved numer-
ically via a continuation software package AUTO2000. Results show that better perfor-
mance can be obtained with certain unusual shapes. A nonlinear dynamical behavior of
piezoceramics under weak electric fields is introduced and the influences of the nonlinear
terms are analyzed.
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1.4 Organization of this Dissertation

Optimization. A multi-objective shape optimization problem for piezoceramics is in-
troduced in Chapter 5, and optimization results are discussed in Chapter 6.

In Chapter 5 multi-objective optimization problems are introduced and the main optimiza-
tion techniques currently available are reviewed. Particularly, a set oriented multilevel
subdivision technique is studied. The formulation of a multi-objective shape optimiza-
tion problem and a GAIO (Global Analysis of Invariant Objects) model for solving the
optimization problem are given.

In Chapter 6 the multi-objective shape optimization results are discussed. Two cases, a
quadratic curve (one design variable) and a cubic B-spline curve (two design variables),
are considered. For both cases Pareto sets are obtained. Results show that the performance
of piezoceramics can be improved by changing their shapes.

Conclusion In Chapter 7 a summary of this dissertation and an outlook for the possible
research work in the future are given.
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Chapter 2
Piezoelectricity

In this chapter, a short history of piezoelectricity, the direct and inverse piezoelectric
effects, and piezoelectric constitutive equations are presented in Section 2.1. In Section
2.2 piezoelectric materials and their properties are introduced. The piezoelectric actuators
and their applications are briefly introduced in Section 2.3.

2.1 Piezoelectric Effect

2.1.1 Introduction

The piezoelectric effect was first mentioned in 1817 by the French mineralogist René Just
Haly. It was first demonstrated by Pierre and Jacques Curie in 1880. They found that
if certain crystals were subjected to mechanical strain, they became electrically polarized
and the degree of polarization was proportional to the applied strain. The Curies also
discovered that these same materials deformed when they were exposed to an electric
field. This has become known as the inverse piezoelectric effect [Pie01].

Their experiments led them to elaborate on the early theory of piezoelectricity. This theory
was complemented by the further work of Lippman, Hankel, Kelvin and Voigt (beginning
of 20th century). Hankel proposed the name ’piezoelectricity’’. Until the beginning of
the century, the piezoelectricity did not leave laboratories. The first practical use of the
piezoelectric effect was during the first World War when sonar emitters (P. Langevin) were

The prefix *piezo-’ is derived from the Greek word piezein, meaning to press or squeeze.
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2 Piezoelectricity

effectively used to detect German submarines by producing ultrasonic waves with piezo-
electric quartz. Prior to the second World War, researchers at MIT discovered that certain
ceramics such as PZT (lead zirconate titanate) could be polarized to yield a high piezo re-
sponse. In the twenties, the use of quartz to control the resonance frequency of oscillators
was proposed by an American physicist W. G. Cady. It is during the period following the
first world war that most of the piezoelectric applications we are now familiar with (micro-
phones, accelerometers, ultrasonic transducers, benders, etc.) were conceived. However,
the materials available at the time often limited device performance. The development
of electronics, especially during the second World War, and the discovery of ferroelectric
ceramics increased the use of piezoelectric materials. The direct piezoelectric effect con-
sists of the ability of certain crystalline materials (i.e. ceramics) to generate an electrical
charge in proportion to an externally applied force. The direct piezoelectric effect has
been widely used in transducer design (accelerometers, force and pressure transducers,
etc.). According to the inverse piezoelectric effect, an electric field induces a deformation
of the piezoelectric material. The inverse piezoelectric effect has been applied in actuator
design [1ke90]. Figure 2.1 is the schematic diagram of piezoelectric effects.

Force —» Direct Piezoelectric Effect E lectric Potential

M echanical ——— > Piezoelectric —— | Electrical
Energy [«——— Material |«——— Energy

D iSIO|aC6m ent Inverse Piezoelectric Effect €—— Electric C harge

Figure 2.1: schematic diagram of piezoelectric effects

In a piezoelectric crystal, the positive and negative electrical charges are separated, but
symmetrically distributed, so that the crystal is overall electrically neutral. When stress
is applied, this symmetry is destroyed, and the asymmetry charge generates a voltage.
The converse piezoelectricity is where application of an electrical field creates mechani-
cal stress (distortion) in the crystal. Because the charges inside the crystal are separated,
the applied voltage affects different points within the crystal differently, resulting in dis-
tortion. In the simplest of terms, when a piezoelectric material is squeezed, an electric
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2.1 Piezoelectric Effect

charge collects on its surface. Conversely, when a piezoelectric material is subjected to a
voltage drop, it mechanically deforms.

2.1.2 Piezoelectric Constitutive Equations

What is a constitutive equation? For mechanical problems, a constitutive equation de-
scribes how a material strains when it is stressed, or vice-versa. Constitutive equations
also exist for electrical problems; they describe how charges move in a (dielectric) mate-
rial when it is subjected to voltage, or vice-versa.
Engineers are already familiar with the most common mechanical constitutive equation
that applies for usual metals and plastics. This equation is known as Hooke’s Law and is
written as:

S=s-T

In words, this equation states: Strain = Compliance x Stress.
However, since piezoelectric materials are concerned with electrical properties too, we
must also consider the constitutive equation for common dielectrics:

D=¢F

In words, this equation states: Charge Density = Permittivity x Electric Field.
Piezoelectric materials combine these two seemingly dissimilar constitutive equations
into one coupled equation, which defines how the piezoelectric material’s stress (7°), strain
(S), charge-density displacement (D), and electric field (£) interact.

The piezoelectric constitutive law (in Strain-Charge form) is:

S = spT+d'E (2.1)
= dT+erE (2.2)

The matrix d contains the piezoelectric coefficients for the material, and it appears twice
in the constitutive equation (the superscript ¢ stands for matrix-transpose). The subscripts
in piezoelectric constitutive equations have very important meanings. They describe the
conditions under which the material property data was measured. For example, the sub-
script £ on the compliance matrix sy means that the compliance data was measured

17



2 Piezoelectricity

under at least a constant, and preferably a zero, electric field. Likewise, the subscript T’
on the permittivity matrix e means that the permittivity data was measured under at least
a constant, and preferably a zero, stress field.

The four state variables (S, 7', D, and E) can be rearranged to give 3 additional forms for
a piezoelectric constitutive equation. Instead of the coupling matrix d, they contain the
coupling matrices e, g, or ¢. It is possible to transform piezo constitutive data from one
form to another.

2.2 Piezoelectric Materials

The piezoelectric effects can be seen as transfers between electrical and mechanical en-
ergy. Such transfers can only occur if the material is composed of charged particles and
can be polarized. For a material to exhibit an anisotropic property such as piezoelectric-
ity, its crystal structure must have no center of symmetry. 21 crystal structures out of 32
are non-centrosymmetric. A crystal having no center of symmetry possesses one or more
crystallographically unique directional axes. All 21 non-centrosymmetric crystal classes,
except one, show piezoelectric effect along the directional axes. Out of the 20 piezoelec-
tric classes, 10 have only one unique direction axis. Such crystals are called polar crystals
as they show spontaneous polarization. The value of the spontaneous polarization de-
pends on the temperature. This is called the pyroelectric effect. The pyroelectric crystals
for which the magnitude and direction of the spontaneous polarization can be reversed by
an external electric field are said to show ferroelectric behavior. Most of the piezoelectric
materials are crystalline solids. They can be single crystals, either formed naturally or by
synthetic processes, or polycrystalline materials like ferroelectric ceramics which can be
rendered piezoelectric and given, on a macroscopic scale, a single crystal symmetry by
the process of poling (by subjecting to a high electric field not far below the Curie temper-
ature). The piezoelectric effect can also appear in crystals composed of only one type of
element (in this case, the polarization is due to a distortion in the electronic distribution).
Certain polymers can also be made by stretching them under an electrical field.
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2.2 Piezoelectric Materials

Material properties. It is well known that the mechanical and electrical responses of a
piezoelectric material are coupled. When the applied electric field is low and the strains
are also low, the behavior of piezoceramics is almost linear. However, a wide range of
nonlinear piezoelectric phenomena are observed both under high and low electric fields.
The nonlinear behaviors under high and low electric fields are different in some aspects.
For example, the nonlinearities observed under high electric fields are hysteresis behavior
between the electric field and strain, nonlinear relation between electric field and mechan-
ical displacement, etc. The nonlinearities observed under weak electric fields are jump
phenomena, dependance of resonance frequency on vibration amplitude, presence of su-
perharmonics in the response spectra and nonlinear relationship between applied electric
voltage and mechanical displacement, etc.[Sea05].

Polarization is the amount of charge associated with the dipolar or free charge in a dielec-
tric. Figure 2.2 shows schematically the domain reorientation in a multi-domain piezo-
electric material.

L. E= 2. E=E

Strain | / P

—_ e E=E

AN

4. E=0

|||||

Flectric Field e
2 E=E /‘ : f

Figure 2.2: Strain change associated with the polarization reorientation (adapted from
[Pie01])
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2 Piezoelectricity

The material is initially poled along the negative direction (1). When an electric field
is applied along the positive direction, the crystal will first shrink with the increase of
the field since the field is opposite in direction to the polarization. The strain reaches a
minimum at a certain field (coercive field E.), where the polarization starts to reverse in
each grain (2). Above E., the crystal expands until £,,,, as the field now has the same
direction as the polarization. Near E,,.., all the reversible polarization has been reversed.
As the field is reduced, the strain decreases monotonically as no polarization reversal
occurs. The situation for a zero electric field (4) is similar to the starting situation except
that the polarization is reversed; the material is now poled along the positive direction.
Since the piezo effect exhibited by natural materials such as quartz, tourmaline, Rochelle
salt, etc. is very small, polycrystalline ferroelectric ceramic materials such as BaTiO3 and
Lead Zirconate Titanate (Piezo) have been developed with improved properties. Ferro-
electric ceramics become piezoelectric when poled. Piezoceramics are available in many
variations and are still the most widely used materials for actuator or sensor applications
today. Piezo crystallites are centro-symmetric cubic (isotropic) before poling and after
poling exhibit tetragonal symmetry (anisotropic structure) below the Curie temperature
(see Figure 2.3). Above this temperature they lose their piezoelectric properties.

The vast majority of piezoelectric materials found in the marketplace today are inorganic
ceramics such as lead titanate (PbTiO3), lead zirconium titanate (PbZrTiO3), lithium tan-
talate (LiTaO3), and barium titanate (BaTiO3). Most of these perovskite materials were
pioneered in the late 1940’s and 1950°s, and are characterized by high elastic moduli, high
dielectric constant, low elastic and dielectric loss, and high electro-mechanical coupling
factors [Tho02].

Although modern piezoelectric ceramic materials have proven successful in many appli-
cations, they have a number of inherent limitations:

1. Low yield strains eliminate ceramics from high strain sensing applications such as
flexure in helicopter rotor blades and in fishing rods. Biomedical applications such
as foot strike force or bite pressure are also impractical for ceramic materials.

2. Brittleness makes these materials prone to fracture and crack propagation, and
makes the use of ceramic materials in impact, shock, and ordinance applications
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2.2 Piezoelectric Materials

(1)

Figure 2.3: Piezoelectric elementary cell (a) before poling (b) after poling

impractical. Brittle piezoelectric materials used in situations undergoing positive
and negative stresses must often be preloaded into compression to ensure mechani-
cal stability.

3. The density of ceramic materials is high, creating problems for weight sensitive
applications such as naval hull mounted and geophysical towed array sonar systems.

4. The acoustic impedance of ceramic materials (a function of density and stiffness)
is high, providing poor acoustic coupling to lower impedance materials like water

or human tissue.

5. The costs of the raw materials, basic processing of piezoelectric ceramics and single
crystal materials are relatively high per unit volume.
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2 Piezoelectricity

2.3 Piezoelectric Actuator

A Piezoelectric actuator is a device that uses ceramics with piezoelectric characteristics to
produce movement. It converts electrical input energy into an output such as a displace-
ment or generated force.

Piezoelectric actuators have been widely used in various fields such as micro-positioning
of tools, active vibration control, ultrasonic welding and machining, and common rail
diesel injection systems. Table 2.1 shows some applications of piezoelectric actuators.
They are used in high speed, high-accuracy control of valves in semiconductor manu-
facturing equipment, in ultra-precise positioning and in the generation and handling of
high forces or pressures in static or dynamic situations. They can also be used in opti-
cal switches that move tiny mirrors and in endoscopic lenses used in medical treatment.
To satisfy stricter governmental regulations with concerns to air pollution, one promising
application area is for motor vehicles to reduce emission of particulate matter to fulfill
the environment regulations. The piezoelectric effect is used in sensing applications, such
as in force or displacement sensors. The inverse piezoelectric effect is used in actua-
tion applications, such as in motors and devices that precisely control positioning, and in
generating sonic and ultrasonic signals. For most piezoelectric actuators, as for sensors,
a reasonably linear relationship between input signal and movement is required. How-
ever, there is the special class of actuators, which is purposely driven at their resonant
frequency, known as ultrasonic transducers.
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2.3 Piezoelectric Actuator

Table 2.1: Applications of piezoelectric actuators

areas

application

notes

Medical devices

surgical tools and ultrasonic test-
ing

Micropositioning &
Nanopositioning

specific  application require-
ments including tight geome-
tries, weight restrictions, and
and

vacuum non-magnetic

constructions.

1. the fastest responding po-
sitioning element available
with microsecond time con-
stants;

2. producing motions in sub-
nanometer increments.

Spacecraft instru-

mentation

precise positioning of optics; ac-
tive damping of vibration

Piezoelectric motors
[Mor03]

linear motors, rotational motors

Vibration control of
civil structures

the application of piezoceramic
actuators in various civil struc-
tures such as beams, trusses,
steel frames and cable-stayed
bridges

1. applications related to civil
engineering;

2. low-cost, lightweight, and
easy-to-implement materials
for active control of structural

vibration.

23




2 Piezoelectricity

24



Chapter 3

Derivation of General Eigenfunctions
and Equations of M otion

When the shape of a piezo is changed, the eigenfunctions and the eigenfrequency are
changed correspondingly. Therefore the tasks of this chapter arise: to derive the general
eigenfunctions of piezoceramics with different shapes, and to solve the corresponding
boundary value problem and use the computation results for a further optimization prob-
lem. In the first section, an unusual example shape is considered with one boundary de-
scribed by a curved side y(z) instead of a straight line (special case of y(z) is a constant).
Then a nonlinear model is introduced to describe the nonlinear behavior of piezoceramics
excited by weak electric fields. In the second section, the general eigenfunctions of piezo-
ceramics with different geometries are derived for a linear model and the corresponding
boundary value problem is solved numerically. Then an ansatz is proposed to compute
the spatial eigenfunctions of a piezo. The linear and nonlinear equations of motion are
derived for the general shape in Section 3.3. At the end of this chapter, a Galerkin method
is used to simplify the ansatz for a rectangular shape with a linear model, and we assume
this simplification can also be applied for a nonlinear model as well as a general shape
(e.g a curved side shape).
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3 Derivation of General Eigenfunctions and Equations of Motion

3.1 A Nonlinear Model

In this section, the example shape of piezoelectric material is given and the nonlinear
corresponding model is introduced.

The example shape. As a concrete example we consider a piezo as depicted in Fig-
ure 3.1 [DJWO05]. Between the top (z = [/2) and the bottom (= = —[/2) an alternating
external voltage with amplitude U, is applied. The piezo vibrates with an amplitude in z
direction. In structural theory, the members of a structure are not, in general, treated as
three-dimensional continua but rather as continua of one or two dimensions. To simplify
the problem we consider it in two dimensions and only part of the boundary of the piezo
is subject to change [HMO3]. This part is parameterized by y(z).

Definition 3.1.1. Let the shape s C R? of a piezo be given by

o~
o~

5,0 <y <y}

with a function y : R — R.. Then y is called the shape function of a piezo.

Remark 3.1.2. The piezo shape function y(z) depicted in Figure 3.1 is parameterized in
a very simple way. In real-life problems, however, the parametrization of the geometry
may be a difficult task.

A nonlinear model. There is a wide range of nonlinear effects which can be observed
in piezoceramics. One example is the well-known butterfly behavior for large stresses
and electric fields. For small stresses and weak electric fields, piezoceramics are usually
described by linear constitutive equations around an operating point in the butterfly hys-
teresis curve. Nevertheless, typical nonlinear effects can be observed when piezoelectric
actuators and structures with embedded piezoceramics are excited in resonance even if
the electric field remains small. This was observed and described by Beige and Schmidt
in 1982. They modeled these nonlinearities using higher order quadratic and cubic elastic
and electric terms. Typical nonlinear effects, e.g. a nonlinear relation between excitation
voltage and vibration amplitude, were also observed. Based on the observed experimen-
tal behavior, von Wagner et al. developed theoretical models for the electric enthalpy
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3.1 A Nonlinear Model

Uo

1/2

— Y(2)

v

y*=y(0)

-1/2

Figure 3.1: Shape of a piezo under consideration.

density function, which is subsequently used in Hamilton’s principle to derive governing
equations for the piezo-continuum [VWHO03].

To derive equations of motion for a nonlinear model, we use Lagrange-d’Alembert prin-
ciple

t1 t1
@/uﬁ+/ﬁWﬁ=o. 3.1)
to to

where t, and ¢; define the time interval (all variations must vanish at ¢t = to and ¢t = t;),
L is the Lagrangian

L :(/U—HMU
_ / A(T(ui(z, 1) = Hw'(2,1), ¢ (2, 1)) dz,

where
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3 Derivation of General Eigenfunctions and Equations of Motion

w(z,t) and ¢(z,t) are vertical displacement and electric potential respectively. T and H
respectively denote the Kinetic energy density and the electric enthalpy density. dv is the
volume variation. A is the (constant) cross section of the piezo.
OW is virtual work done by external mechanical and electrical forces. Considering Neu-
mann’s work [Neu02], in this dissertation we introduce 6W as
1/2
W = — / A(Egu}féw’ - Eflu}’géw'> dz, (3.2)
—1/2
where EY and E? are obtained experimentally.
In [VWHO3], the kinetic energy is expressed by

T(h) = 5 (z,1),

where p is the density.
The electric enthalpy density including higher order terms is also given in von Wagner’s
work [VWHO03]:

1 1
H = §E°S§Z —%S..E, — = E?

2
+1E254 — 17153 E. — 17252 E? — 1735 Bt (3.3)
4 2z 322z2 22zzz 32222 42z '
1 1 1 1
+§Els§; - isszz - EnyzzEZZ — gulEg’

with

T 2 0 0
Vg = €33 —dyz ", o = EVd33

where E° is Young’s modulus. S.. is the strain and £, is the electric field in the z-
direction respectively. The parameter ds3 corresponds to the piezoelectric 33-effect and
e1, is the dielectric constant measured at constant stress. The terms containing £°,7,
and 1, correspond to the classic linear theory. The fourth order terms containing E?,
v3,Y4,v5 and v, will produce cubic nonlinearities in the equations of motion and the third
order terms containing E', v{,7? and v, will produce quadratic nonlinearities. The term
including v» is due to the effect of electrostriction [vVWHO03].

Using the kinematic relation

S..(z,t) =w'(z,1),
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3.2 General Eigenfunctions Derivation for Piezoceramics with a Linear Model

and the electric potential ¢ given by
Ez = —%01(2775)7

we obtained the following equation for a piezoelectric rod via equation (3.1):

t1 1/2
1 1 1
5// A{50w2 _ §E’Ow'2 —’Yowlﬁﬂl‘l- 57/0%0/2
to—1/2
1 1 1 1 1
_1E2wl4 . 5/72110/390/ + 5,}/2221]/2()0/2 o gvgw/gp/{% + ZVZSDM
1 1 1 1
_§E1w13 _ 5,}/11w/2()0/ + §’Y12w/§0/2 . gyl(plg}dZdt
ty /2
— / / A{ESwsw' + B2’ 5wy dedt = 0. (3.4)
to—1/2

The external voltage applied at the top and the bottom of the piezo is predetermined, i.e.

o(l/2,t) —(=1/2,t) = Uy cos Qi

holds at any time. If the potential of the electrode at = = —[/2 is set as —% cos Qt
the potential of the electrode at = = /2 holds as % cos 2t. This leads to two boundary
conditions:
o(l/2,t) = % cos Qt, (3.5)
U
o(=1/2,t) = —70 cos (2. (3.6)

These conditions are valid for both the linear and the nonlinear models.

3.2 General EigenfunctionsDerivation for Piezocer amics
with aLinear M od€l

In this section, the eigenfunctions of the linear problem with short circuited electrodes
(Upy = 0) are calculated in order to obtain suitable shape functions. In Section 3.2.1
the linear model for different geometries of piezoceramics is obtained by setting all the
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3 Derivation of General Eigenfunctions and Equations of Motion

nonlinear parameters in equation (3.4) equal to zero. In Section 3.2.2, the general eigen-
functions are derived and the results are obtained by solving a boundary value problem
numerically. Finally , the computations for different y(z) are given in Section 3.2.3.

3.21 ALinear Moded

Extending the work of von Wagner, we consider the case that A (the cross section of a
piezo) in equation (3.4) is not constant. Concretely, we allow ¥ in Figure 3.1 to explic-
itly depend on z. When y(z) is no longer a constant, the shape of the piezo changes
correspondingly, as do the eigenfunctions and the eigenfrequency.
A linear model is obtained when we consider that virtual work )W vanishes in the un-
damped case

W =0,

and set the nonlinear parameters in equation (3.4) equal to zero. Then equation (3.4) is

simplified to
t1 1/2
1 -2 1 0,, /2 i 1 12
) y(2) 5P — §E w™ — yow'p' + /0¥ dzdt = 0. (3.7)
tO*l/2 N ~~ 4
F(w' ¢ W)

~~

J

Proposition 3.2.1. For the linear equation 3.7, if a piezo is described by a piezo shape
function y(z) : R — R, then the vertical displacement w(z, t) satisfies the partial differ-
ential equation

E*(y(z)w" +y'(2)w') = py(2)i, (3.8)

and therelationship between w(z, t) and the electric potential ¢(z, t) isexpressed through
the fact that (2, t) satisfies the equation

y(2)¢" + 9 (2)¢" = a(y(z)w” +y'(2)u'), (3.9)

where
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3.2 General Eigenfunctions Derivation for Piezoceramics with a Linear Model

Proof. According to the Calculus of Variations [Arn78], we know that .J in equation 3.7
has an extremum only if the Euler-Lagrange differential equation is satisfied, e.g.

F,—2F,—2F, = 0
0z ot (3.10)
Fo—L2F,—2F, = 0.

Now we consider the equations in (3.10) respectively. Since F,, = 0 and F;, = 0, for the
second equation in (3.10) we obtain

—%F@/ —
= —%(y(z)(—%w' + Vo@')) =
= Y (2)(vw —voy') + y(2)(yow” — ") =0. (3.11)

equation (3.11) can be simplified to

y(2)¢" + ' (2)¢" = aly(2)w" +y'(2)w').

To prove the equation (3.8) in Proposition 3.2.1, we consider the first equation in (3.10),
for which we have F,, = 0. Then the equation can be rewritten to

—2Fy—2F; —0
= _%(y(z)(—Eow’ —Y0¥') — %pwy(z)) =0
= J(2)(EW +70¢) + y(2)(EW" + vp") = piy(z). (3.12)

Substituting equation (3.9) into (3.12), we obtain the statement:

E*(y(z)w" +y'(2)w') = py(2)i.

Remark 3.2.2. In Proposition 3.2.1,

1. w(z,t) is a solution of the partial differential equation (3.8) which we will solve
using eigenfunctions of the corresponding differential operator.

2. In Section 3.2.2 we will use (3.9) to compute the corresponding solutions for (z, t)
since (3.9) shows a relation between o(z,t) and w(z,t).
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3 Derivation of General Eigenfunctions and Equations of Motion

To derive boundary conditions necessary for the solution of equation (3.8), we follow the
work of von Wagner [VWHO02] and expand the variational equation (3.7) in terms of dp
and ow.

Proposition 3.2.3. In the situation of Proposition 3.2.1, the vertical displacement w(z,t)
and the electric potential ¢(z, t) satisfy the boundary conditions

E%'(1/2,t) + v/ (1/2,t) = 0 (3.13)
E%W' (—1/2,t) + v (—1/2,t) = 0. (3.14)

Proof. The equation (3.7) can be rewritten to

t 12
/5F(w',u’1,<p’)dzdt =0
to—1/2
th 12 2 4
#// (Fudw' + Fpd') dzdt + //Fw&bdtdz = 0 (3.15)
to—1/2 ~1/2 to

Performing integration by parts on equation (3.15) with respect to z and ¢, we obtain

/[F Sw+ F, (xp i dt—//( F, 5w+§F w)mzt

to—1/2
/2 /2 ¢
t1 a
+/ [Fwéw} dz — //(—Fwéw) dtdz = 0
to 8t
~1/2 ~1/2 to
and rearrange it as
t1 l/2
/2 1
/[F léw—{—F/&p} s dt + / [F-(Sw} dz
—1/2 "
ty 1/2 ty 1/2
// Fw/—i— F Yowdzdt — // —Fdpdzdt = 0. (3.16)
to—1/2 to—1/2

In equation (3.16), the third and fourth parts are the same as in equation (3.10) and have
to equal zero. According to Hamilton’s principle, dw(z,ty) = dw(z,t;) = 0 hold, then
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3.2 General Eigenfunctions Derivation for Piezoceramics with a Linear Model

the second part is also zero. So equation (3.16) can be simplified to:
t

/ [5wa, + 590F¢/] Y j/2dt —0 (3.17)

to
For arbitrary t, and ¢, the time-integral in equation (3.17) has to vanish. Therefore the
integrand has to vanish.
Since the electric potential at the electrodes of the piezo is predetermined (reminding of
the two boundary conditions (3.5) and (3.6)), the variation of the electric potential with
respect to z at the electrodes has to vanish, so

5@(%7 ) =0 (3.18)

holds.
As the piezo is suspended freely at both ends, the displacements at = = +1/2 are not
predetermined. Therefore §w(+L, ¢) are not always zero.
Relating that 6o (=L, ¢) equal zero and dw (=%, ¢) are not always zero to equation (3.17),
we obtain

Fu(l/2,t) = Fy(=1/2,t) = 0. (3.19)

This leads to the two boundary conditions :
EW'(1/2,t) + v/ (1/2,t) = 0
E%W'(=1/2,t) + v/ (=1/2,1) = 0.

O

3.2.2 General Eigenfunctions Derivation for Different Geometries of

Piezoceramics
In this section, we will derive the general eigenfunctions 1W(z) and the corresponding
functions @, (=) that will be used to describe the electric potential . To do this, we first

derive the relation between solutions w(z,t) of (3.8) and the corresponding ¢(z,t) via
equation (3.9).
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3 Derivation of General Eigenfunctions and Equations of Motion

Proposition 3.2.4. Let the piezo shape function y(z) be an even function,then

1. w(z,t) isan odd function; and

2. one has
o(z,t) = a(w(z,t) —w(l/2,t)f(2)) + %f(z) cos Qt, (3.20)
where
o)
=0
and

Proof. 1. Performing integration by parts on equation (3.9) with respect to z, we ob-

tain
y(2)¢" (2, 1) + ¥ (2)¢'(2,1) = aly(2)w'(z,t) + 3/ (2)w' (2, 1))
= (y(2)¢'(2,1)) = a(y(2)w'(z,1))
= y(2)¢' (1) = ay(2)w'(z,1) + Di(t)
= ¢'(z,1) = aw'(z,t) + l;zi?
= o(z,t) = aw(z,t) + Di(t)g(z) + Do(t), (3.21)

where D, (t) and D,(t) are functions of .

Now we prove that g(z) is odd. Since y(z) is even as we defined in section 3.1,
y(z) = y(—=z). We have

g(—2) = Ofﬁds:o/yés)d(ﬂ)Z—O/yés)ds
— _g(2).

So g(z) is an odd function, and that f(z) (see Proposition 3.2.4) is odd can be
proved correspondingly.
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3.2 General Eigenfunctions Derivation for Piezoceramics with a Linear Model

Substituting equation (3.21) into the boundary conditions (3.13) and (3.14), we
obtain

EOw'(1/2,1) + 7o(w'(1/2,8) + Di(t)g'(1/2)) =0
E%'(=1/2,t) +q0(w'(=1/2,t) + Di(t)g'(=1/2)) =0

(3.22)

We have already proven that g(z) is an odd function, so ¢'(z) is even. From equation
(3.22) we additionally have:

w(1)2,t) = w'(~1/2,1). (3.23)

It can be proven that for a solution w(z) to the equation (3.8), also w(—z) is a
solution. If the eigenvalue corresponding with w(z) is simple, one therefore has

w(z) = Pw(=2), (3.24)

where (3 is a constant.

Observing that

w(z) = Pw(—z) = Fw(—(-2))
= fPw(2),

we know that 32 = 1 and therefore
8= +1.

So w(z) is either an even or odd function.

Taking into account that by equation (3.23) w'(z, t) is even, w(z, t) is odd. We will
need this result to prove that D,(¢) in equation (3.21) is zero.

2. Substituting the boundary conditions (3.5) and (3.6) into equation (3.21), we have:

aw(l/2,t) + Di(t)g(1/2) + Da(t) = G cos Qt, (3.25)

aw(—1/2,t) + Di(t)g(—1/2) + Da(t) = —22 cosQt.
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3 Derivation of General Eigenfunctions and Equations of Motion

Adding these two equations in (3.25), one sees that Dy () in (3.25) is zero since
g(z) and w(z, t) are odd. Therefore equation (3.21) can be simplified to

p(2,t) = aw(z,t) + Di(t)g(2). (3.26)
Substituting equation (3.26) into the boundary condition (3.5)

aw(l/2,t)+ Dy(t)g(l/2) = %COS Qt
% cos Qt — aw(l/2,t)

- i) )

Then substituting D, (¢) into equation (3.26) yields:

% cos Qt — aw(l/2,t)
O IR

= a(w(z,t) —w(l/2,t)f(2)) + %f(z) cos Q.

o(z,t) = aw(zt)+

OJ

In the previous section, we obtained the partial differential equation (3.8) for w(z, ). This
equation can be recast into the form

. E* (1 / />

w = — | —-(yw

= (2o
=: Lw, (3.27)

where L is the linear differential operator corresponding with (3.8). Eigenfunctions of L
are functions W (z) with the special property that

Lw = A\w, (3.28)

for some number X\. From the theory of partial differential equations it is known that
every solution w(z, t) of (3.8) can be expressed as a (possibly infinite) linear combination
[Wer02]

w(z,t) =Y Wil2)pi(t) (3.29)

of the eigenfunctions Wy (z). The problem of solving the partial differential equation
(3.8) with the given boundary conditions is then reduced to finding the correct coefficients

pi(t).
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3.2 General Eigenfunctions Derivation for Piezoceramics with a Linear Model

When one considers the case of short circuited electrodes of the piezoceramics (U, = 0),
the equation (3.20) can be rewritten as

p(2) = a(Wi(z) — Wi(l/2)f(2)) (3.30)
ko= 1,2,...

since it is time-independent.

Computation of the eigenfunctions. In the following, we explain how the eigenfunc-
tions Wy (z) are computed as solutions of ordinary differential equations.
The eigenfunctions 17, with eigenfrequencies w? are defined by the equation

B (y(W(2) + ()W) = —py(=)wfWil2), (3:31)

via the linear differential operator L in equations (3.27) and (3.28).
To solve this equation, we rewrite it as a first order system

Wiz) = aq(),
¢(z) = -LEW(2) - FEWi(2).

Y

(3.32)

Since only shapes with y(z) being even are considered, we can restrict the problem to
z €10,1/2].
To obtain the boundary conditions of W}, at = = 0, we consider the equation (3.30) at
z=—l/2:

i (=1/2) = a(Wi(=1/2) = Wi(l/2) f(=1/2))
We have already proven that ¢(z) is odd. Therefore from the definition of f(z) in Propo-
sition (3.2.1), we obtain f(—[/2) = —1. The boundary condition (3.6) implies that

d(—1/2) =0,
therefore, Wj(z) is an odd function and thus the initial value
W, (0) = 0. (3.33)

When y(z) is a constant, we additionally have

2k

Wi(0) = =~ (3.34)
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3 Derivation of General Eigenfunctions and Equations of Motion

We also use this initial condition in the case of non-constant y(z), with \; being deter-
mined by solving the characteristic equation

(E° + o)\ cos Ay — aygsin Ay = 0 (3.35)

Notice that in equation (3.32) w. is still unknown. This is a two-point boundary value
problem involving one unknown parameter.

For the short circuit case, the boundary condition (3.5) is

. oW (1/2)
EWAR) = gy ~°

We consider this as the third condition when solving the boundary value problem (3.32).

3.2.3 Numerical Solutions

The boundary value problem (3.32) is solved by using the MATLAB function bvp4c.
Figure 3.2 shows the computation results of W;(z) and ®;(z) when y(z) = alz| + b.
Figure 3.3 shows the computation results of 1/ (z) and ®,(z) when y(z) = az* + b.
The red line represents that the shape of a piezo is a rectangle. The green and blue lines
represent the shapes with curved sides, where the green line states a convex shape and the
blue line states a concave one.

3.3 Derivation of the Equation of Motion for a General
Shape

In this section, we first propose an ansatz for w(z,t) and ¢(z,t). The linear equation
of motion of piezoceramics for a general shape is derived via the Calculus of Variations.
The nonlinear equation of motion is obtained by introducing two nonlinear terms into the
linear equation of motion.

Linear equation of motion. The virtual work dW in equation (3.1) is not zero in a
damping case. For a linear model , we consider the first term of §W in equation (3.2) as a
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3.3 Derivation of the Equation of Motion for a General Shape
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Figure 3.2: Eigenfunctions of the piezo for y(z) = a|z| + b

nondimentional damping factor and add it to equation (3.7)

t; 1/2

5// y(2) (%pu}2 - %EOM'Q — Yow'¢' + %1/04,0'2) dzdt
to—1/2
th 12
- / / y(2) ESw) 0w, dzdt = 0.  (3.36)
to—1/2

In order to compute the spatial eigenfunctions of a piezo, the following ansatz for w(z, t)
and ¢(z, t) is employed from equations (3.20) and (3.29):

w(zt) = > Wil(2)pi(t), (3.37)
o(z,t) = Z Dy (2)pr(t) + %f(z) cos Q. (3.38)
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3 Derivation of General Eigenfunctions and Equations of Motion
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Figure 3.3: Eigenfunctions of the piezo for y(z) = az®> + b

To derive the linear equation of motion, we insert the above ansatz (3.37) and (3.38) into
equation (3.36) and obtain

ty 1/2 ty 1/2
25// (Wi, W(, Dk, Pr) dzdt—Z// Ede pk5pk dzdt =0 (3.39)
to—1/2 k=10 172

with

. 1 .
F(Wi, W[, prs i) = y(Z)(§pW;?pk2—§EOW’2 r = Yo Wik (P,

1
+%f’(z) cos Q) + §l/o(d>§€pk + 70f'(z) cos Qt)2>
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3.3 Derivation of the Equation of Motion for a General Shape

and performing the variation with respect to dpy

Fpk_%Fp'k_dwpk =0

1/2

= f ( — E"W2ypr + vo®Zypr — 270 W, P} yps,
“1/2

— Doy Wi (2)y cos Qt + Levo®), f'(2)y cos Qt

1/2

~GeWEyn) dz — [ WESW/p)d: =0
—1/2
1/2
= [ (9oWiEi+ (E'WE + 200W 8} — ne®F)yp
—1/2

+yEOW/ p, + oy f'(z) cos QU (oW, — VOCI);C)> dz =0. (3.40)

We already defined that

and

Therefore

Then equation (3.40) can be simplified to
mpPr + dipr + ckpr = fr cos Qt, (3.41)

k=1,2,...

where
1/2 1/2
Y W

—1/2 —1/2
l/2 1/2 1/2

k= EO/yW,fdz+2%/yW,;d>§€dz—uo/y@fdz,
12 “1/2 “1/2
1/2 1/2

fe = —%%/Wédz%—m)%/q);dz,
—1/2 —1/2

41



3 Derivation of General Eigenfunctions and Equations of Motion

The coefficients p,E°,~o, E9 and vy in my,cx,dy, and f; are constants. d, is a nondimen-
sional damping factor.

Nonlinear equation of motion. There are many possibilities to describe a nonlinear
phenomenon with different models. In [Neu02], a nonlinear model with many nonlinear
terms is introduced. It also indicated and tested that the nonlinear phenomenon observed
in experiments can be sufficiently described with only two terms. With three or more
nonlinear terms, the results are no more accurate but the computation will be much more
complicated.
In Neumann’s work [Neu02], several combination pairs of the nonlinear terms are ana-
lyzed. Here we introduce a nonlinear equation of motion with two nonlinear terms. One
nonlinear term is from equation (3.4) as
t 1/2
5// —iyE2w'4 dzdt,
to—1/2
and the other is a nondimensional damping term from oW as
t 1/2
/ / —y B2 sw, dzdt.
to—1/2

Adding these two nonlinear terms into the linear equation of motion (3.39) we obtain

0o t11/2 oo ti1l/2
6 [ [ F(Wy, W}, pr, pr) dzdt — fo yEW, p'képkdzdt

k=1 to—1/2 k=1to—1/2
00 t11/2 0o t1l/2

-3 5ff iyEQWﬁpi dzdt — > ff SyEA W p2ppopy dzdt =0 (3.42)
k=1 to—1/2 k=1to—1/2

Performing the variation with respect to dp, on the two newly added nonlinear parts we
obtain

12 /2
% I/ iyEQWk pydzdt + [ 3EIW[ piprdz
i /2 —1/2
12 1/2
= J yEPWilnidz+ [ 3EGWipipkdz
—1/2 =12

(3.43)
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3.3 Derivation of the Equation of Motion for a General Shape

Then, we obtain the following nonlinear equation of motion

mypr + dxpPr, + ckpr + kP + Ea,PaPk = [r cos O, (3.44)
k=1,2,...
with
1/2
er = E? / yW/tdz,
“1/2
12
- 2 4
gq, = OB / yW, dz,
12

where the constant £? is obtained experimentally. my, ¢, and f, are the same as in the
linear equation of motion. The influence of the two nonlinear terms ¢, and ¢4, on the
nonlinearities will be analyzed in Section 4.3.

Simplification of the ansatz and extension to a nonlinear model for a general shape.

In this part, the given ansatz is first simplified for a rectangular piezo with a linear model
by using a Galerkin method. Then, we assume that the simplification of the ansatz is also
available for a curved side shape as well as for a nonlinear model.

For a rectangular piezo, the special case of y(z) being a constant is considered. Therefore
in equation (3.38)

2z
f(z) = T
and the equation (3.8) can be simplified to:
E*w'(z,t) = pii(2, 1), (3.45)

which can be solved analytically. The eigenfunctions of the linear problem with short cir-
cuited electrodes (U, = 0) are calculated here in order to obtain suitable shape functions.
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3 Derivation of General Eigenfunctions and Equations of Motion

The eigenfunctions are obtained by solving equation (3.45) with the boundary conditions
analytically [vVWHO03]:

Wi(z) — sin(/\kQTZ), (3.46)

By(z) = a(Wk(z)—Zl—Zsin()\k)), (3.47)
with -
M= 4[1);?’

where wy, is the kth circular eigenfrequency, and A\, can be determined by solving equation
(3.35).

We already derived the linear equation of motion (3.41) for a general shape above. For a
rectangular shape, the coefficients my,,dx, ¢, and f;, can be simplified as

1/2 1/2
my = p/W,fdz, d, = E) / W/idz,
~1/2 ~1/2
12 12 12
e, = E° / W2dz + 27, / W, ®,.dz — vy / d2dz,
—1/2 —1/2 —1/2
1/2
fo = = [ Wi
~1/2

A Galerkin approach The numerical results of p, under certain excitation frequen-
cies can be obtained by solving equation (3.41) numerically (U, # 0) with MATLAB
function ode4s for k£ = 1,2,---. Here, we first compute the eigenfunctions W}, via
equation (3.46) from the first to fourth modes (e.g. £ = 1,2, 3, 4 respectively). We then
calculate the corresponding my,cx,dy and f, above and solve the equation (3.41) when
the excitation frequency 2 is at the first resonance numerically. Finally we obtain the
numerical results of p, and thus can compute the w(z) in equation (3.37) for different k.
Figure 3.4 shows the computation of equation (3.37) for k& = 1, 4 respectively. Via equa-
tion (3.46) we could obtain the analytical solutions of W, for different z, and the p,, are
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3.3 Derivation of the Equation of Motion for a General Shape

1

wiz,t), k

R
0.01

z(m) 001 D029y

Figure 3.4: Plotting of w(z,t) = 21 Wi (2)p;i(t), k = 1, 4 respectively
obtained by solving equation (3.41) numerically when U, = 20V. It’s difficult to clearly
see the difference between the two charts in Figure 3.4.
Then we plot not the sum but the Wy (2)px(t) for k = 1,2, 3, 4 respectively in figure 3.5.
When £ = 1, the power of the vibration amplitude for the first eigenmode is 1079, and
when & = 2, 3, 4, the powers are 101 and 10~*! which are much smaller than that of the
first eigenmode. From the analysis of the first four eigenmodes, the results reveal that the
second to fourth eigenmodes show very small contributions to the vibration compared to
the first when the excitation frequency is close to the first resonance. Therefore we could
obtain sufficiently exact results by considering only the first eigenmode. Consequently in
the following chapters the subscript & will be omitted.
Bearing this in mind, the ansatz is simplified to

w(z,t) = W(z)p(t), (3.48)
o(z,t) = @(z)p(t)—l—%f(z)cos(lt, (3.49)

for the system excited close to the first resonance frequency and the subscript 1 is omitted.

Assumption for anonlinear model of ageneral shape. For a linear model, we already
proved above that the ansatz (3.37) and (3.38) can be simplified as (3.48) and (3.49)
for a rectangular shape. Howeever, we could not prove that the simplification is also
available for a nonlinear model. Since engineers have already used the simplified ansatz
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Figure 3.5: Plotting of W (2)px(t), k = 1,2, 3, 4 respectively

for a nonlinear model [VWHO03], we assume that the simplification can also be used for a

nonlinear model as well as a general shape (e.g a curved side shape).
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Chapter 4

Solutions of Equations of Motion and
Nonlinear Dynamical Model Analysis

In Sections 4.1 and 4.2, the linear and nonlinear equations of motion are solved numer-
ically via a continuation software package AUTO2000, and the results show that some
curved side piezoceramics have a perform better than those with a rectangular shape. In
Section 4.3, the effects of the two nonlinear terms are analyzed, and both nonlinear terms
have profound effects on the bifurcation.

4.1 Numerical Solutionsfor aLinear Model

In Section 3.3 the ansatz is simplified as (3.48) and (3.49). Therefore, the linear equation
of motion (3.41) for a general shape can also be simplified as

mp + dp + cp = f cos U, 4.2
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4 Solutions of Equations of Motion and Nonlinear Dynamical Model Analysis

where
1/2 1/2
m = p/yW2dz, d:Eg/yW’de
~1/2 ~1/2
1/2 1/2 /2
c = EO/yW'2d2+270/yW’@’dz—yo/y(I)de,
—1/2 —1/2 —1/2
1/2 1/2
U, U,
f = o) /W/dZ—Vozg(l(}Q) /(P'dz.
—1/2 —1/2
The physical values are:
k N
p = 850 [—2); E' = 7.0912-10" [—;
m m
N _9 Nm?
% = 161608 [ v = 6.3665- 10" [);
Ns
B = 120 [

We rewrite equation (4.1) as:

P = q,

qg = —%(dq + cp — fcos(Qt)).

This is a first order system for which periodic solutions can be computed by using the
continuation package AUTO2000 [Dea01].

Figure 4.1 shows the periodic solutions of the equation (4.1) when y(z) is a constant

0.0015 [m]. The corresponding coefficients in equation (4.1) are computed and their

values are:
m = 0.0939,
d = 36.2940,
c = 2.246-10",
f = —46.6503.
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4.1 Numerical Solutions for a Linear Model
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Figure 4.1: The periodic solutions of the linear equation of motion for the rectangular
piezo

In the figures in this chapter, the horizontal axis represents the excitation frequency (2,
and the vertical axis represents vibration amplitude calculated using the scaled L,-norm

(Jo] = {& [} v(t)2dt}?).

For a curved side piezo (e. g. y(z) = 1522+ 0.001), we recomputed the above coefficients

as.
m = 0.1048,
d = 26.2195,
c = 1.5886-10',
f = —38.8388,
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4 Solutions of Equations of Motion and Nonlinear Dynamical Model Analysis

and replotted the results for rectangular and curved piezo together into Figure 4.2.

2690e-6 = y*=0.0010

] — y*=0.0015
2'5 [ 265 b ]

25t I_I

6.195 6.1955 6.196 6.1965 6.197 6.1975 6.198
15 Freq [Hz]

Amplitude [m]

Amplitude [m]

1.858e-6

Amplitude [m]

05 [

Freq [Hz] x10°

Figure 4.2: Linear model: oscillation amplitude of the piezo dependent on the excitation
frequency for different geometries: rectangular (green) and curved shape (blue).

Figure 4.2 shows the vibration amplitudes for two different geometries dependent on the
excitation frequency. The green line represents the behavior of a rectangular piezo (i.e.
y(z) = y* is constant), the maximum amplitude at the resonance frequency is 1.858-10~°
m. The blue line represents the piezo with the curved side y(z) = 1522 + 0.001. The
corresponding maximum amplitude at resonance is 2.690 - 10~% m, an improvement of
about 45%.
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4.2 Numerical Solutions for a Nonlinear Model

4.2 Numerical Solutionsfor a Nonlinear M odel

For the nonlinear equation of motion, we do the same simplification to equation (3.44)

mp + dp + cp + ep” + cap’p = [ cos O, (4.2)
where
12
e = E? / yW"dz,

~1/2

12

eq = 3E; / yW"dz,
—1/2

and constants £% and E? are also obtained experimentally and their values are:
N N
E? = —4.1820-10" [=]; FE2=30050-10° [—]
m m
For the rectangular piezo y is a constant, the two nonlinear terms are computed and their
values are

e = —1.6041-10%,
g = 3.458-10%.

m,c,d and f are the same as in the linear case.
The equation (4.2) can be rewritten to:

P = q,

1
jg = _E(dq +ep — feos(Qt) +ep’ + apq).

The computation for periodic solutions is also done using AUTO2000. The difference
between the solutions for linear and nonlinear models is that there are unstable solutions
and two limit points in the nonlinear case because of the nonlinear effects of the two
nonlinear terms ¢ and &,.

Figure 4.3 shows that in the case of a rectangular piezo (y(z) = y* = 0.0015 m), for
certain excitation frequencies there exist three periodic solutions, two of which (indicated
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4 Solutions of Equations of Motion and Nonlinear Dynamical Model Analysis

by the solid lines) are stable and one of which is unstable (dashed line) and therefore
cannot be observed in experiments. This means that the periodic solutions undergo two
bifurcations at certain frequencies — in fact, two limit points exist. In particular, this
result explains the “jump phenomenon” observed in the behavior of the nonlinear model
in [VWHO03].

x 10"
1.2

0.8

0.6

Amplitude [m]

0.4

0.2

0 1
7.6 7.65 7.7 7.75 7.8 7.85 7.9 7.95 8
Freq [Hz] x10*

Figure 4.3: Nonlinear model: path of periodic solutions within a certain range of excita-
tion frequencies (piezo with rectangular shape).

In order to compare the dynamical behavior for different shapes of the piezo, we focus on
the right limit points (at 2, and €2, respectively in Figure 4.4 ) instead of the resonance
frequencies, since the piezo may show unstable behavior in the latter case. In Figure 4.4,
the green line represents the piezo with rectangular shape, and the blue line represents
the curved shaped piezo. For the curved side y(z) = 152% + 0.001, the corresponding
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Figure 4.4: Nonlinear model: paths of periodic solutions within a certain range of exci-

tation frequencies for different geometries of the piezo: rectangular (green) and curved
shapes (blue).
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4 Solutions of Equations of Motion and Nonlinear Dynamical Model Analysis

nonlinear terms are computed

e = —1.2228-10%,
eq = 2.6359-10%3

Comparing the amplitudes at the chosen points for different geometries, we observe that
for the rectangular piezo, the amplitude at Q, = 77632 Hz is 7.91 - 10~7 m, while the
amplitude at Q; = 61776 Hz for the curved piezo is 8.34 - 10~ m, which is an improve-
ment of more than 5%. This result again indicates that one might be able to improve the
performance of a certain actuator by changing the shape of the associated piezo.

4.3 Nonlinear Effects Analysis

In the previous section, we fixed the parameters ¢ and ¢, of the nonlinear model (3.44).
We now keep y(z) = y* constant and study the effect of varying these parameters on the
computed branches of periodic solutions.

We first vary e, keeping ¢, fixed. For ¢ beyond a certain threshold value (corresponding
to the yellow line in Figure 4.5), no limit point exists and the system is stable. As ¢
decreases (that is, as |¢| increases), two limit points appear that separate frequencies with
only one stable solution from a range of frequencies for which there are two stable and
one unstable periodic solution.

In Figure 4.6, ¢ is fixed and . is varied. For large ¢, there are no limit points (the yellow
and the cyan line in Figure 4.6). As ¢, decreases, the maximum amplitude increases and
the two limit points appear.

From the above results, we see that both ¢ and ¢, have profound effects on the bifurcation
diagram of the system. In addition the influence of the value of £, on amplitude is also
observed, as it comes from the virtual work )W (see equation 3.2) and thus plays also a
damping role on the system.
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Figure 4.5: Nonlinear model: paths of periodic solutions within a certain range of excita-
tion frequencies for different values of the parameter «.
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tion frequencies for different values of the parameter .
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Chapter 5

Multi-Objective Optimization Problems
(M OOQOPs)

In this chapter, the basic concepts used in multi-objective optimization problems (MOOPS)
are formally defined, and the principles of multi-objective optimization are outlined in
Section 5.1. In Section 5.2 the classification and an overview of the main optimization
techniques for MOOPs currently available are presented, and a few corresponding soft-
ware packages are listed. Particularly, a Set Oriented Multilevel Subdivision Technique
is studied in Section 5.3, as it plays an important role in this dissertation. In Section
5.4, a multi-objective shape optimization problem for piezoceramics is introduced, and a
GAIO (Global Analysis of Invariant Objects) model for solving the optimization problem
is proposed.

5.1 A Brief Introduction to MOOPs

Almost every real-world problem naturally involves simultaneous optimization of sev-
eral incommensurable objectives. For example, when we design a chemical process, we
will normally want to maximize its economic performance (including profit, fixed cost,
operation and maintenance cost, etc), but at the same time, we incorporate several objec-
tives involving environmental sustainability, safety, operability, and controllability. The
objectives normally conflict with each other. These problems are called multi-objective
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5 Multi-Objective Optimization Problems (MOOPS)

or vector optimization problems. A considerable number of researchers have produced a
number of theoretical and practical contributions to deal with MOOPs over the past five
decades. Current applications of multi-objective optimization are distributed widely in
engineering, industrial and scientific fields. Good reviews of the techniques for multi-
objective optimization can be found in the books ([Mie99], [Deb01], [Ehr02] ). These
publications provide a very broad bibliography in this area.

5.1.1 Formulation of the Multi-objective Optimization Problem

To formulate a multi-objective optimization problem, we first define

r = [xl,xg,...,xn]T

as decision variables which subject to m inequality constraints:

gi(z) <0 i=1,2,...,m (5.1)
and p equality constraints:

hi(z) =0 i=1,2,...,p. (5.2)
We also define X € R™ as a set of x satisfying the constraints, then put all objective
functions f; (¢ = 1,..., k) into one function

F:R" — R~
where
F(x) = [fi(x), fal@), ..., fil)], (5.3)

k is the number of objective functions
From the set X we wish to determine the particular of values =7, z3, ...,z which yield
the optimal values for all of the objective functions.

5.1.2 Pareto Optimality and Pareto Set

While in a single-objective optimization problem a well-defined optimal solution can nor-
mally be found, seldomly there is a single optimum that simultaneously minimizes all the
objective functions for MOOPs. Instead of a single optimum we can find a set of trade-off
solutions. The concept of Pareto optimality is used to deal with this case[CCO05].
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5.2 Methods to Solve MOOPs

Definition 5.1. We say that a vector of decision variables z* € X is Pareto optimal if
there does not exist another = € X such that f;(z) < fi(z*) forall i = 1,... ,k and
fi(x) < f;(z*) for at least one j.

In words, this definition says that =* is Pareto optimal if no feasible vector of decision
variables = € X exists which would decrease some criterion without causing a simulta-
neous increase in at least one other criterion. Unfortunately, this concept almost always
results in not a single solution, but rather a set of solutions called the Pareto set. The vec-
tors x* corresponding to the solutions included in the Pareto set are called nondominated.
The image of the Pareto set under the objective functions is called Pareto front.

5.2 Methodsto Solve MOOPs

Finding the entire Pareto set is the most important step of solving a multi-objective op-
timization problem. In this section, different methods for solving MOOPs are reviewed,
and the corresponding software packages and literature are listed.

521 AnOverview

A variety of powerful techniques for solving MOOPs has resulted from operations re-
search, engineering, computer science and other related disciplines for years.

A considerable overview of deterministic techniques is given by Miettinen [Mie99]. Ear-
lier years, MOOPs were often solved by traditional optimization techniques. These tech-
niques usually reduce the MOOP to a single objective optimization problem, either by
combining multiple objective into a single scalar function or by keeping one of the ob-
jectives and restricting the rest of the objectives with user-specified values. While these
methods, such as weighted sum method, -constraint method, goal programming method,
interactive methods, the min-max approach and so on, are usually easy to implement and
to use, they have several disadvantages:

1. All techniques may miss some optimal solutions.
2. They may depend on the shape of the search space, e.g. whether it is convex or not.
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5 Multi-Objective Optimization Problems (MOOPS)

3. They are time-consuming methods because it is necessary to do a series of separate
optimization runs to obtain the Pareto set.

4. All techniques require some problem knowledge, such as suitable weights,  or
target values.

Because many MOOPs are high dimensional, discontinuous, multi-modal and/or Non-
deterministic Polynomial (NP)-Complete, stochastic methods often yield better perfor-
mance.

Multi-objective Evolutionary Algorithms (MOEA) represent a stochastic technique in-
spired by the principles of natural selection and natural genetics. Such techniques have
been demonstrated to be very powerful and suitable for solving MOOPs because of their
ability to find the Pareto set. Most researchers on MOEA have concentrated their efforts in
developing new and efficient search algorithms for finding widely distributed Pareto set.
Reviews of different evolutionary approaches to multi-objective optimization have been
given by researchers ([FF95] , [Hor97] , [vVLO00], [CCO05], [Zit99], [Deb01] and [Tea01]).
The classification of approaches that follows is partially based on the discussion presented
in these references.

5.2.2 Software

Table 5.1 lists some software packages for solving MOOPs.

5.3 A Set Oriented Multilevel Subdivision Technique

A set oriented numerical method for the numerical solution of multi-objective optimiza-
tion problems is introduced in this section. This method is global in nature and permits
an approximation of the entire set of global Pareto points.

5.3.1 A Set Oriented Multilevel Subdivision Technique

Dellnitz and Hohmann [DH97] proposed a subdivision algorithm for the computation of
unstable manifolds and global attractors. Suppose that the dynamical system is defined
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5.3 A Set Oriented Multilevel Subdivision Technique

Table 5.1: Some software packages for MOOPs

Software Developers Techniques Used Reference
AMOPSO G. T. Pulido Particle Swarm Optimizer [PCO4]
e-MOEA K. Deb Evolutionary Algorithm [Deb]
GAIO M. Dellnitz & O. Junge | Multilevel Subdivision Techniques | [DFJ01]
MOEA toolbox | K. C. Tan Evolutionary Algorithm [Tea01]
MOMHLIib++ | A. Jaszkiewicz Evolutionary Algorithm [Jas]

Simulated Annealing

NIMBUS K. Miettinen Interactive NIMBUS Method [MMOO0]
NSGA-II K. Deb Evolutionary Algorithm [Dea02]
PAES J. D. Knowles Evolutionary Algorithm [KCO00]
PISA Eckart Zitzler Evolutionary Algorithm [BLTZ03]

on R™. First, specify and subdivide a box in R™ and throw away boxes which do not
contain part of the relative global attractor. Then, derive the boxes again and proceed in
the same manner. For a detailed explanation on the subdivision algorithm refer to [DH97]
and [DSS02].

The idea of the new set oriented numerical method is to write down an iteration scheme
which - interpreted as a discrete dynamical system - possesses the Pareto set as an at-
tractor. Then set oriented numerical methods for dynamical systems can be used for its
approximation.

More concretely three different set oriented multilevel approaches for the approximation
of the Pareto set are proposed in [DSHO5]. First a subdivision algorithm for the approxi-
mation of Pareto sets which creates tight box coverings of these objects is presented. The
second algorithm is a recovering algorithmwhich can be viewed as a postprocessing pro-
cedure for the subdivision scheme yields the second approach. In the third approach the
creation of the box covering is combined with appropriate branch and bound strategies by
a sampling algorithm. More details can be found in [Sch04].
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5 Multi-Objective Optimization Problems (MOOPS)

Subdivision Algorithm. The subdivision algorithm is directly based on the theoretical
considerations of the work [DSHO05], particularly on Corollaries 1 and 2.
For a finite collection of discrete dynamical systems, the initial value problem

() = —q(x(t)), x(0)=0 (5.4)
is discretized and the following iteration scheme
Tjp1 = x; +hyp;, J=0,1,2,..., (5.5)
is considered.

Corollary 1. Suppose that the set § of substationary points is bounded and let D be a
compact neighborhood of 8. Then an application of the subdivision algorithmto D with
respect to iteration scheme (5.5) creates a covering of the entire set 8, that is,

SCQr for k=0,1,2,...,
in the course of the subdivision process.

Corollary 2. Suppose that the set § of substationary points is bounded and connected.
Let D be a compact neighborhood of 8. Then an application of the subdivision algorithm
to D with respect to the iteration scheme (5.5) leads to a sequence of covering which
convergesto the entire set 8, that is,

h(8,Qr) — 0 for k=0,1,2...,
where h denotes the usual Hausdor ff distance.

The descent direction used in the computation of unconstrained MOOPs is p; = ¢(z;). A
particular Armijo step size strategy is chosen in the following way: starting with the given
points x;, F'is evaluated along the descent direction p; in uniform step lengths &, as long
as the value of all objectives decreases. Once one objective function starts to increase, a
“petter” iterate x;,, with intermediate step length is calculated via backtracking.

The subdivision algorithm has the advantage of being very robust with respect to errors
by the use of the descent direction. However, all the gradients of the objectives have to be
available and the algorithm is unable to distinguish between a local and a global Pareto
point. Furthermore, the efficiency of the algorithm will get worse when the MOOP has
optima relative to the boundary of the domain.
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5.3 A Set Oriented Multilevel Subdivision Technique

Recovering Algorithm. It may be the case that in the course of the subdivision proce-
dure boxes get lost although they contain substationary points. This will, for instance,
be the case when there are not enough test points taken into account for the evaluation
of F(B) for a box B € By. The recovering algorithm uses a kind of “healing” process
which allows us to recover those substationary points which have previously been lost.
The aim of the algorithm is to extend the given box collection step-by-step along the
covered parts of the set § of the substationary points no more boxes are added.

The recovering algorithm is able to extend the computed box covering of the set of sub-
stationary points but it is only local in nature.

Sampling Algorithm. Observe that there are a few potential drawbacks which may
occur when using the two algorithms described above:

1. the gradients of the objectives are needed,

2. the set S is generally a strict superset of the Pareto set, and

3. the algorithms are capable of finding local Pareto points on the boundary of the
domain () - e.g. via penalization strategies. However, it has turned out in practice
that (MOOPs) typically contain many local Pareto points on 9@ which are not
globally optimal (see e.g. in [DSHO05]).

The sampling algorithm avoids all these problems because it takes only the function values
of the objective functions into account. On the other hand this algorithm is not as robust
to errors as the first two because it is only global relative to the underlying box collection.

The sampling algorithm is able to detect global Pareto points even on the boundary of
the domain due to the fact that it works in the image space of the MOOP. Naturally,
uncertainty always remains due to the sampling approach, in particular when the boxes
are big and/or the dimensions of the MOOP are large. Nevertheless, results have shown
that this algorithm works quite well, in particular when the gradients of the objectives are
not available and the dimension of the MOOP is moderate [Sch04].
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5 Multi-Objective Optimization Problems (MOOPS)

5.3.2 Software

GAIO ! is developed by Dellnitz and Junge [DFJO1]. It is a software package for the
global numerical analysis of dynamical systems and optimization problems based on set
oriented techniques. It may be used to compute invariant sets, invariant manifolds, invari-
ant measures and almost invariant sets in dynamical systems and to compute the globally
optimal solutions of both scalar and multi-objective problems.

54 A GAIO Mode for the M ulti-Objective Optimization
Problem

In this section, we will introduce a multi-objective shape optimization problem for the
design of piezoelectric actuators. In Section 5.4.1, multi-objective optimization problems
in piezoelectric actuator design are introduced. Particularly, a multi-objective shape opti-
mization problem is presented in Section 5.4.2; the objectives, design variables and con-
straints are given in detail. A GAIO model for the multi-objective optimization problem
is proposed in Section 5.4.3.

54.1 MOOPsin Piezoelectric Actuator Design

Piezoelectric actuators have been widely used in different fields. The performance of
piezoelectric actuators can usually be remarkably improved if mathematical optimization
methods are applied in their development. According to the different applications, differ-
ent design goals exist. For example, the fast response time and low power consumption
are considered in one stroke driving; and low cost and compact size are considered in
resonant driving.

Mathematical analysis of an optimization problem often leads to “unusual” solutions that
are hardly suitable for manufacturing. This is acceptable in the framework of the chosen
approach:

http:/iwww-math.upb.de/ agdellnitz/Software/gaio.html
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5.4 A GAIO Model for the Multi-Objective Optimization Problem

We are looking for a mathematically correct solution, and we accept its fea-
tures. From a practical point of view, the emergence of “strange” solutions
reveals certain hidden features of optimality. These solutions should not be
rejected as mathematical extravagance, but rather should be understood and
interpreted in depth; often, they point to better solutions that may be approx-
imated with available resources.

C. Cherkaev

The above quotation can also be applied to interpret the results we obtained in Chapter
4. Those results show that one can get better performance (e.g. amplitude) with unusual
shapes. However from an engineer’s point of view, unusual shapes often cause manu-
factural problems. This conflict leads to the multi-objective optimization problem in this
work.

5.4.2 TheMulti-objective Shape Optimization Problem

This work is concerned with a multi-objective shape optimization problem of piezoelec-
tric materials. A two-dimensional body (see the given example shape in Figure 3.1) is to
be designed for maximum amplitude (better performance) and minimum curvature (sim-
ple manufacturing) subjected to three constraints.

Parametrization of shapes. To realize a numerical shape optimization problem one has
to first find a suitable parametrization of shapes using a finite number of parameters.
Concretely we consider two cases to represent the boundary y(z).

e Design variable.

1. y(z) = az* + b (one design variable);
To simplify the problem, we use one design variable to control the shape of
piezoceramics. Here we define an admissible domain ). The shape of the
piezo is characterized solely by y* € Q. y* = y(0) is the design variable (see
Figure 3.1). Together with the mass constraint, it determines the shape of the
piezo in a unique way.
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2. B-spline (two design variables).
From a mathematical point of view, a curve generated by using the vertices of a
control polygon is dependent on some interpolation or approximation scheme
to establish the relationship between the curve and the control polygon. The
scheme is provided by the choice of the basis function.

Curve representation. Curves are mathematically represented either ex-
plicitly, implicitly or parametrically. Explicit representations of the form y =
f(z) (e.g. Case 1) are useful in many applications but axis-dependent, cannot
adequately represent multiple-valued functions and cannot be used where a
constraint involves an infinite derivative. Implicit representations of the form
f(z,y) = 0 for curves are capable of representing multiple-valued functions
but are still axis-dependent.

Parametric curve representations of form

z=f@), y=g(),
where ¢ is the parameter, are extremely flexible. They are axis independent,
easily represent multiple-valued functions and infinite derivatives, and have
additional degrees of freedom compared to either explicit or implicit formula-

tions. The derivatives of iy and x with respect to ¢ are given by

J % o fz—f |
B-spline curves we will use in this work are parametrically represented by
[Rog01]:

B-splinedefinition. A B-spline is defined by a knot vector K\, = [ko, k1, . . ., kul,
where K, is a nondecreasing sequence, and given control points By, B, ..., B, €
R2,
The degree d and the order r are defined as:

d = m—n-—1

r = m-—n.
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5.4 A GAIO Model for the Multi-Objective Optimization Problem

The “knots” kg1, ..., ka_g_1 are called internal knots.
The dash-dot line defined by the control points will be called a control polygon
(see Figure 5.1).

A B-spline can be defined as a linear combination:

n+1

P(t)=> BiNiz(t) tmin <t <tmw, 2<r<n+l (5.6)
=1

N; .(t) are the normalized basis functions defined by the Cox-de Boor recur-
sion formulas. Specifically

L oaf ki <t <k

0, otherwise

and
— k3N, o —BYNiuqg
Nz‘,r _ (t kl) 1,1 l(t) + (kHrr t) i+1,r 1(75)' (5.8)
Kitr—1 — K Fivr — kip1
We define
0
—=0.
0

Specific types include the nonperiodic B-spline and uniform B-spline (internal
knots are equally spaced). A B-spline with no internal knots is a Bézier curve.

B-spline continuity If the nth derivatives of a curve, d"P(t)/dt", at the
curve segment joint are equal in both direction and magnitude, then the curve
is said to have C™ parametric continuity at the joint.

B-splines automatically take care of continuity, with exactly one control point
per curve segment. With different degrees there are many types of B-splines
(linear, quadratic, cubic,...) and they may be uniform or non-uniform. We
will only consider uniform B-splines for which parametric continuity is al-
ways one degree lower than the degree of each curve piece (e.g. linear B-
splines have C° continuity, cubic have C? continuity, etc).

A C? curve is doubly differentiable at the knot point and its curvature is con-
tinuous.
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68

B-splinecurvederivatives. The derivatives of a B-spline curve at any point
on the curve are obtained by formal differentiation. Specifically recalling
Equation (5.6) the first derivative is

n+1

=1
where
Nir_1(t) + N;, -
N = MO+ RN
’ szrr 1 k
Kijr —8)N/ 1 (t) — Nip1r1(t
e = ON ) = Nonan® o
Kiyr — Kit1
Note from Equation (5.7) that N, (¢) = 0 for all ¢.
Consequently, for r = 2 Equation (5.9) reduces to:
N/ o(8) = Nia(t)  Nija(t)
’ kiv1i —ki K2 —kin
The second derivative is given by:
n+1l
P"(t Z B;N!.(t (5.11)

Differentiating equation (5.10) yields the second derivative of the basis func-
tion:

2N2/r 1( )+( )Nzl/r 1( )
kKitr—1— ki
N (Kivr = N1 1 (8) — 2Ni 4 (0)
Kirr — ki1

N/ (t) =

i,r

(5.12)

Here, note that both N, (t) = 0 and N/,(t) = 0 for all ¢. [dB78].

B-spline curve curvature. A plane curve curvature is a geometric property
of curve which represents how the curve bends. The plane curve curvature is
often defined by following equations
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0
K(b,9) = 5

where k(v), s) is the curvature, s is an arc length of p(t) = (z(¢),y(t)), and

(5.13)

1 is an angle between a tangent of p(¢) and x-axis. The useful parametric
definition is as follows:

x”y’ - x/y//
(2 + y’2)%

(5.14)

where K (t) is the relative curvature.

For the sake of simplicity of computation in this work, we choose the knot
vector
A [ [ [ [ [

Ko=[ 72 5 L
22226 6 2 2 2 2

and it is used to generate a fourth-order (cubic) B-spline curve with a control
pentagon.

We define the coordinates of the 6 control points in z direction as
B, =1[0.01 0.006 0.002 —0.002 —0.006 — 0.01].

The B-spline is symmetric to the line z = 0 (see Figure 5.1). Therefore, we
have three unknown parameters y;;, v and y;. Here we consider y; and 5 as
design variables, as the third unknown parameter (e.g. ¥, in Figure 5.1) can
be determined by the mass constraint.

To avoid more strange shapes, we define two constraints.

— Yo <y1 < yso0r

— Y5 <41 < Yo
The value of y; should be between v and 3, thus y(z) is either a convex or a
concave function.

Optimization Objectives. Here we define the two objectives in details.

e Maximum amplitude. From the computation in Chapters 3 and 4, we know that
the computation for the vibration amplitude is complicated and cannot be expressed
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Figure 5.1: A cubic B-spline curve with its control polygon (dash-dot line).

by an explicit formula.
Figure 5.2 illustrates the computation for the vibration amplitude of a piezo step by
step. For each input y* € @, the following computation steps should be taken:

— compute y(z) by the mass constraint;

— compute numerical solutions of eigenfunctions for a piezo with a curved side
described by y(z) by solving a boundary value problem;

— use the obtained numerical values of eigenfunctions to compute the coeffi-
cients in equations (4.1) and (3.44);

— call AUTO2000 for computing the vibration amplitude;
— choose the amplitude at a specified excitation frequency.

e Minimum curvature. In Figure 3.1, the curved side is described by y(z). For
a two-dimensional curve written in the form y = f(z), the equation of curvature
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Figure 5.2: Framework for computing amplitude (Procedure A)
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becomes

f"(2)
K(z) = . 5.15
) (1+(f(2))%)> 619

1. y(z) =az> +0;
Since
f"(z) =2a, f'(z)=2az,
equation (5.15) is simplified to

2a

K(z)= ——.
) (1+(2a2)%)2

As the curve y(z) is symmetric to z = 0, we choose the absolute value of
curvature at z = 0 as the other objective

min K = |2ad|

2. B-spline.
As discussed in Chapter 3, the relative curvature K (¢) for a B-spline at one
point is given by:

x”y’ o x’y”

(22 + ylz)%

. (5.16)

Constraints. The above two objectives are subjected to the following constraints:

e Massconstraint. The mass of the piezo is fixed. Only the shape is set to vary. This
constraint is expressed by (see Figure 3.1)

12

/ y(z)dz = const.

/2

e Spatial constraint. The piezo is symmetric with respect to the y-axis. As shown
in Figure 3.1, y(z) is being even (y(z) = y(—=z)), thus we can restrict the problem
to half of the domain z € [0,1/2].

e Domain constraint. The domain () is defined by
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1. y(z) = az* + b (one dimension);
Q = {y* € ([0.0003,0.004])}.

2. B-spline (two dimensions).

Q = {(By(2), Bs(2)) € R?0.0003 < By(z) < 0.004,0.0003 < By(z) < 0.004}.

54.3 A GAIO Model for the Optimization Problem

According to the above information, we now introduce a GAIO model to solve the above
multi-objective optimization problem (see Figure 5.3).

In principle each of the algorithms proposed in Section 5.3 is applicable to a multi-
objective optimization problem on its own. In our case the subdivision algorithm is per-

formed.
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Data input
Domain QO
GAIO
Subdivision
< Constraints
Procedure A
Y

Objective functions
Max amplitude
Min curvature
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Figure 5.3: A GAIO model for the optimization problem




Chapter 6
Results and Discussion

In Chapter 5, a two-objective shape optimization problem for piezoelectric actuators is
formulated, and then a GAIO model is given to find the Pareto sets for the optimization
problem. In this chapter, the computation results presented in Section 6.1 are obtained
after performing the computation steps in Chapter 5. Problems with one and two design
variables are considered respectively in both linear and nonlinear cases. A brief discus-
sion of the results is given in Section 6.2.

6.1 Optimization Results

In this work, we want to design a piezo with one boundary defined by a function y(z),
which will be optimized to obtain maximum vibration amplitude and minimum curvature
at one time. Performing the computation steps in Figure 5.3, the optimization solutions are
presented below in two items. In each item both linear and nonlinear cases are considered.

6.1.1 Multi-Objective Optimization Solutionsfor One Parameter (quadratic

curves)

In Section 3.2.3, a quadratic curve y(z) = az® + b was used to represent the boundary
y(z) in Figure 3.1, and y* = y(0) is the design variable.
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Linear — objective values of Pareto points (for a quadratic curved piezo)
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Figure 6.1: Pareto set for two-objective shape optimization problem (linear case, one
parameter) .

Linear case. Figures 6.1 and 6.2 are the Pareto set and its preimages in the linear case
respectively. Two objectives are obtained for maximum amplitude and minimum curva-
ture. The maximum amplitude is calculated by performing Procedure A in Figure 5.2.
The other objective curvature is obtained at z = 0 as K = |2a].

The Pareto solutions in Figure 6.1 are well collocated as a smooth curve. The preimages
in Figure 6.2 are in the range of y* € [0.00035, 0.0015], that is, the corresponding shapes
are all concave. Example shapes of points P, P, and P; are also given in Figure 6.2.
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6.1 Optimization Results

Linear — preimages of Pareto points ( for a quadratic curved piezo)
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Figure 6.2: Preimages of Pareto set for two-objective shape optimization problem (linear
case, one parameter) .

Nonlinear Case. In Figures 6.3 and 6.4 the Pareto set and their preimages in the non-
linear case are plotted respectively.

Two objectives are also obtained for maximum amplitude and minimum curvature. The
objective curvature is obtained in the same way as in the linear case. Because of the
bifurcation in the nonlinear case there are unstable solutions as well as stable ones. Then
the objective amplitude is focused on the amplitude at the right limit point, that is, the
maximum amplitude of the stable solutions (as shown in Figure 4.4).

In Figure 6.3 we observed a “jump phenomenon”, which separates the Pareto solutions
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Nonlinear — objective values of Pareto points ( for a quadratic curved piezo)
70 T T T T

60 - . . ]
50 F L .t p -

40 et i

Curvature

20

10 U 1

8 8.5 9 9.5 10 10.5
Amplitude [m] x 10

Figure 6.3: Pareto set for two-objective shape optimization problem (nonlinear case, one
parameter).

into two sets. Looking at their preimages in Figure 6.4, we found that the preimages
y* are also in two sets in range of [0.00035,0.00091] and [0.0015,0.00175], and their
corresponding shapes are concave and convex respectively. Example shapes of points P,
and P; are also given in Figure 6.4.
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Nonlinear — preimages of Pareto points ( for a quadratic curved piezo)
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Figure 6.4: Preimages of Pareto set for two-objective shape optimization problem (non-
linear case, one parameter).

6.1.2 Multi-Objective Optimization Solutionsfor Two Parameters(cu-
bic B-spline curves)

In Section 3.2.3, we also introduced another way to represent a curve with two design
variables. It is a cubic B-spline curve with six control points (see Figure 5.1). y; and y;
in Figure 5.1 are the design variables.

Linear case. Figures 6.5 and 6.6 are the Pareto set and their preimages in the linear case
respectively. Two objectives are obtained in the same way as in one design variable case
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in Section 6.1.1.

In Figure 6.5, we also observed a “jump phenomenon”. When looking at their preim-
ages in Figure 6.6, the preimages are in one set in range of y; € [0.0027,0.003], y; €
[0.0007,0.001]. Example shapes of points P and P; are plotted in Figure 6.6.

Linear — objective values of Pareto points ( for a cubic B-spline curved piezo)
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Figure 6.5: Pareto set for two-objective shape optimization problem (linear case, two
parameters).

Nonlinear case. For the nonlinear case, the Pareto points and their preimages are plotted
in Figures 6.7 and 6.8 respectively. In Figure 6.8 the preimages are mostly located within
the range of y; € [0.00165,0.0025], y5 € [0.00085,0.00135], only one point Ps is at
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x107* Linear — preimages of Pareto points ( for a cubic B—spline curved piezo)
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Figure 6.6: Preimages of Pareto set for two-objective shape optimization problem (linear
case, two parameters).

(0.00137,0.00155). It means that most Pareto shapes are concave, and one is convex.
Example shapes of points P and P, are plotted in Figure 6.8.

6.2 Discussion

In this section, we will discuss the results of Section 6.1.

The optimization results with one and two parameters for a linear model are compared
in Figure 6.9. Two example shapes, Py and Py, are plotted in Figure 6.9. It is obvious
that results with two parameters are better than those with one parameter. Concretely, the
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Nonlinear — objective values of Pareto points ( for a cubic B-spline curved piezo)
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Figure 6.7: Pareto set for two-objective shape optimization problem (nonlinear case, two
parameters).

curvatures at points Py and Py, are 29.9 and 30.0 respectively, but the amplitude at Py
is 3.6372 - 1079, which is 35.43% higher than the amplitude 2.6857 - 10¢ at point Pj,.
The optimization results for one and two parameters in the nonlinear case are compared
in Figure 6.10. Example shapes of Points P, and P;3 are also plotted. At point P,
the amplitude is 8.7971 - 107, and the curvature is 40.4. At point P,3, the amplitude is
1.3358-107%, and the curvature is 40.2. Comparing the objective values of points P, and
Py3, the curvature of P53 is almost the same as that of P;,, but the amplitude is improved
by 51.85%.

82



6.2 Discussion

%107 Nonlinear — preimages of Pareto points ( for a cubic B—spline curved piezo)
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Figure 6.8: Preimages of Pareto set for two-objective shape optimization problem (non-
linear case, two parameters).
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Linear — objective values of Pareto points (cubic B—spline & quadratic curve)
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Figure 6.9: Pareto sets for two-objective shape optimization problem (linear case,).
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Nonlinear — objective values of Pareto points ( cubic B—spline & quadratic curve)
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Figure 6.10: Pareto sets for two-objective shape optimization problem (nonlinear case).
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Chapter 7
Summary and Outlook

In this chapter a summary of the results of this dissertation is given and future research is
envisaged and recommended.

7.1 Summary

Shape optimization is now a major concern in the design of mechanical systems in in-
dustry. It is important to improve the performance of a piezo by changing its geometry.
However, academic and industrial research into shape optimization is still ongoing. Mo-
tivated by facts that a curved side piezo has a performs better than a rectangular sided
piezo in calculations performed by using a simulating software, and convinced that this
information could facilitate the shape optimization of the piezoceramics with respect to
several objectives, the numerical analysis, modeling and multi-objective optimization of
the shape of piezoceramics have been addressed. This dissertation is comprised of three
phases:

1. Background,
2. modeling and numerical analysis,
3. multi-objective shape optimization.

In the first phase, the basic knowledge of shape optimization, piezoelectric effects, piezo-
electric materials and their properties were introduced. The influence of the shape of a
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piezo on its performance was demonstrated with software package Comsol Multiphsics
(FEMLAB). The preliminary results were visualized in Figures 1.2 and 1.3. The motiva-
tion and the primary goal of this work have been also given.

In the second phase, a detailed mathematical model able to reproduce the dynamical be-
havior (in particular some nonlinear phenomenon) of piezoceramics is first introduced.
Then, the general eigenfunctions of piezoceramics for different geometries, which de-
scribe how a shape(geometry) of a piezo influences its properties, are derived via Hamil-
ton’s principle. Both usual (e.g. rectangular) and unusual (e.g. curved side) shapes are
considered. A corresponding boundary value problem is solved numerically using MAT-
LAB and the computation results are used to compute the coefficients of the equation of
motion.

Then the linear equation of motion of piezoceramics for different geometries is derived
via the Calculus of Variations. Compared with the linear equation of motion, two nonlin-
ear terms are introduced. The equation of motion is solved numerically via a continuation
software package AUTO2000, and the results show that some curved side piezoceramics
perform better than those with a rectangular shape for both linear and nonlinear models.
The difference between the solutions of linear and nonlinear cases is that there are unsta-
ble solutions and two limit points in the nonlinear case. The effects of the two nonlinear
terms are analyzed, and both nonlinear terms have profound effects on the bifurcation
observed.

Finally, a multi-objective shape optimization problem for the design of piezoelectric ac-
tuators is introduced in the third phase. Two objectives are maximum amplitude (bet-
ter performance) and minimum curvature (simple manufacturing). The framework for
computing the amplitude is established. A GAIO model for the optimization problem is
proposed. The optimization is conducted with subdivision algorithm based on GAIO soft-
ware package, and the corresponding Pareto-optimal solutions are obtained. Results show
that the Pareto set with two design variables (e.g. a cubic B-spline curved side shape) is
better than the Pareto set with one design variable (e.g. a quadratic curved side shape) for
both linear and nonlinear models.

88



7.2 Outlook

7.2 Outlook

Although some useful results are obtained, there is still much work should be done in the
futher. The work could be further expanded in a number of ways to enhance its capability
for supporting industrial practices. | specifically recommend the followings:

1. One of the limitations of this work is the reduction of the number of design vari-
ables. | considered the cases of one and two design variables, respectively. More
variables could be beneficial.

2. A two-dimensional problem is considered and represented by quadratic curves and
cubic B-spline curves. A three-dimensional problem which would be represented
by B-spline surfaces maybe worth investigating in the future.

3. Two objectives (max. amplitude & min. curvature) have been considered in this
work. In the design of piezoelectric actuators, more objectives (e.g. min. input
electric field) or maybe minimum amplitude in some cases need to be optimized
to meet the design requirements. It is recommended that more than two objectives
will considered in the future in order to improve feasibility and capability.

4. The work presented so far tackles some simplified cases to improve the performance
of a piezo. Experiments are welcome to verify simulation results.
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Appendix A

COMSOL Multiphysics (former
FEMLAB)

COMSOL Multiphysics (former FEMLAB) is an interactive environment for modeling
and simulating scientific and engineering problems based on partial differential equations
(PDEs)-equations that are the fundamental basis for the laws of science. COMSOL is
a package that is based off of Matlab and is a contraction for Finite Element Method
Laboratory. The Finite Element Method, or FEM for short, is a numerical method that
can be used to solve PDEs.

COMSOL Multiphysics is a complete package that covers all facets of the modeling pro-
cess. It contains CAD tools, interfaces for physics and equation specifications, automatic
mesh generation, a variety of optimized solvers, as well as visualization and postprocess-
ing tools. Its multiphysics capability allows to simultaneously modeling many combina-
tions of coupled phenomena and allows us to supplement ready-to-use applications based
on predefined relevant physical quantities with equation-based modeling.

It gives here a quick overview of some of the features available for advanced modeling in
COMSOL’s graphical user interface. The important COMSOL features are:

e Fast, interactive, and user-friendly graphical user interface for all steps of the mod-
eling process;

e Powerful direct and iterative solvers;
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A COMSOL Multiphysics (former FEMLAB)

e Linear and nonlinear stationary, timedependent, and eigenvalue analysis of models;

o Total freedom in the specification of physical properties, whether as analytical ex-
pressions or functions;

e Unlimited multiphysics capabilities for coupling all types of physics, even on do-
mains in different space dimensions;

e General formulations for quick and easy modeling of arbitrary systems of PDEs;
e CAD tools for solid modeling in 1D, 2D and 3D;

e Triangular, quadrilateral, tetrahedral, brick, and prism meshes using fully automatic
and adaptive mesh generation;

e Extensive model libraries that document and demonstrate more than 100 solved
examples;

e Parametric solver for efficient solution of highly nonlinear models;
e Interactive postprocessing and visualization;

e Report generator for documenting models;

e 64-bit platform support for large-scale computations;

e Smooth interface to MATLAB.

Using COMSOL Multiphysics. With COMSOL Multiphysics’ interactive modeling
environment you can build and analyze models from start to finish without the need to
involve any other software packages. Its integrated tools allow you to work efficiently at
each step in the process, all within one consistent and easy-to-use graphical environment.
It’s easy to move back and forth between various stages such as setting up the geometry,
defining the physics, creating a mesh, solving the model, and performing postprocessing.
COMSOL Multiphysics’ associative geometry feature preserves any boundary condition
or equation even if you change the geometry. The modeling procedure typically involves
the following steps:
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1. Create of the geometry;
COMSOL Multiphysics provides powerful CAD tools for creating 1D, 2D and 3D
geometric objects using solid modeling. Work planes are useful for generating 2D
profiles that you rotate, extrude, and embed into 3D structures.

2. Definethe physic;
COMSOL Multiphysics makes the modeling of many physical processes and equa-
tions effortless through a variety of predefined application modes.

3. GeneratetheFinite Element Mesh;
Built-in mesh generators automatically perform meshing. They can create triangu-
lar or tetrahedral unstructured meshes as well as quadrilateral meshes. By extruding
or revolving a 2D mesh, you can create brick and prism meshes.

4. Computethe Solution;
COMSOL Multiphysics runs time-dependent or stationary simulations for linear
and nonlinear systems. With its solver scripting language, one can manage and
automate the solution process to solve for different field variables or iterate using a
staged-solution approach.

5. Visualize and Postprocess the Results;

6. Perform Optimization and Parametric Analysis.
The parametric solver in COMSOL Multiphysics provides the perfect way for ex-
amining a series of conditions. In addition, the built-in MATLAB interface can save
COMSOL Multiphysics models as M-files for later incorporation as functions into
MATLAB scripts for optimization or other postprocessing.

More information see:
http://www.comsol.com.
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Appendix B

A Brief Introduction to AUTO2000

AUTO is a publicly available software for continuation and bifurcation problems in or-
dinary differential equations developed by Eusebius Doedel. It was originally written in
1980 and widely used in the dynamical systems community.

AUTO can do a limited bifurcation analysis of algebraic systems of the form
fu,p) =0, fuinR"
and of systems of ordinary differential equations of the form

u'(t) = f(u(t),p), fuwinR"

subject to initial conditions, boundary conditions, and integral constraints. Here p denotes
one or more parameters. AUTO can also do certain continuation and evolution compu-
tations for parabolic PDEs. It also includes the software HOMCONT for the bifurcation
analysis of homoclinic orbits.

In AUTO the computation of periodic solutions to a periodically forced system can be
done by adding a nonlinear oscillator with the desired periodic forcing as one of the
solution components (JADO90]).

An example of such an oscillator is

g = x+ By —x(2®+y%),
y = —Br+y—y@@®+y),
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which has the asymptotically stable solution

x = sin(ft), y = cos(ft)
Coupling this oscillator to the Fitzhugh-Nagumo equations:

v = (F(U)—U))/&,
w' = v—dw— (b+rsin(ft)),

by replacing sin(St) by =. Above, F'(v) = v(v — a)(1 —v) and a, b, ¢ and d are fixed.
The first run is a homotopy from » = 0, where a solution is known analytically, to » = ¢,
where ¢ is a positive constant. Part of the solution branch with » = ¢ and varying (3 is
computed in the second run. j3 is treated as the bifurcation parameter.

AUTO2000 is freely available from https://sourceforge.net/projects/auto2000/.
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