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Abstract

Piezoelectric actuators are being used increasingly in various novel applications. One of

piezoelectric actuator design goals is to improve its performance for a certain mass of

piezoelectric materials. Shape optimization is one important way to improve the perfor-

mance of a piezo by changing its geometry. However, academic and industrial research

of shape optimization is still developing, especially with several objectives considered

simultaneously. This dissertation focuses on numerical modeling and multi-objective op-

timization of the shape of piezoceramics.

This work first explores the development of mathematical models and their related mod-

eling procedure in detail. A mathematical model is introduced to describe the property

of a piezo excited in resonance under weak electric fields. General eigenfunctions for

piezoceramics with different shapes are derived. The description and numerical computa-

tion of a boundary value problem and the nonlinear dynamical behavior analysis are also

presented. Both usual shapes (e.g. a rectangular shape) and (compared to the rectangular

shape) unusual ones (e.g. a shape with curved sides) are considered, and the results show

that some curved side piezoceramics perform better than those with a rectangular shape

using both linear and nonlinear models for the dynamics.

In the next step a multi-objective shape optimization problem for the design of piezoelec-

tric actuators is introduced. Two objectives, maximum amplitude (better performance)

and minimum curvature (simple manufacturing), need to be optimized at the same time.

The optimization is conducted with a subdivision algorithm based on the software pack-

age GAIO and the corresponding Pareto-optimal solutions are obtained both for linear

and nonlinear models. The results show that there is indeed an advantage in using more

complex shapes, as the Pareto set obtained using two design variables ( in this case pa-
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rameterizing a cubic B-spline) has substantially better objective function values than one

with one design variable (in this case a quadratic curve).

Key words

Piezoceramics; Shape optimization, Eigenfunction; Boundary value problem; Bifurca-

tion; Piezoelectric actuator; Multi-objective optimization; Subdivision algorithm
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Zusammenfassung

Piezoelektrische Aktuatoren finden immer häufiger in neuartigen Produkten verschieden-

ster Art Anwendung. Eines der Ziele bei der Entwicklung piezoelektrischer Aktuatoren

ist die Optimierung der Leistung für eine bestimmte Menge piezoelektrischen Materials.

Die Formoptimierung stellt eine wichtige Möglichkeit zur Verbesserung der Leistung ei-

nes Piezobauteils durch Änderung seiner geometrischen Eigenschaften dar. Sowohl die

akademische wie auch die industrielle Untersuchung der Formoptimierung befinden sich

jedoch noch in der Entwicklung, insbesondere für den Fall mehrerer, gleichzeitig betrach-

teter Zielfunktionen. Diese Dissertation beschäftigt sich mit der numerischen Modellie-

rung und Mehrzieloptimierung der Form piezokeramischer Bauteile.

In dieser Arbeit werden zunächst die Entwicklung mathematischer Modelle und der da-

zugehörigen Modellierungsverfahren detailliert betrachtet. Es wird ein mathematisches

Modell eingeführt, das die Eigenschaften eines piezoelektrischen Bauteils in Resonanz

mit einem schwachen elektrischen Wechselfeld beschreibt. Für dieses Modell werden Ei-

genfunktionen in Abhängigkeit von der Form des Bauteils hergeleitet. Weiterhin wer-

den die numerische Behandlung des sich ergebenden Randwertproblems und die Analyse

des nichtlinearen dynamischen Verhaltens vorgestellt. Dazu werden sowohl gewöhnliche

Formen (wie zum Beispiel Quader) als auch (im Vergleich dazu) ungewöhnliche For-

men (z. B. mit gekrümmten Seitenflächen) betrachtet. Die Ergebnisse zeigen, dass einige

gekrümmte Bauteile eine bessere Leistung als vergleichbare quaderförmige Teile zeigen,

sowohl unter Verwendung des linearen wie auch unter Verwendung des nichtlinearen Mo-

dells.

Im nächsten Schritt wird das Mehrziel-Form-Optimierungsproblem für die Gestaltung

piezoelektrischer Aktuatoren eingeführt. Zwei Zielfunktionen, die zu maximierende Am-
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plitude (höhere Leistung) und die zu minimierende Krümmung (einfachere Herstellung)

sollen dabei gleichzeitig optimiert werden. Die Optimierung wird mit einem im Soft-

warepaket GAIO implementierten Unterteilungsalgorithmus durchgeführt, wobei Pareto-

optimale Lösungen sowohl für das lineare wie auch für das nichtlineare Modell bestimmt

werden. Den Ergebnissen entnimmt man, dass komplexere Formen vorteilhaft sind, da

die Paretomenge für den Fall zweier Design-Variablen (die hier von der Parametrisierung

eines kubischen B-Splines herrühren) auf deutlich bessere Zielfunktionswerte führt als

für den Fall einer Variablen (die eine parabolische Form parametrisiert).

xii



Chapter 1

Introduction

This chapter consists of four sections. In the first section the definition and classification

of shape optimization are presented briefly. The state of the art in shape optimization of

piezoelectric actuator based on the shape optimization classification is presented in the

second section. The motivation of this work is proposed and its feasibility is analyzed in

the third section. The fourth section presents the organization of this dissertation.

1.1 Shape Optimization

Former research into the optimization of structures has been attempted since antiquity;

the designer would choose the shape and materials for the construction using intuition

and experience. Since ancient times this technique has proved effective, and for centuries

engineering landmarks such as castles, cathedrals, and ships were all built without mathe-

matical or mechanical theories. However, from the time of Galileo and Hooke, engineers

and mathematicians have developed theories to determine stress, deflections, currents and

temperature inside structures. Evidence of structural optimization in the modern era was

first documented in the 17th century by Galileo in his treatise, where the optimal shape of

beams was investigated.

Structural optimization is a major concern in the design of mechanical systems in the

industry (civil engineering, auto manufacturing, aeronautics, aerospace). In the past few

decades, it has become possible to turn the design process into algorithms thanks to ad-
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1 Introduction

vances in computer technology. The incresing modern trend is to use numerical software

which is used to analyze and optimize many possible designs simultaneously, making op-

timal design an automatic process. By applying different computer-oriented methods, the

topology and shape of structures can be optimized and hence designs are systematically

improved. These possibilities have stimulated an interest in the mathematical foundations

of structural optimization [Che00].

Definition. Shape optimization 1 usually has a very broad meaning. It can be viewed as

a part of the important branch of computational mechanics called structural optimization.

In structural optimization problems one tries to set some data of the mathematical model

that describe the behavior of a structure, therefore one can find a situation in which the

structure exhibits a priori of given properties. In shape optimization, as the term indicates,

optimization of the geometry is of primary interest.

Classification. From our daily experience we know that the efficiency and reliability of

manufactured products depend on geometrical aspects, among others. Therefore, it is not

surprising that optimal shape design problems have attracted the interest of many applied

mathematicians and engineers.

Nowadays shape optimization represents a vast scientific discipline involving all problems

in which the geometry (in a broad sense) is subject to optimization. It is indispensable in

the design and construction of industrial structures. For example, aircraft and spacecraft

have to satisfy, at the same time, very strict criteria on mechanical performance while

weighing as little as possible. The shape optimization problem for such a structure con-

sists in finding a geometry of the structure which minimizes a given function (e.g. such

as the weight of the structure) and yet simultaneously satisfies specific constraints (like

thickness, strain energy, or displacement bounds).

In some publications the term shape optimization2 is used in a comparatively restrict

sense. As it is also called geometric optimization, its emphasis is not on changing size or

topology but geometry. Haslinger considered shape optimization in a restricted sense as

1Shape optimization (italic) will be used to represent the term in a broad sense.
2Shape optimization (roman) will be used to represent the term in a more restricted sense.

2



1.2 An Overview of Shape Optimization in Piezoelectric Actuator Design

a branch of shape optimization in a broad sense. For a finer classification, three branches

of shape optimization are distinguished as follows [HM03]:

1. size optimization: a typical size of a structure, such as the thickness of a shell or

the radius of a circular stress element, is optimized. This class of problems has been

under modern investigation for decades.

2. shape optimization (also called geometric optimization): the shape of a structure

is optimized without changing the topology. Shape optimization is a classical field

of the calculus of variations, optimal control theory and structural optimization.

Due to its increased difficulty relative to size optimization, the geometrical changes

have historically been limited; however, it has gained importance in the aircraft and

automotive industries, as well as others, providing improvements to turbines, airfoil

shapes and connecting arms. Size optimization is a subset of shape optimization.

3. topology optimization: the topology of a structure, as well as the shape is opti-

mized by, for example, creating holes.

In this work we only focus on (2). One important feature of shape optimization is its

interdisciplinary character. First, the problem has to be posed from a mechanical point

of view. Then one has to find an appropriate mathematical model that can be used for the

numerical realization. In this stage no less than three mathematical disciplines interfere:

the theory of partial differential equations (PDEs), approximation of PDEs (usually by

finite element methods), and the theory of nonlinear mathematical programming.

1.2 An Overview of Shape Optimization in Piezoelectric

Actuator Design

Piezoelectric actuators are being increasingly used in various novel applications. A piezo-

electric actuator usually consists of two main components: an electric part, which is the

piezoelectric material block, can convert electrical energy into mechanical energy, and

a mechanical part, which is a flexible structure, can convert and amplify the output dis-

placement in the desired direction and magnitude [LXKS01]. One of the important issues
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1 Introduction

of using piezoelectric actuators is to improve their performance for a certain mass of

piezoelectric material, which is the goal of piezoelectric actuator design.

Design of piezoelectric actuators has been greatly advanced during the past ten years.

Usually the performance of a piezoelectric actuator can be improved by optimizing the

mechanical part, the electric part, or both. In the previous work, the topology and shape

of the mechanical part were designed, however, the location and the shape of the piezo-

electric material were fixed.

The design of the electric part has also been developed in recent years. In this section,

the state of the art of shape optimization of piezoelectric materials is reviewed according

to the classification in Section 1.1, together with the methods applied for solving the

different optimization problems.

Sizing optimization. Sizing optimization, also called cross-sectional optimization, has

already been thoroughly studied. Main et al. [MGH94] optimized both the placement

and size of the piezoceramics (PZT) in beams and plates. Jiang et al. [JNL00] stud-

ied the physical parameters of the PZT plates and found that large areas of PZT plates

with a small width are conducive to attaining higher velocities of actuators. Von Wagner

([vWH02], [vWH03]) discussed the influence of the radius of a piezo rod on the vibra-

tion amplitude and analyzed the nonlinear property under weak electricity. Fu [Fu05]

solved a constrained two-objective optimization problem involving continuous (dimen-

sions of a piezoelectric transducer) and discrete design variables (material types) by using

an elitist non-dominated sorting genetic algorithm (NSGA-II). The two objectives are the

maximum vibration amplitude and the minimum electrical input power. Heikkola et al.

[HMN05] optimized three objectives by considering the length of the head mass and the

radius of the tip of an ultrasonic transducer with NIMBUS (Nondifferentiable Interactive

Multiobjective BUndle-based optimization System).

Shape optimization. Shape optimization is a new topic in this area. Several publi-

cations are recommended for obtaining a general comprehension of shape optimization

([HM03], [SZ92], [Pra74], [Ric95]). Haslinger and Mäkinen [HM03] treated sizing and

shape optimization in a comprehensive way, covering everything from mathematical the-
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1.2 An Overview of Shape Optimization in Piezoelectric Actuator Design

ory (existence analysis, discretizations, and convergence analysis for discretized prob-

lems) through computational aspects (sensitivity analysis, numerical minimization meth-

ods) to industrial applications. Some of the applications included are contact stress mini-

mization for elasto-plastic bodies, multidisciplinary optimization of an airfoil, and shape

optimization of a dividing tube. By presenting sizing and shape optimization in an ab-

stract way, the authors are able to use a unified approach in the mathematical analysis

for a large class of optimization problems in various fields of physics. Sokolowski and

Zolesio [SZ92] discussed the shape calculus introduced by J. Hadamard and extended it

to a broad class of free boundary value problems. The approach is functional analytic

throughout and will serve as a basis for the development of numerical algorithms to the

solution of shape optimization problems. They dealt solely with sensitivity analysis but

omitting approximation and computational aspects.

In the research area of shape optimization for piezoceramics, so far, no literature referred

to in this dissertation concerns multi-objective optimization problems for piezecreamics.

Topology optimization. A large number of studies have been carried out in this subject.

Topology optimization uses finite element methods to generate optimal design concepts.

Topology optimization is comprised of five steps. First, the geometry of the design do-

main, boundary conditions and loading are prescribed. Second, the design domain is

discretized by finite elements, and each element is assigned a design variable. Third,

the finite element analysis and sensitivity analysis are used to give the function value

and the first-order sensitivity of the objective and constraint. After that, the optimiza-

tion algorithm is used to solve the optimization problem. Finally, the optimal topology is

interpreted and refined.

Topology optimization with a homogenization method was proposed by Bensdøe and

Kikuchi [BK88] to design a very stiff structure, and this method was then applied to de-

sign compliant mechanism and composite materials. Li et al. [LXKS01] developed a

two layered optimization procedure (Topology Optimization and Genetic Algorithm Op-

timization) to solve a mixed optimization problem which designed both mechanical and

electrical parts of a piezoelectric actuator. A topology optimization method is used to ob-

tain the initial topology of the compliant mechanism, followed by detailed finite element

5



1 Introduction

analysis [BF04]. The effect of geometry parameters, material selection, and epoxy bond-

ing layers in the piezoelectric actuator are also studied. Bürmann et al. [BRG03] opti-

mized a piezoelectric fan with two symmetrically placed piezoelectric patches through an

analytical Bernoulli-Euler model as well as a finite element (FE) model of the composite

piezo-beam. Canfield and Frecker [CF00] designed the displacement amplifying com-

pliant mechanisms for piezoelectric actuators by using a topology optimization approach.

Two different solution methods, Sequential Linear Programming and an Optimality Crite-

ria method, are used to optimize a two-objective problem. Allaire et al. [AJT02] studied

a level-set method for numerical shape optimization of elastic structures. It combines

the level-set algorithm with the classical shape gradient. This method can easily handle

topology changes for a very large class of objective functions.

Although a great many studies have been reported, there is still more work worth to do,

especially in the new research area of shape optimization for piezoceramics.

As a developing area, there are several interesting questions which need to be considered,

e.g. how a shape of a piezo influences its (nonlinear) behavior? Does an unusual shape

play an important role in improving its performance? Can these information be used in

multi-objective optimization problems? With regard to these questions, the motivation of

this work follows in Section 1.3.

1.3 Motivation of this Work

Considering the questions listed at the end of Section 1.2, the motivation of this work is

proposed as follows: to investigate the influence of the shape of a piezo on its (nonlin-

ear) dynamical behavior and use this information for the shape optimization of the

piezoceramics with respect to several objectives.

Generally speaking, an optimization problem consists of two main major parts: a problem

formulation, which includes the definition of design variables, objective function and

constraints, and an optimization algorithm, which defines the numerical procedure with

which the optimal solution is pursued. As mentioned in Section 1.2, shape optimization

6



1.3 Motivation of this Work

is still a new topic in the area of optimization problems for piezoelectric actuators. Since

there is no established literature, shape optimization for piezoceramics is a challenging

task for both mathematicians and engineers.

Project feasibility analysis To ensure an effective result, the feasibility of improving

the response amplitude by changing the shape of a piezo with a computer software pack-

age Comsol Multiphsics (former FEMLAB, see Appendix A) was analyzed.

Aluminium

E

Piezo
z

x

y

Beam: AL 5 10 100 mm3  

Piezoceramics: PZT-5H V=300 mm3

S

Figure 1.1: Example: bending of a beam

Figure 1.1 shows an example of a static analysis using piezoelectric volume elements.

The use of a mode of piezoelectric materials has been investigated by Benjeddou et al.

([BTO97], [BTO99]).

The bender of a piezo-beam in Figure 1.1 is considered; it consists of an aluminium

7



1 Introduction

cantilever beam (5 × 10 × 100 mm3), which is fixed at the surface at z = 0, and a PZT-

5H (Lead Zirconate Titanate) (Vol.= 300 mm3, contact area: 10 × 10 mm2) adjoined to

the cantilever beam at a distance 15 mm from the clamp. A 20 V potential difference is

applied between the top and the bottom surfaces of the piezo. The material properties are

summarized in Table 1.1.

Table 1.1: Material properties

Aluminium

ρ 2690 (kg/m3)

Y 70.3 (GPa)

ν 0.345

PZT-5H

ρ 7730 (kg/m3)

[c]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

126 79.5 84.1 0 0 0

79.5 126 84.1 0 0 0

84.1 84.1 126 0 0 0

0 0 0 23.3 0 0

0 0 0 0 23.0 0

0 0 0 0 0 23.0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(GPa)

[ε]

⎡
⎢⎢⎢⎢⎣

1.503 0 0

0 1.503 0

0 0 1.3

⎤
⎥⎥⎥⎥⎦ 10−8 (F/m)

[e]

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0 17

0 0 0 0 17 0

−6.5 −6.5 23.3 0 0 0

⎤
⎥⎥⎥⎥⎦ (Cb/m)

Figure 1.2 shows the application of Comsol Multiphsics for modeling piezoelectric ef-

fects in a static linear analysis using the 3D Electrostatics application mode and the 3D

8



1.3 Motivation of this Work

Figure 1.2: A static 3D example with Comsol Multiphsics (FEMLAB): bending of a beam

(with a cuboid piezo)

Structural Mechanics Module Solid application mode. The mode of the piezoelectric

material is used to accomplish a deflection of the tip. Table 1.2 shows the tip deflections

for five different shapes of piezoceramics. The second column ’Shape of a piezo (S)’

shows the shapes in two dimensionally as S in Figure 1.1.

In the first case, the piezo in Figure 1.2 is a cuboid (3× 10× 10 mm3,S = 3× 10 mm2).

The corresponding tip deflection of the beam is 1.1814 · 10−7 m.

Then we change the shapes of the piezo to polygons. For some polygons, e.g. shapes

No. 2 and 3 in Table 1.2, the results are decreased by around 1.5% when compared to

the rectangular shape (No.1 in Table1.2). But in some cases, e.g. shape No.4, the tip

deflection of the beam is 1.1952 · 10−7 m, an improvement of 1.1%.

9



1 Introduction

Table 1.2: Beam’s tip deflections for example shapes of piezoceramics

No. Shape of a piezo (S) Beam’s tip deflection (10−7 m)

1 1.1814

2 1.1678

3 1.1601

4 1.1952

5 1.2085

As a third example, a shape similar to the No.4 but with a curved side (No.5 in Table 1.2)

is introduced and the result is shown in Figure 1.3.

From the above results, we find that better performance can be obtained by changing the

shape (e.g. a curved side instead of a rectangular shape) of a fixed-volume piezo-beam.

Therefore, in this work we will focus on shapes like No.5 in Table 1.2.

According to the motivation above, the primary goals of this work are:

• finding a mathematical model to describe the problem and configure the design

variables;

• deriving a general expression of the eigenfunctions for a piezo that can be used to

describe the properties of piezoceramics for different shapes;

• choosing appropriate objective functions and constraints for the multi-objective

shape optimization problem;

• solving the multi-objective optimization problem with an effective optimization

method.

10



1.3 Motivation of this Work

Figure 1.3: A static 3D example with Comsol Multiphsics (FEMLAB): bending of a beam

(with a curved surface piezo)

In this dissertation, first we will introduce a mathematical model to describe a nonlinear

phenomenon of piezoceramics observed in experiments; second, the general forms of the

eigenfunctions for piezoceramics with different shapes will derived via a Hamilton’s prin-

ciple; then two objective functions and constraints are given; and at the end a numerical

subdivision technique will be introduced to solve the multi-objective optimization prob-

lem. The compromised solutions for the multi-objective optimization problem are then

obtained.
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1 Introduction

1.4 Organization of this Dissertation

The organization of this dissertation is as follows:

Background. Background information for this dissertation shape optimization for piezoe-

cramics is introduced in the first two chapters.

In Chapter 1, the term shape optimization and its three classifications (size optimization,

shape optimization and topology optimization) are introduced. Following the classifica-

tion, the state of the art in shape optimization of piezoelectric actuators is presented. As

a summary to the state of the art analysis, the motivation of this work is proposed and the

feasibility of this work is analyzed.

Chapter 2 contains the basic knowledge of piezoelectric effects, piezoelectric materials

and their properties, and piezoelectric actuators and their applications.

Preliminary work. As the preliminary work for the optimization problem, Chapters

3 and 4 play a very important role as they present the theoretical background and the

essential computation for the further shape optimization problem.

In Chapter 3 we derived the general eigenfunctions of piezoceramics for different ge-

ometries of piezoelectric materials which describe how the shape (geometry) of a piezo

influences its properties. Unusual shapes (compared to the rectangular shape) are consid-

ered in this chapter. A corresponding boundary value problem is solved numerically and

the computation results are used to compute the coefficients of the equation of motion.

Hamilton’s principle is used to derive the linear and nonlinear equations of motion for a

general shape. A Galerkin method is used to simplify the linear problem for a rectangular

shape, and we assume this simplification can also be applied to a nonlinear model as well

as a general shape (e.g a curved side shape).

In Chapter 4 equations of motion for both linear and nonlinear cases are solved numer-

ically via a continuation software package AUTO2000. Results show that better perfor-

mance can be obtained with certain unusual shapes. A nonlinear dynamical behavior of

piezoceramics under weak electric fields is introduced and the influences of the nonlinear

terms are analyzed.
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1.4 Organization of this Dissertation

Optimization. A multi-objective shape optimization problem for piezoceramics is in-

troduced in Chapter 5, and optimization results are discussed in Chapter 6.

In Chapter 5 multi-objective optimization problems are introduced and the main optimiza-

tion techniques currently available are reviewed. Particularly, a set oriented multilevel

subdivision technique is studied. The formulation of a multi-objective shape optimiza-

tion problem and a GAIO (Global Analysis of Invariant Objects) model for solving the

optimization problem are given.

In Chapter 6 the multi-objective shape optimization results are discussed. Two cases, a

quadratic curve (one design variable) and a cubic B-spline curve (two design variables),

are considered. For both cases Pareto sets are obtained. Results show that the performance

of piezoceramics can be improved by changing their shapes.

Conclusion In Chapter 7 a summary of this dissertation and an outlook for the possible

research work in the future are given.
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Chapter 2

Piezoelectricity

In this chapter, a short history of piezoelectricity, the direct and inverse piezoelectric

effects, and piezoelectric constitutive equations are presented in Section 2.1. In Section

2.2 piezoelectric materials and their properties are introduced. The piezoelectric actuators

and their applications are briefly introduced in Section 2.3.

2.1 Piezoelectric Effect

2.1.1 Introduction

The piezoelectric effect was first mentioned in 1817 by the French mineralogist René Just

Haüy. It was first demonstrated by Pierre and Jacques Curie in 1880. They found that

if certain crystals were subjected to mechanical strain, they became electrically polarized

and the degree of polarization was proportional to the applied strain. The Curies also

discovered that these same materials deformed when they were exposed to an electric

field. This has become known as the inverse piezoelectric effect [Pie01].

Their experiments led them to elaborate on the early theory of piezoelectricity. This theory

was complemented by the further work of Lippman, Hankel, Kelvin and Voigt (beginning

of 20th century). Hankel proposed the name ’piezoelectricity1’. Until the beginning of

the century, the piezoelectricity did not leave laboratories. The first practical use of the

piezoelectric effect was during the first World War when sonar emitters (P. Langevin) were

1The prefix ’piezo-’ is derived from the Greek word piezein, meaning to press or squeeze.
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2 Piezoelectricity

effectively used to detect German submarines by producing ultrasonic waves with piezo-

electric quartz. Prior to the second World War, researchers at MIT discovered that certain

ceramics such as PZT (lead zirconate titanate) could be polarized to yield a high piezo re-

sponse. In the twenties, the use of quartz to control the resonance frequency of oscillators

was proposed by an American physicist W. G. Cady. It is during the period following the

first world war that most of the piezoelectric applications we are now familiar with (micro-

phones, accelerometers, ultrasonic transducers, benders, etc.) were conceived. However,

the materials available at the time often limited device performance. The development

of electronics, especially during the second World War, and the discovery of ferroelectric

ceramics increased the use of piezoelectric materials. The direct piezoelectric effect con-

sists of the ability of certain crystalline materials (i.e. ceramics) to generate an electrical

charge in proportion to an externally applied force. The direct piezoelectric effect has

been widely used in transducer design (accelerometers, force and pressure transducers,

etc.). According to the inverse piezoelectric effect, an electric field induces a deformation

of the piezoelectric material. The inverse piezoelectric effect has been applied in actuator

design [Ike90]. Figure 2.1 is the schematic diagram of piezoelectric effects.

M echanical
E nergy

P iezoelectric
M aterial

E lectrical
E nergy

F orce

D isplacem ent

E lectric P otential

E lectric C harge

D irec t P iezoelec tric  E ffec t

I nverse P iezoelec tric  E ffec t

Figure 2.1: schematic diagram of piezoelectric effects

In a piezoelectric crystal, the positive and negative electrical charges are separated, but

symmetrically distributed, so that the crystal is overall electrically neutral. When stress

is applied, this symmetry is destroyed, and the asymmetry charge generates a voltage.

The converse piezoelectricity is where application of an electrical field creates mechani-

cal stress (distortion) in the crystal. Because the charges inside the crystal are separated,

the applied voltage affects different points within the crystal differently, resulting in dis-

tortion. In the simplest of terms, when a piezoelectric material is squeezed, an electric
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2.1 Piezoelectric Effect

charge collects on its surface. Conversely, when a piezoelectric material is subjected to a

voltage drop, it mechanically deforms.

2.1.2 Piezoelectric Constitutive Equations

What is a constitutive equation? For mechanical problems, a constitutive equation de-

scribes how a material strains when it is stressed, or vice-versa. Constitutive equations

also exist for electrical problems; they describe how charges move in a (dielectric) mate-

rial when it is subjected to voltage, or vice-versa.

Engineers are already familiar with the most common mechanical constitutive equation

that applies for usual metals and plastics. This equation is known as Hooke’s Law and is

written as:

S = s · T

In words, this equation states: Strain = Compliance × Stress.

However, since piezoelectric materials are concerned with electrical properties too, we

must also consider the constitutive equation for common dielectrics:

D = ε · E

In words, this equation states: Charge Density = Permittivity × Electric Field.

Piezoelectric materials combine these two seemingly dissimilar constitutive equations

into one coupled equation, which defines how the piezoelectric material’s stress (T ), strain

(S), charge-density displacement (D), and electric field (E) interact.

The piezoelectric constitutive law (in Strain-Charge form) is:

S = sET + dtE (2.1)

D = d T + εT E (2.2)

The matrix d contains the piezoelectric coefficients for the material, and it appears twice

in the constitutive equation (the superscript t stands for matrix-transpose). The subscripts

in piezoelectric constitutive equations have very important meanings. They describe the

conditions under which the material property data was measured. For example, the sub-

script E on the compliance matrix sE means that the compliance data was measured
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2 Piezoelectricity

under at least a constant, and preferably a zero, electric field. Likewise, the subscript T

on the permittivity matrix εT means that the permittivity data was measured under at least

a constant, and preferably a zero, stress field.

The four state variables (S, T , D, and E) can be rearranged to give 3 additional forms for

a piezoelectric constitutive equation. Instead of the coupling matrix d, they contain the

coupling matrices e, g, or q. It is possible to transform piezo constitutive data from one

form to another.

2.2 Piezoelectric Materials

The piezoelectric effects can be seen as transfers between electrical and mechanical en-

ergy. Such transfers can only occur if the material is composed of charged particles and

can be polarized. For a material to exhibit an anisotropic property such as piezoelectric-

ity, its crystal structure must have no center of symmetry. 21 crystal structures out of 32

are non-centrosymmetric. A crystal having no center of symmetry possesses one or more

crystallographically unique directional axes. All 21 non-centrosymmetric crystal classes,

except one, show piezoelectric effect along the directional axes. Out of the 20 piezoelec-

tric classes, 10 have only one unique direction axis. Such crystals are called polar crystals

as they show spontaneous polarization. The value of the spontaneous polarization de-

pends on the temperature. This is called the pyroelectric effect. The pyroelectric crystals

for which the magnitude and direction of the spontaneous polarization can be reversed by

an external electric field are said to show ferroelectric behavior. Most of the piezoelectric

materials are crystalline solids. They can be single crystals, either formed naturally or by

synthetic processes, or polycrystalline materials like ferroelectric ceramics which can be

rendered piezoelectric and given, on a macroscopic scale, a single crystal symmetry by

the process of poling (by subjecting to a high electric field not far below the Curie temper-

ature). The piezoelectric effect can also appear in crystals composed of only one type of

element (in this case, the polarization is due to a distortion in the electronic distribution).

Certain polymers can also be made by stretching them under an electrical field.
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2.2 Piezoelectric Materials

Material properties. It is well known that the mechanical and electrical responses of a

piezoelectric material are coupled. When the applied electric field is low and the strains

are also low, the behavior of piezoceramics is almost linear. However, a wide range of

nonlinear piezoelectric phenomena are observed both under high and low electric fields.

The nonlinear behaviors under high and low electric fields are different in some aspects.

For example, the nonlinearities observed under high electric fields are hysteresis behavior

between the electric field and strain, nonlinear relation between electric field and mechan-

ical displacement, etc. The nonlinearities observed under weak electric fields are jump

phenomena, dependance of resonance frequency on vibration amplitude, presence of su-

perharmonics in the response spectra and nonlinear relationship between applied electric

voltage and mechanical displacement, etc.[Sea05].

Polarization is the amount of charge associated with the dipolar or free charge in a dielec-

tric. Figure 2.2 shows schematically the domain reorientation in a multi-domain piezo-

electric material.

Figure 2.2: Strain change associated with the polarization reorientation (adapted from

[Pie01])
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2 Piezoelectricity

The material is initially poled along the negative direction (1). When an electric field

is applied along the positive direction, the crystal will first shrink with the increase of

the field since the field is opposite in direction to the polarization. The strain reaches a

minimum at a certain field (coercive field Ec), where the polarization starts to reverse in

each grain (2). Above Ec, the crystal expands until Emax as the field now has the same

direction as the polarization. Near Emax, all the reversible polarization has been reversed.

As the field is reduced, the strain decreases monotonically as no polarization reversal

occurs. The situation for a zero electric field (4) is similar to the starting situation except

that the polarization is reversed; the material is now poled along the positive direction.

Since the piezo effect exhibited by natural materials such as quartz, tourmaline, Rochelle

salt, etc. is very small, polycrystalline ferroelectric ceramic materials such as BaTiO3 and

Lead Zirconate Titanate (Piezo) have been developed with improved properties. Ferro-

electric ceramics become piezoelectric when poled. Piezoceramics are available in many

variations and are still the most widely used materials for actuator or sensor applications

today. Piezo crystallites are centro-symmetric cubic (isotropic) before poling and after

poling exhibit tetragonal symmetry (anisotropic structure) below the Curie temperature

(see Figure 2.3). Above this temperature they lose their piezoelectric properties.

The vast majority of piezoelectric materials found in the marketplace today are inorganic

ceramics such as lead titanate (PbTiO3), lead zirconium titanate (PbZrTiO3), lithium tan-

talate (LiTaO3), and barium titanate (BaTiO3). Most of these perovskite materials were

pioneered in the late 1940’s and 1950’s, and are characterized by high elastic moduli, high

dielectric constant, low elastic and dielectric loss, and high electro-mechanical coupling

factors [Tho02].

Although modern piezoelectric ceramic materials have proven successful in many appli-

cations, they have a number of inherent limitations:

1. Low yield strains eliminate ceramics from high strain sensing applications such as

flexure in helicopter rotor blades and in fishing rods. Biomedical applications such

as foot strike force or bite pressure are also impractical for ceramic materials.

2. Brittleness makes these materials prone to fracture and crack propagation, and

makes the use of ceramic materials in impact, shock, and ordinance applications
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2.2 Piezoelectric Materials

Figure 2.3: Piezoelectric elementary cell (a) before poling (b) after poling

impractical. Brittle piezoelectric materials used in situations undergoing positive

and negative stresses must often be preloaded into compression to ensure mechani-

cal stability.

3. The density of ceramic materials is high, creating problems for weight sensitive

applications such as naval hull mounted and geophysical towed array sonar systems.

4. The acoustic impedance of ceramic materials (a function of density and stiffness)

is high, providing poor acoustic coupling to lower impedance materials like water

or human tissue.

5. The costs of the raw materials, basic processing of piezoelectric ceramics and single

crystal materials are relatively high per unit volume.
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2 Piezoelectricity

2.3 Piezoelectric Actuator

A Piezoelectric actuator is a device that uses ceramics with piezoelectric characteristics to

produce movement. It converts electrical input energy into an output such as a displace-

ment or generated force.

Piezoelectric actuators have been widely used in various fields such as micro-positioning

of tools, active vibration control, ultrasonic welding and machining, and common rail

diesel injection systems. Table 2.1 shows some applications of piezoelectric actuators.

They are used in high speed, high-accuracy control of valves in semiconductor manu-

facturing equipment, in ultra-precise positioning and in the generation and handling of

high forces or pressures in static or dynamic situations. They can also be used in opti-

cal switches that move tiny mirrors and in endoscopic lenses used in medical treatment.

To satisfy stricter governmental regulations with concerns to air pollution, one promising

application area is for motor vehicles to reduce emission of particulate matter to fulfill

the environment regulations. The piezoelectric effect is used in sensing applications, such

as in force or displacement sensors. The inverse piezoelectric effect is used in actua-

tion applications, such as in motors and devices that precisely control positioning, and in

generating sonic and ultrasonic signals. For most piezoelectric actuators, as for sensors,

a reasonably linear relationship between input signal and movement is required. How-

ever, there is the special class of actuators, which is purposely driven at their resonant

frequency, known as ultrasonic transducers.
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2.3 Piezoelectric Actuator

Table 2.1: Applications of piezoelectric actuators

areas application notes

Medical devices surgical tools and ultrasonic test-

ing

Micropositioning &

Nanopositioning

specific application require-

ments including tight geome-

tries, weight restrictions, and

vacuum and non-magnetic

constructions.

1. the fastest responding po-

sitioning element available

with microsecond time con-

stants;

2. producing motions in sub-

nanometer increments.

Spacecraft instru-

mentation

precise positioning of optics; ac-

tive damping of vibration

Piezoelectric motors

[Mor03]

linear motors, rotational motors

Vibration control of

civil structures

the application of piezoceramic

actuators in various civil struc-

tures such as beams, trusses,

steel frames and cable-stayed

bridges

1. applications related to civil

engineering;

2. low-cost, lightweight, and

easy-to-implement materials

for active control of structural

vibration.
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Chapter 3

Derivation of General Eigenfunctions

and Equations of Motion

When the shape of a piezo is changed, the eigenfunctions and the eigenfrequency are

changed correspondingly. Therefore the tasks of this chapter arise: to derive the general

eigenfunctions of piezoceramics with different shapes, and to solve the corresponding

boundary value problem and use the computation results for a further optimization prob-

lem. In the first section, an unusual example shape is considered with one boundary de-

scribed by a curved side y(z) instead of a straight line (special case of y(z) is a constant).

Then a nonlinear model is introduced to describe the nonlinear behavior of piezoceramics

excited by weak electric fields. In the second section, the general eigenfunctions of piezo-

ceramics with different geometries are derived for a linear model and the corresponding

boundary value problem is solved numerically. Then an ansatz is proposed to compute

the spatial eigenfunctions of a piezo. The linear and nonlinear equations of motion are

derived for the general shape in Section 3.3. At the end of this chapter, a Galerkin method

is used to simplify the ansatz for a rectangular shape with a linear model, and we assume

this simplification can also be applied for a nonlinear model as well as a general shape

(e.g a curved side shape).
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3 Derivation of General Eigenfunctions and Equations of Motion

3.1 A Nonlinear Model

In this section, the example shape of piezoelectric material is given and the nonlinear

corresponding model is introduced.

The example shape. As a concrete example we consider a piezo as depicted in Fig-

ure 3.1 [DJW05]. Between the top (z = l/2) and the bottom (z = −l/2) an alternating

external voltage with amplitude U0 is applied. The piezo vibrates with an amplitude in z

direction. In structural theory, the members of a structure are not, in general, treated as

three-dimensional continua but rather as continua of one or two dimensions. To simplify

the problem we consider it in two dimensions and only part of the boundary of the piezo

is subject to change [HM03]. This part is parameterized by y(z).

Definition 3.1.1. Let the shape S ⊆ R2 of a piezo be given by

S = {(ȳ, �z)|−l

2
≤ z̄ ≤ l

2
, 0 < ȳ ≤ y(z̄)}

with a function y : R → R. Then y is called the shape function of a piezo.

Remark 3.1.2. The piezo shape function y(z) depicted in Figure 3.1 is parameterized in

a very simple way. In real-life problems, however, the parametrization of the geometry

may be a difficult task.

A nonlinear model. There is a wide range of nonlinear effects which can be observed

in piezoceramics. One example is the well-known butterfly behavior for large stresses

and electric fields. For small stresses and weak electric fields, piezoceramics are usually

described by linear constitutive equations around an operating point in the butterfly hys-

teresis curve. Nevertheless, typical nonlinear effects can be observed when piezoelectric

actuators and structures with embedded piezoceramics are excited in resonance even if

the electric field remains small. This was observed and described by Beige and Schmidt

in 1982. They modeled these nonlinearities using higher order quadratic and cubic elastic

and electric terms. Typical nonlinear effects, e.g. a nonlinear relation between excitation

voltage and vibration amplitude, were also observed. Based on the observed experimen-

tal behavior, von Wagner et al. developed theoretical models for the electric enthalpy
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3.1 A Nonlinear Model

y 

z 

l /2 

−l /2 

U0 

y(z) 

y*=y(0)
O 

Figure 3.1: Shape of a piezo under consideration.

density function, which is subsequently used in Hamilton’s principle to derive governing

equations for the piezo-continuum [vWH03].

To derive equations of motion for a nonlinear model, we use Lagrange-d’Alembert prin-

ciple

δ

t1∫
t0

Ldt +

t1∫
t0

δWdt = 0. (3.1)

where t0 and t1 define the time interval (all variations must vanish at t = t0 and t = t1),

L is the Lagrangian

L =

∫
v

(T − H)dv

=

∫
z

A
(
T(ẇ(z, t)) − H(w′(z, t), ϕ′(z, t))

)
dz,

where

( )′ =
∂

∂z
, ˙( ) =

∂

∂t
.
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3 Derivation of General Eigenfunctions and Equations of Motion

w(z, t) and ϕ(z, t) are vertical displacement and electric potential respectively. T and H

respectively denote the kinetic energy density and the electric enthalpy density. dv is the

volume variation. A is the (constant) cross section of the piezo.

δW is virtual work done by external mechanical and electrical forces. Considering Neu-

mann’s work [Neu02], in this dissertation we introduce δW as

δW = −
l/2∫

−l/2

A
(
E0

dẇ
′δw′ + E2

dẇ
′3δw′

)
dz, (3.2)

where E0
d and E2

d are obtained experimentally.

In [vWH03], the kinetic energy is expressed by

T (ẇ) =
1

2
ρẇ2(z, t),

where ρ is the density.

The electric enthalpy density including higher order terms is also given in von Wagner’s

work [vWH03]:

H =
1

2
E0S2

zz − γ0SzzEz − 1

2
ν0E

2
z

+
1

4
E2S4

zz −
1

3
γ1

2S
3
zzEz − 1

2
γ2

2S
2
zzE

2
z −

1

3
γ3

2SzzE
3
z −

1

4
ν2E

4
z (3.3)

+
1

3
E1S3

zz −
1

2
S2

zzEz − 1

2
γ2

1SzzE
2
z −

1

3
ν1E

3
z

with

ν0 = εT
33 − d2

33E
0, γ0 = E0d33

where E0 is Young’s modulus. Szz is the strain and Ez is the electric field in the z-

direction respectively. The parameter d33 corresponds to the piezoelectric 33-effect and

εT
33 is the dielectric constant measured at constant stress. The terms containing E0,γ0

and ν0 correspond to the classic linear theory. The fourth order terms containing E2,

γ1
2 ,γ2

2 ,γ3
2 and ν2 will produce cubic nonlinearities in the equations of motion and the third

order terms containing E1, γ1
1 ,γ2

1 and ν1 will produce quadratic nonlinearities. The term

including ν2 is due to the effect of electrostriction [vWH03].

Using the kinematic relation

Szz(z, t) = w′(z, t),
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3.2 General Eigenfunctions Derivation for Piezoceramics with a Linear Model

and the electric potential ϕ given by

Ez = −ϕ′(z, t),

we obtained the following equation for a piezoelectric rod via equation (3.1):

δ

t1∫
t0

l/2∫
−l/2

A{1

2
ρẇ2 − 1

2
E0w′2 − γ0w

′ϕ′ +
1

2
ν0ϕ

′2

−1

4
E2w′4 − 1

3
γ1

2w
′3ϕ′ +

1

2
γ2

2w
′2ϕ′2 − 1

3
γ3

2w
′ϕ′3 +

1

4
ν2ϕ

′4

−1

3
E1w′3 − 1

2
γ1

1w
′2ϕ′ +

1

2
γ2

1w
′ϕ′2 − 1

3
ν1ϕ

′3} dzdt

−
t1∫

t0

l/2∫
−l/2

A{E0
dẇ

′δw′ + E2
dẇ

′3δw′} dzdt = 0. (3.4)

The external voltage applied at the top and the bottom of the piezo is predetermined, i.e.

ϕ(l/2, t) − ϕ(−l/2, t) = U0 cos Ωt

holds at any time. If the potential of the electrode at z = −l/2 is set as −U0

2
cos Ωt ,

the potential of the electrode at z = l/2 holds as U0

2
cos Ωt. This leads to two boundary

conditions:

ϕ(l/2, t) =
U0

2
cos Ωt, (3.5)

ϕ(−l/2, t) = −U0

2
cos Ωt. (3.6)

These conditions are valid for both the linear and the nonlinear models.

3.2 General Eigenfunctions Derivation for Piezoceramics

with a Linear Model

In this section, the eigenfunctions of the linear problem with short circuited electrodes

(U0 = 0) are calculated in order to obtain suitable shape functions. In Section 3.2.1

the linear model for different geometries of piezoceramics is obtained by setting all the
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3 Derivation of General Eigenfunctions and Equations of Motion

nonlinear parameters in equation (3.4) equal to zero. In Section 3.2.2, the general eigen-

functions are derived and the results are obtained by solving a boundary value problem

numerically. Finally , the computations for different y(z) are given in Section 3.2.3.

3.2.1 A Linear Model

Extending the work of von Wagner, we consider the case that A (the cross section of a

piezo) in equation (3.4) is not constant. Concretely, we allow y in Figure 3.1 to explic-

itly depend on z. When y(z) is no longer a constant, the shape of the piezo changes

correspondingly, as do the eigenfunctions and the eigenfrequency.

A linear model is obtained when we consider that virtual work δW vanishes in the un-

damped case

δW = 0,

and set the nonlinear parameters in equation (3.4) equal to zero. Then equation (3.4) is

simplified to

δ

t1∫
t0

l/2∫
−l/2

y(z)

(
1

2
ρẇ2 − 1

2
E0w′2 − γ0w

′ϕ′ +
1

2
ν0ϕ

′2
)

︸ ︷︷ ︸
F (w′,ϕ′,ẇ)

dzdt

︸ ︷︷ ︸
J

= 0. (3.7)

Proposition 3.2.1. For the linear equation 3.7, if a piezo is described by a piezo shape

function y(z) : R → R, then the vertical displacement w(z, t) satisfies the partial differ-

ential equation

E∗(y(z)w′′ + y′(z)w′) = ρy(z)ẅ, (3.8)

and the relationship between w(z, t) and the electric potential ϕ(z, t) is expressed through

the fact that ϕ(z, t) satisfies the equation

y(z)ϕ′′ + y′(z)ϕ′ = α(y(z)w′′ + y′(z)w′), (3.9)

where

α =
γ0

ν0

, E∗ = E0 +
γ2

0

ν0

.
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3.2 General Eigenfunctions Derivation for Piezoceramics with a Linear Model

Proof. According to the Calculus of Variations [Arn78], we know that J in equation 3.7

has an extremum only if the Euler-Lagrange differential equation is satisfied, e.g.
⎧⎨
⎩

Fw − ∂
∂z

Fw′ − ∂
∂t

Fẇ = 0

Fϕ − ∂
∂z

Fϕ′ − ∂
∂t

Fϕ̇ = 0.
(3.10)

Now we consider the equations in (3.10) respectively. Since Fϕ = 0 and Fϕ̇ = 0, for the

second equation in (3.10) we obtain

− ∂
∂z

Fϕ′ = 0

⇒ − ∂
∂z

(
y(z)(−γ0w

′ + ν0ϕ
′)
)

= 0

⇒ y′(z)(γ0w
′ − ν0ϕ

′) + y(z)(γ0w
′′ − ν0ϕ

′′) = 0. (3.11)

equation (3.11) can be simplified to

y(z)ϕ′′ + y′(z)ϕ′ = α(y(z)w′′ + y′(z)w′).

To prove the equation (3.8) in Proposition 3.2.1, we consider the first equation in (3.10),

for which we have Fw = 0. Then the equation can be rewritten to

− ∂
∂z

Fw′ − ∂
∂t

Fẇ = 0

⇒ − ∂
∂z

(
y(z)(−E0w′ − γ0ϕ

′) − ∂
∂t

ρẇy(z)
)

= 0

⇒ y′(z)(E0w′ + γ0ϕ
′) + y(z)(E0w′′ + γ0ϕ

′′) = ρẅy(z). (3.12)

Substituting equation (3.9) into (3.12), we obtain the statement:

E∗(y(z)w′′ + y′(z)w′) = ρy(z)ẅ.

Remark 3.2.2. In Proposition 3.2.1,

1. w(z, t) is a solution of the partial differential equation (3.8) which we will solve

using eigenfunctions of the corresponding differential operator.

2. In Section 3.2.2 we will use (3.9) to compute the corresponding solutions for ϕ(z, t)

since (3.9) shows a relation between ϕ(z, t) and w(z, t).

31



3 Derivation of General Eigenfunctions and Equations of Motion

To derive boundary conditions necessary for the solution of equation (3.8), we follow the

work of von Wagner [vWH02] and expand the variational equation (3.7) in terms of δϕ

and δw.

Proposition 3.2.3. In the situation of Proposition 3.2.1, the vertical displacement w(z, t)

and the electric potential ϕ(z, t) satisfy the boundary conditions

E0w′(l/2, t) + γ0ϕ
′(l/2, t) = 0 (3.13)

E0w′(−l/2, t) + γ0ϕ
′(−l/2, t) = 0. (3.14)

Proof. The equation (3.7) can be rewritten to

t1∫
t0

l/2∫
−l/2

δF (w′, ẇ, ϕ′)dzdt = 0

⇒
t1∫

t0

l/2∫
−l/2

(Fw′δw′ + Fϕ′δϕ′) dzdt +

l/2∫
−l/2

t1∫
t0

Fẇδẇdtdz = 0 (3.15)

Performing integration by parts on equation (3.15) with respect to z and t, we obtain

t1∫
t0

[
Fw′δw + Fϕ′δϕ

]l/2

−l/2
dt −

t1∫
t0

l/2∫
−l/2

(
∂

∂z
Fw′δw +

∂

∂z
Fϕ′δϕ

)
dzdt

+

l/2∫
−l/2

[
Fẇδw

]t1

t0
dz −

l/2∫
−l/2

t1∫
t0

(
∂

∂t
Fẇδw

)
dtdz = 0

and rearrange it as

t1∫
t0

[
Fw′δw + Fϕ′δϕ

]l/2

−l/2
dt +

l/2∫
−l/2

[
Fẇδw

]t1

t0
dz

−
t1∫

t0

l/2∫
−l/2

(
∂

∂z
Fw′ +

∂

∂t
Fẇ)δwdzdt −

t1∫
t0

l/2∫
−l/2

∂

∂z
Fϕ′δϕdzdt = 0. (3.16)

In equation (3.16), the third and fourth parts are the same as in equation (3.10) and have

to equal zero. According to Hamilton’s principle, δw(z, t0) = δw(z, t1) = 0 hold, then
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3.2 General Eigenfunctions Derivation for Piezoceramics with a Linear Model

the second part is also zero. So equation (3.16) can be simplified to:

t1∫
t0

[
δwFw′ + δϕFϕ′

]l/2

−l/2
dt = 0 (3.17)

For arbitrary t0 and t1, the time-integral in equation (3.17) has to vanish. Therefore the

integrand has to vanish.

Since the electric potential at the electrodes of the piezo is predetermined (reminding of

the two boundary conditions (3.5) and (3.6)), the variation of the electric potential with

respect to z at the electrodes has to vanish, so

δϕ(± l

2
, t) = 0 (3.18)

holds.

As the piezo is suspended freely at both ends, the displacements at z = ±l/2 are not

predetermined. Therefore δw(± l
2
, t) are not always zero.

Relating that δϕ(± l
2
, t) equal zero and δw(± l

2
, t) are not always zero to equation (3.17),

we obtain

Fw′(l/2, t) = Fw′(−l/2, t) = 0. (3.19)

This leads to the two boundary conditions :

E0w′(l/2, t) + γ0ϕ
′(l/2, t) = 0

E0w′(−l/2, t) + γ0ϕ
′(−l/2, t) = 0.

3.2.2 General Eigenfunctions Derivation for Different Geometries of

Piezoceramics

In this section, we will derive the general eigenfunctions Wk(z) and the corresponding

functions Φk(z) that will be used to describe the electric potential ϕ. To do this, we first

derive the relation between solutions w(z, t) of (3.8) and the corresponding ϕ(z, t) via

equation (3.9).
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3 Derivation of General Eigenfunctions and Equations of Motion

Proposition 3.2.4. Let the piezo shape function y(z) be an even function,then

1. w(z, t) is an odd function; and

2. one has

ϕ(z, t) = α(w(z, t) − w(l/2, t)f(z)) +
U0

2
f(z) cos Ωt, (3.20)

where

f(z) =
g(z)

g( l
2
)

and

g(z) =

z∫
0

1

y(s)
ds.

Proof. 1. Performing integration by parts on equation (3.9) with respect to z, we ob-

tain

y(z)ϕ′′(z, t) + y′(z)ϕ′(z, t) = α(y(z)w′(z, t) + y′(z)w′(z, t))

⇒ (y(z)ϕ′(z, t))′ = α (y(z)w′(z, t))′

⇒ y(z)ϕ′(z, t) = αy(z)w′(z, t) + D1(t)

⇒ ϕ′(z, t) = αw′(z, t) +
D1(t)

y(z)

⇒ ϕ(z, t) = αw(z, t) + D1(t)g(z) + D2(t), (3.21)

where D1(t) and D2(t) are functions of t.

Now we prove that g(z) is odd. Since y(z) is even as we defined in section 3.1,

y(z) = y(−z). We have

g(−z) =

−z∫
0

1

y(s)
ds =

z∫
0

1

y(−s)
d(−s) = −

z∫
0

1

y(−s)
ds

= −g(z).

So g(z) is an odd function, and that f(z) (see Proposition 3.2.4) is odd can be

proved correspondingly.
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3.2 General Eigenfunctions Derivation for Piezoceramics with a Linear Model

Substituting equation (3.21) into the boundary conditions (3.13) and (3.14), we

obtain

E0w′(l/2, t) + γ0(w
′(l/2, t) + D1(t)g

′(l/2)) = 0

E0w′(−l/2, t) + γ0(w
′(−l/2, t) + D1(t)g

′(−l/2)) = 0
(3.22)

We have already proven that g(z) is an odd function, so g′(z) is even. From equation

(3.22) we additionally have:

w′(l/2, t) = w′(−l/2, t). (3.23)

It can be proven that for a solution w(z) to the equation (3.8), also w(−z) is a

solution. If the eigenvalue corresponding with w(z) is simple, one therefore has

w(z) = βw(−z), (3.24)

where β is a constant.

Observing that

w(z) = βw(−z) = β2w (−(−z))

= β2w(z),

we know that β2 = 1 and therefore

β = ±1.

So w(z) is either an even or odd function.

Taking into account that by equation (3.23) w′(z, t) is even, w(z, t) is odd. We will

need this result to prove that D2(t) in equation (3.21) is zero.

2. Substituting the boundary conditions (3.5) and (3.6) into equation (3.21), we have:

αw(l/2, t) + D1(t)g(l/2) + D2(t) = U0

2
cos Ωt,

αw(−l/2, t) + D1(t)g(−l/2) + D2(t) = −U0

2
cos Ωt.

(3.25)
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3 Derivation of General Eigenfunctions and Equations of Motion

Adding these two equations in (3.25), one sees that D2(t) in (3.25) is zero since

g(z) and w(z, t) are odd. Therefore equation (3.21) can be simplified to

ϕ(z, t) = αw(z, t) + D1(t)g(z). (3.26)

Substituting equation (3.26) into the boundary condition (3.5)

αw(l/2, t) + D1(t)g(l/2) =
U0

2
cos Ωt

⇒ D1(t) =
U0

2
cos Ωt − αw(l/2, t)

g(l/2)
.

Then substituting D1(t) into equation (3.26) yields:

ϕ(z, t) = αw(z, t) +
U0

2
cos Ωt − αw(l/2, t)

g(l/2)
g(z)

= α(w(z, t) − w(l/2, t)f(z)) +
U0

2
f(z) cos Ωt.

In the previous section, we obtained the partial differential equation (3.8) for w(z, t). This

equation can be recast into the form

ẅ =
E∗

ρ

(
1

y
· (yw′)′

)

=: Lw, (3.27)

where L is the linear differential operator corresponding with (3.8). Eigenfunctions of L

are functions W (z) with the special property that

Lw = λw, (3.28)

for some number λ. From the theory of partial differential equations it is known that

every solution w(z, t) of (3.8) can be expressed as a (possibly infinite) linear combination

[Wer02]

w(z, t) =
∞∑

k=1

Wk(z)pk(t) (3.29)

of the eigenfunctions Wk(z). The problem of solving the partial differential equation

(3.8) with the given boundary conditions is then reduced to finding the correct coefficients

pk(t).
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3.2 General Eigenfunctions Derivation for Piezoceramics with a Linear Model

When one considers the case of short circuited electrodes of the piezoceramics (U0 ≡ 0),

the equation (3.20) can be rewritten as

Φk(z) = α(Wk(z) − Wk(l/2)f(z)) (3.30)

k = 1, 2, . . .

since it is time-independent.

Computation of the eigenfunctions. In the following, we explain how the eigenfunc-

tions Wk(z) are computed as solutions of ordinary differential equations.

The eigenfunctions Wk with eigenfrequencies ω2
k are defined by the equation

E∗
(
y(z)W ′′

k (z) + y′(z)W ′
k(z)

)
= −ρy(z)ω2

kWk(z), (3.31)

via the linear differential operator L in equations (3.27) and (3.28).

To solve this equation, we rewrite it as a first order system

W ′
k(z) = q(z),

q′(z) = −y′(z)
y(z)

W ′
k(z) − ρω2

k

E∗ Wk(z).
(3.32)

Since only shapes with y(z) being even are considered, we can restrict the problem to

z ∈ [0, l/2].

To obtain the boundary conditions of Wk at z = 0, we consider the equation (3.30) at

z = −l/2:

Φk(−l/2) = α(Wk(−l/2) − Wk(l/2)f(−l/2))

We have already proven that g(z) is odd. Therefore from the definition of f(z) in Propo-

sition (3.2.1), we obtain f(−l/2) = −1. The boundary condition (3.6) implies that

Φ(−l/2) = 0,

therefore, Wk(z) is an odd function and thus the initial value

Wk(0) = 0. (3.33)

When y(z) is a constant, we additionally have

W ′
k(0) =

2λk

l
. (3.34)
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3 Derivation of General Eigenfunctions and Equations of Motion

We also use this initial condition in the case of non-constant y(z), with λk being deter-

mined by solving the characteristic equation

(E0 + γ0α)λk cos λk − αγ0 sin λk = 0 (3.35)

Notice that in equation (3.32) ωk is still unknown. This is a two-point boundary value

problem involving one unknown parameter.

For the short circuit case, the boundary condition (3.5) is

E∗W ′(l/2) − αγ0W (l/2)

y(l/2)g(l/2)
= 0.

We consider this as the third condition when solving the boundary value problem (3.32).

3.2.3 Numerical Solutions

The boundary value problem (3.32) is solved by using the MATLAB function bvp4c.

Figure 3.2 shows the computation results of W1(z) and Φ1(z) when y(z) = a|z| + b.

Figure 3.3 shows the computation results of W1(z) and Φ1(z) when y(z) = az2 + b.

The red line represents that the shape of a piezo is a rectangle. The green and blue lines

represent the shapes with curved sides, where the green line states a convex shape and the

blue line states a concave one.

3.3 Derivation of the Equation of Motion for a General

Shape

In this section, we first propose an ansatz for w(z, t) and ϕ(z, t). The linear equation

of motion of piezoceramics for a general shape is derived via the Calculus of Variations.

The nonlinear equation of motion is obtained by introducing two nonlinear terms into the

linear equation of motion.

Linear equation of motion. The virtual work δW in equation (3.1) is not zero in a

damping case. For a linear model , we consider the first term of δW in equation (3.2) as a
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Figure 3.2: Eigenfunctions of the piezo for y(z) = a|z| + b

nondimentional damping factor and add it to equation (3.7)

δ

t1∫
t0

l/2∫
−l/2

y(z)

(
1

2
ρẇ2 − 1

2
E0w′2 − γ0w

′ϕ′ +
1

2
ν0ϕ

′2
)

dzdt

−
t1∫

t0

l/2∫
−l/2

y(z)E0
dẇ

′
kδw

′
k dzdt = 0. (3.36)

In order to compute the spatial eigenfunctions of a piezo, the following ansatz for w(z, t)

and ϕ(z, t) is employed from equations (3.20) and (3.29):

w(z, t) =
∞∑

k=1

Wk(z)pk(t), (3.37)

ϕ(z, t) =
∞∑

k=1

Φk(z)pk(t) +
U0

2
f(z) cos Ωt. (3.38)
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Figure 3.3: Eigenfunctions of the piezo for y(z) = az2 + b

To derive the linear equation of motion, we insert the above ansatz (3.37) and (3.38) into

equation (3.36) and obtain

∞∑
k=1

δ

t1∫
t0

l/2∫
−l/2

F (Wk,W
′
k, pk, ṗk) dzdt −

∞∑
k=1

t1∫
t0

l/2∫
−l/2

y(z)E0
dW

′
k
2
ṗkδpk dzdt = 0 (3.39)

with

F (Wk,W
′
k, pk, ṗk) = y(z)

(1

2
ρW 2

k ṗk
2 − 1

2
E0W ′2

k p2
k − γ0W

′
kpk(Φ

′
kpk

+
U0

2
f ′(z) cos Ωt) +

1

2
ν0(Φ

′
kpk +

U0

2
f ′(z) cos Ωt)2

)

40



3.3 Derivation of the Equation of Motion for a General Shape

and performing the variation with respect to δpk

Fpk
− ∂

∂t
Fṗk

− δWpk
= 0

⇒
l/2∫

−l/2

(
− E0W ′2

k ypk + ν0Φ
′2
k ypk − 2γ0W

′
kΦ

′
kypk

−U0

2
γ0W

′
kf

′(z)y cos Ωt + U0

2
ν0Φ

′
kf

′(z)y cos Ωt

− ∂
∂t

ρW 2
k yṗk

)
dz −

l/2∫
−l/2

(yE0
dW

′
k
2ṗk) dz = 0

⇒
l/2∫

−l/2

(
yρW 2

k p̈k + (E0W ′2
k + 2γ0W

′
kΦ

′
k − ν0Φ

′2
k )ypk

+yE0
dW

′
k
2ṗk + U0

2
yf ′(z) cos Ωt(γ0W

′
k − ν0Φ

′
k)

)
dz = 0. (3.40)

We already defined that

f(z) =
g(z)

g(1
2
)

and

g(z) =

∫
1

y(z)
dz.

Therefore

f ′(z) =
1

y(z)g(1
2
)
.

Then equation (3.40) can be simplified to

mkp̈k + dkṗk + ckpk = fk cos Ωt, (3.41)

k = 1, 2, . . .

where

mk = ρ

l/2∫
−l/2

yW 2
k dz, dk = E0

d

l/2∫
−l/2

yW ′2
k dz,

ck = E0

l/2∫
−l/2

yW ′2
k dz + 2γ0

l/2∫
−l/2

yW ′
kΦ

′
kdz − ν0

l/2∫
−l/2

yΦ′2
k dz,

fk = −γ0
U0

2g(l/2)

l/2∫
−l/2

W ′
kdz + ν0

U0

2g(l/2)

l/2∫
−l/2

Φ′
kdz,
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3 Derivation of General Eigenfunctions and Equations of Motion

The coefficients ρ,E0,γ0, E0
d and ν0 in mk,ck,dk and fk are constants. dk is a nondimen-

sional damping factor.

Nonlinear equation of motion. There are many possibilities to describe a nonlinear

phenomenon with different models. In [Neu02], a nonlinear model with many nonlinear

terms is introduced. It also indicated and tested that the nonlinear phenomenon observed

in experiments can be sufficiently described with only two terms. With three or more

nonlinear terms, the results are no more accurate but the computation will be much more

complicated.

In Neumann’s work [Neu02], several combination pairs of the nonlinear terms are ana-

lyzed. Here we introduce a nonlinear equation of motion with two nonlinear terms. One

nonlinear term is from equation (3.4) as

δ

t1∫
t0

l/2∫
−l/2

−1

4
yE2w′4 dzdt,

and the other is a nondimensional damping term from δW as

t1∫
t0

l/2∫
−l/2

−yE2
dẇ

′
k

3
δw′

k dzdt.

Adding these two nonlinear terms into the linear equation of motion (3.39) we obtain

∞∑
k=1

δ
t1∫
t0

l/2∫
−l/2

F (Wk,W
′
k, pk, ṗk) dzdt −

∞∑
k=1

t1∫
t0

l/2∫
−l/2

yE0
dW

′
k
2ṗkδpk dzdt

−
∞∑

k=1

δ
t1∫
t0

l/2∫
−l/2

1
4
yE2W ′4

k p4
k dzdt −

∞∑
k=1

t1∫
t0

l/2∫
−l/2

3yE2
dW

′4
k p2

kṗkδpk dzdt = 0 (3.42)

Performing the variation with respect to δpk on the two newly added nonlinear parts we

obtain

∂
∂pk

t1∫
t0

l/2∫
−l/2

1
4
yE2W ′4

k p4
k dzdt +

l/2∫
−l/2

3E2
dW

′4
k p2

kṗk dz

=
l/2∫

−l/2

yE2W ′4
k p3

k dz +
l/2∫

−l/2

3E2
dW

′4
k p2

kṗk dz

(3.43)
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3.3 Derivation of the Equation of Motion for a General Shape

Then, we obtain the following nonlinear equation of motion

mkp̈k + dkṗk + ckpk + εkp
3
k + εdk

p2
kṗk = fk cos Ωt, (3.44)

k = 1, 2, . . .

with

εk = E2

l/2∫
−l/2

yW ′4
k dz,

εdk
= 3E2

d

l/2∫
−l/2

yW ′4
k dz,

where the constant E2 is obtained experimentally. mk, ck and fk are the same as in the

linear equation of motion. The influence of the two nonlinear terms εk and εdk
on the

nonlinearities will be analyzed in Section 4.3.

Simplification of the ansatz and extension to a nonlinear model for a general shape.

In this part, the given ansatz is first simplified for a rectangular piezo with a linear model

by using a Galerkin method. Then, we assume that the simplification of the ansatz is also

available for a curved side shape as well as for a nonlinear model.

For a rectangular piezo, the special case of y(z) being a constant is considered. Therefore

in equation (3.38)

f(z) =
2z

l
.

and the equation (3.8) can be simplified to:

E∗w′′(z, t) = ρẅ(z, t), (3.45)

which can be solved analytically. The eigenfunctions of the linear problem with short cir-

cuited electrodes (U0 ≡ 0) are calculated here in order to obtain suitable shape functions.
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3 Derivation of General Eigenfunctions and Equations of Motion

The eigenfunctions are obtained by solving equation (3.45) with the boundary conditions

analytically [vWH03]:

Wk(z) = sin(λk
2z

l
), (3.46)

Φk(z) = α(Wk(z) − 2z

l
sin(λk)), (3.47)

with

λ2
k =

l2ρω2
k

4E∗ ,

where ωk is the kth circular eigenfrequency, and λk can be determined by solving equation

(3.35).

We already derived the linear equation of motion (3.41) for a general shape above. For a

rectangular shape, the coefficients mk,dk, ck and fk can be simplified as

mk = ρ

l/2∫
−l/2

W 2
k dz, dk = E0

d

l/2∫
−l/2

W ′2
k dz,

ck = E0

l/2∫
−l/2

W ′2
k dz + 2γ0

l/2∫
−l/2

W ′
kΦ

′
kdz − ν0

l/2∫
−l/2

Φ′2
k dz,

fk = −γ0
U0

l

l/2∫
−l/2

W ′
kdz,

A Galerkin approach The numerical results of pk under certain excitation frequen-

cies can be obtained by solving equation (3.41) numerically (U0 �= 0) with MATLAB

function ode45 for k = 1, 2, · · · . Here, we first compute the eigenfunctions Wk via

equation (3.46) from the first to fourth modes (e.g. k = 1, 2, 3, 4 respectively). We then

calculate the corresponding mk,ck,dk and fk above and solve the equation (3.41) when

the excitation frequency Ω is at the first resonance numerically. Finally we obtain the

numerical results of pk and thus can compute the w(z) in equation (3.37) for different k.

Figure 3.4 shows the computation of equation (3.37) for k = 1, 4 respectively. Via equa-

tion (3.46) we could obtain the analytical solutions of Wk for different z, and the pk are
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3.3 Derivation of the Equation of Motion for a General Shape

Figure 3.4: Plotting of w(z, t) =
k∑

i=1

Wi(z)pi(t), k = 1, 4 respectively

obtained by solving equation (3.41) numerically when U0 = 20V . It’s difficult to clearly

see the difference between the two charts in Figure 3.4.

Then we plot not the sum but the Wk(z)pk(t) for k = 1, 2, 3, 4 respectively in figure 3.5.

When k = 1, the power of the vibration amplitude for the first eigenmode is 10−6, and

when k = 2, 3, 4, the powers are 10−10 and 10−11 which are much smaller than that of the

first eigenmode. From the analysis of the first four eigenmodes, the results reveal that the

second to fourth eigenmodes show very small contributions to the vibration compared to

the first when the excitation frequency is close to the first resonance. Therefore we could

obtain sufficiently exact results by considering only the first eigenmode. Consequently in

the following chapters the subscript k will be omitted.

Bearing this in mind, the ansatz is simplified to

w(z, t) = W (z)p(t), (3.48)

ϕ(z, t) = Φ(z)p(t) +
U0

2
f(z) cos Ωt, (3.49)

for the system excited close to the first resonance frequency and the subscript 1 is omitted.

Assumption for a nonlinear model of a general shape. For a linear model, we already

proved above that the ansatz (3.37) and (3.38) can be simplified as (3.48) and (3.49)

for a rectangular shape. Howeever, we could not prove that the simplification is also

available for a nonlinear model. Since engineers have already used the simplified ansatz
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3 Derivation of General Eigenfunctions and Equations of Motion

Figure 3.5: Plotting of Wk(z)pk(t), k = 1, 2, 3, 4 respectively

for a nonlinear model [vWH03], we assume that the simplification can also be used for a

nonlinear model as well as a general shape (e.g a curved side shape).
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Chapter 4

Solutions of Equations of Motion and

Nonlinear Dynamical Model Analysis

In Sections 4.1 and 4.2, the linear and nonlinear equations of motion are solved numer-

ically via a continuation software package AUTO2000, and the results show that some

curved side piezoceramics have a perform better than those with a rectangular shape. In

Section 4.3, the effects of the two nonlinear terms are analyzed, and both nonlinear terms

have profound effects on the bifurcation.

4.1 Numerical Solutions for a Linear Model

In Section 3.3 the ansatz is simplified as (3.48) and (3.49). Therefore, the linear equation

of motion (3.41) for a general shape can also be simplified as

mp̈ + dṗ + cp = f cos Ωt, (4.1)
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4 Solutions of Equations of Motion and Nonlinear Dynamical Model Analysis

where

m = ρ

l/2∫
−l/2

yW 2dz, d = E0
d

l/2∫
−l/2

yW ′2dz

c = E0

l/2∫
−l/2

yW ′2dz + 2γ0

l/2∫
−l/2

yW ′Φ′dz − ν0

l/2∫
−l/2

yΦ′2dz,

f = γ0
U0

2g(l/2)

l/2∫
−l/2

W ′dz − ν0
U0

2g(l/2)

l/2∫
−l/2

Φ′dz.

The physical values are:

ρ = 7850 [
kg

m3
]; E0 = 7.0912 · 1010 [

N

m2
];

γ0 = 16.1608 [
N

V m
]; ν0 = 6.3665 · 10−9 [

Nm2

V 3
];

E0
d = 120 [

Ns

m2
];

We rewrite equation (4.1) as:

ṗ = q,

q̇ = − 1

m
(dq + cp − f cos(Ωt)).

This is a first order system for which periodic solutions can be computed by using the

continuation package AUTO2000 [Dea01].

Figure 4.1 shows the periodic solutions of the equation (4.1) when y(z) is a constant

0.0015 [m]. The corresponding coefficients in equation (4.1) are computed and their

values are:

m = 0.0939,

d = 36.2940,

c = 2.246 · 1010,

f = −46.6503.
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4.1 Numerical Solutions for a Linear Model
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Figure 4.1: The periodic solutions of the linear equation of motion for the rectangular

piezo

In the figures in this chapter, the horizontal axis represents the excitation frequency Ω,

and the vertical axis represents vibration amplitude calculated using the scaled L2-norm

(|v| = { 1
T

∫ T

0
v(t)2dt} 1

2 ).

For a curved side piezo (e. g. y(z) = 15z2 +0.001), we recomputed the above coefficients

as:

m = 0.1048,

d = 26.2195,

c = 1.5886 · 1010,

f = −38.8388,
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4 Solutions of Equations of Motion and Nonlinear Dynamical Model Analysis

and replotted the results for rectangular and curved piezo together into Figure 4.2.
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Figure 4.2: Linear model: oscillation amplitude of the piezo dependent on the excitation

frequency for different geometries: rectangular (green) and curved shape (blue).

Figure 4.2 shows the vibration amplitudes for two different geometries dependent on the

excitation frequency. The green line represents the behavior of a rectangular piezo (i.e.

y(z) = y∗ is constant), the maximum amplitude at the resonance frequency is 1.858 ·10−6

m. The blue line represents the piezo with the curved side y(z) = 15z2 + 0.001. The

corresponding maximum amplitude at resonance is 2.690 · 10−6 m, an improvement of

about 45%.
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4.2 Numerical Solutions for a Nonlinear Model

4.2 Numerical Solutions for a Nonlinear Model

For the nonlinear equation of motion, we do the same simplification to equation (3.44)

mp̈ + dṗ + cp + εp3 + εdp
2ṗ = f cos Ωt, (4.2)

where

ε = E2

l/2∫
−l/2

yW ′4dz,

εd = 3E2
d

l/2∫
−l/2

yW ′4dz,

and constants E2 and E2
d are also obtained experimentally and their values are:

E2 = −4.1820 · 1016 [
N

m2
]; E2

d = 3.0050 · 109 [
Ns

m2
]

For the rectangular piezo y is a constant, the two nonlinear terms are computed and their

values are

ε = −1.6041 · 1020,

εd = 3.458 · 1013.

m,c,d and f are the same as in the linear case.

The equation (4.2) can be rewritten to:

ṗ = q,

q̇ = − 1

m
(dq + cp − f cos(Ωt) + εp3 + εdp

2q).

The computation for periodic solutions is also done using AUTO2000. The difference

between the solutions for linear and nonlinear models is that there are unstable solutions

and two limit points in the nonlinear case because of the nonlinear effects of the two

nonlinear terms ε and εd.

Figure 4.3 shows that in the case of a rectangular piezo (y(z) = y∗ = 0.0015 m), for

certain excitation frequencies there exist three periodic solutions, two of which (indicated

51



4 Solutions of Equations of Motion and Nonlinear Dynamical Model Analysis

by the solid lines) are stable and one of which is unstable (dashed line) and therefore

cannot be observed in experiments. This means that the periodic solutions undergo two

bifurcations at certain frequencies – in fact, two limit points exist. In particular, this

result explains the “jump phenomenon” observed in the behavior of the nonlinear model

in [vWH03].

7.6 7.65 7.7 7.75 7.8 7.85 7.9 7.95 8

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2
x 10

−6

Freq [Hz]

A
m

pl
itu

de
 [m

]

Figure 4.3: Nonlinear model: path of periodic solutions within a certain range of excita-

tion frequencies (piezo with rectangular shape).

In order to compare the dynamical behavior for different shapes of the piezo, we focus on

the right limit points (at Ω1 and Ω2 respectively in Figure 4.4 ) instead of the resonance

frequencies, since the piezo may show unstable behavior in the latter case. In Figure 4.4,

the green line represents the piezo with rectangular shape, and the blue line represents

the curved shaped piezo. For the curved side y(z) = 15z2 + 0.001, the corresponding

52



4.2 Numerical Solutions for a Nonlinear Model
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Figure 4.4: Nonlinear model: paths of periodic solutions within a certain range of exci-

tation frequencies for different geometries of the piezo: rectangular (green) and curved

shapes (blue).
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4 Solutions of Equations of Motion and Nonlinear Dynamical Model Analysis

nonlinear terms are computed

ε = −1.2228 · 1020,

εd = 2.6359 · 1013

Comparing the amplitudes at the chosen points for different geometries, we observe that

for the rectangular piezo, the amplitude at Ω2 = 77632 Hz is 7.91 · 10−7 m, while the

amplitude at Ω1 = 61776 Hz for the curved piezo is 8.34 · 10−7 m, which is an improve-

ment of more than 5%. This result again indicates that one might be able to improve the

performance of a certain actuator by changing the shape of the associated piezo.

4.3 Nonlinear Effects Analysis

In the previous section, we fixed the parameters ε and εd of the nonlinear model (3.44).

We now keep y(z) ≡ y∗ constant and study the effect of varying these parameters on the

computed branches of periodic solutions.

We first vary ε, keeping εd fixed. For ε beyond a certain threshold value (corresponding

to the yellow line in Figure 4.5), no limit point exists and the system is stable. As ε

decreases (that is, as |ε| increases), two limit points appear that separate frequencies with

only one stable solution from a range of frequencies for which there are two stable and

one unstable periodic solution.

In Figure 4.6, ε is fixed and εd is varied. For large εd there are no limit points (the yellow

and the cyan line in Figure 4.6). As εd decreases, the maximum amplitude increases and

the two limit points appear.

From the above results, we see that both ε and εd have profound effects on the bifurcation

diagram of the system. In addition the influence of the value of εd on amplitude is also

observed, as it comes from the virtual work δW (see equation 3.2) and thus plays also a

damping role on the system.
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Figure 4.5: Nonlinear model: paths of periodic solutions within a certain range of excita-

tion frequencies for different values of the parameter ε.
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Figure 4.6: Nonlinear model: paths of periodic solutions within a certain range of excita-

tion frequencies for different values of the parameter εd.
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Chapter 5

Multi-Objective Optimization Problems

(MOOPs)

In this chapter, the basic concepts used in multi-objective optimization problems (MOOPs)

are formally defined, and the principles of multi-objective optimization are outlined in

Section 5.1. In Section 5.2 the classification and an overview of the main optimization

techniques for MOOPs currently available are presented, and a few corresponding soft-

ware packages are listed. Particularly, a Set Oriented Multilevel Subdivision Technique

is studied in Section 5.3, as it plays an important role in this dissertation. In Section

5.4, a multi-objective shape optimization problem for piezoceramics is introduced, and a

GAIO (Global Analysis of Invariant Objects) model for solving the optimization problem

is proposed.

5.1 A Brief Introduction to MOOPs

Almost every real-world problem naturally involves simultaneous optimization of sev-

eral incommensurable objectives. For example, when we design a chemical process, we

will normally want to maximize its economic performance (including profit, fixed cost,

operation and maintenance cost, etc), but at the same time, we incorporate several objec-

tives involving environmental sustainability, safety, operability, and controllability. The

objectives normally conflict with each other. These problems are called multi-objective

57



5 Multi-Objective Optimization Problems (MOOPs)

or vector optimization problems. A considerable number of researchers have produced a

number of theoretical and practical contributions to deal with MOOPs over the past five

decades. Current applications of multi-objective optimization are distributed widely in

engineering, industrial and scientific fields. Good reviews of the techniques for multi-

objective optimization can be found in the books ([Mie99], [Deb01], [Ehr02] ). These

publications provide a very broad bibliography in this area.

5.1.1 Formulation of the Multi-objective Optimization Problem

To formulate a multi-objective optimization problem, we first define

x = [x1, x2, . . . , xn]T

as decision variables which subject to m inequality constraints:

gi(x) ≤ 0 i = 1, 2, . . . , m (5.1)

and p equality constraints:

hi(x) = 0 i = 1, 2, . . . , p. (5.2)

We also define X ∈ Rn as a set of x satisfying the constraints, then put all objective

functions fi (i = 1, . . . , k) into one function

F : Rn → Rk.

where

F (x) = [f1(x), f2(x), . . . , fk(x)]T , (5.3)

k is the number of objective functions

From the set X we wish to determine the particular of values x∗
1, x

∗
2, . . . , x

∗
n which yield

the optimal values for all of the objective functions.

5.1.2 Pareto Optimality and Pareto Set

While in a single-objective optimization problem a well-defined optimal solution can nor-

mally be found, seldomly there is a single optimum that simultaneously minimizes all the

objective functions for MOOPs. Instead of a single optimum we can find a set of trade-off

solutions. The concept of Pareto optimality is used to deal with this case[CC05].
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5.2 Methods to Solve MOOPs

Definition 5.1. We say that a vector of decision variables x∗ ∈ X is Pareto optimal if

there does not exist another x ∈ X such that fi(x) ≤ fi(x
∗) for all i = 1, . . . , k and

fj(x) < fj(x
∗) for at least one j.

In words, this definition says that x∗ is Pareto optimal if no feasible vector of decision

variables x ∈ X exists which would decrease some criterion without causing a simulta-

neous increase in at least one other criterion. Unfortunately, this concept almost always

results in not a single solution, but rather a set of solutions called the Pareto set. The vec-

tors x∗ corresponding to the solutions included in the Pareto set are called nondominated.

The image of the Pareto set under the objective functions is called Pareto front.

5.2 Methods to Solve MOOPs

Finding the entire Pareto set is the most important step of solving a multi-objective op-

timization problem. In this section, different methods for solving MOOPs are reviewed,

and the corresponding software packages and literature are listed.

5.2.1 An Overview

A variety of powerful techniques for solving MOOPs has resulted from operations re-

search, engineering, computer science and other related disciplines for years.

A considerable overview of deterministic techniques is given by Miettinen [Mie99]. Ear-

lier years, MOOPs were often solved by traditional optimization techniques. These tech-

niques usually reduce the MOOP to a single objective optimization problem, either by

combining multiple objective into a single scalar function or by keeping one of the ob-

jectives and restricting the rest of the objectives with user-specified values. While these

methods, such as weighted sum method, ε-constraint method, goal programming method,

interactive methods, the min-max approach and so on, are usually easy to implement and

to use, they have several disadvantages:

1. All techniques may miss some optimal solutions.

2. They may depend on the shape of the search space, e.g. whether it is convex or not.
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5 Multi-Objective Optimization Problems (MOOPs)

3. They are time-consuming methods because it is necessary to do a series of separate

optimization runs to obtain the Pareto set.

4. All techniques require some problem knowledge, such as suitable weights, ε or

target values.

Because many MOOPs are high dimensional, discontinuous, multi-modal and/or Non-

deterministic Polynomial (NP)-Complete, stochastic methods often yield better perfor-

mance.

Multi-objective Evolutionary Algorithms (MOEA) represent a stochastic technique in-

spired by the principles of natural selection and natural genetics. Such techniques have

been demonstrated to be very powerful and suitable for solving MOOPs because of their

ability to find the Pareto set. Most researchers on MOEA have concentrated their efforts in

developing new and efficient search algorithms for finding widely distributed Pareto set.

Reviews of different evolutionary approaches to multi-objective optimization have been

given by researchers ([FF95] , [Hor97] , [vVL00], [CC05], [Zit99], [Deb01] and [Tea01]).

The classification of approaches that follows is partially based on the discussion presented

in these references.

5.2.2 Software

Table 5.1 lists some software packages for solving MOOPs.

5.3 A Set Oriented Multilevel Subdivision Technique

A set oriented numerical method for the numerical solution of multi-objective optimiza-

tion problems is introduced in this section. This method is global in nature and permits

an approximation of the entire set of global Pareto points.

5.3.1 A Set Oriented Multilevel Subdivision Technique

Dellnitz and Hohmann [DH97] proposed a subdivision algorithm for the computation of

unstable manifolds and global attractors. Suppose that the dynamical system is defined
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5.3 A Set Oriented Multilevel Subdivision Technique

Table 5.1: Some software packages for MOOPs

Software Developers Techniques Used Reference

AMOPSO G. T. Pulido Particle Swarm Optimizer [PC04]

ε-MOEA K. Deb Evolutionary Algorithm [Deb]

GAIO M. Dellnitz & O. Junge Multilevel Subdivision Techniques [DFJ01]

MOEA toolbox K. C. Tan Evolutionary Algorithm [Tea01]

MOMHLib++ A. Jaszkiewicz Evolutionary Algorithm [Jas]

Simulated Annealing

NIMBUS K. Miettinen Interactive NIMBUS Method [MM00]

NSGA-II K. Deb Evolutionary Algorithm [Dea02]

PAES J. D. Knowles Evolutionary Algorithm [KC00]

PISA Eckart Zitzler Evolutionary Algorithm [BLTZ03]

on Rn. First, specify and subdivide a box in Rn and throw away boxes which do not

contain part of the relative global attractor. Then, derive the boxes again and proceed in

the same manner. For a detailed explanation on the subdivision algorithm refer to [DH97]

and [DSS02].

The idea of the new set oriented numerical method is to write down an iteration scheme

which - interpreted as a discrete dynamical system - possesses the Pareto set as an at-

tractor. Then set oriented numerical methods for dynamical systems can be used for its

approximation.

More concretely three different set oriented multilevel approaches for the approximation

of the Pareto set are proposed in [DSH05]. First a subdivision algorithm for the approxi-

mation of Pareto sets which creates tight box coverings of these objects is presented. The

second algorithm is a recovering algorithm which can be viewed as a postprocessing pro-

cedure for the subdivision scheme yields the second approach. In the third approach the

creation of the box covering is combined with appropriate branch and bound strategies by

a sampling algorithm. More details can be found in [Sch04].
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Subdivision Algorithm. The subdivision algorithm is directly based on the theoretical

considerations of the work [DSH05], particularly on Corollaries 1 and 2.

For a finite collection of discrete dynamical systems, the initial value problem

ẋ(t) = −q(x(t)), x(0) = 0 (5.4)

is discretized and the following iteration scheme

xj+1 = xj + hjpj, j = 0, 1, 2, . . . , (5.5)

is considered.

Corollary 1. Suppose that the set S of substationary points is bounded and let D be a

compact neighborhood of S. Then an application of the subdivision algorithm to D with

respect to iteration scheme (5.5) creates a covering of the entire set S, that is,

S ⊂ Qk for k = 0, 1, 2, . . . ,

in the course of the subdivision process.

Corollary 2. Suppose that the set S of substationary points is bounded and connected.

Let D be a compact neighborhood of S. Then an application of the subdivision algorithm

to D with respect to the iteration scheme (5.5) leads to a sequence of covering which

converges to the entire set S, that is,

h(S, Qk) → 0 for k = 0, 1, 2, . . . ,

where h denotes the usual Hausdorff distance.

The descent direction used in the computation of unconstrained MOOPs is pj = q(xj). A

particular Armijo step size strategy is chosen in the following way: starting with the given

points xj , F is evaluated along the descent direction pj in uniform step lengths h0 as long

as the value of all objectives decreases. Once one objective function starts to increase, a

“better” iterate xj+1 with intermediate step length is calculated via backtracking.

The subdivision algorithm has the advantage of being very robust with respect to errors

by the use of the descent direction. However, all the gradients of the objectives have to be

available and the algorithm is unable to distinguish between a local and a global Pareto

point. Furthermore, the efficiency of the algorithm will get worse when the MOOP has

optima relative to the boundary of the domain.
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Recovering Algorithm. It may be the case that in the course of the subdivision proce-

dure boxes get lost although they contain substationary points. This will, for instance,

be the case when there are not enough test points taken into account for the evaluation

of F(B) for a box B ∈ Bk. The recovering algorithm uses a kind of “healing” process

which allows us to recover those substationary points which have previously been lost.

The aim of the algorithm is to extend the given box collection step-by-step along the

covered parts of the set S of the substationary points no more boxes are added.

The recovering algorithm is able to extend the computed box covering of the set of sub-

stationary points but it is only local in nature.

Sampling Algorithm. Observe that there are a few potential drawbacks which may

occur when using the two algorithms described above:

1. the gradients of the objectives are needed,

2. the set S is generally a strict superset of the Pareto set, and

3. the algorithms are capable of finding local Pareto points on the boundary of the

domain Q - e.g. via penalization strategies. However, it has turned out in practice

that (MOOPs) typically contain many local Pareto points on ∂Q which are not

globally optimal (see e.g. in [DSH05]).

The sampling algorithm avoids all these problems because it takes only the function values

of the objective functions into account. On the other hand this algorithm is not as robust

to errors as the first two because it is only global relative to the underlying box collection.

The sampling algorithm is able to detect global Pareto points even on the boundary of

the domain due to the fact that it works in the image space of the MOOP. Naturally,

uncertainty always remains due to the sampling approach, in particular when the boxes

are big and/or the dimensions of the MOOP are large. Nevertheless, results have shown

that this algorithm works quite well, in particular when the gradients of the objectives are

not available and the dimension of the MOOP is moderate [Sch04].
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5.3.2 Software

GAIO 1 is developed by Dellnitz and Junge [DFJ01]. It is a software package for the

global numerical analysis of dynamical systems and optimization problems based on set

oriented techniques. It may be used to compute invariant sets, invariant manifolds, invari-

ant measures and almost invariant sets in dynamical systems and to compute the globally

optimal solutions of both scalar and multi-objective problems.

5.4 A GAIO Model for the Multi-Objective Optimization

Problem

In this section, we will introduce a multi-objective shape optimization problem for the

design of piezoelectric actuators. In Section 5.4.1, multi-objective optimization problems

in piezoelectric actuator design are introduced. Particularly, a multi-objective shape opti-

mization problem is presented in Section 5.4.2; the objectives, design variables and con-

straints are given in detail. A GAIO model for the multi-objective optimization problem

is proposed in Section 5.4.3.

5.4.1 MOOPs in Piezoelectric Actuator Design

Piezoelectric actuators have been widely used in different fields. The performance of

piezoelectric actuators can usually be remarkably improved if mathematical optimization

methods are applied in their development. According to the different applications, differ-

ent design goals exist. For example, the fast response time and low power consumption

are considered in one stroke driving; and low cost and compact size are considered in

resonant driving.

Mathematical analysis of an optimization problem often leads to “unusual” solutions that

are hardly suitable for manufacturing. This is acceptable in the framework of the chosen

approach:

1http://www-math.upb.de/ agdellnitz/Software/gaio.html
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We are looking for a mathematically correct solution, and we accept its fea-

tures. From a practical point of view, the emergence of “strange” solutions

reveals certain hidden features of optimality. These solutions should not be

rejected as mathematical extravagance, but rather should be understood and

interpreted in depth; often, they point to better solutions that may be approx-

imated with available resources.

C. Cherkaev

The above quotation can also be applied to interpret the results we obtained in Chapter

4. Those results show that one can get better performance (e.g. amplitude) with unusual

shapes. However from an engineer’s point of view, unusual shapes often cause manu-

factural problems. This conflict leads to the multi-objective optimization problem in this

work.

5.4.2 The Multi-objective Shape Optimization Problem

This work is concerned with a multi-objective shape optimization problem of piezoelec-

tric materials. A two-dimensional body (see the given example shape in Figure 3.1) is to

be designed for maximum amplitude (better performance) and minimum curvature (sim-

ple manufacturing) subjected to three constraints.

Parametrization of shapes. To realize a numerical shape optimization problem one has

to first find a suitable parametrization of shapes using a finite number of parameters.

Concretely we consider two cases to represent the boundary y(z).

• Design variable.

1. y(z) = az2 + b (one design variable);

To simplify the problem, we use one design variable to control the shape of

piezoceramics. Here we define an admissible domain Q. The shape of the

piezo is characterized solely by y∗ ∈ Q. y∗ = y(0) is the design variable (see

Figure 3.1). Together with the mass constraint, it determines the shape of the

piezo in a unique way.
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2. B-spline (two design variables).

From a mathematical point of view, a curve generated by using the vertices of a

control polygon is dependent on some interpolation or approximation scheme

to establish the relationship between the curve and the control polygon. The

scheme is provided by the choice of the basis function.

Curve representation. Curves are mathematically represented either ex-

plicitly, implicitly or parametrically. Explicit representations of the form y =

f(x) (e.g. Case 1) are useful in many applications but axis-dependent, cannot

adequately represent multiple-valued functions and cannot be used where a

constraint involves an infinite derivative. Implicit representations of the form

f(x, y) = 0 for curves are capable of representing multiple-valued functions

but are still axis-dependent.

Parametric curve representations of form

x = f(t), y = g(t),

where t is the parameter, are extremely flexible. They are axis independent,

easily represent multiple-valued functions and infinite derivatives, and have

additional degrees of freedom compared to either explicit or implicit formula-

tions. The derivatives of y and x with respect to t are given by

y′ =
dy

dt
, x′ =

dx

dt
.

B-spline curves we will use in this work are parametrically represented by

[Rog01]:

p(t) = (x(t), y(t))T .

B-spline definition. A B-spline is defined by a knot vector Km = [k0, k1, . . . , km],

where Km is a nondecreasing sequence, and given control points B0, B1, . . . , Bn ∈
R

2.

The degree d and the order r are defined as:

d = m− n− 1

r = m− n.
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The “knots” kd+1, . . . , km−d−1 are called internal knots.

The dash-dot line defined by the control points will be called a control polygon

(see Figure 5.1).

A B-spline can be defined as a linear combination:

P (t) =
n+1∑
i=1

BiNi,r(t) tmin < t < tmax, 2 ≤ r ≤ n+ 1 (5.6)

Ni,r(t) are the normalized basis functions defined by the Cox-de Boor recur-

sion formulas. Specifically

Ni,1(t) =

⎧⎨
⎩

1, if ki ≤ t < ki+1

0, otherwise
(5.7)

and

Ni,r =
(t − ki)Ni,r−1(t)

ki+r−1 − ki

+
(ki+r − t)Ni+1,r−1(t)

ki+r − ki+1

. (5.8)

We define
0

0
= 0.

Specific types include the nonperiodic B-spline and uniform B-spline (internal

knots are equally spaced). A B-spline with no internal knots is a Bézier curve.

B-spline continuity If the nth derivatives of a curve, dnP (t)/dtn, at the

curve segment joint are equal in both direction and magnitude, then the curve

is said to have Cn parametric continuity at the joint.

B-splines automatically take care of continuity, with exactly one control point

per curve segment. With different degrees there are many types of B-splines

(linear, quadratic, cubic,. . . ) and they may be uniform or non-uniform. We

will only consider uniform B-splines for which parametric continuity is al-

ways one degree lower than the degree of each curve piece (e.g. linear B-

splines have C0 continuity, cubic have C2 continuity, etc).

A C2 curve is doubly differentiable at the knot point and its curvature is con-

tinuous.
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B-spline curve derivatives. The derivatives of a B-spline curve at any point

on the curve are obtained by formal differentiation. Specifically recalling

Equation (5.6) the first derivative is

P ′(t) =
n+1∑
i=1

BiN
′
i,r(t) (5.9)

where

N ′
i,r(t) =

Ni,r−1(t) + (t − ki)N
′
i,r−1(t)

ki+r−1 − ki

+
(ki+r − t)N ′

i+1,r−1(t) − Ni+1,r−1(t)

ki+r − ki+1

(5.10)

Note from Equation (5.7) that N ′
i,1(t) = 0 for all t.

Consequently, for r = 2 Equation (5.9) reduces to:

N ′
i,2(t) =

Ni,1(t)

ki+1 − ki

− Ni+1,1(t)

ki+2 − ki+1

The second derivative is given by:

P ′′(t) =
n+1∑
i=1

BiN
′′
i,r(t) (5.11)

Differentiating equation (5.10) yields the second derivative of the basis func-

tion:

N ′′
i,r(t) =

2N ′
i,r−1(t) + (t − ki)N

′′
i,r−1(t)

ki+r−1 − ki

+
(ki+r − t)N ′′

i+1,r−1(t) − 2N ′
i+1,r−1(t)

ki+r − ki+1

(5.12)

Here, note that both N ′′
i,1(t) = 0 and N ′′

i,2(t) = 0 for all t. [dB78].

B-spline curve curvature. A plane curve curvature is a geometric property

of curve which represents how the curve bends. The plane curve curvature is

often defined by following equations
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K(ψ, s) =
∂ψ

∂s
(5.13)

where k(ψ, s) is the curvature, s is an arc length of p(t) = (x(t), y(t)), and

ψ is an angle between a tangent of p(t) and x-axis. The useful parametric

definition is as follows:

K(t) =

∣∣∣∣∣x
′′y′ − x′y′′

(x′2 + y′2)
3
2

∣∣∣∣∣ (5.14)

where K(t) is the relative curvature.

For the sake of simplicity of computation in this work, we choose the knot

vector

Km = [
l

2

l

2

l

2

l

2

l

6
− l

6
− l

2
− l

2
− l

2
− l

2
]

and it is used to generate a fourth-order (cubic) B-spline curve with a control

pentagon.

We define the coordinates of the 6 control points in z direction as

Bz = [0.01 0.006 0.002 − 0.002 − 0.006 − 0.01].

The B-spline is symmetric to the line z = 0 (see Figure 5.1). Therefore, we

have three unknown parameters y∗
0 , y1 and y∗

2 . Here we consider y∗
0 and y∗

2 as

design variables, as the third unknown parameter (e.g. y1 in Figure 5.1) can

be determined by the mass constraint.

To avoid more strange shapes, we define two constraints.

– y∗
0 ≤ y1 ≤ y∗

2 or

– y∗
2 ≤ y1 ≤ y∗

0 .

The value of y1 should be between y∗
0 and y∗

2 , thus y(z) is either a convex or a

concave function.

Optimization Objectives. Here we define the two objectives in details.

• Maximum amplitude. From the computation in Chapters 3 and 4, we know that

the computation for the vibration amplitude is complicated and cannot be expressed
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Figure 5.1: A cubic B-spline curve with its control polygon (dash-dot line).

by an explicit formula.

Figure 5.2 illustrates the computation for the vibration amplitude of a piezo step by

step. For each input y∗ ∈ Q, the following computation steps should be taken:

– compute y(z) by the mass constraint;

– compute numerical solutions of eigenfunctions for a piezo with a curved side

described by y(z) by solving a boundary value problem;

– use the obtained numerical values of eigenfunctions to compute the coeffi-

cients in equations (4.1) and (3.44);

– call AUTO2000 for computing the vibration amplitude;

– choose the amplitude at a specified excitation frequency.

• Minimum curvature. In Figure 3.1, the curved side is described by y(z). For

a two-dimensional curve written in the form y = f(z), the equation of curvature
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Solving a boundary 
value problem (BVP)

Numerical solutions for 
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Maximum amplitude 
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Input

Amplitude at the 
second limit point 

Determining a curve

Figure 5.2: Framework for computing amplitude (Procedure A)
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becomes

K(z) =
f ′′(z)

(1 + (f ′(z))2)
3
2

. (5.15)

1. y(z) = az2 + b ;

Since

f ′′(z) = 2a, f ′(z) = 2az,

equation (5.15) is simplified to

K(z) =
2a

(1 + (2az)2)
3
2

.

As the curve y(z) is symmetric to z = 0, we choose the absolute value of

curvature at z = 0 as the other objective

min K = |2a|

2. B-spline.

As discussed in Chapter 3, the relative curvature K(t) for a B-spline at one

point is given by:

K(t) =

∣∣∣∣∣x
′′y′ − x′y′′

(x′2 + y′2)
3
2

∣∣∣∣∣ . (5.16)

Constraints. The above two objectives are subjected to the following constraints:

• Mass constraint. The mass of the piezo is fixed. Only the shape is set to vary. This

constraint is expressed by (see Figure 3.1)

l/2∫
−l/2

y(z)dz = const.

• Spatial constraint. The piezo is symmetric with respect to the y-axis. As shown

in Figure 3.1, y(z) is being even (y(z) = y(−z)), thus we can restrict the problem

to half of the domain z ∈ [0, l/2].

• Domain constraint. The domain Q is defined by
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1. y(z) = az2 + b (one dimension);

Q = {y∗ ∈ ([0.0003, 0.004])}.

2. B-spline (two dimensions).

Q = {(B0(z), B2(z)) ∈ R
2|0.0003 < B0(z) < 0.004, 0.0003 < B2(z) < 0.004}.

5.4.3 A GAIO Model for the Optimization Problem

According to the above information, we now introduce a GAIO model to solve the above

multi-objective optimization problem (see Figure 5.3).

In principle each of the algorithms proposed in Section 5.3 is applicable to a multi-

objective optimization problem on its own. In our case the subdivision algorithm is per-

formed.
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Data input

Domain Q

Best compromised design

GAIO

Pareto optimal solutions

Subdivision

Procedure A

Objective functions
Max amplitude
Min curvature

Constraints

Figure 5.3: A GAIO model for the optimization problem

74



Chapter 6

Results and Discussion

In Chapter 5, a two-objective shape optimization problem for piezoelectric actuators is

formulated, and then a GAIO model is given to find the Pareto sets for the optimization

problem. In this chapter, the computation results presented in Section 6.1 are obtained

after performing the computation steps in Chapter 5. Problems with one and two design

variables are considered respectively in both linear and nonlinear cases. A brief discus-

sion of the results is given in Section 6.2.

6.1 Optimization Results

In this work, we want to design a piezo with one boundary defined by a function y(z),

which will be optimized to obtain maximum vibration amplitude and minimum curvature

at one time. Performing the computation steps in Figure 5.3, the optimization solutions are

presented below in two items. In each item both linear and nonlinear cases are considered.

6.1.1 Multi-Objective Optimization Solutions for One Parameter (quadratic

curves)

In Section 3.2.3, a quadratic curve y(z) = az2 + b was used to represent the boundary

y(z) in Figure 3.1, and y∗ = y(0) is the design variable.
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Figure 6.1: Pareto set for two-objective shape optimization problem (linear case, one

parameter) .

Linear case. Figures 6.1 and 6.2 are the Pareto set and its preimages in the linear case

respectively. Two objectives are obtained for maximum amplitude and minimum curva-

ture. The maximum amplitude is calculated by performing Procedure A in Figure 5.2.

The other objective curvature is obtained at z = 0 as K = |2a|.

The Pareto solutions in Figure 6.1 are well collocated as a smooth curve. The preimages

in Figure 6.2 are in the range of y∗ ∈ [0.00035, 0.0015], that is, the corresponding shapes

are all concave. Example shapes of points P1, P2 and P3 are also given in Figure 6.2.
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Figure 6.2: Preimages of Pareto set for two-objective shape optimization problem (linear

case, one parameter) .

Nonlinear Case. In Figures 6.3 and 6.4 the Pareto set and their preimages in the non-

linear case are plotted respectively.

Two objectives are also obtained for maximum amplitude and minimum curvature. The

objective curvature is obtained in the same way as in the linear case. Because of the

bifurcation in the nonlinear case there are unstable solutions as well as stable ones. Then

the objective amplitude is focused on the amplitude at the right limit point, that is, the

maximum amplitude of the stable solutions (as shown in Figure 4.4).

In Figure 6.3 we observed a “jump phenomenon”, which separates the Pareto solutions
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Figure 6.3: Pareto set for two-objective shape optimization problem (nonlinear case, one

parameter).

into two sets. Looking at their preimages in Figure 6.4, we found that the preimages

y∗ are also in two sets in range of [0.00035, 0.00091] and [0.0015, 0.00175], and their

corresponding shapes are concave and convex respectively. Example shapes of points P4,

and P5 are also given in Figure 6.4.
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Figure 6.4: Preimages of Pareto set for two-objective shape optimization problem (non-

linear case, one parameter).

6.1.2 Multi-Objective Optimization Solutions for Two Parameters (cu-

bic B-spline curves)

In Section 3.2.3, we also introduced another way to represent a curve with two design

variables. It is a cubic B-spline curve with six control points (see Figure 5.1). y∗
0 and y∗

2

in Figure 5.1 are the design variables.

Linear case. Figures 6.5 and 6.6 are the Pareto set and their preimages in the linear case

respectively. Two objectives are obtained in the same way as in one design variable case
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in Section 6.1.1.

In Figure 6.5, we also observed a “jump phenomenon”. When looking at their preim-

ages in Figure 6.6, the preimages are in one set in range of y∗
0 ∈ [0.0027, 0.003], y∗

2 ∈
[0.0007, 0.001]. Example shapes of points P6 and P7 are plotted in Figure 6.6.
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Figure 6.5: Pareto set for two-objective shape optimization problem (linear case, two

parameters).

Nonlinear case. For the nonlinear case, the Pareto points and their preimages are plotted

in Figures 6.7 and 6.8 respectively. In Figure 6.8 the preimages are mostly located within

the range of y∗
0 ∈ [0.00165, 0.0025], y∗

2 ∈ [0.00085, 0.00135], only one point P8 is at
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Figure 6.6: Preimages of Pareto set for two-objective shape optimization problem (linear

case, two parameters).

(0.00137,0.00155). It means that most Pareto shapes are concave, and one is convex.

Example shapes of points P8 and P9 are plotted in Figure 6.8.

6.2 Discussion

In this section, we will discuss the results of Section 6.1.

The optimization results with one and two parameters for a linear model are compared

in Figure 6.9. Two example shapes, P10 and P11, are plotted in Figure 6.9. It is obvious

that results with two parameters are better than those with one parameter. Concretely, the
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Figure 6.7: Pareto set for two-objective shape optimization problem (nonlinear case, two

parameters).

curvatures at points P10 and P11 are 29.9 and 30.0 respectively, but the amplitude at P11

is 3.6372 · 10−6, which is 35.43% higher than the amplitude 2.6857 · 10−6 at point P10.

The optimization results for one and two parameters in the nonlinear case are compared

in Figure 6.10. Example shapes of Points P12 and P13 are also plotted. At point P12,

the amplitude is 8.7971 · 10−7, and the curvature is 40.4. At point P13, the amplitude is

1.3358 ·10−6, and the curvature is 40.2. Comparing the objective values of points P12 and

P13, the curvature of P13 is almost the same as that of P12, but the amplitude is improved

by 51.85%.
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Figure 6.8: Preimages of Pareto set for two-objective shape optimization problem (non-

linear case, two parameters).
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Figure 6.9: Pareto sets for two-objective shape optimization problem (linear case,).
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Figure 6.10: Pareto sets for two-objective shape optimization problem (nonlinear case).
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Chapter 7

Summary and Outlook

In this chapter a summary of the results of this dissertation is given and future research is

envisaged and recommended.

7.1 Summary

Shape optimization is now a major concern in the design of mechanical systems in in-

dustry. It is important to improve the performance of a piezo by changing its geometry.

However, academic and industrial research into shape optimization is still ongoing. Mo-

tivated by facts that a curved side piezo has a performs better than a rectangular sided

piezo in calculations performed by using a simulating software, and convinced that this

information could facilitate the shape optimization of the piezoceramics with respect to

several objectives, the numerical analysis, modeling and multi-objective optimization of

the shape of piezoceramics have been addressed. This dissertation is comprised of three

phases:

1. Background,

2. modeling and numerical analysis,

3. multi-objective shape optimization.

In the first phase, the basic knowledge of shape optimization, piezoelectric effects, piezo-

electric materials and their properties were introduced. The influence of the shape of a
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piezo on its performance was demonstrated with software package Comsol Multiphsics

(FEMLAB). The preliminary results were visualized in Figures 1.2 and 1.3. The motiva-

tion and the primary goal of this work have been also given.

In the second phase, a detailed mathematical model able to reproduce the dynamical be-

havior (in particular some nonlinear phenomenon) of piezoceramics is first introduced.

Then, the general eigenfunctions of piezoceramics for different geometries, which de-

scribe how a shape(geometry) of a piezo influences its properties, are derived via Hamil-

ton’s principle. Both usual (e.g. rectangular) and unusual (e.g. curved side) shapes are

considered. A corresponding boundary value problem is solved numerically using MAT-

LAB and the computation results are used to compute the coefficients of the equation of

motion.

Then the linear equation of motion of piezoceramics for different geometries is derived

via the Calculus of Variations. Compared with the linear equation of motion, two nonlin-

ear terms are introduced. The equation of motion is solved numerically via a continuation

software package AUTO2000, and the results show that some curved side piezoceramics

perform better than those with a rectangular shape for both linear and nonlinear models.

The difference between the solutions of linear and nonlinear cases is that there are unsta-

ble solutions and two limit points in the nonlinear case. The effects of the two nonlinear

terms are analyzed, and both nonlinear terms have profound effects on the bifurcation

observed.

Finally, a multi-objective shape optimization problem for the design of piezoelectric ac-

tuators is introduced in the third phase. Two objectives are maximum amplitude (bet-

ter performance) and minimum curvature (simple manufacturing). The framework for

computing the amplitude is established. A GAIO model for the optimization problem is

proposed. The optimization is conducted with subdivision algorithm based on GAIO soft-

ware package, and the corresponding Pareto-optimal solutions are obtained. Results show

that the Pareto set with two design variables (e.g. a cubic B-spline curved side shape) is

better than the Pareto set with one design variable (e.g. a quadratic curved side shape) for

both linear and nonlinear models.
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7.2 Outlook

Although some useful results are obtained, there is still much work should be done in the

futher. The work could be further expanded in a number of ways to enhance its capability

for supporting industrial practices. I specifically recommend the followings:

1. One of the limitations of this work is the reduction of the number of design vari-

ables. I considered the cases of one and two design variables, respectively. More

variables could be beneficial.

2. A two-dimensional problem is considered and represented by quadratic curves and

cubic B-spline curves. A three-dimensional problem which would be represented

by B-spline surfaces maybe worth investigating in the future.

3. Two objectives (max. amplitude & min. curvature) have been considered in this

work. In the design of piezoelectric actuators, more objectives (e.g. min. input

electric field) or maybe minimum amplitude in some cases need to be optimized

to meet the design requirements. It is recommended that more than two objectives

will considered in the future in order to improve feasibility and capability.

4. The work presented so far tackles some simplified cases to improve the performance

of a piezo. Experiments are welcome to verify simulation results.
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Appendix A

COMSOL Multiphysics (former

FEMLAB)

COMSOL Multiphysics (former FEMLAB) is an interactive environment for modeling

and simulating scientific and engineering problems based on partial differential equations

(PDEs)-equations that are the fundamental basis for the laws of science. COMSOL is

a package that is based off of Matlab and is a contraction for Finite Element Method

Laboratory. The Finite Element Method, or FEM for short, is a numerical method that

can be used to solve PDEs.

COMSOL Multiphysics is a complete package that covers all facets of the modeling pro-

cess. It contains CAD tools, interfaces for physics and equation specifications, automatic

mesh generation, a variety of optimized solvers, as well as visualization and postprocess-

ing tools. Its multiphysics capability allows to simultaneously modeling many combina-

tions of coupled phenomena and allows us to supplement ready-to-use applications based

on predefined relevant physical quantities with equation-based modeling.

It gives here a quick overview of some of the features available for advanced modeling in

COMSOL’s graphical user interface. The important COMSOL features are:

• Fast, interactive, and user-friendly graphical user interface for all steps of the mod-

eling process;

• Powerful direct and iterative solvers;

91



A COMSOL Multiphysics (former FEMLAB)

• Linear and nonlinear stationary, timedependent, and eigenvalue analysis of models;

• Total freedom in the specification of physical properties, whether as analytical ex-

pressions or functions;

• Unlimited multiphysics capabilities for coupling all types of physics, even on do-

mains in different space dimensions;

• General formulations for quick and easy modeling of arbitrary systems of PDEs;

• CAD tools for solid modeling in 1D, 2D and 3D;

• Triangular, quadrilateral, tetrahedral, brick, and prism meshes using fully automatic

and adaptive mesh generation;

• Extensive model libraries that document and demonstrate more than 100 solved

examples;

• Parametric solver for efficient solution of highly nonlinear models;

• Interactive postprocessing and visualization;

• Report generator for documenting models;

• 64-bit platform support for large-scale computations;

• Smooth interface to MATLAB.

Using COMSOL Multiphysics. With COMSOL Multiphysics’ interactive modeling

environment you can build and analyze models from start to finish without the need to

involve any other software packages. Its integrated tools allow you to work efficiently at

each step in the process, all within one consistent and easy-to-use graphical environment.

It’s easy to move back and forth between various stages such as setting up the geometry,

defining the physics, creating a mesh, solving the model, and performing postprocessing.

COMSOL Multiphysics’ associative geometry feature preserves any boundary condition

or equation even if you change the geometry. The modeling procedure typically involves

the following steps:
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1. Create of the geometry;

COMSOL Multiphysics provides powerful CAD tools for creating 1D, 2D and 3D

geometric objects using solid modeling. Work planes are useful for generating 2D

profiles that you rotate, extrude, and embed into 3D structures.

2. Define the physic;

COMSOL Multiphysics makes the modeling of many physical processes and equa-

tions effortless through a variety of predefined application modes.

3. Generate the Finite Element Mesh;

Built-in mesh generators automatically perform meshing. They can create triangu-

lar or tetrahedral unstructured meshes as well as quadrilateral meshes. By extruding

or revolving a 2D mesh, you can create brick and prism meshes.

4. Compute the Solution;

COMSOL Multiphysics runs time-dependent or stationary simulations for linear

and nonlinear systems. With its solver scripting language, one can manage and

automate the solution process to solve for different field variables or iterate using a

staged-solution approach.

5. Visualize and Postprocess the Results;

6. Perform Optimization and Parametric Analysis.

The parametric solver in COMSOL Multiphysics provides the perfect way for ex-

amining a series of conditions. In addition, the built-in MATLAB interface can save

COMSOL Multiphysics models as M-files for later incorporation as functions into

MATLAB scripts for optimization or other postprocessing.

More information see:

http://www.comsol.com.
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Appendix B

A Brief Introduction to AUTO2000

AUTO is a publicly available software for continuation and bifurcation problems in or-

dinary differential equations developed by Eusebius Doedel. It was originally written in

1980 and widely used in the dynamical systems community.

AUTO can do a limited bifurcation analysis of algebraic systems of the form

f(u, p) = 0, f, u in Rn

and of systems of ordinary differential equations of the form

u′(t) = f(u(t), p), f, u in Rn

subject to initial conditions, boundary conditions, and integral constraints. Here p denotes

one or more parameters. AUTO can also do certain continuation and evolution compu-

tations for parabolic PDEs. It also includes the software HOMCONT for the bifurcation

analysis of homoclinic orbits.

In AUTO the computation of periodic solutions to a periodically forced system can be

done by adding a nonlinear oscillator with the desired periodic forcing as one of the

solution components ([ADO90]).

An example of such an oscillator is

x′ = x + βy − x(x2 + y2),

y′ = −βx + y − y(x2 + y2),
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which has the asymptotically stable solution

x = sin(βt), y = cos(βt)

Coupling this oscillator to the Fitzhugh-Nagumo equations:

v′ = (F (v) − w)/ε,

w′ = v − dw − (b + r sin(βt)),

by replacing sin(βt) by x. Above, F (v) = v(v − a)(1 − v) and a, b, ε and d are fixed.

The first run is a homotopy from r = 0, where a solution is known analytically, to r = c,

where c is a positive constant. Part of the solution branch with r = c and varying β is

computed in the second run. β is treated as the bifurcation parameter.

AUTO2000 is freely available from https://sourceforge.net/projects/auto2000/.
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