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Abstract

To study selfish routing scenarios in networks we use and extend in this thesis
two well-known classes of games modeling such routing scenarios: network
congestion games and Wardrop games. In both games, we are given a network
with edge latency functions. In a network congestion game, each player selects
as its strategy one path from its origin to its destination node and experiences as
its private cost the sum of edge latencies on this path. In a Nash equilibrium,
no player can decrease its private cost by unilaterally deviating to another
path. In a Wardrop game, amounts of traffic are associated with pairs of
network nodes. The traffic from an origin to a destination node is modeled as
a splittable network flow and the cost on an origin-destination path is again
given by the sum of edge latencies on this path. In a Wardrop equilibrium, no
fraction of the traffic assigned to some path, however small, can decrease its
cost by unilaterally switching to another path.

This thesis is primarily concerned with network routing scenarios where the
players have incomplete information. One possibility to model such scenarios
is to assume that a player who does not know some relevant parameter of
the game is at least aware of a probability distribution over the possible out-
comes of this parameter. In such a setting, it is reasonable to assume that the
decisions of a player are based on the expected values of the unknown para-
meters. We apply this approach for network routing games where the players
have incomplete information about the edge latency functions. Since each
player obtains for each edge his own expected latency function we get games
with player-specific latency functions. For both network congestion games
and Wardrop games with player-specific latency functions, we show positive
and negative results concerning the convergence to equilibria, the existence
and polynomial-time computability of equilibria. We also prove bounds on
the so-called price of anarchy that measures the worst-possible inefficiency of
equilibria with respect to a social welfare measure.
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We use an incomplete information model different from the aforementioned
one for games where, in contrast to congestion games, the players do not
know each other’s weight. Based on Harsanyi’s incomplete information concept
of Bayesian games, each player in our Bayesian routing games has a set of
possible types and each type of a player corresponds to some weight. The
players’ uncertainty about each other’s weight is described by one probability
distribution over all possible type profiles that is known to all players. In this
setting, we focus on the price of anarchy, the existence and the computational
complexity of equilibria.

We also study in this thesis, as a complete information setting, bottleneck
games with splittable traffic where the latency on a path is given by the max-
imum latency of an edge on this path. We characterize for which games the
social welfare of equilibria is unique and we give results on the price of stability
that measures the worst-possible inefficiency of the best equilibrium.
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CHAPTER 1

Introduction

1.1 Motivation and Framework

In this thesis, we study selfish behavior in network routing games. A selfish
entity is concerned with its own interests but not with the interests of others.
There is a bunch of different reasons why entities behave in a selfish way. Some
systems have to rely on local selfish decisions of agents since it is impossible
to set up a central control unit that supervises the system. This applies to
many systems that are too large or too dynamic for a central control unit. For
example it is impossible to centrally control all vehicles in the German road
traffic system or all data packets in a large communication network like the
Internet. Therefore, it is of interest to study selfish behavior in such shared
networks. To do so, we use and extend two well-known classes of games that
model selfish routing in networks: Wardrop games and congestion games.

Wardrop games were already studied in the 1920s by Pigou [77] and in
the 1950s by Beckman et al. [12] and Wardrop [92] in the context of road
traffic systems. In a Wardrop game, we are given a network, amounts of traffic
between pairs of network nodes, and for each edge a latency function describing
the time needed to traverse the edge depending on the total traffic on this edge.
Traffic is modeled as network flow, i.e., the traffic associated with a pair of an
origin and a destination node is allowed to split into arbitrary pieces. The cost
that traffic on an origin-destination path experiences is given by the sum of
edge latencies on this path. In a Wardrop equilibrium, no fraction of the traffic
assigned to some path, however small, can decrease its cost by unilaterally
switching to another path.

Originally introduced by Rosenthal [80] in the 1970s, congestion games can
be used to model resource sharing among players. Since routing is a typical
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Chapter 1 Introduction

resource sharing problem, the restricted class of network congestion games is
of interest. In such a game, the resources are the edges of a given network
with latency functions on the edges. There is a finite number of players and
each of them has an origin and a destination node in the network. Each player
selects as its pure strategy one path from its origin to its destination node
and experiences as its private cost the sum of edge latencies on this path. A
selection of pure strategies is a pure Nash equilibrium [72, 73] if no player can
decrease its private cost by unilaterally deviating to another path. Since Nash
equilibria are stable states in which no player has an incentive to modify its
strategy they are the most commonly used solution concept of rational selfish
behavior in game theory.

In recent years, Wardrop and congestion games have attracted a great deal
of attention as combining ideas from game theory and computer science has be-
come increasingly popular. The attention in the theoretical computer science
community was initiated by Koutsoupias and Papadimitriou [60] in 1999. They
brought up the problem of bounding the so-called price of anarchy [76] that
measures the worst-possible inefficiency of equilibria with respect to a social
welfare measure. Later the price of stability [8] was introduced that measures
the worst-possible inefficiency of best equilibria. Beyond the research on the
degradation of social welfare due to selfish behavior, many recent papers (that
we will discuss in Chapter 4) focus on other natural questions related to equi-
libria. These questions include the existence of equilibria, the complexity of
computing equilibria, and the convergence to equilibria.

1.2 Outline of our Results

This thesis is primarily concerned with network routing games where the play-
ers have incomplete information since they do not know all relevant parame-
ters of the game. As described earlier in the abstract, we use two different
approaches to model incomplete information. On the one hand, we investigate
network routing games where the players are uncertain about the edge latency
functions and use, as in Milchtaich’s [69] model, different player-specific latency
functions for an edge. On the other hand, we use Harsanyi’s [51] incomplete
information concept to define so-called Bayesian routing games and study this
scenario where the players do not know each other’s weight.

Since we will give detailed overviews of our results in the Sections 5.1.1,
6.1.1, 7.1.1, 8.1.1, and 9.1.1 we only briefly sketch these results here:

• Congestion Games with Player-Specific Constants

In Chapter 5, we consider congestion games with player-specific constants
where players use the same delay function but different player-specific
constants for each particular resource. The delay function and the player-
specific constants constitute player-specific latency functions by means

2



1.2 Outline of our Results

of an operation such as addition or multiplication.

We show that there are subclasses of these games where selfish steps of
players can be used to reach a pure Nash equilibrium, whereas we prove
for another subclass that a pure Nash equilibrium is guaranteed to exist
although selfish step sequences can be of infinite length. Moreover, we
show that under certain conditions it is PLS-hard [55] to compute a pure
Nash equilibrium.

Although Milchtaich [69] earlier gave fundamental results on the conver-
gence of selfish step sequences to pure Nash equilibria the results that
we give in Chapters 5 and Chapter 6 allow to better understand under
which conditions selfish steps can be used to reach an equilibrium.

• Congestion Games with Player-Specific Affine Latency Functions

In Chapter 6, we study congestion games with player-specific affine la-
tency functions.

We characterize for which subclasses of these games selfish steps can be
used to get a pure Nash equilibrium and we show that there is a game
that does not have a pure Nash equilibrium. Furthermore, we prove an
upper and an asymptotically tight lower bound on the price of anarchy.

These and the results by Georgiou et al. [48] (see Section 4.3) are the first
results on the price of anarchy for congestion games with player-specific
latency functions.

• Wardrop Games with Player-Specific Affine Latency Functions

In Chapter 7, we focus on a generalization of Wardrop games that allows
for player-specific latency functions. Most of our results apply for the
case where the player-specific latency functions are affine.

For a specific subclass of these games, we prove that a Wardrop equilib-
rium can be computed in polynomial time by minimizing a new convex
potential function that we introduce. However, we show that a similar
argumentation cannot be applied for a certain more general setting. We
also prove an upper and a lower bound on the price of anarchy.

While Wardrop games have been studied extensively in recent years (see
Section 4.4) these are the first results on the more general setting with
player-specific latency functions.

• Bayesian Routing Games

In Chapter 8, we consider Bayesian routing games with incomplete infor-
mation where, in contrast to congestion games, the players do not know
each other’s weight. Following Harsanyi’s approach [51], we use types
and a probability distribution over all possible type profiles to model the
players’ uncertainty about each other’s weight.

3



Chapter 1 Introduction

We show that every Bayesian routing game has a pure equilibrium. For a
subclass of these games we give a polynomial-time algorithm to compute
one. We also characterize equilibria that maximize the private costs of
all players. This enables us to prove results on the price of anarchy for
three different social welfare measures.

Although a lot of work has been done on congestion games (see Sections
4.1 and 4.2) we introduce and study with our Bayesian routing games
the first model with incomplete information on the player weights.

• Bottleneck Games with Splittable Traffic

In Chapter 9, we study, as a complete information setting, bottleneck
games with splittable traffic. Here, the latency on a path is given by the
maximum latency of an edge on this path whereas for Wardrop games it
is given by the sum of these latencies.

We characterize for which games the social welfare of Wardrop equilibria
is unique. Moreover, we show that the price of stability is independent of
the network topology and we give the exact price of stability for games
with M/M/1 latency functions [57].

These and the results of Cole et al. [22] (see Section 4.5) are the first
results on a Wardrop-like maximum latency setting.

1.3 Publications

Results presented in this thesis are published in the Proceedings of the In-
ternational Colloquium on Automata, Languages, and Programming (ICALP)
[45, 47], the Proceedings of the Annual ACM Symposium on Parallel Algo-
rithms and Architectures (SPAA) [46], the Proceedings of the International
Workshop on Internet and Network Economics (WINE) [68], and will appear
in the Proceedings of the International Symposium on Mathematical Founda-
tions of Computer Science (MFCS) [66] and Theory of Computing Systems
(TOCS) [46].

Since this thesis is on game theory it does not include the results on branch-
and-bound algorithms for the test cover problem that I also published while
I was working on my PhD project. These results appeared in the Proceed-
ings of the International Workshop on Efficient and Experimental Algorithms
(WEA) [32] and the ACM Journal of Experimental Algorithmics (JEA) [33].
Furthermore, this thesis does not include recent results on cost-sharing mech-
anisms that will appear in the Proceedings of the International Symposium on
Mathematical Foundations of Computer Science (MFCS) [17].

Many results given in this thesis were developed in joint work with the co-
authors of the aforementioned publications. Throughout this thesis I will give
all proofs that I developed and also proofs that we obtained in collaboration.
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1.4 Road Map

Since the proofs to that I had no contribution are not included some theorems
in this thesis are not followed by a proof.

1.4 Road Map

The rest of this thesis is organized as follows. In Chapter 2, we give some pre-
liminaries, whereas we formally describe the models considered in this thesis
in Chapter 3. We summarize previous work related to this thesis in Chap-
ter 4. In the remaining chapters, we give our results on congestion games with
player-specific constants (Chapter 5), congestion games with player-specific
affine latency functions (Chapter 6), Wardrop games with player-specific affine
latency functions (Chapter 7), Bayesian routing games (Chapter 8), and bot-
tleneck games with splittable traffic (Chapter 9).

5
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CHAPTER 2

Preliminaries

This chapter presents some basic notation (Section 2.1), introduces relevant
graph types (Section 2.2), affine functions (Section 2.3), PLS-problems (Sec-
tion 2.4), maximum flows (Section 2.5), and totally ordered abelian groups
(Section 2.6).

2.1 Notation

Denote [k] = {1, . . . , k} for each integer k ≥ 0. For a vector v = (v1, . . . , vn) let
v−i = (v1, . . . , vi−1, vi+1, . . . , vn) and (v−i, v

′
i) = (v1, . . . , vi−1, v

′
i, vi+1, . . . , vn).

2.2 Graphs and Networks

Throughout this thesis we will mainly consider games in networks with directed
edges where there is for every player one origin node and one destination node.
Such games can be interpreted as routing games. We will now introduce some
important types of multigraphs / networks that will be used in this thesis.

2.2.1 Asymmetric and Symmetric Networks

If all players share the same origin node and the same destination node, then
the network is symmetric, otherwise it is asymmetric. If a symmetric network
G = (V, E) is considered, we denote by vo ∈ V the origin node of all players
and by vd ∈ V the destination node of all players.

7



Chapter 2 Preliminaries

2.2.2 Series Parallel Graphs

Series parallel graphs are sometimes also called two terminal series parallel
graphs. Series parallel is a recursively defined property: As the base case, the
graph that only consists of two nodes vo, vd and a single edge (vo, vd) is series
parallel with terminals (vo, vd). An arbitrary multigraph G is series parallel
with terminals (vo, vd) if it can be constructed from two series parallel graphs
with terminals (v1

o , v
1
d) and (v2

o , v
2
d) connected either in series or in parallel. In

a series connection, v1
d = v2

o , vo = v1
o , and vd = v2

d. In a parallel connection,
vo = v1

o = v2
o and vd = v1

d = v2
d.

Note that all series parallel graphs are symmetric.

2.2.3 Parallel Link Graphs

A parallel link graph G = (V, E) is a multigraph that only consists of the
origin node vo ∈ V of all players, the destination node vd ∈ V of all players,
and m ∈ N edges each of them connecting these two nodes. Obviously, all
parallel link graphs are series parallel graphs.

2.3 Affine and Linear Functions

Throughout this thesis we call a function affine if it is of the form f(x) = a·x+b,
whereas we call a function linear if it is of the form f(x) = a ·x. Clearly, every
linear function is affine. Although there is scientific literature that also calls
functions linear that are of the form a·x+b where b 6= 0 we distinguish between
affine and linear functions since this is advantageous for the presentation of our
results. This distinction was also used by other authors (see e.g. [5, 23, 29]).

2.4 PLS(-complete) Problems

Johnson et al. [55] defined in the 1980s the complexity class PLS (Polynomial-
time Local Search) that includes optimization problems where the goal is to
find a local optimum for a given instance; this is a feasible solution with no
feasible solution of better objective value in its well-determined neighborhood.
A problem Π in PLS has an associated set of instances IΠ. There is, for every
instance I ∈ IΠ, a set of feasible solutions F(I). Furthermore, there are three
polynomial time algorithms A, B, and C.

• A computes for every instance I a feasible solution S ∈ F(I);

• B computes for a feasible solution S ∈ F(I) the objectice value;

8



2.5 Maximum Flows and Minimum Cuts

• C determines, for a feasible solution S ∈ F(I), whether S is locally
optimal and, if not, it outputs a feasible solution in the neighborhood of
S with better objective value.

A PLS-problem Π1 is PLS-reducible [55] to a PLS-problem Π2 if there are
two polynomial time computable functions F1 and F2 such that

• F1 maps instances I ∈ IΠ1 to instances F1(I) ∈ IΠ2 and

• F2 maps every local optimum of the instance F1(I) to a local optimum
of I.

A PLS-problem Π is PLS-complete [55] if every problem in PLS is PLS-
reducible to Π.

2.5 Maximum Flows and Minimum Cuts

The maximum flow problem is a classical optimization problem with many
applications (see e.g. [3]). An instance (G, vo, vd, (ke)e∈E) of the maximum
flow problem consists of a directed graph G = (V, E), a source node vo ∈ V ,
a sink node vd ∈ V , and a capacity ke ≥ 0 for each edge e ∈ E. A feasible
flow H = (he)e∈E assigns to each edge e ∈ E an edge flow he ≥ 0 satisfying
the capacity constraints, i.e., he ≤ ke. Furthermore, the flow conservation
constraints are fulfilled at all nodes. We denote by |H| the total amount of
flow that is shipped from vo to vd. A maximum flow H is a feasible flow that
maximizes the total amount of flow |H| shipped from vo to vd.

The maximum-flow minimum-cut theorem states that the maximum amount
of flow possible for an instance is equal to the capacity of a minimum vo-vd-cut.
It is possible to represent such a cut by a partition of the nodes V into two
subsets (S, T ) where vo ∈ S and vd ∈ T . In this work, however, we regard a
minimum cut as a set of edges D(S, T ) ⊆ E where all edges e ∈ D(S, T ) leave
the partition S, i.e., they are of the form (u, v) where u ∈ S and v ∈ T .

Given a minimum cut D(S, T ) that belongs to a maximum flow H , all edges
e ∈ D(S, T ) are fully saturated, i.e., he = ke, and

∑

e∈D(S,T ) he = |H|. Each

path from vo to vd includes at least one edge e ∈ D(S, T ).

2.6 Totally Ordered Abelian Groups

A group (G,�) consists of a ground set G together with a binary operation
� : G×G → G; � is associative and allows for an identity element and inverses.
The group (G,�) is abelian if � is commutative. We will consider totally
ordered abelian groups with a total order on G [49] which satisfies translation
invariance: for all triples r, s, t ∈ G, if r ≤ s then r � t ≤ s � t.
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Chapter 2 Preliminaries

Examples of totally ordered, translation-invariant abelian groups include

(i) (R+ \ {0}, ·) under the usual number-ordering,

(ii) (R, +) under the usual number-ordering, and

(iii) (R2, +) under the lexicographic ordering on pairs of numbers.
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CHAPTER 3

Models

We introduce in this chapter congestion games with player-specific latency
functions (Section 3.1), Wardrop games with player-specific latency functions
(Section 3.2), Bayesian routing games (Section 3.3), and bottleneck games with
splittable traffic (Section 3.4).

3.1 Congestion Games with Player-Specific

Latency Functions

Congestion games with player-specific latency functions were (for the special
case of parallel links) originally introduced by Milchtaich [69]. As new sub-
classes of these games we will in this section introduce dominance congestion
games and congestion games with player-specific constants. The even more
restricted class of unweighted congestion games was originally introduced by
Rosenthal [80].

We will investigate the game classes introduced here in Chapters 5 and 6.

3.1.1 Instances

A weighted congestion game with player-specific latency functions Γ is a tuple

Γ =
(

n, E, (wi)i∈[n], (Si)i∈[n], (fie)i∈[n],e∈E

)

.

Here, n is the finite number of players and E is the finite set of resources. For
every player i ∈ [n], wi > 0 is the weight and Si ⊆ 2E is the strategy set of
player i. Denote S = S1 × . . . × Sn. For every player i and resource e ∈ E,

11



Chapter 3 Models

there is a non-decreasing latency function fie : R
+
0 → R

+
0 that player i assigns

to e.
In an unweighted congestion game with player-specific latency functions,

the weights of all players are equal. W.l.o.g. we assume in this case that
w1 = . . . = wn = 1. In a network congestion game with player-specific latency
functions the strategy set Si of a player i corresponds to all paths from his
origin node to his destination node in a directed network G = (V, E).

Fix a congestion game Γ with player-specific latency functions. Consider a
pair of players i 6= j and a pair of resources (e, e′) where e 6= e′. Say that i
dominates j for the ordered pair (e, e′) if for every pair of positive numbers
x, y ∈ R

+, fie(x) > fie′(y) implies fje(x) > fje′(y). Intuitively, i dominates j
for (e, e′) if the preference of i to switch strategy from e to e′ always implies a
corresponding preference for j. A congestion game with player-specific latency
functions is called dominance congestion game if for all pairs of players i 6= j
and for all pairs of resources (e, e′) where e 6= e′, either i dominates j for (e, e′)
or j dominates i for (e, e′).

Fix a totally ordered, translation-invariant abelian group (G,�), G ⊆ R,
under the usual number-ordering. A congestion game with player-specific con-
stants is a congestion game Γ with player-specific latency functions such that

(i) for each resource e ∈ E, there is a non-decreasing delay function ge :
R

+
0 → R

+
0 , and

(ii) for each pair of a player i ∈ [n] and a resource e ∈ E, there is a player-
specific constant cie > 0,

so that for each player i ∈ [n] and resource e ∈ E, fie(x) = cie � ge(x). In
a congestion game with player-specific additive constants (resp., player-specific
multiplicative constants), G is R and � is + (resp., G is R

+ \ {0} and � is ·).
If all latency functions fie are of the form fie(x) = ge(x) then Γ is a congestion

game and there is only one latency function ge : R
+
0 → R

+
0 for an edge e ∈ E

that is used by all players.

3.1.2 Affine Latency Functions

We will sometimes consider congestion games with player-specific affine la-
tency functions fie(x) = aie ·x+ bie where aie, bie ≥ 0. For such a game Γ with
affine latency functions denote

∆(Γ) = max
e∈E; i,k∈[n]

{

ai e

ak e

; ai e < ∞, ak e < ∞
}

with the understanding that 0
0

= 1. ∆(Γ) describes the maximum factor by
which the slopes of the player-specific affine latency functions for one edge
differ. Note that ∆(Γ) does not depend on the constants bie of the latency
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3.1 Congestion Games with Player-Specific Latency Functions

functions. We will also sometimes consider congestion games with player-
specific linear latency functions where all latency functions are of the form
fi e(x) = ai e · x, ai e > 0.

3.1.3 Strategies and Strategy Profiles

A pure strategy for player i ∈ [n] is some specific si ∈ Si whereas a mixed
strategy Qi = (q(i, si))si∈Si

is a probability distribution over Si, where q(i, si)
denotes the probability that player i chooses the pure strategy si. A pure
strategy profile is an n-tuple s = (s1, . . . , sn) ∈ S whereas a mixed strategy
profile Q = (Q1, . . . , Qn) is represented by an n-tuple of mixed strategies.
Clearly, every pure strategy (profile) is a mixed strategy (profile). For a mixed
strategy profile Q and a pure strategy profile s define q(s) as the probability
that s is selected, i.e.,

q(s) =
∏

i∈[n]

q(i, si).

3.1.4 Private Cost

Fix any pure strategy profile s, and denote the load on resource e ∈ E by

δe(s) =
∑

i∈[n],si3e

wi.

The private cost of player i ∈ [n] is defined by

PCi(s) =
∑

e∈si

fie (δe(s)) .

For a mixed strategy profile Q, the private cost of player i ∈ [n] is

PCi(Q) =
∑

s∈S

q(s) · PCi(s).

3.1.5 Nash Equilibria and Selfish Steps

We are interested in a special class of strategy profiles called Nash equilibria
that we describe here. Given a game and an associated strategy profile, a
player i ∈ [n] is satisfied if it can not improve its private cost by unilaterally
changing its strategy. Otherwise, player i is unsatisfied. The mixed strategy
profile Q is a Nash equilibrium if and only if all players i ∈ [n] are satisfied,
i.e., PCi(Q) ≤ PCi(Q−i, si) for all i ∈ [n] and all si ∈ Si. Depending on the
type of the strategy profile Q, we distinguish between pure and mixed Nash
equilibria.

13
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Fix any pure strategy profile. In a selfish step, exactly one unsatisfied player
is allowed to change its pure strategy such that its private cost decreases. A
selfish step is greedy if the changing player is satisfied after he has done the
selfish step.

A game Γ possesses the finite best-reply property if any sequence of greedy
selfish steps is finite. If even any sequence of selfish steps is finite it possesses
in addition the finite improvement property.

A potential function1 for the game Γ is a function Φ : S1 × . . . × Sn → R

that decreases when a player takes a selfish step. If a game has a potential
function then it also has the finite improvement property. Note, that the
finite improvement property implies the finite best-reply property which again
implies the existence of a pure Nash equilibrium [70].

3.1.6 Social Cost and Price of Anarchy

Associated with a congestion game Γ and a mixed strategy profile Q is the
social cost as a measure of social welfare. We consider social cost as the
expected total latency [85], i.e.,

SCTL(Q, Γ) =
∑

i∈[n]

wi · PCi(Q)

=
∑

s∈S

q(s) ·
∑

i∈[n]

wi ·
∑

e∈si

fie (δe(s)) .

The optimum social cost associated with a game Γ is defined by

OPTTL(Γ) = min
s∈S

SCTL(s, Γ).

The price of anarchy denoted by PoATL measures how different the optimum
social cost and the social cost of mixed Nash equilibria can be. It is given by

PoATL = sup
Γ, Q is NE

SCTL(Q, Γ)

OPTTL(Γ)
.

3.2 Wardrop Games with Player-Specific Latency

Functions

In this section, we introduce the new class of Wardrop games with player-
specific latency functions. In contrast to traditional Wardrop games [12, 77, 92]
these games allow latency functions that are player-specific.

We will study Wardrop games with player-specific latency functions in Chap-
ter 7.

1Such a potential function is called generalized ordinal potential in the paper of Monderer
and Shapley [70].
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3.2.1 Instances

A Wardrop game with player-specific latency functions Υ is a tuple

Υ = (n, G, vo, vd, (wi)i∈[n], (fie)i∈[n],e∈E)

Here, n is the number of players and G = (V, E) is a directed symmetric
multigraph with an origin vo ∈ V and a destination vd ∈ V . For every player
i ∈ [n], wi is the traffic of player i. Edge latency functions fi e are player-specific
and fi e : R

+
0 → R

+
0 is the non-negative, non-decreasing, and continuous player-

specific latency function that player i ∈ [n] assigns to edge e ∈ E.

3.2.2 Affine Latency Functions

In the majority of cases, we consider player-specific affine latency functions
fie(u) = aie ·u+bie with aie, bie ≥ 0. For a Wardrop game Υ with affine latency
functions denote

∆(Υ) = max
e∈E; i,k∈[n]

{

ai e

ak e
; ai e < ∞, ak e < ∞

}

with the understanding that 0
0

= 1. We will also study Wardrop games with
player-specific linear latency functions where all latency functions are of the
form fi e(u) = ai e · u, ai e > 0.

3.2.3 Strategies and Strategy Profiles

Let P be the set of all paths from the origin node vo to the destination node vd.
A player i ∈ [n] can split its traffic wi over the paths in P. A (pure) strategy
for player i ∈ [n] is a tuple xi = (xiP )P∈P with

∑

P∈P xiP = wi and xiP ≥ 0
for all P ∈ P. A strategy profile x = (x1, . . . , xn) is an n-tuple of strategies for
the players.

3.2.4 Wardrop Equilibria

For a strategy profile x the load δe(x) on an edge e ∈ E is given by

δe(x) =
∑

i∈[n]

∑

P∈P,P3e

xiP .

A strategy profile x is a Wardrop equilibrium, if for every player i ∈ [n] and
every P, P ′ ∈ P with xiP > 0 it holds that

∑

e∈P

fi e(δe(x)) ≤
∑

e∈P ′

fi e(δe(x)).
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Chapter 3 Models

Observe that in a Wardrop equilibrium all flow paths of a player have equal
latency. We can regard each player i ∈ [n] as a service provider who has
many clients each handling a negligible small amount of traffic. In a Wardrop
equilibrium each service provider satisfies all his clients because none of them
can improve its experienced latency.

3.2.5 Social Cost and Price of Anarchy

If a Wardrop game Υ with player-specific latency functions and a strategy
profile x are given the social cost SCTL(x, Υ) is defined by:

SCTL(x, Υ) =
∑

i∈[n]

∑

P∈P
xiP ·

∑

e∈P

fi e(δe(x)).

This social cost measure is motivated by the interpretation of Υ as a game with
infinitely many (sub-)players with negligible demand and models the sum of
the players latencies. The optimum social cost OPTTL(Υ) associated with a
Wardrop game Υ with player-specific latency functions is given by the smallest
possible social cost of a strategy profile, i.e.,

OPTTL(Υ) = min
x

SCTL(x).

The price of anarchy denoted by PoATL measures how different the optimum
social cost and the social cost of Wardrop equilibria can be. It is given by

PoATL = sup
Υ, x is WE

SCTL(x, Υ)

OPTTL(Υ)
.

3.3 Bayesian Routing Games

In this section, we introduce the new class of Bayesian routing games. These
games are based on Harsanyi’s [51] concept of Bayesian games.

We will consider Bayesian routing games in Chapter 8.

3.3.1 Instances

A Bayesian routing game is a tuple Γ = (n, m, c, T,p). Each of n players
1, 2, . . . , n wishes to assign a particular amount of weight to one of m links
1, 2, . . . , m. Throughout, we assume that n ≥ 2 and m ≥ 2. Denote c =
(c1, . . . , cm), where cj > 0 is the capacity of link j ∈ [m]. In the case of
identical links, all capacities equal 1. In this case, we write Γ = (n, m, 1, T,p).
Link capacities vary arbitrarily in the case of related links. For each player
i ∈ [n], there is a finite set of possible types Ti; for each type t ∈ Ti, denote by
w(t) the weight of type t, w(t) ≥ 0. Denote T = T1 × . . . × Tn, the set of all
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3.3 Bayesian Routing Games

possible type profiles. For simplicity we assume that the weights (w(ti))ti∈Ti,i∈[n]

are encoded in T , so we do not include them in the game tuple. We use the
term type agent (i, t) to refer to the type t ∈ Ti of player i ∈ [n].

There is a joint probability distribution p = (p(t1, . . . , tn))(t1,...,tn)∈T , called
type distribution, over the set of type profiles T ; thus, p is a function p : T →
[0, 1] and

∑

(t1,...,tn)∈T p(t1, . . . , tn) = 1. Denote by p(i, t) the probability that
player i is of type t; so,

p(i, t) =
∑

(t1,...,tn)∈T :ti=t

p(t1, . . . , tn).

We say that p is independent if

p(t1, . . . , tn) =
∏

i∈[n]

p(i, ti) for all (t1, . . . , tn) ∈ T,

otherwise, p is correlated. By the definition of conditional probability,

p(t1, . . . , tk−1, tk+1, . . . , tn|tk = t) =
p(t1, . . . , tk−1, t, tk+1, . . . , tn)

p(k, t)
;

that is, the probability of a type profile (t1, . . . , tn) given that tk = t is the
probability of type profile (t1, . . . , tn) divided by the probability that player k
is of type t. We only consider instances where p(k, t) > 0 for all players k ∈ [n]
and all types t ∈ Tk. Denote by W (i) the expected weight of player i ∈ [n];
clearly,

W (i) =
∑

(t1,...,tn)∈T

p(t1, . . . , tn) · w(ti)

=
∑

t∈Ti

p(i, t) · w(t).

Furthermore, define the expected total weight as

W =
∑

i∈[n]

W (i).

For any pair of players i, s ∈ [n] and for any type t ∈ Ti, define W (s|ti = t) as
the conditional expected weight of player s, given that player i has type t; so,

W (s|ti = t) =
∑

(t1,...,tn)∈T :

ti=t

p(t1, . . . , ti−1, ti+1, . . . , tn|ti = t) · w(ts).

For the case of independent type distribution we have W (s|ti = t) = W (s) for
all types t ∈ Ti of player i.

A special instance of our Bayesian routing game in which each player has only
a single type is a complete information routing game or weighted congestion
game on parallel links (see Section 3.1.1). For such a game, we write ΓCI =
(n, m, c, T, 1). Here, the set T contains only one type profile t that is used
with probability 1.
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3.3.2 Strategies and Strategy Profiles

A pure strategy σi for player i ∈ [n] is a mapping of the set of possible types Ti

to the set of links [m]; so σi is a function σi : Ti → [m]. Denote as Σi the set
of all possible pure strategies for player i ∈ [n]; denote Σ = Σ1 × . . . × Σn. A
mixed strategy Qi = (q(i, σi))σi∈Σi

for player i ∈ [n] is a probability distribution
over Σi; here, q(i, σi) denotes the probability that player i chooses the pure
strategy σi.

The support of a mixed strategy Qi for player i ∈ [n], denoted supportQi
(i),

is the set of links to which player i assigns at least one type t ∈ Ti with positive
probability, that is,

supportQi
(i) = {j ∈ [m] | ∃σi ∈ Σi, ∃t ∈ Ti with q(i, σi) > 0 and σi(t) = j}.

Similarly, the support of any type t ∈ Ti of player i ∈ [n] is defined by

supportQi
(t) = {j ∈ [m] | ∃σi ∈ Σi with q(i, σi) > 0 and σi(t) = j}.

Note that

supportQi
(i) =

⋃

t∈Ti

supportQi
(t).

A pure strategy profile σ is an n-tuple (σ1, . . . , σn) ∈ Σ. Call σ normal if
σi(t) = σi(t

′) for all types t, t′ ∈ Ti and for all players i ∈ [n]. So, each player
i ∈ [n] does not distinguish among its types in a normal pure strategy profile.

A mixed strategy profile Q = (Q1, . . . , Qn) is an n-tuple of mixed strategies.
Call a mixed strategy profile F = (F1, . . . , Fn) fully mixed if each player assigns
strictly positive probability to each of its pure strategies; that is, f(i, σi) > 0
for all players i ∈ [n] and all strategies σi ∈ Σi. Notice that supportFi

(i) = [m]
for all players i ∈ [n] and supportFi

(t) = [m] for all players i ∈ [n] and types
t ∈ Ti.

3.3.3 Private Cost

Pure Strategy Profiles

Fix any type distribution p and a pure strategy profile σ = (σ1, . . . , σn). The
expected load on link j ∈ [m], denoted δj(σ,p), is defined by

δj(σ,p) =
∑

(t1,...,tn)∈T

p(t1, . . . , tn) ·
∑

i∈[n]:

σi(ti)=j

w(ti).

In the same way, denote as δ−k
j (σ, (p|tk = t)) the conditional expected load of

all players i ∈ [n] other than k on link j ∈ [m] given that tk = t; so,

δ−k
j (σ, (p|tk = t)) =

∑

(t1,...,tn)∈T :

tk=t

p(t1, . . . , tk−1, tk+1, . . . , tn|tk = t)
∑

i∈[n]\{k}:

σi(ti)=j

w(ti).
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Let λj
(i,t)(σ,p) be the private cost of type agent (i, t) when it is assigned to link

j ∈ [m]; so,

λj
(i,t)(σ,p) =

δ−i
j (σ, (p|ti = t)) + w(t)

cj

.

Denote as v(i,t)(σ,p) the conditional private cost of player i ∈ [n], given that
player i is of type t; this is also the private cost of type agent (i, t); so

v(i,t)(σ,p) = λ
σi(t)
(i,t) (σ,p).

Note that v(i,t)(σ,p) does not depend on the other types t′ ∈ Ti \ {t} of player
i. Finally, denote as PCi(σ,p) the private cost of player i; clearly,

PCi(σ,p) =
∑

t∈Ti

p(i, t) · v(i,t)(σ,p).

Mixed Strategy Profiles

Fix any type distribution p and a mixed strategy profile Q. The expected load
on link j ∈ [m], denoted δj(Q,p), is defined by

δj(Q,p) =
∑

σ∈Σ

∏

i∈[n]

q(i, σi) · δj(σ,p).

In the same way, denote as δ−k
j (Q, (p|tk = t)) the conditional expected load of

all players i ∈ [n] other than k on link j ∈ [m] given that tk = t; so,

δ−k
j (Q, (p|tk = t)) =

∑

σ∈Σ

∏

i∈[n]

q(i, σi) · δ−k
j (σ, (p|tk = t)).

For the case of an independent type distribution p, we get that for all types
t, t′ ∈ Tk, δ−k

j (Q, (p|tk = t)) = δ−k
j (Q, (p|tk = t′)). Therefore, to simplify

notation, we write in this case δ−k
j (Q,p).

Let λj
(i,t)(Q,p) be the private cost of type agent (i, t) when it is assigned to

link j ∈ [m]; so,

λj
(i,t)(Q,p) =

δ−i
j (Q, (p|ti = t)) + w(t)

cj

.

Denote as v(i,t)(Q,p) the conditional private cost of player i ∈ [n], given that
player i is of type t; this is also the private cost of type agent (i, t); so,

v(i,t)(Q,p) =
∑

σi∈Σi

q(i, σi) · λσi(t)
(i,t) (Q,p).

Note that v(i,t)(Q,p) does not depend on the other types t′ ∈ Ti \ {t} of player
i. Finally, denote as PCi(Q,p) the private cost of player i; clearly,

PCi(Q,p) =
∑

t∈Ti

p(i, t) · v(i,t)(Q,p).
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3.3.4 Bayesian Nash Equilibria

A strategy profile is a Bayesian Nash equilibrium, if no player has an incentive
to deviate from its strategy; that is, no player can possibly decrease its private
cost when other players are sticking to their strategies. Formally, the mixed
strategy profile Q = (Q1, . . . , Qn) is a Bayesian Nash equilibrium if

PCi(Q,p) ≤ PCi(Q
′,p)

for all mixed strategy profiles Q′ = (Q1, . . . , Qi−1, Q
′
i, Qi+1, . . . , Qn) and for all

players i ∈ [n]. Moreover, since v(i,t)(Q,p) does not depend on the other types
t′ ∈ Ti \ {t} of player i, the above condition is equivalent to

v(i,t)(Q,p) ≤ v(i,t)(Q
′,p)

for all mixed strategy profiles Q′ = (Q1, . . . , Qi−1, Q
′
i, Qi+1, . . . , Qn) and for all

players i ∈ [n] and types t ∈ Ti. Note that Q is a Bayesian Nash equilibrium
if and only if for all players i ∈ [n] and types t ∈ Ti,

v(i,t)(Q,p) = λj
(i,t)(Q,p), for j ∈ supportQi

(t), and

v(i,t)(Q,p) ≤ λj
(i,t)(Q,p), for j 6∈ supportQi

(t).

We refer to these conditions as the Bayesian Nash equilibrium conditions.

3.3.5 Social Cost and the Price of Anarchy

Associated with a Bayesian routing game Γ = (n, m, c, T,p) and a mixed
strategy profile Q is the social cost as a measure of social welfare. We consider
three different measures for social cost.

The expected maximum latency, which is the expectation over all player
choices and type profiles, of the maximum latency on a link; so

SCMSP(Q, Γ)

=
∑

(σ1,...,σn)∈Σ

∏

i∈[n]

q(i, σi)
∑

(t1,...,tn)∈T

p(t1, . . . , tn) · max
j∈[m]















1

cj

∑

i∈[n],

σi(ti)=j

w(ti)















=
∑

(t1,...,tn)∈T

p(t1, . . . , tn)
∑

(σ1,...,σn)∈Σ

∏

i∈[n]

q(i, σi) · max
j∈[m]















1

cj

∑

i∈[n],

σi(ti)=j

w(ti)















.

The sum of private costs is given by

SCSUM(Q, Γ) =
∑

i∈[n]

PCi(Q,p).
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3.4 Bottleneck Games with Splittable Traffic

And the maximum private cost is defined by

SCMAX(Q, Γ) = max
i∈[n]

PCi(Q,p).

Let ∗ ∈ {MSP, SUM, MAX}. Denote the corresponding optimum social cost
by OPT∗(Γ) = minQ SC∗(Q, Γ). The price of anarchy PoA∗ is the supremum,

over all instances Γ and Bayesian Nash equilibria Q, of the ratio SC∗(Q,Γ)
OPT∗(Γ)

; that
is,

PoA∗ = sup
Γ,BNEQ

SC∗(Q, Γ)

OPT∗(Γ)
.

3.3.6 Weighted Bayesian Congestion Games

A generalization of the Bayesian routing game considered in our work is the
weighted Bayesian congestion game with affine latency functions. Like in a
classical congestion game (see Section 3.1), each player i ∈ [n] can be assigned
to a subset si of the resources out of a given set Si ⊆ 2[m] of subsets of
resources. The latency function of resource e ∈ [m] is given by an arbitrary,
non-decreasing affine function ge(x) = aex + be. For a Bayesian congestion
game, a pure strategy profile σ is defined by σ = (σ1, . . . , σn) with σi : Ti → Si

for all i ∈ [n]. Thus a pure strategy of a player can consist of many resources
whereas in a Bayesian routing game a pure strategy is one link.

For a pure strategy profile σ, the conditional expected load of all players
i ∈ [n] other than k, on resource e ∈ [m] given that tk = t is then

δ−k
e (σ, (p|tk = t)) =

∑

(t1,...,tn)∈T :

tk=t

p(t1, . . . , tk−1, tk+1, . . . , tn|tk = t)
∑

i∈[n]\{k}:

e∈σi(ti)

w(ti);

whereas the conditional private cost of player i, given that player i is of type
t ∈ Ti is then defined by

v(i,t)(σ,p) =
∑

e∈σi(t)

ge(δ
−i
e (σ, (p|ti = t)) + w(t)).

3.4 Bottleneck Games with Splittable Traffic

In this section, we introduce the new class of bottleneck games with splittable
traffic. Here, the latency on a path is given by the maximum latency of an
edge on this path whereas for the well-known Wardrop games [12, 77, 92] it
is given by the sum of these latencies. Recently, Cole et al. [22] defined and
studied a model that is very similar to our bottleneck games with splittable
traffic (see Section 4.5 for a comparison).

We will investigate bottleneck games with splittable traffic in Chapter 9.

21



Chapter 3 Models

3.4.1 Instances

A bottleneck game with splittable traffic is a tuple

Γ = (G, vo, vd, (fe)e∈E, r)

where a traffic of r ∈ R
+ has to be routed from an origin node vo to a desti-

nation node vd in a network (G, s, t, (fe)e∈E). Here, G = (V, E) is a directed
symmetric multigraph, vo, vd ∈ V are distinct origin and destination nodes, and
the fe’s are latency functions. Each of these functions fe : R

+
0 → R

+
0 ∪ {∞} is

non-negative, continuous, and non-decreasing.
For a non-empty set F of latency functions we define G (F) as the set of all

bottleneck games with latency functions drawn from F . The subset P(F) ⊂
G (F) consists of all games in G (F) that are defined on a graph of parallel
links. To further differentiate we denote by G (F , m, r) ⊂ G (F) the set of
games with at most m edges and a traffic of at most r. Likewise, P(F , m, r) =
G (F , m, r) ∩ P(F).

3.4.2 M/M/1 latency function

For ease of notation, we write Γ = (G, vo, vd, (ce)e∈E , r) for a bottleneck game
with splittable traffic and M/M/1 latency functions where ce > 0 is the capacity
for edge e ∈ E. The M/M/1 latency functions fe, e ∈ E, are implicitly defined
by

fe(u) =

{

1
ce−u

if u < ce

∞ otherwise.

Observe that the latency fe(u) approaches ∞ as the load u approaches ce. We
denote by M the set of all M/M/1 latency functions and by M≥c ⊂ M the
functions with a capacity of at least c where c > 0.

3.4.3 Strategy Profiles

The traffic r can split arbitrarily over the set Pvovd
of all possible simple paths

from the origin vo to the destination vd. A strategy profile is a vector x =
(xP )P∈Pvovd

where
∑

P∈Pvovd
xP = r and xP ≥ 0 for all P ∈ Pvovd

. The load δe

on an edge e ∈ E is given by

δe(x) =
∑

P∈Pvovd
,P3e

xP .

3.4.4 Wardrop Equilibria

A strategy profile is a Wardrop equilibrium if the bottleneck latency of each
used path is not larger than the bottleneck latency of any other path, i.e., if
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3.4 Bottleneck Games with Splittable Traffic

for all P, R ∈ Pvovd

xP > 0 ⇒ max
e∈P

fe(δe(x)) ≤ max
e∈R

fe(δe(x)).

3.4.5 Social Cost and Price of Anarchy

The social cost of a strategy profile x is defined as the “canonically” weighted
sum of all path latencies, i.e.,

SC(x, Γ) =
∑

P∈Pvovd

xP · max
e∈P

fe(δe(x)).

If x is a Wardrop equilibrium, l(x) = SC(x,Γ)
r

denotes the unique bottleneck
latency of all paths with non-zero flow. The optimum associated with a bottle-
neck game with splittable traffic Γ is the minimum social cost of any strategy
profile: OPT(Γ) = minx SC(x, Γ). The price of anarchy (PoA) and price of
stability (PoS) for a set G of games are defined as

PoA(G ) = sup
Γ∈G ,

x Wardr. Equ. in Γ

SC(x, Γ)

OPT(Γ)
,

PoS(G ) = sup
Γ∈G

inf
x Wardr. Equ. in Γ

SC(x, Γ)

OPT(Γ)
,

where by definition ∞
∞ = 1 and 0

0
= 1. Furthermore, u

0
= ∞ if u > 0.

3.4.6 Capacity of a Network

For a given network (G, vo, vd, (fe)e∈E) its capacity is given by

C(G, vo, vd, (fe)e∈E)

= sup

{

r ∈ R
+
0

∣

∣

∣

∣

∃ strategy profile x with SC(x, Γ) < ∞
for (G, vo, vd, (fe)e∈E, r)

}

∪ {0}.

Whenever a bottleneck game with splittable traffic and M/M/1 latency func-
tions on m parallel links is considered we assume that c1 ≥ . . . ≥ cm and
denote

C =

m
∑

i=1

ci, C≤i =

i
∑

k=1

ck.

Clearly, C is just the capacity of the network.
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CHAPTER 4

Related Work

In this chapter, we cite previous work that is directly related to this thesis.
For a general introduction to game theory see [65, 71, 75].

4.1 Congestion games

Unweighted congestion games were introduced by Rosenthal [80, 81] and ex-
tensively studied afterwards (see [45, 90] for recent surveys). We gave a formal
definition of these games in Section 3.1.

Existence and Computation of Equilibria

Rosenthal used a potential function to show that every unweighted conges-
tion game possesses a pure Nash equilibrium [80]. Subsequent papers [70, 91]
characterized games that admit a potential function as potential games and
showed their relation to congestion games. Fotakis et al. [40] proved that every
weighted asymmetric network congestion game with affine latency functions
has a potential function and a pure Nash equilibrium; in contrast, there are
weighted symmetric network congestion games with non-affine latency func-
tions that have no pure Nash equilibrium even if there are only 2 players
[40, 62]. Nevertheless, the existence of pure Nash equilibria is guaranteed
whenever a weighted congestion game is considered where the strategy set
of each player consists of the bases of a matroid on the set of resources [2].
It is strongly NP-complete to determine whether a given weighted network
congestion game has a pure Nash equilibrium [28].

A polynomial time computation of a pure Nash equilibrium for an un-
weighted symmetric network congestion game is possible by reduction to the
min-cost flow problem [30]. However, the problem becomes PLS-complete
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for both (non-network) unweighted symmetric congestion games [30] and un-
weighted asymmetric network congestion games where the edges of the network
are either directed [30] or undirected [1].

Price of Anarchy

The price of anarchy was studied for congestion games with social cost defined
as the total latency. For affine latency functions and both pure and mixed
equilibria, it is exactly 5

2 for unweighted [21] and 1
2 · (3 +

√
5) for weighted

congestion games [9]. The exact price of anarchy is also known for polynomial
latency functions with non-negative coefficients [4].

4.2 Congestion Games on Parallel Links

The special case of congestion games on parallel links has attracted a lot of
attention in the last couple of years; see, for example, [26, 34, 35, 38, 44, 59,
60, 64].

Existence and Computation of Equilibria

Weighted congestion games on parallel links have the finite improvement prop-
erty (and hence a pure Nash equilibrium) if all latency functions are non-
decreasing; in this setting, [38] implies that a pure Nash equilibrium can be
computed in polynomial time by using the classical LPT algorithm due to
Graham [50].

Fully Mixed Nash Equilibria

The fully mixed Nash equilibrium conjecture states for weighted congestion
games on parallel links that the fully mixed Nash equilibrium has worst social
cost among all Nash equilibria; it was motivated by some results in [67], explic-
itly formulated in [44], and further studied in [64]. For social cost defined as
the sum of private costs, the conjecture holds [43, 63]; it was recently disproved
for social cost defined as the expected maximum latency [37].

Price of Anarchy

For weighted congestion games on m parallel links, mixed equilibria, and so-
cial cost defined as the expected maximum latency, the price of anarchy is
Θ( log m

log log m) for identical links [26, 59] and Θ( log m
log log log m) [26] for related links. If

instead social cost is defined as the sum of private costs n
5 is a lower bound on

the price of anarchy [14] for pure equilibria on identical links where n is the
number of weighted players.
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4.3 Congestion Games with Player-Specific

Latency Functions

We gave a formal definition of congestion games with player-specific latency
functions in Section 3.1. Milchtaich [69] showed that there is an unweighted
congestion game with player-specific latency functions on parallel links that
does not have the finite best-reply property. Nevertheless, a pure Nash equi-
librium for such a game is guaranteed to exist and can be computed in poly-
nomial time [69]. The existence of pure Nash equilibria is even guaranteed for
unweighted congestion games with player-specific latency functions where the
strategy set of each player consists of the bases of a matroid on the set of re-
sources [2]. Furthermore, equilibria existence and the finite improvement prop-
erty are guaranteed for all unweighed congestion games with player-specific
additive constants [31].

For weighted congestion games with player-specific latency functions on par-
allel links, there is a counterexample to the existence of a pure Nash equilibrium
with only 3 players and 3 links [69]. This is a tight result since such games
possess the finite best-reply property in case of 2 players and the finite im-
provement property in case of 2 links [69]. An explicit potential function for
the latter class of games was given by Anantharam [7].

The special case of congestion games with player-specific linear latency func-
tions on parallel links was studied by Georgiou et al. [48]. For the case of 3
weighted players, such games are guaranteed to have a pure Nash equilibrium
[48]. For the case of 2 links and weighted players, there is a polynomial time
algorithm to compute a pure Nash equilibrium [48]. Georgiou et al. [48] also
proved upper bounds on the price of anarchy for both social cost defined as
the maximum private cost of a player and social cost defined as the sum over
the private costs of all players.

4.4 Wardrop Games

In recent years, Wardrop games — which were already introduced in the 1950’s
(see, e.g., [12, 92]) — received a lot of attention. Since a Wardrop equilibrium
is a solution to a convex program, it can be computed in polynomial time using
the ellipsoid method of Khachiyan [56]. This results also implies that the total
latency is the same for all Wardrop equilibria. A recent paper by Fischer et
al. [36] shows that a fast convergence to a Wardrop equilibrium is possible with
a replication and exploration rerouting policy if a symmetric Wardrop game
with polynomial latency functions is considered.

Roughgarden and Tardos analyzed the price of anarchy for Wardrop games
where the total latency measures social cost. They showed that the price of an-
archy is 4

3
for affine latency functions [85] and Θ( d

ln d
) for polynomials of degree

27



Chapter 4 Related Work

at most d with non-negative coefficients [84]. If all latency functions are linear
then every Wardrop equilibrium has optimum social cost [85]. Roughgarden
[82] proved that the price of anarchy is independent of the network topology
if a class F of latency functions is considered that only fulfills relatively weak
assumptions. Instead, it only depends on the so called “anarchy value” α(F)
of F , and the worst-case ratio is already achieved on parallel links.

Roughgarden [84] also considered Wardrop games on networks with M/M/1
latency functions. When r is the amount of traffic and cmin > r is the minimum
capacity among all edge capacities in the network, an upper bound on the price
of anarchy is given by 1

2
· (1 +

√

cmin/(cmin − r)). Observe that this expression
approaches ∞ as the amount of traffic r approaches cmin. This upper bound
is asymptotically tight even for games on so-called union of paths graphs, i.e.,
on graphs that consist of disjoint paths from an origin node vo to a destination
node vd where the paths only have the two nodes vo and vd in common.

There is also some work that focused on the price of anarchy for Wardrop
games but did not use total latency to measure the social cost [24, 25, 83].

4.5 Bottleneck Games

In a recent paper, Cole et al. [22] studied Wardrop-like games where the latency
of a path is defined as the p-norm, 1 < p ≤ ∞, of the vector of its edge latencies.
In this context, they also looked at the case of “elastic traffic” where some share
of the participants might be better off by not traveling at all.

When p = ∞ and in the case of inelastic traffic, their games are equal to
the bottleneck games with splittable traffic that we introduced in Section 3.4.
However, they looked at a subclass of Wardrop equilibria that they define as
“subpath-optimal”, with the reason for their restricting being that otherwise
the price of anarchy is infinite even if latency functions are just linear. They
showed that the anarchy value [82] is an upper bound on the price of anarchy
for subpath optimal equilibria and hence also an upper bound on the price of
stability.

There are also two recent papers [18, 19] investigating the price of anarchy
for bottleneck congestion games where the private cost of a player is defined
as the maximum latency of any edge on the path used by the player.

4.6 Finite Splittable Routing Games

There are several papers (see e.g. [6, 20, 23, 53, 58, 74]) studying finite splittable
routing games where a finite number of players with non-negligible effect on
each other is given. The players have to split their traffics over the available
paths with the objective to minimize their private costs. In this setting, the
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price of anarchy for affine latency functions and social cost as total latency is
at most 3

2
[23].

Two papers [58, 74] studied such games with certain player-specific private
cost functions that are based on M/M/1 latency functions. Korilis et al. [58]
studied what happens to the private costs of the players if new capacity is
added to the network or if existing capacity is reallocated. Orda et al. [74]
considered the (non-)uniqueness of equilibria.

Banner and Orda [11] studied finite splittable routing games where the pri-
vate cost of a player is defined as the maximum among all latencies of edges to
which this player assigns a non-zero flow, whereas social cost is given by the
maximum edge latency in the network. Moreover, they proved the existence
and non-uniqueness of equilibria. They were also able to show that the price
of anarchy is unbounded.

4.7 Harsanyi’s Bayesian Games

The Nobel laureate Harsanyi developed in his pioneering work [51, 52] a frame-
work for studying competitive situations where the players have incomplete
information. For an introduction to these so-called Bayesian games, we refer
to [41, 65, 71]. We will also briefly sketch the concept of Bayesian games in
Section 8.1.

A class of Bayesian games related to this thesis was introduced by Facchini
et al. [31]. They extended unweighted congestion games to an incomplete
information setting in which each agent has, according to his type, specific
rewards for the subsets of resources that he can use. Facchini et al. [31] proved
that in this setting equilibria are guaranteed to exist.

Beier et al. [13] focused on a service provider game with incomplete infor-
mation. In such a game, the decision of a customer to join or refuse a service
does not only depend on the quality of service but also on the customer’s type
that describes the customer’s minimum quality of service requirement.
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CHAPTER 5

Congestion Games with Player-Specific Constants

5.1 Introduction

In this chapter, we study the congestion games with player-specific constants
that we defined in Section 3.1. In a congestion games with player-specific
constants each player-specific latency function fie(x) = ge(x) � cie is made up
of a resource-specific delay function ge and a player-specific constant cie (for the
particular resource); the two are composed by means of a binary operation �.
For example, congestion games with player-specific additive constants (resp.,
multiplicative constants) correspond to the case where the binary operation is
addition (resp., multiplication).

Note that this new model of congestion games restricts Milchtaich’s one
[69] since player-specific latency functions are no longer completely arbitrary;
simultaneously, it generalizes Rosenthal’s model [80] since it allows composing
player-specific constants into each latency function. We will observe that the
class of congestion games with player-specific constants is contained in the
more general class of dominance congestion games that we also defined in
Section 3.1. In this more general class of congestion games with player-specific
latency functions, it holds that for any pair of players, the preference of some
of the two players with regard to a pair of resources necessarily induces an
identical preference for the other player.

5.1.1 Contribution

We focus on pure Nash equilibria for congestion games with player-specific
constants; for these equilibria, we study questions of existence, computational
complexity and convergence via selfish steps (finite improvement property) and
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greedy selfish steps (finite best-reply property) of players. Our findings are as
follows:

• Games on parallel links:

– Every unweighted congestion game with player-specific constants
on parallel links has a potential function; hence, it has the finite
improvement property and a pure Nash equilibrium.

– There is a weighted congestion game with player-specific additive
constants and 3 players on 3 parallel links that does not have the
finite best-reply property (and hence neither the finite improvement
property).

– There is a particular greedy selfish step cycle for weighted con-
gestion games with general player-specific latency functions and 3
players on parallel links whose outlaw implies the existence of a
pure Nash equilibrium. This cycle is indeed outlawed for weighted
dominance congestion games with 3 players on parallel links – and
hence for weighted congestion games with player-specific constants
and 3 players on parallel links. Hence, weighted congestion games
with player-specific constants and 3 players on parallel links have a
pure Nash equilibrium.

• Network games:
For unweighted symmetric network congestion games with player-specific
additive constants, it is PLS-complete to find a pure Nash equilibrium.

• Arbitrary (non-network) games:
Every weighted congestion game with linear delay functions and player-
specific additive constants has a potential function; hence, it has the
finite improvement property and a pure Nash equilibrium.

5.1.2 Related Work

The related work that is relevant for this chapter studies congestion games with
player-specific latency functions (Section 4.3), the existence and computation
of Nash equilibria in congestion games (Section 4.1) also for the special case
of congestion games on parallel links (Section 4.2).

5.1.3 Road Map

We partition the results of this chapter according to the structure of the strat-
egy sets in the congestion games with player-specific constants. We restrict to
games on parallel links in Section 5.2, to games on networks in Section 5.3,
whereas there is no restriction on the strategy sets in Section 5.4. In Section 5.5
we conclude and discuss directions for further research.
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5.2 Congestion Games on Parallel Links

We will now show that every unweighted congestion game with player-specific
constants on parallel links has the finite improvement property and a pure
Nash equilibrium. For the proof we introduce a function Φ with

Φ(s) =
⊙

e∈E

δe(s)
⊙

i=1

ge(i) �
n
⊙

i=1

cisi
.

for any strategy profile s. We now prove that this function is a potential
function:

Theorem 5.1: Every unweighted congestion game with player-specific con-
stants on parallel links has a potential function.

Proof: Fix a strategy profile s. Consider a selfish step of player k ∈ [n] to
strategy tk, which transforms s to t. Clearly, PCk(s) > PCk(t) or

gsk
(δsk

(s)) � cksk
> gtk(δtk(t)) � cktk . (5.1)

Note also that δsk
(t) = δsk

(s)− 1 and δtk(t) = δtk(s)+ 1, while δe(t) = δe(s) for
all e ∈ E \ {sk, tk}. Hence,

Φ(s) =
⊙

e∈E\

{sk,tk}

δe(s)
⊙

i=1

ge(i) �
⊙

i∈[n]\{k}
cisi

�
δsk

(s)
⊙

i=1

gsk
(i) �

δtk
(s)

⊙

i=1

gtk(i) � cksk

=
⊙

e∈E\

{sk,tk}

δe(s)
⊙

i=1

ge(i) �
⊙

i∈[n]\{k}
cisi

�
δsk

(s)−1
⊙

i=1

gsk
(i)

�
δtk

(s)
⊙

i=1

gtk(i) � gsk
(δsk

(s)) � cksk

(5.1)
>

⊙

e∈E\

{sk,tk}

δe(s)
⊙

i=1

ge(i) �
⊙

i∈[n]\{k}
cisi

�
δsk

(s)−1
⊙

i=1

gsk
(i)

�
δtk

(s)
⊙

i=1

gtk(i) � gtk(δtk(t)) � cktk

=
⊙

e∈E\

{sk,tk}

δe(t)
⊙

i=1

ge(i) �
⊙

i∈[n]\{k}
cisi

�
δsk

(t)
⊙

i=1

gsk
(i) �

δtk
(t)

⊙

i=1

gtk(i) � cktk

= Φ(t),

so that Φ is a potential function. �
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Theorem 5.1 immediately implies:

Corollary 5.1: Every unweighted congestion game with player-specific con-
stants on parallel links has the finite improvement property and a pure Nash
equilibrium.

We would like to give two remarks on the results of Theorem 5.1 and Corol-
lary 5.1:

• Note that the theorem and the corollary even hold if the functions ge are
not non-decreasing.

• “�” is “+”: Facchini et al. [31] showed a more general result for additive
player-specific constants that does not restrict to parallel links. They
proved the finite improvement property for all unweighted congestion
games with additive player-specific constants.

We will now show that it is not possible to generalize Theorem 5.1 to the
setting that allows players of different weights. To do so, we give a game with
weighted players that neither possesses the finite improvement property nor
the finite best-reply property.

Theorem 5.2: There is a weighted congestion game with additive player-
specific constants and 3 players on 3 parallel links that does not have the finite
best-reply property.

Proof: By construction. The weights of the 3 players are w1 = 2, w2 = 1,
and w3 = 1. For a load x on link e, player i’s latency on this link e is given by
cie + ge(x), where:

cie Link 1 Link 2 Link 3
Player 1 0 ∞ 5
Player 2 0 0 ∞
Player 3 ∞ 0 2

Link 1 Link 2 Link 3
ge(1) 1 2 1
ge(2) 8 13 2
ge(3) 14 ∞ 10

Notice that the strategy profiles (1, 2, 3) and (3, 1, 2) are Nash equilibria. Con-
sider now the cycle (1, 1, 3) → (1, 1, 2) → (1, 2, 2) → (3, 2, 2) → (3, 2, 3) →
(3, 1, 3) → (1, 1, 3). The private cost of the deviating player decreases in each
of these steps:

PC1 PC2 PC3

(1, 1, 3) 14 3
(1, 1, 2) 14 2
(1, 2, 2) 8 13
(3, 2, 2) 7 13
(3, 2, 3) 2 12
(3, 1, 3) 15 1
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So, this is a cycle of selfish steps. Furthermore, each of the selfish steps from
a link o to a link p of a player i is a greedy selfish step. If the player i would
instead move to link q with q 6= o and q 6= p then his private cost would
increase since ciq = ∞. Therefore, this is a greedy selfish step cycle that can
be used to construct an infinite sequence of greedy selfish steps. �

Note that Theorem 5.2 does not outlaw the possibility that every weighted
congestion game with player-specific constants on parallel links has a pure
Nash equilibrium. Although we do not know whether equilibria are guaranteed
to exist for the general case with an arbitrary number of players we will be
able to prove that all such games with three players are guaranteed to possess
a pure Nash equilibrium. To get this result we first establish that there is
a particular greedy selfish step cycle whose outlaw implies the existence of a
pure Nash equilibrium:

Theorem 5.3: Let Γ be a weighted congestion game with player-specific la-
tency functions and 3 players on parallel links. If Γ does not have a greedy
selfish step cycle

(l, j, j) → (l, l, j) → (k, l, j) → (k, l, l) → (k, j, l) → (l, j, l) → (l, j, j)

(where l 6= j, j 6= k, l 6= k are any three links and w1 ≥ w2 ≥ w3), then Γ has
a pure Nash equilibrium.

Proof: Assume that Γ does not have a greedy selfish step cycle of the given
form. We will construct a pure Nash equilibrium for Γ. We start by assigning
player 1 to a best link: one that minimizes his private cost. Then, we assign
player 2 to his best link (given the assignment of player 1). We now distinguish
three different cases.

Case (A) Players 1 and 2 are assigned to the same link a and player 1 remains
satisfied.

Case (B) Players 1 and 2 are assigned to the same link a and player 1 is now
unsatisfied.

Case (C) Players 1 and 2 are assigned to different links a and b, respectively.

We will show how, in each of these cases, a pure Nash equilibrium can be
reached by assigning player 3 and taking some greedy selfish steps.

Case (A): Assign now player 3 to his best link (given the assignments of
players 1 and 2). If this link is different from a, we reached a Nash
equilibrium. If all players are assigned to link a but the current strategy
profile is not a Nash equilibrium, at least one of the players 1 and 2 is
unsatisfied. We reach a Nash equilibrium by a greedy selfish step for one
unsatisfied player.
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Case (B): We now do a greedy selfish step for player 1. Let b, b 6= a, be the
link to that player 1 is now assigned. Both players 1 and 2 are satisfied
in the current strategy profile. Assign now player 3 to his best link.

• If this link is different from both a and b, we reached a Nash equi-
librium.

• If player 3 is together with player 2, we also reached a Nash equi-
librium since w1 ≥ w3 and a was a best link for player 2 initially.

• There remains the case where player 3 is together with player 1. If
player 1 is satisfied, we reached a Nash equilibrium. Else, we take
a greedy selfish step for player 1. Now player 1 is either assigned to
link a or to a link that is different from both a and b. In both cases,
players 1 and 3 are obviously satisfied and player 2 is also satisfied
since a was a best link for player 2 initially (even with player 1 on
it). So, we reached a Nash equilibrium.

Case (C): Note that both players are satisfied in the current strategy profile.
We now assign player 3 to his best link. If this link is different from both
a and b, we reached a Nash equilibrium. We will now consider the two
remaining cases (C1) where player 3 is assigned to a together with player
1 and (C2) where player 3 is assigned to link b together with player 2.
Both cases (C1) and (C2) are shown in diagrammatic form in Figure 5.1.

Case (C1): If player 1 is satisfied, we reached a Nash equilibrium. Else, we
take a greedy selfish step for player 1. Now player 1 is either assigned
to link b or to some other link different from a. In both cases, players 1
and 3 are obviously satisfied. If player 2 is satisfied we reached a Nash
equilibrium. Otherwise we do a greedy selfish step for player 2.

If player 1 is assigned to link b, the greedy selfish step takes player 2
either to link a or to some other link different from b. In both cases,
players 1 and 2 are obviously satisfied. Player 3 is satisfied since a was a
best link for player 3 initially (even with player 1 on it). So, we reached
a Nash equilibrium.

Thus, the case remains where player 1 is assigned to a link c different
from both a and b. The initial decision of player 2 for his best link implies
that his current greedy selfish step will assign him to link a together with
player 3. If the current strategy profile is not a Nash equilibrium, then
player 1 is either satisfied of unsatisfied. We proceed by case analysis.

• If player 1 is satisfied, we take a greedy selfish step for player 3.
The initial decision of player 3 for his best link implies that player
3 will go to link b, and both 2 and 3 are obviously satisfied. Player
1 is also satisfied since he neither can improve by switching to link
a (due to his earlier greedy selfish step) nor to some other different
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Figure 5.1: Two diagrams for the cases (C1) and (C2) that are considered
in the proof of Theorem 5.3. Circles show the players that are
necessarily satisfied in a given strategy profile.
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link (since he was satisfied on link c before the greedy selfish step
of player 3). So, we reached a Nash equilibrium.

• If player 1 is unsatisfied, we take a greedy selfish step for player
1. Now player 1 will is assigned to link b (since choosing any other
link would imply a contradiction to his earlier greedy selfish step).
The initial decision of player 3 for a best link implies that he is still
satisfied. Player 2 is also satisfied since he neither wants to deviate
to link b (due to his last greedy selfish step) nor to any other link
different from a. (For the latter, observe that his initial decision for
a best link implies that a deviation to a link different from a and
b would induce a private cost greater than or equal to his private
cost after his deviation to link b.) Since all players are satisfied, we
reached a Nash equilibrium.

Case (C2): If player 2 is satisfied, we reached a Nash equilibrium. Else, we
take a greedy selfish step for player 2. Now player 2 is assigned to link
a or to a link different from a and b. In the latter case, we obviously
reached a Nash equilibrium. If player 2 is assigned to link a, players
2 and 3 are obviously satisfied. If player 1 is also satisfied, we reached
a Nash equilibrium. Else, we take a greedy selfish step for player 1 by
which he is assigned either to link b or to a link c different from a and
b. In both cases, both players 1 and 2 are obviously satisfied. If player 3
is also satisfied, we reached a Nash equilibrium. Else, we take a greedy
selfish step for player 3.

• If player 1 is assigned to link b, then player 3 (after his greedy selfish
step) either is assigned to link a or to a link different from a and b.
In both cases, both players 1 and 3 are obviously satisfied; it follows
from player 2’s earlier greedy selfish step that he is also satisfied.
So, we reached a Nash equilibrium.

• If player 1 is assigned to link c, then player 3 is (after his greedy
selfish step) necessarily assigned to link a. (Player 3’s initial decision
for his best link implies that he cannot switch to another link.) If
the current strategy profile is not a Nash equilibrium, player 1 is
either unsatisfied or satisfied.

If he is unsatisfied, we take a greedy selfish step for player 1 by which
he will be necessarily assigned to link b. All other links would imply
a contradiction to his earlier greedy selfish step. Player 3 is satisfied
since he wants to deviate neither to link b (due to his last greedy
selfish step) nor to any link other than b (due to his last greedy
selfish step and his initial decision for a best link). Player 2’s last
greedy selfish step implies that he is also satisfied. So, we have
reached a Nash equilibrium.
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If player 1 is satisfied, we take a greedy selfish step for player 2
by which he is necessarily assigned to link b. All other links would
imply a contradiction to his initial decision for a best link. Note
that both players 2 and 3 are now satisfied. If we have not yet
reached a Nash equilibrium, we take a greedy selfish step for player
1 by which he will be necessarily assigned to link a (due to his latest
greedy selfish step). Player 2 is now satisfied since he neither wants
to go to link a (due to his last greedy selfish step) nor to any link
other than a (due to his initial decision for a best link). If we have
not yet reached a Nash equilibrium, we take a greedy selfish step
for player 3. Player 3 is now necessarily assigned to link b (since
all other links would imply a contradiction to his initial decision for
a best link). But this would complete a greedy selfish step cycle
(a, b, b) → (a, a, b) → (c, a, b) → (c, a, a) → (c, b, a) → (a, b, a) →
(a, b, b). A contradiction.

It follows that Γ has a pure Nash equilibrium. �

We remark that Milchtaich [69, Section 8] showed that there is a weighted
congestion game on parallel links with 3 players and player-specific latency
functions that possesses a greedy selfish step cycle of the form described in
Theorem 5.3. Nevertheless, we now show that such a cycle can not appear if
we consider the more specific class of weighted dominance congestion games.

Theorem 5.4: Every weighted dominance congestion game with 3 players on
parallel links does not have a selfish step cycle of the form

(l, j, j) → (l, l, j) → (k, l, j) → (k, l, l) → (k, j, l) → (l, j, l) → (l, j, j)

where l 6= j, j 6= k, l 6= k are any three links and w1 ≥ w2 ≥ w3.

Proof: Assume, by way of contradiction, that there is a dominance congestion
game with such a cycle. Since all steps in the cycle are selfish steps, one gets
for player 2 that

f2j(w2 + w3) > f2l(w1 + w2), (5.2)

f2l(w2 + w3) > f2j(w2). (5.3)

In the same way, one gets for player 3 that

f3j(w3) > f3l(w2 + w3), (5.4)

f3l(w1 + w3) > f3j(w2 + w3). (5.5)

We proceed by case analysis on whether 2 dominates 3 for (j, l) or 3 dominates
2 for (j, l).
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• Assume first that 2 dominates 3 for (j, l). Then (5.2) implies that

f3j(w2 + w3) > f3l(w1 + w2) ≥ f3l(w1 + w3)

(since f3l is non-decreasing and w2 ≥ w3), a contradiction to (5.5).

• Assume now that 3 dominates 2 for (j, l). Then, (5.4) implies that

f2l(w2 + w3) < f2j(w3) ≤ f2j(w2)

(since f2j is non-decreasing and w2 ≥ w3), a contradiction to (5.3).

The proof is now complete. �

Theorems 5.3 and 5.4 immediately imply:

Corollary 5.2: Every weighted dominance congestion game with 3 players on
parallel links has a pure Nash equilibrium.

We now prove that congestion games with player-specific constants are con-
tained within the class of dominance congestion games.

Proposition 5.1: Each weighted congestion game with player-specific con-
stants is a weighted dominance congestion game.

Proof: For a given weighted congestion game with player-specific constants,
fix a pair of players i 6= j and a pair of resources e 6= e′. We proceed by case
analysis.

• Assume first that cie � cje′ ≥ cie′ � cje. We will show that j dominates i
for (e, e′). Fix a pair of numbers x, y ∈ R

+. Assume that fje(x) > fje′(y)
or cje � ge(x) > cje′ � ge′(y). By translation-invariance, it follows that
cie � cje � ge(x) > cie � cje′ � ge′(y). The assumption that cie � cje′ ≥
cie′ � cje implies that cie � cje′ � ge′(y) ≥ cie′ � cje � ge′(y). It follows
that cie � ge(x) > cie′ � ge′(y) or fie(x) > fie′(y). Hence, j dominates i
for (e, e′).

• Assume now that cie′ � cje > cie � cje′. We will show that i dominates j
for (e, e′). Fix a pair of numbers x, y ∈ R

+. Assume that fie(x) > fie′(y)
or cie � ge(x) > cie′ � ge′(y). By translation-invariance, it follows that
cje � cie � ge(x) > cje � cie′ � ge′(y). The assumption that cie′ � cje >
cie � cje′ implies that cje � cie′ � ge′(y) > cje′ � cie � ge′(y). It follows that
cje � ge(x) > cje′ � ge′(y) or fje(x) > fje′(y). Hence, i dominates j for
(e, e′).

The proof is now complete. �

By Proposition 5.1, Corollary 5.2 immediately implies:

Corollary 5.3: Every weighted congestion game with player-specific constants
and 3 players on parallel links has a pure Nash equilibrium.

We remark that this corollary broadens the earlier result by Georgiou et al. [48,
Lemma B.1] for congestion games with player-specific multiplicative constants
and identity delay functions where fie(x) = cie · x.
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5.3 Network Congestion Games

Recall that every unweighted congestion game with player-specific additive
constants has a pure Nash equilibrium (see the earlier remark following Corol-
lary 5.1). Nevertheless, we establish in this section that it is PLS-complete1 to
compute one even for a game on a symmetric network although a polynomial
time computation is possible for such games on parallel links [69]. We prove:

Theorem 5.5: It is PLS-complete to compute a pure Nash equilibrium in an
unweighted symmetric network congestion game with player-specific additive
constants.

Proof: Clearly, the problem of computing a pure Nash equilibrium in an un-
weighted symmetric congestion game with player-specific additive constants is
a PLS-problem. (The set of feasible solutions is the set of all strategy profiles
and the neighborhood of a strategy profile is the set of strategy profiles that
differ in the strategy of exactly one player; the objective function is the po-
tential function since a local optimum of this function is a Nash equilibrium.)
To prove PLS-hardness, we use a reduction from the PLS-complete problem
of computing a pure Nash equilibrium for an unweighted asymmetric network
congestion game [30]. For the reduction, we construct the two appropriate
functions F1 and F2:

The function F1: Given an unweighted asymmetric network congestion game
Γ on a network G, where (ai, bi)i∈[n] are the origin and destination nodes
of the n players and (fe)e∈E are the latency functions, F1 constructs a
symmetric network congestion game Γ′ with n players on a graph G′, as
follows:

• G′ includes G, where for each edge e of G, g′
e := fe and c′ie := 0 for

each player i ∈ [n].

• G′ contains a new common origin node a′ for all players and a
new common destination node b′ for all players; for each player
i ∈ [n], we add an edge (a′, ai) with g′

(a′,ai)
(x) := 0, c′i(a′,ai)

:=
0, and c′k(a′,ai)

:= ∞ for all k 6= i; in addition, we add for each

player i ∈ [n] an edge (bi, b
′) with g′

(bi,b′)
(x) := 0, c′i(bi,b′)

:= 0, and
c′k(bi,b′)

:= ∞ for all k 6= i.

The function F2: Consider now a pure Nash equilibrium t for Γ′. The func-
tion F2 maps t to a strategy profile s for Γ (which, we shall prove, is a
Nash equilibrium for Γ) as follows:

• Note first that for each player i ∈ [n], ti is a path that includes both
edges (a′, ai) and (bi, b

′) (since otherwise PCi(t) = ∞). Construct
si from ti by eliminating the edges (a′, ai) and (bi, b

′).

1See Section 2.4 for a definition of PLS(-complete) problems.
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It remains to prove that s = F2(t) is a Nash equilibrium for Γ. By
way of contradiction, assume otherwise. Then there is a player k that
can decrease his private cost in Γ by changing his path sk to s′k. But
then player k can decrease his private cost in Γ′ by changing his path
tk = (a′, ak), sk, (bk, b

′) to t′k = (a′, ak), s
′
k, (bk, b

′). So, t is not a Nash
equilibrium. A contradiction. �

We remark that Theorem 5.5 also holds for games on graphs with undirected
edges since the problem of computing a pure Nash equilibrium for an un-
weighted asymmetric network congestion game with undirected edges is also
PLS-complete [1].

5.4 Arbitrary Congestion Games

Recall that Theorem 5.2 outlawed the possibility that every weighted con-
gestion game with player-specific additive constants on parallel links has the
finite best-reply property. Nevertheless, we establish in this section that every
weighted congestion game with player-specific additive constants even has the
finite improvement property for the special case of linear delay functions. For
this case the player-specific latency functions are of the form fie(x) = cie+ae ·x
and we introduce a function Φ where for any strategy profile s

Φ(s) =

n
∑

i=1

∑

e∈si

wi · (2 · cie + ae · (δe(s) + wi)).

For any pair of player i ∈ [n] and resource e ∈ E,

φ(s, i, e) = wi · (2 · cie + ae · (δe(s) + wi)), i.e., Φ(s) =
n
∑

i=1

∑

e∈si

φ(s, i, e).

We now prove that Φ is a potential function:

Theorem 5.6: Every weighted congestion game with player-specific additive
constants and linear delay functions, i.e, fie(x) = cie + ae · x, has a potential
function.

Proof: Fix a strategy profile s. Consider a selfish step of player k ∈ [n] to
strategy tk, which transforms s to t. Clearly, PCk(s) > PCk(t) or

∑

e∈sk

(ae · δe(s) + cke) >
∑

e∈tk

(ae · δe(t) + cke).

This implies that
∑

e∈sk\tk

(ae · δe(s) + cke) >
∑

e∈tk\sk

(ae · δe(t) + cke). (5.6)
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Clearly,

Φ(s) − Φ(t) =
∑

i∈[n]

(

∑

e∈si

φ(s, i, e) −
∑

e∈ti

φ(t, i, e)

)

= +
∑

e∈sk

φ(s, k, e) −
∑

e∈tk

φ(t, k, e)

+
∑

i∈[n]\{k}

(

∑

e∈si

φ(s, i, e) −
∑

e∈ti

φ(t, i, e)

)

We consider the first and the second part of this expression separately. On the
one hand,
∑

e∈sk

φ(s, k, e) −
∑

e∈tk

φ(t, k, e)

=
∑

e∈sk\tk

φ(s, k, e) −
∑

e∈tk\sk

φ(t, k, e)

=
∑

e∈sk\tk

wk · (2cke + ae(δe(s) + wk)) −
∑

e∈tk\sk

wk · (2cke + ae(δe(t) + wk)).

On the other hand,

∑

i∈[n]\{k}

(

∑

e∈si

φ(s, i, e) −
∑

e∈ti=si

φ(t, i, e)

)

=
∑

i∈[n]\{k}

∑

e∈si

(φ(s, i, e) − φ(t, i, e))

=
∑

i∈[n]\{k}







∑

e∈

si∩(sk\tk)

(φ(s, i, e) − φ(t, i, e)) +
∑

e∈

si∩(tk\sk)

(φ(s, i, e) − φ(t, i, e))







=
∑

e∈sk\tk

∑

i∈[n]\{k} | e∈si

(φ(s, i, e) − φ(t, i, e))

+
∑

e∈tk\sk

∑

i∈[n]\{k} | e∈si

(φ(s, i, e) − φ(t, i, e))

=
∑

e∈sk\tk

∑

i∈[n]\{k} | e∈si

(wi · ae · (δe(s) − δe(t)))

+
∑

e∈tk\sk

∑

i∈[n]\{k} | e∈si

(wi · ae · (δe(s) − δe(t)))

=
∑

e∈sk\tk

∑

i∈[n]\{k} | e∈si

(wi · ae · wk) +
∑

e∈tk\sk

∑

i∈[n]\{k} | e∈si

(wi · ae · (−wk))

= wk ·
∑

e∈sk\tk

ae · (δe(s) − wk) − wk ·
∑

e∈tk\sk

ae · (δe(t) − wk) .
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Putting these together yields that

Φ(s) − Φ(t) = −wk ·
∑

e∈sk\tk

(2 · cke + ae · (δe(s) + wk) + ae · (δe(s) − wk))

−wk ·
∑

e∈tk\sk

(2 · cke + ae · (δe(t) + wk) + ae · (δe(t) − wk))

= 2 · wk ·





∑

e∈sk\tk

(cke + ae · δe(s)) −
∑

e∈tk\sk

(cke + ae · δe(t))





(5.6)
> 0,

so that Φ is a potential function. �

Fotakis et al. [40] introduced a potential function for weighted asymmetric
network congestion games with affine latency functions. If such a game with
cie = cje for all players i, j and resources e is considered our function Φ reduces
to their potential function.

Theorem 5.6 immediately implies:

Corollary 5.4: Every weighted congestion game with player-specific additive
constants and linear delay functions, i.e, fie(x) = cie + ae · x, has the finite
improvement property and a pure Nash equilibrium.

5.5 Conclusion and Directions for Further

Research

In this chapter, we studied congestion games with player-specific constants.
We showed that such games have the finite improvement property if they meet
certain conditions. Moreover, we established that in the case of 3 players on
parallel links a pure Nash equilibrium is guaranteed to exist although there is
such a game that does not have the finite best-reply property. With respect
to the computation of a pure Nash equilibrium we proved that this task is
PLS-complete even for games on a symmetric network. Our work leaves open
several interesting problems. On the most concrete level, we would like to ask:

• Since Corollary 5.3 only applies to the case of three players the question
remains whether every weighted congestion game with player-specific
constants on parallel links has a pure Nash equilibrium. This seems to
be a challenging open problem even for the case of only four players.

• While Theorem 5.6 showed that all weighted congestion games with
player-specific additive constants and linear delay functions have the fi-
nite improvement property it is still unknown whether this also holds for
other interesting classes of delay functions.
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One could also consider the price of anarchy for congestion games with player-
specific constants or study a Wardrop-like splittable traffic setting with player-
specific constants.

45



Chapter 5 Congestion Games with Player-Specific Constants

46



CHAPTER 6

Congestion Games with Player-Specific

Affine Latency Functions

6.1 Introduction

A significant part of the work that has been done up to now on congestion
games considers games where the latency functions are affine, i.e., fe(x) =
ae ·x+be. Some important questions including the price of anarchy (see e.g. [9,
21, 26, 59, 60, 67]) and the characterization of Nash equilibria maximizing
social cost (see e.g. [37, 43, 44, 63, 64]) turned out to be hard even for games
with these simple latency functions. If congestion games on parallel links are
used to model scheduling scenarios affine latency functions fe(x) = ae·x+be are
of interest since an edge e can be used do model a processor with a processing
speed 1

ae
and an initial load of be (see e.g. [60]).

In this chapter, we will study congestion games where the latency functions
are at the same time affine and player-specific. Although Milchtaich [69] stud-
ied congestion games with player-specific latency functions he did not focus on
affine but on general non-decreasing latency functions. Since he showed that
there are games with non-decreasing latency functions that do not possess the
finite best-reply property even in the case of unweighted players and parallel
links, one goal of our work is to find out whether this negative result also holds
for the restricted class of games with player-specific affine latency functions.
In addition, we will, in contrast to Milchtaich [69], also study the price of
anarchy.
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6.1.1 Contribution

Our main contributions are the characterization of games that admit the finite
improvement property and the extension of the techniques from [9, 21] to
prove upper bounds on the price of anarchy also for games with player-specific
latency functions.

• The new potential function that we introduced in Section 5.2 implies
that every unweighted network congestion game on parallel links with
player-specific linear latency functions possesses the finite improvement
property. We give counterexamples to show that a slight deviation from
this model yields a loss of the finite improvement property:

– There is a game that does not possess the finite best-reply property
if we allow affine latency functions.

– There is a game that does not possess the finite improvement prop-
erty if we allow as game graph a concatenation of two parallel link
graphs.

– There is a game that does not possess a pure Nash equilibrium if
we allow a game graph where all paths are of length at most two.

• We prove that weighted congestion games on parallel links with player-
specific linear latency functions do not posses the finite improvement
property in general, even if there are only three players. Nevertheless,
such games are guaranteed to possess the finite improvement property if
there are only two players.

• For a weighted congestion game Γ with player-specific affine latency func-
tions we show that the price of anarchy is bounded from above by the
expression1

1

2
·
(

∆(Γ) + 2 +
√

∆(Γ) · (∆(Γ) + 4)
)

.

We also prove an asymptotically tight lower bound that even holds for
the case of unweighted players, parallel links, and player-specific linear
latency functions.

6.1.2 Related Work

The related work that is relevant for this chapter focuses on congestion games
with player-specific latency functions (Section 4.3), the existence and compu-
tation of Nash equilibria as well as the price of anarchy for congestion games
(Section 4.1), and the existence and computation of Nash equilibria in conges-
tion games on parallel links (Section 4.2).

1The parameter ∆(Γ) was defined in Section 3.1.2. It specifies the maximum factor by
which the slopes of different player-specific affine latency functions for the same edge
differ.
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6.1.3 Road Map

The rest of this chapter is organized as follows. We focus on the finite im-
provement property for congestion games on parallel links with player-specific
linear latency functions in the Sections 6.2 and 6.3. In the former section we
consider the case of unweighted players whereas the case of weighted players is
studied in the latter section. We then give in Section 6.4 asymptotically tight
bounds on the price of anarchy for congestion games with player-specific affine
latency functions. We conclude in Section 6.5.

6.2 Games with Unweighted Players

Milchtaich [69] showed that unweighted congestion games on parallel links
with player-specific latency functions do not possess the finite improvement
property in general. Obviously, Theorem 5.1 implies that we achieve the finite
improvement property if we restrict to player-specific multiplicative constants
where fie(x) = aie · ge(x) and a potential function is given by

Φ(s) =
∏

e∈E

δe(s)
∏

i=1

ge(i) ·
n
∏

i=1

aisi
.

This potential function also applies for the case of player-specific linear latency
functions fie(x) = aie · x where ge(x) = x. We now give counterexamples
to show that a slight deviation from this model yields a loss of the finite
improvement property.

Theorem 6.1: Unweighted symmetric network congestion games on a graph
G with player-specific latency functions do (in general) not possess

(a) the finite best-reply property if the game has 3 players, affine latency
functions, and G is a parallel links graph.

(b) the finite improvement property if the game has 2 players, linear latency
functions, and G is a concatenation of 2 parallel link graphs connected
in series.

(c) a pure Nash equilibrium if the game has 3 players, linear latency func-
tions, and all paths in G are of length at most 2.

Proof: By construction. We treat (a), (b), and (c) separately.

Part (a): We modify the instance of Figure 1 in [69] such that all latency
functions are affine. The resulting 3 player game Γ on a parallel link
graph with 3 edges e1, e2, e3 has 3 unweighted players. The player-specific
affine latency functions are given by:
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vdvo

e4e1

e6e3

e2 e5 e5
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Figure 6.1: Network graphs for parts (b) (left) and (c) (right) of Theorem 6.1

fi e(x) e1 e2 e3

player 1 100 · x x + 10 10 · x
player 2 10 · x 100 · x x + 10
player 3 x + 10 10 · x 100 · x

This game possesses a cycle of 6 greedy selfish steps s1 → . . . → s6 → s1:

strategy profile s1 s2 s3 s4 s5 s6

strategy player 1 e2 e3 e3 e3 e2 e2

strategy player 2 e1 e1 e3 e3 e3 e1

strategy player 3 e1 e1 e1 e2 e2 e2

PC1 11 10 20 20 12 12
PC2 20 20 12 12 11 10
PC3 12 12 11 10 20 20

Note that (e3, e1, e2) is a pure Nash equilibrium for Γ.

Part (b): The network graph G with origin vo and destination vd is given in
Figure 6.1. The player-specific linear latency functions fi e(x) = ai e · x
are defined by:

ai e e1 e2 e3 e4 e5 e6

player 1 1 10 ∞ 100 100 ∞
player 2 ∞ 100 100 ∞ 1 10

The game possesses a cycle of 4 selfish steps s1 → . . . → s4 → s1:

strategy profile s1 s2 s3 s4

strategy player 1 e1 e5 e1 e5 e2 e4 e2 e4

strategy player 2 e3 e6 e2 e5 e2 e5 e3 e6

PC1 1 + 100 1 + 200 20 + 100 10 + 100
PC2 100 + 10 100 + 2 200 + 1 100 + 10

Part (c): The network graph G with origin vo and destination vd is given
in Figure 6.1. The following table lists the values ai e for the latency
functions fi e(x) = ai e · x:
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ai e e1 e2 e3 e4 e5 e6 e7 e8

player 1 150 100 ∞ ∞ 3 ∞ ∞ ∞
player 2 ∞ ∞ ∞ 3 100 3 ∞ 150
player 3 ∞ 3 150 ∞ ∞ 100 3 ∞

Clearly, no strategy profile that assigns a player i ∈ [n] to a path that
includes an edge e with ai e = ∞ is a Nash equilibrium. Consider now the
remaining strategy profiles ({e1, e2 e5}, {e4 e5, e6 e8}, {e2e3, e6 e7}). Six
of these eight strategy profiles are no pure Nash equilibria because they
belong to a cycle s1 → . . . → s6 → s1 of greedy selfish steps:

strategy profile s1 s2 s3 s4 s5 s6

strategy pl. 1 e2 e5 e2 e5 e2 e5 e1 e1 e1

strategy pl. 2 e4 e5 e6 e8 e6 e8 e6 e8 e4 e5 e4 e5

strategy pl. 3 e6 e7 e6 e7 e2 e3 e2 e3 e2 e3 e6 e7

PC1 100 + 6 100 + 3 200 + 3 150 150 150
PC2 3 + 200 6 + 150 3 + 150 3 + 150 3 + 100 3 + 100
PC3 100 + 3 200 + 3 6 + 150 3 + 150 3 + 150 100 + 3

We will now argue that the two remaining strategy profiles of interest are
no pure Nash equilibria. Given (e2 e5, e4 e5, e2 e3) player 2 has a private
cost of 3+200 and wants to deviate to (e2 e5, e6 e8, e2 e3) where his private
cost is 3+150. If instead (e1, e6 e8, e6 e7) is given the private cost of player
3 is 200+3 and thus this player wants to deviate to (e1, e6 e8, e2 e3) where
the private cost is 3 + 150. �

We would like to give two remarks on the results of Theorem 6.1.

• Part (a) of Theorem 6.1 states that there is a parallel link game with
unweighted players and player-specific affine latency functions that does
not possess the finite best-reply property. Note that Milchtaich [69]
showed that all games of this kind possess a pure Nash equilibrium even
in the more general setting allowing arbitrary non-decreasing latency
functions.

• Part (b) of Theorem 6.1 states that there is a game on a concatenation
of 2 parallel link graphs that does not possess the finite improvement
property. Nevertheless, all unweighted network congestion games with
player-specific linear latency functions on a graph G possess the finite
best-reply property if G is a concatenation of parallel link graphs con-
nected in series. To see this, observe that after a greedy selfish step of a
player i ∈ [n] this player is assigned to a best edge in each parallel link
graph. The finite best-reply property follows by applying Theorem 5.1
to each parallel link graph.
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1

1

79 1 79

(B)

792 1

2

1 2 1
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79 2

79

2 79 2

(C)

Figure 6.2: Double-steps (A), (B), (C) used in the proof of Theorem 6.2

6.3 Games with Weighted Players

6.3.1 No Finite Improvement Property for a 3 Player Game

For weighted congestion games on parallel links with player-specific linear la-
tency functions Georgiou et al. [48] showed that a Nash equilibrium always
exists in the case of 3 players. For arbitrary many players it is an open problem
whether such a game still admits a pure Nash equilibrium or not. Theorem 6.2
implies that the finite improvement property can not be used to solve the open
problem.

Theorem 6.2: There is a weighted congestion game on parallel links with 3
players and player-specific linear latency functions that does not possess the
finite improvement property.

Proof: The 3 players of the game are of weight w1 = 1, w2 = 2, and w3 = 79.
The player-specific linear latency functions fie(x) = aie · x for the 11 edges are
defined by:

e e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11

a1e
38

80−ε3 ∞ 1 3−ε1 (3−ε1)
2 (3−ε1)

3 (3−ε1)
4 (3−ε1)

5 (3−ε1)
6 (3−ε1)

7 (3−ε1)
8

a2e ∞ 1 2
3−ε1

22

32−ε1
23

33−ε1
24

34−ε1
25

35−ε1
26

36−ε1
27

37−ε1
28

38−ε1 ∞
a3e 1 ∞ 80

79−ε1 ∞ ∞ ∞ ∞ ∞ ∞ 802

79·81−ε2 (80
79−ε1)

2

Here the numbers ε1, ε2, and ε3 are given by:

ε1 =
1

100000
, ε2 =

1

10000
, ε3 = 1.

The selfish step cycle we describe now mainly consists of double-steps (A),
(B), and (C) sketched in Figure 6.2. Our cycle of selfish steps starts in the
initial strategy profile (e3, e2, e1). We now perform eight double-steps (A).

A double-step (A) starts in a strategy profile where player 2 is the only
player who is assigned to the edge ej. Now the first step moves player 2 to the
edge ek player 1 is assigned to. Afterwards this player 1 moves to the so far
empty edge el. Both steps of a double-step (A) are selfish iff a2ek

/a2ej
< 2

3
and

a1el
/a1ek

< 3. In each step of our eight double-steps (A) the deviating player
moves from edge et to edge et+1. After the double-steps (A) the strategy profile
(e11, e10, e1) is reached. Observe for the first step (e3, e2, e1) → (e3, e3, e1) of
player 2 that a2e2 · 2

3
= 2

3
> 2

3
− ε1 = a2e3 .
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Note for the remaining steps of player 2 in the double-steps (A) that we
have for each j ∈ {3, . . . , 9} and k = j + 1 that

a2ej
· 2

3
=

(

2j−2

3j−2
− ε1

)

· 2

3

=
2j−1

3j−1
− ε1 ·

2

3

>
2j−1

3j−1
− ε1

= a2ej+1

= a2ek
,

i.e., all these steps of player 2 are selfish. For the steps that player 1 does in
these double-steps (A) we get for each k ∈ {3, . . . , 10} and l = k + 1 that

a1ek
· 3 = (3 − ε1)

k−3 · 3
> (3 − ε1)

k−2

= a1ek+1

= a1el
,

i.e., all these steps of player 1 are selfish and hence all sixteen steps performed
in the eight double-steps (A) are selfish.

The cycle continues with double-steps (B). A double-step (B) starts with a
move of player 1 from edge ej to the edge ek used by player 3 followed by a
step of player 3 to an empty edge el. Observe that (B) is a pair of selfish steps
iff a1ek

/a1ej
< 1

80
and a3el

/a3ek
< 80

79
. We conduct two double-steps (B):

(e11, e10, e1) → (e1, e10, e1) → (e1, e10, e3) → (e3, e10, e3) → (e3, e10, e11).

It is easy to see that the two steps of player 3 are selfish. For the step
(e1, e10, e1) → (e1, e10, e3) observe that:

a3e1 ·
80

79
=

80

79
>

80

79
− ε1 = a3e3 .

Note for the step (e3, e10, e3) → (e3, e10, e11) that:

a3e3 ·
80

79
=

(

80

79
− ε1

)

· 80

79
>

(

80

79
− ε1

)2

= a3e11 .

We now consider the two steps of player 1. The first one (e11, e10, e1) →
(e1, e10, e1) is selfish if 1 · a1e11 > 80 · a1e1 :

1 · (3 − ε1)
8 > 80 ·

(

38

80
− ε3

)

i.e. ε3 >
38

80
− (3 − ε1)

8

80
.

53



Chapter 6 Congestion Games with Player-Specific Affine Latency Functions

It is easy to verify that our selections of ε1 and ε3 fulfill these inequalities. The
second step (e1, e10, e3) → (e3, e10, e3) of player 1 is selfish if 1 · a1e1 > 80 · a1e3 :

1 ·
(

38

80
− ε3

)

> 80 · 1 i.e. ε3 <
38

80
− 80 =

161

80
.

These inequalities hold for our selection of ε3.
Starting from the strategy profile (e3, e10, e11) we proceed with a double-step

(C) that moves player 3 to the edge e10 player 2 is assigned to and continues
with a step of player 2 to the empty edge e2. This double-step consists of
selfish steps iff a3e10/a3e11 < 79

81
and a2e2/a2e10 < 81

2
. The step of player 3 is

selfish if 79 · a3e11 > 81 · a3e10 :

79 ·
(

80

79
− ε1

)2

> 81 ·
(

802

79 · 81
− ε2

)

i.e. ε2 >
802

79 · 81
− 79

81
·
(

80

79
− ε1

)2

.

It is again easy to check that our selections of ε1 and ε2 fulfill these inequalities.
The step of player 2 is selfish if 81 · a2e10 > 2 · a2e2 :

81 ·
(

28

38
− ε1

)

> 2 · 1 i.e. ε1 <
28

38
− 2

81
=

94

6561
.

These inequalities hold for our selection of ε1.
The eleven double-steps explained up to now are followed by a final step

that moves player 3 back to edge e1: (e3, e2, e10) → (e3, e2, e1). It is selfish if
79 · a3e10 > 79 · a3e1 :

79 ·
(

802

79 · 81
− ε2

)

> 79 · 1 i.e. ε2 <
802

79 · 81
− 1 =

1

6399
.

Our ε2 fulfills these inequalities. Altogether we have that all steps in the cycle
are selfish and thus the claim follows. �

6.3.2 Finite Improvement Property for 2 Player Games

For weighted congestion games on parallel links with 2 players and player-
specific latency functions Milchtaich [69] showed that the finite best-reply prop-
erty holds. The following theorem shows that we even get the finite improve-
ment property if we restrict to player-specific linear latency functions.

Theorem 6.3: Let Γ be a weighted congestion game on parallel links with
2 players and player-specific linear latency functions. Then, Γ possesses the
finite improvement property.

Proof: Define for a strategy profile s = (s1, s2) the function Φ2 given by:

Φ2(s) = a1 s1 · a
ln

�
w1+w2

w1 �/ ln
�

w1+w2
w2 �

2 s2
·
{

w1+w2

w1
if s1 = s2,

1 else.
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Let us now consider a selfish step from the strategy profile s to the strategy
profile s′ where a player moves from edge i ∈ E to edge j ∈ E. It is easy to
see that Φ2 decreases if δi(s) = δj(s

′) = wk where k ∈ {1, 2} is the deviating
player. We will now show that the function Φ2 also decreases in all other cases.
To simplify notation define r by

r =
ln(w1+w2

w1
)

ln(w1+w2

w2
)
.

If player 1 uses a selfish step to switch to the edge player 2 is assigned to we
have that a1 i > a1 j · w1+w2

w1
and therefore

Φ2(s) = a1 i · (a2 j)
r > a1 j · (a2 j)

r · w1 + w2

w1
= Φ2(s

′).

If instead player 1 leaves with a selfish step the edge player 2 uses it is a1 i ·
w1+w2

w1
> a1 j and thus

Φ2(s) = a1 i · (a2 i)
r · w1 + w2

w1
> a1 j · (a2 i)

r = Φ2(s
′).

We need a technical observation before we can consider the remaining cases.
Observe that for any x > 1 we have that

ln(x)
√

x =
ln(x)
√

eln(x) = e.

Hence we get that

ln(
w1+w2

w2
)

√

w1 + w2

w2

= e = ln(
w1+w2

w1
)

√

w1 + w2

w1

.

This implies that
(

w1 + w2

w2

)r

=
w1 + w2

w1
. (6.1)

Consider now a selfish step where player 2 switches to the edge player 1 is
assigned to. We have that a2 i > a2 j · w1+w2

w2
and therefore we get with (6.1)

that (a2 i)
r > (a2 j)

r · w1+w2

w1
and hence

Φ2(s) = a1 j · (a2 i)
r > a1 j · (a2 j)

r · w1 + w2

w1
= Φ2(s

′).

If instead player 2 leaves with a selfish step the edge player 1 uses it is a2 i ·
w1+w2

w2
> a2 j and thus (a2 i)

r · w1+w2

w1
> (a2 j)

r with (6.1). We get

Φ2(s) = a1 i · (a2 i)
r · w1 + w2

w1
> a1 i · (a2 j)

r = Φ2(s
′).

This finishes the proof. �

55



Chapter 6 Congestion Games with Player-Specific Affine Latency Functions

6.4 Price of Anarchy

In this section we study the price of anarchy for weighted congestion games
with player-specific affine latency functions.

6.4.1 Upper Bound for Games with Weighted Players

To prove our upper bound we use similar techniques as Christodoulou and
Koutsoupias [21] and Awerbuch et al. [9]. The proof is also based on the
following technical lemma.

Lemma 6.1: For all u, v ∈ R
+
0 and c ∈ R

+ we have

v · (u + v) ≤
(

1 +
1

4c

)

· v2 + c · u2.

Proof: For the proof of this lemma observe that
(

1 +
1

4c

)

· v2 + cu2 − v · (u + v) =
1

4c
· v2 − uv + cu2

=
1

c
·
(

v2

4
− cuv + c2u2

)

=
1

c
·
(v

2
− cu

)2

≥ 0.

The claim follows. �

Theorem 6.4: Consider a weighted network congestion game Γ with player-
specific affine latency functions and an associated mixed Nash equilibrium Q.
Then,

SCTL(Q, Γ)

OPTTL(Γ)
≤ 1

2
·
(

∆(Γ) + 2 +
√

∆(Γ) · (∆(Γ) + 4)
)

.

Proof: Let o = (o1, . . . , on) be a pure strategy profile with optimum social
cost, i.e., SCTL(o, Γ) = OPTTL(Γ). Since Q = (Q1, . . . , Qn) is a Nash equilib-
rium, player i cannot improve by switching from strategy Qi to oi. Thus for
any player i ∈ [n],

PCi(Q) ≤ PCi(Q−i, oi)

=
∑

s∈S

q(s) ·





∑

e∈oi∩si

fie(δe(s)) +
∑

e∈oi\si

fie(δe(s) + wi)





≤
∑

s∈S

q(s) ·
∑

e∈oi

fie(δe(s) + δe(o)).

56



6.4 Price of Anarchy

It follows that

SCTL(Q, Γ)

=
∑

i∈[n]

wi · PCi(Q)

≤
∑

i∈[n]

wi · PCi(Q−i, oi)

=
∑

i∈[n]

∑

s∈S

q(s) ·
∑

e∈oi

wi · fie(δe(s) + δe(o))

=
∑

s∈S

q(s) ·
∑

e∈E

∑

i,oi3e

wi · [aie · (δe(s) + δe(o)) + bie]

=
∑

s∈S

q(s) ·
∑

e∈E,δe(o)>0,

δe(s)>0

∑

i,oi3e aie · wi

δe(o)
· δe(o) · (δe(s) + δe(o))

+
∑

s∈S

q(s) ·
∑

e∈E,δe(o)>0,

δe(s)=0

δe(o) ·
∑

i,oi3e

aie · wi +
∑

s∈S

q(s) ·
∑

e∈E

∑

i,oi3e

wi · bie.

By Lemma 6.1 we get for any c ∈ R
+ that δe(o) · (δe(s) + δe(o)) ≤

(

1 + 1
4c

)

·
δe(o)2 + c · δe(s)

2 and therfore

SCTL(Q, Γ)

≤
∑

s∈S

q(s) ·
∑

e∈E,δe(o)>0,

δe(s)>0

∑

i,oi3e aie · wi

δe(o)
·
[(

1 +
1

4c

)

· δe(o)2 + c · δe(s)
2

]

+
∑

s∈S

q(s) ·
∑

e∈E,δe(o)>0,

δe(s)=0

δe(o) ·
∑

i,oi3e

aie · wi +
∑

s∈S

q(s) ·
∑

e∈E

∑

i,oi3e

wi · bie

≤
(

1 +
1

4c

)

·
∑

s∈S

q(s) ·
∑

e∈E

(

∑

i,oi3e

aie · wi

)

· δe(o)

+
∑

s∈S

q(s) ·
∑

e∈E

∑

i,oi3e

wi · bie + c
∑

s∈S

q(s) ·
∑

e∈E,δe(o)>0,

δe(s)>0

∑

i,oi3e aie · wi

δe(o)
δe(s)

2

≤
(

1 +
1

4c

)

·
∑

i∈[n]

wi ·
∑

s∈S

q(s) ·
∑

e∈oi

(aie · δe(o) + bie)

+ c ·
∑

s∈S

q(s) ·
∑

e∈E,δe(o)>0,

δe(s)>0

∑

i,oi3e aie · wi

δe(o)
δe(s)

2

=

(

1 +
1

4c

)

· SCTL(o, Γ) + c ·
∑

s∈S

q(s) ·
∑

e∈E,δe(o)>0,

δe(s)>0

∑

i,oi3e aie · wi

δe(o)
· δe(s)

2.
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Observe that 1
δe(o)

·∑i,oi3e aie·wi is a weighted average slope of latency functions

for edge e ∈ E. With aie

ake
≤ ∆(Γ) for all i, k ∈ [n] with aie, ake < ∞ it follows

that 1
δe(o)

·
∑

i,oi3e aie · wi ≤ ∆(Γ) · 1
δe(s)

·
∑

i,si3e aie · wi. We get,

SCTL(Q, Γ)

≤
(

1 +
1

4c

)

SCTL(o, Γ) + c
∑

s∈S

q(s) ·
∑

e∈E,δe(o)>0,

δe(s)>0

∆(Γ) ·
∑

i,si3e aie · wi

δe(s)
· δe(s)

2

≤
(

1 +
1

4c

)

· SCTL(o, Γ) + c ·
∑

s∈S

q(s) ·
∑

e∈E

∆(Γ) · δe(s) ·
∑

i,si3e

aie · wi

=

(

1 +
1

4c

)

· SCTL(o, Γ) + c · ∆(Γ) ·
∑

i∈[n]

wi ·
∑

s∈S

q(s) ·
∑

e∈si

aie · δe(s)

≤
(

1 +
1

4c

)

· SCTL(o, Γ) + c · ∆(Γ) · SCTL(Q, Γ).

Thus choosing c =
−∆(Γ)+

√
∆(Γ)·(∆(Γ)+4)

4·∆(Γ)
yields

SCTL(Q, Γ)

SCTL(o, Γ)

≤
(

1 +
1

4c

)

· 1

1 − c · ∆(Γ)

=

√

∆(Γ) · (∆(Γ) + 4)

−∆(Γ) +
√

∆(Γ) · (∆(Γ) + 4)
+

4

4 + ∆(Γ) −
√

∆(Γ) · (∆(Γ) + 4)

=
4 ·
√

∆(Γ) · (∆(Γ) + 4)

(2∆(Γ) + 4) ·
√

∆(Γ) · (∆(Γ) + 4) − 2 · [∆(Γ) · (∆(Γ) + 4)]

=
2

(∆(Γ) + 2) −
√

∆(Γ) · (∆(Γ) + 4)

=
2 · [(∆(Γ) + 2) +

√

∆(Γ) · (∆(Γ) + 4)]

[(∆(Γ) + 2) −
√

∆(Γ) · (∆(Γ) + 4)] · [(∆(Γ) + 2) +
√

∆(Γ) · (∆(Γ) + 4)]

=
∆(Γ) + 2 +

√

∆(Γ) · (∆(Γ) + 4)

2
.

Since Q is an arbitrary mixed Nash equilibrium the claim follows. �

Interestingly, we get with Theorem 6.4 an upper bound of 1
2
· (3 +

√
5) in

the case of ∆(Γ) = 1 which matches the exact price of anarchy for weighted
congestion games [9] even though our model still allows for player-specific
constants bie 6= bke.
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6.4.2 Lower Bound for Games with Unweighted Players

The proof of the lower bound on the price of anarchy is based on the following
technical lemma.

Lemma 6.2: Let t ∈ N, µ1 ≥ µ2 ≥ . . . ≥ µt > 0, λ1 ≥ λ2 ≥ . . . ≥ λt > 0
where µi ∈ R and λi ∈ R for all i ∈ [t]. Then,

∑t
i=1 λi · µi
∑t

i=1 µi

≥ 1

t
·

t
∑

i=1

λi.

Proof: Observe that

t ·
t
∑

i=1

λiµi −
t
∑

i=1

λi ·
t
∑

j=1

µj =
t
∑

i=1

λi ·
t
∑

j=1

(µi − µj)

=
t−1
∑

i=1

t
∑

j=i+1

λi (µi − µj) +
t
∑

j=2

j−1
∑

i=1

λj (µj − µi)

=
t−1
∑

i=1

t
∑

j=i+1

λi (µi − µj) −
t
∑

j=2

j−1
∑

i=1

λj (µi − µj)

=

t−1
∑

i=1

t
∑

j=i+1

(λi − λj) · (µi − µj)

≥ 0,

since each summand is non-negative. The claim follows immediately. �

We now proceed with the asymptotically tight lower bound on the price of
anarchy. Variations of the games used in the proof of the lower bound were
also used in some recent papers to show lower bounds on the price of anarchy
in different settings (see e.g. [10, 26, 42]).

Theorem 6.5: For each l ∈ N and for each ε > 0 there is an unweighted
congestion game Γ on parallel links with player-specific linear latency functions
and ∆(Γ) ≥ l that possesses a pure Nash equilibrium s such that

SCTL(s, Γ)

OPTTL(Γ)
≥ (1 − ε) · ∆(Γ).

Proof: We will now give the construction of Γ that uses a variable ∆ ∈ N.
The game has ∆ + 1 classes of edges M1, . . . , M∆+1. It is

|M1| = 1 and |Mj | = (∆ − 1) ·
j
∏

i=3

(∆ − i + 2) for all j, 2 ≤ j ≤ ∆ + 1.
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Furthermore, we define ∆ classes of players U1, . . . , U∆ where the set Ui, 1 ≤
i ≤ ∆, consists of (∆+1− i) · |Mi| players. A player j in the set Ui, 1 ≤ i ≤ ∆,
assigns to all edges e in Mi and Mi+1 the slope aje = ∆2−i whereas he assigns
slope ajê = ∞ to all other edges ê 6∈ Mi ∪Mi+1. This finishes the construction
of Γ. Clearly, ∆ = ∆(Γ).

It is easy to see that a strategy profile with optimum social cost assigns
exactly one player of U1 to each edge in M1 ∪ M2 and exactly one player of
Ui, 2 ≤ i ≤ ∆, to each edge in Mi+1. Define the pure strategy profile s that
assigns for each i, 1 ≤ i ≤ ∆, exactly ∆ + 1 − i players from Ui to each edge
in Mi.

We will now show that s is a Nash equilibrium. Consider an arbitrary player
j from a set Ui, 1 ≤ i ≤ ∆. Since ajê = ∞ for each edge ê 6∈ Mi ∪ Mi+1

player j does not want to deviate to an edge that is neither in Mi nor in Mi+1.
Recall that aje = ∆2−i for each edge e ∈ Mi ∪ Mi+1. Player j does not want
to deviate to an edge in Mi ∪Mi+1 since there is a load of ∆ − i on each edge
in Mi+1 and a load of ∆ + 1− i on each edge in Mi including the each to that
player j is assigned. Hence, s is a Nash equilibrium.

We now define some values A1, A2, . . . that will help us to bound the ratio
SCTL(s, Γ)/OPTTL(Γ). Define

A1 = ∆2 and Aj =
∆ − 1

∆j−2
·

j−1
∏

i=1

(∆ − i) for all j, 2 ≤ j ≤ ∆.

Observe that on the one hand we get for the social cost of the equilibrium s

SCTL(s, Γ) =

∆
∑

j=1

|Uj | · ∆2−j · (∆ + 1 − j)

=
∆
∑

j=1

(∆ + 1 − j) · |Mj | · ∆2−j · (∆ + 1 − j)

= ∆3 +

∆
∑

j=2

(∆ + 1 − j)2 · ∆2−j · (∆ − 1) ·
j
∏

i=3

(∆ − i + 2)

=
∆
∑

j=1

(∆ + 1 − j) · Aj .

On the other hand we have for the social cost of the optimum solution that

OPTTL(Γ) =
∆
∑

j=1

|Uj| · ∆2−j · 1

=

∆
∑

j=1

(∆ + 1 − j) · |Mj| · ∆2−j
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OPTTL(Γ) = ∆2 +
∆
∑

j=2

(∆ + 1 − j) · ∆2−j · (∆ − 1) ·
j
∏

i=3

(∆ − i + 2)

=

∆
∑

j=1

Aj.

For our upcoming analysis of the values Ai let k ∈ N be an arbitrary number
such that k ≤ 3

√
∆. We can assume that ∆ is a multiple of k. Furthermore,

let i ∈ N be a number such that ∆
k

+ 1 ≤ i ≤ ∆. Then,

Ai =
∆ − i + 1

∆
· Ai−1 ≤ ∆ − ∆

k

∆
· Ai−1 =

k − 1

k
· Ai−1. (6.2)

We define r = k−1
k

and will now give an upper bound on
∑∆

j=1 rj . Since r < 1

we have that
∑∞

j=0 rj = 1
1−r

and thus:

∆
∑

j=1

(

k − 1

k

)j

=

∆
∑

j=0

rj − 1 ≤ 1

1 − r
− 1 = k − 1. (6.3)

Combining (6.2) and (6.3) yields:

∆
∑

i=∆
k

+1

Ai

(6.2)

≤
∆−∆

k
∑

i=1

(

k − 1

k

)i

· A∆
k

(6.3)

≤ (k − 1) · A∆
k
. (6.4)

For the lower bound on the ratio of the social cost values observe:

SCTL(s, Γ)

OPTTL(Γ)
=

∑∆
j=1(∆ + 1 − j) · Aj

∑∆
j=1 Aj

(6.4)

≥
∑

∆
k

j=1(∆ + 1 − j) · Aj

(k − 1) · A∆
k

+
∑

∆
k

j=1 Aj

=
k · (∆ + 1 − ∆

k
) · 1

k
· A∆

k
+
∑

∆
k
−1

j=1 (∆ + 1 − j) · Aj

(k − 1) · A∆
k

+
∑

∆
k

j=1 Aj

We will now apply Lemma 6.2 with t = ∆
k

+k−1, µj = Aj and λj = ∆+1− j
for all j ∈ [∆

k
−1], µj = A∆

k
and λj = (∆+1−∆

k
)· 1

k
for all j, ∆

k
≤ j ≤ ∆

k
+k−1.
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We get with this lemma:

SCTL(s, Γ)

OPTTL(Γ)
≥ 1

∆
k

+ k − 1
·

∆
k
∑

j=1

(∆ + 1 − j)

=
2k2

2k∆ + 2k3 − 2k2
·





∆
∑

i=1

i −
∆−∆

k
∑

i=1

i





=
2k2

2k∆ + 2k3 − 2k2
· 1

2
·
(

2∆2

k
− ∆2

k2
+

∆

k

)

= ∆ · (2k − 1) · ∆ + k

2k∆ + 2k3 − 2k2

≥ ∆ · (2k − 1) · ∆
2k∆ + 2k3

(∆≥k3)

≥ ∆ · (2k − 1) · ∆
2k∆ + 2∆

= ∆ · 2k − 1

2k + 2
.

The result follows by selecting k and ∆ large enough. �

The construction in the just given proof uses a large number of players. How-
ever, the price of anarchy is unbounded even for 2 player games.

Theorem 6.6: For every k ∈ N there is a weighted congestion game Γk on
parallel links with 2 players and player-specific linear latency functions that
possesses a pure Nash equilibrium s such that

SCTL(s, Γ
k)

OPTTL(Γk)
> k.

Proof: The game graph for Γk has 3 edges e1, e2, e3 and 2 players of weight
w1 = 2k and w2 = (2k)2. The player-specific linear latency functions fi e(x) =
ai e · x are defined by:

ai e e1 e2 e3

player 1 (2k)4 (2k)3 ∞
player 2 ∞ 1 1

Consider the strategy profiles s = (e1, e2) and s′ = (e2, e3). We will now
argue that s is a Nash equilibrium. If player 1 moves to edge e2 its private
cost increases from 32k5 to 32k5 + 16k4. The private cost of player 2 does not
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change if the player deviates to e3. Thus s is a Nash equilibrium and we get
with respect to social cost of the two strategy profiles that

SCTL(s, Γ
k) = 64k6 + 16k4

> k · (32k5 + 16k4)

= k · SCTL(s
′, Γk).

The claim follows. �

6.5 Conclusion and Directions for Further

Research

In this chapter, we focused on congestion games with player-specific affine
latency functions. For this setting, we gave some insight into the conditions
that such games have to meet in order to have the finite improvement property,
the finite best-reply property, or a pure Nash equilibrium. Furthermore, we
proved an upper and an asymptotically tight lower bound on the price of
anarchy. There are still some open problems in this setting:

• While Theorem 6.2 showed that there is a weighted congestion game
with player-specific linear latency functions on parallel links that does
not possess the finite improvement property it is still unknown whether
such a game is guaranteed to possess (1) a pure Nash equilibrium and
(2) the finite best-reply property.

• Since we only focused on the price of anarchy for social cost as total
latency the price of anarchy with respect to other social cost measures is
still unknown.
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CHAPTER 7

Wardrop Games with Player-Specific

Affine Latency Functions

7.1 Introduction

Player-specific latency functions are reasonable for network routing games
whenever the players have different beliefs, estimates, or preferences. Up to
now player-specific latency functions were on the one hand considered for con-
gestion games [31, 47, 48, 69] where the traffics of the players are unsplittable
and in an equilibrium each player minimizes its private cost. On the other
hand, such latency functions were studied for finite splittable routing games
[74] where the traffics of the players are splittable and again in an equilibrium
each player minimizes its private cost.

We focus in this chapter on the Wardrop games with player-specific latency
functions that we defined in Section 3.2. This generalization of the original
Wardrop games allows for player-specific latency functions. The traffics of the
players are splittable and in an equilibrium each player assigns its traffic in such
a way that no fraction of the traffic assigned to some path, however small, can
decrease its experienced latency by unilaterally switching to another path.

7.1.1 Contribution

In this chapter, we consider the existence of equilibria, the computation of
equilibria, and the price of anarchy.

• For Wardrop games on parallel links with player-specific linear latency
functions, we introduce a new convex potential function and show that
this function is minimized if and only if the corresponding strategy profile
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Chapter 7 Wardrop Games with Player-Specific Affine Latency Functions

is a Wardrop equilibrium. This result implies that for this setting a
Wardrop equilibrium can be computed in polynomial time.

• We prove that the set of equilibria of each Wardrop game on parallel
links with strictly increasing player-specific latency functions is convex.
But we also show that this does not hold for all games on general net-
works with player-specific linear latency functions. Therefore, a convex
potential function does not exist for the latter setting.

• For Wardrop games Υ on arbitrary networks with player-specific affine
latency functions, we show that the price of anarchy is bounded from
above by the parameter1 ∆(Υ) if ∆(Υ) > 2 and by 4

4−∆(Υ) otherwise.

We also show a lower bound of 1
4

√

∆(Υ) which already holds for the case
of player-specific linear latency functions and parallel links.

• For Wardrop games with strictly increasing player-specific latency func-
tions, we show that a Wardrop equilibrium always exists.

7.1.2 Related Work

The related work that is relevant for this chapter studies Wardrop games (Sec-
tion 4.4) and finite splittable routing games (Section 4.6).

7.1.3 Road Map

The rest of this chapter is organized as follows. We present our results on
the convergence to a Wardrop equilibrium in Section 7.2. In Section 7.3 we
consider whether it is possible to extend these results to a more general setting.
We also study the price of anarchy (Section 7.4) and the existence of Wardrop
equilibria (Section 7.5). Finally, we conclude (Section 7.6).

7.2 Existence of and Convergence to a Wardrop

Equilibrium

In this section, we consider Wardrop games with player-specific linear latency
functions on parallel links. For such a game and a strategy profile x define the
following function:

Ψ(x) =
∑

i∈[n]

∑

e∈E

xi e · ln(ai e) +
∑

e∈E,

δe(x)>0

δe(x) · ln(δe(x)).

1The parameter ∆(Υ) was defined in Section 3.2.2. It specifies the maximum factor by
which the slopes of different player-specific affine latency functions for the same edge
differ.
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Note, that

eΨ(x) =
∏

i∈[n]

∏

e∈E

axi e

i e ·
∏

e∈E,

δe(x)>0

δe(x)δe(x)

has a similar form as the potential function Φ used in Section 6.2. Furthermore,
Ψ plays a similar role as the potential function Φ:

Theorem 7.1 (Gairing, Monien, Tiemann [47]): Let Υ be a Wardrop
game with player-specific linear latency functions on parallel links. Moreover,
let x be a strategy profile for Υ so that there exists a player k ∈ [n], two edges
p, q ∈ E, and some Λ, 0 < Λ ≤ xk p such that:

ak p · (δp(x) − Λ) ≥ ak q · (δq(x) + Λ) .

Define a new strategy profile y by:

yi j =







xk p − Λ if i = k, j = p,
xk q + Λ if i = k, j = q,
xi j otherwise.

Then Ψ(y) < Ψ(x).

This theorem can be used to show the direction (a) ⇒ (b) for the next theorem
stating that Ψ(x) is minimized iff x is a Wardrop equilibrium:

Theorem 7.2 (Gairing, Monien, Tiemann [47]): Let Υ be a Wardrop
game with player-specific linear latency functions on parallel links. Moreover,
let y be a strategy profile for Υ. Then the following two conditions are equiv-
alent:

(a) Ψ(y) = minx∈X Ψ(x),

(b) y is a Wardrop equilibrium,

where X is the set of all strategy profiles for the game Υ.

Since Ψ is a convex function it follows with Theorem 7.2 that the ellipsoid
method of Khachiyan [56] can be used to compute a Wardrop equilibrium in
polynomial time:

Theorem 7.3: For every Wardrop game with player-specific linear latency
functions on parallel links a Wardrop equilibrium can be computed in time
polynomial in the size of the instance and the number of bits of precision re-
quired.
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vo vd

e4 e5

e6

e3

e7
e8

e1 e2

Figure 7.1: Graph used in the proof of Theorem 7.4

7.3 Is there a Convex Potential Function for a

more General Setting?

If a game can be described by a convex potential function then the set of Nash
equilibria forms a convex set. In this section, we show that no such convex
function exists for general graphs with player-specific linear latency functions
(Theorem 7.4) whereas the existence remains an open problem for parallel
links with strictly increasing player-specific latency functions (Theorem 7.5).

Theorem 7.4: There is a Wardrop game Υ with player-specific linear latency
functions that possesses two Wardrop equilibria x and y where

(a) δe(x) 6= δe(y) for an edge e ∈ E and SCTL(x) 6= SCTL(y),

(b) the set of Wardrop equilibria for Υ does not form a convex set.

Proof: The game Υ has 4 players of traffic w1 = w2 = w3 = 1 and w4 = 14.
The game graph G is sketched in Figure 7.1. The player-specific linear latency
functions fie(u) = aie · u are defined by:

ai e e1 e2 e3 e4 e5 e6 e7 e8

player 1 1 ∞ 1 ∞ 1 9 ∞ ∞
player 2 4 1 ∞ 1 4 2 ∞ ∞
player 3 ∞ ∞ ∞ ∞ ∞ 1 ∞ ∞
player 4 ∞ ∞ 1 ∞ ∞ ∞ 1 1

The paths {P2, P3, P4, P6, P7} from the origin vertex vo to the destination
vertex vd will be important in the rest of this proof. It is

P2 = (e1, e2), P3 = (e1, e3, e5), P4 = (e4, e5), P6 = (e6), P7 = (e7, e3, e8).

We define now two strategy profiles x and y. x is given by x1P3 = x2P6 =
x3P6 = 1, x4P7 = 14 whereas y is defined by y1P3 = 1

4
, y1P6 = 3

4
, y2P2 = y2P4 = 1

2
,

y3P6 = 1, and y4P7 = 14. We will now show that both x and y are Wardrop
equilibria.
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• Consider the strategy profile x. Player 1 does not want to deviate since

∑

e∈P3

f1 e(δe(x)) = 1 · 1 + 1 · 15 + 1 · 1 = 17 < 18 = 9 · 2 =
∑

e∈P6

f1 e(δe(x)).

Furthermore, player 2 is satisfied since

∑

e∈P6

f2 e(δe(x)) = 2 · 2 = 4 = 4 = 4 · 1 + 1 · 0 =
∑

e∈P2

f2 e(δe(x)),

∑

e∈P6

f2 e(δe(x)) = 2 · 2 = 4 = 4 = 1 · 0 + 4 · 1 =
∑

e∈P4

f2 e(δe(x)).

Obviously, players 3 and 4 do not want to deviate and thus x is a Wardrop
equilibrium.

• Consider now the other strategy profile y. Player 1 is satisfied since

∑

e∈P3

f1 e(δe(y)) = 1 · 3

4
+ 1 · 57

4
+ 1 · 3

4
=

63

4
= 9 · 7

4
=
∑

e∈P6

f1 e(δe(y)).

Player 2 does not want to deviate since

∑

e∈P2

f2 e(δe(y)) = 4 · 3

4
+

1

2
=

7

2
=

7

2
= 1 · 1

2
+ 4 · 3

4
=
∑

e∈P4

f2 e(δe(y)),

∑

e∈P2

f2 e(δe(y)) = 4 · 3

4
+

1

2
=

7

2
=

7

2
= 2 · 7

4
=
∑

e∈P6

f2 e(δe(y)).

It is again obvious that players 3 and 4 are also satisfied and thus y is a
Wardrop equilibrium.

Having established that x and y are Wardrop equilibria we can now prove
both parts (a) and (b) of the theorem.

Part (a): It is easy to see that δe(x) 6= δe(y) for all edges e ∈ E \ {e7, e8}. For
the social cost of the Wardrop equilibrium x observe that

x1P3

∑

e∈P3

a1eδe(x) = 1 · (1 + 15 + 1) = 17,

x2P6

∑

e∈P6

a2eδe(x) = 1 · 2 · 2 = 4,

x3P6

∑

e∈P6

a3eδe(x) = 1 · 1 · 2 = 2,

x4P7

∑

e∈P7

a4eδe(x) = 14 · (14 + 15 + 14) = 602,
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and hence SCTL(x, Υ) = 17 + 4 + 2 + 602 = 625 whereas we have for the
social cost of the Wardrop equilibrium y that

y1P3

∑

e∈P3

a1eδe(y) + y1P6

∑

e∈P6

a1eδe(y) =
1

4
· 1 · 63

4
+

3

4
· 9 · 7

4
=

63

4
,

y2P2

∑

e∈P2

a2eδe(y) + y2P4

∑

e∈P4

a2eδe(y) =
1

2

(

3 +
1

2

)

+
1

2

(

1

2
+ 3

)

=
7

2
,

y3P6

∑

e∈P6

a3eδe(y) = 1 · 1 · 7

4
=

7

4
,

y4P7

∑

e∈P7

a4eδe(y) = 14 ·
(

14 +
57

4
+ 14

)

=
1183

2
,

and thus SCTL(y, Υ) = 63
4

+ 7
2

+ 7
4

+ 1183
2

= 1225
2

6= 625 = SCTL(x, Υ).

Part (b): Now consider the strategy profile z = 1
3
· x + 2

3
· y where z1P3 =

z1P6 = 1
2
, z2P2 = z2P4 = z2P6 = 1

3
, z3P6 = 1, and z4P7 = 14. Observe that

z is no Wardrop equilibrium since the player-specific latency of player 1
on the path P3 is 1 · 5

6
+ 1 · 29

2
+ 1 · 5

6
= 97

6
whereas it is 9 · 11

6
= 33

2
on P6.

This shows that the set of Wardrop equilibria of this instance does not
form a convex set. �

Theorem 7.5: Consider a Wardrop game Υ with strictly increasing player-
specific latency functions on parallel links and two associated Wardrop equilib-
ria x, y. Then,

(a) δe(x) = δe(y) for all e ∈ E and SCTL(x, Υ) = SCTL(y, Υ),

(b) the set of Wardrop equilibria for Υ forms a convex set.

Proof: We first show (a). Afterwards we will use (a) to show (b).

Part (a): We first of all show that δe(x) = δe(y) for all e ∈ E. Assume,
by way of contradiction, that δe(x) 6= δe(y) for some e ∈ E and let
M = {e ∈ E; δe(y) < δe(x)}. Fix two edges r 6∈ M , j ∈ M and let
i ∈ [n] be some player with xi j > 0. Then,

fi j(δj(y)) < fi j(δj(x)) ≤ fi r(δr(x)) ≤ fi r(δr(y)), (7.1)

where one has to recall for the first inequality that j ∈ M and that fij

is strictly increasing, for the second inequality that xi j > 0 and x is a
Wardrop equilibrium, and for the third inequality that r 6∈ M . Since y
is a Wardrop equilibrium we get with (7.1) that yi r = 0. It follows that
every player i who assigns in x non-zero traffic to at least one edge in
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j ∈ M assigns in y all its traffic to edges in M . This is a contradiction
since we assumed that an edge e ∈ E with δe(x) 6= δe(y) and thus also
an edge e ∈ M with δe(y) < δe(x) exists.

For the proof of SCTL(x, Υ) = SCTL(y, Υ) let δe = δe(x) = δe(y) denote
the load on e ∈ E in all Wardrop equilibria. Consider now a player
i ∈ [n]. In both Wardrop equilibria x and y the player i only uses edges
k ∈ E for which fi k(δk) = mine∈E{fi e(δe)}. Therefore the social cost in
both Wardrop equilibria x and y is given by:

SCTL(x, Υ) = SCTL(y, Υ) =
∑

i∈[n]

wi · min
e∈E

{fi e(δe)}.

Part (b): Let again δe = δe(x) = δe(y) denote the load on e ∈ E in all
Wardrop equilibria. Since x and y are Wardrop equilibria we have:

xi e > 0 ⇒ fi e(δe) ≤ fi k(δk) ∀ k ∈ E and

yi e > 0 ⇒ fi e(δe) ≤ fi k(δk) ∀ k ∈ E.

Putting these two conditions together we get:

(xi e > 0) ∨ (yi e > 0) ⇒ fi e(δe) ≤ fi k(δk) ∀ k ∈ E. (7.2)

Define now the strategy profile z by setting zi e = λ · xi e + (1 − λ) · yi e

for some λ, 0 < λ < 1, and all i ∈ [n], e ∈ E. Then we have for all e ∈ E
that:

δe(z) =

n
∑

i=1

zi e = λ · δe + (1 − λ) · δe = δe.

Furthermore, zi e > 0 if and only if (xi e > 0)∨ (yi e > 0). Thus condition
(7.2) shows that z is a Wardrop equilibrium. �

7.4 Price of Anarchy

In this section we give bounds on the price of anarchy. The proof of the upper
bound uses the same technique as the proof of Theorem 6.4.

Theorem 7.6 (Gairing, Monien, Tiemann [47]): Consider a Wardrop
game Υ with player-specific affine latency functions and an associated Wardrop
equilibrium x. Then,

SCTL(x, Υ)

OPTTL(Υ)
≤

{ 4
4−∆(Υ)

if ∆(Υ) ≤ 2,

∆(Υ) otherwise.
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Theorem 7.7 (Gairing, Monien, Tiemann [47]): For each n ∈ N there
is a Wardrop game Υ with n players, player-specific linear latency functions,
and ∆(Υ) = n2 on 2 parallel links that possesses a Wardrop equilibrium x such
that

SCTL(x, Υ)

OPTTL(Υ)
≥ 1

4
·
√

∆(Υ).

For Wardrop games with affine latency functions, Roughgarden and Tardos [85]
showed that the price of anarchy is exactly 4

3
. Theorem 7.6 with ∆(Υ) = 1

implies that the price of anarchy does not change even if the affine latency
functions of the players have player-specific constants bie 6= bke. Although our
upper bound is tight for ∆(Υ) = 1 there is for large ∆(Υ) still a gap between
the upper bound of ∆(Υ) and the lower bound.

7.5 Existence of Wardrop Equilibria

Every Wardrop game possesses a Wardrop equilibrium (see [12]). It is possible
to use Brouwer’s fixed point theorem to prove the existence of equilibria for
our more general class of games.

Theorem 7.8 (Gairing, Monien, Tiemann [47]): Every Wardrop game
Υ with strictly increasing player-specific latency functions possesses a Wardrop
equilibrium.

7.6 Conclusion and Directions for Further

Research

In this chapter, we considered Wardrop games with player-specific affine la-
tency functions. In this setting, we were able to derive results on the con-
vergence to equilibria, the polynomial time computation of equilibria, and the
price of anarchy. However, several challenging problems remain open. We
conclude this chapter by stating the most important ones:

• Based on a minimization of our new potential function Ψ a Wardrop
equilibrium can be computed in polynomial time for the case of player-
specific linear latency functions and parallel links (Theorem 7.3). Al-
though Theorem 7.4 shows that a similar argumentation is impossible
if we do not require parallel links we do not know whether there is a
comparable function for a setting with more general (e.g. affine) latency
functions.

• For the price of anarchy, we showed an upper bound of ∆(Υ) if ∆(Υ) > 2
(Theorem 7.6) and a lower bound of 1

4
·
√

∆(Υ) (Theorem 7.7). Hence
the exact price of anarchy is still an open problem.
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CHAPTER 8

Bayesian Routing Games

8.1 Introduction

In many large-scale, non-cooperative systems, users have only incomplete infor-
mation about the system for several reasons. In his honored work, Harsanyi [51]
introduced an elegant approach that can be used to study non-cooperative
games with incomplete information, where the players are uncertain about
some parameters. The Harsanyi transformation converts such a game with in-
complete information to a game where players have different types. The type
of a player represents its private information that is not common knowledge
to all players.

In the resulting Bayesian game, each player’s uncertainty about each other’s
type is described by a probability distribution over all possible type profiles.
Using this probability distribution, players make their decisions according to
Bayesian decision theory [15]. In Bayesian decision theory, probabilities are
used to measure the degree of belief that a person has in some proposition.

In this chapter, we follow Harsanyi’s approach and study the Bayesian rout-
ing games and weighted Bayesian congestion games that we introduced in
Section 3.3. We allow here that the players do not know each other’s weight.
Thus there is for each player a set of possible types and each type of a player
corresponds to some weight. If each player of a Bayesian routing game (or a
weighted Bayesian congestion game) has only a single type, so that players are
completely informed about each other’s weight, then we are in the setting of
weighted congestion games on parallel links (or weighted congestion games)
like they were introduced in Section 3.1.
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8.1.1 Contribution

Due to the new dimension that the incomplete information introduces to rout-
ing games, the analysis of the Bayesian routing game requires new techniques.
In this chapter, we introduce such techniques and we present a comprehensive
collection of results for the Bayesian routing game. We partition our results
into three major parts:

(1) Existence and computational complexity of pure Bayesian Nash equilibria:

Our equilibria existence result applies for the class of weighted Bayesian
congestion games. We define a new potential function that we use to
prove that every weighted Bayesian congestion game possesses a pure
Bayesian Nash equilibrium.

For the case of Bayesian routing games, identical links, and independent
type distribution, we show that a pure Bayesian Nash equilibrium can
be computed in polynomial time. This computation is based on Gra-
ham’s LPT scheduling algorithm [50]. For the case of related links and
independent type distribution, and also for the case of identical links and
arbitrary type distribution, the complexity of computing a pure Bayesian
Nash equilibrium remains open.

(2) Properties of fully mixed Bayesian Nash equilibria:

We show that for Bayesian routing games on identical links, the private
cost of each player is maximized in a fully mixed Bayesian Nash equilib-
rium. This also implies that a player has the same private cost in any
fully mixed Bayesian Nash equilibrium.

We define a certain fully mixed Bayesian Nash equilibrium that always
exists. We show that, in general, there can exist more than one fully
mixed Bayesian Nash equilibrium, and we study their structural prop-
erties. Finally, we determine the dimension of the space of fully mixed
Bayesian Nash equilibria for the case of independent type distributions.

(3) Bounds on the price of anarchy:

We conclude with bounds on the price of anarchy for Bayesian routing
games on identical links and three different social cost measures.

– For the expected maximum latency on a link as social cost measure,
we show lower and upper bounds on the price of anarchy for different
special cases. The exact value of the price of anarchy for this social
cost measure remains open.

– A social cost measure that describes average player welfare is the
sum of private costs. In this setting, it follows that each fully mixed
Bayesian Nash equilibrium has maximum social cost. Using this
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fact, we prove an upper bound of m+n−1
m

on the price of anarchy. We
prove that this bound is asymptotically tight, already for complete
information routing games.

– We also study social cost as maximum private cost. We show as-
ymptotically tight upper bounds on the price of anarchy of m+n−1

m

for Bayesian routing games and of 2 − 1
m

for complete information
routing games.

To the best of our knowledge, this is the first time that mixed Bayesian Nash
equilibria are studied in combination with social cost.

8.1.2 Related Work

The related work that is relevant for this chapter focuses on congestion games
on parallel links (Section 4.2), the existence of Nash equilibria in congestion
games (Section 4.1), and Harsanyi’s Bayesian games (Section 4.7).

8.1.3 Road Map

The rest of this chapter is organized as follows. Pure Bayesian Nash equi-
libria are studied in Section 8.2. Fully mixed Bayesian Nash equilibria are
treated in Section 8.3. Section 8.4 studies the price of anarchy. We conclude
in Section 8.5.

8.2 Pure Bayesian Nash Equilibria

In this section, we study the existence and the computational complexity of
pure Bayesian Nash equilibria. We first show that Bayesian routing games and
even weighted Bayesian congestion games are guaranteed to possess a pure
Bayesian Nash equilibrium (Theorem 8.1). Furthermore, we give a polynomial
time algorithm that is able to compute a pure Bayesian Nash equilibrium
for each Bayesian routing game with identical links and independent type
distribution (Theorem 8.2). Finally, we show that this algorithm does not work
if a setting with related links (Proposition 8.1) or correlated type distribution
(Proposition 8.2) is considered.

8.2.1 Existence of Pure Bayesian Nash Equilibria

To show that every weighted Bayesian congestion game with affine latency
functions possesses a pure Bayesian Nash equilibrium we introduce a potential
function Φ. For a pure strategy profile σ = (σ1, . . . , σn) this function Φ is given
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by

Φ(σ) =
∑

i∈[n]

∑

t∈Ti

∑

e∈σi(t)

p(i, t) · w(t) ·
[

ge(δ
−i
e (σ, (p|ti = t)) + w(t)) + ge(w(t))

]

.

We consider in [46] an unilateral strategy change of a type agent that decreases
the type agent’s private cost and show that the potential function Φ also
decreases. Thus we get that:

Theorem 8.1 (Gairing, Monien, Tiemann [46]): Every weighted Bayesi-
an congestion game with affine latency functions has a pure Bayesian Nash
equilibrium.

This generalizes a result of Fotakis et al. [39, Theorem 1] to the Bayesian
setting. In particular our function Φ reduces to their potential function if each
player has only a single type.

8.2.2 Computation of Pure Bayesian Nash Equilibria

We now turn to the model of Bayesian routing games on identical links and
show how a pure Bayesian Nash equilibrium can be computed in polynomial
time if the type distribution is independent. Given a Bayesian routing game
Γ our algorithm constructs a complete information routing game ΓCI (i.e., a
weighted congestion game on parallel links), computes a Nash equilibrium α
for this game ΓCI, and uses α to obtain the Bayesian Nash equilibrium for Γ:

Algorithm 1 Pure Bayesian Nash equilibrium computation

Input: Bayesian routing game Γ = (n, m, 1, T,p) with p independent
Output: Pure Bayesian Nash equilibrium σ = (σ1, . . . , σn) for Γ

1: Calculate for each player i ∈ [n] its expected weight W (i).
2: Set w(t′i) = W (i) for all i ∈ [n] and construct a complete information

routing game ΓCI = (n, m, 1, {(t′1, ..., t′n)}, 1).
3: Compute a pure Nash equilibrium α : [n] → [m] for ΓCI in polynomial time

with the LPT scheduling algorithm which assigns the players in order of
non-increasing player weights to minimum load links (see [38, 50]).

4: Set σi(t) = α(i) for all players i ∈ [n] and types t ∈ Ti.

A simple proof by contradiction shows that this algorithm indeed computes
a pure Bayesian Nash equilibrium. Hence we get:

Theorem 8.2 (Gairing, Monien, Tiemann [46]): Let Γ = (n, m, 1, T,p)
be a Bayesian routing game on identical links with independent type distribu-
tion. Then, a normal pure Bayesian Nash equilibrium for Γ can be computed
in time polynomial in the size of Γ even if p is represented in a compact form
by a set of probabilities p(i, t) for i ∈ [n] and t ∈ Ti.
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The just given algorithm cannot be used to compute pure Bayesian Nash equi-
libria for the more general classes of Bayesian routing games either on related
links or with correlated type distribution. The reason is that the algorithm
always computes a normal Bayesian Nash equilibrium, whereas the following
counter-examples show that a normal Bayesian Nash equilibrium does not exist
in general.

Proposition 8.1: There is a Bayesian routing game Γ on related links with
independent type distribution that does not have a normal pure Bayesian Nash
equilibrium.

Proof: Consider the Bayesian routing game Γ = (2, 2, c, T1 × T2,p) with
two links of capacity c1 = 1 and c2 = 5. The two players have type sets
T1 = {t1, t′1} and T2 = {t2}, where w(t1) = 1, w(t′1) = 5, w(t2) = 10, and
p(1, t1) = p(1, t′1) = 1

2
. We will now study the structure of pure Bayesian Nash

equilibria for Γ and finally recognize that Γ has no normal pure Bayesian Nash
equilibrium.

Let σ be an arbitrary pure Bayesian Nash equilibrium. Then,

λ1
(2,t2)(σ,p) =

δ−2
1 (σ,p) + w(t2)

c1
≥ w(t2)

c1
= 10

while

λ2
(2,t2)(σ,p) =

δ−2
2 (σ,p) + w(t2)

c2
≤

1
2
· w(t1) + 1

2
· w(t′1) + w(t2)

c2
=

13

5
< 10.

Thus, σ assigns t2 to link 2, so σ2(t2) = 2. Consider now the types of player
1. We have

λ1
(1,t1)(σ,p) =

w(t1)

c1
= 1 and λ2

(1,t1)(σ,p) =
w(t2) + w(t1)

c2
=

11

5
,

λ1
(1,t′1)(σ,p) =

w(t′1)

c1

= 5 and λ2
(1,t′1)(σ,p) =

w(t2) + w(t′1)

c2

= 3.

So σ assigns t1 to link 1 and t′1 to link 2. It follows that σ is the unique pure
Bayesian Nash equilibrium. However, σ is not normal. The claim follows. �

Proposition 8.2: There is a Bayesian routing game Γ on identical links with
correlated type distribution that does not have a normal pure Bayesian Nash
equilibrium.

Proof: Consider the Bayesian routing game Γ = (3, 2, 1, T1×T2×T3,p) with 2
identical links and 3 players where the type sets are T1 = {t1, t′1}, T2 = {t2, t′2}
and T3 = {t3, t′3}. The types are of weight w(t1) = w(t′2) = w(t3) = w(t′3) = 1
and w(t′1) = w(t2) = 2. The correlated distribution p is given by p(t1, t2, t3) =
p(t′1, t

′
2, t

′
3) = 1

2
.
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Assume, by way of contradiction, that a normal pure Bayesian Nash equi-
librium σ exists; so, σ1(t1) = σ1(t

′
1), σ2(t2) = σ2(t

′
2), and σ3(t3) = σ3(t

′
3). Let

j 6= k be the two links. Without loss of generality, set σ1(t1) = σ1(t
′
1) = j.

Then, clearly

λj
(2,t′2)(σ,p) ≥ w(t′1) + w(t′2) = 3 while λk

(2,t′2)(σ,p) ≤ w(t′3) + w(t′2) = 2.

Thus, σ2(t
′
2) = k; hence, σ2(t2) = σ2(t

′
2) = k for all normal pure Bayesian

Nash equilibria σ. For the types of player 3, note that

λj
(3,t3)(σ,p) = w(t1) + w(t3) = 2 while λk

(3,t3)(σ,p) = w(t2) + w(t3) = 3,

λj
(3,t′3)(σ,p) = w(t′1) + w(t′3) = 3 while λk

(3,t′3)(σ,p) = w(t′2) + w(t′3) = 2.

Since σ is a Bayesian Nash equilibrium, σ3(t3) = j and σ3(t
′
3) = k. Hence, σ

is not normal. A contradiction. �

8.3 Fully Mixed Bayesian Nash Equilibria

In this section, we study fully mixed Bayesian Nash equilibria for the case of
identical links. We first prove a simple expression for the private cost of each
player in a fully mixed Bayesian Nash equilibrium (Proposition 8.3). This
result is useful to show that the private cost of each player is maximized
in a fully mixed Bayesian Nash equilibrium (Proposition 8.4). Please note
that this also implies that a player has the same private cost in any fully
mixed Bayesian Nash equilibrium. We define a certain fully mixed Bayesian
Nash equilibrium that always exists (Definition 8.1). Finally, we describe the
structural properties of fully mixed Bayesian Nash equilibria (Proposition 8.5)
and we determine the dimension of the space of fully mixed Bayesian Nash
equilibria (Theorem 8.3) for the case of independent type distributions.

We start by proving a technical lemma that we will apply in the proof of
Proposition 8.3.

Lemma 8.1: Consider a Bayesian routing game Γ = (n, m, 1, T,p) on iden-
tical links and an associated mixed strategy profile Q. Then, for each player
i ∈ [n],

∑

j∈[m]

δ−i
j (Q, (p|ti = t)) =

∑

s∈[n]\{i}
W (s|ti = t).

Proof: Clearly,
∑

j∈[m]

δ−i
j (Q, (p|ti = t))

=
∑

j∈[m]

∑

σ∈Σ

∏

s∈[n]

q(s, σs) · δ−i
j (σ, (p|ti = t))
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=
∑

j∈[m]

∑

σ∈Σ

∏

s∈[n]

q(s, σs)
∑

(t1,...,tn)∈T :

ti=t

p(t1, . . . , ti−1, ti+1, . . . , tn|ti = t)
∑

s∈[n]\{i}:

σs(ts)=j

w(ts)

=
∑

σ∈Σ

∏

s∈[n]

q(s, σs) ·
∑

(t1,...,tn)∈T :

ti=t

p(t1, . . . , ti−1, ti+1, . . . , tn|ti = t) ·
∑

s∈[n]\{i}
w(ts)

=
∑

(t1,...,tn)∈T :

ti=t

p(t1, . . . , ti−1, ti+1, . . . , tn|ti = t) ·
∑

s∈[n]\{i}
w(ts)

=
∑

s∈[n]\{i}

∑

(t1,...,tn)∈T :

ti=t

p(t1, . . . , ti−1, ti+1, . . . , tn|ti = t) · w(ts)

=
∑

s∈[n]\{i}
W (s|ti = t). �

We continue to prove a simple expression for the private cost of each player in
a fully mixed Bayesian Nash equilibrium.

Proposition 8.3: Consider a Bayesian routing game Γ = (n, m, 1, T,p) on
identical links and an associated fully mixed Bayesian Nash equilibrium F.
Then for each player i ∈ [n],

PCi(F,p) =
W

m
+

m − 1

m
· W (i).

Proof: Fix any player i ∈ [n]. Clearly, for any link k ∈ supportFi
(i) = [m],

and by Lemma 8.1,

PCi(F,p) =
∑

t∈Ti

p(i, t) · v(i,t)(F,p)

=
∑

t∈Ti

p(i, t) ·
(

w(t) + δ−i
k (F, (p|ti = t))

)

=
∑

t∈Ti

p(i, t) · w(t) +
∑

t∈Ti

p(i, t) · δ−i
k (F, (p|ti = t))

= W (i) +
∑

t∈Ti

p(i, t) · 1

m
·
∑

j∈[m]

δ−i
j (F, (p|ti = t))

= W (i) +
1

m
·
∑

t∈Ti

p(i, t) ·
∑

s∈[n]\{i}
W (s|ti = t) (8.1)

= W (i) +
1

m
·
∑

s∈[n]\{i}

∑

t∈Ti

p(i, t) · W (s|ti = t)

= W (i) +
1

m
·
∑

s∈[n]\{i}
W (s)

=
W

m
+

m − 1

m
· W (i). �
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We now prove that the private cost of each player is maximized in a fully
mixed Bayesian Nash equilibrium. For the special case of complete information
routing games this result is already known [44].

Proposition 8.4: Consider a Bayesian routing game Γ = (n, m, 1, T,p) on
identical links, an associated fully mixed Bayesian Nash equilibrium F, and a
Bayesian Nash equilibrium Q. Then for each player i ∈ [n],

PCi(Q,p) ≤ PCi(F,p).

Proof: Fix any player i ∈ [n]. Then, for any link j ∈ [m],

PCi(Q,p) =
∑

t∈Ti

p(i, t) · v(i,t)(Q,p)

≤
∑

t∈Ti

p(i, t) ·
(

w(t) + δ−i
j (Q, (p|ti = t))

)

,

since Q is a Bayesian Nash equilibrium. In particular,

PCi(Q,p) ≤
∑

t∈Ti

p(i, t) ·
(

w(t) + min
j∈[m]

{

δ−i
j (Q, (p|ti = t))

}

)

≤
∑

t∈Ti

p(i, t) ·



w(t) +
1

m
·
∑

j∈[m]

δ−i
j (Q, (p|ti = t))





=
∑

t∈Ti

p(i, t) ·



w(t) +
1

m
·
∑

s∈[n]\{i}
W (s|ti = t)





= W (i) +
1

m
·
∑

t∈Ti

p(i, t) ·
∑

s∈[n]\{i}
W (s|ti = t)

= PCi(F,p),

by Equation (8.1), as needed. �

We proceed to define a particular fully mixed strategy profile F.

Definition 8.1: A standard fully mixed strategy profile F is a fully mixed
strategy profile that assigns every type agent to every link with probability 1

m
.

It is easy to see that for any Bayesian routing game Γ on identical links, a
standard fully mixed strategy profile is a Bayesian Nash equilibrium. For the
special case of complete information routing games, this fact was also observed
in [67].

In general, there exists more than one fully mixed Bayesian Nash equilibrium
(see, e.g., Proposition 8.7). We now give an exact characterization of all fully
mixed Bayesian Nash equilibria.
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Proposition 8.5: Consider a Bayesian routing game Γ = (n, m, 1, T,p) on
identical links with independent type distribution and an associated fully mixed
strategy profile F. Then, F is a fully mixed Bayesian Nash equilibrium if and
only if for all players i ∈ [n] and links j ∈ [m] it holds that

1

m
· W (i) =

∑

σi∈Σi

f(i, σi) ·
∑

t∈Ti:

σi(t)=j

p(i, t) · w(t).

Proof: For any player i ∈ [n] and link j ∈ [m], set

µ(F, i, j) =
∑

σi∈Σi

f(i, σi) ·
∑

t∈Ti:

σi(t)=j

p(i, t) · w(t).

Observe that for any player i ∈ [n] and link j ∈ [m],

δ−i
j (F,p)

=
∑

σ∈Σ

∏

s∈[n]

f(s, σs) ·
∑

(t1,...,tn)∈T

p(t1, . . . , tn) ·
∑

k∈[n]\{i}:

σk(tk)=j

w(tk)

=
∑

σ∈Σ

∏

s∈[n]

f(s, σs) ·
∑

k∈[n]\{i}

∑

tk∈Tk:

σk(tk)=j

p(k, tk) · w(tk)

=
∑

k∈[n]\{i}

∑

σ∈Σ

∏

s∈[n]

f(s, σs) ·
∑

tk∈Tk:

σk(tk)=j

p(k, tk) · w(tk)

=
∑

k∈[n]\{i}

∑

σ′
k
∈Σk

f(k, σ′
k) ·

∑

σ∈Σ:

σk=σ′
k

∏

s∈[n]\{k}
f(s, σs) ·

∑

tk∈Tk:

σk(tk)=j

p(k, tk) · w(tk)

=
∑

k∈[n]\{i}

∑

σ′
k
∈Σk

f(k, σ′
k) ·

∑

tk∈Tk:

σk(tk)=j

p(k, tk) · w(tk)

=
∑

k∈[n]\{i}
µ(F, k, j) .

Proof of ⇐: Consider first an arbitrary fully mixed strategy profile F that
satisfies for all players i ∈ [n] and all links j ∈ [m] that µ(F, i, j) =
1
m
· W (i). Then, for all players i ∈ [n], types t ∈ Ti, and links j ∈ [m],

λj
(i,t)(F,p) = δ−i

j (F, (p|ti = t)) + w(t)

= δ−i
j (F,p) + w(t)

=
∑

k∈[n]\{i}
µ(F, k, j) + w(t)

=
∑

k∈[n]\{i}

1

m
· W (k) + w(t).
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Hence we get for the private cost of type agent (i, t),

v(i,t)(F,p) =
∑

σi∈Σi

f(i, σi) · λσi(t)
(i,t) (F,p)

=
∑

k∈[n]\{i}

1

m
· W (k) + w(t).

So, v(i,t)(F,p) = λj
(i,t)(F,p) for all players i ∈ [n], types t ∈ Ti, and links

j ∈ [m]. Thus, F is a fully mixed Bayesian Nash equilibrium.

Proof of ⇒: Assume now that F is a fully mixed Bayesian Nash Equilibrium.
Hence, supportQi

(t) = [m] for all players i ∈ [n] and types t ∈ Ti. Since
F is a fully mixed Bayesian Nash Equilibrium and p is independent, it
follows that for all links j ∈ supportQi

(t) = [m],

v(i,t)(F,p) = λj
(i,t)(F,p)

= δ−i
j (F, (p|ti = t)) + w(t)

= δ−i
j (F,p) + w(t).

So, for all players i ∈ [n] and pair of links j, l ∈ [m],

δ−i
j (F,p) = δ−i

l (F,p).

Since δ−i
j (F,p) =

∑

k∈[n]\{i} µ(F, k, j) for any player i and link j, it

follows that for an arbitrary pair of players i1, i2 ∈ [n] with i1 6= i2 and
an arbitrary pair of links j1, j2 ∈ [m] with j1 6= j2,

∑

k∈[n]\{i1}
µ(F, k, j1) =

∑

k∈[n]\{i1}
µ(F, k, j2) (8.2)

and
∑

k∈[n]\{i2}
µ(F, k, j1) =

∑

k∈[n]\{i2}
µ(F, k, j2). (8.3)

Subtracting (8.3) from (8.2) yields that

µ(F, i2, j1) − µ(F, i1, j1) = µ(F, i2, j2) − µ(F, i1, j2),

or equivalently

0 = µ(F, i2, j1) − µ(F, i2, j2) + µ(F, i1, j2) − µ(F, i1, j1).
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Summing up over all players i2 ∈ [n] \ {i1} yields that

0 = +
∑

i2∈[n]\{i1}
µ(F, i2, j1) −

∑

i2∈[n]\{i1}
µ(F, i2, j2)

+
∑

i2∈[n]\{i1}
µ(F, i1, j2) −

∑

i2∈[n]\{i1}
µ(F, i1, j1)

= + δ−i1
j1

(F,p) − δ−i1
j2

(F,p)

+ (n − 1) · µ(F, i1, j2) − (n − 1) · µ(F, i1, j1)

= (n − 1) · (µ(F, i1, j2) − µ(F, i1, j1)) .

It follows that for all players i1 ∈ [n] and pair of links j1, j2 ∈ [m],

µ(F, i1, j1) = µ(F, i1, j2).

Clearly, for any player i ∈ [n],

W (i) =
∑

t∈Ti

p(i, t) · w(t)

=
∑

σi∈Σi

f(i, σi) ·
∑

t∈Ti

p(i, t) · w(t)

=
∑

σi∈Σi

f(i, σi) ·
∑

j∈[m]

∑

t∈Ti:

σi(t)=j

p(i, t) · w(t)

=
∑

j∈[m]

∑

σi∈Σi

f(i, σi) ·
∑

t∈Ti:

σi(t)=j

p(i, t) · w(t)

=
∑

j∈[m]

µ(F, i, j)

= m · µ(F, i, j),

for any link j ∈ [m]. This implies that for all players i ∈ [n] and links
j ∈ [m],

µ(F, i, j) =
1

m
· W (i),

or
1

m
· W (i) =

∑

σi∈Σi

f(i, σi) ·
∑

t∈Ti:

σi(t)=j

p(i, t) · w(t),

as needed. �

We finally determine a lower bound on the dimension of the space of fully
mixed Bayesian Nash equilibria.

Theorem 8.3 (Gairing, Monien, Tiemann [46]): Consider a Bayesian
routing game Γ on identical links with independent type distribution. Then,
the dimension of the space of fully mixed Bayesian Nash equilibria for Γ is at
least

∑

i∈[n] m
|Ti| − nm.
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8.4 Social Cost and Price of Anarchy

In this section, we present bounds on the price of anarchy for three different
social cost measures and Bayesian routing games on identical links. We start
with social cost as expected maximum latency (Section 8.4.1), proceed with
social cost as sum of private costs (Section 8.4.2), and close with social cost as
maximum of private costs (Section 8.4.2).

8.4.1 Social Cost as Expected Maximum Latency

We will now study social cost as the expected maximum latency and show
lower and upper bounds on the price of anarchy for different special cases.

For complete information routing games (i.e., weighted congestion games
on parallel links) social cost as expected maximum latency was introduced by
Koutsoupias and Papadimitriou [60]. Asymptotic tight bounds on the price of
anarchy were given by Czumaj and Vöcking [26] and Koutsoupias et al. [59].
Their techniques use Chernoff bounds to show that for identical links the
quotient between the expected maximum load and the maximum expected
load on a link is at most O( log m

log log m
). We prove that similar techniques cannot

be applied for Bayesian routing games to prove an upper bound on the price
of anarchy which is better than O(m).

Proposition 8.6 (Gairing, Monien, Tiemann [46]): For any ε > 0, there
is a Bayesian routing game Γ = (n, m, 1, T,p) on identical links with indepen-
dent type distribution and an associated pure Bayesian Nash equilibrium σ with
SCMSP(σ, Γ) = OPTMSP(Γ), such that for each link j ∈ [m],

SCMSP(σ, Γ)

δj(σ,p)
≥ m

1 + ε
.

We now turn our attention to standard fully mixed Bayesian Nash equilibria
and prove:

Theorem 8.4: Consider a Bayesian routing game Γ = (n, m, 1, T,p) on iden-
tical links and an associated standard fully mixed Bayesian Nash equilibrium
F. Then,

SCMSP(F, Γ)

OPTMSP(Γ)
= O

(

log m

log log m

)

.

Proof: Consider an arbitrary type profile t = (t1, ..., tn) ∈ T . Given t, we
define the game ΓCI(t) = (n, m, 1, {(t1, ..., tn)}, 1). Recall that for this complete
information routing game ΓCI(t), the unique fully mixed Nash equilibrium Q(t)
assigns each player to each link with probability 1/m (see [67, Lemma 15]).
By [59, Theorem 4.4] or [26, Theorem 1.1], it holds that

SCMSP(Q, ΓCI(t))

OPTMSP(ΓCI(t))
= O

(

log m

log log m

)

.
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Recall that F assigns every type agent to every link with probability 1
m

. Thus,

SCMSP(F, Γ) =
∑

t∈T

p(t) ·
∑

(σ1(t1),...,σn(tn))∈[m]n

(

1

m

)n

· max
j∈[m]















∑

i∈[n]:

σi(ti)=j

w(ti)















=
∑

t∈T

p(t) · SCMSP(Q(t), ΓCI(t))

=
∑

t∈T

p(t) · OPTMSP(ΓCI(t)) · O
(

log m

log log m

)

= OPTMSP(Γ) · O
(

log m

log log m

)

,

as needed. �

Theorem 8.4 implies that for standard fully mixed Nash equilibria, incomplete
information has no impact on the price of anarchy when social cost is taken
as expected maximum latency.

Since, in general, there is more than one fully mixed Bayesian Nash equi-
librium, the natural question arises whether they have all the same expected
maximum latency. As we see now, this is not the case.

Proposition 8.7: There exists a Bayesian routing game Γ on identical links
and an associated fully mixed Bayesian Nash equilibrium F such that

SCMSP(F, Γ) > SCMSP(F, Γ).

Proof: Consider the Bayesian routing game Γ = (n, m, 1, T,p) with n =
2, m = 3 and Ti = {ti, t′i} with w(ti) = 2, w(t′i) = 1 for all players i ∈ {1, 2};
set p(i, ti) = p(i, t′i) = 1

2
for all players i ∈ {1, 2}. Consider the standard fully

mixed Bayesian Nash equilibrium F and some other fully mixed Bayesian Nash
equilibrium F which we define below:

• F assigns each type to each link with a probability of 1
3
. Thus, the two

players are assigned to the same link with a probability of 1
3
. In this

case, the maximum latency can be 2, 3, or 4. With a probability of 2
3
,

the players are assigned to different links. In this case the maximum
latency can be 1 or 2. Hence, the social cost of the standard fully mixed
Bayesian Nash equilibrium F is

SCMSP(F, Γ) =
1

3
·
(

1

4
· 2 +

1

2
· 3 +

1

4
· 4
)

+
2

3
·
(

1

4
· 1 +

3

4
· 2
)

=
13

6
.

• The fully mixed strategy profile F assigns each type of weight 1 to link
1 with a probability of 1

2
, to link 2 with a probability of 1

4
and to link
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3 with a probability of 1
4
. Each type of weight 2 is assigned to link 1

with a probability of 1
4
, to link 2 with a probability of 3

8
and to link 3

with a probability of 3
8
. Observe that for all i ∈ {1, 2} we get δ−i

1 (F) =
1
2
· 1

2
· 1+ 1

2
· 1

4
· 2 = 1

2
and δ−i

2 (F) = δ−i
3 (F) = 1

2
· 1

4
· 1+ 1

2
· 3

8
· 2 = 1

2
. Thus,

F is a Bayesian Nash equilibrium.

With probability 1
4

both players are of weight 1. In this case they use
the same link with probability (1

2
)2 + 2 · (1

4
)2 = 3

8
. With probability 1

2
,

exactly one of the two players is of weight 1. In this case, the players use
the same link with probability 1

2
· 1

4
+ 2 · 1

4
· 3

8
= 5

16
. With the remaining

probability 1
4
, both players are of weight 2. In this case, the players use

the same link with probability (1
4
)2 + 2 · (3

8
)2 = 11

32
. Hence we get that

the social cost of F is

SCMSP(F, Γ)

=
1

4
·
(

3

8
· 2 +

5

8
· 1
)

+
1

2
·
(

5

16
· 3 +

11

16
· 2
)

+
1

4
·
(

11

32
· 4 +

21

32
· 2
)

=
139

64
.

Observe that SCMSP(F, Γ) = 139
64

= 417
192

> 416
192

= 13
6

= SCMSP(F, Γ). �

It is known (see [65, Section 8.E]) that mixed Nash equilibria in games
with complete information are related to pure Bayesian Nash equilibria in a
Bayesian game, where for each player all its types are identical. The following
definition and theorem applies this to Bayesian routing games.

Definition 8.2: A CI-like game is a Bayesian routing game with an indepen-
dent type distribution such that w(t) = w(t′) for all types t, t′ ∈ Ti, where
i ∈ [n].

We call these games CI-like games (where CI stands for complete information)
since they are similar to complete information routing games in the sense that
the weight of a player does not depend on its type. For complete information
routing games, there exist asymptotically tight upper bounds on the price of
anarchy for the cases of identical links [26, 59] and related links [26]. We use
these bounds to prove:

Theorem 8.5: Let Γ = (n, m, c, T,p) be a CI-like game with an associated
pure Bayesian Nash equilibrium σ. Then

(a) SCMSP(σ,Γ)
OPTMSP(Γ)

= O
(

log m
log log m

)

, for the case of identical links,

(b) SCMSP(σ,Γ)
OPTMSP(Γ)

= O
(

log m
log log log m

)

, for the case of related links,

and there are CI-like games for which both bounds are asymptotically tight.
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Proof: The proof is structured as follows: We first define a construction
that maps any CI-like game Γ with an associated pure strategy profile σ
to a complete information routing ΓCI with associated (mixed) strategy pro-
file Q. For this construction, we show that SCMSP(σ, Γ) = SCMSP(Q, ΓCI),
OPTMSP(Γ) = OPTMSP(ΓCI), and that Q is a Nash equilibrium if σ is a Bayesian
Nash equilibrium. From these properties of our construction, we derive that
the corresponding upper bounds on the price of anarchy [26, 59] for complete
information routing games also hold for CI-like games.

To prove tightness, we show that for every complete information routing
game ΓCI with associated (mixed) Nash equilibrium Q, we can define a CI-
like game Γ with associated pure Bayesian Nash equilibrium σ, such that our
construction maps Γ and σ to ΓCI and Q, respectively. This implies that also
the lower bounds on the price of anarchy can be carried over to the CI-like
games. We start by defining our construction.

Construction Γ 7→ ΓCI: Let Γ = (n, m, c, T,p) be a CI-like game. For each
i ∈ [n], denote by wi = w(t) the weight of all types t ∈ Ti. Define a complete
information routing game ΓCI = (n, m, c, T ′, 1) where T ′ = {(t′1, . . . , t′n)} and
w(t′i) = wi for all i ∈ [n].

Let σ = (σ1, . . . , σn) be a pure strategy profile for the CI-like game Γ. Denote
by Σ′ the set of all pure strategy profiles for ΓCI; thus, Σ′ = Σ′

1 × . . . × Σ′
n,

where for each player i ∈ [n], the set Σ′
i consists of all possible pure strategies

σ′
i : {t′i} → [m] for player i.

Define a mixed strategy profile Q for ΓCI, where for each player i ∈ [n]
and all pure strategies σ′

i ∈ Σ′
i the probability q(i, σ′

i) is given by q(i, σ′
i) =

∑

t∈Ti:σi(t)=σ′
i(t

′
i)

p(i, t). We proceed by showing properties of our construction.

• SCMSP(σ, Γ) = SCMSP(Q, ΓCI): To show that the strategy profiles σ for Γ
and Q for ΓCI are of the same social cost observe that

SCMSP(σ, Γ)

=
∑

(t1,...,tn)∈T

p(t1, . . . , tn) · max
j∈[m]















1

cj

∑

i∈[n],

σi(ti)=j

w(ti)















=
∑

(t1,...,tn)∈T

∏

i∈[n]

p(i, ti) · max
j∈[m]















1

cj

∑

i∈[n],

σi(ti)=j

wi















=
∑

(σ′
1,...,σ′

n)∈Σ′









∑

(t1,...,tn)∈T :

σi(ti)=σ′
i(t

′
i)∀i∈[n]

∏

i∈[n]

p(i, ti)









· max
j∈[m]















1

cj

∑

i∈[n],

σ′
i(t

′
i)=j

wi














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=
∑

(σ′
1,...,σ′

n)∈Σ′









∏

i∈[n]

∑

t∈Ti:

σi(t)=σ′
i(t

′
i)

p(i, t)









· max
j∈[m]















1

cj

∑

i∈[n],

σ′
i(t

′
i)=j

wi















=
∑

(σ′
1,...,σ′

n)∈Σ′

∏

i∈[n]

q(i, σ′
i) · max

j∈[m]















1

cj

∑

i∈[n],

σ′
i(t

′
i)=j

wi















= SCMSP(Q, ΓCI).

• OPTMSP(Γ) = OPTMSP(ΓCI): To show OPTMSP(Γ) ≥ OPTMSP(ΓCI) ob-
serve that our construction maps a pure strategy profile for Γ of optimum
social cost to a strategy profile for ΓCI that has the same social cost.

For the other direction OPTMSP(Γ) ≤ OPTMSP(ΓCI), observe that there
always exists a pure strategy profile σ̂′ for ΓCI of optimum social cost,
i.e. SCMSP(σ̂′, ΓCI) = OPTMSP(ΓCI). Consider the normal pure strategy
profile σ̂ for Γ that assigns for each i ∈ [n] all types of player i to the
link to that σ̂′ assigns player i, so σ̂i(t) = σ̂i

′(t′i) for all players i ∈ [n]
and all types t ∈ Ti. Notice that our construction transforms Γ and σ̂
back to ΓCI and σ̂′. Thus SCMSP(σ̂, Γ) = SCMSP(σ̂′, ΓCI). We get that

OPTMSP(Γ) ≤ SCMSP(σ̂, Γ)

= SCMSP(σ̂′, ΓCI)

= OPTMSP(ΓCI).

• Mapping of Equilibria: Clearly, for all players i ∈ [n], types t ∈ Ti, and
links j ∈ [m],

λj
(i,t)(σ,p)

=
1

cj
·
(

w(t) + δ−i
j (σ,p)

)

=
1

cj
·









w(t) +
∑

(t1,...,tn)∈T

p(t1, . . . , tn) ·
∑

s∈[n]\{i}:

σs(ts)=j

w(ts)









=
1

cj
·









wi +
∑

(t1,...,tn)∈T

∏

s∈[n]

p(s, ts) ·
∑

s∈[n]\{i}:

σs(ts)=j

ws









=
1

cj
·









wi +
∑

(σ′
1,...,σ′

n)∈Σ′









∑

(t1,...,tn)∈T :

σs(ts)=σ′
s(t′s)∀s∈[n]

∏

s∈[n]

p(s, ts)









·
∑

s∈[n]\{i}:

σ′
s(t′s)=j

ws








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=
1

cj
·









wi +
∑

(σ′
1,...,σ′

n)∈Σ′









∏

s∈[n]

∑

ts∈Ts:

σs(ts)=σ′
s(t′s)

p(s, ts)









·
∑

s∈[n]\{i}:

σ′
s(t

′
s)=j

ws









=
1

cj

·









w(t′i) +
∑

(σ′
1,...,σ′

n)∈Σ′

∏

s∈[n]

q(s, σ′
s) ·

∑

s∈[n]\{i}:

σ′
s(t′s)=j

w(t′s)









=
1

cj

·
(

w(t′i) + δ−i
j (Q, 1)

)

= λj
(i,t′i)

(Q, 1).

We now use this property to show that Q is a Nash equilibrium for ΓCI if
σ is a pure Bayesian Nash equilibrium for Γ. So, let σ be a pure Bayesian
Nash equilibrium for Γ. Fix an arbitrary player i ∈ [n]. Remember that
in Γ all types of player i have the same weight. Thus,

v(i,t)(σ,p) = v(i,t̂)(σ,p)

for all pairs of types t, t̂ ∈ Ti. Since σ is a pure Bayesian Nash equilibrium
for Γ, this implies that for all types t ∈ Ti,

v(i,t)(σ,p) = λj
(i,t)(σ,p) for all j ∈ supportσi

(i) and

v(i,t)(σ,p) ≤ λj
(i,t)(σ,p) for all j 6∈ supportσi

(i).

By definition of Q,

supportσi
(i) = supportQi

(t′i).

It follows that

v(i,t′i)
(Q, 1) = λj

(i,t′i)
(Q, 1) for all j ∈ supportQi

(t′i) and

v(i,t′i)
(Q, 1) ≤ λj

(i,t′i)
(Q, 1) for all j 6∈ supportQi

(t′i),

so that Q is a Nash equilibrium.

Upper bounds on price of anarchy: Recall that by our construction, we have that
SCMSP(σ, Γ) = SCMSP(Q, ΓCI) and OPTMSP(Γ) = OPTMSP(ΓCI). Thus, resort-
ing to the corresponding upper bounds on the price of anarchy from [59] and
[26], we get

SCMSP(σ, Γ)

OPTMSP(Γ)
=

SCMSP(Q, ΓCI)

OPTMSP(ΓCI)
=







O
(

log m
log log m

)

, for identical links,

O
(

log m
log log log m

)

, for related links.

This completes the proof of the upper bounds.
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Tightness of the upper bounds: From [59] and [26], there exist complete infor-
mation routing games ΓCI with an associated mixed Nash equilibrium Q such
that

SCMSP(Q, ΓCI)

OPTMSP(ΓCI)
=







Ω
(

log m
log log m

)

, for the case of identical links,

Ω
(

log m
log log log m

)

, for the case of related links.

Let ΓCI = (n, m, c, T ′, 1), T ′ = {(t′1, . . . , t′n)}, be such a complete information
routing game with an associated mixed Nash equilibrium Q. With a slight
abuse of notation, we denote Q = (q(i, j))i∈[n],j∈[m] where q(i, j) is the proba-
bility that type t′i ∈ T ′

i is assigned to link j ∈ [m].

We define a CI-like game Γ = (n, m, c, T,p) and an associated pure strategy
profile σ as follows:

For each player i ∈ [n], Ti consists of |supportQi
(i)| types, where we

have a type tji for every link j ∈ supportQi
(i). For all players i ∈ [n]

and links j ∈ supportQi
(i), define p(i, tji ) = q(i, j) and σi(t

j
i ) = j.

Notice that our construction Γ 7→ ΓCI transforms the CI-like game Γ with as-
sociated pure strategy profile σ back to the complete information routing game
ΓCI with associated (mixed) Nash equilibrium Q. It follows that SCMSP(σ, Γ) =
SCMSP(Q, ΓCI), OPTMSP(Γ) = OPTMSP(ΓCI) and λl

(i,tji )
(σ,p) = λl

(i,t′i)
(Q, 1) for

all players i ∈ [n], for all links l ∈ [m], and for all j ∈ supportQi
(i). Since Q is

a Nash equilibrium we have

v(i,t′i)
(Q, 1) = λj

(i,t′i)
(Q, 1) for all j ∈ supportQi

(t′i) and

v(i,t′i)
(Q, 1) ≤ λj

(i,t′i)
(Q, 1) for all j 6∈ supportQi

(t′i).

Furthermore, supportσi
(i) = supportQi

(i) for all i ∈ [n], and λl
(i,tji )

(σ,p) =

λl
(i,t′i)

(Q, 1) for all players i ∈ [n], for all links l ∈ [m], and for all j ∈
supportQi

(i). It follows that σ is a pure Bayesian Nash equilibrium with

SCMSP(σ, Γ)

OPTMSP(Γ)
=

SCMSP(Q, ΓCI)

OPTMSP(ΓCI)

=







Ω
(

log m
log log m

)

, for the case of identical links,

Ω
(

log m
log log log m

)

, for the case of related links.

This completes the proof. �

We conclude with a lower bound on the price of anarchy for normal pure
Bayesian Nash equilibria.
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Theorem 8.6: There exists a sequence of Bayesian routing games Γ on iden-
tical links and associated normal pure Bayesian Nash equilibria σ such that

SCMSP(σ, Γ)

OPTMSP(Γ)
= Ω

(

log m

log log m

)

.

Proof: Let m > 1015 be a perfect square, i.e., we have that
√

m ∈ N. Our
Bayesian routing game Γ = (n, m, 1, T,p) with independent type distribution
p has two classes of players, U1 and U2:

• The class U1 consists of m players with type set Ti = {ti, t′i}, where
w(ti) = 1, w(t′i) = 0, p(i, ti) = 1√

m
and p(i, t′i) = 1 − 1√

m
for all players

i ∈ U1.

• The class U2 consists of (
√

m − 1) · m players with type set Ti = {ti},
where w(ti) = 1√

m
and p(i, ti) = 1 all players i ∈ U2.

Consider the pure strategy profile σ′ that assigns to each link one player from
U1 and

√
m − 1 players from U2. By analyzing the social cost of σ′, we get

SCMSP(σ′, Γ) ≤ 1 + (
√

m − 1) · 1√
m

< 2.

Now consider the normal pure strategy profile σ where
√

m players from U1

are assigned to each link j ∈ [
√

m] and
√

m players from U2 to each of the
remaining m −√

m links. Clearly, σ is a normal pure Bayesian Nash equilib-
rium.

To show a lower bound on SCMSP(σ, Γ) we consider any link j ∈ [
√

m]. The
actual load, say Xj , on link j ∈ [

√
m] is a random variable which is a sum of√

m independent random variables with E(Xj) = 1. Let 1 ≤ k ≤ √
m, k ∈ N;

the precise choice of k will be made later. Clearly,

Pr(Xj ≥ k) ≥ Pr(Xj = k)

=

(√
m

k

)

·
(

1√
m

)k

·
(

1 − 1√
m

)

√
m−k

≥
(√

m

k

)

·
(

1√
m

)k

·
(

1 − 1√
m

)

√
m−1

≥
(√

m

k

)

·
(

1√
m

)k

· 1

e
(see [88, Lemma 2])

=

√
m · . . . · (√m − k + 1)

√
m

k
· 1

k!
· 1

e
.
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Now, observe that
√

m·...·(√m−k+1)√
mk is monotonically increasing in

√
m. Thus we

get with
√

m ≥ k,

√
m · . . . · (√m − k + 1)

√
m

k
≥ k · . . . · (k − k + 1)

kk

=
k!

kk
.

It follows that

Pr(Xj ≥ k) ≥ k!

kk
· 1

k!
· 1

e

=
1

e · kk
,

so that

Pr(Xj < k) ≤ 1 − 1

e · kk
.

Now, since the actual loads X1, . . . , X√
m are independent of each other, we

have

Pr((X1 < k) ∧ ... ∧ (X√
m < k)) =

∏

j∈[
√

m]

Pr(Xj < k)

≤
(

1 − 1

e · kk

)

√
m

≤ e−
1

e·kk
·√m,

where the last inequality holds since 1− x ≤ e−x for all x ∈ [0, 1]. Define now
α > 0 so that

(

α
e

)α
= m. Then, clearly1, α = Θ( log m

log log m
). Choose k = α

e
. We

get that kk = (α
e
)

α
e = m

1
e and thus

Pr((X1 < k) ∧ ... ∧ (X√
m < k)) ≤ e−

1

e·kk ·√m

= e−
1
e
·m 1

2− 1
e

≤ 1

m
,

1The Gamma factorial function ΓF [54, Chapter 6] is for any integer N ≥ 1 defined as
ΓF (N + 1) = N ! and it is well known that Γ−1

F
(N) = (log N)/(log log N) · (1 + o(1)).

Thus Stiriling’s formula N ! = (N

e
)N ·

√
2πN ·(1+o(1)) can be used to get that

(

α

e

)α
= m

for α = Θ(log m/ log log m).
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where the last inequality holds since m is larger than 1015. This implies that

SCMSP(σ, Γ) ≥ Pr((X1 ≥ k) ∨ ... ∨ (X√
m ≥ k)) · k

=
(

1 − Pr((X1 < k) ∧ ... ∧ (X√
m < k))

)

· k

≥
(

1 − 1

m

)

· α

e

= Θ

(

log m

log log m

)

.

Thus,

SCMSP(σ, Γ)

OPTMSP(Γ)
≥ SCMSP(σ, Γ)

SCMSP(σ′, Γ)

= Ω

(

log m

log log m

)

,

as needed. �

8.4.2 Social Cost as Sum of Private Costs

In this section, we study the price of anarchy for social cost as the sum of
private costs. In Theorem 8.7, we get that here fully mixed Bayesian Nash
equilibria have worst social cost. This result is then used to prove an asymp-
totically tight bound on the price of anarchy (Theorem 8.8).

Proposition 8.4 states that the private cost of each player is maximized in a
fully mixed Bayesian Nash equilibrium. Hence, we obtain:

Theorem 8.7: Consider a Bayesian routing game Γ on identical links and
an associated fully mixed Bayesian Nash equilibrium F and a Bayesian Nash
equilibrium Q. Then,

SCSUM(Q, Γ) ≤ SCSUM(F, Γ).

We now use Theorem 8.7 to prove an asymptotically tight bound on the
price of anarchy for the case of identical links.

Theorem 8.8: Consider a Bayesian routing game Γ = (n, m, 1, T,p) on iden-
tical links and an associated Bayesian Nash equilibrium Q. Then,

SCSUM(Q, Γ)

OPTSUM(Γ)
≤ m + n − 1

m
,

and this bound is tight up to a factor of (1 + ε) for any ε > 0, even if Γ is a
complete information routing game.
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Proof: By Theorem 8.7, it suffices to prove the upper bound for a fully mixed
Bayesian Nash equilibrium F. Clearly,

SCSUM(F, Γ) =
∑

i∈[n]

PCi(F,p)

=
∑

i∈[n]

(

W

m
+

m − 1

m
· W (i)

)

(by Proposition 8.3)

=
nW

m
+

m − 1

m
· W

=
m + n − 1

m
· W.

On the other hand, PCi(Q,p) ≥ W (i) for any player i ∈ [s] and any strategy
profile Q; hence,

OPTSUM(Γ) ≥
∑

i∈[n]

W (i) = W.

The upper bound follows.

We now prove that this upper bound is tight even for complete information
routing games. To do so, we will prove that for any ε > 0, there is a complete
information routing game ΓCI = (n, m, 1, T, 1) such that OPTSUM(ΓCI) ≤ (1 +
ε) · W . We proceed by case analysis on the relation between n and m.

• Assume first that n ≤ m. Let ΓCI be an arbitrary complete information
routing game with n ≤ m. Then we can assign each player to a separate
link which yields OPTSUM(ΓCI) = W .

• Assume now that n > m. Define the complete information routing game
ΓCI as follows:

There are two sets of players U1, and U2. The set U1 consists of
n−m+1 players with w(ti) = 1 for all i ∈ U1, and U2 consists
of m − 1 players with w(ti) = k for all i ∈ U2 where k ∈ N is
a constant to be determined later.

For the (expected) total weight, we get

W = n − m + 1 + (m − 1) · k.

Let σ be the pure strategy profile that assigns all players from U1 to link
m and each of the m−1 players from U2 separately to a link from [m−1].
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Thus,

OPTSUM(ΓCI)

≤ SCSUM(σ, ΓCI)

= (n − m + 1)2 + (m − 1) · k

=
(n − m + 1)2 + (m − 1) · k
n − m + 1 + (m − 1) · k · W

=
(n − m + 1) · (n − m) + (n − m + 1) + (m − 1) · k

n + (m − 1) · (k − 1)
· W

=

(

1 +
(n − m) · (n − m + 1)

n + (m − 1) · (k − 1)

)

· W.

Clearly, for any ε > 0, there is a k ∈ N such that (n−m)·(n−m+1)
n+(m−1)·(k−1)

≤ ε.
Hence, for any ε > 0, there is a complete information routing game ΓCI

such that OPTSUM(ΓCI) ≤ (1 + ε) · W . This completes the proof for the
case n > m.

In all cases, there is a complete information routing game ΓCI such that
OPTSUM(ΓCI) ≤ (1 + ε) · W . Since SCSUM(F, ΓCI) = m+n−1

m
· W , it follows

that

SCSUM(F, ΓCI)

OPTSUM(ΓCI)
≥ 1

1 + ε
· m + n − 1

m
,

as needed. �

Berenbrink et al. [14] showed that the price of anarchy for complete information
routing games (i.e., weighted congestion games on parallel links) and social
cost as sum of private costs grows at least linearly with the number of players.
In particular, they proved that n

5 is a lower bound on the price of anarchy.
Theorem 8.8 implies that the price of anarchy increases at most linear with n
and also shows the impact of the number of links.

Another interesting insight of Theorem 8.8 is that the price of anarchy does
not increase if we allow incomplete information. This is not the case if social
cost is defined as the maximum private cost, as we will see next.

8.4.3 Social Cost as Maximum Private Cost

In this section, we study the price of anarchy for social cost as the maximum
private cost. As in the last section our asymptotic tight bounds on the price
of anarchy (Theorem 8.10) are based on the fact that fully mixed Bayesian
Nash equilibria have worst social cost (Theorem 8.9). We obtain the latter
with Proposition 8.4:
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Theorem 8.9: Consider a Bayesian routing game Γ on identical links and
an associated fully mixed Bayesian Nash equilibrium F and a Bayesian Nash
equilibrium Q. Then,

SCMAX(Q, Γ) ≤ SCMAX(F, Γ).

We now use Theorem 8.9 to prove asymptotically tight bounds on the price
of anarchy for both Bayesian routing games and complete information routing
games on identical links.

Theorem 8.10: Consider a Bayesian routing game Γ = (n, m, 1, T,p) on
identical links and an associated Bayesian Nash equilibrium Q. Then,

(a)
SCMAX(Q, Γ)

OPTMAX(Γ)
≤ m + n − 1

m
, and

(b)
SCMAX(Q, Γ)

OPTMAX(Γ)
≤ 2 − 1

m
, if Γ is a complete information routing game.

The bound from (a) is tight up to a factor of (1 + ε) for any ε > 0 and the
bound from (b) is tight.

Proof: Let F be a fully mixed Bayesian Nash equilibrium for Γ. Proposi-
tions 8.3 and 8.4 imply together that

PCi(Q,p) ≤ PCi(F,p) =
W

m
+

m − 1

m
· W (i), (8.4)

for each player i ∈ [n]. We now prove the two parts (a) and (b) of the theorem.

Part (a), upper bound: Clearly, for any strategy profile Q′ and for any player
i ∈ [n], PCi(Q

′,p) ≥ W (i); hence,
∑

i∈[n] PCi(Q
′,p) ≥ W . This implies

that

OPTMAX(Γ) ≥ W

n
. (8.5)

Clearly, OPTMAX(Γ) ≥ W (i) for all i ∈ [n]. Fix any player i ∈ [n]. By
(8.4) and (8.5),

PCi(Q,p) ≤ W

m
+

m − 1

m
· OPTMAX(Γ)

≤ n

m
· OPTMAX(Γ) +

m − 1

m
· OPTMAX(Γ)

=
m + n − 1

m
· OPTMAX(Γ).

and the upper bound follows.
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Part (a), lower bound: Fix any arbitrary k, a, r ∈ N, which will be deter-
mined later. Consider the Bayesian routing game Γk,a,r = (n, m, 1, T,p)
with independent type distribution and n = k · (m − 1) players. Each
player i ∈ [n] has type set Ti = {ti, t′i} with weights w(ti) = 1, w(t′i) = a·r
and probabilities p(i, ti) = 1 − 1

a
, p(i, t′i) = 1

a
. Clearly, for player i ∈ [n],

W (i) = r + 1 − 1
a
.

Define a pure strategy profile σ that assigns all types t′i, i ∈ [n], of weight
1 to link m. The types ti, i ∈ [n], are evenly distributed among the links
in [m − 1]; so, σ assigns exactly k of these types to each link in [m− 1].
Now for each player i ∈ [n],

PCi(σ,p)

=

(

1 − 1

a

)

·
(

1 + (k − 1) ·
(

1 − 1

a

))

+
1

a
· ((n − 1) · r + r · a)

=

(

1 − 1

a

)

·
(

1

a
+ k ·

(

1 − 1

a

))

+ r ·
(

(n − 1)

a
+ 1

)

;

so, for any ε′ > 0, there is a sufficiently large a such that for each player
i ∈ [n],

PCi(σ,p) ≤ (k + r) · (1 + ε′).

Hence, OPTMAX(Γk,a,r) ≤ (k+r)(1+ε′). Fix now any fully mixed Bayesian
Nash equilibrium F. Proposition 8.3 implies that for each player i ∈ [n],

PCi(F,p) =

(

1 +
n − 1

m

)

· W (i)

=
m + n − 1

m
·
(

r + 1 − 1

a

)

.

Thus SCMAX(F, Γk,a,r) = m+n−1
m

·
(

r + 1 − 1
a

)

and we can conclude that

SCMAX(F, Γk,a,r)

OPTMAX(Γk,a,r)
≥ (r + 1 − 1

a
)

(k + r)(1 + ε′)
· m + n − 1

m
;

so, for any ε > ε′, there is a sufficiently large r such that

SCMAX(F, Γk,a,r)

OPTMAX(Γk,a,r)
≥ m + n − 1

m
· 1

1 + ε
.

This proves that the upper bound shown before is tight up to a factor of
(1 + ε).

Part (b), upper bound: Consider for the upper bound a complete informa-
tion routing game ΓCI = (n, m, 1, {(t1, . . . , tn)}, 1). Here, W (i) = w(ti)
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for all i ∈ [n]. Clearly, OPTMAX(ΓCI) ≥ W (i) for all i ∈ [n] and
OPTMAX(ΓCI) ≥ W

m
. By Equation (8.4),

PCi(Q,p) ≤ W

m
+

m − 1

m
· W (i)

≤ OPTMAX(ΓCI) +
m − 1

m
· OPTMAX(ΓCI)

=

(

2 − 1

m

)

· OPTMAX(ΓCI),

so that

SCMAX(Q, Γ)

OPTMAX(Γ)
≤ 2 − 1

m

and hence the upper bound follows.

Part (b), lower bound: Consider for the lower bound the complete informa-
tion routing game ΓCI = (n, m, 1, {(t1, . . . , tn)}, 1) with n = m and
w(t1) = . . . = w(tn) = 1. Clearly, W (i) = w(ti) = 1 for all i ∈ [n],
W = m and OPTMAX(ΓCI) = 1. Now, for the fully mixed Nash equilib-
rium F and any player i ∈ [n], by Equation (8.4),

PCi(F,p) =
W

m
+

m − 1

m
· W (i)

= (2 − 1

m
) · OPTMAX(ΓCI),

so that

SCMAX(F, Γ)

OPTMAX(Γ)
= 2 − 1

m
. �

8.5 Conclusion and Directions for Further

Research

In this chapter, we studied Bayesian routing games with incomplete infor-
mation. With the help of a potential function we were able to prove that
every Bayesian routing game possesses a pure Bayesian Nash equilibrium. For
games with identical links and independent type distribution, we described a
polynomial time algorithm that is able to compute such a pure Bayesian Nash
equilibrium. We showed that our algorithm does not work for Bayesian routing
games with correlated type distribution or related links. For these cases it is
an open problem whether a pure Bayesian Nash equilibrium can be computed
in polynomial time.
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Our study of the structural properties of fully mixed Bayesian Nash equilib-
ria in the model of identical links revealed that the private costs of all players
are maximized in a fully mixed Bayesian Nash equilibrium. This interesting
insight enabled us to prove (asymptotic) tight bounds on the price of anarchy
for identical link games if the social cost measure is given by the average or
the maximum private cost of a player. Furthermore, we considered the price
of anarchy for identical link games if instead social cost is described by the
expected maximum latency on a link. Here, we established lower and upper
bounds for different special cases but the exact price of anarchy has been left
open. In this chapter, we focused our study on the price of anarchy only to
identical link games. The next logical step is to extend the given results to
related links.
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CHAPTER 9

Bottleneck Games with Splittable Traffic

9.1 Introduction

While Wardrop games are appropriate to model road traffic systems, the basic
assumption of drivers minimizing their travel time (more generally called path
latency) is not reasonable in all networks. For instance, in communication
networks such as the Internet, providers of streaming content would try to
maximize the throughput to their clients whereas the transmission time is of
lesser concern. More generally, for a routing path in such a network, one
would be interested in the maximum latency of all its edges—in other words,
the latency of the bottleneck—as it is inversely proportional to the achievable
throughput on that very path.

From a purely mathematical perspective, the bottleneck latency of a path
corresponds to the ∞-norm of the vector of edge latencies whereas the sum of
edge latencies—that was of interest in Wardrop games—equals the 1-norm. For
a broader discussion of when the ∞-norm should be used, confer also Banner
and Orda [11]. They mention, for instance, that the ∞-norm is appropriate to
model wireless networks where each node has a limited transmission energy.

As another motivation, a celebrated result by Leighton et al. [61] implies
that the bottleneck latency is also of interest in settings with individual traffic:
Their result states that individual packets can be routed in time O(congestion
+ dilation) when the paths for the packets are given in advance. Here dilation
denotes the maximum length of a path and congestion denotes the maximum
number of paths sharing a common edge.

We address the bottleneck latency scenarios described in the last paragraphs
by studying the bottleneck games with splittable traffic that were formally in-
troduced in Section 3.4. Similar to Wardrop games, one could for such a game
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think of infinitely many selfish players each controlling a negligible amount
of traffic. However, their objective is now to choose a path such that their
experienced bottleneck latency is at minimum. Likewise, we define a Wardrop
equilibrium in a game of our new model as a traffic distribution where no
fraction of the traffic assigned to some path, however small, can decrease its
bottleneck latency by unilaterally switching to another path.

A part of our results focuses on bottleneck games with splittable traffic and
M/M/1 latency functions. These latency functions arise in queuing theory as
the expected latency of queues with a Poisson arrival process and an exponen-
tially distributed service time [57, 79]. They are used in networking theory to
model packet-switched networks. Here, a packet that starts at its entry node
in the network or arrives at an intermediate node on its way to the destination
is stored in a queue. It can leave the queue as soon as the next link on the
path of the packet becomes available [16, 87].

9.1.1 Contribution

Our investigations are two-fold: First, we study general properties of bottle-
neck games with splittable traffic such as existence and uniqueness of Wardrop
equilibria and dependence of both the price of anarchy and stability of the net-
work topology. Most of our results here are based on properties of maximum
flows and minimum cuts1. In the second part we prove an exact expression for
the price of stability for bottleneck games with splittable traffic and M/M/1
latency functions on parallel links. In detail, our main findings are:

• General results for bottleneck games with splittable traffic:

– We show that a bottleneck game with splittable traffic possesses a
Wardrop equilibrium with finite social cost if the traffic is smaller
than the network capacity.

– For bottleneck games with splittable traffic on series parallel graphs
we prove the social cost of Wardrop equilibria to be unique. By
contrast, we also show that for any graph whose subgraph induced
by all simple origin-destination paths is not series parallel, there
exists a game having equilibria with different social cost.

– We show that the price of stability for bottleneck games with split-
table traffic is independent of the network topology, i.e., the worst-
case ratio, over all instances, between the best Nash equilibrium
and an optimum is attained on parallel links. (See Section 9.2.3 for
a comparison with a similar result by Cole et al. [22].)

1See Section 2.5 for a brief description of maximum flows and minimum cuts.
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• Bottleneck games with splittable traffic and M/M/1 latency functions:
We prove that the expression

m · r
cmin

r
cmin

+ 2 · (m − 1) ·
(
√

r
cmin

+ 1 − 1
) (9.1)

describes the exact price of stability for games with M/M/1 latency func-
tions, minimum edge capacity cmin, and traffic r on m parallel links.

Since bottleneck games with splittable traffic on parallel links are Wardrop
games, it is possible to draw interesting conclusions based on our result that
the price of stability for bottleneck games with splittable traffic is independent
of the network topology. To be more precise, it follows that the price of stabil-
ity for bottleneck games with splittable traffic on arbitrary graphs corresponds
to the price of anarchy for Wardrop games on parallel links. This can be used
when latency functions are restricted to polynomials where results of Rough-
garden [82] can be applied, and also for the class of M/M/1 latency functions
where our expression (9.1) describes the price of stability for bottleneck games
with splittable traffic on arbitrary graphs.

9.1.2 Related Work

The related work that is relevant for this chapter studies Wardrop games (Sec-
tion 4.4), bottleneck games (Section 4.5), and finite splittable routing games
(Section 4.6).

9.1.3 Road Map

The rest of this chapter is organized as follows. We study bottleneck games
with splittable traffic and general latency functions in Section 9.2, whereas we
restrict ourselves to M/M/1 latency functions in Section 9.3. We conclude in
Section 9.4.

9.2 Games with General Latency Functions

For bottleneck games with splittable traffic we will prove the existence of
Wardrop equilibria (Section 9.2.1), study the (non-)uniqueness of equilibria
social cost (Section 9.2.2), and show that the price of stability is independent
of the network topology (Section 9.2.3). Before we focus on these results we
want to make a simple observation which shows that not restricting the paths
of Pvovd

to be simple would yield a different game (which is not the case for
the classic Wardrop games where cycle paths could be omitted without loss of
generality).
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Figure 9.1: Graph used in the proof of Observation 9.1

Observation 9.1: There is a bottleneck game Γ with splittable traffic that has
a unique Wardrop equilibrium if only simple paths are allowed and two different
Wardrop equilibria if also non-simple paths are allowed.

Proof: Consider the bottleneck game Γ = (G, vo, vd, (ce)e∈E , r) with splittable
traffic and M/M/1 latency functions whose graph is shown in Figure 9.1. Edge
e has capacity 3 whereas all others are of capacity 4. The traffic to be routed
is r = 3. Since only simple paths are allowed, there are only two possible paths
from vo to vd. Let x denote the strategy profile where the amount of traffic
using path (e) is 1 and the amount on (f, h) is 2. It is easy to see that x is
the unique Wardrop equilibrium. If paths were allowed that are not simple
then the strategy profile where the amount of traffic on (e, g, h) is 2 and the
amount on (f, h) is 1 would also be a Wardrop equilibrium. �

9.2.1 Existence of Wardrop Equilibria

Existence of Wardrop equilibria in bottleneck games with splittable traffic can
be established by employing the general result of [86] (for a proof using more
elementary maths, see [78]). To illustrate the connection to maximum flows,
however, we start by giving a proof that makes use of the max-flow min-cut
theorem (see, e.g., [3]). The construction described in the proof will also be
used in the proof of Theorem 9.5. Obviously, the only interesting case is the
traffic to be routed being smaller than the capacity of the network.

Theorem 9.1: Let Γ = (G, vo, vd, (fe)e∈E, r) be a bottleneck game with split-
table traffic where r < C(G, vo, vd, (fe)e∈E). Then Γ possesses a Wardrop equi-
librium of finite social cost.

Proof: We give a short outline of the proof first: Restricting the latency of
any used path in Pvovd

to y ≥ 0 induces maximum flow instances with edge
capacities each within an interval [kmin

e (y), kmax
e (y)] ⊆ R

+
0 . Any solution to one

of these instances is a Wardrop equilibrium of a game (G, vo, vd, (fe)e∈E, r′)
where r′ ∈ R(y) and R(y) ⊆ R

+
0 is an interval. The theorem follows as for
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any r′ ∈ R(y) there exists a matching maximum flow instance (and hence a
Wardrop equilibrium) and furthermore

⋃

y∈R
+
0

R(y) = [0, C(G, vo, vd, (fe)e∈E)).

We now present the proof in detail. Let Γ = (G, vo, vd, (fe)e∈E, r) be as
stated in the theorem. W.l.o.g., we can assume for any e ∈ E that fe(u) → ∞
for u → ∞. (Since the traffic r ∈ R

+
0 is finite and therefore the definition of

fe on (r,∞) has no effect.) For every edge e ∈ E we will now introduce the
functions kmin

e and kmax
e where for a y ≥ fe(0) the values kmin

e (y) and kmax
e (y)

will be the minimum and maximum load that we can have on edge e to get a
latency of y. For an edge e ∈ E and ext ∈ {min, max}, let kext

e : R
+
0 → R

+
0 ,

kext
e (y) =

{

0 if y < fe(0)

ext f−1({y}) if y ≥ fe(0).

Note that kmin
e and kmax

e are well-defined functions because non-empty closed
subsets of R that are bounded below (resp., above) have a minimum (resp.,
maximum). Observe that for any edge e ∈ E, a latency y ∈ R

+
0 , and an

edge flow u ∈ [kmin
e (y), kmax

e (y)], it holds that fe(u) = y if y ≥ fe(0) and
fe(u) = fe(0) > y otherwise. Obviously, the functions kmin

e and kmax
e are

non-decreasing. From elementary analysis, we have that kmin
e is lower semi-

continuous whereas kmax
e is upper semi-continuous.

Here we will only prove that kmax
e is upper semi-continuous. (The lower

semi-continuity for kmin
e follows with similar arguments.) Assume, by the way

of contradiction, that there are y ≥ fe(0) and δ > 0 such that for every ε > 0
it holds that kmax(y + ε) ≥ kmax(y) + δ. By definition of kmax, we have that
f(kmax(y) + δ) = y + εy for an εy > 0. Since f is non-decreasing, we have for
all ε > 0 that

y + ε = f(kmax(y + ε)) ≥ f(kmax(y) + δ) = y + εy,

i.e., ε ≥ εy which is a contradiction since εy > 0.
Define now `((ke)e∈E), ` : (R+

0 )|E| → R
+
0 , as the maximum flow for the

maximum flow problem instance (G, vo, vd, (ke)e∈E), i.e., `((ke)e∈E) is the max-
imum amount of flow possible if ke is the capacity restriction for e. ` is con-
tinuous because if k = (ke)e∈E and k′ = (k′

e)e∈E are capacity vectors with
ke − ε ≤ k′

e ≤ ke + ε for all e ∈ E then

`(k) − ε · |E| ≤ `(k′) ≤ `(k) + ε · |E|.

Finally, for ext ∈ {max, min} set rext(y) = `((kext
e (y))e∈E), rext : R

+
0 → R

+
0 .

Hence, rmin(y) is the maximum flow we achieve if we select for each edge e as
capacity kmin

e (y) either the smallest load that causes latency y or 0 if even load
0 leads to a latency of at least y. In almost the same manner rmax(y) is the
maximum flow we achieve if we select for each edge e as capacity kmax

e (y) either
the largest load that causes latency y or 0 if even load 0 leads to a latency
greater than y.
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Now fix y ∈ R
+
0 and (ke)e∈E where ke ∈ [kmin

e (y), kmax
e (y)] for all e ∈ E.

Consider the maximum flow problem on the instance (G, vo, vd, (ke)e∈E) for
which H = (he)e∈E is a maximum flow. W.l.o.g. there is no cycle in the graph
G whose edges e all have a non-zero flow he > 0. (By the flow decomposition
theorem [3] it is possible to remove such cycle-flows. The outcome is again a
maximum flow.) We now perform a flow decomposition to get a strategy profile
x for the bottleneck game with splittable traffic (G, vo, vd, (fe)e∈E, `((ke)e∈E))
where δe(x) = he for all edges e ∈ E.

We will now show that x is a Wardrop equilibrium: By the max-flow min-cut
theorem (see Section 2.5) we have that there exists a cut D(S, T ) ⊆ E with
he = ke for all e ∈ D(S, T ). Consider an arbitrary path P ∈ Pvovd

: Assume
first that xP > 0, hence we have for all e ∈ P that ke > 0 and y ≥ fe(0).
Obviously, P contains an edge ê ∈ D(S, T ), i.e., an edge ê with

fê(δê(x)) = fê(hê) = fê(kê) = y.

Furthermore, he ≤ ke for all edges e ∈ P and therefore

fe(δe(x)) = fe(he) ≤ fe(ke) = y.

If, on the other hand, xP = 0, then P has to contain an edge e ∈ D(S, T ) with
he = ke and

fe(δe(x)) = fe(he) = fe(ke) ≥ y.

We eventually get that each path with non-zero flow has latency y, whereas
each path without flow has latency at least y. Hence, x is an equilibrium.

Finally, since rmin(0) = 0, rmax(y) → C(G, vo, vd, (fe)e∈E) for y → ∞, rmin

is lower semi-continuous, and rmax is upper semi-continuous, there has to be a
y ∈ R

+
0 with rmin(y) ≤ r and rmax(y) ≥ r. Continuity of ` and the preceding

paragraph then assure the existence of a Wardrop equilibrium for Γ. �

9.2.2 (Non-)Uniqueness Results about Social Cost of

Equilibria

We will show in this section that different equilibria for a bottleneck game
with splittable traffic on a series parallel graph have the same social cost. The
proof for this result employs a technique based on what we define as strong
cuts.

Definition 9.1: Let Γ be a bottleneck game with splittable traffic on a series
parallel graph G = (V, E) and let x be a Wardrop equilibrium for Γ. Then
D ⊆ E is called strong cut with respect to Γ and x if

1. each path P ∈ Pvovd
contains exactly one edge that belongs to D, and

2. fe(δe(x)) ≥ l(x) for all edges e ∈ D.
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Observe that, given a strong cut D with respect to Γ and an equilibrium x, all
edges e ∈ D with δe(x) > 0 have latency l(x) whereas all other edges e ∈ D
with δe(x) = 0 have latency at least l(x). Before making use of the crucial
properties of strong cuts, we need to ensure their existence.

Theorem 9.2: Let Γ be a bottleneck game with splittable traffic on a series
parallel graph and let x be a Wardrop equilibrium for Γ. Then a strong cut
with respect to Γ and x exists.

Proof: The proof is by structural induction over all series parallel graphs.
Our induction hypothesis is that every series parallel graph G with terminals
(vo, vd) has the following property: For any bottleneck game Γ with splittable
traffic on G and all Wardrop equilibria of Γ, there is a strong cut.

The only base case to verify consists of the graph with two nodes vo, vd solely
connected by the edge e. Obviously, for any game Γ on this graph, {e} is a
strong cut with respect to Γ and its trivial equilibrium. For the induction
step, consider any arbitrary series parallel graph G = (V, E) with terminals
(vo, vd). Furthermore, assume that G is a parallel or series connection of two
series parallel graphs G1 = (V1, E1) and G2 = (V2, E2) with terminals (v1

o , v
1
d)

and (v2
o , v

2
d), respectively, and both G1 and G2 fulfill the induction hypothesis.

To prove the induction step, we then have to show that G fulfills the induction
hypothesis, too. Thus, let Γ = (G, vo, vd, (fe)e∈E , r) be an arbitrary game on G
and x be an arbitrary Wardrop equilibrium for Γ and consider the two cases:

Parallel Connection: In this case vo = v1
o = v2

o and vd = v1
d = v2

d. Set

r1 =
∑

P∈P
v1
ov1

d

xP , r2 =
∑

P∈P
v2
ov2

d

xP

where Pv1
ov1

d
and Pv2

ov2
d

are meant to only contain paths from G1 and
G2, respectively. Obviously, r1 + r2 = r and the two games Γ1 =
(G1, v

1
o , v

1
d, (fe)e∈E1 , r1) and Γ2 = (G2, v

2
o , v

2
d, (fe)e∈E2, r2) have Wardrop

equilibria x(1) and x(2) where x
(1)
P = xP for all paths P with edges in

E1 and x
(2)
P = xP for all paths P with edges in E2. It follows by the

induction hypothesis that there are strong cuts D1 and D2 with respect
to G1,x

(1) and G2,x
(2) that we can use to get a strong cut D = D1 ∪D2

for Γ and its equilibrium x.

Series Connection: In this case vo = v1
o , v1

d = v2
o , v2

d = vd. Consider the games
Γ1 = (G1, v

1
o , v

1
d, (fe)e∈E1, r) and Γ2 = (G2, v

2
o , v

2
d, (fe)e∈E2, r). Obviously,

x induces strategy profiles x(1) and x(2) for Γ1 and Γ2, respectively. At
least one of x(1) and x(2) is a Wardrop equilibrium. Otherwise, there
would be a path P ∈ Pvovd

with non-zero flow on which the latency is
larger than on another path R ∈ Pvovd

, and x cannot be a Wardrop
equilibrium. If x(1) is an equilibrium we set D = D1 and D = D2

otherwise. In either case, D is a strong cut for Γ and its equilibrium x.�
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v′o v′dc

a b

d e

Figure 9.2: Braess paradox graph

We now use strong cuts in the proof of the next theorem to show that all
Wardrop equilibria of a bottleneck game with splittable traffic on a series
parallel graph have the same social cost. Obviously, this implies that the price
of stability does not differ from the price of anarchy for this class of games.

Theorem 9.3: Let Γ be a bottleneck game with splittable traffic on a series
parallel graph, let x̂ and x be two Wardrop equilibria for Γ. Then SC(x̂, Γ) =
SC(x, Γ).

Proof: The proof is by contradiction. Assume, by the way of contradiction,
that two different Wardrop equilibria x̂ and x for Γ = (G, vo, vd, (fe)e∈E, r) are
given such that SC(x̂, Γ) < SC(x, Γ). Clearly, l(x̂) < l(x). Let D be a strong
cut with respect to Γ and x. Consider an edge e ∈ D with δe(x̂) > 0. Since x̂
is a Wardrop equilibrium and e is an edge of the strong cut D with respect to
Γ and x, we get that

fe(δe(x̂)) ≤ l(x̂) < l(x) ≤ fe(δe(x)),

which implies δe(x̂) < δe(x) because fe is non-decreasing. If instead an edge
e ∈ D with δe(x̂) = 0 is considered we trivially obtain that δe(x̂) ≤ δe(x).
Together we get that

r =
∑

e∈D

δe(x̂) <
∑

e∈D

δe(x) = r,

which is a contradiction. �

We will now consider graphs that are not series parallel. We start by observing
that there is a game on such a graph that has equilibria of different social cost.

Lemma 9.1: There exists a bottleneck game Γ′ with splittable traffic possess-
ing Wardrop equilibria of different social cost.

Proof: Consider the bottleneck game Γ′ = (G′, v′
o, v

′
d, (ce)e∈E′, r′) with split-

table traffic and M/M/1 latency functions where G′ = (V ′, E ′) is the Braess
paradox graph as shown in Figure 9.2. All edges e ∈ E ′ have capacity ce = r′,
i.e., the capacities equal the amount of traffic to be routed.

The strategy profile x = (0, r′, 0) that only uses the “zigzag” path (a, c, e)
is a Wardrop equilibrium of social cost SC(x, Γ′) = ∞. However, the profile
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x̂ = ( r′

2
, 0, r′

2
) that splits the traffic evenly on the “upper” and “lower” paths

(a, b) and (d, e) is also an equilibrium with SC(x̂, Γ′) = 2. Hence, x and x̂ are
of different social cost. �

We will now use Lemma 9.1 to get a stronger result that does not restrict to
the Braess paradox graph. Instead this stronger result considers all graphs G
that are of interest. Recall that whenever traffic is sent through a graph G
only edges that are on a simple path from vo to vd can be used. So the same
equilibria are obtained when playing the game not on G but on the maximum
subgraph of G containing only edges that are on a simple path from vo to vd.
This idea is captured by the following definition.

Definition 9.2: A directed multigraph G = (V, E) without isolated vertices
where vo, vd ∈ V , vo 6= vd, is called strongly (vo, vd)-connected if every edge
e ∈ E is contained in a simple path from vo to vd.

In [68] we use a result [27, 89] stating that an acyclic strongly (vo, vd)-connected
graph G is series parallel if and only if the Braess paradox graph is not a
minor of G. Based on this result it is possible to simulate the game Γ′ given in
Lemma 9.1 on any strongly (vo, vd)-connected graph that is not series parallel.
Thus we get that:

Theorem 9.4 (Mazalov, Monien, Schoppmann, Tiemann [68]): Let G
be a strongly (vo, vd)-connected graph that is not series parallel. Then there ex-
ists a bottleneck game Γ = (G, vo, vd, (fe)e∈E , r) with splittable traffic possessing
Wardrop equilibria of different social cost.

9.2.3 Price of Stability

In this section, we will show that the price of stability for bottleneck games with
splittable traffic and latency functions from an arbitrary set of latency func-
tions F is the same on general graphs as on parallel links, i.e., PoS(G (F)) =
PoS(P(F)). To do so, we will show that given a game Γ on a general graph
with latency functions from F there exists a game Γ′ on parallel links with
latency functions from F and Wardrop equilibria x for Γ and x̂ for Γ′ such
that SC(x,Γ)

OPT(Γ)
≤ SC(x̂,Γ′)

OPT(Γ′)
.

We assume that Cole et al. [22] proved a very similar result to establish their
Theorem 4.6 (whose proof they had to omit due to lack of space). Since we
need a rather technical formulation for our result on the price of stability for
games with M/M/1 latency functions, we give the following Theorem 9.5.

Theorem 9.5: Let Γ = (G, vo, vd, (fe)e∈E, r), G = (V, E), be a bottleneck
game with splittable traffic where r < C(G, vo, vd, (fe)e∈E). Then there exist

• a bottleneck game Γ′ = (G′, v′
o, v

′
d, (f

′
e′)e′∈E′, r) with splittable traffic on

parallel links G′ = (V ′, E ′) where |E ′| ≤ |E| and for each e′ ∈ E ′ there
is an edge e ∈ E such that f ′

e′ = fe and
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• Wardrop equilibria x for Γ and x̂ for Γ′,

such that SC(x,Γ)
OPT(Γ)

≤ SC(x̂,Γ′)
OPT(Γ′)

.

Proof: Let x be the equilibrium for Γ whose existence we proved in Theo-
rem 9.1. Recall that x corresponds to a maximum flow H = (he)e∈E of a max-
imum flow problem instance (G, vo, vd, (ke)e∈E). Denote again by D(S, T ) ⊆ E
the minimum cut and assume, w.l.o.g., that H does not have cycle-flows.

We now construct a bottleneck game Γ′ with splittable traffic on |D(S, T )|
parallel links where the edges of Γ′ have the same latency functions as the
edges in D(S, T ). Set Γ′ = (G′, v′

o, v
′
d, (f

′
e)e∈E′, r) where G′ = (V ′, E ′) and

V ′ = {v′
o, v

′
d}. The set E ′ consists of |D(S, T )| edges from v′

o to v′
d such that

there is a bijection g : D(S, T ) → E ′ with f ′
g(e) = fe for all e ∈ D(S, T ).

The load values (δe(x))e∈D(S,T ) can be used to define a strategy profile x̂ =
(x̂e′)e′∈E′ for Γ′, where x̂g(e) = δe(x) for all e ∈ D(S, T ). We will show that
x̂ is a Wardrop equilibrium for Γ′. Remember that all edges e ∈ D(S, T ) of
the minimum cut are saturated, i.e., he = ke. If, on the one hand, an edge
e ∈ D(S, T ) with 0 = δe(x) = he = ke is considered we have that fe(0) ≥ y
(see proof of Theorem 9.1). Thus all edges g(e), e ∈ D(S, T ), without load,
i.e., x̂g(e) = δe(x) = 0, are of latency

f ′
g(e)(x̂g(e)) = f ′

g(e)(0) = fe(0) ≥ y.

If, on the other hand, an edge e ∈ D(S, T ) with 0 < δe(x) = he = ke is
considered we have that fe(δe(x)) = fe(he) = fe(ke) = y (see proof of The-
orem 9.1). Therefore, each edge g(e), e ∈ D(S, T ), with non-zero load, i.e.,
x̂g(e) = δe(x) 6= 0, is of latency

f ′
g(e)(x̂g(e)) = fe(δe(x)) = y,

and x̂ is a Wardrop equilibrium with l(x̂) = y = l(x). Obviously, SC(x, Γ) =
SC(x̂, Γ′).

Observe that in Γ each path P ∈ Pvovd
includes at least one edge of the

minimum cut D(S, T ). Remember that the edges from D(S, T ) of the game Γ
have the same latency functions as the edges E ′ of the parallel link game Γ′.
Therefore, OPT(Γ′) ≤ OPT(Γ) and thus SC(x,Γ)

OPT(Γ)
≤ SC(x̂,Γ′)

OPT(Γ′)
. �

Recall that in the case of parallel links bottleneck games with splittable traffic
do not differ from Wardrop games and hence the prices of stability and anarchy
coincide. This, together with Theorem 9.5 implies that the price of stability
for bottleneck games with splittable traffic on arbitrary graphs corresponds
to the price of stability (or anarchy) for Wardrop games on parallel links.
Consequently, the results by Roughgarden [82] on the price of anarchy for
Wardrop games lead to the following corollary.
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Corollary 9.1: Let Γ = (G, vo, vd, (fe)e∈E , r) be a bottleneck game with split-
table traffic where all functions fe, e ∈ E, are polynomials of degree at most
d with non-negative coefficients. Then there exists a Wardrop equilibrium x
where

SC(x, Γ)

OPT(Γ)
≤ (d + 1) · d

√
d + 1

(d + 1) · d
√

d + 1 − d
.

For readers who are familiar with the anarchy value defined in [82] we would
like to mention that it is possible to draw a more general conclusion that was
also given by Cole et al. [22, Theorem 4.6]: If the anarchy value α(F) exists for
a set of functions F this value α(F) is an upper bound on the price of stability
for bottleneck games with splittable traffic and latency functions from F on
general graphs, i.e., PoS(G (F)) ≤ α(F). Under some moderate assumptions
being made on F even equality holds (see [84, Lemma 3.4.4]).

This result, however, cannot be used to prove our result on the price of sta-
bility for bottleneck games with splittable traffic and M/M/1 latency functions
that we will give in Section 9.3, since we will include other game properties in
order to get a meaningful result. Therefore, Theorem 9.5 is essential for the
generalization from parallel links to arbitrary graphs in the M/M/1 case.

9.3 Games with M/M/1 Latency Functions

In the rest of this chapter, we will focus on bottleneck games with splittable
traffic and M/M/1 latency functions. We observed earlier in Lemma 9.1 that
there is such a game with infinite price of anarchy. This justifies looking at the
price of stability instead. Unfortunately, also PoS(G (M)) = PoS(P(M)) =
∞, which will be a trivial consequence of Theorem 9.8. Hence, we need to
consider other game properties, too, in order to get a meaningful result for the
price of stability.

To achieve this goal we will establish the social cost of equilibria and op-
timum solutions for the parallel link case in Section 9.3.1 and then in Sec-
tion 9.3.2 derive the exact value for PoS(P(M≥c, m, r)) and then argue that
it is the same as PoS(G (M≥c, m, r)). By our notation, m is meant here to
denote the maximum number of edges, c the minimum edge capacity, and r
the maximum amount of traffic.

9.3.1 Social Cost of Equilibria and Optimum Solutions

For our later proofs on the price of stability we need some insight into the
social cost of Wardrop equilibria and optimum solutions. Thus we now give
the exact social cost of Wardrop equilibria for the case of parallel links.
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Theorem 9.6 (Mazalov, Monien, Schoppmann, Tiemann [68]): Let
Γ = (G, vo, vd, (ce)e∈E, r) be a bottleneck game with splittable traffic and M/M/1
latency functions on m parallel links where r < C, and let x be a Wardrop
equilibrium. Furthermore, let s = |{i ∈ [m] | xi > 0}| denote the number of
links used in x. Then

s = max
{

i ∈ [m] | r + i · ci > C≤i
}

and SC(x, Γ) =
s · r

C≤s − r
.

We will now derive an expression that describes the social cost of an optimum
solution.

Theorem 9.7 (Mazalov, Monien, Schoppmann, Tiemann [68]): Let
Γ = (G, vo, vd, (ce)e∈E, r) be a bottleneck game with splittable traffic and M/M/1
latency functions on m parallel links where r < C, and let x be a strategy profile
with optimal social cost. Furthermore, let t = |{i ∈ [m] | xi > 0}| denote the
number of links used in x. Then

t = max

{

i ∈ [m]

∣

∣

∣

∣

∣

r +
√

ci ·
i
∑

k=1

√
ck > C≤i

}

and OPT(Γ) =

(

t
∑

i=1

√
ci

)2

C≤t − r
− t.

9.3.2 Price of Stability

Combining our knowledge about the social cost of Wardrop equilibria and
optimum solutions, we will now give the exact price of stability for games with
a minimum edge capacity c on m parallel links routing a traffic of r.

Theorem 9.8 (Mazalov, Monien, Schoppmann, Tiemann [68]): For
bottleneck games Γ = (G, vo, vd, (ce)e∈E, r) with splittable traffic at most r > 0
and M/M/1 latency functions on no more than m ∈ N parallel links each with
a minimum capacity of at least c > 0 the price of stability is exactly

PoS(P(M≥c, m, r)) =
m · r

c
r
c
+ 2 · (m − 1) ·

(√

r
c
+ 1 − 1

) .

We conclude this section by the following corollary which is a direct conse-
quence of the preceding result together with Theorem 9.5.

Corollary 9.2: The price of stability for general bottleneck games with split-
table traffic at most r > 0 and M/M/1 latency functions on a graph with no
more than m ∈ N edges each with a minimum capacity of at least c > 0 is the
same as in the parallel links case, i.e.,

PoS(G (M≥c, m, r)) = PoS(P(M≥c, m, r)).
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9.4 Conclusion and Directions for Further

Research

In this chapter, we studied bottleneck games with splittable traffic. Our study
revealed that the social cost of Wardrop equilibria is unique for games on series
parallel graphs. On any graph whose subgraph induced by all simple origin-
destination paths is not series parallel, however, there exists a game having
equilibria with different social cost. We furthermore established that the price
of stability for bottleneck games with splittable traffic is independent of the
network topology, in a similar way as the price of anarchy for Wardrop games.
This result also holds for our new formula describing the exact price of stability
for games with M/M/1 latency functions.

Note that the bottleneck games with splittable traffic that we studied in
this chapter only have one origin destination pair. Up to now we do not know
whether it is possible to extend our results to a multi-commodity setting with
multiple origin destination pairs.
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torial Structure on Congestion Games. In Proceedings of the 47th Annual
Symposium on Foundations of Computer Science, pages 613–622, 2006.
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