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Abstract

This thesis is a continuation of the study of counting problems in algebraic
geometry within an algebraic framework of computation started by Bürgisser,
Cucker, and Lotz in a series of papers [BC03, BC06, BCL05].

In its first part we give a uniform method for the two problems #CCC
and #ICC of counting the connected and irreducible components of complex
algebraic varieties, respectively. Our algorithms are purely algebraic, i.e., they
use only the field structure of C. They work in parallel polynomial time, i.e.,
they can be implemented by algebraic circuits of polynomial depth. The design
of our algorithms relies on the concept of algebraic differential forms. A further
important building block is an algorithm of Szántó [Szá97] computing a variant
of characteristic sets.

The second part contains lower bounds in terms of hardness results for topo-
logical problems dealing with complex algebraic varieties. In particular, we show
that the problem of deciding connectedness of a complex affine or projective va-
riety given over the rationals is PSPACE-hard. We further extend this result to
higher Betti numbers. More precisely, we prove that it is also PSPACE-hard to
decide whether a Betti number of fixed order of a complex affine or projective
variety is less than some given integer.

In the third part we study the dependency of the complexity of #ICC on its
combinatorial parameters. The crucial complexity parameter for the problem
turns out to be the number of equations. This fact is illustrated by our result
about counting the absolutely irreducible factors of a multivariate polynomial,
the restriction of the general problem to the case of a single equation. We show
that one can solve this problem in parallel polylogarithmic time.

Furthermore, we describe a generic parsimonious reduction of the prob-
lem #ICC for a fixed number of equations to a fixed number of variables. The
consequences are that one can solve #ICC for a fixed number of equations in
the BSS-model in polynomial time, and in the Turing model in randomised
parallel polylogarithmic time. These results hold also for polynomials given by
straight-line programs using their length and the degree as input parameters.
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Chapter 0

Introduction

A common principle in many mathematical areas is the possibility to construct
complicated objects out of simpler ones. Ideally there exists some set of “sim-
plest” objects in the sense that they cannot be built up by even simpler ones;
these are called prime or irreducible. An elementary and well-known example of
this principle is the factorisation of integers into a product of prime numbers.
For example,

156 = 22 · 3 · 13

is the factorisation of 156 into prime numbers. As one sees in this example, it is
easy to combine (multiply) the prime numbers to obtain the resulting number.
Conversely, the “inverse” problem of constructing the factorisation from the
result seems to be a much harder (hence much more interesting) task.

This thesis adresses such inverse problems in the realm of complex algebraic
geometry. Structurally very similar to factorisation of integers is the factori-
sation of polynomials into irreducible ones. This seemingly algebraic problem
is a special case of the decomposition problem of an algebraic variety into ir-
reducible components. This also has a geometric flavour as the decomposition
problem of a topological space (e.g., an algebraic variety) into connected com-
ponents. More specifically, these problems are studied from a computational
complexity point of view, i.e., we try to figure out how hard they are to solve
algorithmically. One aim of this research is to identify complexity classes such
as P or PSPACE, for which the problems are complete. Here P and PSPACE
denote the class of decision problems decidable in polynomial time and space,
respectively [Joh90, Pap94]. That a problem A is complete for the class C means
that it is among the hardest problems in C. This is a twofold statement:

• A is as most as hard as the problems in C, i.e., it lies in C;

• A is as least as hard as any problem B from C in the sense that an efficient
algorithm solving A also solves B efficiently.

The first of these statements is also called an upper bound and the second a
lower bound for A.

In complexity theory it is convenient to restrict oneself to problems asking for
the existence (decision problems) or the number of solutions (counting problems)
of some question. We will focus on the counting versions of our problems.

1
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0.1 General Upper Bounds

The problems we prove upper bounds for are specified as follows.

#CCC (Counting connected components) Given finitely many complex poly-
nomials, compute the number of connected components of their affine zero set.

#ICC (Counting irreducible components) Given finitely many complex poly-
nomials, compute the number of irreducible components of their affine zero set.

To be specific we use for the problem #CCC the Euclidean topology and
for #ICC the Zariski topology. We discuss these problems in two models of
computation. The first one is the model of algebraic circuits, which are capable
of doing complex arithmetic exactly with unit cost. This is a standard model
in algebraic complexity theory. Adding uniformity conditions it is equivalent
to the BSS model named after Blum, Shub, and Smale [BSS89]. The second
model is the discrete model of Boolean circuits. In order to study our problems
in the discrete model, we restrict their inputs to rational polynomials whose
coefficients are thought of as pairs of binary numbers. These restricted versions
are denoted by #CCQ and #ICQ, respectively.

Both algebraic and Boolean circuits serve as models for parallel computation,
since the depth of a circuit can be interpreted as the running time when there
are enough processors evaluating the gates of the circuit in parallel (ignoring
communication and synchronisation cost). According to this observation we
refer to the depth of a circuit as the parallel and to its size as the sequential
running time of the algorithm modelled by the circuit. Using this terminology
we can state our general upper bound results as follows.

Theorem 0.1. The problems #CCC and #ICC can be solved in parallel poly-
nomial and sequential exponential time. The same is true for #CCQ and #ICQ
in the discrete setting.

0.1.1 Counting Connected Components

The basic mathematical ideas behind the algorithms proving Theorem 0.1 are
very classic. We first focus on the problem #CCC. It is well-known from
point-set topology that the connected components of a topological space X
can be characterised by the locally constant functions on X. More precisely,
the number of connected components of X equals the dimension of the vector
space H0(X) of locally constant functions on X. In the case of an algebraic
variety V ⊆ Cn we would like to work with functions given by polynomials, i.e.,
regular functions on V . To see that one can realise each locally constant function
by a polynomial, we prove a direct product decomposition of the coordinate
ring C[V ] = C[X1, . . . , Xn]/I of V , where I := I(V ) is the vanishing ideal
of V . Let V =

⋃
i Vi be the decomposition into connected components, and

Ii := I(Vi). Then I =
⋂

i Ii. By Hilbert’s Nullstellensatz, Vi ∩ Vj = ∅ implies
Ii + Ij = C[X1, . . . , Xn] for i 6= j. The Chinese Remainder Theorem yields the
isomorphism

C[V ] '
∏

i

C[Vi]. (1)
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Since each locally constant function on V must be constant on each Vi, by (1)
it can also be represented on V by a polynomial.

But what does all this help algorithmically? One could try to find the
decomposition (1) using the characterisation of the direct product by a complete
set {ei}i of orthogonal idempotents, i.e.,

e2i = ei, eiej = 0,
∑

i

ei = 1 for all i 6= j.

But these conditions correspond to a non-linear system of equations of exponen-
tial size, since the number of connected components is exponential in the worst
case. However, the exponential size would not bother us in the case of a linear
system of equations, since linear algebra can be done in parallel polylogarithmic
time. In fact, we can prove a single exponential degreee bound for the ei with
the help of the effective Nullstellensatz [Bro87, Kol88].

As a means to linearise these conditions we use the characterisation of locally
constant functions by their vanishing differential, an idea coming from differen-
tial topology. For the possibly singular algebraic variety V one has to be careful
about the notion of differentials. We use the Kähler differential df of a regular
function f ∈ C[V ]. With this notion it is also true that f is locally constant
if and only if df = 0. Our aim is to write this condition as a linear system of
equations in the coefficients of f .

Fortunately there is a concept helping us in this task, namely the notion of
squarefree regular chains. We briefly sketch their definition and basic properties.
A triangular set G = {g1, . . . , gt} is a set of polynomials such that each gi

introduces a new variable called the main variable. The saturated ideal of G is
Sat (G) := (G) : Γ∞, where Γ is the product of the leading coefficients lc (gi) of
the gi with respect to their main variables. If no lc (gi) is a zerodivisor modulo
the saturated ideal of Gi−1 := {g1, . . . , gi−1}, then G is called a regular chain.
If in addition the gi are squarefree modulo each associated prime of Sat (Gi−1),
G is called a squarefree regular chain. These increasingly restrictive conditions
on G induce some nice properties on its saturated ideal. To formulate these, we
need the following notation. The pseudo division of a polynomial f by g with
respect to some variable Xi is obtained by applying univariate division with
remainder to f and g regarded as univariate polynomials in Xi and clearing
denominators by multiplication with a suitable power of the leading coefficient
of g. The pseudo remainder prem (f,G) of f by the triangular set G is the last
remainder obtained by pseudo dividing f successively by gt, . . . , g1 with respect
to their main variables. Then the following statements hold [ALM99, BLM06].

• G triangular set ⇒ Sat (G) unmixed,

• G regular chain ⇒ Sat (G) = {f |prem (f,G) = 0},

• G squarefree regular chain ⇒ Sat (G) radical.

It follows that for a squarefree regular chain G a polynomial f vanishes on
Z(Sat (G)) if and only if prem (f,G) = 0. By fixing the exponent in the defini-
tion of pseudo division this condition becomes linear in f .

Now it is a rather special situation when a variety V is represented by a
squarefree regular chain. But Agnes Szántó proved in her thesis [Szá97, Szá99]
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the following strong result which is crucial for us. The vanishing ideal of each
affine variety V can be decomposed into an intersection

I(V ) =
⋂
i

Sat (Gi)

with squarefree regular chains Gi (which she called unmixed ascending sets).
Furthermore, this representation can be computed in parallel polynomial time.
Using this algorithm we can indeed describe the “truncated ideal” I(V ) ∩
C[X]≤d, which consists of the polynomials in I(V ) of degree bounded by d,
by a linear system of equations of single exponential size, if d is single exponen-
tial. In this way we can also describe the space H0(V ) by such systems, so that
its dimension can be computed efficiently.

0.1.2 Counting Irreducible Components

We approach the problem #ICC analogously to #CCC. The key idea is to
replace regular by rational functions on the variety V . The ring R(V ) of ra-
tional functions on V is defined to be the full quotient ring of the coordinate
ring C[V ], i.e., its localisation with respect to the multiplicatively closed sub-
set of non-zerodivisors. In particular, we use that the number of irreducible
components of V is the dimension of the space of locally constant rational func-
tions on V . This is implied by the following direct product decomposition of
the ring R(V ) [Kun79, III, Satz 2.8], which is analogue to the one of C[V ]. If
V =

⋃
i Vi is the decomposition into irreducible components, then

R(V ) '
∏

i

R(Vi).

The idempotents corresponding to this decomposition are rational functions
vanishing on all but one component, where they take the value 1. Thus they are
locally constant, and it is easy to see that they constitute a basis of the space
of locally constant rational functions

H0
r (V ) := {f ∈ R(V ) |df = 0}.

Hence the number of irreducible components of V is given by dimC H
0
r (V ).

Unfortunately, the equation obtained by clearing denominators in df = 0 is
non-linear (there appear products of the numerator and derivatives of the de-
nominator and vice versa). But of course it is linear in the numerator alone for a
fixed denominator, hence we need a common denominator h of the idempotents.

Such an h ∈ C[V ] is a non-zerodivisor in C[V ], i.e., it does not vanish
identically on any Vi. Furthermore, on the intersection of two components at
least two of the idempotents are not defined. Hence a necessary condition for h
is that

h is a non-zerodivisor in C[V ] and h ∈
⋂
i 6=j

I(Vi ∩ Vj). (2)

On the other hand, if h ∈ C[V ] satisfies (2), then

U := V \ Z(h) =
⋃
i

(Vi \ Z(h))
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is the decomposition into connected components, since the irreducible vari-
eties Vi are connected [Sha77, VII, §2.2]. Using the well-known Rabinowitch
trick one obtains from the corresponding result for C[U ] the idempotents of
R(V ) in C[V ]h as well as a single exponential degree bound. Now one can
write the defining equation for H0

r (V ) as a linear system of equations in the
coefficients of the numerator and apply efficient linear algebra.

To summarise, all we need is an h with (2) to proceed similarly to the case
of connected components. Fortunately, such an h is obtained from a squarefree
regular chain as follows. Assume for simplicity that I(V ) is the saturated ideal of
a squarefree regular chain G = {g1, . . . , gt}. Then the product Γ =

∏
i lc (gi) is a

non-zerodivisor on C[V ]. We further denote with ∆ the functional determinant
of (g1, . . . , gt) with respect to the free variables (those which are not the main
variable of some gi). Using the squarefreeness condition one can prove that ∆
is neither a zerodivisor. It follows that h := Γ∆ satisfies (2), since all points of
V \ Z(∆) can be shown to be smooth, and

⋃
i 6=j Vi ∩ Vj ⊆ Sing (V ).

0.1.3 Hilbert Polynomial

As a by-product of our method for counting the connected and irreducible com-
ponents we show how to obtain a parallel polynomial time algorithm computing
the Hilbert polynomial of a projective variety which is arithmetically Cohen-
Macaulay. The general problem of computing the Hilbert polynomial of a com-
plex projective variety still lacks a parallel polynomial time solution.

The idea of our algorithm is that with the help of squarefree regular chains
and Szántós algorithm [Szá97] we can compute the dimension of the homoge-
neous part of degree d of the ideal of a projective variety in parallel polynomial
time, as long as d is single exponential in the input size. Hence we can evaluate
its Hilbert function at single exponential arguments. Now one can compute the
Hilbert polynomial by interpolating the Hilbert function at sufficiently many
points. The number of points needed is the dimension of the variety, so the crit-
ical parameter for the complexity of our algorithm is the index, from which on
the Hilbert function agrees with the Hilbert polynomial. The minimal number
with this property is called the index of regularity or a-invariant in the litera-
ture [SV86, Vas98]. This quantity is closely related to the Castelnuovo-Mumford
regularity (cf. [BM93]). Unfortunately, a single exponential bound for the index
of regularity of a radical is not known. By a standard argument we prove such
a bound for a projective arithmetically Cohen-Macaulay variety. Consequently
one can compute in this case the Hilbert polynomial in parallel polynomial time.

0.1.4 Related Work

The algorithmic problem of getting connectivity information about semialge-
braic sets is well-studied, see Basu et al. [BPR03] and the numerous citations
given there. In particular, work of Canny [Can88] yields algorithms counting
the connected components of a semialgebraic set given by rational polynomi-
als in polynomial space (and thus in single exponential time). By separating
real and imaginary parts these methods can be applied to complex algebraic
varieties as well. However, these algorithms use the ordering of the real field
in an essential way, in particular sign tests are allowed. Thus it remained an
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open problem whether one can efficiently count the connected components of a
complex algebraic variety by only algebraic methods.

Concerning higher Betti numbers it is an important open problem whether
one can compute all Betti numbers of an algebraic variety in single exponen-
tial time. The best result in this direction has been recently obtained by
Basu [Bas06], who showed that for each fixed ` one can compute the first `
Betti numbers in single exponential time. It is not yet clear whether this
algorithm can be parallelised. Algebraic algorithms computing the cohomol-
ogy of projective varieties and complements of affine varieties are described
in [OT99, Wal00a, Wal00b] but not analysed.

The computational tool in our algorithm which we call squarefree regular
chain is one of various variants of the notion of characteristic sets, which goes
back to Ritt [Rit50] and was used by Wu [Wu86] for automated theorem proving.
Its computational complexity was studied by Gallo and Mishra [GM91]. Sub-
sequently, algorithms computing variants of this concept were studied by Kalk-
brener [Kal93, Kal94, Kal98], Lazard [Laz91], and Wang [Wan92]. Szántó [Szá97,
Szá99] has further refined the methods of Kalkbrener to obtain a provably ef-
ficient algorithm. Since at that time there existed several similar notions of
characteristic sets under different names and different concepts under the same
name, Aubry et al. [ALM99] started a comparison of these different notions
and showed that some of them are basically equivalent. They also introduced
a consistent naming convention we think one should follow to avoid confusion.
In [BLM06] it is shown that the saturated ideal of a triangular set is unmixed.

Considering the problem of computing irreducible decompositions one has
to distinguish irreducible and absolutely irreducible decompositions. Irreducible
components are irreducible over the ground field over which the variety is de-
fined (e.g. the rationals), whereas the components irreducible over the algebaic
closure of the ground field are called absolutely irreducible. There are decom-
position algorithms based on characteristic sets [Wu86, Laz91, Kal94]. These
compute decompositions which are not minimal in general, and also there are
no complexity estimates of these algorithms. Other methods compute (modulo
factorisation) the primary decomposition using Gröbner bases [GTZ88, EHV92],
but according to Mayr [MM82] (see also [May97]), computing those is exponen-
tial space-complete. The first single exponential time algorithms for computing
both the irreducible and absolutely irreducible components are due to Chistov
and Grigoriev [Chi84, Gri84] (in the bit model). Giusti and Heintz [GH91a] suc-
ceeded in giving efficient parallel algorithms, but only for the equidimensional
decomposition due to the lack of efficient parallel factorisation procedures. A
different approach using the Bezoutian matrix has been proposed in [EM99].
However, their algorithm produces embedded components.

Algorithms computing the Hilbert polynomial of a complex projective variety
have been given in [MM83, BCR91, BS92] and are based on Gröbner bases,
hence they show the same worst-case behaviour as the algorithms for primary
decomposition mentioned above. For the restriced problem of computing the
Hilbert polynomial of smooth equidimensional complex varieties Bürgisser and
Lotz [BL07] have given a parallel polynomial time algorithm. In fact, they have
shown the stronger statement that this problem is reducible in polynomial time
to counting the solutions of systems of polynomial equations.
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0.2 Lower Complexity Bounds

We prove lower bounds in terms of hardness results in the Turing model, hence
we consider affine as well as projective varieties given over the rationals. To
make our results stronger we consider decision versions of our problems.

0.2.1 Connectedness

Our first decision problem is the following.

ConnQ (Connectedness of affine varieties) Given finitely many rational
polynomials, decide whether their affine zero set is connected.

The corresponding hardness result is

Theorem 0.2. The problem ConnQ is PSPACE-hard.

We will also prove a projective version of this theorem and conclude that
the corresponding counting problems are FPSPACE-hard.

Our proof of this theorem uses the strategy of [BC03], [BC06], and [BCdN06]
together with some new ideas. Bürgisser and Cucker used the fact that each
language in PSPACE can be decided by a symmetric Turing machine. Such
a machine has a symmetric transition function and thus an undirected con-
figuration graph. Hence deciding membership to the language is reduced to
testing whether two given vertices in an undirected graph are connected, i.e.,
to the reachability problem. Note that this graph has an exponential number
of vertices, but it can be described succinctly, i.e., by a Boolean circuit which
decides adjacency of two given vertices. This configuration graph was repre-
sented in [BC03] as a semilinear set by mapping the vertices to points in real
affine space and edges to the line segments between them. One can show that
membership to this set can be decided by an additive circuit of polynomial size.
In this way the reachability problem translates to the reachability problem in a
succinctly given semilinear set, which in turn can be reduced to the problem of
counting connected components as follows. One connects the two given points
by new line segments obtaining a new semilinear set. Then the two points are
connected in the original set if and only if the number of connected components
does not change by this modification.

We modify this strategy in several respects. We avoid the use of symmet-
ric Turing machines by observing that one can simply pass to the underlying
undirected graph, since we are dealing with deterministic Turing machines (cf.
Lemma 6.2). To be able to reduce to the problem of connectedness we construct
from the given Turing machine a two-tape machine with an acyclic configuration
graph (cf. Lemma 6.3). Here special attention has to be paid to those configu-
rations, which occur in no computation from any input. In this way, at the cost
of a second tape, we gain the ability to transform the configuration graph into
a forest of two trees. In this situation the reachability problem can easily be
reduced to deciding connectedness. Since we are dealing with complex varieties,
we embed these graphs into the complex affine or projective space by mapping
edges to complex lines.
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0.2.2 Betti Numbers

To formulate the generalisation to higher Betti numbers we introduce the fol-
lowing problems. For a topological space X we denote by bk(X) its kth Betti
number with respect to singular homology.

Betti(k)Q (kth Betti number of affine varieties) Given finitely many ra-
tional polynomials with affine zero set X and b ∈ N, decide whether bk(X) ≤ b.

ProjBetti(k)Q (kth Betti number of projective varieties) Given finitely
many homogeneous rational polynomials with projective zero set X and b ∈ N,
decide whether bk(X) ≤ b.

Now we can state our second hardness result.

Theorem 0.3. The problems Betti(k)Q and ProjBetti(k)Q are PSPACE-
hard.

We prove this theorem by induction on k. Clearly, the case k = 0 follows
from the result about ConnC and its projective version. The induction step
in the affine case is quite elementary and uses the idea of a similar result for
semilinear sets given by additive circuits in [BC03].

For the projective result we treat the case k = 1 separately with the same
reduction as for the case k = 0 by observing that an additional edge from
the leaf of a tree to its root introduces a cycle, whereas it does not, when
the leaf is connected to the root of another tree. For the induction step we
reduce ProjBetti(k)Q to ProjBetti(k + 2)Q. This reduction consists of the
construction of the (algebraic) suspension Σ(X) of a projective variety X ⊆ Pn,
which is defined as the join of X with an additional point p outside of Pn, i.e.,
the union of all lines connecting p with a point of X (see Figure 1). As an
illustration consider the following toy example. Take X as being two distinct
points in Pn. Then the join of X with p is nothing else as the union of two lines
meeting in p, thus topologically S2 ∨ S2. One sees in this simple example that
the zeroth Betti number of X agrees with the second Betti number of Σ(X).
This shift of the Betti numbers by 2 is generally true. This fact is shown in
Appendix A.6, p. 78 of [FM94] for the more general construction of an m-fold
cone (where the Betti numbers are shifted by 2m), but only for the special case
of a smooth variety. Here we will prove this result for possibly singular varieties
for m = 1. In order to do so, we will construct the blow-up of Σ(X) at p and
show that this is a sphere bundle over X, whose homology can be computed
with standard tools (see Figure 2).

0.2.3 Related Work

There is much less work on lower bounds than on upper bounds for topological
problems. It follows from work of Reif [Rei79, Rei87] that computing the number
of connected components of a semialgebraic set given by integer polynomials is
FPSPACE-hard, hence this problem is FPSPACE-complete. In [BC03, BC06] the
stronger result for the problem restricted to compact real algebraic sets is proved
and extended to higher Betti numbers. An error in this proof is corrected in
Appendix 6.6 to Chapter 6. In [BCdN06] also the PSPACE-completeness of the
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Figure 1: The suspension Σ(X) of the space X.

Figure 2: The blow-up Σ̃(X) of the suspension Σ(X) at p.

problem of deciding connectedness of the semilinear set described by an additive
decision circuit is shown. But clearly our PSPACE-hardness result for complex
varieties does not follow from the results in [BC03, BC06, BCdN06].

0.3 Fixing Parameters

A standard argument [BC04, Remark 6.3] shows that the complexity of #CCC
and #ICC does not depend on whether the input polynomials are given in dense,
sparse, or straight-line program (slp) encoding. However, when input param-
eters like the number of variables, the number of equations, or their maximal
degree are fixed, then the choice of the input data structure matters. We thus
specify the encoding when studying the complexity of #ICC for fixed input pa-
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rameters. We focus here on the number r of equations, which turns out to be
crucial. We first discuss the case r = 1.

0.3.1 Counting Irreducible Factors

The problem #ICC restricted to the case of a single polynomial is

#IFC (Counting irreducible factors) Given a complex polynomial, compute
the number of its irreducible factors (counted without multiplicity).

We add superscripts to specify the encoding.

Theorem 0.4. The problem #IF
(dense)
C can be solved in parallel polylogarithmic

and sequential polynomial time. The same is true for #IF
(dense)
Q in the discrete

setting.

In order to describe the idea of the proof, we look at the special case of
a single variable. The number of irreducible factors of f ∈ C[X] equals the
number s of its roots. Then the complement Cf := C \ Z(f) of its zero set
has the homotopy type of a bouquet of s circles (see Figure 3). Hence the
number of roots is captured by the first (singular, say) cohomology of Cf , i.e.,
dimC H

1(Cf ; C) = s.

Figure 3: The plane with three points deleted has the homotopy type of a
bouquet of three circles.

The space H0(V ) of locally constant regular functions on the affine variety V
considered above can be seen as the zeroth algebraic de Rham cohomology of V ,
which we denote by H∗(V ). This cohomology is defined (at least in the affine
case) as the homology of the de Rham complex

0→ C[V ]→ ΩC[V ]/C → Ω2
C[V ]/C → · · · ,
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where Ωk
C[V ]/C denotes the kth exterior product of the space of Kähler differ-

entials of C[V ] over C, and the maps are the exterior differentials. A theorem
of Grothendieck [Gro66] states that if V is smooth, then this cohomology is
isomorphic to the singular cohomology of V . Since in our special case Cf is
smooth and affine, we can compute the number of roots of f by computing the
dimension of H1(Cf ).

In fact we don’t need Grothendieck’s result here, which can be seen as follows.
Let f = u

∏s
i=1(X − ci)ei be the factorisation into linear factors. Since the

coordinate ring of Cf is the localisation C[X]f , each 1-form on Cf is of the
form g

fk dX with some polynomial g and k ∈ N. By replacing f with fk we can
assume k = 1. Consider the decomposition into partial fractions

g

f
=

m∑
i=1

ei∑
j=1

aij

(X − ci)j
+ b

with aij ∈ C and b ∈ C[X]. Since the polynomial b and the quotients aij

(X−ci)j

for j > 1 can be integrated, it follows

g

f
=

m∑
i=1

λi
1

X − ci
+
dΦ
dX

with some Φ ∈ C[X]f , λi ∈ C. In fact this not only implies the dimension
result, but also provides a basis of H1(Cf ), namely the classes of the forms

1
X−ci

dX, which are the “logarithmic differentials” dfi

fi
of the irreducible factors

fi = X − ci of f .
This statement is also true for multivariate polynomials f ∈ C[X1, . . . , Xn],

thus the irreducible factors can be counted by computing the dimension of
H1(Cn

f ). The constructed basis also shows that all elements of this space have
representatives with numerators of degree bounded by deg f . By bounding
also the degree of the occurring exact forms one can describe H1(Cn

f ) by linear
systems of polynomial size in the dense size of f . Efficient parallel linear algebra
implies Theorem 0.4.

0.3.2 Fixed Number of Equations

By what we have seen so far, there is a huge gap in complexity between the
general problem #ICC and its restriction #IFC to the case of a single polyno-
mial. This raises the question about what happens in-between these extreme
cases. In particular, what is the complexity of the problem for a fixed number
of equations? We prove the following theorem.

Theorem 0.5. For a fixed number of equations given by slps, one can solve the
problem #ICC in the algebraic model in polynomial time in the length and the
degree of the slps.

Our proof of this result essentially uses the concept of generic parsimonious
reductions defined by Bürgisser et al. in [BCL05], which allows the elimination
of generic choices in reduction algorithms. The idea is Bertinis Theorem stating
that the intersection of an irreducible variety with a generic hyperplane remains
irreducible. It follows that the number of irreducible components of a variety is
invariant under generic hyperplane sections.
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If the variety V is defined by r polynomials, then the dimension of each of
its irreducible component is at least n−r. Thus, if we intersect V with a generic
linear subspace L of dimension r+1, we obtain a variety with the same number of
irreducible components as V , but embedded in the r+1-dimensional projective
space L. This way we can establish a generic parsimonious reduction to a
constant number of variables. The hard part is finding an explicit condition on
the linear subspace L under which #ic(V ∩L) = #ic(V ), where we write #ic(V )
for the number of irreducible components of V .

A fundamental result proved by Bürgisser et al. [BCL05] is that a generic
parsimonious reduction yields a polynomial time Turing reduction. Hence the
claim follows, since the case of a fixed number of indeterminates is solvable in
parallel polylogarithmic time using the known general algorithms.

For the discrete case we prove

Theorem 0.6. For a fixed number of rational polynomials given by slps the
problem #ICC can be solved in the Turing model in randomised parallel polylog-
arithmic time in the length and the degree of the slps.

This result follows by a new transfer principle (Theorem 2.17) stating that a
generic parsimonious reduction (which is computable in parallel polylogarithmic
time) yields a randomised parallel polylogarithmic time reduction.

One may wonder why we loose the good parallelisation properties in the al-
gebraic model. The difficulty lies in the computation of the generic hyperplanes
of Bertinis Theorem. This problem is solved by computing hyperplanes with
sufficiently large integer coefficients, which still can be computed in polynomial
time by repeated squaring. But it seems unlikely that one can compute these
hyperplanes efficiently in parallel.

0.3.3 Related Work

The algorithmic factorisation of polynomials is a widely studied problem. Here
we shortly sketch some major steps in this history without claiming complete-
ness.

Rational Factorisation

By rational factorisation we mean factorisation over the ground field, from
which the coefficients of the input polynomial are taken. The first efficient
algorithm for factoring univariate polynomials over finite fields has been given
by Berlekamp [Ber67, Ber70] based on the Chinese Remainder Theorem. It
works in polynomial time in the Turing model for input polynomials given in
dense representation, if the order of the field is fixed. If the order is considered
as part of the input, one can produce a randomised polynomial time algorithm.
Von zur Gathen [Gat83] has given a randomised factorisation algorithm over
fixed finite fields running in polylogarithmic parallel time.

A major breakthrough was the first deterministic polynomial time algorithm
for factoring rational polynomials by Lenstra, Lenstra, and Lovász [LLL82].
Their algorithm used a new method for finding short vectors in a lattice.

A reduction of the multi- to the univariate case was given by Kaltofen
[Kal85c, Kal85e] showing that also multivariate factorisation over the rationals
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is solvable in polynomial time. These ideas have been applied to multivari-
ate factorisation over finite fields, the rationals, and algebraic number fields
by Lenstra [Len84, Len85, Len87], and fields that are finitely generated over
their prime field by Chistov [Chi84, Chi87, Chi90], Grigoriev [Gri84], and Chis-
tov/Grigoriev [GC84]. Another algorithm for finite fields was given by von zur
Gathen/Kaltofen [GK85a]. All these algorithms run in (randomised) polyno-
mial time in the dense encoding of polynomials.

The first authors successfully considering an encoding of polynomials dif-
ferent from the dense one were Kaltofen and von zur Gathen. These authors
gave randomised polynomial time algorithms for factoring sparse polynomials
over algebraic number fields and finite fields [GK85b] provided the output has
polynomial size. For polynomials given as slps it is necessary to add the de-
gree of the polynomial to the input size to obtain polynomial time algorithms
(cf. [Pla77]). Von zur Gathen [Gat85] gave randomised algorithms computing
the number and degrees of the irreducible factors of multivariate polynomials
over algebraic number fields or finite fields, which run in polynomial expected
time in this input size. Kaltofen [Kal85a, Kal85b, Kal88] succeeded in giving a
randomised (Las Vegas) algorithm computing all factors within the same time
bounds.

Absolute Factorisation

The first work concerning absolute irreducibility we are aware of is [HS81], where
it is shown that one can test absolute irreducibility of a polynomial over an infi-
nite field in randomised single exponential time in the algebraic model. Kaltofen
was the first to present an efficient parallel algorithm for testing absolute irre-
ducibility. He showed that one can test absolute irreducibility of a rational
bivariate polynomial in parallel polylogarithmic time in the bit model [Kal85d].
A nice geometric-topological algorithm to compute the number and degrees of
the absolute factors of a rational polynomial was given by Bajaj, Canny, Gar-
rity, and Warren [BCGW93]. It can be implemented in parallel polylogarithmic
time. However, this algorithm is not algebraic.

We don’t know of any previous work on counting the absolute factors of poly-
nomials in slp encoding. Neither are we aware of work giving polylogarithmic
parallel complexity bounds for counting factors in the algebraic model.

A new approach to factorisation was given by Gao [Gao03] based on work
of Ruppert [Rup86], who characterised absolute irreducibility of a bivariate
polynomial f by the non-existence of a certain closed differential form with
denominator f and a numerator of bounded degree. Gao turned this idea into
an algorithm to compute the rational and absolute factors of f . Our approach
is basically the one of Ruppert and Gao generalised to several variables and
interpreted in terms of cohomology.

0.4 Outline

After sketching preliminary material from (computational) algebraic geometry,
commutative algebra, and algebraic complexity theory in Chapter 1, Part I
of this thesis consists of general upper bounds for the problems of counting
the connected and irreducible components of a complex affine variety. These
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problems are solvable by a uniform method in parallel polynomial time. Before
presenting these algorithms, we prove in Chapter 2 general principles which we
use to transfer our results from the algebraic to the Turing model. Chapter 3
contains the algorithm for counting the connected components, which uses the
concepts of differential forms and squarefree regular chains and exploits efficient
parallel linear algebra. The very similar algorithm counting the irreducible
components is described in Chapter 4. From these algorithms the technique
of describing the ideal of a variety by a linear system of equations is taken in
Chapter 5 to compute the Hilbert function of a projective variety. This method
yields a parallel polynomial time algorithm computing the Hilbert polynomial
of arithmetically Cohen-Macaulay varieties.

Part II contains lower bound results for topological problems. In particular,
it is proved in Chapter 6 that it is PSPACE-hard to decide whether a complex
affine or projective variety is connected. Chapter 7 proves PSPACE-hardness of
the problem of deciding whether the kth Betti number of an affine or projective
variety is less then some given integer.

In Part III the problem of counting the irreducible components is restricted
to the case of a fixed number of equations. Chapter 8 describes an algorithm
counting the absolutely irreducible factors of a polynomial, which is again based
on differential forms and efficient parallel linear algebra. It runs in parallel
polylogarithmic time. In Chapter 9 the problem for a fixed number of equations
is considered. After stating the main results we show how they follow from
one generic parsimonious reduction. This is established by giving an explicit
genericity condition for Bertinis Theorem.

0.5 Credits

An extended abstract of Parts I and III will appear as joint work with Peter
Bürgisser in the Proceedings of ISSAC 2007 [BS07]. Part II is published in the
Journal of Complexity [Sch07]. I am greatly indebted to Peter Bürgisser and
the other persons for their contributions as described below.

The proof of Proposition 5.7 is due to Peter Bürgisser. Thilo Pruschke
pointed out to us the necessity of a Cohen-Macaulayness condition in this result.

The proof strategy of the hardness results in Chapter 6 is taken from the
papers [BC03, BC06] of Peter Bürgisser and Felipe Cucker. To make this work in
the complex setting by mapping the edges of the configuration graph to complex
lines was proposed by Bürgisser. The extension to the decision problem was
inspired by a proof from [BCdN06] of the same authors together with Paulin de
Naurois.

The idea of reducing the computation of some Betti number to that of a
higher order Betti number (cf. Propositions 7.2, 7.6) is also taken from [BC03,
BC06]. The construction (7.1) for the affine case is just the ”complexification”
of a construction in [BC03]. The construction of the algebraic suspension of
projective varieties, although technically quite different, is inspired by the use
of the topological suspension in [BC06]. The basic idea to view the suspension as
a fibre bundle and use the Thom-Gysin sequence in the proof of Proposition 7.6
was suggested by Bürgisser.

Bürgisser also pointed out to me the article of Gao [Gao03] and proposed
to generalise it to several variables. Theorem 8.6 is a direct generalisation
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of a result of Ruppert [Rup86] from the bivariate case to several variables.
Bürgisser had the fundamental idea of viewing Bertinis Theorem as a generic
parsimonious reduction. He also realised that the number of equations is the
crucial complexity parameter for #ICC. The transfer of a generic parsimonious
to a randomised reduction in the bit model as in Theorem 2.17 was proposed
in [BCL05, Remark 6.7].
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Chapter 1

Preliminaries

1.1 Algebraic Geometry

As general references for the basic facts about algebraic geometry we refer
to [Mum76, Sha77, Kun79, Har92].

1.1.1 Basic Terminology

Throughout this thesis we will work in the following setting. Let k ⊆ K be a
field extension where K is algebraically closed, e.g., K = k an algebraic closure
of k, or k = Q and K = C. Unless otherwise stated we assume k generally to
be of characteristic zero. Denote by k[X] := k[X1, . . . , Xn] the polynomial ring
and by An := An(K) the affine space over K. An affine variety V is defined as
the zero set

V = Z(f1 . . . , fr) := {x ∈ Kn | f1(x) = · · · = fr(x) = 0} ⊆ An

of finitely many polynomials f1 . . . , fr ∈ k[X]. In the projective case we set
k[X] := k[X0, . . . , Xn] and denote by Pn := Pn(K) the projective space over K.
For homogeneous polynomials f1 . . . , fr ∈ k[X] we denote their common zero
set in the projective space Pn also with Z(f1 . . . , fr) and call it a projective
variety. In both cases we say that V is defined over k or a k-variety and call k
the coefficient and K the coordinate field.

The (vanishing) ideal I(V ) of an affine variety V is defined as

I(V ) := {f ∈ k[X] | ∀x ∈ V f(x) = 0}.

For a projective variety V the ideal I(V ) is generated by the homogeneous
polynomials vanishing on V . The (homogeneous) coordinate ring is defined as
k[V ] := k[X]/I(V ). The elements of k[V ] can be interpreted as functions V →
K called regular on V .

Hilbert’s important Nullstellensatz yields a criterion for the feasability of a
system of polynomial equations. It states that the polynomials f1, . . . , fr ∈ k[X]
have no common zero in An if and only if there exist g1, . . . , gr ∈ k[X] with

1 = g1f1 + · · · grfr. (1.1)

As a consequence the ideal I(V ) of V = Z(f1, . . . , fr) is the radical of (f1, . . . , fr).
This statement is also called the strong version of Hilbert’s Nullstellensatz.

17
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1.1.2 Topology

The k-varieties form the closed sets of a topology on An (Pn), the k-Zariski
topology. Unless otherwise stated, we will use the K-Zariski topology. A k-
variety V is called irreducible iff it is not the union of two proper subvarieties,
i.e.,

V = W ∪ Z ⇒ V = W or V = Z

for all k-varieties W,Z. It is not hard to see that a variety V is irreducible
iff its ideal I(V ) is prime. It is a basic fact that each k-variety V admits a
decomposition V = V1∪· · ·∪Vt into irreducible varieties Vi. If this decomposition
is irredundant, i.e., Vi 6= ∅ and Vi * Vj for all 1 ≤ i 6= j ≤ t, the Vi are called
the irreducible components of V . Note that with these definitions the empty set
has no irreducible component, although it is irreducible. The term irreducibility
depends on the choice of the coefficient field k. A variety V is called absolutely
irreducible iff it is irreducible over k (or equivalently over K).

Trivially an irreducible variety is connected in the k-Zariski topology, hence
the irreducible decomposition is a refinement of the decomposition into con-
nected components. Note that an irreducible k-variety is not necessarily con-
nected in theK-Zariski topology. For instance Z(X2−2) ⊆ A1 is irreducible and
hence connected (!) in the Q-Zariski topology, but of course not in the Zariski
topology over Q or C. On An(C) = Cn there exists a second natural topology
which comes from the metric induced by the scalar product 〈x, y〉 =

∑
i xiyi for

x, y ∈ Cn. On the projective space Pn it induces a quotient topology with re-
spect to the natural projection π : Cn+1 → Pn. We call each of these topologies
the Euclidean topology. The following is a nontrivial result proved e.g. in [Sha77,
VII, §2.2] or in [Mum76, Corollary (4.16)] for projective varieties.

Theorem 1.1. Each irreducible affine or projective C-variety is connected with
respect to the Euclidean topology.

It follows that for connectedness properties the choice of the topology is
irrelevant.

Corollary 1.2. Let V be a complex affine or projective variety. Then the
decomposition into connected components in the Zariski topology coincides with
the decomposition into connected components in the Euclidean topology.

Proof. Since connected components are maximal connected subsets, it suffices
to prove that connectedness of complex varieties does not depend on the choice
of one of the two topologies. The continuity of the polynomials implies that the
Euclidean topology is finer than the Zariski topology, i.e., a Zariski open subset
of An (Pn) is also Euclidean open. It follows that a Euclidean connected subset
is also Zariski connected. The converse in not necessarily true. However, it is
true for varieties.

We prove that if V has a decomposition V = A ∪B into nonempty disjoint
Euclidean closed subsets, then A and B have to be Zariski closed as well. We
know that V has a decomposition V = V1 ∪ · · · ∪ Vt into irreducible Vi. By
Theorem 1.1 each Vi is Euclidean connected, hence either Vi ⊆ A or Vi ⊆ B. It
follows that A and B are unions of certain Vi and hence Zariski closed. 2
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1.1.3 Dimension, Tangent Space and Smoothness

Let V be an algebraic variety. If V is nonempty we define its dimension dimV
to be its Krull dimension, i.e., dimV is the length ` of a maximal ascending
chain

∅ 6= X0 ⊂ X1 ⊂ · · · ⊂ X` ⊆ V
of irreducible subvarieties Xi. The dimension of the empty set is set to −1.

To such an ascending chain of irreducible subvarieties corresponds a de-
scending chain of (homogeneous) prime ideals in the (homogeneous) coordinate
ring k[V ]. One generalises this and defines the Krull dimension dimR of a
commutative ring R to be the supremum over all lengths ` of descending chains

R 6= p0 ⊃ p1 ⊃ · · · ⊃ p`.

Note that the dimension of V is the maximal dimension of its irreducible
components. A variety all of whose irreducible components have the same di-
mension m is called equidimensional or more precisely m-equidimensional. By
combining the irreducible components of equal dimension one obtains the equidi-
mensional decomposition V = V0∪· · ·∪Vn, where Vm is eitherm-equidimensional
or empty. For a point x ∈ An (Pn) we define the local dimension dimx V to be
the dimension of the union of all irreducible components W of V containing x.

A basic bound on the dimension of the intersection of varieties is the Di-
mension Theorem, which states that for two varieties V,W ⊆ An (Pn) we have

dimZ ≥ dimV + dimW − n

for all irredcible components Z of V ∩ W . In particular, dim(V ∩ Z(f)) ≥
dimV − 1 for f ∈ k[X] with equality iff f does not vanish on any irreducible
component of V . This condition is equivalent to the statement that f is no
zerodivisor on k[V ].

For a polynomial f ∈ k[X] its differential at x ∈ An is the linear function
dxf : Kn → K defined by dxf(v) :=

∑
i

∂f
∂Xi

(x)vi. The (Zariski) tangent space
of the affine variety V at x ∈ V is defined as the vector subspace

TxV := {v ∈ Kn | ∀f ∈ I(V ) dxf(v) = 0} ⊆ Kn.

While this version of the tangent space is algebraically convenient, in visual-
isations one usually prefers the (affine) tangent space x + TxV ⊆ An. Hav-
ing generators f1, . . . , fr of the ideal I(V ) at hand, one can also write TxV =
Z(dxf1, . . . , dxfr).

In general dimTxV ≥ dimx V holds. We say that x ∈ V is a smooth or
regular point of V or that V is smooth in x iff dimTxV = dimx V . Otherwise x
is said to be a singular point of V . We denote the set of regular (singular)
points of V by Reg (V ) (Sing (V )). All points lying in two different irreducible
components of V are singular, hence if V = V1 ∪ · · · ∪ Vt is the decomposition
into irreducible components, we have

Sing (V ) =
⋃

1≤i<j≤t

(Vi ∩ Vj) ∪
⋃

1≤i≤t

Sing (Vi).

Furthermore, Sing (Vi) is a subvariety of Vi of lower dimension, thus Reg (V ) is
dense in V .

An important tool for proving smoothness is the following Jacobi crite-
rion [Kun79, VI, Satz 1.5].
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Proposition 1.3. The point x ∈ V is smooth if and only if there exist polyno-
mials f1, . . . , fr ∈ I(V ) whose Jacobian matrix

(
∂fi

∂Xj
(x)
)

ij
∈ kr×n at x has rank

n− dimx V . If x is smooth, then this statement holds for generators f1, . . . , fr

of I(V ).

Let V ⊆ An and W ⊆ Am be affine varieties. A map f : V → W is called
regular iff there exist polynomials f1, . . . , fm such that f(x) = (f1(x), . . . , fm(x))
for all x ∈ V . The differential of regular functions is generalised to regular maps
by setting

dxf : TxV → TxW, v 7→
(
∂fi

∂Xj
(x)
)

ij

v.

Following [Mum76] we call f smooth at a point x ∈ V iff x and f(x) are smooth
points of V and W respectively, and f(x) is a regular value of f in the sense of
differential geometry, i.e., its differential dxf : TxV → TxW at x is surjective.
We call f smooth over y ∈W iff f is smooth at all x ∈ f−1(y).

Since all these definitions and facts are local they also apply to projective
varieties V ⊆ Pn working in the affine charts Ui = V ∩ {Xi 6= 0}, 0 ≤ i ≤ n.

1.1.4 Grassmanians

A simple but nevertheless important class of varieties consist of affine resp. linear
subspaces. An affine subspace A of An is a subset of the form x + V with a
vector subspace V of Kn. The dimension of the affine space A equals the vector
space dimension of V . A linear subspace L of Pn is the image π(V ) of a vector
subspace V of Kn+1 with dimK V ≥ 1 under the natural projection π. The
dimension of the linear subspace L is dimL = dimK V − 1. The affine (linear)
subspaces are precisely the zero sets of (homogeneous) polynomials of degree 1.

The linear subspaces of Pn of fixed dimension s form an irreducible projec-
tive variety Gs(Pn) of dimension (s + 1)(n − s) embedded in P(n+1

s+1)−1 [Har92,
Lecture 6]. For a linear subspace L ⊆ Pn we also use the notation Gs(L) with
the obvious meaning.

1.1.5 Degree

We say that a property holds for almost all or generic x ∈ V iff there exists
a dense open subset U ⊆ V such that the property holds for all x ∈ U . The
degree deg V of an irreducible projective variety V of dimension m is defined as
the cardinality of V ∩L for a generic L ∈ Gn−m(Pn). For this definition to make
sense one has to show that this cardinality is the same for almost all such L
(cf. [Mum76, §5A],[Har92, Lecture 18]). We define the degree of an irreducible
affine variety to be the degree of its projective closure. Then similarly the
degree of an irreducible affine variety is the number of intersection points with
a generic affine subspace of complementary dimension. In conventional algebraic
geometry it is common to define the degree of a reducible variety to be the sum
of the degrees of its irreducible components of maximal dimension. Then the
above characterisation also holds in this case. We refer to this definition as the
geometric degree. In computational algebraic geometry or algebraic complexity
theory one usually defines the degree deg V of a reducible variety V to be the
sum of the degrees of all irreducible components of V . This notion is also called
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the cumulative degree. We will use the latter definition and call it simply the
degree. However, for equidimensional varieties these two notions coincide and
generalise the degree of a polynomial.
Example 1.4. Let V = Z(f) be an affine or projective hypersurface defined by
the (homogeneous) squarefree polynomial f . Then deg V = deg f .

One of the main reasons to use the cumulative degree is the following Bézout
Inequality [Hei83, Theorem 1].

Theorem 1.5. Let V,W be affine varieties. Then

deg(V ∩W ) ≤ deg V · degW.

1.1.6 Important Bounds

To analyse computations we need bounds on the degrees of the polynomials
involved. The degree of a variety is a fundamental tool in obtaining such bounds.
We collect some fundamental bounds using the degree here.

The following is a bound on the degree of a variety in terms of the degrees
of its defining polynomials, which is widely used in this or similar forms in the
literature. For a lack of reference we give a prove here.

Lemma 1.6. Let V = Z(f1, . . . , fr) ⊆ An (Pn) be an affine or projective variety
defined by the (homogeneous) polynomials f1, . . . , fr of degree at most d. Then

deg V ≤ dn.

Proof. By homogenising the polynomials it is easy to see that we can restrict
to the projective case.

So let f1, . . . , fr be homogeneous with V = Z(f1, . . . , fr). We use that
there exists a rather regular (“as regular as possible”) sequence of homogeneous
polynomials cutting out V set-theoretically [Bro98, Lemma 0]. This means
that there exist ` ∈ N and h1, . . . , h` ∈ (f1, . . . , fr) with deg hi ≤ d, V =
Z(h1, . . . , h`), such that for all 1 ≤ i < `

(a) hi+1 /∈ I(C) for all irreducible components C of Wi := Z(h1, . . . , hi) with
C * V ,

(b) there exists an irreducible component C of Wi with C * V (and hence
hi+1 /∈ I(C) by (a)).

In the case ` ≤ n the Bézout Inequality 1.5 and Example 1.4 imply

deg V = degW` ≤ d` ≤ dn.

We thus assume ` > n. Denote by Si the set of irreducible components C
of Wi with C * V . We prove that for all 1 ≤ i ≤ n

∀C ∈ Si dimC = n− i, (1.2)

which is trivial for i = 1, since W1 = Z(h1) is a hypersurface. Now assume (1.2)
for some 1 ≤ i < n. All C ∈ Si+1 are components of C ′ ∩ Z(hi+1) for some
C ′ ∈ Si. By induction hypothesis dimC ′ = n − i, and (a) implies with the
Dimension Theorem that dimC = n− i− 1, which proves (1.2).

It follows from (1.2) that Wn is the union of V with a finite number of
isolated points. Thus deg V ≤ degWn ≤ dn. 2
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Remark 1.7. An obvious but important observation is that from this lemma
it follows, that the number of irreducible components of a variety V , which
is bounded by deg V , is bounded by dn, where d is a bound on the degrees
of defining equations of V . Clearly this remark also holds for the number of
connected components.

On the other hand, one can bound the degree of defining polynomials in
terms of the degree of the variety as follows [Hei83, Proposition 3].

Proposition 1.8. For each irreducible affine k-variety V ⊆ An there exist
polynomials f1, . . . , fn+1 ∈ k[X] with

deg fi ≤ deg V and V = Z(f1, . . . , fn+1).

We will need a generalisation of this statement to reducible varieties, which
we prove also for the projective case.

Corollary 1.9. For each affine (projective) variety V there exist (homogeneous)
polynomials f1, . . . , fr ∈ k[X] with

deg fi ≤ deg V and V = Z(f1, . . . , fr).

Proof. First consider the case of an irreducible projective variety V ⊆ Pn.
Then its affine cone V c ⊆ An+1 has degree deg V c = deg V , since in An+1 a
sufficiently generic affine subspace of complementary dimension can be chosen
by choosing a generic linear subspace with one more dimension and intersecting
it with a generic hyperplane not containing the origin. Proposition 1.8 implies
that there exist polynomials f1, . . . , fn+2 with deg fi ≤ deg V c defining V c,
which can be chosen to be homogeneous.

For the general case let V = V1∪ . . .∪Vs be the irreducible decomposition of
an affine or projective variety. For all i there exist (homogeneous) polynomials
gi1, . . . , gir of degree ≤ deg Vi with Vi = Z(gi1, . . . , gir). Then the products

fj1,...,js
:=

s∏
i=1

gi,ji
for all 1 ≤ j1, . . . , js ≤ r

define V and satisfy

deg fj1,...,js
=
∑

i

deg gi,ji
≤
∑

i

deg Vi = deg V. 2

Another class of bounds which are extremely important for computational
algebraic geometry are effective versions of Hilbert’s Nullstellensatz. These are
degree bounds for the coefficient polynomials in (1.1). The following version is
due to Kollar [Kol88] (see also [Bro87, FG90]).

Theorem 1.10. Let f1, . . . , fr ∈ k[X] be polynomials in n > 1 indeterminates
with deg fi ≤ d, where d ≥ 3. If Z(f1, . . . , fr) = ∅, then there exist g1, . . . , gr ∈
k[X] with

deg(gifi) ≤ dn and 1 = g1f1 + · · · grfr.
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1.2 Differential Forms

Here we gather some definitions and facts about derivations and differential
forms. We refer to [Eis95, ZS58] for details and further information.

1.2.1 Kähler Differentials

Let R be a ring, S an R-algebra, and M an S-module. An R-linear map
D : S −→M is called a derivation (or R-derivation) iff it satisfies Leibnitz’ rule
D(fg) = gD(f)+fD(g) for all f, g ∈ S. In the important case M = S we call D
simply a derivation of S. We denote by ΩS/R the module of Kähler differentials
(or differential forms) of S over R. It is defined as the S-module generated by
the symbols df for all f ∈ S subject to the relations given by Leibnitz’ rule
and R-linearity. We thus have the R-derivation d: S −→ ΩS/R, f 7→ df , which
is called the universal derivation of S. The map d has the following universal
property. For any S-module M and R-derivation D : S −→ M there exists a
unique S-linear homomorphism D′ : ΩS/R →M such that D = D′ ◦ d.

Clearly the partial derivations ∂
∂Xi

: k[X] −→ k[X] for 1 ≤ i ≤ n are k-linear
derivations. In this case Ωk[X]/k is the free k[X]-module generated by the dXi,
and the universal derivation is given by df =

∑n
i=1

∂f
∂Xi

dXi for all f ∈ k[X].
The partial derivations ∂

∂Xi
can be uniquely extended to derivations of k(X) by

the usual quotient rule. Then analogous statements hold for Ωk(X)/k.
One can extend the module of differential forms to a complex in the following

way. Let Ωr
S/R := ∧rΩS/R be the rth exterior power as S-modules, and define

the R-linear map given by

dr : Ωr
S/R −→ Ωr+1

S/R, dr(fdf1 ∧ · · · ∧ fr) := df ∧ df1 ∧ · · · ∧ dfr.

Then it is easy to see that

Ω•S/R : 0 −→ S
d0

−→ Ω1
S/R

d1

−→ Ω2
S/R

d2

−→ · · ·

is a complex of R-modules, the de Rham complex of S relative to R. Usually
we write d instead of dr when no confusion can occur. The elements of Ωr

S/R

are also referred to as r-forms. An r-form ω is called closed iff dω = 0, and it is
called exact iff there exists an (r − 1)-form η with dη = ω.

Since Ωk[X]/k is free of rank n, the de Rham complex Ω•k[X]/k terminates at
the nth level, and Ωr

k[X]/k is the free k[X]-module generated by the elements
dXi1 ∧ · · · ∧ dXir

, 1 ≤ i1 < · · · < ir ≤ n. Similar statements hold for Ω•k(X)/k.
One can show that for r > 0 each closed r-form with polynomial coefficients
is exact, in other words the rth cohomology of the de Rham complex Ω•k[X]/k

vanishes. Obviously, its zeroth cohomology is isomorphic to k. By contrast,
the cohomology of the de Rham complex Ω•k(X)/k is nontrivial. E.g., we will
characterise closed 1-forms with rational coefficients in §8.2.

1.2.2 Differentials as Linear Forms

Differential forms on varieties have an interpretation as linear forms on the
tangent spaces. This approach is presented in [Sha77]. Although we don’t need
it we briefly sketch its connection to our more algebraic point of view.
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Let V ⊆ An be an affine variety. For a regular function f ∈ K[V ] we
can define its differential dxf : TxV → K at x ∈ V as the differential of the
polynomial representing f restricted to TxV . The definition of the tangent
space shows that this definition is well-defined. Set TV ∗ :=

⊔
x∈V TxV

∗ and
Θ(V ) := {s : V → TV ∗ | ∀x ∈ V s(x) ∈ TxV

∗}. The space Θ(V ) is a K[V ]-
module by pointwise addition and scalar multiplication. For f ∈ K[V ] the
differential df determines an element of Θ(V ). Now define the module Ω[V ] of
regular differential forms on V to be the K[V ]-submodule of Θ(V ) generated
by all df , f ∈ K[V ]. Then we have a map d : K[V ] → Ω[V ], which is a K-
derivation. By the universal property of d: K[V ] → ΩK[V ]/K there exists a
natural homomorphism of K[V ]-modules

α : ΩK[V ]/K → Ω[V ].

By the definition of Ω[V ] the map α is surjective. In general α is not injec-
tive, see [Sha77, III, §4.4, Exercise 9]. However, if V is smooth, then α is an
isomorphism [Sha77, III, §4.2, Proposition 2]. Note that in [Sha77] the space
Ω[V ] is defined in local terms, but it turns out that considering global forms
this definition is equivalent to ours [Sha77, III, §4.2, Proposition 1].

1.2.3 Differential Forms in Local Coordinates

Consider the maximal ideal mx := {f ∈ K[V ] | f(x) = 0} at the point x ∈ V .
Then it is well-known that mx/m

2
x is canonically isomorphic to the dual TxV

∗

of the tangent space at x [Sha77, II, §1.3, Theorem 1]. The local ring at x
is defined as the localisation Ox := Ox(V ) := K[V ]mx . We denote the image
of mx in Ox by m. Then it is easy to see that also m/m2 is isomorphic to TxV

∗.
Now let u1, . . . , um ∈ m be a local system of parameters in the sense of [Sha77,
p.81], i.e., u1, . . . , um are a basis of m/m2 as a vector space. In particular, m
is the dimension of the tangent space TxV at x. The following is analogue to
Theorem 1 of Chapter III, §4.2 in [Sha77] and its Corollary.

Lemma 1.11. Let x ∈ V be a smooth point, and u1, . . . , um ∈ m a local system
of parameters. Then

ΩOx/K =
m⊕

i=1

Oxdui.

Proof. We first show that ΩOx/K is a free Ox-module of rank m = dimx V . We
denote by Ix the ideal generated by I := I(V ) in the local ring Ox(An). Then Ix
is the kernel of the projection Ox(An) � Ox(V ) =: R. Since localisation com-
mutes with formation of differentials [Eis95, Proposition 16.9], ΩOx(An)/K is
the free Ox(An)-module generated by dX1, . . . ,dXn. Hence the exact conormal
sequence [Eis95, Proposition 16.3] reads as

Ix/I
2
x

d−→
n⊕

i=1

Rdxi −→ ΩR/K −→ 0,

where the xi ∈ R are the coordinate functions. Now let f1, . . . , fr ∈ K[X] be
generators of I. Consider the free R-module with basis ε1, . . . , εr and the map



1.2. DIFFERENTIAL FORMS 25

⊕r
j=1Rεj → Ix/I

2
x sending εj to the class of fj . The composition with d yields

the map

α :
r⊕

j=1

Rεj −→
n⊕

i=1

Rdxi, εj 7→
n∑

i=1

∂fj

∂Xi
dxi,

which is described by the matrix (Df)T =
(

∂fj

∂Xi

)
ij
∈ Rn×r, where f :=

(f1, . . . , fr)T . Since x is smooth, by the Jacobi criterion Proposition 1.3 the
matrix (Df)T (x) ∈ Kn×r has rank n − m =: t. Let w.l.o.g. the submatrix
A :=

(
∂fj

∂Xm+i

)
1≤i,j≤t

be regular, when evaluated at x. Then the determinant

of A is a unit in R, hence A is invertible in Rt×t.
Now set B := A−1 = (bij) ∈ Rt×t and define the map

β :
n⊕

i=1

Rdxi →
t⊕

j=1

Rεj , dxi 7→
{

0 if 1 ≤ i ≤ m∑t
j=1 bj,i−mεj if m < i ≤ n

Then one easily checks that β ◦ α′ = id, where α′ is the restriction of α
to
⊕t

j=1Rεj . Thus, α′ is injective, and the exact sequence

0 −→
t⊕

j=1

Rεj
α′−→

n⊕
i=1

Rdxi −→ ΩR/K −→ 0

splits by β, hence

m⊕
i=1

Rdxi = kerβ ' cokerα′ ' ΩR/K . (1.3)

It is easy to see that R/m is a field isomorphic to K. It follows that
ΩR/K/mΩR/K '

⊕m
i=1Kdxi as K-vector spaces, and

m/m2 d−→ ΩR/K/mΩR/K =: C

is a surjective linear map. Since both spaces have dimension m, it is an isomor-
phism.

Now let u1, . . . , um ∈ R be a local system of parameters. Then there exist
functions gij ∈ R with

duj =
m∑

i=1

gijdxi for 1 ≤ j ≤ m.

Since the uj are a local system of parameters, their differentials duj are a basis
of C. Since the same is true for the differentials dxi for 1 ≤ i ≤ m, the matrix
(gij(x))1≤i,j≤m is regular, i.e., det(gij(x)) 6= 0. Hence the determinant det(gij)
is a unit in R, thus the matrix (gij) is invertible. It follows that the dxj can be
expressed over R by the duj , which then generate ΩR/k. 2
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1.2.4 Locally Constant Functions

The ring of rational functions on V is defined as the full quotient ring of the
coordinate ring K[V ], i.e., R(V ) is the localisation of K[V ] with respect to the
multiplicatively closed subset of non-zerodivisors. By [Eis95, Proposition 16.9]
we have

ΩR(V )/K = R(V )⊗K[V ] ΩK[V ]/K .

Each f ∈ R(V ) has a unique maximal open set of definition D(f) ⊆ V . The
function f ∈ R(V ) is called locally constant iff for each point x ∈ D(f) there
exists an open neighbourhood U ⊆ D(f) of x such that f is constant on U .

In the following we use the concept of Taylor series (cf. [Sha77, II, §2.2]). For
f ∈ Ox a Taylor series with respect to the local system of parameters u1, . . . , um

at x is a formal power series F =
∑∞

i=0 Fi ∈ K[[U ]] := K[[U1, . . . , Um]] such
that

f −
N∑

i=0

Fi(u1, . . . , um) ∈ mN+1

for all N ∈ N. Important facts are that each function has a Taylor series, the
function is determined by any of its Taylor series, and Taylor series at smooth
points are unique [Sha77, II, §2.2, Theorems 3, 4, and Corollary to Theorem 5].

Lemma 1.12. Let V ⊆ An be a variety and f ∈ R(V ). Then

f locally constant ⇔ df = 0.

Proof. “⇐”. Let x ∈ Reg (V ) ∩ D(f). Then f is an element of Ox with
df = 0. Indeed, if f = s

t with a non-zerodivisor t, then df = 0 in ΩR(V )/K

implies tds−sdt = 0 in ΩK(V )/K , hence df = 0 in ΩOx/K . Now let u1, . . . , um ∈
m be a local system of parameters. We show that the Taylor series F =∑∞

i=0 Fi(U1, . . . , Um) ∈ K[[U1, . . . , Um]] of f is constant, since then f is a con-
stant in Ox.

By definition we have f−
∑N

i=0 Fi(u) ∈ mN+1 for allN ∈ N. Since u1, . . . , um

generate m [Sha77, II, §2.1, Theorem 2], the monomials in u1, . . . , um of degree
N + 1 generate mN+1, hence there exist gα ∈ Ox with

f =
N∑

i=0

Fi(u) +
∑

|α|=N+1

gαu
α, α = (α1, . . . , αm) ∈ Nm.

Differentiating yields

0 = df =
N∑

i=0

dFi(u) +
∑

|α|=N+1

d(gαu
α)

=
m∑

j=1

 N∑
i=1

∂Fi

∂Uj
(u) +

∑
|α|=N+1

(
uα ∂gα

∂Uj
(u) + αjgαu

α−ej

)duj ,

where ej ∈ Nm is the jth canonical basis vector. From Lemma 1.11 it follows

N∑
i=1

∂Fi

∂Uj
(u) +

∑
|α|=N+1

(
uα ∂gα

∂Uj
(u) + αigαu

α−ei

)
= 0 (1.4)
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for all 1 ≤ j ≤ m. Since the second sum of (1.4) lies in mN , the series
∑∞

i=1
∂Fi

∂Uj

is a Taylor series of 0. Since Taylor series at smooth points are unique, it follows
∂Fi

∂Uj
= 0 for all i, j, thus Fi = 0 for all i > 0.

We have shown that f is locally constant in all smooth points. But since
the smooth points are dense in V , f must be locally constant everywhere.

“⇒”. Let f = s
t ∈ R(V ) be locally constant, where t is a non-zerodivisor.

Let U ⊆ {t 6= 0} ⊆ D(f) be an open set such that f is constant in U , and x ∈ U .
Then t(x) 6= 0, hence f ∈ Ox equals the constant function λ = f(x) ∈ Ox. It
follows df = dλ = 0 in ΩOx/K . Analogously as in the first part one concludes
df = 0 in ΩR(V )/K . 2

1.3 Models of Computation

In classical computer science the basic model of computation is the notion of a
Turing machine, which is an appropriate model for nowadays digital comput-
ers. It expects a binary string as input, performs string operations following a
fixed finite list of instructions, and either outputs a string when stopping the
computation, or loops forever. We will suppose some familiarity with Turing
machines as presented e.g. in the monograph [Pap94].

For the study of numeric or algebraic algorithms it is convenient to have
devices at hand which are able to compute with real or complex numbers. Such
a machine model was introduced by Blum, Shub, and Smale in [BSS89] and is
therefore called BSS-machine. Roughly speaking, a BSS-machine over a field k
performs arithmetic operations and comparisons on elements of k following a
fixed list of instructions, and either halts returning a tuple of k-elements or
loops forever. A comprehensive exposition of this model is [BCSS98].

We will mainly be concerned with parallel algorithms which are usually
modelled by different computational devices called circuits. Therefore we will
use uniform families of algebraic circuits as our basic model of computation.

In the next three sections we drop the characteristic zero assumption, hence k
denotes an arbitrary field.

1.3.1 Algebraic Circuits

Our definition of circuits follows [BCSS98, §18.4] (see also [BC04]). A compre-
hensive presentation of algebraic circuits and parallel algorithms with further
references is [Gat86] (note that the term arithmetic network of that paper co-
incides with our notion of algebraic circuit).

The disjoint union k∞ :=
⊔

n∈N k
n serves as the set of all possible problem

instances. For x ∈ kn we call |x| := n the size of the input x.

Definition 1.13. An algebraic circuit C over k is an acyclic directed graph with
labelled vertices called nodes or gates, which have either indegree 0, 1, or 2.
Nodes with indegree 0 are either labelled with variable names and are called
input nodes, or they are labelled with elements of k and are called constant
nodes. Nodes with indegree 2 are labelled with arithmetic operations from
{+,−,×, /} and are called arithmetic nodes. Nodes with indegree 1 are either
labelled as sign nodes or output nodes, in the latter case they have outdegree 0.
Otherwise, there is no bound on the outdegree.
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An algebraic circuit with constant nodes only for 0 and 1 is called constant-
free. A circuit without division nodes is called division-free. An algebraic circuit
without sign nodes is called an arithmetic circuit or straight-line program (slp
for short).

We note that usually straight-line programs are defined formally by a se-
quence of instructions consisting of arithmetic operations applied to the results
of previous instructions or input variables. However, this definition of straight-
line programs is essentially equivalent to ours. Detailed information on slps can
be found in [BCS97]. When using slps as encodings of polynomials, we require
them to be division-free.

The size size(C) of an algebraic circuit C is the number of its nodes, and its
depth depth(C) is the maximal length of a (directed) path in it (such a path
always starts in an input or constant node and ends in an output node). In the
case of an slp the size is also called length. We define the formal degree deg C
of the circuit C as follows. The degree of a node v of C is inductively defined
by assigning the degree 1 to constant, sign, and input nodes. The degree of
an arithmetic node from {+,−} ({×, /}) is the maximum (sum) of the degrees
of its parents. The degree of an output node is the degree of its parent. The
degree of the circuit C is then defined as the maximal degree of its nodes. Note
that the degree of a circuit is not necessarily the degree of some output node.

An algebraic circuit C with n input and m output nodes computes a function
kn → km in the following sense. We assign n values to the input variables,
perform the operations of the arithmetic nodes on the values returned by their
parents, and return the sign of the value computed by the parent of a sign node.
Here the sign of x ∈ k is 1, if x 6= 0, and 0 else. In case k is ordered, the sign of
x ∈ k is 1, if x ≥ 0, and 0 else. We define the output of a division gate to be
zero if the second input is zero. This way an instruction like

if y 6= 0 then return x/y else return x,

which is implemented by the formula

sgn(y)
x

y
+ (1− sgn(y))x

is well-defined in any case. Instead of sign gates one can also use selection gates
having indegree 3, which return one of first two input values according to the
sign of the third one. Using selection gates one can avoid division by zero.

The function f : kn → km computed by an algebraic circuit C is piecewise
rational, i.e., there exists a partition kn =

⊔
iXi of the input space into con-

structible sets Xi (semialgebraic sets in case k is ordered) such that f |Xi is
given by a rational function (cf. [Gat86]). We define the degree of a rational
function to be the sum of the degrees of the numerator and the denominator of
the unique presentation as a quotient of coprime polynomials. The degree deg f
of a piecewise rational function f is then the maximal degree of all occurring
rational functions. Then it is clear that deg f ≤ deg C.
Example 1.14. The circuit C of Figure 1.1 computes the inverse matrix A−1 =(
α β
γ δ

)
of the 2×2-matrix A =

(
a b
c d

)
(over any field k) if it exists, and

the zero matrix otherwise. We have size(C) = 18, depth(C) = 4, and deg C = 3.
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Figure 1.1: Algebraic circuit computing the inverse of a 2× 2-matrix

We call the bitsize of an integer the number of bits necessary to represent
the number in binary. The bitsize of a ∈ Z, a 6= 0, is blog |a|c + 2. The
formal degree does not only control the degree of the polynomials computed by
a circuit, but also the bitsize growth on rational inputs. In order to prove this, we
assign another quantity b(C) to a division- and constant-free algebraic circuit C
corresponding to a bound on the bitsize of intermediate results on integer inputs.
We define inductively b(v) := 1 if v is an input, constant, or sign node. For an
arithmetic node v with parents v1, v2 we set b(v) := max{b(v1), b(v2)}+1 if v is
an addition or subtraction node, and b(v) := b(v1)+b(v2) if v is a multiplication
node. If v is an output node with parent v1, then b(v) := b(v1). Then it is clear
that on integer inputs of bitsize at most ` the bitsize of the value computed by
a node v is bounded by b(v)`. Finally, we define b(C) := maxv b(v).

Lemma 1.15. Let C be a division- and constant-free algebraic circuit. Then

1. deg C ≤ 2depth(C),

2. b(C) ≤ deg C · depth(C) + 1.

Proof. 1. We prove deg v ≤ 2depth(v), where depth(v) of a node v is defined as
the depth of the circuit consisting of v and all of its precedessors. For depth(v) =
0 the node v is an input or constant node, hence deg v = 1 = 2depth(v). Induc-
tively assume depth(v) ≥ 1. The claim is trivial for output and sign nodes, so
let v be an arithmetic node with parents v1, v2. If v is addition or subtraction,
then by induction hypothesis

deg v = max{deg v1,deg v2} ≤ max{2depth(v1), 2depth(v2)} = 2depth(v)−1.

If v is multiplication, then

deg v = deg v1 + deg v2 ≤ 2depth(v1) + 2depth(v2) ≤ 2 · 2max{depth(v1),depth(v2)}

= 2depth(v).
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2. Analogously to the first part we prove b(v) ≤ deg v ·depth(v)+1 for each
node v. For depth(v) = 0 we have b(v) = 1, so assume depth(v) ≥ 1. The claim
is again trivial for output and sign nodes, so as above let v be an arithmetic
node with parents v1 and v2. If v is addition or subtraction, let deg vi ≥ deg vj

and depth(v`) ≥ depth(vm) with {i, j} = {`,m} = {1, 2}. Then

b(v) = max{b(v1), b(v2)}+ 1 ≤ deg vi · depth(v`) + 2
≤ deg v · depth(v`) + deg v + 1 = deg v · depth(v) + 1.

If v is multiplication, let w.l.o.g. depth(v1) ≥ depth(v2). Then

b(v) = b(v1) + b(v2) ≤ deg v1 · depth(v1) + deg v2 · depth(v2) + 2
≤ deg v1 · depth(v1) + deg v2 · depth(v1) + deg v + 1
= deg v · depth(v) + 1. 2

In complexity theory one studies asymptotic resource bounds of algorithms
expecting inputs of arbitrary length. In order to model such algorithms by
means of circuits it is necessary to consider families of circuits. An important
aspect of circuit families is uniformity which we will define now. Before we
do that note that a constant-free algebraic circuit has a purely combinatorial
description which therefore can be produced by a Turing machine. By labelling
constant nodes with names for the constants (instead of their values) one can
extend this description to circuits with constants. In the following we fix such
a description.

A family (Cn)n∈N of algebraic circuits is said to compute the function f : k∞ →
k∞ iff Cn computes the restriction f |kn. The family (Cn)n∈N is called P-uniform
(L-uniform) iff there exist a fixed set of constants α1, . . . , αm ∈ k such that
each Cn has only constant nodes labelled with these αi, and a Turing machine
that on input (n, i) computes in time nO(1) (in space O(log n)) the description
of the ith node of Cn (with respect to a natural order on the nodes of the cir-
cuit). By convention we will use the term uniform in the sense of P-uniform.
We say that a function f : k∞ → k∞ can be computed in parallel time d(n)
and sequential time s(n) iff there exists a uniform family of algebraic circuits
of size s(n) and depth d(n) computing f . In the case d(n) = (log n)O(1) we
require L-uniformity. The function f is called computable in parallel polynomial
(polylogarithmic) time iff f can be computed in parallel time nO(1) ((log n)O(1))
and sequential time 2nO(1)

(nO(1)). Note that we do not require a parallel poly-
nomial time computable function to have polynomial output size. A function
is called computable in polynomial (exponential) time iff it can be computed in
parallel and sequential time nO(1) (2nO(1)

).

1.3.2 Boolean Circuits

The binary analogue of algebraic circuits are Boolean circuits. These are defined
similar to algebraic circuits with the Boolean gates ∧, ∨, and ¬ instead of
arithmetic and sign gates. Alternatively, one can define Boolean circuits to be
algebraic circuits over F2.

Since a paradigm of computer algebra is to compute exactly, in this realm
one has to restrict the numbers to be rational. There is a natural transformation
of constant-free algebraic circuits into families of Boolean ones computing the



1.3. MODELS OF COMPUTATION 31

same function over Q (cf. [KR90, §3.8]). This transformation consists of sepa-
rating numerators and denominators and representing them in binary. Given a
constant-free algebraic circuit C, we proceed in two steps.

1. We produce an algebraic circuit D with a doubled number of input and
output nodes computing the same function as the original circuit but
handling numerators and denominators separately. Thus we will obtain
an algebraic circuit without divisions. For this purpose we replace

• each input node by two input nodes,
• each arithmetic node by a circuit performing the same operation on

the numerator and denominator separately using the operations +,
−, and ×,
• each sign node by a sign node testing for the numerator,
• and each output node by two output nodes.

2. In a second step we produce for every bitsize ` of the input numbers a
Boolean circuit performing the algorithm in binary. Here we use an a
priori bound B = B(`) on the bitsize of all intermediate results of the
original algebraic algorithm depending on `. We replace

• each input node by ` Boolean input nodes,
• each arithmetic node by an appropriate Boolean circuit performing

the considered operation on B-bit numbers,
• each sign node by a circuit testing the sign bit of the number,
• and each output node by B Boolean output nodes.

Clearly the first step increases the size and depth of the original circuit by at
most a constant factor. As described for instance in [KR90, §4.2], addition and
multiplication of integers with bitsize B can be done with L-uniform Boolean
circuits of size O(B2) and depth O(logB). Also zero-tests can be made within
these resource bounds. Therefore the size and depth of the resulting circuit
will be the size and depth of the original circuit multiplied by B2 and logB,
respectively. We therefore have the following lemma.

Lemma 1.16. Let (Cn)n∈N be a P-uniform ( L-uniform) family of constant free
algebraic circuits of size s(n) = size(Cn) and depth d(n) = depth(Cn). Let
furthermore the bitsize of any of the intermediate results of the circuits after
the first step above be bounded by B(n, `) on rational inputs of bitsize at most `.
Then there exists a P-uniform ( L-uniform) family of Boolean circuits (Bn,`)n,`∈N
of size O(s(n)B(n, `)2) and depth O(d(n) logB(n, `)) computing the same func-
tion as (Cn)n.

Without any a priori knowledge about the growth of intermediate results we
obtain the following bounds from Lemmas 1.15 and 1.16.

Corollary 1.17. Let (Cn)n be a uniform family of constant-free algebraic cir-
cuits of size s(n) and depth d(n). Then there exists a uniform family of Boolean
circuits (Bn,`)n,` of size s(n)2O(d(n))`O(1) and depth O(d(n)2 log `) computing
the same function as (Cn).

Remark 1.18. Note that the rational numbers in the output of the Boolean
circuits constructed in Lemma 1.16 are in general not reduced.
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1.4 Structural Complexity

1.4.1 Complexity Classes

Here we define all complexity classes we will need, in particular the parallel
classes. Following the approach of [Goo94, Poi95] we also characterise the se-
quential complexity classes, which are originally defined via BSS-machines, by
uniform algebraic circuits (see also [Koi00]).

Definition 1.19. 1. For each i ∈ N the class FNCi
k is the set of all functions

computable in parallel time O(logi n) and polynomial sequential time.
We set FNCk :=

⋃
i∈N FNCi

k for the class of all functions computable in
parallel polylogarithmic time.

2. The class FPk consists of all functions computable in polynomial time.

3. We define FPARk to be the class of all functions f with |f(x)| = nO(1)

for all x ∈ k∞ with n = |x|, which are computable in parallel polynomial
time.

4. The class FEXPk is defined as the set of all functions f with |f(x)| = nO(1)

for all x ∈ k∞ with n = |x|, which are computable in exponential time.

There are corresponding classes for decision problems. Let FC be one of the
above function classes. Then its decision version is defined by

C := {A ⊆ k∞ | 1A ∈ FC},

where the characteristic function is defined by

1A : k∞ → k∞, x 7→
{

1 if x ∈ A,
0 if x /∈ A.

The inclusions

FNC1
k ⊆ FNC2

k ⊆ · · · ⊆ FNCk ⊆ FPk ⊆ FPARk ⊆ FEXPk

are all trivial (similar for the decisional versions). For k = R or k = C it is
known that FNCi

k 6= FNCi+1
k , FNCk 6= FPk, and FPARk 6= FEXPk (cf. [Cuc92,

Cuc93, BC04], see also [BCSS98, §19]).
The next set of (decisional) complexity classes has a more logical flavour

and has relations to first-order logic. In the next definition we use a pairing
function k∞ × k∞ → k∞ to encode pairs (and inductively tuples) of elements
of k∞ as elements of k∞. Crucial for a pairing function is that it is injective
and its partial inverse can be computed easily.

Definition 1.20. 1. The class NPk consists of all languages A ⊆ k∞ such
that there exists a polynomial p and a language B ∈ Pk with

x ∈ A ⇔ ∃y ∈ kp(n)(x, y) ∈ B

for all x ∈ k∞ with n = |x|.

2. For a class C of decision problems define coC := {k∞ \A |A ∈ C}.
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3. For m ∈ N define Σm
k (Πm

k ) to be the class of all languages A ⊆ k∞ such
that there exist polynomials p1, . . . , pm and a language B ∈ Pk with

x ∈ A ⇔ Q1y1 ∈ kp1(n) · · ·Qmym ∈ kpm(n)(x, y1, . . . , ym) ∈ B,

for all x ∈ k∞ with n = |x|, where Q1, . . . , Qm is an alternating sequence
of quantifiers ∃ and ∀, and Q1 = ∃ (Q1 = ∀). The polynomial hierarchy is
defined by PHk :=

⋃
m∈N Σm

k =
⋃

m∈N Πm
k .

We have the obvious inclusions

Pk ⊆ NPk = Σ1
k ⊆ Σ2

k ⊆ · · · ⊆ PHk

and
Pk ⊆ coNPk = Π1

k ⊆ Π2
k ⊆ · · · ⊆ PHk.

Here one knows that Pk 6= NPk if k is infinite and not algebraically closed, or
if k is ordered and not real closed [BCSS98, §7.9, Theorem 9]. For k = F2,
algebraically, or real closed there are known efficient algorithms for quanti-
fier elimination (for k = F2 elementary, see e.g. [Pap94], for real closed fields
see [BPR03], for algebraically closed fields see [FGM90, HM93]). These results
imply

PHk ⊆ PARk. (1.5)

We summarise what is known for k = C (which is the main case of interest for
us) in Figure 1.2, where arrows denote inclusions.

NC1
C -6= NC2

C -6= · · · -6= NCC -6= PC

PC �
��

Σ1
C

||
NPC

-
J

J
Ĵ

Σ2
C -

J
J
Ĵ

· · ·
@
@R PHC

@
@R Π1

C
||

coNPC

-




�

Π2
C -





�

· · · �
��

- PARC -6= EXPC

Figure 1.2: Inclusions and separations of main complexity classes

Another kind of complexity classes are counting classes. A language in NPk

asks for the existence of a witness for the membership of a given instance to
the language. We define the class #Pk of problems asking for the number of
witnesses for the membership of a given instance to an NPk-problem. The binary
version #P of this class was introduced in [Val79a, Val79b], its real version #PR
was defined in [Mee00]. A deeper study of #PR and #PC with regard to counting
problems from algebraic geometry was started in [BC06].

Since the number of witnesses can well be infinite, we consider functions
with values in N := N ∪ {∞}.
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Definition 1.21. The class #Pk consists of all functions ϕ : k∞ → N such that
there exists a polynomial p and a language A ∈ Pk with

ϕ(x) = #{y ∈ kp(n) | (x, y) ∈ A}

for all x ∈ k∞ with n = |x|.

Efficient algorithms for point counting imply #Pk ⊆ FPARk for real or
algebraically closed fields k, or k = F2. Again, in the binary case this is clear,
for the real closed case we refer to [BPR03], and for the algebraically closed case
to [GH91b]. This is elaborated in [BC06, BC04].

For any of the classes defined so far there is also a constant-free version,
where the corresponding circuits are required to be constant-free. For a class C
its constant-free version is denoted by C0.

In the case k = F2 algebraic circuits are equivalent to Boolean circuits and we
retrieve the versions of the above complexity classes in the bit model, which we
write in sans serif, e.g. FNC or P. The class FPARF2 is denoted by FPSPACE (and
the class PARF2 by PSPACE), since it coincides with the class of all functions
computable by a polynomial-space Turing machine [Bor77].

1.4.2 Reductions and Completeness

As in classical complexity theory reductions and completeness are important
concepts also in algebraic complexity. We recall these notions here.

Definition 1.22. 1. Let A,B ⊆ k∞. A function π : k∞ → k∞ is called a
(many-one) reduction from A to B iff π ∈ FPk and

x ∈ A ⇔ π(x) ∈ B

holds for all x ∈ k∞. If C is a class of decision problems, then B is said
to be C-hard iff for each A ∈ C there exists a reduction from A to B. The
language B is called C-complete iff in addition B ∈ C.

2. Let f, g : k∞ → k∞. A function π : k∞ → k∞ is called a parsimonious
reduction from f to g iff π ∈ FPk and

f(x) = g(π(x))

holds for all x ∈ k∞.

There is also a weaker kind of reduction applying to both decisional and
functional problems. The idea is that a reduction from a function f to the
function g consists of an efficient algorithm computing f allowing several calls
to a hypothetical algorithm for g called oracle. One can imagine a black box
which outputs g(x) when it is feed with x. To formally define oracle calls in the
model of algebraic circuits, we enhance this model by allowing a further sort of
gates called oracle gates. Since the function g we reduce to usually takes several
inputs and returns several outputs, we have to use several oracle gates to model
one oracle call. Therefore, oracle gates are grouped into clusters whose gates all
have the same set of precedessors. Each cluster of oracle gates represents one
oracle call to g. The gates in each cluster and the precedessors of each oracle
gate both are numbered. We call an algebraic circuit with oracle gates an oracle
circuit.
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Definition 1.23. Let f, g : k∞ → k∞. A Turing reduction from f to g consists
of a P-uniform family (Cn) of oracle circuits of polynomial size with the following
property. There exist polynomials p, q such that for all n ∈ N we have g(kp(n)) ⊆
kq(n), Cn uses only oracle calls for g|kp(n), i.e., each cluster in Cn consists of q(n)
oracle gates with indegree p(n), and the family (Cn) computes f when the ith
oracle gate of a cluster on input y ∈ kp(n) returns the ith component of g(y)
(with respect to the above numberings).

The notions of hardness and completeness are defined for parsimonious and
Turing reductions as for many-one reductions. Clearly a many-one reduction
yields a Turing reduction, but not the other way around.

1.5 Efficient Parallel Algorithms

Here we summarise basic parallel algorithms, in particular efficient linear algebra
and polynomial interpolation, and their complexities both in the algebraic and
in the bit model.

1.5.1 Linear Algebra

The most basic problems of linear algebra are concerned with systems of linear
equations. For instance, an important problem is to compute the dimension of
the solution space of a linear system, in particular to decide whether a solution
exists. The dimension of the solution space of a homogeneous system can clearly
be obtained from the rank of the coefficient matrix. Mulmuley [Mul87] has re-
duced this problem to computing the characteristic polynomial of a matrix. Via
Cramers rule it is also possible to reduce the problem of solving a nonsingular
linear system to the computation of the characteristic polynomial. It is shown
in [Gat86] that one can also reduce most linear algebra problems to computing
the characteristic polynomial. Hence this seems to be the most fundamental
problem of linear algebra.

Berkowitz [Ber84] designed an efficient parallel algorithm computing the
characteristic polynomial and showed that this problem lies in FNC2

k. For ra-
tional matrices the bitsize of this algorithm was analysed in [MT97] showing
that the corresponding problem lies in FNC2.

We will apply this algorithm also to matrices with polynomial entries. To
analyse it for this case consider the following problem.

ItMatProdk (Iterated matrix product) Given matrices A1, . . . , An ∈ kn×n,
compute A1 · · ·An.

All we need to know about Berkowitz’ algorithm is that it reduces the compu-
tation of the characteristic polynomial to ItMatProdk in parallel timeO(log n)
without divisions and constants [Gat86, Fact 9.1].

Now let R := k[X1, . . . , Xn], and consider the ring Rm×m of square matrices
with entries in R.

Lemma 1.24. Let A ∈ Rm×m be a matrix with entries of degree at most d.
Then Berkowitz’ algorithm computes the characteristic polynomial of A in par-
allel time O(n log(md) logm) and sequential time (md)O(n) counting operations
in k.
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Proof. We first bound the degrees of all intermediate polynomials occuring
during the computation. The reduction to ItMatProdk runs in parallel time
O(logm) counting operations in R, hence Lemma 1.15 implies that the formal
degree of the corresponding circuit is bounded by 2O(log m) = mO(1). Since it
is division- and constant-free, it computes integer polynomials of degree mO(1).
Also the size of the returned instance of ItMatProdk is polynomial, in par-
ticular the number N of the matrices. Clearly the formal degree of the naive
multiplication algorithm is N , hence the formal degree of the whole algorithm
is mO(1). Feeding it with polynomials of degree at most d it will output poly-
nomials of degree mO(1)d. This holds for all intermediate results as well.

In the following we will freely use the standard method of computing in
parallel the iteration of an associative binary operation by arranging the opera-
tions in a binary tree of logarithmic depth. Using this it is easy to see that two
polynomials in n variables of degree bounded by δ can be added in one parallel
step, and they can be multiplied in parallel time O(n log δ). Since the reduction
algorithm runs in parallel time O(logm) counting operations in R, it follows
that it takes O(n log(md) logm) parallel operations in k.

Now we are left with the task to multiply N = mO(1) matrices with polyno-
mial entries of degree mO(1)d. We do this in a tree of matrix multiplications of
depth logN . Each matrix multiplication needs N parallel polynomial multipli-
cations taking parallel time n log(md). The results are added up in parallel time
logN . Thus we need parallel time O(n log(md) logm). The sequential time for
the whole algorithm is (md)O(n). 2

Remark 1.25. The analysis of the bitcost of the algorithm can be done anal-
ogously to the above proof. Using the naive algorithm for ItMatProdZ one
obtains parallel time O(log2m log(m`)) and polynomial sequential time for ma-
trices of size m with integer entries of bitsize `. However, in [MT97] a more
efficient algorithm is used to obtain the parallel time bound O(logm log(m`)).
These time bounds also hold for solving a linear system of equations of size m
with integer entries of bitsize ` [MT97, Theorem 2].

Later in §3.4 we will also need to invert a regular matrix A ∈ Rm×m, where
R := k[X]. We do that using the following well-known method. Let p(T ) =
pmT

m + pm−1T
m−1 + · · · + p0 ∈ R[T ] be the characteristic polynomial of A.

Then p0 = detA 6= 0. By the Cayley-Hamilton Theorem we have p(A) = 0,
hence

−p0E = pmA
m + pm−1A

m−1 + · · ·+ p1A

= A
(
pmA

m−1 + pm−1A
m−2 + · · ·+ p1E

)
,

where E denotes the identity matrix. It follows

A−1 = − 1
detA

(pmA
m−1 + pm−1A

m−2 + · · ·+ p1E) ∈ Rm×m
det A . (1.6)

Using the algorithm of Lemma 1.24 we can thus compute (detA)A−1 within the
same asymptotic resources as the characteristic polynomial of A.

1.5.2 Interpolation

Interpolation is a well-known technique to obtain the coefficients of a polynomial
given the values of that polynomial at sufficiently many points. Let us recall
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the basic fact.
We denote [d]0 := {0, . . . , d}. For b0, . . . , bd ∈ k and β = (β1, . . . , βn) ∈ [d]n0

we define the point bβ := (bβ1 , . . . , bβn
) ∈ An. The following lemma is well-

known and can easily been shown by induction.

Lemma 1.26. Let b0, . . . , bd ∈ k be pairwise distinct. Then for each set of
values vβ ∈ k, β ∈ [d]n0 , there exists a unique polynomial f ∈ k[X1, . . . , Xn] with
degXi

≤ d for all 1 ≤ i ≤ n such that

f(bβ) = vβ for all β ∈ [d]n0 . (1.7)

We will use interpolation to compute the coefficients of a polynomial given
as a division-free slp.

Proposition 1.27. 1. Let Γ be a division-free slp of length L and formal
degree d computing the polynomial f ∈ k[X1, . . . , Xn]. Then one can com-
pute all coefficients of f in parallel time O(logL log(dL) + n2 log2 d) and
sequential time (Ldn)O(1).

2. In the case k = Q let ` be a bound on the bitsize of all constants of Γ. Then
one can compute the coefficients of f in parallel time O(n2 logL log(dL) ·
log(dL`)) and sequential time (L`dn)O(1).

Proof. 1. Since degXi
f ≤ deg f ≤ deg Γ = d for all i, we can compute the

coefficients of f according to Lemma 1.26 by interpolation at (d + 1)n points.
We can choose bj := j ∈ k, 0 ≤ j ≤ d, as coordinates for the interpolation
points. Now we can compute the values vβ = f(bβ) ∈ k by evaluating Γ on
input bβ for all β ∈ [d]n0 . We use the algorithm of [MRK88] to evaluate Γ in
parallel time O(logL log(dL)) and sequential time polynomial in L, and since
the vβ can be computed in parallel, all vβ can be computed within the same
parallel time bound.

Then we have to solve the linear system of equations (1.7). This system has
(d + 1)n unknowns and equations. According to §1.5.1 solving a nonsingular
linear system can be done in parallel time O(n2 log2 d) and sequential time
dO(n). Altogether the claimed bounds follow.

2. Since we chose bj := j for 0 ≤ j ≤ d, we have |bαβ | ≤ dd for all α, β ∈
[d]n0 , hence the bitsize of bαβ , which are the coefficients of the system (1.7), is
O(d log d). Furthermore, according to Lemma 1.15 the values vβ = f(bβ), which
constitute the right side of the system (1.7), have bitsize O(dL` log d). They
can be computed by Lemma 1.16 in parallel time O(logL log(dL) log(dL`)) and
sequential time (dL`)O(1). The size of the linear system (1.7) is O(dn), hence
according to Remark 1.25 it can be solved in parallel time O(n2 log d log(dL`))
and sequential time (L`dn)O(1). This shows the claimed bounds. 2

1.5.3 Polynomial Systems

In order to study the complexity of problems concerning systems of polynomial
equations we need to specify how polynomials are represented as vectors of field
elements. We mainly use the dense encoding of polynomials, i.e., a polyno-
mial is represented as the vector of all of its coefficients (fixing some natural
order on the multiindices). Hence the encoding of a polynomial of degree d
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in n indeterminates has size
(
n+d

n

)
. Other, more economical encodings are the

sparse, formula, and slp encoding (decreasingly ordered with respect to size).
A standard argument (cf. [BC04, Remark 6.3] and [Koi97b, §1.2]) shows that
concerning properties which are invariant under isomorphisms (in the sense of
topology and algebraic geometry), these encodings yield polynomially equiva-
lent problems. In particular, in all of the problems below the encoding is not
essential.

The first question to be asked about a polynomial system is on the existence
of a solution.

HNk (Hilbert’s Nullstellensatz) Given polynomials f1, . . . , fr ∈ k[X], decide
whether Z(f1, . . . , fr) ⊆ An(k) is not empty.

Note that we have asked for a solution over k, which is not necessarily alge-
braically closed. Obviously HNk lies in NPk. A fundamental result of [BSS89]
(see also [BCSS98]) is that HNk is NPk-complete. The inclusion (1.5) implies
that HNk is decidable in parallel polynomial time for the class of fields specified
there. But there is also a direct way to see this if k is algebraically closed. In
fact, the following solution of HNk is an important building block of the efficient
quantifier elimination procedure implying (1.5) in this case. As mentioned in
§1.1.1, Hilbert’s Nullstellensatz states that the system f1, . . . , fr has no solution
iff there exist g1, . . . , gr ∈ k[X] with

1 = g1f1 + · · · grfr. (1.8)

Theorem 1.10 says that in (1.8) one can assume deg(gifi) ≤ dn, where d ≥ 3
is an upper bound of the degree of the fi. Since (1.8) is a linear system of
equations of size dO(n2) in the coefficients of the gi, the results of §1.5.1 show
that HNk can be solved in parallel polylogarithmic time in this quantity, hence
in parallel polynomial time.

The next step in studying polynomial systems is to obtain information about
the “size” of the solution set. For k real or algebraically closed a natural measure
of size is the dimension of the variety Z(f1, . . . , fr).

Dimk (Dimension) Given polynomials f1, . . . , fr ∈ k[X] and m ∈ N, decide
whether V := Z(f1, . . . , fr) ⊆ An(k) has dimension dimV ≥ m.

Direct algorithms for computing the dimension are given in [BPR03] for the
real closed case, and in [CGH89, GH91a, GH91b] for the algebraically closed
case. In a more structural approach it is shown in [Koi97b, Koi99] that the
problem Dimk is NPk-complete for k = R or k = C.

The natural counting version of HNk is the following problem.

#HNk (Algebraic point counting) Given polynomials f1, . . . , fr ∈ k[X],
compute the cardinality of Z(f1, . . . , fr) ⊆ An(k), returning ∞ if this num-
ber is not finite.

It is shown in [BC06] that #HNk is in #Pk-complete for k = R or k = C.
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1.6 Squarefree Regular Chains

In our summary about this variant of characteristic sets we follow mainly Szántó’s
presentation [Szá97, Szá99]. One difference to hers is that we use the naming
conventions introduced in [ALM99, BLM06], which seems more appropriate.
We thus speak about squarefree regular chains instead of unmixed ascending
sets. A second difference is that we consider the saturated ideal Sat (G) as the
fundamental object attached to a triangular set G instead of the set Red (G) of
polynomials which are pseudo divisible by G. The reason for this is that Sat (G)
has better mathematical properties than Red (G), e.g., it is always an ideal (cf.
Example 1.29).

1.6.1 Definitions and Basic Properties

We introduce an ordering on the variables X1 < · · · < Xn of the polynomial ring
k[X] = k[X1, . . . , Xn] over the field k, which we now assume to have character-
istic zero again. For a non-constant polynomial f ∈ k[X] we define its class by
class (f) := min{Xi | f ∈ k[X1, . . . , Xi]}. The leading coefficient lc (f) of f is by
convention its leading coefficient with respect to class (f). Thus, if class (f) =
Xi, then f ∈ k[X1, . . . , Xi] \ k[X1, . . . , Xi−1] and lc (f) ∈ k[X1, . . . , Xi−1].

Definition 1.28. A finite set of polynomials G = {g1, . . . , gt} ⊆ k[X] is called
a triangular set iff class gi < class gi+1 for all 1 ≤ i < t.

The procedure of pseudo division is a generalisation of division with remain-
der from univariate to multivariate polynomials. For polynomials f, g ∈ k[X]
with class (g) = Xi we divide f by g with remainder over the univariate poly-
nomial ring k(X1, . . . , X̂i, . . . , Xn)[Xi], where X̂i denotes omission of Xi, and
multiply the resulting equation by a suitable power of lc (g) to obtain polynomial
expressions. Thus, there exist polynomials q, r ∈ k[X] and an integer α ∈ N
with

lc (g)αf = qg + r, (1.9)

where degXi
r < degXi

g and 0 ≤ α ≤ degXi
f − degXi

g + 1. To make q
and r unique one usually requires α to be minimal, but note that any other
sufficiently large choice of α is also possible. For instance, if we require α =
degXi

f−degXi
g+1, then q and r are as well unique. For minimal α the pseudo

quotient of f by g is denoted with pquo (f, g) := q, and the pseudo remainder
by prem (f, g) := r.

Now we generalise the notion of pseudo remainder to triangular sets. Con-
sider a triangular set G = {g1, . . . , gt} ⊆ k[X] and a polynomial f ∈ k[X]. There
exists a sequence of polynomials ft, . . . , f0, the pseudo remainder sequence, with

ft = f, fi−1 = prem (fi, gi) for 1 ≤ i ≤ t.

We denote by prem (f,G) := f0 the pseudo remainder of f by G. It follows
easily from the defining equations that there exist polynomials q1, . . . , qt and
integers α1, . . . , αt ∈ N with

lc (gt)αt · · · lc (g1)α1f =
t∑

i=1

qigi + f0. (1.10)
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It is easy to see that for f, g ∈ k[X] with class (g) = Xi < Xn we have
degXj

prem (f, g) ≤ degXj
f for all j > i. The reason for that is that in the

division process one divides only by lc (g) and the coefficients of the pseudo
quotient are linear in the coefficients of f . It follows that degXi

f0 < degXi
gj

for Xi = class (gj). We say that f is reduced modulo G iff f = prem (f,G).
The polynomial f is reduced modulo G iff degXi

f < degXi
gj for all j where

Xi = class (gj). We say that f is pseudo divisible by G iff prem (f,G) = 0.
We denote the set of polynomials which are pseudo divisible by G by

Red (G) := {f ∈ k[X1, . . . , Xn] |prem (f,G) = 0}.

Although computationally accessible, the set Red (G) is mathematically incon-
venient, since it is in general not an ideal. It is not even a group, which is shown
by the following example.

Example 1.29. Let G := {g1, g2} ⊆ k[X1, X2] with g1 := X1(X1 − 1) and
g2 := X1(X2 − 1). Then G is a triangular set. Now consider f1 := X2 − X1

and f2 := −X2 + 1. Then one easily checks that prem (f1, g2) = −g1, hence
prem (f1, G) = 0. Furthermore, X1f2 = −g2, thus prem (f2, G) = 0. But
f1 + f2 = −X1 + 1 is not pseudo divisible by G, since it is reduced modulo G.

Following [ALM99] we assign to G the saturated ideal

Sat (G) := (G) : Γ∞ = {f ∈ k[X] | ∃N ∈ N fΓN ∈ (G)}, (1.11)

where Γ :=
∏

i lc (gi). It is clear that Γ is no zerodivisor on k[X]/Sat (G).
Furthermore, equation (1.10) implies Red (G) ⊆ Sat (G). Later we will impose
conditions on G that imply equality.

For a prime ideal P ∈ k[X] the codimension of P is defined to be the codi-
mension of Z(P ). The following theorem was proved in [BLM06].

Theorem 1.30. For each triangular set G = {g1, . . . , gt} the ideal Sat (G) is
unmixed, i.e., each associated prime P of Sat (G) has the same codimension t.

Before defining the fundamental concept of squarefree regular chains, we
need to introduce some more notation (for more information about associated
primes and primary decomposition see [Eis95, §3]). For an ideal I ⊆ k[X] we
denote by Ass (I) the set of associated primes of I, i.e., if I = Q1∩· · ·∩Qs is an
irredundant primary decomposition of I and Qi is Pi-primary, then Ass (I) =
{P1, . . . , Ps}. Now set R := k[X1, . . . , Xn−1]. For a prime ideal P ⊆ R we
denote by K(P ) the quotient field of the integral domain R/P . We have a
natural map R[Xn] � (R/P )[Xn] ↪→ K(P )[Xn], f 7→ fP .

Definition 1.31. Let G = {g1, . . . , gt} be a triangular set, and set Gi :=
{g1, . . . , gi} for 0 ≤ i ≤ t.

1. Then G is called a regular chain iff for all 0 ≤ i < t and each P ∈
Ass (Sat (Gi)) we have lc (gi+1) /∈ P .

2. The regular chain G is called squarefree iff for all 0 ≤ i < t and each
P ∈ Ass (Sat (Gi)) the polynomial gPi

i+1 is squarefree in K(Pi)[Xj ], where
Xj = class (gi+1) and Pi := P ∩ k[X1, . . . , Xj−1].

The following result was proved in [ALM99, Theorem 6.1].
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Theorem 1.32. For each regular chain G we have Sat (G) = Red (G).

The following result was essentially already proved in [Kal98], see also [Szá99,
ALM99, BLM06].

Proposition 1.33. If G is a squarefree regular chain, then Sat (G) is a proper
radical ideal in k[X].

We can summarise that for a squarefree regular chain G the set Red (G)
agrees with Sat (G) and is a proper unmixed radical ideal in k[X].

1.6.2 Decomposition of Radicals

It is a major open problem in computational algebraic geometry to compute
generators of the radical of an ideal in parallel polynomial (or even single ex-
ponential sequential) time. It is not even known whether generators of single
exponential degree exist. In this light the following result of [Szá97] is remark-
able.

Theorem 1.34. Let k be a field of characteristic zero, and the ideal I ⊆ k[X]
be given by generators f1, . . . , fr of degree at most d. Then there exist squarefree
regular chains G1, . . . , Gs with saturated ideals Ii = Sat (Gi) such that

√
I = I1 ∩ · · · ∩ Is. (1.12)

Furthermore, the degree of the polynomials in Gi and s are bounded by dO(n2).
Finally, the Gi can be computed in parallel (sequential) time (n log d)O(1) (dnO(1)

).

Remark 1.35. 1. We note that unlike the claim in [Szá97] the above decom-
position is in general not irredundant, i.e., setting Vi := Z(Ii) there may
be some irreducible component C of Vi with C ⊆ Vj where j 6= i. We
point out that in this case C is either also an irreducible component of Vj

or it is embedded in Vj , i.e., C is contained in some higher dimensional
component of Vj .

2. It is so far not known if there exist generators of single exponential degree
for the above ideals Ii. In fact, it is easy to see that if one could prove
the existence of such generators, they could also be computed in parallel
polynomial time.
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Chapter 2

Transfer Results

In this chapter we prove theorems which allow to transfer complexity statements
from the algebraic to the discrete setting. The first section contains absolute
transfer results in the sense, that a problem in a certain algebraic complexity
class results in a problem in the corresponding discrete class if its inputs are
restriced to rationals. The second section consists of a new transfer principle
which was proposed in [BCL05].

2.1 Transfer Results for Complexity Classes

We map functions with complex arguments to binary functions in the follow-
ing way. For a ∈ Z write â ∈ {0, 1}∞ for the binary encoding of a us-
ing 0b for each bit b. We encode a tuple of rational numbers (r1, . . . , rn) as
p̂1 11 q̂1 11 · · · 11 p̂n 11 q̂n, where ri = pi

qi
with coprime integers pi, qi, qi > 0.

In this way we obtain an injective coding function γ : Q∞ → {0, 1}∞. In
the other direction we do not require the fractions to be reduced, i.e., we do
not require the numerator and denominator to be coprime. Thus we define
a one-sided inverse δ : {0, 1}∞ → Q∞ of γ as the map δ(x) := (a1

b1
, . . . , an

bn
) if

x = â1 11 b̂1 11 · · · 11 ân 11 b̂n with ai, bi ∈ Z, bi 6= 0. Otherwise, δ(x) := 0. Then
δ ◦ γ = idQ∞ . Note that γ ◦ δ describes reduction of fractions in binary, i.e.,
cancelling out the greatest common divisor (gcd) of the numerator and denom-
inator. The main reason for us to define the coding functions this way is that
it is not known whether one can compute the gcd of two integers in FNC.

For any function f : C∞ → C∞ which maps Q∞ to Q∞ we define fQ :=
γ ◦ f ◦ δ : {0, 1}∞ → {0, 1}∞. The assumption is for instance satisfied if f is
computable by a constant free machine. If f expects several tuples of complex
numbers, e.g. f : C∞×C∞ → C∞, we set fQ := γ◦f◦(δ×δ). Counting functions
C∞ → N are considered as functions C∞ → C by mapping ∞ to −1. For the
transfer of decisional classes we use Boolean parts: Recall that the Boolean part
of a class C of decision problems is defined as BP(C) := {A ∩ {0, 1}∞ |A ∈ C}.

The proof of our first transfer result relies on a technique to eliminate con-
stants from algorithms by Koiran [Koi97a]. He uses the concept of correct test
sequences for slps due to Heintz and Schnorr [HS82]. We modify this notion for
arithmetic circuits using their depth instead of their size (which corresponds to
the length of slps). We proceed as follows. Let F be a family of polynomials in
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C[X] = C[X1, . . . , Xn]. A sequence u = (u1, . . . , uq) ∈ (Cn)q is called a correct
test sequence for F iff

∀f ∈ F

(
q∧

i=1

f(ui) = 0 ⇒ f = 0

)
.

Hence a short correct test sequence for F yields an efficient algorithm testing
polynomials in F for zero. Denote by W (n, p, t) the set of polynomials in C[X]
which can be computed by an arithmetic circuit (without divisions) of depth at
most t using at most p constants. The following is a modification of Theorem 8
in [Koi97a]. We only replace the length of the slps or equivalently the size
of the arithmetic circuits by their depth. As we have shown in Lemma 1.15
the depth of a circuit is the parameter controlling its degree. Thus the proof
of the following proposition is completely analogous to the one of Theorem 8
of [Koi97a].

Proposition 2.1. There are constants c1, c2 > 0 such that the following holds.
Set d := 2(npt)c1 and M := 22(npt)c2

, and let v1, . . . , vn(p+1) be a sequence of
integers satisfying

v1 ≥M + 1, vk ≥ 1 +M(d+ 1)k−1vd
k−1 for 2 ≤ k ≤ n(p+ 1).

Then the sequence u1, . . . , up+1 ∈ Nn defined by

ui := (v(i−1)n+1, . . . , vin) for 1 ≤ i ≤ p+ 1 (2.1)

is a correct test sequence for W (n, p, t).

Remark 2.2. A sequence v1, . . . , vn(p+1) of integers according to the proposition
can be computed in sequential time (npt)O(1) by repeated squaring.

Theorem 2.3. 1. We have BP(PARC) = PSPACE.

2. If f ∈ FPARC maps Q∞ into Q∞ such that |fQ(x)| = nO(1) for all x ∈
{0, 1}∞ with n = |x|, then fQ ∈ FPSPACE.

Remark 2.4. The second statement requires the condition on the output size as
the function f : C∞ → C, (x1, . . . , xn) 7→ 22n

shows.

Proof. 1. The bounds of Corollary 1.17 imply BP(PAR0
C) = PSPACE. We

show BP(PAR0
C) = BP(PARC) by eliminating constants as in [Koi97a].

So let A ∈ PARC, and set A0 := A ∩ {0, 1}∞. Then A0 is definable with-
out constants (i.e. over Q). By assumption A (and hence A0)is decidable by
a uniform family of algebraic circuits (Cn)n of exponential size and polynomial
depth using the constants α1, . . . , αp ∈ C. Applying the first step in the trans-
formation of Lemma 1.16 we can assume w.l.o.g. that the circuits don’t use
divisions. Let L be the field generated by α1, . . . , αp, and q the transcendence
degree of L over Q. Then w.l.o.g. α1, . . . , αq are a transcendence basis of L over
Q. Thus L is algebraic over k := Q(α1, . . . , αq). Proceeding inductively it suf-
fices to consider the case p = q + 1. Then with the notation β := αq+1 we have
L = k(β) = k[T ]/(m), where m ∈ k[T ] is the minimal polynomial of β over k.
Then on input x ∈ {0, 1}n, the computation of Cn takes place in L, where each
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element can be represented by a polynomial over k in β of degree < d := degm.
By [Koi97a, Lemma 1] the result of Cn is constant on the conjugacy class of β,
i.e., it does not depend on the root of m.

Now we construct a uniform family of circuits (Dn)n simulating the compu-
tation of (Cn)n by computing with polynomials of degree < d. We proceed as
follows. We replace each computation node of Cn by the corresponding compu-
tation of polynomials of degree < d followed by a reduction modulo m. A sign
node testing a = 0 is replaced by a circuit testing

∃T m(T ) = 0 ∧ f(T ) = 0,

where f ∈ k[T ] is the polynomial representing a, i.e., a = f(β). This test
is equivalent to gcd(m, f) 6= 1. Since the degree d is fixed, the size of these
replacing circuits is also constant. Hence the size and depth of Dn are bounded
by a constant times the size and depth of Cn. And the family (Dn)n decides the
same language as Cn, namely A0.

Now we eliminate the constants α1, . . . , αq from the family of circuits (Dn).
Note that since α1, . . . , αq are algebraically independent over Q, they can equally
well be interpreted as indeterminates. On input x ∈ {0, 1}n we simulate the
calculation of Dn by computing with polynomials in Z[α1, . . . , αq] given by arith-
metic circuits. This means that we replace each arithmetic node v of Dn by a
circuit expecting the description of two circuits as input and returning the de-
scription of the combination of these two circuits with the corresponding arith-
metic node. If v has precedessors v1, v2, it is connected with the outputs of
the circuits replacing v1 and v2. Note that the circuits we compute with have
exponential size, but since they only have one output node, we can assume that
the output node is placed at the end of the data structure, hence attaching a
new node with the old output nodes as precedessors can be done in constant
time.

Reaching a sign node, we have to test a polynomial f in q indeterminates
given as a circuit without constants for zero. Note that this circuit has depth
t = nO(1) and size 2nO(1)

. For this purpose, we compute a correct test sequence
for W (q, 0, t), which can be done in polynomial time by Remark 2.2. Then
we evaluate f at all points of this sequence, and check whether these values
are zero. According to the bounds on the circuit representing f the evaluation
takes parallel polynomial time (and exponential sequential time). Hence this
transformation increases the depth polynomially and the size exponentially, and
the resulting family of circuits again decides A0, hence A0 ∈ FPAR0

C.
2. Consider the decision problem Lf := {(x, y) ∈ {0, 1}∞ | f ◦ δ(x) = δ(y)}.

Recall that δ is the function mapping the encoding of tuples of integers to the
fractions defined by them. It is easy to see that δ is computable in FPC, thus
Lf ∈ PARC. Then the first part implies Lf ∈ PSPACE.

Now let N, c > 0 be the constants such that |fQ(x)| ≤ nc for all x ∈ {0, 1}∞
with n = |x| ≥ N . Recall that fQ = γ ◦ f ◦ δ, where γ is the coding func-
tion representing rational numbers as reduced fractions encoded in binary. We
describe an algorithm computing fQ. First consider the following subroutine
implemented as a circuit S. Let x ∈ {0, 1}n be given with n ≥ N . For all
y ∈ {0, 1}nc

in parallel test whether f ◦ δ(x) = δ(y). If this is true, reduce the
fractions encoded by y and return the reduced result. Otherwise return nil
(represented by some bitstring of length nc not encoding some valid result).
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Then all paths of S (choices of y) not returning nil return the same result
γ ◦ δ(y) = fQ(x). Since the size of y is polynomial, the computation of gcds can
be done in poynomial time, thus S has exponential size and polynomial depth.
Finally, we output the first of the results which is not nil, which can be done by
a binary tree of circuits of depth nc sieving out nil. The described algorithm
shows that fQ ∈ FPSPACE. 2

Next we define a complexity class of functions computable in “randomised
parallel polylogarithmic time”.

Definition 2.5. We denote by FRNC the class of all functions f : {0, 1}∞ →
{0, 1}∞ such that there exists a polynomial p, a constant 0 < q < 1 and a
function g : {0, 1}∞ × {0, 1}∞ → {0, 1}∞ in FNC, such that for all x ∈ {0, 1}∞
with n = |x|

P
(
{y ∈ {0, 1}p(n) | f(x) 6= g(x, y)}

)
≤ qn.

Remark 2.6. 1. In the context of decision problems it is common to require
a failure probability bounded by a constant. This probability can then be
made exponentially small by repeating the algorithm polynomially often.
For search problems it is not clear how to do this.

2. A well-known decision class is the class RNC of languages which can be
decided in randomised polylogarithmic parallel time with one-sided error.

3. In [Joh90, p. 133] a similar class for search problems is defined, where
implicitly the solution of a decision problem with one-sided error is re-
quired. Let FRNC′ denote this class. Then f ∈ FRNC′ iff there exists
a relation R(x, y) in NC and a function g ∈ FNC such that R(x, y) im-
plies f(x) = g(x, y) and R(x, y) holds with high probability. One can
easily prove FRNC′ ⊆ FRNC, but the other inclusion is unlikely. Also our
transfer results (such as Theorem 2.8) cannot be proved with this class.

Our second transfer result is an analogue of the first part of Theorem 2.3
for the level of parallel polylogarithmic time. For its proof we use an analogue
of the statement that a division- and constant-free slp can be tested for zero in
randomised polynomial time [IM83]. The following proposition can be proved
analogously to this statement. The crucial point is that the degree and the
bitsize growth of a circuit are both controlled by its depth, so one can replace
the size by the depth of the given circuit.

Proposition 2.7. There exists an L-uniform family of Boolean circuits (Bt,s,n)t,s,n

of depth O(t log(t+n)) and size O(s(t+n)2) expecting as input the description
of a constant- and division-free arithmetic circuit C of size s and depth t with n
input nodes and O(t+n) random bits y with the following property. If the poly-
nomial f ∈ Z[X1, . . . , Xn] computed by C vanishes, then Bt,s,n outputs 0 with
probability 1. If f 6= 0, then Bt,s,n outputs 1 with probability ≥ 1

2 .

Now we can prove the second transfer theorem.

Theorem 2.8. We have BP(NCC) ⊆ FRNC.

Proof. Let A be a language in NCC. Then A0 := A∩ {0, 1}∞ also lies in NCC.
Let (Cn)n be uniform family of algebraic circuits of polylogarithmic depth and
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polynomial size deciding A0. As in the proof of Theorem 2.3 we can assume Cn to
be division-free. Also exactly as in that proof works the elimination of constants
from the circuits. Recall that the elimination of algebraic constants requires
computations with polynomials of fixed degree. The elimination of algebraically
independent constants requires computations with descriptions of arithmetic
circuits of polynomial size and polylogarithmic depth t encoding polynomials
in a constant number of indeterminates. Note that also the computation of a
correct test sequence works in polylogarithmic time.

So we can assume Cn to be constant- and division-free. Note that the trans-
formation of (Cn)n into Boolean circuits accoding to Corollary 1.17 yields a cir-
cuit of polylogarithmic depth (which is OK) and superpolynomial size (which
is not OK). The reason for this is that the bitsize of intermediate results may
be superpolynomial. This is the point where randomisation enters the game.

We construct a family of Boolean circuits (Bn)n expecting the input x ∈
{0, 1}n and a polynomial number of random bits y. The circuit Bn describes
the following algorithm. Instead of performing the arithmetic operations of
Cn on binary numbers, the algorithm computes with integers represented by
arithmetic circuits. These circuits have depth t = (log n)O(1) and size nO(1).
Reaching sign node i, such a circuit has to be tested for zero. Now we use
the circuit Bt,s,0 of Proposition 2.7 with O(t) random bits yi. By performing
this circuit 2n times in parallel we obtain a failure probability ≤ ( 1

2 )2n. All in
all, the algorithm does this a polynomial number p(n) of times. The resulting
circuit Bn will have depth O(t2 log t) = (log n)O(1) and size nO(1), the number
of random bits y = (y1, . . . , yp(n)) is O(tp(n)) = nO(1). The failure probability
can be bounded as follows.

P (“failure”) =P (some sign test fails) ≤
∑

i

P (ith sign test fails)

≤p(n)
1

22n
≤ 1

2n

for n� 0. 2

Remark 2.9. An analogue of the second statement of Theorem 2.3 for functions
in FNCC could be proved under the additional quite restrictive conditions, that
the function is computable by algebraic circuits without divisions and maps Q∞

to Z∞.

2.2 Generic and Randomised Reductions

An important concept of complexity theory is that of reductions. Particularly
well-suited to problems in algebraic geometry is the notion of generic parsimo-
nious reductions. Constructions in algebraic geometry often rely on choices,
which are “generic” or “in general position”. This means that one can choose
an object out of a Zariski dense subset of all objects of this kind. A canoni-
cal example is the characterisation of the geometric degree of a variety as the
number of intersecion points with a generic linear subspace of complementary
dimension. Informally a generic parsimonious reduction is a parsimonious re-
duction, in whose computation generic choices are allowed, provided that the
genericity condition can be expressed by first-order formulas of moderate size.
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The technical requirement is that it can be checked in the constant-free polyno-
mial hierarchy PHR over the reals (cf. §1.4.1). One uses the real numbers here
only because the relevant genericity conditions (such as transversality) can be
expressed in the polynomial hierarchy over the reals, whereas it is often not clear
whether this is possible over the complex numbers. The above example induces
a generic parsimonious reduction from the problem of computing the degree to
counting points of a variety. A special nice feature of a generic parsimonious
reduction is the property that it can be turned into a deterministic polynomial
time Turing reduction in the algebraic model (cf. Theorem 2.11 below). This
was essentially proved in [BC06], whereas this concept has been formally defined
later in [BCL05].

We call a relation R ⊆ C∞ × C∞ balanced with associated polynomial p iff
for all u, a ∈ C∞ with R(u, a) we have |a| = p(|u|).

Definition 2.10. Let ϕ,ψ : C∞ −→ N. A generic parsimonious reduction
from ϕ to ψ is a pair (π,R), where π : C∞ × C∞ −→ C∞ is in FP0

C and R
is a balanced relation in PH0

R with associated polynomial p, such that the fol-
lowing holds for all n ∈ N:

(a) ∀u ∈ Cn ∀a ∈ Cp(n)
(
R(u, a)⇒ ϕ(u) = ψ(π(u, a))

)
,

(b) ∀u ∈ Cn {a ∈ Cp(n) |R(u, a)} is Euclidean dense in Cp(n).

We write ϕ �∗ ψ iff there exists a generic parsimonious reduction from ϕ to ψ.

It is a subtle point in this definition that R is allowed to be in PH0
R (where we

identify C with R2), hence the set R ∩ (R2n ×R2p(n)) is semialgebraic. For this
reason we require {a ∈ Cp(n) |R(u, a)} to be Euclidean dense in condition (b),
since this notion is stronger than Zariski denseness. However, it turns out that
for u ∈ C∞ witnesses a with R(u, a) can be computed in polynomial time over C
as the following theorem shows, which has been proved in [BCL05, Theorem 4.4].

Theorem 2.11. Let ϕ,ψ : C∞ −→ N. If ϕ �∗ ψ, then ϕ Turing reduces to ψ.

One can interpret condition (b) probabilistically by saying that for each u ∈
Cn, a randomly chosen a ∈ Cp(n) satisfies R(u, a) with high probability. As pro-
posed in [BCL05, Remark 6.7] we define a similar notion in the discrete setting.
We slightly modify the proposed definition with several respects. First we drop
the reference to the relation R. Second we write the condition on the failure
probability more concretely. These changes result in an equivalent definition.
Finally, we require the reduction to be computable in parallel polylogarithmic
time. This requirement seems not very restrictive since in relevant situations it
is easily verified.

Definition 2.12. Let f, g : {0, 1}∞ → {0, 1}∞. A randomised parsimonious
reduction from f to g is a function π : {0, 1}∞ × {0, 1}∞ −→ {0, 1}∞ in FNC
such that there exists a polynomial p and a constant 0 < q < 1 such that for all
n ∈ N and all x ∈ {0, 1}n

P
(
{y ∈ {0, 1}p(n) | f(x) 6= g(π(x, y))}

)
≤ qn. (2.2)

We write f �R g iff there exists a randomised parsimonious reduction from f
to g.
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Remark 2.13. Let π ∈ FNC satisfy (2.2) for all n ≥ n0 with some n0 ∈ N, and

P
(
{y ∈ {0, 1}p(n) | f(x) 6= g(π(x, y))}

)
< 1

for all x ∈ {0, 1}n with 0 < n < n0. Then π can modified on a finite number of
instances into π̃ ∈ FNC such that (2.2) holds for all n ∈ N.

Proof. By assumption there exists for each x ∈ {0, 1}n with n < n0 a yx ∈
{0, 1}p(n) such that f(x) = g(π(x, yx)). Define π̃ by setting

π̃(x, y) :=
{
π(x, yx) if |x| < n0

π(x, y) else

for x, y ∈ {0, 1}∞. Then for n < n0 the failure probability is zero, hence (2.2)
holds for all n. Furthermore, since π̃ differs from π only on a finite number of
instances, we have π̃ ∈ FNC. 2

In [BCL05, Lemma 4.3] it is shown that the generic parsimonious reduction
is transitive. The same holds for the randomised reduction.

Lemma 2.14. The relation �R is transitive.

Proof. Let f, g, h : {0, 1}∞ → {0, 1}∞ with f �R g via π1 and g �R h
via π2. Let p1, p2 be the corresponding polynomials and 0 < q1, q2 < 1 the
corresponding constants such that (2.2) holds. Set p := p1 + p2 and define
π(x, y1, y2) := π2(π1(x, y1), y2) for x ∈ {0, 1}n, (y1, y2) ∈ {0, 1}p(n), arbitrarily
extended. Then clearly π ∈ FNC. To prove the probability estimate, we write Py

for the probability with randomly chosen y, where its range is clear from the
context. For each x ∈ {0, 1}n we have

Py(f(x) 6= h(π(x, y))) = P(y1,y2)(f(x) 6= h(π2(π1(x, y1), y2)))
≤ Py1(f(x) 6= g(π1(x, y1))) + P(y1,y2)(g(π1(x, y1)) 6= h(π2(π1(x, y1), y2)))

≤ qn
1 +

∑
y1

1
2p1(n)

Py2(g(π1(x, y1)) 6= h(π2(π1(x, y1), y2)))

≤ qn
1 + qn

2

1
2p1(n)

∑
y1∈{0,1}p1(n)

1 ≤ 2q̃n,

where q̃ := max{q1, q2}. One easily checks that with q := eq+1
2 for all n ≥ n0 :=

1
log q−log eq we have 2q̃n ≤ qn, hence (2.2) holds. Remark 2.13 implies f �R h. 2

Recall that in Definition 2.5 we have defined the class FRNC to be the set of
functions f such that there exists g ∈ FNC such that g(x, y) = f(x) with high
probability for randomly chosen y. The class FRNC is the “closure” of FNC with
respect to randomised reductions.

Lemma 2.15. 1. The class FRNC consists of all f : {0, 1}∞ → {0, 1}∞ such
that there exists g : {0, 1}∞ → {0, 1}∞ in FNC with f �R g.

2. The class FRNC is closed under �R.
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Proof. 1. Let f ∈ FRNC and g ∈ FNC the corresponding function according to
Definition 2.5. Define the function π : {0, 1}∞×{0, 1}∞ → {0, 1}∞ by π(x, y) :=
g(x, y) for x ∈ {0, 1}n and y ∈ {0, 1}p(n), extended by 0. By definition π is in
FNC and defines a randomised reduction from ϕ to the identity. On the other
hand, if f �R g via π and g ∈ FNC, then g ◦ π ∈ FNC, hence the function
g̃ := g ◦ π satisfies Definition 2.5.

2. Let f �R g with g ∈ FRNC. By the first part there exists h ∈ FNC with
g �R h. Transitivity implies f �R h, thus f ∈ FRNC by the first part again. 2

Remark 2.16. The proof of the first part of this Lemma shows in fact, that
FRNC is the class of all functions that are randomised reducible to the identity.

The following transfer principle is our main result of this section. Recall
that for a function f : C∞ → C∞ with f(Q∞) ⊆ Q∞ the function fQ is defined
to be γ ◦ f ◦ δ, where γ describes rational numbers as reduced fractions encoded
in binary, and δ maps tuples of binary numbers to the fractions they define
(cf. beginning of §2.1). We use the following convention. We say that fQ is
computable in FNC iff there exists a function g ∈ FNC such that f ◦ δ = δ ◦ g,
i.e., fQ(x) and g(x) represent the same tuples of rational numbers for all x.
This means that g computes fQ modulo cancellation. This convention is useful
since idQ

C∞ = γ ◦ δ, which describes reduction of fractions, is not known to be in
FNC.

Theorem 2.17. Let ϕ,ψ : C∞ → N with ϕ �∗ ψ via (π,R), where πQ is
computable in FNC. Then ϕQ �R ψQ.

Remark 2.18. Note that since in Definition 2.10 we have required π to be com-
putable by a constant-free machine, πQ is well-defined.

Proof. Let (π,R) be the generic parsimonious reduction from ϕ to ψ, and p
the polynomial associated to R. Since R ∈ PH0

R, we have for all n ∈ N and all
(u, a) ∈ Cn × Cp(n)

R(u, a) ⇔ Q1z1 ∈ Rp1(n) · · ·Qmzm ∈ Rpm(n)Fn(u, a, z1, . . . , zm), (2.3)

where Q1, . . . , Qm is an alternating sequence of quantifiers ∃ and ∀, p1, . . . , pm

are polynomials, and Fn(u, a, z1, . . . , zm) is a conjunction of polynomially many
equations of constant degree with integer coefficients of constant size. Here we
used the well-known fact that a language in P0

R can be described by an existential
formula of the above type (cf. [BCSS98]). By quantifier elimination there exists
a quantifier free formula Φn(u, a) in disjunctive normal form

∨I
i=1

∧Ji

j=1 hij∆ij0,
where ∆ij ∈ {≤, <,=, 6=}, which is equivalent to (2.3). Note that the hij are
integer polynomials in the real and imaginary parts of u and a. The bounds on
efficient quantifier elimination stated in [BC06, Theorem 4.1] imply that one can
find such a formula Φn(u, a) having M =

∑
i Ji atomic predicates with integer

polynomials of degree D and bitsize L, where M , D, and L are all bounded
by 2nO(1)

.
Now for u ∈ Cn let Wu := {a ∈ Cp(n) |R(u, a)} = {a ∈ Cp(n) |Φn(u, a)} the

set of witnesses for u. By definition Wu is Euclidean dense in Cp(n). We claim

Uu := {a ∈ Cp(n) |
∧
i,j

hij(u, a) 6= 0} ⊆Wu.
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Otherwise there exists a ∈ Uu \Wu. Since a /∈Wu, we have∧
i

∨
j

¬hij(u, a)∆ij0.

For each i let hi be the polynomial and ∆i the relation such that ¬hi(u, a)∆i0
holds. Since a ∈ Uu, we have hi(u, a) 6= 0. Thus ∆i cannot be 6=. If ∆i is <,
then it can be replaced by ≤. Hence we have hi(u, a)∆′

i0 with ∆′
i ∈ {>, 6=}.

This inequality holds also in some neighbourhood Ui of a. The intersection U of
all Ui is a neighbourhood U of a contained in Cp(n)\Wu. This is a contradiction,
since Wu is dense.

Setting fu :=
∏

ij hij(u, ·) we can write Uu = {fu 6= 0}. By the above

bounds we have deg fu ≤ MD ≤ 2nO(1)
. Now let En := {1, . . . , cn} with some

integer cn ∈ N and sample a witness y ∈ E2p(n)
n uniformly at random. Then

Uu ∩ E2p(n)
n is a set of “good” witnesses. The Schwartz-Zippel Lemma [GG03,

Lemma 6.44] implies

P
(
{a ∈ E2p(n)

n | fu(a) = 0}
)
≤ deg fu

cn
. (2.4)

Hence for cn ≥ 2n deg fu, which is of order 2nO(1)
, the failure probability (2.4)

is bounded by 2−n.
It remains to define the reduction map and to bound the error probability.

Choose cn to be a power of 2, and encode the elements of E2p(n)
n in binary

as bitstrings of length r(n) := 2p(n)(log cn + 1) = nO(1). It is easy to see
that the bijective “recoding function” ζn : {0, 1}r(n) → γ(E2p(n)

n ) is in FNC.
Furthermore, δ ◦ ζn is a bijection from {0, 1}r(n) onto E2p(n)

n .
By assumption there exists a function ρ in FNC with π ◦ (δ× δ) = δ ◦ρ. Now

we define π̃ : {0, 1}∞×{0, 1}∞ → {0, 1}∞. For x, y ∈ {0, 1}∞ denote n := |δ(x)|
and set π̃(x, y) := ρ(x, ζn(y1, . . . , yr(n))) if δ(x) 6= 0 and |y| ≥ r(n). Otherwise,
define π̃(x, y) := 0 . Then it is easy to see that π̃ ∈ FNC.

Note that for a bitstring x the size of a possible witness is r(|δ(x)|) which
varies with x. Thus we will sample a number of q(m) := max|x|=m r(|δ(x)|)
random bits. For x ∈ {0, 1}m with δ(x) 6= 01 denote u := δ(x) and n := |u|.
Since π ◦ (δ × δ) = δ ◦ ρ and γ is injective, we have

ϕQ(x) 6= ψQ(π̃(x, y)) ⇔ ϕ(u) 6= ψ ◦ π(u, δ ◦ ζn(y1, . . . , yr(n)))

for all y ∈ {0, 1}q(m). This condition does not depend on the last q(m)−r(n) ≥ 0
bits of y, thus we have

P
(
{y ∈ {0, 1}q(m) |ϕQ(x) 6= ψQ(π̃(x, y))}

)
= P

(
{y ∈ {0, 1}r(n) |ϕ(u) 6= ψ ◦ π(u, δ ◦ ζn(y))}

)
= P

(
{a ∈ E2p(n)

n |ϕ(u) 6= ψ(π(u, a))}
)

≤ P
(
{a ∈ E2p(n)

n | ¬R(u, a)}
)

≤ P
(
{a ∈ E2p(n)

n | fu(a) = 0}
)

≤ 2−n

1To handle the case δ(x) = 0 we assume w.l.o.g. that ϕ(0) = ψ(0).
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by (2.4). This shows that π̃ establishes a randomised parsimonious reduction
from ϕQ to ψQ. 2



Chapter 3

Counting Connected
Components

Our aim in this chapter is to prove that one can compute the number of con-
nected components of a complex algebraic variety in parallel polynomial time.
According to Corollary 1.2 it is irrelevant for this problem whether we use the
Euclidean or Zariski topology. We thus work over an arbitrary field k of char-
acteristic zero, and use the coordinate field K := k.

#CCk (Counting connected components) Given polynomials f1, . . . , fr ∈
k[X], compute the number of connected components of Z(f1, . . . , fr) ⊆ An.

Note that in the notation of §2.1 the problem #CCQ coincides with #CCQ
C .

Recall also (as mentioned in §1.5.3) that the problems #CCk for the different
data structures dense, sparse, and slp encoding are polynomial time equivalent.
Our main theorem is

Theorem 3.1. We have

1. #CCk ∈ FPARk for each field k of characteristic zero,

2. #CCQ ∈ FPSPACE.

According to Remark 1.7 the number of connected components of a variety
is single exponentially bounded in the dense input size. Hence the bitsize of the
output of #CCQ is polynomially bounded. Thus the second part of the theorem
follows from the first with Theorem 2.3. As we have noted in the introduction,
the second part has already been obtained by real methods [Can88].

Before we prove Theorem 3.1, we complement it by lower bounds for the
problem. In the bit model we will show in Chapter 6 that #CCQ is FPSPACE-
hard, hence we have matching upper and lower bounds.

For the algebraic model there is still a gap between the upper and the lower
bound we will prove now.

Proposition 3.2. The problem #CCC is #PC-hard with respect to Turing re-
ductions.

55
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Proof. We reduce the #PC-complete problem #HNC to #CCC. It is clear
that if V ⊆ An is a zerodimensional algebraic variety, then the cardinality of V
equals the number of its connected components, thus can be obtained by an
oracle call to #CCC. It remains to decide whether V has dimension zero. It is
shown in [Koi97b] that deciding whether V has dimension at least m is Turing
reducible to HNC, which can be decided by one oracle call to #CCC. Hence
deciding whether V is zerodimensional can be Turing reduced to #CCC. 2

3.1 The Zeroth de Rham Cohomology

It is known from topology that the connected components of a topological space
can be characterised by locally constant continuous functions. We follow this
idea and show that in the algebraic setting these functions can be realised by
polynomials of moderate degree.

3.1.1 Definition and Main Theorem

Let V ⊆ An be an algebraic variety. We define the zeroth algebraic de Rham
cohomology of V as the zeroth cohomology of the de Rham complex Ω•K[V ]/K

(cf. §1.2.1), where K[V ] = K[X]/I(V ) denotes the coordinate ring of V .

H0(V ) := {f ∈ K[V ] |df = 0}.

According to Lemma 1.12 this is the K-vector space of locally constant regular
functions on V . Our algorithm relies on the following property of H0(V ).

Theorem 3.3. Each affine variety V ⊆ An has dimH0(V ) connected compo-
nents. If n ≥ 2 and V is the zero set of polynomials of degree at most d ≥ 2,
then H0(V ) has a basis given by polynomials of degree bounded by dn2+n.

The following section is devoted to the proof of this theorem.

3.1.2 Connected Components by Idempotents

Let us recall some notations and facts about idempotents. Let S be a com-
mutative ring. An element e ∈ S is called an idempotent iff e2 = e. It is a
nontrivial idempotent iff in addition e /∈ {0, 1}. Two idempotents e, f ∈ S are
said to be orthogonal iff ef = 0. A set of nontrivial idempotents e1, . . . , es ∈ S
is called complete iff e1 + · · ·+ es = 1. The ring S has a complete set of pairwise
orthogonal idempotents e1, . . . , es if and only if S is isomorphic to the direct
product of the rings Si = Sei, 1 ≤ i ≤ s [Eis95, §0.1]. In this case ei serves
as a unit for Si. A complete set of orthogonal idempotents e1, . . . , es is called
maximal iff none of the ei can be written as a sum of two nontrivial orthogonal
idempotents.

Lemma 3.4. Let S be a commutative ring. Then a maximal complete set of
orthogonal idempotents e1, . . . , es ∈ S is unique (up to permutation).

Proof. The basic observation is the following. Let e1, . . . , es ∈ S be a maximal
complete set of orthogonal idempotents, and a, b ∈ S some other complete set of
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orthogonal idempotents. We have the decompositions a =
∑

i ai and b =
∑

i bi
with ai := aei and bi := bei. Then one easily checks that ai, bi are orthogonal
idempotents with ai + bi = ei. By maximality we have ai = 0 and bi = ei or
vice versa. It follows that a and b are sums of complementary sets of ei’s.

Now let f1, . . . , ft ∈ S be another maximal complete set of orthogonal idem-
potents. It follows from the above observation with a := fi and b :=

∑
j 6=i fj

that fi is the sum of some ej ’s. By maximality fi equals some ej . Similarly,
each ej equals some fi. Since the fi are pairwise distinct, it follows that f1, . . . , ft

is a permutation of e1, . . . , es. 2

The dimension statement of Theorem 3.3 can be proved using the following
proposition.

Proposition 3.5. Let V = V1∪· · ·∪Vs be the decomposition of V into connected
components. Then

K[V ] '
s∏

i=1

K[Vi].

Proof. Let Ii := I(Vi) be the vanishing ideal of Vi in S := K[V ]. Then Ii 6= S
for all i (since Vi 6= ∅), and I1 ∩ · · · ∩ Is = (0) (since V =

⋃
i Vi). Furthermore,

since Vi ∩ Vj = ∅, from Hilbert’s Nullstellensatz we obtain nontrivial ϕij ∈ Ii
and ψij ∈ Ij for all 1 ≤ i < j ≤ s with

ϕij + ψij = 1. (3.1)

Now define
ei :=

∏
j<i

ϕji ·
∏
j>i

ψij ∈ I1 ∩ · · · ∩ Îi ∩ · · · ∩ Is. (3.2)

Then for all i 6= j we have eiej ∈ I1 ∩ · · · ∩ Is = (0). Furthermore, from (3.1) it
follows ϕji ≡ 1 (mod Ii) for j < i, and ψij ≡ 1 (mod Ii) for j > i. Thus

ei ≡
{

1 (mod Ii)
0 (mod Ij)

(3.3)

for all i 6= j. We conclude e2i ≡ ei (mod Ij) for all i, j, hence e2i = ei. Fi-
nally,

∑
i ei ≡ ej ≡ 1 (mod Ij), thus

∑
i ei = 1, and the e1, . . . , es constitute a

complete set of nontrivial orthogonal idempotents.
Now we show that this set is maximal. So assume e1 = f1 + f2, say,

where f1, f2 are nontrivial orthogonal idempotents. We show that then V1 must
be disconnected. Since e1 = e21 = f1e1 + f2e1, by replacing fi by fie1 we can
assume f1, f2 ∈ Ij for all j > 1. We set Wi := ZV (Ji) with Ji := (1 − fi)
for i = 1, 2. Then we have Wi ⊆ V1, since by assumption 1 − fi(x) = 1
for all x ∈ Vj with j > 1. We show V1 = W1 ∪ W2. For x ∈ V1 we have
1 = e1(x) = f1(x) + f2(x), hence fi(x) 6= 0 for some i. Since fi(x)2 = fi(x),
it follows fi(x) = 1. Furthermore Wi 6= ∅, since otherwise by Hilbert’s Null-
stellensatz there exists f ∈ S with (1 − fi)f = 1, thus fi = fi(1 − fi)f = 0, a
contradiction. Finally we have

f2(1− f1) +

f1 +
∑
j>1

ej

 (1− f2) = f2 + f1 +
∑
j>1

ej = 1,



58 CHAPTER 3. COUNTING CONNECTED COMPONENTS

hence J1 + J2 = S, which shows W1 ∩W2 = ∅.
Since now we have shown that e1, . . . , es is a complete set of orthogonal

idempotents, it follows that K[Vi] ' K[V ]ei, and via these isomorphisms the
map

K[V ]→
s∏

i=1

K[Vi], f 7→ (f + I(V1), . . . , f + I(Vs))

agrees with the map f 7→ (fe1, . . . , fes) and is an isomorphism. 2

Remark 3.6. As described in the introduction, this proposition follows easily
from the Chinese Remainder Theorem [Lan84, Theorem 2.1] using Hilbert’s
Nullstellensatz. To connect the statement with the de Rham cohomology, we
have used the above characterisation of direct products by idempotents, which
we have constructed explicitly to establish the degree bounds of Theorem 3.3.

The following lemma connects idempotents with the zeroth de Rham coho-
mology.

Lemma 3.7. Each maximal complete set of orthogonal idempotents e1, . . . , es

of K[V ] is a basis of H0(V ).

Proof. In greatest generality, idempotents have vanishing differential: For an
idempotent e in a commutative ring S we have

e2 = e
d⇒ 2ede

(∗)
= de ·e⇒ 2ede = ede −ede⇒ ede = 0

(∗)⇒ de = 0.

Hence ei ∈ H0(V ). Furthermore, the ei are linearly independent: Let
∑

i λiei =
0 with some λi ∈ K. Then

0 = ej

∑
i

λiei = λjej ,

which shows λj = 0 for all j. Finally, the ei generate H0(V ), since every locally
constant function f can be written as f =

∑
i λiei with λi = f(x) for all x ∈ Vi.

Thus e1, . . . , es is a basis of H0(V ). 2

Proof of Theorem 3.3. We use the notations from the proof of Proposition 3.5.
By Lemma 3.7 the set of idempotents defined in (3.2) is a basis of H0(V ), thus
dimH0(V ) is the number of connected components of V .

Now we prove the claimed degree bounds. According to Corollary 1.9 each Vi

can be defined by equations fiν of degree ≤ deg Vi ≤ deg V ≤ dn (Lemma 1.6).
Since Vi ∩ Vj = ∅ for i < j, we obtain from the effective Nullstellensatz (Theo-
rem 1.10) polynomials giν and gjν of degree ≤ dn2

with

1 =
∑

ν

giνfiν +
∑

ν

gjνfjν ,

thus the functions represented by ϕij :=
∑

ν giνfiν and ψij :=
∑

ν gjνfjν sat-
isfy (3.1). Since the number of connected components of V is bounded by dn

(cf. Remark 1.7), it follows from (3.2) that ei is represented by a polynomial of
degree bounded by sdn2 ≤ dn2+n. 2

Example 3.8. Let V = V1 ∪ V2 ⊆ A3, where V1 = Z(Y − X2, Z − X3) is
the twisted cubic and V2 = Z(X − Y − 1, Y − Z) is a disjoint line. Then
e1 := 1+2Y −Z−2X2+XZ+X3−X2Y and e2 := 1−e1 are the corresponding
idempotents, as one checks best in a parametrisation.
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3.1.3 Algorithmic Idea

Theorem 3.3 reduces our problem of counting the connected components of
the variety V to computing the dimension of H0(V ). Furthermore, it yields
a basis of this space of moderate degree. In particular, let D = dO(n2) be
sufficiently large, and denote with K[X]≤D the space of polynomials of degree
bounded by D. Consider the map π : K[X]≤D ↪→ K[X] � K[V ], and let
Z := π−1(H0(V )). Then π|Z : Z → H0(V ) is surjective by Theorem 3.3, and
its kernel is I(V ) ∩ Z, hence

H0(V ) ' Z/(I(V ) ∩ Z). (3.4)

Our goal is now to express the conditions f ∈ I(V ) and f ∈ Z by linear
equations in the coefficients of f . This way, we will be able to compute dimZ
and dim(I(V )∩Z) and hence dimH0(V ) in parallel polynomial time. We begin
with the first condition.

3.2 Modified Pseudo Remainders

In this section we want to characterise the radical of an ideal by a linear system of
equations. The idea is to use squarefree regular chains, based on the observation
that equation (1.9) defining pseudo division is linear if one knows the exponent α
in advance. As remarked in §1.6.1, instead of the choice of a minimal α one can
also take a fixed value for α to make the results unique. We will find values small
enough for efficient computations and large enough to work for all polynomials
of a given degree. Using these values we define a modified version of pseudo
division.

3.2.1 Definition and Basis Properties

We establish degree bounds for usual pseudo quotients and remainders first.

Lemma 3.9. Let X` := class (g), d := degX`
f , and e := degX`

g with d ≥ e.
Denote q := pquo (f, g) and r := prem (f, g). For j 6= ` we have

degXj
q ≤ (α+ d− e) degXj

g + degXj
f

and
degXj

r ≤ (α+ d− e+ 1) degXj
g + degXj

f.

Proof. Assume that one knows the minimal exponent α in advance. Then
the division procedure can be done as follows. Denote c := lc (g). Initially set
h0 := cαf , and then iteratively hi+1 := hi − qiXd−e−i

` g, where qi := lc (hi)/c.
Repeat this until i = d−e. Finally set q := q0X

d−e
` +· · ·+qd−e and r := hd−e+1.

Then cα = qg + r. The lemma follows from the claim

degXj
hi ≤ (α+ i) degXj

g + degXj
f for 0 ≤ i ≤ d− e+ 1, j 6= `,

which is obvious for i = 0. So assuming it for some i ≤ d− e, we conclude

degXj
hi+1 ≤max{degXj

hi,degXj
qi + degXj

g} ≤ degXj
hi + degXj

g

≤(α+ i+ 1) degXj
g + degXj

f for j 6= `,

which proves the claim. 2
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Now we want to derive bounds on the exponents and degrees of pseudo
remainder sequences. So let G = {g1, . . . , gt} ⊆ k[X] be a triangular set, and
denote δ := max{deg gi | 1 ≤ i ≤ t}. In the following we will abbreviate degi :=
degclass (gi).

Lemma 3.10. Let f be a polynomial of degree d ≥ 1, and consider its pseudo
remainder sequence ft, . . . , f0, so that there exist polynomials q1, . . . , qt and in-
tegers α1, . . . , αt ∈ N with lc (gi)αifi = qigi + fi−1 for all 1 ≤ i ≤ t. Then the
following bounds hold for all 1 ≤ i ≤ t.

αi ≤ degi fi, (3.5)
degXj

fi ≤ d(2δ + 1)t−i for 1 ≤ j ≤ n. (3.6)

degXj
qi ≤ d(2δ + 1)t−i+1 for 1 ≤ j ≤ n. (3.7)

Proof. By definition of pseudo division the αi satisfy αi ≤ degi fi−degi gi+1 ≤
degi fi, hence (3.5). The bound (3.7) follows easily from (3.5) and (3.6). We
prove (3.6) by descending induction on i. The claim is obvious for i = t. Now
let (3.6) be valid for some i ≤ t. Then for Xj 6= class (gi), Lemma 3.9 implies

degXj
fi−1 ≤ (αi + degi fi − degi gi + 1) degXj

gi + degXj
fi

(3.5)

≤ 2δ degi fi + degXj
fi

(∗)
≤ 2δd(2δ + 1)t−i + d(2δ + 1)t−i

= d(2δ + 1)t−i+1.

In step (∗) we have used the induction hypothesis. In the case Xj = class (gi)
we clearly have degXj

fi−1 < δ ≤ d(2δ + 1)t−i+1. 2

In view of Lemma 3.10 we introduce a modified version of pseudo division.
Definition 3.11.

1. Let f, g ∈ k[X] and α ∈ N large enough such that there exist polynomi-
als q, r with lc (g)αf = qg + r. We denote the modified pseudo quotient
and remainder by pquoα(f, g) := q respectively premα(f, g) := r.

2. Let G = {g1, . . . , gt} be a triangular set. Let d ≥ 1 be some integer and
δ := max{deg gi | 1 ≤ i ≤ t}. Set αi := d(2δ + 1)t−i for 1 ≤ i ≤ t. For any
polynomial f ∈ k[X] of degree d its modified pseudo remainder sequence
ft, . . . , f0 is defined by

ft := f, fi−1 := premαi
(fi, gi) for 1 ≤ i ≤ t.

We define the modified pseudo remainder of f by G to be

premd(f,G) := f0.

Lemma 3.12. Let d := nd(2δ + 1)t. The map

k[X]≤d −→ k[X]≤d, f 7→ premd(f,G)

is well-defined and k-linear.
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Proof. The bounds (3.6) show that the map is well-defined. We conclude
by adding/scalar-multiplying the defining equations that f 7→ premαi

(f, gi) is
k-linear. Since premd(f,G) is the composition of modified pseudo remainders
premαi(f, gi), the claim follows. 2

This linear map is efficiently computable.

Lemma 3.13. One can compute the matrix of the linear map of Lemma 3.12
with respect to the monomial bases in parallel time (n log dδ)O(1) and sequential
time (dδ)nO(1)

.

Proof. We show that given f ∈ k[X]≤d one can compute premd(f,G) within
claimed resources. Having already computed f = ft, . . . , fi, one has to compute
fi−1 = premαi(fi, gi), i.e., we have to solve the linear system of equations

lc (gi)αifi = qigi + fi−1

in the coefficients of qi and fi−1. By the bounds (3.6) and (3.5) this system has
size (dδ)nO(1)

. Hence the lemma follows with the algorithms from §1.5.1. 2

3.2.2 Describing Radicals by Linear Algebra

Now we prove that we can use the modified pseudo division to calculate the
saturated ideals of squarefree regular chains.

Proposition 3.14. Let G = {g1, . . . , gt} be a squarefree regular chain with
saturated ideal I. Then for any d ∈ N we have

I ∩ k[X]≤d = {f ∈ k[X]≤d |premd(f,G) = 0}.

Proof. “⊆”. Let f ∈ k[X]≤d with prem (f,G) = 0. Let ft = f, . . . , f0 = 0
be the corresponding pseudo remainder sequence with the minimal exponents
α′t, . . . , α

′
1, so that there exist polynomials qt, . . . , q1 with

lc (gi)α′ifi = qigi + fi−1 for 1 ≤ i ≤ t. (3.8)

Set αi := d(2δ + 1)t−i as in Definition 3.11 and multiply equation (3.8) with∏
j≥i lc (gj)αj−α′j to obtain lc (gi)αi f̃i = q̃igi + f̃i−1, where

f̃i =
∏
j>i

lc (gj)αj−α′jfi for 0 ≤ i ≤ t.

Then f̃t = f, . . . , f̃0 constitutes the modified pseudo remainder sequence of f ,
in particular prem d(f,G) = f̃0 = 0.

“⊇”. On the other hand, let f ∈ k[X]≤d with prem d(f,G) = 0. Let
f̃t = f, . . . , f̃0 = 0 be the modified pseudo remainder sequence of f with αi as
in Definition 3.11, so that there exist q̃i such that lc (gi)αi f̃i = q̃igi + f̃i−1 for
1 ≤ i ≤ t. Now let βi ∈ N be the maximal exponent such that lc (gi)βi divides
both q̃i and f̃i−1. Then α′i := αi − βi is minimal with

lc (gi)α′i f̃i = qigi + fi−1 for 1 ≤ i ≤ t, (3.9)
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where fi−1 = f̃i−1/lc (gi)βi and qi = q̃i/lc (gi)βi . Hence fi−1 = prem (f̃i, gi).
Writing Gi := {g1, . . . , gi} we show by induction on i that

prem (fi, Gi) = 0 for 1 ≤ i < t, (3.10)

since for i = t−1 this implies with (3.9) f = f̃t ∈ Red (G) = I. Equation (3.10)
is obvious for i = 1. Assuming it for some i− 1 < t− 1, we conclude from (3.9)
that f̃i ∈ Red (Gi). Now let P be any associated prime of the radical Red (Gi).
Then f̃i = filc (gi+1)βi+1 ∈ P . By the Definition 1.31 of regular chains it follows
fi ∈ P . Since this holds for all P ∈ Ass (Red (Gi)), we have fi ∈ Red (Gi). 2

Remark 3.15. The significance of Proposition 3.14 for us is that given the square-
free regular chain G, the property prem d(f,G) = 0 can be described by a linear
system of equations in the coefficients of f . This system has size (dδ)nO(1)

, and
can be constructed in parallel polynomial time by Lemma 3.13.

3.3 Computing Differentials

In order to compute the dimension of the zeroth de Rham cohomology via the
isomorphism (3.4), it remains to describe the space Z by a linear system.

The idea is to use squarefree regular chains (cf. §1.6) in the following way.
Assume for simplicity that I = I(V ) is the saturated ideal of one squarefree
regular chain G = {g1, . . . , gt}. In general G does not generate the whole ideal I,
but it generates it almost everywhere in the following sense. Let Γ :=

∏t
i=1 lc (gi)

be the product of the leading coefficients of the gi. Then equation (1.10) shows
that G generates I in the localisation k[X]Γ. Furthermore we clearly have

Z(G) \ Z(Γ) ⊆ V ⊆ Z(G),

where the set on the left hand side is dense in V , since Γ is no zerodivisor
on k[V ]. If f is locally constant on a dense subset of V , it is clearly locally
constant on V by continuity. Hence we have to check whether the differential
of f vanishes on Z(G) \ Z(Γ). We will shrink this subset a little further by
considering some multiple h of Γ such that Z(G) \ Z(h) is still dense in V .

In other (more algebraic) words, we work in k[V ]h. For a polynomial f ∈
k[X] we denote by f := f + I(V ) its residue class in k[V ]. Then we have to
check df = 0 in Ωk[V ]h/k. We will give an explicit formula for df in Ωk[V ]h/k in
terms of the partial derivatives of f and of g1, . . . , gt.

To simplify notation we reorder and rename the variables in a way such that
X1, . . . , Xm are the free variables, i.e., those which are not the class of some gi,
and the Y1, . . . , Yt are the dependent variables with Yi = class (gi) for 1 ≤ i ≤ t.
Thus we are working in k[X,Y ] := k[X1, . . . , Xm, Y1, . . . , Yt] with m + t = n.
Furthermore we set g := (g1, . . . , gt)T and consider the Jacobian matrix

Dg :=
(
∂g

∂X
,
∂g

∂Y

)
:=


∂g1
∂X1

· · · ∂g1
∂Xm

∂g1
∂Y1

· · · ∂g1
∂Yt

...
...

...
...

∂gt

∂X1
· · · ∂gt

∂Xm

∂gt

∂Y1
· · · ∂gt

∂Yt

 .

Note that since G is a triangular set, the matrix ∂g
∂Y is lower triangular. In

the promised formula we have to invert this matrix, so that its determinant
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∆ := det( ∂g
∂Y ) =

∏t
i=1

∂gi

∂Yi
yields the multiple h := Γ∆. We first prove that h

does not cut away any component of V . Recall that this statement means
that h is a non-zerodivisor on k[V ] = k[X]/Sat (G). Since Γ is no zerodivisor by
Definition (1.11), it remains to show that neither is ∆. The second statement
of the following lemma will be relevant later.

Lemma 3.16. The determinant ∆ is a not a zerodivisor on k[V ], hence V \
Z(∆) is dense in V . Furthermore, V is smooth at each point in V \ Z(∆).

Proof. We do induction on n. For n = 1 we have either G = ∅, where there
is nothing to prove, or G = {g} with some squarefree g. Then V is the set of
zeros of g. But g and g′ have no common zeros.

So assume the lemma holds for some n − 1 ≥ 1. In the case t = 0 there
is nothing to prove, so let t > 0. Set R := k[X1, . . . , Xm, Y1, . . . , Yt−1], and
let J be the saturated ideal of Gt−1 in R, where Gt−1 = {g1, . . . , gt−1} ⊆ R.
We adopt the notation introduced preceding Definition 1.31. Let Ass (J) =
{P1, . . . , Ps}. Since by Proposition 1.33 J is radical, we have J = P1 ∩ · · · ∩
Ps. Let πi : R[Yt] −→ K(Pi)[Yt] be the mapping f 7→ fPi . Recall that K(P )
denotes the quotient field of R/P , and fP the residue class f (mod P ) mapped
into K(P ). Furthermore, let gPi

t =
∏`i

j=1 qij be an irreducible factorisation
of gPi

t (recall that gPi
t is squarefree by assumption). Then Qij := π−1

i ((qij))
is as a preimage of a prime ideal clearly a prime ideal. It is shown in [Kal98]
(cf. [Szá99]) that

I =
⋂
ij

Qij . (3.11)

We prove (3.11) for completeness.

“⊆” Let f ∈ I and perform pseudo division to obtain α ∈ N and q, r ∈ k[X]
with lc (gt)αf = qgt + r. By assumption (use Theorem 1.32) r ∈ J . Since
for all i we have J ⊆ Pi, it follows πi(lc (gt))απi(f) = πi(q)πi(gt) ∈ (qij)
for all i, j. By definition of regular chains lc (gt) /∈ Pi, hence πi(f) ∈ (qij)
for all i, j.

“⊇” Let f ∈
⋂

i,j Qij , i.e., fPi ∈
⋂

j(qij) = (gPi
t ) for all i. Write again

lc (gt)αf = qgt + r with α ∈ N and q, r ∈ k[X]. Applying πi yields rPi ∈
(gPi

t ) for all i. Since by definition of pseudo division degYt
r < degYt

gt, it
follows rPi = 0, hence r ∈ Pi. As this holds for all i, we conclude r ∈ J ,
thus f ∈ Red (G) = Sat (G) = I.

By induction hypotheses we know that ∆t−1 :=
∏t−1

i=1
∂gi

∂Yi
is no zerodivisor

on R/J , hence it lies in no associated prime Pi of J . Thus, ∆Pi
t−1 is a non-zero

element of K(Pi). Since gPi
t =

∏
j qij is an irreducible decomposition, no qij is

constant. It follows ∆Pi
t−1 /∈ (qij), hence ∆t−1 /∈ Qij = π−1

i ((qij)).
Furthermore, since by definition of squarefree regular chains gPi

t is squarefree,
none of its factors qij divides d

dYt
gPi

t , hence d
dYt

gPi
t = ( ∂gt

∂Yt
)Pi /∈ (qij), thus

∂gt

∂Yt
/∈ Qij . Since by (3.11) all associated primes of I are among the Qij ,

it follows that ∆ = ∆t−1
∂gt

∂Yt
is in no associated prime of I, hence it is no

zerodivisor in k[V ] = R[Yt]/I.
Finally, the Jacobi criterion Proposition 1.3 immediatelies implies that each

point in V \ Z(∆) is smooth. 2
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Now we prove the desired formula.

Proposition 3.17. Let ∆ := det( ∂g
∂Y ) and h := Γ∆. Then

Ωk[V ]h/k =
m⊕

i=1

k[V ]hdXi

is a free k[V ]h-module, and for each f ∈ k[X] we have

df =
m∑

i=1

(
∂f

∂Xi
− ∂f

∂Y

(
∂g

∂Y

)−1
∂g

∂Xi

)
dXi. (3.12)

Note that we abuse notation in that the coefficients of the dXi in for-
mula (3.12) are to be mapped into k[V ]h. We use the usual convention on
Jacobi matrices, hence ∂f

∂Y is row and ∂g
∂Xi

a column vector.

Proof. The direct sum decomposition can be proved literally as Formula (1.3)
of the proof of Lemma 1.11, where Ox is replaced by k[V ]h and the genera-
tors f1, . . . , fr of the ideal I by g1, . . . , gt, which generate Ih. Note that the
submatrix A := ( ∂g

∂Y )T is invertible in k[V ]t×t
h .

To compute the differential, note that in Ωk[V ]h/k the relation

0 =
m∑

j=1

∂gi

∂Xj
dXj +

t∑
j=1

∂gi

∂Yj
dY j

holds for all 1 ≤ i ≤ t, hence symbolically
∂g1
∂Y1

· · · ∂g1
∂Yt

...
...

∂gt

∂Y1
· · · ∂gt

∂Yt


 dY 1

...
dY t

 = −


∂g1
∂X1

· · · ∂g1
∂Xm

...
...

∂gt

∂X1
· · · ∂gt

∂Xm


 dX1

...
dXm

 ,

thus  dY 1

...
dY t

 = −
(
∂g

∂Y

)−1(
∂g

∂X

) dX1

...
dXm

 .

Now set B := (bij) :=
(

∂g
∂Y

)−1

. Then for f ∈ k[X] it follows

df =
m∑

i=1

∂f

∂Xi
dXi +

t∑
i=1

∂f

∂Yi
dY i

=
m∑

i=1

∂f

∂Xi
dXi −

t∑
i=1

m∑
j=1

t∑
`=1

∂f

∂Yi
bi`

∂g`

∂Xj
dXj

=
m∑

i=1

 ∂f

∂Xi
−

t∑
j=1

∂f

∂Yj

t∑
`=1

bj`
∂g`

∂Xi

dXi

=
m∑

i=1

(
∂f

∂Xi
− ∂f

∂Y
B
∂g

∂Xi

)
dXi,

which proves (3.12). 2
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3.4 Proof of Theorem 3.1

Let V = Z(f1, . . . , fr) ⊆ An with polynomials fi ∈ k[X] of degree bounded
by d ≥ 2, let n > 1, and set I := I(V ). By Theorem 1.34 we can compute
squarefree regular chains G1, . . . , Gs in k[X] with saturated ideals I1, . . . , Is
such that I = I1 ∩ · · · ∩ Is. Now let δ be an upper bound on the degree of the
polynomials in all Gi.

By Proposition 3.14 we have for each D ∈ N

I ∩K[X]≤D = {f ∈ K[X]≤D|
s∧

i=1

prem D(f,Gi) = 0}, (3.13)

and by Lemma 3.12 this is the solution space of some linear system of equations
of size s(Dδ)nO(1)

, which can be constructed in parallel time (n logDδ)O(1) and
sequential time s(Dδ)nO(1)

by Lemma 3.13.
Now let D = dO(n2) be the degree bound from Theorem 3.3. According

to (3.4), the number of connected components of V is given by

dimH0(V ) = dimZ − dim(I ∩ Z), (3.14)

where Z = π−1(H0(V )) with π : K[X]≤D → K[V ], f 7→ f .
To compute the dimension of Z we consider the case s = 1 first. We use

Proposition 3.17, whose notation we adopt. Note that the coefficients of the dXi

in (3.12) are rational functions, since the matrix
(

∂g
∂Y

)−1

contains rational func-
tions. But the only denominator in that matrix is its determinant ∆, which is
a non-zerodivisor on K[V ] according to Lemma 3.16. Hence we can multi-
ply equation (3.12) with ∆ to obtain polynomial functions. Then we have for
all f ∈ K[X]≤D

df = 0 ⇐⇒
m∧

i=1

∆
∂f

∂Xi
− ∂f

∂Y
∆
(
∂g

∂Y

)−1
∂g

∂Xi
∈ I.

The degree of the polynomials in this expression is of order (Dδ)nO(1)
, hence it

can be expressed as a linear system of equations with the same asymptotic size

bound. Moreover, the matrix ∆
(

∂g
∂Y

)−1

can be computed using Formula (1.6)

of §1.5.1 and Berkowitz’ algorithm [Ber84] in parallel time (n log δ)O(1) and
sequential time δnO(1)

.
Now, for general s, we have V = V1 ∪ · · · ∪ Vs with Vi := Z(Ii). As we have

seen, we can express the condition that f is locally constant on Vi by a linear
system of equations. And f is locally constant on V iff if it is locally constant
on each Vi, so that we can combine the equations for all Vi to obtain equations
for Z.

Finally we have expressed Z as the solution space of a linear system over k of
size s(Dδ)nO(1)

. Using the bounds for δ and s of Theorem 1.34 and D = dO(n2)

one sees that it has size dnO(1)
. The combination of the systems for Z and (3.13)

is a linear system of size dnO(1)
for I∩Z. By the results of §1.5.1 one can compute

the dimensions in (3.14) in parallel time (n log d)O(1) and sequential time dnO(1)

over k.
This shows #CCk ∈ FPARk. Theorem 2.3 implies #CCQ ∈ FPSPACE. 2
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Chapter 4

Counting Irreducible
Components

We will give an algorithm counting the irreducible components of a variety using
methods very similar to those used in the last chapter. As usual k denotes
a field of characteristic zero. By irreducibility we will always mean absolute
irreducibility. We consider the following problems.

#ICk (Counting irreducible components) Given finitely many polynomials
f1, . . . , fr ∈ k[X], compute the number of irreducible components of their affine
zero set Z(f1, . . . , fr) ⊆ An.

#ProjICk (Counting irreducible components of projective varieties) Given
finitely many homogeneous polynomials f1, . . . , fr ∈ k[X], compute the number
of irreducible components of their projective zero set Z(f1, . . . , fr) ⊆ Pn.

Recall (cf. §1.5.3) that the versions of the problem #ICk for the different
data structures dense, sparse, and slp encoding are polynomial time equivalent
(similarly for #ProjICk). The main result of this chapter is the following
theorem.

Theorem 4.1. We have

1. #ICk,#ProjICk ∈ FPARk for each field k of characteristic zero,

2. #ICQ,#ProjICQ ∈ FPSPACE.

As for the problem of counting connected components the second part of
this theorem follows from the first part by Theorem 2.3.

Before proving Theorem 4.1 we make some comments on lower bounds for
the problem. The same proof as for Proposition 3.2 shows

Proposition 4.2. The problem #ICC is #PC-hard with respect to Turing re-
ductions.

However, up to now we are not able to show that #ICQ is FPSPACE-hard.
The best lower bound for the problem in the Turing model is GCC-hardness.
The class GCC is defined in [BC06] as the Boolean part of #PC, and is located

67
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between #P and FPSPACE in the landscape of binary complexity classes. Hence
this result follows trivially from Proposition 4.2.

Open question. What is the inherent complexity of #ICC? Can it be reduced
in polynomial time to counting complex solutions of polynomial equations, i.e.,
to #PC?

Bürgisser et al. [BCdN06] recently showed that in the restricted setting of
semilinear sets given by additive circuits over the reals, the problem of counting
irreducible components is indeed captured by the class #P.

4.1 Affine vs. Projective Case

We show that there is no essential difference in complexity of the problems #ICk

and #ProjICk, i.e., they are polynomial time equivalent.

Proposition 4.3. 1. The problems #ICk and #ProjICk are polynomial
time equivalent with respect to Turing reductions.

2. The problems #ICQ and #ProjICQ are polynomial time equivalent with
respect to Turing reductions in the bit model.

Proof. 1. First we reduce #ICk to #ProjICk. Let f1, . . . , fr ∈ k[X1, . . . , Xn]
be arbitrary polynomials, d be an upper bound on the degrees of the fi, and set
V := Z(f1, . . . , fr) ⊆ An. Introduce a new variable Xn+1 and a new equation
f0 := Xn+1 to obtain the subvariety V ′ := Z(f0, . . . , fr), which is properly
contained in An+1 and isomorphic to V . Define

gi(X0, . . . , Xn) := Xd+1
0 fi

(
X

X0

)
∈ k[X0, . . . , Xn+1] for 0 ≤ i ≤ r, (4.1)

the homogenisation of the fi with respect to degree d+ 1. Then the projective
variety W ⊆ Pn+1 defined by the gi equals V ′ ∪ Z(X0). Since V ′ 6= An+1, we
have #ic(W ) = #ic(V )+1, where we write #ic(W ) for the number of irreducible
components of W . Hence we can easily compute #ic(V ) using one oracle call
to #ProjICk.

The reduction from #ProjICk to #ICk is trivial. If the projective variety
V ⊆ Pn is defined by the homogeneous polynomials f1, . . . , fr ∈ k[X0, . . . , Xn],
then its affine cone V c ⊆ An+1 is defined by the same polynomials. Furthermore,
the affine cones of the irreducible components of V are exactly the irreducible
components of V c. Hence, here we have even a parsimonious reduction.

2. It is clear that the above reductions work also for rational polynomials in
the bit model. 2

Remark 4.4. We note for later reference that the reductions of the preceding
proposition work in the different encodings dense and as slps, and also for a fixed
number of equations or variables. All this is totally trivial for the reduction from
#ProjICk to #ICk. For the opposite direction we use that one can compute
slps for the homogeneous parts of a polynomial given as an slp in polynomial
time as in Lemma 4.5 below. It follows that one can compute slps for the
homogenisations (4.1) in polynomial time. Also the number of equations and
the dimension of the ambient space both increase by a constant.
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For the discrete model we will need the following result about the parallel
complexity of computing homogeneous parts.

Lemma 4.5. Given an slp of length L and formal degree d without divisions
computing the polynomial f ∈ Q[X], one can compute slps for the homogeneous
parts f0, . . . , fd of f in parallel time O(log2 d · log log(nL)) and sequential time
polynomial in d log(nL) in the Turing model.

Proof. Let T be a new indeterminate. Then we have

f(TX) =
d∑

j=0

T jfj(X),

which shows that computing the fj amounts to the univariate interpolation
problem of degree d. We thus choose pairwise distinct t0, . . . , td ∈ Q and con-
sider the linear system of equations

f(tiX) =
d∑

j=0

tjifj(X), 0 ≤ i ≤ d.

With the regular van der Monde matrix A := (tji )ij ∈ Q(d+1)×(d+1) it follows f0(X)
...

fd(X)

 = A−1

 f(t0X)
...

f(tdX)

 . (4.2)

Thus we can first compute the inverse of A and then slps for the fi using (4.2).
To analyse the parallel bitcost of the algorithm, we choose ti := i ∈ Q.

Then the bitsize of the entries of A is O(d log d). By Remark 1.25 one can
compute A−1 with O(log2 d) parallel and dO(1) sequential bit operations. The
matrix-vector product (4.2) can be computed with d + 1 parallel scalar multi-
plications and a binary tree of d additions, which has depth log d. To multiply
an slp with a scalar one appends a multiplication node. One adds two slps by
concatenating them and appending an addition node. The complexity of both
operations is dominated by the arithmetic of the indices, whose size is bounded
by the lengths of the slps. Since the length of our slps is polynomial in Lnd,
this arithmetic can be done in parallel time O(log log(Lnd)) and sequential time
log(Lnd)O(1). Altogether the claimed bounds follow. 2

4.2 Locally Constant Rational Functions

We prove Theorem 4.1 by very much the same methods as used in Chapter 3.
We can proceed analogously to the case of connected components, but we work
with rational instead of regular functions. The basic idea is the fact that the ring
of rational functions on a variety is the direct product of the rings of rational
functions of its irreducible components.

Recall that for an affine variety V ⊆ An we have denoted by R(V ) the ring
of rational functions on V . According to [Kun79, III, Satz 2.8] we have
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Proposition 4.6. Let V = V1∪· · ·∪Vs be the decomposition of V into irreducible
components. Then

R(V ) '
s∏

i=1

R(Vi).

Hence according to the beginning of §3.1.2 the number of irreducible com-
ponents is the cardinality of a maximal complete set of orthogonal idempotents
in R(V ). Since these idempotents correspond to rational functions vanishing on
all but one component, where they take the value 1, on each intersection of two
components at least two of them are not defined. Thus the product h of the
denominators of all idempotents lies in

⋂
i 6=j I(Vi ∩ Vj). Since all denominators

in R(V ) are non-zerodivisors in K[V ], so is h. On the other hand, given such
a non-zerodivisor h, one can find the idempotents in K[V ]h (see Theorem 4.9
below). A sufficient condition for h ∈

⋂
i 6=j I(Vi ∩ Vj) is that h vanishes on the

singular locus Sing (V ).

Example 4.7. 1. Let V = V1 ∪ V2 ⊆ A2 with V1 = Z(X) and V2 = Z(Y ).
Then the two idempotents are e1 = Y

X+Y and e2 = X
X+Y .

2. Let V = Z(f) ⊆ An be a hypersurface. We assume that gcd(f, ∂f
∂X1

) = 1,
which implies that f is squarefree and each of its factors depends on X1.
Let f =

∏s
i=1 fi be its irreducible factorisation, hence V =

⋃
i Vi with

Vi = Z(fi). Then the corresponding idempotents are given by

ei :=
f

fi

∂fi

∂X1

∂f
∂X1

, 1 ≤ i ≤ s.

Indeed,
∂f

∂X1
=
∑

i

f

fi

∂fi

∂X1

shows
∑

i ei = 1. Furthermore,

f

fi

∂fi

∂X1
· f
fj

∂fj

∂X1
≡ 0 (mod f)

implies eiej = 0 for i 6= j. Finally, since

f

fi

∂fi

∂X1

∂f

∂X1
=
∑

j

f

fi

∂fi

∂X1

f

fj

∂fj

∂X1
≡
(
f

fi

∂fi

∂X1

)2

(mod f),

we have ei = e2i . Note that the common denominator ∂f
∂X1

of the ei lies
in
⋂

i 6=j I(Vi ∩ Vj) and is a non-zerodivisor on K[V ]. Note also that the
first example is not a special case of the second one, since the assumption
is not satisfied. However, one can perform a variable transformation to
obtain e.g. f = (X + Y )(X − Y ) satisfying the assumption.

Similar as in §3.1 we consider the space of locally constant rational functions
on V , which we denote (by analogy) with

H0
r (V ) := {f ∈ R(V ) |df = 0}.

We need the following lemma which is proved literally as Lemma 3.7.
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Lemma 4.8. Each maximal complete set of orthogonal idempotents e1, . . . , es

of R(V ) is a basis of H0
r (V ).

Then we have

Theorem 4.9. Each affine variety V ⊆ An has dimH0
r (V ) irreducible com-

ponents. Let furthermore V be the zero set of polynomials of degree at most d
and h ∈ K[X] be a non-zerodivisor on K[V ] with deg h < d vanishing on all
pairwise intersections of irreducible components of V . Then H0

r (V ) has a basis
of rational functions of the form f/hN with max{deg f,N} = dO(n2).

Proof. Introducing a new variable Y the dense open subset U := V \Z(h) of V
is isomorphic to

W := (V × A1) ∩ Z(hY − 1) ⊆ An+1.

On the other hand, if V =
⋃s

i=1 Vi is the irreducible decomposition, then U =⋃s
i=1(Vi \ Z(h)) is the decomposition into connected components. According

to Theorem 3.3 there exists a maximal complete set of orthogonal idempotents
inK[W ] induced by polynomials of degree bounded by dO(n2). The isomorphism
K[W ] ' K[V ]h identifies Y with 1/h, which shows that in K[V ]h we obtain
idempotents of the form f/hN with the claimed bounds.

We show that this maximal complete set of orthogonal idempotents E ⊆
K[V ]h is also maximal in R(V ). Fix i, and let e ∈ E be the idempotent
corresponding to Vi. Assume e = f1+f2 with nontrivial orthogonal idempotents
fj ∈ R(V ). By replacing fj with efj we can assume that the fj vanish outside Vi.
Since f1f2 = 0, their numerators g1, g2 satisfy g1g2 = 0 as well. Hence Vi =
ZVi(g1) ∪ ZVi(g2). Since Vi is irreducible, we conclude w.l.o.g. Vi = ZVi(g1),
hence g1 = 0 on Vi. Since g1 vanishes outside Vi as well, f1 = 0, a contradiction.

By Lemma 4.8 the set E is a basis of H0
r (V ). 2

4.3 Proof of Theorem 4.1

Before proving the theorem we have to cope with the redundancy of Szántós
decomposition (1.12) (cf. Remark 1.35). We prove that by computing ideal
quotients we obtain an irredundant decomposition. Recall that the quotient of
two ideals I, J is defined as

I : J = {f ∈ k[X] | ∀g ∈ J fg ∈ I}. (4.3)

The ideal of the difference V \W of two affine varieties V and W is given by
the quotient of their ideals [CLO98, §4.4, Corollary 8].

I(V \W ) = I(V ) : I(W ),

hence Z(I(V ) : I(W )) = V \W . For an ideal I we denote I≤d := I ∩ k[X]≤d.
Furthermore, for a matrix A ∈ kN×Nn,d , where Nn,d :=

(
n+d

n

)
, and a polynomial

f ∈ k[X]≤d we write Af to denote the product of A with the column vector
consisting of the coefficients of f .
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Lemma 4.10. Let I1, . . . , Is ⊆ k[X] be the saturated ideals of the squarefree
regular chains G1, . . . , Gs. Let δ be an upper bound on the degrees of all poly-
nomials occurring in the Gi. Then for each 1 < i ≤ s and d ∈ N there exists a
matrix Ai ∈ kNi×Nn,d with Ni = (sdδ)nO(1)

such that

(Ii : (I1 ∩ · · · ∩ Ii−1))≤d = {f ∈ k[X]≤d |Aif = 0}.

Furthermore, given G1, . . . , Gs one can compute Ai in parallel time (n log(sdδ))O(1)

and sequential time (sdδ)nO(1)
.

Proof. Set J := I1 ∩ · · · ∩ Ii−1. By Lemma 3.12, J≤D is the solution space of
some linear system of equations of size s(Dδ)nO(1)

, which can be constructed in
parallel time (n logDδ)O(1) and sequential time s(Dδ)nO(1)

by Lemma 3.13.
To represent (Ii : J)≤d by a linear system, we first have to show that for the

“test polynomial” g in (4.3) it suffices to use a polynomial of single exponential
degree. Indeed, we prove that with D := sδn we have

(∀g ∈ J≤D fg ∈ Ii) ⇒ f ∈ Ii : J

for all f ∈ k[X]. For this purpose let f be given with f /∈ Ii : J . We denote
Vj := Z(Ij) for all j and W := V1 ∪ · · · ∪ Vi−1. Since Ii : J = I(Vi \W ), there
exists x ∈ Vi \W such that f(x) 6= 0. By Corollary 1.9, W can be defined by
polynomials g1, . . . , gr with deg gj ≤ degW . From x /∈ W we conclude that
some gj does not vanish on x. Then f(x)gj(x) 6= 0 and fgj /∈ Ii. It remains to
bound degW . First recall that we have the inclusions

Z(Gj) \ Z(Γ) ⊆ Vj ⊆ Z(Gj),

where Γ is the product of the leading coefficients of the polynomials in Gi. Since
the first inclusion is dense, each irreducible component of Vj coincides with
some irreducible component of Z(Gj) \ Z(Γ) and hence of Z(Gi). It follows
deg Vj ≤ degZ(Gj) ≤ δn. Thus degW ≤

∑i−1
j=1 deg Vj ≤ sδn which proves the

claim.
By the methods of §1.5.1 one can compute a vector space basis b1, . . . , bu

of J≤D in parallel time (n log(sDδ))O(1) and sequential time sO(1)(Dδ)nO(1)
. It

is further easy to compute the matrix Lj describing the linear map k[X]≤d →
k[X]≤d+D, f 7→ fbj . Hence we can write

(Ii : J)≤d = {f ∈ k[X]≤d | ∀g ∈ J≤D fg ∈ Ii}

= {f ∈ k[X]≤d |
u∧

j=1

fbj ∈ (Ii)≤d+D}

= {f ∈ k[X]≤d |
u∧

j=1

BLjf = 0},

where B is the coefficient matrix of the linear system describing (Ii)≤d+D. 2

Proof of Theorem 4.1. As noted before, the second part of the theorem follows
from the first with Theorem 2.3. Furthermore, by Proposition 4.3 the affine and
projective versions are equivalent, thus it suffices to prove #ICk ∈ FPARk.
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Let V = Z(f1, . . . , fr) ⊆ An with polynomials fi ∈ k[X] of degree bounded
by d ≥ 2, let n ≥ 2, and set I := I(V ). By Theorem 1.34 we can compute
squarefree regular chains Gi with saturated ideals Ii, 1 ≤ i ≤ s, such that I =⋂

i Ii. Denote Vi := Z(Ii). We order the ideals in a way such that dimVi ≥
dimVi+1 for 1 ≤ i < s1. Now set Qi := Ii : (I1 ∩ · · · ∩ Ii−1). Then

Wi := Z(Qi) = Vi \ (V1 ∪ · · · ∪ Vi−1),

and we have
V = W1 ∪ · · · ∪Ws. (4.4)

We claim

1. Each irreducible component C of Wi is an irreducible component of Vi, in
particular Wi ⊆ Vi.

2. Each Wi is equidimensional with dimWi = dimVi.

3. The decomposition (4.4) is irredundant, i.e., no irreducible component
of Wi is contained in any Wj with j 6= i.

Proof of claim 1. Fix i, and let Vi =
⋃

ν Cν be the irreducible decomposition
of Vi. Then for all ν we have either Cν ⊆

⋂
j<i Vj or not. In the first case

Cν \
⋂

j<i Vj = ∅, and in the second Cν \
⋂

j<i Vj = Cν . Hence Wi is the union
over those Cν with Cν 6⊆

⋂
j<i Vj .

Claim 2 follows immediately from claim 1 and the equidimensionality of Vi.
Proof of claim 3. Assume that C is an irreducible component ofWi contained

in Wj with j 6= i. Then C is a component of Vi by the claim 1, and dimC ≤
dimWj = dimVj by claim 2. If dimC = dimVj , then C is a common component
of Vi and Vj , which have the same dimension. Thus, if i > j, then Wi =
Vi \

⋃
`<i V` ⊆ Vi \ C does not contain C, a contradiction. The case i < j

is treated analogously. In the case dimC < dimVj it follows j < i by the
ordering with respect to dimension. But this implies also the contradiction
C 6⊆Wi ⊆ Vi \ C, which completes the proof of claim 3.

By claim 3 we have #ic(V ) =
∑s

i=1 #ic(Wi), hence we can compute #ic(Wi)
for all i in parallel and sum up.

According to Lemma 3.16 the polynomial hi defined as in Proposition 3.17
for Gi is a non-zerodivisor on K[Wi] and vanishes on Sing (Wi). Hence hi

satisfies the conditions for the denominator h in Theorem 4.9 with respect
to the variety Wi. Furthermore, hi =

∏
g∈Gi

lc (g) ·
∏

g∈Gi

∂g
∂class (g) . Using

maxg∈Gi deg g = dnO(1)
we see that deg hi = dnO(1)

and hi can be computed
from Gi in parallel polynomial time.

Now we describe how to compute the number of components of Wi. To
simplify notation we leave away the index i which is fixed from now on. For
D,N ∈ N consider the linear map ϕ : K[X]≤D → K[W ]h, f 7→ f/h

N
, and let

Z := ϕ−1(H0
r (W )). Then for sufficiently large D,N ≤ dnO(1)

the restriction
ϕ|Z : Z → H0

r (W ) is surjective by Theorem 4.9, hence

H0
r (W ) ' Z/(Q ∩ Z).

1Although Szántó’s algorithm can be arranged so that it produces the ideals ordered by
dimension, we don’t need this since sorting is in FNC [Ja’92, §4].
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Therefore the number of irreducible components of W is given by

dimH0
r (W ) = dimZ − dim(Q ∩ Z).

By Lemma 4.10 we can efficiently compute a linear system of equations for
Q≤D. It remains to describe also Z by a linear system. We have for all f ∈ K[W ]

d
(
f

hN

)
=
hdf −Nfdh

hN+1
= 0 ⇐⇒ hdf −Nfdh = 0.

Using Proposition 3.17 we can write

hdf−Nfdh =
m∑

i=1

(
h
∂f

∂Xi
−Nf ∂h

∂Xi
−
(
h
∂f

∂Y
−Nf ∂h

∂Y

)(
∂g

∂Y

)−1
∂g

∂Xi

)
dXi.

By the direct sum decomposition of Proposition 3.17, hdf−Nfdh = 0 iff all the
coefficients of the dXi are zero. We further multiply with the determinant ∆
and arrive at

f ∈ Z ⇐⇒
m∧

i=1

(
∆
(
h
∂f

∂Xi
−Nf ∂h

∂Xi

)
−

−
(
h
∂f

∂Y
−Nf ∂h

∂Y

)
∆
(
∂g

∂Y

)−1
∂g

∂Xi
∈ Q

)

for all f ∈ K[X]≤D. The degree of the polynomials in this expression is bounded
by dnO(1)

, hence this condition can be formulated by a linear system of the same
asymptotic size. It follows #ICk ∈ FPARk, which completes the proof of Theo-
rem 4.1. 2



Chapter 5

Hilbert Polynomial of
Arithmetically Cohen-
Macaulay Varieties

We want to apply the technique of §3.2 to a problem which is still not known to
be solvable in FPARk, namely computing the Hilbert polynomial of a projective
variety. The idea is that with the above method we can evaluate the Hilbert
function of a projective variety at not too large arguments in FPARk. Now
one can compute the Hilbert polynomial by interpolating the Hilbert function
at sufficiently many points. The number of points needed is essentially the
dimension of the variety, so that we need a single exponential bound for the
index, from which on the Hilbert function coincides with the Hilbert polynomial.
The minimal number with this property is called the index of regularity or a-
invariant [SV86, Vas98]. This quantity is closely related to the Castelnuovo-
Mumford regularity (cf. [BM93]). Unfortunately a single exponential bound for
the index of regularity of a radical is not known. We show such a bound for
projective varieties which are arithmetically Cohen-Macaulay.

We first fix some notations. Let k be a field of characteristic zero andK be an
algebraically closed extension field. Consider the graded polynomial ring S :=
K[X] = K[X0, . . . , Xn] =

⊕
t≥0 St, where St = K[X]t denotes the vector space

of homogeneous polynomials of degree t. Consider a finitely generated graded
S-module M =

⊕
t∈Z Mt. The function hM : Z −→ N, t 7→ dimk Mt is called

the Hilbert function of M . The following Theorem is well-known [Har77, Eis95].

Theorem 5.1 (Hilbert-Serre). Let M be a finitely generated graded S-module.
Then there exists a unique polynomial pM ∈ Q[T ] such that hM (t) = pM (t) for
sufficiently large t ∈ Z. Furthermore, the degree of pM equals the dimension of
the projective zero set of the annihilator {f ∈ S | fM = 0}.

The polynomial pM of this theorem is called the Hilbert polynomial of M .
For a projective variety V ⊆ Pn we consider its homogeneous coordinate ring
M = S/I(V ), and call hV := hS/I(V ) and pV := pS/I(V ) the Hilbert function
respectively the Hilbert polynomial of V .
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5.1 Bound for the Index of Regularity

For a finitely generated S-module M we call

a(M) := inf{t0 ∈ Z | ∀t ≥ t0 hM (t) = pM (t)}

the index of regularity of M . For a projective variety V ⊆ Pn we denote with
a(V ) := a(S/I(V )) the index of regularity of V .

We start by observing what happens with hyperplane sections.

Lemma 5.2. Let I ⊆ S be a homogeneous ideal with
√
I 6= m := (X0, . . . , Xn),

and let ` ∈ S1 be a linear form with ` /∈
⋃

P∈Ass (I) P . Then

a(S/I) ≤ a(S/(I + (`))).

Proof. Recall that the set of zerodivisors on S/I is exactly
⋃

P∈Ass (I) P , hence
multiplication with ` induces the exact sequence

0 −→ S/I(−1) ·`−→ S/I −→ S/(I + (`)) −→ 0,

where S/I(−1) denotes the graded S-module S/I with grading shifted by −1. It
follows that the first difference h′S/I(t) := hS/I(t)−hS/I(t−1) satisfies h′S/I(t) =
hS/(I+(`))(t) for all t ∈ Z. By definition for t ≥ a(S/(I + (`))) =: t0 we have
h′S/I(t) = pS/(I+(`))(t). By Theorem 5.1 hS/I(t) = pS/I(t) for t � 0. It is easy

to see that hS/I(t) = hS/I(t0 − 1) +
∑t

s=t0
h′S/I(s), since the sum is a telescope

sum. Hence hS/I(t) = hS/I(t0 − 1) +
∑t

s=t0
pS/(I+(`))(s) for all t ≥ t0. Since

the right-hand side is a polynomial, it follows hS/I(t) = pS/I(t) for all t ≥ t0.
This shows a(S/I) ≤ t0. 2

The idea now is to cut down the variety V (I) iteratively with linear forms
until we get the empty set, in which case

√
I = m. This case can be handled with

the effective Nullstellensatz. Unfortunately, a linear form ` as in Lemma 5.2 does
not exist if m ∈ Ass (I). One might think that this does no harm to us, since we
only consider radical ideals I, where this cannot happen. But, by adding linear
forms we might destroy the radical property. In particular when I is a radical
and ` a linear form as in Lemma 5.2, the ideal I+(`) could have m as associated
prime and we could not proceed further. The following (astonishingly simple)
example shows exactly this behaviour.

Example 5.3. Let I = (X0, X1) ∩ (X2, X3) = (X0X2, X0X3, X1X2, X1X3) ⊆
K[X0, X1, X2, X3]. Of course I is radical, P1 := (X0, X1) and P2 := (X2, X3)
are the associated primes and I = P1 ∩ P2 is the primary decomposition of I.
Geometrically, V = V (I) ⊆ P3 is the union of two disjoint lines. The linear
form ` = X0 −X2 satisfies ` /∈ P1 ∪P2, but leads to the primary decomposition

I + (`) = (X0, X1, X2) ∩ (X0, X2, X3)
∩(X2

0 , X0X1, X0X3, X
2
1 , X1X3, X

2
3 , X0 −X2).

The latter of these ideals is m-primary but not a radical, thus I + (`) is not
radical and m ∈ Ass (I + (`)). Although we have considered a special linear
form `, one easily sees that the same phenomenon appears with generic `.
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This example shows that we cannot prove the desired bound for the general
case with the help of Lemma 5.2. Hartshorne’s Connectedness Theorem [Eis95,
Theorem 18.12] says that a variety which is Cohen-Macaulay in a point, is locally
connected in codimension 1, i.e., removing a subvariety of codimension 2 or more
cannot disconnect it. Applying this theorem on the affine cone of the variety of
Example 5.3 shows that this cone is not Cohen-Macaulay at the origin. It turns
out that our method works well under this Cohen-Macaulayness condition.

For convenience we recall some definitions from commutative algebra. Let R
be a commutative ring. A sequence x1, . . . , xn ∈ R is called a regular sequence
iff (x1, . . . , xn) 6= R and xi is a non-zerodivisor on R/(x1, . . . , xi−1) for each 1 ≤
i ≤ n. Now let I ⊂ R be a proper ideal. Then depth I is defined as the length
of a maximal regular sequence in I. On the other hand, there exists also the
notion of codimension (or height) of I. If I is a prime ideal, then the codimension
codim I is defined as the maximal length of an ascending chain of prime ideals
in I. For general I, codim I is defined to be the minimal codimension of all
primes containing I. The notion of codimension of an ideal is closely related to
the Krull dimension of a ring R. Recall from page 19 that dimR is the length
of a maximal descending chain of prime ideals in R. A commutative ring R
such that for all maximal ideals M ⊆ R we have depthM = codimM is called
Cohen-Macaulay. In this case, we have depth I = codim I for all proper ideals I
in R.

If R = S = K[X] is the polynomial ring as above, then codim I is exactly the
codimension of the projective variety V := Z(I) ⊆ Pn, hence codim I depends
only on the radical of I.

Definition 5.4. A projective variety V ⊆ Pn is called arithmetically Cohen-
Macaulay iff (S/I(V ))m is Cohen-Macaulay, where m = (X0, . . . , Xn).

We will need the following technical lemma.

Lemma 5.5. Let I ⊆ S be a homogeneous ideal. Then

dim(S/I)m = dimS/I.

Proof. Since dimension localises [Eis95, §8.1, Axiom D1], we have dim(S/I)m ≤
dimS/I. On the other hand, since all associated primes of I are homogeneous
and thus contained in m, (S/I) \ m contains no zerodivisors. Thus the natural
map S/I → (S/I)m is an injection. Then it follows dimS/I ≤ dim(S/I)m. 2

The following lemma shows that the Cohen-Macaulayness of the local ring
we consider is preserved under generic hyperplane sections.

Lemma 5.6. Let I ⊆ S be a homogeneous ideal with
√
I 6= m, such that

(S/I)m is Cohen-Macaulay. Then there exists a non-zerodivisor ` ∈ S1 on S/I.
Furthermore, the ring (S/(I, `))m is again Cohen-Macaulay.

Proof. For the first claim it suffices to show that m is no associated prime of I.
Indeed, if we assume S1 ⊆

⋃
P∈Ass (I) P , then S1 ⊆ P for some P ∈ Ass (I), since

S1 and all primes P are vector spaces over the infinite field K. Then m = P is
an associated prime of I and hence

√
I = m, contradicting our assumption.

To prove m /∈ Ass (I), note that dimS/I > 0, since
√
I 6= m and I is

homogeneous. Furthermore, with R := (S/I)m and m′ := mm we have

depthRm′ = codim Rm′ = dimR = dimS/I > 0.
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Here, the first equality holds by Cohen-Macaulayness of R. The second equality
follows since (R,m′) is a local ring, and the third is implied by Lemma 5.5.
It follows that there exists a regular sequence in m′ of length 1, i.e., a non-
zerodivisor x ∈ m′. Writing x = s

t with s ∈ m ⊆ S/I and t ∈ (S/I) \m, it easily
follows that s is a non-zerodivisor in S/I. Thus there exists a non-zerodivisor
in m, hence m /∈ Ass (I).

Finally, having ` ∈ S1 which is a non-zerodivisor on S/I, it follows from
[Eis95, Proposition 18.13] that (S/(I, `))m is Cohen-Macaulay, since (S/(I, `))m =
(S/I)m/(`). 2

The main result in this section is the following proposition.

Proposition 5.7. Let V ⊆ Pn be a projective variety defined by homogeneous
polynomials of degree bounded by d with d ≥ 3. If V is arithmetically Cohen-
Macaulay, then its index of regularity satisfies

a(V ) ≤ dn. (5.1)

Proof. Let m := dimV and I := I(V ). We first prove the following

Claim. There exist linear forms `0, . . . , `m ∈ S1 such that for all 0 ≤ i < m

(a)
√
Ii 6= m for Ii := I + (`0, . . . , `i),

(b) `i+1 /∈
⋃

P∈Ass (Ii)
P ,

(c) (S/Ii)m is Cohen-Macaulay.

Set I−1 := I and suppose that `0, . . . , `i−1 are already constructed for some
0 ≤ i ≤ m. Then

√
Ii−1 6= m, and (S/Ii−1)m is Cohen-Macaulay. Thus, by

Lemma 5.6 there exists `i ∈ S1 such that (b) and (c) hold. In the case i = m we
are done. If i < m, then by the Principal Ideal Theorem [Eis95, Theorem 10.2]
we have codim Ii ≤ codim I + i + 1 ≤ codim I +m = n, since the codimension
depends only on the radical. Hence (a) also holds, which proves the claim.

Setting Im := I + (`0, . . . , `m) we have
√
Im = m. Now let V be de-

fined by the homogeneous polynomials f1, . . . , fr with deg fi ≤ d, and set
J := (f1, . . . , fr, `0, . . . , `m). Then

√
J =

√
Im = m. By the effective Null-

stellensatz [Kol88] we have mdn ⊆ J ⊆ Im. This means that all monomials of
degree ≥ dn are in Im, i.e., hS/Im

(t) = 0 for all t ≥ dn. Of course, the Hilbert
polynomial of S/Im is the zero polynomial, hence a(S/Im) ≤ dn. Further, by
repeated application of Lemma 5.2 we obtain a(S/I) ≤ a(S/Im) ≤ dn. 2

5.2 Computing the Hilbert Polynomial

Now we use what we have learned to compute the Hilbert polynomial in the
arithmetical Cohen-Macaulay case.

Proposition 5.8. Let k be a field of characteristic zero. Let V = Z(f1, . . . , fr) ⊆
Pn be a projective variety defined by homogeneous polynomials fi ∈ k[X] with
deg fi ≤ d where d ≥ 3. If V is arithmetically Cohen-Macaulay, then one can
compute the Hilbert polynomial pV in parallel time (n log d)O(1) and sequential
time dnO(1)

.
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Proof. Set I := I(V ). By Theorem 1.34 we can compute within the desired
bounds squarefree regular chains Gi with saturated ideals Ii, 1 ≤ i ≤ s, such
that I =

⋂s
i=1 Ii. Now fix some t ∈ N. We have

dim(S/I)t =
(
n+ t

n

)
− dim(I ∩ St),

hence it remains to compute the latter dimension. Let δ be an upper bound on
the degrees of the polynomials in all Gi. By Theorem 1.34 we have δ = dO(n2).
Then by Proposition 3.14

I ∩ St =
s⋂

i=1

Ii ∩ St = {f ∈ St |
∧
i

prem t(f,Gi) = 0}.

Recall from Definition 3.11 that prem t denotes the modified pseudo remainder
for polynomials of degree t. Now let dn ≤ t ≤ dn +n. Then I∩St is the solution
space of a linear system of size (dδ)O(n2), which we can construct by Lemma 3.13
in parallel time (n log dδ)O(1) and sequential time (dδ)nO(1)

. Hence, we can
compute the value of the Hilbert function hV (t) within the desired resources.

Now we compute hV (t) for each dn ≤ t ≤ dn + n. Since by Proposition 5.7
these values coincide with the values of pV , which is a polynomial of degree ≤ n,
we can compute pV by interpolation. 2
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Part II

Lower Bounds
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Chapter 6

Connectedness

In this chapter we prove hardness results for topological problems concerning
complex algebraic varieties. Since we work in the Turing model, we restrict
ourselves to rational polynomial systems and consider their zero set in An =
An(C) respectively Pn = Pn(C), equipped with the Euclidean topology.

Recall that by Corollary 1.2 for the problems concerning connectivity it is
irrelevant whether we use the Zariski or Euclidean topology. It follows that
these problems do not depend on the choice of one of the coordinate fields C
or Q. The first problem we consider is the following.

ConnQ (Connectedness of affine varieties) Given polynomials f1, . . . , fr ∈
Q[X1, . . . , Xn], decide whether Z(f1, . . . , fr) ⊆ An is connected.

Our first main result is

Theorem 6.1. The problem ConnQ is PSPACE-hard with respect to many-one
reductions. More specifically, the problem remains PSPACE-hard when restricted
to subspace arrangements, i.e., unions of affine subspaces.

We will also prove a projective version of this theorem and conclude that
the corresponding counting problems are FPSPACE-hard.

The rest of this chapter is devoted to the proof of Theorem 6.1.

6.1 Basic Notations

In this section we fix some conventions and notations about Turing machines.
We use machines with several tapes. Let M be a deterministic k-tape Turing
machine with set of states Q, starting state q0 ∈ Q, tape alphabet Γ, and
transition function

δ : (Q \ {qacc, qrej})× Γk −→ Q× (Γ×D)k.

Here qacc, qrej ∈ Q denote the accepting and rejecting state, respectively, and
D := {←,−,→} denotes the set of possible movements of the read-write heads
of M . Since we will not consider sub-linear space bounds, we do not require
distinguished input- and output-tapes. We think of each tape as being infinite in
both directions and filled up with blank symbols t, thus we assume {t, 0, 1} ⊆ Γ.
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At the beginning of the computation, all heads are placed at position 1, and an
input word of length n is written on the first tape from position 1 to n. We can
and will assume that the Turing machine operates only in the region of the tapes
to the right of position 0 (the machine has to visit the cell at position 0 in order
to detect the beginning of the word written on the tape). By the space demand
of a computation we will mean the maximal number of cells the computation
needs on each tape.

Let p = p(n) be a space bound of M for a fixed input size n ∈ N. A
configuration of M is a k × (p + 1)-matrix c over the extended tape alphabet
Γ̃ := Γ∪ (Γ×Q), whose rows correspond to the contents of the tapes, where the
symbol at the head-position is replaced by the pair of that symbol and the cur-
rent state, i.e., c = (c1, . . . , ck)t with cν = (σ0, . . . , σh−1, (σh, q), σh+1, . . . , σp),
where (σ0, . . . , σp) is the content and h is the head-position of the νth tape.
Occasionally, we will call the tape positions 0 to p the legal region of the tape.
We denote by Cn ⊆ Γ̃k×(p+1) the set of configurations of M . For c, c′ ∈ Cn

we say that c yields c′ and write c ` c′ iff c′ is the resulting configuration after
one computation step of M performed on c. The configuration digraph of M is
defined to be the directed graph with vertex set Cn and an edge (c, c′) ∈ C2

n

iff c ` c′. We define the configuration graph Gn to be the undirected graph
obtained from the configuration digraph by forgetting the orientation of the
edges.

It is a standard method to decide membership of an input to the language
decided by M by solving the reachability problem for the directed configuration
graph. Now we observe that, in the case of deterministic Turing machines, we
can consider the undirected configuration graph, since each path from an input
to a final configuration automatically has to be directed.

Lemma 6.2. Let the language L ⊆ {0, 1}∞ be decided by the deterministic
Turing machine M . For any input w ∈ {0, 1}n let i(w) be its unique start
configuration. Then for all w ∈ {0, 1}n there exists a path from i(w) to an
accepting configuration cacc in the configuration graph of M iff w ∈ L.

Proof. We have to prove the “only if” direction. Let Gn = (Cn, En) denote
the configuration graph of M . Let c0 = i(w), c1, . . . , cm = cacc be a path
from the start to an accepting configuration, i.e., for each 1 ≤ i ≤ m we have
{ci−1, ci} ∈ En. If (ci−1, ci) is an edge in the configuration digraph for all i,
we have a directed path and are done. So let us assume that there exists
an i such that (ci−1, ci) is not a directed edge. Let i0 be the maximal index
with this property. But then (ci0 , ci0−1) is a directed edge. Since cacc has
no next configuration, we have i0 < m. Hence (ci0 , ci0+1) is a directed edge,
and ci0 has the two following configurations ci0+1 and ci0−1, in contradiction to
determinism, so no such i0 exists. 2

6.2 Obtaining an Acyclic Configuration Graph

Since we want to consider the problem of deciding connectedness, our aim is
to construct from the configuration graph a variety with exactly two connected
components. The problem is that there are configurations occurring in no com-
putation from any input and thus behaving unpredictably. We modify the Tur-
ing machine appropriately to control this behaviour, in particular we achieve



6.2. OBTAINING AN ACYCLIC CONFIGURATION GRAPH 85

that the configuration digraph has no cycles. Unfortunately, this costs the use
of a second tape. This modification is constructed in the following technical
lemma.

Lemma 6.3. Let M be a single-tape Turing machine with space bound s(n) de-
ciding the language L ⊆ {0, 1}∞. Then there exists a 2-tape Turing machine N
with space bound p(n) = O(s(n)) deciding L with the following properties:

1. the configuration digraph of N has no cycles,

2. the machine N operates in each step on one tape only.

Remark 6.4. Note that after the modification of the above lemma there are also
no undirected cycles in the configuration graph, since otherwise there would
exist a configuration with two successors (similar as in the proof of Lemma 6.2).

Proof. The idea is to count the computation steps of M in binary representa-
tion on the second tape ensuring that a computation starting on an arbitrary
configuration never returns to that configuration. For this purpose we write the
digits of the counter in reversed order on the tape and interpret all symbols
except 1 as 0.

Now let M = (Q,Γ, δ, q0, qacc, qrej) be a Turing machine as in the lemma.
We construct a new machine N by replacing each computation step of M with
the following procedure, which increments the counter on tape 2. During this
procedure we store the state of M as the first component of a pair, whose second
component controls the incremention as follows. The head of tape 2 moves to
the right, replaces each 1 by 0 until the first symbol other than 1 is reached
and replaces it by 1. Then it moves to the left until the first blank symbol t is
reached, and moves again one position to the right. During all this, nothing on
tape 1 is changed. Finally, the postponed transition of M can be performed on
the first tape.

Formally, the machine N = (R,Γ, ε, q0, qacc, qrej) is defined as follows. Let

R := Q
�
∪ (Q× × {q′0, q′1, q′2}),

where Q× := Q \ {qacc, qrej}, and define

ε : (R \ {qacc, qrej})× Γ2 −→ R× (Γ×D)2

by

ε(q, σ1, σ2) :=
(
(q, q′0), σ1,−, σ2,−

)
∀q ∈ Q×, σ1, σ2 ∈ Γ,

ε
(
(q, q′0), σ, 1

)
:=
(
(q, q′0), σ,−, 0,→

)
∀q ∈ Q×, σ ∈ Γ,

ε
(
(q, q′0), σ1, σ2

)
:=
(
(q, q′1), σ1,−, 1,−

)
∀q ∈ Q×, σ1, σ2 ∈ Γ, σ2 6= 1,

ε
(
(q, q′1), σ1, σ2

)
:=
(
(q, q′1), σ1,−, σ2,←

)
∀q ∈ Q×, σ1, σ2 ∈ Γ, σ2 6= t,

ε
(
(q, q′1), σ,t

)
:=
(
(q, q′2), σ,−,t,→

)
∀q ∈ Q×, σ ∈ Γ,

ε
(
(q, q′2), σ1, σ2

)
:=
(
δ(q, σ1), σ2,−

)
∀q ∈ Q×, σ1, σ2 ∈ Γ.

It is clear that N decides the same language as M and uses space p(n) =
O(s(n)).
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We now prove claim 1. First note that the subroutine described above cannot
lead to any cycle, whatever the starting configuration is. Indeed, during this
procedure the state of N can only change in the order q → (q, q′0) → (q, q′1) →
(q, q′2) → q′ with some q, q′ ∈ Q. Further, in the state (q, q′0) the head either
moves to the right or the state changes, in the state (q, q′1) it moves either to
the left or the state changes, in the state (q, q′2) the state changes anyway. In all
cases the configuration changes, and at the end of the procedure it is different
from the one at the beginning unless δ(q, σ1) = (q, σ1,−).

So consider a cycle c0, . . . , cm in the configuration digraph ofM , i.e., ci−1 ` ci
for all 1 ≤ i ≤ m and c0 = cm. Let h denote the head position and u =
(σ0, . . . , σp) the content of tape 2, where p = p(n). We start with configura-
tion (c0, c10)

t, where c10 := (σ0, . . . , σh−1, (σh, q), σh+1, . . . , σp), and consider the
following cases:

1. σh = · · · = σp = 1. Then the head on tape 2 goes on moving to the right
until it leaves the legal region of the tape. Thus, we reach a vertex with
outdegree 0.

2. σj 6= 1 for some h ≤ j ≤ p and σi = t for some 0 ≤ i < h. Let i0 be
the maximal such i and j0 the minimal such j. Then the head moves to
the right switching 1’s to 0 as in case 1. Reaching position j0, the head
writes 1, enters state (q, q′1), moves to the left until it reaches position i0,
enters state (q, q′2), moves to the right, and enters the state of c1. Thus,
after this procedure the configuration (c0, c10)

t has changed to (c1, c11)
t with

c11 := (σ0, . . . , σi0 , (σ
′
i0+1, q

′), σ′i0+2, . . . , σ
′
p), where (σ′h, . . . , σ

′
j0

) represents
the binary number one bigger than (σh, . . . , σj0). Note that at the end the
head can be placed to the left of the original position, so that the whole
tape content can represent a number different than the original number
plus one. But nevertheless, the number on the tape has become greater.

3. σj 6= 1 for some h ≤ j ≤ p and σi 6= t for all 0 ≤ i < h. Then the machine
begins as in case 2, but as the head moves to the left, it does not find any
blank symbol, so that it leaves the legal region of the tape to the left.

In this way N runs through a sequence of configurations (c0, c10)
t, (c1, c11)

t, . . .,
each of which is different from the preceeding ones, since the numbers on tape 2
strictly increase. This process ends at some point with case 1 or case 3 above,
where a final configuration is reached. Thus, claim 1 follows. Claim 2 is obvious
by construction. 2

6.3 Embedding the Configuration Graph

In order to transfer combinatorial to topological properties, we have to represent
the configuration graph as a variety. In this section we study a technique to do
so. In [BC03] an undirected graph has been embedded in real affine space by
mapping vertices to points and edges to line segments joining them. Here we
map vertices to points in affine or projective space and edges to lines through
the two points corresponding to the vertices of that edge. Two distinct points
x, y ∈ An(Pn) define a unique line `(x, y) containing x and y. In the affine case
we have `(x, y) = {tx + (1 − t)y | t ∈ C}, and in the projective case `(x, y) =
{sx+ ty | s, t ∈ C}.
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Let G = (V,E) be a graph and ϕ : V −→ An(Pn) an injective map. We
assign to each edge e = {u, v} ∈ E the line ϕ(e) := `(ϕ(u), ϕ(v)).

Definition 6.5. The injective map ϕ : V −→ An(Pn) induces an embedding of
the graph G = (V,E) into An(Pn) iff

(a) ∀v ∈ V, e ∈ E (ϕ(v) ∈ ϕ(e)⇒ v ∈ e),

(b) ∀e, e′ ∈ E (e ∩ e′ = ∅ ⇒ ϕ(e) ∩ ϕ(e′) = ∅).

The edge skeleton ϕ(G) of the embedding is defined as the union of the lines
corresponding to all edges of G.

In other words, condition (a) says that each line ϕ(e) meets only the images
of vertices adjacent to e, whereas the condition (b) states that images of disjoint
edges don’t intersect. It is clear that a map fulfilling these conditions preserves
all combinatorial properties of the graph, in particular two vertices are connected
in the graph iff their images are connected in the edge skeleton.

As in Section 6.1 let M be a k-tape Turing machine with space bound p =
p(n), and Cn its set of configurations. We adopt the notations from there,
in particular recall that the extended tape alphabet Γ̃ = Γ ∪ (Γ × Q) was
defined on page 84. Now let S denote the vector space with basis Γ̃ over C, i.e.,
S =

⊕
γ∈eΓ Cγ. Define furthermore Vn :=

⊕k
ν=1

⊕p
i=0 S. This means that for

each tape, each head position, and each symbol we have a basis vector, so that
if we write γ ∈ Vn for some γ ∈ Γ̃, γ “remembers” its tape number and position
on the tape. We have dimVn = k|Γ̃|(p(n) + 1) = O(p(n)). Now define the map

ϕ : Cn −→ Vn, (cνi ) 7→
k∑

ν=1

p∑
i=0

cνi .

It is clear that ϕ is injective. Recall that Gn denotes the configuration graph
of M .

Lemma 6.6. Let M be a Turing machine which operates in each step on only
one tape. Then the map ϕ induces an embedding of Gn into Vn.

Proof. (i) Let c ∈ Cn be a configuration and e = {d, d̃} be an edge in the
configuration graph with ϕ(c) ∈ ϕ(e). Then there exists t ∈ C with∑

ν,i

cνi = ϕ(c) = tϕ(d) + (1− t)ϕ(d̃) =
∑
ν,i

(tdν
i + (1− t)d̃ν

i ),

hence cνi = tdν
i + (1 − t)d̃ν

i for all ν, i. Thus cνi , d
ν
i , d̃

ν
i are linearly dependent

basis vectors, so that at least two of them must coincide. Since d 6= d̃, there
exist ν, i with dν

i 6= d̃ν
i . Then cνi ∈ {dν

i , d̃
ν
i }, and t ∈ {0, 1}. From this it follows,

say ϕ(c) = ϕ(d), and from injectivity c = d.
(ii) Let e = {c, d} and ẽ = {c̃, d̃} be edges with ϕ(e) ∩ ϕ(ẽ) 6= ∅. We have to

show that e ∩ ẽ 6= ∅. By assumption there exist s, t ∈ C with∑
ν,i

(scνi +(1−s)dν
i ) = sϕ(c)+(1−s)ϕ(d) = tϕ(c̃)+(1−t)ϕ(d̃) =

∑
ν,i

(tc̃νi +(1−t)d̃ν
i ),
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hence scνi +(1−s)dν
i = tc̃νi +(1− t)d̃ν

i for all ν, i. Now, if s ∈ {0, 1} or t ∈ {0, 1},
then the claim follows from (i), so let’s assume s, t /∈ {0, 1}. If cνi = dν

i , then
cνi = tc̃νi + (1− t)d̃ν

i , and since t /∈ {0, 1} it follows cνi = c̃νi = d̃ν
i . By symmetry,

we have for all ν, i

cνi = dν
i ⇔ c̃νi = d̃ν

i ⇒ cνi = dν
i = c̃νi = d̃ν

i . (6.1)

In the case cνi 6= dν
i we have cνi ∈ {c̃νi , d̃ν

i }, since s 6= 0, and analogously dν
i ∈

{c̃νi , d̃ν
i }. So we have for all ν, i

cνi 6= dν
i ⇒ {cνi , dν

i } = {c̃νi , d̃ν
i }. (6.2)

By assumption, the Turing machine operates only on one tape, say on tape ν, so
that on all other tapes the content and head position do not change. It follows
that at most two entries of the configurations c and d differ (similarly for c̃
and d̃). We distinguish two cases.

1. In the transition c ` d the head on tape ν does not move, say it stays at
position h. Say, the state changes (possibly) from q to q′, and the symbol
σ1 is replaced by σ′1. Thus, if we write all entries of a configurations in
one line, we have the picture

c : c10 · · · cνh−1 (σ1, q) cνh+1 · · · ckp
>
d : c10 · · · cνh−1 (σ′1, q

′) cνh+1 · · · ckp.

From condition (6.1) it follows that the two configurations of the transition
c̃ ` d̃ have the same entries as c in all positions except (ν, h). Condition
(6.2) implies that in position (ν, h) the same entries occur, possibly in
different order. Hence, if they occur in the same order, we have that
c = c̃, if they occur in reversed order, c = d̃.

2. In the transition c ` d the head on tape ν moves from position h, say
to the right (the other case is treated similarly). Let the state change
from q to q′, the symbol σ1 be replaced by σ′1, and σ2 be the symbol at
position h+ 1. Thus, we have

c : c10 · · · cνh−1 (σ1, q) σ2 cνh+2 · · · ckp
>
d : c10 · · · cνh−1 σ′1 (σ2, q

′) cνh+2 · · · ckp.

As above, from conditions (6.1) and (6.2) it follows that except for the
trivial cases c = c̃ and c = d̃ we have, say

c̃ : c10 · · · cνh−1 (σ1, q) (σ2, q
′) cνh+2 · · · ckp

>
d̃ : c10 · · · cνh−1 σ′1 σ2 cνh+2 · · · ckp.

These are obviously no legal configurations. 2
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Now we derive an embedding into projective space. Let Pn := P(Vn) denote
the projectivisation of Vn, i.e., the set of all one-dimensional linear subspaces.
Then we have the canonical projection π : Vn \ {0} −→ Pn, mapping x 6= 0 to
the linear span of x. Now define

ϕ̃ : Cn −→ Pn, ϕ̃ := π ◦ ϕ, (6.3)

where ϕ is defined as above. Since the image vectors of ϕ are pairwise linearly
independent, ϕ̃ is injective. Furthermore, the following projective version of
Lemma 6.6 follows with an almost identical proof, one only has to replace the
coefficients 1− t and 1− s by new parameters t′ and s′, respectively.

Lemma 6.7. Let M be a Turing machine which operates in each step on only
one tape. Then the map ϕ̃ induces an embedding of Gn into Pn.

6.4 Equations for the Embedded Graph

In this section we give explicit equations describing the edge skeletons of the
embeddings constructed in the last section. Moreover, we will see that in case of
a polynomial space Turing machine one can construct these equations in poly-
nomial time (or even logarithmic space). Note that this is non-trivial, because
the configuration graph of such a machine has exponentially many vertices and
therefore edges, thus the straight-forward method would lead to an exponential
number of equations. The following technique has some resemblance with the
proof of the Theorem of Cook and Levin. We begin with the affine embedding.

Let M be a deterministic k-tape Turing machine. We use the notations of
Sections 6.1 and 6.3. Recall that Vn =

⊕
ν,i S, where S =

⊕
γ∈eΓ Cγ. Thus,

the vector space Vn is given by a natural basis consisting of k(p + 1) copies
of the elements of Γ̃, thus each element x ∈ Vn can be written uniquely as a
sum x =

∑k
ν=1

∑p
i=0

∑
γ∈eΓ xν

iγγ, so we will use the xν
iγ as coordinates. We will

identify a point
∑

γ x
ν
iγγ ∈ S with the vector (xν

iγ)γ and denote both by xν
i .

Let Xν
iγ for 1 ≤ ν ≤ k, 0 ≤ i ≤ p, γ ∈ Γ̃ be indeterminates, and denote by

Xν
i := (Xν

iγ)γ∈eΓ a family of indeterminates.
In the following a statement as Xν

i ∈ A for an algebraic subset A ⊆ S is a
concise way to express that the point of S described by the coordinate vector xν

i

belongs to A. For instance, Xν
i ∈ Γ will mean that there exists σ ∈ Γ such that

Xν
iσ = 1 and Xν

iγ = 0 for all γ ∈ Γ̃ \ {σ}. Thus it says that at position i of
tape ν there is a symbol of Γ.

To formulate the equations we construct an embedded graph describing all
possible local transitions of M from one configuration to another. For this
purpose we will introduce some notations. We set ∆ := Γ̃ \ Γ = Γ×Q. We call
a k × 2-matrix Σ = (Σν

i ) ∈ Γ̃k×2 a window. A pair of windows (Σ, Σ̃) is called
a legal transition iff there exist q, q′ ∈ Q, σ1

1 , . . . , σ
k
1 , σ̃

1
1 , . . . , σ̃

k
1 , σ

1
2 , . . . , σ

k
2 ∈ Γ,

and D1, . . . , Dk ∈ D = {←,−,→} such that

(a) δ(q, σ1
1 , . . . , σ

k
1 ) = (q′, σ̃1

1 , . . . , σ̃
k
1 , D1, . . . , Dk),

(b) for all 1 ≤ ν ≤ k we have

Dν =→ ⇒ (Σν
1 ,Σ

ν
2) = ((σν

1 , q), σ
ν
2 ) ∧ (Σ̃ν

1 , Σ̃
ν
2) = (σ̃ν

1 , (σ
ν
2 , q

′)),



90 CHAPTER 6. CONNECTEDNESS

Dν = − ⇒ (Σν
1 ,Σ

ν
2) = ((σν

1 , q), σ
ν
2 ) ∧ (Σ̃ν

1 , Σ̃
ν
2) = ((σ̃ν

1 , q
′), σν

2 ),

Dν =← ⇒ (Σν
1 ,Σ

ν
2) = (σν

2 , (σ
ν
1 , q)) ∧ (Σ̃ν

1 , Σ̃
ν
2) = ((σν

2 , q
′), σ̃ν

1 ).

We call a window Σ legal, iff there exists a window Σ̃ such that (Σ, Σ̃) or (Σ̃,Σ)
is a legal transition. Let W ⊆ Γ̃k×2 denote the set of legal windows.

We define the graph T with vertex set W and an edge {Σ, Σ̃} for each legal
transition (Σ, Σ̃). We embed T into Sk ⊕ Sk via the map

ϑ : W −→
k⊕

ν=1

2⊕
i=1

S, Σ 7→
∑
ν,i

Σν
i .

Now let Θ := ϑ(T ) denote the edge skeleton of this embedding. Note that this
graph does not depend on the input length, and it is in particular describable
by a constant number of equations.

Lemma 6.8. The edge skeleton ϕ(Gn) can be described by the following formula:∧
ν

∧
i<j<`

(Xν
i ∈ Γ ∨Xν

j ∈ Γ ∨Xν
` ∈ Γ) ∧ (6.4)

∧
ν

∧
i+1<j

(Xν
i ∈ Γ ∨Xν

j ∈ Γ) ∧ (6.5)

∧
ν

∑
i

∑
γ∈∆

Xν
iγ = 1

 ∧ (6.6)

∧
1<i1,...,ik<p

(Fi1,...,ik
∨Gi1,...,ik

), (6.7)

where

Fi1,...,ik
:=

∨
d∈{−1,0}k

(
(X1

i1+d1
, . . . , Xk

ik+dk
, X1

i1+d1+1, . . . , X
k
ik+dk+1) ∈ Θ∧

∧
ν

Xν
iν+(−1)dν+1 ∈ Γ

)
and

Gi1,...,ik
:=
∨
ν

(
(Xν

iν−1, X
ν
iν

) ∈ Γ2 ∨ (Xν
iν
, Xν

iν+1) ∈ Γ2
)
.

Furthermore, the above formula can be expressed as a conjunction of pO(1) equa-
tions of degree bounded by a constant.

Proof. First let x =
∑

ν,i x
ν
i with xν

i ∈ S be an element of the edge skele-
ton ϕ(Gn). We have to show that it satisfies the formula above. There exist
configurations c, c̃ ∈ Cn and t ∈ C with c ` c̃ and

x = tϕ(c) + (1− t)ϕ(c̃) =
∑
ν,i

(tcνi + (1− t)c̃νi ),

where c = (cνi )ν,i and c̃ = (c̃νi )ν,i. It follows xν
i = tcνi + (1 − t)c̃νi for all ν, i.

Let hν denote the head position on tape ν in configuration c, andDν ∈ {−1, 0, 1}
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correspond to the movement of the head. Then for all i /∈ {hν , hν + Dν} we
have cνi = c̃νi ∈ Γ, thus

xν
i = tcνi + (1− t)cνi = cνi ∈ Γ

for those i, hence (6.4) and (6.5). By the same reason we have
∑

γ∈∆ x
ν
iγ = 0

for all i /∈ {hν , hν +Dν}. To compute the sum for these special indices, assume
first that the head on tape ν moves (say, to the right). To simplify notation,
let γ1 := cνhν

, γ2 := cνhν+1, γ̃1 := c̃νhν
, and γ̃2 := c̃νhν+1. Then it follows γ1 ∈ ∆,

γ2 ∈ Γ, γ̃1 ∈ Γ, and γ̃2 ∈ ∆, hence∑
γ∈∆

xν
hνγ = xν

hνγ1
= t,

∑
γ∈∆

xν
hν+1,γ = xν

hν+1,eγ2
= 1− t,

and (6.6) follows in this case. If the head on tape ν stays at position hν , then
γ2 = γ̃2 ∈ Γ and γ1, γ̃1 ∈ ∆. Hence,∑

γ∈∆

xν
iνγ = xν

hνγ1
+ xν

hν eγ1
= 1,

and (6.6) follows also in this case. It remains to show formula (6.7). Let
1 < i1, . . . , ik < p, and assume that Gi1,...,ik

is not satisfied. This implies
∀ν xν

iν
/∈ Γ, i.e., the head stays at position iν or moves from/to this position.

Define dν := min{hν , hν+Dν}−iν . Then dν ∈ {−1, 0}, and iν+dν is the leftmost
position which is affected by the transition. It follows, that the windows

Σ :=

 c1i1+d1
c1i1+d1+1

...
...

ckik+dk
ckik+dk+1

 , Σ̃ :=

 c̃1i1+d1
c̃1i1+d1+1

...
...

c̃kik+dk
c̃kik+dk+1


are legal and (Σ, Σ̃)is a legal transition. Thus, (6.7) follows.

To show the other direction, let x =
∑

ν,i x
ν
i with xν

i ∈ S be an element
of Vn satisfying equations (6.4) to (6.7). From (6.4) it follows that for all ν
at most two of the components xν

i /∈ Γ, and from (6.5) that these must be
located at neighbouring positions. Hence, there exist iν such that xν

i ∈ Γ for all
i /∈ {iν , iν + 1} holds. Choose iν to be the maximal indices with this property.
From (6.6) we have ∑

i

∑
γ∈∆

xν
iγ =

∑
γ∈∆

(xν
iν ,γ + xν

iν+1,γ) = 1,

hence xν
iν

/∈ Γ or xν
iν+1 /∈ Γ for all ν. By maximality it follows xν

iν
/∈ Γ.

Then Gi1,...,ik
is not fulfilled, so that Fi1,...,ik

has to be. Hence, there exist
d1, . . . , dk ∈ {−1, 0}, a legal transition of windows (Σ, Σ̃), and t ∈ C with∑

ν

xν
iν+dν

+
∑

ν

xν
iν+dν+1 = t

∑
ν,i=1,2

Σν
i +(1−t)

∑
ν,i=1,2

Σ̃ν
i =

∑
ν,i=1,2

(tΣν
i +(1−t)Σ̃ν

i ),

hence xν
iν+dν

= tΣν
1 + (1 − t)Σ̃ν

1 and xν
iν+dν+1 = tΣν

2 + (1 − t)Σ̃ν
2 for all ν.

Furthermore xν
iν+(−1)dν+1 ∈ Γ, which just means, that the one of the three

components xν
iν−1, x

ν
iν
, xν

iν+1, which is not yet determined, must be an element
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of Γ. Now we can define the two configurations c := (cνi )ν,i and c̃ := (c̃νi )ν,i as
follows. Set jν := iν + dν ,

cνi :=

 xν
i , if i /∈ {jν , jν + 1}

Σν
1 , if i = jν

Σν
2 , if i = jν + 1

, c̃νi :=


xν

i , if i /∈ {jν , jν + 1}
Σ̃ν

1 , if i = jν
Σ̃ν

2 , if i = jν + 1
.

Then it is clear that c ` c̃ and

x =
∑
ν,i

xν
i

=
∑

ν,i 6=jν ,jν+1

cνi +
∑

ν

(tcνjν
+ (1− t)c̃νjν

) +
∑

ν

(tcνjν+1 + (1− t)c̃νjν+1)

= tϕ(c) + (1− t)ϕ(c̃).

It remains to transform the formula into a conjunction of equations. First
note that both Γ and Θ can be described by fixed sets of equations. Using the
general equivalence

s∨
i=1

(fi1 = 0 ∧ · · · ∧ fit = 0) ⇔
∧

1≤j1,...,js≤t

f1j1 · · · fsjs
= 0 (6.8)

one can write the formulas (6.4) and (6.5) as a conjunction of O(p3) equa-
tions of bounded degree. Formula (6.6) is already a conjunction of O(p) linear
equations. Since the total number of equations involved in formula Fi1,...,ik

is
constant, the rule (6.8) yields a conjunction of a constant number of equations
of bounded degree. The same holds for Gi1,...,ik

. It follows that formula (6.7) is
a conjunction of O(pk) equations of bounded degree. 2

Remark 6.9. It should be clear that (under the condition that p(n) can be
computed in logarithmic space in n) on input n, the equations of the above
lemma can be computed in space logarithmic in p(n).

Now we give the corresponding equations for the projective embedding. Sim-
ilarly as above we will write Xν

i ∈ A with an algebraic subset A ⊆ Pn for the
statement, that the point given by the homogeneous coordinates xν

i lies in A.
For instance, Xν

i ∈ π(Γ), where π : Vn \ {0} −→ Pn denotes the canonical pro-
jection, means that there exists σ ∈ Γ such that Xν

iσ 6= 0 and Xν
iγ = 0 for

all γ ∈ Γ̃ \ {σ}.

Lemma 6.10. The edge skeleton ϕ̃(Gn) can be described by the following for-
mula: ∧

ν

∧
i<j<`

(Xν
i ∈ π(Γ) ∨Xν

j ∈ π(Γ) ∨Xν
` ∈ π(Γ)) ∧ (6.9)

∧
ν

∧
i+1<j

(Xν
i ∈ π(Γ) ∨Xν

j ∈ π(Γ)) ∧ (6.10)

∧
ν

∧
i

∑
γ∈eΓ

Xν
iγ =

∑
j

∑
γ∈∆

Xν
jγ

 ∧ (6.11)
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∧
1<i1,...,ik<p

(Fi1,...,ik
∨Gi1,...,ik

), (6.12)

where

Fi1,...,ik
:=

∨
d∈{−1,0}k

(
(X1

i1+d1
, . . . , Xk

ik+dk
, X1

i1+d1+1, . . . , X
k
ik+dk+1) ∈ π(Θ)∧

∧
ν

Xν
iν+(−1)dν+1 ∈ π(Γ)

)
and

Gi1,...,ik
:=
∨
ν

(
(Xν

iν−1, X
ν
iν

) ∈ π(Γ)2 ∨ (Xν
iν
, Xν

iν+1) ∈ π(Γ)2
))

.

Furthermore, the above formula can be expressed as a conjunction of pO(1) ho-
mogeneous equations of degree bounded by a constant.

Proof. Note that formulas (6.9), (6.10), and (6.12) are analogous to the affine
versions (6.4), (6.5), and (6.7), only formula (6.11) is substantially different
from (6.6). Formula (6.6) ensures that on each tape there exists a position
containing a non-symbol. In the projective case formula (6.11) has an additional
task. It has to ensure that all the coordinates which are non-zero by the other
homogeneous equations, have the correct value.

The proof is similar to the proof of Lemma 6.8, we therefore only point out
the differences. Let x =

∑
ν,i x

ν
i with xν

i ∈ S be a representative of the point
π(x) ∈ ϕ̃(Gn), i.e., there exist configurations c = (cνi )ν,i and c̃ = (c̃νi )ν,i and
s, t ∈ C with c ` c̃ and

x = sϕ(c) + tϕ(c̃) =
∑
ν,i

(scνi + tc̃νi ).

Formulas (6.9), (6.10), and (6.12) are derived analogously as in the proof of
Lemma 6.8. To prove (6.11), note that

∑
γ x

ν
iγ = s+ t for all ν, i. Similarly as

in the affine case we get
∑

j

∑
γ∈∆ x

ν
jγ = s+ t, hence (6.11).

On the other hand, let x =
∑

ν,i x
ν
i with xν

i ∈ S be an element of Vn

satisfying equations (6.9) to (6.12). As in the proof of Lemma 6.8 it follows that
for all ν there exist iν with xν

iν
/∈ π(Γ) and tνi 6= 0, σν

i ∈ Γ such that xν
i = tνi σ

ν
i

for all i /∈ {iν , iν + 1}. From (6.11) we have that for each ν all the tνi have the
same value, say uν ∈ C×. As in the affine case we obtain d1, . . . , dk ∈ {−1, 0}, a
legal transition of windows (Σ, Σ̃), and s, t ∈ C such that xν

iν+dν
= sΣν

1+tΣ̃ν
1 and

xν
iν+dν+1 = sΣν

2 + tΣ̃ν
2 for all ν. Furthermore, from (6.11) it follows uν = s+ t

for all ν. Now we can define the two configurations c := (cνi )ν,i and c̃ := (c̃νi )ν,i

as in the proof of Lemma 6.8 and conclude c ` c̃, as well as x = sϕ(c) + tϕ(c̃).
The proof of the statement about the formula size is similar to the affine

case. 2

Remark 6.11. Under the condition that p(n) can be computed in logarithmic
space, the equations of the above lemma can be computed in space logarithmic
in p(n).
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6.5 Proof of Theorem 6.1

Now we use the constructions of Sections 6.3 and 6.4 to prove Theorem 6.1.

Proof. Let L ∈ PSPACE. Then L can be decided by a deterministic 2-tape
Turing machine M with the polynomial space bound p(n) and the properties
of Lemma 6.3. Let Gn = (Cn, En) be the configuration graph of M for a fixed
n ∈ N, and ϕ : Cn −→ Vn ' Cm its embedding as defined in Section 6.3, where
m = 2|Γ̃|(p(n) + 1). The aim now is to construct a variety with exactly two
connected components. For this purpose we modify the configuration graph by
adding two new vertices a, r and connecting all accepting configurations with a
and all other configurations with no successor with r. Formally, we proceed as
follows. Let A and R denote the sets of accepting and rejecting configurations,
respectively. Let further F be the set of configurations, where the next step
would lead the head of some tape out of the legal region. Note that the sets
A, R, and F can easily be described combinatorially. Now define the graph Hn

with vertex set Dn := {a, r}
�
∪ Cn and edge set En∪{{c, a} | c ∈ A}∪{{c, r} | c ∈

R ∪ F}. We embed this graph into the vector space Wn := Ca ⊕ Cr ⊕ Vn via
the map

ψ : Dn −→Wn, c 7→
{
ϕ(c) if c ∈ Cn,
c if c ∈ {a, r}.

Now we construct our reduction as follows. Let w ∈ {0, 1}n be an arbitrary
input. Define the variety Zw := ψ(Hn) ∪ `(ψ(i(w)), ψ(r)) ⊆ Wn, where i(w) ∈
Cn denotes the start configuration on input w. In other words, we connect
the image point of the start configuration with the point where all rejecting
paths end. Then we have by Lemma 6.2, that w ∈ L iff i(w) and an accepting
configuration of M (i.e., an element of A) are connected in Gn, which in turn
is equivalent to the property that i(w) and a are connected in Hn. Since by
Lemma 6.3 Gn has no cycles, and in Hn all vertices are connected to either a
or r, Hn has exactly two connected components. As a result we have

w ∈ L ⇔ Zw is connected.

By Lemma 6.8 we can compute equations for ϕ(Gn), and hence for Zw in loga-
rithmic space. Thus, the desired reduction is established. 2

Recall from page 55 that #CCQ denotes the problem of counting the con-
nected components of the zero set of rational polynomials over Q. An immediate
consequence of Theorem 6.1 is

Corollary 6.12. The problem #CCQ is FPSPACE-hard with respect to Turing
reductions.

Note that we understand FPSPACE to be the class of functions computable
in polynomial space, whose output size is required to be polynomially bounded.
This class was called FPSPACE(poly) in [Lad89].

Now we consider the projective versions of our problems.

ProjConnQ (Connectedness of projective varieties) Given homogeneous
polynomials f1, . . . , fr ∈ Q[X0, . . . , Xn], decide whether Z(f1, . . . , fr) ⊆ Pn is
connected.
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#ProjCCQ (Counting connected components of projective varieties) Given
homogeneous polynomials f1, . . . , fr ∈ Q[X0, . . . , Xn], compute the number of
connected components of Z(f1, . . . , fr) ⊆ Pn.

The following projective version of Theorem 6.1 is proved analogously.

Theorem 6.13. The problem ProjConnQ is PSPACE-hard with respect to
many-one reductions.

Corollary 6.14. The problem #ProjCCQ is FPSPACE-hard with respect to
Turing reductions.

6.6 Appendix. The Real Reachability Problem

In this appendix we prove that the reachability problem for compact real alge-
braic sets is PSPACE-hard. This fills a gap in the original FPSPACE-hardness
proof for the problem of counting the connected components of real algebraic
sets in [BC06]. There the proofs of the Lemmas 8.14 and 8.15 are false, which
are used to prove Proposition 8.16. We prove this proposition here with different
methods. Note that in this appendix we use the sparse encoding of polynomials
to match the setting of [BC06]. However, since the sparse size is bounded by the
dense size, our hardness result below is weaker than the corresponding result
for dense polynomials.

Let us first state the precise problem. We denote by ZR(f1, . . . , fr) the real
affine zero set of the polynomials f1, . . . , fr ∈ R[X1, . . . , Xn].

ReachR (Reachability of real algebraic varieties) Given sparse polynomials
f, g, h ∈ Z[X1, . . . , Xn], decide whether there exist points p ∈ ZR(f, g) and
q ∈ ZR(f, h) which lie in the same connected component of ZR(f).

We denote by CReachR the same problem restricted to the case where
ZR(f) is compact. We prove the following

Proposition 6.15. The problem CReachR is PSPACE-hard with respect to
many-one reductions.

Proof. Since projective varieties are compact, we use the projective embed-
ding of Section 6.3 and a standard realisation of the real projective space as an
affine variety. So let M be a polynomial space Turing machine (with one tape)
deciding the language L. We can assume that M has only one accepting con-
figuration cacc. Let the real projective space Pn and the map ϕ̃ : Cn −→ Pn be
defined as in (6.3) with R instead of C. According to Lemmas 6.7 and 6.10 this
map induces an embedding of the configuration graph of M , and its edge skele-
ton can be described by equations, whose sparse representation can be computed
in space logarithmic in n. Let m be the dimension of the projective space Pn,
so that Pn ' Pm. It is well known (see for instance [BCR98]) that Pm is homeo-
morphic to the following subvariety of the set of real (m+1)× (m+1)-matrices

Wm := {A ∈ R(m+1)×(m+1) |A = At, A = A2, trA = 1}.
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The homeomorphism maps a line in Rm+1 to the matrix describing the orthog-
onal projection onto the line with respect to the standard basis. It is explicitly
given by

h : Pm −→Wm, (x0 : · · · : xm) 7→
(
xixj

〈x, x〉

)
i,j

,

where 〈·, ·〉 denotes the standard scalar product on Rm+1. Now let Z ⊆ Pm

be an algebraic variety given by the homogeneous polynomials f1, . . . , fr ∈
R[X0, . . . , Xm]. Then its image h(Z) ⊆ Wm ⊆ R(m+1)2 is given as follows

h(Z) = {A = (aij) ∈Wm |
r∧

i=1

m∧
j=0

fi(a0j , . . . , amj) = 0}. (6.13)

Indeed, let x ∈ Pm be some zero of f1, . . . , fr. Then

fi(h(x)0j , . . . , h(x)mj) = fi

(
xj

〈x, x〉
x0, . . . ,

xj

〈x, x〉
xm

)
=

(
xj

〈x, x〉

)deg fi

fi(x) = 0

for all i, j. On the other hand, let A ∈Wm be some matrix satisfying equations
(6.13). This means that all column vectors of A lie in Z, which are just the
images of the canonical basis vectors under the linear map described by A.
Hence the line ` ⊆ Rm+1 which is the image of the projection defined by A lies
in Z, i.e., h−1(A) = ` ∈ Z.

Now we describe the desired reduction. On input w ∈ {0, 1}n we can
compute the homogeneous equations in sparse encoding for the edge skeleton
ϕ̃(Gn) ⊆ Pm of the configuration graph, use these equations to construct equa-
tions for Z := h(ϕ̃(Gn)) ⊆ R(m+1)2 according to (6.13), and use the usual
sum-of-squares trick to obtain one integer polynomial f describing Z. Fur-
thermore, we take the two configurations i(w) and cacc, compute their images
pw := h(ϕ̃(i(w))) and qacc := h(ϕ̃(cacc))) explicitly, from which we can easily
compute polynomials g and h describing the points implicitly, i.e., ZR(g) = {pw}
and ZR(h) = {qacc}. Then it is clear that the map w 7→ (f, g, h) is computable
in logarithmic space and w ∈ L iff (f, g, h) ∈ CReachR. 2



Chapter 7

Betti Numbers

To generalise the results of the last chapter we consider Betti numbers with
respect to singular homology. The kth Betti number bk(X) of a topological
space X is the rank of its kth singular homology group Hk(X) with integer
coefficients [Hat02, Spa66]. As in the last chapter we work in the affine or
projective space over C equipped with the Euclidean topology. Our results are
formulated for the following decision problems.

Betti(k)Q (kth Betti number of affine varieties) Given the polynomials
f1, . . . , fr ∈ Q[X0, . . . , Xn] and b ∈ N, decide whether bk(X) ≤ b, where X =
Z(f1, . . . , fr) ⊆ An.

ProjBetti(k)Q (kth Betti number of projective varieties) Given homo-
geneous polynomials f1, . . . , fr ∈ Q[X0, . . . , Xn] and b ∈ N, decide whether
bk(X) ≤ b, where X = Z(f1, . . . , fr) ⊆ Pn.

Now we can state our main result of this chapter.

Theorem 7.1. For each k ∈ N the problems Betti(k)Q and ProjBetti(k)Q
are PSPACE-hard with respect to many-one reductions.

In the next two sections we are going to prove Theorem 7.1. For topological
spaces X and Y we write X ≈ Y if X is homeomorphic to Y , and X ' Y if X
is homotopy equivalent to Y .

7.1 The Affine Case

To prove Theorem 7.1 for Betti(0)Q we note that ConnQ is a special case of
Betti(0)Q, hence this case follows from Theorem 6.1. For the induction step
we use the following construction inspired by a proof in [BC03]. Let X ⊆ An

be an affine variety. Define

Z(X) := (X × A1) ∪ (An × {±1}) (7.1)

as the union of the (complex) cylinder over X with the two hyperplanes L± :=
An×{±1}. Equations for Z(X) are given by the equations for X multiplied by
the polynomial X2

n+1 − 1, so they are easy to compute. We denote by b̃k(X)

97
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the rank of the kth reduced homology group H̃k(X). Note that the reduced
homology is defined only in the case X 6= ∅.

Proposition 7.2. For each k ∈ N and X 6= ∅ we have

b̃k(X) = b̃k+1(Z(X)) and bk(∅) = bk+1(Z(∅)) = 0.

Recall that if X 6= ∅, then b̃0(X) = b0(X) − 1 and b̃k(X) = bk(X) for all
k > 0. Hence it follows from the proposition that the map X 7→ (Z(X), 0) is
a many-one reduction from ConnQ to Betti(1)Q. Similarly the map (X, b) 7→
(Z(X), b) reduces Betti(k)Q to Betti(k + 1)Q for k > 0.
Proof of Proposition 7.2. We first treat the case X = ∅. Then Z(X) is just
the union L+ ∪ L−, hence 0 = bk(∅) = bk+1(Z(∅)) for all k ∈ N.

We prove the case X 6= ∅ by a Mayer-Vietoris argument guided by the
intuition for the corresponding construction over the reals. Let U+ ⊆ C be
the open halfplane defined by Im z > −ε, and analogously U− ⊆ C defined by
Im z < ε, where 0 < ε < 1. Then define the two open subsets

U := (X × U+) ∪ L+ and V := (X × U−) ∪ L−

of Z(X). Then it is clear that U ∪ V = Z(X) and U ∩ V ' X. It is also easy
to see that U and V are contractible (contract X ×U+, say, to X ×{1} ⊆ L+).
The Mayer-Vietoris sequence for reduced homology [Spa66, §4.6] yields

· · · → H̃k+1(U)⊕ H̃k+1(V )→ H̃k+1(U ∪ V )→ H̃k(U ∩ V )→ H̃k(U)⊕ H̃k(V ),

hence
0 −→ H̃k+1(Z(X)) −→ H̃k(X) −→ 0,

from which the claim follows. 2

7.2 The Projective Case

The proof of Theorem 7.1 for ProjBetti(k)Q is more involved. As a first step
we consider ProjBetti(1)Q. For this purpose we need the following

Lemma 7.3. Let T = (V,E) be a tree and ϕ : V −→ Pm induce an embedding
of T . Then H1(ϕ(T )) = 0.

Proof. We show this by induction on the number N of vertices. The cases N =
0, 1 are trivial, so let T = (V,E) be a tree on N + 1 vertices, and ϕ : V −→ Pm

induce an embedding of T . Let v be a leaf of T , e the unique edge adjacent to v
and consider the subgraph S := (V \ {v}, E \ {e}). Further, denote X := ϕ(T ),
let Uv be a contractible open neighbourhood of ϕ(v) in ϕ(e) ≈ S2, and US :=
X \ {ϕ(v)}. Then US is homotopy equivalent to ϕ(S), and X = Uv ∪ US . A
portion of the Mayer-Vietoris sequence for the excisive couple (Uv, US) [Spa66,
p. 189] is

H1(Uv)⊕H1(US) −→ H1(X) −→ H0(Uv ∩ US)
f−→ H0(Uv)⊕H0(US),
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where f = (i∗,−j∗) with the inclusions i : Uv ∩ US −→ Uv and j : Uv ∩ US −→
US . Now, H1(Uv) ' H1(US) ' 0 by contractibility and induction hypothesis.
Further, Uv ∩US , Uv, and US are connected, hence we have the exact sequence

0 −→ H1(X) −→ Z f−→ Z⊕ Z.

Since the kernel of f is trivial, H1(X) ' 0 follows. 2

Lemma 7.4. Let T = (V,E) be a tree, r ∈ V a vertex and ` ∈ V a leaf. Set
G := (V, Ẽ) with Ẽ := E ∪ {r, `}. Let ϕ : V → Pm induce an embedding of G.
Then H1(ϕ(G)) = Z.

Proof. Let e denote the unique edge in T adjacent to ` and e′ := {r, `} the
new edge of G. Denote X := ϕ(G) and p := ϕ(`). Let Up be a contractible
open neighbourhood of p in ϕ(e) ∪ ϕ(e′) ≈ S2 ∨ S2, and Ur := X \ {p}. The
Mayer-Vietoris sequence yields

H1(Up)⊕H1(Ur) −→ H1(Up ∪ Ur) −→ H0(Up ∩ Ur)
f−→ H0(Up)⊕H0(Ur),

where f is defined as in the proof of Lemma 7.3. The set Ur is homotopy
equivalent to the image of the tree T ′, which is T with edge e and vertex `
deleted. Hence H1(Ur) = 0 by Lemma 7.3 and H0(Ur) ' Z since a tree is
connected. Furthermore, we have Up∩Ur ' S1tS1, thus H0(Up∩Ur) ' Z⊕Z.
It follows that

0 −→ H1(X) −→ Z⊕ Z f−→ Z⊕ Z

is exact. The map f is given by f(x, y) = (x + y,−x − y) = (x + y)(1,−1),
hence its kernel is isomorphic to Z, so H1(X) ' Z. 2

Proposition 7.5. The problem ProjBetti(1)Q is PSPACE-hard with respect
to many-one reductions.

Proof. We will use basically the same reduction as in the proof of Theorem 6.1.
Let Hn, Wn, and ψ as defined there. Consider the projective space P(Wn) and
define ψ̃ := π◦ψ, where π : Wn\{0} −→ P(Wn) denotes the canonical projection.
Let Zw := ψ̃(Hn)∪`(ψ̃(i(w)), ψ̃(r)) and recall that Hn is a forest with two trees
rooted at a and r, respectively. Let Ta and Tr denote these trees. All we have
to prove is the following:

w ∈ L ⇔ b1(Zw) = 0. (7.2)

To do so, view Zw as the edge skeleton under the embedding ψ̃ of the graph Hn

with an additional edge between r and i(w). Let this modified graph be Mw.
For the first implication of (7.2) let w ∈ L. Then i(w) is a leaf in Ta. In Mw

this leaf is connected to the root of Tr, thus Mw is a tree and the claim follows
from Lemma 7.3.

For the other implication of (7.2) assume w /∈ L, hence i(w) is a leaf in Tr.
Since the Betti numbers are additive on connected components and a tree has
vanishing first Betti number by Lemma 7.3, we can consider the graph M̃w :=
Mw \ Ta. But this graph has exactly the form of G from Lemma 7.4, hence
H1(Zw) ' Z. 2
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To prove the corresponding result for higher Betti numbers we utilise the
following construction. Let X ⊆ Pn be a projective variety, and embed Pn ⊆
Pn+1 via (x0 : · · · : xn) 7→ (x0 : · · · : xn : 0). The (algebraic) suspension
Σ(X) ⊆ Pn+1 is by definition the join of X with one point in Pn+1 \ Pn, say
p := (0 : · · · : 0 : 1), i.e., Σ(X) is the union of all lines in Pn+1 joining some
point x ∈ X with p. The suspension is described by the same equations as X,
now considered as polynomials in C[X0, . . . , Xn+1]. Thus, the computation of
the suspension is trivial.

For us, the crucial property of the suspension is the following shift of Betti
numbers.

Proposition 7.6.

bk(X) = bk+2(Σ(X)) for all k ∈ N. (7.3)

With Proposition 7.6 it is clear that the mapping (X, b) 7→ (Σ(X), b) is a
reduction from ProjBetti(k)Q to ProjBetti(k + 2)Q. Together with Theo-
rem 6.13 and Proposition 7.5 this proves Theorem 7.1.

To prepare for the proof of Proposition 7.6 we will construct the blow-up
of Σ(X) and show that it is a sphere bundle over X. We proceed as follows.
Consider the projection centered at p as a rational map Pn+1 99K Pn, and let
ϕ : Σ(X) 99K X denote its restriction to Σ(X). Now we define Σ̃(X) ⊆ Pn+1×Pn

to be the graph of ϕ, i.e., the closure of the graph of ϕ|Σ(X)\{p} in Pn+1×Pn.
Let q : Σ̃(X) −→ Pn+1 be the restriction of the projection onto the first factor,
which is a closed map by compactness. This map (or simply the space Σ̃(X))
is called the blow-up of Σ(X) at p (cf. [Har92]). The set U := q−1(Σ(X) \ {p})
is dense in Σ̃(X), and

q : Σ̃(X) −→ Σ(X) (7.4)

is a surjection mapping U homeomorphically onto Σ(X) \ {p}. Now consider
the special fibre E := q−1(p). Then q induces a homeomorphism

Σ̃(X)/E ≈−→ Σ(X).

We also note that E = {(p, x) |x ∈ X}. Indeed, for x ∈ X we have

(p, x) = lim
s→0

((sx : 1), x)︸ ︷︷ ︸
∈U

, (7.5)

and this point lies in the closure of U , hence in E. On the other hand, each
point in U is of the form ((sx : t), x) with s, t ∈ C, s 6= 0 and x ∈ X. Since each
point (p, x) ∈ E can be written as a limit of points in U , it follows x ∈ X.

Our aim is to apply the Thom-Gysin sequence to Σ̃(X). In order to do this we
have to prove that it is an orientable sphere bundle in the sense of orientation
according to [Spa66, p. 259], which applies to general q-sphere bundles ξ =
(π : Ė −→ X). To define this notion, construct the corresponding (q + 1)-disc
bundle E −→ X with ∂E = Ė. By definition E is the mapping cylinder of the
bundle projection π together with the retraction of E to X as the new bundle
projection. By an orientation class of the q-sphere bundle ξ we mean a class
U ∈ Hq+1(E, Ė) with the property that its restriction Ux to each fibre pair
(Ex, Ėx) ≈ (Dq+1, Sq) over x generates Hq+1(Ex, Ėx) ' Z. If such a class Uξ

exists, ξ is called orientable, and in this case (ξ, Uξ) is called an oriented q-sphere
bundle.
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Lemma 7.7. Let ξ = (π : Ė −→ X) be an oriented q-sphere bundle, and Y ⊆ X
a subspace. Then π−1(Y ) −→ Y is also an orientable q-sphere bundle.

Proof. Let Ḟ := π−1(Y ), and F −→ Y be the corresponding q+1-disc bundle.
Then the claim follows immediately from the fact, that the diagram

(Ex, Ėx) ↪→ (E, Ė)
‖ ↑

(Fx, Ḟx) ↪→ (F, Ḟ )

commutes for each x ∈ Y . 2

Lemma 7.8. The space Σ̃(X) is an orientable 2-sphere bundle over X.

Proof. Define π : Σ̃(X) −→ X to be the restriction of the projection pr2 : Pn+1×
Pn −→ Pn onto the second factor.

To show that Σ̃(X) is locally trivial we use coordinates X0, . . . , Xn for Pn

and Z0, . . . , Zn+1 for Pn+1. Set Ui := X ∩ {Xi 6= 0} ⊆ X ⊆ Pn and Vi :=
π−1(Ui) for 0 ≤ i ≤ n. Then Vi = Σ̃(X) ∩ (Pn+1 × {Xi 6= 0}). Now define the
maps

ϕi : Vi −→ Ui × P1, (z, x) 7→ (x, (zi : zn+1)), (7.6)

as well as
ψi : Ui × P1 −→ Vi, (x, (s : t)) 7→ ((sx : txi), x).

One easily checks that these maps are inverse to each other, hence ϕi is a
homeomorphism.

It remains to show that Σ̃(X) is orientable. Denote by D(X) −→ X the
3-disc bundle corresponding to Σ̃(X). To prove the existence of an orientation
class, we use the embedding of X in the smooth complex manifold Pn, i.e., we
consider the diagram

(D(X), Σ̃(X)) ⊆ (D(Pn), Σ̃(Pn))
↓ ↓
X ⊆ Pn,

where the spaces on the right are smooth, hence orientable (as manifolds). Then
it is well-known that there exists the Thom class τ ∈ H3(D(Pn), Σ̃(Pn)) [Bre97,
p. 368]. Since Pn is also connected, it follows from Corollary 11.6 of [Bre97,
p. 370] that the restriction of τ to the fibre (D(Pn)x, Σ̃(Pn)x) of each point
x ∈ X is a generator. Hence the Thom class serves as an orientation class for
Σ̃(Pn) in the above sense. It follows from Lemma 7.7 that Σ̃(X) −→ X is also
orientable. 2

Proof of Proposition 7.6. Because of Lemma 7.8 we can apply the Thom-Gysin
sequence (Theorem 11 from Section 5.7 of [Spa66, p. 260]) to the orientable 2-
sphere bundle Σ̃(X) −→ X and get the exact sequence

· · · −→ Hk(X)
ρ−→ Hk+2(Σ̃(X)) π∗−→ Hk+2(X) Ψ−→ Hk−1(X) −→ · · ·
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The embedding i : X −→ Σ̃(X), x 7→ (p, x) satisfies π ◦ i = idX , hence π∗ ◦ i∗ =
idH∗(X), thus π∗ is surjective. Then Ψ is the zero map, hence ρ is injective, and
we get the short exact sequence

0 −→ Hk(X) −→ Hk+2(Σ̃(X)) −→ Hk+2(X) −→ 0, (7.7)

which splits by i∗. It follows

Hk+2(Σ̃(X)) = Hk+2(X)⊕Hk(X) for k ∈ Z. (7.8)

To compute the homology of Σ(X) recall that it is homeomorphic to the
quotient space Σ̃(X)/E. We want to apply Theorem 2.13 from [Hat02, p. 114],
where we need the following technical condition.

Claim E = i(X) is a deformation retract of a neighbourhood in Σ̃(X).
LetD ⊆ P1 be an open disc around (0 : 1). Define D̃ :=

⋃n
i=0 ϕ

−1
i (Ui×D), where

the ϕi are the trivialisations defined in (7.6). Then D̃ is an open neighbourhood
of E, and for all (z, x) ∈ D̃ we have zn+1 6= 0. Now define

r : D̃ −→ E, (z, x) 7→ (p, x).

Then r ◦ i = idE , thus r is a retraction. To show that r is homotopic to the
identity on D̃, define

H : [0, 1]× D̃ −→ D̃, Ht(z, x) := ((tz0 : · · · : tzn : zn+1), x).

Then H is continuous, and we have H0(z, x) = ((0 : zn+1), x) = (p, x) = r(z, x),
as well as H1(z, x) = (z, x) for all (z, x) ∈ D̃. Thus, the claim is proved.

Now we can apply Theorem 2.13 from [Hat02, p. 114], and get the following
exact sequence.

· · · −→ Hk+2(X) i∗−→ Hk+2(Σ̃(X))
q∗−→ Hk+2(Σ(X)) ∂−→ Hk+1(X) −→ · · ·

Here q : Σ̃(X) −→ Σ(X) is the projection (7.4). The above sequence is originally
formulated for the reduced homology, but we restrict to the case k ≥ 0.

Now we use (7.8) and deduce from (7.7), that ker q∗ = im i∗ = Hk+2(X)
via the isomorphism (7.8). Hence, q∗ induces an injective map Hk(X) −→
Hk+2(Σ(X)). Since i∗ is injective, we have 0 = ker i∗ = im ∂, hence ker ∂ =
Hk+2(Σ(X)) = im q∗, thus q∗ is surjective. It follows

Hk(X) = Hk+2(Σ(X)) for k ≥ 0,

completing the proof of Proposition 7.6. 2
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Chapter 8

Counting Irreducible
Factors

In this part we study the complexity of counting irreducible components for
fixed input parameters like the number of variables, the number of equations,
or their maximal degree. We focus here on the number of equations, which turns
out to be crucial. When input parameters are fixed, then the choice of the input
data structure matters. We therefore add superscripts to specify the encoding
of the input polynomials. We first discuss the case of a single equation. As
before k denotes a field of characteristic zero.

#IFk (Counting absolutely irreducible factors) Given a polynomial f ∈
k[X1, . . . , Xn], compute the number of its pairwise coprime absolutely irre-
ducible factors.

We will show

Theorem 8.1. We have

1. #IF
(dense)
k ∈ FNC2

k for each field k of characteristic zero,

2. #IF
(dense)
Q ∈ FNC2.

As described in the introduction, it was shown in [BCGW93] that #IF
(dense)
Q

lies in FNC.
Note that Theorem 4.1 implies that #IF

(slp)
Q ∈ FPSPACE. With regard to

the optimality of this statement, we know even less than for the problem #ICQ
(cf. Proposition 4.2). The following lower bound is implied by [Pla77]. Here a
function f : {0, 1}∞ → {0, 1}∞ is said to be C-hard for a decisional complexity
class C iff its graph Γf = {(x, f(x)) |x ∈ {0, 1}∞} is C-hard.

Proposition 8.2. The problem #IF
(slp)
Q is coNP-hard with respect to polyno-

mial time many-one reductions.

Proof. In [Pla77] it is shown that the following problem is coNP-hard (with
respect to polynomial time many-one reductions).

105
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Given univariate polynomials f1, . . . , fr ∈ Z[X] in sparse representation and
N ∈ N in binary, decide whether

∏
i fi has exactly N roots (counted without

multiplicities).

This problem is easily reducible to #IF
(slp)
Q . Indeed, given sparse polynomi-

als f1, . . . , fr ∈ Z[X], one can easily obtain slps computing the fi. From these
one easily computes an slp for g :=

∏
i fi, and g has N roots iff (g,N) lies in

the graph of #IF
(slp)
Q . 2

Open question. Is #IF
(slp)
Q #P-hard?

Now we come to the proof of Theorem 8.1. As mentioned in the introduction
Gao [Gao03] has proposed a partial differential equation, whose solution space
has a basis corresponding to the absolutely irreducible factors of a bivariate
polynomial. We show that this solution space is the first de Rham cohomology
of the hypersurface complement defined by the polynomial. From this charac-
terisation we construct an efficient parallel algorithm for computing the number
of factors. Gao’s idea goes back to [Rup86], who formulated his results in the
language of differential forms. In our proof we will closely follow Ruppert’s
approach.

8.1 Cohomology of a Hypersurface Complement

For the characterisation of the factors of a polynomial f we will use the algebraic
de Rham cohomology of the hypersurface complement defined by f . Recall that
in §1.2.1 we have introduced Kähler differentials. Recall also that k denotes a
field of characteristic zero, and K := k.

For f ∈ k[X] we denote by An
f := An \ Z(f) the complement of the zero set

of f . The ring of regular functions on An
f is given by the localisation K[X]f

of the polynomial ring K[X] at the multiplicatively closed subset consisting of
powers of f . We consider the de Rham complex of K[X]f over K, which is

Ω•K[X]f /K : 0 −→ K[X]f
d0

−→ Ω1
K[X]f /K

d1

−→ Ω2
K[X]f /K

d2

−→ · · · .

The first algebraic de Rham cohomology H1(An
f ) of An

f is defined as the first
cohomology vector space of the de Rham complex Ω•K[X]f /K , i.e.,

H1(An
f ) = ker d1/im d0.

We will prove that H1(An
f ) has a basis consisting of “logarithmic differen-

tials”, by which we mean forms df
f with f ∈ K[X]. First note that logarithmic

differentials are closed, as

d
(

df
f

)
= d

(
1
f

df
)

= d
(

1
f

)
∧ df = − 1

f2
df ∧ df = 0

for all f ∈ K[X]. Another nice feature of logarithmic differentials is that they
behave additively on products, i.e.,

d(fg)
fg

=
df
f

+
dg
g

for all f, g ∈ K[X], (8.1)
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which follows immediately from Leibnitz’ rule.
The following is a refinement of a structure theorem for closed 1-forms in

ΩK(X1,X2)/K due to Ruppert [Rup86]. Its usefulness for algorithmic purposes
was first discovered by Gao [Gao03].

Theorem 8.3. Let f =
∏s

i=1 f
ei
i be the factorisation of f ∈ k[X] into pairwise

coprime absolutely irreducible polynomials. Then
df1
f1

, . . . ,
dfs

fs

induce a basis of H1(An
f ). In particular, the dimension of H1(An

f ) equals the
number of absolutely irreducible factors of f .

Example 8.4. In the following examples we freely use that over K := C the alge-
braic de Rham cohomology of An

f coincides with singular cohomology [Gro66].

1. Let f := X ∈ C[X], i.e., A1
X = C× ' S1. Then H1(A1

X) = CdX
X .

2. Let f := X1 · · ·Xn ∈ C[X1, . . . , Xn], i.e., An
f = (C×)n. Then the Künneth

Theorem implies the stronger statement

Hk(An
f ) =

⊕
i1<···<ik

C
dXi1

Xi1

∧ · · · ∧ dXik

Xik

for 0 ≤ k ≤ n.

3. The previous example can be generalised to complements of hyperplane
arrangements (cf. [Bri73, OS80, JR91]). Let V =

⋃N
i=1Hi be a hyperplane

arrangement, where Hi = Z(αi) with linear forms αi ∈ (Cn)∗. Then
An \ V = An

f with f =
∏

i αi. It is known that the whole cohomology
ring H∗(An

f ) is generated by the forms dαi

αi
, 1 ≤ i ≤ N . Note that in

general there are more relations than in the previous example. One has
one relation for each linearly dependent subset of the αi (cf. [OS80, JR91]).

8.2 Structure Theorem for Closed 1-Forms

In this subsection we prove Ruppert’s structure theorem for closed 1-forms in
ΩK(X)/K [Rup86]. Recall that K is algebraically closed and has characteristic
zero. We will need the following technical lemma.

Let L := K(X), and L an algebraic closure of L. Since L is a separable
algebraic extension of L (as L has characteristic zero), it follows from [ZS58,
§17, Corollary 2’, p. 125] that the partial derivations ∂

∂Xi
: L → L, 1 ≤ i ≤ n,

can be uniquely extended to derivations (which we denote with ∂
∂Xi

again) of L.

Lemma 8.5. If α ∈ L satisfies ∂α
∂Xi

= 0 for all 1 ≤ i ≤ n, then α ∈ K.

Proof. Let α ∈ L. By multiplying with a suitable element of K[X], we can
assume that the minimal polynomial T ∈ L[Y ] of α is an element of K[X,Y ].
From T (X1, . . . , Xn, α) = 0 we obtain

0 =
∂

∂Xi

(
T (X1, . . . , Xn, α)

)
=

∂T

∂Xi
(X1, . . . , Xn, α) +

∂T

∂Y
(X1, . . . , Xn, α)

∂α

∂Xi

for any 1 ≤ i ≤ n. The assumption ∂α
∂Xi

= 0 implies that ∂T
∂Xi

annihilates α,
hence T | ∂T

∂Xi
. Since degY

∂T
∂Xi
≤ degY T , it follows ∂T

∂Xi
= 0. As this holds for

all 1 ≤ i ≤ n, we have T ∈ K[Y ], thus α ∈ K, since K is algebraically closed. 2
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Theorem 8.6 (Ruppert). For each differential form ω ∈ ΩK(X)/K with dω =
0 there exist polynomials h1, . . . , hm, g, h ∈ K[X] and scalars λ1, . . . , λm ∈ K
such that

ω =
m∑

i=1

λi
dhi

hi
+ d
( g
h

)
. (8.2)

Remark 8.7. As noted above each ω of the form (8.2) is closed. It follows
from (8.1) that in (8.2) we can assume the hi to be irreducible and pairwise
coprime.

Proof. We prove the theorem by induction on n. In the case n = 1 each
form ω = fdX with f ∈ K(X) is trivially closed since Ω2

K(X)/K = 0. To prove
that ω can be written in the form (8.2), decompose f into partial fractions

f =
m∑

i=1

ki∑
j=1

aij

(X − ci)j
+ b,

where aij , ci ∈ K and b ∈ K[X]. Now let c ∈ K[X] with c′ = b, where ′ denotes
derivation. Also the quotients aij

(X−ci)j for j > 1 can be integrated, so set

Φ :=
m∑

i=1

∑
j>1

1
1− j

· aij

(X − ci)j−1
+ c ∈ K(X).

With λi := ai1 and hi := X − ci it follows

f =
m∑

i=1

ai1

X − ci
+

m∑
i=1

∑
j>1

aij

(X − ci)j
+ b =

m∑
i=1

λi
h′i
hi

+ dΦ′,

from which (8.2) follows.
Let the closed 1-form ω be given in the form ω = 1

f

∑
` g`dX` with g`, f ∈

K[X]. Then the closedness relation dω = 0 is equivalent to

∂

∂X`

(
g`′

f

)
=

∂

∂X`′

(g`

f

)
for 1 ≤ `′ < ` ≤ n. (8.3)

Now we consider multivariate polynomials in K[X] as univariate polyno-
mials in L[X1], where L := K(X2, . . . , Xn) is the fraction field in all but one
indeterminate. Let F ⊆ L be a splitting field of f ∈ L[X1]. Then there exist
u ∈ L× and pairwise distinct c1, . . . , cm ∈ F with f = u

∏m
i=1(X1 − ci)ki . Now

we develop the rational coefficients from (8.3) into partial fractions

g`

f
=

m∑
i=1

ki∑
j=1

a`
ij

(X1 − ci)j
+ b` for all 1 ≤ ` ≤ n, (8.4)

where a`
ij ∈ F and b` ∈ F [X1].

According to the remarks preceding Lemma 8.5 we have the partial deriva-
tions ∂

∂Xi
: F [X1]→ F [X1] for 1 < i ≤ n, which map F into itself and the usual
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∂
∂X1

: F [X1]→ F [X1], which vanishes on F . Applying these to (8.4) yields

∂

∂X`

(
g1
f

)
=

m∑
i=1

ki∑
j=1

(
∂a1

ij

∂X`
· 1
(X1 − ci)j

+
ja1

ij

(X1 − ci)j+1
· ∂ci
∂X`

)
+
∂b1

∂X`

=
m∑

i=1

∂a1
i1

∂X`
· 1
X1 − ci

+
ki−1∑
j=1

(
∂a1

i,j+1

∂X`
+ ja1

ij

∂ci
∂X`

)
· 1
(X1 − ci)j+1

+
kia

1
i,ki

(X1 − ci)ki+1
· ∂ci
∂X`

)
+
∂b1

∂X`
for all 1 < ` ≤ n and

∂

∂X1

(
g`

f

)
=−

m∑
i=1

ki∑
j=1

ja`
ij

(X1 − ci)j+1
+

∂b`

∂X1
for all 1 < ` ≤ n.

Using (8.3) for `′ = 1 and the uniqueness of the partial fraction decomposition
it follows

∂a1
i1

∂X`
= 0,

∂a1
i,j+1

∂X`
+ ja1

ij

∂ci
∂X`

= −ja`
ij (8.5)

for all ` > 1. By Lemma 8.5 it follows a1
i1 ∈ K for all 1 ≤ i ≤ m. Analogously,

using (8.3) for general `′ < ` we obtain

∂b`
′

∂X`
=

∂b`

∂X`′
for all 1 ≤ `′ < ` ≤ n. (8.6)

Hence the form
∑

` b
`dX` is closed.

By applying automorphisms of F over L to (8.4) and using the uniqueness
of the partial fractions it follows

ci, ci′ conjugate over K ⇒ a`
ij , a

`
i′j conjugate over K (8.7)

for all i, i′, j, `. In particular, since a1
i1, a

1
i′1 ∈ K, they must coincide. From the

same argument we conclude b` ∈ L[X1].
Thus there exists c ∈ L[X1] with ∂c

∂X1
= b1. Since ∂

∂X1
(b`− ∂c

∂X`
) = 0 by (8.6),

we have b` − ∂c
∂X`
∈ L for all ` > 1, hence

η :=
n∑

`=1

(
b` − ∂c

∂X`

)
dX` =

n∑
`=2

(
b` − ∂c

∂X`

)
dX` ∈ ΩL/K .

From (8.6) we conclude that η =
∑

` b
`dX` − dc is closed. From the induction

hypothesis applied to η we obtain νj ∈ K, fj ∈ K[X2, . . . , Xn] for 1 ≤ j ≤ q,
and r ∈ K(X2, . . . , Xn) with

η =
q∑

j=1

νj
dfj

fj
+ dr. (8.8)

Now as in the univariate case we want to integrate as many terms as possible
in the partial fraction decomposition of g1

f with respect to X1, i.e., we want to
write

g1
f

=
m∑

i=1

a1
i1

X1 − ci
+

∂Φ
∂X1

. (8.9)
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This works analogously with

Φ :=
m∑

i=1

ki∑
j=2

1
1− j

·
a1

ij

(X1 − ci)j−1
+ c,

as one easily checks using (8.4). By applying all automorphisms of F over L
to Φ and using (8.7) we see that Φ is a rational function in K(X). Furthermore,

m∑
i=1

−a1
i1

X1 − ci
∂ci
∂X`

+
∂Φ
∂X`

+ b` − ∂c

∂X`
(8.10)

=
m∑

i=1

 −a1
i1

X1 − ci
∂ci
∂X`

+
ki∑

j=2

( −a1
ij

(X1 − ci)j

∂ci
∂X`

+
1

1− j

∂a1
ij

∂X`

(X1 − ci)j−1

)+ b`

=
m∑

i=1

ki∑
j=1

(
−a1

ij

∂ci
∂X`

− 1
j
·
∂a1

i,j+1

∂X`

)
(X1 − ci)−j + b`

(8.5)
=

g`

f

for all ` > 1.
On the other hand, let J ⊆ {1, . . . ,m} be the index set corresponding to

some conjugacy class of the ci and set uJ :=
∏

i∈J(X1 − ci) ∈ K(X). Then

1
uJ

∂uJ

∂X`
=
∑
i∈J

−1
X1 − ci

∂ci
∂X`

for ` > 1.

Since µJ := a1
i1 = a1

i′1 for all i, i′ ∈ J by (8.7), the first sum in (8.10) splits into
the sum of the terms µJ

1
uJ

∂uJ

∂X`
over all conjugacy classes J . Hence, using (8.9),

ω =
n∑

`=1

g`

f
dX` =

∑
J

µJ
duJ

uJ
+ dΦ + η.

Using (8.8) it follows

ω =
∑

J

µJ
duJ

uJ
+

q∑
j=1

νj
dfj

fj
+ dr + dΦ,

which is of the desired form. 2

8.3 Proof of Theorem 8.3

We introduce a notation for divisibility of differential forms by polynomials. For
f ∈ K[X] and ω ∈ ΩK[X]/K we will write f |ω iff there exists η ∈ ΩK[X]/K with
ω = fη. Equivalenty, f |ω iff f |gi for all 1 ≤ i ≤ n, where ω =

∑
i gidXi. We

will frequently use

Lemma 8.8. Let f, g ∈ K[X] with f |gdf . Then each irreducible factor of f
divides g.
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Proof. Let h be an irreducible factor of f with multiplicity e ∈ N, i.e., there
exists h̃ with heh̃ = f and h - h̃. Then

gdf = g(eh̃he−1dh+ hedh̃).

From f |gdf it follows he|egh̃he−1dh. Since h - h̃, this implies h|gdh. This means
h|g ∂h

∂Xi
for all i, from which we conclude h|g. 2

Proof of Theorem 8.3. We have already checked that the forms dfi

fi
indeed

induce elements of the cohomology, i.e., they are closed.
Then we show that the dfi

fi
are linearly independent. Let

∑
i λi

dfi

fi
= 0 with

λ1, . . . , λr ∈ K. Then for each j we have

fj |

(∏
`

f`

)∑
i

λi
dfi

fi
, hence fj |λj

∏
` f`

fj
dfj ,

and by Lemma 8.8 fj |λj

∏
` 6=j f`, thus λj = 0.

Now we prove that these forms generate the cohomology. Let

ω =
1
f `

n∑
i=1

gidXi ∈ ΩK[X]f /K with gi ∈ K[X]

be a closed 1-form. We can assume ` > 0, since otherwise ω would be a closed
1-form with polynomial coefficients, which is exact.

By Theorem 8.6 there exist h1, . . . , hm, g, h ∈ K[X] and λ1, . . . , λm ∈ K×

such that

ω =
1
f `

n∑
i=1

gidXi =
m∑

j=1

λj
dhj

hj
+ d
( g
h

)
, (8.11)

where we can assume the hj to be irreducible and pairwise coprime according
to Remark 8.7, also assume g and h coprime. Our aim is to prove that

1. each hj is one of the fi,

2. each irreducible factor of h is one of the fi

The second claim means that h divides some power of f , hence g/h ∈ K[X]f .
Thus the decomposition (8.11) yields the representation of ω as a linear combi-
nation of the dfi

fi
modulo an exact form, and we are done.

Set H :=
∏

j hj and multiply (8.11) with f `Hh2 to obtain

Hh2
n∑

i=1

gidXi = f `h2
m∑

j=1

λj
H

hj
dhj + f `H(hdg − gdh). (8.12)

Since each hj divides H, it follows hj |f `h2λj
H
hj

dhj , hence hj |f `h2λj
H
hj

by
Lemma 8.8. Since λj 6= 0, hj is irreducible, and hj - H/hj , we conclude

hj |fh for all 1 ≤ j ≤ m. (8.13)

On the other hand, (8.12) implies that h|f `Hgdh, and by Lemma 8.8 we have

p irreducible factor of h ⇒ p|fH, (8.14)
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since g and h are coprime.
Note that by (8.13) the second of the above claims implies the first, so we

prove the second. Let p be an irreducible factor of h with multiplicity e > 0,
and write h = peu, where p - u. Then

d
( g
h

)
=

dg
h
− e g

hp
dp− g

hu
du.

Multiplication of (8.11) with G := f`Hh2

pe = f `Hhu yields

Hhu
∑

i

gidXi = f `hu
∑

j

λj
H

hj
dhj + f `Hudg − ef

`H

p
ugdp− f `Hgdu.

By (8.14) this is a form with polynomial coefficients. Also by (8.14) it fol-
lows that p|e f`H

p ugdp, hence by Lemma 8.8 p| f
`H
p , thus p2|f `H, and since H

is squarefree, it follows p|f . Hence we haved shown claim 2, which completes the
proof. 2

8.4 Characterising Exact Forms

The implications of Theorem 8.3 are twofold. First it shows that the dimension
of H1(An

f ) is the number of irreducible factors of the polynomial f . But since

dfi

fi
=

1
f

n∑
j=1

f

fi

∂fi

∂Xj
dXj ,

it also shows that this space has a basis induced by forms with denominator f
and numerators of degree < d := deg f . Hence, all elements of the cohomology
have representatives of this form.

Now one might hope that it were possible to ignore exact forms with the
help of some maybe more restricted degree condition. This means that the
de Rham cohomology would be isomorphic to the space of closed 1-forms with
denominator f and numerators satisfying this degree condition. Note that each
cohomology class in H1(An

f ) is represented by a form ω = 1
f

∑
i gidXi satisfying

the degree condition

degXj
gi ≤ degXj

f for j 6= i, degXi
gi < degXi

f. (8.15)

This condition was utilised by Gao to make the representatives unique. In
particular he proved that under the condition gcd(f, ∂f

∂X1
) = 1 the space of

closed 1-forms satisfying (8.15) is isomorphic to H1(An
f ). However, this is not

true in the general case, as the following example shows.

Example 8.9. Let f = g2 with irreducible g ∈ K[X]. Then the closed form

ω :=
dg
g2

=
1
f

n∑
i=1

∂g

∂Xi
dXi

satisfies (8.15). But as ω = d
(
− 1

g

)
is exact, its cohomology class is zero.
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Hence we also have to consider the exact forms. Our aim now is to char-
acterise the subspace of exact forms with denominator f and numerators of
degree < d. For that purpose we show that each such form is the differential of
a rational function g/f with deg g < d+ 1.

Lemma 8.10. Let f, g, g1, . . . , gn ∈ K[X], and ` ∈ N with f - g and f - gi for
some i such that

d
(
g

f `

)
=

1
f

n∑
i=1

gidXi.

Then ` = 1.

Proof. We have

d
(
g

f `

)
=
fdg − `gdf

f `+1
,

hence by assumption

fdg − `gdf = f `
∑

i

gidXi. (8.16)

If ` = 0, then (8.16) implies f |gi for all i, which contradicts the assumption.
Hence ` ≥ 1.

Let f =
∏s

i=1 f
ei
i be the factorisation of f . Since by (8.16) we have f |gdf ,

Lemma 8.8 implies fi|g for all i. Then (8.16) implies with (8.1)

f `|(fdg − `gdf) = fdg − `gf
∑

i

ei
dfi

fi
= f

(
dg − `

∑
i

ei
g

fi
dfi

)
,

hence
f `−1|

(
dg − `

∑
i

ei
g

fi
dfi

)
.

Now h := gcd(f, g) factorises as h =
∏s

i=1 f
µi

i with 1 ≤ µi ≤ ei. Writing g = hu
with some u we conclude

f `−1|(udh+ hdu− `
∑

i

ei
g

fi
dfi) = hdu+

∑
i

(µi − `ei)u
h

fi
dfi. (8.17)

Now assume ` ≥ 2. Then µj−`ej ≤ −ej < 0 for all j, and fµj

j |u h
fj

dfj by (8.17).

Hence fj |u by Lemma 8.8, thus fµj+1
j |g, which implies µj = ej . Since this holds

for all j, it follows f |g, which contradicts our assumption. Therefore ` = 1. 2

Lemma 8.11. Let f, g, g1, . . . , gn ∈ K[X] with deg gi < d := deg f for all i
such that

d
(
g

f

)
=

1
f

n∑
i=1

gidXi.

Then deg g < d+ 1.
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Proof. As in (8.16) we have fdg − gdf = f
∑

i gidXi. Now let e := deg g and
write g = g0 + · · ·+ge and f = f0 + · · ·+fd with gi, f i homogeneous of degree i.
Then

f
∑

i

gidXi =
d∑

i=0

e∑
j=0

(f idgj − gjdf i) =
d+e∑
`=0

∑
i+j=`

(f idgj − gjdf i). (8.18)

In the trivial case ge

fd ∈ K we have e = d < d+ 1, so assume ge

fd /∈ K. Then

d
(
ge

fd

)
=
fddge − gedfd

(fd)2
6= 0.

It follows that the form (8.18) contains a coefficient of degree d + e − 1, thus
d+ e− 1 ≤ d+ maxi deg gi < 2d, hence e < d+ 1. 2

8.5 Proof of Theorem 8.1

Let f ∈ k[X] be of degree d. Consider the finite dimensional vector spaces

Ω :=

{
1
f

∑
i

gidXi ∈ ΩK[X]f /K | deg gi < d for all i

}
,

Z :={ω ∈ Ω |dω = 0},

B :=
{
ω ∈ Ω | ∃g ∈ K[X] with d

(
g

f

)
= ω

}
The linear map Z ↪→ ker d1 � H1(An

f ) induces a map Z/B → H1(An
f ). This

map is surjective by Theorem 8.3 and injective by Lemmas 8.10 and 8.11, hence

H1(An
f ) ' Z/B.

Thus dimH1(An
f ) = dimZ − dimB.

For the form ω = 1
f

∑
i gidXi ∈ Ω the condition dω = 0 is equivalent to

f

(
∂gi

∂Xj
− ∂gj

∂Xi

)
+ gj

∂f

∂Xi
− gi

∂f

∂Xj
= 0 for 1 ≤ i < j ≤ n. (8.19)

The equations (8.19) form a homogeneous linear system of equations over k in
the coefficients of the polynomials g1, . . . , gn. Its size is polynomial in

(
d+n

n

)
,

hence by §1.5.1 one can compute dimZ in FNC2
k.

Now consider the space B. For ω ∈ Ω as above and g ∈ K[X]≤d the condition

d
(

g
f

)
= ω is equivalent to

f
∂g

∂Xi
− g ∂f

∂Xi
− fgi = 0 for 1 ≤ i ≤ n. (8.20)

The equations (8.20) form a homogeneous linear system over k in the coefficients
of the polynomials g, g1, . . . , gn. Let

L := {(g, g1, . . . , gn) ∈ K[X]≤d ×K[X]n≤d−1 | (8.20) holds}
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be its solution space. Consider the projection

π : L −→ K[X]n≤d−1, (g, g1, . . . , gn) 7→ (g1, . . . , gn).

By definition its image π(L) is isomorphic to B. Its kernel is the one-dimensional
space

N :=
{

(g, 0, . . . , 0) |d
(
g

f

)
= 0
}

= K(f, 0, . . . , 0),

thus
B ' L/N,

hence dimB = dimL− 1. So it suffices to compute the dimension of L, which
is the solution space of the linear system (8.20), whose size is also polynomial
in
(
d+n

n

)
. By §1.5.1 this proves #IF

(dense)
k ∈ FNC2

k.
The statement for the case k = Q follows from §1.5.1 by observing that the

linear systems (8.19) and (8.20) have coefficients of bitsize O(` log d), where ` is
the maximal bitsize of the coefficients of f . 2

8.6 Counting Irreducible Components Revisited

Our results about counting irreducible factors can be used for counting the
irreducible components of a variety and yield a second proof of Theorem 4.1.
This proof uses the Chow form associated to an equidimensional projective
variety. We first recall its definition and basic properties. For further details we
refer to [Sha77].

We identify the space of linear forms on Pn with Pn by associating to a point
u = (u0 : · · · : un) ∈ Pn the linear form L(u,X) := u0X0 + · · · + unXn up to
a constant factor. A linear subspace L ⊆ Pn of codimension m + 1 is the zero
set of m+ 1 linearly independent linear forms L(ui, X) = ui0X0 + · · ·+ uinXn,
0 ≤ i ≤ m. Now let V ⊆ Pn be an equidimensional projective variety of
dimension m. The intersection of V with a linear subspace of codimension m+1
is almost always empty, and the set of such subspaces meeting V constitutes a
variety. More precisely, consider the incidence variety

Γ := {(x, u0, . . . , um) ∈ Pn × (Pn)m+1 |x ∈ V ∧ L(u0, x) = · · · = L(um, x) = 0}

and the projection

π : Pn × (Pn)m+1 −→ (Pn)m+1, (x, u0, . . . , um) 7→ (u0, . . . , um).

Then in [Sha77] it is shown that π(Γ) ⊆ (Pn)m+1 is a hypersurface. Thus,
introducing m+1 groups of new variables Ui = (Ui0, . . . , Uin), 0 ≤ i ≤ m, there
exists a unique (up to a scalar factor) squarefree polynomial FV ∈ k[U0, . . . , Um]
defining π(Γ). This polynomial is called the Chow form associated to V . It is
homogeneous of degree deg V in each group Ui of variables and symmetric with
respect to permutations of the vectors Ui. Furthermore, to the decomposition
V = V1 ∪ · · · ∪ Vs into irreducible components corresponds the factorisation
FV = FV1 · · · FVs of the corresponding Chow form.

In [GH91a] it is proved that one can compute the Chow form of a projective
variety in parallel polynomial time. Caniglia [Can90] considered an extended



116 CHAPTER 8. COUNTING IRREDUCIBLE FACTORS

notion of Chow forms of arbitrary unmixed ideals (not necessarily radicals),
where the exponents of the primary components appear as multiplicities of the
factors in the Chow form. He showed that this Chow form can also be computed
in parallel polynomial time for unmixed ideals. The state of the art algorithm
for computing the Chow form has been given in [JKSS04], where an slp for
the Chow form of a projective variety given by slps is computed in randomised
polynomial time in the input size and the degree of the input system. All these
papers show the following Theorem.

Theorem 8.12. Given homogeneous polynomials f1, . . . , fr ∈ k[X0, . . . , Xn]
of degree at most d defining a projective variety V , one can compute for each
0 ≤ m ≤ n the Chow form of the m-equidimensional component of V in parallel
time (n log(rd))O(1) and sequential time (rd)nO(1)

.

Proof of Theorem 4.1. 1. Let the projective variety V := Z(f1, . . . , fr) be
given by the homogeneous polynomials f1, . . . , fr ∈ k[X0, . . . , Xn], and denote
by Fm := FVm

for each 0 ≤ m ≤ n the Chow form of the m-equidimensional
component Vm of V . According to Theorem 8.12 one can compute the Fm in
parallel polynomial time. By Theorem 8.1 we can compute the number im of
irreducible factors of Fm in parallel polylogarithmic time in the size of Fm, thus
we can compute im in parallel polynomial time in the input size, even though
the size of Fm is exponential in general. As remarked above, the number of
irreducible components of V is i0 + · · · + in. Thus #ProjICk ∈ FPARk. The
statement about the affine case follows from Proposition 4.3.

2. This follows from the transfer result Theorem 2.3. 2



Chapter 9

Fixed Number of Equations

We study the complexity of #ICk for a fixed number of equations in the powerful
slp encoding of polynomials together with a bound on their formal degrees in
unary. As usual we understand slps to be division-free. In this chapter k denotes
either C or Q and K = C.

#IC(r)(d-slp)
k Given a fixed number r of polynomials f1, . . . , fr ∈ k[X]

encoded as slps and an upper bound on their formal degrees in unary, compute
the number of irreducible components of their zero set Z(f1, . . . , fr) ⊆ An.

#ProjIC(r)(d-slp)
k Given a fixed number r of homogeneous polynomials

f1, . . . , fr ∈ k[X] encoded as slps and an upper bound on their formal degrees
in unary, compute the number of irreducible components of their projective zero
set Z(f1, . . . , fr) ⊆ Pn.

Notice that in these problems the formal degree is part of the input and
not fixed. Our main results about these problems are stated in the following
theorem. For the definition of the randomised parallel complexity class FRNC
see Definition 2.5.

Theorem 9.1. We have

1. #IC(r)(d-slp)
C ,#ProjIC(r)(d-slp)

C ∈ FPC,

2. #IC(r)(d-slp)
Q ,#ProjIC(r)(d-slp)

Q ∈ FRNC.

Theorem 9.1 follows with general principles from a fundamental generic par-
simonious reduction of #ProjIC(r)(d-slp)

C to the case of a fixed dimension of
the ambient space. In the next section we show how this works.

9.1 Proof of the Main Results

As an auxiliary problem we use #ProjIC(r)(d-slp)
k restricted to a fixed dimen-

sion n of the projective ambient space. We denote this restricted version by
#ProjIC(r, n)(d-slp)

k . The cornerstone of the proof of Theorem 9.1 is the fol-
lowing proposition. Recall that �∗ denotes a generic parsimonious reduction
(Definition 2.10).

117
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Proposition 9.2. We have #ProjIC(r)(d-slp)
C �∗ #ProjIC(r, r+1)(d-slp)

C via
a reduction map π such that πQ is computable in FNC.

Before proving this proposition, we show how it implies Theorem 9.1. First
note that by Remark 4.4 there is a Turing reduction from #IC(r)(d-slp)

C to
#ProjIC(r+1)(d-slp)

C , hence it suffices to consider the projective case. Now we
observe that for a fixed ambient dimension we have already a parallel polylog-
arithmic time algorithm.

Proposition 9.3. We have #ProjIC(r, n)(d-slp)
C ∈ FNCC.

Proof. Given slps of length at most L and with formal degree at most d encod-
ing the homogeneous polynomials f1, . . . , fr ∈ C[X], we compute their dense
representation according to Proposition 1.27 in parallel time O(logL log dL +
n2 log2 d) and sequential time (Ldn)O(1). Then we use Theorem 4.1 to compute
the number of irreducible components of V in parallel time (n log d)O(1) and
sequential time dnO(1)

. Since n is fixed and d is bounded by the input size, we
obtain FNCC-algorithms. 2

Now by Theorem 2.11 the generic parsimonious reduction from Proposi-
tion 9.2 yields a Turing reduction from #ProjIC(r)(d-slp)

C to #ProjIC(r, r +
1)(d-slp)

C . Together with Proposition 9.3 this proves the first part of Theorem 9.1.
Note that Theorem 2.11 is the point where we loose the good parallelisation
properties of our algorithms.

We prove the second part of Theorem 9.1 similarly as the first part with
Proposition 9.2. Although one can avoid randomisation by analysing the bitsize
growth of the known algorithms, we can easily obtain the following result by
one of our general transfer principles.

Proposition 9.4. We have #ProjIC(r, n)(d-slp)
Q ∈ FRNC.

Proof. First note that the output size of #ProjIC(r, n)(d-slp)
Q is logarithmic,

since the number of irreducible components of a projective variety in Pn is
bounded by dn, where d is the maximal degree of the input polynomials (cf.
Remark 1.7). Since a bound on d is part of the input and the ambient dimension
n is fixed, this quantity is polynomial in the input size.

We thus prove the more general statement, that for any function f : C∞ → N
with logarithmic output size on binary inputs f ∈ FNCC implies fQ ∈ FRNC.
More precisely, the assumption is |fQ(x)| = O(log |x|) for all x ∈ {0, 1}∞.
Recall from the beginning of §2.1 that fQ = γ ◦ f ◦ δ, where δ interprets pairs of
integers as their quotients and γ encodes rational numbers as reduced fractions
written in binary. Choose c > 0 with |fQ(x)| ≤ c log |x| for |x| � 0, and
denote λ(n) := dc log ne. The key point of our assumption is that for an input
x ∈ {0, 1}n there is only a polynomial number of candidates y ∈ {0, 1}λ(n) for
fQ(x). Note that for all x ∈ {0, 1}n and y ∈ {0, 1}λ(n)

fQ(x) = y ⇔ f ◦ δ(x) = δ(y). (9.1)

Given x and y, property (9.1) can be tested in NCC, since δ and f can be
computed in FNCC. We conclude from Theorem 2.8 that one can test (9.1) in
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FRNC. Note that such a test has a two-sided error, i.e., its result can be wrong
in either case.

To compute fQ(x) on input x ∈ {0, 1}n, we proceed as follows. For each
y ∈ {0, 1}λ(n) (in parallel) test whether (9.1) holds. If all these tests are negative,
output an arbitrary y. If there is at least one y with a positive test, output an
arbitrary of these y.

Of course, when implementing this algorithm, we have to replace the arbi-
trary choices by definite ones, e.g., we choose the first y (with positive test)
in some fixed order. To show that this is indeed an FRNC-algorithm, we have
to analyse the error probability. Let 0 < q < 1 be such that the test (9.1)
has error probability ε ≤ qn+λ(n) (note that the input for that test is (x, y)).
Denote by yr the output of the algorithm, and by B the event that all tests are
negative. Then the failure probability of the algorithm is

P (yr 6= f(x)) = P (yr 6= f(x) ∧B) + P (yr 6= f(x) ∧B),

where we write B for the complement of B. We bound the first of these proba-
bilities by

P (B) ≤ P (test for y = f(x) negative) ≤ ε.
The second probability is bounded by the conditional probability

P (yr 6= f(x) |B) ≤ ε,

since this is exactly the failure probability of the test for yr. We conclue P (yr 6=
f(x)) ≤ 2ε ≤ 2qn+λ(n). Since λ(n) ≥ c log n, we have 2qλ(n) ≤ 2nc log q ≤ 1 for
n� 0, hence the error probability of our algorithm is bounded by qn for n� 0.
This proves fQ ∈ FRNC. 2

With the help of Theorem 2.17 the generic reduction from Proposition 9.2
yields #ProjIC(r)(d-slp)

Q �R #ProjIC(r, r + 1)(d-slp)
Q . Since FRNC is closed

under randomised parsimonious reductions (Lemma 2.15), this implies together
with Proposition 9.4 that #ProjIC(r)(d-slp)

Q ∈ FRNC. By Lemma 4.5 the reduc-

tion from #IC(r)(d-slp)
Q to #ProjIC(r + 1)(d-slp)

Q is computable in FNC, hence

also #IC(r)(d-slp)
Q ∈ FRNC.

The following sections are devoted to the proof of Proposition 9.2.

9.2 Transversality

For a lack of reference we give a detailed definition of transversality appropriate
for our purposes. It generalises the one of [Mum76, pp. 80-81] to reducible
varieties. Note that we even allow varieties of mixed dimensions. Although
everything in this section works for arbitrary algebraically closed coordinate
fields, we work over C.

Recall that for two subspaces M,N of a finite dimensional vector space L
we have dim(M ∩N) ≥ dimM + dimN − dimL. This statement is generalised
to varieties by the Dimension Theorem (cf. page 19).
Definition 9.5.

1. Let M,N be two subspaces of a finite dimensional vector space L. We say
that M and N are transversal (in L) and write M t N iff

dim(M ∩N) = dimM + dimN − dimL.
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2. Let V,W ⊆ Pn be projective varieties. We say that V and W are transver-
sal in x ∈ V ∩W and write V tx W iff x is smooth in V and W , and TxV
is transversal to TxW in TxPn.

3. Let V,W ⊆ Pn be a two varieties. We say that V and W are transversal
and write V t W iff for almost all x ∈ V ∩W we have V tx W .

Note that V ∩W = ∅ implies V t W . We first show that if two varieties
intersect transversally in a point, then the intersection is smooth at that point,
and the tangent space of the intersection is the intersection of their tangent
spaces at that point.

Lemma 9.6. Let V,W ⊆ Pn be varieties. If V tx W holds in x ∈ V ∩W ,
then x is smooth in V ∩W and Tx(V ∩W ) = TxV ∩ TxW .

Proof. First note that we have for all x ∈ V ∩W (no matter whether V and W
are transversal or not)

dimx(V ∩W ) ≥ dimx V + dimxW − n. (9.2)

Indeed, let Z ⊆ V and X ⊆W be irreducible components of maximal dimension
with x ∈ Z and x ∈ W , i.e., dimx V = dimZ and dimxW = dimX. Then by
the Dimension Theorem (page 19)

dimx(V ∩W ) ≥ dimx(Z ∩X) ≥ dimZ + dimX − n = dimx V + dimxW − n.

Now let x ∈ V ∩W with V tx W . Since by definition x is smooth in V , we
have dimx V = dimTxV , and similarly for W . Then

dimx(V ∩W ) ≤ dimTx(V ∩W ) ≤ dim(TxV ∩ TxW )
= dimTxV + dimTxW − n = dimx V + dimxW − n.

With (9.2) equality follows. This proves all claims of the Lemma. 2

Transversal varieties intersect properly.

Proposition 9.7. Let V,W ⊆ Pn be varieties with V t W . Then the intersec-
tion is proper, i.e., for all x ∈ V ∩W we have

dimx(V ∩W ) = dimx V + dimxW − n. (9.3)

Proof. Note that by the proof of Lemma 9.6 the formula (9.3) holds in all
points x ∈ V ∩W with V tx W . To show the formula for all points, recall that
the function V −→ N, x 7→ dimx V is upper semi-continuus, i.e., for all α ∈ R
the set {x ∈ V | dimx V ≤ α} is open in V .

Now let x ∈ V ∩ W be arbitrary. Let Z be an irreducible component of
V ∩W of maximal dimension with x ∈ Z, i.e., dimx(V ∩W ) = dimZ. By the
upper semi-continuity, the sets UV := {y ∈ V | dimy V ≤ dimx V } and UW :=
{y ∈W | dimy W ≤ dimxW} are open and non-empty, since x ∈ UV ∩UW . By
transversality there exists an open dense subset U ⊆ V ∩W such that V ty W
for all y ∈ U . By Lemma 9.6 we have U ∩ Z ⊆ Reg (Z). Furthermore U ∩ Z is
open in Z and non-empty. The sets UV ∩Z and UW ∩Z are also open in Z and
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contain x, hence Ũ := U ∩ UV ∩ UW ∩ Z is a non-empty open subset of Z. For
all y ∈ Ũ we have

dimx(V ∩W ) = dimZ ≤ dimy(V ∩W ) = dimy V + dimy W − n
≤ dimx V + dimxW − n,

where in the last step we used y ∈ UV ∩ UW . With (9.2) this proves (9.3). 2

Let us gather some relationships between local and global transversality
statements, which follow easily from Definition 9.5 and Proposition 9.7.

Lemma 9.8. Let V,W ⊆ Pn be varieties.

1. If V t W , then for all x ∈ V ∩W we have dimx V + dimxW ≥ n.

2. If V and W are equidimensional and transversal, then V ∩W is equidi-
mensional of dimension dimV + dimW − n.

3. Let V =
⋃

i Vi and W =
⋃

j Wj be the irreducible decompositions of V
and W , respectively. Then

∀i, j Vi t Wj ⇒ V t W.

4. Let V and W be equidimensional and V =
⋃

i Vi and W =
⋃

j Wj be their
irreducible decompositions. Then

V t W ⇒ ∀i, j Vi t Wj .

5. Let V = V0 ∪ · · · ∪ Vn and W = W0 ∪ · · · ∪Wn be the equidimensional
decompositions of V and W . Then

∀m,m′ Vm t Wm′ ⇒ V t W.

Proof.

1. By Proposition 9.7 we have dimx V + dimxW − n ≥ 0 in all points x ∈
V ∩W .

2. Follows immedately from Proposition 9.7.

3. First assume W to be irreducible and let Vi t W for all i. Let Ui ⊆ Vi∩W
be an open dense subset with Vi tx W for all x ∈ Ui. Then the Ui are
pairwise disjoint, since Ui ⊆ Reg (Vi). Furthermore,

⋃
i Ui is dense in

V ∩W . If x ∈ Ui, then Vi tx W implies V tx W .
Now, if W is also reducible, and Vi t Wj for all i, j, fix j and conclude
from the first case that V t Wj . Again by the first case V t W .

4. Fix i, j. By Proposition 9.7 we have for x ∈ Vi ∩Wj

dimx(Vi ∩Wj) ≤ dimx(V ∩W ) = dimx V + dimxW − n
= dimx Vi + dimxWj − n,

where in the last step we have used the equidimensionality of V and W .
It follows that Vi∩Wj is equidimensional of the same dimension as V ∩W
(use part 2). Hence each irreducible component of Vi∩Wj is a component
of V ∩W . Now let U ⊆ V ∩W be an open dense subset with V tx W
for all x ∈ U . Then U meets each component of Vi ∩Wj and is therefore
dense therein. It follows Vi t Wj .
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5. Writing Vm =
⋃

i Vmi and Wm =
⋃

j Wmj for the irreducible decomposi-
tions of Vm and Wm, respectively, we have

∀m,m′ Vm t Wm′ ⇒ ∀m,m′, i, j Vmi t Wm′j ⇒ V t W

by parts 3 and 4. 2

The converse of Part 3 of the above lemma does not hold in general, as the
following example shows.

Example 9.9. Let V = V1 ∪ V2 ⊆ P3 be the union of the plane V1 = Z(X2)
and the parabola V2 = Z(X0X1 − X2

2 , X3), and L = Z(X1). Then V ∩ L =
Z(X1, X2), where V ∩xL is satisfied in all points x of V ∩L except (1 : 0 : 0 : 0),
hence V t L. But, of course, we don’t have V2 t L (cf. Figure 9.1).

Note also that V2 ∩ L is a proper intersection, but not transversal.

Figure 9.1: The plane L is transversal to V1 ∪ V2, but not to V2.

Remark 9.10. Let V ⊆ Pn be an irreducible variety of dimension m. It is
known [Mum76] that for s ≤ n−m almost all L ∈ Gs(Pn) satisfy L t V (which
in the case s < n −m is equivalent to L ∩ V = ∅). This statement generalises
to reducible varieties and arbitrary dimensions, which we will see later.

9.3 Explicit Genericity Condition for Bertini

The main idea in the proof of Proposition 9.2 is the Theorem of Bertini [Mum76,
Corollary 4.18]. It says that an irreducible projective variety V of dimension m
and a generic linear subspace L of codimension m − 1 meet transversally in
an irreducible curve. This easily implies that if V is m-equidimensional, the
number of irreducible components is preserved under intersections with generic
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linear subspaces of codimension m − 1. As our aim is to apply the concept
of generic parsimonious reductions (cf. §2.2), we want to identify an explicit
condition on L under which V ∩ L has the same number of components as V .
It is not enough to require transversality, as the following example shows.

Example 9.11. Let V = Z(X0X3 −X2
1 ) ⊆ P3 be the cylinder over a parabola,

and consider the plane L = Z(X0−X3). Then V is irreducible and V t L, but
V ∩ L = Z(X1 +X3, X0 −X3) ∪ Z(X1 −X3, X0 −X3) is reducible.

Figure 9.2: The plane L cuts V into two components.

To formulate our genericity condition, we introduce some notation. Re-
call from §1.1.4 that we denote by Gs(Pn) the Grassmannian variety consisting
of all linear subspaces of dimension s. Linear subspaces L ⊆ Pn are defined
by linear forms α1, . . . , αn−s, which we identify with the row vectors given by
their coefficients. We write the row vectors αi as a matrix α = (αij)

n−s,n
i=1,j=0 ∈

C(n−s)×(n+1). We parametrise all linear subspaces of dimension ≥ s by such
matrices α ∈ C(n−s)×(n+1), and write Lα for the linear subspace defined by α.

For Lβ ∈ Gs(Pn), β ∈ C(n−s)×(n+1), the projection centered at Lβ is defined
by

pβ : Pn \ Lβ −→ Pn−s−1, x 7→ (β1(x) : · · · : βn−s(x)).

Although denoted by pLβ
in the literature, we denote the projection by pβ , since

this map clearly depends on the choice of β.
Now let V be m-equidimensional and Lβ ∈ Gn−m−1(Pn) with Lβ ∩ V = ∅.

Let p : V → Pm be the restriction of pβ to V . We define the set of branching
values (cf. §1.1.3)

Bβ(V ) := {y ∈ Pm | p is not smooth over y}.

Note that Bβ(V ) depends on the choice of β, whereas the set p−1(Bβ(V )) does
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not. It follows from the algebraic version of Sard’s Lemma (cf. [Mum76, Lemma
3.7] or [Har92, Proposition 14.4]) that Bβ(V ) is a proper subvariety of Pm.

For the general case we fix a variety V , which is defined by r homogeneous
polynomials. Then the dimension of each irreducible component of V is bounded
from below by n−r. Hence the decomposition into equidimensional components
reads as V = Vn−r ∪ · · · ∪ Vn, where dimVm = m or Vm = ∅. Therefore we
consider linear subspaces L ⊆ Pn of dimension r + 1. Our genericity condition
for L is

n∧
m=n−r

(
∃β ∈ C(m+1)×(n+1) ∃` ∈ G1(pβ(L)) : rkβ = m+ 1 ∧ Lβ ⊆ L ∧

Lβ ∩ Vm = ∅ ∧ ` t Bβ(Vm)
)
. (9.4)

Note that dim pβ(L) ≥ 1. We denote condition (9.4) by BV (L). Before we
proceed further, we show why V and L from Example 9.11 do not satisfy BV (L).
Example 9.12. (continued) In the situation of Example 9.11 we have n = 3, V
is irreducible of dimension m = 2, hence M = Lβ according to formula (9.4)
is a point in L \ V . One easily sees that for each such M the set of branching
values B := Bβ(V ) is the union of two lines meeting in some point of pβ(L).
Furthermore, since dimL = 2, we have dim pβ(L) = 1. Thus, each line ` in pβ(L)
coincides with pβ(L), so ` meets B in a singular point, hence not transversally.
(cf. Figure 9.3).

The plane L′ := Z(X0 +X2 −X3) satisfies BV (L′) (cf. Figure 9.4).

Figure 9.3: The line pβ(L) meets B in a singular point.

Now we show that BV (L) implies that L meets V transversally.

Lemma 9.13. Let L be a linear subspace of dimension r+ 1 satisfying BV (L).
Then L t V .
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Figure 9.4: For the plane L′ we have pβ(L′) t B.

Proof. By part 5 of Lemma 9.8 it is enough to prove that Vm t L for each m,
so we can assume V to be m-equidimensional. Let M := Lβ be as in (9.4), and
set p := pβ |V , L′ := pβ(L), B := Bβ(V ), and U := p−1(L′ \B). We show

1. V tx L for all x ∈ U , and

2. U is dense in p−1(L′) = V ∩ L.

1. By definition of B each x ∈ U is a smooth point of V , and the differential
dxp : TxV → Tp(x)Pm is an isomorphism. So dxp maps TxV ∩ TxL injectively
into Tp(x)L

′, hence dim(TxV ∩TxL) ≤ dimL′ = m+r+1−n. Since the opposite
inequality is trivial, equality follows.

2. Since there exists ` ⊆ L′ with ` t B, it follows that L′ ∩ B is a proper
subvariety of L′, hence dim(B ∩L′) < dimL′. From the Noether Normalisation
Lemma in the form [Mum76, Corollary (2.29)] we conclude that p : V → Pm has
finite fibres. Thus

dim p−1(B ∩ L′) = dim(B ∩ L′) < dimL′ = m+ r + 1− n ≤ dimZ

for each irreducible component Z of V ∩L. It follows that U∩Z = Z\p−1(B∩L′)
is not empty. Hence U meets each irreducible component of V ∩ L, i.e., U is
dense in V ∩ L.

By definition of transversality it follows L t V . 2

Next we have to prove that condition BV (L) is indeed generically fulfilled.

Lemma 9.14. Almost all L ∈ Gr+1(Pn) satisfy BV (L).
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Proof. Since a finite intersection of dense subsets is dense, it is sufficient to
prove that for each m ≥ n− r the set U of all L ∈ Gr+1(Pn) with

∃β ∈ C(m+1)×(n+1) ∃` ∈ G1(pβ(L)) : rkβ = m+ 1 ∧ Lβ ⊆ L ∧
Lβ ∩ Vm = ∅ ∧ ` t Bβ(Vm) (9.5)

is dense. So we can assume V to be m-equidimensional.
Almost all β ∈ C(m+1)×(n+1) satisfy rkβ = m + 1 and Lβ ∩ V = ∅ by

Remark 9.10. Furthermore, for each such β almost all lines ` ⊆ Pm meet
Bβ(V ) transversally. Finally, having such β and ` at hand, each linear subspace
L ⊇ p−1

β (`) of dimension r + 1 does the job.
To make this precise, consider the set W of all (β, `) ∈ X := C(m+1)×(n+1)×

G1(Pm) with rkβ = m+1, Lβ ∩V = ∅, and ` t Bβ(V ). Then W is dense in X.
Now the regular map

ϕ : X → Gn−m+1(Pn), (β, `) 7→ p−1
β (`)

is easily seen to be surjective. It follows that ϕ(W ) is dense in Gn−m+1(Pn).
Consider the subvariety Γ := {(L,L′) |L ⊇ L′} of Gr+1(Pn)×Gn−m+1(Pn)

and the two projections

Γ
pr1↙ ↘

pr2

Gr+1(Pn) Gn−m+1(Pn) .

Then the set W ′ := {(L,L′) ∈ Γ |L′ ∈ ϕ(W )} = pr−1
2 (ϕ(W )) is dense in Γ.

Since pr1 is surjective, also pr1(W ′) ⊆ U is dense in Gr+1(Pn). This proves our
Lemma. 2

Remark 9.15. From Lemmas 9.13 and 9.14 it follows that almost all linear
subspaces of any dimension are transversal to V .

Notice that for Lemma 9.14 we have not used the condition ` t BM (Vm)
of (9.4). Our crucial result is proved by via connectivity properties. For this
purpose we need two lemmas. The first one relates the connected components
of a dense subset of a variety with its irreducible components.

Lemma 9.16. Let V be an algebraic variety and U an open dense subset of V
with U ⊆ Reg (V ). Then the number of irreducible components of V equals the
number of connected components of U .

Proof. Let V = V1 ∪ · · · ∪ Vt be the irreducible decomposition of V . Since U
is dense in V , U meets each Vi. Since U ⊆ Reg (V ), each point of U lies
in only one Vi. Hence, U =

⋃t
i=1(U ∩ Vi) is a disjoint decomposition into

nonempty closed subsets. Since U ∩Vi is open in Vi, it is connected by [Mum76,
Corollary (4.16)]. It follows that U has t connected components. 2

The second lemma is a purely topological statement about the relation of
the number of connected components of the total space of a fibre bundle with
that of its fibres. Recall that a fibre bundle π : E → B is a continuous surjective
map between topological spaces which is locally trivial. A section of π is a
continuous map s : B → E with π ◦ s = idB .
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Lemma 9.17. Let π : E → B be a fibre bundle with fibre F . Let B be connected
and E = E1∪· · ·∪Et be the decomposition into connected components. Assume
that for each 1 ≤ ν ≤ t there exists a section sν : B → Eν . Then F has t
connected components.

Proof. Let (Ui)i∈I be an open covering of B over which π is trivial, i.e., there
exist homeomorphisms Φi : π−1(Ui)→ Ui × F such that the diagram

π−1(Ui)
Φi−→ Ui × F

↘ π ↙ pr1
Ui

commutes. We can assume the Ui to be non-empty and connected. Then it
follows that each π−1(Ui) has the same number of connected components as F .
Since ∅ 6= sν(Ui) ⊆ π−1(Ui)∩Eν for all 1 ≤ ν ≤ t, the set π−1(Ui) has at least t
connected components. In order to show that it has exactly t components, we
show that

π−1(Ui) ∩ Eν is connected for each 1 ≤ ν ≤ t. (9.6)

Fix ν. Let F ′ be the union of those connected components of F such that
Φi(π−1(Ui) ∩ Eν) = Ui × F ′ for some i ∈ I. For y ∈ B let π−1(y)1 denote
the connected component of π−1(y) ∩ Eν ≈ {y} × F ′ containing sν(y), and set
π−1(y)2 := (π−1(y) ∩ Eν) \ π−1(y)1. Then

Eν =

⋃
y∈B

π−1(y)1

 ∪
⋃

y∈B

π−1(y)2

 (9.7)

is a disjoint union, whose first set we denote by Aν and the second by Bν . We
now prove that Aν is open (analogously one sees that Bν is open).

Since Ui is connected, the image pr2 ◦ Φi ◦ sν(Ui) is also connected, hence
lies in a connected component F1 of F . It follows that π−1(y)1 = Φ−1

i ({y}×F1)
for all y ∈ Ui. Thus Aν ∩ π−1(Ui) =

⋃
y∈Ui

π−1(y)1 = Φ−1
i (Ui × F1) is open.

Since this holds for all i, we conclude that Aν is open.
Since Eν is connected and Aν 6= ∅, (9.7) implies Bν = ∅. It follows π−1(Ui)∩

Eν = Φ−1
i (Ui × F1), which is connected. This proves (9.6) and completes the

proof of the lemma. 2

Now we are able to prove the crucial result. We follow the lines of [FL81].

Proposition 9.18. Let the variety V ⊆ Pn have only irreducible components
of dimension at least n− r. Then for each L ∈ Gr+1(Pn) satisfying BV (L) the
intersection V ∩ L has the same number of irreducible components as V .

Proof. Since the condition BV (L) is stated for each equidimensional com-
ponent, we can assume V to be m-equidimensional. Furthermore, the first
interesting case is m ≥ 2.

By condition BV (L) there exists a linear space Lβ ∈ Gn−m−1(L) disjoint
to V and a line ` ⊆ pβ(L) transversal to B := Bβ(V ). Denote p := pβ |V and
consider the commutative diagram

p−1(` \B) ⊆ p−1(Pm \B)
↓ ↓

` \B ⊆ Pm \B,
(9.8)
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Figure 9.5: Proof of Proposition 9.18.

in which the downwards maps are covering maps (this follows basically from
the Inverse Function Theorem). Let V have t irreducible components. Then
V \ p−1(B) has t connected components by Lemma 9.16.

We first show that

p−1(` \B) has t connected components. (9.9)

This will be the only place where we use ` t B. Choose a point y0 ∈ Pm \ B
and let pγ : Pm \ {y0} → Pm−1 be the projection centered at y0 (we fix some
linear forms γ defining y0). Then each line through y0 has the form `z := p−1

γ (z)
for some z ∈ Pm−1. Now denote q := pγ |B and B0 := Bγ(B). Then we have
`z t B if and only if z ∈ Pm−1 \ B0. Indeed, for z /∈ B0 all points y ∈ q−1(z)
are smooth in B and have local dimension m− 1, since otherwise dyq could not
be surjective. Consider the sets

V ∗ := {(x, z) | p(x) ∈ `z} ⊆ p−1(Pm \B)× (Pm−1 \B0),
P := {(y, z) | y ∈ `z} ⊆ (Pm \B)× (Pm−1 \B0).

The sets V ∗ \ (p−1(y0) × (Pm−1 \ B0)) and V \ p−1(B ∪ {y0}) are homeomor-
phic and hence have the same number of connected components. Removing
discrete sets does not affect connectedness properties, thus V ∗ has t connected
components. Clearly, the map p × id : V ∗ → P is a covering. Furthermore,
the map pr2|P : P −→ Pm−1 \B0 is a fibre bundle whose fibre is a sphere with
deg(B) points removed. It follows that π := pr2 ◦ (p × id) : V ∗ → Pm−1 \ B0

is also a fibre bundle. Now choose points x1, . . . , xt ∈ p−1(y0), one in each
connected component of V \ p−1(B). Then the maps sν : Pm−1 \ B0 → V ∗,
sν(z) := (xν , z), 1 ≤ ν ≤ t, are sections of π into each connected component
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of V ∗. Now Lemma 9.17 implies that each fibre π−1(z) has t connected compo-
nents, in particular p−1(` \B), which proves (9.9).

Now let L′ := pβ(L). We prove that

U := p−1(L′ \B) = (V ∩ L) \ p−1(B) has t connected components. (9.10)

Let V = Z1 ∪ · · · ∪Zt be the irreducible decomposition of V . Since by (9.9) the
set p−1(`\B)∩Zi is connected1, for (9.10) it suffices to show that each point in
U ∩ Zi can be connected by a path with a point in that set. So let x ∈ U ∩ Zi

and y := p(x). As the complement of a proper subvariety in L′ the set L′ \B is
connected. Hence there exists a path c in L′ \ B connecting y with a point in
` \B. From the path lifting property of coverings we obtain a path c̃ in U ∩ Zi

with c̃(0) = x. This path obviously connects x with a point in p−1(` \B) ∩ Zi.
Finally, in the proof of Lemma 9.13 it was shown that U is a dense open

subset of V ∩ L in which the intersection is transversal. Lemma 9.6 implies
that U is contained in Reg (V ∩ L). From (9.10) it follows with Lemma 9.16
that V ∩ L has t irreducible components. 2

9.4 Expressing the Genericity Condition

In order to prove that the function (V,L) 7→ V ∩ L is a generic parsimonious
reduction from #ProjIC(r)(d-slp)

C to #ProjIC(r, r+ 1)(d-slp)
C , we have to show

that given V and L one can check the genericity condition BV (L) in the constant-
free polynomial hierarchy PH0

R. That is, BV (L) can be expressed by a first order
formula over R of polynomial size with a constant number of quantifier blocks
and involving integer polynomials of polynomial bitsize.

Basic Conventions

Since we are encoding polynomials as slps, we have to represent slps as vectors of
complex numbers. Of course, each computation node of an slp is representable
by a vector of fixed length, so that an slp Γ of length L can be represented by
a vector γ of length NL = O(L). If Γ has length L′ < L, we can view γ ∈ CNL

by filling up with zeros. The set of γ ∈ CNL encoding an slp in n variables of
length at most L is an algebraic subvariety Sn,L defined by integer polynomials.
The property γ ∈ Sn,L can be tested by checking a formula ΦnL(γ), which is
a Boolean combination of equations and inequalities involving (linear) polyno-
mials with integer coefficients of size O(n + L). We will write down formulas
expressing conditions on varieties defined by polynomials given as slps. In these
formulas one has to add ΦnL to ensure that valid slps are encoded.

We will encode polynomial systems by vectors γ = (γ1, . . . , γr) ∈ Sr
n+1,L and

write Vγ ⊆ Pn for the projective variety defined by the polynomials encoded by
the slps γi, provided that these polynomials are homogeneous. Note that one
can check homogenicity of a polynomial encoded by an slp in polynomial time
(in randomised polylogarithmic parallel time in the bit model using Lemma 4.5
and Proposition 2.7).

1in our context connectedness is equivalent to pathwise connectedness
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As above we parametrise linear subspaces of dimension ≥ s by matrices
α ∈ C(n−s)×(n+1), and write Lα for the linear subspace defined by α, i.e., Lα is
the kernel of the linear map defined by α.

In the following we express conditions on varieties Vγ by first order formulas.
An important feature of these formulas is that the only way Vγ appears therein
is as a predicate expressing membership to Vγ . We call a formula using such a
predicate an enhanced formula. An important fact about enhanced formulas is
the following. If a property of Vγ is expressed by enhanced formulas in PH0

R, and
if the predicate x ∈ Vγ is also expressed by formulas in PH0

R, then by replacing
all the predicates with the appropriate formula one obtains usual first order
formulas in PH0

R. In the following we will freely use this fact.
This section is devoted to the proof of

Lemma 9.19. Given γ ∈ Sr
n+1,L, α ∈ C(n−r−1)×(n+1) with dimLα = r + 1,

one can express the condition BVγ (Lα) by first order formulas in PH0
R.

Expressing Smoothness

A basic ingredient of our formulas expressing condition BV (L) will be formulas
expressing that a point x ∈ V is smooth. To express smoothness we use the
characterisation of transversality proved in [BC06].

Lemma 9.20. Given γ ∈ Sr
n+1,L, α ∈ Cm×(n+1) with dimLα = n − m, and

x ∈ Pn with x ∈ Vγ ∩ Lα, one can express the property

dimx Vγ = m and Lα tx Vγ

by enhanced formulas in PH0
R.

This statement follows from [BC06, Lemma 5.8], which characterises trans-
versality of Lα to Vγ in x by the property that each sufficiently small pertur-
bation of Lα meets Vγ locally in exactly one point. Note that in [BC06] it is
assumed that dimVγ = m, but the proposed statement characterises exactly
the property of Lemma 9.20.

As a consequence of Lemma 9.20 we prove

Corollary 9.21. Given γ ∈ Sr
n+1,L and x ∈ Vγ , one can express the property

x ∈ Vγ is a smooth point

by enhanced formulas in PH0
R.

Proof. We have

x ∈ Vγ smooth ⇔
∨
m

∃α dimLα = m− n ∧ dimx Vγ = m ∧ Lα tx Vγ .

Indeed, the implication “⇐” is trivial, since by definition transversality in a
point implies smoothness. For the implication “⇒” take as Lα any complement
of the tangent space TxVγ .

Because of Lemma 9.20 it remains to express the property dimLα = n−m for
α ∈ Cm×(n+1), but this is equivalent to α1, . . . , αm being linearly independent,
which can be easily expressed in coNP0

C . 2
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For a subset A ⊆ Pn we denote by Ac ⊆ Cn+1 its affine cone.

Corollary 9.22. Given γ ∈ Sr
n+1,L and x ∈ Pn, one can express the property

x ∈ Vm by enhanced formulas in PH0
R, where Vm denotes the m-equidimensional

component of Vγ .

Proof. We use the characterisation

Vm = {x ∈ Vγ | dimx Vγ = m}, (9.11)

where the bar denotes the Zariski closure, which is equal to the Euclidean closure
for constructible sets. It follows from [BC07, Proposition 3.1] that one can
express the condition dimx Vγ = m by enhanced formulas in PH0

R.
It remains to express the closure in PH0

R. But, for each subset A ⊆ Pn its
Euclidean closure is

A
c

= {x ∈ Cn+1 | ∀ε > 0∃y ∈ Cn+1 ‖y‖ = ‖x‖ ∧ y ∈ Ac ∧ ‖x− y‖ < ε},

where ‖ · ‖ denotes the Euclidean norm on Cn+1. 2

Expressing Tangency

The tangent space of a projective variety in some point is the quotient of the
tangent space of its affine cone by the line generated by that point. Thus we can
express all properties concerning the projective tangent space using the tangent
space of the affine cone.

Thus for the characterisation of the tangent space we work in the affine
setting. For a point x ∈ Cn and a vector v ∈ Cn we denote by `x(v) :=
{x + tv | t ∈ C} the line through x in direction v. For a smooth point x on
the affine variety V and a vector v we want to express the property that v is
tangent to V at x. The following characterisation is strongly inspired by the
characterisation of transversality according to Lemma 9.20 (cf. [BC06, Lemma
5.8]), but note that it is not correct that v ∈ TxV iff `x(v) is not transversal
to V at x (unless V is a hypersurface).

Lemma 9.23. Let V ⊆ Cn be an affine variety, x ∈ V a smooth point of positive
local dimension, and v ∈ Cn. Then the following statements are equivalent:

(a) v ∈ TxV

(b) For all Euclidean neighborhoods U ⊆ Cn of x and U ′ ⊆ Cn of v there
exists w ∈ U ′ such that |V ∩ U ∩ `x(w)| ≥ 2.

Proof. Let m ≥ 1 be the dimension of V at x. Since x is a smooth point of V ,
by the Implicit Function Theorem V can be representated locally at x as the
graph of an analytic function. That is, writing x = (a, b) ∈ Cm×Cn−m, w.l.o.g.
there are neighborhoods U1 ⊆ Cm of a and U2 ⊆ Cn−m of b, and an analytic
function ϕ : U1 → U2 with V ∩ (U1 × U2) = {(x, ϕ(x)) |x ∈ U1}. It follows that
the tangent space of V at x is the graph of the derivative of ϕ, i.e.,

TxV = {(v′, daϕ(v′)) ∈ Cm × Cn−m | v′ ∈ Cm}.
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(a) ⇒ (b). Now let v = (v′, v′′) ∈ TxV . First assume v′ 6= 0. Then

ϕ(a+ tv′) = ϕ(a) + daϕ(tv′) + o(|t|) = b+ tv′′ + o(|t|). (9.12)

Let U and U ′ be Euclidean neighborhoods of x and v respectively. Then there
is an ε > 0 such that for all t ∈ C with 0 6= |t| < ε the point a + tv′ ∈ U1,
(a+ tv′, ϕ(a+ tv′)) ∈ U , and w := (v′, 1

t (ϕ(a+ tv′)− b)) ∈ U ′. Then we have

x 6= x+ tw = (a, b) + t(v′,
1
t
(ϕ(a+ tv′)− b)) = (a+ tv′, ϕ(a+ tv′)),

which gives us a second point in V ∩ U ∩ `x(w).
In the case v′ = 0 it follows v′′ = 0. Then choose some arbitrary 0 6= w ∈

U ′ ∩ TxV and apply the first case on this vector.
(b) ⇒ (a). Now assuming (b) we have to prove that v ∈ TxV . The case

v = 0 is trivial, so assume v 6= 0. By assumption there exist sequences xk ∈ V
with limxk = x, xk 6= x, and vk ∈ Cn with lim vk = v such that xk ∈ `x(vk),
i.e., there exist tk ∈ C× such that xk = x + tkvk. This implies lim tk = 0.
We can assume that all xk = (yk, zk) ∈ U1 × U2, so that zk = ϕ(yk). With
vk = (v′k, v

′′
k ) ∈ Cm × Cn−m it follows

v′′ = lim v′′k = lim
1
tk

(zk − b) = lim
1
tk

(ϕ(a+ tkv
′
k)− ϕ(a)) = daϕ(v′). 2

This characterisation gives us the desired formulas describing the tangent
space.

Corollary 9.24. Given γ ∈ Sr
n+1,L, x ∈ Vγ , and v ∈ Cn+1, one can test

whether v ∈ TxV
c
γ by enhanced formulas in PH0

R.

Proof. According to Lemma 9.23 we have v ∈ TxV
c
γ iff

∀ε1 > 0∀ε2 > 0∃w ∈ Cn+1 ∃t ∈ C t 6= 0 ∧ ‖tw‖ < ε1 ∧ ‖w − v‖ < ε2 ∧
x+ tw ∈ V c

γ ,

which is a family of enhanced formulas in PH0
R. 2

Proof of Lemma 9.19. Let V = Vγ with γ ∈ Sr
n+1,L, and L = Lα, α ∈

C(n−r−1)×(n+1) with dimL = r + 1 be given. Recall condition BV (L):

n∧
m=n−r

(
∃β ∈ C(m+1)×(n+1) ∃` ∈ G1(pβ(L)) : rkβ = m+ 1 ∧ Lβ ⊆ L ∧

Lβ ∩ Vm = ∅ ∧ ` t Bβ(Vm)
)
.

Here V = Vn−r ∪ · · · ∪ Vn denotes the decomposition of V into equidimensional

components. To obtain a subspace of L we write β =
(

α
β′

)
∈ C(m+1)×(n+1),

where β′ =

 βn−r

...
βm+1

 ∈ C(m+2−n+r)×(n+1). Recall that in our convention the
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rows of the matrix α correspond to the linear forms defining the subspace Lα.
Hence the quantifier block over β is replaced by a quantifier block over β′. The
quantifier ∃` ∈ G1(pβ(L)) can be replaced by

∃x, y ∈ Cm+1(x, y ∈ L ∧ rk (pβ(x), pβ(y)) = 2).

One can easily write down equations defining the line ` through pβ(x) and pβ(y)
implicitly.

According to Corollary 9.22 we can express the condition Lβ ∩ Vm = ∅ in
PH0

R.
Furthermore, by definition we have

Bβ(Vm) = {y ∈ Pm | p is not smooth over y},

where p = pβ |Vm. The map p is not smooth over y iff

∃x ∈ Pn
(
x ∈ Vm ∧ pβ(x) = y ∧ (x singular in Vm ∨ dxp not surjective)

)
.

We use the Corollaries 9.21 and 9.22 to express the condition that x is singular
in Vm in PH0

R.
It remains to express the condition that dxp is not surjective. This condition

has to be checked only for smooth points x ∈ Vm, and

x ∈ Vm smooth ∧ dxp not surjective
⇔ x ∈ Vm smooth ∧ dxp not injective
⇔ x ∈ Vm smooth ∧ dxp

c not injective

⇔ x ∈ Vm smooth ∧ ∃ v ∈ Cn+1 (v 6= 0 ∧ v ∈ TxV
c ∧ dxp

c(v) = 0).

Since pc is the restriction of the linear map pc
β , its derivation is

dxp
c = (dxp

c
β)|TxV

c = pc
β |TxV

c = (α1, . . . , αn−r−1, βn−r, . . . , βm+1)|TxV
c,

so that dxp
c(v) = 0 iff

∧
i αi(v) = 0 ∧

∧
j βj(v) = 0. So we have seen that

one can express y ∈ Bβ(Vm) by enhanced formulas in PH0
R. Finally, to express

the transversality ` t Bβ(Vm) in PH0
R, we use Lemma 9.20. Note that in the

case of complementary dimension transversality has to hold in each point in
the intersection. Putting things together one can express the condition BV (L)
in PH0

R. 2

Proof of Proposition 9.2. We define the reduction map. Given γ encoding a
homogeneous polynomial system f1, . . . , fr ∈ C[X] and an (n− r− 1)× (n+1)-
matrix α with rkα = n − r − 1, we have to express the slps in homogeneous
coordinates Y0, . . . , Yr+1 of the linear space Lα ' Pr+1 to define Vγ ∩ Lα

in Lα. This can easily be done by some linear algebra computations in polyno-
mial time. Thus we have established a generic parsimonious reduction from
#ProjIC(r)(d-slp)

C to #ProjIC(r, r + 1)(d-slp)
C . Moreover, by Remark 1.25

of §1.5.1 the reduction map can be computed in FNC in the Turing model.
Note that this computation involves divisions, so that we cannot guarantee the
rational numbers of the output to be reduced. But by the convention used in
Theorem 2.17 this does not hurt us.

This completes the proof of Theorem 9.2 and our thesis. 2
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la dimension d’une variété algébrique peut se faire en temps poly-
nomial. In Proc. Int. Meeting on Commutative Algebra (Cortona),
volume XXXIV of Symp. Mathematica, pages 216–255, 1991.



BIBLIOGRAPHY 139

[GK85a] J. von zur Gathen and E. Kaltofen. Factoring multivariate polyno-
mials over finite fields. Math. Comp., 45:251–261, 1985.

[GK85b] J. von zur Gathen and E. Kaltofen. Factoring sparse multivariate
polynomials. J. Comp. Syst. Sci., 31:265–287, 1985.

[GM91] G. Gallo and B. Mishra. Wu-Ritt characteristic sets and their com-
plexity. In Discrete and Computational Geometry: Papers from the
DIMACS Special Year, pages 111–136, 1991.

[Goo94] J.B. Goode. Accessible telephone directories. J. Symbolic Logic,
59(1):92–105, 1994.

[Gri84] D.Yu Grigoriev. Factoring polynomials over a finite field and so-
lution of systems of algebraic equations. Theory of the complexity
of computations, II., Zap. Nauchn. Sem. Leningrad. Otdel. Mat.
Inst. Steklov (LOMI), 137:20–79, 1984. English translation: J. Sov.
Math. 34(1986).

[Gro66] A. Grothendieck. On the de rham cohomology of algebraic varieties.
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[Szá97] Á. Szántó. Complexity of the Wu-Ritt decomposition. In PASCO
’97: Proceedings of the second international symposium on Parallel
symbolic computation, pages 139–149, New York, NY, USA, 1997.
ACM Press.
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