
A Workflow Mining Approach

for Deriving Software Process Models

D I S S E R T A T I O N

in Computer Science

submitted to the

Faculty of Computer Science,

Electrical Engineering, and Mathematics

University of Paderborn

by Vladimir Rubin

in partial fulfilment of the requirements for the degree of

doctor rerum naturalium (Dr. rer. nat.)

Paderborn 2007

ii

Abstract

Current enterprises spend much effort in obtaining precise models of their software

and systems engineering processes in order to improve the process capability of their

organization. However, nowadays process engineers, business analysts and managers

design process models manually, which is complicated, time-consuming, and error-

prone. Moreover, the results rapidly become obsolete. The capabilities of human

beings in detecting discrepancies between actual processes and process models are

rather limited. Therefore, automatic techniques for deriving and updating the process

models are becoming ever more important; some of the problems described above

can be solved by these techniques. From the practical point of view, these automatic

techniques should be available as tools for supporting process engineers and analysts,

increasing the quality and reducing the complexity of their work.

In order to keep track of the involved documents and files, engineers use Document

Management Systems (DMS) and data repositories. In the software engineering prac-

tice, people use such DMS as Software Configuration Management Systems (SCM)

and such software repositories as defect tracking systems, e-mail archives and dis-

cussion forums. Furthermore, it has to be noted that using such systems is not only

recommended by software process improvement frameworks, but practically unavoid-

able in the actual situation of the increasing complexity and sizes of the developed

software and the distributed way of work of the developers. Along the way, those

systems collect and store detailed audit information on software projects and soft-

ware development processes in the form of logs. Thus, these logs can be used for

constructing explicit process models – we call it software process mining.

In the thesis, we develop an approach that exploits the audit information and user

interaction with software repositories for the automatic derivation of process models

that accurately reflect the real processes. We call our approach incremental workflow

mining [RGvdA+07a, RGvdA+07b, KRS06a, KRS05b]; it supports discovering pro-

cess models both in incremental and in batch mode and can be used for gradually

introducing process management systems to the companies.

iii

In the area of process mining, modern techniques attempt to extract non-trivial

and useful information from event logs. A principal element of process mining is

the control-flow discovery, i.e. automatically constructing a process model (e.g., a

Petri net) describing the causal dependencies between process activities. Today, many

process mining techniques reveal shortcomings when it comes to discovering processes

with complicated dependencies and to deriving process models on different levels of

abstraction. Moreover, existing approaches typically provide a single process mining

algorithm, which can hardly be adapted for different application domains.

In this thesis, within our incremental workflow mining approach we develop

a new process mining technique – a two-step generation and synthesis technique

[vdARvD+06, KRS06c]. In the first step, a transition system is generated from the

log, and in the second, a Petri net model is synthesized from the transition system.

We use the “theory of regions” in the second step. The main advantage of our tech-

nique is that it allows for different modification strategies; i.e. derived models can

be altered in order to fulfil the desired degree of generalization and to fit in the de-

sired application domain. The theory behind our technique guarantees that we obtain

consistent results, i.e. our models always reflect the behaviour recorded in the log.

Our two-step approach is implemented in the form of plug-ins for the process mining

framework ProM [vdAvDG+07].

We evaluate our approach on several real software projects from the area of open-

source software and from the university practice. In our case studies, we use two

types of audit information: document logs of SCM systems and bug logs obtained

from defect repositories. For all the case studies, we derive plausible process models

in the control-flow perspective using our generation and synthesis technique; further,

we extend the models with the organizational and performance data, verify and

analyse them with the help of the existing algorithms from the process mining area.

Thus, in the thesis we show that (1) process mining can be used for obtaining

software process models as well as for analysing and optimising them; (2) an algorith-

mic approach, which resulted from our research on software processes, is a valuable

contribution to the process mining area; (3) now, an adequate tool exists to support

software process mining and this tool can be used for real projects.

Moreover, in this work we show that the issues and solutions discussed in the

context of software engineering processes are relevant for other research domains

such as business process management, product data management, enterprise resource

planning too – the domains, where business audit data is recorded and maintained.

iv

Acknowledgements

Recalling the long period of exciting and challenging work on my PhD, I realize that

a PhD thesis is much more than just a book – it is a product of communication

and cooperation of many creative and outstanding people. Fortunately, I have been

working with such people during many years. I am lucky to have been educated by

the scientific community both in professional and in personal sense.

Firstly, I would like to express my gratitude to my doctoral advisor, Prof. Dr.

Wilhelm Schäfer, for giving me a chance to do my PhD in Germany in a multi-cultural

international scientific environment. I am thankful to Wilhelm for his valuable advice,

which helped me to look for practical application of science and will also help me to

apply science in practice in the future. It is simply impossible to imagine a better

“Doktorvater”.

I am very grateful to Assoc. Prof. Dr. Ekkart Kindler (now at DTU in Kopen-

hagen) for contributing greatly to my education, for his invaluable assistance and

patience in showing me how to achieve quality in work and how to carry out re-

search. It was very exciting to work with Ekkart. For me Ekkart was and will always

be an “ideal” scientist and university lecturer.

Besides scientific supervising, Wilhelm and Ekkart gave me moral support during

all the years of my research at the University of Paderborn. They helped me to

decide on the best way to continue my career after the PhD. I highly appreciate it.

I am proud that I was guided and worked together with such talented scientists and

creative personalities.

I would like to thank Prof. Dr. Wil van der Aalst, for his interesting scientific

ideas, for his style of work and communication with people. I always admired how

Wil could make 25 hours out of a day and I tried to learn from him. The time, which

I spent in Eindhoven, was very helpful for my research.

I am also thankful to Prof. Dr. Gregor Engels and Prof. Dr. Jürgen Gausemeier.

They gave me important comments on the initial ideas of the thesis which were

v

presented at the intermediate exam. I want to thank Gregor for discussing future

work possibilities with me.

A number of people at the University of Paderborn helped me over the years. I

am grateful to the secretary of our group Jutta Haupt, who always encouraged me

and helped organizationally. I would like to thank all my colleagues in the Software

Engineering Group for all the discussions and comments about my work. I thank

Robert Wagner and Björn Axenath, we managed to do interesting work together and

to publish the results. I am grateful to Dr. Alexey Cherchago who always encouraged

me, we had a lot of discourses about my research ideas. I also want to thank the people

working at the Information Systems Group at the Eindhoven Institute of Technology

and especially Christian Günther and Boudewijn van Dongen, I liked cooperating

with them.

I am very grateful to people working at the International Graduate School and

especially to Dr. Eckhard Steffen and Astrid Canisius. Graduate School supported

my work organizationally and financially. The staff of the Graduate School was always

very helpful and kind, I liked the proposed curriculum and especially German courses.

I want to thank my German teacher Marina Iakushevich, her lessons helped me a lot

to integrate into the German society.

It is impossible to mention all the people I met at conferences and workshops

in different countries from USA to China and who gave me valuable comments and

advice about my work. I appreciate their interest and support.

I also want to thank my lecturers at the Moscow State University of Railway En-

gineering, which I graduated from. I owe a special thanks to Dr. Felix Povolotsky and

Natalya Seletskaya for their kind support and interest in my work at the university

and at the NetCracker Technology Corp.

Last but not least, I feel a deep sense of gratitude for my father and mother, they

loved and educated me during all my life and taught me how to do good things that

really matter. I also thank Anna Pospelova for her patience, moral support and care;

she helped me a lot during the last years.

Vladimir Rubin

Paderborn, 2007

vi

Contents

1 Introduction 1

1.1 Motivation . 2

1.1.1 Software Process Improvement 2

1.1.2 Software Process Modelling . 5

1.1.3 Problem Statement . 7

1.2 Thesis Objectives . 8

1.2.1 Process Mining . 8

1.2.2 Software Repositories . 9

1.2.3 Objective and Tasks . 10

1.3 Applications in different Areas . 11

1.4 Roadmap . 12

2 Relevant Background 15

2.1 Business Process Management and Workflow Management 15

2.1.1 Business Process Management 15

2.1.2 Workflow Management . 16

2.1.3 Models and Aspects of Business Processes 20

2.2 Software Process Modelling and Improvement 22

2.2.1 Software Process Models and Engineering Environments 24

2.2.2 Software Process Improvement 27

2.2.3 Software Configuration Management 28

2.3 Modelling Formalisms . 31

2.3.1 Transition Systems . 31

2.3.2 Petri Nets and Workflow Nets 33

2.3.3 Synthesis of Petri Nets from Transition Systems 39

vii

3 Incremental Workflow Mining Approach 43

3.1 System Architecture . 43

3.1.1 Process-centered Software Engineering Environment 43

3.1.2 Software Repositories . 45

3.1.3 Software Configuration Management Systems 47

3.2 Input Information . 48

3.2.1 Audit Information from Software Repositories 49

3.2.2 Audit Information from SCM system 52

3.2.3 Document Logs, Problems and Assumptions 56

3.3 Incremental Workflow Mining Approach 58

3.3.1 Approach: Outline and Architecture 58

3.3.2 Step 1: Preprocessing . 61

3.3.3 Step 2a: Control-flow Process Mining Algorithm 65

3.3.4 Step 2b: Mining Different Aspects 77

3.3.5 Step 3: Model Analysis and Representation 81

3.3.6 Incremental and Interactive Approach 84

3.4 Different Application Domains . 87

3.5 Summary . 90

4 Algorithms and Models 91

4.1 Control-flow Mining and Open Issues 92

4.1.1 Open Issues . 92

4.1.2 Document and Activity Logs 94

4.1.3 Notions of Completeness . 95

4.2 Transition System Generation . 97

4.2.1 Preliminaries . 98

4.2.2 Approach . 98

4.2.3 Constructing a Transition System 104

4.2.4 Modification Strategies . 107

4.3 Petri Net Synthesis . 113

4.3.1 Constructing Petri Nets Using Regions 113

4.3.2 Selecting the Target Format . 118

4.4 Implementation . 119

4.4.1 Research Prototype . 120

4.4.2 Implementation in Process Mining Framework 123

4.5 Summary . 129

viii

5 Evaluation 131

5.1 Evaluation using Open-source Software 131

5.1.1 ArgoUML Project . 132

5.1.2 Mining Procedure . 133

5.1.3 Performance Analysis . 136

5.1.4 Verification . 137

5.1.5 Organizational Aspect . 138

5.2 Evaluation using Student Repositories 138

5.2.1 Abstractions on the Log Level 140

5.2.2 Process Models . 141

5.2.3 Performance Analysis . 145

5.2.4 Verification . 146

5.2.5 Conversion . 148

5.3 Evaluation using Bug Repositories . 149

5.3.1 Process Models . 150

5.3.2 Performance Analysis . 154

5.3.3 Verification . 156

5.3.4 Organizational Aspect . 157

5.4 Summary . 159

5.4.1 Other Examples . 159

5.4.2 Conclusions . 159

6 Related Work and Discussion 163

6.1 Mining Software Repositories . 164

6.1.1 Discovering Software Processes 167

6.2 Process Mining Approaches . 169

6.2.1 Comparison . 171

6.2.2 Broader Context . 173

6.3 Data Mining and Mining Sequential Patterns 174

6.4 Discussion . 176

7 Conclusion and Future Work 179

7.1 Thesis Contributions . 179

7.1.1 Analytical Work . 179

7.1.2 General Contribution . 180

7.1.3 Algorithmic Contributions . 181

ix

7.1.4 Tool Support . 182

7.1.5 Practical Evaluation . 182

7.2 Future Work . 183

7.2.1 Software Engineering Domain 184

7.2.2 Other Domains . 184

7.2.3 Mining Algorithms . 185

x

Chapter 1

Introduction

Nowadays, enterprises spend much effort to obtain models of their systems engineer-

ing processes. Precise, well-modelled and well-documented processes are essential for

developing high-quality products and for organizing effective communication among

employees. Structured and documented business processes significantly enhance the

capability to meet the requirements coming from rapidly changing business envi-

ronments. Improving the process capability of organizations is simply impossible

without explicit and documented process models. The process management premise,

proclaimed by the Software Engineering Institute (SEI) of Carnegie Mellon is: “The

quality of a system is highly influenced by the quality of the process used to acquire,

develop, and maintain it.” [Car05]. This premise implies focus on processes as well as

on products and is widely accepted both in research and in industry, see Total Quality

Management (TQM) [Ban93] principles and such ISO Standards (www.iso.org) as

ISO 9000, ISO 12207, and ISO 15504 for example.

The rapidly developing field of Information Systems (IS), which deals with the de-

sign, delivery, use and impact of information technology in organizations and society,

is conceived to have emerged from such foundational fields as computer science, man-

agement science and organizational science. Today, the IS discipline is becoming a

reference discipline for many others, including engineering, economics, management

and marketing [KHR06]. However, one is not able to design and develop compre-

hensive information systems without modelling and sufficiently analysing software

engineering processes. Moreover, information systems are unable to ensure proper

support for people working in the enterprises (users) without dealing with the busi-

ness processes that they carry out. Thus, there is an arising interest in process-aware

information systems (PAIS), which aim to fill the gap between people and software

1

2 CHAPTER 1. INTRODUCTION

(information systems) using the process technology [DvdAtH05].

The importance of software engineering and the role of software-intensive systems,

such as embedded systems, telecommunication systems, heterogeneous information

systems, in our daily life have increased dramatically over the past years. The field

of software-intensive systems involves integration of a multitude of disciplines. Along

with the traditional engineering disciplines (e.g., control engineering, electrical engi-

neering, and mechanical engineering) that address the hardware and its control, these

systems have to be aligned with the organizational structures and business processes.

The quality of engineering processes in general and of software engineering processes

in particular immediately influences the quality of the developed software-intensive

systems. So, not only software companies but multi-domain businesses dealing with

software-intensive systems have come to realize that their success lies in the effective

management of their software development processes and in “deep” understanding of

the users’ workflows.

In this thesis, we focus mainly on software engineering processes; we pose issues

and solve problems in this area, but we claim that similar issues and solutions are

also applicable to the area of organizational business processes. Thus, our research

is relevant for the areas of software-intensive systems and information systems in

general.

1.1 Motivation

In this section, we give the motivation of our research and point out the relevant

problems.

1.1.1 Software Process Improvement

The emphasis on process causes different standardization initiatives to deal with mea-

suring and improving the process capability of organizations. For example, the Capa-

bility Maturity ModelSM (CMM) [PCCW93] and the Capability Maturity Modelr

Integration (CMMISM) [SEI02] specifications of SEI define several levels of maturity

as a foundation for software process improvement. The CMM refers to software devel-

opment processes only; the CMMI is more general and applies to systems engineering,

which can consist of software and hardware as well. Another project called Software

Process Improvement and Capability dEtermination (SPICE) [Rou95] has a goal to

develop an international standard for software process assessment, it will result in

1.1. MOTIVATION 3

a new ISO/IEC 15504 standard and will be based on CMM, ISO 9001, Bootstrap

and other well-known standards. A detailed description of the standards is given in

Sect. 2.2 of the thesis.

In CMM, achieving the next level of the maturity framework results in increasing

the process capability of the organization. The first level of the CMM model (initial)

is characterized by ad-hoc and occasionally chaotic processes; the second (repeatable)

implies the existence of the process discipline repeating earlier successes; the third

level (defined) means that the processes are modelled, documented, standardized

and integrated to the organization; the fourth (managed) level is achieved when

the software process and products are quantitatively understood and controlled; the

fifth (optimizing) level enables a continuous process improvement from innovative

ideas and technologies (for more details on the CMM and the CMMI models, see

Sect. 2.2.2). So, the CMM was introduced for incrementally improving the maturity

from the first (initial) level to the higher levels, see Fig. 1.1. The CMM achieved

great industrial recognition; for example, nowadays, big enterprises use to require its

contractors to be on the defined level of CMM (initially, it was a requirement of the

US Department of Defense). Further, we focus on the first three maturity levels.

2
Repeatable

1
Initial

3
Defined

4
Managed

5
Optimizing

Figure 1.1: Capability Maturity Model

The Software Engineering Institute regularly publishes statistics about the organi-

zations implementing CMM and their achievements in software process improvement

in “Process Maturity Profile of the Software Community” [SEI06b] (similar statistics

is published for CMMI also [SEI06a]). These statistics are based on the information

from such appraisals as: CMM-Based Appraisals for Internal Process Improvement

(CBA IPIs), Software Process Assessments (SPAs) and Standard CMMI Appraisal

4 CHAPTER 1. INTRODUCTION

Method for Process Improvement (SCAMPI). The first section of the profile is called

“Current Status” and contains information about the levels of maturity of different

organizations. The 2005 end-year profile conducted information about 1804 organiza-

tions, 996 participating companies and 8897 projects. So, 5.7% of the organizations

are on the initial level, 39.6% are on the repeatable level and 37.4% on the defined

level, see Fig. 1.2.

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

5.7%

39.6% 37.4%

7.6% 9.8%

Initial Repeatable Defined Managed Optimizing

Figure 1.2: Maturity Appraisal by Reporting Organizations

It means that 45.3% (5.7%+39.6%) of all the organizations do not have a modelled,

documented and standardized process and, thus, have to derive it (i.e. to document, to

standardize and to integrate a process model to the organization) to achieve the next

maturity level. After looking at the key practices of the CMM [PWG+93], we can also

interpret these statistics the other way: 82.7% of all organizations (5.7% + 39.6% +

37.4%) either do not have a modelled, documented and standardized process or they

have just implemented it and continue working on its tailoring in the organization.

Other interesting statistics in our context are the “Organizational Trends”, they

contain the time needed by the organization to improve the process capability, see

Fig. 1.3. If we take the right part of the graph, which contains the overall statistics

from year 1987 till now, we see that it takes 23 months to go from the initial maturity

level to the repeatable one, 20 months to go from repeatable to defined and 25 months

to go from defined level to the next one. Thus, for an initial level organization, on

the average, it takes 43 months (20 + 23) to come to the defined level and to get a

1.1. MOTIVATION 5

Figure 1.3: Time To Move Up

documented and standardized software process model.

Thus, with the help of the statistics presented in this section, we come to a

conclusion that plenty of organizations do not have documented and standardized

software process models and it takes years to get them. Thus, along with the increasing

importance of process technology and process-oriented view on business, there is a

variety of unresolved issues, relevance of which cannot be overestimated.

1.1.2 Software Process Modelling

In this section, we discuss the software process models and methods used in the enter-

prises for designing the models. In the previous section, we learned that enterprises

need a documented and standardized process model in order to improve the quality

of their work. From the standpoint of a software process engineer, there is always

a kind of a software process in an enterprise, but this process is usually not explic-

itly formulated and documented. Accordingly, the information about the process is

often “hidden” in heads of particular practitioners or managers. Thus, the knowledge

about the software process is implicit and also distributed among different people,

while explicit documentation of the software process is essential for further process

management and optimization.

6 CHAPTER 1. INTRODUCTION

Models and Reality

The crucial question in the area of modelling in general and software process mod-

elling in particular is: How do models relate to reality?

In process modelling, we can distinguish between prescriptive and descriptive

process models [Sca01, Wan00, Lon93]. Prescriptive models specify how processes

should take place. Descriptive models specify the processes how they actually happen.

After more than 30 years of software process research, people have gained a broad

experience in prescriptive software process modelling and software lifecycle models

[Roy87, Boe88, BT75, Gil81]. But there is a set of disadvantages in prescriptive

process modelling especially concerning its practical applicability : first, models usually

prescribe how a new software system should be developed; second, specific conditions

of a specific software system are often ignored or generalized; third, rather often

models describe an idealistic view on software development and can hardly prescribe

the ways of eliminating the chaos which happens in practice.

Descriptive process models, on the other hand, specify how particular software

systems are being developed. Rather often, these models are developed under very

specific settings and can hardly be applicable under other settings or serve as com-

mon modelling recommendations. For deriving common descriptive models, one must

collect a lot of data about different software projects; usually, it is difficult to find

out the sources of this data and to obtain it.

Thus, there is a lack of process models that (1) reflect real-life scenarios, i.e. do

not have discrepancies with reality and (2) are explicit and general enough to be

used under different settings in different projects. Moreover, obtaining such models

is possible only after having analysed huge amounts of data about software projects.

Consequently, people need methods for obtaining and analysing software projects

data and methods for deriving process models from it.

Manual versus Automatic Modelling

Another crucial modelling question is: Who designs the models and how is it done? In

our context, this question can be put the following way: Are software process models

designed manually (without software support) or semi-automatically (with the help

of software)?

The answer is: today, process engineers and managers in enterprises are almost

always solving this problem without software support. It has a set of disadvantages: it

is complicated, time-consuming, error-prone, and the results rapidly become obsolete;

1.1. MOTIVATION 7

the capabilities of human beings in detecting discrepancies between the actual pro-

cesses and the process models are rather limited. Practitioners (developers, designers,

quality assurance engineers) are usually not involved in process design, although they

are the real experts in their parts of the process. So, information about the practical

details of some parts of the process is often completely lost.

Furthermore, process engineers usually can not simply start from scratch when

defining explicit process models, but should take existing practices into account. Data

about these practices can not be stored and effectively maintained only by process

engineers without any automatic support. As a consequence, tool support is needed

for designing the process models1.

Thus, today process models are designed without essential tool support, which

enormously increases the complexity of tasks fulfilled by process engineers but does

not lead to effective solutions.

1.1.3 Problem Statement

In this section, we summarize the topics discussed above. After analysing the statistics

(see Sect. 1.1.1) and common experience in the area of software process modelling

(see Sect. 1.1.2), we come to the following conclusions:

• A great number of enterprises does not have documented and standardized soft-

ware process models. It takes years for enterprises to document their processes

and to create explicit software process models.

• Designed models usually prescribe the desired behaviour and there are a lot of

discrepancies between the actual processes and the models.

• Existing practices are often not taken into account and there is no appropriate

automatic support for considering them.

• Practitioners (developers, designers, quality assurance engineers) are not in-

volved in process design and there is no appropriate automatic support for

involving them.

• Without software support, process design becomes very complicated, expensive,

time-consuming and error-prone task.
1“Process Design” is a complicated and creative task and it can not be solved fully automatically.

But this should not be considered as a counter-argument against tool support. Quite the contrary,

the work of managers and process engineers in the enterprises should be significantly simplified and

improved with the help of an automatic approach.

8 CHAPTER 1. INTRODUCTION

Altogether, there is a lack of automatic and formal approaches that support people

(process engineers, managers, designers) during process design phase – there is a lack

of tool support for the designers.

1.2 Thesis Objectives

In this section, we outline the ideas and techniques, which are helpful for addressing

the issues discussed above and, then, we set our objectives.

1.2.1 Process Mining

During the last years, workflow management technology is becoming ever more im-

portant [LR00, JBS97, vdAvH02]. It is a technology for modelling, enacting and

analysing business processes with computer support. Nowadays, this technology is

supported not only by Workflow Management Systems (WfMS), but by Enterprise

Resource Planning (ERP), Customer Relationship Management (CRM), Business

to Business (B2B) systems and others, such systems are also called Process-Aware

Information Systems (PAIS). Workflow design is a vital and creative task in this

area. Today, workflow research is inspired by the need of enterprises to support dy-

namic processes. So, the goal is not to produce structured processes (old “workflow

paradigm”), but to support, monitor and influence changing processes. In this sense,

there is much in common between the software process design problems presented in

Sect. 1.1.3 and the workflow design problems.

Workflow mining or Process Mining, as it is often referred to in the respective

literature, is a promising research area, which aims at supporting the workflow design

[vdAWM04]. Modern PAIS systems record enormous amount of data in the form of

logs. Workflow mining algorithms use the logs of workflow activities for discovering

workflow models. These activity logs contain information about process executions

as they take place. Nowadays, the logs are provided by most workflow management

systems. Workflow mining suggests a new perspective on the workflow design life-

cycle [vdAvDH+03].

Traditional design life-cycle approaches begin with “workflow design” and “work-

flow configuration”, then they continue with “workflow enactment” and finish with

“workflow diagnosis”, see Fig. 1.4. During the first two phases, a business process is

designed by a process engineer, afterwards a workflow management system is config-

ured according to the design. In the enactment phase, workflows (process instances)

1.2. THESIS OBJECTIVES 9

Diagnosis

Design

Configuration

Enactment
Workflow
Life-cycle

start

Figure 1.4: Traditional Life-Cycle

Diagnosis

Design

Configuration

Enactment
Workflow
Life-cycle

sta
rt

Figure 1.5: Mining Life-Cycle

are executed. In the diagnosis phase, information about executed workflows is anal-

ysed. However, in the traditional approach, the focus is on the design and configura-

tion phases. Diagnosis information is often neglected.

The workflow mining approach starts with the diagnosis phase, see Fig. 1.5. So,

workflow runtime information is used for creating the workflow design, which reflects

the actual situation in the company and is used in the next phases of the workflow

life-cycle.

1.2.2 Software Repositories

A critical question in the area of process mining is: Where do the logs come from? In

the business process management domain, when a workflow management system is

there, the logs are usually available. But what about the software process modelling

domain, the problems of which we are going to solve? Where do we take the logs,

when a process management system is not there? What are the real sources of the

logs? How do these logs look like, do they also contain activities?

Having studied modern software engineering environments (SEEs), we discov-

ered the following: firstly, most companies do not have process management systems

(which is also proved by the CMM statistics); secondly, the systems used in SEEs

do not provide activity logs. But, the most important and motivating point that

was understood is: nowadays, such software repositories as software configuration

management (SCM) systems, defect repositories, mailing lists, and discussion forums

comprise essential parts of software engineering environments. These repositories are

usually used even when no precise definitions of processes exist. Furthermore, using

software repositories and especially SCM systems is recommended by modern soft-

10 CHAPTER 1. INTRODUCTION

ware process improvement standards. For example, in CMM, one key process area

on the repeatable level is “Software Configuration Management”. Within this key

process area, software configuration management system must be introduced and

used in the company and an organizational policy for using this system must be

specified [PWG+93]. Practically, software repositories are standard components of

modern SEEs both in open-source and in commercial environments.

In the case of SCM, systems are aware of documents and changes made on them;

but, they are not aware of the activities of the underlying processes. Therefore, the

audit information about software projects provided by SCM systems in a form of

document logs (they contain information about the executions of software processes)

can be used for supporting process engineers in process design and for introducing

process management systems to companies.

As mentioned above, not only SCM systems, but also other software repositories

are playing an important role in software development; it is especially noticeable in

the open source software (OSS) domain. Thus, all these repositories can be used for

tracking the progress of software projects. Hence, software repositories are important

for supporting process design and they should be used for deriving useful information

about software processes and projects.

1.2.3 Objective and Tasks

In this section, we determine the objective of the thesis. The objective ensues from

the set of problems in the area of software process modelling described in Sect. 1.1.3,

from the benefits of process mining for workflow design described in Sect. 1.2.1 and

from the relevance and viability of software repositories described in Sect. 1.2.2.

The main objective is to develop a workflow mining approach for deriving process

models from document management information and

• to apply the approach to the domain of software process modelling;

• to assume that the software company is on the repeatable CMM level and that

software repositories including an SCM system are introduced to the company;

• to use the document logs obtained from the software repositories as an input

and generate formal software process models as an output.

So, the global perspective of our approach is to provide an automatic support for

achieving the third (defined) CMM level once the second (repeatable) level is reached,

see Fig. 1.6.

1.3. APPLICATIONS IN DIFFERENT AREAS 11

2
Repeatable

3
Defined

Software
Repositories

Workflow Mining
Approach

Process Model

Figure 1.6: Objective: New Workflow Mining Approach

This objective should be achieved by fulfilling the following tasks:

• Analyse and generalize information available in the logs of software reposito-

ries, focus on the software configuration management systems especially. Also,

analyse the document management systems used in other application domains.

• Develop an approach and algorithms for discovering formal process models from

the logs. Consider existing experience from the areas of workflow mining and

process synthesis.

• Use a formalism with precise semantics, which supports all the basic process

modelling patterns and for which there is a considerable algorithmic and tool

support for model analysis, verification and simulation (e.g. Petri nets [RR98]

and/or Transition Systems [HMU00]).

• Find methods, which support transformation of the resulting models (Petri

nets) to the other widespread formalisms, like EPCs [KNS92] or UML Activity

Diagrams [OMG03].

• Develop a research prototype and evaluate the algorithms on practical examples

with the help of this prototype.

1.3 Applications in different Areas

In our Motivation Section (see Sect. 1.1), we examined the area of software engi-

neering and software processes, which is the main focus of our research. But gen-

erally, looking at other research domains, such as mechanical engineering, electrical

12 CHAPTER 1. INTRODUCTION

engineering, mechatronics, telecommunications and networks, we realize that similar

problems and objectives are relevant to these domains too. Such areas as Product

Data Management (PDM) and Product Lifecycle Management (PLM), Enterprise

Resource Planning (ERP), Supply Chain Management (SupCM) and Customer Re-

lationship Management (CRM) can benefit from our approach; it can be used for

deriving process models from the audit information available in these systems. In

this thesis, we also briefly look into these areas.

For example, Product Data Management (PDM) is the discipline of controlling

the evolution of a product design and all related product data during the full product

life cycle [DAC+]. Correspondingly, PDM system is a tool for managing data and pro-

cesses. In this context, Software Configuration Management can be regarded as a sub-

area of PDM, since it deals with a specific type of products, namely software. During

the last decades, the area of PDM has expanded to the collaborative Product Defini-

tion management (cPDm) [CIM01]. cPDm manages the complete product definition

lifecycle, including mechanical, electronic, software, and documentation components

and the processes used during the lifecycle. So, cPDm includes such technologies as

PDM, visualization, enterprise application integration (EAI), and others.

Experience in the area of PDM has shown that, during the product life-cycle,

many workflows are created for controlling changes, reviewing and other purposes.

These ad-hoc workflows have to be formalized, documented and saved in the system.

Additionally, there are often discrepancies between the process design and the real

workflows. Since storing the audit information is a standard practice in this area,

PDM logs are available for analysis. These logs can be used for mining the production

processes. Thus, the approach and algorithms defined in the next chapters of this

thesis are also relevant for this area.

It is worth mentioning here, that auditing and process management capabilities

are essential also in ERP, SupCM and CRM areas and, thus, the approach should be

also applicable there.

1.4 Roadmap

Our research is inspired by the ideas from two significant research areas, such as

software process modelling and business process management, therefore, we have

to carefully specify the relevant background from both areas and to eliminate the

uncertainties, it is done in Chapter 2. We also define the background of modelling

1.4. ROADMAP 13

formalisms in the same chapter.

In Chapter 3, we present our process modelling approach called Incremental

Workflow Mining. We start with an architecture of software engineering environ-

ments, where the approach can be applied. Then, the sources of input information

are analysed and the main scheme of our incremental approach is described. The idea

of our mining algorithms is presented in this chapter on a general level using several

small examples.

Chapter 4 contains the details of the algorithms and models of our approach.

Systematically, we go through the steps of the approach and present our algorithms,

their formalizations and derived models. Implementations of these algorithms consti-

tute our incremental workflow mining research prototype and plugins for the process

mining framework.

The research prototype and the plugin are used for evaluating the approach on

three relatively big examples based on the open-source software repositories and

information from students’ software repositories respectively. These evaluation details

are covered in Chapter 5 ; the practical output of our algorithms is also presented in

this chapter.

In Chapter 6, we discuss the relation to existing work and point out our new

contributions to both fields: process mining and software process modelling.

In the last chapter, we present the thesis contributions and summarize open issues

and future work.

14 CHAPTER 1. INTRODUCTION

Chapter 2

Relevant Background

In this chapter, we examine the background knowledge that comes from the areas

of software process modelling and business process management and define the main

terms used in these domains1. The described areas deal with processes. According

to the Oxford dictionary [SW89], a process is “something that goes on or is carried

on; a continuous action, or series of actions or events; a course or method of action,

proceeding, procedure”.

2.1 Business Process Management and Workflow Man-

agement

In this section, we go into the details of the areas of business process management

and workflow management. In the literature on business process management, there

are many different proposals using different terms, many of them are not consistent

and no terminology is fully accepted. Our definitions and terminology are strongly

influenced by [vdAvH02, DvdAtH05, LR00, JBS97, Hol95]. The terminology and the

ontology of the domain was also discussed in our work [AKR05a, AKR05b, AKR06].

2.1.1 Business Process Management

In this section, we describe the area of Business Process Management (BPM). The

Workflow Management Coalition defines business process as follows: “a set of one

or more linked procedures or activities which collectively realise a business objective

or policy goal, normally within the context of an organizational structure defining
1A discussion on process mining is held in the next chapters, where we describe our approach and

related work.

15

16 CHAPTER 2. RELEVANT BACKGROUND

functional roles and relationships” [WfM99]. Another definition is given by v. d.

Aalst and v. Hee [vdAvH02]: “business process is one focused upon the production

of particular products. These may be either physical products, such as an aircraft or

bridge, or less tangible ones such as a design, a consultation paper, or an assessment.

In other words, the product can also be a service”. Taking both definitions into

account, we realize that a business process is a process, which has an objective and

is focused on production of products or services; secondly, it takes place within an

organization.

The given definitions are very general, but they answer the generality of purposes

and applications of business processes. Business process management is applied in

many areas, such as business administration, economics and management, psychology

and sociology, mechanical engineering, network engineering and others.

During a long time, business processes were managed manually (by people). Peo-

ple planned and structured their work and decided on which phases of their work-

ing process they need some computer support. During the last years, the situation

has changed, information systems provide new efficient ways of organizing business

processes with the aid of computers. Software is used for managing processes and

organizing the work in the company. Often it is called a shift from “data-aware”

information systems to “process-aware” information systems (PAIS).

2.1.2 Workflow Management

An example of such a PAIS is a Workflow Management System (WfMS). The Work-

flow Management Coalition states that workflow is “The computerised facilitation

or automation of a business process, in whole or part.” [Hol95]. It means that we

start speaking about workflows instead of business processes, when they are man-

aged by software. So, the term “business process” has a more general meaning then

the term “workflow”, but since in this thesis we are speaking about software-based

management of processes, these terms are used interchangeably.

Workflow Management System is defined as follows: “A system that defines, cre-

ates and manages the execution of workflows through the use of software, running

on one or more workflow engines, which is able to interpret the process definition,

interact with workflow participants and, where required, invoke the use of IT tools

and applications.” [WfM99]. From this definition, we deduce the following general

use cases of the WfMS:

• Modelling (designing) business processes.

2.1. BUSINESS PROCESS MANAGEMENT AND WORKFLOW MANAGEMENT17

• Executing business processes.

• Managing process executions.

• Interacting with workflow participants.

• Interacting with other applications.

Now, let us systematically go through these use cases. WfMS must support mod-

elling business processes. So, we distinguish between the terms “business process”

and “business process model” (respectively “workflow” and “workflow model”). Now,

since we are dealing with workflows and software, we can give more concrete defi-

nitions, which correspond to a software engineering view on WfMS. The following

definitions resulted from the research in the AMFIBIA project and were formulated

in our papers [AKR05a, AKR05b, AKR06]: A business process consists of a set of

activities that are executed in some enterprise or administration according to some

rules in order to achieve certain goals. An activity is a description of a piece of work

that forms one logical step within a business process. A business process model is a

more or less formal and more or less detailed description of the persons and artefacts

involved in the execution of a particular business process and its activities as well

as of the rules governing their execution. A business process model consists of tasks.

A business process is an instance of a business process model and an activity is an

instance of a task. A business process is also often referred to as case in the respective

literature. A meta-model describing the introduced terms is shown in Fig. 2.1 as a

UML class diagram.

Class Diagram 2006/07/10

Business Process Model

*

Task

*1

<<instance of>>

*1

<<instance of>>

Activity

Business Process (Case)

*

Figure 2.1: Business Process Model and Case

Modern WfMS usually include also model analysis tools. They check the semantic

correctness of the process definitions, make verification and simulation of the models.

18 CHAPTER 2. RELEVANT BACKGROUND

Analysis should precede the execution of the models.

Executing business processes and managing process executions are the other use

cases supported by a WfMS. The component of the WfMS which fulfils these opera-

tions is often called workflow enactment service, it makes up the heart of the workflow

management system. This service can be implemented by one or several workflow en-

gines. Workflow engine deals with the actual management of workflows. It creates

cases, activities, matches resources for these activities, makes resource assignment,

matches information for the activities, launches external applications, records all the

historical data about the case execution and checks its consistency.

WfMS must also support interaction with workflow participants. Participants con-

tact the system using workflow client applications (process designers are not workflow

participants, they contact the system using the process definition tools). Every par-

ticipant has a worklist. A worklist contains a set of work items. A work item is the

combination of a case and a task which is about to be carried out. As soon as an

employee decides to carry out a work item from his worklist, it becomes an activity.

Another set of workflow client applications is provided to managers for administra-

tive and monitoring purposes. Using these applications, people see the current state

of work and the history.

Since nowadays, a WfMS can be a part of a bigger information system or it can be

built as a distributed application or it has to interact with the other WfMS, another

use case is integration with the other applications.

Thus, the main concepts and use cases of WfMS are summarized in the Workflow

Reference Model [Hol95], which represents the recommended architecture of a WfMS,

see Fig. 2.2. There are a lot of other use cases for WfMS, here we present only the main

concepts and terminology, additional details can be found in the workflow reference

model of WfMC and the books referenced in the beginning of this chapter.

The reference workflow management system consists of the workflow engine in the

middle and of five interfaces between the engine and the applications and tools. Inter-

face 1 connects process design tools with the workflow enactment service. Interface 2

is used for the interaction with the client applications, e.g. with worklists. Interface

3 is used for executing external applications. Interface 4 enables the work exchange

between different workflow systems. Interface 5 is used by the administration and

monitoring tools. Every interface should be achieved using a Workflow Application

Programming Interface (WAPI). WAPI is provided to the external tools and appli-

cations by the workflow engine. Often, WfMS is implemented as a client/server or a

2.1. BUSINESS PROCESS MANAGEMENT AND WORKFLOW MANAGEMENT19

Process
Definition Tools

Administration

& Monitoring

Tools

Interface 1

Interface 4
Interface 5

Workflow Enactment Service

Workflow API and Interchange formats

Other Workflow
Enactment Service(s)

Workflow
Client

Applications

Interface 3Interface 2

Workflow
Engine(s)

Workflow
Engine(s)

Invoked
Applications

Figure 2.2: Workflow Reference Model [Hol95]

multi-tier architecture, where a workflow engine is a server or an application server

respectively, see Fig. 2.3.

Database

Server
Side

Client
Side

Workflow
Engine

Applications
And

Tools

Interfaces

Figure 2.3: Workflow Management System Architecture

The modern successful and rapidly developing workflow market contains different

types of workflow management systems and business process modelling tools. Here,

we refer to the following WfMSs: iProcess suite from Tibco (www.staffware.com) is

one of the most widespread WfMSs, IBM WebSphere (www-306.ibm.com/software/

20 CHAPTER 2. RELEVANT BACKGROUND

websphere/) is a huge platform combining BPM and SOA, COSA (www.cosa-bpm.

de) is a BPM solution based on Petri nets, Domino Workflow from Lotus, I-Flow

from Fujitsu, HP ChangeEngine from HP, SAP NetWeaver from SAP and many

others. In the area of business process modelling, such solutions as ARIS [Sch00] (a

platform and an architecture for business process modelling) from IDS Scheer and

ADONIS (www.boc-eu.com) should be also mentioned.

In this section, we introduced the main terms in the area of workflow manage-

ment and made the connection between the concepts of business processes and the

information technology used for implementing them.

2.1.3 Models and Aspects of Business Processes

Correct and efficient business process modelling, which reflects the real business cases,

is a keystone of a successful workflow management in the enterprise. Research in this

area gives motivation for this thesis, our special interest was discussed in Sect. 1.2.1.

Generally, business process models are used for different purposes:

• Documentation of the business process.

• Collaborative design of the business process.

• Communication and teaching of the business process.

• Analysis and verification of the business process.

• Optimisation and re-engineering of the business process.

• Computer support and execution of the business process (see Sect. 2.1.2).

Business processes play an extensive role in managing the business in organiza-

tions, as described in Sect. 2.1.1. Therefore, practically, business process models do

not contain only information about the order of tasks (control flow), but also the

data about the required and produced documents, the resources that can execute

the tasks and the strategy of their assignment, the structure of tasks and their func-

tional relations and many other information. So, it turns out that several aspects2 of

business processes can be distinguished when modelling business processes; and these

aspects can be modelled more or less independently from each other, see Fig. 2.4.
2Such terms as “perspective” or “view” are also often used instead of the term “aspect”. We use

this term, because we consider the relation between business process aspects and aspect-oriented

programming and modelling to be very important.

2.1. BUSINESS PROCESS MANAGEMENT AND WORKFLOW MANAGEMENT21

Transaction

Authentication
Authorization

Assignment
Organization

Information

Control Process

Figure 2.4: Aspects of Business Processes

Here, we will not go into the details of modelling business process aspects, since it

is a separate area of research, which goes beyond the background knowledge, for de-

tails about the integration of aspects see [AKR05a, AKR05b]. Here, we use aspects

for better explaining the models of business processes. So, the basic aspects are the

following:

Control Aspect: This aspect deals with the dynamic behaviour of the business

process. It defines the tasks resp. activities of a process and the order in which

they are executed. The definitions of tasks and activities were given already in

Sect. 2.1.2.

Information Aspect: This aspect deals with the data and documents used in the

business process. It defines the structure of the data and documents that are

used and changed within the tasks of a process and how they are propagated

between tasks of a business process - resp. between the activities of a case.

A document here is an artefact representing some piece of information. The

information aspect of a business process basically defines the structure of the

involved documents and their relation. Similar to processes and cases, tasks

and activities, we distinguish between document instances and document types,

where document type defines the structure of a document instance.

Organization Aspect: This aspect deals with the organization structure. It defines

the roles, positions, agents, organization units and resources that are involved

22 CHAPTER 2. RELEVANT BACKGROUND

in a business process. An organization unit is a group of some people organized

for some purpose. An organization position is an atomic organization unit. A

role is also defined as a group of resources; every resource in this group has spe-

cific skills. The difference between organization units and roles is: organization

units define the organizational structure, roles define the functional structure.

A resource – person, machine or application which is assigned a task. Agent

is a human resource. Resources required for some task are assigned via their

positions and/or roles.

The business process modelling area also uses to deal with other aspects including

transaction aspect, assignment aspect, and authentication aspect, see Fig. 2.4; as

mentioned before, detailed description of these aspects is out of the scope of this

thesis.

Business process models are usually defined in a textual or graphical form in a

formal language notation. Different formalisms are used for modelling different as-

pects. Petri Nets [Aal98] and EPCs [KNS92] are used for modelling the control aspect;

for the information aspect, people use ER Diagrams [Che76], UML Class Diagrams

[OMG03] and others; for the organization aspect people are using Organigramms,

etc. Some notations support several aspects, e.g. UML Activity Diagrams [OMG03],

BPMN [OMG06] and BPEL [ADG+03]. One of the important criteria for selecting

an appropriate formalism is whether it can be processed by the engine of a workflow

management system.

In this section, we proposed an aspect-oriented view on process modelling, see

Fig. 2.5. We consider this view to be useful for understanding the essence of business

process modelling, for developing common formats, for exchanging models between

different companies, for integrating new aspects and implementing workflow engines.

2.2 Software Process Modelling and Improvement

In this section, we describe the area of software processes. The software process de-

fines the way in which the software engineering is organized, managed, measured,

supported and improved [DKW99a]. This field has grown up in the 80ties to address

the increasing complexity and criticality of software development activities. Histor-

ically, this research has started at that time, when researchers and practitioners

have realized that software engineering is a collaborative, creative, and complex task

and not just creation of tools and new languages. When developing software, people

2.2. SOFTWARE PROCESS MODELLING AND IMPROVEMENT 23

Information
Aspect

Business
Process

Organization
Aspect

Control Aspect

Petri Nets EPCs

ER
Diagrams OrganigrammsClass

Diagrams

Figure 2.5: Aspect-oriented View on Process Modelling

have to manage and concern such issues as technology, methodology, social and or-

ganizational behaviour, business and market. All these issues directly influence the

quality of a software product. Thus, the software process is defined the following way:

“the coherent set of policies, organizational structures, technologies, procedures, and

artefacts that are needed to conceive, develop, deploy, and maintain a software prod-

uct.” [Fug00]. Comparing this definition to the definition of business process given in

Sect. 2.1.1, we realize that the software product in the case of the software process

is what was called the objective in the case of the business process. Originally, the

definition of a business process was more general then the definition of a software pro-

cess; but, nowadays, taking into account the growing popularity of software-intensive

and embedded system, where software process can not be considered separately from

the other business processes, this difference is becoming less and less visible.

Earlier, during the 60ties and the 70ties, before the software process research

was started, people defined the software lifecycles, such as waterfall, incremental

development, prototype-based development [Roy87, Boe88, LB03]. Actually, lifecycles

defined different stages in the lifetime of a software product and the guidelines for

carrying out these stages. Basically, lifecycles can be considered as software processes,

but on a rather abstract and imprecise level. Today, the concept of lifecycles is often

24 CHAPTER 2. RELEVANT BACKGROUND

considered as an idealised concept, which has limited practical applicability.

In the next sections, we discuss the most important areas of the software process

research; this discussion is influenced by [Fug00, DKW99b, Ost87, CKO92, FH93,

Gru02].

2.2.1 Software Process Models and Engineering Environments

In this section, we discuss the area of research, which deals with models of software

processes and their enactment. During the years of research, people created a set of

Process Modelling Languages (PMLs) and modelling formalisms. A PML is a language

that expresses software development processes in a form of a process model, i.e. in a

computer-internal description. It has to be possible to model such process elements

as tasks, roles, tools and agents in a PML.

There are different views on the process models (the idea of views is similar to

the idea of aspects in business process modelling presented in Sect. 2.1.3). Typical

views are:

Activity Model: It focuses on the structure, properties, and relations of activities.

Product Model: It describes the types, structure and properties of the software

items (documents) of a process.

Resource Model: It describes the resources needed or supplied to the process.

The problems of views separation and integration are important in the area of

software processes as well as in the area of business processes. Like business processes,

software processes play an extensive role in a company and, thus, have to manage

not only correct order of tasks execution, but people, information, business change

and evolution, etc. So, the main elements of a software process are the following:

Activity: It is a process step, operating on software artefacts and coupled to a

human agent and to external production tools. Activities can be on different

abstraction levels.

Product: It is a software artefact which is persistent and versioned, and which

can be simple or composite. These artefacts describe software products: design

documents, user documents, test data, etc.

Role: A Role describes the rights and responsibilities of the human.

2.2. SOFTWARE PROCESS MODELLING AND IMPROVEMENT 25

Human: Humans are process agents or process performers. Humans undertake

roles.

Organization: Organization is a group of humans who have relationships with each

other and to process elements.

Tool: Tools are used for software production. People are using such tools as com-

pilers, parsers, textual editors and CASE tools.

The relationships between these elements are summarized in Fig. 2.6.

Class Diagram 2006/07/17

has sub has sub

plays

needs

employs

has output

has input

Product

Role

Tool

Activity

Organization

Performer

contains

Figure 2.6: Basic Software Process Elements

An environment that supports the creation and exploitation of software process

models is often called Process-centered Software Engineering Environment (PSEE).

So, PSEEs are based on PMLs. There is a set of good surveys of PSEEs and PMLs,

we establish our brief overview of PSEEs on some of them [DKW99b, Gru02, ACF97,

GJ96]. Our goal is to show several relevant ideas from this area.

OIKOS

The OIKOS [ACM90, MA94] is an environment for software development. The idea

and main goal of OIKOS is to ease the construction of PSEEs. The other goals are

comprehension and documentation of software processes. It offers two PMLs: Limbo

and Paté. Limbo is a high-level process specification and design language; there is

a graphical editor for Limbo. Paté is and executable distributed language. A Limbo

specification is stepwise refined into the Paté executable code. Both languages are

26 CHAPTER 2. RELEVANT BACKGROUND

based on concurrent logic and Prolog. The OIKOS process model can be considered

as a communication of concurrent agents.

EPOS

The emphasis of EPOS [CHL+94] is on flexible and evolving process assistance for

software development. EPOS can manage “soft” process assistance as well as “hard”

process control. EPOS process models are expressed in SPELL, an object-oriented

and concurrent modelling language, it has Prolog as a subset. Activity networks in

SPELL can express both goal-oriented process models, using static rules and con-

straints for automatic network planning, as well as activity-oriented process models,

using dynamic pre- and postconditions and scripts. The models are stored in a ver-

sioned database called EPOS-DB.

Merlin

In Merlin [JPSW94], process modelling is performed on two different levels: the first

level is visible to the process-engineer, it uses the ESCAPE design language; second

level is used for enacting the process design, it is based on a Prolog-like programming

language. ESCAPE (Extended Entity Relationship Models and Statecharts Com-

bined for Advanced Process Engineering) is a graphical language which contains the

following models: object model is based on EER-model, it is used to specify the struc-

tural aspects of process, such as document types, activities, etc.; coordination model

is based on statecharts and specifies the behaviour of a process; organizational model

specifies roles and responsibilities, i.e. organizational aspect of a process. Thus, the

structuring of process is reached through a separation of concerns, which makes the

design understandable and applicable. Prolog enactment is reached by mapping the

ESCAPE design to the Prolog rules.

SPADE

The SPADE [BFGL94] is an environment for process analysis, design and enactment.

The main concept of the project is the adoption of extended Petri nets, augmented

with specific object-oriented constructs to support product modelling. SLANG is the

PML of SPADE, it is used to support process analysis and design, its graphical syntax

(based on traditional Petri nets) is easy to learn and to use. SLANG is integrated

with the O2 object-oriented database which acts as a repository for both process

models and process products.

2.2. SOFTWARE PROCESS MODELLING AND IMPROVEMENT 27

FUNSOFT Nets

Another approach for modelling and analysing software processes is the FUNSOFT

Nets [EG91] (the approach was also used in the business process modelling area).

This approach adopts high-level Petri nets for describing software process models.

The semantics of FUNSOFT nets is defined in terms of Pr/T (Predicate/Transition)

nets. Therefore, it allows for standard analysis and simulation techniques approved

for Predicate/Transition nets.

As is easy to see, many PSEEs utilize the concepts of Prolog and graphical formal

specification languages like Petri nets. We are also using these concepts in this thesis,

Petri nets are used as the main process modelling formalism and Prolog is used for

implementing our research prototype.

2.2.2 Software Process Improvement

The background of software process improvement was used already for the motivation

for the thesis in Sect. 1.1.1. CMM and CMMI were described there. However, the

initiatives in this area can be divided into three directions [DKW99b]:

• Definition of standard processes. These focus on quality standards.

• Definition of assessment methods. These focus on measuring process maturity

and its levels.

• Definition of improvement methods. These are based on the idea that process

improvement can be accomplished by learning from the previous experiences.

In the area of standard processes, the International Standard Organization (ISO)

(www.iso.org) supplies a family of standards, namely ISO 9000, which define the

phases of the production and delivery processes. An organization has to follow these

phases to produce a high-quality product. These standards are applicable to all pro-

duction processes and its specialization ISO 9000-3 – only to the software develop-

ment. Yet, ISO 12207 is more concrete than ISO 9000 in respect to software engineer-

ing processes, it includes mandatory processes, tasks and activities. In Europe, the

European Space Agency (ESA) defines standards, guidelines and recommendations

concerning the software and concerning the software project management procedures.

A very well-known assessment method is the Capability Maturity Model (CMM)

(see Sect. 1.1.1) developed by SEI, the work on it was motivated by Humphrey

[Hum89]. The process assessment program starts with training the assessment team,

28 CHAPTER 2. RELEVANT BACKGROUND

then the project members complete the questionnaires and participate in the inter-

views. These questionnaires and interviews are used for preparing the report identify-

ing the weaknesses of the organization. In the European Union within the Bootstrap

[Kuv95] project, a framework for assessing industries and promoting process improve-

ment was defined. Basically, Bootstrap is an improvement of the SEI method taking

the ideas from the ISO 9000-3 guidelines into account. The Software Process Im-

provement and Capability dEtermination (SPICE) standard [Rou95] funded by the

International Committee on Software Engineering Standards has the goal to build

an international standard for software process assessment. It uses the knowledge ac-

quired in CMM, Bootstrap and ISO standards. The result of this project is the new

ISO 15504 standard.

In the context of software process improvement, the Quality Improvement

Paradigm [BCM+92, Bas93] presents the basic idea that process improvement is

a continuous process. Such methods as Goal/Question/Metric (GQM) and Experi-

ence Factory Organization are used for guiding the process execution and structuring

the organizational activities. This approach takes previous experiences into account.

Along with the CMM, the SEI developed a Personal Software Process (PSP) and

Team Software Process (TSP) [Hum05b, Hum05a], they are aimed at guiding and

improving the productivity of individual software engineers or of small software en-

gineering teams. PSP and TSP apply many considerations of the CMM. The SEI

provides also positive practical evaluations of both approaches. Another approach to

mention is the Total Quality Management (TQM) [Fei91a, Ban93], which is a gen-

eral paradigm guiding organizations and focusing on quality. The idea behind TQM is

that quality is not only related to product but to the production process and that the

management of quality implies continuous and never-ending process improvement.

In this Section, we described the set of well-known process improvement stan-

dards, which are widely accepted both in science and in industry. In this thesis, we

suppose that our automatic method, which uses software repositories for deriving

information about software processes and for making process models explicit, can be

helpful for process assessment and improvement teams when dealing with rapidly

changing software development processes.

2.2.3 Software Configuration Management

Software Configuration Management (SCM) is the discipline of controlling the evolu-

tion of a software product. As mentioned in Sect. 1.2.2, using SCM is recommended

2.2. SOFTWARE PROCESS MODELLING AND IMPROVEMENT 29

by software process improvement standards, e.g. CMM. Moreover, SCM plays a key

role in achieving ISO 9000 conformance. In this section, we use the following papers

as a background [EC94, Fei91b, FZ99, DAC+, EFM98, CW98a].

Apparently, nowadays it is almost impossible to work without SCM systems, since

software engineering implies a collaborative way of work that must be appropriately

controlled. The Association of Swedish Engineering Industries defines Configuration

Management as a “controlled way to manage the development and modifications of

systems and products, during their entire life cycle.”

In the respective literature, people use to examine the SCM area from two different

perspectives: management and development. From the management perspective, SCM

controls the development of products by the identification of product components and

control of their changes. The main activities comprising the management perspective

are: configuration identification, configuration control and audit, and configuration

status accounting. From the developer perspective, SCM offers tool support for main-

taining the software product, storing its history, providing stable development en-

vironment and coordinating simultaneous product changes. The SCM standards are

described on a rather conceptual level, but from the developers perspective, an SCM

system must provide the following functionality : version management and configu-

ration selection, concurrent development, build and release management, workspace

management, change management.

1 2 3 4

6 7

5Head

Branch 1

Release 1

n - Revision

Figure 2.7: Revisions Graph

Version management is the key aspect of SCM. A software element put under the

version control is called a configuration item (CI). A stable issue of a CI’s content is

called a version. The background idea of version management is simple: each time a

CI (file) is changed a revision is created. Configuration item evolves as a sequence

of revisions. Development can be also organized in parallel lines called branches.

Branches can be merged into new revisions. An example presenting the graph model

of revisions and branches is shown in Fig. 2.7. Along with version management, SCM

30 CHAPTER 2. RELEVANT BACKGROUND

must support also configuration selection (i.e. a rule-based mechanism for selecting

desired configuration items). Baseline is a particular configuration serving as a basis

for further development. Release is also a configuration delivered to a customer.

SCM Repository File System

checkout

checkinDoc A Doc A

Figure 2.8: Checkin/Checkout Model

Concurrent development is the major advantage of using an SCM. The team

members can work in parallel, which is extremely critical in the software engineering

area. Users work with the SCM repository and with the file system. Users retrieve a

version of a file from the repository using the checkout operation, then they work with

them in the file system. Modified files are stored back into the repository using the

checkin operation, see Fig. 2.8. For concurrent development an SCM should support

synchronization of concurrent changes: the system can either lock edited files for one

user (pessimistic approach) or allow simultaneous changes of the same file, but then

SCM has to detect conflicts during the checkin (optimistic approach).

Build management supports collecting code and documents for particular release

and using build tools ; release management provides identification and organization

of all the configuration items for the release. Workspace management deals with the

user interface of the SCM system. Workspace works as a sandbox, where developers

work in isolation, but still controlled by the SCM. Change management handles the

changes in a system, e.g. errors, improvements, refactoring; change management is

usually achieved with the aid of separate tools supplied together with the SCM.

A great variety of tools was developed in the SCM area. The spectrum ranges

from very small specific tools like SCCS [Roc75] and RCS [Tic85] (support mostly

version control) to huge integrated systems like ClearCase (http://www-306.ibm.

com/software/awdtools/clearcase/). In this thesis, for our experiments we use

such open-source SCM systems as CVS [Fog99] and Subversion.

In this section, we presented only the most relevant background ideas from the

2.3. MODELLING FORMALISMS 31

area of SCM, additional details can be found in the literature listed in the beginning

of this section. The most important functionality in our context is providing the

revision history in the form of logs of checkins and checkouts, further details are

described in Chapter 3 on concrete examples.

2.3 Modelling Formalisms

In this section, we present the main definitions of the modelling formalisms used in

the rest of the thesis.

2.3.1 Transition Systems

Transition system (TS) is a special automaton, which has no outputs. In mathemat-

ics, TS is sometimes called semiautomaton. Transition systems are often used for

specification and verification of complex systems in a variety of application domains

including embedded systems and control engineering, telecommunication networks

and protocols, software and process engineering.

Further, we give a definition of a transition system, which is based on [NRT92,

CKLY98]:

Definition 2.3.1 (Transition System). A transition system (TS) is a tuple TS =

(S,E, T, sin), where

1. S is a set of states,

2. E is a set of events (also often called labels),

3. T ⊆ S × E × S is a transition relation,

4. sin is an initial state

The elements of T are called transitions and are often denoted as s e→ s′ instead

of (s, e, s′). A transition system is finite if S and E are finite. In the sequel, we will

consider only finite transition systems. A TS is called deterministic if for a state s

and a label e there can be at most one state s′, such that s e→ s′.

The system starts in an initial state; there is a transition s
e→ s′ if the system

can change the state from s to s′ on event e. We also define a reachability relation

T ∗ on the transition system: it is a transitive closure of the transition relation T .

Thus, state s′ is reachable from s in T if there is a sequence of transitions σ =

32 CHAPTER 2. RELEVANT BACKGROUND

(s, e1, s1) . . . (sk, ek, s′), this is denoted as s
σ→ s′ or s

∗→ s′. Also, each state is

reachable from itself, so, in general, the sequence of transitions can be empty.

Furthermore, we will consider transitions systems that satisfy the following basic

axioms:

A1. No self-loops: ∀(s, e, s′) ∈ T : s 6= s′

A2. No multiple arcs between a pair of states: ∀(s, e1, s1), (s, e2, s2) ∈ T : (s1 =

s2 ⇒ e1 = e2)

A3. Every event has an occurrence: ∀e ∈ E : ∃(s, e, s′) ∈ T

A4. Every state is reachable from the initial state: ∀s ∈ S : sin
∗→ s

In special cases, we will also deal with transition systems with self-loops (they

satisfy axioms A2,A3,A4).

An example of a simple transition system with 5 states, 3 events and 5 transitions

is shown in Fig. 2.9.

s1

s2 s3

a

s4

b

b a

s5

c

Figure 2.9: Transition System

Definition 2.3.2 (Transition System Isomorphism). Two Transition Systems

TS1 = (S1, E1, T1, sin1) and TS2 = (S2, E2, T2, sin2) are isomorphic if there exist

two bijections fS : S1 −→ S2 and fE : E1 −→ E2 such that sin2 = fS(sin1) and

(s, e, s′) ∈ T1 if and only if (fS(s), fE(e), fS(s′)) ∈ T2 for all s, s′ ∈ S and e ∈ E.

Rather often, we consider isomorphism of a TS and a minimized version of a TS. We

use also split-isomorphism. Transition systems TS1 and TS2 are split-isomorphic if

there is such a transition system TS that:

2.3. MODELLING FORMALISMS 33

1. the underlying graphs of TS1, TS2 and TS are isomorphic,

2. labels in TS1 and TS2 are two different enumerations of events in TS

The enumeration assigns different instance numbers to the events. For example,

two arcs labeled with an event a in TS1 can be labelled as a1 and a2 in TS2. The

corresponding operation is called splitting.

Thus, we have sketched three notions of equivalence: isomorphism of TS, isomor-

phism with a minimized TS and split-isomorphism. These notions guarantee that

two equivalent TSs are bi-similar. For further details about split-isomorphism and

bi-simulation, we refer to [Mil82, CKLY95].

2.3.2 Petri Nets and Workflow Nets

In the thesis, we use Place/Transition nets (P/T nets), which is a class of Petri nets

[Pet62, Rei87, RR98, Mur89]. Here, we start with the basic definitions:

Nets

Definition 2.3.3 (Net). A net N is a tuple (P, T, F), which consists of two sets P

and T , such that T ∩ P = ∅ and a relation F ⊆ (P × T) ∪ (T × P).

An element p ∈ P is called place, an element t ∈ T is called transition, and f ∈ F
is called arc. F is called flow relation. Further, we consider only finite nets, i.e.

nets with finite sets of places and transitions. Places and transitions together are also

called elements of the net or nodes. A node x is an input node of a node y if there is

a directed arc from x to y, i.e. (x, y) ∈ F or xFy for short.

An example of a net is presented in Fig. 2.10. This net contains 5 places 3 tran-

sitions and 7 arcs; places are represented as circles and transitions as rectangles

respectively.

t1

t2

t3

p1

p2

p3

p4

p5

Figure 2.10: Net

34 CHAPTER 2. RELEVANT BACKGROUND

Definition 2.3.4 (Pre-set and Post-set). Let N = (P, T, F) be a net and x ∈
P ∪ T is an element of the net, then

1. A pre-set of x is a set •x = {y ∈ P ∪ T |yFx},

2. A post-set of x is a set x• = {y ∈ P ∪ T |xFy}

For a set X ⊆ P ∪ T of nodes of N a pre-set is •X =
⋃
x∈X

•x and a post-set is

X• =
⋃
x∈X x

•.

A directed path (path for short) of a net is a nonempty sequence x0 . . . xk of

elements satisfying xi ∈ x•i−1 for each i (1 ≤ i ≤ k). The path leads from x0 to xk.

In the other words, there is a directed path between x0 and xk, if x0F
∗xk, where F ∗

is a transitive closure of the relation F . An undirected path is a nonempy sequence

x0 . . . xk of elements satisfying xi ∈ •xi−1 ∪ x•i−1 for each i (1 ≤ i ≤ k). In the other

words, there is an undirected path between x0 and xk, if x0(F ∪ F−1)∗xk, where

(F ∪ F−1)∗ is a transitive closure of the relation F and its inverse relation F−1.

Definition 2.3.5 (Connectedness). The net is strongly connected if, for each two

elements x and y, there exists a directed path leading from x to y. The net is weakly

connected if for each two elements x and y, there exists an undirected path leading

from x to y.

Place/Transition Nets

Now, after we have made the most basic definitions, we can start dealing with P/T

nets. But first, we give a definition of marking. A marking shows the number of

tokens at every place of a net. The definition of marking is essential for defining the

semantics of Petri nets.

Definition 2.3.6 (Marking). Let N = (P, T, F) be a net. A marking of this net is

a mapping m : P → N.

So, a marking is a bag (multiset) over the set of places P . Sometimes it is also

represented as a formal sum or as a tuple. Graphically it is usually represented as

sets of tokens in places. The sum of two markings (bags) (X + Y), the presence of

an element in a marking (a ∈ X), the intersection of two markings (X ∩ Y) and the

notions of subbags (X ≤ Y) are defined in a straightforward way and can handle

both for sets and bags.

2.3. MODELLING FORMALISMS 35

Definition 2.3.7 (P/T Net). A Place/Transition net PN is a pair (N,m), where

N = (P, T, F) is a net and m is a marking of N .

Often, P/T net is defined as a triple (N,W,m), where W is a weight function

W : F → N\{0}. In our case, we deal with such P/T nets, where the weights of

all arcs are equal to 1, i.e. W : F → {1}; so, we exclude the function W from the

definition of the P/T net. Thus, we deal with so-called ordinary Place/Transition

systems.

An example of a P/T net is shown in Fig. 2.11, it contains the net presented in

Fig. 2.10 with the marking [p1, p2].

t1

t2

t3

p1

p2

p3

p4

p5

Figure 2.11: P/T Net

t1

t2

t3

p1

p2

p3

p4

p5

Figure 2.12: Transition Firing

In order to define the dynamic behaviour of a system, a marking (it represents a

state) is changed according to the following rules.

Definition 2.3.8 (Firing rule). Let PN = (N,m) be a P/T net, where N is a net

and m is a marking of the net. Transition t ∈ T is enabled by a marking m, if •t ≤ m,

i.e. if m contains all places in •t. We denote it as m t→. In this case, transition t can

fire. Its firing transforms the marking m to the following marking m′, we denote it

as m t→ m′ and define for each place p ∈ P by

m′(p) =


m(p) - 1 if p ∈ •t and p /∈ t•,
m(p) + 1 if p ∈ t• and p /∈ •t,
m(p) otherwise

For the sake of readability, further, we write “Petri net” instead of “P/T net”.

In the Petri net given in Fig. 2.11, transitions t1 and t2 are enabled. If the transition

t1 fires, the initial marking [p1, p2] changes to the marking [p3, p2] like it is shown

in Fig. 2.12. In our example in Fig. 2.11, both concurrent transitions t1 and t2 are

enabled, but we assume interleaving semantics, i.e. parallel transitions fire in some

order.

36 CHAPTER 2. RELEVANT BACKGROUND

Definition 2.3.9 (Reachable markings). Let PN = (N,m0) be a P/T net. A

marking m is reachable from the initial marking m0 if there exists a sequence of

enabled transitions whose firing leads from m0 to m. The set of reachable markings

of (N,m0) is denoted as [N,m0〉 or simply [m0〉.

We use to write m → m′ if there is a transition t ∈ T that m t→ m′. We write

m1
t1...tn−→ mn+1, when there is a sequence of markings m1 . . .mn so that mi

ti→ mi+1

holds for all i ∈ {1, . . . , n}. We also write m ∗→ m′ if there is a firing sequence σ ∈ T ∗,
where T ∗ is a set of all possible sequences over the alphabet T .

Definition 2.3.10 (Reachability Graph). Let PN = (N,m) be a P/T net with

N = (P, T, F). The reachability graph is a tuple RG = ([m〉,m,R), which consists of

a set of all reachable markings, an initial marking and a relation R ⊆ [m〉 × T × [m〉
with R = {(mi, t,mj)|mi

t→ mj}.

Thus, the reachability graph is a transition system (not necessarily finite), where

states correspond to the reachable markings, the distinguished initial state is the

initial marking and transitions are triples (m, t,m′) such that m and m′ are reachable

markings satisfying m
t→ m′. Therefore, the algorithm for building a reachability

graph for a Petri net (see the respective literature listed in the beginning of this

Section) can be regarded as a method for transforming Petri nets to the transition

systems. An example of a reachability graph for the P/T net from Fig 2.11 is shown

in Fig. 2.13.

[p1, p2]

[p3, p2] [p4, p1]

t1 t2

[p3, p4]
t2 t1

[p5]

t3

Figure 2.13: Reachability Graph

Next, we will define several essential properties of Petri nets.

2.3. MODELLING FORMALISMS 37

Definition 2.3.11 (Boundedness, safeness). A P/T net PN = (N,m) with N =

(P, T, F) is bounded if the set of reachable markings [N,m〉 is finite. A net is safe if

for any m′ ∈ [N,m〉 and any p ∈ P , m′(p) ≤ 1.

Safeness implies boundedness. The Petri net shown in Fig. 2.11 is bounded and

safe, because it has a finite set of reachable markings, see Fig. 2.13, and there is no

marking with more then one token in a place.

In addition to the defined class of safe Petri nets, people distinguish between

many other classes. Let PN = (N,m) be a Petri net with N = (P, T, F), then

• PN is pure if (p, t) ∈ F ⇒ (t, p) /∈ F , i.e. ∀t ∈ T : t• ∩ •t = ∅,

• PN is simple if ∀t1, t2 ∈ T : •t1 6= •t2 or t•1 6= t•2, i.e. no two transitions have the

same sets of input and output places,

• PN is a state machine (SM) if ∀t ∈ T : |•t| = |t•| = 1, i.e. each transition has

one input and one output place,

• PN is a marked graph (MG) if ∀p ∈ P : |•p| = |p•| = 1, i.e. each transition has

one input and one output place,

• PN is free-choice (FC) if ∀p ∈ P : |p•| ≤ 1 or •(p•) = {p}, i.e. every arc from a

place is either a unique outgoing arc or a unique incoming arc to a transition,

• PN is extended free-choice (EFC) if ∀p1, p2 ∈ P : (p•1 ∩ p•2 6= ∅)⇒ (p•1 = p•2)

Definition 2.3.12 (Dead transitions, liveness). Let PN = (N,m) be a P/T net

with N = (P, T, F). A transition t ∈ T is dead in PN if there is no reachable marking

m′ ∈ [N,m〉 such that (m′ t→). PN is live if, for every reachable marking m′ ∈ [N,m〉
and t ∈ T , there is a reachable marking m′′ ∈ [N,m′〉 such that (m′′ t→). Liveness

implies the absence of dead transitions.

The Petri net shown in Fig. 2.11 has no dead transitions, whereas the Petri net in

Fig. 2.12 (the shown marking is considered to be initial) contains one dead transition

t1. However, both Petri nets are not live, since it is not possible to enable each

transition repeatedly.

At the end of this section, we want to give a definition of labelled Petri nets, since

they will be extensively used in the next chapters.

38 CHAPTER 2. RELEVANT BACKGROUND

Definition 2.3.13 (Labelled Petri Net). A labelled Petri net is a triple LPN =

(N,m, λ), where N = (P, T, F) is a net, m is the initial marking and λ : T → A is

a labelling function, which puts every transition of the net into correspondence with

the symbol (called label) from the alphabet A.

If no two transitions have the same label then the labelling is unique and we can

use labels as the names of the transitions.

Workflow Nets

Petri nets have been and are successfully used for modelling the routing of workflow

processes. Workflow tasks are modelled by transitions and causal dependencies are

modelled by places and arcs. This way, Petri nets formally represent the essential

routing constructs, such as sequential, conditional, parallel and iterative routing. In

this section, we deal with a special class of Petri nets used for modelling the control-

flow aspect of workflows, it is called workflow nets [vdA97, vdAvH02].

Definition 2.3.14 (Workflow Net). Let PN = (N,m) be a P/T net with N =

(P, T, F) and t̄ a fresh identifier not in P ∪ T . PN is a workflow net (Wf-net) if:

1. object creation: P contains an input place i such that •i = ∅,

2. object completion: P contains an output place o such that o• = ∅,

3. connectedness: N̄ = (P, T ∪ {t̄}, F ∪ {(o, t̄), (t̄, i)}) is strongly connected, i.e.

every node occurs on a path from i to o

An example of a workflow net is shown in Fig. 2.14. The net itself is not strongly

connected, but the short-circuited net with transition t̄ is strongly connected.

t1

t2

t3

p1

p2

p3

p4

p5

t0
p0

Figure 2.14: Workflow Net

Definition 2.3.15 (Sound). Let PN = (N, [i]) with N = (P, T, F) be a workflow

net with input place i and output place o. PN is sound if:

2.3. MODELLING FORMALISMS 39

1. safeness: PN is safe,

2. proper completion: ∀m ∈ [N, [i]〉: (o ∈ m)⇒ (m = [o]),

3. option to complete: ∀m ∈ [N, [i]〉: [o] ∈ [N,m〉,

4. absence of dead tasks: PN contains no dead transitions.

In our example, the workflow net is sound.

2.3.3 Synthesis of Petri Nets from Transition Systems

In the previous sections, we have presented the basic definitions of transition systems,

Petri nets and workflow nets. Here, we will sketch the main definitions from the area

of Petri net synthesis [ER89b, DR96, CKLY95, CKLY98], which makes the connec-

tion from transition systems to Petri nets. Such state-based modelling techniques as

transition systems are often used for formal specification and verification of complex

systems. However, they represent such relations as concurrency, causality and conflict

as state sequences (state diamonds). Thus, people are using Petri nets (event-based

modelling technique) for more succinct representations of such relations. The area of

Petri net synthesis and the theory of regions develops the methods for transforming

transition systems to Petri nets. We start with the definition of a region.

Definition 2.3.16 (Region). Let TS = (S,E, T, sin) be a transition system and

S′ ⊆ S be a subset of states. S′ is a region if for each event e ∈ E one of the following

conditions hold:

1. all the transitions s1
e→ s2 (labelled with e) enter S′, i.e. s1 /∈ S′ and s2 ∈ S′,

2. all the transitions s1
e→ s2 (labelled with e) exit S′, i.e. s1 ∈ S′ and s2 /∈ S′,

3. all the transitions s1
e→ s2 (labelled with e) do not cross S′, i.e. s1, s2 ∈ S′

(internal transition) or s1, s2 /∈ S′ (external transition)

The region containing the whole set of states and the empty-set region are called

trivial, further we will consider only nontrivial regions. The set of nontrivial regions

of a TS is denoted as RTS . The set of all nontrivial regions containing a state s ∈ S
is denoted as Rs.

Here, we continue the example of a transition system given in Fig. 2.9. Several

regions of this TS are shown in Fig. 2.15: r1 = {s1, s2}, r2 = {s1, s3} and r3 =

40 CHAPTER 2. RELEVANT BACKGROUND

{s1, s2, s3, s4}. For example, r1 is a region, because all the transitions with label a

exit r1 and all the transitions with labels b and c do not cross it. A region r′ is said

to be a subregion of another region r if r′ ⊂ r. For example, r1 is a subregion of r3.

A region r is a minimal region if there is no other region r′ which is a subregion of

r. For example, r1 is a minimal region, since neither the set {s1} nor the set {s3} are

regions.

s1

s2 s3

a

s4

b

b a

s5

c

12

3

Figure 2.15: TS with Regions

A region r is a preregion of event e if there is a transition labelled with e which

exits r. A region r is a postregion of event e if there is a transition labelled with e

which enters r. The set of all preregions and postregions of event e are denoted as ◦e

and e◦ respectively.

Now, using the definition of regions, we can give a definition of an elementary

transition system.

Definition 2.3.17 (Elementary Transition System). A transition system

TS = (S,E, T, sin) is called elementary transition system (ETS) if it satisfies, in

addition to axioms A1. - A4. (see Sect. 2.3.1), the following axioms:

A5. state separation property: for all s, s′ ∈ S, (Rs = Rs′) implies (s = s′), i.e.

different states must belong to the different set of regions,

A6. forward closure property: for all s ∈ S and e ∈ E, (◦e ⊆ Rs) implies s e→, i.e. if

state s is included in all preregions of event e, then e must be enabled in s

The TS shown in Fig. 2.15 is an example of an elementary TS, since it satisfies

all the 6 axioms.

2.3. MODELLING FORMALISMS 41

Further, we do not describe the algorithms and theoretical foundations, but sketch

the main ideas of the synthesis approach. It has been shown in [NRT92] that for an

ETS there exists a safe, pure and simple Petri net and that ETS is isomorphic to the

reachability graph of this Petri net.

The idea of the algorithm is the following: for each event e in TS a transition

labelled with e is generated in the PN. For each minimal region ri a place pi is

generated. The flow relation of the Petri net is built the following way: e ∈ p•i if ri is

a preregion of e and e ∈ •pi if ri is a postregion of e.

Following this algorithm, we get a PN, see Fig. 2.16 from the TS shown in

Fig. 2.15. It is worth mentioning that we have seen already a PN isomorphic to

the synthesized one in Fig. 2.11 and the reachability graph of this PN in Fig. 2.13.

So, the reachability graph of the PN and the initial TS are isomorphic, compare

Fig. 2.13 and Fig. 2.15.

a

b

c

p1

p2

Figure 2.16: Synthesized Petri Net

The class of elementary transition systems is very restricted; in practice, most of

the time, people deal with standard transition systems. In the works of Cortadella

et al. [CKLY98] there was proposed a method for handling the full class of TSs

and transforming them to labelled Petri nets. This advanced method is used by our

algorithms, and the examples are described in Chapter 4 of this thesis.

42 CHAPTER 2. RELEVANT BACKGROUND

Chapter 3

Incremental Workflow Mining

Approach

In this chapter, we present our incremental workflow mining approach. Development

of this approach is the main objective of this thesis, see Sect. 1.2.3 in Chapter 1. This

objective is achieved by fulfilling the tasks, which were listed in Sect. 1.2.3. Here we

explain, how the approach can be integrated into a modern software engineering en-

vironment, what kind of input information is used by the algorithms of the approach,

what models are produced by the algorithms and what existing methods were used

and new methods were invented. The basic ideas of the presented approach were

published in our papers [RGvdA+07b, RGvdA+07a, vdARvD+06, KRS06c, KRS06b,

KRS06a, KRS05a, KRS05b]. In this chapter, we explain our ideas with the help of

rather simple introductory examples; however, the evaluation of the approach on a

set of real projects is presented further in Chapter 5.

3.1 System Architecture

In this section, we sketch the standard architecture of modern software engineering

environments and the role of software repositories and, especially, software configu-

ration management systems in these environments.

3.1.1 Process-centered Software Engineering Environment

We start with briefly explaining a traditional software engineering environment

schema inspired by the works in the area of process-centered software engineering en-

vironments (PSEEs) and software processes in general [Ost87, CKO92, FH93, Gru02].

43

44 CHAPTER 3. INCREMENTAL WORKFLOW MINING APPROACH

The foundations of research in the area of PSEE and process modelling were discussed

in Sect. 2.2.1.

The traditional environment shown in Fig. 3.1 contains a software product and

a software process model which is instantiated for particular projects. The software

product consists of source code, executable code, and also models, use cases, test

cases, documentation and other artefacts produced during the software development

process. Often, the architecture includes also a software product structure – a model

of the software product. A process engineer or manager (generally, it can be a de-

partment or a group of people) designs the process model using his experience and

existing approaches, like V-model [DW00], RUP [JBR99], etc. Then, the model is

instantiated and practitioners follow it during the product life cycle, see the arrows

in the figure. Often, the architecture includes also the organizational structure – a

resource model.

Software
Process
Model

Practitioner Process Engineer,
Manager

Software
Process
Instance

Models

Documentation

Use Cases
Test Cases

Source Code Executable Code

Figure 3.1: Traditional Process-centered Software Engineering Environment.

So, we presented a very general schema, which was historically used for modelling

the architecture of PSEEs, but there are the following known problems with this

schema (the essence of these problems was presented in Chapter 1):

• The designed process model prescribes the behaviour, i.e. it does not necessarily

reflect the actual way of work in the company.

• Process engineers design the process model manually, which is extremely com-

3.1. SYSTEM ARCHITECTURE 45

plicated and error-prone. Moreover, existing practices can be hardly taken into

account.

• Human possibilities in detecting discrepancies between the process model and

the actual process are limited. So, people design and document the process

model, but many actual problems remain unnoticed.

• Practitioners are not involved in the design of the process model, in spite of

the fact that they are the best specialists in the parts of the process that they

carry out. Hence the process model is often specified on a very abstract level

neglecting important details of the practical work.

Further, we show which systems are used in modern software engineering envi-

ronments and how these systems can be used for treating the problems described

above.

3.1.2 Software Repositories

Nowadays, software repositories start playing an ever more important role in software

engineering. So, in this section, we extend the standard PSEE schema with a set of

systems (software repositories), which are widely used for a collaborative work of the

software engineers in an enterprise.

Software repositories such as software configuration management systems, com-

munications between project personnel (mailing lists, newsgroups and discussion

forums), webpages and defect tracking systems are often used for managing the

progress of software projects. Information from these repositories is usually freely

available for most of the open source software (OSS) projects, such as Netbeans,

Mozilla, Apache, Eclipse, Linux kernel, etc. All these repositories are intensively used

by the open source developers during their collaborative work. Commercial environ-

ments do not have necessarily all these systems, but also use some combinations of

them; archives of the repositories are usually not freely available in these companies.

But in both cases of open source and commercial software projects, software config-

uration management systems, mailing lists and defect tracking systems are widely

used and accepted. SCM systems are also described separately in Sect. 3.1.3, since

they historically play a special role in software engineering environments storing the

baselines of the software product and the changes of it. Here, we give a brief overview

of software repositories in PSEEs and research in this area.

46 CHAPTER 3. INCREMENTAL WORKFLOW MINING APPROACH

Software
Process
Model

Practitioner Process Engineer,
Manager

Software Configuration
Management System

News

E-mailsForums

Defect Tracking
System

Software
Process
Instance

Webpages

Figure 3.2: Modern Process-centered Software Engineering Environment.

The extended schema of modern process-centered engineering environment is

shown in Fig. 3.2. It includes a set of systems (software repositories), with which

practitioners are usually interacting:

• E-mails, mailing lists, discussion forums and newsgroups are the primary com-

munication channels between practitioners. This data can be used for detecting

the social relationships in the company and identifying the coordination activ-

ities.

• Defect repositories are used for managing the quality assurance activities in the

company. They are used by testers and developers for reporting about improper

system behaviour and for requesting additional features. Some defect tracking

systems support the discussions.

• Webpages and wikis usually contain information about plenty of software

project artefacts. They contain news, guides, white papers, FAQs, how-to

guides, release information, etc. Moreover, mailing lists, newsgroups and de-

fect repositories can be accessed through the web, but this is specific for the

open source software (OSS) projects.

Nowadays, researchers and practitioners are working already in the area of min-

ing software repositories [HHM04, HHD05] to support the maintenance of software

3.1. SYSTEM ARCHITECTURE 47

systems, to improve the software design/reuse, to understand the details of software

development, to support predictions about software development, and to plan soft-

ware projects.

Researchers and practitioners recognize already the benefits of software process

modelling with the aid of software repositories [SGR04, VGL05, Ian05, MFH02,

Sca02, Ger04]. Formerly, process modelling and improvement was mainly based on

what practitioners said about their process (interviews, questionnaires); nowadays,

process improvement should be ruled by what was really done during the software

development process, since this information is reflected in the software repositories.

Nevertheless, process modelling based on software repositories is still done man-

ually and informally; i.e. there is a lack of formal methods and automatic techniques

in this area. One of the objectives of this thesis is combining the ideas of mining

software repositories with the idea of process mining, i.e. using information from

software repositories for automatically discovering software process models. So, in-

formation from software repositories should be used for discovering and modelling

software processes.

3.1.3 Software Configuration Management Systems

In the previous section, it was mentioned that SCM systems play a significant role in

software engineering environments. So, in this section, we examine this role in more

detail. The background information about SCM systems was presented in Sect. 2.2.3.

A Software Configuration Management system is identified as a major part of a

well defined software development and maintenance process [Hum89]. SCM brings

two disciplines to software development: management and development [CW98a]. As

a management support discipline, SCM is used for controlling changes to software

products; so, it is a support discipline for project managers. As a development sup-

port discipline, SCM assists developers in their collaborative work with the software

product.

During the last years, SCM area is considered more and more important; this

happens not only because of the growing influence of CMM, but because of the

growing complexity of software, i.e. increasing problems with managing the software

product and the work of software practitioners. For example, it is a widely accepted

fact that developers are getting more and more dispersed when they work on a big

software project for a long time; SCM system and managing initiatives have to bring

the developers together.

48 CHAPTER 3. INCREMENTAL WORKFLOW MINING APPROACH

Software Product

Models
Documentation
Use Cases
Test Cases
Source Code
Executable Code

Practitioner

Process
Engineer

Software Configuration
Management

Manager

Figure 3.3: Interaction with SCM.

Thus, the importance of SCM in modern PSEEs can not be overestimated. In

Fig 3.3, it is shown that managers and process engineers are interacting with SCM

along with practitioners. So, automatic analysis of the information presented in SCM

system is helpful for managers and process engineers; it enables them to control

the software development process better. A detailed description of this management

information is given in the next section and the methods of its analysis – in Sect. 3.3.

3.2 Input Information

In this section, we come from the general description of software repositories to

the audit information which can be obtained from them; this is the input data for

the incremental workflow mining approach (cf. 3.3). First of all, we look at such

software repositories as e-mails, news, and defects and show an example of the suitable

input information obtained from defect repositories; then, separately, we describe

the auditing capabilities of the SCM systems and present a bigger example used for

describing our approach in this chapter.

The practical goal of our incremental workflow mining approach described in

Sect. 3.3 is providing a general-purpose framework, which uses the information from

different software repositories for deriving process models. So, the idea is to be able

to deal with different types of input information obtained from different software

repositories (this functionality is realized now in the form of plugins, the details are

covered in Chapter 4) and to apply our mining algorithms to this input information.

3.2. INPUT INFORMATION 49

3.2.1 Audit Information from Software Repositories

The software repositories described in Sect. 3.1.2 provide the following audit infor-

mation in the following form:

• E-mails contain information about the sender, the recipient (or a set of recip-

ients in the case of mailing lists), the subject, the time and the date, and the

main message. An example of an e-mail from some developer to the mailing list

of Apache Tomcat developers is shown in Fig. 3.4.

dev
<-- Thread -->
<-- Date -->
Find

Working on mod_jk
Rodrigo Ramele
Thu, 10 Aug 2006 12:43:19 -0700

Hello Tomcat dev:

Suse 9.2, Apache 2.2.3, mod_jk 1.2.15

I am changing the way mod_jk transfer request to different workers (tomcat
instances) in a balanced worker keeping track of the link between session
and worker, and I need to use some kind of shared memory inside mod_jk. (I
need to share a hashtable). Could you please give me a clue on which set of
Apache API calls I could use to do it ?

Thank you very much !!!!

Working on mod_jk Rodrigo Ramele
Re: Working on mod_jk Jean-frederic Clere

Re: Working on mod_jk Rodrigo Ramele
Re: Working on mod_jk Rainer Jung

Re: Working on mod_jk Rodrigo Ramele
Re: Working on mod_jk Jean-frederic Clere

Reply via email to
 Rodrigo Ramele

Figure 3.4: An example of an e-mail.

• News usually contain the headline, the time and the date, the author and

the main message. A simple example of an announcement in an open source

Netbeans project is presented in Fig. 3.5.

 Login

HOME > Community

Community

Join

News

Mailing Lists

Issue Tracking

Releases & Planning

Teams

Evangelism
Presentations

Module Developer
Resources

Guidelines

Contribute

Sources

Projects

View announcement

Headline NetBeans IDE 5.0 BlueJ Edition
Date Jul 27, 2006

Contributed by rkusterer

Announcement

NetBeans.org and BlueJ.org are proud to announce the availability of NetBeans IDE 5.0 BlueJ
Edition.

Download the BlueJ Edition

This special edition of NetBeans IDE is a collaboration between the NetBeans community and
the University of Kent, England. The NetBeans IDE BlueJ Edition is targeted at teachers and
students familiar with the popular BlueJ tool (www.bluej.org). The NetBeans BlueJ Edition
helps you "make the jump" from BlueJ to a full-featured IDE, either when your projects have
grown too big to fit comfortably into BlueJ, or when you want to use features such as code
completion and drag-and-drop GUI building, which BlueJ doesn't directly support.

To learn more about using BlueJ and NetBeans in education, see edu.netbeans.org/bluej
and www.bluej.org/netbeans.

Enjoy!

Milos Kleint
NetBeans team

Search

How do I...
Get help?

MORE INFO: | HOME | SHOP | REPORT A BUG | LEGAL | CONTACT BY USE OF THIS WEBSITE, YOU AGREE TO THE NETBEANS POLICIES AND TERMS OF USEFigure 3.5: An example of an announcement.

50 CHAPTER 3. INCREMENTAL WORKFLOW MINING APPROACH

• Defect reports contain a description of the desired behaviour, a description of

the actual behaviour, the author of the report, the time and date of the report,

the status of the defect, severity, etc. An example of a bug report of an open

source Mozilla project is shown in Fig. 3.6.

Bugzilla Bug 319196 customized toolbar always reset to default on restart, bookmarks and search engines lost, unable to add search engines (localstore.rdf

corruption on upgrade or crash)

Last modified: 2006-08-11 13:40:58

PDT

First Last Prev Next No search results available Search page Enter new bug

Bug#:
319196 alias:

Product: Firefox

Component: Startup and Profile System

Status: NEW

Resolution:

Assigned To:

Nobody's working on this, feel

free to take it

<nobody@mozilla.org>

Hardware: PC

OS: Windows XP

Version: unspecified

Priority: --

Severity: critical

Target

Milestone:

Reporter: christian<chris@gmx.de>

Add CC:

CC: agentme@sbcglobal.net

ancestor.ak@gmail.com

axel@pike.org

benjamin@smedbergs.us

betbest1@gmail.com

Remove selected CCs

QA Contact: startup@firefox.bugs

URL:

Summary: customized toolbar always reset to default on restart, bookmarks

Status

Whiteboard:

Keywords:

Flags:

 blocking1.8.0.7

 blocking1.8.0.8

 blocking1.9

 blocking aviary1.0.9

darin: blocking firefox2 -

 in testsuite

Attachment Type Created Size Flags Actions

corrupt localstore.rdf after crash text/plain 2006-06-26 21:12 PDT 25.70 KB none Edit

corrupt localstore after update application/octet-stream 2006-06-28 13:59 PDT 8.11 KB none Edit

broken bookmarks after update text/plain 2006-06-28 14:03 PDT 2.26 KB none Edit

Create a New Attachment (proposed patch, testcase, etc.) View All

Bug 319196 depends on: Show dependency tree

Show dependency graphBug 319196 blocks:

Votes: 4 Show votes for this bug Vote for this bug

Additional Comments:

Figure 3.6: An example of a bug report.

• Webpages contain news and information about software and documentation

releases. A small example of a webpage of an Eclipse project is shown in Fig. 3.7.

On one side, nowadays the information described above can not be processed fully

automatically. Since the e-mail messages, news or bug reports contain the text which

is written by human-beings, it can be hardly parsed and automatically analysed.

Additionally, different software projects and different companies use different systems

and standards; thus, today, it is difficult to find a common method for analysing such

audit information fully automatically.

On the other side, it is impossible to analyse the archives of audit information

which contain hundreds and thousands of e-mails, news, or reports without auto-

matic support. Moreover, there already exist methods (process mining) that deal

3.2. INPUT INFORMATION 51

Development Resources
From Eclipsepedia

Contents
1 Reporting Bugs
2 Getting Answers
3 Getting Code
4 Committing Code

Reporting Bugs
Bug Reports (https://bugs.eclipse.org/bugs/)
Field Guide to Callisto Bugs

Eclipse uses Bugzilla as our bug tracking system. Bugzilla has a wide following within the open source community and directly supports the workflows associated with
distributed development (e.g., email notification). You can sign up for your own Eclipse bugzilla ID and start contributing bug reports.

Getting Answers
Mailing Lists (http://www.eclipse.org/mail/)

Eclipse uses mailing lists for development coordination, design discussions, voting, announcements etc.

News Groups (http://www.eclipse.org/newsgroups/)

News Groups are open to the whole community, and are open to a broader range of questions than mailing lists.

IRC

Asking questions on the IRC channels can be a quick way to get your questions answered, if the right person is online.

Getting Code
Eclipse Platform downloads page (http://download.eclipse.org/)

Links to Nightly, Milestone and Maintenance builds, plus release notes, performance results, and other Platform goodies.

CVS Repository (http://dev.eclipse.org/viewcvs/)

We use the Concurrent Versioning System (CVS) to support concurrent distributed development, and we use Eclipse as our CVS client because it supports CVS
directly.. All Eclipse development is carried out in this repository. The server supports both "extssh" and "pserver" type CVS connections - "pserver" only works for
anonymous access.

Committing Code
Development Conventions and Guidelines

Look here for the for the coding standards, naming conventions, and other guidelines we use to help ensure eclipse presents to users and developers as a unified whole
rather than as a loose collection of parts.

Committer tools (https://dev.eclipse.org/committers/)

Eclipse committers can use this interface to change their eclipse.org password, to run some stats or to get general information about the eclipse.org infrastructure.

Add a New Committer (http://www.eclipse.org/legal/newcommitter.php)

Retrieved from "http://wiki.eclipse.org/index.php/Development_Resources"

Navigation

Main Page
Community portal
Current events
Recent changes
Random page

Figure 3.7: An example of a webpage.

automatically with the easiest form of audit information, such as event logs.

Thus, today there are difficulties with analysing the data provided by software

repositories, but it should not be seen as a counter-argument against automatic ap-

proaches for the analysis. To the contrary, automatic approaches for dealing with this

data are becoming ever more important. And in this thesis, in this Chapter and in

Chapter 4, we present new automatic methods for dealing with the audit informa-

tion described in this Section and in Sect. 3.2.2. So, our research goes further in the

direction of algorithmic analysis of software repositories.

Audit Information from Defect Repositories

All the information described above can be used for discovering the software pro-

cesses. Providing a framework and tool support, which processes this information in

a common way is one of the challenges of our thesis. Next, we present a small example

of the information, which can be obtained from the defect repositories and show how

it can be represented in a way suitable for process mining.

A variety of systems for managing defect (bug) repositories are included into

modern PSEEs. For example, in open-source domain such systems as Bugzilla (www.

bugzilla.org), GNATS (http://www.gnu.org/software/gnats/), JIRA (www.

atlassian.com/software/jira/) are widely accepted.

52 CHAPTER 3. INCREMENTAL WORKFLOW MINING APPROACH

All these systems track and manage bug reports emerging during the software

project. For every bug, it is possible to view its history and, thus, to find out who

changed the status (state) of the bug and when it was done. In Table. 3.1, we show

an abstract example of the bugs history inspired by the bugs of the Eclipse project

managed by the Bugzilla system. In Bugzilla, for every bug it is possible to view

the “bug activity”, i.e. the history of all the changes. In this example, we show the

life cycles of two different bugs (separated by double lines), for every bug for every

changed status we can also see the author and the timestamp.

Table 3.1: Log of Bugs History
Status Date Author

NEW 03.10.05 09:00 qaengineer

RESOLVED 03.10.05 11:00 developer

CLOSED 03.10.05 15:00 manager

NEW 04.10.05 10:50 qaengineer

RESOLVED 04.10.05 13:30 developer

VERIFIED 04.10.05 15:30 designer

CLOSED 04.10.05 19:00 manager

A life cycle of one bug corresponds to a process instance. So, information about

the history of several bugs can be used for discovering the bug life-cycle process model

with the aid of our process mining algorithms, which will be described further. A big

example of discovering bug life-cycle model is given in Chapter 5. In the rest of this

chapter we use the document logs of SCM systems (they are described in the next

Section) and not the logs of bug repositories for explaining our approach. However,

the goal of the bugs log example is to show that the information suitable for process

mining can be obtained from different types of software repositories discussed above.

3.2.2 Audit Information from SCM system

Further in our examples, we focus on the audit information provided by SCM systems

and show how this data can be used for discovering the software processes describing

the whole software project (not only specific to bugs life cycles). However, it should

be noted that our approach is not limited to the input information described in this

section and can deal with the other software repositories and systems examined in

the previous section.

3.2. INPUT INFORMATION 53

In spite of the fact that there is a variety of different software configuration

management systems, their typical auditing capabilities, such as history, logging, re-

porting and traceability [FZ99] produce similar results. The results differ only syntac-

tically and since they are obtained from different systems, people are using different

commands and utilities. We call these results document logs and present a general

format of these logs in this section.

It has to be mentioned here that document logs can be also obtained from the

e-mail archives; the SCM systems are usually configured to send e-mail notifications

to the users as soon as somebody commits new data. So, in this context such software

repositories as e-mails can be also used for process mining.

Generally, document logs comprise data about checkouts and checkins (commits)

of documents. In the thesis, we deal first of all with checkin information. The reason

is that not all SCM systems enforce or support checkouts, checkins to the system are

done more accurately – people check in the documents only after having done changes,

and after the checkin they become responsible for them to the colleagues. In spite of

this fact, checkout information can be rather valuable, especially for improving the

models derived from the checkins. The source of an additional information could be

also the tools, where the documents were changed before the checkin.

In order to extract the general format of document logs we have looked at the

versioning logs containing information about commits of documents in several SCMs,

such as: CVS [Fog99] and Subversion (open-source file-based version management sys-

tems), Visual SourceSafe [Mic03] (commercial filed-based version management sys-

tem for small developer teams), ClearCase [Rat03] (SCM system for large developer

teams).

CVS or Concurrent Versions System [Fog99] is an open-source file-based version

management system, which supports the checkout/checkin model [Fei91b]. This sys-

tem and its successor Subversion are widely used in different software projects of

different size especially in the open-source domain.

An example of a CVS log is shown in Fig. 3.8. In this example, “revision 1.2”

of the file “Code1” contains information about checkin date and time, the author,

the comment “ModifyCode” and some additional information about the state of the

revision, made changes, etc.

Microsoft Visual SourceSafe [Mic03] is a commercial file-based version manage-

ment system, which supports the checkout/checkin model. It can be used by indi-

vidual developers or small development teams for parallel collaborative work on the

54 CHAPTER 3. INCREMENTAL WORKFLOW MINING APPROACH

Working file: Code1

revision 1.2

date: 2005/06/20 11:17:15; author: Peter; state: Exp;

lines: +1 -1; kopt: kv; commitid: cd042b6a5bb000

ModifyCode

revision 1.1

date: 2005/04/26 13:39:38; author: John; state: Exp;

kopt: kv; commitid: e70426e449a0000;

Modify

==

Figure 3.8: CVS Log Example

software project. This system also supports the file change histories and the audit

trail logs.

***************** Code1 *****************

User: Peter Date: 06/20/05 Time: 11:17p

Checked in $/SSTest

Comment:

ModifyCode

Figure 3.9: SourceSafe Log Example

An example of a SourceSafe log is shown in Fig. 3.9. In this system, the report

about the file “Code1” also contains information about the checkin date and time,

the user and the comment.

Rational ClearCase [Rat03] is a software configuration management system for

large development teams working in parallel. ClearCase provides such important

features as defining the development policies and procedures and tracking the software

build process. It logs all the changes to the data repository, providing an audit trail

of the development activities.

So, we presented concrete examples of document logs of several well-known SCM

systems. These logs contain very similar information, but they differ syntactically and

they are obtained from configuration management systems using different commands

and utilities.

3.2. INPUT INFORMATION 55

Next, we present a general example of a document log, see Table 3.2; this is a

small abstract log containing the commits of documents1. This log helps us explain-

ing our ideas in the rest of the Chapter. Big examples of real logs obtained from

SCM systems are presented in Chapter 5. The log contains data on the documents

and timestamps of their commits to the system along with data on users and log

comments. The document log consists of execution logs (cases or traces) separated

by double lines in the table. These execution logs contain information about the in-

stances (executions) of the process. Our small example was inspired by the software

change process [KFF+91]; let us call the presented process “Design Change”, during

this process, some software module has to be designed and, in some cases, verified,

code has to be generated and tested and the design has to be reviewed. For this

process, in different executions, different documents are committed in different order

starting with the “design” and finishing with the “review”.

Table 3.2: Document Log

Document Date Author Comment

project1/models/design.mdl 01.01.05 14:30 designer initial

project1/src/Code.java 01.01.05 15:00 developer implemented

project1/tests/testPlan.xml 05.01.05 10:00 qaengineer manual

project1/docs/review.pdf 07.01.05 11:00 manager review was done

project2/models/design.mdl 01.02.05 11:00 designer initial

project2/tests/testPlan.xml 15.02.05 17:00 qaengineer manual

project2/src/NewCode.java 20.02.05 09:00 developer some new code

project2/docs/review.pdf 28.02.05 18:45 designer review was written

project3/models/design.mdl 01.03.05 11:00 designer initial

project3/models/verification.xml 15.03.05 17:00 qaengineer pending

project3/src/GenCode.java 20.03.05 09:00 qaengineer generated

project3/models/verification.xml 21.03.05 09:00 qaengineer pending

project3/src/GenCode.java 22.03.05 09:00 designer generated

project3/docs/Areview.pdf 28.03.05 18:45 manager review done

1Note that the document log presented here and the bugs log presented in Table 3.1 provide

similar information.

56 CHAPTER 3. INCREMENTAL WORKFLOW MINING APPROACH

Process Aspects in Audit Information

In Sect. 2.1.3, we discussed different aspects (also often called perspectives and views)

of process modelling. The main three aspects are control, information and organi-

zation2. As a matter of fact, it is not sufficient to deal only with control aspect of

the process, but the process model should contain or at least be extendable with the

other aspects. The same issue is relevant for the process mining, i.e. we should be

able to discover different aspects of the process model.

In contrast to the event logs, used by the classical mining approaches, document

logs do not contain data about tasks, but the data about documents and the authors.

I.e. they contain information and organization aspects of the process. The committed

documents represent the informational aspect and the authors of the commits –

the organizational aspect respectively. So, this data should be used for deriving the

information about the control flow and extending it with the data about produced

documents and the agents (human resources) involved in the process.

3.2.3 Document Logs, Problems and Assumptions

Next, we present several important issues and assumptions concerning the document

logs and their usage for process mining. The solutions of the outlined issues are given

in the next section and the next chapter. So, they are the following:

• Identifying cases(execution logs), detecting the log structure. For many software

projects, a case corresponds to the development of a subproject, a plugin or

a special repeatable phase of product development. From different executions

representing possible behaviour, see Fig. 3.10, we derive the overall process

model using the approach presented in the next section. In our example from

Table 3.2, a case corresponds to a project. In general, the problem of detecting

the log structure can be application domain, SCM system and company-specific,

in this case, we need interaction with the end user to solve it. For example, if

we are using a file-based SCM, then we derive the structure of the log from the

folder structure, but if the SCM is project-based, then we have to analyse the

project structure.

• Abstracting from the details of the log and ignoring unnecessary information.

Rather often, logs contain too many details, some of them are not even relevant
2Generally, the list of aspects can be extended with the others, for example, assignment, trans-

actions, versions, etc.

3.2. INPUT INFORMATION 57

Process
Model

 Execution 1 Execution 2 Execution n

Model Level

Instance Level

Figure 3.10: Execution Logs and Process Model

for the development process. Thus, there must be a mechanism to abstract from

the details and to mine a general model, which could be refined later. There

must be also a way to ignore the unnecessary details or to focus on particular

part of the log.

• Detecting document types and organizational structure. The log contains only

information about the document names, but on the model level, we have to

deal with the types of documents; thus, there must be a method for resolving

the types. This is a challenging task, which requires additional information,

which is not available in the logs; this information should be obtained from

the information model or directly from practitioners. As concerns detecting the

organizational structure, the log contains only the names of users; but on the

model level, we have to deal with organization units/positions and roles. This

task also requires additional information about the organizational structure.

Actually, the information given in comments can be helpful for resolving some

of the issues described above. Different software process improvement techniques, for

example CMM and CMMI, prescribe that SCM standards and naming conventions

have to be introduced into the company to fulfil the repeatable maturity level. Thus,

if the users are adhering to the naming conventions, then, using these conventions,

log messages can be parsed and document names can be extended with the additional

information derived from the messages. However, in general, special text mining tech-

niques should be used for deriving knowledge from the messages and improving the

algorithms.

Another issue is time. In our approach it is used for detecting the order of records,

and after the model is derived, time is used for extending it with the data about the

duration of tasks.

58 CHAPTER 3. INCREMENTAL WORKFLOW MINING APPROACH

Further, in out incremental approach described in the next Section, we assume

that the log has the structure like it is shown in Table 3.2. We ignore the information

given in comments; new methods for mining the comments are out of the scope of

this thesis.

3.3 Incremental Workflow Mining Approach

In this section, we present our incremental workflow mining approach. It uses the

input information described above for deriving process models. In this chapter, we

discuss the approach on a general level, the details of the algorithms and formalisms

are given in the next chapter.

3.3.1 Approach: Outline and Architecture

In contrast to the traditional way of work, in the incremental workflow mining ap-

proach, which was described in our works [KRS05b, KRS06a, RGvdA+07b], we go

the other direction, it is shown with the arrows in Fig. 3.11:

1. Preprocessing: We take a document log (obtained directly from SCM system

or from e-mail archives) or a log from other software repositories (for example,

bug history log), which corresponds to the process instances (particular execu-

tions of the process) and make an abstraction from it (the abstraction technique

is described further).

2. Process Mining: We derive a process model from the abstract log using our

process mining algorithms.

3. Analysis and Representation: Then, the process model can be analysed

and verified and shown to the process engineer and to the practitioner; he

decides which changes should be introduced to the process to optimize and to

manage it in a better way.

In accordance with the outline of the approach shown in Fig. 3.11, we can plan

the software architecture for our approach, it consists of the following components,

see UML component diagram in Fig. 3.12:

• Input Framework: A framework for integrating different sources of input in-

formation and adopting them for process mining. This framework deals with

such input data as document logs, bug logs and is extendable for dealing with

3.3. INCREMENTAL WORKFLOW MINING APPROACH 59

Software
Process
Model

Practitioner Process Engineer,
Manager

Software Configuration
Management System

News

E-mailsForums

Defect Tracking
System

Software
Process
Instance

Webpages

Figure 3.11: Mining in a Process-Centered Software Engineering Environment

other data provided by software repositories. It takes specific audit trail infor-

mation and returns it in a standard log format.

• Process Mining Core: A customizable process mining algorithm for deriving

process models on different levels of abstraction. This component takes a log

and returns a mined process model.

• Analysis, Verification and Conversion Utilities: A set of methods for

analysis and verification of process models and for conversion and export to the

other formalisms supported by different tools. This component uses the process

model as input and returns either other process models or analysis results.

Here, in Fig. 3.12 we present a general architecture for our approach, further

details about the implementation can be found in Sect. 4.4.

Functionality of the Mining Core

Actually, the process mining core component and the process mining step are the

key elements of our approach. Generally, the mining approach can be used not only

for discovery (deriving the process model), but also for monitoring and improving

real software processes using the data from software repositories in general and SCM

systems in particular, see Fig. 3.13. Thus, process mining is useful not only in a

setting where there is no explicit process model and much flexibility is allowed (it

60 CHAPTER 3. INCREMENTAL WORKFLOW MINING APPROACH

Input Framework Process Mining Core

Analysis, Verification and Conversion Utilities

Log

Process
model

Figure 3.12: Incremental Workflow Mining Architecture

is especially relevant for the software development processes), but also in a setting

where the model exists already. So, we consider three types of process mining, for a

detailed description we refer to [vdARvD+06]:

• Discovery: There is no a-priori model, i.e. some model is constructed based

on the information stored in the document logs.

• Monitoring (Conformance): There is an a-priori model. Mining is used to

monitor and check whether reality conforms to the model. The idea is to check

the deviations and to measure the severity of these deviations.

• Improving (Extension): There is an a-priori model. The goal is to improve

this model using the actual data and to enrich this model with information

about the other aspects.

Classical process mining has been focusing on discovery, i.e., deriving information

about the original process model, the organizational context, and execution properties

from enactment logs. Introducing a mining approach to the company rather often has

to start with the discovery.

So, a new method for the control-flow process discovery is the main contribution

of this thesis on the algorithmic (technical) level. However, on the conceptual level,

the main contribution of the incremental workflow mining approach is applying the

methods of process mining to the software engineering domain. Thus, further we start

with the preprocessing step, then we come to the core of the approach, i.e. to our

3.3. INCREMENTAL WORKFLOW MINING APPROACH 61

Document
Log

Software
Process
Model

Websites

NewsForums

E-mails

Defect Tracking System

Software
Repositories

- Discovery
- Improvement

 SCM

- Monitoring

Process
Mining

Figure 3.13: Different Types of Process Mining

control-flow mining method, and then, explain how other process mining methods,

which deal with other process aspects or support process analysis, can be applied to

the software process models.

3.3.2 Step 1: Preprocessing

In this Section, we describe the first step of the approach – preprocessing, see

Fig. 3.14. The preprocessing step is realized in the input framework component,

which accepts data from different sources and converts it to the standard log for-

mat. In this step, we prepare the log for process mining. Hence, we have to treat the

problems discussed in Sect. 3.2.3. In this section, we present the following:

Software
Process
Model

Practitioner
Process Engineer,
 Manager

Software
Process
Instance

Software Repositories

Preprocessing

Figure 3.14: Preprocessing Step

1. a method for abstracting from the details of the log and ignoring unnecessary

information (abstraction has also to be done on the process mining step, we

62 CHAPTER 3. INCREMENTAL WORKFLOW MINING APPROACH

call it abstraction on the algorithm level, it is discussed later)

2. a general approach for detecting the types of documents when additional infor-

mation is available

Abstraction from the Log

As it was already mentioned earlier, the document logs often contain either too many

details or very specific document names and paths, which are not relevant for the

process mining algorithms. So, we need a technique to abstract from the concrete

names and paths or even to ignore some paths, we call it abstraction on the log level

and ignoring unnecessary information.

The idea is to map the concrete names of the documents in the log to the abstract

names, which will be later used by the mining algorithms. Moreover, it must be

possible to map several concrete names to the same abstract name or to ignore

some of the concrete names. We can use regular expressions to define this mapping.

For the example given in Table 3.2, we can use the following mapping shown in

Table 3.3. So, in the example, all the documents that contain “/models/” in their

name and that finish with “design.mdl” are mapped to an abstract name “DES”,

all the documents containing “/src/” with an extension “.java” – to “SRC”, test

documents – to “TEST”, review documents – to “REV” and verification results – to

“VER”. If we want to ignore some documents, we can just do a mapping to empty

names; for example, if we want to ignore test plans, then we map corresponding

regular expression to “ ”.

Table 3.3: Regular Expressions
Expression Abstract Name

(.∗)/models/(.∗)design.mdl DES

(.∗)/src/(.∗).java CODE

(.∗)/tests/(.∗) TEST

(.∗)review.pdf REV

(.∗)/models/(.∗)verification.xml VER

Thus, when we apply the mapping to the log given in Table 3.2, we get an abstrac-

tion of the log, it is shown in Table 3.4. Different names from different projects were

mapped to the same names; for example, “project1/docs/review.pdf” from the first

3.3. INCREMENTAL WORKFLOW MINING APPROACH 63

project (case) and “project3/docs/Areview.pdf” from the third project are mapped

to “REV”.

Table 3.4: Abstract Software Log
Document Date Author

DES 01.01.05 14:30 designer

CODE 01.01.05 15:00 developer

TEST 05.01.05 10:00 qaengineer

REV 07.01.05 11:00 manager

DES 01.02.05 11:00 designer

TEST 15.02.05 17:00 qaengineer

CODE 20.02.05 09:00 developer

REV 28.02.05 18:45 designer

DES 01.03.05 11:00 designer

VER 15.03.05 17:00 qaengineer

CODE 20.03.05 09:00 designer

VER 21.03.05 09:00 qaengineer

CODE 22.03.05 09:00 designer

REV 28.03.05 18:45 manager

Generally, if we have an information model or an ontology of the domain, we can

do the mapping of document names to the entities of the ontology and, therefore,

make an ontology-compliant abstraction. Moreover, since some document manage-

ment systems provide the information about the types of events, whether a document

was added or modified, the names of documents can be concatenated with the types

of events and, thus, contain more information about the actions being taken.

Detecting Document Types

In this section, we propose a general method for dealing with the problem of detecting

document types described above (a method for detecting the organizational struc-

ture can be developed similarly, but it uses other additional input information). The

method presented here needs additional information, namely informational model,

which is not available in the logs. So, this method can be used only in special cases

and it makes up an extension of our approach and not the core of it.

64 CHAPTER 3. INCREMENTAL WORKFLOW MINING APPROACH

This method was described in details in our paper [KRS06b]. So, we raise the

following questions: 1. how do the informational models (document type models)

look like? 2. is there an algorithm for assigning the types to concrete documents

using these models?

One of the most important requirements for modern SCM and PDM systems is

the capability of informational modelling. In the area of PDM, for example, there is a

STEP (Standard for the Exchange of Product Model Data) ISO standard (ISO DIS

10303), which includes the EXPRESS language for defining the product models.

Like for document logs, different systems have different informational models. But

there are typical relationships used in most of these models [CW98a], for example

dependency relationship. This relationship implies that the contents of the dependent

document must be consistent with the contents of the master document.

An example of the informational model is shown in Fig. 3.15 as a UML class

diagram. In the example, Code depends on the Design. In our case, this is also a

lifecycle dependency – the document Code can appear in the system only after the

Design document.

Class Diagram 2006/12/15

<<dependency>><<dependency>>

<<dependency>> <<dependency>>

<<document type>>
TestPlan

<<document type>>
Code

<<document type>>
Project Review

<<document type>>
Design

Figure 3.15: Informational Model

Now, besides the abstract document log with document names, we also have a

set of document types and a dependency relationship on this set. The idea of the

method is taking a set of all possible assignments of types to the document names

and removing those of them that contradict the dependency relationship.

For example, if we take the first two execution logs from the log in Table 3.4

3.3. INCREMENTAL WORKFLOW MINING APPROACH 65

and document types shown in Fig. 3.15, then using the method we get the following

two possible assignments of types to documents in the log: (DES : Design,CODE :

Code, TEST : TestP lan,REV : ProjectReview) and (DES : Design,CODE :

TestP lan, TEST : Code,REV : ProjectReview). The other assignments contradict

the dependency relationship. Next, we need additional information from the user to

detect, which of these two assignments is correct.

The success of the type detection algorithm is dependent on the number of exe-

cution logs and the number of dependencies. If the numbers of logs and dependencies

are not sufficient, we do not come to an unambiguous set of types in spite of the

fact that we are checking all the possible type permutations. In this case, we need

interaction with the user, who has to give us the types of some documents.

Thus, in this subsection we presented a simple semi-automatic approach, which

can help us detecting the types of documents, when having information model addi-

tionally to the document log. The goal of this section was to show how additional

input information about the models can help on the preprocessing step. In the partic-

ular case of an informational model, we can derive document types and start dealing

with them instead of document names. However, for the rest of the thesis, we assume

that we do not have this additional information and continue dealing with the pure

log.

In the whole section, we presented the first step of the incremental workflow

mining approach – the technique for abstraction from the logs, the technical details

about its implementation are given in Chapter 4. This is a semi-automatic technique,

since the domain knowledge and the structure of regular expressions must come from

the practitioners or managers working in the domain, but the final mapping is done

fully automatically.

3.3.3 Step 2a: Control-flow Process Mining Algorithm

In this section, we explain the second (main) step of the approach – process mining,

see Fig. 3.16. We start with our main contribution, i.e. with the control-flow mining

algorithm. Actually, this algorithm is extremely flexible and can generate different

process models depending on its input parameters. Thus, changing the parameters of

the algorithm, process engineer can obtain models on different levels of abstraction,

focusing on different parts of the process. So, the methodology is described further

in this section and all the details including formal definitions – in the next Chapter.

When dealing with the control-flow, the log can be represented as a set of se-

66 CHAPTER 3. INCREMENTAL WORKFLOW MINING APPROACH

Software
Process
Model

Practitioner
Process Engineer,
 Manager

Software
Process
Instance

Software Repositories

Process
Mining

a) control-flow mining

1
Preprocessing

Figure 3.16: Process Mining Step – Control-flow Mining

quences of documents. So, we look at the control perspective of the log. The simpli-

fied abstract log is shown in Table 3.5, we use to put numbers instead of concrete

timestamps, since the timestamps are used for detecting the order of document com-

mits. It has to be noted that the examples presented in the rest of this Chapter are

small and abstract, we have chosen them in order to explain the main ideas of our

approach. However, big examples obtained from real software projects are described

in Chapter 5.

Our approach presented in this section consists of two steps, see Fig. 3.17:

1. Generation: Generation of a Transition System from the Document Log.

Generation step consists of two substeps: constructing a transition system and

modification strategies.

2. Synthesis: Synthesis of a Petri net from the Transition System.

Document
Log

Transition System
Generation

TS
Petri Net

Synthesis PN

a) Constructing TS
b) Modification Strategies

1 2

Figure 3.17: Control-flow Mining Approach

The Petri net is the final result of the algorithm. The ideas of this approach were

also presented in our papers [KRS06c, vdARvD+06, RGvdA+07b], the details of the

3.3. INCREMENTAL WORKFLOW MINING APPROACH 67

Table 3.5: Abstract Software Log: Control Aspect
Document Order

DES 1

CODE 2

TEST 3

REV 4

DES 1

TEST 2

CODE 3

REV 4

DES 1

VER 2

CODE 3

VER 4

CODE 5

REV 6

formalisms and implementation are presented in Chapter 4 and the evaluation is

discussed in Chapter 5.

One of the main advantages of the approach is the capability to experiment with

process models by means of applying different strategies for building transition sys-

tems from the logs, we call it clever transition system generation. The software logs

usually do not contain all possible traces and, thus, represent only a part of a possible

behaviour, sometimes they contain unnecessary details that should be ignored. So,

the generated models can become either too general or too explicit, in the area of

process mining this issue is called “generalization”. This generalization issue can be

resolved with the aid of appropriate generation strategy. There are different ways of

generating and modifying transition systems within our approach. This capability to

deal with generalization is the distinguishing feature of our approach; further, in this

chapter, we present many examples of process models introducing generalization in

different ways.

Despite the fact that transition systems are a good specification technique for

making experiments, they are usually huge, since they encode such constructs as

concurrency or conflict in a sequential way. Thus, the algorithms developed within

68 CHAPTER 3. INCREMENTAL WORKFLOW MINING APPROACH

such a well-known area of Petri net theory as Petri net synthesis and theory of regions

are used for transforming transition systems (state-based specification) to Petri nets

(event-based specification), which are more compact.

<DES,CODE,TEST,REV>

<>

<DES>

<DES,CODE><DES,TEST>

<DES,TEST,CODE> <DES,CODE,TEST>

<DES,TEST,CODE,REV>

<DES,VER>

<DES,VER,CODE>

<DES,VER,CODE,VER>

<DES,VER,CODE,VER,CODE>

<DES,VER,CODE,VER,CODE,REV>

DES

VER
CODETEST

REV REV

CODE TEST CODE

VER

CODE

REV

Figure 3.18: TS generated from the log

As an introductory example of the approach, a Transition System shown in

Fig. 3.18 can be built from the log given in Table 3.5. Building this TS is straight-

forward, it depicts all the cases as separate branches of a tree. Then, this TS is

transformed to the Petri net, which is shown in Fig. 3.19 (note that this is a labelled

Petri net). This PN is more compact than the TS and reflects exactly the behaviour

seen in the log. These models make up a good example of the main idea of our ap-

proach, still they have one big problem: they do not recognize the loop construct

hidden in the third trace and simply build it explicitly. This problem of loops is a

particular example of a big issue called generalization, it will be sketched later in this

Chapter and described in detail in the next Chapter. Different ways of constructing

and modifying transition systems used for overcoming the problem of the lack of

generalization are presented in the next sections.

The generation phase of the algorithm consists of the following two steps: con-

structing a transition system and applying modification strategy to the constructed

TS.

3.3. INCREMENTAL WORKFLOW MINING APPROACH 69

DES

CODE

TEST

REVVERVER

Figure 3.19: PN synthesized from TS

Constructing a Transition System

In this section we describe the method for constructing transition systems from docu-

ment logs, see Fig. 3.20 . All the details of this method and the formal definitions are

given in the next Chapter. A transition system consists of states, events and transi-

tions between states. The set of events corresponds to the set of documents; for our

example, this set is {DES, TEST,CODE, V ER,REV }. Transitions between states

are labelled with the events.

Document
Log

Transition System
Generation

TS

PN

a) Constructing TS

1

Figure 3.20: Control-flow Mining Approach: Constructing TS

The critical point of the construction algorithm is the definition of a state. First,

let us define a commit : it is a set of documents committed to the system at the same

time in the same execution. In our example, see Table 3.5, all the commits contain

only one document: in execution 1, at time 1, document DES was committed to the

system; in execution 2 at time 3, document CODE was committed to the system,

etc. Next, we can give a first definition of a state: a state is a set of subsequent

commits from the same execution log. If we look at the first execution log, we derive

the following states from it: {}, {DES}, {DES,CODE}, {DES,CODE, TEST}
and {DES,CODE, TEST,REV }. There is a transition between two states if they

are derived from the same execution log and there exists a single commit produced

after the first state, so that the union of the documents of the state and the docu-

70 CHAPTER 3. INCREMENTAL WORKFLOW MINING APPROACH

ments of the commit makes up the document set of the second state. The transition

is labelled with the documents produced by this commit. For example, there is a

transition between states {DES} and {DES,CODE}, since both states are derived

from the first execution log and there is a commit {CODE}, such that union of

the documents of the state and the documents of the commit make up the docu-

ment set of the second state. An example of the transition system, derived from

the document log shown in Table 3.2 using the given definition of a state is given

in Fig. 3.21. It should be noted that the same state can be derived from different

execution logs, for example, the state {DES, TEST,CODE} can be derived both

from the first and the second execution logs. In the third execution log, we have

an iteration, i.e. the same documents are committed to the system several times.

Then, since a state is a set of documents, we get self-loop transitions, for example,

({DES, V ER,CODE}, {V ER}, {DES, V ER,CODE}). So, a TS created using this

sets-based definition of a state is called a sets-based TS.

{}

{ DES }

{ DES,
TEST }

{ DES,
CODE }

{DES,TEST,CODE}

{DES,TEST,CODE,REV}

{ DES,
VER }

{DES,VER,CODE}

{DES,VER,CODE,REV}

DES

TEST CODE

CODE TEST

REV

VER

CODE

REV

VER CODE

Figure 3.21: Sets-based TS

{}

{DES}

{DES, TEST} {DES,CODE}

{DES,TEST,CODE}

{DES,TEST,CODE,REV}

{DES,VER}

{DES,VER,CODE}

{DES,VER2,CODE}

DES

TEST CODE

CODE TEST

REV

VER

CODE

VER

{DES,VER2,CODE2}

CODE

{DES,VER2,CODE2,REV}

REV

Figure 3.22: Multisets-based TS

Another useful way of constructing a transition system is based on a multiset

definition of a state. In such a way, we allow repeated elements in a state; for example,

a state {DES, V ER2, CODE} derived from the third execution log contains two

documents V ER. The transition system is built according to the same rules like the

previous one, the only difference is that by means of using multisets we exclude self-

3.3. INCREMENTAL WORKFLOW MINING APPROACH 71

loops and, thus, get an acyclic transition system. An example of a Multisets-based

TS in shown in Fig. 3.22.

The other possible approach to constructing transition systems is based on defin-

ing a state as a sequence of documents. We build a TS the same way like for the

previous examples, the main difference is that each state corresponds to a sequence

of committed documents from the same execution log. An example of such a TS was

shown in Fig. 3.18.

In this section, we presented three possible methods for constructing transition

systems from document logs. In all these methods, we looked at the whole history of

an execution log. However, in general, we can look at the future of an execution log or

only at a part of the history or future. In this thesis, we developed and implemented a

framework for building “clever” transition systems, the formal definitions of different

approaches and implementation details are given in the next Chapter.

Modification Strategies

To continue the generation step of the control-flow process mining, we present the

ideas about modification of constructed transition systems, see Fig. 3.23. We have

mentioned already that software logs usually represent only a part of possible be-

haviour or contain too many unnecessary details that should be ignored. Thus, we

have developed a framework for building modification strategies to generalize the ex-

isting behaviour and to resolve the problem of loops. Here, we present several useful

strategies (as for the previous part of the approach, the formalisms are presented in

the next chapter).

Document
Log

Transition System
Generation

TS

PN

a) Constructing TS
b) Modification Strategies

1

Figure 3.23: Control-flow Mining Approach: Modification Strategies

The first strategy is called “Kill Loops”, the idea is to remove self-loops tran-

sitions from the transition system. Rather often, when the process is complicated

it’s convenient to look at the acyclic core of the process. For example, if we take a

sets-based TS shown in Fig. 3.21 and “kill” the loops there, we get an acyclic TS

72 CHAPTER 3. INCREMENTAL WORKFLOW MINING APPROACH

shown in Fig. 3.24.

{}

{ DES }

{ DES,
TEST }

{ DES,
CODE }

{DES,TEST,CODE}

{DES,TEST,CODE,REV}

{ DES,
VER }

{DES,VER,CODE}

{DES,VER,CODE,REV}

DES

TEST CODE

CODE TEST

REV

VER

CODE

REV

Figure 3.24: Sets-based TS, no Loops

{}

{ DES }

{ DES,
TEST }

{ DES,
CODE }

{DES,TEST,CODE}

{DES,TEST,CODE,REV}

{ DES,
VER }

{DES,VER,CODE}

{DES,VER,CODE,REV}

DES

TEST CODE

CODE TEST

REV

VER

CODE

REV

VER

Figure 3.25: Extended Sets-based TS

The other modification strategy is called “Extend Strategy”. It is especially use-

ful for document logs. Basically, this strategy makes transitions between two states,

which were created from different execution logs, but which can be subsequent be-

cause there is a singular commit which can be executed (produced) to reach one

state from the other. This strategy is very useful for generalizing the behaviour seen

in the logs by means of extending the “state diamonds”. For example, the sets-

based transition system without loops shown in Fig. 3.24 can be extended: the states

{DES,CODE} and {DES, V ER,CODE} are produced from different execution

logs, therefore, there is no transition between them, but there is a single commit

{V ER}, which can be executed to reach the second state from the first one, so

we add a transition ({DES,CODE}, {V ER}, {DES, V ER,CODE}). We can think

about this strategy the other way: if all the preconditions for producing a document

are fulfilled, we produce it; i.e. since we need only DES document to produce V ER,

when we are in the state {DES,CODE} – all the preconditions are fulfilled and we

produce V ER. The result of this strategy is shown in Fig. 3.25. It is worth mentioning

that this example is a result of combination of two strategies, namely “Kill Loops”

and “Extend Strategy”.

Next, we explain the idea of the “Merge States by Output” strategy. The

main idea is that we can simplify a transition system by means of merging

the states with the same output; i.e. it is useful not to distinguish between

states with the same future. For example, if we take a multiset-based transi-

3.3. INCREMENTAL WORKFLOW MINING APPROACH 73

tion system from Fig. 3.22, we find several pairs of states with the same out-

put that can be merged: ({DES, V ER}, {DES, V ER2, CODE}) with the output

CODE, ({DES, TEST,CODE}, {DES, V ER2, CODE2}) with the output REV ,

({DES, TEST,CODE,REV }, {DES, V ER2, CODE2, REV }) with the empty out-

put, ({DES, TEST}, {DES, V ER}) with the output CODE, etc. If we take the

first pair and merge the states, we get a new state {DES2, V ER2, CODE}, all the

incoming transitions from both states go to the new state, and all the outgoing tran-

sitions of both merged states go out of the new one. This way, in a stepwise manner,

we get a simplified transition system shown in Fig. 3.26.

{}

{DES}

{DES, TEST} {DES,CODE}

{DES2,TEST,VER2,CODE3}

{DES2,VER2,CODE}

{DES,VER,CODE}

DES

TEST CODE

CODE TEST

REV

VER

CODE

{DES2,TEST,VER2,CODE3,REV2}

VER
CODE

Figure 3.26: Multisets-based TS with Merged States

Thus, in this section we presented a set of modification strategies, which are

used on the second (last) phase of the TS generation step. These strategies introduce

flexibility to the process mining algorithm and support abstraction on the model level.

Petri Net Synthesis

As mentioned before, transition systems are a good state-based specification technique

for making experiments and modifications, but they are usually huge (“state space

explosion problem”). The problem is that such constructs as concurrency and conflict

are encoded in a sequential way. Moreover, event-based formalisms based on Petri

nets or transformable to Petri nets are traditionally popular in the process modelling

domain [Aal98, vdA02]. So, in this section, first of all on a general level, we present

the ideas about converting transition systems to Petri nets, see Fig. 3.27. This ideas

are based on the research in the area of Petri net synthesis and theory of regions, the

essential background was described in Chapter 2 and the details of the algorithms

74 CHAPTER 3. INCREMENTAL WORKFLOW MINING APPROACH

are explained in Chapter 4.

Document
Log

Transition System
Generation

TS
Petri Net

Synthesis PN

a) Constructing TS
b) Modification Strategies

1 2

Figure 3.27: Control-flow Mining Approach: Petri Net Synthesis

As it is proved in the area of Petri net synthesis, every TS can be transformed

to a Labelled Petri net, i.e. to a Petri Net with a labelling function on the transition

set. In such Petri nets, different transitions can have the same labels. Events from a

TS are becoming transitions in a Petri net. The resulting Petri nets are usually more

compact then the transition systems, since several transitions labeled with the same

event are represented as a single transition in a Petri net.

Next, we give several examples of the Petri nets synthesized from the transition

systems presented in the previous section. A Petri net generated from the sets-based

TS from Fig. 3.21 is shown in Fig. 3.28. It should be noted that this Petri net enables

the behaviour seen in the log, see Table 3.5, but it is too general, since the transitions

CODE and V ER can be executed an unlimited number of times in an arbitrary order

before the REV is done.

DES

TEST

CODE

VER

CODE

REV

CODE VER

REV

Figure 3.28: PN from Sets-based TS

In Fig. 3.29, we present an example of a Petri Net synthesized from the Multiset-

based TS from Fig. 3.22. This Petri net also supports the behaviour seen in the log,

but it is too explicit. For example, instead of deriving a loop construct from the

third execution log 〈DES, V ER,CODE, V ER,CODE,REV 〉, it allows explicitly

the sequence of transitions given in the log.

The next examples present Petri nets derived from the transition systems modified

3.3. INCREMENTAL WORKFLOW MINING APPROACH 75

DES

TEST

CODE

VER REVVER

Figure 3.29: PN from Multiset-based TS

by the strategies. The Petri net shown in Fig. 3.30 was generated from the sets-based

transition system with “killed” loops from Fig. 3.24. This Petri net ignores the loop

in the third execution log and exactly reflects the rest part of the document log. It

is worth mentioning that this PN is much more compact then the corresponding TS;

i.e. all the transitions with the same labels, for example three transitions labeled with

CODE were converted into a single Petri net transition CODE.

{}

{ DES }

{ DES,

TEST }

{ DES,

CODE }

{DES,TEST,CODE}

{DES,TEST,CODE,REV}

{ DES,

VER }

{DES,VER,CODE}

{DES,VER,CODE,REV}

DES

TEST CODE

CODE TEST

REV

VER

CODE

REV

{}

{ DES }

{ DES,

TEST }

{ DES,

CODE }

{DES,TEST,CODE}

{DES,TEST,CODE,REV}

{ DES,

VER }

{DES,VER,CODE}

{DES,VER,CODE,REV}

DES

TEST CODE

CODE TEST

REV

VER

CODE

REV

VER

DES

TEST

CODE

VER REV

DES

TEST

CODE

VER REV

DES

TEST

CODE

VER REV

Figure 3.30: PN, no Loops Strategy

DES

TEST

CODE

VER REV

Figure 3.31: PN, Extend Strategy

The Petri net shown in Fig. 3.31 was generated from the extended TS. It also

ignores the loop and it is more general then the previous Petri net, since it al-

lows additional behaviour not seen in the log. For example, not only the sequence

〈DES, V ER,CODE,REV 〉 from the third execution log is allowed, but also the se-

quence 〈DES,CODE, V ER,REV 〉 is represented in the model. This model is sim-

pler than the previous one, it can be generated only after applying a “clever” strategy

to the transition systems constructed from the log. If we try to understand the prag-

matics of this example, we realize that we have seen that verification (V ER) is done

after the design (DES), so even if the CODE is written, we still can do verification.

The next Petri net shown in Fig. 3.32 corresponds to the TS with merged states

shown in Fig. 3.32. With the help of merging strategy, we recognized the loop con-

struct and the Petri net not only reflects the behaviour given in the log, but also

introduced a loop construct, which includes transitions CODE and V ER.

Another important functionality provided by the Petri net synthesis approach is

76 CHAPTER 3. INCREMENTAL WORKFLOW MINING APPROACH

DES

TEST

CODE

VER

VER

CODE

REVCODE

Figure 3.32: PN, Merge Strategy

generation of Petri nets with different characteristics, see Fig. 3.33. Rather often,

for big processes, produced Petri nets are hard to read and understand, then we

can apply special synthesis technique to convert the derived Petri net to a simplified

analog of it by means of excluding non-free choice constructs, self-loops, etc.

Document
Log

Transition System
Generation

TS
Petri Net

Synthesis PN

a) Constructing TS
b) Modification Strategies

1 2

different
characteristics

Figure 3.33: Control-flow Mining Approach: Petri Net Synthesis (different character-

istics)

For example, for the Petri net shown in Fig. 3.30, we can generate a pure analog

of it (a net without self-loops), which is easier to read, see Fig. 3.34. For the same

Petri net, we can also generate a free-choice analog (a net without simultaneous

synchronization and conflict), see Fig. 3.35. So, the user working with the models

can convert them to an appropriate understandable format.

So, in this section we presented the main ideas and examples of the Petri net

synthesis, which corresponds to the second step of the generation and synthesis ap-

proach. With the aid of “clever” transition system generation and Petri net synthesis,

we can derive the formal process models from the document log on different levels of

abstraction focusing on different parts of the process.

In the whole Section, we presented our control-flow process mining algorithm,

which supports generation of different types of software process models. This allows

process engineers to generate different views on software processes and to generalize

3.3. INCREMENTAL WORKFLOW MINING APPROACH 77

DES

TEST

CODE

VER REVCODE

Figure 3.34: Pure PN

DES

TEST

CODE

VER REV

TEST

CODE

Figure 3.35: Free-choice PN

the behaviour recorded in the log in a flexible and intelligent way.

3.3.4 Step 2b: Mining Different Aspects

In the previous Section, we presented a method for discovering and customizing

software process models, but we dealt only with the control-flow aspect. However, the

document logs provide also information about other aspects, such as organizational,

performance and informational. Therefore, in this section, we present the second part

of the process mining step of the approach – mining different aspects, see Fig. 3.36.

Here, we apply the existing algorithms from the area of process mining in the field of

software engineering and show how helpful these algorithms are. It has to be noted

that these algorithms were not developed by the author (references are given), they

form the core of the ProM framework and tool [vDdMV+05]. Thus, we show how the

information that can be discovered with our control-flow process mining algorithm

(cf. 3.3.3) can be enriched by other algorithms and, therefore, used further.

Organizational Aspect

One perspective different from control flow is the organizational (resource) perspec-

tive, which looks at the set of people involved in the process, and their relationships.

The Social Network Miner [ARS05] for example can generate the social network

of the organization, which may highlight different relationships between the persons

involved in the software process. The social network miner can be used by software

process engineers and managers in order to identify the actual relationships among

the practitioners working on software projects.

One example of a social network represents the handover of work between the

resources involved in the process. In Fig. 3.37, we present an example of the handover

78 CHAPTER 3. INCREMENTAL WORKFLOW MINING APPROACH

Software
Process
Model

Practitioner

Software
Process
Instance

Software Repositories

Process
Mining

b) mining different aspects

1
Preprocessing

a) control-flow mining

Figure 3.36: Process Mining Step – Mining Different Aspects

of work for the software process given in Table 3.4. The resources are symbolized by

nodes, while each arc represents that at least once a work was passed in that direction,

i.e. these persons subsequently worked on the same project. As is easy to see, rather

often a designer handovers his work to the quality assurance engineer; manager does

not handover his work, since he is usually the last person in the process, he does

the review. In Fig. 3.38, you see an example of the social network representing the

similarity of executed tasks. Designer, for example, executes similar tasks with the

developer (CODE task) and with the manager (REV task), nobody has similarities

with the qaengineer, he is the only one to do TEST and VER. There are also social

networks highlighting other relationships, e.g. subcontracting, where an event from

one person is encompassed by two events from another person.

designer

developer

qaengineer

manager

0.091
0.091

0.091

0.091

0.182

0.273

0.091 0.091

Figure 3.37: Example of a Social Network (Handover of Work)

The Organizational Miner also addresses the resource perspective, attempting

to cluster resources which perform similar tasks into roles. This miner can be also

effectively used in the software companies for understanding the roles and capabilities

3.3. INCREMENTAL WORKFLOW MINING APPROACH 79

designer

developer

qaengineer

manager

0.250
0.250

0.250

0.250

Figure 3.38: Example of a Social Network (Similar Task)

of employees.

An example of mining this organizational structure from the log in Table 3.4 is

shown in Figure 3.39. Based on the overlap of subsets of resources having executed

each task, five roles have been derived. In general, a role can both be required for a

number of different tasks and resources may occupy several roles (e.g., the resource

“designer” has “Role C”, “Role D” and “Role E”). This functionality can be very

beneficial in a software development process, both for verification and analysis of

the organizational structure. Mismatches between discovered and assigned roles can

pinpoint deficiencies in either the process definition or the organization itself.

designerdeveloper managerqaengineer

Role A Role B Role C Role D

VER

Role E

TEST CODE DES REV

Figure 3.39: Result of the Organizational Miner

Performance Aspect

Mining algorithms addressing the performance perspective mainly make use of the

timestamp attribute of events. From the combination of a (mined or predefined)

process model and a timed event log they can give detailed information about perfor-

mance deficiencies, and their location in the software process model. If, for example,

the test phase is highlighted as the point in the process where most time is spent,

80 CHAPTER 3. INCREMENTAL WORKFLOW MINING APPROACH

it may be helpful to assign more staff to this task. So, after adding the performance

aspect to the software process model, software process engineers can identify the

successful and the problematic tasks, realize and improve the actual way of work.

Moreover, the milestones and deadlines of the software projects can be discussed and

analysed with the help of a process model.

In Fig. 3.40, we present how the process model can be enriched with the perfor-

mance information. We have taken the process model from Fig. 3.32, which represents

exactly the behaviour described in our example log and which discovers the loop. In

the figure, the states, i.e. places, have been coloured according to the time which is

spent in them while executing the process. For example, the places where plenty of

time is spent are the places following the DES transition, some time is also spent

in the places preceding the REV task. Also, multiple arcs originating from the same

place (i.e., choices) have been annotated with the respective probability of that choice.

In our example, after designing the software, we probably start coding or planning

the tests, but not verifying the design.

DES

TEST

CODE

VER

VER

CODE

REVCODE

0.67

0.33

0.67

0.33

0.5

0.5

Figure 3.40: Result of the Performance Analysis

Informational Aspect

As it has already been mentioned, it is helpful to abstract from low-level events in the

log. However, there may also be situations where the exact composition of higher-level

modules corresponding to development phases is not known precisely. The Activity

Miner [GA06] addresses this problem, which is common due to the low-level nature

of most logs. It can derive high-level activities from a log by clustering similar sets of

low-level events that are found to occur together frequently. These high-level clusters,

or patterns, can be helpful for unveiling hidden dependencies between documents, or

3.3. INCREMENTAL WORKFLOW MINING APPROACH 81

for a re-structurization of the document repository layout. Another possible approach

for discovering and clustering activities from the information about documents was

proposed in one of our papers [KRS06c]; still, the idea is similar: before doing the

process mining, we can start clustering the activities using the information given in

the logs.

3.3.5 Step 3: Model Analysis and Representation

The mining approaches described in the previous sections mainly serve the purpose to

extract high-level information from a process enactment log. This is a tremendously

helpful tool for software process engineers, managers and system administrators, who

want to get an overview of how the process is executed, and for monitoring progress.

Nevertheless, the extracted high-level information about the software process, which

is specified as a process model, is not usually the final goal. The software process

model has to be used for further analysis and verification in order to identify the

weak points in the software project, to realize the way of work of employees and their

means of communication. The results of the analysis are used for better management

and optimization of the software process, which helps to move one step forward in the

Capability Maturity Model or in the other software process improvement framework.

Software
Process
Model

Software
Process
Instance

2

Software Repositories

Process
Mining

b) mining different aspects
a) control-flow mining

1
Preprocessing

Model Analysis
and
Representation

Figure 3.41: Model Analysis and Representation Step

In many situations it is not so interesting how exactly the process is executed,

but rather if this execution is correct. In this section, we deal with the third step

of our approach – model analysis and representation, see Fig. 3.41. We refer to the

algorithms developed within the ProM tool to show how the process model derived

on the second step of the incremental workflow mining approach (cf. 3.3.1) can be

82 CHAPTER 3. INCREMENTAL WORKFLOW MINING APPROACH

analysed and verified.

To answer this question, there exists a set of analysis and verification meth-

ods in the process mining domain. One of these techniques is Conformance Check-

ing [RvdA06], which takes an enactment log and an associated process model, e.g. a

Petri net, as input. The goal is to analyse the extent to which the process execution,

as recorded in the log, corresponds to the given process model. Also, conformance

checking can point out the parts of the process where the log does not comply, and

the process instances which are deviant. This technique can be used both for process

verification (i.e., is the actual execution compliant to my defined development pro-

cess?) and for process analysis (i.e., where does my organization fail to comply with

the defined process?). In the context of strictly defined development processes, e.g. in

CMMI or government-sponsored development, the hard proof of compliance to these

processes can be a competitive advantage.

DES

TEST

CODE

VER

VER

CODE

REVCODE
3

3

3

1

1

2

2

2

3

3

31
1

1

1

1

1

1
2

1

Figure 3.42: Conformance Checker

In Fig. 3.42, we show the result of conformance checking, which contains the path

coverage analysis. This model inserts inscriptions to the arcs, these inscriptions show

the number of cases (process executions) in which an arc was passed. For example, the

arc from the initial place to the transition DES was taken in all the three cases. The

process model shown in this figure has 100% fitness, i.e. it specifies all the situations

given in the log. Such measures as fitness and appropriateness (see [RvdA06]) are

very helpful for analysing the quality of the model and the discrepancies between the

model and the reality. With the help of the Conformance Checker, software engineers

can figure out the differences between the reality and the model, they can gain the

ideas about the parts of the process that should be better managed and optimized.

In Figure 3.43 we show the path coverage only for the first case. So, the capability

of filtering the model is extremely helpful, especially in the situation of software

3.3. INCREMENTAL WORKFLOW MINING APPROACH 83

projects where the models are huge. All activities that have been executed in this

case are decorated with a bold border, and arcs are annotated with the frequency

they have been followed in the case. It is easy to see, that this case does not contain

a loop and that verification was not done here.

DES

TEST

CODE

VER

VER

CODE

REVCODE
1

1

1

1

1

1

1

1

1

1

Figure 3.43: Conformance Checker, Path Coverage

Another technique to this end is LTL Checking [vdAdBvD05], which analyses

the log for compliance with specific constraints, where the latter are specified by

means of linear-temporal logic (LTL) formulas. With the help of this model check-

ing technique, software engineers can obtain important information from the model,

check different relevant properties in order to gain better insight into the software

engineering process.

An example of a constraint is: “Is there a case, where design and review of the

design are executed by the same person?” LTL checking can be used to verify these

constraints in a log, and to pinpoint the specific cases which do not comply. Regarding

the example log in Table 3.4, the second case satisfies the above constraint, see

Fig. 3.44. In general, LTL checking does not assume the existence of a fully defined

development process, but the results must be visualized and fault traces have to be

shown and understood by the user. Moreover, often it is impossible to formulate the

constraints to be checked without having a process model at hand.

Many process analysis and verification techniques can be applied directly to the

process model, without having a log. Modern process model analysers can check a

Petri net model for deadlocks (i.e., potential situations in which execution will be

stuck). It can be checked whether the model is sound, i.e. whether the process starts

and finishes properly, no unexecuted tasks are left after the process is finished. The

process analysis techniques known from the area of Petri nets can verify that there

exists a valid place invariant (i.e., all process executions will complete properly with

84 CHAPTER 3. INCREMENTAL WORKFLOW MINING APPROACH

DES

TEST

CODE

REV

designer

qaengineer

developer

designer

Figure 3.44: Result of the LTL checking

no enabled task left behind) and transition invariant. The Petri net from our example

is a sound one, it contains no deadlocks or other anomalies.

So, in this Section, we presented useful techniques, which should be used for

analytical work with the process models. The area of process mining focuses mainly

on the discovering of process models. However, in the area of software processes, a

company usually wants to make a further step in the software process improvement

framework. In this case, the company does not only need a documented (designed)

process model, but has to be able to analyse and to improve the model in order to

make the software process manageable and to optimize it.

3.3.6 Incremental and Interactive Approach

In the previous sections, we presented the steps of our approach with the help of

several simple examples. In this section, we conclude the explanation of our approach

(the details about algorithms and the evaluation can be found in the next chapters)

we explain the ideas of incrementation in our approach. An appropriate schema is

shown in Fig. 3.45, it extends the basic schema given in Fig. 3.11.

The Software Configuration Management system is a source of our input infor-

mation (as described further in Sect. 3.4, we can also successfully deal with other

input sources). On iteration k, the process mining algorithms are executed and the

internal process model is produced; then, this model can be either transformed to the

company specific format or directly shown to the process engineers and practitioners.

They analyse the model, discuss it and continue their work with software configu-

ration management system considering the mined model. On the next iteration, the

whole process is repeated. During these iterations, people get formal feedback about

their way of work, use methods to analyse it and change their work incrementally.

3.3. INCREMENTAL WORKFLOW MINING APPROACH 85

SCM System
(Software Repository)

Iteration k

Internal Model Transformation

External Model

Mining

Practitioner

Process Engineer, Manager

Mining
Iteration k+1

Internal Model Transformation

External Model

Figure 3.45: Incremental and Interactive Approach

This is why out approach is called incremental. Moreover, the model of the process is

improved incrementally, since it reflects the improving way of work in the company.

In general, we consider it to be important that users interact with the process model,

so that they discuss, analyse and verify it, but also can change it manually. This is

why we also call the approach also interactive.

So, in the context of changing processes, the approach is aimed at filling the

gap between process type evolution and process instance evolution [EKR95, RD97,

HHJ+99]. Our algorithms provide an automatic support for redesigning the process.

They use the information about deviation in the process instances for this redesign.

The approach works incrementally: starting with revolutionary changes in the first

step, when there is no process model at all, in a consecutive manner we come to, so

called, incremental changes in the further steps.

Gradual Workflow Support and Flexibility

Following our approach, after the process models are discovered, they can be in-

serted to the Process Management System (PMS), e.g. Workflow Management Sys-

tem (WfMS), where they are maintained and executed. But the role of the PMS and

its level of user support evolves with the time. Thus, on the first steps, it is utilized

only for storing the newly discovered models; after further refinements, when process

models become more faithful, the PMS starts advising and guiding the users in the

company. This increasingly changing control of the PMS in the company is called

86 CHAPTER 3. INCREMENTAL WORKFLOW MINING APPROACH

gradual workflow support. So, introducing incremental workflow mining and gradual

workflow support in the company enables dealing with the process flexibility in a

formal and documented manner.

In the software engineering environments, it is usually difficult to introduce a

process management system directly from scratch. The real process is very compli-

cated and different people are working concurrently on different parts of the project.

Thus, it is not only impossible to make the process manually, it is almost impossible

to do it in one step without incrementally improving the knowledge of the process

management system and the people’s habit of relying on it.

Using the Approach in a Batch Mode

Above we described the main ideas of the incremental approach, but rather often

it happens that software has already been developed during some time and that

software repositories contain already a set of document logs. Such document logs

contain data about a set of process executions (cases). So, in this situation, we can

use our approach in a batch mode, i.e. we take the existing document log containing

the whole project history and execute our approach. As a result, we obtain a process

model, which specifies the behaviour of all the existing process executions. After

we derived a model which reflects the history of the software project, we can start

working incrementally. The described batch mode approach is especially useful for

the software companies that stay already in business and that want to improve their

existing CMM level and need explicitly formulated and documented process models

reflecting their software development processes.

Our approach can be used not only for deriving software process models from

one evolving software project, it is possible to derive a model of several projects.

Moreover, we must not be necessarily focused on one company, different companies

can be examined. The general schema of the approach is shown in Fig. 3.46. For

example, often the company has the policies and guidelines for software development

processes, so that all the projects have to adhere to these guidelines. Thus, with the

aid of process mining, we get a model which reflects the real situation in all the

projects. With the help of this model, we can find out how and in which projects the

recommendations were ignored. In chapter 5, one of our case studies is about deriving

the process model from the set of student software projects. This is an example of

using our approach in batch mode.

3.4. DIFFERENT APPLICATION DOMAINS 87

Company 1 Company N

Pr
oj

ec
t 1

Pr
oj

ec
t k

Pr
oj

ec
t 1

Pr
oj

ec
t k

Repository 1 Repository N

Document
Log

Software
Process
Model

Process Mining

Figure 3.46: Using Approach in Batch Mode

3.4 Different Application Domains

In this chapter, we presented our incremental workflow mining approach and the

main ideas of its algorithms in the context of software engineering. In the beginning

of the chapter, we have shown how the approach can be integrated to the process-

centered software engineering environment and described the software repositories

and the input sources for the algorithms. We also mentioned that our framework

supports different types of input information, e.g. bugs history logs, e-mail archives

and document logs of SCMs. In this concluding section of this chapter, we intend

to broaden the context of the approach and to discuss its applicability to the other

domains; our overview uses the following work [vdAW04, vdAvDH+03, vdARvD+06]

as a background.

Nowadays, there is increased interest in the Process-Aware Information Sys-

tems (PAIS) as a bridge between people and software through process technol-

ogy [DvdAtH05]. So, process engine is included not only to the process-centered

software engineering environments and WfMS, but to ERP, PDM, CRM and other

systems. Today’s PAIS systems increasingly support not only highly structured pro-

cesses (classical “workflow paradigm”), but dynamic processes. The end goal is not

to enforce processes, but to support, monitor and influence them, i.e. to adopt the

process technology to the company’s needs.

88 CHAPTER 3. INCREMENTAL WORKFLOW MINING APPROACH

Along with the evolving process technology, today’s information systems started

to record enormous amounts of data. ERP, WFM, CRM, SCM, and PDM software

provide excellent logging facilities, i.e., there is a tight coupling between processes

and information systems even if the processes are not enforced by the information

system, i.e., information systems are aware of processes even if they do not control

them in every aspect. Thus, all these systems can serve as an input source for the

mining algorithms, which support dynamic processes as well as the structured ones.

Thus, additionally to SCM systems, the auditing information is usually also avail-

able, in the area of Product Data Management (PDM) systems discussed already in

Chapter 1, which is traditionally strong in product modeling and product evolution

control [EFM98]. Historically, current PDM/PLM systems, which support a broad

functionality including process management and support, have grown from the repos-

itories of CAD/CAM drawings and multi media database systems.

PDM system provides a structure, where different types of information, such as

electronic documents, files, database records, and processes are stored. The system

ensures that people and other systems have access to the stored information through-

out the whole lifecycle of a product. Data Vault and Document Management compo-

nent of PDM supports checkin and checkout functions and, therefore, provides secure

storage and control of data. Meta-data stores index and definition information about

products, changes, and releases; this is auditing information, which can be tracked

and controlled. PDM system also contains Workflow and Process Management com-

ponent, its processes govern the way the user perform their jobs for achieving their

business objectives. Here, we can refer to such systems as Metaphase and TeamCen-

ter, Windchill. All these systems log the status of all the design artefacts and support

the versions of these artefacts. Thus, analyzing the logs of these systems with the

help of the algorithms described in this Chapter, we can find out the design process

and the flow of work of the engineers in the company.

The Enterprise Resource Planning (ERP) systems, which are used on the other

stage of product development lifecycle as PDMs, usually integrate the version man-

agement systems, which also provide the auditing functionality. For example, such

ERP system as SAP logs all transactions of users filling out forms, changing docu-

ments, etc. Business-to-business (B2B) systems log the exchange of messages with

other parties. CRM systems log interactions with customers.

The other examples of the domains where our approach can be applied are: (1)

The hospitals, where the information about the health history and treatments of

3.4. DIFFERENT APPLICATION DOMAINS 89

patients is stored in the electronic form; (2) Organizations integrated using Service-

Oriented Architecture (SOA), since these organizations are communicating using

message exchange, and message exchange data is usually recorded. Here, such tech-

nology as Web Services and such standards as SOAP, WSDL and BPEL can be used

as an example; (3) Professional high-tech systems such as high-end copiers, complex

medical equipment, lithography systems, automated production systems, etc. record

events which allow for the monitoring of these systems; (4) Classical administrative

systems of large organizations, such as universities, banks, insurance companies, local

governments, etc. Here, the document flow and most activities are recorded in some

form.

Moreover, the area of software engineering can benefit from the incremental work-

flow mining approach not only in the domain of discovering software process models,

but in the behavioural design in general (modelled as UML activity, sequence or col-

laboration diagrams). These designs can be compared with the real-life scenarios, in

this case every scenario corresponds to an execution log.

90 CHAPTER 3. INCREMENTAL WORKFLOW MINING APPROACH

3.5 Summary

In this Chapter, we presented the incremental workflow mining approach. We ex-

plained how it can be integrated into the modern software engineering environments.

We discussed in detail the sources of input information for the approach, i.e. soft-

ware repositories, and the audit information recorded in these repositories. Finally,

we presented the outline, the architecture and the methodology, which make up our

approach.

The presented approach has the following impacts on the area of software engi-

neering in general and on the area of software processes in particular:

• It uses the information provided by software repositories for discovering soft-

ware process models. So, it looks at the real data produced by practitioners

during their work on software projects.

• It produces documented and formally specified software process models, which

are required by almost all the software process improvement frameworks and

which are mandatory for further process improvement and for effective quality

management in companies.

• It is based on flexible generic algorithms, which automatically generate software

process models on different levels of abstraction.

• It produces software process models containing different process aspects:

control-flow aspect, performance aspect, organizational aspect, etc.

• It provides a set of utilities for analysis and verification of the models. Thus, the

approach is not focused only on the discovering of process models, but supports

further steps essential for process management and optimization.

• It can be used by the companies staying in business, as well as by developing

companies, since it can be used both in the incremental and in batch modes.

• It can be used not only in the software engineering field but also in the related

areas.

Chapter 4

Algorithms and Models

In this chapter, we present our algorithms developed within the incremental workflow

mining approach. Here we proceed from the standpoint of a process miner instead of

a software engineer. The main idea of the algorithms is deriving the process models

from the document logs. We focus on the control-flow process mining algorithm (the

main idea was described in Sect. 3.3.3), since it is the main algorithmic contribution

of the thesis. So, the focus of this chapter is on the second step of the whole approach

presented before, see Fig. 4.1. The structure of the document logs and the back-

ground information about the document management systems, which are extensively

used in the software domain, namely software configuration management systems,

were also presented in the previous chapter. Here, we make formal definitions and

formalize the algorithms; the basics of the ideas discussed here were presented in our

paper [vdARvD+06].

Software
Process
Model

Software
Process
Instance

Software Repositories

b) mining different aspects

1
Preprocessing

3
Model Analysis
and
Representation

Process
Mining

a) control-flow mining

Figure 4.1: Main Focus: Control-flow Mining Algorithm

91

92 CHAPTER 4. ALGORITHMS AND MODELS

4.1 Control-flow Mining and Open Issues

In the previous chapter we have discussed already the idea of process mining and

the usability of its results. Now, we give the motivation and open issues emerged in

this area and, thus, define the desired properties and characteristics of the mining

algorithms. Moreover, the terminology presented in this Section is used further in the

rest of the thesis.

First of all, we remind and clarify the terminology used in the process mining

domain. In the area of process mining, there are different algorithmic approaches,

which derive the control-flow from the event logs. The events in these logs corre-

spond to process activities produced by some Process Management System (PMS).

In our application area we have information about the commits of documents which

occur in document management systems, such as SCM systems, but generally can

also occur in other systems, like PDM. So, in our terminology, event corresponds to

a commit of documents, so the terms “event logs” and “document logs” are used in-

terchangeably; and we use documents instead of activities. Convertible terms “case”,

“trace” and “execution log” that define the parts of the event logs corresponding to

process instances are used by us as well as in classical process mining. However, the

applicability of our approach to the logs of activities is discussed in Sect. 4.1.2.

4.1.1 Open Issues

Figure 4.2 shows an example of a log and the corresponding process model that

can be discovered using our control-flow process mining algorithm or the classical

techniques from the process mining area. Existing process mining algorithms for

control-flow discovery typically have several problems. So, using the small example

of the typical reservation at the travelling agency presented in Fig. 4.2, we can discuss

these problems in more detail. In this Section we deal with the classical techniques

from the area of process mining, such as α-algorithm [vdAWM04], and their open

issues, the capabilities of our algorithm will be discussed later.

The first problem is that many algorithms have difficulties with complex control-

flow constructs. For example, the choice between the concurrent execution of Hotel-

Reservation and FlightReservation or the execution of just CarReservation shown

in Figure 4.2 cannot be handled by many algorithms. Most algorithms do not al-

low for so-called “non-free-choice constructs” where concurrency and choice meet.

The concept of free-choice nets is well-defined in the Petri net domain [DE95]. How-

4.1. CONTROL-FLOW MINING AND OPEN ISSUES 93

Registration
Form

Hotel
Reservation

Flight
Reservation

Car
Reservation

Opinion
Form

Registration Form
Hotel Reservation
Flight Reservation
Opinion Form

Registration Form
Flight Reservation
Hotel Reservation
Opinion Form

Registration Form
Car Reservation
Opinion Form

Case 1

Case 2

Case 3

Figure 4.2: Document Log and discovered Process Model

ever, in reality processes tend to be non-free-choice. The non-free-choice construct is

just one of many constructs that existing process mining algorithms have problems

with. Other examples are arbitrary nested loops, unbalanced splits and joins, partial

synchronization, see [vdAvDH+03, vdAW04] for further details. In this context it is

important to note that process mining is, by definition, restricted by the expressive

power of the target language, i.e., if a simple or highly informal language is used,

process mining is destined to produce less relevant results.

The second problem is the fact that most algorithms have problems with du-

plicates. In the document log it is not possible to distinguish between documents

that are named the same way, i.e., there are multiple documents that have the

same “footprint” in the log. As a result, most algorithms map these different

documents onto the same document thus making the model incorrect or counter-

intuitive. Consider for example Figure 4.2 and assume that documents Registra-

tionForm and OpinionForm are both recorded simply as Form. For example, the

case 1 〈RegistrationForm,HotelReservation, F lightReservation,OpinionForm〉
is recorded as 〈Form,HotelReservation, F lightReservation, Form〉. Most algo-

rithms will try to map the first and the second Form onto the same document.

In some cases this makes sense. However, if ReservationForm and OpinionForm re-

ally play a different role in the process, algorithms that are unable to separate them

will run into all kinds of problems, e.g., the model becomes more difficult or incor-

rect. The problem described above is a very important conceptual issue, which causes

application of intelligent methods to the area of process mining.

The described problem can be complemented by the other problem, which is

rather an algorithmic problem: documents are named differently, but mean the same.

This is a problem of names and types, it can be solved using additional information

94 CHAPTER 4. ALGORITHMS AND MODELS

like it was described in the previous chapter; but it should be treated on the algorithm

level, the algorithms should be able to detect such suspicious situations.

The third issue is that many algorithms have a tendency to generalize the solution

and can not tune the level of this generalization, i.e., often the discovered model

allows for much more behaviour than actually recorded in the log. We will discuss

this further in more detail when we discuss the completeness of a log.

The fourth problem is that many algorithms have the possibility to generate

inconsistent models. Note that here we do not refer to the relation between the log

and the model but to the internal consistency of the model by itself. For example,

the α-algorithm may yield models that have deadlocks and/or livelocks when the

log shows certain types of behaviour. When using Petri nets as a model to represent

processes, an obvious choice is to require the model to be sound [Aal98, vdAWM04],

see also Sect. 2.3.2. Soundness implies that for any case: (1) the model can potentially

terminate from any reachable state (option to complete), (2) that the model has no

dead parts, and (3) that no tokens are left behind (proper completion).

The four problems just mentioned illustrate the need for more powerful algo-

rithms. This is the reason we propose a new algorithm in this thesis.

4.1.2 Document and Activity Logs

In the beginning of Sect. 4.1, we clarified the terminology (event logs, activity logs,

document logs) used in the process mining domain. Further in this chapter, we ex-

amine the document logs and apply our transition system generation and Petri net

synthesis approach to these logs. In our main application domain (cf. Chapter 3),

i.e. software engineering domain, the main source of observing the work of software

engineers are the logs of such document management systems as SCM systems and

software repositories; however, these systems are not aware about the underlying ac-

tivities. Nevertheless, in the other domains, the Process-Aware Information Systems

collect information about the activities. Our approach described in this chapter is

multi-purpose, it can be also applied to the activity logs. Possible sources of such logs

and the main application domains were discussed in Sect. 3.4.

In Sect. 4.1.1, we presented an example of the flight and hotel reservation process,

see Fig. 4.2. It was based on documents, i.e. filled in forms, reservation e-mails, etc.

But, if the travelling agency uses a workflow management system, it saves the actions

done by the user; then the same example will look the following way, see Fig. 4.3.

In spite of the fact that the algorithms described further can be applied to both

4.1. CONTROL-FLOW MINING AND OPEN ISSUES 95

register

reserve
Hotel

reserve
Flight

reserve Car fill in Opinion
Form

register
reserve Hotel
reserve Flight
fill in Opinion Form

register
reserve Flight
reserve Hotel
fill in Opinion Form

register
reserve Car
fill in Opinion Form

Case 1

Case 2

Case 3

Figure 4.3: Activity Log and discovered Process Model

types of logs, there are differences in the nature of the logs. For example, several

documents are often committed at the same point of time, but it does not occur that

often in case of activities. So, traces of the document logs contain often structured

documents.

Furthermore, some modification strategies are useful for document logs, the oth-

ers not. For example, the “Extend” strategy described in Sect. 4.2.4 is very useful

for document logs, since it “enables” producing new documents when all the precon-

ditions are fulfilled (all the preceding documents are committed), but it is applied

seldom to activity logs.

However, our main goal in this Chapter is to present our process mining algorithm,

which supports tuning the level of generalization and deals with different sources of

input information, such as document and activity logs.

4.1.3 Notions of Completeness

When it comes to process mining the notion of completeness is very important. Like

in any data mining or machine learning context one cannot assume to have seen

all possibilities in the “training material” (i.e., the event log at hand). In Figure 4.2

the set of possible traces found in the log is exactly the same as the set of possible

traces in the model. In general this is not the case. For example, the trace 〈 Reg-

istrationForm, FlightReservation, MealReservation, HotelReservation, OpinionForm

〉 may be possible but did not occur in the log. Therefore, process mining is always

based on some notion of completeness. A mining algorithm could be very precise in

the sense that it assumes that only the sequences in the log are possible. This implies

that the algorithm actually does not provide more insights than what is already in

the log. However, to illustrate the relevance of completeness, consider 10 tasks which

96 CHAPTER 4. ALGORITHMS AND MODELS

can be executed in parallel. The total number of interleavings is 10! = 3628800. It is

probably not realistic that each interleaving is present in the log.

Different algorithms assume different notions of completeness. These notions il-

lustrate the different attempts to strike a balance between “overfitting” and “under-

fitting”. A model is overfitting if it does not generalize and only allows for the exact

behaviour recorded in the log. This means that the corresponding mining technique

assumes a very strong notion of completeness: “If it is not in the event log, it is not

possible.” An underfitting model generalizes the things seen in the log, i.e., it allows

for more behaviour even when there are no indications in the log that suggest this

additional behaviour.

Application
Truck

Truck
License

Car
License

Theory
Results

Application Truck
Theory Results
Truck License

Application Car
Theory Results
Car License

Case 2

Case 1

Application
Car

Application
Truck

Truck
License

Car
License

Theory
Results

Application
Car

Application Truck
Theory Results
Truck License

Application Car
Theory Results
Car License

Application Truck
Theory Results
Car License

Application Car
Theory Results
Truck License

Case 1

Case 2

Case 3

Case 4

Log 1

Log 2

Model 1

Model 2

Figure 4.4: Two logs and models illustrating the completeness issue.

Let us now consider an example showing that it is difficult to balance between

being too general and too specific. Figure 4.4 shows an example of the process of

obtaining a driving license. People use to fill the application for truck or for car license,

obtain results of a theoretical exam and then, after attending practical courses, they

get either a truck or a car license. Our example consists of two logs and two models.

Both logs are possible according to the Model 2. However, only Log 1 is possible

according to the Model 1 because this model does not allow for Case 3 and Case 4

present in Log 2. Clearly, Model 1 seems to be a suitable model for Log 1 and Model

2 seems to be a suitable model for Log 2. However, the question is whether Model 2

4.2. TRANSITION SYSTEM GENERATION 97

is also a suitable model for Log 1. If there are just two cases Case 1 and Case 2, then

there is no reason to argue why Model 2 would not be a suitable model. However,

if there are 100 cases following Case 1 and 100 cases Case 2, then it is difficult to

justify Model 2 as a suitable model. If Case 3 and/or Case 4 are indeed possible,

then it seems unlikely that they never occurred in one of the 200 cases. Moreover,

if there were only three cases in the second log, an intelligent algorithm should try

to derive the Model 2 anyway and, thus, at least to suppose that there can exist the

Case 4. Figure 4.4 shows that there is a delicate balance and that it is non-trivial to

compare logs and process models. Thus, the objective is to develop a methodology

for “tuning” the balance in order to reach an appropriate level of generalization.

So, in the whole section, with the help of two simple practical examples we pre-

sented several relevant problems in the area of process mining, clarified the similarity

and differences between the activity and the document logs, and discussed such an

important issue as “overfitting” and “underfitting”. The latter issue opens an impor-

tant research direction concerning the intelligence of the mining algorithms.

Thus, we can conclude that there is a lack of process mining methods, which

enable balancing between “overfitting” and “underfitting” and provide an interface

to the process engineer for “tuning” this balance. Further, we present our method for

resolving the issues discussed in this Section.

4.2 Transition System Generation

In the next Sections, we discuss the details and formalize our control-flow process

mining algorithm. Here, we start with the first part of this algorithm, i.e. with tran-

sition system generation, see Fig. 4.5. We remind the reader that transition system

generation deals with constructing transition systems from the log and modifying TSs

to overcome “overfitting” and thus to tune the appropriate level of generalization.

Document
Log

Transition System
Generation

TS
Petri Net
Synthesis PN

Figure 4.5: Transition System Generation Step

98 CHAPTER 4. ALGORITHMS AND MODELS

4.2.1 Preliminaries

In this section, we present the definitions of sets, multisets and sequences in a com-

patible manner suitable for our approach, so that we can use them in the rest of this

chapter for specifying our algorithms.

Let A be a set. A∗ is the set of all finite sequences over A. In terms of abstract

algebras, A∗ is a free monoid on set A; i.e. A∗ has a binary operation, namely con-

catenation, which is associative (∀a, b, c ∈ A∗ : (a + b) + c = a + (b + c)), and

there is also an empty sequence ε ∈ A∗ with ε ◦ a = a. Let σ ∈ A∗ be a finite

sequence of length n; it can be also defined using a mapping: σ ∈ {1, . . . , n} → A.

Such a sequence is represented by a string, i.e., σ = 〈a1, a2, . . . , an〉 where ai = σ(i)

for 1 ≤ i ≤ n. hd(σ, k) = 〈a1, a2, . . . , ak〉, is the sequence of just the first k ele-

ments, 0 ≤ k ≤ n. Note that hd(σ, n) = σ and hd(σ, 0) is the empty sequence.

tl(σ, k) = 〈ak+1, ak+2, . . . , an〉, is the sequence after removing the first k elements,

0 ≤ k ≤ n. Note that tl(σ, 0) = σ and tl(σ, n) is the empty sequence. projX(σ) is the

projection of σ onto some subset X ⊆ A, e.g., proj {a,b}(〈a, b, c, a, b, c, d〉) = 〈a, b, a, b〉
and proj {a,b,c}(〈d, a, a, a, a, a, a, d〉) = 〈a, a, a, a, a, a〉.

For a given set A, let M(A) = A → N be the set of all finite multisets (bags)

over A. In terms of abstract algebras, M(A) is a commutative free monoid on set

A; i.e. M(A) has a binary operation, namely concatenation, which is associative and

commutative (∀a, b ∈ A∗ : a + b = b + a), and there is also an empty sequence

ε ∈ M(A). Let X ∈ M(A) be a multiset where for each a ∈ A: X(a) denotes the

number of times a is included in the multiset. |X| =
∑

a∈AX(a) is the cardinality

of some multiset X over A. The sum of two multisets (X + Y), the presence of an

element in a multiset (x ∈ X), and the notion of subset (X ≤ Y) are defined in a

usual way. We also apply these operators to sets, where we assume that a set is a

multiset in which every element has a multiplicity 1.

For any multiset X over A, set(X) operation transforms a multiset into a set ;

i.e. set(X) = {a ∈ X|X(a) > 0}. For any sequence σ over X, the Parikh vector

par(σ) operation transforms a sequence into a multiset. It maps every element a

of A onto the number of occurrences of a in σ, i.e., par(σ) ∈ M(A) and ∀a ∈ A:

par(σ)(a) =
∑

1≤i≤n if σ(i) = a then 1 else 0.

4.2.2 Approach

In our approach, we do not consider the whole log, like it was shown in Table 3.2,

but only the ordering of documents. Each case is executed independent from other

4.2. TRANSITION SYSTEM GENERATION 99

cases, and therefore, we can simply restrict our input to the ordering of documents

within individual cases. A single case is described by a sequence of documents and a

log can be described by a set of traces.

Definition 4.2.1 (Trace, Document log). Let D be a set of documents. σ ∈ D∗

is a trace and L ∈ P(D∗) is a document log.1

Note that a ∈ D may refer to an atomic document or may be structured, e.g.,

the set of documents produced in the same activity.

The set of documents can be found by inspecting the log. The most important

aspect of transition system generation is however deducing the states of the process,

see Fig. 4.6. Most mining algorithms have an implicit notion of state, i.e., activities

(documents in our case) are glued together in some process modeling language based

on an analysis of the log and the resulting model has a behaviour that can be repre-

sented as a transition system. Here, we propose to define states explicitly and, then,

to come to the definition of a transition system.

Document
Log

Transition System
Generation

TS
Petri Net
Synthesis PN

Defining a State

Figure 4.6: Transition System Generation Step: Defining a State

In some cases, the state can be derived directly, e.g., each event encodes the

complete state by providing values for all relevant data attributes. However, in the

event log we typically only see documents and not states. Hence, we need to deduce

state information from the documents committed before and/or after a given state.

Figure 4.7 shows an example of a trace and the different “ingredients” that can be

used to calculate state information.

Thus, we conclude that, when building a transition system, there are basically

four approaches to determine the state in a log:

• past, i.e., the state is constructed based on the history of a case,
1Note that we ignore multiple occurrences of the same trace in the thesis. When dealing with

issues such as noise it is vital to also look at the frequency of documents and traces. Therefore, a

document log is typically defined as a multiset of traces rather than a set. However, at the time being

it suffices to consider sets.

100 CHAPTER 4. ALGORITHMS AND MODELS

Current state

A
B
C
D
C
D
C
D
E

F
A
G
H
H
H
I

Past

Future

Case

Past
And
Future

Explicit State
Knowledge

(requires
 additional
 input)

Figure 4.7: Four basic “ingredients” for calculating the “process state”.

• future, i.e., the state of a case is based on its future,

• past and future, i.e., a combination of the previous two, or

• explicit knowledge of the current state, e.g., the log contains state information

in addition to event data.

In the thesis, we assume that we do not have explicit knowledge about the current

state and focus on the past and future of a case. However, note that our approach

can also be applied to situations where we have explicit state knowledge [KRS06c].

Definition 4.2.2 (Past and future of a case). Let D be a set of documents and

let σ = 〈a1, a2, . . . , an〉 ∈ D∗ be a trace that represent a complete execution of a case.

The past of this case after executing k steps (0 ≤ k ≤ n) is hd(σ, k). The future of

this case after executing k steps (0 ≤ k ≤ n) is tl(σ, k).

The past of a case is a prefix of the complete trace. Similarly, the future of a

case is a postfix of the complete trace. This may be taken into account completely,

which leads to many different states and process models that may be too specific

(i.e., “overfitting” models). However, many abstractions are possible as we will see in

the remainder.

First of all, the state calculation can be based on a complete or partial prefix

(postfix):

4.2. TRANSITION SYSTEM GENERATION 101

• complete prefix (postfix), i.e., the state is represented by a complete history

(future) of the case,

• partial prefix (postfix), i.e., only a subset of the trace is considered.

A partial prefix only looks at a limited number of events before the state is reached.

For example, while constructing the state information for the purpose of process

mining, one can decide to only consider the last k events. For example, instead of

taking the complete prefix 〈A,B,C,D,C,D,C,D,E〉 shown in Figure 4.7 only the

last four (k = 4) events are considered: 〈D,C,D,E〉. In a partial postfix also a limited

horizon is considered, i.e., seen from the state under consideration only the next k

events are taken into account.

Second, only a selected set of documents may be considered: the log is filtered,

i.e. only the remaining events are used as input for process mining. This is another

type of abstraction orthogonal to taking a partial prefix (postfix). Filtering may

be used to remove certain documents. For example, if there are start and complete

events for documents, e.g., “A started” and “A completed”, then it is possible to only

consider the complete events. It is also possible to filter out low-frequent documents

and focus on the frequent documents to simplify the discovered model. Filtering is a

very important abstraction mechanism in process mining.

The third abstraction mechanism removes the order and/or frequency from the

resulting trace. For the current state it may be less interesting to know when some

document A occurred and how many times A occurred, i.e., only the fact that it

occurred at some time in the past is relevant. In other cases, it may be relevant to

know how many times A occurred or it may be essential to know whether A occurred

before B or not. This suggests that there are three ways of representing the knowledge

about the past and/or future:

• sequence, i.e., the order of documents is recorded in the state,

• multiset of documents, i.e., the number of times each document is executed

ignoring order, and

• set of documents, i.e., the mere presence of documents.

Figure 4.8 illustrates the different ways of representing the knowledge about the

past or the future for the purpose of process mining. Note that the different kinds of

abstraction can be combined (assuming that we do not have explicit knowledge). This

results in 3 (past/future/past and future) times 2 (complete/partial) times 2 (with

102 CHAPTER 4. ALGORITHMS AND MODELS

Current
state

A
B
C
D
C
D
C
D
E

F
A
G
H
H
H
I

Case

Prefix Postfix

Set

Complete
Prefix (last 4) Postfix (next 5)

Partial

Multi-set

Sequence

Set

Multi-set

Sequence

N
on-filtered

Filtered

{A,B,C,D,E} {F,A,G,H,I} {C,D,E} {F,A,G,H}

{A,B,C3,D3,E} {F,A,G,H3,I} {C,D2,E} {F,A,G,H2}

<A,B,C,D,C,D,C,D,E> <F,A,G,H,H,H,I> <D,C,D,E> <F,A,G,H,H>

 ignore
 A,B,F

{C,D,E} {G,H,I} {C,D,E} {G,H}

{C3,D3,E} {G,H3,I} {C,D2,E} {G,H2}

<C,D,C,D,C,D,E> <G,H,H,H,I> <D,C,D,E> <G,H,H>

Figure 4.8: Different ways to construct the “current state” (depends on the desired

level of abstraction).

filter/without filter) times 3 (sequence/multiset/set) = 3 ∗ 2 ∗ 2 ∗ 3 = 36 strategies to

represent states. If more abstractions are used, the number of states will be smaller

and the danger of “underfitting” is present. If, on the other hand, fewer abstractions

are used, the number of states may be larger resulting in an “overfitting” model.

Let us now try to further operationalize the ideas illustrated in Figure 4.8. Def-

inition 4.2.2 already showed how to project a sequence of documents onto the past

and/or future using hd(σ, k) and tl(σ, k) (given a trace σ and the state resulting after

k steps). The operators par and set defined in Section 4.2.1 can be used to abstract

from the ordering of documents thus map sequences onto sets or multi-sets. To filter,

we use proj defined in Section 4.2.1.

When considering partial pre/postfixes, we need to define a horizon h and use

hdh(σ, k) and tlh(σ, k) rather than hd(σ, k) and tl(σ, k) as defined below.

Definition 4.2.3 (Horizon). Let D be a set of documents and σ =

〈a1, a2, . . . , an〉 ∈ D∗ a complete trace. Let h be a natural number defining the hori-

zon and let k (0 ≤ k ≤ n) point to the current state in the trace σ (i.e., state

after executing k steps). The partial prefix hdh(σ, k) = 〈a(k−h) max 1, . . . , ak〉 is the

sequence of at most h events before reaching the current state. The partial post-

fix tlh(σ, k) = 〈ak+1, . . . , a(k+h) min n〉 is the sequence of at most h events following

directly after the current state.

4.2. TRANSITION SYSTEM GENERATION 103

As indicated before, the representation of the current state can be very detailed

or not. For example, given a trace σ after k steps, the state may be represented

as (hd(σ, k), tl(σ, k)), i.e., the current state is represented by the complete prefix

and postfix sequences. However, to avoid “overfitting” other representations can be

used. The representation par(hd(σ, k)) only considers the complete prefix multiset,

i.e., the full prefix is considered but the ordering is not relevant. The representation

set(par(hd(σ, k))) or set(tl0(σ, k)) considers the complete prefix set, i.e., the full prefix

is considered, the ordering is not relevant, and the frequency is not relevant. Another

example of state representation is set(par(tlh(σ, k))) which considers a partial postfix

of length h without caring about ordering a frequencies. set(par(tlh(projX(σ), k))) is

similar but now first the sequence is filtered and all documents not in X are removed.

After these examples, we define the concept of state representation with respect to a

position in trace explicitly.

Definition 4.2.4 (State representation). A state representation state : D∗ ×
N → D◦, where D◦ is a free structure over D and can be a set, a multiset or a

sequence, is a function which, given a sequence σ ∈ D∗ and a k ∈ N indicates the

events of σ that have occurred.

For example, state(σ, k) = set(par(tlh(projX(σ), k))) is an example of a state

representation.

The various abstraction concepts can be used to “tune” the state representation.

Many different state functions are possible and here we only list the obvious ones.

As was indicated before, we consider 3 ∗ 2 ∗ 2 ∗ 3 = 36 strategies to represent states.

These 36 types of state functions can be constructed as follows. Assume a complete

trace σ and a k indicating the current position in σ.

1. Decide to use just the past, just the future, or both and determine if partial

or complete pre/postfixes are used. There are 3 ∗ 2 = 6 possibilities: hd(σ, k),

tl(σ, k), (hd(σ, k), tl(σ, k)), hdh(σ, k), tlh(σ, k), and (hdh(σ, k), tlh(σ, k)).

2. Filter the log if needed, i.e., use σ or projX(σ) as a basis. (Two possibilities.)

3. Determine if the ordering and frequency of activities is relevant and further ab-

stract from this in the resulting post/prefixes if needed. Assuming a pre/postfix

σ it is possible to retain the sequence σ, to remove the ordering par(σ) (i.e., con-

struct a multiset), or to remove also the frequencies set(par(σ)) (i.e., construct

a set). (Three possibilities.)

104 CHAPTER 4. ALGORITHMS AND MODELS

One of the 36 possible strategies is for example:

state(σ, k) = (set(par(hdh(projX(σ), k))), set(par(tlh(projX(σ), k))))

Thus, in this Section we presented a flexible mechanism for representing states.

Depending on particular application area and level of abstraction, people can combine

the state representation strategies in order to find suitable methodology for their

domain. Our next step is to build a transition system based on a particular state

function. The state space is given by all the states visited in the log when assuming

the representation chosen. The transition relation can be derived by assuming that

one can go from one state to another if this occurs in at least one of the traces in the

log.

4.2.3 Constructing a Transition System

In this Section, we continue the transition system generation step of our control-flow

process mining algorithm and define the method for constructing a transition system,

see Fig. 4.9. First of all, we give a definition of a transition system, which is based

on the notion of state presented in Definition 4.2.4.

Document
Log

Transition System
Generation

TS
Petri Net
Synthesis PN

Defining a State
a) Constructing TS

Figure 4.9: Transition System Generation Step: Constructing a TS

Definition 4.2.5 (Transition system). Let D be a set of documents and let L ∈
P(D∗) be a document log. Given a state function as defined before, we define a labeled

transition system TS = (S,E, T) where S = {state(σ, k) | σ ∈ L ∧ 0 ≤ k ≤ |σ|}
is the state space, E = D is the set of events (labels) and T ⊆ S × E × S with

T = {(state(σ, k), σ(k + 1), state(σ, k + 1)) | σ ∈ L ∧ 0 ≤ k < |σ|} is the transition

relation.

In the transition system, the set of states without predecessors, i.e. S0 =

{state(σ, 0) | ∀σ ∈ L}, is the set of start states.

4.2. TRANSITION SYSTEM GENERATION 105

The algorithm for constructing a transition system is straightforward: for every

trace σ, iterating over k (0 ≤ k ≤ |σ|), we create a new state state(σ, k) if it does not

exist or take the existing one otherwise. For every preceding state state(σ, k − 1), if

it exists, we make a transition state(σ, k − 1)
σ(k)−→ state(σ, k) to the new one2. It is

worth mentioning that in most of the cases a transition system can be constructed

effectively online just while reading a log.

Further, as an example we will consider the log abstracted from the log from the

previous chapter (see Table 3.4):

L =


〈A,B,C,D〉,
〈A,C,B,D〉,
〈A,E,C,E,C,D〉

 (4.1)

If we use the complete prefix set definition of a state, i.e. state(σ, k) =

set(par(hd(σ, k))), we get the transition system shown in Figure 4.10. Every state

consists of a set of activities and every transition is labelled with a name of an activ-

ity. This transition system contains two self-loop transitions {A,C,E} E→ {A,C,E}
and {A,C,E} C→ {A,C,E}. If we use the complete prefix sequence representation of

a state, i.e. state(σ, k) = hd(σ, k), we obtain another transition system as shown in

Figure 4.11. For this transition system, every state is represented by a sequence of

activities (for example 〈A,E,C,E〉). As is easy to see, this transition system does not

contain any self-loops any more. In fact, the complete prefix sequence representation

of a state always results in acyclic transition systems.

Looking at Fig. 4.10 and Fig. 4.11 from the point of view of fitness, it is easy to see

that both TSs support the behaviour seen in the log. But the first TS is underfitting,

since it also allows for much more behaviour; i.e. such trace as 〈A,E,C,C,C,E,E,D〉
can be reproduced in this TS. To the contrary, the second one is overfitting, it allows

for exactly the behaviour seen the log and does not recognize the loop hidden in the

trace 〈A,E,C,E,C,D〉.
Another example of a transition system generated from the example log is shown

in Figure 4.12. This one is based on the complete postfix multiset definition of a state,

i.e. state(σ, k) = par(tl(σ, k)). And the last example of a constructed TS shown in

Fig. 4.13 is based on the partial prefix sequence definition of a state, i.e. state(σ, k) =

hd2(σ, k). The postfix-based TS is overfitting also, but the last one is more “clever”,

since it recognizes the loop.

2Further, the elements of T are often denoted as s1
e→ s2 instead of (s1, e, s2).

106 CHAPTER 4. ALGORITHMS AND MODELS

{}

{A}

{A,B} {A,C}

{A,C,B}

{D,A,C,B}

{A,E}

{A,C,E}

{D,A,C,E}

A

B C

C B

D

E

C

D

E C

Figure 4.10: Complete prefix sets TS

<>

<A>

<A,B> <A,C>

<A,B,C>

<A,B,C,D>

<A,E>

<A,E,C>

<A,E,C,E>

A

B C

C B

D

E

C

E

<A,E,C,E,C>

C

<A,E,C,E,C,D>

D

<A,C,B>

<A,C,B,D>

D

Figure 4.11: Complete prefix sequences TS

{A,B,C,D}

{B,C,D}

{B,D} {C,D}

{D}

{}

A

C

B C

D

E

{A,E2,C2,D}

{E2,C2,D}

A

{E,C2,D}

{E,C,D}

C

E

B

Figure 4.12: Complete postfix multisets

TS

<>

<A>

<A,B><A,C>

<B,C>

<C,D>

<A,E>

<E,C>

<C,E>

A

BC

CB

D

E

C

E C
D

<C,B>

<B,D>

D

Figure 4.13: Partial prefix sequences TS

Further, we want to formulate an important proposition for the constructed tran-

sition systems.

Proposition 4.2.6 (Correct Construction). Let D be a set of documents, let

L ∈ P(D∗) be a document log and TS = (S,E, T) be a transition sys-

tem constructed from the log L according to Definition 4.2.5. For every trace

σ = 〈a1, a2, . . . , an〉 ∈ L there is a corresponding sequence of transitions ρ =

〈 (s0, a1, s1), (s1, a2, s2), . . . , (sn−1, an, sn) 〉, where s0 is a start state, in the TS.

Proof. According to Definition 4.2.5 for every trace σ ∈ L and every 0 ≤ k < |σ|,
there is a transition

(
state(σ, k), σ(k+1), state(σ, k+1)

)
in the TS. Hence, in the TS,

4.2. TRANSITION SYSTEM GENERATION 107

for every σ = 〈a1, a2, . . . , an〉 ∈ L of length n we can build a sequence of transitions

ρ = 〈 (s0, a1, s1), (s1, a2, s2), . . . , (sn−1, an, sn) 〉, where si = state(σ, i), ai = σ(i) and

0 ≤ i < n.

According to Proposition 4.2.6, we can conclude that all the traces of the log

are specified as transition sequences in the constructed transition system. Thus, the

behaviour modelled in the log is also modelled in the transition system, i.e. transition

system construction is correct in respect to the logged behaviour.

4.2.4 Modification Strategies

Transition systems, which are constructed according to the algorithm given in the

previous section, reflect the behaviour seen in the log. However, often the log does

not contain all the possible traces and, thus, represents only a part of the possible

behaviour. In the other cases, we need to further abstract from the log data, intro-

duce generalizations, or even ignore some unnecessary details. So, in this section, see

Fig. 4.14, we present the main operations which make up a framework for building

“clever” modification strategies and show some examples of these strategies.

Document
Log

Transition System
Generation

TS
Petri Net
Synthesis PN

Defining a State
a) Constructing TS
b) Modification Strategies

Figure 4.14: Transition System Generation Step: Modification Strategies

Definition 4.2.7 (Main Operations). Let TS = (S,E, T) be a transition system

constructed for some log L ∈ P(D∗) using a particular state function. The main

operations for building strategies are:

addArc The operation addArc(s1, a, s2) makes a new transition, i.e., an arc labeled

a connecting state s1 to state s2. TS′ = (S,E, T ′) with T ′ = T ∪ {(s1, a, s2)}
is the transition system with an added arc.

removeArc The operation removeArc(s1, a, s2) removes a transition. TS′ =

(S,E, T ′) with T ′ = T \ {(s1, a, s2)} is the transition system without this

arc.

108 CHAPTER 4. ALGORITHMS AND MODELS

mergeStates The operation mergeStates(s1, s2) creates a new state s12 = s1 + s2,

assuming s12 /∈ S. For any state s, T Is = {(s′, a, s) ∈ T | ∀s} is the set of

incoming transitions, TOs = {(s, a, s′) ∈ T | ∀s} is the set of outgoing transitions,

and Ts = T Is ∪ TOs is the set of all incident transitions. The transition system

resulting from operation mergeStates(s1, s2) is TS′ = (S′, E, T ′) with S′ =

(S \ {s1, s2}) ∪ {s12}, T ′ = (T \ (Ts1 ∪ Ts2)) ∪ Tnew , where Tnew =

{(s, a, s12) | ∃s′ (s, a, s′) ∈ T Is1 ∪ T Is2} ∪ {(s12, a, s) | ∃s′ (s′, a, s) ∈ TOs1 ∪ TOs2}.

Further, we check whether the Proposition 4.2.6 (correct construction) is violated

after applying the introduced operations. Consequently, we check whether after ap-

plying one of the above operations on the constructed transition system TS, for every

trace σ ∈ L there is still a corresponding sequence of transitions ρ in the TS′.

Proposition 4.2.8 (Correct addArc). Let TS′ = (S′, E, T ′) be a transition sys-

tem derived after applying the operation addArc(s1, a, s2) to the constructed transition

system TS = (S,E, T). The Proposition 4.2.6 is satisfied in TS′.

Proof. According to Definition 4.2.7, in the new transition system TS′: T ′ ⊃ T .

Hence T ′∗ ⊃ T ∗, i.e. the set of finite transition sequences of TS′ includes the set of

finite transition sequences of TS. Since the Proposition 4.2.6 is satisfied in TS and

TS′ includes the transition sequences of the TS, the Proposition is also satisfied in

TS′.

Proposition 4.2.9 (Correct mergeStates). Let TS′ = (S′, E, T ′) be a transition

system derived from the constructed transition system TS = (S,E, T) after applying

the operation mergeStates(ss1, ss2), where ss1, ss2 ∈ S. The Proposition 4.2.6 is

satisfied in TS′.

Proof. According to Proposition 4.2.6, for every trace σ ∈ L and every 0 ≤ k < |σ|,
there is a sequence of transitions ρ = 〈 (s0, a1, s1), (s1, a2, s2), . . . , (sn−1, an, sn) 〉 in

the TS.

According to Definition 4.2.7, after applying the operation mergeStates(ss1, ss2)

on the TS, the set S′ will include the set S\{ss1, ss2} and a new state ss12 = ss1+ss2;

the set T ′ will include the set T \ (Tss1 ∪ Tss2) and a new set Tnew. It means that for

every σ, for every ρ corresponding to this σ, for every transition (sk, ak+1, sk+1) ∈ T

• if sk /∈ {ss1, ss2} and sk+1 /∈ {ss1, ss2}, then (sk, ak+1, sk+1) ∈ T ′

• if sk ∈ {ss1, ss2} and sk+1 /∈ {ss1, ss2}, then (ss12, ak+1, sk+1) ∈ T ′

4.2. TRANSITION SYSTEM GENERATION 109

• if sk /∈ {ss1, ss2} and sk+1 ∈ {ss1, ss2}, then (sk, ak+1, ss12) ∈ T ′

• if sk ∈ {ss1, ss2} and sk+1 ∈ {ss1, ss2}, then (ss12, ak+1, ss12) ∈ T ′

Thus, for every transition (sk, ak+1, sk+1) ∈ T there is a corresponding transition in

T ′. Hence, for every transition sequence ρ in TS there is a corresponding transition

sequence in TS′. Consequently, for every σ ∈ L there is a corresponding transition

sequence in TS′, it means that the Proposition 4.2.6 is satisfied in TS′.

So, the operations addArc and mergeStates satisfy the Proposition 4.2.6. Thus,

after applying these operations on the transition system, the resulting transition

system correctly specifies the behaviour recorded in the log. The third operation

removeArc violates the Proposition 4.2.6, since it removes transitions, and therefore

“breaks” the transition sequences. However, all the main operations presented in the

definition 4.2.7 are useful for building flexible modification strategies.

Next, we present some useful strategies, and show how they can be applied to our

examples. Bigger examples of the modification strategies applied to the real software

projects are given in Chapter 5. Note that the strategies can be used in combination

with the more than 36 strategies defined for the state representation. Moreover,

these are just examples showing that the addArc(s1, a, s2), removeArc(s1, a, s2), and

mergeStates(s1, s2) operations can be used to “massage” the transition system before

constructing a process model from it.

“Kill Loops” Strategy

The “Kill Loops” strategy is used for ignoring the loops and, thus, for building

acyclic transition systems. When a set representation is used, typically self-loops

are introduced (whenever an activity is executed for the second time a self-loop is

created). See for example the transition system shown in Figure 4.10 that has two

self-loop transitions {A,C,E} E→ {A,C,E} and {A,C,E} C→ {A,C,E}. Let TS =

(S,E, T) be a transition system where self-loops need to be removed. TS′ = (S,E, T ′)

with T ′ = {(s1, a, s2) ∈ T | s1 6= s2} is the resulting transition system. A transition

system derived after applying this strategy to the set-based transition system given

in Figure 4.10 is shown in Figure 4.15.

The “Kill Loops” strategy is motivated that in some cases one is interested only

in the occurrence of an activity and not the ordering of activities or the frequency of

an activity. Hence, sets are used to represent states. However, a side-effect of the set

110 CHAPTER 4. ALGORITHMS AND MODELS

{}

{A}

{A,B} {A,C}

{A,C,B}

{D,A,C,B}

{A,E}

{A,C,E}

{D,A,C,E}

A

B C

C B

D

E

C

D

Figure 4.15: Acyclic TS.

{}

{A}

{A,B} {A,C}

{A,C,B}

{D,A,C,B}

{A,E}

{A,C,E}

{D,A,C,E}

A

B C

C B

D

E C

D

E

Figure 4.16: Result of applying the extend strategy.

representation is the introduction of self-loops for activities that can occur multiple

times. These can effectively be removed using this strategy.

“Extend” Strategy

The “Extend” strategy is especially useful for the logs having a set representation.

Let TS = (S,E, T) be a transition system where this strategy has to be applied.

TS′ = (S,E, T ′) with T ′ = T ∪ {(s1, a, s2) ∈ S×E×S | s1 ∪{a} = s2 ∧ a /∈ s1} is

the resulting transition system3. Basically, this strategy makes transitions between

two states, which were created from different traces but which can be subsequent

because there is a single document which can be committed to reach one state from

the other. This strategy is very useful for generalizing the behaviour seen in the logs

by means of extending the “state diamonds”, i.e., interleavings are added to allow

for the deduction of parallel constructs. An example of this strategy applied to the

acyclic transition system without loops from Figure 4.15 is shown in Figure 4.16. A

transition {A,C} E→ {A,C,E} was added here. It should be noted that a combination

of strategies is used, i.e., both “Kill Loops” and “Extend” are applied in this example.

The motivation for the “Extend” strategy is that, in many cases, it is unrealistic

that all possible interleavings of documents are actually present in the log. When

discussing the notion of completeness, we demonstrated that this is indeed a prob-

lem. Therefore, the “Extend” strategy in a way extends the transition system with

interleavings not observed in the log but likely to be present based on the struc-

3Sometimes, it useful to apply this strategy only for a subset of events or only for a particular

subset of states. In this case, execution of this strategy cannot be done fully automatically without

interaction with the user.

4.2. TRANSITION SYSTEM GENERATION 111

ture. The “Extend” strategy is often used in combination with a set representation

of states. This representation seems natural when document logs are used. In this

case, the state refers to the set of artefacts produced so far, e.g., all documents that

have been checked in. In this context the assumption of the “Extend” strategy is

that it is possible to move from one state to another if there is a difference of a single

document, i.e., if {a1, . . . , an} and {a1, . . . , an, an+1} are reachable states, then there

is a transition from {a1, . . . , an} to {a1, . . . , an, an+1}.

“Merge by Output” Strategy

Another useful strategy is called “Merge by Output”. It merges the states that have

the same outputs. Let TS = (S,E, T) be a transition system. For any state s let

us define an operation out(s) = {a ∈ E | (s, a, s′′) ∈ T}, which returns the set of

output events of a state. Let us define a predicate isMerge ⊆ S × S such that for

any s1, s2 ∈ S: isMerge(s1, s2) if and only if out(s1) = out(s2). If isMerge(s1, s2),

then s1 and s2 are merged onto a new state. isMerge contains all the pairs of states

that can be merged. For any pair of states (s1, s2) ∈ isMerge, we can execute a

mergeStates(s1, s2) operation, which produces a new transition system TS′, accord-

ing to the definition given above. Based on this new transition system TS′, we can

again calculate all the pairs of states that can be merged isMerge′. Again a pair of

states is selected and merged using the mergeStates operation. This is repeated until

there are no more states to be merged.

There are several ways to refine the isMerge predicate. For example, function out

could be refined to not only take into account the output event but also the output

state. Another refinement would be to avoid merging states if this introduces loops,

e.g., we can redefine the predicate isMerge to: isMerge(s1, s2) if and only if out(s1) =

out(s2) and @ a, b ∈ E : (s1, a, s2) ∈ T or (s2, a, s1) ∈ T or (s′′, a, s1), (s′′, b, s2) ∈ T .

The last three conditions are given to prohibit building self-loops and multiple arcs

between a pair of states in a transition system after merging.

If we take the sequence-based transition system as shown in Figure 4.11 and

assume the more refined isMerge predicate, the set isMerge includes such pairs

as (〈A,E〉, 〈A,E,C,E〉), (〈A,B,C〉, 〈A,E,C,E,C〉), (〈A,B〉, 〈A,E,C,E〉),

(〈A,B,C,D〉, 〈A,E,C,E,C,D〉) and others. Note that after merging a pair of

states, the set isMerge′ of the new transition system TS′ will be different from

isMerge. So, starting with merging the pair (〈A,E〉, 〈A,E,C,E〉), and then produc-

ing new transition system and merging the states there, finally (when no states can

112 CHAPTER 4. ALGORITHMS AND MODELS

<>

<A>

<A,B> <A,C>

<A,B,C,A,C,B,
A,E,C,E,C>

<A,B,C,D,A,C,B,D,
A,E,C,E,C,D>

<A,E,
A,E,C,E>

<A,E,C>

A

B C

C B

D

E

C
C E

Figure 4.17: Result of applying the merge states strategy.

be merged) we produce a transition system shown in Figure 4.17.

In our example, we use only “merge by output” strategy; but in general, the

strategies based on equality of inputs and subsets of outputs or inputs are very

helpful for simplifying the transition system and solving the problem of “loops”.

The three strategies presented in this section, i.e. “Kill Loops”, “Extend”, and

“Merge by Output” showed the main directions of modifying constructed transition

systems: abstraction and simplification, generalization, and restructuring. For these

three strategies many variants exist. It is also important to note that the suitability of

a strategy heavily depends on the state representation selected. There are numerous

combinations possible, some of which work better than others depending on the

characteristics of the event logs at hand. This differentiates our approach for existing

approaches which typically propose a single algorithm that cannot be configured to

address different needs.

So, in this section, we defined the basic framework for building strategies and

presented the motivating examples of their potential for simplifying the transition

systems. However, in future, further ideas about strategies, their combinations and

their applications should be worked out. After a rich set of practical examples from

different application domains will be collected, people can define a domain-specific

methodology for applying the strategies and “tuning” the level of generalization.

However, the examples of the strategies shown in this section were already tested and

approved in the domain of software processes, the validation is given in Chapter 5.

4.3. PETRI NET SYNTHESIS 113

4.3 Petri Net Synthesis

In this Section, we present the second step of our approach – Petri net synthesis.

In this step, a Petri net is synthesized from the transition system resulting from

the previous step. Here, we present the method for constructing a Petri net and the

method for converting the Petri net to an appropriate target format. We use the

“theory of regions” [ER89a, DR96, CKLY98] for both methods.

4.3.1 Constructing Petri Nets Using Regions

In this Section, we present the first part of the Petri net synthesis step – constructing

a Petri net using regions, see Fig. 4.18.

Document
Log

Transition System
Generation

TS
Petri Net

Synthesis PN

a) Constructing PN

Figure 4.18: Petri Net Synthesis Step: Constructing PN

First, we recall the definition of a region, which formalization was given in Chap-

ter 2. Let TS = (S,E, T) be a transition system and S′ ⊆ S is a subset of states. S′

is a region if for each event e ∈ E one of the following conditions hold:

• all the transitions labelled with e enter S′

• all the transitions labelled with e exit S′

• all the transitions labelled with e do not cross S′

In Figure 4.19, we continue the example of the sets-based transition system with

killed loops (see Figure 4.15) and present several examples of regions. The set r0 =

{{}} is a region, since all the transitions labelled with A exit it and all other labels

do not cross. It is important to see that r0 is a set of states containing one state

being the empty set. r1 = {{A}, {A,C}} is a region, since A enters it, B and E

exit it and C and D do not cross it; r2 = {{A,B}, {A,E}, {A,C,B}, {A,C,E}}
and r3 = {{D,A,C,B}, {D,A,C,E}} are the other examples of regions, they are

also marked with dotted lines in the figure. A region r′ is said to be a subregion

of the other region r if r′ ⊂ r. For example, r0 and r1 are subregions of region

114 CHAPTER 4. ALGORITHMS AND MODELS

r = {{}, {A}, {A,C}}. A region r is minimal if there is no other region r′ which is a

subregion of r. For example, both r0 and r1 are minimal regions; in Fig. 4.19, the set

of regions marked with dotted lines is the set of all the minimal regions of the TS. A

region r is a preregion of event e if there is a transition labelled with e which exits

r. A region r is a postregion of event e if there is a transition labelled with e which

enters r. For example, r0 is a preregion of A and r1 is a postregion of A.

For Petri net synthesis, a region corresponds to a Petri net place and an event

corresponds to a Petri net transition. Thus, the main idea of the synthesis algorithm

is the following: for each event e in the transition system a transition labelled with e

is generated in the Petri net. For each minimal region ri a place pi is generated. The

flow relation of the Petri net is built the following way: e ∈ p•i if ri is a preregion of

e and e ∈ •pi if ri is a postregion of e. An example of a Petri net synthesized from

our transition system is given in Figure 4.20. The incoming place of the transition A

corresponds to the minimal region r0 and the outgoing place of A which is also the

incoming place for transitions B and E corresponds to the region r1 respectively.

{}

{A}

{A,C} {A,B}

{A,C,B}

{D,A,C,B}

{A,E}

{A,C,E}

{D,A,C,E}

A

C B

B C

D

E

C

D

r1

r2

r3

r2

r4 r5

Figure 4.19: Regions in the transition system.

A

B

C

E D

r0

r1

r2

r3

r4

r5

Figure 4.20: Synthesized Petri net.

A

B

C_1

E_1

C_2

D

C E

D_1

A

B

C

E_1
D

E

A

B

C

E D

{}

{A}

{A,C} {A,B}

{A,C,B}

{D,A,C,B}

{A,E}

{A,C,E}

{D,A,C,E}

A

C B

B C

D

E

C

D

r1

r0

r2

r3

A

B

C

E D

r2

r4 r5

r0

r1

r2

r3

r4

r5

A

B

C

E D

Figure 4.21: Synthesized and improved PN.

4.3. PETRI NET SYNTHESIS 115

However, this example shown in Fig. 4.20 contains additional behaviour which was

not modeled in the TS in Fig. 4.19. The problem is that this transition system is not

elementary. In the theory of regions, the first papers and the algorithms, including the

algorithm presented above, dealt with the special class of transition systems called

elementary transition systems (see [DR96, BBD95, BD98] for details). The class of

elementary transition systems is very restricted. In practice, most of the time, people

deal with standard transition systems that only by coincidence fall into the class of

elementary transition systems. So, the presented algorithm has to be improved to

transform a non-elementary TS to the elementary one and to synthesize a PN after

it. In the papers of Cortadella et al. [CKLY95, CKLY98], a method for handling any

transition system was presented. This approach uses labelled Petri nets, i.e., different

transitions can refer to the same event. For this approach it has been shown that

the initial transition system is bisimilar to the reachability graph of the synthesized

Petri net. In the remainder of this thesis, we build our approach on the approach

of Cortadella et al. The result of this approach applied to the TS from Fig. 4.19 is

shown in Fig. 4.21.

So, most of the transition systems shown in the examples from Section 4.2 are not

elementary. However, from a practical point of view this is just a technicality that

can easily be resolved. We start our examples with the Petri nets synthesized from

the basic transition systems, which were constructed in Section 4.2.3: the Petri net

shown in Figure 4.22 was synthesized from the transition system shown in Figure 4.10

and the Petri net in Figure 4.23 from Figure 4.11 correspondingly.4

A

B

C_1

E_1

C_2

D
C E

D_1

Figure 4.22: Petri net for the transi-

tion system based on sets.

A

B

C

E_1
D

E

Figure 4.23: Petri net for the transi-

tion system based on sequences.

Both Petri nets presented above reflect the behaviour seen in the log (logs can be

successfully replayed in this Petri nets), but they also have some disadvantages: the

first Petri net is too general (underfitting), because transitions C and E can be exe-

4The Petri nets are labeled, so the transitions are denoted like E,E 1, E 2,

116 CHAPTER 4. ALGORITHMS AND MODELS

cuted an unlimited number of times; the second Petri net is too explicit (overfitting),

since for the last trace (see the log used for the running example) it allows only the

sequence 〈A,E 1, C,E,C,D〉 that is presented in the log, but not the loop construct.

So, we can conclude that in spite of the fact that both Petri nets correctly model

the behaviour recorded in the log, sets-based Petri nets can be often too general and

sequence-based – too specific.

Next, we show another two examples of the PNs synthesized from the TSs con-

structed from the log in Sect. 4.2.3. The Petri net shown in Fig. 4.24 was synthesized

from the complete postfix multiset TS shown in Fig. 4.12; and the PN in Fig. 4.25

– from the partial prefix sequences TS shown in Fig. 4.13. The first PN still suffers

from overfitting, the second one recognizes the loop and models the behaviour appro-

priately, but its structure is rather complicated. Thus, we can obtain an appropriate

Petri net model from the constructed transition system where modification strategies

were not applied, but the structure of the model can be complicated.

A

B

C_1E

D

C

A_1

Figure 4.24: PN for complete postfix mul-

tisets TS.

A

C

B

DE

E_1

D_1

Figure 4.25: PN for partial prefix se-

quences TS.

The next set of examples corresponds to the modified transition systems con-

structed using various strategies. The Petri net synthesized from the acyclic set-based

transition system from Figure 4.15 (obtained after applying the “kill loops” strategy)

was shown in Figure 4.21. It is compact and exactly reflects the behaviour from the

log, but ignores the loop. The Petri net that corresponds to the extended transition

system is shown in Figure 4.26, it supports additional behaviour, for example it also

allows for the trace 〈A,C,E,D〉.

It is worth mentioning that the PN from Fig. 4.20 and the PN from Fig. 4.26

are identical. The first one is derived by applying the simplest synthesis algorithm

to the non-elementary TS, the second – after modifying the TS and applying the

standard synthesis algorithm that we are using in the thesis. It means that along

4.3. PETRI NET SYNTHESIS 117

with modification strategies applied to the transition systems, modification can be

done on the level of Petri net synthesis algorithms. This idea is shown on a small

example here, but generally it opens a new research direction in Petri net synthesis

and theory of regions. This research should deal with different algorithms for deriving

different process models and their abstractions. However, this will be a future work

in this area, it is out of the scope of this thesis; our goal here is to show the variety

of research challenges in the domain.

A

B

C

E D

Figure 4.26: Petri net for the ex-

tended transition system.

A

B

C_1

E_1

E

C_2

DC

Figure 4.27: Petri net for the transi-

tion system after state merging.

The last Petri net is shown in Figure 4.27. This Petri net is derived from the

sequence-based transition system, where the “merge by output” strategy was applied.

This Petri net specifies the behaviour seen in the log and also recognizes the loop.

Thus, in this Section, we showed different Petri nets with different characteristics;

all these Petri nets were derived from different transition systems constructed from

the document log. All the presented Petri nets correctly model the behaviour recorded

in the log (it has to be noted that producing correct Petri net model from the log

was for a long time a challenging problem in the area of process mining). Moreover,

presented Petri nets have different characteristics: some of them explicitly specify

the behaviour seen in the log, the second ignore loops, the third try to generalize

the model and try to guess the behaviour which was not recorded in the log. Clever

combination of the algorithms for constructing and modifying the transition systems

with the algorithms of Petri net synthesis not only opens new directions for process

mining research, but also provides a flexible mining framework for process engineers.

Using this framework, process engineers can produce different views on the existing

processes in order to understand, to analyse and to design them better.

118 CHAPTER 4. ALGORITHMS AND MODELS

4.3.2 Selecting the Target Format

In this section, we deal with different target formats of synthesized Petri nets, see

Fig. 4.28. We use various synthesis algorithms to derive Petri nets in different ways

and to produce different classes of Petri nets, such as free choice, extended free-choice,

pure, state-machine decomposable and others. The algorithms synthesize labelled

Petri nets and they are based on transition label splitting. This way, the Petri nets,

which can be huge and difficult to understand, can be converted and simplified. Here,

we use the algorithms developed in the work of Cortadella et al. [CKLY95, CKLY98],

as they generally deal with labelled Petri nets.

Document
Log

Transition System
Generation

TS
Petri Net

Synthesis PN

a) Constructing PN
b) Selecting Target Format

Figure 4.28: Petri Net Synthesis Step: Selecting Target Format

As described in Section 4.3.1, the algorithms of Cortadella et al. deal not only

with elementary but also with the full class of transitions systems. So, all the algo-

rithms check whether a transition system is elementary and split appropriate labels

if not; the splitting is based on the notions of excitation and generalized excitation

region, see [CKLY95]. The simplest synthesis algorithm generates a Petri net from

all the regions, this net is called a saturated net. An improvement of this algorithm

is generating a minimal saturated net, which is based on all the minimal regions.

However, both algorithms produce nets with redundant places, i.e. some places can

be removed without changing the behaviour. Building a place-irredundant net with

minimal regions is a challenging task, which can be solved by assigning costs to

different solutions based on minimal regions and finding the optimal one. So, the

algorithm, which was used for all the examples presented above generates a subset

of all the minimal regions of a transition system, which is sufficient for Petri net

synthesis. All the obtained Petri nets are place-irredundant.

As mentioned above, the algorithms support synthesis of different classes of Petri

nets and conversion of one Petri net to the other. For example, we can generate

different classes of the set-based Petri net shown in Figure 4.21. First, we can convert

4.4. IMPLEMENTATION 119

A

B

C_1

E DC

Figure 4.29: Pure Petri net.

A

B_1

C_1

E D

B

C

Figure 4.30: Free-choice Petri net.

it to a pure Petri net shown in Figure 4.29; a Petri net PN = (P, T, F) is called pure

if (p, t) ∈ F implies that (t, p) /∈ F , i.e. the Petri net has no self-loops. So, transition

C had to be split to exclude self-loops. Next, we can build a free-choice equivalent of

it, see Figure 4.30; a Petri net PN = (P, T, F) is called free-choice if ∀p ∈ P : |p•| ≤ 1

or •(p•) = {p}, i.e. the Petri net does not have mixed synchronization and conflict

constructs. Transition B had to be split to exclude the conflict between B and E,

which was mixed with the synchronization.

Thus, in this section, we showed that the theory of regions can be used not

only for synthesis of Petri nets from transition systems, but also for converting Petri

nets to different formats in order to make them better understandable by the user.

Consequently, with the help of the discussed methods, process engineer can start

working with the model in a more flexible and convenient way.

In the whole section, we presented the second step of our approach. We demon-

strated a method for deriving Petri nets from transition systems constructed from

the event logs. We have shown the benefits of using the well developed theory of

regions and Petri net synthesis in the area of process mining.

4.4 Implementation

One important goal of the thesis was providing a tool support and, thus, enabling

practical evaluation of the described concepts. The tool described in this Section

evolved from a small single-developer research prototype and became a part of a big

process mining framework described further.

In the thesis, we used the following prototyping software development process,

see Fig. 4.31. This process was applied iteratively and consists of the following four

steps:

• Research Prototype: A small customizable Prolog-based research prototype

was developed (see Sect. 4.4.1)

120 CHAPTER 4. ALGORITHMS AND MODELS

Research
Prototype

Process Mining
Framework

Plugin

Initial
Validation and
Experiments

Practical
Validation and
Experiments

Figure 4.31: Software Development Process with Prototyping

• Initial Validation and Experiments: The research prototype was validated

with the help of small examples covering known problematic constructs

• Process-Mining Framework Plugin: The algorithms of the research proto-

type were extended, implemented in Java and plugged into the Process Mining

Framework ProM (see Sect. 4.4.2)

• Practical Validation and Experiments: The ProM plugin was evaluated

on bigger practical examples from the areas of Business Processes and Software

Processes (in this thesis, we present only the examples of software processes,

see Chapter 5)

4.4.1 Research Prototype

We decided to use Prolog [Bra90, SS91] for developing the research prototype. First,

it enabled us to concentrate on the algorithms and not on particular software devel-

opment technology or syntax of specific language. Second, we could think in terms of

our process mining task and solve it with the help of the declarative semantics of Pro-

log (by means of defining the axioms and clauses) without regarding any operational

language. We utilized the SWI-Prolog environment for our purposes [Wie03].

In Prolog, we could specify the representations of a state (see Sect. 4.2.2) directly

using mathematical definitions without reformulating it in any operational notation.

Moreover, a transition system could be also mathematically defined like it was shown

before. It simplified the experiments with the algorithms, i.e. experiments with dif-

ferent methods for constructing and modifying transition systems. For example, a

method for constructing the transition system could be changed simply by changing

the definition of a state.

The architecture of our research prototype is shown in Fig. 4.32. Our algorithms

and utilities are shown with bold lines, external utilities – with dashed lines respec-

tively.

4.4. IMPLEMENTATION 121

Transition System
Generation Algorithm

Prolog clauses

Document
Log

Prolog
facts

Transition
System

astg file

Petri Net Synthesis

External Tool (Petrify)

Petri Net

astg file

Visualized
Transition
System

pdf, ps,
jpeg

Converter TS to DOT

Java utility

Converter PN to DOT

Java utility

G
ra

ph
 V

is
ua

liz
at

io
n

E
xt

er
na

l T
oo

l (
D

O
T)

Visualized
Petri Net

pdf, ps,
jpeg

Figure 4.32: Schema of the Research Prototype

The document log is defined as a set of Prolog facts. In Fig. 4.33, we show a set

of Prolog facts, which represent a document log. Every fact contains a number of an

execution log, a document name and an order when the document was committed.

record(1,design,1).

record(1,code,2).

record(1,testPlans,3).

record(1,review,4).

record(2,design,1).

record(2,testPlans,2).

record(2,code,3).

record(2,review,4).

Figure 4.33: Document Log as Prolog Facts

The Transition System Generation algorithm (first step of our approach, see

Sect. 4.2) is implemented as a set of Prolog clauses. A simple example of a Pro-

log clause for a transition between two states is shown in Fig. 4.34. This clause is

122 CHAPTER 4. ALGORITHMS AND MODELS

based on the other clauses, but the main idea is the following: there is a transition

between S1 and S2 labelled as C if S1 and S2 are states and S2 is not a subset of

S1, there is a single commit of a document C and the union of S1 with C is equal

to S2.

transition(S1,C,S2) :-

state(S1), state(S2),

\+(subset(S2,S1)),

oneCommit(_,_,C),

union(S1,C,S11), equalsets(S11,S2).

Figure 4.34: Prolog Clause Example

As a result, the algorithm produces a TS as a set of facts, which are written to a

file in an appropriate format, which is accepted by other tools.

Next, a Petri net is synthesized from the created TS. We use a freely available

external tool Petrify [CKLY98] for this purpose. So, the TS is saved in the astg format

(specific format for Petrify) and then the Petrify is executed. Petrify produces a PN

also encoded in the astg format.

The derived TS and PN have to be visualized and given to the user in an appro-

priate graphical format (bmp, jpeg, tiff, ps, pdf). We decided to use the open-source

GraphViz Graph Visualization Software Package from http://www.graphviz.org/.

We picked out the dot utility for making the “hierarchical” drawings, this utility ac-

cepts its specific file format called also dot. So, we created two Java converters from

astg to dot: for TS and for PN correspondingly. At the end, our transition systems

and Petri nets are appropriately visualized with dot. They are available to the user

as jpeg, ps and pdf files, see a small example of TS visualization in Fig. 4.35.

Since all the external tools and converters are executed in a batch mode, we could

concentrate on the experiments with Transition Generation algorithms and options

of Petri net Synthesis. This research prototype is sufficient for understanding and

experimenting with the algorithms, but generally all these utilities have to be inte-

grated into a single tool, which should be available to the user. Fortunately, process

mining community advanced the development of a Java-based open source frame-

work ProM containing a set of mining algorithms and a convenient infrastructure for

process visualization, export and conversion. Consequently, we decided to implement

our algorithms in Java and to contribute to this extremely promising framework in

4.4. IMPLEMENTATION 123

s_start

s_s0

s0

s_design_s0

design

s_code_design_review_s0_testResults

s_code_design_e0_review_s0_testResults

e0

s_code_design_review_s0_verificationResults

s_code_design_e0_review_s0_verificationResults

e0

s_code_design_s0

s_code_design_s0_testResults

testResults

s_code_design_s0_verificationResults

verificationResults

review review

code

s_design_s0_testResults

testResults

s_design_s0_verificationResults

verificationResults

code code

Figure 4.35: An Example of dot Visualization

a form of a set of plugins. This implementation is described in the next section.

4.4.2 Implementation in Process Mining Framework

In this Section, we discuss the implementation of our approach in the framework

ProM. This implementation was used for further evaluation, which is described in

the next Chapter. The architecture of our incremental workflow mining approach was

presented in Chapter 3 in Sect. 3.3.1. Today, the Process Mining Framework ProM,

a screenshot of which is shown in Fig. 4.36, realizes an excellent tool support, which

corresponds to our architecture.

The framework itself is an excellent example of a stable user-friendly tool, which

supports convenient integration of scientific ideas and enables experiments with new

algorithms. Thus, we decided to contribute to the ProM and to implement our al-

gorithms in this context. ProM serves as a testbed for the process mining research

[vDdMV+05] and can be downloaded from www.processmining.org.

Starting point for ProM is the MXML format. This is a vendor-independent for-

mat to store event logs. Information can be stored in MXML. One MXML file can

store information about multiple processes. Events related to particular process in-

stances (called cases) are stored for each process. Each event refers to an activity. In

the context of this thesis, documents are mapped onto activities. Events can also have

additional information such as the transaction type (start, complete, etc.), the origi-

nator (who committed the document; in this thesis often referred to as the “author”),

timestamps (when did the event occur), and arbitrary data (attribute-value pairs).

124 CHAPTER 4. ALGORITHMS AND MODELS

Figure 4.36: About Process Mining Framework ProM

In Fig. 4.37, we show a fragment of our software document log from the Chapter 3

in the MXML format.

ProMimport

The ProMImport Framework allows developers to quickly implement plug-ins that

can be used to extract information from a variety of systems and convert it into the

MXML format (cf. promimport.sourceforge.net). There are standard import plug-

ins for a wide variety of systems, e.g., workflow management systems like Staffware,

case handling systems like FLOWer, ERP components like PeopleSoft Financials, sim-

ulation tools like ARIS and CPN Tools, middleware systems like WebSphere, BI tools

like ARIS PPM, etc. Moreover, it is been used to develop many organization/system-

specific conversions (e.g., hospitals, banks, governments, etc.). In our context, the

ProMImport Framework can also be used to extract event logs from such SCM sys-

tems as Subversion, CVS and others.

New types of input information can be easily integrated into the ProMImport

Framework. Basically, ProMImport provides the functionality of general-purpose

framework for different types of input information, it was discussed in Chapter 3.

4.4. IMPLEMENTATION 125

<Process id="small_software_process" description="">
<Data>

<Attribute name="info">info</Attribute>
</Data>
<ProcessInstance id="case_1" description="">

<Data>
<Attribute name="info">Execution 1</Attribute>
</Data>
<AuditTrailEntry>

<Data>
<Attribute name="comment">initial</Attribute>

</Data>
<WorkflowModelElement>DES</WorkflowModelElement>
<EventType>complete</EventType>
<Timestamp>2005-01-01T14:30:00.000+01:00</Timestamp>
<Originator>designer</Originator>

</AuditTrailEntry>

Figure 4.37: An MXML log example.

In the area of software process mining, it is important to have a unified architecture

to integrate different inputs and to abstract from particular inputs on the algorithm

level, i.e. to deal just with MXML format.

ProM

Once the logs are converted to MXML, ProM can be used to extract a variety of

models from these logs. ProM provides an environment and so-called “plugins” that

implement a specific mining approach. Although we focus mostly on mining plugins

here, it is important to note that there are in total five types of plugins:

Mining plugins which implement some mining algorithm, e.g., mining algorithms

that construct a Petri net based on some event log, or that construct a transition

system from an event log (like in our case).

Export plugins which implement some “save as” functionality for some objects

(such as graphs). For example, there are plugins to save EPCs, Petri nets,

spreadsheets, etc.

Import plugins which implement an “open” functionality for exported objects,

e.g., load Petri nets that are generated by Petrify.

126 CHAPTER 4. ALGORITHMS AND MODELS

Analysis plugins which typically implement some property analysis on some min-

ing result. For example, for Petri nets there is a plugin which constructs place

invariants, transition invariants, and a coverability graph.

Conversion plugins which implement conversions between different data formats,

e.g., from EPCs to Petri nets and from Petri nets to YAWL and BPEL.

Transition System Generator and Synthesis in ProM

One of the ProM plugins is the mining plugin that generates the transition system

that can be used to build a Petri net model. For this particular approach ProM

calls Petrify [CKLY98] to synthesize the Petri net, which is a command-line tool for

the synthesis of Petri nets from transition systems. Petrify is freely available from

http://www.lsi.upc.edu/petrify/ and it implements the algorithms developed by

Cortadella et al. [CKLY95, CKLY98].

Transition System
Generation Algorithm

Mining Plugin

Document
Log

MXML

Transition
System

ProM TS

TS to Petrify

Export Plugin

Transition
System

astg file

Petri Net
Synthesis

Petrify

Petri Net

astg file

Petrify to PN

Import Plugin

Petri Net

ProM PN

Petrify

Figure 4.38: Schema of the Implementation in ProM

So, the architecture of our approach in the context of ProM is shown in Fig. 4.38.

Now, the document logs are mapped to the MXML format; they are obtained from

CVS or Subversion systems with the help of ProMImport. Several strategies for tran-

sition system generation, which produce transition systems in the ProM internal

4.4. IMPLEMENTATION 127

format, were implemented as a mining plugin. These TSs are visualized by ProM;

ProM calls the dot utility internally. Then, TS can be exported (saved) to the Petrify

specific format astg with the aid of our TS to Petrify export plugin. The Petrify is

called separately and produces a Petri net in the astg format5. Using our Petrify to

PN import plugin the synthesized PN is imported into ProM. A screenshot of our

plugin in ProM is shown in Fig. 4.39.

So, the whole approach implemented in ProM takes the document log and pro-

duces a Petri net, which can be analysed, extended or exported with the other plugins

available in ProM.

5Technically, it is not a problem to call Petrify directly from ProM and thus to hide it from the

user. In the future, it is planned to integrate the algorithms of Petrify to ProM.

128 CHAPTER 4. ALGORITHMS AND MODELS

F
ig

ur
e

4.
39

:
Sc

re
en

sh
ot

of
ou

r
M

in
in

g
P

lu
gi

n

4.5. SUMMARY 129

4.5 Summary

In this Chapter, we presented our control-flow process mining algorithm. We pointed

out a set of relevant problems from the area of process mining and also focused on

the notions of completeness in this area. We discussed in detail all the steps of the

algorithm and all the generated models. Moreover, we provided the mathematical

foundations for the models and for the algorithm. Finally, we discussed the Prolog-

based and the Java-based implementations of the algorithm.

The presented algorithm has the following impacts on the area of process mining :

• It produces correct models, which reflect the behaviour recorded in the log.

Corresponding propositions were proved in this chapter.

• It consists of two steps and uses innovative ways of constructing transition

systems and regions to generate formal Petri net models. Thus, it produces two

types of models: (1) transition systems, which can be easily used for experiments

and (2) Petri nets, which are more compact than transition systems, and are

used as formal and explicit process specifications.

• It produces several process models on different levels of abstraction depending

on the method for constructing transition systems and the modification strategy

used. Thus, it supports tailoring to specific applications.

• It uses the well-developed theory of regions for transforming transition systems

to Petri nets. This opens a new research direction in the area of process mining

as well as in the area of Petri net synthesis.

• It allows transformation among different formats of Petri nets depending on

the preferences of a process engineer.

• It is implemented in Prolog, which enables to experiment with the algorithm

and easily make changes in it.

• It is implemented in Java and integrated to the framework ProM, which pro-

vides a convenient infrastructure for importing log files, visualizing the models,

analysing and verifying the models, and exporting and converting them to dif-

ferent formats. Thus, the algorithm is freely available to the whole process

mining community within the well-known framework ProM.

130 CHAPTER 4. ALGORITHMS AND MODELS

Chapter 5

Evaluation

The approach and algorithms described in the previous chapters were implemented

and evaluated on a set of projects from the area of software processes and business

processes. In this chapter we focus on the evaluation of our tool in the software area.

We present three case studies:

• A small case study from the area of open-source software, see Sect. 5.1. The

project in focus provides a free access to its SCM repository, we used the doc-

ument log of the SCM system as input information.

• A bigger case study based on the university practical software engineering

course, see Sect. 5.2. We also had access to the SCM system used by the students

and used its document log as input information.

• A case study from the area of open-source software, see Sect. 5.3. This project

provides free access to its bug repositories, we used the bug log as input infor-

mation.

5.1 Evaluation using Open-source Software

Generally, for a case study, our goal was to find several subprojects or plugins within

some big project and to derive a software development process model from them.

In this case, subprojects correspond to process instances. Our requirement was the

following: these subprojects must have similar naming conventions and folder struc-

ture, so that we can recognize documents with the same roles. For example, web sites

should be stored in folder “www” and the main file should be called “index.html”.

However, in many open-source projects it is difficult to derive a set of subprojects

131

132 CHAPTER 5. EVALUATION

with similar goals following similar naming conventions. Moreover, many projects

focus exclusively on code and testing and neglect design, requirements management,

design reviews; the process model derived from these projects can be simply “boring”.

Among the variety of open-source projects we found several that fit our require-

ments and where software is designed, coded, tested, web sites are created, etc. In

our first case study, we decided to take a rather small project called ArgoUML from

Tigris (http://argouml.tigris.org/) and to look at its subprojects.

5.1.1 ArgoUML Project

ArgoUML is a popular open-source UML modelling tool. It is an open source devel-

opment project (BSD license), which provides access to its source files maintained

with the Subversion SCM system. ArgoUML is organized as a set of subprojects with

separate members lists and goals, but with the same file organization and the same

development tools. For example, the ArgoUML website (http://argouml.tigris.

org/subprojects.html) contains the following information about different subpro-

jects:

• All subprojects will have the same file organization (src, build.xml, ...).

• The same tools will be used for all subprojects (ant, checkstyle, ...).

• All subprojects will have names and mailing list prefixes that follow the same

policy.

• Releases will be built from several subprojects. This has several consequences

for subprojects that are included in the releases:

– All subprojects have the same release plan. It is the from Release Plan

from the ArgoUML project.

– All subprojects have the same release numbering.

– The subprojects will obey the exact same rules w.r.t. compiler version,

other tools needed to build.

– The tagging and branching rules from the ArgoUML main project apply.

– The subprojects will use subversion as the version control system.

Thus, different subprojects use the same conventions and development rules, it sig-

nificantly simplifies the work of process mining algorithms.

5.1. EVALUATION USING OPEN-SOURCE SOFTWARE 133

<AuditTrailEntry>
<WorkflowModelElement>/trunk/www/index.html</WorkflowModelElement>
<EventType>complete</EventType>
<Timestamp>2006-06-02T19:49:16.000+01:00</Timestamp>
<Originator>tfmorris</Originator>

</AuditTrailEntry>
<AuditTrailEntry>

<WorkflowModelElement>/trunk/src/org/argouml/language/cpp
/ui/SettingsTabCpp.java</WorkflowModelElement>

<EventType>complete</EventType>
<Timestamp>2006-06-02T20:28:40.000+01:00</Timestamp>
<Originator>mvw</Originator>

</AuditTrailEntry>

Figure 5.1: A log fragment.

We decided to take a look at five subprojects, where the ArgoUML support for the

following languages is developed: C++, C#, IDL, PHP and Ruby. Thus, all these

projects correspond to cases (process instances) and the overall mined model can be

called “the process model for developing language support for ArgoUML”. So, our

goal is: (1) to derive a formal plausible software development process model (control-

flow perspective) from the document logs; (2) to enhance the resulting model with

the performance and the organization perspectives; (3) to apply the process analysis

and verification techniques.

5.1.2 Mining Procedure

First, using the svn log utility provided by Subversion, we generated logs for all the

five subprojects. Then, using the ProMImport tool, the logs were converted to the

MXML format, which is accepted by the ProM tool; all the logs were merged to

a single log containing one process with 5 process instances containing about 400

commits (audit trail entries) and almost 130 activities. A small fragment of the log

is shown in Fig. 5.1.

The resulting log contains project specific paths and different commits, which are

not relevant for the software process. Therefore, using the remap filter, we replaced

project specific paths with the abstract names. In our example, all the committed doc-

uments (files) containing “/src/” in their paths with “.java” at the end were mapped

to “SRC”, all the “readme.*” files – to “README”, all the files in “/tests/” – to

“TESTS”, the files in “/www/” – to “WWW”, “build.bat” – to “BUILDER” and all

134 CHAPTER 5. EVALUATION

the files, which names start with “.” – to “CONFIG”; the other commits were ignored.

It should be noted that this mapping corresponds to the naming conventions of the

ArgoUML project described on the web site (http://argouml.tigris.org/). Thus,

at the end we received an abstract log, which can be processed by our algorithms.

s1

s2

start

s3

WWW

s82

README

s4

BUILDER

s31

README

s53

CONFIG

s5

CONFIG

s6

SRC

s7

TESTS

s0

END

END

s33

CONFIG

s34

SRC

END s39

BUILDER

s61

TESTS

END

BUILDER README

END

WWW

Figure 5.2: Transition System for the ArgoUML Project

In the first step of our approach we generated a transition system shown in

Fig. 5.2. This transition system uses a complete prefix set definition of a state, more-

over it was refined by applying “Kill Loops” strategy, thus the loops are ignored.

In this first case study we decided to focus only on the mere presence of documents

(without considering the order and the number of times the documents were commit-

ted) and to exclude the loops, since we wanted to generate the most simple process

models and to understand whether we can derive useful information from them.

After executing the synthesis algorithms, we obtained the Petri net shown in

Fig. 5.3. This is a very compact and understandable Petri net, which perfectly reflects

the basic flow of work in the project. This Petri net focuses on the starting events,

5.1. EVALUATION USING OPEN-SOURCE SOFTWARE 135

END

SRC

BUILDER

TESTS__1

BUILDER__1

END__2

CONFIG

TESTS

END__3
start

END__1

WWW

README

Figure 5.3: Petri Net for the ArgoUML Project

i.e. when source code development was started, when testing was started. People use

to start with building web sites or editing readme files and builders, then they write

code and then, they test it, sometimes the builder is changed after writing code. Now,

since we have a model, it can be extended for dealing with time and for representing

the statistical data about the duration of tasks.

Figure 5.4: Complex TS and PN model.

To motivate the usage of “clever” transition system generation algorithms and

modification strategies, in Fig. 5.4 we show a screenshot of the ProM tool. This

screenshot contains a huge transition system and a “spagetti”-like Petri net, which

could be obtained if we would not apply any strategies but would simply generate

a multiset-based transition system covering all the traces seen in the log. In spite of

136 CHAPTER 5. EVALUATION

the fact that the models shown in the screenshot have a 100% fitness and directly

correspond to the behaviour covered in the log, they are extreme complex.

So, with the aid of the construction and modification strategies, we could “tune”

an appropriate level of abstraction in our process model represented in Fig. 5.3. This

model will be used further for process analysis.

In this Section, we presented a case study where we tried out our two-step control-

flow process mining algorithms, which produced a plausible process model reflecting

the real work in the software project. Here, we can conclude that complete prefix sets-

based transition systems refined by applying the “Kill Loops” modification strategy

are compact and understandable, it helps process engineers to gain insight about the

process.

5.1.3 Performance Analysis

The Petri net model of the development process can now be used for enhanced analysis

within the ProM framework (the algorithms used further were not developed by

the author and belong to the ProM framework). Figure 5.5 shows the result of a

performance analysis based on the mined model and the log (the idea of performance

analysis was discussed already in Sect. 3.3.4). The states, i.e. places, have been colored

according to the time which is spent in them while executing the process. Also,

multiple arcs originating from the same place (i.e., choices) have been annotated with

their respective probability (i.e., the fraction of cases for which this path was taken).

In the example, it takes more time to write a configuration file than a “builder” or a

“readme”.

Figure 5.5: Performance Analysis for the ArgoUML Project

Thus, with the help of the performance analysis, process engineers and managers

of software projects can derive information about the duration of tasks, the milestones

5.1. EVALUATION USING OPEN-SOURCE SOFTWARE 137

and the deadlines of projects. Moreover, they can identify problematic tasks, and,

therefore, determine the directions for software process improvement.

Further, a conformance analysis can be performed using the Petri net model and

the associated log. Figure 5.6 shows the path coverage analysis of the conformance

checker. All activities that have been executed in a specific case (or, set of cases) are

decorated with a bold border, and arcs are annotated with the frequency they have

been followed in the case. In this example, it can be seen that “README” was not

executed for the “CPP” case, i.e. the C++ language support team has not created a

README file.

Figure 5.6: Conformance Analysis for the ArgoUML Project

As discussed in Chapter 3, for software process engineers it is important to be

able to build different views on the process model, i.e. to focus on particular process

instances and to see them in the model.

5.1.4 Verification

On the next step, we can check the properties of the process using LTL verification.

Like for the performance analysis, the idea was described in Chapter 3 on the small

examples.

For example, one constraint in a software development project could be, that

developers working on the source code should not write tests as well. Figure 5.7

shows the result of checking a corresponding LTL formula on the ArgoUML log. In

the C++ language support case, which is shown in Figure 5.7, both source code and

tests have been submitted by the developer “euluis”, thereby violating this constraint.

Plenty of interesting properties can be checked using the verification plugin of

ProM. Our goal is to show its main functionality and capabilities. In the given exam-

ple, we have shown that its possible to do verification using several process aspects,

138 CHAPTER 5. EVALUATION

Figure 5.7: LTL Analysis for the ArgoUML Project

such as the control and the organizational ones. However, much more examples could

be provided, the other examples are shown in the second and in the third case studies.

5.1.5 Organizational Aspect

For determining the social network of a development process it is preferable to

use the original log, i.e. before it has been abstracted. The reason for that is, that

it is also interesting when people collaborate within a certain part of the project

(e.g., writing source code), while one wants to abstract from these activities on the

control flow level. Figure 5.8 illustrates the hand-over of work between ArgoUML

developers. It shows that some developers are only involved in specific phases of the

project (e.g., “bobtarling” appears to only work at the end of projects), while others

(e.g., “tfmorris”) have a more central and connected position, meaning they perform

tasks all over the process. Based on the nature of the project at hand one may prefer

different collaboration patterns, which can be checked conveniently in a mined social

network like this.

Thus, in this section, we presented a small handy example of the real software

project, where a subset of the big set of process mining and analysis techniques

supported by ProM was applied.

5.2 Evaluation using Student Repositories

In our second case study we deal with the document logs produced by the students

participating in the Practical Software Engineering course (Softwaretechnikprak-

tikum, http://wwwcs.upb.de/cs/ag-schaefer/Lehre/Lehrveranstaltungen/

Praktika/Softwaretechnikpraktikum/SS06/) in summer semester 2006. The

5.2. EVALUATION USING STUDENT REPOSITORIES 139

Figure 5.8: Social Network for the ArgoUML Project

main goal of this practical course is demonstrating the necessity of using software

engineering techniques for producing software [GGK+03]. Within this course the

students realize the importance of different steps of the software process, such as

requirements engineering, design, development, testing, etc. Moreover, students ex-

perience working in a team, which is for sure completely different from programming

on their own.

In this course, the students had to develop an IDE for embedded systems con-

sisting of three parts: component editor, deployment editor, and diagnosis tool. All

the students were divided in 16 groups, about 10 students per group. Every group

had to develop one of the parts of the IDE as a main task and then integrate with

the other two parts provided by the other groups. Each part had to be delivered as a

plugin for Eclipse (www.eclipse.org). However in our evaluation, we focus only on

the main task, i.e. on the development of the main plugin. During the development

of the main plugin, the students had to produce the following documents:

• Product Specification, abbreviated further as LH (for germ. Lastenheft)

• Requirements Analysis, abbreviated further as PH (for germ. Pflichtenheft)

• Analysis and Design, abbreviated further as AE (for germ. Analyse&Entwurf)

Additionally, they had to analyse given code, to produce their own source code, to

write tests, and to write the documentation for the source code.

The students used Subversion as an SCM system; they had to commit all the

documents enumerated above to the Subversion during the work on the project. We

introduced the rules for using the SCM system and the “naming conventions” for

140 CHAPTER 5. EVALUATION

folders and for documents in order to better manage the SCM repositories and to

“enable” mining and analysis of the development processes. An example of the con-

ventions for the folder structure is shown in Fig. 5.9. In contrast to the ArgoUML

project, where appropriate conventions were defined, see Sect. 5.1.1, we had to in-

troduce them ourselves here. Methodologically, in our incremental workflow mining

approach discussed in Chapter 3, we assume that the company is on the repeatable

CMM level and the SCM system is correctly used in the company, i.e. there exist

rules for using the SCM and practitioners follow these rules.
p y g p g

Folders Content

swtpra06-xx

 docs

 <typ>

sim

integration

 src

 tests

 website

 misc

Repository (xx – group number)

Project Documentation (all written documents)

Eigenes Plugin Documentation

(<typ>= “cbe”, ”nde”, ”sdt”)

Simulationsalgorithmus Documentation

Integration Documentation

Source code

Tests code

Website

Miscellaneous

Figure 5.9: Naming Conventions for Student Repositories

So, there are the following goals of this case study: (1) take the Subversion doc-

ument logs and derive a process model describing the real software development

process followed by the students; (2) analyse and verify the process model.

5.2.1 Abstractions on the Log Level

A repository of each group corresponds to a process instance. With the help of the

ProMImport tool, document logs derived from all these repositories were converted

to the MXML format and were represented as a single log with 16 instances. The

overall log contains more than 13000 of audit trail entries and about 9000 of different

activities; the size of the log file is almost 4 megabytes.

Since the log is very big and contains a lot of unnecessary details, we have to

select an appropriate level of abstraction and to “tune” it using our tools. First of

all, we analysed the logs; with the help of ProM filters and visualization mechanisms,

we found out which groups followed the naming conventions and which not. We

removed the logs of the groups that did not follow the naming conventions or that

chaotically committed their data. So, we left only 10 groups of 16. As mentioned

before, we look only at the development of the main plugin.

The next abstraction is: we decided to look only at the first occurrences of doc-

5.2. EVALUATION USING STUDENT REPOSITORIES 141

<?xml version="1.0" encoding="UTF-8"?>
<ProMLogFilter>

<LogFilter load="1" name="Remap Element Log Filter"
class="org.processmining.framework.log.filter.RemapElementLogFilter">

<FilterSpecific>
<!-- GROUP3 NDE -->
<remap regex="(.*)/swtpra06-03/docs/nde/lastenheft(.*).([\w]{3,4})"

replacement="LH"/>
<remap regex="(.*)/swtpra06-03/docs/nde/pflichtenheft(.*).([\w]{3,4})"

replacement="PH"/>
<remap regex="(.*)/swtpra06-03/nde/docs/pflichtenheft(.*).([\w]{3,4})"

replacement="PH"/>
<remap regex="(.*)/swtpra06-03/nde/docs/analyseentwurf(.*).([\w]{3,4})"

replacement="AE"/>
<remap regex="(.*)/swtpra06-03/nde/src/de/upb/swtpra06/nde03(.*).java"

replacement="src"/>

Figure 5.10: A fragment of log filter.

uments, e.g. we ask the questions like “when do the students start working with

Product Specification?” For sure, it is also possible to look at all the commits of

the documents or at the last commits of documents (the capabilities of “tuning”

appropriate abstraction level are described in the previous chapters).

Then, we used our “remap filter” to replace the project-specific names of the doc-

uments by the general names. We used our naming conventions, which were followed

by the students, to configure the filter. For example, for the group 3 all the docu-

ments from folder “/swtpra06-03/docs/nde/lastenheft/” were renamed to “LH”. A

fragment of the appropriate filter is shown in Fig. 5.10, it contains the set of pairs

with regular expressions (corresponding to the naming conventions) and replacement

strings.

Then, the initial log was changed and the names were replaced. The described

filtering produced a log with duplicates, i.e. a log with plenty of subsequent audit

trail entries referring to the same name, e.g. LH,LH,LH, . . ., so we removed all the

duplicates. It was carried out using a separate filter. A fragment of the filtered log is

shown in Fig. 5.11.

5.2.2 Process Models

Following our two-step approach we derived a transition system from the filtered log.

This transition system uses a set-based definition of a state and ignores the loops,

see Fig. 5.12. It reflects all the behaviour seen in the logs, for example we can see

that some groups started with LH (Product Specification) and some looked at the

142 CHAPTER 5. EVALUATION

<ProcessInstance id="group3" description="Global unified process instance">
<Data>
<Attribute name="LogType">MXML.EnactmentLog</Attribute>

</Data>
<AuditTrailEntry>
<WorkflowModelElement>Start</WorkflowModelElement>
<EventType>complete</EventType>
<Originator>Artificial (ProM)</Originator>

</AuditTrailEntry>
<AuditTrailEntry>
<WorkflowModelElement>LH</WorkflowModelElement>
<EventType>complete</EventType>
<Timestamp>2006-04-14T14:50:12.000+02:00</Timestamp>
<Originator>floriar</Originator>

</AuditTrailEntry>
<AuditTrailEntry>
<WorkflowModelElement>PH</WorkflowModelElement>
<EventType>complete</EventType>
<Timestamp>2006-04-20T16:05:26.000+02:00</Timestamp>
<Originator>schr31h</Originator>

</AuditTrailEntry>

Figure 5.11: A fragment of the filtered log.

given source code first. A Petri net synthesized from this transition system is shown

in Fig. 5.14. The TS and the PN produce the same logs. Still the derived PN is rather

complicated to be understood by the user.

So, in the next step we decided to generalize the transition system using our

“Extend Strategy” (see Chapter 4 for details). The extended TS is shown in Fig. 5.13.

The strategy produces new transitions between states; e.g. since we have a path

〈Start, givensrc, LH〉 leading to s49 and a path 〈Start, LH〉, we can assume that

there exists a path 〈Start, LH, givensrc〉 which also leads to the state s49. This TS

also reflects the behaviour seen in the log, but it is more general. The PN derived

from this TS is presented in Fig. 5.15. This PN is more compact than the previous

one (the complexity is checked simply by counting the number of places, transitions

and arcs). This Petri net can be better understood by the user, since it is better

structured and contains less complicated constructs in comparison to the previous

one. However, it allows for more behaviour then we have seen in the log.

The Petri net from Fig. 5.15 can be still simplified, for example all the non-free

choice constructs (mixture of conflict and synchronization) can be converted to the

free-choice constructs by means of producing additional labelled transitions (we use

Petrify tool for it). The free choice analog of this PN is shown in Fig. 5.16.

It has to be noted that all the models presented here have a 100% fitness (we ignore

5.2. EVALUATION USING STUDENT REPOSITORIES 143

s1

s2

Start

s3

LH

s48

givensrc

s4

PH

s16

AE

s5

AE

s23

givensrc

s6

src

s0

END

PH

s24

AE

s51

javadoc

s25

src

END s39

userdocs

END

s49

LH

PH

s52

AE

s53

src

END

Figure 5.12: Acyclic set-based Transition

System.

s1

s2

Start

s3

LH

s48

givensrc

s4

PH

s16

AE

s49

givensrc

s5

AE

s23

givensrc

s6

src

s24

givensrc

s0

END

s25

givensrc

PH

AE

s51

javadoc

src

s52

javadoc

ENDs39

userdocs

s53

javadoc

END

LH

PH

AE

src

END

Figure 5.13: Extended acyclic set-based

Transition System.

the loops in the log as well) and, thus, allow for the behaviour seen in the log. The

idea is to show at least two levels of the generalization (balance between overfitting

and underfitting) here. In this section, we do not show the other models, which were

generated from the multiset-based and from the sequence-based transition systems,

since they are extreme complex and can be hardly understood by the reader. However,

even these complicated Petri nets have 100% fitness and can be used for further

analysis. According to the examples presented in this case study and in the previous

one, we can conclude that such contruction method as sets-based construction and

such modification strategies as “Kill Loops” and “Extend Strategy” are helpful for

144 CHAPTER 5. EVALUATION

javadoc

AE

PH__1

LH

PH

userdocs

END__2

givensrc

src

END

AE__1

END__1

Start

Figure 5.14: PN for acyclic set-based TS.

END

AE

LH

javadoc

userdocs

END__2

Start

src

PH__1

givensrc__1

PH

END__1

givensrc

Figure 5.15: PN for extended acyclic set-based TS.

generating understandable models for complex software processes. However, using

these methods implies focusing on the start events or on the end events and ignoring

5.2. EVALUATION USING STUDENT REPOSITORIES 145

LH__1

givensrc__3

PH

AE__1

givensrc__1

src__2

javadoc__2

givensrc__2

END__1

givensrc

src__1

LH

Start

PH__1
END

javadoc

AE__3

src

AEPH__2

AE__2

givensrc__4

userdocs

javadoc__1

END__2

Figure 5.16: Free-choice variant of extended PN.

the loops.

5.2.3 Performance Analysis

In the previous section using our two-step approach, we produced a set of models on

different levels of abstraction. The next question is: “How can these models be used?

What kind of information can be derived from these models?”. We use the algorithms

from ProM tool for these purposes.

Figure 5.17: Performance Analysis with PN.

Since the model is available, it can be enriched with the performance information.

In Fig. 5.17, we see the performance analysis of the PN from Fig. 5.15. Places have

different colours depending on the waiting time; e.g. a place between LH and AE

transition has a high waiting time (13.95 days), i.e. it takes about 14 days to start

writing the “Analysis and Design” document after starting “Product Specification”.

If we select two transitions in the Petri net we can obtain the “time in between”;

e.g. the time between LH and src is 20.93 days, i.e. it takes almost three weeks to

146 CHAPTER 5. EVALUATION

start implementation after starting the product specification. The other important

feature of performance analysis are the probabilities of choices; e.g. the probability

of starting with PH is 90% and the probability of givensrc is only 10%.

Figure 5.18: Path Coverage for Group 3.

With the Conformance Checker plugin we can measure the fitness of the model.

For our example it is 100%, i.e. all the logs can be replayed in the model. There is a

possibility to focus on some particular group or on a subset of groups. For example, a

path in the Petri net corresponding to the group 3 is shown in Fig. 5.18 with the bold

lines. This functionality is very important for software process engineers especially

in the case when the models are complicated, since users have to focus on particular

views on the model.

5.2.4 Verification

After the analysis of the model is done, we can do verification. For example, we check

whether PH directly follows LH, i.e. whether the Requirements Specification always

follows the Product Specification directly (it has to be noted that we focus on the

start events in out models, thus, we can whether the work on PH was started after

the start of the work on LH). The result is given in Fig. 5.19, as is easy to see our rule

is violated by one group, namely group 4, which started working on the “Analysis

and Development” document directly after the “Product Specification”.

The other possibility could be checking the deadlines. For example, in Fig. 5.20

we show the result of checking whether there are groups that started programming

5.2. EVALUATION USING STUDENT REPOSITORIES 147

Figure 5.19: LTL Verification that PH follows LH.

after the 11th of April. We have found out that the group 5 started development on

the 12th of April. This way we can check the deadlines and find out the groups that

violated the deadlines.

Figure 5.20: LTL verification – groups started coding after the 11th of April.

148 CHAPTER 5. EVALUATION

5.2.5 Conversion

The last feature that has to be shown here is the conversion from one formalism to

the other. The derived Petri net model can be converted to the Event-driven Process

Chains (EPC) model [KNS92, Kin06] shown in Fig. 5.21. EPCs are widely accepted in

the industry as a reference modelling technique. So, the derived EPC models can be

used by the process engineers working with EPCs and can be exported and simulated

by the existing EPC engines.

Figure 5.21: Conversion to EPC.

Conversion plugins comprise a separate set of ProM plugins dealing with model

transformation. Transformations between such notations as Petri nets, Workflow nets,

EPCs, BPEL, and Heuristic nets are available. Like in all the previous examples, our

goal is to show principal solutions and not to go to the concrete implementation

details.

Thus, the main idea of the case study presented in this Section was to show

that we are capable of dealing not only with open-source projects, but also with

the company-specific projects if we introduce appropriate naming conventions and

control that the users follow them. We have taken an example from the university

5.3. EVALUATION USING BUG REPOSITORIES 149

practice, but similar examples could be obtained from the commercial companies.

In the last section, we have shown several new examples of the capabilities of the

analysis and conversion plugins in ProM.

5.3 Evaluation using Bug Repositories

In the third case study we decided not to deal with document logs, but with the logs

obtained from defect repositories (also called bug repositories or bug archives). We

call these logs bug logs. The main goal of this case study is validating the applicability

of our approach to other domains and validating the capability of dealing with the

input information different from the logs of SCMs. The background information about

defect repositories and their audit information was discussed in Sect. 3.2.1.

In this case study we looked at the bug reports of the Eclipse project (www.

eclipse.org) maintained by the Bugzilla system (www.bugzilla.org). The Eclipse

developers utilize Bugzilla for managing their collaborative work on the detected

defects (https://bugs.eclipse.org/bugs/). Eclipse provides also an extended help

for bug reporting and prescribes the conventions for writing bug reports. Charts and

reports along with the bug searching functionality are also supported.

The goal of this case study is deriving a process model describing the bug life-

cycle, deriving the organizational and performance aspects of the model and doing

verification. For validating the results, the process model can be compared to the

life-cycle of a bug described informally in text in the help of the Eclipse project.

Eclipse project itself contains information and history of thousands of bugs. For

this small case study, we decided to look at the bug reports of the Eclipse JDT

product. We focused on the version 3.1 of its Core component. Moreover, we looked

only at the CLOSED bugs for all the operating systems; i.e. we dealt with the bugs

which were resolved and finished, since we wanted to look at the whole history. With

the help of the Eclipse advanced search for bugs we obtained a list of 14 bugs. For

every bug, with the help of the Bugzilla utility “view bug activity”, which produces

a report covering the whole history of a bug, we derived a life-cycle process. A life-

cycle process for every bug corresponds to a process instance; as mentioned before,

the process model derived from these process instances corresponds to the general

model of the bug life-cycle.

A fragment of the bug log (it is in the MXML format used by ProM), which was

derived from the Bugzilla is shown in Fig. 5.22. It contains the statuses of a bug

150 CHAPTER 5. EVALUATION

<ProcessInstance id="bug 93536" description="">
<AuditTrailEntry>
<WorkflowModelElement>NEW</WorkflowModelElement>
<EventType>complete</EventType>
<Timestamp>2005-05-17T12:22:00.000+01:00</Timestamp>
<Originator>philippe</Originator>

</AuditTrailEntry>
<AuditTrailEntry>
<WorkflowModelElement>RESOLVED</WorkflowModelElement>
<EventType>complete</EventType>
<Timestamp>2005-06-03T12:08:00.000+01:00</Timestamp>
<Originator>kent</Originator>

</AuditTrailEntry>

Figure 5.22: A fragment of the bug history log.

(such as NEW, RESOLVED), the timestamps – when statuses were changed, and

the authors – who changed statuses.

5.3.1 Process Models

In this section, we show the models derived from the bug log discussed above. It

has to be noted, that we present several models on different levels of abstraction.

Here, we “tuned” our transition system generation and synthesis algorithms like it

was discussed in the previous Chapter.

The transition system shown in Fig. 5.23 is constructed directly from the bug

log, it uses the complete prefix multiset definition of a state, i.e. a state is a multiset

containing the history of all the bug statuses (for additional details about constructing

transition systems and defining states see Chapter 4). For example, every bug starts

with the status NEW and finishes with the status CLOSED, status RESOLVED

always precedes the status CLOSED. This transition system directly reflects the

information given in the log, but it does not introduce any generalization.

A Petri net synthesized from this transition system is shown in Fig. 5.24.

It is more compact than the transition system. In spite of 100% fit-

ness, neither the TS nor the PN recognize the loop construct in the trace

〈NEW,RESOLV ED,REOPENED,RESOLV ED, V ERIFIED,CLOSED〉. So,

we have to introduce an abstraction to deal with the loop and to simplify the model.

One way of abstraction is constructing transition system not using the whole

history of a bug, but regarding only one preceding status. We have defined this con-

struction strategy as a partial prefix strategy in Sect. 4.2. A TS constructed using

5.3. EVALUATION USING BUG REPOSITORIES 151

s1

s2

NEW

s3

RESOLVED

s20

ASSIGNED

s4

REOPENED

s11

VERIFIED

s48

CLOSED

s5

RESOLVED

s6

VERIFIED

s7

CLOSED

s0

END

s12

CLOSED

END

s21

RESOLVED

s22

VERIFIED

s23

CLOSED

END

END

Figure 5.23: Multiset-based TS.

END

CLOSED__1

NEW

ASSIGNED

REOPENED

VERIFIED__1

CLOSED__2

RESOLVED

CLOSED

VERIFIED

Figure 5.24: PN for Multiset-based TS.

this strategy is presented in Fig. 5.25.

A Petri net corresponding to the TS from Fig. 5.25 is shown in

Fig. 5.26. As is easy to see, both models detect the loop construct

and also introduce some generalization, for example such trace as

152 CHAPTER 5. EVALUATION

s0

s1

NEW

s2

RESOLVED s4

ASSIGNED

s3

REOPENED

s5

VERIFIED

s6

CLOSED

RESOLVED

RESOLVED

CLOSED

s100

END

Figure 5.25: Partial prefix TS.

RESOLVEDASSIGNED

RESOLVED__2 REOPENED

VERIFIED

CLOSED__1

RESOLVED__1

CLOSED

ENDNEW

Figure 5.26: PN for partial prefix TS.

〈NEW,RESOLV ED,REOPENED,RESOLV ED,CLOSED〉 is allowed (note

that it was forbidden in the “overfitting” model from Fig. 5.23). From the practical

point of view, it makes sense to introduce this generalization, since if a bug can be

closed without verification, then it can be also done after reopening the bug.

Another abstraction mechanism is applying the “merge states” modification strat-

egy to the multiset-based TS from Fig. 5.23, this strategy was described in Sect. 4.2.4.

Here, we merge the states if the output of one state is the subset of the output of

the other. For example, states s2 and s4 can be merged since the output event

RESOLV ED from s4 belongs to the set {RESOLV ED,ASSIGNED} of output

events of s2. Like it was described in Sect. 4.2.4, we prohibit building self-loops and

5.3. EVALUATION USING BUG REPOSITORIES 153

s0

s1_3

NEW

s2_4_20

RESOLVED s19

ASSIGNED

REOPENED

s5_10_21

VERIFIED

s6_11_22

CLOSED

RESOLVED

CLOSED

s100

END

Figure 5.27: Multiset-based TS, merged strategy.

non-deterministic transition systems during merging. Thus, iteratively applying the

“merge states” strategy we come to the TS shown in Fig. 5.27.

CLOSED

ASSIGNED

RESOLVED__1
RESOLVED

END

REOPENED

VERIFIED

CLOSED__1

NEW

Figure 5.28: PN for merged multiset-based TS.

A PN derived from the TS from Fig. 5.27 is shown in Fig. 5.28. These TS

and PN introduce appropriate level of generalization: firstly, they recognize the

loop construct; secondly, in comparison to the TS and PN obtained using partial

prefix, they allow for more feasible behaviour, for example such useful trace as

154 CHAPTER 5. EVALUATION

〈NEW,RESOLV ED,REOPENED,ASSIGNED, . . .〉 is allowed. This model is

the most suitable model, further we discuss the validation and present the arguments

for this statement.

For validation purposes, the model from Fig. 5.28 can be compared to the help

from the Eclipse web site (http://wiki.eclipse.org/index.php/Bug_Reporting_

FAQ), which describes the bug life-cycle . This help says: “When a new bug is entered

it begins life with a Status of either Unconfirmed for normal users or New for users

with commit privileges. The bug is typically assigned to the component owner. The

component owner will usually use a query of Status = Unconfirmed or New and

Assigned to = me to browse what is essentially the component’s inbox. She or he

will assign bug reports to developers. . . . The assigned developer will accept the bug

which will change its status to Assigned. After working on the bug the developer

will mark the bug as Resolved and will select a resolution (Fixed, Invalid, Wontfix,

Later, Remind, Worksforme). . . . After testing that the fix worked a resolved bug can

be transitioned to verified, directly to closed, or in fact, reopened. By searching for

bugs with a Status of verified and a resolution of fixed developers can come up with

release notes. A verified/fixed bug can then be transitioned to closed. And yes, closed

bugs can be reopened if need be. . . .” So, we identified the main transitions between

bug statuses from the real data and realize that it fits to the description from the

web site. Moreover, we can also find some discrepancies: at least in our examples no

closed bug was reopened, so we could suppose that this case described in the Eclipse

help is unrealistic.

Further, we will work with the last Petri net model. It has to be mentioned that

all the models presented in this section are conformed to the behaviour seen in the

log.

5.3.2 Performance Analysis

Since we have derived a formal bug life-cycle model, we can start applying the analysis

techniques, namely performance analysis. With the help of the performance analysis

plugin of ProM [vDdMV+05] (it was described in Sect. 3.3.5) we can analyse the

performance of the process model.

One of the possibilities of the performance analysis is to find the average time

between changes of different statuses. In Fig. 5.29, we show that the average time

between creating NEW bug and finishing it (status CLOSED) is 106.95 days. More-

over, looking at the colours of places, we can find out that the time spent in the out-

5.3. EVALUATION USING BUG REPOSITORIES 155

Figure 5.29: Performance Analysis with Petri Net.

going place of the RESOLV ED transition is high, whereas the time spend in places

between ASSIGNED and RESOLV ED and between NEW and RESOLV ED is

medium; i.e. it does not take much time to resolve a bug, but it takes time to verify

the resolution and to close the bug. On the same figure we can see the probabilities

in the case of choices, for example, only in 13% of cases people ASSIGN the bug, in

87% people directly come to the resolution.

Figure 5.30: Path coverage Analysis.

As mentioned before, the models presented in the previous section have 100%

conformance with the log (fitness), see the proof of this statement in Chapter 4.

It is also proved by the conformance checker (it was already used in the previous

156 CHAPTER 5. EVALUATION

evaluation studies and in Chapter 3). One of the useful features of the conformance

checker is the path coverage analysis. In Fig. 5.30, we see the path in the Petri net

covered by the first bug. For example, we can notice that this bug was resolved,

reopened and resolved again.

5.3.3 Verification

Like in the previous case studies, we can do the LTL verification. For example, we can

find out the bugs that were reopened. If we check the property “Always when NEW

then eventually REOPENED”, then as a process instance fulfilling this property we

get the log of the first bug, see Fig. 5.31. The other 13 bugs were not reopened, i.e.

they were resolved correctly right away.

Figure 5.31: Verification, reopened bugs.

The previous verification example deals only with one process aspect, namely

control flow. In the next example, we show that we can deal with several aspects. For

example, we can check whether there are bugs, where the same person resolved the

bug and verified the result. Practically, in the software projects it is better to have

different persons responsible for resolving bugs and for verifying the resolution. If we

5.3. EVALUATION USING BUG REPOSITORIES 157

check the property “exists person doing RESOLVED and VERIFIED”, we find one

bug, where user “olivier” resolved it and then verified the result, see Fig. 5.32.

Figure 5.32: Verification, persons resolving and verifying bugs.

5.3.4 Organizational Aspect

Since our algorithms are integrated in ProM, in addition to the performance analysis

and verification, we can introduce the organizational aspect in the resulting model.

Like the document logs, the bug logs have information about the users.

So, first of all we can build a social network from the bug logs. In Fig. 5.33,

we show an example of the handover of work network. As is easy to see, “david”,

“olivier”, “jerome”, “frederic” and “philippe” comprise the core of the development

team, they work a lot together, whereas “gjohnsto”, “keiths” and “kent” contact

only particular developers of the core team. Moreover, it can be noticed that some

developers of the main team like to work alone, e.g. “philippe” and “olivier” rather

often handover work to themselves (probability is 0.119). Thus, after building the

158 CHAPTER 5. EVALUATION

Figure 5.33: Social Network, handover of work.

social network, process engineers and managers can identify and formally check the

relationships in the team; this information is definitely important for managing the

team and for assigning the work.

Figure 5.34: Mining the Organizational Structure.

Another plugin of ProM can be used for defining the organizational structure

(the basic idea of the organizational miner was described in Sect. 3.3.4). It clusters

the users doing similar tasks into roles. An example of the organizational struc-

ture derived from the bug log is shown in Fig. 5.34. It can be noticed that the role

ASSIGNED is played only by a single user “olivier”, almost all the users use to

“close”, “resolve” and create “new” bugs, only three users verify the bugs.

5.4. SUMMARY 159

5.4 Summary

At the end of this Chapter, like at the end of the previous ones, we summarize our

achievements. First of all, in Sect. 5.4.1, we mention other evaluation examples, which

were not presented in this chapter; they were also used for discovering process models

and for experimenting with our algorithm, but the detailed discussion of which is out

of the scope of this thesis. Then, in Sect. 5.4.2, we conclude the chapter and discuss

the contributions and the methodological issues.

5.4.1 Other Examples

During the years of research in order to validate the approach we looked at many

different open-source projects, such as Mozilla, Netbeans, Eclipse, Apache and others.

All these projects provide a free access to their SCM systems and other software

repositories including bug repositories. In this chapter, however, we presented three

most understandable and vivid examples.

For instance, many Apache projects consist of subprojects, which have a prede-

fined structure. Information about these subprojects can be used for mining process

models. A particular working example is the Jakarta project belonging to Apache,

see http://jakarta.apache.org/. We also did process mining for this project and

obtained plausible models, which could help us to find out interesting properties.

Additionally, during our research we dealt a lot with the cases from the area of

business process modelling. Some of these examples were generated artificially in order

to produce difficult constructs and to check whether the algorithms can deal with

them. The others were inspired by the real practical work of people with the process

management systems. In the implementation phase of the thesis, the algorithms were

also evaluated on a set of examples included in ProM framework.

5.4.2 Conclusions

After dealing with many examples of various complexity obtained from different

systems, including SCMs, bug repositories, WfMS, we can draw the conclusion that

the incremental workflow mining approach and its algorithms produce meaningful

and consistent results on different levels of abstraction. These results can be used

for process analysis and verification, moreover the models can be enriched with the

information about different aspects, such as organizational and informational.

Methodologically, in this Chapter, on several cases, we discovered the set of useful

160 CHAPTER 5. EVALUATION

transition system generation and modification strategies, which should be further

applied in the software engineering domain. We also determined the methods for

Petri net synthesis and for deriving the target formats for Petri nets, which should

be used for compact and understandable representation of process models.

With the help of the case studies presented in this chapter, we validated the

following contributions of our approach in the areas of software engineering and

process mining:

• The real data about software projects provided by software repositories can be

used for discovering software process models.

• Produced process models are formal and explicit, and they can be analysed and

verified in order to derive different important characteristics of the organiza-

tional software processes.

• The preprocessing step of our incremental workflow mining approach is essen-

tial for structuring and abstracting from the information provided by software

repositories, and thus for preparing it for process mining.

• The process mining step of our approach and our control-flow process mining

algorithm used on this step, have a unique capability to generate different pro-

cess models on different levels of abstraction. So, our algorithm overcomes the

“overfitting/underfitting” problem and enables process engineers to experiment

with the process models and to “tune” the appropriate level of generalization.

Moreover, it helps to avoid the common “one size fits for all” problem of the

other process mining approaches, which can produce only single models.

• The model analysis and representation utilities used in our approach produce

important analysis and verification results, which can be used for identifying

the problems in the process and for optimizing it.

• The implementation of our algorithms integrated into the ProM framework is

stable and can be effectively used by the software process engineers. Moreover,

all the analysis, conversion, and export plugins of ProM can be applied to the

process models produced by our algorithms.

• Finally, our algorithms can be applied not only in the software engineering area,

but also in the related ones (business process management in general).

5.4. SUMMARY 161

Generally, our goal was to apply the ideas of process mining to the area of software

processes and to show its benefits for this domain. It resulted in a new approach and

algorithms and also in a set of practical case studies, which should be used by software

process researchers for further investigations as well as by practical software engineers

for discovering interesting data about the software projects.

162 CHAPTER 5. EVALUATION

Chapter 6

Related Work and Discussion

In this Chapter, we deal with related work; at the end, we also discuss and compare

our contributions with those in the existing works.

Software
Processes

Business
Processes

Figure 6.1: Main Areas of our Research

In Chapter 2, we explained that our research lies in the intersection of the areas

of Business Process Management and Software Processes, see Fig. 6.1. We also made

a general introduction to these areas, including definitions of basic terms. However,

both research areas are huge and include a lot of different research directions; also,

the research directions can overlap with the directions from other areas. Since we have

already explained our own work in the previous chapters, we can start the discussion

of the related work and look at the most close directions from both areas.

Actually, our research arose from Process Mining, Mining Software Repositories

and Data Mining, see Fig. 6.2. The keyword and the idea of “mining” can be found

in all these areas, but the research serves different purposes and the results of min-

ing are different; moreover, people use to produce applications in different domains.

Nevertheless, since people come and develop the idea of “mining” in various areas, it

163

164 CHAPTER 6. RELATED WORK AND DISCUSSION

Process Mining

Mining Software
Repositories

Data Mining

Figure 6.2: Related Work Areas

is useful and requires more and more investigation in future. Further, we focus on the

areas presented in the figure, but it has to be mentioned that similar ideas appear

also in such domains as:

• Reverse Engineering, where people try to “mine” software models from code

and from its execution traces;

• Scenario Management, where people try to “mine” behavioural models from

modelled or real-life scenarios;

• Business Intelligence, where people try to derive high-level information about

business from the variety of available audit information

• Machine Learning, where people develop algorithms, which can learn how to

act given an initial data set, e.g. observations of the real world.

6.1 Mining Software Repositories

As mentioned already in Chapter 3, researchers and practitioners recognize already

the benefits of using software repositories for software process modelling. The idea is

that process modelling and improvement should be ruled by what was actually done

during the software development process and not by what was said or thought about

it. It happens when the information about process is derived from interviews and

questionnaires. The set of software repositories, which contain information about

6.1. MINING SOFTWARE REPOSITORIES 165

software projects and processes, was described in Sect. 3.2; these repositories are:

source control systems, archived communications between project personnel, defect

tracking systems, etc.

The capabilities of using the software repositories for deriving information about

the software projects are being researched in the domain of mining software repos-

itories (MSR) [HHM04, HHD05, DGH06]. Researchers try to uncover the ways in

which mining the repositories can help understanding software development, support-

ing predictions about software development, and planning various aspects of software

projects.

In spite of the fact that this is a very young research field, a lot of interesting

directions were started already. Several interesting methods influenced our research,

when we made our initial steps in developing our own approach. The MSR approaches

usually deal with open-source software (OSS). Like in our approach, SCM systems,

e.g. CVS and Subversion, and bug repositories are used as sources of input informa-

tion [MLRW05a, ZW04, CM03] for the following purposes:

• measuring the project activity;

• measuring the amount of produced failures;

• detecting and predicting changes in the code;

• providing guidelines to newcomers to an OSS project;

• detecting the social dependencies between the developers;

First of all, we examine several well-known work directions to show the variety

of useful information, which can be derived from the software repositories. The list

of literature presented below is probably not complete, but it uncovers the main

research directions each of which is intensively investigated nowadays.

One type of the discovered information is the data about software failures and pre-

dictions about software failures. In the paper of Nagappan, Ball and Zeller [NBZ06],

an empirical study of the defect history of Microsoft software systems is presented.

After introducing the code metrics and building regression models, the likelihood of

new defect is predicted. In this research, the authors proved the usefulness of metrics

as abstractions over code for predicting the defects. However, a set of appropriate

metrics for a software project must be carefully chosen and validated. In the context

of mining, the proposed approach shows that mining the bug repositories, version

databases and program code can be very helpful for the quality assurance engineers

166 CHAPTER 6. RELATED WORK AND DISCUSSION

for predicting post-release defects. In the work “How Long will it Take to Fix This

Bug?” [WPZZ07], an approach for predicting the fixing effort (person-hours) spent

on fixing an issue (it can be a bug, a feature request or a task) is presented. The

authors analyse the bug database in order to find the bugs with the most similar

description and to combine their reported effort for predicting the fixing effort. The

JBoss project was used as a case study. The presented approach can be successfully

used by project management in order to evaluate the estimated time and efforts of

their personnel.

Another interesting direction to look at is mining for guiding the newcomer to

an open-source project. In the Hipikat project [CM03], people analyse the artefacts

stored in the project’s archives (software repositories) in order to recommend the

newcomer to a project an appropriate set of artefacts to fulfil his task. A special tool,

called also Hipikat, is used for these purposes. The authors highlight an important

point that in the case of open source projects, since the developers are practising a

distributed way of work, a newcomer can not rely on the life discussions with the

colleagues, but he has to look through complex archives of software repositories.

The Hipikat tool forms a group memory by inferring links between stored artefacts,

then it recommends a developer an appropriate group of artefacts. The authors also

produced two case studies: Eclipse project and a proprietary software development

project.

Mining can be also used for monitoring student performance and improving the

educational process. Mierle et al. [MLRW05b] made experiments on mining and

analysing a set of CVS repositories of students working on similar projects; vari-

ous quantitative measures of students behaviour and code quality were extracted.

The main goal was to find out the measures suitable for predicting the performance

of students. This research challenges an important problem of measuring the stu-

dents performance with the help of software repositories. The other approach, which

is developed by Liu et al. [LSWG04], uses the information from CVS repository for

tracking the progress of students. The goal of this research is to understand the inter-

action of students and to find out the correlation between the grades and the nature

of the collaboration.

A separate evolving area of research is text mining, but it can be also used in

the context of software repositories. For example, Ying et al. [YWA05] explore the

source code comments of the developers for deriving useful project information. The

background idea of this research is based on the fact that programmers use the

6.1. MINING SOFTWARE REPOSITORIES 167

comments not only for making code understandable but for communication purposes

and for describing changes and “TODOs”. The comments of the Eclipse project were

used as a case study. So, this work opens an interesting direction: deriving software

project information from the information hidden in textual comments.

The last area we want to examine before coming to the software process discov-

ery is mining the data about software evolution. Fischer et al. [FPG03] combine the

versions data with the bugs data in a so-called release history database to facilitate

reasoning about software evolution. The approach is evaluated on the Mozilla project.

The other work [FORG05] in this context deals with the evolution of product families.

Within this project, the authors developed a tool, which tabulates and summarizes

the changes in the source code (C programs are considered) obtained from versions

repositories. The idea is to explain the changes in the software release in terms of

functions and variables. The project is evaluated on a set of open-source software

projects including Apache, OpenSSH, and Linux kernel.

Other research approaches from the area of mining for software evolution deal

with the visualization of the results. For example, in the paper of German et al.

[GH06] a software tool called “softChange” is described; this tool takes information

from the software repositories, analyses and enhances it finding new relationships

among items, moreover it allows users to visualize this information. The described

tool was evaluated on several projects, including GNOME.

In this Section, we described a set of approaches, which use software repositories

for deriving useful data about software projects. Our own approach described in the

previous Chapters uses the same input information but for discovering more general

information, i.e. information about the software process. From our point of view,

first of all, it is important to have a process-oriented view on a software project;

then this view can be enhanced with the additional information using the approaches

discussed above. Moreover, it must be possible to derive more detailed information

about different steps in the general software process model, it can be also achieved

with the help of the work related here.

6.1.1 Discovering Software Processes

Further, we focus on the works, which combine the areas of MSR and software process

modelling and, thus, come closer to the topics covered in this thesis.

Sandusky et al. [SGR04] deal with defect repositories and identify the relation-

ships between bugs and characterizes the defect life cycle (opened bug, commented

168 CHAPTER 6. RELATED WORK AND DISCUSSION

bug, closed bug). The authors use the Mozilla open source project as an example.

They use informal graphical models for defining the process. The resulting process is

specific for bug reports and reflects the states of them.

Iannacci [Ian05] deals with communication threads of an open source Linux

project for identifying the coordination processes between the developers. The au-

thor examines e-mails from surrounding patch submission, defect reporting, patch

incorporation, and activity coordination in the Linux kexec module. He looks at

patch submission and approval processes and bug reporting processes as means of

coordination in Linux development.

Mockus, Fielding, and Herbsleb [MFH02] apply software repository mining to

analyse e-mails of source code change history and problem reports for quantifying

aspects of developer participation, core team size, code ownership, productivity, de-

fect density, and problem resolution intervals. The authors make two case studies:

Apache and Mozilla projects. They describe the entire Apache and Mozilla software

development processes in an informal way. Such process aspects as roles and respon-

sibilities, work identification, testing, and inspection are described in both projects.

Scacchi [Sca02] studies the requirements engineering processes of the KDE, Mono,

ArgoUML, and other projects; the author does the study with the help of software

developers unfamiliar with the projects. Scacchi describes requirements processes

informally. He uses such software repositories as webpages, e-mail messages, how-

to guides, FAQs, and discussion forums for tracking the requirements development

processes.

German [Ger04] models requirements, conflict resolution, and release processes of

the Gnome project. The author examines the project mailing lists, the source code

repository, along with his own experience in formulating and modelling the Gnome

requirements, conflict resolution, and release processes. The resulting processes are

also described informally.

Liu et al. [LSE05] deal with the open-source software process models. In the paper,

the authors present the CVSChecker tool for analyzing the development process based

on the history recorded by the source-management systems. With the help of this

tool, it is possible to derive project milestones and core developer roles. The project

was evaluated on student repositories.

Thus, an analysis of works which try to integrate the areas of mining software

repositories and software process modelling was done in the second part of this sec-

tion. As a conclusion, we can say that researchers and practitioners have started

6.2. PROCESS MINING APPROACHES 169

analysis of software repositories for supporting the software process modelling, but it

is done either manually or semi-automatically and the resulting process models are

usually implicit or informal. Additionally, in this MSR area, software repositories are

mostly used for detecting dependencies on a very technical level (usually code level),

whereas in our work we make an effort at building process models and doing anal-

ysis on the modelling level. The research directions dealing with software processes

and process models, still lack of algorithms for producing formal models and making

appropriate abstractions from these models. In this context, our approach described

in the previous Chapters should be used to overcome the discussed problems.

6.2 Process Mining Approaches

Since the nineties several groups have been working in the area of process min-

ing, i.e., discovering process models based on observed events. The followings work

should be mentioned in this context [AMW05, ARS05, vdAvDH+03, vdAWM04,

AGL98, CW98b, Dat98, vDvdA04, Her00, WvdA01b, WA03, Sch02b, GGMS05]. In

[vdAvDH+03, AW04] an overview is given of the early work in this domain. For a more

complete overview, we also refer to the web page http://www.processmining.org

and to the recent theses written in this area [Med06].

The first process mining works dealt with the event logs produced by the work-

flow management systems, thus, this research was inspired by the open issues in the

domain of business process management. The first idea to apply process mining in

the context of workflow management systems was introduced in [AGL98] in 1998.

This approach models business processes as annotated activity graphs and assumes

the absence of cycles in the event log, it is restricted to sequential patterns only.

The algorithm of Agrawal was implemented, but it has some limitations, for example

it can not deal with duplicates (see Sect. 4.1) and assumes that there is only one

appearance of a task in a case. In parallel, Datta [Dat98] looked at the discovery of

business process models.

However, we argue that the first papers really addressing the problem of process

mining appeared around 1995, when Cook et al. [CW98b, CW99, CDLW04, CHM01,

CW98c] started to analyse recorded behaviour of processes in the context of software

engineering, acknowledging the fact that information was not complete and that a

model was to be discovered that reproduces at least the log under consideration,

but it may allow for more behaviour. So, the difference to the approach described

170 CHAPTER 6. RELATED WORK AND DISCUSSION

above is that the authors do not aim at deriving a correct complete model, but they

try to express the most frequent patterns seen in the log. The authors started with

dealing with the sequential models and later extended their framework to treat the

concurrency.

Herbst [Her00] was one of the first to tackle more complicated processes, e.g., pro-

cesses containing duplicate tasks. The approach of Herbst and Karagiannis [HK99]

uses machine learning techniques for acquisition and adaptation of workflow models.

On the first step of the Herbst’s approach a Stochastic Activity Graph (SAG) is de-

rived, then the SAG is converted to the ADONIS (http://boc-eu.com/) Definition

Language. All the algorithms were implemented in the InWoLve tool.

The seminal work in the area of process mining was presented by van der Aalst et

al. [WvdA01a, WvdA02]. Within this approach, workflow logs and classes of sound

workflow nets are defined. Formal causality relations between events in logs, the

α-mining algorithm for discovering workflow models, and its improvements are pre-

sented. The “classical” α-algorithm [vdAWM04] is an example of a simple technique

that takes concurrency as a starting point and directly derives a Petri net. However,

such simple algorithms have problems dealing with complicated routing constructs

and noise (like most of the other approaches described in literature).

In the “Multi-phase Process mining” [vDvdA04, vDvdA05b], the authors propose

a multi-step approach for mining Event-driven Process Chains (EPCs). The idea is to

start mining process models for every trace in the log. Then, the algorithm aggregates

(“merges”) the models. This approach is more robust then the α-algorithm. Both

approaches are integrated to the ProM framework, which was already discussed in

the previous Chapters.

Heuristic algorithm [WvdA01b, WA03] has been proposed to deal with such

issues as noise. The main idea behind the heuristic approaches is that the more often

one task follows the second and the less often the second follows the first one, the

higher is the probability that the first is the cause for the second. The heuristic

mining algorithm is a very powerful extension of the α-algorithm, but it also has

difficulties with the non-local non-free-choice constructs. Now, this algorithm belongs

to the ProM framework, but originally it was implemented in a separate tool called

LittleThumb.

The genetic algorithms [AMW05, Med06] are also based on the idea of heuristics

and adaptive search methods (often used in the area of machine learning and artificial

intelligence). These algorithms are robust in respect to the mined constructs and can

6.2. PROCESS MINING APPROACHES 171

naturally deal with noise. However, they have such a drawback as computation time,

which is rather common for such kind of intelligent algorithms.

The area of process mining does not deal only with the control-flow mining algo-

rithms, but also with the other aspects. For example, the discovery of social networks

was discussed in [ARS05]. In [RvdA06] some of the conformance algorithms used by

ProM are described.

The algorithms dealing with different aspects and integrated to ProM were al-

ready referenced and discussed in Chapter 3, we used these algorithms in the thesis

for extending our approach and doing verification, performance and conformance

analysis, social and organizational mining of software processes.

6.2.1 Comparison

As discussed above, there is a variety of different process mining algorithms with

different complexity, application domains, implementation ideas. So, developing an

effective method for comparing all these approaches could become a significant re-

search direction in the area of process mining.

In the thesis, we do not intend to make a precise comparison of all the algorithms

and approaches with our approach, it is almost impossible by now. Moreover, the

capability of generalization cannot be compared, since it is supported only in our ap-

proach. But in this Section, we do present a small evaluation of our algorithms against

two well-known and important mining algorithms: the α-algorithm [vdAWM04] and

the multi-phase algorithm [vDvdA04, vDvdA05a]. For this comparison, we use an

example of a log taken from a driving school. In this driving school, learners start

by applying for a license. Then, in parallel, they take a theoretical exam, as well

as driving lessons for either car or motorbike. After finishing the theoretical exam

and the lessons, they take a practical exam, after which they do or do not receive a

license. Note that it is only possible to do a practical exam for cars if the learner had

car driving lessons and vice versa for a motorbike exam. For the comparison, we used

a complete process log, i.e. a process log that showed all four possible executions of

this process, namely car and bike combined with getting or not getting a license.

172 CHAPTER 6. RELATED WORK AND DISCUSSION

(a
)

(b
)

(c
)

F
ig

ur
e

6.
3:

T
hr

ee
P

et
ri

ne
ts

,
di

sc
ov

er
ed

us
in

g
(a

)
th

e
α

m
in

er
,

(b
)

th
e

m
ul

ti
-p

ha
se

m
in

er
an

d
(c

)
ou

r
tw

o-
st

ep
ap

pr
oa

ch
.

6.2. PROCESS MINING APPROACHES 173

The first algorithm we used to generate a Petri net was the α-algorithm. The

α-algorithm is a well-known process discovery algorithm (see Sect. 6.2), which is

often used for benchmarking. The reason for this is that it is a simple algorithm

that typically produces nice results if the log satisfies certain properties. For our

example however, the result, shown in Figure 6.3(a), has two problems. First of all,

the resulting model allows for a learner to take car driving lessons and a motorbike

exam. Second, after taking an exam, the learner always gets his license, which is even

more undesirable.

Since our log does not satisfy all requirements of the α-algorithm, we use the

multi-phase algorithm. This algorithm guarantees to return a Petri net that can

reproduce the log. As can be seen from Figure 6.3(b), it solves the problem that a

learner always receives a license after the exam albeit in a rather complicated way.

However, the Petri net still allows the learner to take lessons in a car and an exam

on a motorbike.

This dependency between two transitions that are not directly following each

other is typically hard to find by process mining algorithms. The genetic approach

is capable of finding such dependencies, but since that approach is based on genetic

algorithms, it has high demands on computation time.

The result of the region-based approach is presented in Figure 6.3(c). It is clear

that this Petri net indeed correctly models the process under consideration.

Although the example in this section looks rather simple, it nicely shows that

our region based approach is a valuable addition to the existing collection of process

discovery algorithms. However, as with any process discovery algorithm trade-offs

are made with respect to the correctness of the result and the computation time.

The α-algorithm and the multi-phase approach are computationally fast1, the theory

of regions approach is more complex, since it has a worst-case complexity that is

exponential in the size of the log. However, the result of our approach is more accurate,

since it also catches long-range dependencies, that are not detected by the multi-phase

approach, nor by the α-algorithm, i.e. it does not underfit.

6.2.2 Broader Context

In order to consider the other related work, which is relevant for our process mining

algorithm, we briefly look at the area of theory of regions, since one step of our ap-

1The multi-phase approach is polynomial in the size of the log and the α-algorithm exponential

in the size of an abstraction of the log, which can be built in polynomial time.

174 CHAPTER 6. RELATED WORK AND DISCUSSION

proach uses it for Petri net synthesis [BBD95, BD98, CKLY95, CKLY98, ER89a]. The

background information was described in Chapter 2. The area of theory regions uses

the Petri net synthesis algorithms in such application domains as synthesis of asyn-

chronous controllers and concurrent specifications. In the thesis we use the Petrify

[CKK+97] tool developed in this domain for our purposes.

The other relevant research domain is process flexibility. A lot of work has

been done here since the 90ties [EKR95, RD97, HHJ+99]. Flexibility, dynamic pro-

cess change and process evolution belong to the major research topics both in the

area of business process management [CCPP96] and in the area of software pro-

cesses [BFG93]. In these areas, people distinguish between process model flexibility

and process instance flexibility. This difference is also crucial for the process min-

ing research domain. Our approach described in Chapter 3 does not require that all

executions of the processes need to be there right from the beginning. Rather, the

process model is changed, once new information on the execution of some of its in-

stances is available. This way, a process model will incrementally be changed when

its executions change. Therefore, process mining is one technique for automatically

achieving process flexibility and, in particular, incremental process type evolution.

Generally, process mining can be seen in the broader context of Business Process

Intelligence (BPI) and Business Activity Monitoring (BAM), so the works from these

domain are also relevant for us. In [GCC+04, SCDS02] a BPI toolset on top of HP’s

Process Manager is described. The BPI toolset includes a so-called “BPI Process

Mining Engine”. In [zMR00] Zur Muehlen describes the PISA tool which can be used

to extract performance metrics from workflow logs. Similar diagnostics are provided

by the ARIS Process Performance Manager (PPM) [Sch02a]. The tool is commer-

cially available and a customized version of PPM is the Staffware Process Monitor

(SPM) [TIB05] which is tailored towards mining Staffware logs. It should be noted

that BPI tools typically do not allow for process discovery and offer relatively simple

performance analysis tools that depend on a correct a-priori process model.

6.3 Data Mining and Mining Sequential Patterns

The field of data mining is older than the process mining field, but it is still relatively

young. For example, the first international conference on data mining was held in

1995. The basic idea of data mining is: “Extracting useful information from large

datasets.” [HMS01]. The area of Data Mining deals with the algorithms for exploring

6.3. DATA MINING AND MINING SEQUENTIAL PATTERNS 175

data (usually large amounts of business-related data stored in data warehouses) for

searching consistent patterns and relationships between variables, and then for vali-

dating the findings by applying the detected patterns to the new data. Data mining

techniques are used for classification, prediction, clustering, and visualization of data.

Such models and algorithms as neural networks, decision trees, regression methods

and genetic algorithms form the foundations of this area [HK01]. These enumerated

techniques are already successfully introduced in different application domains such

as military, business, and medical analysis and research.

Mining sequential patterns is a separate research direction in the area of data

mining, it is closely related to our process mining research. The work of Agrawal and

Srikant deals with discovering sequential patterns in the databases of customer trans-

actions [AS95]. Each transaction contains information about customer, transaction-

time and items purchased. The presented mining algorithms derive information about

sequences and orders of purchased items. The algorithms were implemented and

tested on DB2-based data repositories. However, much earlier similar problems were

treated on a more theoretical level in the area of artificial intelligence [DM85].

Nowadays, the researchers continue dealing with this problem, in this context we

refer to such works as [MM00, HHS+03, CYH04, MR01]. People develop theoretical

concepts for mining sequential patterns using partial orders, propose ideas about in-

cremental pattern discovery, research the possibilities of structuring event sequences,

etc.

Thus, the background ideas and goals, which appeared in the area of data mining,

have a lot of similarities with the ideas coming from the mining software reposito-

ries and software process mining domains. For example, software repositories can be

considered as data warehouses storing information about software projects. But in

our approach described in the previous chapters we have a different interpretation

of the “model”, i.e. in our case a model is explicit and complete (we do not look at

a set of rules, which could be more or less relevant) and in our domain, people look

at processes, i.e. a process model is considered as a major knowledge, which can be

later enhanced with the additional data. So, in the process mining domain, we know

the patterns we are looking for, whereas in the field of data mining people usually

try to find out arbitrary interesting relationships.

176 CHAPTER 6. RELATED WORK AND DISCUSSION

6.4 Discussion

In this Chapter, at the end of each preceding Section we compared the related work

to our approach; here we try to briefly summarize the comparison.

Generally, our approach lies in the intersection of the areas of software processes

and business processes. In the research roadmap [Fug00], the software process commu-

nity arrived at the conclusion that “...software process researchers and practitioners

should reuse the experiences and achievements of other areas and disciplines...”. So,

people consider it to be valuable to use the effective methods proposed in the other

communities to treat their own problems. Practically, some authors [CFJ98] state

that the objectives and scopes, as well as themes and approaches of software process

and workflow fields have a large overlapping. In this context, our approach takes the

methods from the business process area and applies them to software processes.

We use the ideas and algorithms from the area of process mining and apply

them for mining software repositories. We use the same input information as the

researchers from the MSR area, but we derive more general and more structured in-

formation about software development process. Discovered software process model is

used as a main artefact for reasoning about software project. Moreover, in compari-

son to the existing approaches for discovering software process model, we propose a

precise algorithmic approach, which produces explicit complete models.

As concerns the area of process mining, we do not simply use the existing algo-

rithms, but propose a new two-step regions based approach. This approach overcomes

many limitations of the existing approaches (it always produces correct models on dif-

ferent levels of abstraction and overcomes the problem of “overfitting/underfitting”)

and can be effectively used for software processes as well as for business processes.

From the point of view of data mining, in our approach we do not simply de-

rive interesting dependencies and sequential patterns, but obtain a complete process

model. First of all, this model formalizes the development process, but this model

can be also enhanced with the additional information and the data mining algorithms

can be used for this purpose.

Thus, in this section we sketched the main points, where our approach extends

the related work from several considered domains. But our approach mainly looks at

the control-flow perspective of the process, also it is not heuristic-based and, there-

fore, has limitations dealing with “noise”. So, our idea is that process models derived

by our approach can be enhanced with different types of information, such as soft-

ware performance and software metrics data, social and organizational information,

6.4. DISCUSSION 177

statistical and analytical data, etc. Consequently, plenty of the algorithms evolved in

the related areas should be considered in this context.

178 CHAPTER 6. RELATED WORK AND DISCUSSION

Chapter 7

Conclusion and Future Work

In this concluding Chapter, we summarize our contributions and indicate the fu-

ture research topics. We start with our general goals and achievements and, further,

gradually, examine contributions on the technical level.

7.1 Thesis Contributions

Our general goal was to develop and to evaluate an approach for resolving a set of

open issues from the area of software process modelling; these issues were discussed

in detail in the Introduction, see Sect. 1.1.3. More precisely, the goal was to propose

a methodology, and a framework, and to provide tool support for deriving explicit

software process models from the audit information of software projects.

This goal was achieved by applying the ideas of process mining to the area of

software processes and mining software repositories; i.e. by inventing new and using

existing process mining methods for mining software process models from the audit

information provided by software repositories. Moreover, we discovered that the pro-

posed solutions can be used not only in the software area, but in the areas of business

process management and business intelligence, product lifecycle management and en-

terprise resource planning, i.e. in the areas, which support document management

and audit management for tracking and maintaining administrative, collaborative or

production processes.

7.1.1 Analytical Work

In the thesis, first and foremost, we identified and structured a set of unresolved

issues from the area of software processes, see Chapter 1. Our methods of dealing

179

180 CHAPTER 7. CONCLUSION AND FUTURE WORK

with these issues were discussed in the subsequent chapters, they are based on the

idea of using audit information reflecting the actual way of work in the company for

process modelling.

We analysed the areas of software engineering and mining software repositories

and identified the sources of audit information and the systems which provide desired

data for process discovery. These sources are software repositories, such as software

configuration management systems, defect repositories, communication channels, and

others (see Chapters 3 and 6). We focused on SCM systems and defect repositories,

analysed and structured their audit information, which we called document logs and

bug logs respectively.

Additionally, before and during the development of our own methods, we contin-

uously studied the methods of process discovery, which arose from the research in the

areas of process mining and mining software repositories, the results of these studies

were presented in Chapters 4 and 6.

In different stages of the thesis, we carried out much analytical work (analysis

of the background and of the related work, experiments with different tools, etc.) in

order to identify and state the problems, to understand the structure of modern soft-

ware engineering environments, to find out sources of input information, to analyse

the existing modelling methods and process mining algorithms and to reveal their

shortcomings.

7.1.2 General Contribution

The main contribution of the thesis is our workflow mining approach (see Chapter 3)

for mining software process models, which includes three steps: (1) preprocessing,

(2) process mining, and (3) analysis and representation. It consists of the following

components:

• input framework component for integrating audit information provided by dif-

ferent software repositories,

• process mining core component, i.e. our customizable process mining algorithm,

• a set of analysis, verification and conversion utilities for deriving useful infor-

mation from the discovered models and for converting them to other formalisms

Today, most of the other existing process mining approaches require activity logs

of process executions. However, after analysing the actual situation in the software

7.1. THESIS CONTRIBUTIONS 181

engineering and adjacent domains, we found out that many systems used for executing

the processes are often not aware of the activities – they see only the documents and

how they are changed. Here, we refer to software repositories, especially SCMs and

defect tracking systems, but also to such systems as PDMs, ERPs, CRMs. In our

incremental workflow mining approach, we focused on the logs of documents provided

by such kind of systems.

The major achievements of our approach are: (1) we extended the domain of

process mining by introducing new sources of input information and by inventing

new algorithms for dealing with these sources; (2) we applied the techniques and the

ideas of process mining to other domains (we focused mainly on software engineering

domain) and showed how these domains can benefit from them.

Our approach is based on mining from different perspectives, we use data on such

aspects of process modelling as control, organizational, performance and informa-

tional. Our control-flow process mining algorithm comprises the core of the approach

and is used as a primary algorithm for deriving the control aspect, but we also use

other algorithms (available in the ProM Framework) to derive performance, organi-

zational and other aspects.

Moreover, our approach can work both incrementally and in a batch mode. It

can be used for process monitoring and improvement as well as for standard pro-

cess discovery. With the aid of our approach, a process management system can be

introduced to an organization step-by-step, we called it gradual workflow support.

The incremental workflow mining approach is useful for process engineers, man-

agers and software engineers; they can derive explicit process models from the in-

formation available in software repositories. Thus, the approach should be used for

automatically producing documented software processes and, consequently, for im-

proving them.

7.1.3 Algorithmic Contributions

Our incremental workflow mining approach is based on a set of achievements, which

were discussed in the thesis on the algorithmical and technical level, see Chapter 4.

So, our main algorithmical contribution is the development of a new two-step process

mining approach. This approach uses innovative ways of constructing transition sys-

tems and regions to synthesize formal process models in terms of Petri nets. Moreover,

in our work, we opened a new research direction – “tuning” the level of generalization

of mined models. With the help of our approach, it is possible to discover software

182 CHAPTER 7. CONCLUSION AND FUTURE WORK

process models that adequately describe the behaviour recorded in document logs.

Existing process mining approaches typically provide a single process mining al-

gorithm, i.e., they assume “one size fits all” and cannot be tailored towards a specific

application. The power of our approach is that it allows for a wide variety of strate-

gies. First of all, we defined 36 different strategies to represent states of transition

systems. A state can be very detailed or more abstract. Selecting the right state rep-

resentation aids in balancing between “overfitting” (i.e., the model is over-specific

and only allows for the behaviour that happened to be in the log) and “underfitting”

(i.e., the model is too general and allows for unlikely behaviour). Besides selecting

the right state representation strategy, it is also possible to further “massage” the

transition system using strategies such as “Kill Loops”, “Extend”, and “Merge by

Output”. Using the theory of regions the resulting transition system is transformed

into an equivalent Petri net, which is more compact. Also in this phase different

settings can be used depending on the desired end-result. This makes the approach

much more versatile than the approaches described in literature.

7.1.4 Tool Support

The approach was initially implemented as a Prolog research prototype and then

it was integrated to the ProM framework ; the resulting process mining tool can be

freely downloaded from www.processmining.org. The details of the implementation

were discussed in Chapter 4.

The ProM framework [vdAvDG+07] fits in the architecture needed for our ap-

proach. It contains the ProMImport framework, which supports the integration of

a variety of input sources including document logs of different SCM systems, the

core mining part including different mining algorithms, and now also our two-step

process mining algorithm, and a set of analysis, verification and conversion utilities.

Thus, it perfectly corresponds to the architecture of our incremental workflow mining

approach discussed in Chapters 3 and 4 and can be used by software process engi-

neers, managers and developers. Therefore, ProM is now an effective tool for software

process mining.

7.1.5 Practical Evaluation

The approach was evaluated on a the basis of real projects, see Chapter 5 for details.

For validating our methods, we selected three projects from different domains: we

took two projects from the open-source software domain and one project from the

7.2. FUTURE WORK 183

university practice. Furthermore, within these projects we looked at different soft-

ware repositories, i.e. we looked at document logs provided by software configuration

management systems and bug logs provided by defect repositories.

So, in the thesis, we completed the following evaluation tasks:

• ArgoUML open-source project, document log from Subversion SCM: With the

help of our two-step approach, we discovered a transition system and a Petri net

model describing the process of “developing language support for ArgoUML”.

We used the Petri net model for performance analysis and conformance check-

ing, then, we did the LTL verification on this model and, additionally, created

an organizational aspect model from the document log.

• Practical software engineering course at the University of Paderborn, document

log from Subversion SCM: With the help of our two-step approach we gener-

ated several process models (transition systems and Petri nets) describing the

whole software development process on different levels of abstraction; then, we

selected the model with the appropriate level of generalization and did analysis

(performance, path coverage and conformance checking) and verification of this

model; afterwards, the model was converted from the Petri nets to EPC.

• Eclipse JDT Core open-source project, bug log from Bugzilla: With the help

of our two-step approach we derived a “bug lifecycle” model and “tuned” an

appropriate level of generalization using our modification strategies; then, we

did performance analysis and verification; for the organizational aspect, we built

a social network and an organizational structure model.

Thus, we have successfully discovered process models in different aspects, anal-

ysed, verified them and also converted to different formalisms. Therefore, our incre-

mental workflow mining approach integrated to the ProM framework was successfully

evaluated as an effective and useful software process mining approach for deriving

plausible software process models and analysing them.

7.2 Future Work

This thesis has revealed such interesting directions as software process mining and

region-based process mining algorithms. In this Section, we briefly discuss the most

exciting future research directions.

184 CHAPTER 7. CONCLUSION AND FUTURE WORK

7.2.1 Software Engineering Domain

In the software area, much work has to be done in applying the mining algorithms

to different types of software repositories, such as discussion forums, mail archives,

comments in source code, etc. In order to do it, people have to understand and

structure the input formats, do the preprocessing of the input data to make it suitable

for mining, adopt and modify existing algorithms, look for an appropriate set of

process analysis and verification utilities.

Another interesting and broad research direction in the software area would be

developing a software process improvement framework based on mining algorithms

and approaches or introducing the algorithms to the existing frameworks. The idea

would be to identify the “key process areas”, where mining algorithms can support

process engineers and managers. Within this area, people should carefully study the

possibilities of gradual process support, i.e. how a process management system can be

introduced to the company gradually.

Furthermore, process mining methods should be used for software process assess-

ment, since they support not only discovery and improvement, but also monitoring

(we could call it “model-based monitoring”).

Generally, the area of model-based software engineering can benefit from the min-

ing approaches, since they can be used for discovering software process models, as

well as for the UML behavioural design. UML statecharts, activity or sequence dia-

grams can be derived from the sets of real-life scenarios; further, manually-modelled

diagrams can be compared to the real situations and discrepancies can be found.

7.2.2 Other Domains

Beyond the software area, our document-based process mining approaches should be

used in the areas of Product Data Management and Product Lifecycle Management,

since these areas provide a rich set of audit information about the products and their

changes; this information can be used for deriving production workflows and change

processes. The same is relevant for the areas of ERP and CRM systems. We discussed

different application domains in Sect. 3.4 of this thesis.

Since Service-Oriented Architecture becomes ever more important nowadays and

message exchange information is often recorded, process mining algorithms should

be used for discovering the communication processes and their properties.

Since big administrative organizations use to record the document flows in some

form, their repositories can be also used for mining the workflows and analysing them

7.2. FUTURE WORK 185

in order to assess the work of the employees and to optimize and simplify it.

7.2.3 Mining Algorithms

Concerning our process mining algorithm, future work is targeted at a better support

for strategy selection and new synthesis methods. The fact that our two-step approach

allows for a variety of strategies makes it very important to support the user in

selecting suitable strategies depending on the characteristics of the log and the desired

end-result.

Now, the “Merge by Output” modification strategy (described in details in Chap-

ter 4) simplifies a transition system by means of merging different states, which have

the same outputs. This strategy is useful for solving the problem of loops, but also

for representing a transition system in a more compact form. This strategy has to be

investigated further in future, for example the states can be merged not only when

output events are equal, but when output states are the same, or the sets of outputs

have intersections or when input states are equal. Modifications of this strategy will

be especially useful for balancing between “overfitting” and “underfitting”; more-

over, further research on this topic will open an important direction within the area

of process mining, we call it “model reduction”.

We also think that by merging the two steps of transition system generation and

Petri net synthesis, we can develop innovative synthesis methods. The theory of re-

gions aims at developing an equivalent Petri net while in process mining a simple less

accurate model is more desirable than a complex model that is only able to reproduce

the log. Hence, it is interesting to develop a “new theory of regions” tailored towards

process mining. For example, after applying the simple synthesis algorithm, which

works for elementary transition systems, to the non-elementary ones, we identified

that produced models are equivalent to the models produced after applying some of

our modification strategies. Thus, modification and, therefore, “tuning” an appropri-

ate level of generalization can be done not only using the strategies, but with the

help of synthesis algorithms. So, this hypothesis is worth investigating in future.

By now, in our ProM-based implementation, we call the Petri net synthesis tool

Petrify externally, but from the user perspective, it would be much easier if this tool

and its algorithms could be integrated into ProM. Thus, proper integration of the tool

and its algorithms into the process mining framework is necessary and useful, but it

requires further work on software engineering of the tools and on the implementation.

186 CHAPTER 7. CONCLUSION AND FUTURE WORK

In this chapter we outlined our contributions and future work starting with the

most general achievements and finishing with the algorithmic and technical ones. As

a conclusion we can state that our research work uncovered both software processes

application domain for process mining and process mining for the software processes

domain. It stipulated development of a new approach and new mining algorithms.

These algorithms were implemented and evaluated practically; now, our results are

freely available for the research community for further investigations as well as for

the community of practitioners for further applications and extensions.

Bibliography

[Aal98] W.M.P. van der Aalst. The Application of Petri Nets to Work-

flow Management. The Journal of Circuits, Systems and Computers,

8(1):21–66, 1998.

[ACF97] V. Ambriola, R. Conradi, and A. Fuggetta. Assessing process-centered

software engineering environments. ACM Transactions on Software

Engineering and Methodology, 6(3):283–328, 1997.

[ACM90] V. Ambriola, P. Ciancarini, and C. Montangero. Software process

enactment in Oikos. In SDE 4: Proceedings of the fourth ACM SIG-

SOFT symposium on Software development environments, pages 183–

192, New York, NY, USA, 1990. ACM Press.

[ADG+03] T. Andrews, H. Dholakia, Y. Goland, J. Klein, and F. Leymann.

Business Process Execution Language for Web Services. cite-

seer.ist.psu.edu/669609.html, May 2003.

[AGL98] R. Agrawal, D. Gunopulos, and F. Leymann. Mining Process Models

from Workflow Logs. In Proceedings of the 6th International Con-

ference on Extending Database Technology, pages 469–483. Springer-

Verlag, 1998.

[AKR05a] B. Axenath, E. Kindler, and V. Rubin. An Open and Formalism

Independent Meta-Model for Business Processes. In E. Kindler and

M. Nüttgens, editors, Business Process Reference Models. Proceedings

of the Workshop on Business Process Reference Models 2005 (BPRM

2005), Satellite event of the third International Conference on Busi-

ness Process Management, Nancy, France, pages 45–59, Sep 2005.

187

188 BIBLIOGRAPHY

[AKR05b] B. Axenath, E. Kindler, and V. Rubin. The Aspects of Business

Processes: An Open and Formalism Independent Ontology. Technical

Report tr-ri-05-256, University of Paderborn, apr 2005.

[AKR06] B. Axenath, E. Kindler, and V. Rubin. AMFIBIA: A Meta-Model for

the Integration of Business Process Modelling Aspects. In In post-

proceedings of the Dagstuhl Seminar on The Role of Business Pro-

cesses in Service Oriented Architectures, Schlo? Dagstuhl, Germany,

jul 2006.

[AMW05] W.M.P. van der Aalst, A.K. Alves de Medeiros, and A.J.M.M. Wei-

jters. Genetic Process Mining. In G. Ciardo and P. Darondeau, edi-

tors, Applications and Theory of Petri Nets 2005, volume 3536, pages

48–69, 2005.

[ARS05] W.M.P. van der Aalst, H.A. Reijers, and M. Song. Discovering Social

Networks from Event Logs. Computer Supported Cooperative work,

14(6):549–593, 2005.

[AS95] R. Agrawal and R. Srikant. Mining sequential patterns. In Philip S. Yu

and Arbee S. P. Chen, editors, Eleventh International Conference on

Data Engineering, pages 3–14, Taipei, Taiwan, 1995. IEEE Computer

Society Press.

[AW04] W.M.P. van der Aalst and A.J.M.M. Weijters, editors. Process Min-

ing, Special Issue of Computers in Industry, Volume 53, Number 3.

Elsevier Science Publishers, Amsterdam, 2004.

[Ban93] J. Bank. The Essence of Total Quality Management. Prentice Hall,

1993.

[Bas93] V. R. Basili. The Experience Factory and its Relationship to Other

Improvement Paradigms. In ESEC ’93: Proceedings of the 4th Euro-

pean Software Engineering Conference on Software Engineering, pages

68–83, London, UK, 1993. Springer-Verlag.

[BBD95] E. Badouel, L. Bernardinello, and P. Darondeau. Polynomial Algo-

rithms for the Synthesis of Bounded Nets. In TAPSOFT, pages 364–

378, 1995.

BIBLIOGRAPHY 189

[BCM+92] V. R. Basili, G. Caldiera, F. E. McGarry, R. Pajerski, G. T. Page, and

S. Waligora. The Software Engineering Laboratory: An Operational

Software Experience Factory. In ICSE, pages 370–381, 1992.

[BD98] E. Badouel and P. Darondeau. Theory of Regions. In Lectures on

Petri Nets I: Basic Models, Advances in Petri Nets, the volumes are

based on the Advanced Course on Petri Nets, pages 529–586, London,

UK, 1998. Springer-Verlag.

[BFG93] S. C. Bandinelli, A. Fugetta, and C. Ghezzi. Software Process Model

Evolution in the SPADE Environment. IEEE Transactions on Soft-

ware Engineering, 19(12):1128–1144, December 1993.

[BFGL94] S. Bandinelli, A. Fuggetta, C. Ghezzi, and L. Lavazza. Software Pro-

cess Modeling and Technology, chapter SPADE: An environment for

software process analysis, design, and enactment., pages 223–247. Re-

search Studies Press, London, U.K, 1994.

[Boe88] B. Boehm. A spiral model of software development and enhancement.

IEEE Comput., 21(5):61–72, 1988.

[Bra90] I. Bratko. PROLOG programming for Artificial Intelligence. Addison-

Wesley, 1990.

[BT75] V.R. Basili and A.J. Turner. Iterative Enhancement: A Practical

Technique for Software Development. IEEE Transactions on Software

Engineering, 1(4):390–396, 1975.

[Car05] Carnegie Mellon Software Engineering Institute. Ca-

pability Maturity Model Integration (CMMI) Overview.

http://www.sei.cmu.edu/cmmi/adoption/pdf/cmmi-overview05.pdf,

2005.

[CCPP96] F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Workflow Evolution. In

International Conference on Conceptual Modeling / the Entity Rela-

tionship Approach, pages 438–455, 1996.

[CDLW04] J.E. Cook, Z. Du, C. Liu, and A.L. Wolf. Discovering models of

behavior for concurrent workflows. Computers in Industry, 53(3):297–

319, 2004.

190 BIBLIOGRAPHY

[CFJ98] R. Conradi, A. Fuggetta, and M. L. Jaccheri. Six Theses on Soft-

ware Process Research. In European Workshop on Software Process

Technology, pages 100–104, 1998.

[Che76] P. Chen. The Entity-Relationship Model - Toward a Unified View of

Data. ACM Transactions on Database Systems, 1(1):9 – 36, 1976.

[CHL+94] R. Conradi, M. Hasgaseth, J. Larsen, M. Nguen, B. Munch, P. Westby,

W. Zhu, M. Jacchert, and C. Liu. Software Process Modeling and

Technology, chapter EPOS: Object-oriented cooperative process mod-

eling, pages 33–70. Research Studies Press, London, U.K, 1994.

[CHM01] J.E. Cook, C. He, and C. Ma. Measuring Behavioral Correspondence

to a Timed Concurrent Model. In Proceedings of the 2001 Interna-

tional Conference on Software Mainenance, pages 332–341, 2001.

[CIM01] CIMdata Inc. collaborative Product Definition Management (cPDm):

An Overview. http://www.CIMdata.com, aug 2001.

[CKK+97] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and

A. Yakovlev. Petrify: a tool for manipulating concurrent specifica-

tions and synthesis of asynchronous controllers. IEICE Transactions

on Information and Systems, E80-D(3):315–325, 1997.

[CKLY95] J. Cortadella, M. Kishinevsky, L. Lavagno, and A. Yakovlev. Synthe-

sizing Petri nets from state-based models. In ICCAD ’95: Proceedings

of the 1995 IEEE/ACM international conference on Computer-aided

design, pages 164–171, Washington, DC, USA, 1995. IEEE Computer

Society.

[CKLY98] J. Cortadella, M. Kishinevsky, L. Lavagno, and A. Yakovlev. Deriving

Petri Nets from Finite Transition Systems. IEEE Transactions on

Computers, 47(8):859–882, 1998.

[CKO92] B. Curtis, M. I. Kellner, and J. Over. Process Modeling. Communi-

cations of the ACM, 35(9):75–90, 1992.

[CM03] D. Cubranic and G. C. Murphy. Hipikat: recommending pertinent

software development artifacts. In ICSE ’03: Proceedings of the 25th

International Conference on Software Engineering, pages 408–418,

Washington, DC, USA, 2003. IEEE Computer Society.

BIBLIOGRAPHY 191

[CW98a] R. Conradi and B. Westfechtel. Version models for software configu-

ration management. ACM Comput. Surv., 30(2):232–282, 1998.

[CW98b] J. E. Cook and A. L. Wolf. Discovering Models of Software Pro-

cesses from Event-Based Data. ACM Trans. Softw. Eng. Methodol.,

7(3):215–249, 1998.

[CW98c] J.E. Cook and A.L. Wolf. Event-Based Detection of Concurrency. In

Proceedings of the Sixth International Symposium on the Foundations

of Software Engineering (FSE-6), pages 35–45, 1998.

[CW99] J.E. Cook and A.L. Wolf. Software Process Validation: Quantita-

tively Measuring the Correspondence of a Process to a Model. ACM

Transactions on Software Engineering and Methodology, 8(2):147–176,

1999.

[CYH04] H. Cheng, X. Yan, and J. Han. Incspan: incremental mining of sequen-

tial patterns in large database. In KDD ’04: Proceedings of the tenth

ACM SIGKDD international conference on Knowledge discovery and

data mining, pages 527–532, New York, NY, USA, 2004. ACM Press.

[DAC+] A. P. Dahlqvist, U. Asklund, I. Crnkovic, A. Hedin, M. Larsson,

J. Ranby, and D. Svensson. Product Data Management and Soft-

ware Configuration Management - Similarities and Differences. URL:

citeseer.ist.psu.edu/dahlqvist01product.html.

[Dat98] A. Datta. Automating the Discovery of As-Is Business Process Mod-

els: Probabilistic and Algorithmic Approaches. Information Systems

Research, 9(3):275–301, 1998.

[DE95] J. Desel and J. Esparza. Free Choice Petri Nets, volume 40 of Cam-

bridge Tracts in Theoretical Computer Science. Cambridge University

Press, Cambridge, UK, 1995.

[DGH06] S. Diehl, H. Gall, and A. E. Hassan, editors. Proceedings of the 2006

International Workshop on Mining Software Repositories, MSR 2006,

Shanghai, China, May 22-23, 2006. ACM, 2006.

[DKW99a] J-C. Derniame, B. Kaba, and B. Warboys. Software Process: Princi-

ples, Methodology and Technology, volume 1500 of LNCS, chapter The

192 BIBLIOGRAPHY

Software Process: Modelling and Technology, pages 1–13. Springer-

Verlag, 1999.

[DKW99b] J-C. Derniame, B. A. Kaba, and D. G. Wastell, editors. Software

Process: Principles, Methodology, Technology, volume 1500 of Lecture

Notes in Computer Science. Springer, 1999.

[DM85] T. G. Dietterich and R. S. Michalski. Discovering patterns in se-

quences of events. Artif. Intell., 25(2):187–232, 1985.

[DR96] J. Desel and W. Reisig. The synthesis problem of Petri nets. Acta

Inf., 33(4):297–315, 1996.

[DvdAtH05] M. Dumas, W.M.P. van der Aalst, and A.H.M. ter Hofstede. Process-

Aware Information Systems: Bridging People and Software through

Process Technology. Wiley & Sons, 2005.

[DW00] W. Droschel and H. Wiemers. Das V-Modell 97, Der Standard für die

Entwicklung von IT-Systemen mit Anleitung für den Praxiseinsatz.

Oldenbourg, 2000.

[EC94] J. Estublier and R. Casallas. Configuration Management, chapter

The Adele Configuration Manager, pages 99–139. J. Wiley and Sons,

England, 1994.

[EFM98] J. Estublier, J-M. Favre, and P. Morat. Toward SCM / PDM Inte-

gration? In ECOOP ’98: Proceedings of the SCM-8 Symposium on

System Configuration Management, pages 75–94, London, UK, 1998.

Springer-Verlag.

[EG91] W. Emmerich and V. Gruhn. FUNSOFT Nets: a Petri-Net based

Software Process Modeling Language. In C. Ghezzi and GC. Roman,

editors, Proc. 6th ACM/IEEE Int. Workshop on Software Specifica-

tion and Design (IWSSD), pages 175–184, Como, Italy, 1991. IEEE

Computer Society Press.

[EKR95] C. Ellis, K. Keddara, and G. Rozenberg. Dynamic change within

workflow systems. In COCS ’95: Proceedings of conference on Or-

ganizational computing systems, pages 10–21, New York, NY, USA,

1995. ACM Press.

BIBLIOGRAPHY 193

[ER89a] A. Ehrenfeucht and G. Rozenberg. Partial (Set) 2-Structures - Part

1 and Part 2. Acta Informatica, 27(4):315–368, 1989.

[ER89b] A. Ehrenfeucht and G. Rozenberg. Partial (Set) 2-Structures. Part

I: Basic Notions and the Representation Problem. Acta Informatica,

27(4):315–342, 1989.

[Fei91a] A. V. Feigenbaum. Total Quality Control. McGraw-Hills, 1991.

[Fei91b] P.H. Feiler. Configuration Management Models in Commercial Envi-

ronments. Technical Report CMU/SEI-91-TR-7, Software Engineer-

ing Institute, Carnegie Mellon University,, April 1991.

[FH93] P. H. Feiler and W. S. Humphrey. Software Process Development and

Enactment: Concepts and Definitions. Technical Report CMU/SEI-

92-TR-004, SEI Carnegie Mellon, 1993.

[Fog99] K. F. Fogel. Open Source Development with CVS. Coriolis Group

Books, 1999.

[FORG05] M. Fischer, J. Oberleitner, J. Ratzinger, and H. Gall. Mining Evolu-

tion Data of a Product Family. In MSR ’05: Proceedings of the 2005

international workshop on Mining software repositories, 2005.

[FPG03] M. Fischer, M. Pinzger, and H. Gall. Populating a Release History

Database from Version Control and Bug Tracking Systems. In ICSM

’03: Proceedings of the International Conference on Software Mainte-

nance, page 23, Washington, DC, USA, 2003. IEEE Computer Society.

[Fug00] A. Fuggetta. Software process: a roadmap. In ICSE ’00: Proceedings

of the Conference on The Future of Software Engineering, pages 25–

34, New York, NY, USA, 2000. ACM Press.

[FZ99] K. Frauf and A. Zeller. Software configuration management: State

of the art, state of the practice. In 9th International Symposium on

System Configuration Management (SCM-9), Sep 1999.

[GA06] C.W. Günther and W.M.P. van der Aalst. Mining Activity Clusters

from Low-level Event Logs. BETA Working Paper Series, WP 165,

Eindhoven University of Technology, Eindhoven, 2006.

194 BIBLIOGRAPHY

[GCC+04] D. Grigori, F. Casati, M. Castellanos, U. Dayal, M. Sayal, and

M.C. Shan. Business Process Intelligence. Computers in Industry,

53(3):321–343, 2004.

[Ger04] D. M. German. The GNOME project: a case study of open source,

global software development. Software Process: Improvement and

Practice, 8(4):201–215, 2004.

[GGK+03] M. Gehrke, H. Giese, E. Kindler, J. Niere, W. Schäfer, J. P. Wadsack,

R. Wagner, and L. Wendehals. Software Engineering Education: The

Synergy of Combined Research and Teaching. Technical Report tr-ri-

03-237, University of Paderborn, Paderborn, Germany, January 2003.

[GGMS05] G. Greco, A. Guzzo, G. Manco, and D. Saccà. Mining and Reasoning

on Workflows. IEEE Transaction on Knowledge and Data Engineer-

ing, 17(4):519–534, 2005.

[GH06] D. M. Germán and A. Hindle. Visualizing the Evolution of Software

Using Softchange. International Journal of Software Engineering and

Knowledge Engineering, 16(1):5–22, 2006.

[Gil81] T. Gilb. Evolutionary development. SIGSOFT Softw. Eng. Notes,

6(2):17–17, 1981.

[GJ96] P. Garg and M. Jazayeri. Process-centered Software Engineering En-

vironments. IEEE Computer Society Press, 1996.

[Gru02] V. Gruhn. Process-Centered Software Engineering Environ-

ments - A Brief History and Future Challenges. cite-

seer.ist.psu.edu/gruhn02processcentered.html, 2002.

[Her00] J. Herbst. A Machine Learning Approach to Workflow Management.

In ECML ’00: Proceedings of the 11th European Conference on Ma-

chine Learning, pages 183–194. Springer-Verlag, 2000.

[HHD05] A. E. Hassan, R. C. Holt, and S. Diehl, editors. MSR 2005 Inter-

national Workshop on Mining Software Repositories, New York, NY,

USA, 2005. ACM Press.

BIBLIOGRAPHY 195

[HHJ+99] P. Heinl, S. Horn, S. Jablonski, J. Neeb, K. Stein, and M. Teschke. A

comprehensive approach to flexibility in workflow management sys-

tems. In WACC ’99: Proceedings of the international joint conference

on Work activities coordination and collaboration, pages 79–88, New

York, NY, USA, 1999. ACM Press.

[HHM04] A. E. Hassan, R. C. Holt, and A. Mockus, editors. MSR 2004: In-

ternational Workshop on Mining Software Repositories, Washington,

DC, USA, 2004. IEEE Computer Society.

[HHS+03] M. Hirao, H. Hoshino, A.i Shinohara, M. Takeda, and S. Arikawa.

A practical algorithm to find the best subsequence patterns. Theor.

Comput. Sci., 292(2):465–479, 2003.

[HK99] J. Herbst and D. Karagiannis. An Inductive approach to

the Acquisition and Adaptation of Workflow Models. cite-

seer.ist.psu.edu/herbst99inductive.html, 1999.

[HK01] J. Han and M. Kamber. Data Mining: Concepts and Techniques. San

Diego, CA: Academic Press, 2001.

[HMS01] D. Hand, H. Mannila, and P. Smyth. Principles of Data Mining.

Cambridge, MA: MIT Press, 2001.

[HMU00] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Au-

tomata Theory, Languages, and Computation (2nd Edition). Addison

Wesley, November 2000.

[Hol95] D. Hollingsworth. The Workflow Reference Model. Technical Report

TC00-1003, The Workflow Management Coalition (WfMC), January

1995.

[Hum89] W. S. Humphrey. Managing the software process. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 1989.

[Hum05a] W. S. Humphrey. PSP: A Self-Improvement Process for Software

Engineers. Addison-Wesley, march 2005.

[Hum05b] W. S. Humphrey. TSP: Leading a Development Team. Addison-

Wesley, september 2005.

196 BIBLIOGRAPHY

[Ian05] F. Iannacci. Coordination Processes in Open

Source Software Development: The Linux Case Study.

http://opensource.mit.edu/papers/iannacci3.pdf, apr 2005.

[JBR99] I. Jacobson, G. Booch, and J. Rumbaugh. The unified software de-

velopment process. Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA, 1999.

[JBS97] S. Jablonski, M. Böhm, and W. Schulze. Workflow-Management En-

twicklung von Anwendungen und Systemen. dpunkt.verlag, 1997.

[JPSW94] G. Junkermann, B. Peuschel, W. Schäfer, and W. Wolf. MER-

LIN: Supporting Cooperation in Software Development through a

Knowlege-based Environment. In A. C. W. Finkelstein, editor, Ad-

vances in Software Process Technology. 1994.

[KFF+91] M. I. Kellner, P. H. Felier, A. Finkelstein, T. Katayama, L.J. Oster-

weil, M.H. Penedo, and H.D. Rombach. ISPW-6 Software Process

Example. In Proceedings of the First International Conference on the

Software Process, Redondo Beach, CA, USA, pages 176–186. IEEE

Computer Society Press, oct 1991.

[KHR06] P. Katerattanakul, B. Han, and A. Rea. Is Information Systems a

Reference Discipline? Communications of the ACM, 49(5):114–118,

2006.

[Kin06] E. Kindler. On the Semantics of EPCs: A Framework for Resolving

the Vicious Circle. Data and Knowledge Engineering, 56(1):23–40,

2006.

[KNS92] G. Keller, M. Nüttgens, and A.W. Scheer. Semantische Prozessmod-

ellierung auf der Grundlage Ereignisgesteuerter Prozessketten (EPK).

Technical Report 89, Institut für Wirtschaftsinformatik Saarbrücken,

1992.

[KRS05a] E. Kindler, V. Rubin, and W. Schäfer. Activity Mining

for Discovering Software Process Models. Technical Report

tr-ri-05-265, University of Paderborn, http://www.upb.de/cs/ag-

schaefer/Personen/Aktuell/Rubin/TR/tr-ri-05-265.pdf, 2005.

BIBLIOGRAPHY 197

[KRS05b] E. Kindler, V. Rubin, and W. Schäfer. Incremental Workflow Mining

based on Document Versioning Information. In Mingshu Li, Barry

Boehm, and Leon J. Osterweil, editors, Proc. of the Software Process

Workshop 2005, Beijing, China, volume 3840 of LNCS, pages 287–

301. Springer, May 2005.

[KRS06a] E. Kindler, V. Rubin, and W. Schäfer. Activity Mining for Discov-

ering Software Process Models. In B. Biel, M. Book, and V. Gruhn,

editors, Proc. of the Software Engineering 2006 Conference, Leipzig,

Germany, volume P-79 of LNI, pages 175–180. Gesellschaft für Infor-

matik, March 2006.

[KRS06b] E. Kindler, V. Rubin, and W. Schäfer. Incremental Worklfow Mining

for Process Flexibility. In Proc. of the Seventh CAiSE’06 Workshop on

Business Process Modeling, Development, and Support (BPMDS’06),

Luxembourg, jun 2006.

[KRS06c] E. Kindler, V. Rubin, and W. Schäfer. Process Mining and Petri Net

Synthesis. In Johann Eder and Schahram Dustdar, editors, Business

Process Management Workshops, volume 4103 of LNCS. Springer,

2006.

[Kuv95] P. Kuvaja. BOOTSTRAP: A Software Process Assessment and Im-

provement Methodology. In Proceedings of the Second Symposium

on Software Quality Techniques and Acquisition Criteria on Software

Quality Techniques and Acquisition Criteria, pages 31–48, London,

UK, 1995. Springer-Verlag.

[LB03] C. Larman and V. R. Basili. Iterative and Incremental Development:

A Brief History. Computer, 36(6):47–56, 2003.

[Lon93] J. Lonchamp. A Structured Conceptual and Terminological Frame-

work for Software Process Engineering. In Proceedings of the 2nd In-

ternational Conference on the Software Process - Continuous Software

Process Improvement, Berlin, Germany, 1993.

[LR00] F. Leymann and D. Roller. Production workflow: concepts and tech-

niques. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2000.

198 BIBLIOGRAPHY

[LSE05] Y. Liu, E. Stroulia, and H. Erdogmus. Understanding the Open-

Source Software Development Process: A Case Study with CVS

Checker , 2005, pp. 154-161. In Proceedings of the 1st International

Conference on Open Source Systems (OSS 2005), Genoa, Italy, pages

154–161, 2005.

[LSWG04] Y. Liu, E. Stroulia, K. Wong, and D. German. Using CVS historical

information to understand how students develop software. In MSR

’04: Proceedings of the 2004 international workshop on Mining soft-

ware repositories, 2004.

[MA94] C. Montangero and V. Ambriola. Software Process Modelling and

Technology, chapter OIKOS: Constructing process-centered SDEs,

pages 33–70. John Wiley & Sons Inc., 1994.

[Med06] A.K.A. de Medeiros. Genetic Process Mining. PhD thesis, Eindhoven

University of Technology, Eindhoven, 2006.

[MFH02] A. Mockus, R.T. Fielding, and J. Herbsleb. Two Case Studies of Open

Source Software Development: Apache and Mozilla. ACM Trans. Soft-

ware Engineering and Methodology, 11(3):309 – 246, 2002.

[Mic03] Microsoft. Visual SourceSafe. Web:

http://msdn.microsoft.com/vstudio/previous/ ssafe/, 2003.

[Mil82] R. Milner. A Calculus of Communicating Systems. Springer-Verlag

New York, Inc., Secaucus, NJ, USA, 1982.

[MLRW05a] K. Mierle, K. Laven, S. Roweis, and G. Wilson. Mining student

CVS repositories for performance indicators. In MSR ’05: Proceedings

of the 2005 international workshop on Mining software repositories,

pages 1–5, New York, NY, USA, 2005. ACM Press.

[MLRW05b] K. Mierle, K. Laven, S. Roweis, and G. Wilson. Mining student CVS

repositories for performance indicators. SIGSOFT Softw. Eng. Notes,

30(4):1–5, 2005.

[MM00] H. Mannila and C. Meek. Global partial orders from sequential data.

In KDD ’00: Proceedings of the sixth ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 161–168,

New York, NY, USA, 2000. ACM Press.

BIBLIOGRAPHY 199

[MR01] H. Mannila and D. Rusakov. Decomposing event sequences into inde-

pendent components. In V. Kumar, R. Grossman (Eds.), Proceedings

of the First SIAM Conference on Data Mining, SIAM, pages 1–17,

2001.

[Mur89] T. Murata. Petri Nets: Properties, Analysis and Applications. In

Proceedings of the IEEE, 77(4), pages 541–580, April 1989.

[NBZ06] N. Nagappan, T. Ball, and A. Zeller. Mining metrics to predict com-

ponent failures. In ICSE ’06: Proceeding of the 28th international

conference on Software engineering, pages 452–461, New York, NY,

USA, 2006. ACM Press.

[NRT92] M. Nielsen, G. Rozenberg, and P. S. Thiagarajan. Elementary tran-

sition systems. Theoretical Computer Science, 96(1):3–33, 1992.

[OMG03] OMG. UML 2.0 Superstructure Specification. Version 2.0 ptc/03-08-

02, Object Management Group, August 2003. Final Adopted Specifi-

cation.

[OMG06] OMG. Business Process Modeling Notation (BPMN) Specification.

http://www.bpmn.org/, Feb 2006. Final Adopted Specification.

[Ost87] L Osterweil. Software processes are software too. In Proceedings of

the 9th International Conference on Software Engineering, pages 2–

13, Los Alamitos, CA, USA, 1987. IEEE Computer Society Press.

[PCCW93] M. C. Paulk, B. Curtis, M. B. Chrissis, and C. V. Weber. Capa-

bility Maturity Model for Software (SW-CMM). Technical Report

CMU/SEI-93-TR-024, Carnegie Mellon University, Software Engi-

neering Institute, February 1993.

[Pet62] C.A. Petri. Kommunikation mit Automaten. Technical Report

RADC-TR-65–377, Bonn: Institut für Instrumentelle Mathematik,

1962.

[PWG+93] M. C. Paulk, C. V. Weber, S. M. Garcia, M. B. Chrissis, and M. Bush.

Key Practices of the Capability Maturity Model, Version 1.1. Tech-

nical Report CMU/SEI-93-TR-025, Carnegie Mellon University, Soft-

ware Engineering Institute, February 1993.

200 BIBLIOGRAPHY

[Rat03] Rational Software Corporation. Rational ClearCase Rational

ClearCase LT. Technical Report 800-026160-000, Rational Software

Corporation, 2003. Version: 2003.06.00 and later.

[RD97] M. Reichert and P. Dadam. A Framework for Dynamic Changes in

Workflow Management Systems. In DEXA ’97: Proceedings of the

8th International Workshop on Database and Expert Systems Appli-

cations, pages 42–48, Washington, DC, USA, 1997. IEEE Computer

Society.

[Rei87] W. Reisig. Place/Transition Systems. In Proceedings of an Ad-

vanced Course on Petri Nets: Central Models and Their Properties,

Advances in Petri Nets 1986-Part I, pages 117–141, London, UK,

1987. Springer-Verlag.

[RGvdA+07a] V. Rubin, C.W. Günther, W.M.P. van der Aalst, E. Kindler, B.F. van

Dongen, and W. Schäfer. Process Mining Framework for Software

Processes. In Proc. of International Conference on Software Process,

2007. accepted.

[RGvdA+07b] V. Rubin, C.W. Günther, W.M.P. van der Aalst, E. Kindler, B.F. van

Dongen, and W. Schäfer. Process Mining Framework for Software

Processes. BPM Center Report BPM-07-01, BPM Center, BPMcen-

ter.org, jan 2007.

[Roc75] M. J. Rochkind. The source code control system. IEEE Transactions

on Software Engineering, SE-1(4):364–70, December 1975.

[Rou95] T.P. Rout. SPICE: A Framework for Software Process Assessment.

Software Process: Improvement and Practice, 1(1), 1995.

[Roy87] W. W. Royce. Managing the development of large software systems:

concepts and techniques. In ICSE ’87: Proceedings of the 9th in-

ternational conference on Software Engineering, pages 328–338, Los

Alamitos, CA, USA, 1987. IEEE Computer Society Press.

[RR98] W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets I: Basic

Models, volume 1491 of Lecture Notes in Computer Science. Springer-

Verlag, Berlin, 1998.

BIBLIOGRAPHY 201

[RvdA06] A. Rozinat and W.M.P. van der Aalst. Conformance Testing: Measur-

ing the Fit and Appropriateness of Event Logs and Process Models. In

C. Bussler et al., editor, BPM 2005 Workshops (Workshop on Busi-

ness Process Intelligence), volume 3812, pages 163–176, 2006.

[Sca01] W. Scacchi. Encyclopedia of software engineering, chapter Process

Models in Software Engineering. Wiley-Interscience, New York, NY,

USA, 2001.

[Sca02] W. Scacchi. Understanding the requirements for developing open

source software systems. IEE Proceedings - Software, 149(1):24–39,

2002.

[SCDS02] M. Sayal, F. Casati, U. Dayal, and M.C. Shan. Business Process

Cockpit. In Proceedings of 28th International Conference on Very

Large Data Bases (VLDB’02), pages 880–883. Morgan Kaufmann,

2002.

[Sch00] A.W. Scheer. ARIS: Business Process Modelling. Springer-Verlag,

Berlin, 2000.

[Sch02a] IDS Scheer. ARIS Process Performance Manager (ARIS PPM).

http://www.ids-scheer.com, 2002.

[Sch02b] G. Schimm. Process Miner - A Tool for Mining Process Schemes

from Event-Based Data. In Proceedings of the European Conference

on Logics in Artificial Intelligence, pages 525–528. Springer-Verlag,

2002.

[SEI02] SEI Carnegie Mellon. Capability Maturity Model Integration (CM-

MISM), Version 1.1. Technical Report CMU/SEI-2002-TR-012,

Carnegie Mellon, Software Engineering Institute, March 2002.

[SEI06a] SEI Carnegie Mellon. Process Maturity Profile. CMMI v1.1

SCAMPISM v1.1 Class A Appraisal Results 2005 End-Year Update.

Technical report, Carnegie Mellon University, Software Engineering

Institute., March 2006.

[SEI06b] SEI Carnegie Mellon. Process Maturity Profile. Software CMM 2005

End-Year Update. Technical report, Carnegie Mellon University, Soft-

ware Engineering Institute., March 2006.

202 BIBLIOGRAPHY

[SGR04] R. J. Sandusky, L. Gasser, and G. Ripoche. Bug Report Networks:

Varieties, Strategies, and Impacts in a F/OSS Development Com-

munity. In MSR 2004: International Workshop on Mining Software

Repositories, 2004.

[SS91] R. Spencer-Smith. Logic and Prolog. Harvester Wheatsheaf, 1991.

[SW89] J. A. Simpson and Edmund S. Weiner, editors. The Oxford English

Dictionary (second edition). Oxford University Press, USA, 1989.

[TIB05] TIBCO. TIBCO Staffware Process Monitor (SPM).

http://www.tibco.com, 2005.

[Tic85] W. F. Tichy. RCS — a system for version control. Software — Practice

and Experience, 15(7):637–654, 1985.

[vdA97] W.M.P. van der Aalst. Verification of Workflow Nets. In ICATPN ’97:

Proceedings of the 18th International Conference on Application and

Theory of Petri Nets, pages 407–426, London, UK, 1997. Springer-

Verlag.

[vdA02] W.M.P. van der Aalst. Making Work Flow: On the Application of

Petri Nets to Business Process Management. In C. Lakos J. Esparza,

editor, 23rd International Conference on Applications and Theory of

Petri Nets, Adelaide, Australia, volume Lecture Notes in Conputer

Science, pages 1–22. Springer Verlag, June 2002.

[vdAdBvD05] W.M.P. van der Aalst, H.T. de Beer, and B.F. van Dongen. Pro-

cess Mining and Verification of Properties: An Approach based on

Temporal Logic. BETA Working Paper Series, WP 136, Eindhoven

University of Technology, Eindhoven, 2005.

[vdARvD+06] W.M.P. van der Aalst, V. Rubin, B.F. van Dongen, E. Kindler, and

C.W. Günther. Process Mining: A Two-Step Approach using Tran-

sition Systems and Regions. BPM Center Report BPM-06-30, BPM

Center, BPMcenter.org, Dec 2006.

[vdAvDG+07] W.M.P. van der Aalst, B.F. van Dongen, C.W. Günther, R.S. Mans,

A.K. Alves de Medeiros, A. Rozinat, V. Rubin, M. Song, H.M.W.

Verbeek, and A.J.M.M. Weijters. ProM 4.0: Comprehensive Support

BIBLIOGRAPHY 203

for Real Process Analysis. In Proc. of 28th International Conference

on Application and Theory of Petri Nets (ATPN), Siedlce, Poland,

jun 2007. accepted.

[vdAvDH+03] W.M.P. van der Aalst, B. F. van Dongena, J. Herbst, L. Marustera,

G. Schimm, and A. J. M. M. Weijters. Workflow mining: A survey

of issues and approaches. Data & Knowledge Engineering, 47(Issue

2):237–267, November 2003.

[vdAvH02] W.M.P. van der Aalst and K. van Hee. Workflow Management: Mod-

els, Methods, and System. Cooperative Information Systems. The

MIT Press, 2002.

[vdAW04] W.M.P. van der Aalst and A.J.M.M. Weijters. Process mining: a

research agenda. Comput. Ind., 53(3):231–244, 2004.

[vdAWM04] W.M.P. van der Aalst, T. Weijters, and L. Maruster. Workflow Min-

ing: Discovering Process Models from Event Logs. IEEE Transac-

tions on Knowledge and Data Engineering, 16(9):1128–1142, Septem-

ber 2004.

[vDdMV+05] B.F. van Dongen, A.K.A. de Medeiros, H.M.W. Verbeek, A.J.M.M.

Weijters, and W.M.P. van der Aalst. The ProM framework: A new

era in process mining tool support. In G. Ciardo and P. Darondeau,

editors, 26th International Conference on Applications and Theory of

Petri Nets (ICATPN 2005), volume 3536 of LNCS, pages 444–454.

Springer-Verlag, 2005.

[vDvdA04] B.F. van Dongen and W.M.P. van der Aalst. Multi-Phase Process

Mining: Building Instance Graphs. In P. Atzeni, W. Chu, H. Lu,

S. Zhou, and T.W. Ling, editors, International Conference on Con-

ceptual Modeling (ER 2004), volume 3288, pages 362–376, 2004.

[vDvdA05a] B.F. van Dongen and W.M.P. van der Aalst. Multi-Phase Mining:

Aggregating Instances Graphs into EPCs and Petri Nets. In D. Mari-

nescu, editor, Proceedings of the Second International Workshop on

Applications of Petri Nets to Coordination, Workflow and Business

Process Management, pages 35–58. Florida International University,

Miami, Florida, USA, 2005.

204 BIBLIOGRAPHY

[vDvdA05b] B.F. van Dongen and W.M.P. van der Aalst. Multi-phase Process

mining: Aggregating Instance Graphs into EPCs and Petri Nets. In

2nd International Workshop on Applications of Petri Nets to Coordi-

nation, Worklflow and Business Process Management (PNCWB) at

the ICATPN 2005, 2005.

[VGL05] M. VanHilst, P. K. Garg, and C. Lo. Repository mining and Six

Sigma for process improvement. In MSR ’05: Proceedings of the 2005

international workshop on Mining software repositories, pages 1–4,

New York, NY, USA, 2005. ACM Press.

[WA03] A.J.M.M. Weijters and W.M.P. van der Aalst. Rediscovering Work-

flow Models from Event-Based Data using Little Thumb. Integrated

Computer-Aided Engineering, 10(2):151–162, 2003.

[Wan00] Y. Wang. Software Engineering Processes: Principles and Applica-

tions. CRC Press, April 2000.

[WfM99] WfMC. Workflow Management Coalition: Terminology & glos-

sary. Technical Report WFMC-TC-1011, The Workflow Management

Coalition (WfMC), February 1999.

[Wie03] J. Wielemaker. An overview of the SWI-Prolog Programming Envi-

ronment. In Fred Mesnard and Alexander Serebenik, editors, Proceed-

ings of the 13th International Workshop on Logic Programming Envi-

ronments, pages 1–16, Heverlee, Belgium, december 2003. Katholieke

Universiteit Leuven. CW 371.

[WPZZ07] C. Weiß, R. Premraj, T. Zimmermann, and A. Zeller. How Long will

it Take to Fix This Bug? In Proceedings of the Fourth International

Workshop on Mining Software Repositories, May 2007.

[WvdA01a] A.J.M.M. Weijters and W.M.P. van der Aalst. Process mining: dis-

covering workflow models from event-based data. In Proceedings of

the 13th Belgium-Netherlands Conference on Artificial Intelligence

(BNAIC 2001), pages 283–290, 2001.

[WvdA01b] T. Weijters and W.M.P. van der Aalst. Rediscovering Workflow Mod-

els from Event-Based Data. In Hoste, V. and Pauw, G., editors, Pro-

BIBLIOGRAPHY 205

ceedings of the 11th Dutch-Belgian Conference on Machine Learning

(Benelearn 2001), pages 93–100, 2001.

[WvdA02] A.J.M.M. Weijters and W.M.P. van der Aalst. Workflow Mining:

Discovering Workflow Models from Event-Based Data. In Dousson,

C., Höppner, F., and Quiniou, R., editors, Proceedings of the ECAI

Workshop on Knowledge Discovery and Spatial Data, pages 78–84,

2002.

[YWA05] A.T.T. Ying, J. L. Wright, and S. Abrams. Source code that talks: an

exploration of Eclipse task comments and their implication to reposi-

tory mining. In MSR ’05: Proceedings of the 2005 international work-

shop on Mining software repositories, 2005.

[zMR00] M. zur Muehlen and M. Rosemann. Workflow-based Process Mon-

itoring and Controlling - Technical and Organizational Issues. In

R. Sprague, editor, Proceedings of the 33rd Hawaii International Con-

ference on System Science (HICSS-33), pages 1–10. IEEE Computer

Society Press, Los Alamitos, California, 2000.

[ZW04] T. Zimmermann and P. Weissgerber. Preprocessing CVS Data for

Fine-Grained Analysis. In Proc. 1st International Workshop on Min-

ing Software Repositories (MSR), may 2004.

206 BIBLIOGRAPHY

List of Figures

1.1 Capability Maturity Model . 3
1.2 Maturity Appraisal by Reporting Organizations 4
1.3 Time To Move Up . 5
1.4 Traditional Life-Cycle . 9
1.5 Mining Life-Cycle . 9
1.6 Objective: New Workflow Mining Approach 11

2.1 Business Process Model and Case . 17
2.2 Workflow Reference Model [Hol95] . 19
2.3 Workflow Management System Architecture 19
2.4 Aspects of Business Processes . 21
2.5 Aspect-oriented View on Process Modelling 23
2.6 Basic Software Process Elements . 25
2.7 Revisions Graph . 29
2.8 Checkin/Checkout Model . 30
2.9 Transition System . 32
2.10 Net . 33
2.11 P/T Net . 35
2.12 Transition Firing . 35
2.13 Reachability Graph . 36
2.14 Workflow Net . 38
2.15 TS with Regions . 40
2.16 Synthesized Petri Net . 41

3.1 Traditional Process-centered Software Engineering Environment. . . . 44
3.2 Modern Process-centered Software Engineering Environment. 46
3.3 Interaction with SCM. 48
3.4 An example of an e-mail. 49
3.5 An example of an announcement. 49
3.6 An example of a bug report. 50
3.7 An example of a webpage. 51
3.8 CVS Log Example . 54
3.9 SourceSafe Log Example . 54
3.10 Execution Logs and Process Model . 57
3.11 Mining in a Process-Centered Software Engineering Environment . . . 59
3.12 Incremental Workflow Mining Architecture 60

207

208 LIST OF FIGURES

3.13 Different Types of Process Mining . 61
3.14 Preprocessing Step . 61
3.15 Informational Model . 64
3.16 Process Mining Step – Control-flow Mining 66
3.17 Control-flow Mining Approach . 66
3.18 TS generated from the log . 68
3.19 PN synthesized from TS . 69
3.20 Control-flow Mining Approach: Constructing TS 69
3.21 Sets-based TS . 70
3.22 Multisets-based TS . 70
3.23 Control-flow Mining Approach: Modification Strategies 71
3.24 Sets-based TS, no Loops . 72
3.25 Extended Sets-based TS . 72
3.26 Multisets-based TS with Merged States 73
3.27 Control-flow Mining Approach: Petri Net Synthesis 74
3.28 PN from Sets-based TS . 74
3.29 PN from Multiset-based TS . 75
3.30 PN, no Loops Strategy . 75
3.31 PN, Extend Strategy . 75
3.32 PN, Merge Strategy . 76
3.33 Control-flow Mining Approach: Petri Net Synthesis (different charac-

teristics) . 76
3.34 Pure PN . 77
3.35 Free-choice PN . 77
3.36 Process Mining Step – Mining Different Aspects 78
3.37 Example of a Social Network (Handover of Work) 78
3.38 Example of a Social Network (Similar Task) 79
3.39 Result of the Organizational Miner . 79
3.40 Result of the Performance Analysis . 80
3.41 Model Analysis and Representation Step 81
3.42 Conformance Checker . 82
3.43 Conformance Checker, Path Coverage 83
3.44 Result of the LTL checking . 84
3.45 Incremental and Interactive Approach 85
3.46 Using Approach in Batch Mode . 87

4.1 Main Focus: Control-flow Mining Algorithm 91
4.2 Document Log and discovered Process Model 93
4.3 Activity Log and discovered Process Model 95
4.4 Two logs and models illustrating the completeness issue. 96
4.5 Transition System Generation Step . 97
4.6 Transition System Generation Step: Defining a State 99
4.7 Four basic “ingredients” for calculating the “process state”. 100
4.8 Different ways to construct the “current state” (depends on the desired

level of abstraction). 102
4.9 Transition System Generation Step: Constructing a TS 104

LIST OF FIGURES 209

4.10 Complete prefix sets TS . 106
4.11 Complete prefix sequences TS . 106
4.12 Complete postfix multisets TS . 106
4.13 Partial prefix sequences TS . 106
4.14 Transition System Generation Step: Modification Strategies 107
4.15 Acyclic TS. 110
4.16 Result of applying the extend strategy. 110
4.17 Result of applying the merge states strategy. 112
4.18 Petri Net Synthesis Step: Constructing PN 113
4.19 Regions in the transition system. 114
4.20 Synthesized Petri net. 114
4.21 Synthesized and improved PN. 114
4.22 Petri net for the transition system based on sets. 115
4.23 Petri net for the transition system based on sequences. 115
4.24 PN for complete postfix multisets TS. 116
4.25 PN for partial prefix sequences TS. 116
4.26 Petri net for the extended transition system. 117
4.27 Petri net for the transition system after state merging. 117
4.28 Petri Net Synthesis Step: Selecting Target Format 118
4.29 Pure Petri net. 119
4.30 Free-choice Petri net. 119
4.31 Software Development Process with Prototyping 120
4.32 Schema of the Research Prototype . 121
4.33 Document Log as Prolog Facts . 121
4.34 Prolog Clause Example . 122
4.35 An Example of dot Visualization . 123
4.36 About Process Mining Framework ProM 124
4.37 An MXML log example. 125
4.38 Schema of the Implementation in ProM 126
4.39 Screenshot of our Mining Plugin . 128

5.1 A log fragment. 133
5.2 Transition System for the ArgoUML Project 134
5.3 Petri Net for the ArgoUML Project . 135
5.4 Complex TS and PN model. 135
5.5 Performance Analysis for the ArgoUML Project 136
5.6 Conformance Analysis for the ArgoUML Project 137
5.7 LTL Analysis for the ArgoUML Project 138
5.8 Social Network for the ArgoUML Project 139
5.9 Naming Conventions for Student Repositories 140
5.10 A fragment of log filter. 141
5.11 A fragment of the filtered log. 142
5.12 Acyclic set-based Transition System. 143
5.13 Extended acyclic set-based Transition System. 143
5.14 PN for acyclic set-based TS. 144
5.15 PN for extended acyclic set-based TS. 144

210 LIST OF FIGURES

5.16 Free-choice variant of extended PN. 145
5.17 Performance Analysis with PN. 145
5.18 Path Coverage for Group 3. 146
5.19 LTL Verification that PH follows LH. 147
5.20 LTL verification – groups started coding after the 11th of April. 147
5.21 Conversion to EPC. 148
5.22 A fragment of the bug history log. 150
5.23 Multiset-based TS. 151
5.24 PN for Multiset-based TS. 151
5.25 Partial prefix TS. 152
5.26 PN for partial prefix TS. 152
5.27 Multiset-based TS, merged strategy. 153
5.28 PN for merged multiset-based TS. 153
5.29 Performance Analysis with Petri Net. 155
5.30 Path coverage Analysis. 155
5.31 Verification, reopened bugs. 156
5.32 Verification, persons resolving and verifying bugs. 157
5.33 Social Network, handover of work. 158
5.34 Mining the Organizational Structure. 158

6.1 Main Areas of our Research . 163
6.2 Related Work Areas . 164
6.3 Three Petri nets, discovered using (a) the α miner, (b) the multi-phase

miner and (c) our two-step approach. 172

List of Tables

3.1 Log of Bugs History . 52
3.2 Document Log . 55
3.3 Regular Expressions . 62
3.4 Abstract Software Log . 63
3.5 Abstract Software Log: Control Aspect 67

211

Index

α-algorithm, 92, 170, 171

abstraction, 56, 62, 100, 140
activity, 17, 24, 92, 95
activity log, 8, 94
activity miner, 80
activity model, 24
ADONIS, 20, 170
agent, 22
analysis, 58, 81
Apache, 159
ArgoUML, 132
ARIS, 20, 124, 174

PPM, 124, 174
aspect, 20, 56, 77
asynchronous controller, 174
audit information, 48

defect report, 50
e-mail, 49, 53
news, 49
webpage, 50

author, 52, 55

baseline, 45
Bootstrap, 28
BPEL, 22, 89, 126, 148
BPMN, 22
bug, 52
bug life cycle, 167
bug life-cycle, 52
bug lifecycle, 149
bug log, 131, 149
Bugzilla, 51, 149
business activity monitoring, 174
business intelligence, 164
business process, 8, 16, 17
business process intelligence, 174
business process management, 15, 163, 169
business process model, 17, 20, 159
business to business (B2B), 8, 88

CAD, 88
case, 17, 99, 133

future, 100

past, 100
checkin, 30, 53
checkout, 30, 53
ClearCase, 54
clustering activities, 81
CMM, 2, 27, 29, 47, 57, 86
CMMI, 2, 57, 82
collaborative product definition management

(cPDm), 12
comment, 55, 57
commit, 69, 92
communication thread, 168
completeness, 94, 95
conformance checking, 82, 137, 146, 156, 171
control aspect, 21, 56
control flow, 20
control-flow mining, 61, 65, 91, 133
conversion, 148
COSA, 20
CPN Tools, 124
customer relationship management (CRM),

8, 12, 87
CVS, 30, 53, 124, 126, 165
CVSChecker, 168

data mining, 95, 174, 176
data warehouse, 175
defect history, 165
defect repository, 45, 46, 51, 149, 167, 168
detecting document types, 63
discussion forum, 45, 168
document, 10, 21, 55
document log, 53, 55, 56, 92, 99, 131
document type, 57
Domino workflow, 20
duplicates, 93

e-mail archive, 168
Eclipse, 52, 139, 149, 166
elementary transition system, 40, 115
embedded system, 23
enterprise resource planning (ERP), 8, 12, 87,

88

212

INDEX 213

EPC, 11, 22, 125, 148, 170
ER diagram, 22
european space agency (ESA), 27
event, 92, 99, 101
event log, 51, 56, 92, 169
event-based specification, 68
execution log, 55, 56

filter, 101, 133, 141
fitness, 82, 136, 146
flexibility, 59, 86, 174
FLOWer, 124
free monoid, 98

commutative, 98

generalization, 71, 94, 143
genetic algorithm, 170
GNATS, 51
goal/question/metric (GQM), 28
gradual workflow support, 86
GraphViz, 122

dot, 122, 127

heuristic mining, 170
heuristic net, 148, 170
Hipikat, 166
horizon, 102
human, 25

IDE, 139
incremental workflow mining, 13, 43, 48, 58

batch mode, 86
incrementation, 84
interactive, 85
process mining, 91
transition system generation, 97

information system, 1, 16, 88
informational aspect, 21, 56, 80
informational model, 64
input framework, 58
international standard organization (ISO), 1,

27
ISO 10303, 64
ISO 12207, 27
ISO 15504, 28
ISO 9000, 27, 29

Jakarta, 159
JBoss, 166
JIRA, 51

labelled Petri net, 37, 41, 68, 74, 118
lock, 30

LTL, 83, 137

machine learning, 95, 164, 170
mailing list, 45, 46
maturity level, 2

defined, 3, 10
initial, 3
managed, 3
optimizing, 3
repeatable, 3, 10

Metaphase, 88
mining, 163
mining sequential patterns, 175
mining software repositories, 46, 165, 176
modelling formalism, 31
modification strategy, 71, 107

extend strategy, 72, 110
kill loops, 71, 109, 134
merge by output, 72, 111

Mozilla, 167
multi-phase mining, 170, 171
multiset, 98

set operation, 98
MXML, 133

net, 33
arc, 33
connectedness, 34
directed path, 34
node, 33
place, 33
post-set, 33
pre-set, 33
transition, 33

newsgroup, 45

ontology, 15, 63
open source software, 45, 132, 165
operation

add arc, 107
merge states, 108
remove arc, 107

optimistic approach, 30
organization, 25
organizational aspect, 21, 56, 77, 138, 157
organizational miner, 78
organizational structure, 44, 57, 158
overfitting, 96, 97, 105, 116

PeopleSoft, 124
performance analysis, 136, 145, 154
performance aspect, 79
personal software process (PSP), 28

214 INDEX

pessimistic approach, 30
Petri net, 11, 22, 35, 68, 125, 142, 148, 150,

173
deadlock, 83
extended free-choice, 37
free-choice, 37, 76, 92, 119
marked graph, 37
minimal saturated net, 118
place invariant, 84
place-irredundant net, 118
pure, 37, 76, 119
reachability graph, 115
safe, 37
saturated net, 118
simple, 37
state machine, 37
transition invariant, 84

Petri net synthesis, 39, 68, 73, 113, 114, 134,
174

algorithm, 41, 114
Petrify, 125, 126, 142, 174
place/transition net (P/T net), 34

boundedness, 36
dead transition, 37
firing rule, 35
liveness, 37
marking, 34
reachability graph, 36
reachable markings, 35
safeness, 36
token, 34

practitioner, 7, 45, 47
preprocessing, 58, 61
process, 15
process engineer, 6, 48
process evolution, 174

instance, 85
type, 85

process execution, 18
process instance, 17, 52, 140
process management system (PMS), 85, 92
process maturity profile, 3
process mining, 8, 50, 58, 65, 176

discovery, 59, 60
improving, 59, 60
intelligence, 97
monitoring, 59, 60
problems, 93

process mining core, 59
process mining framework, 48, 51, 87
process model, 6
process modelling, 47

process modelling language (PML), 24
process-aware information system (PAIS), 1,

8, 16, 87
product, 24
product data management (PDM), 12, 64, 87,

88, 92
data vault, 88
EXPRESS, 64
STEP, 64
workflow management, 88

product lifecycle management (PLM), 12
product model, 24
Prolog, 120

clause, 121
fact, 121

ProM, 77, 120, 123, 125, 126, 133, 170
analysis plugin, 126
conversion plugin, 126
export plugin, 125
import plugin, 125
mining plugin, 125
MXML, 123, 126

ProMImport, 124, 126, 133

RCS, 30
region, 39

minimal, 40, 114
postregion, 40, 114
preregion, 40, 114
trivial, 39

requirements engineering, 168
research prototype, 119, 120
resource, 22
resource model, 24
reverse engineering, 164
revision, 53
role, 24
RUP, 44

SAP, 20, 88
Netweaver, 20

SCCS, 30
scenario, 89
scenario management, 164
sequence, 98

head, 98
projection, 98
tail, 98

service-oriented architecture (SOA), 20, 89
set, 98
SOAP, 89
social network, 138, 157, 171

INDEX 215

social network miner, 77
software configuration management (SCM),

9, 28, 45, 47, 52, 64, 84, 92, 167
build management, 30
change management, 30
concurrent development, 30
developer perspective, 29
development discipline, 47
management discipline, 47
management perspective, 29
release management, 30
version management, 29
workspace management, 30

software engineering course, 138
software engineering environment, 9, 25, 44,

45
EPOS, 26
Funsoft Nets, 27
Merlin, 26
OIKOS, 25
SPADE, 26

software failure, 165
software lifecycle, 6, 23
software process, 5, 15, 22, 23, 163, 168, 169
software process improvement (SPI), 2, 27,

47, 57
software process model, 44
software product, 23, 44
software product structure, 44
software repository, 9, 45, 164, 166, 168
software-intensive system, 2, 23
SourceSafe, 53
specification, 39
SPICE, 28
Staffware, 174
state, 69, 99, 103

complete postfix, 101, 105
complete prefix, 101, 105
explicit knowledge, 100
filter, 101
future, 100
multiset, 101, 105
multisets-based, 70
partial postfix, 101
partial prefix, 101
past, 99
past and future, 100
sequence, 101, 105
sequence-based, 71
set, 101, 105
sets-based, 70

state representation, 103

state-based specification, 68
Subversion, 30, 124, 126, 132, 139, 165
supply chain management (SupCM), 12
SWI-Prolog, 120

task, 17
team software process (TSP), 28
text mining, 57, 166
theory of regions, 113, 117
time aspect, 57
timestamp, 52, 55
tool, 7, 25, 51, 119
total quality management, 1, 28
trace, 99
transition, 69
transition system, 11, 31, 67, 68, 104, 142, 150

axioms, 32
bisimulation, 33
deterministic, 31
event, 31
finite, 31
isomorphism, 32
reachability relation, 31
state, 31
transition relation, 31

transition system generation, 67, 69, 134
algorithm, 105

UML
activity diagram, 11, 22, 89
class diagram, 22, 64
collaboration diagram, 89
component diagram, 58
sequence diagram, 89

underfitting, 96, 105, 115
utilities, 59

V-model, 44
validation, 120
verification, 39, 82, 137, 146, 156

LTL checking, 83, 137
visualization, 167

web services, 89
webpage, 45, 46
wiki, 46
Windchill, 88
workflow, 16, 170

application programming interface
(WAPI), 18

engine, 18
participant, 18
reference model, 18

216 INDEX

worklist, 18
workflow management, 8, 15, 169
workflow management coalition (WfMC), 15
workflow management system (WfMS), 8, 16,

19, 85, 87
workflow net, 38, 148

sound, 38, 83, 94, 170
WSDL, 89

YAWL, 126

