A Workflow Mining Approach

for Deriving Software Process Models

DISSERTATION

in Computer Science

submitted to the
Faculty of Computer Science,

Electrical Engineering, and Mathematics

University of Paderborn

by Vladimir Rubin

in partial fulfilment of the requirements for the degree of

doctor rerum naturalium (Dr. rer. nat.)

Paderborn 2007

ii

Abstract

Current enterprises spend much effort in obtaining precise models of their software
and systems engineering processes in order to improve the process capability of their
organization. However, nowadays process engineers, business analysts and managers
design process models manually, which is complicated, time-consuming, and error-
prone. Moreover, the results rapidly become obsolete. The capabilities of human
beings in detecting discrepancies between actual processes and process models are
rather limited. Therefore, automatic techniques for deriving and updating the process
models are becoming ever more important; some of the problems described above
can be solved by these techniques. From the practical point of view, these automatic
techniques should be available as tools for supporting process engineers and analysts,
increasing the quality and reducing the complexity of their work.

In order to keep track of the involved documents and files, engineers use Document
Management Systems (DMS) and data repositories. In the software engineering prac-
tice, people use such DMS as Software Configuration Management Systems (SCM)
and such software repositories as defect tracking systems, e-mail archives and dis-
cussion forums. Furthermore, it has to be noted that using such systems is not only
recommended by software process improvement frameworks, but practically unavoid-
able in the actual situation of the increasing complexity and sizes of the developed
software and the distributed way of work of the developers. Along the way, those
systems collect and store detailed audit information on software projects and soft-
ware development processes in the form of logs. Thus, these logs can be used for
constructing explicit process models — we call it software process mining.

In the thesis, we develop an approach that exploits the audit information and user
interaction with software repositories for the automatic derivation of process models
that accurately reflect the real processes. We call our approach incremental workflow
mining [RGvdAT07a, RGvdA+07b, KRS06a, KRS05b]; it supports discovering pro-
cess models both in incremental and in batch mode and can be used for gradually

introducing process management systems to the companies.

iii

In the area of process mining, modern techniques attempt to extract non-trivial
and useful information from event logs. A principal element of process mining is
the control-flow discovery, i.e. automatically constructing a process model (e.g., a
Petri net) describing the causal dependencies between process activities. Today, many
process mining techniques reveal shortcomings when it comes to discovering processes
with complicated dependencies and to deriving process models on different levels of
abstraction. Moreover, existing approaches typically provide a single process mining
algorithm, which can hardly be adapted for different application domains.

In this thesis, within our incremental workflow mining approach we develop
a new process mining technique — a two-step generation and synthesis technique
[vdARvD 106, KRS06¢c]. In the first step, a transition system is generated from the
log, and in the second, a Petri net model is synthesized from the transition system.
We use the “theory of regions” in the second step. The main advantage of our tech-
nique is that it allows for different modification strategies; i.e. derived models can
be altered in order to fulfil the desired degree of generalization and to fit in the de-
sired application domain. The theory behind our technique guarantees that we obtain
consistent results, i.e. our models always reflect the behaviour recorded in the log.
Our two-step approach is implemented in the form of plug-ins for the process mining
framework ProM [vdAvDG07].

We evaluate our approach on several real software projects from the area of open-
source software and from the university practice. In our case studies, we use two
types of audit information: document logs of SCM systems and bug logs obtained
from defect repositories. For all the case studies, we derive plausible process models
in the control-flow perspective using our generation and synthesis technique; further,
we extend the models with the organizational and performance data, verify and
analyse them with the help of the existing algorithms from the process mining area.

Thus, in the thesis we show that (1) process mining can be used for obtaining
software process models as well as for analysing and optimising them; (2) an algorith-
mic approach, which resulted from our research on software processes, is a valuable
contribution to the process mining area; (3) now, an adequate tool exists to support
software process mining and this tool can be used for real projects.

Moreover, in this work we show that the issues and solutions discussed in the
context of software engineering processes are relevant for other research domains
such as business process management, product data management, enterprise resource

planning too — the domains, where business audit data is recorded and maintained.

v

Acknowledgements

Recalling the long period of exciting and challenging work on my PhD, I realize that
a PhD thesis is much more than just a book — it is a product of communication
and cooperation of many creative and outstanding people. Fortunately, I have been
working with such people during many years. I am lucky to have been educated by
the scientific community both in professional and in personal sense.

Firstly, I would like to express my gratitude to my doctoral advisor, Prof. Dr.
Wilhelm Schafer, for giving me a chance to do my PhD in Germany in a multi-cultural
international scientific environment. I am thankful to Wilhelm for his valuable advice,
which helped me to look for practical application of science and will also help me to
apply science in practice in the future. It is simply impossible to imagine a better
“Doktorvater”.

I am very grateful to Assoc. Prof. Dr. Ekkart Kindler (now at DTU in Kopen-
hagen) for contributing greatly to my education, for his invaluable assistance and
patience in showing me how to achieve quality in work and how to carry out re-
search. It was very exciting to work with Fkkart. For me Fkkart was and will always
be an “ideal” scientist and university lecturer.

Besides scientific supervising, Wilhelm and Ekkart gave me moral support during
all the years of my research at the University of Paderborn. They helped me to
decide on the best way to continue my career after the PhD. I highly appreciate it.
I am proud that I was guided and worked together with such talented scientists and
creative personalities.

I would like to thank Prof. Dr. Wil van der Aalst, for his interesting scientific
ideas, for his style of work and communication with people. I always admired how
Wil could make 25 hours out of a day and I tried to learn from him. The time, which
I spent in Eindhoven, was very helpful for my research.

I am also thankful to Prof. Dr. Gregor Engels and Prof. Dr. Jurgen Gausemeier.

They gave me important comments on the initial ideas of the thesis which were

presented at the intermediate exam. I want to thank Gregor for discussing future
work possibilities with me.

A number of people at the University of Paderborn helped me over the years. 1
am grateful to the secretary of our group Jutta Haupt, who always encouraged me
and helped organizationally. I would like to thank all my colleagues in the Software
Engineering Group for all the discussions and comments about my work. I thank
Robert Wagner and Bjorn Azenath, we managed to do interesting work together and
to publish the results. I am grateful to Dr. Alexey Cherchago who always encouraged
me, we had a lot of discourses about my research ideas. I also want to thank the people
working at the Information Systems Group at the Eindhoven Institute of Technology
and especially Christian Giinther and Boudewijn van Dongen, 1 liked cooperating
with them.

I am very grateful to people working at the International Graduate School and
especially to Dr. Eckhard Steffen and Astrid Canisius. Graduate School supported
my work organizationally and financially. The staff of the Graduate School was always
very helpful and kind, I liked the proposed curriculum and especially German courses.
I want to thank my German teacher Marina lakushevich, her lessons helped me a lot
to integrate into the German society.

It is impossible to mention all the people I met at conferences and workshops
in different countries from USA to China and who gave me valuable comments and
advice about my work. I appreciate their interest and support.

I also want to thank my lecturers at the Moscow State University of Railway En-
gineering, which I graduated from. I owe a special thanks to Dr. Feliz Povolotsky and
Natalya Seletskaya for their kind support and interest in my work at the university
and at the NetCracker Technology Corp.

Last but not least, I feel a deep sense of gratitude for my father and mother, they
loved and educated me during all my life and taught me how to do good things that
really matter. I also thank Anna Pospelova for her patience, moral support and care;

she helped me a lot during the last years.

Vladimir Rubin

Paderborn, 2007

vi

Contents

1 Introduction

1.1

1.2

1.3
1.4

Motivation L
1.1.1 Software Process Improvement
1.1.2 Software Process Modelling
1.1.3 Problem Statement
Thesis Objectives
1.2.1 Process Mining o
1.2.2 Software Repositories
1.2.3 Objective and Tasks
Applications in different Areas
Roadmap

2 Relevant Background

21

2.2

2.3

Business Process Management and Workflow Management
2.1.1 DBusiness Process Management
2.1.2 Workflow Management
2.1.3 Models and Aspects of Business Processes
Software Process Modelling and Improvement
2.2.1 Software Process Models and Engineering Environments
2.2.2 Software Process Improvement
2.2.3 Software Configuration Management
Modelling Formalisms L.
2.3.1 Transition Systems oL o
2.3.2 Petri Nets and Workflow Nets
2.3.3 Synthesis of Petri Nets from Transition Systems

vii

10
11
12

3 Incremental Workflow Mining Approach 43

3.1 System Architecture 43
3.1.1 Process-centered Software Engineering Environment 43
3.1.2 Software Repositories oL 45
3.1.3 Software Configuration Management Systems 47

3.2 Input Information 48
3.2.1 Audit Information from Software Repositories 49
3.2.2 Audit Information from SCM system 52
3.2.3 Document Logs, Problems and Assumptions 56

3.3 Incremental Workflow Mining Approach 58
3.3.1 Approach: Outline and Architecture 58
3.3.2 Step 1: Preprocessing oo 61
3.3.3 Step 2a: Control-flow Process Mining Algorithm 65
3.3.4 Step 2b: Mining Different Aspects 7
3.3.5 Step 3: Model Analysis and Representation 81
3.3.6 Incremental and Interactive Approach 84

3.4 Different Application Domains 87

3.5 Summary ... L 90

4 Algorithms and Models 91

4.1 Control-flow Mining and Open Issues 92
4.1.1 Openlssues 92
4.1.2 Document and Activity Logs 94
4.1.3 Notions of Completeness 95

4.2 Transition System Generation 97
4.2.1 Preliminarieso o 98
4.2.2 Approach 98
4.2.3 Constructing a Transition System 104
4.2.4 Modification Strategies oL 107

4.3 Petri Net Synthesis oo 113
4.3.1 Constructing Petri Nets Using Regions 113
4.3.2 Selecting the Target Format 118

4.4 TImplementation Lo 119
4.4.1 Research Prototype 120
4.4.2 Implementation in Process Mining Framework 123

4.5 Summaryo e 129

5 Evaluation
5.1 Evaluation using Open-source Software
51.1 ArgoUML Project
5.1.2 Mining Procedure oo,
5.1.3 Performance Analysis
5.1.4 Verification
5.1.5 Organizational Aspect
5.2 Evaluation using Student Repositories
5.2.1 Abstractions on the Log Level
5.2.2 Process Modelso
5.2.3 Performance Analysis
5.2.4 Verification
5.2.5 Conversion
5.3 Evaluation using Bug Repositories
5.3.1 Process Models oo
5.3.2 Performance Analysis
5.3.3 Verification
5.3.4 Organizational Aspect,
5.4 SUmMmary e e e e e e
5.4.1 Other Examples
5.4.2 Conclusions

6 Related Work and Discussion
6.1 Mining Software Repositories
6.1.1 Discovering Software Processes
6.2 Process Mining Approaches
6.2.1 Comparison
6.2.2 Broader Context
6.3 Data Mining and Mining Sequential Patterns
6.4 Discussion

7 Conclusion and Future Work
7.1 Thesis Contributions L oo
7.1.1 Analytical Work Lo
7.1.2 General Contribution 0.,
7.1.3 Algorithmic Contributions

X

131
131
132
133
136
137
138
138
140
141
145
146
148
149
150
154
156
157
159
159
159

163
164
167
169
171
173
174
176

7.2

7.1.4 Tool Support 182

7.1.5 Practical Evaluation 182
Future Work o 183
7.2.1 Software Engineering Domain 184
7.2.2 Other Domains 184
7.2.3 Mining Algorithms, 185

Chapter 1

Introduction

Nowadays, enterprises spend much effort to obtain models of their systems engineer-
ing processes. Precise, well-modelled and well-documented processes are essential for
developing high-quality products and for organizing effective communication among
employees. Structured and documented business processes significantly enhance the
capability to meet the requirements coming from rapidly changing business envi-
ronments. Improving the process capability of organizations is simply impossible
without explicit and documented process models. The process management premise,
proclaimed by the Software Engineering Institute (SEI) of Carnegie Mellon is: “The
quality of a system is highly influenced by the quality of the process used to acquire,
develop, and maintain it.” [Car05]. This premise implies focus on processes as well as
on products and is widely accepted both in research and in industry, see Total Quality
Management (TQM) [Ban93] principles and such ISO Standards (www.iso.org) as
ISO 9000, ISO 12207, and ISO 15504 for example.

The rapidly developing field of Information Systems (IS), which deals with the de-
sign, delivery, use and impact of information technology in organizations and society,
is conceived to have emerged from such foundational fields as computer science, man-
agement science and organizational science. Today, the IS discipline is becoming a
reference discipline for many others, including engineering, economics, management
and marketing [KHRO06]. However, one is not able to design and develop compre-
hensive information systems without modelling and sufficiently analysing software
engineering processes. Moreover, information systems are unable to ensure proper
support for people working in the enterprises (users) without dealing with the busi-
ness processes that they carry out. Thus, there is an arising interest in process-aware

information systems (PAIS), which aim to fill the gap between people and software

1

2 CHAPTER 1. INTRODUCTION

(information systems) using the process technology [DvdAtHO5].

The importance of software engineering and the role of software-intensive systems,
such as embedded systems, telecommunication systems, heterogeneous information
systems, in our daily life have increased dramatically over the past years. The field
of software-intensive systems involves integration of a multitude of disciplines. Along
with the traditional engineering disciplines (e.g., control engineering, electrical engi-
neering, and mechanical engineering) that address the hardware and its control, these
systems have to be aligned with the organizational structures and business processes.
The quality of engineering processes in general and of software engineering processes
in particular immediately influences the quality of the developed software-intensive
systems. So, not only software companies but multi-domain businesses dealing with
software-intensive systems have come to realize that their success lies in the effective
management of their software development processes and in “deep” understanding of
the users’ workflows.

In this thesis, we focus mainly on software engineering processes; we pose issues
and solve problems in this area, but we claim that similar issues and solutions are
also applicable to the area of organizational business processes. Thus, our research
is relevant for the areas of software-intensive systems and information systems in

general.

1.1 Motivation

In this section, we give the motivation of our research and point out the relevant

problems.

1.1.1 Software Process Improvement

The emphasis on process causes different standardization initiatives to deal with mea-
suring and improving the process capability of organizations. For example, the Capa-
bility Maturity Model*™ (CMM) [PCCW93] and the Capability Maturity Model®
Integration (CMMI®M) [SEI02] specifications of SEI define several levels of maturity
as a foundation for software process improvement. The CMM refers to software devel-
opment processes only; the CMMI is more general and applies to systems engineering,
which can consist of software and hardware as well. Another project called Software
Process Improvement and Capability dEtermination (SPICE) [Rou95] has a goal to

develop an international standard for software process assessment, it will result in

1.1. MOTIVATION 3

a new ISO/IEC 15504 standard and will be based on CMM, ISO 9001, Bootstrap
and other well-known standards. A detailed description of the standards is given in
Sect. 2.2 of the thesis.

In CMM, achieving the next level of the maturity framework results in increasing
the process capability of the organization. The first level of the CMM model (initial)
is characterized by ad-hoc and occasionally chaotic processes; the second (repeatable)
implies the existence of the process discipline repeating earlier successes; the third
level (defined) means that the processes are modelled, documented, standardized
and integrated to the organization; the fourth (managed) level is achieved when
the software process and products are quantitatively understood and controlled; the
fifth (optimizing) level enables a continuous process improvement from innovative
ideas and technologies (for more details on the CMM and the CMMI models, see
Sect. 2.2.2). So, the CMM was introduced for incrementally improving the maturity
from the first (initial) level to the higher levels, see Fig. 1.1. The CMM achieved
great industrial recognition; for example, nowadays, big enterprises use to require its
contractors to be on the defined level of CMM (initially, it was a requirement of the

US Department of Defense). Further, we focus on the first three maturity levels.

5
f » Optimizing
4
f » Managed
3
f » Defined
2
f > Repeatable
1
Initial

Figure 1.1: Capability Maturity Model

The Software Engineering Institute regularly publishes statistics about the organi-
zations implementing CMM and their achievements in software process improvement
in “Process Maturity Profile of the Software Community” [SEIO6b] (similar statistics
is published for CMMI also [SEIO6a]). These statistics are based on the information
from such appraisals as: CMM-Based Appraisals for Internal Process Improvement

(CBA IPIs), Software Process Assessments (SPAs) and Standard CMMI Appraisal

4 CHAPTER 1. INTRODUCTION

Method for Process Improvement (SCAMPI). The first section of the profile is called
“Current Status” and contains information about the levels of maturity of different
organizations. The 2005 end-year profile conducted information about 1804 organiza-
tions, 996 participating companies and 8897 projects. So, 5.7% of the organizations
are on the initial level, 39.6% are on the repeatable level and 37.4% on the defined
level, see Fig. 1.2.

lOO%A

90%

80%

70%

60%

50%

40% 39.6% 37 494

30%

20%

10% 5.7% 76% DE

1 [

Initial Repeatable Defined Managed Optimizing

Figure 1.2: Maturity Appraisal by Reporting Organizations

It means that 45.3% (5.7%+39.6%) of all the organizations do not have a modelled,
documented and standardized process and, thus, have to derive it (i.e. to document, to
standardize and to integrate a process model to the organization) to achieve the next
maturity level. After looking at the key practices of the CMM [PWG™193], we can also
interpret these statistics the other way: 82.7% of all organizations (5.7% + 39.6% +
37.4%) either do not have a modelled, documented and standardized process or they
have just implemented it and continue working on its tailoring in the organization.

Other interesting statistics in our context are the “Organizational Trends”, they
contain the time needed by the organization to improve the process capability, see
Fig. 1.3. If we take the right part of the graph, which contains the overall statistics
from year 1987 till now, we see that it takes 23 months to go from the initial maturity
level to the repeatable one, 20 months to go from repeatable to defined and 25 months
to go from defined level to the next one. Thus, for an initial level organization, on

the average, it takes 43 months (20 4 23) to come to the defined level and to get a

1.1. MOTIVATION)

100

75—
Number of months
to move to next
maturity level

Bl —
Largest observed
+— value that is not an
outlier
Recommended <0 N
time between AN 75th Percentile
appraisals 18 B
—— Median
1 25th Percentile
+— Smallest observed
value that is not an
0 outlier
Time Period of Initial Appraisal Pre-1902 1992 to Present All (1987 to Present)
Level 1to2 2to3 1to2 2to3 3tod 4to b 1to2 2to3 3tod 4105
orgs 25 12 175 262 63 64 200 274 65 64

Figure 1.3: Time To Move Up

documented and standardized software process model.

Thus, with the help of the statistics presented in this section, we come to a
conclusion that plenty of organizations do not have documented and standardized
software process models and it takes years to get them. Thus, along with the increasing
importance of process technology and process-oriented view on business, there is a

variety of unresolved issues, relevance of which cannot be overestimated.

1.1.2 Software Process Modelling

In this section, we discuss the software process models and methods used in the enter-
prises for designing the models. In the previous section, we learned that enterprises
need a documented and standardized process model in order to improve the quality
of their work. From the standpoint of a software process engineer, there is always
a kind of a software process in an enterprise, but this process is usually not explic-
itly formulated and documented. Accordingly, the information about the process is
often “hidden” in heads of particular practitioners or managers. Thus, the knowledge
about the software process is implicit and also distributed among different people,
while explicit documentation of the software process is essential for further process

management and optimization.

6 CHAPTER 1. INTRODUCTION

Models and Reality

The crucial question in the area of modelling in general and software process mod-
elling in particular is: How do models relate to reality?

In process modelling, we can distinguish between prescriptive and descriptive
process models [Sca01l, Wan00, Lon93]. Prescriptive models specify how processes
should take place. Descriptive models specify the processes how they actually happen.

After more than 30 years of software process research, people have gained a broad
experience in prescriptive software process modelling and software lifecycle models
[Roy87, Boe88, BT75, Gil81]. But there is a set of disadvantages in prescriptive
process modelling especially concerning its practical applicability: first, models usually
prescribe how a new software system should be developed; second, specific conditions
of a specific software system are often ignored or generalized; third, rather often
models describe an idealistic view on software development and can hardly prescribe
the ways of eliminating the chaos which happens in practice.

Descriptive process models, on the other hand, specify how particular software
systems are being developed. Rather often, these models are developed under very
specific settings and can hardly be applicable under other settings or serve as com-
mon modelling recommendations. For deriving common descriptive models, one must
collect a lot of data about different software projects; usually, it is difficult to find
out the sources of this data and to obtain it.

Thus, there is a lack of process models that (1) reflect real-life scenarios, i.e. do
not have discrepancies with reality and (2) are explicit and general enough to be
used under different settings in different projects. Moreover, obtaining such models
is possible only after having analysed huge amounts of data about software projects.
Consequently, people need methods for obtaining and analysing software projects

data and methods for deriving process models from it.

Manual versus Automatic Modelling

Another crucial modelling question is: Who designs the models and how is it done? In
our context, this question can be put the following way: Are software process models
designed manually (without software support) or semi-automatically (with the help
of software)?

The answer is: today, process engineers and managers in enterprises are almost
always solving this problem without software support. It has a set of disadvantages: it

is complicated, time-consuming, error-prone, and the results rapidly become obsolete;

1.1. MOTIVATION 7

the capabilities of human beings in detecting discrepancies between the actual pro-
cesses and the process models are rather limited. Practitioners (developers, designers,
quality assurance engineers) are usually not involved in process design, although they
are the real experts in their parts of the process. So, information about the practical
details of some parts of the process is often completely lost.

Furthermore, process engineers usually can not simply start from scratch when
defining explicit process models, but should take existing practices into account. Data
about these practices can not be stored and effectively maintained only by process
engineers without any automatic support. As a consequence, tool support is needed
for designing the process models!.

Thus, today process models are designed without essential tool support, which
enormously increases the complexity of tasks fulfilled by process engineers but does

not lead to effective solutions.

1.1.3 Problem Statement

In this section, we summarize the topics discussed above. After analysing the statistics
(see Sect. 1.1.1) and common experience in the area of software process modelling

(see Sect. 1.1.2), we come to the following conclusions:

e A great number of enterprises does not have documented and standardized soft-
ware process models. It takes years for enterprises to document their processes

and to create explicit software process models.

e Designed models usually prescribe the desired behaviour and there are a lot of

discrepancies between the actual processes and the models.

e Existing practices are often not taken into account and there is no appropriate

automatic support for considering them.

e Practitioners (developers, designers, quality assurance engineers) are not in-
volved in process design and there is no appropriate automatic support for

involving them.

e Without software support, process design becomes very complicated, expensive,

time-consuming and error-prone task.

L«Process Design” is a complicated and creative task and it can not be solved fully automatically.
But this should not be considered as a counter-argument against tool support. Quite the contrary,
the work of managers and process engineers in the enterprises should be significantly simplified and

improved with the help of an automatic approach.

8 CHAPTER 1. INTRODUCTION

Altogether, there is a lack of automatic and formal approaches that support people
(process engineers, managers, designers) during process design phase — there is a lack

of tool support for the designers.

1.2 Thesis Objectives

In this section, we outline the ideas and techniques, which are helpful for addressing

the issues discussed above and, then, we set our objectives.

1.2.1 Process Mining

During the last years, workflow management technology is becoming ever more im-
portant [LR00, JBS97, vdAvHO02]. It is a technology for modelling, enacting and
analysing business processes with computer support. Nowadays, this technology is
supported not only by Workflow Management Systems (WfMS), but by Enterprise
Resource Planning (ERP), Customer Relationship Management (CRM), Business
to Business (B2B) systems and others, such systems are also called Process-Aware
Information Systems (PAIS). Workflow design is a vital and creative task in this
area. Today, workflow research is inspired by the need of enterprises to support dy-
namic processes. So, the goal is not to produce structured processes (old “workflow
paradigm”), but to support, monitor and influence changing processes. In this sense,
there is much in common between the software process design problems presented in
Sect. 1.1.3 and the workflow design problems.

Workflow mining or Process Mining, as it is often referred to in the respective
literature, is a promising research area, which aims at supporting the workflow design
[vdAWMO04]. Modern PAIS systems record enormous amount of data in the form of
logs. Workflow mining algorithms use the logs of workflow activities for discovering
workflow models. These activity logs contain information about process executions
as they take place. Nowadays, the logs are provided by most workflow management
systems. Workflow mining suggests a new perspective on the workflow design life-
cycle [vdAvDHT03].

Traditional design life-cycle approaches begin with “workflow design” and “work-
flow configuration”, then they continue with “workflow enactment” and finish with
“workflow diagnosis”, see Fig. 1.4. During the first two phases, a business process is
designed by a process engineer, afterwards a workflow management system is config-

ured according to the design. In the enactment phase, workflows (process instances)

1.2. THESIS OBJECTIVES 9

Diagnosis S Diagnosis

Workflow

Workflow .
Design Enactment Life-cycle

Enactment Life-cycle Design

Configuration Configuration

Figure 1.4: Traditional Life-Cycle Figure 1.5: Mining Life-Cycle

are executed. In the diagnosis phase, information about executed workflows is anal-
ysed. However, in the traditional approach, the focus is on the design and configura-
tion phases. Diagnosis information is often neglected.

The workflow mining approach starts with the diagnosis phase, see Fig. 1.5. So,
workflow runtime information is used for creating the workflow design, which reflects
the actual situation in the company and is used in the next phases of the workflow

life-cycle.

1.2.2 Software Repositories

A critical question in the area of process mining is: Where do the logs come from? In
the business process management domain, when a workflow management system is
there, the logs are usually available. But what about the software process modelling
domain, the problems of which we are going to solve? Where do we take the logs,
when a process management system is not there? What are the real sources of the
logs? How do these logs look like, do they also contain activities?

Having studied modern software engineering environments (SEEs), we discov-
ered the following: firstly, most companies do not have process management systems
(which is also proved by the CMM statistics); secondly, the systems used in SEEs
do not provide activity logs. But, the most important and motivating point that
was understood is: nowadays, such software repositories as software configuration
management (SCM) systems, defect repositories, mailing lists, and discussion forums
comprise essential parts of software engineering environments. These repositories are
usually used even when no precise definitions of processes exist. Furthermore, using

software repositories and especially SCM systems is recommended by modern soft-

10 CHAPTER 1. INTRODUCTION

ware process improvement standards. For example, in CMM, one key process area
on the repeatable level is “Software Configuration Management”. Within this key
process area, software configuration management system must be introduced and
used in the company and an organizational policy for using this system must be
specified [PWGT93]. Practically, software repositories are standard components of
modern SEEs both in open-source and in commercial environments.

In the case of SCM, systems are aware of documents and changes made on them;
but, they are not aware of the activities of the underlying processes. Therefore, the
audit information about software projects provided by SCM systems in a form of
document logs (they contain information about the executions of software processes)
can be used for supporting process engineers in process design and for introducing
process management systems to companies.

As mentioned above, not only SCM systems, but also other software repositories
are playing an important role in software development; it is especially noticeable in
the open source software (OSS) domain. Thus, all these repositories can be used for
tracking the progress of software projects. Hence, software repositories are important
for supporting process design and they should be used for deriving useful information

about software processes and projects.

1.2.3 Objective and Tasks

In this section, we determine the objective of the thesis. The objective ensues from
the set of problems in the area of software process modelling described in Sect. 1.1.3,
from the benefits of process mining for workflow design described in Sect. 1.2.1 and
from the relevance and viability of software repositories described in Sect. 1.2.2.
The main objective is to develop a workflow mining approach for deriving process

models from document management information and

e to apply the approach to the domain of software process modelling;

e to assume that the software company is on the repeatable CMM level and that

software repositories including an SCM system are introduced to the company;

e to use the document logs obtained from the software repositories as an input

and generate formal software process models as an output.

So, the global perspective of our approach is to provide an automatic support for
achieving the third (defined) CMM level once the second (repeatable) level is reached,
see Fig. 1.6.

1.3. APPLICATIONS IN DIFFERENT AREAS 11

3

. Defined
Workflow Mining efine Process Model

Approach O
PP b @ @ o Qo0 o

2
Repeatable

Software
Repositories

Figure 1.6: Objective: New Workflow Mining Approach

This objective should be achieved by fulfilling the following tasks:

e Analyse and generalize information available in the logs of software reposito-
ries, focus on the software configuration management systems especially. Also,

analyse the document management systems used in other application domains.

e Develop an approach and algorithms for discovering formal process models from
the logs. Consider existing experience from the areas of workflow mining and

process synthesis.

e Use a formalism with precise semantics, which supports all the basic process
modelling patterns and for which there is a considerable algorithmic and tool
support for model analysis, verification and simulation (e.g. Petri nets [RR98]
and/or Transition Systems [HMUO0]).

e Find methods, which support transformation of the resulting models (Petri
nets) to the other widespread formalisms, like EPCs [KNS92] or UML Activity
Diagrams [OMGO3].

e Develop a research prototype and evaluate the algorithms on practical examples

with the help of this prototype.

1.3 Applications in different Areas

In our Motivation Section (see Sect. 1.1), we examined the area of software engi-
neering and software processes, which is the main focus of our research. But gen-

erally, looking at other research domains, such as mechanical engineering, electrical

12 CHAPTER 1. INTRODUCTION

engineering, mechatronics, telecommunications and networks, we realize that similar
problems and objectives are relevant to these domains too. Such areas as Product
Data Management (PDM) and Product Lifecycle Management (PLM), Enterprise
Resource Planning (ERP), Supply Chain Management (SupCM) and Customer Re-
lationship Management (CRM) can benefit from our approach; it can be used for
deriving process models from the audit information available in these systems. In
this thesis, we also briefly look into these areas.

For example, Product Data Management (PDM) is the discipline of controlling
the evolution of a product design and all related product data during the full product
life cycle [DACT]. Correspondingly, PDM system is a tool for managing data and pro-
cesses. In this context, Software Configuration Management can be regarded as a sub-
area of PDM, since it deals with a specific type of products, namely software. During
the last decades, the area of PDM has expanded to the collaborative Product Defini-
tion management (¢cPDm) [CIMO1]. cPDm manages the complete product definition
lifecycle, including mechanical, electronic, software, and documentation components
and the processes used during the lifecycle. So, cPDm includes such technologies as
PDM, visualization, enterprise application integration (EAI), and others.

Experience in the area of PDM has shown that, during the product life-cycle,
many workflows are created for controlling changes, reviewing and other purposes.
These ad-hoc workflows have to be formalized, documented and saved in the system.
Additionally, there are often discrepancies between the process design and the real
workflows. Since storing the audit information is a standard practice in this area,
PDM logs are available for analysis. These logs can be used for mining the production
processes. Thus, the approach and algorithms defined in the next chapters of this
thesis are also relevant for this area.

It is worth mentioning here, that auditing and process management capabilities
are essential also in ERP, SupCM and CRM areas and, thus, the approach should be
also applicable there.

1.4 Roadmap

Our research is inspired by the ideas from two significant research areas, such as
software process modelling and business process management, therefore, we have
to carefully specify the relevant background from both areas and to eliminate the

uncertainties, it is done in Chapter 2. We also define the background of modelling

1.4. ROADMAP 13

formalisms in the same chapter.

In Chapter 3, we present our process modelling approach called Incremental
Workflow Mining. We start with an architecture of software engineering environ-
ments, where the approach can be applied. Then, the sources of input information
are analysed and the main scheme of our incremental approach is described. The idea
of our mining algorithms is presented in this chapter on a general level using several
small examples.

Chapter 4 contains the details of the algorithms and models of our approach.
Systematically, we go through the steps of the approach and present our algorithms,
their formalizations and derived models. Implementations of these algorithms consti-
tute our incremental workflow mining research prototype and plugins for the process
mining framework.

The research prototype and the plugin are used for evaluating the approach on
three relatively big examples based on the open-source software repositories and
information from students’ software repositories respectively. These evaluation details
are covered in Chapter 5; the practical output of our algorithms is also presented in
this chapter.

In Chapter 6, we discuss the relation to existing work and point out our new
contributions to both fields: process mining and software process modelling.

In the last chapter, we present the thesis contributions and summarize open issues

and future work.

14

CHAPTER 1. INTRODUCTION

Chapter 2

Relevant Background

In this chapter, we examine the background knowledge that comes from the areas
of software process modelling and business process management and define the main
terms used in these domains!. The described areas deal with processes. According
to the Oxford dictionary [SW89], a process is “something that goes on or is carried
on; a continuous action, or series of actions or events; a course or method of action,

proceeding, procedure”.

2.1 Business Process Management and Workflow Man-

agement

In this section, we go into the details of the areas of business process management
and workflow management. In the literature on business process management, there
are many different proposals using different terms, many of them are not consistent
and no terminology is fully accepted. Our definitions and terminology are strongly
influenced by [vdAvH02, DvdAtHO05, LR00, JBS97, Hol95]. The terminology and the
ontology of the domain was also discussed in our work [AKRO05a, AKRO05b, AKRO6].

2.1.1 Business Process Management

In this section, we describe the area of Business Process Management (BPM). The
Workflow Management Coalition defines business process as follows: “a set of one
or more linked procedures or activities which collectively realise a business objective

or policy goal, normally within the context of an organizational structure defining

! A discussion on process mining is held in the next chapters, where we describe our approach and

related work.

15

16 CHAPTER 2. RELEVANT BACKGROUND

functional roles and relationships” [WfM99]. Another definition is given by v. d.
Aalst and v. Hee [vdAvHO2|: “business process is one focused upon the production
of particular products. These may be either physical products, such as an aircraft or
bridge, or less tangible ones such as a design, a consultation paper, or an assessment.
In other words, the product can also be a service”. Taking both definitions into
account, we realize that a business process is a process, which has an objective and
is focused on production of products or services; secondly, it takes place within an
organization.

The given definitions are very general, but they answer the generality of purposes
and applications of business processes. Business process management is applied in
many areas, such as business administration, economics and management, psychology
and sociology, mechanical engineering, network engineering and others.

During a long time, business processes were managed manually (by people). Peo-
ple planned and structured their work and decided on which phases of their work-
ing process they need some computer support. During the last years, the situation
has changed, information systems provide new efficient ways of organizing business
processes with the aid of computers. Software is used for managing processes and
organizing the work in the company. Often it is called a shift from “data-aware”

information systems to “process-aware” information systems (PAIS).

2.1.2 Workflow Management

An example of such a PAIS is a Workflow Management System (WfMS). The Work-
flow Management Coalition states that workflow is “The computerised facilitation
or automation of a business process, in whole or part.” [Hol95]. It means that we
start speaking about workflows instead of business processes, when they are man-
aged by software. So, the term “business process” has a more general meaning then
the term “workflow”, but since in this thesis we are speaking about software-based
management of processes, these terms are used interchangeably.

Workflow Management System is defined as follows: “A system that defines, cre-
ates and manages the execution of workflows through the use of software, running
on one or more workflow engines, which is able to interpret the process definition,
interact with workflow participants and, where required, invoke the use of IT tools
and applications.” [WIM99]. From this definition, we deduce the following general
use cases of the WMS:

e Modelling (designing) business processes.

2.1. BUSINESS PROCESS MANAGEMENT AND WORKFLOW MANAGEMENT17

e Executing business processes.

e Managing process executions.

e Interacting with workflow participants.
e Interacting with other applications.

Now, let us systematically go through these use cases. WfMS must support mod-
elling business processes. So, we distinguish between the terms “business process”
and “business process model” (respectively “workflow” and “workflow model”). Now,
since we are dealing with workflows and software, we can give more concrete defi-
nitions, which correspond to a software engineering view on WfMS. The following
definitions resulted from the research in the AMFIBIA project and were formulated
in our papers [AKRO5a, AKRO05b, AKRO6]: A business process consists of a set of
activities that are executed in some enterprise or administration according to some
rules in order to achieve certain goals. An activity is a description of a piece of work
that forms one logical step within a business process. A business process model is a
more or less formal and more or less detailed description of the persons and artefacts
involved in the execution of a particular business process and its activities as well
as of the rules governing their execution. A business process model consists of tasks.
A business process is an instance of a business process model and an activity is an
instance of a task. A business process is also often referred to as case in the respective
literature. A meta-model describing the introduced terms is shown in Fig. 2.1 as a

UML class diagram.

Business Process Model <<instance of>> Business Process (Case)
1 *
* *
Task <<instance of>> Activity
l *

Figure 2.1: Business Process Model and Case

Modern WEMS usually include also model analysis tools. They check the semantic

correctness of the process definitions, make verification and simulation of the models.

18 CHAPTER 2. RELEVANT BACKGROUND

Analysis should precede the execution of the models.

FEzxecuting business processes and managing process executions are the other use
cases supported by a WIMS. The component of the WfMS which fulfils these opera-
tions is often called workflow enactment service, it makes up the heart of the workflow
management system. This service can be implemented by one or several workflow en-
gines. Workflow engine deals with the actual management of workflows. It creates
cases, activities, matches resources for these activities, makes resource assignment,
matches information for the activities, launches external applications, records all the

historical data about the case execution and checks its consistency.

WIEMS must also support interaction with workflow participants. Participants con-
tact the system using workflow client applications (process designers are not workflow
participants, they contact the system using the process definition tools). Every par-
ticipant has a worklist. A worklist contains a set of work items. A work item is the
combination of a case and a task which is about to be carried out. As soon as an
employee decides to carry out a work item from his worklist, it becomes an activity.
Another set of workflow client applications is provided to managers for administra-
tive and monitoring purposes. Using these applications, people see the current state

of work and the history.

Since nowadays, a WIMS can be a part of a bigger information system or it can be
built as a distributed application or it has to interact with the other WfMS, another

use case is integration with the other applications.

Thus, the main concepts and use cases of WfMS are summarized in the Workflow
Reference Model [Hol95], which represents the recommended architecture of a WfMS,
see Fig. 2.2. There are a lot of other use cases for WfMS, here we present only the main
concepts and terminology, additional details can be found in the workflow reference

model of WEMC and the books referenced in the beginning of this chapter.

The reference workflow management system consists of the workflow engine in the
middle and of five interfaces between the engine and the applications and tools. Inter-
face 1 connects process design tools with the workflow enactment service. Interface 2
is used for the interaction with the client applications, e.g. with worklists. Interface
3 is used for executing external applications. Interface 4 enables the work exchange
between different workflow systems. Interface 5 is used by the administration and
monitoring tools. Every interface should be achieved using a Workflow Application
Programming Interface (WAPI). WAPI is provided to the external tools and appli-

cations by the workflow engine. Often, WIMS is implemented as a client/server or a

2.1. BUSINESS PROCESS MANAGEMENT AND WORKFLOW MANAGEMENT19

Process
Definition Tools

Interface 1
Workflow API and Interchange formats Interface 4
Interface 5
i Other Workflow
Administration Workflow Enactment Service Enactment Service(s)

& Monitoring

Tools Workflow
Engine(s)
Interface 2 ¢ # Interface 3

Workflow
Client

Workflow
Engine(s)

Invoked

Applications Applications

Figure 2.2: Workflow Reference Model [Hol95]

multi-tier architecture, where a workflow engine is a server or an application server

respectively, see Fig. 2.3.

Applications
And
. Tools
Client =
Side A |nterfaces
Workflow
Engine
Server ______ ¥ __________

Side

Database

Figure 2.3: Workflow Management System Architecture

The modern successful and rapidly developing workflow market contains different
types of workflow management systems and business process modelling tools. Here,
we refer to the following WfMSs: iProcess suite from Tibco (www.staffware.com) is
one of the most widespread WfMSs, IBM WebSphere (www-306.ibm.com/software/

20 CHAPTER 2. RELEVANT BACKGROUND

websphere/) is a huge platform combining BPM and SOA, COSA (www.cosa-bpm.
de) is a BPM solution based on Petri nets, Domino Workflow from Lotus, I-Flow
from Fujitsu, HP ChangeEngine from HP, SAP NetWeaver from SAP and many
others. In the area of business process modelling, such solutions as ARIS [Sch00] (a
platform and an architecture for business process modelling) from IDS Scheer and
ADONIS (www.boc-eu.com) should be also mentioned.

In this section, we introduced the main terms in the area of workflow manage-
ment and made the connection between the concepts of business processes and the

information technology used for implementing them.

2.1.3 Models and Aspects of Business Processes

Correct and efficient business process modelling, which reflects the real business cases,
is a keystone of a successful workflow management in the enterprise. Research in this
area gives motivation for this thesis, our special interest was discussed in Sect. 1.2.1.

Generally, business process models are used for different purposes:

e Documentation of the business process.

Collaborative design of the business process.

e Communication and teaching of the business process.

Analysis and verification of the business process.

Optimisation and re-engineering of the business process.

Computer support and execution of the business process (see Sect. 2.1.2).

Business processes play an extensive role in managing the business in organiza-
tions, as described in Sect. 2.1.1. Therefore, practically, business process models do
not contain only information about the order of tasks (control flow), but also the
data about the required and produced documents, the resources that can execute
the tasks and the strategy of their assignment, the structure of tasks and their func-
tional relations and many other information. So, it turns out that several aspects® of
business processes can be distinguished when modelling business processes; and these

aspects can be modelled more or less independently from each other, see Fig. 2.4.

2Such terms as “perspective” or “view” are also often used instead of the term “aspect”. We use
this term, because we consider the relation between business process aspects and aspect-oriented

programming and modelling to be very important.

2.1. BUSINESS PROCESS MANAGEMENT AND WORKFLOW MANAGEMENT21

Figure 2.4: Aspects of Business Processes

Here, we will not go into the details of modelling business process aspects, since it
is a separate area of research, which goes beyond the background knowledge, for de-
tails about the integration of aspects see [AKR05a, AKRO05b]. Here, we use aspects
for better explaining the models of business processes. So, the basic aspects are the

following:

Control Aspect: This aspect deals with the dynamic behaviour of the business
process. It defines the tasks resp. activities of a process and the order in which
they are executed. The definitions of tasks and activities were given already in
Sect. 2.1.2.

Information Aspect: This aspect deals with the data and documents used in the
business process. It defines the structure of the data and documents that are
used and changed within the tasks of a process and how they are propagated
between tasks of a business process - resp. between the activities of a case.
A document here is an artefact representing some piece of information. The
information aspect of a business process basically defines the structure of the
involved documents and their relation. Similar to processes and cases, tasks
and activities, we distinguish between document instances and document types,

where document type defines the structure of a document instance.

Organization Aspect: This aspect deals with the organization structure. It defines

the roles, positions, agents, organization units and resources that are involved

22 CHAPTER 2. RELEVANT BACKGROUND

in a business process. An organization unit is a group of some people organized
for some purpose. An organization position is an atomic organization unit. A
role is also defined as a group of resources; every resource in this group has spe-
cific skills. The difference between organization units and roles is: organization
units define the organizational structure, roles define the functional structure.
A resource — person, machine or application which is assigned a task. Agent
is a human resource. Resources required for some task are assigned via their

positions and/or roles.

The business process modelling area also uses to deal with other aspects including
transaction aspect, assignment aspect, and authentication aspect, see Fig. 2.4; as
mentioned before, detailed description of these aspects is out of the scope of this
thesis.

Business process models are usually defined in a textual or graphical form in a
formal language notation. Different formalisms are used for modelling different as-
pects. Petri Nets [Aal98] and EPCs [KNS92] are used for modelling the control aspect;
for the information aspect, people use ER Diagrams [Che76], UML Class Diagrams
[OMGO3] and others; for the organization aspect people are using Organigramms,
etc. Some notations support several aspects, e.g. UML Activity Diagrams [OMGO3],
BPMN [OMGO06] and BPEL [ADG"03]. One of the important criteria for selecting
an appropriate formalism is whether it can be processed by the engine of a workflow
management system.

In this section, we proposed an aspect-oriented view on process modelling, see
Fig. 2.5. We consider this view to be useful for understanding the essence of business
process modelling, for developing common formats, for exchanging models between

different companies, for integrating new aspects and implementing workflow engines.

2.2 Software Process Modelling and Improvement

In this section, we describe the area of software processes. The software process de-
fines the way in which the software engineering is organized, managed, measured,
supported and improved [DKW99a|. This field has grown up in the 80ties to address
the increasing complexity and criticality of software development activities. Histor-
ically, this research has started at that time, when researchers and practitioners
have realized that software engineering is a collaborative, creative, and complex task

and not just creation of tools and new languages. When developing software, people

2.2. SOFTWARE PROCESS MODELLING AND IMPROVEMENT 23

ER Class
Diagrams - Diagrams
\ /I 7
l
v

Organigramms

Information Organization

Aspect \ Aspect
Business

Process

Control Aspect

Petri Nets LRI EPCs

Figure 2.5: Aspect-oriented View on Process Modelling

have to manage and concern such issues as technology, methodology, social and or-
ganizational behaviour, business and market. All these issues directly influence the
quality of a software product. Thus, the software process is defined the following way:
“the coherent set of policies, organizational structures, technologies, procedures, and
artefacts that are needed to conceive, develop, deploy, and maintain a software prod-
uct.” [Fug00]. Comparing this definition to the definition of business process given in
Sect. 2.1.1, we realize that the software product in the case of the software process
is what was called the objective in the case of the business process. Originally, the
definition of a business process was more general then the definition of a software pro-
cess; but, nowadays, taking into account the growing popularity of software-intensive
and embedded system, where software process can not be considered separately from
the other business processes, this difference is becoming less and less visible.
Earlier, during the 60ties and the 70ties, before the software process research
was started, people defined the software lifecycles, such as waterfall, incremental
development, prototype-based development [Roy87, Boe88, LB03]. Actually, lifecycles
defined different stages in the lifetime of a software product and the guidelines for
carrying out these stages. Basically, lifecycles can be considered as software processes,

but on a rather abstract and imprecise level. Today, the concept of lifecycles is often

24 CHAPTER 2. RELEVANT BACKGROUND

considered as an idealised concept, which has limited practical applicability.

In the next sections, we discuss the most important areas of the software process
research; this discussion is influenced by [Fug00, DKW99b, Ost87, CK092, FH93,
Gru02].

2.2.1 Software Process Models and Engineering Environments

In this section, we discuss the area of research, which deals with models of software
processes and their enactment. During the years of research, people created a set of
Process Modelling Languages (PMLs) and modelling formalisms. A PML is a language
that expresses software development processes in a form of a process model, i.e. in a
computer-internal description. It has to be possible to model such process elements
as tasks, roles, tools and agents in a PML.

There are different views on the process models (the idea of views is similar to
the idea of aspects in business process modelling presented in Sect. 2.1.3). Typical

views are:
Activity Model: It focuses on the structure, properties, and relations of activities.

Product Model: It describes the types, structure and properties of the software

items (documents) of a process.
Resource Model: It describes the resources needed or supplied to the process.

The problems of views separation and integration are important in the area of
software processes as well as in the area of business processes. Like business processes,
software processes play an extensive role in a company and, thus, have to manage
not only correct order of tasks execution, but people, information, business change

and evolution, etc. So, the main elements of a software process are the following:

Activity: It is a process step, operating on software artefacts and coupled to a
human agent and to external production tools. Activities can be on different

abstraction levels.

Product: It is a software artefact which is persistent and versioned, and which
can be simple or composite. These artefacts describe software products: design

documents, user documents, test data, etc.

Role: A Role describes the rights and responsibilities of the human.

2.2. SOFTWARE PROCESS MODELLING AND IMPROVEMENT 25

Human: Humans are process agents or process performers. Humans undertake

roles.

Organization: Organization is a group of humans who have relationships with each

other and to process elements.

Tool: Tools are used for software production. People are using such tools as com-

pilers, parsers, textual editors and CASE tools.

The relationships between these elements are summarized in Fig. 2.6.

has sub P> has sub P>
has input >
Activity has output P> Product
Organization employs
Tool
needs
contains
Performer Role
plays |

Figure 2.6: Basic Software Process Elements

An environment that supports the creation and exploitation of software process
models is often called Process-centered Software Engineering Environment (PSEE).
So, PSEEs are based on PMLs. There is a set of good surveys of PSEEs and PMLs,
we establish our brief overview of PSEEs on some of them [DKW99b, Gru02, ACF97,

GJ96]. Our goal is to show several relevant ideas from this area.

OIKOS

The OIKOS [ACM90, MA94] is an environment for software development. The idea
and main goal of OIKOS is to ease the construction of PSEEs. The other goals are
comprehension and documentation of software processes. It offers two PMLs: Limbo
and Paté. Limbo is a high-level process specification and design language; there is
a graphical editor for Limbo. Paté is and executable distributed language. A Limbo

specification is stepwise refined into the Paté executable code. Both languages are

26 CHAPTER 2. RELEVANT BACKGROUND

based on concurrent logic and Prolog. The OIKOS process model can be considered

as a communication of concurrent agents.

EPOS

The emphasis of EPOS [CHL'94] is on flezible and evolving process assistance for
software development. EPOS can manage “soft” process assistance as well as “hard”
process control. EPOS process models are expressed in SPELL, an object-oriented
and concurrent modelling language, it has Prolog as a subset. Activity networks in
SPELL can express both goal-oriented process models, using static rules and con-
straints for automatic network planning, as well as activity-oriented process models,
using dynamic pre- and postconditions and scripts. The models are stored in a ver-
sioned database called EPOS-DB.

Merlin

In Merlin [JPSW94], process modelling is performed on two different levels: the first
level is visible to the process-engineer, it uses the ESCAPE design language; second
level is used for enacting the process design, it is based on a Prolog-like programming
language. ESCAPE (Extended Entity Relationship Models and Statecharts Com-
bined for Advanced Process Engineering) is a graphical language which contains the
following models: object model is based on EER-model, it is used to specify the struc-
tural aspects of process, such as document types, activities, etc.; coordination model
is based on statecharts and specifies the behaviour of a process; organizational model
specifies roles and responsibilities, i.e. organizational aspect of a process. Thus, the
structuring of process is reached through a separation of concerns, which makes the
design understandable and applicable. Prolog enactment is reached by mapping the
ESCAPE design to the Prolog rules.

SPADE

The SPADE [BFGL94] is an environment for process analysis, design and enactment.
The main concept of the project is the adoption of extended Petri nets, augmented
with specific object-oriented constructs to support product modelling. SLANG is the
PML of SPADE, it is used to support process analysis and design, its graphical syntax
(based on traditional Petri nets) is easy to learn and to use. SLANG is integrated
with the O2 object-oriented database which acts as a repository for both process

models and process products.

2.2. SOFTWARE PROCESS MODELLING AND IMPROVEMENT 27

FUNSOFT Nets

Another approach for modelling and analysing software processes is the FUNSOFT
Nets [EG91] (the approach was also used in the business process modelling area).
This approach adopts high-level Petri nets for describing software process models.
The semantics of FUNSOFT nets is defined in terms of Pr/T (Predicate/Transition)
nets. Therefore, it allows for standard analysis and simulation techniques approved
for Predicate/Transition nets.

As is easy to see, many PSEEs utilize the concepts of Prolog and graphical formal
specification languages like Petri nets. We are also using these concepts in this thesis,
Petri nets are used as the main process modelling formalism and Prolog is used for

implementing our research prototype.

2.2.2 Software Process Improvement

The background of software process improvement was used already for the motivation
for the thesis in Sect. 1.1.1. CMM and CMMI were described there. However, the
initiatives in this area can be divided into three directions [DKW99b]:

o Definition of standard processes. These focus on quality standards.

e Definition of assessment methods. These focus on measuring process maturity

and its levels.

o Definition of improvement methods. These are based on the idea that process

improvement can be accomplished by learning from the previous experiences.

In the area of standard processes, the International Standard Organization (ISO)
(www.iso.org) supplies a family of standards, namely ISO 9000, which define the
phases of the production and delivery processes. An organization has to follow these
phases to produce a high-quality product. These standards are applicable to all pro-
duction processes and its specialization ISO 9000-3 — only to the software develop-
ment. Yet, ISO 12207 is more concrete than ISO 9000 in respect to software engineer-
ing processes, it includes mandatory processes, tasks and activities. In Europe, the
European Space Agency (ESA) defines standards, guidelines and recommendations
concerning the software and concerning the software project management procedures.

A very well-known assessment method is the Capability Maturity Model (CMM)
(see Sect. 1.1.1) developed by SEI, the work on it was motivated by Humphrey

[Hum89]. The process assessment program starts with training the assessment team,

28 CHAPTER 2. RELEVANT BACKGROUND

then the project members complete the questionnaires and participate in the inter-
views. These questionnaires and interviews are used for preparing the report identify-
ing the weaknesses of the organization. In the European Union within the Bootstrap
[Kuv95] project, a framework for assessing industries and promoting process improve-
ment was defined. Basically, Bootstrap is an improvement of the SEI method taking
the ideas from the ISO 9000-3 guidelines into account. The Software Process Im-
provement and Capability dEtermination (SPICE) standard [Rou95] funded by the
International Committee on Software Engineering Standards has the goal to build
an international standard for software process assessment. It uses the knowledge ac-
quired in CMM, Bootstrap and ISO standards. The result of this project is the new
IS0 15504 standard.

In the context of software process improvement, the Quality Improvement
Paradigm [BCM192, Bas93| presents the basic idea that process improvement is
a continuous process. Such methods as Goal/Question/Metric (GQM) and Ezperi-
ence Factory Organization are used for guiding the process execution and structuring
the organizational activities. This approach takes previous experiences into account.
Along with the CMM, the SEI developed a Personal Software Process (PSP) and
Team Software Process (TSP) [HumO5b, HumO5a|, they are aimed at guiding and
improving the productivity of individual software engineers or of small software en-
gineering teams. PSP and TSP apply many considerations of the CMM. The SEI
provides also positive practical evaluations of both approaches. Another approach to
mention is the Total Quality Management (TQM) [Fei91la, Ban93|, which is a gen-
eral paradigm guiding organizations and focusing on quality. The idea behind TQM is
that quality is not only related to product but to the production process and that the
management of quality implies continuous and never-ending process improvement.

In this Section, we described the set of well-known process improvement stan-
dards, which are widely accepted both in science and in industry. In this thesis, we
suppose that our automatic method, which uses software repositories for deriving
information about software processes and for making process models explicit, can be
helpful for process assessment and improvement teams when dealing with rapidly

changing software development processes.

2.2.3 Software Configuration Management

Software Configuration Management (SCM) is the discipline of controlling the evolu-

tion of a software product. As mentioned in Sect. 1.2.2, using SCM is recommended

2.2. SOFTWARE PROCESS MODELLING AND IMPROVEMENT 29

by software process improvement standards, e.g. CMM. Moreover, SCM plays a key
role in achieving ISO 9000 conformance. In this section, we use the following papers
as a background [EC94, Fei9lb, FZ99, DACT, EFM98, CW98a).

Apparently, nowadays it is almost impossible to work without SCM systems, since
software engineering implies a collaborative way of work that must be appropriately
controlled. The Association of Swedish Engineering Industries defines Configuration
Management as a “controlled way to manage the development and modifications of
systems and products, during their entire life cycle.”

In the respective literature, people use to examine the SCM area from two different
perspectives: management and development. From the management perspective, SCM
controls the development of products by the identification of product components and
control of their changes. The main activities comprising the management perspective
are: configuration identification, configuration control and audit, and configuration
status accounting. From the developer perspective, SCM offers tool support for main-
taining the software product, storing its history, providing stable development en-
vironment and coordinating simultaneous product changes. The SCM standards are
described on a rather conceptual level, but from the developers perspective, an SCM
system must provide the following functionality: version management and configu-
ration selection, concurrent development, build and release management, workspace

management, change management.

s e 4 s

Release 1

Branch 1
- Revision

Figure 2.7: Revisions Graph

Version management is the key aspect of SCM. A software element put under the
version control is called a configuration item (CI). A stable issue of a CI's content is
called a version. The background idea of version management is simple: each time a
CI (file) is changed a revision is created. Configuration item evolves as a sequence
of revisions. Development can be also organized in parallel lines called branches.
Branches can be merged into new revisions. An example presenting the graph model

of revisions and branches is shown in Fig. 2.7. Along with version management, SCM

30 CHAPTER 2. RELEVANT BACKGROUND

must support also configuration selection (i.e. a rule-based mechanism for selecting
desired configuration items). Baseline is a particular configuration serving as a basis

for further development. Release is also a configuration delivered to a customer.

SCM Repository

checkout,

Doc A :checkln

Figure 2.8: Checkin/Checkout Model

Concurrent development is the major advantage of using an SCM. The team
members can work in parallel, which is extremely critical in the software engineering
area. Users work with the SCM repository and with the file system. Users retrieve a
version of a file from the repository using the checkout operation, then they work with
them in the file system. Modified files are stored back into the repository using the
checkin operation, see Fig. 2.8. For concurrent development an SCM should support
synchronization of concurrent changes: the system can either lock edited files for one
user (pessimistic approach) or allow simultaneous changes of the same file, but then
SCM has to detect conflicts during the checkin (optimistic approach).

Build management supports collecting code and documents for particular release
and using build tools ; release management provides identification and organization
of all the configuration items for the release. Workspace management deals with the
user interface of the SCM system. Workspace works as a sandbox, where developers
work in isolation, but still controlled by the SCM. Change management handles the
changes in a system, e.g. errors, improvements, refactoring; change management is
usually achieved with the aid of separate tools supplied together with the SCM.

A great variety of tools was developed in the SCM area. The spectrum ranges
from very small specific tools like SCCS [Roc75] and RCS [Tic85] (support mostly
version control) to huge integrated systems like ClearCase (http://www-306.ibm.
com/software/awdtools/clearcase/). In this thesis, for our experiments we use
such open-source SCM systems as CVS [Fog99] and Subversion.

In this section, we presented only the most relevant background ideas from the

2.3. MODELLING FORMALISMS 31

area of SCM, additional details can be found in the literature listed in the beginning
of this section. The most important functionality in our context is providing the
revision history in the form of logs of checkins and checkouts, further details are

described in Chapter 3 on concrete examples.

2.3 DModelling Formalisms

In this section, we present the main definitions of the modelling formalisms used in

the rest of the thesis.

2.3.1 Transition Systems

Transition system (TS) is a special automaton, which has no outputs. In mathemat-
ics, TS is sometimes called semiautomaton. Transition systems are often used for
specification and verification of complex systems in a variety of application domains
including embedded systems and control engineering, telecommunication networks
and protocols, software and process engineering.

Further, we give a definition of a transition system, which is based on [NRT92,

CKLY93]:

Definition 2.3.1 (Transition System). A transition system (TS)is a tuple T'S =
(S,E,T,sip), where

1. S is a set of states,

2. E is a set of events (also often called labels),
3. TCS x E xS is a transition relation,

4. s;, is an initial state

The elements of T are called transitions and are often denoted as s — s’ instead
of (s,e,s’). A transition system is finite if S and FE are finite. In the sequel, we will
consider only finite transition systems. A TS is called deterministic if for a state s
and a label e there can be at most one state s', such that s = s'.

The system starts in an initial state; there is a transition s — s’ if the system
can change the state from s to s’ on event e. We also define a reachability relation
T* on the transition system: it is a transitive closure of the transition relation 7.

Thus, state s’ is reachable from s in T if there is a sequence of transitions o =

32 CHAPTER 2. RELEVANT BACKGROUND

(s,e1,51)...(Sk ex, '), this is denoted as s = s’ or s — . Also, each state is
reachable from itself, so, in general, the sequence of transitions can be empty.
Furthermore, we will consider transitions systems that satisfy the following basic

arioms:
Al. No self-loops: V(s,e,8) € T : s # ¢

A2. No multiple arcs between a pair of states: V(s, ey, s1),(s,ez,82) € T : (s1 =

So = €1 = 62)
A3. Every event has an occurrence: Ve € E : I(s,e,s') € T
A4. Every state is reachable from the initial state: Vs € S : s;, S

In special cases, we will also deal with transition systems with self-loops (they
satisfy axioms A2,A3,A4).
An example of a simple transition system with 5 states, 3 events and 5 transitions

is shown in Fig. 2.9.

Figure 2.9: Transition System

Definition 2.3.2 (Transition System Isomorphism). Two Transition Systems
TS1 = (S1,E1,T1, Sin,) and TSy = (S2, Ea, Ts, sin,) are isomorphic if there exist
two bijections fg : S1 — Sz and fgp : By — Es such that s;,, = fs(Sin,) and
(s,e,8") € Th if and only if (fs(s), fr(e), fs(s')) € T for all s,s' € S and e € E.

Rather often, we consider isomorphism of a TS and a minimized version of a T'S. We
use also split-isomorphism. Transition systems T'S7 and T'Sy are split-isomorphic if

there is such a transition system 7S that:

2.3. MODELLING FORMALISMS 33

1. the underlying graphs of T'S7, T'Se and T'S are isomorphic,
2. labels in T'S; and T'S5 are two different enumerations of events in TS

The enumeration assigns different instance numbers to the events. For example,
two arcs labeled with an event a in T'S;7 can be labelled as a1 and as in T'S5. The
corresponding operation is called splitting.

Thus, we have sketched three notions of equivalence: isomorphism of T'S, isomor-
phism with a minimized TS and split-isomorphism. These notions guarantee that
two equivalent TSs are bi-similar. For further details about split-isomorphism and

bi-simulation, we refer to [Mil82, CKLY95].

2.3.2 Petri Nets and Workflow Nets

In the thesis, we use Place/Transition nets (P/T nets), which is a class of Petri nets
[Pet62, Rei87, RRI8, Mur89|. Here, we start with the basic definitions:

Nets

Definition 2.3.3 (Net). A net N is a tuple (P, T, F'), which consists of two sets P
and T, such that TN P = () and a relation FF C (P x T)U (T x P).

An element p € P is called place, an element ¢ € T is called transition, and f € F
is called arc. F is called flow relation. Further, we consider only finite nets, i.e.
nets with finite sets of places and transitions. Places and transitions together are also
called elements of the net or nodes. A node x is an input node of a node y if there is
a directed arc from z to y, i.e. (z,y) € F or xFy for short.

An example of a net is presented in Fig. 2.10. This net contains 5 places 3 tran-
sitions and 7 arcs; places are represented as circles and transitions as rectangles

respectively.

t1 Ds

P2 P4 & (:
(-t

Figure 2.10: Net

34 CHAPTER 2. RELEVANT BACKGROUND

Definition 2.3.4 (Pre-set and Post-set). Let N = (P,T,F) be a net and = €
P UT is an element of the net, then

1. A pre-set of x is a set *x = {y € PUT|yFz},

2. A post-set of v is aset * ={y € PUT|zFy}

For a set X C PUT of nodes of N a pre-set is *X = |J,cx *z and a post-set is
X® =Uyex2®

A directed path (path for short) of a net is a nonempty sequence zg ...z of
elements satisfying z; € z?_; for each ¢ (1 < i < k). The path leads from xg to x.
In the other words, there is a directed path between zg and xy, if xoF ¥y, where F™*
is a transitive closure of the relation F'. An undirected path is a nonempy sequence
xg ... xy of elements satisfying z; € *z;—; Ux?_; for each i (1 < i < k). In the other
words, there is an undirected path between z¢ and zy, if zo(F U F~1)*z;, where

(FUF~H* is a transitive closure of the relation F' and its inverse relation F~1!.

Definition 2.3.5 (Connectedness). The net is strongly connected if, for each two
elements x and y, there exists a directed path leading from x to y. The net is weakly
connected if for each two elements x and y, there exists an undirected path leading

from z to y.

Place/Transition Nets

Now, after we have made the most basic definitions, we can start dealing with P/T
nets. But first, we give a definition of marking. A marking shows the number of
tokens at every place of a net. The definition of marking is essential for defining the

semantics of Petri nets.

Definition 2.3.6 (Marking). Let N = (P, T, F') be a net. A marking of this net is
a mapping m : P — N.

So, a marking is a bag (multiset) over the set of places P. Sometimes it is also
represented as a formal sum or as a tuple. Graphically it is usually represented as
sets of tokens in places. The sum of two markings (bags) (X + Y), the presence of
an element in a marking (a € X), the intersection of two markings (X NY’) and the
notions of subbags (X < Y) are defined in a straightforward way and can handle
both for sets and bags.

2.3. MODELLING FORMALISMS 35

Definition 2.3.7 (P/T Net). A Place/Transition net PN is a pair (N, m), where
N = (P,T,F) is a net and m is a marking of N.

Often, P/T net is defined as a triple (N, W, m), where W is a weight function
W : F — N\{0}. In our case, we deal with such P/T nets, where the weights of
all arcs are equal to 1, i.e. W : F — {1}; so, we exclude the function W from the
definition of the P/T net. Thus, we deal with so-called ordinary Place/Transition
systems.

An example of a P/T net is shown in Fig. 2.11, it contains the net presented in

Fig. 2.10 with the marking [p1, p2].

P1 P1 P3

P3
<:> gkl 'Q\ Ps Q_’tl "@\ Ps
P2 Pa ts OB P4 t3
oNp. oRp -

Figure 2.11: P/T Net Figure 2.12: Transition Firing

In order to define the dynamic behaviour of a system, a marking (it represents a

state) is changed according to the following rules.

Definition 2.3.8 (Firing rule). Let PN = (N, m) be a P/T net, where N is a net
and m is a marking of the net. Transition t € T is enabled by a marking m, if *t < m,
i.e. if m contains all places in *t. We denote it as m L, In this case, transition ¢ can
fire. Its firing transforms the marking m to the following marking m/, we denote it

as m — m’ and define for each place p € P by

m(p)-1 ifpe®tandp¢t®,
m'(p) =< m(p) +1 ifpet® andp¢ °t,

m(p) otherwise

For the sake of readability, further, we write “Petri net” instead of “P/T net”.
In the Petri net given in Fig. 2.11, transitions ¢; and ¢y are enabled. If the transition
t1 fires, the initial marking [pl, p2] changes to the marking [p3, p2| like it is shown
in Fig. 2.12. In our example in Fig. 2.11, both concurrent transitions ¢; and ¢, are
enabled, but we assume interleaving semantics, i.e. parallel transitions fire in some

order.

36 CHAPTER 2. RELEVANT BACKGROUND

Definition 2.3.9 (Reachable markings). Let PN = (N,mg) be a P/T net. A
marking m is reachable from the initial marking myg if there exists a sequence of
enabled transitions whose firing leads from mg to m. The set of reachable markings

of (N, mg) is denoted as [N, mg) or simply [mg).

. . . . t .

We use to write m — m/’ if there is a transition ¢ € T that m — m'. We write
tr..tn . . t;

my =3 Mmn+1, when there is a sequence of markings my ...m, so that m; = m;1

holds for all 7 € {1,...,n}. We also write m = m/ if there is a firing sequence o € T*,

where T is a set of all possible sequences over the alphabet T'.

Definition 2.3.10 (Reachability Graph). Let PN = (N, m) be a P/T net with
N = (P, T, F). The reachability graph is a tuple RG = ([m), m, R), which consists of
a set of all reachable markings, an initial marking and a relation R C [m) x T' X [m)

with R = {(mg, t,m;)|m; - mj;}.

Thus, the reachability graph is a transition system (not necessarily finite), where
states correspond to the reachable markings, the distinguished initial state is the
initial marking and transitions are triples (m, t, m’) such that m and m’ are reachable
markings satisfying m Lo, Therefore, the algorithm for building a reachability
graph for a Petri net (see the respective literature listed in the beginning of this
Section) can be regarded as a method for transforming Petri nets to the transition
systems. An example of a reachability graph for the P/T net from Fig 2.11 is shown
in Fig. 2.13.

Figure 2.13: Reachability Graph

Next, we will define several essential properties of Petri nets.

2.3. MODELLING FORMALISMS 37

Definition 2.3.11 (Boundedness, safeness). A P/T net PN = (N, m) with N =
(P, T, F) is bounded if the set of reachable markings [N, m) is finite. A net is safe if
for any m’ € [N,m) and any p € P, m/(p) < 1.

Safeness implies boundedness. The Petri net shown in Fig. 2.11 is bounded and
safe, because it has a finite set of reachable markings, see Fig. 2.13, and there is no
marking with more then one token in a place.

In addition to the defined class of safe Petri nets, people distinguish between
many other classes. Let PN = (N, m) be a Petri net with N = (P, T, F'), then

e PN is pure if (p,t) € F = (t,p) ¢ F,ie. VteT: t*N*t =10,

o PN is simple if Vt1,to € T *t1 # *ty or t] # t3, i.e. no two transitions have the

same sets of input and output places,

e PN is a state machine (SM) if ¥Vt € T |*t| = |t*| = 1, i.e. each transition has

one input and one output place,

e PN is a marked graph (MG) if Vp € P: |*p| = |p®| = 1, i.e. each transition has

one input and one output place,

e PN is free-choice (FC) if ¥p € P: |p®| <1 or *(p*) = {p}, i.e. every arc from a

place is either a unique outgoing arc or a unique incoming arc to a transition,

e PN is extended free-choice (EFC) if Vp1,p2 € P: (p} Np3s # 0) = (p} = p3)

Definition 2.3.12 (Dead transitions, liveness). Let PN = (N, m) be a P/T net
with N = (P, T, F). A transition t € T is dead in PN if there is no reachable marking
m’ € [N, m) such that (m’ -5). PN is live if, for every reachable marking m’ € [N, m)
and ¢t € T, there is a reachable marking m” € [N, m’) such that (m” L. Liveness

implies the absence of dead transitions.

The Petri net shown in Fig. 2.11 has no dead transitions, whereas the Petri net in
Fig. 2.12 (the shown marking is considered to be initial) contains one dead transition
t1. However, both Petri nets are not live, since it is not possible to enable each
transition repeatedly.

At the end of this section, we want to give a definition of labelled Petri nets, since

they will be extensively used in the next chapters.

38 CHAPTER 2. RELEVANT BACKGROUND

Definition 2.3.13 (Labelled Petri Net). A labelled Petri net is a triple LPN =
(N,m,\), where N = (P,T, F) is a net, m is the initial marking and A\ : T' — A is
a labelling function, which puts every transition of the net into correspondence with
the symbol (called label) from the alphabet A.

If no two transitions have the same label then the labelling is unique and we can

use labels as the names of the transitions.

Workflow Nets

Petri nets have been and are successfully used for modelling the routing of workflow
processes. Workflow tasks are modelled by transitions and causal dependencies are
modelled by places and arcs. This way, Petri nets formally represent the essential
routing constructs, such as sequential, conditional, parallel and iterative routing. In
this section, we deal with a special class of Petri nets used for modelling the control-

flow aspect of workflows, it is called workflow nets [vdA97, vdAvHO02].

Definition 2.3.14 (Workflow Net). Let PN = (N, m) be a P/T net with N =
(P,T,F) and t a fresh identifier not in P UT. PN is a workflow net (Wf-net) if:

1. object creation: P contains an input place i such that *i = (),
2. object completion: P contains an output place o such that o® = (),

3. connectedness: N = (P, T U {t}, F U{(o,?),(t,4)}) is strongly connected, i.e.

every node occurs on a path from i to o

An example of a workflow net is shown in Fig. 2.14. The net itself is not strongly

connected, but the short-circuited net with transition t is strongly connected.

P1

P3
Po il C)\ Ps
(: —» o D5 D4 t3 —»()
—

t

Figure 2.14: Workflow Net

Definition 2.3.15 (Sound). Let PN = (N, [i]) with N = (P, T, F) be a workflow

net with input place ¢ and output place o. PN is sound if:

2.3. MODELLING FORMALISMS 39

1. safeness: PN is safe,

2. proper completion: Vm € [N, [i]): (0 € m) = (m = [0]),
3. option to complete: Vm € [N, [i]): [o] € [N, m),

4. absence of dead tasks: PN contains no dead transitions.

In our example, the workflow net is sound.

2.3.3 Synthesis of Petri Nets from Transition Systems

In the previous sections, we have presented the basic definitions of transition systems,
Petri nets and workflow nets. Here, we will sketch the main definitions from the area
of Petri net synthesis [ER89b, DR96, CKLY95, CKLY98], which makes the connec-
tion from transition systems to Petri nets. Such state-based modelling techniques as
transition systems are often used for formal specification and verification of complex
systems. However, they represent such relations as concurrency, causality and conflict
as state sequences (state diamonds). Thus, people are using Petri nets (event-based
modelling technique) for more succinct representations of such relations. The area of
Petri net synthesis and the theory of regions develops the methods for transforming

transition systems to Petri nets. We start with the definition of a region.

Definition 2.3.16 (Region). Let T'S = (S, E, T, s;,) be a transition system and
S’ C S be a subset of states. S’ is a region if for each event e € E one of the following

conditions hold:
1. all the transitions s; — sy (labelled with e) enter S, i.e. s; ¢ S’ and sy € S,
2. all the transitions s; — sy (labelled with e) ezit S’, i.e. s; € S” and sy ¢ S/,

3. all the transitions s; — s (labelled with e) do not cross S', i.e. 51,50 € S’

(internal transition) or s, s2 ¢ S’ (external transition)

The region containing the whole set of states and the empty-set region are called
trivial, further we will consider only nontrivial regions. The set of nontrivial regions
of a TS is denoted as Rrg. The set of all nontrivial regions containing a state s € S
is denoted as Rj;.

Here, we continue the example of a transition system given in Fig. 2.9. Several

regions of this TS are shown in Fig. 2.15: r1 = {s1,s2}, ro = {s1,s3} and r3 =

40 CHAPTER 2. RELEVANT BACKGROUND

{s1, s2, 83, 84}. For example, r; is a region, because all the transitions with label a
exit 71 and all the transitions with labels b and ¢ do not cross it. A region r’ is said
to be a subregion of another region r if v/ C r. For example, 7, is a subregion of r3.
A region r is a minimal region if there is no other region 7’ which is a subregion of
r. For example, 71 is a minimal region, since neither the set {s;} nor the set {s3} are

regions.

Figure 2.15: TS with Regions

A region r is a preregion of event e if there is a transition labelled with e which
exits r. A region r is a postregion of event e if there is a transition labelled with e
which enters r. The set of all preregions and postregions of event e are denoted as °e
and e° respectively.

Now, using the definition of regions, we can give a definition of an elementary

transition system.

Definition 2.3.17 (Elementary Transition System). A transition system
TS = (S,E,T,si) is called elementary transition system (ETS) if it satisfies, in

addition to axioms Al. - A4. (see Sect. 2.3.1), the following axioms:

A5. state separation property: for all s,s’ € S, (Rs = Ry) implies (s = &), i.e.

different states must belong to the different set of regions,

A6. forward closure property: for all s € S and e € E, (°e C R,) implies s 5, i.e. if

state s is included in all preregions of event e, then e must be enabled in s

The TS shown in Fig. 2.15 is an example of an elementary TS, since it satisfies

all the 6 axioms.

2.3. MODELLING FORMALISMS 41

Further, we do not describe the algorithms and theoretical foundations, but sketch
the main ideas of the synthesis approach. It has been shown in [NRT92] that for an
ETS there exists a safe, pure and simple Petri net and that ETS is isomorphic to the
reachability graph of this Petri net.

The idea of the algorithm is the following: for each event e in TS a transition
labelled with e is generated in the PN. For each minimal region r; a place p; is
generated. The flow relation of the Petri net is built the following way: e € p§ if r; is
a preregion of e and e € *p; if r; is a postregion of e.

Following this algorithm, we get a PN, see Fig. 2.16 from the TS shown in
Fig. 2.15. Tt is worth mentioning that we have seen already a PN isomorphic to
the synthesized one in Fig. 2.11 and the reachability graph of this PN in Fig. 2.13.
So, the reachability graph of the PN and the initial TS are isomorphic, compare
Fig. 2.13 and Fig. 2.15.

PO
P2 c ()
e

Figure 2.16: Synthesized Petri Net

The class of elementary transition systems is very restricted; in practice, most of
the time, people deal with standard transition systems. In the works of Cortadella
et al. [CKLY98] there was proposed a method for handling the full class of TSs
and transforming them to labelled Petri nets. This advanced method is used by our

algorithms, and the examples are described in Chapter 4 of this thesis.

42

CHAPTER 2. RELEVANT BACKGROUND

Chapter 3

Incremental Workflow Mining

Approach

In this chapter, we present our incremental workflow mining approach. Development
of this approach is the main objective of this thesis, see Sect. 1.2.3 in Chapter 1. This
objective is achieved by fulfilling the tasks, which were listed in Sect. 1.2.3. Here we
explain, how the approach can be integrated into a modern software engineering en-
vironment, what kind of input information is used by the algorithms of the approach,
what models are produced by the algorithms and what existing methods were used
and new methods were invented. The basic ideas of the presented approach were
published in our papers [RGvdAT07b, RGvdAT07a, vdARvD 06, KRS06¢c, KRS06b,
KRS06a, KRS05a, KRS05b]. In this chapter, we explain our ideas with the help of
rather simple introductory examples; however, the evaluation of the approach on a

set of real projects is presented further in Chapter 5.

3.1 System Architecture

In this section, we sketch the standard architecture of modern software engineering
environments and the role of software repositories and, especially, software configu-

ration management systems in these environments.

3.1.1 Process-centered Software Engineering Environment

We start with briefly explaining a traditional software engineering environment
schema inspired by the works in the area of process-centered software engineering en-

vironments (PSEEs) and software processes in general [Ost87, CKO92, FH93, Gru02].

43

44 CHAPTER 3. INCREMENTAL WORKFLOW MINING APPROACH

The foundations of research in the area of PSEE and process modelling were discussed
in Sect. 2.2.1.

The traditional environment shown in Fig. 3.1 contains a software product and
a software process model which is instantiated for particular projects. The software
product consists of source code, executable code, and also models, use cases, test
cases, documentation and other artefacts produced during the software development
process. Often, the architecture includes also a software product structure — a model
of the software product. A process engineer or manager (generally, it can be a de-
partment or a group of people) designs the process model using his experience and
existing approaches, like V-model [DW00], RUP [JBR99], etc. Then, the model is
instantiated and practitioners follow it during the product life cycle, see the arrows
in the figure. Often, the architecture includes also the organizational structure — a

resource model.

: Software Product

‘ Source Code ‘ ‘ Executable Code ‘

7

<:I
\ Software
Process
/ N dnce /

Figure 3.1: Traditional Process-centered Software Engineering Environment.

Practitioner %Process Engineer,

Manager

Software
Process

Model

So, we presented a very general schema, which was historically used for modelling
the architecture of PSEEs, but there are the following known problems with this

schema (the essence of these problems was presented in Chapter 1):

e The designed process model prescribes the behaviour, i.e. it does not necessarily

reflect the actual way of work in the company.

e Process engineers design the process model manually, which is extremely com-

3.1. SYSTEM ARCHITECTURE 45

plicated and error-prone. Moreover, existing practices can be hardly taken into

account.

e Human possibilities in detecting discrepancies between the process model and
the actual process are limited. So, people design and document the process

model, but many actual problems remain unnoticed.

e Practitioners are not involved in the design of the process model, in spite of
the fact that they are the best specialists in the parts of the process that they
carry out. Hence the process model is often specified on a very abstract level

neglecting important details of the practical work.

Further, we show which systems are used in modern software engineering envi-
ronments and how these systems can be used for treating the problems described

above.

3.1.2 Software Repositories

Nowadays, software repositories start playing an ever more important role in software
engineering. So, in this section, we extend the standard PSEE schema with a set of
systems (software repositories), which are widely used for a collaborative work of the
software engineers in an enterprise.

Software repositories such as software configuration management systems, com-
munications between project personnel (mailing lists, newsgroups and discussion
forums), webpages and defect tracking systems are often used for managing the
progress of software projects. Information from these repositories is usually freely
available for most of the open source software (OSS) projects, such as Netbeans,
Mozilla, Apache, Eclipse, Linux kernel, etc. All these repositories are intensively used
by the open source developers during their collaborative work. Commercial environ-
ments do not have necessarily all these systems, but also use some combinations of
them; archives of the repositories are usually not freely available in these companies.
But in both cases of open source and commercial software projects, software config-
uration management systems, mailing lists and defect tracking systems are widely
used and accepted. SCM systems are also described separately in Sect. 3.1.3, since
they historically play a special role in software engineering environments storing the
baselines of the software product and the changes of it. Here, we give a brief overview

of software repositories in PSEEs and research in this area.

46

CHAPTER 3. INCREMENTAL WORKFLOW MINING APPROACH

Forums E-mails Webpages
1
News
Software Configuration Defect Tracking
Management System System
\ «
Wy

Practitioner %Process Engineer,

Manager

Software
Process

Model

\ ioftware
)i)

Figure 3.2: Modern Process-centered Software Engineering Environment.

The extended schema of modern process-centered engineering environment is

shown in Fig. 3.2. It includes a set of systems (software repositories), with which

practitioners are usually interacting:

o FE-mails, mailing lists, discussion forums and newsgroups are the primary com-

munication channels between practitioners. This data can be used for detecting
the social relationships in the company and identifying the coordination activ-

ities.

Defect repositories are used for managing the quality assurance activities in the
company. They are used by testers and developers for reporting about improper
system behaviour and for requesting additional features. Some defect tracking

systems support the discussions.

Webpages and wikis usually contain information about plenty of software
project artefacts. They contain news, guides, white papers, FAQs, how-to
guides, release information, etc. Moreover, mailing lists, newsgroups and de-
fect repositories can be accessed through the web, but this is specific for the

open source software (OSS) projects.

Nowadays, researchers and practitioners are working already in the area of min-

ing software repositories [HHMO04, HHDO05] to support the maintenance of software

3.1. SYSTEM ARCHITECTURE 47

systems, to improve the software design/reuse, to understand the details of software
development, to support predictions about software development, and to plan soft-
ware projects.

Researchers and practitioners recognize already the benefits of software process
modelling with the aid of software repositories [SGR04, VGLO05, Ian05, MFH02,
Sca02, Ger04]. Formerly, process modelling and improvement was mainly based on
what practitioners said about their process (interviews, questionnaires); nowadays,
process improvement should be ruled by what was really done during the software
development process, since this information is reflected in the software repositories.

Nevertheless, process modelling based on software repositories is still done man-
ually and informally; i.e. there is a lack of formal methods and automatic techniques
in this area. One of the objectives of this thesis is combining the ideas of mining
software repositories with the idea of process mining, i.e. using information from
software repositories for automatically discovering software process models. So, in-
formation from software repositories should be used for discovering and modelling

software processes.

3.1.3 Software Configuration Management Systems

In the previous section, it was mentioned that SCM systems play a significant role in
software engineering environments. So, in this section, we examine this role in more
detail. The background information about SCM systems was presented in Sect. 2.2.3.

A Software Configuration Management system is identified as a major part of a
well defined software development and maintenance process [Hum89]. SCM brings
two disciplines to software development: management and development [CW98a]. As
a management support discipline, SCM is used for controlling changes to software
products; so, it is a support discipline for project managers. As a development sup-
port discipline, SCM assists developers in their collaborative work with the software
product.

During the last years, SCM area is considered more and more important; this
happens not only because of the growing influence of CMM, but because of the
growing complexity of software, i.e. increasing problems with managing the software
product and the work of software practitioners. For example, it is a widely accepted
fact that developers are getting more and more dispersed when they work on a big
software project for a long time; SCM system and managing initiatives have to bring

the developers together.

48 CHAPTER 3. INCREMENTAL WORKFLOW MINING APPROACH

Software Configuration
Management

Software Product

Models «— %

Documentation Manager
Use Cases
Test Cases

Source Code ‘\ %

Executable Code

A 1 Process

| % \/ Engineer

Practitioner

Figure 3.3: Interaction with SCM.

Thus, the importance of SCM in modern PSEEs can not be overestimated. In
Fig 3.3, it is shown that managers and process engineers are interacting with SCM
along with practitioners. So, automatic analysis of the information presented in SCM
system is helpful for managers and process engineers; it enables them to control
the software development process better. A detailed description of this management

information is given in the next section and the methods of its analysis — in Sect. 3.3.

3.2 Input Information

In this section, we come from the general description of software repositories to
the audit information which can be obtained from them; this is the input data for
the incremental workflow mining approach (cf. 3.3). First of all, we look at such
software repositories as e-mails, news, and defects and show an example of the suitable
input information obtained from defect repositories; then, separately, we describe
the auditing capabilities of the SCM systems and present a bigger example used for

describing our approach in this chapter.

The practical goal of our incremental workflow mining approach described in
Sect. 3.3 is providing a general-purpose framework, which uses the information from
different software repositories for deriving process models. So, the idea is to be able
to deal with different types of input information obtained from different software
repositories (this functionality is realized now in the form of plugins, the details are

covered in Chapter 4) and to apply our mining algorithms to this input information.

3.2. INPUT INFORMATION 49

3.2.1 Audit Information from Software Repositories

The software repositories described in Sect. 3.1.2 provide the following audit infor-

mation in the following form:

e [E-mails contain information about the sender, the recipient (or a set of recip-
ients in the case of mailing lists), the subject, the time and the date, and the
main message. An example of an e-mail from some developer to the mailing list

of Apache Tomcat developers is shown in Fig. 3.4.

dev

o < Thread -->
o <-- Date -->

] —

Working on mod_jk

Rodrigo Ramele
Thu, 10 Aug 2006 12:43:19 -0700

Hello Tomcat dev:
Suse 9.2, Apache 2.2.3, mod_jk 1.2.15

I am changing the way mod_jk transfer request to different workers (tomcat
instances) in a balanced worker keeping track of the link between session
and worker, and I need to use some kind of shared memory inside mod_jk. (1
need to share a hashtable). Could you please give me a clue on which set of
Apache API calls 1 could use to do it ?

Thank you very much 11t

Figure 3.4: An example of an e-mail.

e News usually contain the headline, the time and the date, the author and
the main message. A simple example of an announcement in an open source

Netbeans project is presented in Fig. 3.5.

Headline NetBeans IDE 5.0 BlueJ Edition
Date Jul 27, 2006
Contributed by rkusterer

Announcement

NetBeans.org and BlueJ.org are proud to announce the availability of NetBeans IDE 5.0 BlueJ
Edition.

e Download the BlueJ Edition
This special edition of NetBeans IDE is a collaboration between the NetBeans community and
the University of Kent, England. The NetBeans IDE BlueJ Edition is targeted at teachers and
students familiar with the popular Bluel tool (www.bluej.org). The NetBeans BlueJ Edition
helps you "make the jump" from BlueJ to a full-featured IDE, either when your projects have
grown too big to fit comfortably into BlueJ, or when you want to use features such as code
completion and drag-and-drop GUI building, which BlueJ doesn't directly support.

To learn more about using BlueJ and NetBeans in education, see edu.netbeans.org/bluej
and www.bluej.org/netbeans.

Enjoy!

Milos Kleint
NetBeans team

Figure 3.5: An example of an announcement.

50

CHAPTER 3. INCREMENTAL WORKFLOW MINING APPROACH

e Defect reports contain a description of the desired behaviour, a description of

the actual behaviour, the author of the report, the time and date of the report,

the status of the defect, severity, etc. An example of a bug report of an open

source Mozilla project is shown in Fig. 3.6.

Bugzilla Bug 319196
corruption on upgrade
Last modified: 2006-08-11 13:40:58
PDT

First Last Prev Next No search results available

319196 alias:
Bug#:

Firefox |m]

Startup and Profile System

Product:

Component:
Status: NEW
Resolution:
Nobody's working on this, feel
Assigned To: free to take it
<nobody@mozilla.org>

|m]

or crash)

Search page

araware: FETH]

Enter new bug

customized toolbar always reset to default on restart, bookmarks and search engines lost, unable to add search engines (localstore.rdf

Reporter: christian<chris@gmx.de>

QA Contact: [startup@firefox.bugs

URL:

0s: [Windows XP] &ddcc |
Version: [unspecified [m] CC: [agentme@shcglobal.net H
o ancestor.ak@gmail.com
priority: [~ [a] axel@pike.org
Severity: benjamin@smedbergs.us
Target betbest1@gmail.com \ﬂ
Milestone: m [_IRemove selected CCs
Flags:
blocking1.8.0.7
blocking1.8.0.8

cL

Summary: toolbar always re:

set to default on restart, bookmarks

Status
Whiteboard:

Kemords:l

‘ darin:

Attachment Type
corrupt localstore.rdf after crash text/plain

corrupt localstore after update

broken bookmarks after update text/plain

Created

2006-06-26 21:12 PDT 25.70 KB none

Size

ion/octet-stream 2006-06-28 13:59 PDT 8.11 KB

2006-06-28 14:03 PDT 2.26 KB

Create a New Attachment (proposed patch, testcase, etc.)

Bug 319196 depends on: I:l Show dependency tree

Votes: 4 Show votes for this bug Vote for thi

is bug

Additional Comments:

blocking1.9
blocking-aviary1.0.9| [
blocking-firefox2

in-testsuite

Actions
Edit
Edit

Flags

none
none Edit

View All

L=

Figure 3.6: An example of a bug report.

e Webpages contain news and information about software and documentation

releases. A small example of a webpage of an Eclipse project is shown in Fig. 3.7.

On one side, nowadays the information described above can not be processed fully

automatically. Since the e-mail messages, news or bug reports contain the text which

is written by human-beings, it can be hardly parsed and automatically analysed.

Additionally, different software projects and different companies use different systems

and standards; thus, today, it is difficult to find a common method for analysing such

audit information fully automatically.

On the other side, it is impossible to analyse the archives of audit information

which contain hundreds and thousands of e-mails, news, or reports without auto-

matic support. Moreover, there already exist methods (process mining) that deal

3.2. INPUT INFORMATION 51

eclipse

Development Resources
From Eclipsepedia

Contents
= 1 Reporting Bugs
= 2 Getting Answers

= 3 Geting Code
« 4 Committing Code

Reporting Bugs

= Bug Reports (https://bugs eclipse.org/bugs/)
» Field Guide to Callisto Bugs

Eclipse uses Bugzilla as our bug tracking system. Bugzilla has a wide following within the open source community and directly supports the workflows associated with
distributed development (e.g., email notification). You can sign up for your own Eclipse bugzilla 1D and start contributing bug reports

Getting Answers
= Mailing Lists (http://www.eclipse.org/maill)

Eclipse uses mailing lists for development coordination, design discussions, voting, announcements etc.
= News Groups (http:/fwww.eclipse.org/newsgroups/)

News Groups are open to the whole community, and are open to a broader range of questions than mailing lists.
= IRC

Asking questions on the IRC channels can be a quick way to get your questions answered, if the right person is online.

Getting Code

= Eclipse Platform downloads page eclipse.org)

Links to Nightly, Milestone and Maintenance builds, plus release notes, performance results, and other Platform goodies.

= CVS Repository (httpi/idev.eclipse.orghviewcs/)

Figure 3.7: An example of a webpage.

automatically with the easiest form of audit information, such as event logs.

Thus, today there are difficulties with analysing the data provided by software
repositories, but it should not be seen as a counter-argument against automatic ap-
proaches for the analysis. To the contrary, automatic approaches for dealing with this
data are becoming ever more important. And in this thesis, in this Chapter and in
Chapter 4, we present new automatic methods for dealing with the audit informa-
tion described in this Section and in Sect. 3.2.2. So, our research goes further in the

direction of algorithmic analysis of software repositories.

Audit Information from Defect Repositories

All the information described above can be used for discovering the software pro-
cesses. Providing a framework and tool support, which processes this information in
a common way is one of the challenges of our thesis. Next, we present a small example
of the information, which can be obtained from the defect repositories and show how
it can be represented in a way suitable for process mining.

A variety of systems for managing defect (bug) repositories are included into
modern PSEEs. For example, in open-source domain such systems as Bugzilla (www.
bugzilla.org), GNATS (http://www.gnu.org/software/gnats/), JIRA (www.

atlassian.com/software/jira/) are widely accepted.

52 CHAPTER 3. INCREMENTAL WORKFLOW MINING APPROACH

All these systems track and manage bug reports emerging during the software
project. For every bug, it is possible to view its history and, thus, to find out who
changed the status (state) of the bug and when it was done. In Table. 3.1, we show
an abstract example of the bugs history inspired by the bugs of the Eclipse project
managed by the Bugzilla system. In Bugzilla, for every bug it is possible to view
the “bug activity”, i.e. the history of all the changes. In this example, we show the
life cycles of two different bugs (separated by double lines), for every bug for every

changed status we can also see the author and the timestamp.

Table 3.1: Log of Bugs History
Status Date Author

NEW 03.10.05 09:00 | qaengineer
RESOLVED | 03.10.05 11:00 | developer
CLOSED 03.10.05 15:00 | manager
NEW 04.10.05 10:50 | qaengineer
RESOLVED | 04.10.05 13:30 | developer
VERIFIED | 04.10.05 15:30 | designer
CLOSED 04.10.05 19:00 | manager

A life cycle of one bug corresponds to a process instance. So, information about
the history of several bugs can be used for discovering the bug life-cycle process model
with the aid of our process mining algorithms, which will be described further. A big
example of discovering bug life-cycle model is given in Chapter 5. In the rest of this
chapter we use the document logs of SCM systems (they are described in the next
Section) and not the logs of bug repositories for explaining our approach. However,
the goal of the bugs log example is to show that the information suitable for process

mining can be obtained from different types of software repositories discussed above.

3.2.2 Audit Information from SCM system

Further in our examples, we focus on the audit information provided by SCM systems
and show how this data can be used for discovering the software processes describing
the whole software project (not only specific to bugs life cycles). However, it should
be noted that our approach is not limited to the input information described in this
section and can deal with the other software repositories and systems examined in

the previous section.

3.2. INPUT INFORMATION 53

In spite of the fact that there is a variety of different software configuration
management systems, their typical auditing capabilities, such as history, logging, re-
porting and traceability [FZ99] produce similar results. The results differ only syntac-
tically and since they are obtained from different systems, people are using different
commands and utilities. We call these results document logs and present a general

format of these logs in this section.

It has to be mentioned here that document logs can be also obtained from the
e-mail archives; the SCM systems are usually configured to send e-mail notifications
to the users as soon as somebody commits new data. So, in this context such software

repositories as e-mails can be also used for process mining.

Generally, document logs comprise data about checkouts and checkins (commits)
of documents. In the thesis, we deal first of all with checkin information. The reason
is that not all SCM systems enforce or support checkouts, checkins to the system are
done more accurately — people check in the documents only after having done changes,
and after the checkin they become responsible for them to the colleagues. In spite of
this fact, checkout information can be rather valuable, especially for improving the
models derived from the checkins. The source of an additional information could be

also the tools, where the documents were changed before the checkin.

In order to extract the gemeral format of document logs we have looked at the
versioning logs containing information about commits of documents in several SCMs,
such as: CVS [Fog99] and Subversion (open-source file-based version management sys-
tems), Visual SourceSafe [Mic03] (commercial filed-based version management sys-
tem for small developer teams), ClearCase [Rat03] (SCM system for large developer

teams).

CVS or Concurrent Versions System [Fog99] is an open-source file-based version
management system, which supports the checkout/checkin model [Fei91b]. This sys-
tem and its successor Subversion are widely used in different software projects of
different size especially in the open-source domain.

An example of a CVS log is shown in Fig. 3.8. In this example, “revision 1.2”
of the file “Codel” contains information about checkin date and time, the author,
the comment “ModifyCode” and some additional information about the state of the
revision, made changes, etc.

Microsoft Visual SourceSafe [Mic03] is a commercial file-based version manage-
ment system, which supports the checkout/checkin model. It can be used by indi-

vidual developers or small development teams for parallel collaborative work on the

54 CHAPTER 3. INCREMENTAL WORKFLOW MINING APPROACH

Working file: Codel

revision 1.2

date: 2005/06/20 11:17:15; author: Peter; state: Exp;
lines: +1 -1; kopt: kv; commitid: cd042b6a5bb000
ModifyCode

revision 1.1

date: 2005/04/26 13:39:38; author: John; state: Exp;
kopt: kv; commitid: e70426e449a0000;

Modify

Figure 3.8: CVS Log Example

software project. This system also supports the file change histories and the audit
trail logs.

sokkkokkRokkkkokkkok Codel Rokkskskok kR kKoK KKKk

User: Peter Date: 06/20/05 Time: 11:17p

Checked in $/SSTest

Comment :

ModifyCode

Figure 3.9: SourceSafe Log Example

An example of a SourceSafe log is shown in Fig. 3.9. In this system, the report
about the file “Codel” also contains information about the checkin date and time,
the user and the comment.

Rational ClearCase [Rat03] is a software configuration management system for
large development teams working in parallel. ClearCase provides such important
features as defining the development policies and procedures and tracking the software
build process. It logs all the changes to the data repository, providing an audit trail
of the development activities.

So, we presented concrete examples of document logs of several well-known SCM
systems. These logs contain very similar information, but they differ syntactically and
they are obtained from configuration management systems using different commands

and utilities.

3.2. INPUT INFORMATION 55

Next, we present a general example of a document log, see Table 3.2; this is a
small abstract log containing the commits of documents'. This log helps us explain-
ing our ideas in the rest of the Chapter. Big examples of real logs obtained from
SCM systems are presented in Chapter 5. The log contains data on the documents
and timestamps of their commits to the system along with data on users and log
comments. The document log consists of execution logs (cases or traces) separated
by double lines in the table. These execution logs contain information about the in-
stances (executions) of the process. Our small example was inspired by the software
change process [KFF191]; let us call the presented process “Design Change”, during
this process, some software module has to be designed and, in some cases, verified,
code has to be generated and tested and the design has to be reviewed. For this
process, in different executions, different documents are committed in different order

starting with the “design” and finishing with the “review”.

Table 3.2: Document Log

Document Date Author Comment
projectl/models/design.mdl 01.01.05 14:30 | designer initial
projectl/src/Code.java 01.01.05 15:00 | developer | implemented
projectl/tests/testPlan.xml 05.01.05 10:00 | qaengineer | manual
projectl/docs/review.pdf 07.01.05 11:00 | manager review was done
project2/models/design.mdl 01.02.05 11:00 | designer initial
project2/tests/testPlan.xml 15.02.05 17:00 | qaengineer | manual
project2/src/NewCode.java 20.02.05 09:00 | developer | some new code
project2/docs/review.pdf 28.02.05 18:45 | designer review was written
project3/models/design.mdl 01.03.05 11:00 | designer initial
project3/models/verification.xml | 15.03.05 17:00 | qaengineer | pending
project3/src/GenCode.java 20.03.05 09:00 | qaengineer | generated
project3/models/verification.xml | 21.03.05 09:00 | qaengineer | pending
project3/src/GenCode.java 22.03.05 09:00 | designer generated
project3/docs/Areview.pdf 28.03.05 18:45 | manager review done

'Note that the document log presented here and the bugs log presented in Table 3.1 provide

similar information.

56 CHAPTER 3. INCREMENTAL WORKFLOW MINING APPROACH

Process Aspects in Audit Information

In Sect. 2.1.3, we discussed different aspects (also often called perspectives and views)
of process modelling. The main three aspects are control, information and organi-
zation?®. As a matter of fact, it is not sufficient to deal only with control aspect of
the process, but the process model should contain or at least be extendable with the
other aspects. The same issue is relevant for the process mining, i.e. we should be
able to discover different aspects of the process model.

In contrast to the event logs, used by the classical mining approaches, document
logs do not contain data about tasks, but the data about documents and the authors.
I.e. they contain information and organization aspects of the process. The committed
documents represent the informational aspect and the authors of the commits —
the organizational aspect respectively. So, this data should be used for deriving the
information about the control flow and extending it with the data about produced

documents and the agents (human resources) involved in the process.

3.2.3 Document Logs, Problems and Assumptions

Next, we present several important issues and assumptions concerning the document
logs and their usage for process mining. The solutions of the outlined issues are given

in the next section and the next chapter. So, they are the following:

e Identifying cases(execution logs), detecting the log structure. For many software
projects, a case corresponds to the development of a subproject, a plugin or
a special repeatable phase of product development. From different executions
representing possible behaviour, see Fig. 3.10, we derive the overall process
model using the approach presented in the next section. In our example from
Table 3.2, a case corresponds to a project. In general, the problem of detecting
the log structure can be application domain, SCM system and company-specific,
in this case, we need interaction with the end user to solve it. For example, if
we are using a file-based SCM, then we derive the structure of the log from the
folder structure, but if the SCM is project-based, then we have to analyse the

project structure.

o Abstracting from the details of the log and ignoring unnecessary information.

Rather often, logs contain too many details, some of them are not even relevant

2Generally, the list of aspects can be extended with the others, for example, assignment, trans-

actions, versions, etc.

3.2. INPUT INFORMATION o7

Process
Model
/ \ Instance Level

Execution 1 Execution2)w == % Execution n

Model Level

Figure 3.10: Execution Logs and Process Model

for the development process. Thus, there must be a mechanism to abstract from
the details and to mine a general model, which could be refined later. There
must be also a way to ignore the unnecessary details or to focus on particular

part of the log.

e Detecting document types and organizational structure. The log contains only
information about the document names, but on the model level, we have to
deal with the types of documents; thus, there must be a method for resolving
the types. This is a challenging task, which requires additional information,
which is not available in the logs; this information should be obtained from
the information model or directly from practitioners. As concerns detecting the
organizational structure, the log contains only the names of users; but on the
model level, we have to deal with organization units/positions and roles. This

task also requires additional information about the organizational structure.

Actually, the information given in comments can be helpful for resolving some
of the issues described above. Different software process improvement techniques, for
example CMM and CMMI, prescribe that SCM standards and naming conventions
have to be introduced into the company to fulfil the repeatable maturity level. Thus,
if the users are adhering to the naming conventions, then, using these conventions,
log messages can be parsed and document names can be extended with the additional
information derived from the messages. However, in general, special text mining tech-
niques should be used for deriving knowledge from the messages and improving the
algorithms.

Another issue is time. In our approach it is used for detecting the order of records,
and after the model is derived, time is used for extending it with the data about the

duration of tasks.

58 CHAPTER 3. INCREMENTAL WORKFLOW MINING APPROACH

Further, in out incremental approach described in the next Section, we assume
that the log has the structure like it is shown in Table 3.2. We ignore the information
given in comments; new methods for mining the comments are out of the scope of

this thesis.

3.3 Incremental Workflow Mining Approach

In this section, we present our incremental workflow mining approach. It uses the
input information described above for deriving process models. In this chapter, we
discuss the approach on a general level, the details of the algorithms and formalisms

are given in the next chapter.

3.3.1 Approach: Outline and Architecture

In contrast to the traditional way of work, in the incremental workflow mining ap-
proach, which was described in our works [KRS05b, KRS06a, RGvdA*07b], we go

the other direction, it is shown with the arrows in Fig. 3.11:

1. Preprocessing: We take a document log (obtained directly from SCM system
or from e-mail archives) or a log from other software repositories (for example,
bug history log), which corresponds to the process instances (particular execu-
tions of the process) and make an abstraction from it (the abstraction technique

is described further).

2. Process Mining: We derive a process model from the abstract log using our

process mining algorithms.

3. Analysis and Representation: Then, the process model can be analysed
and verified and shown to the process engineer and to the practitioner; he
decides which changes should be introduced to the process to optimize and to

manage it in a better way.

In accordance with the outline of the approach shown in Fig. 3.11, we can plan
the software architecture for our approach, it consists of the following components,

see UML component diagram in Fig. 3.12:

e Input Framework: A framework for integrating different sources of input in-
formation and adopting them for process mining. This framework deals with

such input data as document logs, bug logs and is extendable for dealing with

3.3. INCREMENTAL WORKFLOW MINING APPROACH 59

Forums E-mails Webpages
4
News
Software Configuration Defect Tracking
Management System System
y

Practitioner Process Engineer,
Manager

Software

Process
Model

\ S‘I;oftware
)EE)

Figure 3.11: Mining in a Process-Centered Software Engineering Environment

other data provided by software repositories. It takes specific audit trail infor-

mation and returns it in a standard log format.

e Process Mining Core: A customizable process mining algorithm for deriving
process models on different levels of abstraction. This component takes a log

and returns a mined process model.

e Analysis, Verification and Conversion Utilities: A set of methods for
analysis and verification of process models and for conversion and export to the
other formalisms supported by different tools. This component uses the process

model as input and returns either other process models or analysis results.

Here, in Fig. 3.12 we present a general architecture for our approach, further

details about the implementation can be found in Sect. 4.4.

Functionality of the Mining Core

Actually, the process mining core component and the process mining step are the
key elements of our approach. Generally, the mining approach can be used not only
for discovery (deriving the process model), but also for monitoring and improving
real software processes using the data from software repositories in general and SCM
systems in particular, see Fig. 3.13. Thus, process mining is useful not only in a

setting where there is no explicit process model and much flexibility is allowed (it

60 CHAPTER 3. INCREMENTAL WORKFLOW MINING APPROACH

Input Framework Q} Process Mining Core

é Process
model

\f

==l

Analysis, Verification and Conversion Utilities

Figure 3.12: Incremental Workflow Mining Architecture

is especially relevant for the software development processes), but also in a setting
where the model exists already. So, we consider three types of process mining, for a

detailed description we refer to [vdARvD™06]:

e Discovery: There is no a-priori model, i.e. some model is constructed based

on the information stored in the document logs.

e Monitoring (Conformance): There is an a-priori model. Mining is used to
monitor and check whether reality conforms to the model. The idea is to check

the deviations and to measure the severity of these deviations.

e Improving (Extension): There is an a-priori model. The goal is to improve
this model using the actual data and to enrich this model with information

about the other aspects.

Classical process mining has been focusing on discovery, i.e., deriving information
about the original process model, the organizational context, and execution properties
from enactment logs. Introducing a mining approach to the company rather often has
to start with the discovery.

So, a new method for the control-flow process discovery is the main contribution
of this thesis on the algorithmic (technical) level. However, on the conceptual level,
the main contribution of the incremental workflow mining approach is applying the
methods of process mining to the software engineering domain. Thus, further we start

with the preprocessing step, then we come to the core of the approach, i.e. to our

3.3. INCREMENTAL WORKFLOW MINING APPROACH 61

Software
Repositories

Software
Process

Forums News Model
- Discovery
E-mails Websites Process - Improvement
Mining o
Defect Tracking System - Monitoring

Document
SCM Log

Figure 3.13: Different Types of Process Mining

control-flow mining method, and then, explain how other process mining methods,
which deal with other process aspects or support process analysis, can be applied to

the software process models.

3.3.2 Step 1: Preprocessing

In this Section, we describe the first step of the approach — preprocessing, see
Fig. 3.14. The preprocessing step is realized in the input framework component,
which accepts data from different sources and converts it to the standard log for-
mat. In this step, we prepare the log for process mining. Hence, we have to treat the

problems discussed in Sect. 3.2.3. In this section, we present the following:

Software Repositories

¢ Process Engineer,

1 %Practitioner %\Aanager
Preprocessing -

\ ?Doftware
)E=)

Figure 3.14: Preprocessing Step

Software
Process
Model

1. a method for abstracting from the details of the log and ignoring unnecessary

information (abstraction has also to be done on the process mining step, we

62 CHAPTER 3. INCREMENTAL WORKFLOW MINING APPROACH

call it abstraction on the algorithm level, it is discussed later)

2. a general approach for detecting the types of documents when additional infor-

mation is available

Abstraction from the Log

As it was already mentioned earlier, the document logs often contain either too many
details or very specific document names and paths, which are not relevant for the
process mining algorithms. So, we need a technique to abstract from the concrete
names and paths or even to ignore some paths, we call it abstraction on the log level
and ignoring unnecessary information.

The idea is to map the concrete names of the documents in the log to the abstract
names, which will be later used by the mining algorithms. Moreover, it must be
possible to map several concrete names to the same abstract name or to ignore
some of the concrete names. We can use regular expressions to define this mapping.
For the example given in Table 3.2, we can use the following mapping shown in
Table 3.3. So, in the example, all the documents that contain “/models/” in their
name and that finish with “design.mdl” are mapped to an abstract name “DES”,
all the documents containing “/src/” with an extension “java” — to “SRC”, test
documents — to “TEST”, review documents — to “REV” and verification results — to
“VER”. If we want to ignore some documents, we can just do a mapping to empty
names; for example, if we want to ignore test plans, then we map corresponding

W

regular expression to

Table 3.3: Regular Expressions

Expression Abstract Name
(.x)/models/(.x)design.mdl DES
(.x)/src/(.*).java CODE
(.x)/tests/(.x) TEST
(.x)review.pdf REV

(%)

) /models/(.x)verification.xml | VER

Thus, when we apply the mapping to the log given in Table 3.2, we get an abstrac-
tion of the log, it is shown in Table 3.4. Different names from different projects were

mapped to the same names; for example, “projectl/docs/review.pdf” from the first

3.3. INCREMENTAL WORKFLOW MINING APPROACH

63

project (case) and “project3/docs/Areview.pdf” from the third project are mapped

to “REV”.

Table 3.4: Abstract Software Log

Document | Date Author
DES 01.01.05 14:30 | designer
CODE 01.01.05 15:00 | developer
TEST 05.01.05 10:00 | gqaengineer
REV 07.01.05 11:00 | manager
DES 01.02.05 11:00 | designer
TEST 15.02.05 17:00 | qaengineer
CODE 20.02.05 09:00 | developer
REV 28.02.05 18:45 | designer
DES 01.03.05 11:00 | designer
VER 15.03.05 17:00 | qaengineer
CODE 20.03.05 09:00 | designer
VER 21.03.05 09:00 | qaengineer
CODE 22.03.05 09:00 | designer
REV 28.03.05 18:45 | manager

Generally, if we have an information model or an ontology of the domain, we can

do the mapping of document names to the entities of the ontology and, therefore,
make an ontology-compliant abstraction. Moreover, since some document manage-
ment systems provide the information about the types of events, whether a document
was added or modified, the names of documents can be concatenated with the types

of events and, thus, contain more information about the actions being taken.

Detecting Document Types

In this section, we propose a general method for dealing with the problem of detecting
document types described above (a method for detecting the organizational struc-
ture can be developed similarly, but it uses other additional input information). The
method presented here needs additional information, namely informational model,
which is not available in the logs. So, this method can be used only in special cases

and it makes up an extension of our approach and not the core of it.

64 CHAPTER 3. INCREMENTAL WORKFLOW MINING APPROACH

This method was described in details in our paper [KRS06b]. So, we raise the
following questions: 1. how do the informational models (document type models)
look like? 2. is there an algorithm for assigning the types to concrete documents
using these models?

One of the most important requirements for modern SCM and PDM systems is
the capability of informational modelling. In the area of PDM, for example, there is a
STEP (Standard for the Exchange of Product Model Data) ISO standard (ISO DIS
10303), which includes the EXPRESS language for defining the product models.

Like for document logs, different systems have different informational models. But
there are typical relationships used in most of these models [CW98a], for example
dependency relationship. This relationship implies that the contents of the dependent
document must be consistent with the contents of the master document.

An example of the informational model is shown in Fig. 3.15 as a UML class
diagram. In the example, C'ode depends on the Design. In our case, this is also a
lifecycle dependency — the document Code can appear in the system only after the

Design document.

<<document type>>

Code
<<dependency>> << ndency>>
<<document type>> <<document type>>
Design Project Review
<<dependency>> <<dependercy>>

<<document type>>
TestPlan

Figure 3.15: Informational Model

Now, besides the abstract document log with document names, we also have a
set of document types and a dependency relationship on this set. The idea of the
method is taking a set of all possible assignments of types to the document names
and removing those of them that contradict the dependency relationship.

For example, if we take the first two execution logs from the log in Table 3.4

3.3. INCREMENTAL WORKFLOW MINING APPROACH 65

and document types shown in Fig. 3.15, then using the method we get the following
two possible assignments of types to documents in the log: (DES : Design, CODE :
Code, TEST : TestPlan, REV : ProjectReview) and (DES : Design,CODE :
TestPlan, TEST : Code, REV : ProjectReview). The other assignments contradict
the dependency relationship. Next, we need additional information from the user to
detect, which of these two assignments is correct.

The success of the type detection algorithm is dependent on the number of exe-
cution logs and the number of dependencies. If the numbers of logs and dependencies
are not sufficient, we do not come to an unambiguous set of types in spite of the
fact that we are checking all the possible type permutations. In this case, we need
interaction with the user, who has to give us the types of some documents.

Thus, in this subsection we presented a simple semi-automatic approach, which
can help us detecting the types of documents, when having information model addi-
tionally to the document log. The goal of this section was to show how additional
input information about the models can help on the preprocessing step. In the partic-
ular case of an informational model, we can derive document types and start dealing
with them instead of document names. However, for the rest of the thesis, we assume
that we do not have this additional information and continue dealing with the pure
log.

In the whole section, we presented the first step of the incremental workflow
mining approach — the technique for abstraction from the logs, the technical details
about its implementation are given in Chapter 4. This is a semi-automatic technique,
since the domain knowledge and the structure of regular expressions must come from
the practitioners or managers working in the domain, but the final mapping is done

fully automatically.

3.3.3 Step 2a: Control-flow Process Mining Algorithm

In this section, we explain the second (main) step of the approach — process mining,
see Fig. 3.16. We start with our main contribution, i.e. with the control-flow mining
algorithm. Actually, this algorithm is extremely flexible and can generate different
process models depending on its input parameters. Thus, changing the parameters of
the algorithm, process engineer can obtain models on different levels of abstraction,
focusing on different parts of the process. So, the methodology is described further
in this section and all the details including formal definitions — in the next Chapter.

When dealing with the control-flow, the log can be represented as a set of se-

66 CHAPTER 3. INCREMENTAL WORKFLOW MINING APPROACH

Software Repositories

¢ Process Engineer,

1 Practitioner anager
Preprocessing % 1

2 Sofvare

/ Process

Process
Mining Model
a) control-flow mining

Figure 3.16: Process Mining Step — Control-flow Mining

quences of documents. So, we look at the control perspective of the log. The simpli-
fied abstract log is shown in Table 3.5, we use to put numbers instead of concrete
timestamps, since the timestamps are used for detecting the order of document com-
mits. It has to be noted that the examples presented in the rest of this Chapter are
small and abstract, we have chosen them in order to explain the main ideas of our
approach. However, big examples obtained from real software projects are described
in Chapter 5.

Our approach presented in this section consists of two steps, see Fig. 3.17:

1. Generation: Generation of a Transition System from the Document Log.
Generation step consists of two substeps: constructing a transition system and

modification strategies.

2. Synthesis: Synthesis of a Petri net from the Transition System.

1 LI 2
Transition System Petri Net
Document | Generation RN Synthesis PN A
LO '] L »(.)Hy‘-()n..]ﬂ):‘[:)ﬁu)-r)l{m
g » L | 0|

a) Constructing TS
b) Modification Strategies

Figure 3.17: Control-flow Mining Approach

The Petri net is the final result of the algorithm. The ideas of this approach were
also presented in our papers [KRS06¢c, vdARvD 06, RGvdAT07b], the details of the

3.3. INCREMENTAL WORKFLOW MINING APPROACH 67

Table 3.5: Abstract Software Log: Control Aspect
Document | Order
DES
CODE
TEST
REV
DES
TEST
CODE
REV
DES
VER
CODE
VER
CODE
REV

DO W NP W[N] W N

formalisms and implementation are presented in Chapter 4 and the evaluation is
discussed in Chapter 5.

One of the main advantages of the approach is the capability to experiment with
process models by means of applying different strategies for building transition sys-
tems from the logs, we call it clever transition system generation. The software logs
usually do not contain all possible traces and, thus, represent only a part of a possible
behaviour, sometimes they contain unnecessary details that should be ignored. So,
the generated models can become either too general or too explicit, in the area of
process mining this issue is called “generalization”. This generalization issue can be
resolved with the aid of appropriate generation strategy. There are different ways of
generating and modifying transition systems within our approach. This capability to
deal with generalization is the distinguishing feature of our approach; further, in this
chapter, we present many examples of process models introducing generalization in
different ways.

Despite the fact that transition systems are a good specification technique for
making experiments, they are usually huge, since they encode such constructs as

concurrency or conflict in a sequential way. Thus, the algorithms developed within

68 CHAPTER 3. INCREMENTAL WORKFLOW MINING APPROACH

such a well-known area of Petri net theory as Petri net synthesis and theory of regions
are used for transforming transition systems (state-based specification) to Petri nets

(event-based specification), which are more compact.

<DES, TEST,CODE> <DES,CODE,TEST> <DES,VER,CODE>
VER
<DES,VER,CODE,VER>

REV REV
CODE

REV

<DES,VER,CODE,VER,CODE,REV>

Figure 3.18: TS generated from the log

As an introductory example of the approach, a Transition System shown in
Fig. 3.18 can be built from the log given in Table 3.5. Building this TS is straight-
forward, it depicts all the cases as separate branches of a tree. Then, this TS is
transformed to the Petri net, which is shown in Fig. 3.19 (note that this is a labelled
Petri net). This PN is more compact than the TS and reflects exactly the behaviour
seen in the log. These models make up a good example of the main idea of our ap-
proach, still they have one big problem: they do not recognize the loop construct
hidden in the third trace and simply build it explicitly. This problem of loops is a
particular example of a big issue called generalization, it will be sketched later in this
Chapter and described in detail in the next Chapter. Different ways of constructing
and modifying transition systems used for overcoming the problem of the lack of

generalization are presented in the next sections.

The generation phase of the algorithm consists of the following two steps: con-

structing a transition system and applying modification strategy to the constructed

TS.

3.3. INCREMENTAL WORKFLOW MINING APPROACH 69

Figure 3.19: PN synthesized from TS

Constructing a Transition System

In this section we describe the method for constructing transition systems from docu-
ment logs, see Fig. 3.20 . All the details of this method and the formal definitions are
given in the next Chapter. A transition system consists of states, events and transi-
tions between states. The set of events corresponds to the set of documents; for our
example, this set is {DES, TEST,CODE,V ER, REV }. Transitions between states

are labelled with the events.

1 TS
Transition System : |
Document | Generation § <% PN 7
LOg '_> > @ 1—»")"{“"”']’*"E.H:1“,):1"\"”'%'\
i3 i .‘“rm

a) Constructing TS

Figure 3.20: Control-flow Mining Approach: Constructing TS

The critical point of the construction algorithm is the definition of a state. First,
let us define a commit: it is a set of documents committed to the system at the same
time in the same execution. In our example, see Table 3.5, all the commits contain
only one document: in execution 1, at time 1, document DFES was committed to the
system; in execution 2 at time 3, document CODFE was committed to the system,
etc. Next, we can give a first definition of a state: a state is a set of subsequent
commits from the same execution log. If we look at the first execution log, we derive
the following states from it: {}, {DES}, {DES,CODE}, {DES,CODE, TEST}
and {DES,CODE,TEST, REV}. There is a transition between two states if they
are derived from the same execution log and there exists a single commit produced

after the first state, so that the union of the documents of the state and the docu-

70 CHAPTER 3. INCREMENTAL WORKFLOW MINING APPROACH

ments of the commit makes up the document set of the second state. The transition
is labelled with the documents produced by this commit. For example, there is a
transition between states { DES} and { DES, CODE?}, since both states are derived
from the first execution log and there is a commit {CODE?}, such that union of
the documents of the state and the documents of the commit make up the docu-
ment set of the second state. An example of the transition system, derived from
the document log shown in Table 3.2 using the given definition of a state is given
in Fig. 3.21. It should be noted that the same state can be derived from different
execution logs, for example, the state {DES, TEST,CODE?} can be derived both
from the first and the second execution logs. In the third execution log, we have
an iteration, i.e. the same documents are committed to the system several times.
Then, since a state is a set of documents, we get self-loop transitions, for example,
{DES,VER,CODE},{VER} {DES,VER,CODE?}). So, a TS created using this

sets-based definition of a state is called a sets-based T'S.

CODE

{DES,VER?,CODE?}

REV

{DES,TEST,CODE,REV} {DES,VER,CODE,REV} {DES VER?,CODE? REV}

Figure 3.21: Sets-based TS Figure 3.22: Multisets-based TS

Another useful way of constructing a transition system is based on a multiset
definition of a state. In such a way, we allow repeated elements in a state; for example,
a state {DES,VER? CODE} derived from the third execution log contains two
documents V ER. The transition system is built according to the same rules like the

previous one, the only difference is that by means of using multisets we exclude self-

3.3. INCREMENTAL WORKFLOW MINING APPROACH 71

loops and, thus, get an acyclic transition system. An example of a Multisets-based
TS in shown in Fig. 3.22.

The other possible approach to constructing transition systems is based on defin-
ing a state as a sequence of documents. We build a TS the same way like for the
previous examples, the main difference is that each state corresponds to a sequence
of committed documents from the same execution log. An example of such a TS was
shown in Fig. 3.18.

In this section, we presented three possible methods for constructing transition
systems from document logs. In all these methods, we looked at the whole history of
an execution log. However, in general, we can look at the future of an execution log or
only at a part of the history or future. In this thesis, we developed and implemented a
framework for building “clever” transition systems, the formal definitions of different

approaches and implementation details are given in the next Chapter.

Modification Strategies

To continue the generation step of the control-flow process mining, we present the
ideas about modification of constructed transition systems, see Fig. 3.23. We have
mentioned already that software logs usually represent only a part of possible be-
haviour or contain too many unnecessary details that should be ignored. Thus, we
have developed a framework for building modification strategies to generalize the ex-
isting behaviour and to resolve the problem of loops. Here, we present several useful
strategies (as for the previous part of the approach, the formalisms are presented in

the next chapter).

1 TS
Transition System
Document | Generation s % PN
1* S = 1*““‘“ '“’{‘lﬂ :“‘. ‘j«\‘m'u{m‘
Log v P

a) Constructing TS
b) Modification Strategies

Figure 3.23: Control-flow Mining Approach: Modification Strategies

The first strategy is called “Kill Loops”, the idea is to remove self-loops tran-
sitions from the transition system. Rather often, when the process is complicated
it’s convenient to look at the acyclic core of the process. For example, if we take a

sets-based TS shown in Fig. 3.21 and “kill” the loops there, we get an acyclic TS

72 CHAPTER 3. INCREMENTAL WORKFLOW MINING APPROACH

shown in Fig. 3.24.

{DES, TEST,CODE} {DES,VER,CODE} {DES,TEST,CODE} {DES,VER,CODE}
REV REV REV REV
{DES, TEST,CODE,REV} {DES,VER,CODE,REV} {DES,TEST,CODE,REV} {DES,VER,CODE,REV}

Figure 3.24: Sets-based T'S, no Loops Figure 3.25: Extended Sets-based TS

The other modification strategy is called “Extend Strategy”. It is especially use-
ful for document logs. Basically, this strategy makes transitions between two states,
which were created from different execution logs, but which can be subsequent be-
cause there is a singular commit which can be executed (produced) to reach one
state from the other. This strategy is very useful for generalizing the behaviour seen
in the logs by means of extending the “state diamonds”. For example, the sets-
based transition system without loops shown in Fig. 3.24 can be extended: the states
{DES,CODE} and {DES,VER,CODE} are produced from different execution
logs, therefore, there is no transition between them, but there is a single commit
{VER}, which can be executed to reach the second state from the first one, so
we add a transition ({DES,CODE},{VER},{DES,VER,CODE}). We can think
about this strategy the other way: if all the preconditions for producing a document
are fulfilled, we produce it; i.e. since we need only DES document to produce VER,
when we are in the state {DES,CODE?} — all the preconditions are fulfilled and we
produce V ER. The result of this strategy is shown in Fig. 3.25. It is worth mentioning
that this example is a result of combination of two strategies, namely “Kill Loops”
and “Extend Strategy”.

Next, we explain the idea of the “Merge States by Output” strategy. The
main idea is that we can simplify a transition system by means of merging
the states with the same output; i.e. it is useful not to distinguish between

states with the same future. For example, if we take a multiset-based transi-

3.3. INCREMENTAL WORKFLOW MINING APPROACH 73

tion system from Fig. 3.22, we find several pairs of states with the same out-
put that can be merged: ({DES,VER}, {DES,VER? CODE}) with the output
CODE, ({DES,TEST,CODE}, {DES,VER?* CODE?}) with the output REV/,
({DES,TEST,CODE,REV},{DES,VER?, CODE? REV}) with the empty out-
put, ({DES,TEST}, {DES,VER}) with the output CODE, etc. If we take the
first pair and merge the states, we get a new state { DES?, VER? CODE}, all the
incoming transitions from both states go to the new state, and all the outgoing tran-
sitions of both merged states go out of the new one. This way, in a stepwise manner,

we get a simplified transition system shown in Fig. 3.26.

{DES? TEST VER? CODE® REV?}

Figure 3.26: Multisets-based TS with Merged States

Thus, in this section we presented a set of modification strategies, which are
used on the second (last) phase of the T'S generation step. These strategies introduce

flexibility to the process mining algorithm and support abstraction on the model level.

Petri Net Synthesis

As mentioned before, transition systems are a good state-based specification technique
for making experiments and modifications, but they are usually huge (“state space
explosion problem”). The problem is that such constructs as concurrency and conflict
are encoded in a sequential way. Moreover, event-based formalisms based on Petri
nets or transformable to Petri nets are traditionally popular in the process modelling
domain [Aal98, vdA02]. So, in this section, first of all on a general level, we present
the ideas about converting transition systems to Petri nets, see Fig. 3.27. This ideas
are based on the research in the area of Petri net synthesis and theory of regions, the

essential background was described in Chapter 2 and the details of the algorithms

74 CHAPTER 3. INCREMENTAL WORKFLOW MINING APPROACH

are explained in Chapter 4.

1 TS 2
Transition System : Petri Net ‘
Document | Generation 5o Synthesis |PN A
Log (e O R0
= 1
a) Constructing TS &

b) Modification Strategies

Figure 3.27: Control-flow Mining Approach: Petri Net Synthesis

As it is proved in the area of Petri net synthesis, every TS can be transformed
to a Labelled Petri net, i.e. to a Petri Net with a labelling function on the transition
set. In such Petri nets, different transitions can have the same labels. Events from a
TS are becoming transitions in a Petri net. The resulting Petri nets are usually more
compact then the transition systems, since several transitions labeled with the same
event are represented as a single transition in a Petri net.

Next, we give several examples of the Petri nets synthesized from the transition
systems presented in the previous section. A Petri net generated from the sets-based
TS from Fig. 3.21 is shown in Fig. 3.28. It should be noted that this Petri net enables
the behaviour seen in the log, see Table 3.5, but it is too general, since the transitions
CODE and V ER can be executed an unlimited number of times in an arbitrary order
before the REV is done.

Figure 3.28: PN from Sets-based TS

In Fig. 3.29, we present an example of a Petri Net synthesized from the Multiset-
based TS from Fig. 3.22. This Petri net also supports the behaviour seen in the log,
but it is too explicit. For example, instead of deriving a loop construct from the
third execution log (DES,VER,CODE,VER,CODE,REV), it allows explicitly
the sequence of transitions given in the log.

The next examples present Petri nets derived from the transition systems modified

3.3. INCREMENTAL WORKFLOW MINING APPROACH 75

Figure 3.29: PN from Multiset-based TS

by the strategies. The Petri net shown in Fig. 3.30 was generated from the sets-based
transition system with “killed” loops from Fig. 3.24. This Petri net ignores the loop
in the third execution log and exactly reflects the rest part of the document log. It
is worth mentioning that this PN is much more compact then the corresponding T'S;
i.e. all the transitions with the same labels, for example three transitions labeled with

CODE were converted into a single Petri net transition CODE.

= O

Figure 3.30: PN, no Loops Strategy Figure 3.31: PN, Extend Strategy

The Petri net shown in Fig. 3.31 was generated from the ezxtended TS. It also
ignores the loop and it is more general then the previous Petri net, since it al-
lows additional behaviour not seen in the log. For example, not only the sequence
(DES,VER,CODE, REV) from the third execution log is allowed, but also the se-
quence (DES,CODE,VER, REV) is represented in the model. This model is sim-
pler than the previous one, it can be generated only after applying a “clever” strategy
to the transition systems constructed from the log. If we try to understand the prag-
matics of this example, we realize that we have seen that verification (V ER) is done
after the design (DES), so even if the CODE is written, we still can do verification.

The next Petri net shown in Fig. 3.32 corresponds to the TS with merged states
shown in Fig. 3.32. With the help of merging strategy, we recognized the loop con-
struct and the Petri net not only reflects the behaviour given in the log, but also
introduced a loop construct, which includes transitions CODFE and V ER.

Another important functionality provided by the Petri net synthesis approach is

76 CHAPTER 3. INCREMENTAL WORKFLOW MINING APPROACH

Figure 3.32: PN, Merge Strategy

generation of Petri nets with different characteristics, see Fig. 3.33. Rather often,
for big processes, produced Petri nets are hard to read and understand, then we
can apply special synthesis technique to convert the derived Petri net to a simplified

analog of it by means of excluding non-free choice constructs, self-loops, etc.

1 TS . 2
Transition System : Petri Net
Document Generation s < Synthesis P‘I\‘l y Jw{‘rs'ﬁ: -
4 . b o - . ()]) |=m) _]'m :> o [}
Log oL different))0
a) Constructing TS = | characteristics

b) Modification Strategies

Figure 3.33: Control-flow Mining Approach: Petri Net Synthesis (different character-

istics)

For example, for the Petri net shown in Fig. 3.30, we can generate a pure analog
of it (a net without self-loops), which is easier to read, see Fig. 3.34. For the same
Petri net, we can also generate a free-choice analog (a net without simultaneous
synchronization and conflict), see Fig. 3.35. So, the user working with the models
can convert them to an appropriate understandable format.

So, in this section we presented the main ideas and examples of the Petri net
synthesis, which corresponds to the second step of the generation and synthesis ap-
proach. With the aid of “clever” transition system generation and Petri net synthesis,
we can derive the formal process models from the document log on different levels of
abstraction focusing on different parts of the process.

In the whole Section, we presented our control-flow process mining algorithm,
which supports generation of different types of software process models. This allows

process engineers to generate different views on software processes and to generalize

3.3. INCREMENTAL WORKFLOW MINING APPROACH 7

Figure 3.34: Pure PN Figure 3.35: Free-choice PN

the behaviour recorded in the log in a flexible and intelligent way.

3.3.4 Step 2b: Mining Different Aspects

In the previous Section, we presented a method for discovering and customizing
software process models, but we dealt only with the control-flow aspect. However, the
document logs provide also information about other aspects, such as organizational,
performance and informational. Therefore, in this section, we present the second part
of the process mining step of the approach — mining different aspects, see Fig. 3.36.
Here, we apply the existing algorithms from the area of process mining in the field of
software engineering and show how helpful these algorithms are. It has to be noted
that these algorithms were not developed by the author (references are given), they
form the core of the ProM framework and tool [vDdMV™*05]. Thus, we show how the
information that can be discovered with our control-flow process mining algorithm

(cf. 3.3.3) can be enriched by other algorithms and, therefore, used further.

Organizational Aspect

One perspective different from control flow is the organizational (resource) perspec-
tive, which looks at the set of people involved in the process, and their relationships.
The Social Network Miner [ARS05] for example can generate the social network
of the organization, which may highlight different relationships between the persons
involved in the software process. The social network miner can be used by software
process engineers and managers in order to identify the actual relationships among
the practitioners working on software projects.

One example of a social network represents the handover of work between the

resources involved in the process. In Fig. 3.37, we present an example of the handover

78 CHAPTER 3. INCREMENTAL WORKFLOW MINING APPROACH

Software Repositories

1 Practitioner
Preprocessing % %

2 Sofvare
Process Process
/ /" Mining Model

a) control-flow mining
b) mining different aspects

Figure 3.36: Process Mining Step — Mining Different Aspects

of work for the software process given in Table 3.4. The resources are symbolized by
nodes, while each arc represents that at least once a work was passed in that direction,
i.e. these persons subsequently worked on the same project. As is easy to see, rather
often a designer handovers his work to the quality assurance engineer; manager does
not handover his work, since he is usually the last person in the process, he does
the review. In Fig. 3.38, you see an example of the social network representing the
similarity of executed tasks. Designer, for example, executes similar tasks with the
developer (CODE task) and with the manager (REV task), nobody has similarities
with the qaengineer, he is the only one to do TEST and VER. There are also social
networks highlighting other relationships, e.g. subcontracting, where an event from

one person is encompassed by two events from another person.

developer
A

designer manager

Y
gaengineer

Figure 3.37: Example of a Social Network (Handover of Work)

The Organizational Miner also addresses the resource perspective, attempting
to cluster resources which perform similar tasks into roles. This miner can be also

effectively used in the software companies for understanding the roles and capabilities

3.3. INCREMENTAL WORKFLOW MINING APPROACH 79

developer

-
L ‘

designer manager

0.250

gaengineer

Figure 3.38: Example of a Social Network (Similar Task)

of employees.

An example of mining this organizational structure from the log in Table 3.4 is
shown in Figure 3.39. Based on the overlap of subsets of resources having executed
each task, five roles have been derived. In general, a role can both be required for a
number of different tasks and resources may occupy several roles (e.g., the resource
“designer” has “Role C”, “Role D” and “Role E”). This functionality can be very
beneficial in a software development process, both for verification and analysis of
the organizational structure. Mismatches between discovered and assigned roles can

pinpoint deficiencies in either the process definition or the organization itself.

gaengineer ‘ developer ‘ ‘ designer ‘ ‘ manager

Role A Role B

' ' '
[ver] [rest] [cooe] ors rev

Figure 3.39: Result of the Organizational Miner

Performance Aspect

Mining algorithms addressing the performance perspective mainly make use of the
timestamp attribute of events. From the combination of a (mined or predefined)
process model and a timed event log they can give detailed information about perfor-
mance deficiencies, and their location in the software process model. If, for example,

the test phase is highlighted as the point in the process where most time is spent,

80 CHAPTER 3. INCREMENTAL WORKFLOW MINING APPROACH

it may be helpful to assign more staff to this task. So, after adding the performance
aspect to the software process model, software process engineers can identify the
successful and the problematic tasks, realize and improve the actual way of work.
Moreover, the milestones and deadlines of the software projects can be discussed and
analysed with the help of a process model.

In Fig. 3.40, we present how the process model can be enriched with the perfor-
mance information. We have taken the process model from Fig. 3.32, which represents
exactly the behaviour described in our example log and which discovers the loop. In
the figure, the states, i.e. places, have been coloured according to the time which is
spent in them while executing the process. For example, the places where plenty of
time is spent are the places following the DES transition, some time is also spent
in the places preceding the REV task. Also, multiple arcs originating from the same
place (i.e., choices) have been annotated with the respective probability of that choice.
In our example, after designing the software, we probably start coding or planning

the tests, but not verifying the design.

Figure 3.40: Result of the Performance Analysis

Informational Aspect

As it has already been mentioned, it is helpful to abstract from low-level events in the
log. However, there may also be situations where the exact composition of higher-level
modules corresponding to development phases is not known precisely. The Activity
Miner [GA06] addresses this problem, which is common due to the low-level nature
of most logs. It can derive high-level activities from a log by clustering similar sets of
low-level events that are found to occur together frequently. These high-level clusters,

or patterns, can be helpful for unveiling hidden dependencies between documents, or

3.3. INCREMENTAL WORKFLOW MINING APPROACH 81

for a re-structurization of the document repository layout. Another possible approach
for discovering and clustering activities from the information about documents was
proposed in one of our papers [KRS06c]; still, the idea is similar: before doing the
process mining, we can start clustering the activities using the information given in

the logs.

3.3.5 Step 3: Model Analysis and Representation

The mining approaches described in the previous sections mainly serve the purpose to
extract high-level information from a process enactment log. This is a tremendously
helpful tool for software process engineers, managers and system administrators, who
want to get an overview of how the process is executed, and for monitoring progress.
Nevertheless, the extracted high-level information about the software process, which
is specified as a process model, is not usually the final goal. The software process
model has to be used for further analysis and verification in order to identify the
weak points in the software project, to realize the way of work of employees and their
means of communication. The results of the analysis are used for better management
and optimization of the software process, which helps to move one step forward in the

Capability Maturity Model or in the other software process improvement framework.

Software Repositories

¢ 3 Model Analysis
1 % and
| | Preprocessing Represen

. 2 “\
\ Software "\ PI\;I(i)r?iis Software
Process Process
/ nstance Model

a) control-flow mining
b) mining different aspects

Figure 3.41: Model Analysis and Representation Step

In many situations it is not so interesting how exactly the process is executed,
but rather if this execution is correct. In this section, we deal with the third step
of our approach — model analysis and representation, see Fig. 3.41. We refer to the
algorithms developed within the ProM tool to show how the process model derived

on the second step of the incremental workflow mining approach (cf. 3.3.1) can be

82 CHAPTER 3. INCREMENTAL WORKFLOW MINING APPROACH

analysed and verified.

To answer this question, there exists a set of analysis and verification meth-
ods in the process mining domain. One of these techniques is Conformance Check-
ing [RvdA06], which takes an enactment log and an associated process model, e.g. a
Petri net, as input. The goal is to analyse the extent to which the process execution,
as recorded in the log, corresponds to the given process model. Also, conformance
checking can point out the parts of the process where the log does not comply, and
the process instances which are deviant. This technique can be used both for process
verification (i.e., is the actual execution compliant to my defined development pro-
cess?) and for process analysis (i.e., where does my organization fail to comply with
the defined process?). In the context of strictly defined development processes, e.g. in
CMMI or government-sponsored development, the hard proof of compliance to these

processes can be a competitive advantage.

Figure 3.42: Conformance Checker

In Fig. 3.42, we show the result of conformance checking, which contains the path
coverage analysis. This model inserts inscriptions to the arcs, these inscriptions show
the number of cases (process executions) in which an arc was passed. For example, the
arc from the initial place to the transition DES was taken in all the three cases. The
process model shown in this figure has 100% fitness, i.e. it specifies all the situations
given in the log. Such measures as fitness and appropriateness (see [RvdA06]) are
very helpful for analysing the quality of the model and the discrepancies between the
model and the reality. With the help of the Conformance Checker, software engineers
can figure out the differences between the reality and the model, they can gain the
ideas about the parts of the process that should be better managed and optimized.

In Figure 3.43 we show the path coverage only for the first case. So, the capability

of filtering the model is extremely helpful, especially in the situation of software

3.3. INCREMENTAL WORKFLOW MINING APPROACH 83

projects where the models are huge. All activities that have been executed in this
case are decorated with a bold border, and arcs are annotated with the frequency
they have been followed in the case. It is easy to see, that this case does not contain

a loop and that verification was not done here.

Figure 3.43: Conformance Checker, Path Coverage

Another technique to this end is LTL Checking [vdAdBvDO05], which analyses
the log for compliance with specific constraints, where the latter are specified by
means of linear-temporal logic (LTL) formulas. With the help of this model check-
ing technique, software engineers can obtain important information from the model,
check different relevant properties in order to gain better insight into the software
engineering process.

An example of a constraint is: “Is there a case, where design and review of the
design are executed by the same person?” LTL checking can be used to verify these
constraints in a log, and to pinpoint the specific cases which do not comply. Regarding
the example log in Table 3.4, the second case satisfies the above constraint, see
Fig. 3.44. In general, LTL checking does not assume the existence of a fully defined
development process, but the results must be visualized and fault traces have to be
shown and understood by the user. Moreover, often it is impossible to formulate the
constraints to be checked without having a process model at hand.

Many process analysis and verification techniques can be applied directly to the
process model, without having a log. Modern process model analysers can check a
Petri net model for deadlocks (i.e., potential situations in which execution will be
stuck). It can be checked whether the model is sound, i.e. whether the process starts
and finishes properly, no unexecuted tasks are left after the process is finished. The
process analysis techniques known from the area of Petri nets can verify that there

exists a valid place invariant (i.e., all process executions will complete properly with

84 CHAPTER 3. INCREMENTAL WORKFLOW MINING APPROACH

e |-

rEsT o

CODE |-

e |-

Figure 3.44: Result of the LTL checking

no enabled task left behind) and transition invariant. The Petri net from our example
is a sound one, it contains no deadlocks or other anomalies.

So, in this Section, we presented useful techniques, which should be used for
analytical work with the process models. The area of process mining focuses mainly
on the discovering of process models. However, in the area of software processes, a
company usually wants to make a further step in the software process improvement
framework. In this case, the company does not only need a documented (designed)
process model, but has to be able to analyse and to improve the model in order to

make the software process manageable and to optimize it.

3.3.6 Incremental and Interactive Approach

In the previous sections, we presented the steps of our approach with the help of
several simple examples. In this section, we conclude the explanation of our approach
(the details about algorithms and the evaluation can be found in the next chapters)
we explain the ideas of incrementation in our approach. An appropriate schema is
shown in Fig. 3.45, it extends the basic schema given in Fig. 3.11.

The Software Configuration Management system is a source of our input infor-
mation (as described further in Sect. 3.4, we can also successfully deal with other
input sources). On iteration k, the process mining algorithms are executed and the
internal process model is produced; then, this model can be either transformed to the
company specific format or directly shown to the process engineers and practitioners.
They analyse the model, discuss it and continue their work with software configu-
ration management system considering the mined model. On the next iteration, the
whole process is repeated. During these iterations, people get formal feedback about

their way of work, use methods to analyse it and change their work incrementally.

3.3. INCREMENTAL WORKFLOW MINING APPROACH 85

Process Engineer, Manager

% : External Model
-
A
/ ~ - -

SCM System

— N
(Software Repository) -
o — — External Model ‘
[Practitioner

Iteration k

Mining Internal Model Transformation

Iteration k+1

Figure 3.45: Incremental and Interactive Approach

This is why out approach is called incremental. Moreover, the model of the process is
improved incrementally, since it reflects the improving way of work in the company.
In general, we consider it to be important that users interact with the process model,
so that they discuss, analyse and verify it, but also can change it manually. This is
why we also call the approach also interactive.

So, in the context of changing processes, the approach is aimed at filling the
gap between process type evolution and process instance evolution [EKR95, RD97,
HHJ*99]. Our algorithms provide an automatic support for redesigning the process.
They use the information about deviation in the process instances for this redesign.
The approach works incrementally: starting with revolutionary changes in the first
step, when there is no process model at all, in a consecutive manner we come to, so

called, incremental changes in the further steps.

Gradual Workflow Support and Flexibility

Following our approach, after the process models are discovered, they can be in-
serted to the Process Management System (PMS), e.g. Workflow Management Sys-
tem (WIMS), where they are maintained and executed. But the role of the PMS and
its level of user support evolves with the time. Thus, on the first steps, it is utilized
only for storing the newly discovered models; after further refinements, when process
models become more faithful, the PMS starts advising and guiding the users in the

company. This increasingly changing control of the PMS in the company is called

86 CHAPTER 3. INCREMENTAL WORKFLOW MINING APPROACH

gradual workflow support. So, introducing incremental workflow mining and gradual
workflow support in the company enables dealing with the process flexibility in a

formal and documented manner.

In the software engineering environments, it is usually difficult to introduce a
process management system directly from scratch. The real process is very compli-
cated and different people are working concurrently on different parts of the project.
Thus, it is not only impossible to make the process manually, it is almost impossible
to do it in one step without incrementally improving the knowledge of the process

management system and the people’s habit of relying on it.

Using the Approach in a Batch Mode

Above we described the main ideas of the incremental approach, but rather often
it happens that software has already been developed during some time and that
software repositories contain already a set of document logs. Such document logs
contain data about a set of process executions (cases). So, in this situation, we can
use our approach in a batch mode, i.e. we take the existing document log containing
the whole project history and execute our approach. As a result, we obtain a process
model, which specifies the behaviour of all the existing process executions. After
we derived a model which reflects the history of the software project, we can start
working incrementally. The described batch mode approach is especially useful for
the software companies that stay already in business and that want to improve their
existing CMM level and need explicitly formulated and documented process models

reflecting their software development processes.

Our approach can be used not only for deriving software process models from
one evolving software project, it is possible to derive a model of several projects.
Moreover, we must not be necessarily focused on one company, different companies
can be examined. The general schema of the approach is shown in Fig. 3.46. For
example, often the company has the policies and guidelines for software development
processes, so that all the projects have to adhere to these guidelines. Thus, with the
aid of process mining, we get a model which reflects the real situation in all the
projects. With the help of this model, we can find out how and in which projects the
recommendations were ignored. In chapter 5, one of our case studies is about deriving
the process model from the set of student software projects. This is an example of

using our approach in batch mode.

3.4. DIFFERENT APPLICATION DOMAINS 87

Software
Process

Document
Log

Project 1 \
Project k /

Project 1 \
Project k /

Company 1 Company N

Figure 3.46: Using Approach in Batch Mode

3.4 Different Application Domains

In this chapter, we presented our incremental workflow mining approach and the
main ideas of its algorithms in the context of software engineering. In the beginning
of the chapter, we have shown how the approach can be integrated to the process-
centered software engineering environment and described the software repositories
and the input sources for the algorithms. We also mentioned that our framework
supports different types of input information, e.g. bugs history logs, e-mail archives
and document logs of SCMs. In this concluding section of this chapter, we intend
to broaden the context of the approach and to discuss its applicability to the other

domains; our overview uses the following work [vdAW04, vd AvDH'03, vd ARvD ™ 06]
as a background.

Nowadays, there is increased interest in the Process-Aware Information Sys-
tems (PAIS) as a bridge between people and software through process technol-
ogy [DvdAtHO5]. So, process engine is included not only to the process-centered
software engineering environments and WfMS, but to ERP, PDM, CRM and other
systems. Today’s PAIS systems increasingly support not only highly structured pro-
cesses (classical “workflow paradigm”), but dynamic processes. The end goal is not

to enforce processes, but to support, monitor and influence them, i.e. to adopt the

process technology to the company’s needs.

88 CHAPTER 3. INCREMENTAL WORKFLOW MINING APPROACH

Along with the evolving process technology, today’s information systems started
to record enormous amounts of data. ERP, WFM, CRM, SCM, and PDM software
provide excellent logging facilities, i.e., there is a tight coupling between processes
and information systems even if the processes are not enforced by the information
system, i.e., information systems are aware of processes even if they do not control
them in every aspect. Thus, all these systems can serve as an input source for the

mining algorithms, which support dynamic processes as well as the structured ones.

Thus, additionally to SCM systems, the auditing information is usually also avail-
able, in the area of Product Data Management (PDM) systems discussed already in
Chapter 1, which is traditionally strong in product modeling and product evolution
control [EFM98]. Historically, current PDM/PLM systems, which support a broad
functionality including process management and support, have grown from the repos-

itories of CAD/CAM drawings and multi media database systems.

PDM system provides a structure, where different types of information, such as
electronic documents, files, database records, and processes are stored. The system
ensures that people and other systems have access to the stored information through-
out the whole lifecycle of a product. Data Vault and Document Management compo-
nent of PDM supports checkin and checkout functions and, therefore, provides secure
storage and control of data. Meta-data stores index and definition information about
products, changes, and releases; this is auditing information, which can be tracked
and controlled. PDM system also contains Workflow and Process Management com-
ponent, its processes govern the way the user perform their jobs for achieving their
business objectives. Here, we can refer to such systems as Metaphase and TeamCen-
ter, Windchill. All these systems log the status of all the design artefacts and support
the versions of these artefacts. Thus, analyzing the logs of these systems with the
help of the algorithms described in this Chapter, we can find out the design process

and the flow of work of the engineers in the company.

The Enterprise Resource Planning (ERP) systems, which are used on the other
stage of product development lifecycle as PDMs, usually integrate the version man-
agement systems, which also provide the auditing functionality. For example, such
ERP system as SAP logs all transactions of users filling out forms, changing docu-
ments, etc. Business-to-business (B2B) systems log the exchange of messages with

other parties. CRM systems log interactions with customers.

The other examples of the domains where our approach can be applied are: (1)

The hospitals, where the information about the health history and treatments of

3.4. DIFFERENT APPLICATION DOMAINS 89

patients is stored in the electronic form; (2) Organizations integrated using Service-
Oriented Architecture (SOA), since these organizations are communicating using
message exchange, and message exchange data is usually recorded. Here, such tech-
nology as Web Services and such standards as SOAP, WSDL and BPEL can be used
as an example; (3) Professional high-tech systems such as high-end copiers, complex
medical equipment, lithography systems, automated production systems, etc. record
events which allow for the monitoring of these systems; (4) Classical administrative
systems of large organizations, such as universities, banks, insurance companies, local
governments, etc. Here, the document flow and most activities are recorded in some
form.

Moreover, the area of software engineering can benefit from the incremental work-
flow mining approach not only in the domain of discovering software process models,
but in the behavioural design in general (modelled as UML activity, sequence or col-
laboration diagrams). These designs can be compared with the real-life scenarios, in

this case every scenario corresponds to an execution log.

90 CHAPTER 3. INCREMENTAL WORKFLOW MINING APPROACH

3.5 Summary

In this Chapter, we presented the incremental workflow mining approach. We ex-
plained how it can be integrated into the modern software engineering environments.
We discussed in detail the sources of input information for the approach, i.e. soft-
ware repositories, and the audit information recorded in these repositories. Finally,
we presented the outline, the architecture and the methodology, which make up our
approach.

The presented approach has the following impacts on the area of software engi-

neering in general and on the area of software processes in particular:

e It uses the information provided by software repositories for discovering soft-
ware process models. So, it looks at the real data produced by practitioners

during their work on software projects.

e It produces documented and formally specified software process models, which
are required by almost all the software process improvement frameworks and
which are mandatory for further process improvement and for effective quality

management in companies.

e It is based on flexible generic algorithms, which automatically generate software

process models on different levels of abstraction.

e It produces software process models containing different process aspects:

control-flow aspect, performance aspect, organizational aspect, etc.

e [t provides a set of utilities for analysis and verification of the models. Thus, the
approach is not focused only on the discovering of process models, but supports

further steps essential for process management and optimization.

e It can be used by the companies staying in business, as well as by developing

companies, since it can be used both in the incremental and in batch modes.

e It can be used not only in the software engineering field but also in the related

areas.

Chapter 4

Algorithms and Models

In this chapter, we present our algorithms developed within the incremental workflow
mining approach. Here we proceed from the standpoint of a process miner instead of
a software engineer. The main idea of the algorithms is deriving the process models
from the document logs. We focus on the control-flow process mining algorithm (the
main idea was described in Sect. 3.3.3), since it is the main algorithmic contribution
of the thesis. So, the focus of this chapter is on the second step of the whole approach
presented before, see Fig. 4.1. The structure of the document logs and the back-
ground information about the document management systems, which are extensively
used in the software domain, namely software configuration management systems,
were also presented in the previous chapter. Here, we make formal definitions and
formalize the algorithms; the basics of the ideas discussed here were presented in our
paper [vdARvD106].

Software Repositories

y s

Model Analysis

and

i1) Representation
i | Preprocessing

\ Software "\ 2 Software
Process Process
/ nstance /. Mining Model

a) control-flow mining
b) mining different aspects

Figure 4.1: Main Focus: Control-flow Mining Algorithm

91

92 CHAPTER 4. ALGORITHMS AND MODELS
4.1 Control-low Mining and Open Issues

In the previous chapter we have discussed already the idea of process mining and
the usability of its results. Now, we give the motivation and open issues emerged in
this area and, thus, define the desired properties and characteristics of the mining
algorithms. Moreover, the terminology presented in this Section is used further in the
rest of the thesis.

First of all, we remind and clarify the terminology used in the process mining
domain. In the area of process mining, there are different algorithmic approaches,
which derive the control-flow from the event logs. The events in these logs corre-
spond to process activities produced by some Process Management System (PMS).
In our application area we have information about the commits of documents which
occur in document management systems, such as SCM systems, but generally can
also occur in other systems, like PDM. So, in our terminology, event corresponds to
a commit of documents, so the terms “event logs” and “document logs” are used in-
terchangeably; and we use documents instead of activities. Convertible terms “case”,
“trace” and “execution log” that define the parts of the event logs corresponding to
process instances are used by us as well as in classical process mining. However, the

applicability of our approach to the logs of activities is discussed in Sect. 4.1.2.

4.1.1 Open Issues

Figure 4.2 shows an example of a log and the corresponding process model that
can be discovered using our control-flow process mining algorithm or the classical
techniques from the process mining area. Existing process mining algorithms for
control-flow discovery typically have several problems. So, using the small example
of the typical reservation at the travelling agency presented in Fig. 4.2, we can discuss
these problems in more detail. In this Section we deal with the classical techniques
from the area of process mining, such as a-algorithm [vdAWMO04], and their open
issues, the capabilities of our algorithm will be discussed later.

The first problem is that many algorithms have difficulties with complex control-
flow constructs. For example, the choice between the concurrent execution of Hotel-
Reservation and FlightReservation or the execution of just CarReservation shown
in Figure 4.2 cannot be handled by many algorithms. Most algorithms do not al-
low for so-called “non-free-choice constructs” where concurrency and choice meet.

The concept of free-choice nets is well-defined in the Petri net domain [DE95]. How-

4.1. CONTROL-FLOW MINING AND OPEN ISSUES 93

Hotel
Reservation

Flight Reservation
Opinion Form

Registration Form
Flight Reservation °
Hotel Reservation Case2

Opinion Form

Registration Form
Car Reservation Case 3

Opinion Form

Registration Form
Hotel Reservation Case 1

Opinion
Form
Flight
Reservation

Figure 4.2: Document Log and discovered Process Model

ever, in reality processes tend to be non-free-choice. The non-free-choice construct is
just one of many constructs that existing process mining algorithms have problems
with. Other examples are arbitrary nested loops, unbalanced splits and joins, partial
synchronization, see [vdAvDH'03, vdAWO04] for further details. In this context it is
important to note that process mining is, by definition, restricted by the expressive
power of the target language, i.e., if a simple or highly informal language is used,
process mining is destined to produce less relevant results.

The second problem is the fact that most algorithms have problems with du-
plicates. In the document log it is not possible to distinguish between documents
that are named the same way, i.e., there are multiple documents that have the
same “footprint” in the log. As a result, most algorithms map these different
documents onto the same document thus making the model incorrect or counter-
intuitive. Consider for example Figure 4.2 and assume that documents Registra-
tionForm and OpinionForm are both recorded simply as Form. For example, the
case 1 (RegistrationForm, Hotel Reservation, Flight Reservation, OpinionForm)
is recorded as (Form, Hotel Reservation, Flight Reservation, Form). Most algo-
rithms will try to map the first and the second Form onto the same document.
In some cases this makes sense. However, if ReservationForm and OpinionForm re-
ally play a different role in the process, algorithms that are unable to separate them
will run into all kinds of problems, e.g., the model becomes more difficult or incor-
rect. The problem described above is a very important conceptual issue, which causes
application of intelligent methods to the area of process mining.

The described problem can be complemented by the other problem, which is
rather an algorithmic problem: documents are named differently, but mean the same.

This is a problem of names and types, it can be solved using additional information

94 CHAPTER 4. ALGORITHMS AND MODELS

like it was described in the previous chapter; but it should be treated on the algorithm
level, the algorithms should be able to detect such suspicious situations.

The third issue is that many algorithms have a tendency to generalize the solution
and can not tune the level of this generalization, i.e., often the discovered model
allows for much more behaviour than actually recorded in the log. We will discuss
this further in more detail when we discuss the completeness of a log.

The fourth problem is that many algorithms have the possibility to generate
inconsistent models. Note that here we do not refer to the relation between the log
and the model but to the internal consistency of the model by itself. For example,
the a-algorithm may yield models that have deadlocks and/or livelocks when the
log shows certain types of behaviour. When using Petri nets as a model to represent
processes, an obvious choice is to require the model to be sound [Aal98, vd AWMO4],
see also Sect. 2.3.2. Soundness implies that for any case: (1) the model can potentially
terminate from any reachable state (option to complete), (2) that the model has no
dead parts, and (3) that no tokens are left behind (proper completion).

The four problems just mentioned illustrate the need for more powerful algo-

rithms. This is the reason we propose a new algorithm in this thesis.

4.1.2 Document and Activity Logs

In the beginning of Sect. 4.1, we clarified the terminology (event logs, activity logs,
document logs) used in the process mining domain. Further in this chapter, we ex-
amine the document logs and apply our transition system generation and Petri net
synthesis approach to these logs. In our main application domain (cf. Chapter 3),
i.e. software engineering domain, the main source of observing the work of software
engineers are the logs of such document management systems as SCM systems and
software repositories; however, these systems are not aware about the underlying ac-
tivities. Nevertheless, in the other domains, the Process-Aware Information Systems
collect information about the activities. Our approach described in this chapter is
multi-purpose, it can be also applied to the activity logs. Possible sources of such logs
and the main application domains were discussed in Sect. 3.4.

In Sect. 4.1.1, we presented an example of the flight and hotel reservation process,
see Fig. 4.2. It was based on documents, i.e. filled in forms, reservation e-mails, etc.
But, if the travelling agency uses a workflow management system, it saves the actions
done by the user; then the same example will look the following way, see Fig. 4.3.

In spite of the fact that the algorithms described further can be applied to both

4.1. CONTROL-FLOW MINING AND OPEN ISSUES 95

register
reserve Hotel Case 1
reserve Flight
fill in Opinion For
register
reserve Flight Case 2 o
reserve Hotel
m

fill in Opinion For

register
reserve Car Case 3
fill in Opinion Form

reserve
Hotel

’» reserve Car ‘

reserve
Flight

register fill in Opinion
i Form

Figure 4.3: Activity Log and discovered Process Model

types of logs, there are differences in the nature of the logs. For example, several
documents are often committed at the same point of time, but it does not occur that
often in case of activities. So, traces of the document logs contain often structured
documents.

Furthermore, some modification strategies are useful for document logs, the oth-
ers not. For example, the “Extend” strategy described in Sect. 4.2.4 is very useful
for document logs, since it “enables” producing new documents when all the precon-
ditions are fulfilled (all the preceding documents are committed), but it is applied
seldom to activity logs.

However, our main goal in this Chapter is to present our process mining algorithm,
which supports tuning the level of generalization and deals with different sources of

input information, such as document and activity logs.

4.1.3 Notions of Completeness

When it comes to process mining the notion of completeness is very important. Like
in any data mining or machine learning context one cannot assume to have seen
all possibilities in the “training material” (i.e., the event log at hand). In Figure 4.2
the set of possible traces found in the log is exactly the same as the set of possible
traces in the model. In general this is not the case. For example, the trace (Reg-
istrationForm, FlightReservation, MealReservation, HotelReservation, OpinionForm
) may be possible but did not occur in the log. Therefore, process mining is always
based on some notion of completeness. A mining algorithm could be very precise in
the sense that it assumes that only the sequences in the log are possible. This implies
that the algorithm actually does not provide more insights than what is already in

the log. However, to illustrate the relevance of completeness, consider 10 tasks which

96 CHAPTER 4. ALGORITHMS AND MODELS

can be executed in parallel. The total number of interleavings is 10! = 3628800. It is
probably not realistic that each interleaving is present in the log.

Different algorithms assume different notions of completeness. These notions il-
lustrate the different attempts to strike a balance between “overfitting” and “under-
fitting”. A model is overfitting if it does not generalize and only allows for the exact
behaviour recorded in the log. This means that the corresponding mining technique
assumes a very strong notion of completeness: “If it is not in the event log, it is not
possible.” An underfitting model generalizes the things seen in the log, i.e., it allows
for more behaviour even when there are no indications in the log that suggest this

additional behaviour.

Model 1
Log 1 Application Truck
Truck License

Application Truck
Theory Results
Truck License

Case 1l
Application Car
Theory Results

Theory
Results
Case 2
Car License

Application Car
— LOg 2 Car License
Application Truck

Theory Results
Truck License

N

Case 1l

Model 2
Case 2 Application Truck

Truck License
Case 3 Theory
Results
Case 4 Application Car

Car License

Application Car
Theory Results
Car License

Application Truck
Theory Results
Car License

Application Car
Theory Results
Truck License

)

Figure 4.4: Two logs and models illustrating the completeness issue.

Let us now consider an example showing that it is difficult to balance between
being too general and too specific. Figure 4.4 shows an example of the process of
obtaining a driving license. People use to fill the application for truck or for car license,
obtain results of a theoretical exam and then, after attending practical courses, they
get either a truck or a car license. Our example consists of two logs and two models.
Both logs are possible according to the Model 2. However, only Log 1 is possible
according to the Model 1 because this model does not allow for Case 3 and Case 4
present in Log 2. Clearly, Model 1 seems to be a suitable model for Log 1 and Model

2 seems to be a suitable model for Log 2. However, the question is whether Model 2

4.2. TRANSITION SYSTEM GENERATION 97

is also a suitable model for Log 1. If there are just two cases Case 1 and Case 2, then
there is no reason to argue why Model 2 would not be a suitable model. However,
if there are 100 cases following Case I and 100 cases Case 2, then it is difficult to
justify Model 2 as a suitable model. If Case 3 and/or Case 4 are indeed possible,
then it seems unlikely that they never occurred in one of the 200 cases. Moreover,
if there were only three cases in the second log, an intelligent algorithm should try
to derive the Model 2 anyway and, thus, at least to suppose that there can exist the
Case 4. Figure 4.4 shows that there is a delicate balance and that it is non-trivial to
compare logs and process models. Thus, the objective is to develop a methodology
for “tuning” the balance in order to reach an appropriate level of generalization.

So, in the whole section, with the help of two simple practical examples we pre-
sented several relevant problems in the area of process mining, clarified the similarity
and differences between the activity and the document logs, and discussed such an
important issue as “overfitting” and “underfitting”. The latter issue opens an impor-
tant research direction concerning the intelligence of the mining algorithms.

Thus, we can conclude that there is a lack of process mining methods, which
enable balancing between “overfitting” and “underfitting” and provide an interface
to the process engineer for “tuning” this balance. Further, we present our method for

resolving the issues discussed in this Section.

4.2 'Transition System Generation

In the next Sections, we discuss the details and formalize our control-flow process
mining algorithm. Here, we start with the first part of this algorithm, i.e. with tran-
sition system generation, see Fig. 4.5. We remind the reader that transition system
generation deals with constructing transition systems from the log and modifying T'Ss

to overcome “overfitting” and thus to tune the appropriate level of generalization.

Transition System Petri Net
Document Generation = : Synthesis PN) J:'fh e .
Log ‘ .V_; £ V(q) h‘wh(_,»“T.:..:‘ﬁ;mh_ @

Figure 4.5: Transition System Generation Step

98 CHAPTER 4. ALGORITHMS AND MODELS

4.2.1 Preliminaries

In this section, we present the definitions of sets, multisets and sequences in a com-
patible manner suitable for our approach, so that we can use them in the rest of this
chapter for specifying our algorithms.

Let A be a set. A* is the set of all finite sequences over A. In terms of abstract
algebras, A* is a free monoid on set A; i.e. A* has a binary operation, namely con-
catenation, which is associative (Va,b,c € A* : (a +b) +¢c = a+ (b+ ¢)), and
there is also an empty sequence ¢ € A* with e oa = a. Let 0 € A* be a finite
sequence of length n; it can be also defined using a mapping: o € {1,...,n} — A.
Such a sequence is represented by a string, i.e., 0 = (a1, a2, ...,a,) where a; = (i)
for 1 < i < n. hd(o,k) = (a1,az,...,ax), is the sequence of just the first k ele-
ments, 0 < k < n. Note that hd(o,n) = o and hd(c,0) is the empty sequence.
tl(o,k) = {aks1,ak12,---,0an), is the sequence after removing the first k elements,
0 < k < n. Note that #/(c,0) = o and #/(o,n) is the empty sequence. proj~ (o) is the
projection of o onto some subset X C A, e.g., proj{“’b}«a, b,c,a,b,c,d)) = (a,b,a,b)
and proj{®®<((d,a,a,a,a,a,a,d)) = (a,a,a,a,a,aq).

For a given set A, let M(A) = A — N be the set of all finite multisets (bags)
over A. In terms of abstract algebras, M(A) is a commutative free monoid on set
Aj; i.e. M(A) has a binary operation, namely concatenation, which is associative and
commutative (Va,b € A* : a +b = b+ a), and there is also an empty sequence
e € M(A). Let X € M(A) be a multiset where for each a € A: X(a) denotes the
number of times a is included in the multiset. |X| = > ., X(a) is the cardinality
of some multiset X over A. The sum of two multisets (X + Y'), the presence of an
element in a multiset (z € X), and the notion of subset (X < Y) are defined in a
usual way. We also apply these operators to sets, where we assume that a set is a
multiset in which every element has a multiplicity 1.

For any multiset X over A, set(X) operation transforms a multiset into a set;
ie. set(X) = {a € X|X(a) > 0}. For any sequence ¢ over X, the Parikh vector
par(c) operation transforms a sequence into a multiset. It maps every element a
of A onto the number of occurrences of a in o, i.e., par(c) € M(A) and Va € A:

par(o)(a) = i<, if 0(i) = a then 1 else 0.

4.2.2 Approach

In our approach, we do not consider the whole log, like it was shown in Table 3.2,

but only the ordering of documents. Each case is executed independent from other

4.2. TRANSITION SYSTEM GENERATION 99

cases, and therefore, we can simply restrict our input to the ordering of documents
within individual cases. A single case is described by a sequence of documents and a

log can be described by a set of traces.

Definition 4.2.1 (Trace, Document log). Let D be a set of documents. o € D*

is a trace and L € P(D*) is a document log.*

Note that a € D may refer to an atomic document or may be structured, e.g.,
the set of documents produced in the same activity.

The set of documents can be found by inspecting the log. The most important
aspect of transition system generation is however deducing the states of the process,
see Fig. 4.6. Most mining algorithms have an implicit notion of state, i.e., activities
(documents in our case) are glued together in some process modeling language based
on an analysis of the log and the resulting model has a behaviour that can be repre-
sented as a transition system. Here, we propose to define states explicitly and, then,

to come to the definition of a transition system.

Transition System Petri Net
Document | Generation Synthesis P|N ‘_UJ"‘-;; 4
@[l T i e0fa
LOg —> > { 19]
Defining a State

Sk

Figure 4.6: Transition System Generation Step: Defining a State

In some cases, the state can be derived directly, e.g., each event encodes the
complete state by providing values for all relevant data attributes. However, in the
event log we typically only see documents and not states. Hence, we need to deduce
state information from the documents committed before and/or after a given state.
Figure 4.7 shows an example of a trace and the different “ingredients” that can be
used to calculate state information.

Thus, we conclude that, when building a transition system, there are basically

four approaches to determine the state in a log;:

e past, i.e., the state is constructed based on the history of a case,

Note that we ignore multiple occurrences of the same trace in the thesis. When dealing with
issues such as noise it is vital to also look at the frequency of documents and traces. Therefore, a
document log is typically defined as a multiset of traces rather than a set. However, at the time being

it suffices to consider sets.

100 CHAPTER 4. ALGORITHMS AND MODELS

Case
A
B
C
D Past
C
D
c P
D Explicit State ast
E

Current stat V Knowledge And
. Future
|:t> &P (eaies
additional

input)

Future

—IIIO>X>T

Figure 4.7: Four basic “ingredients” for calculating the “process state”.

o future, i.e., the state of a case is based on its future,
e past and future, i.e., a combination of the previous two, or

o explicit knowledge of the current state, e.g., the log contains state information

in addition to event data.

In the thesis, we assume that we do not have explicit knowledge about the current
state and focus on the past and future of a case. However, note that our approach

can also be applied to situations where we have explicit state knowledge [KRS06¢].

Definition 4.2.2 (Past and future of a case). Let D be a set of documents and
let 0 = (a1, az,...,a,) € D* be a trace that represent a complete execution of a case.
The past of this case after executing k steps (0 < k < n) is hd(o, k). The future of
this case after executing k steps (0 < k <n) is ti(o, k).

The past of a case is a prefix of the complete trace. Similarly, the future of a
case is a postfix of the complete trace. This may be taken into account completely,
which leads to many different states and process models that may be too specific
(i.e., “overfitting” models). However, many abstractions are possible as we will see in
the remainder.

First of all, the state calculation can be based on a complete or partial prefix

(postfix):

4.2. TRANSITION SYSTEM GENERATION 101

e complete prefix (postfiz), i.e., the state is represented by a complete history

(future) of the case,
e partial prefix (postfir), i.e., only a subset of the trace is considered.

A partial prefix only looks at a limited number of events before the state is reached.
For example, while constructing the state information for the purpose of process
mining, one can decide to only consider the last k£ events. For example, instead of
taking the complete prefix (A, B,C,D,C,D,C, D, E) shown in Figure 4.7 only the
last four (k = 4) events are considered: (D, C, D, E). In a partial postfix also a limited
horizon is considered, i.e., seen from the state under consideration only the next &
events are taken into account.

Second, only a selected set of documents may be considered: the log is filtered,
i.e. only the remaining events are used as input for process mining. This is another
type of abstraction orthogonal to taking a partial prefix (postfix). Filtering may
be used to remove certain documents. For example, if there are start and complete
events for documents, e.g., “A started” and “A completed”, then it is possible to only
consider the complete events. It is also possible to filter out low-frequent documents
and focus on the frequent documents to simplify the discovered model. Filtering is a
very important abstraction mechanism in process mining.

The third abstraction mechanism removes the order and/or frequency from the
resulting trace. For the current state it may be less interesting to know when some
document A occurred and how many times A occurred, i.e., only the fact that it
occurred at some time in the past is relevant. In other cases, it may be relevant to
know how many times A occurred or it may be essential to know whether A occurred
before B or not. This suggests that there are three ways of representing the knowledge

about the past and/or future:
e sequence, i.e., the order of documents is recorded in the state,

e multiset of documents, i.e., the number of times each document is executed

ignoring order, and
e set of documents, i.e., the mere presence of documents.

Figure 4.8 illustrates the different ways of representing the knowledge about the
past or the future for the purpose of process mining. Note that the different kinds of
abstraction can be combined (assuming that we do not have explicit knowledge). This

results in 3 (past/future/past and future) times 2 (complete/partial) times 2 (with

102 CHAPTER 4. ALGORITHMS AND MODELS

Case
A Complete Partial
B Prefix Postfix Prefix (last 4) | Postfix (next 5)
C {AB,CD,E} {FAGH,UI} {C.D.E} {F.A.G,H} Set Z
D 5
c {AB,C°D’E} {F.AGH I} {C.D*E} {F.AG.H} Multi-set |=
D o
c | kaBcDbCcDCDES| <FAGHHH,I> <D,C,DE> <FAGHH> | Sequence |§
Current| D
state E
—, -
{C.D,E} {G.H.1I} {C,D.,E} {G.H} Set =
A o
G {C® D E} {G.H 1} {C.D’E} {GHY Multi-set |3
H ignore
H | | <CD.CDCDE>| <GHHH,I> <D,C,D,E> <G,HH> Sequence [ABF
H
|

Figure 4.8: Different ways to construct the “current state” (depends on the desired

level of abstraction).

filter /without filter) times 3 (sequence/multiset/set) = 3% 2% 2% 3 = 36 strategies to
represent states. If more abstractions are used, the number of states will be smaller
and the danger of “underfitting” is present. If, on the other hand, fewer abstractions
are used, the number of states may be larger resulting in an “overfitting” model.

Let us now try to further operationalize the ideas illustrated in Figure 4.8. Def-
inition 4.2.2 already showed how to project a sequence of documents onto the past
and /or future using hd(o, k) and tl(o, k) (given a trace o and the state resulting after
k steps). The operators par and set defined in Section 4.2.1 can be used to abstract
from the ordering of documents thus map sequences onto sets or multi-sets. To filter,
we use proj defined in Section 4.2.1.

When considering partial pre/postfixes, we need to define a horizon h and use

hd" (o, k) and 1" (o, k) rather than hd(c, k) and tl(o, k) as defined below.

Definition 4.2.3 (Horizon). Let D be a set of documents and o =
(a1,a9,...,a,) € D* a complete trace. Let h be a natural number defining the hori-
zon and let k£ (0 < k£ < n) point to the current state in the trace o (i.e., state
after executing k steps). The partial prefix hd" (o, k) = (A(k=h) maz 15- - > @) is the
sequence of at most h events before reaching the current state. The partial post-
fix ti"(o, k) = (aps1, ... s Q(k+h) min n) i the sequence of at most h events following

directly after the current state.

4.2. TRANSITION SYSTEM GENERATION 103

As indicated before, the representation of the current state can be very detailed
or not. For example, given a trace o after k steps, the state may be represented
as (hd(o,k),tl(o,k)), i.e., the current state is represented by the complete prefix
and postfix sequences. However, to avoid “overfitting” other representations can be
used. The representation par(hd(o,k)) only considers the complete prefix multiset,
i.e., the full prefix is considered but the ordering is not relevant. The representation
set(par(hd(o,k))) or set(tl°(o, k)) considers the complete prefix set, i.e., the full prefix
is considered, the ordering is not relevant, and the frequency is not relevant. Another
example of state representation is set(par(tl" (o, k))) which considers a partial postfix
of length h without caring about ordering a frequencies. set(par(tl"(proj* (o), k))) is
similar but now first the sequence is filtered and all documents not in X are removed.
After these examples, we define the concept of state representation with respect to a

position in trace explicitly.

Definition 4.2.4 (State representation). A state representation state : D* x
IN — D°, where D° is a free structure over D and can be a set, a multiset or a
sequence, is a function which, given a sequence ¢ € D* and a k € N indicates the

events of o that have occurred.

For example, state(o,k) = set(par(ti"(proj* (o), k))) is an example of a state
representation.

The various abstraction concepts can be used to “tune” the state representation.
Many different state functions are possible and here we only list the obvious ones.
As was indicated before, we consider 3 x 2 x 2 x 3 = 36 strategies to represent states.
These 36 types of state functions can be constructed as follows. Assume a complete

trace o and a k indicating the current position in o.

1. Decide to use just the past, just the future, or both and determine if partial
or complete pre/postfixes are used. There are 3 x 2 = 6 possibilities: hd(o, k),
tl(o, k), (hd(o, k), tl(o, k), hd"(o, k), t1" (0, k), and (hd" (0, k), t1" (0, k)).

2. Filter the log if needed, i.e., use o or proj* (o) as a basis. (Two possibilities.)

3. Determine if the ordering and frequency of activities is relevant and further ab-
stract from this in the resulting post /prefixes if needed. Assuming a pre/postfix
o it is possible to retain the sequence o, to remove the ordering par(o) (i.e., con-
struct a multiset), or to remove also the frequencies set(par(c)) (i.e., construct

a set). (Three possibilities.)

104 CHAPTER 4. ALGORITHMS AND MODELS

One of the 36 possible strategies is for example:
state(o, k) = (set(par(hd" (proj™ (o), k))), set(par (" (proj* (), k))))

Thus, in this Section we presented a flexible mechanism for representing states.
Depending on particular application area and level of abstraction, people can combine
the state representation strategies in order to find suitable methodology for their
domain. Our next step is to build a transition system based on a particular state
function. The state space is given by all the states visited in the log when assuming
the representation chosen. The transition relation can be derived by assuming that
one can go from one state to another if this occurs in at least one of the traces in the

log.

4.2.3 Constructing a Transition System

In this Section, we continue the transition system generation step of our control-flow
process mining algorithm and define the method for constructing a transition system,
see Fig. 4.9. First of all, we give a definition of a transition system, which is based

on the notion of state presented in Definition 4.2.4.

TS
Transition System Petri Net
Document Generation == : SyntheSiS PN ‘ -i‘:':ll“.;..iu. o
log | > R "J’H

Defining a State
a) Constructing TS

Figure 4.9: Transition System Generation Step: Constructing a TS

Definition 4.2.5 (Transition system). Let D be a set of documents and let L €
P(D*) be a document log. Given a state function as defined before, we define a labeled
transition system TS = (S,E,T) where S = {state(o,k) | c € L N 0 <k < |o|}
is the state space, E = D is the set of events (labels) and 7" C S x E x § with
T = {(state(o,k),o(k + 1), state(o,k + 1)) | c € L AN 0 <k < |o|} is the transition

relation.

In the transition system, the set of states without predecessors, i.e. So =

{state(o,0) | Vo € L}, is the set of start states.

4.2. TRANSITION SYSTEM GENERATION 105

The algorithm for constructing a transition system is straightforward: for every
trace o, iterating over k (0 < k < |o|), we create a new state state(o, k) if it does not
exist or take the existing one otherwise. For every preceding state state(o,k — 1), if
it exists, we make a transition state(o,k — 1) ok} state(o, k) to the new one?. It is
worth mentioning that in most of the cases a transition system can be constructed
effectively online just while reading a log.

Further, as an example we will consider the log abstracted from the log from the

previous chapter (see Table 3.4):

<A7 Ba C7D>a
L={ (A,C, B,D), (4.1)
(A,E,C,E,C,D)

If we use the complete prefix set definition of a state, i.e. state(o,k) =
set(par(hd(o,k))), we get the transition system shown in Figure 4.10. Every state
consists of a set of activities and every transition is labelled with a name of an activ-
ity. This transition system contains two self-loop transitions {4, C, E'} £ {A,C, E}
and {A,C, E} < {A,C, E}. If we use the complete prefix sequence representation of
a state, i.e. state(o,k) = hd(o, k), we obtain another transition system as shown in
Figure 4.11. For this transition system, every state is represented by a sequence of
activities (for example (A, E,C, E)). As is easy to see, this transition system does not
contain any self-loops any more. In fact, the complete prefix sequence representation
of a state always results in acyclic transition systems.

Looking at Fig. 4.10 and Fig. 4.11 from the point of view of fitness, it is easy to see
that both TSs support the behaviour seen in the log. But the first TS is underfitting,
since it also allows for much more behaviour; i.e. such trace as (A, E,C,C,C, E, E, D)
can be reproduced in this T'S. To the contrary, the second one is overfitting, it allows
for exactly the behaviour seen the log and does not recognize the loop hidden in the
trace (A, E,C, E,C, D).

Another example of a transition system generated from the example log is shown
in Figure 4.12. This one is based on the complete postfixr multiset definition of a state,
i.e. state(o,k) = par(tl(o,k)). And the last example of a constructed TS shown in
Fig. 4.13 is based on the partial prefix sequence definition of a state, i.e. state(o, k) =
hd?*(o, k). The postfix-based TS is overfitting also, but the last one is more “clever”,

since it recognizes the loop.

2Further7 the elements of T' are often denoted as s; — so instead of (s1,€,82).

106 CHAPTER 4. ALGORITHMS AND MODELS

Figure 4.10: Complete prefix sets TS Figure 4.11: Complete prefix sequences T'S

Figure 4.12: Complete postfix multisets
TS Figure 4.13: Partial prefix sequences TS

Further, we want to formulate an important proposition for the constructed tran-

sition systems.

Proposition 4.2.6 (Correct Construction). Let D be a set of documents, let
L € P(D*) be a document log and TS = (S,E,T) be a transition sys-
tem constructed from the log L according to Definition 4.2.5. For every trace
o = (ai,ag,...,a,) € L there is a corresponding sequence of transitions p =

((s0,a1,81),(81,a2,82),-..,(Sn—1,an,Sn)), where sqo is a start state, in the T'S.

Proof. According to Definition 4.2.5 for every trace o € L and every 0 < k < |o],
there is a transition (state(a, k),o(k+1), state(o, k—l—l)) in the T'S. Hence, in the T'S,

4.2. TRANSITION SYSTEM GENERATION 107

for every o = (a1, ag,...,a,) € L of length n we can build a sequence of transitions
p={(so,a1,51),(51,a2,82), ..., (Sn—1,0n, Sn)), where s; = state(o,i), a; = o(i) and
0<?<n.

According to Proposition 4.2.6, we can conclude that all the traces of the log
are specified as transition sequences in the constructed transition system. Thus, the
behaviour modelled in the log is also modelled in the transition system, i.e. transition

system construction is correct in respect to the logged behaviour.

4.2.4 Modification Strategies

Transition systems, which are constructed according to the algorithm given in the
previous section, reflect the behaviour seen in the log. However, often the log does
not contain all the possible traces and, thus, represents only a part of the possible
behaviour. In the other cases, we need to further abstract from the log data, intro-
duce generalizations, or even ignore some unnecessary details. So, in this section, see
Fig. 4.14, we present the main operations which make up a framework for building

“clever” modification strategies and show some examples of these strategies.

TS
Transition System Petri Net
Document | Generation Synthesis aﬁl\‘l.(w.‘\ "J\' o
log [T
Defining a State

a) Constructing TS
b) Modification Strategies

Figure 4.14: Transition System Generation Step: Modification Strategies

Definition 4.2.7 (Main Operations). Let T'S = (S, E,T') be a transition system
constructed for some log L € P(D*) using a particular state function. The main

operations for building strategies are:

addArc The operation addArc(sy,a, s2) makes a new transition, i.e., an arc labeled
a connecting state s; to state so. T'S" = (S, E,T") with T" =T U {(s1,a,s2)}

is the transition system with an added arc.

removeArc The operation removeArc(si,a,s2) removes a transition. T'S" =
(S, E,T") with T" = T \ {(s1,a,s2)} is the transition system without this

arc.

108 CHAPTER 4. ALGORITHMS AND MODELS

mergeStates The operation me’r’geStates(sl, 32) creates a new state sj9 = s1 + S92,
assuming s12 ¢ S. For any state s, T! = {(s',a,s) € T | Vs} is the set of
incoming transitions, TC = {(s, a, s') € T' | Vs} is the set of outgoing transitions,
and Ty = TI UTO is the set of all incident transitions. The transition system
resulting from operation mergeStates(si,s9) is TS' = (S',E,T") with S’ =
(S\ {s1,82}) U {si2}, TV = (T'\ (Ts, U Ts,)) U Thew , where Tpepy =
{(s,a,s12) | 35 (s,a,8') € T, U TL} U {(s12,a,5) | 35 (§,a,5) € TS U T}

Further, we check whether the Proposition 4.2.6 (correct construction) is violated
after applying the introduced operations. Consequently, we check whether after ap-
plying one of the above operations on the constructed transition system T'S, for every

trace o € L there is still a corresponding sequence of transitions p in the T'S’.

Proposition 4.2.8 (Correct addArc). Let TS' = (S',E,T") be a transition sys-
tem derived after applying the operation addArc(si,a, s2) to the constructed transition

system TS = (S, E,T). The Proposition 4.2.6 is satisfied in TS’.

Proof. According to Definition 4.2.7, in the new transition system 7'S’: T" O T.
Hence T"* D T*, i.e. the set of finite transition sequences of T'S’ includes the set of
finite transition sequences of T'S. Since the Proposition 4.2.6 is satisfied in T'S and

TS’ includes the transition sequences of the T'S, the Proposition is also satisfied in
TS’ .

Proposition 4.2.9 (Correct mergeStates). Let TS’ = (S', E,T") be a transition
system derived from the constructed transition system T'S = (S, E,T) after applying

the operation mergeStates(ssi, sse), where ssi,sso € S. The Proposition 4.2.6 is
satisfied in T'S’.

Proof. According to Proposition 4.2.6, for every trace o € L and every 0 < k < |o],
there is a sequence of transitions p = ((so,a1,$1), (S1,a2,52),. .., (Sn—1,an, Sy)) in
the T'S.

According to Definition 4.2.7, after applying the operation mergeStates(ssi, ss2)
on the T'S, the set S’ will include the set S\{ss1, ss2} and a new state ssjo = $s1+559;
the set 7" will include the set T'\ (Tss, U Tss,) and a new set Tjey. It means that for

every o, for every p corresponding to this o, for every transition (s, ag41,Sk+1) € T
o if sp & {551,882} and spi1 ¢ {ss1, 882}, then (sg, arr1,5,11) €T

o if s, € {s51,882} and sp11 & {ss1, $s2}, then (ss12,aks1, Sk+1) € T'

4.2. TRANSITION SYSTEM GENERATION 109
o if s; & {ss1,582} and sp11 € {ss1, 882}, then (si, aky1,s812) € T”
o if s € {551,882} and sp11 € {ss1, 882}, then (ss12,ax11,8512) € T’

Thus, for every transition (s, axt1, Sk+1) € T there is a corresponding transition in
T’. Hence, for every transition sequence p in T'S there is a corresponding transition
sequence in T'S’. Consequently, for every o € L there is a corresponding transition

sequence in T'S’, it means that the Proposition 4.2.6 is satisfied in T°S".

So, the operations addArc and mergeStates satisfy the Proposition 4.2.6. Thus,
after applying these operations on the transition system, the resulting transition
system correctly specifies the behaviour recorded in the log. The third operation
removeArc violates the Proposition 4.2.6, since it removes transitions, and therefore
“breaks” the transition sequences. However, all the main operations presented in the
definition 4.2.7 are useful for building flexible modification strategies.

Next, we present some useful strategies, and show how they can be applied to our
examples. Bigger examples of the modification strategies applied to the real software
projects are given in Chapter 5. Note that the strategies can be used in combination
with the more than 36 strategies defined for the state representation. Moreover,
these are just examples showing that the addArc(s1, a, s2), removeArc(sy, a, s2), and
mergeStates(sy, s2) operations can be used to “massage” the transition system before

constructing a process model from it.

“Kill Loops” Strategy

The “Kill Loops” strategy is used for ignoring the loops and, thus, for building
acyclic transition systems. When a set representation is used, typically self-loops
are introduced (whenever an activity is executed for the second time a self-loop is
created). See for example the transition system shown in Figure 4.10 that has two
self-loop transitions {4, C, E'} 20 {A,C,E} and {A,C,E} < {A,C,E}. Let TS =
(S, E,T) be a transition system where self-loops need to be removed. T'S" = (S, E,T")
with 7" = {(s1,a,s2) € T | s1 # s2} is the resulting transition system. A transition
system derived after applying this strategy to the set-based transition system given
in Figure 4.10 is shown in Figure 4.15.

The “Kill Loops” strategy is motivated that in some cases one is interested only
in the occurrence of an activity and not the ordering of activities or the frequency of

an activity. Hence, sets are used to represent states. However, a side-effect of the set

110 CHAPTER 4. ALGORITHMS AND MODELS

D

Figure 4.15: Acyclic TS. Figure 4.16: Result of applying the extend strategy.

representation is the introduction of self-loops for activities that can occur multiple

times. These can effectively be removed using this strategy.

“Extend” Strategy

The “Extend” strategy is especially useful for the logs having a set representation.
Let TS = (S, E,T) be a transition system where this strategy has to be applied.
TS = (S,E, T) withT' =T U {(s1,a,82) € SXE xS |s1U{a} =s2 A a¢ s1}is
the resulting transition system?®. Basically, this strategy makes transitions between
two states, which were created from different traces but which can be subsequent
because there is a single document which can be committed to reach one state from
the other. This strategy is very useful for generalizing the behaviour seen in the logs
by means of extending the “state diamonds”, i.e., interleavings are added to allow
for the deduction of parallel constructs. An example of this strategy applied to the
acyclic transition system without loops from Figure 4.15 is shown in Figure 4.16. A
transition {A4, C'} = {4, C, E} was added here. It should be noted that a combination
of strategies is used, i.e., both “Kill Loops” and “Extend” are applied in this example.

The motivation for the “Extend” strategy is that, in many cases, it is unrealistic
that all possible interleavings of documents are actually present in the log. When
discussing the notion of completeness, we demonstrated that this is indeed a prob-
lem. Therefore, the “Extend” strategy in a way extends the transition system with

interleavings not observed in the log but likely to be present based on the struc-

3Sometimes, it useful to apply this strategy only for a subset of events or only for a particular
subset of states. In this case, execution of this strategy cannot be done fully automatically without

interaction with the user.

4.2. TRANSITION SYSTEM GENERATION 111

ture. The “Extend” strategy is often used in combination with a set representation
of states. This representation seems natural when document logs are used. In this
case, the state refers to the set of artefacts produced so far, e.g., all documents that
have been checked in. In this context the assumption of the “Extend” strategy is
that it is possible to move from one state to another if there is a difference of a single
document, i.e., if {a1,...,a,} and {a1,...,an,ant1} are reachable states, then there

is a transition from {ai,...,a,} to {ai,...,an,ans1}.

“Merge by Output” Strategy

Another useful strategy is called “Merge by Output”. It merges the states that have
the same outputs. Let T'S = (S, E,T) be a transition system. For any state s let
us define an operation out(s) = {a € E | (s,a,s"”) € T}, which returns the set of
output events of a state. Let us define a predicate isMerge C S x S such that for
any si,s2 € S: isMerge(s1, s2) if and only if out(s1) = out(se). If isMerge(s1, s2),
then s; and s9 are merged onto a new state. isMerge contains all the pairs of states
that can be merged. For any pair of states (s1,s2) € isMerge, we can execute a
mergeStates(sy, s2) operation, which produces a new transition system 7'S’; accord-
ing to the definition given above. Based on this new transition system 7'S’, we can
again calculate all the pairs of states that can be merged isMerge’. Again a pair of
states is selected and merged using the mergeStates operation. This is repeated until
there are no more states to be merged.

There are several ways to refine the isMerge predicate. For example, function out
could be refined to not only take into account the output event but also the output
state. Another refinement would be to avoid merging states if this introduces loops,
e.g., we can redefine the predicate isMerge to: isMerge(sy, s2) if and only if out(s;) =
out(sz) and B a,b € E: (s1,a,s2) €T or (s2,a,s1) € T or (s”,a,s1),(s",b,s2) €T.
The last three conditions are given to prohibit building self-loops and multiple arcs
between a pair of states in a transition system after merging.

If we take the sequence-based transition system as shown in Figure 4.11 and
assume the more refined isMerge predicate, the set isMerge includes such pairs
as ((AE), (A E,C,E)), ((A,B,C),(A,E,C,E,C)), ((A,B), (A,E,C,E)),
((A,B,C,D), (A,E,C,E,C,D)) and others. Note that after merging a pair of
states, the set isMerge’ of the new transition system T'S’ will be different from
isMerge. So, starting with merging the pair ((A4, E), (A, E,C, E)), and then produc-

ing new transition system and merging the states there, finally (when no states can

112 CHAPTER 4. ALGORITHMS AND MODELS

<AB.CDACBD,
AECECD>

Figure 4.17: Result of applying the merge states strategy.

be merged) we produce a transition system shown in Figure 4.17.

In our example, we use only “merge by output” strategy; but in general, the
strategies based on equality of inputs and subsets of outputs or inputs are very

helpful for simplifying the transition system and solving the problem of “loops”.

The three strategies presented in this section, i.e. “Kill Loops”, “Extend”, and
“Merge by Output” showed the main directions of modifying constructed transition
systems: abstraction and simplification, generalization, and restructuring. For these
three strategies many variants exist. It is also important to note that the suitability of
a strategy heavily depends on the state representation selected. There are numerous
combinations possible, some of which work better than others depending on the
characteristics of the event logs at hand. This differentiates our approach for existing
approaches which typically propose a single algorithm that cannot be configured to

address different needs.

So, in this section, we defined the basic framework for building strategies and
presented the motivating examples of their potential for simplifying the transition
systems. However, in future, further ideas about strategies, their combinations and
their applications should be worked out. After a rich set of practical examples from
different application domains will be collected, people can define a domain-specific
methodology for applying the strategies and “tuning” the level of generalization.
However, the examples of the strategies shown in this section were already tested and

approved in the domain of software processes, the validation is given in Chapter 5.

4.3. PETRI NET SYNTHESIS 113

4.3 Petri Net Synthesis

In this Section, we present the second step of our approach — Petri net synthesis.
In this step, a Petri net is synthesized from the transition system resulting from
the previous step. Here, we present the method for constructing a Petri net and the
method for converting the Petri net to an appropriate target format. We use the
“theory of regions” [ER89a, DR96, CKLY98] for both methods.

4.3.1 Constructing Petri Nets Using Regions

In this Section, we present the first part of the Petri net synthesis step — constructing

a Petri net using regions, see Fig. 4.18.

Transition System Petri Net

Document Generation =5 @ = Synthesis PN »:,J"‘-;::; .
 Rained-0us-Ren
Log P P

a) Constructing PN

Y

Figure 4.18: Petri Net Synthesis Step: Constructing PN

First, we recall the definition of a region, which formalization was given in Chap-
ter 2. Let T'S = (S, E,T) be a transition system and S’ C S is a subset of states. S’

is a region if for each event e € E one of the following conditions hold:
e all the transitions labelled with e enter S’
e all the transitions labelled with e exit S’
e all the transitions labelled with e do not cross S’

In Figure 4.19, we continue the example of the sets-based transition system with
killed loops (see Figure 4.15) and present several examples of regions. The set 1o =
{{}} is a region, since all the transitions labelled with A exit it and all other labels
do not cross. It is important to see that ry is a set of states containing one state
being the empty set. 1 = {{A},{A,C}} is a region, since A enters it, B and E
exit it and C' and D do not cross it; o = {{A,B},{A,E},{A,C,B},{A,C,E}}
and r3 = {{D,A,C,B},{D,A,C,E}} are the other examples of regions, they are
also marked with dotted lines in the figure. A region 7’ is said to be a subregion

of the other region r if ' C r. For example, rg and r; are subregions of region

114 CHAPTER 4. ALGORITHMS AND MODELS

r={{},{4}, {4, C}}. A region r is minimal if there is no other region r’ which is a
subregion of r. For example, both rg and r; are minimal regions; in Fig. 4.19, the set
of regions marked with dotted lines is the set of all the minimal regions of the TS. A
region r is a preregion of event e if there is a transition labelled with e which exits
r. A region r is a postregion of event e if there is a transition labelled with e which
enters r. For example, rq is a preregion of A and ry is a postregion of A.

For Petri net synthesis, a region corresponds to a Petri net place and an event
corresponds to a Petri net transition. Thus, the main idea of the synthesis algorithm
is the following: for each event e in the transition system a transition labelled with e
is generated in the Petri net. For each minimal region r; a place p; is generated. The
flow relation of the Petri net is built the following way: e € p} if r; is a preregion of
e and e € ®p; if r; is a postregion of e. An example of a Petri net synthesized from
our transition system is given in Figure 4.20. The incoming place of the transition A
corresponds to the minimal region rg and the outgoing place of A which is also the

incoming place for transitions B and E corresponds to the region r; respectively.

Figure 4.20: Synthesized Petri net. Figure 4.21: Synthesized and improved PN.

4.3. PETRI NET SYNTHESIS 115

However, this example shown in Fig. 4.20 contains additional behaviour which was
not modeled in the TS in Fig. 4.19. The problem is that this transition system is not
elementary. In the theory of regions, the first papers and the algorithms, including the
algorithm presented above, dealt with the special class of transition systems called
elementary transition systems (see [DR96, BBD95, BD98]| for details). The class of
elementary transition systems is very restricted. In practice, most of the time, people
deal with standard transition systems that only by coincidence fall into the class of
elementary transition systems. So, the presented algorithm has to be improved to
transform a non-elementary TS to the elementary one and to synthesize a PN after
it. In the papers of Cortadella et al. [CKLY95, CKLY98], a method for handling any
transition system was presented. This approach uses labelled Petri nets, i.e., different
transitions can refer to the same event. For this approach it has been shown that
the initial transition system is bisimilar to the reachability graph of the synthesized
Petri net. In the remainder of this thesis, we build our approach on the approach
of Cortadella et al. The result of this approach applied to the TS from Fig. 4.19 is
shown in Fig. 4.21.

So, most of the transition systems shown in the examples from Section 4.2 are not
elementary. However, from a practical point of view this is just a technicality that
can easily be resolved. We start our examples with the Petri nets synthesized from
the basic transition systems, which were constructed in Section 4.2.3: the Petri net
shown in Figure 4.22 was synthesized from the transition system shown in Figure 4.10

and the Petri net in Figure 4.23 from Figure 4.11 correspondingly.*

Figure 4.22: Petri net for the transi- Figure 4.23: Petri net for the transi-

tion system based on sets. tion system based on sequences.

Both Petri nets presented above reflect the behaviour seen in the log (logs can be
successfully replayed in this Petri nets), but they also have some disadvantages: the

first Petri net is too general (underfitting), because transitions C' and E can be exe-

4The Petri nets are labeled, so the transitions are denoted like E, E_1,E_2,

116 CHAPTER 4. ALGORITHMS AND MODELS

cuted an unlimited number of times; the second Petri net is too explicit (overfitting),
since for the last trace (see the log used for the running example) it allows only the
sequence (A, E_1,C, E,C, D) that is presented in the log, but not the loop construct.
So, we can conclude that in spite of the fact that both Petri nets correctly model
the behaviour recorded in the log, sets-based Petri nets can be often too general and
sequence-based — too specific.

Next, we show another two examples of the PNs synthesized from the TSs con-
structed from the log in Sect. 4.2.3. The Petri net shown in Fig. 4.24 was synthesized
from the complete postfix multiset TS shown in Fig. 4.12; and the PN in Fig. 4.25
— from the partial prefix sequences TS shown in Fig. 4.13. The first PN still suffers
from overfitting, the second one recognizes the loop and models the behaviour appro-
priately, but its structure is rather complicated. Thus, we can obtain an appropriate
Petri net model from the constructed transition system where modification strategies

were not applied, but the structure of the model can be complicated.

Figure 4.24: PN for complete postfix mul- Figure 4.25: PN for partial prefix se-
tisets T'S. quences T'S.

The next set of examples corresponds to the modified transition systems con-
structed using various strategies. The Petri net synthesized from the acyclic set-based
transition system from Figure 4.15 (obtained after applying the “kill loops” strategy)
was shown in Figure 4.21. It is compact and exactly reflects the behaviour from the
log, but ignores the loop. The Petri net that corresponds to the extended transition
system is shown in Figure 4.26, it supports additional behaviour, for example it also
allows for the trace (A,C, E, D).

It is worth mentioning that the PN from Fig. 4.20 and the PN from Fig. 4.26
are identical. The first one is derived by applying the simplest synthesis algorithm
to the non-elementary TS, the second — after modifying the TS and applying the

standard synthesis algorithm that we are using in the thesis. It means that along

4.3. PETRI NET SYNTHESIS 117

with modification strategies applied to the transition systems, modification can be
done on the level of Petri net synthesis algorithms. This idea is shown on a small
example here, but generally it opens a new research direction in Petri net synthesis
and theory of regions. This research should deal with different algorithms for deriving
different process models and their abstractions. However, this will be a future work
in this area, it is out of the scope of this thesis; our goal here is to show the variety

of research challenges in the domain.

Figure 4.26: Petri net for the ex- Figure 4.27: Petri net for the transi-

tended transition system. tion system after state merging.

The last Petri net is shown in Figure 4.27. This Petri net is derived from the
sequence-based transition system, where the “merge by output” strategy was applied.

This Petri net specifies the behaviour seen in the log and also recognizes the loop.

Thus, in this Section, we showed different Petri nets with different characteristics;
all these Petri nets were derived from different transition systems constructed from
the document log. All the presented Petri nets correctly model the behaviour recorded
in the log (it has to be noted that producing correct Petri net model from the log
was for a long time a challenging problem in the area of process mining). Moreover,
presented Petri nets have different characteristics: some of them explicitly specify
the behaviour seen in the log, the second ignore loops, the third try to generalize
the model and try to guess the behaviour which was not recorded in the log. Clever
combination of the algorithms for constructing and modifying the transition systems
with the algorithms of Petri net synthesis not only opens new directions for process
mining research, but also provides a flexible mining framework for process engineers.
Using this framework, process engineers can produce different views on the existing

processes in order to understand, to analyse and to design them better.

118 CHAPTER 4. ALGORITHMS AND MODELS

4.3.2 Selecting the Target Format

In this section, we deal with different target formats of synthesized Petri nets, see
Fig. 4.28. We use various synthesis algorithms to derive Petri nets in different ways
and to produce different classes of Petri nets, such as free choice, extended free-choice,
pure, state-machine decomposable and others. The algorithms synthesize labelled
Petri nets and they are based on transition label splitting. This way, the Petri nets,
which can be huge and difficult to understand, can be converted and simplified. Here,
we use the algorithms developed in the work of Cortadella et al. [CKLY95, CKLY98],
as they generally deal with labelled Petri nets.

Transition System Petri Net

Document | Generation = <> % Synthesis |[PN
g g | 10 o
Log ; - = " . ‘ 0

a) Constructing PN
b) Selecting Target Format

Figure 4.28: Petri Net Synthesis Step: Selecting Target Format

As described in Section 4.3.1, the algorithms of Cortadella et al. deal not only
with elementary but also with the full class of transitions systems. So, all the algo-
rithms check whether a transition system is elementary and split appropriate labels
if not; the splitting is based on the notions of excitation and generalized excitation
region, see [CKLY95]. The simplest synthesis algorithm generates a Petri net from
all the regions, this net is called a saturated net. An improvement of this algorithm
is generating a minimal saturated net, which is based on all the minimal regions.
However, both algorithms produce nets with redundant places, i.e. some places can
be removed without changing the behaviour. Building a place-irredundant net with
minimal regions is a challenging task, which can be solved by assigning costs to
different solutions based on minimal regions and finding the optimal one. So, the
algorithm, which was used for all the examples presented above generates a subset
of all the minimal regions of a transition system, which is sufficient for Petri net
synthesis. All the obtained Petri nets are place-irredundant.

As mentioned above, the algorithms support synthesis of different classes of Petri
nets and conversion of one Petri net to the other. For example, we can generate

different classes of the set-based Petri net shown in Figure 4.21. First, we can convert

4.4. IMPLEMENTATION 119

Figure 4.29: Pure Petri net. Figure 4.30: Free-choice Petri net.

it to a pure Petri net shown in Figure 4.29; a Petri net PN = (P, T, F') is called pure
if (p,t) € F implies that (¢,p) ¢ F, i.e. the Petri net has no self-loops. So, transition
C had to be split to exclude self-loops. Next, we can build a free-choice equivalent of
it, see Figure 4.30; a Petri net PN = (P, T, F) is called free-choice if Vp € P : [p®*| <1
or *(p*) = {p}, i.e. the Petri net does not have mixed synchronization and conflict
constructs. Transition B had to be split to exclude the conflict between B and FE,
which was mixed with the synchronization.

Thus, in this section, we showed that the theory of regions can be used not
only for synthesis of Petri nets from transition systems, but also for converting Petri
nets to different formats in order to make them better understandable by the user.
Consequently, with the help of the discussed methods, process engineer can start
working with the model in a more flexible and convenient way.

In the whole section, we presented the second step of our approach. We demon-
strated a method for deriving Petri nets from transition systems constructed from
the event logs. We have shown the benefits of using the well developed theory of

regions and Petri net synthesis in the area of process mining.

4.4 Implementation

One important goal of the thesis was providing a tool support and, thus, enabling
practical evaluation of the described concepts. The tool described in this Section
evolved from a small single-developer research prototype and became a part of a big
process mining framework described further.

In the thesis, we used the following prototyping software development process,
see Fig. 4.31. This process was applied iteratively and consists of the following four

steps:

e Research Prototype: A small customizable Prolog-based research prototype

was developed (see Sect. 4.4.1)

120 CHAPTER 4. ALGORITHMS AND MODELS

Practical
Validation and
Experiments

Initial
Validation and
Experiments

Process Mining
Framework
Plugin

Research
Prototype

Figure 4.31: Software Development Process with Prototyping

e Initial Validation and Experiments: The research prototype was validated

with the help of small examples covering known problematic constructs

e Process-Mining Framework Plugin: The algorithms of the research proto-
type were extended, implemented in Java and plugged into the Process Mining
Framework ProM (see Sect. 4.4.2)

e Practical Validation and Experiments: The ProM plugin was evaluated
on bigger practical examples from the areas of Business Processes and Software
Processes (in this thesis, we present only the examples of software processes,

see Chapter 5)

4.4.1 Research Prototype

We decided to use Prolog [Bra90, SS91] for developing the research prototype. First,
it enabled us to concentrate on the algorithms and not on particular software devel-
opment technology or syntax of specific language. Second, we could think in terms of
our process mining task and solve it with the help of the declarative semantics of Pro-
log (by means of defining the axioms and clauses) without regarding any operational
language. We utilized the SWI-Prolog environment for our purposes [Wie03].

In Prolog, we could specify the representations of a state (see Sect. 4.2.2) directly
using mathematical definitions without reformulating it in any operational notation.
Moreover, a transition system could be also mathematically defined like it was shown
before. It simplified the experiments with the algorithms, i.e. experiments with dif-
ferent methods for constructing and modifying transition systems. For example, a
method for constructing the transition system could be changed simply by changing
the definition of a state.

The architecture of our research prototype is shown in Fig. 4.32. Our algorithms
and utilities are shown with bold lines, external utilities — with dashed lines respec-

tively.

4.4. IMPLEMENTATION

Document

Log

=N

Transition System
Generation Algorithm

Prolog clauses

Prolog
facts

.

Visualized
Transition

pdf, ps,
ipeg
\/\

Visualized
Petri Net

pdf, ps,
ipeg
\/\

System —

Transition
System

,

astg file

121
P Petri Net
Petri Net Synthesis |
| External Tool (Petrify) |
astg file
=

o

S~

Converter TS to DOT

Graph Visualization
External Tool (DOT)

Java utility

Converter PN to DOT

Java utility

Figure 4.32: Schema of the Research Prototype

The document log is defined as a set of Prolog facts. In Fig. 4.33, we show a set

of Prolog facts, which represent a document log. Every fact contains a number of an

execution log, a document name and an order when the document was committed.

record(1,
record (1,
record (1,
record(1,
record(2,
record(2,
record(2,

record(2,

design,1).
code,?2) .
testPlans,3).
review,4).
design,1).
testPlans,?2) .
code, 3).

review,4).

Figure 4.33: Document Log as Prolog Facts

The Transition System Generation algorithm (first step of our approach, see

Sect. 4.2) is implemented as a set of Prolog clauses. A simple example of a Pro-

log clause for a transition between two states is shown in Fig. 4.34. This clause is

122 CHAPTER 4. ALGORITHMS AND MODELS

based on the other clauses, but the main idea is the following: there is a transition
between S1 and 52 labelled as C' if S1 and 52 are states and S2 is not a subset of
S1, there is a single commit of a document C' and the union of S1 with C is equal
to S2.

transition(S1,C,S82) :-
state(S1), state(S2),
\+(subset(S2,S1)),
oneCommit(_,_,C),

union(S1,C,S11), equalsets(S11,S2).

Figure 4.34: Prolog Clause Example

As a result, the algorithm produces a TS as a set of facts, which are written to a
file in an appropriate format, which is accepted by other tools.

Next, a Petri net is synthesized from the created TS. We use a freely available
external tool Petrify [CKLY98] for this purpose. So, the TS is saved in the astg format
(specific format for Petrify) and then the Petrify is executed. Petrify produces a PN
also encoded in the astg format.

The derived TS and PN have to be visualized and given to the user in an appro-
priate graphical format (bmp, jpeg, tiff, ps, pdf). We decided to use the open-source
GraphViz Graph Visualization Software Package from http://www.graphviz.org/.
We picked out the dot utility for making the “hierarchical” drawings, this utility ac-
cepts its specific file format called also dot. So, we created two Java converters from
astg to dot: for TS and for PN correspondingly. At the end, our transition systems
and Petri nets are appropriately visualized with dot. They are available to the user
as jpeg, ps and pdf files, see a small example of TS visualization in Fig. 4.35.

Since all the external tools and converters are executed in a batch mode, we could
concentrate on the experiments with Transition Generation algorithms and options
of Petri net Synthesis. This research prototype is sufficient for understanding and
experimenting with the algorithms, but generally all these utilities have to be inte-
grated into a single tool, which should be available to the user. Fortunately, process
mining community advanced the development of a Java-based open source frame-
work ProM containing a set of mining algorithms and a convenient infrastructure for
process visualization, export and conversion. Consequently, we decided to implement

our algorithms in Java and to contribute to this extremely promising framework in

4.4. IMPLEMENTATION 123

s code_design_review_s0_testResults

s_code_design_review_s0_verificationResults
0 e
s code_design e0_review_s0_testResults

e0
s_code_design_e0_review_s0_verificationResults

Figure 4.35: An Example of dot Visualization

a form of a set of plugins. This implementation is described in the next section.

4.4.2 Implementation in Process Mining Framework

In this Section, we discuss the implementation of our approach in the framework
ProM. This implementation was used for further evaluation, which is described in
the next Chapter. The architecture of our incremental workflow mining approach was
presented in Chapter 3 in Sect. 3.3.1. Today, the Process Mining Framework ProM,
a screenshot of which is shown in Fig. 4.36, realizes an excellent tool support, which
corresponds to our architecture.

The framework itself is an excellent example of a stable user-friendly tool, which
supports convenient integration of scientific ideas and enables experiments with new
algorithms. Thus, we decided to contribute to the ProM and to implement our al-
gorithms in this context. ProM serves as a testbed for the process mining research
[vDAMV™05] and can be downloaded from www.processmining.org.

Starting point for ProM is the MXML format. This is a vendor-independent for-
mat to store event logs. Information can be stored in MXML. One MXML file can
store information about multiple processes. Events related to particular process in-
stances (called cases) are stored for each process. Each event refers to an activity. In
the context of this thesis, documents are mapped onto activities. Events can also have
additional information such as the transaction type (start, complete, etc.), the origi-
nator (who committed the document; in this thesis often referred to as the “author”),

timestamps (when did the event occur), and arbitrary data (attribute-value pairs).

124 CHAPTER 4. ALGORITHMS AND MODELS

x|

process mining workbench
ProMm

The Process Mining framework
A general framework for process mining tools.

Version: 4.0
Released: 24th November 2006

hittp://www.processmining.org/

[sponsors | Plugins | A |

HNumber of Plugins loaded:

Mining: 37 Analysis: 37
Import: 16 Export: 28
Conversion: 27 LogFilters: 18
Global objects (session): 0

Total: 163

Ok

Figure 4.36: About Process Mining Framework ProM

In Fig. 4.37, we show a fragment of our software document log from the Chapter 3
in the MXML format.

ProMimport

The ProMImport Framework allows developers to quickly implement plug-ins that
can be used to extract information from a variety of systems and convert it into the
MXML format (cf. promimport.sourceforge.net). There are standard import plug-
ins for a wide variety of systems, e.g., workflow management systems like Staffware,
case handling systems like FLOWer, ERP components like PeopleSoft Financials, sim-
ulation tools like ARIS and CPN Tools, middleware systems like WebSphere, BI tools
like ARIS PPM, etc. Moreover, it is been used to develop many organization/system-
specific conversions (e.g., hospitals, banks, governments, etc.). In our context, the
ProMImport Framework can also be used to extract event logs from such SCM sys-
tems as Subversion, C'VS and others.

New types of input information can be easily integrated into the ProMImport
Framework. Basically, ProMImport provides the functionality of general-purpose

framework for different types of input information, it was discussed in Chapter 3.

4.4. IMPLEMENTATION 125

<Process id="small_software_process" description="">
<Data>
<Attribute name="info">info</Attribute>
</Data>
<ProcessInstance id="case_1" description="">
<Data>
<Attribute name="info">Execution 1</Attribute>
</Data>
<AuditTrailEntry>
<Data>
<Attribute name="comment">initial</Attribute>
</Data>
<WorkflowModelElement>DES</WorkflowModelElement>
<EventType>complete</EventType>
<Timestamp>2005-01-01T14:30:00.000+01:00</Timestamp>
<Originator>designer</Originator>
</AuditTrailEntry>

Figure 4.37: An MXML log example.

In the area of software process mining, it is important to have a unified architecture
to integrate different inputs and to abstract from particular inputs on the algorithm

level, i.e. to deal just with MXML format.

ProM

Once the logs are converted to MXML, ProM can be used to extract a variety of
models from these logs. ProM provides an environment and so-called “plugins” that
implement a specific mining approach. Although we focus mostly on mining plugins

here, it is important to note that there are in total five types of plugins:

Mining plugins which implement some mining algorithm, e.g., mining algorithms
that construct a Petri net based on some event log, or that construct a transition

system from an event log (like in our case).

Export plugins which implement some “save as” functionality for some objects
(such as graphs). For example, there are plugins to save EPCs, Petri nets,

spreadsheets, etc.

Import plugins which implement an “open” functionality for exported objects,

e.g., load Petri nets that are generated by Petrify.

126 CHAPTER 4. ALGORITHMS AND MODELS

Analysis plugins which typically implement some property analysis on some min-
ing result. For example, for Petri nets there is a plugin which constructs place

invariants, transition invariants, and a coverability graph.

Conversion plugins which implement conversions between different data formats,

e.g., from EPCs to Petri nets and from Petri nets to YAWL and BPEL.

Transition System Generator and Synthesis in ProM

One of the ProM plugins is the mining plugin that generates the transition system
that can be used to build a Petri net model. For this particular approach ProM
calls Petrify [CKLY98] to synthesize the Petri net, which is a command-line tool for
the synthesis of Petri nets from transition systems. Petrify is freely available from
http://www.lsi.upc.edu/petrify/ and it implements the algorithms developed by
Cortadella et al. [CKLY95, CKLY98].

Document —_ Transition - Transition
Log Transition System System TS to Petrify System
I:,‘> Generation Algorithm i‘> LN
“/
Mining Plugin Export Plugin
MXML ProM TS astg file
X .
Petrify.
" “Petri Net |
Synthesis |
ProM | S |
'
L _ Petrify |
Petri Net Petri Net
Petrify to PN
Import Plugin)
ProM PN astg file
- -

Figure 4.38: Schema of the Implementation in ProM

So, the architecture of our approach in the context of ProM is shown in Fig. 4.38.
Now, the document logs are mapped to the MXML format; they are obtained from
CVS or Subversion systems with the help of ProMImport. Several strategies for tran-

sition system generation, which produce transition systems in the ProM internal

4.4. IMPLEMENTATION 127

format, were implemented as a mining plugin. These TSs are visualized by ProM;
ProM calls the dot utility internally. Then, TS can be exported (saved) to the Petrify
specific format astg with the aid of our TS to Petrify export plugin. The Petrify is
called separately and produces a Petri net in the astg format®. Using our Petrify to
PN import plugin the synthesized PN is imported into ProM. A screenshot of our
plugin in ProM is shown in Fig. 4.39.

So, the whole approach implemented in ProM takes the document log and pro-
duces a Petri net, which can be analysed, extended or exported with the other plugins

available in ProM.

STechnically, it is not a problem to call Petrify directly from ProM and thus to hide it from the
user. In the future, it is planned to integrate the algorithms of Petrify to ProM.

ALGORITHMS AND MODELS

CHAPTER 4.

128

k>

ursn[g Suruipy Ino Jo J0YSuaaIog 68 f 9In31g

alu Apad - ud'sfieq - papodu [

=14 Bulunu 10y shupas - synsay ﬂ

T

sadAy jua

N0 BUIAG o) BjdLUExs JS e

5382040 BlEMUOS ||BLUS

uonduasag _ SLUE[
S8858201
a|ellEas ol ou| ol
HEEENTRE ALIEN
UDIELLID 32N
A0maLLEeL odd Ag umta&ﬂ_ uopduasag
_Ex.mo__ aLIER

uonewou fo| Moy o

paaueApe _ adus

Bunnu peys A _ diaH
[I I
“aje)s pu3 uadx3 ppy [“sdoo |y [
'salueN ajes Se (SIaquinu) sqj asq [A] 'satlA] Juang Japisuod ||
3
sdweysawn) sey fiogayp [
{ wupofipy nseq)

sfieg ypm WalsAs UoISUel] ajelauag ®

(SuOIISuUe1 | [BUOIPPY SPRE wiiohiy)

{ wupioBly Jiseq)
e puapa

S)aS UM WASAS UoNISUR1] 9)213U35 &

"salwae g 0] fuia)a)
SaLua Iz1) Pne i yux
£ 15Ul SSa301d ¢ suIe) fio] Juanna ay

wixfio| m

B A2

10}213U30 WASAS UoISURI] BuIs Juix'Go] pasay un 1oy siumas [

LALIS

diad mopuipy syodx3 uoisiaauon sisAjeuy Bunny a4
[0'F] INOAd 4

4.5. SUMMARY 129

4.5 Summary

In this Chapter, we presented our control-flow process mining algorithm. We pointed
out a set of relevant problems from the area of process mining and also focused on
the notions of completeness in this area. We discussed in detail all the steps of the
algorithm and all the generated models. Moreover, we provided the mathematical
foundations for the models and for the algorithm. Finally, we discussed the Prolog-
based and the Java-based implementations of the algorithm.

The presented algorithm has the following impacts on the area of process mining:

e It produces correct models, which reflect the behaviour recorded in the log.

Corresponding propositions were proved in this chapter.

e It consists of two steps and uses innovative ways of constructing transition
systems and regions to generate formal Petri net models. Thus, it produces two
types of models: (1) transition systems, which can be easily used for experiments
and (2) Petri nets, which are more compact than transition systems, and are

used as formal and explicit process specifications.

e It produces several process models on different levels of abstraction depending
on the method for constructing transition systems and the modification strategy

used. Thus, it supports tailoring to specific applications.

e It uses the well-developed theory of regions for transforming transition systems
to Petri nets. This opens a new research direction in the area of process mining

as well as in the area of Petri net synthesis.

o It allows transformation among different formats of Petri nets depending on

the preferences of a process engineer.

e It is implemented in Prolog, which enables to experiment with the algorithm

and easily make changes in it.

e [t is implemented in Java and integrated to the framework ProM, which pro-
vides a convenient infrastructure for importing log files, visualizing the models,
analysing and verifying the models, and exporting and converting them to dif-
ferent formats. Thus, the algorithm is freely available to the whole process

mining community within the well-known framework ProM.

130 CHAPTER 4. ALGORITHMS AND MODELS

Chapter 5

Evaluation

The approach and algorithms described in the previous chapters were implemented
and evaluated on a set of projects from the area of software processes and business
processes. In this chapter we focus on the evaluation of our tool in the software area.

We present three case studies:

e A small case study from the area of open-source software, see Sect. 5.1. The
project in focus provides a free access to its SCM repository, we used the doc-

ument log of the SCM system as input information.

e A bigger case study based on the university practical software engineering
course, see Sect. 5.2. We also had access to the SCM system used by the students

and used its document log as input information.

e A case study from the area of open-source software, see Sect. 5.3. This project
provides free access to its bug repositories, we used the bug log as input infor-

mation.

5.1 Evaluation using Open-source Software

Generally, for a case study, our goal was to find several subprojects or plugins within
some big project and to derive a software development process model from them.
In this case, subprojects correspond to process instances. Our requirement was the
following: these subprojects must have similar naming conventions and folder struc-
ture, so that we can recognize documents with the same roles. For example, web sites
should be stored in folder “www” and the main file should be called “index.html”.

However, in many open-source projects it is difficult to derive a set of subprojects

131

132 CHAPTER 5. EVALUATION

with similar goals following similar naming conventions. Moreover, many projects
focus exclusively on code and testing and neglect design, requirements management,
design reviews; the process model derived from these projects can be simply “boring”.

Among the variety of open-source projects we found several that fit our require-
ments and where software is designed, coded, tested, web sites are created, etc. In
our first case study, we decided to take a rather small project called ArgoUML from
Tigris (http://argouml.tigris.org/) and to look at its subprojects.

5.1.1 ArgoUML Project

ArgoUML is a popular open-source UML modelling tool. It is an open source devel-
opment project (BSD license), which provides access to its source files maintained
with the Subversion SCM system. ArgoUML is organized as a set of subprojects with
separate members lists and goals, but with the same file organization and the same
development tools. For example, the ArgoUML website (http://argouml.tigris.
org/subprojects.html) contains the following information about different subpro-

jects:
e All subprojects will have the same file organization (src, build.xml, ...).
e The same tools will be used for all subprojects (ant, checkstyle, ...).

e All subprojects will have names and mailing list prefixes that follow the same

policy.

e Releases will be built from several subprojects. This has several consequences

for subprojects that are included in the releases:

— All subprojects have the same release plan. It is the from Release Plan

from the ArgoUML project.

All subprojects have the same release numbering.

— The subprojects will obey the exact same rules w.r.t. compiler version,

other tools needed to build.

— The tagging and branching rules from the ArgoUML main project apply.

The subprojects will use subversion as the version control system.

Thus, different subprojects use the same conventions and development rules, it sig-

nificantly simplifies the work of process mining algorithms.

5.1. EVALUATION USING OPEN-SOURCE SOFTWARE 133

<AuditTrailEntry>
<WorkflowModelElement>/trunk/www/index.html</WorkflowModelElement>
<EventType>complete</EventType>
<Timestamp>2006-06-02T19:49:16.000+01:00</Timestamp>
<Originator>tfmorris</Originator>

</AuditTrailEntry>

<AuditTrailEntry>
<WorkflowModelElement>/trunk/src/org/argouml/language/cpp

/ui/SettingsTabCpp.java</WorkflowModelElement>

<EventType>complete</EventType>
<Timestamp>2006-06-02T20:28:40.000+01:00</Timestamp>
<Originator>mvw</Originator>

</AuditTrailEntry>

Figure 5.1: A log fragment.

We decided to take a look at five subprojects, where the ArgoUML support for the
following languages is developed: C++, C#, IDL, PHP and Ruby. Thus, all these
projects correspond to cases (process instances) and the overall mined model can be
called “the process model for developing language support for ArgoUML”. So, our
goal is: (1) to derive a formal plausible software development process model (control-
flow perspective) from the document logs; (2) to enhance the resulting model with
the performance and the organization perspectives; (3) to apply the process analysis

and verification techniques.

5.1.2 Mining Procedure

First, using the svn log utility provided by Subversion, we generated logs for all the
five subprojects. Then, using the ProMImport tool, the logs were converted to the
MXML format, which is accepted by the ProM tool; all the logs were merged to
a single log containing one process with 5 process instances containing about 400
commits (audit trail entries) and almost 130 activities. A small fragment of the log
is shown in Fig. 5.1.

The resulting log contains project specific paths and different commits, which are
not relevant for the software process. Therefore, using the remap filter, we replaced
project specific paths with the abstract names. In our example, all the committed doc-
uments (files) containing “/src/” in their paths with “.java” at the end were mapped
to “SRC”, all the “readme.*” files — to “README?”, all the files in “/tests/” — to
“TESTS”, the files in “/www/” —to “WWW?”_ “build.bat” — to “BUILDER” and all

134 CHAPTER 5. EVALUATION

the files, which names start with “.” —to “CONFIG”; the other commits were ignored.
It should be noted that this mapping corresponds to the naming conventions of the
ArgoUML project described on the web site (http://argouml.tigris.org/). Thus,

at the end we received an abstract log, which can be processed by our algorithms.

Figure 5.2: Transition System for the ArgoUML Project

In the first step of our approach we generated a transition system shown in
Fig. 5.2. This transition system uses a complete prefix set definition of a state, more-
over it was refined by applying “Kill Loops” strategy, thus the loops are ignored.
In this first case study we decided to focus only on the mere presence of documents
(without considering the order and the number of times the documents were commit-
ted) and to exclude the loops, since we wanted to generate the most simple process
models and to understand whether we can derive useful information from them.

After executing the synthesis algorithms, we obtained the Petri net shown in
Fig. 5.3. This is a very compact and understandable Petri net, which perfectly reflects

the basic flow of work in the project. This Petri net focuses on the starting events,

5.1. EVALUATION USING OPEN-SOURCE SOFTWARE 135

BUILDER__1

‘ BUILDER

README

Figure 5.3: Petri Net for the ArgoUML Project

i.e. when source code development was started, when testing was started. People use
to start with building web sites or editing readme files and builders, then they write
code and then, they test it, sometimes the builder is changed after writing code. Now,
since we have a model, it can be extended for dealing with time and for representing

the statistical data about the duration of tasks.

5 Results - Settings for mining Fitered lng.<mi using Transition System Gen... o @ D8 2 i i s o 0 T

bt < &

Zoom: 121% 1 il [+ Zoom: 119%

Figure 5.4: Complex TS and PN model.

To motivate the usage of “clever” transition system generation algorithms and
modification strategies, in Fig. 5.4 we show a screenshot of the ProM tool. This
screenshot contains a huge transition system and a “spagetti”-like Petri net, which
could be obtained if we would not apply any strategies but would simply generate

a multiset-based transition system covering all the traces seen in the log. In spite of

136 CHAPTER 5. EVALUATION

the fact that the models shown in the screenshot have a 100% fitness and directly
correspond to the behaviour covered in the log, they are extreme complex.

So, with the aid of the construction and modification strategies, we could “tune”
an appropriate level of abstraction in our process model represented in Fig. 5.3. This
model will be used further for process analysis.

In this Section, we presented a case study where we tried out our two-step control-
flow process mining algorithms, which produced a plausible process model reflecting
the real work in the software project. Here, we can conclude that complete prefix sets-
based transition systems refined by applying the “Kill Loops” modification strategy
are compact and understandable, it helps process engineers to gain insight about the

process.

5.1.3 Performance Analysis

The Petri net model of the development process can now be used for enhanced analysis
within the ProM framework (the algorithms used further were not developed by
the author and belong to the ProM framework). Figure 5.5 shows the result of a
performance analysis based on the mined model and the log (the idea of performance
analysis was discussed already in Sect. 3.3.4). The states, i.e. places, have been colored
according to the time which is spent in them while executing the process. Also,
multiple arcs originating from the same place (i.e., choices) have been annotated with
their respective probability (i.e., the fraction of cases for which this path was taken).
In the example, it takes more time to write a configuration file than a “builder” or a

“readme”.

README (complete)

[Cowrs e | "

nplete)

Figure 5.5: Performance Analysis for the ArgoUML Project

Thus, with the help of the performance analysis, process engineers and managers

of software projects can derive information about the duration of tasks, the milestones

5.1. EVALUATION USING OPEN-SOURCE SOFTWARE 137

and the deadlines of projects. Moreover, they can identify problematic tasks, and,
therefore, determine the directions for software process improvement.

Further, a conformance analysis can be performed using the Petri net model and
the associated log. Figure 5.6 shows the path coverage analysis of the conformance
checker. All activities that have been executed in a specific case (or, set of cases) are
decorated with a bold border, and arcs are annotated with the frequency they have
been followed in the case. In this example, it can be seen that “README” was not
executed for the “CPP” case, i.e. the C++ language support team has not created a
README file.

]

Figure 5.6: Conformance Analysis for the ArgoUML Project

As discussed in Chapter 3, for software process engineers it is important to be
able to build different views on the process model, i.e. to focus on particular process

instances and to see them in the model.

5.1.4 Verification

On the next step, we can check the properties of the process using LTL verification.
Like for the performance analysis, the idea was described in Chapter 3 on the small
examples.

For example, one constraint in a software development project could be, that
developers working on the source code should not write tests as well. Figure 5.7
shows the result of checking a corresponding LTL formula on the ArgoUML log. In
the C++ language support case, which is shown in Figure 5.7, both source code and
tests have been submitted by the developer “euluis”, thereby violating this constraint.

Plenty of interesting properties can be checked using the verification plugin of
ProM. Our goal is to show its main functionality and capabilities. In the given exam-

ple, we have shown that its possible to do verification using several process aspects,

138 CHAPTER 5. EVALUATION

'

SRC
complete
2006-08-18 01:43:24.000 +02:00

Originator = euluis

Y

TESTS

complete Originator = euluis

2006-08-18 01:43:24.000 +02.00

Figure 5.7: LTL Analysis for the ArgoUML Project

such as the control and the organizational ones. However, much more examples could

be provided, the other examples are shown in the second and in the third case studies.

5.1.5 Organizational Aspect

For determining the social network of a development process it is preferable to
use the original log, i.e. before it has been abstracted. The reason for that is, that
it is also interesting when people collaborate within a certain part of the project
(e.g., writing source code), while one wants to abstract from these activities on the
control flow level. Figure 5.8 illustrates the hand-over of work between ArgoUML
developers. It shows that some developers are only involved in specific phases of the
project (e.g., “bobtarling” appears to only work at the end of projects), while others
(e.g., “tfmorris”) have a more central and connected position, meaning they perform
tasks all over the process. Based on the nature of the project at hand one may prefer
different collaboration patterns, which can be checked conveniently in a mined social
network like this.

Thus, in this section, we presented a small handy example of the real software
project, where a subset of the big set of process mining and analysis techniques

supported by ProM was applied.

5.2 Evaluation using Student Repositories

In our second case study we deal with the document logs produced by the students
participating in the Practical Software Engineering course (Softwaretechnikprak-
tikum, http://wwwcs.upb.de/cs/ag-schaefer/Lehre/Lehrveranstaltungen/
Praktika/Softwaretechnikpraktikum/SS06/) in summer semester 2006. The

5.2. EVALUATION USING STUDENT REPOSITORIES 139

bobtarling

tfmorris

Figure 5.8: Social Network for the ArgoUML Project

main goal of this practical course is demonstrating the necessity of using software
engineering techniques for producing software [GGK103]. Within this course the
students realize the importance of different steps of the software process, such as
requirements engineering, design, development, testing, etc. Moreover, students ex-
perience working in a team, which is for sure completely different from programming
on their own.

In this course, the students had to develop an IDE for embedded systems con-
sisting of three parts: component editor, deployment editor, and diagnosis tool. All
the students were divided in 16 groups, about 10 students per group. Every group
had to develop one of the parts of the IDE as a main task and then integrate with
the other two parts provided by the other groups. Each part had to be delivered as a
plugin for Eclipse (www.eclipse.org). However in our evaluation, we focus only on
the main task, i.e. on the development of the main plugin. During the development

of the main plugin, the students had to produce the following documents:
e Product Specification, abbreviated further as LH (for germ. Lastenheft)
e Requirements Analysis, abbreviated further as PH (for germ. Pflichtenheft)
e Analysis and Design, abbreviated further as AE (for germ. Analyse&Entwurf)

Additionally, they had to analyse given code, to produce their own source code, to
write tests, and to write the documentation for the source code.

The students used Subversion as an SCM system; they had to commit all the
documents enumerated above to the Subversion during the work on the project. We

introduced the rules for using the SCM system and the “naming conventions” for

140 CHAPTER 5. EVALUATION

folders and for documents in order to better manage the SCM repositories and to
“enable” mining and analysis of the development processes. An example of the con-
ventions for the folder structure is shown in Fig. 5.9. In contrast to the ArgoUML
project, where appropriate conventions were defined, see Sect. 5.1.1, we had to in-
troduce them ourselves here. Methodologically, in our incremental workflow mining
approach discussed in Chapter 3, we assume that the company is on the repeatable
CMM level and the SCM system is correctly used in the company, i.e. there exist

rules for using the SCM and practitioners follow these rules.

Folders Content
swtpra06-xx Repository (xx — group number)
docs Project Documentation (all written documents)
<typ> Eigenes Plugin Documentation
(<typ>= *“cbe”, ”nde”, sdt”)
sim Simulationsalgorithmus Documentation
integration Integration Documentation
src Source code
tests Tests code
website Website
misc Miscel laneous

Figure 5.9: Naming Conventions for Student Repositories

So, there are the following goals of this case study: (1) take the Subversion doc-
ument logs and derive a process model describing the real software development

process followed by the students; (2) analyse and verify the process model.

5.2.1 Abstractions on the Log Level

A repository of each group corresponds to a process instance. With the help of the
ProMImport tool, document logs derived from all these repositories were converted
to the MXML format and were represented as a single log with 16 instances. The
overall log contains more than 13000 of audit trail entries and about 9000 of different
activities; the size of the log file is almost 4 megabytes.

Since the log is very big and contains a lot of unnecessary details, we have to
select an appropriate level of abstraction and to “tune” it using our tools. First of
all, we analysed the logs; with the help of ProM filters and visualization mechanisms,
we found out which groups followed the naming conventions and which not. We
removed the logs of the groups that did not follow the naming conventions or that
chaotically committed their data. So, we left only 10 groups of 16. As mentioned
before, we look only at the development of the main plugin.

The next abstraction is: we decided to look only at the first occurrences of doc-

5.2. EVALUATION USING STUDENT REPOSITORIES 141

<?xml version="1.0" encoding="UTF-8"7>
<ProMLogFilter>
<LogFilter load="1" name="Remap Element Log Filter"

class="org.processmining.framework.log.filter.RemapElementLogFilter">

<FilterSpecific>

<!-- GROUP3 NDE -->

<remap regex="(.*)/swtpra06-03/docs/nde/lastenheft(.*).([\w]l{3,4})"
replacement="LH"/>

<remap regex="(.*)/swtpra06-03/docs/nde/pflichtenheft(.*).([\w]{3,4})"
replacement="PH"/>

<remap regex="(.*)/swtpra06-03/nde/docs/pflichtenheft(.*).([\w]l{3,4})"
replacement="PH"/>

<remap regex="(.*)/swtpra06-03/nde/docs/analyseentwurf (.*).([\w]{3,4})"

replacement="AE"/>
<remap regex="(.*)/swtpra06-03/nde/src/de/upb/swtpra0d6/nde03(.*).java"
replacement="src"/>

Figure 5.10: A fragment of log filter.

uments, e.g. we ask the questions like “when do the students start working with
Product Specification?” For sure, it is also possible to look at all the commits of
the documents or at the last commits of documents (the capabilities of “tuning”
appropriate abstraction level are described in the previous chapters).

Then, we used our “remap filter” to replace the project-specific names of the doc-
uments by the general names. We used our naming conventions, which were followed
by the students, to configure the filter. For example, for the group 3 all the docu-
ments from folder “/swtpra06-03/docs/nde/lastenheft/” were renamed to “LH”. A
fragment of the appropriate filter is shown in Fig. 5.10, it contains the set of pairs
with regular expressions (corresponding to the naming conventions) and replacement
strings.

Then, the initial log was changed and the names were replaced. The described
filtering produced a log with duplicates, i.e. a log with plenty of subsequent audit
trail entries referring to the same name, e.g. LH, LH,LH, ..., so we removed all the
duplicates. It was carried out using a separate filter. A fragment of the filtered log is

shown in Fig. 5.11.

5.2.2 Process Models

Following our two-step approach we derived a transition system from the filtered log.
This transition system uses a set-based definition of a state and ignores the loops,
see Fig. 5.12. It reflects all the behaviour seen in the logs, for example we can see

that some groups started with LH (Product Specification) and some looked at the

142 CHAPTER 5. EVALUATION

<ProcessInstance id="group3" description="Global unified process instance">

<Data>
<Attribute name="LogType">MXML.EnactmentLog</Attribute>

</Data>

<AuditTrailEntry>
<WorkflowModelElement>Start</WorkflowModelElement>
<EventType>complete</EventType>
<Originator>Artificial (ProM)</Originator>

</AuditTrailEntry>

<AuditTrailEntry>
<WorkflowModelElement>LH</WorkflowModelElement>
<EventType>complete</EventType>
<Timestamp>2006-04-14T14:50:12.000+02:00</Timestamp>
<Originator>floriar</Originator>

</AuditTrailEntry>

<AuditTrailEntry>
<WorkflowModelElement>PH</WorkflowModelElement>
<EventType>complete</EventType>
<Timestamp>2006-04-20T16:05:26.000+02:00</Timestamp>
<Originator>schr31h</0Originator>

</AuditTrailEntry>

Figure 5.11: A fragment of the filtered log.

given source code first. A Petri net synthesized from this transition system is shown
in Fig. 5.14. The TS and the PN produce the same logs. Still the derived PN is rather

complicated to be understood by the user.

So, in the next step we decided to generalize the transition system using our
“Extend Strategy” (see Chapter 4 for details). The extended TS is shown in Fig. 5.13.
The strategy produces new transitions between states; e.g. since we have a path
(Start, givensrc, LH) leading to s49 and a path (Start, LH), we can assume that
there exists a path (Start, LH, givensrc) which also leads to the state s49. This TS
also reflects the behaviour seen in the log, but it is more general. The PN derived
from this TS is presented in Fig. 5.15. This PN is more compact than the previous
one (the complexity is checked simply by counting the number of places, transitions
and arcs). This Petri net can be better understood by the user, since it is better
structured and contains less complicated constructs in comparison to the previous
one. However, it allows for more behaviour then we have seen in the log.

The Petri net from Fig. 5.15 can be still simplified, for example all the non-free
choice constructs (mixture of conflict and synchronization) can be converted to the
free-choice constructs by means of producing additional labelled transitions (we use

Petrify tool for it). The free choice analog of this PN is shown in Fig. 5.16.
It has to be noted that all the models presented here have a 100% fitness (we ignore

5.2. EVALUATION USING STUDENT REPOSITORIES 143

Figure 5.12: Acyclic set-based Transition Figure 5.13: Extended acyclic set-based

System. Transition System.

the loops in the log as well) and, thus, allow for the behaviour seen in the log. The
idea is to show at least two levels of the generalization (balance between overfitting
and underfitting) here. In this section, we do not show the other models, which were
generated from the multiset-based and from the sequence-based transition systems,
since they are extreme complex and can be hardly understood by the reader. However,
even these complicated Petri nets have 100% fitness and can be used for further
analysis. According to the examples presented in this case study and in the previous
one, we can conclude that such contruction method as sets-based construction and

such modification strategies as “Kill Loops” and “Extend Strategy” are helpful for

144 CHAPTER 5. EVALUATION

Figure 5.15: PN for extended acyclic set-based TS.

generating understandable models for complex software processes. However, using

these methods implies focusing on the start events or on the end events and ignoring

5.2. EVALUATION USING STUDENT REPOSITORIES 145

Figure 5.16: Free-choice variant of extended PN.

the loops.

5.2.3 Performance Analysis

In the previous section using our two-step approach, we produced a set of models on
different levels of abstraction. The next question is: “How can these models be used?
What kind of information can be derived from these models?”. We use the algorithms

from ProM tool for these purposes.

Figure 5.17: Performance Analysis with PN.

Since the model is available, it can be enriched with the performance information.
In Fig. 5.17, we see the performance analysis of the PN from Fig. 5.15. Places have
different colours depending on the waiting time; e.g. a place between LH and AE
transition has a high waiting time (13.95 days), i.e. it takes about 14 days to start
writing the “Analysis and Design” document after starting “Product Specification”.
If we select two transitions in the Petri net we can obtain the “time in between”;

e.g. the time between LH and src is 20.93 days, i.e. it takes almost three weeks to

146 CHAPTER 5. EVALUATION

start implementation after starting the product specification. The other important
feature of performance analysis are the probabilities of choices; e.g. the probability

of starting with PH is 90% and the probability of givensrc is only 10%.

PH (complete)

sre (complete)

Start {complete) LH (complete) I

AE (complete)

Figure 5.18: Path Coverage for Group 3.

With the Conformance Checker plugin we can measure the fitness of the model.
For our example it is 100%, i.e. all the logs can be replayed in the model. There is a
possibility to focus on some particular group or on a subset of groups. For example, a
path in the Petri net corresponding to the group 3 is shown in Fig. 5.18 with the bold
lines. This functionality is very important for software process engineers especially
in the case when the models are complicated, since users have to focus on particular

views on the model.

5.2.4 Verification

After the analysis of the model is done, we can do verification. For example, we check
whether PH directly follows LH, i.e. whether the Requirements Specification always
follows the Product Specification directly (it has to be noted that we focus on the
start events in out models, thus, we can whether the work on PH was started after
the start of the work on LH). The result is given in Fig. 5.19, as is easy to see our rule
is violated by one group, namely group 4, which started working on the “Analysis
and Development” document directly after the “Product Specification”.

The other possibility could be checking the deadlines. For example, in Fig. 5.20

we show the result of checking whether there are groups that started programming

5.2. EVALUATION USING STUDENT REPOSITORIES

= analysis - Default LTL Checker Plugin 555 s inta s n s bbb

Checked formula : eventually_activity_fi_next_B

Parameters: g = |H
B =PH

P

 Correct process instances (9) ‘ Incorrect process instances (1)

name (nr similary

aroupd (1)

Figure 5.19: LTL Verification that PH follows LH.

4
k]

Start
complete

Originator = Artificial (Prol

Criginator = philzug

Originator = philzug

Originator = philzug

Criginator = elm

complete
2006-05-10 10:47:31.000 +02:J0

147

after the 11th of April. We have found out that the group 5 started development on

the 12th of April. This way we can check the deadlines and find out the groups that

violated the deadlines.

E Analysis - Default LTL Checker Plugin

Checked formula : eventually_after_time_T

Parameters:

>

Correct process instances (1) r’ Incorrect process instances (9) ‘

name (nr similar)

L

groups (13

Figure 5.20: LTL verification — groups

¥

LH

PH

2006-04-22 11:51:34.000 +02:00

givensrc

AE

complete Originator = upohl
2006-04-12 21:57:03.000 +02:00)

complete Originator = jhg
2008-05-05 22:33:48.000 +02:00

complete Originator = mherlich
2006-05-03 23:55:33.000 +02:00)

src

2006-05-12 19:12:45.000 +02:00

started coding after the 11th of April.

148 CHAPTER 5. EVALUATION

5.2.5 Conversion

The last feature that has to be shown here is the conversion from one formalism to
the other. The derived Petri net model can be converted to the Event-driven Process
Chains (EPC) model [KNS92, Kin06] shown in Fig. 5.21. EPCs are widely accepted in
the industry as a reference modelling technique. So, the derived EPC models can be
used by the process engineers working with EPCs and can be exported and simulated

by the existing EPC engines.

[Conversion - Labeled WF net to EPC -

Figure 5.21: Conversion to EPC.

Conversion plugins comprise a separate set of ProM plugins dealing with model
transformation. Transformations between such notations as Petri nets, Workflow nets,
EPCs, BPEL, and Heuristic nets are available. Like in all the previous examples, our
goal is to show principal solutions and not to go to the concrete implementation
details.

Thus, the main idea of the case study presented in this Section was to show
that we are capable of dealing not only with open-source projects, but also with
the company-specific projects if we introduce appropriate naming conventions and

control that the users follow them. We have taken an example from the university

5.3. EVALUATION USING BUG REPOSITORIES 149

practice, but similar examples could be obtained from the commercial companies.
In the last section, we have shown several new examples of the capabilities of the

analysis and conversion plugins in ProM.

5.3 Evaluation using Bug Repositories

In the third case study we decided not to deal with document logs, but with the logs
obtained from defect repositories (also called bug repositories or bug archives). We
call these logs bug logs. The main goal of this case study is validating the applicability
of our approach to other domains and validating the capability of dealing with the
input information different from the logs of SCMs. The background information about
defect repositories and their audit information was discussed in Sect. 3.2.1.

In this case study we looked at the bug reports of the Eclipse project (www.
eclipse.org) maintained by the Bugzilla system (www.bugzilla.org). The Eclipse
developers utilize Bugzilla for managing their collaborative work on the detected
defects (https://bugs.eclipse.org/bugs/). Eclipse provides also an extended help
for bug reporting and prescribes the conventions for writing bug reports. Charts and
reports along with the bug searching functionality are also supported.

The goal of this case study is deriving a process model describing the bug life-
cycle, deriving the organizational and performance aspects of the model and doing
verification. For validating the results, the process model can be compared to the
life-cycle of a bug described informally in text in the help of the Eclipse project.

Eclipse project itself contains information and history of thousands of bugs. For
this small case study, we decided to look at the bug reports of the FEclipse JDT
product. We focused on the version 3.1 of its Core component. Moreover, we looked
only at the CLOSFED bugs for all the operating systems; i.e. we dealt with the bugs
which were resolved and finished, since we wanted to look at the whole history. With
the help of the Eclipse advanced search for bugs we obtained a list of 14 bugs. For
every bug, with the help of the Bugzilla utility “view bug activity”, which produces
a report covering the whole history of a bug, we derived a life-cycle process. A life-
cycle process for every bug corresponds to a process instance; as mentioned before,
the process model derived from these process instances corresponds to the general
model of the bug life-cycle.

A fragment of the bug log (it is in the MXML format used by ProM), which was

derived from the Bugrzilla is shown in Fig. 5.22. It contains the statuses of a bug

150 CHAPTER 5. EVALUATION

<ProcessInstance id="bug 93536" description="">

<AuditTrailEntry>
<WorkflowModelElement>NEW</WorkflowModelElement>
<EventType>complete</EventType>
<Timestamp>2005-05-17T12:22:00.000+01:00</Timestamp>
<Originator>philippe</Originator>

</AuditTrailEntry>

<AuditTrailEntry>
<WorkflowModelElement>RESOLVED</WorkflowModelElement>
<EventType>complete</EventType>
<Timestamp>2005-06-03T12:08:00.000+01:00</Timestamp>
<Originator>kent</Originator>

</AuditTrailEntry>

Figure 5.22: A fragment of the bug history log.

(such as NEW, RESOLVED), the timestamps — when statuses were changed, and

the authors — who changed statuses.

5.3.1 Process Models

In this section, we show the models derived from the bug log discussed above. It
has to be noted, that we present several models on different levels of abstraction.
Here, we “tuned” our transition system generation and synthesis algorithms like it
was discussed in the previous Chapter.

The transition system shown in Fig. 5.23 is constructed directly from the bug
log, it uses the complete prefix multiset definition of a state, i.e. a state is a multiset
containing the history of all the bug statuses (for additional details about constructing
transition systems and defining states see Chapter 4). For example, every bug starts
with the status NEW and finishes with the status CLOSED, status RESOLVED
always precedes the status CLOSED. This transition system directly reflects the
information given in the log, but it does not introduce any generalization.

A Petri net synthesized from this transition system is shown in Fig. 5.24.
It is more compact than the transition system. In spite of 100% fit-
ness, neither the TS nor the PN recognize the loop construct in the trace
(NEW,RESOLVED, REOPENED, RESOLVED,VERIFIED,CLOSED). So,
we have to introduce an abstraction to deal with the loop and to simplify the model.

One way of abstraction is constructing transition system not using the whole
history of a bug, but regarding only one preceding status. We have defined this con-

struction strategy as a partial prefix strategy in Sect. 4.2. A TS constructed using

5.3. EVALUATION USING BUG REPOSITORIES 151

Figure 5.23: Multiset-based TS.

VERIFIED__1 CLOSED
CLOSED_ 2

“VERIFIED CLOSED__1
T\ =
A
o =D
A-—"O

Figure 5.24: PN for Multiset-based T'S.

this strategy is presented in Fig. 5.25.
A Petri net corresponding to the TS from Fig. 5.25 is shown in
Fig. 5.26. As is easy to see, both models detect the loop construct

and also introduce some generalization, for example such trace as

152 CHAPTER 5. EVALUATION

REOPENED RESOLVED\VERIFIED

ASSIGNED

RESOLVED__1 .
RESOLVED_ 2

VERIFIED

Figure 5.26: PN for partial prefix TS.

(NEW,RESOLVED, REOPENED,RESOLVED,CLOSED) is allowed (note
that it was forbidden in the “overfitting” model from Fig. 5.23). From the practical
point of view, it makes sense to introduce this generalization, since if a bug can be

closed without verification, then it can be also done after reopening the bug.

Another abstraction mechanism is applying the “merge states” modification strat-
egy to the multiset-based TS from Fig. 5.23, this strategy was described in Sect. 4.2.4.
Here, we merge the states if the output of one state is the subset of the output of
the other. For example, states s2 and s4 can be merged since the output event
RESOLVED from s4 belongs to the set {RESOLV ED,ASSIGNED} of output
events of s2. Like it was described in Sect. 4.2.4, we prohibit building self-loops and

5.3. EVALUATION USING BUG REPOSITORIES 153

Figure 5.27: Multiset-based TS, merged strategy.

non-deterministic transition systems during merging. Thus, iteratively applying the

“merge states” strategy we come to the TS shown in Fig. 5.27.

CLOSED_ 1

(1
»
O
O

ASSIGNED

RESOLVED

Figure 5.28: PN for merged multiset-based TS.

A PN derived from the TS from Fig. 5.27 is shown in Fig. 5.28. These TS
and PN introduce appropriate level of generalization: firstly, they recognize the
loop construct; secondly, in comparison to the TS and PN obtained using partial

prefix, they allow for more feasible behaviour, for example such useful trace as

154 CHAPTER 5. EVALUATION

(NEW,RESOLVED, REOPENED,ASSIGNED,...) is allowed. This model is
the most suitable model, further we discuss the validation and present the arguments
for this statement.

For validation purposes, the model from Fig. 5.28 can be compared to the help
from the Eclipse web site (http://wiki.eclipse.org/index.php/Bug_Reporting_
FAQ), which describes the bug life-cycle . This help says: “When a new bug is entered
it begins life with a Status of either Unconfirmed for normal users or New for users
with commit privileges. The bug is typically assigned to the component owner. The
component owner will usually use a query of Status = Unconfirmed or New and
Assigned to = me to browse what is essentially the component’s inbox. She or he
will assign bug reports to developers. ... The assigned developer will accept the bug
which will change its status to Assigned. After working on the bug the developer
will mark the bug as Resolved and will select a resolution (Fixed, Invalid, Wontfix,
Later, Remind, Worksforme). ... After testing that the fix worked a resolved bug can
be transitioned to wverified, directly to closed, or in fact, reopened. By searching for
bugs with a Status of verified and a resolution of fixed developers can come up with
release notes. A verified/fixed bug can then be transitioned to closed. And yes, closed
bugs can be reopened if need be. ...” So, we identified the main transitions between
bug statuses from the real data and realize that it fits to the description from the
web site. Moreover, we can also find some discrepancies: at least in our examples no
closed bug was reopened, so we could suppose that this case described in the Eclipse
help is unrealistic.

Further, we will work with the last Petri net model. It has to be mentioned that
all the models presented in this section are conformed to the behaviour seen in the

log.

5.3.2 Performance Analysis

Since we have derived a formal bug life-cycle model, we can start applying the analysis
techniques, namely performance analysis. With the help of the performance analysis
plugin of ProM [vDAMV™05] (it was described in Sect. 3.3.5) we can analyse the
performance of the process model.

One of the possibilities of the performance analysis is to find the average time
between changes of different statuses. In Fig. 5.29, we show that the average time
between creating N EW bug and finishing it (status CLOSED) is 106.95 days. More-

over, looking at the colours of places, we can find out that the time spent in the out-

5.3. EVALUATION USING BUG REPOSITORIES

*# ProM [4.0]

File Mining Analysis Conversion Exports Window Help

155

=

E Analysis - Performance Analysis with Petri net

e
o Traces 4
bug 7615 k 0.67 | VERIFIED (complete)
bug 38
bug 07
bug 42
bug 86037
bug 96682
bug 88142
bug 103838 :
bug 105152 -
bug 110660 :
bug 111281
Update
Imvert Selection | |4 I 1 | D
Frequency: 10 cases]
Time in between {days) Waiting time: Selected:
ol 096295 I High Transition - NEW com
z:; K] [Medium 4
and:
stev 5 Il Low .
fasi25.00%.. |1.42 Transition - CLOSED ¢
slow 24500 34 95 j =
normal 50011359 52

Figure 5.29: Performance Analysis with Petri Net.

going place of the RESOLV ED transition is high, whereas the time spend in places
between ASSIGNED and RESOLV ED and between NEW and RESOLV ED is

medium; i.e. it does not take much time to resolve a bug, but it takes time to verify

the resolution and to close the bug. On the same figure we can see the probabilities

in the case of choices, for example, only in 13% of cases people ASSIGN the bug, in

87% people directly come to the resolution.

E Analysis - Conformance Checker =

|Lo.||" Fitness | Precision | Structure

bu...

bu...
bu...
hu
bu
b
b N
b
b
b
b,
bu...
bu...
hu

WERIFIED {zomplete) 1 1
CLOSED (camplete)

~

REOPENED (complete)

0 2 @)

ASSIBNED (camplate)

NEW (complete)

Figure 5.30: Path coverage Analysis.

As mentioned before, the models presented in the previous section have 100%

conformance with the log (fitness), see the proof of this statement in Chapter 4.

It is also proved by the conformance checker (it was already used in the previous

156 CHAPTER 5. EVALUATION

evaluation studies and in Chapter 3). One of the useful features of the conformance
checker is the path coverage analysis. In Fig. 5.30, we see the path in the Petri net
covered by the first bug. For example, we can notice that this bug was resolved,

reopened and resolved again.

5.3.3 Verification

Like in the previous case studies, we can do the LTL verification. For example, we can
find out the bugs that were reopened. If we check the property “Always when NEW
then eventually REOPENED”, then as a process instance fulfilling this property we
get the log of the first bug, see Fig. 5.31. The other 13 bugs were not reopened, i.e.
they were resolved correctly right away.

e
E Analysis - Default LTL Checker Plugin

Checked formula : always_when_f_then_eventualty_B

Parameters: p - NEW
B = REOPENED
T R]

Correct process instances (1) rlncurrect process instances (13) |

name {nr similar) i

Bug TR155 (1) k NEW
: complete Qriginator = frederic

2004-10-28 10:52:00.000 +02:4

/

1
I ResoLveD
complete Criginator = philippe
2005-04-07 09:01:00.000 +02:4

/
RECQPEMED
complete Criginator= philippe
2005-05-30 06:28:00.000 +02:4

|

RESOLVED

complete QOriginator= philippe

2005-05-30 12:58:00.000 +02:4
T

D| D| D| D|

Figure 5.31: Verification, reopened bugs.

The previous verification example deals only with one process aspect, namely
control flow. In the next example, we show that we can deal with several aspects. For
example, we can check whether there are bugs, where the same person resolved the
bug and verified the result. Practically, in the software projects it is better to have

different persons responsible for resolving bugs and for verifying the resolution. If we

5.3. EVALUATION USING BUG REPOSITORIES 157

check the property “exists person doing RESOLVED and VERIFIED”, we find one

bug, where user “olivier” resolved it and then verified the result, see Fig. 5.32.

Analysis - Default LTL Checker Plugin

Checked formula : exists_person_doing_task_A_and_B

Parameters: p = RESOLVED
B = VERIFIED

Ty T e e T e R e e e S A s,

Correct process instances (1) rlncnrrec‘t process instances (13) |

name (nr similan i
bug 89142 (1) :

NEW
complete Criginator= philippd
2005-06-09 13:43:00.000 +02:

RESOLVED
complete Criginator = olivie
2005-08-09 13:53:00.000 +02:

VERIFIED
complete Criginator = olivie
2005-05-09 19:25:00.000 +02:

CLOSED
complets originator = david
2005-08-10 11:53:00.000 +02:

(=] [=] o o

Figure 5.32: Verification, persons resolving and verifying bugs.

5.3.4 Organizational Aspect

Since our algorithms are integrated in ProM, in addition to the performance analysis
and verification, we can introduce the organizational aspect in the resulting model.
Like the document logs, the bug logs have information about the users.

So, first of all we can build a social network from the bug logs. In Fig. 5.33,
we show an example of the handover of work network. As is easy to see, “david”,
“olivier”, “jerome”, “frederic” and “philippe” comprise the core of the development
team, they work a lot together, whereas “gjohnsto”, “keiths” and “kent” contact
only particular developers of the core team. Moreover, it can be noticed that some
developers of the main team like to work alone, e.g. “philippe” and “olivier” rather

often handover work to themselves (probability is 0.119). Thus, after building the

158 CHAPTER 5. EVALUATION

gjohnsto

philippe

Figure 5.33: Social Network, handover of work.

social network, process engineers and managers can identify and formally check the
relationships in the team; this information is definitely important for managing the

team and for assigning the work.

giohnsto
giohnsto

phiippe
philiope

frederic
frederic

minedRole2
REQPENED_complete:

mineciRolet
RESOLVED_complate

minedRale0
NEW_complete

minedRoleS
'ASSIGNED_complete

minedRole3
VERIFIED_complets

minedRaled
CLOSED_complete

\\\\\ citaskS minectask3 minectaskd minectask0 minectaskl minectask2
ASSIGHED VERFED CLOSED NEW RESOLVED REOPENED
complete: complete: complete complete: complete complete

Figure 5.34: Mining the Organizational Structure.

Another plugin of ProM can be used for defining the organizational structure
(the basic idea of the organizational miner was described in Sect. 3.3.4). It clusters
the users doing similar tasks into roles. An example of the organizational struc-
ture derived from the bug log is shown in Fig. 5.34. It can be noticed that the role
ASSIGNED is played only by a single user “olivier”, almost all the users use to

“close”, “resolve” and create “new” bugs, only three users verify the bugs.

5.4. SUMMARY 159

5.4 Summary

At the end of this Chapter, like at the end of the previous ones, we summarize our
achievements. First of all, in Sect. 5.4.1, we mention other evaluation examples, which
were not presented in this chapter; they were also used for discovering process models
and for experimenting with our algorithm, but the detailed discussion of which is out
of the scope of this thesis. Then, in Sect. 5.4.2, we conclude the chapter and discuss

the contributions and the methodological issues.

5.4.1 Other Examples

During the years of research in order to validate the approach we looked at many
different open-source projects, such as Mozilla, Netbeans, Eclipse, Apache and others.
All these projects provide a free access to their SCM systems and other software
repositories including bug repositories. In this chapter, however, we presented three
most understandable and vivid examples.

For instance, many Apache projects consist of subprojects, which have a prede-
fined structure. Information about these subprojects can be used for mining process
models. A particular working example is the Jakarta project belonging to Apache,
see http://jakarta.apache.org/. We also did process mining for this project and
obtained plausible models, which could help us to find out interesting properties.

Additionally, during our research we dealt a lot with the cases from the area of
business process modelling. Some of these examples were generated artificially in order
to produce difficult constructs and to check whether the algorithms can deal with
them. The others were inspired by the real practical work of people with the process
management systems. In the implementation phase of the thesis, the algorithms were

also evaluated on a set of examples included in ProM framework.

5.4.2 Conclusions

After dealing with many examples of various complexity obtained from different
systems, including SCMs, bug repositories, WfMS, we can draw the conclusion that
the incremental workflow mining approach and its algorithms produce meaningful
and consistent results on different levels of abstraction. These results can be used
for process analysis and verification, moreover the models can be enriched with the
information about different aspects, such as organizational and informational.

Methodologically, in this Chapter, on several cases, we discovered the set of useful

160 CHAPTER 5. EVALUATION

transition system generation and modification strategies, which should be further
applied in the software engineering domain. We also determined the methods for
Petri net synthesis and for deriving the target formats for Petri nets, which should
be used for compact and understandable representation of process models.

With the help of the case studies presented in this chapter, we validated the
following contributions of our approach in the areas of software engineering and

process mining:

e The real data about software projects provided by software repositories can be

used for discovering software process models.

e Produced process models are formal and explicit, and they can be analysed and
verified in order to derive different important characteristics of the organiza-

tional software processes.

e The preprocessing step of our incremental workflow mining approach is essen-
tial for structuring and abstracting from the information provided by software

repositories, and thus for preparing it for process mining.

e The process mining step of our approach and our control-flow process mining
algorithm used on this step, have a unique capability to generate different pro-
cess models on different levels of abstraction. So, our algorithm overcomes the
“overfitting/underfitting” problem and enables process engineers to experiment
with the process models and to “tune” the appropriate level of generalization.
Moreover, it helps to avoid the common “one size fits for all” problem of the

other process mining approaches, which can produce only single models.

e The model analysis and representation utilities used in our approach produce
important analysis and verification results, which can be used for identifying

the problems in the process and for optimizing it.

e The implementation of our algorithms integrated into the ProM framework is
stable and can be effectively used by the software process engineers. Moreover,
all the analysis, conversion, and export plugins of ProM can be applied to the

process models produced by our algorithms.

e Finally, our algorithms can be applied not only in the software engineering area,

but also in the related ones (business process management in general).

5.4. SUMMARY 161

Generally, our goal was to apply the ideas of process mining to the area of software
processes and to show its benefits for this domain. It resulted in a new approach and
algorithms and also in a set of practical case studies, which should be used by software
process researchers for further investigations as well as by practical software engineers

for discovering interesting data about the software projects.

162 CHAPTER 5. EVALUATION

Chapter 6

Related Work and Discussion

In this Chapter, we deal with related work; at the end, we also discuss and compare

our contributions with those in the existing works.

>

e

5
35
o
ba%es
52

T
::
::

i

Business
Processes

Software
Processes

o i
50
2505858
S
2505
s5aete!

v
N
o5
‘0
5
5
2
S5
255
5
2505
550

i
S5
2555058
505858
bdededs
2526052

B
5258525
10!
L5255
505255
LSS
RS

R oA
S eese e etatate
\ HSTeoa et
\I5500S
NG5
N5
_"‘

Figure 6.1: Main Areas of our Research

In Chapter 2, we explained that our research lies in the intersection of the areas
of Business Process Management and Software Processes, see Fig. 6.1. We also made
a general introduction to these areas, including definitions of basic terms. However,
both research areas are huge and include a lot of different research directions; also,
the research directions can overlap with the directions from other areas. Since we have
already explained our own work in the previous chapters, we can start the discussion
of the related work and look at the most close directions from both areas.

Actually, our research arose from Process Mining, Mining Software Repositories
and Data Mining, see Fig. 6.2. The keyword and the idea of “mining” can be found
in all these areas, but the research serves different purposes and the results of min-
ing are different; moreover, people use to produce applications in different domains.

Nevertheless, since people come and develop the idea of “mining” in various areas, it

163

164 CHAPTER 6. RELATED WORK AND DISCUSSION

Process Mining

Mining Software
Repositories

Data Mining

Figure 6.2: Related Work Areas

is useful and requires more and more investigation in future. Further, we focus on the
areas presented in the figure, but it has to be mentioned that similar ideas appear

also in such domains as:

o Reverse Engineering, where people try to “mine” software models from code

and from its execution traces;

e Scenario Management, where people try to “mine” behavioural models from

modelled or real-life scenarios;

e Business Intelligence, where people try to derive high-level information about

business from the variety of available audit information

o Machine Learning, where people develop algorithms, which can learn how to

act given an initial data set, e.g. observations of the real world.

6.1 Mining Software Repositories

As mentioned already in Chapter 3, researchers and practitioners recognize already
the benefits of using software repositories for software process modelling. The idea is
that process modelling and improvement should be ruled by what was actually done
during the software development process and not by what was said or thought about
it. It happens when the information about process is derived from interviews and

questionnaires. The set of software repositories, which contain information about

6.1. MINING SOFTWARE REPOSITORIES 165

software projects and processes, was described in Sect. 3.2; these repositories are:
source control systems, archived communications between project personnel, defect
tracking systems, etc.

The capabilities of using the software repositories for deriving information about
the software projects are being researched in the domain of mining software repos-
itories (MSR) [HHMO04, HHD05, DGHO06]. Researchers try to uncover the ways in
which mining the repositories can help understanding software development, support-
ing predictions about software development, and planning various aspects of software
projects.

In spite of the fact that this is a very young research field, a lot of interesting
directions were started already. Several interesting methods influenced our research,
when we made our initial steps in developing our own approach. The MSR approaches
usually deal with open-source software (OSS). Like in our approach, SCM systems,
e.g. CVS and Subversion, and bug repositories are used as sources of input informa-
tion [MLRWO05a, ZW04, CM03]| for the following purposes:

e measuring the project activity;

e measuring the amount of produced failures;

detecting and predicting changes in the code;

providing guidelines to newcomers to an OSS project;

detecting the social dependencies between the developers;

First of all, we examine several well-known work directions to show the variety
of useful information, which can be derived from the software repositories. The list
of literature presented below is probably not complete, but it uncovers the main
research directions each of which is intensively investigated nowadays.

One type of the discovered information is the data about software failures and pre-
dictions about software failures. In the paper of Nagappan, Ball and Zeller [NBZ06],
an empirical study of the defect history of Microsoft software systems is presented.
After introducing the code metrics and building regression models, the likelihood of
new defect is predicted. In this research, the authors proved the usefulness of metrics
as abstractions over code for predicting the defects. However, a set of appropriate
metrics for a software project must be carefully chosen and validated. In the context
of mining, the proposed approach shows that mining the bug repositories, version

databases and program code can be very helpful for the quality assurance engineers

166 CHAPTER 6. RELATED WORK AND DISCUSSION

for predicting post-release defects. In the work “How Long will it Take to Fix This
Bug?” [WPZZ07], an approach for predicting the fizing effort (person-hours) spent
on fixing an issue (it can be a bug, a feature request or a task) is presented. The
authors analyse the bug database in order to find the bugs with the most similar
description and to combine their reported effort for predicting the fixing effort. The
JBoss project was used as a case study. The presented approach can be successfully
used by project management in order to evaluate the estimated time and efforts of

their personnel.

Another interesting direction to look at is mining for guiding the newcomer to
an open-source project. In the Hipikat project [CMO3], people analyse the artefacts
stored in the project’s archives (software repositories) in order to recommend the
newcomer to a project an appropriate set of artefacts to fulfil his task. A special tool,
called also Hipikat, is used for these purposes. The authors highlight an important
point that in the case of open source projects, since the developers are practising a
distributed way of work, a newcomer can not rely on the life discussions with the
colleagues, but he has to look through complex archives of software repositories.
The Hipikat tool forms a group memory by inferring links between stored artefacts,
then it recommends a developer an appropriate group of artefacts. The authors also
produced two case studies: Eclipse project and a proprietary software development

project.

Mining can be also used for monitoring student performance and improving the
educational process. Mierle et al. [MLRWO05b] made experiments on mining and
analysing a set of CVS repositories of students working on similar projects; vari-
ous quantitative measures of students behaviour and code quality were extracted.
The main goal was to find out the measures suitable for predicting the performance
of students. This research challenges an important problem of measuring the stu-
dents performance with the help of software repositories. The other approach, which
is developed by Liu et al. [LSWGO04], uses the information from CVS repository for
tracking the progress of students. The goal of this research is to understand the inter-
action of students and to find out the correlation between the grades and the nature

of the collaboration.

A separate evolving area of research is text mining, but it can be also used in
the context of software repositories. For example, Ying et al. [YWAO5] explore the
source code comments of the developers for deriving useful project information. The

background idea of this research is based on the fact that programmers use the

6.1. MINING SOFTWARE REPOSITORIES 167

comments not only for making code understandable but for communication purposes
and for describing changes and “TODOs”. The comments of the Eclipse project were
used as a case study. So, this work opens an interesting direction: deriving software
project information from the information hidden in textual comments.

The last area we want to examine before coming to the software process discov-
ery is mining the data about software evolution. Fischer et al. [FPGO03] combine the
versions data with the bugs data in a so-called release history database to facilitate
reasoning about software evolution. The approach is evaluated on the Mozilla project.
The other work [FORGO5] in this context deals with the evolution of product families.
Within this project, the authors developed a tool, which tabulates and summarizes
the changes in the source code (C programs are considered) obtained from versions
repositories. The idea is to explain the changes in the software release in terms of
functions and variables. The project is evaluated on a set of open-source software
projects including Apache, OpenSSH, and Linux kernel.

Other research approaches from the area of mining for software evolution deal
with the visualization of the results. For example, in the paper of German et al.
[GHO6] a software tool called “softChange” is described; this tool takes information
from the software repositories, analyses and enhances it finding new relationships
among items, moreover it allows users to visualize this information. The described
tool was evaluated on several projects, including GNOME.

In this Section, we described a set of approaches, which use software repositories
for deriving useful data about software projects. Our own approach described in the
previous Chapters uses the same input information but for discovering more general
information, i.e. information about the software process. From our point of view,
first of all, it is important to have a process-oriented view on a software project;
then this view can be enhanced with the additional information using the approaches
discussed above. Moreover, it must be possible to derive more detailed information
about different steps in the general software process model, it can be also achieved

with the help of the work related here.

6.1.1 Discovering Software Processes

Further, we focus on the works, which combine the areas of MSR and software process
modelling and, thus, come closer to the topics covered in this thesis.
Sandusky et al. [SGR04] deal with defect repositories and identify the relation-

ships between bugs and characterizes the defect life cycle (opened bug, commented

168 CHAPTER 6. RELATED WORK AND DISCUSSION

bug, closed bug). The authors use the Mozilla open source project as an example.
They use informal graphical models for defining the process. The resulting process is

specific for bug reports and reflects the states of them.

Tannacci [Ian05] deals with communication threads of an open source Linux
project for identifying the coordination processes between the developers. The au-
thor examines e-mails from surrounding patch submission, defect reporting, patch
incorporation, and activity coordination in the Linux kexec module. He looks at
patch submission and approval processes and bug reporting processes as means of

coordination in Linux development.

Mockus, Fielding, and Herbsleb [MFHO02] apply software repository mining to
analyse e-mails of source code change history and problem reports for quantifying
aspects of developer participation, core team size, code ownership, productivity, de-
fect density, and problem resolution intervals. The authors make two case studies:
Apache and Mozilla projects. They describe the entire Apache and Mozilla software
development processes in an informal way. Such process aspects as roles and respon-

sibilities, work identification, testing, and inspection are described in both projects.

Scacchi [Sca02] studies the requirements engineering processes of the KDE, Mono,
ArgoUML, and other projects; the author does the study with the help of software
developers unfamiliar with the projects. Scacchi describes requirements processes
informally. He uses such software repositories as webpages, e-mail messages, how-
to guides, FAQs, and discussion forums for tracking the requirements development

processes.

German [Ger04] models requirements, conflict resolution, and release processes of
the Gnome project. The author examines the project mailing lists, the source code
repository, along with his own experience in formulating and modelling the Gnome
requirements, conflict resolution, and release processes. The resulting processes are

also described informally.

Liu et al. [LSE05] deal with the open-source software process models. In the paper,
the authors present the CVSChecker tool for analyzing the development process based
on the history recorded by the source-management systems. With the help of this
tool, it is possible to derive project milestones and core developer roles. The project
was evaluated on student repositories.

Thus, an analysis of works which try to integrate the areas of mining software
repositories and software process modelling was done in the second part of this sec-

tion. As a conclusion, we can say that researchers and practitioners have started

6.2. PROCESS MINING APPROACHES 169

analysis of software repositories for supporting the software process modelling, but it
is done either manually or semi-automatically and the resulting process models are
usually implicit or informal. Additionally, in this MSR area, software repositories are
mostly used for detecting dependencies on a very technical level (usually code level),
whereas in our work we make an effort at building process models and doing anal-
ysis on the modelling level. The research directions dealing with software processes
and process models, still lack of algorithms for producing formal models and making
appropriate abstractions from these models. In this context, our approach described

in the previous Chapters should be used to overcome the discussed problems.

6.2 Process Mining Approaches

Since the nineties several groups have been working in the area of process min-
ing, i.e., discovering process models based on observed events. The followings work
should be mentioned in this context [AMWO05, ARS05, vdAvDH"03, vdAWMO04,
AGL98, CW98b, Dat98, vDvdA04, Her00, WvdAO1lb, WA03, Sch02b, GGMS05]. In
[vdAvDH™'03, AW04] an overview is given of the early work in this domain. For a more
complete overview, we also refer to the web page http://www.processmining.org

and to the recent theses written in this area [Med06].

The first process mining works dealt with the event logs produced by the work-
flow management systems, thus, this research was inspired by the open issues in the
domain of business process management. The first idea to apply process mining in
the context of workflow management systems was introduced in [AGL9S8| in 1998.
This approach models business processes as annotated activity graphs and assumes
the absence of cycles in the event log, it is restricted to sequential patterns only.
The algorithm of Agrawal was implemented, but it has some limitations, for example
it can not deal with duplicates (see Sect. 4.1) and assumes that there is only one
appearance of a task in a case. In parallel, Datta [Dat98] looked at the discovery of
business process models.

However, we argue that the first papers really addressing the problem of process
mining appeared around 1995, when Cook et al. [CW98b, CW99, CDLW04, CHMO1,
CW98c] started to analyse recorded behaviour of processes in the context of software
engineering, acknowledging the fact that information was not complete and that a
model was to be discovered that reproduces at least the log under consideration,

but it may allow for more behaviour. So, the difference to the approach described

170 CHAPTER 6. RELATED WORK AND DISCUSSION

above is that the authors do not aim at deriving a correct complete model, but they
try to express the most frequent patterns seen in the log. The authors started with
dealing with the sequential models and later extended their framework to treat the

concurrency.

Herbst [Her00] was one of the first to tackle more complicated processes, e.g., pro-
cesses containing duplicate tasks. The approach of Herbst and Karagiannis [HK99]
uses machine learning techniques for acquisition and adaptation of workflow models.
On the first step of the Herbst’s approach a Stochastic Activity Graph (SAG) is de-
rived, then the SAG is converted to the ADONIS (http://boc-eu.com/) Definition

Language. All the algorithms were implemented in the InWoLve tool.

The seminal work in the area of process mining was presented by van der Aalst et
al. [WvdAOla, WvdA02]. Within this approach, workflow logs and classes of sound
workflow nets are defined. Formal causality relations between events in logs, the
a-mining algorithm for discovering workflow models, and its improvements are pre-
sented. The “classical” a-algorithm [vdAWMO4] is an example of a simple technique
that takes concurrency as a starting point and directly derives a Petri net. However,
such simple algorithms have problems dealing with complicated routing constructs

and noise (like most of the other approaches described in literature).

In the “Multi-phase Process mining” [vDvdA04, vDvdA05b], the authors propose
a multi-step approach for mining Event-driven Process Chains (EPCs). The idea is to
start mining process models for every trace in the log. Then, the algorithm aggregates
(“merges”) the models. This approach is more robust then the a-algorithm. Both
approaches are integrated to the ProM framework, which was already discussed in

the previous Chapters.
Heuristic algorithm [WvdAOlb, WAO03] has been proposed to deal with such

issues as noise. The main idea behind the heuristic approaches is that the more often
one task follows the second and the less often the second follows the first one, the
higher is the probability that the first is the cause for the second. The heuristic
mining algorithm is a very powerful extension of the a-algorithm, but it also has
difficulties with the non-local non-free-choice constructs. Now, this algorithm belongs
to the ProM framework, but originally it was implemented in a separate tool called
LittleThumb.

The genetic algorithms [AMWO05, Med06] are also based on the idea of heuristics
and adaptive search methods (often used in the area of machine learning and artificial

intelligence). These algorithms are robust in respect to the mined constructs and can

6.2. PROCESS MINING APPROACHES 171

naturally deal with noise. However, they have such a drawback as computation time,
which is rather common for such kind of intelligent algorithms.

The area of process mining does not deal only with the control-flow mining algo-
rithms, but also with the other aspects. For example, the discovery of social networks
was discussed in [ARS05]. In [RvdA06] some of the conformance algorithms used by
ProM are described.

The algorithms dealing with different aspects and integrated to ProM were al-
ready referenced and discussed in Chapter 3, we used these algorithms in the thesis
for extending our approach and doing verification, performance and conformance

analysis, social and organizational mining of software processes.

6.2.1 Comparison

As discussed above, there is a variety of different process mining algorithms with
different complexity, application domains, implementation ideas. So, developing an
effective method for comparing all these approaches could become a significant re-
search direction in the area of process mining.

In the thesis, we do not intend to make a precise comparison of all the algorithms
and approaches with our approach, it is almost impossible by now. Moreover, the
capability of generalization cannot be compared, since it is supported only in our ap-
proach. But in this Section, we do present a small evaluation of our algorithms against
two well-known and important mining algorithms: the a-algorithm [vdAWMO4] and
the multi-phase algorithm [vDvdA04, vDvdAOQ5a]. For this comparison, we use an
example of a log taken from a driving school. In this driving school, learners start
by applying for a license. Then, in parallel, they take a theoretical exam, as well
as driving lessons for either car or motorbike. After finishing the theoretical exam
and the lessons, they take a practical exam, after which they do or do not receive a
license. Note that it is only possible to do a practical exam for cars if the learner had
car driving lessons and vice versa for a motorbike exam. For the comparison, we used
a complete process log, i.e. a process log that showed all four possible executions of

this process, namely car and bike combined with getting or not getting a license.

CHAPTER 6. RELATED WORK AND DISCUSSION

172

‘yoeoxdde degs-om) mo (o) pue Ieuru aseryd-1nu o) (q) ‘Iourr © oY) (®) SUIST PIISAOISIP

‘S)oU 1190 J QDI T, :€"9 9INSJT

1B 8MIQ Wex3 (e3lIeld 60
wex3 jeanaioay) oq

O
1._8 a1 SeSSEI) puBhY
Os— =0 O

85Us3[7 10} Addy

E4IGI00I BPRY WEXT |BAIRId 00

BIOION 3Pl SESSELD pusy

b
L3

alaidwod

aadwod
SHIOI0N BPKy wex3 [eageld 0g SPIY SASSEID puspy

aa|dwos

wex3 [edneioayl 6g
ajadwod aja|dwod

ls1e2 2AUQ WEXT [B32E1d 00 5180 BAUQ S3SSEID puBlY

Sod s aAnad - ud'sies - papodw) [

a)a|dwod
35U831 10) Nddy

A4 4
' lw
] B0 1auLad 0} 3d3 - uois1anuo] [
A.mv _ aja1dwos #ja|dwod
I &Pl Wexd |eIdeld 0g EHIUOLON BPIM SESSEID PUSNY
slg|dwoy glg|dwod agdwol
asuai a9 lwex3 [eanaloay) 0g asuaan 1) Addy
ae1duwiod a8|dwod
4 EieD aauq Wexd [eagseld og KIED A SASSE|D puslly 1
P ¥
K 2.0 © o wBngd wiyoBie eydiy BUISH UXUraSUAINTSIaNIA Pasal Bului Joy sBumas - sunsay (]
> W|e
digH Mopuip Spodx3 uoisiaauo) sisfeuy Bulug e
<Er [0°+] Woid iy

6.2. PROCESS MINING APPROACHES 173

The first algorithm we used to generate a Petri net was the a-algorithm. The
a-algorithm is a well-known process discovery algorithm (see Sect. 6.2), which is
often used for benchmarking. The reason for this is that it is a simple algorithm
that typically produces nice results if the log satisfies certain properties. For our
example however, the result, shown in Figure 6.3(a), has two problems. First of all,
the resulting model allows for a learner to take car driving lessons and a motorbike
exam. Second, after taking an exam, the learner always gets his license, which is even
more undesirable.

Since our log does not satisfy all requirements of the a-algorithm, we use the
multi-phase algorithm. This algorithm guarantees to return a Petri net that can
reproduce the log. As can be seen from Figure 6.3(b), it solves the problem that a
learner always receives a license after the exam albeit in a rather complicated way.
However, the Petri net still allows the learner to take lessons in a car and an exam
on a motorbike.

This dependency between two transitions that are not directly following each
other is typically hard to find by process mining algorithms. The genetic approach
is capable of finding such dependencies, but since that approach is based on genetic
algorithms, it has high demands on computation time.

The result of the region-based approach is presented in Figure 6.3(c). It is clear
that this Petri net indeed correctly models the process under consideration.

Although the example in this section looks rather simple, it nicely shows that
our region based approach is a valuable addition to the existing collection of process
discovery algorithms. However, as with any process discovery algorithm trade-offs
are made with respect to the correctness of the result and the computation time.
The a-algorithm and the multi-phase approach are computationally fast!, the theory
of regions approach is more complex, since it has a worst-case complexity that is
exponential in the size of the log. However, the result of our approach is more accurate,
since it also catches long-range dependencies, that are not detected by the multi-phase

approach, nor by the a-algorithm, i.e. it does not underfit.

6.2.2 Broader Context

In order to consider the other related work, which is relevant for our process mining

algorithm, we briefly look at the area of theory of regions, since one step of our ap-

!The multi-phase approach is polynomial in the size of the log and the a-algorithm exponential

in the size of an abstraction of the log, which can be built in polynomial time.

174 CHAPTER 6. RELATED WORK AND DISCUSSION

proach uses it for Petri net synthesis [BBD95, BD98, CKLY95, CKLY98, ER89al. The
background information was described in Chapter 2. The area of theory regions uses
the Petri net synthesis algorithms in such application domains as synthesis of asyn-
chronous controllers and concurrent specifications. In the thesis we use the Petrify
[CKK™197] tool developed in this domain for our purposes.

The other relevant research domain is process flexibility. A lot of work has
been done here since the 90ties [EKR95, RD97, HHJ199]. Flexibility, dynamic pro-
cess change and process evolution belong to the major research topics both in the
area of business process management [CCPP96] and in the area of software pro-
cesses [BFGI3]. In these areas, people distinguish between process model flexibility
and process instance flexibility. This difference is also crucial for the process min-
ing research domain. Our approach described in Chapter 3 does not require that all
executions of the processes need to be there right from the beginning. Rather, the
process model is changed, once new information on the execution of some of its in-
stances is available. This way, a process model will incrementally be changed when
its executions change. Therefore, process mining is one technique for automatically

achieving process flexibility and, in particular, incremental process type evolution.

Generally, process mining can be seen in the broader context of Business Process
Intelligence (BPI) and Business Activity Monitoring (BAM), so the works from these
domain are also relevant for us. In [GCCT04, SCDS02] a BPI toolset on top of HP’s
Process Manager is described. The BPI toolset includes a so-called “BPI Process
Mining Engine”. In [zZMRO00] Zur Muehlen describes the PISA tool which can be used
to extract performance metrics from workflow logs. Similar diagnostics are provided
by the ARIS Process Performance Manager (PPM) [Sch02a]. The tool is commer-
cially available and a customized version of PPM is the Staffware Process Monitor
(SPM) [TIBO05] which is tailored towards mining Staffware logs. It should be noted
that BPI tools typically do not allow for process discovery and offer relatively simple

performance analysis tools that depend on a correct a-priori process model.

6.3 Data Mining and Mining Sequential Patterns

The field of data mining is older than the process mining field, but it is still relatively
young. For example, the first international conference on data mining was held in
1995. The basic idea of data mining is: “Extracting useful information from large

datasets.” [HMSO01]. The area of Data Mining deals with the algorithms for exploring

6.3. DATA MINING AND MINING SEQUENTIAL PATTERNS 175

data (usually large amounts of business-related data stored in data warehouses) for
searching consistent patterns and relationships between variables, and then for vali-
dating the findings by applying the detected patterns to the new data. Data mining
techniques are used for classification, prediction, clustering, and visualization of data.
Such models and algorithms as neural networks, decision trees, regression methods
and genetic algorithms form the foundations of this area [HK01]. These enumerated
techniques are already successfully introduced in different application domains such

as military, business, and medical analysis and research.

Mining sequential patterns is a separate research direction in the area of data
mining, it is closely related to our process mining research. The work of Agrawal and
Srikant deals with discovering sequential patterns in the databases of customer trans-
actions [AS95]. Each transaction contains information about customer, transaction-
time and items purchased. The presented mining algorithms derive information about
sequences and orders of purchased items. The algorithms were implemented and
tested on DB2-based data repositories. However, much earlier similar problems were

treated on a more theoretical level in the area of artificial intelligence [DM85].

Nowadays, the researchers continue dealing with this problem, in this context we
refer to such works as [MM00, HHS*03, CYH04, MRO1]. People develop theoretical
concepts for mining sequential patterns using partial orders, propose ideas about in-
cremental pattern discovery, research the possibilities of structuring event sequences,

etc.

Thus, the background ideas and goals, which appeared in the area of data mining,
have a lot of similarities with the ideas coming from the mining software reposito-
ries and software process mining domains. For example, software repositories can be
considered as data warehouses storing information about software projects. But in
our approach described in the previous chapters we have a different interpretation
of the “model”, i.e. in our case a model is explicit and complete (we do not look at
a set of rules, which could be more or less relevant) and in our domain, people look
at processes, i.e. a process model is considered as a major knowledge, which can be
later enhanced with the additional data. So, in the process mining domain, we know
the patterns we are looking for, whereas in the field of data mining people usually

try to find out arbitrary interesting relationships.

176 CHAPTER 6. RELATED WORK AND DISCUSSION

6.4 Discussion

In this Chapter, at the end of each preceding Section we compared the related work
to our approach; here we try to briefly summarize the comparison.

Generally, our approach lies in the intersection of the areas of software processes
and business processes. In the research roadmap [Fug00], the software process commu-
nity arrived at the conclusion that “...software process researchers and practitioners
should reuse the experiences and achievements of other areas and disciplines...”. So,
people consider it to be valuable to use the effective methods proposed in the other
communities to treat their own problems. Practically, some authors [CFJ98| state
that the objectives and scopes, as well as themes and approaches of software process
and workflow fields have a large overlapping. In this context, our approach takes the
methods from the business process area and applies them to software processes.

We use the ideas and algorithms from the area of process mining and apply
them for mining software repositories. We use the same input information as the
researchers from the MSR area, but we derive more general and more structured in-
formation about software development process. Discovered software process model is
used as a main artefact for reasoning about software project. Moreover, in compari-
son to the existing approaches for discovering software process model, we propose a
precise algorithmic approach, which produces explicit complete models.

As concerns the area of process mining, we do not simply use the existing algo-
rithms, but propose a new two-step regions based approach. This approach overcomes
many limitations of the existing approaches (it always produces correct models on dif-
ferent levels of abstraction and overcomes the problem of “overfitting/underfitting”)
and can be effectively used for software processes as well as for business processes.

From the point of view of data mining, in our approach we do not simply de-
rive interesting dependencies and sequential patterns, but obtain a complete process
model. First of all, this model formalizes the development process, but this model
can be also enhanced with the additional information and the data mining algorithms
can be used for this purpose.

Thus, in this section we sketched the main points, where our approach extends
the related work from several considered domains. But our approach mainly looks at
the control-flow perspective of the process, also it is not heuristic-based and, there-
fore, has limitations dealing with “noise”. So, our idea is that process models derived
by our approach can be enhanced with different types of information, such as soft-

ware performance and software metrics data, social and organizational information,

6.4. DISCUSSION 177

statistical and analytical data, etc. Consequently, plenty of the algorithms evolved in

the related areas should be considered in this context.

178 CHAPTER 6. RELATED WORK AND DISCUSSION

Chapter 7

Conclusion and Future Work

In this concluding Chapter, we summarize our contributions and indicate the fu-
ture research topics. We start with our general goals and achievements and, further,

gradually, examine contributions on the technical level.

7.1 Thesis Contributions

Our general goal was to develop and to evaluate an approach for resolving a set of
open issues from the area of software process modelling; these issues were discussed
in detail in the Introduction, see Sect. 1.1.3. More precisely, the goal was to propose
a methodology, and a framework, and to provide tool support for deriving explicit
software process models from the audit information of software projects.

This goal was achieved by applying the ideas of process mining to the area of
software processes and mining software repositories; i.e. by inventing new and using
existing process mining methods for mining software process models from the audit
information provided by software repositories. Moreover, we discovered that the pro-
posed solutions can be used not only in the software area, but in the areas of business
process management and business intelligence, product lifecycle management and en-
terprise resource planning, i.e. in the areas, which support document management
and audit management for tracking and maintaining administrative, collaborative or

production processes.

7.1.1 Analytical Work

In the thesis, first and foremost, we identified and structured a set of unresolved

issues from the area of software processes, see Chapter 1. Our methods of dealing

179

180 CHAPTER 7. CONCLUSION AND FUTURE WORK

with these issues were discussed in the subsequent chapters, they are based on the
idea of using audit information reflecting the actual way of work in the company for
process modelling.

We analysed the areas of software engineering and mining software repositories
and identified the sources of audit information and the systems which provide desired
data for process discovery. These sources are software repositories, such as software
configuration management systems, defect repositories, communication channels, and
others (see Chapters 3 and 6). We focused on SCM systems and defect repositories,
analysed and structured their audit information, which we called document logs and
bug logs respectively.

Additionally, before and during the development of our own methods, we contin-
uously studied the methods of process discovery, which arose from the research in the
areas of process mining and mining software repositories, the results of these studies
were presented in Chapters 4 and 6.

In different stages of the thesis, we carried out much analytical work (analysis
of the background and of the related work, experiments with different tools, etc.) in
order to identify and state the problems, to understand the structure of modern soft-
ware engineering environments, to find out sources of input information, to analyse
the existing modelling methods and process mining algorithms and to reveal their

shortcomings.

7.1.2 General Contribution

The main contribution of the thesis is our workflow mining approach (see Chapter 3)
for mining software process models, which includes three steps: (1) preprocessing,
(2) process mining, and (3) analysis and representation. It consists of the following

components:

e input framework component for integrating audit information provided by dif-

ferent software repositories,
® process mining core component, i.e. our customizable process mining algorithm,

e a set of analysis, verification and conversion wutilities for deriving useful infor-

mation from the discovered models and for converting them to other formalisms

Today, most of the other existing process mining approaches require activity logs

of process executions. However, after analysing the actual situation in the software

7.1. THESIS CONTRIBUTIONS 181

engineering and adjacent domains, we found out that many systems used for executing
the processes are often not aware of the activities — they see only the documents and
how they are changed. Here, we refer to software repositories, especially SCMs and
defect tracking systems, but also to such systems as PDMs, ERPs, CRMs. In our
incremental workflow mining approach, we focused on the logs of documents provided
by such kind of systems.

The major achievements of our approach are: (1) we extended the domain of
process mining by introducing new sources of input information and by inventing
new algorithms for dealing with these sources; (2) we applied the techniques and the
ideas of process mining to other domains (we focused mainly on software engineering
domain) and showed how these domains can benefit from them.

Our approach is based on mining from different perspectives, we use data on such
aspects of process modelling as control, organizational, performance and informa-
tional. Our control-flow process mining algorithm comprises the core of the approach
and is used as a primary algorithm for deriving the control aspect, but we also use
other algorithms (available in the ProM Framework) to derive performance, organi-
zational and other aspects.

Moreover, our approach can work both incrementally and in a batch mode. It
can be used for process monitoring and improvement as well as for standard pro-
cess discovery. With the aid of our approach, a process management system can be
introduced to an organization step-by-step, we called it gradual workflow support.

The incremental workflow mining approach is useful for process engineers, man-
agers and software engineers; they can derive explicit process models from the in-
formation available in software repositories. Thus, the approach should be used for
automatically producing documented software processes and, consequently, for im-

proving them.

7.1.3 Algorithmic Contributions

Our incremental workflow mining approach is based on a set of achievements, which
were discussed in the thesis on the algorithmical and technical level, see Chapter 4.
So, our main algorithmical contribution is the development of a new two-step process
mining approach. This approach uses innovative ways of constructing transition sys-
tems and regions to synthesize formal process models in terms of Petri nets. Moreover,
in our work, we opened a new research direction — “tuning” the level of generalization

of mined models. With the help of our approach, it is possible to discover software

182 CHAPTER 7. CONCLUSION AND FUTURE WORK

process models that adequately describe the behaviour recorded in document logs.
Existing process mining approaches typically provide a single process mining al-
gorithm, i.e., they assume “one size fits all” and cannot be tailored towards a specific
application. The power of our approach is that it allows for a wide variety of strate-
gies. First of all, we defined 36 different strategies to represent states of transition
systems. A state can be very detailed or more abstract. Selecting the right state rep-
resentation aids in balancing between “overfitting” (i.e., the model is over-specific
and only allows for the behaviour that happened to be in the log) and “underfitting”
(i.e., the model is too general and allows for unlikely behaviour). Besides selecting
the right state representation strategy, it is also possible to further “massage” the
transition system using strategies such as “Kill Loops”, “Extend”, and “Merge by
Output”. Using the theory of regions the resulting transition system is transformed
into an equivalent Petri net, which is more compact. Also in this phase different
settings can be used depending on the desired end-result. This makes the approach

much more versatile than the approaches described in literature.

7.1.4 Tool Support

The approach was initially implemented as a Prolog research prototype and then
it was integrated to the ProM framework; the resulting process mining tool can be
freely downloaded from www.processmining.org. The details of the implementation
were discussed in Chapter 4.

The ProM framework [vdAvDG™07] fits in the architecture needed for our ap-
proach. It contains the ProMImport framework, which supports the integration of
a variety of input sources including document logs of different SCM systems, the
core mining part including different mining algorithms, and now also our two-step
process mining algorithm, and a set of analysis, verification and conversion utilities.
Thus, it perfectly corresponds to the architecture of our incremental workflow mining
approach discussed in Chapters 3 and 4 and can be used by software process engi-
neers, managers and developers. Therefore, ProM is now an effective tool for software

process mining.

7.1.5 Practical Evaluation

The approach was evaluated on a the basis of real projects, see Chapter 5 for details.
For validating our methods, we selected three projects from different domains: we

took two projects from the open-source software domain and one project from the

7.2. FUTURE WORK 183

university practice. Furthermore, within these projects we looked at different soft-
ware repositories, i.e. we looked at document logs provided by software configuration
management systems and bug logs provided by defect repositories.

So, in the thesis, we completed the following evaluation tasks:

e ArgoUML open-source project, document log from Subversion SCM: With the
help of our two-step approach, we discovered a transition system and a Petri net
model describing the process of “developing language support for ArgoUML”.
We used the Petri net model for performance analysis and conformance check-
ing, then, we did the LTL verification on this model and, additionally, created

an organizational aspect model from the document log.

e Practical software engineering course at the University of Paderborn, document
log from Subversion SCM: With the help of our two-step approach we gener-
ated several process models (transition systems and Petri nets) describing the
whole software development process on different levels of abstraction; then, we
selected the model with the appropriate level of generalization and did analysis
(performance, path coverage and conformance checking) and verification of this

model; afterwards, the model was converted from the Petri nets to EPC.

e FEclipse JDT Core open-source project, bug log from Bugzilla: With the help
of our two-step approach we derived a “bug lifecycle” model and “tuned” an
appropriate level of generalization using our modification strategies; then, we
did performance analysis and verification; for the organizational aspect, we built

a social network and an organizational structure model.

Thus, we have successfully discovered process models in different aspects, anal-
ysed, verified them and also converted to different formalisms. Therefore, our incre-
mental workflow mining approach integrated to the ProM framework was successfully
evaluated as an effective and useful software process mining approach for deriving

plausible software process models and analysing them.

7.2 Future Work

This thesis has revealed such interesting directions as software process mining and
region-based process mining algorithms. In this Section, we briefly discuss the most

exciting future research directions.

184 CHAPTER 7. CONCLUSION AND FUTURE WORK

7.2.1 Software Engineering Domain

In the software area, much work has to be done in applying the mining algorithms
to different types of software repositories, such as discussion forums, mail archives,
comments in source code, etc. In order to do it, people have to understand and
structure the input formats, do the preprocessing of the input data to make it suitable
for mining, adopt and modify existing algorithms, look for an appropriate set of
process analysis and verification utilities.

Another interesting and broad research direction in the software area would be
developing a software process improvement framework based on mining algorithms
and approaches or introducing the algorithms to the existing frameworks. The idea
would be to identify the “key process areas”, where mining algorithms can support
process engineers and managers. Within this area, people should carefully study the
possibilities of gradual process support, i.e. how a process management system can be
introduced to the company gradually.

Furthermore, process mining methods should be used for software process assess-
ment, since they support not only discovery and improvement, but also monitoring
(we could call it “model-based monitoring”).

Generally, the area of model-based software engineering can benefit from the min-
ing approaches, since they can be used for discovering software process models, as
well as for the UML behavioural design. UML statecharts, activity or sequence dia-
grams can be derived from the sets of real-life scenarios; further, manually-modelled

diagrams can be compared to the real situations and discrepancies can be found.

7.2.2 Other Domains

Beyond the software area, our document-based process mining approaches should be
used in the areas of Product Data Management and Product Lifecycle Management,
since these areas provide a rich set of audit information about the products and their
changes; this information can be used for deriving production workflows and change
processes. The same is relevant for the areas of ERP and CRM systems. We discussed
different application domains in Sect. 3.4 of this thesis.

Since Service-Oriented Architecture becomes ever more important nowadays and
message exchange information is often recorded, process mining algorithms should
be used for discovering the communication processes and their properties.

Since big administrative organizations use to record the document flows in some

form, their repositories can be also used for mining the workflows and analysing them

7.2. FUTURE WORK 185

in order to assess the work of the employees and to optimize and simplify it.

7.2.3 Mining Algorithms

Concerning our process mining algorithm, future work is targeted at a better support
for strategy selection and new synthesis methods. The fact that our two-step approach
allows for a variety of strategies makes it very important to support the user in
selecting suitable strategies depending on the characteristics of the log and the desired

end-result.

Now, the “Merge by Output” modification strategy (described in details in Chap-
ter 4) simplifies a transition system by means of merging different states, which have
the same outputs. This strategy is useful for solving the problem of loops, but also
for representing a transition system in a more compact form. This strategy has to be
investigated further in future, for example the states can be merged not only when
output events are equal, but when output states are the same, or the sets of outputs
have intersections or when input states are equal. Modifications of this strategy will
be especially useful for balancing between “overfitting” and “underfitting”; more-
over, further research on this topic will open an important direction within the area

of process mining, we call it “model reduction”.

We also think that by merging the two steps of transition system generation and
Petri net synthesis, we can develop innovative synthesis methods. The theory of re-
gions aims at developing an equivalent Petri net while in process mining a simple less
accurate model is more desirable than a complex model that is only able to reproduce
the log. Hence, it is interesting to develop a “new theory of regions” tailored towards
process mining. For example, after applying the simple synthesis algorithm, which
works for elementary transition systems, to the non-elementary ones, we identified
that produced models are equivalent to the models produced after applying some of
our modification strategies. Thus, modification and, therefore, “tuning” an appropri-
ate level of generalization can be done not only using the strategies, but with the

help of synthesis algorithms. So, this hypothesis is worth investigating in future.

By now, in our ProM-based implementation, we call the Petri net synthesis tool
Petrify externally, but from the user perspective, it would be much easier if this tool
and its algorithms could be integrated into ProM. Thus, proper integration of the tool
and its algorithms into the process mining framework is necessary and useful, but it

requires further work on software engineering of the tools and on the implementation.

186 CHAPTER 7. CONCLUSION AND FUTURE WORK

In this chapter we outlined our contributions and future work starting with the
most general achievements and finishing with the algorithmic and technical ones. As
a conclusion we can state that our research work uncovered both software processes
application domain for process mining and process mining for the software processes
domain. It stipulated development of a new approach and new mining algorithms.
These algorithms were implemented and evaluated practically; now, our results are
freely available for the research community for further investigations as well as for

the community of practitioners for further applications and extensions.

Bibliography

[Aal9g]

[ACF97]

[ACMO0]

[ADG'03]

[AGLYS]

[AKRO5a]

W.M.P. van der Aalst. The Application of Petri Nets to Work-
flow Management. The Journal of Circuits, Systems and Computers,
8(1):21-66, 1998.

V. Ambriola, R. Conradi, and A. Fuggetta. Assessing process-centered
software engineering environments. ACM Transactions on Software
Engineering and Methodology, 6(3):283-328, 1997.

V. Ambriola, P. Ciancarini, and C. Montangero. Software process
enactment in Oikos. In SDFE 4: Proceedings of the fourth ACM SIG-
SOFT symposium on Software development environments, pages 183—
192, New York, NY, USA, 1990. ACM Press.

T. Andrews, H. Dholakia, Y. Goland, J. Klein, and F. Leymann.
Business Process Execution Language for Web Services. cite-
seer.ist.psu.edu/669609.html, May 2003.

R. Agrawal, D. Gunopulos, and F. Leymann. Mining Process Models
from Workflow Logs. In Proceedings of the 6th International Con-
ference on Extending Database Technology, pages 469-483. Springer-
Verlag, 1998.

B. Axenath, E. Kindler, and V. Rubin. An Open and Formalism
Independent Meta-Model for Business Processes. In E. Kindler and
M. Niittgens, editors, Business Process Reference Models. Proceedings
of the Workshop on Business Process Reference Models 2005 (BPRM
2005), Satellite event of the third International Conference on Busi-
ness Process Management, Nancy, France, pages 45-59, Sep 2005.

187

188

[AKRO5b]

[AKRO6]

[AMWO5]

[ARS05]

[AS95]

[AW04]

[Ban93]

[Bas93|

[BBDYS5]

BIBLIOGRAPHY

B. Axenath, E. Kindler, and V. Rubin. The Aspects of Business
Processes: An Open and Formalism Independent Ontology. Technical

Report tr-ri-05-256, University of Paderborn, apr 2005.

B. Axenath, E. Kindler, and V. Rubin. AMFIBIA: A Meta-Model for
the Integration of Business Process Modelling Aspects. In In post-
proceedings of the Dagstuhl Seminar on The Role of Business Pro-
cesses in Service Oriented Architectures, Schlo? Dagstuhl, Germany,

jul 2006.

W.M.P. van der Aalst, A.K. Alves de Medeiros, and A.J.M.M. Wei-
jters. Genetic Process Mining. In G. Ciardo and P. Darondeau, edi-
tors, Applications and Theory of Petri Nets 2005, volume 3536, pages
48-69, 2005.

W.M.P. van der Aalst, H.A. Reijers, and M. Song. Discovering Social
Networks from Event Logs. Computer Supported Cooperative work,
14(6):549-593, 2005.

R. Agrawal and R. Srikant. Mining sequential patterns. In Philip S. Yu
and Arbee S. P. Chen, editors, Eleventh International Conference on
Data Engineering, pages 3—14, Taipei, Taiwan, 1995. IEEE Computer

Society Press.

W.M.P. van der Aalst and A.J.M.M. Weijters, editors. Process Min-
ing, Special Issue of Computers in Industry, Volume 53, Number 3.

Elsevier Science Publishers, Amsterdam, 2004.

J. Bank. The Essence of Total Quality Management. Prentice Hall,
1993.

V. R. Basili. The Experience Factory and its Relationship to Other
Improvement Paradigms. In ESEC ’93: Proceedings of the 4th Euro-
pean Software Engineering Conference on Software Engineering, pages

68-83, London, UK, 1993. Springer-Verlag.

E. Badouel, L. Bernardinello, and P. Darondeau. Polynomial Algo-
rithms for the Synthesis of Bounded Nets. In TAPSOFT, pages 364—
378, 1995.

BIBLIOGRAPHY 189

[BOM*92]

[BDYS)]

[BFGY3]

[BFGLY4]

[Boe88]

[Bra90]

[BT75]

[Car05]

[CCPPY6]

[CDLWO04]

V. R. Basili, G. Caldiera, F. E. McGarry, R. Pajerski, G. T. Page, and
S. Waligora. The Software Engineering Laboratory: An Operational
Software Experience Factory. In ICSFE, pages 370-381, 1992.

E. Badouel and P. Darondeau. Theory of Regions. In Lectures on
Petri Nets I: Basic Models, Advances in Petri Nets, the volumes are
based on the Advanced Course on Petri Nets, pages 529-586, London,
UK, 1998. Springer-Verlag.

S. C. Bandinelli, A. Fugetta, and C. Ghezzi. Software Process Model
Evolution in the SPADE Environment. IEEE Transactions on Soft-
ware Engineering, 19(12):1128-1144, December 1993.

S. Bandinelli, A. Fuggetta, C. Ghezzi, and L. Lavazza. Software Pro-
cess Modeling and Technology, chapter SPADE: An environment for
software process analysis, design, and enactment., pages 223-247. Re-
search Studies Press, London, U.K, 1994.

B. Boehm. A spiral model of software development and enhancement.
IEEE Comput., 21(5):61-72, 1988.

I. Bratko. PROLOG programming for Artificial Intelligence. Addison-
Wesley, 1990.

V.R. Basili and A.J. Turner. Iterative Enhancement: A Practical
Technique for Software Development. IEEE Transactions on Software
Engineering, 1(4):390-396, 1975.

Carnegie Mellon Software Engineering Institute. Ca-
pability ~ Maturity =~ Model Integration (CMMI) Overview.
http://www.sei.cmu.edu/cmmi/adoption/pdf/cmmi-overview05.pdf,
2005.

F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Workflow Evolution. In
International Conference on Conceptual Modeling / the Entity Rela-
tionship Approach, pages 438455, 1996.

J.E. Cook, Z. Du, C. Liu, and A.L. Wolf. Discovering models of
behavior for concurrent workflows. Computers in Industry, 53(3):297—

319, 2004.

190

[CFJ9g]

[Che76]

[CHL*94]

[CHMO1]

[CIMO1]

[CKK*97]

[CKLY95]

[CKLY98]

[CKO92]

[CMO3]

BIBLIOGRAPHY

R. Conradi, A. Fuggetta, and M. L. Jaccheri. Six Theses on Soft-
ware Process Research. In Furopean Workshop on Software Process

Technology, pages 100-104, 1998.

P. Chen. The Entity-Relationship Model - Toward a Unified View of
Data. ACM Transactions on Database Systems, 1(1):9 — 36, 1976.

R. Conradi, M. Hasgaseth, J. Larsen, M. Nguen, B. Munch, P. Westby,
W. Zhu, M. Jacchert, and C. Liu. Software Process Modeling and
Technology, chapter EPOS: Object-oriented cooperative process mod-
eling, pages 33-70. Research Studies Press, London, U.K, 1994.

J.E. Cook, C. He, and C. Ma. Measuring Behavioral Correspondence
to a Timed Concurrent Model. In Proceedings of the 2001 Interna-
tional Conference on Software Mainenance, pages 332—-341, 2001.

CIMdata Inc. collaborative Product Definition Management (cPDm):
An Overview. http://www.CIMdata.com, aug 2001.

J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and
A. Yakovlev. Petrify: a tool for manipulating concurrent specifica-

tions and synthesis of asynchronous controllers. IEICE Transactions
on Information and Systems, E80-D(3):315-325, 1997.

J. Cortadella, M. Kishinevsky, L. Lavagno, and A. Yakovlev. Synthe-
sizing Petri nets from state-based models. In ICCAD ’95: Proceedings
of the 1995 IEEE/ACM international conference on Computer-aided
design, pages 164-171, Washington, DC, USA, 1995. IEEE Computer
Society.

J. Cortadella, M. Kishinevsky, L. Lavagno, and A. Yakovlev. Deriving
Petri Nets from Finite Transition Systems. IEEE Transactions on
Computers, 47(8):859-882, 1998.

B. Curtis, M. I. Kellner, and J. Over. Process Modeling. Communi-
cations of the ACM, 35(9):75-90, 1992.

D. Cubranic and G. C. Murphy. Hipikat: recommending pertinent
software development artifacts. In ICSE ’03: Proceedings of the 25th
International Conference on Software Engineering, pages 408-418,

Washington, DC, USA, 2003. IEEE Computer Society.

BIBLIOGRAPHY 191

[CW98a]

[CWOs)]

[CW98¢]

[CW99]

[CYHO4]

[DAC™]

[Dat9g]

[DE95]

[DGHO6]

[DKW99a)

R. Conradi and B. Westfechtel. Version models for software configu-
ration management. ACM Comput. Surv., 30(2):232-282, 1998.

J. E. Cook and A. L. Wolf. Discovering Models of Software Pro-
cesses from Event-Based Data. ACM Trans. Softw. Eng. Methodol.,
7(3):215-249, 1998.

J.E. Cook and A.L. Wolf. Event-Based Detection of Concurrency. In
Proceedings of the Sixth International Symposium on the Foundations

of Software Engineering (FSE-6), pages 3545, 1998.

J.E. Cook and A.L. Wolf. Software Process Validation: Quantita-
tively Measuring the Correspondence of a Process to a Model. ACM

Transactions on Software Engineering and Methodology, 8(2):147-176,
1999.

H. Cheng, X. Yan, and J. Han. Incspan: incremental mining of sequen-
tial patterns in large database. In KDD ’04: Proceedings of the tenth
ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 527-532, New York, NY, USA, 2004. ACM Press.

A. P. Dahlqvist, U. Asklund, I. Crnkovic, A. Hedin, M. Larsson,
J. Ranby, and D. Svensson. Product Data Management and Soft-
ware Configuration Management - Similarities and Differences. URL:

citeseer.ist.psu.edu/dahlqvistO1product.html.

A. Datta. Automating the Discovery of As-Is Business Process Mod-
els: Probabilistic and Algorithmic Approaches. Information Systems
Research, 9(3):275-301, 1998.

J. Desel and J. Esparza. Free Choice Petri Nets, volume 40 of Cam-
bridge Tracts in Theoretical Computer Science. Cambridge University
Press, Cambridge, UK, 1995.

S. Diehl, H. Gall, and A. E. Hassan, editors. Proceedings of the 2006
International Workshop on Mining Software Repositories, MSR 2006,
Shanghai, China, May 22-23, 2006. ACM, 2006.

J-C. Derniame, B. Kaba, and B. Warboys. Software Process: Princi-
ples, Methodology and Technology, volume 1500 of LNCS, chapter The

192

[DKW99b)]

[DMS5]

[DRY6]

[DvdAtHO5]

[DWOO]

[ECO4]

[EFMOS]

[EGY1]

[EKR95]

BIBLIOGRAPHY

Software Process: Modelling and Technology, pages 1-13. Springer-
Verlag, 1999.

J-C. Derniame, B. A. Kaba, and D. G. Wastell, editors. Software
Process: Principles, Methodology, Technology, volume 1500 of Lecture
Notes in Computer Science. Springer, 1999.

T. G. Dietterich and R. S. Michalski. Discovering patterns in se-
quences of events. Artif. Intell., 25(2):187-232, 1985.

J. Desel and W. Reisig. The synthesis problem of Petri nets. Acta
Inf., 33(4):297-315, 1996.

M. Dumas, W.M.P. van der Aalst, and A.H.M. ter Hofstede. Process-
Aware Information Systems: Bridging People and Software through
Process Technology. Wiley & Sons, 2005.

W. Droschel and H. Wiemers. Das V-Modell 97, Der Standard fiir die
Entwicklung von IT-Systemen mit Anleitung fiir den Praziseinsatz.

Oldenbourg, 2000.

J. Estublier and R. Casallas. Configuration Management, chapter
The Adele Configuration Manager, pages 99-139. J. Wiley and Sons,
England, 1994.

J. Estublier, J-M. Favre, and P. Morat. Toward SCM / PDM Inte-
gration? In FECOOP ’98: Proceedings of the SCM-8 Symposium on
System Configuration Management, pages 75-94, London, UK, 1998.
Springer-Verlag.

W. Emmerich and V. Gruhn. FUNSOFT Nets: a Petri-Net based
Software Process Modeling Language. In C. Ghezzi and GC. Roman,
editors, Proc. 6th ACM/IEEE Int. Workshop on Software Specifica-
tion and Design (IWSSD), pages 175-184, Como, Italy, 1991. IEEE

Computer Society Press.

C. Ellis, K. Keddara, and G. Rozenberg. Dynamic change within
workflow systems. In COCS ’95: Proceedings of conference on Or-
ganizational computing systems, pages 10-21, New York, NY, USA,
1995. ACM Press.

BIBLIOGRAPHY 193

[ER89a)

[ER89D)

[Fei91a)

[Fei91b]

[FH93]

[Fog99]

[FORGO5]

[FPGO3]

[Fug00]

[FZ99]

[GAO6]

A. Ehrenfeucht and G. Rozenberg. Partial (Set) 2-Structures - Part
1 and Part 2. Acta Informatica, 27(4):315-368, 1989.

A. Ehrenfeucht and G. Rozenberg. Partial (Set) 2-Structures. Part
I: Basic Notions and the Representation Problem. Acta Informatica,
27(4):315-342, 1989.

A. V. Feigenbaum. Total Quality Control. McGraw-Hills, 1991.

P.H. Feiler. Configuration Management Models in Commercial Envi-
ronments. Technical Report CMU/SEI-91-TR-7, Software Engineer-
ing Institute, Carnegie Mellon University,, April 1991.

P. H. Feiler and W. S. Humphrey. Software Process Development and
Enactment: Concepts and Definitions. Technical Report CMU/SEI-
92-TR-004, SEI Carnegie Mellon, 1993.

K. F. Fogel. Open Source Development with CVS. Coriolis Group
Books, 1999.

M. Fischer, J. Oberleitner, J. Ratzinger, and H. Gall. Mining Evolu-
tion Data of a Product Family. In MSR ’05: Proceedings of the 2005

international workshop on Mining software repositories, 2005.

M. Fischer, M. Pinzger, and H. Gall. Populating a Release History
Database from Version Control and Bug Tracking Systems. In ICSM
"03: Proceedings of the International Conference on Software Mainte-
nance, page 23, Washington, DC, USA, 2003. IEEE Computer Society.

A. Fuggetta. Software process: a roadmap. In ICSE ’00: Proceedings
of the Conference on The Future of Software Engineering, pages 25—
34, New York, NY, USA, 2000. ACM Press.

K. Frauf and A. Zeller. Software configuration management: State
of the art, state of the practice. In 9th International Symposium on
System Configuration Management (SCM-9), Sep 1999.

C.W. Glunther and W.M.P. van der Aalst. Mining Activity Clusters
from Low-level Event Logs. BETA Working Paper Series, WP 165,
Eindhoven University of Technology, Eindhoven, 2006.

194

[GCCT04)

[Ger04]

[GGK*03]

[GGMS05]

[GHO6]

[Gil81]

[GJ96]

[Gru02]

[Her00]

[HHDO5]

BIBLIOGRAPHY

D. Grigori, F. Casati, M. Castellanos, U. Dayal, M. Sayal, and
M.C. Shan. Business Process Intelligence. Computers in Industry,

53(3):321-343, 2004.

D. M. German. The GNOME project: a case study of open source,
global software development. Software Process: Improvement and

Practice, 8(4):201-215, 2004.

M. Gehrke, H. Giese, E. Kindler, J. Niere, W. Schéfer, J. P. Wadsack,
R. Wagner, and L. Wendehals. Software Engineering Education: The
Synergy of Combined Research and Teaching. Technical Report tr-ri-
03-237, University of Paderborn, Paderborn, Germany, January 2003.

G. Greco, A. Guzzo, G. Manco, and D. Sacca. Mining and Reasoning
on Workflows. IEEE Transaction on Knowledge and Data Engineer-
ing, 17(4):519-534, 2005.

D. M. Germéan and A. Hindle. Visualizing the Evolution of Software
Using Softchange. International Journal of Software Engineering and
Knowledge Engineering, 16(1):5-22, 2006.

T. Gilb. Evolutionary development. SIGSOFT Softw. Eng. Notes,
6(2):17-17, 1981.

P. Garg and M. Jazayeri. Process-centered Software Engineering En-

vironments. IEEE Computer Society Press, 1996.

V. Gruhn.

ments -

Process-Centered Software Engineering Environ-
A Brief History and Future Challenges. cite-

seer.ist.psu.edu/gruhn02processcentered.html, 2002.

J. Herbst. A Machine Learning Approach to Workflow Management.
In ECML °00: Proceedings of the 11th European Conference on Ma-
chine Learning, pages 183-194. Springer-Verlag, 2000.

A. E. Hassan, R. C. Holt, and S. Diehl, editors. MSR 2005 Inter-
national Workshop on Mining Software Repositories, New York, NY,
USA, 2005. ACM Press.

BIBLIOGRAPHY 195

[HHJ*99]

[HHMO04]

[HHS*03]

[HK99]

[HKO1]

[HMSO01]

[HMUO00]

[Hol95)

[Hum89]

[HumOb5a]

[HumO5b)]

P. Heinl, S. Horn, S. Jablonski, J. Neeb, K. Stein, and M. Teschke. A
comprehensive approach to flexibility in workflow management sys-
tems. In WACC ’99: Proceedings of the international joint conference

on Work activities coordination and collaboration, pages 79-88, New

York, NY, USA, 1999. ACM Press.

A. E. Hassan, R. C. Holt, and A. Mockus, editors. MSR 2004: In-
ternational Workshop on Mining Software Repositories, Washington,
DC, USA, 2004. IEEE Computer Society.

M. Hirao, H. Hoshino, A.i Shinohara, M. Takeda, and S. Arikawa.
A practical algorithm to find the best subsequence patterns. Theor.
Comput. Sci., 292(2):465-479, 2003.

J. Herbst and D. Karagiannis. An Inductive approach to
the Acquisition and Adaptation of Workflow Models. cite-
seer.ist.psu.edu/herbst99inductive.html, 1999.

J. Han and M. Kamber. Data Mining: Concepts and Techniques. San
Diego, CA: Academic Press, 2001.

D. Hand, H. Mannila, and P. Smyth. Principles of Data Mining.
Cambridge, MA: MIT Press, 2001.

J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Au-
tomata Theory, Languages, and Computation (2nd Edition). Addison
Wesley, November 2000.

D. Hollingsworth. The Workflow Reference Model. Technical Report
TC00-1003, The Workflow Management Coalition (WfMC), January
1995.

W. S. Humphrey. Managing the software process. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1989.

W. S. Humphrey. PSP: A Self-Improvement Process for Software
Engineers. Addison-Wesley, march 2005.

W. S. Humphrey. TSP: Leading a Development Team. Addison-
Wesley, september 2005.

196

[Tan05]

[JBR99)

[JBS97]

[TJPSW94]

[KFF+91]

[KHRO6]

[Kin06]

[KNS92]

[KRS05a]

BIBLIOGRAPHY

F. Tannacci. Coordination Processes in Open
Source Software Development: The Linux Case Study.

http://opensource.mit.edu/papers/iannacci3.pdf, apr 2005.

I. Jacobson, G. Booch, and J. Rumbaugh. The unified software de-
velopment process. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1999.

S. Jablonski, M. Bohm, and W. Schulze. Workflow-Management En-

twicklung von Anwendungen und Systemen. dpunkt.verlag, 1997.

G. Junkermann, B. Peuschel, W. Schéfer, and W. Wolf. MER-
LIN: Supporting Cooperation in Software Development through a
Knowlege-based Environment. In A. C. W. Finkelstein, editor, Ad-

vances in Software Process Technology. 1994.

M. I. Kellner, P. H. Felier, A. Finkelstein, T. Katayama, L.J. Oster-
weil, M.H. Penedo, and H.D. Rombach. ISPW-6 Software Process
Example. In Proceedings of the First International Conference on the
Software Process, Redondo Beach, CA, USA, pages 176-186. IEEE
Computer Society Press, oct 1991.

P. Katerattanakul, B. Han, and A. Rea. Is Information Systems a
Reference Discipline? Communications of the ACM, 49(5):114-118,
2006.

E. Kindler. On the Semantics of EPCs: A Framework for Resolving
the Vicious Circle. Data and Knowledge Engineering, 56(1):23-40,
2006.

G. Keller, M. Nittgens, and A.W. Scheer. Semantische Prozessmod-
ellierung auf der Grundlage Ereignisgesteuerter Prozessketten (EPK).
Technical Report 89, Institut fiir Wirtschaftsinformatik Saarbriicken,
1992.

E. Kindler, V. Rubin, and W. Schéfer. Activity Mining
for Discovering Software Process Models. Technical Report
tr-ri-05-265, University of Paderborn, http://www.upb.de/cs/ag-
schaefer /Personen/Aktuell/Rubin/TR/tr-ri-05-265.pdf, 2005.

BIBLIOGRAPHY 197

[KRSO05b]

[KRSO06a]

[KRS06b)]

[KRS06¢]

[Kuv95]

[LB03]

[Lon93]

[LROO]

E. Kindler, V. Rubin, and W. Schéafer. Incremental Workflow Mining
based on Document Versioning Information. In Mingshu Li, Barry
Boehm, and Leon J. Osterweil, editors, Proc. of the Software Process
Workshop 2005, Beijing, China, volume 3840 of LNCS, pages 287—
301. Springer, May 2005.

E. Kindler, V. Rubin, and W. Schéifer. Activity Mining for Discov-
ering Software Process Models. In B. Biel, M. Book, and V. Gruhn,
editors, Proc. of the Software Engineering 2006 Conference, Leipzig,
Germany, volume P-79 of LNI, pages 175-180. Gesellschaft fiir Infor-
matik, March 2006.

E. Kindler, V. Rubin, and W. Schéfer. Incremental Worklfow Mining
for Process Flexibility. In Proc. of the Seventh CAiSE’06 Workshop on
Business Process Modeling, Development, and Support (BPMDS’06),
Luzembourg, jun 2006.

E. Kindler, V. Rubin, and W. Schéfer. Process Mining and Petri Net
Synthesis. In Johann Eder and Schahram Dustdar, editors, Business

Process Management Workshops, volume 4103 of LNCS. Springer,
2006.

P. Kuvaja. BOOTSTRAP: A Software Process Assessment and Im-
provement Methodology. In Proceedings of the Second Symposium
on Software Quality Techniques and Acquisition Criteria on Software
Quality Techniques and Acquisition Criteria, pages 31-48, London,
UK, 1995. Springer-Verlag.

C. Larman and V. R. Basili. Iterative and Incremental Development:
A Brief History. Computer, 36(6):47-56, 2003.

J. Lonchamp. A Structured Conceptual and Terminological Frame-
work for Software Process Engineering. In Proceedings of the 2™¢ In-
ternational Conference on the Software Process - Continuous Software

Process Improvement, Berlin, Germany, 1993.

F. Leymann and D. Roller. Production workflow: concepts and tech-

niques. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2000.

198

[LSE05]

[LSWG04]

[MAY4]

[Med06]

[MFHO2]

[Mic03]

[Mil82]

[MLRWO5a]

[MLRWO5b)]

[MMOO]

BIBLIOGRAPHY

Y. Liu, E. Stroulia, and H. Erdogmus. Understanding the Open-
Source Software Development Process: A Case Study with CVS
Checker , 2005, pp. 154-161. In Proceedings of the 1st International
Conference on Open Source Systems (OSS 2005), Genoa, Italy, pages
154-161, 2005.

Y. Liu, E. Stroulia, K. Wong, and D. German. Using CVS historical
information to understand how students develop software. In MSR
"04: Proceedings of the 2004 international workshop on Mining soft-

ware repositories, 2004.

C. Montangero and V. Ambriola. Software Process Modelling and
Technology, chapter OIKOS: Constructing process-centered SDEs,
pages 33-70. John Wiley & Sons Inc., 1994.

A K.A. de Medeiros. Genetic Process Mining. PhD thesis, Eindhoven
University of Technology, Eindhoven, 2006.

A. Mockus, R.T. Fielding, and J. Herbsleb. Two Case Studies of Open
Source Software Development: Apache and Mozilla. ACM Trans. Soft-
ware Engineering and Methodology, 11(3):309 — 246, 2002.

Microsoft. Visual SourceSafe. Web:
http://msdn.microsoft.com/vstudio/previous/ ssafe/, 2003.

R. Milner. A Calculus of Communicating Systems. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 1982.

K. Mierle, K. Laven, S. Roweis, and G. Wilson. Mining student
CVS repositories for performance indicators. In MSR ’05: Proceedings

of the 2005 international workshop on Mining software repositories,
pages 1-5, New York, NY, USA, 2005. ACM Press.

K. Mierle, K. Laven, S. Roweis, and G. Wilson. Mining student CVS
repositories for performance indicators. SIGSOFT Softw. Eng. Notes,
30(4):1-5, 2005.

H. Mannila and C. Meek. Global partial orders from sequential data.
In KDD °00: Proceedings of the sizth ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 161-168,

New York, NY, USA, 2000. ACM Press.

BIBLIOGRAPHY 199

[MRO1]

[Mur89)]

[NBZ06]

[NRT92]

[OMGO3]

[OMGO6]

[Ost87]

[PCCW93]

[Pet62]

[PWGT93]

H. Mannila and D. Rusakov. Decomposing event sequences into inde-
pendent components. In V. Kumar, R. Grossman (Eds.), Proceedings
of the First SIAM Conference on Data Mining, SIAM, pages 1-17,
2001.

T. Murata. Petri Nets: Properties, Analysis and Applications. In
Proceedings of the IEEE, 77(4), pages 541-580, April 1989.

N. Nagappan, T. Ball, and A. Zeller. Mining metrics to predict com-
ponent failures. In ICSE ’06: Proceeding of the 28th international
conference on Software engineering, pages 452-461, New York, NY,
USA, 2006. ACM Press.

M. Nielsen, G. Rozenberg, and P. S. Thiagarajan. Elementary tran-
sition systems. Theoretical Computer Science, 96(1):3-33, 1992.

OMG. UML 2.0 Superstructure Specification. Version 2.0 ptc/03-08-
02, Object Management Group, August 2003. Final Adopted Specifi-

cation.

OMG. Business Process Modeling Notation (BPMN) Specification.
http://www.bpmn.org/, Feb 2006. Final Adopted Specification.

L Osterweil. Software processes are software too. In Proceedings of
the 9th International Conference on Software Engineering, pages 2—
13, Los Alamitos, CA, USA, 1987. IEEE Computer Society Press.

M. C. Paulk, B. Curtis, M. B. Chrissis, and C. V. Weber. Capa-
bility Maturity Model for Software (SW-CMM). Technical Report
CMU/SEI-93-TR-024, Carnegie Mellon University, Software Engi-
neering Institute, February 1993.

C.A. Petri. Kommunikation mit Automaten. Technical Report
RADC-TR-65-377, Bonn: Institut fiir Instrumentelle Mathematik,
1962.

M. C. Paulk, C. V. Weber, S. M. Garcia, M. B. Chrissis, and M. Bush.
Key Practices of the Capability Maturity Model, Version 1.1. Tech-
nical Report CMU/SEI-93-TR-025, Carnegie Mellon University, Soft-

ware Engineering Institute, February 1993.

200

[Rat03)]

[RD97]

[Rei87]

[RGvdA107a]

[RGvdA+07b]

[RocT75]

[Rou95]

[Roy87]

[RR9S]

BIBLIOGRAPHY

Rational Software Corporation. Rational ClearCase Rational
ClearCase LT. Technical Report 800-026160-000, Rational Software
Corporation, 2003. Version: 2003.06.00 and later.

M. Reichert and P. Dadam. A Framework for Dynamic Changes in
Workflow Management Systems. In DEXA ’97: Proceedings of the
8th International Workshop on Database and Expert Systems Appli-
cations, pages 42-48, Washington, DC, USA, 1997. IEEE Computer
Society.

W. Reisig. Place/Transition Systems. In Proceedings of an Ad-
vanced Course on Petri Nets: Central Models and Their Properties,
Advances in Petri Nets 1986-Part I, pages 117-141, London, UK,
1987. Springer-Verlag.

V. Rubin, C.W. Glnther, W.M.P. van der Aalst, E. Kindler, B.F. van
Dongen, and W. Schéfer. Process Mining Framework for Software
Processes. In Proc. of International Conference on Software Process,

2007. accepted.

V. Rubin, C.W. Glinther, W.M.P. van der Aalst, E. Kindler, B.F. van
Dongen, and W. Schéfer. Process Mining Framework for Software
Processes. BPM Center Report BPM-07-01, BPM Center, BPMcen-
ter.org, jan 2007.

M. J. Rochkind. The source code control system. IEEE Transactions
on Software Engineering, SE-1(4):364-70, December 1975.

T.P. Rout. SPICE: A Framework for Software Process Assessment.

Software Process: Improvement and Practice, 1(1), 1995.

W. W. Royce. Managing the development of large software systems:
concepts and techniques. In ICSE ’87: Proceedings of the 9th in-
ternational conference on Software Engineering, pages 328-338, Los

Alamitos, CA, USA, 1987. IEEE Computer Society Press.

W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets I: Basic
Models, volume 1491 of Lecture Notes in Computer Science. Springer-

Verlag, Berlin, 1998.

BIBLIOGRAPHY 201

[RvdA06]

[Sca01]

[Sca02]

[SCDS02]

[Sch00]

[Sch02a]

[Sch02b)]

[SEI02]

[SEI06a)]

[SEI06b)

A. Rozinat and W.M.P. van der Aalst. Conformance Testing: Measur-
ing the Fit and Appropriateness of Event Logs and Process Models. In
C. Bussler et al., editor, BPM 2005 Workshops (Workshop on Busi-
ness Process Intelligence), volume 3812, pages 163-176, 2006.

W. Scacchi. FEncyclopedia of software engineering, chapter Process
Models in Software Engineering. Wiley-Interscience, New York, NY,
USA, 2001.

W. Scacchi. Understanding the requirements for developing open
source software systems. IEE Proceedings - Software, 149(1):24-39,
2002.

M. Sayal, F. Casati, U. Dayal, and M.C. Shan. Business Process
Cockpit. In Proceedings of 28th International Conference on Very
Large Data Bases (VLDB’02), pages 880-883. Morgan Kaufmann,
2002.

A.W. Scheer. ARIS: Business Process Modelling. Springer-Verlag,
Berlin, 2000.

IDS Scheer. ARIS Process Performance Manager (ARIS PPM).
http://www.ids-scheer.com, 2002.

G. Schimm. Process Miner - A Tool for Mining Process Schemes
from Event-Based Data. In Proceedings of the European Conference
on Logics in Artificial Intelligence, pages 525-528. Springer-Verlag,
2002.

SEI Carnegie Mellon. Capability Maturity Model Integration (CM-
MISM), Version 1.1. Technical Report CMU/SEI-2002-TR-012,
Carnegie Mellon, Software Engineering Institute, March 2002.

SEI Carnegie Mellon. Process Maturity Profile. CMMI vl1.1
SCAMPI®M v1.1 Class A Appraisal Results 2005 End-Year Update.
Technical report, Carnegie Mellon University, Software Engineering

Institute., March 2006.

SEI Carnegie Mellon. Process Maturity Profile. Software CMM 2005
End-Year Update. Technical report, Carnegie Mellon University, Soft-
ware Engineering Institute., March 2006.

202

[SGRO4]

[SS91]

[SW89]

[TIBO5)

[Tic85)

[vdA9T7]

[vdA02]

[vdAdBvDO5]

[vdARvD106]

[vdAvDGT07]

BIBLIOGRAPHY

R. J. Sandusky, L. Gasser, and G. Ripoche. Bug Report Networks:
Varieties, Strategies, and Impacts in a F/OSS Development Com-
munity. In MSR 2004: International Workshop on Mining Software
Repositories, 2004.

R. Spencer-Smith. Logic and Prolog. Harvester Wheatsheaf, 1991.

J. A. Simpson and Edmund S. Weiner, editors. The Ozxford English
Dictionary (second edition). Oxford University Press, USA, 1989.

TIBCO. TIBCO Staffware Process Monitor (SPM).
http://www.tibco.com, 2005.

W. F. Tichy. RCS — a system for version control. Software — Practice
and Experience, 15(7):637-654, 1985.

W.M.P. van der Aalst. Verification of Workflow Nets. In I[CATPN ’97:
Proceedings of the 18th International Conference on Application and
Theory of Petri Nets, pages 407-426, London, UK, 1997. Springer-
Verlag.

W.M.P. van der Aalst. Making Work Flow: On the Application of
Petri Nets to Business Process Management. In C. Lakos J. Esparza,
editor, 23rd International Conference on Applications and Theory of
Petri Nets, Adelaide, Australia, volume Lecture Notes in Conputer

Science, pages 1-22. Springer Verlag, June 2002.

W.M.P. van der Aalst, H.T. de Beer, and B.F. van Dongen. Pro-
cess Mining and Verification of Properties: An Approach based on
Temporal Logic. BETA Working Paper Series, WP 136, Eindhoven
University of Technology, Eindhoven, 2005.

W.M.P. van der Aalst, V. Rubin, B.F. van Dongen, E. Kindler, and
C.W. Gilinther. Process Mining: A Two-Step Approach using Tran-
sition Systems and Regions. BPM Center Report BPM-06-30, BPM
Center, BPMcenter.org, Dec 2006.

W.M.P. van der Aalst, B.F. van Dongen, C.W. Giinther, R.S. Mans,
A K. Alves de Medeiros, A. Rozinat, V. Rubin, M. Song, H.M.W.
Verbeek, and A.J.M.M. Weijters. ProM 4.0: Comprehensive Support

BIBLIOGRAPHY 203

[vdAvDH 03]

[vdAvHO2]

[vdAW04]

[vAAWMOA4]

[vDAMV+05]

[vDvdA04]

[vDvdAO5a]

for Real Process Analysis. In Proc. of 28th International Conference
on Application and Theory of Petri Nets (ATPN), Siedlce, Poland,
jun 2007. accepted.

W.M.P. van der Aalst, B. F. van Dongena, J. Herbst, L. Marustera,
G. Schimm, and A. J. M. M. Weijters. Workflow mining: A survey

of issues and approaches. Data & Knowledge Engineering, 47(Issue
2):237-267, November 2003.

W.M.P. van der Aalst and K. van Hee. Workflow Management: Mod-
els, Methods, and System. Cooperative Information Systems. The
MIT Press, 2002.

W.M.P. van der Aalst and A.J.M.M. Weijters. Process mining: a
research agenda. Comput. Ind., 53(3):231-244, 2004.

W.M.P. van der Aalst, T. Weijters, and L. Maruster. Workflow Min-
ing: Discovering Process Models from Event Logs. IEEE Transac-
tions on Knowledge and Data Engineering, 16(9):1128-1142, Septem-
ber 2004.

B.F. van Dongen, A.K.A. de Medeiros, H.M.W. Verbeek, A.J.M.M.
Weijters, and W.M.P. van der Aalst. The ProM framework: A new
era in process mining tool support. In G. Ciardo and P. Darondeau,
editors, 26th International Conference on Applications and Theory of
Petri Nets (ICATPN 2005), volume 3536 of LNCS, pages 444-454.
Springer-Verlag, 2005.

B.F. van Dongen and W.M.P. van der Aalst. Multi-Phase Process
Mining: Building Instance Graphs. In P. Atzeni, W. Chu, H. Lu,

S. Zhou, and T.W. Ling, editors, International Conference on Con-

ceptual Modeling (ER 2004), volume 3288, pages 362-376, 2004.

B.F. van Dongen and W.M.P. van der Aalst. Multi-Phase Mining:
Aggregating Instances Graphs into EPCs and Petri Nets. In D. Mari-
nescu, editor, Proceedings of the Second International Workshop on
Applications of Petri Nets to Coordination, Workflow and Business

Process Management, pages 35-58. Florida International University,

Miami, Florida, USA, 2005.

204

[vDvdAO05b]

[VGLO5]

[WA03]

[Wan00]

[WEMY9]

[Wie03]

[WPZZ07]

[WvdAOla]

[WvdAO1b]

BIBLIOGRAPHY

B.F. van Dongen and W.M.P. van der Aalst. Multi-phase Process
mining: Aggregating Instance Graphs into EPCs and Petri Nets. In
2nd International Workshop on Applications of Petri Nets to Coordi-
nation, Worklflow and Business Process Management (PNCWB) at
the ICATPN 2005, 2005.

M. VanHilst, P. K. Garg, and C. Lo. Repository mining and Six
Sigma for process improvement. In MSR ’05: Proceedings of the 2005

international workshop on Mining software repositories, pages 1-4,
New York, NY, USA, 2005. ACM Press.

A JM.M. Weijters and W.M.P. van der Aalst. Rediscovering Work-
flow Models from Event-Based Data using Little Thumb. Integrated
Computer-Aided Engineering, 10(2):151-162, 2003.

Y. Wang. Software Engineering Processes: Principles and Applica-
tions. CRC Press, April 2000.

WIMC. Workflow Management Coalition: Terminology & glos-
sary. Technical Report WFMC-TC-1011, The Workflow Management
Coalition (WfMC), February 1999.

J. Wielemaker. An overview of the SWI-Prolog Programming Envi-
ronment. In Fred Mesnard and Alexander Serebenik, editors, Proceed-
ings of the 13th International Workshop on Logic Programming Envi-
ronments, pages 1-16, Heverlee, Belgium, december 2003. Katholieke
Universiteit Leuven. CW 371.

C. Weif},; R. Premraj, T. Zimmermann, and A. Zeller. How Long will
it Take to Fix This Bug? In Proceedings of the Fourth International
Workshop on Mining Software Repositories, May 2007.

A.J.M.M. Weijters and W.M.P. van der Aalst. Process mining: dis-
covering workflow models from event-based data. In Proceedings of
the 13th Belgium-Netherlands Conference on Artificial Intelligence
(BNAIC 2001), pages 283-290, 2001.

T. Weijters and W.M.P. van der Aalst. Rediscovering Workflow Mod-
els from Event-Based Data. In Hoste, V. and Pauw, G., editors, Pro-

BIBLIOGRAPHY 205

[WvdA02)

[YWAO5]

[zZMROO]

[ZW04]

ceedings of the 11th Dutch-Belgian Conference on Machine Learning
(Benelearn 2001), pages 93-100, 2001.

A JM.M. Weijters and W.M.P. van der Aalst. Workflow Mining:
Discovering Workflow Models from Event-Based Data. In Dousson,
C., Hoppner, F., and Quiniou, R., editors, Proceedings of the ECAI
Workshop on Knowledge Discovery and Spatial Data, pages 78-84,
2002.

A.T.T. Ying, J. L. Wright, and S. Abrams. Source code that talks: an
exploration of Eclipse task comments and their implication to reposi-
tory mining. In MSR ’05: Proceedings of the 2005 international work-

shop on Mining software repositories, 2005.

M. zur Muehlen and M. Rosemann. Workflow-based Process Mon-
itoring and Controlling - Technical and Organizational Issues. In
R. Sprague, editor, Proceedings of the 33rd Hawaii International Con-
ference on System Science (HICSS-33), pages 1-10. IEEE Computer
Society Press, Los Alamitos, California, 2000.

T. Zimmermann and P. Weissgerber. Preprocessing CVS Data for
Fine-Grained Analysis. In Proc. 1st International Workshop on Min-
ing Software Repositories (MSR), may 2004.

206 BIBLIOGRAPHY

List of Figures

1.1
1.2
1.3
1.4
1.5
1.6

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12

Capability Maturity Model, 3
Maturity Appraisal by Reporting Organizations 4
Time To Move Up o o)
Traditional Life-Cycle 9
Mining Life-Cycle 9
Objective: New Workflow Mining Approach 11
Business Process Model and Case 17
Workflow Reference Model [Hol95] 19
Workflow Management System Architecture 19
Aspects of Business Processes 21
Aspect-oriented View on Process Modelling 23
Basic Software Process Elements 25
Revisions Graph L o 29
Checkin/Checkout Model 30
Transition System Lo 32
Net . . . e 33
P/T Net . . .o oo 35
Transition Firing o o 35
Reachability Grapho 36
Workflow Net o 38
TS with Regions 40
Synthesized Petri Neto . 41
Traditional Process-centered Software Engineering Environment. . . . 44
Modern Process-centered Software Engineering Environment. 46
Interaction with SCM. 48
An example of an e-mail. L Lo 49
An example of an announcement. 49
An example of a bug report. 50
An example of a webpage. 51
CVS Log Example 54
SourceSafe Log Example oo 54
Execution Logs and Process Model 57
Mining in a Process-Centered Software Engineering Environment . . . 59
Incremental Workflow Mining Architecture 60

207

208

3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28
3.29
3.30
3.31
3.32
3.33

3.34
3.35
3.36
3.37
3.38
3.39
3.40
3.41
3.42
3.43
3.44
3.45
3.46

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

4.9

LIST OF FIGURES

Different Types of Process Mining 61
Preprocessing Step L oL 61
Informational Model o oo 64
Process Mining Step — Control-flow Mining 66
Control-flow Mining Approach 66
TS generated from thelog 68
PN synthesized from TS 0. 69
Control-flow Mining Approach: Constructing TS 69
Sets-based TS 70
Multisets-based TS 70
Control-flow Mining Approach: Modification Strategies 71
Sets-based TS, no Loops oL 72
Extended Sets-based TS o oo 72
Multisets-based TS with Merged States 73
Control-flow Mining Approach: Petri Net Synthesis 74
PN from Sets-based TS 74
PN from Multiset-based TS 75
PN, no Loops Strategy 75
PN, Extend Strategy 75
PN, Merge Strategy e 76
Control-flow Mining Approach: Petri Net Synthesis (different charac-

teristics) 76
Pure PN 7
Free-choice PN 7
Process Mining Step — Mining Different Aspects 78
Example of a Social Network (Handover of Work) 78
Example of a Social Network (Similar Task) 79
Result of the Organizational Miner 79
Result of the Performance Analysis 80
Model Analysis and Representation Step 81
Conformance Checker 82
Conformance Checker, Path Coverage 83
Result of the LTL checking 84
Incremental and Interactive Approach 85
Using Approach in Batch Mode 87
Main Focus: Control-flow Mining Algorithm 91
Document Log and discovered Process Model 93
Activity Log and discovered Process Model 95
Two logs and models illustrating the completeness issue. 96
Transition System Generation Step 97
Transition System Generation Step: Defining a State 99
Four basic “ingredients” for calculating the “process state”. 100
Different ways to construct the “current state” (depends on the desired

level of abstraction). o 102

Transition System Generation Step: Constructinga TS 104

LIST OF FIGURES 209

4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26
4.27
4.28
4.29
4.30
4.31
4.32
4.33
4.34
4.35
4.36
4.37
4.38
4.39

5.1
5.2
5.3
5.4
9.5
5.6
9.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15

Complete prefix sets TS 106
Complete prefix sequences TS 106
Complete postfix multisets TS 106
Partial prefix sequences TS L. 106
Transition System Generation Step: Modification Strategies 107
Acyclic TS. o 110
Result of applying the extend strategy. 110
Result of applying the merge states strategy. 112
Petri Net Synthesis Step: Constructing PN 113
Regions in the transition system. 114
Synthesized Petrinet. o oL 114
Synthesized and improved PN. L. 114
Petri net for the transition system based on sets. 115
Petri net for the transition system based on sequences. 115
PN for complete postfix multisets TS. 116
PN for partial prefix sequences TS. 116
Petri net for the extended transition system. 117
Petri net for the transition system after state merging. 117
Petri Net Synthesis Step: Selecting Target Format 118
Pure Petrinet. 119
Free-choice Petrinet. o 119
Software Development Process with Prototyping 120
Schema of the Research Prototype 121
Document Log as Prolog Facts 121
Prolog Clause Example 122
An Example of dot Visualization 123
About Process Mining Framework ProM 124
An MXML log example. o 125
Schema of the Implementation in ProM 126
Screenshot of our Mining Plugin 128
Alog fragment. Lo 133
Transition System for the ArgoUML Project 134
Petri Net for the ArgoUML Project 135
Complex TS and PN model. 135
Performance Analysis for the ArgoUML Project 136
Conformance Analysis for the ArgoUML Project 137
LTL Analysis for the ArgoUML Project 138
Social Network for the ArgoUML Project 139
Naming Conventions for Student Repositories 140
A fragment of log filter. o 141
A fragment of the filtered log. L. 142
Acyclic set-based Transition System. 143
Extended acyclic set-based Transition System. 143
PN for acyclic set-based T'S. Lo oL 144
PN for extended acyclic set-based TS. 144

210

5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24
5.25
5.26
5.27
5.28
5.29
5.30
5.31
5.32
5.33
5.34

6.1
6.2
6.3

LIST OF FIGURES

Free-choice variant of extended PN. 145
Performance Analysis with PN. 145
Path Coverage for Group 3. 146
LTL Verification that PH follows LH. 147
LTL verification — groups started coding after the 11th of April. 147
Conversion to EPC. 148
A fragment of the bug history log. 150
Multiset-based TS. L o 151
PN for Multiset-based TS. 151
Partial prefix TS. Lo 152
PN for partial prefix TS. 152
Multiset-based TS, merged strategy. 153
PN for merged multiset-based TS. 153
Performance Analysis with Petri Net. 155
Path coverage Analysis. 155
Verification, reopened bugs. L. 156
Verification, persons resolving and verifying bugs. 157
Social Network, handover of work. 158
Mining the Organizational Structure. 158
Main Areas of our Research 163
Related Work Areas o 164

Three Petri nets, discovered using (a) the o miner, (b) the multi-phase
miner and (¢) our two-step approach. 172

List of Tables

3.1 LogofBugs History, 52
3.2 Document Log 55
3.3 Regular Expressions Lo 62
3.4 Abstract Software Log 63
3.5 Abstract Software Log: Control Aspect 67

211

Index

a-algorithm, 92, 170, 171

abstraction, 56, 62, 100, 140
activity, 17, 24, 92, 95
activity log, 8, 94
activity miner, 80
activity model, 24
ADONIS, 20, 170
agent, 22
analysis, 58, 81
Apache, 159
ArgoUML, 132
ARIS, 20, 124, 174
PPM, 124, 174
aspect, 20, 56, 77
asynchronous controller, 174
audit information, 48
defect report, 50
e-mail, 49, 53
news, 49
webpage, 50
author, 52, 55

baseline, 45

Bootstrap, 28

BPEL, 22, 89, 126, 148
BPMN, 22

bug, 52

bug life cycle, 167

bug life-cycle, 52

bug lifecycle, 149

bug log, 131, 149
Bugzilla, 51, 149

business activity monitoring, 174

business intelligence, 164
business process, 8, 16, 17

business process intelligence, 174

business process management, 15, 163, 169
business process model, 17, 20, 159
business to business (B2B), 8, 88

CAD, 88
case, 17, 99, 133
future, 100

past, 100

checkin, 30, 53

checkout, 30, 53

ClearCase, 54

clustering activities, 81

CMM, 2, 27, 29, 47, 57, 86

CMMI, 2, 57, 82

collaborative product definition management
(cPDm), 12

comment, 55, 57

commit, 69, 92

communication thread, 168

completeness, 94, 95

conformance checking, 82, 137, 146, 156, 171

control aspect, 21, 56

control flow, 20

control-flow mining, 61, 65, 91, 133

conversion, 148

COSA, 20

CPN Tools, 124

customer relationship management (CRM),
8, 12, 87

CVS, 30, 53, 124, 126, 165

CVSChecker, 168

data mining, 95, 174, 176

data warehouse, 175

defect history, 165

defect repository, 45, 46, 51, 149, 167, 168
detecting document types, 63
discussion forum, 45, 168

document, 10, 21, 55

document log, 53, 55, 56, 92, 99, 131
document type, 57

Domino workflow, 20

duplicates, 93

e-mail archive, 168

Eclipse, 52, 139, 149, 166

elementary transition system, 40, 115

embedded system, 23

enterprise resource planning (ERP), 8, 12, 87,
88

212

INDEX

EPC, 11, 22, 125, 148, 170

ER diagram, 22

european space agency (ESA), 27
event, 92, 99, 101

event log, 51, 56, 92, 169
event-based specification, 68
execution log, 55, 56

filter, 101, 133, 141

fitness, 82, 136, 146

flexibility, 59, 86, 174

FLOWer, 124

free monoid, 98
commutative, 98

generalization, 71, 94, 143
genetic algorithm, 170
GNATS, 51
goal/question/metric (GQM), 28
gradual workflow support, 86
GraphViz, 122

dot, 122, 127

heuristic mining, 170
heuristic net, 148, 170
Hipikat, 166

horizon, 102

human, 25

IDE, 139
incremental workflow mining, 13, 43, 48, 58
batch mode, 86
incrementation, 84
interactive, 85
process mining, 91
transition system generation, 97
information system, 1, 16, 88
informational aspect, 21, 56, 80
informational model, 64
input framework, 58
international standard organization (ISO), 1,
27
ISO 10303, 64
ISO 12207, 27
ISO 15504, 28
ISO 9000, 27, 29

Jakarta, 159
JBoss, 166
JIRA, 51

labelled Petri net, 37, 41, 68, 74, 118
lock, 30

213

LTL, 83, 137

machine learning, 95, 164, 170
mailing list, 45, 46
maturity level, 2
defined, 3, 10
initial, 3
managed, 3
optimizing, 3
repeatable, 3, 10
Metaphase, 88
mining, 163
mining sequential patterns, 175
mining software repositories, 46, 165, 176
modelling formalism, 31
modification strategy, 71, 107
extend strategy, 72, 110
kill loops, 71, 109, 134
merge by output, 72, 111
Mozilla, 167
multi-phase mining, 170, 171
multiset, 98
set operation, 98
MXML, 133

net, 33
arc, 33
connectedness, 34
directed path, 34
node, 33
place, 33
post-set, 33
pre-set, 33
transition, 33
newsgroup, 45

ontology, 15, 63
open source software, 45, 132, 165
operation

add arc, 107

merge states, 108

remove arc, 107
optimistic approach, 30
organization, 25
organizational aspect, 21, 56, 77, 138, 157
organizational miner, 78
organizational structure, 44, 57, 158
overfitting, 96, 97, 105, 116

PeopleSoft, 124

performance analysis, 136, 145, 154
performance aspect, 79

personal software process (PSP), 28

214 INDEX

pessimistic approach, 30 process modelling language (PML), 24
Petri net, 11, 22, 35, 68, 125, 142, 148, 150, process-aware information system (PAIS), 1,
173 8, 16, 87
deadlock, 83 product, 24
extended free-choice, 37 product data management (PDM), 12, 64, 87,
free-choice, 37, 76, 92, 119 88, 92
marked graph, 37 data vault, 88
minimal saturated net, 118 EXPRESS, 64
place invariant, 84 STEP, 64
place-irredundant net, 118 workflow management, 88
pure, 37, 76, 119 product lifecycle management (PLM), 12
reachability graph, 115 product model, 24
safe, 37 Prolog, 120
saturated net, 118 clause, 121
simple, 37 fact, 121
state machine, 37 ProM, 77, 120, 123, 125, 126, 133, 170
transition invariant, 84 analysis plugin, 126
Petri net synthesis, 39, 68, 73, 113, 114, 134, conversion plugin, 126
174 export plugin, 125
algorithm, 41, 114 import plugin, 125
Petrify, 125, 126, 142, 174 mining plugin, 125
place/transition net (P/T net), 34 MXML, 123, 126
boundedness, 36 ProMImport, 124, 126, 133
dead transition, 37
firing rule, 35 RCS, 30
liveness, 37 region, 39
marking, 34 minimal, 40, 114
reachability graph, 36 postregion, 40, 114
reachable markings, 35 preregion, 40, 114
safeness, 36 trivial, 39
token, 34 requirements engineering, 168
practitioner, 7, 45, 47 research prototype, 119, 120
preprocessing, 58, 61 resource, 22
process, 15 resource model, 24
process engineer, 6, 48 reverse engineering, 164
process evolution, 174 revision, 53
instance, 85 role, 24
type, 85 RUP, 44
process execution, 18
process instance, 17, 52, 140 SAP, 20, 88
process management system (PMS), 85, 92 Netweaver, 20
process maturity profile, 3 SCCS, 30
process mining, 8, 50, 58, 65, 176 scenario, 89
discovery, 59, 60 scenario management, 164
improving, 59, 60 sequence, 98
intelligence, 97 head, 98
monitoring, 59, 60 projection, 98
problems, 93 tail, 98
process mining core, 59 service-oriented architecture (SOA), 20, 89
process mining framework, 48, 51, 87 set, 98
process model, 6 SOAP, 89

process modelling, 47 social network, 138, 157, 171

INDEX

social network miner, 77
software configuration management (SCM),
9, 28, 45, 47, 52, 64, 84, 92, 167
build management, 30
change management, 30
concurrent development, 30
developer perspective, 29
development discipline, 47
management discipline, 47
management perspective, 29
release management, 30
version management, 29
workspace management, 30
software engineering course, 138
software engineering environment, 9, 25, 44,
45
EPOS, 26
Funsoft Nets, 27
Merlin, 26
OIKOS, 25
SPADE, 26
software failure, 165
software lifecycle, 6, 23
software process, 5, 15, 22, 23, 163, 168, 169
software process improvement (SPI), 2, 27,
47, 57
software process model, 44
software product, 23, 44
software product structure, 44
software repository, 9, 45, 164, 166, 168
software-intensive system, 2, 23
SourceSafe, 53
specification, 39
SPICE, 28
Staffware, 174
state, 69, 99, 103
complete postfix, 101, 105
complete prefix, 101, 105
explicit knowledge, 100
filter, 101
future, 100
multiset, 101, 105
multisets-based, 70
partial postfix, 101
partial prefix, 101
past, 99
past and future, 100
sequence, 101, 105
sequence-based, 71
set, 101, 105
sets-based, 70
state representation, 103

215

state-based specification, 68
Subversion, 30, 124, 126, 132, 139, 165
supply chain management (SupCM), 12
SWI-Prolog, 120

task, 17
team software process (TSP), 28
text mining, 57, 166
theory of regions, 113, 117
time aspect, 57
timestamp, 52, 55
tool, 7, 25, 51, 119
total quality management, 1, 28
trace, 99
transition, 69
transition system, 11, 31, 67, 68, 104, 142, 150
axioms, 32
bisimulation, 33
deterministic, 31
event, 31
finite, 31
isomorphism, 32
reachability relation, 31
state, 31
transition relation, 31
transition system generation, 67, 69, 134
algorithm, 105

UML
activity diagram, 11, 22, 89
class diagram, 22, 64
collaboration diagram, 89
component diagram, 58
sequence diagram, 89
underfitting, 96, 105, 115
utilities, 59

V-model, 44

validation, 120

verification, 39, 82, 137, 146, 156
LTL checking, 83, 137

visualization, 167

web services, 89
webpage, 45, 46
wiki, 46
Windchill, 88
workflow, 16, 170

application programming interface
(WAPI), 18
engine, 18

participant, 18
reference model, 18

216

worklist, 18
workflow management, 8, 15, 169
workflow management coalition (WfMC), 15
workflow management system (WIMS), 8, 16,
19, 85, 87
workflow net, 38, 148
sound, 38, 83, 94, 170
WSDL, 89

YAWL, 126

INDEX

